
12th Innovations in Theoretical
Computer Science Conference

ITCS 2021, January 6–8, 2021, Virtual Conference

Edited by

James R. Lee

LIPIcs – Vo l . 185 – ITCS 2021 www.dagstuh l .de/ l ip i c s



Editors

James R. Lee
University of Washington, Seattle, USA
jrl@cs.washington.edu

ACM Classification 2012
Mathematics of computing; Theory of computation

ISBN 978-3-95977-177-1

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-177-1.

Publication date
February, 2021

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ITCS.2021.0

ISBN 978-3-95977-177-1 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:jrl@cs.washington.edu
https://www.dagstuhl.de/dagpub/978-3-95977-177-1
https://www.dagstuhl.de/dagpub/978-3-95977-177-1
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.ITCS.2021.0
https://www.dagstuhl.de/dagpub/978-3-95977-177-1
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics


0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ITCS 2021

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics




Contents

Preface
James R. Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xi

ITCS 2021 Conference Organization
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xiii–0:xiv

Papers

The Entropy of Lies: Playing Twenty Questions with a Liar
Yuval Dagan, Yuval Filmus, Daniel Kane, and Shay Moran . . . . . . . . . . . . . . . . . . . . . . 1:1–1:16

Comparing Computational Entropies Below Majority (Or: When Is the Dense
Model Theorem False?)

Russell Impagliazzo and Sam McGuire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2:1–2:20

Algorithmic Persuasion with Evidence
Martin Hoefer, Pasin Manurangsi, and Alexandros Psomas . . . . . . . . . . . . . . . . . . . . . . 3:1–3:20

The Complexity of Finding Fair Independent Sets in Cycles
Ishay Haviv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4:1–4:14

Sharp Threshold Rates for Random Codes
Venkatesan Guruswami, Jonathan Mosheiff, Nicolas Resch, Shashwat Silas, and
Mary Wootters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5:1–5:20

Simple Heuristics Yield Provable Algorithms for Masked Low-Rank
Approximation

Cameron Musco, Christopher Musco, and David P. Woodruff . . . . . . . . . . . . . . . . . . . . 6:1–6:20

Pseudorandom Generators for Unbounded-Width Permutation Branching
Programs

William M. Hoza, Edward Pyne, and Salil Vadhan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7:1–7:20

Pipeline Interventions
Eshwar Ram Arunachaleswaran, Sampath Kannan, Aaron Roth, and Juba Ziani . . 8:1–8:20

A Polynomial Degree Bound on Equations for Non-Rigid Matrices and Small
Linear Circuits

Mrinal Kumar and Ben Lee Volk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9:1–9:9

The Strongish Planted Clique Hypothesis and Its Consequences
Pasin Manurangsi, Aviad Rubinstein, and Tselil Schramm . . . . . . . . . . . . . . . . . . . . . . . 10:1–10:21

Sample Efficient Identity Testing and Independence Testing of Quantum States
Nengkun Yu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11:1–11:20

Understanding the Relative Strength of QBF CDCL Solvers and QBF Resolution
Olaf Beyersdorff and Benjamin Böhm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12:1–12:20

The Quantum Supremacy Tsirelson Inequality
William Kretschmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13:1–13:13

12th Innovations in Theoretical Computer Science Conference (ITCS 2021).
Editor: James R. Lee

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:vi Contents

Approximately Strategyproof Tournament Rules in the Probabilistic Setting
Kimberly Ding and S. Matthew Weinberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14:1–14:20

Even the Easiest(?) Graph Coloring Problem Is Not Easy in Streaming!
Anup Bhattacharya, Arijit Bishnu, Gopinath Mishra, and Anannya Upasana . . . . . 15:1–15:19

The Variable-Processor Cup Game
William Kuszmaul and Alek Westover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16:1–16:20

Comparison Graphs: A Unified Method for Uniformity Testing
Uri Meir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17:1–17:20

Circular Trace Reconstruction
Shyam Narayanan and Michael Ren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18:1–18:18

Self-Testing of a Single Quantum Device Under Computational Assumptions
Tony Metger and Thomas Vidick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19:1–19:12

Polynomial-Time Trace Reconstruction in the Low Deletion Rate Regime
Xi Chen, Anindya De, Chin Ho Lee, Rocco A. Servedio, and Sandip Sinha . . . . . . . 20:1–20:20

Metrical Service Systems with Transformations
Sébastien Bubeck, Niv Buchbinder, Christian Coester, and Mark Sellke . . . . . . . . . . . 21:1–21:20

Tight Hardness Results for Training Depth-2 ReLU Networks
Surbhi Goel, Adam Klivans, Pasin Manurangsi, and Daniel Reichman . . . . . . . . . . . 22:1–22:14

A Largish Sum-Of-Squares Implies Circuit Hardness and Derandomization
Pranjal Dutta, Nitin Saxena, and Thomas Thierauf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23:1–23:21

Circuit Depth Reductions
Alexander Golovnev, Alexander S. Kulikov, and R. Ryan Williams . . . . . . . . . . . . . . . 24:1–24:20

Dynamic Inference in Probabilistic Graphical Models
Weiming Feng, Kun He, Xiaoming Sun, and Yitong Yin . . . . . . . . . . . . . . . . . . . . . . . . . 25:1–25:20

Theorems of KKL, Friedgut, and Talagrand via Random Restrictions and
Log-Sobolev Inequality

Esty Kelman, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra . . . . . . . . . . 26:1–26:17

On Rich 2-to-1 Games
Mark Braverman, Subhash Khot, and Dor Minzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27:1–27:20

Distributed Quantum Proofs for Replicated Data
Pierre Fraigniaud, François Le Gall, Harumichi Nishimura, and Ami Paz . . . . . . . . 28:1–28:20

On Basing Auxiliary-Input Cryptography on NP-Hardness via Nonadaptive
Black-Box Reductions

Mikito Nanashima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29:1–29:15

Spoofing Linear Cross-Entropy Benchmarking in Shallow Quantum Circuits
Boaz Barak, Chi-Ning Chou, and Xun Gao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30:1–30:20

On the Complexity of Isomorphism Problems for Tensors, Groups, and
Polynomials I: Tensor Isomorphism-Completeness

Joshua A. Grochow and Youming Qiao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31:1–31:19

Bounds on the QAC0 Complexity of Approximating Parity
Gregory Rosenthal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32:1–32:20



Contents 0:vii

Query Complexity Lower Bounds for Local List-Decoding and Hard-Core
Predicates (Even for Small Rate and Huge Lists)

Noga Ron-Zewi, Ronen Shaltiel, and Nithin Varma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33:1–33:18

Is the Space Complexity of Planted Clique Recovery the Same as That of
Detection?

Jay Mardia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34:1–34:17

Algorithms and Hardness for Multidimensional Range Updates and Queries
Joshua Lau and Angus Ritossa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35:1–35:20

Two Combinatorial MA-Complete Problems
Dorit Aharonov and Alex B. Grilo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36:1–36:20

Delegated Stochastic Probing
Curtis Bechtel and Shaddin Dughmi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37:1–37:19

Explicit SoS Lower Bounds from High-Dimensional Expanders
Irit Dinur, Yuval Filmus, Prahladh Harsha, and Madhur Tulsiani . . . . . . . . . . . . . . . . 38:1–38:16

Lower Bounds on the Running Time of Two-Way Quantum Finite Automata and
Sublogarithmic-Space Quantum Turing Machines

Zachary Remscrim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39:1–39:20

On the Complexity of #CSPd

Jiabao Lin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40:1–40:10

Interactive Proofs for Verifying Machine Learning
Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff . . . . . 41:1–41:19

Ordered Graph Limits and Their Applications
Omri Ben-Eliezer, Eldar Fischer, Amit Levi, and Yuichi Yoshida . . . . . . . . . . . . . . . . 42:1–42:20

Error Correcting Codes for Uncompressed Messages
Ofer Grossman and Justin Holmgren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43:1–43:18

Total Functions in the Polynomial Hierarchy
Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and
Christos Papadimitriou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44:1–44:18

Relaxing Common Belief for Social Networks
Noah Burrell and Grant Schoenebeck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45:1–45:20

Tiered Random Matching Markets: Rank Is Proportional to Popularity
Itai Ashlagi, Mark Braverman, Amin Saberi, Clayton Thomas, and Geng Zhao . . . 46:1–46:16

Black-Box Uselessness: Composing Separations in Cryptography
Geoffroy Couteau, Pooya Farshim, and Mohammad Mahmoody . . . . . . . . . . . . . . . . . . . 47:1–47:20

Pseudobinomiality of the Sticky Random Walk
Venkatesan Guruswami and Vinayak M. Kumar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48:1–48:19

Robust Quantum Entanglement at (Nearly) Room Temperature
Lior Eldar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49:1–49:20

Time-Space Lower Bounds for Simulating Proof Systems with Quantum and
Randomized Verifiers

Abhijit S. Mudigonda and R. Ryan Williams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50:1–50:20

ITCS 2021



0:viii Contents

Online Search with a Hint
Spyros Angelopoulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51:1–51:16

Sequential Defaulting in Financial Networks
Pál András Papp and Roger Wattenhofer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52:1–52:20

No Quantum Speedup over Gradient Descent for Non-Smooth Convex
Optimization

Ankit Garg, Robin Kothari, Praneeth Netrapalli, and Suhail Sherif . . . . . . . . . . . . . . . 53:1–53:20

Quantum Versus Randomized Communication Complexity, with Efficient Players
Uma Girish, Ran Raz, and Avishay Tal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54:1–54:20

Agnostic Learning with Unknown Utilities
Kush Bhatia, Peter L. Bartlett, Anca D. Dragan, and Jacob Steinhardt . . . . . . . . . . . 55:1–55:20

On Distributed Differential Privacy and Counting Distinct Elements
Lijie Chen, Badih Ghazi, Ravi Kumar, and Pasin Manurangsi . . . . . . . . . . . . . . . . . . . 56:1–56:18

A Generalized Matching Reconfiguration Problem
Noam Solomon and Shay Solomon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57:1–57:20

Sensitivity Analysis of the Maximum Matching Problem
Yuichi Yoshida and Samson Zhou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58:1–58:20

Computational Complexity of the Hylland-Zeckhauser Scheme for One-Sided
Matching Markets

Vijay V. Vazirani and Mihalis Yannakakis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59:1–59:19

An O(N) Time Algorithm for Finding Hamilton Cycles with High Probability
Rajko Nenadov, Angelika Steger, and Pascal Su . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60:1–60:17

Communication Memento: Memoryless Communication Complexity
Srinivasan Arunachalam and Supartha Podder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61:1–61:20

Relative Lipschitzness in Extragradient Methods and a Direct Recipe for
Acceleration

Michael B. Cohen, Aaron Sidford, and Kevin Tian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62:1–62:18

Training (Overparametrized) Neural Networks in Near-Linear Time
Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein . . . . . . . . . . . . . 63:1–63:15

A New Connection Between Node and Edge Depth Robust Graphs
Jeremiah Blocki and Mike Cinkoske . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64:1–64:18

Towards Local Testability for Quantum Coding
Anthony Leverrier, Vivien Londe, and Gilles Zémor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65:1–65:11

Complete Problems for Multi-Pseudodeterministic Computations
Peter Dixon, A. Pavan, and N. V. Vinodchandran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66:1–66:16

Online Paging with a Vanishing Regret
Yuval Emek, Shay Kutten, and Yangguang Shi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67:1–67:20

Differentially Oblivious Turing Machines
Ilan Komargodski and Elaine Shi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68:1–68:19

Quantitative Correlation Inequalities via Semigroup Interpolation
Anindya De, Shivam Nadimpalli, and Rocco A. Servedio . . . . . . . . . . . . . . . . . . . . . . . . . 69:1–69:20



Contents 0:ix

Shrinkage of Decision Lists and DNF Formulas
Benjamin Rossman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70:1–70:14

Block Rigidity: Strong Multiplayer Parallel Repetition Implies Super-Linear
Lower Bounds for Turing Machines

Kunal Mittal and Ran Raz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71:1–71:15

Lower Bounds for Off-Chain Protocols: Exploring the Limits of Plasma
Stefan Dziembowski, Grzegorz Fabiański, Sebastian Faust, and Siavash Riahi . . . . . 72:1–72:20

Majorizing Measures for the Optimizer
Sander Borst, Daniel Dadush, Neil Olver, and Makrand Sinha . . . . . . . . . . . . . . . . . . . 73:1–73:20

Randomness and Fairness in Two-Sided Matching with Limited Interviews
Hedyeh Beyhaghi and Éva Tardos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74:1–74:18

Counterexamples to the Low-Degree Conjecture
Justin Holmgren and Alexander S. Wein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75:1–75:9

High-Entropy Dual Functions and Locally Decodable Codes (Extended Abstract)
Jop Briët and Farrokh Labib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76:1–76:2

Buying Data over Time: Approximately Optimal Strategies for Dynamic
Data-Driven Decisions

Nicole Immorlica, Ian A. Kash, and Brendan Lucier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77:1–77:14

Learning and Strongly Truthful Multi-Task Peer Prediction: A Variational
Approach

Grant Schoenebeck and Fang-Yi Yu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78:1–78:20

Distributed Load Balancing: A New Framework and Improved Guarantees
Sara Ahmadian, Allen Liu, Binghui Peng, and Morteza Zadimoghaddam . . . . . . . . . 79:1–79:20

Erasure-Resilient Sublinear-Time Graph Algorithms
Amit Levi, Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and
Nithin Varma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80:1–80:20

How to Sell Information Optimally: An Algorithmic Study
Yang Cai and Grigoris Velegkas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81:1–81:20

Computation over the Noisy Broadcast Channel with Malicious Parties
Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena . . . . 82:1–82:19

Sampling Arborescences in Parallel
Nima Anari, Nathan Hu, Amin Saberi, and Aaron Schild . . . . . . . . . . . . . . . . . . . . . . . . 83:1–83:18

Non-Quasi-Linear Agents in Quasi-Linear Mechanisms (Extended Abstract)
Moshe Babaioff, Richard Cole, Jason Hartline, Nicole Immorlica, and
Brendan Lucier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84:1–84:1

A Model for Ant Trail Formation and its Convergence Properties
(Extended Abstract)

Moses Charikar, Shivam Garg, Deborah M. Gordon, and Kirankumar Shiragur . . . 85:1–85:2

Unknown I.I.D. Prophets: Better Bounds, Streaming Algorithms, and a New
Impossibility (Extended Abstract)

José Correa, Paul Dütting, Felix Fischer, Kevin Schewior, and Bruno Ziliotto . . . . 86:1–86:1

ITCS 2021



0:x Contents

Complexity Measures on the Symmetric Group and Beyond (Extended Abstract)
Neta Dafni, Yuval Filmus, Noam Lifshitz, Nathan Lindzey, and Marc Vinyals . . . . 87:1–87:5

Batching and Optimal Multi-Stage Bipartite Allocations (Extended Abstract)
Yiding Feng and Rad Niazadeh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88:1–88:1

Shrinkage Under Random Projections, and Cubic Formula Lower Bounds
for AC0 (Extended Abstract)

Yuval Filmus, Or Meir, and Avishay Tal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89:1–89:7



Preface

The papers in this volume were presented at the 12th Innovations in Theoretical Computer
Science (ITCS 2021) conference. The conference was held online from January 6–8, 2021.
ITCS seeks to promote research that carries a strong conceptual message, for instance,
introducing a new concept or model, opening a new line of inquiry within traditional or cross-
interdisciplinary areas, introducing new techniques, or making novel connections between
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Abstract
“Twenty questions” is a guessing game played by two players: Bob thinks of an integer between 1 and
n, and Alice’s goal is to recover it using a minimal number of Yes/No questions. Shannon’s entropy
has a natural interpretation in this context. It characterizes the average number of questions used
by an optimal strategy in the distributional variant of the game: let µ be a distribution over [n],
then the average number of questions used by an optimal strategy that recovers x ∼ µ is between
H(µ) and H(µ) + 1.

We consider an extension of this game where at most k questions can be answered falsely. We
extend the classical result by showing that an optimal strategy uses roughly H(µ)+kH2(µ) questions,
where H2(µ) =

∑
x
µ(x) log log 1

µ(x) . This also generalizes a result by Rivest et al. (1980) for the
uniform distribution.

Moreover, we design near optimal strategies that only use comparison queries of the form “x ≤ c?”
for c ∈ [n]. The usage of comparison queries lends itself naturally to the context of sorting, where
we derive sorting algorithms in the presence of adversarial noise.
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1 Introduction

The “twenty questions” game is a cooperative game between two players: Bob thinks of
an integer between 1 and n, and Alice’s goal is to recover it using the minimal number of
Yes/No questions. An optimal strategy for Alice is to perform binary search, using logn
queries in the worst case.

The game becomes more interesting when Bob chooses his number according to a
distribution µ known to both players, and Alice attempts to minimize the expected number of
questions. In this case, the optimal strategy is to use a Huffman code for µ, at an expected
cost of roughly H(µ).
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1:2 The Entropy of Lies: Playing Twenty Questions with a Liar

What happens when Bob is allowed to lie (either out of spite, or due to difficulties in
the communication channel)? Rényi [20] and Ulam [25] suggested a variant of the (non-
distributional) “twenty questions” game, in which Bob is allowed to lie k times. Rivest et
al. [21], using ideas of Berlekamp [4], showed that the optimal number of questions in this
setting is roughly logn+ k log logn. There are many other ways of allowing Bob to lie, some
of which are described by Spencer and Winkler [24] in their charming work, and many others
by Pelc [19] in his comprehensive survey on the topic.

Distributional “twenty questions” with lies

This work addresses the distributional “twenty questions” game in the presence of lies. In
this setting, Bob draws an element x according to a distribution µ, and Alice’s goal is to
recover the element using as few Yes/No questions as possible on average. The twist is that
Bob, who knows Alice’s strategy, is allowed to lie up to k times. Both Alice and Bob are
allowed to use randomized strategies, and the average is measured according to both µ and
the randomness of both parties.

Our main result shows that the expected number of questions in this case is

H(µ) + kH2(µ), where H2(µ) =
∑
x

µ(x) log log 1
µ(x) ,

up to an additive factor of O(k log k + kH3(µ)), where H3(µ) =
∑
x µ(x) log log log(1/µ(x)))

(here µ(x) is the probability of x under µ.) See Section 3 for a complete statement of this
result.

When µ is the uniform distribution, the expected number of queries that our algorithm
makes is roughly logn+ k log logn, matching the performance of the algorithm of Rivest et
al. However, the approach by Rivest et al. is tailored to their setting, and the distributional
setting requires new ideas.

As in the work of Rivest et al., our algorithms use only comparison queries, which are
queries of the form “x ≺ c?” (for some fixed value c). Moreover, our algoritms are efficient,
requiring O(n) preprocessing time and O(logn) time per question. Our lower bounds, in
contrast, apply to arbitrary Yes/No queries.

Noisy sorting

One can apply binary search algorithms to implement insertion sort. While sorting an array
typically requires Θ(n logn) sorting queries of the form “xi ≺ xj?”, there are situations
where one has some prior knowledge about the correct ordering. This may happen, for
example, when maintaining a sorted array: one has to perform consecutive sorts, where
each sort is not expected to considerably change the locations of the elements. Assuming a
distribution Π over the n! possible permutations, Moran and Yehudayoff [17] showed that
sorting a Π-distributed array requires H(Π) +O(n) sorting queries on average. We extend
this result to the case in which the answerer is allowed to lie k times, giving an algorithm
which uses the following expected number of queries:1

H(Π) +O(nk).

This result is tight, and matches the optimal algorithms for the uniform distribution due to
Bagchi [3] and Long [16], which use n logn+O(nk) queries.

1 Strictly speaking, this bound holds only under the mild condition that k is at most exponential in n.
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Table 1 Query complexities of searching and sorting in different settings, ignoring lower-order
terms. All terms are exact upper and lower bounds except for those inside the O(·) and Θ(·)
notations.

Setting Searching Sorting
No lies; deterministic logn [classical] n logn [classical]
No lies; distributional H(µ) [classical] H(Π) +O(n) [17]
k lies; deterministic logn+ k log logn [21] n logn+ Θ(nk) [3, 16, 15]
k lies; distributional H(µ) + kH2(µ) [this paper] H(Π) + Θ(nk) [this paper]

Table 1 summarizes the query complexities of resilient and non-resilient searching and
sorting algorithms, in both the deterministic and the distributional settings. To the best of
our knowledge, we present the first resilient algorithms in the distributional setting.

On randomness

All algorithms presented in the paper are randomized. Since they only employ public
randomness which is known for both players, there exists a fixing of the randomness which
yields a deterministic algorithm with the same (or possibly smaller) expected number of
queries. However, this comes at the cost of possibly increasing the running time of the
algorithm (since we need to find a good fixing of the randomness); it would be interesting to
derive an explicit efficient deterministic algorithm with a similar running time.

1.1 Main ideas
Upper bound

Before presenting the ideas behind our algorithms, we explore several other ideas which
give suboptimal results. The first approach that comes to mind is simulating the optimal
non-resilient strategy, asking each question 2k + 1 times and taking the majority vote, which
results in an algorithm using Θ(kH(µ)) queries on average.

A better approach is using tree codes, suggested by Schulman [22] as an approach for
making interactive communication resilient to errors [11, 22, 14]. Tree codes are designed
for a different error model, in which we are bounding the fraction of lies rather than their
absolute number; for an ε-fraction of lies, the best known constructions suffer a multiplicative
overhead of 1 +O(

√
ε) [13]. In contrast, we are aiming at an additive overhead of kH2(µ).

Using a packing bound, one can prove that there exists a (non-interactive) code of
expected length roughly H(µ) + 2kH2(µ), coming much closer to the bound that we are able
to get (but off by a factor of 2 from our target H(µ) + kH2(µ)). The idea, which is similar to
the proof of the Gilbert–Varshamov bound, is to construct a prefix code w1, . . . , wn in which
the prefixes of wi, wj of length min(|wi|, |wj |) are at distance at least 2k + 1 (whence the
factor 2k in the resulting bound); this can be done greedily. Apart from the inferior bound,
two other disadvantages of this approach is that it is not efficient and uses arbitrary queries.

In contrast to these prior techniques, which do not achieve the optimal complexity, might
ask arbitrary questions, and could result in strategies which cannot be implemented efficiently,
in this paper we design an efficient and nearly optimal strategy, relying on comparison queries
only, and utilizing simple observations on the behavior of binary search trees under the
presence of lies.

ITCS 2021
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. . .

µ(x1) µ(xn)

0 1x1 xn

Figure 1 Representing items as centers of segments partitioning the interval [0, 1].
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Figure 2 On the left, the operation of the algorithm without any lies. On the right, answerer
lied on the first question. As a result, all future truthful answers are the same.

Following the footsteps of Rivest et al. [21], our upper bound is based on a binary search
algorithm on the unit interval [0, 1], first suggested in this context by Gilbert and Moore [12]:
given x ∈ [0, 1], the algorithm locates x by first asking “x < 1/2?”; depending on the answer,
asking “x < 1/4?” or “x < 3/4?”; and so on. If x ∈ [0, 1] is chosen uniformly at random then
the answers behave like an infinite sequence of random and uniform coin tosses.

In order to apply this kind of binary search to the problem of identifying an unknown
element (assuming truthful answers), we partition the unit interval [0, 1] into segments of
lengths µ(x1), . . . , µ(xn), and label the center of each segment with the corresponding item
(see Figure 1). We then perform binary search until the current interval contains a single item.
(In the proof, we use a slightly more sophisticated randomized placement of points which
guarantees that the answers on each element behave like an infinite sequence of random and
uniform coin tosses.)

The main observation is that if a question “x < a?” is answered with a lie, this will be
strongly reflected in subsequent answers (see Figure 2). Indeed, suppose that x < a, but Bob
claimed that x > a. All subsequent questions will be of the form “x < b?” for various b > a,
the truthful answer to all of which is x < b. An observer taking notes of the proceedings will
thus observe the following pattern of answers: > (the lie) followed by many <’s (possibly
interspersed with up to k − 1 many >’s, due to further lies). This is suspicious since it is
highly unlikely to obtain many < answers in a row (the probability of getting r such answers
is just 2−r).

This suggests the following approach: for each question we will maintain a “confidence
interval” consisting of r(d) further questions (where d is the index of the question). At
the end of the interval, we will check whether the situation is suspicious (as described in
the preceding paragraph), and if so, will ascertain by brute force the correct answer to the
original question (by taking a majority of 2k + 1 answers), and restart the algorithm from
that point.
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The best choice for r(d) turns out to be roughly log d. Each time Bob lies, our un-
rolling of the confidence interval results in a loss of r(d) questions. Since an item x re-
quires roughly log(1/µ(x)) questions to be discovered, the algorithm has an overhead of
roughly kr(log(1/µ(x))) ≈ k log log(1/µ(x)) questions on element x, resulting in an expected
overhead of roughly kH2(µ).

When implementing the algorithm, apart from the initial O(n) time needed to setup the
partition of [0, 1] into segments, the costliest step is to convert the intervals encountered in
the binary search to comparison queries. This can be done in O(logn) time per query.

Lower bound

The proof of our lower bound uses information theory: one can lower bound the expected
number of questions by the amount of information that the questioner gains. There are two
such types of information: first, the hidden object reveals H(µ) information, as in the setting
where no lies are allowed. Second, when the object is revealed, the positions of the lies are
revealed as well. This reveals additional H2(µ) (conditional) information, as we explain
below.

Let dx denote the number of questions asked for element x. Kraft’s inequality shows that
any good strategy of the questioner satisfies dx ' log(1/µ(x)). If the answerer chooses a
randomized strategy in which the positions of the lies are chosen uniformly from the

(
dx

k

)
possibilities, these positions reveal log

(
dx

k

)
≈ k log dx ' k log log(1/µ(x)) information given

x. Taking expectation over x, the positions of the lies reveal at least kH2(µ) information
beyond the identity of x.

1.2 Related work
Most of the literature on error-resilient search procedures has concentrated on the non-
distributional setting, in which the goal is to give a worse case guarantee on the number of
questions asked, under various error models. The most common error models are as follows:2

Fixed number of errors. This is the error model we consider, and it is also the one
suggested by Ulam [25]. This model was first studied by Berlekamp [4], who used an
argument similar to the sphere-packing bound to give a lower bound on the number of
questions. Rivest et al. [21] used this lower bound as a guiding principle in their almost
matching upper bound using comparison queries.
At most a fixed fraction p of the answers can be lies. This model is similar to the one
considered in error-correcting codes. Pelc [18] and Spencer and Winkler [24] (independ-
ently) gave a non-adaptive strategy for revealing the hidden element when p ≤ 1/4, and
showed that the task is not possible (non-adaptively) when p > 1/4. Furthermore, when
p < 1/4 there is an algorithm using O(logn) questions, and when p = 1/4 there is an
algorithm using O(n) questions, which are both optimal (up to constant factors). Spencer
and Winkler also showed that if questions are allowed to be adaptive, then the hidden
element can be revealed if and only if p < 1/3, again using O(logn) questions.
At most a fixed fraction p of any prefix of the answers can be lies. Pelc [18] showed that
the hidden element can be revealed if and only if p < 1/2, and gave an O(logn) strategy
when p < 1/4. Aslam and Dhagat [2] and Spencer and Winkler gave an O(logn) strategy
for all p < 1/2.

2 This section is heavily based on Pelc’s excellent and comprehensive survey [19].

ITCS 2021
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Every question is answered erroneously with probability p, an error model common in
information theory. Rényi [20] showed that the number of questions required to discover
the hidden element with constant success probability is (1 + o(1)) logn/(1− h(p)).

The distributional version of the “twenty questions” game (without lies) was first con-
sidered by Shannon [23] in his seminal paper introducing information theory, where its
solution was attributed to Fano (who published it later as [9]). The Shannon–Fano code
uses at most H(µ) + 1 questions on average, but the questions can be arbitrary. The
Shannon–Fano–Elias code (also due to Gilbert and Moore [12]), which uses only comparison
queries, asks at most H(µ) + 2 questions on average. Dagan et al. [7] give a strategy, using
only comparison and equality queries, which asks at most H(µ) + 1 questions on average.

Sorting

The non-distributional version of sorting has also been considered in some of the settings
considered above:

At most k errors: Lakshmanan et al. [15] gave a lower bound of Ω(n logn + kn) on
the number of questions, and an almost matching upper bound of O(n logn+ kn+ k2)
questions. An optimal algorithm, using n logn+O(kn) questions, was given independently
by Bagchi [3] and Long [16].
At most a p fraction of errors in every prefix: Aigner [1] showed that sorting is possible if
and only if p < 1/2. Borgstrom and Kosaraju [5] had showed earlier that even verifying
that an array is sorted requires p < 1/2.
Every answer is correct with probability p: Feige et al. [10] showed in an influential paper
that Θ(n log(n/ε)) queries are needed, where ε is the probability of error.
Braverman and Mossel [6] considered a different setting, in which an algorithm is given
access to noisy answers to all possible

(
n
2
)
comparisons, and the goal is to find the most

likely permutation. They gave a polynomial time algorithm which succeeds with high
probability.

The distributional version of sorting (without lies) was considered by Moran and Ye-
hudayoff [17], who gave a strategy using at most H(µ) + 2n queries on average, based on the
Gilbert–Moore algorithm.

Paper organization

After a few preliminaries in Section 2, we describe our results in full in Section 3. The proofs
are presented in the full version of this paper [8].

2 Definitions

We use the notation
(
n
≤k
)

=
∑k
`=0
(
n
`

)
. Unless stated otherwise, all logarithms are base 2.

We define log(x) = log(x+ C) and ln(x) = ln(x+ C) for a fixed sufficiently large constant
C > 0 satisfying log log logC > 0.

Information theory

Given a probability distribution µ with countable support, the entropy of µ is given by the
formula

H(µ) =
∑

x∈suppµ
µ(x) log 1

µ(x) .
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Twenty questions game

We start with an intuitive definition of the game, played by a questioner (Alice) and an
answerer (Bob). Let U be a finite set of elements, and let µ be a distribution over U , known
to both parties. The game proceeds as follows: first, an element x ∼ µ is drawn and revealed
to the answerer but not to the questioner. The element x is called the hidden element. The
questioner asks binary queries of the form “x ∈ Q?” for subsets Q ⊆ U . The answerer is
allowed to lie a fixed number of times, and the goal of the questioner is to recover the hidden
element x, asking the minimal number of questions on expectation.

Decision trees

Let U be a finite set of elements. A decision tree T for U is a binary tree formalizing the
question asking strategy in the twenty questions game. Each internal node of v of T is
labeled by a query (or question) – a subset of U , denoted by Q(v); and each leaf is labeled
by the output of the decision tree, which is an element of U . The semantics of the tree are
as follows: on input x ∈ U , traverse the tree by starting at the root, and whenever at an
internal node v, go to the left child if x ∈ Q(v) and to the right child if x /∈ Q(v).

Comparison tree

Given an ordered set of elements x1 ≺ x2 ≺ · · · ≺ xn, comparison questions are questions of
the form Q = {x1, . . . , xi−1}, for some i = 1, . . . , n + 1. In other words, the questions are
“x ≺ xi?” for some i = 1, . . . , n+ 1. An answer to a comparison question is one of {≺,�}. A
comparison tree is a decision tree all of whose nodes are labeled by comparison questions.

Adversaries

Let k ≥ 0 be a bound on the number of lies. An intuitive way to formalize the possibility
of lying is via an adversary. The adversary knows the hidden element x and receives the
queries from the questioner as the tree is being traversed. The adversary is allowed to lie at
most k times, where each lie is a violation of the above stated rule. Formally, an adversary
is a mapping that receives as input an element x ∈ X, a sequence of the previous queries
and their answers, and an additional query Q ⊆ U , which represents the current query. The
output of the adversary is a boolean answer to the current query; this answer is a lie if it
differs from the truth value of “x ∈ Q”.

We also allow the adversary and the tree to use randomness: a randomized decision
tree is a distribution over decision trees and a randomized adversary is a distribution over
adversaries.

Computation and complexity

The responses of the adversary induce a unique root-to-leaf path in the decision tree, which
results in the output of the tree. A decision tree is k-valid if it outputs the correct element
against any adversary that lies at most k times.

Given a k-valid decision tree T and a distribution µ on U , the cost of T with respect to
µ, denoted c(T, µ), is the maximum, over all possible adversaries that lie at most k times, of
the expected3 length of the induced root-to-leaf path in T . Finally, the k-cost of µ, denoted
ck(µ), is the minimum of c(T, µ) over all k-valid decision trees T .

3 The expectation is also taken with respect to the randomness of the adversary and the tree when they
are randomized.

ITCS 2021
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Basic facts

We will refer to the following well-known formula as Kraft’s identity:

I Fact 1 (Kraft’s identity). Fix a binary tree T , let L be its set of leaves and let d(`) be the
depth of leaf `. The following applies:∑

`∈L(T )

2−d(`) ≤ 1.

We will use the following basic lower bound on the expected depth by the entropy:

I Fact 2. Let T be a binary tree and let µ be a distribution over its leaves. Then

H(µ) ≤ E
`∼µ

[
d(`)

]
.

In other words, for any distribution µ, c0(µ) ≥ H(µ). In fact, it is also known that
c0(µ) ≤ H(µ) + 1.

3 Main results

This section is organized as follows: The lower bound is presented in Section 3.1. Then, the
two searching algorithms are presented in Section 3.2, and finally the application to sorting
is presented in Section 3.3.

3.1 Lower bound

In this section we present the following lower bound on ck(µ), namely, on the expected
number of questions asked by any k-valid tree (not necessarily a comparison trees).

I Theorem 3. For every non-constant distribution µ and every k ≥ 0,

ck(µ) ≥
(

E
x∼µ

log 1
µ(x)

)
+ k
(

E
x∼µ

log log 1
µ(x)

)
− (k log k + k + 1).

Proof overview

Consider a k-valid tree; we wish to lower bound the expected number of questions for x ∼ µ.
Let dx denote the number of questions asked when the secret element is x. Then, by the
entropy lower bound when the number of mistakes is k = 0, it follows that typically, dx &
log(1/µ(x)). Moreover, the transcript of the game (i.e. the list of questions and answers)
determines both x and the positions of the k lies. This requires

dx + k log(dx) & log(1/µ(x)) + k log log(1/µ(x))

bits of information. Taking expectation over x ∼ µ then yields the stated bound.
Our proof formalizes this intuition using standard and basic tools from information theory.

One part that requires a subtler argument is showing that indeed one may assume that
dx & log(1/µ(x)) for all x. This is done by showing that any k-valid tree can be modified to
satisfy this constraint without increasing the expected number of questions by too much.
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3.2 Upper bounds
We introduce two algorithms. The first algorithm, presented in Section 3.2.1, is simpler,
however, the second algorithm has a better query complexity. The expected number of
questions asked by the first algorithm is at most

H(µ) + (k+ 1)H2(µ) +O(k2H3(µ) +k2 log k), where H3(µ) =
∑
x

µ(x) log log log 1
µ(x) .

The second algorithm, presented in Section 3.2.2, removes the quadratic dependence on k,
and has an expected complexity of:

H(µ) + kH2(µ) +O(kH3(µ) + k log k).

In Section 3.2.3 we robustify the guarantees of these algorithms and consider scenarios where
the exact distribution µ is not known but only some prior η ≈ µ, or where the actual number
of lies is less than the bound k (whence the algorithm achieves better performance).

3.2.1 First algorithm
Suppose that we are given a probability distribution µ whose support is the linearly ordered
set x1 ≺ · · · ≺ xn. In this section we overview the proof of the following theorem:

I Theorem 4. There is a k-valid comparison tree T with

c(T, µ) ≤ H(µ) + (k + 1)
n∑
i=1

µi log log 1
µi

+O

(
k2

n∑
i=1

µi log log log 1
µi

+ k2 log k
)
,

where µi = µ(xi).

The question-asking strategy simulates a binary search to recover the hidden element.
If, at some point, the answer to some question q is suspected as a lie then q is asked 2k + 1
times to verify its answer. When is the answer to q suspected? The binary search tree is
constructed in a manner that if no lies are told then roughly half of the questions are answered
≺, and half �. However, if, for example, the lie “x � x50” is told when in fact x = x10, then
all consecutive questions will be of the form “x ≺ xi?” for i > 50, and the correct answer
would always be ≺. Since no more than k lies can be told, almost all consecutive questions
will be answered ≺, and the algorithm will suspect that some earlier question is a lie.

We start by suggesting a question-asking strategy using comparison queries which is valid
as long as there are no lies, and then show how to make it resilient to lies. Each element xi
is mapped to a point pi in [0, 1], such that p1 < p2 < · · · < pn. Then, a binary search on
the interval [0, 1] is performed, for finding the point pi corresponding to the hidden element.
The search proceeds by maintaining a Live interval, which is initialized to [0, 1]. At any
iteration, the questioner asks whether pi lies in the left half of the Live interval. The interval
is updated accordingly, and its length shrinks by a factor of 2. This technique was proposed
by Gilbert–Moore [12], and is presented in AuxiliaryAlgorithm 1, as an algorithm which
keeps asking questions indefinitely.

The points p1, . . . , pn are defined as follows: first, a number θ ∈ [0, 1/2) is drawn uniformly
at random. Now, for any element i define pi = 1

2
∑i−1
j=1 µj + 1

4µi + θ.4 Given θ, let T ′θ denote
the infinite tree generated by AuxiliaryAlgorithm 1. Note that whenever Live contains just

4 In the original paper pi was defined similarly but without the randomization: pi =
∑i−1

j=1 µj + 1
2µi.
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Algorithm 1 Randomized Gilbert–Moore.
1: Live ← [0, 1]
2: loop
3: m← midpoint of Live
4: X ← {i : pi ≥ m}
5: if x ∈ X then
6: Live ← right half of Live
7: else
8: Live ← left half of Live
9: end if

10: end loop

one point pi, then (as there are no lies) the hidden element must be xi. Denote by Tθ the
finite tree corresponding to the algorithm which stops whenever that happens. We present
two claims about these trees.

First, conditioned on any hidden element xi, the answers to all questions (except, perhaps,
for the first answer) are distributed uniformly and independently, where the distribution is
over the random choice of θ. This follows from the fact that all bits of pi except for the most
significant bit are i.i.d. unbiased coin flips.

B Claim 5. For any element xi, let (At) be the random sequence of answers to the questions
in AuxiliaryAlgorithm 1, containing all answers except for the first answer, assuming there
are no lies. The distribution of the sequence (At) is the same as that of an infinite sequence
of independent unbiased coin tosses, where the randomness stems from the random choice
of pi.

Second, since min(pi − pi−1, pi+1 − pi) ≥ µi/4, one can bound the time it takes to isolate
xi as follows.

B Claim 6. For any element xi and any θ, the leaf in Tθ labeled by xi is of depth at most
log(1/µi) + 3. Hence, if x is drawn from a distribution µ, the expected depth of the leaf
labeled x is at most

∑
i µi log(1/µi) + 3 = H(µ) + 3.

We now describe the k-resilient algorithm: Algorithm 1 (the pseudocode appears as well).
At the beginning, a number θ is randomly drawn. Then, two concurrent simulations over
T ′θ are performed, and two pointers to nodes in this tree are maintained (recall that T ′θ is
the infinite binary search tree). The first pointer, Current, simulates the question-asking
strategy according to T ′θ, ignoring the possibility of lies. In particular, it may point on an
incorrect node in the tree (reached as a result of a lie). Since Current ignores the possibility
of lies, there is a different pointer, LastVerified, which verifies the answers to the questions
asked in the simulation of Current. All answers in the path from the root to LastVerified
are verified as correct, and LastVerified will always be an ancestor of Current. See Figure 3
for the basic setup.

The algorithm proceeds in iterations. In every iteration the question Q(Current) is asked
and Current is advanced to the corresponding child accordingly. In some of the iterations
also LastVerified is advanced. Concretely, this happens when the depth of Current in T ′θ
equals d+ r(d), where d is the depth of LastVerified and r(d) ≈ log d+ k log log d. In these
iterations, the answer given to Q(LastVerified) is being verified, as detailed next.
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Algorithm 1 Resilient-Tree.
1: θ ← Uniform([0, 1/2))
2: Current ← root(T ′θ)
3: LastVerified ← root(T ′θ)
4: while LastVerified is not a leaf of Tθ do
5: if x ∈ Q(Current) then
6: Current ← left-child(Current)
7: else
8: Current ← right-child(Current)
9: end if
10: d← depth(LastVerified) + 1
11: if depth(Current) = d+ r(d) then
12: Candidate ← child of LastVerified which is an ancestor of Current
13: VerificationPath ← ancestors of Current up to and excluding Candidate
14: if Candidate is a left (right) child and at most k − 1 vertices in VerificationPath

are left (right) children then
15: Ask 2k + 1 times the question x ∈ Q(LastVerified)
16: if majority answer is x ∈ Q(LastVerified) then
17: LastVerified ← left-child(LastVerified)
18: else
19: LastVerified ← right-child(LastVerified)
20: end if
21: Current ← LastVerified
22: else
23: LastVerified ← Candidate
24: end if
25: end if
26: end while
27: return label of LastVerified

Root

LastVerified

<

>

< >

>

>

>

Candidate

Current

Lie!

d

r(d)

Figure 3 An illustration of Algorithm 1 just before the detection of a lie. The answer at
LastVerified was a lie (< instead of >), and so all answers below Candidate (except for any further
lies) are >. This is noticed since Current is at depth d + r(d). The answer at Candidate will be
verified and found wrong, and so LastVerified would move to the sibling of Candidate (and so will
Current), and the algorithm will continue from that point.
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The verification process

Next, we examine the verification process when LastVerified is advanced. There are two
possibilities: first, when the answer to the question Q(LastVerified), which was given when
Current traversed it, is verified to be correct. In that case, LastVerified moves to its child
which lies on the path towards Current. In the complementing case, when the the answer to
the question Q(LastVerified) is detected as a lie, then LastVerified moves to the other child.
In that case, Current is no longer a descendant of LastVerified, hence Current is moved up
the tree and is set to LastVerified.

We now explain how the answer to Q(LastVerified) is verified. There are two verification
steps: the first step uses no additional questions and the second step uses 2k + 1 additional
questions. Usually, only the first step will be used and no additional questions will be spent
during verification. In the first verification step one checks whether the following condition
holds:

The answer to Q(LastVerified) is identical to at least k of the answers along the path from
LastVerified to Current.

If this condition holds, then the answer is verified as correct. To see why this reasoning is valid,
assume without loss of generality that the answer is ≺, and assume towards contradiction
that it was a lie. Then, the correct answers to all following questions in the simulation of
Current are �. Since there can be at most k − 1 additional lies, there can be at most k − 1
additional ≺ answers. Hence, if there are more ≺ answers among the following questions
then the previous answer to Q(LastVerified) is verified as correct.

Else, if the above condition does not hold then one proceeds to the second verification
step and asks 2k + 1 times the question Q(LastVerified). Here, the majority answer must be
correct, since there can be at most k lies.

We add one comment: if the second verification step is taken, one sets Current ←
LastVerified regardless of whether a lie had been revealed (this is performed to facilitate the
proof). So, whenever the condition in the first verification step fails to hold then Current
and LastVerified point to the same node in the tree.

The algorithm ends when LastVerified reaches a leaf of Tθ, at which point the hidden
element is recovered.

Query complexity analysis

Fix an element xi. We bound the expected number of questions asked when xi is the hidden
element as follows. Define d ≈ log(1/µ(xi)) as the depth of the leaf labeled xi in Tθ. We
divide the questions into the following five categories:

Questions on the path P from the root to Current by the end of the algorithm, when
Current reaches depth d+r(d), LastVerified reaches depth d, and the algorithm terminates.
Hence, there are at most d+ r(d) such questions.
Questions that were ignored due to the second verification step while Current was
backtracked from a node outside P . This can only happen due to a lie between Current
and LastVerified so there are at most k · r(d) such questions.
Questions asked 2k + 1 times during the second verification step when Current was
pointing to a node outside P . This can only happen due to a lie between Current and
LastVerified so there are at most k · (2k + 1) such questions.
Questions that were ignored due to the second verification step, when Current was being
backtracked from a node in P . By the choice of r(d) there are at most O(1) such questions
(on expectation).
Questions asked 2k + 1 during the second verification step when Current was pointing to
a node in P . By the choice of r(d) there are at most O(1) such questions (in expectation).



Y. Dagan, Y. Filmus, D. Kane, and S. Moran 1:13

Summing these bounds up, one obtains a bound of(
d+ r(d)

)
+ k · r(d) + k · (2k + 1) +O(1) +O(1)

≈ log(1/µi) + (k + 1)
(

log log(1/µi) + k log log log(1/µi) +O(k)
)
.

3.2.2 Second algorithm

In this section we overview the proof of the following theorem.

I Theorem 7. For any distribution µ there exists a k-valid comparison tree T with

c(T, µ) ≤ H(µ) + kEx∼µ
[
log log(1/µ(x))

]
+O(kEx∼µ

[
log log log(1/µ(x))

]
+ k log k).

We explain the key differences with Algorithm 1.

In Algorithm 1, an answer to a question Q at depth d was suspected as a lie if at most k of
the r(d) consecutive questions received the same answer as Q. In the new algorithm, we
suspect a question Q if all the r′(d) consecutive answers are different than Q. This change
enables setting r′(d) ≈ log d rather than the previous value of r(d) ≈ log d+ k log log d.
Similarly to Algorithm 1, any time a lie is deleted, r′(d) questions are being deleted.
Summing over the k lies, one obtains a total of kr′(d) ≈ k log d deleted questions, which
is smaller than the corresponding value of kr(d) ≈ k log d+ k2 log log d in Algorithm 1.
In Algorithm 1, the lies were detected in the same order they were told (i.e. in a first-
in-first-out queue-like manner). This is due to the semantic of the pointer LastVerified
which verifies the questions one-by-one, along the branching of the tree. In Algorithm 2
the pointer LastVerified is removed (only Current is used), and the lies are detected in a
last-in-first-out stack-like manner: only the last lie can be deleted at any point in time.
Indeed, as described in the previous paragraph, a lie will be deleted only if all consecutive
answers are different (which is equivalent to them being non-lies).
In Algorithm 1, when an answer is suspected as a lie, the corresponding question Q is
repeated 2k+ 1 times in order to verify its correctness. This happens after each lie, hence
Ω(k) redundant questions are asked per lie. In Algorithm 2, the suspected question Q
will be asked again only once, and the algorithm will proceed accordingly. It may however
be the case that this process will repeat itself and also the second answer to this question
will be suspected as a lie and Q will be asked once again and so on. In order to avoid an
infinite loop we add the condition that if the same answer is told k + 1 times then it is
guaranteed to be correct and will not be suspected any more.
The removal of LastVerified forces finding a different method of verifying the correctness
of an element x upon arriving at a leaf of Tθ. One option is to ask the question “element
= x?” 2k + 1 times and take the majority vote, where each = question is implemented
using one � and one �. This will, however, lead to asking Ω(k) redundant questions
each time x is not the correct element. Instead, one asks “element = x?” multiple times,
stopping either when the answer = is obtained k+1 times, or by the first the answer 6= has
obtained more than the answer =. The total redundancy imposed by these verification
questions throughout the whole search is O(k).

To put the algorithm together, we exploit some simple combinatorial properties of paths
containing multiple lies.
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3.2.3 A fine-grained analysis of the guarantees
In this section, we present a stronger statement for the guarantees of our algorithms. First,
the algorithms do not have to know exactly the distribution µ from which the hidden element
is drawn: an approximation suffices for getting a similar bound. Recall that the algorithm
gets as an input some probability distribution η. This distribution might differ from the true
distribution µ. The cost of using η rather than µ is related to D(µ‖η), the Kullback–Leibler
divergence between the distributions.

Secondly, the algorithm has stronger guarantees when the actual number of lies is less
than k. This is an improvement comparing to the algorithm of Rivest et al. [21] mentioned
in the introduction. It will be utilized in the application of sorting, where the searching
algorithm is invoked multiple times with a bound on the total number of lies (rather the
number of lies per iteration). We present the general statement with respect to Algorithm 2.

I Theorem 8. Assume that Algorithm 2 is invoked with the distribution (η1, . . . , ηn). Then,
for any element xi, the expected number of questions asked when xi is the secret is at most

log (1/ηi) + E[K ′] log log 1
ηi

+O

(
E[K ′] log log log 1

ηi
+ E[K ′]logk + k

)
,

where K ′ is the expected number of lies. (The expectation is taken over the randomness of
both parties.)

As a corollary, one obtains Theorem 7 and the following corollary, which corresponds to
using a distribution different from the actual distribution.

I Corollary 9. Assume that Algorithm 2 is invoked with (η1, . . . , ηn) while (µ1, . . . , µn) is
the true distribution. Then, for a random hidden element drawn from µ, the expected number
of questions asked is at most

H(µ) + kEx∼µ
[
log log(1/µ(x))

]
+O(kE

µ

[
log log log(1/µ(x))

]
+ klogk)

+D(µ‖η) +O(k logD(µ‖η)),

where D(µ‖η) =
∑
x∈suppµ µ(x) log µ(x)

η(x) is the Kullback–Leibler divergence between µ and η.

Corollary 9 follows from Theorem 8 by bounding K ′ ≤ k, taking expectation over xi ∼ µ,
noting that

∑
i µi log(1/ηi) = H(µ) + D(µ‖η) and applying Jensen’s inequality with the

function x 7→ log x.

3.3 Sorting
One can apply Algorithm 2 to implement a stable version of the insertion sort using comparison
queries. Let Π be a distribution over the set of permutations on n elements. Complementing
with prior algorithms achieving a complexity of H(Π) + O(n) in the randomized setting
with no lies [17], and n logn+O(nk + n) in the deterministic setting with k lies [3, 16], we
present an algorithm with a complexity of H(Π) + O(nk + n + k log k) in the distributed
setting with k lies. Note that k log k = O(nk) unless unless the unlikely case that k = ew(n),
hence the k log k term can be ignored. Therefore, the guarantee of our algorithm matches
the guarantees of the prior algorithms substituting either k = 0 or Π = Uniform.

I Theorem 10. Assume a distribution Π over the set of all permutations on n elements.
There exists a sorting algorithm which is resistant to k lies and sorts the elements using
H(Π) +O(nk + n+ k log k) comparisons on expectation.
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The randomized algorithms benefit from prior knowledge, namely, when one has inform-
ation about the correct ordering. This is especially useful for maintaining a sorted list of
elements, a procedure common in many sequential algorithms. In these settings, the values of
the elements can change in time, hence, the elements have to be re-sorted regularly, however,
their locations are not expected to change drastically.

The suggested sorting algorithm performs n iterations of insertion sort. By the end of each
iteration i, x1, . . . , xi are successfully sorted. Then, on iteration i+ 1, one performs a binary
search to find the location where xi+1 should be inserted, using conditional probabilities.

The guarantee of the algorithm is asymptotically tight: a lower bound of H(Π) follows
from information theoretic reasons, and a lower bound of Ω(nk) follows as well: the bound
of Lakshmanan et al. [15] can be adjusted to the randomized setting.
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Abstract
Computational pseudorandomness studies the extent to which a random variable Z looks like
the uniform distribution according to a class of tests F . Computational entropy generalizes
computational pseudorandomness by studying the extent which a random variable looks like a high
entropy distribution. There are different formal definitions of computational entropy with different
advantages for different applications. Because of this, it is of interest to understand when these
definitions are equivalent.

We consider three notions of computational entropy which are known to be equivalent when
the test class F is closed under taking majorities. This equivalence constitutes (essentially) the
so-called dense model theorem of Green and Tao (and later made explicit by Tao-Zeigler, Reingold
et al., and Gowers). The dense model theorem plays a key role in Green and Tao’s proof that the
primes contain arbitrarily long arithmetic progressions and has since been connected to a surprisingly
wide range of topics in mathematics and computer science, including cryptography, computational
complexity, combinatorics and machine learning. We show that, in different situations where F is
not closed under majority, this equivalence fails. This in turn provides examples where the dense
model theorem is false.
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1 Introduction

Computational pseudorandomness is a central topic in theoretical computer science. In this
scenario, one has a class F of boolean functions f : {0, 1}n → {0, 1} (which we’ll refer to as
tests) and random variable Z over {0, 1}n. We say that Z is ε-pseudorandom with respect to
F) if maxf∈F |E[f(Z)]− E[f(U)]| ≤ ε where U is the uniform distribution over {0, 1}n and
ε > 0 is small. In this case, we think of Z as “behaving like the uniform distribution” according
to tests in F . In general, say that two random variables X, Y ε-indistinguishable by F if
maxf∈F |E[f(X)]− E[f(Y)]| (and so ε-pseudorandom distributions are exactly those which
are ε-indistinguishable from U). Constructing explicit Z’s which behave like the uniform
distribution according to different test classes is among the central goals of complexity theory,
with sufficiently strong constructions leading to, for example, derandomization of BPP. One
way in which the theory of pseudo-randomness is rich is that there are multiple equivalent
formulations of pseudo-randomness, such as Yao’s next bit test ([51]).

The various notions of pseudo-entropy and pseudo-density generalize pseudo-randomness
to formalize how much randomness a distribution looks like it has as far as this class of
tests can perceive. Many of these notions were first introduced as stepping stones towards
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pseudo-randomness, giving properties of sub-routines within constructions of pseudo-random
generators. However, measuring seeming randomness quantitatively is important in many
other contexts, so these notions have found wider application. For example, in mathematical
subjects such as combinatorics and number theory, there is a general phenomenon of “structure
vs. randomness”, where a deterministically defined object such as a graph or set of integers
can be decomposed into a structured part and a random part. Pseudo-entropy quantifies
how much randomness the “random part” has. Notions of pseudo-density were used in this
context by Green, Tao, and Ziegler [18, 48] to show that the primes contain arbitrarily long
arithmetic progressions. We can also use pseudo-entropy notions to characterize the amount
of seeming randomness remains n a cryptographic key after it has been compromised with
a side-channel attack. A data set used in a machine learning algorithm might not have
much randomness in itself, and might not be completely random looking, but is hopefully
representative of the much larger set of inputs that the results of the algorithm will be applied
to, so we can use notions of pseudo-entropy to say when such algorithms will generalize.
There are many possible definitions of this intuitive idea, and as with pseudo-randomness,
the power of pseudo-entropy is that many of these notions have been related or proven
equivalent.

In particular, the dense model theorem provides such a basic equivalence. Here, the
intuitive concept we are trying to capture is the density (or relative min-entropy) of the
target distribution within a larger distribution, what fraction of the larger distribution
is within the target. We say that Z is δ-dense if E[µ(x)] = 2−n

∑
x µ(x) ≥ δ where µ :

{0, 1}n → [0, 1] is density function defining Z (in the sense that Pr[Z = z] = µ(z)/(2nE[µ(x)])).
One application of indistinguishability from a dense distribution is as a stepping stone to
pseudorandomness: if Z is indistinguishable from a distribution M with density δ within the
uniform distribution, then applying a randomness extractor with min-entropy rate n−log(1/δ)
to Z is a pseudorandom distribution. A more sophisticated application comes from additive
number theory. It is not hard to show that a random subset of [N ] = {1, 2, ..., N} (including
each element with probability 1/2, say) contains many arithmetic progressions (which are
sets of the form {a, a+ b, a+ 2b, a+ 3b, ...}). Szemerédi [45] showed that, in fact, sufficiently
dense subsets of the integers also contain such arithmetic progressions: specifically, that for
any k, the size of the largest subsets of [N ] which doesn’t contain an arithmetic progression
grows like o(N).

So we would like some technology to reason about random variables Z which “behave like
dense distributions”. It turns out, however, that formalizing what it means for Z to “behave
like a dense distribution” is subtle. Here are three perfectly legitimate candidates:

Candidate 1: Z behaves like a δ-dense distribution if it behaves like something that’s δ-dense.
Formally, this means that Z is ε-indistinguishable from some δ-dense distribution. In this
case, we say that Z has a δ-dense ε-model.

Candidate 2: Z behaves δ-dense if it’s δ-dense inside of something that behaves like the
uniform distribution. Formally this means there’s an ε-pseudorandom distribution X in
which Z is δ-dense. In this case, we say that Z is δ-dense in an ε-pseudorandom set.

Candidate 3: Z behaves δ-dense if it appears to be the case that conditioning on Z increases
the size of any set by at most (roughly) a 1/δ-factor. This is an operational definition:
conditioning on a (truly) dense set increases the set by at most a 1/δ-fraction, so we
should expect the same behavior from things that behave like a dense set. Formally, this
means that δE[f(Z)] ≤ E[f(U)] + ε for any f in our test class F . In this case, we say
that Z has (ε, δ)-pseudodensity.
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Precisely which definition you pick will depend on what you know about Z and in what
sense you would like it to behave like a δ-dense distribution. Indeed, each of these definitions
have appeared in different applications ([25], [18], [13], respectively), so there are scenarios
where each of these types of behavior is desired. In general, the first candidate is the strongest
(and, arguably, the most natural), but it is sometimes hard to establish that a distribution
has the property. The following claim gives some simple relationships between the definitions:

B Claim 1. For any F , the following hold:
1. If Z has a δ-dense ε-model, then Z is δ-dense in a ε-pseudorandom set.
2. If Z is δ-dense in an ε-pseudorandom set, then Z has (ε, δ)-pseudodensity.

Proof sketch.
1. Let M be the δ-dense ε-model for Z. Note that U = δM+(1−δ)M. So U′ = δZ+(1−δ)M

is ε-pseudorandom and Z is δ-dense within it.
2. Suppose Z is δ-dense in Z′ which ε-pseudorandom for F . Then for any f ∈ F , δE[f(Z)] ≤

E[f(Z′)] ≤ E[f(U] + ε. C

The marvelous quality of these three candidates in particular is that, for many natural F , all
of them are equivalent, and so establishing even (ε′, δ)-pseudodensity is enough to guarantee
the existence of a δ-dense ε-model.

This equivalence holds for F which are closed under majority, meaning for any k (which
we can think of as k = O(1) for now), if f1, ..., fk ∈ F then MAJk(f1, ..., fk) ∈ F , where
MAJ : {0, 1}n → {0, 1} is 1 if at least half of its input bits are 1. In fact, it holds for
more general F if we allow the distinguishing parameter (ε′ in (ε′, δ)-pseudodensity) to be
exponentially small (as in the original formulation, which we’ll dicuss later on). In this case,
the subtelty in defining what it means to behave like a dense set vanishes. These equivalences
constitute (essentially) what is known as the dense model theorem, originating in the work
of Green-Tao [18] and Tao-Zeigler [48], and independently in Barak et al. [8] (though in
different guises). This result has been fruitfully applied in many seemingly unrelated areas
of mathematics and computer science: additive number theory [18, 48] where F encodes
additive information about subsets of {1, ..., N} (or possibly a more general group), graph
theory [49, 38] where F encodes cuts in a fixed graph, circuit complexity [49], Fourier analysis
[29], machine learning [29] and leakage-resilient cryptography [14]. The ubiquity of the dense
model theorem motivates a simple question: are there natural scenarios in which the dense
model theorem is false?

We show that the answer to this question is yes. In particular, we show that for either
implication from Claim 1 there is a class F and a random variable Z so that converse fails to
hold. From the computational entropy perspective, we show that the three computational
entropies we’ve discussed are inequivalent for certain test classes F . Necessarily (with ε′ not
exponentially small) these classes are not closed under majority and so we will need to look
“below” majority in order to find our counterexamples.

1.1 The dense model theorem
We turn to discuss the dense model theorem in some more detail to better contextualize our
work. Restricting our attention to random variable over {0, 1}n, the dense model theorem
states the following:

I Theorem 1.1 (Dense model theorem). Let F be a class of tests f : {0, 1}n → {0, 1} and
Z a random variable over {0, 1}n with (εδ, δ)-pseudodensity with respect to MAJk ◦ F for
k = O(log(1/δ)/ε2). Then Z has a δ-dense ε-model with respect to F .
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We will generally also consider a parameter ε′, which in this case is εδ, the additive
error in pseudodensity. To get an intuition for what this is saying, let’s conisder a setting
where it’s false but for trivial reasons. As a simple example given in [52], pick a set Z
some set as a (1− ε) fraction of another set S of size δ2n. Then Z doesn’t have a δ-dense
ε-model (i.e. S) with respect to Z’s indicator function, which we’ll call f . On the other
hand, the distribution W obtained by sampling Z with probability δ and sampling from S’s
complement with probability 1 − δ is at most εδ-distinguishable from S for any function,
since εδ is simply the measure of the difference between S and Z. In particular Z is δ-dense
in the εδ-pseudorandom W (which implies, via Claim 1, that it is (εδ, δ)-pseudodense). This
means that the Theorem 1.1 is tight for the dependence on ε′ = εδ, in that it becomes false
for Ω(εδ). In many instances, we think of ε = 1/poly(n), δ constant (or perhaps with mild
dependences on n) and ε′ = δε.

Originally, the dense model theorem was proved with a different (and stronger) assumption;
namely, that Z is dense in a pseudorandom set. Green and Tao, in proving that the primes
contain arbitrarily long arithmetic progressions, used it to the following effect: if Z are
the prime numbers up to n, then its density is known to behave like Θ(1/ logn). On the
other hand, Szemerédi [45] showed that sufficiently dense subsets of Z contain arbitrarily
long arithmetic progressions. The best bounds for Szemerédi ’s theorem require density
ω(1/ log logn)), which is much larger than the primes (see [16] and the recent [9] for more
on the rich history on this and related problems). Not all is lost, however: the only property
of dense sets that we’re interested in is that they contain arithemtic progressions. So Green
and Tao construct a class F of tests which can “detect” arithmetic progressions and under
which the primes are dense inside of a F ′-pseudorandom set (more on F ′ later). By applying
the dense model theorem, we conclude that the primes “look like” a dense set (themselves
having long arithemtic progressions) with respect to the class F . As F detects arithmetic
progressions, it must be the case that the primes possess them. Of course, many details need
to be filled in, but we hope this example shows the reader the “spirit” of the dense model
theorem.

A primary source of interest in the dense model theorem is in the connections it shares with
seemingly unrelated branches of mathematics and computer science. The original application
was in additive number theory, but it was independently discovered and proved in the context
of cryptography ([8, 14]). RTTV [38] and Gowers [17] observed proofs of the dense model
theorem which use linear programming duality, which is in turn related to Nisan’s proof of the
hardcore lemma from circuit complexity [28]. In fact, Impagliazzo [29] shows in unpublished
work that optimal-density versions of the hardcore lemma due to Holenstein [26] actually
imply the dense model theorem. Klivans and Servedio [32] famously observed the relationship
betweeen the hardcore lemma and boosting, a fundamental technique for aggregating weak
learners in machine learning [15]. Together with the result of Impagliazzo, this connection
means that dense model theorems can be proved by a particular type of boosting algorithm.
A boosting argument for the existence of dense models also gives us constructive versions of
the dense model theorem, which are needed for algorithmic applications. Zhang [52] (without
using Impagliazzo’s reduction from the dense model theorem to the hardcore lemma) used
the boosting algorithm of [7] directly to prove the dense model theorem with optimal query
complexity (k).

In addition to its connections to complexity, machine learning, additive number theory
and cryptography, the dense model theorem (and ideas which developed from the dense
model theorem, chiefly the approximation theorem of [49]), have been used to understand the
weak graph regularity lemma of Frieze and Kannan [29], notions of computational differential
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privacy [36] and even generalization in generative adversarial networks (GANs) [5]. We now
turn to discussing the complexity-theoretic aspects of the dense model theorem, specifically
regarding our question of whether the MAJk from the statement is optimal.

As alluded to earlier, Green and Tao actually worked in a setting where F ′ doesn’t
need to compute majorities but where εδ (that is, the distinguishing parameter in the
pseudodensity assumption in the statement of Theorem 1.1) needs to be replaced by some
ε′ = exp(−poly(1/ε, 1/δ)) (with k = poly(1/δ, 1/ε) experiencing a small increase). We state
this result, as proved in Tao and Zeigler [48] and stated this way in RTTV [38], for comparison.
For a test class F , let

∏
k F be the set of tests of the form

∏
i∈[k] fi for fi ∈ F .

I Theorem 1.2 (Computationally simple dense-model theorem, strong assumption). Let F be
a class of tests f : {0, 1}n → [0, 1] and Z a random variable over {0, 1}n which is δ-dense in
a set ε′-pseudorandom for

∏
k F with k = poly(1/δ, 1/ε) and ε′ = exp(−1/δ, 1/ε). Then Z

has a δ-dense ε-model with respect to F .

RTTV [38] observe that this proof can be adapted to work for ε′ have polynomial dependence
on ε, δ by restricting to the case of boolean-valued tests. Doing so, however, makes F ′ much
more complicated (essentially requiring circuits of size exponential in k). In Theorem 1.1, we
can obtain the best of both worlds: ε′ has polynomial dependence on ε, δ and the complexity
blow-up is rather small. However, in this more picturesque circumstance, we need to be able
to compute majorities. Is such a tradeoff necessary? Our results suggest that the answer is
yes. Theorem 1.6 (stated in the following section) tells us that if the dense model theorem is
true for F , then there’s a small, constant-depth circuit with F-oracle gates approximating
majority on O(1/ε2) bits.

Another important aspect of the dense model theorem is how the different assumptions are
related. As mentioned, the original assumption was that Z is δ-dense in an ε-pseudorandom
set, but the proof can be extended to the case where Z is (ε, δ)-pseudodense. Claim 1 showed
that the former assumption implies that latter assumption. When the dense model theorem
is true, the latter also implies the former: simply apply the dense model theorem to Z which
is (ε, δ)-dense to obtain a δ-dense ε-model. Then, by the first part of Claim 1, we’re done.

First, we give examples of situations where these two notions are distinct. For example,
we show in Theorem 1.4 and Theorem 1.5 that they are inequivalent when F is constant-
depth polynomial size circuits or when F is a low-degree polynomial over a finite field.
Note that a separation between pseudodensity and being dense in a pseudorandom set also
implies a separation between pseudodensity and having a dense model, as being dense in a
pseudorandom set is a necessary condition for having a dense model.

Second, we show that the dense model theorem is false even when we make the stronger
assumption that the starting distribution Z is dense in a pseudorandom set. Specifically, in
Theorem 1.3 we can show that some distributions Z are dense in a pseudorandom set but
fail to have a dense model when F consists of constant-depth, polynomial size circuits.

Having contextualized our work some, we now turn to describe our contributions in more
detail.

1.2 Contributions
We separate the previously described notions of computational entropy, giving examples
where the dense model theorem is false. We are able to prove different separations when F is
constant-depth unbounded fan-in circuits, low-degree polynomials over a finite field, and, in
one case, any test class F which cannot efficiently approximate majority (in some sense made
explicit later on). The only known separation prior was between pseudodensity and having a
dense model for bounded-width read-once branching programs, due to Barak et al. [8].
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Let C(S, d) denote the class of unbounded fan-in, size S, depth d circuits. We are
generally thinking of S = poly(n) and d = O(1), which corresponds to the complexity class
AC0. Theorem 1.3 shows that Z being δ-dense in an ε-pseudorandom set need not imply that
Z has a δ-dense ε-model when the test class is C(S, d):

I Theorem 1.3. Let ε, ε′ > 0 be arbitrary, δ ≥ ε′/8 and

S ≤ exp
(
O
(√ε′
ε
·
√

log(1/δ)
log(1/ε′)

)1/(d−1)
)
.

Then for F = C(S, d), there is a random variable D over {0, 1}n with n = O(log(1/δ)/ε2)
so that D is δ-dense in an ε′-pseudorandom set but does not have a δ-dense ε-model. In
particular, the dense model theorem is false in this setting.

Recall that the dense model theorem is false when ε′ = Ω(εδ), which makes the restriction
δ ≥ ε′/8 extremely mild. A common regime is ε = 1/poly(n), δ = O(1) and ε′ = δε = Θ(ε),
in which case this gives us (essentially) a lower bound of weakly exponential in 1/

√
ε ≈ 1/

√
ε′.

Let Nα denote the product distribution of n Bernoulli random variables with success
probability 1/2−α. Recall that density in a pseudorandom set readily implies pseudodensity,
and one can use the dense model theorem to show the converse. We show that (ε, δ)-
pseudodensity need not imply δ-density in an ε-pseudorandom set when the test class is
C(S, d):

I Theorem 1.4. Fix ε, ε′, δ > 0, d ∈ N, and

S ≤ exp
(
O
(√δ√

ε
· log(1/δ)

log(1/ε′)

)1/(d−1)
)
.

Then N√
ε/δ

over {0, 1}n with n = O(1/ε) is (ε′, δ)-pseudodense and yet N√
ε/δ

is not
δ-dense inside of any ε-pseudorandom set.

The dependence ε′ means that we can take ε′ exponentially smaller than ε and still obtain
a separation. This case corresponds to F being “very” fooled by Nα but still not being
δ-dense in a “mildly” pseudorandom set. This result draws on a recent line of work in the
pseudorandomness literature – often referred to as “the coin problem” and studied in, e.g.,
[42, 12, 1, 46] – which concerns the ability of a test class F unable to compute majority has
in distinguising Nα and U. We will discuss this connection in more detail during the proof
overviews.

We prove a similar separation for degree-d Fp-polynomials (on n variables), which
generalizes (and uses techniques from) a recent result of Srinivasan [44] in the case where
δ = 1. In this case, we think of a distribution Z as being (ε′, δ)-pseudodense for degree-
d Fp-polynomials when δ Pr[P (Z) 6= 0] − ε′ ≥ Pr[P (U) 6= 0] for any degree-d polynomial
P ∈ Fp[X1, ..., Xn] (noting that we are only evaluating P over {0, 1}n).

I Theorem 1.5. Fix a finite field F with characteristic p = O(1) , ε, ε′ > 0 and let c > δ > 0
where c ≈ 1/200 is an absolute constant. Suppose that

d ≤ O(
√
δ/ε).

Then when F is the n-variate degree-d polynomials over F with n = 1/ε, and α = O(
√
ε/δ),

Nα is (ε′, δ)-pseudodense but is not δ-dense inside of an ε-pseudorandom set.
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This implies lower bounds for constant-depth circuits with MODp gates by the classical
lower bounds of Razborov [37] and Smolensky [43]. Perhaps more interestingly, this holds
even over non-prime fields. Also notably, there is no dependence on ε′ ≤ εδ, so we can take
it to be arbitrarily small.

We also prove a more general separation between pseudodensity and density in a pseudoran-
dom set. This result, drawing from the work of [42], provides a more specific characterization
of the sense in which dense model theorems are “required” to compute majority.

I Theorem 1.6. Let ε, δ > 0. Suppose F is a test class of boolean functions f : {0, 1}n →
{0, 1} with the following property: there is no AC0 F-oracle circuit of size poly(n ·

√
δ

ε3/2 )
computing majority on O(

√
δ/ε) bits.

Then N√
ε/δ

is (εδ, δ)-pseudodense and yet does not have a δ-dense ε-model. In particular,
when the hypotheses are met, the dense model theorem is false.

Informally, this says that any F which can refute the pseudodensity of Nα is only “a
constant-depth circuit away” from computing majority.

1.3 Related work
Computational entropy

Computational entropy was studied systematically in [8] and is relevant to various problems
in complexity and cryptography such as leakage-resilience [14], constructions of PRGs from
one-way functions [25, 21, 20]. and derandomization [13].

There are a number of definitions of computational entropy which we don’t consider in
this work. For example, Yao pseudoentropy [51] (see also [8]), corresponding to random
variables which are “compressible” by a class of tests F , in the sense that F can encode and
decode the random variable by encoding into a small number of bits. Yao pseudoentropy
was recently used in time-efficient hardness-to-randomness tradeoffs [13], where (randomness-
efficient) samplers for pseudodense distributions were used with an appropriate extractor to
construct a pseudorandom distribution. Another example is inaccessible entropy of Haitner
et al. [21], corresponding to the entropy of a message at some round in a two-player protocol
conditioned on the prior messages and the randomness of the players, which is used in efficient
constructions of statistically hiding commitment schemes from one-way functions [20].

Separating notions of computational entropy has been studied before in [8], who prove a
separation of pseudodensity and having a dense model for bounded-width read-once branching
programs. Separating notions of conditional computational entropy was studied in [27],
showing separations between conditional variants of Yao pseudoentropy and having a dense
model.

As mentioned in [27], citing [49] and personal communication with Impagliazzo, another
question of interest is whether Yao pseudoentropy (corresponding to efficient encoding/-
decoding algorithms) implies having dense model. It is not hard to see that small Yao
pseudoentropy implies small pseudodensity, with some mild restrictions on F . It would
be interesting to see if the techniques from this paper can be used to understand Yao
pseudoentropy in more detail. We leave this to future work.

Complexity of dense model theorems and hardness amplification

Prior work on the complexity of dense model theorems has included a tight lower bound on
the query complexity [52] and a lower bound on the advice complexity [50]. As far as we
are aware, this is the first work to consider the computational complexity of dense model
theorems.
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There has also been prior work on the computational complexity of hardness amplification,
establishing that various known strategies for hardness amplification require the computation
of majority [34, 42, 19, 41]. It is known that a particular type of hardness amplification given
by the hardcore lemma implies the dense model theorem [29].

Our results are stronger in the following sense: previous work [34, 42, 19] shows that
black-box hardness amplification proofs require majority. This means that if you amplify the
hardness of f in some black-box way, then this can be used to compute majority. In our
case, we simply show (in different settings) that the dense model theorem is false, regardless
of how we tried to prove it. By the connection between the hardcore lemma and the dense
model theorem, our results also provide scenarios where the hardcore lemma is false. As far
as we are aware, these are the first such scenarios recorded in the literature.

1.4 Technical overview
We discuss two general themes that appear consistently in the proofs and then discuss each
of the main theorems in some more detail.

1.4.1 Dense distributions have mostly unbiased bits
A commonly-used observation in theoretical computer science is that most bit positions of
a δ-dense random variable over {0, 1}n have bias O(

√
log(1/δ)/n) (see, for example, the

introduction of [35]). Relevant to our purposes, it provides a necessary condition for having
a δ-dense ε-model with respect to any class F containing the projections z 7→ zi. Z has a
δ-dense ε-model, then most bits of Z have bias ε+O(

√
log(1/δ)/n). In particular, if all of

the bits of Z have large bias, then it can’t have a dense model.
This is used directly in the proof of Theorem 1.3. In this case, we construct a distribution

Z which is δ-dense in a set which is ε-pseudorandom for AC0 but where the each bit is
noticeably biased away from 1/2.

In order to prove separations between pseudodensity and being dense in a pseudorandom
set – as in Theorem 1.4, Theorem 1.5 and Theorem 1.6 – we need to consider the bias of
larger subsets of variables. Considering just two bits is sufficient to prove mild concentration
bounds on the weight of pseudorandom strings. This implies that the tails of dense subsets
of pseudorandom sets should not be too heavy.

1.4.2 Biased coin distribution
The biased coin distribution, Nα over {0, 1}n is the product of n Bernoulli random variables
with success probability 1/2 − α. Nα has recently garnered significant interest in the
pseudorandomness literature (see [2, 12, 46, 10, 1]). Shaltiel and Viola [42] showed that if f
is a test which ε-distinguishes Nα from U, then there is a small, constant-depth circuit C
with f -oracle gates which computes majority on O(1/ε) bits. A similar, but qualitatively
different, connection due to Limaye et al [33] – extended to any choice of ε > 0 by Srinivasan
[44] – shows that any Fp-polynomial with advantage 1−2ε in distinguishing Nα from U must
have degree Ω(log(1/ε)/α). We extend some of these pseudorandomness results regarding
Nα to pseudodensity results.

First, we extend the observation of Shaltiel and Viola to apply to tests f for which
E[f(Z)] ≥ δE[f(U)] + ε (which corresponds to pseudorandomness when δ = 1). This gives us
unconditional pseudodensity for test classes F which can’t be used in small, constant-depth
oracle circuits approximating majority. We also extend the observation of [33] to show lower
bounds on the Fp-degree for any function f which refutes the pseudodensity of Nα.
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In Lemma 13, we show that Nα exhibits (ε, δ)-pseudodensity for ε = (p ·O(logS)d−1)k
and δ = e−αk/p. This can be seen as a generalization of Tal’s result, building on [12, 1, 42]
that Nα is 3α ·O(logS)d−1-pseudorandom for C(S, d).

Tal uses a Fourier analytic proof which becomes very simple given tail bounds on the
Fourier spectrum of AC0 (the latter being the main contribution of [46]). More generally, any
F enjoying sufficiently strong tail bounds on the Fourier spectrum (in the `1 norm) cannot
distinguish between Nα and uniform. It turns out, as proved by Tal and recorded in Agarwal
[2], that if F is closed under restrictions than even bounding the first level of the Fourier
spectrum works. The proof of Lemma 13 based specifically on the switching lemma for
constant-depth circuits. While switching lemmas can be used to show Fourier concentration,
it would be intersting to find a proof which only uses the assumption of Fourier concentration
(or some Fourier-analytic assumption).

1.4.3 Theorem 1.3

Our goal is to construct a random variable D which is dense inside of an AC0-pseudorandom
set but where each bit is biased away from 0. In this case, D would be distinguishable from
any dense set, since the average bit of a dense set is roughly unbiased. Doing so requires two
steps.

The first step is constructing an appropriate distribution Z that fools AC0 circuits. For
this we adopt a general strategy of Ajtai and Wigderson [3] (and applied in many contexts
in pseudorandomness since; see, e.g., [40]): to fool a circuit C, we start by producing a
random restriction to simpify C to a short decision tree (via the switching lemma), and
then we fool the decision tree on the remaining bits using a k-wise independent distribution
S. If we wanted Z to have small support size, we would need some way of producing
random restrictions with a small amount randomness (which is precisely the approach of
Ajtai-Wigderson and later work). Fortunately, we only care about the existence of Z and are
therefore content to use the “non-derandomized” switching lemma.

The second step is finding a dense subset D of S with biased bits. We do this by
constructing S so that each bit has bias roughly

√
log(1/δ)/K, where k � K � n is a

parameter. This is achieved by randomly bucketing the indices into K buckets and assigning
each bucket a random bit, which reduces the dimension of the problem from n to K. This
means we can pick a δ-dense event in {0, 1}K with extremal bias – met (up to constants) by
the function accepting all strings with weight less than K/2−K

√
log(1/δ) – in order to find

a dense subset of S with large bias. The bucketing construction introduces some error when
a small set I ⊆ [n] hits to distinct elements in some buckets.

1.4.4 Theorem 1.4

We will show Nα has (δ, ε′)-pseudodensity for AC0 for δ = ε′ = O(1), α = 1/poly log(n). The
idea is that Nα can be sampled by first sampling a random restriction which leaves a p fraction
of the bits unset (and is unbiased on the restricted bits) and then setting the remaining bits
with bias α/p. Applying the switching lemma, we conclude that E[f(Nα)] ≈ E[f ′(Nα/p)]
where f ′ is a short decision tree (which doesn’t not depend on all of its inputs). A simple
calculation reveals that acceptance probability of f ′ can increase by at a most a factor
(1 + α/p)d ≤ eαd/p when passing from the uniform distribution to Nα/p. By incorporating
the error from the switching lemma (i.e. the advantage lost by conditioning on the switching
lemma succeeding), we get (δ, ε)-pseudodensity.
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To prove the separation, we use the fact that the Hamming weight of a random variable
fooling C(S, d) is concentrated around its expectation. This means in particular that if Nα

were δ-dense in a pseudorandom distribution, then the tails of Nα couldn’t be too heavy and
therefore α couldn’t be too large.

1.4.5 Theorem 1.5 and Theorem 1.6
Theorem 1.5 and Theorem 1.6 draw from related work of Srinivasan [44] and Shaltiel-Viola [42]
respectively.

With ε > 0 and F an arbitrary class of tests f : {0, 1}n → {±1}, suppose that f ∈ F
witnesses that Nε fails to have (ε′, δ)-pseudo-density in the sense that

E[f(U)] ≤ δE[f(Nβ)]− γ.

[44] and [42] both make use of the following simple observation. Given two strings
u, v ∈ {0, 1}m with wt(u) = (1/2− ε)m and wt(v) = m/2, a uniformly random index i ∈ [m]
has ui distributed as a (1/2− ε)-biased coin and vi as an unbiased coin. In our case, applying
f to sufficiently many random samples from u or v “distinguishes” the two of them, but in a
weaker sense.

In the case of Theorem 1.6, we can amplify acceptance probabilities by increasing the
size of the circuit by a factor 1/εδ, after which we can apply [42] saying that constant-error
distinguishers between Nα and U can be used to compute majority.

For Theorem 1.5, we apply a beautiful recent result of Srinivasan [44] showing that any
m-variate polynomial (over a finite field) which vanishes on most points on the slice 1/2− α
and doesn’t vanish on most points on the slice 1/2 must have high degree Ω(αm). One way
of interpreting this result is that low-degree polynomials can’t approximately solve certain
“promise” versions of majority.

In this latter case, we need to open up the error reduction procedure we use for Theorem 1.6
and show how to approximate it using low-degree polynomials. This will ultimately be
achieved by approximating OR with a probabilistic polynomial, as in [37, 43]. The detailed
proofs of these results are deferred to the full version of the paper.

2 Technical tools

We write [n] = {1, ..., n} and use boldface to denote random variables. Let C(S, d) be the set
of size S, depth-d unbounded fan-in circuits. For a boolean function f : {0, 1}n → {0, 1}, let
DT (f) denote the depth of the shortest decision tree computing f .

2.1 Biased coins
As before, let Nα denote the random variable corresponding to the product of n independent
coins with bias (1/2− α). That is,

Pr[Nα = z] = (1/2− α)wt(z)(1/2 + α)n−wt(z)

where wt(z) denotes the Hamming weight of z.
For a random variable Z over {0, 1}n and i ∈ [n], let biasi(Z) = |Pr[Zi = 1]−Pr[Zi = 0]|/2.

Let B = {z 7→ zi : i ∈ [n]} be the set of monotone projections. A random variable
Z = (Z1, ...,Zn) is ε-pseudorandom with respect to B precisely when each marginal Zi has
the property that biasi(Z) = |Pr[Zi = 1]− 1/2| ≤ ε for each i ∈ [n]. In particular,

B Claim 2. For any ε > 0, Nε is ε-pseudorandom with respect to B.
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2.2 Information theory
The (Shannon) entropy of a random variable is defined as

H(Z) = −
∑

x∈{0,1}n

pZ(x) log pZ(x),

where pZ is the probability density function corresponding to Z. The Shannon entropy of
random vector is sub-additive, in thatH(Z) ≤

∑
i∈[n] Zi. When Z ∈ {0, 1} and Pr[Z = 1] = p,

we use h(p) = H(Z) = −(p log p+ (1− p) log(1− p)) to denote the binary entropy function.
The min-entropy is defined as

H∞(Z) = − min
x∈{0,1}n

log pZ(x).

If Z is δ-dense inside of U, then its min-entropy is n− log(1/δ) and for any random variable
Z, H∞(Z) ≤ H(Z).

By this latter inequality and subadditivity, the average entropy of Z’s bits is at least
1− log(1/δ)/n. Appealing to a quadratic approximation of binary entropy, we learn that the
bias must be at most

√
log(1/δ)/n. This result has been referred to as Chang’s inequality

and the Level-1 inequality, having been observed in different forms and with different proofs
in, for example, [47, 11, 22, 31]. Because it is so simple, we provide a proof here:

B Claim 3. If Z is δ-dense in U, then Ei[biasi(Z)] ≤
√

log(1/δ)/n.

Proof. As δ-density is equivalent to n− log(1/δ) min-entropy,

n− log(1/δ) = H∞(Z) ≤ H(Z) ≤
∑
i∈[n]

H(Zi),

by subadditivity of entropy. The entropy of Zi’s bits, therefore, is at least 1− log(1/δ)/n
on average. Taking the Taylor series, we can approximate the binary entropy function h(p)
around 1/2 by a quadratic function as h(1/2 + ε) ≤ 1− (2/ ln 2)ε2. Comparing this bound
with the average, we get

1− log(1/δ) ≤ 1− (2/ ln 2)ε2,

meaning ε ≤
√

(ln 2/2) · (log(1/δ)/n) ≤
√

log(1/δ)/n. C

2.3 Random variables lacking computational entropy
It follows directly from Claim 3 that if biasi(Zi) exceeds ε+

√
log(1/δ)/n for every i, then

Z does not have a δ-dense ε-model with respect to the projections B.

I Lemma 4. Let Z be a random variable with biasi(Z) ≤ γ
for every i ∈ [n]. Then for any δ > 0 and γ ≥ ε+

√
log(1/δ)

n , Z does not have a δ-dense
ε-model with respect to B.

This is used for the separation in Theorem 1.3. We would also like a necessary condition
for being dense in a pseudorandom set. Towards this end, we note that pseudorandom
distributions for even very simple test classes have mild concentration properties.

B Claim 5. Suppose F can compute xi ⊕ xj for every i, j ∈ [n] and let Z over {0, 1}n be
ε-pseudorandom for F . Then

Pr
[∑

i

Zi ≤ n/2− αn
]
≤ 1

4α2n
+ ε

4α2 .
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Proof. We work over {±1} instead of {0, 1} to make calculations easier. We can compute
the second moment as

E[(
∑
i

Zi)2] =
∑
i

E[Z2
i ] +

∑
i 6=j

E[ZiZj ] ≤ n+ εn2.

Applying Markov’s inequality to (
∑
i Zi)2, we see that

Pr
[
|
∑
i

Zi| ≥ 2αn
]

= Pr
[

(
∑
i

Zi)2 ≥ (2αn)2

]
≤ E[(

∑
i

Zi)2]/(2αn)2.

We use 2αn because it maps back to n/2− αn in {0, 1}. Then the conclusion follows from
our second moment calculation and converting back to {0, 1}. C

The tails of a dense subset can’t be too much larger than the original distribution, by
definition of density. This gives us a test for being dense in a pseudorandom set, which we
specialize to Nα.

I Lemma 6. Let ε, δ > 0 be arbitrary. Suppose F can compute xi ⊕ xj for any i, j ∈ [n] and
α ≥

√
1/(8δ) · (1/n+ ε). Then Nα is not δ-dense in any set which is ε-pseudorandom for

F .

Proof. Under Nα, the volume of the threshold 1[
∑
i Zi ≤ n/2− αn] is 1/2. Taking Claim 5

in the contrapositive, we reach the desired conclusion when

1/2 > 1
4δα2n

+ ε

4δα2

α2 >
1
8δ (1/n+ ε). J

2.4 Random restrictions and the switching lemma

A restriction over [n] is a function ρ : [n]→ {0, 1, ∗}. Indices in ρ−1(∗) can be thought of as
unset and each other index as set. For another restriction z so that ρ−1(∗) ⊆ z−1({0, 1}), let
ρ ◦ z ∈ {0, 1}n be defined by

(ρ ◦ z)i =
{
zi if i ∈ ρ−1(∗),
ρi otherwise.

Define the restricted function f |ρ : {0, 1}ρ−1(∗) → {0, 1} over ρ’s unset indices by

f |ρ(z) = f(ρ ◦ z).

Let Rp be the distribution on restrictions over [n] obtained by setting ρ(i) = ∗ independ-
ently with probability p, and then setting each bit not assigned to ∗ a random bit. The
switching lemma we use is due to Rossman [39], building on a long line of work [3, 23, 24, 30]:

I Theorem 2.1 (Rossman [39]). Suppose f ∈ C(S, d). Then

Pr
ρ∼Rp

[DT (f |ρ) ≥ k] ≤ (p ·O(logS)d−1)k.
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By considering a random restriction ρ ∼ Rp over [n] and a random variable Z over {0, 1}n,
the definition of a restricted function implies that

E[f(ρ ◦ Z)] = E[f |ρ(Z)].

We make crucial use of two simple corollaries of the switching lemma, which allow us
to reason about distinguishability for AC0 circuits in terms of distinguishability for short
decision trees.

I Lemma 7. Suppose f ∈ C(S, d). Then there is a distribution over depth k decision trees
so that

|E[f(ρ ◦ Z)]− E[hρ(Z)]| ≤ (p ·O(logS)d−1)k.

Proof. Let gρ denote the optimal decision tree for f |ρ. Let E denote the event that gρ has
depth at most k and Pr[E] = 1− q. Let hρ be the distribution over depth at most k decision
trees obtained by sampling gρ conditioned on E. Then

E[f(ρ ◦ Z)] = E[f |ρ(Z)]
= (1− q)E[gρ(Z)|E] + qE[gρ(Z)|¬E]
= (1− q)E[hρ(Z)] + qE[gρ(Z)|¬E]
= E[hρ(Z)]− q(E[hρ(Z)]− E[gρ(Z)|¬E]).

The right-hand term is bounded in absolute value by q because f is Boolean. By Theorem 2.1,
q ≤ (p ·O(logS)d−1)k. J

I Lemma 8. Suppose f ∈ C(S, d). Then there’s a depth k decision tree h so that

|E[f(U)]− E[f(ρ ◦ Z)]| ≤ |E[f ′(U)]− E[f ′(Z)]|+ (p ·O(logS)d−1)k.

Proof. Lemma 7 gives us the following upper bound.

|E[f(U)]− E[f(ρ ◦ Z)]| ≤ |(E[hρ(U)]± q)− (E[hρ(Z)]± q)| (Lemma 7)
≤ |E[hρ(U)]− E[hρ(Z)]|+ 2q. (triangle inequality)

We can continue to upper bound the right-hand term by

|E[hρ(U)]− E[hρ(Z)]| = |Eρ[E[hρ(U)]− E[hρ(Z)]]|
≤ Eρ[|E[hρ(U)]− E[hρ(Z)]|] (triangle inequality)
≤ |E[h(U)]− E[h(Z)]|

where the last line holds for some h in the support of hρ by averaging. J

3 Proof of Theorem 1.3

We start by reducing the problem of constructing a pseudorandom Z for AC0 to constructing
a pseudorandom Z for small-depth decision trees. This can be immediately achieved by
applying Lemma 8.

B Claim 9. Let p ∈ [0, 1] be arbitrary and suppose Z is a random variable over {0, 1}n which
is ε-pseudorandom for depth-k decision trees. Then for ρ ∼ Rp, ρ ◦Z is ε′-pseudorandom for
C(S, d) for

ε′ = ε+ (p ·O(logS)d−1)k.
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The next lemma constructs a pseudorandom distribution for depth-k decision trees with
each bit having significant bias.

I Lemma 10. For any k ∈ N, δ > 0 and K ≥ 1/2δ, there is a k-wise independent random
variable S over {0, 1}n and a δ-dense subset D of S with the property that
1. D is δ-dense in S.
2. For all i ∈ [n], biasi(D) = Ω(

√
log(1/δ)/8K).

3. S is k2/K-pseudorandom for depth-k decision trees.

We will use the following standard lower bound on the lower tail of a binomial distribution:

B Claim 11 ([6]). For 0 < α < 1 and let Z1, ...,ZK be independent unbiased coins
({0, 1}-valued). Then any γ with 1/2− γ = r/K for some positive integer r satisfies

2−K(1−h(1/2−γ))
√

2K
≤ Pr

∑
i∈[K]

Zi ≤ K/2−Kγ

.
Proof of Lemma 10. We sample S in two stages. First, randomly partition [n] into K parts
A1, ...,AK for K > k2. Second, assign to each Ai a uniformly random bit bi.

Let D be S conditioned on b = (b1, ...,bK) having weight less than K/2−
√
K log(1/δ)/8.

Since the bi’s are unbiased random bits, we can apply Claim 11 to lower bound D’s density:
for any γ,

Pr

∑
i∈[k]

bi ≤ γK

 ≥ 2−Kh(1/2−γ)
√

2K
.

This is at least δ when

2−K(1−h(1/2−γ))
√

2K
≥ δ

1− h(1/2− γ) ≥ log(1/δ)/K − log(2K)/2K
4γ2 ≥ log(1/δ)/K − log(2K)/2K

with the upper bound in the last line following from h(1/2−γ) ≥ 1−4γ2. Hence, if the set of
strings with weight at most K/2−γK is δ-dense, we have γ ≥ 1

2
√

log(1/δ)/K − log(2K)/2K.
log(2K)/2K is at most log(1/δ)/2K when 2K ≤ 1/δ, in which case γ ≥

√
log(1/δ)/8K. In

particular, this lower bounds the bias of D’s bits.
To see why it’s k2/K-pseudorandom for depth-k decision trees, consider a depth-k decision

tree T . Over U, we can imagine evaluting T “on-line” as follows: whenever T queries the
ith bit, determine the value of zi by flipping an unbiased coin. Over S, we can imagine
evaluating T similarly, where we determine the bucket Aj that i lives in and the value bj of
that bucket.

By conditioning S on not placing two distinct indices i, j in the same bucket – call this
conditioned random variable S′ – then T doesn’t have any distinguish advantage over S′, as
all of the bits it queries are independent and uniform. By a union bound, S places two distinct
indices in the same bucket with probability at most k2/K. T ’s distinguishing advantage is
therefore at most k2/K. J
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In principle, we could have used other pseudorandom distributions for decision trees such
as the ε-almost k-wise independent distributions from [4]. The construction here is used
to obtain better dependence on the parameters of interest. We will also need a claim to
expresses the bias of the bits in ρ ◦Z. The proof can be found in the full version of the paper.

B Claim 12. Fix p ∈ [0, 1] and a random variable Z. Let E be an event which is independent
from ρ (in that the conditional distribution of ρ is identical to the unconditioned distribution).
Then

Pr[(ρ ◦ Z)i = 1|E] = pPr[Zi = 1|E] + (1− p)/2.

Theorem 1.3, which we restate here, is obtained by an appropriate setting of parameters.

I Theorem 1.3. Let ε, ε′ > 0 be arbitrary, δ ≥ ε′/8 and

S ≤ exp
(
O
(√ε′
ε
·
√

log(1/δ)
log(1/ε′)

)1/(d−1)
)
.

Then for F = C(S, d), there is a random variable D over {0, 1}n with n = O(log(1/δ)/ε2)
so that D is δ-dense in an ε′-pseudorandom set but does not have a δ-dense ε-model. In
particular, the dense model theorem is false in this setting.

Proof. Let n = log(1/δ)/ε2, k = log(2/ε′) and K = (2k2)/ε′. We also need K ≥ 1/2δ by the
restriction in Lemma 10, which explaines the restriction 8δk2 ≥ ε′, simplified by using 8δ ≥ ε′
(a stronger restriction) instead. Let S and D be the random variables from Lemma 10. By
Claim 12, the bias of ρ ◦ S (where ρ ∼ Rp) is p

√
log(1/δ)/8K. By Claim 9 and Lemma 10,

ρ ◦ S is ε′ = k2/K + (pO(logS)d−1)k pseudorandom. We can also ensure that ρ ◦ S does not
have a δ-dense ε-model when p

√
log(1/δ)/8K ≥ ε+

√
log(1/δ)/n, by Lemma 4.

By substituting, p ≥ 2
√
K/n = 2

√
(kε)2/ε′ · log(1/δ). In comparison, ε′ ≥ k2/K +

(pO(logS)d−1)k. Recalling that k2/K = ε′/2, we get that

ε′/2 ≥ (2
√
K/nO(logS)d−1)k

√
n

2
√
K

(ε′/2)1/k ≥ O(logS)d−1√
log 1/δ
ε

·
√
ε′

2
√

2k
· (ε′/2)1/k ≥ O(logS)d−1√

log 1/δ
ε

·
√
ε′√

32 log(1/ε′)
≥ O(logS)d−1.

The claim follows by solving for S. J

4 Proof of Theorem 1.4

Theorem 1.4 follows by combining Lemma 6 and the following lemma:

I Lemma 13. Nα has (ε, δ)-pseudodensity for C(S, d) for ε = (p · O(logS)d−1)k and
δ = e−αk/p.

Of note, the only additive error depends on the error from the switching lemma. Compare
this with the claim that Nα is (3α ·O(logS)d−1)-pseudorandom (and therefore has the same
pseudodensity for δ = 1) for C(S, d), due to Tal [46].

To prove the lemma, we need a few claims.
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B Claim 14. Suppose f ∈ C(S, d). Then there is a depth-k decision tree h with the property
that:

E[f(Nα)] ≤ E[h(Nα/p)] + (p ·O(logS)d−1)k.

Proof. Take Z = Nα/p in Lemma 7, so we have ρ ◦Nα/p = Nα and

E[f(Nα)] ≤ E[hρ(Nα/p)] + (p ·O(logS)d−1)k.

Averaging over ρ yields the fixed decision tree. C

Second, we can upper bound the extent to which the acceptance probability of a short
decision tree increases when passing from the uniform distribution U to the biased distribution
Nγ .

B Claim 15. Suppose f : {0, 1}n → {−1, 1} is a depth-k decision tree. Then

E[f(Nγ)] ≤ (1 + γ)k · E[f(U)] ≤ eγk · E[f(U)].

The proof is simple and can be found in the full version. We’re now in a position to prove
the lemma.

Proof of Lemma 13. Directly applying Claim 14, we get

E[f(Nα)] ≤ E[f ′(Nα/p)] + (p ·O(logS)d−1)k.

Applying Claim 15 to E[f ′(Nα/p)], we get

E[f(Nα)] ≤ (1 + α/p)kE[f ′(U)]

≤ eαk/pE[f ′(U)].

Putting these together finishes the proof. J

We can now prove Theorem 1.4, restated here:

I Theorem 1.4. Fix ε, ε′, δ > 0, d ∈ N, and

S ≤ exp
(
O
(√δ√

ε
· log(1/δ)

log(1/ε′)

)1/(d−1)
)
.

Then N√
ε/δ

over {0, 1}n with n = O(1/ε) is (ε′, δ)-pseudodense and yet N√
ε/δ

is not
δ-dense inside of any ε-pseudorandom set.

Proof of Theorem 1.4. Let n = 1/(7ε), k = log(1/ε′) and α =
√
ε/δ. These choices satisfy

α ≥
√

1
8δ (1/n + ε), meaning Nα is not δ-dense in any ε-pseudorandom set for C(S, d), by

Lemma 6.
By Lemma 13, Nα has (ε′, δ)-pseudodensity for δ = e−αk/p and ε′ = (p ·O(logS)d−1)k.
The constraint on the density implies

δ = e−αk/p

log(1/δ) = αk/p

log(1/δ) =
√
ε/δ log(1/ε′)/p

p =
√
ε/δ log(1/ε′)
log(1/δ) .
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Plugging this value of p into the expression for ε′, we get

ε′ = (p ·O(logS)d−1)k

(ε′)1/k/p = O(logS)d−1

(ε′)1/ log(1/ε′) ·
√
δ log(1/δ)√
ε log(1/ε′)

= O(logS)d−1.

Note that (ε′)1/ log(1/ε′) = 2− log(1/ε′)/ log(1/ε′) = 1/2. Solving for S gives the claimed
bound. J

5 Discussion of Theorem 1.5 and Theorem 1.6

This section briefly discusses Theorem 1.5 and Theorem 1.6, deferring a more detailed
discussion to the full version of the paper. The basic idea underlying both proofs is to use
tests which solve the coin problem to construct a test which “computes majority” in some
problem-dependent sense.

Theorem 1.5 shows that the dense model theorem can fail for low-degree polynomials
over finite fields.

I Theorem 1.5. Fix a finite field F with characteristic p = O(1) , ε, ε′ > 0 and let c > δ > 0
where c ≈ 1/200 is an absolute constant. Suppose that

d ≤ O(
√
δ/ε).

Then when F is the n-variate degree-d polynomials over F with n = 1/ε, and α = O(
√
ε/δ),

Nα is (ε′, δ)-pseudodense but is not δ-dense inside of an ε-pseudorandom set.

The main tool used in the proof is a special case of the robust Hegëdus lemma, discovered
recently by Srinivasan [44].

I Lemma 16 (Robust Hegëdus lemma (special case), [44]). Let F be a finite field. Let
2−m/100 ≤ λ ≤ c where c < 1 is a (small) absolute constant. Let α2m be an integer so that
2−2α2m ≥ λ. Then if P : Fn → F is a degree d polynomial for which:
1. Pr

[
P (Spm,αm) 6= 0

]
≤ λ

2. Pr
[
P (Spm,0) = 0

]
≤ 1− e−α2m/2.

Then d = Ω(αm).

The idea is to use a low-degree polynomial distinguishing the biased coin distribution
from uniform to construct another low-degree polynomial satisfying the conditions in the
above lemma. Our particular approach uses random sampling and the approximation of OR
by low-degree probabilistic polynomials [37]. We defer the details to the full version.

Theorem 1.6 gives a generic condition under which the dense model theorem is false,
being witnessed by biased coins.

I Theorem 1.6. Let ε, δ > 0. Suppose F is a test class of boolean functions f : {0, 1}n →
{0, 1} with the following property: there is no AC0 F-oracle circuit of size poly(n ·

√
δ

ε3/2 )
computing majority on O(

√
δ/ε) bits.

Then N√
ε/δ

is (εδ, δ)-pseudodense and yet does not have a δ-dense ε-model. In particular,
when the hypotheses are met, the dense model theorem is false.
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The approach is the same as Theorem 1.5, this time using a small circuit distinguishing
biased from uniform to build an only-slightly-larger circuit computing majority. In this case,
we use the following result of Shaltiel & Viola:

I Theorem 5.1 ([42]). Let f : {0, 1}n → {0, 1} be a function that distinguishes between
U and Nα with constant distinguishing probability. Then there is an AC0-circuit of size
poly(n/α) using f -oracle gates which computes majority on O(1/α) bits.

Once again, we defer the details to the full version.
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Abstract
We consider a game of persuasion with evidence between a sender and a receiver. The sender has
private information. By presenting evidence on the information, the sender wishes to persuade the
receiver to take a single action (e.g., hire a job candidate, or convict a defendant). The sender’s
utility depends solely on whether or not the receiver takes the action. The receiver’s utility depends
on both the action as well as the sender’s private information. We study three natural variations.
First, we consider sequential equilibria of the game without commitment power. Second, we consider
a persuasion variant, where the sender commits to a signaling scheme and then the receiver, after
seeing the evidence, takes the action or not. Third, we study a delegation variant, where the
receiver first commits to taking the action if being presented certain evidence, and then the sender
presents evidence to maximize the probability the action is taken. We study these variants through
the computational lens, and give hardness results, optimal approximation algorithms, as well as
polynomial-time algorithms for special cases. Among our results is an approximation algorithm
that rounds a semidefinite program that might be of independent interest, since, to the best of
our knowledge, it is the first such approximation algorithm for a natural problem in algorithmic
economics.
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1 Introduction

Persuasion is a fundamental challenge arising in diverse areas such as recommendation prob-
lems in the Internet, consulting and lobbying, employee hiring, and many more. Persuasion
problems occupy a central role in economics and received significant interest over the last
two decades. A prominent approach is persuasion with evidence as introduced by Glazer and
Rubinstein [13, 14], which has attracted a lot of subsequent work. In this problem, a sender
wishes to persuade a receiver to take a single action by presenting evidence. The sender’s
utility depends solely on whether or not the action is taken, while the receiver’s utility
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depends on both the action as well as the sender’s private information. Consider, for example,
a prosecutor trying to convince a judge that a defendant is guilty and should be convicted,
or a job candidate trying to convince a company that she has the best qualifications and
should be hired. How should these pairs of agents interact?

The literature on persuasion games in economics and game theory is vast; see Sobel [27]
for a survey. In sharp contrast, very little is known about computation in this domain,
especially for the persuasion problem with evidence. How does the restriction to evidence
impact the computational complexity of the problem? Our main contribution of this paper
is to initiate the systematic study of persuasion with evidence though a computational lens.
We examine three natural model variants that arise from the power to commit to certain
behavior.

If there is no commitment power, the scenario is an extensive-form game. We prove that
finding a sequential equilibrium is always possible in polynomial time. However, the sender
and the receiver can significantly improve their utility when they enjoy commitment power.

If the sender has commitment power, then she can commit in advance which evidence is
presented in each possible instantiation of her private information, and the receiver seeing the
evidence then takes the action or not. We refer to this situation as constrained persuasion,
since the sender with commitment power wants to persuade the rational receiver to take the
action. The sender is constrained to providing concrete evidence instead of just making a
recommendation as is the case in the so called Bayesian persuasion paradigm [19]. Constrained
persuasion is a natural model in the example of prosecutor and judge, where the prosecutor
(sender) with private information would first present evidence before the judge (receiver)
makes a decision. Although this scenario seems structurally rather simple, we show that
the sender’s task in constrained persuasion is computationally (highly) intractable. Unless
P = NP, optimal persuasion can become hard to approximate within a polynomial factor of
the input size.

If the receiver has commitment power, she commits to taking the action if and only
if being faced with a specific set of evidence. We refer to this situation as constrained
delegation, since we assume that the receiver with commitment power delegates inspection of
the state of nature to a sender, whose incentive becomes to provide convincing evidence to
support taking the action. Constrained delegation better fits the second example, where the
company (receiver) can give the candidate (sender) a test to present evidence on the private
information about qualifications, and commit to hiring her if she performs well. We show
that the receiver’s task in delegation is also intractable – unless P = NP, optimal delegation
can become hard to approximate within a factor of 2− ε, for any constant ε > 0.

These computational differences nicely reflect conceptual differences known from the
economics literature. Namely, persuasion lacks a condition termed “credibility” that was
shown for delegation. Formally, credibility implies that there is a deterministic optimal
solution that does not require randomization, see Glazer and Rubinstein [14] for details.
We proceed to study algorithms with matching approximation guarantees for constrained
persuasion and delegation, as well as a number of exact and approximation algorithms for
various special cases. This includes, in particular, an approximation algorithm for a class of
delegation problems that solves and rounds a semidefinite program (SDP). This last result
might be of independent interest and, to the best of our knowledge, it is the first natural
problem in information structure design, as well as mechanism design, where the SDP toolbox
is used.
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2 Preliminaries

Following [13, 14, 25], we study the fundamental problem of persuasion with evidence. There
are two players, a sender and a receiver. The receiver is tasked with either taking a specific
action and “accept” (henceforth A), or sticking to the status quo and “reject” (henceforth R).
The sender wants to convince the receiver to take action A. There is a state of nature θ
drawn from a distribution D with support Θ of size n. We denote the probability that θ
is drawn by qθ. The set Θ is partitioned into the set of acceptable states ΘA and the set
of rejectable ones ΘR = Θ \ΘA. We denote the total probability on acceptable states by
qA =

∑
θ∈ΘA qθ, and the total probability on rejectable states by qR =

∑
θ∈ΘR qθ.

Both players know D. The sender knows the realization of the state of nature, the receiver
does not. The sender has utility 1 whenever the receiver takes action A, and 0 otherwise.
Formally, for the sender utility we have us(A, θ) = 1 and us(R, θ) = 0, for all θ ∈ Θ.

The utility of the receiver depends on the combination of the chosen action a ∈ {A,R}
and the state of nature θ. She has utility 1 if she makes the “right” decision – accept in an
acceptable state of nature or reject in a rejectable state of nature – and 0 otherwise. Formally,
ur(a, θ) = 1 when (1) a = A and θ ∈ ΘA, or (2) a = R and θ ∈ ΘR. Otherwise, ur(a, θ) = 0.

The sender strives to send a message to the receiver according to a public signaling
strategy. This message should persuade the receiver to accept. On the other hand, upon
receiving the message, the receiver strives to infer the state of nature and make the right
accept/reject decision. We focus on games with evidence, where the messages that can be
sent are not arbitrary. Every state of nature has intrinsic characteristics (e.g., a candidate
for a position has grades, degrees, or test scores) that can be (but don’t have to be) revealed
to the receiver and cannot be forged.

More formally, there is a set Σ of m possible messages or signals that the sender can
report to the receiver. We are given as input a bipartite graph H = (Θ ∪ Σ, E), where an
edge e = (θ, σ) ∈ E implies that signal σ is allowed to be sent in state θ. We use N(θ) ⊆ Σ to
denote the neighborhood of θ, i.e., the set of allowed signals for state θ. Similarly, N(σ) ⊆ Θ
is the set of states in which signal σ can be sent. To avoid trivialities, we assume that none
of the neighborhoods N(·) are empty, i.e., there are no isolated nodes in H.

We study the computational complexity of games with evidence for different forms of
interaction between the sender and the receiver. In particular, in the case of constrained
persuasion, the game starts with the sender committing to a signaling scheme. A signaling
scheme ϕ is a mapping ϕ : E → [0, 1], where ϕ(θ, σ) is the joint probability that state
θ is realized and signal σ is sent in state θ. Clearly, for any signaling scheme we have∑
σ∈N(θ) ϕ(θ, σ) = qθ for every state θ ∈ Θ. After the sender has committed to a scheme ϕ,

nature draws θ ∈ Θ with probability qθ, and θ is revealed to the sender. Then, the sender
sends signal σ with probability ϕ(θ, σ)/qθ. The receiver then decides on an action A or R.
Finally, depending on the (state of nature, action)-pair, the sender and receiver get payoffs
as described by the utilities above.

I Problem 1 (Constrained Persuasion). Find a signaling scheme ϕ∗ for commitment
of the sender such that, upon a best response of the receiver, the sender utility is as high as
possible.

In the case of constrained delegation, the game starts with the receiver committing to an
action for every possible signal σ ∈ Σ, according to a decision scheme. A decision scheme
ψ is a mapping ψ : Σ→ [0, 1], where ψ(σ) is the probability to choose action A. After the
receiver has committed to a scheme ψ, nature draws θ ∈ Θ with probability qθ, and θ is
revealed to the sender. Then, the sender decides which signal σ she will report (under the
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constraint that σ ∈ N(θ)). The receiver then takes action A with probability ψ(σ), and R
otherwise. Finally, depending on the (state of nature, action)-pair, the sender and receiver
get payoffs as described by the utilities above.

I Problem 2 (Constrained Delegation). Find a decision scheme ψ∗ for commitment of
the receiver such that, upon a best response of the sender, the receiver utility is as high as
possible.

Finally, in the game without commitment power, we look for a pair (ϕ,ψ) of signaling
and decision schemes that constitute a sequential equilibrium in the extensive-form game,
where nature first determines the state of nature, the sender then picks ϕ to provide evidence,
and then the receiver uses ψ to accept or reject based on the evidence provided. Given that
the sender picks ϕ, the receiver shall pick ψ as a best response for every given evidence.
Similarly, given that the receiver responds to evidence with ψ, the signaling scheme ϕ shall
be a best response for the sender.

I Problem 3 (Constrained Equilibrium). Find a pair of signaling scheme ϕ and decision
scheme ψ that represents a sequential equilibrium in the persuasion game with evidence and
without commitment power.

2.1 Structural Properties

While the persuasion problem with evidence appears rather elementary, it turns out that
both persuasion and delegation variants are NP-hard, and even NP-hard to approximate in
polynomial time. Hence, even in this seemingly simple domain, it is necessary to identify
additional structure to obtain positive results. We mostly consider structural properties of
the neighborhoods of the states of nature.

Unique Accepts and Rejects. In an instance with unique accepts, there is a single acceptable
state, i.e., |ΘA| = 1. Similarly, for unique rejects we have |ΘR| = 1. This is equivalent to
assuming that every acceptable (rejectable, resp.) state θ has the same neighborhood N(θ).

Degree-bounded States. In an instance with degree-k states, every state θ ∈ Θ has
|N(θ)| ≤ k. Similarly, for degree-k accepts, every acceptable state θ ∈ ΘA has |N(θ)| ≤ k,
and for degree-k rejects every rejectable state θ ∈ ΘR has |N(θ)| ≤ k.

Foresight. Sher [25] considers instances with foresight defined as follows. For an acceptable
state θ ∈ ΘA, a signal σ ∈ N(θ) is called minimally forgeable for θ if σ ∈ N(θ′) implies
σ′ ∈ N(θ′) for every other signal σ′ ∈ N(θ) and every rejectable state θ′ ∈ ΘR. In an instance
with foresight every acceptable state has a minimally forgeable signal. Intuitively, in such
a problem every acceptable state θ has a (not necessarily unique) signal that is maximally
informative about θ with respect to the set of rejectable states. Foresight strictly generalizes
other properties studied in previous work, e.g. normality [4]. Normality requires a signal for
every state (not only the acceptable ones) that satisfies the condition of minimally forgeable,
and it satisfies the condition w.r.t. all states (not only w.r.t. rejectable ones). In addition,
foresight is a generalization of instances with unique rejects, as well as a generalization the
class of degree-1 accepts.
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Table 1 Approximation results shown in this paper, as well as results shown or implied by [25].

Scenario Constrained Delegation Constrained Persuasion
Upper Lower Upper Lower

General 2 2− ε (P 6= NP) O(n) n1−ε (P 6= NP)
Degree-2 States 1.1 APX-hard [25] O(n) n1−ε (P 6= NP)
Degree-d States 2− 1/d2 APX-hard [25] O(n) n1−ε (P 6= NP)
Degree-1 Rejects 2 APX-hard [25] O(n) n1−ε (P 6= NP)
Degree-1 Accepts 1 [25] O(n) n1−ε (P 6= NP)

Foresight 1 [25] O(n) n1−ε (P 6= NP)
Unique Rejects 1 [25] 1
Unique Accepts 1 PTAS Strongly NP-hard

2.2 Results and Contribution
We provide polynomial-time exact and approximation algorithms as well as hardness results
for the general problems and the domains with more structure described above.

We first consider the case of the constrained equilibrium problem. The existence of
a sequential equilibrium is implied by [14]; we show that it can always be computed in
polynomial time by repeatedly solving a maximum flow problem. We compare the utility
obtained in an equilibrium with the one achievable with commitment power, for the sender
and the receiver, respectively. Formally, we define and bound the ratio of the utilities for best
and worst-case equilibria, in the spirit of prices of anarchy and stability. For the receiver,
it is known that the price of stability is 1 [14]; we show that the price of anarchy is 2. For
the sender we show that both ratios are unbounded. This substantial utility gain provides
further motivation to study problems with commitment power.

Our results for constrained delegation and persuasion are summarized in Table 1. We
discuss a selected subset of our most interesting contributions in the main part of the paper.
All missing proofs are deferred to the full version of this paper. In addition, in the full
version, we prove additional results that omitted from this version due to spatial constraints.

For the constrained delegation problem, we show two interesting non-trivial approximation
results. For degree-2 states, we propose a semidefinite-programming algorithm to compute
a 1.1-approximation. To the best our knowledge, this is the first application of advanced
results from the SDP toolbox in the context of information design, as well as mechanism
design. For instances with degree-d states we give a (2− 1

d2 )-approximation algorithm via
LP rounding.

For constrained persuasion, the strong hardness arises from deciding which action should
be preferred by the receiver for each signal. It holds even in several seemingly special
cases with degree-1 accepts, degree-1 rejects and degree-2 states. As a consequence, good
approximation algorithms can be obtained only in significantly more limited scenarios than
for delegation. For unique accepts, we prove strong NP-hardness (i.e. there is no FPTAS
unless P= NP) and provide a polynomial-time approximation scheme (PTAS).

2.3 Related Work
There is a large literature on strategic communication, see Sobel [27] for an extensive review.
The works most closely related to ours are [14, 25]. Glazer and Rubinstein [14] introduce the
problem of constrained delegation. They show, among other things, that the optimal decision
scheme in constrained delegation is deterministic. Furthermore, they prove that there is
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always a sequential equilibrium where the receiver plays the optimal decision scheme from
constrained delegation, i.e., the price of stability for the receiver is 1. This condition is termed
“credibility”. It is easy to see that this is not true when sender moves first. This conceptual
difference between persuasion and delegation is reflected as a difference in the problems’
computational complexity. Deterministic optimal strategies and “credibility” hold also beyond
the simple model with 2 actions – when receiver utility is a concave transformation of sender
utility, see [24]. Sher [25] builds on the model of [14] and characterizes optimal rules for static
as well as dynamic persuasion. Furthermore, and more relevant to our interest here, he proves
an NP-hardness result for constrained delegation, as well as provides a polynomial-time
algorithm for optimal delegation in instances with foresight. Here we strengthen this hardness
result to a hardness of approximation within a factor of 2− ε (and provide a matching, alas
trivial, approximation algorithm). While this subsumes NP-hardness in general, we observe
that his hardness proof applies in case of degree-2 states and degree-1 rejects, and that it
even implies APX-hardness for such instances.

Glazer and Rubinstein [13] study a related setting, where the state of nature is multi-
dimensional, and the receiver can verify at most one dimension. The authors characterize
the optimal mechanism as a solution to a particular linear programming problem, show
that it takes a fairly simple form, and show that random mechanisms may be necessary
to achieve the optimum. Carroll and Egorov [5] study the problem of fully revealing the
sender’s information in a setting with multidimensional states, where the receiver can verify
a single dimension. Importantly, the dimension the receiver chooses to reveal depends on the
sender’s message.

A number of works in the algorithmic economics literature investigate the computational
complexity of persuasion and information design. Computational aspects of the Bayesian
persuasion model [19] are studied in, e.g., [10, 6, 9, 8, 11, 18, 17], but in these works there
are no limits on the senders’ signals, i.e., H is the complete bipartite graph. More closely
related to our work are [7, 16] who study computational problems in Bayesian persuasion
with limited signals, where the number of signals is smaller than the number of actions.

3 Sequential Equilibria

We first study the scenario without commitment power. Our interest here is to obtain a
signaling scheme ϕ : E → [0, 1] and a decision scheme ψ : Σ→ [0, 1], such that the pair (ϕ,ψ)
forms a sequential equilibrium.

I Theorem 4. A sequential equilibrium can be computed in polynomial time.

Our algorithm repeatedly sets up a flow network based on the graph H. In each iteration, it
computes a maximum s-t flow and identifies suitable regions of the graph where it fixes the
equilibrium schemes of sender and receiver. Then it removes the fixed regions and repeats the
construction on the graph with the remaining states and signals. After at most min{n,m}
iterations, the algorithm finishes the construction of the equilibrium.

How desirable is an equilibrium for the sender and the receiver? By how much can each
player benefit when he or she enjoys commitment power? Towards this end, we bound the
ratios of the optimal utility achievable with commitment power over the utilities in the worst
and best equilibrium. Intuitively, commitment power might be interpreted as a form of
control over the game, so we use the term price of anarchy and price of stability to refer to
the ratios, respectively.
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More formally, for the price of anarchy we bound the ratio of the optimal utility achievable
with commitment over the worst utility in any sequential equilibrium. For the price of stability
we bound the ratio of the optimal utility achievable with commitment over the best utility in
any sequential equilibrium.

For the receiver, the optimal scheme with commitment leads to an equilibrium [14], so
the price of stability is 1. The price of anarchy is 2 (c.f. Proposition 7 below). For the sender,
both prices of anarchy and stability are unbounded.

I Proposition 5. The price of anarchy for the receiver is 2 and this is tight. The prices of
anarchy and stability for the sender are unbounded.

4 Constrained Delegation

In constrained delegation, the game starts with the receiver committing to a decision scheme
ψ : Σ→ [0, 1], where ψ(σ) is the probability to choose action A if the sender reports signal
σ. The first insight is due to [14, Proposition 1].

I Lemma 6 (Glazer and Rubinstein [14]). In constrained delegation, there is an optimal
decision scheme ψ∗ that is deterministic, i.e., ψ∗(σ) ∈ {0, 1} for all σ ∈ Σ.

Given a deterministic decision scheme ψ, the sender’s problem is trivial: after learning
θ, report an arbitrary signal σ ∈ N(θ) such that ψ(σ) = 1 if one exists. Otherwise, report
an arbitrary signal σ ∈ N(θ). In the following, we focus on the computational complexity
of the receiver’s problem: How hard is it to compute the optimal ψ? What about a good
approximation algorithm?

This problem turns out to be much easier than the sender’s problem in constrained
persuasion studied below. It readily admits a trivial 2-approximation algorithm. Let ψA be
the scheme that accepts all signals, i.e., ψA(σ) = 1 for all σ, and ψR the scheme that rejects
all signals. The better of ψA and ψR results in utility max{qA, qR} for the receiver, which is
at least 1/2. Clearly, the receiver can obtain at most a utility of 1.

I Proposition 7. For constrained delegation, the better of ψA and ψR is a 2-approximation
to the optimal decision scheme ψ∗.

In Section 4.1 we show that the factor 2 is essentially optimal in the worst case, unless P
= NP. In Section 4.2 we present our results on approximation algorithms.

4.1 Hardness
Sher [25, Theorem 7] shows NP-hardness of constrained delegation, even in the special case
with degree-1 rejects and degree-2 states. His construction can be extended easily to show
APX-hardness (we provide the details in the full version of this paper). Our main result in
this section is a stronger hardness result that matches the guarantee of the trivial algorithm
in Proposition 7.

I Theorem 8. For any constant ε ∈ (0, 1), it is NP-hard to approximate constrained
delegation within a factor of (2− ε).

For simplicity, we sketch below an outline for a reduction that does not give the NP-
hardness, but nonetheless encapsulates the main ideas of the proof. After the outline, we
roughly explain the changes needed to achieve the NP-hardness; the full proof is deferred to
the full version of this paper.
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We reduce from the Bipartite Vertex Expansion problem. In this problem, we are
given a bipartite graph (U, V,E) and positive real number β. The goal is to select (at least)
β|U | vertices from U such that their neighborhood (in V ) is as small as possible. Khot and
Saket [20] show the following strong inapproximability result:

I Theorem 9 ([20]). Assuming NP *
⋂
δ>0 DTIME(2nδ ), for any positive constants τ, γ > 0,

there exists β ∈ (0, 1) such that no polynomial-time algorithm can, given a bipartite graph
(U, V,E), distinguish between the following two cases:

(YES) There exists S∗ ⊆ U of size at least β|U | where |N(S∗)| ≤ γ|V |.
(NO) For any S ⊆ U of size at least τβ|U |, |N(S)| > (1− γ)|V |.

The main idea of our reduction is as follows. Roughly speaking, given a bipartite graph
(U, V,E), we set Σ = U , ΘR = V and the edge set between them is exactly E. To get a high
utility on ΘR, we must pick a signal set T ⊆ Σ such that |N(T )| is small, and set ψ(σ) = 1
for all σ ∈ T ; this does not mean much so far, since we could just pick T = ∅. This is where
the set of acceptable states comes in: we let ΘA be equal to U ` = {(u1, . . . , u`)|ui ∈ U} for
some appropriate ` ∈ N, and there is an edge between θ = (u1, . . . , u`) and σ = u if ui = u

for some i ∈ [`]. Intuitively, this forces us to pick T that is not too small as otherwise ΘA

won’t contribute to the total utility. Finally, we need to pick a distribution D over Θ such
that qA = qR, as otherwise the trivial algorithm already gets better than a 2-approximation.

As stated earlier, the above reduction does not yet give NP-hardness, because Theorem 9
relies on a stronger assumption1 that NP *

⋂
δ>0 DTIME(2nδ ). To overcome this, we instead

use a “colored version” of the problem, where every vertex in U is colored and the subset
S ⊆ U must only contain vertices of different colors (i.e., be “colorful”). It turns out that
the above reduction can be adapted to work with such a variant as well, by changing the
acceptable states ΘA to “test” this condition instead of the condition that |S| is small.
Furthermore, we show, via a reduction from the Label Cover problem, that this colored
version of Bipartite Vertex Expansion is NP-hard to approximate. Together, these
imply Theorem 8. Our proof formalizes this outline; see the full version for details.

4.2 Approximation Algorithms for Constrained Delegation
By Theorem 8 there is no hope for a (2− ε)-approximation algorithm for the constrained
delegation problem. Proposition 7 provides a matching guarantee.

As a consequence, we examine in which way instance parameters influence the existence
of polynomial-time approximation algorithms. In particular, the maximum degree d is a
main force that drives the hardness result. For the case of degree at most d, we give a 2− 1

d2

approximation algorithm via LP rounding. When d = 2, we improve upon this by giving a
1.1-approximation algorithm via SDP rounding.

4.2.1 Better than 2 via LP Rounding
For instances with degree-d-states we take the better of (1) rounding the natural linear
program for constrained delegation and (2) the trivial scheme of Proposition 7.

I Theorem 10. For constrained delegation with degree-d states there is a polynomial-time(
2− 1

d2

)
-approximation algorithm.

1 We remark that it is entirely possible that Theorem 9 holds under NP-hardness (instead of under the
assumption NP *

⋂
δ>0 DTIME(2n

δ

)) but this is not yet known.
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Proof. Consider the following integer program for constrained delegation (c.f. [14, 25]).

max
∑
θ∈Θ

cθqθ (1a)

s.t.
∑

σ∈N(θ)

ψσ ≥ cθ, for all θ ∈ ΘA (1b)

∑
σ∈N(θ)

ψσ ≤ |N(θ)|(1− cθ) for all θ ∈ ΘR (1c)

ψσ ∈ {0, 1}, for all σ ∈ Σ and cθ ∈ {0, 1}, for all θ ∈ Θ (1d)

The variable ψσ encodes whether the action is accept or reject for signal σ. The variable
cθ encodes whether the receiver makes the correct choice when the state of nature is θ.
Constraint (1b) states that, if θ ∈ ΘA, she can’t make the correct choice when she rejects all
signals available from θ. Constraint (1c) states that, if θ ∈ ΘR, making the correct choice
means rejecting all signals available from θ; the |N(θ)| term ensures that the constraint can
still be satisfied even when cθ = 0.

Our algorithm first solves the linear relaxation of this integer program; let ψ̂σ and ĉθ be
the fractional optimum. We round this solution by setting ψσ = 1 with probability ψ̂σ, and
0 otherwise. We can optimally pick cθ given the ψσ’s. The rounded solution is feasible by
definition; we show that it is a good approximation to the optimal LP value, i.e.,

∑
θ∈Θ ĉθqθ.

Let G = 1
|ΘA|

∑
θ∈ΘA ĉθqθ and B = 1

|ΘR|
∑
θ∈ΘR ĉθqθ be the average contribution to

the LP objective from the acceptable and rejectable states, respectively. The LP value is
G|ΘA|+B|ΘR|. We start by showing the following lower bound on the expected value of
the rounded solution.

I Lemma 11. E[
∑
θ∈Θ cθqθ] ≥

G|ΘA|
d + qR(1− d) + dB|ΘR|.

Proof. First, consider a state θ ∈ ΘA. The probability that cθ = 1 is at least the probability
that we rounded one of the ψσ variables to 1, for σ ∈ N(θ), i.e.,

Pr [cθ = 1] ≥ max
σ∈N(θ)

ψ̂σ ≥
ĉθ
|N(θ)| ≥

ĉθ
d

, (2)

where we used the fact that ĉθ satisfies Constraint (1b). For a state θ ∈ ΘR, the probability
that cθ = 1 is exactly the probability that none of its signals were selected, which is∏
σ∈N(θ)(1− ψ̂σ) ≥ 1−

∑
σ∈N(θ) ψ̂σ. Thus

Pr [cθ = 1] ≥ 1−
∑

σ∈N(θ)

ψ̂σ ≥ 1− |N(θ)|(1− ĉθ) ≥ 1− d+ dĉθ , (3)

where we used the fact that ĉθ satisfies Constraint (1c). Adding up (2) and (3), the expected
value of our rounded solution is

E

[∑
θ∈Θ

cθqθ

]
≥
∑
θ∈ΘA

qθ ĉθ
d

+
∑
θ∈ΘR

qθ(1− d+ dĉθ) ≥
G|ΘA|
d

+ qR(1− d) + dB|ΘR|. J
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3:10 Algorithmic Persuasion with Evidence

Our final algorithm, i.e., the better of the trivial scheme and the rounded LP solution,
has expected value at least max{qA, qR,E[

∑
θ∈Θ cθqθ]}. We have that

(
2d− 1

d

)
max

{
qA, qR,E

[∑
θ∈Θ

cθqθ

]}
≥
(
d− 1

d

)
qA + (d− 1)qR + E

[∑
θ∈Θ

cθqθ

]
Lemma 11
≥

(
d− 1

d

)
qA + (d− 1)qR + G|ΘA|

d
+ qR(1− d) + dB|ΘR|

(G|ΘA|≤qA)
≥ dG|ΘA|+ dB|ΘR| ,

which is d times the value of the optimum fractional value of the LP. The theorem follows. J

4.2.2 Better than 2 via Semidefinite Programming

In this subsection we give a 1.1-approximation algorithm for constrained delegation with
degree-2 states, where every state of nature θ has at most two allowed signals, σu and σv.
The approach stems from an observation that the problem belongs to the class of constraint
satisfaction problems (CSPs); we make use of the toolbox for semidefinite program (SDP)
rounding in approximating CSPs (e.g. [15, 12, 21]).

Consider the integer program (4a) for our problem below. We assume w.l.o.g. that every
state has exactly two adjacent signals; if there is a state θ with a single neighbor σ, we
can add a parallel edge (θ, σ) in H and the analysis remains valid. Note that the integer
program here is not the same as the one used in the previous subsection. An intuitive reason
for the change is that the variables cθ there are redundant: given {ψσ}σ∈Σ, the values of
{cθ}θ∈Θ are already fixed. In particular, each cθ can be expressed as a degree-d polynomial2
in {ψσ}σ∈N(θ), which is exactly how the integer program below is written.

max
x ∈ {−1, 1}m

1
4

∑
θ∈ΘA

θ=(σi,σj)

(3− xi − xj − xixj)qθ + 1
4

∑
θ∈ΘR

θ=(σi,σj)

(1 + xi + xj + xixj)qθ

(4a)

In the program above xi = −1 is interpreted as accepting when the signal is σi. One can check
that 1

4 (3− xi − xj − xixj) is equal to 1 iff at least one of xi, xj is −1 (and zero otherwise),
i.e., a state of nature θ ∈ ΘA contributes to the objective only when at least one of its allowed
signals is accepted. Similarly, 1

4 (1 + xi + xj + xixj) is equal to 1 if and only if both xi and
xj are equal to 1.

We will solve the semidefinite relaxation of this program, and give a rounding algorithm.
The SDP is the following, where we replaced xi by wi, to distinguish these vector variables
from the variables of our integer program above.

2 Note that linear functions do not suffice to express cθ. In particular, if we rewrite (1c) for θ = (σi, σj)
as cθ ≤ 1−

ψσi+ψσj
2 , then it is still possible to have cθ = 1/2 when ψσi = 1, ψσj = 0.
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max 1
4

∑
θ=(σi,σj)∈ΘA

(3− wi · w0 − wj · w0 − wi · wj)qθ

+ 1
4

∑
θ=(σi,σj)∈ΘR

(1 + wi · w0 + wj · w0 + wi · wj)qθ (5a)

s.t. wi · wi = 1 for all i ∈ [m] ∪ {0} (5b)
wi · w0 + wj · w0 + wi · wj ≥ −1 for all i, j ∈ [m] (5c)
− wi · w0 + wj · w0 − wi · wj ≥ −1 for all i, j ∈ [m] (5d)
− wi · w0 − wj · w0 + wi · wj ≥ −1 for all i, j ∈ [m] (5e)
wi ∈ Rm+1 for all i ∈ [m] ∪ {0}

Constraint (5b) is standard. Constraints (5c)-(5e) encode the triangle inequalities, which
are satisfied by every valid solution to the original program; these strengthen the relaxation
a bit (see [12, 21]). Let VSDP denote the optimal value of this semidefinite program (SDP).
We generally cannot find the exact solution to an SDP, but it is possible to find a feasible
solution with value at least VSDP − ε in time polynomial in 1/ε (see [1]). In our analysis we
will (as is typically the case) ignore the ε factor as it can be made arbitrarily small given
sufficient time.

It is known that the SDP written above provides the optimal approximation achievable
in polynomial time for any 2-CSPs [22, 23] including our problem, assuming the Unique
Games Conjecture (UGC). However, a generic rounding algorithm from this line of work (see
e.g. [23]) does not give a concrete approximation ratio. Below, we describe a specific family
of rounding algorithms for which we can provide the concrete approximation ratio of 1.1.

Rounding Algorithm
Given solution vectors {w0, w1, . . . wm}, wi ∈ Rm+1, for this SDP we produce a feasible
solution xi ∈ {−1, 1} (for i ∈ [m]) to the original integer program as follows. Let ξi = w0 ·wi,
and w̃i = wi−ξiw0√

1−ξ2
i

be the part of wi orthogonal to w0, normalized to a unit vector. Our

rounding algorithm mostly follows the rounding procedure of [21], which they call T HRESH−.
First, pick a (m+ 1)-dimensional vector3 r ∼ N (0, 1) r ∈ Rm+1. Then, set xi = −1 (which
corresponds to accepting signal σi) if and only if w̃i · r ≤ T (ξi), where T (.) is a threshold
function, and set xi = 1 otherwise. Specifically, T (x) = Φ−1( 1−ν(x)

2 ), where Φ−1(.) is the
inverse of the normal distribution function, and ν : [−1, 1]→ [−1, 1] is a function. Later in
the analysis – and this is essentially the point in which various SDP rounding methods diverge
from each other, e.g. see [26] for the different choices for MAX-2-SAT and MAX-2-AND – we
will optimize over a family of ν(.), exploiting structure in our problem, in order to improve
our approximation ratio.

Generic Analysis
We now derive a generic analysis for T HRESH− algorithms; note that these are similar
arguments as in [21, 2]. However, in the end, we will pick a different function ν than previous
works, which results in better approximation ratios for our problem.

3 In other words, the i-th dimension ri is sampled independently from a Gaussian with zero mean and
variance one.
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3:12 Algorithmic Persuasion with Evidence

First, notice that w̃i · r is a standard N (0, 1) variable, and therefore by the choice of T (.)
we have that Pr [xi = −1] = 1−ν(ξi)

2 , which implies that

E [xi] = ν(ξi) . (6)

Now, we need to also analyze the quadratic terms. Let Γc(µ1, µ2) = Pr[X1 ≤ t1 and X2 ≤ t2],
where ti = Φ−1( 1−µi

2 ), and X1, X2 ∈ N (0, 1) with covariance c (in other words, Γc is the
bivariate normal distribution function with covariance c, with a transformation on the input).

Let ρ = wiwj and ρ̃ = w̃iw̃j = ρ−ξiξj√
1−ξ2

i

√
1−ξ2

j

. Observe that the products w̃i · r and w̃j · r

are N (0, 1) random variables with covariance ρ̃. Thus, the probability that w̃i · r ≤ T (ξi)
and w̃j · r ≤ T (ξj) (i.e., both xi, xj are set to −1) is exactly Γρ̃(ν(ξi), ν(ξj)). The probability
that xi = xj = 1 is equal to Γρ̃(−ν(ξi),−ν(ξj)). Austrin [2, Proposition 2.1] shows that
Γc(−µ1,−µ2) = Γc(µ1, µ2) + µ1/2 + µ2/2. Using this fact we can calculate the probability
that xi = xj , which, in turn, gives that

E [xixj ] = 4Γρ̃(ν(ξi), ν(ξj)) + ν(ξi) + ν(ξj)− 1 . (7)

With Equations (6) and (7) at hand we can calculate the expected value of our rounding
algorithm (i.e., the expected value of (4a)) for every choice of ν, and compare it against the
value of the SDP in (5a). Specifically, we will aim for a term-by-term approximation. Define
the following quantities:

`ORν (ξi, ξj , ρ) = 3− ξi − ξj − ρ
4− 2ν(ξi)− 2ν(ξj)− 4Γρ̃(ν(ξi), ν(ξj))

`ANDν (ξi, ξj , ρ) = 1 + ξi + ξj + ρ

2ν(ξi) + 2ν(ξj) + 4Γρ̃(ν(ξi), ν(ξj))
,

and let

`OR(ν) = min
ξi,ξj ,ρ

`ORν (ξi, ξj , ρ) and `AND(ν) = min
ξi,ξj ,ρ

`ANDν (ξi, ξj , ρ) ,

where the minimization is over all choices of ξi, ξj , ρ ∈ [−1, 1] that satisfy the triangle inequal-
ities (Constraints (5c)-(5e)). It is now straightforward to see that the term-by-term analysis
implies that, for any choice of ν, our approximation ratio is at most max{`OR(ν), `AND(ν)}.

Choosing ν and Putting Things Together
We are left to choose the function ν that results in the smallest approximation ratio
max{`OR(ν), `AND(ν)}. We consider a rounding function of the form ν(y) = α · y + β

for parameters α, β to be chosen. Using extensive computational effort, we found that
α = 0.8825 and β = 0.0384 perform well. Once we have a choice for α and β, it remains to
prove the approximation ratio.

We have a computer-assisted proof showing that the approximation ratio is at most
1.1; our computer-based proof approach is similar to that of [26]. Roughly speaking, we
divide the cube (ξi, ξj , ρ) ∈ [−1, 1]3 into a certain number of subcubes. For each subcube, we
(numerically) compute an upper bound to max{`ORν (ξi, ξj , ρ), `ANDν (ξi, ξj , ρ)}. If this upper
bound is already at most 1.1, then we are finished with the subcube. Otherwise, we divide it
further into a certain number of subcubes. By continuing this process, we eventually manage
to show that for the whole region [−1, 1]3 that satisfies the triangle inequalities, the ratio
must be at most 1.1, as desired. (The smallest subcube our proof considers has edge length
0.00078.)
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Comparison to Prior Work

As stated earlier, our algorithm, with the exception of the choice of ν, is similar to [21]
and the follow-up works (e.g. [2, 26]). However, perhaps surprisingly, we end up with a
better approximation ratio than the Max 2-AND problem4, whose approximation ratio
is known to be at least 1.143 assuming the UGC [3]. To understand the difference, recall
that Max 2-AND can be written as max 1

4
∑

(i,j,bi,bj)(1 + bixi + bjxj + bibjxixj) where
bi, bj ∈ {±1} (representing whether the variable is negated in the clause). This is very
similar to our problem (4a), except that Max 2-AND has the aforementioned bi, bj-terms for
negation. It turns out that this is also the cause that we can achieve better approximation
ratio. Specifically, these negation terms led previous works [21, 2, 26, 3] to only consider
ν that is an odd function, i.e., ν(y) = ν(−y) for all x ∈ [−1, 1]. For example, Austrin [2]
considers a function of the form ν(y) = α · y. We note here that, due to the aforementioned
UGC-hardness of Max 2-AND, we cannot hope to get an approximation ratio smaller than
1.143 using odd ν. Nonetheless, since we do not have “negation” in our problem, we are
not only restricted to odd ν, allowing us to consider a more general family of the form
ν(y) = α · y + β for β 6= 0. This ultimately leads to our better approximation ratio.

5 Constrained Persuasion

Let us now turn to the constrained persuasion problem. The sender first commits to a
signaling scheme ϕ, which she then uses to transmit information to the receiver, once the
state of nature is revealed. Given that the sender has commitment power and the receiver
knows ϕ, the receiver picks action A if and only if conditioned on receiving signal σ, the
expected utility of A is more than R, i.e.,∑

θ∈N(σ)∩ΘA

ϕ(θ, σ) ≥
∑

θ∈N(σ)∩ΘR

ϕ(θ, σ)

or, equivalently, 2 ·
∑
θ∈N(σ)∩ΘA ϕ(θ, σ) ≥

∑
θ∈N(σ) ϕ(θ, σ).

In this case, we say that σ is an accept signal, otherwise we call σ a reject signal. An
optimal signaling scheme ϕ∗ maximizes the expected utility of the sender, i.e., the total
probability associated with accept signals. Note that if both accepting and rejecting are
optimal actions for the receiver, we assume that she breaks ties in favor of the sender (so, in
our case, accept). This mild assumption is standard in economic bilevel problems (e.g., when
indifferent between buying and not buying, a potential customer is usually assumed to buy)
and is often without loss of generality. This way we avoid obfuscating technicalities in the
definition of optimal schemes ϕ∗.

We study the computational complexity of finding ϕ∗ and polynomial-time approximation
algorithms. In general, approximating ϕ∗ can be an extremely hard problem, even in the
constrained persuasion problem. Our first insight in Section 5.1 is that the main source of
hardness in the problem is deciding the optimal set of accept signals. We then provide a
simple 2n-approximation algorithm and a n1−ε-hardness in Section 5.2. The PTAS and the
matching strong NP-hardness for instances with unique accepts is discussed in Section 5.3.

4 This is the problem where we are given a set of clauses, each of which is an AND of two literals. The
goal is to assign the variables as to maximize the number of satisfied clauses.
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5.1 Signal Partitions
A signaling scheme ϕ partitions the signal space Σ into (ΣA,ΣR), in the sense that the
receiver takes action A if and only if she gets signal σ ∈ ΣA (and R for ΣR). Determining
this partition of the signal set turns out to be the main source of computational hardness of
finding ϕ∗: Given an optimal partition of the signal set, the reduced problem of computing
appropriate optimal signaling probabilities is solved with a linear program.

We prove this result in a general case of the persuasion problem, in which the receiver
has an arbitrary finite set A of actions. Moreover, sender and receiver can have utilities
us, ur : A×Θ→ R that yield arbitrary positive or negative values for every (state of nature,
action)-pair.

I Proposition 12. Given a partition P = (Σa)a∈A of the signal space such that the receiver’s
best action for a signal σ ∈ Σa is action a, an optimal signaling scheme ϕ∗P for the general
persuasion problem that (1) implements these receiver preferences and (2) maximizes the
sender utility, can be computed by solving a linear program of polynomial size.

Proof. Given P = (Σa)a∈A, consider the following linear program (8).

Max.
∑
a∈A

∑
σ∈Σa

∑
θ∈N(σ)

xθ,σ · us(a, θ)

s.t.
∑

θ∈N(σ)

xθ,σ · ur(a, θ) ≥
∑

θ∈N(σ)

xθ,σ · ur(a′, θ) for all a ∈ A, σ ∈ Σa, a′ ∈ A∑
σ∈N(θ)

xθ,σ = qθ for all θ ∈ Θ

xθ,σ ≥ 0 for all σ ∈ Σ, θ ∈ N(σ)
(8)

For each σ ∈ Σa and every action a′ 6= a we must satisfy that E [ur(a, θ) | σ] ≥
E [ur(a′, θ) | σ], encoded by the first constraint. The other two constraints encode the
feasibility of the scheme. Subject to these constraints, the objective is to maximize the ex-
pected utility of the sender. An optimal LP-solution x∗ directly implies an optimal signaling
scheme ϕ∗P (θ, σ) = x∗θ,σ. J

5.2 A 2n-Approximation Algorithm and Hardness
Going back to constrained persuasion with binary actions, we start by giving a simple
2n-approximation algorithm. First, we give a useful benchmark for the optimal scheme.

I Lemma 13. An optimal signaling scheme ϕ∗ yields a sender utility of at most min{1, 2qA}.

Proof. The upper bound of 1 is trivial. ϕ∗ partitions the signal space into (ΣA,ΣR), the
accept and reject signals, respectively. The expected utility of the sender is∑

σ∈ΣA

∑
θ∈N(σ)

ϕ∗(θ, σ) ≤
∑
σ∈ΣA

∑
θ∈N(σ)∩ΘA

2 · ϕ∗(θ, σ) ≤ 2
∑
θ∈ΘA

qθ = 2 · qA . J

Our simple algorithm considers the m partitions with a single accept signal ΣA = {σ},
for every σ ∈ Σ. For each such partition, the algorithm determines an optimal scheme and
then picks the best one, among all m partitions. Instead of solving the LP of Proposition 12,
given a proposed partition we proceed as follows. Assign as much probability mass from
ΘA ∩N(σ) to σ and at most the same amount from ΘR ∩N(σ) – this ensures that σ is an
accept signal. The remaining probability mass is assigned arbitrarily to other signals. Note
that if this is impossible, there is no scheme that makes σ an accept signal.
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I Proposition 14. For constrained persuasion there is a 2n-approximation algorithm that
runs in polynomial time.

Proof. Suppose θ′ ∈ ΘA is an acceptable state from which ϕ∗ assigns the largest amount to
accept signals, i.e., θ′ = arg maxθ∈ΘA

∑
σ∈ΣA∩N(θ) ϕ

∗(θ, σ). Clearly, the optimum accumu-
lates on the accept signals at most n times this probability mass from the set of acceptable
states, and at most the same from rejectable states. Hence,

∑
σ∈ΣA∩N(θ′) ϕ

∗(θ′, σ) < qθ′ is
at least a 1/(2n)-fraction of the optimal sender utility.

Consider the accept signals ΣA in ϕ∗ and any such signal σ′ ∈ N(θ′) ∩ ΣA. When our
algorithm checks the partition with σ′ as the unique accept signal, it finds a feasible scheme,
since the optimum scheme makes σ′ an accept signal and the algorithm only assigns more
probability from ΘA to σ′. The value of this solution is at least qθ′ . J

In addition to this simple algorithm, we show a number of strong hardness results for
constrained persuasion. The proofs of the following two theorems can be found in the full
version.

I Theorem 15. For any constant ε > 0, constrained persuasion is NP-hard to approximate
within a factor of n1−ε, even for instances with degree-2 states and degree-1 accepts.

For instances with degree-1 rejects a similar result follows with a slightly different reduction.

I Theorem 16. For any constant ε > 0, constrained persuasion is NP-hard to approximate
within a factor of n1−ε, even for instances with degree-1 rejects.

5.3 Unique Accepts
In this section, we examine instances in which there is only a single acceptable state, for
which we prove NP-hardness and give a PTAS. It will be convenient to state a lemma which
allows us to get a better handle on the sender utility in an optimal signaling scheme for
a given signal partition. This lemma will be helpful in both our hardness and algorithm
analyses.

To state this lemma, we need some additional notation: for every subset Σ̃ ⊆ Σ, we use
ΘR(Σ̃) to denote {θ ∈ ΘR | N(θ) ⊆ Σ̃}; when Σ̃ = {σ} is a singleton, we write ΘR(σ) in
place of ΘR({σ}) for brevity. Moreover, let N(Σ̃) denote

⋃
σ∈Σ̃N(σ). The lemma can now

be stated as follows.

I Lemma 17. Suppose that there exists a unique accept state θa. For any partition P =
(ΣA,ΣR) of the signal space such that ΣA 6= ∅, we have
1. There exists a signaling scheme ϕ such that every signal in ΣA is accepted and every signal

in ΣR is rejected by the receiver if and only if ΣA ⊆ N(θa) and
∑
θ∈ΘR(ΣA) qθ ≤ qθa .

2. When the above condition holds, any optimal signaling scheme ϕ∗ for the sender has
utility equal to min{2qθa ,

∑
θ∈N(ΣA) qθ}, and, such a signaling scheme can be computed

in polynomial time.

We remark that the algorithm for finding ϕ∗ in the above lemma is a simple greedy
algorithm that tries to “put as much probability mass from rejectable states as possible”
in ΣA and then use the probability mass of the acceptable state θa to “balance out” the
mass from the rejectable states, so that eventually the signals in ΣA are accepted. This is
in contrast to the generic linear program-based algorithm in Proposition 12. The simpler
greedy algorithm allows us to consider more concrete conditions and exactly compute the
utility as stated in Lemma 17.
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Proof of Lemma 17.
1. (⇒) First, assume that there is such a signaling scheme ϕ. Clearly, every signal not in

N(θa) must be rejected, which implies that ΣA ⊆ N(θa). Furthermore, for all σ ∈ ΣA,
we must have ϕ(θa, σ) ≥

∑
θ∈N(σ)∩ΘR ϕ(θ, σ). Summing up over all σ ∈ ΣA gives

qθa ≥
∑
σ∈ΣA

∑
θ∈N(σ)∩ΘR

ϕ(θ, σ)

≥
∑
σ∈ΣA

∑
θ∈ΘR(ΣA)

ϕ(θ, σ) =
∑

θ∈ΘR(ΣA)

∑
σ∈ΣA

ϕ(θ, σ) =
∑

θ∈ΘR(ΣA)

qθ.

(⇐) Assume that ∅ 6= ΣA ⊆ N(θa) and
∑
θ∈ΘR(ΣA) qθ ≤ qθa . We may construct

a desired signaling scheme ϕ as follows. First, we assign ϕ(θ, σ) arbitrarily for all
θ ∈ ΘR(ΣA). Then, we assign ϕ(θa, σ) such that ϕ(θa, σ) = 0 for all σ /∈ ΣA and that
ϕ(θa, σ) ≥

∑
θ∈ΘR(ΣA) ϕ(θ, σ) for all σ ∈ ΣA. The former is possible because ΣA 6= ∅

and the latter possible because
∑
θ∈ΘR(ΣA) qθ ≤ qθa . Finally, for each θ ∈ ΘR \ΘR(ΣA),

assign ϕ(θ, σ) = 0 for all σ ∈ ΣA. It is straightforward from the construction that this ϕ
is a desired signaling scheme.

2. First, we will show that any signaling scheme ϕ has utility at most min{2qθa ,
∑
θ∈N(ΣA) qθ}

for the sender. Observe that the upper bound 2qθa follows trivially from Lemma 13.
Thus, it suffices for us to prove that the utility is at most

∑
θ∈N(ΣA) qθ. To do so, let us

rearrange the utility as follows:∑
σ∈ΣA

∑
θ∈N(σ)

ϕ(θ, σ) ≤
∑

θ∈N(ΣA)

∑
σ∈N(θ)

ϕ(θ, σ) =
∑

θ∈N(ΣA)

qθ.

Finally, we construct a signaling scheme ϕ∗ with utility equal to min{2qθa ,
∑
θ∈N(ΣA) qθ}.

The algorithm is a modification of the algorithm from the first part, and it works in four
steps:

For every θ ∈ ΘR(ΣA), assign ϕ(θ, σ) arbitrarily.
For every θ ∈ (N(ΣA) ∩ΘR) \ΘR(ΣA), assign ϕ(θ, σ) so that∑

σ∈ΣA

∑
θ∈N(σ)∩ΘR

ϕ(θ, σ) = min{qθa ,
∑

θ∈N(ΣA)∩ΘR

qθ}.

Note that this step is possible because
∑
θ∈ΘR(ΣA) qθ ≤ qθa .

Assign ϕ(θa, σ) so that ϕ(θa, σ) = 0 for all σ /∈ ΣA, and that

ϕ(θa, σ) ≥
∑

θ∈N(σ)∩ΘR

ϕ(θ, σ)

for all σ ∈ ΣA. Note that this is possible because, from the previous step, we must
have

∑
σ∈ΣA

∑
θ∈N(σ)∩ΘR ϕ(θ, σ) ≤ qθa .

All other remaining assignments are made arbitrarily in order to turn ϕ into a feasible
signaling scheme.

It is straightforward to check that ϕ∗ is the desired signaling scheme with utility equal to
qθa + min{qθa ,

∑
θ∈N(ΣA)∩ΘR qθ} = min{2qθa ,

∑
θ∈N(ΣA) qθ}. J

With Lemma 17 ready, we now prove NP-hardness of the problem.

I Theorem 18. Constrained persuasion with unique accepts is NP-hard.
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Proof. We reduce from the Max-k-Vertex-Cover problem, where we have a graph
G = (V,E). The goal is to choose a set V ′ of k vertices in order to maximize the number of
edges incident to at least one vertex in V ′. For every vertex v ∈ V , let E(v) be the set of
incident edges, then we try to pick a subset V ′ of k vertices to maximize |

⋃
v∈V ′ E(v)|.

For each edge e ∈ E, we introduce a rejectable state θe with qθe = 1
(|V |+k)(|E|+1)+2|E| . For

each vertex v we introduce a signal σv. The graph H between states and signals expresses
the incident property of edges and vertices. In addition, for each signal σ, we introduce an
auxiliary rejectable states that have σ as their unique signal. Each auxiliary state θ has
qθ = |E|+1

(|V |+k)(|E|+1)+2|E| . Finally, the unique acceptable state θa is incident to all signals and
has probability

qθa = k(|E|+ 1) + |E|
(|V |+ k)(|E|+ 1) + 2|E| .

From Lemma 17, the optimal signaling scheme has sender utility equal to

max
ΣA

min

2qθa ,
∑

θ∈N(ΣA)

qθ

 ,

where the maximum is over non-empty ΣA ⊆ Σ such that
∑
θ∈ΘR(ΣA) qθ ≤ qθa . Notice that,

in our construction, this condition is satisfied iff |ΣA| ≤ k. This means that ΣA = {σv}v∈V ′
for some subset V ′ of size at most k. It is also not hard to see that

min

2qθa ,
∑

θ∈N(ΣA)

qθ

 =
∑

θ∈N(ΣA)

qθ =
(|V ′|+ k)(|E|+ 1) + |

⋃
v∈V ′ E(v)|

(|V |+ k)(|E|+ 1) + |E| .

In other words, the utility is maximized iff V ′ is an optimal solution to the instance of
Max-k-Vertex-Cover. Since the latter is NP-hard, we can conclude that constrained
persuasion with unique accepts is also NP-hard. J

We next give a PTAS for the problem. Before we formalize our PTAS, let us give
an informal intuition. Observe that the condition in Lemma 17 implies that qθa ≥∑
σ∈ΣA

(∑
θ∈ΘR(σ) qθ

)
. This latter constraint is a knapsack constraint. One generic strategy

to solve knapsack problems is to first brute-force enumerate all possibilities of selecting
“heavy items”, which in our case are the signals with large

∑
θ∈ΘR(σ) qθ. Then, use a simple

greedy algorithm for the remaining “light items”. Our PTAS follows this blueprint. However,
since neither our constraints nor our objective function are exactly the same as in knap-
sack problems, we cannot use results from there directly and have to carefully argue the
approximation guarantee ourselves.

I Theorem 19. For constrained persuasion with unique accepts, for every fixed ε ∈ (0, 1],
Algorithm 1 runs in time mO(1/ε)nO(1) and outputs a (1 + ε) approximate solution.

Proof. It is clear that our algorithm runs in time mO(1/ε)nO(1). Let ϕ∗ be any optimal
signaling scheme, with utility OPT for the sender. We prove that the utility of ϕALG is at
least (1− 0.5ε)OPT.

Without loss of generality we assume that the utility of ϕ∗ is non-zero. Now, let (Σ∗A,Σ∗R)
denote the signal partition of ϕ∗; since the utility of ϕ∗ is non-zero, we must have Σ∗A 6= ∅.
Furthermore, the first item of Lemma 17 implies that Σ∗A ∩ Σ≥ε must be of size at most
1/ε. As a result, our algorithm must consider S = (Σ∗A ∩ Σ≥ε) in the for-loop (3). For this
particular S, let T ′ denote the largest T for which Line (6) is executed. We next consider
two cases, based on whether or not we have T ′ = S ∪ (Σ<ε ∩N(θa)).

ITCS 2021
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Algorithm 1 A PTAS for constrained persuasion with unique accepts.

Input: Graphs H with a single acceptable state θa, and ε > 0.
1 Let Σ≥ε be the set of all signals σ ∈ Σ such that

∑
θ∈ΘR(σ) qθ ≥ εqθa . Then, let

Σ<ε = Σ \ Σ≥ε;
2 Let ϕALG be an arbitrary signaling scheme;
3 for every (possibly empty) subset S ⊆ Σ≥ε of size at most 1/ε do
4 Let T = S;
5 while

∑
θ∈ΘR(T ) qθ ≤ qθa do

6 If the utility of ϕALG is less than min{2qθa ,
∑
θ∈N(T ) qθ}, then let ϕALG be

the optimal signaling scheme consistent with signaling partition ΣA = T ,
which can be computed in polynomial time due to Lemma 17 ;

7 If T = Σ<ε ∩N(θa), break from the loop;
8 Otherwise, add an arbitrary signal from (Σ<ε ∩N(θa)) \ T to T ;
9 end

10 end
Output: ϕALG.

Case I: T ′ = S ∪ (Σ<ε ∩N(θa)). Notice that T ′ ⊇ Σ∗A. Lemma 17, implies that the utility
of ϕALG must be at least OPT.
Case II: T ′ 6= S ∪ (Σ<ε ∩ N(θa)). This means that there exists a signal σ∗ ∈ (Σ<ε ∩
N(θa)) whose addition to T ′ breaks the condition of the while-loop (5), i.e., qθa <∑
θ∈ΘR(T ′∪{σ∗}) qθ. The right hand side of this inequality is equal to

∑
θ∈ΘR

N(θ)⊆(T ′∪{σ∗})

qθ ≤
∑
θ∈ΘR

N(θ)∩T ′ 6=∅

qθ +
∑
θ∈ΘR

N(θ)={σ∗}

qθ

=
∑

θ∈N(T ′)∩ΘR

qθ +
∑

θ∈ΘR(σ∗)

qθ

<
∑

θ∈N(T ′)∩ΘR

qθ + εqθa ,

where the last inequality since σ belongs to Σ<ε. Combining the two inequalities we have∑
θ∈N(T ′)∩ΘR

qθ > (1− ε)qθa . (9)

On the other hand, from Lemma 17, when we execute line Line (6) for T = T ′, it must
result in a signaling scheme of utility

min

2qθa ,
∑

θ∈N(T ′)

qθ

 = min

2qθa , qθa +
∑

θ∈N(T ′)∩ΘR

qθ

 (9)
> (2− ε)qθa ,

which is at least (1− 0.5ε)OPT due to Lemma 13.
Hence, we can conclude that our algorithm always outputs a signaling scheme with sender
utility at least (1− 0.5ε)OPT. In other words, its approximation ratio is at most 1

1−0.5ε ≤
1 + ε. J
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The Complexity of Finding Fair Independent Sets
in Cycles
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Abstract
Let G be a cycle graph and let V1, . . . , Vm be a partition of its vertex set into m sets. An independent
set S of G is said to fairly represent the partition if |S ∩ Vi| ≥ 1

2 · |Vi| − 1 for all i ∈ [m]. It is known
that for every cycle and every partition of its vertex set, there exists an independent set that fairly
represents the partition (Aharoni et al., A Journey through Discrete Math., 2017). We prove that
the problem of finding such an independent set is PPA-complete. As an application, we show that
the problem of finding a monochromatic edge in a Schrijver graph, given a succinct representation
of a coloring that uses fewer colors than its chromatic number, is PPA-complete as well. The work is
motivated by the computational aspects of the “cycle plus triangles” problem and of its extensions.
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1 Introduction

In 1986, Du, Hsu, and Hwang [19] conjectured that if a graph on 3n vertices is the disjoint
union of a Hamilton cycle of length 3n and n pairwise vertex-disjoint triangles then its
independence number is n. The conjecture has become known as the “cycle plus triangles”
problem and has been strengthened by Erdös [20], who conjectured that such a graph is
3-colorable. Fleischner and Stiebitz [26] confirmed these conjectures in a strong form and
proved, using an algebraic approach of Alon and Tarsi [6], that such a graph is in fact
3-choosable. Their proof can also be viewed as an application of Alon’s Combinatorial
Nullstellensatz technique [4]. Slightly later, an alternative elementary proof of the 3-coloring
result was given by Sachs [39]. However, none of these proofs supplies an efficient algorithm
that given a graph on 3n vertices whose set of edges is the disjoint union of a Hamilton cycle
and n pairwise vertex-disjoint triangles finds a 3-coloring of the graph or an independent
set of size n. Questions on the computational aspects of the problem were posed in several
works over the years (see, e.g., [27, 5, 9, 1]).

A natural extension of the problem of Du et al. [19] is the following. Let G be a cycle and
let V1, . . . , Vm be a partition of its vertex set into m sets. We are interested in an independent
set of G that (almost) fairly represents the given partition, that is, an independent set S
of G satisfying |S ∩ Vi| ≥ 1

2 · |Vi| − 1 for all i ∈ [m] = {1, . . . ,m}. The existence of such
an independent set was proved in a recent work of Aharoni, Alon, Berger, Chudnovsky,
Kotlar, Loebl, and Ziv [1]. For the special case where all the sets Vi are of size 3, the proof
technique of Aharoni et al. [1] allowed them to show that there are two disjoint independent
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sets that fairly represent the partition, providing a new proof of a stronger form of the
original conjecture of Du et al. [19]. The results of [1] were extended in a work of Alishahi
and Meunier [3] who proved the following.

I Theorem 1 ([3]). Let G be a cycle on n vertices and let V1, . . . , Vm be a partition of its
vertex set into m sets. Suppose that n and m have the same parity. Then, there exist two
disjoint independent sets S1 and S2 of G covering all vertices but one from each Vi such that
for each j ∈ {1, 2}, it holds that |Sj ∩ Vi| ≥ 1

2 · |Vi| − 1 for all i ∈ [m].

As shown by Black et al. [10], analogues of Theorem 1 for paths and for partitions into sets
of odd sizes can also be proved using the approach of Aharoni et al. [1].

It is interesting to mention that although the statements of Theorem 1 and of its
aforementioned variants are purely combinatorial, all of their known proofs are based on tools
from topology. The use of topological methods in combinatorics was initiated by Lovász [32]
who applied the Borsuk-Ulam theorem [11] from algebraic topology to prove a conjecture
of Kneser [31] on the chromatic number of Kneser graphs. For integers n ≥ 2k, the Kneser
graph K(n, k) is the graph whose vertices are all the k-subsets of [n] where two sets are
adjacent if they are disjoint. It was proved in [32] that the chromatic number of K(n, k)
is n − 2k + 2, a result that was strengthened and generalized by several researchers (see,
e.g., [34, Chapter 3]). One such strengthening was obtained by Schrijver [40], who studied the
subgraph of K(n, k) induced by the collection of all k-subsets of [n] with no two consecutive
elements modulo n. This graph is denoted by S(n, k) and is commonly referred to as the
Schrijver graph. It was proved in [40], again by a topological argument, that the chromatic
number of S(n, k) is equal to that of K(n, k). As for Theorem 1, the proof of Alishahi and
Meunier [3] employs the Octahdral Tucker lemma that was applied by Matoušek [33] in an
alternative proof of Kneser’s conjecture and can be viewed as a combinatorial formulation of
the Borsuk-Ulam theorem (see also [42]). The approach of Aharoni et al. [1] and of Black et
al. [10], however, is based on a direct application of the chromatic number of the Schrijver
graph. As before, these proofs are not constructive, in the sense that they do not suggest
efficient algorithms for the corresponding search problems. Understanding the computational
complexity of these problems is the main motivation for the current work.

In 1994, Papadimitriou [38] has initiated the study of the complexity of total search
problems in view of the mathematical argument that lies at the existence proof of their
solutions. Let TFNP be the complexity class, defined in [35], of total search problems in
NP, that is, the class of search problems in which a solution is guaranteed to exist and
can be verified in polynomial running-time. Papadimitriou has introduced in [38] several
subclasses of TFNP, each of which consists of the total search problems that can be reduced
to a problem that represents some mathematical argument. For example, the class PPA
(Polynomial Parity Argument) corresponds to the simple fact that every graph with maximum
degree 2 that has a vertex of degree 1 must have another degree 1 vertex. Hence, PPA is
defined as the class of all problems in TFNP that can be efficiently reduced to the Leaf
problem, in which given a succinct representation of a graph with maximum degree 2 and
given a vertex of degree 1 in the graph, the goal is to find another such vertex. The class
PPAD (Polynomial Parity Argument in Directed graphs) is defined similarly with respect to
directed graphs. Another complexity class defined in [38] is PPP (Polynomial Pigeonhole
Principle) whose underlying mathematical argument is the pigeonhole principle. Additional
examples of complexity classes defined in this way are PLS (Polynomial Local Search) [30],
CLS (Continuous Local Search) [15], and EOPL (End of Potential Line) [21].

The complexity class PPAD is known to perfectly capture the complexity of many im-
portant search problems. Notable examples of PPAD-complete problems are those associated
with Sperner’s lemma [38, 12], the Nash Equilibrium theorem [13, 14], the Envy-Free Cake
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Cutting theorem [18], and the Hairy Ball theorem [29]. For PPA, the undirected analogue of
PPAD, until recently there were not known complete problems that are “natural”, i.e., do not
involve circuits and Turing machines in their definitions. In the last few years, the situation
was changed following a breakthrough result of Filos-Ratsikas and Goldberg [23, 24], who
proved that the Consensus Halving problem with inverse-polynomial precision parameter
is PPA-complete (see also [25]) and used it to derive the PPA-completeness of the classical
Splitting Necklace with two thieves and Discrete Sandwich problems. This was obtained
building on the PPA-hardness, proved by Aisenberg, Bonet, and Buss [2], of the search
problem associated with Tucker’s lemma. The variant of the problem that corresponds to
the Octahedral Tucker lemma was suggested for study by Pálvölgyi [37] and proved to be
PPA-complete by Deng, Feng, and Kulkarni [17]. Additional PPA-complete problems, related
to the Combinatorial Nullstellensatz and the Chevalley-Warning theorem, were provided by
Belovs et al. [8].

1.1 Our Contribution
The present work initiates the study of the complexity of finding independent sets that fairly
represent a given partition of the vertex set of a cycle. It is motivated by the computational
aspects of combinatorial existence statements, such as the “cycle plus triangles” conjecture
of Du et al. [19] proved by Fleischner and Stiebitz [26] and its extensions by Aharoni et
al. [1], Alishahi and Meunier [3], and Black et al. [10]. As mentioned before, the challenge of
understanding the complexity of the corresponding search problems was explicitly raised by
several authors, including Fleischner and Stiebitz [27], Alon [5], and Aharoni et al. [1]. In
this work we demonstrate that this research avenue may illuminate interesting connections
between this family of problems and the complexity class PPA.

We start by introducing the Fair Independent Set in Cycle Problem, which we denote by
Fair-IS-Cycle and define as follows.

I Definition 2 (Fair Independent Set in Cycle Problem). In the Fair-IS-Cycle problem, the
input consists of a cycle G and a partition V1, . . . , Vm of its vertex set into m sets. The goal
is to find an independent set S of G satisfying |S ∩ Vi| ≥ 1

2 · |Vi| − 1 for all i ∈ [m].

The existence of a solution to every input of Fair-IS-Cycle is guaranteed by a result
of Aharoni et al. [1, Theorem 1.8]. Since such a solution can be verified in polynomial
running-time, the total search problem Fair-IS-Cycle lies in the complexity class TFNP.
We prove that the class PPA captures the complexity of the problem.

I Theorem 3. The Fair-IS-Cycle problem is PPA-complete.

In view of the “cycle plus triangles” problem of Du et al. [19], it would be interesting to
understand the complexity of the Fair-IS-Cycle problem restricted to partitions into sets
of size 3. While Theorem 3 immediately implies that this restricted problem lies in PPA, the
question of determining its precise complexity remains open.

We proceed by considering the search problem associated with Theorem 1. In the Fair
Splitting of Cycle Problem, denoted Fair-Split-Cycle, we are given a cycle and a partition
of its vertex set and the goal is to find two disjoint independent sets that fairly represent the
partition and cover all vertices but one from every part of the partition. We define below an
approximation version of this problem, in which the fairness requirement is replaced with
the relaxed notion of ε-fairness, where the independent sets should include at least 1

2 − ε
fraction of the vertices of every part.

ITCS 2021



4:4 The Complexity of Finding Fair Independent Sets in Cycles

I Definition 4 (Approximate Fair Splitting of Cycle Problem). In the ε-Fair-Split-Cycle
problem with parameter ε ≥ 0, the input consists of a cycle G on n vertices and a partition
V1, . . . , Vm of its vertex set into m sets, such that n and m have the same parity. The goal
is to find two disjoint independent sets S1 and S2 of G covering all vertices but one from
each Vi such that for each j ∈ {1, 2}, it holds that |Sj ∩ Vi| ≥ ( 1

2 − ε) · |Vi| − 1 for all i ∈ [m].
For ε = 0, the problem is denoted by Fair-Split-Cycle.

The existence of a solution to every input of ε-Fair-Split-Cycle, already for ε = 0, is
guaranteed by Theorem 1 proved in [3]. For ε = 0, it can be seen that Fair-Split-Cycle is
at least as hard as Fair-IS-Cycle. Yet, it turns out that Fair-Split-Cycle lies in PPA
and is thus also PPA-complete.

I Theorem 5. The Fair-Split-Cycle problem is PPA-complete.

For the approximation version of the problem, we provide the following hardness result.

I Theorem 6. There exists a constant ε > 0 for which the ε-Fair-Split-Cycle problem is
PPAD-hard.

We finally consider the complexity of the Schrijver problem. In this problem we are
given a succinct representation of a coloring of the Schrijver graph S(n, k) with n−2k+1 colors,
which is one less than its chromatic number [40], and the goal is to find a monochromatic
edge (see Definition 16). The study of the Schrijver problem is motivated by a question
raised by Deng et al. [17] regarding the complexity of the analogue problem for Kneser
graphs. Note that the latter is not harder than the Schrijver problem, because S(n, k) is a
subgraph of K(n, k) with the same chromatic number. As an application of our Theorem 3,
we prove the following.

I Theorem 7. The Schrijver problem is PPA-complete.

1.2 Overview of Proofs
To obtain our results we present a chain of reductions, as described in Figure 1. Our
starting point is the Consensus Halving problem with precision parameter ε, in which given a
collection of m probability measures on the interval [0, 1] the goal is to partition the interval
into two pieces using relatively few cuts, so that each of the measures has the same mass
on the two pieces up to an error of ε (see Definition 8). It is known that every input to
this problem has a solution with at most m cuts even for ε = 0 [41] (see also [28, 7]). The
problem of finding a solution is PPA-hard when ε is inverse-polynomial in m [23, 24, 25] and
PPAD-hard when ε is some positive constant [22].

In Section 2, we reduce the Consensus Halving problem to an intermediate variant of
the ε-Fair-Split-Cycle problem, which we call ε-Fair-Split-Path′ (see Definition 12).
Then, we use this reduction to obtain our hardness results for the Fair-IS-Cycle and
Fair-Split-Cycle problems. The reduction borrows a discretization argument that was
used in [23] to reduce the Consensus Halving problem to the Splitting Necklace problem
with two thieves. This argument enables us to transform a Consensus Halving instance into
a path and a partition of its vertex set, for which the goal is to partition the path using
relatively few cuts into two parts, each of which contains roughly half of the vertices of every
set in the partition. In order to relate this problem to independent sets that fairly represent
the partition, we need an additional simple trick. Between every two consecutive vertices of
the path we add a new vertex and put all the new vertices in a new set added to the partition
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Schrijver

Consensus-Halving

Fair-IS-Cycle

Fair-Split-Cycle

Octahedral-Tucker

Fair-Split-Path’

Theorem 20

Theorem 13

Corollary 14

Theorem 17Lemma 15

Theorem 21

Figure 1 Chain of reductions.

of the vertex set. We then argue, roughly speaking, that two disjoint independent sets in the
obtained path, which fairly represent the partition and cover almost all of the vertices, can
be used to obtain a solution to the original instance. The high-level idea is that those few
vertices that are uncovered by the two independent sets can be viewed as cuts, and every path
between two such vertices alternates between the two given independent sets. By construction,
it means that only one of the two independent sets contains in such a path original vertices
(that is, vertices that were not added in the last phase of the reduction), hence every such
path can be naturally assigned to one of the two pieces required by the Consensus Halving
problem. Combining our reduction with the known hardness results of Consensus Halving, we
derive the PPA-hardness of Fair-IS-Cycle and Fair-Split-Cycle and the PPAD-hardness
of ε-Fair-Split-Cycle for a constant ε > 0, as needed for Theorems 3, 5, and 6.

In Section 3, we introduce and study the Schrijver problem. We reduce the
Fair-IS-Cycle problem to the Schrijver problem, implying that the latter is PPA-hard.
The reduction follows an argument of Aharoni et al. [1] who used the chromatic number of the
Schrijver graph [40] to prove the existence of the independent set required in Fair-IS-Cycle.
Finally, employing arguments of Meunier [36] and Alishahi and Meunier [3], we reduce the
Schrijver and Fair-Split-Cycle problems to the search problem associated with the
Octahedral Tucker lemma (see Definition 18). Since it is known, already from [38], that this
problem lies in PPA, we get that Fair-IS-Cycle, Fair-Split-Cycle, and Schrijver are
all members of PPA, completing the proofs of Theorems 3, 5, and 7.

We remark that one could consider analogues of the Fair-IS-Cycle and
Fair-Split-Cycle problems for paths rather than for cycles and obtain similar results. We
have chosen to focus here on the cycle setting, motivated by the computational aspects of
the “cycle plus triangles” problem [19, 20, 26].

2 Fair Independent Sets in Cycles

In this section we prove our hardness results for the Fair-IS-Cycle and Fair-Split-Cycle
problems. We first recall the definition of the Consensus Halving problem and gather some of
the hardness results known for it. Then, we present an efficient reduction from this problem
to an intermediate problem, which is used to obtain the hardness results of Theorems 3, 5,
and 6.
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4:6 The Complexity of Finding Fair Independent Sets in Cycles

2.1 Consensus Halving
Consider the following variant of the Consensus Halving problem, denoted Con-Halving.

I Definition 8 (Consensus Halving Problem). In the ε-Con-Halving(m, `) problem with
precision parameter ε = ε(m), the input consists of m probability measures µ1, . . . , µm on
the interval I = [0, 1], given by their density functions. The goal is to partition the interval I
using at most ` cuts into two (not necessarily connected) pieces I+ and I−, so that for every
i ∈ [m] it holds that |µi(I+)− µi(I−)| ≤ ε.

For ` ≥ m, every input of ε-Con-Halving(m, `) has a solution even for ε = 0 [41]. We state
below two hardness results known for Con-Halving. Here, a function on an interval is said
to be piecewise constant if its domain can be partitioned into a finite set of intervals such
that the function is constant on each of them. We refer to the intervals of the partition on
which the function is nonzero as the blocks of the function.

I Theorem 9 ([23, 24, 25]). There exists an inverse-polynomial ε = ε(m) such that for every
constant c ≥ 0, the ε-Con-Halving(m,m+ c) problem, restricted to inputs with piecewise
constant density functions with at most 2 blocks, is PPA-hard.

I Theorem 10 ([22]). There exist an absolute constant ε > 0 and a polynomial p such that
for every constant c ≥ 0, the ε-Con-Halving(m,m+ c) problem, restricted to inputs with
piecewise constant density functions with at most p(m) blocks, is PPAD-hard.

I Remark 11. We note that, as explained in [25], the constant c given in Theorems 9 and 10
can be replaced by m1−α for any constant α > 0. This stronger hardness, however, is not
required to obtain our results. We also note that our results do not rely on the fact that the
hardness given in Theorem 9 holds for instances with density functions with at most 2 blocks,
as proved in [25], rather than polynomially many blocks as was previously proved in [24].

2.2 The Main Reduction
To obtain our hardness results for the Fair-IS-Cycle and Fair-Split-Cycle problems,
we consider the following intermediate problem.

I Definition 12. In the ε-Fair-Split-Path′ problem with parameter ε ≥ 0, the input
consists of a path G and a partition V1, . . . , Vm of its vertex set into m sets such that |Vi| is
odd for all i ∈ [m]. The goal is to find two disjoint independent sets S1 and S2 of G covering
all but at most m of the vertices of G such that

|S1 ∩ Vi| ∈
[
( 1

2 − ε) · |Vi| − 1, ( 1
2 + ε) · |Vi|

]
for all i ∈ [m]. When ε = 0, the problem is denoted by Fair-Split-Path′.

Note that the ε-Fair-Split-Path′ problem differs from the ε-Fair-Split-Cycle problem
(see Definition 4) in the following respects: (a) The input graph is a path rather than a cycle,
(b) an ε-fairness property is required only for the independent set S1 rather than for both
S1 and S2, (c) there is no requirement regarding the sets Vi to which the vertices that are
uncovered by S1 and S2 belong, and (d) the sets Vi are required to be of odd sizes. Yet,
it is easy to check that Theorem 1 implies that every instance of the ε-Fair-Split-Path′

problem has a solution already for ε = 0.
We turn to prove the following.
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I Theorem 13. Let p be a polynomial and suppose that ε = ε(m) is bounded from below by
some inverse-polynomial in m. Then, the ε-Con-Halving(m,m+ 1) problem, restricted to
inputs with piecewise constant density functions with at most p(m) blocks, is polynomial-time
reducible to the ε

4 -Fair-Split-Path′ problem.

Proof. Consider an instance of ε-Con-Halving(m,m + 1) consisting of m probability
measures µ1, . . . , µm on the interval I = [0, 1], given by their piecewise constant density
functions g1, . . . , gm, each of which has at most p(m) blocks. The reduction constructs an
instance of ε4 -Fair-Split-Path′, namely, a path G and a partition V1, . . . , Vm+1 of its vertex
set into m+ 1 sets of odd sizes.

We start with a high-level description of the reduction. The reduction associates with
every density function gi a collection Vi of vertices located in the (at most p(m)) intervals
on which gi is nonzero. To do so, we partition every block of gi into sub-intervals such that
the measure of µi on each of them is δ, where δ > 0 is some small parameter (assuming, for
now, that the measure of µi on every block is an integer multiple of δ). At the middle of
every such sub-interval we locate a vertex and put it in Vi. Then, we construct a path G
that alternates between the vertices of V1 ∪ · · · ∪ Vm ordered according to their locations
in I and additional vertices which we put in another set Vm+1. We also take care of the
requirement that each |Vi| is odd.

The intuitive idea behind this reduction is the following. Suppose that we are given a
solution to the constructed instance, i.e., two disjoint independent sets S1 and S2 of the path
G covering all but m+ 1 of the vertices such that S1 contains roughly half of the vertices of
Vi for each i ∈ [m+ 1]. Observe that by removing from G the m+ 1 vertices that do not
belong to S1 ∪ S2, we essentially get a partition of the vertices of S1 ∪ S2 into m+ 2 paths.
Since S1 and S2 are independent sets in G, it follows that each such path alternates between
S1 and S2. However, recalling that G alternates between V1 ∪ · · · ∪ Vm and Vm+1, it follows
that ignoring the vertices of Vm+1, each such path contains either only vertices of S1 or only
vertices of S2. Now, one can view the m+ 1 locations of the vertices that do not belong to
S1 ∪ S2 as cuts in the interval I which partition it into m+ 2 sub-intervals, each of which
includes vertices from either S1 or S2 (again, ignoring the vertices of Vm+1). Let I+ and I−
be the pieces of I obtained from the sub-intervals that correspond to S1 and S2 respectively.
Since the number of vertices from Vi in every path is approximately proportional to the
measure of µi in the corresponding sub-interval, it can be shown that the probability measure
of µi on I+ is approximately 1

2 . This yields that the probability measure µi is approximately
equal on the pieces I+ and I−, as needed for the Con-Halving(m,m+ 1) problem.

We turn to the formal description of the reduction. Define δ = ε
4·(2p(m)+m+3) . The

reduction acts as follows.
1. For every i ∈ [m], do the following:

We are given a partition of the interval I into intervals such that on at most p(m) of
them the function gi is equal to a nonzero value and is zero everywhere else. For every
such interval, let γ denote the volume of gi on it, and divide it into dγ/δe sub-intervals
of volume δ each, possibly besides the last one whose volume might be smaller. We
refer to a sub-interval of volume smaller than δ as an imperfect sub-interval. The
number of imperfect sub-intervals associated with gi is clearly at most p(m). At the
middle point of every sub-interval of gi, locate a vertex and put it in the set Vi.
If the number of vertices in Vi is even, then add another vertex to Vi and locate it
arbitrarily in I.
Note that, by µi(I) = 1, we have
|Vi| · δ ∈ [1, 1 + (p(m) + 1) · δ]. (1)
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4:8 The Complexity of Finding Fair Independent Sets in Cycles

2. Consider the path on the vertices of V1 ∪ · · · ∪ Vm ordered according to their locations in
the interval I, breaking ties arbitrarily.

3. Add a new vertex before every vertex in this path, locate it at the middle of the sub-
interval between its two adjacent vertices (where the first new vertex is located at 0), and
put these new vertices in the set Vm+1. If the number of vertices in Vm+1 is even then
add one more vertex to the end of the path, locate it at 1, and put it in Vm+1 as well.
Denote by G the obtained path, and note that G alternates between V1 ∪ · · · ∪ Vm and
Vm+1.

4. The output of the reduction is the path G and the partition V1, . . . , Vm+1 of its vertex
set V into m+ 1 sets. By construction, |Vi| is odd for every i ∈ [m+ 1].

It is easy to verify that the reduction can be implemented in polynomial running-time. Indeed,
every density function gi is piecewise constant with at most p(m) blocks, hence for every
i ∈ [m] the number of vertices that the reduction defines for Vi is at most 1/δ + p(m) + 1,
and the latter is polynomial in the input size because of the definition of δ and the fact that ε
is at least inverse-polynomial in m. The additional set Vm+1 doubles the number of vertices,
possibly with one extra vertex, preserving the construction polynomial in the input size.

We turn to prove the correctness of the reduction, that is, that a solution to the
constructed instance of ε4 -Fair-Split-Path′ can be used to efficiently compute a solution
to the original instance of ε-Con-Halving(m,m+ 1). Suppose we are given a solution to
ε
4 -Fair-Split-Path′ for the path G and the partition V1, . . . , Vm+1 of its vertex set V . Such
a solution consists of two disjoint independent sets S1 and S2 of G covering all but at most
m+ 1 of the vertices of G such that

|S1 ∩ Vi| ∈
[
( 1

2 −
ε
4 ) · |Vi| − 1, ( 1

2 + ε
4 ) · |Vi|

]
(2)

for all i ∈ [m+ 1]. Put S3 = V \ (S1 ∪ S2). It can be assumed that |S3| = m+ 1 (otherwise,
remove some arbitrary vertices from S2). Denote the vertices of S3 by u1, . . . , um+1 ordered
according to their order in G. Let P1, . . . , Pm+2 be the m + 2 paths obtained from G by
removing the vertices of S3 (where some of the paths might be empty). Since S1 and S2 are
independent sets, every path Pj alternates between S1 and S2. By our construction, this
implies that in every path Pj either the vertices of S1 are from V \ Vm+1 and those of S2
are from Vm+1, or the vertices of S2 are from V \ Vm+1 and those of S1 are from Vm+1. We
define bj = 1 in the former case and bj = 2 in the latter. Thus, for every i ∈ [m], the number
of vertices of Vi that appear in the paths Pj with bj = 1 is precisely |S1 ∩ Vi|.

Now, let β1, . . . , βm+1 ∈ I be the locations of the vertices u1, . . . , um+1 in the interval
I as defined by the reduction. We interpret these locations as m+ 1 cuts of the interval I.
Set β0 = 0 and βm+2 = 1, and for every j ∈ [m + 2], let Ij denote the interval [βj−1, βj ].
Consider the partition of I into two pieces I+ and I−, where I+ includes all the parts Ij
with bj = 1 and I− includes all the parts Ij with bj = 2. We claim that this partition,
which is obtained using m + 1 cuts in I, forms a valid solution to the original instance
of ε-Con-Halving(m,m + 1). To this end, we show that for every i ∈ [m] it holds that
|µi(I+)− 1

2 | ≤
ε
2 , which is equivalent to |µi(I+)− µi(I−)| ≤ ε.

Fix some i ∈ [m]. We turn to estimate the quantity µi(I+), i.e., the total measure of
µi on the intervals Ij with bj = 1. By our construction, every vertex of Vi corresponds
to a sub-interval whose measure by µi is δ (except for at most p(m) + 1 of them). Since
the intervals of I+ correspond to the paths Pj whose vertices in V \ Vm+1 are precisely the
vertices of S1 \ Vm+1, one would expect µi(I+) to measure the number of vertices in S1 ∩ Vi,
with a contribution of δ per every such vertex. This suggests an estimation of |S1 ∩Vi| · δ for
µi(I+). However, several issues might prevent from this estimation to be accurate:
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The set Vi might include vertices that correspond to imperfect sub-intervals whose measure
by µi is smaller than δ. Since there are at most p(m) such vertices in Vi, they can cause
an error of at most p(m) · δ in the above estimation.
To make sure that |Vi| is odd, the reduction might add one extra vertex to Vi. This might
cause an error of at most δ in the above estimation.
The precise locations βj of the cuts of I might fall inside sub-intervals that correspond
to vertices of Vi. Since the sub-intervals that correspond to vertices of Vi are disjoint,
every such cut can cause an error of at most δ in the above estimation, and since there
are m+ 1 cuts the error here is bounded by (m+ 1) · δ.

We conclude that µi(I+) differs from the aforementioned estimation |S1 ∩Vi| · δ by not more
than (p(m) +m+ 2) · δ. Combining (1) and (2), it can be verified that∣∣∣|S1 ∩ Vi| · δ − 1

2

∣∣∣ ≤ ε
4 + (p(m) + 1) · δ,

hence∣∣∣µi(I+)− 1
2

∣∣∣ ≤ ∣∣∣µi(I+)− |S1 ∩ Vi| · δ
∣∣∣+
∣∣∣|S1 ∩ Vi| · δ − 1

2

∣∣∣
≤ (p(m) +m+ 2) · δ + ε

4 + (p(m) + 1) · δ
= ε

4 + (2p(m) +m+ 3) · δ = ε
2 ,

where the last equality holds by the definition of δ. This completes the proof. J

2.3 Hardness of Fair-IS-Cycle and Fair-Split-Cycle
Equipped with Theorem 13, we are ready to derive the hardness of the Fair-IS-Cycle and
Fair-Split-Cycle problems (see Definitions 2 and 4).

I Corollary 14. The Fair-IS-Cycle problem is PPA-hard.

Proof. By Theorem 9, the ε-Con-Halving(m,m + 1) problem is PPA-hard for input
density functions that are piecewise constant with at most 2 blocks, where ε = ε(m)
is inverse-polynomial. By Theorem 13, this problem is polynomial-time reducible to the
ε
4 -Fair-Split-Path′ problem, implying that Fair-Split-Path′, with ε = 0, is PPA-hard.
Hence, to prove the corollary, it suffices to show that Fair-Split-Path′ is polynomial-time
reducible to Fair-IS-Cycle.

Consider an instance of Fair-Split-Path′, that is, a path G on n vertices and a partition
V1, . . . , Vm of its vertex set into m sets such that |Vi| is odd for all i ∈ [m]. The reduction
simply returns the cycle G′, obtained from the path G by connecting its endpoints by an
edge, and the same partition V1, . . . , Vm of its vertex set. For correctness, suppose that we
are given a solution to this instance of Fair-IS-Cycle, i.e., an independent set S1 of G′
satisfying |S1 ∩ Vi| ≥ 1

2 · |Vi| − 1 for all i ∈ [m]. Since each |Vi| is odd, it can be assumed
that |S1 ∩ Vi| = 1

2 · (|Vi| − 1) for all i ∈ [m] (by removing some vertices from S1 if needed),
implying that

|S1| =
m∑
i=1
|S1 ∩ Vi| = 1

2 ·
m∑
i=1

(|Vi| − 1) = n−m
2 .

For every vertex of S1 consider the vertex that follows it in the cycle G′ (say, oriented
clockwise), and let S2 be the set of vertices that follow those of S1. Since S1 is an independent
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set in G′, we get that S2 is another independent set in G′ which is disjoint from S1 and has
the same size. We obtain that

|S1 ∪ S2| = |S1|+ |S2| = 2 · n−m2 = n−m,

hence S1 and S2 are two disjoint independent sets of G′ covering all but m of its vertices. In
particular, S1 and S2 are independent sets in the path G, and as such, they form a valid
solution to the Fair-Split-Path′ instance. This solution can clearly be constructed in
polynomial running-time given S1, completing the proof. J

The following simple lemma allows us to derive the PPA-hardness of Fair-Split-Cycle.

I Lemma 15. The Fair-IS-Cycle problem is polynomial-time reducible to
Fair-Split-Cycle.

Proof. Consider an instance of Fair-IS-Cycle, that is, a cycle G on n vertices and a
partition V1, . . . , Vm of its vertex set into m sets. If n and m have the same parity then the
reduction returns the input as is. Otherwise, there exists some i ∈ [m] for which the size of
Vi is even. In this case, the reduction adds to the cycle G a new vertex located between two
arbitrary consecutive vertices and puts it in Vi. Now, the number of vertices and the number
of sets in the partition have the same parity, so the reduction can output the obtained cycle
and partition.

A solution to the constructed instance of Fair-Split-Cycle involves two disjoint inde-
pendent sets that fairly represent the partition. Clearly, at least one of the sets does not
include the two neighbors of the vertex that was possibly added to G. Letting S denote the
set of vertices of G in this set, we get that S is independent in G, and it is easy to check
that |S ∩ Vi| ≥ 1

2 · |Vi| − 1 for all i ∈ [m], so we are done. J

We end this section with a proof of Theorem 6.

Proof of Theorem 6. By Theorem 10, the ε-Con-Halving(m,m + 1) problem is PPAD-
hard for input density functions that are piecewise constant with at most p(m) blocks,
where p is a polynomial and ε is a positive constant. Applying Theorem 13, we get
that the ε

4 -Fair-Split-Path′ problem is PPAD-hard. To complete the proof, we show
that for every ε ≥ 0 the ε-Fair-Split-Path′ problem is polynomial-time reducible to the
ε-Fair-Split-Cycle problem.

Consider again the reduction that given a path G and a partition V1, . . . , Vm of its vertex
set into sets of odd sizes returns the cycle G′, obtained from the path G by connecting its
endpoints by an edge, and the same partition V1, . . . , Vm. Since the sets of the partition have
odd sizes, it follows that the number of vertices and the number of sets in the partition have the
same parity, hence the reduction provides an appropriate instance of the ε-Fair-Split-Cycle
problem.

For correctness, consider a solution to the constructed instance, i.e., two disjoint inde-
pendent sets S1 and S2 of G′ covering all vertices but one from each part Vi such that for
each j ∈ {1, 2}, it holds that |Sj ∩ Vi| ≥ ( 1

2 − ε) · |Vi| − 1 for all i ∈ [m]. We claim that
S1 and S2 form a valid solution to the original ε-Fair-Split-Path′ instance. Indeed, an
independent set in G′ is also an independent set in G. In addition, the set S1 satisfies
|S1 ∩ Vi| ∈

[
( 1

2 − ε) · |Vi| − 1, ( 1
2 + ε) · |Vi|

]
for all i ∈ [m], where the upper bound holds

because

|S1 ∩ Vi| = |Vi| − |S2 ∩ Vi| − 1 ≤ |Vi| −
(

( 1
2 − ε) · |Vi| − 1

)
− 1 = ( 1

2 + ε) · |Vi|.

This completes the proof. J
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3 The Schrijver Problem

In this section we introduce and study the Schrijver problem, a natural analogue of the
Kneser problem defined by Deng et al. [17].

We start with some definitions. A set A ⊆ [n] is said to be stable if it does not contain
two consecutive elements modulo n (that is, if i ∈ A then i + 1 /∈ A, and if n ∈ A then
1 /∈ A). In other words, a stable subset of [n] is an independent set in the cycle on n vertices
with the numbering from 1 to n along the cycle. For integers n ≥ 2k, let

([n]
k

)
stab denote the

collection of all stable k-subsets of [n]. Recall that the Schrijver graph S(n, k) is the graph
on the vertex set

([n]
k

)
stab, where two sets are adjacent if they are disjoint. We define the

search problem Schrijver as follows.

I Definition 16 (Schrijver Graph Problem). In the Schrijver problem, the input consists of
a Boolean circuit that represents a coloring

c :
(

[n]
k

)
stab
→ [n− 2k + 1]

of the Schrijver graph S(n, k) using n− 2k + 1 colors, where n and k are integers satisfying

n ≥ 2k. The goal is to find a monochromatic edge, i.e., two disjoint sets S1, S2 ∈
(

[n]
k

)
stab

such that c(S1) = c(S2).

As mentioned earlier, it was proved by Schrijver [40] that the chromatic number of S(n, k) is
precisely n− 2k + 2. Therefore, every input to the Schrijver problem has a solution.

3.1 From Fair-IS-Cycle to Schrijver
The following theorem is used to obtain the hardness result for the Schrijver problem. The
proof applies an argument of [1] (see also [10]).

I Theorem 17. The Fair-IS-Cycle problem is polynomial-time reducible to the Schrijver
problem.

Proof. Consider an instance of the Fair-IS-Cycle problem, namely, a cycle G and a
partition V1, . . . , Vm of its vertex set into m sets. For every i ∈ [m], let V ′i be the set obtained
from Vi by removing one arbitrary vertex if |Vi| is even, and let V ′i = Vi otherwise. Since
the size of every set V ′i is odd, we can write |V ′i | = 2ri + 1 for an integer ri ≥ 0. Let G′
be the cycle obtained from G by removing the vertices that do not belong to the sets V ′i
and connecting the remaining vertices according to their order in G. Letting n denote the
number of vertices in G′, it can be assumed that its vertex set is [n] with the numbering
from 1 to n along the cycle. Put k =

∑m
i=1 ri, and notice that n = 2k+m. Define a coloring

c of the Schrijver graph S(n, k) as follows. The color c(S) of a vertex S ∈
([n]
k

)
stab is defined

as the smallest integer i ∈ [m] for which |S ∩V ′i | > ri in case that such an i exists, and m+ 1
otherwise. This gives us a coloring of S(n, k) with n− 2k + 1 colors, and thus an instance of
the Schrijver problem. It can be seen that a Boolean circuit that computes the coloring c
can be constructed in polynomial running-time.

To prove the correctness of the reduction, consider a solution to the constructed
Schrijver instance, i.e., two disjoint sets S1, S2 ∈

([n]
k

)
stab with c(S1) = c(S2). It is

impossible that for some i ∈ [m] it holds that |S1 ∩ V ′i | > ri and |S2 ∩ V ′i | > ri, because
S1 and S2 are disjoint and |V ′i | = 2ri + 1. It follows that c(S1) = c(S2) = m+ 1, meaning
that |S1 ∩ V ′i | ≤ ri and |S2 ∩ V ′i | ≤ ri for all i ∈ [m]. Since |S1| = |S2| = k, it follows that
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|S1 ∩V ′i | = ri and |S2 ∩V ′i | = ri for all i ∈ [m], hence S1 and S2 are two disjoint independent
sets of G′ covering all vertices but one from each V ′i and for each j ∈ {1, 2}, we have
|Sj ∩V ′i | = 1

2 · (|V
′
i |−1) ≥ 1

2 · |Vi|−1 for all i ∈ [m]. Since S1 and S2 are also independent sets
of the original cycle G, each of them forms a valid solution to the Fair-IS-Cycle instance,
completing the proof. J

3.2 Membership in PPA

We now show that the Schrijver and Fair-Split-Cycle problems lie in PPA by reductions
to the search problem associated with the Octahderal Tucker lemma. The reductions follow
the proofs of the corresponding mathematical statements by Meunier [36] and by Alishahi
and Meunier [3]. The proofs can be found in the full version of the paper.

We start with some notation (following [16, Section 2]). The partial order � on the
set {+,−, 0} is defined by 0 � + and by 0 � −, where + and − are incomparable. The
definition is extended to vectors, so that for two vectors x, y in {+,−, 0}n, we have x � y if
for all i ∈ [n] it holds that xi � yi (equivalently, xi = yi whenever xi 6= 0). The Octahedral
Tucker lemma, given implicitly in [33] and explicitly in [42], asserts that for every function
λ : {+,−, 0}n \ {0} → {±1, . . . ,±(n − 1)} satisfying λ(−x) = −λ(x) for all x, there exist
vectors x, y such that x � y and λ(x) = −λ(y). This guarantees the existence of a solution
to every input of the following search problem, denoted Octahedral-Tucker.

I Definition 18 (Octahedral Tucker Problem). In the Octahedral-Tucker problem, the
input consists of a Boolean circuit that represents a function λ : {+,−, 0}n \ {0} →
{±1,±2, . . . ,±(n − 1)} satisfying λ(−x) = −λ(x) for all x. The goal is to find vectors
x, y such that x � y and λ(x) = −λ(y).

The Octahedral-Tucker problem is known to be PPA-complete [17], where its membership
in PPA follows already from [38] (see also [17, Appendix A]).

I Proposition 19 ([38]). The Octahedral-Tucker problem lies in PPA.

The Schrijver problem is reduced to Octahedral-Tucker, applying an argument
of [36]. The proof is omitted.

I Theorem 20. Schrijver is polynomial-time reducible to Octahedral-Tucker.

The Fair-Split-Cycle problem (see Definition 4) is reduced to Octahedral-Tucker,
applying an argument of [3]. The proof is omitted.

I Theorem 21. Fair-Split-Cycle is polynomial-time reducible to Octahedral-Tucker.

3.3 Putting All Together

The presented reductions complete the proofs of our results. Indeed, the Fair-IS-Cycle prob-
lem is PPA-hard by Corollary 14, and is polynomial-time reducible to the Fair-Split-Cycle
and Schrijver problems by Lemma 15 and Theorem 17 respectively. By Theorems 20
and 21, each of the two is efficiently reducible to the Octahedral-Tucker problem, which
by Proposition 19 lies in PPA. It thus follows that all of these problems are PPA-complete
(see Figure 1), confirming Theorems 3, 5, and 7.
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Suppose that P is a property that may be satisfied by a random code C ⊂ Σn. For example, for
some p ∈ (0, 1), P might be the property that there exist three elements of C that lie in some
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R∗ + ε is very likely to satisfy P, while a random code of rate R∗ − ε is very unlikely to satisfy P.
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1 Introduction

Random codes are ubiquitous in the theory of error correcting codes: when thinking about
the “right” trade-offs for a particular problem, a coding theorist’s first instinct may be to
try a random code. A random code here is simply a random set. That is, let C ⊆ Σn be
chosen so that each x ∈ Σn is included in C with probability |Σ|−n(1−R) for some parameter
R, which is called the (expected1) rate of the code C. Random codes are used in the proofs
of the Gilbert-Varshamov bound, Shannon’s channel coding theorem, and the list-decoding
capacity theorem, to name just a few. This success may lead to the intuition that random
codes are “easy” to analyze, and that the hard part is finding explicit constructions that
match (or in rare cases, exceed) the parameters of random codes. However, there is still
much we do not know about random codes, especially if we want extremely precise answers.

In particular, the question of threshold rates, of broader interest in probability theory, is
something that we do not understand well for random codes. In more detail, suppose that
P is a code property. For example, perhaps P is the property that there is some pair of
codewords c(1), c(2) ∈ C that both lie in some Hamming ball of radius pn. Or perhaps P is
the property that there are three codewords c(1), c(2), c(3) ∈ C that lie in such a Hamming
ball. A value R∗ ∈ (0, 1) is a threshold rate for P if a random code of rate R∗ + ε is very
likely to satisfy P, but a random code of rate R∗ − ε is very unlikely to satisfy C. For the
first example above, about pairs of codewords, the property in question is just the property
of the code having minimum distance less than 2pn, and this is not too hard to understand.
However, already for the second example above – called list-of-two decoding – the threshold
rate was not known.

1.1 Contributions

In this paper, we characterize threshold rates for a rich class of natural properties of random
codes. We apply our characterization to obtain threshold rates for list-of-two decoding,
as well as to properties like list-decoding and perfect hashing codes, and more generally to
list-recovery. We outline our contributions below.

A characterization of the threshold rate R∗ for symmetric properties

Suppose that P is a property defined by the inclusion of certain “bad” sets. For example, the
list-of-two decoding property described above is defined by the inclusion of three codewords
that lie in a radius-pn Hamming ball. For such properties that are also “symmetric enough,”
our main technical result, Theorem 1, characterizes the threshold rate R∗. Moreover, we
show that this threshold rate is exactly the same as the lower bound that one obtains from a
simple first-moment calculation! This is in contrast to recent work of [13] for random linear
codes, which shows that the corresponding first-moment calculation is not the correct answer
in that setting.

Part of our contribution is formalizing the correct notion of “symmetric enough.” As we
describe in the technical overview in Section 1.2, this definition turns out to be fairly subtle.
We also show in the full version of the paper, that this definition is necessary.

1 Throughout, we refer to R as the rate of the code, and drop the adjective “expected.”
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Estimates of R∗ for list-recovery

We give precise estimates of the threshold rate R∗ for list-recovery. We say that a code
C ⊆ Σn is (p, `, L)-list-recoverable if for all sets Ki ⊆ Σ (for 1 ≤ i ≤ n) with |Ki| ≤ `,

|{c ∈ C : Pri∼[n][ci 6∈ Ki] ≤ p}| < L.

List-recovery is a useful primitive in list-decoding, algorithm design, and pseudorandom-
ness (see, e.g., [15, 10, 16]). In particular, it generalizes the list-of-two decoding example
above (when ` = 1 and L = 3), as well as other interesting properties, such as list-decoding
and perfect hashing codes, discussed below.

Our characterization allows us to estimate or even exactly compute the threshold rate for
(p, `, L)-list-recovery in a wide variety of parameter regimes. To demonstrate this, we include
several results along these lines. First, in Section 4 (Corollary 38), we give estimates that
are quite sharp when q logL

L is small. In Section 5 (Lemma 40), we give an exact formula for
the case p = 0, which is relevant for perfect hashing codes. In Section 6 (Theorem 42(I)), we
give an exact formula for the case that L = 3 and ` = 1, relevant for list-of-two decoding.
Moreover, in Section 7 (Corollary 47) we use our characterization to develop an efficient
algorithm to compute the threshold rate up to an additive error of ε > 0; our algorithm runs
in time Op(Lq + poly(q, L, log(1/ε)).

List-of-two decoding and a separation between random codes and random linear
codes

We obtain new results for list-of-two decoding, the example discussed above. List-of-two
decoding is a special case of list-decoding, which itself the special case of list-recovery where
` = 1. We say that a code is (p, L)-list-decodable if there is no Hamming ball of radius
pn containing L codewords; list-of-two decoding is the special case of L = 3.2 We show in
Section 6 (Theorem 42) that the threshold rate for this question, for random binary codes, is
R∗ = 1− 1−h2(3p)+3p log2 3

3 . That is, above this rate, a random binary code is very likely to
have three codewords contained in a radius pn ball, while below this rate, the code most
likely avoids all such triples.

This result is interesting for two reasons. First, it demonstrates that our techniques
are refined enough to pin down the threshold rate in this parameter regime. Second, the
particular value of R∗ is interesting because it is different than the corresponding threshold
rate for random linear codes. A random linear code over Fq of rate R is a random linear
subspace of Fnq , of dimension Rn. The list-decodability of random linear codes has been
extensively studied, and it is known (e.g., [19, 7]) that the (p, L)-list-decoding threshold rate
for both random linear codes and random codes is 1−hq(p), for sufficiently large list sizes L.3

Limitations of random codes for perfect hashing

Another special case of list-recovery is perfect hashing codes. Suppose that |Σ| = q. A code
C ⊆ Σn is said to be a q-hash code if, for any set of q distinct codewords c(1), c(2), . . . , c(q) ∈ C,
there is at least one i ∈ [n] so that {c(1)

i , c
(2)
i , . . . , c

(q)
i } = Σ; that is, if the set of symbols that

2 It is called list-of-two decoding, even though L is three, because any Hamming ball contains at most two
codewords.

3 Here, hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x) is the q-ary entropy.
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appear in position i are all distinct. Thus, C is a q-hash code if and only if it is (0, q − 1, q)-
list-recoverable. As the name suggests, q-hash codes have applications in constructing small
perfect hash families, and it is a classical question to determine the largest rate possible for
a q-hash code.4

A simple random coding argument shows that a random code of rate R = 1
q logq 1

1−q!/qq −
o(1) is a q-hash code with high probability [5, 12]. However, it is still an area of active
research to do significantly better than this bound for any q. It is known that R < q!

qq−1 for
any q-hash code [5, 9], and for large q, there is a gap of a multiplicative factor of about q2

between these upper and lower bounds. Körner and Matron gave a construction that beats
the random bound for q = 3 [11], and recently Xing and Yuan gave a construction that beats
the random bound for infinitely many q’s [18]. One might have hoped that a random code
might in fact do better than the straightforward probabilistic argument (which follows from
a union bound). Unfortunately, our results show that this is not the case.

A broader view

Taking a broader view, threshold phenomena in other combinatorial domains, notably
random graphs and Boolean functions, have been the subject of extensive study at least since
Erdős and Rényi’s seminal work [3]. Some of the deeper results in this field (e.g. [6]), deal
simultaneously with a wide class of properties, rather than a specific one. Other works, such
as the recent [4], are general enough to cover not only multiple properties, but also multiple
domains. Our work (as with the work of [13], [8] on random linear codes, discussed below) is
not as general as these, but we are able to get more precise results. It would be interesting
to find a general framework that connects threshold phenomena in a variety of random code
models, with analogues from random graphs and other natural combinatorial structures.

1.2 Technical Overview
As mentioned above, we study properties defined by the inclusion of bad subsets. We organize
bad subsets of size b into matrices B ∈ Σn×b, interpreting the columns of B as the elements
of the set. We write “B ⊆ C” to mean that the columns of B are all contained in the code C.

As a running example – and also our motivating example – consider list recovery, defined
above. The property P of not being (p, `, L)-list-recoverable is defined by the inclusion
of “bad” matrices B ∈ Σn×L so that for some sets K1, . . . ,Kn ⊂ Σ of size at most `,
Pri∼[n][Bij /∈ Ki] ≤ p for each j ∈ [L]. Moreover we require the columns of B to be distinct.

Analyzing a property as a union of types

Following the approach of [13] for random linear codes, we group the bad matrices into types
based on their row distributions. That is, for a bad matrix B ∈ Σn×b, let τ denote the row
distribution

τ(v) = |{i ∈ [n] : Bi,? = v}|
n

,

where Bi,? denotes the i’th row of B. We say that B has type τ . Consider the set B of all
of the matrices of type τ ; equivalently, B is the set of matrices obtained by permuting the

4 A q-hash code naturally gives rise to a perfect hash family: suppose that C is a universe of items, and
define a hash function hi : C → Σ given by hi(c) = ci. Then the property of being a q-hash code is
equivalent to the property that, for any set of q items in the universe, there exists some hash function
hi for 1 ≤ i ≤ n that maps each item to a different value.
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rows of B. We note that possible types τ depend on n, because of divisibility constraints.
For simplicity, let us ignore these restrictions for now (we will deal with them later), and
suppose that a single type τ can appear for all n.

First-moment bound and main theorem

We can use a simple first-moment approach to give a lower bound on the threshold rate. In
more detail, the probability that a particular B is contained in C is q−nb(1−R), assuming
that B has b distinct columns. Using the fact that |B| ≈ qHq(τ)·n, where Hq(τ) is the base-q
entropy of τ (see Section 2), and applying a union bound over all B ∈ B, we see that the
probability that any B ∈ B is contained in C is at most

qnb(Hq(τ)−(1−R)).

Thus, if R ≤ 1− Hq(τ)
b − ε for some small ε > 0, it is very unlikely that τ will be represented

in C.
Now suppose that our collection of bad sets, which define the property P, is closed

under row permutations. This means that P can be represented as a collection T of types
τ ; note that the size of T is polynomial in n. Union bounding over all of these types, the
computation above shows that a random code C of rate R < 1−maxτ∈T Hq(τ)

b − ε will, with
high probability, not satisfy P.

The question is, could the rate be larger? Might it be the case that P still not satisfied
(with high probability) by a random code of rate R significantly larger than 1−maxτ Hq(τ)/b?
In [13], it was shown that the answer for random linear codes is “yes.” If P exhibits certain
linear structure, then it may be possible that a higher rate random linear code still does
not satisfy P with high probability. One may conjecture that something similar holds for
random codes.

Our main technical result, Theorem 30, is that, for random codes, for sufficiently symmetric
properties, the answer to this question is “no.” That is, the simple calculation above does
give the right answer for random codes!

I Theorem 1 (Informal; see Theorem 30 for the formal version). Let P be a “symmetric”
property defined by the inclusion of a type among the types in T . Let

R∗ = 1− maxτ∈T Hq(τ)
b

Then for all ε > 0, a random code of rate R ≥ R∗ + ε satisfies P with probability 1− o(1),
while a random code of rate R∗ − ε satisfies P with probability o(1).

Sketch of proof: second moment method

Below, we sketch the proof of Theorem 1, and explain what the assumption of “symmetry”
means. As noted above, it is straightforward to show that the threshold rate R∗ is at least
1−maxτ∈T Hq(τ)

b , so the challenge is to show that it is not larger. The proof of Theorem 1
uses the second-moment method to show that for any histogram type τ (we discuss histogram
types more below), a random code C of rate 1 − Hq(τ)/b + ε is very likely to contain
some matrix B with type τ . Thus, the threshold rate is at most 1−maxτ Hq(τ)/b, where
the maximum is over all histogram types τ that appear in T . Our eventual definition of
“symmetric” will guarantee that it is legitimate to restrict our attention to histogram types.

ITCS 2021



5:6 Sharp Threshold Rates for Random Codes

Histogram types and the meaning of “symmetry”

In order to apply the second moment method, we bound the variance of
∑
B∼τ 1[B ⊂ C],

where the sum is over all matrices B of type τ . This turns out to be possible when τ has the
following symmetry property: for any u ∈ Σb, and for any permutation π : [b]→ [b], it holds
that τ(u) = τ(π(u)), where π(u) denotes the corresponding coordinate permutation of u. We
call such a type τ a histogram-type (Definition 27) because the probability of a particular
vector u under τ depends only on the histogram of u.

A first attempt to formulate a definition of “symmetry” for Theorem 1 is thus to require
P to be defined by histogram types. This results in a true statement, but unfortunately it is
too restrictive: it is not hard to see that, for example, the property of not being list-decodable
contains types τ that are not histogram types. Fortunately, for the logic above to go through,
it is enough to show that T contains a type τ that is both a maximum entropy distribution
in T , and is also a histogram type. Thus, the assumption of “symmetry” we will use is that
T , the collection of types represented in the property P , forms a convex set. Then, using the
fact that P is defined by the inclusion of bad sets (which do not care about the order of the
columns in the corresponding matrices), we can always find a maximum entropy histogram
type by “symmetrizing” and taking a convex combination of column permutations of some
maximum entropy type τ . One might wonder if this symmetrization step (and the resulting
assumption about convexity) is necessary. In the full version of this paper show that it is.

Taking a limit as n → ∞

There is one more challenge to consider, which is that in the description above, we have
ignored the fact that we would like our characterization to work for a sequence of values
of n. However, a type τ only works for certain values of n due to divisibility restrictions.
To get around this, we work instead with a sequence of types τn which tend to τ . This
leads us to our final definition of “symmetric” (Definition 20). Suppose that P is a property
defined by the inclusion of size-b bad sets. Then for each n, there is some collection Tn of
bad types τn, each of which is a distribution on Σb. We say that P is symmetric if the sets
Tn approach some convex set T as n goes to infinity. The logic above then goes through to
give Theorem 1.

Applications to list-recovery

Finally, in order to apply Theorem 1, we need to understand the maximum entropy distribu-
tion τ for our property P . We do this for the property P of not being (p, `, L)-list-recoverable
in a variety of parameter regimes in Sections 4, 5 and 6, and along the way obtain our
results about list-of-two decoding and perfect hashing codes. Finally, in Section 7, we
use our framework to develop an algorithm to efficiently calculate the threshold rate for
(p, `, L)-list-recovery.

1.3 Organization
In Section 2, we introduce notation, and also set up the definitions we need about types,
thresholds, properties, and various notions of symmetry. We also introduce (non-)list-
recoverability as a property, and prove in Corollary 24 that it is symmetric.

In Section 3, we state and prove Theorem 30, the formal version of the characterization
theorem (Theorem 1 above). At the end of Section 3, we begin to apply Theorem 30 to
list-recovery, and in particular define several notions we will need to analyze list recovery in
the subsequent sections.
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In the remaining sections, we specialize to list-recovery. Note that the proofs of the claims
in the remaining sections are available in the full version. In Section 4, we develop bounds on
the threshold rate R∗ for list-recovery that are tight when (q logL)/L is small. In Section 5,
we compute the threshold rate R∗ exactly for zero-error list-recovery (that is, when p = 0),
and use this to compute the threshold rate for perfect hashing. In Section 6, we compute the
threshold rate R∗ for list-of-two decoding (e.g., list-recovery when ` = 1 and L = 3), and
use this to quantify the gap between random codes and random linear codes for list-of-two
decoding. Finally, in Section 7, we give an efficient algorithm to compute the threshold rate.

2 Preliminaries

First, we fix some basic notation. Throughout, we consider codes C ⊆ Σn of block length n
over an alphabet Σ, where |Σ| = q. When we use log(x) without an explicit base, we mean
log2(x). We use Hq to denote the base-q entropy: for a distribution τ ,

Hq(τ) := −
∑
x

τ(x) logq(τ(x)).

When q is clear from context, we will use H(τ) to denote Hq(τ). If u is a random variable
distributed according to τ , then we abuse notation slightly and define H(u) := H(τ). We
use hq(x) := x logq(q − 1) − x logq(x) − (1 − x) logq(1 − x) to denote the q-ary entropy of
x ∈ (0, 1). Again, when q is clear from context we will use h(x) to denote hq(x).

For a vector x ∈ Σk and I ⊆ [k], we use xI to refer to the vector (xi)i∈I ∈ ΣI . Given a
vector u ∈ Σk and a permutation π : [k]→ [k], we let π(u) ∈ Σk denote the corresponding
coordinate permutation of u.

Given distributions τ, µ on the same finite set, we define their `∞-distance by

d∞(τ, µ) := max
x
|τ(x)− µ(x)| .

Given a set of distributions T , we define the `∞ distance from µ to T by

d∞(µ, T ) := inf
τ∈T

d∞(µ, τ) .

2.1 Basic notions
As mentioned in the introduction, we will organize our “bad” sets into matrices. We formalize
this with the following two definitions.

I Definition 2 (Matrices with distinct columns). Let Σn×b
distinct denote the collection of all

matrices B ∈ Σn×b such that each column of B is distinct.

I Definition 3 (Subsets as matrices). Let C ⊆ Σn be a code, and let B ∈ Σn×b be a matrix.
We write B ⊆ C to mean that each column of B is an element of C. If A ⊆ Σn, let
BA ⊆ Σn×|A| denote the collection all matrices B ∈ Σn×|A|distinct such that the columns of B are
the elements of A.

For completeness, we reiterate our definition of a random code from the introduction.

I Definition 4 (Random code). Let Σ be a finite set with q := |Σ| ≥ 2. For n ∈ N and
R ∈ [0, 1], let CnRC(R) denote an expected-rate R random code (over the alphabet Σ) C ⊆ Σn.
Namely, for each x ∈ Fnq we have Pr [x ∈ C] = q−n(1−R), and these events are independent
over all x.
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5:8 Sharp Threshold Rates for Random Codes

We record a useful fact about random codes, which is the probability that any particular
matrix B is contained in one.

I Fact 5 (Probability that a random code contains a matrix). Let B ∈ Σn×b. Then,

Pr [B ⊆ CnRC(R)] = q−n(1−R)t,

where t is the number of distinct columns in B.

We study (noisy) list-recovery, which generalizes both the list-decoding and perfect
hashing examples mentioned in the introduction. We repeat the definition, so that we may
formally define a “bad” matrix for list-recovery.

I Definition 6 (Noisy list-recovery). Let p ∈ [0, 1], 1 ≤ ` ≤ q, and L ∈ N . Say that a matrix
B ∈ ΣL×ndistinct is (p, `, L)-bad for (p, `, L)-list-recovery if there exist sets Ki ⊆ Σ (1 ≤ i ≤ n),
each of size `, such that for every 1 ≤ j ≤ L,

Pri∼[n] [Bi,j /∈ Ki] ≤ p.

A code C ⊆ Σn is (p, `, L)-list-recoverable if it does not contain a (p, `, L)-bad matrix.

2.2 Monotone-increasing properties and thresholds
We study the threshold rate R∗ for random codes to satisfy certain properties. This was
discussed informally in the introduction and the definitions below formalize what “threshold
rate” means.

I Definition 7 (Monotone-increasing property). A code property P is monotone-increasing if
given a code C satisfying P, it holds that every code C ′ such that C ⊆ C ′ also satisfies P.

For example, the property of being not (p, `, L)-list-recoverable (that is, the property of
containing a (p, `, L)-bad matrix) is a monotone-increasing property.

I Definition 8 (Minimal-set). Let Pn be a monotone-increasing property of length-n codes.
A set A ⊆ Σn is a minimal element of Pn if A satisfies Pn but no strict subset of A satisfies
Pn. The minimal set for Pn is the collection of matrices⋃

A is a minimal element of Pn

BA.

For example, the minimal set for the property Pn of being not (p, `, L)-list-recoverable is
the set of (p, `, L)-bad matrices.

Note that a code satisfies Pn if and only if it contains some matrix belonging to the
minimal set of Pn. If P is a monotone-increasing property of codes, we define its associated
threshold rate by

RnRC(P) :=
{

sup
{
R ∈ [0, 1] : Pr [CnRC(R) satisfies P] ≤ 1

2
}

if there is such an R
0 otherwise.

I Remark 9. If P is monotone-increasing then the function Pr [CnRC(R)satisfies P] is
monotone-increasing in R. This can be proved by a standard coupling argument, akin
to [1, Thm. 2.1].
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I Definition 10 (Sharpness for random codes). A monotone-increasing property P is sharp
for random codes if

lim
n→∞

Pr [CnRC (RnRC(P)− ε) satisfies P] = 0

and

lim
n→∞

Pr [CnRC (RnRC(P) + ε) satisfies P] = 1

for every ε > 0.

2.3 Local and row-symmetric properties
As discussed in the introduction, we study properties that can be written as a union of
“types,” where each type corresponds to a row distribution τ of a matrix M . The following
definitions make this notion precise.

I Definition 11 (Row-permutation invariant collection of matrices). A collection of matrices
B ⊆ Σn×b is row-permutation invariant if, given a matrix B ∈ B, every row permutation of
B (that is, a matrix resulting from applying the same coordinate permutation to each column
of B) also belongs to B.

I Definition 12 (Local and row-symmetric properties). Let P = {Pn}n∈N be a monotone-
increasing property, and let Mn denote the minimal set of Pn.

If there exists some b ∈ N such that Mn ⊆ Σn×b for every n, we say that P is b-local.
If every Mn is row-permutation invariant, we say that P is row-symmetric.

I Remark 13. Every monotone-increasing property is trivially column-symmetric, in the
sense that permuting the columns of a matrix in Mn results in another matrix in Mn. This
naturally reflects the fact that containment of a matrix does not depend on the ordering of
the columns, and follows immediately from the definition of a minimal set.

Let B ∈ Σn×b, and consider the collection B of all row-permutations of B. Let τB denote
the row-distribution of B. That is, τ is the probability distribution, over Σb, of the row
Bi,?, where i is sampled uniformly from [n]. Observe that every matrix in B has the same
row-distribution as B. Moreover, B can be characterized as the set of all matrices with the
row distribution τB . These observations motivate the following definitions.

I Definition 14 (Type of a matrix). Let B ∈ Σn×b. We define its type τB as the distribution
of a uniformly random row of B. That is, τB is the distribution over Σb, such that

τB(x) = |{i ∈ [n] | Bi = x}|
n

for every x ∈ Σb. Let

T nb = {τB | B ∈ Σn×bdistinct}

denote the set of all possible types of n× b matrices with distinct columns. Given τ ∈ T nb , we
denote

Mτ = {B ∈ Σn×b | τB = τ}.
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5:10 Sharp Threshold Rates for Random Codes

I Remark 15. The type of a matrix B ∈ Σn×b determines whether B ∈ Σn×bdistinct. Therefore,
for τ ∈ T nb ,

Mτ = {B ∈ Σn×bdistinct | τB = τ}.

The following fact now follows from the above discussion.

I Fact 16 (Decomposition of a row-permutation invariant collection). Let B ⊆ Σn×b be a
row-permutation invariant collection. Then, there exists a set of types T ⊆ Tn,b such that

B =
⋃
τ∈T

Mτ .

Note that a type in T nb is defined by the number of occurrences of each of |Σb| possible
rows, in a matrix consisting of n rows. In particular, each row occurs between 0 and n times.
Thus,

|T nb | ≤ (n+ 1)|Σ
b| = (n+ 1)q

b

.

Crucially for our purposes, this upper bound is polynomial in n.

2.4 Symmetric properties and convex approximations
I Definition 17. Let Tb denote the simplex of all probability distributions over Σb.

It is generally more convenient to work in Tb rather than T nb , since the former is continuous,
while the latter is discrete and involves certain divisibility conditions. This motivates the
following definition.

I Definition 18 (Permutation-closed type sets). A set T ⊆ Tb is called permutation-closed if
for every τ ∈ T and every permutation π : [b]→ [b], the distribution of π(u) (where u ∼ τ)
also belongs to T .

I Definition 19 (Approximating sets of types). Fix b ∈ N. Let {Tn}n∈N be a sequence of sets
of types, such that Tn ⊆ T nb . A (topologically) closed and permutation-closed set T ⊆ Tb is
an approximation for {Tn}n∈N if Tn ⊆ T for every n, and

lim
n→∞

max
τ∈T

d∞(τ, Tn) = 0.

I Definition 20 (Symmetric property and convex approximation). Let P = {Pn}n∈N be a
b-local, row-symmetric, monotone-increasing property. Due to Fact 16, for every n there
exists a set Tn ⊆ Tn,b such that the minimal set of Pn is

⋃
τ∈TnMτ . If the sequence {Tn}n∈N

has a convex approximation T , we say that T is a convex approximation for P. In this case,
we say that P is symmetric.

2.5 Non-list-recoverability as a property
Our motivating property is that of being not list-recoverable. In this section, we show that
non-(p, `, L)-list-recoverability is a symmetric property, and we define the convex set Tp,`,L
that is a convex approximation for it.

Fix p ∈ [0, 1], 1 ≤ ` ≤ q and L ∈ N. Let P = (Pn)n∈N denote the property of being not
(p, `, L)-list-recoverable. That is, a code C ⊆ Σn satisfies Pn if it contains a (p, `, L)-bad
matrix. We now show that P is a symmetric property.
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Clearly, P is monotone-increasing, and its minimal set is exactly the set of (p, `, L)-
bad matrices, which we denote Mn ⊆ Σn×L

distinct. It follows immediately that P is L-local.
Furthermore since the left-hand side of (6) is invariant to row-permutations of B, the
collection Mn is row-permutation invariant, and so P is row-symmetric.

Fact 16 says that we can write Mn =
⋃
τ∈Tn

p,`,L
Mτ for some Tnp,`,L ⊆ T nL . Indeed, (6)

yields the following description of T np,`,L: A type τ ∈ T nL belongs to Tnp,`,L if and only if there
exists a distribution ρ over ΣL ×

(Σ
`

)
such that, given (u,K) ∼ ρ, the following holds:

1. The distribution of u is τ .
2. For every 1 ≤ j ≤ L, it holds that Pr [uj /∈ K] ≤ p.
3. n · ρ((u,K)) ∈ N for every u and K.
To see this, let ρ be the joint distribution (Bi,Ki) for i uniformly sampled from [n], where
B and K are as in (6). Note that ρ must satisfy the three conditions above. In the other
direction, it is not hard to see that any such distribution ρ as above gives rise to a matrix of
type τ , satisfying (6).

We next construct a convex approximation for P. Let Tp,`,L denote the set of all types
τ ∈ TL for which there exists a distribution ρ satisfying Conditions 1 and 2, but not necessarily
Condition 3:

I Definition 21. Let 1 ≤ ` ≤ 1, L ∈ N and 0 ≤ p ≤ 1. Let τ be a distribution over ΣL. We
say that τ belongs to the set Tp,`,L if there exists a distribution ρ over ΣL ×

(Σ
L

)
such that:

1. If (u,K) ∼ ρ then the vector u is τ -distributed.
2. For every 1 ≤ j ≤ L it holds that

Pr(u,K)∼ρ [uj /∈ K] ≤ p.

Clearly, Tnp,`,L ⊆ Tp,`,L for all n ∈ N. It is also immediate to verify that Tp,`,L is
permutation-closed.

I Lemma 22. The set Tp,`,L is convex.

Proof. Let τ0, τ1 ∈ Tp,`,L. Let t ∈ [0, 1] and let τt denote the mixture distribution (1− t)τ0 +
tτ1. Let ρ0 and ρ1 be distributions over ΣL ×

(Σ
`

)
, satisfying Conditions 1 and 2 for τ0 and

τ1, respectively. Let ρt be the mixture distribution (1− t)ρ0 + tρ1. It is straightforward to
verify that ρt satisfies Conditions 1 and 2 with respect to τt. Hence, τt ∈ Tp,`,L. J

The following lemma, proven in the appendix of the full version of this paper, shows that
Tp,`,L satisfies (19). Namely, every type in Tp,`,L can be realized with low error as a type
from Tnp,`,L, for large enough n.

I Lemma 23.

lim
n→∞

sup
τ∈Tp,`,L

d∞(τ, Tnp,`,L) = 0.

We record the results of this section in the following corollary.

I Corollary 24. Being not (p, `, L)-list-recoverable is a symmetric property. Furthermore,
Tp,`,L is a convex approximation for this property.
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3 Characterization theorem

In this section, we prove our main characterization theorem, Theorem 1, which is formally
stated below as Theorem 30. Before stating and proving the theorem, we record a few useful
lemmas.

I Lemma 25 ([2, Lemma 2.2]). Let τ ∈ T nb . Then,

qH(τ)n · n−Oq,b(1) ≤ |Mτ | ≤ qH(τ)n.

I Lemma 26. Let M ⊆ Σn×b. Then,

|M | ≤ nq
b

· qn·maxB∈M H(τB).

Proof. Let T = {τB | B ∈M}. Note that

M ⊆
⋃
τ∈T

Mτ .

Thus,

|M | ≤
∑
τ∈T
|Mτ | ≤ |T | ·max

τ∈T
|Mτ | ≤ |Tn,b| ·max

τ∈T
|Mτ |.

The claim follows from (2.3) and Lemma 25. J

We say that a type is a histogram type if it is indifferent to the ordering of a given vector’s
entries, and thus, only cares about the histogram of the vector. Formally, we make the
following definition.

I Definition 27 (Histogram type). A type τ ∈ Tb is called a histogram-type if τ(u) = τ(π(u))
for every u ∈ Σb and every permutation π : [b]→ [b].

I Lemma 28. Let T ⊆ Tb be a closed, permutation-closed, convex, set of types. Then there
exists a histogram type τ ∈ T such that H(τ) = maxτ ′∈T H(τ ′).

Proof. Since T is closed and bounded, it is compact. Thus, there is some τ ′ ∈ T such that
H(τ ′) is maximal. Given a permutation π : [b]→ [b], let π(τ ′) denote the distribution of the
vector π(u), where u ∼ τ . Let

τ =
∑
π∈Symb

π(τ ′)
b! .

Since T is permutation-closed and convex, τ ∈ T . By concavity of entropy,

H(τ) ≥
∑
π∈Symb

H(π(τ ′))
b! =

∑
π∈Symk

H(τ ′)
b! = H(τ ′).

Thus, τ has maximum entropy in T , and is clearly a histogram-type. J

The following technical lemma, proven in the appendix of the full version, facilitates our
use of an approximation for a set of types.

I Lemma 29. Let τ, τ ′ ∈ Tb such that d∞(τ, τ ′) ≤ ε. Then,

|Hu∼τ (u | uI)−Hu∼τ ′(u | uI)| ≤ Ob,q
(
ε · log 1

ε

)
for any I ⊆ [b].
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We now prove that every monotone-increasing, local and row-symmetric property with a
convex approximation is sharp for random codes. Furthermore, we identify the threshold
rate as the maximal entropy in the approximating set.

I Theorem 30. Fix b ∈ N. Let P = {Pn}n∈N be a symmetric property with locality parameter
b, and let T be a convex approximation for P. Denote R∗ = 1− maxτ∈T H(τ)

b . Fix ε > 0 and
let R ∈ [0, 1]. The following now holds.
1. If R ≤ R∗ − ε then

lim
n→∞

Pr [CnRC(R) satisfies P] = 0.

2. If R ≥ R∗ + ε then

lim
n→∞

Pr [CnRC(R) satisfies P] = 1.

Proof. For b ∈ N and a matrix B ∈ Σb×n
distinct, let XB be an indicator variable for the event

that B ∈ CnRC(R). For a set M ⊆ Σb×ndistinct, let XM =
∑
B∈M XB . By Fact 5,

E [XM ] = |M | · q−n(1−R)b.

Let Mn denote the minimal set for Pn and let Tn = {τB | B ∈Mn}.
The first statement now follows from Markov’s inequality, (3), and Lemma 26:

Pr [C satisfies P] = Pr [∃B ∈Mn B ⊆ CnRC(R)]
≤ Pr [XM ≥ 1]
≤ E [XM ]

= |M | · q−n(1−R)b

≤ nq
b

· qn·maxτ∈Tn H(τ) · q−n(1−R)b

≤ nq
b

· qn·maxτ∈T H(τ) · q−n(1−R)b

≤ nq
b

· q−nbε ≤ e−Ω(n).

Above, we used the fact that Tn ⊆ T .
For the second statement, let τ ∈ T have maximum entropy. By definition 19, T is closed

and permutation-closed, in addition to being convex. Consequently, due to Lemma 28, we
may assume that τ is a histogram-type. Let τn ∈ Tn such that d∞(τ, τn) = on→∞(1). Our
plan is to use a second-moment argument to show that CnRC(R) likely contains a matrix of
type τn.

By (3) and Lemma 25,

E
[
XMτn

]
= |Mτn |q−n(1−R)b ≥ q(H(τn)−(1−R)b)+o(1) ≥ q(H(τ)−(1−R)b)+o(1).

We turn to bounding the variance of XMτn
. Fact 5 yields

Var
[
XMτn

]
=

∑
B,B′∈Mτn

(Pr [XB = XB′ = 1]− Pr [XB = 1] Pr [XB′ = 1])

=
∑

B,B′∈Mτn

(
q−n(1−R)(2b−α(B,B′)) − q−2n(1−R)b

)
≤

∑
B,B′∈Mτn

α(B,B′)≥1

q−n(1−R)(2b−α(B,B′))

where α(B,B′) is the number of columns in B′ that also appear in B.

ITCS 2021
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In order to bound this sum, we need an estimate on the number of pairs B,B′ with a
given α(B,B′). For 0 ≤ r ≤ b, let

Wr = {(B,B′) | B,B′ ∈Mτn and α(B,B′) = r}

and denote Sr = {τB‖B′ | (B,B′) ∈Wr}. Here, B‖B′ is the n× 2b matrix whose first (resp.
last) b columns are B (resp. B′). By Lemma 26,

|Wr| ≤ n2qb · qnmaxν∈Sr H(ν).

Let (B,B′) ∈ Wr and let ν = τB‖B′ . Assume without loss of generality that the first
r columns of B are identical to the first r columns of B′. Let u ∼ ν. Note that, since
B,B′ ∈Mτn , the random variables u[b] and u[2b]\[b] are both τn-distributed. Hence,

H(ν) = H(u) = H(u[2b]\[b]) +H(u[b] | u[2b]\[b]) = H(τn) +H(u[b] | u[2b]\[b])
≤ H(τn) +H(u[b] | u[r]) = H(τn) +H(u[b]\[r] | u[r]).

Lemma 29 yields

H(u[b]\[r] | u[r]) ≤ Hv∼τ (v[b]\[r] | v[r]) + o(1)

=
b∑

i=r+1
Hv∼τ (vi | v[i−1]) + o(1)

=
b∑

i=r+1
Hv∼τ (vb | v[i−1]) + o(1),

where the last equality is due to τ being a histogram-type. Writing

f(r) =
b∑

i=r+1
Hv∼τ (vb | v[i−1]),

we conclude that

H(ν) ≤ f(r) +H(τ) + o(1),

so that

|Wr| ≤ q(f(r)+H(τ))n+o(n),

and

Var
[
XMτn

]
≤

b∑
r=1
|Wr| · q−n(1−R)(2b−r) ≤

b∑
r=1

q(f(r)+H(τ)−(1−R)(2b−r))n+o(n)

≤ max
1≤r≤b

q(f(r)+H(τ)−(1−R)(2b−r))n+o(n).

By Chebyshev’s inequality,

Pr
[
XMτn

= 0
]
≤

Var
[
XMτn

]
E
[
XMτn

]2 ≤ max
1≤r≤b

q(f(r)−H(τ)+r(1−R))n+ob,q(n).

We claim that (f(r))br=0 is a convex sequence. Indeed,

f(r − 1) + f(r + 1)− 2f(r) = Hv∼τ (vb | v[r−1])−Hv∼τ (vb | v[r]) ≥ 0.
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Therefore, the maximum in the right-hand side of (3) is achieved either by r = 1 or r = b. In
the former case, note that

f(1) =
b∑
i=2

Hv∼τ (vb | v[i−1]) =
b∑
i=2

Hv∼τ (vi | v[i−1]) = Hv∼τ (v | v1)

≤ H(τ)−Hv∼τ (v1) ≤ H(τ) · b− 1
b

.

In the last inequality above, we used the fact that Hv∼τv1 = Hv∼τvi for all i ∈ [b], due to τ
being a histogram-type. Thus, for r = 1, the corresponding exponent in (3) is

(f(1)−H(τ) + (1−R))n ≤
(

(1−R)− H(τ)
b

)
n ≤ −εn.

In the latter case, since f(b) = 0, the exponent is

(−H(τ) + (1−R)b)n ≤ −εbn.

We conclude that

Pr [CnRC(R) does not satisfy P] ≤ Pr(XMρ
= 0) ≤ q−εn+o(n). J

Applying the framework to list-recovery

In the rest of the paper, we use Theorem 30 to compute the threshold rate for (p, `, L)
list-recovery in several different settings. In order to do that, we set up a few useful
definitions.

I Definition 31 (β(p, `, L) and T̄p,`,L). Given L ∈ N, ` ≤ L and p ∈ [0, 1), let T̄p,`,L denote
the set of all histogram-types in Tp,`,L. Let

β(p, `, L) = max
τ∈T̄p,`,L

H(τ).

Theorem 30 allows us to characterize the threshold rate for (p, `, L)-list recovery in terms
of β(p, `, L):

I Corollary 32. Fix L ∈ N, ` ≤ L and p ∈ [0, 1). The threshold rate for (p, `, L) list-recovery
is

R∗ = 1− β(p, `, L)
L

.

Proof. By Corollary 24 and Lemma 28,

β(p, `, L) = max
τ∈Tp,`,L

H(τ).

The claim now follows from Corollary 24 and Theorem 30. J

Finally, we introduce the following notation, which will be used for the rest of the paper.

I Definition 33 (P`(·) and Dd,`,L). Fix ` ≤ L. Given a vector v ∈ ΣL let

P`(v) = min
A∈(Σ

`)
|{i ∈ [L] | vi /∈ A}|

We use the notation Dd,`,L = {v ∈ ΣL | P`(v) = d}.
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4 Bounds on the threshold rate for noisy list-recovery

The main result in this section is an estimate of β(p, `, L) (Proposition 37 below), which
leads to an estimate on the threshold rate for list-recovery (Corollary 38). This estimate is
very sharp when q logL

L is small; in subsequent sections we will derive estimates which are
more precise for certain parameter regimes.

Before coming to these bounds, we begin with a few useful lemmas that bound |Dd,`,L|
and characterize T̄p,`,L.

I Lemma 34. Let r = 1− `
q and s = d

L . Suppose that s < r. Then,

(
q

rq

)(
L

sL

)( (1− s)L
(1− s)L
(1− r)q , . . .

(1− s)L
(1− r)q︸ ︷︷ ︸

`

)(
sL

sL

rq
, . . .

sL

rq︸ ︷︷ ︸
q−`

)
≤

|Dd,`,L| ≤
(
q

rq

)
·

(
sL∑
i=0

(
L

i

)
· ((1− r)q)L−i · (rq)i

)
.

Using Stirling’s approximation, Lemma 34 immediately yields the following.

I Corollary 35. In the setting of Lemma 34, suppose that s < r. Then,

logq |Dd,`,L| = L(1−DKLq (s ‖ r))±O(q logL),

where the underlying constant is universal.

In order to compute β(p, `, L), we will make use of the following characterization of
T̄p,`,L (Definition 31). Intuitively, this lemma says that a histogram-type τ is bad for
(p, `, L)-list-recovery if and only if it has many symbols inside the most frequent ` symbols in
expectation.

I Lemma 36. Let 1 ≤ ` ≤ q, L ∈ N and 0 ≤ p ≤ 1. Let τ be a distribution over ΣL and
suppose that τ is a histogram-type. Then, τ ∈ T̄p,`,L if and only if

E
u∼τ

[P`(u)] ≤ pL.

Now, we come to our estimate on the threshold rate for (p, `, L) list-recovery in the regime
where L→∞ and q ≤ o( logL

L ). We begin with the following proposition, which bounds the
quantity β(p, `, L).

I Proposition 37. Let r = 1− `
q and suppose that p ≤ r. Then,

β(p, `, L) = L(1−DKLq (p ‖ r))±O(q logL).

I Corollary 38. The threshold rate for (p, `, L) list-recovery of a random code is

R∗ =

DKLq (p ‖ r)±O
(
q logL
L

)
if p < r

0 if p ≥ r,

where r = 1− `
q .
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I Remark 39. To make sense of the threshold in Corollary 38, one can verify the identity

DKLq (p ‖ 1− `/q) = 1− p logq
(
q − `
p

)
− (1− p) logq

(
`

1− p

)
.

Substituting ` = 1, we find DKLq (p ‖ 1− 1/q) = 1− hq(p), agreeing with the list decoding
capacity theorem. For larger `, this expression agrees with the list-recovery capacity theorem,
as stated in e.g. [14].

5 Zero-error list-recovery and perfect hashing codes

In this section we analyze the threshold rate for zero-error list-recovery (that is, when p = 0),
and give a more precise version of Corollary 38 in this setting.

I Lemma 40. Let p∗ = |D0,`,L|/qL. The threshold rate for (0, `, L) list-recovery of a random
code is

R∗ =
− logq(p∗)

L
.

We use this to compute the threshold rate for a random code be to a perfect hash code,
which is the same as being (0, q − 1, q) list-recoverable.

I Corollary 41. The threshold rate for (0, q − 1, q) list-recovery of a random code is

R∗ = 1
q

logq
(

1
1− q!/qq

)
.

The corollary follows from the lemma in a straightforward manner by verifying that
|D0,q−1,q| = qq − q!.

6 List of two decoding of random and random linear codes

In this section, we study the list-of-2 decodability of two random ensembles of codes. In
detail, we precisely compute the threshold rate for (p, 3)-list-decoding for random codes
and for random linear codes. Denote by P the monotone increasing property of not being
(p, 3)-list-decodable. Note that we cannot immediately apply Corollary 38, as the error term
of O

(
q logL
L

)
is not negligible in this regime. We specialize to the case of q = 2, and recall

our convention that log denotes the base-2 logarithm. Recall from the introduction that
whenever p < 1/4 there exist (p, 3)-list-decodable codes with positive rate, but whenever
p > 1/4 the only (p, 3)-list-decodable codes are of bounded size, independent of n.

Our main result of this section is a demonstration that the list-of-2 decoding threshold
rate for random linear codes is in fact greater than the corresponding threshold rate for
random codes. This result demonstrates that our techniques are precise enough to allow us
to sharply delineate between different natural ensembles of codes.

In the following, CnRLC(R) denotes a random linear code of block length n and rate R.
We define the threshold rate for random linear codes in a manner analogous to the definition
for random codes:

RnRLC(P) :=
{

sup
{
R ∈ [0, 1] : Pr [CnRLC(R) satisfies P] ≤ 1

2
}

if there is such an R
0 otherwise.

ITCS 2021
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Figure 1 The threshold rate RRC (red) for (p, 3)-list-decodability of random codes, and the
threshold rate RRLC (blue, dashed) for (p, 3)-list-decodability of random linear codes. Note that,
uniformly over p, random linear codes have the greater threshold rate.

I Theorem 42. Let p ∈ (0, 1/4).
1. The threshold rate for (p, 3)-list-decoding for random codes satisfies

lim
n→∞

RnRC(P) = 1− 1 + h(3p) + 3p log 3
3 .

2. The threshold rate for (p, 3)-list-decoding for random linear codes satisfies

lim
n→∞

RnRLC(P) = 1− h(3p) + 3p log 3
2 .

Note that the threshold rate for random linear codes is greater than the threshold rate
for random codes, uniformly over p ∈ (0, 1/4). See Figure 1.

7 Computing the threshold rate for list-recovery efficiently

In the previous sections, we gave precise analytical expressions for the threshold rate for
list-recovery in certain parameter regimes. However, there are some regimes where these
bounds aren’t precise. In this section, we consider the question of computing the threshold
rate R∗ algorithmically, given p, ` and L. We use tools from the study of entropy-maximizing
distributions to develop a simple binary-search-based procedure to pinpoint R∗ up to
arbitrarily small additive error.

We begin with a lemma that shows that we can compute the cardinality |Dd,`,L| efficiently;
we will use this as a subroutine in our final algorithm.

I Lemma 43. Given 0 ≤ d ≤ L and 1 ≤ ` ≤ q, the cardinality |Dd,`,L| can be computed in
time

O ((L+ 1)q + poly(q, L)) .

We recall the following standard facts from the theory of entropy-maximizing distributions.
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I Lemma 44 ([17, Sec. 3]). Let Ω be a finite nonempty set, f : Ω→ R and t ∈ R. Let St
denote the set of all distributions τ over Ω such that Eω∼τ [f(ω)] = t. Let

F (t) = max
τ∈St

H(τ).

Then

F (t) = inf
α∈R

[
logq

(∑
ω∈Ω

qα·f(ω)

)
− αt

]
.

Furthermore:
1. If τ is the entropy maximizing distribution, then τ(ω) = τ(ω′) for every ω, ω′ ∈ Ω such

that f(ω) = f(ω′).
2. Let t∗ = Eω∼Uniform(Ω) [f(ω)]. Then, F (t∗) = log |Ω|, and F (t) is nondecreasing (resp.

nonincreasing) in the range t < t∗ (resp. t > t∗).
3. The function

logq

(∑
ω∈Ω

qα·f(ω)

)
− αt

is convex in α.

I Lemma 45. Let ` ≤ q, L ∈ N and 0 < p ≤ 1, and let t∗ = q−L ·
∑L
d=0 d · |Dd,`,L|. Then,

β(p, `, L) =

infα∈R
[
logq

(∑L
d=0 |Dd,`,L| · qαd

)
− αpL

]
if pL < t∗

L if pL ≥ t∗.

I Remark 46. In general, t
∗

L is slightly smaller than 1 − `
q . Thus, Lemma 45 extends the

range in which the threshold is 0 from
[
1− `

q , 1
]
(Corollary 38) to [t∗, 1].

I Corollary 47. There is an algorithm, that, given p, `, L and ε > 0, computes the threshold-
rate for (p, `, L)-list-recovery, within an additive error of ε. The runtime of this algorithm is
O
(
(L+ 1)q + poly(q, L, log 1

ε , β(p)
)
, where

β(p) =
{

log 1
p if p > 0

1 if p = 0.
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Abstract
In the masked low-rank approximation problem, one is given data matrix A ∈ Rn×n and binary mask
matrix W ∈ {0, 1}n×n. The goal is to find a rank-k matrix L for which:

cost(L) def=
n∑
i=1

n∑
j=1

Wi,j · (Ai,j − Li,j)2 ≤ OPT + ε‖A‖2F ,

where OPT = minrank-k L̂ cost(L̂) and ε is a given error parameter. Depending on the choice of W ,
the above problem captures factor analysis, low-rank plus diagonal decomposition, robust PCA,
low-rank matrix completion, low-rank plus block matrix approximation, low-rank recovery from
monotone missing data, and a number of other important problems. Many of these problems are
NP-hard, and while algorithms with provable guarantees are known in some cases, they either 1)
run in time nΩ(k2/ε) or 2) make strong assumptions, for example, that A is incoherent or that the
entries in W are chosen independently and uniformly at random.

In this work, we show that a common polynomial time heuristic, which simply sets A to 0
where W is 0, and then finds a standard low-rank approximation, yields bicriteria approximation
guarantees for this problem. In particular, for rank k′ > k depending on the public coin partition
number of W , the heuristic outputs rank-k′ L with cost(L) ≤ OPT + ε‖A‖2F . This partition number
is in turn bounded by the randomized communication complexity of W , when interpreted as a
two-player communication matrix. For many important cases, including all those listed above, this
yields bicriteria approximation guarantees with rank k′ = k · poly(logn/ε).

Beyond this result, we show that different notions of communication complexity yield bicriteria
algorithms for natural variants of masked low-rank approximation. For example, multi-player number-
in-hand communication complexity connects to masked tensor decomposition and non-deterministic
communication complexity to masked Boolean low-rank factorization.
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6:2 Simple Heuristics Yield Provable Algorithms for Masked Low-Rank Approximation

1 Introduction

The goal of low-rank approximation is to approximate an n×n matrix A with a rank-k matrix
L. L can be written as the product L = U · V of a “tall-and-thin” matrix U and a “short-
and-wide” matrix V with k columns and rows respectively. For k � n this approximation
can lead to computational speedups: one can store the factors U and V with less memory
than storing A itself, and can compute the product U · V · x with a vector x faster than
computing A · x. Additionally, low-rank approximation is useful for denoising and can reveal
low-dimensional structure in high-dimensional data (it is e.g., the basis behind principal
component analysis). It thus serves as a preprocessing step in many applications, including
clustering, data mining, and recommendation systems. The optimal low-rank approximation
to A with distance measured in the Frobenius, spectral, or any unitarily invariant norm can
be computed in polynomial time using a singular value decomposition (SVD). There are also
extremely efficient approximation algorithms for finding a near optimal L under different
measures, including the Frobenius norm, spectral norm, and various entrywise norms. For a
comprehensive treatment, we refer the reader to the surveys [36, 47, 70].

Despite its wide applicability, in many situations standard low-rank approximation does
not suffice. For example, it is common that certain entries in A either don’t obey underlying
low-rank structure or are missing. For example, A may be close to low-rank but with a small
number of corrupted entries, or may be the sum of a low-rank matrix plus a high-rank, but
still efficiently representable, diagonal or block diagonal matrix. In both cases, one must
compute a low-rank approximation of A ignoring the outlying entries. One can formalize
this problem, considering a binary matrix W with Wi,j = 0 for each outlying entry (i, j) of
A and Wi,j = 1 otherwise.

I Problem 1 (Masked Low-Rank Approximation). Given A ∈ Rn×n, binary W ∈ {0, 1}n×n,
and rank parameter k, find rank-k L minimizing:

‖W ◦ (A− L)‖2F =
∑
i,j∈[n]

Wi,j · (Ai,j − Li,j)2,

where for two matrices M and N of the same size, M ◦N denotes the entrywise (Hadamard
product): with (M ◦N)i,j = Mi,j ·Ni,j and for integer n, [n] denotes {1, . . . , n}.

As stated, Problem 1 minimizes the squared Frobenius norm of W ◦ (A − L). However
any matrix norm can be used. In any case, is unclear how to extend standard low-rank
approximation algorithms to solving Problem 1, since they optimize over the full matrix A,
without the ability to take into account W encoding entries that should be ignored. We note
that Problem 1 is equivalent to minimizing ‖A− (L+ S)‖2F where L is rank-k and S is any
matrix with support restricted to the 0 entries of W . If these zeros are on the diagonal, then
S is diagonal. If they are sparse, then S is sparse, etc. This is how Problem 1 is traditionally
stated in many applications.

1.1 Existing Work
A common approach to solving Problem 1 is to apply alternating minimization or the EM
(Expectation-Maximization) algorithm. In fact, factor analysis, a slight variant of Problem
1 when W is 0 on its diagonal and 1 off the diagonal, was one of the original motivations
of the EM algorithm [21, 56]. Much recent work studies when alternating minimization for
Problem 1 converges in polynomial time under the assumptions that (1) there is a solution
L = U · V ≈ A which is incoherent, meaning that the squared row norms of U and column
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norms of V are small and (2) the entries of W are selected at random or have pseudorandom
properties [73, 40, 51]. Under similar assumptions it can be shown that Problem 1 and
the related problem of robust PCA can be solved via convex relaxation in polynomial time
[13, 71, 12]. In many cases, these algorithms perform well in practice even when the above
assumptions do not hold. Additionally, they can be proven to run in polynomial time in
some common settings when the entries of W are not random – e.g., when W is zero only on
its diagonal or at a few arbitrary locations. That is, when we want to approximate A as a
low-rank plus diagonal component, or a low-rank matrix with arbitrary sparse corruptions
respectively. However, these results still require assuming the existence of U · V that is
incoherent and further that is exact – with U · V

A natural question is if for common mask patterns, one can obtain provable algorithms
without incoherence or other strong assumptions. This approach was taken in [54] in the
context of weighted low-rank approximation, where W is a nonnegative matrix and the
objective is still to minimize ‖W ◦ (A− L)‖2F . When W is binary, this reduces to Problem 1.
In [54] it was shown that if W has at most r distinct columns, then it is possible to obtain a
relative error guarantee in 2poly(rk/ε) · poly(n) time. More generally, if the rank of W over
the reals is at most r, then npoly(rk/ε) time is achievable. Note that such algorithms are
only polynomial time if k, r, and 1/ε are very small. In many common use cases, such as
when W is all 0s on the diagonal and 1 off-diagonal (corresponding to low-rank plus diagonal
decomposition), or when W is all 0s above the diagonal and 1s on or beneath the diagonal, r
is large: in fact rank(W ) = r = n in these cases.

When A is low-rank with sparse corruptions, i.e., when W has at most t zero entries per
row and column, the algorithms of [54] can be applied if there is an exact solution (with
A = L on all non-corrupted entries). [54] referred to this problem as adversarial matrix
completion and gave an nO(tk2) time algorithm. This is only polynomial time for constant
values of t and k, and even for constant t and k is very large. Moreover, their method cannot
be used in the approximate case since it requires creating a low-rank weight matrix W ′ whose
support matches that of W . Since W may be far from low-rank, the non-zero entries of W
and W ′ necessarily have very different values. This introduces significant error, unless A = L

exactly on the support of W .

1.2 Our Contributions
With the goal of obtaining fast masked low-rank approximation algorithms, we consider
bicriteria approximation with additive error. That is, we allow the rank k′ of the output L to
be slightly larger than k, but one still compares to the best rank-k approximation. Formally,
given A ∈ Rn×n, W ∈ {0, 1}n×n, and an error parameter ε, we would like to find a rank-k′
matrix L for which:

‖W ◦ (A− L)‖2F ≤ OPT + ε‖A‖2F , (1)

where OPT = minrank-k L̂ ‖W ◦ (A− L̂)‖2F is the optimal value of Problem 1.
Assuming a variant of the Exponential Time Hypothesis, [54] shows a lower bound of

2Ω(r) time for finding rank-k L achieving (1) with constant ε when W is rank-r. Thus
the relaxation to bicriteria approximation seems necessary. In many applications it is not
essential for the output rank k′ to be exactly k – as long as k′ is small, one still obtains
significant compression. Indeed, bicriteria algorithms for low-rank matrix approximation are
widely studied [22, 23, 18, 17, 63, 9]. The starting point of our work is the question:

For which mask patterns W ∈ {0, 1}n×n can one obtain efficient bicriteria low-rank
approximation algorithms with k′ ≤ k · poly((logn)/ε) satisfying (1)?

ITCS 2021
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Main Results

We show that the answer to this question is related to the randomized communication
complexity of W .1 If the rows and columns of W ∈ {0, 1}n×n are indexed by strings x ∈
{0, 1}logn and y ∈ {0, 1}logn, respectively, we can think of W as a two-player communication
matrix for a Boolean function f , where f(x, y) = Wx,y. Here Alice has x, Bob has y, and the
two parties want to exchange messages with as few bits as possible to compute f(x, y) with
probability at least 1− δ. The number of bits required is the randomized communication
complexity Rδ(f). If we further require that the protocol never errs when f(x, y) = 1, but
for any fixed pair (x, y) with f(x, y) = 0, it errs with probability at most δ, then the number
of bits required is the 1-sided randomized communication complexity R1−sided

δ (f). We show:

I Theorem 1. Letting f be the function computed by W ∈ {0, 1}n×n and ¬f be its negation,
there is a bicriteria low-rank approximation L with rank k′ = k · 2R1−sided

ε (¬f) achieving:

‖W ◦ (A− L)‖2F ≤ OPT + 2ε‖A ◦W‖2F ,

where OPT = min
rank-k L̂

‖W ◦ (A− L̂)‖2F . L is computable in O(nnz(A)) + n · poly(k′/ε) time.

As we will see, for many common W , R1−sided
ε (¬f) is very small – with 2R1−sided

ε (¬f) at most
poly(logn/ε). Note that our additive error is in terms of ‖A ◦W‖2F which is only smaller
than ‖A‖2F , and may be much smaller, if e.g., the zeros in W correspond to corruptions in A.
We also show a bound in terms of the communication complexity with 2-sided error.

I Theorem 2. Letting f be the function computed by W ∈ {0, 1}n×n, there is a bicriteria
low-rank approximation L with rank k′ = k · 2Rε(f) achieving:

‖W ◦ (A− L)‖2F ≤ OPT + 2ε‖A ◦W‖2F + ε‖Lopt ◦ (1−W )‖2F ,

where OPT = minrank-k L̂ ‖W ◦ (A− L̂)‖2F and Lopt is any rank-k matrix achieving OPT .
L is computable in O(nnz(A)) + n · poly(k′/ε) time.

Further, the algorithm achieving Theorems 1 and 2 is extremely simple: just zero out the
entries in A corresponding to entries in W that are 0 (i.e., compute A ◦W ), and then output
a standard rank-k′ approximation of the resulting matrix. This is already a widely-used
heuristic for solving Problem 1 [3, 74], and we obtain the first provable guarantees. An
optimal low-rank approximation of A ◦W can be computed in polynomial time via an SVD.
An approximation achieving relative error (1 + ε) can be computed with high probability in
O(nnz(A)) + n · poly(k/ε) time, giving the runtime bounds of Theorems 1 and 2 [19].

1.2.1 Applications
Theorems 1 and 2 provide the first bicriteria approximation algorithms for Problem 1 with
small k′ for a number of important special cases of the mask matrix W :
1. If W has at most t zero entries in each row, this is Low-Rank Plus Sparse (LRPS) matrix

approximation, which captures the challenge of finding a low-rank approximation when a
few entries are not known, or do not obey underlying low-rank structure. It has been
studied in the context of adversarial matrix completion [58], robust matrix decomposition
[31, 12], optics, system identification [7], and more [15].

1 Our bounds actually hold for the public coin partition number of W , which is upper bounded by the
randomized communication complexity [34]. See Section 1.2.4 for a more detailed discussion.
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2. IfW is zero exactly on the diagonal entries, this is Low-Rank Plus Diagonal (LRPD) matrix
approximation. This problem arises since in practice, many matrices that are not close to
low-rank are close to diagonal, or contain a mixture of diagonal and low-rank components
[15]. This observation has been used e.g., to construct compact representations of kernel
matrices [61, 69], weight matrices in neural networks [48, 74], and covariance matrices
[66, 65]. LRPD approximation also arises in applications related to source separation [44]
and variational inference [49] and is closely related to factor analysis [64, 57], which adds
the additional constraints that L and A− L are PSD.

3. If W is the negation of a block-diagonal matrix with blocks of varying sizes, meaning that
W is 0 on entries in the blocks and 1 on entries outside of the blocks, this is Low-Rank
Plus Block-Diagonal (LRPBD) matrix approximation. This is a natural generalization of
the LRPD problem and has been studied in the context of anomaly detection in networks
[4], foreground detection [29], and robust principal component analysis [41]. We also
consider the natural generalization of LRPS approximation discussed above, which we
call the Low-Rank Plus Block-Sparse (LRPBS) matrix approximation problem.

4. If each row of W has a prefix of ones, followed by a suffix of zeros, this is the Monotone
Missing Data Pattern (MMDP) problem. This is a common missing data pattern, arising
in the event that when a variable is missing from a sample, all subsequent variables are
also missing. Methods for handling this pattern are, e.g., included in the SAS/STAT
package for statistical analyses [1]. We refer the reader to [68] for more examples of
common missing data patterns, such as “connected” and “file matching” patterns.

5. If W is the negation of a banded matrix where Wi,j = 0 iff |i− j| < p for some distance p,
this is Low-Rank Plus Banded (LRPBand) matrix approximation. Variants of this problem
arise in scientific computing and machine learning, in particular in the approximation
of kernel matrices via fast multipole methods [55, 28, 72]. These methods approximate
a kernel matrix using a low-rank “far-field” component, and a “near-field” component,
which explicitly represents the kernel function between close points. If points are in
one dimension and sorted, this corresponds to approximating A with a low-rank plus
banded matrix. Many methods compute the low-rank component analytically (using
polynomial approximations of the kernel function). A natural alternative is to seek an
optimal decomposition via Problem 1. Many applications involve higher dimensional data.
E.g., in the two-dimensional case, each i ∈ [n] can be mapped to (i1, i2) ∈ [

√
n]× [

√
n]

where i1, i2 correspond to the first and second halves of i′s binary expansion. Wi,j = 0 iff
|i1 − j1|+ |i2 − j2| < p. We give similar bounds for this multidimensional variant.

We summarize our results for the above weight patterns in Table 1. We detail the specific
functions f used in these applications in Sections 2 and 3, but note that (1), (2), and (3)
use variants of Equality, which has O(log(1/ε)) randomized 1-sided error communication
complexity, (4) and (5) use a variant of the Greater-Than problem with O(log logn+log(1/ε))
randomized 2-sided error communication complexity for logn bit inputs.

1.2.2 Relation to Matrix Completion
Masked low-rank approximation is closely related to the well-studied matrix completion
problem [13, 32, 37], however the goal is different. In masked low-rank approximation, we
want to approximate A as accurately as possible on the non-masked entries (i.e., where
Wij = 1). In matrix completion, the support of W represents entries in A that are observed
and the goal is to approximate A on the missing entries (i.e., where Wij = 0). The most
common approach to solving this problem is in fact to find a low-rank approximation fitting
the non-missing entries (i.e., to solve Problem 1), however the two problems are not equivalent.
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Table 1 Summary of applications of Theorems 1 and 2.

Mask Pattern k′ Communication Problem Ref.

LRPD/LRPBD O(k/ε) Equality Cor. 15 & 16

LRPBand k · poly
( logn

ε

)
Variant of Greater-Than Cors. 17

LRPS/LRPBS (w/ sparsity t) O(kt/ε) Variant of equality Full paper

MMDP k · poly
( logn

ε

)
Greater-Than Cor. 18

Subsampled Toeplitz O(min(pk, k/ε)) Equality mod p Full paper

For example, it is not clear that a bicriteria solution to Problem 1, as given by Theorems 1
and 2, will give anything interesting for the matrix completion problem. In fact, our proof
technique implies that it likely will not.

We further note that in matrix completion, the mask W is typically assumed to be
random and the goal is to recover the missing entries of A when W has as few sampled ones
as possible. We do not expect that a random matrix will have low-communication complexity,
unless it has further structure (e.g., few zeros or ones per row).

1.2.3 Other Communication Models
Theorems 1 and 2 connect communication complexity to the analysis of a simple heuristic
for masked low-rank approximation. A natural question is:

Can other notions of communication complexity, such as multi-party communication
complexity, non-deterministic communication complexity, and communication complexity of

non-Boolean functions yield algorithms for masked low-rank approximation?

We answer this question affirmatively. We first look at multi-party communication complexity,
which we show corresponds to masked tensor low-rank approximation. Here we focus on
order-3 tensors, though our results are proven for arbitrary order-t tensors. A tensor is just
an array A ∈ Rn×n×n. In masked low-rank tensor approximation we are given such an A
and a mask tensor W ∈ {0, 1}n×n×n and the goal is to find rank-k tensor L minimizing
‖W ◦ (A− L)‖2F . This problem has been widely studied in the context of low-rank tensor
completion [25, 43, 50] and robust tensor PCA [42, 45], which corresponds to the setting
where W ’s zeros represent sparse corruptions of an otherwise low-rank tensor. Applications
include color image and video reconstruction along with low-rank plus diagonal tensor
approximation [8], where W is zero on its diagonal and one everywhere else. In the full paper
we show:

I Theorem 3 (Multiparty Communication Complexity → Tensor Low-Rank Approx). Let f
be the function computed by W ∈ {0, 1}n×n×n, ¬f be its negation, and R3,1−sided

ε (¬f)
be the randomized 3-party communication complexity of ¬f in the number-in-hand black-
board model with 1-sided error. A bicriteria low-rank approximation L with rank k′ =
O
(

(k/ε)2 · 4R3,1−sided
ε (¬f)

)
achieving:

‖W ◦ (A− L)‖2F ≤ OPT + 2ε‖A ◦W‖2F ,

where OPT = inf
rank-k L̂

‖W ◦ (A− L̂)‖2F , can be computed in O(nnz(A)) + n · poly(k/ε) time.

We give applications of Theorem 3 to low-rank plus diagonal tensor approximation, achieving
k′ = O(k2/ε4) and the low-rank plus sparse tensor approximation problem achieving k′ =
O
(
k2·t4
ε6

)
, where t is the maximum number of zeros on any face of W .
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We also consider a common variant of low-rank approximation studied in data mining
and information retrieval: Boolean low-rank approximation (binary low-rank approximation).
Here one is given binary A ∈ {0, 1}n×n and seeks to find U ∈ {0, 1}n×k and V ∈ {0, 1}k×n
minimizing ‖A − U · V ‖0 where U · V denotes Boolean matrix multiplication and ‖ · ‖0 is
the entrywise `0 norm, equal to the squared Frobenius norm in this case. While Boolean
low-rank approximation is NP-hard [20, 26], there is a large body of work studying heuristic
algorithms and approximation schemes, when no entries of A are masked [46, 59, 67, 10, 24].
We show in the full paper that any black-box algorithm for standard Boolean low-rank
approximation yields a bicriteria algorithm for masked Boolean low-rank approximation,
with rank depending on the nondeterministic communication complexity of the mask W .

I Theorem 4 (Nondeterministic Communication Complexity → Boolean Low-Rank Approx).
Let f be the function computed by W and N(f) be the nondeterministic communication
complexity of f . For any k′ ≥ k · 2N(f), if one computes U, V ∈ {0, 1}n×k′ satisfying
‖A ◦W − U · V ‖0 ≤ minÛ,V̂ ∈{0,1}n×k′ ‖A ◦W − Û · V̂ ‖0 + ∆ then:

‖W ◦ (A− U · V )‖0 ≤ 2N(f) ·OPT + ∆,

where OPT = min
Û,V̂ ∈{0,1}k×n

‖W ◦(A−U ·V )‖0 and U ·V denotes Boolean matrix multiplication.

We can apply Theorem 4 for example, to the low-rank plus diagonal Boolean matrix approx-
imation problem, where W is zero on its diagonal and one everywhere else. In this case we
have 2N(f) = logn and correspondingly k′ = k logn.

1.2.4 Connections to Approximate Rank and Other Communication
Lower Bounds

In Section 1.3 we sketch the proof of Theorem 1, which is very simple (Theorems 2, 3,
and 4 are proved similarly.) The proof is based on covering W with 2R1−sided

ε (¬f) disjoint
monochromatic rectangles, which match W on all but a small random subset of its 1
entries. The existence of a 1-sided error randomized communication protocol for ¬f using
R1−sided
ε (¬f) bits of communication is well known to imply the existence of such a covering

with 2R1−sided
ε (¬f) rectangles. However, the optimal size of such a covering, which is known

as the “public-coin partition bound” [34], may be lower than this. In fact, recent work has
shown that it is provably smaller for some problems [27]. Thus, our algorithm can be stated
in terms of this bound, giving improved results for these problems. However, as far as we
are aware, this bound does not give any improvements for the communication problems we
consider (corresponding to natural weight matrices W ).

The public coin partition bound is a strengthening of the well-studied partition bound
[33] for randomized communication complexity, which is itself a strengthening of the smooth
rectangle bound [33]. This logarithm of the smooth rectangle bound is equivalent to the
log approximate nonnegative rank of W up to constants [38]. It has been shown that the
randomized communication complexity can be polynomially larger than the log partition
bound [27]. Additionally, recent work refuting the log approximate rank conjecture [16] has
shown that the randomized communication complexity can be exponentially larger than
the log approximate nonnegative rank. Thus, improving our results to depend on these
communication complexity lower bounds rather than the communication complexity itself
would lead to potential improvements for some weight matrices W . However, all known
separations are for W with complex structure and relatively high communication complexity,
and thus not relevant to common applications. Additionally, it is unclear how to extend
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our techniques to these weaker notions, or to other related notations, such as information
complexity [14]. Such extensions would be interesting, e.g., connecting the difficulty of
masked low-rank approximation to the approximate rank of the mask.

1.2.5 Lower Bounds
Given our results, and the above discussion, a natural question to ask is:

Is there a natural notion of the complexity of the mask W that characterizes the difficulty of
the masked low-rank approximation problem?

We give some initial results, focused on how communication complexity in particular relates
to the best bicriteria approximation factor for masked low-rank approximation achievable
in polynomial time. We note that, since our results actually hold with rank depending
on the public-coin partition bound [34], which has been separated from the randomized
communication complexity, the communication complexity itself certainly does not tightly
characterize the difficulty of masked low-rank approximation. However, we view our lower
bounds in terms of communication complexity as a step in understanding this difficulty.

We prove two bounds based on a conjecture of the hardness of approximate 3-coloring.
We show that there is a class of masks W such that any polynomial time algorithm achieving
guarantee (1) and small enough ε requires bicriteria rank k′ = Ω

(
D(f)

logD(f)

)
where D(f) is

the deterministic communication complexity of f . Note that D(f) is only greater than
R1−sided
ε (¬f) and Rε(f).
We strengthen this bound significantly for two natural variants of the masked low-rank

approximation problem: when the low-rank approximation L is required to have a non-
negative or binary factorization. We note that our techniques yield matching algorithmic
results analogous to Theorems 1 and 2 for these variants. We show that for these variants
on Problem 1, there is a class of masks W such that any polynomial time algorithm
achieving guarantee (1) for small enough ε requires bicriteria rank which is exponential
in the deterministic communication complexity, k′ = 2Ω(D(¬f)). This bound matches our
algorithmic results for these variants. We note that in the parameter regimes considered
(we just require rank k = 3), there exist polynomial time algorithms for the non-masked
versions of binary and non-negative low-rank approximation. Thus, the hardness in terms of
communication complexity comes from adding the mask to the low-rank cost function rather
than the binary and non-negativity constraints themselves.

Our lower bounds are closely related to those of [30] on the hardness of bicriteria low-rank
matrix completion. We note that for any n × n mask matrix W , we can always bound
D(f) = O(logn). Thus, achieving a 2o(D(f)) bicriteria approximation factor means achieving
an approximation factor sub-polynomial in n. [30] leaves open if achieving a

√
n bicriteria

approximation to rank-3 matrix completion is hard (Question 4.3 in [30]), and more generally
asks what bicriteria approximation is achievable in polynomial time (Question 4.2 in [30]).

1.3 Our Techniques
The key ideas behind Theorems 1 and 2 are similar. We focus on Theorem 1 for exposition.
We want to argue that any near optimal rank-k′ approximation of A ◦W , gives a good
bicriteria solution to the masked rank-k approximation problem. For simplicity, here we focus
on showing this for the actual optimal rank-k′ approximation, L = arg minrank−k′ L̂ ‖(A ◦
W )− L̂‖2F . We show that ‖W ◦ (A−L)‖2F ≤ OPT +O(ε)‖A◦W‖2F via a comparison method.
Namely, we exhibit a rank k′ matrix L̄ that:
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1. Nearly matches how well the optimum rank-k solution Lopt to Problem 1 approximates A
on the support ofW . In particular, ‖(A− L̄)◦W‖2F ≤ ‖(A−Lopt)◦W‖2F +O(ε)‖A◦W‖2F .

2. Places no mass outside the support of W . In particular, ‖L̄ ◦ (1−W )‖2F = 0.
Since L minimizes the distance to (A ◦W ) among all rank-k′ matrices, we have ‖(A ◦W )−
L‖2F ≤ ‖(A ◦W )− L̄‖2F . However, by (2), L̄ exactly matches A ◦W outside the support of
W – both matrices are 0 there. Thus L must have at least as large error outside the support
of W , and in turn cannot have larger error on the support of W . That is, we must have
‖(A− L) ◦W‖2F ≤ ‖(A− L̄) ◦W‖2F . Then by (1), L satisfies the desired bound.

1.3.1 From Communication Protocols to Low-Rank Approximations
The key question becomes how to exhibit L̄, which we do using communication complexity.
We viewW as the communication matrix of some function f : {0, 1}logn×{0, 1}logn → {0, 1},
with Wx,y = f(x, y), where in f we interpret x, y ∈ [n] as their binary representations. It is
well-known that the existence of a deterministic communication protocol Π that computes
f with D(f) total bits of communication implies the existence of a partition of W into
2D(f) monochromatic combinatorial rectangles. That is, there are 2D(f) non-overlapping sets
Ri = S×T for S, T ∈ [n] that partition W and that satisfy W (Ri) is either all 1 or all 0. We
could construct L̄ by taking the best k-rank approximation of each A(Ri) where Ri is colored
1 (i.e., contains inputs with f(x, y) = 1). We could then sum up these approximations to
produce L̄ with rank ≤ k · 2D(f). Note that L̄ is 0 outside the rectangles colored 1 – i.e.,
outside the support of W . Thus condition (2) above is satisfied. Further, L̄ matches the
optimal rank-k approximation on each Ri colored 1. So it approximates A at least as well as
Lopt on these rectangles, and since these rectangles fully cover the support of W we have
‖(A− L̄) ◦W‖2F ≤ ‖(A− Lopt) ◦W‖2F , giving the requirement of (1).

Unfortunately, essentially none of the W that are of interest in applications admit
efficient deterministic communication protocols. k′ = k · 2D(f) will typically be larger than
n, giving a vacuous bound. Thus we turn to randomized communication complexity with
error probability ε, Rε(f), which is much lower in these cases. A randomized protocol Π
achieving this complexity corresponds to a distribution over partitions of W into 2Rε(f)

rectangles. These rectangles are not monochromatic but are close to it – letting WΠ be the
communication matrix of the (random) function computed by the protocol, WΠ is partitioned
into 2Rε(f) monochromatic rectangles and further matches W on each (x, y) with probability
at least 1− ε. We prove that, even with this small error, constructing L̄ as above using the
partition of WΠ instead of W itself gives a solution nearly matching Lopt up to small additive
error. This error will involve ‖A ◦W‖2F and ‖Lopt ◦ (1−W )‖2F , depending on whether the
protocol makes 1 or 2-sided error, as seen in Theorems 1 and 2.

1.3.2 Low-Rank Approximation to W Does Not Suffice
A natural view of our argument above is that the existence of an efficient randomized protocol
for W implies the existence of a distribution over low-rank matrices (induced by partitions
into near monochromatic rectangles) that match W on each entry with good probability. We
note that this distributional view is critical – simply having a low-rank approximation to W
matching all but a small fraction of entries does not suffice. The mistaken entries could in
the worst case align with very heavy entries of A, which must be approximated well to solve
masked low-rank approximation to small error. An approximation with small entrywise error
(in the `∞ sense) would suffice. However, for important cases, e.g., when W is zero on the
diagonal and one off the diagonal, such approximations provably require higher rank thank
2Rε(f) and thus relying on them would lead to significantly weaker bounds [2].
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1.3.3 Other Communication Models
In extending our results to other communication models, we first consider the connection
between multiparty number-in-hand communication and tensor low-rank approximation. Pro-
tocols in this model correspond to a partition of the communication tensor W ∈ {0, 1}n×n×n
into 2R3

ε(f) monochromatic (or nearly monochromatic) rectangles of the form Ri = S×T ×U
for S, T, U ⊆ [n], where R3

ε (f) is the randomized 3-player communication complexity of W .
We can again argue the existence of a rank k′ = k · 2R3

ε(f) tensor L̄, obtained by taking a
near optimal low-rank approximation to each rectangle colored 1 in WΠ, which is mostly
0 outside the support of W and at the same time competes with the best rank-k tensor
approximation Lopt on the support of W . There are different notions of rank for tensors;
here we mostly discuss canonical or CP rank. This lets us argue, as in the two player case,
that the best rank-k′ approximation of A ◦W also competes with Lopt. It is not known how
to find this best rank-k′ approximation efficiently, however using an algorithm of [63] we can
find a rank k′′ = O((k′/ε)2) bicriteria approximation achieving relative error 1 + ε. Overall
we have k′′ = O

(
(k/ε)2 · 22R3

ε(f)
)
, giving Theorem 3.

We next consider the nondeterministic communication complexity. In a nondeterministic
communication protocol for a function f , players can make “guesses” at any point during
the protocol Π. The only requirement is that, (1) for every x, y with f(x, y) = 1, for some
set of guesses made by the players, the protocol outputs Π(x, y) = 1 and (2) the protocol
never outputs Π(x, y) = 1 for x, y with f(x, y) = 0. Such a protocol using N(f) bits of
communication corresponds to covering the communication matrix W with 2N(f) possibly
overlapping monochromatic rectangles. In many cases, the nondeterministic complexity
is much lower than the randomized communication complexity. However, for low-rank
approximation in the Frobenius norm, the overlap is a problem. We cannot construct L̄
simply by approximating each rectangle and adding these approximations together. L̄ will be
too “heavy” where the rectangles overlap. However, for the Boolean low-rank approximation
problem, the overlap is less of a problem. We simply construct L̄ in the same way, letting it
be the AND of the approximations on each rectangle. In the end, we obtain an error bound
of roughly 2N(f) ·OPT , owing to the fact that error may still build up on the overlapping
sections. Since there are 2N(f) rectangles total, each entry is overlapped by at most 2N(f) of
them. However, since N(f) can be very small, this result gives a tradeoff with Theorems 1
and 2 (which can also be extended to the Boolean case). For example, we show how to obtain
error ≈ O(logn ·OPT ) for the Boolean low-rank plus diagonal approximation problem, with
rank k′ = O(k logn). This is smaller than the O(k/ε) achieved by Theorem 1 for small ε,
which may be required to achieve good error if, e.g., ‖A‖2F is large.

1.3.4 An Alternative Approach
In the important cases when W is zero on its diagonal and one elsewhere or has a few non-
zeros per row (the low-rank plus diagonal and low-rank plus sparse approximation problems,
respectively) the existence of L̄ satisfying the necessary conditions (1) and (2) above can be
proven via a very different technique. The key idea is a structural result: that any low-rank
matrix cannot concentrate too much weight on more than a few entries of its diagonal, or
more generally, on a sparse support outside a few rows. Thus we can obtain L̄ from Lopt
by explicitly zero-ing out these few large entries falling outside the support of W (e.g., on
its diagonal when W has zeros just on its diagonal). We detail this approach in the full
paper, giving a bound matching Theorem 1 in this case. We show that the same structural
result can also be used to obtain a fixed-parameter-tractable, relative error, non-bicriteria



C. Musco, C. Musco, and D. P. Woodruff 6:11

approximation algorithm for Problem 1 in the low-rank plus diagonal case, as well as for the
closely related factor analysis problem. We are unaware of any formal connection between
this structural result and our communication complexity framework; however, establishing
one would be very interesting.

1.4 Road Map
In Section 2 we give preliminaries, defining the communication models we use and giving
communication complexity bounds for common mask matrices in these models. In Section
3 we then prove our main results, Theorems 1 and 2. We instantiate these results for the
common mask matrices shown in Table 1. We defer our results connecting masked tensor
approximation to multiparty communication complexity and Boolean low-rank approximation
to nondeterministic communication complexity to the full paper – available at https:
//arxiv.org/abs/1904.09841. We also defer our lower bound results to the full version.

2 Preliminaries

2.1 Notation and Conventions
Throughout we use log z to denote the base-2 logarithm of z. For simplicity, so that we can
associate any W ∈ Rn×n with a function f : {0, 1}logn × {0, 1}logn → {0, 1} we assume that
n is a power of 2 and so logn is an integer. Our results can be easily extended to general
n. Given a matrix M ∈ Rn×n and a combinatorial rectangle R = S × T for S, T ⊆ [n], we
let MR denote the submatrix of M indexed by R. For matrix M we let 1−M denote the
matrix N with Ni,j = 1−Mi,j . E.g., 1− I is the matrix with all zeros on diagonal and all
ones off diagonal.

While in the introduction we focus on low-rank approximation in the Frobenius norm,
many of our results will apply to any entrywise matrix norm of the form:

I Definition 5. An entrywise matrix norm ‖ · ‖? : Rn×n → R is a function of the form:

‖M‖? =
n∑
i=1

n∑
j=1

g(|Mi,j |),

where g : R→ R is some monotonically increasing nonnegative function.

g(x) = x2 gives the squared Frobenius norm, g(x) = xp gives the entrywise `p norm, g(x) = 1
iff x 6= 0 gives the entrywise `0 norm, etc. See [62, 10, 17, 5] for a discussion of standard
low-rank approximation algorithms for these norms. As discussed, our bicriteria results
will simply require applying one of these algorithms to compute a near-optimal low-rank
approximation to A ◦W (i.e., A with the masked entries zeroed out).

2.2 Communication Complexity Models
We give a brief introduction to the communication models we consider, and refer the reader
to the textbooks [39, 53] for more background. We mostly consider two-party communication
of Boolean functions, though in the full paper discuss extensions to more than two parties.

Consider two parties, Alice and Bob, holding inputs x ∈ X and y ∈ Y respectively.
They exchange messages in order to compute a function f : X × Y → {0, 1} evaluated at
(x, y). They would like to do this while minimizing the total number of bits exchanged. The
communication between the parties is determined by a possibly randomized protocol, which
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specifies the message of the next player to speak as a function of previous messages received by
that player and that player’s input. For a given protocol Π, we let |Π(x, y)| denote the number
of bits transmitted by the players on inputs x and y, and we let |Π| = maxx,y |Π(x, y)|.

Let M be the communication matrix of f , that is, the matrix whose rows are indexed by
elements of X and columns by elements of Y, and for which Mx,y = f(x, y). A well known
and useful property is that Π partitions M into rectangles R = S × T , where S ⊆ X and
T ⊆ Y , and every pair (x, y) of inputs with (x, y) ∈ S×T has the same output when running
protocol Π. The number of rectangles in the partition is equal to 2|Π|. We call the unique
output of Π on a rectangle S × T the label of the rectangle.

I Definition 6 (Deterministic Communication Complexity). The deterministic communication
complexity D(f) = minΠ |Π|, where the minimum is taken over all protocols Π for which
Π(x, y) = f(x, y) for every pair (x, y) of inputs. Equivalently, D(f) is the minimum number
so that M can be partitioned via a protocol Π into 2D(f) rectangles for which for every
rectangle R and b ∈ {0, 1}, if R is labeled b, then for all (x, y) ∈ R, f(x, y) = b.

We next turn to randomized communication complexity. For the purposes of this paper, we
will consider public coin randomized communication complexity, i.e., there is a shared random
string r that both Alice and Bob have access to. In a randomized protocol Π, Alice and
Bob see r and then run a deterministic protocol Πr. We say a protocol Π is a (δ1, δ2)-error
protocol if for all x, y ∈ X × Y, with f(x, y) = 1, Pr[Πr(x, y) = f(x, y)] ≥ 1− δ1 and for all
x, y ∈ X × Y with f(x, y) = 0, Pr[Πr(x, y) = f(x, y)] ≥ 1− δ2. We can then define a general
notion of randomized communication complexity:

I Definition 7 (Randomized Communication Complexity – General). The (δ1, δ2)-error ran-
domized communication complexity Rδ1,δ2(f) = minΠ |Π|, where the minimum is taken over
all (δ1, δ2)-error protocols Π. Equivalently, Rδ1,δ2(f) is the minimum number so that there
is a distribution over protocols inducing partitions of M , each containing at most 2Rδ1,δ2 (f)

rectangles, such that (1) for every (x, y) ∈ X × Y with f(x, y) = 1, with probability at least
1− δ1, (x, y) lands in a rectangle which is labeled 1 and (2) for every (x, y) ∈ X × Y with
f(x, y) = 0, with probability at least 1− δ2, (x, y) lands in a rectangle which is labeled 0.

Definition 7 is typically specialized to two cases: the randomized communication complexity
with 2-sided error and the randomized communication complexity with 1-sided error.

I Definition 8 (Randomized Communication Complexity – 2-sided). The δ-error randomized
communication complexity of f is Rδ(f) def= Rδ,δ(f).

I Definition 9 (Randomized Communication Complexity – 1-Sided). The δ-error 1-sided
randomized communication complexity of f is R1−sided

δ (f) def= R0,δ(f).

In Theorem 1 we consider the 1-sided communication complexity of ¬f : Rδ,0(f).

2.3 Specific Communication Bounds

We discuss a few problems that will be particularly useful for our applications. We only
need communication upper bounds and in specific models. Note that in this section, as is
standard, we state bounds for communication problems with n-bit inputs. In our applications
to masked low-rank approximation, we will typically apply the bounds with input size logn.
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Equality

In the Equality problem, denoted EQ, there are two players Alice and Bob, holding strings
x, y ∈ {0, 1}n, and the function EQ(x, y) = 1 if x = y, and EQ(x, y) = 0 otherwise.

I Theorem 10 ([39], combining Corollaries 26 and 27 of [11]). R1−way
δ (EQ) ≤ (1−δ) log((1−

δ)2/δ) + 5, and R1−way,1−sided
δ (EQ) ≤ log(1/δ) + 5.

We also can bound the nondeterminitic communication complexity of inequality, i.e., the
function NEQ(x, y) with NEQ(x, y) = 1 iff x 6= y.

I Theorem 11. N(NEQ) ≤ dlogne+ 2.

Proof. Alice simply guesses an index at which x and y differ and sends this index (using
dlogne bits) along with the value of x at this index to Bob. Bob sends the value of y at this
index and the players check if x and y differ at the index. J

Essentially the same protocol can be used to solve the negation of the disjointness problem,
with ¬DISJ(x, y) = 1 only if there is some k ∈ [n] with x(k) = y(k) = 1. We thus have:

I Theorem 12 ([60]). N(¬DISJ) ≤ dlogne+ 2.

Greater-Than

In Greater-Than, denoted GT , there are two players Alice and Bob, holding integers x, y ∈
{0, 1, . . . , n− 1}, and the function GT (x, y) = 1 if x > y, and GT (x, y) = 0 otherwise.

I Theorem 13 ([52]). Rδ(GT ) = O(log(n/δ)).

3 Bicriteria Approximation from Communication Complexity

In this section we prove our main results, Theorems 1 and 2, which connect the randomized
communication complexity of the binary matrix W to the rank required to solve Problem
1 efficiently up to small additive error. We prove a general theorem connecting the rank
to Rδ1,δ2(f). Both Theorems 1 and 2 follow as corollaries if we consider the 1-sided er-
ror complexity R1−sided

δ (¬f) = Rδ,0(f) and the 2-sided error complexity Rδ(f) def= Rδ,δ(f)
respectively (Definitions 8 and 9).

I Theorem 14 (Randomized Communication Complexity→ Bicriteria Approximation). Consider
W ∈ {0, 1}n×n and let f be the function computed by it. For k′ ≥ k · 2Rε1,ε2 (f), and any
entrywise norm ‖ · ‖? (Def. 5), for any L satisfying ‖A ◦W −L‖? ≤ minrank−k′ L̂ ‖A ◦W −
L̂‖? + ∆:

‖(A− L) ◦W‖? ≤ OPT + ε1‖A ◦W‖? + ε2‖Lopt ◦ (1−W )‖? + ∆,

where OPT = minrank−k L̂ ‖(A− L̂) ◦W‖? and Lopt is any rank-k matrix achieving OPT .

Proof. As discussed (Def. 7), Rε1,ε2(f) is the minimum number so that there is a distribution
on protocols inducing partitions of W , each containing at most 2Rε1,ε2 (f) rectangles, such
that (1) for every x, y ∈ {0, 1}logn with f(x, y) = 1, (x, y) lands in a rectangle labeled 1 with
probability ≥ 1 − ε1 and (2) for every x, y ∈ {0, 1}logn with f(x, y) = 0, (x, y) lands in a
rectangle labeled 0 with probability ≥ 1− ε2. In other words, letting WΠ be the (random)
matrix corresponding to the function computed by the protocol: (1) W ◦ (1−WΠ) has each
entry equal to 1 with probability ≤ ε1 and (2) WΠ ◦ (1−W ) has each entry equal to 1 with
probability ≤ ε2. Thus, fixing some Lopt:
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E
protocol Π

[
‖A ◦W ◦ (1−WΠ)‖? + ‖Lopt ◦WΠ ◦ (1−W )‖?

]
≤ ε1‖A ◦W‖? + ε2‖Lopt ◦ (1−W )‖?.

Thus, there is at least one protocol Π (inducing a partition with ≤ 2Rε1,ε2 (f) rectangles) with:

‖A ◦W ◦ (1−WΠ)‖? + ‖Lopt ◦WΠ ◦ (1−W )‖? ≤ ε1‖A ◦W‖? + ε2‖Lopt ◦ (1−W )‖?. (2)

Let P1 be the set of rectangles on which the protocol achieving (2) returns 1 and P0 be the
set on which it returns 0. For any R ∈ P1 let LR = arg minrank−k L̂ ‖AR ◦WR − L̂‖? (note
that LR is the size of R). Let L̄R be the n×n matrix equal to LR on R and 0 elsewhere. Let
L̄ =

∑
R∈P1

L̄R. Note that L̄ has rank at most
∑
R∈P1

rank(L̄R) ≤ k · |P1| ≤ k · 2Rε1,ε2 (f).
Thus, by the assumption that L satisfies ‖A ◦W − L‖? ≤ minrank−k′ L̂ ‖A ◦W − L̂‖? + ∆:

‖(A− L) ◦W‖? ≤ ‖A ◦W − L‖? ≤ ‖A ◦W − L̄‖? + ∆
= ‖(A ◦W − L̄) ◦WΠ‖? + ‖(A ◦W − L̄) ◦ (1−WΠ)‖? + ∆
= ‖(A ◦W − L̄) ◦WΠ‖? + ‖A ◦W ◦ (1−WΠ)‖? + ∆, (3)

where the third line follows since L̄ is 0 outside the support of WΠ (i.e., outside of the
rectangles in P1). Since L̄ is equal to the best rank-k approximation to AR ◦WR on each
rectangle R in P1, and since these rectangles partition the support of WΠ:

‖(A ◦W − L̄) ◦WΠ‖? ≤ ‖(A ◦W − Lopt) ◦WΠ‖?
= ‖(A− Lopt) ◦W ◦WΠ‖? + ‖Lopt ◦ (1−W ) ◦WΠ‖?
≤ OPT + ‖Lopt ◦ (1−W ) ◦WΠ‖?.

Plugging back into (3) and applying (2):

‖(A− L) ◦W‖? ≤ OPT + ‖Lopt ◦ (1−W ) ◦WΠ‖? + ‖A ◦W ◦ (1−WΠ)‖? + ∆
≤ OPT + ε1‖A ◦W‖? + ε2‖Lopt ◦ (1−W )‖? + ∆,

which completes the theorem. J

Proof of Theorems 1 and 2. Theorems 1 and 2 follow by applying Theorem 14 with ε1 =
ε2 = ε and ε1 = ε, ε2 = 0 respectively, and noting that ‖A ◦W‖? ≤ ‖A‖? and ‖Lopt ◦ (1−
W )‖? ≤ ‖Lopt‖?. When ‖ · ‖? is the squared Frobenius norm, L satisfying ‖A ◦W − L‖? ≤
minrank−k′ L̂ ‖A ◦W − L̂‖? + ∆ for ∆ = ε‖(A ◦W ) − (A ◦W )k′‖2F ≤ ε‖A ◦W‖2F can be
computed with high probability in O(nnz(A)) + n · poly(k′/ε) time. J

3.1 Applications of Main Theorem
We can instantiate Theorem 14 for a number of common mask patterns, yielding the results
summarized in Table 1. Note that the additive error bounds achieved are stated in terms of
‖A ◦W‖? and ‖Lopt ◦ (1−W )‖?, which are only smaller than ‖A‖? and ‖Lopt‖? respectively.

We start with the case when W is the negation of a diagonal matrix or a block diagonal
matrix, corresponding to the Low-Rank Plus Diagonal (LRPD) and Low-Rank Plus Block
Diagonal (LRPBD) matrix approximation problems. The argument uses the communication
complexity of Equality (EQ). A variant on this problem is also used when W has at most
t nonzeros (or nonzero blocks) per row. This corresponds to the Low-Rank Plus Sparse
(LRPS) and Low-Rank Plus Block Sparse (LRPBS) approximation problems, which strictly
generalize the Low-Rank Plus (Block) Diagonal Problem. Proofs are given in the full paper.
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I Corollary 15 (Low-Rank Plus Diagonal Approximation). Let W = 1− I where I is the n×n
identity matrix. Then for k′ = O

(
k
ε

)
and L with ‖A ◦W − L‖? ≤ minrank−k′ L̂ ‖A ◦W −

L̂‖? + ε‖A ◦W‖?:

‖(A− L) ◦W‖? ≤ OPT + 2ε‖A ◦W‖?.

If ‖ · ‖? = ‖ · ‖2F , L can be computed with high probability in O(nnz(A)) + n poly(k/ε) time.

Proof. The function f corresponding to W is the inequality function NEQ. We have
R1−sided
ε (¬NEQ) = R1−sided

ε (EQ), which by Theorem 10 is bounded by log(1/ε) + 5. Thus
2R1−sided

ε (¬NEQ) ≤ 32
ε . The corollary then follows directly from Theorem 14. J

I Corollary 16 (Low-Rank Plus Block Diagonal Approximation). Consider any partition
B1 ∪B2 ∪ . . . ∪Bb = [n] and let W be the matrix with Wi,j = 0 if i, j ∈ Bk for some k and
Wi,j = 1 otherwise. Then for k′ = O

(
k
ε

)
and L with ‖A ◦W − L‖? ≤ minrank−k′ L̂ ‖A ◦

W − L̂‖? + ε‖A ◦W‖?:

‖(A− L) ◦W‖? ≤ OPT + 2ε‖A ◦W‖?.

If ‖ · ‖? = ‖ · ‖2F , L can be computed with high probability in O(nnz(A)) + n poly(k/ε) time.

Proof. The function f corresponding to W is the inequality function NEQ where x, y ∈ [n]
are identified with j, k ∈ [b] if block Bj contains x and Bk contains y. The randomized
communication complexity ¬f is thus bounded by the complexity of equality. By Theorem
10, R1−sided

ε (EQ) ≤ log(1/ε) + 5 and so 2R1−sided
ε (f) ≤ 32

ε , which gives the corollary. J

Beyond equality, a number of common sparsity patterns are related to the communication
complexity of Greater-Than (GT), which is bounded by Theorem 13. Since two-sided error
is required to give efficient GT protocols, we incur an additional error term depending on
Lopt. An interesting question is if this is necessary for efficient bicriteria approximation.

I Corollary 17 (Low-Rank Plus Banded Approximation). For any integer p ≤ n, let W ∈
{0, 1}n×n be the banded Toeplitz matrix with Wi,j = 0 iff |i − j| < p. Then for k′ =
k ·min

(
p
ε ,poly

(
logn
ε

))
and L with ‖A◦W −L‖? ≤ minrank−k′ L̂ ‖A◦W − L̂‖?+ε‖A◦W‖?:

‖(A− L) ◦W‖? ≤ OPT + 2ε‖A ◦W‖? + ε‖Lopt ◦ (1−W )‖?.

If ‖ · ‖? = ‖ · ‖2F , L can be computed with high probability in O(nnz(A)) + npoly(k′/ε) time.

Proof. The function f corresponding to W is the negation of the AND of i + p < j and
j + p > i. Thus, it can be solved with two calls to a protocol for Greater-Than (GT). By
Theorem 13, for logn bit inputs, Rε(GT ) = O

(
log
(

logn
ε

))
. Thus Rε(f) = O

(
log
(

logn
ε

))
and 2Rε(f) = poly

(
logn
ε

)
, giving k′ = k · poly

(
logn
ε

)
. When p is small, we can apply

our result for W with sparse rows (see full paper), which gives k′ = k · pε , completing the
corollary. J

In the full paper, we also consider a “multi-dimensional” banded pattern. Here each
i ∈ {0, 1}logn corresponds to a point (i1, i2) in a

√
n ×
√
n grid (i1 and i2 are determined

by the first logn
2 and last logn

2 bits of i respectively). We focus on the two-dimensional
case, achieving rank k′ = k · poly

(
logn
ε

)
as in the 1-dimensional case. This set up can

easily be generalized to higher dimensions. We can also imagine generalizing to different
distance measures over the points (i1, i2) using efficient sketching methods (which yield
efficient communication protocols) for various distances [6, 35].

A similar result holds for low-rank approximation with monotone missing data.
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I Corollary 18 (Monotone Missing Data Problem (MMDP)). Let W ∈ {0, 1}n×n be any matrix
where each row of W has a prefix of an arbitrary number of ones, followed by a suffice of
zeros. Then for k′ = k · poly

(
logn
ε

)
and L with ‖A ◦W − L‖? ≤ minrank−k′ L̂ ‖A ◦W −

L̂‖? + ε‖A ◦W‖?:

‖(A− L) ◦W‖? ≤ OPT + 2ε‖A ◦W‖? + ε‖Lopt ◦ (1−W )‖?.

If ‖ · ‖? = ‖ · ‖2F , L can be computed with high probability in O(nnz(A)) + npoly(k′/ε) time.

Proof. Let px be the length of the prefix of ones in the xth row of W . Then the function f
corresponding to W is f(x, y) = 1 iff px ≥ y. That is, it is just the Greater-Than function
where Alice maps her input x to px. Thus by Theorem 13, Rε(f) ≤ Rε(GT ) = O

(
log
(

logn
ε

))
.

So 2Rε(f) = poly
(

logn
ε

)
, which gives the corollary. J

4 Open Questions

By focusing on bicriteria approximation, we show how to solve masked low-rank approximation
in polynomial time using a simple heuristic. A number of open questions remain. It would be
very interesting to improve the bicriteria ranks we achieve for common masks (summarized in
Table 1). It would also be interesting to give relative error bounds achieving error (1+ε)·OPT
instead of our additive error bounds. This is challenging sinces it requires achieving zero
error when there is an exact masked low-rank factorization of A.

Relatedly, while we have connected bicriteria masked low-rank approximation to the
randomized communication complexity of the mask matrix W (in fact, the public coin
partition number of W ), it would be very interesting to find a notion of W ’s complexity that
tightly characterizes the bicriteria rank achievable in polynomial time. We make some initial
steps via lower bounds in terms of the communication complexity in the full paper, however
the question remains mostly unanswered.

Finally, a related problem is weighted low-rank approximation – when W is real valued
and we seek to minimize ‖W ◦(A−L)‖2F . Approximation algorithms depending exponentially
on the rank k, error parameter ε, and notions of W ’s complexity, such as its rank or number
of distinct columns are known [54]. However, it would be very interesting to give polynomial
time bicriteria approximation algorithms as we have done in the special case of binary W .
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We prove that the Impagliazzo-Nisan-Wigderson [9] pseudorandom generator (PRG) fools ordered
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PRG. In contrast, we show that a randomly chosen generator requires seed length Ω(n log d) to fool
such unbounded-width programs. Thus, this is an unusual case where an explicit construction is
“better than random.”
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7:2 PRGs for Unbounded-Width Permutation BPs

1 Introduction

Randomness, like time or space, is a computational resource. All else being equal, it is best to
use as few random bits as possible. A pseudorandom generator (PRG) is a tool for reducing
the number of random bits used by some computational process.

I Definition 1.1. Let F be a class of functions B : [d]n → {0, 1}. An ε-PRG for F is a
function G : {0, 1}s → [d]n such that for every B ∈ F ,

|Pr[B(U[d]n) = 1]− Pr[B(G(U{0,1}s)) = 1]| ≤ ε,

where US is the uniform distribution over the set S. The value s is the seed length of the
PRG.

Motivated by the goal of derandomizing small-space computation, a long line of research
has studied PRGs for classes F of functions computable by branching programs.

I Definition 1.2. An ordered branching program B of length n, width w and degree d
computes a function B : [d]n → {0, 1}. At time step t ∈ [n], the program maintains a state
in [w], reads the next symbol σt of the input σ ∈ [d]n and updates its state according to a
transition function Wt : [w]× [d]→ [w]. We allow the transition function Wt to be different
at each time step.

Moreover, there is an initial state vstart ∈ [w] and a single accept state vend ∈ [w]. Let u
be the final state of the branching program on input σ. If u = vend the branching program
accepts, denoted B(σ) = 1. For any other final state the program rejects, denoted B(σ) = 0.

We can represent a branching program as a graph, with n + 1 layers and w vertices per
layer corresponding to the states of the program at each step. For all t ∈ [n], for state s
in layer t− 1 and s′ in layer t, we add edge (s, s′) with label σt ∈ [w] if Wt(s, σt) = s′. An
ordered read-once branching program of length n and width w can compute the output of an
algorithm that uses logw bits of memory and n random bits, by taking the state at each layer
as the contents of memory at that time. Unusually, we will consider branching programs
where the width is unbounded (e.g., it can even be w = dn), albeit with the restriction of
being a permutation branching program.

I Definition 1.3. A permutation branching program is an ordered branching program
where for all t ∈ [n] and σ ∈ [d], Wt(·, σ) is a permutation. This can be thought of as the
computation being time-reversible.

Note that with this restriction the graph representation consists of n+ 1 layers where each
layer is the union of d perfect matchings, with each matching corresponding to a distinct
input symbol.

Restricted classes of branching programs, including permutation branching programs [22,
5, 10], have received attention largely because of the lack of progress on designing PRGs
for general length-n width-n branching programs since the work of Nisan three decades
ago [15]. There has also been work on permutation branching programs where the input
is read in an arbitrary order [17, 3]. Our main theorem is that there is an explicit PRG
fooling unbounded-width permutation branching programs with seed length that is nearly
logarithmic in n and has no dependence on the width w:

I Theorem 1.4 (Main Theorem). For all n, d ∈ N and ε > 0, there is an explicitly computable
ε-PRG G : {0, 1}s → [d]n for permutation branching programs of length n, degree d, and
arbitrary width. This PRG has seed length

O (log d+ logn · (log logn+ log(1/ε)) .
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In contrast, we show that a randomly chosen generator requires seed length Ω(n log d)
to fool such unbounded-width programs. Thus, this is an unusual case where an explicit
construction is “better than random.” (See Section 1.3 for more discussion.)

The PRG is an instantiation of the Impagliazzo-Nisan-Wigderson (INW) generator [9].
The proof uses the interpretation of the INW generator in terms of the derandomized square
for consistently labeled graphs, introduced by Rozenman and Vadhan [20], and the analysis
of the derandomized square in terms of unit-circle approximation by Ahmadinejad et al. [1].

We emphasize that our definition of permutation branching program only allows one
accepting vertex. This assumption is crucial: a permutation branching program with
unbounded width and an unbounded number of accepting vertices can compute any Boolean
function on [d]n, so nontrivial PRGs for that model do not exist. That being said, a program
with a accepting vertices can be written as a sum of a programs with one accepting vertex
each, so our PRG fools such a permutation branching program with seed length

O(log d+ logn · (log logn+ log(a/ε))).

1.1 Prior Work on the Derandomized Square
In the paper introducing the derandomized square [20], Rozenman and Vadhan showed
how to use it to decide undirected connectivity in deterministic log space, giving another
proof of Reingold’s famous theorem [16]. As another application, they showed how to take a
(polynomially long) pseudorandom walk through a regular, aperiodic directed graph in such
a way that the final vertex is distributed nearly uniformly (i.e., is close to the stationary
distribution of a truly random walk), matching a result of Reingold, Trevisan, and Vadhan [18].
As mentioned previously, they observed that this pseudorandom walk is described by the
INW generator, assuming the graph is “consistently labeled” (see Definition 3.4). However,
their analysis does not show how to approximate short random walks (e.g., shorter than the
mixing time).

In a pair of relatively recent works [13, 14], Murtagh et al. showed how to approximate
(in some respects) random walks of any length n, even if n is much smaller than the graph’s
mixing time. These algorithms are only for undirected graphs, but the recent work by
Ahmadinejad et al. [1] handles the more general case of Eulerian digraphs (as well as getting
stronger results for undirected graphs). Among other tools, all three of these papers [13, 14, 1]
use the derandomized square.

Fooling branching programs amounts to approximating bounded-length random walks
through directed graphs, which is why we rely on Ahmadinejad et al.’s results [1] for our
theorem. One of their results is a deterministic non-black-box algorithm for estimating the
acceptance probability of a given polynomial-width “regular” branching program in space
Õ(logn) to within error ε = 1/poly(n). Our theorem solves the more challenging black-box
derandomization problem, although it only works for permutation branching programs and
we have a worse dependence on the error parameter ε.

1.2 Prior PRGs for Permutation Branching Programs
Our PRG is superior to prior generators for permutation branching programs1 when the width
of the branching program is not small. Previous work has focused on the constant-width case.
In that regime, the best PRG for permutation branching programs is due to Steinke [22].

1 In this discussion of prior work, we focus on the case d = 2 for simplicity.
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7:4 PRGs for Unbounded-Width Permutation BPs

He achieves seed length O(w4 logw logn + logn log(1/ε)), which is better than our seed
length by a factor of log logn. For larger widths up to w = poly(n), the best prior PRG for
permutation branching programs is by Braverman et al. [2], who gave a PRG for regular
branching programs with seed length

O(logw logn+ logn · (log logn+ log(1/ε))).

Note that when w = poly(n) and ε = Ω(1), Braverman et al.’s PRG has seed length Θ(log2 n),
just like Nisan’s PRG [15], whereas our PRG has seed length Õ(logn). The case w = poly(n)
is arguably the most important case, because polynomial-width ordered branching programs
correspond to uniform randomized algorithms that always halt. Recall that low-error PRGs
for polynomial-width regular branching programs suffice for derandomizing all of RL [18].

When the width is even larger than poly(n), the best prior PRG is by De [5]. De’s
work is focused on the constant-width case, but he also gave a generator with seed length
O(log(n/ε) logn) independent of w.

1.3 Failure of the Probabilistic Method
There is something counterintuitive about the superpolynomial-width regime. Recall that for
typical models of computation, including polynomial-width degree-2 branching programs, it
is straightforward to show that there exists a nonexplicit PRG with seed length O(log(n/ε)),
because a random function is a good PRG. Furthermore, it is typically fairly trivial to prove
a matching Ω(log(n/ε)) lower bound. The main challenge, in most cases, is to devise an
explicit construction matching the parameters of the probabilistic existence proof.

However, the standard nonexplicit existence argument is not applicable to unbounded-
width permutation branching programs, because they can compute doubly-exponentially many
distinct functions; in particular, we show (Lemma 5.1) that they can compute every Boolean
function B(x, y) that tests whether π(x) = y for a permutation π : [d]n/2 → [d]n/2. And
indeed, as mentioned previously, for seed length less than (n log d)/4, we show (Theorem 5.2)
that a random function is not a good PRG for this model. The reason is that when a
generator is chosen at random, with high probability, there is some permutation π such that
every output (x, y) of the generator satisfies π(x) = y.

Since the probabilistic method fails here, it might be surprising that there even exists a
PRG with near-logarithmic seed length, let alone our explicit construction. Intuitively, the
INW generator manages to outperform the probabilistic method because the second half of
the INW generator’s output is information-theoretically unpredictable given the first half,
and vice versa.

We remark that another family of unbounded-width ordered branching programs has
been studied previously: “monotone” branching programs. From Meka and Zuckerman’s
work [12], it follows that a random function is a good PRG for unbounded-width monotone
branching programs. In that respect, the model we study is more unusual.

1.4 The Optimal Seed Length
These considerations raise the question of what the optimal seed length is for our model. We
prove (Theorem 6.1) that any PRG for unbounded-width permutation branching programs
must have seed length at least Ω(log d+ logn · log(1/ε)), provided ε is not extremely small.2
Thus, our explicit PRG’s seed length is near-optimal. In fact, although the lower bound gets

2 E.g., any ε ≥ exp(−(n log d)0.99) is large enough.



W.M. Hoza, E. Pyne, and S. Vadhan 7:5

slightly weaker when ε is extremely small, we give a matching refinement of our upper bound
in that regime (see Corollary 4.9), providing an explicit PRG with asymptotically optimal
seed length whenever ε ≤ 1/ logn.

To the best of our knowledge, this is the first known case where, e.g., some seed length s
is sufficient for a constant-error PRG, but seed length O(s+ logn) is not sufficient to achieve
error 1/n. In the context of fooling shallow circuits, similar lower bounds were proven
previously for restricted classes of PRGs such as k-wise independent distributions [11] or
small-bias distributions [6], but our lower bound holds for any PRG whatsoever. Our lower
bound uses basic tools from matching theory and information theory.

On the other hand, we show (Theorem 7.1) that a random function is at least a good
hitting set generator (HSG); the optimal seed length for nonexplicit HSGs for unbounded-
width permutation branching programs is Θ(log(nd/ε)). This is the first case we are aware
of where there is a large gap between the best possible PRGs and the best possible HSGs.

1.5 Organization
In Section 2, we introduce measures of spectral approximation for matrices and basic linear
algebra facts. In Section 3, we introduce the derandomized square, and recall two theorems
relating the square to unit-circle approximation, then prove repeated derandomized squaring
provides a suitable quality approximation. In Section 4, we use the bounds on repeated
derandomized squares to analyze the INW generator. In Section 5, we prove that a random
function with seed length less than (n log d)/4 does not fool unbounded-width permutation
branching programs. In Section 6, we prove our lower bound on the seed length of any PRG
for these programs. Finally, in Section 7, we identify the optimal seed length for nonexplicit
HSGs for these programs.

2 Spectral Approximation Preliminaries

We first introduce basic notation and recall two measures of closeness of approximation for
matrices, complex spectral approximation and unit-circle approximation.

For a complex number z ∈ C we write z∗ to denote the complex conjugate of z and |z| to
denote the magnitude of z.
For a matrix A ∈ CN×N we write A∗ to denote its conjugate transpose and write
UA = (A+A∗)/2 to denote its symmetrization.
We say a Hermitian matrix A is positive semidefinite (PSD) or write A � 0 if x∗Ax ≥ 0
for all x ∈ CN . For two Hermitian matrices A,B, we use A � B to denote A − B � 0
and define � analogously.

I Definition 2.1 (Complex Spectral Approximation [1]). For A,B ∈ CN×N and ε > 0, we say
A is a complex ε-approximation of B, denoted A ≈ε B, if

∀x, y ∈ CN , |x∗(B −A)y| ≤ ε

2(||x||2 + ||y||2 − x∗UBx− y∗UBy).

For two N -vertex digraphs G̃,G with random walk matrices A,B, write G̃ ≈ε G if A ≈ε B.

We now recall the stronger notion that we will use for analyzing the generator.

I Definition 2.2 (Unit-Circle Approximation [1]). For A,B ∈ CN×N and ε > 0, we say A is
a unit-circle ε-approximation of B, denoted A ◦

≈ε B, if

∀x, y ∈ CN , |x∗(B −A)y| ≤ ε

2(||x||2 + ||y||2 − |x∗Bx+ y∗By|).

For two N -vertex digraphs G̃,G with random walk matrices A,B, write G̃ ◦
≈ε G if A ◦

≈ε B.
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Including the magnitude operation in the right hand side forces the approximation to be
exact for all eigenspaces with eigenvalues of complex magnitude 1, and this property is essential
for the preservation of approximation under high powers. The unit-circle approximation is
developed in [1]. We rely on a convenient equivalence between unit-circle approximation and
complex approximation:

I Lemma 2.3 ([1] Lemma 3.8). Let A,B ∈ CN×N and ε > 0. Then A ◦
≈ε B if and only if

for all z ∈ C with |z| = 1, zA ≈ε zB.

We will also use this basic result about complex approximation. Note that Cohen et
al. [4] prove the analogous statement where complex numbers are replaced with reals.

I Lemma 2.4. Let A,B ∈ CN×N where A ≈ε B. Then (1− ε)UI−B � UI−A � (1 + ε)UI−B.

Proof. Let arbitrary x ∈ CN . Bounding the gap between the symmetrizations via the
definition of complex approximation gives

|x∗UI−Bx− x∗UI−Ax| =
∣∣∣∣12(x∗(B +B∗)x− x∗(A+A∗)x)

∣∣∣∣
≤
∣∣∣∣12x∗(B −A)x

∣∣∣∣+
∣∣∣∣12x∗(B∗ −A∗)x

∣∣∣∣
≤ 1

2ε(||x||
2 − x∗UBx) + 1

2ε(||x||
2 − x∗UBx)

= ε · x∗UI−Bx.

This directly implies x∗UI−Ax− (1− ε)x∗UI−Bx ≥ 0 and (1 + ε)x∗UI−Bx− x∗UI−Ax ≥ 0.
Since x was arbitrary we are done. J

We now state an approximate triangle inequality for unit-circle approximation, which
will be a tool for bounding the error of the generator. Previously, Cohen et al. [4] proved a
similar lemma regarding the real analogue of complex approximation.

I Lemma 2.5 (Quasi-Triangle Inequality). If C ◦
≈ε2 B

◦
≈ε1 A then C ◦

≈ε1+ε2+ε1ε2 A.

Proof. Let z ∈ C satisfy |z| = 1, and let x, y ∈ CN be arbitrary. Since B ◦
≈ε1 A, by

Lemma 2.3, zB ≈ε1 zA, so

|x∗(A−B)y| ≤ ε1

2 (x∗UI−zAx+ y∗UI−zAy).

Similarly, since C ◦
≈ε2 B,

|x∗(B − C)y| ≤ ε2

2 (x∗UI−zBx+ y∗UI−zBy)

≤ ε2

2 · (1 + ε1) · (x∗UI−zAx+ y∗UI−zAy)

where the second inequality follows from Lemma 2.4. Therefore,

|x∗(A− C)y| ≤ |x∗(A−B)y|+ |x∗(B − C)y|

≤
(ε1

2 + ε2

2 + ε1ε2

2

)
· (x∗UI−zAx+ y∗UI−zAy).

Since x and y were arbitrary, this shows that zC ≈ε1+ε2+ε1ε2 zA. Since z was arbitrary, we
are done by Lemma 2.3. J
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I Corollary 2.6 (Iterated Quasi-Triangle Inequality). Suppose δ ≤ 1 and

A0
◦
≈δ A1

◦
≈δ . . .

◦
≈δ A`.

Then A0
◦
≈ε A` with ε = `δ/(1− δ)2.

Proof. Applying Lemma 2.5 inductively, we get a bound of

∑̀
i=0

(`− i) · δi+1 = `δ − δ2 · (`+ 1− δ`)
(1− δ)2 ≤ `δ

(1− δ)2 . J

Finally, we give a basic result used to relate unit-circle to entrywise approximation for
the final generator analysis.

I Proposition 2.7. Given A,B ∈ CN×N so that A ◦
≈ε B, for all indices u, v ∈ [N ],

|Au,v −Bu,v| ≤ ε.

Proof. Let eu, ev be the standard basis vectors with ones in coordinates u, v respectively
and apply Definition 2.2:

|Au,v −Bu,v| = |e∗u(A−B)ev| ≤
ε

2(||eu||2 + ||ev||2 − |e∗uBeu + e∗vBev|) ≤ ε. J

3 Repeated Derandomized Squaring

3.1 Graph Labelings
Branching programs are closely related to graphs with one-way labelings.

I Definition 3.1 (One-Way Labeling [20]). A one-way labeling of a d-regular directed
multigraph G assigns a label in [d] to each edge (u, v) such that for every vertex u, the labels
of the outgoing edges of u are distinct. If G has a one-way labeling, let G[u, i] denote the
vertex v such that (u, v) is labeled i.

One-way labelings are compatible with the operation of powering a graph. One step on
Gn corresponds to n steps in G. The formal definition follows.

I Definition 3.2 (Graph Powering). Let G be a d-regular directed multigraph with a one-way
labeling. For n ≥ 1, we recursively define Gn to be a (dn)-regular directed multigraph on the
same vertex set with a one-way labeling given by

G1 = G
Gn+1[v, (e1, e2)] = Gn[G[v, e1], e2],

identifying [dn+1] = [d]× [dn].

Derandomized squaring is a way of “approximating” the powers of a graph. The deran-
domized squaring operation is defined in terms of graphs with additional structure, namely,
a two-way labeling.

I Definition 3.3 (Two-Way Labeling [20]). A two-way labeling of a d-regular directed
multigraph G assigns two labels in [d] to each edge (u, v): one as an edge incident to u

(the “outgoing label”) and one as an edge incoming to v (the “incoming label”). We require
that for every vertex v, the outgoing labels of the outgoing edges of v are distinct, and the
incoming labels of the incoming edges of v are distinct. If G is an N-vertex graph with a
two-way labeling, we define the rotation map [19, 20] RotG : [N ]× [d]→ [N ]× [d] by letting
RotG(u, i) = (v, j) if there is an edge (u, v) with outgoing label i and incoming label j.
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Naturally, if G has a two-way labeling, we think of G as also having a one-way labeling
given by the outgoing labels: RotG(u, i) = (v, j) =⇒ G[u, i] = v. Conversely, there is a
natural way to extend any consistent one-way labeling (defined next) to a two-way labeling.

I Definition 3.4 (Consistent One-Way Labeling [8]). A consistent one-way labeling of a
graph G is a one-way labeling such that for every vertex v, the labels of the incoming edges
of v are distinct. Equivalently, G[u, i] = G[v, i] =⇒ u = v. If G has a consistent one-way
labeling, then we can extend G to a graph G that has a two-way labeling given by

RotG(u, i) = (G[u, i], i).

3.2 Derandomized Squaring
Now we are ready to define the derandomized square operation, introduced by Rozenman
and Vadhan [20]. Let G = (V,E) be a regular directed multigraph. In the true square
G2, for each vertex v ∈ V , there is a complete bipartite graph from in-neighbors of v to
outneighbors of v, equivalent to all two-step walks through v. A derandomized square picks
out a pseudorandom subset of such walks by correlating the two steps via edges on an
expander graph H.

I Definition 3.5 (Derandomized Square [20]). Let G be a directed d-regular multigraph on
N vertices with a two-way labeling. Let H be a directed c-regular multigraph on d vertices
with a one-way labeling. We define the derandomized square G s H to be a (cd)-regular
directed multigraph on N vertices with a one-way labeling given by

(G s H)[v, (i, j)] = G[v′,H[i′, j]],

where (v′, i′) = RotG(v, i).

Note that Definition 3.5 requires G to have a two-way labeling, but the derandomized
square G s H itself only has a one-way labeling. If we wish to apply the derandomized
squaring operation a second time to approximate G4, we must first assign incoming labels to
the edges in G s H. When they introduced the derandomized square operation, Rozenman
and Vadhan studied two distinct approaches for assigning incoming edge labels [20]. The first
approach is to assume that we start with a graph G with a consistent one-way labeling. In
this case, G s H has a consistent one-way labeling as well (see Lemma 4.2). This approach
is closely connected to the INW generator [9], as we will discuss in Section 4. The second
approach is to assume that H has a two-way labeling. In this case, one can assign incoming
edge labels to G s H by setting RotGsH(v0, (i0, j0)) = (v2, (i3, j1)), where

(v1, i1) = RotG(v0, i0), (i2, j1) = RotH(i1, j0), (v2, i3) = RotG(v1, i2).

This is the approach taken in, e.g., the recent work of Ahmadinejad et al. [1]. Note that if
G has a consistent one-way labeling and H has a two-way labeling, the two approaches for
assigning incoming edge labels to G s H do not coincide.

Like previous work, we will use auxiliary graphs H that are good spectral expanders,
meaning that λ(H) (defined next) is small. For the purposes of this paper, an undirected
graph is a symmetric directed graph, i.e., a directed graph such that for every edge (u, v),
the reverse edge (v, u) is also present.

I Definition 3.6. Let H be an undirected regular multigraph on N vertices with random walk
matrix M . We define λ(H) = maxx∈RN :〈1,x〉=0 ||Mx||2/||x||2, where 1 is the all-ones vector.
This is equal to the second largest eigenvalue in absolute value of M .
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Ahmadinejad et al. showed that the derandomized square is a unit-circle approximation
of the true square [1]. Since the conclusion of this theorem is only a statement about the
random walk matrix of G s H, the theorem is oblivious to any edge labels in G s H.

I Theorem 3.7 ([1] Theorem 5.9). Let G be a d-regular directed multigraph with a two-way
labeling, and let H be a c-regular undirected multigraph on d vertices with a one-way labeling.
If λ(H) ≤ ε, then G s H ◦

≈2ε G2.

We now use the spectral approximation measures of Section 2 to bound the error
introduced by repeated derandomized squares. In the theorem below, although Gi has a
two-way labeling, when we write Gi = Gi−1 s Hi, we merely mean equality of one-way
labelings. Thus, our bound applies regardless of how the incoming edge labels of Gi−1 s Hi

are assigned, as long as they form a valid two-way labeling.

I Theorem 3.8 (Repeated Derandomized Squaring). Let G0,G1, . . . ,G` be directed multi-
graphs on N vertices with two-way labelings, where Gi is (d · ci)-regular. Let ε ∈ (0, 0.12),
and let H1, . . . ,H` be undirected c-regular multigraphs with one-way labelings, where Hi is
on d · ci−1 vertices and λ(Hi) ≤ ε. Assume that for every i ∈ [`], we have Gi = Gi−1 s Hi.
Then G`

◦
≈8`ε G2`

0 .

The proof of Theorem 3.8 relies on a result by Ahmadinejad et al. [1] saying that unit-circle
approximations are preserved under arbitrary true powers.

I Lemma 3.9 ([1] Corollary 4.9). Let G̃,G be directed multigraphs. If G̃ ◦
≈ε G then for all

k ∈ N we have G̃k ◦≈ε/(1− 3
2 ε) Gk.

Proof of Theorem 3.8. By Theorem 3.7, for all j, Gi+1
◦
≈2ε G2

i . We then use Lemma 3.9
which states that we can take arbitrary powers and preserve unit-circle approximation. For
arbitrary i ∈ [`], ki ∈ N we have Gki

i+1
◦
≈ 2ε

1−3ε
G2ki
i . Then by choosing ki = 2`−i we obtain a

chain

G`
◦
≈ 2ε

1−3ε
G2
`−1

◦
≈ 2ε

1−3ε
G4
`−2

◦
≈ 2ε

1−3ε
. . .

◦
≈ 2ε

1−3ε
G2`

0 ,

relating the final derandomized square to the true power via a sequence of unit-circle
approximations. Applying Corollary 2.6 gives the bound G`

◦
≈C G2`

0 where C = 2ε`· 1−3ε
(1−5ε)2 ≤

8ε`. J

4 The Pseudorandom Generator

In this section, we present the PRG of Theorem 1.4. We first state the definition of the
Impagliazzo-Nisan-Widgerson (INW) generator and relate it to the repeated derandomized
square. For the remainder of the section, fix a sequence of c-regular undirected multigraphs
H1,H2, . . . where Hi has d · ci−1 vertices and has a one way labeling. We define a sequence
of generators INW0, INW1, . . . such that INWi : [d]× [c]i → [d]2i .

I Definition 4.1 (INW Generator [9]). Define INW0(σ) = σ for σ ∈ [d] as the trivial PRG
that outputs its input and INWi+1(v, e) = (INWi(v), INWi(Hi+1[v, e])).

This is the recursive definition of the INW generator [9]. However, in the context of graphs
with consistent one-way labelings there exists an equivalent characterization in terms of the
derandomized square [20], which we will use for our analysis. The following two lemmas
follow from the reasoning in Rozenman and Vadhan’s work [20, Theorem 5.8]. We repeat
the proofs here for completeness.
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7:10 PRGs for Unbounded-Width Permutation BPs

I Lemma 4.2. Let G be a d-regular multigraph and H a c-regular undirected multigraph on
d vertices. If G has a consistent one-way labeling, then G s H has a consistent one-way
labeling.

Proof. Let G̃ = G s H. By the definitions of G and s, we have

G̃[v, (i, j)] = G[G[v, i],H[i, j]].

To prove that G̃ has a consistent one-way labeling, fix (i, j), and suppose G̃[u, (i, j)] =
G̃[v, (i, j)]. We must show that u = v. Indeed, G[G[u, i],H[i, j]] = G[G[v, i],H[i, j]]. Since
G has a consistent one-way labeling, this implies that G[u, i] = G[v, i]. Again using the fact
that G has a consistent one-way labeling, this implies that u = v as desired. J

I Lemma 4.3. Let G0 be a d-regular multigraph on any number of vertices with a consistent
one-way labeling. For i ≥ 0, inductively define Gi+1 = Gi s Hi+1. Then for all v and e,
Gi[v, e] = G2i

0 [v, INWi(e)].

Proof. First, note that inductively, Gi has a consistent labeling by Lemma 4.2, so Gi+1 is
well-defined. Now we show by induction on i that Gi[v, e] = G2i

0 [v, INWi(e)]. The case of
G0 is immediate. Assume the inductive hypothesis holds for i. Fix an arbitrary vertex v
and edge label e = (e1, e2) ∈ [d · ci]× [c]. We have

Gi+1[v, e] = Gi[Gi[v, e1],Hi+1[e1, e2]] (Definitions)

= G2i

0 [G2i

0 [v, INWi(e1)], INWi(Hi+1[e1, e2])] (Induction hypothesis)

= G2i+1

0 [v, (INWi(e1), INWi(Hi+1[e1, e2]))]

= G2i+1

0 [v, INWi+1(e)]. J

Let ` = dlog(n)e, and define G : [d]× [c]` → [d]n by letting G(x) be the n-symbol prefix of
INW`(x). This will be the generator that proves Theorem 1.4.

4.1 Approximation Guarantee
To bridge the gap between regular graphs and branching programs, we now define the
execution graph of a branching program, which is just like the standard graph representation
of the program, but the length is padded to a power of two and edges are added to wrap
around from the end to the beginning.

I Definition 4.4 (Branching Program Execution Graph). Let B be a permutation branching
program of width w, degree d and length n, and let m be the smallest power of 2 greater than
n. Define the execution graph of B to be a directed d-regular multigraph G on the vertex
set {0, . . . ,m} × [w] with a one-way labeling given by

G[(t, u), σ] =


(t+ 1,Wt(u, σ)) t ∈ {0, . . . , n− 1}
(t+ 1, u) t ∈ {n, . . . ,m− 1}
(0, u) t = m,

where Wt is the transition function of B at layer i as in Definition 1.3.

I Remark 4.5. Since B is a permutation branching program, the execution graph G has a
consistent one-way labeling. This is not true for general regular branching programs and is
why our method does not generalize.
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B Claim 4.6. Let ε > 0. If every Hi satisfies λ(Hi) ≤ ε/(8`), then G is an ε-PRG for
permutation branching programs of degree d, length n, and arbitrary width.

Proof. Let B be an arbitrary permutation branching program of degree d and length n.
Let G0 be the execution graph of B. Let G1,G2, . . . be the graphs in Lemma 4.3. By
Theorem 3.8 we have G`

◦
≈ε Gm

0 .
Let u = (0, vstart) be the start vertex in the execution graph, and let v = (m, vend) be the

accept vertex. By the definition of G0, for all σ ∈ [d]m, we have Gm
0 [u, σ] = (m, a), where a

is the final state of B when it reads σ1...n. Therefore, Gm
0 [u, σ] = v ⇐⇒ B(σ1...n) = 1.

Let M be the random walk matrix of G0 and M̃ the random walk matrix of G`. Then∣∣∣∣∣ Pr
x←U[d]×[c]`

[B(G(x)) = 1]− Pr
σ←U[d]n

[B(σ) = 1]

∣∣∣∣∣
=

∣∣∣∣∣ Pr
x←U[d]×[c]`

[Gm
0 [u, INW`(x)] = v]− Pr

e←U[d]m
[Gm

0 [u, e] = v]

∣∣∣∣∣
=

∣∣∣∣∣ Pr
e←U[d]×[c]`

[G`[u, e] = v]− Pr
e←U[d]m

[Gm
0 [u, e] = v]

∣∣∣∣∣
=
∣∣∣M̃v,u −Mm

v,u

∣∣∣ ,
which is at most ε by Proposition 2.7. C

To complete the proof of Theorem 1.4 we recall a result giving the existence of explicit
expanders of all sizes.

I Lemma 4.7 ([14] Theorem 3.3, Definition 2.13). For all n > 1 and λ > 0, there is a
c = poly(1/λ) and a c-regular undirected multigraph H on n vertices with a one-way labeling
such that λ(H) ≤ λ, and given λ, v, and e, the vertex H[v, e] can be computed in space
O(log(nc)).

Proof of Theorem 1.4. Let Hi be the expander given by Lemma 4.7 with λ = ε/(8`)
and n = d · ci−1. This sequence H1,H2, . . . satisfies the requirements of Claim 4.6, so G
constructed with this sequence is an ε-PRG. It remains to show the seed length and that the
generator is explicit.

By construction the `th INW generator INW` has domain [d] × [c]`. By definition
` ≤ log(n) + 1 and by Lemma 4.7 the degree of Hi for all i is c = poly(log(n)/ε), which gives
a seed length of s = O(log d+ logn · (log logn+ log(1/ε))).

Finally, G is explicit, in that the output of the generator can be computed in working space
O(s). This follows directly from Definition 4.1 and the explicitness of the expanders. J

4.2 Improved Seed Length for Tiny Error
So far, we have designed a PRG with seed length

O(log d+ logn · (log logn+ log(1/ε))). (1)

In this section, we will present a simple reduction that yields an improved seed length when
ε is extremely small.

I Lemma 4.8. Suppose G : {0, 1}s → [dm]n is an ε-PRG for length-n degree-(dm) permutation
branching programs. Identify [dm] = [d]m, and think of G as a function G : {0, 1}s → [d]mn.
Then G is an ε-PRG for length-(mn) degree-d permutation branching programs.
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7:12 PRGs for Unbounded-Width Permutation BPs

Proof. Let B be a length-(mn) degree-d permutation branching program. Define a length-n
degree-(dm) branching program B′ where one step of B′ simulates m steps of B. Then B′ is
a permutation branching program, and B′ computes the same function as B, so fooling B′
implies fooling B. J

I Corollary 4.9. For all n, d ∈ N and ε > d−n/2, there is an explicitly computable ε-PRG
G : {0, 1}s → [d]n for permutation branching programs of length n, degree d, and arbitrary
width. This PRG has seed length

O

(
log d+ log

(
n log d

log(1/ε)

)
· (log logn+ log(1/ε))

)
.

Proof. If log(1/ε) < log d, then the seed length of Equation 1 is already sufficient. Assume,
therefore, that log(1/ε) ≥ log d. Let m =

⌈
log(1/ε)

log d

⌉
and let n′ = dn/me. Plugging into

Equation 1, we have constructed already a PRG for length-n′ degree-(dm) permutation
branching programs with seed length s, where

s ≤ O(log(dm) + log(n/m) · (log logn+ log(1/ε))

= O

(
log(1/ε) + log

(
n log d

log(1/ε)

)
· (log logn+ log(1/ε))

)
= O

(
log
(
n log d

log(1/ε)

)
· (log logn+ log(1/ε))

)
,

where the last step uses the assumption ε ≥ d−n/2 which implies log
(
n log d

log(1/ε)

)
≥ 1. By

Lemma 4.8, that same PRG fools length-(mn′) degree-d permutation branching programs.
Since mn′ > n, by truncating to the first n symbols, we get the desired PRG for length-n
degree-d permutation branching programs. J

5 A Random Function is Not a Good PRG

In this section, we prove that a random generator does not fool unbounded-width permutation
branching programs, unless the seed length is Ω(n log d). The proof is based on the following
family of exponential-width permutation branching programs.

I Lemma 5.1. Let n be a multiple of two, and let π : [d]n/2 → [d]n/2 be a permutation. There
is a width-(dn/2) length-n degree-d permutation branching program B such that

B(x, y) = 1 ⇐⇒ y = π(x).

Proof. Let Zd denote the ring of integers modulo d. We identify the state space [dn/2] with
the space Zn/2

d , a Zd-module. Let e1, . . . , en/2 ∈ Zn/2
d denote the standard “basis vectors,”

i.e., et has a 1 in coordinate t and 0 in all other coordinates. The transition function
Wt : Zn/2

d × Zd → Zn/2
d is given by

Wt(v, σ) =
{
v + σ · et if t ≤ n/2
π−1(π(v)− σ · et) if t > n/2.

These transition functions satisfy the permutation condition, because Wt(Wt(v, σ),−σ) = v.
The start state of B is the zero element 0 ∈ Zn/2

d , and the accepting state is π−1(0).
By induction, when B reads an input (x, y) ∈ (Zn/2

d )2, it passes through the state x in
layer n/2, and ultimately it arrives at the state π−1(π(x) − y) in the final layer. Thus,
B(x, y) = 1 ⇐⇒ y = π(x). J
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I Theorem 5.2 (Failure of the Probabilistic Method). Let n be a multiple of 2. Let s =⌊
n log d

4

⌋
− 1, and sample a generator G uniformly at random from all functions G : {0, 1}s →

[d]n. With probability at least 3/4, there is some length-n degree-d permutation branching
program B such that∣∣∣∣ Pr

σ←U[d]n
[B(σ) = 1]− Pr

x←U{0,1}s

[B(G(x)) = 1]
∣∣∣∣ = 1− d−n/2.

Proof. LetGL, GR : {0, 1}s → [d]n/2 be the left and right halves ofG respectively, i.e., G(x) =
GL(x) ◦GR(x). We claim that with high probability, GL and GR are both injective. Indeed,
for each pair of distinct seeds x, x′ ∈ {0, 1}s, the strings GL(x), GL(x′) are independent
uniform (n/2)-symbol strings, so PrG[GL(x) = GL(x′)] = d−n/2. The number of pairs (x, x′)
is at most

(2s

2
)
≤ 1

2 22s ≤ 2−3dn/2, where the last inequality is by our choice of s. Therefore,
by the union bound, PrG[GL is not injective] ≤ 2−3. The same argument applies to GR as
well, so except with probability 2 · 2−3 = 1

4 , GL and GR are both injective. In this case,
there exists a permutation π : [d]n/2 → [d]n/2 such that for every seed x, π(GL(x)) = GR(x).
By Lemma 5.1, there is a length-n degree-d permutation branching program B such that
B(y, z) = 1 ⇐⇒ z = π(y). Therefore, for every seed x, B(G(x)) = 1, so Prx[B(G(x)) =
1] = 1. On the other hand, since π is a permutation, Prσ[B(σ) = 1] = d−n/2. J

6 Seed Length Lower Bound

In this section, we prove our lower bound on the seed length of any PRG for unbounded-
width permutation branching programs, showing that our PRG’s seed length is near-optimal.
Except when ε is extremely small, the lower bound is Ω(log d+ logn · log(1/ε)).

I Theorem 6.1. Let d ≥ 2 and n ≥ 1. Let G : {0, 1}s → [d]n be an ε-PRG for length-n
degree-d permutation branching programs of unbounded width, where d−n/2 ≤ ε ≤ 0.49. Then

s ≥ Ω
(

log d+ log
(
n log d

log(1/ε)

)
· log(1/ε)

)
.

The proof of Theorem 6.1 is based on the same family of exponential-width branching
programs that we used to prove Theorem 5.2. At an intuitive level, we argue that either the
first half of the PRG’s output is information-theoretically unpredictable given the second
half, or vice versa. After all, if each half is somewhat predictable given the other half, there
ought to exist a permutation π such that the pseudorandom string (x, y) has a noticeable
chance (say at least 2ε) of satisfying π(x) = y, whereas a truly random string is extremely
unlikely to satisfy π(x) = y. It follows that the PRG must use Ω(log(1/ε)) bits of seed above
and beyond the seed length for sampling the first half or the second half individually.

To obtain a suitable permutation π, we rely on a version of the Kőnig-Egerváry theorem
regarding maximum matchings in bipartite graphs. (In the lemma statement, think of p
as a weight function on the edges of the complete bipartite graph KN,N , and think of π as
identifying a perfect matching.)

I Lemma 6.2 (Kőnig-Egerváry theorem for fractional edge weights, [21, Theorem 17.1]). For
every integer N ≥ 1 and every function p : [N ] × [N ] → [0,∞), there exist a permutation
π : [N ]→ [N ] and functions q, r : [N ]→ [0,∞) such that

∀x, y ∈ [N ], p(x, y) ≤ q(x) + r(y) (2)

and ∑
x∈[N ]

p(x, π(x)) =
∑
x∈[N ]

q(x) +
∑
y∈[N ]

r(y). (3)

ITCS 2021



7:14 PRGs for Unbounded-Width Permutation BPs

Note that Equations 2 and 3 immediately imply that π maximizes
∑
x p(x, π(x)). A

proof of Lemma 6.2 can be found in Schrijver’s text [21, Theorem 17.1]. Alternatively,
Lemma 6.2 follows from strong linear programming duality and the fact that the integer
matching polytope equals the fractional matching polytope.

As outlined previously, we would now like to show that if each of X and Y is somewhat
predictable given the other, then there is a noticeable chance that π(X) = Y . To rigorously
formulate and prove this statement, we use the notion of Shannon entropy.

I Definition 6.3. If X is a discrete random variable, the entropy of X is

H[X] = E
x∼X

[
log
(

1
Pr[X = x]

)]
.

If X and Y are jointly distributed discrete random variables, the joint entropy H[X,Y ] is the
entropy of the pair (X,Y ), and the conditional entropy of X given Y is

H[X | Y ] = E
y∼Y

[H[X | Y = y]] = E
x∼X
y∼Y

[
log
(

1
Pr[X = x | Y = y]

)]
.

I Lemma 6.4. Let N ≥ 1, and let X and Y be jointly distributed random variables, each
taking values in [N ]. There exists a permutation π : [N ]→ [N ] such that

Pr[π(X) = Y ] ≥ 2−H[X|Y ]−H[Y |X].

Lemma 6.4 bears a resemblance to a well-known fact, which says that if we allow
an arbitrary function π (not necessarily a permutation), the maximum possible value of
Pr[π(X) = Y ] is precisely 2−H∞(Y |X), where H∞(Y | X) is the “average min-entropy” of Y
given X [7]. Our lemma is an interesting “symmetric” variant.

Proof. Let π, q, r be the functions guaranteed by Lemma 6.2 for the function p(x, y) =
Pr[(X,Y ) = (x, y)]. Let X = Supp(X) and Y = Supp(Y ). Then

Pr[π(X) = Y ] =
∑
x∈[N ]

q(x) +
∑
y∈[N ]

r(y) (Equation 3)

≥
∑
x∈X

q(x) +
∑
y∈Y

r(y)

=
∑
x∈X
y∈Y

Pr[(X,Y ) = (x, y)] ·
(

q(x)
Pr[X = x] + r(y)

Pr[Y = y]

)

≥
∑
x∈X
y∈Y

Pr[(X,Y ) = (x, y)]2 · q(x) + r(x)
Pr[X = x] · Pr[Y = y]

≥
∑
x∈X
y∈Y

Pr[(X,Y ) = (x, y)]3

Pr[X = x] · Pr[Y = y] (Equation 2)

= E
(x,y)∼(X,Y )

[Pr[X = x | Y = y] · Pr[Y = y | X = x]]

≥ 2E(x,y)∼(X,Y )[log(Pr[X=x|Y=y]·Pr[Y=y|X=x])] (Jensen)

= 2−H[X|Y ]−H[Y |X]. J

To apply Lemma 6.4 to analyze pseudorandom distributions for permutation branching
programs, we will use the standard chain rule for Shannon entropy.
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B Claim 6.5 (Chain Rule). If X and Y are discrete random variables, then H[X,Y ] =
H[X] + H[Y | X].

I Lemma 6.6. Let n be a multiple of two, let X and Y be random variables distributed over
[d]n/2, and let ε ≥ d−n/2. Assume that for every length-n degree-d permutation branching
program B,

|Pr[B(U[d]n) = 1]− Pr[B(X,Y ) = 1]| ≤ ε. (4)

Then

H[X,Y ] ≥ 1
2

(
H[X] + H[Y ] + log

(
1
2ε

))
.

Proof. Let π be the permutation of Lemma 6.4. By Lemma 5.1, there is some length-n
degree-d permutation branching program B such that B(x, y) = 1 ⇐⇒ π(x) = y. Since π
is a permutation, Pr[B(U[d]n) = 1] = d−n/2. Therefore, by Equation 4,

2−H[X|Y ]−H[Y |X] ≤ d−n/2 + ε ≤ 2ε.

Therefore,

H[X,Y ] = 1
2(H[X] + H[Y | X] + H[Y ] + H[X | Y ]) (Chain Rule)

≥ 1
2

(
H[X] + H[Y ] + log

(
1
2ε

))
. J

To complete the proof of Theorem 6.1, we use the following standard fact about Shannon
entropy.

B Claim 6.7. If X is a discrete random variable and f is a function, then H[f(X)] ≤ H[X].

Proof of Theorem 6.1. The seed length must be Ω(log d) simply because the program can
compute any arbitrary function of its first symbol. For i ≥ 0, let

ni =
⌈

log(1/ε)
log d

⌉
· 2i.

We will prove by induction on i that if a distribution X over [d]ni fools length-ni degree-d
permutation branching programs with error ε, then

H[X] ≥ i

2 · log
(

1
2ε

)
.

The base case i = 0 is trivial. For the inductive step, consider a distribution (X,Y ) over
strings of length ni, where |X| = |Y | = ni−1. Since a permutation branching program can
elect to ignore some of its input symbols, X and Y must each individually fool length-ni−1
degree-d permutation branching programs with error ε. Therefore, by induction,

1
2(H[X] + H[Y ]) ≥ (i− 1)

2 · log
(

1
2ε

)
.

Furthermore, since ni ≥ 2 log(1/ε)/ log d, we have ε ≥ d−ni/2, so we may apply Lemma 6.6
to complete the inductive step.
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Now consider

i =
⌊

log
(

n

dlog(1/ε)/ log de

)⌋
.

Since ε ≥ d−n/2, we have n/2 ≤ ni ≤ n. Let X be the truncation of G(U{0,1}s) to the first
ni symbols. Then

s = H[U{0,1}s ] ≥ H[G(U{0,1}s)] ≥ H[X] ≥ i

2 log
(

1
2ε

)
,

where the first two inequalities follow from Claim 6.7. If log(1/ε) > log d, then i =
Ω
(

log
(
n log d

log(1/ε)

))
, so we are done. Meanwhile, if log d = λ · log(1/ε) for some λ ≥ 1, then

i = blognc, so we have shown

s ≥ blognc
2 · log

(
1
2ε

)
.

We also have

s ≥ Ω(log d) = Ω(λ · log(1/ε)) ≥ Ω(log λ · log(1/ε)).

Combining, we get

s ≥ Ω ((logn+ log λ) · log(1/ε))
= Ω (log(nλ) · log(1/ε))

= Ω
(

log
(
n log d

log(1/ε)

)
· log(1/ε)

)
. J

7 The Optimal Seed Length for Hitting Set Generators

Let F be a class of functions B : [d]n → {0, 1}. Recall that an ε-HSG for F is a function
G : {0, 1}s → [d]n such that

∀B ∈ F , Pr[B(U[d]n) = 1] ≥ ε =⇒ ∃x ∈ {0, 1}s, B(G(x)) = 1.

Thus, an HSG is a “one-sided” variant of a PRG.
In this section, we prove that any HSG for polynomial-width permutation branching

programs is an HSG for unbounded-width permutation branching programs. As a corollary,
we will show that the optimal (nonexplicit) seed length for an HSG for unbounded-width
permutation branching programs is O(log(nd/ε)).

I Theorem 7.1. Let n be a positive integer, let G : {0, 1}s → [d]n be a function, and let
ε > 0.
1. There is a value w = O(n/ε) such that if G is an (ε/2)-HSG for width-w length-n ordered

branching programs, then G is an ε-HSG for unbounded-width length-n permutation
branching programs.

2. There is a value w = O(n2/ε) such that if G is an (ε/2)-HSG for width-w length-n
permutation branching programs, then G is an ε-HSG for unbounded-width length-n
permutation branching programs.

Item 2 is not necessary for the purpose of establishing the optimal seed length for HSGs
for unbounded-width permutation branching programs. We include the proof because we
find it interesting.
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Proof. Let B be a length-n permutation branching program. We will define a function
f : [d]n → {0, 1} such that f(x) = 1 =⇒ B(x) = 1 and Prx∈[d]n [B(x) 6= f(x)] ≤ ε/2.
Furthermore, we will show that f can be computed by an ordered branching program of
width O(n/ε), as well as by a permutation branching program of width O(n2/ε).

Think of B as a directed graph. Let V0, . . . , Vn be the layers of the graph. For each
vertex v, let p→v denote the probability that B passes through v when it reads a random
input. Let q = d2n/εe. If the width of B is less than q, we can just let f = B, so assume
the width of B is at least q. For each t ∈ {0, 1, . . . , n}, define St to be the set of q vertices
v ∈ Vt with the largest values of p→v. Let f(x) = 1 if the path through B described by x
stays within S0, S1, . . . , Sn and ends at the accepting vertex.

Clearly, f(x) = 1 =⇒ B(x) = 1. Now consider sampling x = (x1, . . . , xn) ∈ [d]n
uniformly at random. For each t ∈ [n] and each vertex v ∈ Vt, let Bv→ denote the
permutation branching program that ignores the first t symbols of its inputs and then
simulates the last (n − t) layers of B starting at vertex v. By the definition of St, each
v ∈ Vt \ St satisfies p→v < 1/q. Therefore,

Pr
x

[B(x) 6= f(x)] ≤
n∑
t=1

∑
v∈Vt\St

p→v · Pr
x

[Bv→(x) = 1]

<
1
q
·
n∑
t=1

∑
v∈Vt\St

Pr
x

[Bv→(x) = 1]

≤ 1
q
·
n∑
t=1

E
x

[∑
v∈Vt

Bv→(x)
]
.

Consider any fixed t and x. By the permutation condition, it is possible to work backward
from the accepting vertex to find the unique vertex v ∈ Vt such that Bv→(x) = 1. Therefore,∑
v∈Vt

Bv→(x) = 1. Thus,

Pr
x

[B(x) 6= f(x)] ≤ 1
q
·
n∑
t=1

1 ≤ ε

2 .

An ordered branching program for f can be obtained from B by deleting all the vertices
in Vt \ St and redirecting all their incoming edges to a new ⊥ vertex. All outgoing edges
from the ⊥ vertex in layer t point to the ⊥ vertex in layer t+ 1, and finally in layer n, the ⊥
vertex is a reject vertex. Clearly, the width of this program is q + 1.

Now let us define a permutation branching program computing f of width w = q · (n+ 1).
Let w0 be the width of B, and number the states so that St corresponds to [q] ⊆ [w0]. Let
Wt : [w0] × [d] → [w0] be the transition function of B. Let At,σ be the set of v ∈ [q] such
that Wt(v, σ) ∈ [q]. By the permutation condition, for each fixed t and σ, the function
Wt(·, σ) is a permutation on [w0]. Therefore, there exists a permutation πt,σ : [w0] \At,σ →
[w0] \Wt(At,σ, σ).

Let Zn denote the additive group of integers modulo n, and identify [w] = [q] × Zn+1.
The new branching program’s transition function W ′t : [q]× Zn+1 × [d]→ [q]× Zn+1 is given
by

W ′t (v, i, σ) =
{

(Wt(v, σ), i) if v ∈ At,σ
(πt,σ(v), i+ 1) otherwise.

Clearly, this satisfies the permutation condition. The start state is (vstart, 0) and the accept
state is (vend, 0), where vstart and vend are the start and accept states of B. If f(σ) = 1, then
inductively, when our permutation branching program reads σ, it simulates B and ultimately
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accepts without ever incrementing i. Conversely, if our permutation branching program
accepts σ, then i must never be incremented. Therefore, when B reads σ, it stays within the
sets S0, . . . , Sn and accepts, and hence f(σ) = 1.

Finally, if Pr[B(U[d]n) = 1] ≥ ε, then Pr[f(U[d]n) = 1] ≥ ε/2. Therefore, under either of
the two assumptions of the theorem, G hits f , and since f ≤ B, this implies that G hits B
as well. J

I Corollary 7.2. For every n, d, ε, there exists an ε-HSG G : {0, 1}s → [d]n for unbounded-
width length-n degree-d permutation branching programs with seed length s = O(log(nd/ε)).

Proof. It is standard that there exists a nonexplicit ε-HSG for width-w length-n degree-d
ordered branching programs with seed length O(log(wnd/ε)). (Indeed, a random function is
an HSG with these parameters with high probability.) J

The next claim shows that the seed length in Corollary 7.2 is optimal.

B Claim 7.3. Let d ≥ 2 and n ≥ 1. Let G : {0, 1}s → [d]n be an ε-HSG for length-n
degree-d permutation branching programs of unbounded width, where d−n ≤ ε ≤ 1/3. Then
s ≥ Ω(log(nd/ε)).

Proof sketch. The seed length needs to be at least Ω(log d) because the program can compute
any function of the first input symbol. The seed length needs to be at least Ω(log(1/ε))
because unbounded-width permutation branching programs can check whether a prefix of
the input is equal to a fixed arbitrary string. Finally, let G : {0, 1}s → [d]n with s < logn;
we will show that G is not a (1/3)-HSG for degree-d permutation branching programs. Let
b : [d]→ F2 be as close to balanced as possible. Since 2s < n, there is some nonzero vector
z ∈ Fn2 such that for every seed x,

n∑
i=1

zi · b(G(x)i) = 0.

The function B(x) =
∑n
i=1 zi · b(xi) can be computed by a width-2 degree-d permutation

branching program, and Prx[B(x) = 1] ≥ 1/3. C

8 Directions for Further Research

The obvious challenge is to obtain optimal PRGs for unbounded-width permutation branching
programs in the large-error regime. We conjecture that our seed length lower bound is tight,
i.e., there is a PRG construction that eliminates the log logn factor from our PRG’s seed
length.

We showed that there is a nonexplicit HSG with seed length O(log(n/ε)) for unbounded-
width permutation branching programs. A natural problem is to match the seed length with
an explicit construction. In the constant-width case, Braverman et al. [2] presented a simple
HSG for the more general model of regular branching programs with seed length O(logn),
independent of ε.

We wonder what PRGs can be constructed for the more challenging model of arbitrary-
order permutation branching programs. Reingold, Steinke, and Vadhan [17] and Chattopad-
hyay et al. [3] have constructed PRGs for the small-width case. By using one generator for
large ε and the other for small ε, one can achieve seed length Õ(logn · log(1/ε)) when the
width is a constant. For the unbounded-width case, explicit constructions or bounds for
nonexplicit PRGs would be interesting.
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Finally, we wonder whether our results can be generalized to the case of unbounded-width
regular branching programs. Our HSG existence proof (Theorem 7.1 and Corollary 7.2) does
generalize to the regular case3, but the PRG situation is unclear.

References
1 AmirMahdi Ahmadinejad, Jonathan Kelner, Jack Murtagh, John Peebles, Aaron Sidford, and

Salil Vadhan. High-precision estimation of random walks in small space. In Proceedings of the
61st Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2020. To appear.

2 Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom generators
for regular branching programs. SIAM Journal on Computing, 43(3):973–986, 2014. doi:
10.1137/120875673.

3 Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudorandom
generators from polarizing random walks. Theory of Computing. An Open Access Journal,
15:Paper No. 10, 26, 2019. doi:10.4086/toc.2019.v015a010.

4 Michael B. Cohen, Jonathan Kelner, John Peebles, Richard Peng, Anup B. Rao, Aaron Sidford,
and Adrian Vladu. Almost-linear-time algorithms for Markov chains and new spectral primitives
for directed graphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 410–419. ACM, New York, 2017. doi:10.1145/3055399.3055463.

5 Anindya De. Pseudorandomness for permutation and regular branching programs. In 26th
Annual IEEE Conference on Computational Complexity, pages 221–231. IEEE Computer Soc.,
Los Alamitos, CA, 2011. doi:10.1109/CCC.2011.23.

6 Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. Improved pseudorandom
generators for depth 2 circuits. In Approximation, randomization, and combinatorial opti-
mization, volume 6302 of Lecture Notes in Computer Science, pages 504–517. Springer, Berlin,
2010. doi:10.1007/978-3-642-15369-3_38.

7 Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: how
to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing,
38(1):97–139, 2008. doi:10.1137/060651380.

8 Shlomo Hoory and Avi Wigderson. Universal traversal sequences for expander graphs. Infor-
mation Processing Letters, 46(2):67–69, 1993. doi:10.1016/0020-0190(93)90199-J.

9 Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing
(STOC), page 356–364, New York, NY, USA, 1994. Association for Computing Machinery.
doi:10.1145/195058.195190.

10 Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák. Pseudorandom generators for group
products. In Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC),
pages 263–272. ACM, New York, 2011. doi:10.1145/1993636.1993672.

11 M. Luby and B. Veličković. On deterministic approximation of DNF. Algorithmica, 16(4-
5):415–433, 1996. doi:10.1007/s004539900054.

12 Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold
functions. SIAM Journal on Computing, 42(3):1275–1301, 2013. doi:10.1137/100811623.

13 Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil Vadhan. Derandomization beyond
connectivity: undirected Laplacian systems in nearly logarithmic space. In Proceedings of the
58th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 801–812.
IEEE Computer Soc., Los Alamitos, CA, 2017. doi:10.1109/FOCS.2017.79.

3 In the regular case, we have Ex[
∑

v∈Vt
Bv→(x)] =

∑
v∈Vt

Prx[Bv→(x) = 1] = 1, where the last equality
can be proven by backward induction on t.

ITCS 2021

https://doi.org/10.1137/120875673
https://doi.org/10.1137/120875673
https://doi.org/10.4086/toc.2019.v015a010
https://doi.org/10.1145/3055399.3055463
https://doi.org/10.1109/CCC.2011.23
https://doi.org/10.1007/978-3-642-15369-3_38
https://doi.org/10.1137/060651380
https://doi.org/10.1016/0020-0190(93)90199-J
https://doi.org/10.1145/195058.195190
https://doi.org/10.1145/1993636.1993672
https://doi.org/10.1007/s004539900054
https://doi.org/10.1137/100811623
https://doi.org/10.1109/FOCS.2017.79


7:20 PRGs for Unbounded-Width Permutation BPs

14 Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil Vadhan. Deterministic Approximation
of Random Walks in Small Space. In Dimitris Achlioptas and László A. Végh, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019), volume 145 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 42:1–42:22, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.2019.42.

15 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992. doi:10.1007/BF01305237.

16 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4):Art. 17, 24,
2008. doi:10.1145/1391289.1391291.

17 Omer Reingold, Thomas Steinke, and Salil Vadhan. Pseudorandomness for regular branching
programs via Fourier analysis. In Approximation, randomization, and combinatorial optimiza-
tion, volume 8096 of Lecture Notes in Computer Science, pages 655–670. Springer, Heidelberg,
2013. doi:10.1007/978-3-642-40328-6_45.

18 Omer Reingold, Luca Trevisan, and Salil Vadhan. Pseudorandom walks on regular digraphs
and the RL vs. L problem. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC), pages 457–466. ACM, New York, 2006. doi:10.1145/1132516.1132583.

19 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders. Annals of Mathematics. Second Series, 155(1):157–187,
2002. doi:10.2307/3062153.

20 Eyal Rozenman and Salil Vadhan. Derandomized squaring of graphs. In Approximation,
randomization and combinatorial optimization, volume 3624 of Lecture Notes in Computer
Science, pages 436–447. Springer, Berlin, 2005. doi:10.1007/11538462_37.

21 Alexander Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. A, volume 24
of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003. Paths, flows, matchings,
Chapters 1–38.

22 Thomas Steinke. Pseudorandomness for permutation branching programs without the group
theory. ECCC preprint TR12-083, 2012.

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.42
https://doi.org/10.1007/BF01305237
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1007/978-3-642-40328-6_45
https://doi.org/10.1145/1132516.1132583
https://doi.org/10.2307/3062153
https://doi.org/10.1007/11538462_37


Pipeline Interventions
Eshwar Ram Arunachaleswaran
University of Pennsylvania, Philadelphia, PA, USA
eshwar@seas.upenn.edu

Sampath Kannan
University of Pennsylvania, Philadelphia, PA, USA
kannan@cis.upenn.edu

Aaron Roth
University of Pennsylvania, Philadelphia, PA, USA
aaroth@cis.upenn.edu

Juba Ziani
University of Pennsylvania, Philadelphia, PA, USA
jziani@seas.upenn.edu

Abstract

We introduce the pipeline intervention problem, defined by a layered directed acyclic graph and a
set of stochastic matrices governing transitions between successive layers. The graph is a stylized
model for how people from different populations are presented opportunities, eventually leading
to some reward. In our model, individuals are born into an initial position (i.e. some node in
the first layer of the graph) according to a fixed probability distribution, and then stochastically
progress through the graph according to the transition matrices, until they reach a node in the
final layer of the graph; each node in the final layer has a reward associated with it. The pipeline
intervention problem asks how to best make costly changes to the transition matrices governing
people’s stochastic transitions through the graph, subject to a budget constraint. We consider two
objectives: social welfare maximization, and a fairness-motivated maximin objective that seeks to
maximize the value to the population (starting node) with the least expected value. We consider two
variants of the maximin objective that turn out to be distinct, depending on whether we demand a
deterministic solution or allow randomization. For each objective, we give an efficient approximation
algorithm (an additive FPTAS) for constant width networks. We also tightly characterize the “price
of fairness” in our setting: the ratio between the highest achievable social welfare and the social
welfare consistent with a maximin optimal solution. Finally we show that for polynomial width
networks, even approximating the maximin objective to any constant factor is NP hard, even for
networks with constant depth. This shows that the restriction on the width in our positive results is
essential.
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1 Introduction

Inequality can be difficult to correct by the time it manifests itself in consequential domains.
For example, faculty in computer science departments are disproportionately male (Way
et al. [21]), and although the reasons for this are varied and complex, it seems difficult to
correct only by intervening in the process of faculty hiring (although the solution likely
involves some intervention at this stage). The problem is that interventions at the final stage
of a long pipeline may not be enough (or the best way) to address iniquities that compound
starting from earlier stages in the pipeline such as graduate school, college, high school,
enrichment programs, all the way back to birth circumstances. Because each stage of, for
example, employment pipelines feeds into the next, interventions that are isolated to any
one stage can have difficulty controlling effects on final outcomes – and although in practice
it is difficult to fully understand such a system, we would ideally like to design proposed
interventions at a system-wide level, rather than myopically.

Thus motivated, we study an optimization problem within a stylized (and highly simplified)
model of such a pipeline. Our model is a layered directed acyclic graph. The vertices in
the first layer represent a coarse partitioning of possible birth circumstances into a small
number of types – each vertex representing one of these types. There is a probability vector
over these vertices and individuals are “born” into some vertex with these probabilities. The
graph represents a Markov process that determines how individuals progress through the
pipeline. From every vertex there is a stochastic transition matrix specifying the probability
that an individual will progress to each vertex in the next layer of the pipeline. We might
imagine, for example, that the proportion of children that enroll in each of several elementary
schools (the second layer of such a pipeline) varies according to the neighborhood that they
are raised in (the first layer). The proportion of children that then go on to enroll in each
of several high schools may then vary according to the elementary school they attend, and
so on. Finally, vertices at the last layer of the pipeline are associated with payoffs. One
may then calculate the expected payoff of an individual as a function of their initial position.
These payoffs may vary widely depending on this position.

We are concerned with the problem of how best to invest limited resources so as to modify
the transition matrices governing different layers of this pipeline to achieve some goal. In
the main body of the paper, we focus on a stylized model where the costs of modifying
transition matrices are linear, for simplicity of exposition; we extend our results to more
complex and realistic cost functions in the Appendix. We consider two goals: the first is
simply maximizing social welfare – the expected payoff for an individual chosen according to
the given probability vector for the first layer. Although this is a natural objective, it can
easily lead to solutions that are “unfair” in the sense that they will prioritize investments that
lead to improvements for majority populations over minority populations, simply because
majority populations, by their sheer numbers, contribute more to social welfare. The second
goal we study is therefore to maximize the minimum expected payoff of individuals, where
the minimum is taken over all of the initial positions, i.e., layer 1 vertices. This “maximin”
objective is a standard fairness-motivated objective in allocation problems [See Barman and
Krishnamurthy [2], Procaccia and Wang [19], Budish [5]]. In fact, we study two different
variants of this objective, that can be distinguished by the timing with which one wants to
evaluate fairness. The ex-ante maximin objective asks for a distribution over budget-feasible
modifications of the transition matrices, that maximize the minimum expected payoff over
all initial positions. The ex-post maximin objective asks for a single (i.e. deterministic)
budget-feasible modification to the transition matrices. Because the problem we study is
non-convex, these two goals are distinct – which is preferred depends on when one wants to
evaluate the fairness of a solution: before or after the randomization.
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1.1 Overview of Our Results
Briefly, our main contributions are the following:
1. We define and formalize the pipeline intervention problem with the social welfare, ex-ante

maximin, and ex-post maximin objectives. We also prove a separation between the
ex-post and ex-ante maximin solutions.

2. We give an additive fully polynomial-time approximation scheme (FPTAS) for both
the social welfare and ex-post maximin objectives for networks of constant width (but
arbitrarily long depth).

3. We give an efficient reduction from the ex-ante maximin objective problem to the ex-post
maximin objective problem via equilibrium computation in two-player zero-sum games.
Combined with our results from 2, this yields an additive FPTAS for the ex-ante maximin
objective problem for constant width networks as well.

4. We define and prove tight bounds on the “price of fairness”, which compares the optimal
social welfare that can be achieved with a given budget to the social welfare of ex-post
maximin optimal solutions.

5. Finally, we show that the pipeline intervention problem is NP hard even to approximate
in the general case when the width w is not bounded – and hence that our efficient
approximation algorithms cannot be extended to the general case (or even the case of
constant depth, polynomial width networks).

1.2 Related Work
There is an enormous literature in “algorithmic fairness” that has emerged over the last
several years, that we cannot exhaustively summarize here – but see Chouldechova and
Roth [6] for a recent survey. Most of this literature is focused on the myopic effects of a
single intervention, but what is more conceptually related to our paper is work focusing on
the longer-term effects of algorithmic interventions.

Dwork and Ilvento [9] and Bower et. al. [4] study the effects of imposing fairness
constraints on machine learning algorithms that might be composed together in various
ways to reach an eventual outcome. They show that generally fairness constraints imposed
on constituent algorithms in a pipeline or other composition do not guarantee that the
same fairness constraints will hold on the entire mechanism as a whole. (They also study
conditions under which fairness guarantees are well behaved under composition). Two recent
papers (Liu et al. [15], Mouzannar et al. [17]) study parametric models by which classification
interventions in an earlier stage can have effects on the data distribution at later stages, and
show that for many commonly studied fairness constraints, their effects can either be positive
or negative in the long term, depending on the functional form of the relationship between
classification decisions and changes in the agent type distribution.

There is also a substantial body of work studying game theoretic models for how inter-
ventions affect “fairness” goals. This work dates back to Coate and Loury [7], Foster and
Vohra [10] in the economics literature, who propose game theoretic models to rationalize
how unequal outcomes might emerge despite two populations being symmetrically situated.
More recently, in the computer science literature, several papers consider more complicated
models that are similar in spirit to Coate and Loury [7], Foster and Vohra[10]. Hu and
Chen [12] propose a two-stage model of a labor market with a “temporary” (i.e. internship)
and “permanent” stage, and study the equilibrium effects of imposing a fairness constraint
on the temporary stage. Liu et al. [16] consider a model of the labor market with higher
dimensional signals, and study equilibrium effects of subsidy interventions which can lessen
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the cost of exerting effort. Kannan et al. [14] study the effects of admissions policies on
a two-stage model of education and employment, in which a downstream employer makes
rational decisions. Jung et al. [13] study a model of criminal justice in which crime rates
are responsive to the classifiers used to determine criminal guilt, and study which fairness
constraints are consistent with the goal of minimizing crime.

2 Model

The pipeline intervention problem is defined by a layered directed acyclic graph G = (V,E),
where V is the set of vertices (or nodes), and E is the set of edges. The vertices are
partitioned into k layers L1, L2, · · ·Lk , each consisting of w vertices. We say that w is the
width of the graph. For every t ∈ [k − 1], there is a directed edge from every u ∈ Lt to every
v ∈ Lt+1; the graph contains no other edge. In turn, every path from layer L1 to layer Lk

must go through exactly one vertex in each layer L2, . . . , Lk−1 in this order. Intuitively,
such a layered graph represents a pipeline, in which individuals start at initial positions
in layer 1, and transition through the graph to final positions in layer k, stochastically
according to transition matrices which we define next. This layered model can be used
to abstractly represent real-life pipelines; such a pipeline, that has received attention in
previous work (e.g. Kannan et al. [14]), is the education and job market one. Nodes in
the initial layer represent a coarse partitioning of the population based on family income
levels and educational background. The second layer could represent pre-K experience. For
example, one could have 3 nodes in the second layer representing no pre-K, Headstart, and
private pre-K. See for example Barnum [3] for a general discussion of as well as pointers
to recent studies on the efficacy of Headstart programs. At the next level or two, nodes
can represent different qualities of K-12 schools, based on a coarse partitioning of their
performance under one of several widely-available metrics, such as the ones provided by U.S.
News [20], Niche [18].

The layer after that could be a coarse partitioning where nodes represent, for example, no
college, technical or vocational school, and 2 and 4-year colleges coarsely grouped together
based on perceived quality according to one of several college rankings. A subsequent layer
could encode the details of a student’s performance in college, such as their major and GPA,
again under a coarse bucketing. The last layer, with numerical rewards could represent
different types of employment with rewards determined by starting salaries and prospects for
advancement.

In a more accurate model, we might perhaps condition the probability of transition from
node u in layer i to node v in layer i+ 1 on the entire path taken by an individual leading
up to node u. However, for mathematical tractability, we make the simplifying assumption
that the process is Markovian, and this transition probability from u is independent of prior
history.

Let M be the set of left stochastic matrices in Rw×w: i.e., M ∈ M if and only if
for all j ∈ [w],

∑
i∈[w]M(i, j) = 1, and for all (i, j) ∈ [w]2, M(i, j) ≥ 0. Let D ,

{x ∈ [0, 1]w :
∑w

k=1 x(k) = 1} be the set of probability distributions over [w]. An instance
of the pipeline intervention problem is defined by three elements:
1. A set of initial transition matrices M0

t ∈M between layers Lt and Lt+1, for all t ∈ [k−1],
such that for all u ∈ Lt, v ∈ Lt+1, M0

t (v, u) denotes the probability of transitioning from
node u to node v. Note that we will multiply any input distribution to the right of any
transition matrix we use in the paper.
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2. An input distribution D1 over the vertices in layer 1, where D1(u) denotes the fraction of
the population that starts at u in L1 as their initial position. Without loss of generality
we assume D1(u) > 0 for all initial positions u ∈ L1.

3. Finally, a reward R(v) ≥ 0 corresponding to each vertex v ∈ Lk in the final layer. We
let R = (v)>v∈Lk

denote the vector of all rewards on layer k. We assume without loss
of generality that the rewards on any two vertices in the final layer are distinct: for all
v, v′ ∈ Lk, R(v) 6= R(v′). We can also assume without loss of generality (up to renaming)
that R(1) > . . . > R(w).

In our model, each vertex u in the starting layer L1 represents the initial position of
some population; abusing notation, we refer to this population also as u. An individual in
population u transitions to a node in layer L2, then a node in layer L3, up until they reach a
node v in destination layer Lk, and obtains a reward of R(v), with probability given by the
transition matrices M0

1 to M0
k−1. The expected reward of an individual from population u is

therefore given by R>Mk−1 · . . . ·M1eu, where eu represents the w-dimensional standard basis
vector corresponding to index u. The aim of the pipeline intervention problem is to modify
the transition matrices between pairs of adjacent layers so as to improve these expected
rewards in some way (we study several objectives) given a finite resource constraint.

We will take the point of view of a centralized designer, who can invest money into
modifying the transition matrices between layers. We assume some edges can be modified,
while some edges cannot; the edges that can be modified are called malleable, and the edges
that cannot be modified are called non-malleable. We denote the set of malleable edges
between layers t and t+1 by Et

mal and the set of non-malleable edges by Et
mal its complement.

Further, we assume that modifying these transitions matrices comes at a cost, and that on a
given layer t, the cost of transforming M0

t to some alternative Mt ∈M is given by:

c(Mt,M
0
t ) ,

∑
(i,j)∈[w]2

∣∣Mt(i, j)−M0
t (i, j)

∣∣ .
I Remark 1. A critique of such cost functions is that they may not be rich enough to model
the cost of improving transitions and opportunities between different stages of, say, the
education pipeline.

To address this, we note that while we focus on these simple cost functions in the main
body of the paper for simplicity of exposition, our algorithmic results (of Sections 4, 5 and 6)
extend to more general and possibly more realistic cost functions – so long as they are
convex and increase at least linearly as the distance

∑
(i,j)∈[w]2

∣∣Mt(i, j)−M0
t (i, j)

∣∣ between
modified transition matrix Mt and initial transition matrix M0

t increases. We discuss this
extension in more detail in the full version [1]

This extension allows us to model more realistic situations such as those where the
cost functions are not linear, but also those where different edges have different costs – as
motivated by the fact that real-life interventions often become more expensive the later they
happen.

The designer has a total budget of B, and can select target transition matrices
(M1, . . . ,Mk−1) so long as the cost of modifying the initial transition matrices to his targets
does not exceed his budget, and only malleable edges have been modified. That is, he must
select target transition matrices subject to the constraint:

k−1∑
t=1

c(Mt,M
0
t ) ≤ B.

ITCS 2021
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We let

F
(
B, M0

1 , . . . , M0
k−1
)

=

{
(M1, . . . , Mk−1) :

k−1∑
t=1

c
(
Mt, M0

t

)
≤ B, Mt ∈M ∀t, Mt(i, j) = M0

t (i, j) ∀(i, j) ∈ Emal
t

}

be the set of feasible sets of transition matrices, given initial matrices M0
1 , . . . ,M

0
k−1 and

budget B. We will consider several objectives that we may wish to optimize. The first is
simply to maximize the overall social welfare (i.e. the expected reward of an individual
chosen according to D1), which is given by

W (M1, . . . ,Mk−1) , R>Mk−1 . . .M1D1.

The second objective aims to compute a “fair” outcome in the sense that it evaluates a
solution according to the expected payoff of the worst-off members of society (here interpreted
as individuals starting at the pessimal initial position), rather than according to the average.
This is the classic maximin objective. It turns out that there are two distinct variants of this
problem, depending on whether one wishes to allow randomized solutions (i.e. distributions
over matrices) or not. We will elaborate on this distinction in the next section, but in the
deterministic variant we wish to optimize

min
j∈[w]

R>Mk−1 . . .M1ej ,

where ej ∈ Rw is the unit vector with ej(j) = 1, and ej(i) = 0 for all i 6= j.

I Remark 2. We have assumed that each layer has exactly w vertices. In fact, all of our
results generalize to the case in which each layer has ≤ w vertices.

2.1 Optimization Problems of Interest
In this paper, we will provide algorithms to solve the following three optimization problems.
We note at the outset that these optimization problems are non-convex, due to the fact that
our objective values are not convex for k ≥ 2. Hence we should not expect efficient algorithms
in the fully general setting; we will give efficient algorithms for networks of constant width w
(i.e. algorithms whose running time is polynomial in the depth of the network k), and show
that outside of this class, the problem is NP hard even to approximate.

Social welfare maximization The first optimization problem we aim to solve is that
of maximizing the social welfare of our network, under our budget constraint:

OPTSW = max
M1,...,Mk−1

R>Mk−1 . . .M1D
0
1

s.t. (M1, . . . ,Mk−1) ∈ F
(
B,M0

1 , . . . ,M
0
k−1
)

(1)

Ex-post maximin problem The second optimization problem aims to maximize the
minimum expected reward that a population can obtain, where the minimum is taken
over all initial positions:

OPTMM = max
M1,...,Mk−1

min
j∈[w]

R>Mk−1 . . .M1ej

s.t. (M1, . . . ,Mk−1) ∈ F
(
B,M0

1 , . . . ,M
0
k−1
)

(2)



E. R. Arunachaleswaran, S. Kannan, A. Roth, and J. Ziani 8:7

Ex-ante maximin problem The third optimization problem has the same objective
as Program 2, but allows randomization over sets of transition matrices that satisfy
the budget constraint. Note that the budget constraint must be satisfied ex-post, for
any realization of the set of transition matrices. To define this optimization prob-
lem, we let ∆F

(
B,M0

1 , . . . ,M
0
k−1
)
the set of probability distributions with support

F
(
B,M0

1 , . . . ,M
0
k−1
)
. The optimization program is given by:

OPTRMM = max
∆M

min
j∈[w]

R>EM∼∆M [Mk−1 . . .M1] ej

s.t. ∆M ∈ ∆F
(
B,M0

1 , . . . ,M
0
k−1
)
, (3)

where the expectation is taken over the randomness of distribution ∆M . Note that where
Program 3 can be viewed as optimizing an ex-ante notion of fairness, in which we are
evaluated on the minimum expected value of individuals starting at any initial position,
before the coins of ∆M are flipped. In contrast, Program 2 evaluates the minimum
expected value of individuals starting at any initial position for an already established
set of transition matrices.

I Remark 3. Programs (1), (2) and (3) all have solutions, and as such the use of maxima
instead of suprema is well defined. To see this, first note that the feasible sets are non-
empty since

(
M0

1 , . . . ,M
0
k−1
)
∈ F

(
B,M0

1 , . . . ,M
0
k−1
)
for all B ≥ 0. For Program (1), the

existence of a maximum is an immediate consequence of the fact that the objective function
is continuous in (M1, . . . ,Mk−1) and F andM are compact sets. For Program (2), note that
no solution can have R>Mk−1 . . .M1ej ≥ ‖R‖∞ for any j, as Mk−1 . . .M1ej is a probability
distribution. Hence, we can rewrite the program as

max
v,M1,...,Mk−1

v

s.t. 0 ≤ v ≤ ‖R‖∞,
R>Mk−1 . . .M1ej ≥ v ∀j ∈ [w],
(M1, . . . ,Mk−1) ∈ F

(
B,M0

1 , . . . ,M
0
k−1
)
.

This is an optimization problem with a continuous objective function over a compact set, so
it admits a solution. A similar argument follows for Program (3).

3 Algorithmic Preliminaries

Our paper uses a dynamic programming approach for solving programs (1) and (2). (Our
solution to program (3) is a game-theoretic reduction to our solution to program (2)). Our
algorithms will search over possible input distributions in D starting from layer Lt for all
t ∈ {2, . . . , k − 2}, and over possible ways of splitting the total budget B and allocating
budget Bt to the transition from layer Lt to layer Lt+1, for all t ∈ [k − 1]. To do so, we will
need to discretize both the budget space [0, B] and the probability space D.

3.1 Cost of Discretizing the Budget

To discretize the budget space, we define B(ε) = {kε, ∀k ∈ N} to be the set of numbers
on the real line that are multiples of ε. We consider the following discretized version of
Program 1:
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OPT ε
SW = max

M1,...,Mk−1
R>Mk−1 . . .M1D1

s.t. c(Mt,M
0
t ) ≤ Bt ∀t ∈ [k − 1]

Bt ∈ B(ε) ∀t ∈ [k − 1],
k−1∑
t=1

Bt ≤ B

Mt(i, j) = M0
t (i, j) ∀(i, j) ∈ Emal

t , Mt ∈M ∀t (4)

Program 2 needs an analogous modification. (We do not need to explicitly consider
Program (3), since our solution for this one will be a reduction to our solution to Program (2).)

We show that this discretization does not affect the optimal value of our problems by
much:

B Claim 4. There exists a feasible solution
(
Mε

1 , . . . ,M
ε
k−1
)
to Program (4) (resp. for the

analogous modification of Program ) with objective value at least OPTSW − (k − 1)ε ‖R‖∞
(resp. OPTMM − (k − 1)ε ‖R‖∞).

We provide a brief proof sketch below, and defer the full proof to the full version [1].

Proof Sketch. We prove this result by constructing transition matrices Mε
t that use roughly

ε budget less than M∗t . We show that we can do so so as to only lose welfare of the order of ε
in each of the k− 1 layer transitions we consider, and that this loss composes additively. C

I Definition 5. Let K ⊆ [0, 1]w. We call a subset S of K an ε-net for K with respect to the
`1-norm if and only if for every D ∈ K, there exists D′ ∈ S such that

‖D −D′‖1 ≤ ε.

B Claim 6 (ε-nets in `1-distance for D). Take ε > 0. There exists an ε-net D(ε) of D with
respect to the `1-norm that has size

( 1
ε

)w.

This is a standard proof, which can be found in the full version of this paper [1].

4 Social Welfare Maximization

We want to solve the following optimization problem:

max
M1,...,Mk−1

R>Mk−1 . . .M1D1

s.t.
k−1∑
t=1

c
(
Mt,M

0
t

)
≤ B,

Mt ∈M ∀t ∈ [k − 1], (5)

4.1 A Dynamic Programming Algorithm for Social Welfare
Maximization

In this section, we describe a dynamic programming algorithm for approximately solving the
problem above on long skinny networks. The algorithm will run in polynomial time when the
width w of the network is small; its running time is polynomial in the depth k of the network,
but exponential in the width w. The formal description can be found in the full version. Our
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algorithm works backwards, starting from the final transition matrix from layer Lk−1 to Lk.
It builds up the solutions to sub-problems parameterized by three parameters – a layer t, a
starting distribution over the vertices in layer t, and a budget B≥t that can be used at layers
≥ t. For each sub-problem, it computes an approximately welfare-optimal solution. Once all
of these sub-problems have been solved, the optimal solution to the original problem can be
read off from the “sub-problem” in which t = 1, the starting distribution is the distribution
on initial positions, and B≥1 = B. Here is the informal description of the algorithm:
1. For t going backwards from k − 1 to 1, the algorithm does the following exploration

over budget splits and probability distributions Dt, Dt+1 ∈ D(ε) (an ε-net for the w-
dimensional simplex in `1 norm) on Lt:
a. The algorithm explores all discretized splits of a budget B≥t to be used for layers t

to k − 1 into a budget Bt to expend on layer t and a budget B≥t+1 to expend on
the remaining layers t+ 1 to k − 1, as well as all choices of target output probability
distribution Dt+1 ∈ D(ε) on layer Lt+1 and the starting probability distribution
Dt ∈ D(ε). Informally, we can think of these “target” and “initial” probability
distributions as guesses for what the distribution on vertices in layer t+ 1 and layer t
look like in the optimal solution. Recall that for each Dt+1 and B≥t+1, our algorithm
has already computed a near-optimal solution for a smaller sub-problem, which we
will utilize in the next step.

b. The algorithm then finds a transition matrix from Lt to Lk that maximizes welfare
when the starting distribution on layer t is Dt and the remaining transition matrices
are fixed as in the solution to the corresponding sub-problem. Although the overall
welfare-maximization problem is non-convex, this sub-problem can be solved as a linear
program (Program 6) because all transition matrices except for one have been fixed as
the solution to our sub-problem.

c. Finally, the algorithm picks and stores the recovered transition matrices from layer Lt

to Lk that yield the highest reward, among all the transition matrices recovered from
step 1b.

We remark that while (for notational simplicity) our algorithm is written as if all layers
have size exactly w, it can easily be extended to the case in which all layers have size at
most w.

We briefly note why Program (6) is a linear program. The objective is linear because
only the matrix Mt represents variables. Thus we simply need to verify that the constraint
on the cost is linear.

I Definition 7. We say that a transition matrix Mt ∈M is feasible with respect to a budget
split B≥t, B≥t+1 if and only if

c
(
Mt,M

0
t

)
≤ B≥t+1 −B≥t.

and Mt(i, j) = M0
t (i, j) for every non-malleable edge (i,j).

Note that saying that Mt feasible with respect to B≥t, B≥t+1 is equivalent to saying that
Mt is a feasible solution to Program (6) with parameters B≥t, B≥t+1, Dt, Dt+1 for any
Dt, Dt+1 ∈ D(ε). The constraint c

(
Mt,M

0
t

)
≤ B≥t+1 − B≥t can be equivalently replaced

by 2w2 + 1 linear constraints. To do so, we introduce w2 variables - a1, a2, · · · aw2 . The
constraint can then be rewritten in the form

∑w2

i=1 |fi| ≤ B≥t+1 − B≥t, where each fi is a
linear combination of the variables. We can thus express the budget constraint of Program 6
by the following set of linear constraints:
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Algorithm 1 Dynamic Program for (Approximate) Social Welfare Maximization.

Input: Input distribution D1, reward vector R, initial transition matrices
M0

1 , . . . ,M
0
k−1, budget B, discretization parameter ε.

Output: Transition M(Bε, D0
1) from L1 to Lk.

Initialization: Let B≥k = 0, M(B≥k, Dk) = I, Bε = max{x ∈ B(ε) : x ≤ B}.
for layer t = k − 1, . . . , 1 do

for all distributions Dt ∈ D(ε) if t 6= 1 (Dt = D0
1 if t = 1) and budgets

B≥t ∈ B(ε) with B≥t ≤ B do
for all distributions Dt+1 ∈ D(ε) and budgets B≥t+1 ≤ B≥t such that
B≥t+1 ∈ B(ε) do

Solve linear program

Mt(B≥t, B≥t+1, Dt, Dt+1) = arg max
Mt

R>M(B≥t+1, Dt+1)MtDt

s.t. c
(
Mt, M0

t

)
≤ B≥t −B≥t+1,

Mt(i, j) = M0
t (i, j) ∀(i, j) ∈ Emal

t

Mt ∈M (6)

end
Pick B≥t+1, Dt+1 leading to the highest objective value in Program 6, and set
M(B≥t, Dt) = M(B≥t+1, Dt+1)Mt(B≥t, B≥t+1, Dt, Dt+1).

end
end
Return M(Bε, D1).

1. fi ≤ ai ∀i ∈ [w2]
2. −fi ≤ ai ∀i ∈ [w2]
3.
∑w2

i=1 ai ≤ B≥t+1 −B≥t.
Thus, Program 6 can be written as a linear program with the number of constraints and
variables being polynomial in w.

4.2 Running Time and Social Welfare Guarantees
We provide the running time and social welfare guarantees of Algorithm 8 below.

I Theorem 8. Algorithm 1 instantiated with discretization parameter ε yields a solu-
tion achieving social welfare at least OPT − 3(k − 1)ε‖R‖∞, and has running time
O
(
kB

ε

( 1
ε

)w2

f(w)
)
, where f(w) is any upper-bound on the running time for solving linear

Program 6, which is always polynomial in w.

This immediately yields the following corollary:

I Corollary 9. Algorithm 1 with discretization parameter ε′ = ε
3(k−1) yields social welfare

at least OPT − ε‖R‖∞, and has running time O
(
k2 B

ε

(
k
ε

)w2

f(w)
)
, where f(w) is any

upper-bound on the running time for solving linear Program 6, which is always polynomial
in w.

We observe that this running time is polynomial in k (the depth of the network) and
1/ε (the inverse additive error tolerance), but exponential in w (the width of the network).
Hence our algorithm runs in polynomial time for the class of constant width networks.
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I Remark 10. We note that our additive near-optimality guarantee can be translated into a
multiplicative guarantee. In the case where all edges are malleable, this follows from noting
that given budget B, OPT ≥ B

2w‖R‖∞: this can be reached by investing the totality of
the budget into transitioning every node in the second-to-last layer to the highest reward
node in the last layer, with probability B

2w for each such node. Taking ε = δ · B
6(k−1)w for

some constant δ < 1 gives a multiplicative approximation to the optimal social welfare with
approximation factor 1− δ.

For the case in which non-malleable edges are allowed, a lower bound on OPT is given
by OPT ≥W0. Taking ε = δ · W0

3(k−1)‖R‖∞ yields a multiplicative 1− δ approximation still.

Proof of Theorem 8

The proof of Theorem 8 relies on the following lemma, and its corollary:

I Lemma 11. Let M ∈ Rw×w be a left stochastic matrix, and let D,D′ ∈ D be probability
distributions.

‖MD −MD′‖1 ≤ ‖D −D′‖1.

Proof. Note that

‖M(D −D′)‖1 =
w∑

i=1
|(M(D −D′)) (i)| =

w∑
i=1

∣∣∣∣∣∣
w∑

j=1
M(i, j)(D(j)−D′(j))

∣∣∣∣∣∣
≤

w∑
i=1

w∑
j=1
|M(i, j)(D(j)−D′(j))|

=
w∑

j=1
|D(j)−D′(j)|

w∑
i=1
|M(i, j)|

=
w∑

j=1
|D(j)−D′(j)|

= ‖D −D′‖1,

where the inequality follows from the triangle inequality, and the second-to-last equality from
the fact that

w∑
i=1
|M(i, j)| =

w∑
i=1

M(i, j) = 1 ∀j ∈ [w]

as M is a left stochastic matrix. J

I Corollary 12. Let R ∈ Rw be a real vector and D,D′ ∈ D be probability distributions such
that ‖D −D′‖1 ≤ ε, and M ∈ Rw×w a left stochastic matrix. Then

R>MD ≥ R>MD′ − ‖R‖∞ · ε.

Proof of Corollary 12. ‖R>M(D′ − D)‖1 ≤ ‖R‖∞‖M(D′ − D)‖1 ≤ ‖R‖∞‖D′ − D‖1 ≤
‖R‖∞ · ε , where the first step follows from Holder’s inequality. J

We are now ready to prove Theorem 8:
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Proof of Theorem 8. Let us denote by Bε
1, . . . , B

ε
k−1 a split of the budget for the discretized

problem with Bε
≥t = Bε

t +. . .+Bε
k−1. LetMε

1 , . . . ,M
ε
k−1 a set of transition matrices achieving

welfare R>Mε
k−1 . . .M

ε
1D

0
1 ≥ OPT ε , OPT − (k− 1)ε ‖R‖∞ that is feasible with respect to

budget split Bε
1, . . . , B

ε
k−1. Note that such a budget split and matrices exist by Claim 4. Let

Dε
t the probability distribution on layer t defined by these transition matrices, i.e.

Dε
t = Mε

t−1 . . .M
ε
1D

0
1.

To prove the result, we will show by induction that for all B≥t ≥ Bε
≥t, and for Dt ∈ D(ε)

such that ‖Dt −Dε
t ‖1 ≤ ε,

R>M(B≥t, Dt)Dt ≥ OPT ε − 2(k − t)ε‖R‖∞.

This will directly imply that as Bε is one of the possible values of B≥1,

R>M(Bε, D1)D1 ≥ OPT ε − 2(k − 1)ε ‖R‖∞ .

Combined with Claim 4 that states OPTε ≥ OPT − (k− 1)ε ‖R‖∞, we will obtain the result.
Let us now provide our inductive proof. First, consider the transition from layer Lk−1 to

layer Lk. Note that

OPT ε ≤ R>Mε
k−1 . . .M

ε
1D

0
1 = R>Mε

k−1D
ε
k−1.

Let Dk−1 ∈ D(ε) be such that ‖Dk−1 −Dε
k−1‖ ≤ ε. Note then that by Corollary 12,

R>Mε
k−1Dk−1 ≥ R>Mε

k−1D
ε
k−1 − ε‖R‖∞.

Further, Mε
k−1 is feasible for Program (6) with respect to B≥k−1, B≥k = 0, given B≥k−1 ≥

Bε
≥k−1. As such, for B≥k−1 ≥ Bε

≥k−1, we have that

R>M(B≥k−1, Dk−1)Dk−1 ≥ R>Mε
k−1Dk−1,

and in turn

R>M(B≥k−1, Dk−1)Dk−1 ≥ OPT ε − ε‖R‖∞.

Now, suppose the induction hypothesis holds at layer t+ 1. I.e., for all B≥t+1 ≥ Bε
≥t+1,

for Dt+1 ∈ D(ε) such that ‖Dt+1 −Dε
t+1‖1 ≤ ε,

R>M(B≥t+1, Dt+1)Dt+1 ≥ OPT ε − 2(k − t− 1)ε‖R‖∞.

For any B≥t ≥ Bε
≥t, note that one can set B≥t+1 = Bε

≥t+1 and Bt ≥ Bε
t ; hence, Mε

t

is feasible for Program (6) with respect to Bt ≥ Bε
t , B

ε
≥t+1. Since ‖Dt − Dε

t ‖1 ≤ ε and
‖Dt+1 −Mε

t D
ε
t ‖1 ≤ ε, we have that by Corollary 12,

R>M(Bε
≥t+1, Dt+1)Mε

t Dt ≥ R>M(Bε
≥t+1, Dt+1)Mε

t D
ε
t − ε‖R‖∞

≥ R>M(Bε
≥t+1, Dt+1)Dt+1 − 2ε‖R‖∞.

Using the induction hypothesis, we obtain that R>M(Bε
≥t+1, Dt+1)Mε

t Dt ≥ OPT ε − 2(k −
t)ε‖R‖∞. In particular, we get

R>M(B≥t, Dt)Dt ≥ OPT ε − 2(k − t)ε‖R‖∞,

which concludes the proof of the social welfare guarantee. For the running time, we note that
at each time step t, we solve one instance of Program 6 for each of the (at most) B

ε possible
budget splits of B≥t and for each of the

( 1
ε

)w (by Claim 6) probability distributions in D(ε)
in layer Lt and layer Lt+1; i.e., for each t, the algorithm solves O

(
B
ε

( 1
ε

)w2)
optimization

programs. Then, the algorithm finds the solution of all of these programs with the best
objective value, which can be done in time linear in the number of such solutions, i.e.
O
(

B
ε

( 1
ε

)w2)
. This is repeated for k − 1 values of t. J
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5 (Ex-post) Maximin Value Maximization

Although social welfare maximization is a natural objective, it is well-known that it can
be “unfair” in the sense that it explicitly prioritizes the welfare of larger populations (here
represented as initial positions that have larger probability mass) over smaller populations.
We can alternately evaluate a solution according to the welfare of the least-well-off population
(here represented by the initial position with the smallest expected value) and ask to optimize
that objective. We show how to optimize this objective in this section, when one demands a
deterministic solution.

5.1 A Dynamic Programming Algorithm for Computing an Ex-post
Maximin Allocation

In this subsection, we adapt the dynamic programming approach in Section 4.1 to give an
approximation algorithm for the problem of maximizing the minimum expected reward over
all initial positions. Recall that D, the probability simplex, denotes the set of all possible
probability distributions on a layer. Intuitively, our algorithm for maximizing social welfare
kept track of a single probability distribution in each subproblem: the overall probability
of arriving at each vertex in the layer over both the randomness of an individual’s initial
position, and the randomness of the transition matrix. In order to optimize the minimum
expected value over all initial positions, we will need to keep track of more state. At every
layer Lt, we will keep track of the probability of reaching each vertex in that layer from
each initial position in the starting layer. So, we will now keep track of collections of w
probability distributions in Dw, one for each starting position. We call the elements of Dw

population-wise distributions.
We introduce a discretization A(ε) of Dw, as follows: A(ε) , (D(ε))w, where D(ε) denotes

a ε-net of D (of size
( 1

ε

)w). Given a population-wise probability distribution At ∈ A(ε) at
layer t, we write Aj

t for the probability distribution corresponding to population j. The
algorithm works as follows, just as before, running backwards from the final layer to the first
layer. We describe the algorithm below informally, a formal presentation may be found in
the full version [1].

5.1.1 Algorithm
1. For t going backwards from k − 1 to 1, the algorithm does the following, for every

population-wise distribution At ∈ A(ε) on Lt:
a. The algorithm explores all splits of the budget B≥t for layers t to k into a budget Bt

for the transition from Lt to Lt+1 and a budget B≥t+1 for Lt+1 to Lk, as well as all
choices of output population-wise probability distributions At+1 ∈ A(ε) on layer Lt+1.

b. The algorithm then finds a near-optimal transition matrix from Lt to Lk for every
budget decomposition, by using the previously computed near-optimal solution for
layers Lt+1 to Lk, and solving a program similar to Program 6. The program maximizes
the minimum reward obtained from any initial position, assuming the population-wise
distribution of individuals at layer Lt is given by At.

c. Finally, the algorithm picks and stores the best recovered transition matrices from layer
Lt to Lk that yield the highest reward, among all the transition matrices recovered
from step 1b.

The input population-wise probability distribution A1 ∈ Dw on the first layer is defined in
the following manner, Aj

1 := ej (the j-th basis vector in the usual orthonormal basis of Rw)
for all j ∈ [w].
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Note that the Program in step 1b can be written as a linear program of size polynomial
in w, using the same method that was employed to write Program (6) as a linear program.

5.2 Running Time and Ex-Post Maximin Value Guarantees
Remember that we let OPTMM denote the maximin value value of the given network. The
running time and accuracy guarantees of the described Algorithm are provided below:

I Theorem 13. The Algorithm described in Section 5.1.1 with discretization parameter
ε yields maximin value at least OPTMM − 3(k − 1)ε‖R‖∞, and has running time
O
(
kB

ε

( 1
ε

)w4

g(w)
)
, where g(w) is any upper-bound on the running time for solving the

linear Program in Step 1b, which is always polynomial in w.

This immediately implies the following corollary:

I Corollary 14. The algorithm described in 5.1.1 with discretization parameter ε′ = ε
3(k−1)

yields maximin value at least OPTMM − ε‖R‖∞, and has running time O
(
k2 B

ε

(
k
ε

)w4

g(w)
)
,

where g(w) is a polynomial upper-bound on the running time of the linear Program in Step 1b.

The proof of Theorem 13 is almost identical to that of Theorem 8. We provide a complete
proof in the full version [1].

6 (Ex-ante) Maximin Value Maximization

In this section, we consider the problem of optimizing the ex-ante minimum expected value
over all initial positions: in other words, we allow ourselves to find a distribution over
solutions, and take expectations over the randomness of this distribution, solving:

max
∆M

min
j∈[w]

R>EM∼∆M [Mk−1 . . .M1] ej

s.t. ∆M ∈ ∆F
(
B,M0

1 , . . . ,M
0
k−1
)

(7)

We show in the full version [1] that this can yield strictly higher utility than optimizing
the ex-post minimum value. We then give an algorithm for solving the ex-ante problem by
exhibiting a game theoretic reduction to the ex-post problem.

6.1 Solving the Ex-ante Maximization Problem Using Algorithm 1
Because Program 3 is a max min problem over a polytope, we can view it as a zero-sum game,
and the solution that we want corresponds to a maxmin equilibrium strategy of this game. As
first shown by Freund and Schapire[11], it is possible to compute an approximate equilibrium
of a zero-sum game if we can implement a no-regret learning algorithm for one of the players,
and an approximate best-response algorithm for the other player: if we simply simulate
repeated play of the game between a no-regret player and a best-response player, then the
empirical average of player actions in this simulation converges to the Nash equilibrium of
the game.

This forms the basis of our algorithm. One player plays the “multiplicative weights”
algorithm over the initial positions in layer 1 of the graph. This induces at every round a
distribution over initial positions. The best response problem, which must be solved by the
other player, corresponds to solving a welfare-maximization problem given the distribution
over initial positions represented by the multiplicative weights distribution. Fortunately, this
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is exactly the problem that we have already given a dynamic programming solution for. The
solution in the end corresponds to the uniform distribution over the solutions computed
by the best-response player over the course of the dynamics. The algorithm is described
formally in the full version [1].

Algorithm 2 2-Player Dynamics for the Ex-Ante Maximin Problem.

Input: Time horizon T , reward vector R on layer Lk, initial transition matrices
M0

1 , . . . ,M
0
k−1, budget B, discretization parameter ε.

Output: M1, . . . ,MT ∈ F
(
B,M0

1 , . . . ,M
0
k−1
)
.

Initialization: The no-regret player picks D1 =
( 1

w , . . . ,
1
w

)
∈ D, the uniform

distribution over [w].
for t = 1, . . . , T do

The no-regret player plays distribution Dt ∈ D.
The best-response player chooses M t ∈ F

(
B,M0

1 , . . . ,M
0
k−1
)
such that

R>M t
k−1 . . .M

t
1D

t ≥ max
M∈F

R>Mk−1 . . .M1D
t − ε ‖R‖∞ ,

using Algorithm 1.
The no-regret player observes ut

i = R>Mt
k−1...Mt

1ei

‖R‖∞ for all i ∈ [w], and picks Dt+1

via multiplicative weight update, as follows:

Dt+1(i) = Dt(i)βut
i∑w

j=1D
t(j)βut

j

∀i ∈ [w],

with β = 1
1+
√

2 ln w
T

∈ [0, 1).

end

I Lemma 15. Let T > 0, ∆M be the probability distribution that picks (M1, . . . ,Mk−1) ∈
F(B,M0

1 , . . . ,M
0
k ) with probability

1
T

T∑
t=1

1
{

(M1, . . . ,Mk−1) =
(
M t

1, . . . ,M
t
k−1
)}
,

where M1, . . . ,MT are the outputs of Algorithm 2. Then ∆M
(
ε+

√
2 ln w

T + ln w
T

)
‖R‖∞-

approximately optimizes Program 3.

The proof of Lemma 15 follows from interpreting Program 3 as zero-sum game, noting
that the best response problem for the maximization player corresponds to the welfare-
maximization problem for which we have an efficient algorithm, and then applying the
no-regret dynamic analysis from Freund and Schapire [11]. The details are provided in the
full version [1].

7 Price of Fairness

In this section, we compute lower bounds on a notion of “price of fairness”, and we show
these lower bounds are tight when restricting attention to pipelines whose edges are all
malleable. Specifically, we compare the optimal welfare achievable with the welfare that is

ITCS 2021
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achievable if we instead use our budget to maximize the minimum value over initial positions
– i.e. if we solve the maximin problem. We focus on the ex-post maximin problem – i.e. we
prove our bounds with respect to deterministic solutions. We note that there may be many
different maximin optimal solutions that differ in their overall welfare, and so we consider
two variants of the price of fairness in our setting – comparing with both the maximum
welfare consistent with a maximin optimal solution, and the minimum welfare consistent
with a maximin optimal solution.

Let OPTSW the optimal value of Program (1) (the optimal social welfare). Let Sf be
the set of solutions to Program (2) (the deterministic maximin problem). Further, define

W (M1, . . . ,Mk−1) , R>Mk−1 . . .M1D
0
1

to be the social welfare achieved by transition matrices M1, . . . ,Mk−1, and

W+
fair , max

(M1,...,Mk−1)∈Sf
W (M1, . . . ,Mk−1),

W−fair , min
(M1,...,Mk−1)∈Sf

W (M1, . . . ,Mk−1)

to be the maximum and minimum social welfare respectively that are consistent with
maximin optimal solutions. We define two variants of “the price of fairness” in our setting
as: P+

f , OP TSW

W +
fair

≥ 1, and

P−f , OP TSW

W−
fair

≥ 1.

Note that P+
f ≤ P

−
f always, as P+

f compares the optimal social welfare with the solution
of Program 2 with highest social welfare , while P−f considers the solution that has the lowest
social welfare. We provide matching lower bounds on P+

f and upper bounds on P−f . This, in
turn, provides tight bounds on the price of fairness with respect to any choice of maximin
solution.

7.1 Lower Bounds on P +
f

Our lower bounds are based on the following construction:

I Example 16. Consider a network with only two layers, L1 and L2, such that L1
has w nodes and L2 has 2 nodes. Suppose the starting distribution is given by D0

1 =
(1− (w − 1)ε, ε, . . . , ε)> for ε > 0 small enough, the reward vector is given by R = (1, 0)>,
and the initial transition matrix M0

1 is given by

M0
1 =

(
0 . . . 0
1 . . . 1

)
.

I.e., in the initial transition matrix, every starting node transitions to the destination node
that has reward 0, and the welfare of the initial network is 0. We assume all edges are
malleable.

I Theorem 17. For all w ∈ N, for any δ > 0, there exists a network with k = 2 with price
of fairness

Pf ≥


w − δ if 0 < B ≤ 2
2w
B − δ if 2 < B ≤ 2w

1 if B ≥ 2w
.

The proof follows from solving the social welfare maximization problem and the maximin
value problem on Example 16. The complete proof is provided in the full version [1].
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7.2 Upper Bounds on P −
f

Importantly, in this section, we restrict ourselves to pipelines such that all edges are malleable.
In this case, we show upper bounds that tightly match the lower bounds of Section 7.1.

Our upper bounds will make use of the following claim, which bounds the maximum
social welfare that can be achieved under budget B.

I Lemma 18.

OPTSW ≤ ‖R‖∞ and OPTSW ≤W 0 + B

2 ‖R‖∞ ,

where W 0 = R>M0
k−1 . . .M

0
1D

0
1 is the initial welfare.

The proof of this lemma is straightforward and is deferred to the full version [1].We will
also need lower bounds on the social welfare achieved by any optimal solution to the maximin
program. The first lower bound is a function of B and w, but is independent of W 0.

I Lemma 19. When all edges are malleable, for any
(
Mf

1 , . . . ,M
f
k−1

)
∈ Sf ,

W
(
Mf

1 , . . . ,M
f
k−1

)
≥ min

(
1, B2w

)
‖R‖∞ .

The proof of Lemma 19 is deferred to the full version [1]. The second lower bound we need
shows that the social welfare achieved by a solution to Program (2) is lower-bounded by the
initial social welfare W 0 = R>M0

k−1 . . .M
0
1D

0
1.

I Lemma 20. When all edges are malleable, for any
(
Mf

1 , . . . ,M
f
k−1

)
∈ Sf ,

W
(
Mf

1 , . . . ,M
f
k−1

)
≥W 0.

We defer the full proof of Lemma 20 to the full version [1]. We can now use Lemmas 18, 19
and 20 to derive nearly tight upper bounds on the price of fairness with respect to the worst
maximin solution:

I Theorem 21. For every instance of the problem in which edges are malleable, we have that

P−f ≤


w + 1 if 0 < B ≤ 2
2w
B if 2 < B ≤ 2w

1 if B ≥ 2w
.

Proof. We divide the proof in three cases:
1. B ≥ 2w. By Lemma 19, it must be the case that any optimal solution to Program (2)

has welfare at least min
(
1, B

2w

)
‖R‖∞ = ‖R‖∞. It is then immediately the case that

OPTSW = ‖R‖∞ by Lemma 18 and Pf = 1.
2. 2 < B ≤ 2w. By Lemma 18, we have OPTSW ≤ ‖R‖∞. Further, by Lemma 19, we have

that any solution to Program (2) has welfare at least B
2w ‖R‖∞. This immediately yields

the result.
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3. 0 < B ≤ 2. By Lemma 18, we have OPTSW ≤W 0 + B
2 ‖R‖∞. By Lemmas 19 and 20, we

have that the social welfare of any maximin solution is at least W 0 and at least B
2w ‖R‖∞.

Therefore, the price of fairness is upper-bounded on the one hand by

P−f ≤
W 0 + B

2 ‖R‖∞
W 0 = 1 +

B
2 ‖R‖∞
W 0

and on the other hand by

P−f ≤
W 0 + B

2 ‖R‖∞
B
2w ‖R‖∞

= w + W 0

B
2w ‖R‖∞

.

When W 0 ≥ B
2w ‖R‖∞, the first bound gives P−f ≤ 1 +

B
2 ‖R‖∞
B

2w ‖R‖∞
= w + 1,

and when W 0 ≤ B
2w ‖R‖∞, the second bound yields P−f ≤ w +

B
2w ‖R‖∞
B

2w ‖R‖∞
= w + 1,

which concludes the proof. J

8 Hardness of Approximation

In this section, we show that the problem of finding the ex-post maximin value of a pipeline
intervention problem instance within an approximation factor of 2 is NP-hard in the general
case, where the width w of the network is not bounded. More specifically, we show that no
algorithm that has a time bound polynomial in w, k and B can give a 2-approximation to the
maximin value unless P = NP . This hardness result holds for k as small as 17. We remark
that our result and proof can be immediately extended to show hardness of C-approximation,
for any constant C, for an appropriate choice of constant depth k.

We show this hardness result via a reduction from a gap version of the vertex cover
problem. The result of Dinur and Safra [8] shows that it is NP-hard to approximate the
minimum vertex cover by a factor smaller than 1.306. In particular, their result shows that
the following gap version of vertex cover is NP-hard: given (G, κ), we wish to either know if
the graph G has a vertex cover of size κ, or has no vertex cover smaller than size 1.306κ.

We provide a description of out reduction below, and defer a formal statement along with
a complete proof to the full version [1].

8.1 The Reduction
Our reduction works as follows: we construct a pipeline intervention instance of constant
width (17 layers) from the given graph. The first layer has a node corresponding to each edge
(u, v) of the original graph, and is connected by edges to nodes corresponding to vertices u
and v on the second layer. We set up the instance so that positive probability mass is only
ever added to a set of edge disjoint paths, where each path corresponds to a vertex in the
original graph. These paths are shown by the dark, solid lines in Figure 1. The main idea
behind the reduction is the following - by observing how allocations finding the maximin
value split the budget over these edge disjoint paths, we can find out which vertices would
form a small vertex cover of the original graph.

Formally, let the given graph G = (V, E) we reduce from have n vertices (|V| = n) and m
edges (|E| = m). We construct of a pipeline intervention problem instance I ′ with k+2 layers
and width w, where k = 15 and w is polynomial in n. The instance I ′ has an associated
budget B(κ, ε) = 2kκε where ε < 1

2 . For the sake of clarity, we refer to the set of vertices V
in the vertex cover instance as “vertices” and the vertices in the instance I ′ as “nodes”. A
complete description of instance I ′ is as follows:
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Figure 1 Constructed Instance of the Pipeline Intervention problem.

1. The first layer, L1, has exactly m nodes, with each edge (u, v) in graph G having a unique
corresponding node of the same label in layer L1.

2. The second layer has exactly n nodes, with each vertex v in graph G, having a unique
corresponding node in layer L2 with label v2.

3. The next k − 1 layers are of the following form - layer Li, for i = 3 to k + 1, has n+ 1
nodes. The first n nodes have labels from the set {vi}v∈V , i..e, each vertex v in the
original graph G has a corresponding node vi in layer Li. The last node is indexed by
xi and exists to capture the “leftover” outward probability from the nodes {vi−1}v∈V in
layer Li−1.

4. The final layer Lk+2 has two reward nodes - y, of reward 1 and z, of reward 0.
We now describe the initial transition matrices.
1. From layer L1 to layer L2: for every node (u, v) in layer L1, the outgoing probability is

equally split between edges to nodes u1 and v1 in layer L2, i.e., edges ((u, v), u1) and
((u, v), v1) each have probability 1

2 .
2. From layer Li to layer Li+1 for i = 2 to k: For all vertices v ∈ V (i.e., the original graph),

the corresponding edge (vi, vi+1) (in our construction) has probability ε. The remaining
outgoing probability out of node vi goes to the leakage node xi+1. We call edges of
the form (vi, xi+1) “leakage” edges. For i ≥ 3, the edge (xi, xi+1) has all the outward
probability, i.e., 1, from node xi.

3. From layer Lk+1 to layer Lk+2: each node in layer Lk+1 is connected to z, the zero reward
node, with probability 1.

We let Pv be the path going through nodes v2, v3 · · · vk+1, y in our construction. We will
refer to {Pv}v∈V as vertex paths. Let E′ be the set of edges found on paths {Pv}v∈V . Let
E′′ contain of all the “leakage” edges in the instance I ′ ,i.e., edges of the form (vi, xi+1) as
well as all edges of the form (vk+1, z). We stipulate, as part of the description of the instance,
that E′ ∪ E′′ is the set of malleable edges in I ′ and that the probability mass on any other
edge cannot be changed. This completes the description of instance I ′.
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Abstract
We show that there is an equation of degree at most poly(n) for the (Zariski closure of the) set of
the non-rigid matrices: that is, we show that for every large enough field F, there is a non-zero
n2-variate polynomial P ∈ F[x1,1, . . . , xn,n] of degree at most poly(n) such that every matrix M

which can be written as a sum of a matrix of rank at most n/100 and a matrix of sparsity at most
n2/100 satisfies P (M) = 0. This confirms a conjecture of Gesmundo, Hauenstein, Ikenmeyer and
Landsberg [8] and improves the best upper bound known for this problem down from exp(n2) [11, 8]
to poly(n).

We also show a similar polynomial degree bound for the (Zariski closure of the) set of all matrices
M such that the linear transformation represented by M can be computed by an algebraic circuit
with at most n2/200 edges (without any restriction on the depth). As far as we are aware, no such
bound was known prior to this work when the depth of the circuits is unbounded.

Our methods are elementary and short and rely on a polynomial map of Shpilka and Volkovich [17]
to construct low degree “universal” maps for non-rigid matrices and small linear circuits. Combining
this construction with a simple dimension counting argument to show that any such polynomial
map has a low degree annihilating polynomial completes the proof.

As a corollary, we show that any derandomization of the polynomial identity testing problem
will imply new circuit lower bounds. A similar (but incomparable) theorem was proved by Kabanets
and Impagliazzo [10].
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1 Introduction

1.1 Equations for varieties in algebraic complexity theory
Let V ⊆ Fn be a (not necessarily irreducible) affine variety and let I(V ) denote its ideal.2 A
non-zero polynomial P ∈ I(V ) is called an equation for V . An equation for V may serve as a
“proof” that a point x ∈ Fn is not in V , by showing that P (x) 6= 0.

A fundamental observation of the Geometric Complexity Theory program is that many
important circuit lower bounds problems in algebraic complexity theory fit naturally into
the setting of showing that a point x lies outside a variety V [15, 5]. In this formulation,
one considers V to be the closure of a class of polynomials of low complexity, and x is the
coefficient vector of the candidate hard polynomial.

1 A part of this work was done while at the Center for the Mathematics of Information, California Institute
of Technology, USA.

2 For completeness, we provide the formal (standard) definitions for these notions in Subsection 1.4.
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Let ∆(V ) := min0 6=P∈I(V ){deg(P )}. The quantity ∆(V ) can be thought of as a measure
of complexity for the geometry of the variety V . The quantity ∆(V ) is a very coarse
complexity measure. A recent line of work regarding algebraic natural proofs [7, 9] suggests
to study the arithmetic circuit complexity of equations for varieties V that correspond to
polynomials with small circuit complexity. Having ∆(V ) growing like a polynomial in n is a
necessary (but not a sufficient) condition for a variety V to have an algebraic natural proof
for non-containment.

1.2 Rigid matrices
A matrix M is (r, s)-rigid if M cannot be written as a sum R + S where rank(R) ≤ r and
S contains at most s non-zero entries. Valiant [18] proved that if A is (εn, n1+δ)-rigid for
some constants ε, δ > 0 then A cannot be computed by arithmetic circuits of size O(n) and
depth O(logn), and posed the problem of explicitly constructing rigid matrices with these
parameters, which is still open. It is easy to prove that most matrices have much stronger
rigidity parameters: over algebraically closed fields a generic matrix is (r, (n− r)2)-rigid for
any target rank r.

Let F be an algebraically closed field. Let Ar,s ⊆ Fn×n denote the set of matrices which
are not (r, s)-rigid. Let Vr,s = Ar,s denote the Zariski closure of Ar,s. A geometric study of
Vr,s was initiated by Kumar, Lokam, Patankar and Sarma [11]. Among other results, they
prove that for every s < (n− r)2, ∆(Vr,s) ≤ n4n2 . A slightly improved (but still exponential)
upper bound was obtained by Gesmundo, Hauenstein, Ikenmeyer and Landsberg [8], who
also conjectured that for some ε, δ > 0, ∆(Vεn,n1+δ) grows like a polynomial function in n.
The following theorem which we prove in this note confirms this conjecture.

I Theorem 1. Let ε < 1/25, and let F be a field of size at least n2. For every large enough
n, there exists a non-zero polynomial Q ∈ F[x1,1, . . . , xn,n], of degree at most n3, which is
a non-trivial equation for matrices which are not (εn, εn2)-rigid. That is, for every such
matrix M , Q(M) = 0.

In fact, the conjecture of [8] was slightly weaker: they conjectured that ∆(U) is polynomial
in n for every irreducible component U of Vεn,n1+δ . As shown by [11], the irreducible com-
ponents are in one-to-one correspondence with subsets of [n]× [n] of size n1+δ corresponding
to possible supports of the sparse matrix S.

As we observe in Remark 6, it is somewhat simpler to show that each of these irreducible
components has an equation with a polynomial degree bound. However, since the number of
such irreducible components is exponentially large, it is not clear if there is a single equation
for the whole variety which is of polynomially bounded degree. We do manage to reverse the
order of quantifiers and prove such an upper bound in Theorem 1. This suggests that the
set of non-rigid matrices is much less complex than what one may suspect given the results
of [11, 8].

1.3 Circuits for linear transformations
The original motivation for defining rigidity was in the context of proving lower bounds for
algebraic circuits [18]. If A ∈ Fn×n is an (εn, n1+δ)-rigid matrix, for any ε, δ > 0, then the
linear transformation represented by A cannot be computed by an algebraic circuit of depth
O(logn) and size O(n).

Every algebraic circuit computing a linear transformation is without loss of generality a
linear circuit. A linear circuit is a directed acyclic graph that has n inputs labeled X1, . . . , Xn

and n output nodes. Each edge is labeled by a scalar α ∈ F. Each node computes a linear
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function in X1, . . . , Xn defined inductively. An internal node u with children, v1, . . . , vk,
connected to it by edges labeled α1, . . . , αk, computes the linear function

∑
i αi`vi , where

`vi is the linear function computed by vi, 1 ≤ i ≤ k. The size of the circuit is the number of
edges in the circuit.

It is possible to use similar techniques to those used in the proof of Theorem 1 in order
to prove a polynomial upper bound on an equation for a variety containing all matrices
A ∈ Fn×n whose corresponding linear transformation can be computed by an algebraic circuit
of size at most n2/200 (even without restriction on the depth). Note that this is nearly
optimal as any such linear transformation can be computed by a circuit of size n2. More
formally, we show the following.

I Theorem 2. Let F be a field of size at least n2. For every large enough n, there exists
a non-zero polynomial Q ∈ F[x1,1, . . . , xn,n], of degree at most n3, which is a non-trivial
equation for matrices which are computed by algebraic circuit of size at most n2/200.

Our proofs are based on a dimension counting arguments, and are therefore non-
constructive and do not give explicit equations for the relevant varieties. It thus remains a
very interesting open problem to provide explicit low-degree equations for any of the varieties
considered in this paper. Here “explicit” means a polynomial which has arithmetic circuits
of size poly(n).3 The question of whether such equations exists has a win-win flavor: if they
do, this can aid in explicit constructions of rigid matrices, and on the other hand, if all equa-
tions are hard, we have identified a family of polynomials which requires super-polynomial
arithmetic circuits. Assuming the existence of a polynomial time algorithm for polynomial
identity testing, we are able to make this connection formal.

Let PIT denote the set of strings which describe arithmetic circuits (say, over C) which com-
pute the zero polynomial. It is well known that PIT ∈ coRP. Kabanets and Impagliazzo [10]
proved that certain circuit lower bounds follow from the assumption that PIT ∈ P. As a
corollary to Theorem 2, we are able to prove theorem of a similar kind.

I Corollary 3. Suppose PIT ∈ P. Then at least one of the following is true:
1. There exists a family of n-variate polynomials of degree poly(n) over C, which can be

computed (as its list of coefficients, given the input 1n) in PSPACE, which does not have
polynomial size constant free arithmetic circuits.

2. there exists a family of matrices, constructible in polynomial time with an NP oracle
(given the input 1n), which requires linear circuits of size Ω(n2).

A constant free arithmetic circuit is an arithmetic circuit which is only allowed to use the
constants {0,±1}.

A different way to interpret Corollary 3 is as saying that at least one of the following
three lower bound results hold: either PIT 6∈ P, or (at least) one of the two circuit lower
bounds stated in the corollary. We emphasize that the result holds under any (even so-called
white box) derandomization of PIT.

Our statement is similar to, but incomparable with the result of Kabanets and Im-
pagliazzo [10] who proved that if PIT ∈ P then either the permanent does not have polynomial
size constant free arithmetic circuits, or NEXP 6⊆ P/poly.

Since (εn, εn2)-rigid matrices have linear circuit of size 3εn2, the last item of Corollary 3
in particular implies a conditional construction of (Ω(n),Ω(n2))-rigid matrices (it is also
possible to directly use Theorem 1 instead of Theorem 2 to deduce this result). Unconditional

3 Although one may consider other, informal notions of explicitness which could nevertheless be helpful.
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constructions of rigid matrices in polynomial time with an NP oracle were recently given
in [2, 3]. However, the rigidity parameters in these papers are not enough to imply circuit
lower bounds (furthermore, even optimal rigidity parameters are not enough to imply Ω(n2)
lower bounds for general linear circuits).

Since it is widely believed that PIT ∈ P, the answer to which of the last two items of
Corollary 3 holds boils down to the question of whether there exists an equation for non-rigid
matrices of degree poly(n) and circuit size poly(n). If determining if a matrix is rigid is
coNP-hard (as is known for some restricted ranges of parameters [13]), it is tempting to
also believe that the equations should not be easily computable, as they provide “proof” for
rigidity which can be verified in randomized polynomial time. However, it could still be the
case that those equations that have polynomial size circuits only prove the rigidity of “easy”
instances.

1.4 Some basic notions in algebraic geometry
For completeness, in this section we define some basic notions in algebraic geometry. A
reader who is familiar with this topic may skip to the next section.

Let F be an algebraically closed field. A set V ⊆ Fn is called an affine variety if there exist
polynomials f1, . . . , ft ∈ F[x1, . . . , xn] such that V = {x : f1(x) = f2(x) = · · · = ft(x) = 0}.
For convenience, in this paper we often refer to affine varieties simply as varieties.

For each variety V there is a corresponding ideal I(V ) ⊆ F[x1, . . . , xn] which is defined as

I(V ) := {f ∈ F[x1, . . . , xn] : f(x) = 0 for all x ∈ V }.

Conversely, for an ideal I ⊆ F[x1, . . . , xn] we may define the variety

V(I) = {x : f(x) = 0 for all f ∈ I}.

Given a set A ⊆ Fn we may similarly define the ideal I(A). The (Zariski) closure of
a set A, denoted A, is the set V(I(A)). In words, the closure of A is the set of common
zeros of all the polynomials that vanish on A. It is also the smallest variety with respect to
inclusion which contains A. By construction, A is a variety, and a polynomial which vanishes
everywhere on A is also vanishes on A.

Over C, it is instructive to think of the Zariski closure of A as the usual Euclidean closure.
In fact, for the various sets A we consider in this paper (which correspond to sets of “low
complexity” objects, e.g., non-rigid matrices or matrices which can be computed with a small
circuit), it can be shown that these two notions of closure coincide (see, e.g., Section 4.2 of
[4]).

A variety V is called irreducible if it cannot be written as a union V = V1 ∪V2 of varieties
V1, V2 that are properly contained in V . Every variety can be uniquely written as a union
V = V1 ∪ V2 ∪ · · · ∪ Vm of irreducible varieties. The varieties V1, . . . , Vm are then called the
irreducible components of V .

2 Degree Upper Bound for Non-Rigid Matrices

In this section, we prove Theorem 1. A key component of the proof is the use of the following
construction, due to Shpilka and Volkovich, which provides an explicit low-degree polynomial
map on a small number of variables, which contains all sparse matrices in its image. For
completeness, we provide the construction and prove its basic property.
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I Lemma 4 ([17]). Let F be a field such that |F| > n. Then for all k ∈ N, there exists an
explicit polynomial map SVn,k(x,y) : F2k → Fn of degree at most n such that for any subset
T = {i1, . . . , ik} ⊆ [n] of size k, there exists a setting y = α such that SV(x,α) is identically
zero on every coordinate j 6∈ T , and equals xj in coordinate ij for all j ∈ [k].

Proof. Arbitrarily pick distinct α1, . . . αn ∈ F, and let u1, . . . , un be their corresponding
Lagrange’s interpolation polynomials, i.e., polynomials of degree at most n − 1 such that

ui(αj) = 1 if j = i and 0 otherwise (more explicitly, ui(z) =
∏

j 6=i
(z−αj)∏

j 6=i
(αi−αj)

).

Let Pi(x1, . . . , xk, y1, . . . , yk) =
∑k
j=1 ui(yj) · xj , and finally let

SVn,k(x,y) = (P1(x,y), . . . , Pn(x,y)).

It readily follows that given T = {i1, . . . , ik} as in the statement of the lemma, we can set
yj = αij for j ∈ [k] to derive the desired conclusion. The upper bound on the degree follows
by inspection. J

As a step toward the proof of Theorem 1, we show there is a polynomial map on much
fewer than n2 variables with degree polynomially bounded in n such that its image contains
every non-rigid matrix. In the next step, we show that the image of every such polynomial
map has an equation of degree poly(n).

I Lemma 5. There exists an explicit polynomial map P : F4εn2 → Fn×n, of degree at most
n2, such that every matrix M which is not (εn, εn2) rigid lies in its image.

Proof. Let k = εn2 and let u,v,x,y denote disjoint tuples of k variables each.
Let U be a symbolic n × εn matrix whose entries are labeled by the variables u, and

similarly let V be a symbolic εn × n matrix labeled by v. Let UV(u,v) : F2k → Fn×n be
the degree 2 polynomial map defined by the matrix multiplication UV .

Finally, let P : F4k → Fn×n be defined as

P (u,v,x,y) = UV(u,v) + SVn2,k(x,y),

where SVn2,k is as defined in Lemma 4.
Suppose now M is a non-rigid matrix, i.e., M = R + S for R of rank εn and S which

is εn2-sparse. Decompose R = U0V0 for n × εn matrix U0 and εn × n matrix V0. Let T
denote the support of S. For convenience we may assume |T | = k (otherwise, pad with zeros
arbitrarily). Let α ∈ Fk denote the setting for y in SVn2,k which maps x1, . . . , xk to T , and
let s = (s1, . . . , sk) denote the non-zero entries of S. Then

P (U0, V0, s,α) = U0V0 + S = R+ S = M. J

To complete the proof of Theorem 1, we now argue that the image of any polynomial
map with parameters as in Lemma 5 has an equation of degree at most n3.

Proof of Theorem 1. Let V1 denote the subspace of polynomials over F in n2 variables of
degree at most n3. Let V2 denote the subspace of polynomials over F in 4εn2 variables
of degree at most n5. Let P be as in Lemma 5, and consider the linear transformation
T : V1 → V2 given by Q 7→ Q ◦ P , where Q ◦ P denotes the composition of the polynomial Q
with the map P , i.e., (Q ◦ P )(x) = Q(P (x)) (indeed, observe that since deg(Q) ≤ n3 and
deg(P ) ≤ n2, it follows that degQ ◦ P ≤ n5).
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We have that dim(V1) =
(
n3+n2

n2

)
≥ nn

2 , whereas dim(V2) =
(4εn2+n5

4εn2

)
≤ (2n5)4εn2

<

dim(V1) by the choice of ε, so that there exists a non-zero polynomial in the kernel of T ,
that is, 0 6= Q0 ∈ V1 such that Q0 ◦ P ≡ 0.

It remains to be shown that for any non-rigid matrix M , Q0(M) = 0. Indeed, let M
be a non-rigid matrix. By Lemma 5, there exist β ∈ F4εn2 such that P (β) = M . Thus,
Q0(M) = Q0(P (β)) = Q0 ◦ P (β) = 0, as Q0 ◦ P ≡ 0. J

I Remark 6. If the support of the sparse matrix is fixed a-priori to some set S ⊆ [n]× [n] of
cardinality at most εn2, then it is easier to come up with a universal map P̃ from F3εn2 7→ Fn×n
such that every matrix M whose rank can be reduced to at most εn by changing entries in
the set S is contained in the image of P̃ . Just consider P̃ (w,x,y) = UV(u,v) +W , where
W is a matrix such that for all (i, j) ∈ [n]× [n], if (i, j) ∈ S, then W (i, j) = wi,j and W (i, j)
is zero otherwise. Here, each wi,j is a distinct formal variable. Combined with the dimension
comparison argument we used in the proof of Theorem 1, it can be seen that there is a
non-zero low degree polynomial Q̃ such that Q̃ ◦ P̃ ≡ 0. This argument provides a (different)
equation of polynomial degree for each irreducible component of the variety of non-rigid
matrices.

I Remark 7. It is possible to use the equation given in Theorem 1, and using the methods
of [11], to construct “semi-explicit” (εn, εn2)-rigid matrices. These are matrices whose entries
are algebraic numbers (over Q) with short description, which are non-explicit from the
computational complexity point of view. However, such constructions are also known using
different methods (see Section 2.4 of [12]).

3 Degree Upper bound for Other Models

The proof of Theorem 2 is omitted from this version and appears in the full version of the
paper. The strategy, as before, is to observe that all matrices with a small circuit lie in the
image of a polynomial map P on a small number of variables and small degree. Circuits of
size s can have many different topologies and thus we first construct a “universal” linear
circuit, of size s′ ≤ s4, that contains as subcircuits all linear circuits of size s. Importantly, s′
will affect the degree of P but not its number of variables. We note that this construction of
universal circuits is slightly different from similar constructions in earlier work, e.g., in [16];
the key difference being that a naive use of ideas in [16] to obtain the map P seems to incur
an asymptotic increase in the number of variables of P , which is unacceptable in our current
setting.

Analogous to the proof of Theorem 1, we then observe via a dimension counting argument
that the image of the polynomial map P has a equation of degree at most n3. This completes
the proof of Theorem 2.

Another algebraic object which is closely related to proving circuit lower bounds is the
set of three dimensional tensors of high rank. A three dimensional tensor of rank at least r
implies a lower bound of r on an arithmetic circuit computing the bi-linear function associated
with the tensor. Our arguments also provide polynomial degree upper bounds for the set of
tensors of (border) rank at most n2/300. We again omit the details, which appear in the full
version of the paper.

A similar method can be used to prove the existence of an equation of degree poly(n) for
three dimensional tensors of slice rank (see, e.g., [5]) at most, say, n/1000. The existence of
such an equations was proved (using different techniques) in [5].
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4 Applications to Circuit Lower Bounds

In this section we prove Corollary 3. The strategy of the proof is simple: the proof of
Theorem 2 implies a PSPACE algorithm which produces a sequence of polynomials which are
equations for the set of matrices with small linear circuits. If those equations require large
circuits, we are done, and if not, then there exists an equation with small circuits which
(assuming PIT ∈ P) can be found using an NP-oracle. Using, once again, the assumption
that PIT ∈ P, we can also find deterministically a matrix on which the equation evaluates to
non-zero, which implies the matrix requires large linear circuits.

There are some technical difficulties involved with this plan which we now describe. The
first problem is that even arithmetic circuits of small size can have large description as bit
strings, due to the field constants appearing in the circuits. To prevent this issue, we only
consider constant free arithmetic circuits, which are only allowed inputs labeled by {0,±1}
(but can still compute other constants in the circuit using arithmetic operations).

The second problem is that, in order to be able to find a non-zero of the equation in the
last step of the algorithm (using the mere assumption that PIT ∈ P), we need not only the
size of the circuit but also its degree to be bounded by poly(n). Of course, by Theorem 2 the
exists such a circuit, but we need to be able to prevent a malicious prover from providing
us with a poly(n) size circuit of exponential degree, and it is not known how to compute
the degree of a circuit in deterministic polynomial time, even assuming PIT ∈ P. To solve
this issue, we use an idea of Malod and Portier [14], who showed that any polynomial with
circuit of size poly(n) and degree d also has a multiplicatively disjoint (MD) circuit of size
poly(n, d). An MD circuit is a circuit in which any multiplication gates multiplies two disjoint
subcircuits. This is a syntactic notion which is easy to verify efficiently and deterministically,
and an MD circuit of size s is guaranteed to compute a polynomial of degree at most s.

A final technical issue is that the notion of MD circuits does not fit perfectly within the
framework of constant free circuits. Therefore we use the notion of “almost MD” circuits,
which allow for the case which the inputs to a multiplication gates are not disjoint, as long
as at least one of them is the root of a subcircuit in which only constants appear.

I Definition 8. We say a gate v in a circuit is constant producing (CP) if in the subcircuit
rooted at v, all input nodes are field constants.

An almost-MD circuit is a circuit where every multiplication gate either multiplies two
disjoint subcircuits, or at least one of its children is constant producing.

I Lemma 9. Suppose f is an n-variate polynomial of degree poly(n) which has a constant
free arithmetic circuit of degree poly(n). Then f has a constant free almost-MD circuit of
size poly(n).

The proof of Lemma 9 appears in the full version of the paper.
For circuits which compute low-degree polynomials, the mere existence of an algorithm

for the decision version of PIT allows one to construct an algorithm for the search version.
The following lemma is standard, and its proof appears in the full version of the paper.

I Lemma 10. Suppose PIT ∈ P. Then there is a polynomial time algorithm that given a
non-zero almost-MD arithmetic circuit C of size s computing an n-variate polynomial, finds
in time poly(n, s) an element a ∈ Cn such that C(a) 6= 0.

As we noted above, the assumption that C is almost-MD was used in Lemma 10 to
bound the degree of the circuit. It is also useful because it is easy to decide in deterministic
polynomial time whether a circuit is almost-MD. We now complete the proof of Corollary 3.
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Proof of Corollary 3. For every n, the proof of Theorem 2 provides an equation Qn for the
set of n× n matrices with small linear circuits. This polynomial can be found by solving a
linear system of equations in a linear space whose dimension is exp(poly(n)). Using standard,
small space algorithm for linear algebra [6, 1], this implies that there exists a fixed PSPACE
algorithm which, on input 1n, outputs the list of coefficients of the polynomial Qn.

Consider now the family {Qn}n∈N. If for any constant k ∈ N there exist infinitely
many n ∈ N such that Qn requires circuits of size at least nk, it follows (by definition)
that the PSPACE algorithm above outputs a family of polynomials with super-polynomial
constant-free arithmetic circuits.

We are thus left to consider the case that there exists a constant k ∈ N such that for
all large enough n ∈ N, Qn can be computed by circuits of size nk. By Lemma 9, we may
assume without loss of generality that these circuits are almost-MD circuits. Further suppose
PIT ∈ P. We will show how to construct a matrix in polynomial time with an NP oracle
which requires large linear circuits.

Consider the language L of pairs (1n, x) such that there exists a string y of length at most
nk such that xy describes an almost-MD circuit C such that C is non-zero, and C ◦ U ≡ 0,
where U is the polynomial map given in the proof of Theorem 2.

Assuming PIT ∈ P, the language L is in NP, and by assumption for every large enough n
there exists such a circuit. Thus, we can use the NP oracle to construct such a circuit C bit
by bit. Finally, using Lemma 10 we can output a matrix M such that C(M) 6= 0.

By the properties of the circuit C and the map U , M does not have linear circuits of size
less than n2/200. J

Many variations of Corollary 3 can be proved as well, with virtually the same proof.
By slightly modifying the language L used in the proof, it is possible to prove the same
result even under the assumption PIT ∈ NP (recall that PIT ∈ coRP). A similar statements
also holds over finite fields of size poly(n), in which case the proof is simpler since there
are no issues related to the bit complexity of the first constants. Finally, an analog of
Corollary 3 also holds for tensor rank: that is, assuming PIT ∈ P, either there exists a
construction of a hard polynomial in PSPACE, or an efficient construction with an NP oracle
of a 3-dimensional tensor of rank Ω(n2). We remark that for tensors of large rank there are
no analogs of [2, 3], i.e., there do not exist even constructions with an NP oracle of tensors
with slightly super-linear rank.
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Abstract
We formulate a new hardness assumption, the Strongish Planted Clique Hypothesis (SPCH), which
postulates that any algorithm for planted clique must run in time nΩ(logn) (so that the state-of-the-art
running time of nO(logn) is optimal up to a constant in the exponent).

We provide two sets of applications of the new hypothesis. First, we show that SPCH implies
(nearly) tight inapproximability results for the following well-studied problems in terms of the
parameter k: Densest k-Subgraph, Smallest k-Edge Subgraph, Densest k-Subhypergraph, Steiner
k-Forest, and Directed Steiner Network with k terminal pairs. For example, we show, under SPCH,
that no polynomial time algorithm achieves o(k)-approximation for Densest k-Subgraph. This
inapproximability ratio improves upon the previous best ko(1) factor from (Chalermsook et al.,
FOCS 2017). Furthermore, our lower bounds hold even against fixed-parameter tractable algorithms
with parameter k.

Our second application focuses on the complexity of graph pattern detection. For both induced
and non-induced graph pattern detection, we prove hardness results under SPCH, improving the
running time lower bounds obtained by (Dalirrooyfard et al., STOC 2019) under the Exponential
Time Hypothesis.
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1 Introduction

The last couple of decades have seen dramatic advances in our understanding of parameter-
ized, fine-grained, and average-case complexity. To a large extent, this progress has been
enabled by bolder computational hardness assumptions, beyond the classical P 6= NP. Two
notable assumptions in these fields are the Exponential Time Hypothesis and the Planted
Clique Hypothesis. In this paper we propose a new hypothesis, the Strongish Planted Clique
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10:2 The Strongish Planted Clique Hypothesis and Its Consequences

Hypothesis, which strengthens the Planted Clique Hypothesis in the style of the Exponen-
tial Time Hypothesis. We show that this hypothesis has interesting implications in the
parameterized complexity of both approximation problems and graph pattern detection.

Exponential Time Hypothesis. The Exponential Time Hypothesis (ETH) [69] is a pess-
imistic version of P 6= NP which postulates that solving 3-SAT on n variables requires
time 2Ω(n). In other words, the running times of the state-of-the-art (and the brute-force)
algorithms for 3-SAT are optimal up to a constant factor in the exponent. ETH has im-
portant applications in parameterized complexity (e.g. [30, 82, 80, 46, 48]) and hardness
of approximation (e.g. [26, 25, 92, 84, 87, 52]). In the past several years, further progress
was achieved by assuming stronger variants of ETH such as the Strong ETH (SETH) in
fine-grained complexity [70, 95], Gap-ETH in parameterized complexity [31, 23, 83], and
ETH for PPAD in Algorithmic Game Theory [9, 91].

Planed Clique Hypothesis. In the Planted κ-Clique Problem, the goal is to distinguish (with
high probability) between graphs sampled from one of the following distributions: Uniformly
at random1; and uniformly at random, with an added κ-clique. While statistically it is easy
to distinguish the two distributions for κ as little as 2.1 log(n), the Planted Clique Hypothesis
(PCH) postulates that no polynomial time algorithm can solve this problem, even for κ as
large as o(

√
n). The history of this problem goes back to Karp [73] and Jerrum [71], and in the

past decade it has been popular as a hardness assumption for both worst-case [8, 68, 3, 10, 20]
and average-case [17, 66, 18, 63, 29, 27] problems. A simple nΘ(log(n))-time algorithm for
the planted-κ-clique problem non-deterministically guesses ` = Θ(log(n)) vertices from the
clique, and then checks whether all of their common neighbors form a clique. There are
several other algorithms that also solve this problem in time nΘ(log(n)) [60, 59, 86, 13], but
no faster algorithm is known for κ = O(n0.49).

Strongish Planted Clique Hypothesis

In analogy to the Exponential Time Hypothesis for 3-SAT, we propose the following hypothesis,
which postulates that the state-of-the-art algorithms for the Planted Clique Problem are
optimal up to a constant factor in the exponent. A Strong Planted Clique Hypothesis, in
analogy with SETH, would specify a precise constant in the exponent – our hypothesis is
merely Strong-ish. We let G(n, p) denote the Erdős-Rényi distribution with parameter p, and
G(n, p, κ) denote the Erdős-Rényi distribution with a planted κ-clique.

I Hypothesis 1 (Strongish Planted Clique Hypothesis (SPCH)). There exists a constant
δ ∈ (0, 1

2 ) such that no no(logn)-time algorithm A satisfies both of the following:
(Completeness) PrG∼G(n, 1

2 ,dnδe)[A(G) = 1] ≥ 2/3.
(Soundness) PrG∼G(n, 1

2 )[A(G) = 1] ≤ 1/3.
In addition to the lack of algorithmic progress toward refuting this hypothesis, we note that
nΘ(log(n)) is in fact provably optimal for the Sum-of-Squares hierarchy [11], which captures
the state-of-the-art algorithmic techniques for a number of average-case problems. It is also
known to be tight for statistical algorithms [62, 28].

1 I.e. from the Erdős-Rényi (ER) distribution over n-vertex graphs where each edge appears independently
with probability 1/2.
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1.1 Our Contributions: Hardness results from Strongish Planted Clique
Hypothesis

Our main technical contributions are in exploring the implications of our new SPCH in
parameterized complexity. We prove two types of hardness results: hardness of approximation,
and hardness of (exact) graph pattern detection. Due to the rich literature for each problem we
consider, we will only mention the most relevant results here and defer a more comprehensive
discussion to Section 1.4.

1.1.1 Hardness of approximation from SPCH
At the heart of our work is the study of the Densest k-Subgraph problem, in which we
are given an undirected graph G = (V,E) and a positive integer k. The goal is to output
a subset S ⊆ V of k vertices that induces as many edges as possible. There is a trivial
O(k)-approximation for the problem: return an arbitrary set of bk/2c edges. We show that
assuming SPCH, this algorithm is optimal:

I Theorem 2. Assuming the Strongish Planted Clique Hypothesis (Hypothesis 1), there
is no f(k) · poly(n)-time algorithm that can approximate Densest k-Subgraph on n-vertex
graphs to within a factor o(k) for any function f . Furthermore, this holds even in the perfect
completeness case where the input graph is promised to contain a k-clique.

Theorem 2 improves upon the inapproximability ratio of ko(1) shown in [31] under Gap-ETH.
The approximability of Densest k-Subgraph is known to be intimately related to that

of numerous other problems. As such, our tight hardness of approximation for Densest
k-Subgraph immediately implies several tight approximability results as corollaries, which
we list below.

Smallest k-Edge Subgraph: given an undirected graph G = (V,E) and a positive integer
k, find a smallest subset S ⊆ V that induces at least k edges. For this problem, the
trivial solution that chooses k edges arbitrarily is an O(

√
k)-approximation since even

the optimum requires at least
√
k vertices. We show that this is tight (Corollary 11): no

fixed-parameter tractable (FPT) (in k) algorithm can achieve o(
√
k) approximation ratio.

Steiner k-Forest (aka k-Forest): given an edge-weighted undirected graph G = (V,E), a
set {(s1, t1), . . . , (s`, t`)} of demand pairs and a positive integer k, the goal is to find a
(not necessarily induced) subgraph of G with smallest total edge weight that connects at
least k demand pairs. In Corollary 12, we show that no FPT (in k) algorithm can achieve
o(
√
k) approximation ratio. This matches the O(

√
k)-approximation algorithm by Gupta

et al. [65].
Directed Steiner Network (aka Directed Steiner Forest): given an edge-weighted directed
graph G = (V,E) and a set {(s1, t1), . . . , (sk, tk)} of k demand pairs, the goal is to find a
(not necessarily induced) subgraph of G with smallest total edge weight in which ti is
reachable from si for all i = 1, . . . , k. We prove that no FPT (in k) algorithm achieves
o(
√
k)-approximation (Corollary 14). This nearly matches the best known polynomial

algorithms by Chekuri et al. [35] and Feldman et al. [61], both of which achieve a
O(k1/2+ε)-approximation for any constant ε > 0. Our bound improves upon a k1/4−o(1)

ratio from [52] under Gap-ETH.
Densest k-Subhypergraph: given a hypergraph G = (V,E) and a positive integer k, output
a k-size subset S ⊆ V that maximizes the number of hyperedges fully contained in
S. The trivial algorithm that outputs any hyperedge (of size at most k) obtains a 2k-
approximation. We prove a matching lower bound (Theorem 15): no 2o(k)-approximation
FPT (in k) algorithm exists. This resolves an open question posed by Cygan et al. [45],
assuming SPCH.

ITCS 2021
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1.1.2 Hardness of graph pattern detection from SPCH
Graph Pattern Detection, also known as Subgraph Isomorphism and closely related to Motif
Discovery, is a fundamental problem in graph algorithms: Given a host graph G and a
pattern graph H, decide whether G contains a subgraph S isomorphic to H. There are two
main variants of this problem, where S is either required to be induced or not-necessarily-
induced. For both variants, there is a brute-force nO(k)-time algorithm. We prove matching
SPCH-hardness for both variants. In addition to beating the ETH-based state-of-the-art
for these results, we highlight that our reductions to graph pattern detection problems are
extremely simple (in contrast to the prior work).

For induced subgraph detection, we prove the following:

I Theorem 3. Assuming the Strongish Planted Clique Hypothesis (Hypothesis 1), for every
k-node pattern H, there is no algorithm that solves the induced pattern detection problem on
n-vertex graphs in time f(k) · no(k) for any function f .

Our nΩ(k) lower bound for all patterns can be compared to recent work of [48], who proved:
(i) nΩ(log(k)) lower bound for every pattern assuming ETH; (ii) nΩ(

√
k) lower bound for every

pattern assuming ETH and the Hadwiger conjecture; and (iii) nΩ(k/ log(k)) lower bound for
most patterns.2

For not-necessarily-induced subgraph detection, it is no longer true that every pattern is
hard (e.g. it is trivial to find a not-necessarily-induced subgraph isomorphic to an independent
set). But we prove (Corollary 10) that for most patterns3 detection requires nΩ(k) time
assuming SPCH. For comparison, [48] proved that under ETH, not-necessarily-induced
subgraph detection requires nΩ(ω(H)) time, where ω(H) denotes the clique number of the
pattern H. (Note that ω(H) = Θ(log k) for most patterns.)

k-biclique detection. For the special case where the pattern is a k-biclique, our aforemen-
tioned nΩ(k) hardness for non-induced subgraph detection rules out even constant factor
approximations (Corollary 9). This improves over nΩ(

√
k) lower bounds under ETH for the

exact case [80] or Gap-ETH for approximation [31].

Densest k-Subgraph. We obtain our pattern detection result by first showing a nΩ(k)

running time bound for O(1)-approximating Densest k-Subgraph (Theorem 8). This improves
upon the previous lower bound who give a running time lower bound of nΩ(log k) assuming
Gap-ETH [31]. The aforementioned lower bounds for pattern detection follow almost trivially
from our running time lower bound for Densest k-Subgraph; see Sections 3.2 and 3.3 for
more detail.

1.2 Techniques
The starting point for all of our reductions is a randomized graph product: starting with an
instance G of the planted clique problem on n vertices and any integers ` ≤ n and N , we
produce a graph G′ by taking its vertices to be N randomly sampled subsets S1, . . . , SN of `
vertices each, and we add an edge on Si, Sj if and only if their union induces a clique in G.

2 In the sense of a pattern sampled randomly from G(k, 1/2).
3 in particular any pattern with a constant fraction of the

(
k
2

)
possible edges.
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The randomized graph product [16] (and its derandomized variant [4]) has a long history
in proving hardness of approximating Maximum Clique. While not stated explicitly, it was
also used to prove parameterized inapproximability of Densest k-Subgraph in [31]. As we will
explain in more detail below, the main difference between our proof and previous works lie
in the soundness, where we appeal to the fact that G ∼ G(n, 1/2) to achieve tighter bounds.

Since we would like to prove hardness of approximating Densest k-Subgraph in the perfect
completeness case, our goal is to show (for appropriately chosen values of N, `) that

(Completeness) if G contains a large clique, then with high probability so does G′, and,
(Soundness) if G is random, then G′ does not have small dense subgraphs (with high
probability).

For the completeness, if the starting graph G has a κ-clique, then the set of Si that fall
entirely within the κ-clique will form a clique in G′ (the expected size is (κn )` ·N). This part
of the proof is exactly the same as that in the aforementioned previous works.

To prove soundness, we calculate the probability that a specific γk-dense k-subgraph
appears in G′, then take a union bound over all ≤

(
N
k

)
· 2(k2) possible such subgraphs. Our

simple argument hinges on showing that a k-subgraph with γk2 edges in G′ induces (with
high probability) at least Ω(γk2`2) edges in G, and since any such set of edges appears in G
with probability at most 2−Ω(γk2`2), by choosing ` sufficiently large we can beat this union
bound. To argue that small subgraphs with m edges in G′ induce small subgraphs with
Ω(m`2) edges in G, we use that the randomly chosen Si (for an appropriate choice of N � n`

and k∗ sufficiently small) form a disperser: the union of any t ≤ k∗ of the Si contains Ω(t`)
vertices of G with high probability.4 This implies that for k ≤ k∗, each k-subgraph of G′
corresponds to a union of k pairwise mostly-non-overlapping subsets of ` vertices. Now,
since each edge between mostly non-overlapping sets in G′ corresponds to a Ω(`)-clique in
G, this in turn can be used to show that any k-subgraph of G′ with density γk corresponds
to a subgraph of G with Ω(γk2`2) edges. In this way we rule out the existence of γk-dense
k-subgraphs in G′ (with high probability).

By carefully choosing the parameters N , `, γ, to control the completeness, soundness, and
reduction size, we get a fine-grained reduction from Planted κ-Clique to Densest k-Subgraph.
Our results for other problems are obtained via direct reductions from the Densest k-Subgraph
problem.

We end by stressing that our new soundness proof gives a strong quantitative improvement
over prior results, which is what enables us to achieve kΩ(1) inapproximability. Specifically,
the previous soundness proof from [31] – in turn adapted from [84] – relies on showing that
the graph is t-biclique-free for some t ∈ N; they then apply the so-called Kovari-Sos-Turan
theorem [77] to deduce that any k-subgraph contains at most O(k2−1/t) edges. Notice that this
gap is only O(k1/t), and t cannot be a constant as otherwise the completeness and soundness
case can be distinguished in time nO(t) = poly(n). As a result, their technique cannot yield
an kΩ(1)-factor inapproximability for Densest k-Subgraph. Similarly, the techniques from [31]
cannot give a running time lower bound of the form nω(log k) for O(1)-approximation of
Densest k-Subgraph. The reason is that, to get a constant gap bounded from one, they need
to select t = O(log k). Once again, this is in contrast to our technique which yields a tight
running time lower bound of nΩ(k) in this setting, although our proof requires a different
starting hardness result (from SPCH).

4 The fact that the randomized graph product yields a disperser has been used in previous works as well,
see e.g. [16, 98, 31].

ITCS 2021
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1.3 Discussion and Open Questions

In this work, we have proposed the Strongish Planted Clique Hypothesis, and used it prove
several tight hardness of approximation or running time lower bound results. One direction
for future investigation is to use SPCH to derive other interesting lower bounds.

Another intriguing question directly related to our hardness of approximation results is
whether we can strengthen the inapproximability factors from kΩ(1) to nΩ(1). Whether it is
hard to approximate Densest k-Subgraph to within a nΩ(1) factor is a well-known open problem
and is related to some other conjectures, such as the Sliding-Scaling Conjecture [14]5. As
such, it would be interesting if one can prove this hardness under some plausible assumption.
We remark that an attempt has been made in this direction, using the so-called “Log-
Density Threshold” approach [21], which posits a heuristic for predicting which average-case
Densest-k-Subgraph problems are hard. The approach has also been applied to other related
questions [39, 40, 42]. Nonetheless, there is still little evidence that these average-case DkS
problems are indeed hard; not even lower bounds against strong SDP relaxations are known,
although there are some matching lower bounds against LP hierarchies [22, 41].

Finally, it is of course interesting to either refute or find more evidence supporting the
Strongish Planted Clique Hypothesis. As stated earlier, the current best supporting evidence
is the Sum-of-Squares lower bound from [11]. Can such a lower bound be extended to, e.g.,
rule out any semi-definite programs of size no(logn) (à la [79] for CSPs)?

1.4 Other Related Works

Historically, postulating hardness for average-case problems has been helpful in illuminating
the landscape for hardness of approximation, beginning with Feige’s seminal random-3-SAT
hypothesis [57] and its numerous consequences (e.g. [50]). See also [49, 2, 7, 12].

As discussed briefly above, the Planted Clique Hypothesis (PCH), which states that
there is no polynomial-time algorithm for planted clique, has many known consequences for
hardness of approximation. We draw attention in particular to the work of [3], which also
obtains hardness of approximation results based on PCH. But even assuming the SPCH,
their results can only rule out npolylog(κ)-time algorithms for 2log(κ)2/3 -approximating densest-
κ-subgraph for κ = nΩ(1). Their reduction also uses a graph product, but the set of vertices
of their new graph G′ contains all `-size subsets of vertices of G. In contrast, we employ the
randomized graph product, where we only randomly pick some `-size subsets – this allows us
to better control the instance size blowup, which turns out to be crucial for obtaining our
tight inapproximability and running time results.

Below we discuss in more detail the previous works for each of the problems studied here.

Densest k-Subgraph. The problem is well-studied in the approximation algorithms lit-
erature (e.g. [58, 76, 21]). The best known polynomial time algorithm [21] achieves an
approximation ratio of O(n1/4+ε) for any ε > 0. Even though the NP-hardness of Densest
k-Subgraph follows immediately from that of k-Clique [74], no NP-hardness of approximation
of Densest k-Subgraph even for a small factor of 1.001 is known. Nonetheless, several hardness
of approximation results are known under stronger assumptions [57, 75, 90, 3, 12, 25, 84].

5 Specifically, from a reduction of [34], nΩ(1)-factor hardness of approximation of Densest k-Subgraph
also implies that of the Label Cover problem.
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Among these, only [3, 12] and [84] yield super-constant inapproximability ratios. Specific-
ally, [3] rules out 2O((logn)2/3)-approximation in polynomial time under a hypothesis similar
to SPCH, [84] rules out no(1/poly log logn)-approximation under ETH, and [12] rules out nO(1)

approximations under a strong conjecture regarding the optimality of semidefinite programs
for solving every random CSP.

Our hardness result holds even in the so-called perfect completeness case, where we
are promised that the graph G contains a k-clique. In this case, a quasi-polynomial time
approximation scheme exists [60]. Braverman et al. [25] showed that this is tight: there
exists a constant ε > 0 for which (1 + ε)-approximation of Densest k-Subgraph in the perfect
completeness case requires nΩ̃(logn)-time assuming ETH. We remark that the hardness
from [84] also applies in the perfect completeness case, but it only rules out polynomial time
algorithms.

For the parameterized version of the problem, its W[1]-hardness follows immediately
from that of k-Clique [54]. Chalermsook et al. [31] showed that no ko(1)-approximation is
achievable in FPT time, unless Gap-ETH is false. This hardness also holds in the perfect
completeness case, and yields a running time lower bound of nΩ(log k) for any constant factor
approximation.

k-Biclique. Similar to Densest k-Subgraph, while the NP-hardness for the exact version of
k-Biclique has long been known (e.g. [72]), even 1.001-factor NP-hardness of approximation
has not yet been proved although inapproximability results under stronger assumptions
are known [57, 75, 19, 85]. Specifically, under strengthened variants of the Unique Games
Conjecture, the problem is hard to approximate to within a factor of n1−ε for any ε > 0 [19, 85].

On the parameterized complexity front, whether k-Biclique is FPT (in k) was a well-
known open question (see e.g. [55]). This was resolved by Lin [80] who showed that the
problem is W[1]-hard and further provided a running time lower bound of nΩ(

√
k) under ETH.

As stated above, this running time lower bound was extended to rule out any constant factor
approximation in [31] under Gap-ETH. Furthermore, [31] showed that no o(k)-approximation
exists in FPT time.

Smallest k-Edge Subgraph. Most of the hardness of approximation for Densest k-Subgraph
easily translates to Smallest k-Edge Subgraph as well, with a polynomial loss in the factor of
approximation. For example, the hardness from [84] implies that Smallest k-Edge Subgraph
cannot be approximated to within a factor of n1/poly log logn in polynomial time, assuming
ETH. On the other hand, Chlamtac et al. [39] devised an O(n3−2

√
2+ε)-approximation

algorithm for any constant ε > 0 for the problem; this remains the best known approximation
algorithm for the problem.

Densest k-Subhypergraph. Apart from the hardness results inherited from Densest k-
Subgraph, not much is known about Densest k-Subhypergraph. Specifically, the only new
hardness is that of Applebaum [6], who showed that the problem is hard to approximate
to within nε for some constant ε > 0, assuming a certain cryptographic assumption; this
holds even when each hyperedge has a constant size. On the other hand, the only (non-
trivial) approximation algorithm is that of Chlamtac et al. [37] which achieves O(n0.698)-
approximation when the hypergraph is 3-uniform.

Steiner k-Forest. The Steiner k-Forest problem is a generalization of several well-known
problems, including the Steiner Tree problem and the k-Minimum Spanning Tree problem.
This problem was first explicitly defined in [67] and subsequently studied in [93, 65, 51].

ITCS 2021



10:8 The Strongish Planted Clique Hypothesis and Its Consequences

In terms of the number of vertices n of the input graph, the best known approximation
ratio achievable in polynomial time is O(

√
n) [65] (assuming that k ≤ poly(n)); furthermore,

when edge weights are uniform, a better approximation ratio of O(n0.449) is achievable in
polynomial time [51]. On the other hand, as stated earlier, in terms of k, the best known
approximation ratio is O(

√
k) [65].

A reduction in [67] together with W[1]-hardness of k-Clique [54] implies that Steiner
k-Forest is W[1]-hard with respect to the parameter k. We are not aware of any further
parameterized complexity study of this problem (with respect to parameter k).

Directed Steiner Network. Several polynomial time approximation algorithms have been
proposed for the Directed Steiner Network problem [33, 35, 61, 15, 38, 1]; in terms of the
number of vertices n of the input graph the best known approximation ratio is O(n2/3+ε) [15]
and in terms of k the best known ratio is O(k1/2+ε) for any constant ε > 0 [35, 61]. On
the hardness front, Dodis and Khanna [53] shows that the problem is quasi-NP-hard to
approximate to within a factor of 2(logn)1−ε for any constant ε > 0. Furthermore, Guo et
al. [64] show that the exact version of the problem is W[1]-hard with respect to parameter k.
Later, [52] rules out even k1/4−o(1)-approximation in FPT time, under Gap-ETH.

Graph Pattern Detection. As discussed earlier, [48] give ETH-based hardness results for
graph pattern detection, both in the induced and non-induced case. The complexity for
many special patterns has also been considered, e.g. k-cliques, k-bicliques (mentioned above),
and k-cycles (e.g. [5, 97, 47, 48, 81]). A k-clique can be detected in time O(ndk/3eω) using
fast matrix multiplication [89], and the k-Clique Conjecture in Fine-Grained Complexity
postulates that this is essentially optimal [95]. Any other pattern over k vertices can be
detected in time O(nk−1), without using fast matrix multiplication [24]. There is also an
extensive body of work on counting the number of occurrences of a pattern in a host graph
(e.g. [88, 78, 94, 96, 44, 43]).

Preliminaries and Notation
For a natural number n ∈ N, we use [n] to denote the set of integers up to n, [n] = {1, . . . , n}.
We will use the abbreviation “w.h.p.” to mean “with high probability.”

For an undirected graphG = (V,E), we use degG(v) to denote the degree of a vertex v ∈ V ,
and min-deg(G) to denote minv∈V (G) degG(v). For a subset S ⊆ V , we use G[S] = (V,E[S])
to denote the induced subgraph of G on subset S.

The density of G, denoted by den(G), is defined as |E|/|V |. We use den≤k(G) to denote
maxS⊆V,|S|≤k den(G[S]), the maximum density of subgraphs of G of at most k vertices.

2 Randomized Graph Product

In this section we formally define our reduction, and analyze its soundness and completeness in
terms of the reduction parameters (in later sections we instantiate the parameters differently
for each target bound). Our reduction takes as input a graph and applies the randomized
graph product [16], described in Figure 1. We use RPN,`(G) to denote the distribution of
outputs of the above reduction on input graph G.

We will show that for well-chosen N and `, the randomized graph product RPN,` reduces
the planted nδ-clique problem to densest-k subgraph for k = k(N, `, δ, n). That is, a sample
from RPN,` ◦ G(n, 1

2 ) has no dense k-subgraph with probability close to 1, and if on the other
hand G is a graph with an nδ-clique, then a sample from RPN,`(G) has a dense k-subgraphs
with probability close to 1.
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Input: n-vertex Graph G = (V,E), positive integers N, `.
Output: Graph G′ = (V ′, E′).
The graph G′ is constructed as follows.
1. For each i ∈ [N ], sample Si ⊆ V by independently sampling ` vertices uniformly

from V .
2. Let V ′ = {S1, . . . , SN}.
3. For every distinct i, j ∈ [N ], include (Si, Sj) in E′ iff Si ∪ Sj induces a clique in G.

Figure 1 Randomized Graph Product [16].

2.1 Completeness
We first prove that applying the randomized graph product to a graph with a large clique
results in a graph with a large clique.

I Lemma 4 (Completeness). Suppose that δ ∈ (0, 1), N, `, k ∈ N are such that N ≥ 10k ·
n(1−δ)` and k ≥ 20. If G contains a clique of size dnδe, then

Pr
G′∼RPN,`(G)

[G′ contains a k-clique ] ≥ 0.9.

Proof. Let C ⊆ V be the dnδe-size clique in G. For each i ∈ [N ], Pr[Si ⊆ C] =
(
dnδe
n

)`
≥

n−(1−δ)`. By our lower bound on N , the expected number of indices i ∈ [N ] such that Si ⊆ C
is at least 10k, and thus a Chernoff bound implies that with probability 1− exp(−4k) ≥ 0.9,
there exists at least k indices i ∈ [N ] such that Si ⊆ C. By definition of the randomized
graph product RPN,`, these subsets form a clique in G′. J

2.2 Soundness
We now prove that if we apply the randomized graph product to a graph drawn from G(n, 1

2 ),
with high probability the resulting graph has no small subgraphs which are too dense.

I Lemma 5 (Soundness). Suppose that δ ∈ (0, 1), N, `, k ∈ N are such that N ≤ 1000k ·
n(1−δ)`, ` ≥ k ≥ 20 and n0.99δ ≥ k`. If G is drawn from G(n, 1

2 ), then

Pr
G∼G(n, 1

2 )
G′∼RPN,`(G)

[
den≤k(G′) ≤ 107 logn

`δ2

]
≥ 0.9.

We will use the following observation that allows us to translate a large-density graph to
a subgraph with large minimum degree. This observation is folklore and appears e.g. in [32].

I Observation 6. For any H = (VH , GH), there exists S′ ⊆ VH such that min-deg(H[S′]) ≥
den(H).

Another auxiliary lemma that is useful for us is that for any subset M ⊆ [N ] not too
large, the size of the union |∪j∈MSj | is not too small relative to |M | · `. This lemma is also
standard and has been used in prior works (e.g. [16, 98, 31]).

I Lemma 7. Suppose N ≤ 1000`n(1−δ)`, 20 ≤ `. Then with probability at least 0.95 over
a sample G′ ∼ RPN,` ◦ G(n, 1

2 ), G′ = ({Si}i∈[N ], E
′), the following event occurs: for every

M ⊆ [N ] with |M | ≤ n0.99δ/`, we have |
⋃
i∈M Si| ≥ 0.01δ|M |`.
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The proofs of both Observation 6 and Lemma 7 are included in the full version. We now
prove the soundness guarantee.

Proof of Lemma 5. We will assume that the event in Lemma 7 occurs and show that
conditioned on this event, under the randomness of G, with probability 0.95 all k-subgraphs
of G′ have density at most d := 107 logn/(`δ2). Lemma 5 then follows immediately since
(0.95)2 > 0.9.

Consider any J ⊆ [N ] of size k′ ≤ k. For brevity, let F(J) denote the set of all graphs
whose vertices are Sj for j ∈ J and the minimum degree is at least d. For each F =
({Sj}j∈J , EF ) ∈ F(J), let EG(F ) denote

⋃
{Sj ,Sj′}∈EF

{{u, v} | u ∈ Sj , v ∈ Sj′ and u 6= v},
or in words, the set of edges of G which have one endpoint in Sj and one endpoint in Sj′ for
an edge (Sj , Sj′) ∈ EF . Observe that

Pr
G

[G′[{Sj}j∈J ] = F ] ≤ Pr
G

[EG(F ) ⊆ E] = 2−|E
G(F )|, (1)

where the inequality follows by definition of the randomized graph product – since (Si, Sj)
is an edge if and only if Si ∪ Sj is a clique in G, the event G′[{Sj}j∈J ] = F contains the
event EG(F ) ⊆ E – and the final equality follows because G ∼ G(n, 1

2 ). To bound |EG(F )|,
let VG(F ) := ∪j∈JSj .

Since we have conditioned on the event in Lemma 7 occurring,6 we have |VG(F )| ≥
0.01δk′`. Now, consider any v ∈ VG(F ); from definition of VG(F ), v ∈ Sj for some j ∈ J .
Since F ∈ F(J), Sj must have at least d neighbors in F . Let Sj1 , . . . , Sjd′ denote Sj ’s
neighbors in F , with d′ ≥ d. By applying the bound in Lemma 7, we have |Sj1 ∪ · · · ∪Sjd′ | ≥
0.01δd′` ≥ 0.01δd`. In other words, v has degree at least 0.01δd`− 1 ≥ 0.005δd` in the graph
(VG(F ), EG(F )). This implies that

|EG(F )| ≥ 1
2 (0.01δk′`) (0.005δd`) ≥ 10−5δ2k′d`2.

Plugging the above bound back into (1), we have

Pr
G

[G′[{Sj}j∈J ] = F ] ≤ 2−10−5δ2k′d`2
(2)

We can use the above inequality to bound the probability that {Sj}j∈J induces a subgraph
with minimum degree at least d as follows:

Pr[min-deg(G′[{Sj}j∈J ]) ≥ d] =
∑

F∈F(J)

Pr
G

[G′[{Sj}j∈J ] = F ]
(2)
≤ 2(k′)2

· 2−10−5δ2k′d`2

≤ 2−10−6δ2k′d`2
.

where the first inequality follows because there are at most 2(k′)2 subgraphs of an k′-vertex
graph, and to obtain the final inequality we have applied that ` ≥ k ≥ k′ and d ≥ 107/(δ2`).

Applying Observation 6, the existence of a k-subgraph with density at least d would
imply the existence of some J ⊆ [N ] with |J | ≤ k and minimum degree at least d. Taking
union bound over all J ⊆ [N ] of size at most k and applying our above bound, we have

Pr[den≤k(G)] ≤
k∑

k′=1
Nk′ · 2−10−6δ2k′d`2

=
k∑

k′=1

(
N · 2−10−6δ2d`2

)k′

6 Note that |J | = k′ ≤ k ≤ n0.99δ/` by our assumption and hence J satisfies the condition in Lemma 7.
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≤
k∑

k′=1

(
8 · n · 2−10−6δ2d`

)k′`
≤

k∑
k′=1

0.01k
′` ≤ 0.95,

where to obtain the second line we use that N ≤ 1000kn(1−δ)` and that ` ≥ k ≥ 20, and in
the final line we use that d ≥ 107 logn/(`δ)2. This completes our proof. J

3 Tight Running Time Lower Bounds

In this section, we prove our tight running time lower bounds for O(1)-approximating Densest
k-Subgraph, O(1)-approximating k-Biclique and (exact) Graph Pattern Detection.

3.1 Constant Approximation for Densest k-Subgraph
We start with the nΩ(k) running time lower bound for O(1)-approximating Densest k-
Subgraph, from which the remaining results easily follow. We remark that this running time
lower bound improves upon that of nΩ(log k), which is implicit in [31].

I Theorem 8. Assuming Hypothesis 1, for any constant C > 0, there is no f(k) · no(k)-time
algorithm that can approximate Densest k-Subgraph to within a factor C for any function f .
Furthermore, this holds even in the perfect completeness case where the input graph is
promised to contain a k-clique.

We will prove Theorem 8 by simply selecting an appropriate setting of parameters
for the randomized graph product. Specifically, we will let ` = O(C logn/k) and N =
nO(`) = no(logn); the generic soundness lemma (Lemma 5) then implies that the density
of any k-subgraph in the soundness case is at most O(k/C) which yields the desired C

inapproximability factor.

Proof of Theorem 8. We will reduce the problem of distinguishing samples from G(n, 1
2 ) vs.

G(n, 1
2 , dn

δe) to approximating Densest k-subgraph.
For C the constant specified in the statement of the theorem, choose ` = d 108C logn

δ2k e and
N = d100kn(1−δ)`e, so that d = 107 logn

`δ2 ≤ k
10C . Given a graph G, we sample G′ ∼ RPN,`(G).

Completeness: If G ∼ G(n, 1
2 , dn

δe), then by Lemma 4 and since N ≥ 10kn(1−δ)`, we have
that with probability at least 1− exp(−4k) ≥ 0.9, G′ = RPN,`(G) has a k-clique, and so
den≤k(G′) ≥ k − 1.

Soundness: For any 20 ≤ k ≤ ` and any δ bounded away from 0, we clearly satisfy the
requirement of Lemma 5 that k` ≤ n0.99δ and that N ≤ 1000kn(1−δ)` for any sufficiently
large n. Hence, if G ∼ G(n, 1

2 ), applying the Lemma to G′ ∼ RPN,`(G) we have that
with probability at least 0.9, den≤k(G′) ≤ d ≤ k

10C .

Thus, any algorithm which approximates Densest k-subgraph up to a factor of C in
time f(k)N εk can solve the planted dnδe-clique problem in time f(k)(100kn(1−δ)`)εk =
g(k)n

(1−δ)δ2C
108 ε logn for g(k) = f(k)(100k)εk. This contradicts Hypothesis 1 whenever

limn→∞ ε = 0. Choosing k to be a sufficiently slowly growing function of n, for any ε

decreasing in k we have a contradiction of the Hypothesis. This concludes the proof. J
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3.2 O(1)-Approximation for k-Biclique
Recall that a k-biclique, denoted by Kk,k, is a complete bipartite graph where each side has
exactly k vertices. In the k-Biclique problem, we are given an undirected graph G and a
positive integer k. Further, we are promised that G contains a Kk,k as a subgraph. Our goal
is to output a balanced biclique in G of size as large as possible. (Note that we say that an
algorithm achieves α-approximation if the output biclique has size at least k/α.)

We prove the following tight running time lower bound for O(1)-approximation of k-
Biclique:

I Corollary 9. Assuming Hypothesis 1, for any constant C > 0, there is no f(k) · no(k)-
time algorithm that can approximate k-Biclique to within a factor C for any function f .
Furthermore, this holds even when we are promised that the input graph contains a 2k-clique.

Proof. Suppose contrapositively that there is an f(k) · no(k)-time algorithm A that can
approximate k-Biclique to within a factor of C for some function f . We may use it to
approximate Densest k-Subgraph with perfect completeness as follows. On a given instance
(G, k) of Densest k-Subgraph with perfect completeness, we run our algorithm A on (G, bk/2c).
From the approximation guarantee of A, we will find a t-Biclique for t ≥ bk/2c/C ≥ k

4C . By
taking this biclique together with arbitrary (k − 2t) additional vertices, we find a subset of
size k that induces at least t2 ≥ k2

16C2 edges. Hence, we have found a 16C2-approximation
for Densest k-Subgraph in time f(k) · no(k), which by Theorem 8 violates Hypothesis 1. J

3.3 Pattern detection
Theorem 8 also yields the following corollary for the running time of pattern detection:

I Corollary 10. Assuming Hypothesis 1, for almost all k-node patterns H, the not necessarily
induced pattern detection problem cannot be solved in time f(k) · no(k).

In the statement of Corollary 10, by “almost all k-node patterns” we mean w.h.p. over
H ∼ G(k, 1/2).7

Proof. By standard concentration inequalities, most H ∼ G(k, 1
2 ) have average degree

k
2 ± o(k). For such a pattern H, an algorithm that solves the not necessarily induced
pattern detection problem also gives O(1)-approximation for Densest k-Subgraph. Hence,
the corollary immediately follows from Theorem 8. J

I Theorem (Restatement of Theorem 3). Assuming the Strongish Planted Clique Hypothesis
(Hypothesis 1), for every k-node pattern H, there is no algorithm that solves the induced
pattern detection problem on n-vertex graphs in time f(k) · no(k) for any function f .

Proof. We assume that H is at least k
4 -dense (that is, has average degree at least k

2 ). This
is without loss of generality as otherwise, we may take the complement of H – for induced
pattern detection the complexity is the same.

We start our reduction from an instance G of Densest k-Subgraph as in Theorem 8. We
randomly color all the vertices of G in k colors, one for each vertex of H. We construct a
graph G′ from G by keeping edge (u, v) ∈ G if and only if u, v are have different colors, and
the vertices in H corresponding to those colors share an edge. (Note that we do not add any
edges.)

7 It may be more natural to sample uniformly from all unlabeled k-node patterns, but w.h.p. a graph
drawn from G(k, 1/2) has no non-trivial automorphisms [56], so the two notions of “almost all k-node
patterns” are in fact equivalent.
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Completeness: If G has a k-clique, with probability at least k−k it has k different colors. In
this case, the same vertices in G′ will form an induced copy of H.

Soundness: If G does not have a k
4 -dense k-subgraph, this remains true after removing edges.

Hence G′ also does not contain any k
4 -dense k-subgraph – and in particular no copy of H.

As a result, if we can solve the induced pattern detection problem in time f(k) ·no(k), we can
achieve 4-approximation for Densest k-Subgraph with probability k−k in time f(k) · no(k).
By repeating this construction 100 · kk times, we can achieve 4-approximation for Densest
k-Subgraph with probability 0.99 in time O(f(k) · kk) · no(k). Together with Theorem 8, this
concludes our proof. J

4 Tight Inapproximability Results

In this section, we prove tight inapproximability results for Densest k-Subgraph, Smallest
k-Edge Subgraph, Steiner k-Forest, Directed Steiner Network, and Densest k-Subhypergraph.

4.1 Densest k-Subgraph
We start with the o(k)-factor hardness of Densest k-Subgraph (Theorem 2), from which our
other results follow. The proof of Theorem 2 is once again via selecting an appropriate setting
of parameters for the randomized graph product. Specifically, we will select ` = O((logn) ·
g(k)/k) where g(k) = o(k) is the assumed approximation ratio and N = nO(`) = no(logn); the
generic soundness lemma (Lemma 5) then implies that the density of any k-vertex subgraph
in the soundness case is at most k/g(k) as desired. The arguments are formalized below.

Proof of Theorem 2. We will reduce the problem of distinguishing samples from G(n, 1
2 ) vs.

G(n, 1
2 , dn

δe) to approximating Densest k-subgraph on an N vertex graph.
Let g(k) ≤ k be any function growing with k. Choose ` = d 108g(k) logn

δ2k e and N =
d100kn(1−δ)`e, so that d = 107 logn

`δ2 ≤ k
10g(k) . Given a graph G, we sample G′ ∼ RPN,`(G).

Completeness: If G ∼ G(n, 1
2 , dn

δe), then just as in the proof of Theorem 8, Lemma 4
implies that with probability at least 0.9, G′ = RPN,`(G) has a k-clique.

Soundness: For any 20 ≤ k ≤ ` and δ bounded away from 0, we satisfy the requirements
of Lemma 5 (just as in the proof of Theorem 8). Applying the lemma, if G ∼ G(n, 1

2 ),
we conclude that with probability at least 0.9, den≤k(G′) ≤ d ≤ k

10g(k) . This means that

any k-vertex subgraph of G′ contains at most k2

10g(k) <
(k2)
g(k) edges.

Hence, any algorithm which approximates Densest k-subgraph within g(k) in time
f(k)poly(N) can solve the planted dnδe-clique problem in time f(k) · poly(100kn(1−δ)`) =

h(k)·poly
(
n

(1−δ)δ2

108
g(k)
k logn

)
for h(k) = f(k)poly(100k). Choosing k to be a sufficiently slowly

growing function of n, for any function g(k) with limn→0
g(k)
k = 0 we have a contradiction of

Hypothesis 1, as desired. J

4.2 Smallest k-Edge Subgraph
I Corollary 11. Assuming Hypothesis 1, there is no f(k) · poly(n)-time algorithm that can
approximate Smallest k-Edge Subgraph to within a factor o(

√
k) for any function f .

We prove the above corollary by reducing from Densest k-Subgraph; we remark here
that similar reductions between the two problems are folklore and have appeared before in
literature, e.g. in [67]. Hence, we defer the proof to the full version of the paper.
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4.3 Steiner k-Forest
I Corollary 12. Assuming Hypothesis 1, there is no f(k) · poly(n)-time algorithm that can
approximate Steiner k-Forest to within a factor o(

√
k) for any function f .

Corollary 12 immediately follows from Corollary 11 via the following reduction:

I Theorem 13 ([67, Theorem 6.2]). If there is an f(k) · poly(n)-time g(k)-approximation
algorithm for Steiner k-Forest, then there is an f(k) · poly(n)-time g(k)-approximation
algorithm for Smallest k-Edge Subgraph.

4.4 Directed Steiner Network
I Corollary 14. Assuming Hypothesis 1, there is no f(k) · poly(n)-time algorithm that can
approximate Directed Steiner Network with k terminal pairs to within a factor o(

√
k) for any

function f .

Corollary 14 is shown via a reduction from Smallest p-Edge Subgraph, which is similar to
the reduction from the Label Cover problem by Dodis and Khanna [53] that was also used
in subsequent works [36, 52]. The proof is deferred to the full version.

4.5 Densest k-Subhypergraph
I Theorem 15. Assuming Hypothesis 1, there is no f(k) · poly(n)-time algorithm that can
approximate Densest k-Subhypergraph to within a factor 2o(k) for any function f .

The proof of our inapproximability for Densest k-Subhypergraph (Theorem 15) is unlike
the others in this section: instead of starting from the inapproximability of Densest k-Subgraph
(Theorem 2), we will start from the tight running time lower bound for O(1)-approximate
k-Biclique (Corollary 9).

4.5.1 A Combinatorial Lemma
Before we describe our reduction, let us prove the following lemma, which bounds the number
of (induced) copies of K`,` in a Kt,t-free graph for ` < t. This is a generalized setting of the
classic Kovari-Sos-Turan (KST) theorem [77], which applies only to the case ` = 1. Note
that, due to the parameters of interest in our reduction, we only prove a good bound for large
`; for ` = 1, the bound in our lemma is trivial (and hence weaker than the KST theorem).

I Lemma 16. Let κ, t, ` be positive integers such that ` < t ≤ κ/16. Then, for any κ-vertex
Kt,t-free graph H, the number of (not necessarily induced) copies of K`,` in H is at most(

2 · e− `2
16t

)
·
(
κ
`

)(
κ−`
`

)
.

Proof. Let V denote the vertex set of H. We will count the number of copies of K`,t in H
in two ways. First, for every subset S ∈

(
V
`

)
, the number of (`, t)-bicliques of the form (S, T )

where T ∈
(
V
t

)
is
(|N(S)|

t

)
where N(S) denote the set of common neighbors of S. Hence, in

total the number of (`, t)-bicliques in H is
∑
S∈(V` )

(|N(S)|
t

)
. On the other hand, for every

set T ∈
(
V
t

)
, we must have |N(T )| ≤ t− 1 since H does not contain Kt,t. As a result, the

number of (`, t)-bicliques of the form (S, T ) for a fixed T is at most
(
t−1
`

)
. That is, in total,

there can be at most
(
κ
t

)(
t−1
`

)
copies of K`,t in the graph. This implies that(

κ

t

)(
t− 1
`

)
≥
∑
S∈(V` )

(
|N(S)|
t

)
. (3)
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For brevity, let λ denote (κ− `)/t, γ denote λ−`/(2t) and let x denote γ · κ+ (1− γ) · t
(note x is chosen so that x−t

κ−t = γ). Let us now classify S ∈
(
A
`

)
into two groups: those with

|N(S)| ≥ x and those with |N(S)| < x. That is, we define

S≥x :=
{
S ∈

(
V

`

)∣∣∣∣|N(S)| ≥ x
}
, and S<x :=

{
S ∈

(
V

`

)∣∣∣∣|N(S)| < x

}
.

From (3), we have
(
κ
t

)(
t−1
`

)
≥
∑
S∈S≥x

(|N(S)|
t

)
≥ |S≥x| ·

(dxe
t

)
. Rearranging, we have

|S≥x| ≤
(
t−1
`

)(
κ
t

)(dxe
t

) ≤
(
t− 1
`

)(
κ− t
x− t

)t
=
(
t− 1
`

)
γ−t ≤

(
κ

`

)(
t− 1
κ

)`
γ−t

≤
(
κ

`

)
λ−`γ−t

=
(
κ

`

)
λ−`/2 ≤

(
κ

`

)
2−`/2, (4)

where the last line follows because t, ` ≤ 1
3κ.

Let us now count the number of K`,` in H. For each fixed S ∈
(
V
`

)
, the number of K`,`

of the form (S, T ) where T ∈
(
V
`

)
is exactly

(|N(S)|
`

)
. Thus, the total number of K`,` in G is∑

S∈(V` )
(|N(S)|

`

)
. This term can be further bounded by

∑
S∈(V` )

(
|N(S)|
`

)
=

∑
S∈S≥x

(
|N(S)|
`

)
+
∑

S∈S<x

(
|N(S)|
`

)

≤ |S≥x|
(
κ− `
`

)
+ |S<x|

(
x

`

)
(4)
≤ 2−`/2

(
κ

`

)(
κ− `
`

)
+
(
κ

`

)(
bxc
`

)
≤ 2−`/2

(
κ

`

)(
κ− `
`

)
+
(
κ

`

)(
κ− `
`

)
·
(

x

κ− `

)`
≤ 2−`/2

(
κ

`

)(
κ− `
`

)
+
(
κ

`

)(
κ− `
`

)
·
(

1− (1− γ)(κ− t)− `
κ− `

)`
= 2−`/2

(
κ

`

)(
κ− `
`

)
+
(
κ

`

)(
κ− `
`

)
·

(
1−

(1− γ − `
κ−t )(κ− t)

κ− `

)`
(From ` < t ≤ κ/2) ≤ 2−`/2

(
κ

`

)(
κ− `
`

)
+
(
κ

`

)(
κ− `
`

)
· (1− 0.5(1− γ − 2`/κ))`

≤ 2−`/2
(
κ

`

)(
κ− `
`

)
+
(
κ

`

)(
κ− `
`

)
· e−0.5`(1−γ−2`/κ) (5)

Consider the term (1− γ − 2`/κ). We can bound it as follows:

(1− γ − 2`/κ) =
(

1− 1
λ`/2t

− 2`
κ

)
(From λ = (κ− `)/t ≥ 2) ≥

(
1− 0.5`/2t − 2`

κ

)
(Bernoulli inequality) ≥

(
1−

(
1− `

4t

)
− 2`
κ

)
=
(
`

4t −
2`
κ

)
≥ `

8t .
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Plugging this back into (5), we have∑
S∈(A`)

(
|N(S)|
`

)
≤
(
κ

`

)(
κ− `
`

)
·
(

2−`/2 + e−
`2
16t

) (From `<t)
≤

(
κ

`

)(
κ− `
`

)
·
(

2 · e− `2
16t

)
,

which concludes our proof. J

4.5.2 Proof of Theorem 15
Proof of Theorem 15. Suppose contrapositively that there is an f(ρ) · poly(n)-time 2ρ/g(ρ)-
approximation algorithm A for Densest ρ-Subhypergraph where g = ω(1). We will construct
an algorithm B that achieves O(1)-approximation for k-Biclique with the promise that a
2k-Clique exists in time h(k) · no(k) for some function h. Theorem 15 then follows from
Corollary 9.

We define B on input (G = (V,E), k) as follows:
Let ρ = 2k and ` = dρ/g(ρ)0.1e.
Construct a hypergraph G′ with the same vertex set as G, and we add a hyperedge
e = {u1, . . . , u2`} to G′ for all distinct u1, . . . , u2` ∈ V that induce a 2`-clique in G.
Run A on (G′, ρ). Let S be A’s output.
Use brute force to find a maximum balanced biclique in S and output it.

Notice that algorithm B runs in time (f(2k) + 2O(k)) · nO(`) = (f(2k) + 2O(k)) · no(k) as
desired, where the term 2O(k) comes from the last step.

Next, we claim that, when k is sufficiently large, the output biclique has size at least
t := bk/8c, which would give us the desired O(1)-approximation ratio. Suppose for the sake
of contradiction that this is not true, i.e. that the induced graph G[S] is Kt,t-free.

For any sufficiently large k, we have ` < t. Hence, we may apply Lemma 16, which gives
the following upper bound on the number of not-necessarily induced copies of K`,` in G[S]:(

2 · e− `2
16t

)
·
(

2k
`

)(
2k − `
`

)
≤ e−Ω(k/g(k)0.2) ·

(
2k
`

)(
2k − `
`

)
.

However, since each hyperedge e = {u1, . . . , u2`} corresponds to
(2`
`

)
copies of K`,`, the

number of hyperedges fully contained in S is thus at most

e−Ω(k/g(k)0.2) ·
(

2k
`

)(
2k − `
`

)
/

(
2`
`

)
= e−Ω(k/g(k)0.2) ·

(
2k
2`

)
,

which is less than 2−ρ/g(ρ) ·
(2k

2`
)
for any sufficiently large k. This contradicts the approximation

guarantee of A since the optimal solution (i.e. the 2k-clique) contains
(2k

2`
)
hyperedges. J
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Abstract
In this paper, we study the quantum identity testing problem, i.e., testing whether two given
quantum states are identical, and quantum independence testing problem, i.e., testing whether
a given multipartite quantum state is in tensor product form. For the quantum identity testing
problem of D(Cd) system, we provide a deterministic measurement scheme that uses O( d

2

ε2 ) copies
via independent measurements with d being the dimension of the state and ε being the additive error.
For the independence testing problem D(Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdm) system, we show that the sample
complexity is Θ̃( Πm

i=1di

ε2 ) via collective measurements, and O( Πm
i=1d

2
i

ε2 ) via independent measurements.
If randomized choice of independent measurements are allowed, the sample complexity is Θ( d

3/2

ε2 )

for the quantum identity testing problem, and Θ̃( Πm
i=1d

3/2
i

ε2 ) for the quantum independence testing
problem.
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1 Introduction

1.1 Classical Property Testing
The ability to test whether an unknown object satisfies a hypothetical model based on observed
data plays a particularly important role in science [50]. Initially proposed by Rubinfeld and
Sudan [60, 61] to test algebraic properties of polynomials, the concept of property testing
has been extended to many objects of computer science: graphs, Boolean functions, and
so on [41, 40]. Property testing and distribution testing are intricately connected. At the
beginning of this century, Batu et al. introduced the problem of testing properties associated
with discrete probability distributions [14, 15]. In other words, how many samples from a
collection of probability distributions are needed to determine whether those distributions
satisfy a particular property with high confidence? Over the past two decades, this area has
become an extremely well-studied and successful branch of property testing due in part to
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the ongoing data science revolution. Never have computationally-efficient algorithms, a.k.a,
testers, that can identify and/or classify properties using as few samples as possible been in
higher demand.

A direct approach to distribution property testing is to reconstruct the given distributions
from sufficiently many samples. It is well known that, after taking Θ(ε−2 · d) samples from a
d-dimensional probability distribution p, the empirical distribution is, with high probability,
ε-close to p in total variance distance [29, pages 10 and 31]. Therefore, finding algorithms
that use o(d) samples for testing problems is highly desirable. Surprisingly, algorithms using
less number of samples than Θ(ε−2 · d) exist for many important properties.

The equality, or identity, of distributions is a central problem in this branch of study,
and one that is frequently revisited with different approaches due to its importance. In an
important work [40], Goldreich and Ron found that the `2 norm can be estimated from
O(ε−2 ·

√
d) samples. This led to an algorithm for uniformity testing, i.e., to determine

whether a probability distribution is a uniform using O(ε−4 ·
√
d) samples. Paninski [58] and

Valiant and Valiant [63] showed that the complexity of uniformity is Θ(ε−2 ·
√
d). If one

distribution is an arbitrary known distribution, Batu et al. [14, 13] presented an `2-identity
tester and used it to build an `1 estimator using O(ε−2 ·

√
d log d) samples; later in [65],

Valiant and Valiant showed the sample complexity of this problem is Θ(ε−2 ·
√
d). If both

distributions are unknown, Batu et al. provided a tester in [14] using O(ε−8/3 · d2/3 log d)
samples; In 2014, Chan et al., in [23], showed the complexity of the identity testing is
Θ(max(ε−2 ·

√
d, ε−4/3 · d2/3)).

The idea of identity testing has been extensively explored in studying other property
testing problems. Independence testing and conditional independence testing are among
the most important ones. In [13], Batu et al presented an independence tester for bipartite
independence testing over [d1] × [d2] with a sample complexity of Õ(d2/3

1 d
1/3
2 ) · Poly(ε−1),

for d1 ≥ d2. Levi, Ron and Rubinfeld in [51] showed a lower bound Ω(
√
d1d2) for all d1 ≥ d2

and Ω(d2/3
1 d

1/3
2 ) for d1 = Ω(d2 log d2). Acharya et al. [6] introduced a tester for multipartite

independence testing over ×mj=1[dj ] with sample complexity O(ε−2·
√

Πm
j=1dj + ε−2 ·

∑m
j=1 dj).

In their important work [31], Diakonikolas and Kane demonstrated a unified approach
to resolve the sample complexity of a wide variety of testing problems based on their
alternative proof for identity testing. In particular, they showed that the sample complexity
of independence tesing is Θ(maxk{ε−2√

Πm
j=1dj , ε

−4/3 · d2/3
k Πm

j=1d
1/3
j }). Canonne et al. [22]

initiated the study of the conditional independence within property testing framework.
Notably, for the very important [2]× [2]× [n], they showed that the sample complexity for
this problem is Θ(max{ε−2 ·

√
n,min{ε−1 · n7/8, ε−8/7 · n6/7}}).

Besides the mentioned works, a very incomplete list of works of distributional property
testing includes [12, 15, 68, 5, 64, 51, 46, 26, 32, 48, 66, 70, 30, 67, 28, 39, 33, 7, 21, 27, 34, 24],
and two excellent surveys include more [59, 20].

1.2 Quantum Property Testing
Quantum property testing has been extensively studied. At this stage of development of
quantum computation, testing the properties of new devices as they are built is a basic
problem as illustrated in Montanaro and de Wolf’s comprehensive survey [53]. A standard
quantum device outputs some known d-dimensional (mixed) state σ ∈ D(Cd) but inevitably,
the results are noisy such that the actual output state ρ ∈ D(Cd) is not equal σ, maybe not
even close to. Similar to property testing with classical distributions, properties of ρ need to
be verified by accessing the device, say, m times, to derive ρ⊗m.
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Starting from the very basic problem of quantum state tomography, a fundamental
problem is to decide how many copies of an unknown mixed quantum state ρ ∈ D(Cd)
is necessary and sufficient to output a good approximation of ρ in trace distance, with
high probability. This problem has been studied extensively since the birth of quantum
information theory. The main-stream approach is through independent measurement, i.e.,
measurement on each copy of the state. A sequence of work [42, 36, 69, 49] is dedicated to
showing that O(ε−2 · d3) copies are sufficient in an `1 distance of no more than ε. Haah et al.
[44] showed that this is tight for independent measurement. For joint measurement, Haah et
al. [44] proved that O(ε−1 · d2 log(ε−1 · d)) copies are sufficient to obtain an infidelity of no
more than ε, which can be regarded as a quantum generalization of Sanov’s theorem [62].
By combining the lower bound of [44] and upper bound of [56, 57], the sample complexity of
state tomography with joint measurement is Θ̃(ε−2 · d2) in a `1 distance error of less than ε
with high probability.

A more direct approach to quantum property testing is to estimate ρ by sampling from
ρ⊗m, which also means one could check any property of interest. However, like classical
property testing, this idea is not optimal for a general property. One problem that has
received much attention is quantum identity testing. Suppose we are given query access
to two states ρ, σ ∈ D(Cd), and we want to test whether they are equal or have a large
`1 distance. For practical purposes, the results from cases where σ is a known pure state
have been extensively studied, in the independent measurement setting [37, 25, 10]. [55]
solved the problem, in the joint measurement setting, where σ is a maximally mixed state
case by showing that Θ(ε−2 · d) copies are necessary and sufficient. Importantly, the sample
complexity of the general problem was proven to be Θ(ε−2 ·d) in [18] by providing an efficient
`2 distance estimator between two unknown quantum states.

In [4], Aaronson initialized the study of the learnability of quantum state, whose goal
is to output good estimations of a set of measurements simultaneously. In [1], Aaronson
provided an efficient procedure of the quantum shadow tomography. A connection between
quantum learning and differential privacy was established in [3]. In [2], the online learning of
quantum states was studied.

Entanglement is a ubiquitous phenomenon in quantum information theory. A multipartite
pure state |ψ〉 ∈ (Cd)⊗m is not entangled if it can be written as |ψ〉 = ⊗mj=1 |ψj〉 for some
|ψj〉 ∈ Cd. Pure entanglement testing was first discussed by Mintert et al [52]. Harrow and
Montanaro [45] subsequently proved that O(ε−2) copies are sufficient and used that to study
the quantum complexity theory. In [17], it was proved that Ω(d2/ε2) copies are necessary to
test separability of quantum states in Cd ⊗ Cd for not small ε.

Acharya et al. [8] estimated the von Neumann entropy of general quantum states. Gross
et al. [43] showed that “stabilizerness” can be tested efficiently. One research direction is to
study the potential speed-up of distributional property testing using quantum algorithms
where the distribution is given in the form of a quantum oracle [16, 38].

1.3 Measurement Schemes
A significant difference between quantum property testing and classical property testing
is the way the objects are sampled. In classical property testing, each sample is output
with a classical index according to the probability distribution and given a fixed number
of samples, the output string obeys the product probability distribution. However, with
quantum property testing, the sampling methods have much richer structures. This difference
together with others prevents the potential to design algorithms for quantum property testing
from ingenious ideas and techniques of distribution testing.

ITCS 2021
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Measurement Complexity Dimension Implementation
Joint Low dm Hard even in the future

Independent Medium d Available in the future

Among the many available sampling methods for quantum property testing (given a fixed
number of copies, says k, of the states ρ ∈ D(Cd)), the two listed in Table 1 are of particular
interests, i.e., joint measurement, and independent measurement. Joint measurement, the
most general, allows arbitrary measurements of Cdm . Independent measurement only allows
non-adaptive measurements on each copy of ρ, which results in, n measurements of Cd.

Joint measurement has the potential to provide the optimal number of samples, but there
are two caveats. “Optimal” joint measurement algorithms usually require an exponential
number of copies of the quantum state to produce optimal results. They are also based on
the assumption of noiseless, universal quantum computation on the exponential number of
copies of the quantum state. For instance, the optimal tomography algorithms of k-qubit
quantum state in [44, 56, 57] require a joint measurement on Θ(ε−2 ·k22k) qubits. Even in the
future when quantum computers become a reality, implementing optimal joint measurement
would be extremely hard given these conditions. General independent measurements are not
feasible with currently-available technology. To implement a two-outcome measurement on
the k-qubit system, one needs to implement a k + 1 qubit unitary. Implementing a general
k + 1 qubit unitary requires a circuit consisting of at least Ω(4k) elementary gates, which
could also be hard.

In this paper, we study the quantum identity testing problem, i.e., testing whether two
given quantum states are identical, and the quantum independence testing problem, i.e.,
testing whether a given multipartite quantum state is in tensor product form. For the
quantum identity testing problem of D(Cd) system, we provide a measurement scheme that
uses O(d

2

ε2 ) copies via independent measurements with d being the dimension of the state and
ε being the additive error. For the independence testing problem D(Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdm)
system, we show that the sample complexity is Θ̃(Πm

i=1di

ε2 ) via collective measurements, and
O(Πm

i=1d
2
i

ε2 ) via independent measurements. Further, we initialize the study of the property
testing problems of classical-quantum states, motivated by the potential applications of
classical-quantum states. Our main tool is a measurement that “preserves” the `2 distance,
which invokes an immediate connection between quantum and classical property testing.

1.4 Our contributions
Identify whether two quantum states are equal or not is called quantum identity testing
problem.

I Problem 1. Given two unknown quantum mixed states ρ, σ ∈ D(Cd), they satisfy either
ρ = σ or ||ρ − σ||1 > ε for a given ε > 0. How many copies of ρ and σ are needed to
distinguish these two cases, with high probability?

This problem under joint measurement setting is solved in [18]. In this paper, we study
this problem using independent measurement. To reach this goal, we observe the following
lemma. It maintains interesting relations between the `2 distance of quantum states and the
`2 distance of the generated corresponding probability distributions. Given that `2 distance
plays a central role in classical property testing [31], our approach invokes an immediate
connection between quantum and classical property testing. Previous research into quantum
property testing has always been in isolation of classical property testing, whereas this scheme
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opens up the potential to design quantum property tester from ingenious ideas and techniques
of distribution testing. Further, this is a fixed measurement scheme that does not depend on
the property to be tested, which makes our algorithms a perfect fit for implementation with
current experiments.

I Lemma 2. For d being power of 2, there is a measurement

M = (M1,M2, . . . ,Md(d+1)) : D(Cd) 7→ ∆(d(d+ 1))

whose outcome lies in ∆(d(d+ 1)), the d(d+ 1)-dimensional probability simplex, such that,
for any quantum states ρ, σ ∈ D(Cd)

||p− q||2 = ||ρ− σ||2
d+ 1 , ||p||2, ||q||2 ≤

√
2

d+ 1 , (1)

where p = (p1, p2, . . . , pd(d+1)) and q = (q1, q2, . . . , qd(d+1)) with pi = Tr(ρMi) and qi =
Tr(σMi).

We employ mutually unbiased bases (MUB) to construct such measurement. MUB in Hilbert
space Cd are two orthonormal bases {|e1〉, . . . , |ed〉} and {|f1〉, . . . , |fd〉} such that the square
of the magnitude of the inner product between any basis states |ej〉 and |fk〉 equals the
inverse of the dimension d. These bases are unbiased in the following sense: if a system is
prepared in a state belonging to one of the bases, then all outcomes of the measurement with
respect to the other basis are predicted to occur with equal probability.

For d = 2n, there are 2n + 1 mutually unbiased bases in Cd. Therefore, the density
matrices of these MUBs form a linear basis of D(Cd) in this case. Each measurement operator
Mi is proportional to a density matrix of a MUB element. Therefore, after the measurement,
there is no more information left because applying measurement in other MUB basis would
output uniform distribution.

The upper bound of `2 norms of the output probability distribution is essential in designing
an efficient quantum tester by lifting classical property tester because a small `2 norms
ensures that the tester could use a smaller number of samples for the distributional identity
testing problem as illustrated in [31], and distributional independence testing problem studied
in [22].

Using Lemma 2 and the result of classical property testing, a tester using independent
measurement for Problem 2 can be obtained as follows.

I Theorem 3. For ρ, σ ∈ D(Cd), O(ε−2 · d2) copies are sufficient to distinguish via determ-
inistic independent measurements, with at least a 2

3 probability of success, the cases where
ρ = σ from the cases where ||ρ− σ||1 > ε.

This is better than directly using the SWAP test which uses O(d
2

ε4 ) copies, although the
SWAP test is already a joint measurement.

Entanglement is a central feature in quantum information science. Certification of
entanglement has received great amount of effort. This motivates us to study the following
quantum independence testing problem.

I Problem 4. Given an unknown quantum mixed states ρ ∈ D(Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdn),
they satisfy either ρ = σ1 ⊗ σ2 ⊗ · · · ⊗ σn for some σi ∈ D(Cdi) or for all σi ∈ D(Cdi),
||ρ − σ1 ⊗ σ2 ⊗ · · · ⊗ σn||1 > ε for a given ε > 0. How many copies of ρ are needed to
distinguish these two cases, with high probability?

ITCS 2021
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The above `1 identity testers for independent measurement together with the `1 identity
tester of [18] for joint measurement enable us to derive the following result.

I Theorem 5. The sample complexity of quantum independence testing problem for n-qubit
quantum state is Θ(ε−2 · 2n).

For general n-partite system D(Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdn) with d1 ≥ d2 ≥ · · · ≥ dn, the
sample complexity of quantum independence testing problem is Θ̃(ε−2 · Πn

i=1di) with joint
measurements; and O(ε−2 ·Πn

i=1d
2
i ) with deterministic independent measurements, where Θ̃

hides a factor between (log3 d1 · log log d1)−1 and 1.

In n-qubit system, the lower bound of the quantum independence for joint measurement
comes from a reduction from determining whether a given state is a maximally mixed state.

In a general system, the lower bound is derived using an additional technique called
dimension splitting which regards a d1-dimensional system as log d1 qubits system.

1.5 Other Results
It is widely believed that the fully-fledged quantum computer will be controlled through a
classical system. Therefore, the data generated by quantum computers would be modeled
by classical-quantum states, e.g., classical collections of quantum states. The importance of
classical-quantum states also comes from its central role in studying quantum communication
complexity [47, 9]. In classical property testing, Levi, Ron, and Rubinfeld initialized the
study of property testing of collections of distributions in their pioneering work [51]. This
motivates us to study the property testing problems of classical-quantum states.

In the query model, there are m states ρ1, ρ2, · · · , ρn. We can choose 1 ≤ i ≤ n to
obtain a copy of ρi. A motivation of studying this model is the quantum state preparation.
Suppose there are different ways of generating a quantum state. We want to know whether
these methods all work well. This problem can be formulated as the independence testing of
collections of quantum states.

I Problem 6. Given unknown quantum mixed states ρ1, ρ2, · · · , ρm ∈ D(Cd1⊗Cd2⊗· · ·⊗Cdn)
and a given distribution p = (p1, p2, · · · , pm), they satisfy either there exist σk,i ∈ D(Cdk )
for 1 ≤ k ≤ n such that for all 1 ≤ i ≤ m ρi = ⊗nk=1σk,i, or for any σk,i ∈ D(Cdk ),∑m
i=1 pi||ρi −⊗nk=1σk,i||1 > ε, for a given ε > 0. How many queries are needed to distinguish

these two cases, with high probability?

Combing the framework in [31] and our independece testers, we obtain

I Theorem 7. The sample complexity of the independence testing of collections of quantum
states is Θ̃(ε−2 · d) with joint measurement; O(ε−2 · d2) with determinstic independent
measurement.

Like their classical counterparts, the complexity does not depend on the number of states
n. Similarly, this idea can be used for the independence testing of collections of quantum
states.

In further work, we explore the problem of testing conditional independence with classical-
quantum-quantum states. This question naturally arises in studying distributed quantum
computing. One typical example is environment assisted entanglement distribution. Suppose
ρABC is a tripartite state. We want to reach the goal of sharing a bipartite state σAB. C
should perform a measurement on its system, now the state becomes classical-quantum-
quantum.
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I Problem 8. Given an unknown classical-quantum-quantum mixed states

ρABC =
m∑
i=1

pmρAB,i ⊗ |i〉〈i| ∈ D(Cd1 ⊗ Cd2)⊗∆(C)

with ∆(C) being the probabilistic simplex of C and |C| = m and |i〉 being a basis of C, we want
to distinguish whether ρABC is conditional independence, that is ρ =

∑m
i=1 pmρA,i⊗ρB,i⊗|i〉〈i|,

or for any conditional independent classical-quantum-quantum state σABC ||ρ − σ||1 > ε,
for a given ε > 0. How many queries are needed to distinguish these two cases, with high
probability?

This problem is a generalization of the independence testing of collections of quantum
states in the sense that the prior coefficient of the `1 distance is not given explicitly but
may be approximated through sampling. One motivation for studying this problem is a
simplified version of the conditional independence of general tripartite quantum states, which
a fundamental concept in theoretical physics and quantum information theory.

More specifically, we modify the `2 estimator developed in [18] for joint measurement and
develop a finer `2 estimator for independent measurement. Then we plug that estimator into
the classical conditional independence testing framework developed in [22].

I Theorem 9. For classical-quantum-quantum state ρABC ∈ D(Cd1 ⊗ Cd2) ⊗ ∆(C), the
sample complexity of testing whether A and B are conditionally independent given C is

O(max{
√
nd1d2
ε2 ,min{d

4
7
1 d

4
7
2 n

6
7

ε
8
7

,
√
d1d2n

7
8

ε }}) with joint measurement; and

O(max{
√
nd2

1d
2
2

ε2 ,min{d
6
7
1 d

6
7
2 n

6
7

ε
8
7

,
d

3
4
1 d

3
4
2 n

7
8

ε }}) with independent measurement.

1.6 Organization of this paper
Section 2 recalls the basic definitions of distance with discrete distributions and quantum
states and presents some formal tools from earlier work that are used here. In Section 3, we
state technical lemmata about the independence and conditional independence of quantum
states. Section 4 demonstrates Lemma 2. Section 5 contains the results of identity testing and
Theorems 3. In Section 6, we discuss the advantage of using random choice of independent
measurements. Detail proofs of Lemmata, Theorem 7 and Theorem 9 can be found in the
full version [71].

2 Preliminaries

This section begins with some standard notations and definitions used throughout the paper.

2.1 Basic facts for probability distributions
For m ∈ N, [m] denotes the set {1, · · · ,m}, and log denotes the binary logarithm. A probab-
ility distribution over discrete domain Ω is a function p : Ω 7→ [0, 1] such that

∑
ω∈Ω p(ω) = 1.

|Ω| is the cardinality of set Ω. ∆(Ω) denotes the set of probability distributions over Ω,
i.e., the probability simplex of Ω. The marginal distributions p1 ∈ ∆(A) and p2 ∈ ∆(B)
of a bipartite distribution p1,2 ∈ ∆(A × B) can be defined as p1(a) =

∑
b∈B p1,2(a, b),

p1(b) =
∑
a∈A p1,2(a, b). The product distribution q1 ⊗ q2 of distributions q1 ∈ ∆(A) and

q2 ∈ ∆(B) can be defined as [q1 ⊗ q2](a, b) = q1(a)q2(b), for every (a, b) ∈ A×B.
The `1 distance between two distributions p, q ∈ ∆(Ω) is ||p− q||1 =

∑
ω∈Ω |p(ω)− q(ω)|,

and their `2 distance is ||p− q||2 =
√∑

ω∈Ω(p(ω)− q(ω))2.

ITCS 2021
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2.2 Basic quantum mechanics
An isolated physical system is associated with a Hilbert space, which is called the state space.
A pure state of a quantum system is a normalized vector in its state space, and a mixed
state is represented by a density operator on the state space. Here, a density operator ρ on
d-dimensional Hilbert space Cd is a semi-definite positive linear operator such that Tr(ρ) = 1.
We let

D(Cd) = {ρ : ρ is d−dimensional density operator of Cd}

denote the set of quantum states.
The reduced quantum state of a bipartite mixed state ρ1,2 ∈ D(Cd1 ⊗Cd2) on the second

system is the density operators ρ2 := Tr1 ρ1,2 =
∑
i〈i|A|i〉, where {|i〉} is the orthonormal

basis of Cd1 . The partial trace of ρ1 := Tr2 ρ1,2 can be similarly defined, note that partial
trace functions are also independent of the selected orthonormal basis. This definition can
be directly generalized into multipartite quantum states.

2.3 Quantum measurement
A positive-operator valued measure (POVM) is a measure whose values are non-negative
self-adjoint operators in a Hilbert space Cd, which is described by a collection of matrices
{Mi} with Mi ≥ 0 and

∑
iMi = Id. If the state of a quantum system was ρ immediately

before measurement {Mi} was performed on it, then the probability of that result i recurring
is p(i) = Tr(Miρ).

2.4 `1 distance
`1 distance is used to characterize the difference between quantum states. The `1 distance
between ρ and σ is defined as ||ρ− σ||1 ≡ Tr|ρ− σ| where |A| ≡

√
A†A is the positive square

root of A†A.
Given a general operator A, the `1 norm is defined as ||A||1 = Tr|A|. And Lemma 10

always applies:

I Lemma 10 ([54]). The `1 distance is decreasing under partial trace. That is

||ρ1 − σ1||1, ||ρ2 − σ2||1 ≤ ||ρ1,2 − σ1,2||1.

Their `2 distance is defined as ||ρ − σ||2 =
√

Tr(ρ− σ)2. For ρ, σ ∈ D(Cd), we have the
following relation between `1 and `2 distances, ||ρ− σ||2 ≤ ||ρ− σ||1 ≤

√
d||ρ− σ||2. Given a

subset P ( D(Cd), the `1 distance between ρ and P is defined as ||ρ−P||1 = infσ∈P ||ρ−σ||1.
If ||ρ− P||1 > ε, we say that ρ is ε-far from P; otherwise, it is ε-close.

2.5 Mutually unbiased bases
In quantum information theory, mutually unbiased bases (MUB) in d-dimensional Hilbert
space are two orthonormal bases {|e1〉, . . . , |ed〉} and {|f1〉, . . . , |fd〉} such that the square of
the magnitude of the inner product between any basis states |ej〉 and |fk〉 equals the inverse
of the dimension d:

|〈ej |fk〉|2 = 1
d
, ∀j, k ∈ {1, . . . , d}.

These bases are unbiased in the following sense: if a system is prepared in a state belonging
to one of the bases, then all outcomes of the measurement with respect to the other basis
will occur with equal probability. It is known that, for d = pn with prime p, there exists
d+ 1 MUBs [35].
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2.6 Quantum property testing

Let D(Cd) denote the set of mixed states in Hilbert space Cd, and let a known T ⊂ D(Cd)
be the working domain of the quantum states. In a standard of property testing scenario, a
testing algorithm for a property P ⊂ T would be an algorithm that, when granted access
to independent samples from an unknown quantum state ρ ∈ T as well as an `1 distance
parameter of 0 < ε ≤ 1, outputs either “Yes” or “No”, with the following guarantees:

If ρ ∈ P, then it outputs “Yes” with a probability of at least 2
3 .

If ρ is ε-far from P, then it outputs “No” with a probability of at least 2
3 .

Our interest is in designing computational efficient algorithms with the smallest sample
complexity (i.e., the smallest number of samples drawn of ρ.).

Confidence of 2
3 is not essential here, it could be replaced by any constant greater than 1

2 .
This would only change the sample complexity by a multiplicative constant. According to the
Chernoff bound, the probability of success becomes 1− 2−Ω(k), after repeating the algorithm
k times.

2.7 Tools from earlier work

The following results were established in earlier work, and are used within this paper.

I Theorem 11 ([11]). The Pauli group Pk = {I,X, Y, Z}⊗n of order 4n can be divided into
2n + 1 Abelian subgroups with an order of 2n, say, G0, . . . , G2n such that Gi

⋂
Gj = {I⊗n2 }

for i 6= j. Each subgroup can be simultaneously diagonalizable by a corresponding basis. All
these 2n + 1 bases form 2n + 1 MUBs.

I Theorem 12 ([55, 18]). 100 d
ε2 copies are sufficient and 0.15 d

ε2 copies are necessary to test
whether ρ ∈ D(Cd) is the maximally mixed state Id

d or ||ρ − Id

d ||1 > ε with at least a 2/3
probability of success. Generally, O( dε2 ) copies of ρ and σ are sufficient to test whether ρ = σ

or ||ρ− σ||1 > ε

Algorithm 1 A Mixness Test.

Input: 100 d
ε2 copies of ρ ∈ D(Cd)

Output: “Yes” with a probability of at least 2
3 if ρ = Id

d ; and “No” with a
probability of at least 2

3 if ||ρ− Id

d ||1 > ε.

Algorithm 2 A Identity Test with Joint Measurement.

Input: O( dε2 ) copies of ρ ∈ D(Cd) and O( dε2 ) copies of σ ∈ D(Cd)
Output: “Yes” with a probability of at least 2

3 if ρ = σ; and “No” with a probability
of at least 2

3 if ||ρ− σ||1 > ε.

I Theorem 13 ([23]). For n-dimensional probability distributions of p and q, O( bε2 ) samples
are sufficient to distinguish, with at least a 2

3 probability, the cases where p = q from the
cases where ||p− q||2 > ε, where b ≥ ||p||2, ||q||2.

Algorithm 3 An `2 norm Identity Test.

Input: O( bε2 ) copies of p and O( bε2 ) copies of q
Output: “Yes” with probability at least 2

3 if p = q, “No” with probability at least 2
3

if ||p− q||2 > ε.
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3 Quantum Independence and Technical Lemmata

3.1 Bipartite independence and approximate independence
We say that ρ1,2 ∈ D(Cd ⊗ Cd2) is independent if ρ1,2 = σ1 ⊗ σ2 for some σi ∈ D(Cdi). One
can directly verify that, if ρ1,2 is independent, then ρ = ρ1 ⊗ ρ2 with ρ1 and ρ2 being the
reduced density matrices of ρ1,2.

We say that ρ is ε-independent with respect to the `1 distance if there is an independent
state σ such that ||ρ− σ||1 ≤ ε. We say that ρ is ε-far from being independent with respect
to the `1 distance if ||ρ− σ||1 > ε for any independent state σ.

I Proposition 14. Let ρ and σ be bipartite states of D(Cd ⊗ Cd2). If ||ρ− σ||1 ≤ ε/3 and σ
is independent, then ||ρ− ρ1 ⊗ ρ2||1 ≤ ε.

I Lemma 15. ||ρ1 ⊗ ρ2 − σ1 ⊗ σ2||1 ≤ ||ρ1 − σ1||1 + ||ρ2 − σ2||1.

3.2 Multipartite independence and approximate independence
We say that ρ ∈ D(Cd ⊗ Cd2 ⊗ · · · ⊗ Cdn) is n-partite independent if ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn,
and that ρ is ε-independent with respect to the `1 distance if there is a state σ that is
m-partite independent and ||ρ − σ||1 ≤ ε. We say that ρ is ε-far from being independent
with respect to the `1 distance if ||ρ− σ||1 > ε for any m-partite independent state σ .

I Proposition 16. Let ρ and σ be n-partite states, if ||ρ − σ||1 ≤ ε, and σ is m-partite
independent, then ||ρ− ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn||1 ≤ (n+ 1)ε.

I Lemma 17. ||ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn − σ1 ⊗ σ2 ⊗ · · · ⊗ σn||1 ≤
∑n
i=1 ||ρi − σi||1.

Proposition 18 establishes a connection between bipartite independence and multipartite
independence. Specifically, it shows that if an n-partite state is close to bipartite independence
in any 1 versus n− 1 cut, it is close to being n partite independent.

I Proposition 18. Let ρ be an n-partite states. If for any 1 ≤ i ≤ n, there exists a state σ(i)
i

of party i, and a state ψ[n]\{i} of parties [n] \ {i} such that ||ρ− σ(i)
i ⊗ ψ[n]\{i}||1 ≤ ε, then

||ρ− ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn||1 ≤ 5nε.

4 Connections between Quantum Property Testing and Distribution
Testing

Mutually unbiased bases (MUBs) are used to map the quantum states of D(Cd) into d(d+ 1)
dimensional probability distributions. Without loss of generality, assume d = 2n, and we let
the Pauli group Pk = {I,X, Y, Z}⊗n be to the order of 4n. According to Theorem 11, any
state ρ ∈ D(Cd) can be written as

ρ =
∑
P∈Pn

ηpP = Id
d

+
d∑
a=0

∑
P∈Ga,
P 6=Id

ηpP = Id
d

+
∑
i,j

µi,j |βi,j〉〈βi,j |,

where Ga are the Abelian subgroups with an order of 2n = d such that ∪Ga = Pn and
Ga

⋂
Gb = {I⊗n2 } for a 6= b. The equation is due to the simultaneous spectrum decomposition

of Ga through the MUBs bases. That is, for 0 ≤ i 6= s ≤ d, 1 ≤ j, t ≤ d,

|〈βi,j , βs,t〉| =
1√
d
.
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In addition, it is verifiable that
∑d
j=1 µi,j = 0 for all i by the traceless property of P 6= Id.

Therefore, we can obtain the following constraint on µi,j using
∑d
j=1 µi,j = 0 for all i,

Tr ρ2 = Tr Id
d2 +

∑
i,j,s,t

µi,jµs,t|〈βi,j , βs,t〉|2 = 1
d

+
∑
i,j

µ2
i,j ≤ 1.

M = {Mij = |βi,j〉〈βi,j |
d+1 : 0 ≤ i ≤ d, 1 ≤ j ≤ d} can be used to map the d-dimensional

quantum state ρ into a d(d+ 1) dimensional probabilistic distribution. The corresponding
probability distribution p = (p(0, 1), . . . , p(d, d)) satisfies

p(i, j) = Tr(ρ|βi,j〉〈βi,j |)
d+ 1 =

µi,j + 1
d

d+ 1 ,

note that other terms are orthogonal or cancel out due to the property of MUBs and the
equations

∑d
j=1 µi,j = 0 for all i.

Then the `2 norm of p can be bounded with

√∑
i,j(µi,j + 1

d )2

d+ 1 =

√∑
i,j µ

2
i,j + d(d+1)

d2 +
2
∑

i,j
µi,j

d

d+ 1 =

√∑
i,j µ

2
i,j + d+1

d

d+ 1 ≤
√

2
d+ 1 .

More importantly, this map preserves the `2 distance, in the sense that the `2 distance
between the image probability distributions is exactly the same as the `2 distance between
the pre-image quantum states with a scaling of 1

d+1 .

For any two states ρ = Id

d +
∑
i,j µi,j |βi,j〉〈βi,j | and σ = Id

d +
∑
i,j νi,j |βi,j〉〈βi,j |, we have

that

||ρ− σ||2 = ||
∑
i,j

(µi,j − νi,j)|βi,j〉〈βi,j |||2 =
√∑

i,j

(µi,j − νi,j)2,

where the other terms are orthogonal or cancel out due to the property of MUBs and the
equation

∑d
j=1 µi,j = 0 for all i.

Using the measurementM, the corresponding probability distributions can be obtained:
p = (p(0, 1), . . . , p(d, d)) and q = (q(0, 1), . . . , q(d, d)) with

p(i, j) = Tr(ρ|βi,j〉〈βi,j |)
d+ 1 =

µi,j + 1
d

d+ 1 , q(i, j) = Tr(σ|βi,j〉〈βi,j |)
d+ 1 =

νi,j + 1
d

d+ 1 .

The following equality proves Lemma 2. ||p− q||2 =

√∑
i,j

(µi,j−νi,j)2

d+1 = ||ρ−σ||2
d+1 .
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5 Quantum State Certification

The connections developed in Section 4, together with the `2-identity tester of probability
distributions provided in [23], also make efficient identity testing of quantum states possible.

Proof of Theorem 3. First map the state into probability distributions, say p and q, through
independent measurement with Theorem 2, and follow by executing Algorithm 4.

Algorithm 4 A Identity Test with Independent Measurement.

Input: O(d
2

ε2 ) copies of ρ ∈ D(Cd) and O( dε2 ) copies of σ ∈ D(Cd)
Output: “Yes” with a probability of at least 2

3 if ρ = σ; and “No” with a probability
of at least 2

3 if ||ρ− σ||1 > ε.
1 Run Algorithm 3 to distinguish between p = q and ||p− q||2 ≥ ε√

d(d+1) ;
/* p and q are the probability distributions obtained by measuring ρ

and σ through the independent measurement with Theorem 2,
respectively. */

According to ||p − q||2 = ||ρ−σ||2
d+1 , we only need to distinguish cases where p = q from

cases where ||p − q||2 ≥ ||ρ−σ||1√
d(d+1) ≥

ε√
d(d+1) . Choosing b =

√
2

d+1 ≥ ||p||2, ||q||2 and invoking
Theorem 13, we have

O( b

( ε√
d(d+1) )2 ) = O(d

2

ε2
)

which is a sufficient number of copies. J

According to [44], the sample complexity for tomography is ρ ∈ D(Cd) is Θ(d
3

ε2 ), which
makes Algorithm 4 a better choice for identity testing after tomography.

As mentioned in the introduction, Algorithm 4 should be significantly easier to implement
because it does not demand noiseless, universal quantum computation with an exponential
number of qubits.

6 Independence Testing

The goal of independence testing is to determine whether a fixed multipartite state ρ is
independent, i.e., in tensor product form, or far from being independent. Hence, in this
section, we outline a series of testing algorithms and almost matching lower bounds in joint
measurement setting, and independent measurement setting.

We start with an algorithm for the bipartite case of Theorem 5.
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Algorithm 5 A Bipartite Independence Testing with Joint Measurement.

Input: n = O(d1d2
ε2 ) copies of ρ ∈ D(Cd1 ⊗ Cd2)

Output: “Yes” with a probability of at least 2
3 if ρ is independent; and “No” with a

probability of at least 2
3 if ||ρ− σ||1 > ε for any independent σ.

1 Use n
3 copies of ρ to generate ρ1;

/* Trace out system 2 */
2 Use n

3 copies of ρ to generate ρ2;
/* Trace out system 1 */

3 Run Algorithm 2 on n
3 copies of ρ and n

3 copies of ρ1 ⊗ ρ2 with the parameter ε/3;

Proof. The correctness of this algorithm accords with Theorem 1 by note that
If ρ is independent, then ρ = ρ1 ⊗ ρ2, and this algorithm will output “Yes” with high
probability.
If ||ρ− σ||1 > ε for any independent σ, then ||ρ− ρ1 ⊗ ρ2||1 > ε/3 by Proposition 14, and
this algorithm will output “No” with high probability.

We can derive an independent measurement tester by replacing the identity tester in Al-
gorithm 2 with Algorithm 4. From a similar analysis to the above, O(d

2
1d

2
2

ε2 ) is a sufficient
number of copies. J

The obvious generalization of the bipartite independence testing to m-partite would
work using bipartite independence in any n− 1 parties versus 1 party. Our goal is to test
independence in this scenario with an accuracy of O( εn ) and at least a 1− 1

n2 probability of
success. The correctness of the algorithm follows from Proposition 18, and the generalization
incurs anO(n3 logn) factor. For constant n, O(n3 logn) is still constant. Thus, the complexity
of the different algorithm variants would be O(Πn

i=1di

ε2 ) with joint measurement, and O(Πn
i=1d

2
i

ε2 )
with independent measurement. With a super-constant n, algorithms could be built that
achieve the same complexity using Diakonikolas and Kane’s [31] recursion idea coupled with
our previous bipartite independence tester.

We only prove the lower bound part of Theorem 5 for bipartite systems here. The general
version can be proved similarly. In cases where d1 and d2 are both very large, the bound is
derived from the mixness test of Theorem 12 in [55], where the constant 2000 comes from the
upper and lower bound of the constant in that theorem. To deal with “unbalanced” cases
where only d1 or d2 is small–here, let us says d2–we split the d1 system into many systems of
dimension d2, which transforms the original unbalance of a bipartite problem into a problem
of “balanced” multipartite independence testing. Then, we use Proposition 18.

Proof. First, note that it suffices to consider cases where d1d2 are sufficiently large. To show
the lower bound for a general d1 and d2, assume there is an algorithm, Algorithm A, that
uses f(d1, d2, ε) copies to decide whether a given ρ ∈ D(Cd1 ⊗ Cd2) is independent or ε-far
from being independent with at least a 2/3 probability of successful. By using Algorithm A
as an oracle, the following algorithm can distinguish cases where ρ = Id1

d1
⊗ Id2

d2
from cases

where ||ρ− Id1
d1
⊗ Id2

d2
||1 > ε for any t > 1.

To see this algorithm to succeed at detecting whether ρ is maximally mixed with high
probability, note that: If ρ = Id1

d1
⊗ Id2

d2
, in Line 1, the algorithm will output ρ1 = Id1

d1
with a

probability of at least 20
27 ; in Line 5, the algorithm will output ρ2 = Id2

d2
with a probability

of at least 27
28 ; in Line 9, ρ will be independent with a probability of at least 28

30 . Overall,
Algorithm 6 will output “Yes” with a probability of at least 2

3 .
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If ||ρ− Id1
d1
⊗ Id2

d2
||1 > ε, then one of the following three statements will be true: ρ1 is ε/t-far

from Id1
d1

; or ρ2 is (t−1)ε
4t -far from Id2

d2
; or ρ is (t−1)ε

4t -far from being independent. Otherwise,
assume that there exists an σ1 and an σ2, such that ||ρ−σ1⊗σ1||1 < (t−1)ε

4t , ||ρ1−
Id1
d1
||1 < ε

t

and ||ρ2 −
Id2
d2
||1 < (t−1)ε

4t . According to Proposition 14, we have ||ρ− ρ1 ⊗ ρ2||1 < 3(t−1)ε
4t .

Then by the triangle inequality and Lemma 15, we have

||ρ− Id1

d1
⊗ Id2

d2
||1 ≤ ||ρ− ρ1 ⊗ ρ1||1 + ||Id1

d1
⊗ Id2

d2
− ρ1 ⊗ ρ1||1 < ε.

Contradiction! Therefore, in this case, the algorithm outputs “No” with a probability of at
least min{ 20

27 ,
27
28 ,

28
30} >

2
3 .

Algorithm 6 A Bipartite Identity test A for a maximally mixed state.

Input: n = 100f(d1, d2,
(t−1)ε

4t ) + 300t2 d1
ε2 + Θ( d2

t2(t−1)2ε2 ) copies of ρ ∈ D(Cd1 ⊗ Cd2)
Output: “Yes” with a probability of at least 2

3 if ρ = Id1
d1
⊗ Id2

d2
; and “No” with a

probability of at least 2
3 if ||ρ− Id1

d1
⊗ Id2

d2
||1 > ε.

1 Repeat Algorithm 1, with 100t2 d1
ε2 copies of ρ, three times to test whether ρ1 = Id1

d1

or ||ρ1 −
Id1
d1
||1 > ε/t with at least a 20

27 probability of success;
2 if “No” then
3 Return “No”;
4 else
5 Employ Algorithm 1 with Θ( t2d2

(t−1)2ε2 ) copies of ρ to test whether ρ2 = Id2
d2

or
||ρ1 −

Id1
d1
||1 > (t−1)ε

4t with at least a 27
28 probability of success;

6 if “No” then
7 Return “No”;
8 else
9 Run Algorithm A 100 times to test whether ρ is independent or is (t−1)ε

4t -far
from being independent with at least a 28

30 probability of success;
10 if “Yes” then
11 Return “Yes”;
12 else
13 Return “No”;

This algorithm uses n = 100f(d1, d2,
(t−1)ε

4t ) + 300t2 d1
ε2 + Θ( t2d2

(t−1)2ε2 ) copies of ρ. Invoking
Theorem 12, we know that 0.15d1d2

ε2 copies are necessary to test, with at least a 2/3 probability
of success, whether ρ is the maximally mixed state or whether it is ε-far.

We must have

100f(d1, d2,
(t− 1)ε

4t ) + 300t2 d1

ε2
+ Θ(t2 d2

(t− 1)2ε2
) ≥ 0.15d1d2

ε2
.

If d1 and d2 are both sufficiently large, we can choose a constant t such that 300t2 d1
ε2 +

Θ(t2 d2
(t−1)2ε2 ) = o(d1d2

ε2 ), which implies

f(d1, d2, ε) ≥ Ω( 16t2d1d2

(t− 1)2ε2
) = Ω(d1d2

ε2
).
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If d1 is sufficiently large and d2 is not sufficiently large but d2 > 2000, we can choose
t =

√
2000.5
2000 , then

f(d1, d2, cε) ≥ 0.15d1d2

ε2
− 300t2 d1

ε2
+ Ω(t2 d2

(t− 1)2ε2
) = Ω(d1

ε2
) = Ω(d1d2

ε2
),

with the constant c = t−1
4t . Thus, for d2 > 2000,

f(d1, d2, ε) ≥ Ω(d1d2

ε2
).

The above technique does not work with a small d2, because the number of copies required to
test a d1 system 300t2 d1

ε2 and the number of copies required to test a total system of 0.15d1d2
ε2

are of the same order.
To deal with this unbalanced case, we develped a dimension splitting technique that

transforms bipartite independence into k-partite independence. First observe that the sample
complexity for independence testing in D(Cd1 ⊗ Cd2) is no less than the sample complexity
for an independence test of D(Cd ⊗ C2) for d = 2[log d1] ≤ d1. Therefore, without loss of
generality, assume that d2 = 2 and d1 = 2k instead of d2 ≤ 2000, and that d1 is sufficiently
large.

We still assume that there is an Algorithm A that uses f(2k, 2, ε) copies to decide, with
at least a 2/3 probability of success, whether a given ρ ∈ D(C2k×2k ⊗ C2×2) is independent
or ε-far from independent in the 2k and 2 bipartitions. Any such ρ can be regarded as a
k+ 1 qubit state, and the qubit systems will be labeled as S = {1, 2, . . . , k, k+ 1}. ρi denotes
the reduced density matrix of the i-th qubit of ρ. Algorithm A is a bipartite independence
tester for a k + 1 qubit system in the bipartition of k qubits and 1 qubit. In the following,
Algorithm A is applied as a black box to the bipartition i and S \ {i} for any i to test the
identity of ρ and Id1

d1
⊗ Id2

d2
.

Algorithm 7 A Bipartite Identity Test B for a maximally mixed state.

Input: n = Θ[(k + 1) log kf(2k, 2, ε
6(k+1) )] + Θ[(k + 1) log k (k+1)2

ε2 ] copies of ρ.
Output: “Yes” with a probability of at least 2

3 if ρ = ⊗k+1
i=1 ⊗

I2
2 ; and “No” with a

probability of at least 2
3 if ||ρ−⊗k+1

i=1 ⊗
I2
2 ||1 > ε.

1 for i← 1 to k + 1 do
2 Repeat Algorithm 1, with Θ( (k+1)2

ε2 ) copies of ρ each time, Θ(log k) times to test
whether ρi = I2

2 or ||ρi − I2
2 ||1 >

ε
6(k+1) at least a 1− 1

k2 probability of success;
3 if No then
4 Return “No”;
5 else
6 Run Algorithm A Θ(log k) times, with f(2k, 2, ε

6(k+1) ) copies each time, to
test whether ρ is independent or ε

6(k+1) -far from being independent in the
bipartition {i} and S \ {i} with at least a 1− 1

k2 probability of success;
7 if No then
8 Return “No”;

9 Return “Yes”;

To see this algorithm succeed in detecting whether ρ is maximally mixed with high
probability, we note that
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If ρ = Id1
d1
⊗ Id2

d2
, then ρi = I2

2 when ρ is regarded as a k+ 1 qubit state. It is independent
in any bipartition {i} and S \ {i}. For each i, the passing probability of the test ρi = I2

2 is at
least 1− 1

k2 . For each i, the passing probability of the independence test in the bipartition
{i} and S \ {i} is at least 1− 1

k2 . In total, Algorithm 7 will accept with a probability of at
least (1− 1

k2 )O(k) = 1− o(1) > 2
3 .

If ||ρ− Id1
d1
⊗ Id2

d2
||1 > ε, at least one of the following two statements is true:

||ρi − I2
2 ||1 >

ε
6(k+1) for some 1 ≤ i ≤ k + 1; and/or

ρ is ε
6(k+1) -far from independent in the bipartition {i} and S \ {i} for some 1 ≤ i ≤ k+ 1.

Otherwise, ||ρi − I2
2 ||1 ≤

ε
6(k+1) and ρ is ε

6(k+1) close to being independent in the bipartition
{i} and S \ {i} for all 1 ≤ i ≤ k + 1.

According to Proposition 18, we have

||ρ− ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρk+1||1 ≤ 5(k + 1) ε

6(k + 1) = 5ε
6 .

By Lemma 17, we have

||ρ− Id1

d1
⊗ Id2

d2
||1

= ||ρ− I2
2 ⊗

I2
2 ⊗ · · · ⊗

I2
2 ||1

≤ ||ρ− ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρk+1||1 + ||I22 ⊗
I2
2 ⊗ · · · ⊗

I2
2 − ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρk+1||1

≤ 5ε
6 +

k+1∑
i=1
||ρi −

I2
2 ||1

≤ ε.

Contradiction! Therefore, the algorithm outputs “No” with a probability of at least 1− 1
k2 >

2
3

in this case.
Invoking Theorem 12, we know that Θ(d1d2

ε2 ) = Θ( 2k+1

ε2 ) copies are necessary to test
whether ρ is a maximally mixed state or ε-far with at least a 2/3 probability of success.
Algorithm 7 uses Θ[(k+ 1) log kf(2k, 2, ε

6(k+1) )] + Θ[(k+ 1) log k (k+1)2

ε2 ] copies of ρ. We must
have

Θ[(k + 1) log kf(2k, 2, ε

6(k + 1))] + Θ[(k + 1) log k (k + 1)2

ε2
] ≥ Θ(2k+1

ε2
)

⇒ f(2k, 2, ε

6(k + 1)) ≥ Θ( 2k

k log kε2 )

⇒ f(2k, 2, ε) ≥ Θ( 2k

k3 log kε2 )

⇒ f(d1, d2, ε) = Ω( d1

log3 d1 log log d1ε2
) = Ω( d1d2

log3 d2 log log d1ε2
)

That is, if d2 is a small constant, Ω( d1d2
ε2 log3 d1 log log d1

) copies are necessary to test the inde-
pendence of ρ ∈ D(Cd1 ⊗ Cd2). J

7 Discussion

If we can use random measurements, a fewer number of copies are needed for quantum
identity testing and independence testing.



N. Yu 11:17

In [19], it is proved that using non-adaptive independent measurements, to test whether
a quantum state ρ ∈ D(Cd) is equal to or ε-far in trace distance from the maximally mixed
state, Ω(d

3/2

ε2 ), and this complexity can be achieved via Haar-random orthogonal POVMs.
The measurement can be implemented by randomly choosing a unitary U applied on ρ

and measuring UρU† in computational basis many times. The last step is to test whether
the resulting d-dimensional probability dsitribution pU is equal to or ε√

d
-far from uniform

distribution u. The correctness of this algorithm comes from the concentration of measure
and

EU ||pU − u||22 =
||ρ− I

d ||
2
2

d+ 1 .

This method can be used to the general quantum identity testing problem: Randomly
choosing a unitary U applied on ρ and σ respectively, then measuring UρU† and UσU† in
computational basis many times. The last step is to test whether the resulting d-dimensional
probability dsitributions pU and qU are equal or ε√

d
-far. One can verify

EU ||pU − qU ||22 = ||ρ− σ||
2
2

d+ 1 ,

and

EU ||pU ||22, ||qU ||22 ≤ O( 1
d+ 1).

Using concentration of measure, we know that ||pU − qU ||22 ≥
||ρ−σ||22

2d+1 and ||pU ||22, ||qU ||22 ≤
O( 1

d+1 ) are valid with high probability. The rest is to run Algorithm 3 from [23] with O(d
3/2

ε2 )
samples. We can conclude that

I Theorem 19. The sample complexity of quantum identity testing is Θ(d
3/2

ε2 ) for non-
adaptive independent measurements.

This continuous randomness can be discretized by randomly choosing the MUB basis presented
in Section 4.

Plug in our method of quantum independence testing, we know that

I Theorem 20. The sample complexity of quantum independence testing of D(Cd1 ⊗ Cd2 ⊗
· · · ⊗ Cdm) is Θ̃(Πm

i=1d
3/2
i

ε2 ) for non-adaptive independent measurements.
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Abstract
QBF solvers implementing the QCDCL paradigm are powerful algorithms that successfully tackle
many computationally complex applications. However, our theoretical understanding of the strength
and limitations of these QCDCL solvers is very limited.

In this paper we suggest to formally model QCDCL solvers as proof systems. We define different
policies that can be used for decision heuristics and unit propagation and give rise to a number of
sound and complete QBF proof systems (and hence new QCDCL algorithms). With respect to the
standard policies used in practical QCDCL solving, we show that the corresponding QCDCL proof
system is incomparable (via exponential separations) to Q-resolution, the classical QBF resolution
system used in the literature. This is in stark contrast to the propositional setting where CDCL and
resolution are known to be p-equivalent.

This raises the question what formulas are hard for standard QCDCL, since Q-resolution lower
bounds do not necessarily apply to QCDCL as we show here. In answer to this question we prove
several lower bounds for QCDCL, including exponential lower bounds for a large class of random
QBFs.

We also introduce a strengthening of the decision heuristic used in classical QCDCL, which does
not necessarily decide variables in order of the prefix, but still allows to learn asserting clauses. We
show that with this decision policy, QCDCL can be exponentially faster on some formulas.

We further exhibit a QCDCL proof system that is p-equivalent to Q-resolution. In comparison
to classical QCDCL, this new QCDCL version adapts both decision and unit propagation policies.
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1 Introduction

SAT solving has revolutionised the way we perceive and approach computationally complex
problems. While traditionally, NP-hard problems were considered computationally intract-
able, today SAT solvers routinely and successfully solve instances of NP-hard problems
from virtually all application domains, and in particular problem instances of industrial
relevance [53]. Starting with the classic DPLL algorithm from the 1960s [25, 26], there
have been a number of milestones in the evolution of SAT solving, but clearly one of the
breakthrough achievements was the introduction of clause learning in the late 1990s, leading
to the paradigm of conflict-driven clause learning (CDCL) [43,55], the predominant technique
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of modern SAT solving. CDCL ingeniously combines a number of crucial ingredients, among
them variable decision heuristics, unit propagation, clause learning from conflicts, and restarts
(cf. [42] for an overview).

Inspired by the success of SAT solving, many researchers have concentrated on the task
to extend the reach of these technologies to computationally even more challenging settings
with quantified Boolean formulas (QBF) receiving key attention. As a PSPACE-complete
problem, the satisfiability problem for QBFs encompasses all problems from the polynomial
hierarchy and allows to encode many problems far more succinctly than in propositional
logic (cf. [51] for applications).

One of the main techniques in QBF solving is the propositional CDCL technique, lifted
to QBF in the form of QCDCL [56]. However, solving QBFs presents additional challenges
as the quantifier type of variables (existential and universal) needs to be taken into account
as well as the variable dependencies stemming from the quantifier prefix.1 This particularly
impacts the variable selection heuristics and details of the unit propagation within QCDCL.
In addition to QCDCL there are further QBF solving techniques, exploiting QBF features
absent in SAT, such as expanding universal variables in expansion solving [36] and dependency
schemes in dependency-aware solving [40, 47, 52]. Compared to SAT solving, QBF solving is
still at an earlier stage. However, QBF solving has seen huge improvements during the past
15 years [49], and there are problems of practical relevance where QBF solvers outperform
SAT solvers [28].

The enormous success of SAT and QBF solving of course raises theoretical questions of
utmost importance: why are these solvers so successful and what are their limitations? The
main approach through understanding these questions comes from proof complexity [20,46].
The central problem in proof complexity is to determine the size of the smallest proof for
a given formula in a specified proof system, typically defined through a set of axioms and
inference rules. Traces of runs of SAT/QBF solvers on unsatisfiable instances yield proofs of
unsatisfiability, whereby each solver implicitly defines a proof system. In particular, SAT
solvers implementing the DPLL and CDCL paradigms are based on resolution [46], which is
arguably the most studied proof system in proof complexity.

Propositional resolution operates on clauses and uses the resolution rule
C ∨ x D ∨ x̄

C ∨D
(1)

as its only inference rule to derive a new clause C ∨D from the two parent clauses C ∨ x
and D ∨ x̄.2 There is a host of lower bounds and lower bound techniques available for
propositional resolution (cf. [5, 38,50] for surveys).

While it is relatively easy to see that the classic DPLL branching algorithm [25,26] exactly
corresponds to tree-like resolution (where resolution derivations are in form of a tree), the
relation between CDCL and resolution is far more complex. On the one hand, resolution
proofs can be generated efficiently from traces of CDCL runs on unsatisfiable formulas [4], a
crucial observation being that learned clauses are derivable by resolution [4,43]. The opposite
simulation is considerably more difficult, with a series of works [1, 4, 33,48] culminating in
the result that CDCL can efficiently simulate arbitrary resolution proofs, i.e., resolution and
CDCL are equivalent. This directly implies that all known lower bounds for proof size in
resolution translate into lower bounds for CDCL running time. In addition, other measures
such as proof space model memory requirements of SAT solvers, thereby implying lower
bounds on memory consumption, in particular when considering time-space tradeoffs [45].

1 In this paper we focus on prenex QBFs with a CNF matrix.
2 We denote such a resolution inference with pivot x by (C ∨ x)

x
./ (D ∨ x̄) throughout the paper.
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Exciting as this equivalence between CDCL and resolution is from a theoretical point
of view, it has to be interpreted with care. Proof systems are inherently non-deterministic
procedures, while CDCL algorithms are largely deterministic (some randomisation might
occasionally be used). To overcome this discrepancy, the simulations of resolution by
CDCL [4,48] use arbitrary decision heuristics and perform excessive restarts, both of which
diverge from practical CDCL policies. Indeed, in very recent work [54] it was shown
that CDCL with practical decision heuristics such as VSIDS [55] is exponentially weaker
than resolution, and similar results have been obtained for further decision heuristics [44].
Regarding restarts there is intense research aiming to determine the power of CDCL without
restarts from a proof complexity perspective (cf. [19, 21]).

On the QBF level, this naturally raises the question what proof system corresponds to
QCDCL. As in propositional proof complexity, QBF resolution systems take a prominent
place in the QBF proof system landscape, with the basic and historically first Q-resolution
system [37] receiving key attention. Q-resolution is a refutational system that proves the
falsity of fully quantified prenex QBFs with a CNF matrix (QCNFs). The system allows to
use the propositional resolution rule (1) under the conditions that the pivot x is an existential
variable and the resolvent C∨D is non-tautological. In addition, Q-resolution uses a universal
reduction rule

C ∨ u
C

, (2)

where u is a universal literal that in the quantifier prefix is quantified right of all variables
in C, i.e., none of the literals in C depends on u. For Q-resolution we have a number of lower
bounds [3,8,12] as well as lower bound techniques, some of them lifted from propositional proof
complexity [13, 15], but more interestingly some of them genuine to the QBF domain [8, 10]
that unveil deep connections between proof size and circuit complexity [11, 16], unparalleled
in the propositional domain.

Unlike in the relation between SAT and CDCL, it is has been open whether QCDCL runs
can be efficiently translated into Q-resolution. Instead, QCDCL runs can be simulated by
the stronger QBF resolution system of long-distance Q-resolution [2, 56]. In fact, this system
originates from solving, where it was noted that clauses learned from QCDCL conflicts
can be derived in long-distance Q-resolution [56]. Long-distance Q-resolution implements a
more liberal use of the resolution rule (1), which allows to derive certain tautologies. In
general, allowing to derive tautologies with (1) is unsound. However, the tautologies allowed
in long-distance Q-resolution do not present problems for soundness and are exactly those
clauses needed when learning clauses in QCDCL. Hence long-distance Q-resolution simulates
QCDCL [2, 56]. However, it is known that long-distance Q-resolution allows exponentially
shorter proofs than Q-resolution for some QBFs [8, 9, 27].

We also remark that there are further QBF resolution systems (cf. [18] for an overview) and
even stronger QBF calculi [11,14,23,34]. Some of these correspond to other solving approaches
in QBF, such as the system ∀Exp+Res [36] that captures expansion QBF solving [6].

In summary, it is fair to say that the relations between QCDCL solving and QBF
resolution (either Q-resolution or long-distance Q-resolution) are currently not well understood.
In particular, an analogue of the equivalence of CDCL SAT solving and propositional
resolution [1,4,48] is currently absent in the QBF domain. This brings us to the topic of this
paper. However, rather than giving an overview of our results in this introduction, we will
describe our results in Sections 3 to 7, after stating some preliminaries in Section 2. Most
proofs will be omitted in this extended abstract due to space constraints.
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2 Preliminaries

2.1 Propositional and quantified formulas
We will consider propositional and quantified formulas over a countable set of variables.
Variables and negations of variables are called literals, i.e., for a variable x we can form two
literals: x and its negation x̄. Sometimes we write x1 instead of x and x0 instead of x̄. We
denote the corresponding variable as var(x) := var(x̄) := x.

A clause is a disjunction `1 ∨ . . .∨ `m of some literals `1, . . . , `m. We will sometimes view
a clause as a set of literals, i.e., we will use the notation ` ∈ C if the literal ` is one of the
literals in the clause C. If m = 1, we will often write (`1) to emphasize the difference between
literals and clauses. The empty clause is the clause consisting of zero literals, denoted by
(⊥). For reasons of consistency it is helpful to define an empty literal, denoted by ⊥ in our
case. As a consequence, we have ⊥ ∈ (⊥), although we define the empty clause as a clause
with zero literals.

The negation of a clause C = `1 ∨ . . . ∨ `m is called a term, i.e., terms are conjunctions
¯̀
m ∧ . . . ∧ ¯̀

m of literals. Similarly terms can be considered as sets of literals. A CNF
(conjunctive normal form) is a conjunction of clauses.

Let C = `1 ∨ . . . ∨ `m. We define var(C) := {var(`1), . . . , var(`m)}. For a CNF φ =
C1 ∧ . . . ∧ Cn we define var(φ) :=

⋃n
i=1 var(Ci).

A clause or a set C of literals is called tautological, if there is a variable x with x, x̄ ∈ C.
An assignment σ of a set of variables X is a non-tautological set of literals, such that for

all x ∈ X there is ` ∈ σ with var(`) = x. The restriction of a clause C by an assignment σ is
defined as

C|σ :=


> (true) if C ∩ σ 6= ∅,∨
`∈C
¯̀6∈σ

` otherwise.

For example, let C = t ∨ x ∨ y ∨ z̄ and define the assignment σ := {x̄, z, w}. Then we have
C|σ = t ∨ y. Note that the set of assigned variables might differ from var(C). In our case, σ
is an assignment of the set X := {x, z, w}.

One can interpret σ as an operator that sets all literals from σ to the Boolean constant 1.
We denote the set of assignments of X by 〈X〉. A CNF φ entails another CNF ψ if each
assignment that satisfies φ also satisfies ψ (denoted by φ � ψ).

A QBF (quantified Boolean formula) Φ = Q · φ is a propositional formula φ (also called
matrix) together with a prefix Q. A prefix Q1x1Q2x2 . . . Qkxk consists of variables x1, . . . , xk
and quantifiers Q1, . . . , Qk ∈ {∃,∀}. We obtain an equivalent formula if we unite adjacent
quantifiers of the same type. Therefore we can always assume the prefix to be in the form

Q = Q′1X1Q
′
2X2 . . . Q

′
sXs

with nonempty sets of variables X1, . . . , Xs and quantifiers Q′1, . . . , Q′s ∈ {∃,∀} such that
Q′i 6= Q′i+1 for i ∈ [s− 1]. For a variable x in Q we denote the quantifier level with respect
to Q by lv(x) = lvΦ(x) = i, if x ∈ Xi. Variables from Φ are called existential, if the
corresponding quantifier is ∃, and universal if the quantifier is ∀. We denote the set of
existential variables from Φ by var∃(Φ), and the set of universal variables by var∀(Φ).

A QBF with CNF matrix is called a QCNF. We require that all clauses from a matrix
of a QCNF are non-tautological, otherwise we just delete these clauses. This requirement
is crucial for the correctness of the derivation rules we define later for QBF proof systems.
Since we will only discuss refutational proof systems, we will always assume that all QCNFs
we consider are false.
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A QBF can be interpreted as a game between two players: The ∃-player and the ∀-player.
These players have to assign the respective variables one by one along the quantifier order
from left to right. The ∀-player wins the game if and only if the matrix of the QBF gets
falsified by this assignment. It is well known that for every false QBF Φ = Q · φ there exists
a winning strategy for the ∀-player.

2.2 Q-resolution and long-distance Q-resolution

Let C1 and C2 be two clauses of a QCNF Φ and let ` be an existential literal with var(`) 6∈
var(C1) ∪ var(C2). The resolvent of C1 ∨ ` and C2 ∨ ¯̀ over ` is defined as

(C1 ∨ `)
`
./ (C2 ∨ ¯̀) := C1 ∨ C2.

Let C := u1∨. . .∨um∨x1∨. . .∨xn∨v1∨. . .∨vs be a clause from Φ, where u1, . . . , um, v1, . . . , vs
are universal literals, x1, . . . , xn are existential literals and

{v ∈ C : v is universal and lv(v) > lv(xi) for all i ∈ [n]} = {v1, . . . , vs}.

Then we can perform a reduction step and obtain

red(C) := u1 ∨ . . . ∨ um ∨ x1 ∨ . . . ∨ xn.

For a CNF φ = {C1, . . . , Ck} we define red(φ) := {red(C1), . . . , red(Ck)}.
Q-resolution [37] is a refutational proof system for false QCNFs. A Q-resolution proof π of

a clause C from a QCNF Φ = Q · φ is a sequence of clauses π = C1, . . . , Cm with Cm = C.
Each Ci has to be derived by one of the following three rules:

Axiom: Ci ∈ φ;
Resolution: Ci = Cj

x
./ Ck for some j, k < i and x ∈ var∃(Φ), and Ci is non-tautological;

Reduction: Ci = red(Cj) for some j < i.

Note that none of our axioms are tautological by definition. A refutation of a QCNF Φ is
a proof of the empty clause (⊥).

For the simulating QCDCL runs, long-distance Q-resolution was introduced in [2,56]. This
extension of Q-resolution allows to derive universal tautologies under certain conditions. As
in Q-resolution, there are three rules by which a clause Ci can be derived. The axiom and
reduction rules are identical to Q-resolution, but the resolution rule is changed to

Resolution (long-distance): Ci = Cj
x
./ Ck for some j, k < i and x ∈ var∃(Φ). The

resolvent Ci is allowed to contain a tautology u ∨ ū if u is a universal variable. If
u ∈ var(Cj) ∩ var(Ck), then we additionally require lv(u) > lv(x).

Note that a long-distance Q-resolution proof without tautologies is just a Q-resolution
proof.

Creating universal tautologies without any assumptions is unsound in general. For
example, consider the true QCNF Ψ := ∀u∃x · (u ∨ x̄) ∧ (ū ∨ x). There is a winning strategy
for the ∃-player by assigning x equal to u. Hence, the step red

(
(u ∨ x̄) x

./ (ū ∨ x)
)

= (⊥) is
unsound since we resolved over an existential literal x with lvΨ(x) > lvΨ(u) while generating
u ∨ ū.
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3 Our framework: versions of QCDCL as formal proof systems

We now start to describe the framework for our results. Technically, this paper hinges on the
formalisation of QCDCL solving as precisely defined proof systems, which can subsequently
be analysed from a proof-complexity perspective. For this we need to formally define central
ingredients of QCDCL solving, including trails, decision policies, unit propagation, and
clause learning (cf. [18] for background). For decisions and unit propagation we will consider
different policies: those corresponding to QCDCL solving in practice and new policies, yet
unexplored. We will show that the corresponding QCDCL proof systems are all sound and
complete.

We start with defining trails, decisions, unit propagations and our collection of policies.

I Definition 1 (trails and policies for decision/unit propagation). Let Φ = Q · φ be a QCNF
in n variables. A trail T for Φ is a sequence of literals (or ⊥) of variables from Φ with
specific properties. We distinguish two types of literals in T : decision literals, that can be
both existential and universal, and propagated literals, that are either existential or ⊥. Most
of the time we write a trail T as

T = (p(0,1), . . . , p(0,g0); d1, p(1,1), . . . , p(1,g1); . . . ; dr, p(r,1), . . . , p(r,gr)).

We typically denote decision literals by di and propagated literals by p(i,j). To emphasize
decisions, we will set decision literals in the trail in boldface and put a semicolon at the
end of each decision level. The literal p(i,j) represents the jth propagated literal at the ith
decision level, determined by the corresponding decision di. The decision level 0 is the only
level without a decision literal. Similarly as with clauses, we can view T as a set of literals
or as an assignment and use the notation x ∈ T if the literal x is contained in T .

Let s ∈ {0, . . . , r} and t ∈ {0, . . . , gs}. The subtrail of T at time (s, t) is the trail
consisting of all literals from the leftmost literal in T up to (and including) p(s,t), if t 6= 0, or
ds otherwise. We denote this subtrail by T [s, t]. The subtrail T [0, 0] is the empty trail.

We impose some further requirements for T to be a trail for a QCNF Φ. The decisions
have to be non-tautological and non-repeating, i.e., we require var(di) 6= var(dk) for each
i 6= k ∈ {0, . . . , r}. If ⊥ ∈ T , then this must be the last (rightmost) literal in T . In this case
we say that T has run into a conflict.

We define four policies, concerning the decision of literals, from which we can choose
exactly one at a time:

LEV-ORD - For each di ∈ T we have lv(di) ≤ lv(x) for all x ∈ var(φ)\var(T [i− 1, gi−1]).
This means that we have to decide the variables along the quantification order.
ASS-ORD - We can decide a literal dk if it is existential, or if it is universal and lv(d1) ≤
. . . ≤ lv(dk).
ASS-R-ORD - We can only decide an existential variable x next, if and only if we already
decided all universal variables u with lv(u) < lv(x) before.
ANY-ORD - We can choose any remaining literal as the next decision.

We define two more policies concerning unit propagation. Again, we have to choose
exactly one:

RED - For each p(i,j) ∈ T there has to be a clause C ∈ φ such that red(C|T [i,j−1]) = (p(i,j)).
NO-RED - For each p(i,j) ∈ T there has to be a clause C ∈ φ with C|T [i,j−1] = (p(i,j)).
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These clauses C as described in the unit-propagation policies are called antecedent clauses
and will be denoted by anteT (p(i,j)) := C. There could be more than one such suitable clause,
in which case we will just choose one of them arbitrarily. The antecedent clauses clearly
depend on the unit propagation policy we use.

The size of a trail T is measured by |T | (i.e., the cardinality of T as a set). Because each
trail can at most contain all variables, we have |T | ∈ O(n).

We remark that QCDCL as used in practice employs the policies LEV-ORD and RED, and
the decision policy ANY-ORD originates from CDCL.

The policies RED and NO-RED determine the notion of unit clauses, which are important
for unit propagation.

I Definition 2 (unit clauses). Let C be a clause. In the policy RED, we call C a unit clause
if red(C) = (x) for an existential literal x or x = ⊥. Otherwise, for NO-RED, we call C a
unit clause if C = (x) for an existential literal x or x = ⊥.

Note that (u) is not a unit clause under the policy NO-RED for a universal literal u.
In (Q)CDCL, whenever a trail T runs into a conflict, i.e., a clause C from Φ is falsified,

we perform conflict analysis in the form of clause learning. This results in a clause D that
follows from Φ and describes a reason for the conflict. Such conflict clauses are obtained
by performing resolution (for CDCL) and long-distance Q-resolution (for QCDCL), starting
from the conflict clause C and resolving along the propagated variables in T in reverse order
(skipping resolution steps when the pivot is missing).

I Definition 3 (learnable clauses). Let Φ = Q · φ be a QCNF and let

T = (p(0,1), . . . , p(0,g0); d1, p(1,1), . . . , p(1,g1); . . . ; dr, p(r,1), . . . , p(r,gr))

be a trail with p(r,gr) = ⊥ that follows policies P ∈ {LEV-ORD,ASS-ORD,ASS-R-ORD,
ANY-ORD} and R ∈ {RED,NO-RED}. We call a clause learnable from T if it appears
in the sequence

LT := (C(r,gr), . . . , C(r,1), . . . , C(1,g1), . . . , C(1,1), C(0,g0), . . . , C(0,1))

where C(r,gr) := red(ante(p(r,gr))),

C(i,j) :=
{

red
(
C(i,j+1)

p(i,j)
./ red(ante(p(i,j)))

)
if p̄(i,j) ∈ C(i,j+1),

C(i,j+1) otherwise

for i ∈ {0, . . . , r}, j ∈ [gi − 1], and

C(i,gi) :=

 red
(
C(i+1,1)

p(i,gi)
./ red(ante(p(i,gi)))

)
if p̄(i,gi) ∈ C(i+1,1),

C(i+1,1) otherwise

for i ∈ {0, . . . , r − 1}.

Note that clause learning works independently from the used policy. Even if we choose the
policy NO-RED, we might have to make reduction steps in this process. After the construction
of each trail T we will choose to learn exactly one clause from LT . The actual choice
represents a kind of nondeterminism in the learning process.

Next we formalise natural trails, where we are not allowed to skip unit propagations.
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I Definition 4 (natural trails). We call a trail T natural, if the following holds: For any
time (s, t), s ∈ {0, . . . , r} and t ∈ [gs], if {D1, . . . , Dh} are all clauses from the corresponding
QCNF that become unit clauses (`1), . . . , (`h) under the assignment T [s, t− 1], then the next
propagated literal has to be one of the `i together with Di as antecedent clause. If one of the
`i is ⊥, then we have to choose this `i. I.e., conflicts have higher priority.

The next definition presents the main framework for this paper. Having defined trails in
a general sense, we specify how a trail can be generated during a QCDCL run. We introduce
the notion of QCDCL-based proofs consisting of three components: the naturally created
trails, the clauses learned from each trail, and the proof of each learned clause.

I Definition 5 (QCDCL proof systems). Let Φ = Q · φ be a QCNF in n variables. We call a
triple of sequences

ι = ((T1, . . . , Tm)︸ ︷︷ ︸
=:θ(ι)

, (C1, . . . , Cm)︸ ︷︷ ︸
=:λ(ι)

, (π1, . . . , πm)︸ ︷︷ ︸
=:ρ(ι)

)

a QCDCLPR proof from Φ of a clause C for P ∈ {LEV-ORD,ASS-ORD,ASS-R-ORD,ANY-ORD}
and R ∈ {RED,NO-RED}, if for all i ∈ [m] the trail Ti follows the policies P and R and
uses the QCNF Q · (φ ∪ {C1, . . . , Ci−1}), where Cj ∈ LTj is a clause learnable from Tj and
Cm = C. Each πi is the derivation of the clause Ci from Q · (φ ∪ {C1, . . . , Ci−1}) as defined
recursively in Definition 3. We will denote (T1, . . . , Tm) by θ(ι), (C1, . . . , Cm) by λ(ι) and
(π1, . . . , πm) by ρ(ι). Note that all these trails need to run into a conflict in order to start
clause learning. If C = (⊥) we call ι a refutation.

We also require that T1 is natural and for each i ∈ {2, . . . ,m} there exist indices (s, t)
such that the following holds:
Ti[s, t] = Ti−1[s, t].
For each subtrail Ti[a, b] with Ti[s, t] ⊆ Ti[a, b] and ⊥ 6∈ Ti[a, b] let D1, . . . , Dh be all the
clauses in φ∪{C1, . . . , Ci−1} such that under the assignment Ti[a, b] these clauses get unit
(under the policy R) with corresponding literals `1, . . . , `h. Then we have to propagate one
of these literals next, i.e., `j ∈ Ti[a, b+ 1] for some j ∈ [h], and take the corresponding
clause Dj as antecedent.
In the situation above, if ⊥ ∈ {`1, . . . , `h}, then ⊥ ∈ Ti[a, b+ 1]. I.e., we have to run into
a conflict as soon as we find one.

We call this process backtracking to Ti[s, t]. Backtracking to Ti[0, 0] is called restarting.
The size of a proof ι is measured by |ι| :=

∑m
j=1 |Tj | ∈ O(mn).

The corresponding (refutational) proof system for false QCNFs is denoted QCDCLPR. We
will refer to these systems as QCDCL proof systems. A trail T that follows the policies P
and R is a QCDCLPR trail.

Note that the first trail T1 of each proof ι is always natural.
Combining the two policies RED and NO-RED for unit propagation and the four policies

ANY-ORD, LEV-ORD, ASS-ORD, and ASS-R-ORD, we obtain six QCDCL systems. These are
depicted in Figure 1 (we are not interested in the systems QCDCLASS-ORD

RED and QCDCLASS-R-ORD
NO-RED

since ASS-ORD and ASS-R-ORD would not be beneficial in these combinations). As mentioned,
combining LEV-ORD with RED yields the standard QCDCL system, and we will also write
QCDCL for QCDCLLEV-ORD

RED . The other five variants are introduced here for the first time.
The decision policies ASS-ORD and ASS-R-ORD might seem slightly unintuitive at first

sight. We show that these policies guarantee the learning of so-called asserting clauses
(Definition 6) in association with NO-RED resp. RED.
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QCDCLLEV-ORD
RED = QCDCL

QCDCLASS-R-ORD
RED

QCDCLANY-ORD
RED

QCDCLLEV-ORD
NO-RED

QCDCLASS-ORD
NO-RED

QCDCLANY-ORD
NO-RED

Q-resolution

long-distance Q-resolution

Figure 1 Overview of the defined QCDCL proof systems. Lines denote p-simulations and follow
by definition and Theorem 8.
A proof system P p-simulates a proof system S if each S proof can be efficiently transformed into a
P proof of the same formula [24]. If the systems p-simulate each other, they are p-equivalent.

It will turn out that π1, . . . , πm in Definition 5 are in fact valid long-distance Q-resolution
proofs. To prove this, we will argue that in proof systems with NO-RED we cannot derive
any tautologies, while with RED we can at most derive universal tautologies.

Next we introduce asserting learning schemes. These are commonly used in practice
since they guarantee a kind of progression in a run. These learning schemes are important to
prevent a trail from backtracking too often.

I Definition 6 (asserting clauses and asserting learning schemes). Let Φ := Q · φ be a QCNF
in any of the defined QCDCL systems. Let

T = (p(0,1), . . . , p(0,g0); d1, p(1,1), . . . , p(1,g1); . . . ; dr, p(r,1), . . . , p(r,gr) = ⊥)

be a trail which follows the corresponding policies and LT the sequence of learnable clauses.
A nonempty clause C ∈ LT is called an asserting clause, if it becomes unit after backtracking,
i.e., there exists a time (s, t) with s ∈ {0, . . . , r − 1} and t ∈ [gs] such that C|T [s,t] is a unit
clause under the corresponding system.

Let T be the set of trails T for Φ such that ⊥ ∈ T . A learning scheme ξ is a map with
domain T, which maps each T to a clause ξ(T ) ∈ LT .

A learning scheme ξ is called asserting if it maps to asserting clauses or (⊥) as long as
LT contains such.

It is not guaranteed that we will always find asserting clauses for trails. For example
consider the false QCNF ∀u∃x · (u∨x)∧ (u∨ x̄)∧ (ū∨x)∧ (ū∨ x̄) and the trail T = (x; u,⊥)
under the system QCDCLANY-ORD

NO-RED . We can only learn the clause (ū ∨ x̄), which is non-unit
under T [0, 0] = ∅.

However, we can always learn asserting clauses when using one of the policies ASS-ORD
or ASS-R-ORD, which is the reason why we introduced these policies.

I Lemma 7.
Let T be a trail under the policies ASS-ORD and NO-RED. If (⊥) 6∈ LT , then there exists
an asserting clause D ∈ LT .
Let T be a trail under the policies ASS-R-ORD and RED. If (⊥) 6∈ LT , then there exists
an asserting clause D ∈ LT .
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We establish that all systems depicted in Figure 1 are sound and complete.

I Theorem 8. All defined QCDCL proof systems are sound and complete QBF proof systems.
In particular, all QCDCL calculi are p-simulated by long-distance Q-resolution and the proof
systems with NO-RED are even p-simulated by Q-resolution.

Soundness is shown via efficiently constructing long-distance Q-resolution proofs from QCDCL
proofs. Crucially, when using the unit-propagation policy NO-RED, then no long-distance
steps are actually needed and we just construct Q-resolution proofs. The resulting simulations
are depicted in Figure 1. Simulations between the QCDCL calculi follow by definition. We
remark already here that this simulation order simplifies further due to our results in the
following sections (cf. Figure 2).

Proving that QCDCL decisions do not necessarily need to follow the order of quantification
(as is done in practical QCDCL with policy LEV-ORD), might be a somewhat surprising
discovery. It seems to us that inside the QBF community there is the wide-spread belief that
following the quantification order in decisions is needed for soundness (cf. e.g. [30,41,56]).3
While this is true for QDPLL [22,30],4 it is actually not needed in QCDCL: the quantification
order is immaterial for the decisions as long as the quantification order is correctly taken
into account when deriving learned clauses (Theorem 8).5 Hence our theoretical work also
opens the door towards new solving approaches in practice (cf. the discussion in Section 8).

From a theoretical point of view, formalising the QCDCL ingredients into proof systems
enables a precise proof-theoretic analysis of the QCDCL systems and their comparison to
Q-resolution. This will be the underlying feature of our results in the following two sections,
showing the incomparability of Q-resolution and QCDCL (Section 4) and the lower bounds
for QCDCL (Section 5). We will use it further to obtain a version of QCDCL that is even
p-equivalent to Q-resolution (Section 6).

4 QCDCL and Q-resolution are incomparable

This section establishes that QCDCL and Q-resolution are incomparable by exponential
separations, i.e., there exist QBFs that are easy for QCDCL, but require exponential-size
Q-resolution refutations, and vice versa. As explained above, this is in stark contrast to the
propositional setting, where CDCL and resolution are equivalent.

I Theorem 9. The systems Q-resolution and QCDCL are incomparable.

Proving Theorem 9 requires two families of QBFs. For the first we take the parity
formulas.

I Definition 10 ([12]). The QCNF QParityn consists of the prefix ∃x1 . . . xn∀z∃t2 . . . tn and
the matrix

x1 ∨ x2 ∨ t̄2, x1 ∨ x̄2 ∨ t2, x̄1 ∨ x2 ∨ t2, x̄1 ∨ x̄2 ∨ t̄2,
xi ∨ ti−1 ∨ t̄i, xi ∨ t̄i−1 ∨ ti, x̄i ∨ ti−1 ∨ ti, x̄i ∨ t̄i−1 ∨ t̄i,
tn ∨ z, t̄n ∨ z̄

for i ∈ {2, . . . , n}.

3 In fact we thought so too, prior to this paper.
4 The fact that the earlier QDPLL algorithm [22] needs to obey the quantifier order might have been the

reason why this policy was adopted in QCDCL as well [56].
5 We note, however, that the approach of dependency learning [47] starts with an empty set of dependency

conditions (cf. [7, 52] for background on dependencies) and incrementally learns new dependencies. As
decisions only need to respect the learned dependencies, they can initially be made out of order [47].
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The formulas assert that there is an input x1, . . . , xn such that the parity
⊕

i∈[n] xi is
not equal to z. Since z is universally quantified, this means that

⊕
i∈[n] xi should be neither

0 nor 1, an obvious contradiction. The parity computation is encoded by using variables ti
for the prefix sums

⊕
j∈[i] xj . Using strategy extraction for Q-resolution [2, 12] and the result

that the parity function is hard for bounded-depth circuits [29,32], one can show that the
QParityn formulas require exponential-size Q-resolution refutations [12].

Here we show that QParityn is easy for QCDCL.

I Proposition 11. QParityn has polynomial-size proofs in QCDCL.

This requires to construct specific trails and clauses learned from these trails that together
comprise a short QCDCL proof of the formulas.

For the opposite separation we consider the following QBFs:

I Definition 12. Let PHPn+1
n be the set of clauses for the pigeonhole principle with n holes

and n+ 1 pigeons using variables x1, . . . , xsn . Let Trapdoorn be the QCNF with the prefix
∃y1, . . . , ysn∀w∃t, x1, . . . , xsn∀u and the matrix

PHPn+1
n (x1, . . . , xsn) (3)

ȳi ∨ xi ∨ u, yi ∨ x̄i ∨ u (4)
yi ∨ w ∨ t, yi ∨ w ∨ t̄, ȳi ∨ w ∨ t, ȳi ∨ w ∨ t̄ (5)

for i = 1, . . . , sn.

We show that these formulas Trapdoorn require exponential-size QCDCL refutations. In
QCDCL, variables have to be decided in order of the quantifier prefix, hence each QCDCL trail
for Trapdoorn has to start with the y variables, which by unit propagation (used together
with universal reduction) propagates xi = yi for i ∈ [sn] by clauses (4). Therefore the trail
runs into a conflict on the PHP clauses (3). This happens repeatedly, forcing QCDCL to
produce a resolution refutation of the clauses (3), which by the propositional resolution lower
bound by Haken [31] has to be of exponential size.

I Proposition 13. The QCNFs Trapdoorn require exponential-size QCDCLLEV-ORD
RED refutations.

On the other hand, it is easy to obtain short Q-resolution refutations of Trapdoorn by
just using the clauses (5).

I Proposition 14. The QCNFs Trapdoorn have constant-size Q-resolution refutations.

This establishes the separation of QCDCL and Q-resolution. We remark that in earlier
work, Janota [35] showed that QCDCL with a specific asserting learning scheme requires large
running time on some class of QBFs, whereas the same formulas are easy for Q-resolution.
Of course, this raises the question whether another learning scheme might produce short
QCDCL runs. In contrast, our Theorem 9 rules out any simulation of Q-resolution by QCDCL
(or vice versa), regardless of the learning scheme used.

5 Lower bounds for QCDCL

The incomparability of Q-resolution and QCDCL raises the immediate question of what
formulas are hard for QCDCL. Previous research has largely concentrated on showing lower
bounds for Q-resolution (e.g. [8, 12, 37]). However, by our results from the last section, these
lower bounds do not necessarily apply to QCDCL, and prior to this paper no dedicated lower
bounds for QCDCL (with arbitrary learning schemes) were known.
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Here we show that several formulas from the QBF literature, including the equality
formulas and a large class of random QBFs [8] are indeed hard for QCDCL.

We start by defining a proof system in which we can analyse hardness in classical QCDCL.

I Definition 15. We call a long-distance Q-resolution proof π of a clause C from a QCNF Φ
a long-distance QCDCL resolution proof of C from Φ, if there exists a QCDCLLEV-ORD

RED proof ι
of C from Φ such that the long-distance Q-resolution proof π is obtained by pasting together
the sub-proofs (π1, . . . , πm) from ι (cf. Definition 5).

The system long-distance QCDCL resolution identifies a fragment of long-distance Q-
resolution, which collects all long-distance Q-resolution proofs that appear in QCDCLLEV-ORD

RED

derivations. By definition therefore, long-distance QCDCL resolution and QCDCLLEV-ORD
RED are

p-equivalent proof systems.
Our next goal is to identify a whole class of QCNFs that witness the hardness of QCDCL.
The equality formulas from [8] are arguably one of the simplest families of QBFs that are

interesting from a proof complexity perspective. The formula Equalityn is defined as the
QCNF

∃x1 . . . xn∀u1 . . . un∃t1 . . . tn · (t̄1 ∨ . . . ∨ t̄n) ∧
n∧
i=1

((x̄i ∨ ūi ∨ ti) ∧ (xi ∨ ui ∨ ti)).

These formulas are of the type Σb3, i.e., they have two quantifier alternations starting with ∃.
Inspired by this construction, [8] considered a class of randomly generated QCNFs, again

of type Σb3.

I Definition 16 ([8]). For each 1 ≤ i ≤ n let C(1)
i , . . . , C

(cn)
i be clauses picked uniformly at

random from the set of clauses containing 1 literal from the set Ui = {u(1)
i , . . . , u

(m)
i } and

2 literals from Xi = {x(1)
i , . . . , x

(n)
i }. Define the randomly generated QCNF Q(n,m, c) as:

Q(n,m, c) := ∃X1, . . . , Xn∀U1, . . . , Un∃t1, . . . , tn ·
n∧
i=1

cn∧
j=1

(t̄i ∨ C(j)
i ) ∧ (t1 ∨ . . . ∨ tn).

Suitably choosing the parameters c and m, we obtain false QBFs with high probability.
Both the equality and the random formulas require exponential-size proofs in Q-resolution

(the random formulas whp) [8]. This is shown in [8] via the size-cost-capacity technique,
a semantically grounded QBF lower-bound technique that infers Q-resolution hardness for
formulas Φn (and in fact hardness for even stronger systems) from lower bounds for the size
of countermodels for Φn.

It is not clear how to directly apply this technique to QCDCL. Instead, we identify a
property, which we term the XT -property, that we can use to lift hardness from Q-resolution
to QCDCL.

I Definition 17. Let Φ be a QCNF of the form ∃X∀U∃T · φ with sets of variables X =
{x1, . . . , xa}, U = {u1, . . . , ub} and T = {t1, . . . , tc}.

We call a clause C in the variables of Φ
T -clause, if var(C) ∩X = ∅, var(C) ∩ U = ∅ and var(C) ∩ T 6= ∅,
XT -clause, if var(C) ∩X 6= ∅, var(C) ∩ U = ∅ and var(C) ∩ T 6= ∅,
XUT -clause, if var(C) ∩X 6= ∅, var(C) ∩ U 6= ∅ and var(C) ∩ T 6= ∅.

We say that Φ fulfils the XT -property if φ contains no XT -clauses as well as no unit
T -clauses and there do not exist two T -clauses C1, C2 ∈ φ that are resolvable.
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Intuitively, this says that in a Σb3 formula Φ with quantifier prefix of the form ∃X∀U∃T with
blocks of variables X, U , T , there is no direct connection between the X and T variables,
i.e., Φ does not contain clauses with X and T variables, but no U variables.

We can then prove that QCDCL runs on formulas with this XT -property can be efficiently
transformed into Q-resolution refutations, not only into long-distance Q-resolution refutations.

We first show that under the XT -property we cannot derive any XT -clauses.

I Lemma 18. It is not possible to derive XT -clauses by long-distance Q-resolution from a
QCNF Φ that fulfils the XT -property.

Proof. Assume that we can derive an XT -clause C by a long-distance Q-resolution proof
π from Φ. Let D be the first XT -clause in π (D might be equal to C). Since Φ contains
no XT -clauses as axioms, the last step before D has to be a resolution or reduction. A
reduction is not possible since the reduced universal literal would have been blocked by a
T -literal in D.

Therefore D is the resolvent of two preceding clauses D1 and D2. If we resolve over an
X-literal, then one of these clauses has to be an XT -clause. The same is true for a resolution
over a T -literal. However, this contradicts the fact that D was the first XT -clause in π. J

The next lemma shows that under the XT -property it is also not possible to derive any
non-axiomatic T -clauses.

I Lemma 19. Let Φ be a QCNF with the XT -property and let C be a T -clause derived by
long-distance Q-resolution from Φ. Then C is an axiom from Φ.

We will show later that we need to resolve two XUT -clauses over an X-literal in order
to introduce tautologies. Now we prove that this is not possible in long-distance QCDCL
resolution under the XT -property.

I Lemma 20. It is not possible to resolve two XUT -clauses over an X-literal in a long-
distance QCDCL resolution proof of a QCNF Φ that fulfils the XT -property.

Proof. Assume there is a long-distance QCDCL resolution proof π that contains such a
resolution step over an X-literal x. Let C1 and C2 be the corresponding XUT -clauses. One
of these clauses, say C1, had to be an antecedent clause in a QCDCLLEV-ORD

RED trail T that
implied x. Since our decisions in the trail are level-ordered and we did not skip any decisions,
either x was propagated at decision level 0, or at a decision level in which we decided another
X-literal.

Because C1 is an XUT -clause, we can find a T -literal t ∈ C1. The literal t̄ must have
been propagated before we implied x (t̄ could not have been decided because the decisions
are level-ordered). That means that for the same trail we can find E := anteT (t̄). Now,
E cannot be a unit T -clause by the XT -property and Lemma 19. Hence E must contain
further X-, U -, or T -literals. If E contains a U -literal, then we would have had to decide
this U -literal before we use E as an antecedent clause, contradicting the level-order of our
decisions. Also, this U -literal cannot be reduced since we want to imply a T -literal with the
help of E. Therefore we conclude that E contains an X-literal or a T -literal. If E contains
an X-literal, then E is an XT -clause, which is not possible by Lemma 18.

Therefore E contains at least another T -literal ` ∈ E. As before, the literal ¯̀ was
propagated before we implied t̄ and x. We set E′ := anteT (¯̀) and argue in the same way as
with E. This process would repeat endlessly, which is a contradiction since we only have
finitely many T -variables. J
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Thus for formulas with the XT -property we can lift Q-resolution lower bounds to QCDCL,
yielding the next theorem.

I Theorem 21. If Φ fulfils the XT -property and requires Q-resolution refutations of size s,
then each QCDCL refutation of Φ has size at least s as well.

Proof. Let π be a long-distance QCDCL resolution refutation of Φ. We show that π does not
contain any tautological clause C and hence π is in fact a Q-resolution proof.

Assume that π contains some tautological clause C. W.l.o.g. let C be the first tautological
clause in π. Clearly, C has to be derived by a resolution step over an X-literal. Let C1 and
C2 be the parent clauses of C. Both of them contain some X-literals and some U -literals.
They also have to contain T -literals, otherwise we would reduce all U -literals (in the learning
process we reduce as soon as possible). Therefore C1 and C2 are both XUT -clauses that are
resolved over an X-literal, which is not possible by Lemma 20.

Therefore such a clause C cannot exist. Hence each long-distance QCDCL resolution
refutation of Φ is even a Q-resolution refutation and the result follows. J

It is quite easy to check that both the equality formulas as well as the random formulas
above have the XT -property. Thus we obtain:

I Corollary 22.
Equalityn requires QCDCL refutations of size 2n.
Let 1 < c < 2 be a constant and m ≤ (1 − ε) log2 n for some constant ε > 0. With
probability 1− o(1) the random QCNF Q(n,m, c) is false and requires QCDCL refutations
of size 2Ω(nε).

Our findings so far reveal an interesting picture on QCDCL hardness. Firstly, Proposition 11
and Corollary 22 imply that not all Q-resolution hardness results lift to QCDCL: the lower
bounds for equality and random formulas shown via size-cost-capacity [8] do, but the lower
bounds for parity shown via circuit complexity [12] do not.

Secondly, it is worth to compare the QCDCL hardness results for Trapdoor from the
previous section to the QCDCL hardness results shown here for equality and random formulas.
The hardness of Trapdoor lifts from propositional hardness for PHP, while the hardness of
equality and random formulas lifts from Q-resolution hardness. In fact, this can be made
formal by using a model of QBF proof systems with access to an NP oracle [17], which
allows to collapse propositional subderivations of arbitrary size into just one oracle inference
step. Hardness under the NP-oracle version of Q-resolution guarantees that the hardness
is “genuine” to QBF and not lifted from propositional resolution. We show here that this
notion of “genuine” QBF hardness, tailored towards QCDCL, also holds for the QCDCL lower
bounds for equality and the random QBFs.

I Proposition 23. The number of reduction steps in each long-distance QCDCL resolution
refutation (and also each QCDCLLEV-ORD

RED refutation) of Equalityn is at least 2n. The analogous
result holds for the false formulas Q(n,m, c) with 2Ω(nε) reduction steps.

On the other hand, the parity formulas also exhibit “genuine” QBF hardness, as they
are hard in the NP-oracle version of Q-resolution [10]. Since they are easy for QCDCL
(Proposition 11), this means that not all genuine Q-resolution lower bounds lift to QCDCL.

Thirdly, hardness for QCDCL can of course also stem from hardness for long-distance
Q-resolution, since the latter system p-simulates the former. However, there are only very
few hardness results for long-distance Q-resolution known in the literature [3,12,13], hence
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our hardness results shown here should be also valuable for practitioners, in particular the
hardness results for the large class of random QCNFs. It is also worth noting that the equality
formulas are easy for long-distance Q-resolution [9], hence our results imply an exponential
separation between QCDCL and long-distance Q-resolution.

I Proposition 24. Long-distance Q-resolution is exponentially stronger than QCDCL, i.e., long-
distance Q-resolution p-simulates QCDCL and there are QCNFs that require exponential-size
proofs in QCDCL, but admit polynomial-size proofs in long-distance Q-resolution.

6 A QCDCL system that characterises Q-resolution

In one of our main results we obtain a QCDCL characterisation of Q-resolution. Of course,
given that Q-resolution and QCDCL are incomparable (Section 4), we cannot hope to achieve
such a characterisation by simply strengthening some of the QCDCL policies.6 As explained
in the previous section, traditional QCDCL is using the decision policy LEV-ORD and the
unit-propagation policy RED. To obtain a QCDCL system equivalent to Q-resolution, we will
have to change both policies. We will strengthen the decision policy and replace LEV-ORD by
ANY-ORD (we could also replace it with the intermediate version ASS-ORD). In addition, we
will somewhat weaken the unit propagation policy from RED to NO-RED.7

This leads to the following characterisation of Q-resolution.

I Theorem 25. Q-resolution, QCDCLANY-ORD
NO-RED , and QCDCLASS-ORD

NO-RED are p-equivalent proof sys-
tems.

In particular, each Q-resolution refutation π of a QCNF in n variables can be transformed
into a QCDCLASS-ORD

NO-RED -refutation of size O(n3 · |π|) that uses an arbitrary asserting learning
scheme.

One part of the simulation above was already shown in Theorem 8, where we proved that
all QCDCL systems with NO-RED are p-simulated by Q-resolution. The technically most
challenging part is the reverse simulation where we need to construct QCDCLASS-ORD

NO-RED trails
from Q-resolution proofs. The main conceptual notion we use is that of reliable clauses.

I Definition 26. Let Φ = Q · φ be a QCNF and C be a non-tautological clause. If there is a
QCDCLASS-ORD

NO-RED trail T , an existential literal ` ∈ C and a set of literals α ⊆ C̄\{¯̀} such that
α is the set of decision literals in T and ` ∈ T , then C is called unreliable with respect to Φ.
Alternatively, we say that the decisions C̄ are blocking each other.

If C is not unreliable, we call C reliable.

Intuitively, a reliable clause C can be used to form a QCDCLASS-ORD
NO-RED trail by using all

negated literals from C as decisions. This way we progress through the Q-resolution proof,
successively learning clauses and making all clauses C in the Q-resolution proof unreliable
until we obtain the empty clause.

This construction bears some similarities to the simulation of Q-resolution by CDCL [48],
but poses further technical challenges due to quantification and the additional rules of
Q-resolution. In the inductive argument for Theorem 25 we therefore need to distinguish
three cases on whether C is an axiom or derived by resolution or reduction, each requiring
its own lemma (Lemmas 27, 28, and 29). For the following lemmas, let ξ be an arbitrary,
but fixed asserting learning scheme.

6 Such hope might not have seemed totally implausible prior to this paper, e.g. [35] states that ‘CDCL
QBF solving appears to be quite weak compared to general Q-resolution.’

7 While intuitively NO-RED might indeed appear weaker then RED (it produces fewer unit propagations),
we show in the next section that they are in fact incomparable, cf. Figure 2.
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I Lemma 27. Let Φ := Q · φ be a QCNF in n variables and C ∈ φ. If C is reliable with
respect to Φ, there exists a QCDCLASS-ORD

NO-RED -proof ι with trails T1, . . . , Tfn from Φ of some clause
E that uses the learning scheme ξ such that |ι| ∈ O(n3). If E 6= (⊥), then C is unreliable
with respect to Q · (φ ∪ {ξ(T1), . . . , ξ(Tfn)}).

I Lemma 28. Let Φ := Q · φ be a QCNF in n variables. Also let C1 ∨ x be a clause
that is unreliable with respect to Ψ := Q · ψ with ψ ⊆ φ and C2 ∨ x̄ unreliable with respect
to Υ := Q · τ with τ ⊆ φ, such that C1 ∨ C2 is non-tautological. Let ξ be an asserting
learning scheme. If C1 ∨ C2 is reliable with respect to Φ, there exists a QCDCLASS-ORD

NO-RED -proof ι
with θ(ι) = T1, . . . , Tfn from Φ of some clause E that uses the learning scheme ξ such that
|ι| ∈ O(n3). If E 6= (⊥), then C1∨C2 is unreliable with respect to Q·(φ∪{ξ(T1), . . . , ξ(Tfn)}).

I Lemma 29. Let Φ := Q·φ be a QCNF in n variables, let D := C ∨u1 ∨ . . .∨um be a non-
tautological clause with universal literals u1, . . . , um and red(D) = C, such that D is unreliable
with respect to a QCNF Ψ = Q · ψ with ψ ⊆ φ. Let ξ be an asserting learning scheme. If C
is reliable with respect to Φ, there exists a QCDCLASS-ORD

NO-RED -proof ι with θ(ι) = T1, . . . , Tfn from
Φ of some clause E that uses the learning scheme ξ such that |ι| ∈ O(n3). If E 6= (⊥), then
C is unreliable with respect to Q · (φ ∪ {ξ(T1), . . . , ξ(Tfn)}).

We also point out that in comparison to the notion of 1-empowering clauses from [48], our
argument via reliability yields somewhat better bounds on the simulation, thereby implying
a slight quantitative improvement by a factor of n in the simulation in [48]:

I Theorem 30. Let φ be a CNF in n variables and let π be a resolution refutation of φ.
Then φ has a CDCL refutation of size O(n3|π|).

7 The simulation order of QCDCL proof systems

We can now analyse the simulation order of the defined QCDCL and QBF resolution systems,
cf. Figure 2 which almost completely determines the simulations and separations between
the systems involved (cf. Section 8 for the open cases).

We highlight the most interesting findings (in addition to the results already described).
Firstly, we show that the unit-propagation policies RED and NO-RED are incomparable

when fixing the decision policy LEV-ORD used in practical QCDCL.

I Theorem 31. The systems QCDCLLEV-ORD
NO-RED and QCDCLLEV-ORD

RED are incomparable.

For the separations we use the QBFs QParityn and Trapdoorn. For practice, this results
means that it is a priori not clear that the unit-propagation policy as used in practical
QCDCL is actually preferable to the simpler unit-propagation policy from CDCL (which
would work in QCDCL as well).

Secondly, we show that replacing the decision policy LEV-ORD in QCDCL with the more
liberal decision policy ASS-R-ORD yields exponentially shorter QCDCL runs, which we
demonstrate on the Equalityn formulas.

I Theorem 32. QCDCLASS-R-ORD
RED is exponentially stronger than QCDCLLEV-ORD

RED .

Again, this theoretical result identifies potential for improvements in practical solving (cf.
also the discussion in the concluding Section 8).

Thirdly, we recall the formulas Lonn that were introduced by Lonsing in [39]. Originally,
these QCNFs were constructed to separate QBF solvers that differ in the implemented
dependency schemes (we do not consider these concepts here, though).
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Q-resolution≡p QCDCLASS-ORD
NO-RED ≡p QCDCLANY-ORD

NO-RED

QCDCLLEV-ORD
NO-RED

LD-Q-resolution

5
3

1

2

strictly stronger
(p-simulation + exponential separation)

incomparable (exponential separations
in both directions)
p-simulation
(equivalence/separation open) QCDCLASS-R-ORD

RED

QCDCLLEV-ORD
RED = QCDCL

4

1 Theorem 9 (QParityn, Trapdoorn)
2 [8, 12,27] (Equalityn, QParityn, KBKFn)
3 Theorem 31 (QParityn, Trapdoorn)
4 Theorem 32 (Equalityn)
5 Proposition 34 (Lonn)

Figure 2 The simulation order of QCDCL and QBF resolution systems. The table contains
pointers to the separating formulas.

I Definition 33 (Lonsing [39]). Let Lonn be the QCNF

∃a, b, b1, . . . , bsn∀x, y∃c, d·(a ∨ x ∨ c) ∧ (a ∨ b ∨ b1 ∨ . . . ∨ bsn) ∧ (b ∨ y ∨ d) ∧ (x ∨ c)
∧ (x ∨ c̄) ∧ PHPn+1

n (b1, . . . , bsn) .

It was shown in [39] that these formulas become easy to refute by choosing the standard
dependency scheme. However, Lonn serve as witnesses for separating our systems as well.

I Proposition 34. The QCNFs Lonn require exponential-size proofs in the proof systems
QCDCLLEV-ORD

RED and QCDCLLEV-ORD
NO-RED , but have constant-size proofs in QCDCLASS-R-ORD

RED and Q-
resolution.

8 Conclusion

In this paper we performed a formal, proof-theoretic analysis of QCDCL. In particular, we
focused on the relation of QCDCL and Q-resolution, showing both the incomparability of
practically-used QCDCL to Q-resolution as well as the equivalence of a new QCDCL version
to Q-resolution.

In addition to the theoretical contributions of this paper, we believe that our findings
will also be interesting for practitioners. Firstly, because we have shown the first rigorous
dedicated hardness results for QCDCL, not only in terms of formula families with at most
one instance per input size (as is typical in proof complexity), but also in terms of a large
family of random QBFs.

Secondly, we believe that it would be interesting to test the potential of our new QCDCL
variants for practical solving. Though we have formulated these as proof systems, it should
be fairly straightforward to incorporate our new policies into actual QCDCL implementations.
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In particular, the insight that decisions do not need to follow the order of quantification in
the prefix should be a welcome discovery. Of course, when just using the policy ANY-ORD,
it is not clear that asserting clauses can always be learnt. Therefore, we suggest that for
practical implementations, the most interesting new systems should be QCDCLASS-ORD

NO-RED and
QCDCLASS-R-ORD

RED . Both facilitate liberal decision policies, not necessarily following the prefix
order, while still allowing to learn asserting clauses. Since both systems are incomparable,
it is a priori not clear which one to prefer in practice. However, we would suggest that
QCDCLASS-R-ORD

RED should be the more interesting system, since it uses the same unit propagation
as QCDCL, but provides an exponential strengthening of QCDCL (as shown in Theorem 32)
via the decision policy ASS-R-ORD.

We close with some open questions that are triggered by the results presented here:
Can we find an alternative formula instead of Trapdoorn for the separation between
Q-resolution and QCDCL (easy for Q-resolution, hard for QCDCL)? I.e., we are primarily
interested in formulas whose hardness does not depend on propositional resolution.
Can we find a separation between QCDCLASS-R-ORD

RED and long-distance Q-resolution?
Can we even find a separation between QCDCLANY-ORD

RED and long-distance Q-resolution, or
are the systems possibly even equivalent?
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Abstract
A leading proposal for verifying near-term quantum supremacy experiments on noisy random
quantum circuits is linear cross-entropy benchmarking. For a quantum circuit C on n qubits and a
sample z ∈ {0, 1}n, the benchmark involves computing |〈z|C|0n〉|2, i.e. the probability of measuring
z from the output distribution of C on the all zeros input. Under a strong conjecture about
the classical hardness of estimating output probabilities of quantum circuits, no polynomial-time
classical algorithm given C can output a string z such that |〈z|C|0n〉|2 is substantially larger than

1
2n (Aaronson and Gunn, 2019). On the other hand, for a random quantum circuit C, sampling z
from the output distribution of C achieves |〈z|C|0n〉|2 ≈ 2

2n on average (Arute et al., 2019).
In analogy with the Tsirelson inequality from quantum nonlocal correlations, we ask: can a

polynomial-time quantum algorithm do substantially better than 2
2n ? We study this question in the

query (or black box) model, where the quantum algorithm is given oracle access to C. We show that,
for any ε ≥ 1

poly(n) , outputting a sample z such that |〈z|C|0n〉|2 ≥ 2+ε
2n on average requires at least

Ω
(

2n/4

poly(n)

)
queries to C, but not more than O

(
2n/3) queries to C, if C is either a Haar-random

n-qubit unitary, or a canonical state preparation oracle for a Haar-random n-qubit state. We also
show that when C samples from the Fourier distribution of a random Boolean function, the naive
algorithm that samples from C is the optimal 1-query algorithm for maximizing |〈z|C|0n〉|2 on
average.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory; Theory
of computation → Oracles and decision trees

Keywords and phrases quantum supremacy, quantum query complexity, random circuit sampling

Digital Object Identifier 10.4230/LIPIcs.ITCS.2021.13

Related Version Full version available at https://arxiv.org/abs/2008.08721.

Funding William Kretschmer : Supported by a Vannevar Bush Fellowship and a National Defense
Science and Engineering Graduate (NDSEG) Fellowship from the US Department of Defense.

Acknowledgements Thanks to Scott Aaronson, Sabee Grewal, Sam Gunn, Robin Kothari, Daniel
Liang, Patrick Rall, Andrea Rocchetto, and Justin Thaler for helpful discussions and illuminating
insights. Thanks also to anonymous reviewers for helpful comments regarding the presentation of
this work.

1 Introduction

A team based at Google has claimed the first experimental demonstration of quantum
computational supremacy on a programmable device [9]. The experiment involved random
circuit sampling, where the task is to sample (with nontrivial fidelity) from the output
distribution of a quantum circuit containing random 1- and 2-qubit gates. To verify their
experiment, they used the so-called Linear Cross-Entropy Benchmark, or Linear XEB.
Specifically, for an n-qubit quantum circuit C and samples z1, . . . , zk ∈ {0, 1}n, the benchmark
is given by:

b = 2n

k
·
k∑
i=1
|〈zi|C|0n〉|2.
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13:2 The Quantum Supremacy Tsirelson Inequality

The goal is for b to be large with high probability over the choice of the random circuit
and the randomness of the sampler, as this demonstrates that the observations tend to
concentrate on the outputs that are more likely to be measured under the ideal distribution
for C (i.e. the noiseless distribution in which z is measured with probability |〈z|C|0n〉|2).
We formalize this task as the b-XHOG task:

I Problem 1 (b-XHOG, or Linear Cross-Entropy Heavy Output Generation). Given a quantum
circuit C on n qubits, output a sample z ∈ {0, 1}n such that E

[
|〈z|C|0n〉|2

]
≥ b

2n , where the
expectation is over an implicit distribution over circuits C and over the randomness of the
algorithm that outputs z.

Here, b “large” means b bounded away from 1, as outputting z uniformly at random
achieves b = 1 on average for any C. On the other hand, if z is drawn from the ideal noiseless
distribution for C, and if the random circuits C empirically exhibit the Porter-Thomas
distribution on output probabilities, then sampling from C achieves b ≈ 2 [9, 2].

Under a strong complexity-theoretic conjecture about the classical hardness of nontrivially
estimating output probabilities of quantum circuits, Aaronson and Gunn showed that no
classical polynomial-time algorithm can solve b-XHOG for any b ≥ 1 + 1

poly(n) on random
quantum circuits of polynomial size [2]. Thus, a physical quantum computer that solves
b-XHOG for b ≥ 1 + Ω(1) is considered strong evidence of quantum computational supremacy.

In this work, we ask: can an efficient quantum algorithm for b-XHOG do substantially
better than b = 2? That is, what is the largest b for which a polynomial-time quantum
algorithm can solve b-XHOG on random circuits? Note that the largest b we could hope for
is achieved by the optimal sampler that always outputs the string z maximizing |〈z|C|0n〉|2.
If the random circuits induce a Porter-Thomas distribution on output probabilities, then
this solves b-XHOG for b = Θ(n), because the probabilities of a Porter-Thomas distribution
approach i.i.d. exponential random variables (see Fact 10 below). However, finding the
largest output probability might be computationally difficult even on a quantum computer,
which is why we restrict our attention to efficient quantum algorithms.

We refer to our problem as the “quantum supremacy Tsirelson inequality” in reference to
the Bell [11] and Tsirelson [18] inequalities for quantum nonlocal correlations (for a modern
overview, see [20]). Under this analogy, the quantity b in XHOG plays a similar role as the
probability p of winning some nonlocal game. For example, the Bell inequality for the CHSH
game [19] states that no classical strategy can win the game with probability p > 3

4 ; we view
this as analogous to the conjectured inability of efficient classical algorithms to solve b-XHOG
for any b > 1. By contrast, a quantum strategy with pre-shared entanglement allows players
to win the CHSH game with probability p = cos2 (π

8
)
≈ 0.854 > 3

4 . An experiment that wins
the CHSH game with probability p > 3

4 , a violation of the Bell inequality, is analogous to an
experimental demonstration of b-XHOG for b > 1 on a quantum computer that establishes
quantum computational supremacy. Finally, the Tsirelson inequality for the CHSH game
states that any quantum strategy involving arbitrary pre-shared entanglement wins with
probability p ≤ cos2 (π

8
)
. Hence, an upper bound on b for efficient quantum algorithms is

the quantum supremacy counterpart to the Tsirelson inequality. We emphasize that our
choice to refer to this as a “Tsirelson inequality” is purely by analogy; we do not claim that
the question involving quantum supremacy or the techniques one might use to answer it are
otherwise related to quantum nonlocal correlations.

1.1 Our Results
We study the quantum supremacy Tsirelson inequality in the quantum query (or black box)
model. That is, we consider distributions over quantum circuits that make queries to a
randomized quantum or classical oracle, and ask how many queries to the oracle are needed
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to solve b-XHOG, in terms of b. Our motivation for studying this problem in the query model
is twofold. First, quantum query results often give useful intuition for what to expect in the
real world, and can provide insight into why naive algorithmic approaches fail. Second, we
view this as an interesting quantum query complexity problem in its own right. Whereas most
other quantum query lower bounds involve decision problems [5] or relation problems [12],
XHOG is more like a weighted, average-case relation problem, because we only require that
|〈z|C|0n〉|2 be large on average. Contrast this with the relation problem considered in [1],
where the task is to output a z such that |〈z|C|0n〉|2 is greater than some threshold.

Note that there are known quantum query complexity lower bounds for relation prob-
lems [9], and even relation problems where the output is a quantum state [6, 25]. Yet, it is
unclear whether existing quantum query lower bound techniques are useful here. Whereas the
adversary method tightly characterizes the quantum query complexity of decision problems
and state conversion problems [24], it is not even known to characterize the query complexity
of relation problems (unless they are efficiently verifiable) [12]. The adversary method appears
to be essentially useless for saying anything about XHOG, which is not efficiently verifiable
and is not a relation problem in the traditional sense.1

The XHOG task is well-defined for any distribution of random quantum circuits, so this
gives us a choice in selecting the distribution. We focus on three classes of oracle circuits
that either resemble random circuits used in practical experiments, or that were previously
studied in the context of quantum supremacy.

Canonical State Preparation Oracles

Because the linear cross-entropy benchmark for a circuit C depends only on the state
|ψ〉 := C|0n〉 produced by the circuit on the all zeros input, it is natural to consider an
oracle Oψ that prepares a random state |ψ〉 without leaking additional information about |ψ〉.
Formally, we choose a Haar-random n-qubit state |ψ〉, and fix a canonical state |⊥〉 orthogonal
to all n-qubit states.2 Then, we take the oracle Oψ that acts as Oψ|⊥〉 = |ψ〉, Oψ|ψ〉 = |⊥〉,
and Oψ|ϕ〉 = |ϕ〉 for any state |ϕ〉 that is orthogonal to both |⊥〉 and |ψ〉. Equivalently,
Oψ is the reflection about the state |ψ〉−|⊥〉2 . Finally, we let C be the composition of Oψ
with any unitary that sends |0n〉 to |⊥〉, so that C|0n〉 = |ψ〉. This model is often chosen
when proving lower bounds for quantum algorithms that query state preparation oracles
(see e.g. [7, 3, 13]), in part because the ability to simulate Oψ follows in a completely black
box manner from the ability to prepare |ψ〉 unitarily without garbage (see Lemma 7 below).
Hence, the oracle Oψ is “canonical” in the sense that it is uniquely determined by |ψ〉 and is
not any more powerful than any other oracle that prepares |ψ〉 without garbage.

Haar-Random Unitaries

A random polynomial-size quantum circuit C does not behave like a canonical state prepara-
tion oracle: C|x〉 looks like a random quantum state for any computational basis state |x〉,
not just x = 0n. Indeed, random quantum circuits are known to information-theoretically
approximate the Haar measure in certain regimes [14, 21], and it seems plausible that they
are also computationally difficult to distinguish from the Haar measure. Thus, one could
alternatively model random quantum circuits by Haar-random n-qubit unitaries.

1 As we will see later, however, the polynomial method [10] plays an important role in one of our results.
2 We can always assume that a convenient |⊥〉 exists by extending the Hilbert space, if needed. For

example, if |ψ〉 is an n-qubit state, a natural choice is to encode |ψ〉 by |ψ〉|1〉 and to choose |⊥〉 = |0n〉|0〉.

ITCS 2021
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Fourier Sampling Circuits

Finally, we consider quantum circuits that query a random classical oracle. For this, we use
Fourier Sampling circuits, which Aaronson and Chen [1] previously studied in the context
of proving oracular quantum supremacy for a problem related to XHOG. Fourier Sampling
circuits are defined asH⊗nUfH⊗n, where Uf is a phase oracle for a uniformly random Boolean
function f : {0, 1}n → {−1, 1}. On the all-zeros input, Fourier Sampling circuits output
a string z ∈ {0, 1}n with probability proportional to the squared Fourier coefficient f̂(z)2.
This model has the advantage that in principle, one can prove the corresponding quantum
supremacy Bell inequality for classical algorithms given query access to f , and that in
some cases one can replace f by a pseudorandom function to base quantum supremacy on
cryptographic assumptions [1].

Summary of Results

Our first result is an exponential lower bound on the number of quantum queries needed to
solve (2 + ε)-XHOG given either of the two types of quantum oracles that we consider:

I Theorem 2 (Informal version of Theorem 14 and Theorem 17). For any ε ≥ 1
poly(n) , any

quantum query algorithm for (2 + ε)-XHOG with query access to either:
(1) a canonical state preparation oracle Oψ for a Haar-random n-qubit state |ψ〉, or
(2) a Haar-random n-qubit unitary,
requires at least Ω

(
2n/4

poly(n)

)
queries.

We do not know if Theorem 2 is optimal, but we show in Theorem 15 that a simple
algorithm based on the quantum collision finding algorithm [16] solves (2 + Ω(1))-XHOG
using O

(
2n/3) queries to either oracle.

Finally, we show that for Fourier Sampling circuits, the naive algorithm of simply
running the circuit is optimal among all 1-query algorithms:

I Theorem 3 (Informal version of Theorem 19). Any 1-query quantum algorithm for b-XHOG
with Fourier Sampling circuits achieves b ≤ 3.3

1.2 Our Techniques
The starting point for our proof of the Tsirelson inequality with a canonical state preparation
oracle Oψ is a result of Ambainis, Rosmanis, and Unruh [7], which shows that any algorithm
that queries Oψ can be approximately simulated by a different algorithm that makes no
queries, but starts with copies of a resource state that depends on |ψ〉. This resource state
consists of polynomially many (in the number of queries to Oψ) states of the form α|ψ〉+β|⊥〉,
i.e. copies of |ψ〉 in superposition with |⊥〉. Our strategy is to show that if any algorithm
solves b-XHOG given this resource state, then a similar algorithm solves b-XHOG given
copies of |ψ〉 alone. Then, we prove a lower bound on the number of copies of |ψ〉 needed
to solve b-XHOG. To do so, we argue that if |ψ〉 is Haar-random, then the best algorithm

3 Note that the value of b achieved by the naive quantum algorithm for XHOG depends on the class of
circuits used. In contrast to Haar-random circuits that achieve b ≈ 2, Fourier Sampling circuits achieve
b ≈ 3 (see Proposition 18). This stems from the fact that the amplitudes of a Haar-random quantum
state are approximately distributed as complex normal random variables, whereas the amplitudes of a
state produced by a random Fourier Sampling circuit are approximately distributed as real normal
random variables.
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for b-XHOG given copies of |ψ〉 is a simple collision-finding algorithm: measure all copies
of |ψ〉 in the computational basis, and output whichever string z ∈ {0, 1}n appears most
frequently in the measurement results. For a Haar-random n-qubit state, the chance of seeing
any collisions is exponentially unlikely (unless the number of copies of |ψ〉 is exponentially
large in n), and so this does not do much better than measuring a single copy of |ψ〉 and
outputting the result.

To prove the analogous lower bound for b-XHOG with a Haar-random unitary oracle,
we show more generally that the canonical state preparation oracles and Haar-random
unitary oracles are essentially equivalent as resources, which may be of independent interest.
More specifically, we show that for an n-qubit state |ψ〉, given query access to Oψ, one can
approximately simulate (to exponential precision) a random oracle that prepares |ψ〉. By
“random oracle that prepares |ψ〉,” we mean an n-qubit unitary Uψ that acts as Uψ|0n〉 = |ψ〉
but Haar-random everywhere else. We can construct such a Uψ by taking an arbitrary
n-qubit unitary that maps |0n〉 to |ψ〉, then composing it with a Haar-random unitary on
the (2n − 1)-dimensional subspace orthogonal to |0n〉.

Our lower bound for Fourier Sampling circuits uses an entirely different technique.
We use the polynomial method of Beals et al. [10], which shows that for any quantum
algorithm that makes T queries to a classical oracle, the output probabilities of the algorithm
can be expressed as degree-2T polynomials in the variables of the classical oracle. Our
key observation is that the average linear XEB score achieved by such a quantum query
algorithm can also be expressed as a polynomial in the variables of the classical oracle. We
further observe that this polynomial is constrained by the requirement that the polynomials
representing the output probabilities must be nonnegative and sum to 1. This allows us to
upper bound the largest linear XEB score achievable by the maximum value of a certain
linear program, whose variables are the coefficients of the polynomials that represent the
output probabilities of the algorithm. To upper bound this quantity, we exhibit a solution to
the dual linear program.

Due to space constraints, we defer the proofs to the full version of this paper, available at
https://arxiv.org/abs/2008.08721.

2 Preliminaries

2.1 Notation
We use [N ] to denote the set {1, 2, . . . , N}. We use 1 to denote the identity matrix (of
implicit size). We let TD(ρ, σ) denote the trace distance between density matrices ρ and σ,
and let ||A||� denote the diamond norm of a superoperator A acting on density matrices (see
[4] for definitions). For a unitary matrix U , we use U · U† to denote the superoperator that
maps ρ to UρU†. In a slight abuse of notation, if A denotes a quantum algorithm (which may
consist of unitary gates, measurements, oracle queries, and initialization of ancilla qubits),
then we also use A to denote the superoperator corresponding to the action of A on input
density matrices.

2.2 Oracles for Quantum States
We frequently consider quantum algorithms that query quantum oracles. In this model, a
query to a unitary matrix U consists of a single application of either U , U†, or controlled
versions of U or U†. We also consider quantum algorithms that make queries to random
oracles. In analogue with the classical random oracle model, such calls are not randomized

ITCS 2021
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at each query. Rather, a unitary U is chosen randomly (from some distribution) at the start
of the execution of the algorithm, and thereafter all queries for the duration of the algorithm
are made to U .

We now define several types of unitary oracles that we will use. These definitions (and
associated lemmas giving constructions of them) have appeared implicitly or explicitly in
prior work, e.g. [7, 3, 13, 8]. For completeness, we provide proofs of the constructions in the
full version.

I Definition 4. For an n-qubit quantum state |ψ〉, the reflection about |ψ〉, denoted Rψ, is
the n-qubit unitary Rψ := 1− 2|ψ〉〈ψ|.

In other words, |ψ〉 is a −1 eigenstate of Rψ, and all states orthogonal to |ψ〉 are +1
eigenstates. Note that some authors define the reflection about |ψ〉 to be the negation of
this operator (e.g. [26, 28, 8]), while others follow our convention (e.g. [15, 23, 3]). This
makes little difference, as these definitions are equivalent up to a global phase (or, if using
the controlled versions, equivalent up to a Pauli Z gate).

The following lemma shows that Rψ can be simulated given any unitary that prepares
|ψ〉 from the all-zeros state, possibly with unentangled garbage.

I Lemma 5. Let U be a unitary that acts as U |0n〉|0m〉 = |ψ〉|ϕ〉, where |ψ〉 and |ϕ〉 are n-
and m-qubit states, respectively. Then one can simulate T queries to the reflection Rψ using
2T + 1 queries to U .

I Definition 6. For a quantum state |ψ〉, the canonical state preparation oracle for |ψ〉,
denoted Oψ, is the reflection about the state |ψ〉−|⊥〉√

2 , where |⊥〉 is some canonical state
orthogonal to |ψ〉.

Unless otherwise specified, we generally assume that if |ψ〉 is an n-qubit state, then |⊥〉
is orthogonal to the space of n-qubit states under a suitable encoding (see Footnote 2).

The next lemma shows that Oψ can be simulated from any oracle that prepares |ψ〉
without garbage:

I Lemma 7. Let U be an n-qubit unitary that satisfies U |0n〉 = |ψ〉. Then one can simulate
T queries to Oψ using 4T + 2 queries to U .

We introduce the notion of a random state preparation oracle, which, to our knowledge,
is new.

I Definition 8. For an n-qubit state |ψ〉 we define a random state preparation oracle for |ψ〉,
denoted Uψ, as follows. We fix an arbitrary n-qubit unitary V that satisfies V |0n〉 = |ψ〉, then
choose a Haar-random unitary W that acts on the (2n − 1)-dimensional subspace orthogonal
to |0n〉 in the space of n-qubit states. Finally, we set Uψ = VW .

The invariance of the Haar measure guarantees that this distribution over Uψ is inde-
pendent of the choice of V , and hence this is well-defined. Note that while we often refer
to Uψ as a single unitary matrix, Uψ really refers to a distribution over unitary matrices.
Notice also that if |ψ〉 is distributed as a Haar-random n-qubit state, then Uψ is distributed
as a Haar-random n-qubit unitary.

2.3 Other Useful Facts
We use the following formula for the distance between unitary superoperators in the diamond
norm.
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I Fact 9 ([4]). Let V and W be unitary matrices, and suppose d is the distance between 0
and the polygon in the complex plane whose vertices are the eigenvalues of VW †. Then∣∣∣∣V · V † −W ·W ∣∣∣∣� = 2

√
1− d2.

Finally, we observe that for a Haar-random n-qubit quantum state, the information-
theoretically largest linear XEB achievable is O(n).

I Fact 10. Let |ψ〉 be a Haar-random n-qubit quantum state. Then:

E
|ψ〉

[
max

z∈{0,1}n
|〈z|ψ〉|2

]
≤ O(n)

2n .

3 Canonical State Preparation Oracles

In this section, we prove the quantum supremacy Tsirelson inequality for XHOG with a
canonical state preparation oracle for a Haar-random state. We first sketch the important
ideas in the proof. At the heart of our proof is the following lemma, due to Ambainis,
Rosmanis, and Unruh [7]. It shows that any quantum algorithm that makes queries to
a canonical state preparation oracle Oψ can be approximately simulated by a quantum
algorithm that makes no queries to Oψ, and instead receives various copies of |ψ〉 and
superpositions of |ψ〉 with some canonical orthogonal state.

I Lemma 11 ([7]). Let A be a quantum query algorithm that makes T queries to Oψ. Then
for any k, there is a quantum algorithm B that makes no queries to Oψ, and a quantum
state |R〉 of the form:

|R〉 :=
k⊗
j=1

αj |ψ〉+ βj |⊥〉

such that for any state |ϕ〉:

TD(A(|ϕ〉〈ϕ|), B(|R〉〈R|, |ϕ〉〈ϕ|)) ≤ O
(
T√
k

)
.

So long as k � T 2, the output of B will be arbitrarily close to the output of A in trace
distance. We will use this and Fact 10 to show that if A solves b-XHOG for some b > 2, then
so does B. Then, to prove a lower bound on the number of queries T to Oψ needed to solve
b-XHOG, it suffices to instead lower bound k, the number of states of the form αj |ψ〉+βj |⊥〉
needed to solve b-XHOG.

When |ψ〉 is a Haar-random state, notice that the linear XEB depends only on the
magnitude of the amplitudes in |ψ〉; the phases are irrelevant. So, when considering algorithms
that attempt to solve b-XHOG given only a state |R〉 of the form used in Lemma 11, we
might as well assume that the algorithm randomly reassigns the phases on |ψ〉. More formally,
define the mixed state σR as

σR := E
diagonal U

[
U⊗k|R〉〈R|U†⊗k

]
, (1)

where the expectation is over the diagonal unitaries U such that the entries 〈i|U |i〉 are i.i.d.
uniformly random complex phases (and by convention, 〈⊥|U |⊥〉 = 1). Then, the algorithm’s
average linear XEB score on σR is identical to its average linear XEB score on |R〉, because
of the invariance of the Haar measure with respect to phases.

ITCS 2021
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Next, we observe that one can prepare σR by measuring k copies of |ψ〉 in the compu-
tational basis. We prove this in Lemma 12. So, when considering algorithms for XHOG
that start with |R〉, it suffices to instead consider algorithms that simply measure k copies
of |ψ〉 in the computational basis. Such algorithms are much easier to analyze, because
once we have measured the k copies of |ψ〉, we can assume (by convexity) that any optimal
such algorithm for XHOG outputs a string z deterministically given the k measurement
results. And in that case, clearly the optimal strategy is to output whichever z maximizes
the posterior expectation of |〈z|ψ〉|2 given the measurement results. We analyze this strategy
in Lemma 13, and show that roughly 2n/2 copies of |ψ〉 are needed to solve b-XHOG for b
bounded away from 2. The intuition is that the posterior expectation of |〈z|ψ〉|2 increases
only when we see z at least twice in the measurement results. However, the probability that
any two measurement results are the same is tiny – on the order of 2−n – and so we need to
measure at least 2n/2 copies of |ψ〉 to see any collisions with decent probability.

We now proceed to proving the necessary lemmas.

I Lemma 12. Let |ψ〉 =
∑N
i=1 ψi|i〉 be an unknown quantum state, and consider a state |R〉

of the form:

|R〉 :=
k⊗
j=1

αj |ψ〉+ βj |⊥〉,

where αj , βj are known for j ∈ [k], and the vectors {|1〉, |2〉, . . . , |N〉, |⊥〉} form an orthonor-
mal basis. Define the mixed state σR as above. Then there exists a protocol to prepare σR by
measuring k copies of |ψ〉 in the computational basis.

To give some intuition, we note that it is simpler to prove Lemma 12 in the case where
αj = 1 for all j. In that case, σR can be viewed as an Nk ×Nk density matrix where both
the rows and columns are indexed by strings in [N ]k. Then, the averaging over diagonal
unitaries implies that σR is obtained from (|R〉〈R|)⊗k by zeroing out all entries where the
index corresponding to the row is not a reordering of the index corresponding to the column.
In fact, one can show that σR is expressible as a mixture of pure states, where each pure state
is a uniform superposition over basis states that are reorderings of each other. Moreover, the
probability associated with each pure state in this mixture is precisely the probability that
one of the reorderings is observed when we measure k copies of |ψ〉 in the computational basis.
So, to prepare σR, it suffices to measure |ψ〉⊗k and then output the uniform superposition
over reorderings of the measurement result.

The proof of Lemma 12 is similar, but we instead have to randomly set some of the
measurement results to ⊥ with probability |βj |2.

Combining Lemma 11 and Lemma 12, we have reduced the problem of lower bounding
the number of Oψ queries needed to solve b-XHOG, to lower bounding the number of copies
of |ψ〉 needed to solve b-XHOG. The next lemma lower bounds this latter quantity.

I Lemma 13. Let |ψ〉 be a Haar-random n-qubit quantum state. Consider a quantum
algorithm that receives as input |ψ〉⊗k and outputs a string z ∈ {0, 1}n. Then:

E
|ψ〉,z

[
|〈z|ψ〉|2

]
≤ 2

2n + O(k2)
4n .

We note that one should not expect Lemma 13 to be tight for large k (say, k = Ω
(
2n/2)).

For example, to achieve b = 4, we need at least enough samples to see m ≥ 3 with good
probability. But Pr[m ≥ 3] is negligible unless k = Ω

(
22n/3). More generally, a tight bound



W. Kretschmer 13:9

on the number of copies of |ψ〉 needed to achieve a particular value of b seems closely related
to the number of measurements of |ψ〉 needed to see m ≥ b− 1. This is like a sort of “balls
into bins” problem [22, 27] with k balls and 2n bins, but where the probabilities associated
to each bin follow a Dirichlet prior rather than being uniform.

We finally have the tools to prove the main result of this section.

I Theorem 14. Any quantum query algorithm for (2 + ε)-XHOG with query access to Oψ
for a Haar-random n-qubit state |ψ〉 requires Ω

(
2n/4ε5/4

n

)
queries.

Lastly, we give an upper bound on the number of queries needed to nontrivially beat
the naive algorithm for XHOG with Oψ. In fact, the following algorithm works with any
oracle that prepares a Haar-random state (including a Haar-random unitary), because the
algorithm only needs copies of |ψ〉 and the ability to perform the reflection Rψ. We thank
Scott Aaronson for suggesting this approach based on quantum collision-finding.

I Theorem 15. There is a quantum algorithm for (2 + Ω(1))-XHOG that makes O
(
2n/3)

queries to a state preparation oracle for a Haar-random n-qubit state |ψ〉.

4 Random State Preparation Oracles

In this section, we show that a canonical state preparation oracle and a random state
preparation oracle are essentially equivalent, and use it to prove the quantum supremacy
Tsirelson inequality for XHOG with a Haar-random oracle.

By Lemma 7, for a state |ψ〉, query access to a random state preparation oracle Uψ
implies query access to the canonical state preparation oracle Oψ with constant overhead.
The reverse direction is less obvious. We know from the definition of Uψ (Definition 8) that
one can simulate Uψ given any n-qubit unitary V that prepares |ψ〉 from |0n〉. So, it is
tempting to let V = Oψ with |⊥〉 = |0n〉 to argue that Oψ allows simulating Uψ. However,
this is only possible if |0n〉 is orthogonal to |ψ〉. And while we previously argued that we
can always find a canonical state |⊥〉 that is orthogonal to |ψ〉 (Footnote 2), this requires
extending the Hilbert space, so that Oψ no longer acts on n qubits!

To address this, imagine that we knew an explicit n-qubit state |ψ⊥〉 orthogonal to |ψ〉.
Notice that we could perfectly swap |ψ〉 and |ψ⊥〉: the composition OψOψ⊥Oψ sends |ψ〉 to
|ψ⊥〉, |ψ⊥〉 to |ψ〉, and acts trivially on all states orthogonal to |ψ〉 and |ψ⊥〉. In particular,
this swaps |ψ〉 and |ψ⊥〉 while acting only on the space of n-qubit states. Next, if we know
|ψ⊥〉 explicitly, we can certainly come up with an n-qubit unitary that sends |0n〉 to |ψ⊥〉.
By composing such a unitary with OψOψ⊥Oψ, we are left with an n-qubit unitary that sends
|0n〉 to |ψ〉. This is sufficient to construct Uψ, by Definition 8.

While we do not necessarily have such a state |ψ⊥〉, a random n-qubit state |ϕ〉 will be
exponentially close to such a |ψ⊥〉 with overwhelming probability. The next theorem shows
that we can use this observation to approximately simulate Uψ given Oψ, by going through
the steps above and keeping track of deviation from the ideal construction in terms of 〈ψ|ϕ〉.

I Theorem 16. Let |ψ〉 be an n-qubit state. Consider a quantum query algorithm A that
makes T queries to Uψ. Then there is a quantum query algorithm B that makes 2T queries
to Oψ such that:∣∣∣∣∣∣∣∣ E

Uψ
[A]−B

∣∣∣∣∣∣∣∣
�
≤ 10T + 4

2n/2 .

The above theorem implies that the oracle Oψ in Theorem 14 can be replaced by a
Haar-random n-qubit unitary.

ITCS 2021
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I Theorem 17. Any quantum query algorithm for (2 + ε)-XHOG with query access to Uψ for
a Haar-random n-qubit state |ψ〉 (i.e. a Haar-random n-qubit unitary) requires Ω

(
2n/4ε5/4

n

)
queries.

5 Fourier Sampling Circuits

In this section, we prove the quantum supremacy Tsirelson inequality for single-query
algorithms over Fourier Sampling circuits.

Throughout this section, we let N = 2n, and let Fn := {f : {0, 1}n → {−1, 1}} denote the
set of all n-bit Boolean functions. Given a function f ∈ Fn, we define the Fourier coefficient

f̂(z) := 1
2n

∑
x∈{0,1}n

f(x)(−1)x·z

for each z ∈ {0, 1}n. We also define the characters χz : {0, 1}n → {−1, 1} for each z ∈ {0, 1}n:

χz(x) := (−1)x·z.

Given oracle access to a function f ∈ Fn, the Fourier Sampling quantum circuit for
f consists of a layer of Hadamard gates, then a single query to f , then another layer of
Hadamard gates, so that the resulting circuit samples a string z ∈ {0, 1}n with probability
f̂(z)2. In the context of XHOG, we consider the distribution of Fourier Sampling circuits
where the oracle f is chosen uniformly at random from Fn.

I Proposition 18. Fourier Sampling circuits over n qubits solve (3− 2
2n )-XHOG.

The following theorem shows the optimality of the 1-query algorithm for XHOG with
Fourier Sampling circuits:

I Theorem 19. Any 1-query algorithm for b-XHOG over n-qubit Fourier Sampling
circuits satisfies b ≤ 3− 2

2n .

To prove Theorem 19, we use the polynomial method of Beals et al. [10]. Consider a
quantum query algorithm that makes T queries to f ∈ Fn and outputs a string z ∈ {0, 1}n.
The polynomial method implies that for each z ∈ {0, 1}n, the probability that the algorithm
outputs z can be expressed as a real multilinear polynomial of degree 2T in the bits of f .
We write such a polynomial as:

pz(f) =
∑

S⊂{0,1}n,|S|≤2T

cz,S ·
∏
x∈S

f(x).

Then, the expected XEB score of this quantum query algorithm is given by:

1
2N

∑
f∈Fn

∑
z∈{0,1}n

pz(f) · f̂(z)2. (2)

Our key observation is that the quantity (2) is linear in the coefficients cz,S . This allows us
to express the largest XEB score achievable by polynomials of degree 2T as a linear program,
with the constraints that the polynomials {pz(f) : z ∈ {0, 1}n} must represent a probability
distribution. Then, the objective value of the linear program can be upper bounded by giving
a solution to the dual linear program.
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6 Discussion

The most natural question left for future work is whether our bounds could be improved.
Our lower bounds for b-XHOG with Oψ or Uψ show that for constant ε, (2 + ε)-XHOG
requires Ω

(
2n/4

poly(n)

)
queries to either oracle, while the best upper bound we know of solves

(2 + ε)-XHOG in O
(
2n/3) queries. We conjecture that this upper bound is tight.

One possible approach towards improving the lower bound for b-XHOG with Oψ (and by
extension, Uψ) is to use the polynomial method, as we did for the Fourier Sampling lower
bound. Indeed, the output probabilities of an algorithm that makes T queries to Oψ can be
expressed as degree-2T polynomials in the entries of Oψ. If we write |ψ〉 =

∑N
i=1 αi|i〉, then

these are polynomials in the amplitudes α1, . . . , αN and the conjugates of the amplitudes
α∗1, . . . , α

∗
N . Because of the invariance of the Haar measure with respect to phases, and

because the linear XEB score depends only on the magnitudes of the amplitudes, we can
further assume without loss of generality that the output probabilities are polynomials in the
variables |α1|2, . . . , |αN |2, which are equivalently the measurement probabilities of |ψ〉 in the
computational basis. We can also assume that these polynomials are homogeneous, because
the input variables satisfy

∑N
i=1 |αi|2 = 1. Like in our Fourier Sampling lower bound,

the polynomials are constrained to represent a probability distribution for all valid inputs.
However, unlike the Fourier Sampling lower bound, this introduces uncountably many
constraints in the primal linear program. It may still be possible to exhibit a solution to the
dual linear program if only finitely many of the constraints are relevant (such an approach
was used in [17], for example).

Our b-XHOG bound for Fourier Sampling circuits is tight, but it only applies to
single-query algorithms. In principle, our lower bound approach via the polynomial method
could be generalized to algorithms that make additional queries, by increasing the degree of
the polynomials in the linear program and exhibiting another dual solution. The challenge
seems to be that the parity constraint on the monomials with nonzero coefficients becomes
unwieldy when working with higher degree polynomials.

Beyond possible improvements to the query complexity bounds, it would be interesting
to give some evidence that beating the naive XHOG algorithm is hard in the real world.
Aaronson and Gunn [2] showed that (1 + ε)-XHOG is classically hard, assuming the classical
hardness of nontrivially estimating the output probabilities of random quantum circuits. It
is not clear whether a similar argument could work for quantum algorithms, though, because
sampling from a random quantum circuit gives a better-than-trivial algorithm for estimating
its output probabilities.
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Abstract
We consider the manipulability of tournament rules which map the results of

(
n
2

)
pairwise matches

and select a winner. Prior work designs simple tournament rules such that no pair of teams can
manipulate the outcome of their match to improve their probability of winning by more than 1/3,
and this is the best possible among any Condorcet-consistent tournament rule (which selects an
undefeated team whenever one exists) [14, 15]. These lower bounds require the manipulators to
know precisely the outcome of all future matches.

We take a beyond worst-case view and instead consider tournaments which are “close to uniform”:
the outcome of all matches are independent, and no team is believed to win any match with probability
exceeding 1/2 + ε. We show that Randomized Single Elimination Bracket [14] and a new tournament
rule we term Randomized Death Match have the property that no pair of teams can manipulate the
outcome of their match to improve their probability of winning by more than ε/3 + 2ε2/3, for all ε,
and this is the best possible among any Condorcet-consistent tournament rule.

Our main technical contribution is a recursive framework to analyze the manipulability of certain
forms of tournament rules. In addition to our main results, this view helps streamline previous
analysis of Randomized Single Elimination Bracket, and may be of independent interest.
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1 Introduction

A tournament consists of n teams competing to win a championship via pairwise matches,
and a tournament rule (possibly randomly) selects a single winner as a result of these matches.
Tournament rules have been studied within Social Choice Theory for decades [6, 12, 16, 3, 7,
10, 11], see also [4] for a survey, and have gained attention from a few angles within TCS
more recently [2, 1, 18, 17, 9, 8, 14, 15]. Our work follows the model studied in [2, 1, 14, 15]
and seeks to design tournaments which are both fair (in that they select a reasonable winner,
based on the match outcomes), and “as strategyproof as possible” subject to this.

More specifically, these works acknowledge that an undefeated team, if one exists, should
surely win any reasonable tournament format. Formally, this property is termed Condorcet-
consistent (Definition 4). These works also consider the possibility of two teams strategically
manipulating the match between them to improve the probability that one of them wins.
The situation to have in mind is that perhaps two teams sponsored by the same company
enter an eSports tournament, and wish to maximize the probability that either of them take
home the prize money. A rule is 2-Strongly Non-Manipulable (2-SNM, Definition 7) if no
pair of teams can manipulate it to improve the probability that one of them wins.
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Initial works quickly established that no tournament rule exists which is both Condorcet-
consistent and 2-SNM [2, 1]. More recent works study the extent to which tournament
rules can be Condorcet-consistent and approximately 2-SNM. Specifically, a rule is 2-SNM-α
if no pair of teams can improve the probability that one of them wins by more than α

(Definition 7). [14, 15] design simple Condorcet-consistent tournament rules (defined in
Section 3) which are 2-SNM-1/3, and also show this is the best possible worst-case guarantee.

1.1 Our Results: Probabilistic Tournaments
The lower bounds in previous works assume that the deterministic future outcome of all
matches is known at the time of manipulation. While this is certainly a plausible scenario,
most competitions worth watching have some element of uncertainty, even for matches
between strong and weak teams. Indeed, [14, Open Problem 2] explicitly asks whether
improved guarantees are possible if instead the teams have a common Bayesian prior about
the possible outcomes of future matches which is bounded away from determinstic.

For example, consider the case where the outcome of all matches are uniformly at random.
Then it is not hard to design a Condorcet-consistent tournament rule which is 2-SNM in
this case. One example is a simple single-elimination bracket: when two manipulating teams
face each other, each of them is equally likely to continue on and win the tournament, so
manipulating doesn’t help.

What if instead the outcome of all matches are not uniformly random, but close? More
specifically, what if the match results are independent, and no team wins any match with
probability more than 1/2 + ε? When ε = 0, the previous paragraph establishes that rules
exist where profitable manipulation is impossible. When ε = 1/2, [14, 15] establish that
2-SNM-1/3 tournaments exist, but no better. What about when ε ∈ (0, 1/2)? How do the
achievable guarantees vary as a function of ε?

Our main result resolves this question, and nails down the guarantees precisely as a
function of ε. Moreover, we show that the same tournament rule achieves the optimal
guarantee for all ε. Below, Randomized Single Elimination Bracket (Definition 12, henceforth
RSEB) randomly seeds all teams, then runs a single-elimination bracket to determine the
winner, and was shown to be 2-SNM-1/3 in [14]. Randomized Death Match (Definition 14,
henceforth RDM) repeatedly picks two uniformly random teams to play a match, and
eliminates the loser (and is first analyzed in this paper).

I Informal Theorem 1 (See Theorems 30, 31). For all ε ∈ [0, 1/2], Randomized Death
Match and Randomized Single Elimination Bracket are 2-SNM-(ε/3 + 2ε2/3) when match
outcomes are independent, and no team wins any match with probability more than 1/2 + ε.
Moreover, for all ε ∈ [0, 1/2], no Condorcet-consistent tournament rule is 2-SNM-α for any
α < ε/3 + 2ε2/3, on the set of all tournaments with independent match outcomes that no
team wins with probability more than 1/2 + ε.

1.2 Technical Highlights
We prove our main result by finding a strong structural similarity between tournaments like
RDM and RSEB: they can be defined recursively. Specifically, RDM could be alternatively
defined as “Pick two teams uniformly at random, and eliminate the loser of their match.
Then, recurse on the remaining teams.” Similarly, RSEB can be alternatively defined as
“Pick a uniformly random perfect matching between the teams, and eliminate all teams which
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lose their match. Then, recurse on the remaining teams.” Even the Randomized King of the
Hill rule (Definition 13, henceforth RKotH) defined by [15] fits this framework as well: “Pick
a uniformly random team to play all other teams. Eliminate all teams who lose a match,
and recurse on the remaining teams.”

In Section 3, we give a formal definition of what it means to be a recursive tournament
rule. And in Section 4 (specifically, Theorem 21), we provide a general framework to analyze
the manipulability of recursive tournament rules on probabilistic tournaments. This provides
a fairly clean outline to analyze recursive tournament rules, and our main result then applies
this framework to RDM and RSEB. In the ε = 1/2 case, our analysis of RSEB in isolation
is perhaps not much simpler than that of [14], but our proof is arguably more structured.
Indeed, a substantial fraction of our proof can be applied verbatim to other tournament rules
like RDM, or applied verbatim to the ε < 1/2 case.

It is worth noting that our framework does face some technical barriers in accommodating
RKotH (and we leave open whether RKotH achieves the same guarantees as RDM and
RSEB). But, the technical barrier is easy to describe: the matches played in each round of
RDM and RSEB form a matching – no team plays more than one match. In RKotH, some
team plays multiple matches. It seems likely that our analysis would extend (perhaps with
messier calculations) to any recursive rule where each round’s matches form a matching.
But we highlight the aspects of our analysis which rely on this aspect of RDM/RSEB (and
therefore don’t hold for RKotH), and believe this is a genuine barrier.

1.3 Further Related Work

We’ve already discussed the most related work [2, 1, 14, 15]. The model is first posed
in [2], and [1] design tournaments which are 2-SNM and approximately Condorcet-consistent
(e.g. pick a uniformly random match and declare the winner of that match to win the
tournament). [14] first proposed to instead consider rules which are Condorcet-consistent
and approximately strategyproof, and establishes that RSEB is 2-SNM-1/3 and that this is
optimal. [15] considers larger manipulating sets (not relevant to this paper) and also designs
RKotH, showing that it too is 2-SNM-1/3 and satisfies a stronger notion of fairness termed
“cover-consistent”. In relation to these works, our main contribution is going beyond the
worst-case to derive improved bounds when match outcomes are more uncertain. A technical
contribution is our framework of recursive tournament rules.

Other recent works within TCS focus specifically on single-elimination brackets and
manipulation in the form of a bracket designer trying to get a certain team to win [18, 17,
9, 8], or manipulability of particular tournament rules such as the World Cup qualifying
procedure [13, 5]. Aside from being thematically related, there is no significant technical
overlap with our work.

1.4 Roadmap

Section 2 immediately follows with definitions and preliminaries. Section 3 provides definitions
concerning recursive tournament rules, and formally defines RDM and RSEB. Section 4
provides our framework for analyzing the manipulability of recursive tournament rules.
Section 5 applies this framework, as a warmup, to rederive the main result of [14] and analyze
RDM/RSEB in the deterministic case. Section 6 proves our main results, and Section 7
provides a brief conclusion.
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2 Preliminaries

2.1 Tournament Rule Basics
In this section, we introduce notation consistent with prior work [1, 14, 15].

I Definition 2 (Deterministic Tournament). A (round robin) tournament T on n teams is a
complete, directed graph on n vertices whose edges denote the outcome of a match between
two teams. Team i beats team j if the edge between them points from i to j.

I Definition 3 (Tournament Rule). A tournament rule r is a function that maps (determ-
inistic) tournaments T to a distribution over teams, where ri(T ) := Pr[r(T ) = i] denotes
the probability that team i is declared the winner of tournament T under rule r. We use the
shorthand rS(T ) :=

∑
i∈S ri(T ) to denote the probability that a team in S is declared the

winner of tournament T under rule r.

Finally, we are interested in tournament rules which satisfy basic notions of fairness.
Importantly, note that Condorcet-consistence is a minimal notion of fairness, and in particular
does not constrain the behavior of r on any tournament without a Condorcet winner.

I Definition 4 (Condorcet-Consistent). Team i is a Condorcet winner of a tournament T if
i beats every other team (under T ). A tournament rule r is Condorcet-consistent if for every
tournament T with a Condorcet winner i, ri(T ) = 1 (whenever T has a Condorcet winner,
that team wins with probability 1).

2.2 Independent Probabilistic Tournaments
In this work, we study probabilistic tournaments. That is, we are interested in tournaments
where the outcome of each match is not known to teams “in advance”, but teams share a
Bayesian prior about the likelihood of each possible outcome. In particular, we consider
when match outcomes are independent.

I Definition 5 (Independent Probabilistic Tournament). A probabilistic tournament T is just
a distribution over deterministic tournaments. For notational convenience, we slightly abuse
notation and refer by ri(T ) to E[ri(T )] (that is, ri(T ) is the probability that team i wins
when rule r is applied to T , over the randomness in r and the randomness in drawing T ).
A probabilistic tournament T is independent if all match outcomes in T are independent
events. Observe that a probabilistic tournament T is fully defined by probabilities pTij for all
i < j, where pTij denotes the probability that i beats j in tournament T .

Observe that deterministic tournaments are also independent probabilistic tournaments,
with each pTij ∈ {0, 1}. Like prior work, we study tournament rules which are “as strategyproof
as possible”. Because of our focus on independent probabilistic tournaments, we first refine
previous definitions of non-manipulability.

I Definition 6 (S-adjacent). Two independent probabilistic tournaments T, T ′ are S-adjacent
if pTij = pT

′

ij whenever {i, j} 6⊆ S. That is, two independent probabilistic tournaments are
S-adjacent when all (probabilistic) match outcomes are identical, except possibly for matches
between two teams in S.

Intuitively, two tournaments T, T ′ are S-adjacent if the set of teams S can manipulate
the outcomes of matches between them in advance and cause the resulting (probabilistic)
tournament to go from T to T ′.
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I Definition 7 (Manipulating a Tournament). For a set S of teams, independent probabilistic
tournament T , and tournament rule r, we define αrS(T ) to be the maximum winning probability
that S can possibly gain by manipulating T to an S-adjacent T ′. That is: αrS(T ) :=
maxT ′:T ′ is S-adjacent to T {rS(T ′)− rS(T )}.

For a class T of (independent probabilistic) tournaments, we also define αrk(T ) :=
maxT∈T ,S:|S|≤k{αrS(T )}. If αrk(T ) ≤ α, we say r is k-Strongly Non-Manipulable at prob-
ability α with respect to T (k-SNMT -α). To match notation of prior work, we also say a
tournament is k-SNM-α if it is k-SNMS1/2-α.1

Finally, we also define αk(T ) = infCondorcet consistent r{αrk(T )}.

Intuitively, r is k-SNMT -α if no colluding set of ≤ k teams can manipulate a tournament
in T to improve the probability the winner is in S by more than α. The refinement over
prior work is that the condition only holds for tournaments in T – prior work only considers
guarantees that hold over all tournaments. The additional notation in Definition 7 are just
terms that will be helpful for later exposition.

We focus on independent probabilistic tournaments that are close to uniformly random.

I Definition 8 (ε-Bounded Tournaments). An independent probabilistic tournament T is
weakly ε-bounded if for all i, j pTij ∈ [1/2 − ε, 1/2 + ε]. We refer to T ε as the set of all
ε-bounded tournaments.

An independent probabilistic tournament T is strictly ε-bounded if for all i, j pTij ∈
{1/2− ε, 1/2 + ε}. We refer to Sε as the set of all strictly ε-bounded tournaments. It will be
helpful to define the notation T ε≤n (respectively, Sε≤n) as the set of all weakly- (respectively,
strictly-) bounded tournaments on ≤ n teams.

For example, every deterministic tournament is 1/2-bounded, and the uniformly random
tournament is 0-bounded. Our main results study αk(T ε) as a function of ε. We conclude
with a brief lemma relating αk(T ε) to αk(Sε), as direct analysis of αk(Sε) is significantly
simpler than direct analysis of αk(T ε).

I Proposition 9. For all rules r, and all ε, k, αrk(T ε) = αrk(Sε). Therefore, for all ε, k,
αk(T ε) = αk(Sε).

While the proof is deferred to Appendix A, the high-level outline is fairly intuitive.
First, the “Therefore,. . . ” statement follows trivially from the first portion of the lemma.
Also, it is trivial to see that αrk(T ε) ≥ αrk(Sε), as Sε ⊆ T ε. So the interesting step is
establishing αrk(T ε) ≤ αrk(Sε). Intuitively, this follows because all (independent probabilistic)
tournaments in T ε can be written as convex combinations of tournaments in Sε, and one
might expect that any particular tournament rule is most manipulable on extreme points
(indeed this is true). With Proposition 9, we may restrict our study to αk(Sε).

3 Recursive Tournament Rules

In this section, we formalize a class of tournament rules which have a recursive aspect to
them. This will help us streamline previous analysis of [14], and also easily design a new
tournament rule with matching guarantees. In addition, this view will help give us a clean
outline to analyze the performance of these rules on tournaments in T ε, rather than just in
the worst case.

1 Note that S1/2 is the set of all deterministic tournaments, defined shortly below.
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I Definition 10 (Elimination Rule). An elimination rule E takes as input a number n of teams
and selects (possibly randomly) a set M := E(n) of matches to play, with |M | ∈ [1, n− 1].

An elimination rule is matching if M is a (not necessarily perfect) matching with probab-
ility one.

I Definition 11 (Recursive Tournament Rule). A recursive tournament rule is fully defined
by its elimination rule E. The recursive tournament rule rE takes as input a tournament
T , samples matches M := E(n) to play, and then eliminates any team which loses a match
in M .2 Specifically, T |M denotes the induced subgraph of T on teams not eliminated by the
matches in M . The tournament then recursively executes rE(T |M ) to select a winner. As a
base case, when there is only one team left, that team is the winner.

We now give three examples of elimination rules, and the resulting tournament rule.
Randomized Single Elimination Bracket was first studied in [14], Randomized King of the
Hill was first studied in [15], and Randomized Death Match is first studied in this paper.

I Definition 12 (Randomized Single Elimination Bracket). For a tournament T on n teams,
let n′ := 2dlog2 ne. Create n′ − n dummy players who all lose to the original n teams. Let M
be matches corresponding to a uniformly random perfect matching (i.e. exactly n′/2 matches
are played, and every team plays in exactly one match). Eliminate the losers and recurse on
the remaining (non-dummy) teams.

I Definition 13 (Randomized King of the Hill). Pick a uniformly random team i, to play
all others. Observe that if i is a Condorcet winner, then i will be the only remaining team.
Otherwise, i and every team it beats will be eliminated. Recurse on the remaining teams.

I Definition 14 (Randomized Death Match). Pick two uniformly random teams (without
replacement) and play their match. Eliminate the loser and recurse on the remaining teams.

Observe that our definition of Randomized Single Elimination Bracket (RSEB) differs
semantically from that given in [14], where the n′ teams are uniformly permuted into n′
seeds, and then the resulting bracket is played (without re-randomizing at each round).
Observe that the two definitions are equivalent (identically distributed), however, as our
definition simply produces the seeding by first figuring out the first-round matches, then
the second-round matches, etc. Our definition of Randomized King of the Hill (RKotH) is
identical (semantically) to that given in [15].

Randomized Death Match (RDM) is similar to Randomized Voting Caterpillar (RVC) [14].
Like RDM, RVC picks two uniformly random teams (without replacement) and eliminates
the loser. However, rather than a “pure recursion”, RVC proceeds by picking one uniformly
random remaining team to play the previous winner. This subtle distinction causes RDM to
be 2-SNM-1/3 (Theorem 23), but not RVC ([14, Theorem 3.14]). Observe also that RSEB
and RDM have matching elimination rules, but RKotH doesn’t (this is the main technical
barrier in extending our analysis to RKotH).

Finally, observe that all three rules above are anonymous: relabeling the teams simply
relabels the distribution over winners. This will play a role in our analysis.

I Definition 15 (Anonymous). A tournament rule r is anonymous if for every tournament T ,
and every permutation σ, and all i, rσ(i)(σ(T )) = ri(T ).

2 Observe that because |M | ∈ [1, n − 1] that at least one team is eliminated, but not all teams are
eliminated.
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4 Key Framework

In this section, we propose an outline to analyze the manipulability of recursive tournament
rules for independent probabilistic tournaments. For notational convenience, if a team i is
not present in tournament T (e.g. because they were eliminated in an earlier round), we
abuse notation and denote by ri(T ) := 0. Additionally, we let M(T ) denote the outcome of
matches M for tournament T (i.e. for all (u, v) ∈M , whether u or v wins in tournament T ).
Note that if T is probabilistic, M(T ) is a random variable, even after conditioning on M .

Our first step simply observes that recursive tournament rules can be analyzed recursively
due to linearity of expectation. A (short) proof of Lemma 16 appears in Appendix B.

I Lemma 16. Let rE be any recursive tournament rule. Let T, T ′ be independent probabilistic
tournaments on n > 1 teams, and let S be any subset of teams. Then:

rES (T ′)− rES (T ) = EM←E(n)[rES (T ′|M )− rES (T |M )].

To help parse notation: recall that if T, T ′ are not deterministic, then the notation rES (T ′)
(respectively, rES (T ), rES (T ′|M ), rES (T |M )) is taking an expectation over T ′ (respectively,
T, T ′|M , T |M ), as per Definition 5.3 On the right-hand side, we are taking an expectation
first over the matches M which are played. Inside the expectation, the teams in T |M and
T ′|M are still random variables (because they depend on the outcome of matches in M in T ,
which are still random after conditioning on M). And after the teams are determined by
M(T ),M(T ′), the tournaments T ′|M , T |M are still probabilistic tournaments.

Importantly, observe that when S = {u, v} and T, T ′ are S-adjacent, the tournaments
T |M and T ′|M may differ for two reasons. First, perhaps (u, v) ∈M . In this case, perhaps
M(T ) 6= M(T ′) (because T and T ′ can differ on the (u, v) match), and then T |M , T ′|M may
have different sets of teams. Second, perhaps (u, v) /∈ M , implying that M(T ) = M(T ′)
(because T and T ′ are identically distributed outside of the (u, v) match). T |M and T ′|M
therefore have the same sets of teams, but it can still be that pTuv 6= pT

′

uv, so the tournaments
T |M and T ′|M can still differ due to this match (if both u and v are not eliminated).

The second step in our framework simply splits the recursive analysis into cases based
on M , and the results of the matches M(T ). We define these cases clearly below, and then
state our main framework.

I Definition 17 (Base Case). We say that tournament T is a base case if αrS(T ) = 0. That
is, it is not possible for S to gain by manipulating tournament T under rule r.

One clear base case occurs if S = {u, v}, but u is not even in T . Lemma 22 later identifies
another for anonymous tournament rules (if relabeling u and v doesn’t change T except for
the (u, v) match, then {u, v} cannot gain by manipulating an anonymous tournament rule).

I Definition 18 (Bad Terminal Event). M is a bad terminal event if (u, v) ∈ M . That
is, a bad terminal event occurs when the (u, v) match is played this round. We denote the
occurence of this event by B.

I Definition 19 (Good Terminal Event). M,M(T ) is a good terminal event if (u, v) /∈ M ,
and M(T ) is such that T |M is a base case.4 That is, the (u, v) match is not played now (so
no gains from manipulation are possible), and no future gains are possible either. We denote
the occurence of this event by G.

3 In particular, note that T |M and T ′|M are not independent probabilistic tournaments, but are still
probabilistic tournaments, as they are distributions over independent probabilistic tournaments.

4 Observe that because (u, v) /∈M , that if T ′ is S-adjacent to T then M(T ) and M(T ′) are identically
distributed.
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I Definition 20 (Recursive Event). M,M(T ) is a recursive event if (u, v) /∈M , but M(T ) is
not such that T |M is a base case. That is, a recursive event occurs when the (u, v) match is
not played now, but may be played later (and manipulating it may be beneficial). We denote
the occurence of this event by R.

We now state the theorem which drives our analysis. Observe that the bound claimed by
Theorem 21 could in principle be (very) loose, but our subsequent sections show that this
framework suffices to nail down αr2(T ε) for RDM and RSEB, and also that these are the
best possible guarantees for any Condorcet-consistent tournament rule.

I Theorem 21. Let rE be a recursive tournament rule, ε ∈ [0, 1/2], and S := {u, v}. Let
b, g, c ≥ 0 (with b+ g > 0) be so that for any T ∈ Sε, and any T ′ which is S-adjacent to T :

PrM←E(n)[B] ≤ b.
PrM←E(n),M(T )[G] ≥ g.
EM←E(n)[rES (T ′|M )− rES (T |M )|B] ≤ c.

Then: αrE

2 (T ε) ≤ bc
b+g .

Proof. We prove the theorem by induction, and focus on Sε first (extending to T ε using
Proposition 9). As a base case, observe that when there are at most two teams remaining,
no gains from manipulation are possible and therefore αrE

2 (Sε≤2) ≤ 0 ≤ bc
b+g as desired.

For the inductive hypothesis, assume that αrE

2 (Sε≤n−1) ≤ bc
b+g and consider now any

tournament T ∈ Sε on n teams, and an S-adjacent T ′. We have the following chain of
equalities, which essentially just breaks down rES (T ′) − rES (T ) based on the three events
R,B,G (below, I(X) denotes the indicator random variable for event X, which is 1 when
event X occurs and 0 otherwise):

rES (T ′)− rES (T ) = EM←E(n)[rES (T ′|M )− rES (T |M )]
= EM←E(n),M(T )[(rES (T ′|M )− rES (T |M )) · (I(R) + I(B) + I(G))]
= Pr
M←E(n),M(T )

[R] · EM←E(n),M(T )[rES (T ′|M )− rES (T |M )|R]

+ Pr
M←E(n)

[B] · EM←E(n)[rES (T ′|M )− rES (T |M )|B]

+ Pr
M←E(n),M(T )

[G] · EM←E(n),M(T )[rES (T ′|M )− rES (T |M )|G]

The first line restates Lemma 16. The second line simply observes that exactly one of the
events R,B,G occur, and also uses linearity of expectation to take an expectation also over
M(T ). The third line just observes that E[Y ·I(X)] = Pr[X] ·X[Y |X] for any random variable
Y and event X, breaks the sum into three parts (again using linearity of expectation), and
observes that the event B is determined entirely by M and is independent of M(T ).

We now want to analyze the three terms separately. First, observe that by bullet three:

EM←E(n)[rES (T ′|M )− rES (T |M )|B] ≤ c. (1)

Next, observe that in either a good terminal event or a recursive event, (u, v) /∈ M .
Because T, T ′ are S-adjacent, this means that M(T ),M(T ′) are identically distributed (and
can therefore be coupled so that M(T ) = M(T ′) with probability one), so the teams in
T |M and T ′|M are therefore the same. Finally, because T is an independent probabilistic
tournament, and at least one team that participates in every match in M is eliminated,
p
T |M
ij = pTij for all teams i, j which are present in T |M (and also pT

′|M
ij = pT

′

ij ). This means
that T |M ∈ Sε≤n−1, and also that T ′|M , T |M are S-adjacent.
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In a good terminal event, because αrE

2 (T |M ) = 0 by definition, we must therefore have:

EM←E(n),M(T )[rES (T ′|M )− rES (T |M )|G] ≤ 0. (2)

In a recursive event, we instead have:

EM←E(n),M(T )[rES (T ′|M )− rES (T |M )|R] ≤ αr
E

2 (S≤n−1). (3)

Finally, we may now use our inductive hypothesis and Equations (1), (2), (3) to conclude:

rES (T ′)− rES (T ) = Pr
M←E(n),M(T )

[R] · EM←E(n),M(T )[rES (T ′|M )− rES (T |M )|R]

+ Pr
M←E(n)

[B] · EM←E(n)[rES (T ′|M )− rES (T |M )|B]

+ Pr
M←E(n),M(T )

[G] · EM←E(n),M(T )[rES (T ′|M )− rES (T |M )|G]

≤ Pr
M←E(n),M(T )

[R] · bc

b+ g
+ Pr
M←E(n)

[B] · c+ Pr
M←E(n),M(T )

[G] · 0

= bc

b+ g
+ Pr
M←E(n)

[B] ·
(
c− bc

b+ g

)
+ Pr
M←E(n),M(T )

[G] ·
(

0− bc

b+ g

)
≤ (1− b− g) · bc

b+ g
+ b · c+ g · 0 = bc

b+ g

The first inequality just combines the work of Equations (1), (2), (3), and upper bounds the
expected gains in all three cases using either the inductive hypothesis (R), direct hypothesis
(B), or definition of good terminal event (G). The final inequality observes that c ≥ bc

b+g ≥ 0,
so the bound is maximized when B occurs as often as possible, while G occurs as little as
possible (consistent with the hypotheses).

We have now shown that for any T ∈ Sε, and any T ′ which is S-adjacent, that rES (T ′)−
rES (T ) ≤ bc

b+g . This establishes that α
rE

2 (Sε) ≤ bc
b+g . Proposition 9 extends this to T ε. J

Theorem 21 is our main framework for analysis. The remainder of this paper now computes
the bounds required for the three bullets for the two tournament rules of interest as a
function of ε, and substitutes to obtain tight bounds. Finally, it is worth briefly noting that
the definition of αr2(T ε) semantically assumes that teams must decide how to manipulate
the outcome of their match in advance, before any matches are played. Still, any analysis
that follows from Theorem 21 applies even to manipulations which are decided upon as the
match is played. This is because the bound in bullet three of Theorem 21 must hold over all
S-adjacent T ′, not just one which was decided in advance. This claim is not central to our
main results, and making it formal would be notationally cumbersome, so we provide only
this brief discussion.

5 Warmup: Rederiving Bounds for Deterministic Tournaments

In this section, we rederive the main result of [14] (RSEB is 2-SNM-1/3), and analyze a novel
tournament rule (RDM is 2-SNM-1/3) using a simple application of Theorem 21. This will
require one further lemma about anonymous tournament rules to find additional base cases.
The proof is in Appendix C.

I Lemma 22. Let r be any anonymous tournament rule, S := {u, v}, and T, T ′ be independ-
ent probabilistic tournaments which are S-adjacent and satisfy pTuw = pTvw for all w /∈ {u, v}.
Then rS(T ) = rS(T ′).
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We now prove that RDM is 2-SNM-1/3. Recall that α2(S1/2) = 1/3, so this is optimal.

I Theorem 23. RDM is 2-SNM-1/3. Or in our language, αRDM
2 (T 1/2) = 1/3.

Proof. Recall that we need to lower bound the probability of a good terminal event, upper
bound the probability of a bad terminal event, and upper bound the gains from manipulation
in case of a bad terminal event. For the deterministic case, the latter bound is particularly
simple, and we will just observe that clearly EM←E(n)[rES (T ′|M )− rES (T |M )|B] ≤ 1. This is
simply because the maximum probability that any coalition can win in any tournament is 1,
and the minimum is 0. So we have established that RDM satisfies c = 1.

To bound the probability of a bad terminal event, observe that a bad terminal event
occurs only when u plays v in this round, which happens with probability exactly 1/

(
n
2
)
. So

RDM satisfies b = 1/
(
n
2
)
.

For the good terminal events, we claim that Pr[G] ≥ 2/
(
n
2
)
. First, observe that once we

show this, we can plug into Theorem 21 and conclude αRDM
2 (T 1/2) ≤ 1·1/(n

2)
1/(n

2)+2/(n
2) = 1/3.

To see this bound, let `u denote the number of teams which beat u but not v, and `v
denote the number of teams which beat v but not u. Without loss of generality let `u ≥ `v.

If `u + `v = 0, then Lemma 22 already establishes that u and v can gain nothing by
manipulating. If `u + `v ≥ 2, then whenever u or v play a team which beat them, we have a
good terminal event (because u or v is already eliminated before having ever played the (u, v)
match, resulting in a base case). This happens with probability at least 2/

(
n
2
)
, as desired.

If `u + `v = 1, then `u = 1, `v = 0. Let w be the unique team which beats u but not v.
We claim that if w plays either u or v that we are in a good terminal event. Indeed, if w
plays u, then u is eliminated having never played the (u, v) match. If instead w plays v, then
w is eliminated, but now there are no remaining teams which beat u but not v (or vice versa)
and Lemma 22 asserts that there are no further gains from manipulation. The probability
that w plays u or v is 2/

(
n
2
)
, as desired.

This handles all possible cases, and establishes that g ≥ 2/
(
n
2
)
in all cases. Plugging into

Theorem 21 as described above completes the proof. J

The analysis of RSEB is extremely similar to RDM, and requires only slightly more
calculations to bound the probability of a good terminal event. This proof structure is fairly
different than the original analysis in [14], and highlights the similarities to other recursive
tournament rules. A complete proof of Theorem 24 appears in Appendix C.

I Theorem 24 ([14]). RSEB is 2-SNM-1/3. Or in our language, αRSEB
2 (T 1/2) = 1/3.

We wrap up our warmup by highlighting key points of the analysis which will be relevant
for our main results. First, observe that our analysis of both rules succeeded by simply
upper-bounding c by 1. Improving this as a function of ε is the biggest technical difference
between our warmup and main results. Second, observe that our analysis required Lemma 22
in case `u < 2. In particular, we needed good terminal events even when both u and v were
not eliminated (and this need continues in main results).

6 Optimal Bounds for Independent Probabilistic Tournaments

Before analyzing our two tournament rules, we extend the simple 3-team lower bound of [14]
for α2(T 1/2) to α2(T ε). The proof is in Appendix D.

I Lemma 25. α2(T ε) ≥ 1
3ε+ 2

3ε
2.



K. Ding and S.M. Weinberg 14:11

6.1 Gauntlets: Upper Bounding Gains from Bad Terminal Events

As previously noted, the main difference between our warmup and main results is bounding
gain from bad terminal events. We provide a short, but key, structural insight about recursive
tournament rules. Intuitively, a team u wins under rule rE as long as they survive all
elimination matches. Our key observation is that this defines a gauntlet of teams such that u
wins if and only if they defeat every team in the gauntlet.

I Definition 26 (Gauntlet). For deterministic tournament T , recursive tournament rule r,
and team u, let T ′ be such that the outcome of the (v, w) match is the same for all v, w 6= u,
but u is a Condorcet winner. The gauntlet for u in tournament T under recursive rule r,
Gru(T ), is the set of teams that u plays in elimination matches when r is executed on T ′. If
r is randomized, then Gru(T ) is a random variable.

If T is a probabilistic tournament, we extend the notation Gru(T ) to be the random variable
which first samples T , then outputs Gru(T ) (again over randomness in r).

For intuition, consider RSEB. u wins RSEB if and only if they win each of their dlog2(n)e
matches, so their gauntlet is a list of dlog2(n)e teams, one per round. For RDM, however,
the set of matches that u plays is itself a random variable (depending on how many times u
is selected to play), but u still must win all these matches in order to win. For RKotH, the
size of the gauntlet is a random variable as well. Importantly, however, observe that for all
three rules (and any elimination rule), as soon as u loses a match, they are eliminated, so
their gauntlet opponents can be set assuming that u won all previous matches.

Importantly, observe that u’s gauntlet does not depend on the outcome of any of its own
matches (because T ′ immediately causes u to win all its matches anyway). This lets us make
the following key observation, which requires E to be a matching elimination rule.

I Lemma 27. Let rE be an anonymous recursive tournament rule with a matching elimination
rule, T be an independent probabilistic tournament on n teams, M ← E(n), and u, v be two
teams. Let also (u, v) ∈M and w denote the winner of the (u, v) match. Then the random
variable GrE

w (T |M ) is independent of w.

Proof. Observe first that because M is a matching which contains (u, v), that exactly one
of {u, v} (namely, w) is present in T |M . Moreover, because T is independent probabilistic,
the remaining teams in T |M are independent of w. Because the definition of w’s gauntlet
immediately considers a tournament T ′ which replaces the outcome of all matches involving
w by having w be a Condorcet winner, the tournament T ′ is independent of w except for
whether w is labeled as “u” or “v”. But because rE(·) is anonymous, its behavior on T ′ is
independent of w’s label. This completes the proof. J

Note that Lemma 27 fails when M is not a matching. This is because: (a) perhaps both
u and v are eliminated, and w is undefined, but also (b) even conditioned on w being defined,
the set of teams in T |M can depend on w. This is the main technical challenge in extending
beyond matching elimination rules.5

5 For example, in RKotH: conditioned on w := u, we know either that u was a Condorcet winner, or that
v was selected to play everyone, so all teams which lose to v are eliminated. If instead w := u, we know
either that v was a Condorcet winner, or that u was selected to play everyone. The teams which lose to
u vs. v could be different, so the Lemma fails to hold.
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I Corollary 28. Let rE be an anonymous tournament rule with a matching elimination rule,
T ∈ T ε, S = {u, v} be any two teams, and T ′ be S-adjacent to T . Then:

EM←E(n)[rES (T ′|M )− rES (T |M )|B] ≤ 2ε( 1
2 + ε).

Proof. Because we are in a bad terminal event, this means that (u, v) ∈ M . If we let w
denote the winner of the (u, v) match in T , and w′ denote the winner in T ′, then we know
that GrE

w (T |M ) and GrE

w′ (T ′|M ) are identically distributed by Lemma 27. This means that:

rE
S (T |M ) = E

GrE
w (T |M )

 ∏
x∈GrE

w (T |M )

pT
wx


rE

S (T ′|M ) = E
GrE

w′ (T ′|M )

 ∏
x∈GrE

w′ (T ′|M )

pT ′

w′x

 = E
GrE

w (T |M )

 ∏
x∈GrE

w (T |M )

pT
w′x


⇒ rE

S (T ′|M )− rE
S (T |M ) = E

GrE
w (T |M )

 ∏
x∈GrE

w (T |M )

pT
w′x −

∏
x∈GrE

w (T |M )

pT
wx


≤ E

GrE
w (T |M )

 ∏
x∈GrE

w (T |M )

( 1
2 + ε)−

∏
x∈GrE

w (T |M )

( 1
2 − ε)


= E

GrE
w (T |M )

[
( 1

2 + ε)|GrE

w (T |M )| − ( 1
2 − ε)|GrE

w (T |M )|
]

≤ 2ε

The first two lines follow by definition of the gauntlet, and Lemma 27. The third line is
basic algebra. The fourth line follows as T ∈ T ε. The fifth line is again basic algebra, and
the final line invokes Lemma 29, which is stated below (proof omitted from this version).
The above calculations hold for any T |M , T ′|M .

I Lemma 29. For all n ∈ N≥0, and ε ∈ [0, 1/2]: ( 1
2 + ε)i − ( 1

2 − ε)
n ≤ 2ε.

To see where the additional factor of ( 1
2 +ε) comes from, recall that pTuv ∈ [1/2−ε, 1/2+ε].

Therefore, pT ′

uv − pTuv ≤ 1
2 + ε. Consider now coupling the tournaments T and T ′ so the the

result of every match except for the one between u and v is identical (this is possible because
T and T ′ are independent probabilistic). Under this coupling, T and T ′ are identical with
probability at least 1

2 −ε (and gains from manipulation are clearly only possible when T 6= T ′,
which occurs with probability at most 1

2 + ε, and independently of M). Therefore, T 6= T ′

with probability at most ( 1
2 + ε) and conditioned on this, rES (T ′|M )− rES (T |M ) ≤ 2ε. J

6.2 RDM and RSEB
Corollary 28 is the main technical lemma to extend from T 1/2 to T ε. We begin with RDM.

I Theorem 30. αRDM
2 (T ε) = α2(T ε) = 1

3ε+ 2
3ε

2.

Proof. Let T ∈ Sε. Recall that we need to lower bound the probability of a good terminal
event, upper bound the probability of a bad terminal event, and upper bound the gains from
manipulation in case of a bad terminal event. We have already upper bounded the gains
from a bad terminal event using Corollary 28 and can therefore take c = 2ε( 1

2 + ε).
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To bound the probability of a bad terminal event, observe that a bad terminal event
occurs only when u plays v in this round, which happens with probability exactly 1/

(
n
2
)
. So

RDM satisfies b = 1/
(
n
2
)
.

For the good terminal events, we claim that Pr[G] ≥ 2/
(
n
2
)
. First, observe that once we

show this, we can plug into Theorem 21 and conclude αRDM
2 (T ε) ≤ 2ε( 1

2 +ε)·1/(n
2)

1/(n
2)+2/(n

2) = 1
3ε+ 2

3ε
2.

To see this bound, let `u denote the number of teams which beat u with probability
(1/2 + ε) but v with probability (1/2− ε), and `v denote the number of teams which beat v
with probabiltiy (1/2 + ε) but u with probability (1/2− ε). Without loss of generality let
`u ≥ `v.

If `u = 0, then Lemma 22 already establishes that u and v can gain nothing by ma-
nipulating. If `u + `v ≥ 2, then whenever u or v plays a team (not in {u, v}) which beats
them, we have a good terminal event (because u or v is already eliminated before having
ever played the (u, v) match, so manipulating the match has no impact). Observe that any
team which beats u (respectively, v) with probability (1/2 + ε) beats v (respectively, u) with
probability at least (1/2− ε). Therefore, we have a good terminal event with probability at
least 2(1/2 + ε)/

(
n
2
)

+ 2(1/2− ε)/
(
n
2
)

= 2/
(
n
2
)
, as desired.6

If `u = 1, `v = 0, then let w be the unique team which beats u with probability (1/2 + ε)
but v with probability (1/2− ε). We claim that if w plays either u or v that we have a good
terminal event. Indeed, if w wins, then either u or v are eliminated having never played the
(u, v) match. If instead w loses this match, then w is eliminated, but now pTux = pTvx for all
remaining teams x, and Lemma 22 asserts that there are no further gains from manipulation.
The probability that w plays u or v is 2/

(
n
2
)
, as desired.

This handles all possible cases, and establishes that g ≥ 2/
(
n
2
)
in all cases. Plugging into

Theorem 21 as described above completes the proof. J

The analysis for RSEB is again similar to RDM, but some calculations are more involved.

I Theorem 31. αRSEB
2 (T ε) = α2(T ε) = 1

3ε+ 2
3ε

2.

Proof. Let T ∈ Sε. We have already upper bounded the gains from a bad terminal event
using Corollary 28 and can therefore take c = 2ε( 1

2 + ε).
To bound the probability of a bad terminal event, observe that a bad terminal event

occurs only when u plays v this round, which happens with probability exactly 1/(n′ − 1).7.
So RSEB satisfies b = 1/(n′ − 1).

For the good terminal events, we claim that Pr[G] ≥ 2/(n′ − 1). First, observe that once

we show this, we can plug into Theorem 21 and conclude αRSEB2 (T ε) ≤ 2ε( 1
2 +ε)·1/(n′−1)

1/(n′−1)+2/(n′−1) =
1
3ε+ 2

3ε
2.

To see this bound (which requires more calculations than previous proofs), let `u denote
the number of teams which beat u with probability (1/2 + ε) but v with probability (1/2− ε),
and `v denote the number of teams which beat v with probabiltiy (1/2 + ε) but u with
probability (1/2− ε). Without loss of generality let `u ≥ `v.

Case One: `u + `v ≤ 1. If `u = 0, then Lemma 22 already establishes that u and v can
gain nothing by manipulating. If `u = 1, `v = 0, then let w be the unique team which
beats u with probability (1/2 + ε) but v with probability (1/2− ε). We claim that if w

6 To be extra clear, the two matches (w, u), (w, v) together contribute probability 1/
(

n
2

)
to the probability

of a good terminal event, as long as w beats either u or v with probability (1/2 + ε). Because there are
two such teams, we get this twice.

7 Recall in RSEB that n′ denotes the total number of teams plus dummy teams, and is 2dlog2(n)e
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plays either u or v that we are in a good terminal event. Indeed, if w wins this match,
then either u or v are eliminated having never played the (u, v) match. If instead w

loses this match, then w is eliminated, but now pTux = pTvx for all remaining teams x, and
Lemma 22 asserts that there are no further gains from manipulation. The probability
that w plays u or v is 2/(n′ − 1), as desired.

Case Two: `u + `v = 2. Next, consider the case where `u+`v = 2, and call the two relevant
teams x,w. Observe first that if u plays x and v plays w, or if u plays w and v plays
x, then we are surely in a good terminal event. This is because either (a) u or v is
eliminated without having played the (u, v) match, or (b) both x and w are eliminated
(allowing us to invoke Lemma 22). This occurs with probability 2

(n′−1)(n′−3) . There are
also the cases where exactly one of {w, x} plays a team in {u, v}. For any given pair (a, b),
with a ∈ {w, x} and b ∈ {u, v}, this case occurs with probability (n′−4)

(n′−1)(n′−3) .
8 Two of

these cases contribute at least a (1/2 + ε) probability of eliminating the team in {u, v},
and the other two contribute at least a (1/2− ε) probability. So in total, all four cases
contribute at least 2(n′−4)

(n′−1)(n′−3) , and together we get that a good terminal event occurs
with probability at least:

2
(n′ − 1)(n′ − 3) + 2(n′ − 4)

(n′ − 1)(n′ − 3) = 2(n′ − 3)
(n′ − 1)(n′ − 3) = 2

n′ − 1 .

Case Three: `u + `v ≥ 3. Next, consider the case where `u + `v ≥ 3 (observe that this
implies n ≥ 5). We will show that either u or v are eliminated with probability at
least 2/(n′ − 1). Indeed, let Lu denote the set of teams which beat u with probability
(1/2 + ε) (but not v), and Lv denote the set of teams which beat v with probability
(1/2 + ε) (but not u). Then consider the case where u plays a team in Lu, or v plays
a team in Lv. Conditioned on this, both u and v survive with probability at most
(1/2 + ε)(1/2 − ε) ≤ 1/4, so one of {u, v} is eliminated with probability at least 3/4.
So one sufficient condition would be to establish that u plays a team in Lu or v plays
a team in Lv with probability at least 8/3

n′−1 (because conditioned on this, one of {u, v}
is eliminated with probability 3/4, for a total probability of at least 2

n′−1 that one of
{u, v} is eliminated). In the subcase that `u ≥ 3, then the probability is in fact at least
3/(n′ − 1), as desired. Clearly, this probability is monotone in `u, `v, so this leaves the
only remaining subcase as `u = 2, `v = 1.

Subcase Three-A: `u = 2, `v = 1, n ≥ 9. For the subcase of `u = 2, `v = 1, the probabil-
ity that u plays a team in Lu or v plays a team in Lv is 2

n′−1 + (n′−5)
(n′−1)(n′−3) .

9 As n′ ≥ 16
(because n ≥ 9 and n′ is a power of 2), we have that (n′ − 5)/(n′ − 3) ≥ 11/13, meaning
that 2

n′−1 + (n′−5)
(n′−1)(n′−3) ≥

37/13
n′−1 > 8/3

n′−1 , which resolves this case by the work above.
Subcase Three-B: `u = 2, `v = 1, ε ≥ 1

2
√

13
, n ∈ [5, 8]. When n ∈ [5, 8], we have n′ = 8.

This means that (n′ − 5)/(n′ − 3) = 3/5, and therefore 2
n′−1 + (n′−5)

(n′−1)(n′−3) = 13/5
n′−1 .

Unfortunately, this is < 8/3
n′−1 , meaning that this case doesn’t immediately resolve by the

method above. In this range, we do an explicit case analysis. First, observe that u and v
are least likely to be eliminated when there are more dummy teams (because u and v

8 Because the probability that a plays b is 1/(n′ − 1), and the probability that the other two teams do
not play, conditioned on this, is (n′ − 4)/(n′ − 3).

9 To see this, observe that the probability that u plays a team in Lu is 2/(n′ − 1). The probability that
u plays a team not in Lu ∪ Lv ∪ {v} is (n′ − 5)/(n′ − 1). Conditioned on this, the probability that v
plays the team in Lv is 1/(n′ − 3) (and this is the only way that v can possibly play the team in Lv

without u playing Lu).
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beat dummy teams with probability one, but real teams with probably at most 1/2 + ε).
So the worst case to consider is when n = 5: two real teams beat only u, one beats only
v, and there are three dummy teams. We just have to compute several cases:

Perhaps u plays one of the `u teams, and v plays one of the `v teams. This occurs with
probability 2

7 ·
1
5 , and eliminates u or v with probability 1− (1/2− ε)2 = 3/4 + ε− ε2.

Perhaps u plays one of the `u teams, and v plays the other. This occurs with probability
2
7 ·

1
5 , and eliminates u or v with probability 1− (1/2 + ε)(1/2− ε) = 3/4 + ε2.

Perhaps u plays one of the `u teams, and v plays a dummy team. This occurs with
probability 2

7 ·
3
5 , and eliminutes u with probability 1/2 + ε.

Perhaps u plays one of the `v teams, and v plays one of the `u teams. This occurs with
probability 1

7 ·
2
5 , and eliminates u or v with probability 1− (1/2 + ε)2 = 3/4− ε− ε2.

Perhaps u plays one of the `v teams, and v plays a dummy team. This occurs with
probability 1

7 ·
3
5 , and eliminates u with probability 1/2− ε.

Perhaps u plays a dummy team, and v plays one of the `v teams. This occurs with
probability 3

7 ·
1
5 , and eliminates v with probability 1/2 + ε.

Perhaps u plays a dummy team, and v plays one of the `u teams. This occurs with
probability 3

7 ·
2
5 , and eliminates v with probability 1/2− ε.

Perhaps both u and v play dummy teams. This happens with probability 3
7 ·

2
5 , but

eliminates neither team.
So either u or v is eliminated (without playing each other) with probability:

2
35 · (3/4 + ε− ε2) + 2

35 · (3/4 + ε2) + 6
35 · (1/2 + ε) + 2

35 · (3/4− ε− ε
2)

+ 3
35 · (1/2− ε) + 3

35 · (1/2 + ε) + 6
35 · (1/2− ε)

= 27
70 −

2
35ε

2 ≥ 26
70 > 2/7.

Note that when n ∈ [5, 8], the probability of a bad event is exactly 1/7, and the above
work establishes that in case Three-B, the probability of a good terminal event is at least
twice that of a bad terminal event.

The arguments above handle all possible cases, and establishes that g ≥ 2/(n′ − 1) in all
cases. Plugging into Theorem 21 as described above completes the proof. J

7 Conclusion and Open Problems

We take a beyond worst-case view on manipulability of tournament rules, and nail down
optimal guarantees as a function of the uncertainty of match outcomes. Specifically, our
main result shows that α2(T ε) = ε/3 + 2ε2/3, and this is achieved for all ε by Randomized
Death Match and Randomized Single Elimination Bracket. Our main technical contribution
is a framework to analyze recursive tournament rules.

There are two natural directions for future work. The first concerns further work in the
probabilistic setting: does αRKotH2 (T ε) = ε/3+2ε2/3? The main technical barrier is replacing
Lemma 27, which only holds for matching elimination rules.10 In addition, it is interesting
to analyze probabilistic tournaments which are not independent. Here there are technical
barriers to overcome (many of our steps do require independence), but also conceptual

10There are other barriers to using our precise definitions, but these barriers seem semantic rather than
substantial.
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ones: if tournament match outcomes are correlated, should we consider manipulations which
are correlated with external outcomes as well? If so, is there a natural way to consider
manipulations which are “not more correlated than the original tournament itself”?

A second direction concerns applications of our recursive framework towards other
problems in approximately strategy-proof tournament design. For example, it is still an open
question following [15] what is αk(T 1/2) for any k > 2. Our recursive framework may prove
useful for analyzing this, or at least determining achievable guarantees for recursive rules.
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A Omitted Proofs from Section 2

Proof of Proposition 9. The second statement of the lemma clearly follows from the first. It
is trivial to see that αrk(T ε) ≥ αrk(Sε), as Sε ⊆ T ε. To get intuition for why αrk(T ) ≤ αrk(Sε),
observe that every probabilistic tournament in T ε can be written as a convex combination of
probabilistic tournaments in Sε. Indeed, this intuition drives the proof.

To see this formally, let T be an arbitrary (independent probabilistic) tournament in T ε,
and let T ′ be any S-adjacent (independent probabilistic) tournament for some |S| ≤ k. Then
pTij ∈ [1/2− ε, 1/2 + ε] for all i, j, by definition. Consider the following procedure to jointly
sample tournaments from T, T ′. The procedure first constructs another pair of probabilistic
tournaments U,U ′, and then samples from these.
1. For all (i, j), set qij := pT

ij−(1/2−ε)
2ε . Observe that qij · (1/2 + ε) + (1− qij) · (1/2− ε) = pTij ,

and that qij ∈ [0, 1] as pTij ∈ [1/2− ε, 1/2 + ε].
2. For each (i, j), independently, set pij equal to (1/2 + ε) with probability qij and equal to

(1/2− ε) with probability (1− qij).
3. For all (i, j), set pUij := pij .
4. For all (i, j) such that {i, j} 6⊆ S, set pU ′ := pU . For other (i, j), set pU ′

ij := pT
′

ij .
5. Draw a pair of tournaments according to U,U ′ (independently, say).

Observe that this procedure correctly draws two tournament according to T, T ′. Indeed,
it is easy to see for each output tournament that the outcome of each match is independent,
simply because they are independent in U (resp. U ′), and because the random variables pUij
(resp. pU ′

ij ) are independent. Moreover, we claim that the probability that i beats j is exactly
pTij . Indeed, the probability that i beats j in U is: E[pUij ] = qij ·(1/2+ε)+(1−qij) ·(1/2−ε) =
pTij . In U ′, when {i, j} ⊆ S, the probability that i beats j in U ′ is clearly pT ′

ij by definition.
When {i, j} 6⊆ S, the probability that i beats j is also pTij , which is equal to pT ′

ij as T, T ′ are
S-adjacent. Additionally, observe that: (a) U ∈ Sε and (b) U and U ′ are S-adjacent. Now,
consider any tournament rule r(·):

For all i: ri(T ) = E[ri(U)], and ri(T ′) = E[ri(U ′)]
⇒ rS(T ′)− rS(T ) = E[rS(U ′)− rS(U)] ≤ αrk(Sε)

Indeed, the first line is simply linearity of expectation, once the previous work confirms that
going through U,U ′ is a valid way to draw tournaments from T, T ′. The third line then also
follows by linearity of expectation. The final line follows as U ∈ Sε, and U,U ′ are S-adjacent.
This completes the proof, as we have now shown that αrk(T ε) ≤ αrk(Sε). J
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B Omitted Proofs from Section 3

Proof of Lemma 16. This follows immediately from linearity of expectation. For all i, the
probability that i wins in tournament T under rule rE(·) is the expected probability that i
wins in T |M . Summing over i ∈ S, and repeating this for T ′ yields the lemma. J

C Omitted Proofs from Section 5

Proof of Lemma 22. Let σ(·) denote the permutation which swaps u and v. Consider any
two deterministic tournaments U, σ(U). Then because r(·) is anonymous, we have:

ru(U) + rv(U) = rσ(u)(σ(U)) + rσ(v)(σ(U)) = rv(σ(U)) + ru(σ(U))
⇒ rS(U) = rS(σ(U))

Indeed, the first line simply applies anonymity, and the second line simply applies σ. Now let’s
return to T, T ′ (which are independent probabilistic tournaments, rather than deterministic).
Consider the following process to draw T and T ′ jointly:
1. To emphasize that pTuw = pTvw, for all w /∈ {u, v}, denote by pTw := pTuw.
2. Without loss of generality, let pTuv ≤ pT

′

uv.
3. Draw the outcome of all matches involving two teams both /∈ {u, v}. Set the outcome of

these matches the same for T and T ′.
4. For all w /∈ {u, v}, draw qw1 and qw2 iid and uniformly from [0, 1]. Draw quv independently

and uniformly from [0, 1].
5. For all w /∈ {u, v}, have u beat w if and only if qw1 < pTw. Have v beat w if and only if

qw2 < pTw. Have u beat v if and only if quv < pTuv.
6. If quv /∈ [pTuv, pT

′

uv], set T ′ := T .
7. If quv ∈ [pTuv, pT

′

uv], then set T ′ := σ(T ).

This process clearly satisfies that with probability one, either T ′ = T or T ′ = σ(T ). By
the work above, this means that rS(T ) = rS(T ′) as desired, as long as we confirm that this
process validly samples both T and T ′. It is easy to see that the process is valid for T : the
match outcomes are clearly independent, and any team w beats x if and only if a uniformly
random draw from [0, 1] is < pTwx (which happens with probability pTwx, as desired).

To see that the process is valid for T ′, observe first that u beats v with probability exactly
pT

′

uv, because u beats v whenever quv < pT
′

uv. Moreover, after conditioning on quv, the outcome
of each (u,w) match is either set according to qw1 (an independent, uniform draw from [0, 1]),
or qw2 (also an independent, uniform draw from [0, 1]). In either case, these match results
are all set independently and with the correct probability (because T, T ′ are S-adjacent, and
because qw1, qw2 are iid because pTuw = pTvw for all w). This completes the proof. J

Proof of Theorem 24. We again simply let c = 1 and take the trivial bound on the gain in
bad terminal events.

To bound the probability of a bad terminal event, observe that a bad terminal event
occurs only when u plays v this round, which happens with probability exactly 1/(n′ − 1).11
So RSEB satisfies b = 1/(n′ − 1).

For the good terminal events, we claim that Pr[G] ≥ 2/(n′−1). First, observe that once we
show this, we can plug into Theorem 21 and conclude αRSEB2 (T 1/2) ≤ 1·1/(n′−1)

1/(n′−1)+2/(n′−1) = 1/3.

11Recall that in RSEB, n′ := 2dlog2(n)e.
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To establish this bound, let `u denote the number of teams which beat u but not v, `v
denote the number of teams which beat v but not u. Without loss of generality let `u ≥ `v.

If `u + `v = 0, then Lemma 22 already establishes that u and v gain nothing by
manipulating. If `u ≥ 2, then whenever u plays a team which beats them, we have a good
terminal event (because u is already eliminated before having ever played the (u, v) match,
so manipulating the match has no impact). This happens with probability at least 2/(n′− 1).

If `u = 1, `v = 0, then let w denote the unique team which beats u but not v. We now
claim that if w plays either u or v that we are in a good terminal event. Indeed, if w plays
u, then u is eliminated having never played the (u, v) match. If instead w plays v, then w is
eliminated, but now there are no remaining teams which beat u but not v (or vice versa)
and Lemma 22 asserts that there are no further gains from manipulation. The probability
that w plays u or v is 2/(n′ − 1), as desired.

Finally, if `u = `v = 1, let w denote the unique team which beats u but not v, and x
denote the unique team which beats v but not u (this case requires slightly more calculations
than RDM). If u plays w, or v plays x, then at least one of u, v is eliminated before the
(u, v) match is played, and therefore no gains are possible. This happens with probability
2/(n′ − 1) − 1

(n′−1)(n′−3) . In addition, if u plays x and v plays w, then both x and w will
be eliminated, and Lemma 22 asserts that there are no further gains from manipulation.
This occurs with probability 1

(n′−1)(n′−3) . Therefore, a good terminal event happens with
probability at least 2/(n′−1), as desired. This handles all possible cases, and establishes that
g ≥ 2/(n′ − 1) in all cases. Plugging into Theorem 21 as described completes the proof. J

D Omitted Proofs from Section 6

Proof of Lemma 25. Consider a 3-player tournament T with teams u, v, and w, pTuv =
pTvw = pTwu = 1

2 + ε.12 Noting that T is randomized, there are two possible types of
deterministic outcomes: outcomes where there is a Condorcet winner, and outcomes which
form a cycle (either v beats u, u beats w, and w beats v, or vice versa).

In T , each of the three players has probability ( 1
2 + ε)( 1

2 − ε) of being a Condorcet winner.
Call the cycle where v beats u “cycle 1”; this occurs with probability ( 1

2 + ε)3. Call the
opposing cycle (where u beats v) “cycle 2”; this occurs with probability ( 1

2 − ε)
3.

Let r be any Condorcet-consistent tournament rule. Denote by γx the probability that
the rule selects x as the winner when cycle 1 occurs (for any x ∈ {u, v, w}). Denote by βx
the probability that the rule selects x as the winner when cycle 2 occurs. Recall that r must
select x as the winner with probability 1 when x is the Condorcet winner.

Suppose that u and v collude so that u throws their match to v. Specifically, let Tuv
denote the {u, v}-adjacent tournament to T where pTuv

uv = 0 (instead of 1/2 + ε). In Tuv, v
is a Condorcet winner with probability 1

2 + ε (they need only beat w), cycle 2 occurs with
probability ( 1

2 − ε)
2 (v must lose to w, who must lose to u), and w is a Condorcet winner

with probability ( 1
2 + ε)( 1

2 − ε). No other outcomes are possible. We then have:

ru(Tuv) + rv(Tuv)− ru(T )− rv(T ) = ( 1
2 + ε) + (βu + βv) · ( 1

2 − ε)
2

− 2( 1
2 + ε)( 1

2 − ε)− (βu + βv) · ( 1
2 − ε)

3 − (γu + γv)( 1
2 + ε)3

= 2ε · ( 1
2 + ε) + (βu + βv) · (( 1

2 − ε)
2 − ( 1

2 − ε)
3)− (γu + γv)( 1

2 + ε)3

12That is, if ε = 1/2, this is the same 3-cycle example from [14].
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Identical calculations hold for T vw, Twu. We can sum these three together to achieve:

(ru(Tuv) + rv(Tuv)− ru(T )− rv(T )) + (rv(T vw) + rw(T vw)− rv(T )− rw(T ))
+ (rw(Twu) + ru(Twu)− rw(T )− ru(T ))

= 6ε · ( 1
2 + ε) + 2(βu + βv + βw) · (( 1

2 − ε)
2 − ( 1

2 − ε)
3)− 2(γu + γv + γw)( 1

2 + ε)3

= 6ε · ( 1
2 + ε) + 2 · ( 1

2 − ε)
2 · ( 1

2 + ε)− 2( 1
2 + ε)3

= 6ε · ( 1
2 + ε) + 2 · ( 1

2 + ε) · (( 1
2 − ε)

2 − ( 1
2 + ε)2)

= 6ε · ( 1
2 + ε) + 2 · ( 1

2 + ε) · (−2ε) = 2ε · ( 1
2 + ε)

This means that one of the three coalitions can gain at least 2
3ε(

1
2 + ε) = 1

3ε+ 2
3ε

2. J
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Abstract
We study a graph coloring problem that is otherwise easy in the RAM model but becomes quite
non-trivial in the one-pass streaming model. In contrast to previous graph coloring problems in
streaming that try to find an assignment of colors to vertices, our main work is on estimating the
number of conflicting or monochromatic edges given a coloring function that is streaming along
with the graph; we call the problem Conflict-Est. The coloring function on a vertex can be
read or accessed only when the vertex is revealed in the stream. If we need the color on a vertex
that has streamed past, then that color, along with its vertex, has to be stored explicitly. We
provide algorithms for a graph that is streaming in different variants of the vertex arrival in one-pass
streaming model, viz. the Vertex Arrival (VA), Vertex Arrival With Degree Oracle (VAdeg),
Vertex Arrival in Random Order (VArand) models, with special focus on the random order
model. We also provide matching lower bounds for most of the cases. The mainstay of our work is in
showing that the properties of a random order stream can be exploited to design efficient streaming
algorithms for estimating the number of monochromatic edges. We have also obtained a lower bound,
though not matching the upper bound, for the random order model. Among all the three models
vis-a-vis this problem, we can show a clear separation of power in favor of the VArand model.
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1 Introduction

The chromatic number χ(G) of an n-vertex graph G = (V,E) is the minimum number of
colors needed to color the vertices of V so that no two adjacent vertices get the same color.
The chromatic number problem is NP-hard and even hard to approximate within a factor
of n1−ε for any constant ε > 0 [14, 28, 20]. For any connected undirected graph G with
maximum degree ∆, χ(G) is at most ∆+1 [27]. This existential coloring scheme can be made
constructive across different models of computation. A seminal result of recent vintage is that
the ∆ + 1 coloring can be done in the streaming model [3]. Of late, there has been interest
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in graph coloring problems in the sub-linear regime across a variety of models [1, 3, 4, 8, 6].
Keeping with the trend of coloring problems, these works look at assigning colors to vertices.
Since the size of the output will be as large as the number of vertices, reseachers study the
semi-streaming model [22] for streaming graphs. In the semi-streaming model, Õ(n)1 space
is allowed.

In a marked departure from the above works that look at the classical coloring problem,
the starting point of our work is (inarguably?) the simplest question one can ask in graph
coloring – given a coloring function f : V → {1, . . . , C} on the vertex set V of a graph
G = (V,E), is f a valid coloring, i.e., for any edge e ∈ E, do both the endpoints of e have
different colors? This is the problem one encounters while proving that the problem of
chromatic number belongs to the class NP [15]. Conflict-Est, the problem of estimating
the number of monochromatic (or, conflicting) edges for a graph G given a coloring function
f , remains a simple problem in the RAM model; it even remains simple in the one-pass
streaming model if the coloring function f is marked on a public board, readable at all times.
We show that the problem throws up interesting consequences if the coloring function f on a
vertex is revealed only when the vertex is revealed in the stream. For a streaming graph, if
the vertices are assigned colors arbitrarily or randomly on-the-fly while it is exposed, our
results can also be used to estimate the number of conflicting edges. These problems also
find their use in estimating the number of conflicts in a job schedule and verifying a given job
schedule in a streaming setting. This can also be extended to problems in various domains
like frequency assignment in wireless mobile networks and register allocation [13]. As the
problem, by its nature, admits an estimate or a yes-no answer, we can try for space efficient
algorithms in the conventional graph streaming models like Vertex Arrival [11]. We
also note in passing that many of the trend setting problems in streaming, like frequency
moments, distinct elements, majority, etc. have been simple problems in the ubiquitous RAM
model as the coloring problem we solve here.

2 Preliminaries

2.1 Notations and the streaming models
Notations. We denote the set {1, . . . , n} by [n]. G(V (G), E(G)) denotes a graph where
V (G) and E(G) denote the set of vertices and edges of G, respectively; |V | = n and |E| = m.
We will write only V and E for vertices and edges when the graph is clear from the context.
We denote EM ⊆ E as the set of monochromatic edges. The set of neighbors of a vertex
u ∈ V (G) is denoted by NG(u) and the degree of a vertex u ∈ V (G) is denoted by dG(u).
Let NG(u) = N−G (u) ] N+

G (u) where N−G (u) and N+
G (u) denote the set of neighbors of u

that have been exposed already and are yet to be exposed, respectively in the stream. Also,
dG(u) = d−G(u)+d+

G(u) where d−G(u) =
∣∣N−G (u)

∣∣ and d+
G(u) =

∣∣N+
G (u)

∣∣. For a monochromatic
edge (u, v) ∈ EM , we refer to u and v as monochromatic neighbors of each other. We define
dM (u) to be the number of monochromatic neighbors of u and hence, the monochromatic
degree of u.

Let E[X] denote the expectation of the random variable X. For an event E , E denotes
the complement of E . P(E) denotes the probability of an event E . The statement “event E
occurs with high probability” is equivalent to P(E) ≥ 1− 1

nc , where c is an absolute constant.
The statement “a is a 1 ± ε multiplicative approximation of b” means |b − a| ≤ ε · b. For
x ∈ R, exp(x) denotes the standard exponential function, that is, ex. By polylogarithmic,
we mean O

(
(logn/ε)O(1)

)
. The notation Õ(·) hides a polylogarithmic term in O(·).

1 Õ(·) hides a polylogarithmic factor.
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Streaming models for graphs. As alluded to earlier, the crux of the problem depends on
the way the coloring function f is revealed in the stream. The details follow.
(i) Vertex Arrival (VA): The vertices of V are exposed in an arbitrary order. After

a vertex v ∈ V is exposed, all the edges between v and pre-exposed neighbors of v,
are revealed. This set of edges are revealed one by one in an arbitrary order. Along
with the vertex v, only the color f(v) is exposed, and not the colors of any pre-exposed
vertices. So, we can check the monochromaticity of an edge (v, u) only if u and f(u)
are explicitly stored.

(ii) Vertex Arrival with Degree Oracle (VAdeg) [23, 7]: This model works same
as the VA model in terms of exposure of the vertex v and the coloring on it; but we
are allowed to know the degree dG(v) of the currently exposed vertex v from a degree
oracle on G.

(iii) Vertex Arrival in Random Order (VArand) [25, 26]: This model works same as
the VA model but the vertex sequence revealed is equally likely to be any one of the
permutations of the vertices.

(iv) Edge Arrival (EA): The stream consists of edges of G in an arbitrary order. As the
edge e is revealed, so are the colors on its endpoints. Thus the conflicts can be easily
checked.

(v) Adjacency List (AL): The vertices of V are exposed in an arbitrary order. When
a vertex v is exposed, all the edges that are incident to v, are revealed one by one in
an arbitrary order. Note that in this model each edge is exposed twice, once for each
exposure of an incident vertex. As in the VA model, here also only v’s color f(v) is
exposed.

As the conflicts can be checked easily in the EA model in O(1) space, a logarithmic
counter is enough to count the number of monochromatic edges. The AL model works
almost the same as the VAdeg model. So, we focus on the three models – VA, VAdeg and
VArand in this work and show that they have a clear separation in their power vis-a-vis the
problem we solve. A crucial takeaway from our work is that the random order assumption
on exposure of vertices has huge improvements in space complexity.

2.2 Problem definitions, results and the ideas

Problem definition. Let the vertices of G be colored with a function f : V (G)→ [C], for
C ∈ N. An edge (u, v) ∈ E(G) is said to be monochromatic or conflicting with respect to f if
f(u) = f(v). A coloring function f is called valid if no edge in E(G) is monochromatic with
respect to f . For a given parameter ε ∈ (0, 1), f is said to be ε-far from being valid if at least
ε · |E(G)| edges are monochromatic with respect to f . We study the following problems.

I Problem 2.1 (Conflict Estimation aka Conflict-Est). A graph G = (V,E) and a
coloring function f : V (G)→ [C] are streaming inputs. Given an input parameter ε > 0, the
objective is to estimate the number of monochromatic edges in G within a (1± ε)-factor.

I Problem 2.2 (Conflict Separation aka Conflict-Sep). A graph G = (V,E) and a
coloring function f : V (G)→ [C] are streaming inputs. Given an input parameter ε > 0, the
objective is to distinguish if the coloring function f is valid or is ε-far from being valid.

ITCS 2021



15:4 Even the Easiest(?) Graph Coloring Problem Is Not Easy in Streaming!

I Remark 2.3. Problem 2.1 is our main focus, but we will mention a result on Problem 2.2
in Section 5. Notice that the problem Conflict-Est is at least as hard as Conflict-Sep.

The results and the ideas involved. All our upper and lower bounds on space are for
one-pass streaming algorithms. Table 1 states our results for the Conflict-Est problem,
the main problem we solve in this paper, across different variants of the VA model. The main
thrust of our work is on estimating monochromatic edges under random order stream. For
random order stream, we present both upper and lower bounds in Sections 3 and 4. There is
a gap between the upper and lower bounds in the VArand model, though we have a strong
hunch that our upper bound is tight. Apart from the above, using a structural result on
graphs, we show in Section 5 that the Conflict-Sep problem admits an easy algorithm in
the VArand model. To give a complete picture across different variants of VA models, we
show matching upper and lower bounds for constant ε > 0 in the VA and VAdeg models
in [9]2.

Table 1 This table shows our results on Conflict-Est on a graphG(V,E) across different Vertex
Arrival models. Here, T > 0 denotes the promised lower bound on the number of monochromatic
edges. This paper discusses the results mentioned in the middle column corresponding to VArand.
The other results are discussed in the full version of the paper [9].

Model VA VArand VAdeg

Upper Bound Õ
(

min{|V | , |V |
2

T
}
)

Õ
(
|V |√

T

)
Õ
(
min{|V | , |E|

T
}
)

(Thm. 3.1 in [9]) (Sec. 3, Thm. 3.1) (Thm. 3.2 in [9])

Lower Bound Ω
(

min{|V | , |V |
2

T
}
)

Ω
( |V |

T 2

)
Ω
(
min{|V | , |E|

T
}
)

(Thm. E.1 in [9]) (Sec. 4, Thm. 4.1) (Thm. E.2 in [9])

The promise T on the number of monochromatic edges is a very standard assumption for
estimating substructures in the world of graph streaming algorithm [17, 19, 18, 23, 5]. 3

We now briefly mention the salient ideas involved. For the simpler variant of Conflict-
Est in VA model, we first check if |V | ≥ T . If yes, we store all the vertices and their colors in
the stream to determine the exact value of the number of monochromatic edges. Otherwise, we
sample each pair of vertices {u, v} in

(
V
2
) 4, with probability Õ (1/T ) independently 5 before

the stream starts. When the stream comes, we compute the number of monochromatic edges
from this sample. The details are in Section 3 of [9]. Though the algorithm looks extremely
simple, it matches the lower bound result for Conflict-Est in VA model, presented in
Appendix E of [9]. The VAdeg model with its added power of a degree oracle, allows us to
know dG(u) for a vertex u and as edges to pre-exposed vertices are revealed, we also know
d−G(u) and d+

G(u). This allows us to use sampling to store vertices and to use a technique
which we call sampling into the future where indices of random neighbors, out of d+

G(u)
neighbors, are selected for future checking. The upper bound result for Conflict-Est in
VAdeg model, presented in Section 3 of [9], is tight as we also prove a matching lower bound
in Appendix E of [9].

2 The reference [9] is the full version of this submission.
3 Here we have cited a few. However, there are huge amount of relevant literature.
4
(

V
2

)
denotes the set of all size 2 subsets of V (G).

5 Note that we might sample some pairs that are not forming edges in the graph.
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The algorithm for Conflict-Est in VArand model is the mainstay of our work
and is presented in Section 3. We redefine the degree in terms of the number of
monochromatic neighbors a vertex has in the randomly sampled set. Here, we estimate the
high monochromatic degree and low monochromatic degree vertices separately by sampling a
random subset of vertices. While the monochromatic degree for the high degree vertices can
be extrapolated from the sample, handling low monochromatic degree vertices individually
in the same way does not work. To get around, we group such vertices having similar
monochromatic degress and treat them as an entity. We also provide a lower bound for the
VArand model, in Section 4, using a reduction from multi-party set disjointness; though
there is a gap in terms of the exponent in T .

The highlights of our work are as follows:

We show that possibly the easiest graph coloring problem is worth studying over streams.

For researchers working in streaming, the gold standard is the EA model as most problems
are non-trivial in this model. We point out a problem that is harder to solve in the VA
model as compared to the EA model.

We show that the three VA related models have a clear separation in their space
complexities vis-a-vis the problem we solve. We could exploit the random order of the
arrival of the vertices to get substantial improvements in space complexity.

We could obtain lower bounds for all the three models and the lower bounds are matching
for the VA and VAdeg models.

2.3 Prior works on graph coloring in semi-streaming model.

Bera and Ghosh [8] commenced the study of vertex coloring in the semi-streaming model.
They devise a randomized one pass streaming algorithm that finds a (1 + ε)∆ vertex coloring
in Õ(n) space. Assadi et al. [3] find a proper vertex coloring using ∆ + 1 colors via various
classes of sublinear algorithms. Their state of the art contributions can be attributed to a
key result called the palette-sparsification theorem which states that for an n-vertex graph
with maximum degree ∆, if O(logn) colors are sampled independently and uniformly at
random for each vertex from a list of ∆ + 1 colors, then with a high probability a proper
∆ + 1 coloring exists for the graph. They design a randomized one-pass dynamic streaming
algorithm for the ∆ + 1 coloring using Õ(n) space. The algorithm takes post-processing
Õ(n
√

∆) time and assumes a prior knowledge of ∆. Alon and Assadi [2] improve the palette
sparsification result of [3]. They consider situations where the number of colors available
is both more than and less than ∆ + 1 colors. They show that sampling Oε(

√
logn) colors

per vertex is sufficient and necessary for a (1 + ε)∆ coloring. Bera et al. [6] give a new
graph coloring algorithm in the semi-streaming model where the number of colors used is
parameterized by the degeneracy κ. The key idea is a low degeneracy partition, also employed
in [8]. The numbers of colors used to properly color the graph is κ+ o(κ) and post-processing
time of the algorithm is improved to Õ(n), without any prior knowledge about κ. Behnezhad
et al. [4] were the first to give one-pass W-streaming algorithms (streaming algorithms where
outputs are produced in a streaming fashion as opposed to outputs given finally at the end)
for edge coloring both when the edges arrive in a random order or in an adversarial fashion.
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3 Conflict-Est in VArand model

In this Section, we show that the power of randomness can be used to design a better solution
for the Conflict-Est problem in the VArand model. The Conflict-Est problem is
the main highlight of our work. We feel that the crucial use of randomness in the input
that is used to estimate a substructure (here, monochromatic edges) in a graph, will be of
independent interest.

In this variant, we are given an ε ∈ (0, 1) and a promised lower bound T on |EM |,
the number of monochromatic edges in G, as input and our objective is to determine a
(1± ε)-approximation to |EM |.

I Theorem 3.1. Given any graph G = (V,E) and a coloring function f : V (G) → [C] as
input in the stream, the Conflict-Est problem in the VArand model can be solved with
high probability in Õ

(
|V |√
T

)
space, where T is a lower bound on the number of monochromatic

edges in the graph.

The proof idea
A random sample comes for free – pick the first few vertices

Let v1, . . . , vn be the random ordering in which the vertices of V are revealed. Let R be a
random subset of Γ = Θ̃

(
n√
T

)
many vertices of G sampled without replacement 6. As we

are dealing with a random order stream, consider the first Γ vertices in the stream; they can
be treated as R, the random sample. We start by storing all the vertices in R as well as their
colors. Observe that if the monochromatic degree of any vertex vi is large (say roughly more
than

√
T ), then it can be well approximated by looking at the number of monochromatic

neighbors that vi has in R. As a vertex vi streams past, there is no way we can figure out its
monochromatic degree, unless we store its monochromatic neighbors that appear before it in
the stream; if we could, we were done. Our only savior is the stored random subset R.

Classifying the vertices of the random sample R based on its monochromatic degree

Our algorithm proceeds by figuring out the influence of the color of vi on the monochromatic
degrees of vertices in R. To estimate this, let κvi denote the number of monochromatic
neighbors that vi has in R. We set a threshold τ = |R|

n

√
εT
8t , where t = dlog1+ ε

10
ne. The

significance of t will be clear from the discussion below. Any vertex vi will be classified as a
high-mR or low-mR degree vertex depending on its monochromatic degree within R, i.e., if
κvi
≥ τ , then vi is a high-mR vertex, else it is a low-mR vertex, respectively. (We use the

subscripts mR to stress the fact that the monochromatic degrees are induced by the set R.)
Let H and L be the partition of V into the set of high-mR and low-mR degree vertices in G.
Let HR and LR denote the set of high-mR and low-mR degree vertices in R. Notice that,
because of the definition of high-mR and low-mR degree vertices, not only the sets HR, LR
are subsets of R, but they are determined by the vertices of R only.

Let mh and m` denote the sum of the monochromatic degrees of all the high-mR

degree vertices and low-mR degree vertices in G, respectively. So, mh =
∑
v∈H dM (v) and

m` =
∑
v∈L dM (v). Note that m̂ = |EM | = 1

2
∑
v∈V dM (v) = 1

2 (mh +m`). We will describe
how to approximate mh and m` separately. The formal algorithm is described in Algorithm 1

6 Θ̃(·) hides a polynomial factor of logn and 1
ε in the upper bound.
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as Random-Order-Est(ε, T ) (in Appendix D) that basically executes steps to approximate
mh and m` in parallel.

To approximate mh, the random sample R comes to rescue

We can find m̂h, that is, a
(
1± ε

10
)
approximation of mh as described below. For each vertex

vi ∈ R and each monochromatic edge (u, vi), u ∈ R, we see in the stream, we increase the
value of κu for u and κvi

for vi. After all the vertices in R are revealed, we can determine
HR by checking whether κvi

≥ τ for each vi ∈ R. For each vertex vi ∈ HR, we set its
approximate monochromatic degree d̂vi to be n

|R|κvi . We initialize the estimated sum of the
monochromatic degree of high degree vertices as m̂h =

∑
vi∈HR

d̂vi
. For each vertex vi /∈ R

in the stream, we can determine κvi , as we have stored all the vertices in R along with their
colors, and hence we can also determine whether vi is a high-mR degree vertex in G. If vi /∈ R
is a high-mR degree vertex, we determine d̂vi

= n
|R|κvi

and update m̂h by m̂h + d̂vi
. Observe

that, at the end, m̂h is
∑
vi∈H d̂vi . Recall that H is the set of all high-mR degree vertices in

G. For each vi ∈ H, we will show, as in Claim 3.3, that d̂vi
is a

(
1± ε

10
)
-approximation to

dM (vi) with high probability. This implies that(
1− ε

10

)
mh ≤ m̂h ≤

(
1 + ε

10

)
mh (1)

To approximate m`, group the vertices in L based on similar monochromatic degree

Recall that m` =
∑
vi∈L dM (vi). Unlike the high-mR degree vertices, it is not possible to

approximate the monochromatic degree of vi ∈ L from κvi . To cope up with this problem,
we partition the vertices of L into t buckets B1, . . . , Bt such that all the vertices present
in a bucket have similar monochromatic degrees, where t = dlog1+ ε

10
ne. The bucket Bj is

defined as follows: Bj = {vi ∈ L :
(
1 + ε

10
)j−1 ≤ dM (vi) <

(
1 + ε

10
)j}.

Note that our algorithm will not find the buckets explicitly. It will be used for the
analysis only. Observe that

∑
j∈[t] |Bj |

(
1 + ε

10
)j−1 ≤ m` <

∑
j∈[t] |Bj |

(
1 + ε

10
)j . We can

surely approximate m` by approximating |Bj |s suitably. We estimate |Bj |s as follows. After
the stream of the vertices in R has gone past, we have the set of low-mR degree vertices
LR in R and d̂vi = κvi for each vi ∈ LR. For each vi /∈ R in the stream, we determine
the monochromatic neighbors of vi in LR. It is possible as we have stored all the vertices
in R and their colors. For each monochromatic neighbor vi′ ∈ LR of vi, we increase the
value of d̂vi′ of vi′ . Observe that, at the end of the stream, d̂vi′ = dM (vi′) for each vi′ ∈ LR,
i.e., we can accurately estimate the monochromatic degree of each vi′ ∈ LR. So, we can
determine the bucket where each vertex in LR belongs. Let Aj (= LR∩Bj) be the bucket Bj
projected onto LR in the random sample; note that as Bj ⊆ L and LR = L∩R, Aj = R∩Bj
also. We determine m̂` = n

|R|
∑
j∈[t] |Aj |

(
1 + ε

10
)j . We can show that n

|R| |Aj | is a
(
1 + ε

10
)
-

approximation of |Bj |, with high probability, if |Bj | ≥
√
εT

10t . Also, we can show that, if
|Bj | <

√
εT

10t , then |Aj | ≤
|R|
n

√
εT
8t with high probability. Now using the fact that we consider

bucketing of only low-mR degree vertices (LR), we can show that

(
1− ε

10

)(
m` −

εT

63t

)
≤ m̂` ≤

(
1 + ε

10

)2
(
m` + εT

56t

)
. (2)

Note that ε ∈ (0, 1) and t = dlog1+ ε
10
ne. Assuming T ≥ 63t2, Equations 1 and 2 imply

that m̂ = 1
2 (m̂h + m̂`) is a (1 ± ε)-approximation to |EM |. If T < 63t2, then note that
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n = Õ
(

n√
T

)
. So, in that case, we store all the vertices along with their colors and compute

the exact value of |EM |.

Proof of correctness
The correctness of the algorithm follows trivially if T < 63t2. So, let us assume that T ≥ 63t2.
In the VArand model, we consider the first Θ̃

(
n√
T

)
vertices as the random sample R

without replacement. Using the Chernoff bound for sampling without replacement (See
Lemma A.2 in Appendix A), we can have the following lemma (The proof is in Appendix B),
which will be useful for the correctness proof of Algorithm 1 (Random-Order-Est(ε, T ))
in case of T ≥ 63t2.

I Lemma 3.2.
(i) For each j ∈ [t] with |Bj | ≥

√
εT

10t , P
(∣∣∣|Bj ∩R| − |R||Bj |

n

∣∣∣ ≥ ε
10
|R||Bj |
n

)
≤ 1

n10 .

(ii) For each j ∈ [t] with |Bj | <
√
εT

10t , P
(
|Bj ∩R| ≥ |R|n

√
εT
8t

)
≤ 1

n10 .

(iii) For each vertex vi with dM (vi) ≥
√
εT

10t , P
(∣∣∣κvi

− |R|dM (vi)
n

∣∣∣ ≥ ε
10
|R|dM (vi)

n

)
≤ 1

n10 .

(iv) For each vertex vi with dM (vi) <
√
εT

10t , P
(
κvi
≥ |R|n

√
εT
8t

)
≤ 1

n10 .

The correctness proof of the algorithm is divided into the following two claims.

B Claim 3.3.
(
1− ε

10
)
mh ≤ m̂h ≤

(
1 + ε

10
)
mh with probability at least 1− 1

n9 .

B Claim 3.4.
(
1− ε

10
) (
m` − εT

63t
)
≤ m̂` ≤

(
1 + ε

10
)2 (

m` + εT
56t
)
with probability at least

1− 1
n7 .

Assuming the above two claims hold and taking ε ∈ (0, 1), t = dlog1+ ε
10
ne and T ≥ 63t2,

observe that m̂ = 1
2 (m̂h + m̂`) is a (1 ± ε) approximation of |EM | = mh + m` with high

probability. Thus, it remains to prove Claims 3.3 and 3.4.

Proof of Claim 3.3. Note that mh =
∑

vi:κvi
≥ |R|

n

√
εT

8t

dM (vi) and m̂h =
∑

vi:κvi
≥ |R|

n

√
εT

8t

d̂vi
.

From Lemma 3.2 (iv) and (iii), κvi
≥ |R|n

√
εT
8t implies that d̂vi

is an
(
1± ε

10
)
approximation

to dM (vi) with probability at least 1− 2
n10 . Hence, we have

(
1− ε

10
)
mh ≤ m̂h ≤

(
1 + ε

10
)
mh

with probability at least 1− 1
n9 . C

Proof of Claim 3.4. Note that m` =
∑
vi∈L dM (vi) =

∑
vi:κvi

<
|R|
n

√
εT

8t

dM (vi) and

m̂` = n
|R|

∑
j∈[t]
|Aj |

(
1 + ε

10
)j . Recall that the vertices in L are partitioned into t buckets as

follows:
Bj = {vi ∈ L :

(
1 + ε

10
)j−1 ≤ dM (vi) <

(
1 + ε

10
)j}, where j ∈ [t]. By Lemma 3.2 (iv),

κvi
< |R|

n

√
εT
8t implies that dM (vi) ≤

√
εT
7t with probability 1− 1

n10 . So, we have the following
observation.

I Observation 3.5. Let j ∈ [t] be such that |Aj | 6= 0 (|Bj | 6= 0). Then, with probability at
least 1− 1

n10 , the monochromatic degree of each vertex in Aj as well as Bj is at most
√
εT
7t ,

that is,
(
1 + ε

10
)j ≤ √εT7t .
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To upper and lower bound m̂` in terms of m`, we upper and lower bound m` in terms of
|Bj |’s as follows; for the upper bound, we break the sum into two parts corresponding to
large and small sized buckets:∑

j∈[t]

|Bj |
(

1 + ε

10

)j−1
≤ m` <

∑
j∈[t]

|Bj |
(

1 + ε

10

)j

∑
j∈[t]

|Bj |
(

1 + ε

10

)j−1
≤ m` <

∑
j∈[t]:|Bj |≥

√
εT

9t

|Bj |
(

1 + ε

10

)j

+
∑

j∈[t]:|Bj |<
√

εT
9t

|Bj |
(

1 + ε

10

)j

By Observation 3.5, we bound m` in terms of |Bj |’s with probability 1− 1
n9 .∑

j∈[t]

|Bj |
(

1 + ε

10

)j−1
≤ m` <

∑
j∈[t]:|Bj |≥

√
εT

9t

|Bj |
(

1 + ε

10

)j
+ t ·

√
εT

9t

√
εT

7t

This implies the following Observation:

I Observation 3.6.
∑
j∈[t]
|Bj |

(
1 + ε

10
)j−1 ≤ m` <

∑
j∈[t]:|Bj |≥

√
εT

9t

|Bj |
(
1 + ε

10
)j + εT

63t holds

with probability at least 1− 1
n9 .

Now, we have all the ingredients to show that m̂` is a (1±ε) approximation ofm`. To get to
m̂`, we need to focus on low-mR vertices of R, i.e., Aj ’s. Breaking m̂` = n

|R|
∑
j∈[t]
|Aj |

(
1 + ε

10
)j

depending on small and large values of |Aj |’s (recall Aj = LR ∩Bj = R ∩Bj), we have

m̂` = n

|R|

 ∑
j∈[t]:|Aj |≥ |R|

n

√
εT

8t

|Aj |
(

1 + ε

10

)j
+

∑
j∈[t]:|Aj |< |R|

n

√
εT

8t

|Aj |
(

1 + ε

10

)j (3)

Note that Aj = Bj ∩ R. By Lemma 3.2 (ii), |Aj | ≥ |R|
n

√
εT
8t implies |Bj | ≥

√
εT

10t with
probability at least 1 − 1

n10 . Also, applying Lemma 3.2 (i), |Bj | ≥
√
εT

10t implies |Aj | is an(
1± ε

10
)
-approximation to |R||Bj |

n with probability at least 1− 1
n10 . So, we have the following

observation.

I Observation 3.7. Let j ∈ [t] be such that |Aj | ≥ |R|
n

√
εT
8t . Then |Aj | is an

(
1± ε

10
)
-

approximation to |R||Bj |
n with probability at least 1 − 2

n10 , that is, n
|R| |Aj | is an

(
1± ε

10
)
-

approximation to |Bj | with probability at least 1− 2
n10

By the above observation along with Equation 3, we have the following upper bound on
m̂` with probability at least 1− 1

n9 .

m̂` ≤
∑

j∈[t]:|Aj |≥ |R|
n

√
εT

8t

(
1 + ε

10

)
|Bj |

(
1 + ε

10

)j

+
∑

j∈[t]:|Aj |< |R|
n

√
εT

8t

n

|R| |Aj |
(

1 + ε

10

)j

≤
(

1 + ε

10

)2

 ∑
j∈[t]:|Aj |≥ |R|

n

√
εT

8t

|Bj |
(

1 + ε

10

)j−1
+

∑
j∈[t]:|Aj |< |R|

n

√
εT

8t

√
εT

8t

(
1 + ε

10

)j−2


Now by Observations 3.6 and 3.5, we have the following with probability at least 1− 1

n8 .

m̂` ≤
(

1 + ε

10

)2
(
m` + t ·

√
εT

8t

√
εT

7t

)

=
(

1 + ε

10

)2
(
m` + εT

56t

)
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Now, we will lower bound m̂`. From Equation 3, we have

m̂` ≥ n

|R|
∑

j∈[t]:|Aj |≥ |R|
n

√
εT

8t

|Aj |
(

1 + ε

10

)j
By Observation 3.7, |Aj | ≥ |R|

n

√
εT
8t implies n

|R| |Aj | is an
(
1± ε

10
)
-approximation to |Bj |

with probability at least 1− 2
n10 . So, the following lower bound on m̂` holds with probability

at least 1− 1
n9 .

m̂` ≥
(

1− ε

10

) ∑
j∈[t]:|Aj |≥ |R|

n

√
εT

8t

|Bj |
(

1 + ε

10

)j
By Lemma 3.2 (i), if |Bj | ≥

√
εT
9t , then |Aj | ≥

√
εT
8t with probability at least 1− 1

n10 . Hence,
we have the following lower bound on m̂` with probability at least 1− 1

n8 .

m̂` ≥
(

1− ε

10

) ∑
j∈[t]:|Bj |≥

√
εT

9t

|Bj |
(

1 + ε

10

)j
Now by Observation 3.6, we have the following with probability at least 1− 1

n7 .

m̂` ≥
(

1− ε

10

)(
m` −

εT

63t

)
. C

4 Lower bound for Conflict-Est in VArand model

In this Section, we show a lower bound of Ω
(
n
T 2

)
for Conflict-Est in Vertex Arrival

in Random Order via a reduction from a variation of Multiparty Set Disjointness
problem called DisjointnessR(t, n, p), played among p players: Consider a matrix of order
t×n having t (rows) vectors M1, . . . ,Mt ∈ {0, 1}n such that each entry of matrix M is given
to one of the p players chosen uniformly at random. The objective is to determine whether
there exists a column where all the entries are 1s. If t ≥ 2 and p = Ω(t2), Chakrabarti
et al. showed that any randomized protocol requires Ω

(
n
t

)
bits of communication [10].

They showed that the lower bound holds under a promise called the unique intersection
promise which states that there exists at most a single column where all the entries are
1s and every other column of the matrix has Hamming weight either 0 or 1. Moreover,
the lower bound holds even if all the p players know the random partition of the entries of
matrix M .

I Theorem 4.1. Let n, T ∈ N be such that 4 ≤ T ≤
(
n
2
)
. Any constant pass streaming

algorithm that takes the vertices and edges of a graph G(V,E) (with |V | = Θ(n) and
|E| = Θ(m)) and a coloring function f : V → [C] in the VArand model, and determines
whether the monochromatic edges in G is 0 or Ω(T ) with probability 2/3, requires Ω

(
n
T 2

)
bits of space.

Proof. Without loss of generality, assume that
√
T ∈ N. Consider the

DisjointnessR
(√

T , n√
T
, p
)
problem with Unique Intersection promise when all of the

p players know the random partition of the entries of the relevant matrix M . Note that M is
of order [

√
T ]×

[
n√
T

]
and p = AT for some suitable constant A ∈ N. Also, consider a graph G,

with V (G) = {vij : i ∈
[√

T
]
, j ∈

[
n√
T

]
}, having n√

T
many vertex disjoint cliques such that

{v1j , . . . , v√Tj} forms a clique for each j ∈ [n], i.e., a column ofM forms a clique. Also, notice
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that each clique has Θ(T ) edges. Let us assume that there is an r-pass streaming algorithm S,
with space complexity s bits, that solves Conflict-Est for the above graphG in the VArand
model. Now, we give a protocol A for DisjointnessR

(√
T , n√

T
, p
)
with communication cost

O(rsp). Using the fact that the lower bound of Disjointness
(√

T , n√
T
, p
)
is Ω

(
n/
√
T√
T

)
along with the fact that p = AT and r is a constant, we get s = Ω

(
n
T 2

)
.

Protocol A for DisjointnessR

(√
T , n√

T
, p
)

Let P1, . . . , Pp denote the set of p players. For k ∈ [p], Vk = {vij : Mij is with Pk}, where
Mij denotes the element present in the i-th row and j-th column of matrix M . Note that
there is a one-to-one correspondence between the entries of M and the vertices in V (G).
Furthermore, there is a one-to-one correspondence between the columns of matrix M and the
cliques in graph G. We assume that all the p players know the graph structure completely
as well as both the one-to-one correspondences. The protocol proceeds as follows: for each
k ∈ [p], player Pk determines a random permutation πk of the vertices in Vk. Also, for each
k ∈ [p], player Pk determines the colors of the vertices in Vk by the following rule: if Mij = 1,
then color vertex vij with color C∗. Otherwise, for Mij = 0, color vertex vij with color Ci.
Player P1 initiates the streaming algorithm and it goes over r-rounds.

Rounds 1 to r − 1: For k ∈ [p], each player resumes the streaming algorithm by exposing
the vertices in Vk, along with their colors, in the order dictated by πk. Also, Pk adds the
respective edges to previously exposed vertices when the current vertex is exposed to
satisfy the basic requirement of VA model. This is possible because all players know the
graph G and the random partition of the entries of matrix M among p players. After
exposing all the vertices in Vk, as described, Pk sends the current memory state to player
Pk+1. Assume that P1 = Pp+1.

Round r: All the players behave similarly as in the previous rounds, except that, the player
Pp does not send the current memory state to P1. Rather, Pp decides whether there is a
column in M with all 1s if the streaming algorithm S decides that there are Ω(T ) many
monochromatic edges in G. Otherwise, if S decides that there is no monochromatic edge
in G, then Pp decides that all the columns of M have weight either 0 or 1. Then Pp sends
the output to all other players.

The vertices of graph G are indeed exposed randomly to the streaming algorithm. It is
because the entries of matrix M are randomly partitioned among the players and each player
also generates a random permutation of the vertices corresponding to the entries of matrix M
available to them. From the description of the protocol A, the memory state of the streaming
algorithm (of space complexity s) is communicated (r − 1)p+ (p− 1) times and p− 1 bits is
communicated at the end by player Pp to broadcast the output. Hence, the communication
cost of the protocol A is at most O(rsp).

Now we are left to prove the correctness of the protocol A. If there is a column in M
with all 1s, then all the vertices corresponding to entries of that column are colored with
color C∗. Recall that there is a one-to-one correspondence between the columns in matrix
M and cliques in the graph G. So, all the vertices of the clique, corresponding to the column
having all 1s, are colored with the color C∗. As the size of each clique in the graph G is

√
T ,

there are at most Ω(T ) monochromatic edges. To prove the converse, assume that there
is no column in the matrix M having all 1s. By Unique Intersection Promise, all the
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columns have hamming weight at most 1. We will argue that there is no monochromatic
edge in G. Consider an edge e in G. By the structure of G, the two vertices of e must be
in the same clique, say the j-th clique, that is, let e = {vi1j , vi2j}. By the coloring scheme
used by the protocols, vi1j and vi2j are colored according to the values of Mi1j and Mi2j ,
respectively. Note that both Mi1j and Mi2j belong to j-th column. As the hamming weight
of every column is at most 1, there are three possibilities:

(i) Mi1j = Mi2j = 0, that is, vi1j and vi2j are colored with color Ci1 and Ci2 , respectively;
(ii) Mi1j = 0 and Mi2j = 1, that is, vi1j and vi2j are colored with color Ci1 and C∗,

respectively;
(iii) Mi1j = 1 and Mi2j = 0, that is, vi1j and vi2j are colored with color C∗ and Ci2 ,

respectively.

In any case, the edge e = {vi1j , vi2j} is not monochromatic. This establishes the
correctness of protocol A for DisjointnessR

(√
T , n√

T
, p
)
. J

5 Conflict-Sep in VArand model

Using a structural property of the graph, we design a simple algorithm to solve the Conflict-
Sep problem in the VArand model.

I Theorem 5.1. Given any graph G = (V,E) and a coloring function f : V (G)→ [C] and a
parameter ε > 0 as input, there exists an algorithm that solves the Conflict-Sep problem

in the VArand streaming model using space Õ
(
|V |√
ε|E|

)
with high probability.

Let G′ denote the subgraph of G consisting of only monochromatic edges in G. The
lemma stated below guarantees that either there exists a large matching of size at least

√
εm

in G′ or there exists a vertex of degree at least
√
εm in G′.

I Lemma 5.2 ([16]). Let G = (V,E) be a graph and f : V (G)→ [C] be a coloring function
such that at least ε fraction of the edges of E(G) are known to be monochromatic. Then,
either there is a matching of size at least

√
εm or there exists a vertex of degree at least

√
εm

in the subgraph G′ defined on the monochromatic edges of G.

The algorithm is as simple as it can get. We sample independently and uniformly at
random the vertices in stream with probability p = min{1, 10 logn√

m
} 7 and store these vertices

along with their colors. Let S ⊆ V be the set of sampled vertices. When a vertex appears in
a stream, we check if it forms a monochromatic edge with one of the stored vertices in S.
At the end of the stream, the algorithm declares the graph to be properly colored (valid) if
it can not find a monochromatic edge, else it declares the instance to be ε-far from being
monochromatic.

We show that Theorem 5.1 follows easily using Lemma 5.2.

7 For simplicity of presentation, we assumed that, the number of edges m in graph G is known before the
stream starts. However, this assumption can be removed by a simple tweak of starting with a value of m
and increasing it in stages and adjusting the random sample accordingly. This is common in streaming
algorithms.
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Proof. We consider the following two cases.
Case 1 – There exists a matching of size at least

√
εm: Note that all these matched edges

are monochromatic. Let (u, v) denote an arbitrary matched edge where u appears in
the stream before v. Now, the edge (u, v) will be detected as monochromatic if vertex u
has been sampled by the algorithm. The probability that vertex u is sampled is 10 logn√

m
.

Since, there are
√
εm matched monochromatic edges, the algorithm will detect at least

one of these matched monochromatic edges with probability at least (1− 1/n2).
Case 2 – There exists a vertex of degree at least

√
εm: In this case most of the

monochromatic edges may be incident on very few high degree vertices. To detect
these edges, we want to store either the high degree vertices or one of its neighbours.
But, if these high degree vertices appear at the beginning of the stream and we fail to
sample them, then we may not detect a monochromatic edge. This is where the random
order of vertices arriving in the stream comes into play. Now, assuming random order of
vertices in the stream, at least 1

5
√
εm neighbors of v should appear before v in the stream

with probability at least (1− e− 9
50
√
εm) . Since we sample every vertex with probability

10 logn√
m

, with high probability at least (1− 1/n2) one of its neighbors will be stored. J

6 Conclusion and Discussion

In this paper, we introduced a graph coloring problem to streaming setting with a different
flavor – the coloring function streams along with the graph. We study the problem of
Conflict-Est (estimating the number of monochromatic edges) and Conflict-Sep
(detecting a separation between the number of valid edges) in VA, VAdeg, and VArand
models. Our algorithms for VA and VAdeg are tight upto polylogarithmic factors. However,
a matching lower bound on the space complexity for VArand model is still elusive. There
is a gap between our upper and lower bound results for VArand model in terms of the
exponent in T . Our hunch is that the upper bound is tight. Specifically, we obtained an
upper bound of Õ

(
n√
T

)
) and the lower bound is Ω

(
n
T 2

)
. Here we would like to note that

the lower bound also holds in AL and VAdeg model when the vertices are exposed in a
random order. However, we feel that our algorithm for Conflict-Est in VArand model is
tight upto polylogarithmic factors. We leave this problem open.

We feel the edge coloring counterpart of the vertex coloring problem proposed in the paper
will be worthwhile to study. Let the edges of G be colored with a function f : E(G)→ [C],
for C ∈ N. A vertex u ∈ V (G) is said to be a validly colored vertex if no two edges incident
on u have the same color. An edge coloring is valid if all vertices are validly colored. Consider
the AL model for the edge coloring problem. As all edges incident on an exposed vertex
u are revealed in the stream, if we can solve a duplicate element finding problem on the
colors of the edges incident on u, then we are done! It seems at a first glance that all the
three models of VA, AL and EA will be difficult to handle for the edge coloring problem on
streams of graph and edge colors. It would be interesting to see if the edge coloring variant
of the problems we considered in this paper, admit efficient streaming algorithms. We plan
to look at this problem next.
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A Some probability results

I Lemma A.1 ([12], Chernoff-Hoeffding bound). Let X1, . . . , Xn be independent random
variables such that Xi ∈ [0, 1]. For X =

n∑
i=1

Xi and µ = E[X], the following holds for any

0 ≤ δ ≤ 1:

P(|X − µ| ≥ δµ) ≤ 2 exp
(
−µδ2

3

)
I Lemma A.2 ([24]). Let I = {1, . . . , N}, r ∈ [N ] be a given parameter. If we sample a
subset R without replacement, then the following holds for any J ⊂ I and δ ∈ (0, 1).
(i) P

(
|J ∩R| ≥ (1 + δ) |J | rN

)
≤ exp

(
− δ

2|J|r
3N

)
;

(ii) P
(
|J ∩R| ≤ (1− δ) |J | rN

)
≤ exp

(
− δ

2|J|r
3N

)
;

(iii) Further more, we have the following if |J | ≤ k, then the following holds.

P
(
|J ∩R| ≥ (1 + δ)k r

N

)
≤ exp

(
−δ

2kr

3N

)

B Proof of Lemma 3.2

I Lemma B.1 (Restatement of Lemma 3.2).
(i) For each j ∈ [t] with |Bj | ≥

√
εT

10t , P
(∣∣∣|Bj ∩R| − |R||Bj |

n

∣∣∣ ≥ ε
10
|R||Bj |
n

)
≤ 1

n10 .

(ii) For each j ∈ [t] with |Bj | <
√
εT

10t , P
(
|Bj ∩R| ≥ |R|n

√
εT
8t

)
≤ 1

n10 .

(iii) For each vertex vi with dM (vi) ≥
√
εT

10t , P
(∣∣∣κvi −

|R|dM (vi)
n

∣∣∣ ≥ ε
10
|R|dM (vi)

n

)
≤ 1

n10 .

(iv) For each vertex vi with dM (vi) <
√
εT

10t , P
(
κvi
≥ |R|n

√
εT
8t

)
≤ 1

n10 .

Proof. Let us take N = n, r = |R| = Γ = Θ̃
(

n√
T

)
, I = {v1, . . . , vn} in Lemma A.2.

(i) Setting J = Bj and δ = ε
10 in Lemma A.2 (i) and (ii), we have

P
(∣∣∣∣|Bj ∩R| − |R| |Bj |n

∣∣∣∣ ≥ ε

10
|R| |Bj |

n

)
≤ 2 exp

(
− (ε/10)2 |Bj |Γ

3n

)
≤ 1
n10 .

The last inequality holds as |Bj | ≥
√
εT

10t , t = dlog1+ ε
10
ne = Θ

(
logn
ε

)
and Γ = Θ̃

(
n√
T

)
.

(ii) Set J = Bj , k =
√
εT

10t , δ = 1
4 in Lemma A.2 (iii). As |Bj | ≤

√
εT

10t , |J | ≤ k. Hence,

P

(
|Bj ∩R| ≥

|R|
n

√
εT

8t

)
≤ exp

(
− (1/4)2(

√
εT/10t)Γ

3n

)
≤ 1
n10 .

(iii) Setting J as the set of monochromatic neighbors of vi in R and δ = ε
10 in Lemma A.2

(i) and (ii), we get

P
(∣∣∣∣κvi

− |R| dM (vi)
n

∣∣∣∣ ≥ ε

10
|R| dM (vi)

n

)
≤ exp

(
− (ε/10)2|J |Γ

3n

)
≤ 1
n10 .

The last inequality holds as |J | = dM (vi) ≥
√
εT

10t , t = dlog1+ ε
10
ne = Θ

(
logn
ε

)
and

Γ = Θ̃
(

n√
T

)
.



A. Bhattacharya, A. Bishnu, G. Mishra, and A. Upasana 15:17

(iv) Set J as the set of monochromatic neighbors of vi in R, k =
√
εT

10t , δ = 1
4 in Lemma A.2

(iii). Note that |J | = dM (vi) ≤
√
εT

10t = k. Hence,

P

(
κvi
≥ |R|

n

√
εT

8t

)
≤ exp

(
− (1/4)2(

√
εT/10t)Γ

3n

)
≤ 1
n10 . J

C Communication Complexity

Communication Complexity [21] deals with finding the minimum amount of space that is
needed to communicate in order to compute a function when the input to the function is
distributed among multiple parties. For the purpose of our work, we are concerned with two
player games with one-way communication protocol. The players are traditionally called
Alice and Bob. Both of them have a n-bit input string and are unaware of each other’s input.
The goal is to minimize the bits Alice needs to communicate to Bob so that he can compute
a function on both their inputs. No assumption is made on their computational powers and
there is no restriction on the amount of time needed for computing the function.

C.1 INDEX problem in the communication complexity model

Lower bound results in the streaming model of computation are proved by reduction from a
problem in communication complexity model. We determine our lower bounds by considering
a reduction from the INDEX problem in the one-way communication protocol for two players
to the specific problem in graphs in the VA model. The INDEX problem is defined as follows:
There are two parties, Alice and Bob. Alice has a N -bit input string X ∈ {0, 1}N and Bob
has an integer j ∈ [N ]. Both are unaware of each other’s input and the goal is to compute
Xj , the jth bit of X. The lower bound for space complexity to solve the INDEX problem in
the one-way deterministic communication model is Ω(N).

I Lemma C.1 ([21]). The deterministic communication complexity of INDEX is Ω(N)

D Algorithm for Conflict-Est in VArand model

Γ = Θ̃
(

n√
T

)
; v1, . . . , vn be the random ordering in which vertices are revealed and

R = {v1, . . . , vΓ};

κvi
, i ∈ [n], denotes the number of monochromatic neighbors of vi in R,

d̂vi
, i ∈ [n], denotes the (estimated) monochromatic neighbors of vertices in G.

H denotes the set of high degree vertex in R, i.e., H = {vi : κvi
≥ |R|n

√
εT
8t } and L = V \H;

LR = L ∩R and HR = H ∩R;

The vertices in L are partitioned into t buckets as follows:
Bj = {vi ∈ L :

(
1 + ε

10
)j−1 ≤ dM (vi) <

(
1 + ε

10
)j}, where j ∈ [t].
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Algorithm 1 Random-Order-Est(ε, T ): Conflict-Est in VArand model.

Input: G = (V,E) and a coloring function f on V in the VArand model, parameters T
and ε.

Output: m̂, that is, a (1± ε) approximation to |EM |.
Set t = dlog1+ ε

10
ne. If T < 63t2, then store all the vertices in G along with their colors. At

the end, report the exact value of |EM |. Otherwise, we proceed through via three building
blocks described below and marked as (1),(2), (3) and (4). Refer to the notations described
above this pseudocode.

(1) Processing the vertices in R, the first Γ vertices, in the stream:
for ( each vertex vi ∈ R exposed in the stream) do
Store vi as well as its color f(vi).
For each edge (vi′ , vi) that arrives in the stream, increase the values of κvi′ and κvi .
end

(2) Computation of some parameters based on vertices in R and their colors:

for (each vi ∈ R with κvi ≥
|R|
n

√
εT

8t
) do

Add vi to HR, and set d̂vi = n
|R|κvi .

end

m̂h =
∑

vi∈H

d̂vi .

Let LR = R \HR.
for (each vi ∈ LR) do
Set d̂vi = κvi .
end

(3) Processing the vertices in V (G) \R in the stream:
for (each vertex vi /∈ R exposed in the stream) do
Determine the value of κvi . If κvi ≥

|R|
n

√
εT

8t
, find d̂vi = n

|R|κvi and add d̂vi to the
current m̂h.

Also, for each vi′ ∈ LR, increase the value of d̂vi′ if (vi′ , vi) is an edge.
end

(4) Post processing, after the stream ends, to return the output:

From the values of d̂vi for all vi ∈ LR, determine the buckets for each vertex in LR.
Also, for each j ∈ [t], find |Aj | = |LR ∩Bj |. Then determine

m̂` = n

|R|
∑
j∈[t]

|Aj |
(

1 + ε

10

)j

.

Report m̂ = m̂h+m̂`
2 as the final Output.
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E Algorithm for Conflict-Sep inVArand model

Algorithm 2 Algorithm: Conflict-Sep in Vertex Arrival in Random Order model

Input: G = (V,E) and a coloring function f on V in the VArand model
Output: The algorithm verifies if f is ε-far from valid or not
Let S be the set of stored vertices and their colors. Initially, S is empty. for i← 1
to |V | do

let u be the ith vertex of the stream
Store u and its color f(u) in S with probability O

(
logn√
m

)
for every vertex v in S do

Check if (v, u) is an edge and f(v) = f(u)
end

end
Output f is valid if none of the edges sampled are conflicting, else output that f is
ε -far from being valid.
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Abstract
The problem of scheduling tasks on p processors so that no task ever gets too far behind is often
described as a game with cups and water. In the p-processor cup game on n cups, there are two
players, a filler and an emptier, that take turns adding and removing water from a set of n cups. In
each turn, the filler adds p units of water to the cups, placing at most 1 unit of water in each cup,
and then the emptier selects p cups to remove up to 1 unit of water from. The emptier’s goal is to
minimize the backlog, which is the height of the fullest cup.

The p-processor cup game has been studied in many different settings, dating back to the late
1960’s. All of the past work shares one common assumption: that p is fixed. This paper initiates
the study of what happens when the number of available processors p varies over time, resulting in
what we call the variable-processor cup game.

Remarkably, the optimal bounds for the variable-processor cup game differ dramatically from
its classical counterpart. Whereas the p-processor cup has optimal backlog Θ(logn), the variable-
processor game has optimal backlog Θ(n). Moreover, there is an efficient filling strategy that yields
backlog Ω(n1−ε) in quasi-polynomial time against any deterministic emptying strategy.

We additionally show that straightforward uses of randomization cannot be used to help the
emptier. In particular, for any positive constant ∆, and any ∆-greedy-like randomized emptying
algorithm A, there is a filling strategy that achieves backlog Ω(n1−ε) against A in quasi-polynomial
time.
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1 Introduction

A fundamental challenge in processor scheduling is how to perform load balancing, that is,
how to share processors among tasks in order to keep any one task from getting too far
behind. Consider n tasks executing in time slices on p < n processors. During each time slice,
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16:2 The Variable-Processor Cup Game

a scheduler must select p (distinct) tasks that will be executed during the slice; up to one
unit of work is completed on each executed task. During the same time slice, however, up to
p units of new work may be allocated to the tasks, with different tasks receiving different
amounts of work. The goal of a load-balancing scheduler is to bound the backlog of the
system, which is defined to be the maximum amount of uncompleted work for any task.

As a convention, the load balancing problem is often described as a game involving water
and cups. The p-processor cup game is a multi-round game with two players, an emptier
and a filler, that takes place on n initially empty cups. At the beginning of each round, the
filler adds up to p units of water to the cups, subject to the constraint that each cup receives
at most 1 unit of water. The emptier then selects up to p distinct cups and removes up to
1 unit of water from each of them. The emptier’s goal is to minimize the amount of water
in the fullest cup, also known as the backlog. In terms of processor scheduling, the cups
represent tasks, the water represents work assigned to each task, and the emptier represents
a scheduling algorithm.

Starting with the seminal paper of Liu [31], work on the p processor cup game has spanned
more than five decades [7, 21, 8, 30, 28, 34, 6, 24, 31, 32, 17, 10, 26, 1, 16, 29]. In addition
to processor scheduling [7, 21, 8, 30, 28, 34, 6, 24, 31, 32, 1, 29, 17], applications include
network-switch buffer management [22, 4, 36, 20], quality of service guarantees [7, 1, 29],
and data structure deamortization [2, 17, 16, 3, 35, 23, 18, 25, 9].

The game has also been studied in many different forms. Researchers have studied the
game with a fixed-filling-rate constraint [7, 21, 8, 30, 28, 34, 6, 24, 31, 32], with various
forms of resource augmentation [10, 26, 29, 17], with both oblivious and adaptive adversaries
[1, 7, 31, 10, 26, 11], with smoothed analysis [26, 10], with a semi-clairvoyant emptier [29],
with competitive analysis [5, 19, 15], etc.

For the plain form of the p-processor cup game, the greedy emptying algorithm (i.e., always
empty from the fullest cups) is known to be asymptotically optimal [1, 10, 26], achieving
backlog O(logn). The optimal backlog for randomized emptying algorithms remains an open
question [17, 10, 26] and is known to be between Ω(log logn) and O(log logn+ log p) [26].

This paper: varying resources

Although cup games have been studied in many forms, all of the prior work on cup games
shares one common assumption: the number p of processors is fixed.

In modern computing, however, computers are often shared among multiple applications,
users, and even virtual OS’s. The result is that the amount of resources (e.g., memory,
processors, cache, etc.) available to a given application may fluctuate over time. The problem
of handling cache fluctuations has received extensive attention in recent years (see work on
cache-adaptive analysis [33, 12, 13, 14, 27]), but the problem of handling a varying number
of processors remains largely unstudied.

This paper introduces the variable-processor cup game, in which the filler is allowed
to change p (the total amount of water that the filler adds, and the emptier removes, from
the cups per round) at the beginning of each round. Note that we do not allow the resources
of the filler and emptier to vary separately. That is, as in the standard game, we take the
value of p for the filler and emptier to be identical in each round. This restriction is crucial
since, if the filler is allowed more resources than the emptier, then the filler could trivially
achieve unbounded backlog.

A priori having variable resources offers neither player a clear advantage. When the
number p of processors is fixed, the greedy emptying algorithm (i.e., always empty from the
fullest cups), is known to achieve backlog O(logn) [1, 10, 26] regardless of the value of p.
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This seems to suggest that, when p varies, the correct backlog should remain O(logn). In
fact, when we began this project, we hoped for a straightforward reduction between the two
versions of the game.

Results

We show that the variable-processor cup game is not equivalent to the standard p-processor
game. By strategically controlling the number p of processors, the filler can achieve substan-
tially larger backlog than would otherwise be possible.

We begin by constructing filling strategies against deterministic emptying algorithms.
We show that for any positive constant ε, there is a filling strategy that achieves backlog
Ω(n1−ε) within 2polylog(n) rounds. Moreover, if we allow for n! rounds, then there is a filling
strategy that achieves backlog Ω(n). In contrast, for the p-processor cup game with any fixed
p, the backlog never exceeds O(logn).

Our lower-bound construction is asymptotically optimal. By introducing a novel set of
invariants, we deduce that the greedy emptying algorithm never lets backlog exceed O(n).

A natural question is whether randomized emptying algorithms can do better. In
particular, when the emptier is randomized, the filler is taken to be oblivious, meaning that
the filler cannot see what the emptier does at each step. Thus the emptier can potentially
use randomization to obfuscate their behavior from the filler, preventing the filler from being
able to predict the heights of cups.

When studying randomized emptying strategies, we restrict ourselves to the class of
greedy-like emptying strategies. This means that the emptier never chooses to empty
from a cup c over another cup c′ whose fill is more than ω(1) greater than the fill of c.
All of the known randomized emptying strategies for the classic p-processor cup game are
greedy-like [10, 26].

Remarkably, the power of randomization does not help the emptier very much in the
variable-processor cup game. For any constant ε > 0, we give an oblivious filling strategy
that achieves backlog Ω(n1−ε) in quasi-polynomial time (with probability 1− 2− polylogn),
no matter what (possibly randomized) greedy-like strategy the emptier follows.

Our results combine to tell a surprising story. They suggest that the problem of varying
resources poses a serious theoretical challenge for the design and analysis of load-balancing
scheduling algorithms. There are many possible avenues for future work. Can techniques
from beyond worst-case analysis (e.g., smoothing, resource augmentation, etc.) be used to
achieve better bounds on backlog? What about placing restrictions on the filler (e.g., bounds
on how fast p can change), allowing the emptier to be able to be semi-clairvoyant, or making
stochastic assumptions on the filler? We believe that all of these questions warrant further
attention.

Paper outline

In Section 2 we establish the conventions and notations that we will use to discuss the variable-
processor cup game. In Section 3 we analyze the greedy emptying algorithm, showing that it
achieves backlog O(n). We then turn our attention to designing (both oblivious and adaptive)
filling strategies that achieve large backlog. Section 4 gives a technical overview of the filling
strategies and their analyses. Section 5 then gives a full treatment of the filling strategies in
the case where the filler is adaptive; the full treatment of the case where the filler is oblivious
is deferred to the extended version of this paper.

ITCS 2021
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2 Preliminaries

The cup game consists of a sequence of rounds. Let St denote the state of of the cups at the
start of round t. At the beginning of the round, the filler chooses the number of processors
pt for the round. Next, the filler distributes pt units of water among the cups (with at most
1 unit of water to any particular cup). Now the game is at the intermediate state for
round t, which we call state It. Finally the emptier chooses pt cups to empty at most 1 unit
of water from, which marks the conclusion of round t. The state is then St+1.

If the emptier empties from a cup c on round t such that the fill of c is less than 1 in state
It, then c now has 0 fill (not negative fill); we say that the emptier zeroes out c on round t.
Note that on any round where the emptier zeroes out a cup the emptier has removed less
total fill from the cups than the filler has added to the cups; hence the average fill of the
cups has increased.

We denote the fill of a cup c at state S by fillS(c). Let the mass of a set of cups X at
state S be mS(X) =

∑
c∈X fillS(c). Denote the average fill of a set of cups X at state S by

µS(X).1 Note that µS(X)|X| = mS(X). Let the backlog at state S be maxc fillS(c), let
the anti-backlog at state S be minc fillS(c). Let the rank of a cup at a given state be its
position in the list of the cups sorted by fill at the given state, breaking ties arbitrarily but
consistently. For example, the fullest cup at a state has rank 1, and the least full cup has
rank n. Let [n] = {1, 2, . . . , n}, let i+ [n] = {i+ 1, i+ 2, . . . , i+ n}. For a state S, let S(r)
denote the rank r cup at state S, and let S({r1, r2, . . . , rm}) denote the set of cups of ranks
r1, r2, . . . rm.

As a tool in the analysis we define a new variant of the cup game: the negative-fill cup
game. In the negative-fill cup game, when the emptier empties from a cup, the cup’s fill
always decreases by exactly 1, i.e. there is no zeroing out. We refer to the standard version
of the cup game where cups can zero out as the standard-fill cup game.

The notion of negative fill will be useful in our lower-bound constructions, in which we
want to construct a strategy for the filler that achieves large backlog. By analyzing a filling
strategy on the negative-fill game, we can then reason about what happens if we apply the
same filling strategy recursively to a set of cups S whose average fill µ is larger than 0; in
the recursive application, the average fill µ acts as the “new 0”, and fills less than µ act as
negative fills.

Note that it is strictly easier for the filler to achieve high backlog in the standard-fill cup
game than in the negative-fill cup game; hence a lower bound on backlog in the negative-fill
cup game also serves as a lower bound on backlog in the standard-fill cup game. On the
other hand, during the upper bound proof we use the standard-fill cup game: this makes it
harder for the emptier to guarantee its upper bound.

Other Conventions

When discussing the state of the cups at a round t, we will take it as given that we are
referring to the starting state St of the round. Also, when discussing sets, we will use XY as
a shorthand for X ∪ Y . Finally, when discussing the average fill µSt

(X) of a set of cups, we
will sometimes ommit the subscript St when the round number is clear.

1 For both mass and average fill, in cases where S is clear from context, we may omit the subscript,
writing m(X) or µ(X).
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3 Upper Bound

In this section we analyze the greedy emptier, which always empties from the p fullest
cups. We prove in Corollary 2 that the greedy emptier prevents backlog from exceeding
O(n). In order to analyze the greedy emptier, we establish a system of invariants that hold
at every step of the game.

The main result of the section is the following theorem.

I Theorem 1. In the variable-processor cup game on n cups, the greedy emptier maintains,
at every step t, the invariants

µSt(St([k])) ≤ 2n− k (1)

for all k ∈ [n].

By applying Theorem 1 to the case of k = 1, we arrive at a bound on backlog:

I Corollary 2. In the variable-processor cup game on n cups, the greedy emptying strategy
never lets backlog exceed O(n).

Proof of Theorem 1. We prove the invariants by induction on t. The invariants hold trivially
for t = 1 (the base case for the inductive proof): the cups start empty so µS1(S1([k])) = 0 ≤
2n− k for all k ∈ [n].

Fix a round t ≥ 1, and any k ∈ [n]. We assume the invariant for all values of k′ ∈ [n] for
state St (we will only explicitly use two of the invariants for each k, but the invariants that
we need depend on the choice of pt by the filler) and show that the invariant on the k fullest
cups holds on round t+ 1, i.e. that

µSt+1(St+1([k])) ≤ 2n− k.

Note that because the emptier is greedy it always empties from the cups It([pt]). Let A,
with a = |A|, be A = It([min(k, pt)]) ∩ St+1([k]); A consists of the cups that are among the
k fullest cups in It, are emptied from, and are among the k fullest cups in St+1. Let B, with
b = |B|, be It([min(k, pt)])\A; B consists of the cups that are among the k fullest cups in state
It, are emptied from, and are not among the k fullest cups in St+1. Let C = It(a+b+[k−a]),
with c = k − a = |C|; C consists of the cups with ranks a+ b+ 1, . . . , k + b in state It. The
set C is defined so that St+1([k]) = AC, since once the cups in B are emptied from, the cups
in B are not among the k fullest cups, so cups in C take their places among the k fullest
cups.

Note that k − a ≥ 0 as a+ b ≤ k, and also |ABC| = k + b ≤ n, because by definition the
b cups in B must not be among the k fullest cups in state St+1 so there are at least k + b

cups. Note that a+ b = min(k, pt). We also have that A = It([a]) and B = It(a+ [b]), as
every cup in A must have higher fill than all cups in B in order to remain above the cups in
B after 1 unit of water is removed from all cups in AB.

We now establish the following claim, which we call the interchangeability of cups:

B Claim 3. There exists a cup state S′t such that: (a) S′t satisfies the invariants (1), (b)
S′t(r) = It(r) for all ranks r ∈ [n], and (c) the filler can legally place water into cups in order
to transform S′t into It.

Proof. Fix r ∈ [n]. We will show that St can be transformed into a state Srt by relabelling
only cups with ranks in [r] such that (a) Srt satisfies the invariants (1), (b) Srt ([r]) = It([r])
and (c) the filler can legally place water into cups in order to transform Srt into It.

ITCS 2021
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Say there are cups x, y with x ∈ St([r]) \ It([r]), y ∈ It([r]) \ St([r]). Let the fills of cups
x, y at state St be fx, fy; note that

fx > fy. (2)

Let the amount of fill that the filler adds to these cups be ∆x,∆y ∈ [0, 1]; note that

fx + ∆x < fy + ∆y. (3)

Define a new state S′t where cup x has fill fy and cup y has fill fx. Note that the filler
can transform state S′t into state It by placing water into cups as before, except changing the
amount of water placed into cups x and y to be fx − fy + ∆x and fy − fx + ∆y, respectively.

In order to verify that the transformation from S′t to It is a valid step for the filler, one
must check three conditions. First, the amount of water placed by the filler is unchanged:
this is because (fx − fy + ∆x) + (fy − fx + ∆y) = ∆x + ∆y. Second, the fills placed
in cups x and y are at most 1: this is because fx − fy + ∆x < ∆y ≤ 1 (by (3)) and
fy − fx + ∆x < ∆x ≤ 1 (by (2)). Third, the fills placed in cups x and y are non-negative:
this is because fx − fy + ∆x > ∆x ≥ 0 (by (2)) and fy − fx + ∆y > ∆x ≥ 0 (by (3)).

We can repeatedly apply this process to swap each cup in It([r]) \ St([r]) into being in
S′t([r]). At the end of this process we will have some state Srt for which Srt ([r]) = It([r]). Note
that Srt is simply a relabeling of St, hence it must satisfy the same invariants (1) satisfied by
St. Further, Srt can be transformed into It by a valid filling step.

Now we repeatedly apply this process, in descending order of ranks. In particular, we
have the following process: create a sequence of states by starting with Sn−1

t , and to get
to state Srt from state Sr+1

t apply the process described above. Note that Sn−1
t satisfies

Sn−1
t ([n− 1]) = It([n− 1]) and thus also Sn−1

t (n) = It(n). If Sr+1
t satisfies Sr+1

t (r′) = It(r′)
for all r′ > r + 1 then Srt satisfies Srt (r′) = It(r′) for all r > r, because the transition from
Sr+1
t to Srt has not changed the labels of any cups with ranks in (r+ 1, n], but the transition

does enforce Srt ([r]) = It([r]), and consequently Srt (r + 1) = It(r + 1). We continue with
the sequential process until arriving at state S1

t in which we have S1
t (r) = It(r) for all r.

Throughout the process each Srt has satisfied the invariants (1), so S1
t satisfies the invariants

(1). Further, throughout the process from each Srt it is possible to legally place water into
cups in order to transform Srt into It.

Hence S1
t satisfies all the properties desired, and the proof of Claim 3 is complete. C

Claim 3 tells us that we may assume without loss of generality that St(r) = It(r) for each
rank r ∈ [n]. We will make this assumption for the rest of the proof.

In order to complete the proof of the theorem, we break it into three cases.

B Claim 4. If some cup in A zeroes out in round t, then the invariant µSt+1(St+1([k])) ≤ 2n−k
holds.

Proof. Say a cup in A zeroes out in step t. Of course

mSt+1(It([a− 1])) ≤ (a− 1)(2n− (a− 1))

because the a− 1 fullest cups must have satisfied the invariant (with k = a− 1) on round t.
Moreover, because fillSt+1(It+1(a)) = 0

mSt+1(It([a])) = mSt+1(It([a− 1])).

Combining the above equations, we get that

mSt+1(A) ≤ (a− 1)(2n− (a− 1)).
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Furthermore, the fill of all cups in C must be at most 1 at state It to be less than the fill of
the cup in A that zeroed out. Thus,

mSt+1(St+1([k])) = mSt+1(AC)
≤ (a− 1)(2n− (a− 1)) + k − a
= a(2n− a) + a− 2n+ a− 1 + k − a
= a(2n− a) + (k − n) + (a− n)− 1
< a(2n− a)

as desired. As k increases from 1 to n, k(2n − k) strictly increases (it is a quadratic in k
that achieves its maximum value at k = n). Thus a(2n − a) ≤ k(2n − k) because a ≤ k.
Therefore,

mSt+1(St+1([k])) ≤ k(2n− k). C

B Claim 5. If no cups in A zero out in round t and b = 0, then the invariant µSt+1(St+1([k])) ≤
2n− k holds.

Proof. If b = 0, then St+1([k]) = St([k]). During round t the emptier removes a units of fill
from the cups in St([k]), specifically the cups in A. The filler cannot have added more than
k fill to these cups, because it can add at most 1 fill to any given cup. Also, the filler cannot
have added more than pt fill to the cups because this is the total amount of fill that the filler
is allowed to add. Hence the filler adds at most min(pt, k) = a+ b = a+ 0 = a fill to these
cups. Thus the invariant holds:

mSt+1(St+1([k])) ≤ mSt
(St([k])) + a− a ≤ k(2n− k). C

The remaining case, in which no cups in A zero out and b > 0 is the most technically
interesting.

B Claim 6. If no cups in A zero out on round t and b > 0, then the invariant
µSt+1(St+1([k])) ≤ 2n− k holds.

Proof. Because b > 0 and a + b ≤ k we have that a < k, and c = k − a > 0. Recall that
St+1([k]) = AC, so the mass of the k fullest cups at St+1 is the mass of AC at St plus any
water added to cups in AC by the filler, minus any water removed from cups in AC by the
emptier. The emptier removes exactly a units of water from AC. The filler adds no more
than pt units of water to AC (because the filler adds at most pt total units of water per
round) and the filler also adds no more than k = |AC| units of water to AC (because the
filler adds at most 1 unit of water to each of the k cups in AC). Thus, the filler adds no
more than a+ b = min(pt, k) units of water to AC. Combining these observations we have:

mSt+1(St+1([k])) ≤ mSt(AC) + b. (4)

The key insight necessary to bound this is to notice that larger values for mSt(A)
correspond to smaller values for mSt

(C) because of the invariants; the higher fill in A pushes
down the fill that C can have. By capturing the pushing-down relationship combinatorially
we will achieve the desired inequality.

We can upper bound mSt
(C) by

mSt
(C) ≤ c

b+ c
mSt

(BC)

= c

b+ c
(mSt

(ABC)−mSt
(A))

ITCS 2021
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because µSt(C) ≤ µSt(B) without loss of generality by the interchangeability of cups. Thus
we have

mSt(AC) ≤ mSt(A) + c

b+ c
mSt(BC) (5)

= c

b+ c
mSt

(ABC) + b

b+ c
mSt

(A). (6)

Note that the expression in (6) is monotonically increasing in both µSt
(ABC) and µSt

(A).
Thus, by numerically replacing both average fills with their extremal values, 2n − |ABC|
and 2n− |A|. At this point the claim can be verified by straightforward (but quite messy)
algebra (and by combining (4) with (6)). We instead give a more intuitive argument, in
which we examine the right side of (5) combinatorially.

Consider a new configuration of fills F achieved by starting with state St, and moving
water from BC into A until µF (A) = 2n − |A|. 2 This transformation increases (strictly
increases if and only if we move a non-zero amount of water) the right side of (5). In
particular, if mass ∆ ≥ 0 fill is moved from BC to A, then the right side of (5) increases by
b
b+c∆ ≥ 0. Note that the fact that moving water from BC into A increases the right side of
(5) formally captures the way the system of invariants being proven forces a tradeoff between
the fill in A and the fill in BC – that is, higher fill in A pushes down the fill that BC (and
consequently C) can have.

Since µF (A) is above µF (ABC), the greater than average fill of A must be counter-
balanced by the lower than average fill of BC. In particular we must have

(µF (A)− µF (ABC))|A| = (µF (ABC)− µF (BC))|BC|.

Note that

µF (A)− µF (ABC)
= (2n− |A|)− µF (ABC)
≥ (2n− |A|)− (2n− |ABC|)
= |BC|.

Hence we must have

µF (ABC)− µF (BC) ≥ |A|.

Thus

µF (BC) ≤ µF (ABC)− |A| ≤ 2n− |ABC| − |A|. (7)

Combing (5) with the fact that the transformation from St to F only increases the right side
of (5), along with (7), we have the following bound:

mSt
(AC) ≤ mF (A) + cµF (BC)

≤ a(2n− a) + c(2n− |ABC| − a)
≤ (a+ c)(2n− a)− c(a+ c+ b)
≤ (a+ c)(2n− a− c)− cb. (8)

2 Note that whether or not F satisfies the invariants is irrelevant.
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By (4) and (8), we have that

mSt+1(St+1([k])) ≤ mSt
(AC) + b

≤ (a+ c)(2n− a− c)− cb+ b

= k(2n− k)− cb+ b

≤ k(2n− k),

where the final inequality uses the fact that c ≥ 1. This completes the proof of the claim.
C

We have shown the invariant holds for arbitrary k, so given that the invariants all hold
at state St they also must all hold at state St+1. Thus, by induction we have the invariant
for all rounds t ∈ N. J

4 Technical overview of lower bounds

The rest of the paper is devoted to the construction of filler strategies that match (or nearly
match) the upper bound in Section 3.

This section gives a technical overview of the main technical ideas used in the filler
constructions. Full versions of the constructions are given in Section 5 (for adaptive fillers)
and in the extended version of this paper (for oblivious fillers).

4.1 Adaptive Lower Bound
In Section 5 we provide an adaptive filling strategy that achieves backlog Ω(n1−ε); in this
subsection we sketch the proof of the result.

First we note that there is a trivial algorithm, that we call trivalg, for achieving backlog
at least 1/2 on at least 2 cups in time O(1).

The essential ingredient in our lower-bound construction is what we call the Amplifica-
tion Lemma. The lemma takes as input a filling strategy that achieves some backlog curve
f (i.e., on n cups, the strategy achieves backlog f(n)), and outputs a new filling strategy
that achieves a new amplified backlog curve f ′.

I Lemma 7 (Lemma 12). Let alg(f) be a filling strategy that achieves backlog f(n) on n

cups (in the negative-fill cup game). There exists a filling strategy alg(f ′), the amplification
of alg(f), that achieves backlog at least

f ′(n) ≥ (1− δ)f(b(1− δ)nc) + f(dδne).

Proof Sketch. The filler designates an anchor set A of size dδne and a non-anchor set B
of size b(1− δ)nc.

The filler’s strategy begins with M phases, for some parameter M to be determined later.
In each phase, the filler applies alg(f) to the non-anchor set B, while simultaneously placing
1 unit of water into each cup of A on each step. If there is ever a step during the phase in
which the emptier does not remove water from every cup in A, then the phase is said to be
emptier neglected. On the other hand, if a phase is not emptier neglected, then at the
end of the phase, the filler swaps the cup in B with largest fill with the cup in A whose fill is
smallest.

After the M phases are complete, the filler then recursively applies alg(f) to the cups A.
This completes the filling strategy alg(f ′).

ITCS 2021



16:10 The Variable-Processor Cup Game

The key to analyzing alg(f ′) is to show that, at the end of the M -th phase, the average
fill of the cups A satisfies µ(A) ≥ (1 − δ)f(|B|). This, in turn, means that the recursive
application of alg(f) to A will achieve backlog (1− δ)f(|B|) + f(|A|), as desired.

Now let us reason about µ(A). If a phase is emptier neglected, then the total amount of
water placed into A during the phase is at least 1 greater than the total amount of water
removed. Hence µ(A) increases by at least 1/|A|. On the other hand, if a phase is not
emptier neglected, then alg(f) will successfully achieve backlog µ(B) + f(|B|) on the cups B
during the phase. At the end of the phase, the filler will then swap a cup from B with large
fill with a cup from A. Thus, in each phase, we either have that µ(A) increases by 1/|A|, or
that a cup with large fill gets swapped into A. After sufficiently many phases, one can show
that µ(A) is guaranteed to become at least (1− δ)f(|B|) + f(|A|). J

We use the Amplification Lemma to give two lower bounds on backlog: one with reasonable
running time, the other with slightly better backlog.

I Theorem 8 (Theorem 13). There is an adaptive filling strategy for achieving backlog
Ω(n1−ε) for constant ε ∈ (0, 1/2) in running time 2O(log2 n).

Proof Sketch. We construct a sequence of filling strategies with alg(fi+1) the amplification
of alg(fi) using δ = Θ(1) determined as a function of ε, and alg(f0) = trivalg. Choosing δ
appropriately as a function of ε, and letting c be some (small) positive constant, we show by
induction on i that, for all k ≤ 2ci, alg(fi) achieves backlog Ω(k1−ε) on k cups in running
time 2O(log2 k). Taking i = Θ(logn) completes the proof. J

I Theorem 9 (Theorem 15). There is an adaptive filling strategy for achieving backlog Ω(n)
in running time O(n!).

Proof Sketch. We construct a sequence of filling strategies with alg(fi+1) the amplification
of alg(fi) using δ = 1/(i+ 1), and alg(f0) a filling strategy for achieving backlog 1 on O(1)
cups in O(1) time (this is a slight modification of trivalg). We show by induction that
alg(fΘ(n)) achieves backlog Ω(n) in running time O(n!). J

4.2 Oblivious Lower Bound
We now consider what happens if the filler is an oblivious adversary, meaning that the
filler cannot see what the emptier does at each step. The emptier, in turn, is permitted to
use randomization in order to make its behavior unpredictable to the filler. We focus on
randomized emptying algorithms that satisfy the so-called ∆-greedy-like property: the
emptier never empties from a cup c over another cup c′ whose fill is more than ∆ greater
than the fill of c.

The next theorem gives an oblivious filling strategy that achieves backlog Ω(n1−ε) against
any ∆-greedy-like emptier for any ∆ ∈ Ω(1) (or, more precisely, any ∆ ≤ 1

128 log log logn).

I Theorem 10. There is an oblivious filling strategy for the variable-processor cup game
on N cups that achieves backlog at least Ω(N1−ε) for any constant ε > 0 in running time
2polylog(N) with probability at least 1 − 2− polylog(N) against a ∆-greedy-like emptier with
∆ ≤ 1

128 log log logN .

Note that Theorem 10 uses N for the number of cups rather than using n. When
describing the recursive strategy that the filler uses, we will use N to denote the true total
number of cups, and n to denote the number of cups within the recursive subproblem
currently being discussed.
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The filling strategy used in Theorem 10 is closely related the adaptive filling strategy
described in Section 4.1. The fact that the filling strategy must now be oblivious, however,
introduces several new technical obstacles.

Problem 1: Distinguishing between neglected and non-neglected phases

Recall that the Amplification Lemma in Section 4.1 proceeds in phases, where the filler
behaves differently at the end of each phase depending on whether or not the emptier ever
neglected the anchor set A during that phase. If the filler is oblivious, however, then it
cannot detect which phases are neglected.

To solve this problem, the first thing to notice is that the total number of times that the
emptier can neglect the anchor set (within a given recursive subproblem of the Amplification
Lemma) is, without loss of generality, at most N2. Indeed, if the emptier neglects the anchor
set more than N2 times, then the total amount of water in cups A will be at least N2. Since
the amount of water in the system as a whole is non-decreasing, there will subsequently
always be at least one cup in the system with fill N or larger, and thus the filler’s strategy
trivially achieves backlog N .

Assume that there are at most N2 phases that the emptier neglects. The filler does
not know which phases these are, and the filler does not wish to ever move a cup from the
non-anchor set to the anchor set during a phase that the emptier neglected (since, during
such a phase, there is no guarantee on the amount of water in the cup from B). To solve this
problem, we increase the total number of phases in the Amplification Lemma to be some
very large number M = 2polylogN , and we have the filler select |A| random phases at the end
of which to move a cup from the non-anchor set to the anchor set. With high probability,
none of the |A| phases that the filler selects are neglected by the emptier.

Problem 2: Handling the probability of failure

Because the filler is now oblivious (and the emptier is randomized) the guarantee offered
by the filling strategy is necessarily probabilistic. This makes the Amplification Lemma
somewhat more difficult, since each application of alg(f) now has some probability of failure.

We ensure that the applications of alg(f) succeed with such high probability that we can
ignore the possibility of any of them failing on phases when we need them to succeed. This
necessitates making sure that the base-case construction alg(f0) succeeds with very high
probability.

Fortunately, we can take a base-case construction alg0 that succeeds with only constant
(or even sub-constant) probability, and perform an Amplification-Lemma-like construction in
order to obtain a new filling strategy alg1 that achieves slightly smaller backlog, but that
has a very high probability of succeeding.

To construct alg1, we begin by performing the Amplification-Lemma construction on
alg0, but without recursing after the final phase. Even though many of the applications of
alg0 may fail, with high probability at least one application succeeds. This results in some
cup c∗ in A having high fill. Unfortunately, the filler does not know which cup has high fill,
so it cannot simply take c∗. What the filler can do, however, is select some cup c, decrease
the number of processors to 1, and then spend a large number of steps simply placing 1
unit of water into cup c in each step. By the ∆-greediness of the emptier, the emptier is
guaranteed to focus on emptying from cup c∗ (rather than cup c) until c attains large fill.
This allows for the filler to obtain a cup c that the filler knows contains a large amount of
water (with high probability). We use this approach to construct a base-case filling strategy
alg(f ′0) that succeeds with high probability.
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Problem 3: Non-flat starting states

The next problem that we encounter is that, at the beginning of any given phase, the cups
in the non-anchor set may not start off with equal heights. Instead, some cups may contain
very large amounts of water while others contain very small (and even negative) amounts of
water3. This is not a problem for an adaptive filler, since the filler knows which cups contain
small/large amounts of water, but it is a problem for an oblivious filler.

To avoid the scenario in which the cups in B are highly unequal, we begin each phase by
first performing a flattening construction on the cups B, which causes the cups in B to
all have roughly equal fills (up to ±O(∆)). The flattening construction uses the fact that
the emptier is ∆-greedy-like to ensure that cups which are overly full get flattened out by
the emptier.

Putting the pieces together

By combining the ideas above, as well as handling other issues that arise (e.g., one must be
careful to ensure that the average fills of A and B do not drift apart in unpredictable ways),
one can prove Theorem 10.

5 Adaptive Filler Lower Bound

In this section we give a 2polylogn-time filling strategy that achieves backlog n1−ε for any
positive constant ε. We also give a O(n!)-time filling strategy that achieves backlog Ω(n).
These results formalize the ideas described in Section 4.1.

We begin with a trivial filling strategy that we call trivalg that gives backlog at least
1/2 when applied to at least 2 cups.

I Proposition 11. Consider an instance of the negative-fill 1-processor cup game on n cups,
and let the cups start in any state with average fill is 0. If n ≥ 2, there is an O(1)-step
adaptive filling strategy trivalg that achieves backlog at least 1/2. If n = 1, trivalg achieves
backlog 0 in running time 0.

Proof. If n = 1, trivalg does nothing and achieves backlog 0; for the rest of the proof we
consider the case n ≥ 2.

Let a and b be the fullest and second fullest cups in the in the starting configuration,
and let their initial fills be fill(a) = α,fill(b) = β. If α ≥ 1/2 the filler need not do anything,
the desired backlog is already achieved. Otherwise, if α ∈ [0, 1/2], the filler places 1/2− α
fill into a and 1/2 + α fill into b (which is possible as both fills are in [0, 1], and they sum
to 1). Since α+ β ≥ 0 we have β ≥ −α. Clearly a and b now both have fill at least 1/2. The
emptier cannot empty from both a and b as p = 1, so even after the emptier empties from a
cup we still have backlog 1/2, as desired. J

Next we prove the Amplification Lemma, which takes as input a filling strategy alg(f)
and outputs a new filling strategy alg(f ′) that we call the amplification of alg(f). alg(f ′)
is able to achieve higher fill than alg(f); in particular, we will show that by starting with a
filling strategy alg(f0) for achieving constant backlog and then forming a sufficiently long
sequence of filling strategies alg(f0), alg(f1), . . . , alg(fi∗) with alg(fi+1) the amplification of
alg(fi), we get a filling strategy for achieving poly(n) backlog.

3 Recall that, in order for our lower-bound construction to be able to call itself recursively, we must
analyze the construction in the negative-fill version of the variable-processor cup game.
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I Lemma 12 (Adaptive Amplification Lemma). Let δ ∈ (0, 1/2] be a parameter. Let alg(f)
be an adaptive filling strategy that achieves backlog f(n) < n in the negative-fill variable-
processor cup game on n cups in running time T (n) starting from any initial cup state where
the average fill is 0.

Then there exists an adaptive filling strategy alg(f ′) that achieves backlog f ′(n) satisfying

f ′(n) ≥ (1− δ)f(b(1− δ)nc) + f(dδne)

and f ′(n) ≥ f(n) in the negative-fill variable-processor cup game on n cups in running time

T ′(n) ≤ n dδne · T (b(1− δ)nc) + T (dδne)

starting from any initial cup state where the average fill is 0.

Proof. Let nA = dδne , nB = n− nA = b(1− δ)nc.
The filler defaults to using alg(f) if

f(n) ≥ (1− δ)f(nB) + f(nA).

In this case using alg(f) achieves the desired backlog in the desired running time. In the
rest of the proof, we describe our strategy for the case where we cannot simply use alg(f) to
achieve the desired backlog.

Let A, the anchor set, be initialized to consist of the nA fullest cups, and let B
the non-anchor set be initialized to consist of the rest of the cups (so |B| = nB). Let
h = (1− δ)f(nB).

The filler’s strategy can be summarized as follows:
Step 1: Make µ(A) ≥ h by using alg(f) repeatedly on B to achieve cups with fill at least
µ(B) + f(nB) in B and then swapping these into A. While doing this the filler always places
1 unit of fill in each anchor cup.
Step 2: Use alg(f) once on A to obtain some cup with fill µ(A) + f(nA).
Note that in order to use alg(f) on subsets of the cups the filler will need to vary p.

We now describe how to achieve Step 1, which is complicated by the fact that the emptier
may attempt to prevent the filler from achieving high fill in a cup in B.

The filling strategy always places 1 unit of water in each anchor cup. This ensures that
no cups in the anchor set ever have their fill decrease. If the emptier wishes to keep the
average fill of the anchor cups from increasing, then emptier must empty from every anchor
cup on each step. If the emptier fails to do this on a given round, then we say that the
emptier has neglected the anchor cups.

We say that the filler applies alg(f) to B if it follows the filling strategy alg(f) on B
while placing 1 unit of water in each anchor cup. An application of alg(f) to B is said to be
successful if A is never neglected during the application of alg(f) to B. The filler uses a
series of phases that we call swapping-processes to achieve the desired average fill in A.
In a swapping-process, the filler repeatedly applies alg(f) to B until a successful application
occurs, and then takes the cup generated by alg(f) within B on this successful application
with fill at least µ(B) + f(|B|) and swaps it with the least full cup in A so long as the swap
increases µ(A). If the average fill in A ever reaches h, then the algorithm immediately halts
(even if it is in the middle of a swapping-process) and is complete.

We give pseudocode for the filling strategy in Algorithm 1.
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Algorithm 1 Adaptive Amplification (Step 1).

Input: alg(f), δ, set of n cups
Output: Guarantees that µ(A) ≥ h

A← nA fullest cups, B ← rest of the cups
Always place 1 fill in each cup in A
while µ(A) < h do . Swapping-Processes

Immediately exit this loop if ever µ(A) ≥ h
successful ← false
while not successful do

Apply alg(f) to B, alg(f) gives cup c
if fill(c) ≥ h then

successful ← true
Swap c with least full cup in A

Note that

µ(A) · |A|+ µ(B) · |B| = µ(AB) ≥ 0,

as µ(AB) starts as 0, but could become positive if the emptier skips emptyings. Thus we
have

µ(A) ≥ −µ(B) · b(1− δ)nc
dδne

≥ −1− δ
δ

µ(B).

Thus, if at any point B has average fill lower than −h · δ/(1− δ), then A has average fill at
least h, so the algorithm is finished. Thus we can assume in our analysis that

µ(B) ≥ −h · δ/(1− δ). (9)

We will now show that the filler applies alg(f) to B at most hnA total times. Each time the
emptier neglects the anchor set, the mass of the anchor set increases by 1. If the emptier
neglects the anchor set hnA times, then the average fill in the anchor set increases by h.
Since µ(A) started as at least 0, and since µ(A) never decreases (note in particular that cups
are only swapped into A if doing so will increase µ(A)), an increase of h in µ(A) implies that
µ(A) ≥ h, as desired.

Consider the fill of a cup c swapped into A at the end of a swapping-process. Cup c’s fill
is at least µ(B) + f(nB), which by (9) is at least

−h · δ

1− δ + f(nB) = (1− δ)f(nB) = h.

Thus the algorithm for Step 1 succeeds within |A| swapping-processes, since at the end of
the |A|-th swapping process either every cup in A has fill at least h, or the algorithm halted
before |A| swapping-processes because it already achieved µ(A) ≥ h.

After achieving µ(A) ≥ h, the filler performs Step 2, i.e. the filler applies alg(f) to A,
and hence achieves a cup with fill at least

µ(A) + f(|A|) ≥ (1− δ)f(nB) + f(nA),

as desired.
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Now we analyze the running time of the filling strategy alg(f ′). First, recall that in Step 1
alg(f ′) calls alg(f) on B, which has size nB, as many as hnA times. Because we mandate
that h < n, Step 1 contributes no more than (n · nA) · T (nB) to the running time. Step 2
requires applying alg(f) to A, which has size nA, once, and hence contributes T (nA) to the
running time. Summing these we have

T ′(n) ≤ n · nA · T (nB) + T (nA). J

We next show that by recursively using the Amplification Lemma we can achieve backlog
n1−ε.

I Theorem 13. There is an adaptive filling strategy for the variable-processor cup game on
n cups that achieves backlog Ω(n1−ε) for any constant ε > 0 of our choice in running time
2O(log2 n).

Proof. Take constant ε ∈ (0, 1/2). Let c, δ be constants that will be chosen (later) as
functions of ε satisfying c ∈ (0, 1), 0 < δ � 1/2. We show how to achieve backlog at least
cn1−ε − 1.

Let alg(f0) = trivalg, the algorithm given by Proposition 11; recall trivalg achieves
backlog f0(k) ≥ 1/2 for all k ≥ 2, and f0(1) = 0. Next, using the Amplification Lemma we
recursively construct alg(fi+1) as the amplification of alg(fi) for i ≥ 0. Define a sequence gi
with

gi =
{
d16/δe , i = 0,
bgi−1/(1− δ)c i ≥ 1.

We claim the following regarding this construction:

B Claim 14. For all i ≥ 0,

fi(k) ≥ ck1−ε − 1 for all k ∈ [gi]. (10)

Proof. We prove Claim 14 by induction on i. For i = 0, the base case, (10) can be made
true by taking c sufficiently small; in particular, taking c < 1 makes (10) hold for k = 1,
and, as g0 > 2, taking c small enough to make cg1−ε

0 − 1 ≤ f0(g0) = 1/2 makes (10) hold for
k ∈ [2, g0] by monotonicity of k 7→ ck1−ε − 14.

As our inductive hypothesis we assume (10) for fi; we aim to show that (10) holds for
fi+1. Note that, by design of gi, if k ≤ gi+1 then bk · (1− δ)c ≤ gi. Consider any k ∈ [gi+1].
First we deal with the trivial case where k ≤ g0. In this case

fi+1(k) ≥ fi(k) ≥ · · · ≥ f0(k) ≥ ck1−ε − 1.

Now we consider the case where k ≥ g0. Since fi+1 is the amplification of fi we have

fi+1(k) ≥ (1− δ)fi(b(1− δ)kc) + fi(dδke).

By our inductive hypothesis, which applies as dδke ≤ gi, bk · (1− δ)c ≤ gi, we have

fi+1(k) ≥ (1− δ)(c · b(1− δ)kc1−ε − 1) + c dδke1−ε − 1.

4 Note that it is important here that ε and δ are constants, that way c is also a constant.
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Dropping the floor and ceiling, incurring a −1 for dropping the floor, we have

fi+1(k) ≥ (1− δ)(c · ((1− δ)k − 1)1−ε − 1) + c(δk)1−ε − 1.

Because (x− 1)1−ε ≥ x1−ε − 1, as x 7→ x1−ε is a sub-linear sub-additive function, we have

fi+1(k) ≥ (1− δ)c · (((1− δ)k)1−ε − 2) + c(δk)1−ε − 1.

Moving the ck1−ε to the front we have

fi+1(k) ≥ ck1−ε ·
(

(1− δ)2−ε + δ1−ε − 2(1− δ)
k1−ε

)
− 1.

Because (1− δ)2−ε ≥ 1− (2− ε)δ, a fact called Bernoulli’s Identity, we have

fi+1(k) ≥ ck1−ε ·
(

1− (2− ε)δ + δ1−ε − 2(1− δ)
k1−ε

)
− 1.

Of course −2(1− δ) ≥ −2, so

fi+1(k) ≥ ck1−ε ·
(

1− (2− ε)δ + δ1−ε − 2
k1−ε

)
− 1.

Because

−2
k1−ε ≥

−2
g1−ε

0
≥ −2(δ/16)1−ε ≥ −δ1−ε/2,

which follows from our choice of g0 = d16/δe and the restriction ε < 1/2, we have

fi+1(k) ≥ ck1−ε ·
(
1− (2− ε)δ + δ1−ε − δ1−ε/2

)
− 1.

Finally, combining terms we have

fi+1(k) ≥ ck1−ε ·
(
1− (2− ε)δ + δ1−ε/2

)
− 1.

Because δ1−ε dominates δ for sufficiently small δ, there is a choice of δ = Θ(1) such that

1− (2− ε)δ + δ1−ε/2 ≥ 1.

Taking δ to be this small we have,

fi+1(k) ≥ ck1−ε − 1,

completing the proof. We remark that the choices of c, δ are the same for every i in the
inductive proof, and depend only on ε. C

To complete the proof, we will show that gi grows exponentially in i. This implies that
there exists i∗ ≤ O(logn) such that gi∗ ≥ n, and hence we have an algorithm alg(fi∗) that
achieves backlog cn1−ε − 1 on n cups, as desired.

We lower bound the sequence gi with another sequence g′i defined as

g′i =
{

4/δ, i = 0
g′i−1/(1− δ)− 1, i > 0.
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Solving this recurrence, we find

g′i = 4− (1− δ)2

δ

1
(1− δ)i ≥

1
(1− δ)i ,

which clearly exhibits exponential growth. In particular, let i∗ =
⌈
log1/(1−δ) n

⌉
. Then,

gi∗ ≥ g′i∗ ≥ n, as desired.
Let the running time of fi(n) be Ti(n). From the Amplification Lemma we have following

recurrence bounding Ti(n):

Ti(n) ≤ n dδne · Ti−1(b(1− δ)nc) + Ti−1(dδne)
≤ 2n2Ti−1(b(1− δ)nc).

It follows that alg(fi∗), recalling that i∗ ≤ O(logn), has running time

Ti∗(n) ≤ (2n2)O(logn) ≤ 2O(log2 n),

as desired. J

Now we provide a construction that can achieve backlog Ω(n) in very long games. The
construction can be interpreted as the same argument as in Theorem 13 but with an extremal
setting of δ to Θ(1/n)5.

I Theorem 15. There is an adaptive filling strategy that achieves backlog Ω(n) in time
O(n!).

Proof. First we construct a slightly stronger version of trivalg that achieves backlog 1 on
n ≥ n0 = 8 cups, instead of just backlog 1/2; this simplifies the analysis.

B Claim 16. There is a filling algorithm trivalg2 that achieves backlog at least 1 on n0 = 8
cups.

Proof. Let trivalg1 be the amplification of trivalg using δ = 1/2. On 4 cups trivalg1 achieves
backlog at least (1/2)(1/2) + 1/2 = 3/4. Let trivalg2 be the amplification of trivalg1 using
δ = 1/2. On 8 cups trivalg2 achieves backlog at least (1/2)(3/4) + 3/4 ≥ 1. C

Let alg(f0) = trivalg2; we have f0(k) ≥ 1 for all k ≥ n0. For i > 0 we construct alg(fi) as
the amplification of alg(fi−1) using the Amplification Lemma with parameter δ = 1/(i+ 1).

We claim the following regarding this construction:

B Claim 17. For all i ≥ 0,

fi((i+ 1)n0) ≥
i∑

j=0

(
1− j

i+ 1

)
. (11)

Proof. We prove Claim 17 by induction on i. When i = 0, the base case, (11) becomes
f0(n0) ≥ 1 which is true. Assuming (11) for fi−1, we now show (11) holds for fi. Because fi
is the amplification of fi−1 with δ = 1/(i+ 1), we have by the Amplification Lemma

fi((i+ 1) · n0) ≥
(

1− 1
i+ 1

)
fi−1(i · n0) + fi−1(n0).

5 Or more precisely, setting δ in each level of recursion to be Θ(1/n), where n is the subproblem size;
note in particular that δ changes between levels of recursion, which was not the case in the proof of
Theorem 13.

ITCS 2021



16:18 The Variable-Processor Cup Game

Since fi−1(n0) ≥ f0(n0) ≥ 1 we have

fi((i+ 1) · n0) ≥
(

1− 1
i+ 1

)
fi−1(i · n0) + 1.

Using the inductive hypothesis we have

fi((i+ 1) · n0) ≥
(

1− 1
i+ 1

) i−1∑
j=0

(
1− j

i

)
+ 1.

Note that(
1− 1

i+ 1

)
·
(

1− j

i

)
= i

i+ 1 ·
i− j
i

= i− j
i+ 1 = 1− j + 1

i+ 1 .

Thus we have the desired bound:

fi((i+ 1) · n0) ≥
i∑

j=1

(
1− j

i+ 1

)
+ 1 =

i∑
j=0

(
1− j

i+ 1

)
. C

Let i∗ = bn/n0c − 1, which by design satisfies (i∗ + 1)n0 ≤ n. By Claim 17 we have

fi∗((i∗ + 1) · n0) ≥
i∗∑
j=0

(
1− j

i∗ + 1

)
= i∗/2 + 1.

As i∗ = Θ(n), we have thus shown that alg(fi∗) can achieve backlog Ω(n) on n cups.
Let Ti be the running time of alg(fi). The recurrence for the running running time

of fi∗ is

Ti(n) ≤ n · n0Ti−1(n− n0) +O(1).

Clearly Ti∗(n) ≤ O(n!). J
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Comparison Graphs: A Unified Method for
Uniformity Testing
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Abstract
Distribution testing can be described as follows: q samples are being drawn from some unknown
distribution P over a known domain [n]. After the sampling process, a decision must be made about
whether P holds some property, or is far from it. The most studied problem in the field is arguably
uniformity testing, where one needs to distinguish the case that P is uniform over [n] from the case
that P is ε-far from being uniform (in `1). It is known that for this task Θ

(√
n/ε2) samples are

necessary and sufficient. This problem was recently considered in various restricted models that
pose, for example, communication or memory constraints. In more than one occasion, the known
optimal solution boils down to counting collisions among the drawn samples (each two samples that
have the same value add one to the count). This idea dates back to the first uniformity tester, and
was coined the name “collision-based tester”.

In this paper, we introduce the notion of comparison graphs and use it to formally define a
generalized collision-based tester. Roughly speaking, the edges of the graph indicate the tester
which pairs of samples should be compared (that is, the original tester is induced by a clique, where
all pairs are being compared). We prove a structural theorem that gives a sufficient condition for
a comparison graph to induce a good uniformity tester. As an application, we develop a generic
method to test uniformity, and devise nearly-optimal uniformity testers under various computational
constraints. We improve and simplify a few known results, and introduce a new constrained model
in which the method also produces an efficient tester.

The idea behind our method is to translate computational constraints of a certain model to ones
on the comparison graph, which paves the way to finding a good graph: a set of comparisons allowed
by the model that suffice to test for uniformity. We believe that in future consideration of uniformity
testing in new models, our method can be used to obtain efficient testers with minimal effort.
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1 Introduction

The field of property testing was initiated by [10, 25, 20] and concerns with fast probabilistic
algorithms that use query access to some large structure (such as graphs, functions, dis-
tribution, etc.) in order to determines whether a specific instance belong to a subclass of
possible instances (e.g., connected graphs or monotone functions) or in some sense far from
it. Specifically for distributions, as formulated in [9], we are given random samples from
some unknown distribution, and we wish to decide with high probability (over the random
samples) whether it has some property, or it is far from any distribution that does (typically
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we use `1 as a distance measure). Properties of distributions were excessively studied through
the years (see [18, 11] for excellent surveys). Until recently, the vast majority of results were
limited to the classic setting, where a single processor is given an oracle access, and performs
the testing procedure. The measure of complexity is based solely on the number of samples,
as typically the running time is polynomial in this number.

However, distribution testing can be very useful in different frameworks as well. For
example, suppose we have a sensor network taking some measurements that need to be
combined in order to make a decision about the subject of these measurements, be it volcanic
activity, seismic movements, or any form of radiation.

Another framework where testing is useful, is under constrained memory. One might try
testing an object so big, that the number of samples needed is very large. In that scenario,
even if one might endure a lengthly sampling process, storing all past samples at one given
moment can be too costly. For example, imagine a large telescope collecting data on infrared
radiation in a pursuit to discover new planets. These types of questions can be translated
to a streaming model, where samples come as a stream, and one wish to store only a small
amount of data while reliably test for a property of the underlying distribution.

When considering the relatively similar motivations for these cases, one might even
wonder about a combination of the two models, where multiple sensors spread out in some
area collect samples, each of which has bounded memory. They will then need to process all
available data within their memory constraints, such that by the end of each time period -
they are able to report their individual findings concisely to some data center that aggregates
all information in order to make an important decision.

All of these questions are inherently multi-dimensional, in the sense that many incompa-
rable resources are in play: the number of players, the number of samples, the memory space
of each sensor, and even the amount of bits communicated. Here, we focus our efforts, for
the most part, on minimizing the sample complexity (or amount of samples per player, when
multiple players are involved), with other resources given as parameters.

This specification is well-motivated by the case where we have no shortage of data we
can sample from, and we wish to understand how long a sampling process should take, as a
parameter of the number of sensors we use and their computational strength. Throughout
the text, we focus on the task of uniformity testing, a key problem in the field of distribution
testing.

Uniformity testing. The most studied family of problems in distribution testing is arguably
identity testing, where we want to test whether the input distribution P is equal to some
fixed distribution p, or ε-far from it (in `1), where ε is the proximity parameter of the
problem. In the heart of these problems stands the problem of uniformity testing, where
p = UΩ. One evidence for the importance of uniformity testing was shown in [15] and made
more robust in [19]: it is actually complete for identity testing, in the sense that testing
identity to any fixed distribution p can be reduced to testing uniformity instead. On the
other hand, uniformity testing is a specific case of other problems such as closeness testing
and independence testing, so showing lower bounds for uniformity testing would imply lower
bounds for these problems. The classic version of testing uniformity was settled for the case
ε = Ω

(
n−1/4) in [24], showing that Θ

(√
n/ε2

)
samples are in fact sufficient and necessary.

[26] later showed this holds for all values of ε.

Collision-based testers. The problem of uniformity testing was implicitly introduced in [21],
as a way to test the expansion of a graph: when simulating multiple short random walks, and
observing the distribution of the endpoint, one can connect a uniform distribution over these
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endpoint to good expansion of the graph. To solve uniformity, the collision-based tester was
introduced, where one simply counts the number of pairs of samples that have the same value.
This tester was shown to have sample complexity of Θ (

√
n · poly(1/ε)), which is turned out

to be sub-optimal in terms of ε. However, several years after the question was settled, it was
shown in [14] that the original collision-based tester also achieves optimal sample complexity,
using a finer analysis.

The idea behind the collision-based tester is rather straightforward: when comparing
two samples from a distribution, the chance of both having the same value (also referred as
collision probability) relates to the `2 norm of the distribution. It is a well-known fact that
over a fixed set Ω, the uniform distribution has the minimal `2 norm. It is also rather easy
to show that any distribution that is somewhat far from uniform (in statistical distance),
has a significantly larger `2 norm. This means that each comparison of two samples is an
unbiased estimator of the collision probability (having the right expectation), but with very
high variance. One would need to average over many such comparisons in order to reduce
the variance.

Other methods to test for uniformity. Over the years, numerous methods to test for
uniformity have been proposed. Some of them had different goals in mind, such as testing
with very high confidence, or in a multiparty model where each player gets a single sample
(sometimes even wishing to keep it private). These methods include counting unique
element [24], modified χ2 test [26], using the empirical distance to uniformity [13], randomly
hashing samples to a smaller domain [6] and more. In both [12, 16], testers that aim to
overcome different constraints relied strongly on collision counting1. Considering it is also
optimal in the classic setting, this makes collision-based testing a prime candidate for a more
generic method to test uniformity, and hopefully adjust itself to different models easily.

Comparison graphs. The original version of the collision-based tester takes a set of samples,
and use comparisons between all pairs of samples. This is well-suited for the classic model,
where one processor sees all the samples, and can easily perform all comparisons.

However, in more constrained models, this simple task is inherently impossible. For
example, a memory-constrained tester cannot store all previous samples in order to compare
them with new ones. In the simultaneous model, where each processor holds its own set
of samples, a lot of communication might be needed to compare samples that are held by
different processors. In distributed models, such as CONGEST and LOCAL (see [16]), the
problem is defined where each player in a network holds a single sample from a distribution
(replacing one sample by a constant amount produces similar behaviour). In these models, it
is much cheaper for player to compare their samples with those of a neighboring player, than
it is to make such a comparison with players that are far away (on the network topology).

To this end, we introduce the notion of comparison graphs. A comparison graph is linked
to a collision-based tester (or algorithm) as follows: the vertices of the graph are the samples
given as input, and the edges are pairs of samples that are being compared. As stated
above: in the classic model this graph is typically the complete clique (all pairs of samples
are compared). Under constrained models, however, very specific edges (comparisons) are
allowed, whereas others are not. For example, if the sample s1 is given to one player, and the
sample s2 is given to another player in the simultaneous model, no algorithm can presume
to compare the two samples.

1 These testers do not count collisions per se, they use additional crucial steps.

ITCS 2021



17:4 Comparison Graphs: A Unified Method for Uniformity Testing

Equipped with the notion of comparison graphs, one can define a collision-based tester as
a couple (G, τ), where G = (V,E) is the comparison graph that defines which comparisons
are being made, and τ is a threshold parameter. The algorithm is defined as follows: it
counts the amount of collisions observed, Z, and compares it to a threshold T that depends
on τ and the amount of comparisons made (which is |E|).

Reliable collisions-based testers In this work we introduce a structural theorem concerning
with which sets of comparisons are able to inspire a reliable test for uniformity based solely
on counting collisions. This is done by observing the comparison graph G. We formulate
sufficient conditions in terms of the graph G, that guarantee it induces a good tester (when
paired with the right threshold parameter τ). It turns out that two properties of a comparison
graph G are key: the first is the number of edges, which represents the amount of comparisons
being made; the second one, somewhat surprisingly, is the number of 2-paths in the graph G,
which encapsulates the amount of dependencies between different comparisons being made.

Few of our testers rely on the same type of graph, that pops up multiple times, for
different reasons. To this end, we formulate Lemma 4, that specifies the required parameters
for a comparison graph of this type to induce a good tester.

1.1 Examples of comparison graphs

It is interesting that the number of samples (the measure we usually wish to minimize) does
not appear as a condition on our comparison graph directly. However, it does play a role
indirectly, as simple inequalities connect the three graph quantities (see Section 4.1).

Our structural theorem basically shows that any comparison graph with enough edges,
but not-too-many 2-paths induces a good uniformity tester. To better understand the
meaning of this, we fix the amount of edges, |E|, and review a short list of examples for
potential comparison graphs. We are interested in the interplay between the amount of
vertices (samples), edges (comparisons made) and 2-paths (dependencies created).

The clique graph. The standard tester is actually the full clique, comparing each possible
pair of samples. In this dense graph we only need

√
|E| vertices in order to have |E| edges.

However, many 2-paths (and dependencies) are created along the way as well, Θ
(
|E|3/2

)
.

For this specific case, it is already known the two affects can be balanced to obtain optimal
(asymptotic) sample complexity.

Disjoint cliques. Another interesting graph (used in some sense in [16]) is actually a union
of disjoint cliques. This graph turns out to be quite useful. For once, it makes perfect sense in
a simultaneous model, where each player process her own samples, sending a short summary
to the referee. Surprisingly, it arises in other models as well.

A perfect matching. This graph relates to taking a fresh pair of samples each time we wish
to make a new comparison, which leaves us with a set of completely independent collision
indicators. Indeed, in this graph there are no 2-paths at all. Not only this tester minimizes
the dependencies – it actually overdoes it. Doing so, it pays a price in sample complexity:
the number of vertices we have is 2 |E|, much larger than the clique, for instance.
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The star graph. With a fixed number of edges, this graph is actually the way to maximize
the amount of 2-paths and dependencies – which makes it a very poor comparison graph.
Indeed, the tester it induces is equivalent to drawing one element from P , and comparing it to
many other samples, assessing the probability of this element. This test is indeed ill-advised
against distributions were 3/4 of the elements have mass 1/n.

The full bipartite graph. Another graph that could be considered is the full bipartite
graph, G = (V1 t V2, V1 × V2). Here again we have a free parameter (the size |V1|, which
determines |V2| = |E| / |V1|). It ranges from a star-graph (for |V1| = 1) to a balanced graph
(for |V1| = |V2| =

√
E), where the last one functions asymptotically similarly to the clique.

It appears that Theorem 3 only gets optimal testers (minimizing the number of comparisons)
from these graphs when they are balanced. To some extent, the test of [12] in the streaming
model is based on such a graph. However, they use additional steps that seem crucial for the
analysis. more details are given in 3.2, where it is also shown that one can test uniformity in
the streaming model solely via collisions counting, using a whole different comparison graph.

1.2 Models and Results
Our main result is a method that produces well-performing uniformity testers in various
models. In this paper we show a list of uniformity testers in different models, specified below.
We also show limitations of our method for most of these models, which point towards a
conclusion that no better comparison graphs could have been chosen (up to constant factors
in the sample complexity of the induced tester). These limitations rely on a conjecture that
no matter the shape of the graph, enough comparisons always must be made.

We emphasize that for any model in which a lower bound is known (for any method, not
necessarily collision-based testing), the testers produced by our method are optimal, up to
poly(1/ε) factors. As far as we know, no testers in the literature are tight with the current
lower bounds for these specific cases. Thus, it could be the case that collision-based testing
achieves optimal results (even in terms of ε) for all the models we consider. A more thorough
discussion is given in Section 4.2.

Equipped with the structural theorem, we consider various models and devise a uniformity
tester in each one. The key idea here is to translate the constraints of each model into
the comparisons we are able to perform, or differently put: a structural limitation on the
comparison graph. Doing so will guide us how to choose a “good” comparison graph for
this specific model. Having a structure in mind, two formalities are left: (i) Prove that
calculation of Z, T (the number of collisions, and the threshold value) can be done in the
model; (ii) Calculate our desired complexity measure (which changes from model to model),
and optimize the parameters of the chosen graph (e.g., if the graph is a clique, determine the
size of the clique).

Standard processors. In Section 3.1, we deal with the classic and the simultaneous model.
First we use the classic model as a warm-up. Since this is done in [14], we add to the mix a
small insight: our framework (which allows adjusting the threshold) actually provides slightly
better constants when placing the threshold much lower than 1/2 (at roughly τ = 1/9).

For this model, it was shown by [13] that testing with high precision can be done faster
than it would have using standard amplification. However, they use estimation of the
empirical distance from uniform over the sample set. It is unclear whether collision-based
testing is fit for this task. We do not pursue this direction here.2

2 One reason is that our work focuses on the regime that uses new and different comparison graphs, other
than the clique graph. This direction would probably involve analysis that is specific for the clique
graph, where all samples can be compared with one another.
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We then move to the simultaneous case where multiple players each send a short message
to the referee, based on their own samples. The referee then needs to output a decision about
the underlying distribution. In this model we want to find a good exchange for the number of
players, the number of samples each player gets, and the length of the messages. For example,
if the messages can be arbitrarily long, each player can send her entire sample set and the
problem becomes trivial. For this reason, the two papers to first consider (independently)
testing in this model, had a very different focus. In a preliminary version of [5, 6], only
the case of a single sample per player was considered, and their algorithms indeed rely on
different and interesting strategies, but not collision counting – as this strategy is irrelevant
for this regime. In [16] a different approach was taken, where all messages were fixed to a
single bit, but each player gets multiple samples (and in fact, their algorithm does rely on
collisions in some sense, but it does not count them accurately, and does not fall under the
umbrella of our definition for collision-based testers).

For our use, as oppose to both these view, we allow both parameters to be larger. We
allow multiple samples per player, and show that using a short message (not a single bit, but
not much longer), one can devise an efficient tester.

We also consider the asymmetric cost variant of this model, which aims to model the
case where not all players have the same sampling capabilities (say, one player might gather
samples much faster than another). As we measure our complexity by number of samples,
we might as well think of the sampling process as being the bottleneck which we wish to
hasten. When trying to minimize the sampling time instead, it is only natural to generalize
the model to the case where some players are more efficient than others. Other than this
motivation, a more technical motivations exists: a natural reduction from the LOCAL model.
The LOCAL model is a standard interactive model. Uniformity testing in this model was
first considered in [16], which gave a very natural reduction to a simultaneous model where
players have different sampling rates.

We remark that many works in the simultaneous model consider communication trade-offs,
when assigning only a single sample for each party. Our method does not currently extend to
this framework, although one might consider integrating it with other methods. For example,
one method (e.g., in [6]) uses random hash to a smaller domain. One might consider collisions
on this domain instead of the original one. these meta-collisions can be counted within the
communication constraints.

Some works in this regime (single sample) focus on privacy aspects of testing (e.g., [2, 7]).
This line of research should be irrelevant for our method (and even the extension mentioned
above), as any detection of a collision (even on a smaller domain) would immediately give
away non-trivial information about the sample.

Memory-constrained processors. In Section 3.2, we deal with a different type of processors:
memory-constrained processors. When observing a single processor of this type, we end up
with the streaming model (as described in [12]). At least one scenario which motivates the
simultaneous model is seemingly very coherent with such constrained processors. Thinking
of a network of sensors, or remote devices, gathering samples – it is quite comprehensible
that these processors are not only limited by their ability to communicate with the data
center, but also by their ability to store the entire data observed between consecutive reports
(in this scenario, the data center is the referee performing the test periodically to detect
anomalies). For this reason, we also consider the case of a simultaneous model, where each
processor has a small memory budget. In this new model, we easily devise again an efficient
uniformity tester.
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Testing in an interactive model. Lastly, in the full version of this paper, we use the struc-
tural theorem to show how on certain graphs one can solve uniformity in the CONGEST model
faster than what was previously known to be possible. Specifically, if the communication
network has k players and diameter D, and each players start with one sample, the best
known algorithm runs in O(D + n/(kε4)) rounds [16]. The improvement we suggest is
an algorithm that takes O(D) rounds, and works in specific networks that have a certain
topological characteristics. Moreover, we show a simple detection procedure of O(D) rounds,
that can be used to recognize such a good topology. This means that any network can use the
detection procedure first, and then either proceed as in [16], or switch to the faster (O(D))
algorithm whenever it is guaranteed to perform well.

1.3 Related Work
The task of uniformity testing, as well as the collision-based tester for it, were introduced
in [9] (and implicitly in [21]). Later on, upper and lower bounds on the sample complexity
of the problem were given by [24] (for most values of ε), showing that the optimal sample
complexity is in fact s = Θ

(√
n/ε2

)
, where n is the world size, and ε is a proximity parameter.

A preliminary version of [26] giving a tester that achieves this complexity for any value of
ε. The last two papers used two different testers: the first relied on the number of distinct
elements in the sample set (this test is somewhat dual to counting collisions), and the second
on a modified χ2 tester. It was then shown by [14] that the collision-based tester does in
fact achieve optimal sample complexity too.

In the past few years there has been a growing interest in distribution testing under various
computational models, including collaborative testing in multiparty model, the streaming
model, privacy aspects of testing, and others ([5, 6, 16, 8, 2, 22, 3, 4, 1, 23, 17, 7] and more).
We mention in more details the works concerning uniformity testers in models we pursue.

In a preliminary version of [5, 6] and [16] each, independently, the task of uniformity
testing was considered in a simultaneous communication model. In this model, all players
receive samples from the same global distribution P , and all players report to a referee based
on their own samples. The referee in turn uses the reports to output (with high probability)
whether P holds some property.

In both lines of work, the focus was uniformity testing, but using two different perspectives:
the former zeroes in on one sample per player, where the trade-off in question is between the
number of bits each player is allowed in his report, and the number of players needed to the
testing process. We think of the number of bits as too small to describe the sampled element
fully. In this setting, a full description of two samples is never available to a single player
(not even the referee). We do note that the tester given there relies on a looser notion of
collisions (Taking a coarser division of [n] into subsets).

In the later, the focus is different: one now fixes instead the communication to one bit
per player. Now, the trade-off is between the number of players and the number of samples
each one of them takes. The upper bound devised there discuss each player taking the right
amount of samples, and notifying the referee 0 if no collision occurred, and 1 otherwise. In
some sense, the referee ends up counting collisions (notice the count is trimmed, as one player
might see more than 1 collision, but is only able to report 0 or 1). This tester is then used
as a black-box to solve uniformity testing in the classic distributed models (CONGEST and
LOCAL ), in a setting where each player initially draws one sample.

One other paper to specifically discuss uniformity testing is [12], in which a streaming
version of the problem is defined, as well as another distributed version, in a blackboard
model, where all players are privy to the messages sent by others. As opposed to the
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simultaneous models mentioned above – here several rounds of communication are allowed.
As it turns out, the streaming algorithm, as well as another algorithm for the distributed
version, boil down yet again to counting collisions under the limitations of the model.

In addition to these, quite a few works had the focus of showing impossibility results
both in the classic and the entire variety of models. For out interest, we mention [15, 24]
for the classic version, as well as [22] for the simultaneous model (with multiple samples per
machine), and [12, 3] for the streaming model.

2 Preliminaries

Throughout this text, we discuss uniformity testing using collision-based testers.
We let [n] := {1, 2, . . . , n}, and use ∆([n]) to denote the set of distributions over the set

[n]. As we only care about the support size (rather than the values), it is enough to consider
P ∈ ∆([n]) as possible input distributions. For a distribution P over [n], we write Pi for the
probability of the ith element.

An (n, ε)-uniformity tester is an algorithm A that given oracle access to some unknown
distribution P ∈ ∆([n]), takes q = q(n, ε) samples from P and satisfy the following:

If the input distribution is P = Un, the uniform distribution over [n], then A outputs
YES with probability at least 3/4.
If ‖P − Un‖ ≥ ε, which means the distribution P is ε-far from uniform), then A outputs
NO with probability at least 3/4.

The distance used here is L1. Meaning, for two distribution P,Q, the distance is ‖P −Q‖ =∑n
i=1 |Pi −Qi|.
To formalize our notion of a collision-based tester, we take a fresh point of view of the

sampling process. The key object in our analysis is the comparison graph, which is simply an
undirected graph G = (V,E), where we think about V as a set of placeholders for samples
and E as the pairs of samples which are chosen to be compared with one another.

I Definition 1 (Sampling process, collision indicators). Given a comparison graph G = (V,E)
and an input distribution P ∈ ∆([n]), the sampling procedure SP is described as a random
labeling of the vertices according to P . We denote by SP : V → [n], the process for which
∀i.SP (vi) ∼ P , independently from one another. We end up with SP (v1), . . . , SP (v|V |) which
is a set of |V | i.i.d samples from P .

Moreover, we define for any edge e = (u, v) in E, the collision indicator 1Pe :=
1SP (u)=SP (v).

When P is clear from context, we simply write S(u) for the sample sitting in vertex u,
and 1e for the collision indicator.

We are now ready to give a formal definition for a collision-based tester, which relies on
a set of comparisons (not necessarily between all pairs of samples), and compares Z - the
amount of collisions, with some threshold value T .

I Definition 2 (Collision-based tester). Fix n, ε. For any comparison graph G = (V,E) and
real number 0 ≤ τ ≤ 1, we define the algorithm A = (G, τ) as follows: upon receiving as
input |V | i.i.d samples from P (given by SP (v1), . . . , SP (v|V |)), it computes the following:

Z :=
∑
e∈E

1e , T := |E| ·
(

1 + τε2

n

)
,

and outputs YES if Z < T , and NO otherwise.
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The restriction τ ∈ [0, 1] will help us deal with technicalities, but we note that it is rather
intuitive. Indeed, as we will see later, only for these values the expectation of Z is lower than
T for the good input (uniform distribution), and higher than T for all bad inputs.

Throughout, we will focus on properties of the graph and of our input distribution. We
denote by |EG|, |VG| the number of edges and vertices in G, and by c(G) the number of times
a 2-path appears as a subgraph in G. We count each 2-path twice, for its 2 automorphisms,
and so we need to count “directed” 2-paths (so e1, e2 and e2, e1 are both counted). Formally,
we can write c(G) =

∣∣∣{(u, v, w) ∈
(
V
3
)
| (u, v), (v, w) ∈ E

}∣∣∣.
For the distribution P over [n], with Pi for the probability of the ith element, we denote the

collision probability µP =
∑n
i=1 P

2
i , and the three-way collision probability γP =

∑n
i=1 P

3
i .

For brevity, whenever G or P are clear from context, we simply write |V |, |E|, µ, γ.

2.1 Models of Computation

In all our results we are concerned with distribution testing (and specifically uniformity
testing), and we deal with various models. Therefore, in the following lines we specify in
which way samples are taken in each model, and in what way the answer of the algorithm
needs to be declared (where a good tester is the one that outputs YES (resp. NO) with high
probability whenever the samples are taken from a YES (resp. NO) distribution).

The centralized model. The centralized model is the classic model. In this model one
processor receives all samples s1, . . . , sq (in comparison graph notations, we think of si = S(vi),
and q = |V |), and is tasked with outputting a proper answer according to the underlying
input distribution. The complexity measure we wish to minimize in this model is q, the
number of samples.

The simultaneous model. The second model we consider is the simultaneous model, where
k players (processors) each draw individual samples unseen by all other players. Each player
sends a short message to the referee. The referee then aggregates the messages and outputs
the answer. Formally, each player is tasked with Vi where the whole set of vertices in G is
V = tki=1Vi. The samples of processor i are then {S(v)}v∈Vi

. Each processor can send a
message ai which is a function of its samples, and a referee receives all messages a1, . . . , ak and
outputs the answer. The simultaneous first appeared in the context of testing independently
in [16] and preliminary version of [5, 6], where in the first |ai| = 1 meaning each player is
allowed to send one bit, and in the latter |Vi| = 1 meaning each player gets exactly one
sample. We take the same point of view as in [16], but we remove the restriction of 1 bit and
allow a longer (but still short) message instead.

The number of players k is given as a parameter, and our goal is to minimize the number
of samples per player, where all players get the same amount of samples: q/k (we think of
it as sort of parallelization of the sampling process). We also consider the asymmetric-cost
variant, where each player has an individual cost for each sample it draws (we think of this
cost as the time it takes to draw each sample), and we wish to minimize the cost (or time) of
the entire sampling process.

We also discuss the case of memory-constrained processors, also referred to as the
streaming model, where this distribution testing was recently considered in [12].
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Memory-constrained processor. In the memory-constrained model, each processor receives
its samples as a stream, and once a sample is dealt with it is gone forever (this is the one-pass
variant of the streaming model). A processor can only use a limited amount at each given
moment, denote by m (and measured by memory bits). We think of m′ = bm/(2 logn)c as
the number of samples we can store with half the memory (we leave the other half for other
calculations). The complexity measure of this model is the number of samples needed to
complete the testing task.

We also consider a simultaneous model where each processor is memory-constrained,
receiving its samples as a stream, and using its m bits of memory it needs to come up with
a message ai to send to the referee once all samples are seen. The referee then receives all
messages and outputs an answer. We stick to the case where all processors are of the same
type and therefore have the same constraints of m bits.

3 Results

In this section we go over numerous applications of our method. For each model we go over
the same phases: we start with intuition as to which comparison graph G is fit to this model,
and we go on to show how one can simulate a collision-based algorithm A = (G, τ). By
simulating the algorithm we mean that by the end of the calculation, some processor will be
able to compute both the number of collisions (Z) and the fitting threshold (T ), so it is able
to output the answer. The last part is optimizing parameters, where first order parameters
are those of G, and in some application we also give focus to second order parameters
(choosing τ).

The strength of the method comes from the following structural theorem that gives
sufficient conditions for a comparison graph inducing a good uniformity tester:

I Theorem 3. Fix a domain size n and a proximity parameter ε. If the following hold for
an algorithm A := (G, τ):
1. |E| ≥ 4n

τ2·ε4 ,
2. |E| ≥ 16n

(1−τ)2·ε4 , and

3. c(G)
|E|2 ≤

(1−τ)2ε2

16
√
n

,

then A is an ε-uniformity tester.

We direct the reader to the full version for the proof. For the most part, it is a
generalization of the one used in [14] to show the original collision-based tester is optimal
(in our notations, the original tester over q samples is simply the algorithm A = (Kq, 1/2)).
While generalizing the proof we leave not one, but three separate conditions on a general
comparison graph, that together guarantee it induces an (n, ε)-uniformity tester. This
supplies a better, multi-dimensional understanding of how well a collision-based algorithm is
guaranteed to perform. We note that if one is willing to ignore constants, one could simply
fix τ = 1/2 and merge the first two conditions into one. However, interestingly for our
method other values of τ (usually smaller) guarantee slightly better constants. We leave
all 3 conditions separate to maintain maximum flexibility when proving application of the
theorem.

A specific comparison graph that is key to our algorithms is the one of disjoint cliques.
Indeed, our strategy will be “perform any comparison you can” which sometimes simply
means we have several bulks of samples, where in each bulk all pairs can be compared. To this
end, we also give a more specific version of Theorem 3, for graphs that have this structure:
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I Lemma 4. Fix n, ε. Fix a comparison graph G =
⊔`
i=1Gi, where each Gi is isomorphic

to Kq, for some q ≥ 3. If the following hold for an algorithm A := (G, τ):
1. q
√
` ≥

√
12
√
n

τ ·ε2

2. q
√
` ≥

√
48
√
n

(1−τ)·ε2

3. q` ≥ 24
√
n

(1−τ)2ε2

then A is an ε-uniformity tester that uses |V | samples.

Here again we leave the 3-conditions version in order to be able to adjust the threshold
parameter for optimizations. However, here all 3 conditions are quite similar, pointing to the
following simple corollary:

I Corollary 5. Fix n, ε. Fix a comparison graph G =
⊔`
i=1Gi, where each Gi is isomorphic

to Kq, for some q ≥ 3. For each constant τ , the algorithm A := (G, τ) is an ε-uniformity
tester, if it holds that

q
√
` ≥ 35

√
n/ε2

The proofs of these are also omitted, and appear in the full version of the paper. We go
on to show how these statements are used to devise testers in various models.

3.1 Standard Processors
3.1.1 Centralized Model
As a warm up, we re-prove the original collision-based tester works, in term of the comparison
graph, and using 4. To add a small twist, we show that under our analysis, better sample
complexity is guaranteed when using a biased threshold (meaning, taking τ 6= 1/2). Let us
denote q := |V |, which is the number of samples drawn, and our complexity measure for the
model. The following is rather straightforward:

I Corollary 6. One can test uniformity using q = Θ
(√

n
ε2

)
.

Proof. We simply use the lemma for ` = 1 (one big clique), and we get 3 conditions of
similar form, and in particular:

q ≥ max
{√

12
τ

,

√
48

1− τ ,
24

(1− τ)2

}
·
√
n

ε2

Which means that choosing e.g., q = 100
√
n

ε2 with τ = 1/2. We note that the tester can easily
compute Z, T and therefore execute the collision-based algorithm (G, τ), for any value of τ .

An added perk here, is that one can optimize τ over the three conditions to reduce sample
complexity by a constant factor. Even though the guaranteed constant is somewhat of an
artifact of the proof, it is still interesting to see that τ = 1/9 would reduce the constant from
100 to roughly 35 (while simple optimization over τ would reduce it even a bit more, for
some irrational threshold value). J

3.1.2 Simultaneous Model
In the simultaneous model, k players are each given oracle access to the distribution P . After
taking samples, each player is allowed to send a short message to a referee, who then needs
to output the right classification for P (with high probability).
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We give our focus to the variant posed in [16]: what is the number of samples per player
needed to test uniformity? The “single collision” algorithm devised for that question only
requires one bit from each player, and indeed it was shown to be optimal in [22]. However,
this algorithm is somewhat delicate: first, the range of the parameter k is limited (it cannot
be too high or too low, with regards to n, ε); second, if the number of players k is not
accurately known to all players, the algorithm breaks. This is because unlike most results in
the classic setting, the analysis here actually requires each player to use a specific amount of
samples, but not more than that. Because the players can only communicate a single bit,
everything else must be set in advance given the problem’s parameters.

To that end, we relax the model, and allow each player to send more than a single bit,
but still only a small number of bits is allowed. These would allow each player to send the
number of collisions she saw (rather than whether a collision occurred). Our algorithm works
for any parameter k, and can adjust to the case where each player is not exposed to the
exact value of k, but rather to an approximation of it.

The model at hand imposes very concrete limitations on our comparison graph: one
cannot compare a sample from one process to a sample of the another process. This means
having k players solving the problem in a parallel way, is equivalent to having a comparison
graph whose number of connected components is at least k. Followed by the intuition of
“compare every pair you have”, the graph we use is the disjoint cliques graph, with k disjoint
cliques. Our measure of complexity is the number of samples each player used, q′, which is
translated to be the size of each one of our cliques.

I Corollary 7. In the simultaneous model, one can test uniformity using q′ = Θ
( √

n√
kε2

)
samples per player, where each player is allowed to send Θ (log (1/ε)) bits to the referee.

Proof. We use Lemma 4, where each player has an independent sample set of size q′ and
compares all the pairs. We have k players in total doing so.

Our first goal is to show how to simulate a collision-based tester (G, τ) in this model.
This will be possible whenever G is made of at least k vertex-disjoint connected components
G =

⊔
i∈[k]Gi.

Now, we can write Z =
∑
i Zi where Zi :=

∑
e∈Ei

1e, and each Zi is calculated by the
ith player and then sent to the referee who simply sums them up to produce Z. Computing
T is easy: the algorithm is known to all, and specifically the values τ, |E| are known to the
referee. Now she simply needs to output the decision 1Z<T .

Our next step is to quantify the communication and sampling cost of said algorithm.
We aim at a communication cost of roughly log (1/ε) bits per player. We note that Zi can
theoretically be very large, however if it surpasses T , then obviously Z > T , and the referee
can reject. To this end we designate a specific string to say “too large” and instead each
player sends Zi only up to a value of T . This amount can be communicated using merely
log (T ) bits by each player.

We now calculate the sample complexity, measured in samples per player. We use
Lemma 4 with q′ and ` = k, to know that it is enough if we satisfy:
1. q′ ≥

√
12
√
n

τ ·
√
kε2

2. q′ ≥
√

48
√
n

(1−τ)·
√
kε2

3. q′ ≥ 24
√
n

(1−τ)2kε2

Which is enough to show the asymptotic sample complexity we desire.3

3 Assuming large enough k, the third condition pose asymptotically weaker requirement, and so optimizing
τ on the first two would yield the optimal guarantee for τ = 1/3, getting us to q′ =

⌈√
108

√
n√

kε2

⌉
samples

per player.
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Since the third condition is looser than the first two, we actually choose the number
of samples per player, q′, such that |E| = Θ

(
n/ε4

)
. Since τε2 ≤ 1, this means that our

threshold is not too large

T = Θ
( n
ε4

)
·
(

1 + τε2

n

)
= Θ

(
1/ε4

)
,

and so the simulation of the tester only requires each player to send log
(
Θ(1/ε4)

)
bits to

describe the number of collisions she saw. J

I Remark 8. As apparent from [5, 6, 22], when messages are r bits long, the correct value
to look for in the sample complexity is 2r (and sometimes

√
2r). For this reason, when

discussing communication, we explicitly write expressions such as log
(
Θ(1/ε4)

)
instead of a

more general Θ (log(1/ε)). This would prove useful when comparing our results to known
lower bounds, as is done in Section 4.2.

3.1.3 Asymmetric-Cost Model
This variant is best described and motivated as follows: we think of the sampling process as
time consuming, and each of the k players now has her own sampling rate, meaning that
some players are able to draw samples faster than others. We describe the sampling rate
vector R = (R1, . . . , Rk), and we let each player draw her own number of samples (s1, . . . , sk).
The complexity measure is the time dedicated for the sampling process, denoted t. Within t
time, player i collects exactly qi := bRi · tc samples.

Simulating the tester (calculations of Z, T ) works just as before. The big difference is
that now each player has a different amount of samples (depending on her rate Ri) and thus
a different clique size. We omit the calculations which can be found in the full version, and
merely state the result we obtain:

I Corollary 9. In the simultaneous model, one can test uniformity in time t = Θ
( √

n
ε2‖R‖2

)
,

where ‖R‖2 =
√
R2

1 + · · ·+R2
k, and each player sends Θ (log (1/ε)) bits to the referee.

It is interesting that this tester actually generalizes the previous two. Indeed, taking rate
vectors R = (1, . . . , 1) gives the symmetric model, and R = (1, 0, . . . , 0) the centralized one.

3.2 Memory-Constrained Processors
3.2.1 Centralized Model with Memory Constraints
In the streaming version of the problem, introduced in [12], the samples from the distribution
P arrive in a stream, and our processor can only store m bits of memory. We wish to stream
as few samples as possible and still output with high probability whether P is uniform or
ε-far. For our purposes, we use m′ = bm/2(log(n))c, the number of samples that can be
stored with half of the memory space (the other half will be used to perform calculations).

The restriction this model imposes is that when a certain sample is being processed, it
can only be compared with the O(m′) samples that are currently stored. This intuition can
be formalized, showing that any comparison graph used in the streaming model must have a
bounded average degree (the maximal degree can be arbitrarily high: store the first sample
and compare with all others). Indeed, we later quantify this statement (see Claim 16, in
Section 4.1.2). For now, we just use it as intuition for the right comparison graph.
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In [12] the full bipartite graph was used (with few modifications): they store a batch of
samples V1 and compare the rest of the stream (V2) while comparing each new samples to
all samples in V1. For a partial range of m, they achieve sample complexity of Θ

(
n/(m′ε4)

)
,

which is shown to be optimal for an even more limited range parameter m. It was left as an
open question whether this sample complexity can be attained for a wider range of values
for m. For the upper bound, we answer this question in the positive. We use not only a
different analysis, but rather a whole different comparison graph, one that also has a low
average degree. For simpler representation, we again turn to the disjoint cliques graph used
before. The induced algorithm is this: we allocate half the memory for samples and half for
calculations. for the first half we take batches of m′ samples, and make all comparisons in
between them. We then delete them entirely and make room for a new batch. The number
of comparisons is a compact information, that can be easily calculated and stored on the
second half of our memory tape.

Once again we leave the full details in the full version of this paper and sum up the
differences. The calculations are somewhat similar to before. The one major difference (that
results with a different-looking result) is the fact we now express the sample complexity with
respect to parameter m (the size of each clique), whereas before we used k (the number of
cliques) as a parameter.

Since the first half of the tape must store samples, and the second half must count collisions
all the way up to the threshold T = Θ(1/ε4), the result only applies for m = Ω (log(1/ε)).
Whenever m′ ≥ c

√
n/ε2 there is not need (nor a possibility) to split our samples to batches,

and instead we use one large batch to test uniformity such as in the centralized (standard)
model. Combining all the above, we obtain the following result:

I Corollary 10. In the streaming model with memory m , one can test uniformity using

q = Θ
(

max
{
n · log(n)
mε4

,
√
n/ε2

})
samples, as long as we have m = Ω (log(1/ε)).

Note that our result has similar complexity as in [12], but it widens the range of acceptable
values for m. They had the requirement of m = Ω

(
log(n)/ε6

)
, which is far larger than

the humble requirement posed on our tester. We leave open an interesting question posed
also in [12]: is it possible to test for uniformity in the scarce regime, and if so – what is
the sample complexity required to do so? (The scarce regime is essentially m = o (log(n)).
Though, to comply with our result - e.g., for absurdly small values of ε - it can be redefined
to m = o (max {log(1/ε), logn}) )

3.2.2 Simultaneous Model with Memory Constraints
The main difficulty in this section seems to be handling the multiple parameters: on top of
n, ε, we use k processors, each of which can store at most m bits of memory (or m′ samples),
and is allowed a short one-sided communication to the referee.

We state the result and omit the proof (which is given in the full version).

I Corollary 11. In the memory-constrained simultaneous model, whenever m = Ω (log(1/ε))
bits of memory are allowed for each player, and log

(
1/ε4

)
bits of communication are allowed

for each player, uniformity can be tested using

Θ
(

n

kε4
·max

{
log(n)
m

,

√
kε2√
n

})
samples per player.
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Note that in the regime of very small memory constraint, the problem suddenly “parallelize”
perfectly: imagine taking k ≤ Θ

(
(n/ε4) · (log2(n)/m2)

)
machines with memory m per

machine. In this case, each machine needs only a 1/k fraction of the amount of samples
required for a single machine with memorym. This phenomena is explained by the observation
that the real barrier (or scarce resource) in this regime is the overall storage, which indeed
grows linearly with the number of machines used.

4 Limitations of the Method

In this section our goal is to better understand the possibilities (and impossibilities) of
collision-based testing, in comparison to arbitrary testing methods (many of which were
developed for specific testing task, as mentioned earlier in the text).

Here, we use Definition 2 to shift the discussion to graph terminology, focusing on the
comparison graph. We leverage simple graph properties to show some limitations that apply
when generating testers, such as done in Section 3.

The results hereinafter apply to testers where correctness is proven via our structural
theorem. However, we next formulate a simple conjecture (regarding the necessity of
making enough comparisons) that implies these results are true for any tester that answers
Definition 2. In matter of fact, we will formally show that under the framework of Theorem 3,
the comparison graphs we have chosen are essentially the best to answer the requirements.
If the conjecture is proven to be true, we get the stronger results that this graphs are indeed
optimal with respect to any tester from Definition 2).

In the discussion at the end of this section, we compare these results with known lower
bounds (for arbitrary testers) under the same constraints. This section aims to both show
optimality (or near-optimality) of the testers we develop, and more importantly: give a
better understanding of collision-based testing and how strong it is, compared to an arbitrary
tester.

We first go on to show some basic inequalities that hold in any simple graph (and in our
comparison graphs as well). These will serve us for the rest of this section. The goal is to
establish the inherent connection between the 3 sizes: |V | , |E| , c(G) in any simple graph G.

4.1 Conditional Impossibility Results
We start by stating the following easy lemma that connects our quantities of interest in any
simple graph.

I Lemma 12. For any simple graph G, it holds that:
1. |E| ≤ |V |

2

2

2. |V | ≥ 4|E|2
2|E|+c(G)

3. if |V | ≤ |E| then c(G) ≥ 2 |E|
4. Whenever |V | ≤ |E|, we have |V | · c(G) ≥ 2 |E|2

We omit the proof here (it appears in the full version), and proceed to put these properties
into use.

In order to understand the scope of possible applications of Theorem 3, we stick to graph
notations, and combine the 3 different types of assertions concerning our comparison graph:
1. The requirements needed to apply Theorem 3.
2. The basic graph properties of Lemma 12.
3. Individual assertions that apply for the model at hand.
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We note that all the results below only use the first requirement of Theorem 3, which
asks for the total number of comparisons to be large enough. We believe this requirement
to be inherent for any collision-based tester (rather than an artifact of our analysis). We
formulate this belief as the following conjecture, which would strengthen the impossibility
results of this section to be independent of the analysis (instead of limitation of Theorem 3,
we get a lower bound for all collision-based testers as defined in Definition 2).

I Conjecture 13. Any collision-based tester as in Definition 2 that tests uniformity with
error at most 1/4 must have |E| = Ω

(
n
ε4

)
Note that it holds in two extremes: for maximum amount of dependencies (clique graph)

it follows from any lower bound in the classic version of the task. On the other side, the
perfect matching has no dependencies at all, and it induces a tester that draws a new pair of
samples each time. As the collision probability is either 1/n or larger than (1 + ε2)/n. each
comparison is like an independent coin toss with this biased (as observed by [6]). It is known
for this problem that at least Θ

(
n/ε4

)
tosses are needed to decide the bias, which shows

correctness of the conjecture for this comparison graph.

4.1.1 Standard Processors
Centralized model. As a warm-up, we turn to the classic model, where no constraints are
involved. We easily see that Conjecture 13 helps. Using the first bullet in Lemma 12 gives
the known lower bound in the classic version of the problem: q = |V | ≥

√
2 |E| = Ω(

√
n/ε2).

Simultaneous model. In the simultaneous case, the main restriction is that of each player
has her own comparison graph, as no comparisons can be made between two different players.
This leads us to the following:

I Corollary 14. Assuming Conjecture 13 holds, the number of samples per player of any
collision-based uniformity tester in the simultaneous model is q′ = Ω

( √
n√
k·ε2

)
.

Proof. We recall the sample complexity here is the maximum amount of samples one player
draws. Formally, we write the comparison graph as the union of k disjoint parts: G =⊔
i∈[k]Gi, where Gi = (Vi, Ei), and so the complexity measure is simply q′ = maxi∈[k] |Vi|.
We note, however, that |Ei| ≤ |Vi|2 /2 for each component Gi, and therefore:

|E| =
∑
i∈[k]

|Ei| ≤
∑
i∈[k]

|Vi|2 /2 ≤ k ·maxi∈[k] |Vi|
2
/2 = k · q′2/2.

Plugging in Conjecture 13, we get

q′ ≥
√

2 |E|
k

= Ω
( √

n√
k · ε2

)
,

which ends the proof. J

Asymmetric cost model. The more elaborate version of the asymmetric-cost model also
impose similar limitations, where the difference comes from the generalized definition of the
complexity measure.

I Corollary 15. We observe the asymmetric-cost simultaneous model, with sampling rate
vector (R1, . . . , Rk). If Conjecture13 holds, then any collision-based uniformity tester in this
model must use sampling time of t = Ω

( √
n

ε2‖R‖2

)
.
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Proof. We again use G =
⊔
i∈[k]Gi, where Gi = (Vi, Ei). However, the complexity measure

is the time t in which player i with rate Ri can obtain |Vi| = qi = t ·Ri samples.
Again, using the trivial edges-vertices inequality over each component Gi, we get

∀i. |Ei| ≤ |Vi|2 /2 = t2 ·R2
i /2

and summing all together, we get

|E| =
∑
i∈[k]

|Ei| ≤
∑
i∈[k]

t2 ·R2
i /2 ≤ t2 ‖R‖

2
2 /2.

Joined with Conjecture 13, it concludes the proof

t ≥
√

2 |E|
‖R‖22

= Ω
( √

n

ε2 ‖R‖2

)
. J

4.1.2 Memory-Constrained Processors
Here we use a slightly more sophisticated argument, to show that the memory constraint can
also be translated to graph notation. We emphasize that our desire is to show limitations
of our framework, and so we relax the model and assume that comparisons are made
on designated memory cells, in which we can only store m′ element names. In order to
count collisions accurately, we cannot expect to compress this data further. For example,
m′ = o(

√
n) and samples are drawn from the uniform distribution P = Un, with 99% we need

to write in our memory m′ different elements, and this information cannot be compressed.
We go on to show how the memory constraint translates well:

B Claim 16. Let us assume a constrained machine can only store m′ elements at a time,
and it is able to accurately count collisions on a comparison graph G = (V,E). Then it must
be the case that |E| ≤ m′ · |V | .

Proof. w.l.o.g let us name the vertices, or samples, by their order in the stream V =
{v1, v2, . . . , vs}, and w.l.o.g let us think of the edges in E as ordered pairs (We only write
(i.j) ∈ E for pairs where i < j).

Now, we note that at time t, upon processing the sample vt, the memory can only store
m′ samples from the set s(v1), . . . , S(vt−1). This means that the number of edges in E of the
form (vi, vt) is at most m′. Now, we can count our (ordered) edges using the second item:

|E| =
∑
vj∈V

|{(u, vj) ∈ E | u ∈ V }| ≤
∑
vt∈V

m′ = |V | ·m′

which completes the proof. C

Centralized model with memory constraints. We next apply this claim to give similar
lower bounds in the following models.

I Corollary 17. Assume Conjecture 13 holds. Any collision-based uniformity tester that
can only store at most m′ = Θ (m/ log(n)) samples at any given time, must take at least
q ≥ Ω

(
n log(n)
mε4

)
samples.

Proof. As our measure complexity is the total amount of samples, q = |V |, we can combine
the claim above with Conjecture 13 to get:

q = |V | ≥ |E|
m′

= Ω
(
n log(n)
mε4

)
,

which ends the proof. J
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Simultaneous model with memory constraints. We observe the combined model of si-
multaneous model with memory-constrained machines. We again restrict ourselves to a
specific framework: each player uses her own graph Gi = (Vi, Ei), where memory is allocated
for sampled elements, and then all players send a short message to the referee. The entire
comparison graph the algorithm is based on is G =

⊔
iGi.

I Corollary 18. Any collision-based uniformity tester in a simultaneous model of k machines
that can store up to m′ samples each, must use

q′ = Ω
(

n

kε4
·max

{
log(n)
m

,

√
kε2√
n

})

samples per player, assuming Conjecture 13 holds .

Proof. We start be re-writing the desired expression:

q′ = Ω
(

max
{ √

n√
kε2

,
n log(n)
mkε4

})
We show the two lower bounds separately. Indeed, the first lower bound can be derived

directly from Corollary 14:

q′ = Ω
(√

n/(kε2)
)

For the second lower bound, we extend Corollary 17 instead. As each Gi is done by a
machine with memory constraints, we apply Claim 16 to player i and get |Vi| ≥ |Ei| /m′. We
recall that our measure complexity is in fact q′ := maxi |Vi|, and as the maximum is greater
than the average, we get:

q′ ≥
∑
i |Vi|
k

≥
∑
i |Ei|

m′ · k
= |E|
m′ · k

And plugging in Conjecture 13 on the entire graph G = (V,E), we get

q′ = Ω
( n

m′ · kε4
)

= Ω
(
n log(n)
m · kε4

)
,

concluding the proof. J

4.2 Discussion
We point out to the fact that in all 4 models (as well as the classic model), the limitation of
this method coincide with the upper bounds we obtained in the previous section. This does
not come as a surprise, as choosing the “right” comparison graph is easily made once the
constraints of the model are understood. The rule of thumb is simply to compare all pairs
that can be compared.

It is more interesting, though, to compare the collection of possible testers with the
sub-collection of collision-based testers.We next brief through known impossibility results (for
an arbitrary tester. It turns out for the most part, collision-based testers compete well with
others. For the classical model, as already established in [13], collision-based testing is in fact
optimal. For the two simultaneous models (with no memory constraints), the collision-based
testers perform optimally in terms of n, k (or n, (R1, . . . , Rk) in the asymmetric case). To
the best of our knowledge, the only testers for these models to consider multiple samples
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per processor are the ones of [16]. For both models, the two papers show similar sample
complexity, but there are two non-trivial differences. On one hand, the new testers use
log
(
Θ(1/ε4)

)
bits per communication, instead of a single one used in [16]. On the other

hand, the new testers work for the full range of the parameter k (the number of players),
whereas the previous results excluded extreme values: e.g., in the symmetric case it only
works for c/ε4 ≤ k ≤ c′nε4.

Lower bounds for both models are shown in [22], even for the case of r-bit messages.
While the tester of [16] is an optimal one-bit protocol, ours is not known to be optimal r-bit
protocol. This is true as the aforementioned lower bound weakens by a factor 2r for the
longer r-bit messages. In our case, we have 2r = Θ(1/ε4), which means there is a gap of ε4
between the general lower bound, and the optimal collision-based tester we obtain. Despite
the gap, no better tester is known for this amount of bits and q > 1 samples per player.

In the streaming model our tester attain the same sample complexity as the best known
tester (that of [12]), but for a wider range for the parameter m. A matching lower bound
can also be found in [12], but only for a more restricted range of the parameter m, whereas
for the general case they give a weaker lower bound, which leaves an ε2 gap between the
general case and the optimal collision-based tester.

To the best of our knowledge, the simultaneous model with memory constraints was never
considered in the context of distribution testing, and therefore there are no prior results.
However, we conjure that similarly to before, the collision-based tester achieves optimal
sample complexity in parameters n, k,m, with a possible poly(ε) gap that would pop, as
before, due to the use of longer messages.
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Abstract
Trace reconstruction is the problem of learning an unknown string x from independent traces of x,
where traces are generated by independently deleting each bit of x with some deletion probability q.
In this paper, we initiate the study of Circular trace reconstruction, where the unknown string x is
circular and traces are now rotated by a random cyclic shift. Trace reconstruction is related to many
computational biology problems studying DNA, which is a primary motivation for this problem as
well, as many types of DNA are known to be circular.

Our main results are as follows. First, we prove that we can reconstruct arbitrary circular strings
of length n using exp

(
Õ(n1/3)

)
traces for any constant deletion probability q, as long as n is prime

or the product of two primes. For n of this form, this nearly matches what was the best known
bound of exp

(
O(n1/3)

)
for standard trace reconstruction when this paper was initially released.

We note, however, that Chase very recently improved the standard trace reconstruction bound to
exp
(
Õ(n1/5)

)
. Next, we prove that we can reconstruct random circular strings with high probability

using nO(1) traces for any constant deletion probability q. Finally, we prove a lower bound of Ω̃(n3)
traces for arbitrary circular strings, which is greater than the best known lower bound of Ω̃(n3/2) in
standard trace reconstruction.
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1 Introduction

The trace reconstruction problem asks one to recover an unknown string x of length n from
independent noisy samples of the string. In the original setting, x is a binary string in {0, 1}n,
and a random subsequence x̃ of x, called a trace, is generated by sending x through a deletion
channel with deletion probability q, which removes each bit of x independently with some
fixed probability q. The main question is to determine how many independent traces are
needed to recover the original string with high probability. This question has become very well
studied over the past two decades [26, 27, 7, 24, 23, 38, 30, 19, 32, 35, 20, 21, 22, 13, 15, 14],
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Figure 1 An example of a circular trace. We start with an unknown circular string (top left).
Each bit of the string is randomly deleted (red bits are deleted, black bits are retained) and the
order of the retained bits is preserved, so we are left with the smaller circular string. However, since
there is no beginning or end of the circular string, we assume the string is seen in clockwise order
starting from a randomly chosen bit.

with many results over various settings. For instance, people have studied the case where we
wish to reconstruct x for any arbitrarily chosen x ∈ {0, 1}n (worst-case) or the case where we
just wish to reconstruct a randomly chosen string x (average-case). People have also studied
the trace reconstruction problem for various values of the deletion probability q, such as if q
is a fixed constant between 0 and 1 or decays as some function of n. People have also studied
variants where the traces allow for insertions of random bits, rather than just deletions, and
variants where the string is no longer binary but from a larger alphabet.

Finally, various generalizations or variants of the trace reconstruction problem have also
been developed. These include error-correcting codes over the deletion channel (i.e., “coded”
trace reconstruction) [16, 11], reconstructing matrices [25] and trees [18] from traces, and
reconstructing mixtures of strings from traces [3, 4, 31].

In this paper, we develop and study a new variant of trace reconstruction that we call
Circular trace reconstruction. In this variant, there is again an unknown string x ∈ {0, 1}n
that we can sample traces from, but this time, the string x is a cyclic string, meaning that
there is no beginning or end to the string. Equivalently, one can imagine a linear string that
undergoes a random cyclic shift before a trace is returned. See Figure 1 for an example. Our
goal, like in the normal trace reconstruction, is to reconstruct the original circular string
using as few random traces as possible.

1.1 Main Results and Comparison to Linear Trace Reconstruction
Perhaps the first natural question about circular trace reconstruction is the following: how
does the sample complexity of circular trace reconstruction compare to the sample complexity
of standard (linear) trace reconstruction? Intuitively, one should expect circular trace
reconstruction to be at least as difficult as standard trace reconstruction, since given any
trace of a linear string, we can randomly rotate it to get a trace of the corresponding circular
string. This reasoning, however, is slightly flawed. For instance, perhaps the hardest instance
of linear trace reconstruction comes from distinguishing between two strings x and y which
are different as linear strings but equivalent up to a cyclic shift. In this case, the circular trace
reconstruction problem does not even need to distinguish between x and y, because they are
equivalent! However, by padding the trace with extra bits before randomly rotating, one
can show that circular trace reconstruction is at least as hard as linear trace reconstruction
in both the worst-case and average-case. Indeed, we have the following proposition. As its
proof is quite simple, we defer it to Appendix A in the full version of this paper on arXiv.

I Proposition 1. Suppose that we can solve worst-case (resp., average case) circular trace
reconstruction over length m strings with deletion probability q using T (m, q) traces. Then,
we can solve worst-case (resp., average case) linear trace reconstruction over length n strings
with deletion probability q using minm≥2n T (m, q) traces.
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Given Proposition 1, any upper bounds for circular trace reconstruction imply nearly
equivalent upper bounds for the linear trace reconstruction, and any lower bounds for linear
trace reconstruction imply nearly equivalent lower bounds for circular trace reconstruction.
This raises two natural questions. First, can we match or nearly match the best linear trace
reconstruction upper bounds for circular trace reconstruction? Second, can we beat the best
linear trace reconstruction lower bounds for circular trace reconstruction?

The first main result we prove is for worst-case circular strings. At the time of the initial
release of this paper, the best known upper bound for worst-case linear trace reconstruction
with deletion probability q, where q is a fixed constant between 0 and 1, is exp

(
O(n1/3)

)
,

where the unknown string has length n [19, 32]. Shortly afterwards, the upper bound was
improved to exp

(
Õ(n1/5)

)
[14]. Our first main result, which we prove in Section 3, provides

an upper bound for the circular trace reconstruction problem that nearly matches the results
of [19, 32], but only if the length n has at most 2 prime factors.

I Theorem 2. Let x be an unknown, arbitrary circular string of length n, let q be the
deletion probability of each element in the string, and let p = 1 − q be the retention prob-
ability. Then, if n is either a prime or a product of two (possibly equal) primes, using
exp

(
O
(
n1/3(logn)2/3p−2/3)) random traces, we can determine x with failure probability at

most 2−n.

The primary reason why our theorem fails for n having 3 or more prime factors is that
we prove the following number theoretic result which is crucial in our algorithm.

I Theorem 3. For any fixed integer n ≥ 2, the following statement is true if and only if
n has at most 2 prime factors, counting multiplicity.

Define ω := e2πi/n, and suppose that a0, . . . , an−1, b0, . . . , bn−1 are all integers in {0, 1}.
Also, suppose that for all 0 ≤ k ≤ n− 1, there is some integer ck such that

∑n
i=1 aiω

i·k =
ωck ·

∑n
i=1 biω

i·k. Then, the sequences {ai} and {bi} are cyclic shifts of each other.

In this conference version, we only prove the above theorem in the special case that n
is prime. For the full proof of this theorem, please see the arXiv version of this paper at
https://arxiv.org/abs/2009.01346.

The next main result we prove is for average-case circular strings: we show that a random
circular string can be recovered using a polynomial number of traces. Formally, we prove the
following theorem in Section 4.

I Theorem 4. Let x be an unknown but randomly chosen circular string of length n and
let 0 < q < 1 be the deletion probability of each element. Then, there exists a constant Cq
depending only on q such that we can determine x with failure probability at most n−10 using
O(nCq ) traces.

The main lemma we need to prove Theorem 4 is actually a result that is true for worst-case
strings. Specifically, we show how to recover the multiset of all consecutive substrings of
length O(logn) using a polynomial number of traces. While this does not guarantee that we
can recover an arbitrary circular string, it does allow us to recover what we will call regular
strings, which we show comprise the majority of circular strings. The following lemma may
be of independent interest for studying worst-case strings as well, as it allows one to gain
information about all “consecutive chunks” of the unknown string using only a polynomial
number of queries.
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I Lemma 5. Let x = x1 · · ·xn be an arbitrary circular string of length n and let 0 < q < 1 be
the deletion probability of each element. Then, for k = 100 logn, we can recover the multiset
of all substrings {xixi+1 · · ·xi+k−1}ni=1, where indices are modulo n, using O(nCq ) traces
with failure probability n−10, where Cq is a constant that only depends on q.

The best upper bound for average-case linear trace reconstruction is exp
(
O((logn)1/3)

)
[22]. Unfortunately, we were not able to adapt their argument to circular strings. One major
reason why we are unable to do so is that in the argument of [22] (as well as [35], which
provides an exp

(
O((logn)1/2)

)
sample algorithm), the authors recover the (k + 1)st bit of

the string assuming the first k bits are known using a small number of traces, and by reusing
traces, they inductively recover the full string. However, since we are dealing with circular
strings, even recovering the “first” bit does not make much sense. However, we note that even
a polynomial-sample algorithm is quite nontrivial. In the linear case, a polynomial-sample
algorithm for average-case strings was first proven by [23], and their algorithm only worked
as long as the deletion probability q was at most some small constant, which when optimized
is only about 0.07 [35].

Our final main result regards lower bounds for worst-case strings. For linear worst-case
strings, the best known lower bound for trace reconstruction is Ω̃(n3/2) [13]. For circular
trace reconstruction, we show an improved lower bound of Ω̃(n3). Moreover, the proof of our
lower bound is actually much simpler and cleaner than those of the known lower bounds for
standard trace reconstruction [13, 21]. Specifically, we prove the following theorem, done in
Section 5:

I Theorem 6. Let x be the string 10n10n+110n+k = 1 0 . . . 0︸ ︷︷ ︸
n times

1 0 . . . 0︸ ︷︷ ︸
n+1 times

1 0 . . . 0︸ ︷︷ ︸
n+k times

, where

n ≥ 1 and 2 ≤ k ≤ 4. Likewise, let y be the string y = 10n10n+k10n+1. Then, the strings
x, y are not equivalent up to cyclic rotations, but for any constant deletion probability q, one
requires Ω(n3/ log3 n) random traces to distinguish between the original string being x or
y. Thus, for all integers n, worst-case circular trace reconstruction requires at least Ω̃(n3)
random traces.

1.1.1 Concurrent Work
We note that a very similar statement to Lemma 5, but for linear strings, was proven in
independent concurrent work by Chen et. al. [15, Theorem 2], which provides a polynomial-
sample algorithm for a “smoothed” variant of worst-case linear trace reconstruction. Many
ideas in our proof of Lemma 5 and their proof appear to overlap, though our proof is
substantially shorter. We discuss the relation between our work and [15] further at the end
of Section 4.

1.2 Motivation and Relation to Other Work
From a theoretical perspective, circular trace reconstruction can bring many novel insights to
the theory of reconstruction algorithms, some of which may be useful even in the standard
trace reconstruction problem. For instance, the proof of Theorem 2 combines analytic,
statistical, and combinatorial approaches as in previous trace reconstruction papers, but
now also uses ideas from number theory and results about cyclotomic integers. To the best
of our knowledge, this paper is the first paper on trace reconstruction to utilize number
theoretic ideas, though there is work on other problems about cyclic strings that uses ideas
from number theory. Also, Lemma 5 shows a way to recover all contiguous sequences in the
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original string of length O(logn) for arbitrary circular strings, which is a new result even
in the linear case (concurrent with [15]) and has applications to problems in linear trace
reconstruction as well (as done in [15]).

From an applications perspective, trace reconstruction is closely related to the multiple
sequence alignment problem in computational biology. In the multiple sequence alignment
problem, one is given DNA sequences from several related organisms, and the goal is to align
the sequences to determine what mutations each descendant underwent from their common
ancestor: the trace reconstruction problem is analogous to actually recovering the common
ancestor. One can learn more about trace reconstruction’s relation to the multiple sequence
alignment problem (as well as to various other problems in computational biology) via the
recent survey [8].

The multiple sequence alignment problem is also a key motivation for studying circular
trace reconstruction. Many important types of DNA, such as mitochondrial DNA in humans
and other eukaryotes, chloroplast DNA, bacterial DNA, and DNA in plasmids, are predom-
inantly circular (see, e.g., [37, pp. 313, 397, 516-517], or [1]). Therefore, understanding
circular trace reconstruction could prove useful in reconstructing ancestral sequences for
mitochondrial or bacterial DNA. Another problem in computational biology that trace
reconstruction may be applicable to is the DNA Data Storage problem, where data is stored
in DNA and can be recovered through sequencing, though the stored DNA may mutate
over time [17, 34]. Recently, long-term DNA data storage in plasmids has been successfully
researched [33], which further motivates the study of circular trace reconstruction.

Besides the linear trace reconstruction problem, circular trace reconstruction is also
closely related to the problem of population recovery from the deletion channel [3, 4, 31],
where the goal is to recover an unknown mixture of ` strings from random traces. Indeed,
receiving traces from a circular string is equivalent to receiving traces from a uniform mixture
of a linear string along with all of its cyclic shifts, so circular trace reconstruction can be
thought of as an instance of population recovery from the deletion channel with mixture size
` = n.

Unfortunately, the best known algorithm for population recovery over worst-case strings
requires exp

(
Õ(n1/3) · `2

)
traces [31], which is not useful if ` = n. However, to prove

our worst-case upper bound, we will use ideas based on [19, 32, 31] to estimate certain
polynomials that depend on the unknown circular string x. For the average case prob-
lem, i.e., if given a mixture over ` random strings, population recovery can be done with
poly

(
`, exp

(
(logn)1/3)

))
random traces. While this seemingly implies a poly(n)-sample

algorithm for average-case circular trace reconstruction, the n cyclic shifts of the circular
string are quite similar to each other and thus do not behave like a collection of n independent
random strings. Indeed, our techniques for average-case circular trace reconstruction are
very different from those developed in [4].

While circular strings have not been studied before in the context of trace reconstruction,
people have studied circular strings and cyclic shifts in the context of edit distance [28, 2],
multi-reference alignment [5, 6, 36], and other pattern matching problems [12]. We note that
[2] also applies results from number theory and about cyclotomic polynomials, though their
techniques overall are not very similar to ours.

1.3 Proof Overview
In this subsection, we highlight some of the ideas used in Theorems 2, 4, and 6.

The proof of Theorem 2 is partially based on ideas from [19, 32, 31]. The authors of
[19, 32] consider two strings x, y ∈ {0, 1}n and show how to distinguish between random
traces of x and random traces of y. To do so, they construct an unbiased estimator for the

ITCS 2021
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polynomial P (z;x) :=
∑n
i=1 xiz

i (or P (z; y) =
∑n
i=1 yiz

i) solely based on the random trace
of either x or y, for some z ∈ C. By showing that the unbiased estimator is never “too” large
and that P (z;x) and P (z; y) differ enough for an appropriate choice of z, they can estimate
this quantity using random traces to distinguish between x and y. In our case, applying the
same estimator will give us an unbiased estimator for P ′(z;x) := Ei[P (z;x(i))], where x(i) is
the ith cyclic shift of x. Unfortunately, it turns out that P ′(z;x) = P ′(z; y) as polynomials
in z as long as x, y have the same number of 1’s, even if x and y are vastly different as
circular strings. Our goal will then be to establish some other polynomial Q(z;x) such that
we can construct a good unbiased estimator, but at the same time Q′(z;x) := Ei[Q(z;x(i))]
and Q′(z; y) := Ei[Q(z; y(i))] are distinct polynomials for any distinct cyclic strings x, y.
We show that the polynomial Q(z;x) := zknP (z;x)kP (z−k;x) will do the job, for some
some small integer k. We provide a (significantly more complicated) unbiased estimator of
Q(z;x) using a random trace: the construction is similar to that of [31], which shows how
to estimate P (z;x)k for some integer k. To show that Q(z;x) 6= Q(z; y) as polynomials, we
first show that Q(z;x) has the special property that if z is a cyclotomic nth root of unity,
this polynomial is invariant under cyclic shifts of x! Thus, it just suffices to show that if
x, y ∈ {0, 1}n are not cyclic shifts of each other, there is some nth root of unity z = e2πir/n

for some 0 ≤ r ≤ n− 1 such that P (z;x)kP (z−k;x) 6= P (z; y)kP (z−k; y). This will require
significant number theoretic computation, and will be true as long as n is a prime or a
product of two primes.

The bulk of the proof of Theorem 4 will be proving Lemma 5, which reconstructs all
consecutive substrings of length 100 logn in the unknown circular string x. For a random
string x, these substrings will all be sufficiently different, so once we know the substrings,
we can reconstruct the full string because there will only be one way to “glue” together
the substrings. Therefore, we focus on explaining the ideas for Lemma 5. Our goal will
be to determine how many times a string s appears consecutively in x for each string s of
length 100 logn. For an unknown string x and i between 0 and n− 100 logn, we let ci be the
number of times s appears (possibly non-contiguously) in some contiguous block of length
i+ 100 logn in x. Then, a basic enumerative argument shows that for a random (cyclically
shifted) trace x̃ = x̃1x̃2 · · · x̃m, the probability that x̃1 · · · x̃100 logn = s can be written as∑
i≥0 ci(1 − q)100 lognqi, and we wish to recover c0. The (1 − q)100 logn term is a constant

that equals 1/poly(n), so it is easy to recover an approximation to
∑
i≥0 ciq

i. We truncate
this polynomial at an appropriate degree (approximately C logn for some large C) and show
that the truncated polynomial

∑C logn
i=0 cix

i is very close to the original polynomial, but
differs from

∑C logn
i=0 c′ix

i for some x ∈ [q, (1− q)/2] by a significant amount, if c′0 6= c0, using
ideas based on [10]. We can also simulate a trace with deletion probability x > q by taking a
“trace of the trace.” This will be sufficient in determining c0, and therefore, the (multi)-set of
all consecutive substrings of length 100 logn.

The proof of Theorem 6 proceeds by showing that the laws of the traces of x =
10n10n+110n+k and y = 10n10n+k10n+1 are close to each other in the sense of Hellinger
distance and concluding by a lemma in [21] that was used in a similar fashion to show a
lower bound for linear trace reconstruction. It is first shown that conditioned on a 1 being
deleted, a trace from x is equidistributed as a trace from y. Then explicit expressions for
the probabilities that the trace is 10a10b10c are computed and compared, yielding an upper
bound on the Hellinger distance. The difference between the probabilities for x and y is
proportional to the product of (a− b)(b− c)(a− c) and a symmetric polynomial in a, b, c.
Both x and y consist of three 1’s separated by runs of 0’s of approximate length n, so with
high probability we have that a, b, c are approximately np, with square root fluctuations.
The contribution of the (a− b)(b− c)(a− c) term allows us to recover a Ω̃(n3) bound.
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1.4 Outline
In Section 2, we go over some preliminary definitions and results. In Section 3, we prove
Theorem 2. In Section 4, we prove Theorem 4. In Section 5, we prove Theorem 6. Finally, in
Section 6, we conclude by discussing open problems and avenues for further research. Some
proofs, such as the proof of Proposition 1 and the full proof of Theorem 3, are deferred to
Appendix A in the full version of this paper on arXiv.

2 Preliminaries

First, we explain a basic definition we will use involving complex numbers.

I Definition 7. For z ∈ C, let |z| be the magnitude of z, and if z 6= 0, let arg z be the
argument of z, which is the value of θ ∈ (−π, π] such that z

|z| = eiθ.

Next, we state a Littlewood-type result about bounding polynomials on arcs of the unit
circle.

I Theorem 8 ([9]). Let f(z) =
∑n
j=0 ajz

j be a nonzero polynomial of degree n with complex
coefficients. Suppose there is some positive integer M such that |a0| ≥ 1 and |aj | ≤M for all
0 ≤ j ≤ n. Then, if A is an arc of the unit circle {z ∈ C : |z| = 1} with length 0 < a < 2π,
there exists some absolute constant c1 > 0 such that

sup
z∈A
|f(z)| ≥ exp

(
−c1(1 + logM)

a

)
.

Next, we state two well known results about roots of unity in cyclotomic fields.

I Lemma 9 ([29]). Let ω = e2πi/n. Then, the set of {ωk} for k ∈ Z, gcd(k, n) = 1 are all
Galois conjugates. This means that if P (x) is an integer polynomial, then P (ωk) = 0 if and
only if P (ω) = 0 for any k ∈ Z with gcd(k, n) = 1. Moreover, P (ω) = 0 if and only if P is a
multiple of the nth Cyclotomic polynomial.

I Lemma 10 ([29]). Let ω = e2πi/n be an nth root of unity, and let Q[ω] be the nth degree
cyclotomic field. Then, if z ∈ Q[ω] is such that zr = 1 for some integer r ≥ 1, z must equal
ωk or −ωk for some integer k.

Finally, we define the Hellinger distance between two probability measures and state a
folklore bound on distinguishing between distributions based on samples in terms of the
Hellinger distance.

I Definition 11. Let µ and ν be discrete probability measures over some set Ω. In other
words, for x ∈ Ω, µ(x) is the probability of selecting x when drawing from the measure µ.
Then, the Hellinger distance is defined as

dH(µ, ν) =
(∑
x∈Ω

(√
µ(x)−

√
ν(x)

)2
)1/2

.

The following proposition is quite well-known (see for instance, [21, Lemma A.5]).

I Proposition 12. If µ, ν are discrete probability measures, then if given i.i.d. samples from
either µ or ν, one must see at least Ω(dH(µ, ν)−2) i.i.d. samples to determine whether the
distribution is µ or ν with at least 2/3 success probability.
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3 Worst Case: Upper Bound

In this section, we prove Theorem 2, i.e., we provide an exp
(
Õ(n1/3)

)
-sample algorithm for

circular trace reconstruction when the length n is a prime or product of two primes.
For a (linear) string x ∈ {0, 1}n and z ∈ C, we define P (z;x) :=

∑n
i=1 xiz

i. The first
lemma we require creates an unbiased estimator for

∏m
i=1 P (zi;x) for some complex numbers

z1, . . . , zm, using only random traces of x. The proof of the following lemma greatly resembles
the proof of [31, Lemma 4.1], so we defer the proof to Appendix A in the full version of this
paper on arXiv.

I Lemma 13. Let x be a linear string of length n. Fix q as the deletion probability and
p = 1− q as the retention probability. Then, for any integer m ≥ 1 and any Z = (z1, . . . , zm)
for z1, . . . , zm ∈ C, there exists some function gm(x̃, Z) such that

Ex̃[gm(x̃, Z)] =
m∏
k=1

(
n∑
i=1

xiz
i
k

)
,

where the expectation is over traces drawn from x. Moreover, for any L ≥ 1, and for all
x̃ ∈ {0, 1}n and all Z such that |z1|, . . . , |zm| = 1 and | arg zi| ≤ 1

L for all 1 ≤ i ≤ m,

|gm(x̃, Z)| ≤ (p−1mn)O(m) · eO(m2n/(p2L2)).

For x ∈ {0, 1}n and z ∈ C, let P (z;x) :=
∑n
i=1 xiz

i. Our main goal will be to determine
the value of ft(z;x) := P (z;x)t ·P (z−t;x) for some integer t, where z is an nth root of unity.
Importantly, we note that ft(z;x) is invariant under rotations of x, since for z = e2πik/n,

n∑
i=1

x(i+1) (mod n)z
i =

∑
xiz

i−1 = P (z;x) · z−1

whereas
n∑
i=1

x(i+1) (mod n)z
−t·i =

∑
xiz
−t(i−1) = P (z−t;x) · zt.

Therefore, if we define x(j) as the string x rotated by j places (so x(j)
i = x(i+j) (mod n)), then

f(z;x) = f(z;x(j)) for all z = e2πik/n and 0 ≤ j ≤ n− 1.
Now, choose some z with |z| = 1 and | arg z| ≤ 1

L . Also, fix some integer t, let m = t+ 1,
and let Z = (z, . . . , z︸ ︷︷ ︸

t times

, z−t). Then, if j is randomly chosen in {0, 1, . . . , n − 1} and x̃ is a

random trace,

Ex̃[nztn · gm(x̃, Z)] = (n · ztn) ·

 1
n
·
n−1∑
j=0

P (z;x(j))t · P (z−t;x(j))


=
n−1∑
j=0

ztn · P (z;x(j))t · P (z−t;x(j)),

where gm(x̃, Z) is defined in Lemma 13. Note that
∑n−1
j=0 z

tn · P (z;x(j))t · P (z−t;x(j))
is a polynomial of z of degree at most 3tn and all coefficients bounded by nt+1. We
write this polynomial as Qt(z;x). Thus, if we define ht(x̃, z) := nztngm(x̃, Z), we have
that Ex̃[ht(x̃, z)] = Q(z;x) for x̃ a trace of a randomly shifted x, and that |ht(x̃; z)| ≤
(p−1tn)O(t) · eO(t2n/(p2L2)) whenever |z| = 1 and | arg z| ≤ 1

L for L ≥ 2 and m = t + 1, by
Lemma 13.

Now, we will state two important results that will lead to the proof of the main result.
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I Lemma 14. Let n ≥ 2, and suppose that x, x′ are strings in {0, 1}n such that Qt(z;x) 6=
Qt(z;x′) as polynomials in z. Then, there is an absolute constant c2 such that for any L ≥ 2,
there exists z such that |z| = 1, | arg z| ≤ 1

L , and

|Qt(z;x)−Qt(z;x′)| ≥ n−c2tL.

Proof. Note that Qt(z;x)−Qt(z;x′) is a nonzero polynomial in z of degree at most (t+ 1)n
and with all coefficients bounded by 2nt+1. Therefore, by Theorem 8,

sup
|z|=1,| arg z|≤1/L

|Qt(z;x)−Qt(z;x′)| ≥ exp
(
−c1(1 + log(2nt+1))

2/L

)
≥ exp (−c2 · L · t · logn)
= n−c2tL,

where we note that the arc {z : |z| = 1, | arg z| ≤ 1
L} has length

2
L . J

The next important result we need will be Theorem 3. We defer the full proof of Theorem
3 to the full version of this paper on arXiv, but as the proof of the case where n is prime
is simpler, we prove this special case here. Using this, we can get an exp

(
Õ(n1/3)

)
sample

upper bound at least for n prime. As a note, we will define ω = e2πi/n from now on, where
n will be clear from context.

I Proposition 15. Suppose that n = p is prime, and a0, . . . , ap−1, b0, . . . , bp−1 ∈ {0, 1} are
such that for all 0 ≤ k < p, there is some integer ck such that

∑p−1
i=0 ai = ωck ·

∑p−1
i=0 bi. Then,

the sequences {a1, . . . , ap} and {b1, . . . , bp} are equivalent up to a cyclic permutation.

Proof. First,
∑p−1
i=0 ai = ωc0 ·

∑p
i=0 bi. Since

∑p−1
i=0 ai and

∑p−1
i=0 bi are both nonnegative

real numbers, and since ωc0 is a root of unity, we must have that
∑p−1
i=0 ai =

∑p−1
i=0 bi.

Next, we have that
∑p−1
i=0 aiω

i = ωc1 ·
∑p−1
i=0 biω

i. Letting b′i = b(i−c1) (mod p), we have
that b′ is a cyclic shift of b, and

∑p−1
i=0 ai =

∑p−1
i=0 b

′
i and

∑p−1
i=0 aiω

i =
∑p−1
i=0 b

′
iω
i. Letting

Q(x) =
∑p−1
i=0 (ai − b′i)xi, we have that ω and 1 are both roots of Q(x). Since Q(x) is

an integer-valued polynomial, this implies that all Galois conjugates of ω are roots, so
1, ω, ω2, . . . , ωp−1 are roots of Q(x). Thus, xp − 1 divides Q(x). But since Q(x) has degree at
most p− 1, Q(x) must equal 0, so ai = b′i for all i. Since the sequence b′ is just a shift of b,
we are done. J

By using Theorem 3 (or Proposition 15 in the case of n prime), we obtain the following
number theoretic result.

I Lemma 16. Let n be a prime or a product of two primes, and let a = a1a2 · · · an and
b = b1b2 · · · bn be distinct n-bit strings (even up to cyclic shift). Then, for some 0 ≤ ` ≤ n− 1
with z = ω`, and for some 2 ≤ t ≤ 5, we have that P (z; a)tP (z−t; a) 6= P (z; b)tP (z−t; b).

Proof. First choose k such that
∑n
i=1 aiω

i·k 6= ωck ·
∑n
i=1 biω

i·k for all integers ck, which
exists by Theorem 3. If k = 0, then P (ωk; a) = P (1; a) and P (ωk; b) = P (1; b) are distinct
nonnegative integers, so we trivially have P (1; a)tP (1; a) 6= P (1; b)tP (1; b). Otherwise, let
t be the smallest prime that doesn’t divide n

gcd(n,k) (so t ≤ 5 as n has at most 2 prime
factors). If

∑n
i=1 aiω

i·k = 0, then
∑n
i=1 biω

i·k 6= 0. Now, since ω−tk is a Galois conjugate
of ωk (since t - n), we also have that

∑n
i=1 biω

−ti·k 6= 0. This means that P (ωk; a) = 0 so
P (ωk; a)tP ((ωk)−t; a) = 0, but P (ωk; b)tP ((ωk)−t; b) 6= 0. Likewise, if

∑n
i=1 biω

i·k = 0, we’ll
have P (ωk; a)tP ((ωk)−t; a) 6= 0, but P (ωk; b)tP ((ωk)−t; b) = 0. This means the result follows
if either P (ωk; a) = 0 or P (ωk, b) = 0.
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Otherwise, P (ωk; a) =
∑n
i=1 aiω

i·k and P (ωk; b) =
∑n
i=1 biω

i·k are both nonzero. This
means that for all r ≥ 0, P (ω(−t)r·k; a) and P (ω(−t)r·k; b) are both nonzero, since ω(−t)r·k

and ωk are Galois conjugates. This means that if P (z; a)tP (z−t; a) = P (t; b)tP (z−t; b) for
all z = ω(−t)r·k, then

P (ω(−t)r+1·k; a)
P (ω(−t)r·k; a)−t

= P (z−t; a)
P (z; a)−t = P (z−t; b)

P (z; b)−t = P (ω(−t)r+1·k; b)
P (ω(−t)r·k; b)−t

for all r ≥ 0, so we inductively have that

P (ω(−t)r·k; a)
P (ωk; a)(−t)r = P (ω(−t)r·k; b)

P (ωk; b)(−t)r .

Now, letting r = ϕ
(

n
gcd(n,k)

)
, we know that k · (−t)r ≡ k (mod n) by Euler’s theorem,

which means that ω(−t)r·k = ωk. Thus,

P (ωk; a)1−(−t)r

= P (ωk; b)1−(−t)r

.

Since k 6= 0, we have that n
gcd(n,k) > 1 so r ≥ 1. Thus, since t ≥ 2, 1− (−t)r 6= 0. Now, since

P (ωk; a), P (ωk; b) are nonzero, we have that P (ωk;a)
P (ωk;b) is a |1 − (−t)r|th root of unity. Also,

P (ωk; a), P (ωk; b) ∈ Q[ω], which means P (ωk;a)
P (ωk;b) ∈ Q[ω]. However, all roots of unity in Q[ω]

are of the form ±ωi for some i, and since (−t)r − 1 is odd if n is odd (since t = 2), we must
have that P (ωk;a)

P (ωk;b) = ωck for some integer ck. This is a contradiction, so we must have that
P (z; a)tP (z−t; a) 6= P (z; b)tP (z−t; b), for some z = ω(−t)r·k, r ≥ 0. J

Finally, we are ready to prove Theorem 2.

Proof of Theorem 2. Suppose that we are trying to distinguish between the original circular
string being a = a1a2 · · · an or b = b1b2 · · · bn, where a, b are distinct, even up to cyclic shifts.

We choose `, t based on Lemma 16, so that P (ω`; a)tP ((ω`)−t; a) 6= P (ω`; b)tP ((ω`)−t; b).
As we have already noted, if z is an nth root of unity, then P (z; a)tP (z−t; a) is invariant
under rotation of a, and P (z; b)tP (z−t; b) is invariant under rotation of b. By our definition
of Qt(z;x), we have that Qt(ω`; a) 6= Qt(ω`; b), so Qt(z; a) 6= Qt(z; b) as polynomials in z.
Therefore, by Lemma 14, there is some z such that |z| = 1, | arg z| ≤ 1

L , and

|Qt(z; a)−Qt(z; b)| ≥ n−c2tL ≥ n−5c2L.

So, for L =
⌈
n1/3(logn)−1/3p−2/3⌉ , there exists z with |z| = 1 and | arg z| ≤ 1

L and some
2 ≤ t ≤ 5 such that

|Qt(z; a)−Qt(z; b)| ≥ n−5c2L ≥ exp
(
−c3 · n1/3(logn)2/3p−2/3

)
,

but

|ht(x̃, z)| ≤ (p−1n)O(1) · exp
(
O

(
n

p2L2

))
≤ exp

(
c4 · n1/3(logn)2/3p−2/3

)
for any trace x̃ of either a or b. SampleR = exp

(
O
(
n1/3(logn)2/3p−2/3)) traces x̃(1), . . . , x̃(R)

and choose z and t based on Lemma 16. Then, if we define ht(z) to be the average of
ht(x̃(i), z) over i from 1 to R, the Chernoff bound tells us that with failure probability at
most 10−n, |ht(z)−Qt(z; a)| ≤ 1

3 · exp
(
c4 · n1/3(logn)2/3p−2/3) if the original string were a,
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and |h(z)−Qt(z; b)| ≤ 1
3 · exp

(
c4 · n1/3(logn)2/3p−2/3) if the original string were b. Thus, by

returning a if h(z) is closer to Qt(z; a) and returning b otherwise, we can distinguish between
the original string being a or b using exp

(
O
(
n1/3(logn)2/3p−2/3)) traces, with 1 − 10−n

failure probability.
Thus, to reconstruct the original string x, we simply run the distinguishing algorithm for

all pairs a, b ∈ {0, 1}n such that a 6= b, using the same R traces x̃1, . . . , x̃R. With probability
at least 1 − (4/10)n ≥ 1 − 2−n, the true string x will be the only string such that the
distinguishing algorithm will successfully choose x over all other strings. Thus, for n a prime
or a product of two primes, the circular trace reconstruction problem can be solved using
exp

(
O
(
n1/3(logn)2/3p−2/3)) traces. J

4 Average Case: Upper Bound

We now consider the situation in which the unknown circular string x is random. For the
sake of simplicity, we will assume that we may sample x by sampling a uniform random linear
binary string of length n and applying a uniform random cyclic shift. Note that the resulting
distribution on x is not uniform over all possible circular strings, as strings with nontrivial
cyclic symmetries are more likely to appear. However, such strings form a negligible fraction
of all strings, and our arguments can easily be modified to handle the situation in which the
distribution is uniform over all possible circular strings. We use the randomness to rule out
certain problematic strings with high probability, and this can be done for uniform random
circular strings as well as other distributions, for example if in the sampling procedure each
bit is independently biased towards 0 or 1.

I Theorem 17. Let x be a random (in the sense described above) unknown circular string
of length n and let q be the deletion probability of each element. Then there exists a constant
Cq depending only on q such that we can determine x with failure probability at most n−10

using O(nCq ) traces.

In what follows, we will let x = x1 · · ·xn and take indices of bits in x modulo n. Let
k = 100 logn. We first note that with high probability, all of the consecutive substrings of x
of length k and k − 1 are pairwise distinct. We will refer to such strings x as regular strings.
Indeed, the probability that xi · · ·xi+k−1 = xj · · ·xj+k−1 for i 6= j is 2−k (where indices are
taken modulo n), and union bounding over all i, j as well as both k and k − 1 gives a failure
probability of at most O(n22−k)� n−10.

If we assume that x is regular, the length k consecutive substrings of x uniquely determine
x. Indeed, given xi · · ·xi+k−1, we can uniquely determine xi+k as there is a unique length k
consecutive substring of x that begins with xi+1 · · ·xi+k−1. Iteratively applying this allows
us to recover the entire string x. Thus, to prove Theorem 17, it suffices to prove Lemma
5, i.e., to determine how many times each length k substring appears consecutively in any
string x using O(nCq ) traces, which will allow us to recover x if x is regular.

Proof of Lemma 5. For a circular string x, let Sx = {xixi+1 · · ·xi+k−1}ni=1 be the k-deck of
x, which is the multiset of contiguous substrings of x of length k. Let S and T be the k-decks
of some circular strings of length n such that S 6= T . Suppose that given O(nCq ) traces of a
circular string, we are able to distinguish between whether its k-deck is S or T correctly with
failure probability 10−n. Then, by union bounding over all possible pairs of distinct k-decks
(note that there are at most 2n different k-decks), we can with high probability correctly
determine the k-deck of the string, showing the lemma.
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The key property we will use is that given two distinct k-decks S and T that come from
circular strings x and y, there exists some string s of length k such that the number of
consecutive occurrences of s in x and in y are different. We will show the existence of Cq so
that for any string s of length k satisfying this property, we can distinguish between x and y
correctly using O(nCq ) samples with failure probability 10−n, from which the result follows.

Let α denote a sufficiently large positive integer only depending on q that we will determine
later. For 0 ≤ i ≤ n−k, let ci denote the number of (not necessarily consecutive) occurrences
of s in x contained in a consecutive substring of x of length at most i + k. Similarly, let
di denote the number of (not necessarily consecutive) occurrences of s in y contained in a
consecutive substring of y of length at most i + k. By assumption, we have that c0 6= d0.
By casework on the last bit of the occurrence of s, we have that ci, di ≤ n

(
i+k
k

)
. Let

P (t) =
∑αk
i=0 cit

i and Q(t) =
∑αk
i=0 dit

i. Moreover, the following is true:

I Lemma 18. The probability that a trace of x starts with s (where a random bit in the
string is chosen as the beginning before bits are deleted) is 1

n (1− q)kP (q) +O(qαk(α+ 1)kek).
Similarly, the probability that a trace of y starts with s is 1

n (1− q)kQ(q) +O(qαk(α+ 1)kek).

Proof. To compute the probability that a trace of x starts with s, we do casework on how
many bits are deleted before the last bit in the occurrence of s. If i bits are deleted, then
note that there are ci ways for it to be done by definition. Each such way has a probability of
1
n (1− q)kqi to occur. Indeed, for each way there is a 1

n probability that the correct starting
bit is chosen, and the probability that only the bits corresponding to the specific instance of
s are kept is (1− q)kqi. It follows that the probability is exactly 1

n (1− q)k
∑n−k
i=0 ciq

i.
It remains to show that 1

n (1−q)k
∑n−k
αk+1 ciq

i = O(qαk(α+1)kek). As mentioned before, we

have that ci ≤ n
(
i+k
k

)
. Thus, this sum is at most

∑
i>αk

(
i+k
k

)
qi ≤

(
αk+k
k

)
qαk

∑
i≥0

(
q(α+1)
α

)i
.

Indeed, the ratio of consecutive terms in the sequence
(
i+k
k

)
qi is equal to q i+ki ≤

q(α+1)
α . For

a sufficiently large choice of α, q(α+1)
α < 1, so

∑
i>αk

(
i+k
k

)
qi = O(

(
αk+k
k

)
qαk) = O(qαk(α+

1)kek) by Stirling’s approximation.
The argument for y is analogous. J

Lemma 18 allows us to estimate P (q) and Q(q) up to an O(n(1 − q)−kqαk(α + 1)kek)
error by looking at how often traces of x or y begin with s, and then dividing by 1

n (1− q)k.
So long as P (q) and Q(q) are sufficiently far apart, a Chernoff bound allows us to determine
with high probability if the traces came from x or y. However, it may be the case that P (q)
and Q(q) are quite close. To remedy this, we observe that it is possible to simulate higher
deletion probabilities q′ > q. Indeed, this can be achieved by deleting each bit in traces
received independently with probability q′−q

1−q . Thus, it suffices to find q′ ∈ [q, r] with P (q′)
and Q(q′) far apart for some q < r < 1. The existence of such a q′ is proven by the following
Littlewood-type result of Borwein, Erdélyi, and Kós.

I Theorem 19 ([10], Theorem 5.1). There exist absolute constants c1 > 0 and c2 > 0 such
that if f is a polynomial with coefficients in [−1, 1] and a ∈ (0, 1], then

|f(0)|c1/a ≤ exp
(c2
a

)
sup

z∈[1−a,1]
|f(z)|.

Let r = q+1
2 . We first apply Theorem 19 to

(
αk+k
k

)−1(P (rx)−Q(rx)) and a = 1− q/r.
Here, we are using the fact that the coefficients of P and Q are bounded in magnitude by(
αk+k
k

)
by previous observations, and that |P (0)−Q(0)| ≥ 1. Theorem 19 tells us that
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(
αk + k

k

)−c1/a

≤ exp
(c2
a

)(αk + k

k

)−1
sup

z∈[1−a,1]
|P (rz)−Q(rz)|

= exp
(c2
a

)(αk + k

k

)−1
sup

q′∈[q,r]
|P (q′)−Q(q′)|,

or

sup
q′∈[q,r]

|P (q′)−Q(q′)| ≥ c3
(
αk + k

k

)−c4

for some constants c3 and c4 that only depend on q.
In particular, this is much larger than 10kn(1− r)−krαk(α+ 1)kek for sufficiently large

values of α (α may depend on q). Indeed, after taking kth roots and using Stirling’s
approximation this reduces to showing that (e(α+ 1))−c5 > 10n1/k(1− r)−1rα(α+ 1)e for
sufficiently large α where c5 is some constant that only depends on q, which is clear (since 0 <
r < 1 is fixed and n1/k < 2). Thus, for any q′ ∈ [q, r], the error term 1

n (1−q′)k
∑n−k
αk+1 ci(q′)i =

O((q′)αk(α+ 1)kek) is at most 10−k times 1
n (1− q′)k · supq′∈[q,r] |P (q′)−Q(q′)|.

Hence, for some q′ ∈ [q, r], the probability that a trace begins with s under bit deletion
with probability q′ differs between x and y by Ω(10kn(1− r)−krαk(α+ 1)kek) = Ω(n−c6) for
some constant c6 that only depends on q. By a standard Chernoff bound, for some constant
Cq only depending on q, we can distinguish between x and y using O(nCq ) traces with failure
probability at most exp(−Ω(n)), so Lemma 5 follows. J

By the previous discussions, Theorem 4 is also proven.

As mentioned before, Chen et. al. independently proved the analogue of Lemma 5 for
linear strings in [15, Theorem 2]. The ideas behind their result and ours are similar: both are
proved by considering a polynomial encoding the k-deck and using complex analysis to bound
the corresponding polynomials for different k-decks away from each other on [q, 1]. Here, we
directly apply the Littlewood-type result from [10], while Chen et. al. prove their own result
for this bound. This idea of reconstructing the k-deck of the unknown string may be useful
in other variants of trace reconstruction, though the sample complexity it achieves is only
polynomial and in order to apply it, we must be able to reconstruct the string from its k-deck.
For worst case trace reconstruction, we must be able to reconstruct strings not uniquely
determined by their k-decks, and for average case trace reconstruction, a subpolynomial
sample complexity has already been achieved for constant deletion probabilities. Thus, these
ideas are not directly applicable to worst case and average case trace reconstruction, though
they may be helpful for variants in which it suffices to construct k-decks and a polynomial
sample complexity is not known, such as the ones considered in this paper and in [15].

One difference between our result and that of Chen et. al. is that while we only addressed
the sample complexity, they also give a polynomial time algorithm for reconstructing the
string via a linear program. Their approach can be modified to give a polynomial time
algorithm for average case circular trace reconstruction as well. For more details on their
algorithm, see [15, Section 6]. Moreover, while we do not address the smoothed complexity
model as in Chen et. al., our proof of Theorem 4 easily generalizes to a polynomial sample
(or time) algorithm for circular trace reconstruction in the smoothed complexity model. This
is because one can show that a circular string drawn from Chen et. al.’s smoothed model is
regular with very high probability, in a similar way to how we showed an average string is
regular. For more details, see [15, Section 3].
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5 Worst Case: Lower Bound

In this section, we prove Theorem 6 and demonstrate that worst-case circular trace re-
construction requires Ω̃(n3) traces. We first record the following lemma from [21] ex-
pressing the number of independent samples required to distinguish between two prob-
ability measures µ and ν in terms of their Hellinger distance dH(µ, ν), defined to be(∑

x∈X

(√
µ({x})−

√
ν({x})

)2
)1/2

where the sum is over all events in some discrete

sample space X. Let dTV (µ, ν) denote the total variation distance between µ and ν and µn
denote the law of n independent samples from µ.

I Lemma 20 ([21], Lemma A.5). If µ and ν are probability measures satisfying dH(µ, ν) ≤ 1/2,
then 1− dTV (µm, νm) ≥ ε if m ≤ log(1/ε)

9d2
H

(µ,ν) .

Given m traces, we cannot determine if they came from µm or νm with probability higher
than 1

2 (1 + dTV (µm, νm)). Thus, it requires Ω(d−2
H (µ, ν)) samples to distinguish between

two probability measures µ and ν with probability greater than 3
4 .

Proof of Theorem 6. We specialize to the case of distinguishing between x = 10n10n+110n+k

and y = 10n10n+k10n+1 from independent traces. Let µ and ν respectively denote the laws
of traces from x and y. We will show that d2

H(µ, ν) = O((logn/n)3), which establishes the
result by Lemma 20.

First, we note that conditional on the first 1 in x being deleted, the resulting trace is
equidistributed as a trace from y conditioned on the second 1 being deleted, as in both cases
we obtain a trace from the circular string 10n+1102n+k. Similar arguments for other cases
show that conditioned on any 1 being deleted, traces from x and y are equal in law. Thus,
the resulting string must have three 1’s to contribute to the Hellinger distance. We will
henceforth assume that the resulting trace is of the form 10a10b10c for some nonnegative
integers a, b, c.

We now compute the ratio µ({10a10b10c})
ν({10a10b10c}) and show that it is typically 1 +O((logn/n)3/2).

We have that
µ({10a10b10c})

q3n+k+1−a−b−c(1− q)a+b+c
=
(n
a

)(n+ 1
b

)(n+ k

c

)
+
(n
b

)(n+ 1
c

)(n+ k

a

)
+
(n
c

)(n+ 1
a

)(n+ k

b

)
,

ν({10a10b10c})
q3n+k+1−a−b−c(1− q)a+b+c

=
(n
a

)(n+ k

b

)(n+ 1
c

)
+
(n
b

)(n+ k

c

)(n+ 1
a

)
+
(n
c

)(n+ k

a

)(n+ 1
b

)
.

It follows that

µ({10a10b10c})
ν({10a10b10c}) =

1
(n+1−b)(n+1−c)···(n+k−c) + 1

(n+1−c)(n+1−a)···(n+k−a) + 1
(n+1−a)(n+1−b)···(n+k−b)

1
(n+1−c)(n+1−b)···(n+k−b) + 1

(n+1−a)(n+1−c)···(n+k−c) + 1
(n+1−b)(n+1−a)···(n+k−a)

.

Multiplying the numerator and denominator by
∏k
i=1(n+ i− a)(n+ i− b)(n+ i− c) results

in

S1 =
k∏
i=1

(n+ i−a)
k∏
i=2

(n+ i− b) +
k∏
i=1

(n+ i− b)
k∏
i=2

(n+ i− c) +
k∏
i=1

(n+ i− c)
k∏
i=2

(n+ i−a)

and

S2 =
k∏
i=1

(n+ i− b)
k∏
i=2

(n+ i−a) +
k∏
i=1

(n+ i− c)
k∏
i=2

(n+ i− b) +
k∏
i=1

(n+ i−a)
k∏
i=2

(n+ i− c),
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respectively. We have that S1 − S2 = (a− b)
∏k
i=2(n+ i− a)(n+ i− b) + (b− c)

∏k
i=2(n+

i− b)(n+ i− c) + (c− a)
∏k
i=2(n+ i− c)(n+ i− a). This is an alternating polynomial in

a, b, c, i.e., applying a permutation σ to a, b, c changes the sign of the polynomial by the sign
of σ. Hence, it can be written in the form (a− b)(b− c)(a− c)Pk(n, a, b, c), where Pk is a
polynomial in n, a, b, c of degree 2k − 4 since S1 and S2 have degree 2k − 1.

By a standard Chernoff bound, there exists a constant C such that with probability at
least 1− n−100, a, b, c ∈ [np− C

√
n logn, np+ C

√
n logn]. When this occurs, we have that

S2 = Ω(n2k−1) and |S1−S2| = O((n logn)3/2n2k−4), so µ({10a10b10c})
ν({10a10b10c}) ∈ [1−(c logn/n)3/2, 1+

(c logn/n)3/2] for some constant c. We thus have that

d2
H(µ, ν) =

∑
a,b,c≥0

(√
µ({10a10b10c})−

√
ν({10a10b10c})

)2

≤ 2n−100 +
∑

a,b,c∈[np−C
√
n logn,np+C

√
n logn]

ν({10a10b10c})
(

1−

√
µ({10a10b10c})
ν({10a10b10c})

)2

= O((logn/n)3).

It follows by Lemma 20 that it requires Ω(n3/ log3 n) samples to distinguish between traces
from x and y, as desired. J

6 Conclusion and Future Work

We note that our work leaves several open problems, including the following:
1. As noted in the introduction, Chase [14] very recently improved the worst-case linear

trace reconstruction bound to exp
(
Õ(n1/5)

)
. Is it possible to get a matching circular

trace reconstruction bound, even just for certain lengths of strings?
2. For worst-case strings, can one get an upper bound of exp

(
Õ(n1/3)

)
or even a subexpo-

nential bound for n with an arbitrary prime factorization?
3. Can one get a subpolynomial (i.e., no(1)) upper bound for the average case?
4. Can one improve our current lower bound for worst-case strings, perhaps even to nω(1)?
5. All of the work we have done in this paper has primarily focused on traces with constant

deletion probability q. However, if q = o(1), the implied results are no better than the
bounds we get for fixed 0 < q < 1. Can better bounds be obtained for circular trace
reconstruction with small deletion probability (for instance, q = 1/(logn)2, or even
q = n−2/3)? In the linear case, there exist much better trace reconstruction algorithms in
the low deletion probability regime (e.g., [7, 24]), so perhaps these results can be extended
to circular strings.

For answering open problem 2, one method we attempted for getting a exp
(
Õ(n1/2)

)
upper bound was to look at the polynomial P (y)P (z)P (y−1z−1) for cyclotomic nth roots of
unity y, z. One can establish a “Bivariate Littlewood”-type result and the same argument as
ours to show the following. Suppose that for any a, b ∈ {0, 1}n, P (y; a)P (z; a)P (y−1z−1; a) =
P (y; b)P (z; b)P (y−1z−1; b) for all cyclotomic nth roots of unity y, z implies that a, b are
equivalent up to cyclic rotation. Then, one can solve circular trace reconstruction using
exp

(
Õ(n1/2)

)
traces. This result may in fact look obvious, as if P (ωn; a) = α · P (ωn; b), one

should expect via a simple induction argument that P (ωkn; a) = αk · P (ωkn; b) which implies
that α = e2πir/n for some r (by looking at k = n). Thus, by rotating a by r elements, we
will get that P (ωkn; a) = P (ωkn; b) for all k, which implies a = b. Unfortunately, one can have
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cases where P (z; a) = P (z; b) = 0 for several choices of z = e2πik/n, which can cause this
induction argument to fail. Indeed, we believe that if such a result were true, proving it
would again be a challenging number theoretic task.

We already noted some reasons in the introduction for why modifying the results of
[35, 22] to answer open problem 3 is difficult. The main reason was that one cannot efficiently
find the “start” of the string.

Finally, we note that a potential way of answering open problem 4 is via strings based on
[21, 13]. One cannot use their strings directly, as their strings are equivalent up to a cyclic
rotation, but perhaps an appropriate modification may improve upon our Ω̃(n3) lower bound.
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1 Introduction

The device-independent approach to quantum information processing treats quantum devices
as black boxes which we can interact with classically to observe their input-output correlations.
Based solely on these correlations and the assumption that quantum mechanics is correct,
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the goal is to prove statements about the devices, e.g., to show that they can be used for
secure quantum key distribution (see e.g. [24]) or delegated quantum computation (see
e.g. [32]). At a fundamental level, this provides a theory-of-computation approach to the
study of classical signatures of quantum mechanics and their use as a “leash” to control and
characterize quantum devices.

Self-testing is arguably the most effective method in device-independent quantum in-
formation processing. The goal in self-testing is to characterise the quantum state and
measurements of multiple black-box quantum devices using only their classical input-output
correlations. In analogy to the setting of interactive proof systems, the classical party
observing the input-output correlations is sometimes called the verifier, and the black-box
quantum devices are called provers. More specifically, the verifier can interact with multiple
quantum provers by sending (classical) questions as inputs and receiving (classical) answers
as outputs. The provers can share any (finite-dimensional) entangled quantum state at the
start of the interaction and are computationally unbounded; however, it is assumed that after
having received the verifier’s questions, the provers can no longer communicate. Based on
the question-answer correlations, the verifier would like to deduce that the provers must have
shared a certain initial state and performed certain measurements on it, up to a local change
of basis on each prover’s Hilbert space. We will describe this scenario in more detail in
Section 1.1. We emphasize that self-testing is a uniquely quantum phenomenon: for classical
devices, there is simply a function that is implemented by the device, and it is not meaningful
to ask how the function is implemented “on the inside”. In contrast, for quantum devices, in
certain cases knowledge of the function (the observed input-output behaviour) implies an
essentially unique realization in terms of a quantum state and measurements on it.

The term self-testing was introduced by Mayers and Yao in [24] in the context of proofs
of security for quantum key distribution, but the notion was already present in earlier works
[34, 29]. For a review covering a large number of different self-testing protocols, as well as
applications such as randomness expansion and delegated quantum computation, see [35]. In
addition to more practical applications, self-testing has also proved to be a powerful tool in
quantum complexity theory for the study of multi-prover interactive proof systems in the
quantum setting and is at the heart of the recent characterisation of the complexity class
MIP∗ [21].

The starting point for our work is the observation that, while the model of non-
communicating quantum provers used in existing self-testing results is appealing in theory,
it is difficult to enforce this non-communication assumption in practice. Motivated by the
many applications of self-testing in quantum cryptography (e.g. device-independent quantum
key distribution) and complexity theory, we are compelled to search for protocols that allow
for a self-testing-like certification of a single untrusted quantum device.

Self-testing protocols in the multi-prover setting are typically based on the violation
of Bell inequalities [3], for which the non-communication assumption is necessary.1 Hence,
different techniques or additional assumptions are necessary when considering the single-device
scenario. What could a “computational Bell inequality” look like?

In this paper we give an answer to this question by constructing a self-testing protocol
for a single computationally bounded quantum device. Specifically, the only assumptions
required are the correctness of quantum mechanics and that the prover does not have the

1 Another approach is to base the self-testing statement on non-contextuality inequalities [5, 6]. The
violation of non-contextuality inequalities is a uniquely quantum phenomenon that is similar to the
violation of Bell inequalities, with the advantage that it only requires a single quantum device and
therefore no non-communication assumption. The downside of this approach is that it places additional
assumptions, such as memory constraints and compatibility relations between measurements, on the
quantum device, limiting its suitability for practical cryptographic applications.
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ability to break the Learning with Errors (LWE) assumption [31], a common assumption
in post-quantum cryptography, during the protocol execution (whereas breaking the LWE
assumption after the end of the protocol is allowed). Our protocol is a three-round interaction
between a classical verifier and a quantum prover, at the end of which the verifier decides to
either “accept” or “reject” the prover. Informally, the guarantee provided by the protocol is
the following:

I Theorem (Informal). A prover’s strategy in the protocol is described by a quantum state
and the measurements that the prover makes on the state to obtain the (classical) answers
received by the verifier. If a computationally bounded prover is accepted by the verifier with
probability 1− ε, then there exists an isometry V such that for a universal constant c > 0
and under the isometry V :
1. the prover’s state is O(εc)-close (in trace distance) to a Bell pair,
2. (a subset of) the prover’s measurements are O(εc)-close to single-qubit measurements in

the computational or Hadamard basis, where the measurement bases are chosen by the
verifier. Here, “closeness” is measured in a distance measure suitable for measurements
acting on a state.

We emphasize that the theorem not only guarantees the preparation of an entangled state by
the prover, but also the implementation of specific measurements on it. As such, it provides
a complete analogue of foundational self-testing results for the CHSH inequality [34, 25].

The proof of our main result builds on techniques introduced in recent works [23, 8, 19] to
allow a classical verifier to leverage post-quantum cryptography to control a computationally
bounded quantum prover. Because they are relevant for understanding the proof of our
results, we now give a brief overview of these works and explain their relation to self-testing.

In [23], Mahadev gives the first protocol to classically verify a delegated quantum
computation with a single untrusted quantum prover. The central ingredient in Mahadev’s
verification protocol is a “measurement protocol” that allows the verifier to force the prover
to report classical outcomes obtained by performing certain measurements on a quantum
state that the prover has “committed to” using classical information. The main guarantee of
the measurement protocol is this: if the prover is accepted in the protocol, there exists a
quantum state such that the distribution over the prover’s answers could have been produced
by performing the requested measurements on this state. In other words, all of the prover’s
answers must be self-consistent in the sense that they could have originated from performing
different measurements on (copies of) the same quantum state.

To verify a quantum computation, the statement that the prover’s answers are consistent
with measurements on a quantum state is sufficient, as the existence of a quantum state
with the right properties can certify the outcome of the quantum computation (this is due to
Kitaev’s “circuit-to-Hamiltonian” construction, which we do not explain here). However, in
this work we seek to make a stronger statement: we want to certify that the prover actually
constructed the desired quantum state and performed the desired measurements on it (up
to an isometry). While the honest prover in Mahadev’s protocol does indeed construct the
desired quantum state, the protocol does not guarantee that an arbitrary prover must do, too.
Hence, our self-testing protocol is stronger in the sense that it allows for a more stringent
characterisation of the prover’s actions, namely its actual states and measurements.2 To
emphasize the difference, we note that the guarantee of Mahadev’s protocol does not directly

2 This comes at the cost that we are only able to certify Bell pairs, while Mahadev’s measurement protocol
works for measurements on any state.
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imply that a successful prover must have performed any quantum computation; the guarantee
is only that, if the correct state preparation and measurements were to be performed, the
outcome would be as claimed by the prover.

Another closely related work is that of Brakerski et al. [8], who give a protocol between a
classical verifier and a quantum prover that allows the verifier to generate certified information-
theoretic randomness, again assuming that the prover does not break the LWE assumption; in
other words, their protocol generates information-theoretic randomness from a computational
assumption. For this, the authors show that two of the prover’s measurements must be
maximally incompatible, as defined by a quantity that they call the “overlap”. Informally, one
can think of two maximally incompatible measurements as being close to a computational and
Hadamard basis measurement, up to some global change of basis. Hence, this result already
resembles self-testing in the sense that the verifier can make a statement about the actual
measurements used by the prover. In particular, it does serve as a “test of quantumness” for
the prover.

Building on [8] and using techniques from [23], Gheorghiu and Vidick construct a protocol
for a task that they call verifiable remote state preparation (RSP) [19]. They consider a set
of single-qubit pure states {|ψ1〉, . . . , |ψn〉}.3 Under the same LWE assumption as before, the
protocol enables the verifier to certify that the prover has prepared one of these states, up to
a global change of basis (i.e., some isometry V that is applied to all |ψi〉). More precisely,
the verifier cannot decide beforehand on a particular |ψi〉, but after executing the protocol,
the verifier knows which |ψi〉 the prover has prepared, and the distribution over i can be
made uniform. The prover, on the other hand, does not know which |ψi〉 he has prepared.

This result resembles a self-testing statement even more than that of [8] because it
explicitly characterises a family of single-qubit quantum states, one of which is certified to
be present in the prover’s space. However, it differs from a standard self-testing statement in
that it is defined for a family of states, not an individual state: because the prover’s isometry
V is arbitrary, any individual state |ψi〉 can be mapped to another arbitrary state. Hence,
what is certified in RSP is not any individual state, but the relationships (e.g., orthogonality)
between different states in some family. Alternatively, one can also take the view that RSP
characterises the relationships between the prover’s states and measurements. We return to
this issue in more detail in Section 1.1. The idea of certifying a family of states has also been
considered by Cojocaru et al. [12], who call this notion “blind self-testing”. They analyze a
different protocol under a restricted adversarial model and conjecture that their protocol
yields similar guarantees as [19] for single-qubit states and tensor products of single-qubit
states.

This lengthy overview of previous works makes explicit a progression towards the task
that we tackle here, that of genuine self-testing of a single quantum device. We note that
this presentation clearly benefits from hindsight, and that none of the cited works mentions
any relation to self-testing; indeed, the results are too weak to be used in this setting.
In particular, none of the previous works provides a sufficiently strong guarantee on the
measurements performed by the quantum device and goes beyond the setting of a single
qubit, which is arguably the main technical challenge. Indeed, moving from a single-qubit
state to an entangled two-qubit state means that the verifier has to enforce a tensor product
structure on the prover’s space, which is one of the main difficulties in our soundness proof
([27, Section 4]). On a technical level, it requires the certification of compatibility relations

3 The protocol in [19] is designed for a specific set of ten pure states that are useful for delegated quantum
computation, but for the purposes of this overview it is not important which specific states these are.
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between different measurements meant to act on different qubits. Additionally, having two
qubits instead of one prevents us from using Jordan’s lemma, a standard tool in self-testing
also used in [19], to characterise the prover’s measurements; in [27, Section 4,7], we show how
to characterise the prover’s measurements using a different method starting with a partial
characterisation of the prover’s measurements, using that to partially characterise the prover’s
states, which in turn is used for a stronger partial characterisation of the measurements, etc.,
until we reach the full statement that shows that the prover makes single-qubit measurements
on a Bell pair.

1.1 Self-testing in the multi- and single-prover settings
In this section, we give a brief overview of the standard multi-prover self-testing scenario,
and explain how it can be extended to a single prover. For more details on the multi-prover
scenario, see [35] or [33, Chapter 7]. For simplicity, let us consider the case of two provers
A and B, with Hilbert spaces HA and HB, respectively. Hence, the total Hilbert space is
HA ⊗HB . The verifier interacts with A and B by sending questions and receiving answers.
The question-answer correlations can be described by a family of probability distributions
{p(a, b|x, y)}x,y, where for each choice of questions x and y sent to A and B, respectively,
p(a, b|x, y) is a probability distribution over their answers a and b. We say that a quantum
state |ψ〉AB ∈ HA ⊗ HB is compatible with the correlations p(a, b|x, y) if there are local
measurements {P (a)

x }a on HA for every input x, and {Q(b)
y }b on HB for every input y, that

realise the correlations p(a, b|x, y), i.e., p(a, b|x, y) = 〈ψ|P (a)
x ⊗Q(b)

y |ψ〉AB for all x, y, a, b.

I Definition 1 (Self-testing of states, informal). The correlations p(a, b|x, y) self-test a state
|φ〉AB if for any state |ψ〉AB compatible with these correlations, there exists a local isometry
V = VA ⊗ VB (with VA only acting on HA, and VB only acting on HB) such that V |ψ〉AB =
|φ〉AB |Aux〉 for some ancillary state |Aux〉.

A more operational view of this statement is that it must be possible to “extract” the
state |φ〉AB from |ψ〉AB only by performing local operations. The condition that the isometry
must be local is crucial: if we would allow a global isometry, we could map any state |ψ〉AB to
the desired state |φ〉AB . In the two-prover case, the notion of a local isometry is natural, since
the separation between the two provers induces a tensor product structure H = HA⊗HB on
the global Hilbert space H. In contrast, for a single prover no such tensor product structure
exists and we cannot define local isometries in a meaningful way.

In Definition 1, we only dealt with the provers’ state, not his measurements. A stronger
notion of self-testing is to characterise both the provers’ state and measurements. This is the
version of self-testing originally considered by Mayers and Yao [24], and we will see that it
can be meaningfully extended to the single-prover setting.

I Definition 2 (Self-testing of states and measurements, informal). The correlations p(a, b|x, y)
self-test a state |φ〉AB and measurements {M (a)

x }, {N (b)
y } if for any state |ψ〉AB and meas-

urements {P (a)
x }, {Q(b)

y } that realise the correlations p(a, b|x, y), there exists a local isometry
V = VA ⊗ VB such that
1. V |ψ〉AB = |φ〉AB |Aux〉,
2. V (P (a)

x ⊗Q(b)
y )|ψ〉AB =

(
(M (a)

x ⊗N (b)
y )|φ〉AB

)
|Aux〉, for some ancillary state |Aux〉.

The first condition is the same as in Definition 1. The second condition roughly says that
the “physical” measurements {P (a)

x } and {Q(b)
y } used by A and B, respectively, act on the

state |ψ〉AB in the same way that the desired measurements {M (a)
x } and {N (b)

y } act on the
desired state |φ〉AB .
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Self-testing of states and measurements still has meaning in the single-prover setting.
In this setting, one can imagine that the verifier sends both questions x and y to the same
prover, and the prover replies with two answers a and b. To compute his answers, the prover
prepares a quantum state |ψ〉 and, on inputs x, y, performs a measurement {P (a,b)

x,y }a,b to
obtain answers a, b.

I Definition 3 (Self-testing for a single prover, informal). The correlations p(a, b|x, y) self-test
a state |φ〉 and measurements {K(a,b)

x,y }a,b if for any state |ψ〉 and measurements {P (a,b)
x,y }a,b

that realise the correlations p(a, b|x, y), there exists an isometry V such that
1. V |ψ〉 = |φ〉|Aux〉,

2. V P (a,b)
x,y |ψ〉 =

(
K

(a,b)
x,y |φ〉

)
|Aux〉, for some ancillary state |Aux〉 ∈ H′.

This definition is rather informal because whenever the number of possible questions and
answers is fixed and independent of the security parameter (as is the case in this paper),
single-round question-answer correlations p(a, b|x, y) alone cannot be sufficient: a prover can
always succeed in the protocol simply by answering the verifier’s questions according to a
look-up table; such a prover is classical and does not actually perform any computation.
Therefore, our protocol will have multiple rounds of interaction between the verifier and
the prover: the questions and answers in the initial “setup rounds” will involve a public
key that scales with the security parameter; then, in the last round, the verifier observes
question-answer correlations p(a, b|x, y) similar to standard self-testing, i.e., with a fixed
question and answer length. Instead of using multi-round interaction, one could also try to
build a single-round protocol with questions that depend on the security parameter (e.g.,
the question would include a public key). A number of recent works have shown that under
the (quantum) random oracle assumption, the protocol for certifying the quantumness of a
prover from [8] and the verification protocol from [23] can be adapted to this single-round
setting [2, 11, 9]. We leave it for future work to investigate whether the interaction in our
protocol can also be removed with the random oracle assumption.

To obtain a statement that is more similar to the two-prover scenario, we consider the
stronger constraint that the desired measurements have a tensor product form K

(a,b)
x,y =

M
(a)
x ⊗ N (b)

y . In particular, this means that answer a only depends on question x and b

only depends on y, and it enforces a natural tensor product structure on the prover’s space.
Specifically, we define Hilbert spaces HA,HB and H′ and deduce the existence of an isometry
V from the prover’s physical space H to HA ⊗HB ⊗H′ such that under the isometry, the
measurements operators P (a,b)

x,y act on |ψ〉 in the same way that tensor product measurement
operators of the form M

(a)
x ⊗N (b)

y act on |φ〉AB , where M (a)
x acts only on HA, N (b)

y acts only
on HB , and |φ〉AB is the state that we are self-testing for (e.g., a Bell state).

I Definition 4 (Self-testing of tensor product strategies for a single prover, informal). The
correlations p(a, b|x, y) self-test a state |φ〉AB and measurements {M (a)

x } on system A and
{N (b)

y } on system B if for any state |ψ〉 ∈ H and measurements {P (a,b)
x,y }a,b on H that realise

the correlations p(a, b|x, y), there exists an isometry V : H → HA ⊗HB ⊗H′ such that
1. V |ψ〉 = |φ〉AB |Aux〉,

2. V P (a,b)
x,y |ψ〉 =

(
(M (a)

x ⊗N (b)
y )|φ〉AB

)
|Aux〉, for some ancillary state |Aux〉 ∈ H′.

Again, this definition is informal for the same reason as for Definition 3. A formal
statement of such a single-prover self-testing result with a tensor product structure is given
in [27, Theorem 4.38], the main result of our work.
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1.2 Cryptographic primitives
The main cryptographic primitive underlying our self-testing protocol is a so-called extended
noisy trapdoor claw-free function family (ENTCF family). ENTCF families were introduced
by Mahadev in [23], building on the construction of noisy trapdoor claw-free function families
by Brakerski et al. in [8]. Here, we only give a brief informal description of the main
properties of an ENTCF family (see [27, Section 2.2] for references and details).

An ENTCF family consists of two families F and G of function pairs. A function pair
(fk,0, fk,1) ∈ F is called a claw-free pair and is indexed by a public key k. Similarly, an
injective pair is a pair of functions (fk,0, fk,1) ∈ G, also indexed by a public key k. Informally,
the most important properties are the following:
1. For fixed k ∈ KF , fk,0 and fk,1 are bijections with the same image, i.e., for every y in their

image there exists a unique pair (x0, x1), called a claw, such that fk,0(x0) = fk,1(x1) = y.
2. Given a key k ∈ KF for a claw-free pair, it is quantum-computationally intractable

(without access to trapdoor information) to compute both a preimage xi and a single
generalised bit of x0⊕x1 (i.e., d · (x0⊕x1) for any non-trivial bit string d), where (x0, x1)
forms a valid claw. This is called the adaptive hardcore bit property.

3. For fixed k ∈ KG , fk,0 and fk,1 are injective functions with disjoint images.
4. Given a key k ∈ KF ∪KG , it is quantum-computationally hard (without access to trapdoor

information) to determine the “function type”, i.e., to decide whether k is a key for a
claw-free or an injective pair. This is called injective invariance.

5. For every key k ∈ KF ∪ KG , there exists a trapdoor tk, which can be sampled together
with k and with which (ii) and (iv) are computationally easy.

2 Our self-testing protocol

We now give an informal description of our self-testing protocol with the honest prover
behaviour and provide some intuition for its soundness. A full description of the protocol is
given in [27, Figure 1].

On a very high level, one can view the protocol as first executing the RSP protocol
from [19] twice in parallel to prepare two qubits in the provers space. Then, the prover is
asked to perform an entangling operation on these two qubits. Because the prover does not
know which states the qubits are in, and the entangling operation acts differently on different
states, to pass the checks in the protocol the prover has to apply the entangling operation
honestly.

In more detail, the protocol begins with the verifier sampling two uniformly random bits
θ1, θ2, each bit denoting a basis choice (either the computational or the Hadamard basis).
The case where both bits denote the Hadamard basis will be the one where the prover
prepares a Bell pair, whereas the other basis choices serve as tests that prevent the prover
from cheating. Depending on these basis choices, the verifier then samples two key-trapdoor
pairs (k1, tk1) and (k2, tk2) from the ENTCF family: for the computational basis, it samples
an injective pair, and for the Hadamard basis a claw-free pair. The verifier sends the keys to
the prover and keeps the trapdoors private.

The honest prover treats the two keys separately. For each key ki, he prepares the state

|ψi〉 = 1√
2|X |

∑
x∈X , b∈{0,1}

|b〉|x〉|fki,b(x)〉 . (1)

Here, X is the domain of the ENTCF family. Note that even though the prover does not
know which kind of function (claw-free or injective) he is dealing with, the definition of
ENTCF families still allows him to construct this state. The prover now measures both

ITCS 2021
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image registers (i.e., the registers storing “fki,b(x)”), obtains images y1, y2, and sends these
to the verifier. (In the terminology of [23], this is called a “commitment”.) Depending on
the choice of function family by the verifier, the prover’s post-measurement state has one of
two forms: if the verifier sampled the key ki from the injective family, the post-measurement
state is a computational basis state:

|ψ′i〉 = |b〉|xb〉 , (2)

where xb is the unique preimage of yi. If the key ki belongs to a claw-free family, the
post-measurement state is a superposition over a claw:

|ψ′i〉 = 1√
2

(|0〉|x0〉+ |1〉|x1〉) , (3)

where (x0, x1) form a claw, i.e., fk,0(x0) = fk,1(x1) = y.
At this point, the verifier selects a round type, either a “preimage round” or a “Hadamard

round”, uniformly at random and sends the round type to the prover. For a preimage round,
the honest prover measures his entire state in the computational basis and returns the result;
the verifier checks that the prover has indeed returned correct preimages for the submitted
y1, y2. The preimage round is an additional test that is required for us to leverage the
adaptive hardcore bit property, but we do not discuss this further in this overview.

For a Hadamard round, the honest prover measures both of his preimage registers (i.e.,
the registers containing “xb”) in the Hadamard basis, obtains two bit strings d1, d2, and sends
these to the verifier. This results in the following states (using the notation from above):

|ψ′′i 〉 =
{
|b〉 if ki belongs to an injective family,

1√
2 (|0〉+ (−1)di·(x0⊕x1)|1〉) if ki belongs to a claw-free family.

(4)

Note that the phase in the second case is exactly the adaptive hardcore bit from the definition
of ENTCF families. At this point, the verifier selects two additional bases q1, q2 uniformly at
random (again from either the computational or Hadamard basis), and sends these to the
prover. In analogy to self-testing, we call these bases “questions”. The honest prover now
applies a CZ gate (an entangling two-qubit gate that applies a σZ operation to the second
qubit if the first qubit is in state |1〉) to its state |ψ′′1 〉|ψ′′2 〉. In the case where both θ1 and θ2
specify the Hadamard basis, this results in a Bell state (rotated by a single-qubit Hadamard
gate). The prover measures the individual qubits of the resulting state in the bases specified
by q1, q2. The outcomes v1, v2 are returned to the verifier.

The verifier can use the prover’s answers y1, y2, d1, d2 and her trapdoor information tk1 , tk2

to determine which state CZ|ψ′′1 〉|ψ′′2 〉 the prover should have prepared. The verifier accepts
the prover if his answers v1, v2 are consistent with making the measurements specified by
q1, q2 on the honest prover’s state CZ|ψ′′1 〉|ψ′′2 〉.

2.1 Soundness proof
We now give a brief intuition for the soundness of the protocol; the full soundness proof is
given in [27, Section 4]. Let us first consider a version of the protocol where the prover is not
supposed to perform a CZ operation. As noted before, this would be (a simplified version
of) the RSP protocol [19], executed twice in parallel. For the purposes of this overview,
let us assume that the only way for the prover to pass these two parallel executions of the
RSP protocol is to treat each execution separately, i.e., use a tensor product Hilbert space
H1 ⊗ H2 and execute each instance of the RSP protocol on a different part of the space
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(enforcing such a tensor product structure is reminiscent of the classic question of parallel
repetition [30] and is actually one of the main difficulties in our soundness proof, but we
leave the details of this for [27, Section 4]). It now follows from the security of the RSP
protocol that the prover must have prepared one of {|0〉, |1〉, |+〉, |−〉} in each part of his
space (up to a “local” change of basis for each space), but he does not know which one.

Now consider how a CZ operation acts on these different states: if both states are
Hadamard basis states (e.g., |+〉|−〉), the CZ operation will entangle them and produce
a Bell state (rotated by a single-qubit Hadamard gate); in contrast, if at least one of the
states is a computational basis state (e.g., |1〉|−〉), the resulting state will still be a product
state of computational and Hadamard basis states (albeit a different one). This means that
in the latter case, the CZ operation essentially only relabels the states. Therefore, if the
verifier adapts her checks to account for the relabelling, in the latter case the guarantees
from the RSP protocol still hold. Because the prover does not know which bases the verifier
has selected, we can extend these guarantees to the case of two Hadamard basis states, too.

We stress that this only provides a rough intuition, and that the actual proof proceeds
quite differently from this because we cannot just assume the existence of a tensor product
structure on the prover’s Hilbert space. Deducing this tensor product structure poses technical
difficulties. In two-prover self-testing proofs, the first step is to show that the measurement
operators used by each prover approximately satisfy certain relations, e.g. anti-commutation.
Because the measurement operators of different provers act on different Hilbert spaces, they
exactly commute. Combining the approximate relations from the first step with the exact
commutation relations, one can show that the prover’s measurement operators must be close
to some desired operators, e.g. the Pauli operators. This last “rounding step” typically uses
Jordan’s lemma or a stability theorem for approximate group representations [20]. In our
case, we cannot show exact commutation relations between operators – commutation can
only be enforced via the protocol, which tolerates a small failure probability. Hence, we
are only able to show approximate commutation relations, which prevents us from applying
Jordan’s lemma or the result of [20]. We therefore develop an alternative approach to
“rounding” the prover’s operators that only requires approximate commutation and leverages
the cryptographic assumptions. This method might also be useful for other applications that
require a very tight “cryptographic leash” on a quantum prover.

3 Discussion

Self-testing has developed into a versatile tool for quantum information processing and
quantum complexity theory and presents one of the strongest possible black-box certific-
ation techniques of quantum devices. The standard self-testing setting involves multiple
non-communicating quantum provers, which is difficult to enforce in practice. The main
contribution of this paper is the construction of a self-testing protocol that allows a classical
verifier to certify that a single computationally bounded quantum prover has prepared a Bell
state and measured the individual qubits of the state in the computational or Hadamard
basis, up to a global change of basis applied to both the state and measurements. This means
that we are able to certify the existence of entanglement in a single quantum device.4

4 The freedom of applying a global change of basis means that the entangled Bell state can be mapped to
a product state. However, then the prover’s measurements are mapped to entangling measurements, so
entanglement is still present.

ITCS 2021
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Due to the interactive nature of our protocol, this certification remains valid even if it
turned out that any quantum computation is classically simulable, i.e., BQP = BPP.5 It
therefore constitutes a “test of quantumness” in the sense of [8] and differs from proposals
for testing quantum supremacy such as [7], which only certify the “quantumness” of a device
under the assumption that BQP 6= BPP.6

Existing multi-prover self-testing protocols are typically based on non-local games, e.g.,
the CHSH game [25]. Our self-testing protocol follows a more “custom” approach guided by
the available cryptographic primitives. While this enables us to construct a single-prover
self-test for single-qubit measurements on a Bell state, arguably the most important quantum
state for many applications, it does not allow us to extend the result to other states for which
multi-prover self-tests are known [13]. To better make use of the extensive existing self-testing
literature, it would be desirable to construct a procedure that allows for the “translation” of
multi-prover non-local games to single-prover games with computational assumptions. In
classical cryptography, similar attempts have been made to construct single-prover argument
systems from multi-prover proof systems using fully homomorphic encryption [1, 22, 18].

Another approach to constructing single-prover self-tests for a larger class of states might
be to strengthen Mahadev’s measurement protocol [23] from guaranteeing the existence of
a state compatible with the measurement results to certifying that the prover actually has
prepared this state. As a step in this direction, the second author and Zhang recently showed
that Mahadev’s protocol is a classical proof of quantum knowledge [37]. The concept of a
proof of quantum knowledge, first introduced in [10, 15] for the setting of a quantum verifier
and extended to the setting of a classical verifier in [37], is still less stringent than a self-test
and in particular lacks the strong characterisation of the prover’s measurements that we
obtain in self-testing.

Beyond the conceptual appeal of gaining more fine-grained control over untrusted quantum
devices, our self-testing protocol presents a first step towards translating multi-prover
protocols for applications such as delegated computation [32, 14], randomness expansion
[16, 36, 28], or secure multi-party quantum computation [17, 4] to a single-prover setting.
There are already computationally secure single-prover protocols for delegated quantum
computation [23] and randomness expansion [8]; however, establishing a more general link
between self-testing-based multi-prover protocols and computationally secure single-prover
protocols is still desirable: it might lead to conceptually simpler single-prover protocols and
will be useful for constructing single-prover protocols for other applications without resorting
to a low-level cryptographic analysis.

For example, using our self-testing theorem in a black-box way, the first author and
others have recently constructed a protocol for device-independent quantum key distribution
(DIQKD) [26]. In contrast to previous DIQKD protocols, which rely on a non-communication
similar to the one in standard self-testing, this new DIQKD protocol requires no non-
communication assumption and more closely models how DIQKD protocols are expected to
be implemented experimentally. Crucially, the security analysis of this DIQKD protocol can
be reduced to our self-testing theorem without any intricate cryptographic analysis involving
computational hardness assumptions.

5 Note that the LWE assumption is independent of whether BQP = BPP or not, since LWE is assumed
to be hard for both quantum and classical computers.

6 Intuitively, the reason for this is the following: in our protocol and in [8], the quantum prover has to be
able to compute either a preimage or a pair (u, d) such that u = d · (x0 ⊕ x1), where (x0, x1) forms a
claw. If a classical prover was able to correctly compute a preimage or a pair (u, d), it could be rewound
to compute both at the same time, contradicting the adaptive hardcore bit property. In a quantum
prover, the collapsing nature of quantum measurements prevents us from rewinding the prover.



T. Metger and T. Vidick 19:11

We believe that, in a similar vein, our protocol will also serve as a useful building block
for other future protocols for computationally bounded quantum devices, in the same way
that self-testing for EPR pairs in the multi-prover scenario has proved to be a versatile tool
in physics, cryptography, and complexity theory.
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Abstract
In the trace reconstruction problem, an unknown source string x ∈ {0, 1}n is transmitted through a
probabilistic deletion channel which independently deletes each bit with some fixed probability δ
and concatenates the surviving bits, resulting in a trace of x. The problem is to reconstruct x given
access to independent traces. Trace reconstruction of arbitrary (worst-case) strings is a challenging
problem, with the current state of the art for poly(n)-time algorithms being the 2004 algorithm of
Batu et al. [2]. This algorithm can reconstruct an arbitrary source string x ∈ {0, 1}n in poly(n)
time provided that the deletion rate δ satisfies δ ≤ n−(1/2+ε) for some ε > 0.

In this work we improve on the result of [2] by giving a poly(n)-time algorithm for trace
reconstruction for any deletion rate δ ≤ n−(1/3+ε). Our algorithm works by alternating an alignment-
based procedure, which we show effectively reconstructs portions of the source string that are not
“highly repetitive”, with a novel procedure that efficiently determines the length of highly repetitive
subwords of the source string.
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1 Introduction

The trace reconstruction problem was proposed almost twenty years ago in works of [10, 11, 2],
though some earlier variants of the problem were already considered in the 1970s [9]. This
problem deals with the deletion channel, which works as follows: when an n-bit string (the
source string) is passed through a deletion channel of rate δ, each coordinate is independently
deleted with probability δ. The surviving n′ ≤ n coordinates are concatenated to form the
output of the channel, which is referred to as a trace of the original source string; we write
“z ∼ Delδ(x)” to indicate that z is a trace generated from source string x according to this
probabilistic process. As discussed in [13], this channel provides an elegant formalization for
the theoretical study of problems involving synchronization errors.

In the trace reconstruction problem, independent traces are generated from an unknown
and arbitrary source string x ∈ {0, 1}n, and the task of the algorithm is to reconstruct
(with high probability) x from its traces. The trace reconstruction problem is motivated
by applications in several domains, including sensor networks and biology [13, 1, 16, 15]. It
is also attractive because it is a clean and natural “first problem” which already seems to
capture much of the difficulty of dealing with the deletion channel.

The problem of trace reconstruction for an arbitrary (worst-case) source string x has
proved to be quite challenging.1 [2] gave an algorithm that runs in poly(n) time, uses poly(n)
traces, and with high probability reconstructs an arbitrary source string x ∈ {0, 1}n provided
that the deletion rate δ is at most n−(1/2+ε) for some constant ε > 0. Unfortunately, the
trace reconstruction problem seems to quickly become intractable at higher deletion rates.
Holenstein et al. [8] gave an algorithm that runs in time exp(O(n1/2)) and uses exp(O(n1/2))
traces for any deletion rate δ that is bounded away from 1 by a constant, and this result was
subsequently improved in simultaneous and independent works by [4, 14], both of which gave
algorithms with time and sample complexity exp(O(n1/3)). On the lower bounds side, for
δ = Θ(1) successively stronger lower bounds on the required sample complexity were given by
[12] and [5], with the current state of the art being a Ω̃(n3/2) lower bound due to Chase [3].

The low deletion rate regime. The positive result of [4] actually gives an algorithm
that is faster than exp(O(n1/3)) if the deletion rate is sufficiently low: [4] shows that for
O(log3 n)/n ≤ δ ≤ 1/2, their algorithm runs in time exp(O(δn)1/3). Consequently, for the
specific deletion rate δ = n−(1/2+ε), the [4] algorithm runs in time essentially exp(O(n1/6)),
and [4] shows that no faster running time or better sample complexity is possible for any
“mean-based” algorithm, a class of algorithms which includes those of [4, 14, 8].

Algorithmic approaches other than mean-based algorithms can provably do better at low
deletion rates. This is witnessed by the algorithm of Batu et al. [2] which, as described earlier,
runs in poly(n) time and uses poly(n) samples at deletion rate δ = n−(1/2+ε). The main
algorithmic component of [2] is a “Bitwise Majority Alignment” (BMA for short) procedure,
which is further augmented with a simple procedure to determine the length of long “runs”
(subwords of x of the form 0` or 1` with ` ≥

√
n). Roughly speaking, the BMA algorithm

maintains a pointer in each trace and increments those pointers in successive time steps,
attempting to always keep almost all of the pointers correctly aligned together. The analysis
of [2] shows that the BMA algorithm succeeds if the source string x does not contain any

1 We note that the average-case problem, in which the reconstruction algorithm is only required to succeed
for a 1− o(1) fraction of all possible source strings in {0, 1}n, is much more tractable, with the current
state of the art [6, 7] being an algorithm that uses exp(O(log1/3 n)) traces and runs in poly(n) time for
any deletion rate δ that is bounded away from 1.
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long runs, but a challenge for the BMA algorithm is that the pointers in different traces
will inevitably become misaligned if x does contain a long run 0` or 1`; this is why the [2]
algorithm must interleave BMA with a procedure to handle long runs separately. Intuitively,
deletion rate δ = n−1/2 is a barrier for the [2] analysis because if δ = ω(n−1/2), then each
trace is likely to have multiple locations where more than one consecutive bit of x is “dropped,”
which is problematic for the analysis of BMA given in [2].

To summarize: given this state of the art from prior work, it is clear that alignment-based
approaches can outperform mean-based algorithms at low deletion rates, but it is not clear
whether, or how far, alignment-based approaches can be extended beyond the [2] results.
Further incentive for studying the low deletion rate regime comes from potential applications
in areas such as computer networks, where it may be natural to model deletions as occurring
at relatively low rates. These considerations motivate the results of the present paper, which
we now describe.

1.1 This work: An improved algorithm for the low deletion rate regime
The main result of this paper is an efficient algorithm that can handle significantly higher
deletion rates than the [2] algorithm. We prove the following:

I Theorem 1 (Efficient trace reconstruction at deletion rate δ ≥ n−(1/3+ε)). Fix any constant
ε > 0 and let δ = n−(1/3+ε). There is an algorithm Reconstruct that uses O(n4/3) indepen-
dent traces drawn from Delδ(x) (where x ∈ {0, 1}n is arbitrary and unknown to Reconstruct),
runs in O(n7/3) time, and outputs the unknown source string x with probability at least 9/10.

Note that any deletion rate δ < n−(1/3+ε) can of course be handled, given Theorem 1,
by simply deleting additional bits to reduce to the δ = n−(1/3+ε) case. Note further that
any desired success probability 1 − κ can easily be achieved from Theorem 1 by running
Reconstruct O(log(1/κ)) times and then taking a majority vote.

At a high level, the Reconstruct algorithm works by interleaving two different subroutines.
The first subroutine is (essentially) the BMA algorithm, for which we provide an improved
analysis, showing that BMA successfully reconstructs any string that does not contain
a long subword (of length at least M = 2m + 1 with m = n1/3) that is a prefix of s∞
for some short (constant-length) bitstring s. We refer to long and “highly-repetitive”
subwords of x of this form as “s-deserts” of x; see Definition 2 for a detailed definition.
The second subroutine is a new algorithm which we show efficiently determines the length
of an s-desert in the source string x.

Thus, two novel aspects of this work that go beyond [2] are (i) our improved analysis of BMA,
and (ii) our new procedure for efficiently measuring deserts (the analogous component of the
[2] algorithm could only measure runs, which correspond to s-deserts with |s| = 1).

We believe that it may be possible to further extend the kind of “hybrid” approach that
we employ in this paper to obtain efficient trace reconstruction algorithms that can handle
even larger deletion rates δ. However, there are some significant technical challenges that
would need to be overcome in order to do so. We describe some of these challenges at the
end of the next section, which gives a more detailed overview of our approach.

2 Overview of our approach

As alluded to in the introduction, at a high level our algorithm carries out a careful interleaving
of two procedures, which we call BMA and FindEnd. In this section we first give a high-level
overview of the procedure BMA as well as our improved analysis. Then we give a high-level
overview of FindEnd, and finally we explain how these two procedures are interleaved. We
close with a brief discussion of possibilities and barriers to further progress.
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2.1 Overview of BMA

The procedure BMA is exactly the same as the bitwise majority alignment algorithm of [2];
our new contribution regarding BMA is in giving a more general analysis. To explain the high
level idea, let us fix the deletion rate δ = n−(1/3+ε) and a constant C = d100/εe. Let

m = n1/3 and M = 2m+ 1.

The BMA procedure operates on a sample of some N = O(logn) traces y1, . . . ,yN drawn
independently from Delδ(x) before the procedure begins its execution. Note that for any
i ∈ [N ] and any position ` in the trace yi, there is a position fi(`) satisfying ` ≤ fi(`) ≤ n−1
in the target string x = (x0, . . . , xn−1) that maps to ` under the deletion process.2 The
high level idea of BMA is to maintain pointers current1, . . . , currentN , with currenti pointing
to a position in yi, such that most of them are correctly aligned – i.e., at the beginning
of each time step t, t = 0, 1, . . ., as we try to determine xt, we have fi(currenti) = t for
most i ∈ [N ]. Note that if this alignment guarantee were to hold for more than half of the
traces for all t = 0, 1, . . . , n− 1, then we could reconstruct the unknown string x by taking a
majority vote of yicurrenti

in each time step. Indeed we show that this happens with high
probability over the randomness of y1, . . . ,yN when x does not contain an s-desert for any
string s ∈ {0, 1}≤C (i.e. a subword of length at least M = 2m+ 1 that is a prefix of s∞). In
contrast, the analysis of [2] requires the deletion rate to be n−(1/2+ε) but works as long as x
does not contain a run of 0’s or 1’s (or s-deserts with |s| = 1 in our notation) of length at
least

√
n.

To explain BMA in more detail, let us initialize t = 0 and pointers
current1(0), . . . , currentN (0) to position 0. (Note that most pointers are correctly aligned
as desired given that δ = n−(1/3+ε) and thus, x0 is not deleted in most traces and
fi(currenti(0)) = fi(0) = 0 for most i.) The way the pointers are updated is as follows: At
each time step t, we let wt be the majority element of theN -element multiset {yicurrenti(t)}i∈[N ].
For those traces yi with yicurrenti(t) = wt (i.e., the bit of yi at the current pointer is the ma-
jority bit), we move the pointer to the right by 1, i.e. we set currenti(t+ 1)← currenti(t) + 1;
otherwise the pointer stays the same, i.e., we set currenti(t + 1) ← currenti(t). Next we
increment t and start the next round, repeating until t = n when BMA outputs the string
(w0, . . . , wn−1).

For intuition we observe that if most of the pointers were aligned at the beginning of
time step t (i.e., fi(currenti(t)) = t for most i ∈ [N ]), then wt = xt is indeed the next bit in
x. Moreover, if currenti(t) is aligned and wt = xt, then moving currenti to the right by 1 is
justified by noting that most likely xt+1 is not deleted in yi (with probability 1− δ), and
when this happens fi(currenti(t+ 1)) = t+ 1 so currenti remains aligned at the beginning of
the next time step.

In more detail, our analysis shows that when x does not contain an s-desert for any s ∈
{0, 1}≤C BMA maintains the following invariants at the beginning of time step t = 0, 1, . . . , n:
1. At time t, BMA has reconstructed x0, . . . , xt−1 correctly as w0, . . . , wt−1.
2. For every trace yi, i ∈ [N ], it holds that fi(currenti(t)) ≥ t.
3. Finally,

∑
i∈[N ]

(
fi(currenti(t))− t

)
≤ 2N/C.

The intuitive meaning behind conditions (2) and (3) is as follows: while (2) says that the
“original position” of currenti(t) never falls behind t, condition (3) ensures that on average,
the original positions of these pointers do not surpass t by too much. In fact, since C is a
large constant, most of the pointers are perfectly aligned, i.e., they satisfy fi(currenti(t)) = t.

2 It will be convenient for us to index a binary string x ∈ {0, 1}` using [0 : `− 1] as x = (x0, . . . , x`−1).
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We now discuss how the invariants (1), (2) and (3) are maintained. First, we observe
that invariant (1) for time step t+ 1, i.e., wt = xt, follows immediately from (3) at time step
t. Invariant (2) for time step t + 1 follows almost immediately from (2) at t and wt = xt.
(If fi(currenti(t)) > t, then fi(currenti(t+ 1)) ≥ fi(currenti(t)) ≥ t+ 1 given that both fi
and currenti are nondecreasing; if fi(currenti(t)) = t is aligned at time step t, then wt = xt
implies currenti(t + 1) = currenti(t) + 1 and thus, fi(currenti(t + 1)) ≥ t + 1.) The main
challenge is to show that invariant (3) is maintained. While this is not true for a general
string x, we show that this holds with high probability (over y1, . . . ,yN ∼ Delδ(x)) for any
string x which does not have an s-desert for any s ∈ {0, 1}≤C . (We note here that the value
of m is selected so as to satisfy mδ � 1; on the other hand, when we discuss the FindEnd
procedure below, we will see that we also require m to satisfy m�

√
δn.)

In a nutshell, the main proof idea for (3) is to exploit the fact that when we draw
y1, . . . ,yN ∼ Delδ(x), with high probability they satisfy two properties: (i) for every yi and
every subword of roughly C2m consecutive positions in the original string x, no more than
C positions within the subword are deleted in the generation of yi; (ii) for every subword of
roughly m consecutive positions in x, the number of yi that have at least one deletion in the
subword is no more than N/C3. These two properties can be shown using straightforward
probabilistic arguments by taking advantage of the aforementioned mδ � 1. Using these
two properties, a detailed (non-probabilistic) argument shows that BMA can reconstruct the
string x with high probability if x contains no s-desert.

The above discussion sketches our argument that if the target string x does not have
an s-desert, then BMA correctly reconstructs x. More generally, our arguments show that if
x does have an s-desert, then BMA correctly reconstructs the prefix of x up to the position
when an s-desert shows up: Let r be the first position in x that is “deep in an s-desert”; this
is the first position in x such that x[r−m:r+m]

3, the length-M subword of x centered at r, is
an s-desert. Then BMA correctly reconstructs the prefix of x up to position r +m. Having
reached such a position, it is natural to now ask – “how do we determine the end of this
desert?”. This naturally leads us to the next procedure FindEnd.

2.2 Overview of FindEnd

Suppose that x has an s-desert with |s| = k ≤ C, so BMA reconstructs the length-(r +m+ 1)
prefix of x, where r is the first position that is “deep in the s-desert” (note that it is easy to
determine the position r from the output of BMA). The algorithm FindEnd takes as input the
prefix x[0:r+m] of x and the location r, and its task is to compute the end of the s-desert:
the first position end ≥ r+m such that xend+1 6= xend−k+1. The FindEnd algorithm is rather
involved but at a high level it consists of two stages: an initial coarse estimation of the end
of the desert followed by alignments of traces from Delδ(x) with the end of the desert (using
the coarse estimate).

Coarse estimation: The goal of the coarse estimation stage is to identify an integer β̂
that is close to (1 − δ)end: |β̂ − (1 − δ)end| ≤ 2σ, where σ := Õ(

√
δn) � m is basically

how far an entry xi of x can deviate from its expected location (1− δ)i in a typical trace
y ∼ Delδ(x). Intuitively, β̂ is an estimation of the location of xend in a trace y ∼ Delδ(x) that
contains it, i.e., when xend is not deleted in y. To do this, we draw α = O(1/ε) many traces
y1, . . . ,yα ∼ Delδ(x). Roughly speaking, we split each trace yi into overlapping intervals of

3 For a string x ∈ [0 : n − 1] integers 0 ≤ a < b ≤ n − 1, we write x[a:b] to denote the subword
(xa, xa+1, . . . , xb).
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length 4σ. The first interval starts at (1− δ)r and each successive interval shifts to the right
by σ (so it overlaps with the previous interval by 3σ). Since m� σ = Õ(

√
δn) (which is one

of the bottlenecks that requires δ � n−1/3), the s-desert is unlikely to end before (1− δ)r in
a trace y ∼ Delδ(x) and must end in one of constantly many intervals with high probability,
by the choice of σ. To identify one such interval, we make the following observation. Let
Cycs be the set of all k-bit strings that can be obtained as cyclic shifts of s. Given end as
the end of the s-desert that starts at xr−m, every k-bit subword of x[r−m:end] is in Cycs but
(xend−k+2, . . . , xend+1) /∈ Cycs, and these k ≤ C bits will most likely remain in a trace given
the low deletion rate. This motivates us to look for the leftmost interval I∗ such that in at
least half of y1, . . . ,yα, it holds that yiI∗ contains a k-bit subword not in Cycs. We show
that with high probability, setting β̂ to be the right endpoint of I∗ gives us a coarse estimate
of (1− δ)end up to an accuracy of ±2σ.

In addition to obtaining β̂, the coarse estimation stage recovers the following 8σ-bit
subword of x: (xend−k+2, . . . , xend−k+8σ+1), which we will refer to as the tail string of the
s-desert and denote by tail ∈ {0, 1}8σ. To this end, we draw another α = O(1/ε) fresh traces
y1, . . . ,yα and examine the subword of each yi of length 6σ centered at location β̂. Each yi

looks for the first k-bit subword in this interval that is not in Cycs and votes for its 8σ-bit
subword that starts at this non-cyclic shift as its candidate for tail. We show that with high
probability, the string with the highest votes is exactly tail. (We note that both parts of this
coarse estimation procedure require that with high probability, any fixed interval of length
O(σ) in x does not get any deletions in a random trace, i.e., σδ � 1. This follows from the
two constraints mδ � 1 and m� σ.)

Alignments: Suppose the first stage succeeds in computing β̂ and tail ∈ {0, 1}8σ. The
second stage is based on a procedure called Align which satisfies two crucial criteria. These
criteria are as follows: if Align is given an input trace y ∼ Delδ(x), then (a) with fairly high
probability (by which we mean 1− n−Θ(ε) for the rest of the overview) it returns a location
` in y such that y` corresponds to xend in x, and moreover (b) the expectation of ` (over the
randomness of y) is a “sharp estimate” of (1− δ)end that is accurate up to an additive ±0.1
error.4 To pin down the exact end of the s-desert, FindEnd simply draws Õ(n2/3−ε) many
traces, runs Align on each of them and computes the average ̂̀of the locations it returns. It
is easy to show that rounding ̂̀/(1− δ) to the nearest integer gives end with high probability.

The case when k = |s| = 1 (so the desert is a long subword consisting either of all 0’s
or of all 1’s) is significantly easier (and was implicitly handled in [2]), so in the following
discussion we focus on the case when k = |s| ≥ 2 and the desert has a more challenging
structure. For this case our Align procedure uses a new idea, which is that of a “signature.”
A signature is a subword of x, denoted sig, of length between 2k and 8σ that starts at the
same location xend−k+2 as tail (so sig is contained in tail, since |tail| = 8σ) and either ends at
a location d which is the smallest integer d ∈ [end + k + 1 : end + 8σ − k + 1] such that the
k-bit subword that ends at d is not in Cycs, or has length 8σ if no such d exists (in this case
sig is the same as tail). We remind the reader that the first k-bits of tail, and hence also of
sig, is a string not in Cycs, and the same is true of the last k bits of sig if its length is less
than 8σ.

4 We note that item (b) is not an immediate consequence of item (a). In more detail, the failure probability
of (a) is roughly 1/nΘ(ε), but if when Align fails in (a) it returns a location that is inaccurate by
� nΘ(ε) positions, then (b) would not follow from (a). Indeed significantly more effort is required in
our analysis to ensure (b).
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Given a trace y ∼ Delδ(x), Align (roughly speaking) attempts to locate the image of
xend in y by locating the image of sig within an interval in y of length O(σ) around β̂. In
a bit more detail, it checks whether the restriction of y to a certain interval J around β̂

is of the form w ◦ sig ◦ v, such that the first k bits of sig is the leftmost k-bit subword of
yJ that is not in Cycs. If y does not satisfy this condition then Align discards that trace
and outputs nil. We note that if the only goal of Align were to locate a position ` in y

such that with fairly high probability y` corresponds to xend (i.e. item (a) above), then in
all other cases (i.e. whenever y does satisfy the above condition) Align could return the
index of the (k − 1)-th bit of sig in yJ . (By doing this, Align always returns the correct
position whenever the subword of x of length O(σ) centered at end has no deletion in y and
xend deviates from its expected location in a trace by at most σ in y, which happens with
probability O(σδ) = n−Θ(ε).) However, it turns out that Align must proceed in a slightly
(but crucially) different way in order to additionally satisfy item (b) above (i.e., have the
expected value of its output locations provide an accurate “sharp estimate” of (1− δ)end).
The actual execution of Align is that in the case when yJ does satisfy the above condition,
Align returns the index of the (k− 1)-th bit of sig in yJ with high probability and with some
small remaining probability (the precise value of which depends on the location of sig within
yJ), Align opts to still output nil. A detailed analysis, which we provide in Section 6.2.2,
shows that this Align procedure satisfies both criteria (a) and (b) described above.

2.3 The overall algorithm
The overall algorithm works by alternately running BMA and FindEnd. It starts with BMA,
which draws N = O(logn) traces of x and returns the first position r in x that is deep in
a desert as well as the prefix w = x[0:r+m] of the target string x. Then the algorithm runs
FindEnd to compute end, the right end of the desert. Note that the execution of BMA will
misalign some small fraction of the traces it uses, but these errors do not affect FindEnd as
FindEnd is run using fresh traces.

With end from FindEnd, the algorithm has now reconstructed the prefix x[0:end] by
extending x[0:r+m]. Next the algorithm runs BMA again on N traces that are, ideally, drawn
from x[end+1:n−1], in order to reconstruct the next segment of x until a new desert shows
up (at which point the algorithm repeats). These traces are obtained by running the Align
procedure used by FindEnd on N fresh traces y1, . . . ,yN of x. Let `i be the output of Align
running on yi. As noted in (a) earlier, all but a small fraction of `i’s are such that the desert
ends at yi`i

in yi. We then run BMA on z1, . . . ,zN , where zi is the suffix of yi starting at
`i + 1 for each i. Even though z1, . . . ,zN are not exactly N fresh traces of x[end+1:n−1] (since
a small and arbitrary fraction of yi might be misaligned), BMA is able to succeed because of
a crucial robustness property. This property is that the correctness guarantee of BMA holds
even when a small and “adversarially” picked constant fraction of the N traces given to it
are misaligned; intuitively, BMA enjoys this robustness because it works in each time step by
taking a majority vote over its input traces, so as long as a substantial majority of the traces
are correctly aligned, even a small constant fraction of adversarial traces cannot affect its
correctness. The algorithm continues alternating between BMA and FindEnd, and is thereby
able to reconstruct the entire target string x.

3 Preliminaries

Notation. Given a positive integer n, we write [n] to denote {1, . . . , n}. Given two integers
a ≤ b we write [a : b] to denote {a, . . . , b}. We write ln to denote natural logarithm and log
to denote logarithm to the base 2. We denote the set of non-negative integers by Z≥0. We
write “a = b± c” to indicate that b− c ≤ a ≤ b+ c.
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Subword. It will be convenient for us to index a binary string x ∈ {0, 1}n using [0 : n− 1]
as x = (x0, . . . , xn−1). Given such a string x ∈ {0, 1}n and integers 0 ≤ a ≤ b ≤ n− 1, we
write x[a:b] to denote the subword (xa, xa+1, . . . , xb) of x. An `-subword of x is a subword of
x of length `, given by (xa, xa+1, . . . , xa+`−1) for some a ∈ [0 : n− `].

Distributions. When we use bold font such as D,y, z, etc., it is to emphasize that the entity
in question is a random variable. We write “x ∼ D” to indicate that random variable x is
distributed according to distribution D.

Deletion channel and traces. Throughout this paper the parameter δ : 0 < δ < 1
denotes the deletion probability. Given a string x ∈ {0, 1}n, we write Delδ(x) to denote the
distribution of the string that results from passing x through the δ-deletion channel (so the
distribution Delδ(x) is supported on {0, 1}≤n), and we refer to a string in the support of
Delδ(x) as a trace of x. Recall that a random trace y ∼ Delδ(x) is obtained by independently
deleting each bit of x with probability δ and concatenating the surviving bits. 5

A notational convention. In several places we use sans serif font for names such as tail
(which is a subword of the target string x), end (which is a location in the target string
x), and so on. To aid the reader, whenever we use this font the corresponding entity is an
“x-entity,” i.e. a location, subword, etc. that is associated with the source string x rather
than with a trace of x.

4 The main algorithm

In this section we describe the main algorithm Reconstruct. We begin by giving a precise
definition of the notion of an s-desert. To do this, here and throughout the paper we fix

C := d100/εe, and we recall that m = n1/3 and M = 2m+ 1.

I Definition 2. For s ∈ {0, 1}≤C , a binary string z ∈ {0, 1}∗ is said to be an s-desert if z
is a prefix of s∞ and |z| ≥M . A string is said to be a desert if it is an s-desert for some
s ∈ {0, 1}≤C . Given a string x ∈ {0, 1}n, we say that a location i ∈ [0 : n− 1] is deep in a
desert if the length-M subword x[i−m:i+m] centered at i is a desert. We say a string x has
no desert if no subword of x is a desert (or equivalently, no location i ∈ [0 : n− 1] is deep in
a desert in x); otherwise we say that it has at least one desert.

4.1 The preprocessing step
Before stating the main algorithm, we first describe a simple preprocessing step.

I Lemma 3. There is a randomized algorithm Preprocess which satisfies the following
with probability 1− n−ω(1) (over its internal randomness):
1. It outputs a string v ∈ {0, 1}n/2.
2. For any unknown string x ∈ {0, 1}n, given access to a sample from Delδ(x), it can output

a sample from Delδ(z), where z = x ◦ v, in linear time.
3. For any s ∈ {0, 1}≤C , the string v does not have a s-desert. Consequently, any desert in

the string z = x ◦ v ends at least n/2− (2m+ 1) bits before the end of z.

5 For simplicity in this work we assume that the deletion probability δ is known to the reconstruction
algorithm. We note that it is possible to obtain a high-accuracy estimate of δ simply by measuring the
average length of traces received from the deletion channel.
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Algorithm 1 Algorithm Reconstruct for δ = n−(1/3+ε).

Input: Length n of an unknown x ∈ {0, 1}n and access to Delδ(x) where
δ = n−(1/3+ε)

Output: A string u, where the algorithm succeeds if u = x

1 Set N := O(logn)
2 Draw N fresh traces z1, . . . ,zN independently from Delδ(x)
3 Run BMA(n, {z1, . . . ,zN}) and let w be its output
4 if w has no desert then return w

5 else
6 Let r be the first location that is deep in a desert in w and let u = w[0:r+m]

// Main loop

7 for n/m rounds do
8 Draw N fresh traces y1, . . . ,yN independently from Delδ(x)
9 Run FindEnd(r, u, {y1, . . . ,yN}) and let b and `i, i ∈ [N ], be its output

10 Set r = b and extend u to be a string of length b such that u[r−m:b] is a desert
11 if b = n− 1 then output “FAILURE”
12 Let zi be the suffix of yi starting at yi`i+1 for each i ∈ [N ]
13 Run BMA(n− b− 1, {z1, . . . ,zN}) and let w be its output
14 if w has no desert then
15 return u ◦ w

16 else
17 Let r∗ be the first location that is deep in a desert in w and set r ← r + r∗

and u← u ◦ w[r∗+m]

18 return u if u is of length n

19 return u

The algorithm chooses v to be a random string of length n/2. In order to obtain the original
n-bit string x it suffices for us to reconstruct the (3n/2)-bit string z. The proof of correctness
involves standard probabilistic arguments and is deferred to the full version.

For convenience of notation, we rename z as x and rename n to be the length of this string
z, so we still have x = (x0, . . . , xn−1). Now x is an n-bit string that has the following property:
any desert in x ends at least n/4 bits before the right end of x. With this preprocessing
accomplished, we now describe Algorithm Reconstruct in Algorithm 1.

4.2 The high level idea of the Reconstruct algorithm
At a high level the algorithm works as follows. It starts (lines 1-3) by drawing

N = O(logn)

independent traces z1, . . . ,zN from Delδ(x) and using them to run BMA. An important
component of our analysis is the following new result about the performance of BMA (note
that later we require, and will give, a more robust version of the theorem below; see
Theorem 6):
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I Theorem 4. Let δ = n−(1/3+ε) for some fixed constant ε > 0. Given N traces drawn
independently from Delδ(x) for some unknown string x ∈ {0, 1}n, BMA runs in Õ(n) time
and returns a string w of length n with the following performance guarantees:
1. If x has no desert, then w = x with probability at least 1− 1/n2;
2. If x has at least one desert, then w and x share the same (r + m + 1)-bit prefix with

probability at least 1− 1/n2, where r is the first location that is deep in a desert of x.

Let w be the string BMA returns. By Theorem 4, we have the following two cases:
1. If w has no desert, then also x has no desert and the algorithm can just return w (line 4);
2. If w has at least one desert, then writing r to denote the first location that is deep in a

desert in w, it is safe to assume that w[0:r+m] = x[0:r+m] and r is also the first location
that is deep in a desert in x (line 6).

Suppose that we are in the second case with w[0:r+m] = x[0:r+m]. Then w[r−m:r+m] is an
s-desert for some string s ∈ {0, 1}k of some length k ≤ C. We let s be the shortest such
string and let k be its length (so if w[r−m:r+m] were, for example, a subword of the form
001001001001· · · of length a multiple of 12, we would take s = 001 and k = 3).

Next (lines 8-9) we run FindEnd to figure out where this repetition of s ends in x. We
use end to denote the end of the desert, where end ≥ r +m is the smallest integer such that
xend+1 6= xend−k+1. By the preprocessing step we may assume that end exists and satisfies
end ≤ 3n/4. (We note that FindEnd has access to Delδ(x) to draw fresh traces by itself; we
send N fresh traces y1, . . . ,yN to FindEnd so that it can help align them to the end of the
desert, which are used to run BMA later.) The performance guarantee for FindEnd is given
below:

I Theorem 5. Let δ = n−(1/3+ε) for some fixed constant ε > 0. There is an algorithm
FindEnd with the following input and output:

Input: (i) a location r ∈ [0 : 3n/4], (ii) a string u ∈ {0, 1}r+m+1, (iii) a multiset of
strings {y1, . . . , yN} from {0, 1}≤n where N = O(logn), and (iv) sample access to Delδ(x)
for some unknown string x ∈ {0, 1}n.
Output: An integer b, and an integer `i for each i ∈ [N ].

The algorithm FindEnd draws Õ(n2/3−ε) many independent traces from Delδ(x), runs in
O(n5/3) time and has the following performance guarantee. Suppose that r is the first
location that is deep in some desert of x; u = x[0:r+m]; the unknown end of the desert to
which xr belongs is at most 3n/4; and y1 = y1, . . . , yN = yN are independent traces drawn
from Delδ(x). Then the integers b and `i that FindEnd outputs satisfy the following properties
with probability at least 1 − 1/n2: b = end, and `i = last(yi) for at least 0.9 fraction of
i ∈ [N ]. Here last(y) for a trace y denotes the location ` in y such that y` corresponds to the
last bit of x[0:end] that survives in y (and we set last(y) = −1 by default if all of x[0:end] gets
deleted in y).

Line 9 runs FindEnd with fresh independent traces y1, . . . ,yN drawn from Delδ(x). By
Theorem 5, with high probability FindEnd returns the correct location b = end, from which
we can then recover x[0:b] as the unique extension of w[0:r+m] in which the pattern s keeps
repeating until (and including) location b. Moreover, we have from Theorem 5 that, for at
least a 9/10-fraction of all i ∈ [N ], the suffix zi of yi starting from yi`i+1 is a trace drawn
from Delδ(x[b+1:n−1]). We further note that our preprocessing ensures b ≤ 3n/4 and thus,
the algorithm does not halt on line 11.

To continue, we would like to run BMA again on z1, . . . ,zN (the suffixes of y1, . . . ,yN ) to
recover x[b+1:n−1] (or a prefix of x[b+1:n−1] if it contains a desert). However, observe that now
we need BMA to be robust against some noise in its input traces because by Theorem 5, up to
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1/10 of z1, . . . ,zN might have been obtained from an incorrect alignment of y1, . . . ,yN . Thus
we require the following more robust performance guarantee from BMA, given by Theorem 6
below. (To state this we need a quick definition: we say two multisets of strings of the same
size are η-close if one can be obtained from the other by substituting no more than η-fraction
of its strings. One should also consider x′ in the statement below as x[b+1:n−1] and n′ as
n− b− 1.)

I Theorem 6. Let δ = n−(1/3+ε) for some fixed constant ε > 0. Suppose z̃1, . . . , z̃N

are N independent traces drawn from Delδ(x′) for some unknown string x′ ∈ {0, 1}n′ with
n′ ≤ n. The following holds with probability at least 1 − 1/n2 over the randomness of
z̃1, . . . , z̃N ∼ Delδ(x′):
1. If x′ has no desert, then BMA running on n′ and any multiset {z1, . . . , zN} that is (1/10)-

close to {z̃1, . . . , z̃N} returns w = x′;
2. If x′ has at least one desert, then BMA running on n′ and any multiset {z1, . . . , zN} that

is (1/10)-close to {z̃1, . . . , z̃N} returns a string w that shares the same (r′ +m+ 1)-bit
prefix with x′, where r′ is the first location that is deep in a desert in x′.

Given Theorem 6, we can indeed successfully run BMA on z1, . . . ,zN and with high
probability, it correctly recovers a prefix of x[b+1:n−1] up to the first point deep in the next
desert (if any exists), in which case the algorithm repeats (if there is no next desert, then
with high probability BMA will correctly recover the rest of x).

4.3 Correctness of Reconstruct

The case when x has no desert is handled by Theorem 6. Assuming that x has at least
one desert, it follows from Theorem 6 that r, u together satisfy the following property with
probability at least 1 − 1/n2 at the beginning of the main loop (lines 7-18): r is the first
location that is deep in a desert in x and u = x[0:r+m]. This gives the base case for the
following invariant that the algorithm maintains with high probability:

Invariant: At the beginning of each loop, r is the first location deep in some desert
in x and u = x[0:r+m].

Assume that the invariant is met at the beginning of the current loop. Let end denote the
end of the current desert (i.e., the smallest value end ≥ r +m such that xend+1 6= xend−k+1;
we observe that end ≤ 3n/4 always exists by the guarantee of the preprocessing step). Let
y1, . . . ,yN be fresh traces drawn at the beginning of this loop. For each i ∈ [N ], we write z̃i

to denote the suffix of yi starting at last(yi)+1. Given that y1, . . . ,yN ∼ Delδ(x), z̃1, . . . , z̃N

are indeed independent traces drawn from Delδ(x′), where x′ = x[end+1:n−1]. Then we note
that, for the algorithm to deviate from the invariant in the current round, one of the following
two events must hold for y1, . . . ,yN :
1. FindEnd(r, u, {y1, . . . ,yN}) fails Theorem 5; or
2. {z̃1, . . . , z̃N} fails Theorem 6, i.e., there is a multiset {z1, . . . , zN} that is (1/10)-close to
{z̃1, . . . , z̃N} but BMA(n− end− 1, {z1, . . . , zN}) violates the condition in Theorem 6.

This is because whenever FindEnd succeeds, the strings {z1, . . . ,zN} on which we run BMA
on line 13 must be (1/10)-close to {z̃1, . . . , z̃N}. Theorem 5 ensures that item 1 happens
with probability at most 1/n2; Theorem 6 ensures that item 2 happens with probability at
most 1/n2, given that z̃1, . . . , z̃N are independent traces from Delδ(x′) as required in the
assumption of Theorem 6.
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Algorithm 2 Algorithm BMA.

Input: A length n′ and a multiset {z1, . . . , zN} of strings, each of length at most n′
Output: A string w = (w0, . . . , wn′−1) ∈ {0, 1}n′

1 For each i ∈ [N ] pad each zi to be a string ui of length n′ by adding 0’s to the end
2 Set t = 0 and currenti(t) = 0 for each i ∈ [N ]
3 while t ≤ n′ − 1 do
4 Set wt ∈ {0, 1} to be the majority of the N bits u1

current1(t), . . . , u
N
currentN (t)

5 For each i ∈ [N ], set currenti(t+ 1) to currenti(t) + 1 if uicurrenti(t) = wt;
otherwise set currenti(t+ 1) to currenti(t)

6 Increment t.
7 return w.

By a union bound, the invariant holds with high probability in every round given that
we only repeat for n/m rounds. Finally, observe that we only need to repeat for n/m rounds
to reconstruct the entire n-bit string x, since in each round the pointer r increases by at
least 2m.

This concludes the proof of correctness of Reconstruct and the proof of Theorem 1,
modulo the proofs of Theorem 6 and Theorem 5. In the rest of the paper we prove those two
theorems.

5 Improved analysis of the Bitwise Majority Algorithm:
Proof of Theorem 6

The bitwise majority algorithm was first described and analyzed in [2]. The analysis given
in [2] established that BMA successfully reconstructs any unknown source string x ∈ {0, 1}n
that does not contain any “long runs” (i.e., subwords of the form 0n1/2+ε or 1n1/2+ε) provided
that the deletion rate δ is at most n−(1/2+ε). We describe the BMA algorithm in Algorithm 2.
As the main result of this section we establish an improved performance guarantee for BMA.
Our discussion and notation below reflects the fact that we will in general be running BMA
“in the middle” of a string x for which we have already reconstructed a (b+ 1)-bit prefix of x
(this is why Theorem 6 is stated in terms of a source string x′ of length n′ ≤ n, which should
be thought of as a suffix of x). Our goal is to prove Theorem 6.

We break the proof of Theorem 6 into two steps (Lemma 8 and Lemma 14 below). For
ease of exposition, in the rest of this section if x′ has at least one desert then as stated in
item (2) of the theorem, we let r′ be the first location that is deep in a desert in x′. If x′ has
no desert, then we let r′ = n′ −m− 1. Note that with this definition of r′, it is guaranteed
that there is no desert in x′[0:r′+m−1] and the goal of BMA is to return a string that shares the
same (r′ +m+ 1)-prefix with x.

Let R = 9N/10. We first prove in Lemma 8 that if a multiset of R traces Z =
{z1, . . . , zR} of x′ satisfies a certain sufficient “goodness” condition (see Definition 7 for
details), then BMA(n′, Z) not only returns a string w = (w0, . . . , wn′−1) ∈ {0, 1}n that satisfies
w[0:r′+m] = x′[0:r′+m] as desired but moreover, the bitwise majority during each of the first
r′ +m+ 1 rounds of BMA is “robust” in the following sense: for each one of those rounds,
at least 9R/10 = 81N/100 of the R strings zi’s agree with each other. This immediately
implies that when Z satisfies this condition, adding any multiset of N/10 strings to Z and
running BMA on the resulting multiset of size N cannot affect the output of BMA during the
first r′ +m+ 1 rounds, so its output w still satisfies w[0:r′+m] = x′[0:r′+m]. The next lemma,
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Lemma 14, shows that if Z̃ = {z̃1, . . . , z̃N} is a multiset of N traces drawn independently
from Delδ(x′) (as in the assumption part of Theorem 6), then with high probability every
R-element subset of Z̃ satisfies the sufficient condition (Definition 7) for BMA to succeed
robustly. Theorem 6 follows easily by combining Lemma 8 and Lemma 14. Due to lack of
space, we defer most proofs in this section to the full version.

5.1 Notation for traces
We start with some useful notation for analyzing traces of x′. When a trace y is drawn from
Delδ(x′) we write D to denote the set of locations deleted when x′ goes through the deletion
channel, i.e., D is obtained by including each element in [0 : n′ − 1] independently with
probability δ, and y is set to be x′[0:n′−1]\D. In the analysis of BMA when it is given as input
R traces Z = {z1, . . . , zR}, our analysis will sometimes refer to the set Di ⊆ [0 : n′ − 1] of
locations that was deleted when generating zi.

Note that in the execution of BMA we pad each trace zi to a string ui of length n′ by
adding 0’s to its end . In the rest of the section it will be convenient for us to view x′ as a
string of infinite length by adding infinitely many 0’s to its end. We can then view each ui
as generated by first deleting the bits in Di ⊆ [0 : n′ − 1] from x′ and taking the n′-bit prefix
of what remains. This motivates the definition of the following map fi : [0 : n′ − 1]→ N for
each i ∈ [R]: For each j ∈ [0 : n′− 1], fi(j) is set to be the unique integer k such that k /∈ Di

and k − |Di ∩ [k − 1]| = j. In words, fi(j) is simply the original location in x′ of the j-th bit
in the padded version ui of zi.

We specify some parameters that will be used in the rest of Section 5. Let C = d100/εe
(so C should be thought of as a large absolute constant) and M = 2m+ 1 with m = n1/3,
and recall that by definition M is the shortest possible length of a desert.

5.2 BMA is robust on good sets of traces
The main result of this subsection is Lemma 8, which establishes that BMA is robustly correct
in its operation on traces that satisfy a particular “goodness” condition given in Definition 7
below.

Let Z = {z1, . . . , zR} be a multiset of traces of x′. As described above we write ui ∈
{0, 1}n′ to denote the 0-padded version of zi, Di ⊆ [0 : n′ − 1] to denote the set of locations
that were deleted from x′ to form zi, and fi to denote the map defined as above for each
i ∈ [R]. We introduce the following condition for Z and then prove Lemma 8:

I Definition 7. We say Z = {z1, . . . , zR} is good if the following two conditions hold:
(i) For every i ∈ [R] and every interval [left : right] ⊂ [0 : n′− 1] of length right− left+ 1 =

L1 := 2C2M , we have |Di ∩ [left : right]| ≤ C.
(ii) For every interval [left : right] ⊂ [0 : n′− 1] of length right− left+ 1 = L2 := M +C + 1,

the number of elements i ∈ [R] such that Di ∩ [left : right] 6= ∅ is at most R/C3.

Intuitively, (i) says that no interval of moderate length (note that this length 2C2M is
polynomially less than 1/δ) has “too many” deletions in it in any trace, whereas (ii) says
that for every interval of moderate length (again polynomially less than 1/δ), most of the R
traces have no bit deleted within that interval.

Now we are ready to state Lemma 8:

I Lemma 8. Let Z = {z1, . . . , zR} be a good multiset of R traces of x′. Then the string
w ∈ {0, 1}n′ that BMA(n′, Z) outputs satisfies w[0:r′+m] = x′[0:r′+m]. Moreover, during each
of the first r′ + m + 1 rounds of the execution of BMA, at least 9R/10 of the R bits in the
majority vote taken in Step 4 of BMA agree with each other.
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We start the proof of Lemma 8 by defining a map distancei(t) for each zi in Z. Recall that
currenti(t) is the current location of the pointer into the padded trace ui at the beginning
of round t in BMA.6 We let positioni(t) = fi(currenti(t)), i.e. the original position in x′ of
the currenti(t)-th bit of ui. Then distancei(t) is defined as distancei(t) = positioni(t)− t, the
distance between t and positioni(t). In Corollary 10 we will show that distancei(t) is always
nonnegative, and so it actually measures how many bits positioni(t) is ahead at round t. It
may be helpful to visualize t and positioni(t) of a trace by writing down the source string x′
with the deleted bits struck through, and having two arrows pointing to x′t and x′positioni(t)

;
at the beginning of round t, the BMA algorithm tries to determine x′t by looking at x′positioni(t)

.
Intuitively, having distancei(t) = 0 means that the i-th trace was aligned properly at round t;
at the highest level, we establish Lemma 8 by showing that at least 9R/10 of the R traces
have distancei(t) = 0.

We state the following claim about how currenti(t), positioni(t) and distancei(t) compare
to their values at the beginning of round t− 1, assuming that the prefix w[0:t−1] of the output
thus far matches x′[0:t−1].

B Claim 9. Let t be a positive integer such that w[0:t−1] = x′[0:t−1]. For each i ∈ [R], we have
1. If x′positioni(t−1) 6= x′t−1, then currenti(t) = currenti(t − 1), positioni(t) = positioni(t − 1)

and distancei(t) = distancei(t− 1)− 1.
2. If x′positioni(t−1) = x′t−1, then currenti(t) = currenti(t− 1) + 1, positioni(t) = positioni(t−

1) + `+ 1 and distancei(t) = distancei(t− 1) + `, where ` is the nonnegative integer such
that positioni(t − 1) + 1, . . . , positioni(t − 1) + ` ∈ Di and positioni(t − 1) + ` + 1 /∈ Di

(or equivalently, ` = fi(currenti(t))− fi(currenti(t− 1))− 1).

We have the following useful corollary of Claim 9, which tells us that if w[0:t−1] = x′[0:t−1]
then each distancei(t) ≥ 0 (in other words, no trace can have “gotten behind” where it should
be):

I Corollary 10. Let t be a positive integer such that w[0:t−1] = x′[0:t−1]. Then distancei(t) ≥ 0
for all i ∈ [R].

We prove three preliminary lemmas before proving Lemma 8. Recall that M = 2m+ 1
is the shortest possible length of a desert. Assuming w[0:t−1] = x′[0:t−1] for some t > M ,
the first lemma shows that if distancei(t−M) = 0 and no location of x′ is deleted between
t−M + 1 and t, then distancei(t) must stay at 0. (Note that this lemma holds for general
M but we state it using M = 2m+ 1 for convenience since this is how it will be used later.)
Intuitively, this says that if a length-M subword of x′ experiences no deletions, then a trace
that is correctly aligned at the start of the subword will stay correctly aligned throughout
the subword and at the end of the subword.

I Lemma 11. Suppose that w[0:t−1] = x′[0:t−1] for some t > M . Suppose that i ∈ [R] is such
that distancei(t−M) = 0 and

Di ∩
[
positioni(t−M) + 1 : positioni(t−M) +M

]
= Di ∩

[
t−M : t

]
= ∅.

Then we have distancei(t) = 0.

6 Note that whereas positioni(·) and distancei(·) refer to quantities defined in terms of the source string x,
currenti(·) refers to a location in a trace string and not the source string.
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In the second lemma, we assume t is such that M < t ≤ r′ + m + 1 by the choice
of r. We further assume that w[0:t−1] = x′[0:t−1] and 0 < distancei(t −M) ≤ C for some
i ∈ [R]. We show that under these assumptions, if the subword of length M in x′ starting at
positioni(t−M) + 1 has no deletion, then distancei(t) < distancei(t−M). Intuitively, this
says that prior to a desert, if the length-M subword of x′ experiences no deletions and the
alignment of a trace is only modestly ahead of where it should be at the start of the subword,
then the alignment will improve by the end of the subword.

I Lemma 12. Let M < t ≤ r′ +m+ 1 with w[0:t−1] = x′[0:t−1]. If 0 < distancei(t−M) ≤ C
for some i ∈ [R] and Di ∩

[
positioni(t−M) + 1 : positioni(t−M) +M

]
= ∅, then we have

distancei(t) < distancei(t−M).

Finally we use the two previous lemmas to show that if t ≤ r′+m+1 and w[0:t−1] = x′[0:t−1],
then distancei(t) must lie between 0 and C. Intuitively, this says that prior to a desert, the
alignment of a trace will be at worst modestly ahead of where it should be.

I Lemma 13. Let t ≤ r′+m+ 1 and suppose that w[0:t−1] = x′[0:t−1]. Then distancei(t) ≤ C
for all i ∈ [R].

Proof of Lemma 8. We prove by induction that for every positive integer t ≤ r′ +m+ 1:

w[0:t−1] = x′[0:t−1] and
∑
i∈[R]

distancei(t) ≤
2R
C
. (1)

It follows that every t ≤ r′+m+1 satisfies |{i ∈ [R] : distancei(t) = 0}| ≥ R−2R/C ≥ 9R/10
using C ≥ 20. The details are deferred to the full version. J

5.3 Traces are good with high probability
To conclude the proof of Theorem 6 it remains to prove Lemma 14, which states that with
high probability a random multiset of O(logn) traces is such that every subset of 9/10 of
the traces is good (recall Definition 7).

I Lemma 14. Let Z̃ = {z̃1, . . . , z̃N} be a multiset of N = O(logn) traces drawn independently
from Delδ(x′). Then with probability at least 1− 1/n2, every R-subset of Z̃ is good, where
R = 9N/10.

6 Finding the end of a desert: Proof of Theorem 5

In this section, we describe the algorithm FindEnd, which is used to determine the end of a
desert in x using traces from Delδ(x), and to align given traces with the end of the desert.
(These aligned traces will then be used by BMA in the main algorithm.)

Let’s recall the setting. Let x ∈ {0, 1}n be the unknown string. FindEnd is given the first
location r that is deep in some s-desert subword of x, for some string s ∈ {0, 1}k with k ≤ C.
It is also given the prefix u = x[0:r+m] of x. We will refer to the s-desert that contains r as
the current desert. (Note that s can be easily derived from u.) The goal of FindEnd is to
figure out the ending location of the current desert which we denote by end:

end is the smallest integer at least r +m such that xend+1 6= xend−k+1.

(Note that thanks to the preprocessing step Preprocess, we know that end exists and satisfies
r +m ≤ end ≤ 3n/4.)
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In addition to computing end, FindEnd is also given a multiset of N = O(logn) traces
y1, . . . , yN and needs to return a location `i for each yi such that most of them are correctly
aligned to the end of the desert. Formally, we write last(y) for a trace y to denote the
location ` in y such that y` corresponds to the last bit of x[0:end] that survives in y; we set
last(y) = −1 by default if all of x[0:end] gets deleted. The second goal of FindEnd is to output
`i = last(yi) for almost all yi when they are drawn independently from Delδ(x).

We present the algorithm FindEnd in Algorithm 3, where

σ :=
⌈√

δn · logn
⌉
.

(Intuitively, σ provides a high-probability upper bound on how far a bit of x can deviate
from its expected position in a trace y ∼ Delδ(x).) FindEnd consists of the following two
main procedures:
1. We will refer to the 8σ-bit string

tail := xend−k+2 xend−k+3 · · · xend+8σ−k+1

around the end xend of the current desert as its tail string and denote it by tail ∈
{0, 1}8σ. (Note that end + 8σ − k + 1 < n given that end ≤ 3n/4.) The first procedure,
Coarse-Estimate, will provide with high probability a coarse estimate β̂ (see Lemma 15)
of the expected location (1− δ)end of the right end of the current desert in a trace of x.
This procedure is described in Section 6.1.

2. With β̂ and tail ∈ {0, 1}8σ in hand, the second procedure Align can help align a given
trace with the right end of the current desert. Informally, running on a trace y ∼ Delδ(x),
Align returns a position ` such that with high probability over the randomness of
y ∼ Delδ(x), it holds that ` = last(y). The performance guarantee of Align is given in
Lemma 16. It may sometimes (with a small probability) return nil, meaning that it fails
to align the given trace. This procedure is described in Section 6.2.

The algorithm FindEnd starts by running Coarse-Estimate to obtain a coarse estimate
β̂ of (1− δ)end and the tail string (line 1). It then (line 2) runs Align on the given N traces
yi to obtain `i for each i ∈ [N ]. The second property of FindEnd in Theorem 5 about `i’s
follows directly from the performance guarantee of Align. To obtain a sharp estimate of
end, FindEnd draws another set of Õ(n2/3−ε) traces zi (line 3). It runs Align on each of
them and uses the average of its outputs (discarding traces for which Align returns nil) to
estimate (1 − δ)end (lines 4-6). (It is clear that this average would be accurate to within
±o(1) if Align always successfully aligned its input trace with the right end of the current
desert; the actual performance guarantee of Align is weaker than this, but a careful analysis
enables us to show that it is good enough for our purposes.)

6.1 The Coarse-Estimate procedure
Recall that σ = d

√
δn · logne. Given r, u as specified earlier and sample access to Delδ(x),

the goal of Coarse-Estimate is to obtain an integer β̂ such that |β̂−(1−δ)end| ≤ 2σ. We will
refer to such an estimate as a coarse estimate of (1− δ)end. In addition, Coarse-Estimate
returns a string t that with high probability is exactly the tail string tail ∈ {0, 1}8σ. This is
done by drawing only O(1/ε) many traces.

I Lemma 15. Let δ = n−(1/3+ε) with a fixed constant ε > 0. There is an algorithm
Coarse-Estimate which takes the same two inputs r and u as in FindEnd and sample access
to Delδ(x) for some unknown string x ∈ {0, 1}n, and returns an integer β̂ ∈ [0 : n− 1] and
a string t ∈ {0, 1}8σ. It draws O(1/ε) traces from Delδ(x), runs in time O(n) and has the
following performance guarantee. Suppose that r and u satisfy the same conditions as in
Theorem 5 with respect to x. Then with probability at least 1− 1/n3, we have that t = tail
and β̂ satisfies |β̂ − (1− δ)end| ≤ 2σ.
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Algorithm 3 Algorithm FindEnd.

Input: r ∈ [0 : 3n/4], u ∈ {0, 1}r+m+1, a multiset {y1, . . . , yN} of N strings from
{0, 1}≤n where N = O(logn), and sample access to Delδ(x) for some string
x ∈ {0, 1}n.

Output: An integer b ≥ r +m and an integer `i for each i ∈ [N ].
1 Run Coarse-Estimate(r, u), which returns an integer β̂ and a string t ∈ {0, 1}8σ.
2 For each i ∈ [N ], run Align(β̂, t, yi). If Align returns nil, set `i = −1; otherwise let

`i be the integer Align returns.
3 Draw γ = O(n2/3−ε log3 n) traces z1, . . . ,zγ from Delδ(x).
4 For each i ∈ [γ], run Align(β̂, t, zi) and let hi be its output.
5 Let β be the average of hi’s that are not nil, and let b be the integer nearest to

β/(1− δ).
6 Return b, and `i for each i ∈ [N ].

Proof. We start with the coarse estimate β̂. Let r̂ = d(1− δ)re and consider the following
collection of overlapping intervals of positions in a trace of x:

I :=
{[
r̂ + jσ : r̂ + (j + 4)σ

]
: j ∈ Z≥0

}
.

Note that each interval I contains 4σ + 1 positions. Coarse-Estimate draws α = O(1/ε)
traces y1, . . . ,yα from Delδ(x) and finds the leftmost interval I∗ ∈ I such that at least half
of yi’s satisfy the following property: yiI∗ contains a k-bit subword that is not a cyclic shift
of s. The algorithm then sets β̂ to be the right endpoint of I∗.

Finally, Coarse-Estimate recovers the tail string as follows. Let J ′ be the interval
[β̂ − 3σ : β̂ + 3σ]. It draws another sequence of α = O(1/ε) fresh traces y1, . . . ,yα from
Delδ(x). For each yi it looks for the leftmost non-cyclic shift of s in yiJ′ . When such a
non-cyclic shift exists, say yiτ · · ·yiτ+k−1, yi votes for the 8σ-bit string yiτ · · ·yiτ+8σ−1 as its
candidate for the tail string. It then returns the 8σ-bit string with the most votes.

Clearly, the running time of Coarse-Estimate is O(n) as the procedure consists of a
linear scan over O(1/ε) traces. The proof of correctness is deferred to the full version. J

6.2 The Align procedure
We start with the performance guarantee of Align:

I Lemma 16. Let δ = n−(1/3+ε) for some fixed constant ε > 0. There is an algorithm Align
running in time O(n) with the following input and output:

Input: a number β̂ ∈ [0 : n− 1], and strings t ∈ {0, 1}8σ, y ∈ {0, 1}≤n.
Output: an integer ` ∈ [0 : n− 1], or nil.

It has the following performance guarantee. Suppose x, u, r and end satisfy the hypothesis in
Theorem 5, β̂ and t satisfy the conclusion of Lemma 15, and y = y ∼ Delδ(x) is a random
trace. Then
1. Whenever Align returns an integer `, we have |`− (1− δ)end | ≤ O(σ).
2. With probability at least 1− Õ(n−3ε/2), Align returns exactly last(y); and
3. Conditioned on Align not returning nil, the expectation of what Align returns is (1−

δ)end± o(1).
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6.2.1 Setup for the proof of Lemma 16
For the special case when k = |s| = 1 (so the desert subword is of the form 0a or 1a for some
a ≥M = 2n1/3 + 1), the description of Align is relatively simple.

Description of Align for k = 1: Let J := [β̂ − 3σ : β̂ + 3σ]. Align outputs nil if the
string yJ contains no occurrence of b; if yJ does contain at least one occurrence of b then
Align outputs the location in J of the first occurrence of b.

The proof of correctness is deferred to the full version. Now consider the general case
when k ≥ 2. Let Cycs be the set of all k-bit strings that can be obtained as cyclic shifts of s.
The key notion behind Align is the idea of the “signature.” This is a subword of x of length
at most 8σ that starts at the same location xend−k+2 as tail (so it is contained in tail; we
remind the reader that the first k-bits of tail is a string not in Cycs). The signature ends at
location d where d is the smallest integer d ∈ [end + k + 1 : end + 8σ − k + 1] such that the
k-bit subword that ends at d is not in Cycs; if no such d exists, the signature is taken to
have length 8σ and is the same as tail. (Alternatively, the signature is the shortest prefix of
tail that contains a k-bit subword not in Cycs that does not use the first k bits; and it is set
to tail if every k-bit subword of tail after removing the first k bits lies in Cycs.)

We will write sig to denote the signature string. We observe that 2k ≤ |sig| ≤ 8σ, and
that given the string tail it is algorithmically straightforward to obtain sig. Given sig, we say
that a string z of length at most 15σ + 1 is in the right form if it can be written as

z = w ◦ sig (2)

where the leftmost k-bit subword in z that is not in Cycs is the first k bits of sig. The main
motivation behind the definition of the signature is the following crucial lemma:

I Lemma 17. Let s ∈ {0, 1}k for some 2 ≤ k ≤ C, and let z be a string of length at most
15σ + 1 that is in the right form. For y ∼ Delδ(z), the probability that |y| < |z| (so at least
one deletion occurs) and y is the prefix of a string in the right form is at most O(δ).

The high-level idea is that a deletion is likely to create an additional disjoint k-bit subword
in y that is not in Cycs, unless a deletion occurs in some O(k) specific places in z or two
deletions are O(k) close to each other. This additional subword will help us argue that y

does not have the right form. The detailed proof is deferred to the full version.

6.2.2 Proof sketch of Lemma 16 when k ≥ 2
Description of Align for k ≥ 2: Given a coarse estimate β̂ (such that |β̂− (1−δ)end| ≤
2σ), sig ∈ {0, 1}≤8σ, and a trace y, Align checks if the restriction of y to the interval
J :=

[
β̂ − 3σ : β̂ + 12σ

]
has a prefix in the right form (see Equation (2)), i.e.,

yJ = w ◦ sig ◦ v (3)

so that the first k bits of sig is the leftmost k-bit subword of yJ not in Cycs. If yJ is not
of this form Align returns nil. If yJ is of this form and sig ends at location L ∈ [0 : 15σ]
in yJ , Align returns the index of the (k − 1)-th bit of sig (i.e., sigk−2 which intuitively
should correspond to xend) in y with probability

pL := (1− δ)15σ−L, (4)

and with the remaining probability returns nil. Note that

(1− δ)15σ−L = 1−O(δσ) = 1− Õ(n3ε/2), for all L ∈ [0 : 15σ],

so Align only returns nil with probability o(1) when yJ is of the form Equation (3).
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Discussion. The main subtlety in the definition of Align is the “discounting probability”
given by Equation (4), which plays an important role in ensuring that the location returned
by Align (conditioned on Align not returning nil) is sufficiently close in expectation to the
correct location. The proof of correctness of Align is deferred to the full version.

6.3 Proof of Theorem 5
Proof of Theorem 5. The proof follows from the guarantees in Lemma 15 and Lemma 16,
using standard concentration bounds. First, we have from Lemma 15 that the output (β̂, t)
of Coarse-Estimate satisfies |β̂− (1− δ)end| ≤ 2σ and t = tail with probability 1−O(1)/n3.
Assume that this holds for the rest of the proof.

By Lemma 16, with probability at least 1−Õ(n−3ε/2) Align returns an integer `i (and not
nil), and `i = last(yi), for each i ∈ [N ]. Now, the Chernoff bound (additive form) implies that
`i = last(yi) for at least 0.9 fraction of i ∈ [N ] with probability 1− exp(−Ω(N)) ≥ 1− 1/n3,
where we choose the hidden constant in N = O(logn) to be sufficiently large.

It remains to show that b = end with probability at least 1− 1/n3. Recalling step 4 of
FindEnd, let G ⊂ [γ] be the set of indices i for which hi = Align(β̂, t, zi) 6= nil. Using the
same argument as above, we have that |G| ≥ 0.9γ with probability 1− exp(−Ω(γ)) = 1−
exp(−Ω̃(n2/3−ε)). The guarantees in Lemma 16 imply that |E[hi |hi 6= nil]−(1−δ)end| ≤ o(1)
and that the random variable hi (conditioned on its not being nil) always lies in an interval
of width O(σ) for all i ∈ [G]. Moreover, {hi}i∈G are independent random variables.

Let β = (1/|G|)
∑
i∈G hi be the average of hi over i ∈ G. By Hoeffding’s inequality and

our choice of γ = O(n2/3−ε log3 n) = O(σ2 logn) (with a sufficiently large hidden constant),

Pr[|β −E[hi |hi 6= nil]| ≥ 0.1] ≤ exp
(
−Ω

( γ
σ2

))
≤ exp(−Ω(logn)) ≤ 1/n3.

By triangle inequality, |β−(1−δ)end| ≤ 0.1, and so |β/(1−δ)−end| ≤ 0.2, with probability at
least 1−1/n3. Hence, the integer b closest to β/(1− δ) is end, which implies FindEnd returns
end with probability at least 1− 1/n2 (by union bound over all the failure probabilities).

Finally, the runtime of FindEnd is dominated by the final procedure to compute b. Since
each run of Align on a trace takes O(n) and Align is run on γ ≤ n2/3 traces, FindEnd runs
in time O(n5/3). This concludes the proof of Theorem 5. J
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Abstract
We consider a generalization of the fundamental online metrical service systems (MSS) problem
where the feasible region can be transformed between requests. In this problem, which we call
T-MSS, an algorithm maintains a point in a metric space and has to serve a sequence of requests.
Each request is a map (transformation) 𝑓𝑡 : 𝐴𝑡 → 𝐵𝑡 between subsets 𝐴𝑡 and 𝐵𝑡 of the metric space.
To serve it, the algorithm has to go to a point 𝑎𝑡 ∈ 𝐴𝑡 , paying the distance from its previous position.
Then, the transformation is applied, modifying the algorithm’s state to 𝑓𝑡 (𝑎𝑡 ). Such transformations
can model, e.g., changes to the environment that are outside of an algorithm’s control, and we
therefore do not charge any additional cost to the algorithm when the transformation is applied.
The transformations also allow to model requests occurring in the 𝑘-taxi problem.

We show that for 𝛼-Lipschitz transformations, the competitive ratio is Θ(𝛼)𝑛−2 on 𝑛-point
metrics. Here, the upper bound is achieved by a deterministic algorithm and the lower bound
holds even for randomized algorithms. For the 𝑘-taxi problem, we prove a competitive ratio of
𝑂 ((𝑛 log 𝑘)2). For chasing convex bodies, we show that even with contracting transformations no
competitive algorithm exists.

The problem T-MSS has a striking connection to the following deep mathematical question:
Given a finite metric space 𝑀, what is the required cardinality of an extension �̂� ⊇ 𝑀 where each
partial isometry on 𝑀 extends to an automorphism? We give partial answers for special cases.
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1 Introduction

Metrical Service Systems (MSS) [13] is a fundamental online framework unifying countless
problems. It also has a central role in our understanding of online computation and competi-
tive analysis in general. In this problem we are given a metric space (𝑀, 𝑑). The points of
the metric represent possible states/configurations where an algorithm can serve requests;
the distance between the states represents the cost of moving from one configuration to
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another. Each request consists of a subset of feasible states and the algorithm must serve
the request by moving to one of these states. The cost of the algorithm for a sequence of
requests is simply the total movement cost.

In the closely related problem of Metrical Task Systems (MTS) [8], each request is a cost
function 𝑐𝑡 : 𝑀 → R+ ∪ {∞}. The algorithm can move to any point 𝑥𝑡 , paying the movement
cost as well as service cost 𝑐𝑡 (𝑥𝑡 ). Note that MSS is equivalent to the special case of MTS
where cost functions only take values 0 and ∞, which already captures the essential difficulty
of MTS. 1 For deterministic algorithms, the competitive ratio on any 𝑛-point metric is 𝑛 − 1
for MSS [19] and 2𝑛 − 1 for MTS [8]. For randomized algorithms, it lies between 𝑂 (log2 𝑛)
[9, 15] and Ω(log 𝑛/log log 𝑛) [5, 6], and tight bounds of Θ(log 𝑛) are known for some metrics.
The MSS/MTS framework captures various central online problems such as paging, 𝑘-server,
convex body chasing, layered graph traversal, etc. The competitive ratio of MSS usually
serves as a first upper bound for the performance achievable for these special cases.

However, MSS fails to capture more dynamic environments in which configuration
changes that are outside of the algorithm’s control may occur. For example, new resources or
constraints may appear/disappear and modify the configurations. To capture such changes
we propose an extension for MSS that allows transformations over the configuration space.
For example, we may model the 𝑘-taxi problem2 by considering the possible configurations
of taxis in the metric. A movement of a taxi from the start to the destination of a request
simply corresponds to a transformation that maps any configuration that contains a taxi at
the start to a configuration with an additional taxi at the destination and one less taxi at
the start. As these changes are dictated to any solution, it is reasonable not to account any
cost for these changes both for the algorithm and for the offline (benchmark) solution. In
this work we initiate the study of Metrical Service Systems with Transformations (T-MSS),
a generalization of the standard Metrical Service Systems (MSS) problem. As before, we are
given a metric space (𝑀, 𝑑). In each round 𝑡, we get a function (transformation) 𝑓𝑡 : 𝐴𝑡 → 𝐵𝑡

that maps a subspace 𝐴𝑡 ⊆ 𝑀 of feasible states to a subspace 𝐵𝑡 ⊆ 𝑀. If 𝑏𝑡−1 ∈ 𝑀 is the
state of the algorithm before the request 𝑓𝑡 arrives, it has to choose one of the feasible
states 𝑎𝑡 ∈ 𝐴𝑡 and pays movement cost 𝑑 (𝑏𝑡−1, 𝑎𝑡 ). The new state of the algorithm is then
𝑏𝑡 := 𝑓𝑡 (𝑎𝑡 ). The classical MSS problem is thus the special case of T-MSS where 𝑓𝑡 is the
identity function on the set of feasible states at time 𝑡. In T-MSS we allow in addition to
identity transformations also more complex transformations. The high level question we
ask is:

I Open problem 1. What is the competitive ratio of the Metrical Service Systems with
Transformations problem for families of metric spaces and allowable transformations?

1.1 Our results and techniques
We give partial answers to the above question, obtaining upper and lower bounds on the
competitiveness for several interesting families of metric spaces and transformations. The
most general family of transformations we study are 𝛼-Lipschitz transformations. Our main
result is the following pair of (almost matching) upper and lower bounds for general metric
spaces and 𝛼-Lipschitz transformations.

1 Our results extend easily to the case where MTS requests are allowed, but we will stick to the MSS
view for the sake of simplicity.

2 In this problem, introduced by [17], there are 𝑘 taxis in a metric space. Each request is a pair of two
points, representing the start and destination of a travel request by a passenger. Serving a request is
done by selecting a taxi that travels first to its start and then its destination. In the hard version of the
problem, the cost is defined as the total distance traveled by the taxis without carrying a passenger.
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I Theorem 1. There exists a deterministic 2 max{2(𝛼 + 1), 6}𝑛−2-competitive algorithm for
T-MSS with 𝛼-Lipschitz transformations on any 𝑛-point metric space. Any algorithm for
T-MSS with 𝛼-Lipschitz transformations has competitive ratio at least min{𝛼+1, 𝛼2}𝑛−2, even
with randomization.

Although our results show an exponential lower bound (and an exponential upper
bound) for any 𝛼 > 1, they do not rule out linear/polynomial or with randomization even
polylogarithmic competitive ratios when the transformations are 1-Lipschitz (contractions).
Resolving the competitive ratio for this important family of transformations is one of the
most interesting remaining open questions. On the other hand, we show that even restricting
the transformations to be 1-Lipschitz is not always enough. In particular, when adding
contraction transformations to the convex body chasing problem (that can be modeled as a
special case of MSS on an infinite metric space) there exists no competitive algorithm even
in the easier nested case. By contrast, with isometry transformations the competitive ratios
𝑂 (𝑑) for the unrestricted problem and 𝑂 (

√︁
𝑑 log 𝑑) for the nested problem due to [20, 2, 10]

remain unchanged as R𝑑 is ultrahomogeneous (see following discussion for formal definitions).

I Theorem 2. There exists no online algorithm with finite competitive ratio for nested convex
body chasing with contractions in the plane, even with randomization.

As a byproduct of our results we also get a new competitive algorithm for the 𝑘-taxi
problem, which can be modeled as a T-MSS with isometry transformations.

I Theorem 3. There is a randomized 𝑂 ((𝑛 log 𝑘)2 log 𝑛)-competitive algorithm for the 𝑘-taxi
problem on 𝑛-point metrics.

This result is better than the previous best bound of 𝑂 (2𝑘 log 𝑛) whenever 𝑛 is subexpo-
nential in 𝑘 [14].

Extending partial isometries. As a basic tool to tackle T-MSS with general transformation,
we study the problem when the allowable transformations are isometries. A map 𝑓 : 𝐴→ 𝐵

for subsets 𝐴, 𝐵 ⊆ 𝑀 is called a partial isometry of 𝑀 if it is distance-preserving, i.e.,
𝑑 ( 𝑓 (𝑥), 𝑓 (𝑦)) = 𝑑 (𝑥, 𝑦). A metric space 𝑀 is called ultrahomogeneous if every partial isometry
of 𝑀 extends to an automorphism of 𝑀. Notice that on ultrahomogeneous metric spaces, the
competitive ratio of T-MSS with isometry transformations is the same as the competitive
ratio of MSS: Indeed, when a partial isometry 𝑓𝑡 : 𝐴𝑡 → 𝐵𝑡 arrives, let 𝑓𝑡 be its extension to
an automorphism of 𝑀. In MSS, this request corresponds to the request 𝐴𝑡 followed by a
renaming of the points of the metric space according to 𝑓𝑡 . Clearly, isometric renaming of
points does not affect the competitive ratio.

If 𝑀 is not ultrahomogeneous, one could hope to extend 𝑀 to a larger metric space �̂�
such that every partial isometry of 𝑀 extends to an automorphism of �̂�. In this case, we
call �̂� a weakly ultrahomogeneous extension of 𝑀. For a family of metric spaces M we
define the blow-up as the supremum over all 𝑛-point metrics 𝑀 ∈ M – of the minimum
cardinality of a weakly ultrahomogeneous extension �̂� of 𝑀. If the blow-up can be bounded
as a function of 𝑛 it allows us to apply the (𝑛 − 1)-competitive deterministic algorithm or
the 𝑂 (log2 𝑛)-competitive randomized algorithm for MSS on the weakly ultrahomogeneous
extension to get competitive algorithms. We study the blow-up also for restricted families of
isometries. For example, we study swap isometries (defined on two points that are mapped
to one another). We call a metric space swap-homogeneous if every swap extends to an
automorphism. Swap-homogeneous metric spaces have the intuitive property that the metric
space “looks” the same at each point. Similar notions of metric space homogeneity have also
been studied in other contexts (see, e.g., [23]). The main question, which we consider to be
of independent interest, is thus:

ITCS 2021
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I Open problem 2. What is the blow-up for interesting families of metric spaces and partial
isometries?

Some results on weakly ultrahomogeneous extensions already exist, in particular that
every finite metric space has such an extension and it is of finite size [21, 22]. However, no
bounds on the size of the extensions as a function of 𝑛 are known, and hence these results do
not yield any bounds on the blow-up. We refer the reader to Section 5 for further discussion.
Some of the algorithms we design for T-MSS are using these new upper bounds that we prove
on the blow-up. The following theorem summarizes the upper and lower bounds we obtain.

I Theorem 4. The following bounds on the blow-up are tight.

Family of metric spaces Family of isometries Blow-up
Ultrametrics General 2𝑛−1

Ultrametrics: 𝑘 distinct non-zero distances General ≈
(
𝑛+𝑘−1

𝑘

)𝑘 3

Equally spaced points on a line General 2𝑛 − 2(
{0, . . . , 𝑘}𝐷 ,weighted ℓ1

)
Translations (2𝑘)𝐷

General metrics Swaps 2𝑛−1

Using the direct reduction above, we may get directly some interesting results for T-
MSS when transformations are isometries. For example, a randomized 𝑂 (𝑛2)-competitive
algorithm for ultrametrics and an 𝑂 (log2 𝑛)-competitive algorithm for equally spaced points
on a line.

The work function algorithm. The work function algorithm (WFA) is a classical algorithm
that achieves the optimal deterministic competitive ratio of 𝑛 − 1 for MSS on any 𝑛-point
metric (see [7] for a discussion on its history). The algorithm extends naturally to T-MSS (see
Section 2.1), and is a natural candidate algorithm to investigate. We prove that it is in fact
optimal for several special cases of the problem. The following result for ultrahomogeneous
ultrametrics is also used as part of our main algorithm for general metrics. We also prove that
on general metrics, WFA has a superlinear competitive ratio even for isometry transformations
(which are 1-Lipschitz). This may indicate that T-MSS has super linear competitive ratio
even for isometry transformations.

I Theorem 5. The work function algorithm (WFA) for T-MSS has competitive ratio
𝑛 − 1 on 𝑛-point ultrahomogeneous ultrametrics with 1-Lipschitz transformations.
2𝑛 − 3 on 𝑛-point metric spaces with swap transformations. No deterministic algorithm
has competitive ratio better than 2𝑛 − 3 for this problem.
𝜔(𝑛1.29) on some 𝑛-point metric space with isometry transformations, for each 𝑛.

1.2 Organization
In Section 2 we formally define T-MSS, and discuss the work function algorithm (WFA).
In Section 3 we design an algorithm for T-MSS on general metrics with competitive ratio
depending on the maximal Lipschitz constant of transformations, and prove an almost
matching lower bound (Theorem 1). As part of the algorithm we also show that WFA is
(𝑛−1)-competitive for ultrahomogeneous 𝑛-point ultrametrics and 1-Lipschitz transformations,
proving the first part of Theorem 5.

3 The precise blow-up is (𝑎 + 1)𝑏𝑎𝑘−𝑏 where 𝑎 = b 𝑛+𝑘−1
𝑘

c and 𝑏 = (𝑛 − 1) mod 𝑘.
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In Section 4 we show upper and lower bounds on the competitive ratio for several special
cases of T-MSS. In Section 4.1 we show that there exists no online algorithm with finite
competitive ratio for nested convex body chasing with contractions in the plane, even with
randomization (Theorem 2). In Section 4.2 we design a new randomized algorithm for the
𝑘-taxi problem (Theorem 3). In Section 4.3 we show matching upper and lower bounds
for swap transformations, proving the second part of Theorem 5. In Section 4.4 we show
a superlinear lower bound on the competitiveness of WFA for isometry transformations,
proving the third part of Theorem 5. Finally, in Section 5 we prove upper an lower bounds
on the blow-up for several families of metric spaces and transformations (Theorem 4). These
results are also used earlier in the proofs of Theorem 1 and Theorem 3.

2 Preliminaries

In Metrical Service Systems with Transformations (T-MSS), we are given a metric space
(𝑀, 𝑑) and an initial state 𝑏0 ∈ 𝑀. We denote by 𝑛 the number of points in the metric
space. In each round 𝑡, we get a function (transformation) 𝑓𝑡 : 𝐴𝑡 → 𝐵𝑡 that maps a subset
𝐴𝑡 ⊆ 𝑀 of feasible states to a subset 𝐵𝑡 ⊆ 𝑀. If 𝑏𝑡−1 ∈ 𝑀 is the state of the algorithm
before 𝑓𝑡 arrives, it has to choose one of the feasible states 𝑎𝑡 ∈ 𝐴𝑡 and pays movement cost
𝑑 (𝑏𝑡−1, 𝑎𝑡 ). The new state of the algorithm is then 𝑏𝑡 := 𝑓𝑡 (𝑎𝑡 ). The classical MSS problem
is thus a special case of T-MSS where 𝑓𝑡 is the identity function on the set of feasible states
at time 𝑡. In T-MSS we always allow the identity transformations (thereby ensuring that
T-MSS is a generalization of MSS) and in addition more complex transformations. We study
the following important families of transformations 𝑓 : 𝐴→ 𝐵 whose properties are defined
below.

Family of transformations Condition
𝛼–Lipschitz ∀𝑥, 𝑦 ∈ 𝐴 : 𝑑 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝛼 · 𝑑 (𝑥, 𝑦)
1–Lipschitz (Contractions) ∀𝑥, 𝑦 ∈ 𝐴 : 𝑑 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝑑 (𝑥, 𝑦)
Isometries ∀𝑥, 𝑦 ∈ 𝐴 : 𝑑 ( 𝑓 (𝑥), 𝑓 (𝑦)) = 𝑑 (𝑥, 𝑦)
Swaps 𝐴 = {𝑎, 𝑏}, 𝑓 (𝑎) = 𝑏, 𝑓 (𝑏) = 𝑎
Translations 𝑀 is subset of a vector space. ∀𝑥 ∈ 𝐴 : 𝑓 (𝑥) = 𝑥 + 𝑣 for a vector 𝑣

We also study several families of metric spaces. An important family of metric spaces
are ultrametrics in which for every three points 𝑥, 𝑦, 𝑧 ∈ 𝑀, 𝑑 (𝑥, 𝑧) ≤ max{𝑑 (𝑥, 𝑦), 𝑑 (𝑦, 𝑧)}.
Ultrametric spaces may be viewed as the leaves of a rooted tree in which vertices with lowest
common ancestor at level 𝑖 have distance 𝐿𝑖, where 0 < 𝐿1 < 𝐿2 < · · · < 𝐿𝑘 are the possible
distances (where 𝑘 ≤ 𝑛 − 1).

2.1 The work function algorithm for T-MSS

The work function algorithm (WFA) achieves the optimal deterministic competitive ratio of
𝑛 − 1 for MSS on any 𝑛-point metric. This algorithm is defined as follows: Denote by 𝑝0 the
fixed initial state. For some request sequence and a state 𝑝 ∈ 𝑀, let 𝑤𝑡 (𝑝) be the minimal
cost to serve the first 𝑡 requests and then end up at 𝑝. The function 𝑤𝑡 is called the work
function at time 𝑡. We denote by W the set of all maps 𝑤 : 𝑀 → R+ that are 1-Lipschitz.
Notice that every work function is in W. The WFA for MSS is the algorithm that, at time 𝑡,
goes to a feasible state 𝑝𝑡 minimizing 𝑤𝑡 (𝑝𝑡 ) + 𝑑 (𝑝𝑡 , 𝑝𝑡−1).
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This algorithm extends naturally to T-MSS: Let 𝑓𝑡 : 𝐴𝑡 → 𝐵𝑡 be the 𝑡th transformation.
Let 𝑤𝑡 be defined as above and let 𝑤−

𝑡 (𝑝) be the minimal cost of serving the first 𝑡 − 1
requests, then moving to some state in 𝐴𝑡 and then moving to 𝑝. Let 𝑏𝑡−1 be the state of
the algorithm before time 𝑡. Upon the arrival of 𝑓𝑡 , the WFA first goes to a state

𝑎𝑡 ∈ arg min
𝑎∈𝐴𝑡

𝑤−
𝑡 (𝑎) + 𝑑 (𝑎, 𝑏𝑡−1)

and is then relocated to 𝑏𝑡 := 𝑓𝑡 (𝑎𝑡 ).
We say that a work function 𝑤 ∈ W is supported on a set 𝑆 ⊆ 𝑀 if 𝑤(𝑥) = min𝑠∈𝑆 𝑤(𝑠) + 𝑠𝑥

for each 𝑥 ∈ 𝑀. The (unique) minimal such set 𝑆 is called the support of 𝑤. Notice that 𝑤−
𝑡

is supported on 𝐴𝑡 and 𝑤𝑡 on 𝐵𝑡 .
The following lemma is a variant of a lemma that is ubiquitous in analyses of WFA for

other problems [13], adapted here to T-MSS:

I Lemma 6. Let 𝑀 be a metric space. Suppose there is a map Φ : W → R+ such that for
any 𝑥 ∈ 𝑀, time 𝑡 ≥ 1, 𝑤 ∈ W, and any sequence of work functions 𝑤0, 𝑤

−
1 , 𝑤1, 𝑤

−
2 , 𝑤2, . . .

arising for (a subclass of) T-MSS on 𝑀,

𝑤−
𝑡 (𝑥) − 𝑤𝑡−1 (𝑥) ≤ Φ(𝑤−

𝑡 ) −Φ(𝑤𝑡−1) (1)
Φ(𝑤−

𝑡 ) ≤ Φ(𝑤𝑡 ) (2)
Φ(𝑤) ≤ 𝜌𝑀 · min

𝑝∈𝑀
𝑤(𝑝) + 𝐶𝑀 , (3)

where 𝜌𝑀 and 𝐶𝑀 are constants depending only on 𝑀. Then WFA is (𝜌𝑀 − 1)-competitive
for (this subclass of) T-MSS on 𝑀.

Proof. We have

𝑤−
𝑡 (𝑏𝑡−1) = min

𝑎∈𝐴𝑡

𝑤−
𝑡 (𝑎) + 𝑑 (𝑎, 𝑏𝑡−1)

= 𝑤−
𝑡 (𝑎𝑡 ) + 𝑑 (𝑎𝑡 , 𝑏𝑡−1)

= 𝑤𝑡 (𝑏𝑡 ) + 𝑑 (𝑎𝑡 , 𝑏𝑡−1), (4)

where the first equation is by definition of 𝑤−
𝑡 and the second equation by definition of 𝑎𝑡 .

The cost of WFA is

costWFA =

𝑇∑︁
𝑡=1

𝑑 (𝑏𝑡−1, 𝑎𝑡 )

=

𝑇∑︁
𝑡=1

(
𝑤−
𝑡 (𝑏𝑡−1) − 𝑤𝑡 (𝑏𝑡 )

)
=

𝑇∑︁
𝑡=1

(
𝑤−
𝑡 (𝑏𝑡−1) − 𝑤𝑡−1 (𝑏𝑡−1) + 𝑤𝑡−1 (𝑏𝑡−1) − 𝑤𝑡 (𝑏𝑡 )

)
≤ Φ(𝑤𝑇 ) − 𝑤𝑇 (𝑏𝑇 )
≤ (𝜌𝑀 − 1) · min

𝑝∈𝑀
𝑤𝑇 (𝑝) + 𝐶𝑀 ,

where the second equation follows from (4), the first inequality uses (1), (2), Φ(𝑤0) ≥ 0 and
𝑤0 (𝑏0) = 0, and the second inequality uses (3). Since min𝑝∈𝑀 𝑤𝑇 (𝑝) is the optimal offline
cost, the lemma follows. J



S. Bubeck, N. Buchbinder, C. Coester, and M. Sellke 21:7

3 Competitivity for Lipschitz Transformations

In this Section we prove Theorem 1.

I Theorem 1. There exists a deterministic 2 max{2(𝛼 + 1), 6}𝑛−2-competitive algorithm for
T-MSS with 𝛼-Lipschitz transformations on any 𝑛-point metric space. Any algorithm for
T-MSS with 𝛼-Lipschitz transformations has competitive ratio at least min{𝛼+1, 𝛼2}𝑛−2, even
with randomization.

The proof of the upper bound consists of three main steps: First we give a reduction
to the case of 1-Lipschitz transformations in ultrametrics. Then we employ the fact that
ultrametrics admit an ultrahomogeneous extension of size 2𝑛−1, which will be proved later in
Section 5.2. Finally, we show that the WFA achieves the optimal competitive ratio of 𝑛 − 1
for this special case of 1-Lipschitz transformations on ultrahomogeneous ultrametrics.

3.1 From 𝜶-Lipschitz in general metrics to 1-Lipschitz in ultrametrics
For two metrics 𝑑 and 𝑑 defined on a set 𝑀, we say that 𝑑 is an 𝛼-distortion of 𝑑, for 𝛼 ≥ 1,
if for any 𝑥, 𝑦 ∈ 𝑀 we have 𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑦) ≤ 𝛼 · 𝑑 (𝑥, 𝑦).

I Lemma 7. Fix a constant 𝛼 ≥ 2 and an 𝑛-point metric space (𝑀, 𝑑). There is an ultrametric
𝑑 on 𝑀 that is an (𝛼 + 1)𝑛−2-distortion of 𝑑, and any transformation 𝑓 : 𝐴 ⊆ 𝑀 → 𝑀 that is
𝛼-Lipschitz with respect to 𝑑 is 1-Lipschitz with respect to 𝑑.

Proof. The idea is to group the edges (i.e., pairs of distinct elements) in 𝑀 into levels
according to their distance. In level 1 we start with the minimum distance edges, and
repeatedly add all edges which are within a factor 𝛼 of the largest level 1 edge until no more
are possible. We then continue, constructing level 𝑘 by starting with the shortest edge not in
a previous level, and then adding all edges within a factor 𝛼 of some edge already in level 𝑘.
Let 𝐿𝑘 be the longest distance of an edge in level 𝑘. We define 𝑑 by setting level 𝑘 edges to
have 𝑑-length 𝐿𝑘 .

Note that since 𝛼 ≥ 2, being connected by edges of level at most 𝑘 is an equivalence
relation for any 𝑘. Therefore, defining distances to be 𝐿𝑘 in level 𝑘 is a valid ultrametric.
Since no edge has length in any interval (𝐿𝑘 , 𝛼𝐿𝑘 ], any transformation that is 𝛼-Lipschitz
with respect to 𝑑 is 1-Lipschitz with respect to 𝑑.

It remains to argue that distances were increased by at most a factor (𝛼 + 1)𝑛−2 in going
from 𝑑 to 𝑑. We show it for the edges in level 𝑘. Actually we may assume without loss
of generality that 𝑘 = 1, because if not we may take all edges in levels up to 𝑘 − 1 and set
their distances to the shortest edge distance in level 𝑘. This is still a valid metric and the
case of level 1 in this new metric implies the case of level 𝑘 in the old metric. For the main
argument when 𝑘 = 1, consider adding the edges in order starting from an empty graph
on the 𝑛 points of 𝑀, giving an increasing seqence 𝐻0, 𝐻1, . . . of graphs. Exactly 𝑛 − 1 of
these edges decrease the number of connected components by 1 at the time they are added.
We call these edges critical and denote by 𝐷1 ≤ · · · ≤ 𝐷𝑛−1 their lengths. At any time, the
critical edges in 𝐻𝑡 form a spanning forest for 𝐻𝑡 . Therefore the maximum distance of any
edge in 𝐻𝑡 is at most the sum of the lengths of the critical edges in 𝐻𝑡 . Therefore the next
critical edge to be added has length

𝐷𝑠 ≤ 𝛼 ·
𝑠−1∑︁
𝑟=1

𝐷𝑟 .
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From this it is easy to see inductively that 𝐷𝑠 ≤ 𝛼(𝛼 + 1)𝑠−2𝐷1 for 𝑠 ≥ 2. This
means the maximum distance of any edge in 𝐻 is at most

∑
𝑠 𝐷𝑠 ≤ (𝛼 + 1)𝑛−2𝐷1 (since

there are 𝑛 − 1 critical edges). We remark that equality is achieved by the set of points
{0, 1, 𝛼 + 1, (𝛼 + 1)2, . . . , (𝛼 + 1)𝑛−2} ⊂ R. J

3.2 WFA for 1-Lipschitz transformations on ultrahomogeneous
ultrametrics

We now prove that WFA is (𝑛 − 1)-competitive for 1-Lipschitz transformations in ultraho-
mogeneous ultrametrics, thereby also proving the first statement of Theorem 5. Note that
this bound is optimal, since 𝑛 − 1 is also the exact competitive ratio of ordinary MSS on any
𝑛-point metric space.

I Lemma 8. Let (𝑀, 𝑑) be an ultrahomogeneous ultrametric with 𝑛 points. The WFA for
T-MSS on (𝑀, 𝑑) with 1-Lipschitz transformation is (𝑛 − 1)-competitive.

Proof. We use the same potential function that also yields (𝑛−1)-competitiveness for ordinary
MSS on general 𝑛-point metrics and (2𝑛 − 1)-competitiveness for MTS [7]:

Φ(𝑤) :=
∑︁
𝑝∈𝑀

𝑤(𝑝).

The bound (1) follows from the fact that 𝑤−
𝑡 (𝑝) −𝑤𝑡−1 (𝑝) ≥ 0 for all 𝑝. Bound (3) for 𝜌𝑀 = 𝑛

follows from the 1-Lipschitzness of 𝑤, choosing 𝐶𝑀 to be 𝑛 − 1 times the diameter of 𝑀.
For (2), we need to show that the sum of work function values is non-decreasing when

a transformation 𝑓𝑡 : 𝐴𝑡 → 𝐵𝑡 is applied. On a high level, the idea is as follows. The work
function 𝑤−

𝑡 before transformation is supported on 𝐴𝑡 , and the work function 𝑤𝑡 afterwards
on 𝐵𝑡 . Imagine for simplicity that the work function value of all support points were 0. Then
the work function value at other points is simply the distance from the support. Since 𝑓𝑡 is
1-Lipschitz, we can think of 𝐵𝑡 as a contracted version of the set 𝐴𝑡 (and since the metric
space is ultrahomogeneous, we can ignore the fact that 𝐵𝑡 might be located in a very different
part of the metric space than 𝐴𝑡). This shrinking of the support means that most other
points of the metric space tend to get further away from the support, and thus their work
function values tend to increase.

We now turn to a formal proof of inequality (2). Since 𝑀 is an ultrametric, we can view
it as the set of leaves of an ultrametric tree.

Denote by 𝑇𝑟 (𝑝) := {𝑥 ∈ 𝑀 : 𝑑 (𝑝, 𝑥) ≤ 𝑟} the ball of radius 𝑟 around 𝑝. Note that this is
the set of leaves of the subtree rooted at the highest ancestor of 𝑝 whose weight is at most 𝑟.
In particular, the sets 𝑇𝑟 (𝑝) form a laminar family. We claim for all 𝑎, 𝑎′ ∈ 𝐴𝑡 and 𝑟, 𝑟 ′ ≥ 0
that

𝑇𝑟 ( 𝑓𝑡 (𝑎)) ∩ 𝑇𝑟 ′ ( 𝑓𝑡 (𝑎′)) = ∅ =⇒ 𝑇𝑟 (𝑎) ∩ 𝑇𝑟 ′ (𝑎′) = ∅. (5)

To see this, suppose 𝑥 ∈ 𝑇𝑟 (𝑎) ∩ 𝑇𝑟 ′ (𝑎′) and say without loss of generality that 𝑟 ≤ 𝑟 ′. Then,
by the ultrametric inequality, 𝑑 (𝑎, 𝑎′) ≤ max{𝑑 (𝑎, 𝑥), 𝑑 (𝑎′, 𝑥)} ≤ 𝑟 ′. Since 𝑓𝑡 is 1-Lipschitz,
this also means that 𝑑 ( 𝑓𝑡 (𝑎), 𝑓𝑡 (𝑎′)) ≤ 𝑟 ′. But then 𝑓𝑡 (𝑎) ∈ 𝑇𝑟 ( 𝑓𝑡 (𝑎)) ∩ 𝑇𝑟 ′ ( 𝑓𝑡 (𝑎′)).

For 𝑦 ≥ 0 and a work function 𝑤 supported on a set 𝑆 ∈ 𝑀, its 𝑦-sublevel set is given by

𝑤−1 ( [0, 𝑦]) =
⋃
𝑠∈𝑆

𝑇𝑦−𝑤 (𝑠) (𝑠).
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Recall that 𝑤−
𝑡 is supported on 𝐴𝑡 , and note that 𝑤𝑡 is supported on a set 𝐵𝑡 ⊆ 𝐵𝑡 such that

∀𝑏 ∈ 𝐵𝑡∃𝑎𝑏 ∈ 𝐴𝑡 : 𝑓𝑡 (𝑎𝑏) = 𝑏 and 𝑤𝑡 (𝑏) = 𝑤−
𝑡 (𝑎𝑏).

Since the sets 𝑇𝑟 (𝑝) form a laminar family, we can choose for each 𝑦 ≥ 0 a subset 𝐵𝑦
𝑡 ⊆ 𝐵𝑡

such that

𝑤−1
𝑡 ( [0, 𝑦]) = ¤⋃

𝑏∈𝐵𝑦
𝑡

𝑇𝑦−𝑤𝑡 (𝑏) (𝑏)

is a disjoint union. Due to implication (5), this also means that

¤⋃
𝑏∈𝐵𝑦

𝑡

𝑇𝑦−𝑤−
𝑡 (𝑎𝑏) (𝑎𝑏)

is a disjoint union.
Now, the cardinality of the 𝑦-sublevel set of 𝑤𝑡 is bounded by

|𝑤−1
𝑡 ( [0, 𝑦]) | =

∑︁
𝑏∈𝐵𝑦

𝑡

|𝑇𝑦−𝑤𝑡 (𝑏) (𝑏) |

=
∑︁
𝑏∈𝐵𝑦

𝑡

|𝑇𝑦−𝑤−
𝑡 (𝑎𝑏) (𝑎𝑏) | (6)

=

������ ¤⋃
𝑏∈𝐵𝑦

𝑡

𝑇𝑦−𝑤−
𝑡 (𝑎𝑏) (𝑎𝑏)

������ (7)

≤
����� ⋃
𝑎∈𝐴𝑡

𝑇𝑦−𝑤−
𝑡 (𝑎) (𝑎)

�����
= | (𝑤−

𝑡 )−1 ( [0, 𝑦]) |,

where equation (6) uses the fact that since 𝑀 is ultrahomogeneous, balls of the same radius
have the same cardinality. Thus, for each 𝑦 ≥ 0 there are at least as many points whose 𝑤−

𝑡 -
value is at most 𝑦 as there are points whose 𝑤𝑡 -value is at most 𝑦. Therefore, if 𝑝1, 𝑝2, . . . , 𝑝𝑛
and 𝑝−1 , 𝑝

−
2 , . . . , 𝑝

−
𝑛 are two enumerations of 𝑀 by increasing 𝑤𝑡 - and 𝑤−

𝑡 -values, respectively,
then 𝑤−

𝑡 (𝑝−𝑖 )) ≤ 𝑤𝑡 (𝑝𝑖). Hence, inequality (2) follows. J

I Remark. One may wonder whether the guarantee of Lemma 8 is achieved more generally
for ultrahomogeneous metric (rather than ultrametric) spaces. The answer is negative:
Consider the 8-point metric space 𝑀 = {0, 2} × {0, 3} × {0, 4} with the ℓ1-norm. Since 𝑀
is isometric to the cube {0, 1}3 with a weighted ℓ1-norm, and all partial isometries on 𝑀

are translations, Theorem 4 (proved in Section 5.3) implies that 𝑀 is ultrahomogeneous.
Consider the work function 𝑤 supported {(0, 0, 0), (2, 3, 0)}, where it takes value 0. We
have Φ(𝑤) = 2 + 2 + 4 + 4 + 6 + 6 = 24. The updated work function 𝑤′ after contracting
{(0, 0, 0), (2, 3, 0)} to {(0, 0, 0), (0, 0, 4)} has Φ(𝑤′) = 2 · (2 + 3 + 5) = 20 < Φ(𝑤), meaning that
inequality (2) is violated. Crucially, property (5) that disjoint balls remain disjoint when their
centers are moved apart is violated on 𝑀. Using this observation, it is not hard to construct a
request sequence on 𝑀 where (1) is always tight for 𝑥 = 𝑏𝑡−1 and (2) is either tight or violated
for each request, and violated for a constant fraction of the requests. For such a request
sequence, the analysis in the proof of Lemma 6 yields a lower bound strictly larger than 𝑛− 1
on the competitive ratio of WFA for T-MSS on 𝑀 with 1-Lipschitz transformations.

ITCS 2021



21:10 Metrical Service Systems with Transformations

3.3 Putting it together
Given any 𝑛-point metric (𝑀, 𝑑), we obtain a 2 max{2𝛼 + 2, 6}𝑛−2-competitive deterministic
algorithm for T-MSS with 𝛼-Lipschitz transformations as follows: Making a multiplicative
error of max{𝛼 + 1, 3}𝑛−2, Lemma 7 allows us to assume that 𝑀 is an ultrametric and
transformations are 1-Lipschitz. By Theorem 4, it further admits a 2𝑛−1-point weakly
ultrahomogeneous extension (�̂�, 𝑑), and the proof of this statement in Theorem 4 actually
shows that (�̂�, 𝑑) is still an ultrametric and it is ultrahomogeneous (not just weakly).
Therefore, by Lemma 8, the WFA is 2𝑛−1-competitive on (�̂�, 𝑑). Overall, this gives a
competitive ratio of max{𝛼 + 1, 3}𝑛−22𝑛−1 = 2 max{2𝛼 + 2, 6}𝑛−2.

3.4 Lower bound for Lipschitz transformations
In this section we prove the lower bound part of Theorem 1 showing that any randomized
algorithm for T-MSS with 𝛼-Lipschitz transformations has competitive ratio at least min{𝛼 +
1, 𝛼2}𝑛−2.

Let 𝑚 := min{𝛼+1, 𝛼2}. Assume 𝛼 ≥ 1 since otherwise there is nothing to show. Consider
the graph with vertices 𝑝1, . . . , 𝑝𝑛 and edges from 𝑝1 to every vertex and between consecutive
vertices of lengths

𝑑 (𝑝1, 𝑝𝑖) := 𝑚𝑖−2 𝑖 = 2, . . . , 𝑛
𝑑 (𝑝𝑖 , 𝑝𝑖+1) := 𝛼𝑚𝑖−2 𝑖 = 2, . . . , 𝑛 − 1.

Note that these edge lengths satisfy the triangle inequality: When adding the vertices to
the graph in order, the addition of 𝑝𝑖 only creates the new triangle (𝑝1, 𝑝𝑖−1, 𝑝𝑖) with edge
lengths (𝑚𝑖−3, 𝛼𝑚𝑖−3, 𝑚𝑖−2). Since 1 ≤ 𝛼 ≤ 𝑚 ≤ 𝛼 + 1, it satisfies the triangle inequality.
Therefore, the shortest path extension of 𝑑 defines a valid metric.

Consider a T-MSS instance on this space with 𝑝1 as its initial state. For 𝑡 = 1, 2, . . . , 𝑛− 2,
we issue transformations

𝑓2𝑡−1 : {𝑝1, 𝑝𝑡+1} → {𝑝𝑡+1, 𝑝𝑡+2}
𝑓2𝑡 : {𝑝𝑡+1, 𝑝𝑡+2} → {𝑝1, 𝑝𝑡+2},

where each transformation maps the first (resp. second) point of the domain to the first
(resp. second) point of the codomain. Note that these maps are 𝛼-Lipschitz, using for 𝑓2𝑡
that 𝑚 ≤ 𝛼2. Then, we issue the final transformation

𝑓2𝑛−3 : {𝑥} → {𝑝1}

with 𝑥 chosen uniformly at random from {𝑝1, 𝑝𝑛}.
With probability 1/2, the online algorithm has to pay 𝑚𝑛−2 to move to 𝑥 when 𝑓2𝑛−3 is

issued. An offline algorithm can serve the sequence with expected cost 1/2: Before 𝑓1, it
either stays at 𝑝1 for cost 0 (if 𝑥 = 𝑝1) or moves from 𝑝1 to 𝑝2 for cost 1 (if 𝑥 = 𝑝𝑛), which
allows to serve the rest of the request sequence for free. Since the request sequence can be
repeated arbitrarily often (with a new random 𝑥), we conclude a lower bound of 𝑚𝑛−2 on the
competitive ratio.

4 Algorithms and Lower Bounds for Special Cases of T-MSS

In this section we show upper and lower bounds on the competitive ratio for T-MSS for special
cases. In Section 4.1 we show that there exists no online algorithm with finite competitive
ratio for nested convex body chasing with contractions in the plane, even with randomization.
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In Section 4.2 we design a new randomized algorithm for the 𝑘-taxi problem. In Section 4.3
we show upper and lower bounds for swap transformations. Finally, in Section 4.4 we show a
superlinear lower bound on the competitiveness of WFA for isometry transformations.

4.1 Contracting convex bodies are unchaseable
Here we show that nested convex body chasing with contractions has no competitive algorithm.
In nested convex body chasing, the requests form a nested sequence 𝐾0 ⊇ 𝐾1 ⊇ . . . of convex
sets in R𝑑. The player starts at 𝑥0 ∈ 𝐾0 and moves online to a point 𝑥𝑡 ∈ 𝐾𝑡 , paying
movement cost

∑
𝑡≥1 | |𝑥𝑡−1 − 𝑥𝑡 | |. This problem is a special case of the more general convex

body chasing problem which allows an arbitrary non-nested sequence 𝐾0, 𝐾1, . . . of convex
sets. This problem has received a lot of recent study without transformations and admits a
𝑑-competitive algorithm – see [3, 1, 11, 10, 2, 20]. Because R𝑑 is ultrahomogenous, it follows
that the 𝑑-competitive algorithm continues to apply with partial isometry transformations.

Here we show that with contraction transformations R𝑑 → R𝑑 there is no competitive
algorithm, even in the nested case for 𝑑 = 2 and with randomization. This gives a non-
trivial example in which contractions are provably harder than isometries. In fact all the
contractions we use are projections from 𝐾𝑡 to 𝐾𝑡+1. Our proof goes by reduction to a family
of 1-dimensional MTS problems known to have arbitrarily large competitive ratio. A related
reduction appeared in [12] to show that 2-server convex body chasing is impossible in 2
dimensions.

I Theorem 2. There exists no online algorithm with finite competitive ratio for nested convex
body chasing with contractions in the plane, even with randomization.

Proof. Fix a large integer 𝑛, a much larger integer 𝑀 = 𝑀 (𝑛) and a much larger 𝑁 = 𝑁 (𝑛).
We start with 𝐾0 = [0, 1] × [0, 𝑁] with starting point 𝑥0 = (0, 0). The projected convex
sets rotate modulo 3: At multiples of 3 we simply have 𝐾3𝑡 = [0, 1] × [𝑡, 𝑁] . Now, for a
sequence (𝑎1, . . . , 𝑎𝑁 ) of positive integers 𝑎𝑖 ∈ {1, 2, . . . , 𝑛} define the points 𝑝𝑡1 = ( 𝑎𝑡

𝑛
, 𝑡),

𝑝𝑡2 = ( 𝑎𝑡−1
𝑛
, 𝑡 + 1

𝑀𝑛
) and 𝑝𝑡3 = ( 𝑎𝑡+1

𝑛
, 𝑡 + 1

𝑀𝑛
). We define 𝐾3𝑡+1 by cutting from 𝐾3𝑡 along the

lines 𝑝𝑡1𝑝
𝑡
2 and 𝑝𝑡1𝑝

𝑡
3. We define 𝐾3𝑡+2 by also cutting along the line 𝑝𝑡2𝑝

𝑡
3. See Figure 1.

We take 𝑎𝑡 to be an adversarially chosen sequence of such integers, yielding an adversarial
nested chasing instance. For 𝑠 congruent to 0 or 2 modulo 3, we apply projection maps (which
are contractions) from 𝐾𝑠 onto 𝐾𝑠+1. Hence movement cost is incurred only on transitions
from 𝐾3𝑡+1 → 𝐾3𝑡+2.

The idea is that the resulting problem is approximately a 1-dimensional MTS, as without
loss of generality we may assume 𝑥3𝑡 is always on the upper boundary of 𝐾3𝑡 . It is easy
to see that, crucially, the horizontal movement induced by the projections is 𝑂 (𝑀−2) per
time-step - we will treat this as an additive error term. The vertical movement corresponds
to a metrical task system with cost functions given by 1

𝑀
𝑐𝑎𝑡 (𝑥) for

𝑐𝑎𝑡 (𝑥) =


0 if 𝑥 ≤ 𝑎𝑡−1

𝑛

min{|𝑥 − 𝑎𝑡−1
𝑛

|, |𝑥 − 𝑎𝑡+1
𝑛

|} if 𝑥 ∈ [ 𝑎𝑡−1
𝑛
,
𝑎𝑡+1
𝑛

]
0 if 𝑥 ≥ 𝑎𝑡+1

𝑛
.

First, by repeating values of 𝑎𝑡 in blocks of 𝑀, we can obtain an MTS which directly
uses cost functions 𝑐𝑎𝑡 (𝑥), now with an additive error 𝑂 (𝑀−1) per (block) time step for the
horizontal movement. Next we claim any randomized algorithm for this new MTS can be
assumed to stay on the finite set of values 𝑘

𝑛
for 𝑘 ∈ {0, 1, . . . , 𝑛}. Indeed, if a randomized

algorithm is at position 𝑘+𝛼
𝑛

for 𝛼 ∈ (0, 1) we can instead move to 𝑘
𝑛

with probability 1−𝛼 and
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𝑘+1
𝑛

with probability 𝛼. Moreover we can couple these roundings together by first sampling
𝑢 ∈ [0, 1] uniformly and rounding at all times based on whether 𝑢 ≤ 𝛼 or not. This turns
any algorithm into a randomized algorithm which stays on the values 𝑘

𝑛
and has the same

expected movement cost. Because the cost functions 𝑐𝑎𝑡 are affine on each interval ( 𝑘
𝑛
, 𝑘+1

𝑛
)

it results in the same expected service cost as well.
If the player is restricted to stay on the 𝑛 + 1 values 𝑘

𝑛
, the movement cost functions

𝑐𝑎𝑡 are 0 at all but one of these values. Hence by repeating requests 𝑂𝑛 (1) times to force
movement we may reinterpret this as an 𝑛-server problem on a metric space with 𝑛 + 1 points,
by taking the player’s location in the original problem to be the unique spot with no server.
It is well-known [5, 6] that the randomized competitive ratio of any 𝑛-server problem in a
metric space with at least 𝑛 + 1 points is Ω(log 𝑛/log log 𝑛). Finally, it is easy to see that
for any MTS on a finite state space with competitive ratio 𝐶, an additive error in cost of
𝑜(1) per time-step affects the competitive ratio by 𝑜(1). Therefore for any fixed 𝑛, taking
𝑀 → ∞ results eventually in an MTS with competitive ratio Ω(log 𝑛/log log 𝑛) even taking
the horizontal effects of the projection maps into account. Finally taking 𝑁 sufficiently large
to realize this competitive ratio gives the desired lower bound. J

Figure 1 To show that chasing nested convex bodies is impossible with contractions, we construct
shrinking sets as shown. Euclidean nearest-point projections are taken onto the sets 𝐾3𝑡+1, 𝐾3𝑡+3, so
that movement cost is incurred only in moving from 𝐾3𝑡+1 to 𝐾3𝑡+2. Up to the negligible horizontal
movements from projection, this results in a 1-dimensional metrical task system with unbounded
competitive ratio.

4.2 A poly(𝒏, log 𝒌)-competitive 𝒌-taxi algorithm

In the 𝑘-taxi problem, there are 𝑘 taxis located in a metric space (𝑀, 𝑑). A sequence of
requests arrives, where each request is a pair of points (𝑠𝑡 , 𝑑𝑡 ) ∈ 𝑀 × 𝑀, representing the
start and destination of a passenger request. Each request must be served upon its arrival
by sending a taxi to 𝑠𝑡 , from where it is relocated to 𝑑𝑡 . The cost is defined as the distance
travelled by taxis while not carrying a passenger, i.e., excluding the distances from 𝑠𝑡 to 𝑑𝑡 .

Note that the 𝑘-taxi problem is a special case of T-MSS: As the metric space for T-MSS,
we take the set of taxi configurations (i.e., 𝑘-point multisets of points in 𝑀), and the distance
between two configurations is the minimum cost of moving from one configuration to the
other. A taxi request (𝑠𝑡 , 𝑑𝑡 ) translates to the transformation that maps configurations
containing 𝑠𝑡 to the corresponding configurations with a taxi at 𝑠𝑡 replaced by a taxi at 𝑑𝑡 .
Observe that this transformation is an isometry in the configuration space.
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In principle, the size of a weakly ultrahomogeneous extension of the configuration space
would yield a bound on the competitive ratio of the 𝑘-taxi problem. However, we do not
know a bound on this blow-up in general. We overcome this obstacle as follows: First, we
apply a well-known embedding of the original 𝑘-taxi metric space into a tree (HST) metric.
Then, we consider the configuration space of this tree metric, whose metric is given by a
weighted ℓ1-norm. Moreover, the isometries corresponding to the 𝑘-taxi requests in this tree
metric are actually translations, and for this case, Theorem 4 yields a bound on the blow-up
(proved later in Section 5.3). The resulting algorithm has competitive ratio 𝑂 ((𝑛 log 𝑘)2 log 𝑛),
improving upon the previous bound of 𝑂 (2𝑘 log 𝑛) [14] whenever 𝑛 is sub-exponential in 𝑘.

I Theorem 3. There is a randomized 𝑂 ((𝑛 log 𝑘)2 log 𝑛)-competitive algorithm for the 𝑘-taxi
problem on 𝑛-point metrics.

Proof. By well-known techniques [4, 16], any 𝑛-point metric space can be embedded with
distortion 𝑂 (log 𝑛) into the set of leaves of a random (weighted) tree. It therefore suffices to
describe an 𝑂 ((𝑛 log 𝑘)2)-competitive algorithm for the 𝑘-taxi problem on the set L of leaves
of a tree with |L| = 𝑛. Notice that there is a tree T with only 𝑂 (𝑛) vertices that induces the
metric on L.

Let 𝑉 be the set of vertices of T excluding the root. For 𝑣 ∈ 𝑉 , let 𝑤𝑣 be the length of
the edge from 𝑣 to its parent. If we denote by 𝑥𝑣 the number of taxis in the subtree rooted
at 𝑣, then a configuration of 𝑘 taxis can be denoted by a point in 𝑀 := {0, . . . , 𝑘}𝑉 . Notice
that only some points in 𝑀 correspond to valid 𝑘-taxi configurations. The cost of moving
from configuration 𝑥 to configuration 𝑦 is given by the metric

𝑑 (𝑥, 𝑦) :=
∑︁
𝑣∈𝑉

𝑤𝑣 |𝑥𝑣 − 𝑦𝑣 |.

Thus, the 𝑘-taxi problem on T is a special case of T-MSS on (𝑀, 𝑑). A 𝑘-taxi request (𝑠𝑡 , 𝑑𝑡 )
corresponds to a translation by the vector that has 1-entries in coordinates of ancesters
of 𝑑𝑡 that are not ancestors of 𝑠𝑡 , −1-entries in coordinates of ancestors 𝑠𝑡 that are not
ancestors of 𝑑𝑡 , and 0 in the remaining coordinates. We therefore need to extend 𝑀 to a
space �̂� where these translations extend to automorphisms. As stated in Theorem 4 and
proved later in Section 5.3, such an extension �̂� of size (2𝑘) |𝑉 | exists. Thus, by running
an 𝑂 (log2 |�̂� |)-competitive algorithm for 𝑀𝑆𝑆 on �̂� and treating each automorphism as
a renaming of the points of �̂�, we obtain an algorithm for the 𝑘-taxi problem on T with
competitive ratio 𝑂 (log2 |�̂� |) = 𝑂 ((𝑛 log 𝑘)2), where we used that |𝑉 | = 𝑂 (𝑛). Combined
with the 𝑂 (log 𝑛) loss due to the tree embedding, the theorem follows. J

4.3 Competitivity for swap transformations

In this section, we show tight bounds of 2𝑛 − 3 on the competitive ratio for T-MSS in general
metrics when each transformation is either the identity on its domain (recall that we always
allow identity transformations) or a swap, thereby proving the second part of Theorem 5.
The upper bound is achieved by the WFA.

Upper bound. For brevity, we will denote the distance between two points 𝑥, 𝑦 ∈ 𝑀 by 𝑥𝑦
instead of 𝑑 (𝑥, 𝑦). For 𝑋 ⊆ 𝑀 and 𝑥 ∈ 𝑀, we write 𝑋 − 𝑥 := 𝑋 \ {𝑥}. For a work function 𝑤

and 𝑥, 𝑦 ∈ 𝑀, let
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Ψ𝑥,𝑦 (𝑤) := cl(𝑀 − 𝑥 − 𝑦) +
∑︁

𝑝∈𝑀−𝑥−𝑦
min{𝑤(𝑥) + 𝑦𝑝, 𝑤(𝑦) + 𝑥𝑝}

Φ(𝑤) :=
∑︁
𝑝∈𝑀

𝑤(𝑝) + min
𝑥,𝑦∈𝑀

Ψ𝑥,𝑦 (𝑤)

Here, cl(𝑋) :=
∑

{𝑥,𝑦 }⊆𝑋 𝑥𝑦 denotes the size of the clique of 𝑋, i.e., the sum of all distances
between points in 𝑋. It suffices to show that Φ satisfies the properties of Lemma 6 with
𝜌𝑀 = 2𝑛 − 2.

Inequality (3) is immediate from the fact that Φ(𝑤) is a sum of 2𝑛 − 2 function values
of 𝑤 and a bounded number of distances of 𝑀, and each function value of 𝑤 differs from
min𝑥 𝑤(𝑥) by at most the diameter of 𝑀 due to the 1-Lipschitzness of 𝑤.

Inequality (1) follows from the fact that Φ(𝑤) contains the summand 𝑤(𝑥), the remaining
summands of Φ(𝑤) are non-decreasing in 𝑤, and 𝑤𝑡−1 ≤ 𝑤−

𝑡 pointwise.
Inequality (2) is trivial if 𝑓𝑡 is the identity on its domain, so it remains to consider the

case that 𝑓𝑡 : {𝑎, 𝑏} → {𝑎, 𝑏} is a swap. Both 𝑤−
𝑡 and 𝑤𝑡 are supported on {𝑎, 𝑏}. We first

show that if 𝑤 is supported on {𝑎, 𝑏}, then Ψ𝑥,𝑦 (𝑤) is minimized when {𝑥, 𝑦} = {𝑎, 𝑏}.
Let 𝑥 and 𝑦 be such that Ψ𝑥,𝑦 (𝑤) is minimized and suppose 𝑥 ∉ {𝑎, 𝑏}. Then we can

assume without loss of generality (by symmetry) that 𝑤(𝑥) = 𝑤(𝑎) + 𝑎𝑥. Then min{𝑤(𝑥) +
𝑦𝑎, 𝑤(𝑦) + 𝑥𝑎} = 𝑤(𝑦) + 𝑥𝑎. Thus,

Ψ𝑥,𝑦 (𝑤) = cl(𝑀 − 𝑥 − 𝑦) + 𝑤(𝑦) + 𝑥𝑎 +
∑︁

𝑝∈𝑀−𝑥−𝑦−𝑎
min{𝑤(𝑎) + 𝑎𝑥 + 𝑦𝑝, 𝑤(𝑦) + 𝑥𝑝}

≥ cl(𝑀 − 𝑥 − 𝑦) + 𝑤(𝑦) + 𝑥𝑎

+
∑︁

𝑝∈𝑀−𝑥−𝑦−𝑎
(𝑥𝑝 − 𝑎𝑝 + min{𝑤(𝑎) + 𝑦𝑝, 𝑤(𝑦) + 𝑎𝑝})

≥ cl(𝑀 − 𝑎 − 𝑦) +
∑︁

𝑝∈𝑀−𝑦−𝑎
min{𝑤(𝑎) + 𝑦𝑝, 𝑤(𝑦) + 𝑎𝑝}

= Ψ𝑎,𝑦 (𝑤).

Thus, Ψ𝑥,𝑦 (𝑤) is also minimized when 𝑥 = 𝑎. If 𝑦 ≠ 𝑏 and 𝑤(𝑦) = 𝑤(𝑏) + 𝑏𝑦, then the
symmetric argument shows that Ψ𝑥,𝑦 (𝑤) is minimized when {𝑥, 𝑦} = {𝑎, 𝑏}. Otherwise, if
𝑦 ≠ 𝑏, then 𝑤(𝑦) = 𝑤(𝑎) + 𝑎𝑦 since 𝑤 is supported on {𝑎, 𝑏}. Then

Ψ𝑎,𝑦 (𝑤) = cl(𝑀 − 𝑎 − 𝑦) +
∑︁

𝑝∈𝑀−𝑎−𝑦
min{𝑤(𝑎) + 𝑦𝑝, 𝑤(𝑎) + 𝑎𝑦 + 𝑎𝑝}

= cl(𝑀 − 𝑎) + (𝑛 − 2)𝑤(𝑎)

≥ cl(𝑀 − 𝑎 − 𝑏) +
∑︁

𝑝∈𝑀−𝑎−𝑏
min{𝑤(𝑎) + 𝑏𝑝, 𝑤(𝑏) + 𝑎𝑝}

= Ψ𝑎,𝑏 (𝑤).

Thus, it is indeed the case that min𝑥,𝑦 Ψ𝑥,𝑦 (𝑤) = Ψ𝑎,𝑏 (𝑤), for both 𝑤 = 𝑤−
𝑡 and 𝑤 = 𝑤𝑡 .

Hence,

Φ(𝑤−
𝑡 ) −Φ(𝑤𝑡 ) = 𝑤−

𝑡 (𝑎) + 𝑤−
𝑡 (𝑏) − 𝑤𝑡 (𝑎) − 𝑤𝑡 (𝑏)

+
∑︁

𝑝∈𝑀−𝑎−𝑏

(
𝑤−
𝑡 (𝑝) + min{𝑤−

𝑡 (𝑎) + 𝑏𝑝, 𝑤−
𝑡 (𝑏) + 𝑎𝑝}

)
−

∑︁
𝑝∈𝑀−𝑎−𝑏

(𝑤𝑡 (𝑝) + min{𝑤𝑡 (𝑎) + 𝑏𝑝, 𝑤𝑡 (𝑏) + 𝑎𝑝}) .

Since 𝑤𝑡 (𝑎) = 𝑤−
𝑡 (𝑏), 𝑤𝑡 (𝑏) = 𝑤−

𝑡 (𝑎), and 𝑤(𝑝) = min{𝑤(𝑎) + 𝑎𝑝, 𝑤(𝑏) + 𝑏𝑝} for 𝑤 = 𝑤−
𝑡 and

𝑤 = 𝑤𝑡 , everything cancels in the last sum and we obtain (2).
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Lower bound. Consider the metric with points 1, 2, . . . , 𝑛 where the distance from 1 to any
other point is 1 and the distance between any other two points is 2. The initial location of
the server is 1. For 𝑖 = 1, . . . , 𝑛 − 1, the 𝑖th request is the identity with domain 𝐴𝑖, where
𝐴1 := {2, 3, . . . , 𝑛} and for 𝑖 ≥ 2, 𝐴𝑖 is the subset of 𝐴𝑖−1 obtained by removing the location of
the online algorithm’s server before this request is issued. During these requests, the online
algorithm suffers cost 2𝑛 − 3, but an offline algorithm could immediately go to the one point
𝑝 in 𝐴𝑛−1 for cost 1. We issue one more request that swaps 𝑝 and 1 so as to return to the
initial configuration, allowing to repeat the procedure arbitrarily often.

4.4 Superlinear lower bound for WFA with isometries

In this section we show a superlinear lower bound of 𝜔(𝑛1.29) on the competitiveness of WFA
for T-MSS with isometry transformations, proving the third part of Theorem 5.

It suffices to show the the statement for values of 𝑛 that are a power of 4. Let 𝛼 ∈ N be
some large constant. For ℎ ∈ N0, we construct a 4ℎ-point metric space 𝑇ℎ by induction: The
space 𝑇0 is just a single point. For ℎ ≥ 1, space 𝑇ℎ is a disjoint union of four copies of 𝑇ℎ−1,
which we denote 𝑇0

ℎ−1, 𝑇
1
ℎ−1, 𝑇

2
ℎ−1, 𝑇

3
ℎ−1. For points 𝑥, 𝑦 from two different copies of 𝑇ℎ−1 we

define their distance as 𝛼ℎ if one of the copies is 𝑇0
ℎ−1 and as 2𝛼ℎ otherwise.

For a set 𝑋 ⊆ 𝑇ℎ−1 and 𝑖 = 0, 1, 2, 3, denote by 𝑋 𝑖 the copy of 𝑋 in 𝑇 𝑖
ℎ−1, and similarly if

𝑋 is a point rather than a set. We define a special point 𝑠ℎ ∈ 𝑇ℎ as follows: 𝑠0 is the single
point in 𝑇0. For ℎ ≥ 1, 𝑠ℎ := 𝑠0

ℎ−1.
We consider T-MSS on 𝑇ℎ when the server starts at 𝑠ℎ. Let 𝑤0 = 𝑑 ( · , 𝑠ℎ) be the initial

work function. We will construct a request sequence 𝜎ℎ during which WFA suffers cost
(6ℎ − 1)𝛼ℎ (1 − 𝑜(1)) as 𝛼 → ∞ and at whose end the work function is at most 𝛼ℎ + 𝑤0
pointwise, with WFA returning to 𝑠ℎ in the end. Since such a request sequence can be
repeated, it will imply that the competitive ratio is at least 6ℎ −1 = 𝑛(ln 6)/(ln 4) −1 = 𝜔(𝑛1.29).

For ℎ = 0, we simply choose the empty request sequence. Consider now ℎ ≥ 1. For a partial
isometry 𝑓 : 𝐴 → 𝐵 of 𝑇ℎ−1 and 𝑖 = 0, 1, 2, 3, denote by 𝑓 𝑖 : 𝐴𝑖 ∪⋃

𝑗≠𝑖 𝑇
𝑗

ℎ−1 → 𝐵𝑖 ∪⋃
𝑗≠𝑖 𝑇

𝑗

ℎ−1
the map that acts like 𝑓 on 𝐴𝑖 and is the identity on 𝑇 𝑗

ℎ−1 for 𝑗 ≠ 𝑖. Note that 𝑓 𝑖 is a partial
isometry of 𝑇ℎ. Denote by 𝜎𝑖

ℎ−1 the sequence obtained by extending each partial isometry in
𝜎ℎ−1 (the sequence from the induction hypothesis) in this way.

We construct 𝜎ℎ as follows: First, we issue 2𝛼 − 2 copies of 𝜎0
ℎ−1. Since each work

function 𝑤 during this sequence admits a point 𝑝 ∈ 𝑇0
ℎ−1 with 𝑤(𝑝) ≤ (2𝛼 − 2)𝛼ℎ−1, but

𝑤(𝑥) = 𝛼ℎ for all 𝑥 ∈ ⋃
𝑗≠0 𝑇

𝑗

ℎ−1, WFA will stay within 𝑇0
ℎ−1 during these requests, suffering

cost (6ℎ−1−1)2𝛼ℎ (1−𝑜(1)). Then we issue the identity request with domain {𝑠1
ℎ−1, 𝑠

2
ℎ−1, 𝑠

3
ℎ−1},

forcing the algorithm to move to one of these three points for cost 𝛼ℎ. By symmetry, we can
assume without loss of generality that WFA moves to 𝑠1

ℎ−1. We now issue 2𝛼 − 2 copies of
𝜎1
ℎ−1, followed by the identity request with domain {𝑠2

ℎ−1, 𝑠
3
ℎ−1}. Similarly to before, WFA

again suffers cost (6ℎ−1 − 1)2𝛼ℎ (1 − 𝑜(1)) and then moves to, say, 𝑠2
ℎ−1 for cost 2𝛼ℎ. Finally,

we issue 2𝛼 − 2 copies of 𝜎2
ℎ−1 followed by the request {𝑠3

ℎ−1} → {𝑠ℎ}, 𝑠3ℎ−1 ↦→ 𝑠ℎ, increasing
WFA’s cost by another (6ℎ−1 − 1)2𝛼ℎ (1 − 𝑜(1)) + 2𝛼ℎ. Overall, WFA suffers cost

(6ℎ−1 − 1) (2 + 2 + 2)𝛼ℎ (1 − 𝑜(1)) + (1 + 2 + 2)𝛼ℎ = (6ℎ − 1)𝛼ℎ (1 − 𝑜(1)),

as claimed. Moreover, the final work function is 𝛼ℎ + 𝑤0 because an offline algorithm could
move to 𝑠3

ℎ−1 for cost 𝛼ℎ at the start of the request sequence, suffer no cost during the rest
of the sequence, and be mapped back to 𝑠ℎ (for free) via the final request.
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5 Bounds on the Metric Extension Blow-up

In this section we prove upper an lower bounds on the blow-up for several families of metric
spaces and transformations, proving Theorem 4.

I Theorem 4. The following bounds on the blow-up are tight.

Family of metric spaces Family of isometries Blow-up
Ultrametrics General 2𝑛−1

Ultrametrics: 𝑘 distinct non-zero distances General ≈
(
𝑛+𝑘−1

𝑘

)𝑘 4

Equally spaced points on a line General 2𝑛 − 2(
{0, . . . , 𝑘}𝐷 ,weighted ℓ1

)
Translations (2𝑘)𝐷

General metrics Swaps 2𝑛−1

It was shown independently by Solecki [21] and Vershik [22] that every finite metric space
𝑀 admits a finite5 weakly ultrahomogeneous extension �̂�. An elementary proof of this
result was presented very recently in [18]. However, the main part of the construction in [18]
consists of d𝑅e growing steps, where 𝑅 is the aspect ratio of 𝑀, and a naive bound on the
growth factor in the 𝑖th step alone is already doubly exponential in 𝑖. Thus, this does not
yield an upper bound on the cardinality of �̂� in terms of the cardinality of 𝑀, but only one
that also involves the aspect ratio. Thus, even though there exists a finite extension for any
𝑛-point metric, it is unclear whether its size can be bounded as a function of 𝑛. If not, this
would mean that the blow-up for general metrics and isometries is infinite.

5.1 General metrics with swap transformations
Let 𝑀 be an 𝑛-point metric. We will show how to extend 𝑀 to a 2𝑛−1-point space where
every swap extends to an automorphism. The tightness of this upper bound follows from the
lower bound for ultrametrics (with 𝑛 − 1 distinct distances) proved in Section 5.2. There, we
will show that even if only maps with 1-point domain need to extend to automorphisms, the
extended space may require cardinality 2𝑛−1.

We embed 𝑀 into the vector space �̂� = F𝑛−1
2 by enumerating the points 𝑝1, . . . , 𝑝𝑛 of 𝑀

in arbitrary order and defining the embedding 𝜑 : 𝑝𝑘 ↦→ (1𝑘−1, 0𝑛−𝑘 ). We choose the metric
on �̂� to extend that of 𝑀 and also be translation invariant, and explain just below why such
a choice exists. Now for 𝑥, 𝑦 ∈ F𝑛−1

2 , their swap is translation by (𝑥 + 𝑦). Since the metric on
�̂� is translation invariant, this translation gives the desired extension to an automorphism
on �̂�.

Now we explain why there exists such a translation invariant metric on �̂�. We first
extend to a partial metric (�̂�, 𝑑) only by translation invariance, i.e., 𝑑 is the partial function
on �̂� × �̂� defined by 𝑑 (𝑥, 𝑦) = 𝑑 (𝑝𝑖 , 𝑝 𝑗 ) if 𝑥 − 𝑦 = 𝜑(𝑝𝑖) − 𝜑(𝑝 𝑗 ). Viewing 𝑑 as a weighted
graph 𝐺, the shortest path extension of 𝑑 is also translation invariant. Moreover, it gives a
valid metric on �̂� if and only if there is no cycle in 𝐺 violating the triangle inequality.

Now, the values 𝜑(𝑝𝑖) − 𝜑(𝑝 𝑗 ) ∈ �̂� range over vectors with a single continuous block of
1s. A cycle in 𝐺 consists of a multiset S of such vectors adding to 0. Viewing 𝜑(𝑝𝑖) − 𝜑(𝑝 𝑗 )
as an edge connecting 𝑝𝑖 and 𝑝 𝑗 , we claim that any such multiset S must correspond to a

4 The precise blow-up is (𝑎 + 1)𝑏𝑎𝑘−𝑏 where 𝑎 = b 𝑛+𝑘−1
𝑘

c and 𝑏 = (𝑛 − 1) mod 𝑘.
5 The existence of an infinite ultrahomogeneous metric space that extends every finite metric space, called

the Urysohn universal space, has been known since the 1920s.
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multigraph on 𝑀 with even degree at each vertex 𝑝𝑖. Indeed, for 𝑖 ≥ 2, the parity of the
degree at 𝑝𝑖 is the difference between the coordinates 𝑖 − 1 and 𝑖 in the summed vector, which
is 0 by definition (treat coordinate 𝑛 as being identically 0). Since the sum of degrees is even,
also 𝑝1 must have even degree. Therefore this multigraph has an Eulerian circuit and in
particular a cycle containing each edge. Since the edge weights are now exactly distances in
𝑀, we are done by applying the triangle inequality in 𝑀.

5.2 Ultrametrics
We consider ultrametrics with at most 𝑘 distinct non-zero distances. Note that any 𝑛-point
ultrametric has at most 𝑛 − 1 distinct distances, so the general bounds on ultrametrics follow
from the case 𝑘 = 𝑛 − 1.

Upper bound. Recall that ultrametric spaces may be viewed as the leaves of a rooted
tree in which vertices with lowest common ancestor at level 𝑖 have distance 𝐿𝑖, where
0 < 𝐿1 < 𝐿2 < · · · < 𝐿𝑘 are the possible distances.

We construct �̂� by augmenting the 𝑛-leaf tree corresponding to 𝑀 with additional
points to create a symmetric tree �̂� where partial isometries extend to automorphisms.
We claim this can be done with at most

(
𝑛+𝑘−1

𝑘

) 𝑘
total leaves. Indeed, the original tree’s

non-leaf vertices have 𝐶1, . . . , 𝐶 𝑗 children for some numbers satisfying
∑ 𝑗

𝑖=1 (𝐶 𝑗 − 1) = 𝑛 − 1.
Therefore letting 𝐸𝑖 be the maximal number of children for any vertex at level 𝑖, we have∑

𝑖 (𝐸𝑖 −1) ≤ 𝑛−1. We take �̂� to be the leaves of a fully symmetric tree in which every vertex
at level 𝑖 has 𝐸𝑖 children. It is clear that any partial isometry of this symmetric tree extends
to an automorphism. Moreover |�̂� | = ∏

𝑖 𝐸𝑖. Given the constraint
∑𝑘

𝑖=1 (𝐸𝑖 − 1) ≤ 𝑛 − 1, the

bound |�̂� | ≤
(
𝑛+𝑘−1

𝑘

) 𝑘
follows from AM-GM. Since each 𝐸𝑖 is an integer, the precise bound

is (𝑎 + 1)𝑏𝑎𝑘−𝑏 if 𝑛 − 1 = 𝑎𝑘 + 𝑏 for 𝑏 ∈ {0, 1, . . . , 𝑘 − 1}.

Lower bound. Let 𝑀0, . . . , 𝑀𝑘 be disjoint sets, where 𝑀0 = {𝑝0} is a singleton and
𝑀1, . . . , 𝑀𝑘 have cardinalities b 𝑛−1

𝑘
c or d 𝑛−1

𝑘
e such that the union 𝑀 := 𝑀0 ¤∪𝑀1 ¤∪ . . . ¤∪𝑀𝑘

has cardinality 𝑛. We define an ultrametric on 𝑀 by defining the distance between any two
distinct points 𝑥 ∈ 𝑀𝑖, 𝑦 ∈ 𝑀 𝑗 with 𝑖 ≤ 𝑗 to be 2 · 3 𝑗−1.

Let �̂� ⊇ 𝑀 be a weakly ultrahomogeneous extension of 𝑀. For a point 𝑥 ∈ �̂� and
𝑗 = 0, . . . , 𝑘, denote by 𝐵 𝑗 (𝑥) the set of points in �̂� within distance strictly less than 3 𝑗

from 𝑥. We claim that |𝐵 𝑗 (𝑝0) | ≥
∏ 𝑗

𝑖=1 ( |𝑀𝑖 | + 1) for each 𝑗 = 0, . . . , 𝑘. This implies that
|�̂� | ≥ ∏𝑘

𝑖=1 ( |𝑀𝑖 | + 1) ≥ ∏𝑘
𝑖=1b 𝑛+𝑘−1

𝑘
c.

To prove the claim, we proceed by induction on 𝑗 . Clearly it is true for 𝑗 = 0. For 𝑗 ≥ 1,
consider the balls 𝐵 𝑗−1 (𝑝) for 𝑝 ∈ 𝑀 𝑗 ∪ {𝑝0}. By the triangle inequality, they are disjoint
and contained in 𝐵 𝑗 (𝑝0). Since for each 𝑝 ∈ 𝑀 𝑗 the map 𝑝0 ↦→ 𝑝 extends to an isomorphism,
they must also all have the same cardinality, which is at least

∏ 𝑗−1
𝑖=1 ( |𝑀𝑖 | +1) by the induction

hypothesis. Thus, 𝐵 𝑗 (𝑝0) has cardinality at least
∏ 𝑗

𝑖=1 ( |𝑀𝑖 | + 1).

5.3 The line and weighted ℓ1-norms with translations
The extension of 𝑛 equally spaced points on a line is simple: We extend it to a circle of
2𝑛 − 2 equally spaced points. It is easy to see that the circle is ultrahomogeneous because
any (partial) isometry is a combination of a rotation and possibly a reflexion. We will now
extend this idea to multiple dimensions.

ITCS 2021



21:18 Metrical Service Systems with Transformations

Consider the space 𝑀 := {0, 1, . . . , 𝑘}𝐷 with the distance given by the weighted ℓ1-norm
𝑑 (𝑥, 𝑦) :=

∑𝐷
𝑖=1 𝑤𝑖 |𝑥𝑖 − 𝑦𝑖 |, where 𝑤1, . . . , 𝑤𝐷 are arbitrary positive weights. As partial

isometries, we consider the family of translations 𝑥 → 𝑥 + 𝑣 that map a subset of 𝑀 to another
subset of 𝑀. We will show that the associated blow-up is precisely (2𝑘)𝐷. Note that the
lower bound for 𝐷 = 1 also yields a tight lower bound of 2𝑛 − 2 for the blow-up of equally
spaced points on a line,

Upper bound. Notice that any translation is a composition of translations of the form
𝑥 → 𝑥 + 𝑒𝑖 and their inverses, where 𝑒𝑖 ∈ {0, 1}𝐷 is the vector with a 1-entry in only the 𝑖th
coordinate. It therefore suffices to extend 𝑀 to a metric space �̂� where partial isometries of
this restricted type extend to global isometries.

We extend 𝑀 to the space �̂� = {0, . . . , 2𝑘 − 1}𝐷 and define a metric on �̂� by

𝑑 (𝑥, 𝑦) :=
𝐷∑︁
𝑖=1

𝑤𝑖 min{|𝑥𝑖 − 𝑦𝑖 |, 2𝑘 − |𝑥𝑖 − 𝑦𝑖 |}.

This is the metric induced by the weighted ℓ1-norm when viewing �̂� as a 𝐷-dimensional
torus. Clearly, 𝑑 extends 𝑑. Moreover, any isometry 𝑥 → 𝑥 + 𝑒𝑖 defined on a subset of
𝑀 extends to the automorphism 𝑥 → 𝑥 + 𝑒𝑖 mod 2𝑘 on �̂�, where the “mod 2𝑘” is applied
coordinate-wise.

Lower bound. Let 𝐴0 := {0, 1, . . . , 𝑘} and 𝐴1 := {0, 1}. For a 0-1-string 𝑖1𝑖2 . . . 𝑖𝐷 , consider
the translation

𝑓𝑖1...𝑖𝐷 : 𝐴𝑖1 × · · · × 𝐴𝑖𝐷 → 𝑀

𝑥 ↦→ 𝑥 + (𝑘 − 1) · (𝑖1, . . . , 𝑖𝐷).

The choice of domain of 𝑓𝑖1...𝑖𝐷 is just to ensure that the image is still in 𝑀.
Let �̂� ⊇ 𝑀 be an extension of 𝑀 such that each 𝑓𝑖1...𝑖𝐷 extends to an automorphism

𝑓𝑖1...𝑖𝐷 of �̂�.
Let 𝐶0 := {0, 1, . . . , 𝑘 − 1}, 𝐶1 := {1, 2, . . . , 𝑘} and 𝑆𝑖1...𝑖𝐷 := 𝑓𝑖1...𝑖𝐷 (𝐶𝑖1 × · · · × 𝐶𝑖𝐷 ).
Note that each set 𝑆𝑖1...𝑖𝐷 has cardinality 𝑘𝐷, and there are 2𝐷 such sets in total,

corresponding to the 2𝐷 possible 0-1-strings of length 𝐷. Thus, the lower bound of (2𝑘)𝐷 on
the cardinality of �̂� follows from the following claim.

B Claim 9. The sets 𝑆𝑖1...𝑖𝐷 are pairwise disjoint for different 0-1-strings 𝑖1 . . . 𝑖𝐷.

Proof. Let 𝑦 ∈ 𝑆𝑖1...𝑖𝐷 for some 0-1-string 𝑖1 . . . 𝑖𝐷. We will show that 𝑖1 . . . 𝑖𝐷 is uniquely
determined by 𝑦.

We can write 𝑦 = 𝑓𝑖1...𝑖𝐷 (𝑥) for some 𝑥 ∈ 𝑀. It suffices to show that 𝑖 𝑗 = 0 if and only if 𝑦
is closer to 𝑘 · 𝟙 − 𝑒 𝑗 than to 𝑘 · 𝟙, where 𝟙 denote the all-ones vector. Equivalently, we will
show that

𝑖 𝑗 = 0 ⇐⇒ 𝑑 (𝑥, 𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙 − 𝑒 𝑗 )) < 𝑑 (𝑥, 𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙)).

Note that the preimages 𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙) and 𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙 − 𝑒 𝑗 ) exist in 𝑀, and they differ only
in their 𝑗th entry.

If 𝑖 𝑗 = 0, then 𝑥 𝑗 ≤ 𝑘 − 1 (by definition of 𝐶𝑖 𝑗 ) and the 𝑗th entries of 𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙 − 𝑒 𝑗 )
and 𝑓 −1

𝑖1...𝑖𝐷
(𝑘 · 𝟙) are 𝑘 − 1 and 𝑘, respectively. Thus, 𝑥 is closer to 𝑓 −1

𝑖1...𝑖𝐷
(𝑘 · 𝟙 − 𝑒 𝑗 ) than to

𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙).
If 𝑖 𝑗 = 1, then 𝑥 𝑗 ≥ 1 (by definition of 𝐶𝑖 𝑗 ) and the 𝑗th entries of 𝑓 −1

𝑖1...𝑖𝐷
(𝑘 · 𝟙 − 𝑒 𝑗 ) and

𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙) are 0 and 1, respectively. Thus, 𝑥 is further from 𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙 − 𝑒 𝑗 ) than from
𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙). C
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Abstract
We prove several hardness results for training depth-2 neural networks with the ReLU activation
function; these networks are simply weighted sums (that may include negative coefficients) of ReLUs.
Our goal is to output a depth-2 neural network that minimizes the square loss with respect to a
given training set. We prove that this problem is NP-hard already for a network with a single ReLU.
We also prove NP-hardness for outputting a weighted sum of k ReLUs minimizing the squared
error (for k > 1) even in the realizable setting (i.e., when the labels are consistent with an unknown
depth-2 ReLU network). We are also able to obtain lower bounds on the running time in terms
of the desired additive error ε. To obtain our lower bounds, we use the Gap Exponential Time
Hypothesis (Gap-ETH) as well as a new hypothesis regarding the hardness of approximating the well
known Densest κ-Subgraph problem in subexponential time (these hypotheses are used separately in
proving different lower bounds). For example, we prove that under reasonable hardness assumptions,
any proper learning algorithm for finding the best fitting ReLU must run in time exponential in 1/ε2.
Together with a previous work regarding improperly learning a ReLU [21], this implies the first
separation between proper and improper algorithms for learning a ReLU. We also study the problem
of properly learning a depth-2 network of ReLUs with bounded weights giving new (worst-case)
upper bounds on the running time needed to learn such networks both in the realizable and agnostic
settings. Our upper bounds on the running time essentially matches our lower bounds in terms of
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1 Introduction

Neural networks have become popular in machine learning tasks arising in multiple applica-
tions such as computer vision, natural language processing, game playing and robotics [25].
One attractive feature of neural networks is being universal approximations: a network with
a single hidden layer1 with sufficiently many neurons can approximate arbitrary well any
measurable real-valued function [23, 13]. These networks are typically trained on labeled
data by setting the weights of the units to minimize the loss function (often the squared loss
is used) over the training data. The challenge is to find a computationally efficient way to
set the weights to achieve low error. While heuristics such as stochastic gradient descent
(SGD) have been successful in practice, our theoretical understand about the amount of
running-time needed to train neural networks is still lacking.

It has been known for decades [8, 31, 24] that finding a set of weights that minimizes
the loss of the training set is NP-hard. These hardness results, however, only apply to
classification problems and to settings where the neural networks involved use discrete,
Boolean activations. Our focus here is on neural networks with real inputs whose neurons
have the real-valued ReLU activation function. Specifically, we consider depth-2 networks of
ReLUs, namely either a single ReLU or a weighted sum of ReLUs 2, and the optimization
problem of training them giving labelled data points, which are defined below.

I Definition 1. A rectifier is the real function [x]+ := max(0, x). A rectified linear unit
(ReLU) is a function f(x) : Rn → R of the form f(x) = [〈w,x〉]+ where w ∈ Rn is fixed. A
depth-2 neural network with k ReLUs (abbreviated as k-ReLU) is a function from Rn to R
defined by

reluw1,...,wk,a(z) =
k∑
j=1

aj [〈wj , z〉]+.

Here x ∈ Rn is the input, a = (a1, . . . , ak) ∈ {−1, 1}k is a vector of “coefficients”, wj =
(wj1, . . . , wjn) ∈ Rn is a weight vector associated with the j-th unit. When a1 = · · · = ak = 1,
we refer to reluw1,...,wk,a(z) as the sum of k ReLUs, and we may omit a from the subscript.

We note that the assumption that a1, . . . , ak ∈ {+1,−1} is without loss of generality
(e.g., [32]): for any non-zero a1, . . . , ak ∈ R \ {0} and w1, . . . ,wk, we may consider â1 =
a1
|a1| , . . . , âk = ak

|ak| and ŵ1 = |a1|w1, . . . , ŵk = |ak|wk instead, which represent the same
depth-2 network of k ReLUs.

When training neural networks composed of ReLUs, a popular method is to find, given
training data, a set of coefficients and weights for each gate minimizing the squared loss.

1 We also refer to such networks as depth-2 networks or shallow networks.
2 We also assume all the biases of the units are 0.
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I Definition 2. Given a set of m samples x1, . . . ,xm ∈ Rn along with m labels y1, . . . , ym ∈ R,
our goal is to find w1, . . .wk,a which minimize the average squared training error of the
sample, i.e.,

min
w1,...,wk,a

1
m

m∑
i=1

(reluw1,...,wk,a(xi)− yi)2 (1)

We refer to the optimization problem (1) as the k-ReLU training problem (aka k-ReLU
regression).

When wj = (wj1, . . . , wjn) are assumed to have Euclidean norm at most 1 and yi are
assumed to be in [−k, k], we refer to the optimization problem above as the bounded k-ReLU
training problem.

Sometimes we assume that the “coefficient” vector a is fixed in advance (and known to the
optimizer) and not part of the input to the training problem. We mention this explicitly
when relevant. Also observe that in the optimization problem above we are looking for a
global minimum rather than a local minimum. A multiset of samples {(xi, yi)}i∈[m] is said
to be realizable if there exist w1, · · · ,wk,a which result in zero training error.

Our goal is to pin down the computational complexity of the training problem for depth-2
networks of ReLUs, by answering the following question:

I Question 3. What is the worst-case running time of training a k-ReLU?

We focus on depth-2 networks which are rather involved and give rise to nontrivial
algorithmic challenges [41, 6]. Understanding shallow networks seems to be a prerequisite for
understanding the complexity of training networks of depth greater than 2.

1.1 Our results
We first consider arguably the simplest possible network: a single ReLU. We show that,
already for such a network, the training problem is NP-hard. In fact, our result even rules
out a large factor multiplicative approximation of the minimum squared error, as stated
below.

I Theorem 4 (Hardness of Training a single ReLU). The 1-ReLU training problem is NP-hard.
Furthermore, given a sample of m data points of dimension n it is NP-hard to approximate
the optimal squared error within a multiplicative factor of (nm)1/poly log log(nm).

Given such a strong multiplicative inapproximability result, a natural question is whether
one can get a good algorithm for additive approximation guarantee. Notice that we cannot
hope for additive approximation in general, because scaling the samples and their labels can
make the additive approximation gap arbitrarily large. Hence, we must consider the bounded
1-ReLU Training problem. For this, we give a simple 2O(1/ε2)poly(n,m) time algorithm with
additive approximation ε. Furthermore, it easily generalizes to the case of the bounded
k-ReLU Training problem for k > 1, but we have to pay a factor of k5 in the exponent:

I Theorem 5 (Training Algorithm). There is a (randomized) algorithm that can solve
the bounded k-ReLU training problem to within any additive error ε > 0 in time
2O(k5/ε2)poly(n,m).

Perhaps more surprisingly, we can prove a tight running time lower bound for the bounded
1-ReLU training problem, which shows that the term 1/ε2 in the exponent is necessary.
Our running time lower bound relies on the assumption that there is no subexponential
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time algorithm for approximating the Densest κ-Subgraph problem within any constant
(multiplicative) factor. Recall that, in the Densest κ-Subgraph (DκS) problem, we are given a
graph G = (V,E) and a positive integer κ. The goal is to select a subset T ⊆ V of κ vertices
that induces as many edges as possible. We use denκ(G) to denote this optimum3 and N to
denote the number of vertices, |V |. Our hypothesis can be stated formally as follows.

I Hypothesis 6. For every constant C ≥ 1, there exist4 δ = δ(C) > 0 and d = d(C) ∈ N
such that the following holds. No O(2δN )-time algorithm can, given an instance (G, κ) of
DκS where each vertex of G has degree at most d and an integer `, distinguish between the
following two cases:

(Completeness) denκ(G) ≥ `.
(Soundness) denκ(G) < `/C.

While this hypothesis is new (we are the first to introduce it), it seems fair to say that
refuting it will require a breakthrough in current algorithms for the DκS problem. There are
also other supporting evidences for the validity of this hypothesis. For example, it is known
that o(N)-level of the Sum-of-Squares Hierarchies do not give constant factor approximation
for DκS even for bounded degree graphs [7, 12, 28]. Furthermore, these Sum-of-Squares
lower bounds are proved via reductions from a certain family of random CSPs, whose Sum-
of-Squares lower bounds are shown in [35, 40]. This means that, if Hypothesis 6 is false,
then one can refute this family of sparse random CSPs in subexponential time. This would
constitute an arguably surprising development in the area of refuting random CSPs, which
has been extensively studied for decades (see [1] and references therein).

As mentioned earlier, assuming Hypothesis 6, we can prove the tight running time lower
bound for the bounded 1-ReLU Training problem:

I Theorem 7 (Tight Running Time Lower Bound for 1-ReLU Training). Assuming Hypothesis 6,
there is no algorithm that, for all given ε > 0, can solve the bounded 1-ReLU training problem
within an additive error ε in time 2o(1/ε2)poly(n,m).

We remark that, akin to standard conventions in the area of fine-grained and parameterized
complexity, all lower bounds are stated against algorithms that work for all values of ε
with the specified running time. Indeed, it is possible to significantly speed up the time
bound 2O(1/ε2)poly(n,m) for extreme values of ε; for instance, enumerating all possible w
over a Θ(ε)-net5 of Bn gives an algorithm that runs in time O(1/ε)O(n)poly(m), which is

asymptotically smaller than 2O(1/ε2)poly(n,m) when ε = o

(
1√
n logn

)
. Nonetheless, our

lower bounds can be extended to include a large range of “reasonable” ε. Further discussion
on such an extension is provided before Section 1.3.

An interesting consequence of Theorem 7 is that it gives a separation between proper
and improper agnostic learning of 1-ReLU. Specifically, [21] shows that improper agnostic
learning of 1-ReLU can be done in 2O(1/ε)poly(n) time, while Theorem 7 rules out such a
possibility for proper agnostic learning.

3 Equivalently, denκ(G) := maxT⊆V,|T |=κ |E(T )|.
4 As C increases, δ and d decreases.
5 Recall that an δ-net (also refer to as an δ-cover) of a set S ⊆ Rn is a set T ⊆ Rn such that, for every
x ∈ S, there exists y ∈ T where ‖x− y‖2 ≤ δ. It is well-known that, for any δ ∈ [0, 1], there is a δ-net
of the unit ball Bn of size (3/δ)n and that it can be found in (3/δ)O(n) time.
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Training k-ReLU: The Realizable Case

An important special case of the k-ReLU Training problem is the realizable case, where
there is an unknown k-ReLU that labels every training sample correctly. When k = 1, it
is straightforward to see that the realizable case of 1-ReLU Training can be phrased as a
linear program and hence can be solved in polynomial time. On the other hand, we show
that, once k > 1, the problem becomes NP-hard:

I Theorem 8 (Hardness of Training k-ReLU in the Realizable Case). For any constant k ≥ 2,
the k-ReLU training problem is NP-hard even in the realizable case.

Our result is in fact slightly stronger than stated above: specifically, we show that, when
the samples can be realizable by a (non-negative) sum of k ReLUs (i.e. k-ReLU when a
is the all-one vector), it is still NP-hard to find a k-ReLU that realizes the samples even if
negative coefficients in a are allowed. Furthermore, while we assume in this theorem that
k is a constant independent of n, one can also prove an analogous hardness result, when k
grows sufficiently slowly as a function of n. We refer the full version for more details.

Observe that Theorem 8 implies that efficient multiplicative approximation for the k-ReLU
Training problem is impossible (assuming P 6=NP) for k ≥ 2. As a result, we once again turn
to additive approximation. On this front, we can improve the running time of the algorithm
in Theorem 5 when we assume that the samples are realizable, as stated below.

I Theorem 9 (Training Algorithm in the Realizable Case). When the given samples are
realizable by some k-ReLU, there is a (randomized) algorithm that can solve the bounded k-
ReLU training problem to within any additive error ε > 0 in time 2O((k3/ε) log3(k/ε))poly(n,m).

Importantly, the dependency of ε in the exponent is Õ(1/ε), instead of 1/ε2 that appeared
in the non-realizable case (i.e. Theorems 5 and 7). We can also show that this dependency is
tight (up to log factors), in the realizable case, under the Gap Exponential Time Hypothesis
(Gap-ETH) [17, 29], a standard complexity theoretic assumption in parameterized complexity
(see e.g. [11]). Gap-ETH states that there exists δ > 0 such that no 2o(n)-time algorithm can,
given a CNF formula with n Boolean variables, distinguish between (i) the case where the
formula is satisfiable, and (ii) the case where any assignment violates at least δ fraction of
the clauses. Our running time lower bound can be stated more formally as follows.

I Theorem 10 (Tight Running Time Lower Bound for the Realizable Case). Assuming Gap-
ETH, for any constant k ≥ 2, there is no algorithm that, for all given ε > 0, can solve the
bounded k-ReLU training problem within an additive error ε in time 2o(1/ε)poly(n,m) even
when the input samples are realizable by some k-ReLU.

Relation to Learning ReLUs

k-ReLU Training is closely related to the problem of proper learning of k-ReLU. In fact,
an algorithm for the latter also solves the former. Hence, our hardness results immediately
implies hardness of proper learning of k-ReLU as well. Furthermore, our algorithm also
works for the learning problem. Please refer to the full version for more details.

Stronger Quantifier in Running Time Lower Bounds

As stated earlier, our running time lower bounds in Theorems 7 and 10 hold only against
algorithms that work for all ε > 0. A natural question is whether one can prove lower bounds
against algorithms that work only for some “reasonable” values of ε. As explained in more
detail below, we can quite easily also get a lower bound with this latter (stronger) quantifier,
for any “reasonable” value of ε.
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First, our lower bounds in Theorems 7 and 10 both apply in the regime where the lower
bounds themselves are 2Θ(n); in other words, ε = Θ(1/

√
n) in Theorem 7 and ε = Θ(1/n) in

Theorem 10. These are essentially the smallest possible value of ε for which the lower bounds
in Theorems 7 and 10 can hold, because the aforementioned algorithm that enumerates over
an ε-net of Bn solves the problem in time O(1/ε)O(n)poly(n). On the other hand, for smaller
values of ε, we can get a running time lower bound easily by “padding” the dimension by
“dummy” coordinates that are always zero. For instance, if we start with ε = Θ(1/

√
n),

then we may pad the instance to say n′ = n2 dimensions, resulting in the relationship
ε = Θ(1/ 4

√
n′). To summarize, this simple padding technique immediately gives the following

stronger quantifier version of Theorem 7:

I Theorem 11. For any non-increasing and efficiently computable6 function ε : N →
R+ such that ω(

√
logn) ≤ 1

ε(n) ≤ o(
√
n), assuming Hypothesis 6, there is no algorithm

that can solve the bounded 1-ReLU training problem within an additive error ε(n) in time
2o(1/ε(n)2)poly(n,m).

Notice that the constraint ω(
√

logn) ≤ 1
ε(n) is also essentially necessary, because for

ε >
√

log logn
logn our algorithm (Theorem 5) already runs in polynomial time. A strong quantifier

version of Theorem 10 similar to above can be shown as well (but with ω(logn) ≤ 1
ε(n) ≤ o(n)).

We omit the full (straightforward) proof via padding of Theorem 11; interested readers may
refer to the proof of Lemma 3.4 of [16] which employs the same padding technique.

1.2 Independent and concurrent work
There have been several concurrent and independent works to ours that we mention here.
We remark that the techniques in these works are markedly different than the ones in this
paper. For a single ReLU, [14] proved that the 1-ReLU Training problem is NP-hard. With
respect to two ReLUs, [6] showed that finding weights minimizing the squared error of a
2-ReLU is NP-hard, even in the realizable case. The work of [9] considered the problem of
training a network with a slightly different architecture, in which there are two ReLUs in the
first hidden layer and the final output gate is also a ReLU (instead of a sum gate as in our
case); they showed that, for such networks with three ReLUs (two in the hidden layer, one in
the output layer), the training problem is NP-hard even for the realizable case. As a result
of having an output gate computing a ReLU, our NP-hardness result (regarding training a
sum of two ReLUs) does not imply their result and their hardness result does not imply our
hardness result for training a sum of 2 ReLUs.

1.3 Related work
The computational aspects of training and learning neural networks has been extensively
studied. Due to this, we only focus on those directly related to our results.

We are not aware of a previous work showing that the general k-ReLU training problem
is NP-hard for k > 2, nor are we aware of previous results regarding the hardness of
approximating the squared error of a single ReLU. The k = 2 case and the k > 2 case seem to
require different ideas and indeed our proof technique for Theorem 10 is different than those
of [9, 6]. Moreover, the question of generalizing the NP-hardness result from k = 2 to k > 2
is mentioned explicitly in [9]. Finally, we remark that neither [14] nor [6] provides explicit

6 That is, we assume that computing ε(n) can be done in time poly(n) for any n ∈ N.
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running time lower bounds in terms of 1/ε for the problem of training k ReLUs within an
additive error of ε. To the best of our knowledge, our work is the first to obtain such lower
bounds.

[42] has proven that finding weights minimizing the squared error of a k-ReLU is NP-
hard when a is the all-one vector (or alternatively, when all the coefficients of the units are
restricted to be positive) for every k ≥ 2.

Some sources (e.g. [4, 5]) attribute (either implicitly or explicitly) the NP-hardness of
the k-ReLU Training problem to [8], who consider training a neural network with threshold
units. However, it is unclear (to us) how to derive the NP-hardness of training ReLUs
from the hardness results of [8]. Several NP-hardness results for training neural networks
with architectures differing from the fully connected architecture considered here are known.
For example, in [10], the training problem is shown to be hard for a depth-2 convolutional
network with (at least two) non-overlapping patches. To the best of our knowledge, these
architectural differences render those previous results inapplicable for deriving the hardness
results regarding the networks considered in this work.

Several papers have studied a slightly different setting of improper learning of neural
networks. An example is [26] who show that improper learning of depth-2 networks of ω(1)
ReLUs is hard, assuming certain average case assumptions. More recently, [21] show that
even for a single ReLU, when |〈w,x〉| tends to infinity with n, learning [〈w,x〉]+ improperly
in time g(ε) · poly(n) is unlikely as it will result in an efficient algorithm for the problem
of learning sparse parities with noise which is believed to be intractable. These hardness
results for improper learning do imply hardness for the corresponding training problems.
Nonetheless, it should be noted that the fact that these results have to rely on assumptions
other than P 6= NP is not a coincidence: it is known that basing hardness of improper
learning on P 6= NP alone will result in a collapse of the Polynomial Hierarchy [3].

On the algorithmic side, Arora et al. [4] provide a simple and elegant algorithm that
exactly solves the ReLU training problem in polynomial time assuming the dimension n

of the data points is an absolute constant; Arora et al.’s algorithm is for the networks we
consider, and it has since been also extended to other types of networks [9]. Additionally,
there have also been works on (agnostic) learning algorithms for ReLUs. Specifically, Goel et
al. [21] consider the bounded norm setting where the inputs to the ReLUs as well as the
weight vectors of the units have norms at most 1. For this setting, building on kernel methods
and tools from approximation theory, they show how to improperly learn a single n-variable
ReLU up to an additive error of ε in time 2O(1/ε) ·poly(n). Their result generalizes to depth-2
ReLUs with k units with running time of 2O(

√
k/ε) · poly(n) assuming the coefficient vector

a has norm at most 1. The algorithm they provide is quite general: it works for arbitrary
distribution over input-output pairs, for ε that can be small as 1/ logn and also for the
reliable setting.

A limitation of our hardness results is that they consider “pathologica” training data sets
that are specifically constructed to encode intractable combinatorial optimization problems.
Several works in literature have tried to overcome this issue by considering the training/learn-
ing problems on more “benign” data distributions, such as log-concave distributions or those
with Gaussian marginals. On this front, both algorithms and lower bounds have been shown
for depth-2 networks [38, 6, 22].

Using insights from the study of exponential time algorithms towards understanding
the complexity of machine learning problems as is done in this work is receiving attention
lately [36, 15, 37].

ITCS 2021
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1.4 Organization of the Paper
In the remainder of the main body of this paper, we provide high-level overviews of our
proofs (Section 2) and discuss several potential research directions (Section 3). Due to space
constraints, all proofs are deferred to the full version.

2 Proof Overview

Below we provide the informal overviews of our proofs and intuition behind them.

NP-Hardness of Training 1-ReLU

Our reduction is from the (NP-hard) Set Cover problem, in which we are given subsets
T1, . . . , TM of a universe U , and the goal is to select as few of these subsets as possible whose
union covers the entire universe U . We reduce this to the problem of 1-ReLU Training,
where the dimension n is equal to M . We think of each coordinate of w as an unknown (i.e.
variable); specifically, the desired solution will have wi = −1 iff Ti is picked and 0 otherwise.
From this perspective, adding a labelled sample (x, y) is the same as adding a “constraint”
[w · x]+ = y. There are two types of constraints we will add:

(Element Constraint) For each u ∈ U , we add a constraint of the form
[
1 +

∑
Ti3u wi

]
+ =

0. The point is that such a constraint is satisfied when u is covered by the selected
subsets.
(Subset Constraint) For each i ∈ [M ], we add a constraint of the form [γ + wi]+ = γ for
some small γ > 0. This constraint will be violated for any selected subset.

By balancing the weights (i.e. number of copies) of each constraint carefully, we can ensure
that the element constriants are never unsatisfied, and that the goal is ultimately to violate
as few subset constraints as possible, which is equivalent to trying to pick as few subsets as
possible that can fully cover U . This completes the high-level overview of our reduction.

We remark that there is a subtle point here because we cannot directly have a constant such
that 1 or γ in the constraints themselves. Rather, we need to have “constraint coordinate”
and adding the constants through this coordinate. This will also be done in the other
reductions presented below, and we will not mention this again.

The outlined proof, together with the Θ(log |U |) inapproximability of Set Cover [27,
20], already gives a hardness of approximation of a multiplicative factor of Θ(log(nm))
for the 1-ReLU Training problem. To further improve this inapproximability ratio to
(nm)1/poly log log(nm), we reduce from the Minimum Monotone Circuit Satisfiability (MMCS)
problem, which is a generalization of Set Cover. In MMCS, we are given a monotone
circuit and the goal is to set as few input wires to true as possible under the condition that
the circuit’s output must be true. Strong inapproximability results for MMCS are known
(e.g. [18]). Our reduction from MMCS proceeds in a similar manner as that of the Set
Cover reduction above. Roughly speaking, the modification is that each unknown is now
whether each wire is set/evaluated to true, whereas the constraints are now to ensure that
the evaluation at each gate is correct and that the output is true.

Tight Running Time Hardness of 1-ReLU Training

We now move on to the proof overview of the tight running time lower bound for 1-ReLU
Training. Recall that we will be reducing from the Densest κ-Subgraph (DκS) problem, in
which we are given a graph G = (V,E) and κ ∈ N. The goal is to find a set of κ vertices
that induces the maximum number of edges.
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To motivate our construction, a simple combination of dimensionality reduction and δ-net
can in fact find a ReLU that point-wise approximates the optimal ReLU to within an additive
factor of δ in time 2Õ(1/δ2)poly(n). That is, if the ReLU that achieves the optimal error has
weight vector w∗, then we can find a weight vector w such that |[w · x]+ − [w∗ · x]+| ≤ δ for
all input samples (x, y) in time7 2Õ(1/δ2)poly(n).

Indeed, this is an explanation why, in the realizable case, we can get ε squared error in
2Õ(1/δ)poly(n) time by simply picking δ =

√
ε. Now, since we need our hardness here (for

the non-realizable case) to hold with stronger running time lower bound of 2Θ(1/ε2)poly(n),
we have to make sure that whenever δ � ε, the aforementioned point-wise approximation of
δ is not sufficient to get an error of ε. Suppose that, for an input labelled sample (x, y), the
optimal ReLU outputs y′ and our approximation outputs y′′ (where |y′′ − y′| ≤ δ). Notice
that the difference in the square error between the two for this sample is only at most
O((y′ − y)δ) + δ2. Now, if we want this quantity to be at least ε for any δ ≥ Ω(ε), then it
must be that |y′ − y| = Ω(1). In other words, we have to make our samples so that even the
optimal ReLU is “wrong” by Ω(1) additive factor (on average); this indeed means that, if
the ReLU we find is “more wrong” by an additive factor of Θ(ε), then the increase in the
average squared error would be Ω(ε) as desired.

With the observation in the previous paragraph in mind, we will now provide a rough
description of our gadget. Given a DκS instance (G = (V,E), κ), our samples will have |V |
dimensions, one corresponding to each vertex. In the YES case where there is T ⊆ V of size
κ that induces many edges, we aim to have our ReLU weight assigning 1√

κ
to all coordinates

corresponding to vertices in T , and zero to all other coordinates. To enforce this, we first
add a sample for every vertex v ∈ V that corresponds to the constraint[

wv −
1

2
√
κ

]
+

= 1.

We refer to these as the cardinality constraints. While this may look peculiar at first glance,
the effect is that it ensures that roughly speaking w has κ coordinates that are “approximately”

1√
κ
and the remaining coordinates are “small”. To see that this is the case, observe that the

average mean squared error here is 1 − 2
|V |
∑
v∈V

[
wv − 1

2
√
κ

]
+

+ 1
|V |
∑
v∈V

[
wv − 1

2
√
κ

]2
+
.

The last term is small and may be neglected. Hence, we essentially have to maximize∑
v∈V

[
wv − 1

2
√
κ

]
+
. This term is indeed maximized when w has κ coordinates equal to 1√

κ
,

and zeros in the remaining coordinates. Notice here that this also fits with our intuition
from the previous paragraph: even in the optimal ReLU, the value out put by the value
(which is either 0 or 1

2
√
κ
) is Ω(1) away from the input label of the sample (i.e. 1).

So far, the cardinality constraints have ensured that w “represents” a set T ⊆ V of size
roughly κ. However, we have not used the fact that T contains many edges at all. Thus, for
every edge e = {u, v} ∈ E, we also add the example corresponding to the following constraint
to our distribution:

1
2

[
wu + wv −

1.75√
κ

]
+

= 1.

We call these the edge constraints. The point here is that, if e is not an induced edge in T ,
then the output of the ReLU will be zero. On the other hand, if e is an edge in T , then the
output of the ReLU will be 0.25√

κ
. Hence, the more edges T induces, the smaller the error.

7 We assume throughout that m = poly(1/δ), which is w.l.o.g. due to standard generalization bounds.
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By carefully selecting weights (i.e. number of copies) of each sample, one can indeed show
that the average square error incurred in the completeness and soundness case of Hypothesis 6

differs by ε = Ω
(

1√
|V |

)
. Hence, if we can solve the 1-ReLU Training problem to within an

additive error of ε in time 2o(1/ε2)poly(n,m), we can also solve the problem in Hypothesis 6
in time 2o(|V |), which breaks the hypothesis.

Hardness of Training k-ReLU in the Realizable Case

We next consider the problems of Training k-ReLU for k ≥ 2 in the realizable case. Both
the NP-hardness result (Theorem 8) and the tight running time lower bound (Theorem 10)
employ similar reductions. These reductions proceed in two steps. First is to reduce from
the NP-hard k-coloring problem to the problem of training non-negative sum of k ReLUs, in
which we fix the coefficient vector a to be the all-one vector and only seeks to find w1, . . . ,wk

that minimizes the squared error. Then, in the second step, we reduce this to the original
problem of k-ReLU Training (where the coefficient vector a can be negative).

Step I: From k-Coloring to Training Sum of k ReLUs. The NP-hardness of Sum of k
ReLUs Training in fact follows directly from a reduction of [42]. We will now sketch Vu’s
reduction, since it will be helpful in our subsequent discussions below. Vu’s reduction starts
from the k-coloring problem, in which we are given a hypergraph G = (V,E) and the goal is
to determine whether there is a proper k-coloring8 of the hypergraph. Given an instance
G = (V,E) of k-coloring, the number of dimensions in the training problem will be n = |V |
where we associate each dimension with a vertex. Notice that now we have k unknowns
associated to each vertex v: w1

v, . . . , w
k
v . In the desired solution, these variables will tell us

which color v is assigned to: specifically, wiv > 0 iff v is colored i and wiv ≤ 0 otherwise.
Adding a labelled sample (x, y) is the same as adding a “constraint” [w1 · x]+ + · · · +

[wk · x]+ = y. There are two types of constraints we will add:
(Vertex Constraint) For every vertex v ∈ V , we add a constraint9 [w1

v]+ + · · ·+ [wkv ]+ = 1.
This constraint ensures that, for every v ∈ V , we must have wivv > 0 for at least one
iv ∈ [k], meaning that the vertex v is assigned at least one color.
(Hyperedge Constraint) For every hyperedge e = {v1, . . . , v`} ∈ E, we add a constraint10
[w1
v1

+ · · ·+w1
v`

]+ + · · ·+ [wkv1
+ · · ·+wkv`

]+ = 0. This ensures that the hyperedge e is not
monochromatic. Otherwise, we have iv1 = · · · = iv`

meaning that wiv1
v1 + · · ·+ w

iv1
v` > 0,

which violates the hyperedge constraint.

This finishes our summary of Vu’s reduction, which gives the NP-hardness of training a
(non-negative) sum of k ReLUs.

Step II: Handling Negative Coefficients. The argument above, especially for the hyperedge
constraints, relies on the fact that the coefficient vector a is the all-one vector. In other
words, even if the input hypergraph is not k-coloring, it is still possible that there is a
k-ReLU (possibly negative weight vector a) that realizes the samples. Hence, the reduction
above does not yet work for our original problem of k-ReLU Training. To handle this issue,
we use an additional gadget which is simply a set of labelled samples with the following
properties: these samples can be realized by a k-ReLU only when the weight vectors a is the

8 A proper k-coloring is a mapping χ : V → [k] such that no hyperedge is monochromatic, or equivalently
|χ(e)| > 1 for all e ∈ E.

9 This constraint corresponds to x being the v-th vector in the standard basis and y = 1.
10This constraint corresponds to x being the indicator vector of e and y = 0.
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all-one vector. Essentially speaking, by adding these samples also to our sample set, we have
forced a to be the all-one vector, at which point we restrict ourselves back to the case of
(non-negative) sum of k ReLUs and we can use the hard instance from the above reduction
from k-coloring. These are the main ideas of the proof of Theorem 8.

Tight Running Time Lower Bound. As stated earlier, the tight running time lower bound
for the bounded k-ReLU Training problem (Theorem 10) follows from a similar reduction,
except that we now have to (1) carefully select the number of copies of each sample and (2)
scale the labels yi’s down so that the norm of each of w1, . . . ,wk is at most one. Roughly
speaking, this means that the labels for the vertex constraints become Θ(1/

√
|V |) instead of

1 as before. In other words, each violated constraint roughly contributes to Θ(1/|V |) squared
error. Since it is known (assuming Gap-ETH) that distinguishing between a k-colorable
hypergraph and a hypergraph for which every k-coloring violates a constant fraction of the
edges takes 2Ω(|V |) time (e.g. [33]), we can arrive at the conclusion that solving the bounded
k-ReLU Training problem to within an additive squared error of ε = Θ(1/|V |) must take
2Ω(1/|V |) = 2Ω(1/ε) time as desired.

We remark here that, interestingly, [42] used the reduction from k-coloring only for the
case of k = 2 units and employed an additional gadget to handle the case k > 2. To the
best of our knowledge, this approach seems to decrease the resulting error ε, which means
that the running time lower bound is not of the form 2Ω(1/ε). On the other hand, we argue
the hardness directly from k-coloring for any constant k ≥ 2. This, together with a careful
selection of the number of copies of each sample, allows us to achieve the running time lower
bound in Theorem 10.

Training and Learning Algorithms

Our k-ReLU training algorithm is based on the approach of [4]. The main idea behind the
algorithm is to iterate over all possible sign patterns (whether each ReLU is active or not) of
the inputs and subsequently solve the so formed convex optimization for each fixed pattern.
The best hypothesis over all different sign patterns is chosen as the the final hypothesis. It is
not hard to see that the run-time for such an algorithm would be 2(m+1)kpoly(n) since there
are 2mk different sign patterns.

Using standard generalization bounds, one can show that the number of samples m needed
for the empirical loss to be ε close to the true loss is at most O(k4/ε2). Plugging this into
the above algorithm gets us the desired running time (2O(k5/ε2)poly(n,m) as in Theorem 5)
for the agnostic setting. For the realizable setting, we use an improved generalization result
of [39], which implies that m = Õ(k2/ε) suffices; plugging this into the above algorithm
yields us Theorem 9.

3 Conclusions and Open Questions

We have studied the computational complexity of training depth-2 networks with the ReLU
activation function providing both NP-hardness results and algorithms for training ReLU’s.
Along the way we have introduced and used a new hypothesis regarding the hardness
of approximating the Denset κ-Subgraph problem in subexponential time that may find
applications in other settings. Our results provide a separation between proper and improper
learning showing that for a single ReLU, proper learning is likely to be harder than improper
learning. Our hardness results regarding properly learning shallow networks suggest that
improperly learning such networks (for example, learning overparametrized networks whose
number of units far exceeds the dimension of the labeled vectors [2, 19]) might be necessary
to allow for tractable learning problems.
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We stress here that our hardness results apply to minimizing the population loss11 as
well, since one may simply create an instance where the population is just the training data.
Furthermore, the standard procedure for training neural networks is to perform ERM which
is essentially minimizing the training loss. In fact, a bulk of theoretical work in the field
focuses on generalization error assuming training error is small (often 0). Therefore, we
believe it is a natural question to study the hardness of minimizing training loss.

Neural networks offer many choices (e.g., number of units, depth, choice of activation
function, weight restrictions). Indicating which architectures are NP-hard to train can
prove useful in guiding the search for a mathematical model of networks that can be
trained efficiently. It should be remembered that our NP-hardness results are worst-case.
Therefor they do not preclude efficient algorithms under additional distributional or structural
assumptions [34]. Finally, as we focus on networks having significantly fewer units than
data-points, the NP-hardness results reported here are not at odds with the ability to train
neural networks in the overparmeterized regime where there are polynomial time algorithms
that can fit the data with zero error [43].

While we restrict our attention to algorithms for training networks with bounded weights,
our exponential dependency of the running time on k (the number of units) makes these
algorithms impractical. It remains an interesting question whether the dependency of the
running time on k can be improved, or alternatively whether strong running time lower
bounds can be shown in terms of k (similar to what is done for ε in this work).

While we have focused on depth-2 networks, algorithms and lower bounds for deeper
networks are of interest as well, especially given the multitude of their practical applications.
It would be interesting to see whether the algorithms and hardness results extend to the setting
of depth greater than 1. An interesting concrete question here is whether training/learning
becomes harder as the network becomes deeper. For instance, is it possible to prove running
time lower bounds that grow with the depth of the network?
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Abstract
For a polynomial f , we study the sum of squares representation (SOS), i.e. f =

∑
i∈[s] cif

2
i , where

ci are field elements and the fi’s are polynomials. The size of the representation is the number of
monomials that appear across the fi’s. Its minimum is the support-sum S(f) of f .

For simplicity of exposition, we consider univariate f . A trivial lower bound for the support-
sum of, a full-support univariate polynomial, f of degree d is S(f) ≥ d0.5. We show that the
existence of an explicit polynomial f with support-sum just slightly larger than the trivial bound,
that is, S(f) ≥ d0.5+ε(d), for a sub-constant function ε(d) > ω(

√
log log d/ log d), implies that

VP 6= VNP. The latter is a major open problem in algebraic complexity. A further consequence is
that blackbox-PIT is in SUBEXP. Note that a random polynomial fulfills the condition, as there we
have S(f) = Θ(d).

We also consider the sum-of-cubes representation (SOC) of polynomials. In a similar way, we
show that here, an explicit hard polynomial even implies that blackbox-PIT is in P.
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1 Introduction

The sum-of-squares representation (SOS) is one of the most fundamental in number theory
and algebra. Lagrange’s four-squares theorem inspired generations of mathematicians [27].
Hilbert’s 17th problem asks whether a multivariate polynomial, that takes only non-negative
values over the reals, can be represented as an SOS of rational functions [26]. In engineering,
SOS has found many applications in approximation, optimization and control theory, see
[28, 18, 19, 4]. In this work, we show a connection to central complexity questions.

Consider the following basic problem on the size of SOS-representations.
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I Open Problem. Exhibit an explicit univariate polynomial f(x) ∈ C[x] of degree d such
that any SOS-representation f(x) =

∑
i fi(x)2 requires

∑
i sparsity(fi) > ω(

√
d).

Before delving into the meaning of explicitness, note that Ω(
√
d) is a trivial lower bound,

for a polynomial of degree d, with full support (by counting monomials). Moreover, for most
polynomials f , a larger lower bound of Ω(d) holds, by a dimension argument. In other words,
we ask for an explicit polynomial f(x) that has a merely largish

∑∧2∑∧
-formula. We show

that one can bootstrap the seemingly weak hardness condition for SOS to general circuits
(see Theorem 6) and to the infamous determinant vs. permanent question (see Corollary 14).

1.1 Algebraic circuits and univariate polynomials
Valiant defined the algebraic complexity classes VP and VNP based on algebraic circuits (for
definitions see Section 2). They are considered as the algebraic analog of boolean classes
P and NP. Separating VP from VNP is a long-standing open problem. One of the popular
ways has been via depth-reduction results [3, 14, 10, 36]. It seems that showing strong lower
bounds require a deeper understanding of the algebraic-combinatorial structure of circuits,
which may be easier to unfold for more analytic models that appear in wider mathematics.

It is known that most of the polynomials of degree d are hard, i.e. they require Ω(d) size
circuits; for a self-contained proof, see [7, Theorem 4.2] 1. In fact, for pi being the i-th prime,∑d
i=0
√
pi x

i and
∑d
i=0 22i

xi, both require circuits of size Ω (d/ log d), see [6, Cor.9.4] & [35].
Such polynomials can be converted to an exponentially hard multilinear polynomial fn(x).
Unfortunately, this strong lower bound is insufficient to separate VP and VNP because the
polynomial family is non-explicit– so fn may not be in VNP. For details, see [11, 5].

Thus, the explicitness of the family plays a major role in its usefulness in algebraic
complexity.

I Definition 1 (Explicit functions). Let (fd)d be a polynomial family, where fd(x) is of degree d.
The family is explicit, if its coefficient-function is computable in time poly log(d) and each
coefficient can be at most poly(d)-bits long. The coefficient-function gets input (j, i, d) and
outputs the j-th bit of the coefficient of xi in fd.

Alternative versions of explicitness define the coefficient-function to be computable in
#P/poly or in the counting hierarchy CH, which would be good enough for our purpose (see
Theorem 13).

An explicit candidate for the hard family is the Pochhammer-Wilkinson polynomial,
fd(x) :=

∏d
i=1(x− i). Other explicit families, but not hard, are (x+ 1)d and the Chebyshev

polynomial (that writes cos dθ as a function of cos θ) [22]. These three are quite relevant to
this work.

The interplay between proving lower bounds and derandomization is one of the central
themes in complexity theory [24]. Blackbox Polynomial Identity Testing (PIT) asks for an
algorithm to test the zeroness of a given algebraic circuit via mere query access. It is still an
open question to design an efficient deterministic PIT algorithm. A circuit of size s can have
exp(s) many monomials. However, since a non-zero polynomial evaluated at a random point
is non-zero with high probability (by the Polynomial Identity Lemma [25, 8, 41, 33]), one
gets a randomized poly-time algorithm for PIT. For PIT refer [31, 32, 34, 23, 39].

1 The size-bound in the previous such proofs usually counted only the number of nodes in the circuit,
achieving square-root in the bound; we use the number of nodes and edges here.
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One important direction, from hardness to derandomization, is to design deterministic PIT
algorithms for small circuits assuming access to explicit hard polynomials [24, 13]. Most of the
constructions use the concept of hitting-set generator (HSG), see Definition 33. Very recent
work discovered that PIT is amenable to the phenomenon of bootstrapping (w.r.t. variables)
[2, 17]. Finally, Guo et al. [9] showed: ample circuit-hardness of constant-variate polynomials
(including univariate) implies blackbox-PIT in P.

1.2 Sum-of-squares model (SOS)
We want to relate variants of SOS to PIT and circuit lower bounds. Towards that, we show
a connection between large SOS representation and hard polynomials; strong enough to
imply VP 6= VNP and subsequently PIT ∈ SUBEXP. This is mainly achieved by an SOS-
decomposition result for circuits via Algebraic Branching Programs (ABP) (for definition
see Section 2). It expresses any d-degree polynomial f(x) of circuit size s as sum of squares
of polynomials with degree at most d/2. We manage the top-fanin of SOS within a quasi-
polynomial blow-up. Finally, we apply a careful multi-linearization trick to convert the
hardness from the univariate SOS-model to general circuits.

I Definition 2 (SOS and support-sum size SR(f)). Let R be a ring. An n-variate polynomial
f(x) ∈ R[x] is represented as a (weighted) sum-of-squares (SOS), if

f =
s∑
i=1

cif
2
i , (1)

for some top-fanin s, where fi(x) ∈ R[x] and ci ∈ R.
The size of the representation of f in (1) is the support-sum, the sum of the support size

(or sparsity) of the polynomials fi. The support-sum size of f , denoted by SR(f), is defined
as the minimum support-sum of f .

I Remark 3. In real analysis, the SOS representation of a polynomial is defined without the
coefficients ci, that is, only for non-negative polynomials f . In these terms, what we define
in (1) is a weighted SOS. However, we will skip the term “weighted” in the following.

If we consider the expression in (1) as a
∑∧2∑∏

-formula, then the support-sum is the
number of

∏
-operations directly above the input level.

For any N -variate polynomial f of degree d. Let |f |0 denote the sparsity of f . For any
field R = F of characteristic 6= 2, we have

|f |1/20 ≤ SF(f) ≤ 2 |f |0 + 2 . (2)

The lower bound can be shown by counting monomials. The upper bound is because

f = (f + 1)2/4− (f − 1)2/4 . (3)

In particular, the SOS-model is complete for any field of characteristic 6= 2. It can be argued
by a geometric-dimension argument that for most N -variate (constant N ≥ 1) polynomials f
of degree d, we have SF(f(x)) = Θ(dN ), as for random f , |f |0 = Θ(dN ).

We want to explore how SF(fd) behaves w.r.t. d, for explicit families (fd)d, that is, the
coefficient-function of the family is computable in time poly(log d). We call a polynomial
family SOS-hard, if its support-sum is just slightly larger than the trivial lower bound
from (2).
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I Definition 4 (SOS-hardness). For constant N ≥ 1, an explicit N-variate polynomial
family (fd(x))d is SOS-hard, if SF(fd) = Ω(dN(0.5+ε)), where ε := ε(d) = ω

(√
log log d

log d

)
is a

sub-constant function.

I Remark 5.
1. For our purpose we could relax the explicitness condition such that the j-th bit of

coefxi(fd) is computable in poly(21/ε) time. This makes the family barely explicit w.r.t. d.
In fact, #P/poly w.r.t. 21/ε works too. Eg. fd =

∑
i∈[d] 2i2xi is an easy candidate for

N = 1.
2. Ω(dN(0.5+ε)), instead of Ω(dN ), which is the expected bound for most fd, is a much weaker

requirement. In fact, the trivial lower bound is S(fd) ≥ Ω(dN/2). Thus, we demand
just a tiny improvement over the trivial bound, namely, by a factor of dNε = do(1). For
example, (log d)

√
log d is such a function that works in dε.

1.3 Our results for SOS
Algebraic circuits are quite well-structured, for eg. , there is a famous depth-O(log d) reduction
result [38, 34, 29]. Its proof methods implicitly establish (see Lemma 28) that an n-variate,
degree d polynomial f(x), computed by a circuit of size s, can be rewritten as

f(x) =
O(sd2)∑
i=1

cifi(x)2 , (4)

for ci ∈ F and fi ∈ F[x], where each fi has circuit size at most O(sd2) and deg(fi) ≤ 2d/3,
for all i. Moreover, with a larger, quasi-polynomial blowup in the top-fanin, we bring down
the degree really to d/2 (via Algebraic Branching Programs (ABP)); for the details, see
Section 3.1.

I Main Lemma (SOS Decomposition). Let F be a field of characteristic 6= 2. Let f(x) be
an n-variate polynomial over F of degree d, computed by a circuit of size s. Then there
exist fi ∈ F[x] and ci ∈ F such that f(x) =

∑s′

i=1 cifi(x)2, for s′ ≤ (sd)O(log d) and
deg(fi) ≤ dd/2e, for all i ∈ [s′].

The leitmotif of this paper is the interplay between SOS-hardness and derandomization/
hardness questions in algebraic complexity. Could a barely explicit and mildly hard polynomial
in the SOS-model settle the VP vs. VNP question? We evince a positive answer.

I Theorem 6 (Circuit hardness). If there exists an SOS-hard family, then VP 6= VNP.

I Remark 7.
1. Our proof-method from constant-N -variate SOS-hardness to VP 6= VNP is essentially the

same as the one for N = 1 (eg. replace d by dN ). So, for simplicity of exposition, from
now on we will focus on univariate SOS-hardness.

2. In the non-commutative setting, lower bound on sum-of-squares (of multivariates) implies
that Permanent is hard [12]. Our theorem can be seen as its natural analog in the
commutative setting; where potential cancellations could give smaller representations.

3. Another simple candidate for SOS-hardness is fd = (x+1)d (though, by repeated squaring,
it has circuit size Θ(log d)). However, its coefficients are not poly log(d)-time explicit.
Nevertheless, from its CH-explicitness, and GRH, the theorem does hold.
Similarly, for the polynomial family, fd(x) =

∏
i∈[d](x− i) and fd(x) =

∑
0≤i≤d x

i/i!, and
Chebyshev polynomials.
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4. In the theorem and Equation (1), we could restrict the degrees of fi to be O(d ε log d) =
d ·o(log d) and the top-fanin s = do(ε) = do(1). (Also, Corollary 14 works with analogously
weaker ε.) This might help in constructing polynomials with a weaker SOS-hardness
notion. See Section 3.2 for more details.

5. A stronger SOS-hardness notion with constant ε, gives an exponential separation between
VP and VNP. This proof has many technical differences; refer to Theorem 32 for the
details.

Hardness of general circuits often leads to nontrivial derandomization [24, 13, 2, 9]. Our
methods in Theorem 6 consequently put blackbox-PIT in SUBEXP [13, Thm. 7.7]. In fact, if
ε is a constant, then it puts blackbox-PIT ∈ QP (Quasi-polynomial-time) (Theorem 32).

1.4 Sum-of-cubes model (SOC)
We show that a strong lower bound in the sum-of-cubes model leads to a complete deran-
domization of blackbox-PIT. We say that an n-variate polynomial f(x) ∈ R[x] over a ring R
is computed as a sum-of-cubes (SOC), if

f =
s∑
i=1

cif
3
i , (5)

for some top-fanin s, where fi(x) ∈ R[x] and ci ∈ R.

I Definition 8 (Support-union size UR(f, s)). The size of the representation of f in (5) is
the size of the support-union, namely the number of distinct monomials in the representa-
tion,

∣∣⋃s
i=1 supp(fi)

∣∣, where support supp(fi) denotes the set of monomials with a nonzero
coefficient in the polynomial fi(x). The support-union size of f with respect to s, denoted
UR(f, s), is defined as the minimum support-union size when f is written as in (5).

If we consider the expression in (5) as a
∑∧3∑∏

-circuit, then the support-union size
is the number of

∏
-operations directly above the input level (unlike

∑∧2∑∏
-formula in

Definition (2)).
The two measures– support-union and support-sum –are largely incomparable, since U(·)

has the extra argument s. Still one can show: SF(f) ≥ mins (UF(f, 4s)− 1) (Lemma 26).
For any polynomial f of sparsity |f |0, we have

|f |1/30 ≤ UF(f, s) ≤ |f |0 + 1, (6)

where the upper bound is for s ≥ 3 and for fields R = F of characteristic 6= 2, 3. The lower
bound can be shown by counting monomials. The upper bound is because

f = (f + 2)3/24 + (f − 2)3/24− f3/12 . (7)

Hence, the SOC-model is complete for any field of characteristic 6= 2, 3.
For simplicity, fix #variables N = 1. Here are two more examples (that we know of) for

the trade-off between s and the measure UF(f, s), for any f .

I Example 9.
1. For small s = Θ(d1/2), we have UF(f, s) = O(d1/2) (Corollary 23).
2. For large s = Ω(d2/3), we have UF(f, s) = Θ(d1/3) (Theorem 24).
However, it is unclear whether, over F = Q, for a very small fanin s, support-union = o(d)
exists. This trade-off between the measure U and the top-fanin s in the above examples,
motivated us to define hardness in the SOC-model as follows.
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I Definition 10 (SOC-hardness). A poly(d)-time explicit univariate polynomial family (fd)d
is SOC-hard, if there exists a positive constant ε′ < 1/2 such that UF

(
fd, d

ε′
)

= Ω(d).

1.5 Our results for SOC
Though technically incomparable, the SOC-hardness feels stronger than SOS-hardness (for
N = 1); indeed it can be used to prove a connection like Theorem 6. Now, we show an even
stronger consequence – a complete derandomization of blackbox-PIT.

I Theorem 11 (Derandomization). If there is an SOC-hard family, then blackbox-PIT ∈ P.

I Remark 12.
1. Older results too lead to various conditional derandomizations. E.g. multi-variate hard

polynomials lead to blackbox-PIT ∈ QP (quasipoly-time) [13, 2]. Recently, [9] showed
that the circuit hardness of a constant-variate polynomial family yields blackbox-PIT
∈ P (Theorem 34). Our hardness assumption is merely in the SOC-model. In fact, SOC
is the first restricted model where hardness implies complete derandomization.

2. For Theorem 11, we could restrict the degrees of fi, to be O(d). See Section 3.3,
Remark 3.3.

1.6 Basic arguments
There have been a series of works that connect the hardness in restricted univariate
(resp. constant-variate) models to VP vs. VNP and the PIT problem. This work is more
about remodeling the major questions in the simplest format possible. We show how to
transfer the hardness of a (univariate) polynomial family in the SOS, resp. SOC-model, to a
hard (multivariate) polynomial family in the circuit-model. To do so, we adapt the existing
powerful techniques to our setting. Intuitively, one would expect that the analytic nature
of SOS and SOC (over R or C) makes it easier to prove hardness in these models than for
general circuits. In any case, we show that this would suffice to solve central questions in
algebraic complexity.

The gap between the SOS-model and general circuits is mainly bridged by a decomposition
lemma (Main Lemma) which emerges via ABPs. Frontiers based depth-reduction [38]
implicitly shows that any polynomial f(x) of degree d, computed by a homogeneous circuit of
size s, can be decomposed as f(x) =

∑s
i=1 fi1·fi2, where deg(fij) ≤ 2d/3 and size(fij) ≤ O(s);

for a proof see Lemma 28. However, such proof strategies can never give intermediate
polynomials of degree exactly d/2, simply because degree ≈ d/2 polynomial may not even exist
in the computation tree, and thus, frontiers at appropriate layers do not really help. However,
in the case of homogeneous ABPs, the intermediate degrees increase gradually, as the labels are
linear forms. In particular, a layer of vertices computing degree exactly d/2 exists. By cutting
the ABP, say, of width w, at the d/2-th layer, we get f = (f1, . . . , fw)T · (f ′1, . . . , f ′w) =∑w
i=1 fi ·f ′i . This directly gives an SOS-form of top-fanin at most 2w. The conversion from a

homogeneous circuit to a homogeneous ABP is pretty straight-forward in the literature. Use
log-depth-reduction [38] and induct on the depth to conclude that sO(log d)-size ABP exists.
Finally, homogenize the ABP with a polynomial blowup in size. (See [16, Lem.15] or [29].)

Proof idea of Theorem 6. The main idea in Theorem 6 is to lift the hardness of f = fd
in the SOS-model to a multivariate polynomial, which we prove to be super-polynomially
hard in the general circuit model (implying 6∈ VP) and explicit (implying ∈ VNP). Usually,
to convert a univariate polynomial to multivariate, (inverse) Kronecker type substitution
is used; here we do not use the Kronecker due to a technical barrier and the reason will
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be addressed in the next paragraph. Instead, we use a multilinear map φ that sends xi to
φ(xi) :=

∏
j∈[n], `∈[0...k−1] yj,`, where ` · kj−1 contributes to the basek(i)-representation in

the j-th position; n and k are both functions of d to be fixed. Consider, by linear extension,
φ(f) =: Pn,k. By construction Pn,k is a kn variate n degree multilinear polynomial. With
appropriate parameter fixing, we show that size(Pn,k) = (kn)ω(1). The proof goes via
contradiction. If the size is smaller, then using Main Lemma, we get Pn,k as sum of
do(ε)-many Q2

i ’s; where the intermediate polynomial Qi (kn-variate) has degree at most
n/2. Thus, a naive upper bound on the support-sum (after proper parameter fixing) is
do(ε) ·

(
kn+n/2
n/2

)
< do(ε) · d1/2+ε/2 = o(d1/2+ε), a contradiction to the SOS-hardness!

Here we remark that Kronecker type substitution does not give the desired result. It
basically maps a monomial xe to xe, where e := base(n+1)(e) for some n; then n is the
individual-degree in the image, and (n+ 1)k ≥ d+ 1 > nk. However, this map converts f to
be a k-variate, individual-degree n polynomial family and the naive binomial upper-bound
on the number of terms would be

(
k+kn/2

k

)
> (n+ 1)k > d; which is useless. (Here we use

kn/2 as the degree of Pn,k is kn while the degree of the intermediate polynomial halves.)
Thus, the multi-linearization trick, along with the SOS decomposition lemma via ABPs, are
indispensable in our proof.

Proof idea of Theorem 11. The proof of Theorem 11 works very differently than that
of Theorem 6. As its goal is to devise an amply hard polynomial with a constant number
of variables only; it limits our tricks quite a bit.2 It uses (inverse) Kronecker map to
construct Pn,k from f = fd, a constant-k-variate, individual-degree n polynomial. We show
this polynomial to be s = nΩ(1) hard. Recall that an explicit constant-variate circuit-hard
polynomial can be used as an efficient hitting-set generator; showing blackbox-PIT ∈ P [9].
The hardness result organically comes from a SOC decomposition lemma (Lemma 16); using
a “constant-boosting” of frontier-based Lemma 28 and a “greedy clustering”. Basically, we
show that any homogeneous polynomial P (x) of degree d, computed by a homogeneous
circuit of size s′, can be written as P (x) =

∑poly(s′)
i=1 ci · Qi(x)3, where deg(Qi) ≤ 4d/11.3

Applying this to each homogeneous part of Pn,k, and then Kronecker substitution would
show (with proper parameter fixing) that UF(f) ≤ |

⋃poly(s,n)
i=1 supp(Qi)| ≤

(
k+4kn/11

k

)
< c · d,

for any positive constant c. We use Eqn.(8) to bound the binomial and reach a contradiction.
The constant 4/11 is nothing special; any constant in (1/3, 1/e) would work.

Here, we remark that [9] works for constant k. Thus, any naive upper bound on the
support-union size (under the optimal decomposition) would give

(
k+kn/3

k

)
= Θ(d). Hence,

the strongest demand of Ω(d) is required.

2 Preliminaries

Basic notation. We work with F = Q,Qp, or their fixed extensions. Our results hold also
for large characteristic (required for Thm. 11 using [9], and Thm 13 & Lemma 19).

Let [n] = {1, . . . , n}. For i ∈ N and b ≥ 2, we denote by baseb(i) the unique k-tuple
(i1, . . . , ik) such that i =:

∑k
j=1 ij · bj−1.

2 Eg. the failure analysis above with
(

k+kn/2
k

)
is also partly the reason why SOS can’t give complete PIT.

3 We cannot use such a decomposition lemma using ABPs, as the super-polynomial blowup in the fanin,
owing to the larger degree (≈ d1/k), would fail to prove the desired circuit-hardness of the resulting
polynomial family.
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For binomial coefficients, we use an easy bound based on the ek-series [40], for 1 ≤ k ≤ n,

(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
. (8)

Polynomials. For p ∈ F[x], where x = (x1, . . . , xm), for some m ≥ 1, the support of p,
denoted by supp(p), is the set of nonzero monomials in p. Sparsity or support size of p is
|p|0 := |supp(p)|. By coef(p) we denote the coefficient vector of p (in some fixed order).

For an exponent vector e = (e1, . . . , ek), we use xe to denote the monomial xe1
1 . . . xek

k .

Algebraic circuits. An algebraic circuit over a field F is a layered directed acyclic graph
that uses field operations {+,×} and computes a polynomial. It can be thought of as an
algebraic analog of boolean circuits. The leaf nodes are labeled with the input variables
x1, . . . , xn and constants from F. Other nodes are labeled as addition and multiplication
gates. The root node outputs the polynomial computed by the circuit.

Complexity parameters of a circuit are: 1) the size, i.e. number of edges and nodes, 2)
the depth, i.e. number of layers, 3) the fan-in, i.e. maximum number of inputs to a node,
(resp. the fan-out, i.e. maximum number of outputs of a node).

When the graph is in fact a tree, i.e., the fan-out is 1, we call the circuit an algebraic
formula.

For a polynomial f , the size of the smallest circuit computing f is denoted by size(f), it
is the algebraic circuit complexity of f . By C(n,D, s), we denote the set of circuits C that
compute n-variate polynomials of degree D such that size(C) ≤ s.

In complexity classes, we specify an upper bound on these parameters. Valiant’s class VP
contains the families of n-variate polynomials of degree poly(n) over F, computed by circuits
of poly(n)-size. The class VNP can be seen as a non-deterministic analog of the class VP. A
family of n-variate polynomials (fn)n over F is in VNP if there exists a family of polynomials
(gn)n in VP such that for every x = (x1, . . . , xn) one can write fn(x) =

∑
w∈{0,1}t(n) gn(x, w),

for some polynomial t(n) which is called the witness size. It is straightforward to see that
VP ⊆ VNP and conjectured to be different (Valiant’s Hypothesis [37]). For more details see
[20, 34, 6]. Unless specified particularly, we consider the field F = Q (resp. a finite field with
large characteristic).

Valiant [37] showed a sufficient condition for a polynomial family (fn(x))n to be in VNP.
We use a slightly modified version of the criterion and formulate it only for multi-linear
polynomials. For a proof see Appendix D.

I Theorem 13 (Valiant’s VNP criterion, [37]). Let fn(x) =
∑
e∈{0,1}n cn(e)xe be a polynomial

family such that the coefficients cn(e) have length ≤ 2n in binary. Let cn,j(e) be the j-th bit
of cn(e). Then

cn,j(e) ∈ #P/poly =⇒ fn ∈ VNP.

Algebraic branching programs (ABP). An algebraic branching program (ABP) in variables
x over a field F is a directed acyclic graph with a starting vertex s with in-degree zero, an
end vertex t with out-degree zero. The edge between any two vertices is labeled by affine
form a1x1 + . . .+ anxn + c ∈ F[x], where ai, c ∈ F.

The weight of a path in an ABP is the product of labels of the edges in the path. The
polynomial computed at a vertex v is the sum of weights of all paths from the starting vertex
s to v. The polynomial computed by the ABP is the polynomial computed at the end vertex t.
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The polynomial computed by an ABP can be written as a matrix product UT (
∏
iMi)V ,

where U, V ∈ Fw×1 andMi ∈ F[x]w×w with entries being affine linear forms. The parameter w
is called the width of the ABP. The class VBP contains the families of polynomials computed
by ABPs of size poly(n). This implies that the degree is poly(n) too.

An ABP is a very restricted circuit, but still being able to compute determinants [21].
We say that the ABP is homogeneous, if the polynomial computed at every vertex is a

homogeneous polynomial. It is known that for an ABP S of size s computing a homogeneous
polynomial f , there is an equivalent homogeneous ABP A′ of size poly(s), where each edge-
label is a linear form a1x1 + · · ·+ anxn. Moreover, when f has degree D, then A′ has D + 1
layers and each vertex in the i-th layer computes a homogeneous polynomial of degree = i

(see [16, Lem.15] or [29]).
Here, we also remark that each homogeneous part of a degree d polynomial f(x), computed

by s-size circuit, can also be computed by a homogeneous circuit of size O(sd2); see [34, 29].

3 Proof of the main results

3.1 SOS decomposition of circuits: Proof of Main Lemma
Proof of Main Lemma. Let C be a circuit of size s computing f(x). W.l.o.g., f(x) is a
homogeneous polynomial (as later we will apply to every homogeneous component of f).
Using the log-depth reduction of [38], there is a homogeneous circuit C ′ of depth log d and
size poly(s) that computes F .

Now we convert the circuit C ′ to a layered ABP A as follows: first, convert the circuit
C ′ to a formula F . By induction on the depth of the circuit one can show that F has size
sO(log d). Secondly, we convert F to an ABP A. It is well known that for any formula of size
t, there exists an ABP of size at most t+ 1, computing the same polynomial, for details see
[30, Lemma 2.14]. Thus, the ABP A computing f has size at most sO(log d).

Further, we homogenize the ABP A as explained at the end of the preliminary section.
Let A′ be the homogenized ABP computing f . Its size is s′ := poly(sO(log d)) = sO(log d).

Finally, cut ABP A′ in half, at the dd/2e-th layer, to get: f = (f1, . . . , fs′)T ·
(f ′1, . . . , f ′s′) =

∑s′

i=1 fi · f ′i , where, degree of each fi, f
′
i is at most dd/2e. This can

be easily rewritten as SOS by Equation (3). The top-fanin of SOS is at most 2s′.
For a non-homogeneous polynomial f(x), we can apply the above for each homogeneous

part of f(x). It is well known that each homogeneous part can be computed by a homogeneous
circuit of size O(sd2). Thus, for non-homogeneous polynomials, s can be replaced by O(sd2);
hence the top-fanin of SOS is (sd2)O(log d) = (sd)O(log d). J

3.2 SOS-hardness to VP 6= VNP: Proof of Theorem 6
Proof of Theorem 6. We will construct an explicit (multivariate) polynomial family, using
SOS-hard univariate fd, which is not in VP, but is in VNP. This would imply that VP 6= VNP.

Construction. We will construct (Pn,k)k from fd, where Pn,k is a multilinear degree-n and
kn-variate polynomial, for n = n(d) and k = k(d)4. We will specify k and n in the course of
the proof. The basic relation between d, n and k is that kn ≥ d+ 1 > (k − 1)n. Introduce
kn many new variables yj,`, where 1 ≤ j ≤ n and 0 ≤ ` ≤ k − 1. Let φn,k be the map,

φn,k : xi 7→
n∏
j=1

yj,ij ,where i =:
n∑
j=1

ij · kj−1, 0 ≤ ij ≤ k − 1 .

4 In this section think of n as a tiny function of k. Thus indexing the family over k suffices.
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Note: for i ∈ [0, d], φn,k maps xi uniquely to a multilinear monomial of degree n. By linear
extension, define φn,k(fd) =: Pn,k. By construction, Pn,k is n-degree, kn-variate multilinear
polynomial. Let ψn,k be the homomorphism that maps any n-degree multilinear monomial,
defined on variables yj,`, such that yj,` 7→ x`·k

j−1 . Observe that, ψn,k ◦ φn,k(f) = f , for any
degree ≤ d polynomial f ∈ F[x].

SOS-hardness =⇒ hardness of Pn,k. Assume that family (fd) is SOS-hard with
parameter ε. We will show that size(Pn,k) ≥ dµ(d) = (kn)ω(1) for some function µ depending
on ε(d). We have ε > ω(

√
log log d/ log d) and w.l.o.g. ε < (log log d/ log d)1/3, for large d

(Note: Proving for a small ε suffices; also 1/3 is nothing special, any constant < 1/2 in the
exponent works.).

Suppose, size(Pn,k) ≤ dµ, for some µ(d). Then, from Main Lemma, we know that
∃Qi’s such that Pn,k =

∑s
i=1 ci · Q2

i , where s ≤ (dµ · n)c logn, for some constant c, with
deg(Qi) ≤ dn/2e. Note: fd = ψn,k ◦ φn,k(fd) =

∑s
i=1 ci · ψn,k(Qi)2 . As ψn,k cannot

increase the sparsity, |ψn,k(Qi)|0 ≤ |Qi|0 ≤
(
kn+dn/2e
dn/2e

)
, 5 for each i ∈ [s]. Thus, by

definition SF(fd) ≤ s ·
(
kn+dn/2e
dn/2e

)
. The idea is to fix parameters so that S(fd) < o(d1/2+ε).

We will fix µ such that
1. s ≤ dδ1 for some function δ1,
2.
(
kn+dn/2e
dn/2e

)
≤ dδ2 for some function δ2,

3. dδ1+δ2 < o(d1/2+ε),
4. dµ > (kn)ω(1).
Note: from conditions 1-3, if size(Pn,k) ≤ dµ then S(fd) < o(d1/2+ε), contradicting the
SOS-hardness. Thus, condition 4 would give super-polynomial hardness result.

Parameter fixing. Let µ := 1/
√

log d · log log d and δ1 := c′ · µ · logn for some c′ > c. Let
δ2 := 1/2 + ε/2. Fix k := d61/ε + 1e. This fixing of k together with kn ≥ d+ 1 > (k − 1)n
implies that n = Θ(ε · log d). We also assume n to be even for simplicity, to avoid the ceiling
function.

Bound on the binomial. Note that it is enough to have the following chain of inequalities:(
kn+ n/2
n/2

)
≤ (e+ 2ek)n/2 ≤ (6(k − 1))n/2 ≤ (k − 1)nδ2 ≤ dδ2 .

First inequality is by Eqn.(8); the second one is by the fact that 2e < 6, thus for large enough
k, it holds; and the last inequality follows by the assumption that d ≥ (k − 1)n. For the
third one, it suffices to ensure that (k − 1)δ2−1/2 ≥

√
6. This is where we used the fact that

δ2 − 1/2 = ε/2 > 0 and thus it is enough to fix k − 1 = d61/εe.

Bound on top-fanin s. Note that s ≤ (dµ · n)c logn from Main Lemma for some constant c.
We want dc′·µ·logn = dδ1 ≥ (dµ · n)c logn. It suffices to show that d(c′−c)·µ ≥ nc. It is fairly
straightforward to verify that with our parameters fixing of µ log d =

√
log d/ log log d, and

logn ≤ O(log log d), the above inequality holds for large enough d.

Checking dδ1+δ2 = o(d1/2+ε). Note: logn = O(log log d) and thus δ1 =
O(
√

log log d/ log d) = o(ε). Hence, δ1 + δ2 = o(ε) + 1/2 + ε/2 < 1/2 + ε; since dε →∞ as
d→∞, the conclusion follows.

5 Any n variate degree d polynomial can have sparsity at most
(

n+d
d

)
.
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Checking dµ = (kn)ω(1). Note that dµ = (kn)ω(1) ⇐⇒ µ = ω(1) · log(kn)/ log d ⇐⇒
µ · log d = ω(log(kn)). It is clear that, log(kn) = log k + logn ≤ O(1/ε) for large enough n
(or equivalently d), as logn = O(log log d) = o(1/ε) and log k = logd61/ε + 1e = O(1/ε).

Also, note that µ · log d =
√

log d/ log log d = ω(1/ε) = ω(log(kn)).
Finally, all the conditions 1-4 are met with the appropriate fixing of parameters as shown

above. Thus, we deduce size(Pn,k) ≥ dµ = (kn)ω(1), i.e. Pn,k requires super-polynomial size
circuit. Therefore, (Pn,k)k 6∈ VP.

Explicitness. We will show that Pn,k is explicit, i.e. (Pn,k)k ∈ VNP. By construction, Pn,k
is a kn variate, individual degree n multilinear polynomial, so we can write it as

Pn,k =
∑

e∈{0,1}kn

φ(e) · ye .

Here y denotes the kn variables yj,` where 1 ≤ j ≤ n and 0 ≤ ` ≤ k − 1 and e denotes the
exponent-vector. As each xe in supp(fd) maps to a monomial ye uniquely; given e, one
can easily compute e :=

∑n
j=1 ej · kj−1 and thus φ(e) = coefxe(fd). By the explicitness

hypothesis, any bit of φ(e) is computable in poly(log d) < poly(21/ε) = poly(kn) time. Using
Theorem 13, it is clear that (Pn,k)k ∈ VNP, by a wide margin.

So, (Pn,k)k ∈ VNP and SOS-hardness imply (Pn,k)k 6∈ VP. This proves Theorem 6. J

I Corollary 14 (Determinant vs Permanent). SOS-hardness weakened with ε > ω(1/
√

log d)
(a smaller ε than the original) already implies VBP 6= VNP.

Proof Sketch. The log-factor in the exponent is avoidable in the Main Lemma, if the initial
polynomial is already an ABP of size s (instead of a circuit). In the above proof, we
could then fix δ1 := c′µ. This would remove the extra “logn = log log d” factors from the
calculations. J

I Remark 15.
1. We showed an explicit super-polynomially hard family (Pn,k)k. The result of [13, The-

orem 7.7] then implies PIT ∈ SUBEXP.
2. If the given ε was a constant, say 0.001; then a very different parameters setting (k = O(1)

and n = O(log d)) gives a sub-exponential hard polynomial family (Pn,k)n of size >
2Ω(log d/ log log d). This happens because of the super-polynomial blowup in the size while
converting a circuit to an ABP in Main Lemma. However, a repeated boosting of [38]
type lemma (Lemma 31) gives a decomposition with intermediate polynomials having
degree close to d/2. Finally this gives a truly exponential hard family (Pk,n)n; for details
see Theorem 32. Thus, [13] gives PIT ∈ QP, when ε is a constant.
Here, we also remark that “halving” the degree with log d exponent in the top-fanin gives
better result than “close” to halving because finally the contribution of the exponent is
quite small in our application (and in fact absent in case of Corollary 14). However, for
constant ε, the scenario changes as mentioned above.

3. As deg(Qi) ≤ n/2, we have deg(ψn,k(Qi)) ≤ n/2 · (k − 1) · kn−1 < n.kn = O(nd) =
o(d log d). Here we used that kn/(k − 1)n < (1 + 1/(k − 1))n < e, for large d. Thus, it is
enough to consider the restricted-degree SOS representation and prove the conjecture.

4. One can further restrict (proof requirement-wise) the SOS top-fanin to a mere dδ1 =
exp(O(

√
log d · log log d)) which is extremely small compared to d (in fact, dδ1 = do(ε)).
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3.3 SOC-hardness to blackbox-PIT ∈ P: Proof of Theorem 11
Proof of Theorem 11. The idea is to convert the SOC-hard polynomial fd(x) to a constant-
k-variate individual-degree-n polynomial family (Pn,k)n which is “mildly” hard. Later,
using [9], we will conclude that blackbox-PIT ∈ P. The following lemma is the crucial
ingredient to connect general circuits to an SOC representation.

I Lemma 16 (SOC decomposition). Let F be a field of characteristic 6= 2, 3. Let f(x) ∈ F[x]
be an n-variate, degree-d polynomial, computed by a circuit of size s. Then there exist
polynomials fi ∈ F[x] and ci ∈ F such that f(x) =

∑s′

i=1 ci · f 3
i , for some top-fanin

s′ ≤ poly(s, d); achieving deg(fi) < 4d/11, for all i ∈ [s′].

Proof of Lemma 16. We will first show this for homogeneous polynomials, and then apply
it to each homogeneous part of a general f(x). Assume that, circuit of f(x) is homogeneous.
Lemma 28 establishes that f(x) can be decomposed as

∑s
i=1 f̃i1 · f̃i2, where f̃ij has circuits

of size O(s) and deg(f̃ij) ≤ 2d/3, with deg(f̃i1)+deg(f̃i2) = d.
Choose a constant m such that (2/3)m < 4/11 − 1/3 = 1/33 (m := 9 suffices). Apply

Lemma 28 m times, recursively on each successive circuit f̃ij . As m is constant, it is easy to
conclude that f(x) can be written as

f(x) =
poly(s)∑
i=1

gi,1 · gi,2 · . . . · gi,2m ,

where deg(gi,j) ≤ (2/3)m · d, and size(gij) = O(s). For each product gi,1 · . . . gi,2m , pick
a j1 ∈ [2m] such that d/3 ≤

∑j1
k=1 deg(gi,k) < 4d/11. As each deg(gi,k) is less than the

gap between upper and lower bounds, namely 4d/11 − d/3, such j1 exists. Note that∑2m

k=j1+1 deg(gi,k) > d − 4d/11 = 7d/11 > d/3. Choose a [2m] 3 j2 > j1 such that
d/3 ≤

∑j2
k=j1+1 deg(gi,k) < 4d/11; such j2 exists by a similar argument.

Define, fi1 := gi,1 · . . . · gi,j1 , fi2 := gi,j1+1 · . . . · gi,j2 , and fi3 := gi,j2+1 · . . . gi,2m .
By definition, deg(fi1), deg(fi2) ∈ [d/3, 4d/11]. As, deg(fi1) + deg(fi2) + deg(fi3) =∑
k∈[2m] deg(gi,k) = d =⇒ deg(fi3) ≤ d/3 < 4d/11. As each gi,j has a homogeneous

circuit of size O(s), so does fij . Hence, f(x) =
∑poly(s)
i=1 fi1 · fi2 · fi3. Use the identity

24 · a · b · c = (a+ b+ c)3 − (a− b+ c)3 − (a+ b− c)3 + (a− b− c)3 , (9)

to write each fi1 · fi2 · fi3 as sum of four cubes. Relabeling yields f(x) =
∑poly(s)
i=1 ci · f3

i . As
each fi is a linear combination of fjk’s, the degree does not change and the size is still O(s).

It is well known that each homogeneous part can be computed by a homogeneous circuit
of size O(sd2). Thus, for non-homogeneous polynomials, s can be replaced by O(sd2) and
the conclusion follows. J

Let k be a constant (to be fixed later) and x := (x1, . . . , xk). For all large enough n ∈ N,
define d := d(n) := (n+ 1)k − 1. Let Pn,k be a k-variate polynomial of individual degree at
most n such that after the Kronecker substitution, Pn,k(x, xn+1, . . . , x(n+1)k−1) := fd. It
is easy to construct Pn,k from a given d; just convert every xe ∈ supp(fd) to xe1

1 · . . . · x
ek

k ,
where e =:

∑k
i=1 ei · (n+ 1)i−1 and 0 ≤ ei ≤ n.

By the explicitness of fd, (Pn,k)n is a very explicit polynomial family; its coefficient-vector
coef(Pn,k) can be computed in poly(d) = poly(n) time.

Next, we will show the hardness of the polynomial family (Pn,k)n. The SOC-hardness
implies that there exists a constant δ such that U(fd, dε

′) ≥ δ · d, for all large enough d. Also,
let c be the constant such that s′ =: (sd)c in Lemma 16. Let µ := 2/(ε′/c− 1/k), and later
we will choose k > c/ε′.
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B Claim 17 (Hardness of Pn,k). size(Pn,k) > d1/µ, for all large enough n.

Assume to the contrary, that there exists an infinite subset J ⊂ N such that size(Pn,k) ≤
d1/µ, for all n ∈ J . We will show that family (fd) is not SOC-hard over an infinite subset
J ′ := {d : n ∈ J} ⊆ N, which is a contradiction.

Let C be a circuit of size ≤ d1/µ that computes Pn,k, for some n. Then, using Lemma 16,
we know that there exist Qi ∈ F[x], of degree at most 4 · deg(Pn,k)/11 ≤ 4kn/11, such that
Pn,k =

∑s0
i=1 ci · Q 3

i , where s0 ≤ (d1/µ · kn)c. Apply the Kronecker map xi 7→ x(n+1)i−1

on both sides yields fd =
∑s0
i=1 ci · Q̃3

i , where Q̃i := Qi(x, xn+1, . . . , x(n+1)k−1). Since
Kronecker substitution cannot increase the support size, |

⋃
i supp(Q̃i)| ≤ |

⋃
i supp(Qi)| ≤(

k+4kn/11
k

)
=: s1. Thus, UF(fd, s0) ≤ s1.

We want to show that s0 < dε
′ and s1 < δ · d, for all large enough n. Then, we have

UF(fd, dε
′) < δ · d, for all large d ∈ J ′ ⊂ N; which contradicts the SOC-hardness of fd.

Bound on s0. We have for large enough n (and thus d),

s0 ≤ (d1/µ · k · n)c < dc/µ · kc · dc/k = kc · dc/µ+c/k < dε
′
.

We used that d = (n+1)k−1 > nk for large n, and µ > 1/(ε′/c−1/k) ⇐⇒ 1/µ+1/k < ε′/c.
Bound on s1. By Eqn.(8), we have

s1 =
(
k + 4nk/11

k

)
≤ (e (1 + 4n/11))k < (10.9n/11)k < (10.9/11)k · d .

As 4e ≈ 10.873, we used that e(1 + 4n/11) < (10.9/11) · n and d > nk, for large n .
Therefore, it suffices to show that (10.9/11)k < δ. Choose k > log11/10.9(1/δ). It

suffices, from the above calculations, to pick k > max
(
c/ε′, log11/10.9(1/δ)

)
. This proves

Claim 17. J

From hardness to HSG. We show that from the hardness of Pn,k in Claim 17, we can
fulfil the assumption in Theorem 34: size(Pn,k) > s10k+2 deg(Pn,k)3, for some “growing”
function s = s(n). Recall that deg(Pn,k) ≤ kn. We define, s(n) := n1/(10k+3). Then we
have

s10k+2 (kn)3 = n(10k+2)/(10k+3) (kn)3 = k3 n4−(1/(10k+3)) < n4 , (10)

for large enough n. Additionally, assume that 4 ≤ k/µ. Recall the fact: nk < d for large n.
So, we can continue Eqn.(10) as

n4 ≤ nk/µ < d1/µ < size(Pn,k) . (11)

Equations (10) and (11) give the desired hardness of Pn,k. It remains to ensure the last
requirement of 4 ≤ k/µ. We show below that choosing k ≥ 9c/ε′ suffices:

µ = 2/(ε′/c− 1/k) ≤ 2/ (9/k − 1/k) = k/4 .

Hence our final choice for k is: k ≥ max(9c/ε′, log11/10.9(1/δ)).
Thus, Theorem 34 gives a poly(s)-time HSG for C(s, s, s). Hence, blackbox-PIT ∈ P. J

I Remark 18. Recall the proof notation. As the degree of Qi’s is < 4kn/11, the degree of Q̃i
is ≤ (n+ 1)k−1 · 4kn/11 < 4k/11 · (n+ 1)k = 4k/11 · (d+ 1) = O(d) (∵ k is a constant).
Thus, it suffices to study the representation of fd as sum-of-cubes Q̃3

i , where deg(Q̃i) ≤ O(d).
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4 Conclusion

This work established that studying the univariate sum-of-squares representation (resp. cubes)
is fruitful. Proving a vanishingly better lower bound than the trivial one, suffices to both
derandomize and prove hardness in algebraic complexity.

Here are some immediate questions which require rigorous investigation.
1. Does existence of a SOS-hard family solve PIT completely? The current proof technique

fails to reduce from cubes to squares.
2. Prove existence of a SOS-hard family for the sum of constantly many squares.
3. Prove existence of a SOC-hard family for a “generic” polynomial f with rational coefficients

(Q). Does it fail when we move to complex coefficients (C)?
4. Can we optimize ε in the SOS-hardness condition (& Corollary 14)? In particular, does

proving an SOS lower-bound of
√
d · poly(log d), suffice to deduce a separation between

determinant and permanent (similarly VP and VNP)?
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A Sum of powers of small support-union

We give a way to represent any univariate polynomial as sum of r-th powers of polynomials.
Here we use the notion of sumset. In additive combinatorics, the sumset, also called the

Minkowski sum of two subsets A and B of an abelian group G is defined to be the set of all
sums of an element from A with an element from B,

A+B = { a+ b | a ∈ A, b ∈ B } .

The n-fold iterated sumset of A is nA = A+ · · · +A, where there are n summands.
We want a small support-union representation of a d-degree polynomial f as a sum of

r-th powers, where r is constant. We consider a small B such that rB covers {0, 1, . . . , d}.
Let t be the unique non-negative integer such that (t− 1)r < d+ 1 ≤ tr. Define the set B as

B = { ai tk | 0 ≤ ai ≤ t− 1, 0 ≤ k ≤ r − 1 } .

So |B| = rt = O(d1/r). Let k ∈ {0, 1, . . . , d}. The base-t representation of k is a sum of at
most r elements from B. Hence, {0, 1, . . . , d} ⊆ rB.

The largest element in B is m := (t − 1)tr−1. Note that for any ε > 0, we have
t < (1 + ε)(d+ 1)1/r, for all large enough d. Thus, for any constant c > 1 and large enough d,
we have m < c(d+ 1). Therefore, the largest element in rB is at most mr < cr(d+ 1) = O(d).

I Lemma 19. Let F be a field of characteristic 0 or large. For any f(x) ∈ F[x] of degree d,
there exist `i ∈ F[x] with supp(`i) ⊆ B and ci ∈ F, for i = 0, 1, . . . ,mr, such that f(x) =∑mr

i=0 ci `
r
i .
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Proof. Consider `i(zi, x) =
∑
j∈B zijx

j , for distinct indeterminates zij , for all i, j. Surely,
degx(`i) = m. There exists mr + 1 many degree-r polynomials Qj over |B| = rt many
variables, such that

`i(zi, x)r =
mr∑
j=0

Qj(zi)xj ∀i ∈ [mr] .

Note that from any monomial in Qj we could recover j uniquely. Denote the index set
S ⊆ [0,mr] such that Qj 6= 0, for all j ∈ S. We could conclude that Qj(zi) (j ∈ S) are
F-linearly independent. We would only focus on the Qj ’s for j ∈ S, now onwards. Note:
[0 . . . d] ⊆ S.

Suppose f(x) =:
∑d
i=0 fi x

i. Define f̃ ∈ F|S| and A ∈ F[z]|S|×|S| as

f̃ :=
(
f0 f1 · · · fd 0 · · · 0

)
, A :=


Qj1(z1) Qj2(z1) · · · Qjs(z1)
Qj1(z2) Qj2(z2) · · · Qjs

(z2)
...

... · · ·
...

Qj1(z|S|) Qj2(z|S|) · · · Qjs
(z|S|)

 .

We want to find c =
(
c1 c2 · · · c|S|

)
∈ F|S| and α = (αij)i,j such that

∑
j∈[|S|]

cj · `j(α, x)r =
d∑
i=0

fi x
i ⇐⇒ c ·A|z=α ·


...
xj

...


j∈S

= f̃ ·


...
xj

...


j∈S

.

The last expression holds ⇐⇒ c ·A|z=α = f̃ . As the zi’s are distinct variables, the first
column of A consists of different variables at each coordinate. Moreover, the first row of A
contains F-linearly independent Qj ’s. Thus, for random αij ∈ F, matrix A|z=α has full rank
over F. Fix such an α. This fixes c = f̃ · (A|z=α)−1.

From the above construction, it follows that f(x) =
∑
j∈[|S|] cj · `j(α, x)r. J

The number of distinct monomials across `j(α, x)’s is |B| = O(d1/r). While the top-fanin,
as seen before, is ≤ mr + 1 = Θ(d).
I Remark 20.
1. The above calculation does not give small support-sum representation of f , as the

top-fanin is already Ω(d).
2. The above representation crucially requires a field F. E.g. it does not exist for fd over

the ring Z.

B Further optimizing the top-fanin

In this section, we show a SOS- and SOC-representation for any polynomial f(x), wherein
both the top-fanin and the support-union size are small, namely O(

√
d). We assume that

characteristic of F is 6= 2 in case of SOS, and 6= 3, in case of SOC. The representations are
based on discussions with Agrawal [1].

B.1 Small SOS
By Lemma 19 for r = 2, any f(x) can be written as f(x) =

∑O(d)
i=1 ci f

2
i , with support-sum

|
⋃
i supp(fi)| = O(

√
d). We show that the top-fanin can be reduced to O(

√
d).

ITCS 2021
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I Theorem 21 (Small SOS-Representation). Any polynomial f ∈ F[x] of degree d has a
SOS-representation such that the top-fanin and the support-union are bounded by O(

√
d).

The key to prove Theorem 21 is the following lemma. It shows how to decrease the
top-fanin in a representation without increasing the support-union.

I Lemma 22. Let f ∈ F[x] be written as f =
∑s
i=1 ci fi,1fi,2, with support-union t =

|
⋃
i,j supp(fi,j)|. Then there exists a representation f =

∑t
i=1 c

′
i f
′
i,1f
′
i,2 with support-union ≤

t.

Let us first argue why Lemma 22 implies Theorem 21. We start from the representation
given by Lemma 19 mentioned above and apply Lemma 22. It follows that f can be re-written
as f(x) =

∑O(
√
d)

i=1 c′i fi,1 fi,2, where |
⋃
i,j supp(fij)| = O(

√
d). This can be turned into a

SOS-representation by fi,1 fi,2 = (fi,1 + fi,2)2/4− (fi,1 − fi,2)2/4. Note that the last step
does not change the support-union, and at most doubles the top-fanin. Thus, Theorem 21
follows.

Proof of Lemma 22. For the given representation of f , we assume w.o.l.g. that deg(fi,1) ≥
deg(fi,2) and that fi,1, fi,2 are monic, for i = 1, 2, . . . , s. Let S =

⋃
i,j supp(fi,j).

We construct the representation claimed in the lemma by ensuring the following properties:
1. For every xe ∈ S there is exactly one i such that deg(f ′i,1) = e.
2.
⋃
i,j supp(f ′i,j) ⊆ S.

Since we also maintain that deg(f ′i,1) ≥ deg(f ′i,2), it follows that the top-fanin is indeed
bounded by t = |S| as claimed.

We handle the monomials in S successively according to decreasing degree. Let xe ∈ S
be the monomial with the largest e that occurs more than once as the degree of a fi,1, say
deg(f1,1) = deg(f2,1) = e.

Define g1 = f2,1 − f1,1. Then we have f2,1 = f1,1 + g1 and deg(g1) < e. Moreover, the
support of g1 is contained in the support of f1,1 and f2,1 If deg(f2,2) = e, then we define
similarly g2 = f2,2 − f1,1. Then f2,2 = f1,1 + g2 and deg(g2) < e. Now we can write

c1f1,1f1,2 + c2f2,1f2,2 = c1f1,1f1,2 + c2(f1,1 + g1)(f1,1 + g2)
= f1,1 (c1f1,2 + c2f1,1 + c2g1 + c2g2) + c2g1g2

The second line is a new sum of two products, where only the first product has terms of
degree e, whereas in the second product, g1, g2 have smaller degree. Also, the support-union
set has not increased.

In case when deg(f2,2) < e, we can just work with f2,2 directly instead of f1,1 + g2, and
the above equations gets even simpler. J

B.2 Small SOC
We show two small SOC-representation with different parameters. First, we show a

√
d

SOC-representation that follows essentially from Theorem 21.

I Corollary 23 (
√
d SOC-representation). Any polynomial f ∈ F[x] of degree d has a SOC-

representation such that the top-fanin and the support-union are bounded by O(
√
d).

Proof. By Theorem 21 we can write f as f(x) =
∑O(

√
d)

i=1 ci f
2
i , with support-union O(

√
d).

Each f2
i can in turn be written as f2

i =
∑4
j=1 ci,j (fi+λi,j)3, for some constants ci,j , λi,j ∈ F,

as can be shown by interpolation. This gives the representation claimed in the theorem. J
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The second way to get a small SOC-representation uses Lemma 19 for r = 3: Any f(x)
can be written as f(x) =

∑O(d)
i=1 ci f

3
i , with support-sum |

⋃
i supp(fi)| = O(d1/3). We show

that the top-fanin can be reduced to O(d2/3).

I Theorem 24 (d2/3 SOC-representation). Any polynomial f ∈ F[x] of degree d has a
SOC-representation with top-fanin O(d2/3) and support-union O(d1/3).

To prove Theorem 24, we show a reduction similar to Lemma 22 for sum of product-of-3.

I Lemma 25. If f =
∑s
i=1 ci fi,1fi,2fi,3 with support-union t, then f can be written as

f =
∑t2

i=1 c
′
i f
′
i,1f
′
i,2f
′
i,3 with support-union ≤ t.

Proof. We fix the support-union set S and the monomial ordering (as seen in Lemma 22).
Assume there are m > t2 many products, like fi,1fi,2fi,3. W.l.o.g. assume deg(f11) = ei.
Rearrange

∑
i∈[m] ci fi,1fi,2fi,3 =: f1,1 · P +R, so that P is a SOS and R is a SOC without

any occurrence of xei . Apply Lemma 22, on P , to reduce its top-fanin to t. Repeat this
procedure to SOC R.

Finally, the top-fanin gets upper-bounded by t · t = t2, J

Theorem 24 now follows by noting that any product-of-3 can be written as a sum of four
cubes, by Eqn.(9); and by Lemma 19 we have t = O(d1/3).

I Lemma 26. For any f ∈ F[x], we have SF(f) ≥ mins (UF(f, 4s)− 1).

Proof Sketch. Suppose f =
∑s
i=1 ci f

2
i . Write each f2

i as f2
i =

∑4
j=1 cij (fi + λij)3, for

distinct λij ∈ F. Thus, UF(f, 4s) ≤ (
∑s
i=1 |fi|0) + 1. Taking minimum over s gives the

desired inequality. J

I Corollary 27. For s = Ω(d2/3), we have UF(f, s) = Θ(d1/3).

C Sum of product-of-2 decomposition

The next lemma is can be proved by standard frontier decomposition in [29].

I Lemma 28 (Sum of product-of-2). Let f(x) be an n-variate, homogeneous, degree d

polynomial computed by a right-heavy homogeneous circuit Φ of size s. Then, there exist
polynomials fij ∈ F[x] s.t.

f(x) =
s∑
i=1

fi1 · fi2 , with the following properties: (12)

1. d/3 ≤ deg(fi1), deg(fi2) ≤ 2d/3, for all i ∈ [s],
2. deg(fi1) + deg(fi2) = d, for all i ∈ [s], and
3. each fij has a right-heavy homogeneous circuit of size at most s2 := O(s).

I Remark 29. For a non-homogeneous polynomial f(x), we can apply the above for each
homogeneous part of f(x). It is well known that each homogeneous part can be computed
by a homogeneous circuit of size O(sd2). Thus, for non-homogeneous polynomials, s can be
replaces by O(sd2) and the same conclusion follows.
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D Valiant’s Criterion for VNP: Details for Section 3.2

A useful sufficient condition for a polynomial family (fn(x))n to be in VNP is known, due to
Valiant [37].

I Theorem 30 (VNP criterion, [5]). Let fn(x) =
∑
e∈{0,1}n cn(e)xe be a polynomial family

such that the coefficients cn(e) have length ≤ n in binary. Then

cn(e) ∈ #P/poly =⇒ fn ∈ VNP.

One can further relax Theorem 30 such that the coefficients cn(e) can actually be 2n bits
long, see Theorem 13 (restated) below. The proof idea is very similar to [15, Lem. 3.2]. We
also use the fact that VNP is closed under substitution. That is, for a family of polynomials
(f(x,y)) ∈ VNP, it also holds that (f(x,y0)) ∈ VNP, for any value y0 ∈ Fn assigned to the
variables in y.

I Theorem 13 (restated). Let fn(x) =
∑
e∈{0,1}n cn(e)xe be a polynomial family such that

the coefficients cn(e) have length ≤ 2n in binary. Let cn,j(e) be the j-th bit of cn(e). Then

cn,j(e) ∈ #P/poly =⇒ fn ∈ VNP.

Proof of Theorem 13. For j ∈ {0, 1, . . . , 2n − 1} let bin(j) = (j1, . . . , jn) denote the n-bit
base-2 representation of j such that j =

∑n
i=1 ji 2i−1. Introduce new variables y = (y1, . . . , yn)

and define c̃n(e,y) =
∑2n−1
j=0 cn,j(e)ybin(j). Let y0 := (220

, . . . , 22n−1). Then we have
c̃n(e,y0) = cn(e). Finally, consider the 2n-variate auxiliary polynomial hn(x,y).

hn(x,y) =
∑

e∈{0,1}n

c̃n(e,y)xe =
∑

e∈{0,1}n

2n−1∑
j=0

cn,j(e)ybin(j) xe .

Then we have hn(x,y0) = fn(x). Since cn,j(e) can be computed in #P/poly, we have
(hn(x,y))n ∈ VNP. As VNP is closed under substitution, it follows that (fn(x))n ∈ VNP. J

E SOS-hardness with constant ε implies truly exponential separation
between VP and VNP

We use Lemma 28 repeatedly (constant many times) to bring the degree of the intermediate
polynomials “fractional”-close to d/2, namely d · (1/2 +O(1)). This would be crucially used
to establish the exponential separation between VP and VNP.

I Lemma 31 (Constant boosting VSBR). Let f(x) ∈ F[x] be a degree-d, n-variate polynomial
computed by homogeneous circuit of size s. Then, for any constant 1 < γ < 2, there exist
polynomials fij ∈ F[x] such that

f(x) =
poly(s)∑
i=1

fi1 · fi2 ,with the following properties (13)

1. each fij has a homogeneous circuit of size O(s),
2. deg(fij) < d/γ, for all i, j,
3. deg(fi1) + deg(fi2) = d, for all i.
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Proof sketch. Lemma 28 shows that f(x) can be decomposed as
∑s
i=1 f̃i1 · f̃i2 where f̃ij has

circuits of size O(s) and deg(f̃ij) ≤ 2d/3, with deg(f̃i1)+deg(f̃i2) = d. Let δ′ := 1/γ − 1/2.
Choose a constant m := dlog3/2(1/δ′)e so that (2/3)m < δ′. Apply the above product-
of-2 decomposition m times repeatedly on each product to conclude that f(x) can be
decomposed as f(x) =

∑poly(s)
i=1 gi1 · gi2 · . . . · gi2m ; where deg(gij) ≤ (2/3)m · d < d · δ′

and size(gij) = O(s). Cluster each product so that the degree of each is in [d/2, d/γ); the
choice of m ensures this. Hence, the conclusion follows. J

Using the above fine-grained decomposition, we can prove the exponential separation
between VP and VNP; the parameters change due to the different decomposition.

I Theorem 32 (Constant ε). If there exists a univariate family (fd(x))d that is SOS-hard
with some constant ε, then VNP is exponentially harder than VP (& blackbox-PIT ∈ QP).

F Hardness to derandomization: Details for Section 3.3

Very recently, Guo et al. in [9] showed utility of the hardness of constant variate polynomials
to derandomize PIT. To make this discussion formal, we start with the following definition.

I Definition 33 (Hitting-set generator (HSG)). A polynomial map G : Fk −→ Fn given
by G(z) = (g1(z), g2(z), . . . , gn(z)) is said to be a hitting-set generator (HSG) for a class
C ⊆ F[x1, x2, . . . , xn] of polynomials if for every nonzero f ∈ C, we have that f ◦ G =
f(g1, g2, . . . , gn) is nonzero.

I Theorem 34 ([9]). Let P ∈ F[x] be a k-variate polynomial of degree d such that coef(P )
can be computed in poly(d)-time. If size(P ) > s10k+2 · d3, then there is a poly(s)-time HSG
for C(s, s, s).
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Abstract
The best known size lower bounds against unrestricted circuits have remained around 3n for
several decades. Moreover, the only known technique for proving lower bounds in this model, gate
elimination, is inherently limited to proving lower bounds of less than 5n. In this work, we propose
a non-gate-elimination approach for obtaining circuit lower bounds, via certain depth-three lower
bounds. We prove that every (unbounded-depth) circuit of size s can be expressed as an OR of 2s/3.9

16-CNFs. For DeMorgan formulas, the best known size lower bounds have been stuck at around
n3−o(1) for decades. Under a plausible hypothesis about probabilistic polynomials, we show that
n4−ε-size DeMorgan formulas have 2n

1−Ω(ε)
-size depth-3 circuits which are approximate sums of

n1−Ω(ε)-degree polynomials over F2. While these structural results do not immediately lead to new
lower bounds, they do suggest new avenues of attack on these longstanding lower bound problems.

Our results complement the classical depth-3 reduction results of Valiant, which show that
logarithmic-depth circuits of linear size can be computed by an OR of 2εn nδ-CNFs, and slightly
stronger results for series-parallel circuits. It is known that no purely graph-theoretic reduction
could yield interesting depth-3 circuits from circuits of super-logarithmic depth. We overcome this
limitation (for small-size circuits) by taking into account both the graph-theoretic and functional
properties of circuits and formulas.

We show that improvements of the following pseudorandom constructions imply super-linear
circuit lower bounds for log-depth circuits via Valiant’s reduction: dispersers for varieties, correlation
with constant degree polynomials, matrix rigidity, and hardness for depth-3 circuits with constant
bottom fan-in. On the other hand, our depth reductions show that even modest improvements of
the known constructions give elementary proofs of improved (but still linear) circuit lower bounds.
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1 Introduction

The Boolean circuit model is natural for computing Boolean functions. A circuit corresponds
to a simple straight line program where every instruction performs a binary operation on
two operands, each of which is either an input or the result of a previous instruction. The
structure of this program is extremely simple: no loops, no conditional statements. Still, we
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know no functions in P (or even NP, or even ENP) that requires even 3.1n binary instructions
(“size”) to compute on inputs of length n. This is in sharp contrast with the fact that it is
easy to non-constructively find such functions: simple counting arguments show a random
function on n variables has circuit size Ω(2n/n) with probability 1− o(1) [52].

The strongest known circuit size lower bound (3 + 1
86 )n − o(n) was proved for affine

dispersers for sublinear dimension [14]. This proof, as well as all previous proofs for general
circuit lower bounds against explicit functions, is based on the method of gate elimination.
The main idea is to find a substitution to an input variable that eliminates sufficiently many
gates from the given circuit, and then proceed by induction. While this is the most successful
method known so far for proving lower bounds for unrestricted circuits, the resulting case
analysis becomes increasingly tedious: when eliminating (say) 3 or 4 gates, one must consider
all possible cases when two of these gates coincide. It is difficult to imagine a proof of 5n
lower bound using these ideas. This intuition was recently made formal in [17], where it
was shown that a certain formalization of the gate elimination technique is unable to obtain
a stronger than 5n lower bound. Therefore we must find new approaches for proving lower
bounds against circuits of unbounded depth. Let us review some of the prior results on
various circuit models.

Linear Circuits

Superlinear lower bounds are not known even for linear circuits, i.e., circuits consisting of only
XOR gates (also known as ⊕ gates). Note every linear function with one output has a circuit
of size at most n− 1. For linear circuits, we consider linear transformations, multi-output
functions of the form f(x) = Ax where A ∈ Fm×n2 . For a random matrix A ∈ {0, 1}n×n, the
size of the smallest linear circuit computing Ax is Θ(n2/ logn) [33] with probability 1− o(1),
but for explicitly-constructed matrices the strongest known lower bound is 3n− o(n) due
to Chashkin [6]. Interestingly, Chashkin’s proof is not based on gate elimination: he first
shows that the parity check matrix H ∈ {0, 1}logn×n of the Hamming code has circuit size
2n− o(n) by proving that every circuit for H has at least n− o(n) gates of out-degree at
least 2.1 Then he “pads” H to an n× n matrix H ′ and shows that n− o(n) additional gates
are needed for H ′. Similarly, the best known lower bound on the complexity of linear circuits
with logn ≤ m < o(n2) outputs is 2n+m− o(n) (also follows from [6]).

Log-Depth Circuits

Nothing stronger than a (3 + 1
86 )n − o(n) size lower bound is known even for circuits of

depth O(logn). It is straightforward to show that any function that depends on all of its
n variables requires depth at least logn. One can also present an explicit function that cannot
be computed by a circuit of depth smaller than 2 logn− o(logn) using Nechiporuk’s lower
bound of n2−o(1) on formula size over the full binary basis [35]. Still, proving superlinear
size lower bounds for circuits of depth O(logn) remains a major open problem [56].

Constant-Depth Circuits

Another natural and simple model of computation is bounded-depth unbounded fan-in
circuits, which correspond to highly parallelizable computation. In this paper, we focus
on depth-2 circuits of the form AND ◦ OR (i.e., CNFs) and depth-3 circuits of the form

1 All logarithms are base 2 unless noted otherwise.



A. Golovnev, A. S. Kulikov, and R. R. Williams 24:3

OR ◦AND ◦OR (i.e., ORs of CNFs), where the inputs of the circuit are variables and their
negations, and the gates have unbounded fan-in. Such circuits are much more structured,
and therefore are easier to analyze and to prove lower bounds. For example, it is easy to
show that the minimal number of clauses in a CNF computing the parity of n bits is equal to
2n−1, which yields an optimal lower bound for depth-2 circuits. However, already for depth 3
there is a large gap between known lower and upper bounds: it is known [10, 50] that the
minimum depth-3 circuit size of a random function on n variables is Θ(2n/2), but the best
known lower bound for an explicit function is 2Ω(

√
n) [20, 22, 39, 3, 38, 34].

Much stronger lower bounds are known for depth-3 circuits where the fan-in of the
“bottom” gates (those closest to the inputs) is bounded by a parameter k. Namely, for any
k ≤ O(

√
n), Paturi, Saks, and Zane [39] proved a 2n/k lower bound for computing parity,

Wolfovitz [60] proved a lower bound of (1 + 1/k)n+O(logn) for ETHR n
k+1

2, and a stronger
lower bound of 2

µkn

k−1 for k ≥ 3 and some constants µk > 1 was proven in [38] for a BCH
code. For example, [38] gives a lower bound of 20.612n when the bottom fan-in of the circuit
is k = 3, and a lower bound of 2n/10 for the bottom fan-in k = 16. For the case of bottom
fan-in k = 2, even a 2n−o(n) lower bound is known [40].

A simple counting argument shows that for any constant k = O(1), a random function
requires depth-3 circuits of size 2n−o(n). Calabro, Impagliazzo, and Paturi [5] construct a
family of 2O(n2) explicit functions, most of which require depth-3 circuits with k = O(1) of
size 2n−o(n). Santhanam and Srinivasan [46] improve on this by constructing such a family
of functions of size 2f(n) for every f(n) = ω(n logn).

DeMorgan Formulas

While explicit super-linear lower bounds for circuits are not known, there are super-linear
lower bounds for formulas. In this paper, we focus on the well-studied DeMorgan formulas,
which are circuits where every intermediate computation is used exactly once: all gates have
out-degree one, and the operations are fan-in two ANDs and ORs, with inputs being variables
and their negations. The two most successful methods for proving lower bounds on DeMorgan
formula size are random restrictions [54, 2, 24, 36, 21, 55] as well as Karchmer–Wigderson
games and the Karchmer–Raz–Wigderson conjecture [29, 27, 26, 16, 12]. Both approaches
have led to a lower bound of n3−o(1) and are currently stuck at giving stronger lower bounds.

1.1 Valiant’s Depth Reduction
Remarkably, a classical result of Valiant from the 70’s relates three of the four models
above: linear, log-depth, and constant-depth circuits. Using a depth reduction for DAGs [13],
Valiant [56] shows that for any circuit of size cn and depth d, and for every integer k, one can
remove at most 2ckn

log d wires such that the resulting circuit has depth at most d/2k. Letting k
be a sufficiently large constant, this wire-removal lemma shows how any circuit of size O(n)
and depth O(logn) can be converted into an OR ◦AND ◦OR circuit where the OR output
gate has fan-in 2O(n/ log logn) and the lower OR gates have fan-in O(nε) for any desired
ε > 0. Hence, by exhibiting a function that has no depth-3 circuit with these restrictions, it
follows that this function cannot be computed by circuits of linear size and logarithmic depth.
Unfortunately, the best known lower bounds on depth-3 circuits (as mentioned earlier) are
still too far from those required for this reduction.

2 ETHR n
k+1

outputs 1 if and only if the sum of the n input bits over the integers equals n
k+1 .
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In the same paper, Valiant introduced the notion of matrix rigidity (a similar notion was
independently introduced by Grigoriev [19]) and related it to the size of linear circuits of
log-depth using ideas similar to those described above. Alas, the known lower bounds on
matrix rigidity are also far from being able to give new lower bounds on the size of log-depth
linear circuits.

1.2 Our Results: New Depth Reductions
The main contributions of this paper are new reductions to depth-3 circuits that work for
unrestricted circuits and (conditionally) for super-cubic formulas, as well as new results
connecting various pseudorandom objects to circuit lower bounds. In particular, we show
how to express super-cubic DeMorgan formulas as subexponential-size depth-3 circuits of a
certain form, under the hypothesis that DeMorgan formulas have probabilistic polynomials
of non-trivial degree. This suggests an approach for improving formula size lower bounds, by
proving strong lower bounds on depth-3 circuits.

1.2.1 Depth Reductions for Circuits
In Valiant’s depth reduction, one can only have d/2k < logn (and < cn removed edges)
for circuits of depth d ≤ O(logn). Thus, Valiant’s depth reduction technique does not
yield interesting results for circuits of super-logarithmic depth. Moreover, Schnitger and
Klawe [47, 48, 30] construct an explicit family of DAGs showing that the parameters achieved
by Valiant are essentially optimal. Their counterexamples convincingly show that a pure
graph-theoretic approach to circuit depth reduction cannot give non-trivial results for
unrestricted circuits.

In this paper, we overcome this difficulty by presenting a counterpart of Valiant’s depth
reduction that works for circuits of unrestricted depth. Our depth reduction takes into
account not only the underlying graph of a circuit, but also the functions computed by the
circuit gates.

Our first result shows that unbounded-depth circuits of size less than 3.9n can be converted
into 2δn disjunctions of short 16-CNFs, for some δ < 1.

I Theorem 1. Every circuit of size s can be computed as an OR2d
s
2 e ◦ANDs ◦OR2 circuit

and as an OR2d
s

3.9 e ◦AND214·s ◦OR16 circuit.

As a consequence, in order to prove a 3.9n−o(n) size lower bound on unrestricted circuits,
it suffices to provide a function that cannot be computed by an OR of fewer than 2n−o(n)

16-CNF’s. To prove Theorem 1, we gradually transform the given circuit into an OR of
CNF’s by carefully picking a suitable internal gate and branching on its two possible output
values. In contrast to Valiant’s reduction, our transformation works for circuits of arbitrary
depth. This is achieved by an argument that takes into account both the graph structure of
the circuit and the functional properties of the gates involved. Since in this approach we can
branch on internal gates (inside the circuit), we can avoid a massive case analysis. This also
distinguishes our approach from known circuit lower bound proofs based on gate elimination,
which must set input gates (or gates very close to the inputs) for the argument to work.

It should be noted that known satisfiability algorithms based on branching, as well as
circuit lower bounds based on gate elimination [39, 38, 49, 45, 8] may be viewed as depth-
reductions for small circuits: if at most k variables are set in any branch before the circuit
has a “trivial” form, then the circuit can be expressed as an OR of 2k “trivial” forms. At
the same time, the known techniques in this line of work appear stuck at lower bounds of
around 3n, and provably cannot go beyond linear-size bounds [17].
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On the way to proving Theorem 1, we study structural results about converting small
circuits into disjunctions of k-CNFs, that have curious connections to properties of k-CNFs
found in the Satisfiability Coding Lemma [39, 38] and Sparsification Lemma [25, 5]. In
particular, we ask the following question.

I Open Problem 2. Prove or disprove: for any constant c, any circuit of size cn can be
computed as an

OR2(1−δ(c))n ◦AND ◦ORγ(c)

circuit, for some δ(c) > 0 and integer γ(c) ≥ 1.

If such depth-3 circuits always existed, this would constitute a new approach to proving
superlinear circuit lower bounds. If no depth-3 circuit of this form exists for some linear-size
circuits, then we would have a separation between linear-size circuits and (for example) super-
linear-size series-parallel circuits (by Valiant’s reduction for such circuits, see Theorem 9).
Note that for the gate elimination method such limitations are known [17], and they do not
apply to the approach presented in this work.

Our second result is a new “non-rigidity” result for matrices with small linear circuits: if
a matrix M over F2 can be computed by a linear circuit of size s, then it is possible to flip
at most 16 bits in every row of M to drop its rank below s/4. This opens up an approach to
proving linear circuit lower bounds on sizes up to 4n.

I Theorem 3. For every matrix M ∈ Fm×n2 of linear circuit complexity s, RM (bs/4c) ≤ 16 .

1.2.2 Pseudorandom Objects and Circuit Lower Bounds
The classical result by Valiant shows that improvements of known depth-3 circuit lower
bounds and rigid matrices imply super-linear log-depth circuit lower bounds. Our depth
reductions show that even modest improvements of the known constructions also give modest
improvements of unrestricted circuit lower bounds.

In the full version of this paper [18], we show that Valiant’s and our reduction are applicable
to two more types of pseudorandom objects: dispersers for varieties, and functions having
small correlation with low degree polynomials. These implications are briefly summarized3
in Table 1.

1.2.3 Depth Reduction for Formulas
For DeMorgan formulas we give a conditional depth-reduction (stated informally, see The-
orem 14 for a formal statement): if there is an ε > 0 such that DeMorgan formulas of
size s have probabilistic polynomials of degree s1−ε and error 1/3 over F2, then for some
δ > 0 every DeMorgan formula of size O(n3+δ) can be written as an approximate sum of
2n1−γ degree-n1−γ F2-polynomials for a constant γ > 0.4 Moreover, if there are probabilistic
polynomials of degree O(

√
s) for DeMorgan formulas of size s (which we conjecture is true),

our depth reduction holds for DeMorgan formulas of size n3.99.

3 In this table we only present strongest implications from the strongest premises. Our reductions would
still give new circuit lower bounds even from weaker objects (see the full version [18] for complete
statements of these results). For example, the second line of the table says that a lower bound of 2n−o(n)

against depth-3 circuits would give a lower bound of 3.9n. On the other hand, a lower bound of 20.8n

would lead to an elementary proof of a lower bound of 3.1n.
4 Similar results can be stated for Fp where p is any prime.
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24:6 Circuit Depth Reductions

Table 1 Comparing the depth reductions of this paper (labeled with *) with the depth reduction
of Valiant [56] (labeled with V). We use the following notation (all formal definitions are given in
Section 2 and the full version of the paper [18]): s(f) is the smallest size of a circuit computing f ,
slog refers to circuits of depth O(logn), sk3 refers to circuits that are ORs of k-CNFs, s⊕ refers to
circuits consisting of ⊕ gates only; (d,m, s)-disp. stands for a (d,m, s)-disperser, a function that is
not constant on any subset of the Boolean hypercube of size at least s that is defined as the set of
common roots of at most m polynomials of degree at most d; RM (r) is the row-rigidity of M for the
rank r over F2, i.e., the smallest row-sparsity of a matrix A such that rank(M ⊕A) ≤ r.

improving known lower bound to lower bound implies lower bound

V sn
ε

3 (f) ≥ 2n
1−ε

[39] sn
ε

3 (f) ≥ 2ω
(

n
log logn

)
slog(f) = ω(n)

* s16
3 (f) ≥ 2 n

10 [38] s16
3 (f) ≥ 2n−o(n) s(f) ≥ 3.9n

V
(
nε,∞, 2n−n1/2−ε

)
-disp. [44]

(
nε,∞, 2n−ω

(
n

log logn

))
-disp. slog(f) = ω(n)

*
(
16,∞, 2(1−ε)n)-disp. [58] (16, 1.3n, 2o(n))-disp. s(f) ≥ 3.9n

*
(

16, n
(logn)c , 2

o(n)
)
-disp. [9] (16, 1.3n, 2o(n))-disp. s(f) ≥ 3.9n

V RM
(
ω
(

n
log logn

))
> log logn [15] RM

(
ω
(

n
log logn

))
> nε s⊕,log(M) = ω(n)

* RM ( n65 ) > 16 [41] RM (n− o(n)) > 16 s⊕(M) ≥ 4n

Interestingly, the techniques used to express DeMorgan formulas as depth-3 circuits are
totally different from those used in Theorem 1 and 3. Namely, we first balance a formula
(without increasing its size too much), decompose it into a small top part and several small
bottom formulas, approximate the top part by a real-valued low-degree polynomial, then
rewrite the bottom parts as probabilistic polynomials (as hypothesized). Finally, we collapse
these two polynomials into a depth-3 circuit.

The hypothesis that lower-degree probabilistic polynomials exist for every DeMorgan
formula of size s looks very plausible. We have not found an example of a size-s formula
that resists the construction of an O(

√
s)-degree probabilistic polynomial. Note that such

polynomials do exist in the real-approximation sense [43]. For example, every symmetric
function (such as MAJORITY) has probabilistic polynomials of O(

√
s) degree [1], and it

is not hard to show that the layered OR-AND tree of depth log2(s) has a probabilistic
polynomial of O(

√
s) degree as well; in fact, any layered tree of depth log2(s) with the

same gate type at each layer (AND or OR) has such degree.5 It is possible that there are
“nasty” formulas that resist lower-degree probabilistic polynomials, but given the examples
we already know, we do not know what they might look like.

I Open Problem 4. Prove or disprove: every DeMorgan formula of size s has a probabilistic
polynomial over F2 of degree O(

√
s) with constant error less than 1/2.

5 Briefly: we can always write such formulas as either an OR of ANDs of O(
√
s) literals, or an AND

of ORs of O(
√
s) literals. From there, we can simply replace the output gate with an O(1)-degree

probabilistic polynomial (as in Razborov [42]), and the other gates with exact polynomials of O(
√
s)

degree.
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1.3 Motivating Example
Here we provide a simple example of a reduction of unbounded circuits to depth-3 circuits,
to give an idea of what is possible.

A formula is a circuit where every internal gate (i.e. not the inputs and not the output)
has out-degree exactly 1. In our simple example, we will show that a circuit of size, say,
2.7n can be computed by an OR of 20.9n formulas of small size (2.7n). Since we know
almost-quadratic lower bounds [35] on formula size, we may hope to find a function which is
not computable by an OR of � 2n linear-size formulas.

I Lemma 5 (Toy Example). Every circuit of size s can be expressed as an OR of 2ds/3e
formulas, each of size less than s.

Proof. For a circuit C, let s(C) denote its size. For s ≤ 3, we just transform a circuit into
a single formula of the same size. For s > 3, we proceed by induction. If the given circuit
C is a formula, no transformation is needed. Otherwise take the topologically first gate G of
out-degree at least 2. Note G is computed by a formula (all previous gates have out-degree
1); let t = s(G) be the size of this formula. Consider two minimum-size circuits C0 and
C1 that compute the same function as C on the input sets {x ∈ {0, 1}n : G(x) = 0} and
{x ∈ {0, 1}n : G(x) = 1}, respectively. We claim that s(C0), s(C1) ≤ s− t− 2 ≤ s− 3, since
to compute C0 and C1 one can remove the subcircuit in C computing gate G as well as two
successors of G. The successors can be removed because G outputs a constant on both parts
of the considered partition of the Boolean hypercube, and all gates in the subcircuit of G are
only needed to compute G (G is computed by a formula). Now, note that

C(x) ≡ (¬G(x) ∧ C0(x)) ∨ (G(x) ∧ C1(x)) .

Applying the induction hypothesis to C0 and C1, we can rewrite C as an OR of at most
2d(s−3)/3+1e ≤ 2ds/3e formulas of size (s− t− 2) + (t+ 1) < s. J

This result would imply a circuit lower bound of 3n − o(n) for any function that has
correlation at most 2−n+o(n) with all formulas of linear size. While we do know functions that
have exponentially small correlation 2−εn with formulas of linear size [45, 28, 51, 31, 55, 23],
none of them gives a bound of 2−n+o(n). At any rate there is an inherent limitation for
this toy approach. By Parseval’s identity, every Boolean function has a Fourier coefficient
≥ 2−n/2. This implies that the correlation of this function with the corresponding parity
function is at least 2−n/2 (and this is essentially tight correlation with small formulas for
a random function). Since every parity on a subset of inputs can be computed by a formula
of size ≤ n, Lemma 5 would only be able to prove circuit lower bounds of 1.5n.

In order to prove stronger circuit lower bounds, we need to improve both parameters: the
constant 3 in the exponent, and the class of formulas we reduce circuits to. Our Theorem 1
achieves this: it reduces a circuit to an OR of 2d s3.9 e formulas, each of which is a 16-CNF.
Therefore strong enough correlation bounds against 16-CNFs would yield new circuit lower
bounds.

2 Definitions and Preliminaries

2.1 Unrestricted Circuits
Let Bn,m be the set of all Boolean functions f : {0, 1}n → {0, 1}m and let B2 = B2,1. A circuit
is a directed acyclic graph that has n nodes of in-degree 0 labeled with x1, . . . , xn that are
called input gates. All other nodes are called internal gates, have in-degree 2, and are labeled
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24:8 Circuit Depth Reductions

with operations from B2. Some m gates are also marked as output gates. Such a circuit
computes a function from Bn,m in a natural way. The size s(C) of a circuit C is its number
of internal gates. This definition extends naturally to functions: s(f) is the smallest size of
a circuit computing the function f .

The depth of a gate G is the maximum number of edges (also called wires) on a path
from an input gate to G. The depth of a circuit is the maximum depth of its gates. By
slogn(f) we denote the smallest size of a circuit of depth O(logn) computing f .

A circuit is called linear if it consists of ⊕ gates only. The corresponding circuit size
measure is denoted by s⊕.

Our unrestricted circuits are usually drawn with input gates at the top, so by a top gate
of a circuit we mean a gate that is fed by two variables.

2.2 Series-Parallel Circuits
A labeling of a directed acyclic graph G = (V,E) is a function ` : V → N such that for every
edge (u, v) ∈ E one has `(u) < `(v). A graph/circuit G is called series-parallel if there exists
a labeling ` such that for no two edges (u, v), (u′, v′) ∈ E, `(u) < `(u′) < `(v) < `(v′). The
corresponding circuit complexity measure is ssp.

2.3 Depth-3 Circuits
Unlike unrestricted circuits, depth-3 circuits are usually drawn the other way around, i.e.,
with the output gate at the top. In this paper, we focus on OR ◦ AND ◦ OR circuits, i.e.,
ORs of CNFs. We will use subscripts to indicate the fact that the fan-in of a particular layer
is bounded. Namely, an ORp ◦ ANDq ◦ ORr circuit is an OR of at most p CNFs each of
which contains at most q clauses and at most r literals in every clause. Since the gates of
a depth 3 circuit are allowed to have an unbounded fan-in, it is natural to define the size of
such a circuit as its number of wires. It is not difficult to see that for k = O(1) the size of
an OR ◦AND ◦ORk circuit is equal to the fan-in of its output gate up to a polynomial factor
in n. By sk3(f) we denote the smallest size of an OR ◦AND ◦ORk circuit computing f .

2.4 Rigidity
We say that a matrix M ∈ Fm×n2 is s-sparse if each row of M contains at most s non-zero
elements. The rigidity of a matrix M ∈ Fm×n2 for the rank parameter r is the minimum
sparsity of a matrix A ∈ {0, 1}m×n such that rankF2(M ⊕A) ≤ r:

RM (r) = min{s : rankF2(M ⊕A) ≤ r, A is s-sparse} .

2.5 Probabilistic, Approximate, and Robust Polynomials
Since even functions of small circuit and formula complexity may only have large-degree
polynomial representations, it often proves convenient to use randomized polynomials or
polynomials which approximate (rather than exactly compute) a given function.

I Definition 6 (Probabilistic polynomials). Let f : {0, 1}n → {0, 1} be a Boolean function. A
distribution D of n-variate degree-d polynomials over F2 is a probabilistic polynomial for f
with degree d and error ε if for every x ∈ {0, 1}n,

Pr
p∼D

[f(x) = p(x)] ≥ 1− ε.
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I Definition 7 (Approximate Polynomials). Let f : {0, 1}n → {0, 1} be a Boolean function.
An n-variate multilinear degree-d polynomial p over R is an approximate polynomial for f
with degree d and error ε if for every x ∈ {0, 1}n,

|p(x)− f(x)| ≤ ε.

I Definition 8 (Robust Polynomials). Let f : {0, 1}n → [0, 1] be a polynomial over R. Then
a polynomial p : Rn → R is δ-robust for f if for every x ∈ {0, 1}n and for every ε ∈
[−1/3, 1/3]n,

|f(x)− p(x+ ε)| ≤ δ.

2.6 Valiant’s Depth Reductions
Here we formally recall the classical depth reduction results by Valiant [56].

I Theorem 9 ([56, 4, 57]). For every c ≥ 1 and ε > 0 there exists a δ > 0 such that every
circuit C of size cn and depth c logn can be computed as
1. an OR

2
δn

log logn
◦AND ◦ORnε circuit

2. and as an OR2εn ◦AND ◦OR2(logn)1−δ circuit.
Furthermore, for every c ≥ 1 and ε > 0 there is a k ≥ 1 such that every series-parallel circuit
of size cn and unbounded depth can be computed as an OR2εn ◦AND ◦ORk circuit.

Theorem 9 applied to linear circuits yields the following.

I Theorem 10 ([56, 4, 57]). Let M ∈ Fm×n be a matrix. For every c ≥ 1 and ε > 0 there
exists δ > 0 such that, if a linear circuit C of size cn and depth c logn computes Mx for
every x ∈ Fn, then
1. RM

(
δn

log logn

)
≤ nε;

2. and RM (εn) ≤ 2(logn)1−δ .
Furthermore, for every c ≥ 1 and ε > 0 there is a k ≥ 1 such that if C is a series-parallel
linear circuit of size cn and unbounded depth, then RM (εn) ≤ k .

3 Formula Depth Reduction

In this section, we give a (conditional) depth reduction for DeMorgan formulas. We start by
balancing a given formula. For this we use the following result due to Tal [55].

I Lemma 11 (Claim VI.2 in [55]). Let F be a DeMorgan formula of size s over the set of
variables X = {x1, ..., xn}, and t be some parameter; then, there exist k ≤ 36s/t formulas
over X, denoted by T1, ..., Tk, each of size at most t, and there exists a read-once formula F ′
of size k such that F ′(T1(x), ..., Tk(x)) = F (x) for all x ∈ {0, 1}n.

Below we will also make use of the following results by Reichardt [43] and Sherstov [53].

I Theorem 12 ([43]). If f : {0, 1}n → {0, 1} can be computed by a DeMorgan formula of
size s, then f has an approximate polynomial of degree O(

√
s) with error ε = 1/10.

I Theorem 13 ([53]). If f : {0, 1}n → [0, 1] is a polynomial of degree d over R, then there is
a δ-robust polynomial p for f of degree O(d+ log(1/δ)).
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Now we are ready to present the main result of this section: Assuming DeMorgan formulas
of size s have probabilistic polynomials of degree O(s1−δ) for some δ > 0, we will obtain
subexponential-size depth-3 circuits computing formulas of super-cubic size.

In the following, a SUM gate will compute an approximate sum: a (real-weighted) sum of
the inputs such that, over all Boolean inputs, the sum is within ±1/3 of the 0-1 value of a
desired Boolean function.

I Theorem 14. Suppose for some δ > 0, DeMorgan formulas of size ` have probabilistic
polynomials of degree `1−δ with error 1/3. Then for every α < δ/(1− δ) there is a γ > 0,
so that for every formula F of size s = O(n3+α), there is a 2n1−γ -size approximate sum of
degree-n1−γ F2-polynomials computing F . That is, F can be computed by a

SUM2n1−γ ◦MOD22n1−γ ◦ ANDn1−γ .

Proof. First, we apply Lemma 11 to F for some parameter t to be defined later. We obtain
a read-once formula F ′ of size k = O(s/t), and k formulas T1, . . . , Tk each of size ≤ t.

Let p be an approximate polynomial (over the reals) for F ′ of degree d = O(
√
k) with error

1/10, guaranteed by Theorem 12. Applying Theorem 13, we get a 1/10-robust polynomial p′
for p of degree d′ = O(

√
k).

By the hypothesis of the theorem, we know that each Ti has a probabilistic polynomial
of degree O(t1−δ) with error ε = 1/3. For each Ti, draw O(log s) independent copies of this
probabilistic polynomial, and take their majority vote with an O(log s)-degree polynomial.
For an appropriate leading constant in the big-O, we can obtain a probabilistic polynomial
for Ti of degree O(t1−δ · log s) with error 1/(10s).

Let D1, . . . ,Dk be probabilistic polynomials of degree D = O(t1−δ · log s) with error
ε = 1/(10s) for the formulas T1, . . . , Tk. The error bound ε = 1/(10s) guarantees that for
every x ∈ {0, 1}n, all k polynomials compute the correct value with probability at least 9/10.

Now for every Ti, we compute the average Ai (over the reals) of O(n) independent samples
from Di. By a Chernoff bound and union bound, each Ai is within ±1/10 of the correct 0-1
value for Ti, over all 2n inputs x, with probability of error 1/ exp(n). By the properties of
robust polynomials, p′ fed the sums Ai will still output the correct value (within ±1/10) for
all inputs x ∈ {0, 1}n, for some choice of samples.

Therefore F can be computed by a

SUMnd′ ◦ PRODUCTd′ ◦ SUMO(n) ◦MOD2 ◦ ANDD.

Applying distributivity to the PRODUCT of SUMs, we get

SUMnd′ ◦ SUMnO(d′) ◦ PRODUCTd′ ◦MOD2 ◦ ANDD.

Noting the PRODUCTs now take 0/1 inputs, we can replace them with ANDs:

SUMnd′ ◦ SUMnO(d′) ◦ ANDd′ ◦MOD2 ◦ ANDD.

Taking the Fourier expansion of the AND function, we can replace each AND gate with a
SUM of 2d′ MOD2s of fan-in ≤ d′:

SUMnd′ ◦ SUMnO(d′) ◦ SUM2d′ ◦MOD2 ◦ ANDD.

Merging the SUMs, our final expression has the form:

SUMnO(d′) ◦MOD2 ◦ ANDD.
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Finally, we want to choose a value of t so that the fan-in of the SUM is subexponential,
and the fan-ins of the AND’s are sublinear (which will also imply that the fan-in of the
MOD2’s are sub-exponential). Let t = n1+β , where β is an arbitrary number between
α < β < δ/(1− δ). Note that

d′ = O(
√
k) = O(

√
s/t) = O(n1− β−α2 ) = O(n1−γ)

for every 0 < γ < β−α
2 . Also, observe that

D = O(t1−δ · log s) = O(n1−(1−δ)(δ/(1−δ)−β) logn) = O(n1−γ)

for every 0 < γ < (1− δ)(δ/(1− δ)− β).
From the upper bounds on d′ and D, we have that F can be computed by

SUM2n1−γ ◦MOD22n1−γ ◦ ANDn1−γ

for some γ > 0. J

The above formula depth reduction shows that, if there are more efficient probabilistic
polynomials for DeMorgan formulas (and we have no reason to doubt this), then super-
cubic formulas have interesting representations as approximate sums of sub-exponentially
many sub-linear degree F2-polynomials. Recent work [59, 7] can already be applied to prove
interesting lower bounds against approximate sums of 2nα F2-polynomials of degree nβ , where
α+ β < 1. The remaining challenge will be to prove lower bounds when max{α, β} < 1.

4 Circuit Depth Reductions

In this section, we present new depth reductions for circuits with unrestricted depth.

4.1 Linear Circuits
We start by considering linear circuits, i.e., circuits consisting of ⊕ gates only. For technical
reasons, we assume that there are n+ 1 input gates in a linear circuit: x1, . . . , xn as well as
the constant 0. For a matrix M ∈ {0, 1}m×n, we say that a linear circuit C with m outputs
computes the linear transformation M if the i-th output of C(x) equals the i-th row of Mx

for all x ∈ {0, 1}n, treating C(x) as the vector of output values. We say that a linear circuit C
computing M is optimal if no circuit of smaller size computes M .

The main result of this subsection asserts that matrices computable by small linear
circuits are not too rigid. The contrapositive says: to get an improved lower bound on the
size of linear circuits, it suffices to construct a matrix with good rigidity parameters. Below,
we restate the corresponding theorem formally and then prove it.

I Theorem 3. For every matrix M ∈ Fm×n2 of linear circuit complexity s, RM (bs/4c) ≤ 16 .

Proof. Let C be an optimal circuit of size s computing M . If s < 16 or the depth of C is at
most 4, then each output depends on at most 16 variables. Hence M is 16-sparse and the
theorem statement holds. Consider this as the base case of an induction on s.

For the induction step, we “normalize” C. Namely, we show how to express M as the
(modulo 2) sum of two F2-matrices A and B, where A is 16-sparse (each row has ≤ 16 ones)
and B has rank at most bs/4c. Note that if C has an output gate H of depth at most 4, then
H depends on at most 24 = 16 inputs. Thus the corresponding row rH of M has at most 16
ones. Consider the (m− 1)× n matrix M−H obtained by removing rH from M . We claim
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that RM−H (bs/4c) ≤ 16 implies RM (bs/4c) ≤ 16. Indeed, suppose M−H = A−H ⊕ B−H
where A−H is 16-sparse and rank(B−H) ≤ bs/4c. To get matrices A and B for M , we simply
add the row rH to A−H and a corresponding all-zero row to B−H . Clearly, the resulting
matrix A is 16-sparse and the rank of the resulting matrix B does not change. Thus, in the
following, we assume WLOG that C has no output gates of depth at most 4. Our crucial
step is the following claim.

B Claim 15. Let C be an optimal linear circuit computing M ∈ {0, 1}m×n such that
s(C) ≥ 16, and no output gate of C has depth smaller than 5. Then there is a gate G in C
and a linear circuit C′ computing a matrix M ′ ∈ {0, 1}m×n with the properties:
1. s(C′) ≤ s(C)− 4, and
2. for every x ∈ {0, 1}n, if G(x) = 0 then C(x) = C′(x).

For now, suppose the claim is proved. Consider the circuit C′, gate G in C, and matrix M ′
provided by Claim 15. Let g ∈ {0, 1}1×n be the characteristic vector of the linear function
computed by G, so that G(x) = gx. By the claim, gx = 0 implies (M ⊕M ′)x = 0. Hence
(M ⊕M ′) is either the zero matrix, or it defines the same linear subspace as g: M ⊕M ′ = tg

for a vector t ∈ {0, 1}m×1.
By the induction hypothesis, M ′ = A′ ⊕ B′ where A′ is 16-sparse, and rank(B′) ≤

b s−4
4 c = b s4c − 1. Thus, M = A′ ⊕B, where the matrix B = B′ ⊕ tg has rank at most bs/4c

by subadditivity of the rank function. J

We now turn to proving the remaining claim.

Proof of Claim 15.
Case 1: There is a gate G in C of depth at least 2 and at most 4, and has out-

degree at least 2. Let the predecessors of G be B and C, and call two of its successors D
and E, see Figure 1 (in this and the following figures, we write the out-degrees of some of
the gates near them). The circuit C′ is obtained from C by “assigning” the output of G
to be 0. Note that B(x) = C(x) for all x ∈ {0, 1}n where G(x) = 0. At least one of B
and C must be an internal gate (otherwise G would have depth 1), let it be C. Since C
computes the same function as B, it may be removed from C′: we remove it, and replace
every wire of the form C → H by a new wire B → H. Note that neither G nor C is an
output gate. Now, we show that both D and E can also be removed. Let us focus on
the gate D (for E it is shown similarly) and call its other predecessor F . Since G = 0,
the gate D computes the same function as F . This means that one may remove D: we
remove it and replace every wire D → H by a wire F → H. If D happens to be an output
gate, we move the corresponding output label from D to F .

Case 2: All gates of depth at least 2 and at most 4 have out-degree exactly 1
in C. Take a gate G of depth 4 and trace back its longest path to an input: xi → D →
C → B → G. Let also E be the successor of G (which exists because C has depth at
least 5). By assumption, gates B and C have out-degree 1. This means that in C they
are only used for computing the gate G. This, in turn, means that assuming G = 0, we
can remove G, B, and C (note none of them is an output). Finally, the gate E can be
replaced by the other input F of E (note F /∈ {B,C,G}, since C is optimal).

This completes the proof. C

I Remark 16. Extending the same ideas, one can show that any linear circuit C of size s can
be computed by an OR2d

s
4 e ◦ANDs·214 ◦OR16 circuit. For this, one considers two optimal

circuits C0 and C1 resulting from C by assuming G = 0 and G = 1, respectively. As shown
in the proof, both C0 and C1 have size at most s− 4. One then proceeds by induction. We
illustrate this approach in full detail in the next subsection.
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B ⊕ C

⊕G

⊕D ⊕ E

F

Case 1: assuming G = 0, the
gate G is removed, B is replaced
by C, and D and E are replaced by
their other predecessors.

xi

⊕D

⊕
1

C

⊕
1

B

⊕G

⊕E

⊕ F

Case 2: assuming G = 0, the gates
B, C, and G are removed whereas
E is replaced by F .

Figure 1 Cases in the proof of Claim 15.

I Remark 17. The proof of Theorem 3 gives a decomposition M = A ⊕ B = A ⊕ (C ·D),
where A ∈ Fm×n is 16-sparse, C ∈ Fm×s/4 is composed of vectors t, and D ∈ Fs/4×n is
composed of vectors g. Since the chosen gate G always has depth at most four, the vector g
is 16-sparse. Thus, we in fact have a decomposition M = A⊕ (C ·D), where both A and D
are 16-sparse. In particular, the row-space of M is spanned by the union of row-spaces of A
and D. This implies that the row-space of M can be spanned by at most (m+ s

4 ) 16-sparse
vectors. The corresponding matrix property is called outer dimension, and it is studied
in [37, 32]. While the current lower bounds on the outer dimension of explicit matrices do
not lead to new circuit lower bounds, it would be interesting to study their applications in
this context.

4.2 General Boolean Circuits
In this section, we study the following natural question: given a Boolean circuit6 and given
an integer k ≥ 2, what is the smallest OR ◦AND ◦ORk circuit computing the same function?
To this end, we introduce the following notation. For an integer k ≥ 2, we define α(k) as the
infimum of all values α such that any circuit of size s can be rewritten as a OR2αs ◦AND◦ORk
circuit.

For proving upper bounds on α(k) it will be convenient to consider the following class of
circuits. Let ORp ◦ANDq ◦ C(r) be a class of circuits with an output OR that is fed by at
most p AND’s of at most q circuits of size at most r.

I Theorem 18. Every circuit of size s can be computed as:
1. an OR2d

s
2 e ◦ANDd s2 e ◦ C(1) circuit;

2. an OR2d
s

3.9 e ◦ANDd s3 e ◦ C(15) circuit.

6 In this section we consider functions with one output, but these results can be trivially generalized to
the multi-output case.
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Note that any circuit of size r depends on at most r + 1 variables, and hence can be
written as an (r+1)-CNF with at most 2r clauses. Therefore every ORp ◦ANDq ◦C(r) circuit
can be easily converted into a ORp ◦ANDq2r ◦ORr+1 circuit. Thorem 1, which we restate
below, is then an immediate corollary of Theorem 18. In turn, it implies that α(2) ≤ 1

2 and
α(16) ≤ 1

3.9 .

I Theorem 1. Every circuit of size s can be computed as an OR2d
s
2 e ◦ANDs ◦OR2 circuit

and as an OR2d
s

3.9 e ◦AND214·s ◦OR16 circuit.

Proof of Theorem 18. Both parts are proven in a similar fashion. We proceed by induction
on s. The base case is when s is small. We then just have an OR1 ◦AND1 ◦ C(s) circuit.

For the induction step we take a gate G of C and consider two circuits C0 and C1 where
Ci computes the same as C on all inputs {x ∈ {0, 1}n : G(x) = i}. We may assume both Ci’s
are minimal size among all such circuits. Since Ci can be obtained from C by removing the
gate G (as it computes the constant i on the corresponding subset of the Boolean hypercube),
we conclude that s(Ci) < s. This allows us to proceed by induction. Assume that by the
induction hypothesis Ci is guaranteed to be expressible as an ORpi ◦ANDqi ◦ C(ri) circuit.
We use the following identity to convert C into the required circuit:

C(x) ≡ ([G(x) = 0] ∧ C0(x)) ∨ ([G(x) = 1] ∧ C1(x)) . (1)

Assume that the subcircuit of C computing the gate G has at most t gates. We claim that
[G(x) = i] ∧ Ci can be written as an ORpi ◦ ANDqi+1 ◦ C(max{ri, t}) circuit. For this, we
just feed a new circuit computing G to every AND gate. Plugging this into (1), gives an

ORp0+p1 ◦ANDmax{q0,q1}+1 ◦ C(max{t, r0, r1}) (2)

circuit for computing C.
Below, we provide details specific to each of the two items from the theorem statement.

In particular, we estimate the parameters pi’s, qi’s, ri’s, and t and plug them into (2).

1. The base case is s = 1. Then C consists of a single gate and can be expressed as
an OR1 ◦ AND1 ◦ C(1) circuit. For the induction step, assume that s ≥ 2 and take
a gate A that depends on two variables. Let G = A, hence t = 1. The gate A must have
at least one successor (otherwise C can be replaced by a circuit with smaller than s gates).
Clearly, A and its successors are not needed in Ci’s. Hence, by the induction hypothesis
pi ≤ 2 s−2

2 +1, qi ≤ s−2
2 + 1, ri ≤ 1. Plugging this into (2) gives the desired result.

2. Take a gate A that is fed by two variables x and z and has the maximum distance to an
output. If its distance to output is at most 4, then s(C) ≤ 15 and we just rewrite it as
an OR1 ◦ AND1 ◦ C(15) circuit. This is the base case. Assume now that the distance
from A to the output gate is at least 5. In the analysis below, we always “follow” the
longest path from A to the output. This allows us to conclude that any such path
is long enough and hence each gate considered has positive out-degree (i.e., is not an
output). Moreover, each gate on this path cannot depend on too many variables. Let
B be a successor of A on the longest path to the output.
In the five cases below, we show that we can always find a gate G that s(G) ≤ 15 and
both s(C0) and s(C1) are small enough. In particular, s(C0), s(C1) ≤ s− 4 works for us:
p0 + p1 ≤ 2 · 2d s−4

3.9 e < 2d s3.9 e, max{q0, q1}+ 1 ≤ d s−4
3 e+ 1 < d s3e.

See Figure 2 for an illustration of the five cases. For a gate G, by out(G) we denote the
out-degree of G.
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x z

A

1
B

1
C

E

Case 1.1: when E
is constant, one re-
moves B, C, E,
and successors
of E.

x z

A

1
B

2+

C

Case 1.2: when
C is constant, one
removes B, C, and
successors of C.

x z

A
D

⊕
2+

B

Case 2.1: when
B is constant, one
removes B and
its successors, re-
place A by D ⊕ c.

x z

A
1

∧
2+

B

Case 2.2.1: when
B is constant, one
removes B and its
successors, and A.

x z

A

2+

∧
2+

B

Case 2.2.2:
when B is con-
stant, one re-
moves B and
its successors;
moreover, B = 1
it forces A to be
a constant and re-
moves A and its
successors.

Figure 2 Cases in the proof of the second part of Theorem 18.

Case 1: out(B) = 1. Let C be the successor of B.
Case 1.1: out(C) = 1. Let E be the successor of C. Let G = E. In Ci’s, one

removes B, C (as they were only needed to compute E that is now a constant), E,
and the successors of E.

Case 1.2: out(C) ≥ 2. Let G = C. In Ci’s, one removes B, C, and the successors
of C.

Case 2: out(B) ≥ 2. Let D be the other input of B. It may be a gate or an input
variable. If B computes a constant Boolean binary operation or an operation that
depends on A or D only, then C is not optimal. Otherwise, B computes one of the
following two types of functions (either linear or quadratic polynomial over F2):
Case 2.1: B(A,D) = A⊕D⊕c where c ∈ {0, 1}. Let G = B. In Ci’s, one immediately

removes B and its successors. Also, in Ci, D⊕A = i⊕ c. Hence, A may be replaced
by D ⊕ i⊕ c.

Case 2.2: B(A,D) = (A⊕ a) · (D ⊕ d)⊕ c where a, d, c ∈ {0, 1}.
Case 2.2.1: out(A) = 1. Let G = C. In Ci’s, one removes B, its successors, and A.
Case 2.2.2: out(A) ≥ 2. Let D be the other successor of B. Let G = B. In
Ci’s, one removes B and its successors. Also, B = c ⊕ 1 forces A = a ⊕ 1 and
D = d⊕1. Hence, in Cc⊕1 two additional gates are removed: A and its successors
(if a successor of B happens to be a successor of A also, then it is a function on A
and D and the circuit can be simplified, which contradicts its optimality). Hence,
p0 + p1 ≤ 2d s−3

3.9 e + 2d s−5
3.9 e . This is smaller than 2d s3.9 e since 2− 3

3.9 + 2− 5
3.9 < 1.

This completes the proof. J

I Remark 19. It is not difficult to see that the output OR gate is a “disjoint OR”, and can
be replaced by a SUM gate over the integers. In other words, for every x ∈ {0, 1}n, at most
one subcircuit feeding into the OR gate may evaluate to 1. This holds because we always
consider two mutually exclusive cases: G = 0 or G = 1.
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4.3 Properties of α(k)
We start by observing a lower bound on α(k).

I Lemma 20. For any integer k ≥ 2, α(k) ≥ 1/k.

Proof. Let ⊕n denote the parity function of n inputs. It has 2n−1 inputs where it is equal
to 1 and all these inputs are isolated, that is, the Hamming distance between any pair of
them is at least 2. As proven by Paturi, Pudlák, and Zane [39], every k-CNF has at most
2n(1−1/k) isolated satisfying assignments. This implies that ⊕n cannot be computed by an
OR of fewer than 2n/k−1 k-CNFs. Since s(⊕n) = n− 1, this implies that

α(k) ≥
n
k − 1
n− 1 .

Since this must hold for arbitrary large n, α(k) ≥ 1/k. J

Thus, we know the exact value of α(2) = 1
2 . This immediately implies a circuit lower

bound of 2n− o(n) for BCH codes. Indeed, it was shown in [40] that when the bottom fan-in
is restricted to k = 2, then BCH codes require depth-3 circuits of size 2n−o(n). And, since
α(2) = 1

2 , they must have circuit complexity at least 2n− o(n).
One can use techniques from Theorem 18 to prove an upper bound of α(3) ≤ log2 3

4 . Thus,
we know that

1
3 ≤ α(3) ≤ log2 3

4 < 0.3963 .

We conjecture that the upper bound on α3 is tight. One way to prove this would be to find
the s3

3 complexity of the inner product function: IP(x1, . . . , xn) = x1x2⊕x3x4⊕· · ·⊕xn−1xn.
In particular, if the upper bound shown in the next lemma is tight, then α(3) = log2 3

4 .

I Lemma 21.
1. 2n4 ≤ s2

3(IP) ≤ 2n2−o(n).
2. 2n6 ≤ s3

3(IP) ≤ 3n4 .

Proof. Note that by substituting every other input of IP by 1, one gets the parity function
⊕n

2
on the remaining n/2 inputs. Now both lower bounds follow from the corresponding

lower bounds for the parity function: s2
3(⊕k) ≥ 2 k2 and s3

3(⊕k) ≥ 2 k3 .
1. The first upper bound follows from the fact that IP(x1, . . . , xn) = 1 iff there is an odd

number of ones among

p1 = x1x2, p2 = x3x4, . . . , pn2 = xn−1xn .

Hence,

IP(x1, . . . , xn) ≡
∨

S⊆[n2 ] : |S| mod 2=1

∧
i∈S

[pi = 1] ∧
∧
i6∈S

[pi = 0]

 .

It remains to note that each [pi = c] can be expressed as a 2-CNF because pi depends on
two variables.

2. For the second upper bound, note that IP(x1, . . . , xn) = 1 iff there is an odd number of
1’s among

p1 = x1x2 ⊕ x3x4, p2 = x5x6 ⊕ x7x8, . . . , pn4 = xn−3xn−2 ⊕ xn−1xn .
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To compute IP by a depth 3 circuit, we go through all possible 2n4−1 values of p1, . . . , pn4
such that an odd number of them is equal to 1:

IP(x1, . . . , xn) ≡
∨

S⊆[n4 ] : |S| mod 2=1

∧
i∈S

[pi = 1] ∧
∧
i 6∈S

[pi = 0]

 (3)

Now, we show that [pi = 0] can be written as a single 3-CNF, whereas [pi = 1] can
be expressed as an OR of two 3-CNFs. W.l.o.g. assume that i = 1. The clauses of
a 3-CNF expressing [pi = 0] should reject all assignments to x1, x2, x3, x4 ∈ {0, 1} where
IP(x1, x2, x3, x4) = 1. In all such assignments, one of the two monomials (x1x2 and
x3x4) is equal to 0 whereas the other one is equal to 1. Hence, one needs to write down
a set of clauses rejecting the following four partial assignments: {x1 = 0, x3 = x4 = 1},
{x2 = 0, x3 = x4 = 1}, {x1 = x2 = 1, x3 = 0}, {x1 = x2 = 1, x4 = 0}. Thus,

[p1(x1, x2, x3, x4) = 0] ≡ (x1∨¬x3∨¬x4)∧(x2∨¬x3∨¬x4)∧(¬x1∨¬x2∨x3)∧(¬x1∨¬x2∨x4) .

In turn, to express [p1 = 1] as an OR of two 3-CNFs we consider both assignments to x1:

[p1(x1, x2, x3, x4) = 1] ≡ ((x1) ∧ [x2 ⊕ x3x4 = 0]) ∨ ((¬x1) ∧ [x3x4 = 1]) .

It remains to note that each of [x2⊕ x3x4 = 0] and [x3x4 = 1] can be written as a 3-CNF.
Let [pi = 0] ≡ Pi and [pi = 1] ≡ ((xi) ∧ Qi) ∨ ((¬xi) ∧ Ri) where Pi, Qi, and Ri are
3-CNFs. One may then expand (3) as follows:

∨
S⊆[n4 ] : |S| mod 2=1

 ∨
T⊆S

∧
i∈T

((xi) ∧Qi) ∧
∧

i∈S\T

((¬xi) ∧Ri) ∧
∧
i 6∈S

Pi


The fan-in of the resulting OR-gate is

∑
S⊆[n4 ] : |S| mod 2=1

2|S| ≤
n
4∑
i=0

(
n/4
i

)
2i = 3n4 . J

I Open Problem 22. Determine s3
3(IP).

Besides finding the exact values of α(k), it would be interesting to find out whether every
circuit of linear size can be computed by a non-trivial depth 3 circuit with constant bottom
fan-in. We restate this open problem below.

I Open Problem 2. Prove or disprove: for any constant c, any circuit of size cn can be
computed as an

OR2(1−δ(c))n ◦AND ◦ORγ(c)

circuit, for some δ(c) > 0 and integer γ(c) ≥ 1.

This paper supports the conjecture by showing that it holds for small values of c. As
another example, we can consider a class of functions where we know linear upper bounds
on circuit complexity. For any symmetric function f (i.e., a function whose value depends
only on the sum over integers of the input bits) we know that s(f) ≤ 4.5n+ o(n) [11]. It is
also known [40, 60] that symmetric functions can be computed by relatively small depth-3
circuits: sk3(f) ≤ poly(n) · (1 + 1/k)n (and this bound is tight [60]).
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Since in our depth reduction results, we always get k-CNFs with small linear number of
clauses, it is interesting to study the expressiveness of OR of exponential number of such
k-CNFs. Let us define α(k, c) as the infimum of all values α such that any circuit of size at
most cn can be computed as an OR2αn ◦ ANDcn ◦ ORk. We can upper bound the rate of
convergence of α(k, c) using the following width reduction result for CNF-formulas [49, 5].

I Theorem 23 ([49, 5]). For any constant 0 < ε ≤ 1 and a function C : N→ N, any CNF
formula f with n variables and n·C(n) clauses can be expressed as f = ORti=1fi, where t ≤ 2εn

and each fi is a k-CNF formula with at most n ·C(n) clauses, where k = O
(

1
ε · log

(
C(n)
ε

))
.

For our applications, we are interested in α(k, c) for small fixed c. Since for every c, α(k, c)
is a non-increasing bounded sequence, we let α(∞, c) = limk→∞ α(k, c). Then Theorem 23
implies that α(k, c) ≥ α(∞, c) ≥ α(k, c)−O

( log(ck)
k

)
.
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Abstract
Probabilistic graphical models, such as Markov random fields (MRFs), are useful for describing
high-dimensional distributions in terms of local dependence structures. The probabilistic inference
is a fundamental problem related to graphical models, and sampling is a main approach for the
problem. In this paper, we study probabilistic inference problems when the graphical model itself
is changing dynamically with time. Such dynamic inference problems arise naturally in today’s
application, e.g. multivariate time-series data analysis and practical learning procedures.

We give a dynamic algorithm for sampling-based probabilistic inferences in MRFs, where each
dynamic update can change the underlying graph and all parameters of the MRF simultaneously,
as long as the total amount of changes is bounded. More precisely, suppose that the MRF has
n variables and polylogarithmic-bounded maximum degree, and N(n) independent samples are
sufficient for the inference for a polynomial function N(·). Our algorithm dynamically maintains an
answer to the inference problem using Õ(nN(n)) space cost, and Õ(N(n) + n) incremental time
cost upon each update to the MRF, as long as the Dobrushin-Shlosman condition is satisfied by
the MRFs. This well-known condition has long been used for guaranteeing the efficiency of Markov
chain Monte Carlo (MCMC) sampling in the traditional static setting. Compared to the static case,
which requires Ω(nN(n)) time cost for redrawing all N(n) samples whenever the MRF changes,
our dynamic algorithm gives a Ω̃(min{n,N(n)})-factor speedup. Our approach relies on a novel
dynamic sampling technique, which transforms local Markov chains (a.k.a. single-site dynamics)
to dynamic sampling algorithms, and an “algorithmic Lipschitz” condition that we establish for
sampling from graphical models, namely, when the MRF changes by a small difference, samples can
be modified to reflect the new distribution, with cost proportional to the difference on MRF.
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1 Introduction

The probabilistic graphical models provide a rich language for describing high-dimensional
distributions in terms of the dependence structures between random variables. The Markov
random filed (MRF) is a basic graphical model that encodes pairwise interactions of complex
systems. Given a graph G = (V,E), each vertex v ∈ V is associated with a function
φv : Q→ R, called the vertex potential, on a finite domain Q = [q] of q spin states, and each
edge e ∈ E is associated with a symmetric function φe : Q2 → R, called the edge potential,
which describes a pairwise interaction. Together, these induce a probability distribution µ
over all configurations σ ∈ QV :

µ(σ) ∝ exp(H(σ)) = exp
(∑
v∈V

φv(σv) +
∑

e={u,v}∈E

φe(σu, σv)
)
.

This distribution µ is known as the Gibbs distribution and H(σ) is the Hamiltonian. It arises
naturally from various physical models, statistics or learning problems, and combinatorial
problems in computer science [29, 25].

The probabilistic inference is one of the most fundamental computational problems in
graphical model. Some basic inference problems ask to calculate the marginal distribution,
conditional distribution, or maximum-a-posteriori probabilities of one or several random
variables [37]. Sampling is perhaps the most widely used approach for probabilistic inference.
Given a graphical model, independent samples are drawn from the Gibbs distribution and
certain statistics are computed using the samples to give estimates for the inferred quantity.
For most typical inference problems, such statistics are easy to compute once the samples
are given, for instance, for estimating the marginal distribution on a variable subset S, the
statistics is the frequency of each configuration in QS among the samples, thus the cost for
inference is dominated by the cost for generating random samples [24, 35].

The classic probabilistic inference assumes a static setting, where the input graphical
model is fixed. In today’s application, dynamically changing graphical models naturally arise
in many scenarios. In various practical algorithms for learning graphical models, e.g. the
contrastive divergence algorithm for learning the restricted Boltzmann machine [22] and
the iterative proportional fitting algorithm for maximum likelihood estimation of graphical
models [37], the optimal model I∗ is obtained by updating the parameters of the graphical
model iteratively (usually by gradient descent), which generates a sequence of graphical
models I1, I2, · · · , IM , with the goal that IM is a good approximation of I∗. Also in
the study of the multivariate time-series data, the dynamic Gaussian graphical models [5],
multiregression dynamic model [32], dynamic graphical model [14], and dynamic chain graph
models [2], are all dynamically changing graphical models and have been used in a variety of
applications. Meanwhile, with the advent of Big Data, scalable machine learning systems
need to deal with continuously evolving graphical models (see e.g. [33] and [34]).

The theoretical studies of probabilistic inference in dynamically changing graphical models
are lacking. In the aforementioned scenarios in practice, it is common that a sequence of
graphical models is presented with time, where any two consecutive graphical models can
differ from each other in all potentials but by a small total amount. Recomputing the
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inference problem from scratch at every time when the graphical model is changed, can give
the correct solution, but is very wasteful. A fundamental question is whether probabilistic
inference can be solved dynamically and efficiently.

In this paper, we study the problem of probabilistic inference in an MRF when the
MRF itself is changing dynamically with time. At each time, the whole graphical model,
including all vertices and edges as well as their potentials, are subject to changes. Such
non-local updates are very general and cover all applications mentioned above. The problem
of dynamic inference then asks to maintain a correct answer to the inference in a dynamically
changing MRF with low incremental cost proportional to the amount of changes made to
the graphical model at each time.

1.1 Our results
We give a dynamic algorithm for sampling-based probabilistic inferences. Given an MRF
instance with n vertices, suppose that N(n) independent samples are sufficient to give an
approximate solution to the inference problem, where N : N+ → N+ is a polynomial function.
We give dynamic algorithms for general inference problems on dynamically changing MRF.

Suppose that the current MRF has n vertices and polylogarithmic-bounded maximum
degree, and each update to the MRF may change the underlying graph and/or all vertex/edge
potentials, as long as the total amount of changes is bounded. Our algorithm maintains
an approximate solution to the inference with Õ(nN(n)) space cost, and with Õ(N(n) + n)
incremental time cost upon each update, assuming that the MRFs satisfy the Dobrushin-
Shlosman condition [8, 9, 7]. The condition has been widely used to imply the efficiency of
Markov chain Monte Carlo (MCMC) sampling (e.g. see [19, 12]). Compared to the static
algorithm, which requires Ω(nN(n)) time for redrawing all N(n) samples each time, our
dynamic algorithm significantly improves the time cost with an Ω̃(min{n,N(n)})-factor
speedup.

On specific models, the Dobrushin-Shlosman condition has been established in the
literature, which directly gives us following efficient dynamic inference algorithms, with
Õ (nN(n)) space cost and Õ (N(n) + n) time cost per update, on graphs with n vertices and
maximum degree ∆ = O(1):

for Ising model with temperature β satisfying e−2|β| > 1 − 2
∆+1 , which is close to the

uniqueness threshold e−2|βc| = 1− 2
∆ , beyond which the static versions of sampling or

marginal inference problem for anti-ferromagnetic Ising model is intractable [17, 16];
for hardcore model with fugacity λ < 2

∆−2 , which matches the best bound known
for sampling algorithm with near-linear running time on general graphs with bounded
maximum degree [36, 28, 13];
for proper q-coloring with q > 2∆, which matches the best bound known for sampling
algorithm with near-linear running time on general graphs with bounded maximum
degree [23].

Our dynamic inference algorithm is based on a dynamic sampling algorithm, which
efficiently maintains N(n) independent samples for the current MRF while the MRF is
subject to changes. More specifically, we give a dynamic version of the Gibbs sampling
algorithm, a local Markov chain for sampling from the Gibbs distribution that has been
studied extensively. Our techniques are based on: (1) couplings for dynamic instances of
graphical models; and (2) dynamic data structures for representing single-site Markov chains
so that the couplings can be realized algorithmically in sub-linear time. Both these techniques
are of independent interest, and can be naturally extended to more general settings with
multi-body interactions.

ITCS 2021
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Our results show that on dynamically changing graphical models, sampling-based prob-
abilistic inferences can be solved significantly faster than rerunning the static algorithm at
each time. This has practical significance in speeding up the iterative procedures for learning
graphical models.

1.2 Related work
The problem of dynamic sampling from graphical models was introduced very recently
in [14]. There, a dynamic sampling algorithm was given for graphical models with soft
constraints, and can only deal with local updates that change a single vertex or edge at
each time. The regimes for such dynamic sampling algorithm to be efficient are much more
restrictive than the conditions for the rapid mixing of Markov chains. Our algorithm greatly
improves the regimes for efficient dynamic sampling for the Ising and hardcore models in [14],
and for the first time, can handle non-local updates that change all vertex/edge potentials
simultaneously. Besides, the dynamic/online sampling from log-concave distributions was
also studied in [31, 26].

Another related topic is the dynamic graph problems, which ask to maintain a solution
(e.g. spanners [15, 30, 38] or shortest paths [3, 21, 20]) while the input graph is dynamically
changing. More recently, important progress has been made on dynamically maintaining
structures that are related to graph random walks, such as spectral sparsifier [11, 1] or
effective resistances [10, 18]. Instead of one particular solution, dynamic inference problems
ask to maintain an estimate of a statistics, such statistics comes from an exponential-sized
probability space described by a dynamically changing graphical model.

1.3 Organization of the paper
In Section 2, we formally introduce the dynamic inference problem. In Section 3, we formally
state the main results. Preliminaries are given in Section 4. In Section 5, we outline our
dynamic inference algorithm. In Section 6, we present the algorithms for dynamic Gibbs
sampling. The conclusion is given in Section 7. The analyses of the dynamic sampling
algorithms and the proof of the main theorem on dynamic inference are provided in the full
version of the paper.

2 Dynamic inference problem

2.1 Markov random fields
An instance of (pairwise) Markov random field (MRF) is specified by a tuple I = (V,E,Q,Φ),
where G = (V,E) is an undirected simple graph; Q is a domain of q = |Q| spin states, for
some finite q > 1; and Φ = (φa)a∈V ∪E associates each v ∈ V a vertex potential φv : Q→ R
and each e ∈ E an edge potential φe : Q2 → R, where φe is symmetric.

A configuration σ ∈ QV maps each vertex v ∈ V to a spin state in Q, so that each
vertex can be interpreted as a variable. And the Hamiltonian of a configuration σ ∈ QV is
defined as:

H(σ) ,
∑
v∈V

φv(σv) +
∑

e={u,v}∈E

φe(σu, σv).

This defines the Gibbs distribution µI , which is a probability distribution over QV such that

∀σ ∈ QV , µI(σ) = 1
Z

exp(H(σ)),

where the normalizing factor Z ,
∑
σ∈QV exp(H(σ)) is called the partition function.
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The Gibbs measure µ(σ) can be 0 as the functions φv, φe can take the value −∞. A
configuration σ is called feasible if µ(σ) > 0. To trivialize the problem of constructing
a feasible configuration, we further assume the following natural condition for the MRF
instances considered in this paper:1

∀ v ∈ V, ∀σ ∈ QΓG(v) :
∑
c∈Q

exp
(
φv(c) +

∑
u∈Γv

φuv(σu, c)
)
> 0. (1)

where ΓG(v) , {u ∈ V | {u, v} ∈ E} denotes the neighborhood of v in graph G = (V,E).
Some well studied typical MRFs include:
Ising model: The domain of each spin is Q = {−1,+1}. Each edge e ∈ E is associated
with a temperature βe ∈ R; and each vertex v ∈ V is associated with a local field hv ∈ R.
For each configuration σ ∈ {−1,+1}V , µI(σ) ∝ exp

(∑
{u,v}∈E βeσuσv +

∑
v∈V hvσv

)
.

Hardcore model: The domain is Q = {0, 1}. Each configuration σ ∈ QV indicates an
independent set in G = (V,E), and µI(σ) ∝ λ‖σ‖, where λ > 0 is the fugacity parameter.
proper q-coloring: uniform distribution over all proper q-colorings of G = (V,E).

2.2 Probabilistic inference and sampling
In graphical models, the task of probabilistic inference is to derive the probabilities regarding
one or more random variables of the model. Abstractly, this is described by a function
θ : M→ RK that maps each graphical model I ∈M to a target K-dimensional probability
vector, where M is the class of graphical models containing the random variables we are
interested in and the K-dimensional vector describes the probabilities we want to derive.
Given θ(·) and an MRF instance I ∈ M, the inference problem asks to estimate the
probability vector θ(I).

Here are some fundamental inference problems [37] for MRF instances. Let I =
(V,E,Q,Φ) be an MRF instance and A,B ⊆ V two disjoint sets where A ]B ⊆ V .

Marginal inference: estimate the marginal distribution µA,I(·) of the variables in A,
where

∀σA ∈ QA, µA,I(σA) ,
∑

τ∈QV \A

µI(σA, τ).

Posterior inference: given any τB ∈ QB , estimate the posterior distribution µA,I(· | τB)
for the variables in A, where

∀σA ∈ QA, µA,I(σA | τB) , µA∪B,I(σA, τB)
µB,I(τB) .

Maximum-a-posteriori (MAP) inference: find the maximum-a-posteriori (MAP) probabil-
ities P ∗A,I(·) for the configurations over A, where

∀σA ∈ QA, P ∗A,I(σA) , max
τB∈QB

µA∪B,I(σA, τB).

1 This condition guarantees that the marginal probabilities are always well-defined, and the problem of
constructing a feasible configuration σ, where µI(σ) > 0, is trivial. The condition holds for all MRFs
with soft constraints, or with hard constraints where there is a permissive spin, e.g. the hardcore model.
For MRFs with truly repulsive hard constraints such as proper q-coloring, the condition may translate
to the condition q ≥ ∆ + 1 where ∆ is the maximum degree of graph G, which is necessary for the
irreducibility of local Markov chains for q-colorings.
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All these fundamental inference problems can be described abstractly by a function θ : M→
RK . For instances, for marginal inference, M contains all MRF instances where A is a
subset of the vertices, K = |Q||A|, and θ(I) = (µA,I(σA))σA∈QA ; and for posterior or MAP
inference, M contains all MRF instances where A ]B is a subset of the vertices, K = |Q||A|

and θ(I) = (µA,I(σA | τB))σA∈QA (for posterior inference) or θ(I) = (P ∗A,I(σA))σA∈QA (for
MAP inference).

One canonical approach for probabilistic inference is by sampling: sufficiently many
independent samples are drawn (approximately) from the Gibbs distribution of the MRF
instance and an estimate of the target probabilities is calculated from these samples. Given
a probabilistic inference problem θ(·), we use Eθ(·) to denote an estimating function that
approximates θ(I) using independent samples drawn approximately from µI . For the
aforementioned problems of marginal, posterior and MAP inferences, such estimating function
Eθ(·) simply counts the frequency of the samples that satisfy certain properties.

The sampling cost of an estimator is captured in two aspects: the number of samples it
uses and the accuracy of each individual sample it requires.

I Definition 1 ((N, ε)-estimator for θ). Let θ : M→ RK be a probabilistic inference problem
and Eθ(·) an estimating function for θ(·) that for each instance I = (V,E,Q,Φ) ∈M, maps
samples in QV to an estimate of θ(I). Let N : N+ → N+ and ε : N+ → (0, 1). For any
instance I = (V,E,Q,Φ) ∈ M where n = |V |, the random variable Eθ(X(1), . . . ,X(N(n)))
is said to be an (N, ε)-estimator for θ(I) if X(1), . . . ,X(N(n)) ∈ QV are N(n) independent
samples drawn approximately from µI such that dTV

(
X(j), µI

)
≤ ε(n) for all 1 ≤ j ≤ N(n).

In Definition 1, an estimator is viewed as a black-box algorithm specified by two functions
N and ε. Usually, the estimator is more accurate if more independent samples are drawn
and each sample provides a higher level of accuracy. Thus, one can choose some large N and
small ε to achieve a desired quality of estimate.

2.3 Dynamic inference problem
We consider the inference problem where the input graphical model is changed dynamically:
at each step, the current MRF instance I = (V,E,Q,Φ) is updated to a new instance
I ′ = (V ′, E′, Q,Φ′). We consider general update operations for MRFs that can change
both the underlying graph and all edge/vertex potentials simultaneously, where the
update request is made by a non-adaptive adversary independently of the randomness used
by the inference algorithm. Such updates are general enough and cover many applications,
e.g. analyses of time series network data [5, 32, 14, 2], and learning algorithms for graphical
models [22, 37].

The difference between the original and the updated instances is measured as follows.

I Definition 2 (difference between MRF instances). The difference between two MRF instances
I = (V,E,Q,Φ) and I ′ = (V ′, E′, Q,Φ′), where Φ = (φa)a∈V ∪E and Φ′ = (φ′a)a∈V ′∪E′ , is
defined as

d(I, I ′) ,
∑

v∈V ∩V ′

‖φv − φ′v‖1 +
∑

e∈E∩E′

‖φe − φ′e‖1 + |V ⊕ V ′|+ |E ⊕ E′|, (2)

where A⊕B = (A \B)∪ (B \A) stands for the symmetric difference between two sets A and
B, ‖φv − φ′v‖1 ,

∑
c∈Q |φv(c)− φ′v(c)|, and ‖φe − φ′e‖1 ,

∑
c,c′∈Q |φe(c, c′)− φ′e(c, c′)|.
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Given a probability vector specified by the function θ : M→ RK , the dynamic inference
problem asks to maintain an estimator θ̂(I) of θ(I) for the current MRF instance I =
(V,E,Q,Φ) ∈M, with a data structure, such that when I is updated to I ′ = (V ′, E′, Q,Φ′) ∈
M, the algorithm updates θ̂(I) to an estimator θ̂(I ′) of the new vector θ(I ′), or equivalently,
outputs the difference between the estimators θ̂(I) and θ̂(I ′).

It is desirable to have the dynamic inference algorithm which maintains an (N, ε)-estimator
for θ(I) for the current instance I. However, the dynamic algorithm cannot be efficient if
N(n) and ε(n) change drastically with n (so that significantly more samples or substantially
more accurate samples may be needed when a new vertex is added), or if recalculating the
estimating function Eθ(·) itself is expensive. We introduce a notion of dynamical efficiency
for the estimators that are suitable for dynamic inference.

I Definition 3 (dynamical efficiency). Let N : N+ → N+ and ε : N+ → (0, 1). Let E(·) be an
estimating function for some K-dimensional probability vector of MRF instances. An tuple
(N, ε, E) is said to be dynamically efficient if it satisfies:

(bounded difference) there exist constants C1, C2 > 0 such that for any n ∈ N+,

|N(n+ 1)−N(n)| ≤ C1 ·N(n)
n

and |ε(n+ 1)− ε(n)| ≤ C2 · ε(n)
n

;

(small incremental cost) there is a deterministic algorithm that maintains E(X(1), . . . ,

X(m)) using (mn + K) · polylog(mn) bits where X(1), . . . ,X(m) ∈ QV and n = |V |,
such that when X(1), . . . ,X(m) ∈ QV are updated to Y (1), . . . ,Y (m′) ∈ QV

′ , where
n′ = |V ′|, the algorithm updates E(X(1), . . . ,X(m)) to E(Y (1), . . . ,Y (m′)) within time
cost D · polylog(mm′nn′) +O(m+m′), where D is the size of the difference between two
sample sequences defined as:

D ,
∑

i≤max{m,m′}

∑
v∈V ∪V ′

1
[
X(i)(v) 6= Y (i)(v)

]
, (3)

where an unassigned X(i)(v) or Y (i)(v) is not equal to any assigned spin.

The dynamic efficiency basically asks N(·), ε(·), and E(·) to have some sort of “Lipschitz”
properties. To satisfy the bounded difference condition, N(n) and 1/ε(n) are necessarily
polynomially bounded, and they can be any constant, polylogarithmic, or polynomial
functions, or multiplications of such functions. The condition with small incremental cost
also holds very commonly. In particular, it is satisfied by the estimating functions for all
the aforementioned problems for the marginal, posterior and MAP inferences as long as the
sets of variables have sizes |A| , |B| = O(logn). We remark that the O(logn) upper bound is
somehow necessary for the efficiency of inference, because otherwise the dimension of θ(I)
itself (which is at least q|A|) becomes super-polynomial in n.

3 Main results

Let I = (V,E,Q,Φ) be an MRF instance, where G = (V,E). Let ΓG(v) denote the
neighborhood of v in G. For any vertex v ∈ V and any configuration σ ∈ QΓG(v), we use
µσv,I(·) = µv,I(· | σ) to denote the marginal distribution on v conditional on σ:

∀c ∈ Q : µσv,I(c) = µv,I(c | σ) ,
exp

(
φv(c) +

∑
u∈ΓG(v) φuv(σu, c)

)
∑
a∈Q exp

(
φv(a) +

∑
u∈ΓG(v) φuv(σu, a)

) .
Due to the assumption in (1), the marginal distribution is always well-defined. The following
condition is the Dobrushin-Shlosman condition [8, 9, 7, 19, 12].
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I Condition 4 (Dobrushin-Shlosman condition). Let I = (V,E,Q,Φ) be an MRF instance
with Gibbs distribution µ = µI . Let AI ∈ RV×V≥0 be the influence matrix which is defined as

AI(u, v) ,
{

max(σ,τ)∈Bu,v
dTV (µσv , µτv) , {u, v} ∈ E,

0 {u, v} 6∈ E,

where the maximum is taken over the set Bu,v of all (σ, τ) ∈ QΓG(v)×QΓG(v) that differ only
at u, and dTV (µσv , µτv) , 1

2
∑
c∈Q |µσv (c)− µτv(c)| is the total variation distance between µσv

and µτv . An MRF instance I is said to satisfy the Dobrushin-Shlosman condition if there is
a constant δ > 0 such that

max
u∈V

∑
v∈V

AI(u, v) ≤ 1− δ.

Our main theorem assumes the following setup: Let θ : M → RK be a probabilistic
inference problem that maps each MRF instance in M to a K-dimensional probability vector,
and let Eθ be its estimating function. Let N : N+ → N+ and ε : N+ → (0, 1). We use I =
(V,E,Q,Φ) ∈M, where n = |V |, to denote the current instance and I ′ = (V ′, E′, Q,Φ′) ∈M,
where n′ = |V ′|, to denote the updated instance.

I Theorem 5 (dynamic inference algorithm). Assume that (N, ε, Eθ) is dynamically efficient,
both I and I ′ satisfy the Dobrushin-Shlosman condition, and d(I, I ′) ≤ L = o(n).

There is an algorithm that maintains an (N, ε)-estimator θ̂(I) of the probability vector
θ(I) for the current MRF instance I, using Õ (nN(n) +K) bits, such that when I is updated
to I ′, the algorithm updates θ̂(I) to an (N, ε)-estimator θ̂(I ′) of θ(I ′) for the new instance
I ′, within expected time cost

Õ
(
∆2LN(n) + ∆n

)
,

where Õ(·) hides a polylog(n) factor, ∆ = max{∆G,∆G′}, where ∆G and ∆G′ denote the
maximum degree of G = (V,E) and G′ = (V ′, E′) respectively.

Note that the extra O(∆n) cost is necessary for editing the current MRF instance I to I ′.
Typically, the difference between two MRF instances I, I ′ is small2, and the underlying

graphs are sparse [6] , that is, L,∆ ≤ polylog(n). In such cases, our algorithm updates the
estimator within time cost Õ(N(n) + n), which significantly outperforms static sampling-
based inference algorithms that require time cost Ω(n′N(n′)) = Ω(nN(n)) for redrawing all
N(n′) independent samples.

Dynamic sampling. The core of our dynamic inference algorithm is a dynamic sampling
algorithm: Assuming the Dobrushin-Shlosman condition, the algorithm can maintain a
sequence of N(n) independent samples X(1), . . . ,X(N(n)) ∈ QV that are ε(n)-close to µI
in total variation distance, and when I is updated to I ′ with difference d(I, I ′) ≤ L =
o(n), the algorithm can update the maintained samples to N(n′) independent samples
Y (1), . . . ,Y (N(n′)) ∈ QV ′ that are ε(n′)-close to µI′ in total variation distance, using a time
cost Õ

(
∆2LN(n) + ∆n

)
in expectation. This shows an “algorithmic Lipschitz” condition

2 In multivariate time-series data analysis, the MRF instances of two sequential times are similar. In the
iterative algorithms for learning graphical models, the difference between two sequential MRF instances
generated by gradient descent are bounded to prevent oscillations. Specifically, the difference is very
small when the iterative algorithm approaches to the convergence state [22, 37].
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holds for sampling from Gibbs distributions: when the MRF changes insignificantly, a
population of samples can be modified to reflect the new distribution, with cost proportional
to the difference on MRF. We show that such property is guaranteed by the Dobrushin-
Shlosman condition. This dynamic sampling algorithm is formally described in Theorem 9
and is of independent interest [14].

Applications on specific models. On specific models, we have the following results, where
δ > 0 is an arbitrary constant.

Table 1 Dynamic inference for specific models.

model regime space cost time cost for each update

Ising e−2|β| ≥ 1− 2−δ
∆+1 Õ (nN(n) +K) Õ

(
∆2LN(n) + ∆n

)
hardcore λ ≤ 2−δ

∆−2 Õ (nN(n) +K) Õ
(
∆3LN(n) + ∆n

)
q-coloring q ≥ (2 + δ)∆ Õ (nN(n) +K) Õ

(
∆2LN(n) + ∆n

)
The results for Ising model and q-coloring are corollaries of Theorem 5. The regime for
hardcore model is better than the Dobrushin-Shlosman condition (which is λ ≤ 1−δ

∆−1 ), because
we use the coupling introduced by Vigoda [36] to analyze the algorithm.

4 Preliminaries

Total variation distance and coupling. Let µ and ν be two distributions over Ω. The total
variation distance between µ and ν is defined as

dTV (µ, ν) , 1
2
∑
x∈Ω
|µ(x)− ν(x)| .

A coupling of µ and ν is a joint distribution (X,Y ) ∈ Ω×Ω such that marginal distribution of
X is µ and the marginal distribution of Y is ν. The following coupling lemma is well-known.

I Proposition 6 (coupling lemma). For any coupling (X,Y ) of µ and ν, it holds that

Pr[X 6= Y ] ≥ dTV (µ, ν) .

Furthermore, there is an optimal coupling that achieves equality.

Local neighborhood. Let G = (V,E) be a graph. For any vertex v ∈ V , let ΓG(v) ,
{u ∈ V | {u, v} ∈ E} denote the neighborhood of v, and Γ+

G(v) , ΓG(v) ∪ {v} the inclusive
neighborhood of v. We simply write Γv = Γ(v) = ΓG(v) and Γ+

v = Γ+(v) = Γ+
G(v) for short

when G is clear in the context. We use ∆ = ∆G , maxv∈V |Γv| to denote the maximum
degree of graph G.

A notion of local neighborhood for MRF is frequently used. Let I = (V,E,Q,Φ)
be an MRF instance. For v ∈ V , we denote by Iv , I[Γ+

v ] the restriction of I on the
inclusive neighborhood Γ+

v of v, i.e. Iv = (Γ+
v , Ev, Q,Φv), where Ev = {{u, v} ∈ E} and

Φv = (φa)a∈Γ+
v ∪Ev

.
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Gibbs sampling. The Gibbs sampling (a.k.a. heat-bath, Glauber dynamics), is a classic
Markov chain for sampling from Gibbs distributions. Let I = (V,E,Q,Φ) be an MRF
instance and µ = µI its Gibbs distribution. The chain of Gibbs sampling (Algorithm 1) is
on the space Ω , QV , and has the stationary distribution µI [27, Chapter 3].

Algorithm 1 Gibbs sampling.

Initialization : an initial state X0 ∈ Ω (not necessarily feasible);
1 for t = 1, 2, . . . , T do
2 pick vt ∈ V uniformly at random;
3 draw a random value c ∈ Q from the marginal distribution µvt(· | Xt−1(Γvt));
4 Xt(vt)← c and Xt(u)← Xt−1(u) for all u ∈ V \ {vt};

Marginal distributions. Here µv(· | σ(Γv)) = µv,I(· | σ(Γv)) denotes the marginal distribu-
tion at v ∈ V conditioning on σ(Γv) ∈ QΓv , which is computed as:

∀c ∈ Q : µv(c | σ(Γv)) =
φv(c)

∏
u∈Γv

φuv(σu, c)∑
c′∈Q φv(c′)

∏
u∈Γv

φuv(σu, c′)
. (4)

Due to the assumption (1), this marginal distribution is always well defined, and its compu-
tation uses only the information of Iv.

Coupling for mixing time. Consider a chain (Xt)∞t=0 on space Ω with stationary distribution
µI for MRF instance I. The mixing rate is defined as: for ε > 0,

τmix(I, ε) , max
X0

min {t | dTV (Xt, µI) ≤ ε} ,

where dTV (Xt, µI) denotes the total variation distance between µI and the distribution
of Xt.

A coupling of a Markov chain is a joint process (Xt,Yt)t≥0 such that (Xt)t≥0 and (Yt)t≥0
marginally follow the same transition rule as the original chain. Consider the following type
of couplings.
I Definition 7 (one-step optimal coupling for Gibbs sampling). A coupling (Xt,Yt)t≥0 of
Gibbs sampling on an MRF instance I = (V,E,Q,Φ) is a one-step optimal coupling if it is
constructed as follows: For t = 1, 2, . . .,
1. pick the same random vt ∈ V , and let (Xt(u), Yt(u))← (Xt−1(u), Yt−1(u)) for all u 6= vt;
2. sample (Xt(vt), Yt(vt)) from an optimal coupling Dσ,τ

opt,Ivt
(·, ·) of the marginal distributions

µvt
(· | σ) and µvt

(· | τ) where σ = Xt−1(Γvt
) and τ = Yt−1(Γvt

).
The coupling Dσ,τ

opt,Ivt
(·, ·) is an optimal coupling of µvt

(· | σ) and µvt
(· | τ) that attains

the maximum Pr[x = y] for all couplings (x,y) of x ∼ µvt
(· | σ) and y ∼ µvt

(· | τ). The
coupling Dσ,τ

opt,Ivt
(·, ·) is determined by the local information Iv and σ, τ ∈ Qdeg(v).

With such a coupling, we can establish the following relation between the Dobrushin-
Shlosman condition and the rapid mixing of the Gibbs sampling [8, 9, 7, 4, 19, 12].
I Proposition 8 ([4, 19]). Let I = (V,E,Q,Φ) be an MRF instance with n = |V |, and
Ω = QV the state space. Let H(σ, τ) , |{v ∈ V | σv 6= τv}| denote the Hamming distance
between σ ∈ Ω and τ ∈ Ω. If I satisfies the Dobrushin-Shlosman condition (Condition 4)
with constant δ > 0, then the one-step optimal coupling (Xt,Yt)t≥0 for Gibbs sampling
(Definition 7) satisfies

∀σ, τ ∈ Ω : E [H(Xt,Yt) |Xt−1 = σ ∧ Yt−1 = τ ] ≤
(

1− δ

n

)
·H(σ, τ),

and hence the mixing rate of Gibbs sampling on I is bounded as τmix(I, ε) ≤
⌈
n
δ log n

ε

⌉
.
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5 Outlines of algorithm

Let θ : M → RK be a probabilistic inference problem that maps each MRF instance
in M to a K-dimensional probability vector, and let Eθ be its estimating function. Le
I = (V,E,Q,Φ) ∈ M be the current instance, where n = |V |. Our dynamic inference
algorithm maintains a sequence of N(n) independent samples X(1), . . . ,X(N(n)) ∈ QV which
are ε(n)-close to the Gibbs distribution µI in total variation distance and an (N, ε)-estimator
θ̂(I) of θ(I) such that

θ̂(I) = Eθ(X(1),X(2), . . . ,X(N(n))).

Upon an update request that modifies I to a new instance I ′ = (V ′, E′, Q,Φ′) ∈M, where
n′ = |V ′|, our algorithm does the followings:

Update the sample sequence. Update X(1), . . . ,X(N(n)) to a new sequence of N(n′)
independent samples Y (1), . . . ,Y (N(n′)) ∈ QV ′ that are ε(n′)-close to µI′ in total variation
distance, and output the difference between two sample sequences.
Update the estimator. Given the difference between the two sample sequences, update
θ̂(I) to θ̂(I ′) = Eθ(Y (1), . . . ,Y (N(n′))) by accessing the oracle in Definition 3.

Obviously, the updated estimator θ̂(I ′) is an (N, ε)-estimator for θ(I ′).
Our main technical contribution is to give an algorithm that dynamically maintains

a sequence of N(n) independent samples for µI , while I itself is dynamically changing.
The dynamic sampling problem was recently introduced in [14]. The dynamical sampling
algorithm given there only handles update of a single vertex or edge and works only for
graphical models with soft constraints.

In contrast, our dynamic sampling algorithm maintains a sequence of N(n) independent
samples for µI within total variation distance ε(n), while the entire specification of the
graphical model I is subject to dynamic update (to a new I ′ with difference d(I, I ′) ≤
L = o(n)). Specifically, the algorithm updates the sample sequence within expected time
O(∆2N(n)L log3 n+ ∆n). Note that the extra O(∆n) cost is necessary for just editing the
current MRF instance I to I ′ because a single update may change all the vertex and edge
potentials simultaneously. This incremental time cost dominates the time cost of the dynamic
inference algorithm, and is efficient for maintaining N(n) independent samples, especially
when N(n) is sufficiently large, e.g. N(n) = Ω(n/L), in which case the average incremental
cost for updating each sample is O(∆2L log3 n+ ∆n/N(n)) = O(∆2L log3 n).

We illustrate the main idea by explaining how to maintain one sample. The idea is
to represent the trace of the Markov chain for generating the sample by a dynamic data
structure, and when the MRF instance is changed, this trace is modified to that of the new
chain for generating the sample for the updated instance. This is achieved by both a set of
efficient dynamic data structures and the coupling between the two Markov chains.

Specifically, let (Xt)Tt=0 be the Gibbs sampler chain for distribution µI . When the chain
is rapidly mixing, starting from an arbitrary initial configuration X0 ∈ QV , after suitably
many steps X = XT is an accurate enough sample for µI . At each step, Xt−1 and Xt may
differ only at a vertex vt which is picked from V uniformly and independently at random.
The evolution of the chain is fully captured by the initial state X0 and the sequence of pairs
〈 vt, Xt(vt) 〉, from t = 1 to t = T , which is called the execution log of the chain in the paper.

Now suppose that the current instance I is updated to I ′. We construct such a coupling
between the original chain (Xt)Tt=0 and the new chain (Yt)Tt=0, such that (Yt)Tt=0 is a faithful
Gibbs sampling chain for the updated instance I ′ given that (Xt)Tt=0 is a faithful chain for
I, and the difference between the two chains is small, in the sense that they have almost the
same execution logs except for about O(TL/n) steps, where L is the difference between I
and I ′.
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To simplify the exposition of such coupling, for now we restrict ourselves to the cases
where the update to the instance I does not change the set of variables. Without loss of
generality, we only consider the following two basic update operations that modifies I to I ′.

Graph update. The update only adds or deletes some edges, while all vertex potentials
and the potentials of unaffected edges are not changed.
Hamiltonian update. The update changes (possibly all) potentials of vertices and edges,
while the underlying graph remains unchanged.

The general update of graphical model can be obtained by combining these two basic
operations.

Then the new chain (Yt)Tt=0 can be coupled with (Xt)Tt=0 by using the same initial
configuration Y0 = X0 and the same sequence v1, v2, . . . , vT ∈ V of randomly picked vertices.
And for t = 1, 2, . . . , T , the transition 〈 vt, Yt(vt) 〉 of the new chain can be generated using
the same vertex vt as in the original (Xt)Tt=0 chain, and a random Yt(vt) generated according
to a coupling of the marginal distributions of Xt(vt) and Yt(vt), conditioning respectively on
the current states of the neighborhood of vt in (Xt)Tt=0 and (Yt)Tt=0. Note that these two
marginal distributions must be identical unless (I) Xt−1 and Yt−1 differ from each other
over the neighborhood of vt or (II) the vt itself is incident to where the models I and I ′
differ. The event (II) occurs rarely due to the following reasons.

For graph update, the event (II) occurs only if vt is incident to an updated edge. Since
only L edges are updated, the event occurs in at most O(TL/n) steps in expectation.
For Hamiltonian update, all the potentials of vertices and edges can be changed, thus
I, I ′ may differ everywhere. The key observation is that, as the total difference between
the current and updated potentials is bounded by L, we can apply a filter to first select
all candidate steps where the coupling may actually fail due to the difference between
I and I ′, which can be as small as O(TL/n), and the actual coupling between (Xt)∞t=0
and (Yt)∞t=0 is constructed with such prior.

Finally, when I and I ′ both satisfy the Dobrushin-Shlosman condition, the percolation of
disagreements between (Xt)Tt=0 and (Yt)Tt=0 is bounded, and we show that the two chains
are almost always identically coupled as 〈 vt, Xt(vt) 〉 = 〈 vt, Yt(vt) 〉, with exceptions at
only O(TL/n) steps. The original chain (Xt)Tt=0 can then be updated to the new chain
(Yt)Tt=0 by only editing these O(TL/n) local transitions 〈 vt, Yt(vt) 〉 which are different from
〈 vt, Xt(vt) 〉. This is aided by the dynamic data structure for the execution log of the chain,
which is of independent interest.

6 Dynamic Gibbs sampling

In this section, we give the dynamic sampling algorithm that updates the sample sequences.
In the following theorem, we use I = (V,E,Q,Φ), where n = |V |, to denote the current

MRF instance and I ′ = (V ′, E′, Q,Φ′), where n′ = |V ′|, to denote the updated MRF instance.
And define

dgraph(I, I ′) , |V ⊕ V ′|+ |E ⊕ E′|

dHamil(I, I ′) ,
∑

v∈V ∩V ′

‖φv − φ′v‖1 +
∑

e∈E∩E′

‖φe − φ′e‖1 .

Note that d(I, I ′) = dgraph(I, I ′) + dHamil(I, I ′), where d(I, I ′) is defined in (2).
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I Theorem 9 (dynamic sampling algorithm). Let N : N+ → N+ and ε : N+ → (0, 1) be
two functions satisfying the bounded difference condition in Definition 3. Assume that
I and I ′ both satisfy Dobrushin-Shlosman condition, dgraph(I, I ′) ≤ Lgraph = o(n) and
dHamil(I, I ′) ≤ LHamil.

There is an algorithm that maintains a sequence of N(n) independent samples X(1), . . . ,

X(N(n)) ∈ QV where dTV
(
µI ,X

(i)) ≤ ε(n) for all 1 ≤ i ≤ N(n), using O (nN(n) logn)
memory words, each of O(logn) bits, such that when I is updated to I ′, the algorithm updates
the sequence to N(n′) independent samples Y (1), . . . ,Y (N(n′)) ∈ QV ′ where dTV

(
µI′ ,Y (i)) ≤

ε(n′) for all 1 ≤ i ≤ N(n′), within expected time cost

O
(
∆2(Lgraph + LHamil)N(n) log3 n+ ∆n

)
, (5)

where ∆ = max{∆G,∆G′}, and ∆G,∆G′ denote the maximum degree of G = (V,E) and
G′ = (V ′, E′).

Our algorithm is based on the Gibbs sampling algorithm. Let N : N+ → N+ and
ε : N+ → (0, 1) be two functions in Theorem 9. We first give the single-sample dynamic
Gibbs sampling algorithm (Algorithm 2) that maintains a single sample X ∈ QV for the
current MRF instance I = (V,E,Q,Φ) where n = |V | such that dTV (X, µI) ≤ ε(n). We
then use this algorithm to obtain the multi-sample dynamic Gibbs sampling algorithm that
maintains N(n) independent samples for the current instance.

Given the error function ε : N+ → (0, 1), suppose that T (I) is an easy-to-compute
integer-valued function that upper bounds the mixing time on instance I, such that

T (I) ≥ τmix(I, ε(n)), (6)

where τmix(I, ε(n)) denotes the mixing rate for the Gibbs sampling chain (Xt)t≥0 on instance
I. By Proposition 8, if the Dobrushin-Shlosman condition is satisfied, we can set

T (I) =
⌈
n

δ
log n

ε(n)

⌉
. (7)

Our algorithm for single-sample dynamic Gibbs sampling maintains a random process
(Xt)Tt=0, which is a Gibbs sampling chain on instance I of length T = T (I), where T (I)
satisfies (6). Clearly XT is a sample for µI with dTV (XT , µI) ≤ ε(n).

When the current instance I is updated to a new instance I ′ = (V ′, E′, Q,Φ′) where
n′ = |V ′|, the original process (Xt)Tt=0 is transformed to a new process (Yt)T

′

t=0 such that the
following holds as an invariant: (Yt)T

′

t=0 is a Gibbs sampling chain on I ′ with T ′ = T (I ′).
Hence YT is a sample for the new instance I ′ with dTV (YT , µI′) ≤ ε(n′). This is achieved
through the following two steps:
1. We construct couplings between (Xt)Tt=0 and (Yt)T

′

t=0, so that the new process (Yt)T
′

t=0
for I ′ can be obtained by making small changes to the original process (Xt)Tt=0 for I.

2. We give a data structure which represents (Xt)Tt=0 incrementally and supports various
updates and queries to (Xt)Tt=0 so that the above coupling can be generated efficiently.

The data structure is provided in the full version. In the following, we give the couplings.

6.1 Coupling for dynamic instances
The Gibbs sampling chain (Xt)Tt=0 can be uniquely and fully recovered from: the initial state
X0 ∈ QV , and the pairs 〈vt, Xt(vt)〉Tt=1 that record the transitions. We call 〈vt, Xt(vt)〉Tt=1
the execution-log for the chain (Xt)Tt=0, and denote it with

Exe-Log(I, T ) , 〈vt, Xt(vt)〉Tt=1 .
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The following invariants are assumed for the random execution-log with an initial state.

I Condition 10 (invariants for Exe-Log). Fixed an initial state X0 ∈ QV , the followings hold
for the random execution-log Exe-Log(I, T ) = 〈vt, Xt(vt)〉Tt=1 for the Gibbs sampling chain
(Xt)Tt=0 on instance I = (V,E,Q,Φ):

T = T (I) where T (I) satisfies (6);
the random process (Xt)Tt=0 uniquely recovered from the transitions 〈vt, Xt(vt)〉Tt=1 and
the initial state X0, is identically distributed as the Gibbs sampling (Algorithm 1) on
instance I starting from initial state X0 with vt as the vertex picked at the t-th step.

Such invariants guarantee that XT provides a sample for µI with dTV (XT , µI) ≤ ε(|V |).
Suppose the current instance I is updated to a new instance I ′. We construct couplings

between the execution-log Exe-Log(I, T ) = 〈vt, Xt(vt)〉Tt=1 with initial state X0 ∈ QV for
I and the execution-log Exe-Log(I ′, T ′) = 〈v′t, Yt(v′t)〉

T ′

t=1 with initial state Y0 ∈ QV
′ for I ′.

Our goal is as follows: assuming Condition 10 for X0 and Exe-Log(I, T ), the same condition
should hold invariantly for Y0 and Exe-Log(I ′, T ′).

Unlike traditional coupling of Markov chains for the analysis of mixing time, where the
two chains start from arbitrarily distinct initial states but proceed by the same transition
rule, here the two chains (Xt)Tt=0 and (Yt)Tt=0 start from similar states but have to obey
different transition rules due to differences between instances I and I ′.

Due to the technical reason, we divide the update from I = (V,E,Q,Φ) to I ′ =
(V ′, E′, Q,Φ′) into two steps: we first update I = (V,E,Q,Φ) to

Imid = (V,E,Q,Φmid), (8)

where the potentials Φmid = (φmid
a )a∈V ∪E in the middle instance Imid are defined as

∀a ∈ V ∪ E, φmid
a ,

{
φ′a if a ∈ V ′ ∪ E′

φa if a 6∈ V ′ ∪ E′;

then we update Imid = (V,E,Q,Φmid) to I ′ = (V ′, E′, Q,Φ′). In other words, the update
from I to Imid is only caused by updating the potentials of vertices and edges, while the
underlying graph remains unchanged; and the update from Imid to I ′ is only caused by
updating the underlying graph, i.e. adding vertices, deleting vertices, adding edges and
deleting edges.

The dynamic Gibbs sampling algorithm can be outlined as follows.
UpdateHamiltonian: update X0 and 〈vt, Xt(vt)〉Tt=1 to a new initial state Z0 and a new
execution log Exe-Log(Imid, T ) = 〈ut, Zt(ut)〉Tt=1 such that the random process (Zt)Tt=0 is
the Gibbs sampling on instance Imid.
UpdateGraph: update Z0 and 〈ut, Zt(ut)〉Tt=1 to a new initial state Y0 and a new execution
log Exe-Log(I ′, T ) = 〈v′t, Yt(v′t)〉

T
t=1 such that the random process (Yt)Tt=0 is the Gibbs

sampling on instance I ′.
LengthFix: change the length of the execution log 〈v′t, Yt(v′t)〉

T
t=1 from T to T ′, where

T ′ = T (I ′) and T (I ′) satisfies (6).
The dynamic Gibbs sampling algorithm is given in Algorithm 2.

The subroutine LengthFix is given in Algorithm 3. The subroutine UpdateGraph is provided
in the full version of the paper. In the following, we give the subroutines UpdateHamiltonian.

We consider the update of changing potentials of vertices and edges. The update do not
change the underlying graph. Let I = (V,E,Q,Φ) be the current MRF instance. Let X0 and
〈vt, Xt(vt)〉Tt=1 be the current initial state and execution log such that the random process
(Xt)Tt=0 is the Gibbs sampling on instance I. Upon such an update, the new instance becomes
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Algorithm 2 Dynamic Gibbs sampling.

Data :X0 ∈ QV and Exe-Log(I, T ) = 〈vt, Xt(vt)〉Tt=1 for current I = (V,E,Q,Φ).
Update : an update that modifies I to I ′ = (V ′, E′, Q,Φ′).

1 compute T ′ = T (I ′) satisfying (6) and construct Imid = (V ′, E′, Q,Φmid) as in (8);
2
(
Z0, 〈ut, Zt(ut)〉Tt=1

)
← UpdateHamiltonian

(
I, Imid,X0, 〈vt, Xt(vt)〉Tt=1

)
;

// update the potentials: I → Imid

3
(
Y0, 〈v′t, Yt(v′t)〉

T
t=1

)
← UpdateGraph

(
Imid, I ′,Z0, 〈ut, Zt(ut)〉Tt=1

)
;

// update the underlying graph: Imid → I ′

4
(
Y0, 〈v′t, Yt(v′t)〉

T ′

t=1

)
← LengthFix

(
I ′,Y0, 〈v′t, Yt(v′t)〉

T
t=1 , T

′
)
, where T ′ = T (I ′) ;

// change the length of the execution log from T to T ′ = T (I ′)
5 update the data to Y0 and Exe-Log(I ′, T ′) = 〈v′t, Yt(v′t)〉

T ′

t=1;

Algorithm 3 LengthFix
(
I,X0, 〈vt, Xt(vt)〉Tt=1 , T

′).
Data :X0 ∈ QV and Exe-Log(I, T ) = 〈vt, Xt(vt)〉Tt=1 for current I = (V,E,Q,Φ).
Input : the new length T ′ > 0.

1 if T ′ < T then
2 truncate 〈vt, Xt(vt)〉Tt=1 to 〈vt, Xt(vt)〉T

′

t=1;
3 else
4 extend 〈vt, Xt(vt)〉Tt=1 to 〈vt, Xt(vt)〉T

′

t=1 by simulating the Gibbs sampling chain
on I for T − T ′ more steps;

5 update the data to X0 and Exe-Log(I, T ′) = 〈vt, Xt(vt)〉T
′

t=1

I ′ = (V,E,Q,Φ′). The algorithm UpdateHamiltonian(I, I ′,X0, 〈vt, Xt(vt)〉Tt=1) updates the
data to Y0 and 〈v′t, Yt(v′t)〉

T
t=1 such that the random process (Yt)Tt=0 is the Gibbs sampling

on instance I ′.
We transform the pair of X0 ∈ QV and 〈vt, Xt(vt)〉Tt=1 to a new pair of Y0 ∈ QV and

〈vt, Yt(vt)〉Tt=1 for I ′. This is achieved as follows: the vertex sequence (vt)Tt=1 is identically
coupled and the chain (Xt)Tt=0 is transformed to (Yt)Tt=0 by the following one-step local
coupling between X and Y .

I Definition 11 (one-step local coupling for Hamiltonian update). The two chains (Xt)∞t=0 on
instance I = (V,E,Q,Φ) and (Yt)∞t=0 on instance I ′ = (V,E,Q,Φ′) are coupled as:

Initially X0 = Y0 ∈ QV ;
for t = 1, 2, . . ., the two chains X and Y jointly do:
1. pick the same vt ∈ V , and let (Xt(u), Yt(u))← (Xt−1(u), Yt−1(u)) for all u ∈ V \ {vt};
2. sample (Xt(vt), Yt(vt)) from a coupling Dσ,τ

Ivt ,I′
vt

(·, ·) of the marginal distributions
µvt,I(· | σ) and µvt,I′(· | τ) with σ = Xt−1(ΓG(vt)) and τ = Yt−1(ΓG(vt)), where
G = (V,E).

The local coupling Dσ,τ
Iv,I′

v
(·, ·) for Hamiltonian update is specified as follows.

I Definition 12 (local coupling Dσ,τ
Iv,I′

v
(·, ·) for Hamiltonian update). Let v ∈ V be vertex

and σ, τ ∈ QΓG(v) two configurations, where G = (V,E). We say a random pair (c, c′) ∈ Q2

is drawn from the coupling Dσ,τ
Iv,I′

v
(·, ·) if (c, c′) is generated by the following two steps:
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sampling step: sample (c, c′) ∈ Q2 jointly from an optimal coupling Dσ,τ
opt,Iv

of the
marginal distributions µv,I(· | σ) and µv,I(· | τ), such that c ∼ µv,I(· | σ) and c′ ∼ µv,I(· |
τ);
resampling step: flip a coin independently with the probability of HEADS being

pτIv,I′
v
(c′) ,

{
0 if µv,I(c′ | τ) ≤ µv,I′(c′ | τ),
µv,I(c′|τ)−µv,I′ (c′|τ)

µv,I(c′|τ) otherwise ;
(9)

if the outcome of coin flipping is HEADS, resample c′ from the distribution ντIv,I′
v

independently, where the distribution ντIv,I′
v
is defined as

∀b ∈ Q : ντIv,I′
v
(b) , max {0, µv,I′(b | τ)− µv,I(b | τ)}∑

x∈Q max {0, µv,I(x | τ)− µv,I′(x | τ)} . (10)

I Lemma 13. Dσ,τ
Iv,I′

v
(·, ·) in Definition 12 is a valid coupling between µv,I(· | σ) and

µv,I′(· | τ).
By Lemma 13, the resulting (Yt)Tt=0 is a faithful copy of the Gibbs sampling on instance I ′,
assuming that (Xt)Tt=0 is such a chain on instance I.

Next we give an upper bound for the probability pτIv,I′
v
(·) defined in (9).

I Lemma 14. For any two instances I = (V,E,Q,Φ) and I ′ = (V,E,Q,Φ′) of MRF model,
and any v ∈ V, c ∈ Q and σ ∈ QΓG(v), it holds that

pτIv,I′
v
(c) ≤ 2

‖φv − φ′v‖1 +
∑

e={u,v}∈E

‖φe − φ′e‖1

 , (11)

where ‖φv − φ′v‖1 =
∑
c∈Q |φv(c)− φ′v(c)| and ‖φe − φ′e‖1 =

∑
c,c′∈Q |φe(c, c′)− φ′e(c, c′)|.

By Lemma 14, for each vertex v ∈ V , we define an upper bound of the probability p·Iv,I′
v
(·)

as

pup
v , min

2

‖φv − φ′v‖1 +
∑

e={u,v}∈E

‖φe − φ′e‖1

 , 1

 . (12)

With pup
v , we can implement the one-step local coupling in Definition 11 as follows. We

first sample each vi ∈ V for 1 ≤ i ≤ T uniformly and independently. For each vertex v ∈ V ,
let Tv , {1 ≤ t ≤ T | vt = v} be the set of all the steps that pick the vertex v. We select
each t ∈ Tv independently with probability pup

v to construct a random subset Pv ⊆ Tv, and
let P ,

⋃
v∈V Pv. We then couple the two chains (Xt)Tt=0 and (Yt)Tt=0. First set X0 = Y0.

For each 1 ≤ t ≤ T , we set (Xt(u), Yt(u)) ← (Xt−1(u), Yt−1(u)) for all u ∈ V \ {vt}; then
generate the random pair (Xt(vt), Yt(vt)) by the following procedure.

sampling step: Let σ = Xt−1(ΓG(vt)) and τ = Yt−1(ΓG(vt)). We draw a random pair
(c, c′) ∈ Q2 from the optimal coupling Dσ,τ

opt,Iv
of the marginal distributions µv,I(· | σ)

and µv,I(· | τ) such that c ∼ µv,I(· | σ) and c′ ∼ µv,I(· | τ);
resampling step: If t /∈ P, set Xt(vt) = c and Yt(vt) = c′. Otherwise, set Xt(vt) = c

and

Yt(vt) =

b ∼ ν
τ
Ivt ,I′

vt
with probability pτIvt ,I′

vt
(c′)/pup

vt

c′ with probability 1− pτIvt ,I′
vt

(c′)/pup
vt
.

(13)
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Note that pup
vt
> 0 if t ∈ P. By Lemma 14, it must hold that pτIvt ,I′

vt
(c′) ≤ pup

vt
. Hence, the

probability pτIvt ,I′
vt

(c′)/pup
vt

is valid. Note that the probability that Yt(vt) is set as b is

Pr[Yt(vt) is set as b] = Pr [t ∈ P] ·
pτIvt ,I′

vt
(c′)

pup
vt

= pup
vt
·
pτIvt ,I′

vt
(c′)

pup
vt

= pτIvt ,I′
vt

(c′).

Hence, our implementation perfectly simulates the coupling in Definition 11.
Let Dt denote the set of disagreements between Xt and Yt. Formally,

Dt , {v ∈ V | Xt(v) 6= Yt(v)}.

Note that if vt /∈ ΓG(Dt−1), the random pair (c, c′) drawn from the coupling Dσ,τ
opt,Iv

must
satisfy c = c′. Thus it is easy to make the following observation for the (Xt)Tt=0 and (Yt)Tt=0
coupled as above.

I Observation 15. For any integer t ∈ [1, T ], if vt /∈ Γ+
G(Dt−1) and t /∈ P, then Xt(vt) =

Yt(vt) and Dt = Dt−1.

With this observation, the new Y0 and Exe-Log(I ′, T ) = 〈vt, Yt(vt)〉Tt=1 can be generated
from X0 and Exe-Log(I, T ) = 〈vt, Xt(vt)〉Tt=1 as Algorithm 4.

Observation 15 says that the nontrivial coupling between Xt(vt) and Yt(vt) is only needed
when vt ∈ Γ+

G(Dt−1) or t ∈ P, which occurs rarely as long as Dt−1 and P are small. This is
a key to ensure the small incremental time cost of Algorithm 4. The following lemma bounds
the expected cost for UpdateHamiltonian.

I Lemma 16 (cost of the coupling for UpdateHamiltonian). Let I = (V,E,Q,Φ) be the
current MRF instance and I ′ = (V,E,Q,Φ′) the updated instance. Assume that I satisfies
Dobrushin-Shlosman condition (Condition 4) with constant δ > 0, and dHamil(I, I ′) =∑

v∈V ‖φv − φ′v‖1+
∑
e∈E ‖φe − φ′e‖1 ≤ L. It holds that E

[∑T
t=1 1

[
t ∈ P ∨ vt ∈ Γ+

G(Dt−1)
]]

= O
(∆TL
nδ

)
, where n = |V |, ∆ is the maximum degree of graph G = (V,E).

6.2 Dynamic Gibbs sampling algorithm
The couplings constructed in Section 6.1 can be implemented as the algorithm for dynamic
Gibbs sampling. Recall dgraph(·, ·) and dHamil(·, ·) are defined in (2).

I Lemma 17 (single-sample dynamic Gibbs sampling algorithm). Let ε : N+ → (0, 1) be an
error function. Let I = (V,E,Q,Φ) be an MRF instance with n = |V | and I ′ = (V ′, E′, Q,Φ′)
the updated instance with n′ = |V ′|. Denote T = T (I), T ′ = T (I ′) and Tmax = max{T, T ′}.
Assume dgraph(I, I ′) ≤ Lgraph = o(n), dHamil(I, I ′) ≤ LHamil, and T, T ′ ∈ Ω(n logn). The
single-sample dynamic Gibbs sampling algorithm (Algorithm 2) does the followings:

(space cost) The algorithm maintains an explicit copy of a sample X ∈ QV for the
current instance I, and also a data structure using O(T ) memory words, each of O(log T )
bits, for representing an initial state X0 ∈ QV and an execution-log Exe-Log(I, T ) =
〈vt, Xt(vt)〉Tt=1 for the Gibbs sampling (Xt)Tt=0 on I generating sample X = XT .
(correctness) Assuming that Condition 10 holds for X0 and Exe-Log(I, T ) for the Gibbs
sampling on I, upon each update that modifies I to I ′, the algorithm updates X to
an explicit copy of a sample Y ∈ QV

′ for the new instance I ′, and correspondingly
updates the X0 and Exe-Log(I, T ) represented by the data structure to a Y0 ∈ QV

′ and
Exe-Log(I ′, T ′) = 〈v′t, Yt(v′t)〉

T ′

t=1 for the Gibbs sampling (Yt)T
′

t=0 on I ′ generating the
new sample Y = YT ′ , where Y0 and Exe-Log(I ′, T ′) satisfy Condition 10 for the Gibbs
sampling on I ′, therefore,

dTV (Y , µI′) ≤ ε(n′).

ITCS 2021



25:18 Dynamic Inference in Probabilistic Graphical Models

Algorithm 4 UpdateHamiltonian
(
I, I′,X0, 〈vt, Xt(vt)〉Tt=1

)
.

Data :X0 ∈ QV and Exe-Log(I, T ) = 〈vt, Xt(vt)〉Tt=1 for I = (V,E,Q,Φ).
Update : an update that modifies I to I ′ = (V,E,Q,Φ′).

1 t0 ← 0, D ← ∅, and construct a Y0 ←X0;
2 for each v ∈ V , construct a random subset Pv ⊆ Tv , {1 ≤ t ≤ T | vt = v} such that

each element in Tv is selected independently with probability pup
v defined in (12);

3 construct the set P ←
⋃
v∈V Pv;

4 while ∃ t0 < t ≤ T such that vt ∈ Γ+
G(D) or t ∈ P do

5 find the smallest t > t0 such that vt ∈ Γ+
G(D) or t ∈ P;

6 for all t0 < i < t, let Yi(vi) = Xi(vi);
7 sample Yt(vt) ∈ Q conditioning on Xt(vt) according to the optimal coupling

between µvt,I(· | Xt−1(ΓG(vt))) and µvt,I(· | Yt−1(ΓG(vt)));
8 if t ∈ P then
9 with probability pτIvt ,I′

vt
(Yt(vt))/pup

vt
where τ = Yt−1(ΓG(vt)) do

10 resample Yt(vt) ∼ ντIvt ,I′
vt
, where ντIvt ,I′

vt
is defined in (10) ;

11 if Xt(vt) 6= Yt(vt) then D ← D ∪ {vt} else D ← D \ {vt};
12 t0 ← t;
13 for all remaining t0 < i ≤ T : let Yi(vi) = Xi(vi);
14 update the data to Y0 and Exe-Log(I ′, T ) = 〈vt, Yt(vt)〉Tt=1;

(time cost) Assuming Condition 10 for X0 and Exe-Log(I, T ) for the Gibbs sampling
on I, the expected time complexity for resolving an update is

O

(
∆n+ ∆

(
|T − T ′|+

(
∆ logn+ Tmax

n

)
(LHamil + Lgraph)

)
log2 Tmax

)
,

where ∆ = max{∆G,∆G′}, ∆G,∆G′ denote the maximum degrees of G = (V,E) and
G′ = (V ′, E′).

We remark that the O(∆n) in time cost is necessary because the update from I to I ′ may
change all the potentials of vertices and edges. One can reduce the O(∆n) from the time cost
if we further restrict that one update can only change constant number of vertices, edges,
and potentials.

One can extend Algorithm 2 to an Multi-sample dynamic Gibbs sampling algorithm that
maintains multiple independent random samples for the current MRF instance. By Lemma 17,
it is easy to prove that the Multi-sample algorithm is correct and efficient. Thus Theorem 9
follows immediately. The detail of the Multi-sample dynamic Gibbs sampling algorithm and
the proof of Theorem 9 are provided in the full version of the paper.

7 Conclusion

In this paper we study probabilistic inference problem in a graphical model when the model
itself is changing dynamically with time. We study the non-local updates so that two
consecutive graphical models may differ everywhere as long as the total amount of their
difference is bounded. This general setting covers many typical applications. We give a
sampling-based dynamic inference algorithm that maintains an inference solution efficiently
against the dynamic inputs. The algorithm significantly improves the time cost compared to
the static sampling-based inference algorithm.
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Our algorithm generically reduces the dynamic inference to dynamic sampling problem.
Our main technical contribution is a dynamic Gibbs sampling algorithm that maintains
random samples for graphical models dynamically changed by non-local updates. Such
technique is extendable to all single-site dynamics. This gives us a systematic approach
for transforming classic MCMC samplers on static inputs to the sampling and inference
algorithms in a dynamic setting. Our dynamic algorithms are efficient as long as the one-step
optimal coupling exhibits a step-wise decay, a key property that has been widely used
in supporting efficient MCMC sampling in the classic static setting and captured by the
Dobrushin-Shlosman condition.

Our result is the first one that shows the possibility of efficient probabilistic inference in
dynamically changing graphical models (especially when the graphical models are changed
by non-local updates). Our dynamic inference algorithm has potentials in speeding up
the iterative algorithms for learning graphical models, which deserves more theoretical and
experimental research. In this paper, we focus on discrete graphical models and sampling-
based inference algorithms. Important future directions include considering more general
distributions and the dynamic algorithms based on other inference techniques.
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Abstract
We give alternate proofs for three related results in analysis of Boolean functions, namely the KKL
Theorem, Friedgut’s Junta Theorem, and Talagrand’s strengthening of the KKL Theorem. We
follow a new approach: looking at the first Fourier level of the function after a suitable random
restriction and applying the Log-Sobolev inequality appropriately. In particular, we avoid using the
hypercontractive inequality that is common to the original proofs. Our proofs might serve as an
alternate, uniform exposition to these theorems and the techniques might benefit further research.
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1 Introduction

Let us consider the Boolean cube {0, 1}n equipped with the uniform measure and let
f : {0, 1}n → {0, 1} be a function. The influence of a coordinate i ∈ [n], denoted by Ii[f ],
is defined to be Prx [f(x) 6= f(x⊕ ei)], where x ∈ {0, 1}n is sampled uniformly and x⊕ ei
denotes the input x with the ith bit flipped. The total influence of f is I[f ] =

∑n
i=1 Ii[f ]. One

of the most basic inequalities, known as Poincare’s inequality, states that I[f ] > var(f), where
var(f) is the variance of the random variable f(x) when x ∈ {0, 1}n is sampled uniformly.
In general, Poincare’s inequality may be tight, which raises the following question: can it
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26:2 Analytical Theorems via Random Restrictions and Log-Sobolev Inequality

be the case that not only I[f ] ≈ var(f), but actually Ii[f ] ≈ var(f)
n for all i ∈ [n]? In other

words, can all influences of f be as small as possible simultaneously? The landmark result of
Kahn, Kalai, and Linial [13] gives a negative answer to this question:

I Theorem 1. There exists an absolute constant c > 0, such that for any f : {0, 1}n → {0, 1},
there is a coordinate i ∈ [n] with Ii[f ] > c · logn

n var(f).

The KKL Theorem and its strengthenings by Friedgut [9] and Talagrand [19] are found-
ational results in analysis of Boolean functions. These have found several applications,
e.g. to the threshold phenomena, computational learning theory, extremal combinatorics,
communication complexity, hardness of approximation, non-embeddability results in metric
geometry, and coding theory [10, 18, 5, 11, 3, 6, 14, 15, 4, 16]. Before we discuss the theorems
of Friedgut and Talagrand, let us state a dimension-free variant of the KKL Theorem (that
is morally equivalent to Theorem 1 and is easily implied by the techniques in [13]).

I Theorem 2. There exists an absolute constant K > 0, such that for any f : {0, 1}n → {0, 1},
there is a coordinate i ∈ [n] with Ii[f ] > 2−K

I[f]
var(f) .

We note that Theorem 2 implies Theorem 1: if I[f ] > logn
2K var(f), then clearly there is a

corodinate i ∈ [n] such that Ii[f ] > I[f ]
n > 1

2K
logn
n var(f). Otherwise, by Theorem 2, there is

a coordinate i ∈ [n] such that Ii[f ] > 2−K
I[f]

var(f) > 1√
n
and we are done either way. Friedgut’s

Junta Theorem can now be stated as below.

I Theorem 3. There exists an absolute constant K > 0, such that for any f : {0, 1}n → {0, 1}
and ε > 0, the function f is ε-close to a function g : {0, 1}n → {0, 1} (in Hamming distance)
that depends on at most 2K

I[f]
ε coordinates.

Morally speaking, Theorem 3 states that not only that there is a coordinate with significant
influence as in Theorem 2, but actually all coordinates that have smaller influence, combined,
barely affect the output of the function f (and this is how its proof proceeds). Talagrand’s
strengthening of the KKL Theorem is stated below.

I Theorem 4. There exists an absolute constant c > 0, such that for any f : {0, 1}n → {0, 1},
n∑
i=1

Ii[f ]
log(1/Ii[f ]) > c · var(f).

We note that Theorem 4 implies Theorem 2 as follows: suppose on the contrary that all
influences Ii[f ] are at most 2−K

I[f]
var(f) . Then the “Talagrand sum” as above is at most

var(f)
KI[f ]

∑n
i=1 Ii[f ] = var(f)

K , a contradiction for a large enough constant K.
A key technique used in the original proofs of all the theorems above is the hypercontractive

inequality (stated in Section 2.3). The use of this inequality is, by now, nearly ubiquitous
in analysis of Boolean functions. Still, using this inequality might impose limitations of
its own, limiting the discovery of new results, both qualitatively and quantitatively. As
far as we know, researchers in this area have wondered whether there is “life” beyond the
hypercontractive inequality, and certainly there have been efforts to prove the KKL Theorem
(and its strengthenings) without using it. In particular, proofs using “only” the Log-Sobolev
inequality (stated in Section 2.3) for the KKL Theorem and Friedgut’s Junta Theorem
are known [8] (their argument though does not seem to extend to Talagrand’s Theorem).
There is also a recent proof of the KKL Theorem (as well as Talagrand’s result and some
strengthenings) using stochastic calculus [7].
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In this paper, we prove Theorems 1, 2, 3, 4 using “only” the Log-Sobolev inequality.
Since the hypercontractive inequality and the Log-Sobolev inequality are equivalent to each
other and both have separate not-so-difficult proofs as well, whether one uses one or the
other is, admittedly, splitting hairs. Still, another interesting aspect of this paper is that
our proof approach is very different from all earlier proofs. We look at the first Fourier level
of the function after a suitable random restriction and apply the Log-Sobolev inequality
appropriately. The approach is, in our subjective opinion, more direct, natural, and less
mysterious, though the overall proofs are not necessarily “easier”. The additional structural
information implicit in these proofs might benefit further research. In Section 3, we describe
the basic skeleton that is common to all our proofs and the main technical lemma, Lemma
20. The paper might have some benefit from expository perspective as all our proofs are
uniformly built around the same skeleton.

Before proceeding to formal proofs, we illustrate here the underlying intuition and how
it morally explains the KKL Theorem (translating the intuition into a formal proof takes
some effort). We assume here that the reader is somewhat familiar with the area and the
standard terminology. Let f : {0, 1}n → {0, 1} be a balanced function and suppose all
its influences are at most (say) 1√

n
. We hope to conclude that the total influence is then

Ω(logn). Suppose f has degree d (we are referring to the so-called average degree, but never
mind). Consider a 1

d -random restriction fJ̄→z of the function where each coordinate stays
alive with probability 1

d independently and denoting the set of alive coordinates as J , the
coordinates in J̄ = [n] \ J are set to a uniformly random setting z. Since f has degree d,
we expect that the restricted function fJ̄→z has constant Fourier weight at the first level
and ideally, is even a dictatorship function (indeed, if the Fourier weight at the first level
exceeds a certain threshold, a Boolean function is necessarily a dictatorship). Suppose, for
the sake of illustration, that the restricted function fJ̄→z is always a dictatorship function.
However, it could be the dictatorship of a different coordinate for different settings of z. Let
Aj ⊆ {0, 1}J̄ consist of those settings of z for which fJ̄→z is the dictatorship of coordinate
j ∈ J . We note that the fractional size of Aj , denoted µ(Aj), is at most the influence of the
coordinate j (why?) and hence µ(Aj) 6 1√

n
for all j ∈ J . Now we simply note that since the

sets A1, . . . , A|J| are all polynomially small in size and form a partition of {0, 1}J̄ , at least
logn
n fraction of the edges in the hypercube {0, 1}J̄ are across some Aj and Aj′ with j 6= j′.

These edges, along with the fact that Aj and Aj′ are restrictions leading to dictatorships of
j and j′ respectively, contribute Ω(logn) to the total influence of the function f as desired
(why?)! We use here the standard isoperimetric result on the hypercube that for a small set
A ⊆ {0, 1}n, at least log(1/µ(A)))

n fraction of hypercube edges incident on it, go outside of A
(this is also a special case of the Log-Sobolev inequality, see Lemma 11).

2 Preliminaries

We denote [n] = {1, 2, . . . , n}. We write X & Y to say that there exists an absolute constant
c > 0 such that X > c · Y .

2.1 Standard Fourier Analysis
We consider the space of real-valued functions f : {0, 1}n → R, equipped with the inner
product 〈f, g〉 = Ex∈R{0,1}n [f(x)g(x)]. Here and throughout the paper, we consider the
uniform distribution over {0, 1}n. It is well-known that the collection of functions χS :
{0, 1}n → {−1, 1}, one for each subset S ⊆ [n], defined as χS(x) = (−1)⊕i∈Sxi , is an
orthonormal basis w.r.t. the said inner product. Thus each function f : {0, 1}n → R can be
written uniquely as

ITCS 2021
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f(x) =
∑
S⊆[n]

f̂(S)χS(x), where f̂(S) = 〈f, χS〉.

Since the basis {χS}S⊆[n] is orthonormal, one has the Plancherel/Parseval equality:

I Fact 5. For any f, g : {0, 1}n → R, we have 〈f, g〉 =
∑
S⊆[n]

f̂(S)ĝ(S). Also

〈f, f〉 = E
x

[
f(x)2] = ‖f‖22 =

∑
S⊆[n]

f̂(S)2.

We will also consider other Lp norms of functions for p > 1 (mostly L1-norm), similarly
defined as ‖f‖p =

(
Ex [|f(x)|p]

)1/p. It will be useful to consider the “Fourier weight” of a
function on a given “level”.
I Definition 6. For integer d > 1, the level d Fourier weight of a function f : {0, 1}n → R is
W=d[f ] =

∑
|S|=d

f̂(S)2. Also, its Fourier weight on the “chunk” d is W≈d[f ] =
∑

d6j<2d
W=j [f ].

For a noise parameter ε ∈ (0, 1), the noise operator T1−ε is defined as follows. For a
function f : {0, 1}n → R, the function T1−εf is

T1−εf(x) = E
y∼εx

[f(y)],

where the input y is obtained from input x by resembling each coordinate of x with probability
ε independently. It is well-known that the Fourier representation of T1−εf is

T1−εf =
∑
S⊆[n]

(1− ε)|S|f̂(S)χS .

2.2 Discrete Derivatives and Influences
For a coordinate i ∈ [n], the discrete derivatives of f along the ith direction is a function
∂if : {0, 1}n−1 → R defined as

∂if(y) = f(x−i = y, xi = 1)− f(x−i = y, xi = 0).

I Definition 7. The Lp-influence of a coordinate i ∈ [n] is defined as Ipi [f ] = ‖∂if‖pp. The

Lp total-influence is Ip[f ] =
n∑
i=1

Ipi [f ]. We stress here that in the notation Ipi [f ] and Ip[f ]

herein, the “p” is a super-script and not an exponent.
We will be concerned with only L2 and L1 influences. In the literature, the notion usually
refers to L2-influences, so in this case the superscript p is omitted, writing Ii[f ] = I2

i [f ] and
I[f ] = I2[f ] for the individual and total influence respectively. We note that for Boolean
functions, all the Lp-influences are equal. We will be concerned with the more general
case of bounded functions, i.e. functions taking values in the interval [−1, 1], and state our
variants of Theorems 1, 2, 3, and 4 using L1-influences instead. We remark that for bounded
functions, one has Ipi [f ] 6 Iqi [f ] for p > q > 1. In particular and via Cauchy-Schwartz,
Ii[f ] 6 I1

i [f ] 6
√
Ii[f ]. Using the Fourier expansion of the discrete derivatives and Parseval

equality gives the following standard formula for the total L2-influence.
I Fact 8. For any f : {0, 1}n → R, we have I[f ] = 4

∑
S⊆[n]

|S| f̂(S)2. In particular, by an

averaging argument, for any ε > 0,
∑

|S|>I[f ]/ε
f̂(S)2 6 ε.
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2.3 Hypercontractive Inequality and Log-Sobolev Inequality
The hypercontractive inequality states that for each ε > 0, there is p > 2 such that T1−ε
is a contraction from L2 to Lp, i.e. that ‖T1−εf‖p 6 ‖f‖2 for any f : {0, 1}n → R. The
inequality has an equivalent form (which is often times used) that does not involve the noise
operator T1−ε, and is instead concerned with bounded degree functions.

The degree of a function f , denoted deg(f), is the maximum of |S| over all S such
that f̂(S) 6= 0. The Bonami-Beckner hypercontractive inequality [2, 1] asserts that the
Lp-norm and the L2-norm of a low-degree function are comparable. More precisely, for any
f : {0, 1}n → R and any p > 2,

I Theorem 9. ‖f‖p 6 (p− 1)deg(f)/2‖f‖2.

To motivate the Log-Sobolev inequality and its relationship to the hypercontractive inequality,
let us rewrite the above as

deg(f) > 2
log(p− 1) log

(
‖f‖p
‖f‖2

)
. (1)

Instead of looking at the maximal degree of a non-zero monomial that appears in f ,
one may consider the average degree of f , defined as

∑
S |S| f̂(S)2, where the weight given

to a characters S equals the squared Fourier coefficient f̂(S)2. When f is {−1, 1}-valued,
the squared Fourier coefficients sum up to 1, giving a probability distribution over them,
explaining the term “average degree”. As noted, the average degree is same as the total
influence I[f ] (up to the factor 4). The Log-Sobolev inequality, established by Gross [12],
can be seen as the limiting case of the above inequality as p→ 2 and replacing the degree
by average degree (see [12], [17, Chapter 10.1] and [17, Pages 319-320] for the equivalence
between the two inequalities and also separate inductive proofs). Towards stating this
inequality, one needs the notion of entropy of a non-negative function h : {0, 1}n → [0,∞):

Ent(h) := E
x

[h(x)] log
(

1
E [h(x)]

)
− E

x

[
h(x) log

(
1

h(x)

)]
,

with the convention that 0 log(1/0) = 0. The Log-Sobolev inequality is (note that the entropy
is of the non-negative function f2):

I Theorem 10. For any f : {0, 1}n → R, we have I[f ] > 1
2Ent(f2).

A simple corollary of this inequality, when f : {0, 1}n → {0, 1} is Boolean, is below. This is
also known as the standard isoperimetric inequality for the Boolean hypercube.

I Lemma 11. For any f : {0, 1}n → {0, 1}, β = E [f ] 6 1
2 , we have I[f ] > 1

2β log(1/β).

It will be more convenient for us to use the following easy consequence of the Log-Sobolev
inequality.

I Lemma 12. There exists an absolute constant K > 0, such that for any f : {0, 1}n →
[−1, 1], we have

I[f ] & ‖f‖22 log
(

1
‖f‖22

)
−K · ‖f‖

1
2
1 ‖f‖2.

Proof. By Theorem 10, I[f ] & Ent(f2), so it is enough to show that the entropy of f2 is at
least the right hand side. Indeed, the first term in the definition of the entropy is precisely
‖f‖22 log(1/‖f‖22). The second term is (using Cauchy-Schwarz and that t2 log2(1/t2) . |t| for
t ∈ [−1, 1])

ITCS 2021
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E
x

[
f(x)2 log

(
1

f(x)2

)]
6

√
E
x

[
f(x)2 log2

(
1

f(x)2

)]
E
x

[f(x)2] .
√
E
x

[|f(x)|]E
x

[f(x)2]

= ‖f‖
1
2
1 ‖f‖2.

J

2.4 Random Restrictions
Let J ⊆ [n] be a subset of coordinates thought of as “alive” and coordinates in J̄ =
[n] \ J thought of as “restricted”. Given a function f : {0, 1}n → R and a setting z ∈
{0, 1}J̄ , we denote by fJ̄→z, the restriction of f to the domain z × {0, 1}J . More precisely,
fJ̄→z : {0, 1}J → R is defined as fJ̄→z(y) = f(xJ̄ = z, xJ = y). The following standard fact
gives the Fourier coefficients of the restricted function:

I Fact 13. For any T ⊆ J , we have f̂J̄→z(T ) =
∑
S⊆J̄ f̂(S ∪ T )χS(z).

For a parameter δ > 0, a δ-random restriction is the function fJ̄→z after choosing J to
be a random subset of [n] in which each j ∈ [n] is included with probability δ independently
and choosing z ∈ {0, 1}J̄ uniformly. Using Fact 13 and Parseval, one can easily compute the
expectated squared Fourier coefficient of a random restriction and then the expected level d
Fourier weight.

I Fact 14. Let f : {0, 1}n → R and T ⊆ J . Then Ez
[
|f̂J̄→z(T )|2

]
=
∑
S⊆J̄ f̂(S ∪ T )2.

I Fact 15. Let f : {0, 1}n → R, d > 1 be an integer, and δ ∈ [0, 1]. Let fJ̄→z denote the
δ-random restriction. Then

E
J,z

[W=d[fJ̄→z]] =
∑
S

f̂(S)2 · Pr
J

[|J ∩ S| = d].

3 A Basic Argument towards the KKL Theorem

In this section, we prove the lemma below. It proves the KKL Theorem in the special
case when the function f : {0, 1}n → [0, 1] has a constant fraction of its Fourier weight on
some “chunk”. Alternately, it proves the KKL Theorem at a loss of log logn factor. More
importantly, the proof illustrates the basic approach underlying all the subsequent proofs.

I Lemma 16. Let f : {0, 1}n → [0, 1] be a function and d > 1 be an integer. Then there
exists a coordinate i ∈ [n] such that I1

i [f ] & logn
n W≈d[f ].

We make some remarks before proceeding to the proof. Firstly, we note that the lemma
holds for bounded functions and with respect to the L1-influences. Secondly, we note
that if a constant fraction of the Fourier weight is on some chunk, i.e. if for some d,
W≈d[f ] & var(f), then there is a coordinate i ∈ [n] with I1

i [f ] & logn
n var(f), proving the

KKL Theorem. Thirdly, we note that it proves the KKL Theorem at a loss of factor log logn
as follows. We may assume that I[f ] 6 1

2 logn var(f). Since var(f) =
∑

16|S| f̂(S)2 and
I[f ] = 4

∑
S |S|f̂(S)2, by Markov’s inequality, we have∑

16|S|6logn

f̂(S)2 >
1
2 var(f).
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Thus, by partitioning the interval [1, logn] into log logn dyadic intervals
⋃log logn
k=0 [2k, 2k+1),

it follows that there is some 1 6 d 6 logn such that W≈d & var(f)
log logn . Hence by the lemma,

there is a coordinate i ∈ [n] such that I1
i [f ] & logn

n W≈d[f ] & logn
n

var(f)
log logn .

3.1 Proof of Lemma 16
We now prove Lemma 16. The proof formalizes the intuition described at the end of the
introductory section. One begins by considering a 1

d -random restriction of the function,
notes that the expected Fourier weight at the first level of the restricted function is at least
W≈d[f ], and then one examines the coefficients at the first level and applies Log-Sobolev
appropriately.

Weight on the First Level after Random Restriction
Let fJ̄→z be a 1

d -random restriction, J being the set of coordinates left alive. We have by
Fact 15 that

E
J,z

[W=1[fJ̄→z]] >
∑

d6|S|<2d

f̂(S)2 · Pr
J

[|S ∩ J | = 1] &W≈d[f ], (2)

where we used the simple fact that for any set S with d 6 |S| < 2d, the probability it
intersects J in a single element is constant. For the rest of the argument, we fix some J ⊆ [n]
such that (it exists due to Equation (2))

E
z

[W=1[fJ̄→z]] &W≈d[f ]. (3)

Relating First Level Coefficients after Restriction and Influences of f

We now consider the first level coefficients of the restricted function fJ̄→z and somehow
relate them to the influences of the original function f . We note that J is the set of alive
coordinates. For each j ∈ J , define a function gj : {0, 1}J̄ → R by gj(z) = f̂J̄→z({j}). That
is, gj(z) is the jth coefficient of the first level (= linear part) of the restricted function. By
definition, W=1[fJ̄→z] =

∑
j∈J gj(z)2. Let pj = ‖gj‖22 = Ez

[
gj(z)2]. For the sake of future

reference, let qj = ‖gj‖1. Thus (3) can be re-stated as

E
z

[W=1[fJ̄→z]] =
∑
j∈J

pj &W≈d[f ]. (4)

Since f is bounded, so is its restriction, and hence |gj(z)| 6 1 for every z, j.

I Lemma 17. pj = ‖gj‖22 and qj = ‖gj‖1 satisfy
qj = ‖gj‖1 6 1

2 · I
1
j [f ].

pj = ‖gj‖22 6 1
4 · Ij [f ].

pj 6 qj 6
√
pj .

Proof. The third item is because of the boundedness |gj(z)| 6 1 and Cauchy-Schwartz.
Towards the first two items, we note that

gj(z) = f̂J̄→z({j}) = E
y

[
f(z, y)χ{j}(yj)

]
= E
y−j

[
f(z, y−j , yj = 0)− f(z, y−j , yj = 1)

2

]
.
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Taking expectation over z gives (and using Cauchy-Schwartz in the second case)

‖gj‖1 = E
z

[|gj(z)|] 6 E
z,y−j

[∣∣∣∣f(z, y−j , yj = 0)− f(z, y−j , yj = 1)
2

∣∣∣∣] = 1
2 · I

1
j [f ].

‖gj‖22 = E
z

[
|gj(z)|2

]
6 E
z,y−j

[∣∣∣∣f(z, y−j , yj = 0)− f(z, y−j , yj = 1)
2

∣∣∣∣2
]

= 1
4 · Ij [f ]. J

Summing the previous inequality over all j ∈ J , we conclude that:

I Lemma 18.
∑
j∈J qj =

∑
j∈J
‖gj‖1 6 1

2 · I
1[f ].

The following lower bound on I[f ] is a key observation.

I Lemma 19.
∑
j∈J

I[gj ] 6 I[f ].

Proof. We lower bound I[f ] by
∑
i∈J̄ Ii[f ]. Fix some i ∈ J̄ for now. As before, z and y

denote the inputs on the parts J̄ and J respectively.

Ii[f ] = E
z,y

[
|f(z, y)− f(z ⊕ ei, y)|2

]
= E

z

[
‖fJ̄→z − fJ̄→z⊕ei

‖22
]
.

By Parseval, we express the squared norm in terms of Fourier coefficients and then lower
bound by considering only coefficients of size one.

Ii[f ] = E
z

∑
T⊆J

|f̂J̄→z(T )− f̂J̄→z⊕ei
(T )|2

 > E
z

∑
j∈J
|f̂J̄→z({j})− f̂J̄→z⊕ei

({j})|2
.

The latter are simply gj(z) and gj(z ⊕ ei) by definition and hence

Ii[f ] >
∑
j∈J

E
z

[
|gj(z)− gj(z ⊕ ei)|2

]
=
∑
j∈J

Ii[gj ].

Summing over i ∈ J̄ gives

I[f ] >
∑
i∈J̄

Ii[f ] >
∑
i∈J̄

∑
j∈J

Ii[gj ] =
∑
j∈J

∑
i∈J̄

Ii[gj ] =
∑
j∈J

I[gj ]. J

The Main Argument
Our main argument tries to obtain a lower bound on I[f ] as follows. Using Lemma 19 and
the Log-Sobolev Lemma 12,

I[f ] >
∑
j∈J

I[gj ] >
∑
j∈J

(
pj log(1/pj)−K

√
qj ·
√
pj
)
.

Using Cauchy-Schwartz, we get

I[f ] >
∑
j∈J

pj log(1/pj)−K
√∑
j∈J

qj ·
√∑
j∈J

pj .

By Lemma 18,
∑
j∈J qj 6 I1[f ], so we get our main technical inequality

I[f ] >
∑
j∈J

pj log(1/pj)−K
√
I1[f ] ·

√∑
j∈J

pj . (5)
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We recall that pj 6 1
2I

1
j [f ] by Lemma 17. Letting W :=

∑
j∈J pj = Ez [W=1[fJ̄→z]], we

rewrite this inequality, for future reference, as below. We note that in application, J is the
subset of alive coordinates after a random restriction. In our proof of KKL and Friedgut
Theorems, the set J is fixed so as to maximizes the expected first level Fourier weight. In
the proof of Talagrand Theorem, we average over the choice of J as well.

I Lemma 20. Let f : {0, 1}n → [0, 1] be a function and J ⊆ [n]. Then

I[f ] > log
(

1
maxj∈J I1

j [f ]

)
·W −K

√
I1[f ] ·

√
W,

W = E
z

[W=1[fJ̄→z]] =
∑

S⊆[n],|S∩J|=1

f̂(S)2.

The proof of Lemma 16 is now completed immediately. We may assume that for all
coordinates i ∈ [n], I1

i [f ] 6 logn
n W≈d[f ] 6 1√

n
as otherwise we are done already. This

implies that the total L1-influence I1[f ] 6 logn W≈d[f ]. Lemma 20 (= Equation (5)) then
gives (the log-factor therein is at least 1

2 logn since all L1-influences are at most 1√
n
)

I[f ] > 1
2 logn ·W −K

√
logn ·W≈d[f ] ·

√
W, W &W≈d[f ].

Clearly, the first term above dominates the second, giving I[f ] > 1
4 logn ·W & logn ·W≈d[f ],

implying now that there is a coordinate with in fact L2-influence & logn
n W≈d[f ].

4 The KKL Theorem

We now prove the KKL Theorem, stated below for a bounded function, with respect to
L1-influences, and in a slightly different form.

I Theorem 21. There exists an absolute constant c > 0 such that the following holds. Let
f : {0, 1}n → [0, 1] be a function. Then either I1[f ] > c · logn var(f), or there is a coordinate
i ∈ [n] such that I1

i [f ] > 1√
n
.

It will be more convenient for us to prove a dimension-independent version of the KKL
Theorem below. It is easily seen to imply the statement above.

I Theorem 22. There exists an absolute constant C > 0 such that the following holds.
Let f : {0, 1}n → [0, 1] be a function. Then there is a coordinate i ∈ [n] such that I1

i [f ] >

2−C·
I1[f]
var(f) .

In the proof of Lemma 16, we only “utilized” Fourier weight from a single chunk of Fourier
coefficients, i.e. those of size in the range [d, 2d), and this led to a loss of factor log logn if
used towards the KKL Theorem. In this section, we show how to utilize and combine the
Fourier weight from multiple chunks, avoiding this loss. The idea is to “partition” f into
chunks as f = f̂(∅) +

∑
d=2k,k>0 h

∗
d, apply the main technical inequality (5) to each chunk

h∗d, and then “sum up”. A natural way to partition is to let h∗d =
∑
d6|S|<2d f̂(S)χS . The

problem with this approach however is that the chunk functions h∗d as here are not necessarily
bounded functions and the earlier arguments cannot be applied directly. To get around this,
we instead consider a soft notion of chunks, f ≈ f̂(∅) +

∑
d=2k,k>0 hd, that behaves similarly,

that is∑
d

var(hd) = Θ(var(f)),
∑
d

Ii[hd] = Θ(Ii[f ]),
∑
d

I[hd] = Θ(I[f ]),

and in addition, preserves boundedness and the L1-influences of each soft chunk hd are
bounded by those of the original function!
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4.1 Soft Chunks
I Definition 23. Let f : {0, 1}n → [0, 1] be a function and let d > 1 be integer (thought of as
a power of 2). The soft chunk of f of degree d is given by the function hd : {0, 1}n → [0, 1]
defined by hd = (T1− 1

2d
− T1− 1

d
)f .

The following lemma summarizes the useful properties of soft chunks (the proof appears in
Appendix A.1). We point out, in particular, that the L1-influences of the soft chunk are
upper bounded by those of the original function (up to a factor 2).

I Lemma 24. Let f : {0, 1}n → [0, 1] and for integer d = 2k, k > 0, let hd = (T1− 1
2d
−T1− 1

d
)f

denote the soft chunk of f of degree d. Then (the sums are over d = 2k, k > 0 and i ∈ [n] is
arbitrary)

hd is bounded in [−1, 1], ĥ(∅) = 0.
I1
i [hd] 6 2I1

i [f ].
For any S ⊆ [n], d 6 |S| < 2d, we have |f̂(S)| . |ĥd(S)| 6 |f̂(S)|. In particular, we have
lower bounds

‖hd‖22 >W≈d[hd] & W≈d[f ],
∑
d

Ii[hd] & Ii[f ],
∑
d

I[hd] & I[f ].

And the upper bounds,∑
d

‖hd‖22 6 var(f),
∑
d

I[hd] 6 I[f ].

For technical reasons, we will be able to “utilize” only those chunks that have a significant
amount of Fourier weight, referred to as the good chunks. It will turn out that the good
chunks still capture a constant fraction of the variance of f , so this will not be a problem.
Towards this end, we have (proof appears in Appendix A.2)

I Lemma 25. Let

Dgood :=
{
d = 2k, k > 0 | W≈d[f ] > var(f)2

16 · I1[f ]

}
.

Then∑
d∈Dgood

W≈d[f ] & var(f).

4.2 Proof of Theorem 22

Assume, for the sake of contradiction, that for all coordinates i ∈ [n], I1
i [f ] 6 2−C·

I1[f]
var(f) where

C is a large enough constant chosen later. Let hd, d ∈ Dgood be any good soft chunk. We
recall that

hd is a bounded function.
Its L1-influences are upper bounded by those of f up to a factor 2 (and hence also the
total L1-influence).
W≈d[hd] &W≈d[f ] > var(f)2

16·I1[f ] .
We apply Lemma 20 to the function hd, considering 1

d -random restriction, and letting J to
be the subset of alive coordinates (fixed so as to maximize expected weight at first Fourier
level). This yields the inequality

I[hd] > log
(

1
maxj∈J I1

j [hd]

)
·W−K

√
I1[hd]·

√
W, W &W≈d[hd] &W≈d[f ] > var(f)2

16 · I1[f ] .
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Since the L1-influences of hd are bounded by those of f , in particular all of them at most
2−C·

I1[f]
var(f) , we get

I[hd] > C · I
1[f ]

var(f) ·W −K
√
I1[f ] ·

√
W, W &W≈d[f ] > var(f)2

16 · I1[f ] .

It is easily seen that for a large enough constant C, the first term dominates the second term
(this is why we considered only the good chunks) and thus

I[hd] & C · I
1[f ]

var(f) ·W≈d[f ].

Now summing over all good d gives a contradiction:

I1[f ] > I[f ] >
∑

d∈Dgood

I[hd] & C · I
1[f ]

var(f)
∑

d∈Dgood

W≈d[f ] & C · I
1[f ]

var(f) · var(f) = C · I1[f ].

We used Lemma 24 in the second step and Lemma 25 in the second-last step. Taking the
constant C large enough gives a contradiction.

5 The Friedgut’s Junta Theorem

Friedgut’s Junta Theorem (restated below) is proved by a careful adjustment to the argument
in the previous section.

I Theorem 26. There is an absolute constant C > 0 such that the following holds. For every
function f : {0, 1}n → [0, 1] and for every ε > 0, there exists a function g : {0, 1}n → [0, 1]
depending on at most 2C·I1[f ]/ε variables such that ‖f − g‖22 . ε.

We provide a proof sketch. While in the proof of the KKL Theorem, we may assume that all
influences are small, this is not the case with Friedgut’s Theroem. Here we “separate out”
the set L of coordinates with “non-negligible” influence and apply the previous argument to
the remaining set L̄ = [n] \ L. Towards this end, let

L =
{
i | I1

i [f ] > τ := 2−C·I
1[f ]/ε

}
.

Clearly, |L| 6 I1[f ]
τ 6 22C·I1[f ]/ε. Let g =

∑
S⊆L

f̂(S)χS . It is easily observed that

g depends only on the coordinates of L.
g is also bounded in [0, 1] since g is simply the average of f over coordinates in L̄ and
for the same reason, L1-influences of g are bounded by those of f .

Let ϕ = f − g. We will show that ‖ϕ‖22 . ε. Clearly, ϕ is bounded in [−1, 1] and its L1
influences are also bounded by those of f up to a factor 2. We intend to apply the same
argument used to prove the KKL Theorem to ϕ, except that all “action” happens only on
the set of coordinates L̄. More specifically:

The “size” of any Fourier term is counted as |S ∩ L̄| instead of as |S|.
For an integer d > 1 (thought of as power of 2), the Fourier weight on the corresponding
chunk is defined as

W L̄
≈d[ϕ] :=

∑
d6|S∩L̄|<2d

f̂(S)2.
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Towards defining the soft chunk hd of ϕ, the noise operator is applied only to coordinates
in L̄. We denote this as

hd =
(
T L̄1− 1

2d
− T L̄1− 1

d

)
ϕ.

In a random restriction, only coordinates in L̄ may stay alive. That is, a 1
d -random

restriction amounts to letting J to be a random subset of L̄ where every coordinate in L̄
is included with probability 1

d and then the coordinates outside J (including those in L)
are set uniformly at random.
Since J ⊆ L̄, we have I1

j [ϕ] 6 2−C·I1[f ]/ε for all j ∈ J .
Modulo these considerations, we repeat the proof in Section 4.2. We apply Lemma 20 to the
function hd, considering 1

d -random restriction, and letting J be the subset of alive coordinates
(fixed so as to maximize expected weight at first Fourier level). This yields the inequality

I[hd] > log
(

1
maxj∈J I1

j [hd]

)
·W −K

√
I1[hd] ·

√
W, W &W L̄

≈d[hd] &W L̄
≈d[ϕ].

Since the L1-influences of hd are bounded by those of ϕ which are in turn bounded by those
of f and those for coordinates in J ⊆ L̄ are at most 2−C·

I1[f]
ε , we get

I[hd] > C · I
1[f ]
ε
·W −K

√
I1[f ] ·

√
W, W &W L̄

≈d[ϕ].

Let Dgood be the subset of d = 2k such that W L̄
≈d[ϕ] > ε2

16I1[f ] so that for such good d and
for large enough constant C, the first term above dominates the second and we get

I[hd] & C · I
1[f ]
ε

W L̄
≈d[ϕ].

Now summing over all good d ∈ Dgood gives:

I1[f ] > I1[ϕ] > I[ϕ] >
∑

d∈Dgood

I[hd] & C · I
1[f ]
ε
·
∑

d∈Dgood

W L̄
≈d[φ].

By Lemma 25 (applied to ϕ), the last sum is at least & var(ϕ) and we get var(ϕ) . ε as
desired. An astute reader might object that the definition of the good soft chunks here seems
different than that in Lemma 25, i.e. the threshold is set at ε2

16I1[f ] instead of var(ϕ)2

16I1[ϕ] therein.
However since I1[ϕ] 6 I1[f ] and we could assume a priori that var(ϕ) > ε (otherwise we
would already be done), this slight difference only works in our favor.

6 The Talagrand’s Theorem

In this section, we prove Talagrand’s Theorem, restated as Theorem 28 later. For now we
prove the following weaker theorem to illustrate the main idea.

I Theorem 27. Let any f : {0, 1}n → [0, 1] be a function and d > 1 an integer (thought of
as power of 2). Then one of these two conclusions holds:

(Case 1):
∑
j∈[n]

Ij [f ]
log(1/I1

j
[f ]) & d(W≈d[f ])2

I[f ] .

(Case 2):
∑
j∈[n]

I1
j [f ]

log(1/I1
j
[f ]) & dW≈d[f ].
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We make a few remarks. On the left hand side of the inequalities, what appear in the
numerators are the L2-influences in Case 1 and L1-influences in Case 2. This distinction
will be important later. In both cases, in the denominator, it does not matter whether
we write L1 or L2 influences since their logarithms are the same up to a factor 2 (since
Ij [f ] 6 I1

j [f ] 6
√
Ij [f ]). If one pretends that all non-zero Fourier coefficients of f have size

between d and 2d, we have W≈d[f ] = var(f) and I[f ] = Θ(d ·var(f)) and we get var(f) on the
right hand side in Case 1 and (even better) d · var(f) in Case 2, giving Talagrand’s Theorem.

We now prove Theorem 27. Consider a 1
d -random restriction as in Section 3 letting J to

be the set of coordinates alive. As therein, let gj(z) = f̂J̄→z({j}), pj = ‖gj‖22, qj = ‖gj‖1.
Unlike therein however, we will not fix the set J and instead take expectation over its choice.
Exactly as in Equation (5), we get

I[f ] >
∑
j∈J

pj log(1/pj)−K
∑
j∈J

√
qj
√
pj .

We now divide into two cases depending on whether or not, on the right hand side, the
first term dominates the second. It will be more convenient to do this after considering
expectation over choice of J .

Case 1: EJ

[∑
j∈J pj log(1/pj)

]
> 2 · EJ

[
K
∑

j∈J
√

qj
√

pj

]
.

In this case, we get

I[f ] & E
J

∑
j∈J

pj log(1/pj)

.
Cauchy-Schwartz gives,

E
J

∑
j∈J

pj
log(1/pj)

 · E
J

∑
j∈J

pj log(1/pj)

 >

E
J

∑
j∈J

pj

2

.

The second term is bounded by I[f ] (as above) and on the right hand side we have,
EJ
[∑

j∈J pj

]
&W≈d[f ]. This gives

E
J

∑
j∈J

pj
log(1/pj)

 &
(W≈d[f ])2

I[f ] .

Replacing pj by its upper bound Ij [f ] in the numerator and its upper bound I1
j [f ] in the

denominator, and noting that each coordinate appears in J with probability 1
d , gives the

desired inequality

∑
j∈[n]

Ij [f ]
log(1/I1

j [f ]) &
d(W≈d[f ])2

I[f ] .
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Case 2: EJ

[∑
j∈J
√

qj
√

pj

]
& EJ

[∑
j∈J pj log(1/pj)

]
.

In this case, Cauchy-Schwartz gives

E
J

∑
j∈J

qj
log(1/pj)

 · E
J

∑
j∈J

pj log(1/pj)

 >

E
J

∑
j∈J

√
qj
√
pj

2

&

E
J

∑
j∈J

pj log(1/pj)

2

.

Canceling EJ
[∑

j∈J pj log(1/pj)
]
from both sides gives

E
J

∑
j∈J

qj
log(1/pj)

 & E
J

∑
j∈J

pj log(1/pj)

 > E
J

∑
j∈J

pj

.
As before, the right hand side is &W≈d[f ], and qj , pj are upper bounded by I1

j [f ], and each
coordinate appears in J with probability 1

d . This gives the desired inequality

∑
j∈[n]

I1
j [f ]

log(1/I1
j [f ]) & d W≈d[f ].

6.1 Talagrand’s Theorem by Combining Chunks: First Attempt
We (re-)state Talagrand’s Theorem below.

I Theorem 28. For any f : {0, 1}n → [0, 1], we have
∑
j∈[n]

I1
j [f ]

log(1/I1
j
[f ]) & var(f).

We attempt to prove this result by splitting

f = f̂(∅) +
∑

d=2k,k>0

hd,

where hd =
∑
d6|S|<2d f̂(S)χS are the chunks of f . The strategy is to apply Theorem 27 to

each chunk hd separately and “sum up” or “combine” the outcomes. A crucial observation is
that the L2-influences indeed sum up, that is

Ii[f ] =
∑
d

Ii[hd].

This strategy (almost) works with a careful consideration of whether the Case 1 or the Case
2 applies for different chunks. The catch, as before, is that the chunks hd are not necessarily
bounded functions and their L1-influences might not be under control. To get around this
issue, we instead work with the soft chunks as before and the full proof is completed in the
next sub-section. For now, we pretend that the chunks hd are bounded functions and see
how the proof proceeds. We also pretend that the L1-influences of hd are upper bounded by
those of f (both these conditions do hold when soft chunks are considered!).

We apply Theorem 27 to hd. Noting that W≈d[hd] > W≈d[f ], I[hd] = Θ(d ·W≈d[f ]),
and that L1-influences of hd are upper bounded by those of f , we conclude that for every
d = 2k, k > 0, one of these conclusions holds (perhaps both conclusions hold and if so, we
pick one arbitrarily):
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(Case 1):
∑
j∈[n]

Ij [hd]
log(1/I1

j
[f ]) &W≈d[f ]. Let D′ be the set of such d.

(Case 2):
∑
j∈[n]

I1
j [f ]

log(1/I1
j
[f ]) & d W≈d[f ]. Let D′′ be the set of such d.

Now we complete the proof as follows. Since var(f) =
∑
d∈D′W≈d[f ] +

∑
d∈D′′W≈d[f ],

either of the two sums is at least 1
2var(f). If the first sum is, then (crucially using the fact

that L2-influences sum up)∑
j∈[n]

Ij [f ]
log(1/I1

j [f ]) >
∑
j∈[n]

∑
d∈D′

Ij [hd]
log(1/I1

j [f ]) =
∑
d∈D′

∑
j∈[n]

Ij [hd]
log(1/I1

j [f ]) &
∑
d∈D′

W≈d & var(f),

as desired. Otherwise, we may assume
∑
d∈D′′W≈d[f ] > 1

2var(f). Since d ranges only over
powers of 2, it follows that there is some d ∈ D′′ such that d W≈d[f ] & var(f) (why!). Using
this particular choice of d in the Case 2 above, we get as desired

∑
j∈[n]

I1
j [f ]

log(1/I1
j [f ]) & var(f).

6.2 Talagrand’s Theorem by Combining Soft Chunks
We now complete the proof of Talagrand’s Theorem 28. We carry out the same proof as
in the previous sub-section, except that we use the soft chunks hd = (T1− 1

2d
− T1− 1

d
)f . It

holds that W≈d[hd] = Θ(W≈d[f ]). However one place we need to be careful about is that
we required that I[hd] = Θ(d W≈d[f ]). This need not be true in general. Hence we restrict
ourselves to only those d ∈ Dgood for which this condition holds. The lemma below shows
that there is still a constant fraction of variance on these good chunks and this is enough to
complete the proof (the sets D′ and D′′ above are subsets of Dgood now).

I Lemma 29. Let

Dgood =
{
d = 2k, k > 0 | d W≈d[f ] > 1

40I[hd]
}
.

Then∑
d∈Dgood

W≈d[f ] > 1
2var(f).

Proof. As we will see, it suffices to show that
∑
d
I[hd]
d 6 20 var(f). To see that, as

var(f) =
∑
S 6=∅ f̂(S)2, it is enough to show that for each S 6= ∅, the term f̂(S)2 appears in

the sum
∑
d
I[hd]
d with a multiplicative factor of at most 20. Note that this factor is

|S|
∑
d

1
d

((
1− 1

2d

)|S|
−
(

1− 1
d

)|S|)2

.

We analyze the contribution from d 6 |S| and d > |S| separately, showing that each one
of them contributes at most 10

|S| . Let k be such that 2k 6 |S| < 2k+1. The first part is
bounded as

∑
d6|S|

1
d

(1− 1
2d )2|S| 6

∑
d6|S|

1
d
e−|S|/d 6

k∑
j=0

1
2j e
−2k−j

6 2−k
∞∑
`=0

2`e−2`

6 5 · 2−k 6
10
|S|

.
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The second part is bounded as (we approximate 1− rα 6 (1− α)r in this range).

∑
d>|S|

1
d

(
1− (1− 1

d
)|S|
)2

6
∑
d>|S|

1
d
6
∑
r=k+1

1
2r = 2

2k+1 6
2
|S|

.

This shows that
∑
d
I[hd]
d 6 20 var(f). Now we complete the proof of the lemma as:∑

d∈Dgood

W≈d[f ] =
∑
d

W≈d[f ]−
∑

d6∈Dgood

W≈d[f ]

> var(f)− 1
40

∑
d6∈Dgood

I[hd]
d

> var(f)− 1
40 · 20 · var(f) > var(f)

2 . J
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A Missing Proofs

A.1 Proof of Lemma 24
Towards the first property, we note that both functions T1−1/2df and T1−1/df , being averages
of f , are bounded in the interval [0, 1]. Towards the second property, we note that I1

i [hd] 6
I1
i [T1−1/2df ] + I1

i [T1−1/df ] and that the latter are at most I1
i [f ], again because T1−1/2df

and T1−1/df are averages of f . Towards the third property, we note that by definition

ĥd(S) =
((

1− 1
2d

)|S|
−
(

1− 1
d

)|S|)
f̂(S).

The multiplicative factor in front of f̂(S), when d 6 |S| 6 2d, is easily seen to be a constant.
Towards the last property, we note that for each set S 6= ∅, its contribution to var(f) is f̂(S)2

and to I[f ] is |S|f̂(S)2, whereas the corresponding contributions to
∑
d ‖hd‖22 and

∑
d I[hd]

are similar up to the multiplicative factor

∑
d

((
1− 1

2d

)|S|
−
(

1− 1
d

)|S|)2

.

It is enough to show that this sum is at most 1. Indeed, since each summand is square of a
number in the range [0, 1], we can ignore the squares and then it is just a telescoping sum
upper bounded by 1.

A.2 Proof of Lemma 25
In the following, sums run over all d that are powers of 2 unless the sum is restricted explicitly
to a subset. Clearly,

∑
dW≈d[f ] = var(f), so it is enough to show that this sum over only

those d 6∈ Dgood is at most 1
2var(f). We consider two cases: those d that are “large”, that is

d > T = 4I1[f ]
var(f) , and those d that are “not large” but not in Dgood. In the first case, we use

Markov and in the second case, we note that there are only a few summands. Indeed, in the
first case (using I[f ] 6 I1[f ]),

I[f ] > T ·
∑
d>T

W≈d[f ], implying that
∑
d>T

W≈d[f ] 6
I[f ]
T

= I[f ] var(f)
4I1[f ] 6

1
4var(f).

In the second case, d 6 T , so there are at most log T chunks and when d 6∈ Dgood, we have
W≈d[f ] 6 var(f)2

16·I1[f ] = var(f)
4T . Hence∑

d6T,d 6∈Dgood

W≈d[f ] 6 log T · 1
4T · var(f) 6 1

4var(f).
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Abstract
We propose a variant of the 2-to-1 Games Conjecture that we call the Rich 2-to-1 Games Conjec-
ture and show that it is equivalent to the Unique Games Conjecture. We are motivated by two
considerations. Firstly, in light of the recent proof of the 2-to-1 Games Conjecture [16, 6, 5, 17], we
hope to understand how one might make further progress towards a proof of the Unique Games
Conjecture. Secondly, the new variant along with perfect completeness in addition, might imply
hardness of approximation results that necessarily require perfect completeness and (hence) are not
implied by the Unique Games Conjecture.
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1 Introduction

The Unique Games Conjecture [11] is considered a central question in theoretical computer
science. It has many applications to hardness of approximation (e.g. tight results for
Max-Cut and Vertex Cover problems [14, 18]) and connections to algorithms, computational
complexity, analysis, and geometry (e.g. see the surveys [22, 12, 13]). Recently, a related
conjecture called the 2-to-1 Games Conjecture has been proved [16, 6, 5, 17]. This conjecture
has many applications of its own, implies the Unique Games Conjecture “half-way” (in the
technical sense, with “completeness” 1

2 instead of 1− o(1)), and provides strong evidence in
favor of the Unique Games Conjecture.

In light of this development, it is natural to ask whether the proof of the 2-to-1 Games
Conjecture can somehow be extended to that of the Unique Games Conjecture. A straight-
forward extension does not look likely, so we raise the following possibility: perhaps the
2-to-1 Games Conjecture holds with additional structure on its instances, and hardness on
such instances is then enough to prove the Unique Games Conjecture? In this paper, we
investigate this possibility and make a concrete proposal in this regard. The proposal, that
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we call the Rich 2-to-1 Games Conjecture, is described next along with the overall context.
Our main result is that this variant of the 2-to-1 Games Conjecture turns out to be equivalent
to the Unique Games Conjecture.

1.1 The Unique Games Conjecture
The Unique Games and 2-to-1 Games are specialized cases of the more general 2-Prover-1-
Round Games.

I Definition 1. A 2P1R Games instance Ψ = (L ∪ R,E,ΣL,ΣR,Φ) consists of a regular,
bipartite graph (L ∪ R,E), the alphabet ΣL for the vertex set L, the alphabet ΣR for the
vertex set R, and a set of constraints Φ = {φe}e∈E, one for each edge. Each vertex is
supposed to receive a label from the respective alphabet. The constraint φe for an edge
e = (u, v) ∈ E, u ∈ L, v ∈ R is defined by a relation φe ⊆ ΣL × ΣR, thought of as the set of
label-pairs to the vertices u and v that satisfy the constraint.

For 1 > c > s > 0, and integers k, n, let Gap-2P1Rk,n[c, s] denote the promise problem
where given a 2P1R Games instance Ψ as above with |ΣL| = k, |ΣR| = n, the problem
is to distinguish whether there is a labeling to its vertices that satisfies c fraction of the
constraints or whether every labeling satisfies at most s fraction of the constraints (we will
often drop the subscripts k, n when clear from context).

2P1R Games are central to the theory of hardness of approximation and Probabilistically
Checkable Proofs. These serve as canonical starting point for hardness reductions. The
parameters of interest (from the viewpoint of making such reductions “work”) are: the
alphabet size max{m, k}, the “gap” (c, s), and the nature of the relations φe. Throughout
this paper, the parameters k, n, c, s are thought of as constants and the size of the bipartite
graph (L ∪R,E) as the instance size.

The 2P1R Games studied in applications are almost exclusively “Projection Games”, i.e.
instances in which |ΣL| > |ΣR| and the constraint on each edge e = (u, v) is defined by a
mapping πe : ΣL → ΣR; the relation φe is then φe = { (σ, πe(σ)) |σ ∈ ΣL}, so that for every
label to vertex u, there is a unique label to the vertex v that satisfies the constraint. We will
restriction to Projection Games henceforth and denote the corresponding gap problem as
Gap-Projection.

In the language of 2P1R Games, the celebrated PCP Theorem [8, 2, 1] states that
Gap-Projection7,2[1, s] is NP-hard for some absolute constant s < 1. Combining the PCP
Theorem and Raz’s Parallel Repetition Theorem [20] gives the very important theorem that
Gap-Projectionk,n[1, s] is NP-hard for every constant s > 0 and with the alphabet size at
most polynomial in 1

s .
For an integer d (thought of as a small constant, say d = 2), a d-to-1 Games instance is a

Projection Games instance in which |ΣL| = d · |ΣR| and the projection map πe : ΣL → ΣR

defining the constraint is a d-to-1 map. The 1-to-1 Games are more commonly called the
Unique Games and were studied by Feige and Lovasz [9] (in a different context). The
corresponding gap versions are denoted as Gap-d-to-1 and Gap-Unique and the alphabet sizes
are identified by one paramter n such that |ΣL| = d · n and |ΣR| = n. The conjectures made
in [11] are stated below (we take liberty to modify statements slightly regarding the issue of
perfect versus imperfect completeness):

I Conjecture 2 (Unique Games Conjecture). For every constant ε > 0, there is a sufficiently
large integer n such that Gap-Uniquen[1− ε, ε] is NP-hard.



M. Braverman, S. Khot, and D. Minzer 27:3

I Conjecture 3 (d-to-1 Games Conjecture). For every constant ε > 0, there is a sufficiently
large integer n such that Gap-d-to-1n[1− ε, ε] is NP-hard.

I Conjecture 4 (d-to-1 Games Conjecture with Perfect Completeness). For every constant
ε > 0, there is a sufficiently large integer n such that Gap-d-to-1n[1, ε] is NP-hard.

In a recent development, the 2-to-1 Games Conjecture is proved in a sequence of papers
[16, 6, 5, 17] (with additional contributions from [3, 15]), also proving as a simple corollary
that Gap-Unique[ 1

2 , ε] is NP-hard (for every ε > 0 and for sufficiently large alphabet size).
This gives a strong evidence towards correctness of the Unique Games Conjecture (which
prior to this development was viewed skeptically by most researchers).

1.2 The Rich 2-to-1 Games
One naturally asks whether the proof of the 2-to-1 Games Conjecture extends, without
substantial effort, to that of the Unique Games Conjecture. We do not believe this to be the
case and instead make the following proposal and conjecture. We conjecture that the 2-to-1
Games Conjecture holds with additional structure on its instances (referred to as “richness”)
and is then enough to prove the Unique Games Conjecture (in fact is equivalent to it). The
new conjecture and the notion of richness are well-motivated as explained later on.

Let Ψ = (L ∪ R,E,ΣL,ΣR,Φ) be a 2-to-1-Game, with |ΣL| = 2n and |ΣR| = n. Fix a
vertex u ∈ L. Let e = (u, v) ∈ E be an edge incident on u and let πe be the 2-to-1 projection
defining that constraint. The map defines a partition of ΣL as ΣL =

⋃
ρ∈ΣR

π−1
e (ρ) into

disjoint sets of size 2. Let us denote by P(u) the distribution over partitions of ΣL into sets
of size 2, given by first sampling a uniformly random edge e = (u, v) incident on u and then
outputting the partition of ΣL as above.

I Definition 5. An instance of Rich 2-to-1 Games is an instance of 2-to-1 Games with
the additional property that for every vertex u ∈ L, the distribution P(u) is uniform over all
partitions of ΣL into sets of size 2.

We now state the new conjecture (and also throw in a stronger version with perfect
completeness). Our main result is that it is equivalent to the Unique Games Conjecture.

I Conjecture 6 (Rich 2-to-1 Games Conjecture). For every constant ε > 0, there is a
sufficiently large integer n such that Gap-Rich-2-to-1n[1− ε, ε] is NP-hard.

I Conjecture 7 (Rich 2-to-1 Games Conjecture with Perfect Completeness). For every constant
ε > 0, there is a sufficiently large integer n such that Gap-Rich-2-to-1n[1, ε] is NP-hard.

I Theorem 8 (Main Result). The Unique Games Conjecture 2 and the Rich 2-to-1 Games
Conjecture 6 are equivalent.

The reduction from Unique Games to Rich 2-to-1 Games is straightforward, and is given
in the full version of the paper. The reverse reduction requires new analytic results to analyze
it. These results are stated in Section 3 and proved in Section 4. The reduction itself is
presented in Section 5.

1.3 Motivation to Study the Rich 2-to-1 Games
We now explain how the notion of richness arises from natural (but admittedly technical)
considerations. In short, the notion of richness is tailor-made so as to ensure the “sub-code
covering” property; this property was identified and used in [19] and was crucial in the
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proof of the 2-to-2 Games Conjecture [16, 6] (however there are differences that are outlined
below). We then comment on how the notion of richness might be useful towards proving
the Unique Games Conjecture and towards proving hardness of approximation results with
perfect completeness. These comments are speculative in nature.

Sub-code Covering Property
We describe, at a very high level, a typical PCP reduction starting with an instance of a
Projection Game.1 We admit that the description might not be friendly to a reader who is
not already somewhat familiar with the area.

Let Ψ = (L ∪R,E,ΣL,ΣR,Φ) be an instance of Projection Game. In the reduction (or
equivalently the PCP proof), each vertex u ∈ L is replaced by a string Enc∗(u) ∈ [m]kL

which is intended to be the encoding of the supposed label of u via an encoding scheme
Enc : ΣL → [m]kL . The encoding scheme is chosen a priori. Here [m] is the proof alphabet
(e.g. {0, 1}) and kL is the encoding length. Similarly, each vertex v ∈ R is replaced by
a string Enc∗(v) ∈ [m]kR which is intended to be the encoding of the supposed label of v
via the encoding scheme Enc : ΣR → [m]kR . For convenience, we use the same notation,
namely Enc(·), to denote both encodings. Also, similar notation, namely Enc∗(·) and Enc(·),
is used to emphasize their relationship: the latter is a true encoding whereas the former is a
purported encoding.

The task of the PCP verifier is to check, given a purported proof and an edge e = (u, v) ∈
E,

that the strings Enc∗(u) and Enc∗(v) in the purported proof are indeed codewords, i.e.
that they are same as Enc(σ) for some label σ ∈ ΣL and Enc(ρ) for some label ρ ∈ ΣR

respectively.
that πe(σ) = ρ where πe : ΣL → ΣR is the projection map defining the constraint.

These two tasks are referred to as the codeword test and the consistency test respectively
and are often somehow incorporated into a single combined test (as seen below). Further, a
combination of necessity and convenience dictates that:

One needs to work with a relaxed conclusion that Enc∗(u) and Enc∗(v) are close to some
codewords Enc(σ) and Enc(ρ) respectively so that πe(σ) = ρ. This amounts to decoding
or (more often) list-decoding the given strings Enc∗(u) and Enc∗(v).
One needs that the codeword Enc(ρ) is a “sub-code” of the codeword Enc(σ) whenever
πe(σ) = ρ. Specifically, for every location x ∈ [kR] on the v-side, there is a location
π−1
e (x) ∈ [kL] on the u-side such that Enc(σ)[π−1

e (x)] = Enc(ρ)[x] whenever πe(σ) = ρ.
Now we are ready to describe a typical PCP test. It picks v ∈ R randomly and generates
query locations x1, . . . , xk for the codeword tester of the purported codeword Enc∗(v) along
with a predicate P (Enc∗(v)[x1], . . . ,Enc∗(v)[xk]) that would determine whether the test
accepts or rejects. However this test and the query locations are only virtual. To define the
actual test and the query locations, one uses the property that the encoding Enc(ρ) of the
supposed label ρ of v ∈ R is a sub-code of the encoding Enc(σi) of the supposed label σi of
a neighbor ui ∈ L of v, ei = (ui, v). Thus, one may read-off the symbol Enc∗(v)[xi] from
the corresponding symbol Enc∗(ui)[yi] for appropriate location yi = π−1

ei
(xi) therein. More

specifically, the test picks random, independent neighbors u1, . . . , uk ∈ L of v, and tests
the predicate P (Enc∗(u1)[y1], . . . ,Enc∗(uk)[yk]). This completes the description of a typical

1 This paradigm is referred to as the “Inner/Outer PCP” in literature, but we avoid the usage of this
terminology.
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PCP test. To make this approach “work” however, more is needed. To see the difficulty
involved, let’s assume that the (virtual) codeword test succeeds perfectly for every v ∈ R, i.e.
that Enc∗(v) = Enc(ρ(v)) for some label ρ(v) (that depends on v). Looking at things from
the perspective of some fixed u ∈ L, this amounts to saying that the purported encoding
Enc∗(u) has, as its sub-strings, correct sub-codewords Enc(ρ(vj)) for all neighbors vj ∈ R
of u. Can we conclude now that Enc∗(u) is also a correct codeword or at least resembles a
correct codeword? Not necessarily and that’s the trouble.

It is possible that the sub-codewords Enc(ρ(vj)) (or rather the set of their locations)
constitute only a negligible portion of the purported codeword Enc∗(u) “on the larger side”
(or rather the set of its locations). If so, the consistency of Enc∗(u) with all its correct
sub-codewords would not say anything about correctness of Enc∗(u) itself. Clearly, the
disparity in the encoding lengths kL and kR on the two sides and the number of neighbors v
for a fixed u ∈ L, both have bearing on this issue. In [19], the authors defined the “sub-code
covering property” that is informally stated as follows.

I Definition 9 (Informal). The encoding scheme Enc(·) along with the Projection Game
structure is said to achieve sub-code covering property if for every fixed u ∈ L, the “pull-back
distribution” on the (query) location y ∈ [kL] as described next is statistically close to the
uniform distribution over [kL]. The pull-back distribution is defined by picking a random
neighbor v ∈ R of u, e = (u, v), then picking a uniformly random location x ∈ [kR] and
letting y = π−1

e (x).

In [19], the authors managed to achieve the sub-code covering property using Hadamard
encoding (which sufficed for the application therein). This techniques was subsequently
used in the proof of the 2-to-1 Games Conjecture [16, 6] using Grassmann encoding (which
again sufficed for the application therein). The Hadamard and Grassmann codes have length
polynomial in the alphabet size |ΣL| and |ΣR| and while there is still a big disparity between
the encoding lengths on the two sides, it is possible to arrange for a vertex u ∈ L to have
sufficiently many neighbors v ∈ R and achieve the sub-code covering property (we omit the
details). A serious restriction however is that using Hadamard and Grassmann encodings
requires the projections πe as well as the PCP test to be linear (limiting the efficacy of this
approach).

Long Code and Richness
In this paper, we attempt to work with the so-called Long encoding (defined below; this is
extremely important in Unique Games based reductions). As is well-said, the Long code is
too long. Its length is exponential in the alphabet size, making the disparity in encoding
lengths on the two sides insurmountable (as far as we foresee). Still, we attempt to identify
a scenario where the sub-code property is achievable using Long codes, possibly in a more
relaxed sense. Indeed, we are able to do so when |ΣL| = 2|ΣR|, the projections πe are 2-to-1,
and the game is “rich” (meaning, for a fixed u ∈ L, for its random neighbor v ∈ R, e = (u, v),
the partition of ΣL into sets of size 2 induced by the projection πe is uniform among all
possible such partitions). We informally state this observation below.

I Lemma 10 (Informal). The Long code along with the Rich 2-to-1 Game structure achieves
a relaxed sub-code covering property in the following sense. For every fixed u ∈ L, the
“pull-back distribution” on the (query) location y ∈ [kL] as described in Definition 9 has the
property that for most locations y ∈ [kL], their probability under the pull-back distribution is
not much larger than their probability under uniform distribution on [kL].
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Formally, let ΣL = [2n] = {1, . . . , 2n} and ΣR = [n] = {1, . . . , n}. Fix a vertex u ∈ L in
a Rich 2-to-1 Game and consider its randomly chosen neighbor v ∈ R. Then, by definition of
richness, π = π(u,v) : [2n]→ [n] is a uniformly random 2-to-1 map.

The m-ary Long code for the label of u corresponds to a function F : [m]2n → [m] and
the codeword for the label i0 ∈ [2n] corresponds to the ith0 dictatorship function

Dicti0(z) = Dicti0(z1, . . . , z2n) = zi0 .

Similarly, the Long code for the label of v corresponds to a function G : [m]n → [m] and the
codeword for the label j0 ∈ [n] corresponds to the jth0 dictatorship function

Dictj0(x) = Dictj0(x1, . . . , xn) = xj0 .

We observe that if one defines for x ∈ [m]n, π−1(x) ∈ [m]2n by letting π−1(x)i = xπ(i) for all
i ∈ [2n], it indeed holds that

Dicti0(π−1(x)) = Dictj0(x) whenever π(i0) = j0.

In this sense, the encoding corresponding to v is a sub-code of the encoding corresponding
to u. A location z from the pull-back distribution on [m]2n is sampled by first picking
a uniformly random 2-to-1 map π : [2n] → [n], picking x ∈ [m]n uniformly, and letting
z = π−1(x). Clearly, this distribution is supported only on z ∈ [m]2n for which each s ∈ [m]
appears an even number of times as its co-ordinate, and hence is statistically far from the
uniform distribution on [m]2n. On the other hand, we show that for “typical” z ∈ [m]2n
(those for which all s ∈ [m] occur roughly equal number of times as its coordinate), its
probability under the pull-back distribution is at most a constant times its probability under
the uniform distribution. We refer the reader to Lemma 27 for a formal statement.

We have explained how the notion of richness is tailor-made to achieve the sub-code
covering property for the Long code (albeit in a more relaxed sense). We now describe two
motivations to study Rich 2-to-1 Games. Our comments are speculative, but we hope that
these lead to fruitful research directions.

Hardness Results with Perfect Completeness?
From the discussion so far, it is evident that Rich 2-to-1 Games could be an excellent problem
to reduce from. In particular, we show that it can be reduced to the Unique Games problem,
and is equivalent to the latter. In light of this equivalence, why not just stick to the Unique
Games Conjecture then? The additional advantage of using the Rich 2-to-1 Games Conjecture
could be that this conjecture could hold even with perfect completeness. This could be useful
towards proving hardness of approximation results where perfect completeness is essential.
We cite couple of plausible candidates where hardness results could follow from the Rich
2-to-1 Games Conjecture with perfect completeness:

Hardness of coloring 3-colorable graphs with a constant number of colors.
Hardness of CSPs (constraint satisfaction problems) on satisfiable instances. A concrete
example is the query-efficient dictatorship test with perfect completeness that is proposed
and analyzed in [21, 4]. Therein, one does not know how to translate the dictatorship
test to a hardness result, lacking a suitable, conjectured hard problem to reduce from.

We remark that such results could follow by developing the appropriate analytic machinery
on specialized domains (minor adjustments to the reduction are needed). A concrete
example (related to the problem of proving hardness of coloring 3-colorable graphs with a
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constant number of colors) is the multi-slice with an appropriate noise operator. Namely,
V =

{
x ∈ {0, 1, 2}6n

∣∣∣ the number of 0’s, 1’s and 2’s in x is 2n
}
, with the noise operator T

that acts on V in the following way: given x, randomly change half of the 0-valued coordinates
in x to 1’s, and the rest into 2’s, and similarly for the 1-valued and 2-valued coordinates. This
operator can naturally be viewed as an averaging operator over functions, and one would
need a “Majority is Stablest” type bound: if all of the low-degree influences of f : V → {0, 1}
are small, then 〈f, Tf〉 is bounded away from 0.

More ambitiously, one could hope that by developing the necessary analytical tools on
such non-classical domains, any dictatorship test with perfect completeness could used to
prove an NP-hardness result for the corresponding predicate, assuming Conjecture 7. We
leave further investigation along this direction to future works.

Making Games Richer?

One might argue that since 2-to-1 Games are now known to be hard, we should now work
towards showing that “rich” 2-to-1 Games are hard as well, showing in turn that the Unique
Games are hard. It might be possible to consider “degree of richness” and design a sequence
of reductions that successively achieve higher degree of richness, finally achieving full richness
as in the definition of Rich 2-to-1 Games.

Formally, let F be a family of partitions of [2n] into sets of size 2 each. A 2-to-1 Game is
called F -rich if for every fixed vertex u ∈ L, for its random neighbor v ∈ R, the partition of
[2n] induced by the projection π = π(u,v) is uniform over the family F . We defined the game
to be rich if it is Fall-rich, where Fall is the family of all such partitions possible.

As is the case in the proof of the 2-to-1 Games Conjecture [16, 6], the 2-to-1 Games
shown to be hard therein are Flin-rich. Here [2n] is identified with the additive group GF (2)k
and Flin consists of one partition for every b ∈ GF (2)k, b 6= 0 that induces the “linear pairing”
(x, x+ b) for all x ∈ GF (2)k. We float the idea to define a sequence of families

F0 = Flin ⊆ F1 . . . ⊆ FT = Fall,

and design a sequence of reductions achieving Fj-richness successively from j = 0 (which
we now know) to j = T (proving the Rich 2-to-1 Games Conjecture and hence the Unique
Games Conjecture).

2 Preliminaries

Notation: We denote by [n] the set {1, . . . , n} and by [n]d the set of ordered d-tuples of
elements of [n] consisting of distinct elements. The set of all permutations on [n] is denoted
by Sn and the set of all 2-to-1 mappings π : [2n]→ [n] is denoted by S2n,n.

We consider functions f : [m]n → R. The distribution on [m]n is, by default, uniform
(but we will have occasions to consider non-uniform distributions and if so, it will be clear
from the context). A sample x ∈ [m]n will, by default, denote a uniform sample. For p > 1,
the p-norm is defined in the standard manner, ‖f‖p = Ex [|f(x)|p]1/p. The inner product of
two functions is 〈f, g〉 = Ex [f(x)g(x)].

Throughout the paper, C(m), C(K,m), C(d,K,m) etc will denote a constant that depends
on the respective parameters and this constant could change from time to time.
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2.1 Basic Analytic Notions

We recall the standard way to express f : [m]n → R in the Fourier basis. Here, it is more
convenient to define [m] = Zm = {0, 1, . . . ,m − 1} with the additive group structure. Let
{Ys : [m]→ R |s ∈ [m]} be an orthonormal set of random variables with Y0 ≡ 1. One can
then express a function f : [m]n → R uniquely as a “multi-linear” polynomial in random
variables {Xi,s|1 6 i 6 n, s ∈ [m]} where for each 1 6 i 6 n, the {Xi,s} are copies of {Ys},
and are independent for different i. A degree-d “monomial” looks like

∏d
j=1Xij ,sj

with
sj 6= 0 and ij distinct for 1 6 j 6 d. The degree of a polynomial is the maximum degree of
its non-zero monomials.

I Theorem 11 (Hypercontractivity). Let f : [m]n → R be a function of degree at most d.
Then for all p > 2, ‖f‖p 6

√
m(p− 1)d‖f‖2.

I Definition 12. The noise operator T1−ε acts on functions f : [m]n → R by defining
T1−εf (x) = Ez∼1−εx [f(z)]. Here z ∼1−ε x denotes a random input z that is (1−ε)-correlated
with x, i.e. independently for each coordinate 1 6 i 6 n, the ith coordinate of z equals the ith
coordinate of x with probability 1− ε and is sampled uniformly from [m] with probability ε.

I Definition 13. The influence of a coordinate i ∈ [n] on a function f : [m]n → R is defined
by 2 Ii[f ] = Ex

[(
f(x)− Es∈[m] [f(x+ sei)]

)2].
I Lemma 14. Let f : [m]n → R be a function and i ∈ [n].

1
4 E
x,s∈[m]

[
(f(x)− f(x+ sei))2] 6 Ii[f ] 6 E

x,s∈[m]

[
(f(x)− f(x+ sei))2].

Proof. Deferred to the full version. J

I Definition 15. Let f6d and f>d denote the parts of f with degree at most d and larger than
d respectively. The degree-d influence of a variable i ∈ [n] on f is defined as I6di [f ] = Ii[f6d].

We need the following noise-stability result of [7]. It upper-bounds the noise-stability of
functions all of whose influences are low.

I Theorem 16. For every integer m > 2 and constants ε, θ > 0, there is a sufficiently small
constant δ > 0, such that the following holds. Let f : [m]n → [0, 1] with E [f ] 6 θ and assume
that for all i ∈ [n], Ii[f ] 6 δ. Then 〈f, T1−εf〉 6 2Γ1−ε(θ).

The function Γ1−ε(θ) is defined in [14] and the only property we need is that for a fixed
ε > 0, Γ1−ε(θ)

θ → 0 as θ → 0. A known upper bound is Γ1−ε(θ) 6 C(ε) θ2/(2−ε).

Functions with range [m]: We also consider functions F : [m]n → [m], which are more
convenient to view as F : [m]n → ∆m where ∆m is the standard m-dimensional simplex,
∆m = {(t0, . . . , tm−1)|∀i ti > 0,

∑m−1
i=0 ti = 1}. The value s ∈ [m] is then identified with the

vertex es ∈ ∆m of the simplex. Usually, we consider the function F : [m]n → ∆m as a vector
of [0, 1]-valued functions (F0, F1, . . . , Fm−1).

2 ei denotes an input that is 1 in the ith coordinate and zero otherwise.



M. Braverman, S. Khot, and D. Minzer 27:9

2.2 Hypercontractivity on the Symmetric Group and the 2-to-1
Mappings Domain

In this section, we give the basic background towards analyzing functions on the symmetric
group and state the hypercontractive result we need. We consider functions F : Sn → R. For
S, T ∈ [n]k, S = (i1, . . . , ik), T = (j1, . . . , jk), we write π(S) = T if π(i1) = j1, . . . , π(ik) = jk.
Let 1π(S)=T be the indicator function on Sn indicating that π(S) = T .

I Definition 17. For d = 0, . . . , n, let Vd(Sn) be the linear subspace spanned by all functions{
1π(S)=T

∣∣S, T ∈ [n]k, 0 6 k 6 d
}
. We say the “degree” of F is (at most) d if F ∈ Vd(Sn).

I Definition 18. A degree-d function F : Sn → R is called ε-pseudo-random if for any
S, T ∈ [n]d, Eπ:π(S)=T

[
F [π]2

]
6 ε.

We need the following hypercontractive inequality from [10]. We will use it to show certain
concentration properties of functions on the symmetric group (or more precisely on the 2-to-1
mappings domain defined next).

I Theorem 19. Let F : Sn → R be a degree-d, ε-pseudo-random function. Then (C(d) =
240d2 suffices) Eπ

[
F [π]4

]
6 C(d)ε2.

What we really need to analyze are functions on the 2-to-1 mappings domain S2n,n,
i.e. the set of 2-to-1 mappings π : [2n]→ [n]. We define the notion of degree of a function
F : S2n,n → R in a similar manner. For S ∈ [2n]2k, T ∈ [n]k, S = (i1, i′1, . . . , ik, i′k),
T = (j1, . . . , jk), we write π(S) = T if π(i1) = π(i′1) = j1, . . . , π(ik) = π(i′k) = jk. Let
1π(S)=T be the indicator function on S2n,n indicating that π(S) = T .

I Definition 20. For d = 0, . . . , n, let Vd(Sn) be the linear subspace spanned by all functions{
1π(S)=T

∣∣S ∈ [2n]2k, T ∈ [n]k, 0 6 k 6 d
}
. We say the “degree” of F is (at most) d if

F ∈ Vd(Sn).

I Definition 21. A degree-d function F : S2n,n → R is called ε-pseudo-random if for any
S ∈ [2n]4d and T ∈ [n]2d we have Eπ:π(S)=T

[
F [π]2

]
6 ε.

I Theorem 22. Let F : S2n,n → R be a degree-d, ε-pseudo-random function. Then (C(d) =
2160d2 suffices) Eπ

[
F [π]4

]
6 C(d)ε2.

Proof. The proof proceeds by embedding S2n into S2n,n, and is deferred to the full version.
J

3 Main Analytic Lemma

We now state our main analytic lemma. Let π ∈ S2n,n be a 2-to-1 map. We recall that for
x ∈ [m]n, its “pull-back” π−1(x) ∈ [m]2n is defined as π−1(x)i = xπ(i) for i ∈ [2n]. For a
function f : [m]2n → R, the “restriction” f |π : [m]n → R is defined as 3 f |π(x) = f(π−1(x)).
Our main lemma states, loosely speaking, that if f is a low-degree, bounded function and if
π ∈ S2n,n is a random 2-to-1 map, then the influential co-ordinates of f and those of the
restricted function f |π are related. More specifically, it is unlikely to happen that f |π has
some influential co-ordinate j without either of i, i′ ∈ π−1(j) being influential for f .

3 This is indeed restriction of f to the pull-back domain π−1([m]n).
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I Lemma 23. Fix the alphabet size m > 2. For every constants δ, ζ > 0 and integer d > 1,
there are sufficiently small constants γ = γ(m, δ, ζ), τ = τ(d,m, δ, ζ) > 0 such that the
following holds. Suppose f : [m]2n → [0, 1] is a function such that ‖f>d‖22 6 γ. Then

Pr
π

[
∃ j ∈ [n] : Ij [f |π] > δ ∧ max

i∈π−1(j)
I6di [f ] 6 τ

]
6 ζ.

For convenience, we prove a very similar lemma stated below, which considers the special
case when f itself has no degree-d influential variables at all. Its proof contains all the main
ingredients and the above Lemma 23 then follows with minor modifications. Due to space
constraints, we defer this derivation to the full version of the paper.

I Lemma 24. Fix the alphabet size m > 2. For every constants δ, ζ > 0 and integer d > 1,
there are sufficiently small constants γ = γ(m, δ, ζ), τ = τ(d,m, δ, ζ) > 0 such that the
following holds. Suppose f : [m]2n → [0, 1] is a function such that ‖f>d‖22 6 γ and moreover
that for all i ∈ [2n], I6di [f ] 6 τ . Then, Prπ [∃ j ∈ [n] : Ij [f |π] > δ] 6 ζ.

I Remark 25. It is important that in the statements of the lemmas above, γ does not depend
on d. When we apply these lemmas, f itself will be a smoothed version T1−εh for some
[0, 1]-valued function h. Thus ‖f>d‖22 6 γ = 2−Ω(d/ε) and in fact d will be chosen sufficiently
large so as to make γ sufficiently small (so the dependence “in practice” is really the other
way round).

4 Proof of the Main Analytic Lemma

In this section, we prove Lemma 24 (and the proof of Lemma 23 follows by minor modific-
ations). We will work, for the large part, with function g that is, roughly speaking, f6d.
However, for technical reasons, we will zero-out its values on a small set of “atypical” inputs
that are outside a certain set E ⊆ [m]2n. Formally, g = f6d1E where 1E is the indicator of
set E. Towards the end of the proof, we will relate influences of f and g. Motivation and
overview of successive steps in the proof is presented as we go along.

4.1 The Pull-back Distribution
While trying to relate influences of a function g : [m]2n → R to those of its restrictions g|π, a
technical hurdle is that the “pull-back distribution” on [m]2n that we define next differs from
the uniform distribution on [m]2n. The pull-back distribution arises while considering the
average of influences of g|π over the choice of π whereas the influences of g itself are defined
with respect to the uniform distribution. We are able to show that the pull-back distribution
resembles the uniform distribution on [m]2n in a loose, but controlled manner.

I Definition 26. The pull-back distribution ν2n,m over [m]2n is defined by the following
process: sample π ∈ S2n,n, x ∈ [m]n and output z = π−1(x).

Clearly, this distribution is supported only on z ∈ [m]2n for which each s ∈ [m] appears
an even number of times as its coordinate, and hence is statistically far from the uniform
distribution on [m]2n. On the other hand, we show that for “typical” z ∈ [m]2n, its probability
under the distribution ν2n,m is at most a constant times its probability under the uniform
distribution (this and an additional related fact is all we need).

I Lemma 27. A point z ∈ [m]2n is called K-roughly balanced if every value s ∈ [m] appears
in 2n

m ±
√
K logm n

m of the coordinates of z. For a K-roughly balanced point z,

ν2n,m(z) 6 C(K,m) m−2n.
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Proof. Let As be the set of coordinates of z that are equal to s ∈ [m], let as = |As|, and
let as = 2n+vs

m . We may assume that all sets As are even-sized, since otherwise νn,m(z) = 0.
In this case, νn,m(z) is equal to m−n times the probability that for a random π ∈ S2n,n, z
happens to be in the range of π−1, or equivalently that π matches off each set As within

itself. By Lemma 40, this probability is
( n

a0/2,...,am−1/2)
( 2n

a0,...,am−1) . Since z is K-roughly balanced, we

have that |vs| 6
√

(K logm) m n. Using Lemma 39, the ratio between the two multinomial
coefficients is at most C(m) 2K logm·mm−n = C(K,m)m−n. J

I Remark 28. We will often use the lemma above with additional conditioning on the choice
of π, say for example that π is sampled uniformly with the condition π(2n− 1) = π(2n) = n.
The lemma continues to hold. The distribution ṽ2n,m on inputs z ∈ [m]2n is now supported
on z where every s ∈ [m] occurs an even number of times as its coordinate and moreover that
z2n−1 = z2n. Writing z = (z̃, z2n−1, z2n), if z is K-roughly balanced, then z̃ ∈ [m]2n−2 is
(K+1)-roughly balanced and the probability that z̃ is output is C(K,m) times its probability
under uniform distribution.

The lemma above immediately implies the following. It is then used to relate influences
of g : [m]2n → R to those of g|π (the latter in expectation).
I Lemma 29. Let h : [m]2n → [0,∞) be a function supported only on K-roughly balanced
inputs. Then Ez∼ν2n,m [h(z)] 6 C(K,m)Ez∈R[m]2n [h(z)].

We now show how this is useful. Let g : [m]2n → R and consider a random choice of
π ∈ S2n,n such that π(2n − 1) = π(2n) = n. Such π can be chosen at random by first
choosing π′ ∈ S2(n−1),(n−1) at random, letting π = π′ on [2(n − 1)], and then extending
by letting π(2n − 1) = π(2n) = n. We wish to consider the expected influence of the nth
coordinate on the restriction g|π.
I Remark 30. Here we specifically consider the nth coordinate of g|π under the requirement
π(2n − 1) = π(2n) = n. This is for notational convenience only and is without loss of
generality. The same results hold for any given jth coordinate of g|π under the requirement
that π(i) = π(i′) = j for any given i 6= i′ ∈ [2n].
I Lemma 31. Let g : [m]2n → R be a function supported only on K-roughly balanced inputs.
Then Eπ [In[g|π]] 6 C(K,m) (I2n−1[g] + I2n[g]).
Proof. Let e2n be the input with the (2n)th coordinate 1 and all other coordinates zero. Let
e2n−1 be similarly defined and let e = e2n−1 + e2n. By Lemma 14,

E
π

[In[g|π]] 6 E
π,x∈[m]n
s∈[m]

[(
g(π−1(x))− g(π−1(x) + s e)

)2
]
.

Let z = π−1(x) so that z is distributed according to the distribution ν̃2n,m (see Remark 28).
Since g is supported only on K-roughly balanced inputs, the term above is non-zero only if z
is (K + 1)-roughly balanced. Hence by Lemma 29, the above expectation is at most

C(K,m) · E
z∈R[m]2n, s

[(
g(z)− g(z + s e)

)2
]
.

Note that we think of z ∈R [m]2n as uniformly distributed now onwards. Using (a− b)2 6
2(a− c)2 + 2(c− b)2, the last expectation is at most twice

E
z,s

[(
g(z)− g(z + s e2n−1)

)2
]

+ E
z,s

[(
g(z + s e2n−1)− g(z + s e2n−1 + s e2n))

)2
]
.

Since the distribution of z ∈ [m]2n is uniform, so is the distribution of z + s e2n−1 and hence
these expectations are equal (up to a factor 4) to I2n−1[g] and I2n[g] respectively. J
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4.2 The Function G on S2n,n and its Pseudo-randomness
We seek to show that under appropriate conditions, if a function g : [m]2n → R has all
influences low, then with high probability over the choice of π, the same is true for the
restriction g|π. We begin by a (somewhat imprecise) proof-sketch.

Suppose that g has all influences low, say at most τ . By above Lemma 31, the expected
value of the influence In[g|π], over the choice of π, is at most O(τ). We would like to show
that in fact In[g|π] is at most O(τ) with high probability over the choice of π. We would then
argue that the same holds for the influence Ij [g|π] for every 1 6 j 6 n (since consideration
of the nth coordinate was just for notational convenience), then take a union bound over all
1 6 j 6 n, and conclude that the restriction g|π has all influences low.

However, such an argument requires strong probabilistic guarantees. It is natural to seek
an upper bound on the higher moments of the random variable G[π] = In[g|π]. We are able
to do this, but only in a rather convoluted manner. We show that G[π] is pseudo-random
as a function on S2n,n (or strictly speaking, on S2(n−1),n−1 since π(2n− 1) = π(2n) = n is
pre-defined) in the sense of Definition 21. Concretely, we show that for small d and any sets
|A| = 2(d−1), |B| = d−1, the conditional second moment Eπ(A)=B

[
G[π]2

]
remains bounded

by O(1) times (the unconditional second moment) E
[
G[π]2

]
. For notational convenience

(only), one can think of

A = {2(n−(d−1))−1, 2(n−(d−1)), . . . , 2(n−1)−1, 2(n−1)}, B = {n−(d−1), . . . , n−1},

and the event π(A) = B denotes the event that π(2(n− j)− 1) = π(2(n− j)) = n− j for
1 6 j 6 d − 1 (and in addition, π(2n − 1) = π(2n) = n is pre-defined, corresponding to
j = 0).

This pseudo-randomness property then implies that the fourth moment E
[
G[π]4

]
is upper

bounded by O(1) times (the square of the second moment) E
[
G[π]2

]2. This gives sufficiently
strong guarantees to make the “with high probability” and union bound arguments to go
through. Towards implementing the details of this proof, we need the following ad hoc
sounding lemma. We then show how to use it and prove the desired pseudo-randomness
property.

I Lemma 32. Let a pair of inputs z1, z2 ∈ [m]2n be chosen by two different methods:
Choose a random π ∈ S2n,n, then choose x1, x2 ∈ [m]n at random, and then define
zi = π−1(xi). Let µ(z1, z2) denote the probability that the pair (z1, z2) is output.
Let A = {2(n− (d− 1))− 1, 2(n− (d− 1)), . . . , 2n− 1, 2n}, B = {n− (d− 1), . . . , n},
and the event π(A) = B denotes the event that π(2(n− j)− 1) = π(2(n− j)) = n− j for
0 6 j 6 d− 1. Let µcond(z1, z2) denote the probability that the pair (z1, z2) is output by
the method above, but conditional on the event π(A) = B.

Then if the pair (z1, z2) is “typical”, we have µcond(z1, z2) 6 C(d,m) µ(z1, z2), where the pair
(z1, z2) is “typical” if among the multi-set {(z1(i), z2(i))|1 6 i 6 2n} of their coordinates,
each of the m2 patterns in [m]× [m] appears at least 2n

20m2 times.

Proof. Among the multi-set {(z1(i), z2(i))|1 6 i 6 2n}, let the number of occurrences of
the m2 possible patterns be v1, . . . , vm2 . We may assume that these numbers are all even
since otherwise the pair (z1, z2) will never be output. The probability µ(z1, z2) is equal to

(using Lemma 40)
( n

v1
2 ,...,

v
m2
2

)
( 2n

v1,..., v
m2) . Denote by u1, . . . , um2 the number of occurrences of these

patterns that appear in the 2d coordinates of A so that 2d = u1 + . . .+ um2 . The probability

µcond(z1, z2) is equal to (using Lemma 40 again)
( n−d

v1−u1
2 ,...,

v
m2−u

m2
2

)
( 2n−2d

v1−u1,..., v
m2−u

m2) . Applying Lemma 38,
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we see that the numerator of the second fraction is at most C(d,m) times the numerator of
the first fraction, and its denominator is at least c(d,m) times the denominator of the first
fraction for some c(d,m) > 0, and hence we conclude that µcond(z1, z2) 6 C(d,m)µ(z1, z2)
for a typical pair (z1, z2). J

I Lemma 33. Let g : [m]2n → R be a function supported on K-roughly balanced inputs. Let
A = {2(n−(d−1))−1, 2(n−(d−1)), . . . , 2(n−1)−1, 2(n−1)}, B = {n−(d−1), . . . , n−1}.
Then the random variable G[π] = In[g|π] satisfies (π(2n− 1) = π(2n) = n is pre-defined)

E
π(A)=B

[
G[π]2

]
6 C(d,m) E

[
G[π]2

]
+ 2−Ω( n

m2 ) · C(d,K,m) · ‖g‖44.

Proof. Denote h(z) = (g(z)− Es∈[m] [g(z + s e)])2 where the last two coordinates of e equal
1 and the rest are zero. By definition, Eπ(A)=B

[
G[π]2

]
equals

E
π(A)=B

[
In[g|π]2

]
= E
π(A)=B

[
E

x1,x2

[
h(π−1(x1))h(π−1(x2))

]]
= E

(z1,z2)∼µcond

[h(z1)h(z2)]. (1)

We wish to upper bound this expression in terms of E
[
G[π]2

]
which may be written similarly

as E
[
G[π]2

]
= E(z1,z2)∼µ [h(z1)h(z2)], the two expectations being similar, but under different

distributions µcond and µ respectively. The proof proceeds by splitting the expectation in
(1) into two parts, over the pairs (z1, z2) that are typical versus that are atypical. For the
first part, we upper bound using the above Lemma 32 and hence are able to “switch” to
the distribution µ. We now show how to upper bound the second part; this is by using
Cauchy-Schwartz carefully and noting that only a negligible number of pairs are atypical.
Let 1Bad denote the indicator of the event that the pair (z1, z2) is atypical. We note that the
probability of this event is at most 2−Ω( n

m2 ). We wish to upper bound

E
(z1,z2)∼µcond

[h(z1)h(z2)1Bad(z1, z2)] = E
(z1,z2)∼µcond

[h(z1)1Bad(z1, z2) · h(z2)1Bad(z1, z2)].

By Cauchy-Schwartz, this is upper bounded by

E
(z1,z2)∼µcond

[
h(z1)21Bad(z1, z2)

]
. (2)

Since g(z1) is non-zero only on K-roughly balanced inputs z1, the same holds for h(z1)
(possibly replacing K by K + 1; we ignore this minor point). We may thus assume that z1 is
K-roughly balanced. Provided that z1 is K-roughly balanced, the probability that (z1, z2) is
atypical remains 2−Ω( n

m2 ). We note in addition that h(z1)2 6 C(m) · Es∈[m]
[
g(z1 + s e)4],

and that since z1 is K-roughly balanced, its probability under µcond is at most C(d,K,m)
times that under the uniform distribution on [m]2n (by Lemma 27; the conditioning π(A) = B

may give additional factor of md). Putting these observations together, we upper bound (2),
as desired, by 2−Ω( n

m2 ) · C(d,K,m) · Ez∈R[m]2n

[
g(z)4]. J

4.3 Using Hypercontractivity on S2n,n

We now present the key hypercontractive argument, almost completing the proof as far as
the function g = f6d1E is concerned. In subsequent sections, we carry out the final steps
relating influences of f and g.

I Lemma 34. Let f : [m]2n → [0, 1] be a bounded function and E ⊆ [m]2n be the set of
K-roughly balanced inputs. Define g = f6d · 1E, i.e. g is the low-degree part of f , but in
addition zeroed out on the imbalanced inputs. Then

Pr
π

[In[g|π] > δ] 6 C(d,K,m)
δ4 (I2n−1[g]4 + I2n[g]4).
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Proof. We use Lemma 33 to conclude that

E
π(A)=B

[
G[π]2

]
6 C(d,m) E

[
G[π]2

]
+ 2−Ω( n

m2 ) · C(d,K,m) · ‖g‖44.

Towards bounding the second term, we observe

‖g‖44 = ‖f6d1E‖44 6 ‖f6d‖44 6 (3m)2d‖f6d‖42 6 (3m)2d‖f‖42 6 (3m)2d.

Here we used the fact that f is a bounded function and Theorem 11. The 2−Ω( n
m2 ) factor in the

second term makes the term negligible. This term does not really affect subsequent arguments,
so for the clarity of presentation, we take the liberty to ignore it henceforth. Thus we have
Eπ(A)=B

[
G[π]2

]
6 C(d,m) E

[
G[π]2

]
. Since this holds for any |A| = 2d− 2, |B| = d− 1,

the function G[π], as a function on S2(n−1),n−1, is pseudo-random in the sense of Definition
21 (we stress again that π(2n− 1) = π(2n) = n is pre-defined). Moreover, the degree of G[π]
is (at most) 2d. The subtle explanation is as follows.4 By definition, G[π] is the average of

(g(π−1(x))−g(π−1(x+s e)))2 = g(π−1(x))2+g(π−1(x+s e))2−2g(π−1(x))g(π−1(x+s e)) (3)

over some distribution over x, s, so it is enough to argue about the degree for each fixed x, s.
If either of the inputs π−1(x) or π−1(x+ s e) falls outside of the set E, their g-value is zero
and can be dropped from consideration. Otherwise their g-values are given by the degree-d
function f6d : [m]2n → R. Thus (3) can be written as a linear combination of monomials
of degree at most 2d and any monomial, say on coordinates i1, . . . , i2d, is determined by
π(i1), . . . , π(i2d) when regarded as a function on S2(n−1),n−1.

Thus G[π] is a degree-2d pseudo-random function and we can apply Lemma 22 to
upper bound its fourth moment as Eπ

[
G[π]4

]
6 C(d,m) Eπ

[
G(π)2]2. Finally, by ( 3

2 , 3)-
Holder’s inequality, Eπ

[
G[π]2

]
= Eπ

[
G[π] 2

3 ·G[π] 4
3

]
6 (Eπ [G[π]]) 2

3 (Eπ
[
G[π]4

]
) 1

3 , which
yields, using the bound on the fourth moment, Eπ

[
G[π]2

]
6 C(d,m) Eπ [G[π]]2, and then

Eπ
[
G[π]4

]
6 C(d,m) Eπ [G[π]]4. Using Markov and Lemma 31, we conclude as desired, that

Pr
π

[G[π] > δ] 6
Eπ
[
G[π]4

]
δ4 6

C(d,m)
δ4 E

π
[G[π]]4 6

C(d,K,m)
δ4 (I2n−1[g]4 + I2n[g]4).J

I Lemma 35. Let f : [m]2n → [0, 1] be a bounded function and E ⊆ [m]2n be the set of
K-roughly balanced inputs. Define g = f6d · 1E as in the statement of Lemma 34. Then

Pr
π

[∃j : Ij [g|π] > δ] 6 C(d,K,m)
δ4 ·

2n∑
i=1

Ii[g]4.

Proof. We use Lemma 34, but note that the consideration of the nth coordinate and the
requirement that π(2n− 1) = π(2n) = n is only for notational convenience. What we have
actually proved is that for any 1 6 j 6 n and any 1 6 i 6= i′ 6 2n,

Pr
π:π(i)=π(i′)=j

[Ij [g|π] > δ] 6
C(d,K,m)

δ4 (Ii[g]4 + Ii′ [g]4).

4 To be in strict accordance with Definition 21, one actually argues here that G[π] has degree d∗ = 2d
and the pseudo-randomness condition holds for all |A| = 4d∗, |B| = d∗. We have avoided this minor
point for ease of presentation.
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Fixing j and taking average over all 1 6 i 6= i′ 6 2n gives

Pr
π

[Ij [g|π] > δ] 6
C(d,K,m)

δ4 E
π

 ∑
i∈π−1(j)

Ii[g]4
.

Now taking a union bound over all 1 6 j 6 n gives the result. J

The above Lemma 35 shows, morally speaking, that with high probability over the
choice of π, all influences of g|π are low provided that all influences of g are low. We
could upper bound

∑2n
i=1 Ii[g]4 by τ(g)3I[g] where τ(g) is the maximum influence Ii[g] and

I[g] =
∑2n
i=1 Ii[g] is the total influence. The total influence, since g is morally speaking same

as f6d, should be O(d). However, the fact that g = f6d1E is a truncation of f6d complicates
matters and we have to go through a somewhat tedious argument.

4.4 Relating Influences of f and g

I Lemma 36. Let f : [m]2n → [0, 1] be a bounded function and E ⊆ [m]2n be the set of
K-roughly balanced inputs. Define g = f6d · 1E. Then for any coordinate 1 6 i 6 2n,
Ii[g] 6 C(m) I6di [f ] + C(d,m) n− 3

8 .

Proof. By definition, g = f6d · 1E and Ii[g] equals (possibly up to a factor m)

E
z∈R[m]2n

[
|f6d(z) · 1E(z)− f6d(z + ei) · 1E(z + ei)|2

]
.

Now if both z and z + ei are in E, the term inside is same as |f6d(z)− f6d(z + ei)|2 and it
contributes to the influence I6di [f ]. So only additional contribution to Ii[g] on top of I6di [f ]
is due to inputs z such that z ∈ E, but z + ei 6∈ E (or vice versa). Let ∂E denote the set
of such z so that it constitutes at most C(m)√

n
fraction of inputs in [m]2n. The additional

contribution to Ii[g] is now upper bounded as (using (4, 4
3 )-Holder)

E
[
f6d(z)21∂E

]
6 E

[
f6d(z)8] 1

4 E
[
1

4
3
∂E

] 3
4
6 C(d,m)

(
C(m)√

n

) 3
4

.

We used E
[
f6d(z)8] 6 C(d,m)E

[
f6d(z)2]4 6 C(d,m) that follows from Theorem 11. This

completes the proof. J

I Lemma 37. Let f : [m]2n → [0, 1] be a bounded function and E ⊆ [m]2n be the set of
K-roughly balanced inputs. Define g = f6d · 1E. Then except with probability ζ over the
choice of π, we have

max
16j6n

Ij [f |π] 6 3 · max
16j6n

Ij [g|π] + δ.

This holds as long as K = O(log 1
δζ ) is sufficiently large and ‖f>d‖22 6 γ = γ(m, δ, ζ) is

sufficiently small. We emphasize that γ does not depend on d.

Proof. We write f = g + h+ q where g = f6d · 1E , h = f>d · 1E , and q = f · 1E . Clearly,
for any coordinate 1 6 j 6 n (using (a+ b+ c)2 6 3(a2 + b2 + c2)),

Ij [f |π] 6 3 · (Ij [g|π] + Ij [h|π] + Ij [q|π]) .

We will show that except with “small” probability over the choice of π, both ‖h|π‖22 and
‖q|π‖22 are “small”. Since these are upper bounds on Ij [h|π] and Ij [q|π] respectively, the
lemma follows. We will just show that Eπ

[
‖h|π‖22

]
and Eπ

[
‖q|π‖22

]
are “small” (i.e. � δζ

and this determines the quantitative constraints on K and γ) and then use Markov. Indeed,
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Towards upper-bounding Eπ
[
‖q|π‖22

]
, we note that f is bounded in [0, 1] and

E
π

[
‖q|π‖22

]
= E
π,x∈[m]n

[
f(π−1(x)) 1E(π−1(x))

]
6 E
π,x∈[m]n

[
1E(π−1(x))

]
,

and the probability that π−1(x) is imbalanced is at most 2−Ω(K).
Towards upper-bounding Eπ

[
‖h|π‖22

]
, we argue that (z = π−1(x))

E
π

[
‖h|π‖22

]
= E
π,x∈[m]n

[
f>d(z)21E(z)

]
6 C(K,m) ‖f>d‖22 6 C(K,m) γ.

In the second step, since one is concerned only with K-roughly balanced inputs, one can
“switch” to uniform distribution over input thanks to Lemma 27. J

Proof of Lemma 24
We now complete the proof of Lemma 24. Let f : [m]2n → [0, 1] be a function as therein with
‖f>d‖22 6 γ and for all i ∈ [2n], I6di [f ] 6 τ . Let g = f6d1E where E is the set of K-roughly
balanced inputs. The parameters K, γ, τ are chosen as needed by the proof.

By Lemma 36, we get an upper bound as below. We note that the total influence of f6d
is O(d) and its maximum influence is at most τ by hypothesis.

2n∑
i=1

Ii[g]4 6 C(d,m)
( 2n∑
i=1

I6di [f ]4 + 1√
n

)
6 C(d,m) τ3.

This gives, by Lemma 35, that Prπ [∃j : Ij [g|π] > δ] 6 C(d,K,m)
δ4 τ3. Finally, by Lemma

37, except with probability ζ over the choice of π, it holds that max16j6n Ij [f |π] 6 3 ·
max16j6n Ij [g|π] + δ. Putting the two conclusions together, we conclude that

Pr
π

[∃j : Ij [f |π] > 4δ] 6 ζ + C(d,K,m)
δ4 τ3 6 2ζ,

completing the proof of Lemma 24. In terms of quantitative constraints on the parameters,
K = K(δ, ζ), γ = γ(m, δ, ζ) are determined by Lemma 35 and τ = τ(d,m, δ, ζ) needs to obey
the very last inequality above.

5 The Reduction

We now prove Theorem 8 that the Rich 2-to-1 Games Conjecture is equivalent to the Unique
Games Conjecture. The reduction from Unique Games to Rich 2-to-1 Games as well as its
analysis are standard and appear in the full version. The reduction from Rich 2-to-1 Games
to Unique Games is also standard and is presented in this section. Its analysis however needs
new analytic tools, specifically Lemma 23.

We are given a Rich 2-to-1 Games instance Ψ = (L ∪R,E,ΣL,ΣR,Φ) with ΣL = [2n],
ΣR = [n], completeness (at least) 1−η, and soundness (at most) η. The reduction outputs an
instance of Unique Games with alphabet [m], completeness (at least) 1− 5ε, and soundness
(at most) ε. For given ε, first m needs to be taken sufficiently large, then η sufficiently
small, and in turn n sufficiently large. The instance of Unique Games produced is linear,
i.e. its alphabet [m] is identified with Zm, the additive group of integers modulo m, and the
constraints are linear equations.
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As is standard, we replace a vertex u ∈ L with the (supposed) m-ary long code of
the (supposed) label of u. The positions in the long code correspond to the variables of
the Unique Games instance. An assignment to these variables corresponds to a function
Fu : [m]2n → [m]. The intention is that if i ∈ [2n] is the label of u (in the 2-to-1 Games
instance), then Fu(x) = Fu(x1, . . . , x2n) = xi is the corresponding dictatorship function. In
our reduction, the long codes for labels of vertices v ∈ R do not appear explicitly, but it will
be convenient to imagine them “virtually”.

The PCP test is straightforward: one performs a two-query “noise-test” on the virtual
long code of a vertex v ∈ R, but actually reads off the queries from the long codes of neighbors
u,w of the vertex v respectively (the virtual long code for v is “contained” in that of u as
well as w). Each test is viewed as a Unique Games constraint and this defines the Unique
Games instance produced by the reduction. Formally, a test/equation is produced as follows:

Sample v ∈ R uniformly, a ∈ [m]n at random, and b ∈ [m]n to be 1− ε correlated with a.
Sample two neighbours u,w of v independently at random.
Set A = π−1

(u,v)(a), B = π−1
(w,v)(b) ∈ [m]2n.

Finally, sample x ∈ [m]2n that is 1 − ε correlated with A, and y ∈ [m]2n that is 1 − ε
correlated with B. Output the equation Fu(x) = Fw(y).

Folding

As is standard, we can assume that the functions Fu : [m]2n → [m] that appear in the PCP
proof are folded, meaning Fu(x + se) = Fu(x) + s where e ∈ [m]2n is the all 1 vector. In
particular, Fu is then balanced, i.e. takes all values in [m] equally often. Technically, folding
is enforced by keeping only one of the inputs in the set {x+ se |s ∈ [m]} as a representative
and inferring values at other inputs from the representative. The effect of folding is that the
equations produced are of the type p = q + s instead of just p = q where p, q are the Unique
Games variables in the output instance and s ∈ [m].

5.1 Completeness
If the 2-to-1 Games instance Ψ has a labeling σ : L → [2n], ρ : R → [n] that satisfies at
least 1− η fraction of the constraints, we show that the Unique Games instance is (at least)
1− 2η − 3ε > 1− 5ε satisfiable for η sufficiently small.

Indeed, define for any u ∈ L, the long-code assignment Fu(x) = xσ(u). Since the edges
(u, v), (w, v) are distributed uniformly, with probability at least 1−2η, both edges are satisfies
by the labeling, i.e. π(u,v)(σ(u)) = ρ(v) = π(w,v)(σ(w)). Whenever this happens, the test
accepts with probability at least 1− 3ε since the failure to accept can be attributed to one
of three events: strings a and b differing on the co-ordinate ρ(v), strings x and A differing on
the co-ordinate σ(u), or strings y and B differing on the co-ordinate σ(w).

5.2 Soundness
We will show that if the 2-to-1 Games instance has soundness at most η (to be chosen
sufficiently small later), then the probability that the test accepts is upper bounded by ε.

Let Fu : [m]2n → [m] be the folded functions given as assignment to the Unique
Games instance. In a standard manner, we view the functions as Fu : [m]2n → ∆m where
∆m = {(t0, . . . , tm−1)|ti > 0,

∑m−1
i=0 ti = 1} is the standard m-dimensional simplex. Each

function Fu is then thought of as a vector (Fu,0, . . . , Fu,m−1) where each Fu,r is a {0, 1}-valued
function and E [Fu,r] = 1

m since Fu is folded and balanced. Moreover, the acceptance criterion
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of the test, i.e. Fu(x) = Fw(y), can be written arithmetically as
∑m−1
r=0 Fu,r(x) · Fw,r(y).

Hence the probability that the test accepts can be written as (the expectation is over all the
choices made)

E
v,u,w,a,b,A,B,x,y

[
m−1∑
r=0

Fu,r(x) · Fw,r(y)
]

=
m−1∑
r=0

E
v,u,w,a,b,A,B,x,y

[Fu,r(x) · Fw,r(y)]. (4)

Henceforth we will fix the index 0 6 r 6 m − 1 and then show an upper bound on the
expectation on the right (with the overall upper bound being m times that). For notational
convenience, we drop the subscript r and define {0, 1}-valued functions fu = Fu,r. Thus the
goal is to upper bound (note that a, b ∈ [m]n and A,B, x, y ∈ [m]2n)

E
v,u,w
a∼1−ε b

[
E

x∼1−ε A, y∼1−ε B
[fu(x) · fw(y)]

]
= E

v,u,w,
a∼1−ε b

[T1−εfu(A) · T1−εfw(B)]

= E
v,u,w
a∼1−ε b

[gu(A) · gw(B)],

where gu = T1−εfu. We note that gu is [0, 1]-valued and E [gu] = E [fu] = 1
m . We further

define gu,v = gu|π(u,v) and we still have E [gu,v] = 1
m . The expectation can be rewritten as

E
v,u,w,
a∼1−ε b

[gu,v(a) · gw,v(b)] = E
v,u,w

[〈gu,v, T1−εgw,v〉] = E
v

[〈hv, T1−εhv〉], (5)

where in the last step we used the fact that the choices of u,w are independent (for a fixed
v) and defined hv = Eu [gu,v]. We note that E [hv] = 1

m as well. We now show, by way of
contradiction, that if the expectation in (5) is at least β = ε

m , then one can define a labeling
to the 2-to-1 Games instance that satisfies more than η fraction of its constraints. It then
follows that (5) is bounded by β and hence (4) (i.e. the acceptance probability of PCP test)
by mβ = ε as desired.

Assume therefore that the expectation in (5) is at least β. By an averaging argument,
for at least β

2 fraction of vertices v ∈ R, the inner product 〈hv, T1−εhv〉 is at least β
2 . Let

RGood ⊆ R be the subset of such vertices. That is, for v ∈ RGood, 〈hv, T1−εhv〉 > β
2 . Using

Theorem 16, the function hv then must have an influential co-ordinate, and moreover since
hv = Eu [gu,v], so does the function gu,v for a good fraction of the neighbors u ∈ L. In light
of this observation, we hope to come up with a labeling to vertices v ∈ R and u ∈ L by
choosing an influential co-ordinate of the function hv and the function gu respectively (we
need to use the fact that gu is smooth or low-degree). This strategy works thanks to our
main technical Lemma 23.

Indeed, for v ∈ RGood, define its label ρ(v) to be an arbitrary co-ordinate j ∈ [n] such
that Ij [hv] > δ. Such a coordinate exists since 〈hv, T1−εhv〉 > β

2 and using Theorem 16. One
needs to take m sufficiently large so that E [hv] = 1

m = θ is sufficiently small to bring the
bound 2Γ1−ε(θ) in Theorem 16 below β

2 = ε
2

1
m = ε

2θ. One then needs to take the influence
parameter δ therein sufficiently small.

Since hv = Eu [gu,v] and ρ(v) has influence at least δ on hv, it follows that for at least δ
2

fraction of neighbors u ∈ L of v we have Iρ(v)[gu,v] > δ
2 . Let NGood(v) denote the subset of

such neighbors. We emphasize that for a random choice of edge (u, v), we have v ∈ RGood
and u ∈ NGood(v) with probability at least β

2
δ
2 .
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Now, by the main Lemma 23, except with probability ζ � βδ
8 over the choice of the edge

(u, v), it is the case that whenever Ij [gu,v] > δ
2 for some j ∈ [n], one has Ii[gu] > τ for some

i ∈ π−1(j), π = π(u,v). We note that since gu = T1−εfu, its Fourier mass beyond degree d
is at most γ = 2−Ω(d/ε), which can be made sufficiently small by taking d sufficiently large.
Finally, τ is taken to be sufficiently small so that the lemma applies. It follows that with
probability βδ

8 , all these events happen simultaneously:

v ∈ RGood, u ∈ NGood(v), Iρ(v)[gu,v] >
δ

2 , I6di [gu] > τ for some i ∈ π−1(ρ(v)).

Thus if we defined a label for u ∈ L by making a list of all co-ordinates with degree-d
influence at least τ on gu and then picked one label at random from this list, it would agree
with ρ(v) (via π = π(u,v)) with probability at least Ω( τd ) (the list size is O( dτ ) since the total
degree-d influence is at most d). This gives a labeling to the 2-to-1 Games instance that
satisfies overall Ω(βδτd ) fraction of its constraints. Choosing the soundness η of the 2-to-1
Games instance to be even lower a priori completes the proof.
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A Standard Facts and Calculations

In this section we collect several standard statements; the proofs can be found in the full
version of the paper.

I Lemma 38. For any positive integers r, t, there are constants 0 < c(r, t) < C(r, t) such
that the following holds for large enough n. Let v1, . . . , vr > n

10r be integers that sum up to n,
let u1, . . . , ur be non-negative integers that are each at most t, and denote u = u1 + . . .+ ur.
Then c(r, t)

(
n

v1,...,vr

)
6
(

n−u
v1−u1,...,vr−ur

)
6 C(r, t)

(
n

v1,...,vr

)
.

I Lemma 39. For any positive integer r, there is a constant C(r) > 0 such that the following
holds for large enough n. Let v1, . . . , vr be integers of absolute value at most

√
K · r · n that

sum to zero, and such that for every 1 6 i 6 r, the integer n+ vi is divisible by r. Then(
n

(n+v1)/r,...,(n+vr)/r
)( 2n

2(n+v1)/r,...,2(n+vr)/r
) 6 C(r)2Krr−n.

Let A1, . . . , Ar be a partition of [2n] into r even-sized sets. We say a mapping π ∈ S2n,n
is consistent with A1, . . . , Ar if matching given by π matches off each set Ai within itself (or
equivalently that π−1(π(Ai)) = Ai).

I Lemma 40. Let A1, . . . , Ar be a partition of [2n] into even-sized sets, and denote their

sizes by a1, . . . , ar. Then Prπ∈S2n,n
[π is consistent with A1, . . . , Ar] =

( n
a1
2 ,...,

ar
2

)
( 2n

a1,...,ar
) .
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data, stored at different nodes scattered in the network, are all identical. Another example
is an application maintaining a tree spanning the nodes of a network, e.g., for multicast
communication. In this case, every node stores a pointer to its parent in the tree, and the
application must regularly check that the collection of pointers forms a spanning tree. This
paper addresses the issue of checking the correctness of a distributed system configuration at
low cost.

Several mechanisms have been designed for certifying the correctness of the global state
of a system in a distributed manner. One popular mechanism is called locally checkable
proofs [24], and it extends the seminal concept of proof-labeling schemes [35]. In these
frameworks, the distributed application does not only construct or maintain some distributed
data structure (e.g., a spanning tree), but also constructs a distributed proof that the data
structure is correct. This proof has the form of a certificate assigned to each node (the
certificates assigned to different nodes do not need to be the same). For collectively checking
the legality of the current global system state, the nodes exchange their certificates with
their neighbors in the network. Then, based on its own individual state, its certificate, and
the certificates of its neighbors, every node accepts or rejects, according to the following
specification. If the global state is legal, and if the certificates are assigned properly by the
application, then all nodes accept. Conversely, if the global state is illegal, then at least one
node rejects, no matter which certificates are assigned to the nodes. Such a rejecting node
can raise an alarm, or launch a recovery procedure. The main aim of locally checkable proofs
is to be compact, that is, to use certificates as small as possible, for two reasons: first, to
limit the space complexity at each node, and, second, to limit the message complexity of the
verification procedure involving communications between neighbors.

For instance, in the case of the Spanning Tree predicate, the application does not only
construct a spanning tree T of the network, but also a distributed proof that T is indeed a
spanning tree, i.e., that the collection T of pointers forms a cycle-free connected spanning
subgraph. It has been known for long [2, 6, 26] that, by assigning to every node a certificate
of logarithmic size, the nodes can collectively check whether T is indeed a spanning tree, in a
single round of communication between neighboring nodes. The certificate assigned to a node
is the identity of the root of the tree, and its distance to this root (both are of logarithmic
size as long as the IDs are in a range polynomial in the number of nodes). Every node just
checks that it is provided with the same root-ID as all its neighbors in the network, and
that the distance given to its parent in its certificate is one less than its own given distance –
a node with distance 0 checks that its ID is indeed the root-ID provided in its certificate.
Obviously, if the collection T of pointers forms a spanning tree, and if the certificates are
assigned properly by the application, then all nodes pass these tests, and accept. On the
other hand, it is easy to check that if T is not a spanning tree (it is not connected, or it
contains a cycle), then at least one node detects a discrepancy and rejects, no matter which
certificates are assigned to the nodes.

Unfortunately, not all boolean predicates on labeled graphs can be distributedly certified
using certificates as small as for spanning tree. This is typically the case of the aforementioned
scenario of a distributed data storage using replicas, for which one must certify equality.
Let us for instance consider the case of two nodes Alice and Bob at the two extremities
of a path, that is, the two players are separated by intermediate nodes. Alice and Bob
respectively store two n-bit strings x and y, and the objective is to certify that x = y. That
is, one wants to certify equality (EQ) between distant players. A direct reduction from the
non-deterministic communication complexity of EQ shows that certifying EQ cannot be
achieved with certificates smaller than Ω(n) bits.



P. Fraigniaud, F. Le Gall, H. Nishimura, and A. Paz 28:3

Randomization may help circumventing the difficulty of certifying some boolean predicates
on labeled graphs using small certificates. Hence, a weaker form of protocols has been
considered, namely distributed Merlin-Arthur protocols (dMA), a.k.a. randomized proof-
labeling schemes [22]. In this latter context, Merlin provides the nodes with a proof, just
like in locally checkable proofs, and Arthur performs a randomized local verification at each
node. Unfortunately, some predicates remain hard in this framework too. In particular, as
we show in the paper, there are no classical dMA protocols for (distant) EQ using compact
certificates. Recently, several extensions of dMA protocols were proposed, e.g., by allowing
more interaction between the prover and the verifier [15, 21, 39]. In this work, we add the
quantum aspect, while considering only a single interaction, and only in the prescribed order:
Merlin sends a proof to Arthur, and then there is no more interaction between them.

1.1 Our Results
We carry on the recent trend of research consisting of investigating the power of quantum
resources in the context of distributed network computing (cf., e.g., [17, 37, 27, 38, 28, 23]),
by designing a distributed Quantum Merlin-Arthur (dQMA) protocol for distant EQ, using
compact certificates and small messages. While we use the dQMA terminology in order to
be consistent with prior work, we emphasize that the structure of the discussed protocols is
rather simple: each node is given a quantum state as a certificate, the nodes exchange these
states, perform a local computation, and finally accept or reject.

Our main result is the following. A collection of n-bit strings x1, . . . , xt are stored at t
terminal nodes u1, . . . , ut in a network G = (V,E), where node ui stores xi. We denote EQt

n

the problem of checking the equality x1 = · · · = xt between the t strings. Let us define the
radius of a given instance of EQt

n as r = mini maxj distG(ui, uj), where distG denotes the
distance in the (unweighted) graph G. Our main result is the design of a dQMA protocol for
EQt

n, using small certificate. This can be summarized by the following informal statement
(the formal statement is in Section 5):

IMain Result. There is a distributed Quantum Merlin-Arthur (dQMA) protocol for certifying
equality between t binary strings (EQt

n) of length n, and located at a radius-r set of t terminals,
in a single round of communication between neighboring nodes using certificates of size
O(tr2 logn) qubits, and messages of size O(tr2 log(n+ r)) qubits.

It is worth mentioning that, although the dependence in r and t is polynomial, the
dependence in the actual size n of the instance remains logarithmic, which is our main
concern. Indeed, for applications such as the aforementioned distributed data storage
motivating the distant EQt

n problem, it is expected that both the number t of replicas, and
the maximum distance between the nodes storing these replicas are of several orders of
magnitude smaller than the size n of the stored replicated data.

It is also important to note that our protocol satisfies the basic requirement of reusability,
as one aims for protocols enabling regular and frequent verifications that the data are not
corrupted. Specifically, the quantum operations performed on the certificates during the
local verification phase operated between neighboring nodes preserve the quantum nature of
these certificates. That is, if EQt

n is satisfied, i.e., if all the replicas xi’s are equal, then, up
to an elementary local relocation of the quantum certificates, these certificates are available
for a next test. If EQt

n is not satisfied, i.e., if there exists a pair of replicas xi 6= xj , then the
certificates do not need to be preserved as this scenario corresponds to the case where the
correctness of the data structure is violated, requiring the activation of recovery procedures
for fixing the bug, and reassigning certificates to the nodes.

ITCS 2021
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Our quantum protocol is based on the SWAP test [12], which is a basic tool in the theory
of quantum computation and quantum information. This test allows to check if a quantum
state is symmetric, and has several applications, such as estimating the inner product of two
states (e.g., [12, 9, 47]), checking whether a given state (or a reduced state of it) is pure or
entangled with the environment system (e.g., [1, 33, 25, 32]), and more. In this paper, we
use the SWAP test in yet another way: for checking if two of the reduced states of a given
state are close. A similar use was done by Rosgen [44] in a different context – transforming
quantum circuits to shallow ones in a hardness reduction proof.

Finally, observe that our logarithmic upper bound for dQMA protocols is in contrast to
the linear lower bound that can be shown for classical dMA protocols even for t = 2 on a
path of 4 nodes and even for the case where communication between the neighboring nodes
is extended to multiple rounds (see precise statement and proof in Section 6). Our results
thus show that quantum certification mechanism can provide an exponential advantage over
classical certification mechanisms.

1.2 Related Work
The concept of distributed proofs is a part of the framework of distributed network computing
since the early works on fault-tolerance (see, e.g., [2, 6, 26]). Proof-labeling schemes were
introduced in [35], and variants have been studied in [24, 20]. Randomized proof-labeling
schemes have been studied in [22]. Extensions of distributed proofs to a hierarchy of decision
mechanisms have been studied in [18] and [7]. Frameworks like cloud computing recently
enabled envisioning systems in which the nodes of the network could interact with a third party,
leading to the concept of distributed interactive proofs [34]. There, each node can interact
with an oracle who has a complete view of the system, is computationally unbounded, but is
not trustable. For instance, in Arthur-Merlin (dAM) protocols, the nodes start by querying
the oracle Merlin, which provides them with answers in their certificates. There is a simple
classical compact dAM protocol for distant EQ, where the two players stand at the extremities
of a path (see Section 3). We refer to [15, 21, 39] for recent developments in the framework of
distributed interactive proofs. While distributed Arthur-Merlin protocols and their extensions
provide an appealing theoretical framework for studying the power of interactive proofs in
the distributed setting, the practical implementation of such protocols remains questionable,
since they all require the existence of a know-all oracle, Merlin, and it is unclear if a Cloud
could play this role. On the other hand, in dMA and dQMA protocols, interaction with an
external party is not required, but only a one-time assignment of certificates is needed, which
are then reusable for regular verification. As in the classical proof-labeling schemes setting,
these certificates can actually be created by the nodes themselves during a pre-processing
phase, making the reliance on a know-all oracle unnecessary.

After a few early works [8, 17, 23, 45] that shed light on the potential and limitations
of quantum distributed computing (see also [5, 11, 16] for general discussions), evidence of
the advantage of quantum distributed computing over classical distributed computing have
been obtained recently for three fundamental models of (synchronous fault-free) distributed
network computing: the CONGEST model [28, 37], the CONGEST-CLIQUE model [27] and
the LOCAL model [38]. The present paper adds to this list another important task for which
quantum distributed computing significantly outperforms classical distributed computing,
namely, distributed certification.

Note that while this paper is the first to study quantum Merlin-Arthur protocols in
a distributed computing framework, there are a number of prior works studying them in
communication complexity [43, 30, 31, 10]. In particular, quantum Merlin-Arthur protocols
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are shown to improve some computational measure (say, the total length of the messages from
the prover to Alice, and of the messages between Alice and Bob) exponentially compared to
Merlin-Arthur protocols where the messages from the prover are classical [43, 31].

The question of computing functions on inputs that are given to graph nodes was also
studied in the context of communication complexity. The equality function was studied for
the case where all nodes have inputs [4]. Other works considered a setting similar to ours,
i.e., where only some nodes have inputs [13, 14], but did not study the equality problem.

2 Model and Definitions

Distributed verification on graphs. Let t ≥ 2, and let f : ({0, 1}n)t → {0, 1} be a function.
The aim of the nodes is to collectively decide whether f(x1, . . . , xt) = 1 or not, where
x1, . . . , xt are assigned to t nodes of a graph. Specifically, an instance of the problem f

is a t-tuple (x1, . . . , xt) ∈ {0, 1}n × · · · × {0, 1}n, a connected graph G = (V,E), and an
ordered sequence v1, . . . , vt of distinct nodes of G. The node vi is given xi as input, for
i = 1, . . . , t. All the other nodes receive no inputs. We consider distributed Merlin-Arthur
(dMA) protocols for deciding whether f(x1, . . . , xt) = 1, in which a non-trustable prover
(Merlin) assigns (or “sends”) certificates to the nodes, and then the nodes (Arthur) perform a
1-round randomized verification algorithm. The verification algorithm consists of each node
simultaneously sending messages to all its immediate neighbors, receiving messages from
them, then performing a local computation, and finally accepting or rejecting locally.1 We
say that a dMA protocol has completeness a and soundness b for a function f if the following
holds for every (x1, . . . , xt) ∈ {0, 1}n × · · · × {0, 1}n, every connected graph G, and every
ordered sequence v1, . . . , vt of distinct nodes in G:

(completeness) if f(x1, . . . , xt) = 1, then the prover can assign certificates to the nodes
such that Pr[all nodes accept] ≥ a;

(soundness) if f(x1, . . . , xt) = 0, then, for every certificate assignment by the prover,
Pr[all nodes accept] ≤ b.

The completeness condition guarantees that, when the system is in a “legal” state (specified
by f(x1, . . . , xt) = 1), with probability at least a all nodes accept. The soundness condition
guarantees that, when the system is in an “illegal” state (specified by f(x1, . . . , xt) = 0),
with probability at least 1 − b at least one node rejects. The value b represents the error
probability of the protocol on an illegal instance, and thus we sometimes refer to it as the
soundness error. A node detecting illegality of the state can raise an alarm, or launch a
recovery procedure. Protocols with completeness 1 are called 1-sided protocols, or protocols
with perfect completeness. Similarly to prior works on distributed verification, the certificate
size of the protocol is measured as the maximum size (over all the nodes of the network) of
the certificate sent by the prover to one of the nodes, and the message size of the protocol is
measured as the maximum size (over all pairs of adjacent nodes) of the message exchanged
between two adjacent nodes. Specifically, we will consider the multi-party version of the
equality function, EQt

n, which is the boolean-valued function from ({0, 1}n)t such that
EQt

n(x1, . . . , xt) = 1 ⇐⇒ x1 = · · · = xt.

1 We can naturally extend this definition to define dMA protocols with µ rounds of communication among
neighbors, for any integer µ ≥ 1. In this paper, however, we focus on the case µ = 1 since all the
protocols we design use only 1-round verification algorithms. The only exception is Section 6, where we
show classical lower bounds that hold even for µ > 1.
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In this work, we extend the framework of dMA protocols, to consider also cases where
the certificates given to the nodes can contain qubits (although they may also contain
classical bits) and the nodes can exchange messages consisting of qubits. These will be called
distributed Quantum Merlin-Arthur (dQMA) protocols. More precisely, in a dQMA protocol
for a function f , a non-trustable prover first sends a certificate to each node, which consists
of a quantum state and classical bits; the quantum states may be entangled, even though
all our quantum protocols do not require any prior entanglement, nor any shared classical
random bits. Then the nodes perform a 1-round quantum verification algorithm, where
each node simultaneously sends a quantum message to all its immediate neighbors, receives
quantum messages from them, then performs a local computation, and finally accepts or
rejects locally. Note that, as opposed to the classical setting, we cannot assume that a node
simply broadcasts its certificate to all its neighbors, as quantum states cannot be duplicated.
However, a node can still send copies of the classical parts of the certificate. We define
completeness and soundness of dQMA protocols as for dMA protocols.

I Remark. A special case of interest is when the graph G is a path v0, . . . , vr, r ≥ 1, where
the left-end node v0 has an n-bit string x as input, the right-end node vr has an n-bit string y
as input, and the intermediate nodes v1, . . . , vr−1 have no inputs. That is, t = 2. Given a
function f : {0, 1}n × {0, 1}n → {0, 1}, the aim of the nodes is to collectively decide whether
f(x, y) = 1 or not. This setting is very much related to communication complexity.

Classical two-party communication complexity. We refer to [36] for the basic concepts of
two-party communication complexity. In this paper we will only consider two-party one-way
communication complexity. In this model two parties, denoted Alice and Bob, each receives
an input x ∈ {0, 1}n and y ∈ {0, 1}n, respectively. The goal is for Bob to output the value
f(x, y) for some known Boolean function f : {0, 1}n × {0, 1}n → {0, 1}. Only Alice can
send a message to Bob. The one-way two-sided-error communication complexity of f is the
minimum number of bits that have to be sent on the worst input in a protocol that outputs
the correct answer with probability at least 2/3. The one-way one-sided-error communication
complexity of f is the minimum number of bits that have to be sent on the worst input in a
protocol that outputs the correct answer with probability 1 on any 1-input, and outputs the
correct answer with probability at least 2/3 on any 0-input.

We shall especially consider the following two functions. The equality function EQn is
defined as EQn(x, y) = 1 when x = y and EQn(x, y) = 0 otherwise, for any x, y ∈ {0, 1}n.
Its one-way one-sided-error communication complexity is O(logn) – see, e.g., [36]. For
any integer d ≥ 0, the Hamming distance function HAMd

n is defined as follows: for any
x, y ∈ {0, 1}n, HAMd

n(x, y) = 1 if the Hamming distance between x and y is at most d, and
HAMd

n(x, y) = 0 otherwise. It is known [47] that, for d constant, the one-way two-sided-error
communication complexity of HAMd

n is O(logn).
For any Boolean function f : {0, 1}n × {0, 1}n → {0, 1}, a set S ⊆ {0, 1}n × {0, 1}n is a

1-fooling set for f if, on the one hand, for every (x, y) ∈ S, f(x, y) = 1, and, on the other
hand, for every two pairs (x1, y1) 6= (x2, y2) in S × S, f(x1, y2) = 0 or f(x2, y1) = 0.

Quantum two-party communication complexity. We assume the reader is familiar with
the basics of quantum computation, in particular the notion of qubits, Dirac notation such
as |ψ〉 and 〈ψ| := (|ψ〉)†, and the quantum circuit model (see Sections 2 and 4 in Ref. [40],
for instance). In the full version of this paper, we present more advanced concepts such as
mixed states that will be used in some of our proofs.

Quantum two-party communication complexity, first introduced by Yao [46], is defined
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similarly to the classical version. The only difference is that the players are allowed to
exchange qubits instead of bits (the cost of a quantum protocol is the number of qubits
sent by the protocol). Note that since quantum protocols can trivially simulate classical
protocols, the quantum communication complexity of a function is never larger than its
classical communication complexity. More precisely, an m-qubit one-way quantum protocol
π for the function f can be described in its most general form as follows. Alice prepares an
m-qubit (pure) quantum state |hx〉 and sends it to Bob.2 Bob then makes a measurement
on the state |hx〉, which gives an outcome b ∈ {0, 1}. Finally, Bob outputs b. Since Bob’s
measurement in the above description depends only on his input y, it can be mathematically
described, for each y ∈ {0, 1}n, by two positive semi-definite matrices My,0 and My,1 such
that My,0 + My,1 = I. This pair {My,0,My,1} is called a POVM measurement (POVM
measurements are the most general form of measurements allowed by quantum mechanics). If
|hx〉 is measured by the POVM {My,0,My,1}, the probability that b = 0 is tr(My,0(|hx〉〈hx|)),
while the probability that b = 1 is tr(My,1(|hx〉〈hx|)).

3 General Overview of our Techniques

Let us provide an intuition of our protocol in the case of EQ2
n over a path v0, . . . , vr of length

r ≥ 1 in which the terminals are the two nodes v0 and vr (that we rename Alice and Bob,
for convenience). Let us call x and y the n-bit strings owned by Alice and Bob, respectively.
There is a simple classical protocol for distant equality in a somewhat similar setting, where
the verifier (Arthur, consisting of all the graph nodes) can send random bits to the prover
(Merlin) before receiving the certificates; this is called a dAM protocol. In this protocol,
Alice picks a hash function h at random in an appropriate family of hash functions (i.e.,
a family such that both h and h(x) can be encoded using O(logn) bits and such that the
probability that h(x) 6= h(y) is high when x 6= y). Merlin provides every node with the
certificate (h, h(x)), each node checks it received the same certificates as its neighbors, and
Bob additionally checks whether h(x) = h(y). Obviously, one cannot switch the order of
Arthur and Merlin, as letting Merlin choose the hash function would enable him to fool
Arthur on illegal instances by picking h that hashes identically the distinct input strings x
and y. The main idea of our dQMA protocol is to ask Merlin to provide the nodes with a
quantum certificate consisting of the quantum superposition of all the possible hashes.

Entering slightly more into the details, for any x ∈ {0, 1}n we consider the quantum
fingerprint |hx〉 = 1√

K

∑
h |h〉|h(x)〉, where the sum is over all the hash functions, and 1√

K
is

the normalization factor of the quantum state. By using the same family of hash functions
as in the aforementioned dAM protocol, these fingerprints can be constructed in such a way
that their length is O(logn) qubits, and |hx〉 and |hy〉 are very far (more precisely, almost
orthogonal) when x 6= y. Checking whether the two quantum fingerprints |hx〉 and |hy〉
are either equal or far apart can be achieved by a quantum test called the SWAP test [12].
Formally, the probability that the SWAP test accepts is 1/2 + |〈hx|hy〉|2/2, where 〈hx|hy〉
denotes the inner product between the two quantum states |hx〉 and |hy〉.

Let us now describe the outline of our dQMA protocol. In the protocol each intermediate
node v1, . . . , vr−1 expects to receive the quantum fingerprint |hx〉. Alice, who does not receive
any certificate, creates by herself the fingerprint |hx〉, which depends only on x. Similarly,
Bob creates by himself the fingerprint |hy〉. The checking procedure simply checks whether

2 Without loss of generality, we assume that Alice does not use any mixed state (i.e., a probability
distribution on pure states) in her message, as she can simulate it using a pure state called the
purification [40] whose length is at most twice the one of the mixed state.
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all these (r + 1) fingerprints are equal. This is done by applying the SWAP test to check
whether the fingerprints owned by adjacent nodes are equal or not. There are however a few
subtleties. In particular, since our analysis crucially requires that the SWAP tests do not
overlap, for each node we need to decide whether it will perform the SWAP test with its
right neighbor or its left neighbor. We do it in a randomized way and deal carefully with the
conflicting choices that appear. For the case x = y all the SWAP tests then succeed with
probability 1 and thus all the nodes accept.

For the case x 6= y, let us provide some intuition about why a prover cannot fool the
nodes for convincing them to all accept. To simplify the description we assume below that
|hx〉 and |hy〉 are orthogonal (instead of only almost orthogonal). If the prover was forced
to send certificates restricted to product states of the form |g1〉 ⊗ |g2〉 ⊗ · · · |gr−1〉 where |gj〉
is the state to the jth node, then a fairly straightforward argument would guarantee that,
with large probability, at least one node rejects. Indeed, under the product states restriction,
intuitively the best strategy for the prover to cheat is to send states “intermediate” between
|hx〉 and |hy〉, namely, to send the state |gj〉 = cos(πj/2r)|hx〉+ sin(πj/2r)|hy〉 to node vj
for each j ∈ {1, . . . , r − 1}. Then, the probability that all nodes accept when performing the
SWAP tests would be roughly

∏r−1
j=1(1/2 + |〈gj |gj+1〉|2/2) = 1−Ω(1/r). The cheating prover

could then be caught with probability Ω(1/r), and this probability can be amplified to Ω(1)
by asking the prover to send several copies of the certificates (amplification is possible since
our protocol has perfect completeness).

The formal analysis of the protocol however faces several difficulties, which are mostly
due to the nature of quantum computation, and are especially challenging to handle in the
framework of distributed computation. For instance, quantum states cannot be duplicated
(the “no-cloning Theorem”), which implies that a same quantum state cannot be used
for parallel tests. Additionally, even sequential tests face the difficulty that the first test
may collapse the quantum state, making the second test impossible to perform (or at least
significantly complicating the analysis of the second test). Thus node vi cannot perform the
SWAP test with its two neighbors vi−1 and vi+1 simultaneously and (as already mentioned)
we have to design carefully the protocol so that the SWAP tests do not overlap. A second, and
much more problematic issue is that the non-trustable Merlin can send arbitrary certificates
to the nodes for fooling them. In particular it is not restricted to send certificates that are
product states. A priori, it may seem that the SWAP test is not strong enough to handle
fooling strategies beyond product states. In this work we show that the SWAP test can
actually detect such fooling strategies.

Specifically, our approach consists in considering the so-called reduced states, and to
establish the following property of the SWAP test (cf. Lemma 5 in Section 4). If the SWAP
test accepts with high probability when applied on the part of any two adjacent nodes in a
(possibly non-product) global quantum state resulting from the certificates, then the two
reduced states of that part (which is a bipartite state) must be close. As the two states |hx〉
and |hy〉 are very far apart when x 6= y, we can thus use this result to show that there is a
good probability that the SWAP test rejects at some node. Moreover, using reduced states
allows us to overcome other technical difficulties in the analysis of the (non-overlapping)
SWAP tests we consider. Indeed, some form of average-case success probability of all the
SWAP tests can be considered, instead of having to argue about the probability that all the
SWAP tests individually accept.
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4 Quantum Distributed Proofs on Paths

In this section we restrict ourselves to the case of a path v0, . . . , vr of length r ≥ 1, in which
only the two extremities v0 and vr are given inputs. This framework allows us to elaborate
our main technique, that will be extended to arbitrary graphs in Section 5. Let x ∈ {0, 1}n
be the input to v0, and y ∈ {0, 1}n be the input to vr. Our goal is to design a dQMA protocol
to decide whether f(x, y) = 1 or not, for some given Boolean function on {0, 1}n × {0, 1}n.

We show the following general theorem that converts a one-way quantum communication
complexity protocol into a quantum Merlin-Arthur protocol for the corresponding long-
distance problem on the path. This theorem applies not only to one-sided-error protocols,
but also to the two-sided-error case (with a logarithmic additional factor in the complexity).

I Theorem 1. Let f : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function.
If f has a quantum one-way one-sided-error communication protocol transmitting at most
q qubits, then there exists a 1-sided distributed quantum Merlin-Arthur protocol for f
on the path of length r, with soundness 1/3, using certificates of size O(r2q) qubits, and
exchanging messages of length O(r2(q + log r)) qubits.
If f has a quantum one-way two-sided-error communication protocol transmitting at most q
qubits, then, for any constant c, there exists a distributed quantum Merlin-Arthur protocol
for f on the path of length r with completeness 1− 1/nc, soundness 1/3, using certificates
of size O(r2q log(n + r)) qubits, and exchanging messages of length O(r2q log(n + r))
qubits.

Using known results (cf. Section 2) about one-way communication complexities of EQn

and HAMd
n, the following two results are direct applications of Theorem 1.

I Corollary 2. There exists a one-sided quantum Merlin-Arthur protocol for EQn in the path
of length r with soundness 1/3, using certificates of size O(r2 logn) qubits, and exchanging
messages of length O(r2 log(n+ r)) qubits.3

I Corollary 3. For any c > 0 and d > 0, there exists a quantum Merlin-Arthur protocol for
HAMd

n in the path of length r with completeness 1−1/nc, soundness 1/3, using certificates of
length O(r2(logn) log(n+r)) qubits, and exchanging messages of length O(r2(logn) log(n+r))
qubits.

The rest of this section is dedicated to proving Theorem 1. Let us first give an overview
of the proof. In our dQMA protocol in the path, the verification algorithm performed by the
nodes on the line is merely a simulation of a two-party one-way quantum communication
complexity protocol π between Alice and Bob for the function f(x, y), with the help of
certificates provided by the prover. Specifically, every intermediate node v1, . . . , vr−1 expects
to receive the quantum state sent by Alice to Bob in π, as certificate. Let us denote by |hx〉
this state, which depends on x. The right-end node vr simulates the two-party protocol π
using |hx〉 received from the left neighbor vr−1, and applying Bob’s measurement (i.e., the
POVM measurement). If f(x, y) = 1, the prover honestly sends the desired state, and vr
accepts as it does receive |hx〉. However, if f(x, y) = 0, then the malicious prover does not
necessarily send a desired state. To catch the potentially malicious behavior of the prover on
“illegal” instances (i.e., those for which f(x, y) = 0), each intermediate node checks whether
its local proof is “close to” the one of its right neighbor. This is performed by an application
of the SWAP test.

3 Here we are using the fact that logn+ log r is of the same order as log(n+ r) for conciseness.
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Section 4.1 below describes in more detail how to construct the distributed quantum
Merlin-Arthur protocol, denoted Pπ, from an arbitrary one-way quantum communication
protocol π for the function f . Section 4.2 analyzes the completeness and the soundness of
the protocol Pπ. Finally, Section 4.3 shows how to reduce the soundness error using “parallel
repetitions” and how to apply this analysis to prove Theorem 1.

4.1 A dQMA Protocol for the Path
Let ε ≥ 0 be a constant, which will be fixed small enough later in the proof. Let π be a
quantum one-way communication protocol for f transmitting at most q qubits, such that,
for every input pair (x, y), if f(x, y) = 1 then π outputs 1 with probability at least 1− ε, and
if f(x, y) = 0 then π outputs 0 with probability at least 2/3. Let |hx〉 be the q-qubit (pure)
state sent from Alice to Bob, and let {My,1,My,0} be the POVM measurement performed
by Bob on |hx〉, where My,1 corresponds to the measurement result 1 (accept) and My,0 to
the measurement result 0 (reject). Our quantum Merlin-Arthur protocol Pπ is as follows.

Protocol Pπ for function f on input pair (x, y) in path v0, . . . , vr:
1. If f(x, y) = 1 then the prover sends the quantum register Rj that has the state
|hx〉 (or |hx〉〈hx| as the mixed state representation) as certificate to each of the
intermediate nodes vj , j ∈ {1, . . . , r − 1}.

2. The left-end node v0 prepares the state ρ0 = |hx〉〈hx| in quantum register R0.
3. For every j = 0, . . . , r − 1, the node vj chooses a bit bj uniformly at random, and

sends its quantum register Rj to the right neighbor vj+1 whenever bj = 0.
4. For every j = 1, . . . , r − 1, if vj receives a quantum register from its left neighbor

vj−1, and if bj = 1, then vj performs the SWAP test on the registers (Rj−1, Rj),
and accepts or rejects accordingly; Otherwise, vj accepts.

5. If the right-end node vr receives a quantum register Rr−1 from its left neighbor,
then vr performs the POVM measurement {My,1,My,0} corresponding to π applied
to the state in Rr−1, and accepts or rejects accordingly; Otherwise, vr accepts.

In the above protocol Pπ, the size of the quantum certificate that each node receives
from the prover is at most q, and the length of the quantum message that each node sends
to the neighbor is also at most q. In the next subsection, we prove that the above protocol
has completeness 1− ε/2 and soundness 1− 1/42r2.

4.2 Analysis of Protocol Pπ

For the analysis, we recall the SWAP test. The test is a protocol with a given input state on
H = H1 ⊗H2, where H1 and H2 are complex Euclidian spaces. Here, we consider H1 and
H2 as quantum registers R1 and R2.

SWAP test on a pure state |ψ〉 on H, which is given in registers (R1, R2).
1. Prepare the single-qubit state |+〉 = 1√

2 (|0〉+ |1〉) in register R0.
2. If the content of R0 is 1, then apply the swap operator S on the state
|ψ〉 in registers (R1, R2), where S is defined by S(|j1〉|j2〉) = |j2〉|j1〉
(namely, S swaps register R1 and register R2).

3. Apply the Hadamard operator H = 1√
2

( 1 1
1 −1

)
on the state in register

R0, and measure the content in the standard basis. Accept if the
content is 0, and reject otherwise.
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Completeness. The following lemma is a direct consequence of the definition of the SWAP
test. Here, HS is the symmetric subspace in H (namely, the subspace spanned by the states
invariant by the swap operator S, or equivalently, the eigenstates of S with eigenvalue 1), and
HA is the anti-symmetric subspace in H (namely, the subspace spanned by the eigenstates
of S with eigenvalue −1). Note that any state in H is represented as the superposition of a
state in HS (symmetric state) and a state in HA (anti-symmetric state) as the swap operator
S is a Hermitian matrix that only has +1 and −1 eigenvalues.

I Lemma 4. Assume that |ψ〉 = α|ψS〉 + β|ψA〉 where |ψS〉 ∈ HS and |ψA〉 ∈ HA. Then,
the SWAP test on input |ψ〉 accepts with probability |α|2.

For the completeness, assume f(x, y) = 1. The prover then sends |hx〉 to all the
intermediate nodes. Then, all the nodes except the right-end node have |hx〉. By Lemma 4,
all the SWAP tests done in Step 4 are accepted with probability 1 (note that |hx〉 ⊗ |hx〉
is a symmetric state). Furthermore, the right-end node accepts with probability at least
(1 − ε)/2 + 1/2 = 1 − ε/2 as vr can receive |hx〉 and simulate π with probability 1/2 and
accepts otherwise in Step 5.

Soundness. The following lemma presents a crucial property of the SWAP test: its ap-
plicability for checking whether the two reduced states are close. It is a trace-distance
version of a lemma by Rosgen [44, Lemma 5.1]. Here, a reduced state intuitively rep-
resents the local information on its own quantum system, by disregarding the outside
systems. Note that the trace distance between two quantum states ρ and σ is character-
ized as dist(ρ, σ) = maxM tr(M(ρ− σ)), where the maximization is taken over all positive
semi-definite matrices M such that M ≤ I.

I Lemma 5. Let z ≥ 1, and assume that the SWAP test on input ρ in the input register
(R1, R2) accepts with probability 1− 1/z. Then, dist(ρ1, ρ2) ≤ 2/

√
z + 1/z, where ρj is the

reduced state on Rj of ρ. Moreover, if the SWAP test on input ρ accepts with probability 1,
then ρ1 = ρ2 (and hence dist(ρ1, ρ2) = 0).

For the soundness, let (x, y) be any pair such that f(x, y) = 0.

I Lemma 6. For every j ∈ {1, . . . , r}, let Fj be the event that vj performs the local test
(SWAP or POVM) in Protocol Pπ, and let Ej be the event that this local test rejects. Then
we have

∑r
j=1 Pr[Ej |Fj ] ≥ 1

21r .

Proof. Let αj = Pr[Ej |Fj ]. Then, for every j ∈ {1, . . . , r}, Pr[Ej |Fj ] = 1 − αj , where we
note that the complementary event Ej for j = 1, . . . , r− 1 is the event where the SWAP test
on the two q-qubit states ρj−1 and ρj accepts, and Er represents the event that the result of
the POVM measurement is 1 (accept), which corresponds to the POVM element My,1. By
Lemma 5, the trace distance dist between the reduced q-qubit states ρj−1 on vj−1 and ρj on
vj is

dist(ρj−1, ρj) ≤
{ 2√

1/αj

+ 1
1/αj

if αj 6= 0

0 otherwise

and thus dist(ρj−1, ρj) ≤ 3√αj . Then, by the triangle inequality,

dist(ρ0, ρr−1) ≤
r−1∑
j=1

dist(ρj−1, ρj) ≤ 3
r−1∑
j=1

√
αj .
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For Pr[Er|Fr], the soundness of π promises that the probability that the test {My,1,My,0}
rejects ρ0 = |hx〉〈hx| is at least 2/3, i.e., tr(My,0ρ0) ≥ 2/3. Hence,

αr = Pr[Er|Fr] = tr(My,0ρr−1) ≥ 2
3 − dist(ρ0, ρr−1) ≥ 2

3 − 3
r−1∑
j=1

√
αj ,

where the first inequality comes from the characterization of dist on indistinguishability of
two states, that is, | tr(My,0ρ0)− tr(My,0ρr−1)| ≤ dist(ρ0, ρr−1). Thus, we have

3
r∑
j=1

√
αj ≥ αr + 3

r−1∑
j=1

√
αj ≥

2
3 .

By the Cauchy-Schwarz inequality,

√
r

√√√√ r∑
j=1

αj ≥
r∑
j=1

√
αj ,

and thus we have
r∑
j=1

αj ≥
(

2
9
√
r

)2
≥ 1

21r . J

In Steps 4 and 5, node vj , 1 ≤ j ≤ r, performs the local test (SWAP or POVM) with
probability at least 1/4 (more precisely, vj , 1 ≤ j ≤ r − 1, performs the SWAP test with
probability 1/4 and vr performs the POVM with probability 1/2). It follows that, for every
j ∈ {1, . . . , r}, the event Fj occurs in at least (1/4) × 2r outcomes of all the 2r possible
outcomes b0 · · · br−1 that can be obtained in Step 3. Here, we consider any fixed outcomes
b0 · · · br−1 that induce k events Fj1 , Fj2 , . . . , Fjk

with k 6= 0 where we note that 0 ≤ k ≤ br/2c
in general. The probability that some node rejects in Steps 4 or 5 under this outcome is

Pr[∨kt=1Ejt
| ∧ki′=1 Fji′ ] ≥

1
br/2c

k∑
i=1

Pr[Eji
| ∧ki′=1 Fji′ ] = 1

br/2c

k∑
i=1

Pr[Eji
|Fji

],

where the inequality follows from kPr[∨kt=1Ejt ] =
∑k
i=1 Pr[∨kt=1Ejt ] ≥

∑k
i=1 Pr[Eji ] and

k ≤ br/2c, and the equality comes from the fact that each Fji
and Eji

are independent from
all the other event Fji′ with i′ 6= i (note that |ji′ − ji| ≥ 2 since Fj−1 and Fj never occur at
the same time). As each outcome occurs with probability 1/2r, the probability that some
node rejects in Steps 4 or 5 is at least

1
2r · [(1/4) · 2r] · 1

br/2c

r∑
j=1

Pr[Ej |Fj ] ≥
1
2r

r∑
j=1

Pr[Ej |Fj ] ≥
1
2r ·

1
21r = 1

42r2 ,

where the second last inequality comes from Lemma 6.

4.3 Proof of Theorem 1
So far, we have shown that the protocol Pπ has a completeness parameter very close to 1, but
high soundness error. To establish Theorem 1, we need to reduce the soundness error without
degrading the completeness too much. This is achieved via a form of parallel repetition of
Pπ, by taking the logical conjunction of the outputs obtained by repetitions. The protocol
resulting from k repetitions of Pπ is denoted by Pπ[k], and works as follows.



P. Fraigniaud, F. Le Gall, H. Nishimura, and A. Paz 28:13

Protocol Pπ[k]: Soundness reduction of Protocol Pπ
1. If f(x, y) = 1 then the prover sends the k quantum registers Rj,i (i = 1, . . . , k),

each of which has a state |hx〉 as certificate, to each of the intermediate nodes vj ,
j ∈ {1, . . . , r − 1}.

2. The left-end node v0 prepares the k quantum registers R0,i, each of which has |hx〉.
3. For every j = 0, . . . , r − 1, the node vj chooses a k-bit string bj,1 · · · bj,k uniformly

at random, and sends Rj,i, together with the index i, to its right neighbor vj+1
whenever bj,i = 0.

4. For every j = 1, . . . , r − 1 and for every i = 1, . . . , k, if the node vj receives an
index i, and if bj,i = 1, then vj performs the SWAP test on (Rj−1,i, Rj,i). Node vj
rejects whenever at least one of the performed SWAP tests rejects, and it accepts
otherwise.

5. If the right-end node vr receives an index i ∈ {1, . . . , k}, then it performs the
POVM measurement {My,1,My,0} corresponding to π applied to the state in
Rr−1,i. Node vr rejects if at least one of the performed POVM measurements
rejects, and it accepts otherwise.

Protocol Pπ[k] has completeness (1− ε/2)k, that is, the completeness has not reduced
much whenever ε is small. By a similar analysis of standard error reduction techniques
for quantum Merlin-Arthur games as the analysis in [3, 29], one can show that Pπ[k] has
soundness (1−1/42r2)k. By choosing k = 84r2, the resulting protocol Pπ[k] has completeness
1− 42r2ε and soundness error (1/e)2 < 1/3, while the size of the certificates is O(r2q) qubits,
and the length of the message exchanged between neighbors is O(r2(q + log r)) (where the
additional term log r comes from the index to the right neighbor in Step 3 of Pπ[k]).

Theorem 1 can now be easily derived from the above analysis. For the first part of the
theorem, where f is having a one-sided-error one-way protocol π, simply use the protocol Pπ
from Section 4.1 with ε = 0. The result then follows from the analysis of Section 4.2 and
from the above discussion about soundness reduction.

For the case of second part of the theorem, where f is having a two-sided-error one-way
protocol, we repeat the protocol π for O(log(n + r)) times and using majority voting to
get a protocol that correctly computes the value of the function with probability at least
1 − 1/42ncr2. The protocol π of Section 4.1 can thus be chosen with ε = 1/42ncr2, with
message size O(q log(n+ r)). The result then follows similarly. J

5 Certifying Equality in General Graphs

We now extend our protocol for checking equality between n-bit strings x1, . . . , xt stored at
t ≥ 2 distinct nodes u1, . . . , ut of a connected simple graph G. We first show how to reduce
the problem to trees of a specific structure, and then present a protocol for trees.

5.1 Reduction to Trees
Let G = (V,E) be a connected simple graph, and let u1, . . . , ut be t ≥ 2 distinct nodes
of G. Assume, without loss of generality, that u1 is the most central node among
them, i.e., it satisfies maxi=1,...,t distG(u1, ui) = minj=1,...,t maxi=1,...,t distG(uj , ui). Let
r = maxi=1,...,t distG(u1, ui) be the radius of the t terminals u1, . . . , ut. We construct a
tree T rooted at u1, that has all terminals as leaves, maximum degree t and depth at most
r + 1 (see Figure 1). To this end, start with a BFS tree T ′ in G, rooted at u1. Truncate
the tree at each terminal ui that does not have any terminal as successors, thus limiting
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Figure 1 The construction of a spanning tree: a graph G (left) and its corresponding spanning
tree T (right). Terminals are marked by squares, and c is the root. Node b (resp. c), which was a
terminal, is replaced by a non-terminal node b′ (resp. c′), while the other terminals are leaves in the
tree so they remain unmodified.

the depth to r and the degree to t. For every terminal ui that is not a leaf, including u1,
replace ui with a node u′i, and connect ui to u′i as a leaf, where the input xi stays at ui –
this guarantees that all inputs are now on leaves, the same degree bound holds, and the
depth is increased by at most 1.

While T is not a sub-tree of G, we can easily emulate an algorithm or a labeling scheme
designed for T , in G (specifically, in T ′). To this end, every internal terminal ui in T ′ simulates
the behavior of ui itself, and also of u′i. The following lemma is using classical assumptions
of network computing (see, e.g., [42]) and can be proved using standard techniques (see,
e.g., [35]). We refer to the tree T in the construction described above.

I Lemma 7. For any graph G = (V,E) with nodes IDs taken in a range polynomial in |V |,
there is a deterministic distributed Merlin-Arthur protocol for the tree T using certificates on
O(log |V |) bits.

The term deterministic in the above lemma means that the verification process is
deterministic, which implies perfect completeness and perfect soundness (i.e., soundness
error 0). Roughly speaking, in this protocol each non-tree node will have a (non-quantum)
label indicating its distance from the tree, and each tree node will have as label its depth in
the tree, the ID of its parent, and the ID of the root.

5.2 Certifying Equality in Trees
Based on our tree construction from a graph and Lemma 7, we can restrict our attention to
the case in which the t terminals u1, . . . , ut, who hold the n-bit strings x1, . . . , xt, belong to
a tree T rooted at u1, of depth equal to r + 1, where r is the radius of the terminals, with
maximum degree t, and with leaves u2, . . . , ut. Moreover, we assume that the root u1 itself
is of degree 1 due to our tree construction. We present a distributed quantum Merlin-Arthur
protocol for the equality function EQt

n in this setting, and hence prove our main result.

I Theorem 8. There is a distributed quantum Merlin-Arthur protocol on T for EQt
n between

t terminals of radius r, with perfect completeness, soundness 1/3, certificate size O(t r2 logn)
qubits, and message length O(t r2 log(n+ r)) qubits.

Proof. Let π be a one-way communication protocol for EQn transmittingm = O(logn) qubits
such that, for every input pair (x, y), if x = y then π outputs 1 with probability 1 and if
x 6= y then π outputs 0 with probability at least 2/3 (such a protocol exists, as mentioned in
Section 2). For input (x, y), let |hx〉 be the quantum message from Alice to Bob in π, and let
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{My,1,My,0} be the POVM measurement done by Bob on |hx〉 in π, where My,1 corresponds
to the measurement result 1 (accept), and My,0 corresponds to the measurement result 0
(reject), respectively. Our quantum Merlin-Arthur protocol is as follows.

Protocol P(EQt
n) for equality in trees

1. If EQt
n(x1, . . . , xt) = 1 then the prover sends an m-qubit state equal to |hx1〉 to

each of the nodes v that have no input.
2. For every i ∈ {1, . . . , t}, node ui prepares the m-qubit state |hxi

〉.
3. Every non-root node v of the tree chooses a bit bv uniformly at random. If bv = 0,

then v sends its m-qubit state to its parent in T .
4. For every non-terminal node v, if v receives a state from the children, and if bv = 1,

then v performs the SWAP test on the 2m-qubit state that consists of the m-qubit
state received from the prover and an m-qubit state received from the children,
which is chosen uniformly at random if he/she receives multiple m-qubit states
from the children, and accepts or rejects accordingly. Otherwise, v accepts.

5. If the root node u1 receives a state from its children, then u1 performs the POVM
measurement {Mx1,1,Mx1,0} on an m-qubit state received from the children, which
is chosen uniformly at random if he/she receives multiple m-qubit states from the
children, and accepts or rejects accordingly. Otherwise, u1 accepts.

The perfect completeness trivially holds since every local test yields acceptance with
certainty. For the soundness, if EQt

n(x1, . . . , xt) = 0 then there is a leaf ui, i > 1, with
xi 6= x1. Then, we can perform almost the same analysis as in Section 4, but for the path
connecting u1 and ui in T . The only difference is the probability that each local test occurs;
it is at least 1/4 in the analysis of Pπ done in Section 4, while it is at least (1/4) · (1/t) in the
protocol P(EQt

n) we are now considering, as every non-terminal node vj or u1 on the path
chooses the m-qubit state from the child on the path uniformly at random from the multiple
m-qubit states (possibly) sent from all the children. Hence, P(EQt

n) has soundness error
1−O(1/tr2). The proof is completed by performing O(tr2) parallel repetitions of P(EQt

n)
for error reduction, similarly to the O(r2) parallel repetitions of Pπ in Section 4. J

I Remark. Using Lemma 7, we get that, up to adding O(log |V |) classical bits in the
certificates of the nodes, Theorem 8 can be extended to the case where the terminals are in
a connected graph G = (V,E).

6 Classical Lower Bounds

In this section, we show that non-quantum distributed Merlin-Arthur (dMA) protocols for
distant EQ require certificates of linear size. In fact, we establish a more general lower
bound which applies to all functions f with large fooling set, even using shared randomness.
In addition, the bound holds for settings which allow the graph nodes to have multiple
communication rounds among them, after receiving the certificates and before deciding if
they finally accept (see, e.g., [19, 41]).

For the lower bound, it is sufficient to consider the path v0, . . . , vr in which v0 and vr are
provided with inputs x and y, respectively.

I Theorem 9. Let r ≥ 2µ+ 1, and let f(x, y) be any Boolean function with a 1-fooling set
of size at least k. Let P be a classical Merlin-Arthur protocol for f in a path of r edges,
with µ rounds of communication among the nodes, shared randomness, certificates of size
b 1

2µ log(k − 1)c bits, and completeness 1− p. Then P has soundness error at least 1− 2p.
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Proof. Consider the path v0, . . . , vr with a fixed identifier assignment, and inputs x and y
given to v0 and vr, respectively. Since f has large 1-fooling set but small certificates, there exist
two distinct pairs of “fooling” inputs that have the same certificate assignments on the 2µ node
v1, . . . , v2µ. That is, we can fix two input pairs (x, y) and (x′, y′), with f(x, y) = f(x′, y′) = 1,
and, w.l.o.g., f(x, y′) = 0, with corresponding certificate assignments w and w′, such that

w(vi) = w′(vi) for every i ∈ {1, . . . , 2µ},

where w(vi) and w′(vi) are the certificate assigned to the node vi in the assignments w
and w′, respectively.

We interpret the outputs as Boolean values, where accept = 1 and reject = 0, and denote
by outi(x, y, w) the output of vi when the inputs are x and y and the certificate assignment
is w. Since P has completeness 1− p, we have

Pr
s

[ ∧
i≤µ

outi(x, y, w) = 1 ∧
∧

i≥µ+1
outi(x, y, w) = 1

]
≥ 1− p,

and the same holds for (x′, y′, w′). Hence,

Pr
s

[ ∧
i≤µ

outi(x, y, w) = 1
]
≥ 1− p, and Pr

s

[ ∧
i≥µ+1

outi(x′, y′, w′) = 1
]
≥ 1− p.

The output outi of every node vi is a function of its own identifier and certificate, the
certificates of the nodes in its distance-µ neighborhood, and the public random string s. In
addition, the outputs of v0, v1, . . . , vµ may also depend on the input x to v0, and the outputs
of vr−µ, . . . , vr may also depend on the input y to vr. Formally speaking, the outputs can
also depend on the identifiers of the neighbors, but these are fixed given the node’s identifier,
so we ignore them henceforth.

Let w′′ be the certificate assignment defined by

w′′(v0) = w(v0);
w′′(vi) = w(vi) = w′(vi) for i ∈ {1, . . . , 2µ};
w′′(vi) = w′(vi) for i ∈ {2µ+ 1, . . . , r}.

Consider the input assignment (x, y′) combined with the certificate assignment w′′. The
definition of w′′ implies that nodes v0, . . . , v2µ receive the same certificates as in w, and thus
nodes v0, . . . , vµ cannot distinguish this form the input assignment (x, y) with certificates
assignment w. On the other hand, nodes v1, . . . , vr receive the same certificates as in w′,
so the nodes vµ+1, . . . , vr cannot distinguish this form the input assignment (x′, y′) with
certificates assignment w′.

A union bound finishes the proof:

Pr
s

[ ∧
i≤µ

outi(x, y′, w′′) = 1 ∧
∧

i≥µ+1
outi(x, y′, w′′) = 1

]
= Pr

s

[ ∧
i≤µ

outi(x, y, w) = 1 ∧
∧

i≥µ+1
outi(x′, y′, w′) = 1

]
≥1− Pr

s

[
¬
∧
i≤µ

outi(x, y, w) = 1
]
− Pr

s

[
¬
∧

i≥µ+1
outi(x′, y′, w′) = 1

]
≥ 1− 2p.

That is, we found a certificate assignment w′′ for the input (x, y′) which makes all node
accept with probability at least 1− 2p, even though f(x, y′) = 0. Hence, the soundness error
is at least 1− 2p, as claimed. J
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Since EQn has a 1-fooling set of size 2n, the corollary below follows directly from Theorem 9.
The case r = 3 and µ = 1 gives a linear lower bound for dMA protocols on a 4-node path.

I Corollary 10. For every r ≥ 2µ+ 1, every distributed (classical) Merlin-Arthur protocol for
EQ2

n with µ rounds of communication among the nodes in the path of r edges with certificates
of size at most b(n− 1)/2µc bits, and completeness 1− p has soundness error at least 1− 2p.

The requirements for a good protocol is to have a high completeness (i.e., small value
for p, ideally p = 0) and a reasonably small soundness error. Corollary 10 precisely shows
that for the equality function such protocols cannot exist in the classical setting unless the
certificate size is linear in n.

I Remark. The completeness-soundness gap of Theorem 9 is optimal in general, in the sense
that it cannot be improved for EQ2

1, i.e., distant equality between two input bits. Consider
the following protocol P for EQ2

1, on input (x, y) ∈ {0, 1} × {0, 1}. It uses a shared random
variable X ∈ {−1, 0, 1} with Pr[X = 0] = Pr[X = 1] = p, and Pr[X = −1] = 1 − 2p. In
the case X = −1, all the nodes accept. In the case X ∈ {0, 1}, v0 accepts whenever X = x,
vr accepts whenever X = y, and all the other nodes accept. If x = y, the probability that all
the nodes accept is 1− 2p+ (1/2) · (2p) = 1− p. If x 6= y, then either v0 or vr systematically
rejects for X 6= −1, and thus the probability that all the nodes accept is 1− 2p.

7 Conclusion

In this paper, we extended the notion of randomized proof-labeling scheme to the quantum
setting. We showed the efficiency of distributed quantum certification mechanisms by
designing a distributed quantum Merlin-Arthur protocol for EQt

n between t parties spread
out in a graph, using certificates and messages whose size depend logarithmically on n, the
size of the data. This is in contrast to classical distributed Merlin-Arthur protocols, which
require certificates of size linear in n, even when messages of unbounded size can be used.
Our result was obtained by using an interesting property of the SWAP test: it can be applied
for checking proximity properties between reduced states.

Which other Boolean predicates on labeled graphs, beyond equality, could take benefit
from quantum resources for the design of compact distributed certification schemes is an
intriguing question. Theorem 1 gives a partial answer on the path. A complete answer to
this question would significantly help improving our comprehension of the power of quantum
computing in the distributed setting.
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Abstract
Constructing one-way functions based on NP-hardness is a central challenge in theoretical computer
science. Unfortunately, Akavia et al. [2] presented strong evidence that a nonadaptive black-box
(BB) reduction is insufficient to solve this challenge. However, should we give up such a central
proof technique even for an intermediate step?

In this paper, we turn our eyes from standard cryptographic primitives to weaker cryptographic
primitives allowed to take auxiliary-input and continue to explore the capability of nonadaptive BB
reductions to base auxiliary-input primitives on NP-hardness. Specifically, we prove the followings:

if we base an auxiliary-input pseudorandom generator (AIPRG) on NP-hardness via a nonadaptive
BB reduction, then the polynomial hierarchy collapses;

if we base an auxiliary-input one-way function (AIOWF) or auxiliary-input hitting set generator
(AIHSG) on NP-hardness via a nonadaptive BB reduction, then an (i.o.-)one-way function also
exists based on NP-hardness (via an adaptive BB reduction).

These theorems extend our knowledge on nonadaptive BB reductions out of the current worst-
to-average framework. The first result provides new evidence that nonadaptive BB reductions
are insufficient to base AIPRG on NP-hardness. The second result also yields a weaker but still
surprising consequence of nonadaptive BB reductions, i.e., a one-way function based on NP-hardness.
In fact, the second result is interpreted in the following two opposite ways. Pessimistically, it
shows that basing AIOWF or AIHSG on NP-hardness via nonadaptive BB reductions is harder
than constructing a one-way function based on NP-hardness, which can be regarded as a negative
result. Note that AIHSG is a weak primitive implied even by the hardness of learning; thus, this
pessimistic view provides conceptually stronger limitations than the currently known limitations
on nonadaptive BB reductions. Optimistically, it offers a new hope: breakthrough construction of
auxiliary-input primitives might also provide construction standard cryptographic primitives. This
optimistic view enhances the significance of further investigation on constructing auxiliary-input or
other intermediate cryptographic primitives instead of standard cryptographic primitives.
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1 Introduction

How can we translate computational hardness into cryptography? This is a central question
in theoretical computer science. Specifically, one of the most significant and long-standing
challenges on this question is constructing fundamental cryptographic primitives such as a
one-way function based on NP-hardness. At the moment, several breakthroughs seem to be
required for solving this challenge, as surveyed by Impagliazzo [20].

A central ingredient for solving the above challenge is a reduction; in other words, the
way to translate recognizing a language into breaking a cryptographic primitive. A reduction
is a powerful proof technique even if it is restricted to a quite simple form, and in fact, a
nonadaptive black-box (BB) reduction is sufficient to show many brilliant results and has
played a crucial role in theoretical computer science. Therefore, it is a natural attempt to
apply such a familiar proof technique even for constructing secure cryptographic primitives.

However, Akavia et al. [10] presented strong evidence that such a simple reduction
is insufficient for cryptography based on NP-hardness. Generally, breaking cryptographic
primitives is formulated as an NP problem on an efficiently samplable distribution that is
fixed in advance. They showed that there is no nonadaptive BB reduction from an NP-hard
problem to such a distributional NP problem unless the polynomial hierarchy collapses.
As a corollary, their work excluded the attempt to apply nonadaptive BB reductions for
cryptography based on NP-hardness under the reasonable assumption that the polynomial
hierarchy does not collapse. Further, subsequent work provided stronger consequences in
more specific cases of several cryptographic primitives [2, 12, 5, 13, 9, 8, 27, 17].

Then should we also give up all nonadaptive BB strategies even for an intermediate step
towards cryptography? This question originally motivated our work. In this spirit, we focus
on the capability of nonadaptive BB reduction for a weaker cryptographic notion, i.e., an
auxiliary-input cryptographic primitive introduced first by Ostrovsky and Wigderson [30].
Informally speaking, an auxiliary-input cryptographic primitive is defined as a family of
primitives indexed by the auxiliary-input and has a relaxed security requirement: at least
one primitive in the family must be secure depending on each adversary (instead of one
specific primitive secure against all adversaries). In other words, adversaries for auxiliary-
input primitives must break all primitives in the worst-case sense on auxiliary-input. This
task is not directly formulated as a distributional NP-problem because the distribution is
not uniquely determined in advance due to auxiliary-input. Thus, the previous work on
distributional NP problem cannot be directly applied to auxiliary-input cryptography.

Herein, we present the current status of nonadaptive BB reductions to auxiliary-input
cryptography. Applebaum et al. [5] observed that nonadaptive fixed-auxiliary-input BB
reductions are insufficient even for auxiliary-input cryptography unless the polynomial
hierarchy collapses. Their reduction is a restricted case of nonadaptive BB reduction where
only one auxiliary-input is accessible. However, this restricted access to auxiliary-input
seems too strict and implicitly yields a reduction from an NP-hard language to some fixed
cryptographic primitive (depending on the instance). In fact, this result was shown in almost
the same way to the previous result for standard cryptographic primitives in [2]. The same
work and later Xiao [34] observed that generalizing their result to nonadaptive BB reductions
seems hard by giving the explicit technical issue. To the best of our knowledge, we had no
negative result on general nonadaptive BB reductions to base auxiliary-input cryptography
on NP-hardness before this work. For more detailed reason why the previous work such
as [10, 2] is not applicable for auxiliary-input primitives, refer to Section 4.
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The recent progress on the minimum circuit size problem revealed that an auxiliary-
input one-way function indeed implies a hard-on-average distributional NP problem [3, 16].
However, such an implication requires adaptive techniques at present (e.g., [15]). Thus, the
property of nonadaptive black-box is lost in translating reductions for the auxiliary-input
primitive into reductions for the distributional NP problem.

In this paper, based on the above status, we continue to investigate the capability of
nonadaptive BB reductions for auxiliary-input cryptographic primitives based on NP-hardness.
The importance of our work is to extend our current knowledge on such a central proof
technique out of the previous worst-to-average framework in [10] and to identify the inherent
difficulty on constructing cryptographic primitives on NP-hardness more finely.

1.1 Our Contribution
Our main contribution is to provide new knowledge about nonadaptive BB reductions from
an NP-hard problem to an auxiliary-input cryptographic primitive. In particular, we handle
the auxiliary-input analogs of the following three fundamental primitives: a one-way function,
a pseudorandom generator, and a hitting set generator. A definition of each primitive will
be presented in Section 2 with a formal description of our main results. First, we informally
state the main theorem as follows.

I Theorem (informal). If there is a nonadaptive BB reduction from an NP-hard language L
to breaking an auxiliary-input cryptographic primitive P , then the following statements hold
according to the type of P :

if P is an auxiliary-input pseudorandom generator, then the polynomial hierarchy collapses;
if P is an auxiliary-input one-way function or an auxiliary-input hitting set generator,
then there is also an adaptive reduction from L to inverting some (i.o.-)one-way function.

The first result provides reasonable evidence that auxiliary-input pseudorandom generators
(AIPRG) cannot be based on NP-hardness via nonadaptive BB reductions as standard
cryptography. The second result shows that a nonadaptive BB reduction for basing the other
auxiliary-input primitives yields another strong consequence: an “infinitely often” analog of
one-way function based on NP-hardness. Note that an auxiliary-input hitting set generator
(AIHSG) is much weaker primitive than standard cryptographic primitives: for example, the
existence is even weaker than the hardness of PAC learning [28]. What is surprising is that
even a nonadaptive BB reduction to such a weak primitive yields a solution close to the
long-standing challenge, i.e., characterization of one-way functions based on NP-hardness.

The second result is not sufficient to exclude nonadaptive BB reductions which base
auxiliary-input primitives on NP-hardness, and it has two opposite interpretations. However,
let us stress that both interpretations are quite nontrivial and yield new knowledge about
nonadaptive BB reductions. One interpretation is a pessimistic (or realistic) one. As
mentioned in the introduction, no one has not come up with the construction of a one-way
function based on NP-hardness for several decades despite its importance. Thus, this result
is still strong evidence of difficulty finding such a simple reduction. The other interpretation
is an optimistic one as a new approach to constructing a one-way function. We will further
discuss this optimistic perspective and its novelty in Section 3.

A reader who is familiar with cryptography may wonder why the consequences are
different between an auxiliary-input one-way function (AIOWF) and AIPRG. In fact, AIPRG
is constructed from any AIOWF by applying the known BB construction of a pseudorandom
generator from a one-way function. However, if such construction requires an adaptive
security proof, then the property of nonadaptive is lost in translating reductions for AIOWF
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into reductions for AIPRG via the adaptive security reduction. To the best of our knowledge,
all currently known constructions of pseudorandom generators (e.g., [15, 19, 14]) use adaptive
techniques in the security proof; for instance, construction of false entropy generators and the
uniform hardcore lemma [18]. This technical issue prevents us from applying the first result
for AIPRG to AIOWF. For a similar reason, our second result on AIOWF is incomparable
with the previous work [5] on hardness of learning because we need to construct AIPRG first
to show the hardness of learning from the existence of AIOWF.

2 Formal Descriptions

In this section, we present formal descriptions of auxiliary-input primitives and our results.
Let us introduce a few notations. For any n ∈ N, let Un denote a random variable selected
according to a uniform distribution over {0, 1}n. For any function f : X → Y and subsets
X ⊆ X , Y ⊆ Y, let f(X) = {f(x) : x ∈ X} and f−1(Y ) = {x ∈ X : f(x) ∈ Y }. For a
language L, let (L,U) denote a distributional problem of recognizing L(x) on an instance x
selected uniformly at random. An auxiliary-input cryptographic primitive is defined as an
auxiliary-input function with some additional security conditions.

I Definition 1 (Auxiliary-input function). A (polynomial-time computable) auxiliary-input
function is a family f = {fz : {0, 1}n(|z|) → {0, 1}`(|z|)}z∈{0,1}∗ , where n(|z|) and `(|z|) are
polynomially-related1 to |z|, which satisfies that there exists a polynomial-time evaluation
algorithm F such that for any z ∈ {0, 1}∗ and x ∈ {0, 1}n(|z|), F (z, x) outputs fz(x).

In this paper, we use the term “an auxiliary-input function (AIF)” to refer to polynomial-
time computable one as in the above definition unless otherwise stated. For the sake of
simplicity, we assume that n(·) and `(·) are increasing functions. Note that the length of
auxiliary-input is possibly longer than the length of input and output, i.e., |z| > n(|z|) and
|z| > `(|z|). We may write n(|z|) (resp. `(|z|)) as n (resp. `) when the dependence of |z| is
obvious.

2.1 Auxiliary-Input Pseudorandom Generator
A pseudorandom generator is a primitive stretching a short random seed to a long binary
string random-looking from all efficiently computable adversaries. The auxiliary-input analog
is formally defined as follows:

I Definition 2 (Auxiliary-input pseudorandom generator). Let G = {Gz : {0, 1}n →
{0, 1}`(n)}z∈{0,1}∗ be an auxiliary-input function. For a function γ : N→ (0, 1), we say that
a randomized algorithm A γ-distinguishes G if for all auxiliary-inputs z ∈ {0, 1}∗,∣∣∣∣ Pr

A,Un

[A(z,Gz(Un)) = 1]− Pr
A,U`(n)

[A(z, U`(n)) = 1]
∣∣∣∣ ≥ γ(n).

We say that G is an auxiliary-input pseudorandom generator (AIPRG) if `(n) > n

and for all polynomials p, there exists no polynomial-time randomized algorithm (1/p)-
distinguishing G.

A BB reduction for AIPRG is defined as follows. It is easily verified that the following
BB reduction from a language L to distinguishing an AIF G shows that G is an AIPRG if
L /∈ BPP.

1 In the case of n(|z|), it means that there exist c, c′ ∈ N such that |z| ≤ c · n(|z|)c and n(|z|) ≤ c′ · |z|c
′
.
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I Definition 3 (Black-box reduction to distinguishing AIF). Let L be a language and G :=
{Gz : {0, 1}n → {0, 1}`(n)}z∈{0,1}∗ be an auxiliary-input function with `(n) > n. We say that
there exists a black-box (BB) reduction from L to distinguishing G if for all polynomials p,
there exists a randomized polynomial-time oracle machine R? such that for all oracles O that
(1/p)-distinguish G and x ∈ {0, 1}∗, R satisfies that

Pr
R

[RO(x) = L(x)] ≥ 2/3.

Moreover, we say that there exists a nonadaptive BB reduction from L to distinguishing G if
all R make their queries independently of any answer by oracle for previous queries.

The first main result on AIPRG is stated as follows.

I Theorem 4. For any auxiliary-input function G = {Gz : {0, 1}n → {0, 1}`(n)}z∈{0,1}∗

with `(n) > n, there exists no nonadaptive BB reduction from an NP-hard language L to
distinguishing G unless the polynomial hierarchy collapses.

2.2 Auxiliary-Input One-Way Function
A one-way function is a function which is easy to compute but hard to invert, and it is a
fundamental primitive in the sense that most cryptographic tools do not exist without a
one-way function [23, 32]. The formal definition is the following:

I Definition 5 (One-way function). Let s, ` be polynomials. We say that a family of function
f = {fn}n∈N where fn : {0, 1}s(n) → {0, 1}`(n) is an (i.o.-)one-way function (OWF)2 if f is
polynomial-time computable, and there exists a polynomial p such that for all polynomial-time
randomized algorithms A, there exist infinitely many n ∈ N such that

Pr
A,Us(n)

[A(1n, fn(Us(n))) /∈ f−1
n (fn(Us(n)))] ≥ 1/p(n).

For the sake of simplicity, we may omit to write the input 1n to A.
The auxiliary-input analog of OWF, first introduced by Ostrovsky and Wigderson [30], is

defined as follows.

I Definition 6 (Auxiliary-input one-way function). Let f = {fz : {0, 1}n → {0, 1}`}z∈{0,1}∗

be an auxiliary-input function and γ : N→ (0, 1) be a function. We say that a randomized
algorithm A γ-inverts f if for all z ∈ {0, 1}∗,

Pr
A,Un

[A(z, fz(Un)) ∈ f−1
z (fz(Un))] ≥ γ(n).

We say that f is an auxiliary-input one-way function (AIOWF) if there exists a polynomial p
such that no polynomial-time randomized algorithm (1− 1/p)-inverts f .

In fact, the existence of AIOWF and AIPRG is equivalent [15]. However, we cannot
directly apply Theorem 4 to AIOWF due to the adaptive security reduction, as we mentioned
in Section 1.1.

A BB reduction for AIOWF is defined as follows. It is easily verified that for any
polynomial p, the following BB reduction from a language L to (1− 1/p)-inverting an AIF f

shows that f is an AIOWF if L /∈ BPP.

2 Strictly speaking, a one-way function defined in Definition 5 is usually called a “weak” one-way function,
which implies the standard (strong) one-way function.
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I Definition 7 (Black-box reduction to inverting AIF). Let L be a language, p be a polynomial,
and f := {fz : {0, 1}n → {0, 1}`}z∈{0,1}∗ be an auxiliary-input function. We say that a
randomized polynomial-time oracle machine R? is a black-box (BB) reduction from L to
(1− 1/p)-inverting f if for all oracles O that (1− 1/p)-invert f and x ∈ {0, 1}∗, R satisfies
that

Pr
R

[RO(x) = L(x)] ≥ 2/3.

Moreover, we say that R is nonadaptive if all R’s queries are made independently of any
answer by oracle for previous queries.

The second main result on AIOWF is stated as follows.

I Theorem 8. For any auxiliary-input function f = {fz : {0, 1}n → {0, 1}`}z∈{0,1}∗ and
polynomial p, if there exists a nonadaptive BB reduction from an NP-hard language L to
(1 − 1/p)-inverting f , then NP * BPP also implies that a one-way function exists (via an
adaptive BB reduction).

2.3 Auxiliary-Input Hitting Set Generator
A hitting set generator is a weak variant of a pseudorandom generator, introduced in the
context of derandomization by Andreev et al. [4]. For the original purpose, they considered
(possibly) exponential-time computable generators. In this paper, we focus on polynomial-
time computable generators as in cryptography. We define the auxiliary-input analog as
follows.

I Definition 9 (Auxiliary-input hitting set generator). Let G = {Gz : {0, 1}n →
{0, 1}`(n)}z∈{0,1}∗ be an auxiliary-input function. For a function γ : N→ (0, 1), we say that
a randomized adversary A γ-avoids G if for all (public) auxiliary-inputs z ∈ {0, 1}∗ and
(private) inputs x ∈ {0, 1}n(|z|),

Pr
A

[A(z,Gz(x)) = 0] ≥ 2/3 and Pr
y∼{0,1}`(n(|z|))

[
Pr
A

[A(z, y) = 1] ≥ 2/3
]
≥ min(γ(n), τz),

where τz be a trivial limitation3 defined as τz = 1− |Gz({0,1}n)|
2`(n) .

We say that G is a γ-secure auxiliary-input hitting set generator (AIHSG) if `(n) > n

and there exists no polynomial-time randomized algorithm (1− γ)-avoiding G.

Although it is easily verified that AIPRG is also AIHSG (for any security γ(n) =
1/poly(n)), the opposite direction is open at present. In fact, the hardness of learning implies
the existence of AIHSG [28]; on the other hand, we must overcome the barrier by oracle
separation to show the existence of AIPRG (equivalently, AIOWF) from the hardness of
learning [35]. Thus, AIHSG seems to be a much weaker notion than AIOWF and AIPRG
under current knowledge.

A BB reduction for AIHSG is defined as follows. It is easily verified that the following
BB reduction from a language L to (1− γ)-avoiding an AIF G shows that G is a γ-secure
AIHSG if L /∈ BPP.

3 In this paper, we consider general settings of γ and `. Thus, we adopted the trivial limitation in
the definition to avoid arguing about invalid settings where γ-avoiding the generator is impossible by
definition.
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I Definition 10 (Black-box reduction to avoiding AIF). Let L be a language, γ be a function,
and G := {Gz : {0, 1}n → {0, 1}`}z∈{0,1}∗ be an auxiliary-input function. We say that a
randomized polynomial-time oracle machine R? is a black-box (BB) reduction from L to
(1− γ)-avoiding G if for all oracles O that (1− γ)-avoid G and x ∈ {0, 1}∗, R satisfies that

Pr
R

[RO(x) = L(x)] ≥ 2/3.

Moreover, we say that R is nonadaptive if all R’s queries are made independently of any
answer by oracle for previous queries.

The third main result on AIHSG is stated as follows.

I Theorem 11. Let p be a polynomial and G := {Gz : {0, 1}n → {0, 1}`(n)}z∈{0,1}∗ be an
auxiliary-input function where `(n) > (1 + ε) · n for some constant ε > 0. If there exists
a nonadaptive BB reduction from an NP-hard language L to (1 − 1/p)-avoiding G, then
NP * BPP also implies that a one-way function exists (via an adaptive BB reduction).

3 Discussion and Future Directions

As discussed in Section 1.1, Theorems 8 and 11 are also regarded as approaches to construct
one-way functions based on NP-hardness. In this section, we discuss the novelty of this
optimistic perspective and suggest future directions, including the investigation of the validity.

Our results are rephrased as follows: Assume that we could connect NP-hardness to some
auxiliary-input primitives (i.e., AIOWF or AIHSG) via a novel nonadaptive BB reduction,
then we can automatically extend the connection to standard cryptographic primitives, that
is, OWF. At present, the latter task of removing auxiliary-input from primitives seems quite
non-trivial, as mentioned in [5, 33]. In this paper, we also provide a simple oracle separation
between AIOWF and OWF as follows. This indicates that we cannot expect any relativized
technique to remove auxiliary-input from cryptographic primitives.

I Theorem 12. There exists an oracle O such that relative to O an auxiliary-input one-way
function exists, but a one-way function does not exist.

Additionally, there are several barriers by other oracle separations at the intermediate
levels to base OWF on NP-hardness (e.g., [35, 21]). Although such barriers on relativization
are common throughout theoretical computer science (e.g., the P vs. NP problem [6]),
there are only a few success stories of overcoming such barriers at present. Unfortunately,
Theorems 8 and 11 do not provide any solution to break these barriers, and a new non-
relativized technique is still required. Specifically, if a nonadaptive BB reduction to AIOWF
or AIHSG is also relativized4, then our proof also yields relativized reductions that contradict
Theorem 12 or the oracle separation presented in [21].

However, our result offers one hope. Although there seems to be several barriers towards
cryptography based on NP-hardness as discussed above, the essential barrier we must over-
come might be few. Theorems 8 to 12 certainly show that if we could find a non-relativized
breakthrough at an intermediate level toward cryptography (that is, auxiliary-input prim-
itives), then it will be lifted and break the other barriers at the higher level. From this
perspective, we conjecture that the difficulty in basing OWF on NP-hardness could rely on

4 Note that oracle separations do not necessarily rule out BB reductions from particular languages, not
as fully BB reductions defined in [31].
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a much smaller part of tasks at an intermediate level. This conjecture seems somewhat
controversial but enhances the significance of further investigation on auxiliary-input or other
intermediate cryptographic primitives instead of standard ones.

The above discussion leads to the following two possible directions. The first direction is
to find other scenarios where a breakthrough at an intermediate level also brings benefits at
the higher level. This direction might reduce constructing standard cryptographic primitives
to the task at the low level and give new insights into complexity-based cryptography. The
second direction is to refute such an attempt on intermediate primitives with convincing
evidence if it gives the wrong direction. Particularly, in our case, there is a possibility
that nonadaptive BB reductions for AIOWF and AIHSG indeed yield the collapse of the
polynomial-hierarchy as in the case of AIPRG.

For the second direction, we list two concrete ways: (1) finding a new construction of
AIPRG from AIOWF with nonadaptive security proof; (2) generalizing the previous results
for OWF [2] or HSG [17] to each auxiliary-input analog for the stronger consequence. At
least the latter approach seems to require some new technique to simulate nonadaptive BB
reductions by constant-round interactive proof systems, as observed in [5] and [34].

4 A First Attempt: Applying [10] and [2]

Before presenting our proof strategies, we roughly explain why the previous technique
developed by Bogdanov and Trevisan [10] for the worst-to-average framework is not applicable
in the case of auxiliary-input cryptography. For the sake of simplicity, we assume that there
exists a nonadaptive BB reduction R from an NP-hard language L to a distributional NP-
problem (L′, U), and R makes queries of the same length n determined by the size of input
to R. Note that if we can answer these queries by an oracle which correctly recognizes
L′ on average, then R must recognize L. Bogdanov and Trevisan construct an AM/poly
protocol for recognizing L by leaving this role of the oracle to a prover, which implies that
coNP ⊆ AM/poly and the collapse of the polynomial hierarchy.

Roughly speaking, their central idea is to divide each R’s query x ∈ {0, 1}n into “light”
and “heavy” queries according to the probability px that the query x is generated by R.
Specifically, they determine a threshold p(n) = poly(n) depending on the permissible error
probability for solving (L′, U) on average and define a light (resp. heavy) query x as a query
satisfying the condition px ≤ p(n)2−n (resp. px > p(n)2−n). Then, they make the prover
answer (ideally) all light queries correctly, i.e., simulate the following oracle.

OL = {x ∈ {0, 1}∗ : x ∈ L′ and x is a light query}

Because the number of heavy queries is at most 2n/p(n), the above oracle OL solves (L′, U)
with error probability at most p(n). Therefore, it is enough to make a prover simulate OL
for constructing an AM/poly protocol which recognizes L based on R. For the soundness, the
verifier must accomplish the following two tasks without deceived by malicious provers: (1)
distinguishing between light and heavy queries and (2) identifying the correct answer for each
light query. Bogdanov and Trevisan developed such a verifier by introducing sophisticated
protocols called the heavy sampling protocol and the hiding protocol.

Herein, we consider the case of auxiliary-input primitives, where each R’s query takes
the form of (z, x) where z denotes auxiliary-input. For the sake of simplicity, we assume
that the task of breaking an auxiliary-input primitive is further reduced to an average-case
deterministic problem on uniform distribution with auxiliary-input by applying the techniques
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in [22, 7] as in the previous work [10] and the length of instances of the average-case problem
is the same as the length of auxiliary-input. We also assume that a reduction R makes
queries of the form (z, x) where |z| = |x| = n and n is determined by the size of input to R.

There are two possible ways to extend the above idea to the case of auxiliary-input
primitives: considering auxiliary-input in queries (a) together or (b) separately. For the
first approach (a), we must determine a light query as a query satisfying the condition
px ≤ poly(n)2−2n for applying the hiding protocol. This is problematic because the number
of heavy queries is possibly 22n/poly(n), and many of them can be concentrated on one
auxiliary-input. In other words, the above oracle OL does not always solve the average-case
problem in the worst-case sense on auxiliary-input. On the other hand, for the second
approach (b), their verifier needs information on some statistics as advice for each auxiliary-
input. Because there are exponentially many possibilities on auxiliary-input, the total length
of such advice is exponentially large, which is unfeasible as an AM/poly protocol.

The subsequent work [2] provided the method to remove the above advice in the case of
standard cryptographic primitives by applying an additional property of breaking crypto-
graphic primitives (therefore, they constructed an AM protocol for ¬L instead of an AM/poly
protocol). Unfortunately, even this method cannot be applied directly in the case of auxiliary-
input cryptography. To obtain the statistics corresponding to the above advice, their protocol
needs to generate query set by executing R. In our case, remember that we consider each
auxiliary-input separately, so we need to simulate a conditional distribution on queries for
fixed auxiliary-input. However, such distributions are not efficiently samplable in general:
for example, consider the query distribution on (h(y), y) where h is a collision-free hashing
function. Then, a polynomial-time verifier which simulates a conditional distribution for a
fixed auxiliary-input (i.e., hash value) can easily find the collision of h.

5 Proof Sketches

In this section, we present proof ideas of Theorems 4, 8, 11, and 12. Note that Theorem 11
heavily relies on Theorem 8, and Theorem 8 heavily relies on Theorem 4. Therefore, although
each proof idea may look pretty simple and intuitive, our construction of OWF for Theorem 11
becomes complicated and quite non-trivial as a whole. For the formal proofs, refer to the
full version [29].

5.1 The Case of AIPRG: Proof Idea of Theorem 4
First, we formally introduce a hitting set generator, which takes a crucial role in our proof.

I Definition 13 (Hitting set generator). Let γ(n) be a function. A function G : {0, 1}n →
{0, 1}`(n) with `(n) > n is a (polynomial-time computable) γ-secure hitting set generator
(HSG) if G is polynomially computable and there is no polynomial-time randomized adversary
A γ-avoiding G, i.e., satisfying the condition that for all sufficiently large n ∈ N,

∀x ∈ {0, 1}n Pr
A

[A(G(x)) = 0] ≥ 2/3 and Pr
y∼{0,1}`(n)

[
Pr
A

[A(y) = 1] ≥ 2/3
]
≥ min(γ(n), τn),

where τn be a trivial limitation defined as τn := 1− |G({0,1}n)|
2`(n) .

Theorem 4 essentially follows from a nonadaptive BB security reduction from distin-
guishing AIPRG to avoiding HSG. Note that HSG based on AIPRG with a nonadaptive
BB security reduction has been implicitly given in the study on MCSP [3, 16]. To see this
explicitly, we will provide a much simpler construction of HSG based on AIPRG and a
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self-contained proof. Although the reader may think that our construction is too fundamental
and looks somewhat trivial, to the best of our knowledge, no one has mentioned such a direct
relationship between AIPRG and HSG.

First, we assume that there is a nonadaptive BB security reduction from distinguishing
AIPRG to avoiding HSG. Avoiding HSG is directly formulated as the following distributional
NP problem (with zero-error): for uniformly chosen y, determine whether y is contained
in the image of HSG. Therefore, the reduction also yields a nonadaptive BB reduction
from distinguishing AIPRG to the distributional NP problem. Thus, any nonadaptive BB
reduction from an NP-hard problem to distinguishing AIPRG indeed yields a nonadaptive
BB reduction from the same NP-hard problem to the distributional NP problem. By the
previous result by Bogdanov and Trevisan [10], such a reduction implies the collapse of the
polynomial-hierarchy.

Our construction of HSG from AIPRG is the following: just considering the both of
auxiliary-input and input to AIPRG as usual input to HSG. More specifically, let G = {Gz :
{0, 1}n → {0, 1}`(n)}z∈{0,1}∗ be an AIPRG. Then the construction of HSG G′ is given as
G′(z ◦ x) = Gz(x). Note that, when z + n(|z|) ≥ `(n(|z|)) holds, G′ does not satisfy the
syntax on stretching input. In the formal proof, therefore, we first stretch the output of G by
the standard technique in cryptography. It can be easily verified that the security reduction
for this stretching (shown by the famous hybrid argument) is nonadaptive.

Let γ(n) be a reciprocal of polynomial. The security reduction from γ-avoiding G′ to
distinguishing G is also simple: just employing an adversary A for G′ as an adversary for G.
Obviously, this reduction is nonadaptive. To show the correctness, assume that A γ-avoids G′.
For the sake of simplicity, we also assume that A is deterministic and γ(n) < τn. Whenever
the input y is pseudorandom string contained in the image of G′, A(y) does not output 1. On
the other hand, if y is a truly random string, then A(y) outputs 1 with probability at least
γ(n). Thus, A can distinguish the uniform distribution from all distributions on the image
of G′ with an advantage at least γ(n). For any auxiliary-input z, Gz(Un(|z|)) is distributed
on the image of G′. Thus, A also γ-distinguishes G.

5.2 The Case of AIOWF: Proof Idea of Theorem 8
In this section, we omit all arguments about the success probabilities of adversaries to focus
on the proof idea. First, we introduce several reductions as elements of a standard OWF.
Let RL→f denote the nonadaptive BB reduction from L to inverting f in the assumption.
By the construction of PRG from OWF (e.g., [15]), there exist an auxiliary-input generator
G and an adaptive BB reduction Rf→G from inverting f to distinguishing G. By the result
in Section 5.1, there exist an NP-language L′ and a nonadaptive BB reduction RG→L′ from
distinguishing G to a distributional NP problem (L′, U) (with zero-error). Since L′ ∈ NP and
L is NP-hard, there exists a Karp reduction RL′→L from L′ to L.

Now we consider the following procedure:
1. select an instance x′ of L′ at random;
2. translate x′ into an instance x of L as x = RL′→L(x′);
3. plug x into RL→f with a random tape r;
At this stage, RL→f makes polynomially many queries (z1, y1), . . . , (zq, yq).
4. answer the queries by some inverting oracle O;
5. if RL→f outputs b ∈ {0, 1}, then output the same decision b.
Note that if the oracle O correctly inverts f , then the resulting decision b is L(x) with high
probability by the property of RL→f , and L(x) is equal to L′(x′) by the property of RL′→L.
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The crucial observation is that there is no worst-case sense at all in the above procedure
because both x′ and r are selected at random. Therefore, all queries at the stage 3 are
indeed efficiently samplable, and the inverting oracle no longer needs to invert f for every
auxiliary-input at the stage 4. This observation leads to the following construction of a
standard OWF g.

The function g takes three inputs x′, r, and xf , which intuitively represents a random
instance of L′, randomness for RL→f , and input for f , respectively. Then g(x′, r, xf ) imitates
the above procedure as follows: (2’) translate x′ into an instance x of L as x = RL′→L(x′),
(3’) plug x into RL→f with randomness r, then randomly pick one of auxiliary-input z in
queries by RL→f and output fz(xf ).

We will show that the above g is one-way if NP * BPP. For contradiction, we assume
that there exists an adversary A that inverts g. Remember that g simulates a distribution
on queries produced by RL→f in the above procedure. Thus, intuitively, we can replace
the inverting oracle O with the adversary A at the stage 4 with high probability. This
is a little technical part, and we present further details in the full version [29]. Then the
above procedure no longer needs any oracle and yields a randomized algorithm solving
(L′, U) on average. By applying reductions RG→L′ , Rf→G, and RL→f in this order, this also
yields a randomized polynomial-time algorithm for L. Since L is NP-hard, we conclude that
NP ⊆ BPP.

Remark that RG→L′ is a nonadaptive BB reduction thanks to our simple construction
in Section 5.1. Therefore, if we also have a construction of AIPRG G from AIOWF f with
a nonadaptive BB reduction from inverting f to distinguishing G, then the above proof
leads to a nonadaptive BB reduction from L to (L′, U), which implies the collapse of the
polynomial hierarchy as in Theorem 4. Thus, finding such a simple construction of AIPRG
is one direction for excluding a nonadaptive BB reduction to base AIOWF on NP-hardness,
as mentioned in Section 3.

5.3 The Case of AIHSG: Proof Idea of Theorem 11
Our goal is to simulate an avoiding oracle for a nonadaptive BB reduction by another protocol
in some restricted complexity class, in our case, BPP. The key idea for this is to classify each
query generated by the nonadaptive BB reduction into “light” and “heavy” queries as in [10].
A similar technique was also applied in the previous work for HSG [12, 17]. Thus, we first
review the previous case of HSG and then explain the difference to our case of AIHSG.

The Case of Hitting Set Generator (Previous work)
Let G : {0, 1}n → {0, 1}`(n) denote a generator with `(n) ≥ (1 + Ω(1)) · n and R? denote a
nonadaptive BB reduction from an NP-language L to avoiding G. W.l.o.g., we can assume
that marginal distributions on each query by R are identical regardless of each query position
by applying a random permutation on query positions before asking them to oracle. Thus,
for each input x ∈ {0, 1}n to R, one marginal distribution Qx on R’s queries is determined.
We choose a threshold (roughly) τ = 1/Θ̃(2n) and define a light (resp. heavy) query
y ∈ {0, 1}`(n) as a query generated according to Qx with probability less (resp. greater) than
the threshold τ .

We simulate the avoiding oracle for G by using the classification of queries as follows.
First, assume that we could (somehow) distinguish the heavy case and the light case for a
given query. Then we can also simulate one of avoiding oracles simply as follows: for each
query y generated by R(x), (1) determine whether y is heavy or light; (2) answer 0 (resp. 1)
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if y is heavy (resp. light) query. Let O′ denote the induced oracle by the above simulating
procedure. Note that the probability that O′(y) outputs 0 is exponentially small because
the fraction of light queries is Θ̃(2n)/2`(n) ≤ 2−Ω(n). Thus, O′ satisfies the condition on
the probability of outputting 1. However, O′ is not avoiding oracle for G, because there is
possibly a query y such that y is heavy but contained in ImG. In this case, O′(y) outputs 1
even for y ∈ ImG and fails to avoid G.

The key observation to overcome this issue is the following:

(?) For each length `(n) of query (i.e., the input size is n), the size of ImG is at most
2n; thus the probability that R asks some light query contained in ImG (we refer to
it as a “bad” query) is bounded above by 2n/Θ̃(2n) ≤ 1/poly(n).

Therefore, O′ is consistent with some avoiding oracle, and RO′(x) correctly recognizes x with
high probability over the execution of R.

By the above argument, we can reduce avoiding a generator to distinguishing heavy and
light queries. For the latter task, Gutfreund and Vadhan [12] presented a BPPNP algorithm by
approximation of counting in [26], and Hirahara and Watanabe [17] presented an AM∩ coAM
algorithm by generalizing the protocol in [11].

The Case of Auxiliary-input Hitting Set Generator (Our work)
We move on to our case of AIHSG. Let G = {Gz : {0, 1}n(|z|) → {0, 1}`(n(|z|))}z∈{0,1}∗ denote
an auxiliary-input generator with `(n) ≥ (1 + Ω(1)) · n and R? denote a nonadaptive BB
reduction from an NP-language L to avoiding G. We can also assume that all marginal query
distributions of R?(x) are identical to Qx regardless of query position.

To extend the above argument to our case of AIHSG, the problematic part is the key
observation (?). Remember that an adversary for AIHSG must avoid Gz for all z ∈ {0, 1}∗,
and auxiliary-input is possibly longer than output. Therefore, we cannot bound the size
of the image of the generator in general because the image may span the whole range (for
example, consider the following generator Gz(x) = z ⊕ (x ◦ 0|z|−|x|) for |z| > n(|z|)).

To overcome this, we need to consider each case of auxiliary-input z separately. Therefore,
we change the definitions of “light” and “heavy” queries depending on auxiliary-input. Let
px(z) denote a probability that Qx generates a query of auxiliary-input z. If we can bound the
probability that R makes light query (z, y) with y ∈ ImGz by 1/(poly(n)·px(z)) for any z, then
R makes such a “bad” query (z, y) with probability at most

∑
z px(z) · 1/(poly(n) · px(z)) =

1/poly(n). Then we can use the same argument in the case of HSG and reduce avoiding
G to distinguishing heavy and light cases. This idea naturally leads to the following new
definition of “light” and “heavy”: separating each query (z, y) by the conditional probability
px(y|z) that y is asked conditioned on the event that the auxiliary-input in the query is z.
In fact, this modification will work well even for AIHSG (for the formal argument, refer to
the full version [29]).

However, one issue remains: how can we distinguish heavy and light queries? To this
end, we must verify the largeness of the conditional probability of the given query. This part
essentially prevents us from applying the previous results. Since we consider a polynomial-
time computable generator, the simulation with NP oracle does not yield any nontrivial
result, not as the work in [12]5. Even for the simulation in AM ∩ coAM in [17], there are

5 Their work concerned the original aim of HSG, i.e., derandomization (e.g., [25]). For this purpose,
they considered (possibly) exponential-time computable HSG G, where avoiding G in BPPNP is quite
nontrivial. However, in our case where G is polynomial-time computable, avoiding G is in NP trivially.
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several technical issues. We cannot trivially verify the size of conditional probability by such
protocols due to the restricted use of the upper bound protocol developed in [1]. Moreover, we
cannot possibly even sample the conditional distribution efficiently for fixed auxiliary-input,
as discussed in Section 4.

Our idea is to adopt universal extrapolation in [22]. Intuitively speaking, the universal
extrapolation is a tool to reduce approximating the probability py = PrUn

[y = f(Un)] to
inverting f for a polynomial-time computable f and a given y = f(x) where x ∈ {0, 1}n is
selected at random. In fact, the universal extrapolation holds even for an auxiliary-input
function, and a similar technique was also used in [30]. By using the universal extrapolation
for each circuit which generates query and auxiliary-input, we have a good approximation of
px(y|z) for query (z, y) generated by R?(x). Thus, the universal extrapolation enables us to
classify the given (z, y) correctly. Note that the auxiliary-input in the universal extrapolation
essentially corresponds to the input x for each circuit sampling query and auxiliary-input.

To show Theorem 11, we need further observations. Since R makes its queries non-
adaptively, we can also invoke the universal extrapolation nonadaptively. Moreover, the
universal extrapolation algorithm indeed uses an inverting adversary for a certain AIOWF
as black-box and nonadaptively (we also see this formally in the full version [29]). As a
result, a nonadaptive BB reduction from an NP-hard language L to avoiding AIHSG yields a
nonadaptive BB reduction from L to inverting AIOWF. Thus, by Theorem 8, R also yields a
one-way function under the assumption that NP * BPP.

5.4 Oracle Separation between OWF and AIOWF: Proof Idea of
Theorem 12

To show Theorem 12, we employ a random function F = {Fn : {0, 1}n → {0, 1}n}n∈N, where
each Fn is selected uniformly from length-preserving functions of input size n. As shown
in [24], any polynomial-time oracle machine cannot invert F with non-negligible probability
(with probability 1 over the choice of F). In other words, if a primitive given access to F
directly outputs the value of F , such a primitive must be one-way. Therefore, all we have to
do is to let a random function F available for auxiliary-input primitives but unavailable for
standard primitives.

To this end, we simply add n-bit auxiliary-input to a random function of the input
size n. Then we choose one auxiliary-input zn from 2n possibilities of {0, 1}n as a target
auxiliary-input and embed the random function to the position indexed by zn. Let F =
{Fz : {0, 1}|z| → {0, 1}|z|}z∈{0,1}∗ be such an embedded random function. Note that the
similar random embedding technique was also used in the previous work for other oracle
separations (e.g., [35]). If an auxiliary-input primitive f given access to F identifies the
auxiliary-input of F with own auxiliary-input, then f must be AIOWF because an adversary
for f must invert fz for all auxiliary-inputs z, including the random function. On the other
hand, any polynomial-time computable primitive (without auxiliary-input) cannot find the
target auxiliary-input of F with non-negligible probability because they were selected at
random. Thus, any (standard) primitive does not take nontrivial advantage of F .

For the oracle separation, we combine the above embedded random function F with the
PSPACE oracle (w.l.o.g., the oracle TQBF determining satisfiability of quantified Boolean for-
mulae). Let OF denote this oracle. Since the random function in F is selected independently
of TQBF, the additional access to TQBF does not help to invert the random function at all.
Thus, AIOWF still exists relative to OF .

On the other hand, we consider a function f which is polynomial-time computable with
access to OF arbitrarily. Since the target auxiliary-input is selected independently of TQBF,
the additional access to TQBF does not help to find the target auxiliary-input at all. Thus, f
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cannot still take nontrivial advantage of F and is regarded as a function given only access to
TQBF. We can easily verify that any polynomial-time computable function with access to
TQBF is efficiently invertible by TQBF. Since the above argument holds for any f , OWF does
not exist relative to OF . Thus, we have the oracle separation between AIOWF and OWF.
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Abstract
The linear cross-entropy benchmark (Linear XEB) has been used as a test for procedures simulating
quantum circuits. Given a quantum circuit C with n inputs and outputs and purported simulator
whose output is distributed according to a distribution p over {0, 1}n, the linear XEB fidelity of
the simulator is FC(p) = 2nEx∼pqC(x) − 1, where qC(x) is the probability that x is output from
the distribution C |0n〉. A trivial simulator (e.g., the uniform distribution) satisfies FC(p) = 0,
while Google’s noisy quantum simulation of a 53-qubit circuit C achieved a fidelity value of
(2.24± 0.21)× 10−3 (Arute et. al., Nature’19).

In this work we give a classical randomized algorithm that for a given circuit C of depth d with
Haar random 2-qubit gates achieves in expectation a fidelity value of Ω( n

L
· 15−d) in running time

poly(n, 2L). Here L is the size of the light cone of C: the maximum number of input bits that each
output bit depends on. In particular, we obtain a polynomial-time algorithm that achieves large
fidelity of ω(1) for depth O(

√
logn) two-dimensional circuits. This is the first such result for two

dimensional circuits of super-constant depth. Our results can be considered as an evidence that
fooling the linear XEB test might be easier than achieving a full simulation of the quantum circuit.
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1 Introduction

Quantum computational supremacy refers to experimental violations of the extended Church
Turing Hypothesis using quantum computers. The most famous (and arguably at this point
the only) example of such an experiment was carried out by Google [2]. The Google team
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constructed a device D that provides a “noisy simulation” of a quantum circuit C with n
inputs and n outputs. The device can be thought as a “black box” that samples from a
distribution pD over {0, 1}n that (loosely) approximates the distribution qC that corresponds
to measuring C applied to the all-zeroes string 0n. The quality of the device was measured
using a certain benchmark known as the Linear Cross-Entropy benchmark (a.k.a. Linear
XEB). The computational hardness assumption underlying the experiment is that no efficient
classical algorithm can achieve a similar score. In this paper we investigate this assumption,
giving a new classical algorithm for “spoofing” this benchmark in certain regimes. While our
algorithm falls short of spoofing the benchmark in the parameter regime corresponding to
the Google experiment, we do manage to achieve non-trivial results for deeper circuits than
were known before. To our knowledge, this is the first algorithm that directly targets the
linear XEB benchmark, without going through a full simulation of the underlying quantum
circuit. Thus our work can be viewed as evidence that obtaining non-trivial performance for
this benchmark is not equivalent to simulating quantum circuits.

The linear XEB benchmark is defined as follows. Let C be an n-qubit quantum circuit
and qC : {0, 1}n → [0, 1] be the pdf of the distribution obtained by measuring C|0n〉. For
each x ∈ {0, 1}n, the instance linear XEB of x is defined as FC(x) := 2nqC(x)− 1. For every
probability distribution p, the linear XEB fidelity of p with respect to circuit C is defined as

FC(p) := E
x∼p

[FC(x)] = 2n
∑

x∈{0,1}n
qC(x)p(x)− 1 .

If C is a fully random circuit, then in expectation a perfect simulation p = qC achieves
FC(p) = 2.1 Google’s “quantum computational supremacy” experiment demonstrated a
noisy simulator sampling from a distribution p with FC(p) ≈ (2.24± 0.21)× 10−3 for two
dimensional 53-qubit circuits of depth 20. A trivial simulation (e.g. a distribution p which is
the uniform distribution or another distribution independent of C) will achieve FC(p) = 0.
Motivated by the above, we say that p achieves non-trivial fidelity with respect to the circuit
C if FC(p) = 1/poly(n).2

The computational assumption underlying quantum computational supremacy with
respect to some distribution D over quantum circuits can be defined as follows. For every
efficient randomized classical algorithm A, with high probability over C ∼ D , if we let AC be
the distribution of A’s output on input C, then FC(AC) = n−ω(1). That is, the distribution
output by A(C) has trivial fidelity with respect to C. Aaronson and Gunn [1] showed that
this assumption follows from a (very strong) assumption they called “Linear Cross-Entropy
Quantum Threshold Assumption” or XQUATH.3

In this work, we present an efficient classical algorithm A that satisfies FC(AC) = Ω(1)
for quantum circuit C sampled from a distribution with Haar random 2-qubit gates with
small light cones (see Definition 4).4 Specifically, we prove the following theorem:

1 This follows since qC is the Porter Thomas distribution. However, qC is not the maximizer of FC(p): a
distribution p that has all its mass on the mode x of the distribution qC will achieve FC(p) ≥ Ω(n) for
fully random circuits, and even higher values for shallower circuits as we’ll see below.

2 As mentioned above, for an ideal simulation in random circuits the fidelity will be a constant. For noisy
quantum circuits such as Google’s, the fidelity is roughly exp(−εs) where ε is the level of noise per gate
and s = Θ(d · n) is the number of gates in the circuit.

3 While [1] state their result for Ω(1) fidelity, their proof shows that the XQUATH assumption implies
that classical algorithms can not achieve 1/poly(n) empirical fidelity with poly(n) samples.

4 If C is a quantum circuit and i is an output bit of C, then the light cone of i is the set of all input
bits j that are connected to i via a path in the circuit. For general circuits the light cone size can
be exponential in the depth, but for one or two dimensional circuits, of the type used in quantum
supremacy experiment, the light cone size is polynomial in the depth.
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I Theorem 1 (Linear XEB for circuits with small light cones). Let n, d, L ∈ N and let D be
a distribution over n-qubit quantum circuits with (i) light cone size at most L, (ii) depth
at most d, and (iii) Haar random 2-qubit gates. Then, there exists a classical randomized
algorithm A running in poly

(
n, 2L

)
time such that

E
C∼D

[FC(AC)] ≥
(
1 + 15−d

)b nLc − 1 .

For constant dimensional circuits (such as the 2D quantum architecture used by Google),
Theorem 1 yields the following corollary:

I Corollary 2 (Constant dimensional circuits). Let n ∈ N and d = O(logn). Let c ∈ N be a
constant and D be the distribution of n-qubit c-dimensional circuits of depth d with Haar
random 2-qubit gates. There is a randomized algorithm A running in time 2O(dc) such that

EC∼DFC(AC) = 1/poly(n) .

Proof. A c-dimensional of depth d circuit has light-cone of size L = O(dc) = no(1) for
d = O(logn). Let d = α logn. By plugging in the parameters of Theorem 1, we see that
(using log2 15 < 4 and n/L ≥ n1−o(1)) the expected value of the fidelity is at least

(1 + 2−4d)n
1−o(1)

− 1 ≥ Ω(n
1−o(1)

n4α ) .

The right hand side is at least 1/poly(n) for every constant α and in fact is at least ω(1) for
α < 1/4. J

The bounds of Corollary 2 do not correspond to the Google experiment where the depth
is roughly comparable to

√
n, rather than logarithmic. However, prior works in the literature

were only able to achieve good linear XEB performance for circuits of constant depth (see
Section 1.2). More importantly (in our view) is that our bounds show that it may be possible
to achieve good linear XEB performance without achieving a full simulation.

1.1 From expectation to concentration
In actual experiments, one measures the empirical linear XEB, obtained by sampling
x1, . . . , xT independently from the distribution p and computing 1

T

∑T
i=1 2nqC(xi)− 1. Thus

in our classical simulation we want to go beyond achieving large expected linear XEB
benchmark, to show that our algorithm A actually achieves non-trivial empirical linear XEB
with probability at least inverse polynomial over the choice of the circuit and with a number
of samples T that is at most polynomial in n. These probability bounds are more challenging
to prove, and at the moment our results are weaker than the optimal bounds one can hope
for.

Probability over circuits

For bounding the probability over circuits we show in Section 5.1, that in the setting of
Theorem 1 , for logarithmic depth circuits, we can obtain 1/poly(n) fidelity with probability
at least 1/poly(n). We also obtain more general tradeoffs between the fidelity, probability,
and depth, see Corollary 12. We conjecture that random circuits from the distributions we
consider exhibit much better concentration, and fact that the fidelity sharply concentrates
around its expectation.
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Sample complexity, or probability over the algorithms’ randomness

Bounding the sample complexity of our algorithm is a more difficult task then the expectation
analysis because it requires higher moment information on FC(AC). We obtain only partial
bounds in this setting, which we believe to be far from optimal. In Section 6 we show that
an upper bound for the collision probability of qC is sufficient to give an upper bound for the
sample complexity of our algorithm. Specifically, letting CP (q) =

∑
x∈{0,1}n q(x)2, we show

that if CP (q) = M · 2−n then the number of samples needed for the empirical linear XEB to
achieve a value of at least ε isM ·exp

(
O(ε · 15d)

)
. In particular, for logarithmic depth circuits

we can get inverse-polynomial empirical fidelity using O(M) samples. For random quantum
circuits, where qC is the Porter-Thomas distribution (with qC(x) drawn independently as the
square of a mean zero variance 2−n normal variable), it is known that CP (qC) = O(2−n),
i.e., M = O(1). For shallow circuits, of the type we study, we show in Lemma 16 that
CP (qC) = O(2−n) for random one dimensional circuits of depth at least c logn for some
constant c > 0, which shows that we can achieve for such circuits inverse polynomial empirical
fidelity using a polynomial number of samples. While this is significantly more technically
challenging to prove, we conjecture that the same collision probability bound holds for two
dimensional circuits of depth Ω(

√
logn). This conjecture, if true, will imply that for such

circuits we can achieve 1/poly(n) empirical fidelity using a polynomial number of samples, and
constant fidelity using a sub-exponential (e.g. exp

{
exp
{
O(
√

logn)
}}

) number of samples.5

1.2 Prior works

Prior classical algorithms mostly focused on the task of obtaining a full simulation (sampling
from C|0n〉 or from a distribution close to it in statistical distance). We are not aware of any
prior work that directly targeted the linear XEB measure and gave explicit bounds for the
performance in this measure that are not implied by approximating the full distribution.

Napp et al [8] gave an algorithm to simulate random two-dimensional circuits of some
small constant depth. They gave strong theoretical evidence that up to a certain constant
depth, such circuits can be approximated by 1D circuits of small entanglement (i.e., “area
law” as opposed to “volume law”), which can be effectively simulated using Matrix Product
States [10]. However, [8] also gave evidence that the system undergoes a phase transition
when the depth is more than some constant size (around 4), at which case the entanglement
grows according to a “volume law” and hence their methods cannot be used to simulate
circuits of super-constant depth.

Another direction of approximating large quantum circuits has considered the effect of
noise. Some restricted classes of noisy quantum circuits were shown to be simulated by
polynomial time classical algorithms in [4, 11] (in contrast to their noiseless variant [3]). This
was also extended to more general random circuits by [6]. Very recent work has given numerical
results suggesting that states generated by noisy quantum circuits could be approximated by
Matrix Product States or Operators under the state fidelity measure [12, 9].6 Low degree
Fourier expansions yield other candidates for approximating such quantum states [6, 4].

5 Very recently we have learned that Dalzell, Hunter-Jones, and Brandao (personal communication)
refuted Conjecture 10 though we have not yet had a chance to verify their proof. The refutation
of Conjecture 10 would only rule out a specific approach to upper bound the sample complexity. It
is still possible that our algorithm achieves 1/poly(n) empirical fidelity using a polynomial number of
samples for two dimensional circuits of depth Ω(

√
logn).

6 [12] briefly discusses the linear XEB measure as well, see Figure 7 there.
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2 Preliminaries

In this section we introduce some of the notions we use for quantum circuits, and in particular
distributions of random quantum circuits of fixed architecture, as well as tensor networks
for analyzing quantum circuits. We include this here since some of this notation, and in
particular tensor networks, might be unfamiliar to theoretical computer science audience.
However, the reader can choose to skip this section and refer back to it as needed.

For n ∈ N, an n-qubit quantum state |ψ〉 =
∑
x∈{0,1}n αx |x〉 is a unit vector in C2n . We

let I,X, Y, Z denote the Pauli matrices where

I =
[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 i

−i 0

]
, and Z =

[
1 0
0 −1

]
.

The following definition captures the notion of an “architecture” of a quantum circuit
(see Figure 1 for an example):

I Definition 3 (Circuit skeleton and light cone). Let n ∈ 2N and d ∈ N, an n-qubit depth d
circuit skeleton S is a directed acyclic graph with d+ 2 layers with the following structure.
For convenience, we start the index of layers from 0.

The 0th and the (d + 1)th layer has n nodes corresponding to the n input and output
qubits. Each node in the first layer has exactly one out-going edge to the next layer while
each node the last layer has exactly one in-going edge from the previous layer.
Each of the other layers has exactly n/2 nodes and each node has exactly two in-going to
the next layer and two out-going edges from the previous layer. Specifically, the first edge
ith gate is indexed by 2i−1 while the second edge is indexed by 2i for each i = 1, 2, . . . , n/2.
For each i = 1, 2, . . . , n, the ith input node connects to the ith edge of the second layer
while the ith edge of the (d+ 1)th layer connects to the ith output node.

Note that with the above definition, a circuit skeleton S can be specified by d + 1 many
permutations π(0), π(1), . . . , π(d) ∈ Sn. Namely, for each t = 0, 1, 2, . . . , d − 1 and i =
1, 2, . . . , n, the ith edge of the tth layer connects to the π(t)(i)th edge of the (t+ 1)th layer.

For every circuit skeleton G, the light cone size of G is the maximum over all output
qubits i of the size of the set {j : j is input qubit connected to i in G}.

(d)

(e)

(f)

(a)
(c)

(b)

x1
x2

x3
x4

x5
x6

x7
x8

y1
y2

y3
y4

y5
y6

y7
y8

Figure 1 An example of 1D circuit skeleton with n = 8 and d = 3. In this example the
permutations are π(0) = π(4) = id, π(1) = π(3) = (18765432), π(2) = (81234567).

Next, we define the light cone for an output qubit and the light cone size for a circuit
skeleton.

I Definition 4 (Light cone). Let S be a circuit skeleton and i be an output qubit. The light
cone of i is the set of all input vertices in S that has a path from left to right that ends at i.
The light cone size of S is then defined as the largest light cone size of an output qubit in S.

Note that the light cone size of the 1D circuit in Figure 1 is 6, which is less than the
number of qubits. Also, it turns out that computing the marginal of an output qubit only
requires the information from the light cone.
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I Lemma 5 (Marginal probability and light cone). Let S be a circuit skeleton with light
cone size L and C be a circuit using skeleton S. For each output qubit of C, the marginal
probability can be computed in time O(2L).
Proof of Lemma 5. We use the circuit skeleton in Figure 1 as an illustrating example. For
an output qubit in C, to compute its marginal probability it suffices to compute the input
state to the gate it connects to. For example, for output qubit y3, it suffices to compute the
input state to gate (a).

Similarly, to compute the input state of a gate, it suffices to compute the input states of
the gate it connects to from the previous layer. Namely, to compute the input state of gate
(a), it suffices to compute that of gate (b) and (c). If we continue this process inductively,
the only input state needed to compute the marginal probability of an output bit is then
the one lies in its light cone. In this example, to compute the marginal probability of y3, it
suffices to consider only x1, x2, . . . , x6.

Finally, to compute the input states of all the intermediate gates, it suffices to perform
2L × 2L matrix vector multiplication because each intermediate state is of size at most
L. While all the above operations can be done in O(2L) times, computing the marginal
probability of an output qubits in C only requires O(2L) time. J

Now, we are able to formally define random quantum circuits.
I Definition 6 (Random quantum circuits). Let n ∈ 2N, d ∈ N. A distribution D of n-qubit
depth d random circuits consists of an n-qubit depth d circuit skeleton S and ensembles {Ei,j}
over 4× 4 unitary matrices for each i = 1, . . . , d and j = 1, . . . , n/2.

A random quantum circuit C sampled from D by sampling a 4×4 unitary matrix U (t)
i from

E(t)
i and assigning U (t)

i to the ith node of the tth layer for each t = 1, . . . , d and i = 1, . . . , n/2.
Specifically, if each E(t)

i is Haar random, then we say D is Haar random 2-qubit circuits
over S.

2.1 Tensor networks
Tensor network is an intuitive graphical language that can be rigorously used in reasoning
about multilinear maps. Especially, it finds many applications in quantum computing since
the basic operations such as partial measurement are all multilinear maps. In this paper, we
restrict our attention to qubits (as opposed to the general case of qudits) and only to gates
that act on two qubits.

A
i1

i2

j1

j2

(a)

bi

(b)

i j

(c)

Figure 2 Three basic elements in tensor networks. (a) Gate: the figure represents∑
bi,bj∈{0,1}Abi,bj |bi〉 〈bj |. (b) State: the figure represents 〈bi|. (c) Line: the figure represents

δbi,bj .

In a tensor network, we represent a unitary matrix (e.g., a gate) as a box with lines on
the sides (see Figure 2a). Each line represents a coordinate of the gate and in this paper each
coordinate has dimension 2 and is indexed by {0, 1}. Specifically, a line on the left represents
a column vector (i.e., |·〉) while a line on the right represents a row vector (i.e., 〈·|).7 For
example, Figure 2a represents

∑
bi,bj∈{0,1}Abi,bj |bi〉 〈bj |.

7 This is when the tensor network is written left to right - sometimes it is written top to bottom, in which
case a line on the top represents a column vector and a line on the bottom represents a row vector.
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Similarly, a state (e.g., a qubit)is represented by a triangle with line only on one side and
it is a |·〉 (resp. 〈·|) if the free-end of the line is left (resp. right). For example, Figure 2b
represents 〈bi|.

Semantically, a pure line refers to an indicator function8 for its two ends. For example,
the line in Figure 2c reads as

∑
b)i,bj∈{0,1} δbi,bj 〈bi|bj〉 where δbi,bj = 1 if bi = bj ; otherwise

it is 0.

3 Our Algorithm

We now describe our classical algorithm that spoofs the linear cross-entropy benchmark in
shallow quantum circuits. The key idea is that rather than directly simulating the whole
quantum circuit, our algorithm only computes the marginal distributions of few output
qubits and then samples substrings for those qubit accordingly. We sample the remaining
subits uniformly at random. Intuitively, due to the correlation on those output qubits, one
can expect that the linear cross-entropy of our algorithm could be better than uniform
distribution, but the analysis is somewhat delicate. Because consider shallow quantum
circuits (of at most logarithmic light cone size), the marginal of few output qubits can be
efficiently computed.

Algorithm 1 Classical algorithm for spoofing linear XEB in shallow quantum circuits.

Input: A quantum circuit C sampled from DS , a Haar random distribution over an n-qubit
circuit skeleton S with light cone size at most L.

1: We set m be some parameter in {1, . . . , bn/Lc}. (We set m = bn/Lc to obtain the result
of Theorem 1 as stated.)

2: Find m output qubits i1, . . . , im such that their light cones are disjoint.
3: Calculate the marginal probability of each output qubits i1, . . . , im.
4: Sample xi1 , . . . , xim according to the marginal probabilities calculated in the previous

step. For any i /∈ {i1, . . . , im}, sample xi uniformly random from {0, 1}.
Output: x.

Running time of the algorithm

The total running time of Algorithm 1 is at most poly(n, 2L). Finding m outputs with disjoint
light cones takes poly(n) time by a greedy algorithm. The second step takes poly

(
n, 2L

)
time because it suffices to keep track of the 2L × 2L density matrix recording the marginal
probability of every qubit in the light cone of ij for each j ∈ [m] (see Lemma 5). The final
step of sampling uniform bits for the remaining outputs can be done in polynomial time.

3.1 Analysis
The following theorem implies Theorem 1 by setting m = bn/Lc:

I Theorem 7 (Linear XEB for circuits with small light cones.). Let n, d, L ∈ N and let D be a
distribution over n-qubit quantum circuits with (i) light cone size at most L, (ii) depth at
most d, and (iii) Haar random 2-qubit gates. Then, letting AC be the distribution output by
Algorithm 1 on input C,

E
C∼D

[FC(AC)] ≥
(
1 + 15−d

)m − 1 ,

where m is the parameter chosen in step 1 of the algorithm.

8 Also known as contraction.
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The proof of Theorem 7 consists of three steps:
1. We reduce analyzing analyzing the expectation when the algorithms samples the marginals

of m output qubits into analyzing it for a single output qubit.
2. We apply the integration formula for Haar measure and rewrite the expected linear XEB

of a single qubit into a tensor network.
3. We then perform a change of basis on the tensor network and turn the single qubit

analysis into a Markov chain problem where the expected linear XEB of a single qubit
can be easily lower bounded.

Since the heart of the proof is the single output qubit analysis, we will describe it first.

4 Single qubit analysis

In this section, we prove the m = 1 case of our algorithm. That is, we prove that for a single
output qubit, the expected contribution to linear XEB is of the order of 15−d.

I Theorem 8 (Linear XEB of a single output qubit). Let n, d ∈ N and D be distribution over
n-qubit quantum circuits with depth at most d and with Haar random 2-qubit gates. For
C ∼ D, let U denote the unitary matrix computed by C. For each i ∈ [n], we have

E
C∼D

[
q2
C,i,0 + q2

C,i,1
]
≥ 1 + 15−d

2 ,

where qC,i,b = Prx∼qC [xi = b].

We prove Theorem 8 by reducing to a Markov chain problem using tensor networks.
Without loss of generality we can assume i = 1. Observe that

q2
C,1,0 + q2

C,1,1 =
1 + tr

(
Z ⊗ I⊗n−1U† |0n〉 〈0n|U

)2

2 (1)

So our goal is to show that

E
C∼D

[
tr
(
Z ⊗ I⊗n−1U† |0n〉 〈0n|U

)2] ≥ 15−d . (2)

Let us start with rewriting the trace term of Equation 2 into an equivalent tensor network
expression as follows.

tr
(
Z ⊗ I⊗n−1U† |0n〉 〈0n|U

)2 =

U1

U†1

U1

U†1

U2

U†2

U2

U†2

Ud

U†d

Ud

U†d

Z ⊗ I⊗n−1
0n

0n

0n

0n

π(1) · · ·

· · ·

· · ·

· · ·

π(1)

π(1)

π(1) Z ⊗ I⊗n−1

π(0)

π(0)

π(0)

π(0)

.

Next, for a single gate g in a quantum circuit, its expected behavior over the choice of
2-qubit Haar random gates can be characterized in the following lemma.

I Lemma 9. Let Ug be Haar random 2-qubit gate, then the following holds.

E
Ug



Ug
1̃a

2̃a

1a

2a

U†g
1̃b

2̃b

1b

2b

Ug
1̃c

2̃c

1c

2c

U†g
1̃d

2̃d

1d

2d


=

∑
σ1,σ2,σ′1,σ

′
2∈{I,X,Y,Z}

σ1
1a

1b

σ1
1c

1d

σ2
2a

2b

σ2
2c

2d

Mσ1,σ2,σ′1,σ
′
2

σ′1

σ′1

σ′2

σ′2

1̃a

1̃b

1̃c

1̃d

2̃a

2̃b

2̃c

2̃d

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

.
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where

Mσ1,σ2,σ′1,σ
′
2

=

II IX IY · · · ZZ


1 0 0 0 0 II

0 1
15

1
15 · · · 1

15 IX

0 1
15

1
15 · · · 1

15 IY

0
...

...
. . .

...
...

0 1
15

1
15 · · · 1

15 ZZ

.

The proof of Lemma 9 is based on the integration formula [5] for Haar measure. We
postpone the proof of Lemma 9 to Subsection 4.1. Intuitively, the lemma says that by a
change a basis, the expected behavior of a single Haar random 2-qubit gate can be exactly
understood by an explicit transition matrix M . By the linearity of taking expectation, we
can apply Lemma 9 on every gates in the circuit C and thus the whole tensor network is
simplified to a Markov chain. Concretely, we have the following lemma.

I Lemma 10 (Rewrite Equation 2 as a Markov chain). Let n, d ∈ N and D be a Haar random
distribution over an n-qubit depth d circuit skeleton S with permutations π(0), π(1), . . . , π(d).
For C ∼ D, let U denote the unitary matrix computed by C.

E
C∼D

[
tr
(
Z ⊗ I⊗n−1U† |0n〉 〈0n|U

)2] =
∑

σ
(t′)
i′
∈{I,X,Y,Z}

i′=1,2,...,n
t′=1,2,...,d+1

d+1∏
t=0

V (t)
({
σ

(t′)
i′

})
(3)

where

V (t)
({
σ

(t′)
i′

})
=



∏n
i=1 tr

(
I+Z

2
σ

(1)
i√
2

)2
, if t = 0∏n/2

i=1 Mσ
(t)
2i−1,σ

(t)
2i ,σ

(t+1)
π(t)(2i−1)

,σ
(t+1)
π(t)(2i)

, if t = 1, 2, . . . , d

tr
(
σ

(d+1)
1√

2 Z

)2
·
∏n
i=2 tr

(
σ

(d+1)
i√

2 I

)2
, if t = d+ 1 .

The proof of Lemma 10 is based on a careful composition of applying Lemma 9 on each
of the gates. We postpone the proof of Lemma 10 to Subsection 4.2. Now, we are ready to
prove Theorem 8 and complete the analysis for the expected linear XEB of single output
qubit.

Proof of Theorem 8. Lemma 10 rewrites the desiring quantity into the form of a Markov
chain so now it suffices to show that the right hand side of Equation 3 is at least 15−d.

Notice that for every possible assignment to {σ(t′)
i′ }, V ({σ(t′)

i′ }) ≥ 0. That is, it suffices
to find an assignment such that

∏d+1
t=0 V

(t)({σ(t′)
i′ }) ≥ 15−d. Specifically, let us consider the

following assignment. For all i = 1, 2, . . . , n and t = 1, 2, . . . , d+ 1, let

σ
(t)
i =

{
Z , if π(d) ◦ π(d−1) ◦ · · · ◦ π(t)(i) = 1
I , else .
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To analyze this assignment, let us start with the last layer. There we have σ(d+1)
1 = Z and

σ
(d+1)
i = I for each i = 2, 3, . . . , n and thus

V (d+1)({σ(t′)
i′ }) = tr

(
σ

(d+1)
1√

2
Z

)2

·
n∏
i=2

tr
(
σ

(d+1)
i√

2
I

)2

= tr
(
ZZ√

2

)2
· tr
(
II√

2

)2(n−1)
= 2n .

Next, for each t = 1, 2, . . . , d and i = 1, 2, . . . , n, observe that σ(t)
i = σ

(t)
π(t+1)(i) due to the

choice of the assignment. As a result, all the M
σ

(t)
2i−1,σ

(t)
2i ,σ

(t+1)
π(t)(2i−1)

,σ
(t+1)
π(t)(2i)

will be either

MI,I,I,I or MI,Z,I,Z . Specifically, for each t = 1, 2, . . . , d, since there is exactly one Z appears
among {σ(t)

i }i=1,...,n while the rest are Is, there is also exactly one MI,Z,I,Z term contributes
in V (t)({σ(t′)

i′ }) while the other terms are MI,I,I,I . Namely, we have

V (t)({σ(t′)
i′ }) = MI,Z,I,Z · (MI,I,I,I)n/2−1 = 1

15
for each t = 1, 2, . . . , d.

Finally, since there is exactly one Z appears in {σ(0)
i }i=1,...,n while the rest are Is, we

have

V (0)({σ(t′)
i′ }) =

n∏
i=1

tr
(
I + Z

2
σ

(0)
i√
2

)2

= tr
(
I + Z

2
Z√
2

)2
· tr
(
I + Z

2
I√
2

)2(n−1)

=
(

1√
2

)
·
(

1√
2

)2(n−1)
= 1

2n .

To sum up, we conclude that V ({σ(t′)
i′ }) =

∏d+1
t=0 V

(t)({σ(t′)
i′ }) = 15−d as desired. Specific-

ally, this implies Equation 2, i.e., EC∼D
[
tr
(
Z ⊗ I⊗n−1U† |0n〉 〈0n|U

)2
]
≥ 15−d. Combine

with Equation 1, this completes the proof of Theorem 8. J

4.1 Proof of Lemma 9
We start with applying the integration formula for Haar random matrix and considering its
tensor netowrok representation.

I Lemma 11 ([5, Equation 2.4]). Let U be a Haar random 2-qubit gate, then we have the
following. For each xa, xb, xc, xd, ya, yb, yc, yd ∈ {0, 1}2,

E
U

[
UxayaU

†
xbyb

UxcycU
†
xdyd

]
= 1

15 ·
[
δxaxbδxcxdδyaybδycyd + δxaxdδxbxcδyaydδybyc

]
− 1

60 ·
[
δxaxbδxcxdδyaydδybyc + δxaxdδxbxcδyaybδycyd

]
.

The above equation can be represented as the following tensor network.

E
Ug



Ug
1̃a

2̃a

1a

2a

U†g
1̃b

2̃b

1b

2b

Ug
1̃c

2̃c

1c

2c

U†g
1̃d

2̃d

1d

2d


= 1

15 ·


+

1a

1b

1c

1d

2a

2b

2c

2d

1̃a

1̃b

1̃c

1̃d

2̃a

2̃b

2̃c

2̃d

1̃a

1̃b

1̃c

1̃d

2̃a

2̃b

2̃c

2̃d

1a

1b

1c

1d

2a

2b

2c

2d


− 1

60 ·


+

1a

1b

1c

1d

2a

2b

2c

2d

1a

1b

1c

1d

2a

2b

2c

2d

1̃a

1̃b

1̃c

1̃d

2̃a

2̃b

2̃c

2̃d

1̃a

1̃b

1̃c

1̃d

2̃a

2̃b

2̃c

2̃d


.
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Next, the idea is to apply the Pauli identity (i.e., on each pair of (1a, 1b),(1c, 1d), (2a, 2b),
(2c, 2d), (1′a, 1′b), (1′c, 1′d), (2′a, 2′b), and (2′c, 2′d). Intuitively, this is doing a change of basis
from the standard basis to Pauli basis.

Let us first apply the Pauli identity on (1a, 1b) and (1c, 1d) note that we have

σ

σ′ σ′

σ

1a

1b
1c

1d

=


2

σ

σ′

1a

1b
1c

1d

, σ = σ′

0 , else

(4)

and

σ

σ′ σ′

σ

1a

1b
1c

1d

=


4

σ

σ′

1a

1b
1c

1d

, σ = σ′ = I

0 , else.

(5)

That is, the tensor network is non-zero only if σ = σ′. Thus, we only need one variable
σ1 ∈ {I,X, Y, Z} to handle (1a, 1b) and (1c, 1d). Similarly, we can use σ2, σ̃1, σ̃2 ∈ {I,X, Y, Z}
to handle other pairs respectively. The equation becomes the following.

E
Ug


Ug

1̃a

2̃a

1a

2a

U†g
1̃b

2̃b

1b

2b

Ug
1̃c

2̃c

1c

2c

U†g
1̃d

2̃d

1d

2d

 = 1
28

∑
σ′1,σ

′
2,σ
′′
1 ,σ
′′
2

∈{I,X,Y,Z}

σ1

σ1

σ2

σ2

σ′1

σ′1

σ′2

σ′2

1a

1b

1c

1d

2a

2b

2c

2d

1′a
1′b
1′c
1′d
2′a
2′b
2′c
2′d

 1
15 ·

 +

1′a
1′b
1′c
1′d
2′a
2′b
2′c
2′d

1′a
1′b
1′c
1′d
2′a
2′b
2′c
2′d

1′′a
1′′b
1′′c
1′′d
2′′a
2′′b
2′′c
2′′d

1′′a
1′′b
1′′c
1′′d
2′′a
2′′b
2′′c
2′′d

− 1
60 ·

 +

1′a
1′b
1′c
1′d
2′a
2′b
2′c
2′d

1′a
1′b
1′c
1′d
2′a
2′b
2′c
2′d

1′′a
1′′b
1′′c
1′′d
2′′a
2′′b
2′′c
2′′d

1′′a
1′′b
1′′c
1′′d
2′′a
2′′b
2′′c
2′′d




σ1

σ1

σ2

σ2

σ′1

σ′1

σ′2

σ′2

1′′a
1′′b
1′′c
1′′d
2′′a
2′′b
2′′c
2′′d

1̃a

2̃a

1̃b

2̃b

1̃c

2̃c

1̃d

2̃d

.

To finish the proof of Lemma 9, we have to explicitly calculate the value of the tensor
network for each choice of σ1, σ2, σ1′ , σ2′ ∈ {I,X, Y, Z}. Again, by Equation 4 and Equation 5,
we have the following observations.

If σ1 = σ2 = σ1′ = σ2′ = I, then the value is 2−8 ·
(
15−1 · (28 + 24)− 60−1 · (26 + 26)

)
=

2−4.
If σ1 = σ2 = I and at least one of σ1′ , σ2′ is not I, or at least one of σ1, σ2 is not I and
σ1′ = σ2′ = I, then the value is 2−4 · (15−1 · (0 + 24) + 60−1 · (26 + 0)) = 0.
For all the other cases, the value is 2−4 · (15−1 · (0 + 24) + 60−1 · (0 + 0)) = 2−4 · 15−1.

Finally, we take out the 2−4 and evenly distribute it to the Pauli gates outside. Namely,
each of them gets an extra 1/

√
2 factor as shown in the equation. This completes the proof

of Lemma 9.

4.2 Proof of Lemma 10
Let us do a change of basis from the standard basis to the Pauli basis. Concretely, we
apply Lemma 9 on every gate. Note that by the independence of each gate and the linearity
of expectation, the tth layer of the circuit becomes the following for each t = 1, 2, . . . , d.

E
Ut

1̃a

ña

1a

na

...Ut
...

1̃b

ñb

1b

nb

...Ut
...

1̃c

ñc

1c

nc

...Ut
...

1̃d

ñd

1d

nd

...Ut
...

=
∑

σ
(t)
i
,σ̃

(t)
i
∈{I,X,Y,Z}

∀i=1,2,...,n

σ
(t)
1

1a

1b

σ
(t)
1

1c

1d

σ
(t)
n

na

nb

σ
(t)
n

nc

nd

1√
2

1√
2

1√
2

1√
2

...

n/2∏
i=1

M
σ

(t)
2i−1,σ

(t)
2i ,σ̃

(t)
2i−1,σ̃

(t)
2i

σ̃
(t)
1

1̃a

1̃b

σ̃
(t)
1

1̃c

1̃d

σ̃
(t)
n

ña

ñb

σ̃
(t)
n

ñc

ñd

1√
2

1√
2

1√
2

1√
2

... .
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Next, the ith output wire at the tth layer, i.e., the wires indexed by ĩa, ĩb, ĩc, ĩd,
connects to the (π(t)(i))th input wire at the (t + 1)th later, i.e., the wires indexed
by π(t)(i)a, π(t)(i)b, π(t)(i)c, π(t)(i)d. By the orthogonality of Pauli gates (i.e.„ we have

tr
(
σ̃

(t)
i√
2

σ
(t+1)
π(t)(i)√

2

)
= δ

σ̃
(t)
i
,σ

(t+1)
π(t)(i)

for all i = 1, 2, . . . , n. To sum up, the 1st to dth layer is

equivalent to following.

E
U1,U2,...,Ud


U1

U†1

U1

U†1

U2

U†2

U2

U†2

Ud

U†d

Ud

U†d

π(1) · · ·

· · ·

· · ·

· · ·

π(1)

π(1)

π(1)

π(0)

π(0)

π(0)

π(0)

π(d+1)

π(d+1)

π(d+1)

π(d+1)

1a

na

1b

nb

1c

nc

1d

nd

...

...

...

...

...

...

...

...

1̃a

ña

1̃b

ñb

1̃c

ñc

1̃d

ñd

 =

∑
σ

(t)
i
∈{I,X,Y,Z}
∀i=1,2,...,n
t=1,2,...,t+1

σ
(1)
1

1a

1b

σ
(1)
1

1c

1d

σ
(1)
n

na

nb

σ
(1)
n

nc

nd

1√
2

1√
2

1√
2

1√
2

...

d∏
t=1

n/2∏
i=1

M
σ

(t)
2i−1,σ

(t)
2i ,σ

(t+1)
π(t)(2i−1)

,σ
(t+1)
π(t)(2i)


σ

(d+1)
1

1̃a

1̃b

σ
(d+1)
1

1̃c

1̃d

σ
(d+1)
n

ña

ñb

σ
(d+1)
n

ñc

ñd

1√
2

1√
2

1√
2

1√
2

... .

Finally, let us plug in the input and output layer. Recall that the input layer contains
4 copies of |0n〉 and the output layer contains 2 copies of Z ⊗ I⊗n−1. Concretely, the
contribution from the input layer would be

n∏
i=1

(
〈0| σ

(1)
1√
2
|1〉
)2

=
n∏
i=1

tr
(
I + Z

2
σ

(1)
i√
2

)2

while the contribution from the output layer would be

tr
(
σ

(d+1)
1√

2
Z

)2

·
n∏
i=2

tr
(
σ

(d+1)
i√

2
I

)2

.

This completes the proof of Lemma 10.

5 Wrapping up: from single output bit to many bits

In this section we complete the proof of Theorem 1 .
We will use the following notation. Let q(x) be a pdf over x ∈ {0, 1}n. For any I ⊂ [n]

and xI ∈ {0, 1}I , let q(I, xI) denote the marginal probability of the output qubit at location
I being xI . Formally, q(I, xI) =

∑
y∈{0,1}n
yI=xI

q(y). For a fixed input C, let I = {i1, . . . , im} be
the output qubits selected by Algorithm 1. Note that Algorithm 1 will choose the same I for
each C sampled from D. By the design of Algorithm 1, AC(x) = 1

2n−m qC(I, xI) for every
x ∈ {0, 1}n. Thus, the linear XEB of AC is the following.

FC(AC) = 2n
∑

x∈{0,1}n
qC(x)AC(x)− 1 = 2n

∑
x∈{0,1}n

qC(x)qC(I, xI)
2n−m − 1 (6)

= 2m
∑

xI∈{0,1}I
qC(I, xI)2 − 1 .
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Note that because their light cones are disjoint, we have qC(I, xI) =
∏m
j=1 qC

(
{ij}, xij

)
.

Thus, the equation becomes

=
∑

xI∈{0,1}I

m∏
j=1

2qC({xij}, xij )2 − 1 . (7)

Now, let us take expectation on the linear XEB over D. Since D fixes the structure of
the circuit and the randomness only lies in the choice of gates, qC

(
{ij}, xij

)
is independent

to each other. Namely,

E
C∼D

[FC(AC)] =
∑

xI∈{0,1}I

m∏
j=1

2 E
C∼D

[
qC({xij}, xij )2]− 1

=
m∏
j=1

2 E
C∼D

[
qC({xij}, 0)2 + qC({xij}, 1)2]− 1 . (8)

Using the single qubit analysis (Theorem 8), we can complete the proof of Theorem 1 as
follows.

Proof of Theorem 1. Apply Theorem 8 on Equation 8, we have

E
C∼D

[FC(AC)] ≥
(
1 + 15−d

)m − 1

as desired. J

5.1 Probability over circuits

Using Theorem 1, we can obtain the following lower bound on the probability over the choice
of the circuit C of obtaining non-trivial fidelity:

I Corollary 12 (Lower bounding for the probability of success). Let n, d,D, L be as in Theorem 1.
Then there is a randomized poly(n, 2L) time algorithm such that for every 1 ≤ n ≤

⌊
n
L

⌋
and

0 < ε < 1,

Pr
C∼D

[
FC (AC) ≥

((
1 + 15−d

)m − 1
)]
≥

(1− ε) ·
((

1 + 15−d
)m − 1

)
2m − 1 ≥ Ω

(
m · 15−d

2m

)
.

Proof of Corollary 12. The idea is simple - since our algorithm picks n−m bits uniformly
at random, for every circuit C, by Equation 7, FC(AC) ≤ 2m. Now, for any 0 < ε < 1, let
δ = PrC∼D

[
FC(AC) > ε ·

((
1 + 15−d

)m − 1
)]
, we have

(
1 + 15−d

)m − 1 ≤ E
C∼D

[FC(AC)] ≤ δ · 2m + ε ·
((

1 + 15−d
)m − 1

)
.

Thus,

δ ≥
(1− ε) ·

((
1 + 15−d

)m − 1
)

2m . J

ITCS 2021



30:14 Spoofing Linear Cross-Entropy Benchmarking in Shallow Quantum Circuits

6 Sample complexity analysis

In this section, we discuss the empirical linear XEB of our algorithm. Namely, how many
samples are required so that the empirical average of the linear XEB can be non-trivially
lower bounded. Specifically, the goal would be the following. For some T = poly(n),

Pr
C∼D

x1,...,xT∼AC

[
1
T

n∑
i=1
FC(xi) = Ω(1)

]
≥ 1

poly(n) . (9)

In Section 5, we have shown that the expectation of the linear XEB of our algorithm is at
least

(
1 + 15−d

)m for 1 ≤ m ≤ bn/Lc with probability 1/poly(n) over the choice of random
circuits. Thus, to achieve Equation 9, it suffices to show that the probability of the empirical
average of the linear XEB deviating from FC(x) is small.

In general, it is a difficult task to rigorously upper bound the sample complexity of linear
XEB. The reason is that such analysis needs to handle higher moment of qC which is highly
non-trivial for even 2D circuits. In this work we stick with the simpler case of analyzing
the variance of linear XEB in Lemma 13. We further show in Lemma 14 that an inverse
exponential bound on the collision probability of qC would be sufficient for giving poly(n)
upper bound for the sample complexity.

6.1 A variance/collision probability approach
The variance of FC(x) is sufficient for upper bounding the number of samples required for
the empirical linear XEB to converge. Specifically,Chebyshev’s inequality implies that with
Varx∼p[FC(x)]/(ε2δ) many samples, the empirical XEB is at least FC(p)− ε with probability
δ over the randomness of p. Note that here the circuit C is fixed.

I Lemma 13. Let C be an n-qubit quantum circuit and qC be the pdf of the distribution
obtained from C |0n〉. For any pdf p : {0, 1}n → [0, 1] and ε, δ ∈ (0, 1), we have

Pr
x1,...,xT∼p

[
1
T

T∑
i=1
FC(xi) ≤ FC(p)− ε

]
≤ δ

when T ≥ Varx∼p[FC(x)]
ε2δ .

Proof. Since {FC(xi)} are i.i.d. random variables with mean FC(p) and variance
Varx∼p[FC(x)], by Chebyshev’s inequality, we have

Pr
x1,...,xT∼p

[
1
T

T∑
i=1
FC(xi) < FC(p)− ε

]
≤ Varx∼p[FC(x)]

T · ε2
.

As we pick T ≥ Varx∼p[FC(x)]
ε2δ , the above error is at most δ desired. J

The following lemma further shows that to upper bound the variance of our algorithm, it
suffices to bound the collision probability of the ideal distribution.

I Lemma 14. Let n, d, L ∈ N and D be distribution over n-qubit quantum circuits with (i)
light cone size at most L, (ii) depth at most d, and (iii) with Haar random 2-qubit gates. Let
1 ≤ m ≤ bn/Lc and A be the algorithm from Algorithm 1, we have

Var
x∼AC

[FC(x)] ≤ 2m+n
∑

x∈{0,1}n
qC(x)2

where
∑
x∈{0,1}n qC(x)2 is also known as the collision probability of qC .
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Proof of Lemma 14. Consider the variance of the linear XEB of our algorithm AC as follows.

Var
x∼AC

[FC(x)] ≤ E
x∼AC

[22nqC(x)2] = 22n
∑

x∈{0,1}n
AC(x)qC(x)2 .

Recall that AC(x) ≤ 2m−n for all x, thus the equation becomes

≤ 2m+n
∑

x∈{0,1}n
qC(x)2 . J

To have some intuition on Lemma 14, the right hand side is minimized when qC is the
uniform distribution over {0, 1}n where the collision probability is 2−n. In such case, the
variance of our algorithm is O(2m). When choosing m = O(logn), the sample complexity of
our algorithm would be poly(n) as desired.

In general, using the variance/collision probability to upper bound the sample complexity
might not be tight. For example, consider the distribution of a sequence of independent
biased coins, i.e., q(x) = (1/2+ε)‖x‖1 ·(1/2−ε)n−‖x‖1 for each x ∈ {0, 1}n. Then the variance
Varx∼q[q(x)] is exponentially large, however, the sample complexity of having the empirical
average of q(x) being of the order of Ex∼q[q(x)] is O(1) with high probability. Specifically,
when the depth of the random circuit is 1, then the marginal distribution looks like the above
biased coins distribution with high probability and thus undesirable.

On the other extreme where the random circuit is very deep, it is known that the marginal
distribution will converge to the Porter Thomas distribution and its collision probability is
O(2−n) [2].

In Subsection 6.2, we further show that the collision probability of qC is O(2−n) in
expectation for 1D circuit of depth at least (logn)/ log(5/4). While the proof could potentially
be extended to 2D circuit and beyond, we leave it as a future direction and state the following
conjecture.

I Conjecture 10. Let n, d ∈ N and D be a distribution of n-qubit. For a circuit C, denote
qC as the pdf of C |0n〉. We conjecture that there exists a constant c > 0 such that when D is
the distribution over 2D random circuits of depth d ≥ c

√
logn,

E
C∼D

 ∑
x∈{0,1}n

qC(x)2

 = O

(
1
2n

)
.

6.2 The sample complexity of 1D random circuits of logarithmic depth
In this subsection, we formally prove that the sample complexity of our algorithm is O (2m)
for random 1D circuits with high probability.

I Theorem 15. Let n ∈ N and D be the distribution over n-qubit 1D quantum circuits with
depth d = Ω(logn) and with Haar random 2-qudit gates where the dimension of the qudit is
at least 4. Let 1 ≤ m ≤ bn/2dc be the number of output qubits used by our algorithm. Then
for any δ ∈ (0, 1), we have

Pr
C∼D

[
Var
x∼AC

[FC(x)] = O

(
2m

δ

)]
≥ 1− δ .

Specifically, combine with Theorem 1, we have

Pr
C∼D

x1,...,xT∼AC

[
T∑
i=1
FC(xi) = Ω

(
1

poly(n)

)]
≥ 1

poly(n)

when T = Ω(1).
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Proof of Theorem 15. Let us first show that upper bounding the second moment of qC is
sufficient for proving Theorem 15. Consider the variance of the linear XEB of our algorithm
AC as follows.

Var
x∼AC

[FC(x)] ≤ E
x∼AC

[22nqC(x)2] = 22n
∑

x∈{0,1}n
AC(x)qC(x)2 .

Recall that AC(x) ≤ 2m−n for all x, thus the equation becomes

≤ 2m+n
∑

x∈{0,1}n
qC(x)2 .

Next, the lemma below shows that the second moment term
∑
x∈{0,1}n qC(x)2 is expo-

nentially small with high probability over the choice of C.

I Lemma 16. Let n ∈ N and D be the distribution over n-qubit 1D quantum circuits with
depth at least logn

log(5/4) and with Haar random 2-qubit gates. Then we have

E
C∼D

 ∑
x∈{0,1}n

qC(x)2

 = O

(
1
2n

)
.

The proof of Lemma 16 is based on the Ising model analysis by [7]. We postpone it
to Subsection 6.3. Now, let us complete the proof of Theorem 15. By Lemma 16, we have

E
C∼D

[
Var
x∼AC

[FC(x)]
]
≤ 2m+n E

C∼D

[
qC(x)2] ≤ O (2m) .

Thus, for any δ > 0, by Markov’s inequality, we have PrC∼D[Varx∼AC [FC(x)] = O(2m/δ)] ≥
1− δ as desired. J

6.3 Proof of Lemma 16

It turns out that the previous Markov chain approach in analysis the expected linear XEB of
our algorithm is not sufficient for upper bounding the expectation of

∑
x∈{0,1}n qC(x)2. We

thus consider a different approach by reducing the quantity to a combinatorial problem in a
spin system on lattice. The proof is highly inspired by a recent paper of Hunter [7].

For the convenience of the analysis, here we fix the following skeleton for 1D circuit while
the result can be easily extended to other variants.

...
...

· · ·
...

. (11)
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Step 1: Reducing to counting spin configurations on a hexagonal lattice

First, let us rewrite
∑
x∈{0,1}n qC(x)2 into an equivalent tensor network.∑

x∈{0,1}n
qC(x)2 =

∑
x∈{0,1}n

tr
(
〈0n|U |x〉 〈x|U† |0n〉

)2

=
∑

x∈{0,1}n

U1

U†1

U1

U†1

U2

U†2

U2

U†2

Ud

U†d

Ud

U†d

0n

0n

0n

0n

π(1) · · ·

· · ·

· · ·

· · ·

π(1)

π(1)

π(1)

π(0)

π(0)

π(0)

π(0)

x
π(d+1)

π(d+1)

π(d+1)

π(d+1)

x

x

x

.

In Lemma 9, we change the basis to the Pauli basis and replace the expectation of a
single gate with a transition matrix. Here, we instead stick to the permutation basis in the
integration formula and represent a single gate as an effective vertex [5].

I Lemma 17 ([5]). Let Ug be a Haar-random 2-qubit gate. We have the following.

E
Ug



Ug
1̃a

2̃a

1a

2a

U†g
1̃b

2̃b

1b

2b

Ug
1̃c

2̃c

1c

2c

U†g
1̃d

2̃d

1d

2d


=

∑
σ,τ∈S2

σ τ

1a, . . . , 1d

2a, . . . , 2d

1′a, . . . , 1
′
d

2′a, . . . , 2
′
d

.

Here S2 = {I,S} is the permutation group of two elements and an edge on the left represents
four edges on the right. Specifically, the edge with σ and τ on the two ends has weight 〈σ|τ〉
where

〈σ|τ〉 =
{ 1

15 , σ = τ
−1
60 , σ 6= τ .

for all σ, τ ∈ S2. As for the boundary condition, for each bi ∈ {0, 1}, we have

bi

bi

bi

bi

bj

bj

bj

bj

= ,

bi

bi

bi

bi

bj

bj

bj

bj

= , and
∑
∈S2

= 1
20 .

Apply Lemma 17 on a 1D circuit, the expectation of
∑
x∈{0,1}n qC(x)2 is then exactly the

sum over spin configurations on the the hexagonal lattice. For example, Equation 11 becomes
the following. Note that each circle represents a distinct choices of elements from S2.

E
C∼D

 ∑
x∈{0,1}n

qC(x)2

 = 2n ·
∑
, ∈S2 ...

· · ·

...

. (12)
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Step 2: Reducing to counting domain wall configurations on a triangular lattice

The second idea in [7] is doing local summation on the blue vertices. Specifically, he showed
that the local behavior of a blue vertex and its three red neighboring vertices can be fully
described only by the spin of these three red vertices.

I Lemma 18 ([7, Equation 18]). Let Ug be a Haar-random 2-qubit gate. We have the
following.

∑
τ∈S2 σ3

σ2

σ1 τ =
σ3

σ2

σ1 =


1 , σ1 = σ2 = σ3
0 , σ1 6= σ2 = σ3
2
5 , else.

An immediate corollary of Lemma 18 is that now we can instead summing over the spin
configurations over a triangular lattice. That is, Equation 12 becomes the following

E
C∼D

 ∑
x∈{0,1}n

qC(x)2

 = 2n ·
(

1
20

)n/2
·
∑
∈S2 ...

· · ·

...

(13)

The advantage of working on this triangular lattice is that the non-zero term on the right
hand side of Equation 13 corresponds to a domain wall in the triangular lattice.

I Definition 19 (Domain wall). Consider the right hand side of Equation 13 and a configur-
ation to all the red circles. The domain wall for this configuration is a collection of disjoint
horizontal lines that separate the circles that are configured to I from the circles that are
configured to S.

Note that the domain wall configuration is in 1-to-1 correspondence with the spin
configurations. Let dw denote a domain wall, let w(dw) be the weight of the corresponding
spin configuration. Thus, Equation 13 becomes the following.

E
C∼D

 ∑
x∈{0,1}n

qC(x)2

 =
(

1
5

)n/2
·

∑
dw∈

...

· · ·

...

w(dw) . (14)

Note that a domain wall could contain two types of paths: (i) a path that goes from left
boundary to the right boundary and (ii) a path that starts from and ends at both the right
boundary. Furthermore, as the domain wall configuration is in 1-to-1 correspondence with
subset of disjoint paths, Equation 14 becomes the following.

E
C∼D

 ∑
x∈{0,1}n

qC(x)2

 ≤ (1
5

)n/2
·


1 +

∑
disjoint path of type (i)

∈
...

· · ·

...

w(path)


·


1 +

∑
disjoint path of type (ii)

∈
...

· · ·

...

w(path)


. (15)
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Step 3: Upper bound the sum of possible path configurations of type (i)

For a set of disjoint path of type (i), it contains at most bn/2c paths. Also, a path of type (i)

contributes
(

q
q2+1

)d
in the weight of a domain wall.

Now, for each 1 ≤ t ≤ bn/2c let us first estimate the number of domain walls having at
most t paths of type (i). Specifically, for every i ∈ [bn/2c], the number of paths starting from
i is at most 2d because at each layer it either moves up or down. Next, for each 1 ≤ t ≤ bn/2c,
the number of possible t paths is then at most

(
n/2
t

)
· 2dt. This gives the following upper

bound for the weight contributing from domain wall of type (i).
∑

disjoint path of type (i)

∈
...

· · ·

...

w(path)


≤
bn/2c∑
t=1

(
2
5

)dt
·
(
bn/2c
t

)
· 2dt

≤
bn/2c∑
t=1

(
4
5

)dt
·
(
bn/2c
t

)

≤

(
1 +

(
4
5

)d)bn/2c

.

Consider d ≥ logn
log(5/4) , the equation becomes

≤ exp
((

4
5

) logn
log(5/4) n

2

)
= O(1) .

Step 4: Upper bound the sum of possible path configurations of type (ii)

Let us consider the 1D circuit with infinite depth and denote the distribution as D∞. Also,
since the depth is infinity, the sum of the weight of domain wall with paths of type (i) is
negligible. Namely, only paths of type (ii) contribute in the infinite depth circuit. Thus, we
have the following upper bound.

1 +
∑

disjoint path of type (ii)

∈
...

· · ·

...

w(path)


≤


1 +

∑
disjoint path of type (ii)

∈
...

· · ····

w(path)


= 5n/2 · E

C∼D∞

 ∑
x∈{0,1}n

qC(x)2

 .
Finally, it is a well known fact that the expectation of the sum of squares of marginal
probabilities is O(2−n) for infinite depth 1D circuit. So the above equation becomes

= O

((
5
4

)n/2
)
.
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Wrap up

To conclude the proof of Lemma 16, let us plug in the calculations from step 3 and step 4
into Equation 15, this gives us

E
C∼D

 ∑
x∈{0,1}n

qC(x)2

 ≤ (1
5

)n/2
·O(1) ·O

((
5
4

)n/2
)

= O

(
1
2n

)

as desired.
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Abstract
We study the complexity of isomorphism problems for tensors, groups, and polynomials. These
problems have been studied in multivariate cryptography, machine learning, quantum information,
and computational group theory. We show that these problems are all polynomial-time equivalent,
creating bridges between problems traditionally studied in myriad research areas. This prompts
us to define the complexity class TI, namely problems that reduce to the Tensor Isomorphism (TI)
problem in polynomial time. Our main technical result is a polynomial-time reduction from d-tensor
isomorphism to 3-tensor isomorphism. In the context of quantum information, this result gives
multipartite-to-tripartite entanglement transformation procedure, that preserves equivalence under
stochastic local operations and classical communication (SLOCC).
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1 Introduction

Although Graph Isomorphism (GI) is perhaps the most well-studied isomorphism problem
in computational complexity – even going back to Cook’s and Levin’s initial investigations
into NP (see [3, Sec. 1]) – it has long been considered to be solvable in practice [51, 52], and
Babai’s recent quasi-polynomial-time breakthrough is one of the theoretical gems of the last
several decades [5].

However, several isomorphism problems for tensors, groups, and polynomials seem to be
much harder to solve, both in practice – they’ve been suggested as difficult enough to support
cryptography [39,57] – and in theory: the best known worst-case upper bounds are barely
improved from brute force (e. g., [46, 63]). As these problems arise in a variety of areas, from
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multivariate cryptography and machine learning, to quantum information and computational
algebra, getting a better understanding of their complexity is an important goal with many
potential applications. These isomorphism problems are the focus of this paper.

Our first set of results shows that all these isomorphism problems from many research
areas are equivalent under polynomial-time reductions, creating bridges between different
disciplines. The Tensor Isomorphism (TI) problem turns out to occupy a central position
among these problems, leading us to define the complexity class TI, consisting of those
problems polynomial-time reducible to the Tensor Isomorphism problem.

More specifically, we first present a polynomial-time reduction from d-Tensor Isomorph-
ism to 3-Tensor Isomorphism. This result may be viewed as corresponding to the k-SAT
to 3-SAT reduction in the setting of Tensor Isomorphism, but the proof is much more
involved. This result also has a natural application to quantum information: it gives a
procedure that turns multipartite entanglements to tripartite entanglements while preserving
equivalence under stochastic local operations and classical communication (SLOCC).

We then demonstrate that various isomorphism problems for polynomials, general algebras,
groups, and tensors all turn out to be TI-complete. One important reference here is the recent
work [26], in which they showed that several such problems reduce to 3TI. Our contribution
is to show that these problems are also 3TI-hard. Another set of related works are [1, 2, 42]
by Agrawal, Kayal, and Saxena, who showed some equivalences and reductions between Ring
Isomorphism (commutative with unit), Cubic Form Equivalence, and isomorphism of
commutative, unital, associative algebras [1, 2, 42] Here we greatly expand these and show a
much wider class of problems are equivalent (see Thm. 4=Thm. B and Fig. 1).

In a follow-up paper [33], we study search and counting to decision reductions, apply these
these results to Group Isomorphism in the matrix group model, and obtain a nilpotency
class reduction for Group Isomorphism.

All these results together lay the foundation for an emerging theory of the complexity
class TI that in some cases parallels, and in some cases deviates from, the complexity
theory of the class GI, namely the set of problems that are polynomial-time reducible to
Graph Isomorphism [43]. From the theory perspective, this theory reveals a family of
algorithmic problems demonstrating highly interesting complexity-theoretic properties. From
the practical perspective, this theory could serve as guidance for, and facilitate dialogue
among, researchers from diverse research areas including cryptography, machine learning,
quantum information, and computational algebra. Indeed, some of our results already have
natural applications to quantum information and computational group theory.

Organization. Due to page constraints and the nature of this work, we are only able to
present the main results and the related implications and discussions. For detailed proofs,
we refer the reader to the full version [32]. In the remainder of this paper, we first present
the origins of those isomorphism problems we consider (Sec. 2). We then state our main
results in Sec. 3, and briefly indicate the main techniques in Sec. 4. In Sec. 5, we present
formal statements of the various problems involved and a detailed statement of one main
result. Finally in Sec. 6 we present the implication to quantum information and discuss on
some further related works and the outlook of this research direction.

2 Isomorphism testing problems from several areas

Let F be a field. Let GL(n,F) denote the general linear group of degree n over F, and M(n,F)
the linear space of n × n matrices. For a finite field Fq, we may also write GL(n,Fq) and
M(n,Fq) as GL(n, q) and M(n, q), respectively.
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Multivariate cryptography. In 1996, Patarin [57] proposed identification and signature
schemes based on a family of problems called “isomorphism of polynomials.” A specific
problem, called isomorphism of (quadratic) polynomials with two secrets (IP2S), asks the
following. Let ~f = (f1, . . . , fm) and ~g = (g1, . . . , gm) be two m-tuples of homogeneous
quadratic polynomials, where fi, gj ∈ F[x1, . . . , xn]. Recall an m-tuple of polynomials in n
variables can be viewed as a polynomial map from Fn to Fm. It is natural to ask whether ~f
and ~g represent the same polynomial map up to change of basis, or more specifically, whether
there exists P ∈ GL(n,F) and Q ∈ GL(m,F), such that Q ◦ ~f ◦ P = ~g. Since then, the IP2S
problem, and its variant isomorphism of (quadratic) polynomials with one secret (IP1S), have
been intensively studied in multivariate cryptography (see [11,38] and references therein).

Machine learning. In machine learning, it is natural to view a sequential data stream as a
path. This leads to the use of the signature tensor of a path φ : [0, 1]→ Rn, first introduced
by Chen [20] to extract features of data. This is the basic idea of the signature tensor method,
which has been pursued by in a series of works; see [21,49,54] and references therein. The
algorithmic problem of reconstructing the path from the signature tensor is of considerable
interest; see e.g. [50, 59]. In this context, the following problem was recently studied by
Pfeffer, Seigal, and Sturmfels [59], called the Tensor Congruence problem: given two
3-tensors A = (aijk), B = (bijk) ∈ Fn×n×n, decide whether there exists P ∈ GL(n,F), such
that the congruence action of P sends A to B. More specifically, this action of P = (pij)
sends A = (aijk) to A′ = (a′ijk), where a′ijk =

∑
i′,j′,k′ ai′j′k′pi,i′pj,j′pk,k′ .

Quantum information. Let H = H1 ⊗ · · · ⊗ Hd, where Hi = Cni . Let ρ = |φ〉〈φ| and
τ = |ψ〉〈ψ| be two pure quantum states, where |φ〉, |ψ〉 ∈ H. In quantum information, a
natural question is to decide whether ρ can be converted to τ using local operations and
classical communication statistically (SLOCC), i.e. with non-zero probability [10,23]. It is
well-known by [23] that ρ and τ are interconvertible via SLOCC, if and only if there exist
Ti ∈ GL(Hi), such that (T1 ⊗ . . . Tm)|φ〉 = |ψ〉. Therefore, given pure quantum states ρ and
τ , whether ρ and τ are inverconvertible via SLOCC can be cast as an isomorphism testing
problem, called the d-Tensor Isomorphism problem (see Definition 1).

Computational group theory. In computational group theory, a notoriously difficult problem
is to test isomorphism of finite p-groups, namely groups of prime power order (see, e. g., [55]).
Here, the groups are represented succinctly, e. g., by generating sets of permutations or
matrices over finite fields. Testing isomorphism of p-groups is considered to be a bottleneck
to testing isomorphism of general groups [7,19,31]. Even for p-groups of class 2 and exponent
p, current methods are still limited to instances of quite small size.

Theoretical computer science. As already mentioned, Agrawal, Kayal, and Saxena studied
isomorphism and automorphism problems of rings, algebras, and polynomials [1, 2, 42],
motivated by several problems including Primality Testing, Polynomial Factorization,
and Graph Isomorphism. Later, motivated by cryptographic applications and algebraic
complexity, Kayal studied the Polynomial Equivalence problems (possibly under affine
projections) and solved certain important special cases [40, 41] (see also [30]). Among
these problems, we will be mostly concerned with the following two. First, the Algebra
Isomorphism problem for commutative, unital, associative algebras over a field F, asks
whether two such algebras, given by structure constants, are isomorphic. Second, the Cubic
Form Equivalence problem asks whether two homogeneous cubic polynomials over F are
equivalent under the natural action of the general linear group by change of basis on the
variables.

ITCS 2021



31:4 Tensor Isomorphism-Completeness

Practical complexity of these problems. The preceding isomorphism testing problems
are of great interest to researchers from seemingly unrelated areas. Furthermore, they pose
considerable challenges for practical computations at the present stage. The latter is in sharp
contrast to Graph Isomorphism, for which very effective practical algorithms have existed
for some time [51,52]. Indeed, the problems we consider have been proposed to be difficult
enough for cryptographic purposes [39,57]. As further evidence of their practical difficulty,
current algorithms implemented for testing isomorphism of p-groups of class 2 and exponent
p can handle groups of dimension 20 over F13, but absolutely not for groups of dimension
200 over F13, even though in this case the input can still be stored in only a few megabytes.1
In [59, arXiv version 1], computations on special cases of the Tensor Congruence problem
were performed in Macaulay2 [28], but these could not go beyond small examples either.

A note on terminology. Before introducing our results formally, a terminological note is
in order: we shall call valence-d tensors d-way arrays, and tensors will be understood to
be d-way arrays considered under a specific group action. The reason for this change of
terminology will be clearer in the following. We remark that it is not uncommon to see such
differences in the terminologies around tensors, see, e. g., the preface of [45].

We follow a natural convention: when F is finite, a fixed algebraic extension of a finite
field such as Fp, the rationals, or a fixed algebraic extension of the rationals such as Q, we
consider the usual model of Turing machines; when F is R, C, the p-adic rationals Qp, or
other more “exotic” fields, we work in the Blum–Shub–Smale model over F.

3 Main results

3.1 Defining the Tensor Isomorphism complexity class
Given the diversity of the isomorphism problems from Sec. 2, the first main question addressed
in this paper is

Is there a unifying framework that accommodates the many difficult isomorphism
testing problems arising in practice?

Such a framework would help to explain the difficulties from various areas when dealing with
these isomorphism problems, and facilitate dialogue among researchers from different fields.

At first sight, this seems quite difficult: these problems concern very different mathematical
objects, ranging from sets of quadratic equations, to algebras, to finite groups, to tensors,
and each of them has its own rich theory.

Despite these obstacles, our first main result shows that those problems in Sec. 2 arising
in many fields – from computational group theory to cryptography to machine learning – are
equivalent under polynomial-time reductions. In proving the first main result, the d-Tensor
Isomorphism problem occupies a central position. This leads us to define the complexity
class TI, consisting of problems reducible to TI, much in vein of the introduction of the
Graph Isomorphism complexity class GI [43].

1 We thank James B. Wilson, who maintains a suite of algorithms for p-group isomorphism testing [16],
for communicating this insight to us from his hands-on experience. We of course maintain responsibility
for any possible misunderstanding, or lack of knowledge regarding the performance of other implemented
algorithms.
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I Definition 1 (The d-Tensor Isomorphism problem). d-Tensor Isomorphism over
a field F is the problem: given two d-way arrays A = (ai1,...,id

) and B = (bi1,...,id
), where

ik ∈ [nk] for k ∈ [d], and ai1,...,id
, bi1,...,id

∈ F, decide whether there are Pk ∈ GL(nk,F) for
k ∈ [d], such that for all i1, . . . , id,

ai1,...,id
=

∑
j1,...,jd

bj1,...,jd
(P1)i1,j1(P2)i2,j2 · · · (Pd)id,jd

. (1)

Our first main result resolves an open question well-known to the experts:2

I Theorem 2 (=Cor. A). d-Tensor Isomorphism reduces to 3-Tensor Isomorphism in
time O(nd).

Thm. 2 is also key to the application to quantum information in Sec. 6.1.
Thus, while the 2TI problem is easy (it’s just matrix rank), 3TI already captures the

complexity of dTI for any d. This phenomenon is reminiscent of the transition in hardness
from 2 to 3 in k-SAT, k-Coloring, k-Matching, and many other NP-complete problems.
It is interesting that an analogous phenomenon – a transition to some sort of “universality”
from 2 to 3 – occurs in the setting of isomorphism problems, which we believe are not
NP-complete over finite fields (indeed, they cannot be unless PH collapses).

I Definition 3 (TI). For any field F, TIF denotes the class of problems that are polynomial-
time Turing (Cook) reducible to d-Tensor Isomorphism over F, for some d. A problem is
TIF-complete, if it is in TIF, and d-Tensor Isomorphism over F for any d reduces to this
problem.

By Thm. 2, we may take d = 3 without loss of generality. When we write TI without
mentioning the field, the result holds for any field.

3.2 TI-complete problems
Our second main result shows the wide applicability and robustness of the TI class.

I Theorem 4 (Informal statement of part of Theorem B). All the problems mentioned in
Sec. 2 are TI-hard: IP2S, Tensor Congruence, Cubic Form Equivalence (over fields
of characteristic not 2 or 3), Algebra Isomorphism for commutative, unital, associative
algebras, and Group Isomorphism for p-groups of class 2 and exponent p given by matrix
generators over Fpe .

In combination with the results of [26], we conclude that they are in fact TI-complete.

I Remark 5. Our results allow us to mostly answer a question from Saxena’s thesis [64, p. 86].
Namely, Agrawal & Saxena [1] gave a reduction from Cubic Form Equivalence to Ring
Isomorphism for commutative, unital, associative algebras over F, under the assumption
that every element of F has a cube root in F. For finite fields Fq, the only such fields are
those for which q = p2e+1 and p ≡ 2 (mod 3), which is asymptotically half of all primes.
As explained after the proof of [1, Thm. 5], the use of cube roots seems inherent in their
reduction, and Saxena asked whether such a reduction could be done over arbitrary fields.
Using our results in conjunction with [26], we get a new such reduction – very different from
the previous one [1] – which works over any field of characteristic not 2 or 3.

2 We asked several experts who knew of the question, but we were unable to find a written reference.
Interestingly, Oldenburger [56] worked on what we would call d-Tensor Isomorphism as far back as
the 1930s. We would be grateful for any prior written reference to the question of whether dTI reduces
to 3TI.
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Here, we would also like to point out that some of the polynomial-time equivalences in
Thm. 4, though perhaps expected by some experts, were not a priori clear. To get a sense
for the non-obviousness of the equivalences of problems in Theorem 4, let us postulate the
following hypothetical question. Recall that two matrices A,B ∈ M(n,F) are called equivalent
if there exist P,Q ∈ GL(n,F) such that P−1AQ = B, and they are conjugate if there exists
P ∈ GL(n,F) such that P−1AP = B. Can we reduce testing Matrix Conjugacy to testing
Matrix Equivalence? Of course since they are both in P there is a trivial reduction; to
avoid this, let us consider only reductions r which send a matrix A to a matrix r(A) such
that A and B are conjugate iff r(A) and r(B) are equivalent. Nearly all reductions between
isomorphism problems that we are aware of have this form (so-called “kernel reductions” [25];
cf. functorial reductions [4]). This turns out to be essentially impossible. The reason is that
the equivalence class of a matrix is completely determined by its rank, while the conjugacy
class of a matrix is determined by its rational canonical form. Among n× n matrices there
are only n+ 1 equivalence classes, but there are at least |F|n rational canonical forms, coming
from the choice of minimal polynomial/companion matrix. Even when F is a finite field,
such a reduction would thus require an exponential increase in dimension, and when F is
infinite, such a reduction is impossible regardless of running time.

Nonetheless, one of our results is that for linear spaces of matrices (one form of 3-way
arrays; see Sec. 5.1), conjugacy testing and equivalence testing are polynomial-time equivalent.
We say two subspaces A,B ⊆M(n,F) are conjugate if there exists P ∈ GL(n,F) such that
PAP−1 = {PAP−1 : A ∈ A} = B, and analogously for equivalence. This is in sharp
contrast to the case of single matrices. In the above setting, it means that there exists a
polynomial-time computable map φ from M(n,F) to subspaces of M(s,F), such that A,B
are conjugate up to a scalar if and only if φ(A), φ(B) ≤ M(s,F) are equivalent as matrix
spaces. Such a reduction may not be clear at first sight.

3.3 The relation between Tensor Isomorphism and Graph
Isomorphism

After introducing the TI class, it is natural to compare this class with the corresponding
class for Graph Isomorphism, GI.

Already by using known reductions [26,30,34,48,58], Graph Isomorphism and Per-
mutational Code Equivalence reduce to 3-Tensor Isomorphism. For the inverse
direction, we have the following connection.

I Corollary 6. Let A and B be two 3-tensors over Fq, and let n be the sum of the lengths of
all three sides. To decides whether A and B are isomorphic reduces to solving GI for graphs
of size qO(n).

Therefore, if GI is in P, then 3TIFq
can be solved in qO(n) time, where n is the sum of the

lengths of all three sides. More generally, ifGI ∈ TIME(2O(log n)c) then 3TIFq ∈ TIME(qO(nc)).
The current value of c for GI is 3 [5] (see [35] for the analysis of c); improving c to be less
than 2 would improve over the current state of the art for both GpI and 3TI.

In Fig. 1 we summarize the relationships between GI, TI, and many more isomorphism
testing problems.
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4 An overview of proof strategies and techniques

4.1 The main new technique

Our main new technique, used to show the reduction from dTI to 3TI (Thm. 2=Thm. A), is
a simultaneous generalization of our reduction from 3TI to Algebra Isomorphism and
the technique Grigoriev used [29] to show that isomorphism in a certain restricted class of
algebras is equivalent to GI. In brief outline: a 3-way array A specifies the structure constants
of an algebra with basis x1, . . . , xn via xi · xj :=

∑
k A(i, j, k)xk, and this is essentially how

we use it in the reduction from 3TI to Algebra Isomorphism. For arbitrary d ≥ 3, we
would like to similarly use a d-way array A to specify how d-tuples of elements in some
algebra A multiply. The issue is that for A to be an algebra, our construction must still
specify how pairs of elements multiply. The basic idea is to let pairs (and triples, and so
on, up to (d− 2)-tuples) multiply “freely” (that is, without additional relations), and then
to use A to rewrite any product of d− 1 generators as a linear combination of the original
generators. While this construction as described already gives one direction of the reduction
(if A ∼= B, then A ∼= B), the other direction is trickier. For that, we modify the construction
to an algebra in which short products (less than d − 2 generators) do not quite multiply
freely, but almost. After the fact, we found out that this construction generalizes the one
used by Grigoriev [29] to show that GI was equivalent Algebra Isomorphism for a certain
restricted class of algebras (see Sec. 6 for a comparison).

4.2 The proof strategy for Theorem 4=B

Let us now explain briefly on the proof of Thm. B=Thm. 4. The first step is to realize all
of these problems in a single unifying viewpoint. That is, all these equivalence relations
underlying these isomorphism testing problems can be realized as the orbits of certain natural
group actions by direct products of general linear groups on 3-way arrays. We shall explain
this in detail in Sec. 5. Here, we only demonstrate five group actions on 3-way arrays, and
indicate how those practical problems correspond to some of these actions.

To introduce these five group actions, it is instructive to first examine the more familiar
cases of matrices. There are three natural group actions on M(n,F): for A ∈ M(n,F),
(1) (P,Q) ∈ GL(n,F) ×GL(n,F) sends A to P tAQ, (2) P ∈ GL(n,F) sends A to P−1AP ,
and (3) P ∈ GL(n,F) sends A to P tAP . These three actions endow A with different
algebraic/geometric interpretations: (1) a linear map from a vector space V to another vector
space W , (2) a linear map from V to itself, and (3) a bilinear map from V × V to F.

The five group actions on 3-way arrays referred to above are precisely analogous to the
matrix setting. For a 3-way array A = (ai,j,k), i, j, k ∈ [n], ai,j,k ∈ F, these actions are (1)
(P1, P2, P3) ∈ GL(n,F)×GL(n,F)×GL(n,F) acts on A according to Equation 1 with d = 3;
(2) (P1, P2) ∈ GL(n,F)×GL(n,F) acts on A as (P−t

1 , P1, P2) in (1), where P−t denotes the
transpose of the inverse of P ; (3) (P1, P2) ∈ GL(n,F) × GL(n,F) acts on A as (P1, P1, P2)
in (1); (4) P ∈ GL(n,F) acts on A as (P, P, P ) in (1); and (5) P ∈ GL(n,F) acts on A as
(P, P, P−t) in (1).
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31:8 Tensor Isomorphism-Completeness

These five actions endow various families of 3-way arrays with different algebraic/geometric
meanings, including 3-tensors, bilinear maps, matrix (associative or Lie) algebras, and trilinear
forms, a.k.a. non-commutative cubic forms. It is then not difficult to cast each of the problems
in Thm. 4 as (a special case of) the problem of deciding whether two 3-way arrays are in the
same orbit under one of the five group actions; see Sec. 5.1 for detailed explanations. 3

The first step only provides the context for proving Thm. 4. After the first step, we need
to devise polynomial-time reductions among those isomorphism testing problems for 3-way
arrays under these five group actions, often with certain restrictions on the 3-way array
structures. The two basic ideas for these reductions are a gadget construction from [26], and
the “embedding” technique from [27]. To implement these ideas, however, usually involves
detailed and complicated computations.

For example, in the proof of Theorem 4, we use a gadget construction from [26] for the
reduction from Tensor Isomorphism to IP2S. To show that this gadget works in our
setting, we need a proof strategy that is different from that in [26]. Furthermore, the gadget
from [26] introduces a quadratic blow-up in the input parameters. We then devise a new
gadget, which achieves the same function with only linear blow-up, and enables Corollary 6.
Having only linear blow-up is important in applications, e. g., to Group Isomorphism in
the Cayley table model (see [33]).

5 More details and more results on TI-completeness

5.1 Five group actions on 3-way arrays and the corresponding
mathematical objects

In Section 3, we briefly defined five group actions on 3-way arrays with the help of Equation 1.
However, the formulas for these group actions on 3-way arrays are somewhat unwieldy; our
experience suggests that they are more easily digested when presented in the context of
some of the natural interpretations of 3-way arrays as mathematical objects, which will also
allow us to connect them back to the problems of Section 2. To connect the interpretations
with the formulas themselves, one technical tool is very useful, namely, given a 3-way array
A(i, j, k), we define its frontal slices to be the matrices Ak defined by Ak(i, j) := A(i, j, k);
that is, we think of the box of A as arranged so that the i and j axes lie in the page, while
the k-axis is perpendicular to the page. Similarly, its lateral slices (viewing the 3D box of A
“from the side”) are defined by Lj(i, k) := A(i, j, k). An `× n×m 3-way array thus has m
frontal slices and n lateral slices.

A natural action on arrays of size `× n×m is that of GL(`,F)×GL(n,F)×GL(m,F)
by change of basis in each of the 3 directions, namely

((P,Q,R) · A)(i′, j′, k′) =
∑
i,j,k

A(i, j, k)Pii′Qjj′Rkk′ .

We will see several interpretations of this action below.

3-tensors. A 3-way array A(i, j, k), where i ∈ [`], j ∈ [n], and k ∈ [m], is naturally identified
as a vector in F`⊗Fn⊗Fm. Letting ~ei denote the ith standard basis vector of Fn, a standard
basis of F`⊗Fn⊗Fm is {~ei⊗ ~ej⊗ ~ek}. Then A represents the vector

∑
i,j,k A(i, j, k)~ei⊗ ~ej⊗ ~ek

3 While problems in Thm. 4 only use three out of those five actions, the other two actions also lead
to problems that arise naturally, including Matrix Algebra Conjugacy from [18], Matrix Lie
Algebra Conjugacy from [30], and Bilinear Map Isotopism from [13]; see Sec. 5.1 and Sec. 6.
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in F` ⊗ Fn ⊗ Fm. The natural action by GL(`,F)×GL(n,F)×GL(m,F) above corresponds
to changes of basis of the three vector spaces in the tensor product. The problem of deciding
whether two 3-way arrays are the same under this action is called 3-Tensor Isomorphism.4
This problem has been studied as far back as the 1930s [56].

Cubic forms, trilinear forms, and tensor congruence. From a 3-way array A we can
also construct a cubic form (=homogeneous degree 3 polynomial)

∑
i,j,k A(i, j, k)xixjxk,

where xi are formal variables. If we consider the variables as commuting – or, equivalently,
if A is symmetric, meaning it is unchanged by permuting its three indices – we get an
ordinary cubic form; if we consider them as non-commuting, we get a trilinear form (or
“non-commutative cubic form”). In either case, the natural notion of isomorphism here comes
from the action of GL(n,F) on the n variables xi, in which P ∈ GL(n,F) transforms the
preceding form into

∑
ijk A(i, j, k)(

∑
i′ Pii′xi′)(

∑
j′ Pjj′xj′)(

∑
k′ Pkk′xk′). In terms of 3-way

arrays, we get (P · A)(i′, j′, k′) =
∑

ijk A(i, j, k)Pii′Pjj′Pkk′ . The corresponding isomorphism
problems are called Cubic Form Equivalence (in the commutative case) and Trilinear
Form Equivalence. This is identical to the Tensor Congruence problem from [59]
(where they worked over R).

Matrix spaces. Given a 3-way array A, it is natural to consider the linear span of its frontal
slices, A = 〈A1, . . . , Am〉, also called a matrix space. One convenience of this viewpoint
is that the action of GL(m,F) becomes implicit: it corresponds to change of basis within
the matrix space A. This allows us to generalize the three natural equivalence relations on
matrices to matrix spaces: (1) two `× n matrix spaces A and B are equivalent if there exists
(P,Q) ∈ GL(`,F)×GL(n,F) such that PAQ = B, where PAQ := {PAQ : A ∈ A}; (2) two
n× n matrix spaces A,B are conjugate if there exists P ∈ GL(n,F) such that PAP−1 = B;
and (3) they are isometric if PAP t = B. The corresponding decision problems, when A is
given by a basis A1, . . . , Ad, are Matrix Space Equivalence, Matrix Space Conjugacy,
and Matrix Space Isometry, respectively.

Isomorphism of quadratic polynomials with 2 secrets. For a tuple of homogeneous
quadratic polynomials (over a field of characteristic not 2) ~f = (f1, . . . , fm), we may encode
fi by a symmetric matrix Fi in the usual way – where fi(x) = xtFix – and thus obtain a
tuple of (symmetric) matrices (F1, . . . , Fm). Since, in the IP2S problem, we are also allowed
to take linear combinations of the fi themselves, we see that the IP2S problem is equivalent
to the Matrix Space Isometry problem for 〈F1, . . . , Fm〉. Equivalently, the action of
(P,Q) ∈ GL(m,F)×GL(n,F) is by Fi 7→

∑
j PijQ

tFjQ.

Finite p-groups. If we consider the quadratic polynomials fi as defining a (symmetric)
bilinear map Fn × Fn → Fm, we may generalize to see that (not necessarily symmetric)
bilinear maps arise naturally in other areas, notably in group theory. For matrices Ak

over Fp, p an odd prime, we may consider Matrix Space Isometry for the matrix space
〈A1, . . . , Am〉. Two bilinear maps that are essentially the same up to such basis changes are
sometimes called pseudo-isometric [17].

4 Some authors call this Tensor Equivalence; we use “Isomorphism” both because this is the natural
notion of isomorphism for such objects, and because we will be considering many different equivalence
relations on essentially the same underlying objects.
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When the Ak are skew-symmetric, Baer’s correspondence [9] gives a bijection between
finite p-groups of class 2 and exponent p, that is, in which gp = 1 for all g and in which
[G,G] ≤ Z(G), and their corresponding skew-symmetric bilinear maps G/Z(G)×G/Z(G)→
[G,G], given by (gZ(G), hZ(G)) 7→ [g, h] = ghg−1h−1. Two such groups are isomorphic if
and only if their corresponding bilinear maps are pseudo-isometric, if and only if, using the
matrix space terminology, the matrix spaces they span are isometric.

Bilinear maps. If we generalize even further to bilinear maps U × V → W , we find that
from an ` × n × m 3-way array A, we can construct such a bilinear map (=system of m
bilinear forms) fA : F` × Fn → Fm, sending (u, v) ∈ F` × Fn to (utA1v, . . . , u

tAmv)t, where
the Ak are the frontal slices of A. The group action defining Matrix Space Equivalence
is equivalent to the action of GL(`,F)×GL(n,F)×GL(m,F) on such bilinear maps. This
problem was recently studied under the name “testing isotopism of bilinear maps” in [13], in
the context of testing isomorphism of graded algebras.

Algebras. We may also consider a 3-way array A(i, j, k), i, j, k ∈ [n], as the structure
constants of an algebra (which need not be associative, commutative, nor unital), say
with basis x1, . . . , xn, and with multiplication given by xi · xj =

∑
k A(i, j, k)xk, and

then extended (bi)linearly. Here the natural notion equivalence comes from the action
of GL(n,F) by change of basis on the xi. Despite the seeming similarity of this ac-
tion to that on cubic forms, it turns out to be quite different: given P ∈ GL(n,F),
let ~x′ = P~x; then we have x′i · x′j = (

∑
i Pi′ixi) · (

∑
j Pj′jxj) =

∑
i,j Pi′iPj′jxi · xj

=
∑

i,j,k Pi′iPj′jA(i, j, k)xk =
∑

i,j,k Pi′iPj′jA(i, j, k)
∑

k′(P−1)kk′xk′ . Thus A becomes (P ·
A)(i′, j′, k′) =

∑
ijk A(i, j, k)Pi′iPj′j(P−1)kk′ . The inverse in the third factor here is the

crucial difference between this case and that of cubic or trilinear forms above, similar to the
difference between matrix conjugacy and matrix isometry. The corresponding isomorphism
problem is called Algebra Isomorphism.

Summary. The isomorphism problems of the above structures all have 3-way arrays as the
underlying object, but are determined by different group actions. It is not hard to see that
there are essentially five group actions in total: 3-Tensor Isomorphism, Matrix Space
Conjugacy, Matrix Space Isometry, Trilinear Form Equivalence, and Algebra
Isomorphism. It turns out that these cover all the natural isomorphism problems on 3-way
arrays in which the group acting is a product of GL(n,F) (where n is the side length of the
arrays); see the full version [32] for a detailed discussion.

5.2 Full statement of main results
I Theorem A. For any fixed d ≥ 1, d-Tensor Isomorphism reduces to Algebra Iso-
morphism.

Combined with the results of [26], this immediately gives:

I Corollary A. For any fixed d ≥ 1, d-Tensor Isomorphism reduces to 3-Tensor Iso-
morphism.

Given the viewpoint of Section 5.1 on the problems from Section 2, to show that they are
equivalent, it is enough to show that the isomorphism problems for 3-way arrays corresponding
to the five group actions are equivalent, where 3-way arrays may also need to satisfy certain
structural constraints (e.g., the frontal slices are symmetric or skew-symmetric). This is the
content of our second main result.
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I Theorem B. 3-Tensor Isomorphism reduces to each of the following problems in
polynomial time.

1. Group Isomorphism for p-groups exponent p (gp = 1 for all g) and class 2 (G/Z(G) is
abelian) given by generating matrices over Fpe . Here we consider only 3TIFpe where p is
an odd prime.

2. Matrix Space Isometry, even for alternating or symmetric matrix spaces.
3. Matrix Space Conjugacy, and even the special cases:

a. Matrix Lie Algebra Conjugacy, for solvable Lie algebras L of derived length 2.5
b. Associative Matrix Algebra Conjugacy.6

4. Algebra Isomorphism, and even the special cases:
a. Associative Algebra Isomorphism, for algebras that are commutative and unital,

or for algebras that are commutative and 3-nilpotent (abc = 0 for all a, b, c,∈ A)
b. Lie Algebra Isomorphism, for 2-step nilpotent Lie algebras ([u, [v, w]] = 0 ∀u, v, w)

5. Cubic Form Equivalence and Trilinear Form Equivalence.

The algebras in (3) are given by a set of matrices which linearly span the algebra, while in
(4) they are given by structure constants (see “Algebras” in Sec. 5.1).

Since the main result of [26] reduces the problems in Theorem B to 3-Tensor Isomorph-
ism (cf. [26, Rmk. 1.1]), we have:

I Corollary B. Each of the problems listed in Theorem B is TI-complete.7

I Remark 7. Here is a brief summary of what is known about the complexity of some of
these problems. Over a finite field Fq, these problems are in NP∩ coAM. For `×n×m 3-way
arrays, the brute-force algorithms run in time qO(`2+n2+m2), as GL(n,Fq) can be enumerated
in time qΘ(n2). Note that polynomial-time in the input size here would be poly(`, n,m, log q).
Over any field F, these problems are in NPF in the Blum–Shub–Smale model. When the input
arrays are over Q and we ask for isomorphism over C or R, these problems are in PSPACE
using quantifier elimination. By Koiran’s celebrated result on Hilbert’s Nullstellensatz, for
equivalence over C they are in AM assuming the Generalized Riemann Hypothesis [44]. When
the input is over Q and we ask for equivalence over Q, it is unknown whether these problems
are even decidable; classically this is studied under Algebra Isomorphism for associative,
unital algebras over Q (see, e. g., [2, 60]), but by Cor. B, the question of decidability is open
for all of these problems.

Over finite fields, several of these problems can be solved efficiently when one of the side
lengths of the array is small. For d-dimensional spaces of n× n matrices, Matrix Space
Conjugacy and Isometry can be solved in qO(n2) · poly(d, n, log q) time: once we fix an
element of GL(n,Fq), the isomorphism problem reduces to solving linear systems of equations.
Less trivially, Matrix Space Conjugacy can be solved in time qO(d2) · poly(d, n, log q) and
3TI for n×m× d tensors in time qO(d2) · poly(d, n,m, log q), since once we fix an element
of GL(d,Fq), the isomorphism problem either becomes an instance of, or reduces to [38],
Module Isomorphism, which admits several polynomial-time algorithms [15, 22, 37, 67].
Finally, one can solve Matrix Space Isometry in time qO(d2) · poly(d, n, log q): once one
fixes an element of GL(d,Fq), there is a rather involved algorithm [38], which uses the
∗-algebra technique originated from the study of computing with p-groups [17,69].

5 And even further, where L/[L, L] ∼= F.
6 Even for algebras A whose Jacobson radical J(A) squares to zero and A/J(A) ∼= F.
7 For Cubic Form Equivalence, we only show that it is in TIF when charF > 3 or charF = 0.
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6 Implications, more related works, and further discussions

6.1 An implication to quantum information
Quantum information is the study of information-theoretic properties of quantum states and
channels, such as entanglement, non-classical correlations, and the uses of quantum states and
channels for various computational tasks. A pure quantum particle takes states in a Hilbert
space (=complex vector space, along with an inner product) V ; a pure multi-particle system
takes states in the tensor product of the corresponding Hilbert spaces V1 ⊗ V2 ⊗ · · · ⊗ Vk.

A fundamental relation between k-partite quantum states is that of equivalence under
stochastic local operations and classical communication (SLOCC) [10, 23]. If we imagine
each particle is held by a different party, a “local operation” is an operation that a single
party i can perform on its state in Vi. Although the definition of SLOCC involves combining
this with classical communication, an equivalent definition is that two k-particle states
ψ, φ ∈ V1 ⊗ · · · ⊗ Vk are SLOCC-equivalent if they are in the same orbit under the action
of the product of general linear groups GL(V1) × GL(V2) × · · · × GL(Vk) [23].8 Deciding
SLOCC equivalence (of un-normalized quantum states) is thus precisely the same as TI.

In this light, we may interpret our Thm. A as saying that SLOCC equivalence classes
for k-partite entanglement can be simulated by SLOCC equivalence classes of tripartite
entanglement. This might at first seem surprising, since bipartite entanglement is much
better understood than tripartite or higher entanglement, so one might naively expect that
4-partite entanglement should be more complicated than tripartite, and so on. Our results
show that in fact the tripartite case is already universal. This may be compared with a
recent result in [72], which gives a transformation of multipartite states to a set of tripartite
or bipartite states, interrelated by a tensor network, whereas our reduction produces a single
tripartite state.

6.2 Further related works
While most of the related works have already been introduced before, we collect some of the
key ones here for further discussions and comparisons.

The most closely related work is that of Futorny, Grochow, and Sergeichuk [26]. They
show that a large family of isomorphism problems on 3-way arrays – including those involving
multiple 3-way arrays simultaneously, or 3-way arrays that are partitioned into blocks, or
3-way arrays where some of the blocks or sides are acted on by the same group (e. g., Matrix
Space Isometry) – all reduce to 3TI. Our work complements theirs in that all our reductions
for Thm. B go in the opposite direction, reducing 3TI to other problems. Furthermore, the
resulting 3-way arrays from our reductions for Thm. B usually satisfy certain structural
constraints, which allows for versatile mathematical interpretations. Some of our other results
relate GI and Code Equivalence to 3TI; the latter problems were not considered in [26].
Thm. A considers d-tensors for any d ≥ 3, which were not considered in [26].

In [1, 2], Agrawal and Saxena considered Cubic Form Equivalence and testing iso-
morphism of commutative, associative, unital algebras. They showed that GI reduces to
Algebra Isomorphism; Commutative Algebra Isomorphism reduces to Cubic Form

8 Some authors use the action by the product of special linear groups SL(Vi) instead, but the difference
is actually that physicists typically consider normalized quantum states, which are elements in the
corresponding projective space P(V1 ⊗ · · · ⊗ Vk). Because the difference between SL(Vi) and GL(Vi) is
merely scalar matrices, and scalar matrices act trivially on projective space, the equivalence relation is
the same.
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Equivalence; and Homogeneous Degree-d Form Equivalence reduces to Algebra
Isomorphism assuming that the underlying field has dth root for every field element. By
combining a reduction from [26] and our main Theorem B, we get a new reduction from
Cubic Form Equivalence to Algebra Isomorphism that works over any field in which
3! is a unit, which is fields of characteristic 0 or p > 3.

There are several other works which consider related isomorphism problems. Grigoriev [29]
showed that GI is equivalent to isomorphism of unital, associative algebras A such that the
radical R(A) squares to zero and A/R(A) is abelian. Interestingly, we show TI-completeness
for conjugacy of matrix algebras with the same abstract structure (even when A/R(A) is only
1-dimensional). Note the latter problem is equivalent to asking whether two representations
of A are equivalent up to automorphisms of A. The proof of Thm. A uses algebras in which
R(A)d = 0 when reducing from dTI; it also uses Grigoriev’s result in one step.

Brooksbank and Wilson [18] showed a reduction from Associative Algebra Isomorph-
ism (when given by structure constants) to Matrix Algebra Conjugacy. Grochow [30],
among other things, showed that GI and CodeEq reduce to Matrix Lie Algebra Con-
jugacy, which is a special case of Matrix Space Conjugacy.

In [42], Kayal and Saxena considered testing isomorphism of finite rings when the rings
are given by structure constants. This problem generalizes testing isomorphism of algebras
over finite fields. They put this problem in NP ∩ coAM [42, Thm. 4.1], reduce GI to this
problem [42, Thm. 4.4], and prove that counting the number of ring automorphism (#RA)
is in FPAM∩coAM [42, Thm. 5.1]. They also present a ZPP reduction from GI to #RA, and
show that the decision version of the ring automorphism problem is in P.

6.3 Combinatorial and group-theoretic techniques for GI and TI
Comparing with Graph Isomorphism also offers one way to see why isomorphism problems
for 3-way arrays are difficult. Indeed, the techniques for GI face great difficulty when
dealing with isomorphism problems for multi-way arrays. Recall that most algorithms for
GI, including Babai’s [5], are built on two families of techniques: group-theoretic, and
combinatorial. One of the main differences is that the underlying group action for GI is
a permutation group acting on a combinatorial structure, whereas the underlying group
actions for isomorphism problems for 3-way arrays are matrix groups acting on (multi)linear
structures.

Already in moving from permutation groups to matrix groups, we find many new compu-
tational difficulties that arise naturally in basic subroutines used in isomorphism testing. For
example, the membership problem for permutation groups is well-known to be efficiently
solvable by Sims’s algorithm [68] (see, e. g., [65] for a textbook treatment), while for matrix
groups this was only recently shown to be solvable with a number-theoretic oracle over
finite fields of odd characteristic [6]. Correspondingly, when moving from combinatorial
structures to (multi)linear algebraic structures, we also find severe limitation on the use
of most combinatorial techniques, like individualizing a vertex. For example, it is quite
expensive to enumerate all vectors in a vector space, while it is usually considered efficient to
go through all elements in a set. Similarly, within a set, any subset has a unique complement,
whereas within Fn

q , a subspace can have up to qΘ(n2) complements.
Given all the differences between the combinatorial and linear-algebraic worlds, it may

be surprising that combinatorial techniques for Graph Isomorphism can nonetheless be
useful for Group Isomorphism. Indeed, Li and Qiao [46] adapted the individualisation
and refinement technique, as used by Babai, Erdős and Selkow [8], to tackle Alternating
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Matrix Space Isometry over Fq. This algorithm was recently shown [14] to practically
improve over the default algorithms in Magma [12]. However, this technique, though
helpful to improve from the brute-force qn2 · poly(n, log q) time, seems still limited to getting
average-case qO(n)-time algorithms.

6.4 Outlook

In light of Babai’s breakthrough on GI [5], it is natural to consider “what’s next?” for
isomorphism problems. That is, what isomorphism problems stand as crucial bottlenecks to
further improvements on GI, and what isomorphism problems should naturally draw our
attention for further exploration? Of course, one of the main open questions in the area
remains whether or not GI is in P. Babai [5, arXiv ver., Sec. 13.2 & 13.4] already lists several
isomorphism problems for further study, including Group Isomorphism, Permutational
Code Equivalence (of linear codes), and Permutation Group Conjugacy. The reader
may see where these sit in Fig. 1.

Based on the results above, we propose TI as a natural problem to study, both “after”
GI, and to make further progress on GI itself. In particular, TI stands as a key bottleneck to
put GI in P, because of the following. First, Babai suggested [5] that Group Isomorphism
(GpI) in the Cayley table model is a key bottleneck9 to putting GI into P. Second, it
has been long believed that p-groups of class 2 and exponent p are the hardest cases of
GpI (for a number of reasons, see, e. g., [9, 36,66,71]). Third, by Baer’s correspondence [9],
isomorphism for such groups is equivalent10 to Alternating Matrix Space Isometry
(see Section 5.1). Finally, by our main Thm. B, Alternating Matrix Space Isometry
over Fpe is TIFpe -complete.

This then relates TI over finite fields to the believed-to-be-hardest instances of GpI,
which in turn, as Babai suggested, is a key bottleneck for further progress on GI. We thus
view the study of TI as a natural continuation of the study of GI. Furthermore, the main
techniques for GI, namely the group-theoretic techniques and the combinatorial ones, also
have corresponding techniques in the TI setting, although they are perhaps more complicated
and less efficient than in the setting of GI. We explain this in detail in Sec. 6.

This theory for TI is far from complete, and many questions remain, largely inspired
by the study of GI. In the full version [32, Section 10.1], we discuss a possible theory of
universality for basis-explicit linear structures, in analogy with the universality of GI for
explicit combinatorial structures [73, Section 15]. While not yet complete, this is another
exciting reason to study Tensor Isomorphism and related problems, and it motivates some
interesting open questions. Then we pose several natural open problems.

9 Indeed, the current-best upper bounds on these two problems are now quite close: nO(log n) for GpI
(originally due to [24, 53] – Miller attributes this to Tarjan – with improved constants [62,63, 70]), and
nO(log2 n) for GI [5] (see [35] for calculation of the exponent).

10 Specifically, solving Alternating Matrix Space Isometry over Fp in time pO(n+m) is equivalent to
testing isomorphism for p-groups of class 2 and exponent p in time polynomial in the group order, i.e.
polynomial time in the Cayley table model.
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Figure 1 Summary of key isomorphism problems. A→ B indicates that A reduces to B, i. e.,
A ≤p

m B. A⇒ B indicates a new result. Unattributed arrows indicate A is clearly a special case
of B. Note that the definition of ring used in [1] is commutative, finite, and unital; by “algebra”
we mean an algebra (not necessarily associative, let alone commutative nor unital) over a field.
The reductions between Ring Iso. (in the basis representation) and Degree-d Form Eq. and
Unital Associative Algebra Isomorphism are for rings over a field. The equivalences between
Alternating Matrix Space Isometry and p-Group Isomorphism are for matrix spaces over
Fpe . Some TI-complete problems from Thm. B are left out for clarity.

* These results only hold over fields where every element has a dth root. In particular, Degree d

Form Equivalence and Symmetric d-Tensor Isomorphism are TI-complete over fields with d-th
roots. A finite field Fq has this property if and only if d is coprime to q − 1.
† These results only hold over rings where d! is a unit.
‡Assuming the Generalized Riemann Hypothesis, Rónyai [61] shows a Las Vegas randomized
polynomial-time reduction from factoring square-free integers – probably not much easier than the
general case – to isomorphism of 4-dimensional algebras over Q. Despite the additional hypotheses,
this is notable as the target of the reduction is algebras of constant dimension, in contrast to all
other reductions in this figure.
F Refers to numbers in the full version [32].
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Abstract
QAC circuits are quantum circuits with one-qubit gates and Toffoli gates of arbitrary arity. QAC0

circuits are QAC circuits of constant depth, and are quantum analogues of AC0 circuits. We prove
the following:

For all d ≥ 7 and ε > 0 there is a depth-d QAC circuit of size exp(poly(n1/d) log(n/ε)) that
approximates the n-qubit parity function to within error ε on worst-case quantum inputs.
Previously it was unknown whether QAC circuits of sublogarithmic depth could approximate
parity regardless of size.
We introduce a class of “mostly classical” QAC circuits, including a major component of our
circuit from the above upper bound, and prove a tight lower bound on the size of low-depth,
mostly classical QAC circuits that approximate this component.
Arbitrary depth-d QAC circuits require at least Ω(n/d) multi-qubit gates to achieve a 1/2 +
exp(−o(n/d)) approximation of parity. When d = Θ(logn) this nearly matches an easy O(n)
size upper bound for computing parity exactly.
QAC circuits with at most two layers of multi-qubit gates cannot achieve a 1/2 + exp(−o(n))
approximation of parity, even non-cleanly. Previously it was known only that such circuits could
not cleanly compute parity exactly for sufficiently large n.

The proofs use a new normal form for quantum circuits which may be of independent interest, and
are based on reductions to the problem of constructing certain generalizations of the cat state which
we name “nekomata” after an analogous cat yōkai.
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1 Introduction

1.1 Background
A central problem in computational complexity theory is to prove lower bounds on the
nonuniform circuit size required to compute explicit boolean functions. Since this appears to
be out of reach given current techniques, research in circuit complexity has instead focused on
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proving lower bounds in restricted circuit classes. There are now many known lower bounds
in classical circuit complexity, as well as in quantum query complexity, but comparatively few
lower bounds are known in quantum circuit complexity, which is the subject of the current
paper.

The study of quantum circuit complexity was initiated in large part by Green, Homer,
Moore and Pollett [8], who defined quantum analogues of a number of classical circuit classes.
One of the seemingly most restrictive quantum circuit classes that they defined is the class of
QAC0 circuits, consisting of constant-depth QAC circuits, where QAC circuits are quantum
circuits with arbitrary one-qubit gates and generalized Toffoli gates of arbitrary arity. (More
precisely, (n + 1)-ary generalized Toffoli gates are defined by |x, b〉 7→ |x, b ⊕

∧n
j=1 xj〉 for

x = (x1, . . . , xn) ∈ {0, 1}n, b ∈ {0, 1}.) This is analogous to the classical circuit class of AC0

circuits, consisting of constant-depth AC circuits, where AC circuits are boolean circuits
with NOT gates and unbounded-fanin AND and OR gates. Low-depth circuits are a model
of fast parallel computation, and this is especially important for quantum circuits, because
quantum computations need to be fast relative to the decoherence time of the qubits in order
to avoid error.

One difference between AC and QAC circuits is that AC circuits are allowed fanout “for
free”, i.e. the input bits to the circuit and the outputs of gates may all be used as inputs
to arbitrarily many gates. The quantum analogue of this would be to compute the unitary
“fanout” transformation UF , defined by UF |b, x1, . . . , xn−1〉 = |b, x1 ⊕ b, . . . , xn−1 ⊕ b〉 for
b, x1, . . . , xn−1 ∈ {0, 1}, or at least to compute this in the case that we call “restricted fanout”
in which x1 = · · · = xn−1 = 0. QAC0 circuits with fanout gates are called QAC0

f circuits, and
can simulate arbitrary AC0 circuits by using ancillae and restricted fanout to make as many
copies as needed of the input bits and of the outputs of gates. In fact, QAC0

f circuits are
strictly more powerful than AC0 circuits, because QAC0

f circuits (even without generalized
Toffoli gates) of polynomial size can also compute threshold functions [11, 14] whereas AC0

circuits require exponential size to do so [10]. In contrast, little is known about the power of
QAC0 circuits and how it compares with that of AC0 circuits.

Green et al. [8] observed that fanout can be computed by QAC circuits of logarithmic
depth and linear size. This raises the question of whether QAC circuits of sublogarithmic
depth can compute fanout, or at least restricted fanout, even if allowed arbitrary size. The
same question can be asked about parity, which is a famous example of a function that
requires exponential size to compute in AC0 [10], and which is defined for quantum circuits
as the unitary transformation U⊕ such that U⊕|b, x〉 = |b⊕

⊕n−1
j=1 xj , x〉 for b ∈ {0, 1}, x =

(x1, . . . , xn−1) ∈ {0, 1}n−1. In fact, all of these questions are equivalent: Green et al. [8]
proved that parity and fanout are equivalent up to conjugation by Hadamard gates, and that
they reduce to restricted fanout with negligible blowups in size and depth (see the full paper
for illustrations).

Recent work [7, 9] suggests that QAC0
f may be a physically realistic model of constant

depth computation in certain quantum computing architectures (such as ion traps). As for
QAC lower bounds, Fang, Fenner, Green, Homer and Zhang [5] proved that QAC circuits
with a ancillae require depth at least Ω(log(n/(a+ 1))) to compute the n-qubit parity and
fanout functions, which is a nontrivial lower bound when a is o(n). Bera [3] used a different
approach to prove something slightly weaker than the a = 0 case of this result. Finally, Padé,
Fenner, Grier and Thierauf [13] proved that QAC circuits with two layers of generalized
Toffoli gates cannot cleanly1 compute 4-qubit parity or fanout, regardless of the number of
ancillae. A survey of Bera, Green and Homer [4] discusses some of the aforementioned QAC
lower bounds and QACf upper bounds in greater detail.

1 A clean computation is one in which the ancillae end in the all-zeros state.
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1.2 Results and Selected Proof Overviews
1.2.1 Definitions of Complexity Measures
Call |〈ψ|ϕ〉|2 the fidelity of states |ϕ〉 and |ψ〉. We define the size of a QAC circuit to be
the number of multi-qubit gates in it, and the depth of a QAC circuit to be the number of
layers of multi-qubit gates in it. One motivation for not counting single-qubit gates, besides
mathematical convenience, is that size and depth can be interpreted as measures of the
reliability and computation time of a quantum circuit respectively, and in practice multi-qubit
gates tend to be less reliable and take more time to apply as compared to single-qubit gates.

1.2.2 Reductions to and from Constructing Nekomata
Recall that Green et al. [8] proved that parity, fanout, and restricted fanout are all equivalent
up to low-complexity QAC reductions. In Section 3 we make the more general observation that
clean approximate and non-clean approximate versions of these problems are all equivalent
in this sense. For brevity’s sake, here in Section 1.2 we will only state immediate corollaries
of these reductions insofar as they relate to our other results.

We also introduce another problem equivalent to parity, which all of our results about
parity and fanout are proved via reductions to. The state 1√

2

∑1
b=0 |bn〉 is commonly called

the cat state on n qubits, and we denote it by | n〉. More generally, call a state |ν〉 an
n-nekomata if |ν〉 = 1√

2

∑1
b=0 |bn, ψb〉 for some states |ψ0〉, |ψ1〉 on any number of qubits (the

word “nekomata” is also the name of two-tailed cats from Chinese and Japanese folklore), or
equivalently if a standard-basis measurement of some n qubits of |ν〉 outputs all-zeros and
all-ones each with probability 1/2.

Call a QAC circuit C acting on any number of qubits a solution to the “p-approximate
n-nekomata problem” if there exists an n-nekomata |ν〉 such that C|0 . . . 0〉 and |ν〉 have
fidelity at least p. (There is no need to allow “ancillae” in this problem, because if |ν〉 is an
n-nekomata then so is |ν, ψ〉 for any state |ψ〉.) Note that the identity circuit on n or more
qubits trivially solves the 1/2-approximate n-nekomata problem. In informal discussions
we will often say that a circuit “constructs an approximate n-nekomata” if it solves the
p-approximate n-nekomata problem for some fixed p ∈ (1/2, 1), say p = 3/4.

Constructing nekomata reduces to computing restricted fanout because | n〉 = UF (H ⊗
I)|0n〉. Our reduction from parity to constructing nekomata is a variant of Green et al.’s [8]
reduction from parity to restricted fanout.

1.2.3 Upper Bounds
I Theorem 1.1. For all ε > 0 there exists a depth-2 QAC circuit C such that for some
n-nekomata |ν〉, the fidelity of C|0 . . . 0〉 and |ν〉 is at least 1− ε. Furthermore, the size of C
and the number of qubits acted on by C are both exp(O(n log(n/ε))).

To state a stronger upper bound for approximating unitary transformations than can
conveniently be done in terms of fidelity, call 1− ‖|ϕ〉 − |ψ〉‖22 the phase-dependent fidelity of
states |ϕ〉 and |ψ〉. This quantity is at most the fidelity of |ϕ〉 and |ψ〉 (Equation (2)).

I Corollary 1.2. For all d ≥ 7 and ε > 0 there exist depth-d QAC circuits C⊕, CF , C of
size and number of ancillae exp(poly(n1/d) log(n/ε)), where the poly(n1/d) term is at most
O(n), such that for all n-qubit states |φ〉,

the phase-dependent fidelity of C⊕|φ, 0 . . . 0〉 and U⊕|φ〉 ⊗ |0 . . . 0〉 is at least 1− ε;
the phase-dependent fidelity of CF |φ, 0 . . . 0〉 and UF |φ〉 ⊗ |0 . . . 0〉 is at least 1− ε;
the phase-dependent fidelity of C |0 . . . 0〉 and | n, 0 . . . 0〉 is at least 1− ε.

ITCS 2021
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The d = 11 case of Corollary 1.2 follows immediately from Theorem 1.1 and our reduction
from parity to constructing nekomata. We decrease the minimum depth from 11 to 7 using
an optimization specific to the circuit from our proof of Theorem 1.1. We prove Corollary 1.2
for higher depths using the fact that n-qubit restricted fanout can be computed by a circuit
consisting of d layers of n1/d-qubit restricted fanout gates.

If we were to also count one-qubit gates toward size and depth, then statements similar to
Theorem 1.1 and Corollary 1.2 would still hold, because without loss of generality a depth-d
QAC circuit acting on m qubits has at most d + 1 layers of one-qubit gates and at most
(d+ 1)m one-qubit gates.

1.2.4 Tight Lower Bounds for Constructing Approximate Nekomata in
“Mostly Classical” Circuits

Call a QAC circuit mostly classical if it can be written as CLML† (i.e. C is applied last)
such that C consists only of generalized Toffoli gates, L is a layer of one-qubit gates, and M
is a layer of generalized Toffoli gates. The circuit C here is a close analogue of (classical) AC
circuits with bounded fanout, since generalized Toffoli gates can simulate classical AND and
NOT gates. The following is apparent from our proof of Theorem 1.1:
I Remark 1.3. Theorem 1.1 remains true even if “QAC circuit” is replaced by “mostly
classical QAC circuit”.

Motivated by Remark 1.3, we prove the following lower bound for constructing approximate
nekomata in mostly classical circuits:

I Theorem 1.4. Let C be a mostly classical circuit of size s and depth o(logn), acting on
any number of qubits. Then for all n-nekomata |ν〉, the fidelity of C|0 . . . 0〉 and |ν〉 is at
most 1/2 + exp

(
−n1−o(1)/max(log s,

√
n)
)
.

(See Theorem 4.2 for a more precise tradeoff between depth and fidelity.) In particular,
Theorem 1.4 implies that mostly classical circuits of depth o(logn) require size at least
exp(n1−o(1)) to construct approximate n-nekomata, essentially matching the exp(Õ(n)) size
upper bound from Theorem 1.1 and Remark 1.3. This lower bound does not contradict
the exp(no(1)) size upper bounds of depth ω(1) from Corollary 1.2, because our reductions
between parity, fanout, and constructing nekomata do not in general map mostly classical
circuits to mostly classical circuits. Since the identity circuit is mostly classical, the upper
bound on the fidelity of C|0 . . . 0〉 and |ν〉 in Theorem 1.4 is tight up to the value being
exponentiated. Finally, if we also allow r-qubit parity and fanout gates in mostly classical
circuits – a natural model for small values of r, in light of the upper bounds from Corollary 1.2
– then a trivial generalization of our proof of Theorem 1.4 implies that an identical statement
holds for circuits of depth o(logmax(r,2) n).

To prove Theorem 1.4, it suffices to prove that the Hamming weight of a standard-basis
measurement of any n qubits of C|0 . . . 0〉 is concentrated around some value. We use the fact
that standard-basis measurements commute with generalized Toffoli gates, and, after some
preparation, apply a concentration inequality of Gavinsky, Lovett, Saks and Srinivasan [6].

1.2.5 Lower Bounds for Arbitrary QAC Circuits of Low Size and Depth
Call the first n qubits of an n-nekomata 1√

2

∑1
b=0 |bn, ψb〉 the targets of that nekomata.

I Theorem 1.5. There is a universal constant c > 0 such that the following holds. Let C be
a depth-d QAC circuit acting on any number of qubits, and let |ν〉 be an n-nekomata such
that at most cn/(d+ 1) multi-qubit gates in C act on the targets of |ν〉. Then the fidelity of
C|0 . . . 0〉 and |ν〉 is at most 1/2 + exp(−Ω(n/(d+ 1))).
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I Corollary 1.6. Let c be the constant from Theorem 1.5. Let C be a depth-d QAC circuit
acting on any number of qubits, and assume that, collectively, the first n of these qubits are
acted on by at most cn/(d+ 1) multi-qubit gates in C. Then for all states |ψ〉,

for |φ⊕〉 = |0,+n−1〉, the fidelity of C|φ⊕, 0 . . . 0〉 and U⊕|φ⊕〉 ⊗ |ψ〉 is at most 1/2 +
exp(−Ω(n/(d+ 1)));
for |φF 〉 = |+, 0n−1〉, the fidelity of C|φF , 0 . . . 0〉 and UF |φF 〉 ⊗ |ψ〉 is at most 1/2 +
exp(−Ω(n/(d+ 1)));
the fidelity of C|0 . . . 0〉 and | n, ψ〉 is at most 1/2 + exp(−Ω(n/(d+ 1))).

(Perhaps surprisingly, a sharp “phase change” near the cn/(d + 1) threshold is in fact
inherent to our proof. The +1 in exp(−Ω(n/(d + 1))) is necessary when C = H and
|ν〉 = |+〉 := |0〉+|1〉√

2 .) For example, Theorem 1.5 implies that a depth-2 QAC circuit
constructing an approximate n-nekomata must have at least Ω(n) multi-qubit gates acting
on the targets of that nekomata. This Ω(n) lower bound is tight, because Theorem 1.1 says
that depth-2 QAC circuits can construct approximate n-nekomata, and a depth-d QAC
circuit can have at most nd multi-qubit gates acting on any given set of n qubits. Similarly,
Corollary 1.6 implies that depth-7 QAC circuits approximating n-qubit parity, fanout, or
restricted fanout require at least Ω(n) multi-qubit gates acting on the n “input” qubits, and
this Ω(n) lower bound is tight as well by Corollary 1.2.

Theorem 1.5 also implies that the total number of multi-qubit gates, a.k.a. the size, of a
depth-d QAC circuit constructing an approximate n-nekomata must be at least Ω(n/(d+ 1)).
When d is o(logn), this lower bound is disappointingly far from the upper bounds of
Theorem 1.1 and Corollary 1.2. However, Green et al. [8] observed that for some d = Θ(logn),
a depth-d QAC circuit of size O(n) can construct an n-nekomata (specifically, the n-qubit
cat state), so for this value of d our Ω(n/d) size lower bound is tight to within a logarithmic
factor. Similarly, for some d = Θ(logn), the minimum size of a depth-d QAC circuit that
approximates n-qubit parity, fanout, or restricted fanout is between Ω(n/ logn) and O(n),
by Corollary 1.6 and upper bounds of Green et al.

If a QAC circuit has size s ≤ o(
√
n) then its depth d satisfies d ≤ s ≤ o(

√
n), so

s ≤ o(
√
n) ≤ o(n/(d+ 1)). It follows from Theorem 1.5 and Corollary 1.6 that QAC circuits

of arbitrary depth require size at least Ω(
√
n) to construct approximate n-nekomata, or to

approximately compute n-qubit parity, fanout, or restricted fanout.2
Finally, we remark that Theorem 1.5 is actually a special case of a more general result,

Theorem 5.2, about states |ψ〉 such that for some orthogonal projections3 Q1, . . . , Qn on
arbitrary numbers of qubits, 〈ψ|

(⊗n
j=1Qj ⊗ I

)
|ψ〉 = 〈ψ|

(⊗n
j=1(I −Qj)⊗ I

)
|ψ〉 = 1/2.

(For example, n-nekomata satisfy this criterion with Qj = |0〉〈0| for all j.) We will comment
on this generalization of Theorem 1.5 again in Section 1.2.7.

1.2.6 A Normal Form for Quantum Circuits
Integral to our proof of Theorem 1.5 is a certain normal form for QAC circuits, which may
be of independent interest since the standard quantum circuit model is that of QAC circuits
whose gates have maximum arity 2. Here we give the underlying intuition, by way of analogy
with well-known facts from classical circuit complexity. If we define AC circuits as consisting
only of AND and NOT gates, then it cannot in general be assumed that the NOT gates are

2 In the full paper we generalize this argument to hold for the number of multi-qubit gates acting on the
target/input qubits.

3 I.e. Qj = Q2
j = Q†j for all j.

ITCS 2021



32:6 QAC0 Complexity of Approximating Parity

all adjacent to the inputs. However, by DeMorgan’s laws we may equivalently allow OR
gates in AC circuits as well, and then it can be assumed that the NOT gates are all adjacent
to the inputs.4 Similarly, we introduce a certain further generalization of generalized Toffoli
gates which allows us to assume that the one-qubit gates in a QAC circuit are all adjacent
to the input.

1.2.7 Depth-2 Lower Bounds
I Theorem 1.7. Let C be a depth-2 QAC circuit of arbitrary size, acting on any number of
qubits. Then for all states |ψ〉,
(i) for |φ⊕〉 = |0,+n−1〉, the fidelity of C|φ⊕, 0 . . . 0〉 and U⊕|φ⊕〉 ⊗ |ψ〉 is at most 1/2 +

exp(−Ω(n));
(ii) for |φF 〉 = |+, 0n−1〉, the fidelity of C|φF , 0 . . . 0〉 and UF |φF 〉 ⊗ |ψ〉 is at most 1/2 +

exp(−Ω(n));
(iii) the fidelity of C|0 . . . 0〉 and | n, ψ〉 is at most 1/2 + exp(−Ω(n)).

Our proof of Theorem 1.7 gives a multiplicative constant of roughly 1/1060000 implicit
in the Ω(·) notation in the above inequalities, which makes them trivial for small values of
n. If n is sufficiently large however, then Theorem 1.7 implies that depth-2 QAC circuits
cannot approximate n-qubit parity, fanout, or restricted fanout, or approximately construct
the n-qubit cat state, even if these approximations are not required to be clean. Still taking
n to be sufficiently large, this improves on the previously mentioned result of Padé et al. [13]
that depth-2 QAC circuits cannot cleanly compute parity exactly on four or more qubits.

Theorem 1.7 and Corollary 1.2 imply that for all sufficiently large n, the minimum depth
of a QAC circuit approximating n-qubit parity is between 3 and 7 inclusive, and likewise
for fanout, restricted fanout, and constructing the cat state. By Theorem 1.1 there is a
depth-2 QAC circuit that constructs an approximate n-nekomata for all n, so any proof
of Theorem 1.7 must use some property of | n, ψ〉 that does not hold for an arbitrary
n-nekomata. Ours uses a property similar to the fact that if we measure some of the qubits
in the “B” register of | n〉A⊗ |ψ〉B in an arbitrary basis, then the resulting state in registers
A and B is still an n-nekomata.

Our proof of Theorem 1.7 mostly uses different techniques than those of Padé et al. An
exception is the observation, of which we use a generalization, that if we define a “generalized
Z gate” on any number of qubits by Z = I − 2|1 . . . 1〉〈1 . . . 1| then Z|0, φ〉 = |0, φ〉 and
Z|1, φ〉 = |1〉 ⊗ Z|φ〉 for all states |φ〉. We also incorporate a variant of the proof given
by Bene Watts, Kothari, Schaeffer and Tal [2, Theorem 16] that there is no QNC circuit
(QAC circuit whose gates have maximum arity 2) of depth o(logn) that maps |0 . . . 0〉 to
| n, 0 . . . 0〉: Using a “light cone” argument they prove that out of any n output qubits,
there are at least two whose standard-basis measurements would be independent, but the
standard-basis measurements of any two qubits in | n〉 are dependent.

Our proof of Theorem 1.7 goes roughly as follows. If there are only o(n) multi-qubit
gates acting on the n targets of | n, ψ〉 then the result follows from Theorem 1.5. Otherwise,
out of the multi-qubit gates acting on the targets, the average gate acts on O(1) targets, as
would be the case in a QNC circuit. Using a variant of a light cone argument, we choose
Θ(n) pairwise disjoint sets of qubits on which to define orthogonal projections, and apply
the generalization of Theorem 1.5 that was mentioned at the end of Section 1.2.5.

4 Invoking this assumption results in a constant-factor blowup in size and no blowup in depth, where (as
is customary) we do not count NOT gates toward the size or depth of AC circuits.
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1.3 Organization
In Section 1.4 we introduce some miscellaneous notation and definitions. In Section 2 we give
multiple equivalent characterizations of QAC circuits, including the previously mentioned
normal form, and introduce some related definitions which we will use in more general
contexts as well. In Section 3 we give reductions between parity, fanout, restricted fanout,
and constructing nekomata; we also use these reductions to prove that the d ≥ 11 case
of Corollary 1.2 follows from Theorem 1.1 (the d < 11 case is proved in the full paper),
that Corollary 1.6 follows from Theorem 1.5, and that Theorems 1.7(i) and 1.7(ii) follow
from Theorem 1.7(iii). In Section 4 we prove our upper and lower bounds for constructing
approximate nekomata in mostly classical circuits, Theorems 1.1 and 1.4. In Section 5 we
prove our other main results, Theorem 1.5 and Theorem 1.7(iii). Sections 3 to 5 may be read
in any order.

1.4 Preliminaries
We write log and ln to denote the logarithms base 2 and e respectively, and (xj)j to denote
the tuple of all xj for j in some implicit index set. Also let [n] = {1, . . . , n} and ‖ψ‖ =

√
ψ∗ψ,

i.e. ‖ · ‖ denotes the 2-norm. Anything written as 〈·| or |·〉 is implicitly unit-length. “Proof
sketch” environments are replaced by complete proofs in the full paper.

Orthogonal projections are linear transformations Q such that Q = Q2 = Q†. For an
orthogonal projection Q and a state |ϕ〉, we call 〈ϕ|Q|ϕ〉 “the probability that |ϕ〉 measures
to Q”. If Q = |ψ〉〈ψ| then we also call this “the probability that |ϕ〉 measures to |ψ〉”, and
it equals |〈ψ|ϕ〉|2, a.k.a. the fidelity of |ϕ〉 and |ψ〉. More generally, if Q is an orthogonal
projection on some Hilbert space H then we call 〈ϕ|(Q⊗ I)|ϕ〉 “the probability that the H
qubits of |ϕ〉 measure to Q”.

We use standard notation for the Hadamard basis states |+〉 = |0〉+|1〉√
2 , |−〉 = |0〉−|1〉√

2 ,
Hadamard gate H = |+〉〈0|+ |−〉〈1|, and NOT gate X = |0〉〈1|+ |1〉〈0|. We write I to denote
the identity transformation, IH for the identity on the Hilbert space H, and In for the
identity on some n-qubit Hilbert space.

To be thorough, we remind the reader that an n-nekomata is a state with n qubits (called
targets) that measure to 0n and to 1n each with probability 1/2, or equivalently a state of
the form 1√

2

∑1
b=0 |bn, ψb〉 for some states |ψ0〉, |ψ1〉 on any number of qubits. For example,

the n-qubit cat state is the state | n〉 = (|0n〉+ |1n〉)/
√

2.

2 QAC Circuits

Consider a quantum circuit C, written as C = LdMd · · ·L1M1L0 such that each Lk consists
only of one-qubit gates and each Mk is a layer (tensor product) of multi-qubit gates. We
may assume that each Lk is a single layer as well, because the product of one-qubit gates is
also a one-qubit gate. Define the size of C to be the number of multi-qubit gates in C, the
depth of C to be the number of layers of multi-qubit gates in C (in this case, d), and the
topology of C to be the set of pairs (S, k) such that S equals the support of some gate in
Mk, where the support of a gate is the set of qubits acted on by that gate. Note that the
topology of C encodes its depth, size, and more generally the number of multi-qubit gates
acting on any given set of qubits.

Recall that QAC circuits are quantum circuits with arbitrary one-qubit gates and general-
ized Toffoli gates of arbitrary arity, where (n+ 1)-ary generalized Toffoli gates are defined by
|x, b〉 7→ |x, b⊕

∧n
j=1 xj〉 for x = (x1, . . . , xn) ∈ {0, 1}n, b ∈ {0, 1}. Define an (n+ 1)-ary OR
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∨

=

X X

X X

X X

X

Figure 1 The multi-qubit gates on the left and right are OR and generalized Toffoli gates
respectively, whose target qubits are on the bottom wire.

gate by |x, b〉 7→ |x, b⊕
∨
j xj〉 for x ∈ {0, 1}n, b ∈ {0, 1}, and call the qubit corresponding to

b in these definitions the target qubit of the gate. By the construction of an OR gate from
a generalized Toffoli gate and NOT gates in Figure 1, we may add OR gates to the set of
allowed gates when defining QAC circuits, without changing the set of topologies of QAC
circuits computing any given unitary transformation.

For a state |θ〉 let R|θ〉 = Rθ = I − 2|θ〉〈θ| (the R stands for “reflection”). Let a
mono-product state be a tensor product of any number of one-qubit states. When |θ〉 is a
mono-product state we call Rθ an R⊗ gate. For example, an (n+ 1)-qubit generalized Toffoli
gate equals R|1n,−〉, because it acts on the basis {|0〉, |1〉}⊗n ⊗ {|+〉, |−〉} by multiplying
|1n,−〉 by -1 and leaving all other states in this basis unchanged.

Consider an (n+ 1)-qubit mono-product state |θ〉, and let L be a layer of one-qubit gates
such that |θ〉 = L|1n,−〉. Then,

Rθ = I − 2|θ〉〈θ| = I − 2L|1n,−〉〈1n,−|L† = L(I − 2|1n,−〉〈1n,−|)L† = LR|1n,−〉L
†, (1)

i.e. Rθ equals the conjugation of a generalized Toffoli gate by a layer of one-qubit gates.
(Fang et al. [5] observed Equation (1) in the case where |θ〉 = |1n+1〉 and L = In ⊗ H.)
Therefore, similarly to the above, we may add arbitrary R⊗ gates to the set of allowed gates
when defining QAC circuits.

In fact, a stronger statement holds. Let a QAC circuit be in R⊗ normal form if it can
be written as CL such that C consists only of multi-qubit R⊗ gates and L is a layer of
single-qubit gates. We will use the following in Section 5:

I Proposition 2.1. Every QAC circuit computes the same unitary transformation as a circuit
in R⊗ normal form with the same topology.

Proof sketch. The proof is by induction on the depth of the circuit. Let C = LMD be the
circuit, where L (resp. M) is the top layer of one-qubit (resp. multi-qubit) gates in C. Then
write C = (LML†)(LD), and apply Equation (1) and the inductive hypothesis. J

3 Reductions to and from Constructing Nekomata

In Section 3.1 we define the problems mentioned in the following theorem, and in Sections 3.1
and 3.2 we prove the second and first paragraphs of this theorem respectively:

I Theorem 3.1. For all ε ≥ 0, if there is a QAC circuit of size s, depth d, and number
of qubits acted on a that solves the (1 − ε)-approximate n-nekomata problem, then there
is a QAC circuit of size O(s + n), depth 4d + 3, and number of ancillae a that solves the
(1−O(ε))-approximate (n+ 1)-qubit clean parity problem.



G. Rosenthal 32:9

nekomata
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dirty
parity

clean
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dirty
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cat
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Figure 2 A visualization of Theorem 3.1; see the theorem statement for the meaning of the
arrows.

For all 0 ≤ p ≤ 1 and every non-red5 arrow from a problem P to a problem Q in Figure 2,
if a QAC circuit C solves p-approximate, n-qubit P then there is a QAC circuit with the
same topology as C that solves p-approximate, n-qubit Q. (If Q is the nekomata problem then
substitute “n-nekomata” for “n-qubit nekomata” here.) Furthermore, if this arrow is dashed
then C itself solves p-approximate, n-qubit Q.

Then, using Theorem 3.1, in Section 3.3 we prove that the d ≥ 11 case of Corollary 1.2
follows from Theorem 1.1. It is easy to prove Corollary 1.6 assuming Theorem 1.5, and to
prove Theorems 1.7(i) and 1.7(ii) assuming Theorem 1.7(iii), using reasoning similar to that
in the proof of Theorem 3.1.

3.1 Problem Definitions and Most Reductions
We omit certain elementary parts of the proof, which may be found in the full paper. Recall
that we define the phase-dependent fidelity of states |ϕ〉 and |ψ〉 to be 1− ‖|ϕ〉 − |ψ〉‖2. This
quantity is at most the fidelity of |ϕ〉 and |ψ〉, because

|〈ψ|ϕ〉|2 ≥
(
〈ψ|ϕ〉+ 〈ϕ|ψ〉

2

)2
=
(

1− ‖|ϕ〉 − |ψ〉‖
2

2

)2

≥ 1− ‖|ϕ〉 − |ψ〉‖2. (2)

I Remark. If 〈ϕ|ψ〉 is a real number close to 1, say 〈ϕ|ψ〉 = 1 − ε, then |ϕ〉 and |ψ〉 have
fidelity 1− 2ε+ ε2 and a nearly identical phase-dependent fidelity of 1− 2ε. On the other
hand, if the phases of |ϕ〉 and |ψ〉 differ, then these states may have low phase-dependent
fidelity even if their fidelity is close to 1.

The following two definitions are with respect to an arbitrary unitary transformation U
on n qubits:

I Problem 3.2 (p-approximate Clean U). Construct a circuit C on at least n qubits such
that for all n-qubit states |φ〉, the phase-dependent fidelity of C|φ, 0 . . . 0〉 and U |φ〉⊗ |0 . . . 0〉
is at least p.

5 Only the arrow from “nekomata” to “clean parity” is red.

ITCS 2021



32:10 QAC0 Complexity of Approximating Parity

I Problem 3.3 (p-approximate Dirty U). Construct a circuit C on at least n qubits such that
for all n-qubit states |φ〉, the first n qubits of C|φ, 0 . . . 0〉 measure to U |φ〉 with probability
at least p.

Given n, recall that the unitary transformations for n-qubit parity and fanout are
defined respectively by U⊕|b, x〉 = |b⊕

⊕n−1
j=1 xj , x〉 and UF |b, x〉 = |b, x1 ⊕ b, . . . , xn−1 ⊕ b〉

for b ∈ {0, 1}, x = (x1, . . . , xn−1) ∈ {0, 1}n−1. Define the clean and dirty versions of
approximating n-qubit parity and fanout as instances of Problems 3.2 and 3.3 with respect
to U⊕ and UF .

Green et al. [8] proved that H⊗nU⊕H⊗n = UF . In the full paper we prove that if
a circuit C computes p-approximate, n-qubit clean (resp. dirty) parity, then the circuit
(H⊗n ⊗ I)C(H⊗n ⊗ I) computes p-approximate, n-qubit clean (resp. dirty) fanout.

I Problem 3.4 (p-approximate Clean Restricted Fanout). Construct a circuit C on at least n
qubits such that for all one-qubit states |φ〉, the phase-dependent fidelity of C|φ, 0n−1, 0 . . . 0〉
and UF |φ, 0n−1〉 ⊗ |0 . . . 0〉 is at least p.

I Problem 3.5 (p-approximate Dirty Restricted Fanout). Construct a circuit C on at least n
qubits such that for all one-qubit states |φ〉, the first n qubits of C|φ, 0n−1, 0 . . . 0〉 measure
to UF |φ, 0n−1〉 with probability at least p.

I Problem 3.6 (p-approximate Clean | n〉). Construct a circuit C on at least n qubits such
that the phase-dependent fidelity of C|0 . . . 0〉 and | n, 0 . . . 0〉 is at least p.

I Problem 3.7 (p-approximate Dirty | n〉). Construct a circuit C on at least n qubits such
that the first n qubits of C|0 . . . 0〉 measure to | n〉 with probability at least p.

I Problem 3.8 (p-approximate n-nekomata). Construct a circuit C such that for some
n-nekomata |ν〉, the fidelity of C|0 . . . 0〉 and |ν〉 is at least p.

3.2 Reducing Clean Parity to Constructing Nekomata
Let C be a circuit on a qubits such that |ν〉 := C|0a〉 approximates an n-nekomata. A circuit
for approximate (n+ 1)-qubit clean parity is shown in Figure 3, where the top n wires acted
on by each of the C and C† subcircuits correspond to the targets of |ν〉. Within each dotted
rectangle is a layer of n copies of R|11〉, the i’th of which acts on the wires corresponding to
the i’th input qubit and the i’th target of |ν〉 for i ∈ [n]. The gate R|11〉 is better known as
a controlled Z gate, and acts as |xy〉 7→ (−1)xy|xy〉 for x, y ∈ {0, 1}. In the middle of the
circuit is an OR gate (recall Figure 1). The correctness of this circuit is proved in the full
paper.

3.3 Proof of Corollary 1.2 (d ≥ 11) Assuming Theorem 1.1
I Lemma 3.9 (essentially Green et al. [8]). For all m ≥ 2 there is a quantum circuit of depth
dlogm ne and size at most n− 1, consisting only of restricted fanout gates of arity at most
m, that computes n-qubit restricted fanout exactly using no ancillae.

Proof. By linearity it suffices to consider input states of the form |b, 0n−1〉 for b ∈ {0, 1}. The
proof is by induction on d = dlogm ne, for a fixed value of m. Note that d− 1 < logm n ≤ d,
so md−1 < n ≤ md. If d = 0 then n = 1 and the identity circuit suffices. If d > 0 then by
induction we can map |b, 0n−1〉 to |bmd−1

, 0n−md−1〉 in depth d− 1 and size at most md−1− 1.
Let n1, . . . , nmd−1 ∈ [m] be such that

∑
i ni = n, and compute

⊗
i UF |b, 0ni−1〉 = |bn〉. Since⊗

i UF has size at most n−md−1 (omitting one-qubit gates), the total size of the circuit is
at most (n−md−1) + (md−1 − 1) = n− 1. J
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|x〉 |x〉

|0n〉

C C† C C†

|0n〉

|0a−n〉 |0a−n〉

|b〉 ∨ |b⊕
⊕

j xj〉

Figure 3 A circuit for parity, assuming C constructs an n-nekomata. See the surrounding text
for further explanation.

Given Theorems 1.1 and 3.1 and Lemma 3.9, the proof of the d ≥ 11 case of Corollary 1.2
is elementary (if slightly tedious) and may be found in the full paper.

4 Tight Bounds for Constructing Approximate Nekomata in “Mostly
Classical” Circuits

Call a QAC circuit purely classical if it consists only of generalized Toffoli gates (including
NOT gates, which are generalized Toffoli gates on one qubit). Call a QAC circuit mostly
classical if it can be written as CL such that C is purely classical and L is a layer of R⊗ gates;
by Equation (1) this is equivalent to the definition from Section 1.2.4. Call a mostly classical
QAC circuit nice if it can be written as CL in this way such that every multi-qubit gate
Rθ in L satisfies |〈0 . . . 0|θ〉|2 ≤ 1/4. (The niceness condition will allow us to express certain
quantities as convex combinations in a convenient way, by ensuring that the coefficients in
these convex combinations are between 0 and 1.) We prove the following generalizations of
Theorems 1.1 and 1.4 respectively:

I Theorem 4.1. For all 2 ≤ d ≤ logn and ε > 0 there exists a nice, mostly classical, depth-d
QAC circuit C of size and number of qubits acted on exp(O(n2−d log(n2−d/ε))) +O(n) such
that C|0 . . . 0〉 has fidelity at least 1− ε with some n-nekomata.

I Theorem 4.2. Let C be a mostly classical circuit of size s and depth d.
(i) The fidelity of C|0 . . . 0〉 and any n-nekomata is at most

1
2 + exp

−Ω

 n/(4d logn)
max

(
log s,

√
n/(4d logn)

)
.

(ii) If C is nice, then the fidelity of C|0 . . . 0〉 and any n-nekomata is at most

1
2 + exp

−Ω

 n/2d

max
(

log s,
√
n/2d

)
.
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Theorems 4.1 and 4.2(ii) imply that for d ≥ 2, the minimum size of a nice, mostly classical,
depth-d QAC circuit that “constructs an approximate n-nekomata” (i.e. maps |0 . . . 0〉 to
a state that has fidelity at least 3/4 with some n-nekomata) is between exp(Ω(n/2d)) and
exp(Õ(n/2d))+O(n). We prove the d > 2 case of Theorem 4.1 solely for the sake of comparison
with Theorem 4.2(ii), as Theorem 4.1 gives a weaker upper bound than Corollary 1.2 when
ω(1) ≤ d ≤ o(logn). Theorem 4.2 makes a stronger statement about nice circuits than about
non-nice circuits, since a/max(log s,

√
a) = min(a/ log s,

√
a) for all a > 0.

In Section 4.1 we make some general observations about mostly classical circuits and
“approximate nekomata”, including observations common to the proofs of Theorems 4.1
and 4.2. In Section 4.2 we prove Theorem 4.1, and in Section 4.3 we prove Theorem 4.2(ii).
We prove Theorem 4.2(i) in the full paper; its proof has a similar high-level idea to that of
Theorem 4.2(ii), and is much more complicated.

4.1 Reduction to a Classical Sampling Problem
Collectively, the following observations reduce proving Theorems 4.1 and 4.2 to proving
upper and lower bounds respectively for a certain type of sampling problem. This sampling
problem can be succinctly characterized in purely classical and probabilistic terms, with only
a transient reference to quantum circuits. Claims made in this subsection are proved in the
full paper.

Recall that nekomata can be defined as states for which a standard-basis measurement of
the targets is distributed in a certain way. The following two lemmas make similar statements
about “approximate nekomata”, and are used to prove Theorems 4.1 and 4.2 respectively:

I Lemma 4.3. Let |ϕ〉 be a state with n “target” qubits that measure to all-zeros with
probability exactly 1/2 and all-ones with probability at least 1/2− (2/3)ε. Then there exists
an n-nekomata |ν〉 such that |〈ν|ϕ〉|2 ≥ 1− ε.

I Lemma 4.4. Let |ϕ〉 be a state with n “target” qubits that measure to all-zeros with
probability p and all-ones with probability q. Then |〈ν|ϕ〉|2 ≤ 1/2 +

√
min(p, q) for all

n-nekomata |ν〉 with the same targets as |ϕ〉.

Consider a mostly classical circuit, written as CL such that C is purely classical and L is a
layer of R⊗ gates. A standard-basis measurement of designated “target” qubits of CL|0 . . . 0〉
is distributed identically to an appropriate marginal distribution of a standard-basis mea-
surement of all qubits of CL|0 . . . 0〉. It is easy to see that standard-basis measurements
commute with generalized Toffoli gates, so we may first measure L|0 . . . 0〉 in the standard
basis and then apply C to the result.

Finally, the following is straightforward to verify:

I Lemma 4.5. Let (|θj〉)j be one-qubit states, and let pj = |〈1|θj〉|2 for all j. A standard-

basis measurement of R⊗
j
|θj〉|0 . . . 0〉 outputs all-zeros with probability

(
1− 2

∏
j(1− pj)

)2
,

and any other boolean string (yj)j with probability 4
∏
j(1− pj)P (Bernoulli(pj) = yj).

For mostly classical circuits that are nice, the following is a more convenient characteriza-
tion of this distribution:

I Corollary 4.6. If
∏
j(1 − pj) ≤ 1/4 then the distribution from Lemma 4.5 is a convex

combination of all-zeros with probability 1−4
∏
j(1−pj) and (Bernoulli(pj))j with probability

4
∏
j(1− pj), where the Bernoulli(pj) random variables are all independent.
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4.2 Proof of Theorem 4.1
Here we prove the depth-2 case of Theorem 4.1 (which is sufficient for all of our applications
of Theorem 4.1); the generalization to depths greater than 2 is handled in the full paper.

I Reminder (depth-2 case of Theorem 4.1). For all ε > 0 there exists a nice, mostly classical,
depth-2 QAC circuit C of size and number of qubits acted on exp(O(n log(n/ε))) such that
C|0 . . . 0〉 has fidelity at least 1− ε with some n-nekomata.

Proof. Let M ∈ N and δ ∈ (0, 1) be parameters to be chosen later.6 The circuit acts on
n(M + 1) qubits, all initialized to |0〉, and arranged in a grid of dimensions n × (M + 1)
(Figure 4). Designate one column as the “target” column, and call the qubits in the M other
columns “ancillae”. First, to each ancilla column, apply R(√δ|0〉+√1−δ|1〉)⊗n . Second, to each
row, apply an (M + 1)-qubit OR gate whose target qubit is in the target column. (A layer of
OR gates is a depth-1 purely classical circuit, by the construction in Figure 1.)

All measurements described below are with respect to the state on the ancillae between
the first and second layers of the above circuit. By Lemma 4.3 it suffices to choose M and δ
such that if we measure the ancillae in the standard basis, then with probability exactly 1/2
all of the ancillae measure to 0, and with probability at least 1/2− (2/3)ε at least one ancilla
in each row measures to 1. We now choose δ in terms of M such that the ancillae measure
to all-zeros with probability 1/2. By Lemma 4.5 and the independence of measurements of
different columns, it suffices to ensure that (1− 2δn)2M = 1/2. Choose δ ∈ (0, (1/2)1/n) that
satisfies this equation.

Let ε′ = (2/3)ε. Below we will choose M such that the probability that there exists an
ancilla column measuring to neither all-zeros nor all-ones is at most ε′. Equivalently, with
probability at least 1− ε′, every ancilla column measures to either all-zeros or all-ones. Since
the ancillae measure to all-zeros with probability 1/2, it follows that with probability at
least 1/2− ε′, every ancilla column measures to all-zeros or all-ones and at least one ancilla
column measures to all-ones. Therefore the probability is at least 1/2− ε′ that at least one
ancilla in every row measures to 1, as desired.

By Lemma 4.5 and a union bound, the probability that there exists an ancilla column
measuring to neither all-zeros nor all-ones is at most

M(1− (1− 2δn)2 − 4δn(1− δ)n) = 4Mδn(1− δn − (1− δ)n) ≤ 4Mnδn+1.

Since 1/2 = (1− 2δn)2M ≤ exp(−4δnM), it follows that δn ≤ ln(2)/4M , so

4Mnδn+1 ≤ 4Mn(ln(2)/4M)1+1/n = ln(2)n(ln(2)/4M)1/n.

To make this bound at most ε′, let M = d(ln(2)/4) · (ln(2)n/ε′)ne ≤ exp(O(n log(n/ε))).
Finally, the circuit is nice because δn ≤ ln(2)/4M ≤ ln(2)/4 < 1/4. J

6 Ultimately we will let M = exp(Θ(n log(n/ε))) and δ = Θ(ε/n).

n

M + 1

Figure 4 The layout of the circuit.
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4.3 Proof of Theorem 4.2(ii)
We use the following concentration inequality of Gavinsky, Lovett, Saks and Srinivasan [6]:

I Definition 4.7 ([6]). Call a random string (Y1, . . . , Yn) ∈ {0, 1}n a read-r family if there
exist m ∈ N, independent random variables X1, . . . , Xm, sets S1, . . . , Sn ⊆ [m] such that
|{j | i ∈ Sj}| ≤ r for all i ∈ [m], and functions f1, . . . , fn such that Yj = fj((Xi)i∈Sj ) for all
j ∈ [n].

I Theorem 4.8 ([6]). Let (Y1, . . . , Yn) be a read-r family, and let µ = E
[∑n

j=1 Yj

]
. Then

for all ε ≥ 0,

P (Y1 + · · ·+ Yn ≥ µ+ εn) ≤ exp(−2ε2n/r),
P (Y1 + · · ·+ Yn ≤ µ− εn) ≤ exp(−2ε2n/r).

I Remark. For example, if r = 1 then Y1, . . . , Yn are all independent and so Theorem 4.8
recovers a well-known Chernoff bound for sums of independent Bernoulli random variables.
Theorem 4.8 also recovers this Chernoff bound when n = rm and Yj = Xdj/re for all j [6].

Consider a string x of independent Bernoulli random variables. If G is a generalized
Toffoli gate then G|x〉 is a read-2 family, because for all i the i’th bit of x can only influence
the i’th and target bits of G|x〉. More generally, if G is a generalized Toffoli gate and L1, L2
are layers of NOT gates acting on subsets of the support of G, then L1GL2|x〉 is a read-2
family. Even more generally, it follows by induction that if C is a depth-d purely classical
circuit then C|x〉 is a read-2d family.

Before proving Theorem 4.2(ii), as a warmup we briefly prove the following:

I Proposition 4.9. If C is a depth-d purely classical circuit and |φ〉 is a mono-product state,
then |〈ν|C|φ〉|2 ≤ 1/2 + exp(−Ω(n/2d)) for all n-nekomata |ν〉.

Proof. Since standard-basis measurements of qubits in a mono-product state are independent,
it follows from the above discussion that a standard-basis measurement of any n designated
target qubits of C|φ〉 is a read-2d family. If the expected Hamming weight of a standard-
basis measurement of the targets of C|φ〉 is less (resp. greater) than or equal to n/2, then
Theorem 4.8 implies that the targets of C|φ〉 measure to all-ones (resp. all-zeros) with
probability at most exp(−Ω(n/2d)), and the result follows from Lemma 4.4. J

I Reminder (Theorem 4.2(ii)). If C is a nice, mostly classical circuit of size s and depth d,
then the fidelity of C|0 . . . 0〉 and any n-nekomata is at most

1
2 + exp

−Ω

 n/2d

max
(

log s,
√
n/2d

)
.

Abridged proof. Designate n qubits of C|0 . . . 0〉 as targets, and assume without loss of
generality that s ≥ exp

(√
n/2d

)
. We will prove that for some a ∈ {0, 1}, the targets of

C|0 . . . 0〉 measure to an with probability at most exp(−Ω(n2−d/ log s)). The result then
follows from Lemma 4.4.

Write C = D(L⊗
⊗

G∈G G) such thatD is purely classical, L is a layer of single-qubit gates,
and G is a set of multi-qubit R⊗ gates that each satisfy the precondition of Corollary 4.6. For
all G ∈ G, a standard-basis measurement of G|0 . . . 0〉 is distributed identically to (bG ∧xG,i)i
for some independent Bernoulli random variables bG, (xG,i)i, where E[bG] = 4

∏
i(1−E[xG,i]).

Let µG =
∑
i E[xG,i]; then E[bG] ≤ 4 exp(−µG).
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By a union bound, the probability that there exists G ∈ G such that µG > 2 ln s and
bG = 1 is at most∑
G:µG>2 ln s

4 exp(−µG) < 4s exp(−2 ln s) = exp(−Ω(log s)) ≤ exp(−Ω(n2−d/ log s)).

Therefore it suffices to prove that for some a ∈ {0, 1}, the targets of |ϕ〉 := D(L ⊗⊗
G:µG≤2 ln sG ⊗ I)|0 . . . 0〉 measure to an with probability at most exp(−Ω(n2−d/ log s)).

Henceforth we will never refer to any gate G for which µG > 2 ln s; phrases such as “for all
G” and “(·G)G” will implicitly quantify over only those gates G for which µG ≤ 2 ln s.

Let b = (bG)G and x = (xG,i)G,i. Call x “good” if
∑
i xG,i ≤ c ln s for all G, where

c > 2 is a universal constant large enough so that e(2e/c)c < 1. A well-known Chernoff
bound states that if S is a sum of independent Bernoulli random variables, and µ = E[S],
then P (S > t) < (eµ/t)te−µ for all t > µ. Therefore, by a union bound and the fact that
maxG µG ≤ 2 ln s, the probability that x fails to be good is at most∑

G

(eµG/c ln s)c ln s ≤ s(2e/c)c ln s = (e(2e/c)c)ln s = e−Ω(log s) ≤ exp(−Ω(n2−d/ log s)).

Let y be a string of independent Bernoulli random variables distributed identically to a
standard-basis measurement of L|0 . . . 0〉. Call the targets of D|y, (bG ∧ xG,i)G,i, 0 . . . 0〉 the
“output bits”, and note that they are distributed identically to a standard-basis measurement
of the targets of |ϕ〉. If b is fixed then the output bits are a read-2d family (as functions
of the independent Bernoulli random variables in x and y). Alternatively, if x and y are
fixed and x is good then the output bits are a read-O(2d log s) family (as functions of the
independent Bernoulli random variables in b).

The rest of the proof is given in the full paper, and involves the triangle inequality. J

5 Lower Bounds for General QAC Circuits

In Section 5.1 we prove a generalization of Theorem 1.5. The proof uses the following claim,
which is proved in Section 5.2 (and is obtained as a corollary of a stronger result):

I Corollary 5.1. For all d ≥ 1, orthogonal projections Q1, . . . , Qd, and states |φ〉,

‖Qd · · ·Q1|φ〉‖ ≤ exp
(
−〈φ|(I −Qd)|φ〉2d

)
.

Then, using this generalization of Theorem 1.5, in Sections 5.3 and 5.4 we prove Theo-
rem 1.7(iii).

5.1 Proof of Theorem 1.5
Theorem 1.5 is the case of the following in which H1, . . . ,Hn are single-qubit Hilbert spaces,
|φ〉 is the all-zeros state, Qj = |0〉〈0| for all j, and |ψ〉 is an n-nekomata.

I Theorem 5.2. There is a universal constant c > 0 such that the following holds. Let
H1, . . . ,Hn be Hilbert spaces, let HT =

⊗n
j=1Hj (for “targets”), and let HA be a Hilbert

space (for “ancillae”). Let |φ〉 = |φ1, . . . , φn, φA〉 for some states |φj〉 ∈ Hj , j ∈ [n] ∪ {A}.
Let Qj be an orthogonal projection on Hj for j ∈ [n], and let |ψ〉 be a state in HT ⊗HA that
measures to

⊗n
j=1Qj ⊗ IHA

and to
⊗n

j=1(I −Qj)⊗ IHA
each with probability 1/2. Let C

be a depth-d QAC circuit on HT ⊗HA with at most cn/(d+ 1) multi-qubit gates acting on
HT . Then, |〈ψ|C|φ〉|2 ≤ 1/2 + exp(−Ω(n/(d+ 1))).
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Abridged proof. By Proposition 2.1 we may write C = DL for some layer of single-qubit
gates L and QAC circuit D, where D has the same topology as C and consists only of
multi-qubit R⊗ gates. Since L|φ〉 factors as a product state in the same way that |φ〉 does,
we may assume without loss of generality that C consists only of multi-qubit R⊗ gates, by
replacing C and |φ〉 with D and L|φ〉 respectively.

We now generalize Lemma 4.4 from nekomata to states such as |ψ〉. Let Q =
⊗n

j=1Qj ⊗
IHA

and Q′ =
⊗n

j=1(I −Qj)⊗ IHA
, and let |ϕ〉 = C|φ〉. Since |ψ〉 measures to Q+Q′ with

probability 1, it follows from the triangle inequality and Cauchy-Schwarz that

|〈ψ|ϕ〉|2 = |〈ψ|(Q+Q′)|ϕ〉|2 ≤ (|〈ψ|Q|ϕ〉|+ |〈ψ|Q′|ϕ〉|)2

≤ (‖Q|ϕ〉‖ · ‖Q|ψ〉‖+ ‖Q′|ϕ〉‖ · ‖Q′|ψ〉‖)2 = (‖Q|ϕ〉‖/
√

2 + ‖Q′|ϕ〉‖/
√

2)2

= 〈ϕ|(Q+Q′)|ϕ〉/2 + ‖Q|ϕ〉‖ · ‖Q′|ϕ〉‖ ≤ 1/2 + min(‖Q|ϕ〉‖, ‖Q′|ϕ〉‖),

so it suffices to prove that min(‖Q|ϕ〉‖, ‖Q′|ϕ〉‖) ≤ exp(−Ω(n/(d+ 1))).
Since

∑n
j=1〈φj |Qj |φj〉 +

∑n
j=1〈φj |(I − Qj)|φj〉 = n, either

∑n
j=1〈φj |Qj |φj〉 ≥ n/2 or∑n

j=1〈φj |(I−Qj)|φj〉 ≥ n/2. Assume without loss of generality that
∑n
j=1〈φj |(I−Qj)|φj〉 ≥

n/2. We will prove that ‖Q|ϕ〉‖ ≤ exp(−Ω(n/(d+ 1))).
Let G be the set of gates in C, ordered such that C =

∏
G∈G G (where each gate G is

implicitly tensored with the identity). Also let GT ⊆ G be the set of gates in C that act on
HT . For G ∈ GT let |θG〉 be the mono-product state, specified up to a phase factor, such
that G = RθG

= I − 2|θG〉〈θG|. Let F be the set of functions with domain G that map
each gate G in GT to either I or |θG〉〈θG|, and map each gate G in G\GT to G itself. Then
C =

∑
f∈F (−2)|{G:f(G)=|θG〉〈θG|}|

∏
G∈G f(G), so by the triangle inequality,

‖Q|ϕ〉‖ = ‖QC|φ〉‖ ≤
∑
f∈F

2|{G:f(G)=|θG〉〈θG|}| ·max
f∈F

∥∥∥∥∥Q∏
G∈G

f(G) · |φ〉

∥∥∥∥∥.
By assumption, |GT | ≤ cn/(d+ 1) (for a constant c to be specified later), so∑
f∈F

2|{G:f(G)=|θG〉〈θG|}| =
∑
S⊆GT

2|S| =
∏
G∈GT

(20 + 21) = 3|GT | ≤ 3cn/(d+1).

Consider an arbitrary function f ∈ F . In the full paper we write
∥∥Q∏G∈G f(G) · |φ〉

∥∥ as a
product of n+ 1 terms, one of which we bound by 1, and the other n of which we bound
individually using Corollary 5.1. The result is that∥∥∥∥∥Q ∏

G∈G
f(G) · |φ〉

∥∥∥∥∥ ≤
n∏
j=1

exp
(
−〈φj |(I −Qj)|φj〉2(d+ 1)

)
≤ exp

(
− n/2

2(d+ 1)

)
.

Altogether this implies that ‖Q|ϕ〉‖ ≤ exp((c ln 3− 1/4) · n/(d+ 1)), and the result follows
by taking c < 1/(4 ln 3). J

5.2 Proof of Corollary 5.1
Let ∆(|α〉, |β〉) = arccos |〈α|β〉|; we will abbreviate this as ∆(α, β). In the full paper we
prove the following:

I Lemma 5.3. The function ∆ satisfies the triangle inequality, i.e. ∆(α, γ) ≤ ∆(α, β) +
∆(β, γ) for all states |α〉, |β〉, |γ〉.



G. Rosenthal 32:17

I Remark. For intuition as to why Lemma 5.3 is true, consider the similarly defined function
∆′(u, v) = arccos〈u, v〉 for unit vectors u, v ∈ R3, where 〈·, ·〉 denotes the usual inner product
on R3. It is well known that ∆′(u, v) equals the angle between u and v, which equals the
length of the arc (Figure 5) formed by traversing a great circle on the unit sphere from u to
v in the shorter of the two directions. This arc is known to be the shortest path on the unit
sphere between u and v, so ∆′ represents distance on the unit sphere. See the full paper for
more related discussion.

I Proposition 5.4. For all d ≥ 1, nonzero orthogonal projections Qd, and states |φ〉,

max
Q1,...,Qd−1

‖QdQd−1 · · ·Q1|φ〉‖ = cos
(

arccos ‖Qd|φ〉‖
d

)d
,

where the maximum is taken over all orthogonal projections Q1, . . . , Qd−1.

Abridged proof. We first prove an analogous statement about rank-1 orthogonal projections,
specifically that for all states |θ0〉 and |θd〉,

max
|θ1〉,...,|θd−1〉

∣∣∣∣∣∣
d∏
j=1
〈θj−1|θj〉

∣∣∣∣∣∣ = cos
(

arccos |〈θ0|θd〉|
d

)d
. (3)

Then, in the full paper, we prove that the original proposition follows from this rank-1
analogue.

On the image of ∆, i.e. on the interval [0, π/2], the cosine function is decreasing and concave.
Therefore for all states |θ1〉, . . . , |θd−1〉, by the AM-GM inequality, Jensen’s inequality, and
Lemma 5.3,∣∣∣∣∣∣

d∏
j=1
〈θj−1|θj〉

∣∣∣∣∣∣
1/d

≤ 1
d

d∑
j=1
|〈θj−1|θj〉| =

1
d

d∑
j=1

cos ∆(θj−1, θj) ≤ cos

1
d

d∑
j=1

∆(θj−1, θj)


≤ cos

(
∆(θ0, θd)

d

)
= cos

(
arccos |〈θ0|θd〉|

d

)
.

In the full paper we give an example (Figure 6) which shows that this bound is tight. J

I Reminder (Corollary 5.1). For all d ≥ 1, orthogonal projections Q1, . . . , Qd, and states |φ〉,

‖Qd · · ·Q1|φ〉‖ ≤ exp
(
−〈φ|(I −Qd)|φ〉2d

)
.

Proof sketch. The case Qd = 0 is trivial. The case Qd 6= 0 is handled using Proposition 5.4
and the Lagrange remainder theorem. J

u v

Figure 5 A geodesic on the
sphere.

|θ0〉

|θ1〉

|θ2〉

|θ3〉
|θ4〉

Figure 6 An optimal choice of |θ1〉, . . . , |θd−1〉 in the d = 4
case of Equation (3).

ITCS 2021



32:18 QAC0 Complexity of Approximating Parity

5.3 Simplifying Depth-2 QAC Circuits by Measuring Ancillae
For a one-qubit state |ψ〉, let the |ψ〉 basis be an orthonormal basis of C2 that includes |ψ〉.
(We refer to “the” |ψ〉 basis because, up to a phase factor, there is a unique state orthogonal
to |ψ〉.)

I Lemma 5.5. Let H1 be a one-qubit Hilbert space, and let H2 and H3 be Hilbert spaces
on arbitrary numbers of qubits. Then for all |ψ〉 ∈ H1, |θ〉 ∈ H2, |φ〉 ∈ H1 ⊗H2 ⊗H3, the
following two procedures generate identically distributed random states in H1 ⊗H2 ⊗H3:

measure the H1 qubit of (R|ψ,θ〉 ⊗ IH3)|φ〉 in the |ψ〉 basis;
measure the H1 qubit of |φ〉 in the |ψ〉 basis, and then, conditioned on the outcome being
|ψ〉, apply Rθ on H2.

Proof. This follows easily from the fact that R|ψ,θ〉 = (I − |ψ〉〈ψ|)⊗ I + |ψ〉〈ψ| ⊗Rθ. J

Theorem 1.7(iii) is clearly equivalent to the statement that if C is a depth-2 QAC circuit,
then any n designated “target” qubits of C|0 . . . 0〉 measure to | n〉 with probability at most
1/2 + exp(−Ω(n)). The following is the starting point for our proof:

I Proposition 5.6. Let p and |ψ〉 be such that for some depth-2 QAC circuit C, designated
“target” qubits of C|0 . . . 0〉 measure to |ψ〉 with probability p. Then there exist layers of
R⊗ gates L2, L1 and a mono-product state |φ〉 such that for some partition of the qubits of
L2L1|φ〉 into “targets” and “ancillae”,
(i) the targets of L2L1|φ〉 measure to |ψ〉 with probability at least p;
(ii) for all k ∈ {1, 2}, every ancilla is acted on by a gate in Lk, and every gate in Lk acts

on at least one target.

I Remark. Although not necessary for our purposes, using Proposition 2.1 it is easy to
generalize the following argument to show that the gates in L2 and L1 may be assumed to
be multi-qubit gates.

Proof sketch. By Proposition 2.1 there exist L2, L1, |φ〉 satisfying (i) but not necessarily
(ii). We measure selected ancillae in an appropriate product basis; doing so simplifies the
circuit due to Lemma 5.5, and in expectation does not change the probability that the targets
measure to |ψ〉. J

5.4 Proof of Theorem 1.7(iii)
The δ = 1 case of the following is Markov’s inequality:

I Lemma 5.7. Let 0 < δ ≤ 1, let a > 0, and let X be a nonnegative random variable. Then
there exists t ∈ [a, aeδ−1−1] such that P (X ≥ t) ≤ δE[X]/t.

I Remark. The intuition behind our use of Lemma 5.7 is as follows. Theorem 5.2 implies
that depth-2 QAC circuits require size at least Ω(n) to approximately construct | n, ψ〉, and
Proposition 5.6 implies that depth-2 QAC circuits that approximately construct | n, ψ〉 have
size at most 2n without loss of generality, so these bounds are “just a constant factor” away
from implying that depth-2 QAC circuits of arbitrary size cannot approximately construct
| n, ψ〉. This is analogous to how Markov’s inequality is “just a factor of δ” away from the
conclusion of Lemma 5.7.

Proof sketch. Assume the contrary, write E[X] =
∫∞

0 P (X ≥ t)dt, and obtain the contra-
diction E[X] > E[X] using the assumed lower bound on P (X ≥ t). J
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I Theorem 5.8 (Turán’s theorem7). Let G be a simple undirected graph on n vertices, and
let d be the average degree of the vertices in G. Then G contains an independent set of size
at least n/(d+ 1).

In the full paper, we repeat the proof of Theorem 5.8 exposited by Alon and Spencer [1].

I Remark. For the intuition behind our use of Theorem 5.8, recall the discussion of disjoint
light cones from Section 1.2.7.

Recall that |φ〉, C, |ψ〉, (Qj)j are variables from the statement of Theorem 5.2. In upcoming
applications of Theorem 5.2 we will refer to |φ〉 as the “input state”, C as the “circuit”, |ψ〉
as the “desired output state”, and (Qj)j as “projections”.

I Remark. We will not actually use the full strength of Theorem 5.2, in the sense that we will
always upper-bound the number of multi-qubit gates acting on the targets by upper-bounding
the total number of gates. One could instead use the full strength of Theorem 5.2 in this
regard, and forgo the use of Proposition 5.6 entirely by measuring selected ancillae all at
once later in the proof, but we consider the current presentation to be simpler.

I Reminder (Theorem 1.7(iii), paraphrased). If C is a depth-2 QAC circuit, then any
n designated “target” qubits of C|0 . . . 0〉 measure to | n〉 with probability at most 1/2 +
exp(−Ω(n)).

Abridged proof. Let L2, L1 be layers of R⊗ gates and let |φ〉 be a mono-product state, with
n qubits designated as targets and all other qubits designated as ancillae. Assume that for
all k ∈ {1, 2}, every ancilla is acted on by a gate in Lk, and every gate in Lk acts on at least
one target. By Proposition 5.6 it suffices to prove that the targets of L2L1|φ〉 measure to
| n〉 with probability at most 1/2 + exp(−Ω(n)).

Let c be the constant from Theorem 5.2, and let γ = (c/2)(c/3)/(1+c/2) and δ = (c/2)γ2.
Since Theorem 5.2 remains true if c is replaced by any constant between 0 and c, we may
take c to be small enough so that γ, δ ≤ 1.

For a circuit C let |C| denote the number of gates in C, and write “G ∈ C” to denote that
G is a gate in C. First consider the case where |L2| ≤ γn. It suffices to prove that L2L1|φ〉
and | n, ψ〉 have fidelity at most 1/2+exp(−Ω(n)) for all states |ψ〉. If |L1| ≤ n(c/3)/(1+c/2)
then |L1| + |L2| ≤ (c/3)n, and the result follows from applying Theorem 5.2 with input
state |φ〉, circuit L2L1, desired output state | n, ψ〉, and n one-qubit projections |0〉〈0|
acting on the targets. Alternatively, if |L1| ≥ n(c/3)/(1 + c/2) then |L2| ≤ (c/2)|L1|, and
the result follows from applying Theorem 5.2 with input state L1|φ〉, circuit L2, desired
output state | n, ψ〉, and for every gate G ∈ L1 the projection |0〉〈0| ⊗ I on the support
of G, where |0〉〈0| acts on one of the targets acted on by G. (Here we used the fact that
1/2 + exp(−Ω(|L1|)) ≤ 1/2 + exp(−Ω(n)) by our assumption about |L1|.)

The rest of the proof, i.e. the analysis of the case where |L2| ≥ γn, is given in the full
paper, and is a (relatively complicated) application of previously discussed ideas. J

7 Usually Turán’s theorem is phrased as saying that dense graphs have large cliques, whereas Theorem 5.8
says that sparse graphs have large independent sets. These statements are equivalent, because taking
the complement of a graph turns cliques into independent sets and vice versa.
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Abstract
A binary code Enc : {0, 1}k → {0, 1}n is ( 1

2 − ε, L)-list decodable if for every w ∈ {0, 1}n, there
exists a set List(w) of size at most L, containing all messages m ∈ {0, 1}k such that the relative
Hamming distance between Enc(m) and w is at most 1

2 − ε. A q-query local list-decoder for Enc is a
randomized procedure Dec that when given oracle access to a string w, makes at most q oracle calls,
and for every message m ∈ List(w), with high probability, there exists j ∈ [L] such that for every
i ∈ [k], with high probability, Decw(i, j) = mi.

We prove lower bounds on q, that apply even if L is huge (say L = 2k
0.9

) and the rate of Enc is
small (meaning that n ≥ 2k):

For ε = 1/kν for some constant 0 < ν < 1, we prove a lower bound of q = Ω( log(1/δ)
ε2 ), where δ is

the error probability of the local list-decoder. This bound is tight as there is a matching upper
bound by Goldreich and Levin (STOC 1989) of q = O( log(1/δ)

ε2 ) for the Hadamard code (which
has n = 2k). This bound extends an earlier work of Grinberg, Shaltiel and Viola (FOCS 2018)
which only works if n ≤ 2k

ν

and the number of coins tossed by Dec is small (and therefore does
not apply to the Hadamard code, or other codes with low rate).
For smaller ε, we prove a lower bound of roughly q = Ω( 1√

ε
). To the best of our knowledge,

this is the first lower bound on the number of queries of local list-decoders that gives q ≥ k for
small ε.

Local list-decoders with small ε form the key component in the celebrated theorem of Goldreich
and Levin that extracts a hard-core predicate from a one-way function. We show that black-box
proofs cannot improve the Goldreich-Levin theorem and produce a hard-core predicate that is hard
to predict with probability 1

2 + 1
`ω(1) when provided with a one-way function f : {0, 1}` → {0, 1}`,

where f is such that circuits of size poly(`) cannot invert f with probability ρ = 1/2
√
` (or even

ρ = 1/2Ω(`)). This limitation applies to any proof by black-box reduction (even if the reduction is
allowed to use nonuniformity and has oracle access to f).
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1 Introduction

We prove limitations on local list-decoding algorithms and on reductions establishing hard-core
predicates.

1.1 Locally list-decodable codes
List-decodable codes are a natural extension of (uniquely decodable) error-correcting codes,
as it allows (list) decoding for error regimes where unique decoding is impossible. This
is an extensively studied area; see [8] for a survey. In this paper, we will be interested in
list-decoding of binary codes.

I Definition 1 (List-decodable code). For a function Enc : {0, 1}k → {0, 1}n, and w ∈ {0, 1}n,
we define

ListEnc
α (w) =

{
m ∈ {0, 1}k : dist(Enc(m), w) ≤ α

}
.1

We say that Enc is (α,L)-list-decodable if for every w ∈ {0, 1}n, |ListEnc
α (w)| ≤ L.

The task of algorithmic list-decoding is to produce the list ListEnc
α (w) on input w ∈ {0, 1}n.

Local unique decoding algorithms are algorithms that given an index i ∈ [k], make few
oracle queries to w, and reproduce the bit mi (with high probability over the choice of
their random coins), where m denotes the unique codeword close to w. This notion of local
decoding has many connections and applications in computer science and mathematics [18].

We will be interested in local list-decoding algorithms that receive oracle access to a
received word w ∈ {0, 1}n, as well as inputs i ∈ [k] and j ∈ [L]. We will require that for
every m ∈ ListEnc

α (w), with high probability, there exists a j ∈ [L] such that for every i ∈ [k],
when Dec receives oracle access to w and inputs i, j, it produces mi with high probability
over its choice of random coins. This motivates the next definition.

I Definition 2 (Randomized local computation). We say that a procedure P (i, r) locally
computes a string m ∈ {0, 1}k with error δ, if for every i ∈ [k], Pr[P (i, R) = mi] ≥ 1 − δ
(where the probability is over a uniform choice of the “string of random coins” R).

The definition of local list-decoders considers an algorithmic scenario that works in two
steps:

At the first step (which can be thought of as a preprocessing step) the local list-decoder
Dec is given oracle access to w and an index j ∈ [L]. It tosses random coins (which we
denote by rshared).
At the second step, the decoder receives the additional index i ∈ [k], and tosses additional
coins r.

1 For two strings x, y ∈ {0, 1}n we use dist(x, y) to denote the relative Hamming distance between x and
y, namely, dist(x, y) = | {i ∈ [n] : xi 6= yi} |/n.
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It is required that for every w ∈ {0, 1}n and m ∈ ListEnc
α (w), with probability 2/3 over the

choice of the shared coins rshared, there exists j ∈ [L] such that when the local list-decoder
receives j, it locally computes m (using its “non-shared” coins r). The definition uses two
types of random coins because the coins rshared are “shared” between different choices of
i ∈ [k] and allow different i’s to “coordinate”. The coins r, are chosen independently for
different choices of i ∈ [k].

This is formally stated in the next definition.

I Definition 3 (Local list-decoder). Let Enc : {0, 1}k → {0, 1}n be a function. An (α,L, q, δ)-
local list-decoder (LLD) for Enc is an oracle procedure Dec(·) that receives oracle access to a
word w ∈ {0, 1}n, and makes at most q calls to the oracle. The procedure Dec also receives
inputs:

i ∈ [k] : The index of the symbol that it needs to decode.
j ∈ [L] : An index to the list.
Two strings rshared, r that are used as random coins.

It is required that for every w ∈ {0, 1}n, and for every m ∈ ListEnc
α (w), with probability at

least 2/3 over choosing a uniform string rshared, there exists j ∈ [L] such that the procedure

Pw,j,rshared(i, r) = Decw(i, j, rshared, r)

locally computes m with error δ. If we omit δ, then we mean δ = 1/3.

I Remark 4 (On the generality of Definition 3). The goal of this paper is to prove lower bounds
on local list-decoders, and so, making local list-decoders as general as possible, makes our
results stronger. We now comment on the generality of Definition 3.

In Definition 3 we do not require that L = |ListEnc
α (w)|, and allow the local list-decoder

to use a larger L. This means that on a given w, there may be many choices of j ∈ [L]
such that the procedure Pw,j,rshared(i, r) = Decw(i, j, rshared, r) locally computes messages
m 6∈ ListEnc

α (w).
In Definition 3 we do not place any restriction on the number of random coins used by
the local list-decoder, making the task of local list-decoding easier.
We allow Dec to make adaptive queries to its oracle.
We are only interested in the total number of queries made by the combination of the
two steps. It should be noted that w.l.o.g., a local list-decoder can defer all its queries to
the second step (namely, after it receives the input i), and so, this definition captures
local list-decoding algorithms which make queries to the oracle at both steps.
To the best of our knowledge, all known local list-decoders in the literature are of the
form presented in Definition 3.

1.1.1 Lower bounds on the query complexity of local list-decoders
In this paper we prove lower bounds on the number of queries q of ( 1

2 − ε, L, q, δ)-local
list-decoders. Our goal is to show that the number of queries q has to be large, when ε is
small. Our lower bounds apply even if the size of the list L is huge and approaches 2k (note
that a local list-decoder can trivially achieve L = 2k with a list of all messages). Our lower
bounds also apply even if the rate of the code is very small, and n ≥ 2k.

We remark that this parameter regime is very different than the one studied in lower
bounds on the number of queries of local decoders for uniquely decodable codes (that is, for
L = 1). By the Plotkin bound, uniquely decodable codes cannot have ε < 1

4 , and so, the
main focus in uniquely decodable codes is to show that local decoders for codes with “good
rate” and “large” ε = Ω(1), must make many queries. In contrast, we are interested in the
case where ε is small, and want to prove lower bounds that apply to huge lists and small rate.
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Lower bounds for large ε

Our first result is a tight lower bound of q = Ω( log(1/δ)
ε2 ) on the number of queries, assuming

ε is sufficiently large, namely ε ≥ 1
kν for some constant 0 < ν ≤ 1).

I Theorem 5 (Tight lower bounds for large ε). There exists a universal constant ν > 0 such
that for any L ≤ 2k0.9 , ε ∈ (k−ν , 1

4 ), and δ ∈ (k−ν , 1
3 ), we have that every ( 1

2 − ε, L, q, δ)-local
list-decoder for Enc : {0, 1}k → {0, 1}n must have q = Ω( log(1/δ)

ε2 ).

Theorem 5 is tight in the sense that the Hadamard code (which has length n = 2k) has
( 1

2 − ε, L = O(1/ε2), q = O( log(1/δ)
ε2 ), δ) local list-decoders [6]. In fact, the Hadamard code

was the motivation for this research, and is a running example in this paper.
Our results show that even if we allow list sizes L which approach 2k, it is impossible to

reduce the number of queries for the Hadamard code. Our results also show that even if we
are willing to allow very small rate n ≥ 2k, and huge list sizes, it is impossible to have codes
whose local list-decoders make fewer queries than the local list-decoders for the Hadamard
code.

Comparison to previous work

Theorem 5 improves and extends an earlier work by Grinberg, Shaltiel and Viola [7] that
gave the same bound of q = Ω( log(1/δ)

ε2 ) for a more limited parameter regime: Specifically, in
[7], for the lower bound to hold, it is also required that n ≤ 2kν , for some constant ν > 0,
and that the total number of coins tossed by the local list-decoder is less than kν − logL.2
We stress that because of these two limitations, the lower bounds of [7] do not apply to the
Hadamard code and other low rate codes.

Extensions to large alphabet and erasures

The scenario that we consider in Theorem 5 has binary alphabet, and decoding from errors.
We remark that in the case of large alphabets, or decoding from erasures, there are local
list-decoders which achieve q = O( log(1/δ)

ε ) (which is smaller than what is possible for binary
alphabet and decoding from errors), as was shown for the case of Hadamard codes in [11].
Our results extend to give a matching lower bound of q = Ω( log(1/δ)

ε ) for decoding from
erasures (for any alphabet size), and also the same lower bound on decoding from errors for
any alphabet size. The exact details are deferred to the final version.

Lower bounds for small ε

The best bound on q that Theorem 5 (as well as the aforementioned lower bounds of [7])
can give is q ≥ kΩ(1). The next theorem shows that even for small ε < 1/k, we can obtain a
lower bound on q which is polynomial in 1/ε.

I Theorem 6 (Lower bounds for small ε). There exist universal constants β, c1, c2 > 0 such
that for every L ≤ β ·2k, δ < 1

3 and ε ≥ β√
n
we have that every ( 1

2−ε, L, q, δ)-local list-decoder
for Enc : {0, 1}k → {0, 1}n must have q ≥ 1

c1 log(k)·
√
ε
− c2 logL.

2 The work of [7] is concerned with proving lower bounds on the number of queries of “nonuniform
reductions for hardness amplification” [17, 15, 3, 7]. As explained in [17, 15, 3, 7] such lower bounds
translate into lower bounds on local list-decoders, by “trading” the random coins of a local list-decoder
for “nonuniform advice” for the reduction, and proving a lower bound on the number of queries made
by the reduction.
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Note that for sufficiently small ε = 1/(log k)ω(1), we get q = Ω( 1
ε1/2−o(1) ). It follows that

together, Theorems 5 and Theorem 6 give a lower bound of q = Ω( 1
ε1/2−o(1) ) that applies to

every choice of ε ≥ Ω( 1√
n

). To the best of our knowledge, Theorem 6 is the first lower bound
on local list-decoders that is able to prove a lower bound of q ≥ k (and note that this is what
we should expect when ε < 1

k ). We also remark that the requirement that ε is not too small
compared to n (as is made in Theorem 6) is required (as we cannot prove lower bounds on
the number of queries in case ε < 1

n ).
Goldreich and Levin [6] showed that locally list-decodable codes with small ε < 1/k can

be used to give constructions of hard-core predicates. We explain this connection in the next
section.

1.2 Hard-core predicates
The celebrated Goldreich-Levin theorem [6] considers the following scenario: There is a
computational task where the required output is non-Boolean and is hard to compute on
average. We would like to obtain a hard-core predicate, which is a Boolean value that is hard
to compute on average.

The Goldreich-Levin theorem gives a solution to this problem, and in retrospect, the
theorem can also be viewed as a ( 1

2 − ε, L
Had = O( 1

ε2 ), qHad = O( kε2 ), δ = 1
2k )-local list-

decoder for the Hadamard code, defined by: EncHad : {0, 1}k → {0, 1}n=2k , where for every
r ∈ {0, 1}k,

EncHad(x)r =

∑
i∈[k]

xi · ri

 mod 2.

In retrospect, the Goldreich-Levin theorem can also be seen as showing that any locally
list-decodable code with suitable parameters can be used to produce hard-core predicates.

We consider two scenarios for the Goldreich-Levin theorem depending on whether we
want to extract a hard-core bit from a function g : {0, 1}` → {0, 1}` that is hard to compute
on a random input, or to extract a hard-core bit from a one-way function f : {0, 1}` → {0, 1}`
that is hard to invert on a random output.

1.2.1 Functions that are hard to compute
Here the goal is to transform a non-Boolean function g that is hard to compute on a random
input, into a predicate gpred that is hard to compute on a random input. More precisely:

Assumption: There is a non-Boolean function that is hard to compute with probability ρ.
Namely, a function g : {0, 1}` → {0, 1}` such that for every circuit C of size s,

Pr
x←U`

[C(x) = g(x)] ≤ ρ.3

Conclusion: There is a predicate gpred : {0, 1}`′ → {0, 1} that is hard to compute with
probability 1

2 + ε.
Namely, for every circuit C ′ of size s′,

Pr
x←U`′

[C ′(x) = gpred(x)] ≤ 1
2 + ε.

3 We use U` to denote the uniform distribution on ` bits.
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Requirements: The goal is to show that for every g, there exists a function gpred with as
small an ε as possible, without significant losses in the other parameters (meaning that s′
is not much smaller than s, and `′ is not much larger than `).

The Goldreich-Levin theorem for this setting can be expressed as follows.

I Theorem 7 (Goldreich-Levin for functions that are hard to compute [6]). For every function
g : {0, 1}` → {0, 1}`, define gpred : {0, 1}`′=2` → {0, 1} by gpred(x, r) = EncHad(g(x))r, and
ρ = ε

2·LHad = poly(ε). If for every circuit C of size s,

Pr
x←U`

[C(x) = g(x)] ≤ ρ,

then for every circuit C ′ of size s′ = s
qHad·poly(`) = s · poly( ε` ),

Pr
x←U2`

[C ′(x) = gpred(x)] ≤ 1
2 + ε.

The Hadamard code can be replaced by any locally list-decodable code with list size L
for decoding from radius 1

2 − ε, with q queries for δ = 1/(2k). For such a code (assuming
also that the local list-decoder can be computed efficiently) one gets the same behavior.
Specifically, if the initial function is sufficiently hard and ρ = ε

2L , then the Boolean target
function is hard to compute, up to 1

2 + ε for circuits of size roughly s′ = s/q.

Is it possible to improve the Goldreich-Levin theorem for ρ � 1/s?

Suppose that we are given a function g : {0, 1}` → {0, 1}` that is hard to compute for circuits
of size s = poly(`), with success say ρ = 1/2

√
`. When applying Theorem 7, we gain nothing

compared to the case that ρ = 1/poly(`). In both cases, we can obtain ε = 1/poly(`), but not
smaller! (Since otherwise s′ = s · poly(ε/`) is smaller than 1 and the result is meaningless).

This is disappointing, as we may have expected to obtain ε ≈ ρ = 1/2
√
`, or at least, to

gain over the much weaker assumption that ρ = 1/poly(`). This leads to the following open
problem:

I Open problem 8 (Improve Goldreich-Levin for functions that are hard to compute). Suppose
we are given a function g : {0, 1}` → {0, 1}` such that circuits C of size s = poly(`) cannot
compute g with success ρ = 1/2

√
`. Is it possible to convert g into a predicate with hardness

1
2 + ε for ε = 1/`ω(1)?

This is not possible to achieve using the Hadamard code, because the number of queries
is q ≥ 1/ε, and Theorem 7 requires s ≥ s′ · q ≥ q ≥ 1/ε, which dictates that ε ≥ 1/s.

Note that when ρ is small, we can afford list-decodable codes with huge list sizes of
L ≈ 1/ρ. Motivated by this observation, we can ask the following question:

Is it possible to solve this open problem by substituting the Hadamard code with
a better code? Specifically, is it possible for local list-decoders to have q = 1

εo(1) if
allowed to use huge lists of size say 2

√
k, approaching the trivial bound 2k? (Note that

in the Hadamard code, the list size used is poly(1/ε) = poly(k) which is exponentially
smaller).

We show, in Theorem 6, that it is impossible to solve the open problem by replacing the
Hadamard code with a different locally list-decodable code.

The natural next question is whether we can use other techniques (not necessarily local
list-decoding) to achieve the goal stated above. In this paper, we show that this cannot be
done by black-box techniques:
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I Informal Theorem 9 (Black-box impossibility result for functions that are hard to compute).
If ρ ≥ 1

2`/3 , s = 2o(`) is larger than some fixed polynomial in `, and ε = 1
sω(1) , then there does

not exist a map that converts a function g into a function gpred together with a black-box
reduction showing that gpred is a hard-core predicate for g.

The parameters achieved in Theorem 9 rule out black-box proofs in which ε = 1
sω(1) , not

only for s = poly(`) and ρ = 2−
√
` (as in Open problem 8) but also for ρ = 2−Ω(`), and

allowing much larger s as long as s = 2o(`).
The precise statement of Theorem 9 is stated in Theorem 19, and the precise model is

explained in Section 3.1.
To the best of our knowledge, this is the first result of this kind, that shows black-box

impossibility results for Open problem 8. Moreover, we believe that the model that we
introduce in Section 3.1 is very general and captures all known black-box techniques. In
particular, our model (which we view as a conceptual contribution) allows the reduction
to introduce nonuniformity when converting an adversary C ′ that breaks gpred into an
adversary C that breaks g. See discussion in Remark 14.

1.2.2 Functions that are hard to invert
Here the goal is to transform a one-way function f into a new one-way function fnewOWF and
a predicate fpred such that it is hard to compute fpred(x) given fnewOWF(x). More precisely:

Assumption: There is a one-way function that is hard to invert with probability ρ.
Namely, a function f : {0, 1}` → {0, 1}` such that for every circuit C of size s,

Pr
x←U`

[C(f(x)) ∈ f−1(f(x))] ≤ ρ.

Conclusion: There is a one-way function fnewOWF : {0, 1}`′ → {0, 1}`′ , and a predicate
fpred : {0, 1}`′ → {0, 1}, such that it is hard to predict fpred(x) with advantage 1

2 + ε,
when given access to fnewOWF(x).
Namely, for every circuit C ′ of size s′,

Pr
x←U`′

[C ′(fnewOWF(x)) = fpred(x)] ≤ 1
2 + ε.

The goal is to show that for every f , there exist functions fnewOWF, fpred with as small ε
as possible, without significant losses in the other parameters (meaning that: s′ is not
much smaller than s, and `′ is not much larger than `).

The Goldreich-Levin theorem for this setting can be expressed as follows.

I Theorem 10 (Goldreich-Levin for functions that are hard to invert). For a function f :
{0, 1}` → {0, 1}`, define fnewOWF : {0, 1}2` → {0, 1}2` by fnewOWF(x, r) = (f(x), r), fpred :
{0, 1}2` → {0, 1} by fpred(x, r) = EncHad(x)r, and ρ = ε

2·LHad = poly(ε). If for every circuit
C of size s,

Pr
x←U`

[C(f(x)) ∈ f−1(f(x))] ≤ ρ,

then for every circuit C ′ of size s′ = s
qHad·poly(`) = s · poly( ε` ),

Pr
x←U2`

[C ′((fnewOWF(x))) = fpred(x)] ≤ 1
2 + ε.
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I Remark 11. The problem of obtaining a hard-core predicate for one-way functions, is
interesting only if an unbounded adversary φ : {0, 1}`′ → {0, 1} can predict fpred(x) when
given fnewOWF(x) as input. If this is not required, then one can take `′ = `+1, fpred(x) = x1,
and fnewOWF(x1, . . . , xn+1) = f(x2, . . . , xn+1). However, this is trivial, and is not useful in
applications. Therefore, when considering this problem, we will assume that there exists
such a φ : {0, 1}`′ → {0, 1}.

A natural example is the case where the original one-way function f and the constructed
function fnewOWF are one-way permutations. In fact, in the case that f, fnewOWF(x) are
permutations, the setup of “functions that are hard to invert” can be seen as a special case
of the setup of functions that are “hard to compute” by taking g = f−1, and gpred(y) =
fpred((fnewOWF)−1(y)).

We point out that, in this setting, the circuit C ′ that is trying to invert f (that is, to
compute g) has an advantage over its counterpart in the setup of “functions that are hard
to compute”: It can use the efficient algorithm that computes the “forward direction” of f ,
when trying to invert f . In terms of g, this means that the circuit C ′ can compute g−1 for
free.

Is it possible to improve the Goldreich-Levin theorem for ρ � 1/s?

The same problem that we saw with functions that are hard to compute, also shows up
in the setup of functions that are hard to invert. Suppose that we are given a function
f : {0, 1}` → {0, 1}` that is hard to invert for circuits of size s = poly(`) with success,
say, ρ = 1/2

√
`. When applying Theorem 10, we gain nothing compared to the case that

ρ = 1/poly(`). In both cases, we can obtain ε = 1/poly(`), but not smaller! This is expressed
in the next open problem:

I Open problem 12 (Improve Goldreich-Levin for functions that are hard to invert). If we
are given a one-way function f : {0, 1}` → {0, 1}` such that circuits C of size s = poly(`)
cannot invert f with success ρ = 1/2

√
`. Is it possible to obtain a hard-core predicate fpred

with hardness 1
2 + ε for ε = 1/`ω(1) for some choice of one-way function fnewOWF?

In this paper, we show that this cannot be done by black-box techniques. The formulation
of Theorem 13 below, is very similar to that of Theorem 9 with some small modification in
the parameters.

I Informal Theorem 13 (Black-box impossibility result for functions that are hard to invert).
If ρ ≥ 2−`/5, s = 2o(`) is larger than some fixed polynomial in `, and ε = 1

sω(1) then there
does not exist a map that converts a function f into functions fnewOWF, fpred together with
a black-box reduction showing that fpred is a hard-core predicate for fnewOWF.

To the best of our knowledge, this is the first result of this kind, that shows black-box
impossibility results for open problem 12. Moreover, we believe that the model that we
introduce is very general, and captures all known black-box techniques. In particular, our
model (which we view as a conceptual contribution) allows the reduction to compute the easy
direction of the function f , and to introduce nonuniformity when converting an adversary C ′
that breaks fpred into an adversary C that breaks f .
I Remark 14 (The model we use for black-box proofs). Many different models of “black-box
techniques” for cryptographic primitives were studied in the literature and the reader is
referred to [12] for a discussion and a taxonomy. The model for “black-box technique” that
we use is described in detail in Section 3. The notion that we use is incomparable to the
ones discussed in [12], specifically:
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We require that there is a “transformation map” which given any function f produces
functions fnewOWF and fpred, however, unlike [12], we do not make the rquirement that
this transformation map can be efficiently computed.
We require that there is a reduction Red such that for any f , and for every adversary C ′
(not necessarily efficient) breaking the security of fpred, Redf,C

′
can be used to invert f .

However, we give reductions more power: We also allow Red to introduce nonuniformity
(that could depend on C ′ and f). Formally, for every adversaty C ′ that breaks the
security of fpred, we require that there exists a short nonuniform advice string α such
that RedC

′,f (·, α) inverts f .

1.3 More related work

Lower bounds on the number of queries of local decoders for uniquely decodable
codes

In this paper, we prove lower bounds on the number of queries of local list-decoders. There
is a long line of work that is concerned with proving lower bounds on the number of queries
of uniquely decodable codes. As we have explained in Section 1.1.1, the parameter regime
considered in the setting of uniquely decodable codes is very different than the parameter
regime we consider here [18].

Lower bounds on nonuniform black-box reductions for hardness amplification

A problem that is closely related to proving lower bounds on the number of queries of local
list-decoders is the problem of proving lower bounds on the number of queries of nonuniform
black-box reductions for hardness amplification. We have already discussed this line of work
[17, 15, 3, 7, 14] in Section 1.1.1.

Lower bounds on such reductions can be translated to lower bounds on local list-decoders
(as long as the number of coins tossed by the local list-decoders is small). We remark that
for the purpose of hardness amplification, it does not make sense to take codes with small
rate (namely, codes with n = 2kΩ(1)). The focus of Theorem 5 is to handle such codes.

Additionally, when using codes for hardness amplification, it does not make sense to take
ε < 1/k (or even ε < 1/

√
k). In contrast, the parameter regime considered in Theorem 6

focuses on small ε.
Motivated by hardness amplification, there is also a related line of work studying limita-

tions on the complexity of local list decoders (and specifically, whether these decoders need
to compute the majority function) [17, 15, 9, 3, 7, 14].

Another approach to prove limitations on hardness amplification is to show that assuming
certain cryptographic assumptions, hardness amplification that is significantly better that
what is currently known is impossible, see e.g., [5] for a discussion.

Other improvements of the Goldreich-Levin theorem

In this paper, we are interested in whether the Goldreich-Levin theorem can be improved.
Specifically, we are interested in improvements where, when the original function has hardness
ρ = 2−Ω(`) for polynomial size circuits, then the hard-core predicate has hardness 1

2 + ε for
ε = `−ω(1). We remark that there are other aspects of the Goldreich-Levin theorem that one
may want to improve.
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When given an initial non-Boolean function on ` bits, the Goldreich-Levin theorem
produces a hard-core predicate on `′ = 2` bits. It is possible to make `′ smaller (specifically,
`′ = ` + O(log(1/ε)) by using other locally list-decodable codes instead of Hadamard.
Our limitations apply to any construction (even one that is not based on codes) and in
particular also for such improvements.
It is sometimes desirable to produce many hard-core bits (instead of the single hard-core
bit) that is obtained by a hard-core predicate. This can be achieved by using “extractor
codes” with a suitable local list-decoding algorithm. The reader is referred to [16] for
more details. Once again, our limitations obviously apply also for the case of producing
many hard-core bits.

Organization of the paper
We give a high level overview of our technique in Section 2. Some of our results on hard-core
predicates appear in Section 3 (which includes a precise description of the model and formal
restatements of Theorem 9) We refer the interested reader to the full version [13] for a precise
description of the model and formal restatement of Theorem 13. Section 4 contains some
concluding remarks and open problems. All proofs can be found in the full version.

2 Technique

In this section we give a high level overview of our technique. Our approach builds on
earlier work for proving lower bounds on the number of queries of reductions for hardness
amplification [17, 15, 7]. In this section, we give a high level overview of the arguments used
to prove our main theorems.

2.1 Local list-decoders on random noisy codewords
Following [17, 15, 7], we will consider a scenario which we refer to as “random noisy codewords”
in which a uniformly chosen message m is encoded, and the encoding is corrupted by a binary
symmetric channel.

I Definition 15 (Binary symmetric channels). Let BSCnp be the experiment in which a string
Z ∈ {0, 1}n is sampled, where Z = Z1, . . . , Zn is composed of i.i.d. bits, such that for every
i ∈ [n], Pr[Zi = 1] = p.

I Definition 16 (Random noisy codewords). Given a function Enc : {0, 1}k → {0, 1}n and
p > 0 we consider the following experiment (which we denote by RNSYEnc

p ):
A message m← {0, 1}k is chosen uniformly.
A noise string z ← BSCnp is chosen from a binary symmetric channel.
We define w = Enc(m)⊕ z.

We use (m, z,w)← RNSYEnc
p to denote m, z,w which are sampled by this experiment. We

omit Enc if it is clear from the context.

Our goal is to prove lower bounds on the number of queries q of a ( 1
2 − ε, L, q, δ)-local

list-decoder Dec for a code Enc : {0, 1}k → {0, 1}n. For this purpose, we will consider the
experiment RNSYp for the values p = 1

2 − 2ε and p = 1
2 .

For p = 1
2 − 2ε, and (m, z,w)← RNSY 1

2−ε
, by a Chernoff bound, the Hamming weight

of z is, with very high probability, less than 1
2 − ε. This implies that dist(w,Enc(m)) ≤ 1

2 − ε,
meaning that m ∈ ListEnc

1
2−ε

(w). It follows that there must exist j ∈ [L] such that when given
input j, and oracle access to w, the decoder Dec recovers the message m.
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For p = 1
2 , and (m, z,w)← RNSY 1

2
, the string z is uniformly distributed and independent

of m. This means that w = Enc(m) ⊕ z is uniformly distributed and independent of m.
Consequently, when Dec is given oracle access to w, there is no information in w about the
message m, and so, for every j ∈ [L], the probability that Dec recovers m when given input
j and oracle access to w is exponentially small.

Loosely speaking, this means that Dec can be used to distinguish BSCn1
2−2ε from BSCn1

2
.

It is known that distinguishing these two distributions requires many queries. We state this
informally below.

I Informal Theorem 17. Any function T : {0, 1}q → {0, 1} that distinguishes BSCq1
2−2ε from

BSCq1
2
with advantage δ, must have q = Ω( log(1/δ)

ε2 ).

Thus, in order to prove a tight lower bound of q = Ω( log(1/δ)
ε2 ), it is sufficient to show

how to convert a ( 1
2 − ε, L, q, δ)-local list-decoder Dec, into a function T that distinguishes

BSCq1
2−2ε from BSCq1

2
with advantage δ. Note that we can allow T to be a “randomized

procedure” that tosses coins, as by an averaging argument, such a randomized procedure can
be turned into a deterministic procedure.

2.2 Warmup: the case of unique decoding

Let us consider the case that L = 1 (that is unique decoding). We stress that this case is
uninteresting, as by the Plotkin bound, it is impossible for nontrivial codes to be uniquely
decodable for ε < 1

4 , and so, there are no local decoders for L = 1 and ε < 1
4 , regardless of

the number of queries. Nevertheless, this case will serve as a warmup for the approach we
use later.

Our goal is to convert Dec into a randomized procedure T : {0, 1}q → {0, 1} that
distinguishes BSCq1

2−2ε from BSCq1
2
. The procedure T will work as follows: On input

x ← {0, 1}q, we choose m ← {0, 1}k, and i ← [k]. We then run Dec on input i, and when
Dec makes its t’th query `t ∈ [n] to the oracle, we answer it by Enc(m)`t ⊕ xt. That is, we
answer as if Dec is run with input i and oracle access to w = Enc(m)⊕ z, for z chosen from
a binary symmetric channel. The final output of T is whether Dec reproduced mi. This
procedure T simulates Decw(i), and therefore distinguishes BSCq1

2−2ε from BSCq1
2
, implying

the desired lower bound.
Both Theorem 5 and Theorem 6 will follow by modifying the basic approach to handle

L > 1. In the remainder of this section, we give a high level overview of the methods that we
use. The formal section of this paper does not build on this high level overview, and readers
can skip this high level overview and go directly to the formal section if they wish.

2.3 Reducing to the coin problem for AC0

We start with explaining the approach of proving Theorem 6. Consider a randomized
procedure C that on input z ∈ {0, 1}n, chooses m← {0, 1}k and prepares w = Enc(m)⊕ z.
The procedure then computes Decw(i, j) for all choices of i ∈ [k] and j ∈ [L] and accepts if
there exists a j ∈ [L] such that Decw(·, j) recovers m. By the same rationale as in Section 2.2,
C distinguishes BSCn1

2−2ε from BSCn1
2
. This does not seem helpful, because C receives n

input bits, and we cannot use Theorem 17 to get a lower bound on q.
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Inspired by a lower bound on the size of nondeterministic reductions for hardness
amplification due to Applebaum et al. [2], we make the following observation: The procedure
C can be seen as k · L computations (one for each choice of i ∈ [k] and j ∈ [L]) such that:

These k · L computations can be run in parallel.
Once these computations are made, the final answer C(z) is computed by a constant-depth
circuit.
Each of the k · L computations makes q queries into z, and therefore can be simulated by
a size O(q · 2q) circuit of depth 2.

Overall, this means that we can implement C by a circuit of size s = poly(k, L, 2q) and
constant depth. (In fact, a careful implementation gives depth 3).

This is useful because there are lower bounds showing that small constant-depth circuits
cannot solve the “coin problem”. Specifically, by the results of Cohen, Ganor and Raz [4]
circuits of size s and depth d cannot distinguish BSCn1

2−2ε from BSCn1
2
with constant advantage,

unless s ≥ exp(Ω( 1
εd−1 )).4 This gives the bound stated in Theorem 6.

We find it surprising that an information theoretic lower bound on the number of queries
of local list-decoders is proven by considering concepts like constant-depth circuits from
circuit complexity.

Extending the argument to lower bounds on hard-core predicates

It turns out that this argument is quite versatile, and this is the approach that we use to
prove Theorems 9 and 13. Loosely speaking, in these theorems, we want to prove a lower
bound on the number of queries made by a reduction that, when receiving oracle access to
an adversary that breaks the hard-core predicate, is able to compute (or invert) the original
function too well. Such lower bounds imply that such reductions do not produce small
circuits when used in black-box proofs for hard-core predicates.

We will prove such lower bounds by showing that a reduction that makes q queries can
be used to construct a circuit of size s ≈ 2q and constant depth that solves the coin problem.
Interestingly, this argument crucially relies on the fact that constant-depth circuits can
distinguish BSCnε from BSCn2ε with size poly(n/ε) which follows from the classical results of
Ajtai on constant depth circuits for approximate majority [1].5

2.4 Conditioning on a good j
A disadvantage of the approach based on the coin problem is that at best, it can give lower
bounds of q = Ω(1/

√
ε), and cannot give tight lower bounds of the form q = Ω( log(1/δ)

ε2 ). In
order to achieve such a bound (as is the case in Theorem 5) we will try to reduce to Theorem
17 which does give a tight bound in case ε is not too small.

Our approach builds on the earlier work of Grinberg, Shaltiel and Viola [7] that we
surveyed in Section 1.1.1. When given a ( 1

2 − ε, L, q, δ)-local list-decoder Dec, we say that
an index j ∈ [L] is decoding, if in the experiment (m, z,w) ∈ RNSY 1

2−2ε, when Dec is given
oracle access to w and input j, then with probability 1 − 10δ over i ∈ [k], we have that
Decw(i, j) recovers mi.

4 These results of [4] improve upon earlier work of Shaltiel and Viola [15] that gave slightly worse bound.
These results are tight as shown by Limaye et al. [10] (that also extended the lower bound to hold for
circuits that are also allowed to use parity gates).

5 The proof of Theorem 13 uses an additional versatility of the argument (which we express in the
terminology of codes): The argument works even if the individual procedures that are run in parallel are
allowed to have some limited access to the message m, as long as this does not enable them to recover
m. This property is used to handle reductions in a cryptographic setup, where reductions have access
to the easy direction of a one-way function.
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We use a careful averaging argument to show that there exists an index j′ ∈ [L], and a fixed
choice of the random coins of Dec, such that j′ is decoding with probability at least Ω(1/L).
We then consider the experiment RNSY′1

2−2ε in which we choose (m, z,w) ← RNSY 1
2−2ε

conditioned on the event {j′ is decoding}.
We have made progress, because in the experiment RNSY′1

2−2ε there exists a unique j′
that is decoding, and so, when we implement the strategy explained in Section 2.2 we only
need to consider this single j′, which intuitively means that our scenario is similar to the
warmup scenario of unique decoding described in Section 2.2.

The catch is that when choosing (m, z,w) ← RNSY′1
2−2ε, we no longer have that z is

distributed like BSCn1
2−2ε (as the distribution of z may be skewed by conditioning on the

event that j′ is decoding).
Shaltiel and Viola [15] (and later work [7, 14]) developed tools to handle this scenario.

Loosely speaking, using these tools, it is possible to show that a large number of messages
m are “useful” in the sense that there exists an event Am such that if we consider (m, z,w)
that are chosen from RNSY′1

2−2ε conditioned on Am, then there exists a subset B(m) ⊆ [n]
of small size b, such that zB(m) is fixed, and z[n]\B(m) is distributed like BSCn−b1

2−2ε.
If the number of possible choices for sets B(m) is small, then by the pigeon-hole principle,

there exists a fixed choice B that is good for a large number of useful messages m. This can
be used to imitate the argument we used in the warmup, and prove a lower bound.6

Extending the argument to the case of small rate

A difficulty, that prevented [7] from allowing length as large as n = 2k, is that B(m) is a
subset of [n], and so, even if b = |B| = 1, the number of possible choices for such sets is at
least n. For the pigeon-hole principle argument above, we need that the number of messages
(that is 2k) is much larger than the number of possible choices for B(m) (which is at least
n). This means that one can only handle n which is sufficiently smaller than 2k, and this
approach cannot apply to codes with small rate (such as the Hadamard code).

We show how to solve this problem, and prove lower bounds for small rate codes. From
a high level, our approach can be explained as follows: We consider the distribution of
B(m) = {Y1(m) < . . . < Yb(m)} for a uniformly chosen useful m. We first show that if all
the Yj ’s have large min-entropy, then it is possible to prove a lower bound on q by reducing
to Theorem 17 (the details of this are explained in the actual proof).

If on the other hand, one of the Yj ’s has low min-entropy, then we will restrict our
attention to a subset of useful messages on which Yj is fixed. Loosely speaking, this reduces
b by one, while not reducing the number of useful messages by too much (because the low
min-entropy condition says that the amount of information that Yj carries on m is small).
In this trench warfare, in every iteration, we lose a fraction of useful messages, for the sake
of decreasing b by one. Thus, eventually, we either reach the situation that all the Yj ’s have
large min-entropy, in which case we are done, or we reach the situation where B is fixed for
all messages which we can also handle by the above.

We can withstand the losses and eventually win if ε is sufficiently larger than 1/
√
k.

6 Loosely speaking, this is because for good messages, in the conditioned experiment, z is distributed like
BSC 1

2−2ε (except that some bits of z are fixed as a function of m). Furthermore, as there are many
good messages, the local list-decoder does not have enough information to correctly recover the message
when given oracle access to Enc(m)⊕ BSCn1

2
= BSCn1

2
.
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3 Limitations on black-box proofs for hard-core predicates

In this section, we present some of our results regarding the limitations on black-box proofs
for hard-core predicate theorems. Specifically, we state our results for functions that are
hard to compute, give a formal restatement of Theorem 9. Due to space limitation, the
formal model and precise statement of results for the case of functions that are hard to invert
appear in the full version [13].

3.1 The case of functions that are hard to compute
3.1.1 The model for black-box proofs
In this section, we state and explain our model for black-box proofs for hard core predicates,
in the setting of functions that are hard to compute. The formal definition is given in
Definition 18. Below, we provide a detailed explanation for the considerations made while
coming up with the formal definition. The reader can skip directly to the formal definition if
he wishes.

Explanation of the model

Recall that (as explained in Section 1.2.1) the Goldreich-Levin theorem (stated precisely in
Theorem 7) has the following form:

We are given an arbitrary hard function g : {0, 1}` → {0, 1}`. (Intuitively, it is assumed
that it is hard to compute g with success probability ρ).
There is a specified construction that transforms g into a predicate gpred : {0, 1}`′ → {0, 1}
for some `′ related to `. (Intuitively, we will want to argue that gpred is a hard-core
predicate that is hard to compute with success 1

2 + ε).
We will model this construction as a map Con, which, given g produces gpred. We place
no limitations on the map Con (and, in particular, do not require that gpred can be
efficiently computed if g is). This only makes our results stronger.
In the case of Theorem 7, we have that: Con(g) = gpred where `′ = 2` and we think of
the `′-bit long input of gpred as two strings x, r ∈ {0, 1}`, setting:

gpred(x, r) = EncHad(g(x))r = (
∑
i∈[`]

g(x)i · ri) mod 2.

We model the proof showing that gpred is a hard-core predicate in the following way: The
proof is a pair (Con,Red) where Red(·) is an oracle procedure, such that when Red(·)

receives oracle access to an “adversary” h : {0, 1}`′ → {0, 1} that breaks the security of
gpred, we have that Redh breaks the security of g. More precisely, we require that: for
every g : {0, 1}` → {0, 1}` and for every h : {0, 1}`′ → {0, 1} such that:

Pr
x←U`′

[h(x) = gpred(x)] ≥ 1
2 + ε,

it holds that:

Pr
x←U`

[Redh(x) = g(x)] ≥ ρ.

In the actual definition, we will allow the reduction to have more power (which only
makes our results stronger). As we are aiming to prove a result on circuits (which
are allowed to use nonuniform advice) we will allow the reduction to receive an advice
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string α of length t, where, this advice string can depend on g and h. This leads to the
following strengthening of the requirement above. Namely, we will require that: for every
g : {0, 1}` → {0, 1}` and for every h : {0, 1}`′ → {0, 1}, that:

Pr
x←U`′

[h(x) = gpred(x)] ≥ 1
2 + ε,

there exists α ∈ {0, 1}t such that:

Pr
x←U`

[Redh(x, α) = g(x)] ≥ ρ.

We remark that in many related settings (for example, “hardness amplification”; see
[15, 7], for a discussion) known proofs by reduction critically make use of the ability
to introduce nonuniformity, and so, we feel that when ruling out black-box proofs in
scenarios involving circuits, it is necessary to consider nonuniform black-box reductions.
We make no restrictions on the complexity of the procedure Red(·), except for requiring
that it makes at most q queries to its oracle (for some parameter q). Our black-box
impossibility results will follow from proving lower bounds on q.

Formal definition

We now give a formal definition of our model for black-box proofs for hard-core predicates.

I Definition 18 (Nonuniform black-box proofs for hard-core predicates for hard-to-compute
functions). A pair (Con,Red) is a nonuniform black-box proof for hard-core predicates for
hard-to-compute functions with parameters `, `′, ρ, ε, that uses q queries, and t bits of advice if:

Con is a construction map which given a function g : {0, 1}` → {0, 1}`, produces a
function Con(g) = gpred, where gpred : {0, 1}`′ → {0, 1}.
Red(·) is a reduction, that is an oracle procedure that, given oracle access to a function
h : {0, 1}`′ → {0, 1}, makes at most q queries to its oracle.

Furthermore, for every functions g : {0, 1}` → {0, 1}` and h : {0, 1}`′ → {0, 1} such that:

Pr
x←U`′

[h(x) = gpred(x)] ≥ 1
2 + ε,

there exists α ∈ {0, 1}t, such that:

Pr
x←U`

[Redh(x, α) = g(x)] ≥ ρ.

The role of the number of queries, and black-box impossibility results

We now explain the role of the parameter q (that measures the number of queries made by
Red) and why lower bounds on q translate into black-box impossibility results.

For this purpose, it is illustrative to examine the argument showing that nonuniform black-
box proofs yield hard-core predicates: When given a pair (Con,Red) that is a nonuniform
black-box proof for hard-core predicates for hard-to-compute functions with parameters
`, `′, ρ, ε, that uses q queries, and t bits of advice, we obtain that for any function g : {0, 1}` →
{0, 1}`, if there exists a circuit C ′ : {0, 1}`′ → {0, 1} of size s′ such that:

Pr
x←U`′

[C ′(x) = gpred(x)] ≥ 1
2 + ε,

then there exists α ∈ {0, 1}t, such that:
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Pr
x←U`

[RedC
′
(x, α) = g(x)] ≥ ρ.

Note that if the reduction Red can be implemented by a circuit of size r, then the circuit
C(x) = RedC

′
(x, α) is a circuit of size:

s = r + t+ q · s′

that computes g with success probability ρ.
It follows that in a black-box proof, with q queries, and t bits of advice, we get a hard-core

theorem that needs to assume that the original function g has hardness against circuits of
size s, for:

s ≥ q + t.

3.1.2 Precise statements of limitations
Our main result on black-box proofs for hard-core predicates in the setting of functions that
are hard to compute is the following theorem.

I Theorem 19. There exists a universal constant β > 0 such that for every sufficiently large
` and `′ we have that if (Con,Red) is a nonuniform black-box proof for hard-core predicates
for hard-to-compute functions with parameters `, `′, ρ, ε, that uses q queries, and t bits of
advice, and furthermore ε ≥ 1

2`′/3 , t ≤ 2`/3 and ρ ≥ 1
2`/3 , then

q ≥ Ω( 1
εβ

)−O(t+ `).

We now explain why Theorem 19 implies the informal statement made in Theorem 9.
Recall that in Section 3.1.1 we explained that when using a nonuniform black-box proof to
obtain a hard-core predicate, we get a hard-core predicate theorem in which s ≥ q + t.

Theorem 19 implies that for s > `2/β it is impossible for such a proof to establish ε = 1/s
2
β

(even if ρ is very small). This follows as otherwise, using the fact that s ≥ q + t ≥ t, we get
that:

q ≥ Ω( 1
εβ

)−O(t+ `) ≥ Ω(s2)−O(t) > s,

which is a contradiction to s ≥ q + t ≥ q. In particular, the parameter setting considered in
Theorem 9, in which s = 2o(`) and ε = 1

sω(1) , is impossible to achieve.

4 Conclusion and open problems

Unlike Theorem 5 (that handles large ε), Theorem 6 (that handles small ε) does not achieve
a bound of q = Ω( log(1/δ)

ε2 ), and only achieves a bound of Ω( 1√
ε
). A natural open problem is

to improve the bound on q for small ε to match the bound for large ε.
In the case of large ε, Theorem 5 can be extended to handle local list-decoding from

erasures, and gives a lower bound of q = Ω( log(1/δ)
ε ) on the number of queries of local

list-decoders that decode from a 1− ε fraction of erasures. We do not see how to extend the
proof of Theorem 6 to erasures.
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The model of black-box proofs that we introduce in Section 3 is quite general, and to the
best of our knowledge, covers all known proofs in the literature on hard-core predicates for
general one-way functions. Is it possible to circumvent the black-box limitations and answer
open problems 8 and 12 for specific candidates for one-way functions?

More generally, is it possible to come up with non-black-box techniques that circumvent
the limitations?
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Is the Space Complexity of Planted Clique
Recovery the Same as That of Detection?
Jay Mardia
Department of Electrical Engineering, Stanford University, CA, USA
jmardia@stanford.edu

Abstract
We study the planted clique problem in which a clique of size k is planted in an Erdős-Rényi graph
G(n, 1

2 ), and one is interested in either detecting or recovering this planted clique. This problem
is interesting because it is widely believed to show a statistical-computational gap at clique size
k = Θ(

√
n), and has emerged as the prototypical problem with such a gap from which average-case

hardness of other statistical problems can be deduced. It also displays a tight computational
connection between the detection and recovery variants, unlike other problems of a similar nature.
This wide investigation into the computational complexity of the planted clique problem has,
however, mostly focused on its time complexity. To begin investigating the robustness of these
statistical-computational phenomena to changes in our notion of computational efficiency, we ask-

Do the statistical-computational phenomena that make the planted clique an interesting
problem also hold when we use “space efficiency” as our notion of computational efficiency?

It is relatively easy to show that a positive answer to this question depends on the existence of a
O(log n) space algorithm that can recover planted cliques of size k = Ω(

√
n). Our main result comes

very close to designing such an algorithm. We show that for k = Ω(
√

n), the recovery problem can
be solved in O

((
log∗ n− log∗ k√

n

)
· log n

)
bits of space.

1. If k = ω(
√

n log(`) n) 1 for any constant integer ` > 0, the space usage is O(log n) bits.
2. If k = Θ(

√
n), the space usage is O(log∗ n · log n) bits.

Our result suggests that there does exist an O(log n) space algorithm to recover cliques of size
k = Ω(

√
n), since we come very close to achieving such parameters. This provides evidence that the

statistical-computational phenomena that (conjecturally) hold for planted clique time complexity
also (conjecturally) hold for space complexity.

Due to space limitations, we omit proofs from this manuscript. The entire paper
with full proofs can be found on arXiv at https://arxiv.org/abs/2008.12825.
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1 Introduction

The planted clique problem is a well-studied task in average-case computational complexity,
in which a clique of size k is planted in an Erdős-Rényi graph of size n, G(n, 1

2 ). The problem
comes in two flavours, detection (PCD(n, k)) and recovery (PCR(n, k)). In the former, we are
given either a G(n, 1

2 ) graph or a planted clique graph and must identify the graph we have
been given. That is, we must detect whether or not the graph has a planted clique. In the
latter, we are given a planted clique graph and must recover all the vertices in the clique.

The planted clique problem shows a variety of interesting phenomena in its time complexity.
Not only does it exhibit a statistical-computational gap at clique size k = Θ(

√
n), it has also

emerged as the central problem whose average-case hardness implies average-case hardness
for many other problems with statistical-computational gaps. See [13, 12] for some examples.
Further, the detection and recovery problems have the same threshold at which a polynomial
time statistical-computational gap shows up, even though a priori the latter could be a
harder problem than the former. In fact, for several other problems such as community
detection/recovery in the stochastic block model [1] or planted submatrix detection/recovery
[25, 14], there does indeed appear to be a difference between the time complexity of detection
and recovery. They become polynomial time feasible at different signal-to-noise ratios, and
this makes the lack of a gap between detection and recovery in planted clique all the more
noteworthy.

Algorithmic progress on planted cliques has shown that both the detection and recovery
problems can be solved “computationally efficiently” (i.e. in polynomial time) for large
cliques of size k = Ω(

√
n) and less efficiently in quasi-polynomial time nO(logn) for cliques

larger than the information-theoretic threshold, k ≥ (2 + ε) logn. The widely believed
Planted Clique Conjecture even states that if the clique size is small k = O(n 1

2−δ) for any
constant δ > 0, no polynomial time algorithm can solve the planted clique detection (and
hence also the recovery) problem. We survey the results providing evidence for this conjecture
in Section 1.1.

However, we do not know how robust these statistical-computational phenomena are to
changes in our notion of “computational efficiency”. To begin investigating this, we ask the
following question:

Do the statistical-computational phenomena that make the planted clique an interesting
problem also hold when we use “space efficiency” as our notion of computational
efficiency?

To answer this question, we must first discuss what a “space efficient” algorithm is. One of
the most well studied classes of space bounded computation is that of logarithmic space, and
it is widely considered a benchmark of “space efficient” computation.

Let us further motivate this target space complexity. For deterministic algorithms, this is
the class that runs using O(logn) bits of space on inputs of size poly(n). It is well known
that any deterministic algorithm that uses at most s(n) bits of space must also run in time
2O(s(n)+logn) [7, Theorem 4.3]2. This means that deterministic logspace algorithms are a

2 Strictly speaking, the theorem we point to relating deterministic space complexity to time complexity
[7, Theorem 4.3] is for Turing machines. While it is convenient to define computational complexity
classes using Turing machines, it is extremely inconvenient to design algorithms using them. Instead,
we work with a slightly stronger model of computation that allows random access to the input to make
algorithm design reasonable. However, the idea behind [7, Theorem 4.3] also holds in any reasonable
RAM model and so we ignore this distinction for the purposes of our discussion.
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subset of polynomial time algorithms, lending support to the belief that they are a good
proxy for “efficient” computation. For algorithms that can use randomness, defining an
appropriate notion of space bounded computation involves restricting algorithms that use
s(n) bits of space to at most 2O(s(n)+logn) time3. So, randomized logspace computation
corresponds to algorithms running in O(logn) space and at most poly(n) time on inputs of
size poly(n).

This means that if the Planted Clique Conjecture is true, no logarithmic space (determin-
istic or randomized) algorithm can solve the planted clique detection (or recovery) problems
for k = O(n1/2−δ). If we can show logarithmic space algorithms exist above the polynomial
time threshold k = Ω(

√
n), we will have shown that the statistical-computational gap holds

even for space complexity.

Detection. For detection, essentially the same straightforward algorithms that have been
designed for time efficiency can also be implemented space efficiently. For clique sizes above
the information theoretic threshold k ≥ (2 + ε) logn, the same “exhaustively search over
sets of Θ(logn) vertices” idea that gives a quasi-polynomial nO(logn) time algorithm also
gives a O(log2 n) space algorithm4. For large cliques above the polynomial time threshold
k = Ω(

√
n), the folklore “sum test” or “edge counting” algorithm (see for example Section 1.5

of [36]) can be implemented in O(logn) bits of space. We elaborate more on these algorithms
in Section 1.3, but for now it suffices to observe that this means a statistical-computational
gap holds for planted clique detection at k = Θ(

√
n) in terms of space complexity if it holds

for time complexity.

Recovery. But what about planted clique recovery? Before we go any further, we should
clarify what we mean by a small space algorithm for planted clique recovery. The size of
the output is k logn bits, which could be much larger than the space we are allowing the
algorithm. However, the space bound applies only to the working-space of the algorithm, and
the output is written on a write-only area which does not count towards the space bound.
This is standard in the space complexity literature, so we can write-to-output very large
answers. See, for example, Section 14.1 of [48].

Just like for detection, simple pre-existing ideas can easily be used to obtain a O(log2 n)
space algorithm for recovering planted cliques above the information theoretic threshold,
thus matching the detection space complexity in this range of parameters. We provide more
details in Section 1.3. Also like for detection, we do not expect a O(logn) space algorithm
in this regime because of the Planted Clique Conjecture and the relation between space and
time complexity.

If we can design a O(logn) space algorithm that recovers large planted cliques k = Ω(
√
n),

we will have shown two things:
If the conjectured statistical-computational gap at k = Θ(

√
n) holds for the time com-

plexity of the planted clique recovery problem, it also holds for space complexity.

3 See, for example, the section on Randomized Space-Bounded Computation in [7] or the discussion about
BPHSP ACE in [45]. Note that all the algorithms we discuss in this work are deterministic, so we will
not need to explicitly analyse or discuss their running time.

4 Since the best known time complexity for this problem is nO(log n), we do not expect to solve this
problem in o(log2 n) bits of space

ITCS 2021
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Assuming the above statistical-computational gap holds, the coarse-grained5 computa-
tional complexity of planted clique detection and recovery are indeed the same, no matter
the notion of complexity we use – time or space.

1. Our first hope for such a logspace recovery algorithm is to see if any pre-existing algorithms
are space efficient. However, none of the polynomial time algorithms designed for recovery
above k = Ω(

√
n) run in small space. They all require at least poly(n) bits of space, and

in Section 1.3 we discuss, for each of them, why it seems hard to implement them in
O(logn) bits of space.
Of course, the “degree-counting” polynomial time recovery algorithm for large cliques of
size k = Ω(

√
n logn) from [32] can easily be implemented in O(logn) space. This matches

the space complexity for detection in this parameter range. For such large cliques, a simple
threshold separates the degrees of non-clique vertices and clique vertices, so membership
can easily be decided from a vertex’s degree. A space efficient implementation exists
because we can easily count the degree of a vertex (which takes O(logn) bits to store) and
iterate over all vertices in logarithmic space, re-using the counter used to store the degree
across vertices. However, this idea does not work for Ω(

√
n) = k = o(

√
n logn), and it is

this parameter range in which most algorithmic work for the planted clique problem has
been done in the past two decades. If we want to show that the statistical-computational
phenomena that hold for time complexity also hold for space complexity, we will need to
focus on these parameters.

2. Our next hope is to recall that the lack of a detection-recovery gap in the time complexity
of the planted clique problem is not merely an algorithmic coincidence. Section 4.3.3 of [4]
shows a black box way to convert a planted clique detection algorithm into a recovery
algorithm. The key idea is that if a vertex v is in the clique, the subgraph induced on the
vertex set that does not contain v or its neighbours is distributed as an Erdős-Rényi graph.
But, if v is not in the clique, this induced subgraph is distributed as a planted clique
graph. Then we can simply run the detection algorithm to decide if v is in the planted
clique or not6. If we could use the edge counting detection algorithm and implement this
reduction between recovery and detection in small space, then it seems we would be done.
What is more, such a reduction can be implemented in small space!7
However, there is a slight issue. The statistical success of the reduction in [4] requires the
failure probability of the detection algorithm to be at most o( 1

n ). This is because we need
to repeat the detection algorithm n times, once for each vertex in the original graph, and
thus need to take a union bound. However, as we can see from Section 1.5 in [36], the
failure probability of the edge counting test is exp

(
Θ
(
−k4

n2

))
. This means the failure

probability is o( 1
n ) only for k = ω(

√
n log

1
4 n), which is not a huge improvement over the

degree counting algorithm.

5 By coarse-grained time complexity we mean that we do not distinguish between different poly(n) running
times. If we were looking at a more fine-grained picture, a gap does emerge between detection and
recovery. [37] showed that for k = ω(n2/3), planted clique detection can be solved in o(n) time. However,
by results of [41] we know that any recovery algorithm must require Ω(n) time. For space complexity,
“coarse-grained” means we do not distinguish between any two O(log n) space algorithms. Observe that
even if there is a O(log n) space algorithm that recovers cliques of size k = Ω(

√
n), the fine-grained

space complexity of detection and recovery could, in principle, be different. This would be the case if
there exists a o(log n) space algorithm for detection but not for recovery.

6 Of course, such a reduction has a built in O(n) factor time overhead for the recovery algorithm above
the detection algorithm.

7 To count the number of edges induced in such a manner by a vertex v, we can simply iterate over all
pairs u, w of vertices in the original graph. We increment the counter only if the edge (u, w) exists and
neither of the vertices u, w have an edge to v.
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Due to the discussion above, we need some new ideas to get small space recovery algorithms
for planted cliques of size k = Ω(

√
n). Our main result, stated informally below, is one

that falls just short of our aim of a O(logn) space algorithm. For a formal statement, see
Theorem 2.4 in Section 2.

For some large enough constant C > 0, for planted cliques of size k ≥ C
√
n, the

recovery problem PCR(n, k) can be solved in O
((

log∗ n− log∗ k√
n

)
· logn

)
bits of

space.

1. If k = ω(
√
n log(`) n) for any constant integer ` > 0, the space usage is indeed O(logn)

bits, which was our target.
2. However, if k = C

√
n, the space usage is O(log∗ n · logn) bits, which is just shy of what

we were aiming for.

Our result suggests that there does exist an O(logn) space algorithm to recover cliques
of size k = Ω(

√
n), since we come very close to achieving such parameters. We fail to answer

our titular question, but only just. We provide strong evidence that the answer is “yes”, and
the statistical-computational phenomena that (conjecturally) hold for planted clique time
complexity also (conjecturally) hold for space complexity. We have thus initiated the study
of high dimensional statistical problems in terms of their space complexity.

As we see in Section 1.1, a long line of work on restricted models of computation has been
used to show hardness of the planted clique problem. On the other hand, this work (like [37])
studies a restricted model of computation with the primary aim of making algorithmic
progress and further pushing down the complexity of successful planted clique algorithms.

Open Problem. Is there a logspace algorithm that recovers planted cliques of size k = Ω(
√
n)

reliably, or is there a (tiny) detection-recovery gap in the space complexity of the planted
clique problem?

1.1 Related Work
Planted Clique Hardness. It is widely believed that polynomial time algorithms can only
detect or recover the planted clique for clique sizes above k = Ω(

√
n). One piece of evidence

for this belief is the long line of algorithmic progress using a variety of techniques that has
been unable to break this barrier [32, 5, 20, 22, 6, 16, 14, 17, 25, 37]. The other piece of
evidence comes from studying restricted but powerful classes of algorithms. [30] showed
that a natural Markov chain based technique requires more than polynomial time below
this threshold. Similar hardness results (for the planted clique problem or its variants) have
been shown for statistical query algorithms [23], circuit classes [43, 44], the Lovász–Schrijver
hierarchy [21], and the sum-of-squares hierarchy [39, 18, 26, 9]. Further evidence comes
from the low-degree-likelihood method [28, 27, 29, 33] and through concepts from statistical
physics [24].

Statistical-Computational Gaps. Statistical-computational gaps are not unique to the
planted clique problem, and are found in problems involving community detection / recovery
[15, 38, 40, 2], sparse PCA [10, 34], tensor PCA [42, 27], random CSPs [3, 31], and robust
sparse estimation [35, 8]. However, the planted clique problem is special in that its hardness
(or that of its close variants) can be used to show hardness and statistical-computational
gaps for a variety of other problems. Such reductions can be seen in [10, 4, 13, 12]. See [12]
for a more comprehensive list of examples. To the best of our knowledge, most of these
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reductions use randomness quite heavily, so it is unclear if such connections can also be made
using only logarithmic space reductions. It would be interesting to do so since this would tie
these problems together even more tightly, and would show that planted clique is a central
problem in average-case complexity not just for time but also space.

Detection-Recovery Gaps. As we have mentioned, the statistical-computational gap in
the planted clique problem appears at k = Θ(

√
n) for both the detection and recovery

variants. This means there is no detection-recovery gap in time complexity, and our work
is trying to show that no such gap exists for space complexity either. To understand that
the non-existence of this gap is not a foregone conclusion, we note that for several other
problems, detection-recovery gaps do exist. For example, for communities in the stochastic
block model [1], or planted submatrix problems [25, 14]. Moreover, the (non-)existence of a
detection-recovery gap is not an inconsequential detail. Since the planted clique problem does
not display such a gap, it is not straightforward to use it as a starting point to show detection-
recovery gaps for other problems. [12] overcomes this issue for semirandom community
recovery by starting from a variant of the planted clique problem, and [46] develops a
low-degree-likelihood ratio technique tailored to recovery tasks to get around this problem.

1.2 Notation and Problem Definition
Notation. We will use standard big O notation (O,Θ,Ω). An edge between vertices u, v
is denoted (u, v). We let Bin

(
n, 1

2
)
denote a Binomial random variable with parameters(

n, 1
2
)
. Similarly, Bern(p) denotes a Bernoulli random variable that is 1 with probability p

and 0 otherwise. Unless stated otherwise, all logarithms are taken base 2. For a vertex v in
graph G = ([n], E), we will denote its degree by deg(v). Throughout this work we identify
the vertex set of the graph with the set [n] := {1, 2, ..., n}. We will also crucially utilise the
natural ordering this confers on the names of the vertices.

We also define the so-called binary iterated logarithm log∗ n.

log∗ n =
{

0 if n ≤ 1
1 + log∗(logn) if n > 1

Below are formal definitions of the graphs ensembles we use and the planted clique
problem.

I Definition 1.1 (Erdős-Rényi graph distribution: G(n, 1
2 )). Let G = ([n], E) be a graph with

vertex set of size n. The edge set E is created by including each possible edge independently
with probability 1

2 . The distribution on graphs thus formed is denoted G(n, 1
2 ).

I Definition 1.2 (Planted Clique graph distribution: G(n, 1
2 , k)). Let G = ([n], E) be a graph

with vertex set of size n. Moreover, let K ⊂ [n] be a set of size k chosen uniformly at
random from all

(
n
k

)
subsets of size k. For all distinct pairs of vertices u, v ∈ K, we add

the edge (u, v) to E. For all remaining distinct pairs of vertices u, v, we add the edge (u, v)
to E independently with probability 1

2 . The distribution on graphs thus formed is denoted
G(n, 1

2 , k).

I Definition 1.3 (Planted Clique Detection Problem: PCD(n, k)). This is the following
hypothesis testing problem.

H0 : G ∼ G(n, 1
2) and H1 : G ∼ G(n, 1

2 , k).

Give an algorithm A that takes as input the graph G and outputs either 0 or 1 so that

Pr(A(G) = 0|H0) + Pr(A(G) = 1|H1) ≥ 4/3.



J. Mardia 34:7

I Definition 1.4 (Planted Clique Recovery Problem: PCR(n, k)). Given an instance of
G ∼ G(n, 1

2 , k), recover the planted clique K with probability at least 2/3.

1.3 Our Techniques
Our space efficient recovery algorithm will depend on the ability to take a small subset
of the planted clique and expand it to recover the entire clique. We first discuss such a
subroutine, and then talk about our main result, the O

((
log∗ n− log∗ k√

n

)
· logn

)
space

algorithm for planted clique recovery for large cliques of size k = Ω(
√
n). We do this by first

studying polynomial time algorithms that work in this regime, discussing why they take
polynomial amounts of space to implement, and then providing the high level ideas of our
algorithm. After this, we end with some more details on the straightforward O(log2 n) space
implementations of the known quasi-polynomial time algorithms for clique detection and
recovery above the information theoretic threshold.

Small space clique completion. Several polynomial time recovery algorithms use clique
completion / clean-up subroutines to find the entire planted clique after finding just a large
enough (possibly noisy) subset of it [5, 22, 16, 17, 37]. However, none of these seem amenable
to space efficient implementation, so we create a simple completion algorithm of our own.

We assume we have an algorithm that implicitly maps any planted clique graph to a
specific large enough subset of the vertices of the planted clique, which we call SC . If given
any vertex as input, this algorithm can answer whether this vertex is in SC or not using
s(n) bits of space. This is what we mean by “having access to” a subset of the clique that
we can now complete. Consider the set Ṽ of those vertices which are connected to every
vertex in SC . It is easy to show that this new set Ṽ contains the entire planted clique and
very few non-clique vertices (see Lemma 3.2). As a result, the number of edges to Ṽ from a
clique vertex is far larger than that of a non-clique vertex, and a simple logspace computable
threshold can distinguish between the two cases. We show in Algorithm 1 (Small Space
Clique Completion) and Lemma 2.1 that we can use this to decide if a given vertex is
in the planted clique or not using O(logn+ s(n)) bits of space. Then we simply loop over
all vertices with a further O(logn) bits of space and thus have a planted clique recovery
algorithm.

Recovery for k = Ω(
√

n). We first take a look at existing polynomial time algorithms for
k = Ω(

√
n) to see why they all require poly(n) bits of space, and to see if they have good

ideas that we can build on to get small space algorithms.
1. Optimization / SDP algorithms: Several optimization theoretic algorithms involving

semidefinite programs have been designed that solve the planted clique recovery problem
for k = Ω(

√
n) [20, 6, 14, 25]. However, we do not expect to have a general-purpose

logarithmic space algorithm for semidefinite programs. The works [19, 47] show that even
(approximately) solving linear programs, which are a special case of semidefinite programs,
is logspace complete for P. This means that if we had a logspace algorithm for semidefinite
programs, every problem with a polynomial time algorithm could also be solved in
logarithmic space. Such a proposition is believed to be untrue [48, Conjecture 14.8].

2. (Nearly) Linear time algorithms:
a. The algorithm of [22] maintains a subset of “plausible clique vertices” and reduces the

size of this subset by 1 in every round. As a result, it needs to maintain a polynomially
large subset for most of the time it runs. There also does not seem to be a clever way
to compress this set, since it depends crucially on the edge structure of the graph.
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b. The message passing algorithm of [17] is iterative and produces a new dense n × n
matrix at every iteration, which can not be done in logarithmic space. It is plausible
that a more space efficient recursive algorithm that recomputes messages as needed
exists. But, since the algorithm requires Θ(logn) sequential iterations / recursive calls,
and we will need Ω(logn) bits of space for each level of recursion, we do not expect
this space usage to be o(log2 n) bits. Since this does not improve the space usage over
the simple algorithm that works above the information theoretic threshold, we do not
pursue this idea further.

c. The algorithm of [16], like [22], maintains a sequence of shrinking subsets of vertices
where the ratio between the number of clique and non-clique vertices improves in
every round. Further, these subsets are polynomial sized and random. Since the
pruning of the set depends on randomness from the algorithm, any clever space efficient
implementation that re-uses space would need to store the random coins it tosses,
defeating the purpose of a space efficient implementation. However, the key idea
behind this algorithm can be de-randomized, and this is the first observation that
forms the basis of our O

((
log∗ n− log∗ k√

n

)
· logn

)
space algorithm.

We briefly explain the technique of [16] in more detail, but using the notation of this
work rather than that of [16]. Their algorithm runs for T rounds and maintains a sequence of
vertex subsets {Nt, Vt}1≤t≤T . N1 = V1 is essentially the entire vertex set [n], and then each
vertex of Vt−1 is included in Nt iid with some probability and each vertex of Nt is added to
Vt by cleverly using information from the edge structure of the input graph. This results
in the ratio of clique vertices to non-clique vertices in Vt increasing by a constant factor in
every round. T is then chosen large enough so that VT is entirely a subset of the planted
clique. The entire clique is now output using a clique completion subroutine.

Since the subsetsNt described above depend so heavily on the randomness of the algorithm
as well as the edge structure of the input graph, this algorithm can not be implemented in
less that poly(n) space. On the other hand, we have already noted that creating a space
efficient clique completion algorithm can be done, and we have done so in Lemma 2.1 with
Algorithm 1. So we now focus on trying to modify the first part of the algorithm to something
that can be implemented space efficiently. Our challenge is to concisely represent the sets Nt
(and by extension, Vt).

Our observation is that the clever filtering of [16] does not depend crucially on the set Nt
being a subset of Vt−1 (which is what makes it depend on the edge structure of the graph).
Nor does it depend on the set being random. The only thing we really need is that the
proportion of clique to non-clique vertices in Nt is not too small, and that we can easily
iterate over all the vertices in any set Nt. This gives us the freedom we require to design the
sets Nt to be concisely representable, and we use our computer’s representation of the vertex
set to our advantage. For our computer, the names of the n vertices of the graph are logn
bit integers, and we can use the fact that integers have a natural ordering as well as the fact
that simple arithmetic can easily be done in O(logn) bits of space.

We first set up some notation. The quantities we define will be functions of n, k, and
the graph G ∼ G(n, 1

2 , k) although our notation will not explicitly denote this. The value
of n, k and the graph will always be clear from context. Recall that [n] is the vertex set of
a graph G ∼ G(n, 1

2 , k) with n vertices and a planted clique called K of size k and a set of
edges called E.

Define n0 as the smallest integer that is a power of 2 and is at least n/2. This means
n/2 ≤ n0 < n. Define k0 := k n0

n

For any integer 0 < t < logn0, let nt := n0
2t , kt := k0

2t . Note that nt is always an integer.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N1N2N3N4

Figure 1 An example of our sets Nt for n = 17.

We can now define the subsets Nt of the vertex set [n] that will be of particular interest
in our filtering algorithm. Let Nt := [nt−1] \ [nt], and note that the Nt’s are all disjoint
sets. Clearly, |Nt| = nt. See Figure 1 for an example.

It is easy to observe that given n, t we can iterate over the vertex set Nt in O(logn) space,
which is exactly what we wanted. In the analysis of Lemma 2.2, we will also show that the
ratio of clique vertices to non-clique vertices in any Nt is roughly the same as in the whole
graph, which is not too small. Now we must implement the rest of the ideas in [16], the ones
that actually use the input graph to find the clique.

After setting V1 = N1, the filtering step of [16] fixes a threshold and adds a vertex in Nt
to the set Vt if and only if that vertex has more edges to Vt−1

8 than the set threshold. Since
clique vertices in Nt are likely to have a higher number of edges to Vt−1 than non-clique
vertices, the former are more likely to appear in Vt and the latter are more likely to be
filtered out. This is how the ratio of clique to non-clique vertices in Vt gradually increases
with t. If we had an algorithm to check membership in Vt−1 that uses st−1(n) bits of space,
we could design an algorithm to check for membership in Vt that uses O(logn) + st−1(n) bits
of space. To see this, suppose we have a vertex v ∈ Nt and we want to decide if it is in Vt.
We can simply iterate over the set Nt−1, and for each vertex u ∈ Nt−1, check if it is also in
Vt−1 using our assumed algorithm. We can also maintain a O(logn) bit counter to count
the number of edges from v to all u that are in Vt−1. Since we can re-use the st−1(n) bits
of space to check membership in Vt−1 across different u, the whole things can be done in
O(logn) + st−1(n) bits of space. By induction, this means we can check for membership in
VT using O(T · logn) bits of space. We provide a formal algorithm and proof of such a claim
in Lemma 2.3 using Algorithm 2.

Overall, this promises to give a O(T · logn) space algorithm. What can we set T to be?
Unfortunately, the algorithm of [16] uses T = Θ(logn) rounds, since it only gets a constant
factor improvement in the ratio of clique to non-clique vertices in going from Vt−1 to Vt. This
gives a O(log2 n) space algorithm, which is not an improvement over the simple algorithm
that works above the information theoretic threshold.

Our key idea, inspired by [37], is to implement a better filtering step that gets more than
a constant factor of improvement in each round. The filtering / thresholding of [16] does
not utilise the size of the planted clique k at all, other than the fact that it is Ω(

√
n). On

the other hand, [37] uses knowledge of k to design a single round filtering algorithm that
recovers the planted clique for clique sizes ω(

√
n log logn) = k = o(

√
n logn) in sublinear

time. By appropriately implementing this idea in our context for multiple rounds, we can
utilize knowledge of the number of clique vertices in Vt−1, |Vt−1 ∩K|, to make sure that in
going from Vt−1 to Vt the following happens. The number of clique vertices decreases by
at most a constant factor, while the number of non-clique vertices decreases by at least a
factor of exp

(
Θ
(
|Vt−1∩K|2
|Vt−1|

))
, which is exp

(
Θ
(
k2

n

))
for t = 2. For k = Θ(

√
n), this is still

a constant factor, but for larger k, this is much better than a constant factor improvement.

8 Technically, [16] counts the number of edges to Vt−1 \ Nt, but in our construction we will have
Vt−1 \Nt = Vt−1.
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To use this idea, our algorithm needs to know |Vt−1 ∩K|, which it does not. However,
we do have high probability lower bounds on the size |Vt−1 ∩K|. We design our thresholds
using these estimates, and our analysis in Lemma 2.2 shows that this suffices to get the
benefits of this better filter. Let us now define the sets Vt for our algorithm, thus specifying
the filtering threshold. We proceed inductively.

V1 := N1
For any integer t > 1, Vt is a subset of Nt of vertices which have “large” Vt−1-degree.
Quantitatively, Vt := {v ∈ Nt|

∑
u∈Vt−1

1(u,v)∈E ≥ |Vt−1|
2 + kt+2 − 2

√
|Vt−1|}.

It is this carefully chosen threshold sequence which, unlike in [16], varies with t and uses
the value of k that allows us to improve on the O(log2 n) space bound. In Lemma 2.2 we will
show that VT , as defined above, is with high probability a subset of the planted clique if T is
large enough. We can implement an algorithm to check membership in VT in O(T · logn) bits
of space as discussed above (and formalized in Lemma 2.3). Moreover, we get the benefits of
a very quickly accelerating improvement in the ratio of clique to non-clique vertices from
Vt−1 to Vt. From [37] we know that one round of such a filter improves the ratio by a factor
of exp

(
Θ
(
k2

n

))
, and the analysis of our filtering in Lemma 2.2 shows that after t rounds of

such filtering, the ratio improves by what is essentially a tower of exponentials of height t
2 , i.e.

exp
(

exp
(
... exp

(
Θ
(

k√
n

))))
. This is why we are able to take T = O

(
log∗ n− log∗ k√

n

)
(Lemma 2.2). This gives us our main result, an algorithm that can recover planted cliques
of size k ≥ C

√
n in O

((
log∗ n− log∗ k√

n

)
· logn

)
bits of space. The formal statement and

proof can be found in Theorem 2.4.

Detection.
1. It is well known (see [11] or Lemma 3.4) that for any positive constant ε > 0, the

probability that an Erdős-Rényi G(n, 1
2 ) graph has a clique of size at least (2 + ε) logn

goes to 0. Meanwhile, if k ≥ (2 + ε) logn, then by definition a planted clique graph
G(n, 1

2 , k) has a clique of size (2 + ε) logn. The existence of a clique of this size is a
well-known and simple detection test for PCD(n, k) (see, for example, Proposition 1.3 [36]).
Moreover, such a test only needs to iterate over all vertex subsets of size (2 + ε) logn,
which can be done by maintaining a logn bit name/number for each of the (2 + ε) logn
vertices and looping over all possibilities. For a given possible clique, the algorithm needs
to check if all

((2+ε) logn
2

)
edges exist. This can be done by looping over all these edges

with 2 more O(log logn) bit counters. Overall, this implementation requires O(log2 n)
bits of space.

2. The simple “sum test” or “edge counting” algorithm that is well-known to work for large
planted clique k = Ω(

√
n) detection (see for example Section 1.5 of [36]) can easily be

implemented in O(logn) space. The planted graph has significantly more edges than
the graph without a clique, so simply counting the number of edges in the input graph
and using a threshold test gives a successful detection algorithm. The algorithm only
needs to maintain the edge count, which is a number between 1 and n2 (which can be
done with O(logn) bits), and it can also easily iterate over all distinct vertex pairs in
O(logn) bits of space. Lastly, the algorithm also needs to compute the threshold (from
[36], we can use the threshold (n

2)
2 + (k

2)
4 ), which can easily be computed from the input

(which contains n, k) in logarithmic space. This means that for planted clique detection,
assuming we have a time complexity based statistical-computational gap, we also have a
space complexity based statistical-computational gap.
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Recovery above the information theoretic threshold. For cliques of size (2 + ε) logn ≤ k =
O(logn), with high probability the planted clique is the unique largest clique in G(n, 1

2 , k)
[36, Theorem 1.7]. This means that an algorithm that loops over all possible vertex subsets
of size k can find and output the entire planted clique. To do this it only need to maintain k
names of vertices (which takes O(k logn) bits of space) and 2 counters of O(log k) bits of
space to check if a given set of k vertices form a clique. Overall, this implementation needs
O(log2 n) bits of space.

A simple application of the reduction between detection and recovery from [4] combined
with the O(log2 n) space detection algorithm for clique sizes above the information theoretic
threshold k ≥ (2 + ε) logn also gives a O(log2 n) space recovery algorithm for k = ω(logn).
We provide a formal statement and proof in Lemma 3.5.

2 Algorithms

We now prove our main results after formalizing our model of computation in Section 2.1.
In Section 2.2 we give a space efficient algorithm for clique completion. In Section 2.3 we
prove our O

((
log∗ n− log∗ k√

n

)
· logn

)
space recovery algorithm for clique sizes above the

polynomial time threshold k = Ω(
√
n).

2.1 Model of Computation
We use a standard notion of deterministic space bounded computation. See, for example,
[48, Section 14.1]. For a s(n)-space algorithm, the input is a read-only version of the n× n
adjacency matrix of the graph as well as the clique size k. Every entry in the matrix as
well as the value of k is stored in its own register. The algorithm has access to s(n) bits of
working space, and the output is write-only (and possibly much larger than s(n)). The last
fact allows us to solve problems whose outputs may be much larger than s(n), a property we
will use to solve PCR(n, k).

To make our model convenient for algorithm design, we also allow random access to
the input registers. In our model, we assume basic arithmetic (addition, multiplication,
subtraction, division) on O(logn) bit numbers can be done in O(logn) bits of space. We
also assume that the algorithm can compute or knows n by accessing the adjacency matrix
using O(logn) bits of space.

2.2 Space bounded clique completion
The main idea behind this algorithm is discussed in Section 1.3. If we have access to a large
enough subset of the clique, very few vertices that are adjacent to the entire subset (i.e
“common neighbours”) are not in the planted clique. Counting the edges from a vertex v to
this set of “common neighbours” of the known clique subset allows us to decide whether or
not v is in the planted clique.

I Lemma 2.1 (Deterministic + small space clique completion). Let k = ω(logn), and
G ∼ G(n, 1

2 , k) = ([n], E). Let OSC
be a deterministic algorithm that uses s(n) bits of space

and, except with probability at most p(n) ≤ 1
2 (over the randomness in G), has the following

properties.
1. When given as input the graph G and clique size k, it implicitly defines a subset of the

planted clique vertices SC such that SC ⊂ K and |SC | ≥ 2 logn.
2. It does this by returning, for v ∈ [n], OSC

(v) = 1 if and only if v ∈ SC , and 0 otherwise.
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Algorithm 1 Small Space Clique Completion (SSCC).

Input: Graph G = ([n], E) ∼ G(n, 1
2 , k), clique size k, oracle OSC

with access to a
clique set SC ⊂ K : OSC

(v) = 1 if v ∈ SC , OSC
(v) = 0 if v /∈ SC

Output: Clique K
for v ∈ [n] do

Initialize d̃eg(v) = 0
for u ∈ [n] do

Initialize inṼ (u) = TRUE
for w ∈ [n] do

if OSC
(w) = 1 and (w, u) /∈ E then


Check if u is a common neighbour

Set inṼ (u) = FALSE
end

end
if inṼ (u) = TRUE and (u, v) ∈ E then

d̃eg(v) = d̃eg(v) + 1
end

end


Use “common neighbour”-degree of v

if d̃eg(v) ≥ 2k
3 + 3 log k then

write-to-output v
end

end

Then for large enough n, Small Space Clique Completion (Algorithm 1), when run
on G with access to the algorithm OSC

, runs deterministically in space O(s(n) + logn) and
writes to output the correct planted clique K except with probability at most p(n) +

( 1
n

)log k +
n exp

(−k
54
)
(which is over the randomness in G).

Proof. The proof can be found in the arXiv version at https://arxiv.org/abs/2008.
12825. J

2.3 Finding a clique subset in small space
We recall some notation defined in Section 1.3.

Define n0 as the smallest integer that is a power of 2 and is at least n/2. This means
n/2 ≤ n0 < n. Define k0 := k n0

n

For any integer 0 < t < logn0, let nt := n0
2t , kt := k0

2t . Note that nt is always an integer.
We also define some subsets of the vertex set [n] that will be of particular interest in our
filtering algorithm. Let Nt := [nt−1] \ [nt], and note that the Nt’s are all disjoint sets.
Clearly, |Nt| = nt.

So far, we have defined vertex subsets that do not depend at all on the edge structure of
the graph. Now we define some subsets that do incorporate information about such edge
structure (and hence will be useful in finding the planted clique). We proceed inductively.

V1 := N1
For any integer t > 1, Vt is a subset of Nt9 of vertices which have “large” Vt−1-degree10.

9 Hence the Vt’s are all disjoint for different values of t.
10Defined as the number of edges from a vertex v ∈ Vt to Vt−1.

https://arxiv.org/abs/2008.12825
https://arxiv.org/abs/2008.12825
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Quantitatively, Vt := {v ∈ Nt|
∑

u∈Vt−1

1(u,v)∈E ≥ |Vt−1|
2 + kt+2 − 2

√
|Vt−1|}.

Our main structural lemma shows that for large enough T , VT is a large enough subset
of the planted clique.

I Lemma 2.2 (Filtering lemma). Let C > 0 be some large enough constant. Let G ∼ G(n, 1
2 , k),

with C
√
n ≤ k and T be an integer such that 2 (log∗ n− log∗ (k/

√
n)) + 3 ≤ T = O(log∗ n).

Then for large enough n, except with probability at most O
(
exp

(
−n0.48)), VT ⊂ K and

ω(logn) = k
2T +3 ≤ |VT |.

Proof. The proof can be found in the arXiv version at https://arxiv.org/abs/2008.
12825. J

Algorithm 2 Vt-Membership (t ≥ 2).

Input: Graph G = ([n], E) ∼ G(n, 1
2 , k), clique size k, t, vertex v ∈ Nt, access to

Vt−1-Membership
Output: Membership in Vt : 1v∈Vt

Initialize sizeVt−1 = 0,degVt−1 = 0
for u ∈ Nt−1 do

if Vt−1-membership(G, k, t− 1, u) = 1 then

 Count |Vt−1|, “Vt−1”-degree of v
sizeVt−1 = sizeVt−1 + 1
degVt−1 = degVt−1 + 1(u,v)∈E

end
end
output 1{degVt−1≥

sizeVt−1
2 +kt+2−2

√
sizeVt−1

}
The Vt-Membership algorithm simply computes the number of edges from a vertex v to

the set Vt−1 and uses this to determine whether or not v is in Vt.

I Lemma 2.3 (Small space filter implementation). Let G = ([n], E) ∼ G(n, 1
2 , k) with a

clique size k. Let V1-Membership be an algorithm that returns 1 for every vertex in N1,
and let Vt-Membership be defined as in Algorithm 2 for t ≥ 2. Given a vertex v ∈ Nt,
Vt-Membership(G, k, t, v) returns 1 if and only if v ∈ Vt. Otherwise it returns 0. Moreover,
it runs in space O(t · logn).

Proof. The proof can be found in the arXiv version at https://arxiv.org/abs/2008.
12825 J

I Theorem 2.4. Let G = ([n], E) ∼ G(n, 1
2 , k) with a planted clique of size k ≥ C

√
n with the

constant C > 0 chosen as in Lemma 2.2. Suppose T := 2 (log∗ n− log∗ (k/
√
n)) + 3. Then

for large enough n, there exists a deterministic algorithm that takes as input the adjacency
matrix of the graph and the size of the planted clique, exactly outputs the clique K with
probability at least 1 − O

(( 1
n

)log k
)
over the randomness in the graph G, and runs using

O(T · logn) bits of space.
1. If k = C

√
n, the space usage is O(log∗ n · logn) bits.

2. If k = ω(
√
n log(`) n) for some constant integer ` > 0, the space usage is O(logn) bits.

Proof. The proof can be found in the arXiv version at https://arxiv.org/abs/2008.
12825. J
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3 Auxiliary Lemmas

We state the Chernoff bound we use here, for the convenience of the reader.

I Lemma 3.1. Let X =
n∑
i=1

Xi where Xi are independent Bern(pi) random variables. Let

µ =
n∑
i=1

pi, and 0 < δ. Then

P (X ≥ (1 + δ)µ) ≤ exp
(
−µδ2

2 + δ

)
11

P (X ≤ (1− δ)µ) ≤ exp
(
−µδ2

3

)
.

We state some structural lemmas about the planted clique graph that follow from simple
probabilistic arguments.

First we show that with high probability, any clique subset of size greater than 2 logn
has at most 3 log k non-clique vertices connected to every vertex of the subset. The ideas of
such an analysis are contained in the proof of [16, Lemma 2.9].

I Lemma 3.2. Let G ∼ G(n, 1
2 , k) for k ≥ 2 logn and S be any arbitrary subset of the planted

clique K with |S| ≥ 2 logn. Let T be the set of all non-clique vertices that are connected to
every vertex in S. Then, except with probability at most

( 1
n

)log k, |T | ≤ 3 log k.

Proof. The proof can be found in the arXiv version at https://arxiv.org/abs/2008.
12825. J

We also control the number of clique vertices any non-clique vertex is connected to.

I Lemma 3.3. Let G ∼ G(n, 1
2 , k), and let d be the maximum number of clique vertices

connected to a non-clique vertex. Then P(d ≥ 2k
3 ) ≤ n exp

(−k
54
)
.

Proof. The proof can be found in the arXiv version at https://arxiv.org/abs/2008.
12825. J

We state the following well known fact that Erdős-Rényi graphs do not have large cliques.
See, for example, [11].

I Lemma 3.4. Let G ∼ G(n, 1
2 ) and ε > 0 be a positive constant. Except with probability at

most O
(

2−ε log2 n
)
, G contains no cliques of size (2 + ε) logn or larger.

Proof. The proof can be found in the arXiv version at https://arxiv.org/abs/2008.
12825. J

We show the existence of a O(log2 n) space recovery algorithm above the information
theoretic threshold.

I Lemma 3.5 ([4] reduction + O(log2 n) space detection). Let ω(logn) = k = o(n) and
G ∼ G(n, 1

2 , k) = ([n], E). Then there is a deterministic O(log2 n) space algorithm that
outputs the planted clique except with probability at most O(n exp (−k/54) + n2−Θ(log2 n)).

Proof. The proof can be found in the arXiv version at https://arxiv.org/abs/2008.
12825. J
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Abstract
Traditional orthogonal range problems allow queries over a static set of points, each with some
value. Dynamic variants allow points to be added or removed, one at a time. To support more
powerful updates, we introduce the Grid Range class of data structure problems over arbitrarily
large integer arrays in one or more dimensions. These problems allow range updates (such as filling
all points in a range with a constant) and queries (such as finding the sum or maximum of values in
a range). In this work, we consider these operations along with updates that replace each point in a
range with the minimum, maximum, or sum of its existing value, and a constant. In one dimension,
it is known that segment trees can be leveraged to facilitate any n of these operations in Õ(n) time
overall. Other than a few specific cases, until now, higher dimensional variants have been largely
unexplored.

Despite their tightly-knit complexity in one dimension, we show that variants induced by
subsets of these operations exhibit polynomial separation in two dimensions. In particular, no truly
subquadratic time algorithm can support certain pairs of these updates simultaneously without
falsifying several popular conjectures. On the positive side, we show that truly subquadratic
algorithms can be obtained for variants induced by other subsets.

We provide two general approaches to designing such algorithms that can be generalised to
online and higher dimensional settings. First, we give almost-tight Õ(n3/2) time algorithms for
single-update variants where the update and query operations meet a set of natural conditions.
Second, for other variants, we provide a general framework for reducing to instances with a special
geometry. Using this, we show that O(m3/2−ε) time algorithms for counting paths and walks of
length 2 and 3 between vertex pairs in sparse graphs imply truly subquadratic data structures for
certain variants; to this end, we give an Õ(m(4ω−1)/(2ω+1)) = O(m1.478) time algorithm for counting
simple 3-paths between vertex pairs.
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1 Introduction

Orthogonal range query problems are ubiquitous across various fields of Computer Science.
In the simplest of these problems, a data set is modelled as a set of points in Zd, and the task
is to design a data structure that can efficiently answer queries which ask: how many points
lie within the (axis-aligned) orthogonal range [l1, r1] × . . . × [ld, rd]? One can extend this
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definition by assigning a value to each point in the input, and having queries ask instead for
some aggregate (e.g. the maximum value) of the values of the points within the query range.
This has been studied extensively [7, 4, 11, 22] (more in full version), along with models
which ask to report all points in the range [2, 3]. Dynamic models, where a single point may
be inserted or removed in a single operation, have also been studied [13, 12], corresponding to
the addition or deletion of a single record. Queries may then be interspersed between these
update operations, providing insight into the data set as it changes over time. Modelling
data sets in this way has proven useful for Online Analytical Processing (OLAP) [15, 24] of
databases.

In practice, however, one may wish to employ more powerful updates. In this work, we
examine data structures which support updating the values of all points that fall within a
range in addition to range queries. This models updates to the records in a database table
whose numerical field values fall within designated ranges. For instance, this could be giving
all employees who have been employed between 5 to 10 years, and have KPIs between 80
and 90 an “A” rating. We formalise this as follows.

I Definition 1.1. Let d be a positive integer constant, (Z, q) be a commutative semigroup1
and U = {uj} be a set of integer functions. The (dD) Range (q, U) problem gives as input
a set P = {x1, . . . , xp} of p points in Zd. A corresponding integer value vi is also given for
each point xi, each initially 0. It requests a series of operations, each taking one of the
following forms:

updatej((l1, r1), . . . , (ld, rd)): for each xi ∈ [l1, r1]× . . .× [ld, rd], set vi := uj(vi)
query((l1, r1), . . . , (ld, rd)): compute and return q(P ′), where P ′ is the multiset {vi : xi ∈
[l1, r1]× . . .× [ld, rd]}.

Importantly, the operations may include updates of different types, and operations may occur
in any order. All operations are given online and no information is known about them before
the preceding operations are performed. There are n = nu + nq operations in all, with nu and
nq of the first and second forms, respectively.

We are most interested in the case where update functions take the form ∗c(x) = x ∗ c, where
∗ is a binary operation over the integers, and c is an operation-specific constant. Through
a slight abuse of notation, we also use ∗ to denote the set of all functions of the form ∗c.
We write ∗ as a member of U as shorthand for ∗c being a member of U , for all c. For
example, Range (+, {+,max}) allows updates of the form +c (increasing values by c), maxc
(replacing values less than c with c), and queries which ask for the sum of values in a range.
For a single update function or binary operation u, we write Range (q, u) for short.

The Grid Range variants are those whose point set is P = [s]d; P is not given explicitly,
but rather, is described in the input by the positive integer s. Hence, the size of input (and
thus the running time) can be measured as a function of the number n of operations which
occur, rather than the size of P . Grid Range problems will form our primary focus, but
we first describe the context surrounding Range problems as a whole.

1.1 Motivation
In one dimension, Range problems can be viewed as operating over an array. In this case,
balanced binary trees (such as binary search trees or segment trees [8]) over the array have
been effective tools in solving Range problems. Such trees allow any range of the array to
be canonically expressed as the disjoint union of O(log p) subtrees of the tree.

1 A semigroup (S, +) is a set S equipped with an associative binary operator + : S×S → S. A semigroup
is commutative if x + y = y + x for all x, y ∈ S.
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When the functions in U are closed under composition and each distributes2 over q,
the folklore technique of lazy propagation over a binary tree solves 1D Range (q, U) in
O(log p) time in the worst case, per operation. Lazy propagation can be extended to support
several types of updates: it can be applied to solve 1D Range (max, {+,min, set,max}) in
worst-case O(log p) time per operation, where set is the binary operation that returns its
second operand. These techniques are described in more detail in Section 2. Ji [18] considered
the 1D Range (+, max) problem, where the update operation does not distribute over the
query operation, by introducing a technique known as a Ji-Driver Tree (informally “segment
tree beats”), generalising lazy propagation. Using this technique, he showed that 1D Range
(+, {+,min, set,max}) can be solved in amortised O(log2 p) time per operation.

Let B be the set of Range (q, U) problems with q ∈ {+,max} and U ⊆ {+,min,
set,max}. Motivated by the one dimensional results for problems in B, we seek general
techniques addressing Range problems in two or more dimensions. This has been asked as
an open question in the competitive programming community [19].

The Range problem on a p element array can be generalised to multiple dimensions in
two natural ways: either a set of p points in Zd is provided explicitly, or the point set is
considered to be [s]d. In the former case, one dimensional techniques can be generalised
to higher dimensions with the aid of an orthogonal space partition tree (hereafter simply
partition tree), such as a kd-tree [7].

I Lemma 1.2. If 1D Range (q, U) on p points can be solved in time T (p) per operation and
q is computable in O(1) time, then dD Range (q, U) can be solved in time O(p1−1/dT (p))
per operation.

We prove this result and provide almost-tight Ω(p1/2−o(1)) time per-operation lower bounds
conditioned on the Online-Matrix Vector (OMv) Conjecture of Henzinger et al. [16], for all
Range problems in B when d = 2, in Section 7.

The latter case corresponds to the Grid Range class of problems, which is the subject
of the remainder of this work. The same technique does not apply in these cases, as the
number of points is p = sd.

1.2 Prior work
Prior work on Grid Range problems has been limited to a few specific cases.

Since balanced binary trees have been rather effective in solving problems in one dimension,
it is natural to ask whether they can be easily generalised to higher dimensions. Lueker [21]
and Chazelle [13] generalised binary search trees and segment trees to higher dimensions to
answer various d-dimensional range query problems (without updates) on sets of n points
in O(logd n) time per query. This technique can be used to solve Grid Range problems
in the special cases where all update ranges affect a single point, or when all query ranges
contain a single point and the update functions are commutative. The latter can be seen as a
generalisation of Rectangle Stabbing [12] (which accepts a series of d-dimensional boxes
and supports queries for the number of boxes covering a given point), a dual of traditional
range queries. The same structure was used with scaling by Ibtehaz et al. [17] to solve Grid
Range (+, +) in worst-case O(logd s) time per operation; without scaling, a straightforward
solution for Grid Range (max, max) can be obtained in the same time. These upper
bounds contrast with the abovementioned Ω(p1/2−o(1)) time conditional lower bounds for

2 An integer function u distributes over q if u(q(a, b)) = q(u(a), u(b))
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the corresponding 2D Range problems. For other problems in B, the lazy propagation
technique used in one dimension cannot be directly applied over this structure, as it requires
a partition tree of the coordinate space.

In the Klee’s Measure problem, n rectangles are given in d dimensions, and one is
asked to find the volume of their union. In Weighted Depth, the rectangles each have
a weight, and one is asked to find the maximum sum of weights of rectangles that cover a
single point. In Dynamic versions of these problems, a single rectangle can be added or
removed in a single operation, and the new answer must be returned after each one. These
can be seen as special cases of Grid Range problems.

When only additions are supported, Dynamic Klee’s Measure is a special case of Grid
Range (+, set) or Grid Range (+, max). Overmars and Yap [23] gave a O(n(d+1)/2 logn)
time solution over n updates when the rectangles’ coordinates are known during preprocessing.
Chan [9] gave a sublogarithmic time improvement over this method and showed that this is
nearly tight in two dimensions, giving an Ω(

√
n) time per update worst-case lower bound by

reducing from Dynamic Matrix-Vector Multiplication.
Dynamic Weighted Depth is the special case of Grid Range (max, +), where

the maximum value in the entire grid is queried after each update. It is closely related to
Dynamic Klee’s Measure, in that every known algorithm for one has been adaptable
to the other, with running times differing by a sublogarithmic factor. Hence, with a slight
modification of the result of Overmars and Yap [23], an Õ(n(d+1)/2) time algorithm for Grid
Range (max, +) can be obtained. Chan [9] showed that Dynamic Weighted Depth
is solvable in time O(n(d+1)/2 logd/2 logn), with sublogarithmic improvements specific to
entire-grid queries.

When there are no updates, Klee’s Measure and Weighted Depth can be reduced
to O(n) updates on a d− 1 dimensional Dynamic instance with a sweepline, however Chan
[10] gave faster O(nd/2−o(1)) time algorithms for these. Reductions by Chan [9] and Backurs
et al. [6] showed that solving static variants of Klee’s Measure or Weighted Depth
in time o(ndω/6) or O(nd/2−ε) for some ε > 0, respectively, would improve longstanding
upper bounds for Clique or Max Clique, respectively. It follows that these problems
are W[1]-complete for parameter d. The same reductions can be appropriated for d = 3 to
show that an O(n3/2−ε) time algorithm for 3D Weighted Depth implies an O(n3−2ε) time
algorithm for Negative Triangle. A truly subcubic algorithm for Negative Triangle
exists if and only if one exists for APSP [26], so an O(n3/2−ε) time algorithm for 2D Grid
Range (max, +) for some ε > 0 would falsify the APSP Conjecture.

1.3 Our contribution
Our main contributions are conditional lower bounds, which serve to elucidate and categorise
the expressiveness of these data structures, and upper bounds in the form of general algorithms
and frameworks for solving Grid Range problems (such as those in B) in two or more
dimensions. We do so on a Word RAM with Ω(logn)-bit words. In the sequel, we use B′ to
denote B without the problems Grid Range (+, +) and Grid Range (max, max), for
which per-operation polylogarithmic time upper bounds are already known.

Lower bounds. First, we consider algorithms whose per-operation time complexity is a
function of s, the side length of the grid. In two dimensions, we show that there is no
algorithm running in time O(s1−ε) per-operation for any ε > 0, for any problem in B′, unless
the OMv Conjecture is false. Further, for Grid Range (+, {+,max}) we obtain identical
lower bounds, conditioned on the “extremely popular conjecture” of Abboud et al. [1] that at
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Table 1 Lower and upper bounds for Grid Range problems in B, exhibiting polynomial
separation. All results are in two dimensions where d is unspecified, and in d dimensions otherwise,
where d is a constant. All lower bounds hold offline, except those for OMv, and all upper bounds
hold in fully online settings.

q U Lower bounds Upper bound

max max O(n logd s) (extension of segment trees)

+ + O(n logd s) [17]

max + Ω(n3/2−o(1)) APSP [6] or OMv
Ω(n(d+1)/2−o(1)) MaxClique [6]

Õ(n3/2) and O(n log2 n) space
Õ(n(d+1)/2) [9, 10]

max min

Ω(n3/2−o(1)) OMv

Õ(n(d+1)/2)
max set

max {min, set, max} Õ(n(d2+2d−1)/2d)

+ set Õ(n5/4+ω/(ω+1)) = O(n1.954)

+ {+, set} Õ(n5/4+(4ω−1)/(4ω+2)) = O(n1.989)

max {+, min}
Ω(nd−o(1)) d-OV

Õ(nd)
max {+, min, set, max}

+ {+, max} Ω(n2−o(1)) 3SUM
Ω(nd−o(1)) d-OV+ {+, min, set, max}

least one of the APSP, 3SUM and 2-OV (Orthogonal Vectors) Conjectures are true (the latter
of which is implied by the Strong Exponential Time Hypothesis [27]). Hence, we cannot
solve this variant in two dimensions in O(s1−ε) time per operation for any ε > 0 without
making a powerful breakthrough across several fields of Theoretical Computer Science. For
Grid Range (max, {+,min}) and Grid Range (+, {+,max}), we generalise our results
to d dimensions under the d-OV Conjecture to obtain an Ω(s(d−1)−o(1)) time per-operation
lower bound. All these lower bounds are almost-tight, as Õ(sd−1) time per-operation upper
bounds can be obtained by maintaining sd−1 one dimensional instances.

These results, however, do not preclude the existence of efficient and practical algorithms
for Grid Range problems whose overall complexity is a function of the number of operations,
n – the true size of the input – rather than s. Our aforementioned lower bounds under
the OMv and APSP Conjectures translate to conditional Ω(n3/2−o(1)) lower bounds for all
problems in B′, but our lower bound under the 3SUM Conjecture translates to conditional
lower bounds of Ω(n2−o(1)) for 2D Grid Range (+, {+,max}). In d dimensions, our lower
bounds under the d-OV Conjecture translate to Ω(nd−o(1)) time conditional lower bounds
for Grid Range (max, {+,min}) and Grid Range (+, {+,max}). Our lower bounds are
summarised in Table 1 and proven in Section 3.

Upper bounds. By reducing to algorithms in one dimension, Õ(nd) time algorithms can
be found for all these problems. Hence, we aim to determine which problems in B′ can be
solved more efficiently, by seeking truly subquadratic time algorithms in two dimensions. To
this end, we provide two general frameworks for developing such algorithms, both based on
the approach of Overmars and Yap [23] for Dynamic Klee’s Measure. Their algorithm
constructs a partition tree of the grid such that the rectangles intersecting each leaf region
form a “trellis” pattern. This requires the coordinates of all rectangles to be known during
precomputation.
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First, we provide a fully-online generalisation of this approach, that does not require
coordinates to be known ahead of time.

I Theorem 1.3. Suppose q and u are associative, commutative binary operations, computable
in O(1) time, such that u distributes over q, and 0 is an identity of u. Then Grid Range
(q, u) can be solved in Õ(n(d+1)/2) time.

This algorithm does not apply to problems such as the Range (+, set) problem described
in the abstract, as set does not distribute over +. Motivated by this, in Section 5 we show
that in two dimensions, efficient solutions to static Grid Range (q, U) instances where
the update ranges form the same “trellis” pattern can be used to give fully-online, truly
subquadratic time solutions to many Grid Range (q, U) problems. We also extend these
results to multiple dimensions, giving a detailed proof in the full version.

As an application, we use this approach to give a truly subquadratic time algorithm for
2D Grid Range (max, {min, set,max}). We do the same for 2D Grid Range (+, set)
and 2D Grid Range (+, {+, set}) in Section 6, by drawing an equivalence and a reduction
between the respective “Static Trellised” instances and counting the number of 2- and
3-edge paths between vertex pairs, respectively. To this end, we prove the following result.

I Theorem 1.4. Let G be a graph with m edges and O(m) vertices. The number of 3-edge
walks between each of q vertex pairs in G can be found in O(m2ω/(2ω+1)(m+ q)(2ω−1)/(2ω+1))
time.

In this way, queries on static graphs yield efficient, fully-online dynamic Grid Range
data structures. We find it somewhat surprising that, though all of the problems in B can be
solved in Õ(n) time in one dimension, our upper and lower bounds imply likely polynomial
separation in two or more dimensions (see Table 1).

Lastly, we provide a fully-online algorithm for 2D Grid Range (max, +) that uses
O(n log2 n) space, and runs in a time comparable to that of existing algorithms.

I Theorem 1.5. 2D Grid Range (max, +) can be solved in Õ(n3/2) time, and O(n log2 n)
space.

The proof of this result is omitted for space, and proven in the full version.
While our complexity is slower than existing results by Chan [9] by a polylogarithmic

factor, those require O(n3/2+o(1)) space and are not fully-online. Overmars and Yap [23] also
gave an O(n) space algorithm for static Klee’s Measure in d dimensions using a sweepline,
but this does not apply in the dynamic case.

In the remaining sections, due to space constraints, we omit some proofs and sketch
others. We refer the reader to the full version for full details and proofs.

2 Preliminaries

Model of computation. All results are described are for a Word RAM over l-bit words,
with l = Ω(logn). We further assume that any coordinates or values given in the inputs can
be represented in a constant number of words, and that basic arithmetic and the (binary)
operations used in range problems can be performed on a constant number of words in
constant time. In particular, s = O(nc), for some constant c.
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Notation. We use the notation Õ(f(n)) = O(f(n)poly logn) to hide polylogarithmic factors.
Note that logc s = logc n for any constant c. Where our algorithms and proofs use positive
or negative ∞ as a value, this can be replaced with a suitably large value, for a given input
instance.

Where x ≤ y are real numbers, we denote by [x, y] the set of all integers between x and
y, inclusive. When y ≥ 1, we write [y] as shorthand for [1, y].

The binary operation set is the operation whose value is its second operand. That is,
set(a, b) = b.

ω < 2.37286 [5] is the exponent of multiplying two n× n integer matrices. We also write
ω(a, b, c) for the time taken to multiply an a× b matrix by a b× c matrix.

Ancillary problems and variants. In Range problems, we say that the ith operation
(update or query) occurs at time i. In Offline variants, all operations are provided together
with the initial input, and in Static variants, it is guaranteed that all updates precede all
queries.

We formalise and appropriate the “trellis” pattern observed by Overmars and Yap [23]
for our use, as follows. Call a Grid Range instance Trellised if for each update, there is
a dimension d∗ such that [ld′ , rd′ ] = (−∞,∞) for all d′ ∈ [d] \ {d∗}. When d = 2, updates
must either cover all points in a range of rows, or all points in a range of columns, which we
call row updates and column updates, respectively.

Segment trees and lazy propagation. Let s be a power of two. A segment tree over an
array A containing s elements is a complete rooted binary tree of ranges over [s]. The root is
[1, s], and each node [a, b] has two children: [a, h], [h+ 1, b], where h = (a+ b− 1)/2. Hence,
there are O(s) nodes in the tree, with a depth of log s. Given an interval I ⊆ [s], we can
write I as a canonical disjoint union of a set base(I) of O(log s) nodes. These are defined as
the nodes closest to the root that are fully contained in I, and can be found recursively.

Segment trees can be used to prove the following folklore proposition.

I Proposition 2.1 (Lazy propagation). Suppose U is a set of update functions, and q is a
query function, computable in O(1) time. If there is a set Ū such that:
1. U ⊆ Ū are sets of functions that can be represented and composed in Õ(1) space and time,

such that the composition of any series of at most n (possibly non-distinct) functions of
U results in a function in Ū ; and

2. For each u ∈ Ū , u distributes over q
then 1D Grid Range (q, U) is solvable in Õ(n) time.

Hardness conjectures. We base hardness on the following popular conjectures. The first is
a conjecture of Henzinger et al. [16].

I Conjecture 2.2 (OMv Conjecture). No (randomized) algorithm can process a given m×m
boolean matrix M , and then in an online way compute the (∨,∧)-product Mvi for any m
boolean vectors v1, . . . , vm in total time O(m3−ε), for any ε > 0.

In the OuMv problem, the same matrix M is given during preprocessing, and m pairs
of boolean query vectors (u1, v1), . . . , (um, vm) are given online. For each, the value of the
product uTi Mvi is requested. Note that the answer to each of these queries is a single bit.
Henzinger et al. showed that if OuMv can be solved in O(m3−ε) time, then OMv can be
solved in O(m3−ε/2) time, so these problems are subcubic equivalent.
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We refer the reader to the survey by Vassilevska Williams [28] for more details on the
remaining conjectures.

I Conjecture 2.3 (APSP Conjecture). No (randomized) algorithm can solve All-Pairs
Shortest Paths (APSP) in O(v3−ε) time for ε > 0, on v vertex graphs with edge weights
in {−vc, . . . , vc} and no negative cycles, for large enough c.

I Definition 2.4 (k-OV problem). Let k ≥ 2 be a constant, and z = ω(logn). Given k sets
A1, . . . , Ak ⊆ {0, 1}z with each |Ai| = m, determine if there exist a1 ∈ A1, . . . , ak ∈ Ak such
that a1 · . . . · ak = 0, where a1 · . . . · ak :=

∑z
i=1

∏k
j=1 aji.

I Conjecture 2.5 (k-OV Conjecture). No (randomized) algorithm can solve k-OV in
mk−εpoly(z) time, for any ε > 0.

I Conjecture 2.6 (3SUM Conjecture). Any algorithm requires m2−o(1) time in expectation to
determine whether a set S ⊂ {−m3, . . . ,m3} of m integers contains three distinct elements
a, b, c ∈ S with a+ b = c.

3 Conditional lower bounds

In this section, we establish conditional hardness for problems inB′ under popular conjectures.
We do so by considering per-operation time complexity in terms of s (the side length of the
grid), and overall complexity in terms of n (the number of operations).

Backurs et al. [6] gave a reduction from Max k-Clique to kD Weighted Depth.
When k = 3, Max k-Clique is equivalent to Negative Triangle, which is subcubic
equivalent to APSP [26]. Adapting this reduction with a sweepline implies conditional lower
bounds for 2D Grid Range (max, +).

I Proposition 3.1 (Modified from [6]). If Offline 2D Grid Range (max, +) can be solved
in amortised O(s1−ε) time per update and O(s2−ε) time per query, or in O(n3/2−ε) time
overall, for any ε > 0, then the APSP Conjecture is false.

We now establish more general linear per-operation lower bounds for 2D Grid Range
problems in terms of s, based on the OMv Conjecture.

I Lemma 3.2. Suppose (Z,+, 0) is a monoid3 (resp. group4), (Z, ·) is a commutative
semigroup such that 0r = r0 = 0 for all r ∈ Z and that there exists x ∈ Z such that
0 ∈ {xz, (x+ x)z, (x+ x+ x)z} if and only if z = 0. Then, 2D Grid Range (·, +) cannot
be solved in worst-case (resp. amortised) O(s1−ε) time per update and O(s2−ε) time per
query, for any ε > 0, unless the OMv Conjecture is false. If (Z,+, 0) is a group, 2D Grid
Range (·, +) also cannot be solved in O(n3/2−ε) time overall, for any ε > 0, unless the
OMv Conjecture is false.

Proof. We reduce OuMv to an instance of 2D Grid Range (·, +) with s = m. Let A(i,j)
denote the value of the point (i, j). Initially, each A(i,j) = 0. In preprocessing, for each
Mij = 0, add x to A(i,j). We now say the data structure is in its ready state.

Let (u, v) denote a pair of input vectors. For each ui = 0, add x to the value of all points
in row i, and for each vj = 0, add x to the value of all points in column j. Every point now
has a value in {0, x, x+ x, x+ x+ x}. Now some point has value 0 if and only if the answer

3 (Z, +, 0) is a monoid if (Z, +) is a semigroup, and the identity of + is 0.
4 (Z, +, 0) is a group if it is a monoid and + is invertible.
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to the OuMv query is 1, so we establish this with a single range query. We then restore
the data structure to its ready state, either by keeping a journal of updates (semigroup) or
by updating with additive inverses (group). The reduction uses O(m2) updates and O(m)
queries, implying the stated conditional lower bounds. J

This gives a Ω(n3/2−o(1)) time conditional lower bound on 2D Grid Range (max,
+), matching that of Proposition 3.1. Through different reductions, we are able to obtain
matching lower bounds for the other problems in B′, under the same conjecture.

I Lemma 3.3. If 2D Grid Range (+, max), 2D Grid Range (+, min) or 2D Grid
Range (max, min) can be solved in O(n3/2−ε) time overall, for some ε > 0, then the OMv
Conjecture is false.

The proof is similar to Lemma 3.2, with a different ready state, and is in the full version.

I Lemma 3.4. If 2D Grid Range (+, set) or 2D Grid Range (max, set) can be solved
in O(n3/2−ε) time overall, for some ε > 0, then the OMv Conjecture is false.

Proof sketch. We reduce from OuMv. In our data structure, we have s = m2 and utilise an
m×m2 area of this grid, with updates and queries restricted to this area. In preprocessing,
we perform updates so that all points in the j-th column have a value of (j − 1 mod m) + 1.
Each Mij is represented in A by a 1×m section of points with values [1, 2, 3, . . . ,m]. For
each Mij = 0, we perform an additional update to set its section of points to 0.

For the k-th query, we only consider columns that were assigned a value of m − k + 1
during preprocessing. Among these, we set to 0 columns j where vj = 0, and query rows i
where ui = 1 to check for the presence of m− k + 1. J

Together, these give us conditional lower bounds for each of the single-update variants in B′.

I Corollary 3.5. If q ∈ {+,max} and u ∈ {+, set,min,max} and q 6= u, then 2D Grid
Range (q, u) cannot be solved in worst-case O(s1−ε) time per update and O(s2−ε) time per
query, or in O(n3/2−ε) time overall, for some ε > 0, unless the OMv Conjecture is false. If
u = +, then the lower bounds are amortised rather than worst-case, as addition is invertible.

When measuring complexity in terms of s, it appears difficult to improve upon the naive
solution which maintains a 1D instance for each column of the grid, for these problems.
However, when we measure complexity in terms of n, there is a polynomial gap between
the Ω(n3/2−o(1)) time lower bound, and the Õ(n2) time naive algorithm. Indeed, Chan [9]
gave a Õ(n3/2) time solution for Grid Range (max, +). This might lead one to ask if
there exists a general mechanism to adapt Õ(n) time algorithms in one dimension to Õ(n3/2)
time algorithms in two dimensions, as there is for Range problems on a set of n explicitly
provided points. Alas, when we consider variants with two simultaneous types of updates,
we can obtain stronger reductions from the d-OV and 3SUM Conjectures, suggesting that it
is unlikely that such a mechanism exists.

I Lemma 3.6. Let d ≥ 1 be a constant. If Offline Static Trellised dD Grid Range
(+, {+,max}) or Offline Static Trellised dD Grid Range (max, {+,min}) can be
solved in amortised O(s(d−1)−ε) time per update and amortised O(sd−ε) time per query, or
in O(nd−ε) time overall, for any ε > 0, then the d-OV Conjecture is false.

Proof sketch. We reduce from d-OV with z = log2 n to an instance of dD Grid Range (+,
{+,max}) or dD Grid Range (max, {+,min}) with s = m and n = Õ(m), over the points
[m]d. Consider the first entry in each vector. Let vji be the ith vector in Aj . For each j ∈ [d]

ITCS 2021



35:10 Algorithms and Hardness for Multidimensional Range Updates and Queries

and each vector vji ∈ Aj , using the data structure, add (vji)1 to all points with xj = i. Now
a point x = (x1, . . . , xd) ∈ [m]d has value d if and only if (vjxj

)1 = 1 for every j ∈ [d]. We
then undo these updates by repeating the operations with the negations of the added values,
to restore every point to 0. We repeat this procedure for each of the z entries in the vectors.

Now observe that v1x1 · . . . · vdxd
= 0 if and only if Cx never attained a value of d

throughout this process. We check if such an x exists, by adapting a trick of Ji [18] to
our data structure. This trick utilises max or min updates, in addition to the + updates
described above.

We note that this reduction can be done offline, uses O(mdz) = Õ(m) updates (each
of the form xj = i) and a single query spanning the whole grid, giving the required lower
bounds. J

I Lemma 3.7. If Offline Trellised 2D Grid Range (+, {+,max}) can be solved with
amortised O(s1−ε) time per update and query, or in O(n2−ε) time overall, and any ε > 0,
then the 3SUM Conjecture is false.

The proof of this result is omitted for space, and proven in the full version.
A modification of Proposition 3.1, together with the results above imply strong conditional

hardness for Offline 2D Grid Range (+, {+,max}), when complexity is measured per-
operation.

I Corollary 3.8. If Offline 2D Grid Range (+, {+,max}) can be solved in amortised
O(s1−ε) time per update and query, or in O(n3/2−ε) overall, for any ε > 0, then the APSP,
2-OV and 3SUM Conjectures are all false.

Our lower bounds show that a general approach adapting almost-linear one dimensional
algorithms for Grid Range problems to truly subquadratic solutions for two dimensional
instances is unlikely to exist. However, these results do not preclude the existence of efficient
and practical algorithms for specific problems, so we would like to classify which 2D Grid
Range problems can (and can’t) be solved in truly subquadratic time. To this end, we now
describe truly subquadratic algorithms to some of the as-of-yet unclassified problems in B′,
and generalise these to specific subclasses of 2D Grid Range problems.

4 Solving Grid Range problems with a Dynamic Partition

In the full version of the paper, we describe an extension of the partition of Overmars and
Yap [23]. Notably, our data structure is fully-online in that it does not require the coordinates
in the input to be known during preprocessing. We give a brief overview of the construction
and provide some applications, leaving further details to the full version.

4.1 Dynamic Structure
First, we introduce some terminology to reason about orthogonal objects in d dimensions.

A box is a d-dimensional (orthogonal) range. For two boxes R1 =
∏d
i=1[l1i , r1

i ] and
R2 =

∏d
i=1[l2i , r2

i ], we say that R1 is an i-pile with respect to R2 if [l2j , r2
j ] ⊆ [l1j , r1

j ] for all
dimensions j ∈ [d] \ {i}. Separately, we say that R1 partially covers R2 if ∅ ( R1 ∩R2 ( R2.
Similarly, R1 completely covers R2 if R2 ⊆ R1.

An i-slab (i ∈ [d]) is a box of the form [l1, r1]× . . .× [li, ri]× Zd−i. We define Zd to be a
0-slab. A partition tree is a rooted tree where
1. All nodes are orthogonal ranges of Zd
2. The root is Zd
3. Every non-leaf node is the disjoint union of its immediate children.
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A partition tree is a level partition tree if it has depth d, and the nodes at depth i (i ∈ [0, d])
are i-slabs. Hence, a node at depth i in a level partition tree is cut at a series of coordinates
in dimension i+ 1 to form its children.

I Theorem 4.1. There is a data structure that maintains a set V of boxes, and supports
n fully-online box insertions to V . Throughout, it can maintain a level partition tree of Zd
whose leaves partition Zd into a set of O(nd/2) axis-aligned regions (colloquially “t-regions”,
short for “trellised-regions”) such that:
1. Every box in V does not intersect, completely covers or is a pile with respect to each

t-region;
2. Each box partially covers O(n(d−1)/2) t-regions;
3. Each t-region is partially covered by at most O(

√
n) boxes;

4. Any line parallel to a coordinate axis intersects at most O(n(d−1)/2) t-regions; and
5. A list of the boxes that partially cover each t-region is maintained.
This all can be done in amortised Õ(n(d−1)/2) time per insertion.

Proof sketch. Overmars and Yap [23] construct such a partition tree during precomputation
from the boxes’ coordinates, however this is not possible in a fully-online setting. Instead, we
maintain the required properties as boxes are added by periodically rebuilding subtrees which
exceed a certain size and strategically inserting additional boxes to preserve balance. The
cost of rebuilding amortises over the n operations, giving the stated time complexities. J

Using this structure, we can reduce Grid Range problems to Trellised Grid Range
problems when the update operation distributes over the query operation.

I Theorem 4.2. Suppose q and u are associative operations, both computable in O(1) time,
such that q is commutative, u distributes over q, and 0 is an identity of u. If Trellised dD
Grid Range (q, u) can be solved in Õ(n) time, then Grid Range (q, u) can be solved in
Õ(n(d+1)/2) time.

Proof sketch. We use the structure given by a dynamic level partition tree J from The-
orem 4.1. Recall that there are O(n(d−1)/2) (d − 1)-slabs in J , and each is a parent of
O(
√
n) t-regions, which are leaves of J . For each (d− 1)-slab, we maintain a data structure

supporting range updates and queries within the slab. Conceptually, we maintain a 1D
array over its children, in order of their d-coordinate, with each array entry containing a
Trellised instance for the corresponding t-region. We support operations whose ranges
completely cover multiple children by using a modified version of the 1D Grid Range (q,
u) structure (see Proposition 2.1). Operations affecting only part of a child are handled by
the corresponding Trellised instance.

Operations are then performed by iterating over all (d − 1)-slabs, and updating and
querying the respective data structures, as necessary. Our data structure is maintained in
such a way that over its lifetime, there will be O(nd/2) Trellised instances, each facilitating
O(
√
n) operations, giving the required time complexity. J

4.2 Applications
We apply Theorem 4.2 to give Õ(n(d+1)/2) time algorithms for particular problems.

First, we show that Trellised variants can be solved as separate one dimensional
instances, when the conditions of Theorem 4.2 are met and u is also commutative.
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I Lemma 4.3. Suppose q and u are associative, commutative binary operations, computable
in O(1) time, such that u distributes over q, and 0 is an identity of u. Then Trellised
Grid Range (q, u) is solvable in Õ(n) time.

Proof. For notational convenience we provide a proof for the case where q is max and u is
+: other operations are proven identically. By the definition of Trellised, we can associate
every update with a dimension i such that the update range is an i-pile with respect to Zd;
we call this an i-update for short. At any given point in time, let Ui(x) be the sum (with
respect to u) of all i-updates with coordinate x in dimension i.

Now consider a query over the range R = [l1, r1]× . . .× [ld, rd]. The answer to the query
can be written as

max
(x1,...,xd)∈R

∑
i∈[d]

Ui(xi) =
∑
i∈[d]

max
(x1,...,xd)∈R

Ui(xi) =
∑
i∈[d]

max
xi∈[li,ri]

Ui(xi)

by distributivity. Hence, we can reduce to d instances of 1D Range (q, u), which each can
be solved in Õ(n) time, by Proposition 2.1. J

This proves Theorem 1.3, giving efficient fully-online algorithms in these cases.

I Corollary 4.4. Grid Range (max, +) and Grid Range (max, min) can be solved in
Õ(n(d+1)/2) time.

There also exists some instances where u is not commutative for which an Õ(n) solution to
Trellised Grid Range (q, u) exists, giving us algorithms with the same time complexity.

I Lemma 4.5. Trellised Grid Range (max, set) can be solved in Õ(n) in d dimensions.
Hence, Grid Range (max, set) can be solved in Õ(n(d+1)/2).

5 Reducing to Static Trellised instances

The technique from the previous section does not work on all variants. For instance, consider
the 2D Grid Range (max, {min,max}) problem. While the update operations (min and
max) are individually associative, commutative and distribute over the query operation
(max), they do not commute with each other. Given that the order of operations matters
greatly, it is difficult to decompose this into separate one dimensional problems.

In this section, we describe a general framework for reducing multidimensional range
problems to Static Trellised instances, using 2D Grid Range (max, {min,max}) as
an example. For simplicity, we first give a reduction for Offline instances. We describe
how to generalise this approach to online settings, leaving the proof to the full version.

General approach. Our algorithm operates by partitioning operations into chronologically
contiguous batches of at most k operations, for some function k of n. Each batch may contain
both updates and queries. Let B be a particular batch, and let GB be the state of the grid
at the start of B. We will show how to answer the queries within B.

The k̄ = O(k) coordinates of B’s operations partition the grid into a k̄ × k̄ overlay grid
of overlay regions. Any update or query will concern all points that fall within a 2D range
of whole overlay regions. Since the update operations minc and maxc are monotonically
increasing functions for any constant c, it suffices to know the maximum value within each
overlay region according to GB, to answer the queries of B. We use these maximums as
initial values for a 2D Grid Range (max, {min,max}) instance over the overlay grid, which
we solve by keeping k̄ 1D Range instances, one for each column, and facilitating operations
in Õ(k) time, by iterating over each one.



J. Lau and A. Ritossa 35:13

It remains to find the maximum value within each overlay region, according to GB . To
do so, consider an alternate partition of the grid into t-regions according to Theorem 4.1. In
each t-region Y , we will form an instance of Static Trellised 2D Grid Range (max,
{min,max}) with O(

√
n) updates; we describe how to do so below. Then, to find the

maximum value within an overlay region O, we issue queries to the instances corresponding
to the t-regions intersecting O.

Forming Static Trellised instances. By construction, each t-region Y is affected by up
to n whole updates which completely cover Y , and up to

√
n partial updates which cover all

points in a range of rows or range of columns of Y . We can afford to include each partial
update in our instance, but need to find a succinct way to represent whole updates. Y has
at most

√
n+ 1 ranges of time between each of its partial updates, and with the aid of a lazy

propagation structure over the t-region tree, we can compress the whole updates occurring
during each of these ranges into a single update. Hence, we can form an instance of Static
Trellised 2D Grid Range (max, {min,max}) with O(

√
n) updates, as required.

We now analyse the time complexity of our approach.

I Lemma 5.1. If there an algorithm for Static Trellised 2D Grid Range (max,
{min,max}) running in Õ(nc−γu (nu + nq)γ) time for some c ≥ 1 and γ ∈ [0, 1], then 2D
Grid Range (max, {min,max}) can be solved in Õ(n5/4+c/2) time.

Proof. We process each of the batches separately, and consider the time taken to answer the
queries within a particular batch B.

Using the methods above, in Õ(n3/2) time we form an instance of Static Trellised 2D
Grid Range (max, {min,max}) with nu = O(

√
n) updates in each of O(n) t-regions. Next,

we bound the number of queries made to such instances within B. Consider the partition
P of the grid produced by refining each t-region by the overlay grid. A query to a Static
Trellised instance is made for each region in P , and the number of these regions and thus,
queries, is O((k +

√
n)2) = O(k2 + n): this is the number of intersections found when the

overlay grid is laid atop the t-regions.
For a given t-region Y , let the number of queries made to the instance in Y be nqY

.
First, consider the regions y where nqy

<
√
n. There are O(n) regions in total, so we spend

Õ(n1+c/2) time answering queries for these regions.
Now consider the regions Υ where nqΥ ≥

√
n. Since nqΥ = Ω(nu), the running time of

Υ’s Trellised instance is subadditive with respect to nqΥ . Thus, the total running time for
these regions is maximised when the queries are distributed evenly among as many regions
as possible. Subject to the constraint on these regions, this maximum is achieved, within a
constant multiplicative factor, when there are at most O((k2 + n)/

√
n) regions, each with√

n queries. Hence, in this case, the total running time is bounded by Õ((k2 + n)n(c−1)/2).
We thus spend time Õ(n3/2 + n1+c/2 + k2n(c−1)/2) for each of n/k batches. For balance, we
choose k = n3/4, giving a running time of Õ(n5/4+c/2) overall. J

It remains to show that we can solve Static Trellised Grid Range (max, {min,max})
efficiently; we do so in the full version. By observing that setz = minz ◦maxz, we obtain the
following result.

I Corollary 5.2. 2D Grid Range (max, {min, set,max}) can be solved in Õ(n7/4) time.

Most of the steps in our approach are not specific to the update and query operations in
our example. To generalise this approach to fully-online and multidimensional settings, we
introduce the following “partial information” variant of 1D Range.
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I Definition 5.3 (1D Partitioned Range (q, U)). Let A0 be an integer array of length s
and let 0 = a0 < · · · < aρ = s be a sequence of indices. Let Q be a corresponding sequence of
ρ integers, denoting the values q(A0[a0 + 1, a1]), . . . , q(A0[aρ−1 + 1, aρ]). Initially, ρ = 1.

Let J be a list of range updates applicable to A0 in chronological order, initially empty.
We write AJ for the result of applying the updates of J to A0, in order.

Given an integer s, and the value of q(A0[1, s]), support the following operations:
split(i, a, ql, qr): given i ∈ [0, ρ− 1] and ai < a < ai+1, add a to the sequence of indices,
and update Q with the knowledge that q(A0[ai + 1, a]) = ql and q(A0[a+ 1, ai+1]) = qr
updatej(al, ar): append to J , the update: “for each i ∈ [al + 1, ar], set A[i] := uj(A[i])”
query(al, ar): return q(AJ [al + 1, ar])

It is guaranteed that every al or ar provided as input will already be in the sequence.

Note that this problem is not solvable for all choices of q and U : one may need to know
the individual values of A0, and not just the result of q over some ranges, to facilitate queries
after certain types of updates.

We use this to obtain the following general result, which we prove in the full version.

I Theorem 5.4. Suppose U is a set of update functions, and q is a query function, computable
in O(1) time. If there is a set Ū such that:
1. U ⊆ Ū are sets of functions that can be represented and composed in Õ(1) space and time,

such that the composition of any series of at most n (possibly non-distinct) functions of
U results in a function in Ū ;

2. There is an algorithm for 1D Partitioned Range (q, U) that performs both updates
and queries in Õ(1) time;

3. There is an algorithm for Static Trellised dD Grid Range (q, Ū) that runs in
Õ(nc−γu (nu + nq)γ) time for some γ ∈ [0, 1]

then Grid Range (q, U) can be solved in Õ(n c+d+1
2 − 1

2d ) time. When d = 2, this is
Õ(n5/4+c/2) time.

This gives a Õ(n(d2+2d−1)/2d) time algorithm for Grid Range (max, {min, set,max}).
In the next section, we give two additional applications of this theorem.

6 Truly subquadratic set updates and + queries by counting paths

In this section, we apply Theorem 5.4 to give truly subquadratic algorithms for 2D Grid
Range (+, set) and 2D Grid Range (+, {+, set}).

6.1 2D Grid Range (+, set) by counting inversions
The first condition of Theorem 5.4 is met for U = Ū = {set}, since seta ◦ setb = seta for
any a and b. The second condition can be met with a data structure for 1D Grid Range
(+, set), maintaining the invariant that a sum query over a range R in this structure yields
the same result as a sum query over R in the Partitioned Range structure. Operations
each occur in O(logn) = Õ(1) time.

Finally, we address the third condition by drawing an equivalence between Static
Trellised 2D Grid Range (+, set) and a class of range query problems over arrays. The
RangeEqPairsQuery accepts an array of size n as input, and asks for the number of pairs
of equal elements within each of q given ranges. Duraj et al. [14] defined this weighted
analogue for counting inversions between pairs of ranges.



J. Lau and A. Ritossa 35:15

I Definition 6.1 (Weighted 2RangeInversionsQuery). Given an integer array A, an in-
teger array of weights W , both of length n, and a sequence of q pairs of non-overlapping ranges
([l′1, r′1], [l′′1 , r′′1 ]), . . . , ([l′q, r′q], [l′′q , r′′q ]), with r′i < l′′i , compute for each pair ([l′, r′], [l′′, r′′]) the
quantity∑

i∈[l′,r′]

∑
j∈[l′′,r′′]

1A[i]>A[j] ·W [i] ·W [j].

2RangeInversionsQuery is the problem with the added restriction that every weight is 1.

They showed that RangeEqPairsQuery is equivalent, up to polylogarithmic factors, to
2RangeInversionsQuery, even when the time complexity is expressed as a function of
both n and q. We extend this equivalence to Static Trellised 2D Grid Range (+, set).

I Lemma 6.2. Static Trellised 2D Grid Range (+, set), Weighted 2RangeIn-
versionsQuery and 2RangeInversionsQuery all have the same complexity, up to poly-
logarithmic factors. This holds even when the queries are presented online, and with the
complexity measured as a function of two variables, n and q.

Proof. (Static Trellised 2D Grid Range (+, set) → Weighted 2RangeInversion-
sQuery). By adding a dummy update with value 0 covering the whole grid at time −1, we
may assume – without loss of generality – that every row (column) is covered by at least
one row (column) update. Now the value of a given point (after all updates) is equal to the
value of the later of the latest row update and the latest column update affecting this point’s
row and column, respectively. Thus, for each row (column), it suffices to keep the latest row
(column) update covering it. With a sort and sweep, we can process the row updates into
O(n) disjoint row updates which preserve this property. Hence, without loss of generality,
we may assume that the row updates are pairwise disjoint, as are the column updates. This
preprocessing takes O(n logn) time.

Consider a query over the points [l1, r1] × [l2, r2]. We will show how to compute the
contribution (sum of values) of those points whose value is determined by a row update: we
can treat the contribution from column updates identically, and the sum of these contributions
is the answer to the query. To form our instance of Weighted 2RangeInversionsQuery,
create an array A, whose values are equal to the update time of each row update in order,
from top to bottom, concatenated with the update time of each column update in order,
from left to right. For the weights of our instance, let the weight corresponding to the row
update with value v over rows [l1, r1] be v × (r1 − l1 + 1), and the weight corresponding to a
column update over columns [l2, r2] be (r2 − l2 + 1), irrespective of its value. This describes
our instance (see Figure 1): we will now describe the queries made to this instance.

Since row (column) updates are disjoint, there is a contiguous range of row (column)
updates in this array which lie entirely inside [l1, r1] ([l2, r2]), whose indices can be found
with binary search. The contribution of row updates to the points from these ranges is the
result of a query on our instance over the corresponding ranges. O(1) parts of the query
range may fall within part of a row or column update: the contribution from these can be
found by scaling the result of a similarly constructed query.

For (Weighted 2RangeInversionsQuery → 2RangeInversionsQuery) and
(2RangeInversionsQuery → Static Trellised 2D Grid Range (+, set)) reductions,
refer to full version. J
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set5 at t2 set7 at t4

set4 at t3

set3 at t1

Rows Columns
A 0 3 0 1 0 0 2 0 4 0
W 0 8 0 3 0 1 4 3 2 1

Columns Rows
A 0 2 0 4 0 0 3 0 1 0
W 0 20 0 14 0 5 2 2 1 1

+

Figure 1 Reducing Static Trellised 2D Grid Range (+, set) to Weighted 2RangeIn-
versionsQuery. Updates occur at times t1 through t4. Separate instances for row and column
contributions.

Duraj et al. [14] gave an Õ(n(2ω−2)/(ω+1)(n+ q)2/(ω+1)) time5 algorithm for RangeEqPair-
sQuery, so we obtain the following truly subquadratic time algorithm for 2D Grid Range
(+, set).

I Theorem 6.3. 2D Grid Range (+, set) can be solved in Õ(n5/4+ω/(ω+1)) = Õ(n1.954)
time.

6.2 2D Grid Range (+, {+, set}) by counting 3-paths
We will once again employ Theorem 5.4 to give a truly subquadratic time algorithm for 2D
Grid Range (+, {+, set}). The first two conditions are met with slight modifications to
that in the previous section; fulfilling the third condition is the subject of the remainder of
this section. We begin by defining the following graph problems.

I Definition 6.4. The k-WalkQuery (resp. Simplek-PathQuery) problem gives, as
input, a simple graph with m edges and O(m) vertices, and poses q online queries, each
asking for the number of k-edge walks (resp. simple k-edge paths) between a given pair of
vertices.

Duraj et al. [14] proved an equivalence between RangeEqPairsQuery when n = q, and
counting the number of triangles each edge is contained in, in a n-edge, O(n)-vertex graph.
When the restriction n = q is relaxed, an equivalence can be drawn with 2WalkQuery
instead. In the same vein, we reduce Static Trellised 2D Grid Range (+, {+, set}) to
3WalkQuery via a generalisation of RangeEqPairsQuery.

I Lemma 6.5. If 3WalkQuery can be solved in T (m, q) time then Static Trellised 2D
Grid Range (+, {+, set}) can be solved in Õ(T (nu, nq)) time.

To solve 3WalkQuery, we generalise the 4-cycle detection and counting algorithms
of Yuster and Zwick [29] and Vassilevska Williams et al. [25] to solve 3WalkQuery.
Specifically, we partition vertices into three groups based on their degree, and consider each

5 The multivariate running time given in [14] is slightly better than this when q ≤ n, but this simplified
form suffices our purposes.
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of the possible configurations of vertices in the 3-Walk with respect to these groups. For each
configuration, we use a combination of rectangular matrix multiplication and enumerating
edges, both during precomputation and on-the-fly for each query. Finally, we perform a
multivariate analysis of the running time, obtaining the following result.

I Theorem 6.6. 3WalkQuery is equivalent to Simple3PathQuery, and both can be
solved in O(m2ω/(2ω+1)(m+ q)(2ω−1)/(2ω+1)) time.

Hence, this yields the following algorithm, by Theorem 5.4.

I Theorem 6.7. 2D Grid Range (+, {+, set}) can be solved in time Õ(n5/4+(4ω−1)/(4ω+2))
= O(n1.989).

7 Range problems over an explicit point set

I Lemma 1.2. If 1D Range (q, U) on p points can be solved in time T (p) per operation and
q is computable in O(1) time, then dD Range (q, U) can be solved in time O(p1−1/dT (p))
per operation.

Proof. We construct a kd-tree [7] T over the points in P . There is a single point of P in
each of the leaves of T : we assign these labels from 1 to p, according to the order of their
appearance in a preorder traversal of T .

We can represent the points in any orthogonal range as those in the disjoint union of
O(p1−1/d) subtrees of T [20]. The labels of points within these subtrees correspond to disjoint
ranges of [p]. Hence, we can keep an instance of 1D Range (q, U), and perform updates
and queries on the corresponding ranges of labels using this data structure. J

I Theorem 7.1. If either 2D Range (+, +) or 2D Range (max, max) can be solved in
amortised O(p1/2−ε) time per update or query, for any ε > 0, then the OMv Conjecture is
false.

Proof sketch. We use a slight modification of Lemma 3.2, with a point in P for eachMij = 1.
For each pair of query vectors (u, v), we use the update operation to mark row i for each
ui = 1. For each vj = 1, we perform a query over column j to check if any points in that
column were marked. A trick for 2D Range (max, max) allows us to reuse the same
instance for all query vector pairs. J

I Theorem 7.2. If any of 2D Range (+, set), 2D Range (max, set), 2D Range
(max, +), 2D Range (+, max) or 2D Range (max, min) can be solved in amortised
O(p1/2−ε) time per update and amortised O(p1−ε) time per query, for any ε > 0, then the
OMv Conjecture is false.

The proof is similar to that of Lemma 3.2, and is omitted.

8 Open Problems

We have shown that 2D Grid Range (max, {min, set,max}) and 2D Grid Range (max,
+) can both be solved in truly subquadratic time, and found Ω(n2−o(1)) time conditional
lower bounds for 2D Grid Range (max, {+,min}). We also observe that 2D Grid Range
(max, {+, set}) reduces to 2D Grid Range (max, {+,max}), since setc = maxc ◦+−∞.
Hence, the remaining maximum query variants in B are each at least as hard as 2D Grid
Range (max, {+, set}).
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I Open Problem 8.1. Can (Offline) 2D Grid Range (max, {+, set}) be solved in truly
subquadratic time?

Among variants supporting sum queries, we gave Ω(n2−o(1)) time conditional lower bounds
for 2D Grid Range (+, {+,max}). Using the identity setc = maxc ◦+−∞ once again, one
can see that this is at least as hard as 2D Grid Range (+, {+, set}), which we solved
in O(n1.989) time, using Theorem 5.4. Another problem easier than 2D Grid Range (+,
{+,max}) is simply 2D Grid Range (+, max), which does not support + updates. This
is also the easiest among the remaining sum query variants in B.

We make several comments regarding the hardness of 2D Grid Range (+, max). First,
we observe that it is also at least as hard as its set “counterpart”, since any instance of Grid
Range (+, set) can be simulated with two instances of Grid Range (+, max).

I Lemma 8.2. Grid Range (+, set) can be solved in the same time as Grid Range (+,
max).

We solved 2D Grid Range (+, set) in O(n1.954) time using Theorem 5.4. However,
it is easy to see that there is no solution to 1D Partitioned Range (+,max), which is
required as a precondition of Theorem 5.4: it is simply not enough to know the sum of a
range of points. One might instead determine for each overlay region O, query range R and
maxc update: the number of points in O ∩R with value at most c and the sum of points in
O ∩ R with value greater than c. This requires O(k3) values returned per batch, limiting
precomputation to O(n3/2−ε) time, for some ε > 0, if a truly subquadratic time algorithm
overall is desired. This cannot be achieved with a direct application of Theorem 5.4, since
there are O(n3/2) updates across the t-regions.

I Open Problem 8.3. Can (Offline) 2D Grid Range (+, max) be solved in truly
subquadratic time?

Finally, our Ω(n3/2−o(1)) conditional lower bounds do not match the upper bounds we
gave for 2D Grid Range (+, {set,+}), 2D Grid Range (+, set) and 2D Grid Range
(max, {min, set,max}). We ask if the gap can be closed for these problems to see if there
exists an in-between complexity class of 2D Grid Range problems. In particular, this would
be resolved in the affirmative if Theorem 5.4 is a tight reduction for any of these problems.

I Open Problem 8.4. Are there any 2D Grid Range problems solvable in O(n2−ε) time,
for some ε > 0, but require Ω(n3/2−o(1)) time?

We have studied just a small subset of Range and Grid Range problems in this
work. Additional update or query operations, such as addition modulo a prime, can also
be considered. Many existing variants of range searching (see [4]) can also be adapted to
these problem classes. In particular, we have not investigated problems which deal with
data points that have a “colour” or “category”, and ask for the number of distinct colours
in a range. These may be of particular interest, as set updates could be used to facilitate
changing the colour of several data points at the same time.
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Abstract
Despite the interest in the complexity class MA, the randomized analog of NP, there are just a few
known natural (promise-)MA-complete problems. The first such problem was found by Bravyi and
Terhal (SIAM Journal of Computing 2009); this result was then followed by Crosson, Bacon and
Brown (PRE 2010) and then by Bravyi (Quantum Information and Computation 2015). Surprisingly,
each of these problems is either from or inspired by quantum computation. This fact makes it hard
for classical complexity theorists to study these problems, and prevents potential progress, e.g., on
the important question of derandomizing MA.

In this note we define two new natural combinatorial problems and we prove their MA-
completeness. The first problem, that we call approximately-clean approximate-connected-component
(ACAC), gets as input a succinctly described graph, some of whose vertices are marked. The problem
is to decide whether there is a connected component whose vertices are all unmarked, or the graph
is far from having this property. The second problem, called SetCSP, generalizes in a novel way the
standard constraint satisfaction problem (CSP) into constraints involving sets of strings.

Technically, our proof that SetCSP is MA-complete is a fleshing out of an observation made in
(Aharonov and Grilo, FOCS 2019), where it was noted that a restricted case of Bravyi and Terhal’s
MA complete problem (namely, the uniform case) is already MA complete; and, moreover, that
this restricted case can be stated using classical, combinatorial language. The fact that the first,
arguably more natural, problem of ACAC is MA-hard follows quite naturally from this proof as well;
while containment of ACAC in MA is simple, based on the theory of random walks.

We notice that this work, along with a translation of the main result of Aharonov and Grilo to
the SetCSP problem, implies that finding a gap-amplification procedure for SetCSP (in the spirit of
the gap-amplification procedure introduced in Dinur’s PCP proof) would imply MA=NP. In fact,
the problem of finding gap-amplification for SetCSP is equivalent to the MA=NP problem. This
provides an alternative new path towards the major problem of derandomizing MA. Deriving a
similar statement regarding gap amplification of a natural restriction of ACAC remains an open
question.
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1 Introduction

The complexity class MA is a natural extension of NP proof systems to the probabilistic
setting [4]. There is a lot of evidence towards the fact that these two complexity classes are
equal [14, 12, 13, 5, 18, 15, 20, 16], however the proof remains elusive. It is even open to
show that every problem in MA can be solved in non-deterministic sub-exponential time.

Surprisingly, the very first natural MA-complete1 problem, found by Bravyi and Terhal [8]
only close to 25 years after the definition of the class (!) is defined using quantum terminology.
But why would randomized NP have anything to do with quantum? Bravyi and Terhal show
that deciding if a given stoquastic k-Local Hamiltonian2 is frustration-free or at least inverse
polynomially frustrated, is promise-MA-complete. Bravyi [6] also proved MA-completeness
of yet another quantum Hamiltonian problem. A third MA-complete problem was proposed
by Crosson, Bacon and Brown [9], inspired by quantum adiabatic computation.3

This leaves us in a strange situation in which the known MA complete problems are not
stated using natural or standard complexity theory terminology. This makes us wonder if
there is a fundamental reason why we cannot find classical MA-complete problems, or it
is just an “accident” that the first MA-complete problems come from quantum computing.
Moreover, we think that new natural (classically defined) complete problems for the class
MA might enable access to the major open problem of derandomization of MA, and possibly
to other related problems such as PCP for MA [1]4. In particular, though the problems
proposed in [8, 6] are very natural within quantum complexity theory, the fact that they are
defined within the area of quantum computation seems to pose a language and conceptual
barrier that might delay progress on them, and make it hard for classical complexity theorists
to study them.

The goal of this work is to provide classically, combinatorially-defined complete problems
for MA. We hope that these definitions lead to further understanding of the class MA and
the MA vs. NP question.

One of these problems, SetCSP, is morally based on the MA complete problem of [8],
while the other problem, ACAC, seems to be a rather natural problem on graphs.

The definition of SetCSP as well as the proof of its MA-completeness rely on a simple
but crucial insight: we can translate “testing history states”, a notion familiar in quantum
complexity theory, into constraints on sets of strings. This idea is used here throughout, but
in fact can be used to translate also other quantum results related to stoquastic Hamiltonians,
to the classical combinatorial language of constraints on sets of strings (see Section 4.4.1 as

1 For PromiseMA, it is folklore that one can define complete problems by extending NP-complete problems
(see, e.g. [19]): we define an exponential family of 3SAT formulas (given as input succinctly) and we
have to decide if there is an assignment that satisfies all of the formulas, or for every assignment, a
random formula in the family will not be satisfied with good probability.

2 Stoquastic Hamiltonians sit between classical Hamiltonians (CSPs) and general quantum Hamiltonians.
3 Crosson et. al.’s problem asks about the properties of the Gibbs distribution corresponding to the

temperature T of a specific family of classical, rather than quantum, physical systems, defined using
local classical Hamiltonians. Though inspired by adiabatic quantum computation, this problem is in
fact defined using classical terminology, since the classical Hamiltonians can be viewed as constraint
satisfaction systems. Yet, we note that its definition uses a layer of physical notation, involving Gibbs
distribution and temperature. Moreover, when stated using classical terminology, the input to this
problem is restricted, in a fairly contrived way, to sets of classical constraints which can be associated
with a (noisy) deterministic circuit. Both of these aspects seem to make handling this problem using
standard combinatorial tools difficult or at least not very natural.

4 We notice that Drucker [11] proves a PCP theorem for AM; in the definition he uses for AM, the coins
are public and the prover sees them (See Section 2.3 in [11]); but his result does not hold when the
coins are private, namely for MA.
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well as Figure 1 for more intuition). However though this translation idea can be viewed as
standing at the heart of many of the definitions and results presented here, it is in fact not
necessary to understand the proofs.

Based on this idea, as well as a simple observation made in [1] which says that the
problem of [8] remains promise-MA complete even when restricted to what is referred to in [1]
as uniform stoquastic Hamiltonians, we can prove the MA-hardness proof of the SetCSP
problem as a translation of the MA-hardness proof given in [8] into a classical language. We
notice that the proof of [8] on its own heavily relies on the Quantum Cook-Levin proof of
Kitaev [17].

It turns out that there is an easy reduction from the problem SetCSP to that of ACAC,
and therefore the proof that ACAC is MA-hard follows immediately.

Interestingly, the proof of containment in MA is rather simple for ACAC (it is an easy
application of a known result from random walk theory.) Finally, using the same reduction,
we arrive at a proof that the SetCSPproblem is also in MA5.

We stress that we present all proofs here avoiding any quantum notation or quantum
jargon whatsoever. The main contribution of this work is in the definitions themselves,
initiated by the small but important conceptual idea of the translation mentioned above; this
translation thus provides two new, combinatorial, and natural MA-complete problems, which
we believe are amenable to research in a language familiar to (classical) computer scientists.

We now describe the problems. In the ACAC problem, we consider an exponentially
large graph, accompanied with a function on the vertices that marks some of them. Both
graph and the function on the vertices are given implicitly (and succinctly) by a polynomial
size circuit. We then ask if there exists a connected component of the graph that is “clean”
(meaning that all of its vertices are unmarked) or if the graph is ε-far from having this
property. The notion of “far” is defined as follows: every set of vertices which is close to being
a connected component (i.e. its expansion is smaller than ε) must have at least an ε-fraction
of its vertices marked. In other words, either a set is ε-far from a connected component (i.e.
has large expansion) or at least ε fraction of its vertices are marked. We call this problem
approximately-clean approximate-connected-component (ACACε).

Our second MA-complete problem, called the Set-Constraint Satisfaction Problem, or
SetCSP, is a somewhat unexpected generalization of the standard Constraint Satisfaction
Problem (CSP). While a constraint in CSP acts on a single string (deciding if it is valid or
not), the generalized constraints act on sets of strings. We call the generalized constraints
set-constraints (see Section 4 for the exact definition of a set-constraint.). The input to the
SetCSP problem is a collection of such set-constraints, and the output is whether there is
a set of strings S that satisfies all set-constraints in this collection, or any set of strings S
is ε-far from satisfying this set-constraint collection (see Definitions 10 and 16 for formal
definitions of “satisfying a set-constraint” and “far”). We denote this problem by SetCSPε.

Following the ideas of [8, 17], we show the following three claims: i) for every inverse
polynomial ε, we have that ACACε is in MA (Corollary 8); ii) there exists an inverse
polynomial function ε = ε(n) such that SetCSPε is MA-hard (Lemma 17); and iii) for all
functions ε = ε(n) > 0, there is a polynomial-time reduction from SetCSPε to ACACε/2.
Together, these facts imply the following results (which are proven in Section 5).

5 This in fact gives a significantly simpler version than [7] of the proof of containment in MA, in the
restricted case of uniform stoquastic Hamiltonians.
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I Theorem 1. There exists some inverse polynomial p(x) = Θ(1/x3) such that for every
inverse polynomial p′ < p, the problems SetCSPp′(m) and ACACp′(m) are MA-complete, where
m is the size of the SetCSP or ACAC instance.

We stress that the definitions of both these problems and the proofs presented in this
paper only use standard combinatorial concepts from set- and graph-theory.

1.1 Conclusions, future work and open questions
In a similar way to what is done in this note, we claim that it is possible to translate
several other results from the stoquastic local Hamiltonian language to the SetCSP language,
bringing us to very interesting conclusions.

First, one could strengthen the MA-hardness of SetCSP (Lemma 17), whose proof is a
translation of the proof of the quantum Cook-Levin theorem [17], to the restricted case in
which the constraints are set on a 2D lattice. To do this, one could consider the result of [3]
where they prove the QMA-hardness of local Hamiltonians on a 2D lattice (considering only
the restricted family of stoquastic Hamiltonians), and translate it to the SetCSP language. In
this way, it can be proven that SetCSPε with inverse polynomial ε, and with set-constraints
arranged on a 2D-lattice with constant size alphabet is still MA-hard.6 We omit here the
details of the proof, since it is a straight forward translation of [3], similarly to what’s done
in Lemma 17. This leads to the following statement.

I Lemma 2. There exists some inverse polynomial p such that for every inverse polynomial
p′ < p, SetCSPp′ is MA-hard even when each bit participates in O(1) set-constraints, and
each set-constraint acts on O(1) bits.

We also claim that the main result of [1], which states that some problem called stoquastic
local Hamiltonian with constant gap is in NP, can be translated to SetCSP language, using
again the same translation. This means that the gapped version of the SetCSP problem is
in NP. By the gapped version of the problem, we mean SetCSPε when ε is a constant; and
where we also require that the locality k (number of bits in a set-constraint) and degree d
(number of set-constraints each bit participates in) are bounded from above by a constant.
More concretely, we have the following.

I Lemma 3. For any constant ε and constants k and d, SetCSPε is in NP if each bit
participates in d set-constraints, and each set-constraint acts on k bits.

Together these two results lead to a very important and surprising equivalence7:

Proposition. MA=NP iff there is a gap amplification reduction8 for SetCSP. The existence
of a gap amplification reduction means that there exists a constant ε > 0, such that for every
inverse polynomial p, there is a polynomial time reduction from SetCSPp(n) to SetCSPε.

We note that it is easy to see that MA=NP implies such gap-amplification for SetCSP:
if MA = NP, then we can reduce SetCSP1/poly, which is in MA-complete by Theorem 1, to
CSPO(1), which is NP-complete by the PCP theorem [10]; then, since every CSP instance

6 We conjecture that this hardness result works even with binary alphabet and we leave such a statement
for future work.

7 This equivalence was highlighted in [1] in a quantum language of stoquastic Hamiltonians
8 In the same sense as Dinur’s gap amplification reduction for CSP[10]
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is also a SetCSP instance with the same parameters, we have the gap-amplification. It is
the other direction of deriving MA=NP from gap-amplification for SetCSP, that is the new
contribution. This implication suggests a new path to the long standing open problem of
derandomizing MA.

Finally, we leave as an open problem deriving such a natural statement regarding gap
amplification for the ACAC problem. Though the two problems are technically very related,
defining a natural restricted version of the gapped ACACproblem, so that the [1] result
would apply to show containment in NP (similarly to SetCSP with constant ε, locality k and
degree d) remains open. The problem is that the locality notions don’t have a very natural
analogues in the graph language of ACAC.

Organization. We provide notation and a few basic notions in Section 2. In Section 3,
we define the approximately-clean approximate-connected-component problem and prove
its containment in MA. The definition of SetCSP and the proof of its MA-hardness are in
Section 4. The reduction from SetCSP to ACAC appear in Section 5.

2 Preliminaries

For n ∈ N+, we denote [n] = {0, ..., n − 1}. For any n-bit string, we index its bits from 0
to n− 1. For x ∈ {0, 1}n and J ⊆ [n], we denote x|J as the substring of x on the positions
contained in J . For x ∈ {0, 1}|J|, y = {0, 1}n−|J| and J ⊆ [n], we define xJyJ to be the
unique n-bit string w such that w|J = x and w|J = y, where J = [n] \ J . For two strings, x
and y, we denote by x || y their concatenation, and |x| denotes the number of bits in x.

2.1 Complexity classes

A (promise) problem A = (Ayes, Ano) consists of two non-intersecting sets Ayes, Ano ⊆
{0, 1}∗.

For the definitions of the two main complexity classes that are considered in this work,
NP and MA, we refer to the full version of this paper [2].

The standard definition of MA [4] requires yes-instances to be accepted with probability
at least 2

3 , but it has been shown that there is no change in the computational power if we
require the verification algorithm to always accept yes-instances [21, 12].

2.2 Reversible circuits

It is folklore that the verification algorithms for NP and MA can be converted into a uniform
family of polynomial-size Boolean circuits, made of reversible gates, {NOT,CNOT,CCNOT}
by making use of additional auxiliary bits initialized to 0, with only linear overhead. For
randomized circuits, we can also assume the circuit uses only reversible gates, by assuming
that the random bits are part of input. See the full version of this paper [2] for more details.

Let G ∈ {NOT,CNOT,CCNOT} be a gate to be applied on the set of bits J out of
some n-bit input x. We slightly abuse notation (but make it much shorter!) and denote
G(x) def= x|J

J
G(z|J )J . Namely, we understand the action of the k-bit gate G on an n > k bit

string x by applying G only on the relevant bits, and leaving all other bits intact.

ITCS 2021
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3 Approximately-clean approximate-connected-component problem

In this section, our goal is to present the approximately-clean approximate-connected-
component problem and prove its containment in MA. But before that, we explain the exact
version of this problem.

For a fixed parameter n, we consider a graph G of 2n nodes, which is described by a
classical circuit CG of size (number of gates) poly(n), as follows. For simplicity, we represent
each vertex of G as an n-bit string, and CG, on input x ∈ {0, 1}n, outputs the (polynomially-
many) neighbors of x in G.9 We are also given a circuit CM , which when given input
x ∈ {0, 1}n, outputs a bit indicating whether the vertex x is marked or not.

We define the clean connected component problem (CCC) which, on input (CG, CM ),
asks if G has a connected component where all vertices are unmarked or if all connected
components have at least one marked element. We give now the formal definition of this
problem.

I Definition 4 (Clean connected component(CCC)). Fix some parameter n. An instance
of the clean connected component problem consists of two classical poly(n)-size circuits CG
and CM . CG consists of a circuit succinctly representing a graph with G = (V,E) where
V = {0, 1}n and each vertex has degree at most poly(n). On input x ∈ {0, 1}n, CG outputs
all of the neighbors of x. CM is a circuit that on input x ∈ {0, 1}n, outputs a bit. The
problem then consists of distinguishing the two following cases:
Yes. There exists one non empty connected component of G such that CM outputs 0 on all
of its vertices.
No. In every connected component of G, there is at least one vertex for which CM outputs 1.

We show in the full version of this paper [2] that this problem is PSPACE-complete.
Our focus here is to study the approximate version of CCC, where we ask whether G has a
clean connected component or it is “far” from having this property, meaning that for every
set of vertices S, the boundary10 of S is at least ε|S| (and therefore S is far from being a
connected component), or, if the boundary is small (i.e. S is close to a connected component)
it contains at least ε|S| marked elements. Here is the definition of the problem.

I Definition 5 (Approximately-clean approximate-connected-component(ACACε)). Same as
Definition 4 with the following difference for no-instances:
No. For all non empty S ⊆ V , we have that either

|∂G(S)| ≥ ε|S| or |{x ∈ S : CM (x) = 1}| ≥ ε|S|.

In the remainder of this section, we show that ACACε is in MA for every inverse polyno-
mial ε.

3.1 Inclusion in MA
The idea of the proof is as follows. The prover sends a vertex that belongs to the (supposed)
clean connected component and then the verifier performs a random-walk on G for sufficiently
(but still polynomially-many) steps and rejects if the random walk encounters a marked
element.

9 We notice that usually we succinctly describe graphs by considering a circuit that, on input (x, y),
outputs 1 iff x is connected to y. In our result it is crucial that given x, we are able to efficiently
compute all of its neighbors.

10The boundary of a set of vertices S ⊆ V is defined as ∂G(S) = {{u, v} ∈ E : u ∈ S, v 6∈ S}.



D. Aharonov and A. B. Grilo 36:7

In order to prove that this verification algorithm is correct, we first prove a technical
lemma regarding the random-walk on no-instances.

I Lemma 6 (In NO-instances the random walk reaches marked nodes quickly). Let ε be an
inverse polynomial function of n. If (CG, CM ) is a no-instance of ACACε, then there exist
polynomials q1 and q2 such that for every x ∈ {0, 1}n, a q1(n)-step lazy random walk11
starting at x reaches a marked vertex with probability at least 1

q2(n) .

Proof. Let x be some initial (unmarked) vertex (notice that we can assume that x is
unmarked since otherwise the lazy random walk reaches a marked vertex with probability 1).
Let Gx be the connected component of x in G and Vx be the set of vertices in the connected
component of x. We partition Vx into A, the unmarked vertices in Vx and B = Vx \A, the
marked vertices in Vx.

We want to upper bound the size of the edge boundary of any set S ⊆ A which contains
only unmarked strings. We claim that by the conditions of the lemma, it must be that for
any S ⊆ A, we have the following bound:

|∂G(S)| ≥ ε|S|, (1)

otherwise S would contradict the fact that (CG, CM ) is a no-instance, since it only contains
unmarked vertices.

We can now ask how fast does a lazy random walk starting from x, reach an element in
B. This is a well known question from random walk theory, and it can be stated as follows.

I Lemma 7 (Escaping time of high conductance subset). Let G = (V = A ∪ B,E) be a
simple (no multiple edges) undirected connected graph, such that for every v ∈ A dG(v) ≤ d
, and such that for some δ < 1

2 , for all A′ ⊆ A, we have that |∂G(A′)| ≥ δ|A′|. Then a(
16d2

δ2 ln 2d|V |
δ

)
-step lazy random walk starting in any v ∈ A reaches some vertex u ∈ B with

probability at least δ
4d .

We defer the proof of this lemma to the full version of this paper [2] and we apply it using
G = Gx, A, B, d is the (poly(n)-large) maximum degree of G, and δ ≥ ε. It follows that
a
(

16d2

ε2 (n+ ln (2d/ε))
)
-step lazy random walk starting on any x ∈ Gx reaches a marked

vertex with probability at least ε
4d . J

From the previous lemma, we can easily achieve the following.

I Corollary 8. For any inverse polynomial ε, ACACε is in MA.

Proof. The witness for the ACAC instance consists of some string x, which is supposed to be
in a clean connected component of G. Define q1 and q2 as the same polynomials of Lemma 6,
namely, let q1 =

(
16d2

ε2 (n+ ln (2d/ε))
)
and q2 = 4d

ε . The MA-verification algorithm consists
of repeating nq2(n) times the following process: start from x, perform a q1(n)-step lazy
random walk in G, reject if any of these walks encounters a marked vertex, otherwise accept.

If (CG, CM ) is a yes-instance, then the prover can provide a vertex x which belongs to the
clean connected component. Any walk starting from x remains in its connected component
and thus it will never encounter a marked vertex and the verifier accepts with probability 1.

11 In a lazy random walk, at every step we stay in the current vertex with probability 1
2 , and with

probability 1
2 we choose a random neighbor of the current vertex uniformly at random and move to it.
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If (CG, CM ) is a no-instance, from Lemma 6, each one of the random walks finds a marked
vertex with probability at least 1

q2(n) . Thus, if we perform nq2(n) lazy random walks, the
probability that at least one of them finds a marked vertex is exponentially close to 1. J

4 Set-Constraint Satisfaction Problem

In this section we present the Set Constraint Satisfaction Problem (SetCSP), and then prove
its MA-hardness.

4.1 Definition of the SetCSP problem

We start by recalling the standard Constraint Satisfaction Problem (CSP). We choose to
present CSP in a way which is more adapted to our generalization (but still equivalent to the
standard definition). An instance of k-CSP is a sequence of constraints C1, ..., Cm. In this
paper, we see each constraint Ci as a tuple (J(Ci), Y (Ci)), where J(Ci) ⊆ [n] is a subset of
at most k distinct elements of [n] (these are referred to as “the bits on which the constraint
acts”) and Y (Ci) is a subset of k-bit strings, namely Y (Ci) ⊆ {0, 1}|J(Ci)| (these are called
the “allowed strings”). We say that a string x ∈ {0, 1}n satisfies Ci if x|J(Ci) ∈ Y (Ci). The
familiar problem of k-CSP, in this notation, is to decide whether there exists an n-bit string
x which satisfies Ci, for all 1 ≤ i ≤ m.

In k-SetCSP, our generalization of k-CSP, the constraints Ci are replaced by what we
call “set-constraints” which are satisfied by (or alternatively, that allow), sets of strings
S ⊆ {0, 1}n.

I Definition 9 (Set constraint). A k-local set-constraint C consists of a) a tuple of k distinct
elements of [n], denoted J(C) (we have |J(C)| = k, and we refer to J(C) as the bits which
the set-constraint C acts on), and b) a collection of sets of strings, Y (C) = {Y1, ..., Y`},
where Yi ⊆ {0, 1}k is a set of k-bit strings and Yi ∩ Yj = ∅ for all distinct 1 ≤ i, j ≤ `.

I Definition 10 (A set of strings satisfying a constraint). We say that a set of strings
S ⊆ {0, 1}n satisfies the k-local set-constraint C if first, the k-bit restriction of any string
in S to J(C) is contained in one of the sets in Y (C), i.e., for all x ∈ S, x|J(C) ∈

⋃
j Yj.

Secondly we require that if x ∈ S and x|J(C) ∈ Yj, then for every y such that y|J(C) ∈ Yj
and y|

J(C) = x|
J(C), then y ∈ S. In other words, for any string s ∈ S, one can replace its

k-bit restriction to the bits J(C), which is a string in some Yj ∈ Y (C), with a different k-bit
string in Yj, and the resulting string s′ must also be in S.

An instance of k-SetCSP consists of m such k-local set-constraints, and we ask if there
is some non-empty S ⊆ {0, 1}n that satisfies each of the set constraints, or if any set S of
n-bit strings is far from satisfying the collection of set-constraints. How to define far? We
quantify the distance from satisfaction using a generalization of the familiar notation of
unsat from PCP theory [10]; we denote the generalized notion by set-unsat(C, S). Intuitively,
this quantity captures how much we need to modify S in order to satisfy the collection of
set-constraints. Making this definition more precise will require some work; However we
believe it already makes some sense intuitively, so we present the definition of the SetCSP
problem now, and then provide the exact definition of set-unsat(C, S) in Section 4.2.

I Definition 11 (k-local Set Constraint Satisfaction problem (k-SetCSPε)). Fix the two
constants d, k ∈ N+, as well as a monotone function ε : N+ → (0, 1) to be some parameters
of the problem. An instance to the k-local Set Constraint Satisfaction problem is a sequence
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of m(n) k-local set-constraints C = (C1, ..., Cm) on {0, 1}n, where m is some polynomial in
n. Under the promise that one of the following two holds, decide whether:
Yes. There exists a non-empty S ⊆ {0, 1}n that satisfies all set constraints in C, i.e.,
set-unsat(C, S) = 0
No. For all S ⊆ {0, 1}n, set-unsat(C, S) ≥ ε(n).

4.2 Satisfiability, frustration and the definition of set-unsat(C, S)

We present some concepts required for the formal definition of set-unsat(C, S).

I Definition 12 (C-Neighboring strings). Let C be some set-constraint. Two distinct strings
x and y are said to be C-neighbors if x|

J(C) = y|
J(C) and x|J(C), y|J(C) ∈ Yi, for some

Yi ∈ Y (C). We call a string x a C-neighbor of S if there exists a string y ∈ S such that x is
a C-neighbor of y.

We also define the C-longing strings in a set of strings S: these are the strings that are
in S but are C-neighbors of some string that is not in S.

I Definition 13 (C-Longing strings). Given some set S ⊆ {0, 1}n and a set-constraint C,
x ∈ S is a C-longing12 string with respect to S if x is a C-neighbor of some y 6∈ S.

A useful definition is that of bad strings for some set-constraint C, which in short are the
strings that do not appear in any subset of Y (C).

I Definition 14 (C-Bad string). Given a set-constraint C, with Y (C) = {Y1, ...Y`}, a string
x ∈ {0, 1}n is C-bad if x|J(C) 6∈

⋃
i Yi. We abuse the notation and whenever x is C-bad, we

say x 6∈ Y (C).

The following complementary definition will be useful:

I Definition 15 (Good string). We say that a string is C-good if it is not C-bad. We say that
it is a “good string for the set-constraint collection C” if it is C-good for all set-constraints
C ∈ C. When the collection C is clear from context (as it is throughout this note), we omit
mentioning of the set-constraints collection C and just say that the string is “good”.

Given Definitions 13 and 14 above, it is easy to see that a set of strings S ⊆ {0, 1}n
satisfies a set-constraint C (by Definition 10) iff S contains no C-bad strings and no C-longing
strings.

We now provide a way to quantify how far S is from satisfying C.

I Definition 16 (Satisfiability of set-constraints). Let S ⊆ {0, 1}n and C be a k-local set-
constraint. Let BC be the set of C-bad strings in S and LC be the set of C-longing strings
in S. Note that LC ∩ BC = ∅. The set-unsat value (which we sometimes refer to as the
frustration) of a set-constraint C with respect to S, is defined by

set-unsat(C, S) = |BC |
|S|

+ |LC |
|S|

(2)

12 The term “C-longing” reflects the sentiment that the string x “wants” to be together with y in S; the
set constraint makes sure that there is an energy penalty if this is not the case.
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36:10 Two Combinatorial MA-Complete Problems

Given a collection of m k-local set-constraints C = (C1, ..., Cm), its set-unsat value (or
frustration) with respect to S is defined as average frustration of the different set-constraints:

set-unsat(C, S) = 1
m

m∑
i=1

set-unsat(Ci, S). (3)

We also define the frustration of the set collection C:

set-unsat(C) = min
S⊆{0,1}n

S 6=∅

{set-unsat(C, S)}. (4)

We say that C is satisfiable if set-unsat(C) = 0 and for ε > 0, we say that C is ε-frustrated
if set-unsat(C) ≥ ε.

Notice that the normalization factors in Equation (2) guarantees that the set-unsat value
lies between 0 and 1.13

4.3 Intuition and standard CSP as special case
We can present a standard k-CSP instance consisting of constraints C1, C2, ..., Cm as an
instance of k-SetCSP in the following way: For each constraint C`, ` ∈ {1, ...,m} out of the
m constraints in the k-CSP instance, we consider the following set-constraint C ′`: for every
k-bit string s that satisfies C`, add the subset Ys = {s} to C ′`. We arrive at a collection
C of m set-constraints, where each set-constraint C ′` in C consists of single-string sets Yi
corresponding to all strings which satisfy C`.

We claim that the resulting SetCSP instance has set-unsat(C) = 0 if and only if the original
CSP instance was satisfiable. First, if the original CSP instance is satisfiable, we claim that
for any satisfying string s we can define the set S = {s} consisting of that single string, and
S indeed satisfies the collection of set-constraints defined above. To see this, note that in our
case, there is no notion of C-neighbors (See Definition 12), since all Yi’s contain only a single
string. Hence, there are no longing strings; By the definition of set-unsat (Equation (2)) in
this case set-unsat(C, S) = 0 if all strings in S are good for all set-constraints C ′, namely each
of them satisfies all constraints C in the original k-CSP instance, which is indeed the case if
we pick a satisfying assignment. For the other direction, assume set-unsat(C, S) = 0 for some
set S. This in particular means that all strings in S are C-good for all set-constraints in C.
By definition of our C, this means any string s ∈ S is a satisfying assignment.

We give now some intuition about the set-unsat quantity (Equation (2)). We first note
that it generalizes the by-now-standard notion of (un)satisfiability in CSP, which for a
given string, counts the number of unsatisfied constraints, divided by m. We note that in
Equation (2), if S = {s}, then |BC | is either 0 or 1, depending on whether s satisfies the
constraint or not. As previously remarked, in CSP the notion of neighboring and longing
strings does not exist, and so LC will always be empty. Thus, in the case where S = {s} and
all set-constraints containing single strings, Equation (3) is indeed the number of violated
constraints by the string, divided by m – which is exactly the standard CSP unsat used
in PCP contexts [10]. (In the case of S containing more than one string, but all Yis are
still single-strings, Equation (3) will just be the (non-interesting) average of the unsat of all
strings in S).

13The lower bound is trivial since the value cannot be negative. For the upper-bound, notice that
BC , LC ⊆ S and BC ∩ LC = ∅. This is because bad strings have no neighbors whereas longing strings
do. Hence |BC |

|S| + |LC |
|S| ≤

|S|
|S| = 1.
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The interesting case is the general SetCSP case, when the Yi’s contain more than a single
string, i.e., when the notions of neighbors and longing strings become meaningful. In this
case, the left term in the RHS of Equation (2) quantifies how far the set S is from the
situation in which it contains only “good” (not “bad”) strings (this can be viewed as the
standard requirement) but it adds to it the right term, which quantifies how far S is from
being closed to the action of adding neighbors with respect to the set-constraints14. Loosely
put, the generalization from constraints to set-constraints imposes strong “dependencies”
between different strings, and the number of longing strings, LC , counts to what extent these
dependencies are violated.

4.4 MA-hardness of SetCSP1/poly(n)

In this subsection, we show the MA-hardness of SetCSP1/poly.

I Lemma 17. There exists some inverse polynomial p(x) = Θ(1/x3) such that for every
inverse polynomial p′ < p, the problem SetCSPp′(m) is MA-hard.

To prove this lemma, we show how to reduce any language L ∈ MA to a 6-SetCSP instance.
Our approach here is to “mimic” the Quantum Cook-Levin theorem due to Kitaev [17], but
given that we only need to deal with set of strings and not arbitrary quantum states, our
proof can in fact be stated in set-constraints language.

4.4.1 Intuition for how set-constraints can check histories
In the celebrated proof of the (classical) Cook-Levin theorem, an instance of an NP-language
is mapped to an instance for 3-SAT problem. More precisely, the verifier V of the NP-problem,
which runs on an n-bit input string x and a poly(n) bit witness y, is mapped to a 3-SAT
formula. To do this, a different variable is assigned to the value of each location of the tape of
the Turing machine of V at any time step; these variables are used to keep track of the state
of the computation of V (namely what is written on the tape) at the different time steps
(see Figure 1 for an example). The formula acts on strings of bits, which can be viewed as
assignments to all these variables; such an assignment encodes the entire history of a single
possible computation. The clauses of the Boolean formula check if the history given by the
assignment, indeed corresponds to a correct propagation of an accepted computation. More
precisely, the constraints check that a) the assignment to the n Boolean variables at the first
time step, associated with the input to the NP-problem, is indeed correct (namely equal to
the true input x); b) the assignment of the variables corresponding to any two subsequent
time steps is consistent with a correct evolution of the appropriate gate in the computation;
and c) the output bit, namely the value of the output variable in the last time step, is indeed
accept. There exists a valid history which ends with accept (i.e., x is in the language accepted
by the verifier), iff the resulting k-CSP is satisfiable; in which case a satisfying assignment
encodes a history of a correct computation of the verifier.

Now, suppose we want to apply a similar construction for some MA verification. The
random bits are also given to the verification circuit as an input, and one could hope that
the reduction of the Cook-Levin theorem would still work. However, the problem is that
there could be some choice of random coins that makes the verification algorithm accept

14Notice that we could have chosen to define “far” here, by counting the number of strings outside of S
that are neighbors of S. But since the degree of each string in the graph is bounded, the exact choice of
the definition does not really matter; we chose the one presented here since it seems most natural.
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even for no-instances, because the soundness parameter is not 0. Hence, the CSP would be
satisfiable in this case, even though the input is a NO instance. It is thus not sufficient to
verify the existence of a single valid history. In order to distinguish between YES and NO
instances of the problem, we have to check in the YES case that all (or at least many of the)
initializations of the random bits lead to accept. The key difficulty is how to check that not
only a single string satisfies the constraints, but many.

This is exactly the reason for introducing the set-constraints. These set-constraints
are able to verify that the random bits are indeed uniformly random; then the standard
Cook-Levin approach described above can verify that (given the right witness) most of them
leads to acceptance.

In order to implement such an approach, we first explain how to modify the original
Cook-Levin proof, of the NP completeness of satisfiability, so that the strings that we check
are not entire histories of a verification process of some NP problem; rather, the strings
represent snapshots of the tape (or evaluations of all bits involved in the circuit at a certain
time) for different time-steps of the computation. A satisfying assignment is no longer a
single string but a whole collection of strings, denoted S, which would be the collection of
all snapshots of a single valid computation, at different times.15

In this case (note that we have still not included random bits in the discussion) we
need to show how to create set-constraints that verify that the set S really does contain all
snapshots, and it also needs to verify that S contains nothing else. More precisely, we need
to verify that a) the strings in S are consistent with being snapshots of a valid evolution of
the computation b) the input is correct in the string corresponding to the first snapshot, and
the output is accept in the string corresponding to the last snapshot, and c) the set S indeed
contains the whole history of the computation, i.e. all the snapshots in a correct evolution,
and without any missing step.

It turns out that this can be done using set-constraints; We depict the differences between
the “original” Cook-Levin proof and the “set-constraints” one in Figure 1.

In reality, we need to do this not just for a single evolution but for the evolution over all
possible assignments to the random strings. Moreover, we need to enforce that the random
bits are indeed random; this requires further set-constraints (technically, this is done below
in Equation (5)).

We note that the essence of the translation idea mentioned in the introduction appears
already when there are no random bits involved at all; the reader is recommended to pretend
that no random bits are used, at her first reading.

We next explain the reduction from MA-verification algorithms to 6-SetCSP in Sec-
tion 4.4.2, and then prove its correctness in Section 4.4.3.

4.4.2 The reduction

We assume, without loss of generality, that the MA verification algorithm is reversible,
as described in Section 2.2: Given an input x ∈ {0, 1}n, we assume a verification circuit
Cx whose input is y || 0a(n) || r, where y ∈ {0, 1}p(n) is the polynomial-size MA witness, the
middle register consists of the circuit auxiliary bits (needed for reversibility) and r ∈ {0, 1}q(n)

are the polynomially many random bits used during the MA verification. The circuit Cx

15For quantum readers, we note that this reflects the main step in Kitaev’s modification of the Cook-Levin
theorem, which enabled him to test that entangled quantum states evolved correctly.



D. Aharonov and A. B. Grilo 36:13

∧

∧

∧

∧

∧

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

h = 011111010110111

(a) In the Cook-Levin theorem, a fresh
new variable is assigned to every wire of
the circuit, and the evolution of the compu-
tation can be described as an assignment
to the variable such that their values are
consistent according to the circuit. In this
example, we see a (very simple) circuit, and
then the history of the computation on in-
put 01111101. The CSP instance derived
from the Cook-Levin theorem ensures that
the assignment is indeed the evolution of
the circuit for some input (and of course,
that the circuit accepts at the end).

s0 s1 s2 s3
y1

CCNOT

output
y2

CCNOTy3 NOT

y4

H = {0001110, 1001100, 1101110, 1111111}

(b) In this work, we consider reversible circuits and the history
of the computation is described by a set of strings. We define
then the history-set of the computation that contains the
snapshot of every stage of the computation. Each such a
string is augmented with a prefix (marked in bold) identifying
the timestep, in unary, of the snapshot. These bits, called the
“clock”, are necessary in order to check the evolution. In this
example, we see a very simple circuit that has no auxiliary
nor random bits. We show the history-set of the computation
on input 1110 and the prefix indicating the number of the
timestep (here, 0 to 3), counted in unary. The SetCSP instance
derived here ensures that a satisfying set of strings contains
the snapshots for all timesteps of the computation.

Figure 1 Comparison between the evolution of a circuit in the Cook-Levin proof and in our work.

consists of T gates G1, ..., GT , where Gi ∈ {NOT,CNOT,CCNOT}.16 At the end of the
circuit, we assume WLOG that the first bit as the output bit. We describe now the reduction
from the MA problem into a SetCSP instance C. We will show in the next section that if
there is an MA witness that makes the verification algorithm accept with probability 1, then
C is satisfiable, whereas if every witness makes the verifier reject with probability at least 1

2 ,
then C is at least inverse polynomially frustrated.

We start with an MA verification circuit Cx (assumed to be reversible, as described in
Section 2.2) acting on an input consisting of a(n) 0-bits, witness y of p(n) bits and q(n)
random bits. Thus, the number of bits which the reversible verification circuit acts on is
w(n) = a(n) + p(n) + q(n). The number of gates is T (n); denote these gates by G1, ..., GT .

Our set-constraint instance C will act on strings of s(n) = T (n) + w(n) many bits. We omit
n from such functions from now on, since it will be clear from the context.

We call the T first bits of such strings the clock register and the last w bits the work
register. The work register comprises of three sub-registers: the witness register (first p(n)
bits), the auxiliary register (middle a(n) bits) and the randomness register (last q(n) bits).
We want to create set-constraints which force all the strings to be of the form z ∈ {0, 1}s
such that z|[T ] = unary(t) for some t ∈ [T + 1] (where unary(t) denotes the integer t written
in unary representation), and z|[s]\[T ] represents the snapshot of the computation at time
t (as explained in Section 4.4.1 above) for the initial string y || 0a(n) || r, for some witness y
and some choice of random bits r.

16Recall that the gate CNOT on input a, b outputs a, b⊕ a, and the gate CCNOT on input bits a, b, c,
outputs a, b, c⊕ ab.
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We will construct C in such a way that S ⊆ {0, 1}s satisfies C if and only if i) it contains
all snapshots of the computation for some witness y and for all bit strings r input to the
randomness register; and ii) the computations whose snapshots are contained in S are not
only correct (meaning also that the auxiliary bits are all initialized to 0) but that they are
accepted computations (meaning that the output is 1).

We do this by providing set-constraints of four types, as follows.

Clock consistency. We first impose that if z ∈ S, then z|[T ] = unary(t), for some t ∈ [T + 1].
Notice that a string is a valid unary encoding iff it does not contain 01 as a substring. To

guarantee that the clock bits are consistent with some unary representation of an allowed t,
we add for every t ∈ [T ] the set-constraint Cclockt defined by:

Y (Cclockt ) = ({{00}, {10}, {11}}) and J(Cclockt ) = (t, t+ 1).

Example: The string 010T−2 || z is a bad string for Cclock1 since w|J(Cclock
1 ) = 01 6∈ Y (Cclock1 ).

Initialization of Input bits and Random bits. Here, we want to check that 0T || y || z || r is
not in S whenever z 6= 0a, which enforces the ancillary bits to be initialized to 0. In addition,
we want to check that for any witness y, if one string of the form 0T || y || 0a || r for some r is
in S, then for all r′ ∈ {0, 1}q, we have 0T || y || 0a || r′ in S. In conclusion, we need to check
two things: that all auxiliary bits are initialized to 0 and that all possible initializations of
the random bits are present.

For each auxiliary bit j ∈ [a] we add a set-constraint Cauxj and for every random bit
j ∈ [q] we add the set constraint Crandj as follows.

We define

Y (Cauxj ) = {{00}, {10}, {11}} and J(Cauxj ) = (0, T + p+ j),

which forces that for t = 0 (notice that the unique value of t for which unary(t) has the first
bit 0 is t = 0), the j-th auxiliary bit must be 0, because the string (01) is forbidden. For
t 6= 0 this is not enforced by allowing any value of the j-th auxiliary bit when the first clock
bit is 1 (and therefore t 6= 0).
Example: The string 0T || y || 10a−1 || r ∈ S is bad for Caux0 .

For the random bits, we want to make sure that the j-th random bit has both values 0
and 1, over all the random bits. Therefore we define the constraints Crandj by

Y (Crandj ) = {{00, 01}, {10}, {11}} and J(Crandj ) = (0, T + p+ a+ j). (5)

These constraints will be useful in the following way. First, the propagation set-constraints
that we will define soon, constrain S to make sure that there exists a string 0T || y || 0a || r
representing a snapshot at time 0 with some value of the random bits, r, which is indeed
in S. The Crand constraints enforce that given the existence of such a string in S, then for
any other assignment to the random bits, r′, the string 0T || y || 0a || r′ ∈ S. Then, if many of
these other strings are not in S, the frustration will be high.
Example: If s1 = 0T || y || 0a || 0r ∈ S but s2 = 0T || y || 0a || 10r−1 6∈ S, then s1 is a Crand1 -
longing string in S since s1 and s2 are Crand1 -neighbors.
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Propagation. Here we want to check that if unary(t− 1) || z ∈ S for some 0 < t < T , then
unary(t) ||Gt (z) ∈ S.

Let us consider the propagation constraint associated with the t-th timestamp (the one
corresponding to the application of the tth gate, Gt), for 1 < t < T . Let us assume that the
t-th gate acts on bits bt,1, ..., bt,k. For this we add the set-constraint Cpropt defined as follows:

Y (Cpropt ) =
⋃

z∈{0,1}k

{{100 || z, 110 ||Gt(z)}} and J(Cpropt ) = (t−1, t, t+1, bt,1, bt,2, ..., bt,k).

For t = 1 we simply erase the left clock bit from the above specification:

Y (Cprop1 ) =
⋃

z∈{0,1}k

{{00 || z, 10 ||G1(z)}} and J(Cprop1 ) = (1, 2, b1,1, b1,2, ..., b1,k).

Likewise if t = T erase the right most clock bit from the above.
Example: If s1 = unary(t) || z ∈ S but s2 = unary(t+ 1) ||Gt+1(z) 6∈ S, s1 is a Cpropt+1 -longing
string in S, since the two strings are Cpropt+1 - neighbors.

Output. Finally, we need to check that for all strings of the form 1T || z, the first bit of z
is 1, namely, the last snapshot corresponds to accept. We define Cout such that

Y (Cout) = {{00}, {01}, {11}} and J(Cout) = (T, T + 1).

Here we use the fact that the T -th bit of unary(t) is 1 iff t = T . In this case, if this value is 1,
we require that the output bit is 1, otherwise it could have any value.
Example: The string 1T || 0 || z is bad for Cout.

I Remark 18. We notice that for every set-contraint C that we constructed above, we have
that Y (C) only contains sets of size 1 or 2. This property adds a bit more structure to
SetCSP instances that are MA-hard, which could be useful in future work.

4.4.3 Correctness
Given some MA-verification circuit Cx, we consider the following 6-SetCSP instance

Cx = (Cclock1 , ...., CclockT , Caux1 , ..., Cauxa , Crand1 , ...Crandq , Cprop1 , ..., CpropT , Cout}.

Let m be the number of terms in Cx and when it is more convenient to us, we will refer
to the set-constraints in Cx as Ci for i ∈ [m], where the terms have an arbitrary order. We
show now that Cx is satisfiable if x is a positive instance, and if x is a negative instance, then
C is at least 1

10(T+1)qm -frustrated (where we remember that q is the number of random coins
used by Cx). Notice that m, the number of constraints in Cx, is polynomial in T , which is
also polynomial in |x|.

We start by proving completeness.

I Lemma 19 (Yes-instances lead to satisfiable SetCSP instances). If x ∈ L, then Cx is
satisfiable.

Proof. Let y be the witness that makes Cx accept with probability 1, and let

S = {unary(t) ||Gt...G1(y, 0a, r) : r ∈ {0, 1}q, t ∈ [T + 1]} .

By construction, the initialization, clock and propagation constraints are satisfied by S.
By the assumption that the MA verification circuit accepts with probability 1, the output
constraints are also satisfied by S. J
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Next we prove soundness.

I Lemma 20 (NO-instances lead to frustrated SetCSP instances). If x 6∈ L, then
set-unsat(Cx, S) ≥ 1

10(T+1)qm for every non-empty S ⊆ {0, 1}n.

Proof. Let S ⊆ {0, 1}n be a non-empty set, B the set of bad strings in S (namely a string
in S which is C-bad for at least one set-constraint C) and L the set of longing strings in S
(namely the strings in S which are C-longing for at least one set-constraint C). Our goal
here is to consider a partition {Ki} of S, such that for every Ki, |Ki ∩ (B ∪ L)| ≥ |Ki|

10(T+1)q ,
and from this we will show that set-unsat(Cx, S) ≥ 1

10(T+1)qm .
Let us start by defining Sic ⊆ S to be the subset of S with invalid clock register. Notice

that every x ∈ Sic is bad for at least one clock constraint and therefore |Sic ∩B| = |Sic|.
Now we notice that all other strings correspond to some valid clock register whose

value (when read as a unary representation of some integer) is in [T + 1]. Let us partition
the strings in S \ Sic into disjoint sets H1,...,H` (which indicate different history-sets to
which the strings belong) as follows. We define the initial configuration of some string
in S \ Sic like this. The string must be of the form unary(t) || z for some t and z. Then
initial(unary(t) || z) = unary(0) ||G−1

1 ...G−1
t (z), which is the assignment of the initial bits that

leads to the configuration z at the t’th step. We say then that two strings s1, s2 ∈ Hi iff
initial(s1) = initial(s2) and we abuse the notation and call initial(Hi) = initial(s1). Notice
that for i 6= j, Hi and Hj are disjoint because the computation is reversible; thus the Hi’s
constitute a partition of S \Sic. Notice also that each Hi contains at most T + 1 strings, and
the different strings in each Hi have different values of the clock register. We call these Hi

history-sets for the reason that they correspond to a correct propagation of the computation
of the circuit Cx for some initialization of all its bits.17

Let us first consider the history-sets whose initial configuration is not valid, i.e., it contains
invalid (or non-zero) auxiliary bits: Hia = {Hi : initial(Hi) = 0T || y || z || r for some z 6= 0a}.
We note that for any Hi ∈ Hia, initial(Hi) is a Cauxj -bad string in Hi for some j. If this
string is in Hi, then we indeed have |Hi ∩ (B ∪ L)| ≥ |Hi ∩B| ≥ 1 ≥ |Hi|

T+1 . However, if Hi

does not contain its initial string, then consider the minimal t such that unary(t) || z ∈ Hi

for some z, and by assumption we have t > 0. This means that the string unary(t) || z is a
Cpropt -longing string, because it is a neighbor of unary(t− 1) ||G−1

t (z) 6∈ S. Hence, for such
Hi we have |Hi ∩ (B ∪ L)| ≥ |Hi ∩ L| ≥ 1 ≥ |Hi|

T+1 . This completes handling all the strings in
S within a history set Hi with invalid auxiliary bits in initial(Hi).

We now need to consider history sets in {Hi} \Hia, namely, the history sets whose initial
string is of the form 0T || y || 0a || r for some value of y and r. Let us group these history
sets according to y, the value of the witness register. In other words, let us consider the
sets of history sets: Hy = {Hi : Hi’s initial string is of the form 0T || y || 0a || r}. We fix now
some y and the following arguments hold for each y separately. Notice that each Hi ∈ Hy

corresponds to a computation corresponding to a different initial random string for the
witness y. Let us denote the union of strings in all sets in Hy by Sy =

⋃
Hi∈Hy

{s|s ∈ Hi}.
To finish handling all strings, we need to provide a bound on |Sy ∩ (L∪B)| for all witnesses y.

To proceed, we need some additional notation. We note that Hy can be written as the
union of the history sets which contain their initial string, denoted Hstart

y , and the rest,
denoted Hnostart

y . We proceed by considering two cases separately:

17More precisely, Hi is a subset of the correct propagation because it involves only the snapshots in S.
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1. Let us first consider the simpler case in which |Hnostart
y | > |Hy|

10 . As above, we have that
each Hi ∈ Hnostart

y has a longing string, and therefore we have that |Sy ∩ (L ∪ B)| ≥
|Sy ∩ L| ≥ |Hnostart

y | > |Hy|
10 ≥

|Sy|
10(T+1) . The last inequality is due to the fact that each

Hi ∈ Hy contains at most T + 1 strings. This finishes the treatment of all strings in S,
in the case |Hnostart

y | > |Hy|
10 .

2. In the second case |Hstart
y | ≥ 9|Hy|

10 . We further denote Sinity = {s|s = initial(Hi), Hi ∈
Hstart
y } as the set of the initial strings of each Hi ∈ Hstart

y . Again (and for the last time)
there are two cases.
a. First, let us consider the case when |Sinity | ≥ 2q−1. This means that for this fixed y,

for most values r of the random bits, the initial string 0T || y || 0a || r of the history set
corresponding to this y and r is present in Sy. We use the facts that x /∈ L, and that
at least 2/3 of the history sets must lead to rejection. From these observations, we will
conclude that there will be either many bad strings due to the final accept constraint
Cout, or many longing strings.
Let Accy = {Hi ∈ Hy : 1T || z ∈ Hi and z = 1 || z′} be the set of history sets in Hy

that accept in the last step. We have that |Accy| is at most the number of r ∈ {0, 1}q
which leads the circuit Cx to accept the witness y; since x 6∈ L, we have that the
probability to accept for any y is most 1/3. Hence |Accy| ≤ 2q

3 ≤ 2 |Hy|
3 ≤ 20|Hstart

y |
27 ,

where we used the fact that 2q−1 ≤ |Sinity | = |Hstart
y | ≤ |Hy|, and in the last inequality,

the fact that we are in the case |Hstart
y | ≥ 9|Hy|/10. Hence, there are at least 2q

10
history sets in Hstart

y which do not end in accept. Such Hi either contains the string
1T || 0 || z (which is bad for Cout), or does not contain a final state at all, namely
does not contain a state of the form 1T || z for some z, resulting in a longing string.
Thus, there are at least 2q

10 strings in |Sy ∩ (B ∪ L)|; and since |Sy| ≤ (T + 1)|Hy| and
|Hy| ≤ 2q, resulting in |Sy| ≤ 2q(T + 1), we have that |Sy ∩ (B ∪ L)| ≥ 2q

10 ≥
|Sy|

10(T+1) .

b. Finally, let us consider the case where |Sinity | ≤ 2q−1. This is where we will need
to apply conductance arguments. Let G0

y be the subgraph of GC18 induced by the
vertices Ry = {0T || y || 0a || r : r ∈ {0, 1}q}. Notice that G0

y is isomorphic to the
q-dimensional hypercube. This is true because the only remaining edges on G0

y come
from the set-constraints Crandj . Notice also that Sinity is a subset of the vertices of
G0
y. We now use the fact that the conductance of the q-dimensional hypercube is 1

q .
Applying this lemma to the graph G0

y and the subset of its vertices, Sinity we conclude

that
|∂G0

y
(Sinit

y )|

q|Sinit
y | ≥ 1

q , where we have used the fact that all vertices in G0
y have the same

degree, q, and the fact that we are now considering the case |Sinity | ≤ 2q−1. We can
conclude then that there exists at least |Sinity | edges in the cut (Sinity , Ry \Sinity ). Since
each vertex in G0

y (in particular, each vertex in Sinity ) has q neighbors, it means that

there exists at least |S
init
y |
q longing strings in Sinity . We conclude this case by noticing

that

|Sy ∩ (L ∪B)| ≥ |Sy ∩ L| ≥
|Sinity |
q

=
|Hstart

y |
q

≥ 9|Hy|
10q ≥

9|Sy|
10q(T + 1) ,

where in the second inequality we use the fact that Sinity ⊆ Sy and there are at least
|Sinit

y |
q longing strings in Sinity , the equality follows since |Hstart

y | = |Sinity |, the third
inequality follows from our assumption that |Hstart

y | ≥ 9|Hy|
10 and finally we have that

|Hi| ≤ T + 1 (and therefore |Hy| ≥ |Sy|
T+1 ).

18Here, we use the same notation as Section 3.1.
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To finish the proof, notice that S = Sic ∪
⋃
H∈Hia H ∪

⋃
y Sy. Since each of these

subsets has at least a 1
10(T+1)q -fraction of bad strings or longing strings, we have that

|B ∪ L| ≥ |S|
10(T+1)q . It follows that

set-unsat(Cx, S) = 1
m

∑
i

(
|BCi |
|S|

+ |LCi |
|S|

)
≥ |B|
m|S|

+ |L|
m|S|

≥ |B ∪ L|
m|S|

≥ 1
10(T + 1)qm,

finishing the proof. J

From the two previous lemmas, we have the following.

I Lemma 17 (restated). There exists some inverse polynomial p(x) = Θ(1/x3) such that
for every inverse polynomial p′ < p, the problem SetCSPp′(m) is MA-hard.

Proof. It follows directly from Lemma 19, together with the fact that, regarding the para-
meters in Lemma 20, we have that T, q ≤ m. J

5 Reduction from SetCSP to ACAC

In this section we reduce the SetCSP problem to the ACAC, showing the containment of
SetCSP in MA and the MA-hardness of ACAC.

Before showing the reduction, we prove a technical lemma that shows how, for a fixed S,
the value of set-unsat(C, S) and the number of bad and longing strings for C are related.

I Lemma 21. For some fixed non-empty S ⊂ {0, 1}n, let BC =
⋃
iBCi

and LC =
⋃
i LCi

,
the union of bad and longing strings for all set-constraints in C, respectively. We have that
set-unsat(C, S) ≤ 1

|S| (|BC |+ |LC |).

Proof. By definition of set-unsat(C, S) and set-unsat(Ci, S), we have that

set-unsat(C, S) = 1
m

m∑
i=1

set-unsat(Ci, S) = 1
m|S|

m∑
i=1

|BCi |+ |LCi | ≤
1

m|S|

m∑
i=1

|BC |+ |LC |

= 1
|S| (|BC |+ |LC |),

where in the inequality we use the fact that BCi
⊆ BC and LCi

⊆ LC . J

For some inverse polynomial ε, we consider an instance C of k-SetCSPε. From C, we
construct the graph GC = ({0, 1}n, E), where (x, y) ∈ E if there exists a set-constraint C ∈ C
such that x and y are C-neighbors. We can define CGC that on input x ∈ {0, 1}n, outputs
all neighbors of x by inspecting all set-constraints of C. Finally, we define CM as the circuit
that on input x ∈ {0, 1}n, outputs if x is a bad string for C, again by inspecting all of its
set-constraints.

I Lemma 22 (Reduction from SetCSP to ACAC). For every ε we have that:
If C = (C1, ..., Cm) is a yes-instance of k-SetCSPε, then (CGC , CM ) is a yes-instance of
ACACε/2.
If C = (C1, ..., Cm) is a no-instance of k-SetCSPε, then (CGC , CM ) is a no-instance of
ACACε/2.

Proof. To prove the first part of our statement, we show that a non-empty S ⊆ {0, 1}n
such that set-unsat(S, C) = 0 implies that the connected component of any string x ∈ S
in GC contains only good strings. To show this, we notice that S is a union of connected
components of GC . In this case, any of these connected components imply that (CGC , CM ) is
a yes-instance of ACAC.
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Suppose towards contradiction that there exists a string x in S which is connected to a
string y outside of S via an edge in GC ; that means that x and y are C-neighbors for some
set-constraint C. But this means that x is a C-longing string for S, and this contradicts
set-unsat(S, C) = 0. We finish this part of the proof by stressing that, by assumption, no
elements in S are marked, otherwise there would be a bad string in it.

For the second part, we show that if there is a set of vertices S such that ∂(S, S) <
ε|S|/2 on GC and the number of marked elements in S is strictly less than ε|S|/2, then
set-unsat(S, C) < ε. In this case, if C is a no-instance of k-SetCSPε, then (CGC , CM ) must be
a no-instance of ACACε/2.

Notice that if there are at most ε|S|/2 edges between S and S, then there are at most
ε|S|/2 vertices in S that are connected to S and, by definition of the edges in GC , we have
that S has at most ε|S|/2 C-longing strings. We also have that the number of bad strings in
S is, by definition, the number of marked elements which is also strictly less than ε|S|/2.
Therefore, by Lemma 21, we have that set-unsat(C, S) < ε. J

We can now finally prove Theorem 1:

I Theorem 1 (restated). There exists some inverse polynomial p(x) = Θ(1/x3) such that for
every inverse polynomial p′ < p, the problems SetCSPp′(m) and ACACp′(m) are MA-complete,
where m is the size of the SetCSP or ACAC instance.

Proof. From Lemma 17 we have that for some p̃ = Θ(1/x3), SetCSPp̃ is MA-hard19 and
from Corollary 8 we have that ACACp̃/2 is in MA.

In Lemma 22, we show a reduction SetCSPp̃ to ACACp̃/2, which implies, together with
the aforementioned results, that SetCSPp̃ is in MA and that ACACp̃/2 is MA-hard. Therefore,
we can pick p(x) = p̃(x)/2 and our statement holds. J

References
1 Dorit Aharonov and Alex B. Grilo. Stoquastic PCP vs. Randomness. In FOCS 2019, 2019.

arXiv:1901.05270.
2 Dorit Aharonov and Alex B. Grilo. Two combinatorial MA-complete problems. arXiv preprint,

2020. arXiv:2003.13065.
3 Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded Regev.

Adiabatic quantum computation is equivalent to standard quantum computation. SIAM
Review, 50(4):755–787, 2008.

4 László Babai. Trading group theory for randomness. In Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, pages 421–429, 1985.

5 László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. Bpp has subexponential time
simulations unless exptime has publishable proofs. Comput. Complex., 3(4):307–318, October
1993. doi:10.1007/BF01275486.

6 Sergey Bravyi. Monte Carlo simulation of stoquastic Hamiltonians. arXiv preprint, 2014.
arXiv:1402.2295.

7 Sergey Bravyi, Arvid J. Bessen, and Barbara M. Terhal. Merlin-arthur games and stoquastic
complexity. arXiv preprint, 2006. arXiv:quant-ph/0611021.

8 Sergey Bravyi and Barbara M. Terhal. Complexity of stoquastic frustration-free hamiltonians.
SIAM J. Comput., 39(4):1462–1485, 2009.

19Notice that we slightly abuse the notation here: in Lemma 17, we define the hardness in respect to
the parameter m, the number of clauses; here, we call m the size of the SetCSP instance, which is
lower-bounded by its number of clauses.

ITCS 2021

http://arxiv.org/abs/1901.05270
http://arxiv.org/abs/2003.13065
https://doi.org/10.1007/BF01275486
http://arxiv.org/abs/1402.2295
http://arxiv.org/abs/quant-ph/0611021


36:20 Two Combinatorial MA-Complete Problems

9 Elizabeth Crosson, Dave Bacon, and Kenneth R. Brown. Making classical ground-state spin
computing fault-tolerant. Phys. Rev. E, 82:031106, September 2010.

10 Irit Dinur. The PCP Theorem by Gap Amplification. Journal of the ACM, 54(3), 2007.
11 Andrew Drucker. A pcp characterization of am. In Proceedings of the 38th International

Colloquim Conference on Automata, Languages and Programming - Volume Part I, ICALP’11,
2011.

12 Oded Goldreich and David Zuckerman. Another proof that BPP ⊆ PH (and more). In Studies
in Complexity and Cryptography, pages 40–53. Springer-Verlag, 2011.

13 Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4), March 1999.

14 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):672–694, 2002.

15 Russell Impagliazzo and Avi Wigderson. P = bpp if e requires exponential circuits: Deran-
domizing the xor lemma. In Proceedings of the Twenty-ninth Annual ACM Symposium on
Theory of Computing, STOC ’97, pages 220–229. ACM, 1997. doi:10.1145/258533.258590.

16 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1):1–46, December 2004.

17 Alexei Kitaev, A Shen, and M N Vyalyi. Classical and quantum computation. Graduate
studies in mathematics. American mathematical society, Providence (R.I.), 2002. URL:
http://opac.inria.fr/record=b1100148.

18 Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994.

19 Peter Shor and Ryan Williams. Mathoverflow: Complete problems for randomized complexity
classes. URL: https://mathoverflow.net/questions/34469/complete-problems-for-
randomized-complexity-classes. Accessed: 2019-01-14.

20 Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the xor
lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

21 Stathis Zachos and Martin Furer. Probabilistic quantifiers vs. distrustful adversaries. In
Seventh Conference on Foundations of Software Technology and Theoretical Computer Science,
pages 443–455, 1987.

https://doi.org/10.1145/258533.258590
http://opac.inria.fr/record=b1100148
https://mathoverflow.net/questions/34469/complete-problems-for-randomized-complexity-classes
https://mathoverflow.net/questions/34469/complete-problems-for-randomized-complexity-classes


Delegated Stochastic Probing
Curtis Bechtel
Department of Computer Science, University of Southern California, Los Angeles, USA
bechtel@usc.edu

Shaddin Dughmi
Department of Computer Science, University of Southern California, Los Angeles, USA
shaddin@usc.edu

Abstract
Delegation covers a broad class of problems in which a principal doesn’t have the resources or
expertise necessary to complete a task by themselves, so they delegate the task to an agent whose
interests may not be aligned with their own. Stochastic probing describes problems in which we are
tasked with maximizing expected utility by “probing” known distributions for acceptable solutions
subject to certain constraints. In this work, we combine the concepts of delegation and stochastic
probing into a single mechanism design framework which we term delegated stochastic probing.
We study how much a principal loses by delegating a stochastic probing problem, compared to
their utility in the non-delegated solution. Our model and results are heavily inspired by the
work of Kleinberg and Kleinberg in “Delegated Search Approximates Efficient Search.” Building
on their work, we show that there exists a connection between delegated stochastic probing and
generalized prophet inequalities, which provides us with constant-factor deterministic mechanisms
for a large class of delegated stochastic probing problems. We also explore randomized mechanisms
in a simple delegated probing setting, and show that they outperform deterministic mechanisms in
some instances but not in the worst case.
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1 Introduction

The division of labor and responsibility, based on expertise, is a defining characteristic of
efficient organizations and productive economies. In the context of economic decision-making,
such division often manifests through delegation scenarios of the following form: A decision
maker (the principal), facing a multivariate decision beset by constraints and uncertainties,
tasks an expert (the agent) with collecting data, exploring the space of feasible decisions,
and proposing a solution.

As a running example, consider the leadership of a firm delegating some or all of its
hiring decisions to an outside recruitment agency. When the principal and the agent have
misaligned utilities – such as when the agency must balance the firm’s preferences with
its own preferences over, or obligations towards, potential hires – the principal faces a
mechanism design problem termed optimal delegation (see e.g. [14, 3]). When the underlying
optimization problem involves multiple inter-dependent decisions, such as when hiring a
team which must collectively cover a particular set of skills, and when data collection is
constrained by logistical or budget considerations, the problem being delegated fits in the
framework of stochastic probing, broadly construed (see e.g. [26]).
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The present paper is concerned with the above-described marriage of optimal delegation
and stochastic probing. We restrict attention to protocols without payments, drawing our
inspiration from the recent work of Kleinberg and Kleinberg [16]. The underlying (non-
delegated) problem faced by the principal in their “distributional model” is the following:
facing n i.i.d rewards, select the ex-post best draw. As for their “binary model”, there are n
random rewards with binary support, and a cost associated with sampling each; the goal is
to adaptively sample the rewards and select one, with the goal of maximizing the ex-post
selected reward less sampling costs. For both models, they show that delegating the problem
results in a loss of at most half the principal’s utility. Their analysis in both cases is through
a reduction to the (classical) single-choice prophet inequality problem, and in particular to
the threshold stopping rule of Samuel-Cahn [25].

Both the distributional and binary models of [16] can be viewed as stochastic probing
problems, the former being trivial in the absence of delegation, and the latter corresponding
to a special case of the well-studied box problem of Weitzman [27]. A number of stochastic
probing problems have been known to reduce to contention resolution schemes (e.g. [10, 11,
7, 1, 9]), which in turn reduce to generalizations of the prophet inequality [21]. This suggests
that the results of [16] might apply more broadly.

It is this suggestive thread which we pull on in this paper, unraveling what is indeed a
broader phenomenon. We study optimal delegation for a fairly general class of stochastic
probing problems with combinatorial constraints, and obtain delegation mechanisms which
approximate, up to a constant, the principal’s non-delegated utility. Building on recent
progress in the literature on stochastic optimization, our results reduce delegated stochastic
probing to generalized prophet inequalities of a particular “greedy” form, as well as to the
notion of adaptivity gap (e.g. [4, 5]).

1.1 Our Model
Our model features a collection of elements, each of which is associated with a (random) utility
for each of the principal and the agent. We assume that different elements are independently
distributed, though the principal’s and the agent’s utilities for the same element may be
correlated. We allow constraining both the sampled and the selected set of elements via
outer and inner constraints, respectively. Each constraint is a downwards-closed set system
on the ground set of elements. A probing algorithm for an instance of our model adaptively
probes some set of elements subject to the outer constraint, learning their associated utilities
in the process. The algorithm then selects as its solution a subset of the probed elements
satisfying the inner constraint. We assume that, for both the principal and the agent, utility
for a solution is the sum of its per-element utilities.

To situate the non-game-theoretic component of our model within the literature on
stochastic probing problems, note that we allow an arbitrary utility distribution for each
element, rather than a binary-support distribution characterizing “feasibility”. Moreover,
unlike “probe and commit” models, we also allow our algorithm to select its solution after
all probes are complete. In both these respects, our model is akin to the stochastic multi-
value probing model of [5]. As for our game-theoretic modeling, we assume that the utility
distributions, as well as the inner and outer constraints, are common knowledge. The realized
utilities, however, are only observed by the agent upon probing.

In the traditional (non-delegation) setting, the principal implements the probing algorithm
optimizing her own utility, in expectation. In the delegation setting, the principal and agent
engage in the following Stackelberg game. The principal moves first by committing to a
policy, or mechanism. Such a policy is a (possibly randomized) map from a set of signals
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to solutions satisfying the inner constraint, with each element in the solution labeled with
its (presumptive) utility for both the principal and the agent. Moving second, the agent
probes some set of elements subject to the outer constraint, and maps the observed utilities
to a signal. The outcome of the game is then the solution which results from applying the
principal’s policy to the agent’s signal. We assume that the principal and agent utilities are
additive across elements in the solution, so long as it is labeled with the true per-element
utilities. Otherwise, we assume that the principal can detect this discrepancy and effectively
“quit” the game, imposing a utility of zero for both parties. We adopt the perspective of the
principal, who seeks a policy maximizing her expected utility. The agent, naturally, responds
with a strategy maximizing his own expected utility given the policy.

By an argument analogous to that in [16], which we prove in our general setting for
completeness’ sake, we can restrict attention to single-proposal mechanisms. In a deterministic
single-proposal mechanism, the set of signals is a “menu” of acceptable (labeled) solutions
satisfying the inner constraint, as well as a “null” signal which in our setting we can take to
be the empty set. The agent, facing such a mechanism, without loss simply implements a
probing algorithm to compute a “proposed” solution, tagging each element in the solution
with its observed utilities, and ensuring that the solution is acceptable to the principal. We
also consider randomized single-proposal mechanisms, where the menu consists of acceptable
lotteries (i.e., distributions) over (labeled) solutions, and an agent’s probing algorithm
proposes a lottery on the menu.

1.2 Our Results
We study delegation mechanisms which approximate the principal’s non-delegated utility. We
refer to the best multiplicative approximation factor as the delegation gap of the associated
instance.

Our main set of results concern the design of deterministic single-proposal mechanisms
which prove constant delegation gaps for natural classes of inner and outer constraints. Our
approach is modular, and reduces a (constructive) αβ bound on the delegation gap to a
(constructive) α generalized prophet inequality of a particular form on the inner constraint,
and a (constructive) bound of β on the adaptivity gap associated with the outer constraint
and the rank function of the inner constraint. Drawing on recent work in [9], which derives
prophet inequalities of our required form, and in [4, 5], which bounds the adaptivity gap, we
obtain constant bounds on the delegation gap for instances of our model with a variety of
inner and outer constraints such as matroids and their intersections, among others.

We also begin an exploration of randomized single-proposal mechanisms, where the
principal’s menu consists of acceptable lotteries over solutions. We show that, even in the
simple setting of no outer constraint and a 1-uniform inner constraint, there are instances for
which randomized mechanisms significantly outperform optimal deterministic ones. Neverthe-
less, there exist worst-case instances where both deterministic and randomized mechanisms
suffer a 1/2 delegation gap. We leave open whether randomized mechanisms can lead to
better bounds on the worst-case delegation gap for more intricate classes of inner and outer
constraints.

1.3 Additional Discussion of Related Work
Since the economic literature on delegation is extensive, we only describe a select sample here.
The groundwork for the formal study of optimal delegation in economics was initially laid by
Holstrom [14, 13]. Subsequent work in economics has considered a variety of optimization
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problems as the task being delegated (e.g. [2, 23, 3]). We mention the work of Kovac and
Mylovanov [18] as being related to our results in Section 5: To our knowledge, they were the
first to examine the power of randomized mechanisms for delegation.

Most relevant to the present paper is the aforementioned work of Kleinberg and Klein-
berg [16], who examine approximations for optimal delegation. Their distributional model is
closely related to the model of Armstrong and Vickers [3], and the optimization problem
being delegated in their binary model is a special case of Weitzman’s box problem [27]. Both
optimization problems fit nicely in the general literature on stochastic probing (see e.g. [26]),
motivating our examination of delegated stochastic probing more broadly.

Also related is the recent work of Khodabakhsh et al [15], who consider a very general
model of delegation with discrete actions and states of the world, and an agent who fully
observes the state (no outer constraints or sampling costs). They show optimal delegation
to be NP-hard and examine limited “bias” assumptions under which simple threshold
mechanisms are approximately optimal. Notably, they don’t impose sampling constraints
on the agent and their approximations are with respect to the optimal delegation policy
rather than the optimal non-delegated policy. For these reasons, our results are not directly
comparable.

The optimization problems being delegated in our model fit in the broad class of stochastic
probing problems. We do not attempt a thorough accounting of this literature, and instead
refer the reader to related work discussions in [26, 5]. To our knowledge, the term “stochastic
probing” was originally coined by Gupta and Nagarajan [10], though their binary probe-
and-commit model is quite different from ours. More closely related to us are the models of
[5, 4], which capture stochastic probing problems with multi-valued reward distributions, no
commitment, and combinatorial inner and outer constraints.

As previously mentioned, our work draws on the literature on prophet inequalities.
The foundational result in this setting is the (single-choice) prophet inequality of Krengel,
Sucheston, and Garling [19, 20]. Generalized prophet inequalities, with respect to various
combinatorial constraints, adversaries, and arrival models, have received much attention in the
last decade (e.g. [12, 17, 8, 9]); the associated body of work is large, and we recommend the
survey by [22]. Closely related to generalized prophet inequalities are contention resolution
schemes (see e.g. [6, 9, 1]), with reductions going in both directions [21]. Key to our
results are the “greedy” generalized prophet inequalities, derived through “greedy” contention
resolution, by Feldman et al [9].

Finally, we briefly elaborate on the relationship between our model and the two models
of Kleinberg and Kleinberg [16]. The natural variant of their binary model which replaces
sampling costs with combinatorial constraints on the set of samples (outer constraints, in
our nomenclature) fits squarely in our model. Their distributional model, which allows n
i.i.d. samples from a distribution over utility pairs, initially appears to be a special case of
ours. However, our principal is afforded additional power through their ability to distinguish
elements by name alone. Nevertheless, we recover their main result as a special case of ours
by observing that our mechanism treats elements symmetrically.

2 Preliminaries

Sections 2.1, 2.2, and 2.3 include brief introductions to some of the key ideas and notations
used in this paper. Notably, Section 2.2 defines the key notion of “greedy” prophet inequalities.
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2.1 Set Systems
A set system is a pair (E, I) where E is a finite set of elements and I ⊆ 2E is a family
of feasible sets. We focus on downwards-closed set systems, satisfying the following two
conditions: (1) ∅ ∈ I, i.e. the empty set is feasible, and (2) if T ∈ I then S ∈ I for all S ⊆ T ,
i.e. any subset of a feasible set is feasible. Matroids, matching constraints, and knapsack
constraints are all examples of downwards-closed set systems.

For a set system M = (E, I) and F ⊆ E, we use M|F = (F, I ∩ 2F ) to denote the
restriction ofM to F .

2.2 Prophet Inequalities
A generalized prophet inequality problem is given by a set system M = (E, I), and for
each element e ∈ E an independent random variable Xe supported on the nonnegative real
numbers. Here we adopt the perspective of a gambler, who is givenM and the distributions
of the random variables {Xe}e∈E in advance, then encounters the elements E in an order
chosen by an adversary. On encountering e, the gambler observes the realization xe of
the random variable Xe, and must immediately decide whether to accept e, subject to the
accepted set S of elements remaining feasible inM. The gambler seeks to maximize his utility
x(S) =

∑
e∈S xe, and in particular to compete with a prophet who knows the realization of

all random variables in advance. If the gambler can guarantee an α fraction of the prophet’s
utility in expectation, we say that we obtain a generalized prophet inequality with a factor
of α.

For each possible realization xe of Xe, we refer to the pair (e, xe) ∈ E×R+ as an outcome.
When the gambler accepts e ∈ E given a realization xe of Xe, we also say the gambler accepts
the outcome (e, xe).

Although it is most common to consider an adversary who fixes an order of the elements
upfront, some recent work has investigated much more powerful adversaries [17, 9]. In this
paper, we are interested in the almighty adversary, who knows in advance the realizations of
all random variables as well as any random coin flips used by the gambler’s strategy. The
almighty adversary can perfectly predict the future and choose a truly worst-case ordering.

Key to our results is the notion of a “greedy” strategy for the gambler. We take inspiration
from [9], who defined greedy online contention resolution schemes, and extend their definition
to prophet inequality problems.

I Definition 2.1. Fix any instance of a generalized prophet inequality problem. A greedy
strategy for the gambler is described by a downwards-closed family A ⊆ 2E×R+ of sets of
outcomes. A gambler following greedy strategy A accepts an outcome (e, xe) if and only if
the set of all accepted outcomes remains in A.

We note that Samuel-Cahn’s [25] threshold rule for the single-choice prophet inequality is
greedy, and its competitive factor of 1

2 holds for the almighty adversary [24]. More generally,
Feldman et al. [9] show that there exist constant-factor greedy prophet inequalities against
the almighty adversary for many classes of constraints.

2.3 Adaptivity Gap
Another key notion we will use is the adaptivity gap for stochastic set function optimization
problems. For a detailed introduction, see [4].

We consider maximizing a stochastic set function f : 2E → R+ constrained by a
downwards-closed set system M = (E, I). We assume f is determined by a collection
{Xe}e∈E of independent random variables, with the stipulation that f(S) does not depend
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on any random variables Xe for which e /∈ S.1 We are tasked with “probing” some S ⊆ E,
feasible forM, with the goal of maximizing f(S). An adaptive algorithm for this problem
probes elements one at a time, where probing e results in learning the realization of Xe.
Such an algorithm can use the realizations of probed variables to decide on a next element to
probe. A non-adaptive algorithm chooses the set S all at once, independently of the random
variables {Xe}e∈E . The adaptivity gap is the minimum (worst-case) ratio of the expected
value of the optimal non-adaptive algorithm versus the expected value of the optimal adaptive
algorithm.

In [4], Asadpour and Nazerzadeh showed that the adaptivity gap for instances with
monotone submodular functions and matroid constraints is 1 − 1

e . Furthermore, they
provided an efficient non-adaptive algorithm that achieves this bound. Finally, in [5], Bradac
et al. showed that the adaptivity gap is constant for instances with “prefix-closed” constraints
(which include all downward-closed constraints) and functions that are the weighted rank
function of the intersection of a constant number of matroids.

3 Model

3.1 Formal Definition
I Definition 3.1. An instance I of the delegated stochastic probing problem consists of: two
players, which we will call the principal and the agent; a ground set of elements E; mutually
independent distributions µe with support in R+ × R+ for each element e ∈ E; an outer
constraint Mout = (E, Iout) with feasible sets Iout; and an inner constraint Min = (E, Iin)
with feasible sets Iin.

Given such an instance, we will additionally define: (Xe, Ye) ∼ µe as random variables
denoting the utilities for the principal and agent of element e; Ω as the set of outcomes (e, x, y)
for all e ∈ E and all (x, y) ∈ supp(µe); and Ωin ⊆ 2Ω as the family of all sets of outcomes
whose elements are distinct and feasible in the inner constraint. For convenience, we will also
overload notation by considering x and y to be utility functions for the principal and agent.
Given any subset of outcomes T ⊆ Ω, let x(T ) =

∑
(e,x,y)∈T x and y(T ) =

∑
(e,x,y)∈T y

be the total utility of outcomes in T . Similarly for any subset of elements F ⊆ E, let
x(F ) =

∑
e∈F Xe and y(F ) =

∑
e∈F Ye be random variables representing the randomized

total utility of elements in F .
A natural mechanism that the principal might choose to implement is called a single-

proposal mechanism. Here, the principal describes the space of solutions she is willing to
accept, and then the agent uses this information to search the solution space and propose a
single feasible solution.

In the deterministic single-proposal setting, the principal first commits to a family of sets
of outcomes R ⊆ Ωin and announces R to the agent. The sets in R are called acceptable,
and the principal’s choice of R is called their policy (or mechanism). After learning R, the
agent will select elements to probe, so long as each element is probed at most once and the
set of probed elements is feasible inMout. We allow the agent to probe adaptively, deciding
what to do next based on previously probed elements. Let’s say that they probe elements
F ⊆ E and obtain outcomes S ⊆ Ω. The agent will then choose some set of outcomes T ⊆ Ω
and propose it to the principal. If T is acceptable and also a subset of S then the principal
and agent receive x(T ) and y(T ) utility, respectively. Otherwise, they both receive 0 utility.

1 In other words, one can evaluate f(S) given access to the realizations of the random variables {Xe}e∈S .
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In the above-described mechanism design setting, we assume that both the principal and
agent act to maximize their expected utility. We also assume that all parameters of the
problem, except for the realizations of the random variables, are common knowledge.

We note that, similar to the setup in [16], our model assumes that our agent cannot
benefit from lying, say by labeling an element e with utilities other than Xe and Ye, or by
proposing an element he has not probed. We argue that this is a natural assumption to
make: In many applications we foresee (e.g., a firm hiring an employee, or exploring some
mergers), a proposal will be accompanied by an easy to verify proof of the claimed utilities
(e.g., in the form of a CV for the applicant, or a detailed analysis of the merger).

As in [16], we compare delegation mechanisms against the optimal non-delegated strategy.
By non-delegated strategy, we mean the strategy of the principal when they act as both the
principal and agent (i.e. they have power to probe and propose as well as accept outcomes).

Given any F ⊆ E, let u(F ) be the optimal utility of the non-delegating principal when
they probe elements in F and accept their own favorite set of outcomes, and let vR(F ) be
the utility of the delegating principal with policy R when the agent probes elements in F
and proposes their favorite acceptable set of outcomes. We can write u and vR as

u(F ) = max
G⊆F,G∈Iin

x(G)

vR(F ) = x

(
argmax

G⊆F,ΩG∈R
y(G)

)
,

where ΩG ⊆ Ω is the set of outcomes from the probed set of elements G. In the case of ties
in the definition of vR, our results hold for arbitrary (even adversarial) tie-breaking.

I Definition 3.2. Fix any instance of delegated stochastic probing. Let F ∗ be a random
variable containing the elements probed by an optimal adaptive non-delegating principal, and
let F ∗R be a random variable containing the elements probed by an optimal adaptive agent
under policy R. Then for any policy R and α ∈ [0, 1], we say that R is an α-policy for this
instance if

E vR(F ∗R) ≥ αEu(F ∗).

I Definition 3.3. The delegation gap of a family of instances of delegated stochastic probing
is the minimum, over all instances in the family, of the maximum α such that there exists
an α-policy for that instance. This gap measures the fraction of the principal’s non-delegated
utility they can achieve when delegating.

3.2 Signaling Mechanisms
Having formally defined the model, we will now describe a broad generalization of single-
proposal mechanisms, called signaling mechanisms, and show that these mechanisms don’t
provide the principal with any additional power. Note that this discussion is inspired by
Section 2.2 from [16], and we simply extend their work to our model.

A signaling mechanism allows the principal to ask the agent for more (or different)
information than just a proposed solution. The principal will then take this information
and transform it into a solution, which they will accept. One might suspect that expanding
the space of mechanisms in this way would give the principal more power. However, as we
will show, this isn’t the case even for a broad class of delegation models, which we will now
define formally.
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I Definition 3.4. An instance of the generalized delegation problem consists of two players
called the principal and the agent, a state space S, a solution space Ψ, a set P of probing
strategies for the agent, a signaling function σ which maps P×S to strings, a utility function
x : S × P ×Ψ → R+ for the principal, and a utility function y : S × P ×Ψ → R+ for the
agent. We require that there is a null solution ⊥ ∈ Ψ such that xs,p(⊥) = ys,p(⊥) = 0 for all
s ∈ S and p ∈ P.

We assume the state of the world is some s ∈ S a-priori unknown to the principal and
the agent, though they may have prior information. The agent obtains information about s
by applying a probing strategy p ∈ P to obtain a signal σp(s). For a state s ∈ S, a probing
strategy p ∈ P chosen by the agent, and a solution ψ ∈ Ψ, we associate a utility of xs,p(ψ)
and ys,p(ψ) for the principal and the agent, respectively.

We note that the above definition generalizes the delegation problems of Definition 3.1.
In particular: the state space S represents all possible realizations of per-element utilities of
the principal and the agent; the solution space Ψ is the family of feasible subsets of outcomes
Ωin, where ⊥ is the empty set of outcomes; P corresponds to probing algorithms which
respect the outer constraint; σp(s) is the set of outcomes obtained by invoking algorithm
p in state s; both utility functions depend on the state s ∈ S and the probing algorithm
p ∈ P , evaluating to 0 for solutions ψ that are inconsistent with the state s, or if the probing
algorithm p applied to s does not the probe the elements in ψ.

Given a generalized delegation problem, we define signaling mechanisms as follows.

I Definition 3.5. Fix some instance of the generalized delegation problem. A signaling
mechanism proceeds in the following manner. The principal starts by choosing some signal
space Σ of strings and a solution function ψ : Σ→ Ψ, and the agent responds by choosing
a probing strategy p ∈ P and a reporting function τ from strings to Σ. Once these choices
have been made, the agent will probe the underlying state s to obtain a signal σ = σp(s), then
transform this into a new signal τ = τ(σ) which he reports to the principal. The principal
maps the reported signal to a solution ψ(τ), which they will accept.

Notice that this model can be made to capture the design of randomized delegation
mechanisms by extending Ψ to the space ∆(Ψ) of distributions (henceforth lotteries) over
solutions, and extending both utility functions to lotteries by taking expectations.

We contrast this broad definition of signaling mechanisms with the comparatively simple
single-proposal mechanisms.

I Definition 3.6. Fix an instance of the generalized delegation problem. A single-proposal
mechanism is a special case of signaling mechanism in which the principal chooses some set
R ⊆ Ψ of acceptable outcomes, then sets Σ = Ψ and ψ(R) = R if R ∈ R and ψ(R) = ⊥
otherwise.

Intuitively, in a single proposal mechanism the principal declares a menu of acceptable
solutions. The agent then proposes a solution, which is accepted if it is on the menu, and
replaced with the null solution otherwise. Now we will show that single-proposal mechanisms
are just as powerful as signaling mechanisms. In particular, for every signaling mechanism
there is a single-proposal mechanism which selects the same solution and the same probing
strategy for each state of nature, at equilibrium. This lemma is a simple extension of [16,
Lemma 1] to the our generalized delegation model.

I Lemma 3.7. Fix an instance of the generalized delegation problem, as well as the agent’s
prior distribution µ on states S. For any signaling mechanism M = (Σ, ψ) and a correspond-
ing best response strategy (p, τ) for the agent, there exists a single-proposal mechanism M ′ =
(Σ′, ψ′) and a corresponding best response (p, τ ′) such that (ψ ◦ τ ◦ σp)(s) = (ψ′ ◦ τ ′ ◦ σp)(s)
for all states s ∈ S.
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Proof. Take any signaling mechanism M = (Σ, ψ) with best response (p, τ) by the agent.
Let R = ψ(Σ) be the set of all possible outputs from this mechanism and let M ′ = (Σ′, ψ′)
be the single-proposal mechanism defined by R, i.e. Σ′ = Ψ and ψ′ is such that ψ′(R) = R

if R ∈ R and ψ′(R) = ⊥ otherwise. Finally, let τ ′ = ψ ◦ τ .
Notice that the range of τ ′ is contained in ψ(Σ) = R, so by definition of ψ′ and τ ′ it

follows that ψ ◦ τ = ψ′ ◦ τ ′. Therefore, it is also the case that (ψ ◦ τ ◦σp)(s) = (ψ′ ◦ τ ′ ◦σp)(s)
for all s ∈ S. Now we must show that (p, τ ′) is a best-response strategy to mechanism M ′.
Consider any valid alternative strategy (p∗, τ∗). We aim to show that

E
s
ys,p∗(ψ′ ◦ τ∗ ◦ σp∗)(s) ≤ E

s
ys,p(ψ′ ◦ τ ′ ◦ σp)(s). (1)

First, we can assume without loss of generality that τ∗ always outputs a solution in R
because ψ′ produces ⊥ (and a utility of 0) for all proposals in Ψ \R. Then ψ′ ◦ τ∗ = τ∗ and,
by definition of R, we can write τ∗ = ψ ◦ τ̂ for some function τ̂ from strings to Σ. Then
the left hand side of (1) becomes the expected utility of response (p∗, τ̂) against mechanism
M = (Σ, ψ):

E ys,p∗(ψ′ ◦ τ∗ ◦ σp∗)(s) = E ys,p∗(ψ ◦ τ̂ ◦ σp∗)(s)

whereas the right hand side of (1) is the expected utility of response (p, τ) against M :

E ys,p(ψ′ ◦ τ ′ ◦ σp)(s) = E ys,p(ψ ◦ τ ◦ σp)(s).

Since (p, τ) is a best response for this mechanism, the desired inequality (1) follows. J

4 Deterministic Mechanisms

In this section, we will consider deterministic single-proposal mechanisms for delegated
stochastic probing problems, as defined in Section 3.1. This is in contrast to randomized
mechanisms which we will define later in Section 5. We will show that large classes of these
problems have constant-factor policies, and therefore constant-factor delegation gaps.

The focus of this section is on Theorem 4.1 and Theorem 4.5, which together give
us a general method of constructing competitive delegation policies from certain prophet
inequalities and adaptivity gaps. In particular, Corollary 4.4 gives us constant-factor policies
for delegated stochastic probing with no outer constraint and an inner constraint which
is the intersection of a constant number of matroid, knapsack, and matching constraints.
Similarly, Corollary 4.8 gives us constant-factor policies for delegated stochastic probing with
any downwards-closed outer constraint and an inner constraint which is the intersection of a
constant number of matroids.

4.1 Inner Constraint Delegation
We will now consider instances of delegated stochastic probing for which there is no outer
constraint. We will then combine the results from this section with Theorem 4.5 to get
solutions to delegation problems with both inner and outer constraints.

To simulate the lack of an outer constraint, we will consider instances of delegation for
which the outer constraint is the trivial set system in which all subsets of the elements are
feasible. For any ground set E of elements, we will write this trivial set system as M∗E ,
omitting the subscript when the set of elements E is clear from context.

ITCS 2021



37:10 Delegated Stochastic Probing

I Theorem 4.1. Given an instance I = (E,M∗,Min) of delegated stochastic probing without
outer constraints, let J be an instance of the prophet inequality problem with random variables
Xe for all e ∈ E and constraint Min. If there exists an α-factor greedy strategy for J against
the almighty adversary, then there exists a deterministic α-policy for I. Furthermore, the
proof is constructive when given the strategy for J .

Proof. First, we have by our choice of J that the expected utility of the prophet in J is
equal to the expected utility of the non-delegating principal in I. Notice that the principal
has no outer constraint, so we can assume without loss of generality that they probe all
elements. Then the prophet and non-delegating principal both get exactly

E max
T∈Min

x(T ).

Now consider the gambler’s α-factor greedy strategy, which consists of some collection
A ⊆ 2E×R+ of “acceptable” sets of outcomes. We will define the delegating principal’s policy
as follows

R = {{(e, x, y) : (e, x) ∈ A, y ∈ R+} : A ∈ A} .

Notice that policy R is exactly the same as strategy A, just translated into the language of
delegation.

Now we will show that the utility of the delegating principal with policy R is at least
the utility of the gambler with greedy strategy A. In the prophet inequality, the almighty
adversary can order the random variables such that the gambler always gets their least
favorite among all maximal acceptable sets (the set is always maximal because the gambler’s
strategy is greedy). Compare this with delegation, where the agent knows the result of all
probed elements as well as the principal’s acceptable sets R. Since the agent has non-negative
utility for all outcomes, we can assume without loss of generality that they will always propose
a maximal acceptable set. For every corresponding set of realizations in each problem, the
gambler will receive the maximal set in A of minimum value and the principal will receive
some maximal set in R. Since we defined R to correspond directly with A, the principal’s
value must be at least as large as the gambler’s. This is true of all possible realizations, so R
must be an α-policy for I. J

We note that by construction of the principal’s policy R, this theorem holds even when
the principal is unaware of the agent’s utility values y. This is comparable to the reduction
in [16] which similarly worked regardless of the principal’s knowledge of the agent’s utilities.

Unfortunately, applications of this theorem rely on the existence of competitive strategies
against the almighty adversary, which is a very strong condition. It is natural to ask whether
it’s really necessary in the reduction for the adversary to be almighty. We provide some
evidence that this is indeed necessary by considering the special case of a 1-uniform inner
matroid. In this case, it’s easy to construct instances for which the utility of the principal
and agent sum to a constant value for all outcomes, i.e. Xe + Ye = c for all e and some
constant c. In such an instance, the agent’s goals are directly opposed to the principal’s,
so the agent will always propose the principal’s least favorite acceptable outcome. In the
corresponding instance of the prophet inequality, the almighty adversary can guarantee that
the gambler chooses their least favorite acceptable outcome, while weaker adversaries (that
don’t know the realizations of variables) cannot enforce the same guarantee.

Using some known greedy prophet inequalities against the almighty adversary, we get the
following corollaries.
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I Corollary 4.2. There exist deterministic 1
2 -policies for delegated stochastic probing problems

with no outer constraint and a 1-uniform inner constraint.

Proof. This follows from the existence of 1
2 threshold rules (such as Samuel-Cahn’s median

rule [25]) for the 1-uniform prophet inequality against the almighty adversary. J

I Corollary 4.3. There exist constant-factor deterministic policies for delegated stochastic
probing problems with no outer constraint and three classes of inner constraints. These factors
are: 1

4 for matroid constraints, 1
2e ≈ 0.1839 for matching constraints, and 3

2 −
√

2 ≈ 0.0857
for knapsack constraints.

Proof. This corollary is largely based on results from [9]. By combining [9, Theorem 1.8]
with [9, Observation 1.6] and optimizing the parameters, we get randomized greedy online
contention resolution schemes (OCRS) for three aforementioned constraint systems with
the same factors listed above. Then, applying [9, Theorem 1.12], each randomized greedy
OCRS corresponds to a randomized greedy prophet inequality against the almighty adversary
with the same approximation factor. Since the adversary is almighty, they can predict any
randomness in our strategy. Therefore, the randomized strategy is no better than the best
deterministic strategy, and there must exist some deterministic strategy achieving the same
factor. Finally, we apply our Theorem 4.1 to turn the prophet inequality strategy into a
delegation policy with the same factor. J

I Corollary 4.4. There exist constant-factor deterministic policies for delegated stochastic
probing problems with no outer constraint and an inner constraint that is the intersection of
a constant number of matroid, knapsack, and matching constraints.

Proof. We use [9, Corollary 1.13] along with the same reasoning as Corollary 4.3. J

We note that it is open whether there exists a 1
2 -OCRS for matroids against the almighty

adversary [21]. The existence of such an OCRS, if greedy, would imply the existence of
1
2 -policy for delegated stochastic probing with a matroid inner constraint and no outer
constraint.

Although Corollary 4.2 applies to a model very similar to the distributional delegation
model from [16], our principal has the additional power of being able to distinguish between
otherwise identical elements by their name alone. However, by observing that Theorem 4.1
turns greedy prophet inequalities that don’t distinguish between identical elements into
delegation policies that also don’t distinguish between identical elements, we can derive
delegation policies that recover the 1

2 -factor guarantee from [16] for their distributional model.
We leave the details for Section A.1.

4.2 Outer Constraint Delegation
Using the adaptivity gap from Section 2.3, we will now show that there are large classes
of delegated stochastic probing problems with nontrivial outer constraints for which the
principal can achieve, in expectation, a constant-factor of their non-delegated optimal utility.

I Theorem 4.5. Let I = (E,Mout,Min) be an instance of delegated stochastic probing.
Suppose that, for all F ∈ Iout, there exists a deterministic α-policy for the restriction
IF = (F,M∗F ,Min|F ) of instance I to F . Suppose also that the adaptivity gap for weighted
rank functions of Min on set system Mout is at least β. Then there exists a deterministic
αβ-policy for instance I.
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Proof. Given any set of elements F ⊆ E, we can write the utility of the non-delegating
principal who probes F as

u(F ) = max
G⊆F,G∈Iin

x(G)

and the utility of the delegating principal with policy R who probes F as

vR(F ) = x

(
argmax

G⊆F,ΩG∈R
y(G)

)
,

where ΩG ⊆ Ω is the set of outcomes from the probed elements G.
Notice that for any fixed set of realizations from all random variables, u is just the

weighted rank function of set system Min. Therefore, by the adaptivity gap for such a
function over set systemMout, there exists a fixed set F ∈ Iout such that

Eu(F ) ≥ β Eu(E∗), (2)

where E∗ ∈ Iout is a random variable representing the optimal set of elements selected by
an adaptive non-delegating principal. Notice that expectation is also over the randomness
of E∗.

Now we will consider the same delegation instance with access to only the elements in F ,
i.e. instance (F,Mout|F,Min|F ). Since F ∈ Iout, the outer matroid doesn’t restrict probing
at all and this instance is equivalent to IF = (F,M∗F ,Min|F ). By our assumption, this
problem has some α-approximate delegation policy. Let R be one such policy. Then we have

E vR(F ) ≥ αEu(F ). (3)

Since R contains outcomes only from elements in F , an agent restricted to R in the
original instance I has no incentive to probe elements outside of F . Because F ∈ Iout, the
agent can probe all of F . Therefore, we can assume without loss of generality that an optimal
adaptive strategy will choose to probe exactly the elements in F . Then

E vR(E∗R) = E vR(F ), (4)

where E∗R ⊆ E is a random variable containing exactly the elements probed by an optimal
adaptive agent when when restricted to acceptable set R in the original instance I.

Combining (2), (3), and (4), we get the desired inequality:

E vR(E∗R) = E vR(F )
≥ αEu(F )
≥ αβ Eu(E∗). J

I Corollary 4.6. There exist deterministic 1
2
(
1− 1

e

)
≈ 0.3160-policies for delegated stochastic

probing problems with matroid outer constraints and a 1-uniform inner constraint.

Proof. By Corollary 4.2, there is a 1
2 -policy for any instance of delegated stochastic probing

with a 1-uniform inner constraint and no outer constraint. Every restriction of our present
instance I to some independent set F of the outer matroid is of this form.

From [4], we have a 1− 1
e adaptivity gap for stochastic submodular on matroid constraints.

Since the weighted rank function of any matroid is submodular, the adaptivity gap of weighted
rank functions of the inner 1-uniform matroid constraint on the outer matroid constraint is
also 1− 1

e .
Therefore, the conditions of Theorem 4.5 hold with α = 1

2 and β = 1− 1
e , and we get the

desired factor. J
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I Corollary 4.7. There exist deterministic 1
4
(
1− 1

e

)
≈ 0.1580-policies for delegated stochastic

probing problems with matroid outer and inner constraints.

Proof. Similar to Corollary 4.6, we use the 1− 1
e adaptivity gap for submodular functions

over matroid constraints along with Corollary 4.3. J

I Corollary 4.8. There exist constant-factor deterministic policies for delegated stochastic
probing with any downward-closed outer constraint and an inner constraint which is the
intersection of a constant number of matroids.

Proof. By [5, Theorem 1.2], we have constant-factor adaptivity gaps for weighted rank
functions of the intersection of a constant number of matroids over “prefix-closed” constraints,
which include all downward-closed constraints. By Corollary 4.4, we have constant-factor
policies for delegated stochastic probing with no outer constraint and an inner constraint
which is the intersection of a constant number of matroids. Combining these results with
Theorem 4.5, we get the desired constant factors. J

5 Lottery Mechanisms

One natural generalization of the delegated stochastic probing model defined in section 3.1 is
to allow the principal to use randomized mechanisms. For example, one may consider the
generalization of single-proposal mechanisms which attaches a probability pR to each set of
outcomes R ⊆ Ωin, and accepts a proposed set R with precisely that probability (and accepts
the empty set otherwise). More general lotteries (i.e. with non-binary support) are also
possible. It’s then natural to ask whether there exist instances for which some randomized
policy does better than all deterministic ones. Even further, we can ask whether there exists
a randomized policy that strictly outperforms deterministic ones in the worst case. In other
words, can randomization give us a strictly better delegation gap?

In this section, we will broadly discuss randomized mechanisms and then consider the
special case of delegation with 1-uniform inner constraints and no outer constraints. In this
special case, there exist instances for which randomization significantly helps the principal,
and there are worst-case instances in which the delegation gap of 1

2 is tight for randomized
mechanisms as well as deterministic ones. Before getting to these results, we will discuss
methods of randomization and then formalize what we mean by a randomized mechanism.

There are two obvious ways that the single-proposal mechanism can be randomized. The
first is for the principal to sample a deterministic policy R from some distribution and
then run the single proposal mechanism defined by R. However, noticing that our model of
delegation is a Stackelberg game, we can conclude that there always exists a pure optimal
strategy for the principal, so this type of randomization doesn’t give the principal any more
power.

The second type of randomness is for the policy itself to be a set of acceptable distributions
over sets of outcomes (i.e. a menu of lotteries), from which the agent may propose one. The
principal then samples a set of outcomes from the proposed lottery. This expands the space
of mechanisms, conceivably affording the principal more power in influencing the agent’s
behavior. We will focus on these randomized mechanisms for the rest of this section.

I Definition 5.1. A lottery mechanism is a randomized mechanism for delegated stochastic
probing consisting of a set R of distributions, or lotteries, each with support in Ωin. After the
set of acceptable lotteries R is selected and announced to the agent, the delegated stochastic
probing mechanism proceeds largely the same. The agent probes outcomes S and proposes
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one of the lotteries L ∈ R. The principal then samples a set of outcomes T ∼ L from that
lottery. If T ⊆ S, then the principal and agent receive x(T ) and y(T ) utility, respectively.
Otherwise, they both receive 0 utility.

We note that this sort of mechanism is a generalized single-proposal mechanism in the
sense of Section 3.2: Each lottery represents a solution and an agent’s expected utility for
a lottery represents their utility for that solution. Therefore, Lemma 3.7 applies to lottery
mechanisms as well.

5.1 Power of Lotteries
The increased power of lottery mechanisms means that for some instances of delegated
stochastic probing there exist lottery policies that provide the principal with a better
expected utility than the best deterministic policies. In fact, we will show that there are
instances for which some lottery policies nearly achieve the principal’s non-delegated expected
utility, while the best deterministic policies achieve only about half of this value.

First, we will make the observation that it never benefits the principal to declare two
lotteries in R with identical support but different distributions. This is because the principal
knows the utility function of the agent and can predict which lottery the agent will prefer.
Therefore, we can assume that for any given support, the principal will declare at most one
lottery.

I Proposition 5.2. For all 0 < ε < 1, there exists an instance of delegated stochastic probing
for which the best lottery mechanisms achieve 2−3ε+2ε2

2−ε of the principal’s non-delegated
expected utility, while the best deterministic mechanisms achieve 1

2−ε of the principal’s
non-delegated expected utility. As ε approaches 0, the former approaches 1 while the latter
approaches 1

2 .

Proof. Consider an instance with elements E = {1, 2}, a 1-uniform matroid inner constraint,
no outer constraint, and distributions for elements 1 and 2 as detailed in Table 1.

Table 1 Each row represents a single outcome and contains its name, element e, utilities x and y,
and the probability that it is probed from element e.

Outcome Element e Utility x Utility y Probability Pe[(x, y)]
ω0 1 0 0 1− ε
ω1 1 1/ε 1− ε ε

ω2 2 1 1 1

Since there are no outer constraints we assume that both elements are probed. The
non-delegating principal can accept ω1 when it appears and accept ω2 otherwise. This gives
them an expected utility of ε/ε+ 1− ε = 2− ε. By enumerating all deterministic policies, we
can confirm that the best such policy gives the delegating principal an expected utility of 1.
Therefore, the best deterministic policy achieves 1

2−ε of the principal’s non-delegated utility.
Now consider a lottery policy with lotteries A and B such that PA[ω1] = 1, PB [ω2] = 1−2ε,

and PB [ω0] = 2ε. We can quickly verify that this gives the delegating principal an expected
utility of 2−3ε+2ε2. Therefore, at least one lottery policy achieves 2−3ε+2ε2

2−ε of the principal’s
non-delegated utility. J

Unfortunately, there is good reason not to be too optimistic about the increased power of
lottery mechanisms. As we will now show, there also exist instances for which the best lottery
policies and the best deterministic policies all achieve approximately half of the principal’s
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non-delegated expected utility. Since Corollary 4.2 gives us a deterministic 1
2 -policy, this

tells us that, in the worst case, the factor 1
2 is tight even for lottery policies in the special

case of no outer constraint and a 1-uniform inner constraint.

I Proposition 5.3. For all 0 < ε < 1, there exists an instance of delegated stochastic probing
with a 1-uniform inner constraint and no outer constraint for which the best lottery policies
and the best deterministic policies all achieve 1

2−ε of the principal’s non-delegated expected
utility. As ε approaches 0, this approaches 1

2 .

Proof. Consider an instance with elements E = {1, 2}, a 1-uniform matroid inner constraint,
no outer constraint, and distributions for elements 1 and 2 as detailed in Table 2.

Table 2 Each row represents a single outcome and contains its name, element e, utilities x and y,
and the probability that it is probed from element e. Notice that this instance is identical to the
one from Table 1 except for the agent’s utility for outcome ω1.

Outcome Element e Utility x Utility y Probability Pe[(x, y)]
ω0 1 0 0 1− ε
ω1 1 1/ε 0 ε

ω2 2 1 1 1

In the case of ties, we assume that the agent prefers to break ties first in the principal’s
favor and then arbitrarily among any remaining ties. This assumption serves only to simplify
the proof, and can be avoided with careful modifications to the utility table.

The non-delegating principal can accept ω1 = (1, 1/ε, 0) when it appears and accept
ω2 = (2, 1, 1) otherwise. This gives them an expected utility of ε/ε + 1 − ε = 2 − ε. By
enumerating all deterministic policies, we can confirm that the best such policy gives the
delegating principal an expected utility of 1. Therefore, the best deterministic policy achieves

1
2−ε of the principal’s non-delegated utility.

Finding the best menu of lotteries takes slightly more work. Since the inner constraint is
1-uniform, each lottery is supported on singletons as well as the empty set. Recall also that
we can restrict attention to menus where no two lotteries have the same support. We claim
that we can further restrict attention to menus with exactly two lotteries A and B, with A
supported on {ω0, ω2} and B supported on {ω1, ω2}. To see this, observe that:
1. Shifting all probability mass from the empty set to ω0 or ω1 in any lottery does not affect

the agent’s utility and can only increase the principal’s utility. In the case of tie-breaking,
the principal’s favorite remaining lottery is no worse than before.

2. If there is a lottery with both ω0 and ω1 in its support, shifting all probability mass from
one of these outcomes to the other does not affect the agent’s utility, and in at least one
direction this shift of probability mass will make the policy no worse for the principal.
Again, in the case of tie-breaking, the principal’s favorite remaining lottery is no worse
than before.

3. A menu without lottery A is no better than the same menu with lottery A for which all
probability mass of A is assigned to ω0. Similarly, a menu without lottery B is no better
than the same menu with lottery B for which all probability mass of B is assigned to ω1.

Parametrizing the probability of each outcome, we get: PA[ω2] = a, PA[ω0] = 1 − a,
PB[ω2] = b, and PB[ω1] = 1 − b for some a, b ∈ [0, 1]. No matter what the agent probes
({ω0, ω2} or {ω1, ω2}), their favorite lottery is B if b ≥ a and A otherwise. If we choose b ≥ a,
the delegating principal gets expected utility ε(b+ (1− b)/ε) + (1− ε) · b = 1. Otherwise, the
principal gets ε · a+ (1− ε) · a = a, which can be made as large as 1 for a = 1. Therefore,
the best lottery policy achieves 1

2−ε of the principal’s non-delegated utility. J
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6 Open Questions

Due to this novel combination of delegation with stochastic probing, we believe that this
paper ultimately opens up many more questions than it answers. In this section, we will
make some of these questions explicit.

While we focused on the existence of constant-factor delegation policies regardless of
their computational complexity, applying these solutions to practical problems requires
some guarantee that they can be easily computed and represented. Are there delegated
stochastic probing problems for which constant-factor policies are NP-hard to compute in
general? Are there special cases for which constant-factor policies can always be computed
in polynomial time?
In Section 5, we showed that the constant given in Corollary 4.2 is tight. Are the other
factors given in Section 4.1 tight? We note that this is related to an open question by
[21] about 1

2 prophet inequalities on matroids against the almighty adversary.
Are the constant factors given in Section 4.2 tight? Due to the broad applicability of
adaptivity gaps, our method is unlikely to take advantage of special structure that may
be present in delegated stochastic probing problems. Therefore, it seems probable that
better constants exist, but we make no claim to a conjecture.
Our model assumes that probing is always zero-cost, so it doesn’t generalize the binary
model from [16] or the box problem of [27]. It’s natural to ask whether we can get
constant-factor delegation gaps with probing costs in addition to (or as a replacement
for) outer constraints.
Our model doesn’t allow the principal to incentivize the agent with transfers (such as
payments), so it’s natural to ask how such an extension to the model could improve the
principal’s worst-case guarantees.
If the principal is delegating to multiple agents simultaneously, can they get better
worst-case guarantees than delegating to a single agent? We note that there are many
ways to define this formally. For example, a stronger principal may be able to define
different acceptable sets for each agent whereas a weaker principal may be forced to
declare one acceptable set for all agents.
It’s not hard to imagine practical applications of stochastic probing for which elements
are not independently distributed. Can we get competitive guarantees even in the absence
of the independence assumption?
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A Appendix

A.1 Symmetric Delegation Policies
While our model is not a direct generalization of the distributional model used by Kleinberg
and Kleinberg, we can obtain a generalization by considering delegated stochastic probing
with a restricted class of policies, which we call symmetric policies. Given this variant, we
can recover the 1

2 factor that they obtained. First, we need to define some notation and
terminology.

Given any object X (such as a set, tuple, or recursive combination of the two) containing
atomic elements E, we can consider the operation of taking two elements e1, e2 ∈ E and
swapping all instances of e1 and e2 in X. More generally, for any permutation π of elements
in E, we can consider rewriting all elements e to π(e) simultaneously. We will denote the
object obtained from this operation as X[E → π(E)].

I Definition A.1. Fix an instance of delegated stochastic probing with elements E, outer
constraint Mout, and inner constraint Min. We say that a subset of elements F ⊆ E

are symmetric if µe = µf for all e, f ∈ F and for all permutations π on F we have that
Min[F → π(F )] =Min and Mout[F → π(F )] =Mout.

I Definition A.2. Fix an instance of delegated stochastic probing with elements E, outer
constraint Mout, and inner constraint Min. We say that a policy R is symmetric if
R[F → π(F )] = R for all symmetric sets of elements F ⊆ E and all permutations π

on F .

Intuitively, symmetric elements are ones which are identical in everything except name.
Then symmetric policies are ones that don’t distinguish between symmetric elements. Using
this intuition, we will now consider the problem of delegated stochastic probing with k

identically distributed elements E, a 1-uniform inner constraint, and no outer constraint.
Given any such instance, it’s easy to see that all elements E are symmetric. Notice the
similarity between such an instance and the distributional model. The only difference is
that our principal has the power to distinguish between outcomes sampled from different
elements. However, if the principal is restricted to symmetric policies, then their policy
cannot distinguish between different elements, so it must characterize acceptable outcomes
based only on their (x, y) utility. This is equivalent to the distributional model.

There are also natural definitions of symmetric elements and strategies in the prophet
inequality problem.

I Definition A.3. Fix an instance of the prophet inequality problem with elements E and
feasibility constraint M. We say that a subset of elements F ⊆ E are symmetric if Xe and
Xf are identically distributed for all e, f ∈ F and for all permutations π on F we have that
M[F → π(F )] =M.

I Definition A.4. Fix an instance of the prophet inequality problem with elements E and
feasibility constraint M. We say that a strategy A is symmetric if A[F → π(F )] = A for all
symmetric sets of elements F ⊆ E and all permutations π on F .

Given these definitions, we will show that Theorem 4.1 actually transforms symmetric
greedy prophet inequalities against the almighty adversary into symmetric delegation policies.
This is stated formally in Proposition A.5.
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I Proposition A.5. Given an instance I = (E,M∗,Min) of delegated stochastic probing
without outer constraints, let J be an instance of the prophet inequality problem with random
variables Xe for all e ∈ E and constraint Min. If there exists a symmetric α-factor greedy
strategy for J against the almighty adversary, then there exists a symmetric deterministic
α-policy for I. Furthermore, the proof is constructive when given the strategy for J .

Proof. The proof is identical to the proof of Theorem 4.1, but we observe that the greedy
strategy A for prophet inequality problem J is symmetric, so the policy R derived from A
must also be symmetric by construction. J

Since the 1
2 prophet inequality used in Corollary 4.2 is a threshold policy, it must be

symmetric. Therefore, we have a symmetric 1
2 -policy for delegated stochastic probing

problems with no outer constraint and a 1-uniform inner constraint. This recovers a 1
2 -factor

for the distributional model of [16], as well as for the slight generalization of this model with
multiple distributions and a separate cardinality constraint for each one.
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We construct an explicit and structured family of 3XOR instances which is hard for O(
√

log n)
levels of the Sum-of-Squares hierarchy. In contrast to earlier constructions, which involve a random
component, our systems are highly structured and can be constructed explicitly in deterministic
polynomial time.

Our construction is based on the high-dimensional expanders devised by Lubotzky, Samuels
and Vishne, known as LSV complexes or Ramanujan complexes, and our analysis is based on two
notions of expansion for these complexes: cosystolic expansion, and a local isoperimetric inequality
due to Gromov.

Our construction offers an interesting contrast to the recent work of Alev, Jeronimo and the
last author (FOCS 2019). They showed that 3XOR instances in which the variables correspond to
vertices in a high-dimensional expander are easy to solve. In contrast, in our instances the variables
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1 Introduction

We describe a new family of instances of 3XOR, based on high-dimensional expanders, that are
hard for the Sum-of-Squares (SoS) hierarchy of semidefinite programming relaxations, which
is the most powerful algorithmic framework known for optimizing over constraint satisfaction
problems. Unlike previous constructions of 3XOR hard instances for SoS, our construction
is explicit, as it is based on the explicit construction of high-dimensional expanders due to
Lubotzky, Samuels and Vishne [34, 35], which we refer to henceforth as LSV complexes.

I Theorem 1.1. There exists a constant µ ∈ (0, 1) and an infinite family of 3XOR instances
on n variables, constructible in deterministic polynomial time, satisfying the following:

No assignment satisfies more than 1− µ fraction of the constraints.
Relaxations obtained by O(

√
logn) levels of the SoS hierarchy fail to refute the instances.

We remark that the result in the above theorem differs from the previous results for
random instances of 3XOR, proved by Grigoriev [20] and Schoenebeck [36], in two ways.

While random instances are known to be hard for Ω(n) levels of the SoS hierarchy, the
above theorem only gives a gap for Ω(

√
logn) levels.

Our instances on the LSV complexes exhibit an integrality gap of 1 − µ vs. 1, while
random instances exhibit a gap of 1/2 + ε vs. 1. However, our construction can also be
combined with reductions in the SoS hierarchy [37] hierarchy, reductions can be used to
obtain explicit 3XOR instances with a gap of 1/2 + ε vs. 1− ε for any ε > 0. Indeed, this
yields explicit hard instances with optimal gaps for all approximation resistant predicates
based on pairwise independent subgroups [10].

Structured instances from high-dimensional expanders

High-dimensional expanders (HDXs) are a high-dimensional analog of expander graphs. In
recent years they have found a variety of applications in theoretical computer science, such
as efficient CSP optimization [3], improved sampling algorithms [6, 4, 5, 11], quantum LDPC
codes [17, 30], novel lattice constructions [29], direct sum testing [19], and others. Explicit
constructions of HDXs have also led to improved list-decoding algorithms [13, 2] and to
sparser agreement tests [14, 12]. In this work, we show how these explicit constructions can
be used to construct explicit hard instances for SoS.

High-dimensional expanders are bounded-degree (hyper)graphs (or rather, simplicial
complexes) with certain expansion properties. A simplicial complex is a non-empty collection
of down-closed sets. Given a simplicial complex X, we will refer by X(i) the family of all
i-dimensional sets in X (i.e., sets of size i+ 1). The dimension of the simplicial complex X is
the maximal dimension of any set in it. It will be convenient to refer to the sets of dimension
0, 1, 2, 3 as vertices, edges, triangles, tetrahedra, respectively. Thus, a graph G = (V,E) is a
1-dimensional complex, while in this work we will be using complexes of dimension at least
2. Given a 2-dimensional complex X = (X(0), X(1), X(2)), there are two natural ways to
construct a 3XOR instance based on X – a vertex-variable construction and an edge-variable
construction. Let β : X(2)→ F2 be any F2-valued function on the set X(2) of triangles.

Vertex-variable construction: The 3XOR instance corresponding to (X,β) consists of the
following constraints: xu + xv + xw = β{u,v,w} for each {u, v, w} ∈ X(2).

Edge-variable construction: The 3XOR instance corresponding to (X,β) consists of the
following constraints: x{u,v} + x{v,w} + x{w,u} = β{u,v,w} for each {u, v, w} ∈ X(2).
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The vertex-variable construction whose underlying structure is a high-dimensional ex-
pander has been studied by Alev, Jeronimo and the last author [3]. They gave an efficient
algorithm for approximating vertex-variable constraint satisfaction problems (not necessarily
3XOR) on an underlying high-dimensional expander. Their result is a generalization to higher
dimensions of the corresponding result for graphs that “CSPs are easy on expanders” [7, 24].
They prove this by showing that certain types of random walks on vertices converge very
fast on high-dimensional expanders. However, the same analysis fails to show a similar
result for the edge-variable construction, as the corresponding random walk on edges of a
high-dimensional expander does not mix. Our work shows that this difference isn’t just a
technical limitation of their analysis; it is inherent. The edge-variable variant is truly hard, at
least for SoS. This demonstrates an interesting subtlety in the structure of high-dimensional
expanders, and how it relates to optimization.

To understand our edge-variable construction better, it will be convenient to set up some
notation. Let Ci denote the set of all F2-valued functions on X(i). For each 0 ≤ i < d,
consider the operator δi : Ci → Ci+1 defined as follows:

δif(s) :=
∑
u∈s

f(s− {u}).

This is usually referred to as the coboundary operator. Let Bi be the image of δi−1, and let
Zi be the kernel of δi. Clearly, Bi, Zi ⊆ Ci. Furthermore, it is not hard to see that Bi ⊆ Zi.
It easily follows from the definitions that the edge-variable construction corresponding to
(X,β) is a satisfiable instance iff β ∈ B2.

Typically, soundness of SoS-hard instances is proved by choosing β at random from C2.
In contrast, we construct our explicit instances by choosing the function β more carefully, and
relying on a certain type of expansion property of the complex. Recall that B2 ⊂ Z2, and
the instance is satisfiable iff β ∈ B2. Complexes for which B2 = Z2 are said to have trivial
second cohomology. We will be working with complexes with non-trivial second cohomology,
i.e., B2 6= Z2. This lets us choose a β ∈ Z2 \B2 to prove soundness. It is known that the
explicit constructions of HDXs due to Lubotzky, Samuels and Vishne [34, 35] have non-trivial
second cohomology.1 In fact, these complexes have the stronger property (due to a theorem
of Evra and Kaufman [16]) that all β ∈ Z2 \B2 are not only not in B2, but in fact far from
any function in B2. This latter property follows from the cosystolic expansion of the complex,
and forms the basis for the soundness of our instances.

How do we prove the completeness of our instance, namely, that SoS fails to detect that
it is a negative instance? The LSV construction is a quotient of the so-called affine building
which is, from a topological point of view, a simple “Euclidean-like” object with trivial
cohomologies. The hardness of our instance comes from the inherent difference between the
LSV complex and the building, which cannot be seen through local balls whose radius is at
most the injectivity radius of the complex, in our case Θ(logn). Locally, the LSV quotient is
isomorphic to the building. However, unlike the building, the LSV complex is a quotient with
non-trivial cohomologies. The hardness comes from the fact that local views cannot capture
the cohomology, which is a global property. Given this observation, the proof of completeness
can be carried out following the argument of Ben-Sasson and Wigderson [8] that any short
resolution proof is narrow, and Grigoriev [20] and Schoenebeck [36]’s transformation from
resolution lower bounds to SoS lower bounds.

1 More accurately, their construction depends on the group defining the quotient. They show that a
certain choice of groups yields non-trivial second cohomology.
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Technically, we rely on two very different types of expansion or isoperimetry. In our proof
of completeness, we rely on an isoperimetric inequality called Gromov’s filling inequality,
that says that balls are essentially the objects with smallest boundary in any CAT(0) space
(a class of spaces that includes both Euclidean spaces and the affine building). In our proof
of soundness, we rely on the cosystolic expansion of the LSV complex, as proven by Evra and
Kaufman [16], which implies that any non-trivial element in the cohomology has constant
weight. Both of these statements are related to expansion, yet they are distinct from other
notions of expansion used in previous SoS lower bounds. Interestingly, both notions are
natural generalizations of edge-expansion to higher dimensions. Isoperimetric expansion is a
classical notion asking for the smallest possible boundary of a body with certain volume. In
graphs, it is common to interpret this notion as the edge-expansion, bounding the smallest
possible number of edges leaving a set, relative to its size. Moving to higher dimensions, there
are several nonequivalent [23] ways to generalize edge-expansion, most notably a spectral
variant and a topological variant. The topological variant is the one we require for our
soundness analysis. This type of expansion is an extension of the notion of coboundary
expansion first defined by Linial-Meshulam [32] and then independently by Gromov [22].
This is a subtle notion that is related to the local-testability of the cocycle space, see [28].

Relation to previous SoS gap constructions

All previous constructions of hard instances for SoS can be viewed in the vertex/edge-variable
framework (typically vertex-variable). To the best of our knowledge, all known hard instances,
proving inapproximability in the SoS hierarchy, are random instances; either both the complex
X and the function β are random, or just the function β is random. The proof of SoS hardness
of these random instances relies on very strong expansion of the underlying complex [36] or
on certain pseudorandom properties [31], both of which are not yet known to be explicitly
constructible. Moreover, the randomness in the choice of the β specifying the right-hand
sides of the equations in these constructions, is used for a union bound over all (exponentially
many) assignments to the variables, and such arguments are often difficult to derandomize.

On the other hand, explicit hard instances for SoS are known in proof complexity (e.g.,
Tseitin tautologies on expanders). However, these instances are only minimally unsatisfiable,
and transforming them to an integrality gap instance requires a highly non-local reduction
(such as the PCP theorem). While SoS gap instances can easily be combined with local
reductions, this is not true for non-local ones.

In contrast to the above, our integrality gap instances are “anti-random”. They are very
structured and easily distinguishable from random instances. For example, all balls around
a vertex up to some radius are identical and have very specific structure. Naturally, the
typical analysis that works for random instances cannot work here. For example, soundness
for random instances is based on choosing a random β and using a union-bound argument to
show that with high probability, every solution violates nearly half of the constraints. In
contrast, for us, a random β is not a good choice because the local structure will quickly
detect local contradictions, ruining the completeness altogether.

Open directions

Our construction of explicit hard SoS instances based on HDXs begs several questions, some
of which we discuss below.

Improved soundness Our construction yields 3XOR hard instances which are at most (1−µ)-
satisfiable, owing to the cosystolic expansion of the underlying HDX (more precisely,
CoSys2(X) ≥ µ, see Section 2.2 for the definition of CoSys2). Coupled with reductions
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in the SoS hierarchy [37], this yields 3XOR hard instances which are at most (1/2 + ε)-
satisfiable for every ε ∈ (0, 1). Can we obtain such a result directly from the HDX
construction (bypassing reductions), say by constructing HDXs which satisfy CoSys2(X) ≥
1/2− ε? In addition to maintaining the HDX structure, bypassing reductions would also
allow for perfect completeness, which is lost while using NP-hardness reductions.

Fooling more levels of the SoS hierarchy Our hard instances fool only O(
√

logn) levels of
the SoS hierarchy, as our argument is based on the injectivity radius of the complexes,
which is O(logn), and we suffer a further square-root loss due to the use of Gromov’s
isoperimetry inequality. It is possible that a much stronger lower bound holds for these
instances. Can one construct explicit hard instances that fool linearly many levels of the
SoS hierarchy?

HDX dimension and CSP definition We find the contrast between the vertex-variable and
edge-variable constructions baffling: while the vertex-variable construction is easy, our
result demonstrates the hardness of the edge-variable construction. As we go to higher
dimensions of HDX, there are more ways to define CSPs. Which of these are easy and
which are hard?

2 Preliminaries

2.1 The Sum-of-Squares Hierarchy
The sum-of-squares hierarchy2 provides a hierarchy of semidefinite programming (SDP)
relaxations, for various combinatorial optimization problems. Figure 1 describes the relaxation
given by t levels of the hierarchy for an instance I of 3XOR in n variables, with m constraints
of the form xi1 + xi2 + xi3 = βi1i2i3 over F2. We also use I to denote the set of all tuples
{i1, i2, i3} present as constraints. A solution to the relaxation is specified by a collection of
unit vectors {uS}S⊆[n],|S|≤t, satisfying the constraints in the program. The objective equals
the fraction of constraints “satisfied” by the SDP solution. To prove a lower bound on the

maximize 1
2 + 1

2m
·

∑
{i1,i2,i3}∈I

(−1)βi1i2i3 ·
〈
u{i1,i2,i3}, u∅

〉
subject to 〈uS1 , uS2〉 = 〈uS3 , uS4〉 ∀ S1∆S2 = S3∆S4, |S1| , . . . , |S4| ≤ t

‖uS‖ = 1 ∀S, |S| ≤ t

Figure 1 Relaxation for 3XOR given by t levels of the SoS hierarchy.

value of the SDP relaxation, we will use the following result, which shows the existence of
vectors uS yielding an objective value of 1, when the given system of XOR constraints does
not have any “low-width” refutations. Formally, we consider a system called XOR-resolution,
where the only rule allows us to combine two equations `1 = b1 and `2 = b2 to derive the
equation `1 + `2 = b1 + b2. A refutation is a derivation of 0 = 1. The width of a refutation
is the maximum number of variables in any equation used in the refutation. We include a
proof of the following lemma in Appendix A.

2 For more on Sum-of-Squares, see the recent monograph by Fleming, Kothari and Pitassi [18].
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I Lemma 2.1 ([36, Lemma 13], [37, Theorem 4.2]). Let Λ be a system of equations in n

variables over F2, which does not admit any refutations of width at most 2t. Then there
exist vectors {uS}S⊆[n],|S|≤t satisfying the constraints in Figure 1, such that for all equations∑

i∈T xi = bT in Λ with |T | ≤ t, we have 〈uT ,u∅〉 = (−1)bT .

2.2 Simplicial Complexes
A simplicial complex X is a non-empty collection of sets (known as faces) which is closed
downwards. The i-dimensional faces X(i) are all sets of size i + 1. The dimension of the
complex is the maximal dimension of a face. Faces of that dimension are known as facets.
Faces of dimensions 0, 1, 2, 3 are called vertices, edges, triangles, and tetrahedra, respectively.

Graphs are 1-dimensional simplicial complexes. The skeleton of a simplicial complex is
the graph obtained by retaining only faces of dimension at most 1.

Links. Let X be a d-dimensional simplicial complex. The link Xs of a face s ∈ X(i) is a
simplicial complex of dimension d− (i+ 1) given by Xs(j) := {t : s ∪ t ∈ X(j + i+ 1)}. In
other words, Xs contains all faces in X which contain s, with s itself removed.

Balls. Let X be a simplicial complex. A ball of radius r around a vertex v is the subcomplex
induced by all vertices at distance at most r from v, as measured on the skeleton of X. That
is, the subcomplex contains a face of X if it contains all the vertices of the face.

Covering map. A covering map from a simplicial complex Y to a simplicial complex X is a
surjective map ψ : Y (0)→ X(0) from the vertices of Y to X such that for every k ≤ dimY

the image of every k-face {v0, . . . , vk} ∈ Y (k) is a k-face {ψ(v0), . . . , ψ(vk)} ∈ X(k). We
then say that X is covered by Y .

Chains. Fix a d-dimensional simplicial complex X. Let Ci := Ci(X,F2) be the set of all
functions from X(i) to F2. Elements of Ci are also known as i-chains.

For an i-chain f , we define |f | to be the number of non-zero elements in f . For two
i-chains f and g, we define the distance between f and g to be dist(f, g) := |f + g|.

Inner product. For f, f ′ ∈ Ci, let us denote by 〈f, f ′〉i the following sum modulo 2:

〈f, f ′〉i :=
∑

s∈X(i)

f(s)f ′(s).

This is not an inner product in the usual sense as we are working over a field of non-zero
characteristic, but it is convenient notation. We will usually drop the subscript i.

Dual space. Given any subspace V ⊂ Ci, the dual of V (under 〈·, ·〉i) is defined as:

V ⊥ := {f ∈ Ci | for all g ∈ V, 〈f, g〉i = 0}.

Boundaries, Cycles, Homology. The boundary operator ∂i : Ci → Ci−1 is given by

∂if(s) :=
∑

t∈X(i) : t⊃s

f(t).
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It gives rise to boundaries Bi and cycles Zi:

Bi := im ∂i+1, Zi := ker ∂i.

In the case of graphs, Z1 consists of all sums of cycles (in the usual sense).
The coboundary operator δi : Ci → Ci+1, which is the adjoint of the boundary operator,

is given by

δif(t) :=
∑

s∈X(i) : s⊂t

f(s) =
∑
u∈t

f(t− {u}).

It gives rise to coboundaries and cocycles:

Bi := im δi−1, Zi := ker δi.

We will usually drop the subscript i when invoking ∂, δ.
It is easy to see that Bi ⊂ Zi (every boundary is a cycle) and Bi ⊂ Zi (every coboundary

is a cocycle). For example, in a 2-dimensional complex, the boundary of every triangle is
a cycle. We call such cycles trivial cycles. Modding out by trivial cycles and cocycles, we
obtain the homology and cohomology spaces

Hi := Zi/Bi, Hi := Zi/Bi.

The dimensions of these spaces (which are identical) measure the number of “holes” in a
particular dimension. Nice complexes (such as the buildings considered below) have no holes.

The following claim shows that that the coboundary operator is the adjoint of the
boundary operator.

B Claim 2.2. Let f ∈ Ci, g ∈ Ci−1. Then 〈f, δg〉i = 〈∂f, g〉i−1.

Proof.

〈f, δi−1g〉i =
∑
t∈X(i)

f(t) · δi−1g(t) =
∑
t∈X(i)

f(t) ·

 ∑
s∈X(i−1) : s⊂t

g(s)


=

∑
s∈X(i−1)

 ∑
t∈X(i) : t⊃s

f(t)

 · g(s) = 〈∂if, g〉i−1 . C

The following two claims show that the dimensions of homology and cohomology spaces
are identical.

B Claim 2.3. Zi = (Bi)⊥, Zi = (Bi)⊥.

Proof. Zi = ker ∂i = ker δ∗i−1 = (im δi−1)⊥ = (Bi)⊥ . C

B Claim 2.4. dimHi = dimHi

Proof.

dimHi = dimZi − dimBi

= dimCi − dimBi − dimBi [By Claim 2.3]
= dimZi − dimBi [By Claim 2.3]
= dimHi . C
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Cosystoles. We define, following Evra and Kaufman [16, Definition 2.14], the i-cosystole of
a complex X to be the minimal (fractional) size of f ∈ Zi \Bi,

CoSysi(X) := min
f∈Zi\Bi

|f |/|X(i)|.

2.3 The Building B(d+1)

The infinite k-regular tree is the unique connected k-regular graph without cycles. Affine
buildings are higher-dimensional analogs of the infinite k-regular tree. For d = 1, the
one-dimensional affine building B(1) is the k-regular tree. For higher dimensions they are
regular in the sense that all vertex links are bounded and identical in structure, they are
connected and contractible,3 and so have vanishing cohomologies, that is, the cohomology
spaces H1, . . . ,Hd−1 are trivial, where d is the dimension.

We won’t describe B(d+1) any further; the interested reader can check [26, 1]. A crucial
property of B(d+1) which we will need in the sequel is its being a CAT(0) space,4 which is
a geometric definition capturing non-positive curvature; see [9] for more information. The
property of being CAT(0) has the following implication, due to Gromov [21, 25, 38]:

I Theorem 2.5 (Gromov’s filling inequality for CAT(0) spaces). For every cycle f ∈ Z1 there
is a filling g ∈ C2 such that f = ∂g and |g| = O(|f |2).

Gromov’s filling inequality is an isoperimetric inequality. It generalizes the classic
isoperimetric inequality in the plane, which states that any simple closed curve of length L
encloses a region whose area is at most L2/4π.

The isoperimetric inequality in the plane can be stated in an equivalent way: the boundary
of any bounded region of area A is a curve whose length is at least

√
4πA. This inequality

fails for unbounded regions, which could have infinite area but finite boundary (for example,
consider the complement of a circle). In the same way, Gromov’s inequality doesn’t imply
that each g ∈ C2 satisfies |∂g| = Ω(

√
|g|). Rather, we have to replace |g| with minh∈Z2 |g+h|.

Gromov’s filling inequality also applies to i-chains, with an exponent of i+ 1, but we will
only need the case i = 1.

In the sequel, we will apply Gromov’s filling inequality not to the building itself, but
rather to balls in the building. The CAT(0) property almost immediately implies that a ball
in a CAT(0) space is itself CAT(0) [9, Exercise II.1.6]. Furthermore, it is well-known that
CAT(0) spaces are contractible, and so have vanishing homologies.

I Lemma 2.6. Balls in B(d+1) have vanishing homologies and satisfy Gromov’s filling
inequality.

2.4 The LSV quotient
Whereas the affine building is an infinite simplicial complex, Lubotzky, Samuels and Vishne
constructed a growing family of finite complexes that are obtained from quotients of the
affine building. These quotients have a growing number of vertices, and locally, in a ball

3 A complex is contractible, roughly speaking, if it can be continuously deformed to a point (technically,
it is homotopy-equivalent to a point). Since (co)homologies are preserved by such deformations, all
(co)homologies of a contractible complex vanish.

4 A space is CAT(0) if for every triangle x, y, z, the distance between x and the midpoint of y, z is at
most the corresponding distance in a congruent triangle in Euclidean space.
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around each vertex, the complex is isomorphic to the affine building. Moreover, they gave
a very explicit algorithm for constructing these complexes by first constructing a Cayley
graph with an explicit set of generators, and then the higher dimensional faces are simply
the cliques in the Cayley graph.

I Theorem 2.7 (Lubotzky, Samuels, Vishne [34, Theorem 1.1]). Let q be a prime power, d ≥ 2.
For every e > 1 the group G = PGLd(Fpe) has an (explicit) set of

[
d
1
]
q

+
[
d
2
]
q

+ . . .+
[
d
d−1
]
q

generators, such that the Cayley complex of G with respect to these generators is a Ramanujan
complex X covered by B(d)(F ) for F = Fq((y)).

The precise definition of “Ramanujan complex” is not important for this context. For us,
there are three important aspects of this theorem: efficient construction, local structure, and
global structure.

Efficient construction Firstly, the fact that the complex is constructible in polynomial time.
Local structure Next, we highlight the fact that locally the complex looks like the building.

The fact that X is covered by B(d) means that the neighborhood of a vertex in X and in
B(d) look exactly the same. It turns out that for the LSV complexes this continues to be
true also for balls of larger radius around any vertex. This is a higher-dimensional analog
of the graph property of containing no short cycles (locally looking like a tree). Define
the injectivity radius of X to be the largest r such that the covering map B(d) ψ→ X is
injective from balls of radius ≤ r in B(d) and the ball of radius ≤ r in X. We do not
mention the centers of the balls as they are all isomorphic.
I Theorem 2.8 (Lubotzky and Meshulam [33], see also [15, Corollary 5.2]). Let X be the
LSV complex above. Then the injectivity radius 5 r(X) of X satisfies

r(X) ≥
logq |X|

2(d− 1)(d2 − 1) −
1
2

where |X| is the number of vertices in X.
Global structure Finally, we look at the second cohomology group of the LSV complexes.

Kaufman, Kazhdan and Lubotzky [27] showed that the groups defining the LSV quotient
complexes can be chosen so that the second homology is non-empty.
I Proposition 2.9 (Kaufman, Kazhdan, Lubotzky [27, Proposition 3.6]). There is an
infinite and explicit sequence of LSV complexes with a non-vanishing second cohomology.
We remark that Kaufman, Kazhdan and Lubotzky [27] proved that these complexes exist.
To show that they are also efficiently constructible, we look into their proof to recall the
construction: start with any LSV complex X viewed as a Cayley graph of a group G.
Find some element of order 2 in G (such an element always exists), and then quotient
X by this element, thus obtaining a complex Y that is itself is a Ramanujan complex
because it is a quotient of one. Y is clearly efficiently constructible from X, and has half
as many vertices. This construction shows (see [27, Proposition 3.5]) that H1(Y ) 6= 0.
Furthermore, the proof of [27, Proposition 3.6] shows that because G has “property T”
one can deduce also that H2(Y ) 6= 0.

5 This theorem was proven by Lubotzky and Meshulam [33]. They stated their theorem using a slightly
different definition for injectivity radius but one can prove that the two definitions coincide in this case.
This was reproven by Evra, Golubev and Lubotzky [15] who use the definition of injectivity radius that
is convenient for us.
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Evra and Kaufman proved [16, Theorem 1] that quotients of B(d) (and even a more
general class of complexes) are so-called “cosystolic expanders” which in particular implies
the following.
I Theorem 2.10 (Evra and Kaufman [16, Part of Theorem 1]). Let {Xn} be a family of
LSV complexes. There exists some constant µ > 0 that depends only on q and d but not
on the size n of the complex, such that every f ∈ Z2(X) \ B2(X) must have weight at
least µ · |X(2)|.

3 Main Result

3.1 Local Geometry of LSV Complexes
The infinite sequence of complexes we will be working with are the LSV complexes described in
Section 2.4 above. The properties we care about are (1) that they are efficiently constructible,
(2) that small balls in these complexes are isomorphic to the affine building, which satisfies
certain isoperimetric inequalities because it is a CAT(0) space, and (3) that each complex
has a two-dimensional cocycle with linear distance from the set of coboundaries. The second
and third properties provide the tension between the local and the global structure of these
complexes that we now harness for our hardness.

To construct an SDP solution, we will need to show that our instance based on the LSV
complex “locally looks satisfiable”. To this end, we will first develop some local properties of
the LSV complex.

Note that each h ∈ C2 corresponds to a set of triangles. For the following statements,
we consider two triangles to be connected if they share an edge. This can be used to define
connected components. Note that if h can be split into connected components h1, . . . , hs,
then the components correspond to disjoint sets of triangles. Moreover, no triangle in hi
shares an edge with a triangle in hj when i 6= j, which also implies that the boundaries ∂hi
and ∂hj correspond to disjoint sets of edges.

We prove the following claims by mapping small connected sets in X(2) to corresponding
sets in the infinite building B. The first proposition shows that there can be no small
non-trivial cancellations (i.e., not coming from tetrahedra).

I Proposition 3.1. Let h0 ∈ C2 be a connected set of triangles such that |h0| < r and
∂h0 = 0. Then h0 ∈ B2.

Proof. Since |h0| < r, there is a ball N of radius r that contains the support of h0. By
assumption, the covering map ψ : B → X has injectivity radius of at least r. This means
that there is a radius-r ball N̂ = ψ−1(N) in B that is isomorphically mapped by ψ to
N. Look at ĥ0 = ψ−1(h0) ∈ C2(N̂), the chain isomorphic to h0 in the building. Clearly
∂ĥ0 = ψ−1(∂h0) = 0, and since balls in the building have zero homologies by Lemma 2.6,
we deduce that ĥ0 itself must be a boundary, i.e. there must be some ĝ0 ∈ C3(N̂) such that
∂ĝ0 = ĥ0. Moving back to X, we see that g0 := ψ(ĝ0) ∈ C3(X) necessarily satisfies ∂g0 = h0,
and so h0 ∈ B2. J

This proposition states that locally (i.e., within the injective radius r), Z2 looks like B2.
We thus have a complex whose cohomology group is non-trivial, yet locally, the homology
group “looks” trivial. Note that this is a twist on what we had claimed in the introduction,
a complex whose cohomology group is non-trivial, yet locally, the cohomology group “looks”
trivial. However, these are identical statements owing to Claim 2.4.

The next proposition shows that Gromov’s filling inequality in the infinite building B can
be used to yield a similar consequence for small sets in the finite complex X.
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I Proposition 3.2. Let h0 ∈ C2 be a connected set of triangles such that |h0| < r and
|h0| ≤ |h0 + h| for all h ∈ B2. Then, |∂h0| ≥ c · |h0|1/2, where c > 0 is an absolute constant.

Proof. As before, the support of h0 is contained in a ball N of X which is isomorphic under
ψ to a ball N̂ in B. Let ĥ0 = ψ−1(h0) ∈ C2(B), and let f̂0 = ∂ĥ0. We now apply the filling
theorem of Gromov, which holds in N̂ due to Lemma 2.6, to deduce that there is some ĥ1
that fills f̂0, namely ∂ĥ1 = f̂0, and whose size is at most |ĥ1| = O(|f̂0|2).

Now ∂(ĥ0 − ĥ1) = f̂0 − f̂0 = 0. Since the ball N̂ has zero homologies by Lemma 2.6,
ĥ0 − ĥ1 itself must be a boundary: there must be some ĝ ∈ C3(N̂) such that ∂ĝ = ĥ0 − ĥ1.
Pushing ĝ and ĥ1 back to X, we get g = ψ(ĝ) and h1 = ψ(ĥ1), which satisfy ∂g = h0 − h1.
At this point we have a small h1 that is close via a boundary to h0. Finally, observe that
f0 = ∂h0 satisfies f0 = ψ−1(f̂0). So

|f0| = |f̂0| ≥ c · |ĥ1|1/2 = c · |h1|1/2 ≥ c · |h0|1/2,

where the last inequality used that |h0| ≤ |h0 + (h1 − h0)|, since h1 − h0 = ∂g ∈ B2. J

3.2 Fooling Ω(
√

log n) levels of SoS Hierarchy
Let X be a d-dimensional LSV complex, with |X(1)| = n and non-trivial second cohomology
group, as per Proposition 2.9. Below, we construct an instance of 3XOR in n variables using
this complex, and prove a lower bound on the integrality gap of the relaxation obtained by
Ω(
√

logn) levels of the SoS hierarchy.

Construction

We construct a system of equations on X by putting a variable x{a,b} for each edge {a, b} ∈
X(1) of the complex, and an equation

x{a,b} + x{b,c} + x{c,a} = β{a,b,c}

for each triangle {a, b, c} ∈ X(2), where β is an arbitrary element of Z2 \B2.
Recall that X can be constructed efficiently. Given X, we can find a vector β ∈ Z2 \B2

using elementary linear algebra. Therefore the entire system can be constructed efficiently.

Soundness

Soundness of this system follows easily from the fact that the cosystole is large.

B Claim 3.3 (Soundness). Every assignment to the system defined above falsifies at least µ
fraction of the equations.

Proof. An assignment to the variables is equivalent to an f ∈ C1. Every equation satisfied
by f is a triangle in which δf({a, b, c}) = β{a,b,c}, and so the number of unsatisfied equations
is dist(δf, β) = |δf + β|. Since δf ∈ B2 and β ∈ Z2 \ B2, also δf + β ∈ Z2 \ B2, and so
|δf + β|/|X(2)| ≥ CoSys2(X) ≥ µ. In other words, the assignment falsifies at least a µ
fraction of the equations. C

The main work is to prove completeness, namely to show that the system looks locally
satisfiable.
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Completeness

Our main result is that this system appears satisfiable to the Sum-of-Squares hierarchy with
O(
√

logn) levels. Grigoriev [20] and Schoenebeck [36] showed that to prove such a statement
it suffices to analyze the refutation width of the system of equations (see Lemma 2.1). If the
refutation width is at least w, then w/2 levels of the Sum-of-Squares hierarchy cannot refute
the system.

A system of linear equations over F2 can be refuted using a proof system known as
XOR-resolution, in which the only inference rule is: given `1 = b1 and `2 = b2, deduce
`1 + `2 = b1 + b2 mod 2; here `1, `2 are XORs of variables, and b1, b2 are constants. A
refutation has the structure of a directed acyclic graph (DAG) where each non-leaf node has
two incoming edges. A refutation is a derivation which starts with the given linear equations,
placed at the leaves of a DAG, and reaches the equation 0 = 1 at the root of the DAG. The
width of a linear equation ` = b is the number of variables appearing in `. The width of a
refutation is the maximum width of an equation in any of the nodes of the DAG.

In the remainder of this section, we prove the following theorem, which together with
Lemma 2.1 implies Theorem 1.1.

I Theorem 3.4. The construction above requires width at least Ω(
√
r) to refute in XOR-

resolution, where r = Θ(logn) is the injectivity radius of the complex.

The proof follows classical arguments of Ben-Sasson and Wigderson [8] regarding lower
bounds on resolution width, which were also used in the proof of Schoenebeck [36]. Whereas
Ben-Sasson and Wigderson relied on boundary expansion, we rely on Gromov’s filling
inequality (and so lose a square root).

Suppose we are given a refutation for this system, and consider the corresponding DAG.
Each leaf ν in the DAG is labeled by a triangle Tν ∈ X(2). Define

hν := 1Tν ∈ C2, bν := βTν ∈ F2.

For each inner node ν in the DAG, let ν1, ν2 be its two incoming nodes. Define inductively,

hν := hν1 + hν2 ∈ C2, bν := bν1 + bν2 ∈ F2.

I Proposition 3.5. For every node ν, bν = 〈β, hν〉.

Proof. This is immediate by following inductively the structure of the DAG. J

As in [8], we next define a complexity measure for each node of the DAG. While in [8] the
complexity measure is based on the number of “leaf equations” used to derive the one at a
given node, we will need to discount sets of triangles corresponding to tetrahedra, as these
cannot lead to contradictions. Recall that B2 = im ∂3 is the set of triangle chains that “come
from” tetrahedra chains, which we consider as the “trivial” cycles. We define a complexity
measure at each node,

κ(ν) := dist(hν , B2) = min
h∈B2

|hν + h|

that measures the distance of hν from these trivial cycles. The complexity measure κ satisfies
the following sub-additivity property.
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I Proposition 3.6. If ν is an inner node in the DAG with ν1, ν2 its two incoming nodes,
then

κ(ν) ≤ κ(ν1) + κ(ν2).

Proof. Let h1, h2 ∈ B2 be such that κ(ν1) = |hν1 + h1| and κ(ν2) = |hν2 + h2|. Recall that
hν = hν1 + hν2 . Then, we have

κ(ν1) + κ(ν2) = |hν1 + h1|+ |hν2 + h2| ≥ |hν1 + hν2 + h1 + h2|
= |hν + h1 + h2| ≥ κ(ν). J

We also need the fact that the complexity of a node with a contradiction must be non-zero.

I Proposition 3.7. If κ(ν) = 0 then bν = 0.

Proof. If κ(ν) = 0 then hν ∈ B2. Hence bν = 〈β, hν〉 = 0 since β ∈ Z2 = (B2)⊥
(Claim 2.3). J

Next, we consider the width of each node in the DAG. For a node ν, let

fν := ∂hν ∈ C1.

Thus fν indicates the set of variables appearing in the left-hand side of the equation on node
ν. So the width of the system is the maximum, over all nodes ν in the DAG, of |fν |.

We can now prove Theorem 3.4 using the above complexity measure, and results from
Section 3.1.

Proof of Theorem 3.4. Let ν∗ denote the root of the DAG. By virtue of being a refutation,
bν∗ = 1 while fν∗ = 0. In other words, ∂hν∗ = fν∗ = 0, which means that hν∗ ∈ Z2. Since
bν∗ = 1, we also have by Proposition 3.7 that κ(ν∗) > 0.

Let h ∈ B2 be such that κ(ν∗) = |hν∗ + h|, and let h1, . . . , hs be the disjoint connected
components of hν∗ + h. We will first show that κ(ν∗) = |hν∗ + h| ≥ r. Assuming κ(ν∗) < r,
we have that

|h1|+ · · ·+ |hs| = |hν∗ + h| < r.

Also, since

∂h1 + · · ·+ ∂hs = ∂(hν∗ + h) = ∂hν∗ = 0,

we must have that ∂hi = 0 for each i ∈ [s], since connected components have disjoint
boundaries. Applying Proposition 3.1 to each hi, we get that hi ∈ B2 for each i ∈ [s].
However, this implies hν∗ + h ∈ B2 and hence κ(ν∗) = 0, which is a contradiction.

Using sub-additivity (Proposition 3.6), κ(ν∗) ≥ r, and the fact that the leaves of the DAG
satisfy κ(ν) = 1, we get that there must be some internal node ν for which r/2 ≤ κ(ν) < r.
We can find such a node by starting at the root and always going to the child with higher
complexity, until reaching a node ν such that κ(ν) < r. We will prove that for such a node,
we must have |fν | = Ω(

√
r).

As before, let h ∈ B2 now be such that κ(ν) = |hν + h|, and let h1, . . . , hs be the disjoint
connected components of hν + h. We have that |hi| ≤ |hν + h| < r for each i ∈ [s]. By the
minimality of |hν + h|, we also have that for any h′ ∈ B2 and any i ∈ [s],

|hi|+ |hν + h− hi| = |hν + h| ≤ |hν + h+ h′| ≤ |hi + h′|+ |hν + h− hi|.
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Thus, |hi| is also minimal for each i, and we can apply Proposition 3.2 to each connected
component hi, to obtain

|fν | = |∂(hν + h)| = |∂h1|+ · · ·+ |∂hs| ≥ c · |h1|1/2 + · · ·+ c · |hs|1/2

≥ c · (|h1|+ · · ·+ |hs|)1/2

= c · |hν + h|1/2 ≥ (c/
√

2) ·
√
r. J
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A Proof of Lemma 2.1

I Lemma 2.1 ([36, Lemma 13], [37, Theorem 4.2]). Let Λ be a system of equations in n

variables over F2, which does not admit any refutations of width at most 2t. Then there
exist vectors {uS}S⊆[n],|S|≤t satisfying the constraints in Figure 1, such that for all equations∑

i∈T xi = bT in Λ with |T | ≤ t, we have 〈uT ,u∅〉 = (−1)bT .

Proof. We assume that Λ is closed under width-2t XOR-resolution, replacing Λ by its closure
if necessary, and also that it contains the trivial equation 0 = 0. We will now construct the
unit vectors uS .

Define a relation ∼ on subsets of [n] of size at most t as follows: S ∼ T iff there exists an
equation

∑
i∈S∆T xi = b in Λ for some b ∈ F2. It is easy to check that the relation is reflexive

and symmetric. It is also transitive since for S1 ∼ S2, S2 ∼ S3, we can add the corresponding
equations to obtain one of the form

∑
i∈S1∆S3

xi = b for some b ∈ F2. Since |S1| , |S3| ≤ t,
this equation has at most 2t variables and must be in Λ by the closure property. Thus, we
have an equivalence relation which partitions all sets of size at most t into equivalence classes,
say C1, . . . , Cs. Choose an arbitrary representative Ri for each class Ci, and let R(S) denote
the representative for the class containing S. For convenience, we choose R(∅) = ∅.

We now construct the SDP vectors. Let e1, . . . , es be an arbitrary orthonormal set of
vectors, and assign uRi = ei for all i ∈ [s]. Note that for any S with |S| ≤ t, there must be a
unique equation of the form

∑
i∈S∆R(S) xi = bS in Λ, since two different equations can be

used to obtain a width-2t refutation. We assign the vector for S as

uS := (−1)bS · uR(S).

The vectors are unit-length by construction. Note that if S1∆S2 = S3∆S4, we must have
S1 ∼ S2 ⇔ S3 ∼ S4. If S1 6∼ S2, then we have that 〈uS1 ,uS2〉 = 〈uS3 ,uS4〉 = 0. Otherwise,
we have R(S1) = R(S2), R(S3) = R(S4), and equations of the form∑

i∈Sj∆R(Sj)

xi = bSj , j ∈ {1, 2, 3, 4}.

We must also have bS1 + bS2 = bS3 + bS4 , since otherwise we obtain two different equations
with variables in S1∆S2 = S3∆S4, yielding a refutation. This suffices to satisfy the SDP
constraints, since

〈uS1 ,uS2〉 = (−1)bS1 +bS2 ·
〈
uR(S1),uR(S2)

〉
= (−1)bS1 +bS2 = (−1)bS3 +bS4 = 〈uS3 ,uS4〉.

Finally, for any equation
∑
i∈T xi = bT in Λ with |T | ≤ t, we get 〈uT ,u∅〉 = (−1)bT , since

we must have T ∼ ∅ and R(T ) = ∅. J
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Abstract
The two-way finite automaton with quantum and classical states (2QCFA), defined by Ambainis and
Watrous, is a model of quantum computation whose quantum part is extremely limited; however, as
they showed, 2QCFA are surprisingly powerful: a 2QCFA with only a single-qubit can recognize the
language Lpal = {w ∈ {a, b}∗ : w is a palindrome} with bounded error in expected time 2O(n).

We prove that their result cannot be improved upon: a 2QCFA (of any size) cannot recognize
Lpal with bounded error in expected time 2o(n). This is the first example of a language that can be
recognized with bounded error by a 2QCFA in exponential time but not in subexponential time.
Moreover, we prove that a quantum Turing machine (QTM) running in space o(logn) and expected
time 2n1−Ω(1)

cannot recognize Lpal with bounded error; again, this is the first lower bound of
its kind. Far more generally, we establish a lower bound on the running time of any 2QCFA or
o(logn)-space QTM that recognizes any language L in terms of a natural “hardness measure” of L.
This allows us to exhibit a large family of languages for which we have asymptotically matching
lower and upper bounds on the running time of any such 2QCFA or QTM recognizer.
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1 Introduction

Quantum algorithms, such as Shor’s quantum polynomial time integer factorization algorithm
[31], Grover’s algorithm for unstructured search [16], and the linear system solver of Harrow,
Hassidim, and Lloyd [17], provide examples of natural problems on which quantum computers
seem to have an advantage over their classical counterparts. However, these algorithms are
designed to be run on a quantum computer that has the full power of a quantum Turing
machine, whereas current experimental quantum computers only possess a rather limited
quantum part. In particular, current state-of-the-art quantum computers have a very small
amount of quantum memory. For example, Google’s “Sycamor” quantum computer, used in
their famous recent quantum supremacy experiment [5], operates on only 53 qubits.

In this paper, we study the power quantum computers that have only a small amount of
memory. We begin by considering two-way finite automata with quantum and classical states
(2QCFA), originally defined by Ambainis and Watrous [2]. Informally, a 2QCFA is a two-way
deterministic finite automaton (2DFA) that has been augmented by a quantum register of
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constant size. 2QCFA are surprisingly powerful, as originally demonstrated by Ambainis
and Watrous, who showed that a 2QCFA, with only a single-qubit quantum register, can
recognize, with bounded error, the language Leq = {ambm : m ∈ N} in expected time O(n4)
and the language Lpal = {w ∈ {a, b}∗ : w is a palindrome} in expected time 2O(n). In a
recent paper [27], we presented further evidence of the power of few qubits by showing that
2QCFA are capable of recognizing many group word problems with bounded error.

It is known that 2QCFA are more powerful than 2DFA and two-way probabilistic finite
automata (2PFA). A 2DFA can only recognize regular languages [25]. A 2PFA can recognize
some nonregular languages with bounded error, given sufficient running time: in particular,
a 2PFA can recognize Leq with bounded error in expected time 2O(n) [13]. However, a 2PFA
cannot recognize Leq with bounded error in expected time 2o(n), by a result of Greenberg
and Weiss [14]; moreover, a 2PFA cannot recognize Lpal with bounded error in any time
bound [11]. More generally, the landmark result of Dwork and Stockmeyer [10] showed that
a 2PFA cannot recognize any nonregular language in expected time 2no(1) . In order to prove
this statement, they defined a particular “hardness measure” DL : N→ N of a language L.
They showed that, if a 2PFA recognizes some language L with bounded error in expected
time at most T (n) on all inputs of length at most n, then there is a positive real number a
(that depends only on the number of states of the 2PFA), such that T (n) = Ω

(
2DL(n)a) [10,

Lemma 4.3]; we will refer to this statement as the “Dwork-Stockmeyer lemma.”
Very little was known about the limitations of 2QCFA. Are there any languages that a

single-qubit 2QCFA can recognize with bounded error in expected exponential time but not
in expected subexponential time? In particular, is it possible for a single-qubit 2QCFA to
recognize Lpal in subexponential time, or perhaps even in polynomial time? More generally,
are there any languages that a 2QCFA (that is allowed to have a quantum register of any
constant size) can recognize with bounded error in exponential time but not in subexponential
time? These natural questions, to our knowledge, were all open (see, for instance, [2, 3, 39]
for previous discussions of these questions).

In this paper, we answer these and other related questions. We first prove an analogue of
the Dwork-Stockmeyer lemma for 2QCFA.

I Theorem 1. If a 2QCFA recognizes some language L with bounded error in expected time
at most T (n) on all inputs of length at most n, then there a positive real number a (that
depends only on the number of states of the 2QCFA), such that T (n) = Ω (DL(n)a).

This immediately implies that the result of Ambainis and Watrous [2] cannot be improved.

I Corollary 2. 2QCFA (of any size) cannot recognize Lpal with bounded error in time 2o(n).

One of the key tools used in our proof is a quantum version of Hennie’s [18] notion of
a crossing sequence, which may be of independent interest. Crossing sequences played an
important role in the aforementioned 2PFA results of Dwork and Stockmeyer [10] and of
Greenberg and Weiss [14]. We note that, while our lower bound on the running time of
a 2QCFA is exponentially weaker than the lower bound on the running time of a 2PFA
provided by the Dwork-Stockmeyer lemma, both lower bounds are in fact (asymptotically)
tight; the exponential difference provides yet another example of a situation in which quantum
computers have an exponential advantage over their classical counterparts. We also establish
a lower bound on the expected running time of a 2QCFA recognizer of L in terms of the
one-way deterministic communication complexity of testing membership in L.

We then generalize our results to prove a lower bound on the expected running time T (n)
of a quantum Turing machine (QTM) that uses sublogarithmic space (i.e., o(logn) space)
and recognizes a language L with bounded error, where this lower bound is also in terms
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of DL(n). In particular, we show that Lpal cannot be recognized with bounded error by
a QTM that uses sublogarithmic space and runs in expected time 2n1−Ω(1) . This result is
particularly intriguing, as Lpal can be recognized by a deterministic TM in O(logn) space
(and, trivially, polynomial time); therefore, Lpal provides an example of a natural problem
for which polynomial time quantum TMs have no (asymptotic) advantage over polynomial
time deterministic TMs in terms of the needed amount of space.

Furthermore, we show that the class of languages recognizable with bounded error by a
2QCFA in expected polynomial time is contained in L/poly. This result, which shows that
the class of languages recognizable by a particular quantum model is contained in the class of
languages recognizable by a particular classical model, is a type of dequantization result. It is
(qualitatively) similar to the Adleman-type [1] derandomization result BPL ⊆ L/poly, where
BPL denotes the class of languages recognizable with bounded error by a probabilistic Turing
machine (PTM) that uses O(logn) space and runs in expected polynomial time. The only
previous dequantization result was of a very different type: the class of languages recognizable
by a 2QCFA, or more generally a QTM that uses O(logn) space, with algebraic number
transition amplitudes (even with unbounded error and with no time bound), is contained
in DSPACE(O(log2 n)) [35]. This dequantization result is analogous to the derandomization
result: the class of languages recognizable by a PTM that uses O(logn) space (even with
unbounded error and with no time bound), is contained in DSPACE(O(log2 n)) [7].

We also investigate which group word problems can be recognized by 2QCFA or QTMs
with particular resource bounds. Informally, the word problem of a finitely generated group is
the problem of determining if the product of a sequence of elements of that group is equal to
the identity element. There is a deep connection between the algebraic properties of a finitely
generated group G and the complexity of its word problem WG, as has been demonstrated by
many famous results; for example, WG ∈ REG⇔ G is finite [4], WG ∈ CFL⇔ G is virtually
free [23, 9], WG ∈ NP ⇔ G is a subgroup of a finitely presented group with polynomial
Dehn function [6]. We have recently shown that if G is virtually abelian, then WG may be
recognized with bounded error by a single-qubit 2QCFA in polynomial time, and that, for
any group G in a certain broad class of groups of exponential growth, WG may be recognized
with bounded error by a 2QCFA in time 2O(n) [27].

We now show that, if G has exponential growth, then WG cannot be recognized by a
2QCFA with bounded error in time 2o(n), thereby providing a broad and natural class of
languages that may be recognized by a 2QCFA in time 2O(n) but not 2o(n). We also show
that, if WG is recognizable by a 2QCFA with bounded error in expected polynomial time,
then G must be virtually nilpotent (i.e., G must have polynomial growth), thereby obtaining
progress towards an exact classification of those word problems recognizable by a 2QCFA in
polynomial time. Furthermore, we show analogous results for sublogarithmic-space QTMs.

2 Preliminaries

2.1 Quantum Computation
In this section, we briefly recall the fundamentals of quantum computation needed in this
paper (see, for instance, [37, 24] for a more detailed presentation of the material in this
section). We begin by establishing some notation. Let V denote a finite-dimensional complex
Hilbert space with inner product 〈·, ·〉 : V × V → C. We use the standard Dirac bra-ket
notation throughout this paper. We denote elements of V by kets: |ψ〉, |ϕ〉, |q〉, etc. For the
ket |ψ〉 ∈ V , we define the corresponding bra 〈ψ| ∈ V ∗ to be the linear functional on V given
by 〈|ψ〉 , ·〉 : V → C. We write 〈ψ|ϕ〉 to denote 〈|ψ〉 , |ϕ〉〉. Let L(V ) denote the C-vector
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space consisting of all C-linear maps of the form A : V → V . For |ψ〉 , |ϕ〉 ∈ V , we define
|ψ〉 〈ϕ| ∈ L(V ) in the natural way: for |ρ〉 ∈ V , |ψ〉 〈ϕ| (|ρ〉) = |ψ〉 〈ϕ|ρ〉 = 〈ϕ|ρ〉 |ψ〉. Let
1V ∈ L(V ) denote the identity operator on V and let 0V ∈ L(V ) denote the zero operator
on V . For A ∈ L(V ), we define A† ∈ L(V ), the Hermitian transpose of A, to be the unique
element of L(V ) such that 〈A |ψ1〉 , |ψ2〉〉 = 〈|ψ1〉 , A† |ψ2〉, ∀ |ψ1〉 , |ψ2〉 ∈ V . Let Herm(V ) =
{A ∈ L(V ) : A = A†}, Pos(V ) = {A†A : A ∈ L(V )}, Proj(V ) = {A ∈ Pos(V ) : A2 = A},
U(V ) = {A ∈ L(V ) : AA† = 1V }, and Den(V ) = {A ∈ Pos(V ) : Tr(A) = 1} denote,
respectively, the set of Hermitian, positive semi-definite, projection, unitary, and density
operators on V .

A quantum register is specified by a finite set of quantum basis states Q = {q0, . . . , qk−1}.
Corresponding to these k quantum basis states is an orthonormal basis {|q0〉 , . . . , |qk−1〉}
of the finite-dimensional complex Hilbert space CQ ∼= Ck. The quantum register stores a
superposition |ψ〉 =

∑
q αq |q〉 ∈ CQ, where each αq ∈ C and

∑
q|αq|2 = 1; in other words, a

superposition |ψ〉 is simply an element of CQ of norm 1.
Following the original definition of Ambainis and Watrous [2], a 2QCFA may only

interact with its quantum register in two ways: by applying a unitary transformation or
performing a quantum measurement. If the quantum register is currently in the superposition
|ψ〉 ∈ CQ, then after applying the unitary transformation T ∈ U(CQ), the quantum register
will be in the superposition T |ψ〉. A von Neumann measurement is specified by some
P1, . . . , Pl ∈ Proj(CQ), such that PiPj = 0CQ , ∀i, j with i 6= j, and

∑
j Pj = 1CQ . Quantum

measurement is a probabilistic process where, if the quantum register is in the superposition
|ψ〉, then the result of the measurement has the value r ∈ {1, . . . , l} with probability ‖Pr |ψ〉‖2;
if the result is r, then the quantum register collapses to the superposition 1

‖Pr|ψ〉‖Pr |ψ〉. We
emphasize that quantum measurement changes the state of the quantum register.

An ensemble of pure states of the quantum register is a set {(pi, |ψi〉) : i ∈ I}, for
some index set I, where pi ∈ [0, 1] denotes the probability of the quantum register being in
the superposition |ψi〉, and

∑
i pi = 1. This ensemble corresponds to the density operator

A =
∑
i pi |ψi〉 〈ψi| ∈ Den(CQ). Of course, many distinct ensembles correspond to the density

operator A; however, all ensembles that correspond to a particular density operator will
behave the same, for our purposes (see, for instance, [24, Section 2.4] for a detailed discussion
of this phenomenon, and of the following claims). That is to say, for any ensemble described
by a density operator A ∈ Den(CQ), applying the transformation T ∈ U(CQ) produces an
ensemble described by the density operator TAT †. Similarly, when performing the von
Neumann measurement specified by some P1, . . . , Pl ∈ Proj(CQ), the probability that the
result of this measurement is r is given by Tr(PrAP †r ), and if the result is r then the ensemble
collapses to an ensemble described by the density operator 1

Tr(PrAP
†
r )
PrAP

†
r .

Let V and V ′ denote a pair of finite-dimensional complex Hilbert spaces. Let T(V, V ′)
denote the C-vector space consisting of all C-linear maps of the form Φ : L(V ) → L(V ′).
Define T(V ) = T(V, V ) and let 1L(V ) ∈ T(V ) denote the identity operator. Consider some Φ ∈
T(V, V ′). We say that Φ is positive if, ∀A ∈ Pos(V ), we have Φ(A) ∈ Pos(V ′). We say that Φ
is completely-positive if, for every finite-dimensional complex Hilbert space W , Φ⊗ 1L(W ) is
positive, where ⊗ denotes the tensor product. We say that Φ is trace-preserving if, ∀A ∈ L(V ),
we have Tr(Φ(A)) = Tr(A). If Φ is both completely-positive and trace-preserving, then we
say Φ is a quantum channel. Let Chan(V, V ′) = {Φ ∈ T(V, V ′) : Φ is a quantum channel}
denote the set of all such channels, and define Chan(V ) = Chan(V, V ).

As we wish for our lower bound to be a strong as possible, we wish to consider a
variant of the 2QCFA model that is as strong as possible; in particular, we will allow a
2QCFA to perform any physically realizable quantum operation on its quantum register.
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Following Watrous [35], a selective quantum operation E is specified by a set of operators
{Er,j : r ∈ R, j ∈ {1, . . . , l}} ⊆ L(CQ), where R is a finite set and l ∈ N≥1 (throughout the
paper, we write N≥1 to denote the positive natural numbers, R≥0 to denote the nonnegative
real numbers, etc.), such that

∑
r,j E

†
r,jEr,j = 1CQ . For r ∈ R, we define Φr ∈ T(CQ) such

that, Φr(A) =
∑
j Er,jAE

†
r,j , ∀A ∈ L(V ). Then, if the quantum register is described by some

density operator A ∈ Den(CQ), applying E will have result r ∈ R with probability Tr(Φr(A));
if the result is r, then the quantum register is described by density operator 1

Tr(Φr(A))Φr(A).
Both unitary transformations and von Neumann measurements are special cases of selective
quantum operations. For any E , one may always obtain a family of operators that represent
E with l ≤ |Q|2 [37, Theorem 2.22], and therefore with l = |Q|2 (by defining any extraneous
operators to be 0CQ). Let QuantOp(CQ, R) denote the set of all selective quantum operations
specified by some {Er,j : r ∈ R, j ∈ {1, . . . , |Q|2}} ⊆ L(CQ).

2.2 Definition of the 2QCFA Model
Next, we define two-way finite automata with quantum and classical states (2QCFA),
essentially following the original definition of Ambainis and Watrous [2], with a few alterations
that (potentially) make the model stronger. We wish to define the 2QCFA model to be as
strong as possible so that our lower bounds against this model are as general as possible.

Informally, a 2QCFA is a two-way DFA that has been augmented with a quantum register
of constant size; the machine may apply unitary transformations to the quantum register
and perform (perhaps many) measurements of its quantum register during its computation.
Formally, a 2QCFA is a 10-tuple, N = (Q,C,Σ, R, θ, δ, qstart, cstart, cacc, crej), where Q is a
finite set of quantum basis states, C is a finite set of classical states, Σ is a finite input
alphabet, R is a finite set that specifies the possible results of selective quantum operations,
θ and δ are the quantum and classical parts of the transition function, qstart ∈ Q is the
quantum start state, cstart ∈ C is the classical start state, and cacc, crej ∈ C, with cacc 6= crej,
specify the classical accept and reject states, respectively. We define #L,#R 6∈ Σ, with
#L 6= #R, to be special symbols that serve as a left and right end-marker, respectively;
we then define the tape alphabet Σ+ = Σ t {#L,#R}. Let Ĉ = C \ {cacc, crej} denote
the non-halting classical states. The components of the transition function are as follows:
θ : Ĉ × Σ+ → QuantOp(CQ, R) specifies the selective quantum operation that is to be
performed on the quantum register and δ : Ĉ × Σ+ ×R→ C × {−1, 0, 1} specifies how the
classical state and (classical) head position evolve.

On an input w = w1 · · ·wn ∈ Σ∗, with each wi ∈ Σ, the 2QCFA N operates as follows.
The machine has a read-only tape that contains the string #Lw1 · · ·wn#R. Initially, the
classic state of N is cstart, the quantum register is in the superposition |qstart〉, and the head
is at the left end of the tape, over the left end-marker #L. On each step of the computation,
if the classic state is currently c ∈ Ĉ and the head is over the symbol σ ∈ Σ+, N behaves as
follows. First, the selective quantum operation θ(c, σ) is performed on the quantum register
producing some result r ∈ R. If the result was r, and δ(c, σ, r) = (c′, d), where c′ ∈ C and
d ∈ {−1, 0, 1}, then the classical state becomes c′ and the head moves left (resp. stays put,
moves right) if d = −1 (resp. d = 0, d = 1).

Due to the fact that applying a selective quantum operation is a probabilistic process,
the computation of N on an input w is probabilistic. We say that a 2QCFA N recognizes a
language L with two-sided bounded error ε if, ∀w ∈ L, Pr[N accepts w] ≥ 1− ε, and, ∀w 6∈ L,
Pr[N accepts w] ≤ ε. We then define B2QCFA(k, d, T (n), ε) as the class of languages L for
which there is a 2QCFA, with at most k quantum basis states and at most d classical states,
that recognizes L with two-sided bounded error ε, and has expected running time at most
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T (n) on all inputs of length at most n. In order to make our lower bound as strong as
possible, we do not require N to halt with probability 1 on all w ∈ Σ∗ (i.e., we permit N to
reject an input by looping).

3 2QCFA Crossing Sequences

In this section, we develop a generalization of Hennie’s [18] notion of crossing sequences
to 2QCFA, in which we make use of several ideas from the 2PFA results of Dwork and
Stockmeyer [10] and Greenberg and Weiss [14]. This notion will play a key role in our proof
of a lower bound on the expected running time of a 2QCFA.

When a 2QCFA N = (Q,C,Σ, R, θ, δ, qstart, cstart, cacc, crej) is run on an input w =
w1 · · ·wn ∈ Σ∗, where each wi ∈ Σ, the tape consists of #Lw1 · · ·wn#R. One may describe
the configuration of a single probabilistic branch of N at any particular point in time by a
triple (A, c, h), where A ∈ Den(CQ) describes the current state of the quantum register, c ∈ C
is the current classical state, and h ∈ {0, . . . , n+ 1} is the current head position. To clarify,
each step of the computation of N involves applying a selective quantum operation, which
is a probabilistic process that produces a particular result r ∈ R with a certain probability
(depending on the operation that is performed and the state of the quantum register); that
is to say, the 2QCFA probabilistically branches, with a child for each r ∈ R.

We partition the input as w = xy, in some manner to be specified later. We then imagine
running N beginning in the configuration (A, c, |x|), where |x| denotes the length of the
string x (i.e., the head is initially over the rightmost symbol of #Lx). We wish to describe
the configuration (or, more accurately, ensemble of configurations) that N will be in when it
“finishes computing” on the prefix #Lx, either by “leaving” the string #Lx (by moving its
head right when over the rightmost symbol of #Lx), or by accepting or rejecting its input.
Of course, N may leave #Lx, then later reenter #Lx, then later leave #Lx again, and so on,
which will naturally lead to our notion of a crossing sequence. Note that the string y does
not affect this subcomputation as it occurs entirely within the prefix #Lx.

More generally, we consider the case in which N is run on the prefix #Lx, where N
starts in some ensemble of configurations {(pi, (Ai, ci, |x|)) : i ∈ I}, where the probability
of being in configuration (Ai, ci, |x|) is given by pi (note that the head position in each
configuration is over the rightmost symbol of #Lx); we call this ensemble a starting ensemble.
We then wish to describe the ensemble of configurations that N will be in when it “finishes
computing” on the prefix #Lx, (essentially) as defined above; we call this ensemble a stopping
ensemble1. Much as it was the case that an ensemble of pure states of a quantum register
can be described by a density operator, we may also describe an ensemble of configurations
of a 2QCFA using density operators. This will greatly simplify our definition and analysis of
the crossing sequence of a 2QCFA.

3.1 Describing Ensembles of Configurations of 2QCFA
The 2QCFA N posseses both a constant-sized quantum register, that is described by some
density operator at any particular point in time, and a constant-sized classical register, that
stores a classical state c ∈ C. We can naturally interpret each c ∈ C as an element |c〉 ∈ CC ,
of a special type; that is to say, each classical state c corresponds to some element |c〉 in the

1 We use the terms “starting ensemble” and “stopping ensemble” to make clear the similarity to the
notion of a “starting condition” and of a “stopping condition” used by Dwork and Stockmeyer [10] in
their 2PFA result.
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natural orthonormal basis of CC (whereas each superposition |ψ〉 of the quantum register
corresponds to an element of CQ of norm 1). One may also view N as possessing a head
register that stores a (classical) head position h ∈ Hx = {0, . . . , |x|+ 1} (when computing on
the prefix #Lx); of course, the size of this pseudo-register grows with the input prefix x. We
analogously interpret a head position h ∈ Hx as being the “classical” element |h〉 ∈ CHx . A
configuration (A, c, h) ∈ Den(CQ)× C ×Hx is then simply a state of the combined register,
which consists of the quantum, classical, and head registers.

We then consider an ensemble of configurations {(pi, (Ai, ci, hi)) : i ∈ I}, where pi denotes
the probability of being in configuration (Ai, ci, hi). We represent this ensemble (non-uniquely)
by the density operator Z =

∑
i

(
piAi ⊗ |ci〉 〈ci| ⊗ |hi〉 〈hi|

)
∈ Den(CQ ⊗ CC ⊗ CHx). Let

î(c, h) = {i ∈ I : (ci, hi) = (c, h)} denote the indices of those configurations in classical state c
and with head position h. We then define p : C ×Hx → [0, 1] such that p(c, h) =

∑
i∈̂i(c,h) pi

is the total probability of being in classical state c and having head position h. We define
A : C × Hx → Den(CQ) such that, if p(c, h) 6= 0, then A(c, h) =

∑
i∈̂i(c,h)

pi

p(c,h)Ai is the
density operator obtained by “merging” all density operators Ai that come from configurations
(Ai, ci, hi) with classical state ci = c and head position hi = h; if p(c, h) = 0, then we define
A(c, h) arbitrarily. Then Z =

∑
c,h

(
p(c, h)A(c, h)⊗|c〉 〈c|⊗|h〉 〈h|

)
. Let D̂en(CQ⊗CC⊗CHx)

denote the set of all density operators given by some Z of the above form (i.e., those density
operators that respect the fact that both the classical state and head position are classical).

We also consider the case in which we are only interested in the states of the quantum
and classical registers, but not the head position. We then analogously describe an ensemble
{(pi, (Ai, ci)) : i ∈ I} by Z =

∑
i

(
piAi⊗|ci〉 〈ci|

)
∈ Den(CQ⊗CC), and we define D̂en(CQ⊗

CC) to be the set of all such density operators. In a starting ensemble, all configurations
have the same head position: |x|. We define Ix ∈ T(CQ ⊗ CC ,CQ ⊗ CC ⊗ CHx) such that
Ix(Z) = Z ⊗ ||x|〉 〈|x||. Similarly, in a stopping ensemble, all configurations either have head
position |x|+ 1 or are accepting or rejecting configurations (in which the head position is
irrelevant). Let TrCHx = 1L(CQ⊗CC) ⊗ Tr ∈ T(CQ ⊗ CC ⊗ CHx ,CQ ⊗ CC) denote the partial
trace with respect to CHx .

3.2 Definition and Properties of 2QCFA Crossing Sequences
We now formally define the notion of a crossing sequence of a 2QCFA and prove certain
needed properties. We begin by establishing some notation.

I Definition 3. Consider a 2QCFA N = (Q,C,Σ, R, θ, δ, qstart, cstart, cacc, crej). For c ∈ Ĉ =
C \ {cacc, crej}, σ ∈ Σ+ = Σ t {#L,#R}, r ∈ R, and j ∈ J = {1, . . . , |Q|2}, we make the
following definitions.
(i) Define Ec,σ,r,j ∈ L(CQ) such that θ(c, σ) ∈ QuantOp(CQ, R) is described by {Ec,σ,r,j :

r ∈ R, j ∈ J}.
(ii) Define Φc,σ,r ∈ T(CQ) such that Φc,σ,r(A) =

∑
j Ec,σ,r,jAE

†
c,σ,r,j , ∀A ∈ L(CQ).

(iii) Let γc,σ,r ∈ C and dc,σ,r ∈ {−1, 0, 1} denote, respectively, the new classical state and the
motion of the head, if the result of applying θ(c, σ) is r; i.e., δ(c, σ, r) = (γc,σ,r, dc,σ,r).

Consider some x ∈ Σ∗. Let Ĥx = {0, . . . , |x|} denote the head positions corresponding
to the prefix #Lx, and let Hx = {0, . . . , |x| + 1} denote the set of possible positions the
head of N may be in until it “finishes computing” on the prefix #Lx. We define an operator
Sx ∈ T(CQ ⊗ CC ⊗ CHx) that describes a single step of the computation of N on #Lx,
as follows. If (c, h) ∈ Ĉ × Ĥx, then Sx(A ⊗ |c〉 〈c| ⊗ |h〉 〈h|) describes the ensemble of
configurations of N after running N for a single step beginning in the configuration (A, c, h);
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otherwise (i.e., if c ∈ {cacc, crej} or h = |x|+ 1, which means N has “finished computing” on
#Lx) Sx leaves the configuration unchanged. We will observe that Sx correctly describes
the behavior of N on an ensemble of configurations, and that Sx is a quantum channel.

I Definition 4. Using the notation of Definition 3, consider a 2QCFA N and a string x ∈ Σ∗.
Let xh ∈ Σ denote the symbol of x at position h, and let x0 = #L denote the left end-marker.
(i) For (c, h, r, j) ∈ C ×Hx ×R× J , define Ẽx,c,h,r,j ∈ L(CQ ⊗ CC ⊗ CHx) as follows.

Ẽx,c,h,r,j =

Ec,xh,r,j ⊗ |γc,xh,r〉 〈c| ⊗ |h+ dc,xh,r〉 〈h| , if (c, h) ∈ Ĉ × Ĥ
1√
|R||J|

1CQ ⊗ |c〉 〈c| ⊗ |h〉 〈h| , otherwise.

(ii) Define Sx ∈ T(CQ ⊗ CC ⊗ CHx) such that

Sx(Z) =
∑

(c,h,r,j)∈C×Hx×R×J

Ẽx,c,h,r,jZẼ
†
x,c,h,r,j , ∀Z ∈ L(CQ ⊗ CC ⊗ CHx).

I Lemma 5. Using the above notation, consider some x ∈ Σ∗ and (A, ĉ, ĥ) ∈ Den(CQ)× Ĉ×
Ĥx. Let Ẑ = A⊗ |ĉ〉 〈ĉ| ⊗

∣∣∣ĥ〉〈ĥ∣∣∣. Sx(Ẑ) describes the ensemble of configurations obtained

after running N for one step, beginning in the configuration (A, ĉ, ĥ), on input prefix #Lx.

Proof. Let R̃
x,̂c,̂h,A

= {r ∈ R : Tr(Φ
ĉ,x

ĥ
,r

(A)) 6= 0}. Note that A ∈ Den(CQ) ⊆ Pos(CQ),

which implies Φ
ĉ,xĥ,r

(A) ∈ Pos(CQ); therefore, we have Tr(Φ
ĉ,xĥ,r

(A)) = 0 precisely when
Φ
ĉ,xĥ,r

(A) = 0CQ . After running N as described, it is in an ensemble of configurations{(
Tr(Φ

ĉ,xĥ,r
(A)),

(
1

Tr(Φ
ĉ,xĥ,r

(A))Φ
ĉ,xĥ,r

(A), γ
ĉ,xĥ,r

, ĥ+ d
ĉ,xĥ,r

))
: r ∈ R̃

x,̂c,̂h,A

}
.

This ensemble of configurations is described by the density operator Ẑ ′ given by

Ẑ′ =
∑

r∈R̃
x,̂c,̂h,A

(
Tr(Φ

ĉ,x
ĥ

,r
(A))

Tr(Φ
ĉ,x

ĥ
,r

(A))Φ
ĉ,x

ĥ
,r

(A)⊗
∣∣∣γ

ĉ,x
ĥ

,r

〉〈
γ

ĉ,x
ĥ

,r

∣∣∣⊗ ∣∣∣ĥ+ d
ĉ,x

ĥ
,r

〉〈
ĥ+ d

ĉ,x
ĥ

,r

∣∣∣)

=
∑
r∈R

(
Φ

ĉ,x
ĥ

,r
(A)⊗

∣∣∣γ
ĉ,x

ĥ
,r

〉〈
γ

ĉ,x
ĥ

,r

∣∣∣⊗ ∣∣∣ĥ+ d
ĉ,x

ĥ
,r

〉〈
ĥ+ d

ĉ,x
ĥ

,r

∣∣∣) .
Let B

x,̂c,̂h,r
=
∣∣∣γĉ,xĥ,r

〉〈
γ
ĉ,xĥ,r

∣∣∣⊗ ∣∣∣ĥ+ d
ĉ,xĥ,r

〉〈
ĥ+ d

ĉ,xĥ,r

∣∣∣. If (c, h) ∈ Ĉ × Ĥx, then

Ẽx,c,h,r,jẐẼ
†
x,c,h,r,j = Ẽx,c,h,r,j

(
A⊗ |ĉ〉 〈ĉ| ⊗

∣∣∣ĥ〉〈ĥ∣∣∣) Ẽ†x,c,h,r,j

= Ec,xh,r,jAE
†
c,xh,r,j ⊗ |γc,xh,r〉 〈c|ĉ〉 〈ĉ|c〉 〈γc,xh,r| ⊗ |h+ dc,xh,r〉

〈
h|ĥ
〉〈

ĥ|h
〉
〈h+ dc,xh,r|

=

{
E

ĉ,x
ĥ

,r,j
AE†

ĉ,x
ĥ

,r,j
⊗B

x,̂c,̂h,r
, if (c, h) = (ĉ, ĥ)

0CQ⊗CC⊗CHx , otherwise.

If, instead, (c, h) 6∈ Ĉ × Ĥx, then Ẽx,c,h,r,jẐẼ†x,c,h,r,j = 0CQ⊗CC⊗CHx . Therefore

Sx(Ẑ) =
∑

(r,j)∈R×J

∑
(c,h)∈C×Hx

Ẽx,c,h,r,jẐẼ
†
x,c,h,r,j =

∑
(r,j)∈R×J

(
E

ĉ,x
ĥ

,r,j
AE†

ĉ,x
ĥ

,r,j
⊗B

x,̂c,̂h,r

)

=
∑
r∈R

((∑
j∈J

E
ĉ,x

ĥ
,r,j
AE†

ĉ,x
ĥ

,r,j

)
⊗B

x,̂c,̂h,r

)
=
∑
r∈R

(
Φ

ĉ,x
ĥ

,r
(A)⊗B

x,̂c,̂h,r

)
= Ẑ′. J
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I Lemma 6. Consider some x ∈ Σ∗ and Z ∈ D̂en(CQ ⊗ CC ⊗ CHx). If {(pi, (Ai, ci, hi)) :
i ∈ I} is some ensemble of configurations described by Z, then Sx(Z) describes the ensemble
of configurations obtained by replacing each configuration with (ci, hi) ∈ (Ĉ × Ĥx) by the
ensemble (scaled by pi) of configurations obtained by running N for one step beginning in the
configuration (Ai, ci, hi), and leaving each configuration with (ci, hi) 6∈ (Ĉ × Ĥx) unchanged.

Proof. This follows immediately from Lemma 5 and linearity. J

I Lemma 7. Sx ∈ Chan(CQ ⊗ CC ⊗ CHx), ∀x ∈ Σ∗.

Proof. {Ẽx,c,h,r,j : (c, h, r, j) ∈ C ×Hx ×R× J} is a Kraus representation of Sx; therefore,
Sx ∈ Chan(CQ ⊗ CC ⊗ CHx)⇔

∑
c,h,r,j

Ẽ†x,c,h,r,jẼx,c,h,r,j = 1 [37, Corollary 2.27]. This latter

statement follows from a straightforward calculation; see the full paper [26] for a proof. J

For m ∈ N, we define the m-truncated stopping ensemble as the ensemble of configura-
tions that N will be in when it “finishes computing” on #Lx, as defined earlier, with the
modification that if any particular branch of N runs for more than m steps, the computation
of that branch will be “interrupted” immediately before it attempts to perform the m+ 1st
step and instead immediately reject. To be clear, this truncation occurs only in the analysis
of N ; we do not modify the 2QCFA. The following truncation operator Tx, which terminates
all branches on which N has not yet “finished computing,” will help us do this.

I Definition 8. For (c, h) ∈ (C,Hx), let Êx,c,h = 1CQ ⊗ |c′〉 〈c| ⊗ |h〉 〈h|, where c′ = crej if
(c, h) ∈ Ĉ × Ĥx, and c′ = c otherwise. We then define Tx ∈ T(CQ ⊗ CC ⊗ CHx) such that
Tx(Z) =

∑
(c,h)∈C×Hx

Êx,c,hZÊ
†
x,c,h.

I Lemma 9. Using the above notation, the following statements hold.
(i) For any Z ∈ D̂en(CQ ⊗ CC ⊗ CHx), if {(pi, (Ai, ci, hi)) : i ∈ I} is any ensemble of

configurations described by Z, then Tx(Z) describes the ensemble of configurations
in which each configuration with (ci, hi) ∈ Ĉ × Ĥx is replaced by the configuration
(Ai, crej, hi) (i.e., all configurations in which N has not yet “finished computing” on
#Lx become rejecting configurations) and all other configurations are left unchanged.

(ii) Tx ∈ Chan(CQ ⊗ CC ⊗ CHx).

Proof.
(i) Immediate from definitions.
(ii) As in the proof of Lemma 7, we may straightforwardly show

∑
c,h Ê

†
x,c,hÊx,c,h =

1CQ⊗CC⊗CHx , which implies Tx ∈ Chan(CQ ⊗ CC ⊗ CHx) [37, Corollary 2.27]. J

The following operator converts starting ensembles to m-truncated stopping ensembles.

I Definition 10. For x ∈ Σ∗ and m ∈ N, we define the m-truncated transfer operator N
−−←⊃

x,m =
TrCHx ◦Tx◦Smx ◦Ix ∈ T(CQ⊗CC). For y ∈ Σ∗, we next consider the “dual case” of running N
on the suffix y#R beginning in some ensemble of configurations {(pi, (Ai, ci, |x|+ 1)) : i ∈ I}
(i.e., the head position of every configuration is over the leftmost symbol of y#R). We define
the notion of an m-truncated stopping ensemble, and all other notions, symmetrically. That
is to say, a branch of N “finishes computing” on y#R when it either “leaves” y#R (by
moving its head left from the leftmost symbol of y#R), or accepts or rejects the input, or
runs for more than m steps. We then define N

−−←⊃
y,m ∈ T(CQ⊗CC) as the corresponding “dual”

m-truncated transfer operator for y.
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I Lemma 11. Using the notation of Definition 10, the following statements hold.
(i) For Z ∈ D̂en(CQ⊗CC), if N is run on #Lx beginning in any ensemble of configurations

described by Ix(Z) (i.e., the head position of every configuration is over the rightmost
symbol of #Lx), then the m-truncated stopping ensemble is described by N

−−←⊃
x,m(Z).

(ii) For Z ∈ D̂en(CQ⊗CC), if N is run on y#R beginning in any ensemble of configurations
described by Ix+1(Z), then the m-truncated stopping ensemble is described by N

−−←⊃
y,m(Z).

(iii) We have N
−−←⊃

x,m, N
−−←⊃
y,m ∈ Chan(CQ ⊗ CC), ∀x, y ∈ Σ∗, ∀m ∈ N.

Proof.
(i) Immediate by Definition 10, Lemma 6, and Lemma 9(i).
(ii) Immediate by Definition 10, and analogous versions of Lemma 6, and Lemma 9(i).
(iii) By definition, N

−−←⊃
x,m = TrCHx ◦Tx ◦ Smx ◦ Ix. By Lemma 7 and Lemma 9(ii), we have

Sx, Tx ∈ Chan(CQ ⊗ CC ⊗ CHx). It is straightforward to see that Ix ∈ Chan(CQ ⊗
CC ,CQ ⊗ CC ⊗ CHx) and TrCHx ∈ Chan(CQ ⊗ CC ⊗ CHx ,CQ ⊗ CC) and that the
composition of quantum channels is a quantum channel (see, for instance, [37, Section
2.2]). The claim for N

−−←⊃
y,m follows by an analogous argument. J

Given a 2QCFA N , we produce an equivalent N ′ of a certain convenient form, in much
the same way that Dwork and Stockmeyer [10] converted a 2PFA to a convenient form. The
2QCFA N ′ is identical to N , except for the addition of two new classical states, c′start and c′,
where c′start will be the start state of N ′. On any input, N ′ will move its head to the right
until it reaches #R, performing the trivial transformation to its quantum register along the
way. When it reaches #R, N ′ will enter c′; then, N ′ will move its head to the left until it
reaches #L, again performing the trivial transformation to its quantum register. When it
reaches #L, N ′ will enter the original start state cstart and behave identically to N from this
point. For the remainder of the paper, we assume all 2QCFA have this form.

Finally, we define the m-truncated crossing sequence.

I Definition 12. For x, y ∈ Σ∗ and m ∈ N, the m-truncated crossing sequence of N with
respect to the (partitioned) input xy is the sequence Z1, Z2, . . . ∈ D̂en(CQ ⊗ CC), defined as
follows. The density operator Z1 describes the ensemble consisting of the single configuration
(of the quantum register and classical register) (|qstart〉 , cstart) that N is in when it first
crosses from #Lx into y#R, which is of this simple form due to the assumed form of N . The
sequence Z1, Z2, . . . is then obtained by starting with Z1 and alternately applying N

−−←⊃
y,m and

N
−−←⊃

x,m. To be precise,

Zi =


|qstart〉 〈qstart| ⊗ |cstart〉 〈cstart| , i = 1
N
−−←⊃
y,m(Zi−1), i > 1, i is even

N
−−←⊃

x,m(Zi−1), i > 1, i is odd.

I Remark. Note that the {Zi} that comprise a crossing sequence do not describe the ensemble
of configurations of N at particular points in time during its computation on the input xy;
instead, Zi describes the ensemble of configurations of the set of all the probabilistic branches
of N at the ith time each branch crosses between #Lx and y#R.

4 Lower Bounds on the Running Time of 2QCFA

Dwork and Stockmeyer proved a lower bound [10, Lemma 4.3] on the expected running
time T (n) of any 2PFA that recognizes any language L with bounded error, in terms of
their hardness measure DL(n). We prove that an analogous claim holds for any 2QCFA.
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The preceding quantum generalization of a crossing sequence plays a key role in the proof,
essentially taking the place of the Markov chains used both in the aforementioned result of
Dwork and Stockmeyer and in the earlier result of Greenberg and Weiss [14], which showed
that 2PFA cannot recognize Leq in subexponential time.

4.1 Nonregularity
For a language L, Dwork and Stockmeyer [10] defined a particular “hardness measure”
DL : N→ N, which they called the nonregularity of L, as follows. Let Σ be a finite alphabet,
L ⊆ Σ∗ a language, and n ∈ N. Let Σ≤n = {w ∈ Σ∗ : |w| ≤ n} denote the set of all
strings over Σ of length at most n and consider some x, x′ ∈ Σ≤n. We say that x and x′
are (L, n)-dissimilar, which we denote by writing x 6∼L,n x′, if ∃y ∈ Σ≤n−max(|x|,|x′|, such
that xy ∈ L ⇔ x′y 6∈ L. Recall the classic Myhill-Nerode inequivalence relation, in which
x, x′ ∈ Σ∗ are L-dissimilar if ∃y ∈ Σ∗, such that xy ∈ L ⇔ x′y 6∈ L. Then x, x′ ∈ Σ≤n are
(L, n)-dissimilar precisely when they are L-dissimilar, and the dissimilarity is witnessed by a
“short” string y. We then define DL(n) to be the largest h ∈ N such that ∃x1, . . . , xh ∈ Σ≤n
that are pairwise (L, n)-dissimilar (i.e., xi 6∼L,n xj , ∀i, j with i 6= j).

In fact, DL has been defined by many authors, both before and after Dwork and Stock-
meyer, who gave many different names to this quantity and who (repeatedly) rediscovered
certain basic facts about it; we refer the reader to the excellent paper of Shallit and Breitbart
[30] for a detailed history of the study of DL and related hardness measures.

4.2 A 2QCFA Analogue of the Dwork-Stockmeyer Lemma
We now prove that an analogue of the Dwork-Stockmeyer lemma holds for 2QCFA. The main
idea is as follows. Suppose the 2QCFA N recognizes L ⊆ Σ∗, with two-sided bounded error ε,
in expected time at most T (n). We show that, ifDL(n) is “large,” then, for anym ∈ N, we can
find x, x′ ∈ Σ≤n such that x 6∼L,n x′ and the distance between the corresponding m-truncated
transfer operators N

−−←⊃
x,m and N

−−←⊃
x′,m is “small.” By definition, ∃y ∈ Σ≤n−max(|x|,|x′|), such that

xy ∈ L⇔ x′y 6∈ L; note that xy, x′y ∈ Σ≤n. Without loss of generality, we assume xy ∈ L,
and hence x′y 6∈ L. We also show that, for m sufficiently large, if the distance between
N

−−←⊃
x,m and N

−−←⊃
x′,m is “small,” then the behavior of N on the partitioned inputs xy and x′y

will be similar; in particular, if T (n) is “small,” then Pr[N accepts xy] ≈ Pr[N accepts x′y].
However, as xy ∈ L, we must have Pr[N accepts xy] ≥ 1− ε, and as x′y 6∈ L, we must have
Pr[N accepts x′y] ≤ ε, which is impossible. This contradiction allows us to establish a lower
bound on T (n) in terms of DL(n). In this section, we formalize this idea.

Recall that the trace norm ‖·‖1 : L(V )→ R≥0 is given by ‖Z‖1 = Tr(
√
Z†Z), ∀Z ∈ L(V ),

and the induced trace norm ‖·‖1 : T(V, V ′) → R≥0, is given ‖Φ‖1 = sup{‖Φ(Z)‖1 : Z ∈
L(V ), ‖Z‖1 ≤ 1}, ∀Φ ∈ T(V, V ′). Suppose N is run on two distinct partitioned inputs xy
and x′y, producing two distinct m-truncated crossing sequences, following Definition 12. We
first show that if ‖N

−−←⊃
x,m −N

−−←⊃
x′,m‖1 is “small”, then these crossing sequences are similar.

I Lemma 13. Consider a 2QCFA N with quantum basis states Q, classical states C, and
input alphabet Σ. For x, x′, y ∈ Σ∗ and m ∈ N, let Z1, Z2, . . . ∈ D̂en(CQ ⊗ CC) (resp.
Z ′1, Z

′
2, . . . ∈ D̂en(CQ ⊗ CC)) denote the m-truncated crossing sequence obtained when N is

run on xy (resp. x′y). Then ‖Zi − Z ′i‖1 ≤ b i−1
2 c‖N

−−←⊃
x,m −N

−−←⊃
x′,m‖1, ∀i ∈ N≥1.

Proof. By definition, Z1 = |qstart〉 〈qstart| ⊗ |cstart〉 〈cstart| = Z ′1, and so ‖Z1 − Z ′1‖1 = 0.
Note that ‖Φ(Z)‖1 ≤ ‖Z‖1, ∀Z ∈ L(CQ ⊗ CC), ∀Φ ∈ Chan(CQ ⊗ CC) [37, Corollary
3.40]. Therefore, for any Φ ∈ Chan(CQ ⊗ CC) and any Z,Z ′ ∈ L(CQ ⊗ CC), we have
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‖Φ(Z) − Φ(Z ′)‖1 = ‖Φ(Z − Z ′)‖1 ≤ ‖Z − Z ′‖1. By Lemma 11(iii), N
−−←⊃

x,m, N
−−←⊃

x′,m, N
−−←⊃
y,m ∈

Chan(CQ ⊗ CC). For i even, Zi = N
−−←⊃
y,m(Zi−1) and Z ′i = N

−−←⊃
y,m(Z ′i−1). We then have

‖Zi − Z ′i‖1 = ‖N
−−←⊃
y,m(Zi−1)−N

−−←⊃
y,m(Z ′i−1)‖1 ≤ ‖Zi−1 − Z ′i−1‖1.

For odd i > 1, Zi = N
−−←⊃

x,m(Zi−1) and Z ′i = N
−−←⊃

x′,m(Z ′i−1). We have ‖Z‖1 = 1, ∀Z ∈
Den(CQ ⊗ CC), which implies ‖Φ(Z)‖1 ≤ ‖Φ‖1, ∀Φ ∈ T(CQ ⊗ CC). Therefore,

‖Zi − Z ′i‖1 = ‖N
−−←⊃

x,m(Zi−1)−N
−−←⊃

x′,m(Z ′i−1)‖1

≤ ‖N
−−←⊃

x,m(Zi−1)−N
−−←⊃

x,m(Z ′i−1)‖1 + ‖N
−−←⊃

x,m(Z ′i−1)−N
−−←⊃

x′,m(Z ′i−1)‖1

= ‖N
−−←⊃

x,m(Zi−1−Z ′i−1)‖1 +‖(N
−−←⊃

x,m−N
−−←⊃

x′,m)(Z ′i−1)‖1 ≤ ‖Zi−1−Z ′i−1‖1 +‖N
−−←⊃

x,m−N
−−←⊃

x′,m‖1
The claim then follows by induction on i ∈ N≥1. J

I Lemma 14. Consider a language L ⊆ Σ∗. Suppose L ∈ B2QCFA(k, d, T (n), ε), for some
k, d ∈ N≥2, T : N→ N, and ε ∈ [0, 1

2 ). If, for some n ∈ N, ∃x, x′ ∈ Σ≤n such that x 6∼L,n x′,
then T (n) ≥ (1−2ε)2

2 ‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖
−1
1 , ∀m ≥ d 2

1−2εT (n)e.

Proof. By definition, x 6∼L,n x′ precisely when ∃y ∈ Σ∗ such that xy, x′y ∈ Σ≤n, and
xy ∈ L⇔ x′y 6∈ L. Fix such a y, and assume, without loss of generality, that xy ∈ L (and
hence x′y 6∈ L). For m ∈ N, suppose that, when N is run on the partitioned input xy (resp.
x′y), we obtain the m-truncated crossing sequence Zm,1, Zm,2, . . . ∈ D̂en(CQ ⊗ CC) (resp.
Z ′m,1, Z

′
m,2, . . . ∈ D̂en(CQ ⊗ CC)). For c ∈ C, let Ec = 1CQ ⊗ |c〉 〈c| ∈ L(CQ ⊗ CC). For

s ∈ N≥1, define pm,s, p′m,s : C → [0, 1] such that pm,s(c) = Tr(EcZm,sE†c) and p′m,s(c) =
Tr(EcZ ′m,sE†c ). Then, for any c ∈ C, Lemma 13 implies

|pm,s(c)− p′m,s(c)| = |Tr(EcZm,sE†c )− Tr(EcZ ′m,sE†c )| = |Tr(Ec(Zm,s − Z ′m,s)E†c )|

≤ ‖Zm,s − Z ′m,s‖1 ≤
s− 1

2 ‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖1.

Notice that pm,s(cacc) (resp. p′m,s(cacc)) is the probability that N accepts xy (resp. x′y)
within the first s times (on a given branch of the computation) the head of N crosses the
boundary between x (resp. x′) and y, where any branch that runs for more than m steps
between consecutive boundary crossings is forced to halt and reject immediately before
attempting to perform the m + 1st such step. Let pN (w) denote the probability that N
accepts an input w ∈ Σ∗, let pN (w, s) denote the probability that N accepts w within s

steps, and let hN (w, s) denote the probability that N halts on input w within s steps.
Note that x′y 6∈ L implies pN (x′y) ≤ ε. Clearly, p′m,s(cacc) ≤ pN (x′y), for any m and s,

as all branches that attempt to perform more than m steps (between consecutive crossings)
are considered to reject the input in the m-truncated crossing sequence. Suppose s ≤ m. Any
branch that runs for a total of at most s steps before halting is unaffected by m-truncation.
Moreover, if a branch accepts within s steps, it will certainly accept within s crossings
between #Lx and y#R. This implies pN (xy, s) ≤ pm,s(cacc). Therefore, if s ≤ m,

pN (xy, s) ≤ pm,s(cacc) ≤ p′m,s(cacc)+ |pm,s(cacc)−p′m,s(cacc)| ≤ ε+ s− 1
2 ‖N

−−←⊃
x,m−N

−−←⊃
x′,m‖1.

The expected running time of N on input xy is at most T (|xy|). By Markov’s inequality,
1− hN (xy, s) ≤ T (|xy|)

s . Note that xy ∈ L implies pN (xy) ≥ 1− ε. Thus, for any m ≥ s ≥ 1,

1− ε ≤ pN (xy) ≤ pN (xy, s) + (1− hN (xy, s)) ≤ ε+ s− 1
2 ‖N

−−←⊃
x,m −N

−−←⊃
x′,m‖1 + T (|xy|)

s
.
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Set s = d 2
1−2εT (n)e, and notice that |xy| ≤ n implies T (|xy|) ≤ T (n). For any m ≥ s,

1−2ε ≤
d 2

1−2εT (n)e − 1
2 ‖N

−−←⊃
x,m−N

−−←⊃
x′,m‖1+ T (|xy|)

d 2
1−2εT (n)e

≤ T (n)
1− 2ε‖N

−−←⊃
x,m−N

−−←⊃
x′,m‖1+ 1− 2ε

2 .

Therefore, T (n) ≥ (1−2ε)2

2 ‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖
−1
1 , ∀m ≥

⌈
2

1−2εT (n)
⌉
. J

I Lemma 15. Consider a 2QCFA N = (Q,C,Σ, R, θ, δ, qstart, cstart, cacc, crej). Let k = |Q|
and d = |C|. Consider any finite X ⊆ Σ∗ such that |X| ≥ 2. Then ∀m ∈ N, ∃x, x′ ∈ X such
that x 6= x′ and ‖N

−−←⊃
x,m −N

−−←⊃
x′,m‖1 ≤ 4

√
2k4d2

(
|X|

1
k4d2 − 1

)−1
.

Proof. For q, q′ ∈ Q and c, c′ ∈ C, let Fq,q′,c,c′ = |q〉 〈q′| ⊗ |c〉 〈c′| ∈ L(CQ ⊗ CC). Let J :
T(CQ⊗CC)→ L(CQ⊗CC⊗CQ⊗CC) denote the Choi isomorphism, which is given by J(Φ) =∑

(q,q′,c,c′)∈Q2×C2 Fq,q′,c,c′⊗Φ(Fq,q′,c,c′),∀Φ ∈ T(CQ⊗CC). Consider any x ∈ Σ∗ and m ∈ N.
We first show that, if (c1, c2) 6= (c′1, c′2), then 〈q2c2|N

−−←⊃
x,m(Fq1,q′1,c1,c′1) |q′2c′2〉 = 0. To see this,

recall that, by Definition 10, N
−−←⊃

x,m = TrCHx ◦Tx◦Smx ◦Ix. If c1 6= c′1, then N
−−←⊃

x,m(Fq1,q′1,c1,c′1) =
0CQ⊗CC , which implies 〈q2c2|N

−−←⊃
x,m(Fq1,q′1,c1,c′1) |q′2c′2〉 = 0. If c2 6= c′2, then ∀Z ∈ L(CQ ⊗

CC ⊗ CHx), 〈q2c2|TrCHx (Tx(Z)) |q′2c′2〉 = 0, which implies 〈q2c2|N
−−←⊃

x,m(Fq1,q′1,c1,c′1) |q′2c′2〉 = 0.
Therefore, 〈q2c2|N

−−←⊃
x,m(Fq1,q′1,c1,c′1) |q′2c′2〉 is only potentially non-zero at the k4d2 ele-

ments where (c1, c2) = (c′1, c′2). By Lemma 11(iii), N
−−←⊃

x,m ∈ Chan(CQ ⊗ CC), which implies
J(N

−−←⊃
x,m) ∈ Pos(CQ ⊗ CC ⊗ CQ ⊗ CC) [37, Corollary 2.27]. Therefore, the elements where

(q1, q2) 6= (q′1, q′2) come in conjugate pairs, and the elements with (q1, q2) 6= (q′1, q′2) are
real. We define the function gN,m : Σ∗ → Rk4d2 such that gN,m(x) encodes all the po-
tentially non-zero 〈q2c2|N

−−←⊃
x,m(Fq1,q′1,c1,c′1) |q′2c′2〉, without redundancy (only encoding one

element of a conjugate pair). To be precise, the first k2d2 entries of gN,m(x) are given by
{〈q2c2|N

−−←⊃
x,m(Fq1,q1,c1,c1) |q2c2〉 : q1, q2 ∈ Q, c1, c2 ∈ C} ⊆ R. Establish some total order ≥

on Q, and let Q̂4 = {(q1, q
′
1, q2, q

′
2) ∈ Q4 : q′1 > q1 or (q′1 = q1 and q′2 > q2)}. The remaining

k4d2 − k2d2 entries are given by encoding each of the 1
2 (k4d2 − k2d2) potentially non-zero

entries {〈q2c2|N
−−←⊃

x,m(Fq1,q′1,c1,c1) |q′2c2〉 : (q1, q
′
1, q2, q

′
2) ∈ Q̂4, c1, c2 ∈ C} ⊆ C as the pair of

real numbers that comprise their real and imaginary parts.
Let h = k4d2. Let ‖·‖ : Rh → R≥0 denote the Euclidean 2-norm and ‖·‖2 : L(V )→ R≥0

denote the Schatten 2-norm. Note that ‖Φ‖1 ≤ ‖J(Φ)‖1, ∀Φ [37, Section 3.4]. We have,

‖N
−−←⊃

x,m−N
−−←⊃

x′,m‖1 ≤ ‖J(N
−−←⊃

x,m−N
−−←⊃

x′,m)‖1 ≤
√

rank(J(N −−←⊃
x,m −N

−−←⊃
x′,m))‖J(N

−−←⊃
x,m−N

−−←⊃
x′,m)‖2

≤
√
h‖J(N

−−←⊃
x,m)− J(N

−−←⊃
x′,m)‖2 ≤

√
2h‖gN,m(x)− gN,m(x′)‖.

Note that N
−−←⊃

x,m ∈ Chan(CQ⊗CC), which implies ‖N
−−←⊃

x,m‖1 = 1 [37, Corollary 3.40]. Then,
∀q, q′ ∈ Q,∀c ∈ C, we have ‖Fq,q′,c,c‖1 = 1, which implies ‖N

−−←⊃
x,m(Fq,q′,c,c)‖1 ≤ 1. Therefore,

‖gN,m(x)‖ ≤ ‖J(N
−−←⊃

x,m)‖2 ≤ ‖J(N
−−←⊃

x,m)‖1 ≤
∑

q,q′∈Q,c∈C
‖N

−−←⊃
x,m(Fq,q′,c,c)‖1 ≤ k2d =

√
h.

For v0 ∈ Rh and r ∈ R>0, let B(v0, r) = {v ∈ Rh : ‖v0 − v‖ ≤ r} denote the closed ball
centered at v0 of radius r in Rh, which has volume vol(B(v0, r)) = chr

h, for some constant
ch ∈ R>0. By the above, ‖gN,m(x)‖ ≤

√
h, which implies that B(gN,m(x), δ) ⊆ B(0,

√
h+ δ),

∀δ ∈ R>0. Suppose ∀x, x′ ∈ X with x 6= x′, we have B(gN,m(x), δ) ∩ B(gN,m(x′), δ) = ∅.
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Then tx∈XB(gN,m(x), δ) ⊆ B(0,
√
h + δ), which implies |X|chδh ≤ ch(

√
h + δ)h. Set

δ = 2
√
h

|X|1/h−1 . Then ∃x, x
′ ∈ X, with x 6= x′, such that B(gN,m(x), δ) ∩B(gN,m(x′), δ) 6= ∅,

which implies ‖gN,m(x)− gN,m(x′)‖ ≤ 2δ. Therefore,

‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖1 ≤
√

2h‖gN,m(x)− gN,m(x′)‖ ≤
√

2h2δ ≤ 4
√

2k4d2
(
|X|

1
k4d2 − 1

)−1
.J

We now prove a 2QCFA analogue of the Dwork-Stockmeyer lemma.

I Theorem 16. If L ∈ B2QCFA(k, d, T (n), ε), for some k, d ∈ N≥2, T : N → N, and
ε ∈ [0, 1

2 ), then ∃N0 ∈ N such that T (n) ≥ (1−2ε)2

16
√

2k4d2DL(n)
1

k4d2 , ∀n ≥ N0.

Proof. Consider some L ⊆ Σ∗. By [10, Lemma 3.1], L ∈ REG ⇔ ∃b ∈ N≥1 such that
DL(n) ≤ b, ∀n ∈ N. Thus, if L ∈ REG, the claim is immediate (recall that T (n) ≥ n). Next,
suppose L 6∈ REG. For n ∈ N, define Xn = {x1, · · · , xDL(n)} ⊆ Σ≤n such that the xi are
pairwise (L, n)-dissimilar. As DL(n) is not bounded above by any constant, ∃N0 ∈ N such
that DL(N0) ≥ 2k4d2 . Then, ∀n ≥ N0, we have |Xn| = DL(n) ≥ DL(N0) ≥ 2k4d2 . Fix
n ≥ N0 and set m = d 1−2ε

2 T (n)e. By Lemma 15, ∃x, x′ ∈ Xn such that x 6= x′ and

‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖1 ≤ 4
√

2k4d2
(
|Xn|

1
k4d2 − 1

)−1
≤ 8
√

2k4d2|Xn|−
1

k4d2 = 8
√

2k4d2DL(n)−
1

k4d2 .

Fix such a pair x, x′, and note that x 6∼L,n x′, by construction. By Lemma 14,

T (n) ≥ (1− 2ε)2

2 ‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖−1
1 ≥ (1− 2ε)2

16
√

2k4d2
DL(n)

1
k4d2 . J

4.3 2QCFA Running Time Lower Bounds and Complexity Class
Separations

Let B2QCFA(T (n)) = ∪k,d∈N≥2,ε∈[0, 12 )B2QCFA(k, d, T (n), ε) denote the class of languages
recognizable with two-sided bounded error by a 2QCFA with any constant number of
quantum and classical states, in expected time at most T (n). For a family T of functions
of the form T : N → N, let B2QCFA(T ) = ∪T∈T B2QCFA(T (n)). We then write, for
example, B2QCFA(2o(n)) to denote the union, taken over every function T : N → N such
that T (n) = 2o(n), of B2QCFA(T (n)). Let CL : N → N denote the one-way deterministic
communication complexity of testing membership in L; note that CL(n) = logDL(n),∀n [8].
We immediately obtain the following corollaries of Theorem 16.

I Corollary 17. If L ∈ B2QCFA(T (n)), then DL(n) = T (n)O(1) and CL(n) = O(log T (n)).

I Corollary 18. If a language L satisfies DL(n) = 2Ω(n), then L 6∈ B2QCFA(2o(n)).

Notice that DL(n) = 2O(n), for any L. We next exhibit a language for which DL(n) =
2Ω(n), thereby yielding a strong lower bound on the running time of any 2QCFA that
recognizes L. For w = w1 · · ·wn ∈ Σ∗, let wrev = wn · · ·w1 denote the reversal of the string
w. Let Lpal = {w ∈ {a, b}∗ : w = wrev} consist of all palindromes over the alphabet {a, b}.

I Corollary 19. Lpal 6∈ B2QCFA(2o(n)).

Proof. For n ∈ N, let Wn = {w ∈ {a, b}∗ : |w| = n} denote all words over the alphabet {a, b}
of length n. For any w,w′ ∈ Wn, with w 6= w′, we have |wwrev| = 2n = |w′wrev|, wwrev ∈
Lpal, and w′wrev 6∈ Lpal; therefore, w 6∼Lpal,2n w

′, ∀w,w′ ∈ Wn such that w 6= w′. This
implies that DLpal

(2n) ≥ |Wn| = 2n. Corollary 18 then implies Lpal 6∈ B2QCFA(T (n)). J



Z. Remscrim 39:15

We define BQE2QCFA = B2QCFA(2O(n)) to be the class of languages recognizable with
two-sided bounded error in expected exponential time (with linear exponent) by a 2QCFA.
Next, we say that a 2QCFA N recognizes a language L with negative one-sided bounded
error ε ∈ R>0 if, ∀w ∈ L, Pr[N accepts w] = 1, and, ∀w 6∈ L, Pr[N accepts w] ≤ ε. We
define coR2QCFA(k, d, T (n), ε) as the class of languages recognizable with negative one-sided
bounded error ε by a 2QCFA, with at most k quantum basis states and at most d classical
states, that has expected running time at most T (n) on all inputs of length at most n. We
define coR2QCFA(T (n)) and coRQE2QCFA analogously to the two-sided bounded error case.

Ambainis and Watrous [2] showed that Lpal ∈ coRQE2QCFA; in fact, their 2QCFA
recognizer for Lpal has only a single-qubit. Clearly, coR2QCFA(T (n)) ⊆ B2QCFA(T (n)), for
any T , and coRQE2QCFA ⊆ BQE2QCFA. Therefore, the class of languages recognizable by
a 2QCFA with bounded error in subexponential time is properly contained in the class of
languages recognizable by a 2QCFA in exponential time.

I Corollary 20. B2QCFA(2o(n)) ( BQE2QCFA and coR2QCFA(2o(n)) ( coRQE2QCFA.

We next define BQP2QCFA = B2QCFA(nO(1)) to be the class of languages recognizable
with two-sided bounded error in expected polynomial time by a 2QCFA. See the full
version [26] for a proof of the following corollary.

I Corollary 21. If L ∈ BQP2QCFA, then DL(n) = nO(1). Therefore, BQP2QCFA ⊆ L/poly.

Of course, there are many languages L for which one can establish a strong lower bound
on DL(n), and thereby establish a strong lower bound on the expected running time T (n) of
any 2QCFA that recognizes L. In Section 6, we consider the case in which L is the word
problem of a group, and we show that very strong lower bounds can be established on DL(n).
In the current section, we consider two especially interesting languages; the relevance of these
languages was brought to our attention by Richard Lipton (personal communication). For
p ∈ N, let 〈p〉2 ∈ {0, 1}∗ denote its binary representation; let Lprimes = {〈p〉2 : p is prime}.
Note that DLprimes

(n) = 2Ω(n) [29], which immediately implies the following.

I Corollary 22. Lprimes 6∈ B2QCFA(2o(n)).

Say a string w = w1 · · ·wn ∈ {0, 1}n has a length-3 arithmetic progression (3AP) if
∃i, j, k ∈ N such that 1 ≤ i < j < k ≤ n, j − i = k − j, and wi = wj = wk = 1;
let L3ap = {w ∈ {0, 1}∗ : w has a 3AP}. It is straightforward to show the lower bound
DL3ap

(n) = 2n1−o(1) , as well as the upper bound DL3ap
(n) = 2no(n) . Therefore, one obtains

the following lower bound on the running time of a 2QCFA that recognizes L3ap, which,
while still quite strong, is not as strong as that of Lpal or Lprimes.

I Corollary 23. L3ap 6∈ B2QCFA
(

2n1−Ω(1)
)
.

I Remark. While Lprimes and L3ap provide two more examples of natural languages for
which our method yields strong lower bound on the running time of any 2QCFA recognizer,
they also suggest the potential of proving a stronger lower bound for certain languages. That
is to say, for Lpal, one has (essentially) matching lower and upper bounds on the running
time of any 2QCFA recognizer; this is certainly not the case for Lprimes and L3ap. In fact,
we currently do not know if either Lprimes or L3ap can be recognized by a 2QCFA with
bounded error at all (i.e., regardless of time bound).
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4.4 Transition Amplitudes of 2QCFA
As in Definition 3, for some 2QCFA N = (Q,C,Σ, R, θ, δ, qstart, cstart, cacc, crej), let {Ec,σ,r,j :
r ∈ R, j ∈ J} ⊆ L(CQ) denote the set of operators that describe the selective quantum
operation θ(c, σ) ∈ QuantOp(CQ, R) that is applied to the quantum register when the classical
state of N is c ∈ Ĉ and the head of N is over the symbol σ ∈ Σ+. The transition amplitudes
of N are the set of numbers {〈q|Ec,σ,r,j |q′〉 : c ∈ Ĉ, σ ∈ Σ+, r ∈ R, j ∈ J, q, q′ ∈ Q} ⊆ C.

While other types of finite automata are often defined without any restriction on their
transition amplitudes, for 2QCFA, and other types of QFA, the allowed class of transition
amplitudes strongly affects the power of the model. For example, using non-computable tran-
sition amplitudes, a 2QCFA can recognize certain undecidable languages with bounded error
in expected polynomial time [28]. Our lower bound holds even in this setting of unrestricted
transition amplitudes. For F ⊆ C, we define complexity classes coR2QCFAF(k, d, T (n), ε),
coRQE2QCFAF, etc., that are variants of the corresponding complexity class in which the
2QCFA are restricted to have transition amplitudes in F. Using our terminology, Ambainis
and Watrous [2] showed that Lpal ∈ coRQE2QCFAQ, where Q denotes the algebraic numbers,
which are, arguably, the natural choice for the permitted class of transition amplitudes of a
quantum model of computation. Therefore, Lpal can be recognized with negative one-sided
bounded error by a single-qubit 2QCFA with transition amplitudes that are all algebraic
numbers in expected exponential time; however, Lpal cannot be recognized with two-sided
bounded error (and, therefore, not with one-sided bounded error) by a 2QCFA (of any
constant size) in subexponential time, regardless of the permitted transition amplitudes.

5 Lower Bounds on the Running Time of Small-Space QTMs

We next show that our technique also yields a lower bound on the expected running time of
a quantum Turing machine (QTM) that uses sublogarithmic space (i.e., o(logn) space). The
key idea is that a QTM M that uses S(n) space can be viewed as a sequence (Mn)n∈N of
2QCFA, where Mn has 2O(S(n)) (classical and quantum) states and Mn simulates M on all
inputs of length at most n (therefore, Mn and M have the same probability of acceptance
and the same expected running time on any such input). The techniques of the previous
section apply to 2QCFA with a sufficiently slowly growing number of states.

We consider the classically controlled space-bounded QTM model that allows intermediate
measurements, following the definition of Watrous [35]. While several such QTM models have
been defined, we focus on this model as we wish to prove our lower bound in the greatest
generality possible. We note that the definitions of such QTM models by, for instance,
Ta-Shma [32], Watrous [36, Section VII.2], and (essentially, without the use of random access)
van Melkebeek and Watson[22] are special cases of the QTM model that we consider. In
the case of time-bounded quantum computation, it is well-known that allowing a QTM
to perform intermediate measurements provably does not increase the power of the model;
very recently, this fact has also been shown to hold in the simultaneously time-bounded
and space-bounded setting [12]. Let BQTISP(T (n), S(n)) denote the class of languages
recognizable with bounded error by a QTM in time T (n) and space S(n). See the full version
[26] for a complete definition of the QTM model and a proof of the following theorem.

I Theorem 24. Suppose L ∈ BQTISP(T (n), S(n)), and suppose further that S(n) =
o(log logDL(n)). Then ∃b0 ∈ R>0 such that, T (n) = Ω

(
2−b0S(n)DL(n)2−b0S(n)).

I Corollary 25. If DL(n) = 2Ω(n), then L 6∈ BQTISP
(

2n1−Ω(1)
, o(logn)

)
. In particular,

Lpal 6∈ BQTISP
(

2n1−Ω(1)
, o(logn)

)
.
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I Remark. Of course, Lpal can be recognized by a deterministic TM in O(logn) space (and,
trivially, polynomial time). Therefore, the previous corollary exhibits a natural problem for
which polynomial time quantum TM cannot outperform polynomial time deterministic TM
in terms of the amount of space used.

6 The Word Problem of a Group

We begin by formally defining the word problem of a group; for further background, see,
for instance [21]. For a set S, let F (S) denote the free group on S. For sets S,R such that
R ⊆ F (S), let N denote the normal closure of R in F (S); for a group G, if G ∼= F (S)/N ,
then we say that G has presentation 〈S|R〉, which we denote by writing G = 〈S|R〉. Suppose
G = 〈S|R〉, with S finite; we now define WG=〈S|R〉, the word problem of G with respect to the
presentation 〈S|R〉. We define the set of formal inverses S−1, such that, for each s ∈ S, there
is a unique corresponding s−1 ∈ S−1, and S ∩ S−1 = ∅. Let Σ = S t S−1, let Σ∗ denote the
free monoid over Σ, and let φ : Σ∗ → G be the natural (monoid) homomorphism that takes
each string in Σ∗ to the element of G that it represents. We use 1G to denote the identity
element of G. Then WG=〈S|R〉 = φ−1(1G). Note that the definition of the word problem does
depend on the choice presentation. However, if L is any complexity class that is closed under
inverse homomorphism, then if 〈S|R〉 and 〈S′|R′〉 are both presentations of some group G,
and S and S′ are both finite, then WG=〈S|R〉 ∈ L ⇔WG=〈S′|R′〉 ∈ L [19]. As all complexity
classes considered in this paper are easily seen to be closed under inverse homomorphism, we
will simply write WG ∈ L to mean that WG=〈S|R〉 ∈ L, for every presentation G = 〈S|R〉,
with S finite. We note that the languages Lpal and Leq, which Ambainis and Watrous [2]
showed satisfy Lpal ∈ coRQE2QCFAQ and Leq ∈ BQP2QCFA, are closely related to the word
problems of the groups F2 and Z, respectively.

6.1 The Growth Rate of a Group and Nonregularity
Consider a group G = 〈S|R〉, with S finite. Define Σ and φ as in the previous section.
For g ∈ G, let lS(g) denote the smallest m ∈ N such that ∃σ1, . . . , σm ∈ Σ such that
g = φ(σ1 · · ·σm). For n ∈ N, we define BG,S(n) = {g ∈ G : lS(g) ≤ n} and we further define
βG,S(n) = |BG,S(n)|, which we call the growth rate of G with respect to S. The following
straightforward lemma demonstrates an important relationship between βG,S and DWG=〈S|R〉 .

I Lemma 26. Suppose G = 〈S|R〉 with S finite. Using the notation established above, let
WG := WG=〈S|R〉 = φ−1(1G) denote the word problem of G with respect to this presentation.
Then, ∀n ∈ N, DWG

(2n) ≥ βG,S(n).

Proof. Fix n ∈ N, let k = βG,S(n), and let BG,S(n) = {g1, . . . , gk}. For a string x =
x1 · · ·xm ∈ Σ∗, where each xj ∈ Σ, let |x| = m denote the (string) length of x and
define x−1 = x−1

m · · ·x−1
1 . Note that, ∀g ∈ G, lS(g) = minw∈φ−1(g)|w|. Therefore, for each

i ∈ {1, . . . , k} we may define wi ∈ φ−1(gi) such that |wi| = lS(gi). Observe that wiw−1
i ∈WG

and |wiw−1
i |= 2|wi|= 2lS(gi) ≤ 2n; moreover, for each j 6= i, we have wjw−1

i 6∈ WG and
|wjw−1

i | = |wj |+ |wi| = lS(gj) + lS(gi) ≤ 2n. Therefore, w1, . . . , wk are pairwise (WG, 2n)-
dissimilar, which implies DWG

(2n) ≥ k = βG,S(n). J

For a pair of non-decreasing functions f1, f2 : R≥0 → R≥0, we write f1 ≺ f2 if ∃C1, C2 ∈
R>0 such that ∀r ∈ R≥0, f1(r) ≤ C1f2(C1r+C2) +C2; we write f1 ∼ f2 if both f1 ≺ f2 and
f2 ≺ f1. Suppose 〈S|R〉 and 〈S′|R′〉 are both presentations of G, with S and S′ finite. It is
straightforward to show that βG,S and βG,S′ are non-decreasing, and that βG,S ∼ βG,S′ [21,
Proposition 6.2.4]. For this reason, we will simply write βG to denote the growth rate of G.
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I Definition 27. Suppose G is a finitely generated group. If βG ∼ (n 7→ en), we say G has
exponential growth. If ∃c ∈ R≥0 such that βG ≺ (n 7→ nc), we say G has polynomial growth.
Otherwise, we say G has intermediate growth. Note that, for any finitely generated group G,
we have βG ≺ (n 7→ en), and so the term “intermediate growth” is justified.

6.2 Word Problems Recognizable by 2QCFA and Small-Space QTMs
By making use of two very powerful results in group theory, the Tits’ Alternative [34] and
Gromov’s theorem on groups of polynomial growth [15], we exhibit useful lower bounds on
DWG

, which in turn allows us to show a strong lower bound on the expected running time
of a 2QCFA that recognizes WG. We obtain an analogous result for sublogarithmic-space
QTMs; see the full paper [26] for details.

I Theorem 28. For any finitely generated group G, the following statements hold.
(i) If WG ∈ B2QCFA(k, d, T (n), ε), then βG ≺ (n 7→ T (n)k4d2).
(ii) If G has exponential growth, then WG 6∈ B2QCFA(2o(n)).
(iii) If G is a linear group over a field of characteristic 0, and G is not virtually nilpotent,

then WG 6∈ B2QCFA(2o(n)).
(iv) If WG ∈ BQP2QCFA, then G is virtually nilpotent.

Proof.
(i) Follows immediately from Lemma 26 and Corollary 17.
(ii) Follows immediately from Definition 27 and part (i) of this theorem.
(iii) As a consequence of the famous Tits’ Alternative [34], every finitely generated linear

group over a field of characteristic 0 either has polynomial growth or exponential growth,
and has polynomial growth precisely when it is virtually nilpotent ([34, Corollary 1],[38]).
The claim then follows by part (ii) of this theorem.

(iv) If WG ∈ BQP2QCFA, then WG ∈ B2QCFA(k, d, nc, ε) for some k, d, c ∈ N≥1, ε ∈ [0, 1
2 ).

By part (i) of this theorem, βG ≺ (n 7→ nck
4d2), which implies G has polynomial growth.

By Gromov’s theorem on groups of polynomial growth [15], a finitely generated group
has polynomial growth precisely when it is virtually nilpotent. J

I Remark. All known G of intermediate growth have βG ∼ (n 7→ en
c), for some c ∈ (1/2, 1).

Therefore, a strong lower bound may be established on the running time of any 2QCFA that
recognizes WG, for any known group of intermediate growth.

Let GvAb (resp. GvNilp) denote the collection of all finitely generated virtually abelian
(resp. nilpotent) groups. Let U(k,Q) denote the group of k × k unitary matrices with
algebraic number entries, and let U consist of all finitely generated subgroups of any U(k,Q).
We have recently shown that if G ∈ U , then WG ∈ coRQE2QCFAQ [27, Corollary 1.4.1].
Observe that GvAb ⊆ U and that all groups in U are finitely generated linear groups over a
field of characteristic zero. Moreover, U ∩GvNilp = GvAb [33, Proposition 2.2]. We, therefore,
obtain the following corollary of Theorem 28, which exhibits a broad and natural class of
languages that a 2QCFA can recognize in exponential time, but not in subexponential time.

I Corollary 29. ∀G ∈ U \ GvAb, we have WG ∈ coRQE2QCFAQ but WG 6∈ B2QCFA(2o(n)).

We have also recently shown thatWG ∈ coRQP2QCFAQ(2) ⊆ BQP2QCFA, ∀G ∈ GvAb [27,
Theorem 1.2]. By Theorem 28, if WG ∈ BQP2QCFA, then G ∈ GvNilp. This naturally raises
the question of whether or not there is some G ∈ GvNilp \ GvAb such that WG ∈ BQP2QCFA.
Consider the (three-dimensional discrete) Heisenberg group H = 〈x, y, z|z = [x, y], [x, z] =
[y, z] = 1〉. WH is a natural choice for a potential “hard” word problem for 2QCFA, due
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to the lack of faithful finite-dimensional unitary representations of H (see [27] for further
discussion). We next show that if WH 6∈ BQP2QCFA, then we have a complete classification
of those word problems recognizable by 2QCFA in polynomial time.

I Proposition 30. If WH 6∈ BQP2QCFA, then WG ∈ BQP2QCFA⇔ G ∈ GvAb.

Proof. By the above discussion, it suffices to show the following claim: if WG ∈ BQP2QCFA,
for some G ∈ GvNilp \ GvAb, then WH ∈ BQP2QCFA. Begin by noting that ∀G ∈ GvNilp \
GvAb, G has a subgroup isomorphic to H [20, Theorem 12]. It is straightforward to see that
BQP2QCFA is closed under inverse homomorphism and intersection with regular languages.
Therefore, if WG ∈ BQP2QCFA, then WH ∈ BQP2QCFA [20, Lemma 2]. J
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Abstract
Counting CSPd is the counting constraint satisfaction problem (#CSP in short) restricted to the
instances where every variable occurs a multiple of d times. This paper revisits tractable structures
in #CSP and gives a complexity classification theorem for #CSPd with algebraic complex weights.
The result unifies affine functions (stabilizer states in quantum information theory) and related
variants such as the local affine functions, the discovery of which leads to all the recent progress on
the complexity of Holant problems.

The Holant is a framework that generalizes counting CSP. In the literature on Holant problems,
weighted constraints are often expressed as tensors (vectors) such that projections and linear
transformations help analyze the structure. This paper gives an example showing that different
classes of tensors distinguished by these algebraic operations may share the same closure property
under tensor product and contraction.
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1 Introduction

In the constraint satisfaction problem (CSP), constraints are specified by relations on a
finite domain D = {0, 1, ..., q − 1} with q ≥ 2. A relation R ⊆ Dn can be seen as a function
fR : Dn → {0, 1} where fR(x) = 1 if and only if x ∈ R. To express weighted constraints,
we replace relations with complex-valued functions. Let C denote the set of algebraic
complex numbers. Throughout this paper, we refer to them simply as complex numbers.
Let F = {f1, ..., fl} be a finite function set where fi : Dni → C with arity ni > 0. Then the
weighted counting CSP specified by the set F , denoted by #CSP(F), is defined as follows.
An input instance I of the problem consists of

A finite set of variables V = {x1, ..., xn};
A finite set of constraints {(F1,x1), ..., (Fm,xm)} where Fi ∈ F and xi ∈ V arity(Fi) is a
tuple of (not necessarily distinct) variables.

Following [4], we say that the instance I defines a function of arity n:

FI(x1, ..., xn) =
m∏
i=1

Fi(xi).
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The output of the problem #CSP(F) is the following sum (also called the partition function):

Z(I) =
∑

x∈Dn

FI(x).

The problem is the counting version of a classical CSP, if we restrict F to functions with
range {0, 1}. Weighted constraints make the #CSP framework more expressive. For a binary
function f : D2 → C, #CSP(f) is the problem of counting graph homomorphisms into the
graph on D with edge weights f(i, j). A wide range of graph parameters can be encoded
by graph homomorphisms (see, e.g. [22]), which also play an important role in statistical
physics.

The complexity of counting CSP has been intensively studied over the last two decades.
Bulatov [3] first gave a complexity dichotomy theorem for unweighted #CSPs: Each problem
is either solvable in polynomial time or proved to be #P-hard. Understanding the proof
requires knowledge of universal algebra. Later, Dyer and Richerby [18] found a new tractability
criterion and their proof is elementary. Based on the techniques developed for unweighted
#CSP, the dichotomy was generalized to cover nonnegative [6] and complex weights [4].
Given a function F : Dn → C, we use F [t], for each t ∈ [n] = {1, ..., n}, to denote the
following function of arity t:

F [t](x1, ..., xt) =
∑

xt+1,...,xn

F (x1, ..., xt, xt+1, ..., xn).

And for a function set F , we define the set

WF = {F [t] |F is a function defined by an instance of #CSP(F) and 1 ≤ t ≤ arity of F}.

The dichotomy theorem for complex-weighted #CSP is stated as follows.

I Theorem 1 ([4]). Let F be a finite set of complex-valued functions. The problem #CSP(F)
is solvable in polynomial time if the set WF satisfies three conditions: the Block Orthogonality
condition, the Type Partition condition, and the Mal’tsev condition. Otherwise #CSP(F) is
#P-hard.

Roughly speaking, the three conditions require the function defined by any instance to
be well-structured, such that the sum of function values can be computed by an efficient
algorithm instead of brute-force enumeration. Actually, even if a problem #CSP(F) is
#P-hard, it is still possible that the algorithm succeeds on a nontrivial subset of instances.
In this paper, we consider a special case denoted by #CSPd, which was first studied by
Huang and Lu [20].

I Definition 2. Let d ≥ 1 be an integer and let F be a set of complex-valued functions.
The problem #CSPd(F) is the restriction of #CSP(F) to the instances where every variable
occurs a multiple of d times.

By definition, if d = 1, then the problem #CSPd(F) is exactly #CSP(F). For a function
set F , #CSPd(F) is a subproblem of #CSP(F). We consider a subset of WF :

Wd
F = {F [t] |F is a function defined by an instance of #CSPd(F) and 1 ≤ t ≤ arity of F}.

A slight modification of the proof of Theorem 1 yields a unified dichotomy theorem for
the #CSPd family.
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I Theorem 3. Let d ≥ 1 be an integer and let F be a finite set of complex-valued functions.
The problem #CSPd(F) is solvable in polynomial time if the set Wd

F satisfies three conditions:
the Block Orthogonality condition, the Type Partition condition, and the Mal’tsev condition.
Otherwise #CSPd(F) is #P-hard.

The tractability criteria survive because, as mentioned before, they are imposed on
definable functions and hence not sensitive to how many times a variable appears in an
instance. Unfortunately, none of the three conditions is known to be decidable. It is desirable
to derive more explicit criteria for constraint functions instead of the functions “generated”
by them. However, closed-form formulas or a succinct description of the function values
might not exist for arbitrary domains. In graph homomorphisms with real or complex weights
[19, 5], the classification of binary functions is explicit but very complicated.

By the definition of #CSP, a variable can occurs arbitrarily many times in an instance.
However, in many graph satisfaction problems like matchings, vertices are viewed as con-
straints and edges as variables. That is, each variable appears exactly twice. Inspired by
holographic algorithms [24], Cai, Lu, and Xia [13] proposed the Holant framework.

I Definition 4. The problem Holant(F) is the restriction of #CSP(F) to the instances where
every variable occurs exactly twice.

On the one hand, the Holant is more expressive than #CSP because any #CSP(F)
is polynomial-time equivalent to the problem Holant(F ∪ {EQ}) where EQ(x1, x2, x3) = 1
if x1 = x2 = x3 and otherwise EQ(x1, x2, x3) = 0. One the other hand, by definition,
Holant(F) is a subproblem of #CSP(F). The partition function of a bipartite Holant
instance is invariant under the operations of the linear group GLq(C) on constraint functions.
These operations are also called holographic transformations [24, 13], which turn out to be
one of the new sources of tractability [10, 21, 2, 23].

Early study of Holant problems has a similar flavor to that of #CSP (see, e.g. [17, 13, 12]).
Based on the dichotomy for a special family of Holant problems, Cai, Lu, and Xia [15] gave
an explicit criterion for complex-weighted #CSP on the Boolean domain {0, 1} (Boolean
#CSP in short).

I Theorem 5 ([15]). Let F be a set of complex-valued functions on the Boolean domain.
Then the problem #CSP(F) is solvable in polynomial time if F ⊆ P or F ⊆ A. Otherwise
#CSP(F) is #P-hard.

The definitions of product-type functions P and affine functions A are given in Section 3.
Affine functions are discovered in the first paper on Holant problems [13], and recently these
functions are shown to be equivalent to Clifford gates and stabilizer circuits in quantum
computing [11, 1].

Significant progress has been made towards a complexity dichotomy for complex-weighted
Holant [7, 21, 2, 23, 14, 9]. However, it remains open even on the Boolean domain. Since it
was first proposed, the #CSPd family becomes increasingly important in understanding the
relationship between Holant and #CSP. Cai, Lu, and Xia [16] proved a dichotomy theorem
for Boolean #CSP2 and discovered a new tractable class called local affine functions (see
Definition 15). This result laid the foundation for all the recent progress on real or complex
Holant [2, 8, 23]. In fact, several major Holant dichotomies inevitably go through the #CSPd

family whose complexity, before Theorem 3, is known only for some special cases [20, 16, 8].
Moreover, the proofs of these results on #CSPd are complicated, partially because explicit
criteria are expected as in Theorem 5.
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Although Theorem 3 shows a complexity dichotomy, it is too general to say much about
the Boolean domain. Of course we can check the three conditions and derive a simplified
version, but there is a direct generalization of Theorem 5. Both product-type and affine
functions have a nice closure property: WP ⊆ P and WA ⊆ A. This fact and inspiration
from Theorem 3 lead to the following theorem.

I Theorem 6. Let d ≥ 1 be an integer and let F be a set of complex-valued functions on the
Boolean domain. Then the problem #CSPd(F) is solvable in polynomial time if Wd

F ⊆ P or
Wd
F ⊆ A. Otherwise #CSPd(F) is #P-hard.

The remainder of this paper is organized as follows. In Section 2, we give a proof of
Theorem 3. In Section 3, a simple proof of Theorem 6 is presented. This theorem looks very
different from the previous results. For example, holographic transformations seem necessary
for the definition of the local affine functions and the algorithm that efficiently solves the
problem they define. It will be clear why these transformations disappear in Theorem 6.
Some concluding remarks appear in Section 4.

2 On General Finite Domains

This section is devoted to the proof Theorem 3. Most of the work was done in [4] and we
only show necessary modifications.

Throughout this section, we assume that functions and relations are defined on a fixed
finite domain D = {0, 1, ..., q − 1}. And we use F to denote a finite set of functions on D.
Let ≤T denote the polynomial-time Turing reductions.

I Lemma 7. For any finite set G ⊂ Wd
F , #CSP(G) ≤T #CSPd(F).

Proof. For any function f ∈ G ⊂ Wd
F , there exists some instance If of the problem #CSPd(F)

such that f is exactly the function defined by If . Note that If is of constant size, since G is
a finite set.

Let I1 be an instance of the problem #CSP(G). We replace each constraint (f,x) ∈ I1
with the instance If (in variables x). Then we get a new instance I2 of the problem #CSPd(F)
because the sum of multiples of an integer d is still a multiple of d. It is easy to verify that
Z(I1) = Z(I2). The size of I2 is polynomial in that of I1. J

The readers can find the statements of the conditions of Theorem 1 in [4, Subsection 3.1].
We say that the function set Wd

F violates any of the three conditions, if there exists a finite
set G ⊂ Wd

F violates any of the three. The hardness part of Theorem 1 can be summarized
as follows.

I Lemma 8 (Lemmas 3.2, 3.4, 3.5 in [4]). If a finite function set G violates one of the three
conditions in Theorem 1, then the problem #CSP(G) is #P-hard.

Hardness Part of Theorem 3. Suppose that a finite set G ⊂ Wd
F violates any of the three

conditions. Then the problem #CSP(G) is #P-hard by Lemma 8. Moreover, #CSPd(F) is
#P-hard because #CSP(G) ≤T #CSPd(F). J

Now we consider the algorithmic part.
Consider a relation R ⊆ Dn and a map ϕ : D3 → D. We say the relation R is closed

under the map ϕ, if for any three tuples u = (ui),v = (vi),w = (wi) ∈ R, it holds that

(ϕ(u1, v1, w1), ϕ(u2, v2, w2), ..., ϕ(un, vn, wn)) ∈ R.

In this case, we also say ϕ is a polymorphism of the relation R.
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I Definition 9 (Mal’tsev Polymorphism). Suppose that a relation R ⊆ Dn is closed under a
map ϕ : D3 → D. We say that ϕ is a Mal’tsev polymorphism of R, if

ϕ(a, b, b) = ϕ(b, b, a) = a

for all a, b ∈ D.

Given a function f , we use Rf denote the relation {x ∈ Dn | f(x) 6= 0} (called the support
of f). And for every function f ∈ Wd

F of arity n ≥ 2, a relation Ωf ⊆ D2n−2 is defined as:

(x,y) ∈ Ωf ⇐⇒ f(x, ∗) and f(y, ∗) are both nonzero and linearly dependent,

where f(x, ∗) denotes the q-dimensional vector (f(x, 0), f(x, 1), ..., f(x, q − 1)). Now we
define the set

ΛdF = {Rf | f ∈ Wd
F} ∪ {Ωf | f ∈ Wd

F of arity ≥ 2}.

I Definition 10 (The Mal’tsev Condition). All the relations in ΛdF have a common Mal’tsev
polymorphism.

We have the following lemma after checking the algorithm (say, denoted by A) for
Theorem 1.

I Lemma 11. Suppose that the set Wd
F satisfies the three conditions. Then the algorithm A

can solve the problem #CSPd(F) in polynomial time if all the relations in ΛdF ∪{Rf | f ∈ F}
have a common Mal’tsev polymorphism.

In fact, the Mal’tsev condition already implies the condition in Lemma 11. This completes
the algorithmic part of Theorem 3.

I Lemma 12. Suppose that the Mal’tsev condition holds. Then all the relations in ΛdF ∪
{Rf | f ∈ F} have a common Mal’tsev polymorphism.

Proof. The conclusion is trivial if d = 1, since F ⊂ WF .
For any function f : Dn → C, we consider the function fd(x) = (f(x))d for all x ∈ Dn.

The two functions f and fd have the same support: Rf = Rfd . Then the conclusion follows
because fd ∈ Wd

F for every function f ∈ F . J

Some remarks that may help the readers. A relation R ⊆ Dn with a Mal’tsev poly-
morphism can be of exponential size in n. However, Dyer and Richerby [18] showed that,
there is a succinct representation of R determined by the Mal’tsev polymorphism, called the
witness function, which has linear size in n. Here we do not introduce the definition of the
witness function. Given an instance I, the algorithm A starts with a witness function of the
support RFI

. The algorithm for constructing witness functions, by Dyer and Richerby, works
no matter how many times a variable occurs but only requires a Mal’tsev polymorphism
shared by all the relations Rf for f ∈ F . Lemma 11 covers the requirement, which is
satisfied trivially when d = 1 since {Rf | f ∈ F} ⊂ Λ1

F . Later, the instance I is only used for
evaluating the function FI at some points in Dn. To compute the sum Z(I) =

∑
x∈Dn FI(x),

the algorithm A produces a data structure, called the row representation, for each F
[t]
I

(t ∈ [n]). Now suppose that I is a #CSPd instance. By definition, F [t]
I ∈ Wd

F for all t ∈ [n].
To obtain the row representations, it is sufficient to impose the three conditions onWd

F under
which all the functions and relations involved in the computation are well-structured.
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3 On the Boolean Domain

In this section, all the functions and relations are defined on the Boolean domain D = {0, 1}.
We start with the definition of product-type functions and affine functions. Let EQ(x, y)

denote the equality function: EQ(x, y) = 1 if x = y, otherwise EQ(x, y) = 0. And let
NE(x, y) denote the disequality function: NE(x, y) = 1− EQ(x, y).

I Definition 13 (Product-Type Functions). A function is of product type if it is defined by
a #CSP instance where every constraint function is a unary function or the binary function
EQ or NE. Let P denote the set of all product-type functions.

A Boolean relation is affine if it is the set of solutions to a system of linear equations
over the field Z2. We say that f has affine support if its support is affine. Recall that the
support of f is the relation Rf = {x ∈ {0, 1}n | f(x) 6= 0}.

I Definition 14 (Affine Functions). A function f of arity n is affine if its support is affine
and there is a constant λ ∈ C such that for all x ∈ Rf ,

f(x) = λ · iQ(x),

where i =
√
−1 and Q is a homogeneous quadratic polynomial

Q(x1, ..., xn) =
n∑
i=1

aix
2
i + 2

∑
1≤i<j≤n

bijxixj

with ai ∈ Z4 and bij ∈ {0, 1}. We use A to denote the set of all affine functions.

Proof of Theorem 6. Suppose that there are two functions f, g ∈ Wd
F (they can be the

same) such that f /∈ P and g /∈ A. By Theorem 5, the problem #CSP({f, g}) is #P-hard.
Then #CSPd(F) is also #P-hard since #CSP({f, g}) ≤T #CSPd(F) by Lemma 7.

Now we assume that Wd
F ⊆ P or Wd

F ⊆ A. In both cases, for any instance I, the function
FI (say, of arity n) has affine support and the linear system for the support can be constructed
efficiently from that of the constraint functions. There are two cases:

FI ∈ P. We can determine the variable dependence on the support: xi = xj or xi 6= xj
or they are independent. Then the evaluation of the partition function Z(I) reduces to a
trivial case where every constraint is unary.
FI ∈ A. We can obtain the explicit formula (in Definition 14) for the function FI ,
by evaluating it at O(n2) many points, using the instance I. Then the algorithm for
Theorem 5 is able to compute Z(I). See [15] for more details.

Therefore, the partition function is computable in polynomial time. J

The remainder of this section is devoted to the connection between Theorem 6 and the
dichotomy for Boolean #CSP2 in [16]. Before this, we need to introduce some notations and
definitions.

A function of arity n ≥ 2 can be expressed as a 2n−r × 2r matrix (0 ≤ r ≤ n), denoted
by Mr(f). The rows and columns are indexed by x ∈ {0, 1}n−r and y ∈ {0, 1}r, respectively,
and f(x,y) is the (x,y)th entry of the matrix Mr(f). In particular, when r = 0, Mr(f) is a
column vector of dimension 2n. In the following, we do not distinguish a function from its
matrix representations. The integer r will be clear in matrix multiplication.

Given two matrices A and B, we use A⊗B to denote their tensor product.
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Let α = 1+i√
2 where i =

√
−1. Then α2 = i. And let Mx = [ 1 0

0 x ] for x ∈ C. We define the
following set of functions:

Aα = {M⊗nα g | g ∈ A and n is the arity of g},

which is a tractable class for #CSP2.
Recall that Rf = {x ∈ {0, 1}n | f(x) 6= 0} for a function f of arity n.

I Definition 15 (Local Affine Functions). A function f (of arity n) is called local affine, if
for every element (s1, s2, ..., sn) ∈ Rf ,

(Mαs1 ⊗Mαs2 ⊗ · · · ⊗Mαsn )f ∈ A,

where αs = 1 if s = 0, αs = α if s = 1. The set of all local affine functions is denoted by L.

I Theorem 16 ([16]). Let F be a set of functions on the Boolean domain. If F ⊆ C for
C ∈ {P,A,Aα,L}, then the problem #CSP2(F) is solvable in polynomial time. Otherwise
#CSP2(F) is #P-hard.

Since the theorem above is a special case of Theorem 6, the two tractability criteria
should be compatible. In fact, we have the following observation.

I Lemma 17. If F ⊆ C for C ∈ {P,A,Aα,L}, then W2
F ⊆ P or W2

F ⊆ A.

The algorithms in [16] for the two classes Aα and L start with local transformations
induced by the matrix Mα, such that every constraint function of an instance I becomes
affine and hence the function FI is also affine. However, as stated in Lemma 17, FI is already
affine. Before proving the lemma, we need some preparations.

I Lemma 18 (Closure Property). Let C = P or C = A, then WF ⊆ C for any set F ⊆ C. In
particular, for any n-ary function f ∈ C:

f [t] ∈ C for all t ∈ [n];
fπ ∈ C for any permutation π on [n], where fπ(x1, x2, ..., xn) = f(xπ(1), xπ(2), ..., xπ(n)).

Proof. We only show that g(x1, ..., xn−1) =
∑
xn∈{0,1} f(x1, ..., xn−1, xn) ∈ C for any n-ary

function f ∈ C. The case C = A was proved in [11, Lemma 3.1]. Now suppose that f ∈ P.
By the definition of product-type functions, it is sufficient to consider the case where f has
support

Rf ⊆ {(u1, ..., un), (1− u1, ..., 1− un)} for some ui ∈ {0, 1}.

It then follows that Rg ⊆ {(u1, ..., un−1), (1− u1, ..., 1− un−1)}. Thus g ∈ P. J

I Lemma 19 (Closure under Matrix Multiplication). Let f ∈ A be a function of arity n. And
let g ∈ A be a function of arity m. Then it holds that

Mr(f)Mm−r(g) ∈ A,

for all 0 ≤ r ≤ min{n,m}.

Proof. For any 0 ≤ r ≤ min{n,m}, we consider the function of arity n+m− 2r:

h(x1, ..., xn−r, y1, ..., ym−r)

=
∑

z1,...,zr∈{0,1}

f(x1, ...., xn−r, z1, ..., zr)g(z1, ..., zr, y1, ..., ym−r).

Then it follows that Mm−r(h) = Mr(f)Mm−r(g). By Lemma 18, we have h ∈ A. J
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I Lemma 20 (Closure under Tensor Product). Let A,B ∈ A be two matrices. Then A⊗B ∈ A.

Proof. Let f, g ∈ A be two functions such that A = Mr(f) and B = Mt(f) for some integers
r, t ≥ 0. Consider the function

h(x,y, z,w) = f(x, z)g(y,w)

where z ∈ {0, 1}r and w ∈ {0, 1}t. Then A⊗B = Mr+t(h). J

I Lemma 21. Let f be a function of arity n. Suppose that there exist matrices A1, A2, ..., An ∈{[ 1 0
0 ir
]
| r = 0, 1, 2, 3

}
where i =

√
−1, such that (A1 ⊗A2 ⊗ · · · ⊗An)f ∈ A. Then f ∈ A.

Proof. Set A = A1 ⊗ A2 ⊗ · · · ⊗ An. The matrix A is invertible and A−1 = A−1
1 ⊗ A−1

2 ⊗
· · · ⊗A−1

n ∈ A by Lemma 20. Then it follows that f = (A−1A)f = A−1(Af) ∈ A, according
to Lemma 19. J

Now we are ready to prove Lemma 17.

Proof of Lemma 17. Due to the closure property of product-type and affine functions
(Lemma 18), the two cases F ⊆ Aα and F ⊆ L remain to be verified. Furthermore, by
Lemma 18, we only need to check the definable functions.

Let I be an instance of #CSP2(F). Suppose that the instance I has n variables
{x1, x2, ..., xn} and m constraints {(f1,x1), (f2,x2), ..., (fm,xm)}. Then the function de-
fined by I is

FI(x1, ..., xn) = f1(x1)f2(x2) · · · fm(xm).

Suppose that each variable xj occurs kj times in the instance I. By definition, kj is even for
each j ∈ [n] and we set k = k1 + k2 + · · ·+ kn.

Consider the function of arity k: g = f1 ⊗ f2 ⊗ · · · ⊗ fm. There is a permutation π on [k]
such that

FI(x1, ..., xn) = gπ(x1, ..., x1︸ ︷︷ ︸
k1 times

, x2, ..., x2︸ ︷︷ ︸
k2 times

, ..., xn, ..., xn︸ ︷︷ ︸
kn times

).

Suppose that F ⊆ L. We show that FI ∈ A. If the function FI is identically zero, then
we are done. Suppose not. Then there exist s1, s2, ..., sn ∈ {0, 1} such that

FI(s1, s2, ..., sn) = gπ(s1, ..., s1︸ ︷︷ ︸
k1 times

, s2, ..., s2︸ ︷︷ ︸
k2 times

, ..., sn, ..., sn︸ ︷︷ ︸
kn times

) 6= 0.

By the definition of local affine functions, we have

(M⊗k1
αs1 ⊗M⊗k2

αs2 ⊗ · · · ⊗M⊗kn
αsn )gπ ∈ A. (∗)

The relation between the two functions FI and gπ shows that

(Mk1
αs1 ⊗Mk2

αs2 ⊗ · · · ⊗Mkn
αsn )FI ∈ A.

For each j ∈ [n], Mkj

αsj ∈
{[ 1 0

0 ir
]
| r = 0, 1, 2, 3

}
, since kj is even. By Lemma 21, we have

FI ∈ A.
Now suppose that F ⊆ Aα. However, this case has been considered, because the relation

(∗) holds by setting s1 = s2 = · · · = sn = 1. This completes the proof. J
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4 Conclusion

Local affine functions partially reflect the difficulty in proving a Holant dichotomy: Nice
structures hide in strange supports and we lack powerful tools.

Theorem 3 and Theorem 6 give a unified complexity dichotomy for the whole #CSPd

family. Being abstract enough, they reveal that essentially there is no new tractable structure
for d > 1. This fact is obtained by considering barriers to efficient evaluations of the partition
functions, but not simply the set of constraint functions which defines the problem though.
Moreover, the proof of Theorem 6 is much simpler than those of the partial results on #CSPd.

It is not clear whether or not the dichotomies in this paper can help the study of Holant
problems at large. They are much more conceptual than existing dichotomies and techniques
for the Holant.
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prover, what is the complexity of verifying that a given hypothesis is “approximately correct”? We
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A simple idea underpins science: “trust, but verify”. Results should always be subject to
challenge from experiment. That simple but powerful idea has generated a vast body of
knowledge. Since its birth in the 17th century, modern science has changed the world beyond
recognition, and overwhelmingly for the better. But success can breed complacency. Modern
scientists are doing too much trusting and not enough verifying – to the detriment of the
whole of science, and of humanity.

The Economist, “How Science Goes Wrong” (2013)

1 Introduction

Data and data-driven algorithms are transforming science and society. State-of-the-art ma-
chine learning and statistical analysis algorithms use access to data at scales and granularities
that would have been unimaginable even a few years ago. From medical records and genomic
information to financial transactions and transportation networks, this revolution spans
scientific studies, commercial applications and the operation of governments. It holds trans-
formational promise, but also raises new concerns. If data analysis requires huge amounts
of data and computational power, how can one verify the correctness and accuracy of the
results? Might there be asymmetric cases, where performing the analysis is expensive, but
verification is cheap?

There are many types of statistical analyses, and many ways to formalize the notion of
verifying the outcome. In this work we focus on interactive proof systems [12] for verifying
supervised learning, as defined by the PAC model of learning [22]. Our emphasis throughout
is on access to the underlying data distribution as the critical resource: both quantitatively
(how many samples are used for learning versus for verification), and qualitatively (what
types of samples are used). We embark on tackling a series of new questions:

Suppose a learner (which we also call prover) claims to have arrived at a good hypothesis
with regard to an unknown data distribution by analyzing random samples from the distribu-
tion. Can one verify the quality of the hypothesis with respect to the unknown distribution
by using significantly fewer samples than the number needed to independently repeat the
analysis? The crucial difference between this question and questions that appear in the
property testing and distribution testing literature is that we allow the prover and verifier
to engage in an interactive communication protocol (see Section 1.1.1 for a comparison).
We are interested in the case where both the verifier and an honest prover are efficient (i.e.,
use polynomial runtime and sample complexity), and furthermore, a dishonest prover with
unbounded computational resources cannot fool the verifier:

I Question 1 (Runtime and sample complexity of learning vs. verifying). Are there machine
learning tasks for which the runtime and sample complexity of learning a good hypothesis is
significantly larger than the complexity of verifying a hypothesis provided by someone else?
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In the learning theory literature, various types of access to training data have been
considered, such as random samples, membership queries, and statistical queries. In the
real world, some types of access are more costly than others. Therefore, it is interesting to
consider whether it is possible to verify a hypothesis using a cheaper type of access than is
necessary for learning:

I Question 2 (Sample type of learning vs. verifying). Are there machine learning problems
where membership queries are necessary for finding a good hypothesis, but verification is
possible using random samples alone?

The answers to these fundamental questions are motivated by real-world applications. If
data analysis requires huge amounts of data and computational resources while verification
is a simpler task, then a natural approach for individuals and weaker entities would be to
delegate the data collection and analysis to more powerful entities. Going beyond machine
learning, this applies also to verifying the results of scientific studies without replicating the
entire experiment. We elaborate on these motivating applications in Section 1.2 below.

1.1 PAC Verification: A Proposed Model
Our primary focus in this work is verifying the results of agnostic supervised machine learning
algorithms that receive a labeled dataset, and aim to learn a classifier that predicts the labels
of unseen examples. We introduce a notion of interactive proof systems for verification of
PAC learning, which we call PAC Verification (see Definition 4). Here, the entity running the
learning algorithms (which we refer to as the prover or the learner) proves the correctness of
the results by engaging in an interactive communication protocol with a verifier. One special
case is where the prover only sends a single message constituting an (NP-like) certificate of
correctness. The honest prover should be able to convince the verifier to accept its proposed
hypothesis with high probability. A dishonest prover (even an unbounded one) should not be
able to convince the verifier to accept a hypothesis that is not sufficiently good (as defined
below), except with small probability over the verifier’s random coins and samples. The
proof system is interesting if the amount of resources used for verification is significantly
smaller than what is needed for performing the learning task. We are especially interested in
doubly-efficient proof systems [11], where the honest prover also runs in polynomial time.

More formally, let X be a set, and consider a distribution D over samples of the form
(x, y) where x ∈ X and y ∈ {0, 1}. Assume there is some hypothesis class H, which is a set
of functions X → {0, 1}, and we are interested in finding a function h ∈ H that predicts the
label y given a previously unseen x with high accuracy with respect to D. To capture this we
use the loss function LD(h) = P(x,y)∈D [h(x) 6= y]. Our goal is to design protocols consisting
of a prover and verifier that satisfy: (i) When the verifier interacts with an honest prover,
with high probability the verifier outputs a hypothesis h that is ε-good, meaning that

LD(h) ≤ LD(H) + ε, (1)

where LD(H) = inff∈H LD(f); (ii) For any (possibly dishonest and unbounded) prover, the
verifier can choose to reject the interaction, and with high probability the verifier will not
output a hypothesis that is not ε-good.

Observe that in the realizable case (or promise case), where we assume that LD(H) = 0,
one immediately obtains a strong result: given a hypothesis h̃ proposed by the prover, a
natural strategy for the verifier is to take a few samples from D, and accept if and only if
h̃ classifies at most, say, an 9

10ε-fraction of them incorrectly. From Hoeffding’s inequality,
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taking O
( 1
ε2

)
samples is sufficient to ensure that with probability at least 9

10 the empirical
loss1 of h̃ is ε

10 -close to the true loss. Therefore, if LD(h̃) ≤ 8
10ε then h̃ is accepted with

probability at least 9
10 , and if LD(h̃) > ε then h̃ is rejected with probability at least 9

10 . In
contrast, PAC learning a hypothesis that with probability at least 9

10 has loss at most ε
requires Ω

(
d
ε

)
samples, where the parameter d, which is the VC dimension of the class, can

be arbitrarily large.2 That is, in the realizable case there is a sample complexity and time
complexity separation of unbounded magnitude between learning and verifying. Furthermore,
this result holds also under the weaker assumption that LD(H) ≤ ε

2 .
Encouraged by this strong result, the present paper focuses on the agnostic case, where no

assumptions are made regarding LD(H). Here, things become more interesting, and deciding
whether a proposed hypothesis h̃ is ε-good is non-trivial. Indeed, the verifier can efficiently
estimate LD(h̃) using Hoeffding’s inequality as before, but estimating the term LD(H) on
the right hand side of (1) is considerably more challenging. If h̃ has a loss of say 15%, it
could be an amazingly-good hypothesis compared to the other members of H, or it could be
very poor. Distinguishing between these two cases may be difficult when H is a large and
complicated class.

1.1.1 Related Models
We discuss two related models studied in prior work, and their relationship to the PAC
verification model proposed in this work.

Property Testing. Goldreich, Goldwasser and Ron [9] initiated the study of a property
testing problem that naturally accompanies proper PAC learning: Given access to samples
from an unknown distribution D, decide whether LD(H) = 0 or LD(H) ≥ ε for some fixed
hypothesis class H. Further developments and variations appeared in Kearns and Ron [15]
and Balcan et. al [2]. Blum and Hu [4] consider tolerant closeness testing and a related
task of distance approximation (see [19]), where the algorithm is required to approximate
LD(H) up to a small additive error. As discussed above, the main challenge faced by the
verifier in PAC verification is approximating LD(H). However, there is a crucial difference
between testing and PAC verification: In addition to taking samples from D, the verifier in
PAC verification can also interact with a prover, and thus PAC verification can (potentially)
be easier than testing. Indeed, this difference is exemplified by the proper testing question,
where we only need to distinguish the zero-loss case from large loss. As discussed above,
proper PAC verification is trivial. Proper testing, one the other hand, can be a challenging
goal (and, indeed, has been the focus of a rich body of work). For the tolerant setting, we
prove a separation between testing and PAC verification: we show a hypothesis class for
which the help of the prover allows the verifier to save a (roughly) quadratic factor over the
number of samples that are required for closeness testing or distance approximation. See
Section 3 for further details.

Proofs of Proximity for Distributions. Chiesa and Gur [6] study interactive proof systems
for distribution testing. For some fixed property Π, the verifier receives samples from an
unknown distribution D, and interacts with a prover to decide whether D ∈ Π or whether D is
ε-far in total variation distance from any distribution in Π. While that work does not consider

1 I.e., the fraction of the samples that is misclassified.
2 See preliminaries in [13, Section 1.6.2] for more about VC dimension.
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machine learning, the question of verifying a lower bound ` on the loss of a hypothesis class
can be viewed as a special case of distribution testing, where Π = {D : LD(H) ≥ `}. Beyond
our focus on PAC verification, an important distinction between the works is that in Chiesa
and Gur’s model and results, the honest prover’s access to the distribution is unlimited – the
honest prover can have complete information about the distribution. In this paper, we focus
on doubly-efficient proofs, where the verifier and the honest prover must both be efficient in
the number of data samples they require. With real-world applications in mind, this focus
seems quite natural.3

We survey further related works in Section 1.5 in the full version of the paper [13].

1.2 Applications
The P vs. NP problem asks whether finding a solution ourselves is harder than verifying a
solution supplied by someone else. It is natural to ask a similar question in learning theory:
Are there machine learning problems for which learning a good hypothesis is harder than
verifying one proposed by someone else? We find this theoretical motivation compelling in
and of itself. Nevertheless, we now proceed to elaborate on a few more practical aspects of
this question.

1.2.1 Delegation of Learning
In a commercial context, consider a scenario in which a client is interested in developing
a machine learning (ML) model, and decides to outsource that task to a company P that
provides ML services. For example, P promises to train a deep neural net using a big server
farm. Furthermore, P claims to possess a large amount of high quality data that is not
available to the client, and promises to use that data for training.

How could the client ascertain that a model provided by P is actually a good model?
The client could use a general-purpose cryptographic delegation-of-computation protocol,
but that would be insufficient. Indeed, a general-purpose delegation protocol can only ensure
that P executed the computation as promised, but it cannot provide any guarantees about
the quality of the outcome, and in particular cannot ensure that the outcome is ε-good: If P
used skewed or otherwise low-quality training data (whether maliciously or inadvertently),
a general-purpose delegation protocol has no way of detecting that. Moreover, even if the
the data and the execution of the computation were both flawless, this still provides no
guarantees on the quality of the output, because an ML model might have poor performance
despite being trained as prescribed.4,5

A different solution could be to have P provide a proof to establish that its output is
indeed ε-good. In cases where the resource gap between learning and verifying is significant
enough, the client could cost-effectively verify the proof, obtaining sound guarantees on the
quality of the ML model it is purchasing from P .

3 In Chiesa and Gur’s setting, it would also be sufficient for the prover to only know the distribution up
to O(ε) total variation distance, and this can be achieved using random samples from the distribution.
However, the number of samples necessary for the prover would be linear in the domain size, which
is typically exponential, and so this approach would not work for constructing doubly-efficient PAC
verification protocols.

4 E.g., a neural network might get stuck at a local minimum.
5 Additionally, note that state-of-the-art delegation protocols are not efficient enough at present to make

it practicable to delegate intensive ML computations. See the survey by Walfish and Blumberg [23] for
progress and challenges in developing such systems.
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1.2.2 Verification of Scientific Studies
It has been claimed that many or most published research findings are false [14]. Others refer
to an ongoing replication crisis [20, 7], where many scientific studies are hard or impossible
to replicate or reproduce [21, 3]. Addressing these issues is a scientific and societal priority.

There are many factors contributing to this problem, including: structural incentives
faced by researchers, scientific journals, referees, and funding bodies; the level of statistical
expertise among researchers and referees; differences in the sources of data used for studies
and their replication attempts; choice of standards of statistical significance; and norms
pertaining to the publication of detailed replicable experimental procedures and complete
datasets of experimental results.

We stress that the current paper does not touch on the majority of these issues, and
our discussion of the replication crisis (as well as our choice of quotation at the beginning
of the paper) does not by any means suggest that adoption of PAC verification protocols
will single-handedly solve all issues pertaining to replication. Rather, the contribution of
the current paper with respect to scientific replication is very specific: we suggest that for
some specific types of experiments, PAC verification can be used to design protocols that
allow to verify the results of an experiment in a manner that uses a quantitatively smaller
(or otherwise cheaper) set of independent experimental data than would be necessary for a
traditional replication that fully repeats the original experiment. In [13, Appendix A] we
list four such types of experiments. We argue that devising PAC verification protocols that
make scientific replication procedures even modestly cheaper for specific types of experiments
is a worthwhile endeavor that could help increase the amount of scientific replication or
verification that occurs, and decrease the prevalence of errors that remain undiscovered in
the scientific literature.

1.3 Our Setting
In this paper we consider the following form of interaction between a verifier and a prover.

Verifier

Oracle OV
[

h̃ or “reject”

Prover

Oracle OP
[

w1 = h̃

w2

. . .

. . .

wt

Figure 1 The verifier and prover each have access to an oracle, and they exchange messages with
each other. Eventually, the verifier outputs a hypothesis, or rejects the interaction. One natural case
is where the prover suggests a hypothesis h̃, and the verifier either accepts or rejects this suggestion.

Let H ⊆ {0, 1}X be a class of hypotheses, and let D be a distribution over X × {0, 1}.
The verifier and the prover each have access to an oracle, denoted OV and OP respectively.
In the simplest case, both oracles provide i.i.d. samples from D. That is, each time an oracle
is accessed, it returns a sample from D taken independently of all previous samples and
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events. In addition, the verifier and prover each have access to a (private) random coin value,
denoted ρV and ρP respectively, which are sampled from some known distributions over
{0, 1}∗ independently of each other and of all other events. During the interaction, the prover
and verifier take turns sending each other messages w1, w2, . . . , where wi ∈ {0, 1}∗ for all i.
Finally, at some point during the exchange of messages, V halts and outputs either “reject”
or a hypothesis h : X → {0, 1}. The goal of the verifier is to output an ε-good hypothesis,
meaning that

LD(h) ≤ LD(H) + ε.

A natural special case of interest is when the prover’s and verifier’s oracles provide sample
access to D. The prover can learn a “good” hypothesis h̃ : X → {0, 1} and send it to the
verifier as its first message, as in Figure 1 above. The prover and verifier then exchange
further messages, wherein the prover tries to convince the verifier that h̃ is ε-good, and the
verifier tries to asses the veracity of that claim. If the verifier is convinced, it outputs h̃,
otherwise it rejects.

We proceed with an informal definition of PAC verification (see full definitions in Sec-
tion 1.5). Before doing so, we first recall a relaxed variant of PAC learning, called semi-agnostic
PAC learning, where we allow a multiplicative slack of α ≥ 1 in the error guarantee.

I Definition (α-PAC Learnability – informal version of [13, Definition 1.22]). A class of
hypothesis H is α-PAC learnable (or semi-agnostic PAC learnable with parameter α) if there
exists an algorithm A such that for every distribution D and every ε, δ > 0, with probability
at least 1− δ, A outputs h that satisfies

LD(h) ≤ α · LD(H) + ε. (2)

PAC verification is the corresponding notion for interactive proof systems:

I Definition (α-PAC Verifiability – informal version of Definition 4). A class of hypothesis
H is α-PAC verifiable if there exists a pair of algorithms (P, V ) that satisfy the following
conditions for every distribution D and every ε, δ > 0:

Completeness. After interacting with P , V outputs h such that with probability at least
1− δ, h 6= reject and h satisfies (2).
Soundness. After interacting with any (possibly unbounded) prover P ′, V outputs h
such that with probability at least 1− δ, either h = reject or h satisfies (2).

I Remark 1. We insist on double efficiency; that is, that the sample complexity and running
times of both V and P must be polynomial in 1

ε , log
( 1
δ

)
, and perhaps also in some parameters

that depend on H, such as the VC dimension or Fourier sparsity of H. y

1.4 Overview of Results
In this paper, we start charting the landscape of machine learning problems with respect to
Questions 1 and 2 mentioned above. First, in Section 2 we provide evidence for an affirmative
answer to Questions 2. We show an interactive proof system that efficiently verifies the class
of Fourier-sparse boolean functions, where the prover uses an oracle that provides query
access, and the verifier uses an oracle that only provides random samples. In this proof
system, both the verifier and prover send and receive messages.
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The class of Fourier-sparse functions is very broad, and includes decision trees, bounded-
depth boolean circuits and many other important classes of functions. Moreover, the result
is interesting because it supplements the widely-held learning parity with noise (LPN)
assumption, which entails that PAC learning this class from random samples alone without
the help of a prover is hard [5, 24].

I Lemma (Informal version of Lemma 14). Let H be the class of boolean functions {0, 1}n → R
that are t-sparse.6 Then H is 1-PAC verifiable with respect to the uniform distribution using
a verifier that has access only to random samples of the form (x, f(x)), and a prover that has
query access to f . The verifier in this protocol is not proper; the output is not necessarily
t-sparse, but it is poly(n, t)-sparse. The number of samples used by the verifier, the number of
queries made by the prover, and their running times are all bounded by poly

(
n, t, log

( 1
δ

)
, 1
ε

)
.

Proof Idea. The proof uses two standard tools, albeit in a less-standard way. The first
standard tool is the Kushilevitz-Mansour algorithm [16], which can PAC learn any t-sparse
function using random samples, but only if the set of non-zero Fourier coefficients is known.
The second standard tool is the Goldreich-Levin algorithm [10] and [8, Section 2.5.2.3], which
can identify the set of non-zero Fourier coefficients, but requires query access in order to do
so. The protocol combines the two tools in a manner that overcomes the limitations of each
of them. First, the verifier executes the Goldreich-Levin algorithm, but whenever it needs
to query the target function, it requests that the prover perform the query and send back
the result. However, the verifier cannot trust the prover, and so the verifier engineers the
queries in such a way that the answers to a certain random subset of the queries are known
to the verifier based on its random sample access. This allows the verifier to detect dishonest
provers. When the Goldreich-Levin algorithm terminates and outputs the set of non-zero
coefficients, the verifier then feeds them as input to the Kushilevitz-Mansour algorithm to
find an ε-good hypothesis using its random sample access. J

In [13, Section 3] we formally answer Question 1 affirmatively by showing that a certain
simple class of functions (generalized thresholds) exhibits a quadratic gap in sample complexity
between learning and verifying:

I Lemma (Informal version of Lemma 15). There exists a sequence of classes of functions
T1, T2, T3, ... ⊆ {0, 1}R such that for any fixed ε, δ ∈ (0, 1

2 ):
(i) The class Td is proper 2-PAC verifiable, where both the verifier and prover have access

to random samples, and the verifier requires only Õ
(√

d
)
samples. Moreover, both the

prover and verifier are efficient.
(ii) PAC learning the class Td requires Ω(d) samples.

At this point, a perceptive reader would be justified in raising the following challenges.
Perhaps 2-PAC verification requires less samples than 1-PAC learning simply because of the
multiplicative slack factor of 2? Alternatively, perhaps the separation follows trivially from
property testing results: maybe it is possible to achieve 2-PAC verification simply by having
the verifier perform closeness testing using random samples, without needing the help of the
prover except for finding the candidate hypothesis? The second part of the lemma dismisses
both of these concerns.

6 A function f : {0, 1}n → R is t-sparse if it has at most t non-zero Fourier coefficients, namely
|{S ⊆ [n] : f̂(S) 6= 0}| ≤ t. See preliminaries in [13, Section 1.6.3] for further details.
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I Lemma (Informal version of Lemma 15 – Continued). Furthermore, for any fixed ε, δ ∈ (0, 1
2 ):

(iii) 2-PAC learning the class Td requires Ω̃(d) samples. This is true even if we assume that
LD(Td) > 0, where D is the underlying distribution.7

(iv) Testing whether LD(Td) ≤ α or LD(Td) ≥ β for any 0 < α < β < 1
2 with success

probability at least 1 − δ when D is an unknown distribution (without the help of a
prover) requires Ω̃ (d) random samples from D.

Proof Idea. (ii) follows from a standard application of [13, Theorem 1.13], because VC (Td) =
d. (iii) follows by a reduction from (iv). We prove (iv) by showing a further reduction from
the problem of approximating the support size of a distribution, and applying a lower bound
for that problem (see [13, Theorem 3.20]).

For (i), recall from the introduction that the difficulty in designing a PAC verification
proof system revolves around convincing the verifier that the term LD(H) in Equation (1) is
large. Therefore, we design our class Td such that it admits a simple certificate of loss, which
is a string that helps the verifier ascertain that LD(H) ≥ ` for some value `.

To see how that works, first consider the simple class T1 of monotone increasing threshold
functions R → {0, 1}, as in Figure 5a on page 17 below. Observe that if there are two
events A = [0, a) × {1} and B = [b, 1] × {0} such that a ≤ b and D(A) = D(B) = `, then
it must be the case that LD(T1) ≥ `. This is true because a ≤ b, and so if a monotone
increasing threshold classifies any point in A correctly it must classify all point in B incorrectly.
Furthermore, if the prover sends a description of A and B to the verifier, then the verifier can
check, using a constant number of samples, that each of these events has weight approximately
` with high probability.

This type of certificate of loss can be generalized to the class Td, in which each function
is a concatenation of d monotone increasing thresholds. A certificate of loss for Td is simply
a set of d certificates of loss {Ai, Bi}di=1, one for each of the d thresholds. The question
that arises at this point is how can the verifier verify d separate certificates while using only
Õ
(√

d
)
samples. This is performed using tools from distribution testing: the verifier checks

whether the distribution of “errors” in the sets specified by the certificates is close to the
prover’s claims. I.e., whether the “weight” of 1-labels in each Ai and 0-labels in each Bi in
the actual distribution, are close to the weights claimed by the prover. Using an identity
tester for distributions this can be done using O(

√
d) samples (note that the identity tester

need not be tolerant!). See [13, Theorem E.1] for further details. J

In contrast, in [13, Section 4] we show that verification is not always easier than learning:

I Lemma (Informal version of [13, Lemma 4.1]). There exists a sequence of classes H1,H2, . . .

such that:
It is possible to PAC learn the class Hd using Õ(d) samples.
For any interactive proof system that proper 1-PAC verifies Hd, in which the verifier uses
an oracle providing random samples, the verifier must use at least Ω(d) samples.

I Remark 2. The lower bound on the sample complexity of the verifier holds regardless of
what oracle is used by the prover. y

Proof Idea. We specify a set X of cardinality Ω(d2), and take Hd to be a randomly-chosen
subset of all the balanced functions X → {0, 1} (i.e., functions f such that |f−1(0)| =
|f−1(1)|). The sample complexity of PAC learning Hd follows from its VC dimension being

7 In the case where LD(Td) = 0, 2-PAC learning is the same as PAC learning, so the stronger lower bound
in (ii) applies.
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Õ(d). For the lower bound, consider proper PAC verifying Hd in the special case where the
distribution D satisfies P(x,y)∈D [y = 1] = 1, but the marginal of D on X is unknown to the
verifier. Because every hypothesis in the class assigns the incorrect label 0 to precisely half
of the domain, a hypothesis achieves minimal loss if it assigns the 0 labels to a subset of size
|X |
2 that has minimal weight. Hence, the verifier must learn enough about the distribution

to identify a specific subset of size |X |2 with weight close to minimal. We show that doing so
requires Ω

(√
|X |
)

= Ω(d) samples. J

Finally, in [13, Section 5] we show that in the setting of semi-supervised learning, where
unlabeled samples are cheap, it is possible to perform PAC verification such that the verifier
requires significantly less labeled samples than are required for learning. This verification uses
a technique we call query delegation, and is efficient in terms of time complexity whenever
there exists an efficient ERM algorithm that PAC learns the class using random samples.

1.5 Definition of PAC Verification
In Section 1.3 we informally described the setting of this paper. Here, we complete that
discussion by providing a formal definition of PAC verification, which is the main object of
study in this paper.

I Notation 3. We write [V OV (xV ), POP (xP )] for the random variable denoting the output
of the verifier V after interacting with a prover P , when V and P receive inputs xV and
xP respectively, and have access to oracles OV and OP respectively. The inputs xV and xP
can specify parameters of the interaction, such as the accuracy and confidence parameters
ε and δ. This random variable takes values in {0, 1}X ∪ {reject}, namely, it is either a
function X → {0, 1} or it is the value “reject”. The random variable depends on the (possibly
randomized) responses of the oracles, and on the random coins of V and P .

For a distribution D, we write V D (or PD) to denote use of an oracle that provides i.i.d.
samples from the distributions D. Likewise, for a function f , we write V f (or P f ) to denote
use of an oracle that provides query access to f . That is, in each access to the oracle, V (or
P ) sends some x ∈ X to the oracle, and receives the answer f(x).

We also write [V (SV , ρV ), P (SP , ρP )] ∈ {0, 1}X ∪ {reject} to denote the deterministic
output of the verifier V after interacting with P in the case where V and P receive fixed
random coin values ρV and ρP respectively, and receive fixed samples SV and SP from their
oracles OV and OP respectively.

We are interested in classes H for which an ε-good hypothesis can always be verified
with high probability via this form of interaction between an efficient prover and verifier,
as formalized in the following definition. Note that the following definitions include an
additional multiplicative slack parameter α ≥ 1 in the error guarantee. This parameter does
not exist in the standard definition of PAC learning; the standard definition corresponds to
the case α = 1.

I Definition 4 (α-PAC Verifiability). Let H ⊆ {0, 1}X be a class of hypotheses, let D ⊆
∆(X × {0, 1}) be some family of distributions, and let α ≥ 1. We say that H is α-PAC
verifiable with respect to D using oracles OV and OP if there exists a pair of algorithms
(V, P ) that satisfy the following conditions for every input ε, δ > 0:

Completeness. For any distribution D ∈ D, the random variable h := [V OV (ε, δ),
POP (ε, δ)] satisfies

P
[
h 6= reject ∧

(
LD(h) ≤ α · LD(H) + ε

)]
≥ 1− δ.
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Soundness. For any distribution D ∈ D and any (possibly unbounded) prover P ′, the
random variable h := [V OV (ε, δ), P ′OP (ε, δ)] satisfies

P
[
h 6= reject ∧

(
LD(h) > α · LD(H) + ε

)]
≤ δ.

I Remark 5. Some comments about this definition:
The behavior of the oracles OV and OP may depend on the specific underlying distribution
D ∈ D, which is unknown to the prover and verifier. For example, they may provide
samples from D.
We insist on double efficiency; that is, that the sample complexity and running times of
both V and P must be polynomial in 1

ε , log
( 1
δ

)
, and perhaps also in some parameters

that depend on H, such as the VC dimension or Fourier sparsity of H.
If for every ε, δ > 0, and for any (possibly unbounded) prover P ′, the value h :=
[V OV (ε, δ), P ′OP (ε, δ)] satisfies h ∈ H∪ {reject} with probability 1 (i.e., V never outputs
a function that is not in H), then we say that H is proper α-PAC verifiable, and that the
proof system proper α-PAC verifies H. y

I Remark 6. An important type of learning (studied e.g. by Angluin [1] and Kushilevitz
and Mansour [16]) is learning with membership queries with respect to the uniform distribu-
tion. In this setting, the family D consists of distributions D such that: (1) the marginal
distribution of D over X is uniform; (2) D has a target function f : X → {1,−1} satisfying
P(x,y)∼D [y = f(x)] = 1.8 In Section 2, we will consider protocols for this type of learning
that have the form [V D, P f ], such that the verifier has access to an oracle providing random
samples from a distribution D ∈ D, and the prover has access to an oracle providing query
access to f , the target function of D. This type of protocol models a real-world scenario
where P has qualitatively more powerful access to training data than V . y

2 Efficient Verification for the Class of Fourier-Sparse Functions

In Section 3 below we show that in some cases verification is strictly easier than learning
and closeness testing. The verification protocol presented there has a single round, where
the prover simply sends a hypothesis and a proof that it is (approximately) optimal. In this
section, we describe a multi-round protocol that demonstrates that interaction is helpful for
verification.

The interactive protocol we present PAC verifies the class of Fourier-sparse functions.
This is a broad class of functions, which includes decision trees, DNF formulas with small
clauses, and AC0 circuits.9 Every function f : {0, 1}n → R can be written as a linear
combination f =

∑
T⊆[n] f̂(T )χT .10 In Fourier-sparse functions, only a small number of

coefficients are non-zero. Note that according to the learning parity with noise (LPN)
assumption [5, 24] it is not possible to learn the Fourier-sparse functions efficiently using
random samples only.

An important technicality is that throughout this section we focus solely on PAC verifica-
tion with respect to families of distributions that have a uniform marginal over {0, 1}n, and
have a target function f : {0, 1}n → {1,−1} such that P(x,y)∼D [y = f(x)] = 1. See further
discussion in Remark 6 on page 11. In this setting, in order to learn f it is sufficient to
approximate its heavy Fourier coefficients.

8 Note that f is not necessarily a member of H, so this is still an agnostic (rather than realizable) case.
9 See Mansour [18, Section 5.2.2, Theorems 5.15 and 5.16]. (AC0 is the set of functions computable by
constant-depth boolean circuits with a polynomial number of AND, OR and NOT gates.)

10The real numbers f̂(T ) are called Fourier coefficients, and the functions χT are called characters.
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I Notation 7. Let f : {0, 1}n → R, and let τ ≥ 0. The set of τ -heavy coefficients of f is
f̂≥τ = {T ⊆ [n] : |f̂(T )| ≥ τ}.

Furthermore, approximating a single coefficient is easy given random samples from
the uniform distribution [13, Claim 2.11]. There are, however, an exponential number of
coefficients, so approximating all of them is not feasible. This is where verification comes
in. If the set of heavy coefficients is known, and if the function is Fourier-sparse, then one
can efficiently learn the function by approximating that particular set of coefficients. The
prover can provide the list of heavy coefficients, and then the verifier can learn the function
by approximating these coefficients.

The challenge that remains in designing such a verification protocol is to verify that the
provided list of heavy coefficients is correct. If the list contains some characters that are not
actually heavy, no harm is done.11 However, if a dishonest prover omits some of the heavy
coefficients from the list, how can the verifier detect this omission? The following result
provides an answer to this question.

I Lemma 8 (Interactive Goldreich-Levin). There exists an interactive proof system (V, P ∗)
as follows. For every n ∈ N, δ > 0, every τ ≥ 2− n

10 , every function f : {0, 1}n → {0, 1}, and
every prover P , let

LP = [V (S, n, τ, δ, ρV ), P f (n, τ, δ, ρP )]

be a random variable denoting the output of V after interacting with the prover P , which
has query access to f , where S =

(
(x1, f(x1)), . . . , (xm, f(xm))

)
is a random sample with

x1, . . . , xm taken independently and uniformly from {0, 1}n, and ρV , ρP are strings of private
random coins. LP takes values that are either a collection of subsets of [n], or “reject”.
The following properties hold:

Completeness. P
[
LP∗ 6= reject ∧ f̂≥τ ⊆ LP∗

]
≥ 1− δ.

Soundness. For any (possibly unbounded) prover P ,

P
[
LP 6= reject ∧ f̂≥τ * LP

]
≤ δ.

Double efficiency. The verifier V uses at most O
(
n
τ log

(
n
τ

)
log
( 1
δ

))
random samples

from f and runs in time poly
(
n, 1

τ , log
( 1
δ

))
. The runtime of the prover P ∗, and the

number of queries it makes to f , are at most O
(
n3

τ5 log
( 1
δ

))
. Whenever LP 6= reject, the

cardinality of LP is at most O
(
n2

τ5 log
( 1
δ

))
.

All proofs for this section appear in Section 2 in the full version of the paper [13].
I Remark 9. In Section 1.5 we defined interactive proof systems specifically for PAC ver-
ification. The proof system in Lemma 8 is technically different. The verifier outputs a
collection of sets instead of a function, and it satisfies different completeness and soundness
conditions. y

The verifier V operates by simulating the Goldreich-Levin (GL) algorithm for finding
f̂≥τ . However, the GL algorithm requires query access to f , while V has access only to
random samples. To overcome this limitation, V delegates the task of querying f to the

11The verifier can approximate each coefficient in the list and discard of those that are not heavy.
Alternatively, the verifier can include the additional coefficients in its approximation of the target
function, because the approximation improves as the number of estimated coefficients grows (so long as
the list is polynomial in n).
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prover P , who does have the necessary query access. Because P is not trusted, V engineers
the set of queries it delegates to P in such a way that some random subset of them already
appear in the sample S which V has received as input. This allows V to independently verify
a random subset of the results sent by P , ensuring that a sufficiently dishonest prover is
discovered with high probability.

The Interactive Goldreich-Levin Protocol. The verifier for Lemma 8 uses Protocol 2 (IGL),
which repeatedly applies Protocol 3 (IGL-Iteration).

Protocol 2 Interactive Goldreich-Levin: IGL(n, τ, δ).

V performs the following:
r ←

⌈
( 4n
τ + 1) log

( 1
δ

)⌉
for i ∈ [r] do

Li ← IGL-Iteration(n, τ)
if Li = reject then

output reject
L←

⋃
i∈[r] Li

output L

Lemma 8 follows from two claims: Claim 10 says that if the prover is mostly honest, then
the output is correct. Claim 11 says that if the prover is too dishonest, it will be rejected.

B Claim 10 (Completeness of IGL). Consider an execution of IGL-Iteration(n, τ) for
τ ≥ 2− n

10 . For any prover P and any randomness ρP , if V did not reject, and the evaluations
provided by P were mostly honest, in the sense that ∀i ∈ [n] : Px∈H

[
f̃(x ⊕ ei) 6= f(x ⊕ ei)

]
≤

τ
4 , then P

[
f̂≥τ ⊆ L

]
≥ 1

2 , where the probability is over the sample S and the randomness ρV .
y

Proof Idea. We show that for every heavy coefficient T ∈ f̂≥τ , P [T /∈ L] ≤ τ2

4 . From a
union bound, this is sufficient to prove the claim, because Parseval’s identity implies that
|f̂≥τ | ≤ 1

τ2 . The main observation is that the Goldreich-Levin algorithm is resilient to some
adversarial noise. To see this, note that if T ∈ f̂≥τ , then Px∈{0,1}n [f(x) = `(x)] ≥ 1

2 + τ
2

for the linear function `(x) = ⊕i∈Txi (or its negation ¬`). Therefore, f agrees with ` with
probability at least 1

2 + τ
4 , even if a τ

4 -fraction of f ’s values are adversarially corrupted. Hence,
in the iteration of the outer loop in Step 4 in which yj = `(bj) for all j ∈ [k], the majority
function will output the correct value of f

(
xK ⊕ ei

)
⊕ yK = `(xK ⊕ ei) ⊕ `(xK) = `(ei), and

this results in T being added to the output set L. Some finer details are discussed in the full
version of the paper. J

B Claim 11 (Soundness of IGL). Consider an execution of IGL-Iteration(n, τ). For any
prover P and any randomness value ρP , if there exists i ∈ [n] for which P was too dishonest
in the sense that Px∈H

[
f̃(x ⊕ ei) 6= f(x ⊕ ei)

]
> τ

4 , then P [L = reject] ≥ τ
4n , where the

probability is over the sample S and the randomness ρV . y

12 For any j, ej is a vector in which the j-th entry is 1 and all other entries are 0.
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Protocol 3 Interactive Goldreich-Levin Iteration: IGL-Iteration(n, τ).

Assumption: V receives a sample S =
(

(x1, f(x1)), . . . , (xm, f(xm))
)
such that

m =
⌈
log
( 40n
τ4 + 1

)⌉
, for all i ∈ [m], xi ∈ {0, 1}n is chosen independently and

uniformly, and f(xi) ∈ {0, 1}.

1. V selects i∗ ∈ [n] uniformly at random, and then sends B to P , where B =
{b1, . . . , bk} ⊆ {0, 1}n is a basis chosen uniformly at random from the set of
bases of the subspace H = span({x1 ⊕ ei∗ , . . . , xm ⊕ ei∗}).12

2. P sends V the set {(x ⊕ ei, f̃(x ⊕ ei)) : i ∈ [n] ∧ x ∈ H}, where for any z, f̃(z)
is purportedly the value of f(z) obtained using P ’s query access to f .

3. V checks that for all i ∈ [m], the evaluation f(xi) provided by P equals that
which appeared in the sample S. If there are any discrepancies, V rejects the
interaction and terminates. Otherwise:

4. Let K = {K : ∅ ( K ⊆ [k]}. V Performs the following computation and
outputs L:
L← ∅
for (y1, . . . , yk) ∈ {0, 1}k do

for K ∈ K do
xK ←

⊕
i∈K bi

yK ←
⊕

i∈K yi

for i ∈ [n] do
ai ← majorityK∈K

(
f̃
(
xK ⊕ ei

)
⊕ yK

)
add {i : ai = 1} and {i : ai = 0} to L

output L

Proof Idea. In Protocol 3, the verifier “hides” the sample it knows in the random subspace
H ⊕ ei∗ for an index i∗ ∈ [n] chosen uniformly at random. With probability at least 1

n , i
∗ is

an index for which the prover was too dishonest. If that is the case, then in expectation a
τ
4 -fraction of the prover’s answers on the known sample were dishonest, because the known
sample is a random subset of H ⊕ ei∗ . The claim now follows from Markov’s inequality. J

I Remark 12. It is possible to run all repetitions of the IGL protocol in parallel such that
only 2 messages are exchanged. y

Efficient Verification of Fourier-Sparse Functions. As a corollary of Lemma 8, we obtain
the following lemma, which is an interactive version of the Kushilevitz-Mansour algorithm
[16, 17, 18]. It says that the class of t-sparse boolean functions is efficiently PAC verifiable
with respect to the uniform distribution using an interactive proof system (Protocol 4) of
the form [V D, P f ], where the prover has query access and the verifier has random samples .

Protocol 4 uses a procedure EstimateCoefficient [13, Algorithm 4] that estimates a
single fourier coefficient f̂(T ) up to precision λ with confidence δ using

⌈
2 ln(2/δ)

λ2

⌉
random

samples. Note that the output of Protocol 4 is a function h : {0, 1}n → R, not necessarily a
boolean function.
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I Notation 13. Let X be a finite set. We write Dfunc
U (X ) to denote the set of all distributions

D over X × {1,−1} that have the following two properties:
The marginal distribution of D over X is uniform. Namely,

∑
y∈{1,−1}D

(
(x, y)

)
= 1
|X |

for all x ∈ X .
D has a target function f : X → {1,−1} satisfying P(x,y)∼D [y = f(x)] = 1.

I Lemma 14. Let X = {0, 1}n, and let H be the class of functions X → R that are t-sparse.6
The class H is 1-PAC verifiable for any ε ≥ 4t · 2− n

10 with respect to Dfunc
U (X ) by a proof

system in which the verifier has access to random samples from a distribution D ∈ Dfunc
U (X ),

and the honest prover has oracle access to the target function f : X → {1,−1} of D. The
running time of both parties is at most poly

(
n, t, 1

ε , log
( 1
δ

))
. The verifier in this protocol is

not proper; the output is not necessarily t-sparse, but it is poly
(
n, t, 1

ε , log
( 1
δ

) )
-sparse.

Protocol 4 PAC Verification of t-Sparse Functions: VerifyFourierSparse(n, t, ε, δ).

V performs the following:
τ ← ε

4t
L← IGL(n, τ, δ2 )
if L = reject then

output reject
else

λ←
√

ε
8|L|

for T ∈ L do
αT ← EstimateCoefficient(T, λ, δ

2|L| )

h←
∑
T∈L αTχT

output h

Complete proofs appear in Section 2 in the full version of the paper [13].

3 Separation Between Learning, Testing, and PAC Verification

In this section we present the following gap in sample complexity between learning and
verification. Conceptually, the result tells us that at least in some scenarios, delegating a
learning task to an untrusted party is worthwhile, because verifying that their final result is
correct is significantly cheaper than finding that result ourselves.

I Lemma 15 (Separation Between Learning, Testing, and Verification). There exists a sequence
of classes of functions T1, T2, T3, ... ⊆ {0, 1}R such that for any fixed ε, δ ∈ (0, 1

2 ) all of the
following hold:
(i) Td is proper 2-PAC verifiable, where the verifier uses13

mV = O

(√
d log(d) log

( 1
δ

)
ε6

)
random samples, the honest prover uses

13We believe that the dependence of mV on ε can be improved, see [13, Remark 3.15].
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mP = O

(
d3 log2(d)

ε4 log
(
d

ε

)
+ d
√
d log(d)
ε2 log

(
1
δ

))
random samples, and each of them runs in time polynomial in its number of samples.14

(ii) Agnostic PAC learning Td requires Ω
(
d+log( 1

δ )
ε2

)
samples.

(iii) If ε ≤ 1
32 then 2-PAC learning the class Td requires Ω

(
d

log(d)

)
samples. This is true

even if we assume that LD(Td) > 0, where D is the underlying distribution.
(iv) Testing whether LD(Td) ≤ α or LD(Td) ≥ β for any 0 < α < β < 1

2 with success
probability at least 1 − δ when D is an unknown distribution (without the help of a
prover) requires Ω

(
d

log(d)

)
random samples from D.

Our exposition in this section is partial, and aims only to convey the main ideas of part (i).
Complete formal proofs appear in [13, Section 3]. We show an MA-like proof system wherein
the prover sends a single message (h̃, C̃, ˜̀) such that allegedly h̃ is an ε-good hypothesis with
loss at most ˜̀> 0. C̃ ∈ {0, 1}∗ is a string called a certificate of loss, which helps the verifier
ascertain that H has a large loss with respect to the unknown distribution D. The verifier
operates as follows:15

Verifies that LD(h̃) ≤ ˜̀ with high probability. That is, it estimates the loss of h̃ with
respect to D, and checks that with high probability it is at most ˜̀.
Uses the certificate of loss C̃ to verify that with high probability, LD(H) ≥ ˜̀− ε. This
step is called verifying the certificate.

The class Td of multi-thresholds that satisfies Lemma 15 is illustrated in Figure 5, and is
defined as follows.

I Definition 16. For any d ∈ N, denote by Td the class of functions Td = {ft1,...,td :
t1, . . . , td ∈ R} where for all t1, . . . , td ∈ R and x ∈ [0, d], the function ft1,...,td : R→ {0, 1}
is given by

ft1,...,td(x) =
{

0 x < tdxe

1 x ≥ tdxe,

and ft1,...,td vanishes on the complement of [0, d].

I Remark 17. For convenience, we present the separation result with respect to functions
defined over R, we assume that the marginal distribution of the samples on R is absolutely
continuous with respect to the Lebesgue measure, and we ignore issues relating to the
representation of real numbers in computations and protocol messages. This provides for
a smoother exposition of the ideas. In [13, Appendix C], we show how the results can be
discretized. y

We first present the certificate structure for the class of threshold functions, namely Td
with d = 1. Certificates of loss for T1 are easy to visualize, and they induce a proof system
for PAC verifying T1 that is complete, sounds, and doubly efficient. However, verifying
certificates for T1 requires as much resources as PAC learning T1 without the help of a prover.
The next step is to show that these certificates generalize to the class Td of multi-thresholds,
and that for Td there indeed is a gap in sample complexity between verifying and learning.

14 Subsequent unpublished work by JS and Saachi Mutreja suggests that it is possible to strengthen this
to obtain 1-PAC verification with better sample complexity bounds.

15We provide a more detailed description of the verification procedure below, and in [13, Claim 3.14].
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0 1
3

2
3

1

0

1
f1/3

(a) The function f1/3 ∈ T1. T1 consists
of monotone increasing threshold func-
tions [0, 1]→ {0, 1}.

0 1
2

t 1

0

1 A

B

ft

(b) Structure of a simple certificate of loss for T1.
The set A is labeled with 1, and B is labeled 0.
The depicted threshold ft happens to misclassify
both A and B, but it is just one possible threshold.

0 1 2 3 . . .
d

0

1

t1 t2 t3 td

(c) Example of a function in Td.

Figure 5 The class Td of multi-thresholds, with the special case T1 and its certificate structure.

Certificates of loss for T1. Consider two sets A ⊆ [0, 1]× {1} and B ⊆ [0, 1]× {0}, such
that all the points in A are located to the left of all the points in B, as in Figure 5b. Because
we only allow thresholds that are monotone increasing, a threshold that labels any point in
A correctly must label all points of B incorrectly, and vice versa. Hence, any threshold must
have loss at least min{D(A),D(B)}. Estimating D(A) and D(B) is easy (by Hoeffding’s
inequality). Formally:

I Definition 18. Let D ∈ ∆([0, 1]× {0, 1}) be a distribution and `, η ≥ 0. A certificate of
loss at least ` for class T1 is a pair (a, b) where 0 < a ≤ b < 1.

We say that the certificate is η-valid with respect to distribution D if the events A =
[0, a)× {1} and B = [b, 1]× {0} satisfy |D(A)− `|+ |D(B)− `| ≤ η.

B Claim 19 ([13, Claims 3.5 and 3.4]). Let D ∈ ∆([0, 1] × {0, 1}) be a distribution and
`, η ≥ 0.

Soundness. If D has a certificate of loss at least ` which is η-valid with respect to D, then
LD(T1) ≥ `− η.
Completeness. If LD(T1) = ` then there exists a 0-valid certificate of loss at least `

2 with
respect to D. y
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Certificates of loss for Td with d > 1. A certificate of loss is simply a collection of d
certificates of loss for T1, one for each unit interval in [0, d]. Standard techniques from
VC theory show that it is possible to efficiently generate certificates for Td for a particular
distribution using Õ(d2) samples [13, Claim 3.13]. This is more expensive than learning
the class Td, but it may be worthwhile seeing as the verifier can apply techniques from
distribution testing to verify purported certificates using only Õ(

√
d) samples – which is

cheaper than learning [13, Claim 3.14].
Further discussion and complete proofs of Lemma 15(ii)-(iv), including the lower bound

for closeness testing, appear in the full version of the paper [13].

4 Directions for Future Work

This work initializes the study of verification in the context of machine learning. We have
seen separations between the sample complexity of verification versus learning and testing, a
protocol that uses interaction to efficiently learn sparse boolean functions, and have seen
that in some cases the sample complexities of verification and learning are the same.

Building a theory that can help guide verification procedures is a main objective for future
research. A specific approach is to identify dimension-like quantities that describe the sample
complexity of verification, similarly to role VC dimension plays in characterizing learnability.
A different approach is to understand the trade-offs between the various resources in the
system – the amount of time, space and samples used by the prover and the verifier, as well
as the amount of interaction between the parties.

From a practical perspective, we described potential applications for delegation of machine
learning, and for verification of experimental data. It seems beneficial to build efficient
verification protocols for machine learning problems that are commonly used in practice,
and for the types of scientific experiments mentioned in [13, Appendix A]. This would have
commercial and scientific applications.

There are also some technical improvements that we find interesting. For example, is
there a simple way to improve the MA-like protocol for the multi-thresholds class Td to
achieve 1-PAC verification (instead of 2-PAC verification)?

Finally, seeing as learning verification is still a new concept, it would be good to consider
alternative formal definitions, investigate how robust our definition is, and discuss what the
“right” definition should be.

Additional directions are discussed in Section 6 in the full version of the paper [13]. J
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Abstract
The emerging theory of graph limits exhibits an analytic perspective on graphs, showing that many
important concepts and tools in graph theory and its applications can be described more naturally
(and sometimes proved more easily) in analytic language. We extend the theory of graph limits
to the ordered setting, presenting a limit object for dense vertex-ordered graphs, which we call an
orderon. As a special case, this yields limit objects for matrices whose rows and columns are ordered,
and for dynamic graphs that expand (via vertex insertions) over time. Along the way, we devise an
ordered locality-preserving variant of the cut distance between ordered graphs, showing that two
graphs are close with respect to this distance if and only if they are similar in terms of their ordered
subgraph frequencies. We show that the space of orderons is compact with respect to this distance
notion, which is key to a successful analysis of combinatorial objects through their limits. For the
proof we combine techniques used in the unordered setting with several new techniques specifically
designed to overcome the challenges arising in the ordered setting.

We derive several applications of the ordered limit theory in extremal combinatorics, sampling,
and property testing in ordered graphs. In particular, we prove a new ordered analogue of the
well-known result by Alon and Stav [RS&A’08] on the furthest graph from a hereditary property; this
is the first known result of this type in the ordered setting. Unlike the unordered regime, here the
Erdős–Rényi random graph G(n, p) with an ordering over the vertices is not always asymptotically
the furthest from the property for some p. However, using our ordered limit theory, we show that
random graphs generated by a stochastic block model, where the blocks are consecutive in the vertex
ordering, are (approximately) the furthest. Additionally, we describe an alternative analytic proof of
the ordered graph removal lemma [Alon et al., FOCS’17].
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1 Introduction

Large graphs appear in many applications across all scientific areas. Naturally, it is interesting
to try to understand their structure and behavior: When can we say that two graphs are
similar (even if they do not have the same size)? How can the convergence of graph sequences
be defined? What properties of a large graph can we capture by taking a small sample
from it?

The theory of graph limits addresses such questions from an analytic point of view. The
investigation of convergent sequences of dense graphs was started to address three seemingly
unrelated questions asked in different fields: statistical physics, theory of networks and the
Internet, and quasi-randomness. A comprehensive series of papers [12, 13, 28, 21, 29, 14,
11, 30, 15] laid the infrastructure for a rigorous study of the theory of dense graph limits,
demonstrating various applications in many areas of mathematics and computer science. The
book of Lovász on graph limits [27] presents these results in a unified form.

A sequence {Gn}∞n=1 of finite graphs, whose number of vertices tends to infinity as
n→∞, is considered convergent1 if the frequency2 of any fixed graph F as a subgraph in Gn
converges as n→∞. The limit object of a convergent sequence of (unordered) graphs in the
dense setting, called a graphon, is a measurable symmetric function W : [0, 1]2 → [0, 1], and
it was proved in [28] that, indeed, for any convergent sequence {Gn} of graphs there exists a
graphon serving as the limit of Gn in terms of subgraph frequencies. Apart from their role
in the theory of graph limits, graphons are useful in probability theory, as they give rise to
exchangeable random graph models; see e.g. [17, 33]. An analytic theory of convergence has
been established for many other types of discrete structures. These include sparse graphs, for
which many different (and sometimes incomparable) notions of limits exist – see e.g. [16, 10]
for two recent papers citing and discussing many of the works in this field; permutations,
first developed in [25] and further investigated in several other works; partial orders [26]; and
high dimensional functions over finite fields [35]. The limit theory of dense graphs has also
been extended to hypergraphs, see [36, 18] and the references within.

In this work we extend the theory of dense graph limits to the ordered setting, establishing a
limit theory for vertex-ordered graphs in the dense setting, and presenting several applications
of this theory. An ordered graph is a symmetric function G : [n]2 → {0, 1}. G is simple if
G(x, x) = 0 for any x. A weighted ordered graph is a symmetric function F : [n]2 → [0, 1].
Unlike the unordered setting, where G,G′ : [n]2 → Σ are considered isomorphic if there is a
permutation π over [n] so that G(x, y) = G′(π(x), π(y)) for any x 6= y ∈ [n], in the ordered
setting, the automorphism group of a graph G is trivial: G is only isomorphic to itself
through the identity function.

For simplicity, we consider in the following only graphs (without edge colors). All results
here can be generalized in a relatively straightforward manner to edge-colored graph-like
ordered structures, where pairs of vertices may have one of r ≥ 2 colors (the definition
above corresponds to the case r = 2). This is done by replacing the range [0, 1] with the
(r − 1)-dimensional simplex (corresponding to the set of all possible distributions over [r]).

Two interesting special cases of two-dimensional ordered structures for which our results
naturally yield a limit object are images, i.e., ordered matrices, and dynamic graphs with
vertex insertions. Specifically, (binary) m × n images can be viewed as ordered bipartite

1 In unordered graphs, this is also called convergence from the left; see the discussion on [14].
2 The frequency of F in G is roughly defined as the ratio of induced subgraphs of G isomorphic to F

among all induced subgraphs of G on |F | vertices.
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graphs I : [m]× [n]→ {0, 1}, and our results can be adapted to get a bipartite ordered limit
object for them as long as m = Θ(n). Meanwhile, a dynamic graph with vertex insertions
can be viewed as a sequence {Gi}∞i=1 of ordered graphs, where Gi+1 is the result of adding a
vertex to Gi and connecting it to the previous vertices according to some prescribed rule. It
is natural to view such dynamic graphs that evolve with time as ordered ones, as the time
parameter induces a natural ordering. Thus, our work gives, for example, a limit object for
time-series where there are pairwise relations between events occurring at different times.

As we shall see in Subsection 1.2, the main results proved in this paper are, in a sense,
natural extensions of results in the unordered setting. However, proving them requires
machinery that is heavier than that used in the unordered setting: the tools used in the
unordered setting are not rich enough to overcome the subtleties materializing in the ordered
setting. In particular, the limit object we use in the ordered setting – which we call an orderon
– has a 4-dimensional structure that is more complicated than the analogous 2-dimensional
structure of the graphon, the limit object for the unordered setting. The tools required to
establish the ordered theory are described next.

1.1 Main ingredients
Let us start by considering a simple yet elusive sequence of ordered graphs, which has the
makings of convergence. The odd-clique ordered graph Hn on 2n vertices is defined by setting
Hn(i, j) = 1, i.e., having an edge between vertices i and j, if and only if i 6= j and i, j are
both odd, and otherwise setting Hn(i, j) = 0. In this subsection we closely inspect this
sequence to demonstrate the challenges arising while trying to establish a theory for ordered
graphs, and the solutions we propose for them. First, let us define the notions of subgraph
frequency and convergence.

The (induced) frequency t(F,G) of a simple ordered graph F on k vertices in an ordered
graph G with n vertices is the probability that, if one picks k vertices of G uniformly and
independently (repetitions are allowed) and reorders them as x1 ≤ · · · ≤ xk, F is isomorphic
to the induced ordered subgraph of G over x1, . . . , xk. (The latter is defined as the ordered
graph H on k vertices satisfying H(i, j) = G(xi, xj) for any i, j ∈ [k].) A sequence {Gn}∞n=1
of ordered graphs is convergent if |V (Gn)| → ∞ as n→∞, and the frequency t(F,Gn) of any
simple ordered graph F converges as n→∞. Observe that the odd-clique sequence {Hn} is
indeed convergent: The frequency of the empty k-vertex graph in Hn tends to (k + 1)2−k as
n → ∞, the frequency of any non-empty k-vertex ordered graph containing only a clique
and a (possibly empty) set of isolated vertices tends to 2−k, and the frequency of any other
graph in Hn is 0.3

In light of previous works on the unordered theory of convergence, we look for a limit
object for ordered graphs that has the following features.
Representation of finite ordered graphs. The limit object should have a natural and con-

sistent representation for finite ordered graphs. As in graphons, we allow graphs G and
H to have the same representation when one is a blowup4 of the other.

Usable distance notion. Working directly with the definition of convergence in terms of
subgraph frequencies is difficult. The limit object we seek should be endowed with a
metric, like the cut distance for unordered graphs (see discussion below), that should be
easier to work with and must have the following property: A sequence of ordered graph
is convergent (in terms of frequencies) if and only if it is Cauchy in the metric.

3 To see why the sum of frequencies is 1, note that for k ≥ ` ≥ 2, the number of k-vertex ordered graphs
consisting of an `-vertex clique and k − ` isolated vertices is

(
k
`

)
.

4 A graph G on nt vertices is an ordered t-blowup of H on n vertices if G(x, y) = H(dx/te, dy/te) for any
x and y.
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Completeness and compactness. The space of limit objects must be complete with respect
to the metric: Cauchy sequences should converge in this metric space. Combined with the
previous requirements, this will ensure that any convergent sequence of ordered graphs
has a limit (in terms of ordered frequencies), as desired. It is even better if the space
is compact, as compactness is essentially an “ultimately strong” version of Szemerédi’s
regularity lemma [34], and will help to develop applications of the theory in other areas.

Additionally, we would like the limit object to be as simple as possible, without unnecessary
over-representation. In the unordered setting, the metric used is the cut distance, introduced
by Frieze and Kannan [22, 23] and defined as follows. First, we define the cut norm ‖W‖� of a
function W : [0, 1]2 → R as the supremum of |

∫
S×T W (x, y)dxdy| over all measurable subsets

S, T ⊆ [0, 1]. The cut distance between graphons W and W ′ is the infimum of ‖Wφ −W ′‖�
over all measure-preserving bijections φ : [0, 1]→ [0, 1], where Wφ(x, y) def= W (φ(x), φ(y)).

For the ordered setting, we look for a similar metric; the cut distance itself does not
suit us, as measure-preserving bijections do not preserve ordered subgraph frequencies in
general. A first intuition is then to try graphons as the limit object, endowed with the metric
d�(W,W ′) def= ‖W −W ′‖�. However, this metric does not satisfy the second requirement:
the odd-clique sequence is convergent, yet it is not Cauchy in d�, since d�(Hn, H2n) = 1/2
for any n. Seeing that d� seems “too strict” as a metric and does not capture the similarities
between large odd-clique graphs well, it might make sense to use a slightly more “flexible”
metric, which allows for measure-preserving bijections, as long as they do not move any of
the points too far from its original location. In view of this, we define the cut-shift distance
between two graphons W,W ′ as

d4(W,W ′) def= inf
f

(
Shift(f) + ‖W f −W ′‖�

)
, (1)

where f : [0, 1] → [0, 1] is a measure-preserving bijection, Shift(f) = supx∈[0,1] |f(x) − x|,
and W f (x, y) = W (f(x), f(y)) for any x, y ∈ [0, 1]. As we show in this paper (Theorem 2
below), the cut-shift distance settles the second requirement: a sequence of ordered graphs is
convergent if and only if it is Cauchy in the cut-shift distance.

Consider now graphons as a limit object, coupled with the cut-shift distance as a metric.
Do graphons satisfy the third requirement? In particular, does there exist a graphon whose
ordered subgraph frequencies are equal to the limit frequencies for the odd-clique sequence?
The answers to both of these questions are negative: it can be shown that such a graphon
cannot exist in view of Lebesgue’s density theorem, which states that there is no measurable
subset of [0, 1] whose density in every interval (a, b) is (b−a)/2 (see e.g. Theorem 2.5.1 in the
book of Franks on Lebesgue measure [20]). Thus, we need a somewhat richer ordered limit
object that will allow us to “bypass” the consequences of Lebesgue’s density theorem. Consider
for a moment the graphon representations of the odd clique graphs. In these graphons, the
domain [0, 1] can be partitioned into increasingly narrow intervals that alternately represent
odd and even vertices. Intuitively, it seems that our limit object needs to be able to contain
infinitesimal odd and even intervals at any given location, leading us to the following limit
object candidate, which we call an orderon.

An orderon is a symmetric measurable function W : ([0, 1]2)2 → [0, 1] viewed, intuitively
and loosely speaking, as follows. In each point (x, a) ∈ [0, 1]2, corresponding to an infinitesimal
“vertex” of the orderon, the first coordinate, x, represents a location in the linear order of
[0, 1]. Each set {x}× [0, 1] can thus be viewed as an infinitesimal probability space of vertices
that have the same location in the linear order. The role of the second coordinate is to allow
“variability” (in terms of probability) of the infinitesimal “vertex” occupying this point in
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the order. The definition of the frequency t(F,W ) of a simple ordered graph F = ([k], E)
in an orderon W is a natural extension of frequency in graphons. First, define the random
variable G(k,W ) as follows: Pick k points in [0, 1]2 uniformly and independently, order
them according to the first coordinate as (x1, a1), . . . , (xk, ak) with x1 ≤ · · · ≤ xk, and then
return a k-vertex graph G, in which the edge between each pair of vertices i and j exists
with probability W ((xi, ai), (xj , aj)), independently of other edges. The frequency t(F,W ) is
defined as the probability that the graph generated according to G(k,W ) is isomorphic to F .

Consider the orderon W satisfying W ((x, a), (y, b)) = 1 if and only if a, b ≤ 1/2, and
otherwise W ((x, a), (y, b)) = 0. W now emerges as a natural limit object for the odd-clique
sequence: one can verify that the subgraph frequencies in it are as desired.

The cut-shift distance for orderons is defined similarly to (1), except that f is now a
measure-preserving bijection from [0, 1]2 to [0, 1]2 and Shift(f) = sup(x,a)∈[0,1]2 |π1(f(x, a))−
x|, where π1(y, b) def= y is the projection to the first coordinate.

1.2 Main results
LetW denote the space of orderons endowed with the cut-shift distance. In view of Lemma 19
below, d4 is a pseudo-metric for W. By identifying W,U ∈ W whenever d4(W,U) = 0, we
get a metric space W̃. The following result is the main component for the viability of our
limit object, settling the third requirement above.

I Theorem 1. The space W̃ is compact with respect to d4.

The proof of Theorem 1 is significantly more involved than the proof of its unordered analogue.
While at a very high level, the roadmap of the proof is similar to that of the unordered
one, our setting induces several new challenges, and to handle them we develop new shape
approximation techniques. These are presented along the proof of the theorem in Section 4.

The next result shows that convergence in terms of frequencies is equivalent to being
Cauchy in d4. This settles the second requirement.

I Theorem 2. Let {Wn}∞n=1 be a sequence of orderons. Then {Wn} is Cauchy in d4 if and
only if t(F,Wn) converges for any fixed simple ordered graph F .

As a corollary of the last two results, we get the following.

I Corollary 3. For every convergent sequence of ordered graphs {Gn}n∈N, there exists an
orderon W ∈ W such that t(F,Gn)→ t(F,W ) for every ordered graph F .

The next main result is a sampling theorem, stating that a large enough sample from an
orderon is almost always close to it in cut-shift distance. For this, we define the orderon repres-
entation WG of an n-vertex ordered graph G by setting WG((x, a), (y, b)) = G(Qn(x), Qn(y))
for any x, a, y, b, where we define Qn(x) = dnxe for x > 0 and Qn(0) = 1. This addresses the
first requirement.

I Theorem 4. Let k be a positive integer and let W ∈ W be an orderon. Let G ∼ G(k,W ).
Then,

d4(W,WG) ≤ C
(

log log k
log k

)1/3

holds with probability at least 1− C exp(−
√
k/C) for some constant C > 0.

Theorem 4 implies, in particular, that ordered graphs are a dense subset in W.
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I Corollary 5. For every orderon W and every ε > 0, there exists a simple ordered graph G
on at most 2ε−3+o(1) vertices such that d4(W,WG) ≤ ε.

Our next result asserts that any orderon W ∈ W can be approximated in L1-distance by
an orderon U with a finite block structure, with the added property that any ordered finite
structure that appears with positive density in U also has positive density in W .5 The
orderon U is described as follows. the point set [0, 1]2 is divided into b “blocks”, which are
subsets of the form [(i− 1)/b, i/b]× [0, 1] for some i ∈ [b]. Each block is decomposed into l
“layers”, of the form [(i−1)/b, i/b]× [(j−1)/l, j/l] where j ∈ [l]. The value of U((x, a), (y, b))
is now only dependent on which blocks x, y belong to, which layers a, b belong to, and
possibly whether x < y. For example, the orderon U representing the limit of the odd-clique
sequence (defined by U((x, a), (y, b)) = 1 if a, b ≤ 1/2, and U((x, a), (y, b)) = 0 elsewhere)
has one block and two layers in it. Roughly speaking, one can think of such U as the orderon
representation of a “pixelized” ordered graph, where each vertex (block) consists of multiple
“pixels” (here a pixel corresponds to a block-layer pair), and there is a weighted edge6 between
each pair of pixels. Therefore we call an orderon U with such structure a pixelized orderon
and term our result the pixelization lemma.

I Theorem 6 (Pixelization lemma; informal). For any orderon W and ε > 0, there exists a
pixelized orderon U so that d1(U,W ) ≤ ε, satisfying the following: for all ordered graphs F
with t(F,U) > 0, we have t(F,W ) > 0.

We note that the pixelized structure of U is necessary for this statement to be correct; it
is no longer correct in general if we insist that U must be the orderon representation of a
standard edge-weighted ordered graph.

The pixelization lemma is especially useful for applications where the L1-distance comes
into play. Two such applications, reproving the ordered graph removal lemma [2] and proving
a new result in extremal combinatorics, are described next.

1.3 The furthest ordered graph from a hereditary property
Here and in the next subsection we describe three applications of our ordered limit theory.
We start with an extensive discussion on the first application: A new result on the maximum
edit7 distance d1(G,H) of an ordered graph G from a hereditary8 property H.

For a hereditary property H of simple ordered graphs, define dH = supG d1(G,H) where
G ranges over all simple graphs (of any size). The parameter dH has been widely investigated
for unordered graphs. A well-known surprising result of Alon and Stav [6] states, roughly
speaking, that dH is always “achieved” by the Erdős–Rényi random graph G(n, p) for an
appropriate choice of p and large enough n.

5 A weaker result, in which the L1-distance is replaced by the cut-shift distance, is not hard to prove
using our previous main results; we note that it is indeed strictly weaker since the L1-distance between
any two orderons U and W is always at least as large as (and sometimes much larger than) d4(U, W ).

6 In fact, a weighted bi-directed edge, with possibly different weights in the the different directions.
7 For our purposes, define the edit (or Hamming) distance between two ordered graphs G and G′ on

n vertices as the smallest number of entries that one needs to change in the adjacency matrix AG of
G to make it equal to AG′ , divided by n2. For this matter, the adjacency matrix AG of a graph G
over vertices v1 < . . . < vn is a binary n× n matrix where AG(i, j) = 1 if and only if there is an edge
between vi and vj in G. The distance between G and a property P of ordered graphs is minG′ d1(G, G′)
where G′ ranges over all graphs G′ of the same size as G. The definition for unordered graphs is similar;
the only difference is in the notion of isomorphism.

8 A property of (ordered or unordered) graphs is hereditary if it is closed under taking induced subgraphs.
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I Theorem 7 ([6]). For any hereditary property H of unordered graphs there exists pH ∈ [0, 1]
satisfying the following. A graph G ∼ G(n, pH) satisfies d1(G,H) ≥ dH − o(1) with high
probability.

In other words, a random graph G(n, pH) is with high probability asymptotically (that is,
up to relative edit distance of o(1)) the furthest from the property H. From the analytic
perspective, Lovász and Szegedy [30] were able to reprove (and extend) this result using
graph limits.

The surprising result of Alon and Stav has led naturally to a very interesting and highly
non-trivial question, now known as the (extremal) graph edit distance problem [31], which
asks the following: Given a hereditary property of interest H, what is the value (or values)
pH that maximizes the distance of G(n, p) from H? The general question of determining pH
given any H is currently wide open, although there have been many interesting developments
for various classes of hereditary properties; see [31] for an extensive survey of previous works
and useful techniques.

While the situation in unordered graphs, and even in (unordered) directed graphs [7] and
matrices [32] has been thoroughly investigated, for ordered graphs no result in the spirit
of Theorem 7 is known. The first question that comes to mind is whether the behavior
in the ordered setting is similar to that in the unordered case: Is it true that for any
hereditary property H of ordered graphs there exists p = pH for which G ∼ G(n, p) satisfies
d1(G,H) ≥ dH − o(1) with high probability?

As we show, the answer is in fact negative. Consider the ordered graph property H
defined as follows: G ∈ H if and only if there do not exist vertices u1 < u2 ≤ u3 < u4 in G
where u1u2 is a non-edge and u3u4 is an edge. H is clearly a hereditary property, defined
by a finite family of forbidden ordered subgraphs. In the full version [9], we prove that
the typical distance of G ∼ G(n, p) from H is no more than 1/4 + o(1) (the maximum is
asymptotically attained for p = 1/2). In contrast, we show there exists a graph G satisfying
d1(G,H) = 1/2 − o(1), which is clearly the furthest possible up to the o(1) term (every
graph G is 1/2-close to either the complete or the empty graph, which are in H), and is
substantially further than the typical distance of G(n, p) for any choice of p. This shows
that Theorem 7 cannot be true for the ordered setting.

However, the news are not all negative: We present a positive result in the ordered
setting, which generalizes the unordered statement in some sense, and whose proof makes
use of our ordered limit theory. While it is no longer true that G(n, p) generates graphs that
are asymptotically the furthest from H, we show that a random graph generated according
to a consecutive stochastic block model is approximately the furthest. A stochastic block
model [1] with M blocks is a well-studied generalization of G(n, p), widely used in the study
of community detection, clustering, and various other problems in mathematics and computer
science. A stochastic block model is defined according to the following three parameters: n,
the total number of vertices; (q1, . . . , qM ), a vector of probabilities that sum up to one; and a
symmetric M ×M matrix of probabilities pij . A graph on n vertices is generated according
to this model as follows. First, we assign each of the vertices independently9 to one of M
parts A1, . . . , AM , where the probability of any given vertex to fall in Ai is qi. Then, for any
(i, j) ∈ [M ]2, and any pair of disjoint vertices u ∈ Ai and v ∈ Aj , we add an edge between u
and v with probability pij . By consecutive, we mean that all vertices assigned to Ai precede
(in the vertex ordering) all vertices assigned to Ai+1, for any i ∈ [M − 1]. Our main result
now is as follows.

9 In some contexts, the stochastic block model is defined by determining the exact number of vertices in
each Ai in advance, rather than assigning the vertices independently; all results here are also true for
this alternative definition.
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I Theorem 8. Let H be a hereditary property of simple ordered graphs and let ε > 0.
There exists a consecutive stochastic block model with at most M = MH(ε) blocks with equal
containment probabilities (i.e., qi = 1/M for any i ∈ [M ]), satisfying the following. A graph
G on n vertices generated by this model satisfies d1(G,H) ≥ dH − ε with probability that
tends to one as n→∞.

The proof, given in the full version of this paper [9], is a good example of the power of the
analytic perspective, combining our ordered limit theory with standard measure-theoretic
tools and a few simple lemmas proved in [30].

1.4 Sampling and property testing
We finish by showing two additional applications of the ordered limit theory. These applica-
tions are somewhat more algorithmically oriented – concerning sampling and property testing
– and illustrate the use of our theory for algorithmic purposes. The first of them is concerned
with naturally estimable ordered graph parameters, defined as follows.

I Definition 9 (naturally estimable parameter). An ordered graph parameter f is naturally
estimable if for every ε > 0 and δ > 0 there is a positive integer k = k(ε, δ) > 0 satisfying
the following. If G is an ordered graph with at least k nodes and G|k is the subgraph induced
by a uniformly random ordered set of exactly k nodes of G, then

Pr
G|k

[|f(G)− f(G|k)| > ε] < δ.

The following result provides an analytic characterization of ordered natural estimability,
providing a method to study estimation problems on ordered graphs from the analytic
perspective.

I Theorem 10. Let f be a bounded simple ordered graph parameter. Then, the following are
equivalent:
1. f is naturally estimable.
2. For every convergent sequence {Gn}n∈N of ordered simple graphs with |V (Gn)| → ∞, the

sequence of numbers {f(Gn)}n∈N is convergent.
3. There exists a functional f̂(W ) over W that satisfies the following:

a. f̂(W ) is continuous with respect to d4.
b. For every ε > 0, there is k = k(ε) such that for every ordered graph G with |V (G)| ≥ k,

it holds that
∣∣∣f̂(WG)− f(G)

∣∣∣ ≤ ε.
Our third application is a new analytic proof of the ordered graph removal lemma of [2],
implying that every hereditary property of ordered graphs (and images over a fixed alphabet)
is testable, with one-sided error, using a constant number of queries. (For the relevant
definitions, see [2] and Definition 9 here.)

I Theorem 11 ([2]). Let H be a hereditary property of simple ordered graphs, and fix ε, c > 0.
Then there exists k = k(H, ε, c) satisfying the following: For every ordered graph G on n ≥ k
vertices that is ε-far from H, the probability that G|k does not satisfy H is at least 1− c.

Our proof of Theorem 11 utilizes the analytic tools developed in this work, and bypasses
the need for many of the sophisticated combinatorial techniques from [2], resulting in an
arguably cleaner proof.
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1.5 Related work

The theory of graph limits has strong ties to the area of property testing, especially in the
dense setting. Regularity lemmas for graphs, starting with the well-known regularity lemma
of Szemerédi [34], later to be joined by the weaker (but more efficient) versions of Frieze
and Kannan [22, 23] and the stronger variants of Alon et al. [3], among others, have been
very influential in the development of property testing. For example, regularity was used to
establish the testability of all hereditary properties in graphs [5], the relationship between
the testability and estimability of graph parameters [19], and combinatorial characterizations
of testability [4].

The analytic theory of convergence, built using the cut distance and its relation to the
weak regularity lemma, has proved to be an interesting alternative perspective on these
results. Indeed, the aforementioned results have equivalent analytic formulations, in which
both the statement and the proof seem cleaner and more natural. A recent line of work has
shown that many of the classical results in property testing of dense graphs can be extended
to dense ordered graph-like structures, including vertex-ordered graphs and images. In [2], it
was shown that the testability of hereditary properties extends to the ordered setting (see
Theorem 11 above). Shortly after, in [8] it was proved that characterizations of testability in
unordered graphs can be partially extended to similar characterizations in ordered graph-like
structures, provided that the property at stake is sufficiently “well-behaved” in terms of
order.

Graphons and their sparse analogues have various applications in different areas of
mathematics, computer science, and even social sciences. The connections between graph
limits and real-world large networks have been very actively investigated; see the survey of
Borgs and Chayes [16]. Graph limits have applications in probability and data analysis [33].
Graphons were used to provide new analytic proofs of results in extremal graph theory; see
Chapter 16 in [27]. Through the notion of free energy, graphons were also shown to be closely
connected to the field of statistical physics [15]. We refer the reader to [27] for more details.

We remark that an independent work, by Frederik Garbe, Robert Hancock, Jan Hladky,
and Maryam Sharifzadeh, investigates an alternative limit object for the ordered setting
in the context of latin squares. See [24] for their findings, as well as connections between
orderons and their limit object, called a latinon.

1.6 Organization

Due to space limitations, much of the technical content is missing from this version of the
paper. Specifically, we only include here the following components. In Section 2, we present
basic definitions for our ordered limit theory. Section 3 contains the main ingredients for
the the proof that ordered graphs are dense in the space of orderons (some technical details
are relegated to the full version). Section 4 presents the proof that the space of orderons is
compact (Theorem 1). The reader is referred to [9] for a full version of this paper, including
proofs of all results stated in this manuscript.

2 Preliminaries

In this section we formally describe some of the basic ingredients of our theory, including the
limit object – the orderon, and several distance notions including the cut-norm for orderons
(both unordered and ordered variants are presented), and the cut-shift distance. We then
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show that the latter is a pseudo-metric for the space of orderons. This will later allow us to
view the space of orderons as a metric space, by identifying orderons of cut-shift distance 0.

The measure used here is the Lebesgue measure, denoted by λ. We start with the formal
definition of an orderon.

I Definition 12 (orderon). An orderon is a measurable function W :
(
[0, 1]2

)2 → [0, 1] that
is symmetric in the sense that W ((x, a), (y, b)) = W ((y, b), (x, a)) for all (x, a), (y, b) ∈ [0, 1]2.
For the sake of brevity, we also denote W ((x, a), (y, b)) by W (v1, v2) for v1, v2 ∈ [0, 1]2.

We denote the set of all orderons by W.

I Definition 13 (measure-preserving bijection). A map g : [0, 1]2 → [0, 1]2 is measure pre-
serving if the pre-image g−1(X) is measurable for every measurable set X and λ(g−1(X)) =
λ(X). A measure preserving bijection is a measure preserving map whose inverse map exists
(and is also measure preserving).

Let F denote the collection of all measure preserving bijections from [0, 1]2 to itself. Given an
orderonW ∈ W and f ∈ F , we defineW f as the unique orderon satisfyingW f ((x, a), (y, b)) =
W (f(x, a), f(y, b)) for any x, a, y, b ∈ [0, 1]. Additionally, denote by π1 : [0, 1]2 → [0, 1] the
projection to the first coordinate, that is, π1(x, a) = x for any (x, a) ∈ [0, 1]2.

2.1 Cut-norm and ordered cut-norm
The definition of the (unordered) cut-norm for orderons is analogous to the corresponding
definition for graphons.

I Definition 14 (cut-norm). Given a symmetric measurable function W : ([0, 1]2)2 → R, we
define the cut-norm of W as

‖W‖�
def= sup

S,T⊆[0,1]2

∣∣∣∣∣
∫

(x,a)∈S (y,b)∈T
W ((x, a), (y, b))dxdadydb

∣∣∣∣∣ .
As we are working with ordered objects, the following definition of ordered cut-norm will
sometimes be of use (see the full version [9] for more details). Given v1, v2 ∈ [0, 1]2, we write
v1 ≤ v2 to denote that π1(v1) ≤ π1(v2). Let 1E be the indicator function for the event E.

I Definition 15 (ordered cut-norm). Let W : ([0, 1]2)2 → R be a symmetric measurable
function. The ordered cut norm of W is defined as

‖W‖�′ = sup
S,T⊆[0,1]2

∣∣∣∣∣
∫

(v1,v2)∈S×T
W (v1, v2)1v1≤v2dv1dv2

∣∣∣∣∣ .
We mention two important properties of the ordered-cut norm. The first is a standard
smoothing lemma, and the second is a relation between the ordered cut-norm and the
unordered cut-norm. The proof of both lemmas can be found in the full version [9].

I Lemma 16. Let W ∈ W and µ, ν : [0, 1]2 → [0, 1]. Then,∣∣∣∣∫
v1,v2

µ(v1)ν(v2)W (v1, v2)1v1≤v2dv1dv2

∣∣∣∣ ≤ ‖W‖�′ .
I Lemma 17. Let W : ([0, 1]2)2 → [−1, 1] be a symmetric measurable function. Then,

‖W‖2�′
4 ≤ ‖W‖� ≤ 2‖W‖�′ .
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2.2 The cut and shift distance
The next notion of distance is a central building block in this work. It can be viewed as a
locality preserving variant of the unordered cut distance, which accounts for order changes
resulting from applying a measure preserving function.

I Definition 18. Given two orderons W,U ∈ W we define the CS-distance (cut-norm+shift
distance) as:

d4(W,U) def= inf
f∈F

(
Shift(f) + ‖W − Uf‖�

)
,

where Shift(f) def= supx,a∈[0,1] |x− π1(f(x, a))|.

I Lemma 19. d4 is a pseudo-metric on the space of orderons.

For the proof, see the full version [9].

3 Block orderons and their density in W

Here we show that weighted ordered graphs are dense in the space of orderons coupled with
the cut-shift distance. To start, we have to define the orderon representation of a weighted
ordered graph, called a naive block orderon. A naive n-block orderon is defined as follows.

I Definition 20 (naive block orderon). Let m ∈ N. For z ∈ (0, 1], we denote Qn(z) = dnze;
we also set Qn(0) = 1. An m-block naive orderon is a function W :

(
[0, 1]2

)2 → [0, 1] that
can be written, for some weighted ordered graph G on n vertices, as

W ((x, a), (y, b)) = G(Qn(x), Qn(y)) , ∀x, a, y, b ∈ [0, 1] .

Following the above definition, we denote by WG the naive block orderon defined using G,
and view WG as the orderon “representing” G in W . Similarly to the unordered setting, this
representation is slightly ambiguous (but this will not affect us). Indeed, it is not hard to
verify that two weighted ordered graphs F and G satisfy WF = WG if and only if both F and
G are blowups of some weighted ordered graph H. Here, a weighted ordered graph G on nt
vertices is a t-blowup of a weighted ordered graph H on n vertices if G(x, y) = H(dx/te, dy/te)
for any x, y ∈ [nt].

We call an orderon U ∈ W a step function with at most k steps if there is a partition
R = {S1, . . . , Sk} of [0, 1]2 such that U is constant on every Si × Sj .
I Remark 21 (The name choices). The definition of a step function in the space of orderons
is the natural extension of a step function in graphons. Note that a naive block orderon
is a special case of a step function, where the steps Si are rectangular (this is why we call
these “block orderons”). The “naive” prefix refers to the fact that we do not make use of the
second coordinate in the partition.
For every W ∈ W and every partition P = {S1, . . . , Sk} of [0, 1]2 into measurable sets, let
WP : ([0, 1]2)2 → [0, 1] denote the step function obtained from W by replacing its value at
((x, a), (y, b)) ∈ Si × Sj by the average of W on Si × Sj . That is,

WP((x, a), (y, b)) = 1
λ(Si)λ(Sj)

∫
Si×Sj

W ((x′, a′), (y′, b′))dx′da′dy′db′ ,

Where i and j are the unique indices such that (x, a) ∈ Si and (y, b) ∈ Sj , respectively.
The next lemma is an extension of the regularity lemma to the setting of Hilbert spaces.
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I Lemma 22 ([29], Lemma 4.1). Let {Ki}i be arbitrary non-empty subsets of a Hilbert
space H. Then, for every ε > 0 and f ∈ H there is an m ≤ d1/ε2e and there are fi ∈ Ki
(1 ≤ i ≤ k) and γ1 . . . , γk ∈ R such that for every g ∈ Kk+1

|〈g, f − (γ1f1 + · · ·+ γkfk)〉| ≤ ε‖f‖‖g‖

The following is a direct consequence of Lemma 22.

I Lemma 23. For every W ∈ W and ε > 0 there is a step function U ∈ W with at most
d28/ε2e steps such that

‖W − U‖� ≤ ε .

Similarly to the graphon case, the step function U might not be a stepping of W . However,
it can be shown that these steppings are almost optimal.

B Claim 24. Let W ∈ W, let U be a step function, and let P denote the partition of [0, 1]2
into the steps of U . Then ‖W −WP‖� ≤ 2‖W − U‖�.

Using Lemma 23 and Claim 24 we can obtain the following lemma.

I Lemma 25. For every function W ∈ W and every ε > 0, there is a partition P of [0, 1]2
into at most 2d32/ε2e sets with positive measure such that ‖W −WP‖� ≤ ε.

Using the above lemma, we can impose stronger requirements on our partition. In particular,
we can show that there exists a partition of [0, 1]2 to sets of the same measure. Such a
partition is referred to as an equipartition. Also, we say that a partition P refines P ′, if P
can be obtained from P ′ by splitting each Pj ∈ P ′ into a finite number of sets (up to sets of
measure 0).

I Lemma 26. Fix some ε > 0. Let P be an equipartition of [0, 1]2 into k sets, and fix
q ≥ 2k2 · 2162/ε2 such that k divides q. Then, for any W ∈ W, there exists an equipartition
Q that refines P with q sets, such that ‖W −WQ‖� ≤ 8ε

9 + 2
k .

The next lemma is an (easier) variant of Lemma 26, in the sense that we refine two given
partitions. However, the resulting partition will not be an equipartition.

I Lemma 27. Fix some ε > 0 and d ∈ N. Let Id be an equipartition of [0, 1]2 into 2d sets,
P be a partition of [0, 1]2 into k sets, and fix q ≥ 2(k · 2d)2 · 2162/ε2 such that both k and 2d
divide q. Then, for any W ∈ W, there exists a partition Q that refines both P and Id with q
sets, such that ‖W −WQ‖� ≤ 8ε

9 + 2
k·2d .

Proof. Let P ′ = {P ′1, . . . , P ′p′} be a partition of [0, 1]2 into p′ ≤ 2162/ε2 sets such that
‖W − WP′‖� ≤ 4ε

9 , and let Q = {Q1, . . . , Qq} be a common refinement of the three
partitions P, P ′ and Id. Note that we do not repartition further to get an equipartition.
The rest of the proof is similar to the proof of Lemma 26. J

The following theorem shows that naive block orderons are a dense subset in W.

I Theorem 28. For every orderonW ∈ W and every ε > 0, there exist a naive c
ε4 2162/ε2-block

orderon W ′ (for some constant c > 0) such that

d4(W,W ′) ≤ ε .
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Proof. Fix ε > 0 and γ = γ(ε) > 0. We consider an interval equipartition J = {J1, . . . , J1/γ}
of [0, 1] (namely, for each j ∈ [ 1

γ − 1], Jj = [(j − 1) · γ, j · γ), and for j = 1/γ, Jj =
[(j − 1) · γ, j · γ]). In addition, let P = (Ji × Jj | i, j ∈ [1/γ]) be an equipartition of [0, 1]2.
By Lemma 26, there exists an equipartition Q of [0, 1]2 of size q = 2

γ4 2162/ε2 that refines P,
such that

‖W −WQ‖� ≤
8ε
9 + 2γ2 .

Next we construct a small shift measure preserving function f as follows. For every i ∈ [1/γ],
consider the collection of sets {Qik | k ∈ [γq]} in Q such that

(Ji × [0, 1]) ∩Q = {Qik | k ∈ [γq]} .

For each k ∈ [γq], the function f maps Qik to a rectangular set[
(i− 1)γ + (k − 1)

q
, (i− 1)γ + k

q

)
× [0, 1] .

Finally, for every i, j ∈ [q] and every (x, a), (y, b) ∈ Qi ×Qj , we define

W ′(f(x, a), f(y, b)) = WQ((x, a), (y, b))

Note that the resulting function W ′ obeys the definition of a naive q-block orderon and
Shift(f) ≤ γ. Therefore, setting γ = ε/100, we get that

d4(W,W ′) ≤ γ + 8ε
9 + 2γ2 ≤ ε/100 + 8ε/9 + 2ε2/1002 ≤ ε ,

as desired. J

4 Compactness of the space of orderons

In this section we prove Theorem 1. We construct a metric space W̃ from W with respect
to d4, by identifying W,U ∈ W with d4(W,U) = 0. Let W̃ be the image of W under this
identification. On W̃ the function d4 is a distance function.

We start with some definitions and notations. Let (Ω,M, λ) be some probability space,
P` =

{
P

(`)
i

}
i
a partition of Ω, and let β (P` : ·) : P` → [0, 1] be a function. For v ∈ Ω,

we slightly abuse notation and write β (P` : v) to denote β (P` : i) for v ∈ P (`)
i . With this

notation, observe that for every `∫
v∈Ω

β(P` : v)dv =
∑

i∈[|P`|]

λ
(
P

(`)
i

)
β(P` : i) . (2)

The following two results serve as useful tools to prove convergence. The first result is known
as the martingale convergence theorem, see e.g. Theorem A.12 in [27]. The second result is
an application of the martingale convergence theorem, useful for our purposes.

I Theorem 29 (see [27], Theorem A.12). Let {Xi}i∈N be a martingale satisfying
supn E[|Xn|] <∞. Then {Xi}i∈N is convergent with probability 1.

I Lemma 30. Let {P`}` be a sequence of partitions of Ω such that for every `, P`+1 refines
P`. Assume that for every ` and j ∈ [|P`|], the functions β(P` : ·) satisfy

λ
(
P

(`)
j

)
β (P` : j) =

∑
i∈[|P`+1|]

λ
(
P

(`)
j ∩ P

(`+1)
i

)
β(P`+1 : i). (3)

Then, there is a measurable function β : Ω→ [0, 1] such that β(v) = lim
`→∞

β(P` : v) for almost
all v ∈ Ω.
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Proof. Fix some ` ∈ N. Let X be a uniformly distributed random variable in Ω. Let
ψ` : Ω → [|P`|] be the function mapping each v ∈ Ω to its corresponding part in P` and
let Z` = β(P` : X). We now show that the sequence (Z1,Z2 . . .) is a martingale. That is,
EX∼Ω [Z`+1 | Z1, . . . ,Z`] = Z`, for every ` ∈ N. Note that by the fact that P`+1 refines P`,
ψ`(X) determines ψi(X) for every i < `. By definition, the value β(P` : X) is completely
determined by ψ`(X), and so it suffices to prove that Z` = EX∼Ω [Z`+1 | ψ`(X)]. By the
fact that for every j ∈ [|P`|] Equation (3) holds (and in particular holds for ψ`(X)), we can
conclude that the sequence (Z1,Z2, . . .) is a martingale.

Since Z` is bounded, we can invoke the martingale convergence theorem (Theorem 29)
and conclude that lim

`→∞
Z` exists with probability 1. That is, β(v) = lim

`→∞
β(P` : v) exists for

almost all v ∈ Ω. J

I Definition 31. Fix some d ∈ N and define Id =
{
I

(d)
1 , . . . , I

(d)
2d

}
so that for every t ∈

[
2d
]
,

I
(d)
t =

[
t−1
2d ,

t
2d

)
× [0, 1]. We refer to this partition as the strip partition of order d.

The next lemma states that for any orderon W we can get a sequence of partitions {P`}`,
with several properties that will be useful later on.

I Lemma 32. For any orderon W ∈ W and ` ∈ N, there is a sequence of partitions {P`}`
of [0, 1]2 with the following properties.
1. P` has g(`) many sets (for some monotone increasing g : N→ N).
2. For every `, Γ`

def= g(`)
g(`−1) ∈ N.

3. For every `′ ≥ `, the partition P`′ refines both P` and the strip partition I`′ . In particular,
for every j ∈ [g(`− 1)],

P
(`−1)
j =

j·Γ⋃̀
j′=(j−1)·Γ`+1

P
(`)
j′ .

4. W` = (W )P`
satisfies ‖W −W`‖� ≤ 4

g(`−1)2` .

Proof. We invoke Lemma 27 with the trivial partition {[0, 1]2} and the strip partition I1, to
get a partition Pn,1 with g(1) many sets such that Pn,1 refines I1 and ‖Wn −Wn,1‖� ≤ 1.
For ` > 1, we invoke Lemma 27 with I` and Pn,`−1 to get a partition Pn,` of size g(`) =
(g(`−1)·2`)2 ·2O(g(`−1)2) which refines both I` and Pn,`−1 such that ‖Wn−Wn,`‖� ≤ 4

g(`−1)2` .
In order to take care of divisibility, we add empty (zero measure) sets in order to satisfy
items (2) and (3). J

Consider a sequence of orderons {Wn}n∈N. For every n ∈ N, we use Lemma 32 to construct
a sequence of functions {Wn,`}` such that ‖Wn −Wn,`‖� is small. For each `, we would like
to approximate the shape of the limit partition resulting from taking n→∞. Inside each
strip I(`)

t , we consider the relative measure of the intersection of each set contained in I(`)
t ,

with a finer strip partition I`′ .

I Definition 33 (shape function). For fixed n ∈ N, let {Pn,`}` be partitions of [0, 1]2 with the
properties listed in Lemma 32. For every `′ > ` and I(`′)

t′ ∈ I`′ , we define α(n,`)
j (I`′ : t′) def=

2`′ · λ
(
P

(n,`)
j ∩ I(`′)

t′

)
to be the relative volume of the set P (n,`)

j in I(`′)
t′ .

For any `′ ≥ ` and I(`′)
t′ ∈ I`′ , by the compactness of [0, 1], we can select a subsequence

of {Wn}n∈N such that α(n,`)
j (I`′ : t′) converges for all j ∈ [g(`)] as n→∞. Let

α
(`)
j (I`′ : t′) def= lim

n→∞
α

(n,`)
j (I`′ : t′) .
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Next we define the limit density function.

I Definition 34 (density function). For fixed n ∈ N, let {Pn,`}` be partitions of [0, 1]2 with
the properties listed in Lemma 32. We let δ(n,`) (Pn,` × Pn,` : i, j) def= Wn,`((x, a), (y, b)) for
(x, a) ∈ P (n,`)

i and (y, b) ∈ P (n,`)
j .

By the compactness of [0, 1], we can select a subsequence of {Wn}n∈N such that δ(n,`)(Pn,`×
Pn,` : i, j) converge for all i, j ∈ [g(`)] as n→∞. Let

δ(`)(i, j) def= lim
n→∞

δ(n,`)(Pn,` × Pn,` : i, j) .

The following lemma states that by taking increasingly refined strip partitions I`′ , we obtain
a limit shape function for each set contained in any strip of I`.

I Lemma 35. For fixed ` and j ∈ [g(`)], there is a measurable function α(`)
j : [0, 1]→ [0, 1]

such that α(`)
j (x) = lim

`′→∞
α

(`)
j (I`′ : x) for almost all x ∈ [0, 1].

Proof. Fix n, ` and `′ > `. For every j ∈ [g(`)], by the definition of α(n,`)
j (I`′ : t′) and the

strip partition I`′

λ
(
I

(`′)
t′

)
· α(n,`)

j (I`′ : t′) = λ
(
P

(n,`)
j ∩ I(`′)

t′

)
∀t′ ∈

[
2`
]
.

On the other hand, since I`′+1 refines I`′ ,

λ
(
P

(n,`)
j ∩ I(`′)

t′

)
= λ

(
P

(n,`)
j ∩ I(`′+1)

2t′−1

)
+ λ

(
P

(n,`)
j ∩ I(`′+1)

2t′
)

= λ
(
I

(`′+1)
2t′−1

)
· α(n,`)

j (I`′+1 : 2t′ − 1) + λ
(
I

(`′+1)
2t′

)
· α(n,`)

j (I`′+1 : 2t′) .

Therefore, when n→∞ we get that,

λ
(
I

(`′)
t′

)
· α(`)

j (I`′ : t′) = λ
(
I

(`′+1)
2t′−1

)
· α(`)

j (I`′+1 : 2t′ − 1) + λ
(
I

(`′+1)
2t′

)
· α(`)

j (I`′+1 : 2t′) ,

which is exactly the condition in Equation (3). By applying Lemma 30 with the sequence of
strip partitions {I`′}`′ on α(`)

j the lemma follows. J

The next lemma asserts that the limit shape functions behave consistently.

I Lemma 36. For every ` and j ∈ [g(`− 1)],

α
(`−1)
j (x) =

j·Γ∑̀
j′=(j−1)·Γ`+1

α
(`)
j′ (x) ,

for almost all x ∈ [0, 1].

Proof. Fix some n, ` and `′ > `. By the additivity of the Lebesgue measure,

α
(n,`−1)
j (I`′ : x) =

j·Γ∑̀
j′=(j−1)·Γ`+1

α
(n,`)
j′ (I`′ : x) ∀x ∈ [0, 1] .

By the fact that for every j ∈ [g(` − 1)] and x ∈ [0, 1] the sequence
{
α

(n,`−1)
j (I`′ : x)

}
n

converges to α(`−1)
j (I`′ : x) as n→∞, we get that

α
(`−1)
j (I`′ : x) =

j·Γ∑̀
j′=(j−1)·Γ`+1

α
(`)
j′ (I`′ : x) ∀x ∈ [0, 1] .
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By applying Lemma 35 on each j′ ∈ [g(`)], where `′ →∞, we get that

α
(`−1)
j (x) =

j·Γ∑̀
j′=(j−1)·Γ`+1

α
(`)
j′ (x) ,

for almost all x ∈ [0, 1]. J

Using the sequence of
{
α

(`)
j

}
j
we define a limit partition A` =

{
A

(`)
1 , . . . , A

(`)
g(`)

}
of [0, 1]2 as

follows.

I Definition 37 (limit partition). For every ` ∈ N, let A` =
{
A

(`)
1 , . . . , A

(`)
g(`)

}
be a partition

of [0, 1]2 such that,

A
(`)
j =

(x, a) :
∑
i<j

α
(`)
i (x) ≤ a <

∑
i≤j

α
(`)
i (x)

 ∀j ∈ [g(`)] .

I Lemma 38. For any `, the partition A` has the following properties
1. A` refines the strip partition I`.
2. The partition A` refines A`−1.
3. For every j ∈ [g(`)], λ

(
A

(`)
j

)
= lim
n→∞

λ
(
P

(n,`)
j

)
.

Proof. The first item follows by the fact that each α(`)
j is non-zero inside only one strip.

By the definition of the sets A(`)
j and Lemma 36 it follows that for each j ∈ [g(`− 1)],

A
(`)
j′ ⊂ A

(`−1)
j for all (j − 1) · Γ` + 1 ≤ j′ ≤ j · Γ`,

and therefore,

A
(`−1)
j =

j·Γ⋃̀
j′=(j−1)·Γ`+1

A
(`)
j′ ,

which shows the second item. To prove the third item of the lemma, note that for every
n, ` and `′ > `,

lim
n→∞

λ
(
P

(n,`)
j

)
= lim
n→∞

∑
t′∈[2`′ ]

2−`
′
· α(n,`)

j (I`′ : t′)

=
∑

t′∈[2`′ ]
2−`

′
· α(`)

j (I`′ : t′) =
∫
x

α
(`)
j (I`′ : x)dx,

where the last equality follows from Equation (2). Finally, by taking `′ → ∞ and using
Lemma 35, we get

lim
n→∞

λ
(
P

(n,`)
j

)
=
∫
x

α
(`)
j (x)dx = λ

(
A

(`)
j

)
as desired. J

Using the definition of δ(`) and A`, we define a density function on the limit partition.
For (x, a) ∈ A(`)

i and (y, b) ∈ A(`)
j , let

δ (A` ×A` : (x, a), (y, b)) def= δ(`)(i, j) .
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I Lemma 39. For each ` ∈ N and i, j ∈ [g(`− 1)],
i·Γ∑̀

i′=(i−1)·Γ`+1

j·Γ∑̀
j′=(j−1)·Γ`+1

λ
(
A

(`)
i′

)
· λ
(
A

(`)
j′

)
δ (A` ×A` : i′, j′)

=λ
(
A

(`−1)
i

)
· λ
(
A

(`−1)
j

)
δ (A`−1 ×A`−1 : i, j) .

Proof. Fix n, ` and i, j ∈ [g(`− 1)]. By the definition of the partitions Pn,`, Pn,`−1 and the
density functions δ(n,`), δ(n,`−1)

i·Γ∑̀
i′=(i−1)·Γ`+1

j·Γ∑̀
j′=(j−1)·Γ`+1

λ
(
P

(n,`)
i′

)
· λ
(
P

(n,`)
j′

)
δ(n,`) (Pn,` × Pn,` : i′, j′)

=λ
(
P

(n,`−1)
i

)
· λ
(
P

(n,`−1)
j

)
δ (Pn,`−1 × Pn,`−1 : i, j) .

By taking the limit as n→∞ and using the third item of Lemma 38,
i·Γ∑̀

i′=(i−1)·Γ`+1

j·Γ∑̀
j′=(j−1)·Γ`+1

λ
(
A

(`)
i′

)
· λ
(
A

(`)
j′

)
δ (A` ×A` : i′, j′)

=λ
(
A

(`−1)
i

)
· λ
(
A

(`−1)
j

)
δ (A`−1 ×A`−1 : i, j) ,

which completes the proof. J

The next Lemma asserts that the natural density function of the limit partition is measurable.
It follows directly from the combination of Lemma 30 and Lemma 39.

I Lemma 40. There exists a measurable function δ : ([0, 1]2)2 → [0, 1] such that
δ((x, a), (y, a)) = lim

`→∞
δ (A` ×A` : (x, a), (y, b)) for almost all (x, a), (y, b) ∈ ([0, 1]2)2.

Finally, we are ready to prove Theorem 1.

Proof of Theorem 1. We start by giving a high-level overview of the proof. Let {Wn}n∈N
be a sequence of functions in W. We show that there exists a subsequence that has a limit
in W̃.

For every n ∈ N, we use Lemma 32 to construct a sequence of functions {Wn,`}` such
that ‖Wn−Wn,`‖� ≤ 4

g(`−1)2` . Then, for every fixed ` ∈ N, we find a subsequence of {Wn,`}
such that their corresponding α(n,`)

j and δ(n,`)(i, j) converge for all i, j ∈ [g(`)] (as n→∞).
For every `, we consider the partition A` (which by Definition 37, is determined by {α(`)

j }j)
and δ(`). Using A` and δ(`), we can the define the function U`, such that Wn,` → U` almost
everywhere as n→∞.

Given the sequence of functions {U`}`, we use Lemma 40 to show that {U`}` converges to
some U almost everywhere as `→∞ (where U is defined according the limit density function
δ). Finally we show that for any fixed ε > 0, there is n0(ε) such that for any n > n0(ε),
d4(Wn, U) ≤ ε.

Fix some ε > 0 and ξ(ε) > 0 which will be determined later. Consider the sequence
{U`}` which is defined by the partition A` and the density function δ(`). By Lemma 40, the
sequence {U`}` converges (as `→∞) almost everywhere to U , which is defined by the limit
density function δ. Therefore, we can find some ` > 1/ξ such that ‖U` − U‖1 ≤ ξ.

Fixing this `, we show that there is n0 such that d4(Wn,`, U`) ≤ 2−` + 3ξ for all n > n0.
We shall do it in two steps by defining an interim function W ′n,` and using the triangle
inequality.
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Recall that the function Wn,` is defined according to the partition Pn,` and the density
function δ(n,`). Let W ′n,` be the function defined according to the partition A` and the
density function δ(n,`). That is, for every (x, a) ∈ A(`)

i and (y, b) ∈ A(`)
j , W ′n,`((x, a), (y, b)) def=

δ(n,`) (Pn,` × Pn,` : i, j). By the third item of Lemma 38, for every j ∈ [g(`)], λ
(
A

(`)
j

)
=

lim
n→∞

λ
(
P

(n,`)
j

)
. Then, we can find n′0(`) such that for all n > n′0,

max
(
λ
(
A

(`)
j

)
, λ
(
P

(n,`)
j

))
−min

(
λ
(
A

(`)
j

)
, λ
(
P

(n,`)
j

))
≤ ξ

g(`) ∀j ∈ [g(`)] . (4)

We define a measure preserving map f from Wn,` to W ′n,` as follows. For every strip
I

(`)
t ∈ I`, we consider all the sets {P (n,`)

j1
. . . , P

(n,`)
jt
} in Pn,` such that

⋃jt

j′=j1
P

(n,`)
j′ =

I
(`)
t . Similarly, consider all the sets {A(`)

j1
. . . , A

(`)
jt
} in A` such that

⋃jt

j′=j1
A

(`)
j′ = I

(`)
t .

For every j′ ∈ {j1, . . . , jt}, we map an arbitrary subset S
(n,`)
j′ ⊆ P

(n,`)
j′ of measure

min
(
λ
(
A

(`)
j′

)
, λ
(
P

(n,`)
j′

))
to an arbitrary subset (with the same measure) of A(`)

j′ . Next,

we map I(`)
t \

⋃jt

j′=j1
S

(n,`)
j′ to I(`)

t \
⋃jt

j′=j1
f(S(n,`)

j′ ). Note that by (4) and the fact that Wn,`

and W ′n,` have the same density function δ(n,`), the functions Wn,` and W ′n,` disagree on a
set of measure at most 2ξ. Note that for every I(`)

t ∈ I`, the function f maps sets from Pn,`
that are contained in I(`)

t to sets in A` that are contained in I(`)
t , and thus, Shift(f) ≤ 2−`.

Therefore, for n > n′0, we get that d4(Wn,`,W
′
n,`) ≤ 2−` + 2ξ, and the first step is complete.

In the second step we bound d4(W ′n,`, U`). The two functions W ′n,` and U` are defined
on the same partition A`, however, their values are determined by the density functions δ(n,`)

and δ(`) respectively. By the fact that δ(n,`) converges to δ(`) (as n→∞), we can find n′′0(`)
such that for all n > n′′0 ,∣∣∣δ(n,`)(i, j)− δ(`)(i, j)

∣∣∣ ≤ ξ

g(`)2 ∀i, j ∈ [g(`)] .

Thus, for every n > n′′0 , it holds that d4(W ′n,`, U`) ≤ ‖W ′n,` − U`‖1 ≤ ξ. By choosing
n0 = max(n′0, n′′0) we get that

d4(Wn,`, U`) ≤ d4(Wn,`,W
′
n,`) + d4(W ′n,`, U`) ≤ 2−` + 3ξ .

By putting everything together we get that for every n > n0

d4(Wn, U) ≤ d4(Wn,Wn,`) + d4(Wn,`, U`) + d4(U`, U)
≤ ‖Wn −Wn,`‖� + d4(Wn,`, U`) + ‖U` − U‖1

≤ O
(

1
g(`− 1)2`

)
+ 2−` + 3ξ + ξ.

By our choice of ` > 1/ξ we get that

d4(Wn, U) ≤ 6ξ .

By choosing ξ = ε/6 the theorem follows. J



O. Ben-Eliezer, E. Fischer, A. Levi, and Y. Yoshida 42:19

References
1 Emmanuel Abbe. Community detection and stochastic block models: Recent developments.

Journal of Machine Learning Research, 18(177):1–86, 2018.
2 Noga Alon, Omri Ben-Eliezer, and Eldar Fischer. Testing hereditary properties of ordered

graphs and matrices. In Proceedings of the 58th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 848–858, 2017.

3 Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient testing of large
graphs. Combinatorica, 20(4):451–476, 2000.

4 Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial characterization
of the testable graph properties: It’s all about regularity. SIAM Journal on Computing,
39(1):143–167, 2009.

5 Noga Alon and Asaf Shapira. A characterization of the (natural) graph properties testable
with one-sided error. SIAM Journal on Computing, 37(6):1703–1727, 2008.

6 Noga Alon and Uri Stav. What is the furthest graph from a hereditary property? Random
Structures & Algorithms, 33(1):87–104, 2008.

7 Maria Axenovich and Ryan R. Martin. Multicolor and directed edit distance. Journal of
Combinatorics, 2(4), 2011.

8 Omri Ben-Eliezer and Eldar Fischer. Earthmover resilience and testing in ordered structures.
In Proceedings of the 33rd Conference on Computational Complexity (CCC), pages 18:1–18:35,
2018.

9 Omri Ben-Eliezer, Eldar Fischer, Amit Levi, and Yuichi Yoshida. Limits of ordered graphs
and their applications. Full version of this work. arXiv:1811.02023.

10 Christian Borgs, Jennifer Chayes, and David Gamarnik. Convergent sequences of sparse
graphs: A large deviations approach. Random Structures & Algorithms, 51(1):52–89, 2017.

11 Christian Borgs, Jennifer Chayes, and László Lovász. Moments of two-variable functions and
the uniqueness of graph limits. Geometric and Functional Analysis, 19(6):1597–1619, 2010.

12 Christian Borgs, Jennifer Chayes, László Lovász, Vera T Sós, Balázs Szegedy, and Katalin
Vesztergombi. Graph limits and parameter testing. In Proceedings of the 38th ACM Symposium
on the Theory of Computing (STOC), pages 261–270, 2006.

13 Christian Borgs, Jennifer Chayes, László Lovász, Vera T. Sós, and Katalin Vesztergombi.
Counting graph homomorphisms. In Topics in Discrete Mathematics, pages 315–371. Springer
Berlin Heidelberg, 2006.

14 Christian Borgs, Jennifer Chayes, László Lovász, Vera T. Sós, and Katalin Vesztergombi.
Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing.
Advances in Mathematics, 219(6):1801–1851, 2008.

15 Christian Borgs, Jennifer Chayes, László Lovász, Vera T. Sós, and Katalin Vesztergombi.
Convergent sequences of dense graphs II. multiway cuts and statistical physics. Annals of
Mathematics, 176(1):151–219, 2012.

16 Christian Borgs and Jennifer T. Chayes. Graphons: A nonparametric method to model,
estimate, and design algorithms for massive networks. CoRR, abs/1706.01143, 2017. arXiv:
1706.01143.

17 Persi Diaconis and Svante Janson. Graph limits and exchangeable random graphs. Rendiconti
di Matematica e delle sue Applicazioni. Serie VII, 28(1):33–61, 2008.

18 Gábor Elek and Balázs Szegedy. A measure-theoretic approach to the theory of dense
hypergraphs. Advances in Mathematics, 231(3):1731–1772, 2012.

19 Eldar Fischer and Ilan Newman. Testing versus estimation of graph properties. SIAM Journal
on Computing, 37(2):482–501, 2007.

20 John M. Franks. A (terse) introduction to Lebesgue integration, volume 48 of Student Math-
ematical Library. American Mathematical Society, 2009.

21 Michael Freedman, László Lovász, and Alexander Schrijver. Reflection positivity, rank
connectivity, and homomorphism of graphs. Journal of the American Mathematical Society,
20:37–51, 2007.

ITCS 2021

http://arxiv.org/abs/1811.02023
http://arxiv.org/abs/1706.01143
http://arxiv.org/abs/1706.01143


42:20 Ordered Graph Limits and Their Applications

22 Alan Frieze and Ravi Kannan. The regularity lemma and approximation schemes for dense
problems. In Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 12–20, 1996.

23 Alan Frieze and Ravi Kannan. Quick approximation to matrices and applications. Combinat-
orica, 19(2):175–220, 1999.

24 Frederik Garbe, Robert Hancock, Jan Hladký, and Maryam Sharifzadeh. Limits of latin
squares. arXiv preprint, 2020. Extended abstract appeared in Eurocomb 2019 under the name
Theory of limits of sequences of Latin squares. arXiv:2010.07854.

25 Carlos Hoppen, Yoshiharu Kohayakawa, Carlos Gustavo Moreira, Balázs Ráth, and Rudini Me-
nezes Sampaio. Limits of permutation sequences. Journal of Combinatorial Theory, Series B,
103(1):93–113, 2013.

26 Svante Janson. Poset limits and exchangeable random posets. Combinatorica, 31(5):529–563,
2011.

27 László Lovász. Large networks and graph limits, volume 60. American Mathematical Society,
2012.

28 László Lovász and Balázs Szegedy. Limits of dense graph sequences. Journal of Combinatorial
Theory, Series B, 96(6):933–957, 2006.

29 László Lovász and Balázs Szegedy. Szemerédi’s lemma for the analyst. Geometric And
Functional Analysis, 17(1):252–270, 2007.

30 László Lovász and Balázs Szegedy. Testing properties of graphs and functions. Israel Journal
of Mathematics, 178(1):113–156, 2010.

31 Ryan R. Martin. The edit distance in graphs: Methods, results, and generalizations. In Andrew
Beveridge, Jerrold R. Griggs, Leslie Hogben, Gregg Musiker, and Prasad Tetali, editors, Recent
Trends in Combinatorics, pages 31–62. Springer International Publishing, 2016.

32 Ryan R. Martin and Maria Axenovich. Avoiding patterns in matrices via a small number of
changes. SIAM Journal of Discrete Mathematics, 20(1):49–54, 2006.

33 Peter Orbanz and Daniel M. Roy. Bayesian models of graphs, arrays and other exchangeable
random structures.IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):437–
461, 2015.

34 Endre Szemerédi. Regular partitions of graphs. In Problèmes combinatoires et théorie des
graphes. Colloq. Internat. CNRS, volume 260, pages 399–401, 1976.

35 Yuichi Yoshida. Gowers norm, function limits, and parameter estimation. In Proceedings of
the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1391–1406, 2016.

36 Yufei Zhao. Hypergraph limits: A regularity approach. Random Structures & Algorithms,
47(2):205–226, 2015.

http://arxiv.org/abs/2010.07854


Error Correcting Codes for Uncompressed
Messages
Ofer Grossman
MIT, Cambridge, MA, USA
ogrossma@mit.edu

Justin Holmgren
NTT Research, Palo Alto, CA, USA
justin.holmgren@ntt-research.com

Abstract
Most types of messages we transmit (e.g., video, audio, images, text) are not fully compressed, since
they do not have known efficient and information theoretically optimal compression algorithms.
When transmitting such messages, standard error correcting codes fail to take advantage of the fact
that messages are not fully compressed.

We show that in this setting, it is sub-optimal to use standard error correction. We consider a
model where there is a set of “valid messages” which the sender may send that may not be efficiently
compressible, but where it is possible for the receiver to recognize valid messages. In this model, we
construct a (probabilistic) encoding procedure that achieves better tradeoffs between data rates and
error-resilience (compared to just applying a standard error correcting code).

Additionally, our techniques yield improved efficiently decodable (probabilistic) codes for fully
compressed messages (the standard setting where the set of valid messages is all binary strings) in
the high-rate regime.
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1 Introduction

If Alice wishes to send a message m to Bob, she might first compress it as well as she can.
In this work, we focus on lossless compression, meaning that Bob must recover m exactly.
There are many types of data (e.g. images, audio, video, text) that we do not know how
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to compress and decompress efficiently and information-theoretically optimally. For such
messages, this compression step will result in a longer-than-optimal message. For example,
the best efficient compression scheme may result in a b-bit long compressed message, whereas
an information theoretically optimal compression scheme might be able to obtain 0.5b bits.

After compressing, Alice can apply an error correcting code to the compressed message,
ensuring that Bob can recover the message in the presence of corruptions. Suppose Alice
wishes to have her message be resilient against up to 5% worst-case errors. Then, the best
known construction of a code with efficient unique decoding and public randomness will
result in a total of approximately 3.64b bits sent to Bob (using bounds implicit in [22, 17]).

We show that in this setting it is sub-optimal to treat compression and error correction
as two orthogonal concerns. We instead address both compression and error correction
simultaneously, constructing an error correcting code that exploits the fact that messages
are not fully compressed. This allows Alice to send only fewer bits to Bob with the same
error resilience. For example, with the above parameters Alice can send 2.24b bits.

1.1 Contextually Unique Decoding

We define a new notion, contextually unique decoding, that formalizes the idea of encoding a
message that is not fully compressed. Roughly speaking, we let S ⊆ {0, 1}k denote a set of
“valid messages” that Alice may send. Suppose, for example, that Alice is sending English
text of a certain size to Bob. Then we think of S as the set of all “reasonable” texts Alice
can send. For example, “meet me at 5pm” (when translated to binary) is in S. However,
“wef ojip447oll” is not in S. We assume that Bob has oracle access to S – he has the power
to determine whether a message is reasonable or not. Because most strings do not look like
reasonable texts, we see that S is pretty small1. We now wish to say that whenever Alice
encodes an element m of S, Bob will be able to recover m.

Motivated by this, we say that a family of codes {Ci : {0, 1}k → {0, 1}n} is contextually
uniquely decodable if there is a decoding algorithm D such that for any sufficiently small set
of messages S ⊆ {0, 1}k, it holds w.h.p. for a random i that for all m ∈ S, the algorithm D

(with oracle access to S) can recover m given i and an adversarially corrupted Ci(m) (where
the adversary may depend on i).

Alice may have partially compressed the text she wishes to send (we assume she cannot
fully compress it, since we don’t know any efficient practical information theoretically optimal
compression schemes for text). In this case, a message is in S if it looks like reasonable text
once it is decompressed.

A code with contextually unique decoding would (assuming public randomness) allow
Alice to send a message to Bob, so that he can recover Alice’s message even in the presence
of corruptions.

Formally, we define:

I Definition 1 (δ-Hamming Adversary). A δ-Hamming adversary is a function A : {0, 1}n →
{0, 1}n such that for all c ∈ {0, 1}n, the Hamming distance between c and A(c) is at most
δn.

1 Notice that if S if of size 2k′ , then information theoretically it would be possible for Alice to compress
the message to k′ bits, and then apply an error correcting code.
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I Definition 2 (Contextually Unique Decoder). An oracle algorithm D is an (r, δ, ε, τ)-
contextually unique decoder for a family of probabilistic codes {Ci : {0, 1}k $→ {0, 1}n}i∈I if
for all sets S ⊆ {0, 1}k with |S| ≤ 2rn, it holds with probability at least 1− ε over the choice
of i← I that for all messages m ∈ S and all δ-Hamming adversaries A (that may depend
on i),

Pr
c←Ci(m)

[DS(i,A(c)) 6= m] ≤ τ.

We emphasize the order of quantifiers in the definition. We use randomness in two
different ways. First, randomness is used to pick a code from the family {Ci}. This choice of
randomness is agreed upon by all parties ahead of time and is publicly known (to the sender,
receiver, and the adversary), and must work for all messages. Randomness is then also used
by the sender (Alice) when encoding. That is, even after fixing the message m and the choice
of Ci, the encoding of a message m using Ci depends on the encoder’s randomness (we use
the notation Ci : {0, 1}k $→ {0, 1}n to denote that Ci is a function taking an input from
{0, 1}k, along with some randomness, and outputs an element of {0, 1}n, which may depend
on the randomness). The decoder only needs to know the randomness used in picking Ci,
and not the randomness used by the encoder in evaluating Ci.

1.2 Main Result and Construction Overview
We first overview our construction of contextually unique decodable codes, and then we
formally describe our main result (Theorem 3).

1.2.1 Construction Overview
The Main Idea

In the standard model of error correcting codes, we have a code C, which we use to encode
a message m as C(m). Then, even when an adversary may corrupt a bounded number
of entries of C(m), it is still possible to recover m. This is called unique decoding. List
decoding [6, 28] is a generalization of unique decoding where instead of recovering m, the
decoding algorithm outputs a short (polynomial sized) list m1,m2, . . . ,m` such that the real
message m is in the list. This relaxation makes it possible to handle more errors.

The key in our construction is to have Alice send a coded version of the message m with
good list decoding properties. Then, the goal will be that when Bob list-decodes Alice’s
message, only one of the elements in Bob’s list will be a “valid message” (that is, only one
element of the list will be in S). Then, the hope is that Bob can correct errors up to the list
decoding radius, instead of the unique decoding radius.

So for example, Alice might encode the message “call me at 4pm”, and after an adversary
adds some errors, and Bob decodes, he will have a list of messages. Ideally, the list will look
something like “kwjlewf 6oahzm”, “aowi2ifmlpzo”, “wef ojip447oll”, “call me at 4pm”, and
“5ncbzmap89pqq”. From this list, it will be easy for Bob to infer that the message Alice
sent was “call me at 4pm” (formally, he will use his oracle access to S to check which of the
strings are in S, and we hope that only one will be in the set S of valid messages). Note,
however, that if Bob’s list contains more than one valid message – for example, if the list of
messages is “call me at 7pm”, “my phone broke”, “call me at 4pm”, and “come to my office”
– then it will not be possible for Bob to determine which was the intended message (formally,
this situation corresponds to Bob’s list containing more than one element in S).

ITCS 2021
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The technical focus of our constructions is ensuring that within the set of candidate
messages provided by a list-decoding algorithm, with high probability only one message will
be valid. Our main theorem (Theorem 3) can indeed be viewed as a transformation from a
list-decodable code to a contextually-uniquely decodable code.

Randomizing the message space

Let S be the set of valid messages. To ensure that only one elements of Bob’s list is in S, the
idea is to randomize the message space. If the messages in Bob’s list are more or less random
(other than Alice’s intended message), it is unlikely that more than one of the messages will
be in S (we assume that |S| is small relative to the entire message space {0, 1}k). So ideally,
what we would want to do is pick a random permutation π of {0, 1}k (which is the set of all
possible messages, including those not in S) using public randomness, and then use an error
correcting code C with good list decoding parameters on π(m). Then, the set of messages
that the adversary can cause to be in Bob’s list will be a random small subset of {0, 1}k,
which, because S is small, will likely not intersect S.

There are some issues with the approach described above. One issue is that picking a
random permutation of {0, 1}k requires a number of bits exponential in k, but we want Alice
and Bob to be efficient. This issue can be solved by using pairwise independence. Roughly
speaking, one can see why pairwise independence is enough as follows. The choice of π is
bad if there are two messages m1 and m2 in S such that C(π(m1)) is close to C(π(m2)).
This causes the adversary to be able to corrupt few entries of an encoding of m1 and cause
it to be close to an encoding of m2. One can see that the probability C(π(m1)) is close to
C(π(m2)) is the same for a random π and a π chosen from a pairwise independent family,
since it depends on only two evaluations of π.

Another issue with the construction as described above is that the probability that there
exist m1,m2 ∈ S with C(π(m1)) close to C(π(m2)) is not that low (it is 2−cn, for some
c. Ideally, we would like it to be 2−ω(n), so we can apply a union bound over all of S and
not worry about the value of c). We alter the construction by instead of picking a single π,
picking a collection π1, π2, . . . , πN which will be agreed on using public randomness. Then,
the encoder (Alice) will pick a random j ∈ [N ], and use C(πj(m)) as the message sent to
Bob. To decode, Bob will decode C to get a list L, and then for each j ∈ [n] and for each
x ∈ L he will check if π−1

j (x) ∈ S, and with high probability only one such pair (x, j) will
satisfy π−1

j (x) ∈ S. Then Bob will know that the message m that Alice sent is π−1
j (x).

We now outline how we show that Bob’s list with high probability indeed contains only
one element in S. Consider the probability that for a certain m in S, we have C(π(m))
close to some C(π(m′)). Call this probability p. Then, the probability that for most j, we
have C(πj(m)) close to some C(πj′(m′)) will be approximately pΩ(N) (by a Chernoff bound),
which is much smaller than p. This allows us to apply a union bound over all messages in S
without losing anything significant.

Amplifying the success probability (Section 4)

The construction described above works, but it has a downside that there is inverse polynomial
probability of error. That is, with probability inversely polynomial in the message lengths,
Bob may be unable to recover the message Alice sent, since with probability approximately 1

N

Alice may pick a bad choice of i.
Ideally, we would want to succeed with all but negligible probability. One approach

is to set N to be superpolynomial. The problem with this is that now Bob will not be
able to efficiently decode, since his decoding algorithm requires trying every one of the N
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permutations. To fix this, instead of Alice sending Bob C(πi(m)), she will send him
C(πi(m), i) (we apply C to the string which is the concatenation of πi(m) and i). Now, when
Bob list decodes C, he will get a list of the form (x1, i1), (x2, i2), . . . (x`, i`). Now, he can
check if π−1

i1
(x1) ∈ S, or if π−1

i2
(x2) ∈ S, and so on. Crucially, we see that for each element

(xj , ij) in the list, Bob needs to try only a single permutation (namely ij), instead of all
permutations. This allows Bob to remain efficient even when there are superpolynomially
many permutations for Alice to pick from.

This leads to a new issue, since one needs to agree on a superpolynomially sized family of
permutations sampled from a family of pairwise independent permutations. Also, we want
this family to be efficiently sampleable, and for each element to have a succinct description.
It turns out that this can be solved using k-wise independence (and k-wise ε-dependence).
This part is more technical, and we refer the reader to the body of the paper for details.

1.2.2 The main theorem
Here we formally describe the main theorem. We say that an n-bit code is combinatorially
(ρ, λ)-list decodable if for any y ∈ {0, 1}n, there are at most ≈ 2λn codewords within relative
Hamming distance ρ of y. We are also interested in the asymptotic computational efficiency
of encoding and decoding procedures, so we consider ensembles of codes {Cn : {0, 1}kn →
{0, 1}n}n∈Z+ . We will restrict our attention to ensembles where r = lim kn

n exists, and we
call r the rate of the ensemble. We say that {Cn} is efficiently ρ-list-decodable if there is a
polynomial-time algorithm that on input y ∈ {0, 1}n, outputs all codewords of Cn that are
within relative Hamming distance ρ of y.

I Theorem 3 (Simplified Main Theorem). Suppose that {C ′n : {0, 1}k′n → {0, 1}n}n∈Z+ is a
rate-r′ ensemble of (deterministic) codes that is efficiently ρ-list-decodable. Suppose also that
{C ′n} is combinatorially (2ρ, λ)-list decodable.

Then for some negligible function ε(n), there is a rate-r′ ensemble of probabilistic codes
{Cn} such that Cn has a polynomial-time

(
r′ − λ− o(1), ρ, ε, ε

)
-contextually unique decoder.

So, suppose we wish to construct contextually unique codes where the message can be
recovered when there are up to 0.1 fraction of corruptions. So we have ρ = 0.1. We now wish
to find an r′ and λ which maximize r′ − λ such that there are deterministic codes which are
of rate r′, and are combinatorially (2ρ, λ)-list decodable (we also have make sure the codes
are efficiently ρ-list decodable).

Once fixing ρ, the tradeoff here is between r′ and λ. The best contextually unique codes
will have high rates r′ − λ− o(1), so we want λ to be small, and r′ to be large. However, the
codes {C ′n} must be combinatorially (2ρ, λ)-list decodable. So, as we increase r′, the lowest
possible value of λ decreases.

We give some examples of parameter settings to Theorem 3 in Table 1.

1.3 Improvements for standard randomized setting
An important special case of contextually unique decoding is obtained by fixing S =
{0, 1}kn , viewed as a subset of {0, 1}k′n for k′n > kn by zero-padding. In this case, a
contextually uniquely decodable code is quite similar to a standard error-correcting code –
the main difference is in the use of randomness both in generating the code and encoding
messages. Perhaps surprisingly, we obtain better parameters in the high-rate regime than
any other known efficiently decodable code (including probabilistic constructions with public
randomness).
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Table 1 This table shows some example values of what rates can be achieved with our main
theorem (Theorem 3) together with the best of the Blokh-Zyablov (Fact 6) and Thommesen-Rudra
bounds. If |S| = 2s·k, and S ⊆ {0, 1}k, we say that the sparsity of S is s. So, for example, if S is of
size 2.5k, and there are 3% fraction of errors, we see that we can achieve rate .574 (and so Alice’s
message size would be k/.574, or approximately 1.74k). The best Alice would be able to do without
contextually unique decoding would be rate .396, which corresponds to over 2.52k bits sent (this
can be seen by looking at the sparsity 1 row, which corresponds to using standard unique decoding,
since in this case S is the whole message space {0, 1}k).

Sparsity
Errors 0.01 0.02 0.03 0.05 0.1 0.2

1 0.661 0.504 0.396 0.275 0.142 0.028
0.9 0.778 0.591 0.451 0.277 0.142 0.030
0.75 0.778 0.661 0.574 0.332 0.142 0.034
0.5 0.778 0.661 0.574 0.446 0.142 0.038
0.25 0.778 0.661 0.574 0.446 0.142 0.040
0.1 0.778 0.661 0.574 0.446 0.178 0.041
0.05 0.778 0.661 0.574 0.446 0.202 0.041
0.01 0.778 0.661 0.574 0.446 0.235 0.041

Discussion

If there is a (deterministic) code that can be efficiently list decoded up to ρ errors, and
combinatorially uniquely decoded up to ρ′ errors, then it is possible to efficiently uniquely
decode up to min(ρ, ρ′) errors. This can be done by simply list decoding, and then going
over every element in the list to determine which of the elements, when encoded, is closest
to the received message. So, in short, it is not hard to see that good efficient list decoding
and good combinatorial unique decoding implies good efficient unique decoding (this idea is,
roughly speaking, what gives the green line (TR bound) in Figure 1).

Our corollary can be viewed as a strengthening of this result. We show that rather
than requiring good efficient list decoding and good combinatorial unique decoding, we can
use codes with good efficient list decoding and good combinatorial list decoding. The idea,
roughly speaking, is to use our efficient list decoding algorithm to obtain a list of candidate
messages, and we use our main theorem on contextually unique decoding to ensure that only
one of these messages will be a “valid” message. Then, we can go through each candidate in
the list, and pick the one which is a valid message.

I Corollary 4 (Simplified Main Corollary). Suppose that {C̃(n) : {0, 1}k′n → {0, 1}n}n∈Z+ is a
rate-r′ ensemble of (deterministic) codes that is efficiently ρ-list-decodable. Suppose also that
{C̃(n)} is combinatorially (2ρ, λ)-list decodable.

Then there exists an ensemble {C(n)}n∈Z+ , where C(n) = {Ci : {0, 1}kn $→ {0, 1}n}i∈I(n)

is a family of probabilistic codes, such that:
1. lim kn

n = r′ − λ, and
2. There are poly(n)-time algorithms to:

Sample from I(n) given 1n.
Probabilistically encode Ci(m) given i and m,
Decode ρ-corrupted codewords of Ci. That is, there is a deterministic poly(n)-time
algorithm D and a negligible function ε(n) such that with probability at least 1− ε(n)
over the choice of i← I(n), it holds for all messages m ∈ {0, 1}kn and all ρ-Hamming
adversaries A, that

Pr
c←Ci(m)

[D(i,A(c)) 6= m] ≤ ε(n).
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I Remark 5. An interesting weakening of the conclusion of Corollary 4 is that for sufficiently
large n, there exists i ∈ I(n) such that for all messages m ∈ {0, 1}kn , there exists randomness
s such that for all c′ ≈δ Ci(m; s), it holds that D(i, c′) = m. In other words, D(i, ·) is a
polynomial-size error-correcting circuit for an (inefficiently computable and non-explicit)
deterministic code.

We compare the conclusion of Corollary 4 to what is known for standard (deterministic)
binary codes.

To our knowledge, the best known rate vs. error tolerance tradeoff for efficiently decodable
and deterministic binary codes is given by the Blokh-Zyablov (BZ) bound [2], and is attained
by multi-level concatenated codes (see Fact 6). With probabilistically constructed codes, it
is possible to do better for sufficiently low rates. It is known that for rates below about 0.02,
the concatenation of a folded Reed-Solomon code with random linear codes simultaneously
achieves high distance (matching the GV bound) [26] and efficient list-decodability for a
larger number of errors [22]. This implies an efficient unique decoding procedure (by list
decoding and then taking the candidate that is closest to the received word). While not
made explicit in previous work, the same ideas achieve performance that is intermediate
between the BZ and GV bounds for rates up to about 0.3. We will refer to the resulting
rate-distance tradeoff as the Thommesen-Rudra (TR) bound. In [17], the authors implicitly
show that that one can achieve near linear time decoders up to the TR bound.

In the high rate regime there were no codes, even probabilistic constructions, that were
efficiently decodable beyond the BZ bound.

I Fact 6 (Blokh-Zyablov bound [2, 14]). For any ρ ∈ (0, 1
2 ) and any

0 < R < RBZ(ρ) def= 1−H(ρ)− ρ ·
∫ 1−H(ρ)

0

dx

H−1(1− x) ,

there exists a rate-R ensemble of codes {Cn}n∈Z+ that is efficiently ρ-list decodable and
efficiently uniquely-decodable against up to a ρ

2 fraction of errors.

Note that efficient ρ-list decodability generically implies combinatorial
(
ρ′, H(ρ′)−H(ρ) +

o(1)
)
-list decodability for any 1

2 ≥ ρ′ ≥ ρ. By combining this with Corollary 4, we obtain
bounds that improve over the BZ (and TR) bound for rates above roughly 0.3. This is
illustrated in Figure 1.

1.4 Related Work
Our work is an application of list decoding, a notion that was introduced by Elias in the
50’s [6]. The notion was then (implicitly) revisited with a focus on algorithmic efficiency by
Goldreich and Levin [10], who showed how to efficiently list-decode the Hadamard code, and
later by Sudan [24], who showed the same for Reed-Solomon codes. List decoding has proven
to be a useful notion in computational complexity theory, and has recently been the focus of
extensive research (see e.g. the surveys of Sudan [25] and Guruswami [13]).

Several works have studied variants of the error correction problem in which it is possible
to obtain improved results on worst-case unique decoding. Guruswami [12] considered a
model in which a sender is able send a small amount of information over a noise-free channel,
and showed that this enables unique decoding up to the list-decoding radius. Langberg [20]
considered the different notion of “private codes”, in which the sender and receiver share
some secret randomness, and showed that it is possible to achieve better parameters in this
model. Our constructions in contrast use only public randomness, and does not require any
noise-free channel.

ITCS 2021



43:8 Error Correcting Codes for Uncompressed Messages

0.00 0.05 0.10 0.15 0.20 0.25

Correctable Fraction of Errors

0.0

0.2

0.4

0.6

0.8

1.0

D
a
ta

R
a
te

Comparison of Rate / Error Tolerance Tradeoffs

Gilbert-Varshamov (inefficient)

Blokh-Zyablov

Thommesen-Rudra

Our Result

Figure 1 We improve over previous efficiently decodable binary codes (even probabilistic con-
structions) [2, 22] for rates above about 0.3. Although it appears in this plot as if the TR bound
slightly beats the GV bound for very low rates, this is an artifact of our plotting software that
disappears upon zooming in.

Perhaps a more relevant line of work to us is one that studies, loosely speaking, whether
imperfectly shared context can improve the efficiency of interactive protocols. This question
has been articulated and studied in the settings of interactive communication complexity [3,
7, 8], simultaneous message passing [1], and message compression [18, 16], and in the general
setting of “goal-oriented communication” [9].

Our work can be viewed through a similar lens. We seek to improve the efficiency of
communication, leveraging context (which implies that only a small number of messages
“make sense”). Like in prior works, the context is not fully known to both parties. In fact, we
go further: the sender may know nothing about the context, other than that the message he
is sending makes sense. At the same time, the receiver may know very little about the context
– only enough to answer a polynomial number of questions on whether a given message makes
sense. Moreover, in contrast to prior works, we do not assume error-free communication
channels, and we emphasize the importance of efficient algorithms, while prior works have
focused primarily on minimizing communication.

A main idea in this paper is to use list decodable codes, and to permute the message
space in such a way as to achieve unique decoding instead of just list decoding. Similar ideas
have been used for example in [15] and [4]. However, in those works the adversary is not fully
general like in this work, but is restricted (either computationally, or by having to corrupt
the codeword in an online fashion).
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2 Preliminaries

2.1 Codes
A deterministic code of dimension k and block length n over an alphabet Σ is a (multi-)subset
C ⊆ Σn of size |Σ|k, whose elements are called codewords. The rate of such a code is the
quantity k

n . Throughout this paper, we focus on the case when Σ is a finite field Fq and when
the dimension k is integral. In such cases, we associate the codewords of C with Σk, and we
abuse notation by writing C to refer both to the multiset of codewords and the corresponding
mapping from Σk to Σn. A code C as above is said to be linear if it is a subspace of Σn, and
in this case the associated mapping can be taken to be a linear function.

For any alphabet Σ, any n, and any u, v ∈ Σn, the Hamming distance between u and v,
denoted ∆(u, v), is

∆(u, v) def=
∣∣∣{i ∈ [n] : ui 6= vi

}∣∣∣.
When ∆(u, v) ≤ δn, we write u ≈δ v. If S is a set, we write ∆(u, S) to denote minv∈S ∆(u, v).
The distance of a code C is minc6=c′∈C ∆(c, c′).

We also consider probabilistic codes, focusing on codes over binary alphabets.

I Definition 7. A probabilistic binary code of block length n and dimension k is a randomized
function C : {0, 1}k $→ {0, 1}n.

When discussing the asymptotic performance of (deterministic or probabilistic) codes, it
makes sense to consider ensembles of codes {Cn : {0, 1}kn → {0, 1}`n} with varying message
lengths and block lengths. We will always assume several restrictions on kn and `n to rule
out pathological examples. Specifically, we will assume that:

The limit r = limn→∞
kn
`n

exists with r ∈ (0, 1). We call r the rate of the ensemble.
limn→∞

`n
n = 1. This is important so that for a large message of length k, the cost of

padding to length kn is not too large.
Given these two assumptions, it is possible without loss of generality to assume `n = n (we
can always take a code from the ensemble with larger `n, and truncate it; asymptotically,
this affects neither its rate nor its error tolerance).

I Definition 8. We say that an ensemble of codes {Cn : {0, 1}kn → {0, 1}n}n∈Z+ is combina-
torially (ρ, λ)-list decodable if there is some L(n) ≤ 2(λ+o(1))·n and ρ′(n) ≥ ρ− o(1) such that
for any y ∈ {0, 1}n, there are at most L(n) values of m ∈ {0, 1}kn for which Cn(m) ≈ρ′(n) y.
If there is a polynomial-time algorithm that outputs all such m (in which case we can assume
λ = 0), then we say that {Cn} is efficiently ρ-list decodable.

We will also say that {Cn} is combinatorially ρ-list decodable if it is combinatorially
(ρ, 0)-list decodable.

2.2 Binomial Coefficients
We will use the following approximations of binomial coefficients.

I Fact 9. For any n, k ∈ Z≥0, it holds that(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
.
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For all constant 0 ≤ δ ≤ 1, as n goes to infinity(
n

δn

)
= Θ̃

(
2H(δ)n),

where H(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy function.

We will also use the standard notion of q-ary entropy.

I Definition 10. The q-ary entropy function is

Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x).

We define the inverse function H−1
q to map any y ∈ [0, 1] to the unique value x ∈ [0, 1− 1/q]

for which Hq(x) = y.

2.3 Covering Numbers for Hamming Balls
For x ∈ {0, 1}n, we will denote by Br(x) the Hamming ball of radius r centered at x, i.e. the
set {x′ ∈ {0, 1}n : ∆(x, x′) ≤ r}.

I Definition 11. Let S be a subset of {0, 1}n, and let r be a positive real number. An
r-covering of S is a subset C of {0, 1}n such that S ⊆ ∪x∈CBr(x). The r-covering number of
S, denoted Nr(S), is the minimum cardinality of any r-covering of S.

A volume argument with Fact 9 shows, for any 0 < δ0 < δ1 ≤ 1
2 , that Nδ0n(Bδ1n) ≥

Ω̃
(
2(H(δ1)−H(δ0))·n). In fact, a simple application of the probabilistic method (due to Dumer et

al.) also shows that Nδ0n(Bδ1n) ≤ Õ
(
2(H(δ1)−H(δ0))·n). These two statements are combined

in the following fact.

I Fact 12 ([5, Eq. 2.4]). For any 0 ≤ δ0 < δ1 ≤ 1
2 and any x ∈ {0, 1}n, it holds that

Nδ0n

(
Bδ1n(x)

)
= Θ̃

(
2(H(δ1)−H(δ0))·n).

2.4 t-wise Independence
I Definition 13. A family of hash functions {hi : X → Y }i∈I is said to be t-wise independent
if for all distinct x1, . . . , xt ∈ X, the distribution of (hi(x1), . . . , hi(xt)) for a uniformly
random i ∈ I is uniformly random over Y t.

I Imported Theorem 14 ([27]). For any n,m, t ∈ Z+, there exists a t-wise independent
family of hash functions mapping {0, 1}n to {0, 1}m such that it takes poly(n,m, t) time to
sample or evaluate a hash function.

I Definition 15. A family of permutations {πi : X → X}i∈I is said to be t-wise ε-dependent
if for all distinct x1, . . . , xt ∈ X it holds for uniformly random i ∈ I that the distribution
of
(
πi(x1), . . . , πi(xt)

)
is ε-close in statistical distance to uniformly random over tuples of

distinct y1, . . . , yt ∈ X.

I Imported Theorem 16 ([19, Theorem 5.9]). For any ε > 0 and any t ∈ Z+, there exists a
t-wise ε-dependent family of permutations on {0, 1}n with description length O

(
nt+ log( 1

ε )
)

such that it takes time poly
(
n, t, log( 1

ε )
)
to sample, evaluate, or invert a permutation.
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3 Contextually Unique Decoding

In this section we present the notion of contextually-unique decoding, and we give some
simple constructions of contextually-unique decoders with qualitatively worse parameters
than our main result.

I Definition 17. An oracle algorithm D is an (r, δ, ε, τ)-contextually unique decoder for
a family of probabilistic codes {Ci : {0, 1}k $→ {0, 1}n}i∈I if for all sets S ⊆ {0, 1}k with
|S| ≤ 2rn, it holds with probability at least 1− ε over the choice of i← I that for all messages
m ∈ S and all δ-Hamming adversaries A,

Pr
c←Ci(m)

[DS(i,A(c)) 6= m] ≤ τ.

On the order of quantifiers

In the definitions above, we fix a family of codes, then say that for all small enough S, a
random code from the family is good for S. In particular, we do not allow an adversary to
choose S after the code is sampled. This may be problematic in some cases, but Definition 17
suffices in the common case of languages that are already established (but not perfectly
compressible). This includes languages like “English sentences” or “images of dogs”. In
this case, since the set S is already in principle determined (albeit not fully understood), it
suffices to pick and agree upon a random code from the family ahead of time, and always
use that code in the future.

3.1 Inefficient Decoding
It is possible to show that for fixed deterministic codes, contextually unique decoding is no
easier than unique decoding for the entire ambient message space. In Theorems 18 and 20,
we show that randomly sampled codes can do better (albeit with an inefficient decoder).

A family of codes {Ci : {0, 1}k → {0, 1}n}i is said to be pairwise independent if for all
distinct x, x′ ∈ {0, 1}k, the distribution of

(
Ci(x), Ci(x′)

)
for random i is uniform over

{0, 1}n × {0, 1}n. For instance, a random linear code is pairwise independent.

I Theorem 18. Let {Cn}n∈Z+ be an ensemble of pairwise independent code families2, where
each code in the family Cn has n-bit codewords. Then for all r, δ ∈ (0, 1) with H(2δ) + 2r < 1,
there is a (r, δ, exp(−Ω(n)), 0)-contextually unique decoder for Cn.

Proof. Let S be a message space with |S| ≤ 2rn. We will show that with all but exp(−Ω(n))
probability over the choice of code C ← Cn, the restriction C|S of C to S has relative
distance 2δ.

For any distinct m,m′ ∈ S, it follows from pairwise independence and Fact 9 that

Pr
C

[C(m) ≈2δ C(m′)] ≤ Õ(2H(2δ)n)
2n ≤ 1

Ω̃(2(1−H(2δ))·n).

Union bounding over all pairs of m,m′,

Pr
C

[∃m,m′ ∈ S s.t. m 6= m′ and C(m) ≈2δ C(m′)] ≤ 1
Ω̃(2(1−2r−H(2δ))·n)

≤ exp(−Ω(n)).J

2 Note that we do not explicitly make any assumption on the rate vs. distance tradeoff of Cn; instead,
we implicitly use the fact that any code drawn from a pairwise independent family has relatively good
distance with high probability.
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Discussion

One interesting aspect of Theorem 18 is that it demonstrates a family of codes with an
“apparent rate” that is independent of the number of tolerable errors, as long as the “true”
message space is sufficiently sparse. For example, each Cn might map {0, 1}2n → {0, 1}n,
yet as long as the 2n-bit messages have some structure that is known to the receiver (not
necessarily to the sender!), it can be guaranteed that the receiver will reconstruct the sender’s
message.

However, the parameters achieved by Theorem 18 are not optimal. In particular, its
error-tolerance is not competitive with the alternative approach of first compressing messages
in S into rn-bit representations, and then applying a good error-correcting code to this
representation. The GV bound for binary codes states that there exist codes with rate r and
relative distance 2δ whenever H(2δ) + r < 1. It is consistent with current knowledge that
this bound is tight.

Our next result closes this gap by sampling a probabilistic code rather than a deterministic
code.

I Construction 19. Let C1, . . . , CN : {0, 1}k → {0, 1}n be deterministic binary codes. We
define the probabilistic code Cmix[C1, . . . , CN ] : {0, 1}k $→ {0, 1}n so that Cmix[C1, . . . , CN ](m)
is Ci(m) for a uniformly random i← [N ].

I Theorem 20. Let {Cn}n∈Z+ be an ensemble, where Cn is a pairwise independent family of
codes with n-bit codewords.

For all r, δ ∈ (0, 1) with H(2δ) + r < 1 and any τ ≥ n−O(1), there exists N ≤
nO(1) such that there is an (inefficient) (r, δ, exp(−Ω(n)), τ)-contextually unique decoder
for {Cmix[C1, . . . , CN ]}Ci∈Cn

In other words, Cn pairwise independent family of codes with n-bit codewords, and the
code we use is {Cmix[C1, . . . , CN ]}Ci∈Cn , where the C1, . . . , CN are randomly chosen elements
of Cn.

Proof Overview. Suppose that a sender encodes a message m, and the receiver gets an
adversarially perturbed codeword c′. We define the (inefficient) decoder so that it finds all
i′ and all m′ ∈ S for which Ci′(m′) is within distance δn of c′. We claim that with high
probability, the only such (i′,m′) is in fact (i,m).

To see this, we first fix m, and consider two different ways in which an encoding of m
can be confused for an encoding of a different message. Using Fact 9 one can show that, for
each i:
1. The probability over the choice of Ci that there exists m′ ∈ S \ {m} such that Ci(m′)

and Ci(m) are within Hamming distance 2δn is at most 2(r+H(2δ)−1)n.
2. The probability over C1, . . . , Ci−1, Ci+1, . . . , CN that there exists m′ ∈ S \{m} and i′ 6= i

such that Ci′(m′) and Ci(m) are within Hamming distance δn is at most N ·2(r+H(2δ)−1)n.
At this point, unless H(2δ) + 2r < 1, we cannot simply apply a union bound to argue that
with high probability Ci(m) and Ci′(m′) are 2δn-far for all m 6= m′.

To rely only on the weaker condition that H(2δ) + r < 1, the key insight is that for any
fixed m, “most” (all but a τ fraction) of Ci’s will be good in the above sense with all but
2−(r+Ω(1))·n probability. To show this, we must set N to be a sufficiently large polynomial
and use Azuma’s inequality (rather than Chernoff) because the events {(2) holds for i}i are
not mutually independent. After this, the probability 2−(r+Ω(1))·n is sufficiently small that
we can union bound over all 2rn choices of m. J
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Rather than elaborating on the details here, we instead defer to our full proof of Theo-
rem 21, which uses the same approach.

Discussion

Unlike Theorem 18, Theorem 20 matches (other than the arbitrarily small inverse polynomial
probability of decoding error) the rate vs. error tolerance tradeoff that is known to be
achievable with inefficient decoding for known, efficiently compressible sets S (the GV
bound).

3.2 Efficient Decoding with Noticeable Error
To obtain an efficient contextually-unique decoder, we adapt the ideas of Theorem 20.
Instead of using a pairwise independent family of codes (which is not efficiently decodable),
we use a “random” efficiently list-decodable code. Specifically, we use a fixed efficiently list-
decodable deterministic code, composed with a random (efficiently evaluable and invertible)
permutation π.

Recall the definition of Cmix from Construction 19.

I Theorem 21. Let {C ′n : {0, 1}kn → {0, 1}n}n∈Z+ be a rate-r′ ensemble of (deterministic)
binary codes that is efficiently ρ-list decodable and combinatorially (2δ, λ)-list decodable.

Then, for any r < r′ − λ and any τ(n) ≥ n−O(1), there exists N(n) ≤ nO(1) such
that for any pairwise independent family Πn of permutations of {0, 1}kn , the family of
codes {Cmix[C ′n ◦ π1, . . . , C

′
n ◦ πN ]}π1,...,πN∈Πn has a (r, δ, exp(−Ω(n)), τ)-contextually unique

decoder.

Discussion

The main advantage of Theorem 21 over Theorem 20 is that the decoder can run in poly(n)
time. The main disadvantage compared to Theorem 18 is that the probability of incorrectly
decoding is relatively high; in particular, the length of the description of a code (and therefore
also the encoder’s and decoder’s running times) are inversely proportional to the error
probability.

Our proof of Theorem 21 relies on the following version of the Azuma-Hoeffding inequality,
which can be found as Equation (3) in [23]:

I Imported Theorem 22 (Azuma-Hoeffding). Let {Xk}∞k=0 be a real-valued martingale with
ak ≤ Xk −Xk−1 ≤ bk. Then for every r ≥ 0,

Pr[|Xn −X0| ≥ t] ≤ 2 · exp
(
− 2t2∑n

k=1(bk − ak)2

)
.

We now commence the proof of Theorem 21.

Proof. We first describe the decoding algorithm. We are given as input a corrupted codeword
y ∈ {0, 1}n, and given oracle access to a set S of “valid messages”. We run the list-decoding
algorithm for C ′n on y to obtain a list of codewords ci = C ′n(mi) for i = 1, . . . , L. We find
i ∈ [L], j ∈ [N ] that π−1

j (mi) is in S. If no such (i, j) exists, or if multiple such (i, j) exists,
we reject (output ⊥). Otherwise, we output π−1

j (mi).
Let p0 denote the quantity 2rn · maxc∈{0,1}n Prm←{0,1}r′n [∆(Cn(m), c) ≤ 2δn]. Using

a union bound, we can see that p0 bounds the probability, for any fixed c, that C ′n(y) is
2δn-close to c for any of 2rn different uniformly random y. The combinatorial list-decodability
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of {C ′n} implies that p0 ≤ 1/Ω̃
(
2(r′−r−λ)·n). By assumption on r, this decreases exponentially

with n, and in particular for any N ≤ nO(1), it holds that

τ ≥ ω(p0 ·N2). (1)

Let N(n) be a sufficiently large polynomial such that 2τ2N − ln(2) · rn ≥ Ω(n).

B Claim 23. For any permutations π1, . . . , πN , let Cπ1,π2,...,πN denote Cmix[C ′n ◦π1, . . . , C
′
n ◦

πN ]. For every m ∈ S, it holds that

Pr
π1,...,πN

C:=Cπ1,π2,...,πN

[
∃ δ-Hamming adversary A s.t.
Prc←C(m)[DS(A(c)) 6= m] ≥ 3τ

]
≤ e−(2−o(1))τ2N

≤ 2−(r+Ω(1))n.

Proof. Consider the probability space defined by sampling π1, . . . , πN ← Π. For each i ∈ [N ],
define random variables

X
(<)
i =

{
1 if ∃j < i and ∃m′ ∈ S s.t. Cn(πj(m′)) ≈2δ Cn(πi(m))
0 otherwise.

Define random variables {X(=)
i }i∈[N ] and {X

(>)
i }i∈[N ] analogously – that is, replace the

condition “j < i” by “j = i” or “j > i” respectively.
Note that X(=)

1 , . . . , X
(=)
N are mutually independent because X(=)

i depends only on πi.
The pairwise independence of Π and a union bound over all m′ implies that for each i,
Pr[X(=)

i = 1] ≤ p0 ≤ N · p0.
The random variables X(<)

1 , . . . , X
(<)
N are not independent. However, conditioned on

X
(<)
1 , . . . , X

(<)
i−1 (indeed on any value of π1, . . . , πi−1) the pairwise independence of πi and a

union bound over j < i and over m′ implies that

Pr[X(<)
i = 1|X(<)

1 , . . . , X
(<)
i−1] ≤ i · p0 ≤ N · p0.

Similarly,

Pr[X(>)
i = 1|X(>)

i+1, . . . , X
(>)
N ] ≤ (N − i) · p0 ≤ N · p0.

Azuma’s inequality (Imported Theorem 22) implies that

Pr[
∑
i

X
(<)
i ≥ τN ] ≤ 2e−2(τ−p0N

2)2N

≤ e−(2−o(1))τ2N by (1),

and we obtain the same bound on Pr[
∑
iX

(>)
i ≥ τN ] and Pr[

∑
iX

(<)
i ≥ τN ]. So

Pr
[∑

i

(
X

(<)
i +X

(=)
i +X

(>)
i

)
≥ 3τN

]
≤ 3 · e−(2−o(1))τ2N ≤ e−(2−o(1))τ2N ,

which is equivalent to the statement of the claim. C

Theorem 21 follows from union bounding over all 2rn values of m ∈ S. J
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4 Main Theorem: Efficient Decoding with Negligible Error

In our previous constructions, we always had some inverse polynomial probability (over the
choice of encoding randomness) of incorrectly decoding. We now show how to reduce this
error probability to negligible by using a super-polynomial number of permutations, but
preserving the polynomial-time efficiency of encoding and decoding. This is Theorem 25
below, from which Theorem 3 follows immediately (after using Theorem 14 and Theorem 16).

I Construction 24. Let C ′ : {0, 1}r′n → {0, 1}n be a deterministic code, let Π = {πk :
{0, 1}r′n−s → {0, 1}r′n−s}k∈K be a family of efficiently evaluable and invertible permutations,
and let h : {0, 1}s → K be a hash function.

We define a probabilistic code CC′,Π,h : {0, 1}r′n−s $→ {0, 1}n that encodes a message
m ∈ {0, 1}r′n−s by picking x← {0, 1}s at random, and outputting C ′(πh(x)(m), x).

I Theorem 25. Suppose that:
C ′ : {0, 1}r′n → {0, 1}n is a (deterministic) binary code that is efficiently ρe-list-decodable
δ ≤ ρe and λ are such that C ′ is combinatorially (2δ, λ)-list decodable.
For some t = t(n) and s = s(n) satisfying Ω(n) ≤ t(n) ≤ nO(1) and ω(logn) ≤ s(n) ≤
o(n):

Π = {πk : {0, 1}r′n−s → {0, 1}r′n−s}k∈K is a (t + 1)-wise ε-dependent family of
permutations with ε ≤ 2−n, and
H = {hi : {0, 1}s → K}i∈I is a 2t-wise independent hash family.

Then the family {CC′,Π,h}h∈H has an (r, δ, exp(−ω(n)), t2s )-contextually unique decoder
for any r < r′ − λ.

Proof. Let S ⊆ {0, 1}r′n−s be any set of messages with |S| ≤ 2rn. We describe the
contextually unique decoding algorithm on input y ∈ {0, 1}n. First, the algorithm applies
the efficient list-decoding algorithm to obtain all codewords y′1, . . . , y′L of C ′ that are within
relative Hamming distance ρe of y. Then each y′i is parsed as (πh(x)(mi), x). The decoding
algorithm outputs any mi that is in S. It is immediate from efficient list-decodability that
there is at least one such mi. We need to show that with high probability there is at most
one such mi.

We will rely on the following variant of the Chernoff bound for binary random variables,
which does not require the random variables to be fully independent. Instead, it only requires
bounding the probability that relatively small subsets of variables are simultaneously 1.

I Imported Theorem 26 ([21]). Let X1, . . . , XN be {0, 1}-valued random variables, let
0 < β < 1, and let 0 < t < βN . Then

Pr
[
N∑
i=1

Xi ≥ βN

]
≤ 1(

βN
t

) · ∑
A∈([N]

t )
E

[∏
i∈A

Xi

]
.

We will write N to denote 2s, and for brevity of notation we will view any hash function
h ∈ H directly as the corresponding tuple of permutations (πk0 , . . . , πkN−1), where ki = h(i).

It is sufficient to show that for τ(n) = t
N , it holds for every m ∈ S that

Pr
(π1,...,πN )←H

[∣∣{i : ∃j ∈ [N ],m′ ∈ S \ {m} s.t. C ′(πi(m), i) ≈2δ C
′(πj(m′), j)}

∣∣ ≥ τ ·N]
is at most 2−rn · exp(−ω(n)).
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We will use the Chernoff variant to prove the above inequality. Let Xi denote the indicator
random variable for the event

∃j ∈ [N ],m′ ∈ S \ {m} s.t. C ′(πi(m), i) ≈2δ C
′(πj(m′), j),

so what we want to bound is Pr
[∑N

i=1Xi ≥ τ ·N
]
.

For i, j ∈ [N ] and m′ ∈ S \ {m}, let Yi,j,m′ denote the indicator random variable for the
event

C ′(πi(m), i) ≈2δ C
′(πj(m′), j).

Let A ⊆ [N ] be a subset of size |A| = t. Say A = {a1, . . . , at}. We have

E

[∏
a∈A

Xa

]
≤ E

∏
a∈A

∑
j∈[N ]

m′∈S\{m}

Ya,j,m′


=

∑
j1,...,jt∈[N ]

m′1,...,m
′
t∈S\{m}

E

[
t∏
i=1

Yai,ji,m′i

]
. (2)

We now would like to use the independence of H and of Π to equate E[
∏
i Yai,ji,m′i ] with∏

i E[Yai,ji,m′i ]. However this is not quite true, for two reasons. First, Π is only approximately
(t + 1)-wise independent. Second, Π is a family of (t + 1)-wise (almost) independent
permutations, rather than unstructured functions.

Still, an only slightly worse bound holds for E
[∏t

i=1 Yai,ji,m′i

]
. Conditioned on πj1(m′1),

. . ., πjt(m′t) and πa1(m), . . . , πai−1(m), the 2t-wise independence of H and the (t+ 1)-wise
ε-dependence of Π imply that the distribution of of πai(m) is (ε+ t

2r′n−s )-close to uniform
over {0, 1}r′n−s. The combinatorial list-decodability of C ′ asserts that the number of y for
which C ′(y) ≈2δ C

′(πji(m′), ji) is at most 2λ·n.
We can therefore continue bounding (2) as follows:

≤
∑

j1,...,jt∈[N ]
m′1,...,m

′
t∈S\{m}

t∏
i=1

(
2λ·n

2r′n−s + ε+ t

2r′n−s

)

≤ (N · 2rn)t · 2(λ−r′+o(1))·nt

≤ α(n)t,

where we define α(n) = N(n) · Õ(2(λ+r−r′+o(1))·n), which is exp(−Ω(n)) by assumption
on δ and r and because N ≤ 2o(n). Thus for τ(n) = t

N ≥ ω(α(n)), it holds by Imported
Theorem 26 that

Pr
[
N∑
i=1

Xi ≥ τ ·N

]
≤
(
N
t

)(
τ ·N
t

) · α(n)t

≤
(eα
τ

)t
≤ exp(−ω(t))
≤ exp(−ω(n))
≤ 2rn · exp(−ω(n)).

Theorem 25 follows by union bounding over all 2rn choices of m ∈ S. J
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5 Future Directions

There are several interesting directions that we have not yet explored. We highlight a few
below:

How well is it possible to perform contextually unique decoding in different error models?
For example, one might consider adversarial erasures, insertions, deletions, random errors,
and so on.
What are the optimal achievable parameters for contextually unique decoding?
Is it possible to have a single probabilistic code that simultaneously works well for all
message sets S of bounded size? If so, with what parameters?
When S = {0, 1}k padded with zeroes, can our construction be made explicit?
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Abstract
We identify several genres of search problems beyond NP for which existence of solutions is
guaranteed. One class that seems especially rich in such problems is PEPP (for “polynomial empty
pigeonhole principle”), which includes problems related to existence theorems proved through the
union bound, such as finding a bit string that is far from all codewords, finding an explicit rigid
matrix, as well as a problem we call Complexity, capturing Complexity Theory’s quest. When the
union bound is generous, in that solutions constitute at least a polynomial fraction of the domain,
we have a family of seemingly weaker classes α-PEPP, which are inside FPNP|poly. Higher in
the hierarchy, we identify the constructive version of the Sauer-Shelah lemma and the appropriate
generalization of PPP that contains it, as well as the problem of finding a king in a tournament (a
vertex k such that all other vertices are defeated by k, or by somebody k defeated).
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1 Introduction

The complexity of total functions has emerged over the past three decades as an intriguing
and productive branch of Complexity Theory. Subclasses of TFNP, the set of all total
functions in FNP, have been defined and studied: PLS, PPP, PPA, PPAD, PPADS,
and CLS. These classes are replete with natural problems, several of which turned out to be
complete for the corresponding class, see e.g. [9, 10].

Each of these classes corresponds naturally to a very simple existential argument. For
example, PLS is the class of all total functions whose proof of totality relies on the fact that
every finite dag must have a sink, while PPAD captures this true existential statement: “If
a finite directed graph has an unbalanced node (i.e., a node whose in-degree differs from its
out-degree), then it must have another unbalanced node.” The class of total functions PPP
(for “polynomial pigeonhole principle”) captures the well known fact that “if there are more
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pigeons than pigeonholes, there must be a pigeonhole with two or more pigeons.” This latter
complexity class has attracted much attention due to its close connections to cryptography,
and there has been recent progress towards natural complete problems [5, 22, 14].

More recently a logic-inspired class PTFNP (for “provable TFNP”) was identified
containing all of the above classes [11], its definition motivated by the existential proof point
of view described above. It was also pointed out in [11] that finitariness is necessary for the
definition of a meaningful class of total functions, in that any non-finitary existence theorem
– that is, one that also holds for infinite structures – results in a computational problem that
is provably easy. Also recently, an intriguing link between the possibility of TFNP-hardness
and average-case hardness was discovered [12].

The simple statement on which PPP is based has a very natural “dual” variant, call it
the empty pigeonhole principle, namely: “if there are more pigeonholes than pigeons, then
there must be an empty pigeonhole.” Concretely, given a circuit C mapping [2n − 1] to [2n]1,
find a bit string of length n that is not in C’s range. Call this problem Empty. One could
even define a class based on the empty pigeonhole principle, call it PEPP (for “polynomial
empty pigeonhole principle,” the set of all total function problems polynomial-time reducible
to Empty). At first sight, PEPP may seem very close to PPP – identical, perhaps? – until
one notices that PEPP is not obviously in NP! For PPP, one can guess and check the
offending pigeonhole and the two pigeons in it – but for PEPP? Once the empty pigeonhole
has been guessed, proving it is empty requires one to look at all pigeons. An alternation of
quantifiers appears to be at work!

In this paper we introduce a hierarchy of total search problems analogous to the polynomial
hierarchy of decision problems. TFNP is the first level of the hierarchy, and the class PEPP
just defined is at the second level of this hierarchy, denoted TFΣ2. Actually, we shall soon
see that there are natural and interesting search problems occupying the third level of the
hierarchy. (For the formal definition of TFΣi and some basic facts about this hierarchy, see
the Appendix.)

The first result we prove in this direction is that, despite the apparent similarity and
“symmetry” outlined above, PEPP contains PPP – and in fact, all of FNP (Theorem 1;
the proof is easy).

Empty and PEPP are closely associated with the familiar probabilistic argument known
as the union bound. There is a formal way to see this: Consider a generic instance of Empty,
that is, a circuit C mapping [2n − 1] to [2n]; the task is to find a possible output in [2n] not
in the circuit’s range. Interpret now an input x as x = yz, where |z| = n−m and |y| = m,
and where y encodes a “bad event” – in the sense of the union bound – with probability
2−m (2−m − 2−n for one of the events), while z indexes the 2n−m (respectively, 2n−m − 1)
elements of the whole probability space of size 2n that constitute the bad event. Hence, the
empty pigeonhole principle can be interpreted as the union bound. Many of the important
natural problems in PEPP correspond to existential proofs through the union bound, or
more generally through counting.

One of these problems is Remote Point: Given a code – generically, a circuit mapping
[2k] to [2n] where k < n and the codewords are the range of the circuit – find an n-bit string
that is far from all codewords (as far in Hamming distance, that is, as is guaranteed by the
union bound). It is not hard to see that Remote Point is PPEP-complete. The important
open problem here is the complexity of the special case of Remote Point in which the
circuit is a linear function in GF2; this is a much studied problem [2].

1 We denote the set {0, 1, · · · ,M − 1} by [M ]. We shall see that it is easy to construct circuits with
arbitrary integer domains and ranges.
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Other natural problems in PEPP capture interesting aspects of complexity. To start
with the more indirect one, Rigid Matrix Completion is the following problem: find a
rigid matrix in GFn×n2 (that is, an n× n matrix whose rank cannot collapse to something
tiny by manipulating very few entries, details supplied later) given several of its entries.
Rigid matrices have been shown [24] to be abundant, and to capture logarithmic-depth
circuit complexity, while their explicit construction has remained an important open problem
since Valiant’s paper. We define the relevant problem as a completion variant of the explicit
construction problem – that is, part of the matrix is specified – to overcome a familiar
impediment: without a binary input of some substantial length, one is dealing with a sparse
problem, and current techniques seem unable to fathom the complexity of such problems
(see the related work subsection for a further discussion of this). A second problem in the
same vein, Ramsey-Erdős completion, embodies Erdős’s famous 1959 proof that the n-th
Ramsey number is at least 2n2 .

Complexity is a problem asking, given a bit string of length n, to find an explicit Boolean
function with logn inputs which requires Ω( n

log2 n
) gates – that is, an explicit exponential

lower bound. The problem is, again, defined through a circuit. The circuit interprets its
input gates as the representation of a circuit with logn inputs and O( n

log2 n
) gates, where

besides the usual Boolean gates we also allow oracle gates with fan-in logn. The output of
the circuit is the Boolean function computed by this circuit, encoded as a bit string of length
2logn = n. The input to the problem (on the basis of which the circuit is constructed and
the computation of the circuit is carried out) is also interpreted as an oracle, encoding in its
n bits the answers to all possible oracle inputs. The task is to discover an n-bit string that is
not in the range of this circuit under this oracle – that is to say, a Boolean function with
logn variables which therefore requires Ω( n

log2 n
) gates to be computed with the given oracle.

The oracle here is needed, again, to render a sparse function exponentially dense.
Is this problem PEPP-complete, or otherwise hard in a demonstrable sense? This is an

important problem left open in this paper. We are aware of one immediate obstacle: it turns
out that many of the problems we discussed above, Complexity among them, belong in a
significantly weakened subclass of PEPP. Let α be a positive quantity, possibly a function of
n, and define the class α-PEPP (pronounced abundant PEPP) to be the variant in which
the given circuit does not map [2n] to [2n + 1], but instead [2n] to [(1 +α) · 2n + 1]; evidently,
PEPP = 0-PEPP, while many of the problems in PEPP discussed are known to belong to
α-PEPP for some constant α. In particular, we denote 1-PEPP by APEPP, circuits with
twice as many outputs than inputs.

We prove two theorems on α-PEPP. First, we establish that the precise value of α
is in some sense irrelevant, in that any class α-PEPP with α between 1

poly and poly can
be reduced to any other such class through FPNP reductions (Theorem 7; it is not known
whether polynomial time reductions are possible here). Second, it turns out that for α ≥ 1

poly ,
for any problem in α-PEPP with n input gates there is a small set of outputs (strings of
length dn log(1 + α)e) such that, for any input, one of them is an empty pigeonhole. (The
proof is by – what else? – the union bound.) It follows that α-PEPP is contained in
FZPPNP – functional ZPP (Monte Carlo algorithms) with a satisfiability oracle – and,
analogously to Adleman’s theorem [1], that α-PEPP is contained in FPNP|poly, FPNP

with polynomial advice; we see no reason why PEPP = 0-PEPP should be so confined.
So far we have been discussing problems and classes in TFΣ2, the next level after TFNP

of what can be called the polynomial total function hierarchy. It turns out that there are
also interesting problems further up. Shattering is the following problem: we are given a
circuit C with k input gates and n output gates, which is supposed to represent a family of
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2k subsets of [n]. We must return either a collision in this circuit, establishing that the family
has fewer than 2k distinct sets; or otherwise a d-subset of [n], call it D, which is shattered
by the family – that is, every subset of D can be written as D ∩ C(x) for some set C(x) in
the family; such a set is guaranteed to exist by the Sauer-Shelah lemma [19, 21, 25], as long
as C has no collisions and k is large enough as a function of n and d. Notice immediately
that there are two alternations of quantifiers in this existential result: there is a set D such
that for every subset G of D there is an output C(x) of C such that G = D ∩ C(x): we are
in the class TFΣ3! In fact, we show that Shattering belongs to a very natural subclass
of TFΣ3: it belongs to PPPΣ2 , the pigeonhole principle class when the function mapping
pigeons to pigeonholes can use a Σ2 oracle in its computations.

We present another TFΣ3 problem, which we denote as King: given a tournament
(succinctly described by a circuit), find a vertex v such that every other vertex is reachable
from v by a directed path of length one or two. The proof that such a vertex must exist is a
local-search argument dating back to the 1950’s [15], but the potential function used in the
proof is #P-hard to compute, hence the King problem does not evidently belong to any
natural subclass of TFΣ3 such as PLSΣ2 .

Related Work
The difficulty of making existential arguments based on the union bound constructive has in
fact been a fundamental problem in Complexity Theory and combinatorics for over seven
decades. Already in 1947, after Erdős published his paper proving Ramsey lower bounds via
the probabilistic method, he recognized the difficulty of matching this with a constructive
proof, and offered a $100 prize to anyone who could do so [8]. Two years after that, Shannon
used the union bound to give a nonconstructive proof that some functions require exponential
size circuits, and also noted the difficulty in finding constructive proofs of size lower bounds
for explicit functions, comparing it to the difficulty of proving that particular numbers are
transcendental [20]. At this time, “constructive” was a rather informal concept, but a few
decades later Complexity Theory offered us a plausible definition: a constructive proof is
an algorithm that constructs an object with the desired properties from scratch, in time
polynomial in the size of the object. Over time, an important research tradition in Complexity
Theory has developed around such explicit construction problems, pertaining mostly to the
construction of computational devices (pseudorandom generators, randomness extractors,
exponentially hard Boolean functions in the worst or average case, etc.) whose existence is
guaranteed by the union bound. Many celebrated results in this domain compare the difficulty
of such explicit construction problems through, essentially, reductions [24, 17, 13, 6, 23]. In
particular, already in 1977 Les Valiant [24] showed that an explicit construction of a rigid
matrix would imply an explicit Boolean function requiring shallow circuits of superlinear
size – a reduction between two explicit construction problems whose corresponding existence
proofs rely on the union bound. Next, Nisan and Wigderson established in 1995 that an
explicit pseudorandom generator can be constructed in polynomial time, given an explicit
construction of a truth table which is hard to approximate for exponentially large circuits,
and Impagliazzo and Wigderson [13] showed a decade later that such hard-to-approximate
truth tables can in fact be constructed in polynomial time from truth tables which are very
hard to compute in the worst case. More recently, an equivalence has been shown between
the explicit construction of randomness dispersers and the construction of Ramsey graphs,
and a significant body of work has been devoted to deriving more efficient constructions of
such objects [8, 6].
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Many results in this realm can be reformulated as reductions between total function
problems in a particular subclass of APEPP, which could be called SAPEPP (for “sparse
APEPP”). Every problem in SAPEPP is defined by a polynomial-time Turing machine-
computable function M : {0, 1}∗ 7→ {0, 1}∗ such thatfor all x ∈ {0, 1}∗, |M(x)| = f(|x|),
where f(n) > n. The total search problem associated with M asks: given n in unary, find
a bit string y of length f(n) such that for all x with |x| = n, M(x) 6= y. That SAPEPP
is a subset of APEPP follows easily from the basic fact that any fixed polynomial-time
Turing machine with a given input length can be rendered as a Boolean circuit in time
polynomial in the input length. For a concrete example, for the problem of explicitly
constructing a truth table for a function [N ]→ {0, 1} which requires circuits of size greater
than N

3 logN , M is a machine which transforms concisely encoded circuits of size N
3 logN into

truth tables, and f(n) = n+ 1. The associated function problem in SAPPEP, which could
be called Sparse Complexity, seeks the explicit construction of a hard Boolean function; a
polynomial-time solution for this problem would imply, among other tectonic consequences,
that P = BPP [13].

2 The Problems in PEPP

Empty is the following search problem: Given a circuit C with Boolean gates mapping
[2n − 1] to [2n], find a y ∈ [2n] such that y 6= C(x) for all x ∈ [2n − 1].

I Remark. In this paper, we shall blur the distinction between bitstrings and binary integers.
Our Boolean circuits have a domain and range whose cardinality is not necessarily a power of
two, which may seem peculiar. In this paper we shall consider Boolean circuits mapping [M ]
to [N ], where M,N are arbitrary integers greater than one. Such a circuit C has dlogMe
inputs and dlogNe outputs, and for all x C(x) is defined to be C(M − 1) if x ≥ M , and
also for all x C(x) = N − 1 whenever the value computed by C on input x (or on input
M − 1 if x ≥ M) is at least N . Hence, Empty can be defined in terms of any circuit
C : [M ] 7→ [M + 1] – or even C : [M ] 7→ [N ] as long as M < N . For larger N the problem
may be easier, but it is reducible to Empty (as long as logN ≤ poly logM).

Coming back to Empty, we can now define a class of total functions PEPP as all total
functions that are polynomial-time reducible to Empty. One rather immediate – and yet a
little surprising – fact to observe about PEPP is the following:

I Theorem 1. FNP ⊆ PEPP.

Proof. We prove that Sat can be reduced to Empty. Let φ be a CNF formula with n

variables, without loss of generality not satisfied by the all-true truth assignment. Consider
now the following polynomially computable function C from [2n − 1] to [2n]: For every truth
assignment t different from the all-true one 1n, C tests whether t satisfies φ. If it does, then
C(t) = 1n, and if it does not then C(t) = t. Now, if we could solve Empty, that is, if we could
find a solution s ∈ [2n] not in the range of C, then we would have solved the Sat problem
for φ: If s 6= 1n then φ is satisfiable and s satisfies it; otherwise, φ is unsatisfiable. J

This result suggests that PEPP is genuinely a subclass of TFΣ2, the generalization of
TFNP to the first level of the polynomial hierarchy. Once we are dealing with TFΣ2, it
is tempting to define classes such as PEPP as the set of all problems that can be reduced
through FPNP reductions – not just polynomial-time reductions – to a specific problem, such
as Empty in the case of PEPP. This option becomes relevant when dealing with α-PEPP
in the next subsection.
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As we sketched in the introduction, Empty and PEPP can be alternatively thought
as a computationally constructive form of the union bound. A most prominent and early
use of the union bound is in Shannon’s work on codes. The following problem motivated by
Shannon’s construction has been recently identified: Given a code, which generically means
a circuit C mapping [M ] to [N ] with N > M , find a bitstring x ∈ [N ] whose Hamming
distance from any codeword y, that is, any y such that y = C(z) for some z ∈ [M ] is at
least d, where d is the largest integer such that the Hamming ball of radius d− 1 has fewer
than N/M elements. This is known as the Remote Point problem, studied extensively in
Complexity and Cryptography [2, 3, 4].

I Proposition 2. Remote Point is in PEPP.

Proof. Its proof of totality is an application of the union bound. J

In fact, Remote Point is strictly speaking PEPP-complete, because any instance of
Empty is also an instance of Remote Point with d = 1.

Another natural problem lying in PEPP comes from the fact that graphs of bounded
degree have logarithmic diameter. One way to capture this is through the problem Remote
Vertex: given a directed graph on [N ] with vertices of outdegree at most 2, specified by
circuits CL, CR : [N ]→ [N ] which output the “left” and “right” successors of a given node
respectively, find a vertex whose distance from the all-zero vertex is at least logN .

I Proposition 3. Remote Vertex is in PEPP.

Proof. Consider the circuit that takes as input a string s ∈ {L,R}∗ of length 0 ≤ |s| ≤
logN − 1, and outputs the vertex we arrive at by starting with the all-zero vertex and
repeatedly applying CL or CR to the current input based on the next character in s. This
circuit maps each path of length at most logN − 1 starting at the all-zero vertex to its
endpoint, a vertex in [N ]. As there are that are at most N − 1 such paths, this is a valid
instance of Empty, whose solution is indeed a remote vertex. J

One can define several variants of Remote Vertex using other implicit representations
of graphs, for example the representations for undirected and directed graphs used to define
the canonical problems of bounded degree for PPA and PPAD [18]. Both of these variants
reduce to the version of Remote Vertex defined above.

Next we introduce two problems in PEPP capturing two other classical applications of
the union bound. In δ-Rigid Matrix Completion, where 0 < δ < 1

3 , we are given the
first dlogne rows of an n × n matrix with elements in GF2. We seek to complete this to
a full matrix in GFn×n2 that is δ-rigid: it cannot be turned into a matrix of rank ≤ δn by
changing nδ or fewer entries in each row.

Why do we have to phrase the quest for the rigid matrix as a completion problem? The
reason is that the alternative (“Given n, find an n×n rigid matrix”) is a sparse problem, that
is, it has a polynomially (in n) many instances of length ≤ n, which places it in complexity
limbo, see e.g. [16]; alternatively, if n is given in binary, then the problem is even more
ill-posed since an exponentially long output is required2.

To see that δ-Rigid Matrix Completion reduces to Empty, let N = 2n2−n logn denote
the total number of possible completions of the matrix, and let M denote the number of
pairs (L, S) where L is a n × n matrix of rank at most δn and S is a matrix that has at

2 A related question is, how large should be the given part of the matrix in order to avoid sparsity? Giving
the first row is not enough, since there are, up to isomorphism, n+ 1 such rows, and a similar argument
precludes finitely many rows. With logn rows in the input, the problem is arguably no longer sparse.
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most nδ ones per row. There are at most 22δn2 choices for L and at most
(
n
nδ

)n
< 2n1+δ logn

choices for S, hence M < 22δn2+n1+δ logn. Now consider the circuit C : [M ] 7→ [N ] that takes
an input in [M ], interprets it as the encoding of a pair (L, S), computes the sum L+ S, and
outputs the element of [N ] encoding this sum if it is a completion of the given matrix, or
else it outputs an arbitrary element of [N ], for example the element representing the trivial
matrix completion that sets all remaining entries of the given matrix to zero. Note that
M < N as long as n is large enough that (1− 2δ)n2 > (n1+δ + n) logn. Any element of [N ]
not in the range of C must be the encoding of a matrix completion that cannot be expressed
in the form L+ S, hence is rigid.

Ramsey-Erdős completion is the problem of finding an n-node graph with no inde-
pendent set of size k = 4dlogne and no clique of this size, given the connectivity of ` = dlogne
nodes in the graph.

There are N = 2(n−`2 ) completions of the given graph. The completions containing a
clique or independent set of size k are parameterized by tuples (A, b, x) where A is a vertex
set of size k, b is a bit indicating whether A forms a clique or independent set, and x is
a bitstring indicating which edges belong to the completion, excluding those having both
endpoints in A and those having one endpoint among the ` vertices whose connectivity is
given in the problem input. There are

(
n
k

)
possible values for A, 2 possible values for b, and

at most 2(n−`2 )−(k−`2 ) possible values for x, hence at most M =
(
n
k

)
21+(n−`2 )−(k−`2 ) possible

values for the triple (A, b, x). When k = 4` and ` = dlogne, it follows from a standard
calculation that M < N .

We have established this result:

I Proposition 4. δ-Rigid Matrix Completion and Ramsey-Erdős completion are in
PEPP.

Of these problems Ramsey-Erdős completion seems the easiest computationally, as it
belongs in a variant of BPP in which nO(logn) computations are allowed.

2.1 The Problem Complexity
The field of Circuit Complexity is about identifying a Boolean function with v variables
requiring a number of gates that grows faster than polynomially in v. It is well known since
Shannon’s union bound proof [20] that almost all Boolean functions with v variables have
complexity at least 2

cv
log v for some c > 0; however, no explicit function of complexity that is

not O(v) is known.
We can now define Complexity: given a bitstring x of length n, find a Boolean function

with v = blognc+ 1 inputs which cannot be computed by an x-oracle circuit with c · n
log2 n

gates, where c > 0 is a fixed constant. Here, by “x-oracle circuit” we mean a Boolean circuit
which, besides the traditional And, Or, Not gates also has an Oracle gate, with fan-in
blognc, which when its inputs are the bits b1, . . . , bblognc, the value of the gate is the b+ 1-th
bit of x, where b < n is the integer spelled by the bits.

We shall assume that, for each k, ` > 0, we have a standard representation Rk,` of such
oracle circuits, where k is the number of inputs to the circuit and ` is the fan-in of the oracle
gates. Rk,` is a partial function (that is, possibly undefined) from bitstrings to circuits, such
that:

Every x-oracle circuit K has at least one bitstring z such that Rk,`(z) = K.
Given z, K = Rk,`(z) can be decoded in polynomial time.
If K has g gates, the length of all z’s such that Rk,`(z) = K is at most c · g log2 g, where
c is a constant.
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It is easy to see that these desiderata are satisfied by several standard and natural represent-
ations (for example, encoding every bit by two bits to create delimiters, encoding gate names
by binary integers ≤ g and similarly with gate types, and finally encoding the adjacency
lists of the circuit graph). The extra log g in the last item is due to the oracle gate, whose
adjacency list requires log2 g bits.

Coming back to Complexity, it is, evidently, a computational problem that captures
certain aspects of Complexity Theory. We shall show that it is a total problem, and in fact
one in the class PEPP.

The argument is essentially Shannon’s: given input x of length n, we construct a circuit
Cx implementing the following polynomial-time (in n) algorithm: on any input y also of
length n, Cx interprets y as a binary representation of an x-oracle circuit Ky = Rk,`(y) with
k = blognc + 1 input gates and fan-in ` = blognc, and goes on to construct it (if Rk,`(y)
is undefined, Cx outputs a default string). Next, Cx simulates Ky consecutively on each
possible input in [2blognc+1]. The output of Cx is then the concatenation of these 2blognc+1

bits output by the circuit Ky, in the order in which they were produced.
In other words, the circuit Cx maps M = [2n] (all inputs y of length n) to N = 22blognc+1

possible outputs, and it is clear that N > M . Therefore, if we were able to solve Empty and
obtain a possible output not realized by any possible input, we would be able to find the
table of a Boolean function with blognc+ 1 inputs which cannot be represented by n bits,
and therefore requires Ω( n

log2 n
) gates. This completes the proof of the following result:

I Proposition 5. Complexity is in PEPP.

2.2 Wasteful counting and α-PEPP

When the union bound is used to prove the existence of objects with a certain property by
showing that a random object satisfies the property with positive probability, this success
probability is typically not exponentially small. The reason is that this genre of existence
proof seems inherently wasteful: the union bound adds probabilities of events that typically
overlap, while counting objects such as non-rigid matrices and circuits typically counts the
same object many times (for example, all permutations of gate names), and there seems to be
no way to be accurate enough. To capture the complexity of the search problems implied by
union bound arguments with a significant “margin of error”, we define a family of complexity
classes α-PEPP, parameterized by a function α : N→ R+.

The complexity class α-PEPP is defined to consist of all total functions that are
polynomial-time reducible to the following α-Empty problem. An instance of α-Empty is
given by a bitstring of length n interpreted as a description of a circuit C mapping [M ] to
[N ], where N/M > 1 + α. The search problem is to find y ∈ [N ] such that y 6= C(x) for all
x ∈ [M ].

Note that 0-PEPP = PEPP. The complexity class 1-PEPP, which we will denote
by APEPP in the sequel, contains most of the search problems introduced earlier in this
section.

I Proposition 6. The problems δ-Rigid Matrix Completion, Ramsey-Erdős comple-
tion, and Complexity all belong to APEPP.

Proof. Above, we presented reductions from δ-Rigid Matrix Completion, Ramsey-
Erdős Completion, and Complexity to Empty with the following parameters.
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For a δ-Rigid Matrix Completion instance of size n×n, the reduction yields a circuit
of size poly(n) mapping [M ] to [N ], where M = 22δn2+n1+δ lognand N = 2n2−n logn,

N/M = 2(1−2δ)n2−(n1+δ+n) logn.

The ratio N/M exceeds 2 when δ < 1
3 , n > 125.

For a Ramsey-Erdős Completion instance with n vertices, the reduction yields a
circuit of size poly(n) mapping [M ] to [N ], where M =

(
n

4dlogne
)
21+(n−dlogne

2 )−(3dlogne
2 ),

N = 2(n−dlogne
2 ),

N

M
= 2(3dlogne

2 )−1(
n

4dlogne
) .

The ratio N/M exceeds 2 when n > 8.
For a Complexity instance of length n, the reduction yields a circuit of size poly(n)
mapping [M ] to [N ], where M = 2n, N = 22blognc+1 ,

N/M = 22blognc+1−n.

The ratio N/M is greater than 2 for all n ∈ N.3
Thus, the reductions presented earlier verify that all three problems belong to APEPP. J

It seems unlikely that APEPP contains a PEPP-complete problem, due to the following
upper bound on the complexity of APEPP.

I Theorem 7. For any function α(n) > 1
poly(n) , we have α-PEPP ⊆ FZPPNP ⊆

FPNP|poly where FZPP denotes functional ZPP.

Proof. First we show α-Empty ∈ FZPPNP. Consider a circuit C mapping [M ] to [N ],
where N/M > 1 + α. Let R(C) denote the range of C, i.e. the set of all y ∈ [N ] such that
there exists x ∈ [M ] with C(x) = y. The probability that a random y ∈ [N ] belongs to R(C)
is at most M/N < 1/(1 +α). Hence, if k = dn/αe and y1, y2, . . . , yk are independent random
elements of [N ], the probability that {y1, . . . , yk} ⊆ R(C) is less than (1 + α)−k < e−n.
Consider an algorithm that randomly samples the yi, and queries an NP oracle whether
there exists x ∈ [M ] such that C(x) = yi, and outputs the first yi for which the oracle
confirms no such x exists: this shows α-Empty ∈ FZPPNP.

To see the second inclusion of the theorem, suppose an algorithm that uses randomness
r, |r| ≤ poly(n) fails with probability < e−n for any length n input. By the union bound, a
random sample of r has positive probability of containing a valid solution to every length-n
input instance. In fact, this probability is greater than 1− 2n · e−n. Hence, there exists an
advice string such that for every length-n instance, the algorithm finds a correct output. J

We conclude this section by showing a collapse of the complexity classes α-PEPP for
1

poly(n) ≤ α(n) ≤ 2poly(n) under FPNP reductions.

3 Actually, the ratio is greater than or equal to 2 for all n, but it is equals 2 when n+ 1 is a power of 2.
Since the definition of α-Empty requires the strict inequality N/M > 1 + α, we need to correct for this
technicality with a small modification in the definition of Complexity, tweaking the problem definition
to use a slightly smaller constant c so that all circuits of the appropriate size or less can be encoded in
n− 1 bits, instead of n.

ITCS 2021



44:10 Total Functions in the Polynomial Hierarchy

I Theorem 8. If 1
poly(n) ≤ α(n) ≤ 2poly(n), then α-PEPP and APEPP are equivalent

under FPNP reductions.

Proof. For any positive integers N, k, let T : [Nk] → [N ]k denote the function that takes
the binary representation of a number x ∈ [Nk], writes x in base N as a sequence of k digits
(each an element of [N ]), and outputs the binary string obtained by concatenating the binary
representations of each of these k base-N digits.

Suppose β(n), γ(n) : N→ R+ are any two functions such that

k(n) ∆= dlog1+β(n)(1 + γ(n))e ≤ poly(n).

We can reduce β-Empty to γ-Empty as follows. Given a length-n bitstring describing a
circuit that computes a function C : [M ]→ [N ], let k = k(n) and construct the description of
a circuit that computes the function C ′ : [Mk]→ [Nk] defined via the following composition:

[Mk] T−→ [M ]k Ck−→ [N ]k T−1

−→ [Nk].

Here Ck denotes the function that applies C to each element of a k-tuple.
Assuming N/M > 1 + β(n), we have Nk/Mk > (1 + β(n))k ≥ 1 + γ(n), by the definition

of k. Hence, by solving an instance of γ-Empty and applying the function T , we obtain a
k-tuple (y1, . . . , yk) that is not in the range of the function Ck : [M ]k → [N ]k. Now, given
an NP oracle, we can proceed as in the proof of Theorem 7 to find y ∈ [N ] such that for
all x ∈ [M ], y 6= C(x). Namely, for 1 ≤ i ≤ k one queries the NP oracle to find out if
there exists some xi ∈ [M ] such that C(xi) = yi. If such an xi existed for each i, then
Ck(x1, . . . , xk) would equal (y1, . . . , yk) contradicting our assumption that (y1, . . . , yk) is not
in the range of Ck. Therefore, for at least one value of i the oracle will answer that no
xi ∈ [M ] satisfies C(xi) = yi, and we can output this yi as a solution of the given β-Empty
instance.

We have shown a FPNP reduction from β-PEPP to γ-PEPP whenever log1+β(n)(1 +
γ(n)) = poly(n). If 1

poly(n) ≤ α(n) ≤ 2poly(n), then a reduction from α-PEPP to APEPP
is obtained by taking β = α and γ ≡ 1, and a reduction from APEPP to α-PEPP is
obtained by taking β ≡ 1 and γ = α. J

3 The Shattering Problem

We recall the definition of shattering, an important notion in finite set theory and classical
learning theory:

I Definition 9. A family of sets over some finite universe, F = {s1, s2, . . .}, shatters a set s
if for every subset t ⊆ s, there exists si ∈ F such that t = s ∩ si.

The famous Sauer-Shelah lemma guarantees shattering properties if the family is large
enough. Here it is stated in its “strong” form:

I Theorem 10 (Sauer-Shelah Lemma, Strong). A family F of finite sets shatters at least |F |
sets.

The more well-known statement of the Sauer-Shelah lemma is the weak form, which
follows from the above:

I Corollary 11 (Sauer-Shelah Lemma, Weak). If a family of sets F over a universe of n
elements satisfies |F | >

∑d−1
i=0

(
n
i

)
, then F must shatter a set of cardinality at least d.

Proof. (Of the weak form from the strong form:) There are at most
∑d−1
i=0

(
n
i

)
sets in an

n-element universe that have size less than d. J
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It is natural to consider the search problem resulting from this lemma: given a family of
sets over n elements, which can be represented as n bit strings, find a large shattered set.
This search problem is interesting for two reasons: first, its standard proof uses a counting
argument that is, in essence, non-constructive, and second, it involves multiple alternations:
given a family find the set (exists) such that for all subsets there exists a corresponding set
in the family. In fact, this has one more alternation than all the problems we have considered
previously, which belong in TFΣ2. Instead, this belongs in TFΣ3.

I Definition 12. Let BinomSum(n, d) denote
∑d−1
i=0

(
n
i

)
.

I Definition 13. In the Shattering problem, we are given as inputs parameters n, d,
and k > log(BinomSum(n, d)), and a circuit computing a function C : {0, 1}k → {0, 1}n,
representing 2k indexed sets the collection of which we will denote F . The search problem is
to output either a pair of indices x1 6= x2 such that C(x1) = C(x2) (a collision, in which case
the premise of the Sauer-Shelah lemma is not satisfied), or a subset Y ⊆ [n] of size |Y | = d

that is shattered by the F , the range of C.

The following is now clear:

I Proposition 14. Shattering is in TFΣ3.

Proof. Consider the Turing Machine M((n, d, k, C), s, (u, i)), which:
1. checks that k > log(BinomSum(n, d));
2. checks whether s is a string representing a tuple x1, x2 of k-bit strings, in which case it

accepts if C(x1) = C(x2) and rejects otherwise;
3. checks whether s is an n-bit string, in which case it accepts if s∩ u = s∩C(i) and rejects

otherwise.
Clearly, s solves Shattering on the input (n, d, k, C) when the conditions of the Sauer-Shelah
lemma are not satisfied, or, if ∀u∃i s.t. M((n, d, k, C), s, (u, i)) = 1. That Shattering is
total is a consequence of the Sauer-Shelah lemma. J

More interestingly, we can place Shattering in a generalization of PPP that lies within
TFΣ3:

I Theorem 15. Shattering is in PPPΣ2

The main technical result is the following lemma, from which the theorem follows naturally.

I Lemma 16. Using a Σ2 oracle, one can compute a polynomial time function M mapping
distinct sets in F to distinct sets shattered by F .

Proof (Lemma 16, informal). M is defined recursively on the size of F . For collections of
size |F | = 1, the single element of F is mapped to the empty set which is certainly shattered
by F .

Assume now that M(F ′) is defined for all collections F ′ of size |F ′| < |F | (i.e. M defined
for collection of size 1, . . . , |F | − 1). We show how to define M on F , first with an informal
argument.

Suppose we have identified an element x that is in at least one but not all sets of F . Then
we can write F = F0 ∪ F1, dividing F into collections F0 of sets containing x, and F1 of sets
that do not contain x.

Since |F0|, |F1| < |F |, by induction there exists M0 : F0 → {0, 1}n and M1 : F1 → {0, 1}n
mapping each subcollection to sets shattered by that subcollection. Define M : F → {0, 1}n
as follows:
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1. For s ∈ F1, reuse the shattered set, i.e. let F (s) = F1(s).
2. For s ∈ F0, if ∀s′ ∈ F1,M1(s′) 6= M0(s), we reuse the label for s, i.e. M(s) = M0(s). If
∃s′ ∈ F1 such that M1(s′) = M0(s), then it must be that F shatters both M0(s) and
M0(s) ∪ x. Hence we can assign M(s) = M0(s) ∪ x

In the informal construction above, we assumed that x is in some but not all sets of F .
To define M consistently, we go through all elements in the universe {0, 1, . . . , n−1} in order,
and we divide F into those sets that contain the element and those that don’t – since these
sets are n-bit strings, we divide them into those strings with 1 in the first coordinate, and
those with 0 in first coordinate). It is possible that one side is empty and the other is all
of F ; in this case, we continue splitting by containment of subsequent elements. When one
side is empty, then all labels assigned to sets in the non-empty side are reused. This gives a
way to build a complete binary tree of subfamilies starting with F at level 0, and where the
i+ 1-st level comes from splitting the previous level by containment of element i. M then is
built recursively from the leaves up. J

Proof (Lemma 16). We describe how to compute M(s) for a given s ∈ F . Define Tn to be
the labeled binary tree with 2n leaves representing n-bit strings; level i contains nodes labelled
by the 2i binary strings of length i, and the children of a node labelled with s ∈ {0, 1}i is
s · 0 and s · 1.

The idea is to go up Tn, beginning from the leaf representing set s, computing
y(n), , y(n−1), . . . , y1. This path is unique and has length n; denote this path with P , and its
nodes as P (n), . . . , P (0), from leaf to root (we will interchangeably use P (i) to refer to both
a node in Tn, and its associated label, a string of length i).
1. When we begin at node P (n) we initialize y with the empty set label yn = 0n

2. Assume we have traversed Tn up to level i, i.e. P (i).
3. If the node P (i) is the right child of P (i− 1), move up to P (i− 1) with y(i−1) := yi.
4. For P (i) that is the left child of P (i− 1), denote the right child of P (i− 1) (sibling of

P (i)) and its label as P ′(i), and denote by FP ′(i) the subcollection of sets in F that have
the label P ′(i) as its prefix (i.e., those sets that agree on the inclusion/exclusion decisions
of the first i elements represented by node P ′(i)). We check whether FP ′(i) also shatters
yi, in which case we reuse yi but flipping bit i to 1, i.e. y(i−1) := yi; y(i−1)

i := 1. Whether
FP ′(i) (or any particular subfamily corresponding to a node in Tn) shatters y can be
established in O(i) time: the algorithm checks whether ∀z ∈ {0, 1}n∃w ∈ {0, 1}k(C(w) ∈
FP ′(i))∧ (z ∩ y = C(w)∩ y). This can be determined with one call to the Σ2 oracle. Note
that C(w) ∈ FP ′(i) can be represented as an ∧ of i equalities.

The following invariant is maintained throughout the algorithm: after completing level i,
FP (i) shatters yi. This is clearly true at level n. With level i completed, if the algorithm
assigns yi−1 = yi, the invariant is maintained as y does not change. The only way yi−1

changes is if yi−1
1 = 1; this implies both FP (i) and FP ′(i) shattered yi.

If |F | = 1 (the range of C is one set), assigning the empty set to the lone element is
correct. For s 6= s′ in the range of C, let P (i) be their lowest common ancestor in level
i < n. Denote its children as P (i+ 1) and P ′(i+ 1); without loss of generality, P (i) is on
the path for s and P ′(i) is on the path for s′. Consider the algorithm at level i+ 1 when run
on both inputs to compute the shattered sets y and y′: if y(i+1) 6= y′(i+1), they will remain
different for the remainder of the algorithm since at level j we can only change the j-th bit.
If y(i+1) = y′(i+1), then both P (i+ 1) and P ′(i+ 1) shatter y(i+1) so the algorithm will set
yi 6= y′i. J
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Proof (Lemma 16 =⇒ Theorem). Given an instance C of Shattering, we shall describe
an instance H of PigeonholeΣ2 – that is, a hashing circuit with k input gates and 2k − 1
possible outputs, whose computation makes calls to a Σ2 oracle – which solves this instance.
First, the circuit H determines through an oracle call if C has a collision, and, if it does –
two strings x, y ∈ [2k] such that x > y and C(x) = C(y) – it computes a perturbation of the
identity permutation on [2k] which exposes the collision: H maps x to y, if x 6= 2k − 1 it
maps 2k − 1 to x, and H is the identity on all other strings.

If C has no collision, then on input x ∈ [2k] H first computes the distinct set C(x) and
then implements the lemma to compute the corresponding set M(C(x)) shattered by the C
family of sets. If the set M(C(x)) if smaller than d, the computation ends here and the set
is output, in a representation which encodes subsets of [n] in order of increasing size; since
by assumption 2k − 1 ≥ BinomSum(n, d), any set smaller than d can be represented. If the
set is of size d or larger, then the first d− 1 elements of the set are output. This completes
the reduction. J

It turns out that TFΣ3 contains another natural problem aside from Shattering, based
on a simple fact in graph theory dating back to the 1950’s [15].

I Definition 17. A vertex v in a digraph G is called a king if every vertex can be reached
from v by a path of length at most 2.

I Definition 18. A digraph G is called a tournament if for every pair of distinct vertices
u, v ∈ G, exactly one of the directed edges (u, v) or (v, u) is present in G.

I Lemma 19. Every tournament has a king [15].

Proof. Given a vertex v, will say that the court of v is the set of vertices reachable from v in
exactly one step, and the domain of v is the set of vertices reachable from v in exactly 1 or 2
steps. By definition, a king is a vertex whose domain contains all other vertices. Starting
with an arbitrary vertex v, we can now locate a king as follows: if the domain of v contains
all other vertices then v is a king and we are done. Otherwise there exists a u 6= v outside the
domain of v, and we continue our search from u. To see that this iterative process terminates,
note that at each step the size of the court of our current vertex strictly increases: if u is
outside the domain of v, u’s court must contain at least every element of v’s court, and must
also contain v. J

This gives rise to the following total search problem King: given a tournament, represented
as a circuit C : {0, 1}n × {0, 1}n → {0, 1} determining if the directed edge (u, v) is present,
find either a king or a pair of inputs x 6= y such that C(x, y) = C(y, x) (proving that C does
not define a tournament). Since King seeks a vertex k such that for all other vertices v
there is an intermediate vertex i which is reachable from k in one or zero steps, and such
that (i, v) is an edge, this alternation of quantifiers implies the following:

I Proposition 20. King is in TFΣ3.

The proof of Lemma 19 showing the totality of KING is eerily reminiscent of familiar
totality arguments for the class PLS. In PLS, the input is an implicitly defined directed graph,
along with a polynomial time “potential function” mapping vertices to natural numbers,
such that the potential is strictly increasing along edges. The goal is to find a vertex with no
outgoing edges, and the potential function gives us a syntactic guarantee that the underlying
graph is acyclic and therefore that such a vertex must exist. In the case of King, we have a
similar situation. Given a circuit defining a tournament, we can generate another implicitly
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defined graph which has a directed edge (v, u) if and only if u is outside the domain of v, and
a potential function which assigns each vertex a potential equal to the size of its court. A
vertex with no outgoing edges in this graph will be a king, and since the potential increases
along edges, such a vertex must exist. If both the “edge function” (the function finding an
outgoing edge of a vertex or telling us that none exists) and the potential function were
computable in Σ2, this would place King in PLSΣ2 . However, it seems that only the edge
function has this property: computing the potential requires solving a rather generic counting
problem. This leaves us in a curious situation, where the proof that a solution exists uses an
implicit potential function, but directly computing the potential is seemingly harder than
finding a solution. We do not know of another natural total function with this property.

4 Discussion and Open Problems

We have introduced a polynomial hierarchy of total functions, whose first couple of levels are
populated with interesting computational problems and complexity subclasses with intriguing
structural properties. Naturally, a host of questions remain:

Does the total function hierarchy behave in similar ways as the polynomial hierarchy
– for example, does it collapse upwards? As we have mentioned, the answer to this
question is already known, modulo relativization, and it is negative: there are oracles
with respect to which TFNP = FP and yet TFΣ2 6= FPNP [7]. We have not explored
how this result extends to higher levels. After a preprint of this article was posted online,
Ofer Grossman showed us a sketch of an argument that, if TFNP = TFΣ2, then the
decisional polynomial hierarchy does collapse (Ofer Grossman, personal communication).
This can be shown to imply that the total function hierarchy collapses.
A very striking apparent difference between TFNP and TFΣ2 is the dearth of diversity
in the latter. There are half a dozen apparently distinct complexity subclasses of TFNP,
corresponding to natural genres of existence proofs. In contrast, in TFΣ2 we have
identified PPEP, but – despite some intense daydreaming – no other credible class. For
example, recall that PLS is the class of all problems in TFNP reducible to Sink: “Given
the circuit representation of a DAG, find a sink” (details of the representation omitted).
It is natural to ask – and we did: “How about the problem Source? It is in TFΣ2, of
course, but does it define its own class?” It turns out that Source is in PEPP...
For TFNP, the invention of new natural subclasses is impeded by the result in [11],
establishing, through Herbrand’s Theorem, that any such subclass capturing a style
of existence proofs in first-order logic must correspond to a finitary property of first-
order structures: one that is false for infinite structures. How about the logic formulae
corresponding to TFΣ2? These would be the so-called Schönfinkel-Bernays formulae
(first-order formulae preceded by a sequence of quantifiers of the form ∀∗∃∗), a much
studied class in Logic but also in Complexity (it had been known since the 1930s that
this is a decidable class). Is there a result restricting the usefulness of such formulae in
characterizing total search problems, analogous to – but perhaps stricter than – Herbrand’s
theorem for existentially quantified (Herbrand) formulas?
Is Complexity complete for APEPP under PNP reductions? This would be a tremend-
ously interesting result. Naturally, any finer completeness result for Complexity would
be even more exciting.
Is Remote Point with large d complete for APEPP under PNP reductions? That
would be very interesting as well – especially if it holds true even in the special case in
which the code is linear.
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The SAPEPP class, as defined in the related work subsection, encompasses some of
the most important problems in Complexity Theory. Sparsity complicates proving these
problems intractable, and yet we know already some fascinating reductions between them.
Does SAPEPP have natural complete problems? Is Sparse Complexity complete
for it?
The problem King encompasses a novel aspect of total functions related to local optimality.
Problems in the class PLS are presented in terms of an implicit DAG defined in terms
of an edge function and a potential function. Higher in the hierarchy, King is defined
only in terms of an edge function, while the DAG property is established through an
extraneous proof, that is, a proof not encoded in the instance’s description in terms of
an explicit potential function. Unless #P is in the polynomial hierarchy, King does not
appear to belong in PLSΣ2 : it is a problem in TFΣ3 whose totality follows from a local
optimality argument, and yet one that is sui generis, in a class in and by itself. Are there
such problems in TFNP?
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A Total Function Polynomial Hierarchy

I Definition 21 (TFNP). A relation R(x, y) is in TFNP if it is polynomial and total (for
every x there exists y such that (x, y) is in the relation) and there exists a polynomial time
Turing machine M such that M(x, y) accepts iff R(x, y) holds.

I Definition 22 (TFΣ2). A relation R(x, y) is in TFΣ2 if it polynomial, total, and there
exists a polynomial time Turing machine M and polynomial p(n) such that R(x, y) ⇐⇒
∀z ∈ {0, 1}p(|x|)M(x, y, z) accepts.

I Definition 23 (TFΣi). A relation R(x, y) is in TFΣi if it polynomial, total, and there
exists a polynomial time Turing machine M and polynomials p(n)1, . . . , p(n)i−1 such that
R(x, y) ⇐⇒ ∀z1 ∈ {0, 1}p(|x|)1∃z2 ∈ {0, 1}p(|x|)2∀z3 ∈ {0, 1}p(|x|)3 · · ·M(x, y, z1, z2, z3, · · · ,
zi−1) accepts.

At this point one may ask, what about a TFΠi? Could we define total function complexity
classes where the first quantifier is an exists? It turns out that such a definition results in a
complexity class that is polynomial-time reducible to TFΣi−1 and vice versa, and hence,
does not capture anything new. In this way, the total function hierarchy is different from its
decision-problem analogue, where, by the way of oracles, Σi−1 6= Πi 6= Σi.

I Proposition 24. Let R(x, y) be a polynomial, total relation such that there exists a
polynomial time Turing machineM and polynomials p1(n), . . . , pi−1(n) such that R(x, y) ⇐⇒
∃z1 ∈ {0, 1}p1(|x|)∀z2 ∈ {0, 1}p2(|x|)∃z3 ∈ {0, 1}p3(|x|) · · ·M(x, y, z1, z2, z3, · · · , zi−1) accepts.
Every search problem in TFΣi−1 can expressed with such a relation, and the search problem
for any such relation is polynomial-time reducible to TFΣi−1.

Proof. The fact that any search problem in TFΣi−1 can expressed with such a relation
(one that starts with ∃) is trivial: the relation is the same, and one can reuse the TFΣi−1
Turing Machine M , simply by ignoring z1. On the other hand, given a R(x, y) as above,
by totality for every x there is a y such that there exists z satisfying the rest of the
condition; hence, the relation R(x, (y, z)) defined by R(x, (y, z)) ⇐⇒ ∀z2 ∈ {0, 1}p(|x|)2∃z3 ∈
{0, 1}p(|x|)3 · · ·M(x, y, z1, z2, z3, · · · ) is total, and is clearly in TFΣi−1. Hence one can solve
R(x, y) with one call to a TFΣi−1oracle, obtaining a pair (y, z) and discarding z. J

In other words, the total function polynomial hierarchy does not have “two symmetric
sides” like the classical one, but is a single tower of classes.

Finally, analogously to the decision problem polynomial hierarchy, the total function poly-
nomial hierarchy can be understood through oracles; TFΣi ⊆ TFNPΣi−1 , and TFNPΣi−1

is polynomial time reducible to TFΣi.

I Theorem 25. TFΣi ⊆ TFNPΣi−1 ≤PT TFΣi, where the latter class indicates
TFNPΣi−1problems where the verifying Turing Machine has access to a Σi−1 oracle.

Proof. We present the proof for TFΣ2; the proof for other levels is analogous. The
trivial direction is that TFΣ2 ⊆ TFNPΣ1 . For a relation R(x, y) with verifying machine
M(x, y, z) we define a TFNPΣ1 machine M ′(x, y) which issues a single Σ1 query for
whether ∀zM(x, y, z) accepts, and outputs the answer. For the other direction, let R(x, y)
be a TFNPΣ1 relation with verifying Turing Machine MΣ1(x, y) which makes at most
p(|x|) oracle queries in its computation, each of length at most p(|x|). Define R′(x, (y,a, z))
where a ∈ {0, 1}p(|x|), z ∈ {0, 1}2p(|x|) by whether w ∈ {0, 1}2p(|x|)M ′(x, (y,a, z,w)) accepts,
where M ′ only accepts if:
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1. M(x, y) is an accepting computation given oracle answers a;
2. if the i-th oracle answer in a is a yes answer, then the i-th string in z is a satisfying

assignment to the i-th query in the computation M(x, y) (possibly using only a prefix of
z);

3. if the i-th oracle answer in a is a no answer, then the i-th string in w does not satisfy
the i-th query in the computation M(x, y).

Indeed, R(x, y) ⇐⇒ ∃a, zR′(x, (y,a, z)), and the latter is a TFΣ2 relation; to reduce R to
R′, compute R′ and discard a, z. J
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1 Introduction

Common knowledge and its analogues (e.g. common belief) are fundamental in the analysis
of coordination and cooperation in strategic settings. Informally, common knowledge is the
phenomenon that, within a population, everyone knows that a proposition is true, everyone
knows that everyone knows that it is true, everyone knows that everyone knows that everyone
knows that it is true, and so on, ad infinitum. The existence of common knowledge often
shows up as an assumption that underlies some kind of strategic coordination. For example,
in the standard game theoretic setting, it is typically assumed that the agents playing a
game have common knowledge both of the payoffs of the game and of the rationality of each
agent. This assumption undergirds the agents’ ability to coordinate on equilibria.

A rigorous investigation into the consequences of this type of assumption can be traced
back to Robert Aumann [1], who showed that if two rational agents have the same prior,
and their posteriors for an event are common knowledge, then their posteriors must be
equal (i.e. it is impossible for such agents to “agree to disagree”). Later work considered
whether assumptions about common knowledge, and the mathematical consequences of
those assumptions, were realistic for trying to explain economic phenomena. In particular,
it seemed unrealistic to expect agents to reason about infinite hierarchies of knowledge.
Initial attempts to address this critique involved truncating the infinite hierarchy that is
required in our informal definition of common knowledge after some large, but finite, number
of levels. However, this line of inquiry resulted in the discovery of “common knowledge
paradoxes” that arose from examples like Ariel Rubinstein’s Electronic Mail Game [15].
Such examples demonstrated that in situations where common knowledge was required for
coordination, if the infinite hierarchy were truncated to be any finite hierarchy, strategic
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agents behaved unexpectedly and unrealistically. That is, they behaved very differently when
a proposition was close to common knowledge, in the sense that many – but only finitely
many – hierarchies of knowledge were satisfied, then they did when the proposition was
actually common knowledge (and therefore infinitely many hierarchies of knowledge were
satisfied).

An important breakthrough came from Dov Monderer and Dov Samet in 1989 [8]. Inspired
by an earlier version of Rubinstein’s work [15] and the work of Aumann [1], Monderer and
Samet proposed an alternative to truncating the infinite hierarchy of knowledge: relaxing
the requirement of “knowledge” at each level in the hierarchy. They introduced the notion of
common belief – an analogous concept to common knowledge that is defined by replacing
“everyone knows” with “everyone believes with probability (at least) p” at each place where it
occurs in our informal definition of common knowledge. Under this definition, they showed
that common belief approximates common knowledge in precisely the way that truncating
the infinite hierarchy did not: When common knowledge of some proposition is relaxed
to common belief, agents behave in approximately the same way they did when they had
common knowledge of the proposition. For example, common belief can be applied to
generalize Aumann’s result that was mentioned above: when rational agents have the same
prior and their posteriors about an event are commonly believed, these posteriors must be
approximately equal.

In the same paper, they also detailed a key insight that allowed them to address the critique
that common knowledge might be too unrealistic to have explanatory power in Economics.
They showed that common knowledge has an alternative definition (used implicitly in [1]),
that is formally equivalent to the more natural definition, but simpler to reason about. This
alternative – inspired by the example of public announcements – defines common knowledge
in terms of events that are evident knowledge: events for which their occurrence implies
knowledge of their occurrence within the entire population. Common belief has a similar
formally equivalent, alternative definition in terms of events that are evident belief : events
for which their occurrence implies belief with probability at least p of their occurrence within
the entire population.

Here, it is worth noting that our work most heavily borrows from that of Monderer and
Samet and, as such, their paper [8] is highly recommended both as a primer for what follows
here and as an introduction to common knowledge and common belief in general.

In a somewhat orthogonal line of research, Michael Suk-Young Chwe studied common
knowledge (not common belief) on networks in the context of a revolt game [3, 4]. In his
setting, each agent has a threshold that represents the size of the revolt in which she would
agree to participate. For example, an agent with a threshold of 3 would need to know that at
least 2 other agents would participate in order to herself agree to participate in the revolt. To
decide whether this threshold is met, agents learn the thresholds of their neighbors. They use
this information (and knowledge of their 2-hop neighborhood in the graph) to reason about
which agents have their thresholds satisfied and consequently whether their own threshold is
satisfied. Because agents require absolute certainty in this setting, they only consider their
neighbors when conducting this reasoning.

The strict requirement that absolute certainty is necessary for an agent to revolt implies
that for a group of agents to revolt, it must be common knowledge among them that all
of their thresholds are satisfied. Consequently, the problem of finding groups of revolting
agents reduces to the problem of finding cliques of a certain size in the network. However,
an important innovation of Chwe’s work, in contrast to the settings described above, is that
common knowledge in his setting is a local phenomenon occurring within those cliques, not
a global phenomenon occurring within the entire population.
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Both approaches – that of Monderer and Samet and that of Chwe – are limited in their
usefulness in social network settings, because their respective notions are unlikely to apply in
many natural graphs that are used to model social networks. For example, an Erdős-Rényi
random graph of n vertices with p = 10

n will almost certainly be sparse, so population-level
phenomenon like common belief will not arise. On the other hand, an Erdős-Rényi random
graph of n vertices with p = 1

2 would be unlikely to contain large cliques, so the phenomenon
of local common knowledge would be severely limited despite the fact that each agent, in
seeing about half the graph, should have a lot of information about the entire population
and might be expected to be able to coordinate with some large fraction of it.

We propose that Monderer’s and Samet’s concept of common belief – itself a relaxation of
common knowledge – can be further relaxed to a notion of common belief among a faction (i.e.
a minimal-size subset) of the population, while retaining both its mathematical simplicity
(in being defined in terms of events that are evident belief) and its economic explanatory
power. We refer to this notion as factional belief.

Factional belief is a natural application of the ideas of Monderer and Samet to network
settings similar to those of Chwe. It retains from Chwe the idea that common knowledge/belief
can occur in only a subset of the population and still motivate their behavior. However, it
is not prohibitively strict, such that it would be unlikely to occur endogenously in many
natural graphs. Factional belief is not necessarily local – agents can and may need to reason
about agents outside of their neighborhood. As such, it does not require cliques.

1.1 Our Contributions
We formally define a notion of factional belief (Section 2), which can be used to analyze
revolt games on general graphs (Section 3). Prior notions of common knowledge and
common belief were insufficient for this type of analysis.
We provide an algorithm that characterizes a structural result about the types of equilibria
that are possible in instances of the network revolt games described in Section 3 (Section 4)
and a natural extension of those games (Section 5).
We show that, surprisingly, it is sufficient for our algorithm to only have access to the
degree sequence of the network; additional details of the network beyond the degree
sequence are not relevant.
In the full version of the paper, we describe algorithms for additional natural extensions
of the network revolt game model. Further, we demonstrate the practical utility of our
algorithms by applying them to simulated network data to explore how various parameters
of networks and of the model relate to the size of revolts that are supported in equilibria
of the network revolt game.

1.2 Additional Related Work
The work of Stephen Morris is particularly notable when surveying the literature related
to common knowledge and common belief. Morris, often following the work of Monderer
and Samet, has done much theoretical work relating to common knowledge and common
belief [9, 11, 12, 13]. More recently, he has also collaborated with Benjamin Golub to
study higher-order reasoning, reminiscent of the infinite hierarchy of reasoning in the initial
definitions of common knowledge and common belief, in network settings [6, 7].

Underlying Morris’ work, above, and our work is our assertion that common knowledge,
common belief, and factional belief are useful, not just as mathematical concepts, but for
understanding real social and economic phenomena. Here, we briefly outline some relevant
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work in applying common knowledge and common belief to explaining such phenomena. One
clear direction for future research is to try to similarly apply factional belief as an explanatory
tool in these and other settings.

Morris has applied common knowledge/belief to settings such as contagion [10] and global
games [14].

Chwe, in 2013, revisited his earlier work and expanded his purview to consider how
common knowledge is generated in society [5]. He proposed that the importance of rituals in
society can be understood from the perspective that rituals create conditions under which
common knowledge can be generated. This theory fits nicely with understanding common
knowledge through the lens of evident knowledge events. Another potential direction for
future research would be to try to mathematically model this ritualistic generation of common
knowledge.

Finally, common knowledge, common belief, and factional belief can be used as tools to
help understand the formation and transformation of social norms. In particular, Cristina
Bicchieri proposed and meticulously advocated for a definition of social norms of which our
definition of factional belief is very reminiscent [2].

2 Defining Factional Belief

For the following definitions, let (Ω, Σ, Pr) be a probability space, where Ω denotes a set of
states, Σ denotes a σ-algebra of events, and Pr denotes a probability measure on Σ. Let I
denote a set of agents.

For each i ∈ I, Πi is a partition of Ω into measurable sets with positive probability. It
is, therefore, a countable partition. For ω ∈ Ω, the element of Πi that contains ω is written
as Πi(ω). Πi can be interpreted as the information available to agent i. That is, Πi(ω)
is the set of states that are indistinguishable to i when i observes ω. Let Bpi (E) denote
the event that agent i believes in event E with probability at least p. Formally, we write
Bpi (E) = {ω : Pr[E|Πi(ω)] ≥ p}. Lastly, for events E and F , we use the notation E ⊆ F to
denote that, whenever E occurs, F occurs.1

The following examples are helpful to illustrate this notation. When rolling a fair die, with
equally probably outcomes in the set {1, 2, 3, 4, 5, 6} we have {2, 4} ⊆ {Outcome is even}.
Similarly, when the die has been tossed, but the outcome has not been revealed, we have the
event B

1
2
i ({Outcome is even}) for any agent i.

This notation is borrowed from Monderer and Samet [8], and the rest of the terms and
claims in this section are defined and stated, respectively, to be analogous to those from their
paper.

I Definition 1 (Evident (p, µ)-belief). An event E is an evident (p, µ)-belief if there exists
(at least) a µ fraction of agents such that whenever E occurs, those agents assign a probability
of at least p to its occurrence. That is:

∃ J ⊆ I with |J | ≥ µ|I| such that for each j ∈ J , E ⊆ Bpj (E).

Following, Monderer and Samet, we first define our notion of factional belief in terms of
events that are evident (p, µ)-belief. To maintain consistency with their work, we refer to
this notion of factional belief as common (p, µ)-belief.

1 Note that, unlike with knowing, it is possible for an agent to believe something that is not true. In
particular, Bp

i (E) need not be a subset of E.
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I Definition 2 (Common (p, µ)-belief). An event F is common (p, µ)-belief at ω ∈ Ω if
there exists an evident (p, µ)-belief event E such that ω ∈ E and

∃ J ⊆ I with |J | ≥ µ|I| such that for each j ∈ J , E ⊆ Bpj (F ).

That is, F is common (p, µ)-belief whenever there is an event (E) that is an evident
(p, µ)-belief whose occurrence implies the existence of (at least) a µ fraction of agents that
believe with probability at least p in F . Note that any event E that is an evident (p, µ)-belief
is trivially also common (p, µ)-belief (with F = E).

Now, an important property shared by common knowledge and common belief is the
formal equivalence of their definitions in terms of evident events and their intuitive definitions
as infinite hierarchies. Common (p, µ)-belief retains this property. In order to state this
result formally in Proposition 4, we need to formally define the infinite hierarchy, which is
done below in Definition 3.

Informally, each level (n ≥ 1) in this hierarchy, refers to the event that there exists (at
least) a µ fraction of agents who believe with probability (at least) p in the previous level
of the hierarchy. The initial level (n = 0) is simply the relevant event F . So, written out
entirely, the full informal definition would be that an event F is common (p, µ)-belief if
there exists a µ fraction of agents who believe F with probability p, there exists a µ fraction
of agents who believe with probability p that there exists a µ fraction of agents who believe
F with probability p, and so on, ad infinitum.

I Definition 3. For every event F and every 0 ≤ p ≤ 1 let

Ep,µ(F ) =
⋂
n≥1

Fnµ ,

where F 0
µ = F and Fnµ is the event “∃ J ⊆ I with |J | ≥ µ|I| such that ∀j ∈ J , Bpj (Fn−1

µ )”.

I Proposition 4. For every event F , every 0 ≤ p ≤ 1, and every 0 ≤ µ ≤ 1:
1. Ep,µ(F ) is an evident (p, µ)-belief and ∃ J ⊆ I with |J | ≥ µ|I| such that ∀j ∈ J ,

Ep,µ(F ) ⊆ Bpj (F ).
2. F is common (p, µ)-belief at ω if and only if ω ∈ Ep,µ(F ).

The proof of this proposition is essentially the same as the proof of the analogous
proposition (Proposition 2) in Monderer’s and Samet’s paper [8]. However, the details of
the proof are not particularly relevant or instructive with regard to our contributions in
this work, so we omit them here and consign them to an appendix of the full version of
the paper. The important takeaway from this proposition, is, as noted above, the formal
equivalence between the definition of common (p, µ)-belief in terms of evident (p, µ)-belief
(Definition 2) and the hierarchical definition (Definition 3). As with the analogous definitions
for common knowledge and common belief, the latter definition is more intuitive and perhaps
more natural, but the former definition is more mathematically convenient and is what we
will reference in what follows. The former definition is also a notion that better corresponds
to how agents might be expected to reason about this type of belief in reality, since it is
unrealistic to suppose that they consider infinite hierarchies of beliefs.

3 Model

Let G = (V,E) be a graph and I be a set of n agents, such that each vertex vi ∈ V

corresponds to an agent i ∈ I. We will think of G as representing a social network of strategic
agents who are participating in a revolt game. The graph G is common knowledge among
the agents.
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Nature draws the state of the world s ∈ S according to a distribution DS and selects a
type ti ∈ T = {α, ν} ∪X for each agent i, where X = ∪j{χj} is non-empty (and finite). The
types are selected independently at random according to a distribution Ds

T associated with
state s. DS and Ds

T for each s ∈ S are common knowledge among the agents.
Each agent i will observe the type of each agent k ∈ I such that (vi, vk) ∈ E (this set of

agents constitutes the set of neighbors of i). The information resulting from this observation
– an agent’s type and the types of all of her neighbors – defines that agent’s context. When
agent i has the context c, we write it as c(i) = c. We use C to denote the set of all contexts
that are possible in G.

Ex ante, or, before selection of the state, the assignment of types, and the observation
of contexts, agents choose a pure strategy σ : C → {R, Y }, where {R, Y } is the set of
actions.2 A strategy profile (σ1, σ2, . . . , σn) is collection of strategies for each agent. Let
σ−i = (σ1, σ2, . . . , σi−1, σi+1, . . . σn) denote the strategies of all the agents except for i.
Similarly, ex post, or, after the selection of types and observation of contexts, an action
profile (a1, a2, . . . , an) where ai = σi(c(i)) is a collection of actions for each agent.

Let R(a1, a2, . . . , an) = {i ∈ [n] : ai = R} denote the set of agents who play the action R
(revolt) given their context and strategy. Agent i with type ti = t receives a payoff according
to the function f ti : {R, Y }n → [0, 1]:

fαi (a1, a2, . . . , an) =
{

1, if ai = R,

0, otherwise,

fνi (a1, a2, . . . , an) =
{

1, if ai = Y,

0, otherwise,

and

f
χj
i (a1, a2, . . . , an) =


1− pj , if |R(a1, a2, . . . , an)| ≥ µj · n and ai = R,

pj , if |R(a1, a2, . . . , an)| < µj · n and ai = Y,

0, otherwise.

where pj , µj ∈ [0, 1] for each j and are common knowledge among the agents.
We call σi a best-response to σ−i when σi maximizes agent i’s ex ante expected payoff

given σ−i, which, by linearity of expectation, is equivalent to maximizing her expected payoff
for each c ∈ C (using the beliefs she would have about the contexts of the other agents after
observing c).

We say that a strategy profile (σ1, σ2, . . . , σn) is an equilibrium when each strategy σi is
a best-response to σ−i.

Intuitively, the game is defined so that there is a natural strategy for each agent based
on type:

Agents of type α should always revolt.
Agents of type ν should never revolt.
Agents of type χj should conditionally revolt:

Each type χj is characterized by a pair of thresholds (pj , µj) that indicate an agent
of type χj should revolt when she believes that Pr[|R(a1, a2, . . . , an)| ≥ µj ] ≥ pj .

An important thing to note about this game is that when there are agents of type ν,
there is not an equilibrium where each agent revolts regardless of her beliefs. Similarly, when
there are agents of type α, there is not an equilibrium where each agent chooses not to revolt
regardless of her beliefs.

2 “Revolt” and “Yield,” respectively.
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Even without these, though, there are still potentially multiple equilibria corresponding to
revolts of different sizes, and our work does not address equilibrium selection. Consequently,
in what follows, we will write that a revolt (of a particular size) is supported in equilibrium
instead of writing that a revolt will occur. Similarly, we write that agents are secure enough
to revolt when they sufficiently believe their thresholds are met instead of writing that agents
will revolt.

Lastly, in this work we primarily consider the largest revolts that are supported in some
equilibrium. Such revolts are supported by symmetric equilibria, in which each agent adopts
the same strategy – namely, the strategy detailed in the bullet points above.

3.1 Motivating Example
To see this model in practice and get a feeling for how agents need to reason about the
concepts that we have introduced, we will work through a modest example.

Suppose that G is a grid of n vertices embedded on a torus, so that each the vertex
associated with each agent is adjacent to the vertices representing exactly four other agents
(and there is no boundary). Thus, a context in this graph consists of the central agent and
her type plus the types of each of her neighbors in G. In this example, we will have two
types of agents: (1) Agents of type χ, who want to revolt conditionally; they feel secure
enough to revolt when the threshold pair (p = 2

5 , µ = 1
2 ) is satisfied. (2) Agents of type ν,

who never want to revolt. We will also have two equally-likely states: an anti-government
state A, where agents are of type χ with probability 4

5 and a pro-government state B where
agents are of type ν with probability 4

5 .
We also define the notion of a candidate agent. In this setting, for reasons that will

become clear in the proof of the following proposition, we refer to agents of type χ with two
or more neighbors of type χ as candidate agents.

I Proposition 5. In this model, when G is sufficiently large, the event that at least 1
2 of

the agents are candidate agents is an evident ( 2
5 ,

1
2 )-belief. When it occurs, it is common

( 2
5 ,

1
2 )-belief that supports a revolt of size 1

2 .

Proof. First, we will compute Pr[State = A|c] for each context c and use the computed
values to demonstrate that our definition of candidate agents is the correct one for this
setting; candidates are likely to feel secure enough to revolt, based on their p-thresholds.

Each agent has 5 independent samples from the probability distribution defined by the
state, with which to calculate the probability of each state, given her information. The
first step in this is to compute the likelihood of her context given the state, which can be
calculated by evaluating the probability mass function of a binomial distribution with the
appropriate parameters. Then, the probability for each state given a certain neighborhood
can be calculated using Bayes’ rule. The results of these calculations are shown in Table 1.

Now, agents of type χ that only have at most one other neighbor of type χ, believe that
the state is A with probability at most 1

5 , so they will not feel secure enough to revolt; a
revolt of size µ = 1

2 is very unlikely to be supported when the state is B, and they do not
sufficiently believe that the state is A.

As a result, it is exactly agents of type χ with contexts such that they have two or more
neighbors of type χ, which we defined earlier as candidate agents, in which we are interested
(cases with k ≥ 3 in Table 1b). In particular, we are interested in the probability that a
majority of agents are candidates.

B Claim. The probability that at least half the agents are candidates, given that the state
is A is at least 1739

3125 .
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Proof of Claim. For this, we can try to count all the non-candidate agents and see how likely
they are to outnumber the candidates.

Let X count the number of non-candidate agents. Specifically, let X =
∑
i∈[n]Xi,

where Xi is an indicator variable that is 1 if and only if agent i is not a candidate. For
each Xi, therefore, the expectation of Xi is equal to the probability that i is not a candidate,
which can happen in three ways: (1) i is of type ν, (2) i is of type χ and has no neighbors
of type χ, or (3) i is of type χ and has one neighbor of type χ. The probability of (1) is
trivially 1

5 . Conditioned on i being of type χ, the respective probabilities of the remaining
possibilities are (2) 1

625 and (3) 16
625 . To obtain unconditional probabilities for (2) and (3),

we multiply each conditional probability by 4
5 . Consequently, since the events (1), (2), and

(3) are disjoint, we have the following:

E[Xi] = 1
5 + 4

5

(
1

625

)
+ 4

5

(
16
625

)
= 693

3125 .

Therefore, by linearity of expectation, E[X] = 693n
3125 .

Now, we need to upper bound the probability that the number of non-candidate agents
is the majority. Ideally for this, we would like to use something tight, like a typical Chernoff-
Hoeffding bound. Unfortunately, here, the Xi’s are not independent; the contexts of agents
that share neighbors are correlated, which complicates the calculation.

For our more rigorous analysis later, we will insist on tighter probability bounds. But for
the sake of simplicity, in this example, Markov’s inequality is sufficient:

Pr
[
X ≥ n

2

]
≤

693n
3125
n
2

= 1386
3125 ≈ 0.44.

Consequently, the probability that at least half the agents are candidates, given that the
state is A, is at least (1− 1386

3125 ) = 1739
3125 . C

Candidate agents can perform this exact same calculation and, further, they believe that
the state is A with probability at least 4

5 . Thus, when the graph is large enough that the
context of any individual agent is inconsequential in their reasoning about the total fraction
of candidate agents, the probability that they assign to at least half of the agents being
candidate agents is at least 4

5 · (
1739
3125 ) ≥ 2

5 .
That is, in sufficiently large graphs, candidate agents believe with probability at least 2

5
that at least 1

2 of the agents are candidate agents. As a result, the event that at least 1
2 of

the agents are candidate agents is an evident ( 2
5 ,

1
2 )-belief. Consequently, when it occurs, by

definition, it is common ( 2
5 ,

1
2 )-belief. In this event, a revolt of size 1

2 is supported, since at
least half of the agents have their thresholds satisfied, and consequently feel secure enough
to revolt. J

4 Applying Factional Belief: A Computational Perspective

The network revolt game model described in Section 3 gives us a useful setting in which
to apply our definitions from Section 2 and demonstrate how they can provide insight into
strategic coordination. In this section, we explore the interaction between factional belief and
strategic coordination from a computational perspective, by trying to answer an elementary
question: When can we efficiently determine if strategic coordination (i.e. in our model, a
revolt) is supported under given conditions?
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Table 1 Results of the probabilistic calculations for the motivating example.

(a) The likelihood, in each state, of having a context
with k agents of type χ.

Pr[c|State = A] Pr[c|State = B]

k = 0 1
3125

1024
3125

k = 1 4
625

256
625

k = 2 32
625

128
625

k = 3 128
625

32
625

k = 4 256
625

4
625

k = 5 1024
3125

1
3125

(b) The likelihood of state A, given a context with
x agents of type χ.

Pr[State = A|k = x]

x = 0 1
1025

x = 1 1
65

x = 2 1
5

x = 3 4
5

x = 4 64
65

x = 5 1024
1025

In pursuing an answer to this question, we seek to apply the intuition that we have
constructed in our motivating example to a more general setting. Toward that end, a
relatively modest generalization of the model used in the example – our Fundamental Case,
below – is rich enough to provide an interesting, non-trivial answer to our question and to
provide robust intuition that guides us through the various extensions of the model that we
discuss in Section 5.

4.1 Fundamental Case: Low-Degree Graphs, Two States, and Three
Types

Recall that our model requires a description of possible agent types and possible states
(which specify probability distributions over those types). For our initial case, there are three
agent types and two possible states.

Our focus will be on agents who want to revolt conditionally – agents of type χ – who
have the threshold pair (p, µ) for an arbitrary 0 ≤ p ≤ 1 and 0 ≤ µ ≤ 1. In some sense,
these are the truly “strategic” agents; they need to coordinate with other agents in order
to feel secure enough to revolt. There are also agents who always behave in a prescribed
manner, regardless of their contexts or the state: pro-government agents of type ν, who will
never revolt, and anti-government agents of type α, who will always revolt.

The possible states are A, an anti-government state, and B, a pro-government state.
DS , the distribution over the states, DA

T and DB
T , the distributions over the types in each

state, and p and µ, the threshold values for agents of type χ, are commonly known to the
agents under the prior P . Intuitively, the labels assigned to the states as being anti- and
pro-government correspond to an implication that as the number of agents grows, the size of
the largest revolt supported in state A should be larger than in state B. In what follows, we
assume that the given labels are assigned correctly, but in practice the correct labels can be
determined by running an algorithm that we present later with each possible labeling and
comparing the results: When the states are correctly labeled, Algorithm 1 will return XA

and XB such that XA ≥ XB .
In this more concrete setting, we are able to pose a straightforward question: Given

values µ∗ and q∗, is a revolt of size (at least) µ∗ supported with probability at least q∗? We
refer to this problem as Revolt.

I Definition 6 (Revolt).
Given: (G,P, µ∗, q∗), where G is a graph with n vertices and P = (p, µ,DA

T , D
B
T , DS) is

the common prior.
Question: Is a revolt of size at least µ∗ supported with probability at least q∗?

ITCS 2021



45:10 Relaxing Common Belief

Note that there is a nuance regarding the timing of the network revolt game model
described in Section 3. Revolt considers the likelihood of revolt of a certain size being
supported in a given network ex ante – i.e. before the selection of the state and the assignment
of types to agents.

Although the question posed by Revolt is straightforward to state, it is not straightfor-
ward to solve efficiently. In fact, we have the following hardness result, which we prove in an
appendix of the full version of the paper:

I Proposition 7. Revolt is NP-hard.

Consequently, we will instead consider a relaxed version of the problem that we will be able
to solve efficiently. In order to define this new problem, we first require p and µ to be strictly
between 0 and 1. We will also need two error terms, which will be constants given as input:
ε, δ > 0. Lastly, we introduce two additional priors, as follows (recall P = (p, µ,DA

T , D
B
T , DS)

is the common prior given as input to both problems):

P− = (p− δ, µ− ε,DA
T , D

B
T , DS), P+ = (p+ δ, µ+ ε,DA

T , D
B
T , DS).

Now, we are ready to define our new problem, Promise Revolt.

I Definition 8 (Promise Revolt).
Given: (G,P, µ∗, ε, δ), where G is a graph with n vertices, P = (p, µ,DA

T , D
B
T , DS) is

the common prior, and ε, δ > 0 are constants.
Output: When exactly one of the following cases is true, output the corresponding symbol:

Ω: A revolt of size µ∗ − ε is supported with probability q∗ ≥ 1− δ under the prior P−.
A: A revolt of size µ∗ is supported with probability q∗ ∈ [Pr[State = A]− δ,Pr[State = A] + δ]

under the prior P .
∅: A revolt of size µ∗ + ε is supported with probability q∗ ≤ δ under the prior P+.

Promise Revolt is named so as to emphasize that this it is a promise problem, in the
typical sense. The “promise” is that the given instance is such that exactly one of the cases
from the definition of the problem is true. Given that promise, the three cases are mutually
exclusive and any solution is required to always output the correct answer. It is exactly
this promise to exclude difficult inputs that makes Promise Revolt easier to solve than
Revolt.

Still, in providing an algorithm to solve Promise Revolt, we will see that the problem
has a structure that allows us to closely approximate Revolt by solving Promise Revolt
(for large graphs). This structure is discussed in more detail at the end of this subsection
(4.1), particularly with respect to Figure 1, which helps to illustrate this intuition.

Lastly, note that we assume all inputs to Revolt and Promise Revolt are given as
rational numbers. This leads us to state our first theorem:

I Theorem 9. Given ε > 0, the prior P , and µ∗ ∈ [0, 1], there exists δ(n) ∈ 1
exp(Ωε,P ( 3√n))

such that for any graph G with n vertices where the largest degree of any vertex is Oε,P ( 3
√
n),

Algorithm 3 can be used to solve Promise Revolt(G,P, µ∗, ε, δ = δ(n)) in polynomial time.

Before we get to the proof of Theorem 9, we briefly discuss our assumption that each
agent has a degree that is O ( 3

√
n). Primarily, this assumption serves to simplify our analysis.

For simplicity, it is convenient to make some distinction between “low-degree” agents and
“high-degree” agents to highlight the fact that a prototypical high-degree agent would have a
lot more information about the state than a prototypical low-degree agent. However, any
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Algorithm 1 Finding the expected size of largest revolt supported in each state.

Input: A graph G = (V,E) of n vertices, the prior P = (p, µ,DA
T , D

B
T , DS).

Output: XA and XB , the expected size of the largest revolt supported in states A
and B, respectively.

Let es(τ) denote the expected fraction of type τ agents in state s.
Define the set of candidate states SC = {s ∈ {A,B} : es(χ ∪ α) ≥ µ}.
if SC = ∅ then

Xs = es(α) ∀s ∈ {A,B}.
end
if SC = {A,B} then

Xs = es(χ ∪ α) ∀s ∈ {A,B}.
end
if SC = {A} then

Let C(χ) be the set of contexts centered around agents of type χ.
Define the set of candidate contexts CC = {c ∈ C(χ) : Pr[State = A|c] ≥ p}.
(Below, we slightly abuse notation, treating CC as if it were a type when writing
es(CC).)

if eA(CC ∪ α) ≥ µ then
Xs = es(CC ∪ α) ∀s ∈ {A,B}.

end
else

Xs = es(α) ∀s ∈ {A,B}.
end

end
return XA, XB .

Algorithm 2 Comparing the expected size of the largest revolt supported in each state.

Input: XA, XB (output from Algorithm 1) and µ∗.
Output: Ω, A, or ∅.
if XA ≥ µ∗ and XB ≥ µ∗ then

return Ω
end
if XA ≥ µ∗ and XB < µ∗ then

return A
end
if XA < µ∗ and XB < µ∗ then

return ∅
end
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Algorithm 3 Solving Promise Revolt.

Input: (G,P, µ∗, ε, δ), where G is a graph of n vertices, P = (p, µ,DA
T , D

B
T , DS) is

the common prior, and ε, δ > 0 are constants
Output: Ω, A, ∅, or Null.
XA1 , XB1 ← Algorithm 1(G,P = (p′, µ′, DA

T .D
B
T , DS)), where p′ = p+ δ

3 ,
µ′ = µ+ ε

3 .
S1 ← Algorithm 2(XA1 , XB1 , µ

∗).

XA2 , XB2 ← Algorithm 1(G,P = (p′, µ′, DA
T .D

B
T , DS)), where p′ = p− δ

3 ,
µ′ = µ− ε

3 .
S2 ← Algorithm 2(XA2 , XB2 , µ

∗).

if S1 = S2 then
return S1

end
else

return Null
end

particular choice of cutoff to separate high- and low-degree agents is somewhat arbitrary.
Here, we choose O ( 3

√
n), which is mathematically convenient for defining an upper bound on

our error function δ(n) in Theorem 9.
Given this cutoff, we focus first on the case where there are only low-degree agents, which

is sufficient to provide the guiding intuition that we will follow in the next section, when
we discuss broadening the setting in various ways. One such extension will involve allowing
vertices of arbitrary degree.

We now proceed by making several arguments which form the building blocks of the
proof of Theorem 9 that follows.

I Lemma 10. Algorithms 1 and 2 terminate in polynomial time with respect to the number
of agents.

Proof. The key for this property of Algorithm 1 is that contexts are identity-agnostic, so the
number of contexts is polynomial in n when the number of types is a constant. Therefore,
we are able to enumerate all of the possible contexts in polynomial time. For each of these
contexts c, we can compute the relevant probabilities – Pr[State = s|c] and Pr[c|State = s]
for both states s – using Bayes’ rule. The rest of the steps in the algorithm are linear in
the number of contexts, and therefore also computable in polynomial time. Algorithm 2 is
trivially computable in constant-time. J

Having shown that they are polynomial-time computable, we now demonstrate the
correctness of Algorithms 1 and 2 under idealized conditions.

B Claim. When agents believe with probability 1 that the actual size of the largest supported
revolt in each state will exactly equal its expected size, then Algorithm 1 correctly computes
the expected size of the largest revolt in each state. When, further, it is true that the actual
size of the largest supported revolt in each state will exactly equal its expected size, then
Algorithm 2 identifies the set of states in which revolt of size µ∗ is supported with no error.

Proof of Claim. Algorithm 1 first defines the set of candidate states – these are the states in
which it is possible, but not necessarily the case, that type-χ agents will feel secure enough
to revolt, because there are at least µ α- and χ-type agents. If there are no such states, then



N. Burrell and G. Schoenebeck 45:13

only agents of type α will revolt. If both states are candidates, then all α- and χ-type agents
will feel secure enough to revolt: Agents of type α always revolt and agents of type-χ have
their µ threshold met in both states, by the definition of a candidate state. As a result, their
p threshold is also necessarily met, because the probability of the state being either A or B
is 1 ≥ p. The most interesting case is when only A is a candidate state. In this case, only
type χ agents who p-believe that the state is A will have their p-threshold met. So, similarly
to our example from Section 3.1, we call those agents candidate agents (and refer to their
contexts as candidate contexts.) If the number of candidate agents and α-type agents, given
that the state is A, is at least µ, then all of those agents feel secure enough to revolt. This is
true in any state, because even when the state is B, candidate agents, by definition, p-believe
that the state is A.

Algorithm 2 simply compares the size of the expected revolt in each state to µ∗ to decide
in which states, if any, a revolt of expected size at least µ∗ is supported. If the actual size of
the revolt in any state is exactly equal to its expectation, as we assume, then Algorithm 2
introduces no error. C

Now, the assumption that the actual supported revolt exactly equals the expected size
of the supported revolt is, of course, too strict. However, we will be able to show that the
actual size of the supported revolt concentrates around its expectation, and consequently,
the errors in our algorithms decrease quickly as n grows.

Recall that computing the expected size of a supported revolt involves counting the
number of some subset of three kinds of agents: α-type agents, χ-type agents, and candidate
agents. For α-type and χ-type agents, it is simple to show that the number of such agents
concentrates around its expectation because agent types are assigned independently at
random.

I Lemma 11. Given ε > 0, the probability that, in a given state, the number of agents of
type χ and of type α differ from the expected number of agents of type χ and of type α by a
multiplicative factor of ε is at most δ = δ(n) for some δ(n) ∈ 1

exp(Ωε,P ( 3√n)) .

Proof. Because the agent types are drawn independently at random, we can use a standard
Chernoff-Hoeffding bound on the expected number of each type of agents. Consequently, the
difference between the actual and expected number of each type of agent decays exponentially
with n, and therefore we can choose δ(n) ∈ 1

exp(Ωε,P ( 3√n)) so that the difference is trivially
smaller. J

Counting the number of candidate agents, as foreshadowed in the Motivating Example of
Section 3.1, is somewhat more complicated. Here, we need to consider the contexts of agents
– not just their type – and agents’ contexts are correlated with the contexts of their neighbors
and their neighbors’ neighbors in G. We will show, though, that as the graph grows, the effect
of this correlation is small. In fact, we will still be able to prove an exponentially-decreasing
bound on the difference between the actual and expected number of candidate agents.

I Lemma 12. Given ε > 0, the probability that, in a given state, the number of candidate
agents is less than the expected number of candidate agents by a multiplicative factor of ε is
at most δ = δ(n) for some δ(n) ∈ 1

exp(Ωε,P ( 3√n)) .

Proof. Let XC be a random variable that denotes the number of candidate agents. We can
write XC =

∑n
i=1Xi,C where Xi,C is an indicator variable that indicates whether or not

agent i is a candidate.
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As we have noted above, an agent’s status as a candidate is dependent on her context,
and as a result, the variables Xi,C are not independent. However – given our assumption that
the maximum degree of any vertex in G is O ( 3

√
n) – their dependence is constrained enough

that we are able to apply a useful exponential bound involving the fractional chromatic
number χ∗(Γ) of the constraint graph Γ of the random variables Xi,C .

(See the appendix section of the full version of the paper for additional details).
For our purposes, it is sufficient to use a trivial bound on the fractional chromatic number

of any graph. The fractional chromatic number of a graph is at most the chromatic number of
the graph, which is at most the maximum degree of any vertex plus one. So in Γ, where edges
correspond to dependencies between pairs of random variables (Xi,C , Xj,C), the maximum
degree of any vertex – and therefore the fractional chromatic number χ∗(Γ) – is Oε,P

(
n

2
3

)
.

Applying the bound, then, gives

Pr[|XC − E[XC ]| ≥ εn] ≤ 2 exp
(
−2ε2n
χ∗(Γ)

)
∈ 1

exp (Ωε,P ( 3
√
n))

. J

I Lemma 13.
1. Suppose Algorithm 1 is run with the given inputs, but with modified µ′ = µ + ε

3 and
p′ = p+ δ

3 , and Algorithm 2 is run with the resulting XA and XB and the given µ∗. If the
result is Ω, then a revolt of size µ∗ − ε is supported with probability at least 1− δ under
the prior P . If the result is A, then a revolt of size µ∗ − ε is supported with probability at
least Pr[State = A]− δ under the prior P .

2. On the other hand, suppose Algorithm 1 is run with the given inputs, with modified
µ′ = µ− ε

3 and p′ = p− δ
3 , and Algorithm 2 is run with the resulting XA and XB and

the given µ∗. If the result is ∅, then a revolt of size µ∗ + ε is supported with probability at
most δ under the prior P . If the result is A, then a revolt of size µ∗ + ε is supported with
probability at most Pr[State = A] + δ under the prior P .

Proof. This proof decomposes into two analogous arguments about (1) and (2), which
themselves each contain two analogous arguments. We include only the first one in detail
here, below, and claim the rest via analogy.

B Claim. Suppose that, in instance (1), the result is Ω. Then, the probability that a revolt
of size µ∗ − ε is supported in both states is at least 1− 1

exp(Ω( 3√n)) .

Proof of Claim. There are three cases for the nature of this revolt.
(I) The revolt consists of all α-type agents.

By Lemma 11, we know that, in either state, the probability that the expected number of
α-type agents differs from the expected number of α-type agents by a multiplicative factor
of ε is 1

exp(Ω( 3√n)) . Therefore, the probability that a revolt of size µ∗ − ε is supported in

both states is at least 1− 1
exp(Ω( 3√n)) .

(II) The revolt consists of all α- and all χ-type agents.
In this case, the presence of χ-type agents slightly complicates the analysis. Actual
χ-type agents have slightly easier thresholds to satisfy (p and µ) than the χ-type agents
considered by the algorithms (p′ and µ′). Our algorithms determined that, in expectation,
agents with p′ and µ′ thresholds would feel secure enough to revolt. Each actual χ-type
agent, then, must also feel secure enough to revolt, not just in expectation: By Lemma 11,
the probability that the actual number each of α-type and χ-type agents differs from its
respective expectation by a multiplicative factor of ε

6 is 1
exp(Ω( 3√n)) . Combining these,
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then, χ-type agents believe with probability 1− 1
exp(Ω( 3√n)) ≥ p that at least µ′ − ε

3 = µ

agents feel secure enough to revolt, and are thus themselves secure enough to revolt.
Applying Lemma 11 (from the perspective of Algorithm 2 this time, not the perspective
of χ-type agents) we again incur two error terms of ε

6 (one each for the χ- and α-type
agents). Thus, we can conclude the probability that a revolt of size µ∗ − ε is supported
in both states is at least 1− 1

exp(Ω( 3√n)) .
(III) The revolt consists of all α-type agents and all candidate agents.

In the final case, we consider candidate agents instead of all agents of type χ, and proceed
exactly as we did in the second case, using Lemma 11 to conclude that the number of
α-type agents concentrate and Lemma 12 to conclude that the number of candidate
agents concentrates. Once again, the result is that the probability that a revolt of size
µ∗ − ε is supported in both states is at least 1− 1

exp(Ω( 3√n)) . C

B Claim. Suppose that, in instance (1), the result is A. Then, the probability that a revolt
of size µ∗ − ε is supported in both states is at least Pr[State = A]− 1

exp(Ω( 3√n)) .

Proof of Claim. The proof of this claim is analogous to the previous proof, where events that
are assigned probability at least 1 − 1

exp(Ω( 3√n)) are instead assigned probability at least

Pr[State = A]− 1
exp(Ω( 3√n)) . C

The proof of the analogous claims for (2) are themselves analogous to the above cases
for (1).

Finally, we note here that when χ-type agents decide whether or not their thresholds are
satisfied, they are not solely relying on their estimates of the fractions of different kinds of
agents, as we describe above. They have additional knowledge, since they see the realized
types of the agents in their context. However, for small graphs, δ(n) can be chosen to
account for this. As the graph grows, since each agent has at most O ( 3

√
n) neighbors, the

consequences of observing the types of a few adjacent agents is negligible after conditioning
on the state. As a result, for large enough n, after the agent reasons about the state, the
probabilistic effect of the agent viewing the types in her context is subsumed by the ε error
term. Furthermore, the appropriate choice of δ(n) also accounts for the 1

exp(Ω( 3√n)) terms
present in each of the claims stated above, for each n. J

Proof of Theorem 9. It follows from Lemma 10 that Algorithm 3 terminates in polynomial
time with respect to the inputs G and P . We also note that Algorithm 3 terminates in
polynomial time with respect to 1

ε and 1
δ .

Further, it follows from Lemma 13 that when Algorithm 3 outputs a case, that case is
always true. It only remains to show that when exactly one case in the statement of Promise
Revolt is true, then Algorithm 3 necessarily outputs that case:

Here, the key is our use of three different potential revolt sizes (µ∗ − ε, µ∗, and µ∗ + ε)
and 3 different priors (P−, P , and P+) in defining the three cases of Promise Revolt. By
promising that exactly one of those three cases is true, we guarantee that the values of µ and
p are sufficiently far – distance at least ε for µ and distance at least δ for p – from the crucial
decision thresholds in Algorithm 1 (e.g. the value eB(χ ∪ α), which is used to determine
whether or not B is a candidate state)3. This ensures that both calls to Algorithm 1 will
return the same values.

3 Whether or not a decision threshold is in the set of crucial decision thresholds – the thresholds from
which our promise guarantees p and µ are sufficiently far – depends on µ∗. In addition to eB(χ ∪ α),
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We can illustrate this counterfactually:
Let µ = eB(χ ∪ α) + ε

2 with eB(χ ∪ α) > µ∗ > eB(CC ∪ α) and let eA(CC ∪ α) > µ+ ε
2 .

Then, A and B would both be candidate states under the prior P−. As a result,
Algorithm 1 (run with prior P−) would return XA = eA(χ ∪ α) and XB = eB(χ ∪ α). Note
that XA > XB > µ∗, so Algorithm 2 would return Ω when run with inputs XA, XB, and
µ∗. The same analysis holds for P− with µ and p incremented by ε

3 and δ
3 , respectively, so

applying Lemma 13 implies that the case Ω is true.
On the other hand, only A would be a candidate state under the prior P . Algorithm 1

run with the prior P would return XA = eA(CC ∪α) and XB = eB(CC ∪α). Run with these
inputs (and µ∗), Algorithm 2 would return A. The same analysis holds for P with µ and p
incremented and decremented by ε

3 and δ
3 , which by Lemma 13 implies that the case A is

true. We can conclude that these values of µ and µ∗ must be excluded by our promise for
any input to Promise Revolt for which our assumed constraints hold.

An argument similar to this counterfactual argument suffices to exclude any value of p
or µ that is insufficiently far from a crucial decision threshold in Algorithm 1 (along with
associated constraints on µ∗) present in an instance of Promise Revolt. J

Now we can discuss the information that we gain from solving Promise Revolt. In
doing so, it is useful to refer to Figure 1, which contains the following illustration: Given
µ∗, we identify all values of q for which a revolt of size µ∗ is supported with probability at
least q (dark blue and yellow regions), all values of q for which revolt of size µ∗ may be
supported with probability q (light blue, yellow, and grey regions), and all values of q for
which a revolt of size µ∗ is supported with probability strictly less than q (white regions).
The blurry regions between distinct colors represent the inputs to Promise Revolt for
which two of the cases would overlap (and are therefore excluded from the set of inputs by
the “promise”).

If we could perfectly solve Revolt, then we would be able to perfectly define the
boundaries – there would be no blurry regions between distinct colors, as in Figure 1. The
shape of the resulting figure would characterize the equilibria of the network revolt game
in the following sense: The blue column (corresponding to values of µ∗ for which only
case Ω of Promise Revolt is true) would show the sizes of revolts that are supported in
equilibrium with high probability regardless of the state, the next yellow and white column
(corresponding to values of µ∗ for which only case A is true) would show the sizes of revolts
that are supported in equilibrium with high probability given that the state is A, and the
last grey and white column (corresponding to values of µ∗ for which case ∅ is true) would
show the sizes of revolts that, with high probability, are not supported in equilibrium (or,
equivalently, the sizes of revolts that are supported in equilibrium with low probability).

Although we cannot perfectly solve Revolt, as shown in Figure 1, solving Promise
Revolt with Algorithm 3 allows us to approximate this shape. By choosing ε to be very
small, we can make the boundary cases only relevant for very small subsets of possible values
of µ∗ and values of µ in the prior P . And, as we have shown via the proof of Theorem 9, as
n grows, δ(n) quickly becomes very small. Consequently, the range of possibly forbidden
values of p in the prior P also quickly becomes small and the probabilities for each class of
distinct equilibria described above (when they exist), converge to 1, Pr[State = A], and 0,
respectively.

it can also include eA(CC ∪ α) and the value of p below which eA(CC ∪ α) ≥ µ holds for candidate
contexts and above which eA(CC ∪ α) < µ.
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Ω A ∅0 eB ± ε eA ± ε 1
δ

Pr[State = A]± δ

1− δ

µ

q

Figure 1 Illustrating what we learn from solving Promise Revolt in an archetypal case.
Here, eB and eA denote the expected size of the revolt supported in states B and A, respectively.

Lastly, we note that an interesting and surprising corollary to our analysis above is that
Algorithms 1, 2, and 3 never use any information about the graph beyond the degree sequence
of G – an anonymous list that records the degree of each vertex in the graph. That is, our
algorithms require a list of the degrees of the agents, but do not require that any degree
value be labelled with the identity of any agent, nor do they require any further information
about the set of edges in the graph. Rather, the results of the algorithms are valid for any
graph that is consistent with the provided degree sequence, because the concentration of
the fraction of candidate agents and agents of each type supersedes the additional structure
imposed by any concrete edge set consistent with the degree sequence.

We record this fact with the following proposition:

I Proposition 14. To compute Promise Revolt in polynomial time, we only require the
degree sequence of the graph G; the graph itself is not required.

5 Broadening the Setting

The core intuition from our analysis above actually applies more generally than just to the
setting of Section 4.1. In the full version of the paper, we explore settings where the value of
interest is the size of the smallest supported revolt in each state (as opposed to the largest)
and where there is an arbitrary number of states.

Here, we only discuss the most fundamental of the more general settings – extending our
result to general graphs. In doing so, we focus on changes to Algorithm 1; the subsequent
changes required to adapt Algorithms 2 and 3 are straightforward.

5.1 General Graphs
Suppose that we impose no restriction on the degree of the vertices in G in the statement
of Theorem 9. It turns out that our results still hold. The existence of high-degree χ-type
vertices (i.e. those that would not exist when we assume an O ( 3

√
n) bound on the maximum

degree of any vertex), complicates the analysis, but only in the case where A is the only

ITCS 2021



45:18 Relaxing Common Belief

candidate state. When A and B are both candidate states, we only need to calculate the
expected number of all χ-type agents, regardless of their degree. When there are no candidate
states, χ-type vertices are irrelevant.

When A is the only candidate state, however, there is a key difference: The presence of
high-degree agent contexts in the set of candidate contexts would affect our earlier analysis
using the concentration bound for the sum of random variables with limited dependence
based on the fractional chromatic number of the constraint graph of the random variables
(in the proof of Lemma 12), because the contexts of high-degree agents are correlated with
many other agents’ contexts.

Because of this, though, high-degree agents (with degree at least c · 3
√
n for sufficiently

large c) have a unique perspective on the graph; their contexts contain a significant amount
information that they can use in determining the state. More concretely, suppose that agent
i is a high-degree agent and let N(i) be the set of neighbors of i in G.

Let X =
∑
j∈N(i)Xj , where Xj is an indicator random variable that is 1 when agent j is

of type α or type χ and 0 otherwise.
Now, for any ε0 > 0, applying a standard Chernoff-Hoeffding bound, we have:

Pr
[
|X − E[X]| ≥ ε0

(
c · 3
√
n
)]
≤ 2 exp

(
−2(ε0c)2

n
2
3

n
1
3

)
∈ 1

exp (Ωε,P ( 3
√
n))

. (1)

In particular, if we choose ε0 such that |E[X|State = A]−E[X|State = B]| > 2ε0 (c · 3
√
n),

then agent i (and by the same argument, any high-degree agent) can correctly determine the
state with enough accuracy that their error can be absorbed into the δ error term with an
appropriate choice of δ(n). As a result, when the state is A, all high-degree χ-type agents
will behave like candidate agents (recall that A is a candidate state).

However, for computational purposes, we will not lump them in with the low-degree
candidate agents, because Lemma 12 can only apply to low-degree candidates. Instead, in
the first if statement after the condition that A is the only candidate state (the line in
Algorithm 1 that reads “if eA(CC ∪ α) ≥ µ then”), we calculate eA(CC ∪ α ∪Hχ) instead
of just eA(CC ∪ α), where Hχ refers to the set of high-degree χ-type vertices. If this is at
least µ, then when we calculate XA, we include Hχ. However, when we calculate XB, we
only include Hχ if eB(CC ∪ α ∪Hχ) ≥ µ, since those high-degree agents will not p-believe
that the state is A regardless of the state the way that (low-degree) candidate agents will. If
eB(CC ∪ α ∪Hχ) < µ, we calculate XB = eB(CC ∪ α), as described in Algorithm 1.

Next, we must show it is possible for the agents (and the algorithm) to accurately calculate
the expected number of high-degree agents of type χ and know that the actual number of
such agents sufficiently concentrates around that expected number. Here, we can rely on
the fact that the agents and the algorithm know the degree sequence of the graph. There is
some subtlety involved: If the number of high-degree agents is small – less than εn – then we
cannot provide a very useful concentration bound for the number of high-degree agents of
type χ. However, we can essentially ignore the high-degree agents in this case and absorb
the error we incur by ignoring them into our choice of δ(n).

On the other hand, if there are at least εn high-degree agents, we can again use a standard
Chernoff-Hoeffding bound to conclude that the actual number of high-degree χ-type agents
will, with high probability, be close to the expected number of such agents. The error here
will be smaller than the error from Lemma 12 and so can be absorbed there.

Finally, there is one additional subtlety we must address for high-degree agents. While it is
true that, as previously mentioned, their contexts contain a significant amount of information
that they can use in determining the state, their contexts actually contain more than just
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information about the state – they contain information about the actual realization of types
for a significant number of agents. This point is the primary conceptual reason to make the
distinction between high-degree and low-degree agents in the first place. Consequently, we
need to show that high-degree agents tend to behave as if they only knew the state, when in
fact it is possible that the number of agents of a certain type in their context differs greatly
from its expectation and as a result they have additional information to use beyond the state
of the world. For this, we again appeal to our previous argument that resulted in the bound
expressed by the inequality (1), above.

That argument demonstrates that it is highly improbable for the information in a high-
degree agent’s context to contradict what their belief would be solely given knowledge of the
state. For example, if a high-degree agent uses her context to determine that the state is
A, with high probability it will not also be the case that the context that she uses to make
that determination has (far) fewer agents of any type than would be expected given that the
state is A. Consequently, a high-degree agent will tend to act as if she is just calculating
expectations and acting off of them (like a low-degree agent would), even though in actuality
she has quite a bit of additional information.

6 Discussion

We proposed that the notion of common belief could be relaxed to a notion of factional
belief in order to be more suited to social network settings and gave a natural definition of
factional belief, drawing heavily from previous work on common belief. We then applied
this definition theoretically and experimentally in a setting inspired by prior work about
common knowledge and revolt games on networks to show how this definition moves beyond
the limitations of previous work by being applicable in general graphs.

6.1 Open Questions and Future Work
The most clear direction for future work is to continue to apply factional belief in new settings
and use it as a tool to understand strategic coordination and cooperation on networks. In
particular, as mentioned in the introduction, the work of Stephen Morris provides many
examples of applying common belief as a tool for gaining insight into a diverse range of
settings. We believe that applying factional belief can yield similar results in social network
settings, and that this paper represents an initial step in that process.

Additionally, though, there are some more subtle technical open questions regarding our
definition of factional belief that are also worth exploring in future work:
1. Considering our definition of factional belief from the perspective of an infinite hierarchy

of reasoning, akin to the initial definition for common knowledge that we provided (3),
with regard to the µ fraction of agents at each step in the hierarchy, it is not required by
our definition that this be the same µ fraction of agents at each step in the hierarchy.
However, it is not clear whether or not this should always be the case. Is it possible to
describe an event that is common (p, µ)-belief, but for which the infinite hierarchy refers
to a different µ fraction of agents at some step? If so, what are the consequences of this
for strategic coordination and cooperation?

2. It is not too difficult to modify the setting described in Section 4 to create a model
where the underlying event that supports revolt does not necessarily neatly reduce to
a single event that is common (p, µ)-belief. For example, if there are multiple types of
conditionally-revolting agents with different p and µ thresholds, the event supporting
revolt is more like a µ fraction of agents believe with sufficient probability that their
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thresholds are satisfied. This event encompasses common p-beliefs among certain agents
of the same type regarding their µ thresholds, but not precisely common (p, µ)-beliefs. Is
there a more general definition of factional belief that allows for the existence of different
thresholds for different types of agents to still be encompassed in a single event that is a
factional belief among all of the agents who feel satisfied enough to revolt?

We believe that answering these questions could yield further insight into factional belief
that could inform its application in other settings.
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Abstract
We study the stable marriage problem in two-sided markets with randomly generated preferences.
Agents on each side of the market are divided into a constant number of “soft” tiers, which capture
agents’ qualities. Specifically, every agent within a tier has the same public score, and agents on each
side have preferences independently generated proportionally to the public scores of the other side.

We compute the expected average rank which agents in each tier have for their partners in the
man-optimal stable matching, and prove concentration results for the average rank in asymptotically
large markets. Furthermore, despite having a significant effect on ranks, public scores do not strongly
influence the probability of an agent matching to a given tier of the other side. This generalizes the
results by Pittel [20], which analyzed markets with uniform preferences. The results quantitatively
demonstrate the effect of competition due to the heterogeneous attractiveness of agents in the
market.
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1 Introduction

The theory of stable matching, initiated by Gale and Shapley [9], has led to a deep under-
standing of two-sided matching markets and inspired successful real-world market designs.
Examples of such markets include marriage markets, online dating, assigning students to

© Itai Ashlagi, Mark Braverman, Amin Saberi, Clayton Thomas, and Geng Zhao;
licensed under Creative Commons License CC-BY

12th Innovations in Theoretical Computer Science Conference (ITCS 2021).
Editor: James R. Lee; Article No. 46; pp. 46:1–46:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:iashlagi@stanford.edu
mailto:mbraverm@cs.princeton.edu
mailto:saberi@stanford.edu
mailto:claytont@cs.princeton.edu
mailto:gengz@stanford.edu
https://doi.org/10.4230/LIPIcs.ITCS.2021.46
https://arxiv.org/abs/2009.05124
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


46:2 Tiered Random Matching Markets

schools, labor markets, and college admissions. In a market matching “men” to “women” (a
commonly used analogy), a matching is stable if no man-woman pair prefer each other over
their assigned partners.

A fundamental issue is characterizing stable outcomes of matching markets, i.e. the
outcome agents should expect based on market characteristics. Such characterizations are not
only useful for describing outcomes but also likely to be fruitful in market designs. Numerous
papers so far have studied stable matchings in random markets, in which agents’ preferences
are generated uniformly at random [20, 16, 3, 22]. This paper contributes to the literature
by expanding these results to a situation where preferences are drawn according to different
tiers of “public scores”, generalizing the uniform case. We ask how public scores, which
correspond to the attractiveness of agents, impact the outcome in the market.

Formally, we study the following class of tiered random markets. There are n men and n
women. Each side of the market is divided into a constant number of “soft tiers”. There is a
fraction of εi women in tier i, each of which has a public score αi. And there is a fraction of
δj men in tier j, each of which has a public score βj . For each agent we draw a complete
preference list by sampling without replacement proportionally to the public scores of agents
on the other side of the market.1 So a man’s preference list is generated by sampling women
one at a time without replacement according to a distribution that is proportional to their
public scores. Using α, ε to denote the vector of scores and proportions of tiers on the
women’s side, we see that the marginal probability of drawing a woman in tier i is αi/(nε ·α).
An analogous statement holds for the tier configuration β, δ of the men. These preferences
are a natural next-step beyond the uniform distribution over preference lists, and provide
a priori heterogeneous quality of agents while still being tractable to theoretical analysis.

Our primary goal is to study the average rank of agents in each tier under the man-optimal
stable matching, with a focus on the asymptotic behavior in large markets. The rank of an
agent is defined to be the index of their partner on their full preference list, where lower is
better. Additionally, we prove results on the match type distribution, i.e. the fraction of tier
i women matched to tier j men (for each i, j).

We show that, for large enough markets, the following hold to within an arbitrarily small
approximation factor:
(i) (Theorem 4.8.) With high probability, the average rank of men in tier j is

ε ·α
αmin

· 1
δ · β−1 ·

lnn
βj

.

(ii) (Theorem 5.1.) With high probability, the average rank of women in tier i is

(δ · β)(δ · β−1)αmin

αi

n

lnn.

(iii) (Theorem 5.2.) The probability that a woman in tier i matches to a man in tier j is δj .

In the above, β−1 = {1/βj} denotes the vector of the reciprocals of men’s public scores,
αmin denotes the smallest public score on the women’s side, and x ·y denotes the dot product
of the vectors x and y.

1 These are also termed popularity-based preferences [10, 13] and also equivalent to generating preferences
according to a Multinomial-Logit (MNL) induced by the public scores.
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Intuition and Observations. As in the case of uniform preferences [20], in the man-optimal
stable outcome, men get a much lower rank than women. Indeed, both men and women get
the same order of rank as in the uniform case (lnn and n/ lnn, respectively). This in itself
is an interesting consequence of this work – a constant tier structure affects the market only
up to constants. This fact also highlights that determining these constants is an interesting
area for investigation, as the constants capture how the outcome of the market changes with
respect to the public scores. The first observation we make is that agents on each side get a
rank inversely proportional to their public score.

Perhaps more interesting is the following observation: The rank of both sides depends
on the tier structure of the other side, but each tier is affected the same amount by the
tier parameters of the other side. This is closely related to the fact that the probability of
a woman matching to a man in tier j is proportional to only the number of men in tier j
(regardless of the tier the woman lies in). Moreover, both ε ·α/αmin and (δ · β)(δ · β−1) are
always greater than or equal to one2. Thus, in these markets, any heterogeneity in the public
scores of one side harms the average ranks of the other side (but does not significantly affect
the likelihood that an agent matches to a certain tier on the other side).

Another interesting feature is the following: While the average ranks for men’s tiers
depend on public score distributions on both sides of the market, the average rank of women
in tier i depends only on the ratio between αi and the public score αmin of the bottom tier
of women (and the distribution of public scores on the men’s side). Intuitively, the rank of
the men depends on the distribution of scores of the women because men are competing to
avoid being matched to the lowest tier of women.

To elaborate on that last point, let us first consider the total number of proposals made
during the man-proposing deferred acceptance process (DA). The algorithm will terminate
when the last woman receives a proposal. Naturally one would expect that this woman will
belong to the bottom tier. Therefore, using standard coupon collector arguments, the total
number of proposals made to women in the bottom tier until they all receive a proposal is
expected to be (εminn) ln(εminn), where εmin is the fraction of women in the bottom tier.
These proposals are a εminαmin/ε · α fraction of the total proposals, so one expects the
number of total proposals to be

(εminn) ln(εminn)
εminαmin/ε ·α

= ε ·α
αmin

· n lnn−O(n).

This introduces the factor of ε ·α/αmin in result (i) on the men’s ranks (i.e. the number of
proposals per man).

On the other hand, the probability that one of these proposals goes to a woman in tier i
is αi/(nε ·α), implying that such a woman should receive roughly (αi/αmin) lnn proposals.
Thus, for a given woman, the increase in the total number of proposals caused by the tier
proportions ε is exactly canceled out by the likelihood that a proposal goes to that woman,
and the only thing that matters is the woman’s score (relative to the bottom tier). If men
are uniform, women should then expect rank roughly (αmin/αi)(n/ lnn), which helps explain
the corresponding factors in result (ii).

Consider now the public scores of the men, and for simplicity assume that the bottom tier
of men has score 1. Suppose for the sake of demonstration that every time a man with public
score βj proposes to a woman who is already matched, this man is βj times more likely to

2 To prove (δ · β)(δ · β−1) ≥ 1, use Jensen’s inequality to conclude that
∑

j
δjβj ≥

(∑
j
δjβ

−1
j

)−1.
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46:4 Tiered Random Matching Markets

be accepted than a man with than a man with public score 1.3 We would expect that such
a man makes a 1/βj fraction fewer proposals before his next acceptance, and indeed 1/βj

fewer proposals overall. Let S be the total number of proposals, let rj denote the rank of
a man in tier j, and rmin the rank of the bottom tier of men. If every tier of size δjn each
accounts for a share of proposals proportional to 1/βj , then we should have

S =
∑

j

(nδj)β−1
j rmin =⇒ rmin = S

nδ · β−1 , rj = S

(nδ · β−1)βj
,

which introduces the factor of 1/((δ · β−1)βj) in result (i) on the men’s rank.
The final remaining factor in our results is (δ · β)(δ · β−1) in result (ii). Deriving this

term requires reasoning about the number of proposals from each tier of men received by
a fixed woman w. Building from the previous paragraph, we reason that each of the δjn

men in tier j makes a number of proposals proportional to 1/βj . Each such proposal has
the same probability of going to w, regardless of the tier j. So the number of proposals w
receives from tier j men is proportional to δj/βj . The factor (δ · β)(δ · β−1) then arises for
somewhat technical reasons (described in Section 5) which have to do with the way women
generate their preference lists.

We now describe how result (iii), which may seem somewhat more mysterious than the
other results, emerges as a corollary of computing the ranks women receive. We argued
above that a woman w in tier i receives approximately (δj/βj)Ui proposals from men in tier
j, for some value of Ui independent of j. Recall that w applies weight βj to each proposal
she sees from a man in tier j. Moreover, the identity of w’s favorite proposal is independent
of the order in which w saw proposals. Thus, the probability that w’s favorite proposal (i.e.
the proposal of the man she matches to) came from tier j is approximately (δjUi)/Ui = δj ,
which is independent of βj , as well as independent of the tier w is in. Thus, up to lower order
terms, the distribution of match types is the same as it would be in a uniformly random
matching market, and the match is not assortative.

Intuitively, result (iii) arises when men make enough proposals to offset any disadvantage
(in the type of their match) they have due to public score. Due to the highly connected and
relatively competitive nature of our markets, men in the lowest tier make more proposals,
but they are not more likely to end up matched with lower tier agents. Put another way,
men in lower tiers are less likely to attain matches they idiosyncratically like, but often settle
for a high-quality agent which is low on their personal preference list. This indicates that
public scores that differ by constant weight do not provide any significant a priori predictive
power over the matches agents receive. In particular, agents with lower public scores can
still hope to achieve high-tier matches if they consider enough options.

Techniques. Our proofs require developing some technical tools that may be of independent
interest, especially when we reason about the ranks achieved by the men. We build on the
analysis of DA from [23, 20, 13, 3] to handle public scores rather than just uniform random
preferences. As in these previous works, a key step in our proof is letting all men but one
(call him m) first propose and match though DA, and then tracking the proposals of m (this
works because DA is independent of the order of proposals). For demonstration purposes,

3 As we discuss below, this approximation is only valid if the woman is already matched with a man
she ranks highly. A major technical step in our proof is showing that, in certain situations, “enough”
women are “matched well enough” for this approximation to be used.
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let’s call the proposals before man m the “setup”. A key fact in previous works is that
the distribution of proposals made by m is identical for every man, and moreover that the
distribution of setups is identical as well. This fails to hold in tiered random markets, and
thus we must develop new techniques.

We prove that, for “most” setups, the rank a man can achieve is approximately given
by a certain geometric distribution, whose parameter p is essentially the probability that a
proposal by that man will be accepted. We then prove that, up to lower order terms, this
success parameter scales up with the public score of the men. This gives the fact that the
rank of men is inversely proportional to public score.

Characterizing the setups where our proof goes through requires a technical analysis,
and we term the setups which work “smooth matching states”. The most crucial thing
we need for these setups is that many women are matched to partners they rank highly,
which helps us prove that 1) men are likely to remain matched to their first acceptance (so
our approximation with a geometric distribution is valid), and 2) a man with fitness β is
approximately β times more likely to be accepted every time. For details, see Section 4.

Finally, to prove that the average rank of men within a tier concentrates, we need to
show the correlation between the ranks of different men is not too large. Thus, we track the
proposals of the last two men to propose, and find that the joint distribution of the ranks of
these men can be approximated by a pair of independent geometric distributions. Intuitively,
this is because men do not propose to very many women overall, and thus the last two men
are unlikely to interfere with each other as they make proposals.

The crucial aspects of our model are that preferences of each agent are independent and
identically distributed, that preference weights are constant, and that the market is roughly
in balance. While our techniques are useful to reason about markets which do not have these
properties, the results are not nearly as clean; indeed the tier structure simplifies our analysis,
but most of it goes through if each agent has an individual, constant, bounded public score.

1.1 Related literature
Several papers have studied matching markets with complete preference lists that are
generated uniformly at random. Coupon collector techniques are used in [23] to upper bound
the men’s average rank by lnn. The papers [20, 16, 21] analyze further balanced markets
with n men and n women. They find that in the man-optimal stable matching in balanced
markets, men and women match on average to their lnn and n

ln n ranks, respectively. Our
results generalize these findings to markets with preferences induced by public scores, thus
incorporating much more heterogeneity in the market.

Several papers study markets with uniformly drawn preferences and an imbalance between
men and women ([3, 22, 6]). These papers find that in any stable matching the average
ranks of men and women are similar to the average ranks under the short-side-proposing
DA. Additionally, [14] investigates the relation between the imbalance and the length of
preference lists (though the model is still uniform for each agent). This paper does not
consider imbalanced markets but we believe that similar techniques to those we develop will
be useful to reason about unbalanced tiered random markets.

Several papers look at random matching markets in which preferences are generated
based on public scores [13, 17, 1]. These papers restrict attention to the size of the core
(a measure of the difference between the man-optimal and woman-optimal outcome) and
strategic manipulation of agents under a stable matching mechanism. Key assumptions in
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46:6 Tiered Random Matching Markets

these papers generate outcomes which leave many agents unmatched. In particular, their
models either assume that preference lists of men are of constant length, or, alternatively,
one side has many more agents than the other.4

Closely related to this paper is [10], which primarily studies a special case of highly
correlated popularity preferences which is termed “geometric preferences”. While our work
focuses on the rank agents achieve in the man-optimal outcome (a canonical stable matching),
[10] focuses on the size of the core (more specifically, they study the number of stable partners
that agents have in typical stable matchings) using techniques specialized to geometric
preferences.

Other papers have addressed tiered matching markets, especially in market design settings.
However, these papers mostly study “hard tiers”, i.e. such that agents in higher tiers are
deterministically ranked above lower tiers by every agent on the other side. Examples
include [4, 2]. [18] also considers a certain restricted tiered model of cardinal utilities (which
is incomparable with our model), focusing on which tier of agents match to which tier.

Our contribution to the literature is a detailed study of “soft tiers”, a natural special
case of the popularity preferences of [13, 17, 10]. In cases where each agent’s utility for each
match on the other side is independent and identically distributed, popularity preferences
are the natural next step beyond uniform markets, as they model situations where agents
on each side have significant but non-definitive variation in a priori quality. Our techniques
build on the large body of work analyzing the “proposal dynamics” of deferred acceptance for
random preferences, such as [23, 13, 3, 10]. Our results give insight into how constant-factor
preference biases affect stable matching markets, including the first explicit calculations of
expected rank beyond uniform markets.

The rest of the paper is organized as follows: Section 2 offers basic definitions and
preliminaries for our discussion. Section 3 studies the tiered coupon collector process, which
serves as an important coupling process for the deferred acceptance algorithm. Section 4
and 5 present the core results of this paper, namely the average rank among tiers of men
and women. For missing proofs, see the full version of this paper.

2 Definitions and Preliminaries

A matching market consists of a finite set of men M and a finite set of women W . Each
man (woman) has a complete and strict preference list over women (men). A matching
is a mapping µ : M ∪W → M ∪W such that: for every m ∈ M , µ(m) ∈ W (or µ(m) is
undefined), for every woman w ∈W , µ(w) ∈M (or µ(w) is undefined), and for every m ∈M
and w ∈ W , µ(m) = w if and only if µ(m) = w. A matching µ is stable if no man-woman
pair who are not matched in µ prefer each other to their matched partners.

It is well-known that there is a unique man-optimal stable matching, which can be found
using the man-proposing deferred acceptance algorithm (DA). While this algorithm does not
fully specify an execution order, it is a classically known result that the order does not affect
the final outcome.

I Lemma 2.1 ([9, 19]). The same proposals are made in every run of DA, regardless of
which man is chosen to propose at each step.

4 Some papers additionally consider manipulations in more restricted randomized settings [7] or in
deterministic (worst case) settings [11].
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Algorithm 1 (Man-Proposing) Deferred Acceptance Algorithm (DA).

1 Initialize matching µ to be empty (i.e. every agent’s partner is undefined);
2 Initialize U = M to be the set of all unmatched men;
3 while |U| > 0 do
4 Choose any m ∈ U ;
5 Let m propose to his most preferred woman w to whom he has not made a

proposal yet;
6 if w prefers m to µ(w) (or if µ(w) is undefined) then
7 if µ(w) is defined then Add µ(w) to U ;
8 Remove m from U ;
9 Assign µ(w) = m;

10 end
11 end

We study the man-optimal stable matching in a class of tiered random markets, which will
be defined below. We will assume that |M | = |W | and that no agent finds any other agent
on the other side unacceptable. We will also assume that each side draws their preferences
from an identical and independent underlying distribution, and moreover these preferences
are generated by repeatedly sampling without replacement from a fixed distribution on the
agents of each side. In [13, 10], this assumption is termed “popularity-based preferences”,
with the weight of an agent in the distribution intuitively indicating their popularity for
agents on the other side.

Our main goal is to study randomized matching markets with a constant number of
constant weight tiers of agents on each side. For this entire paper, we consider the tier
structure to be defined by fixed proportions ε, δ of agents in each tier and constant weights
α,β for each tier, and we investigate the outcome of the man-proposing DA as n→∞.

I Definition 2.2. Consider constant vectors α, ε ∈ Rk1
>0 and β, δ ∈ Rk2

>0, where ‖ε‖1, ‖δ‖1 =
1. A tiered matching market of size n with respect to α, ε,β, δ is defined by generating
agents’ preference lists as follows:

The set of n women W is divided into tiers T1, . . . , Tk1 , of size |Ti| = εin each5. Define
a distribution W on women such that a woman in tier i is selected with probability
proportional to αi. That is, the weight of w ∈ Ti in W is αi/(nε · α) (which we often
denote by πi).
The set of n men M is divided into tiers T1, . . . , Tk2 , of size |Tj | = δjn each. Define a
distributionM on men such that a man in tier j is selected with probability proportional
to βj. That is, the weight of m ∈ Tj in M is βj/(nδ · β).

For each man m independently, women are repeatedly sampled from W without replacement,
and the order in which women are selected is m’s preference list. Preferences for the women
are analogously drawn over the distributionM. The rank that a man has for a woman w is
the index of w on his preference list (where lower is better).

5 Note that, for most vectors ε, δ, many values of n will produce tier sizes which are not integers. However,
as all our results are continuous in ε, δ this is not a problem – for any particular fixed n, each tier size
can be rounded in a way that effectively just changes ε, δ by a tiny amount, and our results will still
hold as written as n→∞.

ITCS 2021



46:8 Tiered Random Matching Markets

We refer to each αi as the weight or public score of the women in tier i, and similarly for
the men. For simplicity of certain arguments, we assume that each αi ≥ 1 and each βj ≥ 1
(although for clarity of our results, we do not assume that the smallest weight is exactly 1).
We write αmin for the weight of the bottom tier of women, and εmin for the corresponding
tier proportion.

Using a simple generalization of the “principle of deferred decisions” used in [15], we can
arrive at a characterization of the random process of running DA with a tiered matching
market.

I Lemma 2.3. The distribution of runs of DA for a tiered matching market can be generated
as follows: For the men, every time a man is chosen to propose, he samples a woman at
random from W, and repeats this until he samples a woman who he has not yet proposed to.

For the women, suppose w has seen proposals from a set of men p(w), and let Γw =∑
m∈p(w) β(m), where β(m) denotes the public score of a man m ∈ p(m). Then if a proposal

from a man m∗ with public score β∗ arrives, w accepts the proposal from m∗ with probability

β∗
β∗ + Γw

.

Proof. The above formula gives the probability that m∗ is chosen as w’s favorite out of
the set of men p(w) ∪ {m∗}. The only additional observation we need to make is that the
probability that m∗ is the new favorite is independent of the identity of the old favorite. J

We often call Γw the total “weight of proposals” woman w has seen at some point during DA.

2.1 Deferred acceptance with re-proposals
With respect to any popularity-based model of preferences, we can define a procedure
analogous to DA. In our case, we will show that the difference between DA and this
procedure is indeed small.

I Definition 2.4. Consider any random matching market with men’s preferences determined
by sampling from a distribution W over women. The deferred acceptance with re-proposals
algorithm is defined as being identical to Algorithm 1, except

Every time a man is chosen to propose to a woman, he draws a woman from W with
replacement, and may propose more than once to a single woman.
Women’s preferences are consistent throughout proposals from the same man (so if a
woman rejected a man before, she will reject him again).

Since re-proposals are ignored, this process will always yield the same outcome as
algorithm 1.

Notation. We write x = (1 ± ε)y to mean (1 − ε)y ≤ x ≤ (1 + ε)y. We let ε denote an
arbitrarily small constant greater than 0, while ε and εi denote the tier parameters of the
women. We let αmin denote the smallest public score for the women’s side, and εmin denotes
the corresponding tier proportion. We let v ·w denote the inner product of vectors v,w.
We denote the exponential and geometric distributions by Exp(λ) and Geo(p), respectively.
We denote the fact that a random variable X is a draw from a distribution D by X ∼ D.
We use X � Y to denote the fact that X is statistically dominated by Y (i.e. for all t ∈ R,
we have P [X ≥ t] ≤ P [Y ≥ t]). We let Cov(X,Y ) denote the covariance of X and Y . We
write f(n) = Õ(g(n)) if there exists a constant k such that f(n) = O(g(n) logk(g(n))).
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3 The Coupon Collector and the Total Number of Proposals

Fix a tier structure α, ε corresponding to men’s preferences over the women. Consider
running deferred acceptance with re-proposals. Recall that each man samples a woman in tier
i with probability πi = αi/(nε ·α) each draw. Define πmin = αmin/(nε ·α) as the probability
of drawing a woman in the lowest tier (and keep in mind that πmin scales like O(1/n)).

The core tool we use to reason about the total number of proposals in DA is the classically
studied coupon collector process. In particular, we study this process when coupons from
different tiers are drawn with a constant-factor difference in probability.

I Definition 3.1. Given a probability distribution (pi)i∈[n], we define the coupon collector
with unequal probabilities as follows: once every time step, an integer from [n] is drawn
independently and with replacement according to distribution (pi)i∈[n]. The coupon collector
random variable with respect to (pi)i∈[n] is defined as the number of total draws required
before every integer in [n] has appeared at least once.

The coupon collector T which we are interested in is defined by taking the distribution W
of men’s preferences.

We will show in Section 3.1 that, in our case, this random process is also very close
to that of DA (without re-proposals). For now, we simply bound the expectation of the
coupon collector (with the proof deferred to the full version). Note that similar probabilistic
problems have been considered before (see e.g. [5, 8]) but we include our own full proofs in
the full version for completeness.

I Theorem 3.2. Let T denote the number of draws in a coupon collector process with weights
proportional to W. We have

E [T ] =
(
1±O(1/ lnn)

)ε ·α
αmin

n lnn.

I Remark 3.3. While we are mostly interested in the asymptotic performance of these
matching markets, we make one comment here that the above big-O notation hides a
constant factor of order ln(1/εmin). For small values of εmin, this can be much larger than
lnn for most realistic market sizes. Note that this error term already showed up in the
intuition given in Section 1, where our estimate for the total number of proposals had an
additive term of O(ln(εmin)n). For more information, see the discussion of coupon collector
lower bound in the full version of this paper.

3.1 The Total Number of Proposals in Deferred Acceptance
Let S = Sn denote the total number of proposals made a run of DA with random preferences
given by our tiered market. As before, let T = Tn denote the distribution of a coupon
collector with distribution W. As in many prior studies of randomized deferred acceptance,
our starting point is the fact that S is statistically dominated by T :

The connection to stable matchings is the following very simple observation, which has
been used in many previous works [16, 20]:

I Proposition 3.4. The coupon collector random variable T is distributed identically to the
total number of proposals made in deferred acceptance with re-proposals (regardless of the
preferences that women have for men).

Moreover, if S is the number of proposals in DA, then S � T (i.e. S is statistically
dominated by T ).

ITCS 2021



46:10 Tiered Random Matching Markets

Proof. First, recall that DA terminates as soon as every man is matched. Observe that
women never return to being unmatched once they receive a single proposal. Because
the market is balanced (i.e. |W | = |M |), this means DA will terminate as soon as every
woman has been proposed to. Moreover, because re-proposals are allowed, every proposal
is distributed exactly according to W. Thus, ignoring the identity of the man doing the
proposing, T is distributed exactly according to the coupon collector random process.

Furthermore, we can recover the exact distribution S of proposal in DA simply by
ignoring each repeated proposal in T . Thus, S ≤ T for each run of deferred acceptance with
re-proposals, so S � T . J

We proceed to show that the upper bound provided by T is essentially tight, i.e. there
is not a big difference between T and S. The key step will be to upper bound maximum
number of distinct women any man proposes to in S, and thus upper bound the probability
that any proposal in T is a repeat for the man making the proposal. Crucially, this lemma
will have to account for the preferences of the women (which up until this point have been
ignored, but which play a significant role in the distribution of proposals in DA). Recall that
we denote the sizes of the tiers of the men by the vector δ, and the public scores of the men
in each tier by β.

I Lemma 3.5. Consider running DA with all men except m∗, and suppose that at most
O(n lnn) proposals are made during this process. Afterwards, consider m∗ joining and run
DA until the end. Then for any C ≥ 0, with probability 1− 1/nC , the number of proposals
made by m∗ is at most O(C ln2 n).

Proof. This proof follows a similar logic as the proof of Lemma B.4 (ii) in [3]. Suppose m∗
has public score β∗, and that he proposes at the end (and O(n lnn) prior proposals have
been made). We proceed as follows:
1. When m∗ makes a proposal, he will choose a woman who he has not yet proposed to. For

some fixed proposal index i of m∗, let’s denote the set of all women m∗ has not proposed
to by W∗, and denote byW∗ the distribution of m∗’s next proposal, i.e. a sample over W∗
weighted by the public scores αi. For a women w denote her sample weight by α(w) and
the set of proposals she has received by p(w). Further denote by Γw =

∑
m∈p(w) β(m)

the sum of the public scores of men who have proposed to w.
Suppose that |W∗| ≥ n/2, i.e. that m∗ has not yet proposed to over half the women.
Using the assumption that the total number of proposals made is at most O(n lnn), we
can bound the expected total weight of proposals women have seen by

E
w∼W∗

[Γw] =
∑

w∈W∗
α(w)Γw∑

w∈W∗
α(w) ≤

αmax
∑

w∈W Γw

|W∗|αmin
≤ αmaxβmax ·O(n lnn)

|W∗|αmin
≤ O(lnn).

Thus, by lemma 2.3, the probability that the proposal by m∗ will be accepted is

p1 := E
w∼W∗

[
β∗

β∗ + Γw

]
≥ β∗
β∗ + Ew∼W∗ [Γw] ≥ Ω(1/ lnn).

where the first inequality is due to Jensen’s inequality.
2. If m∗ proposes to w and is accepted, then the subsequent rejection chain can either end

at the last woman without proposals, wlast, or cycles back to w who this time rejects m∗.
Notice that for each subsequent proposal, the ratio between the probability that it goes
to wlast (in which case the process will be terminated) and the probability that it returns
to w is at most αmax : αmin (and possibly less if the proposing man has already proposed
to w). Hence, the probability that the chain ends at the last women wlast is bounded
below by
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p2 := αmin

αmax + αmin
≥ Ω(1).

Note that this is ignoring the chance that a new proposal by w is rejected, but it still
suffices for a lower bound.

3. The probability that m∗ makes more than K ln2 n proposals is thus bounded above by

(1− p1p2)K ln2 n ≤ exp(−p1p2K ln2 n) = exp(−Ω(K lnn)) ≤ n−C

as long as we choose K = Ω(C) large enough. J

I Corollary 3.6. For any constant C ≥ 1, with probability 1− 1/nC , the maximum number
of proposals made by any man in DA is O(C ln2 n).

Proof. By 3.4 and the upper bound for coupon collector (see the full version of this paper),
the total number of proposals made in DA is O(Cn lnn) with probability 1 − 1/nC . In
particular, if we consider any m∗ and let all other agents propose, this will be true. Recall
that by lemma 2.1, DA is independent of the order in which men are chosen to propose.
Thus, for each man m∗ we can apply lemma 3.5 to get that, with probability 1− 1/nC+1,
m∗ makes fewer than O((C + 1) ln2 n) = O(C ln2 n) proposals. Taking a union bound over
the n men gets the desired result. J

I Remark 3.7. Both of the above results hold for deferred acceptance with re-proposals as
well as deferred acceptance. Indeed, even with re-proposals, deferred acceptance will be
independent of the order of proposals (as re-proposals are ignored by the women). Moreover,
the logic required to prove points 1. and 2. of the proof of lemma 3.5 is only easier to prove
when men sample over all of W as opposed to just the set W∗.

The above result is enough to show that proposition 3.2 holds for DA as well for the
coupon collector, because repeated proposals are at most a O(ln2 n/n) = o(1) fraction of
total proposals in deferred acceptance with re-proposals. We defer the proof to the full
version.

I Theorem 3.8. Let S be the total number of proposals made in DA with tiers of women
ε,α, and arbitrary constant tiers on the men. We have

E [S] =
(
1−O(ln2 n/n)

)
E [T ] =

(
1±O(1/ lnn)

)ε ·α
αmin

n lnn.

4 Rank Achieved by the Men

Up until this point, our arguments have only crudely considered the preferences women have
for men. Due to the asymmetry across the different tiers, this means we cannot yet calculate
the expected rank men get.

Consider a man m in tier j. Our main goal is to prove that the rank of m is inversely
proportional to βj . As in 3.5, the core tool of our proof will be the fact that deferred
acceptance is independent of execution order (by 2.1), and thus we can wait until all other
men have finished proposing and found a match before letting m propose. Once this is done,
the major ideas are

ITCS 2021
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1. Suppose m has public score 1, and define

p = E
w∼W

[P [w accepts a proposal from m]] .

Note that, ifm were able to propose to a woman independently multiple times, the number
of proposals until m gets his first acceptance would be distributed exactly according to
Geo(p), and the expected value would be 1/p. We show that (because men make much
less than n proposals) the difference due to re-proposals is not large.

2. Because m is the last man to propose, most women have already seen many proposals
and arrived at a decent match. When m gets his first acceptance, he should thus be likely
to stay where he is. We show that, while the probability of m proposing to more women
is non-negligible, it still contributes only O(1) in expectation. So m’s expected rank is
1/p up to lower-order terms.

3. Another consequence of a woman w receiving a large number of proposals is the following:

P [w accepts a proposal from m′ with weight β]
≈ β · P [w accepts a proposal from m with weight 1] .

simply by 2.3 and the fact that β/(β + Γw) ≈ β · 1/(1 + Γw) for Γw (the sum of public
scores of men who proposed to w) large. Thus, if m had public score β, the effective value
of p would be approximately βp, and the expected rank of m would become approximately
1/(βp). In other words, while we are not able to calculate p directly, we show that p
scales properly with m’s score.

4. Finally, we prove that the above holds for most sequences of proposals of men before m,
and thus holds in expectation over the entire execution of DA. Note that the distribution
of proposals before m changes slightly depending on which tier m is chosen from, but in
a large market, we do not expect this to make a big difference.

The biggest difference between the above proof sketch and its implementation is that we
focus on two men proposing at the end of DA. This serves to address point 4 above – we
are able to show that, for the vast majority of sequences of proposals before the last two
men, their expected ranks are proportional to the ratio of their scores. Thus, this ratio holds
in expectation over all of DA. Focusing on two men also allows us to bound the correlation
between the two men’s ranks, which is crucial for our concentration results.

In our proof, we also formalize what it means for all men other than two to propose,
with the notion of a “partial matching state”. Moreover, we give the term smooth to those
states in which the proof sketch above goes through. Most crucially, in smooth matching
states, “most women have received a lot of proposals”, so that the reasoning in points 2
and 3 are valid. Additionally, to address certain technicalities (such as being able to bound
the magnitude of the expected number of proposals) we define smooth matching states to
not have too many proposals in total.

4.1 Smooth matching states
I Definition 4.1. Given a set of men L, we define the partial matching state excluding L,
denoted µ−L, as follows: Run DA with men in M \ L proposing to W , and keep track of
which proposals were made. More specifically, if µ is the (partial) matching resulting from
running DA with a set of men M \ L and set of women W , and P = {(mi`

, wj`
)}` is the set

of all tuples (mi, wj) where mi proposed to wj during this process, then µ−L = (µ, P ).
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In a random matching market, we consider this state as a random variable. In a tiered
random matching market, to specify this random variable, it suffices to give a multiset of
tiers which the men in L belong to. For a fixed µ−L, denote by Γw the total sum of weights
which woman w received in P .

Note that the state µ−L keeps track of which proposals have been made (in addition to
which current matches are formed) before the men in L propose.

I Definition 4.2. We call a partial matching state µ−L smooth if the following hold for
some constants C1, C2, C3 > 0:
1. At most C1n lnn proposals were made to women overall.
2. At most n1−C2 women have received fewer than C3 lnn proposals.

The constants C1, C2, C3 in the above depend on the tier structure, and can simply
be chosen such that the following proposition holds. Our arguments will go through if
smoothness holds with respect to any C1, C2, C3 which are held constant as n→∞.

I Proposition 4.3. Let L = {m1,m2} be any pair of men. After running deferred acceptance,
µ−L is smooth with probability 1− n−Ω(1).

Once we know that µ−L is smooth, our two main tasks are to show that men’s ranks scale
inverse-proportionally to their score, and that the ranks of different men do not correlate too
highly. These are the main technical novelties of the paper. The exact details are given in
the full version.

I Proposition 4.4. Suppose µ−L is smooth, and let r1 and r2 be the ranks of m1 and m2
after running DA with m1 and m2 starting from µ−L. We have

EL[r1] =
(
1±O(1/ lnn)

)β2

β1
EL[r2].

where we use EL [] to denote taking an expectation over the random process of m1,m2
proposing in DA after starting from state µ−L.

I Proposition 4.5. Suppose µ−L is smooth, and let r1 and r2 be the ranks of m1 and m2 after
running DA with m1 and m2 starting from µ−L. Then we have Cov(ri, rj) = O(ln3/2 n).

4.2 Expected rank of the men
In this subsection, we show that overall, expected rank scales proportionally to fitness (in
addition to under smooth matching states). This allows us to compute the expected rank of
the men. The proofs (deferred to the full version) follow by carefully keeping track of the
(limited) effect of non-smooth matching states on the expectation.

I Proposition 4.6. Let ri and rj denote the rank of a man in tiers i and j. Then we have

E [ri] =
(
1±O(1/ lnn)

)βj

βi
E [rj ] .

I Theorem 4.7. Let β−1 denote the vector (1/βi)i. For each tier j, the rank rj of men in
tier j has expectation

E [rj ] =
(
1±O(1/ lnn)

) E [S]
(nδ · β)βj

=
(
1±O(1/ lnn)

)ε ·α
αmin

· 1
(δ · β−1) ·

lnn
βj

.
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Finally, we also use our results on the covariance of men’s ranks to prove concentration.
We defer the proof to the full version. At a high level, the proof follows simply because
the weak correlation implied by 4.5 means that the variance of the average of the ranks is
lower-order (compared to its expectation), so Chebyshev’s inequality can be used.

I Theorem 4.8. For any tier j, let RM

j = (δjn)−1∑
m rm denote the average rank of men

in tier j. Then, for any ε > 0,

R
M

j = (1± ε)ε ·α
αmin

· 1
(δ · β−1) ·

lnn
βj

with probability approaching 1 as n→∞.

5 Expected rank of the women and the distribution of match types

5.1 Expected rank of women
We saw in Section 4.2 that men achieve ranks proportional to the inverse of their public
scores. In this section, we turn to the women.

To study the rank the women achieve, we need to reason about the number of proposals
women receive on average. By theorem 4.8, we expect that for each tier j of men, the δjn

men make a total number of proposals approximately

δjβ
−1
j

δ · β−1 ·
α · ε
αmin

n lnn.

Each of these proposals goes to a woman in tier i with probability πi = αi/(nε ·α), so we
expect such a woman to receive approximately (δjβ

−1
j )/(δ · β−1) · (αi/αmin) lnn proposals

from men in tier j. Each of these men has public score βj , so we expect Γw, the total sum of
public scores of men proposing to w, to be roughly

Γw ≈
∑

j

βj

δjβ
−1
j

δ · β−1 ·
αi

αmin
lnn = αi lnn

αmin(δ · β−1) .

It is not immediately clear how the above value of Γw should translate to the rank that
w gets. Unlike in the case where men are uniform, we cannot simply divide n by the number
of proposals which w receives.

Indeed, suppose a woman w receives exactly the total sum of weight Γw predicted above.
What should her rank be? This is essentially the following: across all tiers of δjn men each,
how many do we expect to beat her best proposal so far? The probability that w ranks a
man m higher than her match, when viewed according to 2.3, is a function only of the weight
β(m) of m and the weight of proposals Γw which w received. Specifically, this probability is
β(m)/(β(m) + Γw) ≈ βj/Γw. Summing this across all the men, we get

E [rw] ≈
∑
m

β(m)
β(m) + Γw

≈ nδ · β
Γw

≈ (δ · β)(δ · β−1)αmin

αi
· n

lnn.

Note that this ignores the fact that a woman will never rank m higher than her match if
that m already proposed to her during DA. But since w only likely receives lnn� n/ lnn
proposals, the difference is not noticeable.

It turns out that, with a detailed probabilistic analysis, the above proof sketch goes
through. The details are given in the full version of this paper online.
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I Theorem 5.1. Let RW

i = (εin)−1∑
w∈Ti

rw denote the average rank of women in tier i.
For all ε > 0, we have

R
W

i = (1± ε)(δ · β)(δ · β−1)αmin

αi

n

lnn

with probability approaching 1 as n→∞.

5.2 The distribution of match types
Fix a woman w in tier i. We now study the probability that w is matched to a man from some
tier j. In the previous section, we argued that with high probability w receives approximately
a total of

δjβ
−1
j

δ · β−1 ·
α · ε
αmin

n lnn

proposals from men in tier j. Thus, the contribution to Γw (the total weight of proposals w
received) from men in tier j is

Γj→w ≈
δj

δ · β−1 ·
α · ε
αmin

n lnn ≈ δjΓw.

Moreover, it turns out that, with high probability, the above holds up to (1 ± ε) for all
tiers j simultaneously. Regardless of the order in which w saw proposals, the probability
that w’s favorite proposal came from a man in tier j is Γj→w/Γw. Thus, this probability is
approximately δj . See the full version for a formal implement of the proof.

I Theorem 5.2. Consider an arbitrary tier i of women and j of men. For all ε > 0, there is
an n large enough such that the probability that a woman in tier i matches to a man in tier j
is (1± ε)δj.

6 Summary

The model and findings in this paper contribute to the understanding of random stable
matching markets. Indeed, the results quantify the effect of competition that arises from
heterogeneous quality in agents, specifically, when the agents fall into different constant-factor
tiers of quality. Novel technical tools are developed in order to reason about the proposal
dynamics of deferred acceptance.

Relaxing some of the modeling assumptions raises interesting questions that cannot be
trivially answered. This includes having non-constant (size, or public score) tiers, personalized
private scores which give agents different distributions of preferences, and imbalance in the
number of agents on each side of the market. Moreover, it is natural to ask when one should
expect the matching to be sorted, i.e., higher tiers will be more likely to match with higher
tiers (e.g., [12] demonstrates the presence of sorting in dating markets).
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Abstract
Black-box separations have been successfully used to identify the limits of a powerful set of tools
in cryptography, namely those of black-box reductions. They allow proving that a large set of
techniques are not capable of basing one primitive P on another Q. Such separations, however, do
not say anything about the power of the combination of primitives Q1, Q2 for constructing P, even
if P cannot be based on Q1 or Q2 alone.

By introducing and formalizing the notion of black-box uselessness, we develop a framework that
allows us to make such conclusions. At an informal level, we call primitive Q black-box useless
(BBU) for P if Q cannot help constructing P in a black-box way, even in the presence of another
primitive Z. This is formalized by saying that Q is BBU for P if for any auxiliary primitive Z,
whenever there exists a black-box construction of P from (Q, Z), then there must already also exist
a black-box construction of P from Z alone. We also formalize various other notions of black-box
uselessness, and consider in particular the setting of efficient black-box constructions when the
number of queries to Q is below a threshold.

Impagliazzo and Rudich (STOC’89) initiated the study of black-box separations by separating
key agreement from one-way functions. We prove a number of initial results in this direction, which
indicate that one-way functions are perhaps also black-box useless for key agreement. In particular,
we show that OWFs are black-box useless in any construction of key agreement in either of the
following settings: (1) the key agreement has perfect correctness and one of the parties calls the
OWF a constant number of times; (2) the key agreement consists of a single round of interaction (as
in Merkle-type protocols). We conjecture that OWFs are indeed black-box useless for general key
agreement.

We also show that certain techniques for proving black-box separations can be lifted to the
uselessness regime. In particular, we show that the lower bounds of Canetti, Kalai, and Paneth
(TCC’15) as well as Garg, Mahmoody, and Mohammed (Crypto’17 & TCC’17) for assumptions
behind indistinguishability obfuscation (IO) can be extended to derive black-box uselessness of a
variety of primitives for obtaining (approximately correct) IO. These results follow the so-called
“compiling out” technique, which we prove to imply black-box uselessness.

Eventually, we study the complementary landscape of black-box uselessness, namely black-box
helpfulness. We put forth the conjecture that one-way functions are black-box helpful for building
collision-resistant hash functions. We define two natural relaxations of this conjecture, and prove
that both of these conjectures are implied by a natural conjecture regarding random permutations
equipped with a collision finder oracle, as defined by Simon (Eurocrypt’98). This conjecture may
also be of interest in other contexts, such as amplification of hardness.
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1 Introduction

1.1 Background
Black-box reductions are a central tool in Cryptography. They have helped shape a rich
landscape of relations between different cryptographic notions, allowing us to develop a
better understanding of their powers and limitations.

Roughly speaking, in a (fully) black-box reduction both the design and analysis of a
protocol treat the underlying primitives and adversaries in a black-box way, obliviously of
their internals. More precisely, we say there is a fully black-box construction of a primitive
P from a primitive Q if there is an efficient construction PQ that for every implementation
Q of primitive Q implements primitive P , and further, there is an efficient security reduction
SQ,A which for every adversary AP that breaks P, breaks Q. This notion originates in the
seminal work of Impagliazzo and Rudich [20], and it was later refined by Reingold, Trevisan,
and Vadhan [26] as well as Baecher, Brzuska, and Fischlin [3] who proposed a taxonomy of
notions of reducibility between cryptographic primitives.

Impagliazzo and Rudich showed how to attack any key-agreement (KA) protocol in the
random-oracle (RO) model with only a polynomial number queries to the random oracle.1
This result is sufficient to rule out fully black-box reductions, since, roughly speaking, the
construction is assumed to work for any OWF oracle f , and in particular for a RO and
moreover, the security reduction works for any adversary A, and in particular for those that
do not necessarily run in polynomial time but makes a polynomial number of queries to f .

Following this work, a successful and long line of research studying separations between
different cryptographic primitives followed (e.g., see [2, 4, 9, 13, 16, 17, 28] and references
therein). In this work we will revisit these works and ask if and to what extent their results
hold in the presence of other primitives.

1.2 Black-Box Uselessness
Cryptographic constructions typically rely on multiple, incomparable building blocks. This
raises the question if, and to what extent, a black-box separation result proves that some
primitive is useless for building another even with other primitives. Take, for example, the
case of key-agreement (KA) and one-way functions (OWFs). Although OWFs on their own
are insufficient to build KA, this leaves the possibility that together with some other primitive
Z they do imply KA in a black-box way, even if Z also does not black-box imply KA.2 More
generally, suppose we have separated primitive P from primitives Q1 and Q2 with respect
to black-box reductions. That is, neither Q1 nor Q2 can be used to build P. Does it then
necessarily follow that P is also black-box separated from Q1 and Q2 put together? More
generally, one may ask:

Which black-box impossibility results compose?

1 More precisely, their attack made O((qm)3) RO queries, where q is the number of queries of the protocol
to the RO and m is the number of messages exchanged.

2 Note that constructions of PKE from OWFs plus indistinguishability obfuscation are non-black-box [27].
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In general, not all black-box impossibility results compose. Indeed, consider a primitive
P that is set to be the “union” of primitives Q1 and Q2, where Q1 and Q2 are mutually
separated (i.e., neither can be based on the other). Then although P cannot be based on Q1
or Q2, it can be trivially based on their union.3 This situation is somewhat unsatisfying:
due to a joint effort of the cryptographic community in the past three decades, we have
at our disposal a large number of black-box separations between pairs of primitives, yet
we know essentially nothing about whether this situation changes if we are willing to use
several primitives in a black-box construction – and of course, black-box separating subsets
of primitives from a target primitive would be tedious. This leaves out the possibility that
such separations could be obtained more systematically.

In this work, we seek to devise a more efficient strategy, by identifying conditions under
which a primitive P is black-box separated from primitive Q in a composable way. That is,
primitive Q in conjunction with any other primitive Z cannot be used to build P, unless of
course P can be built using Z alone. Our starting point is the following notion of black-box
uselessness:4

I Definition 1 (Black-box uselessness, informal). A primitive Q is black-box useless (BBU)
for primitive P if for any auxiliary primitive Z, whenever there is a black-box construction
of P from (Q,Z) there also exist a black-box construction of P from the auxiliary primitive
Z alone.

A composition theorem for black-box uselessness immediately follows: if Q1 is BBU for P
and Q2 is BBU for P then Q1 and Q2 put together are BBU for P. Indeed, for any Z, if
(Q1,Q2,Z) = (Q1, (Q2,Z)) black-box implies P, then (Q2,Z) must black-box imply P (by
the black-box uselessness of Q1). This in turn implies, by the black-box uselessness of Q2,
that Z alone black-box imply P.
I Remark 2. A black-box uselessness result of Q for P implies in particular that Q does
not black-box imply P, as long as P is not a (trivial) primitive that exists unconditionally.
Indeed, by the black-box uselessness of Q, if Q black-box implies P, then taking Z as the
“empty primitive” we get that P exists unconditionally in the plain model. For instance,
although one-way functions are black-box useless for the one-time pad (since the latter exists
unconditionally in the presence of any auxiliary oracle), one-way functions black-box imply
the one-time pad (for essentially the same reason).

1.3 One-Way Functions and Key Agreement
Perhaps one of the most fundamental questions regarding black-box uselessness is to un-
derstand whether or not one-way functions are black-box useless for key agreement. We
start with an observation on a natural approach for building key-agreement from one-way
functions together with other primitives.

3 This formal counterexample can be converted into more “natural” ones. Take identity-based encryption
(IBE) with compact user keys, whose lengths are independent of the length of user identities. One can
use a standard IBE and a collision-resistance hash function (CRHF) to build a compact IBE (by simply
hashing the identities). Yet, compact IBE cannot be based on CRHFs in a black-box way (since PKE
cannot be based on ROs). Furthermore, compact IBE cannot be based on standard IBE, since compact
IBE implies CRHF (the keys must be collision-free for otherwise the compact IBE can be broken by
finding a collision among keys) and standard IBE does not imply CRHFs [21].

4 The terminology “a primitive X is useless for black-box constructions of a primitive Y ” has been used
sometimes in the literature, e.g. in [25], to mean that Y does not black-box reduce to X. Our notion of
black-box uselessness should not be confused with this terminology, which only refers to conventional
black-box separations.
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I Remark 3. When looking for candidate primitives that, combined with one-way functions,
imply key-agreement, the notion of indistinguishability obfuscation (iO, [27]) might be the first
that comes to mind to a reader familiar with the literature on cryptography. As we mentioned,
however, the construction of PKE from iO+OWFs in [27] is not black-box. Furthermore,
one can observe that this is actually unavoidable: the seminal work of Impagliazzo and
Rudich [20], which showed that there is no black-box construction of key agreement from
one-way function, actually already shows that there is no black-box construction of key
agreement from one-way functions together with iO. This is because the result of [20] shows
that, relative to a random oracle and a PSPACE oracle, there is no key-agreement, yet there
are one-way functions. However, relative to these oracles, there is also a perfectly-seure
deterministic iO scheme: on input a circuit of a given size, the obfuscation scheme uses
the PSPACE oracle to efficiently compute the lexicographically-first functionally equivalent
circuit of the same size. This simple observation implies in particular that there is no
black-box construction of key-agreement from iO and OWFs.

In this work, we provide a partial answer to the question of whether or not one-way
functions are black-box useless for key agreement, by showing that one-way functions are
black-box useless in any construction of key agreement satisfying certain restrictions. To
describe our result, it is instructive to start with the separation of perfectly correct KA from
OWFs by Brakerski, Katz, Segev, and Yerukhimovich [9].

BKSY11 in a nutshell

Given a perfectly correct, two-party KA protocol in the RO model, where Alice and Bob
place at most q queries to the RO, consider an attacker Eve that proceeds as follows. Given
a transcript T of the protocol, Eve samples coins r′A and a random oracle RO′ for Alice that
are consistent with T . Eve then runs Alice on r′A and RO′ and records all oracle queries and
the resulting key. It then places all these queries to the real RO to obtain an assignment
(a list of query-answer pairs) L. Eve repeats this process, appending to L and storing keys,
while ensuring that the sampling of RO′ is consistent with L computed so far. Now, if in a
sampled run of Alice, there are no queries of Alice in common with those of Bob outside L,
by perfect correctness, the correct key will be computed. Otherwise, a query of Bob will be
discovered. Since Bob has at most q queries, if Eve executes this procedure 2q + 1 times, in
at least q of the runs no intersection queries will be discovered, and in these runs the correct
key will be computed. Thus taking a majority over the set of keys computed, Eve obtains
the key with probability one.

Upgrading to BBU

In order to convert this proof into a black-box uselessness result, we make a case distinction
based on whether or not one can “lift” the sampling procedure to a Z-relativized world for
any oracle Z. Given a construction KAF,Z of KA from a OWF F and Z, if the sampling
procedure can be successfully carried out in the presence of Z, then we could efficiently break
any perfectly correct KA protocol in the presence of Z only (since the attacker computes the
correct key with probability one).

Now suppose at some iteration Eve is no longer able to find coins and a random oracle
consistent with the transcript while making polynomially many queries to Z. We claim
that in this case we can construct a weak one-way function. Indeed, consider the function
that runs the above attack procedure up to but excluding the stage where Eve fails. Thus,
this function starts by running the protocol, then uses the sampler for the first iteration (if
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sampling was not already impossible at this stage) to obtain an assignment, and continues
with another round of sampling, until it arrives at the stage where sampling is no longer
possible. The transcript of the protocol at this stage together with the list of assignments so
far constitutes the challenge for which there is no inverter. From a weak one-way function, a
full-fledged one-way function follows by the result of [29], as this construction is black-box
and hence relativizes with respect to Z.

We may now use the one-way function obtained from Z in place of the original one-way
function F to remove reliance on the F all together. Thus, we obtain a KA protocol which
relies only on Z, as required. We emphasize that this proof only shows the uselessness of
OWFs for (perfect) KA and not that of random oracles, since we only obtain a one-way
function using Z.

Note that since we recursively rely on the existence of an inverter, the query complexity
(to Z) of the samplers can potentially blow up. Indeed, suppose for some Z, any sampler
needs to place O(n2) queries to Z to invert a function that places n queries to Z. After the
first iteration, we arrive at the construction of a function that places n + O(n2) = O(n2)
queries to Z. Thus, it may well be that a successful inverter at this step needs to place O(n4)
queries to Z. This in particular implies that the recursive argument above can be applied
for only a constant number of steps. Since we only need to apply the recursive sampling for
either Alice or Bob, we obtain a BBU result as long as either Alice or Bob makes a constant
number of queries to the RO (but polynomially many calls to Z). We formalize this proof in
Section 4, where we point out the other subtleties that arise.

Currently, we are not able to extend the proof to arbitrary protocols where both Alice
and Bob make a polynomial number of RO queries. Despite this, we can show that OWFs are
black-box useless for building constant-round, imperfect key agreements when both parties
make a constant number of queries to the OWF (and an arbitrary number of queries to
the auxiliary oracle), and that OWFs are black-box useless for one-round key agreement
(without restriction on the queries made by the parties). We defer the details to Section 4.2.

1.4 The Compilation Technique

A number of black-box separation results rely on what we here refer to as the efficient
compiling-out (or simply compilation) paradigm [1,7, 10,12,13,15,16]. At a high-level, here
given a construction GP

1 one compiles out the primitive P via an (oracle-free) simulator Sim
which simulates P for the construction in a consistent way and without affecting security. The
result is a new construction G2 that no longer uses P. This proof technique is closely related
to black-box uselessness, and as we will see can often be turned into a black-box uselessness
result with minor modifications. This in turn highlights the advantage of separation results
that are achieved using this technique.

In order to show how this can be done, we briefly discuss this in the context of the work
of Canetti, Kalai, Paneth [10], who showed that obfuscation cannot be based on random
oracles.5

5 The work of [10] dealt with virtual-black-box obfuscation, but as it turned out [8, 22, 23], their proof
could also be applied to the case of indistinguishability obfuscation.
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CKP and black-box uselessness of random oracles for indistinguishability obfuscation

Consider an obfuscator ObfRO that makes use of a random oracle RO. On input a circuit
without random oracle gates6 the obfuscation algorithm outputs a circuit CRO, which may
also call the random oracle RO. CKP compile out the random oracle RO from any such
construction as follows. First they convert ObfRO to an obfuscator in the plain model by
simulating the RO for the obfuscator via lazy sampling. Next to ensure that the oracle
expected by an obfuscated circuit CRO is consistent with the oracle simulated for obfuscation,
CKP execute C on multiple randomly chosen inputs at obfuscation phase while simulating
the random oracle consistently, record all query made and answers simulated, and return
them together with the obfuscated oracle circuit. Leaking this list cannot hurt security as an
adversary in the RO model can also compute such a list given an obfuscated circuit. On the
other hand, having this list allows the evaluation of CRO to be consistent with the obfuscation
phase with high probability on a random input. (This is why the obtained primitive is only
an approximate-correct IO.)

As can be seen, this proof Z-relativizes in the sense that the simulation of the random
oracle RO and the execution of the obfuscated circuit can be both done in the presence
of any other oracle Z. By compiling out the random oracle RO in the presence of Z, we
obtain a construction that relies on Z. That is, we obtain that random oracles are black-box
uselessness for obfuscation.

A number of other impossibility results follow the compilation paradigm and here we
observe that they can be lifted to the black-box uselessness regime. In particular, we go
over such observations about results from [10,13,15, 16] and show how they can be lifted to
black-box uselessness. Indeed, as long as compilation is performed for a constant “number of
rounds” and each step can be done efficiently we obtain black-box uselessness.7 As a result
we get that approximate IO cannot be obtained from a black-box combination of random
oracles, predicate encryption, fully homomorphic encryption and witness encryption.8

I Remark 4. We note that some previous works (e.g., [10]) have described the result of
Impagliazzo and Rudich as “compiling out” the random oracle from any key-agreement
protocol. This process, however, differs from the compiling-out technique that we study in
this paper in two aspects. First, compilation is inefficient and uses the sampling algorithm.
Second, the process is carried out adaptively for multiple rounds. The inefficiency of the
sampler translates to obtaining BBU for one-way functions only; adaptivity restricts our
final result to protocols where one party makes at most a constant number of RO queries.
On a similar note, the recent work of Maji and Wang [25] uses the term “black-box useless”
as an alternative to proving (traditional) black-box separations. So, despite similarity in the
terms, our notion of uselessness is quite different.

1.5 The Case of Collision Resistance
A classic result of Simon [28] separates collision-resistance hash functions (CRHFs) from
one-way functions (and indeed one-way permutations). This is done by giving a pair of
oracles (π,Collπ) relative to which one-way permutations (and hence one-way functions) exist,

6 This restriction only makes the results of CKP stronger.
7 Lemma 3.25 in [14] shows a similar phenomenon in a context where we completely compile out a

sequence of idealized oracles. Here we deal with a setting that an auxiliary oracle remains at the end.
8 We note that this does not apply in the so-called monolithic model.
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but CRHFs don’t. Here π implements a random permutation, and Collπ is an oracle that
takes as input a circuit with π-gates and returns a random collision for it (by first computing
the circuit on a random point and then picking a random preimage).

Are one-way functions/permutations also black-box useless for collision resistance? One
way to answer this question affirmatively would be to extend Simon’s result along the lines
of what was done for the separation results above. However, in this case we have an oracle
separation result, and it is not clear how to “relativize” the proof. Indeed, we conjecture the
opposite: OWFs are black-box helpful for building CRHFs. To this end, we would need to
show that for any one-way function F there is a primitive Z, which although on its own is
insufficient for building CRHFs, together with F can be used to build CRHFs. We present
two possible approaches for proving this conjecture.

One approach follows the recent result of Holmgren and Lombardi [18], who showed
how to obtain CRHFs from exponentially secure one-way product functions (OWPFs) in
a black-box way. Roughly speaking, a OWP is a tuple of one-way functions (F1, . . . ,Fk)
where any polynomial-time adversary can invert (F1(x1), . . . ,Fk(xk)) for random xi with
probability at most negl(n)/2n (where n is the security parameter). A good candidate for
primitive Z is thus a random permutation π together with Simon’s oracle Collπ for it. To get
a positive helpfulness result we need to show that for any one-way function F the pair of
functions (F, (π,Collπ)) is product one-way. We intuitively expect this result to hold since π is
fully independent of F and essentially all an adversary can do is to invert the F and (π,Collπ)
independently. Formalizing this observation requires handling additional technicalities; we
refer the reader to the full version for details. We did not manage to prove this conjecture,
and leave it as an interesting open problem which might be of independent interest.9

A second approach follows the work of Bauer, Farshim, Mazaheri [5], who defined a new
idealized model of computation, known as the backdoored random oracle (BRO) model,
whereby an adversary can obtain arbitrary leakage of the function table of the RO. Under a
communication complexity conjecture related to the set-intersection problem, BFM show
that two independent BROs can be used to build a CRHF by simply xoring their outputs.
The leakage oracle defined by BFM is sufficiently powerful to allow implementing Simon’s
collision-finding oracle. As a result, although a single BRO as an idealized primitive is
black-box separated from CRHFs, conjecturally it is not black-box useless for building
CRHFs.

Open problems

The central open problem left by our work is that of black-box uselessness of OWFs for
arbitrary key agreement protocols. Given our BBU results for special classes of KA protocols,
this conjecture may well be within reach. On the other hand, a straightforward generalization
seems to require a refined sampler technique with low adaptivity. At the moment, however, it
seems challenging to reduce the adaptivities of known samplers [4, 9, 20,24]. Besides OWFs,
whether or not CRHFs, or for that matter random oracles, are black-box useless for key
agreement remains open. More generally, black-box separation results can be revisited from
the point of view of uselessness. In particular, it would be interesting to consider extensions
of the recent monolithic models to the BBU setting, as these capture certain well-known
non-black-box techniques in cryptography.

9 It might be helpful to consider weaker versions of this problem. For example, given an ε-secure one-way
permutation and a random oracle, can an attacker invert both simultaneously with probability better
than negl(n)/2n?
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2 Preliminaries

Notation

PPT stands for probabilistic polynomial time. An oracle-aided PPT machine/circuit AO is a
PPT machine/circuit with oracle access/gates, such that for any oracle O machine/circuit AO

runs in probabilistic polynomial time, where we count each call to the oracle as one step. For
any n ∈ N, we let [n] denote the set {1, . . . , n}. Given an interactive protocol between two
parties Alice and Bob with access to an oracle O, we let 〈AliceO,BobO〉 denote the distribution
of triples (T, yA, yB) over the randomness of the parties and the oracle, where T denotes the
transcript of the protocol, and yA (resp., yB) denotes the output of Alice (resp., Bob). We
also use the same notation when O comes from a distribution over the oracles, in which case
the probability distribution of the outputs are also over the randomness of the oracle.

2.1 Black-Box Reductions
The definitions and notions in this section mostly follow those in [26]. Throughout, we use
calligraphic letters such as P or KA for a cryptographic primitive, sans-serif letters (for
example P or KA) for specific implementations, S for the security reduction/proof and P for
a “generic” implementation. We denote an auxiliary oracle by Z and an adversary by A.

I Definition 5 (Cryptographic primitive). A cryptographic primitive P is a pair (FP , RP),
where FP is the set of functions implementing P, and RP is a relation. For each P ∈ FP ,
the relation (P,A) ∈ RP means that the adversary A breaks the implementation P (according
to P). It is required that at least one function P ∈ P is computable by a PPT algorithm.

I Definition 6 (Fully black-box reduction). A fully black-box reduction of a primitive P
to another primitive Q is a pair (P,S) of oracle-aided PPT machine such that for any
implementation Q ∈ Q the following two conditions hold.

Implementation reduction: PQ implements P, that is, PQ ∈ FP .
Security reduction: For any function (adversary) A that P-breaks PQ ∈ FP , i.e.,
(PQ,A) ∈ RP), it holds that SQ,A Q-breaks Q, i.e., (Q,SQ,A) ∈ RQ.

When clear from context, we will refer to fully black-box reductions simply as black-box
reductions, to the implementation reduction as the construction, and to the security reduction
as the security proof.

I Definition 7 (Semi and weakly black-box reductions). We say there is a semi-black-box
reduction of a primitive P to primitive Q if there is an oracle-aided PPT P such that for
any implementation Q ∈ Q,

Implementation reduction: PQ ∈ FP .
Security reduction: If there exists an oracle-aided PPT A such that AQ P-breaks PQ,
then there exists an oracle-aided PPT S such that SQ Q-breaks Q.

If the order of the quantifiers for the implementation reduction is switched in the sense that
for any implementation Q ∈ Q there is an oracle-aided PPT P such that the above two
conditions hold, then we say there is a ∀∃-semi-black-box reduction of P to Q.

Weakly black-box reductions and a ∀∃ variant thereof are defined analogously with the
difference that the security reduction S is a PPT (instead of an oracle-aided PPT) machine
and can no longer call Q.

I Definition 8 (Existence relative to an oracle). A primitive P is said to exist relative to
an oracle O whenever (1) there is an oracle-aided PPT P such that PO ∈ FP ; and (2) no
oracle-aided PPT machine AO can P-break PO.
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Non-uniform variants of security reductions were formalized in [11]. The following
definition extends this to non-uniform implementation reductions.

I Definition 9. A fully black-box reduction (P, S) of a primitive P from primitive Q is said
to have a non-uniform implementation if P additionally takes as input a polynomial-sized
non-uniform advice that can also depend on its oracle Q. The reduction is said to have a non-
uniform security reduction if S additionally takes as input a polynomial-sized non-uniform
advice that can also depend on its oracles Q and A.

2.2 Specific Cryptographic Primitives
I Definition 10 (One-way functions). A one-way function F relative to an oracle O is an
oracle-aided PPT machine such that for any PPT adversary A (modeled as an oracle-aided
PPT machine) and any sufficiently large values of the security parameter λ, it holds that

Pr
x

$←{0,1}n

[FO(AO(1λ,FO(x))) = FO(x)] = negl(λ) .

If the above is only required to hold for infinitely many values of λ ∈ N, then F is an
infinitely-often one-way function (io-F).

I Definition 11 (Key agreement). An oracle-aided ε-key agreement with respect to an oracle
O is an interactive protocol between two oracle-aided PPT machines Alice and Bob that
satisfies the following ε-correctness and security properties.

(ε-correctness) For any λ ∈ N,

Pr[(T,KA,KB) $← 〈AliceO(1λ),BobO(1λ)〉 : KA = KB ] ≥ ε(λ) .

(Security) For any PPT adversary Eve, any polynomial p, and any sufficiently large λ,

Pr[(T,KA,KB) $← 〈AliceO(1λ),BobO(1λ)〉,KE
$← EveO(1λ, T ) : KE = KB ] ≤ ε(λ)

p(λ) .

If security is only required to hold for infinitely many values of λ ∈ N in the sense that
for every polynomial p and all adversaries, there exists an infinite set of λ for which the
adversary’s winning probability is below ε(λ)/p(λ), then the construction is called an infinitely-
often key agreement. If the number of queries to O is bounded by a constant for either Alice
or Bob, then we say that the key agreement is unbalanced with respect to O. We say that the
key agreement is a perfectly correct when ε(λ) ≡ 1.

3 Defining Black-Box Uselessness

To formally define black-box uselessness, we first formalize joint primitives, to simplify
statements about black-box constructions from several primitives:

I Definition 12 (Joint primitive). Given two primitives P = (FP , RP) and Q = (FQ, RQ)
the joint primitive (P,Q) = (F(P,Q), R(P,Q)) is defined by F(P,Q) := FP × FQ and for each
G = (P,Q) ∈ F(P,Q) and any A = (AP ,AQ), we define (G,A) ∈ R(P,Q) iff (P,AP) ∈ RP or
(Q,AQ) ∈ RQ.

We are now ready to formally define what it means for a cryptographic primitive Q to be
black-box useless for a primitive P.
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3.1 Definition
The following definition is more general than complete black-box uselessness of a primitive P
for obtaining another primitive Q. In particular, the definition states a set of primitives Z
such that P is useless for obtaining Q in the presence of any of the primitives R ∈ Z.

I Definition 13 (Black-box uselessness). Suppose Z is a set of primitives. A cryptographic
primitive Q is resp., fully, semi, ∀∃-semi black-box useless for constructing a primitive P in
the presence of auxiliary primitives Z, if the following holds: For every auxiliary primitive
Z ∈ Z whenever there exists a resp., fully, semi, ∀∃-semi black-box reduction of P to the
joint primitive (Q,Z) there also exists a resp., fully, semi, ∀∃-semi black-box reduction of P
to Z alone. In the special case where Z contains all primitives, then we simply say that Q is
resp., fully, semi, ∀∃-semi black-box useless for constructing a primitive P.

I Remark 14 (Other special cases of Definition 13). Here we point out to two other important
special cases of Definition 13 that could be obtained Z differently. If Z = ∅, then black-box
uselessness is the same as a traditional black-box separation showing that Q cannot be black-
box reduced to P. In addition, when Z contains a specific primitive Z, then Definition 13
captures the notion that P is useless for building Q when we already assume the existence of
Z as a black-box.

I Remark 15 (Other variants of Definition 13). By default we consider the three main cases
where the source construction and the target construction in Definition 13 both use the
same flavor of black-box reduction, and accordingly use the terms fully, semi, or ∀∃-semi to
describe the corresponding notion of black-box uselessness. However, we can (and will) also
consider more general notions of black-box uselessness whereby the source construction and
the target construction use different notions of black-box reduction. For example, we will
write that Q is [semi → ∀∃-semi] black-box useless for P if for every auxiliary primitive Z,
whenever there exists a semi-black-box reduction of P to the joint primitive (Q,Z) there is
a ∀∃-semi-black-box reduction of P to Z alone.

3.2 Composition
Given the definition of black-box uselessness, the following composition theorem follows
easily. Here, we use the term black-box uselessness to refer to any fixed flavor of black-box
uselessness.

I Theorem 16. Let P, Q and R be three cryptographic primitives. If Q is black-box useless
for P and R is black-box useless for P (for the same flavor), then the joint primitive (Q,R)
is black-box useless for P (for the same flavor).

Proof. Let Z be an arbitrary auxiliary primitive. If there is a black-box reduction of P to
the joint primitive (Z, (Q,R)) = ((Z,Q),R), then by the black-box uselessness of R for P,
there is a black-box reduction of P to (Z,Q) (viewing (Z,Q) as an auxiliary primitive). In
turn, using the black-box uselessness of Q for P, we obtain a black-box construction of P
from Z alone. Hence, (Q,R) is black-box useless for P. J

We note that a similar composition theorem can be easily established even when Q and
R do not satisfy the same flavor of black-box uselessness for P, in the following sense: if
a primitive Q is [X → Y ] BBU for P and a primitive R is [X ′ → Y ′] BBU for P, where
X,Y,X ′, Y ′ are flavors of black-box reduction, then (Q,R) is [X ′ → Y ] BBU for P as long
as X a stronger flavor than Y ′ (e.g., X is “fully” and Y ′ is “semi”).
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3.3 Restricted Black-Box Uselessness
In many settings, it can be useful to consider a more general notion of black-box uselessness,
which restricts the type of primitive (e.g., only infinitely-often variants) or the type of
construction for which black-box uselessness is shown to hold. For readability, we will not
define cumbersome formal notations for such variants, but instead will simply state the
restriction explicitly when needed.

This generalization is especially useful to study the efficiency of black-box reductions.
Indeed, black-box separations in cryptography are not limited to only showing their nonex-
istence. A more concrete treatment would make statements of the form “in any black-box
construction of P from Q, any implementation of P must call an implementation of Q at
least q times,” or for interactive primitives states that “any black-box construction of P
from Q must have at least r rounds”. This approach to bounding the efficiency of generic
cryptographic construction was initiated in the seminal work of Gennaro, Gertnet, Katz, and
Trevisan [16] and has subsequently proven very fruitful.

4 On the Black-Box Uselessness of OWFs for Key Agreement

In this section, we prove black-box uselessness of OWFs for key agreement for several natural
special forms of key agreement protocols. We leave the proof of black-box uselessness of
OWFs for general key agreement protocols as an intriguing open question.

4.1 Theorem Statement for Perfectly Correct Key Agreement
In this section, we prove the following:

I Theorem 17 (Black-box uselessness of OWFs for perfect unbalanced KA). Infinitely-often
one-way functions are [semi → ∀∃-semi] black-box useless for infinitely-often perfect key
agreement in any construction which is unbalanced with respect to the io-OWF.

Before proving Theorem 17, let us breakdown its content. The “dream result” here would
be to show that one-way functions are black-box useless for any key agreement. Unfortunately,
we do not know how to prove this result. Theorem 17 provides a meaningful step in this
direction, but it suffers from three limitations:
1. It only applies to infinitely-often one-way functions (though it is incomparable in that

it shows black-box uselessness for infinitely-often key agreement, which is a weaker
primitive).

2. It only applies to constructions where one of the parties makes a constant number of
queries to the io-OWF oracle, which we call unbalanced key agreement. Note that the
key agreement can still make an arbitrary number of queries to the auxiliary primitive.

3. It only applies to perfectly correct key agreement.

The first limitation stems from the fact that our proof of Theorem 17 relies on a case
distinction based on the existence of one-way functions: if they exist, we get a construction
of key agreement, else we get an attack on the candidate construction. However, this attack
requires applying a one-way function inverter to several functions at once. But since a one-way
function inverter is only guaranteed to succeed on infinitely many security parameters, which
need not be equal across the different functions that we need to invert (and in fact could be
exponentially far apart), this approach fails. To get around this, we rely on an inverter for an
infinitely-often OWF, which gives an inverter which is guaranteed to work for all sufficiently
large security parameters and we can use to simultaneously invert several functions. This,
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however, comes at the cost of getting instead a black-box uselessness result for infinitely-often
OWFs (for infinitely-often key agreements). Such technicalities are relatively common in
cryptography and stem from the asymptotic nature of primitives.
I Remark 18. In general, statements of the form “A and B black-box imply C” and statements
of the form “io-A and io-B black-box imply io-C”, where io-X denotes an infinitely-often
flavor of a primitive X , can be incomparable for the trivial reason that io-A and io-B can
never be simultaneously secure on the same security parameters. However, this situation
does not arise in the setting of black-box uselessness, since the statement “io-A is BBU for
io-C” refers to the inexistence of black-box construction of io-C from io-A together with any
other primitive Z – and not only “infinitely-often” types of primitives. In general, it is easy
to show that the statement “A is BBU for C” is stronger than (i.e., implies) the statement
“io-A is BBU for io-C” for all notions of black-box uselessness.

The second limitation stems from the fact that the proof requires to iteratively define
efficient functions Fi, where each Fi builds upon an (efficient) OWF inverter applied to Fi−1.
The total number of functions can be picked to be the minimum of the number of queries
to the OWF made by either of the two parties. However, this argument crucially relies on
the fact that the number of functions Fi is a constant; to see this, imagine that we have at
our disposal a OWF inverter that would always makes a number of queries quadratic in the
number of queries made by the function in the forward direction. Such an inverter would be
efficient (i.e., it inverses any poly time function in poly time), yet one cannot obtain a poly
time function by iteratively defining a function Fi which invokes InvFi−1 unless i is constant,
since the complexity of Fi grows as runtime(F1)2i .

Eventually, our result in this section focuses on perfectly correct key agreement. We
discuss the case of imperfect key agreement in Section 4.2.

4.1.1 A Helpful Logical Lemma
Below, we state a simple lemma which allows for more direct proofs of [semi → ∀∃-semi]
black-box uselessness.

I Lemma 19. Let P and Q be two primitives. Then whenever the following statement is
established, it implies in particular that Q is [semi → ∀∃-semi] black-box useless for P:

“Fix any primitive Z and any Z ∈ FZ . Assume that there exists an oracle-aided PPT
P1 such that for any Q ∈ FQ, PQ,Z

1 ∈ FP . Further assume that whenever (Q,Z) is a secure
implementation of (Q,Z), then PQ,Z

1 is a secure implementation of P. Then there exists
an efficient implementation PZ

2 of P relative to Z, and furthermore, whenever Z is a secure
implementation of Z, PZ

2 is a secure implementation of P.”

We prove this lemma in the full version of the paper.

4.1.2 Proof of Theorem 17
Let io-F be the io-OWF primitive. To prove of Theorem 17, we will prove the following:

I Lemma 20. Fix any primitive Z and any Z ∈ FZ . Assume that there exists an oracle-
aided PPT KA1 such that for any implementation ioF of an infinitely-often one-way function,
KAioF,Z

1 implements an infinitely-often perfect key agreement unbalanced with respect to ioF,
relative to (ioF,Z). Assume furthermore that if (ioF,Z) is a secure implementation of (io-F ,Z),
then KAioF,Z

1 is a secure implementation of infinitely-often key agreement, unbalanced with
respect to ioF. Then there exists an efficient implementation KA2 of (infinitely-often) key
agreement relative to Z, and furthermore, if Z is a secure implementation of Z, then KAZ

2 is
a secure implementation of infinitely-often key agreement.
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The proof of Theorem 17 follows directly from the above lemma by applying Lemma 19.
To prove Lemma 20, we rely on the following lemma.

I Lemma 21. Let RO be a random oracle. For any auxiliary oracle Z, if there exists no
infinitely-often one-way function relative to Z, then there exists no construction KARO,Z of a
perfect infinitely-often key agreement which is unbalanced with respect to RO.

Given Lemma 21, the proof of Lemma 20 follows from a disjunction argument: fix any
auxiliary primitive Z and any Z ∈ FZ . Two complementary cases can occur:

Either there exists an efficient implementation of an infinitely-often one-way function ioFZ

relative to Z. By the assumption of Lemma 20, there exists an efficient implementation
KA1 of key agreement relative to (ioF′,Z) for any ioF′ ∈ Fio-F . Define the following
efficient construction KAZ

2 : KAZ
2 := KAioFZ,Z

1 . By our assumption, this is therefore an
efficient implementation of key agreement relative to Z, which is also secure if (ioF,Z) is
secure.
Or there exists no efficient implementation of an infinitely-often one-way function ioFZ

relative to Z. By Lemma 21, for a random oracle RO, there must therefore exist an efficient
attack on KARO,Z

1 . By Theorem 5.2 of [20], with measure 1 over the choice of the random
oracle RO, RO is a one-way function (and therefore in particular an io-OWF; note that
this theorem holds also in the presence of an arbitrary other oracle). Therefore, KA1 is not
a secure implementation of key agreement with respect to any (ioF′,Z) with ioF′ ∈ Fio-F ,
and by the assumptions of Lemma 21, (RO,Z) is not a secure implementation of (io-F ,Z).
Since RO is a secure implementation of io-OWF, this implies that Z is not a secure
implementation of Z. Therefore, we can define KA2 to be the trivial protocol in which
Alice samples the output key and sends it to Bob. This is an efficient implementation of
key agreement (it need not be secure since Z is not a secure implementation of Z).

4.1.3 Proof of Lemma 21
It remains to prove Lemma 21. Consider a candidate construction KARO,Z of key agreement
such that one of Alice and Bob makes a constant number of queries to RO. Let λ ∈ N be the
security parameter, and consider a run (T,KA,KB) $← 〈AliceRO,Z(1λ),BobRO,Z(1λ)〉 of the
construction KARO,Z. We will describe an efficient attacker EveRO,Z that breaks KARO,Z for
infinitely many λ. The attack closely follows the (inefficient) strategy of [9], but relies on InvZ

to make the attack efficient. Without loss of generality, assume that Bob makes a constant
number of queries; let qB be a constant bound on the number of queries made by Bob in
any execution of the protocol. Furthermore, let rA(λ) and rB(λ) be (polynomial) bounds on
the length of the random tape of Alice and Bob respectively, and let q(λ) = qA(λ) + qB be
a (polynomial) bound on the total number of queries to RO made by both parties in any
execution.

4.1.3.1 Lazy oracle sampling

Let q ∈ N. For any string r of length q, and any list L of (query, answer) pairs, we let
SimRO[L]q(·; r) be a stateful lazy sampler for a random oracle consistent with L. Namely,
SimRO[L]q(·; r) works as follows: it maintains a counter i (initialized to 1) and a list L′ of pairs
(query, answer), which is initially empty. Each time it receives an input x, SimRO[L]q(x; r)
first checks whether or not the query belongs to L ∪ L′, and outputs the corresponding
answers if this holds. If the query does not belong to L or L′, algorithm SimRO[L]q(x; r)
defines qi to be the answer to the query, adds (query, qi) to L′, and sets i ← i + 1. Note
that for any interactive protocol ΠRO where the parties make less than q queries in total,
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and any list L of (query, answer) pairs consistent with RO, the distribution of the views of
all parties obtained by sampling a random oracle RO and running ΠRO is identical to the
distribution of the views of all parties obtained by sampling a q-bit string r and running Π
while emulating RO using SimRO[L]q(·; r).

4.1.3.2 An inefficient attack

We first describe an inefficient attack on the candidate construction KARO,Z, taken almost
verbatim from [9]. The attacker EveRO,Z, given a transcript T of an execution of KARO,Z,
maintains a set QE of query/answer pairs for Z, and a multi-set of candidate keys K, both
initialized to ∅. Eve runs 2qB(λ) + 1 iterations of the following procedure.

Simulation phase: Eve finds a view of AliceRO′,Z with respect to some (possibly different)
oracle RO′, consistent with the transcript T and all pairs query/answer in QE . This view
contains a random tape rA, the set of queries QA made by AliceRO′,Z (which is consistent
with QEve, but not necessarily with RO), and the key KA computed by Alice. Eve adds
KA to K.
Update phase: EveRO,Z makes all queries in QA to the true random oracle RO, and adds
the results to QE .

After running 2qB(λ) + 1 iterations of the above attack, Eve has a multi-set K of 2qB + 1
possible keys; Eve outputs the majority value in K. Observe that during each round of the
attack, two events can happen:
1. Either one of the new queries (not already contained in QE) made by Alice in the simulated

run was made by Bob in the real execution of the protocol. In this case, Eve discovers
(and adds to QE) a new query of Bob.

2. Or none of the new queries of Alice was made by Bob in the real protocol, in which case
there exists an oracle RO′ which is consistent with the view of Bob in the real protocol,
and the view of Alice in the simulated run. By perfect correctness, this means that the
key KA computed by Alice in this run is necessarily the correct key.

Now, since Bob makes at most qB distinct queries, the first of the two events can
happen at most qB times, hence the second event necessarily happens at least qB + 1 times,
which guarantees that the majority value in the multi-set K is indeed the correct key with
probability 1.

The above attack requires O(qAqB) queries to RO. However, it requires to find a view for
AliceRO′,Z consistent with a given transcript, where RO′ is a simulated random oracle, but Z
is a “true” auxiliary oracle. In general, this might require exponentially many queries to Z,
hence EveRO,Z is not an efficient oracle-aided algorithm. In the following, we show how to
make the attack efficient given an inverter for io-OWFs.

4.1.3.3 Lazy protocol emulation

Let L be a list of (query, answer) pairs to RO. Given the construction KARO,Z, let SimCZ
L

be an oracle-aided PPT algorithm that emulates a run of Alice and Bob in KARO,Z that is
consistent with L (but not necessarily with the rest of RO). That is, given a random string
rA||rB ||q of length rA(λ)+rB(λ)+q(λ), SimCZ

L(1λ; rA||rB ||q) does the following: it runs Alice
and Bob with input 1λ and respective random tapes rA and rB , while using SimRO[L]q(·; q)
to lazily emulate the random oracle RO. After completion of the protocol, SimC outputs the
transcript T of the interaction, the lists (QA, QB) of all queries to RO made by Alice and
Bob during the emulation of the protocol (together with their answers), and the outputs
(KA,KB) of both parties. Observe that SimC corresponds to a valid interaction between
AliceRO′(1λ; rA) and BobRO′(1λ; rB) with respect to a random oracle RO′ sampled uniformly
at random, conditioned on being consistent with L.
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4.1.3.4 The inverter

Since there is no infinitely-often OWF relative to Z, there exists an efficient inverter for any
efficient oracle-aided function:

I Lemma 22. For any oracle-aided PPT function FZ and any polynomial p, there exists an
oracle-aided PPT inverter InvZ

F,p such that for all large enough n ∈ N, it holds that

Pr
x

$←{0,1}n

[InvZ
F,p(FZ(x), 1n) ∈ (F−1)Z(FZ(x))] ≥ 1− 1

p(n) .

Proof. This follows directly from the fact that the inexistence of io-OWFs relative to Z
implies the inexistence of weak io-OWFs relative to Z (a weak OWF is a OWF where security
is relaxed by saying that there exists a polynomial p such that no efficient adversary can
invert with probability better than 1− 1/p(n)). The latter follows from standard hardness
amplification methods as was initially proven by Yao [29]. J

4.1.3.5 The sequence of functions

Let p : λ → 1/(6qB + 3) be a constant polynomial. We iteratively define a sequence of
2(qB + 1) oracle functions (FZ

0 ,GZ
0), · · · , (FZ

qB
,GZ

qB
) as follows.

FZ
0 gets as input a string (rA||rB ||q0) of length rA(λ) + rB(λ) + q(λ), computes

(T,QA, QB ,KA,KB)← SimCZ
∅(1λ; rA||rB ||q) ,

and outputs T . The function GZ
0 is defined similarly, but outputs (T,QA, QB ,KA).

FZ
1 gets as input a string (rA||rB ||q0||q1) of length rA(λ)+rB(λ)+2q(λ). First, it computes

(T,QA, QB ,KA) ← GZ
0(rA||rB ||q0). Second, it sets n ← rA(λ) + rB(λ) + q(λ) and runs

(r′A||r′B ||q′0)← InvZ
F0,p(T, 1

n). Third, it computes (T ′, Q′A, Q′B ,K ′A)← GZ
0(1λ; r′A||r′B ||q′0).

Eventually, it uses SimRO[QA ∪ QB](·; q1) to lazily sample the answers to all queries
contained in Q′A, and stores the results in a set QE of pairs query/answer. FZ

1 outputs
(T,QE). We also define GZ

1 to be the function defined as FZ
1 except that it additionally

outputs (QA, QB ,K ′A).
FZ
i gets as input a string (rA||rB ||q0|| · · · ||qi) of length rA(λ) + rB(λ) + (i + 1) · q(λ).

First, it computes (T,QE , QA, QB) ← GZ
i−1(rA||rB ||q0|| · · · ||qi−1). Second, it sets n ←

rA(λ) + rB(λ) + i · q(λ) and runs (r′A||r′B ||q′0|| · · · ||q′i−1)← InvZ
Fi−1,p((T, Li−1), 1n). Third,

it computes (T ′, Q′A, Q′B)← GZ
0(1λ; r′A||r′B ||q′0). Eventually, it uses SimRO[QA∪QB ](·; qi)

to lazily sample the answers to all queries contained in Q′A, and add the results to QE .
FZ

2 outputs (T,QE). We also define GZ
i to be the function defined as FZ

i except that it
additionally outputs (QA, QB ,K ′A).

For readability, we also provide a pseudocode for the function FZ
i below:

function FZ
i (rA||rB ||q0|| · · · ||qi) . (rA||rB ||q1|| · · · ||qi) is of length

rA(λ) + rB(λ) + (i+ 1) · q(λ)
(T,QE , QA, QB ,KA)← GZ

i−1(rA||rB ||q1|| · · · ||qi−1)
n← rA(λ) + rB(λ) + i · q(λ)
(r′A||r′B ||q′0|| · · · ||q′i−1)← InvZ

Fi−1,p((T,QE), 1n) . p : λ→ 1/(6qB + 3)
(T ′, Q′A, Q′B ,K ′A)← GZ

1(1λ; r′A||r′B ||q′0)
for (x, y) ∈ Q′A do

QE ← QE ∪ (x, SimRO[QA ∪QB ](x; qi))
end for
return (T,QE) . GZ

i is similar but additionally outputs (QA, QB ,K ′A)
end function
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4.1.3.6 Making the [9] attack efficient with Inv

To overcome the inefficiency of the attack of [9], we leverage the fact that, by assumption, there
exists no infinitely-often one-way function relative to Z. As before, the attacker newEveRO,Z,
given a transcript T of an execution of KARO,Z, maintains a set QE of query/answer pairs
for Z, and a multi-set of candidate keys K, both initialized to ∅. Let p : λ→ 1/(6qB + 3) be
a constant polynomial. newEve runs 2qB + 1 iterations of the following attack.

Simulation phase: During the i-th round of attack, newEve does the following:
1. Finding a view of Alice consistent with T and QE: newEve sets n← rA(λ) + rB(λ) +

i · q(λ) and computes (r′A||r′B ||q′0|| · · · ||q′i−1)← InvZ
Fi−1,p((T,QE); 1n).

2. Simulating the run of Alice with the view above: newEve computes (T ′, Q′A, Q′B ,K ′A)←
GZ

1(1λ; r′A||r′B ||q′0).
3. Storing the key: newEve adds K ′A to K.
Update phase: EveRO,Z makes all queries in Q′A to the true random oracle RO, and adds
the results to QE .

After running 2qB +1 iterations of the above attack, Eve has a multi-set K of 2qB +1 possible
keys; Eve outputs the majority value in K. We now analyze the success probability of the
attack.

B Claim 23. newEve outputs the correct key with probability at least 2/3.

First, observe that by definition of FZ
0 , the distribution of transcripts T of the real

execution of the protocol (which newEve gets as input) is distributed exactly as FZ
0(rA||rB ||q0)

for uniformly random (rA, rB , q0), where rA (resp., rB) is the real random tape of AliceRO,Z

(resp., BobRO,Z) and q0 is the ordered string of all answers of RO to distinct queries from
Alice and Bob. Therefore, by definition of InvZ

F0,p, the tuple (r′A||r′B ||q′0) computed in the
first iteration of the attack is consistent with the real transcript T with probability at least
p = 1/(6qB + 3).

Consider now the set QE of queries obtained by newEve after the update phase of the
first iteration. (T,QE) is distributed exactly as FZ

1(rA||rB ||q0||q1) for uniformly random
(rA, rB , q0, q1). This is because QE in FZ

1 is computed by lazily sampling the answers of a
random oracle, conditioned on being consistent with all queries made by Alice and Bob in the
execution of FZ

0(rA||rB ||q0). Since the real run of the protocol corresponds to an execution of
FZ

0 on a random input (rA||rB ||q0), and making the queries in Q′A to RO is identical to lazily
sampling RO while being consistent with q0 (i.e., the query/answer pairs obtained by Alice
and Bob in the real execution). Therefore, the tuple (r′A||r′B ||q′0||q′1) which newEve computes
in the second iteration of the attack is consistent with the real transcript T with probability
at least p = 1/(6qB + 3).

More generally, the distribution of (T,QE) obtained by newEve during the i-th iteration
of the attack after receiving the transcript T of a real execution of the protocol is distributed
exactly as FZ

i (rA||rB ||q0|| · · · ||qi) for uniformly random (rA, rB , q0, · · · , qi), hence the tuple
(r′A||r′B ||q′0|| · · · ||q′i) which newEve computes in the (i+1)-th iteration of the attack is consistent
with the real transcript T with probability at least p = 1/(6qB + 3).

Putting everything together, after finishing the attack, by a straightforward union bound,
all simulated views computed by newEve during the attack are consistent with T with
probability at least 1 − (2qB + 1) · 1/(6qB + 3) = 2/3. When this happens, by the same
argument as for the inefficient attack, the majority key in K is necessarily the correct key,
and the claim follows.

B Claim 24. The number of queries made by newEve to RO and Z is bounded by a polynomial.
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As in the inefficient attack, newEve makes at most O(qAqB) = O(qA) queries to RO. The
polynomial bound on the number of queries to Z follows from the efficiency of Inv: InvZ

F0,p

is efficient by definition, hence FZ
1 (which invokes InvZ

F0,p internally) is an efficient function,
from which we get that InvZ

F1,p is also efficient, and so on, and the claim follows.

4.2 Black-Box Uselessness of OWFs for Imperfect KA
In this section, we discuss how our result of the previous section can be extended to the
case of imperfect key agreement. More precisely, we provide a sketch of how to modify our
previous proof to show the following:

I Theorem 25. Infinitely-often one-way functions are [semi → ∀∃-semi] black-box useless
for infinitely-often perfect key agreement in any construction where:

Both parties make a constant number of queries to the io-OWF (but any polynomial
number of queries to the auxiliary oracle)
The key agreement protocol has a constant number of rounds.

Proof Sketch. The natural approach to extend our result is to replace the attack of [9] by
an attack that applies to any imperfect key agreement protocol in the random-oracle model,
such as those of Impagliazzo and Rudich [20] or Barak and Mahmoody [4], making the same
case distinction based on the existence of io-OWFs to make the attack efficient. The structure
of these attacks are very similar, though more involved than the attack of [9]: they proceed
in a sequence of steps, where each step has a simulation phase, in which the attacker samples
views consistent with (a portion of) the transcript and a set of queries, and an update phase,
where the attacker makes some queries based on the simulated run.

Two important technicalities arise when modifying our previous proof with the attacks
of [4, 20]:

First, in the simpler attack of [9], the perfect correctness guarantees that finding any
consistent view is sufficient; in the attacks of [4, 20], however, the attacker is required to
sample views from a distribution close to the uniform distribution over views conditioned on
a transcript and a set of queries. This can still be achieved assuming only the inexistence
of io-OWFs: the inexistence of io-OWFs further entails the inexistence of distributional
io-OWFs [19]. Namely, we must rely on the following lemma, a proof of which can be
found in [6].

I Lemma 26. Assume that there exists no infinitely-often one-way function relative to Z.
Then for any efficient oracle-aided function FZ and any polynomial p, there exists an inverter
InvZ

F such that for all large enough n ∈ N,

Pr
x

$←{0,1}n,y←FZ(x)

[
SD

(
(F−1)Z(y), InvZ

F(y, 1n)
)
>

1
p(n)

]
≤ 1
p(n) ,

where SD denotes the statistical distance between the two distributions.

Second, the attacks of [4, 20] proceed in a number of steps that grows with the number
of queries of both parties (to the random oracle) and the round complexity of the protocol.
More precisely, the attack requires executing several simulation and updates phases (of the
order of Õ(qAqB), where qA, qB bound the respective number of queries of Alice and Bob to
the random oracle) for each round of the protocol, where the simulation phase for the round
i inverse samples views consistent with the set of queries made by the attacker so far and
the transcript of the protocol up to round i. This means that to be carried efficiently, the
key agreement must be constant round, and both parties must make a constant number of
queries to the random oracle.
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From here, a proof of Theorem 25 follows by fixing a (constant) bound B on the total
number of steps of the (inefficient) attacker, and using the inverse sampler guaranteed by
Lemma 26 for statistical distance 1/(10B) to make it efficient, similarly as in our previous
proof. By a union bound over all steps, the B steps of the inverse sampling will simultaneously
guarantee that, with probability at least 1/10, at any round i, no intersection query between
Alice and Bob made prior to round i has been missed by the attacker. This allows us to
conclude that the overall success probability of the efficient attacker (which uses the inverse
sampler) is at most a tenth of the success probability of the inefficient attacker described
in [4, 20].

With these technicalities in mind, this proof shows that io-OWFs are [semi → ∀∃-
semi] black-box useless for constant-query constant-round constructions of imperfect key
agreement. J
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Abstract
Random walks on expanders are a central and versatile tool in pseudorandomness. If an arbitrary half
of the vertices of an expander graph are marked, known Chernoff bounds for expander walks imply
that the number M of marked vertices visited in a long n-step random walk strongly concentrates
around the expected n/2 value. Surprisingly, it was recently shown that the parity of M also has
exponentially small bias.

Is there a common unification of these results? What other statistics about M resemble the
binomial distribution (the Hamming weight of a random n-bit string)? To gain insight into such
questions, we analyze a simpler model called the sticky random walk. This model is a natural stepping
stone towards understanding expander random walks, and we also show that it is a necessary step.
The sticky random walk starts with a random bit and then each subsequent bit independently equals
the previous bit with probability (1 + λ)/2. Here λ is the proxy for the expander’s (second largest)
eigenvalue.

Using Krawtchouk expansion of functions, we derive several probabilistic results about the
sticky random walk. We show an asymptotically tight Θ(λ) bound on the total variation distance
between the (Hamming weight of the) sticky walk and the binomial distribution. We prove that
the correlation between the majority and parity bit of the sticky walk is bounded by O(n−1/4).
This lends hope to unifying Chernoff bounds and parity concentration, as well as establishing other
interesting statistical properties, of expander random walks.
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1 Introduction

Expander graphs and random walks on their vertices are an essential and widely employed
tool in pseudorandomness, and related areas like coding theory. In this paper, we are
interested in a particular simple random walk model where we mark half of the vertices of an
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expander graph, and look at how many marked vertices an n-step random walk visits. This
model has already been explored in many influential works. In particular, expander Chernoff
bounds show that the number of marked vertices visited is concentrated around n/2 with
exponential tails [4, 7]. In his recent breakthrough construction of ε-balanced codes, Ta-Shma
[12] proved that the parity of the number of visited marked nodes has exponentially small
bias. This fact is quite striking since there are distributions on n bits that are (n− 1)-wise
independent yet have fixed parity, so one might not expect a sensitive function like parity to
exhibit such strong concentration for expander random walks in general.

Let w denote the bit string indicating which steps visit a marked node in an n-step
expander random walk starting at a random node. The above two results show nontrivial
properties that w shares with a purely random bit string. This naturally raises questions
about what other statistical similarities might hold between w and purely random strings.
For instance, are the parity bit and majority bit of w (almost) uncorrelated? This can
be viewed as a unification of the above-mentioned concentration results for the high order
bit and low order bit of the Hamming weight of w. More generally, given some arbitrary
symmetric property of w (i.e., one that only depends on its Hamming weight), how does
its probability deviate in an expander random walk compared to a purely random string?
What is the total variation distance (TVD) between the Hamming weight distribution of w

and the binomial distribution? Surprisingly, to the best of our knowledge, these and many
other similar questions relating to the “pseudobinomiality” properties of the weight of the
sequence w, seem unexplored.

Towards gaining insight into and making progress on such questions, we analyze a simpler
distribution over the n-bit strings called the sticky random walk as a necessary stepping
stone towards understanding the general expander walk. The sticky random walk S(n, λ) is
an n-step walk on a Markov chain with two states 0, 1. The start state is chosen uniformly
at random, and at each subsequent step, we stick to the same state with probability 1+λ

2 ,
and change states with probability 1−λ

2 . Let s be the n-bit string listing the states visited
by S(n, λ). The sticky random walk has served as a useful proxy for analyzing the actual
expander random walk. Chernoff bounds for a slight variant of the sticky random walk
imply similar bounds on the expander random walk, as explicitly pointed out by Kahale [7]
and also revisited in the recent work by Rao and Regev [10] who obtained tighter bounds.
Such a translation, however, only works for estimating the probability of monotone events.
For non-monotone functions like parity, it is not known if one can deduce bounds for the
expander random walk from their counterparts for the sticky random walk.

Nevertheless, understanding the simpler sticky random walk model is a meaningful first
step towards understanding the general expander walk model. In fact, it is a necessary step,
as there are expanders where the behavior of the random walk coincides with the sticky
walk (i.e., the sequences w and s above are identically distributed). We make this (probably
folklore) relationship between these two models explicit in Section 7 (see Theorem 4 below).

1.1 Our Results
We answer some of the questions proposed above in the case of the sticky random walk.
Our main technique is to represent (a function related to) the probability density function
of the Hamming weight of the sticky random walk in the basis of Krawtchouk functions.
The Krawtchouk basis is a handy choice to compare this distribution with the binomial
distribution. We show the following result on the TVD between these distributions in
Section 4. In all our results we think of λ as being fixed and the length of the walk n to be
growing.
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I Theorem 1. The total variation distance between the weight distribution of the sticky
random walk and the binomial distribution is Θ(λ).

Note that the above shows both an upper and lower bound. For the upper bound, we show
a stronger claim that an appropriately weighted `2 distance between the two distributions is
bounded from above by O(λ2) for λ small enough (the above then follows by Cauchy-Schwarz).
However, as λ→ 1, the `2 version of the bound fails to hold, and in fact we prove that this
distance grows exponentially in n for λ > 0.95 (Section 4.2). For the lower bound, the event
of the Hamming weight being in the range n/2±

√
n exhibits a Ω(λ) deviation in probability

between these two distributions.
Our next result (in Section 5) shows that the parity and majority bits of the sticky

random walk are uncorrelated (up to lower order terms).

I Theorem 2. The probability that the Hamming weight of an n-step sticky random walk is
even and larger than n/2 is 1

4 + o(1). The same result holds for the other three symmetric
cases.

The analysis hinges on an upper estimate for the probability that the sticky random walk
has weight exactly bn/2c, which is again obtained via the Krawtchouk expansion. We note
that the arguments for the parity bias from [12] and the Chernoff bound from [4] are quite
different. The above theorem hints that Krawtchouk functions might offer a more general
tool that can unify these two arguments.

Next, we verify that the residues of the Hamming weight of the sticky walk with respect
to any fixed modulus m are almost equidistributed (Section 6). This in particular shows
that for any fixed ` the ` least significant bits of the (binary representation of the) Hamming
weight of the sticky random walk are nearly uniformly distributed.

I Theorem 3. For any fixed m ≥ 2, the total variation distance between the residues modulo
m of the binomial random variable and the Hamming weight of the n-step sticky walk is at
most exp(−Ωm(n)).

Recall that Ta-Shma established such a result for the m = 2 case even for the expander
random walk [12]. We execute a similar analysis, albeit only for the sticky walk, using
m’th roots of unity (in the place ±1) to track the bias. We suspect extending this analysis
to adjacency matrices of expanders (instead of the 2 × 2 sticky walk transition matrix)
can establish this equidistribution result for general expander walks, though we have not
verified this.

Finally, the following confirms that analyzing sticky random walks is necessary in order
to establish the corresponding claim for expander random walks. We should note that the
graph family constructed does not fit the standard definition of an expander family, as
degree-boundedness of the graph is not enforced. This is not a significant issue as the analysis
of random walks on graphs always proceed by abstracting only the spectral properties of
the graph. Further, we believe sampling a sparse regular subgraph with a similar structure
should yield a similar claim for a bounded-degree expander family.

I Theorem 4. There is a family of regular graphs whose nontrivial eigenvalues are bounded
in magnitude by λ, half of whose vertices are marked, such that the bit string indicating
which steps of a random walk visits a marked vertex has the same distribution as the sticky
random walk.

We conclude the introduction by mentioning a very interesting work of Bazzi on pseudobi-
nomiality [1]. This work establishes an upper bound on the total variation distance between
the binomial distribution and the weight distribution of a δ-biased random sequence, based

ITCS 2021
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on the entropy of the latter distribution. One can show that the sticky random walk sequence
s is λ-biased (see Lemma 11). The bound on TVD in [1] is at best O(

√
δn) and is only

meaningful when the bias is tiny, which isn’t the case for the sticky random walk. Also,
calculating the entropy of the weight distribution of s seems as hard, if not harder, than
the Krawtchouk based calculations we use to directly bound the total variation distance in
Section 4. In fact, it could be the case that the best approach to estimate the entropy of the
weight distribution of the sticky random walk is via the entropy-difference bound [3] together
with our bound on total variation distance.

1.2 Open Problems
Our results give rise to some immediate follow-up questions. Can the weighted `2 bound
between the sticky and binomial distribution established in Lemma 13 be extended to give a
non-trivial bound (that is bounded away from 1) for any fixed λ < 1? Theorem 3 showed
that any fixed number of least significant bits of (the Hamming weight of) the sticky walk are
near uniform, but can this result be extended to other bits, for example the middle bit? Are
there other symmetric properties of the sticky walk that resemble purely random strings?

A more important family of questions relate to extending our results from the sticky
walk to the general expander walk model. Can the O(λ) TVD bound between the sticky
and binomial distribution established in Theorem 1 be lifted to the general expander walk
setting? Also, can the method of Krawtchouk functions used in Theorem 2 give insight
towards unifying the Chernoff and parity bias results for expander random walks? In general,
can we show distributions of various symmetric functions on expander walks are statistically
close to the corresponding distributions on random strings? Moment generating function
results from [7, 10] allow bounds or monotone symmetric functions to be lifted from the
sticky walk to the expander walk, but no relationships are known for non-monotone functions
like parity.

Recently, a TVD bound of O(λ log3/2(1/λ)) between the Hamming weight of the general
expander walk variant and the binomial distribution was proven using similar Fourier analytic
techniques [2]. Removing this lower order polylogarithmic factor of log3/2(1/λ) remains an
open problem. Theorem 4.8 in [2] also improved on Theorem 19 in this paper to an O(n−1/2)
bound for the general expander walk, which consequently implies a tighter O(n−1/2) bound
in the error term in Theorem 2. However, due to the lack of bit-flipping symmetry in the
general expander walk, the extension of Theorem 2 to the expander walk remains open.

2 Preliminaries

2.1 Conventions and Notation
Asymptotics. In our asymptotic analysis, we will take λ to be constant and observe
asymptotics as n→∞. Take o,O, ω,Ω to be the standard definitions. We will say f . g to
mean f ≤ Cg for some absolute constant C independent of n and λ. We also say f = g+O(h)
when we mean |f − g| ≤ O(h), and analogously for o,Ω, and ω. We also denote ∼ to be
shorthand for = (1 + o(1)).

Miscellaneous. For a bit string s, we will denote |s| to be the Hamming weight of s.
N (µ, σ2) is the Gaussian distribution with mean µ and variance σ2. We write Ber(p) to be
the Bernoulli distribution on {0, 1} where 1 has probability p and 0 has probability 1− p,
and write Bin(n, 1/2) to be the binomial distribution of

∑n
i=1 bi with independent choices of
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bi ∼ Ber(1/2). Let 1E represents the indicator variable of the event E. When written as a
function, 1S(i) is 1 if i ∈ S, and is 0 otherwise. [n] = {1, 2, . . . , n} denotes the set of the first
n positive integers, and [n]0 = {0} ∪ [n].

([n]
k

)
denotes the set of all size k subsets of [n].

2.2 Definitions

In this paper, we will work with distributions on [n]0 and see how close they are to one another.
For this reason, we state the standard definitions of the `p distance between distributions

I Definition 5 (`p Distance/TVD). Let Y and Z be distributions on [n]0. For p ≥ 1, we
define the `p distance between Y and Z to be

||Y − Z||p =
(

n∑
i=0
|Y (i)− Z(i)|p

)1/p

.

The total variation distance (TVD) between Y and Z is simply 1
2 ||Y − Z||1.

Of course the first type of distribution we should formally define is the sticky random
walk itself.

I Definition 6 (Sticky Random Walk). The sticky random walk S(n, λ) is a distribution
on n-bit strings s, where s1 ∼ Ber(1/2), and for 2 ≤ i ≤ n and b ∈ {0, 1}, we have
Pr[si = b|si−1 = b] = 1+λ

2 . In cases where n and λ are evident, only S may be used to denote
the distribution.

Define a bit string to be homogeneous if it only consists of 1’s or of 0’s. Given a bit string,
we define a run to be a homogeneous substring that isn’t a proper substring of another
homogeneous substring. Intuitively, the sticky walk can be seen as a Markov chain on two
states, where you stick to the same state with probability 1+λ

2 and transition to the other
with probability 1−λ

2 . Thus the probability of a string is really only dependent on how many
consecutive pair of bits are equal (equivalently the number of runs), rather than the precise
value of the bits. Another thing to note is that λ can be seen as a parameter measuring the
stickiness of a bit to its preceding one. Notice when λ = 0 there is no stickiness present, and
the sticky walk is just n independent coin flips.

2.3 Krawtchouk Functions

To analyze this sticky random walk, we heavily rely on the basis of Krawtchouk functions.
Hence we define these functions here and state some standard identities of these functions
without proof.

I Definition 7 (Krawtchouk Functions). The Krawtchouk function Kk : [n]0 → R is defined
to be

Kk(`) =
∑

y∈{0,1}n
|y|=k

(−1)α·y

for each integer 0 ≤ ` ≤ n and an arbitrary n-bit string α of Hamming weight ` (the specific
choice of α does not matter due to symmetry).

ITCS 2021
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It can be shown that these functions form an orthogonal basis of the functions mapping
[n]0 → R with respect to the inner product

〈f, g〉 = Eb∼Bin(n,1/2)[f(b)g(b)]. (1)

From the definition it is not hard to show that (e.g. Section 2.2 of [11]).

Eb∼Bin(n,1/2)[Kr(b)Ks(b)] = 0, (2)

which shows that the Krawtchouk functions indeed form an orthogonal basis with respect to
the inner product in (1). Furthermore, one can verify the following identities hold (see [11]).

Eb∼Bin(n,1/2)[Kk(b)2] =
(
n

k

)
(3)

(
n

`

)
Kk(`) =

(
n

k

)
K`(k). (4)

Identities (2) and (3) allow us to explicitly expand any function uniquely as a sum of
Krawtchouk functions.

I Proposition 8. For function f : [n]0 → R, there exists a unique expansion f(`) =∑n
k=0 f̂(k)Kk(`) where

f̂(k) = 1(
n
k

)Eb∼Bin(n,1/2)[f(b)Kk(b)]

for each integer 0 ≤ k ≤ n.

3 Using Krawtchouk Functions to Analyze the Sticky Walk

To help us analyze the sticky walk, we define the function p : [n]0 → R to be p(`) = Prs∼S [|s|=`]
(n`)2−n

,
and look at the Krawtchouk expansion. Doing so results in the following lemma.

I Lemma 9. We have

p̂(k) = 1(
n
k

)Es∼S [Kk(|s|)].

Proof. We just apply Proposition 8 to get that

p̂(k) = 1(
n
k

)Eb∼Bin(n,1/2)[p(b)Kk(b)]

= 1(
n
k

) n∑
b=0

(
n

b

)
2−np(b)Kk(b)

= 1(
n
k

) n∑
b=0

Pr
s∼S

[|s| = b]Kk(b)

= 1(
n
k

)Es∼S [Kk(|s|)]. J

What follows is a useful lemma that displays how Krawtchouk expanding p(`) can help
analyze probabilities of the sticky distribution.
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I Lemma 10. For s ∼ S(n, λ), we can evaluate

Pr[|s| = `] = 1
2n

n∑
k=0

K`(k)E[Kk(|s|)]

Proof. To estimate this probability, we can use Lemma 9 to find

Pr[|s| = `] =
(
n

`

)
2−np(`)

=
(
n
`

)
2n

n∑
k=0

p̂(k)Kk(`)

= 1
2n

n∑
k=0

(
n
`

)
Kk(`)E[Kk(|s|)](

n
k

)
= 1

2n
n∑
k=0

K`(k)E[Kk(|s|)]

where we used the reciprocity relation (4) at the end. J

Notice that these lemmas didn’t depend on the specific distribution S(n, λ), and so these
lemmas are applicable for arbitrary distributions on [n]0. For our purposes, the sticky walk
versions will be used for our analysis done in the next sections.

4 Total Variation Distance Bounds

4.1 Upper Bounding the TVD Between the Sticky and Binomial
Distribution

Upper bounding the TVD requires calculating the expectation of various sums and products
of sticky walk random variables. We will abstract out these calculations in the following
lemmas. Analogous expressions for the general expander walk model were also analyzed in
Lemmas 3.3 and 4.2 in Rao and Regev [10]. In particular, [10] gives upper bounds on these
quantities in the general expander walk, while we give exact values for the simpler sticky
walk.

I Lemma 11. Let s ∼ S(n, λ). For even-sized subsets A ⊂ [n] where a1 < · · · < am are the
elements of A in increasing order, define shift(A) =

∑|A|/2
i=1 (a2i − a2i−1) . For any A ⊂ [n],

we have

E

[∏
i∈A

(−1)si

]
=
{

0 |A| odd
λshift(A) |A| even

.

Proof. Since the sticky walk is a Markov chain where (−1)si has the same sign as (−1)si−1

with probability 1+λ
2 , we can rewrite these random variables in terms of a product of

independent random variables representing the transitions of the chain. In particular, we
define a new random variable u ∈ {0, 1}n, where u1 ∼ Ber(1/2) and ui ∼ Ber

( 1−λ
2
)
for

2 ≤ i ≤ n. One can easily check that (−1)si is the same random variable as
∏i
j=1(−1)uj =

(−1)
∑i

j=1
uj . Hence we have

E

[∏
i∈A

(−1)si

]
= E[(−1)

∑
i∈A

∑i

j=1
uj ] =

am∏
j=1

E[(−1)
∑

i∈A;i≥j
uj ]

ITCS 2021
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Note when |A| is odd, the factor when j = 1 is 0 since E[(−1)
∑

i∈A
u1 ] = E[(−1)u1 ] = 0.

Hence the total expectation is 0. Otherwise, when |A| is even, the j = 1 term is just
E[(−1)|A|u1 ] = 1. For j ≥ 2, one sees that if Aj = {i ∈ A : i ≥ j} is of odd cardinality,
then E[(−1)

∑
i∈A;i≥j

uj ] = E[(−1)uj ] = λ, and is 1 otherwise. The set of j such that |Aj | is
odd is simply the integers in (a1, a2] ∪ (a3, a4] ∪ · · · ∪ (am−1, am], of which there are shift(A).
Consequently, upon multiplying all the j factors, we derive that the expectation is λshift(A)

for |A| even. J

I Lemma 12. For all nonnegative integers k and s ∼ S(n, λ),

E[K2k(|s|)] =
∑n−k
m=k

(
m−1
k−1

)(
n−m
k

)
λm, and

E[K2k+1(|s|)] = 0

with the convention that
(−1
−1
)

= 1 and
(
j
−1
)

= 0 for j ≥ 0.

Proof. Using the definition, we rewrite

Kk(|s|) =
∑

α∈{0,1}n
|α|=k

(−1)
∑n

i=1
αisi =

∑
T∈([n]

k )
(−1)

∑
i∈T

si =
∑

T∈([n]
k )

∏
i∈T

(−1)si . (5)

Then from Lemma 11, we have

E[Kk(|s|)] =
∑

T∈([n]
k )

E

[∏
i∈T

(−1)si

]
=

0 k odd∑
T∈([n]

k ) λ
shift(T ) k even

.

We now evaluate

E[K2k(|s|)] =
∑

T∈([n]
2k)

λshift(T ) =
n−k∑
m=k

( ∑
T∈([n]

2k)
shift(T )=m

1
)
λm

Hence to prove the lemma, it suffices to show the number of subsets T ∈
([n]

2k
)
with shift(T ) =

m is
(
m−1
k−1

)(
n−m
k

)
. Let t1 < t2 < · · · < t2k be the elements of T . We claim the desired subsets

T are in bijection with a k-tuple (d1, . . . , dk) of positive integers summing to m, paired with
an n−m letter word consisting of n−m− k A’s and k B’s. To construct the pair from a
subset T , we can set di = t2i − t2i−1 and the n−m letter word to be At1−1CBAn−t2k where
C = ©k−1

i=1 (BAt2i+1−t2i−1) (◦ is concatenation). Since shift(T ) = m, the di are positive
integers summing to m, and the word can easily be verified to have n−m− k A’s and k B’s.

Now given a (d1, . . . , dk) and a word, we can construct a T with shift(T ) = m as follows.
The word will be of the form Aa1BAa2B · · ·AakBAak+1 where each ai ≥ 0. We then set
t1 = a1 + 1, and assign t2, . . . , t2k inductively as follows.

t2i = t2i−1 + di

t2i+1 = t2i + ai+1 + 1

Finally we set T = {ti}2k
i=1. It can then be verified all ti ∈ [n] and shift(T ) = m. In fact, one

can check the two constructed maps are inverses of each other. Hence we have established
the bijection and counting the number of such T is simply counting the number of k-tuples
and word pairs, which by standard counting methods is

(
m−1
k−1

)(
n−m
k

)
. The desired result

follows. J
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We are now ready to establish some upper bounds using the lemmas above. We first
upper bound the weighted `2 distance between the sticky walk and binomial distribution by
defining a suitable function and taking the Krawtchouk expansion.

I Lemma 13. Let s ∼ S(n, λ) for λ < .16 and define p(`) := Prs∼S [|s|=`]
(n`)2−n

. Then we have

Eb∼Bin(n,1/2)
[
(p(b)− 1)2] ≤ O(λ2) .

Proof. Let us write p(`) =
∑n
k=0 p̂(k)Kk(`) where

p̂(k) = 1(
n
k

)Eb∼Bin(n,1/2)[p(b)Kk(b)] (6)

from Proposition 8. From the definition, we can verify K0(`) = 1 for all `. Combining this
fact with (6) implies that p̂(0) = 1 too. Hence,

Eb∼Bin(n,1/2)[(p(b)− 1)2] = Eb∼Bin(n,1/2)

( n∑
k=1

p̂(k)Kk(b)
)2


=
n∑
k=1

p̂(k)2
(
n

k

)

=
n∑
k=1

1(
n
k

)E[Kk(|s|)]2 (7)

where only the diagonal terms of the square survive due to the orthogonality relations (2)
and (3). Adding the k = 0 term back in (7) will simply give the expression for E[p(b)2] (and
will be stated as a subsequent corollary).

From Lemma 12 and the generating function relation ( x
1−x )k =

∑
m≥k

(
m−1
k−1

)
xm,

Eb∼Bin(n,1/2)[(p(b)− 1)2] =
∑

1≤k≤n/2

1(
n
2k
) (n−k∑

m=k

(
m− 1
k − 1

)(
n−m
k

)
λm

)2

(8)

≤
∑

1≤k≤n/2

(
n
k

)2(
n
2k
) (n−k∑

m=k

(
m− 1
k − 1

)
λm

)2

≤
∑

1≤k≤n/2

(
n
k

)2(
n
2k
) ( λ

1− λ

)2k
(9)

With the following claim (whose proof will be deferred to the appendix) we can deduce a
lower bound.

B Claim 14. For 1 ≤ k ≤ n/2, we can bound (nk)2

( n2k)
≤ e3√2

4π2 · 42k.

Hence by combining (9) and Claim 14, we conclude

Eb∼Bin(n,1/2)[(p(b)− 1)2] ≤ e3√2
4π2

∑
1≤k≤n/2

(
4λ

1− λ

)2k

≤ 4e3√2
π2

λ2

(1− 5λ)(1 + 3λ)

<

(
λ

0.16

)2
,

which is a nontrivial O(λ2) bound that is strictly less than 1. J
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Remembering our prior observation that the sum in Equation (7) is 1 less than E[p(b)2],
we immediately get the following corollary.

I Corollary 15. Let s, p be defined as in Lemma 13. We can then bound

Eb∼Bin(n,1/2)[p(b)2] =
n∑
k=0

1(
n
k

)E[Kk(|s|)]2 ≤ 1 +O(λ2).

Going back to proving the main result of the section, the brunt of the work was actually
done in Lemma 13. We can now simply apply convexity to establish the desired TVD upper
bound between the sticky and binomial distribution.

I Theorem 16. Let s ∼ S(n, λ). We can then bound the TVD between S(n, λ) and
Bin(n, 1/2),

1
2

n∑
`=0

∣∣∣∣Pr[|s| = `]−
(
n

`

)
2−n

∣∣∣∣ ≤ O(λ).

Proof. By convexity, and then Lemma 13, we get
n∑
`=0

∣∣∣∣Pr[|s| = `]−
(
n

`

)
2−n

∣∣∣∣ = Eb∼Bin(n,1/2)[|p(b)−1|] ≤
√

Eb∼Bin(n,1/2)[(p(b)− 1)2] ≤ O(λ)

for λ < 0.16, and clearly the TVD is bounded by 1 for λ greater. J

4.2 Limitations to the Upper Bound Approach
Unfortunately, the weighted `2 distance studied in Lemma 13 blows up as λ approaches 1.
Looking at the term in the sum of Equation (8) when k = m = (1/2− ε)n for some ε > 0
(will be specified later), and applying the bounds

(
n
k

)k ≤ (nk) ≤ (nek )k yields

∑
1≤k≤n/2

1(
n
2k
) (n−k∑

m=k

(
m− 1
k − 1

)(
n−m
k

)
λm

)2

≥ 1(
n

(1−2ε)n
)((1/2 + ε)n

(1/2− ε)n

)2
λ(1/2−ε)n

≥
(
n

2εn

)−1((1/2 + ε)n
2εn

)2
λn/2

≥
(

λ1/2

(8eε)2ε

)n
For λ ≥ .94 and ε = .017, we have λ1/2 > .969 and (8eε)2ε < .967. Thus

Eb∼Bin(n,1/2)[(p(b)− 1)2] >
(
.969
.967

)n
which grows exponentially in n. Consequently, in order to show an O(λ) bound for all λ < 1,
an approach different from using the weighted `2 distance is required.

4.3 Showing the TVD Bound is Tight
Consider s ∼ S(n, λ) and N ∼ N (0, 1). Set Y i = (−1)si and let Y =

∑n
i=1(−1)si be the ±1

variant of the sticky distribution. Similarly, let bi ∼ Ber(1/2) for 1 ≤ i ≤ n. Set Zi = (−1)bi
and let Z =

∑n
i=1 Zi be the usual ±1 unbiased random walk. By the central limit theorem,

we already know Z√
n
→N in distribution as n→∞. We now state a similar result for Y ,

and defer the proof to the appendix, as it requires lengthy calculation of the moments.
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I Lemma 17. As n→∞, Y
√

1−λ
(1+λ)n →N in distribution.

With this lemma, we have a good understanding of Y , and can show the tightness of
the TVD bound. The suggestion to consider an event like |Y | ≤ O(

√
n) was made by Salil

Vadhan [13].

I Theorem 18. For Y and Z defined above as the ±1 version of the S(n, λ) walk and the
n-step unbiased walk, respectively, we have

|Pr[|Z| ≤
√
n]− Pr[|Y | ≤

√
n]| ≥ Ω(λ)

for λ < 1.

Proof. By Lemma 17, for ε <
∫ 1√

1−λ
1+λ

e−x
2
dx, there exists a constant N(ε) such that for

n > N(ε),

|Pr[|Z| ≤
√
n]− Pr[|Y | ≤

√
n]| =

∣∣∣∣Pr
[
|Z|√
n
≤ 1
]
− Pr

[
|Y |

√
1− λ

(1 + λ)n ≤
√

1− λ
1 + λ

]∣∣∣∣
≥ 2

∫ 1√
1−λ
1+λ

e−x
2
dx− ε

≥
∫ 1√

1−λ
1+λ

e−x
2
dx ≥ e−1

(
1−

√
1− λ
1 + λ

)
≥ λ

2e

where the last step follows from the easily verifiable inequality 1−
√

1−x
1+x ≥

x
2 for 0 ≤ x ≤ 1.

Hence we have demonstrated an event that gives an Ω(λ) gap between the distributions of
Y and Z for λ < 1. Since Y and Z are just shifted and dilated versions of the Hamming
weight of S(n, λ) and Bin(n, 1/2), respectively, we can deduce the TVD is Θ(λ) due to
Theorem 16. J

5 Parity and Majority of the Sticky Walk are Almost Uncorrelated

Following the spirit of how Ta-Shma [12] showed the bias of the parity of an expander walk
sampler is exponentially small, we show some parity events of the sticky random walk are
very close in probability to the corresponding probability under the binomial distribution. An
interesting question to consider is whether more refined events, such as whether the output
is even and above expectation is close to 1

4 . We show such results for the sticky distribution.
Note that from Theorem 16 we know the event probability in the sticky distribution will be
within O(λ) of 1

4 , but in this section, we derive an o(1) error bound.
Let s ∼ S(n, λ). We first demonstrate that similar to the binomial distribution,

Pr[|s| even] and Pr[|s| ≥ n/2] are close to 1/2. For the parity, we straightforwardly calculate

Pr[|s| even]− Pr[|s| odd] =
n∑
t=0

(−1)t Pr[|s| = t] = E[(−1)|s|] = λn/2 · 1n even (10)

using Lemma 11. Hence |Pr[|s| even] − 1
2 | ≤

λn/2

2 . Interestingly enough, this λn/2 bias is
also present in the parity bias calculation done by Ta-Shma for the expander walk in [12]
(Section 3.2). Furthermore, this calculation (combined with our work in Section 7) shows
that this error term cannot be improved to something smaller like λn.
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Let a be a string and let a be the string formed by toggling every bit of a. Notice that
Pr[s = a] = Pr[s = a] since the number of runs are the same in both strings. Summing over
all strings of Hamming weight t, we get the symmetric relation Pr[|s| = t] = Pr[|s| = n− t],
which directly implies Pr[|s| > n/2] = Pr[|s| < n/2]. In the case n is odd, we immediately
have Pr[|s| > n/2] = 1/2. When n is even, we have

Pr[|s| > n/2] = 1
2 −

Pr[|s| = n/2]
2 . (11)

We now prove a lemma that will help us bound Pr[|s| = n/2] in the sticky distribution.

I Theorem 19. For s ∼ S(n, λ), λ < 1/5, and b ∼ Bin(n, 1/2), we can bound

Pr[|s| = `] .
√

(1 +O(λ2)) Pr[b = `].

Proof. To estimate this probability, we can use Lemma 10 to find

Pr[|s| = `] = 1
2n

n∑
k=0

K`(k)E[Kk(|s|)] ≤ 1
2n

√√√√ n∑
k=0

(
n

k

)
K`(k)2

√√√√ n∑
k=0

E[Kk(|s|)]2(
n
k

) (12)

by Cauchy-Schwarz. Notice by Corollary 15,√√√√ n∑
k=0

E[Kk(|s|)]2(
n
k

) .
√

1 +O(λ2). (13)

Finally, by using Equation (3) we get√√√√ n∑
k=0

(
n

k

)
K`(k)2 =

√(
n

`

)
2n (14)

Combining (12), (13), and (14) yields

Pr[|s| = `] . 1
2n

√(
n

`

)
2n(1 +O(λ2)) =

√
(1 +O(λ2)) Pr[b = `]

as desired. J

Going back to (11), Theorem 19 with ` = n/2 now allows us to deduce

Pr[|s| > n/2] = 1
2 +O(n−1/4

√
1 + λ2).

Thus, we have shown that Pr[|s| even] and Pr[|s| > n/2] are near 1/2, which are properties
shared by purely random strings. However, we can go further and show a more refined
equidistribution result. One can calculate for b ∼ Bin(n, 1/2) that Pr[(|b| odd) ∧ (|b| >
n/2)] = 1

4 +O(n−1/2). We show an analogous result for the sticky walk, albeit with a worse
o(1) error term.

I Theorem 20. Let s ∼ S(n, λ). For a, b ∈ {0, 1}, denote the event

Eab = (|s| ≡ a (mod 2)) ∧ ((−1)b|s| > (−1)bn/2)

and pab = Pr[Eab]. Then pab = 1
4 +O(n−1/4√1 + λ2) for all a, b.
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Proof. We show the result for p00 (symmetric arguments work for any pab). We split
into cases when n is even and odd. When n is even, notice that due to the symmetry
Pr[|s| = t] = Pr[|s| = n − t], p00 = p01 and p10 = p11. Hence from (10) we have λn/2 ≥
|p10 + p11 − p01 − p00| = 2|p10 − p00|. From (11) and Theorem 19, we have p10 + p00 =
1
2 +O(n−1/4√1 + λ2), and so we can conclude p00 = 1

4 +O(n−1/4√1 + λ2) as desired.
When n is odd, a little more effort is required to exploit symmetry. Let S be the set of

n-bit strings having a run of size ≥ 2 which doesn’t contain the nth bit, and let T be the
set of n-bit strings having a run of size ≥ 2 which doesn’t contain the 1st bit. Consider the
map g : S → T defined by toggling the last bit of the first run of size ≥ 2. It can be easily
seen that g is a bijection. Note that for any s ∈ S, s and g(s) have the same probability
under the sticky walk distribution (the map preserves the number of runs in the string).
Furthermore, f changes the parity of the input string. The image of all strings in S with
even parity and Hamming weight > n/2 under g will be all strings in T with odd parity and
Hamming weight > n/2, along with some rogue strings in T with Hamming weight (n− 1)/2.
If we isolate these rogue cases, we can deduce, due to the fact g preserves probability, that

Pr[(s ∈ S) ∧ E00] = Pr[(s ∈ T ) ∧ E10] + Pr
[
(s ∈ S) ∧

(
|g(s)| = n− 1

2

)
∧ E00

]
≤ Pr[(s ∈ T ) ∧ E10] +O(n−1/4

√
1 + λ2) (15)

by Theorem 19 with ` = n−1
2 . Notice any n-bit string has probability measure at most

1
2
( 1+λ

2
)n−1 in the sticky distribution. Furthermore, there are only O(n) strings not contained

in S (such strings must be of form 0kA or 1kA where A is a binary string that alternates 0s
and 1s). Therefore we can bound

|Pr[(s ∈ S) ∧ E00]− Pr[E00]| ≤ Pr[s /∈ S] . n

(
1 + λ

2

)n
. (16)

An analogous argument with set T gives

|Pr[(s ∈ T ) ∧ E01]− Pr[E01]| . n

(
1 + λ

2

)n
. (17)

Combining (15), (16), and (17) using an application of the triangle inequality allows us
to bound

|p00 − p01| ≤ |Pr[E00]− Pr[(s ∈ S) ∧ E00]|+ |Pr[(s ∈ S) ∧ E00]− Pr[(s ∈ T ) ∧ E01]|
+ |Pr[(s ∈ T ) ∧ E01]− Pr[E01]|

. n−1/4
√

1 + λ2.

Since p00 + p01 = 1/2 for n odd, we can deduce p00 = 1
4 +O(n−1/4√1 + λ2). J

6 Sticky Walk Modulo m is Close to Uniform

In [12], Ta-Shma provides an argument on how the parity of the expander walk is unbiased.
In this section we use his method to show the sticky distribution modulo m is approximately
uniform for any fixed m and large n.

I Lemma 21. Fix λ < 1 and m ≥ 2. For any nontrivial m’th root of unity ζ 6= 1 and
s ∼ S(n, λ), we have |E[ζ |s|]| ≤ exp(−Ω(n)).
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Proof. One can verify E[ζ |s|] = 1ᵀMn1 where 1 is the unit vector with all coordinates equal
and

M =
( 1+λ

2
1−λ

2
1−λ

2
1+λ

2

)(
1 0
0 ζ

)
=
( 1+λ

2
1−λ

2 ζ
1−λ

2
1+λ

2 ζ

)
.

Let λ1, λ2 be the eigenvalues of M . If M is diagonalizable, we know 1ᵀMn1 = c1λ
n
1 + c2λ

n
2 ,

and if M is not diagonalizable we can write 1ᵀMn1 = (c1 + nc2)λn1 for constants c1 and c2
(this can be seen by writingM in Jordan normal form). Thus in either case, it suffices to show
the norm of both eigenvalues are strictly less than 1 to prove the lemma. From Gershgorin’s
circle theorem, we know the norms of the eigenvalues are at most 1+λ

2 + 1−λ
2 = 1.

Assume one eigenvalue has norm 1. Since the product of the eigenvalues is det(M) = λζ,
we deduce the eigenvalues are λz, ζ/z for some |z| = 1. Since λz+ζ/z = Tr(M) = 1+λ

2 (1+ζ),
we particularly know λz + ζ/z and 1 + ζ have the same argument angle.

If ζ 6= −1, we must have the quotient of these two complex numbers be real. Consequently

0 = λz + ζ/z

1 + ζ
−
(
λz + ζ/z

1 + ζ

)
= λz + ζ/z

1 + ζ
− λ/z + z/ζ

1 + 1/ζ = (λ− 1)(z − ζ/z)
1 + ζ

.

Since λ 6= 1, we have z = ζ/z and so the eigenvalues are λz, z. The trace is 1
2 (1 +λ)(1 + ζ) =

1
2 (1 + λ)(1 + z2), so

λz + z = 1
2(1 + λ)(1 + z2) ⇐⇒ z = 1 + z2

2 ⇐⇒ z = 1.

However ζ = z2 = 1, a contradiction.
If ζ = −1, then λz,−1/z are the eigenvalues. The trace is now zero, so λz = 1/z. Since

λ is a nonnegative real, taking norms of both sides implies λ = 1, a contradiction. Hence the
eigenvalues are indeed less than 1. J

Lemma 21 allows us to employ Lemma 4.2 in [9] (since all characters of Z/mZ are
χ(n) = ζn for some m’th root of unity ζ) to deduce the following.

I Theorem 22. Let Um be the uniform distribution over [m], and let Sm(n, λ) be the
distribution of |s| (mod m) over [m], where s ∼ S(n, λ). The `1 distance between these two
distributions can then be bounded by

||Um − Sm(n, λ)||1 ≤ exp(−Ω(n))

where the implied constants only depend on m.

7 Relationship Between the Sticky Walk and Expander Walk

Define a λ-expander1 to be a regular graph G such that all eigenvalues λ1 ≤ · · · ≤ λm
of the normalized adjacency matrix satisfy |λi| ≤ λ for 1 ≤ i ≤ m − 1. One of the main
motivations to study the sticky random walk is because of its perceived close relationship
with the distributions generated by expander walks. In particular, if (v1, . . . , vn) is a n-step

1 Unlike standard definitions, we do not restrict the degree of each vertex to be constant. The purpose of
this section is to show any analysis of expander walks cannot give better bounds than the sticky walk.
Since analyses on expander walks are based off of the spectral properties of the graph rather than its
degree, restriction of the degrees are unnecessary for our purposes.
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expander walk on a λ-expander G = (V,E), and W ⊂ V with |W | = |V |/2, we believe the
distribution (1v1∈W , . . . ,1vn∈W ) is linked to the sticky walk S(n, λ). In this section, we
demonstrate one direction of this relationship by explicitly constructing a λ-expander and
vertex subset W of half the size such that the distribution of (1v1∈W , . . . ,1vn∈W ) is precisely
S(n, λ).

I Theorem 23. There exists λ-expander G = (V,E) and vertex set W ⊂ V with |W | = |V |/2
such that if (v1, . . . , vn) is a random walk on G, the random n-bit string (1v1∈W , . . . ,1vn∈W ) ∼
S(n, λ).

Proof. For simplicity, assume λ is rational, and take integerm such that ( 1−λ
1+λ )m is an integer.

Let C0 and C1 be two m-cliques with an added self-loop at each vertex. Construct the graph
G by taking each vertex in C0 and connect it to ( 1−λ

1+λ )m vertices in C1 in a cyclic uniform
manner to make this graph 2m

1+λ -regular (i.e. if we arbitrarily number the vertices in C0 and
C1 from 1 to m, just connect vertex i in C0 with the C1 vertices i, i+ 1, . . . , i+ ( 1−λ

1+λ )m− 1
(mod m)). Note upon setting W = C1, a random walk on this expander resembles the sticky
random walk, because at each step, m edges will keep us in the same clique, and ( 1−λ

1+λ )m
will move us to the other, which gives us a 1+λ

2 chance of staying in the same clique and 1−λ
2

chance of moving to the other. Our aim is to now show the eigenvalues of the normalized
Laplacian, L, are within λ of 1.

To do so, we will first show all eigenvalues of L are ≤ 1 + λ, and then demonstrate
L has second smallest eigenvalue 1 − λ. Note that the second smallest eigenvalue is
minv⊥1,||v||2=1 v

ᵀLv, and the largest eigenvalue is wᵀLw, where w is the corresponding
normalized eigenvector of this largest eigenvalue. Since 1 ⊥ w, it suffices to show that for
v ∈ R2m with ||v||2 = 1 and v ⊥ 1, we have 1− λ ≤ vᵀLv ≤ 1 + λ. WLOG assume the first
m rows/columns are the vertices in C0 and the latter m are the vertices in C1. Let t = 1−λ

1+λm

and let v = (a1, . . . , am, b1, . . . , bm). Recall from the quadratic form version of the Laplacian
and by construction of G that

(m+ t)vᵀLv =
∑

1≤i<j≤m
(ai − aj)2 +

∑
1≤i<j≤m

(bi − bj)2 +
∑

1≤i≤m
0≤j<t

(ai − bi+j)2

where indices are taken modulo m. Since v ⊥ 1, we have

0 =
(

m∑
i=1

ai +
m∑
i=1

bi

)2

= 2m
(

m∑
i=1

a2
i +

m∑
i=1

b2
i

)
−

∑
1≤i<j≤m

(ai − aj)2

−
∑

1≤i<j≤m
(bi − bj)2 −

∑
1≤i≤m
0≤j<m

(ai − bi+j)2

= 2m||v||22 − (m+ t)vᵀLv −
∑

1≤i≤m
t≤j<m

(ai − bi+j)2

vᵀLv = 2m
m+ t

− 1
m+ t

∑
1≤i≤m
t≤j<m

(ai − bi+j)2 (18)
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For one side, we can trivially upper bound (18)

vᵀLv ≤ 2m
m+ t

= 1 + λ.

For the lower bound of (18), we can use Cauchy-Schwarz to get

vᵀLv ≥ 2m
m+ t

− 2
m+ t

∑
1≤i≤m
t≤j<m

(a2
i + b2

i+j)

= 2m
m+ t

− 2m− 2t
m+ t

||v||22

= 2m
m+ t

= 1− λ.

Hence we can conclude the nonzero eigenvalues of L are within λ of 1. Thus, G is indeed
a λ-expander that models a S(n, λ) sticky walk. J

Note that this construction gives a family of λ-expanders: one for each m where
(

1−λ
1+λ

)
m

is an integer. In order to extend the above theorem to degree-bounded expanders, we believe
replacing the cliques C0 and C1 with degree d expanders, and adding a random bi-regular
bipartite graph with degree

(
1−λ
1+λ

)
d between them will suffice, but we have not verified this.
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A Deferred Proofs

B Claim 14. For 1 ≤ k ≤ n/2, we can bound (nk)2

( n2k)
≤ e3√2

4π2 · 42k.

Proof. We can use Stirling’s approximation
√

2π
(
n
e

)n√
n ≤ n! ≤ e

(
n
e

)n√
n to bound(

n
k

)2(
n
2k
) = n!(2k)!(n− 2k)!

k!2(n− k)!2

≤ e3

4π2 ·
nn(2k)2k(n− 2k)n−2k

k2k(n− k)2n−2k

√
2n(n− 2k)
k(n− k)2

≤ e3

4π2 · 2
2k
(

n

n− k

)n(
n− 2k
n− k

)n−2k√2
k

≤ e3√2
4π2

(
2n
n− k

)2k

≤ e3√2
4π2 · 4

2k C

I Lemma 17. As n→∞, Y
√

1−λ
(1+λ)n →N in distribution.

Proof. The idea is to use the method of moments (see Theorem 8.6 of [6]), which states the
lemma can be deduced if all moments of Y approach the moments of N as n→∞. The odd
moments of the Gaussian distribution is zero, and the 2k’th moment is (2k − 1)!! := (2k)!

2kk! for

all k ≥ 1 (see [8]). Clearly E
[(

Y
√

1−λ
(1+λ)n

)2k+1
]

= 0 by the symmetry of Y .

It now remains to show that E
[(

Y
√

1−λ
(1+λ)n

)2k
]
→ (2k − 1)!! as n → ∞. Let Pk

denote the set of unordered partitions of k into positive parts, where we express each
partition as a multiset of positive integers A = [a1, . . . , am] where

∑m
i=1 ai = k. We define

g([a1, . . . , am]) = (
∑m

i=1
ai)!∏m

i=1
ai!

. By expanding (
∑n
i=1 Y i)2k, collecting terms with the same

multiset of degrees, and taking exponents modulo 2,

E[Y 2k] = E

( n∑
i=1

Y i

)2k
 =

∑
P∈P2k

g(P )E

 ∑
T∈( [n]

|P |)

|P |∏
i=1

Y pi
ti


=
∑
P∈P2k

g(P )E

 ∑
T∈( [n]

|P |)

∏
i;2-pi

Y ti

 (19)

where P = [p1, . . . , p|P |] and T = {t1, . . . , t|P |}. Now let Po and Pe be the multiset containing
all odd and even elements of P (with multiplicity), respectively. Define h([a1, . . . , am]) to

ITCS 2021

https://doi.org/10.1145/3055399.3055408


48:18 Pseudobinomiality of the Sticky Random Walk

be the number of ways to permute (a1, . . . , an) (e.g. g([1, 2, 2, 6]) = 12 since there are 12
ways of permuting (1, 2, 2, 6), g([2, 2, 2]) = 1, and g([1, 4, 5, 6]) = 24). By Equation 5 and
Lemma 12, we have

E

 ∑
T∈( [n]

|Po|)

∏
i∈T

Y i

 = E[K|Po|(|s|)] =
n−|Po|/2∑
m=|Po|/2

(
m− 1
|Po|/2− 1

)(
n−m
|Po|/2

)
λm.

With this, we can rewrite

E

 ∑
T∈( [n]

|P |)

∏
i;2-pi

Y ti

 = h(Pe)
(
n− |Po|
|Pe|

)
E

 ∑
T∈( [n]

|Po|)

∏
i∈T

Y i


= h(Pe)

(
n− |Po|
|Pe|

) n−|Po|/2∑
m=|Po|/2

(
m− 1
|Po|/2− 1

)(
n−m
|Po|/2

)
λm

∼ h(Pe)
n|Pe|

(|Pe|)!

n−|Po|/2∑
m=|Po|/2

(
m− 1
|Po|/2− 1

)
n|Po|/2

(|Po|/2)!λ
m

= n|P |−|Po|/2 · h(Pe)
(|Po|/2)!(|Pe|)!

n−|Po|/2∑
m=|Po|/2

(
m− 1
|Po|/2− 1

)
λm (20)

and so by combining (19) and (20), we have

E[Y 2k] ∼
∑
P∈P2k

n|P |−|Po|/2 · g(P )h(Pe)
(|Po|/2)!(|Pe|)!

n−|Po|/2∑
m=|Po|/2

(
m− 1
|Po|/2− 1

)
λm. (21)

We just have to look at the leading term of this sum, which is when |P | − |Po|/2 is
maximized (since |P2k|, g(P ), and h(Pe) don’t depend on n). Note

|P | − |Po|2 = (|Po|+ |Pe|)−
|Po|

2 = |Po|+ 2|Pe|
2 ≤

∑
p∈Po p+

∑
p∈Pe p

2 = k.

Hence the leading terms are when |P | − |Po|/2 = k, and these terms correspond to when
all elements of P are 1 or 2. In particular, the leading terms correspond to the multisets
P with 2r 1’s and k − r 2’s for 0 ≤ r ≤ k. In these cases, we can calculate |P | = k + r,
|Po| = 2r, h(Pe) = 1 and g(P ) = (2k)!

2k−r Hence from (21) we get

E[Y 2k] ∼
k∑
r=0

(2k)!
2k−rr!(k − r)!

(
n−r∑
m=r

(
m− 1
r − 1

)
λm

)
nk

= (2k − 1)!!
k∑
r=0

(
k

r

)
2r
(
n−r∑
m=r

(
m− 1
r − 1

)
λm

)
nk.

Consequently, we have the 2k’th moment of Y
√

1−λ
(1+λ)n is

∼ (2k − 1)!!
(

1− λ
1 + λ

)k k∑
r=0

(
k

r

)
2r
(
n−r∑
m=r

(
m− 1
r − 1

)
λm

)
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Taking n→∞ and evaluating the series with the well-known generating function identity
( x

1−x )r =
∑
m≥r

(
m−1
r−1
)
xm, we get that the 2k’th moment approaches

(2k − 1)!!
(

1− λ
1 + λ

)k k∑
r=0

(
k

r

)
2r
( ∞∑
m=r

(
m− 1
r − 1

)
λm

)

= (2k − 1)!!
(

1− λ
1 + λ

)k k∑
r=0

(
k

r

)(
2λ

1− λ

)r
= (2k − 1)!!

(
1− λ
1 + λ

)k (
1 + 2λ

1− λ

)k
= (2k − 1)!!.

Hence by the method of moments Y
√

1−λ
(1+λ)n →N in distribution as n→∞. J
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Abstract
We formulate an average-case analog of the NLTS conjecture of Freedman and Hastings (QIC 2014)
by asking whether there exist topologically ordered systems with corresponding local Hamiltonians
for which the thermal Gibbs state for constant temperature cannot even be approximated by shallow
quantum circuits. We then prove this conjecture for nearly optimal parameters: we construct
a quantum error correcting code whose corresponding (log) local Hamiltonian has the following
property: for nearly constant temperature (temperature decays as 1/log2log(n)) the thermal Gibbs
state of that Hamiltonian cannot be approximated by any circuit of depth less than log(n), and it is
highly entangled in a well-defined way. This implies that appropriately chosen local Hamiltonians can
give rise to ground-state long-range entanglement which can survive without active error correction
at temperatures which are nearly independent of the system size: thereby improving exponentially
upon previously known bounds.
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1 General

In order to perform universal quantum computation, one should at the very least be able to
store quantum states for long periods of time. While the Fault Tolerance theorem [1] makes
this possible using active error correction, in parallel, and in part due to the limitations of
the FT theorem (see e.g. [4]) a huge research effort was devoted to finding quantum systems
that can retain quantum information passively - namely a self-correcting quantum memory.

Self-correcting quantum memories are often referred to as topologically-ordered systems
(or TQO) which is a phase of matter that exhibits long-range entanglement at 0 temperature.
Since 0 temperature states are essentially theoretical objects that one does not expect to
encounter in the lab, the race was on to find TQO systems whose long-range entanglement
can survive at very high temperatures - ideally at a constant temperature T > 0 that is
independent of the system size.

In recent years there has been progress in ruling out such robustness for low-dimensional
systems like the 2-D and 3-D Toric Code, but there has been an indication that perhaps in 4
dimensions and above, robustness is more likely (see Section 2.1.2 for a summary of these
results). Intriguingly, it seems that quantum mechanics does not fundamentally limit the
ability to store quantum states for long times, at least for high-dimensional systems. Despite
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that there remains today a large gap between our physical intuition and our ability to provide
formal proofs on the existence of robust systems. Hence the problem of establishing the
existence of robust TQO systems, even for high dimensions is wide open.

2 Topological Quantum Order (TQO)

TQO is a phase of matter (i.e. in addition to the traditional gas, liquid, and solid states)
defined as the zero eigenspace of a local Hamiltonian which is “robust” in the sense that
there can be no transition between orthogonal zero eigenstate without a phase transition
(See survey of TQO in [19]). Formally one says that a system is ε-TQO if any sufficiently
local observable O is unable to discern orthogonal states of the groundspace - i.e. there exists
some z 6= 0 such that

‖POP − zP‖ ≤ ε

where P is the projection onto the groundspace.
In the language of quantum computing, TQO is mostly synonymous with quantum error

correcting codes, and specifically topological quantum codes - these are ε-TQO systems with
ε = 0. Under error-correction terminology the TQO property of robustness of ground-state
degeneracy is the quantum error-correcting minimal distance: i.e. the system can retain its
logical encoded state in the presence of sufficiently small errors.

Thus, TQO systems have the promise that at zero temperature, their entanglement
can passively sustain itself (i.e. without active error-correction) as a form of self-correcting
quantum memory. It is this stability that brought forth the immensely influential paradigm of
the topological quantum computer by Kitaev [14, 8], and even initiated large-scale engineering
efforts in trying to build such a set-up [9].

However, since a physicist attempting to prepare a TQO state in a lab can only expect
to encounter a Gibbs state (i.e. a thermal state) of the Hamiltonian governing the TQO
for some low temperature, then for TQO to serve as a self-correcting quantum memory a
necessary property for such a system is that it retains its long-range entanglement at some
non-zero temperature T > 0 that is independent of the size of the system.

A natural treatment of robustness of TQO systems can be made using quantum circuit
lower bounds, a form of analysis initially considered in [11]. Under TQO terminology,
topologically ordered states cannot be generated from a tensor product state using a shallow
circuit, whereas a state is said to be “trivial” if it can be generated from product states by
shallow circuits - namely it is nearly equivalent to a product state in its lack of quantum
entanglement. With this terminology in mind we consider the following conjecture:

I Conjecture 1 (Robust Circuit Depth for Topologically Ordered Systems). There exists a
number β > 0 and a family of topologically-ordered systems (local Hamiltonians) {Hn}n on n
qubits such that for all γ ≥ β we have: Any quantum circuit U that approximates the thermal
Gibbs state e−γH to vanishing trace distance has depth Ω(log(n)).

In words: the conjecture posits the existence of a TQO system (say, a quantum error-
correcting code) for which one can show a circuit lower bound for the thermal state for all
T from 0 (i.e. the ground-state) up to some constant temperature. Such a system exhibits
“robustness” in the sense that the circuit lower bound for approximating its Gibbs state does
not collapse when temperature is increased, with the logarithmic bound potentially allowing
the coupling of every pair of qubits in the system, using a locally-defined quantum circuit.
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Similar variants of this conjecture have been studied in physics literature: for example,
in [20] Yoshida provides a negative solution to a similar conjecture for codes embeddable in 2
or 3 dimensional lattices. On the other hand, in [11, 13] the authors provided an indication to
the affirmative of this conjecture by considering the 4-dimensional Toric Code: for example,
Hastings [11] assumes the existence of certain error operators from which he derived a
related property. In [3] the authors use an approximation of thermal systems called the
weak Markovian limit, and conclude that certain topological measurements are preserved at
constant temperatures for exponentially long time in the system size (exponential coherence
times). However, to the best of our knowledge there is no formal proof of conjecture 1.

Here, we make progress towards affirming this conjecture formally by proving conjecture
1 for nearly-optimal parameters:

I Theorem (sketch). (Robust TQO at nearly Room Temperature). There exists a log-local
family of quantum error-correcting codes {Cn}n with polynomial minimal distance nΩ(1) (in
particular, a topologically-ordered system) and a corresponding family of commuting local
Hamiltonians {Hn}n such that for any βn = O(log2log(n)) the following holds: any quantum
circuit V that acts on a ≥ n qubits and approximates the thermal state at temperature at
most Tn = 1/(κβn) on a set of qubits S, |S| = n:∥∥∥∥ 1

Z
e−βnHn − tr−S(V |0⊗a〉〈0⊗a|V †)

∥∥∥∥
1

= o(1), Z = tr(e−βnHn)

satisfies a circuit lower bound:

d(V ) = Ω(ln(n)).

Our proof will actually show a stronger statement: namely that the thermal Gibbs state of
these codes, for sufficiently low, yet nearly constant temperature, can be decoded using a
shallow circuit to a bona-fide quantum code state. This implies that the Gibbs state retains
topological order (up to a shallow decoder) at very high temperatures: if we initialize our
system in some ground-state of the TQO, and allow it to thermalize, we can later recover
that code-state with little extra cost (see Section 2.1.7 discussing the possible implementation
error of such a set-up). In particular, it implies that appropriately chosen local Hamiltonians
can give rise to ground-state multi-partite entanglement which can survive without active
error correction at nearly-constant temperatures.

2.1 Some Perspective

2.1.1 The Thermal Gibbs State

This study explores quantum circuit lower bounds on arguably the most natural of physical
states - namely the thermal Gibbs state e−βH - which can be formed by coupling a ground-
state of a physical system H to a “heat bath” at temperature 1/β - meaning it is allowed to
interact indefinitely with an environment to which we have no access to. (see definition 3)

2.1.2 The Regimes of “Inverse-Temperature” β

We consider here a summary of prior art: the temperature at which one can establish an
Ω(log(n)) (i.e. “global”) circuit lower bound for the Gibbs state of a Hamiltonian:

ITCS 2021



49:4 Robust Quantum Entanglement at (Nearly) Room Temperature

Hamiltonian Temperature Result Comments
QECC with large distance 0 Folklore
2 or 3-D systems O(1/poly(n)) 1 [20] No-go theorem
Projective Code Ω(1/polylog(n)) This work By definition, Without amplification
Amplified Projective Code Ω(1/polyloglog(n)) This work With amplification
4-D Toric Code Ω(1) [11] Heuristic argument.

Our main theorem establishes the existence of log-local Hamiltonians for which the
thermal state e−βH for β = (loglog(n))2 requires a logarithmic circuit depth. Therefore it
improves exponentially on previous work in terms of the provable highest temperature as a
function of system size n at which circuit lower bounds can be maintained.

Notably, observe that the rate of errors experienced by quantum states from this ensemble
scales like n/polylog(n) - i.e. a nearly linear fraction. Such error rates result in error patterns
whose weight is much larger than the minimal error-correcting distance of the quantum code,
and hence it is not immediately clear, at least from an information-theoretic perspective,
whether these states - that formally cannot protect quantum information - can be assigned
circuit lower bounds.

2.1.3 Is it Entangled?

Any quantum system satisfying Conjecture 1 has a highly entangled ground-space, because
for T = 0 a Gibbs state can be any (possibly pure) ground-state of a topologically ordered
system. That said, for T > 0 the circuit lower bound is applied to mixed states: assigning
a quantum circuit lower bound for the task of approximating a quantum mixed state (as
opposed to a pure state) does not necessarily indicate the existence of quantum correlations
but rather the presence of long-range correlations, which may or may not be quantum. In
fact, by using the argument of Lovett and Viola [17] one can show a Ω(log(n)) circuit lower
bound for the Gibbs state at constant temperature T = Ω(1) of any good classical locally
testable code, though, this bound breaks for T = 0 since any classical string codeword, which
is unentangled, is a valid Gibbs state.

However, as noted above even this somewhat weaker notion of a quantum system with
a highly-entangled ground-space that retains a quantum circuit lower bound at very high
temperature isn’t known to exist (at least formally), and is related to major open questions
in quantum complexity theory. See in this context the NLTS conjecture discussed in the
section 2.1.6.

2.1.4 Quantum Circuit Lower Bounds

This work adds to the set of available tools for showing quantum circuit lower bounds - by
combining quantum locally-testable codes, an analysis of the thermal state as a truncated
Markov chain, and a local decoder that relies on these two properties to decode a thermal
state to a bona-fide quantum code-state which can be assigned a circuit lower bound by
information-theoretic arguments. Previous works have either used quantum locally testable
codes [5] to argue direct circuit lower bounds, or local decoders [11, 16] but as far as we
know these strategies were never used in conjunction. We outline our strategy in more detail
in Section 2.3
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2.1.5 Energy versus error
An important distinction that one needs to make early on is that having a quantum state with
low-energy does not necessarily imply it is generated by applying few errors to a ground-state.
This is only true if the Hamiltonian governing the quantum state is a so-called qLTC [2].
qLTC’s are quantum analogs of locally-testable codes (and see Definition 7).

Like their classical counterparts qLTC’s are (local) Hamiltonians for which large errors
necessarily result in a large number of violations from a set of local check terms. To give
an example - consider Kitaev’s 2-dimensional Toric Code [14] at very low-temperature, say
T = O(1/

√
n). At that temperature the probability of an error of weight

√
n, at least one

which is composed of strings of weight
√
n is proportional to the probability of observing

an error of constant energy, i.e.: e−βO(1) i.e. comparable to the probability of a single error.
So, unless additional structure of the problem is used, for all we know the number of errors
could be Ω(n). The reason for the above is that the Toric Code is known to have very poor
soundness as a locally testable code: in fact one can have an error of size

√
n with only two

violations.

2.1.6 The relation to NLTS
Conjecture 1 above is a mixed-state analog (albeit with a slightly more stringent requirement
on the circuit depth) of the NLTS conjecture due to Freedman and Hastings [7] - which posits
the existence of local Hamiltonians for which any low-energy state can only be generated by
circuits of diverging depth. As far as we know neither conjecture is stronger than the other.

Arguably, the only known strategy to establishing the NLTS conjecture, outlined in [5], is
to show a construction of quantum locally-testable codes (qLTC’s) with constant soundness
and linear minimal quantum error correcting distance. However, such a statement by itself
requires the construction of quantum LDPC codes with distance growing linearly in the
number of qubits - a conjecture now open for nearly 30 years. Thus our inability to make
progress on qLDPC is a significant barrier to any progress on the NLTS conjecture.

In this work, we show that by considering a mixed-state (or average-case) analog of NLTS
(while still placing a more stringent requirement on the circuit depth) one can break away from
this strategy using the tools we already have today - namely qLTC’s with 1/polylog soundness
and code distance which is sub-linear in n, in this case

√
n, and achieve a construction

with nearly optimal parameters. Nevertheless, it could be the case that the construction
provided here is in fact NLTS - meaning there are no trivial states of the code Hamiltonian
for sufficiently small constant temperature.

2.1.7 Implementation Error
Above, we mentioned the ability of the proposed system to allow thermalization of an
initialized state, and still be able to recover that state using a local decoder. Arguably, one
can argue against such a statement that one also needs to account for the implementation
error of the Hamiltonian governing the TQO state, as well as the decoding Hamiltonian.
There exist analogous claims against active fault-tolerance in the form of implementation
error of the error-correcting unitary circuits.

However, we conjecture that the system we construct, insofar as the check terms of the
Hamiltonians are concerned {Ci}, is in fact robust against implementation error by virtue of
local testability. Recall that a locally testable code (see Definition 7) satisfies the following
operator inequality: 1

m

∑m
i=1 Ci �

s
nDC . where DC is an operator that relates a state to its

distance from the code-space.
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On can check that if the LHS above suffers from an additive error quantified by a
Hermitian error operator E , 1

m

∑m
i=1 Ci + E then using standard results about stability

of Hermitian operators under Hermitian perturbation, the resulting code will still be, for
sufficiently weak error E , a locally testable code albeit with slightly worse parameters, and
for a smaller range of distances from the codespace: it will not be able to faithfully test very
small errors, but only large errors.

Still, this code will possess the key property that we use here to argue the main theorem:
that for sufficiently low temperature (depending on the strength of the implementation error
‖E‖) - the code reins in the error weight to small weights, and these errors are far apart to
allow for local error correction. Notably, the actual shallow decoder used in the argument
will also suffer from implementation noise, undoubtedly, but as a theoretic argument about
entanglement, it is only important to account for implementation error of the Hamiltonian,
and not the decoding circuit.

Hence the system proposed has apparently two advantages: not only it is able to sustain
long-range entanglement for high temperatures as established in Theorem 31, one doesn’t
even need to implement it precisely to gain the first advantage. We leave for future research
to quantify precisely the degree to which this system is robust against implementation error.

2.2 Some Open Questions

We end this section with several questions for further research. First, it is desirable to
improve (reduce) the value of β and improve (reduce) the locality of checks (currently they
are log-local). We note that a limiting factor to decreasing β is the maximal size set for
which one can show near-optimal expansion, for qLTC’s.

An interesting extension of this work is to extend it to actual quantum information -
namely show the system can store an arbitrary quantum state for long periods of time:
notably here we have only showed that one can recover the uniform distribution on code-states,
but it is not immediately clear that it can preserve a single arbitrarily encoded code-state.
In addition, it would be insightful to understand the actual coherence time of such a system
as a self-correcting quantum memory - we conjecture that it is polynomial in n.

Finally, one could explore the possibility that the constructed code in fact satisfies the
NLTS condition: namely that any low-energy state is highly entangled.

2.3 Overall Strategy

In figure 1 we outline the main steps of our argument. To recall, the main goal of this study
is to demonstrate that the thermal state e−βH/Z is hard to produce for sufficiently small β,
and show the same for any ground-state of H - mixed or pure.

Our overall strategy is to demonstrate a shallow quantum circuit that allows to correct
this thermal state to some code-state of a quantum code with large minimal distance. For a
quantum code with large minimal error-correcting distance it is a folklore fact (made formal
here) that any quantum state in that codespace is hard to approximate (the gray-shaded box
in Figure 1), thereby satisfying the hardness-of-approximation requirement for groundstates.
Furthermore, together with the existence of a shallow decoder, it implies a lower-bound on
the circuit depth for e−βH as the lower-bound on a circuit generating a quantum code-state,
minus the depth of the decoder. Thus, working in the diagram of Figure 1 backwards we
translate our overall theorem to demonstrating a shallow error-correcting circuit from a
thermal state to a code-state with polynomial distance.
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2.3.1 Translating Energy to Error
The strategy outlined above requires us to demonstrate a shallow decoder for thermal states
of sufficiently low temperatures. Here we are faced with a severe obstacle: a thermal Gibbs
state is defined in terms of energy, whereas the natural language for decoders is the language
of “errors” (whether they are average-case or worst-case). Hence we need a scheme to argue
about the error distribution of the Gibbs state.

To our aid come quantum locally testable codes (qLTCs) [2] (and see Definition 7). The
main use of locally testable codes is to rein in the error weight of low-energy states. We
use this property in conjunction with the well-known Metropolis-Hastings algorithm (or
MH) on Hamiltonians corresponding to the check terms of qLTC’s. The MH algorithm is
a standard tool in physics to simulate the thermal Gibbs state by a random walk where
transition probabilities between quantum states are dictated by their relative energies (see
Section 7).

Applying this tool to local Hamiltonians corresponding to qLTCs we show that the thermal
Gibbs state e−βH , for H corresponding to a qLTC, can in fact be approximated by a so-called
“truncated” MH process. These arguments correspond to the top Vanilla-colored boxes in
the diagram.

As a general note, as far as we know, no previous work using qLTC’s made such a
translation from energy to error weight: in [5] the authors show that qLTC’s with linear
distance are NLTS, but since such codes are not known to exist, they end up proving a
somewhat weaker version called NLETS thus bypassing the energy-to-error translation. On
the other hand, such a translation is probably the most natural way to proceed w.r.t. quantum
codes: we do not know how to treat “energies” on quantum states, but if we can model the
errors they experience we can leverage our vast knowledge of quantum error-correction to
handle them. Hence, we believe that the use of the MH random process is of conceptual
importance and will be useful elsewhere, since it allows for the first time, to bring the analysis
from a point we want to argue about (“energies”) to a point where we have powerful analysis
tools (“errors”).

2.3.2 Shallow Decoding from Local Expansion
To recap the flow of arguments: the arguments about the MH random process (Vanilla-
colored boxes in Figure 1) allow us to argue that the thermal Gibbs state e−βH , for a qLTC
Hamiltonian H, can be simulated by sampling an error according to an MH random walk
that is controlled by the inverse temperature β and the soundness of the qLTC. We would
now like to leverage that property to demonstrate a shallow decoder for this state.

A key observation towards that end (corresponding to the bottom Vanilla-colored box)
is that while the MH random process is not an i.i.d. process, it does in fact conform
to a somewhat weaker characterization called “locally-stochastic” (or “locally-decaying”)
[15, 6, 10], which are a main source of inspiration of this work. A noise is locally-stochastic if
the probability of a large cluster of errors decays exponentially in its size (see Definition 23).

Concretely, using the truncated MH random process we conclude (orange box) that
for sufficiently large β (low temperature) the errors experienced by the Gibbs state are
locally-stochastic, and hence typically form only small clusters whose size is, say, at most
log(n).

In effect, a stronger notion is true: we show that local-stochasticity of these random
errors means that their clusters are also far away from each other - in the sense that even if
we “blow up” each cluster by a factor of 1/α (for small α > 0) they are still at most the size
above. This definition is called α-subset and it too, is due to [15, 6].
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In these works, error patterns that are locally-stochastic were shown to be amenable to
correction by a local decoder, since intuitively, these errors can be “divided-and-conquered”
locally. In this context, the notion of α-subsets was used to handle the possibility that the
decoder can introduce errors to qubits which weren’t initially erred, by arguing that even if
such an event occurs it will not cause the initial clusters to aggregate together to form large,
undecodable clusters.

Our choice for a shallow “local-decoder” is to use a straightforward quantum generalization
of the Sipser-Spielman decoder (notably, a variant of this decoder was used in [15]). This
decoder is desirable since it is able, under certain conditions to decode an error of weight w
in time log(w), and do so locally. That would imply that for error patches of logarithmic
size, the decoder would run in depth O(loglog(n)) - i.e. a very shallow decoder.

However, such a decoder comes attached with a very stringent condition: it requires the
Tanner graph of the code to be a very strong bi-partite expander. That condition is too
stringent for our purposes, since we also need the quantum code to be locally-testable, and
it is not known how to make even classical local-testability co-exist with the code’s Tanner
graph being a bi-partite expander.

In our study, we relax the stringent expansion condition, and require that only very
small errors, i.e. those of logarithmic size which we’ve shown to be the typical error size for
the Gibbs state - those errors are required to expand well (“small-set expansion”), while
requiring nothing for linear-weight errors, which is the regime of interest of the standard
Sipser-Spielman decoder. Hence, we are able to use a code whose Tanner graph is not a true
expander. This while still being able to use the Sipser-Spielman approach to a fast parallel
decoder by considering only small sets. These arguments are outlined in the pink-shaded
boxes in the middle of the diagram.

2.4 The construction
To recap again, starting from the previous section, our goal is to find quantum a code, whose
thermal state can be corrected quickly and in parallel. We’ve shown that if a code is qLTC
then the Gibbs state can be essentially modeled as an error process that is locally-stochastic.
Locally-stochastic errors can be decoded quickly, if the underlying topology is a good expander
- at least for the typical error size. Hence, our interim goal is to find a quantum code C that
satisfies simultaneously three requirements:
1. It has a minimal quantum error-correcting distance that is some polynomial in the number

of qubits n, say
√
n - to allow a circuit lower bound for proper code-states.

2. It is locally-testable - to allow translation from energies to errors in the truncated-MH
modeling of the Gibbs state.

3. Expansion of the bi-partite Tanner graph corresponding to the checks of the code, for
errors of small weight (or “small-set expansion”) - to allow for shallow decoding using the
Sipser-Spielman algorithm.

2.4.1 The Choice of Quantum Code
In [12] Hastings found a way to make progress on the qLTC conjecture [2] by considering
high-dimensional manifolds: he showed that by tessellating a high-dimensional sphere using
a regular grid (or some other topology for improved rate) the resulting quantum code on n
qubits has soundness 1/polylog(n). We make a crucial use of his approach here.

Recently, Leverrier et al. [16] have proposed the projective code, which is an arguably
simpler variant of this high-dimensional construction whereby a length-3 complex chain of
p-faces of the binary N -cube (modulo the all-ones vector), for p = Ω(N) is used to derive
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a quantum code on n qubits with distance scaling like nc, for some constant c > 0. This
code has improved soundness compared to the one in [12]. Our construction is based on the
projective code on n qubits, using p-faces of the N -dimensional cube for p = N/2, where
N = Θ(log(n)).

On one hand, by the minimal distance of the projective code one immediately gains a
circuit lower bound of Ω(log(n)) on the minimal depth circuit generating its ground-state
(corresponding to the gray-shaded block in Figure 1. This satisfies the first requirement
above. It is also a qLTC with reasonable (1/log2(n)) soundness, (see navy-shaded block in
Figure 1) thus satisfying the second requirement.

However, the last critical advantage that we gain by using this code, as opposed to say
the original high-dimensional manifold of Hastings, is not its improved soundness parameter
but rather the underlying structure of the high-dimensional cube: namely its property of
small-set expansion that exists in addition to its non-negligible soundness. This property
of small set expansion is the turnkey for allowing the application of a shallow decoder to
combat the typical errors of a thermal state with large β parameter.

More specifically, we make crucial use of the structure of the N -cube to establish the
third requirement - namely, show that small error sets expand significantly - i.e. have many
unique incident constraints. This emanates from the fact that small subsets of p-faces of the
n-cube for p = n/2 have many adjacent p+ 1-faces and many adjacent p− 1-faces.

2.4.2 Efficient Soundness Amplification

The flow of arguments until this point results in lemma 27 which roughly states that a
qLTC with soundness s and qubit degree D has the property that its thermal state for
sufficiently large inverse temperature: β ≥ log(D)/s. has error patterns that form clusters of
only logarithmic size. Such errors admit a shallow-depth parallel decoding scheme resulting
in a circuit lower bound for approximating this thermal state.

Consider, for example the projective code of [16]. We have D = log(n), s = 1/log2(n)
Using these parameters one would only be able to establish a circuit lower bound for
β = polylog(n). Hence, by the behavior of β as a function of D and s one sees it is desirable
to trade-off increased degree for improved soundness so long as these two quantities are
increased/decreased in a commensurate manner.

Using standard probabilistic analysis we show that it is sufficient to choose a random
family of Ω(nlog2(n)) subsets - each set comprised of 1/s checks in order to achieve a qLTC
with constant soundness and query size q/s. This corresponds to the second navy-shaded
box in Figure 1.

This amplification procedure results in a somewhat peculiar situation that we’d like to
point out: the thermal Gibbs state e−βH is defined w.r.t. the Hamiltonian H = H(Cpa)
where Cpa is the result of the amplification of the projective code formed by choosing a
sufficiently large random family of subsets of check terms of size 1/s each. However, the
decoding procedure, using the Sipser-Spielman algorithm uses the original checks of C to
locate and correct errors, and not the amplified ones: this is because we do not establish
local expansion for the amplified checks, only for the original checks. Still, both sets of checks
share the same code-space - namely the original projective code C. Hence, the set of checks
used for testing are not the same as the ones used for correcting errors.
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Fact 1: Metropolis-Hastings process converges
to e−βH

Prop. 2: Metropolis-Hastings random pro-
cess for (q,s)-qLTC Hamiltonian truncated
at weight k approximates e−βH for β =
O(ln(n/k)/s)

Lemma 9: k-Truncated
Metropolis-Hastings results
in locally-stochastic error
distribution for all k ≤
n/4D

Lemma 8: Locally-
stochastic error with
p = Ω(1/D) has w.h.p.
largest α-connected compo-
nent of size at most t with
probability O(n(D · pα)t)

Lemma 10: Let Cpa denote the amplified code,
and H = H(Cpa). For β = O(ln(D)/(αs))
the maximal α-connected component has size
at most ln(n)/100 w.h.p when sampling from
e−βH .

k = n/(De200)1/α

k = n/(De200)1/α

Lemma 11: The Sipser-Spielman
decoder on a (c, d)-regular bi-
partite graph such that for all er-
rors of weight E at most w has
|N(E)| ≥ c · (3/4 + ε)|E| runs in
O(w) steps and corrects E.

Lemma 12: Consider the projec-
tive code and an error E whose
maximal α-connected component
has size at most ln(n) for α =
1/ ln ln(n). Then applying SS de-
coder on X,Z errors separately
corrects E.

Lemma 5:
Let E be an error of weight at
most ln(n)/100. Then |N(E)| ≥
|E|D(15/16) for both X,Z checks.

Thm. 2: Let H = H(Cpa) and
β = O(ln(D)/(αs)). Applying the
SS decoder on X,Z errors to e−βH

results w.h.p. in a state of Cpa.

Thm. 2: For β = O(ln2 ln(n)) the
quantum state e−βH cannot be ap-
proximated to error o(1) with cir-
cuits of depth o(log(n)).

q = log3(n), D = log3(n), s = 1/e

Lemma 1: Let ρ ∈ C be a state
in a quantum code C on n qubits
with minimal distance at least nc

for constant c > 0. Then any cir-
cuit that approximates ρ to dis-
tance better than o(1) has depth
Ω(log(n)).

D = log(n), s = 1/ log2(n)

Prop. 1:
Soundness amplification

Lemma 6: The projective code
on n qubits C has parameters
[[n, 1, nc]], and is qLTC (q =
log(n), s = 1/ log3(n)), and degree
D = log(n)

Figure 1 Flow of the main arguments.
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3 Notation

A quantum CSS code on n qubits is a pair of codes C = (Cx, Cz), where Cx, Cz are subspaces
of Fn2 . For a thermal state ρ = (1/Z)e−βH , β signifies the “inverse temperature” β = 1/(κT )
where κ is the Boltzmann constant, and Z = tr(e−βH) is the partition function of this state.
For a finite discrete set S, |S| denotes the cardinality of the set. For E ∈ {0, 1}n the support
of E , supp(E) is the set of non-zero positions of E . |E| is the Hamming weight of E . For
quantum density matrices A,B, the trace distance between A,B is denoted by ‖A− B‖1,
and the quantum fidelity between these states is denoted by F(A,B). A density matrix ρ
of rank r is said to be a uniform mixture if it can be written as ρ = 1

r

∑r
i=1 |ui〉〈ui| where

{|ui〉} are an orthonormal set of vectors.
We say that a quantum circuit U on a set T of N qubits approximates a quantum state

ρ on a set S ⊆ T of n ≤ N qubits, to error δ if
∥∥trT−S

(
U |0⊗n〉〈0⊗n|U†

)
− ρ
∥∥

1 ≤ δ
In this work, we will consider random error models E supported on the n-th fold tensor

product Pauli group Pn, where P = {X,Z, Y, I}. For an error E E = E1 ⊗ . . .⊗ En, Ei ∈ P
we denote by |E| the Hamming weight of E - namely the number of terms Ei that are not equal
to I. Often we will use |E| to denote the minimal weight of E modulo a stabilizer subgroup
of Pn. For a stabilizer code C with local check terms {Ci}mi=1, Ci ∈ Pn, the Hamiltonian
H = H(C) is the local Hamiltonian

∑m
i=1(I −Ci)/2 - i.e. its ground-space is the intersection

of the 1-eigenspaces of all check terms Ci.
The N -cube is the binary cube in N dimensions. We will use capital N to denote the

dimension of the cube. The projective cube results in a code of n qubits. When considering
n in the context of the projective cube we will use lower-case n to denote the number of
qubits, i.e. n = 2N .

The letter a will be used to denote an initial set of qubits a ≥ n that also include any
ancillary qubits used to generate the state of n qubits, i.e. to generate a mixed state on n
qubits one applies a unitary transformation on the state |0⊗a〉〈0⊗a|, traces out a− n qubits.

Let G = (V,E) be a graph. For a set S ⊆ V the set Γ(S) ⊆ V is the set of all vertices
that neighbor S in G. The degree of a vertex v ∈ V is the number of edges incident on that
vertex. The degree D of a graph is the maximal degree of any vertex v ∈ V . A graph is
D-regular if the degrees of all vertices are equal. We will use a ∝ b to signify that a = c · b for
some c that does not depend on b. Throughout the paper we will use the binary logarithm
log(n) in the context of quantum circuit lower bounds, and the natural logarithm ln(n) in
the context of errors occurring on a thermal state e−βH .

4 Preliminaries I: Thermal Gibbs State of a Local Hamiltonian

When considering the thermal Gibbs state for a local Hamiltonian H =
∑
iHi, ‖Hi‖ ≤ 1,

care needs to be taken as to how to scale the energy of the Hamiltonian. On one hand, we
would like the Gibbs state of a Hamiltonian H to be invariant under scaling of H, or perhaps
rewriting H as a sum of possibly lower-rank projections. On the other hand, we note that it
is unreasonable to expect to have a family of local Hamiltonians {Hn}n with entanglement at
room temperature (i.e. constant β > 0), if the norm of Hn doesn’t grow with the number of
qubits n. Hence, we introduce the definition of energy density - which captures the average
“energy” invested into a qubit in the system:

I Definition 2 (Energy density). A local Hamiltonian on n qubits with m local terms H =∑m
i=1Hi, ‖Hi‖ ≤ 1 is said to have energy density λ = m/n.

The thermal Gibbs state is defined for a local Hamiltonian as follows:
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I Definition 3 (Gibbs state of a local Hamiltonian). Let H =
∑
i∈[m]Hi, be a local Hamiltonian

on n qubits H = C⊗n, m local terms, and energy density λ = m/n. The Gibbs state of H
for finite β > 0 is the following density matrix: 1

Z e
−βH̃ where Z = tr(e−βH̃) and H̃ = H/λ.

For β →∞ the Gibbs state is any ρ ∈ ker(H).

Remark about the definition

One could also define the Gibbs state more strictly for T = 0 or β → ∞ as the uniform
mixture over codestates. Such a definition would not change the “quantumness” of the
conjecture 1 nor the proof: the conjecture requires that at 0 temperature the system be
topologically-ordered, so it must be highly entangled. As to the proof - it shows a circuit
lower bound for every mixed ground-state, and in particular the uniform mixture thereof.
The more relaxed definition here for T = 0 is designed to include every state which is a
stationary distribution of the Metropolis-Hastings algorithm, and indeed any mixed/pure
ground-state is such a stationary distribution.

5 Preliminaries II :Quantum Error-Correcting Codes

We require the basic definition of stabilizer codes and CSS codes

I Definition 4 (Quantum Stabilizer Code and Quantum CSS Code). A stabilizer group G ⊆ Pn
is an Abelian subgroup of Pn. The codespace C is then defined as the centralizer of G, denoted
by C[G], or equivalently - the mutual 1-eigenspace of G. A CSS code C = (Cx, Cz) is a
stabilizer code where the check terms (i.e. generators of the group) are tensor-products of
either only Pauli X or only Pauli Z. In particular regarding Cx, Cz as F2 subspaces of Fn2 we
have Cx ⊆ C⊥z and vice versa.

In this work, we will require some bounds on the minimal depth of a quantum circuit to
generate a quantum code state. We recall a slight rephrasing of Prop. 45 in [5] to mixed
states: 2

I Lemma 5 (Robust circuit lower bound for CSS code-states, [5]). Let C be a quantum CSS
code of non-zero number of logical qubits k > 1 on n qubits with minimal distance nε for
some ε > 0. Let ρgs be a mixture on a set of code-states of C and let V be a unitary circuit on
N ≥ n,N = poly(n) qubits that approximates ρgs: ρ = trT

(
V |0⊗N 〉〈0⊗N |V †

)
‖ρ−ρgs‖1 ≤

n−2, ρgs ∈ C Then the depth of V is Ω(log(n)).

5.1 Quantum Locally Testable Codes
In [2] Aharonov and the author defined quantum locally testable codes (qLTC’s). We state
here a version due to Eldar and Harrow [5]: a quantum locally testable code can be defined
by the property that quantum states on n qubits at distance d to the codespace have energy
Ω(d/n).

2 The only change required to achieve a mixed-state version of Prop. 45 is to construct distant subsets
C0, C1 of Fn

2 that each has a non-negligible probability, when measuring the ground-state ρ in one of
the X/Z bases. Such sets are readily available: consider some eigenbasis of the code: In at least one
of the Z or X bases the state ρ has support at least 1/2 on basis vectors such that each of them is
a “well-partitioned” pure-state. One then constructs the sets C0, C1 by “cutting in half” each such
well-partitioned eigenstate, sending each half to a different set. By the minimal distance of the code,
the “half” of each eigenstate is far from any “half” of any other eigenstate.
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I Definition 6. If V is a subspace of (C2)⊗n then define its t-fattening to be Vt := Span{(A1⊗
· · · ⊗An)|ψ〉 : |ψ〉 ∈ V,#{i : Ai 6= I} ≤ t}. Let ΠVt project onto Vt. Then define the distance
operator DV :=

∑
t≥1 t(ΠVt −ΠVt−1).

This reflects the fact that for quantum states, Hamming distance should be thought of as
an observable, meaning a Hermitian operator where a given state can be a superposition of
eigenstates.

I Definition 7 (Quantum locally testable code). An (q, s)-quantum locally testable code C ⊆
(C2)⊗n, is a quantum code with q-local projection C1, . . . , Cm such that 1

m

∑m
i=1 Ci �

s
nDC .

s is called the soundness parameter of the code.

We note that the soundness parameter s in this definition generalizes the standard notion of
soundness of a classical LTC as a special case, where all Ci’s are diagonal in the computational
basis. In particular, if the quantum code is a stabilizer code, then the definition of quantum
local testability can be further simplified to resemble classical local testability more closely:

I Definition 8 (Stabilizer Locally-Testable Codes (sLTC)). An sLTC is a quantum stabilizer
code that is qLTC. An equivalent group-theoretic of an sLTC is as follows: C is a stabilizer
code generated by stabilizer group G. It is (q, s)− sLTC if there exists a set S of q-local words
in the stabilizer group g1, . . . , gt ∈ G such that for P ∈ Pn we have Pg∼U [S] ([g, P ] 6= 0) ≥
(|P |/n) · s where |P | is the Hamming weight of P modulo the centralizer of G, C[G]: |P | =
minz∈C[G] wt(P + z) where for x ∈ Pn wt(x) counts the number of non-identity entries in x.

See [5] and [2] for the derivation of this definition as a special case of Definition 7: the
operator DC penalizes a quantum state according to the “weighted” distance of that state
from the codespace, whereas in definition 8 the penalty is defined w.r.t. each Pauli error
separately, and as a function of the standard Hamming weight of the error, modulo the code.

Given a (q, s)-sLTC one can generate a sLTC with parameters (dq/se, 1/e) by amplification
as follows:

I Proposition 9 (Randomized Amplification). Given is a (q, s) sLTC on n qubits with poly(n)
checks. There exists a qLTC Camp of poly(n) checks with parameters (dq/se, 1/e) where each
qubit is incident on at most D′ = dqlog2(n)/se checks.

6 Preliminaries III: Expansion of Small Errors on the Projective
Hypercube

The main observation of this section is that while the projective code is a qLTC with a mild
soundness parameter 1/log2(n), the soundness parameter for small errors is much better,
and in fact for very small errors, their boundary (i.e. the Hamming weight of their image) is
very close to maximal. We begin with a couple of standard definitions:

I Definition 10 (Shadow). Let [n]r denote the set of all r-subsets of [n], and let A ⊆ [n]r.
The lower shadow of A is the set of all r − 1 subsets which are contained in at least one
element of A: ∂−A = {A− {i} : A ∈ A, i ∈ A} and the upper shadow of A is the set of all
r + 1 subsets that contain at least one element of A: ∂+A = {A+ {i} : A ∈ A, i /∈ A}

Recall our notation that n denotes the dimension of the cube, and N = 2n signifies the
number of qubits in the context of the quantum error correcting code generated by the
projective code of dimension n. We define p-faces as follows:

ITCS 2021



49:14 Robust Quantum Entanglement at (Nearly) Room Temperature

I Definition 11 (p-face, set of p-faces, subspaces of p-faces). For integer n ≥ 1 a p-face is a
word in {0, 1, ∗}n that contains exactly p positions with ∗. We denote by KNp as the set of
p-faces of the n-th cube. Let CNp denote the space spanned by KNp with coefficients from F2.

One can think about a p-face as a subset of {0, 1}n of all points that are equal to the p-face
in its non-∗ positions. Under this notation one can naturally define upper and lower shadow
of p-faces as follows:

I Definition 12 (Shadow of p-faces of KNp ). The lower-shadow ∂− of a p-face f is the set of
all p− 1 faces derived by replacing any ∗ entry with either 0 or 1. The upper-shadow ∂+ of a
p-face f is the set of all p+ 1 faces that can be derived by replacing any non-∗ entry of p
with ∗.

To connect the definitions above, note that the F2-boundary operator ∂p+1 associated
with the F2-complex chain {Cnp }p maps each p + 1-face f to a summation over the set of
p-faces ∂−f with coefficient 1 in F2, whereas the co-boundary map ∂Tp sends each p− 1 face
f to a summation over the set of p-faces ∂+f with coefficient 1.

Importantly, in this work, we will focus on the p-faces of the projective cube as the
combinatorial set KNp , and not on the corresponding F2-space CNp . This is because we are
interested in establishing a combinatorial expansion property of the boundary maps ∂+, ∂−,
to be later used in conjunction with the Sipser-Spielman decoder.

However, we will use, in a black box fashion, the properties of these maps, as maps over
an F2 complex chain that appeared in [16]: these properties are namely the soundness and
minimal distance of a quantum code derived by the pair (∂+, ∂−).

In this study, we consider p-faces of the n-hypercube. While this resembles the case of
subsets of [n]r there is a major difference - since now any ∗-entry replaced, can assume a value
either 0 or 1, and the isoperimetric inequality needs to account for this larger set. Bollobas
and Radcliffe provide an isoperimetric inequality for the regular grid [Thm. 10, Bollobas and
Radcliffe]. Their bounds are useful especially when the set of faces is exponentially large in
the dimension of the embedding space. For our purposes though, we are interested in set of
p-faces that are polynomial in that dimension so simpler bounds are available as follows:

I Lemma 13. Let A ⊆ Knp−1 be a set of (p − 1)-faces for p = n/2, |A| ≤ n/32. Then
|∂+A| ≥ |A| · (n/2+1) · (15/16). Let A ⊆ Knp+1 be a set of p+1-faces for p = n/2, |A| ≤ n/8.
Then |∂−A| ≥ 2 · |A| · (n/2 + 1) · (15/16)

6.1 The Projective Code
I Definition 14 (The Projective Cube). Let KNp denote the set of p-faces of the N -th cube.
The projective cube, denoted by K̃Np is formed by identifying x ∼ x̄ iff x = x̄+ 1 Let C̃Np
denote the space spanned by K̃np with coefficients in F2.

In this study, we will use build upon the projective code defined by Leverrier et al. [16]:

I Definition 15 (Projective code). Extend the operators ∂+, ∂− from KNp to K̃Np and consider
the complex chain formed by the F2 span of K̃Np , namely the spaces {C̃Np }p: C̃Np+1 →∂p+1

C̃Np →∂p C̃Np−1 the quantum CSS code (see Definition 4) defined by Cx = ker(∂p), Cz =
(Im∂p)⊥ is called the (N, p)-projective code and denoted by CN,p = (Cx, Cz).

I Lemma 16 (Properties of the projective code, [16]). For every sufficiently large N there
exists n = 2Ω(N) such that the (N, p)-projective code CN,p for p = N/2 has parameters
[[n, 1, nc]], for some constant c > 0. It has soundness 1/log2(n) and each qubit is incident
on at most D = 2log(n) checks.
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We conclude this section by reducing the isoperimetric inequality for the projective cube
to the isoperimetric inequality for the N -cube.

I Lemma 17 (Isoperimetric inequalities for the projective hypercube). Let C = (Cx, Cz) denote
the (N, p)-projective code with p = N/2. Let E be a subset of errors of weight at most N/64.
Then the number of checks Cx incident on E is at least |E| · (N/2) · (15/16) and the number
of Cz checks incident is at least |E| · (N) · (15/16)

Some context

To provide some context, we note that at first sight it is unclear why considering such small
weight (N/64) may provide a non-trivial result: after all, for the regime of temperatures we
are considering the typical error has nearly linear weight - i.e. n/polylog(n), and since n = 2N
the weight considered above is merely polylog(n). The reason is that as we later show in the
proof, the typical error of the Gibbs state is not arbitrary, but can be further characterized
as being formed on very small clusters - clusters of logarithmic size (see Lemma 27). We
would like the check terms of the p-th projective code CN,p to be such that any error of
logarithmic size expands very well in the Tanner graph of the code. The isoperimetric
inequality provided here on this very restricted error model will allows us to argue that we
can use a Sipser-Sipelman type decoder to correct all errors of the thermal state with high
probability.

7 Behavior of Errors in the Gibbs State of qLTCs

7.1 The Thermal Gibbs by the Metropolis-Hastings Algorithm
As mentioned in the introduction, a recurring barrier in the emergent field of robust quantum
entanglement is to establish a connection between the energy of a state, w.r.t. some local
Hamiltonian, and the “error” experienced by that state.

The main observation in this section is that specifically for qLTC’s the Gibbs state can
be formulated as a random error process (and specifically, a discrete finite Markov process)
where the errors occur independently at each step, with an error rate that is comparable to
the energy parameter of the state. This will then allow us to conclude that for sufficiently
small energy of the Gibbs state the resulting errors can only form very small clusters.

I Definition 18 (The Metropolis-Hastings Random Process Stabilizer Hamiltonians). Let G be
a stabilizer group with a corresponding Hamiltonian H = H(G) on n qubits H =

∑m
i=1Hi

with m local terms, and λ(H) = λ = m/n. Let β ≥ 0 be finite. Define a Markov random
process M on a finite graph G = (V,E) whose vertex set V is formed by considering the
uniform mixture τ0 on the set of zero-eigenstates of H, and an additional vertex for each
unique state formed by applying a Pauli error applied to τ0: V := {P · τ0 · P, P ∈ Pn} For
any two vertices τi, τj such that τj = PτiP where P is a single qubit Pauli P ∈ P we define
the following transition probabilities: ∀i 6= j Mi,j = 1

4n min
{

1, exp
{
β(Eτi − Eτj )/λ

}}
and

Mi,i = 1−
∑
j 6=iMi,j where E(τi) = tr(τiH)

We note that under the definition above, any two vertices connected by an element of the
stabilizer group g ∈ G, i.e. τi = gτjg

† will correspond to the same vertex - since it preserves
the uniform distribution on the codespace. In particular we have |V | = |Fn2/Cx| = |Fn2/Cz|.
More generally for stabilizer codes, each vertex corresponds to a minimal weight error modulo
the stabilizer group. Also note, that the transition probabilitiesMi,j correspond to a 2-step
process, where at the first step one samples a uniformly random index k ∈ [n] and then
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applies a uniformly random Pauli error E on that index with probability corresponding to the
exponent of energy differences. We also note that the normalization by factor of 4n stems
from the size of the single-qubit Pauli group |P| = 4.

I Fact 19. There exists a stationary distribution of M, denoted by ρ0 and it satisfies:
ρ0 = 1

Z e
−βH̃ where H̃ = H/λ and Z = tr(e−βH̃) is the partition function for value β.

7.2 The Thermal Gibbs Markov Process for qLTC’s
As a next step, we consider a truncated random processMk for integer k where one only
considers errors up to some “typical” weight k, beyond which the measure of the stationary
distribution of the original processM is negligible.

I Definition 20 (k-Truncated Markov chain). Let C be a quantum stabilizer code on n qubits
with m checks, and let H = H(C). Set λ(H) = λ = m/n. Let β ≥ 0 be finite. For any
two vertices τi, τj such that τj = PτiP where P is a single qubit Pauli P ∈ P we define the
following transition probabilities:

∀i 6= j Mi,j =
{

0 if ∆(τj , τ0) > k/n
1

4n min
{

1, exp
{
β(Eτi − Eτj )/λ

}}
o/w

where ∆(τi, τj) is the minimal weight of a Pauli P such that PτiP = τj, and Mi,i =
1−

∑
i 6=jMi,j

In general, given the energy parameter β > 0 one cannot bound a so-called “typical”
weight, for which the measure of errors above that weight are negligible in the thermal Gibbs
state e−βH . However, for the specific case of qLTC’s such a bound is readily available, via
the soundness parameter ε > 0.

I Proposition 21 (Truncated Metropolis Hastings Approximates the Gibbs State of a qLTC).
Suppose in particular that H = H(C) where C is a (q, s) sLTC, and set λ = λ(H). Let
0 < δ < 1/2 and denote k = nδ. Let ρk denote a stationary distribution of the k-th
truncated Markov chain Mk. Then for β ≥ 5 ln(1/δ)/s the k-th truncated Markov chain
approximates the thermal Gibbs state of the scaled Hamiltonian H̃ = H/λ:

∥∥∥ρk − 1
Z e
−βH̃

∥∥∥ ≤
2n · e−2n·ln(1/δ)·δ, Z = tr(e−βH̃)

7.3 Percolation Behavior of Random Errors in the Gibbs State of qLTC’s
We now recall some of the definitions of Fawzi et al. [6]. The first one is that of an α-subset
which is a subset that has a large intersection with some fixed subset:

I Definition 22 (α-subset). Let G = (V,E) be a graph, X ⊆ V , and α ∈ [0, 1]. An α-subset
of X is a set S ⊆ V such that |S∩X| ≥ α · |S|. We denote by maxconnα(X) as the maximum
size of an α connected subset of X.

The second definition is that of a locally-stochastic random error model, which generalizes
an independent random error model in that the probability of a set decays exponentially in
its size:

I Definition 23 (Locally-stochastic). Let V be a set of n elements. A random subset
X ⊆ V is said to be locally-stochastic with parameter p ∈ [0, 1] if for every S ⊆ V we have
P(X ⊇ S) ≤ p|S|
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We now recall Theorem 17 of [6] on the percolation behavior of α-subsets. It states, roughly,
that the size of the maximal α-connected component when choosing vertices at random with
probability p drops exponentially in dpα. We rephrase the theorem as the following lemma:

I Lemma 24 (Percolation behavior for locally-stochastic random errors). Let G = (V,E) be
a graph on n vertices, such that each vertex has at most D = D(n) neighboring edges. Let
α > 0. Let X ⊆ V be a random subset of V that is locally stochastic with parameter p. There
exists a constant c such that if p < c/D we have P(maxconnα(X) ≥ t) ≤ 2n · (2Depα)t

Consider now a local Hamiltonian H, we define its interaction graph as follows:

I Definition 25 (Interaction graph of a local Hamiltonian). Let H =
∑
iHi denote a local

Hamiltonian on n qubits. The interaction graph of H, G(H) = (V,E) is defined by V = [n]
corresponding to the n qubits, and e = (i, j) ∈ E if qubits i and j share a local term He in H.

We would like to show that the k-th truncated Metropolis-Hastings random process on H is
locally-stochastic for sufficiently small k.

To see why this is a non-trivial statement, recall that the MH random process does not
induce independent errors, since the probability of adding error to a given qubit depends
on the additional energy cost induced by flipping that qubit, and that additional energy
depends on the specific error configuration on its neighboring qubits.

In fact this random error model implies that errors are more likely to occur near previously
sampled errors thus leading to a behavior that is completely opposite to local stochasticity.
However, we show that if k is significantly less than n/D then this effect is negligible compared
to the probability of sampling an error that is not connected to any other error, and hence
approximately these errors are locally-stochastic.

I Lemma 26 (The Thermal Gibbs State is Locally-Stochastic). Let C be a stabilizer code and
let H = H(C) denote the corresponding local Hamiltonian. Suppose that the corresponding
interaction graph G(H) has degree at most D. Let α ∈ (0, 1], and consider the k-th truncated
Markov chain Mk and its stationary distribution ρk, for k ≤ n

2e(De300)1/α If the energy
density is sufficiently large compared to the inverse temperature: λ ≥ β ln(n) then E ∼ ρk is
locally-stochastic with parameter at most p0 ≤ 2ke/n with probability at least 1− (k + 1)n−4.

We conclude our central lemma of this section - which is that the thermal Gibbs state
e−βH where H is a Hamiltonian corresponding to a qLTC, and β is sufficiently large, satisfies
a percolation property - namely that the maximal α-connected component of a typical error
E is of logarithmic size:

I Lemma 27 (Typical error components are small for the thermal state of qLTC’s). Let C
be a (q, s)-sLTC on n qubits and let H(C) be its corresponding Hamiltonian, λ(H) = λ.
Suppose that the interaction graph of H, G(H), is of degree most D. Let α > 0. Let
τ = E · τ0 · E be a random state (the uniform code mixed state conjugated by a random error
E) sampled according to the distribution e−βH/λ/Z for (10/α) · ln(D)/s ≤ β ≤ λ/ ln(n) Then
P (maxconnαE > ln(n)/100) ≤ n−3

The range of values β

It is insightful at this point to consider the statement of the lemma w.r.t. the parameter β:
the statement of the lemma requires that β is within some range - between loglog(n) and
log(n). This initially might seem strange as intuitively, increasing β can only improve the
ability to correct errors since it corresponds to a regime of much fewer errors - e.g. lower
temperature.
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However in Lemma 26 it turns out that the analysis is more subtle: indeed we require β
to be also sufficiently small so that the error model is locally stochastic: if β is too large (i.e.
the temperature is very low) it turns out that a qubit that is hit by an error is much more
likely to be hit by another error - this contrary to local stochasticity, whereas for higher
temperatures this phenomenon is greatly alleviated.

Hence, the phenomenon of locally stochastic errors, that we exploit to demonstrate a
shallow decoder is in fact relevant only for a median range of temperatures: for very low
temperatures, the error is no longer locally stochastic, but in that range - the absolute number
of errors is extremely small to allow worst-case error correction. For higher temperatures,
the absolute number of errors is very large but conforms to the locally stochastic model
which is treatable by a local decoder. This results in a “win-win” situation, which is handled
case-by-case in the proof of the main theorem.

8 A Shallow Decoder for Low Error Rate

The last component of the proof is to demonstrate a shallow circuit that can correct the
thermal state e−βH to a code-state, for sufficiently large β > 0 (finite or not). In the previous
section we’ve seen that such a state can be modeled as a random error process with small rate.
We would now like to leverage that understanding, together with the small-set expansion
property of the n-projective cube to show that the quantum version of the Sipser Spielman
decoder yields a shallow decoder.

Inspired by the decoding algorithm of Fawzi et al. [6] we propose an algorithm for
decoding a random error E in depth proportional to log(maxconnα(E)). It is based on a
parallel version of the Sipser-Spielman decoder, which we state as follows:

I Lemma 28 ([18], Theorem 11). (Parallel decoder for small-set expander graphs). Let C be a
code on n bits and let G denote the Tanner graph of C. Suppose G is a (c, d)-bi-regular graph
on n vertices. The parallel decoder A is an algorithm that given error E = E1 iteratively
replaces it with errors Ei for i ≥ 1. At step i the algorithm may modify bits only in the
support of Ei ∪ Γ(Ei), and in particular, examines for each bit k only Γ(k). If, in addition,
at the beginning of iteration i we have: |Γ(Ei)| ≥ |Ei| · c · (3/4 + ε) for some constant ε > 0,
then after step i the weight of the residual error Ei decreases by a multiplicative factor:
|Ei+1| ≤ |Ei| · (1− 4ε)

Our quantum decoder is an application of the Sipser-Spielman decoder on the individual
X,Z errors.

I Algorithm 29 (Shallow Decoder B).
Input: a quantum state ρ on n qubits, a set of X checks Cx and a set of Z checks Cz.
1. Run the decoder A w.r.t. Z errors using Cx.
2. Run the decoder A w.r.t X errors using Cz.

I Lemma 30. Consider the projective code C = (Cx, Cz) on n qubits with p = n/2, and let
E ∈ Pn denote an error with far-away and small connected components: maxconnα(E) ≤
ln(n)/100, α = 1/(γloglog(n)) where γ = log(1 − 4 · (3/16)) is the constant implied by
Lemma 28 for ε = 3/16. Then shallow decoder B runs in depth at most 2γlog2log(n) steps
and satisfies: B ◦ E ◦ ρ = ρ ∀ρ ∈ C

We note here that the decoder B requires extra ancillary bits for syndrome computation,
hence the notation B ◦ E ◦ ρ signifies a quantum channel, where some of the qubits are
discarded after computation.
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9 Global Entanglement for Thermal States

9.1 The construction
1. Step 1 – The projective code:

Fix n as the number of qubits in the code. As the basis for our construction we
consider the (N, p) projective code C for p = N/2. By Lemma 16 we can choose
N = Θ(log(n)) such that C is a qLTC [[n, 1, nc]] for some c > 0 with qLTC parameters
(q = log(n), s = 1/log2(n)). By construction, the interaction graph of H(C), i.e. G(H(C))
is D-regular with D = 2 · log(n) and the local Hamiltonian H has m = 2n · log(n) check
terms.

2. Step 2 – Amplification:
We apply Proposition 9 to conclude the existence of a qLTC, denoted by C′ with parameters
(q′ = dlog3(n)e, s′ = 1/e) and λ = log4(n). The interaction graph of the Hamiltonian of
C′, i.e. G(H(C′)) has degree at most D′ ≤ dlog7(n)e.

3. Step 3 – Union:
Finally, we consider the union of the checks of C and C′ and denote the union by Cpa - this is
our construction. We denote the number of checks by mpa. We have that, Cpa is [[n, 1, nc]]
quantum code, and is qLTC with parameters: (qpa = log3(n), spa = 1/2e,Dpa ≤ 2log7(n))
and λpa ≥ 2log4(n).

We note that the the amplified code C′ has constant soundness for all non-zero distances,
but it is not clear a-priori why it should also satisfy ker(C) = ker(C′). Hence, the union of C
and C′ is taken in order to enforce the ground-state of the final code to equal that of Cpa.
This slightly reduces the soundness, and increases the degree of the interaction graph of the
final code. Also note that the check terms of Cpa commute in pairs.

9.2 Main Theorem
We now state formally our main theorem.

I Theorem 31. Let Cpa denote the code constructed above on n qubits, and let H = H(Cpa),
λ = λ(H) and inverse temperature: β ≥ 20e · log2log(n) Any quantum circuit U on a ≥ n

qubits that approximates the thermal state of H̃ = H/λ on a set of qubits S, |S| = n,
at inverse temperature β,

∥∥∥tr−S(U |0⊗a〉〈0⊗a|U†)− e−βH̃/Z
∥∥∥

1
≤ 0.1n−2 has depth at least

d(U) = Ω(log(n))
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Abstract
A line of work initiated by Fortnow in 1997 has proven model-independent time-space lower bounds
for the SAT problem and related problems within the polynomial-time hierarchy. For example,
for the SAT problem, the state-of-the-art is that the problem cannot be solved by random-access
machines in nc time and no(1) space simultaneously for c < 2 cos(π7 ) ≈ 1.801.

We extend this lower bound approach to the quantum and randomized domains. Combining
Grover’s algorithm with components from SAT time-space lower bounds, we show that there are
problems verifiable in O(n) time with quantum Merlin-Arthur protocols that cannot be solved in
nc time and no(1) space simultaneously for c < 3+

√
3

2 ≈ 2.366, a super-quadratic time lower bound.
This result and the prior work on SAT can both be viewed as consequences of a more general formula
for time lower bounds against small-space algorithms, whose asymptotics we study in full.

We also show lower bounds against randomized algorithms: there are problems verifiable in
O(n) time with (classical) Merlin-Arthur protocols that cannot be solved in nc randomized time and
O(logn) space simultaneously for c < 1.465, improving a result of Diehl. For quantum Merlin-Arthur
protocols, the lower bound in this setting can be improved to c < 1.5.
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1 Introduction

A flagship problem in computational complexity is to prove lower bounds for the SAT problem.
While it is conjectured that no polynomial-time algorithms exist for SAT (in other words,
P 6= NP), not much progress has been made in that direction. Furthermore, several significant
barriers towards such a separation are known [3, 22, 1]. Therefore, approaches have centered
around proving weaker lower bounds on SAT first.

© Abhijit S. Mudigonda and R. Ryan Williams;
licensed under Creative Commons License CC-BY

12th Innovations in Theoretical Computer Science Conference (ITCS 2021).
Editor: James R. Lee; Article No. 50; pp. 50:1–50:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2987-9293
https://abhijit-mudigonda.github.io/math/
mailto:abhijitm@mit.edu
https://orcid.org/0000-0003-2326-2233
https://people.csail.mit.edu/rrw/
mailto:rrw@mit.edu
https://doi.org/10.4230/LIPIcs.ITCS.2021.50
https://arxiv.org/abs/2012.00330
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


50:2 Time-Space Lower Bounds in the Quantum and Randomized Settings

A natural preliminary step in showing that no polynomial-time algorithm can decide
SAT is showing that no algorithms of logarithmic space can decide SAT, or in other words,
showing that L 6= NP. Unlike the P vs. NP problem, the aforementioned complexity barriers
(arguably) do not apply as readily to L vs. NP, and concrete progress has been made.1

Following a line of work [11], R. Williams [25] proved that SAT (equivalently2 NTIME[n],
nondeterministic linear time) cannot be decided by algorithms (even with constant-time
random access to their input and storage) using both no(1) space and nc time, for c <
2 cos(π7 ) ≈ 1.802. If one could show the same lower bound for arbitrarily large constant c,
the separation L 6= NP would follow immediately. In the following we use TS[nc] to denote
the class of languages decidable by no(1)-space algorithms using nc time.

All the aforementioned work builds on the alternation-trading proofs approach [27]. This
approach combines two elements: a speedup rule that reduces the runtime of an algorithm
by “adding a quantifier” (∃ or ∀) to an alternating algorithm, and a slowdown rule that
uses a complexity theoretic assumption (for example, SAT ∈ TS[nc]) to “remove a quantifier”
and slightly increase the runtime of the resulting algorithm. Both rules yield inclusions of
complexity classes. Our ultimate goal is to contradict a time hierarchy theorem (e.g., proving
n100 time computations can be simulated in n99 time) by applying these rules in a nice order,
and with appropriately chosen parameters.

One may hope that the constant c from [25] can be made arbitrarily large, and eventually
show that L 6= NP. Unfortunately, in [7], R. Williams and S. Buss showed that no alternation-
trading proof based purely on the speedup and slowdown rules from that line of work could
improve on the exponent of [25].

Nevertheless, there is hope that alternation-trading proofs might yield stronger lower
bounds for problems harder than SAT. For example, R. Williams [27] showed that the
Σ2P-complete problem Σ2SAT is not in TS[nc], for c < 2.903. In this paper, we make
further progress in this direction. In particular, we focus on the quantum and randomized
analogues of NTIME[n], QCMATIME[n] and MATIME[n], obtaining stronger lower bounds
against both classes.3 We believe our lower bound for QCMATIME[n] (Main Theorem 2)
to be particularly interesting because it yields a nontrivial separation between a quantum
complexity class and a classical complexity class without the need for oracles.4 While there
are several results [6, 21, 24] demonstrating the power of quantum computation against very
restricted low-depth classical circuit models (NC0, AC0, AC0[2]) which also imply strong oracle
separation results, our result appears to be the first non-trivial lower bound for a quantum
class against the much more general random-access machine model (with simultaneous time
and space constraints).

1.1 Our Results

1.1.1 Generic slowdown rules and a lower bound for QCMATIME[n]
For showing stronger lower bounds on QCMATIME[n], our key observation is that the
stronger assumption QCMATIME[n] ⊆ TS[nc] (compared to NTIME[n] ⊆ TS[nc]) can be
applied to construct a stronger conditional slowdown rule. Formally, we generalize the

1 For example, there exist oracles relative to which the lower bounds in the following paragraph are false.
2 At least, up to polylogarithmic factors.
3 Recall that QCMA (quantum classical Merlin-Arthur) is essentially NP with a quantum verifier and MA
(Merlin-Arthur) is essentially NP with a randomized verifier.

4 By “nontrivial”, we mean a separation that does not immediately follow from known classical results.
For example, QCMATIME[n] 6⊆ TS[n1.8] follows immediately from the classical lower bound NTIME[n] 6⊆
TS[n1.8], but our result does not.
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previous framework of alternation-trading proofs by introducing the notion of a generic
slowdown rule (defined formally in Definition 11), which are slowdown rules parameterized
by a constant α ∈ (0, 1] controlling the runtime cost associated with removing a quantifier.
Smaller values of α correspond to stronger slowdown rules. We prove the following theorem
showing how generic slowdown rules imply time-space lower bounds.

I Main Theorem 1. Fix α ∈ (0, 1] and let C be a complexity class. Let r1 be the largest root
of the polynomial Pα(x) := α2x3 − αx2 − 2αx+ 1. If C ⊆ TS[nc] implies a generic slowdown
rule with parameters α and c, then C 6⊆ TS[nc] for c < r1.

The assumption NTIME[n] ⊆ TS[nc] implies a slowdown rule with α = 1. The previous
NTIME[n] 6⊆ TS[nc] for c < 2 cos(π7 ) lower bound [25] becomes an immediate corollary of
Main Theorem 1 if we take C = NTIME[n]. The stronger slowdown rule that we obtain from
the stronger assumption QCMATIME[n] ⊆ TS[nc] has α = 2

3 , which allows us to derive lower
bounds for larger values of c. In particular, we obtain the following lower bound for Quantum
(Classical) Merlin-Arthur linear time.

I Main Theorem 2. QCMATIME[n] 6⊆ TS[nc] for c < 3+
√

3
2 ≈ 2.366.

The main advantage of the generic slowdown approach and Main Theorem 1 is that
improvements in slowdown rules translate immediately into stronger bounds against TS.
Figure 1 shows how the lower bound exponent we obtain changes as α does. As expected,
the lower bound exponent goes to infinity as α approaches zero, but we see that even modest
improvements in α yield substantially stronger bounds. We discuss potential applications
further in Section 1.3. In the full version of the paper, we show that this dependence between
the generic slowdown parameter and lower bound exponent is “optimal” for the tools we use,
extending the optimality theorem of Buss and Williams [7] to the general case while also
providing a shorter proof of their optimality theorem.
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Figure 1 The lower bound exponent as a function of the generic slowdown parameter α.

1.1.2 Lower bounds against randomized logspace
We also prove lower bounds against randomized logspace with two-sided error. While the
techniques used in this setting are similar, the results do not follow from Main Theorem 1,
so we state them separately. When discussing the randomized setting, we will slightly abuse
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notation by referring to the class of languages decidable by a logspace machine in nc time
as BPTS[nc].5 We prove lower bounds for both linear-time Merlin-Arthur protocols and
linear-time Classical-Merlin Quantum-Arthur protocols.

I Main Theorem 3. Let r1 ≈ 1.465 be the largest root of the polynomial x3 − x2 − 1. Then,
MATIME[n] 6⊆ BPTS[nc] for c < r1. Furthermore, QCMATIME[n] 6⊆ BPTS[nc] for c < 1.5.

Prior to this work, the state-of-the-art, due to [10, 8], was that MATIME[n] 6⊆ BPTS[nc]
for c <

√
2 ≈ 1.414. Observe that MATIME[t] ⊆ PPTIME[t2] because we can amplify Arthur’s

completeness and soundness to (1−2−100t, 2−100t) while increasing the runtime of the verifier
by a factor of O(t), and we can union bound over Merlin’s strings.6 A similar argument,
coupled with the quasilinear-time simulation of bounded-error quantum computation with
unbounded-error random computation of [23], shows that QCMATIME[t] ⊆ PPTIME[t2].
Therefore, pushing either of the lower bound exponents in Main Theorem 3 to beyond
2 would yield superlinear bounds for decision versions of counting-type problems (e.g.
MAJ-SAT) against randomized logspace. (Note it is known that #SAT requires Õ(n2) time
for randomized logspace [17].) While these results are admittedly incremental improvements,
they use some different ideas compared to previous works, and may be amenable to further
improvement (see Section 1.3 for more details).

The lower bounds of Main Theorem 2 and Main Theorem 3 actually hold for complexity
classes that are presumably even “smaller” than QCMATIME[n] and MATIME[n]; we describe
these further in Section 2.

1.2 Techniques
1.2.1 Alternation-trading proofs
Many time-space lower bounds for SAT and related problems are proved via alternation-
trading proofs, which give a chain of inclusions of complexity classes. We will formally define
alternation-trading proofs in Section 2; for now, let us give a cursory explanation. An
alternation-trading proof consists of a sequence of containments of alternating complexity
classes. An alternating complexity class can be thought of as a “fine-grained” version of ΣkP
or ΠkP: it is a complexity class parameterized by (k + 1) positive constants bounding the
length of the output of each quantifier and the verifier runtime. For example,

(∃n2)(∀n2)TS[n5]

is an alternating complexity class. This notation refers to the class of languages decided by a
Σ2 machine where, on inputs of length n, the two quantifiers each quantify over Õ(n2) bit
strings and the verifier runtime is Õ(n5).

In an alternation-trading proof, there are two main ways of passing from one alternating
complexity class to the next. The first is a speedup rule, which adds a quantifier to the
class, and decreases the verifier runtime. For example, a speedup rule might yield an inclusion
of the form

. . .TS[nd] ⊆ . . . (Qnx)(¬Qx logn)TS[nd−x] (1)

5 We call this a “slight abuse” because we defined TS to be a class of languages decided using no(1) space,
whereas BPTS is defined with respect to O(logn) space.

6 By a union bound, there is a gap between the case where all 2t Merlin strings have a 2−100t chance of
accepting, and the case where a single Merlin string accepts with probability at least 1− 2−100t.
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for some constant 0 < x < d and quantifier Q ∈ {∃,∀}, where ¬Q denotes the opposite
quantifier and the . . . refer to other quantifiers. Two important points to note are that (a)
the speedup rule is generally an unconditionally true inclusion and (b) the second quantifier
has only O(logn) bits.

The second major component of alternation-trading proofs is a slowdown rule, which
removes a quantifier and increases the verifier runtime. We will use slowdown rules that
hold conditioned on complexity-theoretic assumptions (that we will later contradict). For
example, the slowdown rule used to prove lower bounds on NTIME[n] can be informally
stated as follows: assuming NTIME[n] ⊆ TS[nc] for some c > 0,

. . . (Qna)(¬Qnb)TS[nd] ⊆ . . . (Qna)TS[nc·max(a,b,d)]. (2)

where again Q ∈ {∃,∀} and ¬Q denotes the opposite quantifier. This rule follows from an
application of padding/translation.

While the speedup and slowdown rules are themselves simple, the existing lower bounds
on NTIME[n] arise by applying these rules in a long intricate sequence, with appropriately
chosen parameters for the speedup rule applications. Ultimately, we aim to use slowdown and
speedup rules to exhibit a sequence of inclusions that shows (for example) that NTIME[nd] ⊆
NTIME[nd′ ] for d′ < d, contradicting the nondeterministic time hierarchy theorem and
demonstrating that our initial assumption must have been false.

All time-space lower bounds for SAT against random-access models of computation,
including the state-of-the-art bound [25], use an alternation-trading proof. This particular
proof will be a starting point for this work.

1.2.2 Generic slowdown rules
We start by introducing the notion of a generic slowdown rule. Generic slowdown rules
are parameterized by a constant α such that 0 < α ≤ 1, along with a constant c ≥ 1 that
generally comes with an assumption being made. Informally, generic slowdown rules allow
us to – under an appropriate assumption – prove conditional inclusions of the form

. . . (Qna)(¬Qnb)TS[nd] ⊆ . . . (Qna)TS[nαc·max(a,b,d)].

Observe that when α = 1 we recover (2), but when α < 1 we obtain stronger inclusions.
In Main Theorem 1, we use generic slowdowns in the alternation-trading proof from [25]
and characterize the lower bound we obtain as a function of the parameter α in our generic
slowdown rule. While the core idea of this proof is essentially the same as the presentation
of the proof in [27] (and the result can be thought of as “putting α everywhere”), our proof
technique is somewhat different. In the full version of the paper, this different approach
yields a shorter proof of optimality than the one presented by Buss and Williams [7].

1.2.3 A generic slowdown rule from Grover search
In order to apply Main Theorem 1 to C = QCMATIME[n] and obtain a better lower bound for
QCMA, we show that the assumption QCMATIME[n] ⊆ TS[nc] implies a generic slowdown
rule for α = 2

3 . Recall that Grover’s algorithm lets us search a space of size N with only
O(
√
N) quantum queries. We obtain our stronger slowdown rule by showing that Grover’s

algorithm can be used to more efficiently remove the (x logn)-bit quantifiers that arise
after applications of the speedup rule, such as (1). In the NTIME vs TS setting, there are
two ways to remove an (x logn)-bit quantifier. First, we could remove it with an O(nx)
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multiplicative blowup, by having the verifier exhaustively search through all strings of length
x logn. However, naively running nx trials of an nd−x computation would take nd time,
and our simulation would end up no faster than it was initially. Second, we may try to use
a slowdown rule as in (2), but this incurs a runtime cost that depends on c. This option
becomes expensive as we try to increase c and prove stronger lower bounds. Our key insight
is that if our verifier is allowed to be quantum, Grover’s algorithm can be applied to perform
this quantifier elimination in only O(nx/2) extra time overhead, independent of c. Then,
by applying the assumption QCMATIME[n] ⊆ TS[nc], we can remove this quantum verifier
along with the quantifier (∃nx) and ultimately demonstrate the inclusions

. . . (Qna)(¬Qnb)TS[nd]
⊆ . . . (Qna)(¬Qnb)(Qnx)(¬Qx logn)TS[nd−x] Speedup Rule
⊆ . . . (Qna)(¬Qnb)(Qnx)BQTIME[nd− x2 ] Grover’s Algorithm

⊆ . . . (Qna)(¬Qnb)TS[nc·max(b,x,d− x2 )]. Assumption on QCMATIME[n]

Letting x := 2d
3 , we obtain a generic slowdown rule with α = 2

3 .

1.2.4 Lower bounds against randomized logspace
Some obstacles arise when trying to prove Main Theorem 3, which shows lower bounds against
BPTS. The main problem is that the usual speedup rules for deterministic computation
do not tell us how to use quantifiers to speedup randomized small-space computations.
Fortunately, this particular issue was resolved by Diehl and Van Melkebeek [10], who gave
a speedup rule for small-space randomized machines by coupling Nisan’s space-bounded
derandomization [20] with the Sipser-Gács-Lautemann theorem [16]. This speedup rule,
while somewhat less efficient than the speedup rule for deterministic machines, is still enough
to obtain interesting superlinear time lower bounds. Applying this speedup rule, similar
arguments as used in Main Theorem 1 yield the desired lower bounds.

1.3 Future Work
As mentioned earlier, the main advantage of the generic slowdown framework and Main
Theorem 1 is that improvements in slowdown rules translate immediately into stronger
bounds against TS. To this end, we highlight two particularly interesting directions.

1. Is it possible to prove a “quantum speedup rule”, whereby the runtime of quantum
computations could be reduced by adding quantifiers (possibly over quantum states)?
Presently, we are forced to use a slowdown rule to remove a quantum verifier from an
alternating complexity class as soon as it is added. Having a quantum speedup rule would
enable us to work with the quantum verifier before removing it, drastically widening the
scope for potential alternation-trading proofs. It’s not hard to show that even certain
weak forms of a quantum speedup rule would improve the generic slowdown parameter α
we can obtain in the QCMA vs. TS setting. Speedup rules also have applications outside
complexity theory. For example, versions of speedup rules for low-space computation
appear in the construction of delegation schemes in cryptography [4, 13, 14], and quantum
speedup rules could play a part in extending such work to the quantum domain.
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2. Can we use the ideas of this paper to improve existing lower bounds on counting-type (#P
related) problems, such as #SAT and MAJ-SAT? For example, could our super-quadratic
time lower bound for QCMATIME[n] be somehow applied to obtain super-quadratic lower
bounds for #SAT as well? Because

MATIME[t] ⊆ QCMATIME[t] ⊆ PPTIME[t2+o(1)]

as discussed in Section 1.1.2, lower bounds on QCMATIME[n] and MATIME[n] do translate
to some lower bounds for counting problems against small-space. However, the known
reductions from classes like MA and QCMA to counting problems incur a quadratic
blowup. Furthermore, there is evidence that a quadratic blowup is necessary for black-box
techniques [8, 9]. As such, it appears we must either improve the lower bound exponent,
or prove that we can bypass the quadratic blowup outside of black-box settings.

1.4 Organization
Section 2 covers relevant background, especially on alternation-trading proofs. In Section 3,
we study alternation-trading proofs with generic slowdowns and prove Main Theorem 1. In
Section 4, we use Grover’s algorithm to prove Lemma 30, allowing us to obtain a generic
slowdown with α = 2

3 and prove Main Theorem 2. In Section 5, we prove Main Theorem 3.

2 Preliminaries

We assume familiarity with classical complexity and quantum computing on the levels of [2]
and [19], respectively.

2.1 Alternation-Trading Proofs
We start by defining various time-space complexity classes particular to this work. For a
simple example of an alternation-trading proof, see Section 2.1.1 of the full version.

I Definition 1. TS[t(n)] is the class of languages computable by a deterministic random-
access machine using space no(1) and time Õ(t(n)) on an n-bit input. BPTS[t(n)] is the class
of languages computable by a two-sided error randomized random-access machine using space
O(logn) and time Õ(t(n)) on an n-bit input.

Note that a randomized random-access machine with random access to its input has only
read-once access to its randomness.

I Definition 2. For positive constants {ai}i≥1 and {bi}i≥1 and quantifiers Qi ∈ {∃,∀},
the alternating complexity class (Q1n

a1)b1(Q2n
a2)b2 . . . (Qknak)bkTS[nd] is the set of

languages decidable by a machine operating in the following fashion on an n-bit input.
Computation occurs in k + 1 stages. In the ith stage, for 1 ≤ i ≤ k, the machine obtains
from Qi a string of length Õ(nai). It then uses an no(1)-space machine and Õ(nbi) time to
compute Õ(nbi) bits that are passed on to the next stage, taking as input the Õ(nai) bit string
from the quantifier and the Õ(nbi−1)-bit input from the previous stage of computation. The
input to the first stage (i = 1) is the n-bit input string itself. The verifier at the end receives
an Õ(nbk)-bit input and uses a no(1)-space machine and Õ(nd) time to compute the final
answer. The criteria for acceptance and rejection are analogous to those for ΣkP and ΠkP.

Note that our notation obscures no(1) factors everywhere, although we may occasionally
write out small factors for clarity. We index our bi differently from the notation of [27], as
our bi is their bi+1. This difference will be immaterial.
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I Definition 3. Given an alternating complexity class (Q1n
a1)b1 . . . (Qknak)bkTS[nd], we

will refer to nd as the verifier runtime.

I Lemma 4 (Speedup Lemma [18][15]). For every 0 < x < d,

TS[nd] ⊆ (Qnx)max(x,1)(¬Qx logn)1TS[nd−x].

Because our notation obscures no(1) factors, we may write this as

TS[nd] ⊆ (Qnx)max(x,1)(¬Qn0)1TS[nd−x]. (3)

Proof. We will prove the lemma when Q = ∃; the other case follows because TS[nd] is closed
under complementation. The idea is that we can break up the transcript of a deterministic
computation of length nd into nx pieces each of length nd−x. Let M be an nd time machine
using no(1) space. On an n-bit input, our Σ2 machine will:
1. Existentially guess nx − 1 intermediate machine configurations X1, . . . , Xnx−1 of M ,

each of size no(1). These are passed, along with the input, to the next stage. This
corresponds to the (Qnx)max(x,1) part of the class in (3).

2. Universally quantify over all intermediate configurations, picking one. There are nx
pieces so our quantifier only needs O(lognx) ≤ Õ(n0) bits. If the quantifier picks the ith
configuration, then we pass the state pair (Xi−1, Xi) (along with the input) on to the
next stage. We take X0 to be the initial configuration of M , and Xn to be the (WLOG
unique) accepting machine configuration. This corresponds to the (¬Qn0)1 part in (3).

3. Given input x and a pair of configurations (X,Y ) of M , the verifier simulates M starting
at X for nd−x steps, accepting if the configuration at the end is Y and rejecting otherwise.
This corresponds to the TS[nd−x] part of (3).

This completes the proof. J

As an extension, we may derive the speedup rule that we will use throughout this paper.

I Corollary 5 (“Usual” Speedup Rule, [27]). For every 0 < x < d,

(Q1n
a1)b1 . . . (Qknak)bkTS[nd]

⊆ (Q1n
a1)b1 . . . (Qknmax(ak,x))max(bk,x)(Qk+1x logn)bkTS[nd−x].

Proof. Observe that we may merge together two quantifiers of the same type. Thus, taking
Q = Qk in Lemma 4, we find that

(Q1n
a1)b1 . . . (Qknak)bkTS[nd]

⊆ (Q1n
a1)b1 . . . (Qknak)bk(Qknx)max(bk,x)(Qk+1x logn)bkTS[nd−x]

⊆ (Q1n
a1)b1 . . . (Qknmax(ak,x))max(bk,x)(Qk+1x logn)bkTS[nd−x]

where the second containment follows from Lemma 4. J

One might wonder whether we can do any better by also considering the containment
arising from taking Q = ¬Qk in Lemma 4. It turns out that any alternation-trading proof
using this latter rule can be obtained with Corollary 5, and therefore we may safely ignore
this option. This is Lemma 3.2 of [27].

I Definition 6. We refer to the value x in an application of the speedup rule as the speedup
parameter for that application.
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In Section 5, we will work with alternating complexity classes with randomized space-
bounded verifiers, rather than deterministic ones. We will use a speedup rule due to Diehl
and van Melkebeek [10].

I Theorem 7 ([10]). BPTS[nd] ⊆ (∀n0)1(∃nx)max(x,1)(∀x logn)TS[nd−x].

A sketch of the proof is in the full version. Note again that our notation allows us to
hide no(1) factors. We chose not to obscure the last x logn bits, as they will be extremely
relevant later when we use Grover’s algorithm to remove O(logn)-bit quantifiers.

As before, we may express Theorem 7 as a rule that can be applied to alternating
complexity classes.

I Corollary 8 (The “Randomized” Speedup Rule). For every 0 < x < d,

(Q1n
a1)b1 . . . (Qknak)bkBPTS[nd]

⊆ (Q1n
a1)b1 . . . (Qknak)bk(Qk+1n

x)max(bk,x)(Qk+2x logn)bkTS[nd−x].

Note that unlike Corollary 5, which adds two quantifiers to speed up a deterministic
computation, Corollary 8 adds three7.

We’ve already introduced the usual slowdown lemma, which we restate for convenience.

I Lemma 9 (Slowdown Lemma [11]). Assume that NTIME[n] ⊆ TS[nc] for some c > 1. Then
for all d ≥ 1, NTIME[nd] ∪ coNTIME[nd] ⊆ TS[ncd].

The slowdown rule follows from a padding argument and the observation that TS[nc] is
closed under complementation.

I Corollary 10 (“Usual” Slowdown Rule [27]). Assuming NTIME[n] ⊆ TS[nc], we have

(Q1n
a1)b1 . . . (Qknak)bkTS[nd]

⊆ (Q1n
a1)b1 . . . (Qk−1n

ak−1)bk−1TS[nc·max(d,bk,ak,bk−1)].

Note that the exponent bk−1 is present in the maximum, because our assumption is
NTIME[n] ⊆ TS[nc] rather than NTIME[nδ] ⊆ TS[ncδ] for all δ > 0.

I Definition 11. Let c, α ∈ R such that 0 < α ≤ 1 < c. A generic slowdown rule with
parameters α and c shows that

(Q1n
a1)b1 . . . (Qknak)bkTS[nd] ⊆ (Q1n

a1)b1 . . . (Qk−1n
ak−1)bk−1TS[nc·max(αd,bk,ak,bk−1)].

Intuitively, having a generic slowdown rule with parameters c and α means that we can turn
classes like

∃∀ . . . ∀∃TIME[nd]

into

∃∀ . . . ∀TIME[nαcd].

We are now ready to define alternation-trading proofs.

7 In both cases, the first quantifier is absorbed into the previous quantifier if one exists, in which case the
number of “new” quantifiers is one and two respectively.
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I Definition 12 ([27]). An alternation-trading proof is a list of alternating complexity
classes, where each subsequent class on the list is contained in the previous class. Each class
is derived from the previous by applying one of the following rules.
1. If the class is TS[nd] (i.e., the verifier is deterministic and there are no quantifiers), we

may apply Lemma 4:

TS[nd] ⊆ (∃nx)max(x,1)(∀x logn)1TS[nd−x]

for some x ∈ (0, d).
2. If the class has at least one quantifier and the verifier is deterministic (i.e., the class ends

with TS[nd]), we may apply Corollary 5:

(Q1n
a1)b1 . . . (Qknak)bkTS[nd]

⊆ (Q1n
a1)b1 . . . (Qknmax(ak,x))max(bk,x)(Qk+1x logn)bkTS[nd−x]

for some x ∈ (0, d).
3. If the class is BPTS[nd] (i.e., the verifier is randomized and there are no quantifiers), we

may apply Theorem 7:

BPTS[nd] ⊆ (∃n0)1(∀nx)max(x,1)(∃x logn)TS[nd−x]

for some x ∈ (0, d).
4. If the class has at least one quantifier and the verifier is randomized (i.e., the class ends

with BPTS[nd]), we may apply Corollary 8:

(Q1n
a1)b1 . . . (Qknak)bkBPTS[nd]

⊆ (Q1n
a1)b1 . . . (Qknak)bk(Qk+1n

x)max(bk,x)(Qk+2x logn)bkTS[nd−x]

for some x ∈ (0, d).
5. If the class has at least one quantifier, and a generic slowdown rule with parameters α

and c hold for the class, we may apply it:

. . . (Qknak)bk(BP)TS[nd] ⊆ . . . (Qk−1n
ak−1)bk−1(BP)TS[nc·max(αd,bk,ak,bk−1)].

We say that an alternation-trading proof shows a contradiction for c if it contains
an application of a speedup rule and the proof shows either TS[nd] ⊆ TS[nd′ ] for d′ ≤ d or
BPTS[nd] ⊆ BPTS[nd′ ] for d′ ≤ d.

Note that rules 3 and 4 only apply when proving lower bounds against BPTS.
The containment TS[nd] ⊆ TS[nd′ ] for d ≥ d′ does not automatically yield a contradiction8.

Fortunately however, we are still able to derive contradictions from this.

I Theorem 13 (Lemma 3.1 of [27]). If, under the assumption NTIME[n] ⊆ TS[nc], there is
an alternation-trading proof with at least two inclusions showing that TS[nd] ⊆ TS[nd′ ] for
d′ ≤ d, then the assumption must have been false and NTIME[n] 6⊆ TS[nc]

8 To apply the naive approach, we need a single machine in TS[nd] that can simulate everything in
TS[nd

′
]. However, any fixed machine in TS[nd] cannot simulate things use more space than it does. If

our simulating machine in TS[nd] uses space f(n) = no(1) then there is always a machine in TS[nd
′
]

that uses more space while still being no(1) and our simulating machine cannot simulate this one.
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In Section 5, we will show that similar statements hold for BPTS in the contexts in which
we need them to hold, thus allowing us to derive contradictions from BPTS[nd] ⊆ BPTS[nd′ ]
for d′ ≤ d.

I Definition 14 ([27]). An alternating complexity class (Q1n
a1)b1 . . . (Qknak)bk(BP)TS[nd]

is orderly if for all i ∈ [k], ai ≤ bi.

I Lemma 15 ([27]). Any alternation-trading proof using rules from Definition 12 is orderly.

As noted by Buss and Williams [7], Lemma 15 implies that, when describing an alternation-
trading proof consisting of speedups and slowdowns, it is sufficient to only specify the {bi}
and disregard the {ai}. We will be somewhat more careful when we apply Grover’s algorithm
in the quantum setting, but when we can we will simplify our notation by writing only a single
exponent inside the parenthesis. Thus, we may abuse notation to write alternating complexity
classes in the form (Q1n

a1) . . . (Qknak)(BP)TS[nd], where the ai are then understood to be
the maxima of the corresponding pairs of exponents in the full notation.

I Definition 16 ([27]). A proof annotation is a way of specifying a sequence of applications
of speedup and slowdown rules. We write 1 to denote a speedup rule and 0 to denote a
(possibly generic) slowdown rule. When appropriate, we put a subscript under a 1 to denote
the speedup parameter used for that speedup rule application.

In this paper, we will work with alternation-trading proofs which apply only one slowdown
rule (many times). For such proofs, the sequence of speedups and slowdowns fully determines
whether the verifier is deterministic or randomized at a given line of the proof. This means
that, when specifying a proof annotation, we do not need to specify which speedup rule we
are applying between Corollary 5 and Corollary 8. When the verifier is randomized we must
apply Corollary 8, and when the verifier is deterministic we should always apply Corollary 5
as it is strictly more efficient than Corollary 8.

2.2 Computational Model

All functions used to bound runtime or space are assumed to be constructible in the given
resources. Our model for classical computation is the space-bounded random-access machine,
unless specified otherwise. Our proofs are robust to all notions of random access we know.

Our model for quantum computation will be that of Van Melkebeek and Watson [23], but
our results hold for any reasonable quantum model capable of obliviously applying unitaries
from a fixed universal set and with quantum random-access to the input.9 Recall that if
x ∈ {0, 1}n is an input, an algorithm is said to have quantum random-access to x if it can
perform the transformation∑

i∈[n]

αi |i〉 |b〉 7→
∑
i∈[n]

αi |i〉 |b⊕ xi〉 ,

where i is an index and xi denotes the bit at the ith position of x. The model of [23] is
capable of simulating all the usual models of quantum computing, and deals carefully with
issues like intermediate measurements and numerical precision.

9 Here, “obliviously” means that the unitaries applied depend only on the length of the input.

ITCS 2021



50:12 Time-Space Lower Bounds in the Quantum and Randomized Settings

2.3 Some Atypical Complexity Classes
We stated our lower bounds in Section 1 in terms of QCMA and MA. However, our results
actually hold for slightly smaller classes, which we describe below.

I Definition 17. The complexity class ∃ · BQP is the set of languages L for which there
exists a BQP verifier A such that

x ∈ L =⇒ (∃w) Pr[A(x,w) = 1] ≥ 2
3

x 6∈ L =⇒ (∀w) Pr[A(x,w) = 1] ≤ 1
3 .

We will write ∃ ·BQPs,c to denote ∃ ·BQP where Arthur has completeness c and soundness s.
We will write ∃ · BQTIME[t(n)] to denote ∃ · BQP where the length of Merlin’s proof and the
runtime of the verifier are both O(t(n)).

We may define ∃ · BPP and ∃ · BPTIME analogously.
I Remark 18. Note that, while ∃ · BQP ⊆ QCMA ⊆ QMA (respectively, ∃ · BPP ⊆ MA), it is
not clear if ∃ ·BQP = QCMA (∃ ·BPP = MA) due to differences in the promise conditions. In
∃ ·BQP, we require that the verifier A(x,w) lie in BQP, meaning that it satisfies the promise
on every input pair (x,w). On the other hand, in the “yes” case of QCMA (when a string x
is in the language), we require only that there exists a polynomial-sized witness y making the
verifier A(x,w) accept with probability exceeding 2

3 . This does not preclude the existence of
a witness string w′ such that 1

3 < Pr[A(x,w) = 1] < 2
3 .

3 Lower Bounds With Generic Slowdowns

We will start by introducing a method to reduce the verifier runtime of a class without
increasing any of the quantifier exponents, assuming that the verifier runtime isn’t too large.
This was the main feature in the alternation-trading proofs of [26] that allowed improvement
beyond the results of Lipton-Fortnow-Van Melkebeek-Viglas [11].

I Lemma 19 (Generalizes [26]). Let 0 < α ≤ 1 be a real number. Let c be a positive real such
that c < 1+α

α . Given any class

. . . (Qknak)TS[nak+1 ]

where cak ≤ ak+1 < αc
αc−1ak, there is a nonnegative integer N := N(ak) such that the

annotation (10)N 0 with the appropriate speedup parameters proves that

. . . (Qknak)TS[nak+1 ] ⊆ . . . (Qknak)TS[ncak ] ⊆ . . .TS[nc
2ak ].

We prove this lemma in the full version. The use of ak as the speedup parameter in
Lemma 19 may seem arbitrary, but it will turn out that this is in fact the best speedup
parameter in this setting. Based on this lemma, we can define a new rule that we may use in
alternation-trading proofs.

I Definition 20. Consider an alternating complexity class (Q1n
a1) . . . (Qknak)TS[nd]. Given

0 < α ≤ 1 and c > 0 satisfying c < 1+α
α , we define the wiggle rule with parameters α, c to

be the following:
If d < αc

αc−1ak, apply (1ak0)t for t :=
⌈
at+1
at

⌉
.

Otherwise, do nothing.
We call an application of the wiggle rule proper if we are in the first case and improper
otherwise. In a proof annotation, when α and c are fixed, we will denote an
application of the wiggle rule by 2.
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It is worth remembering the ratio
αc

αc− 1

as it will show up frequently in the remainder of this paper. Following the notation of
Definition 20, if the value of d (the verifier runtime exponent) for an alternating complexity
class is at most αc

αc−1 times ak (the exponent in the final quantifier), we may reduce the
verifier runtime to its smallest possible value cak with an application of Definition 20 and
Lemma 19, as the following corollary shows.

I Corollary 21 (Corollary of Lemma 19). Consider a class

(Q1n
a1) . . . (Qknak)TS[nd].

Given 0 < α ≤ 1 and c > 0 satisfying c < 1+α
α , applying the wiggle rule (Definition 20) yields

the class:
(Q1n

a1) . . . (Qknak)TS[ncak ], if d < αc
αc−1ak.

(Q1n
a1) . . . (Qknak)TS[nd] otherwise.

We are now in a position to prove Main Theorem 1, which we restate for convenience.

I Main Theorem 1. Fix α ∈ (0, 1] and let C be a complexity class. Let r1 be the largest root
of the polynomial Pα(x) := α2x3 − αx2 − 2αx+ 1. If C ⊆ TS[nc] implies a generic slowdown
rule with parameters α and c, then C 6⊆ TS[nc] for c < r1.

We will use the following lemma in the proof of Main Theorem 1; its proof can be found
in the full version.

I Lemma 22. If r1 and r2 are the two largest roots of Pα(x) := α2x3 − αx2 − 2αx+ 1 then

r2(α) < 1 +
√

1 + 4α
2α < r1(α) < 1 + α

α

for all α > 0.

Proof of Main Theorem 1. The lower bound will follow from applying the annotation
1k0(20)k as k →∞. (Recall that 2 denotes an application of the wiggle rule of Definition 20.)
We will choose speedup parameters {xi} so that the following sequence of inclusions is valid
and every application of the wiggle rule is proper.

TS[nd] ⊆ (∃nx1)(∀nx2) . . . (Qknxk)(Qk+1n
xk)TS[n(d−x1−x2−···−xk)] 1k0(20)k

⊆ (∃nx1)(∀nx2) . . . (Qknxk)TS[nαc(d−x1−x2−···−xk)] 1k0(20)k

⊆ (∃nx1)(∀nx2) . . . (Qknxk)TS[ncxk ] 1k020(20)k−1

⊆ (∃nx1)(∀nx2) . . . (Qk−1n
xk−1)TS[nαc

2xk ] 1k020(20)k−1

⊆ (∃nx1)(∀nx2) . . . (Qk−1n
xk−1)TS[ncxk−1 ] 1k02020(20)k−2

. . . 1k02020(20)k−2

⊆ TS[nαc
2x1 ].

In order to ensure a contradiction at the end, we will set x1 := d
αc2 . In order to ensure that

the first application of the wiggle rule is proper, we require that the {xi} satisfy

αc(d− x1 − · · · − xk) < αc

αc− 1xk ⇐⇒ d− x1 − x2 − · · · − xk <
1

αc− 1 · xk. (4)
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In order to ensure that we can apply the wiggle rule properly in all other steps, we require
that the {xi} satisfy

αc2xi <
αc

αc− 1 · xi−1 (5)

for all 2 ≤ i ≤ k.
The next claim lets us find valid speedup parameters {xi} for certain values of c depending

on the number of iterations k that we allow in our annotation. The expression will look
somewhat hairy, but fortunately most of it will disappear in the limit as k becomes large.

B Claim 23. Pick ε > 0, and let τ := 1−ε
c(αc−1) . There are choices of the speedup parameter

xi such that the annotation 1k0(20)k implies a contradiction for all c satisfying

αc2 − τk − 1
τ − 1 <

τk

αc− 1 . (6)

Proof of Claim. Let xi :=
(

1−ε
c(αc−1)

)i−1
x1 =

(
1−ε

c(αc−1)

)i−1
d
c2 for i ≥ 2. Observe that all the

xi are positive and satisfy the constraints of (5) for all i. If we take d to be sufficiently large
we can ensure that every exponent in the proof exceeds 1. Therefore, if we can show that
our selection of {xi} satisfies the first constraint, (4), we will have a valid sequence of rules
and, by our choice of x1 above, have derived a contradiction.

Plugging our choice of {xi} into (4) yields the constraint

d− d

αc2

(
1 + 1− ε

c(αc) + · · ·+
(

1− ε
c(αc− 1)

)k−1
)
<

1− ε
αc− 1

((
1− ε

c(αc− 1)

)k−1
d

αc2

)
. (7)

This is equivalent to

αc2 − τk − 1
τ − 1 <

τk

αc− 1 , (8)

as desired. C

The lemma condition c > 1+
√

1+4α
2α means that (c(αc− 1))−1

< 1. Now, let ε := 1
k and

allow k →∞ in (6). Since τ → (c(αc− 1))−1 as k →∞, we see that (6) becomes

αc2 − c(αc− 1)
c(αc− 1)− 1 < 0 ⇐⇒ α2c3 − αc2 − 2αc+ 1 < 0

in the limit. More formally, we have shown that for every c satisfying this constraint, if we take
k to be large enough, then our choice of {xi} satisfies (4). The leading coefficient is positive
so we satisfy all the constraints (i.e. the alternation-trading proof shows a contradiction)
when c lies between the largest and second largest roots of this cubic. Implicitly, we require
c < 1+α

α so that we can apply Lemma 19 and c > 1+
√

1+4α
2α so that the undesired terms

in (6) vanish. By Lemma 22, these are satisfied when 1+
√

1+4α
2α < c < r1. Furthermore, if

C 6⊆ TS[nc′ ] for some c′ then we automatically have C 6⊆ TS[nc] for all c < c′. J

From Main Theorem 1, we immediately obtain the following corollary.

I Corollary 24 ([25]). For c < 2 cos(π7 ) ≈ 1.801, NTIME[n] 6⊆ TS[nc].

Proof. Taking α = 1 (as this is normal slowdown) yields c3 − c2 − 2c+ 1 < 0. The largest
root is 2 cos(π7 ), so we have NTIME[n] 6⊆ TS[n2 cos(π7 )−o(1)] J
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4 A Generic Slowdown Rule From Grover’s Algorithm

Now that we’ve proved the general case, we turn to an application. Observe that any
application of a speedup rule with parameter x results in an alternating complexity class
whose final quantifier is over x logn bits, as this quantifier indexes over the nx states that it
receives from the penultimate quantifier. For example,

TS[nd] ⊆ (∃nx)(∀x logn)1TS[nd−x].

Normally, we could remove the last quantifier with a slowdown rule, yielding the inclusion

TS[nd] ⊆ (∃nx)TS[nc·max(x,d−x,1)]. (9)

We could also remove the quantifier by having the deterministic verifier try all nx possible
strings it could receive, but this yields the useless inclusion TS[nd] ⊆ (∃nx)TS[nd]. However,
if we allow alternating complexity classes with quantum verifiers rather than deterministic
verifiers, we can remove the last quantifier more efficiently. In particular, we can think of the
last quantifier as a search problem over a space of size N := nx. Classically, no blackbox
algorithm can search over N items with fewer than N queries in the worst case, but in the
quantum setting Grover’s algorithm lets us do this in O(

√
N) queries! This gives us, for

some informal notion of quantum time,

TS[nd] ⊆ (∃nx)QTIME[nd− x2 ]. (10)

This method of quantifier removal allows us to remove quantifiers more efficiently than (9)
when c is large at the cost of introducing a quantum verifier. However, the quantum verifier
can be replaced with a deterministic verifier, under the assumption QCMATIME[n] ⊆ TS[nc]!
Ultimately, we will find that combining a speedup (adding one quantifier), (10) (removing
one quantifier), and the assumption (removing one quantifier) yields a generic slowdown rule
with α = 2

3 .

4.1 Review of Grover’s Algorithm

Given (quantum) query access to a function f : [N ] → {0, 1}, Grover’s algorithm tells us
whether or not there exists an α ∈ [N ] such that f(α) = 1. For a given f , let S := {α ∈
[N ] : f(α) = 1}. It turns out, per [12], that the probability of success of Grover search after
j iterations is sin2(2(j + 1)θ) where θ = sin−1

√
|S|
N . Regardless of |S|N , a sufficiently large

random number of iterations should succeed with probability roughly 1
2 , which is the average

value of sin2 x. The following lemma of [5] formalizes this.

I Lemma 25 ([5]). Let k be an arbitrary positive integer and let j be an integer chosen
uniformly at random from [0, k − 1]. If we observe the register after applying j Grover
iterations starting from the uniform state, the probability of obtaining a solution is at least 1

4
when k ≥ 1

sin 2θ .

I Corollary 26. Let j be an integer chosen uniformly at random from [0, (sin 2√
N

)−1]. If we
observe the register after applying j Grover iterations starting from the uniform state, the
probability of obtaining a solution is at least 1

4 .
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4.2 Using Grover’s Algorithm to Invert RAMs

In order to apply Grover’s algorithm to remove the quantifier in expressions like (∃ logn)TS[nd]
– specifically, to perform Grover diffusion – we must be able to implement the relevant function
f ∈ TS[nd] in our quantum computational model. The following lemma converts the classical
random-access machine of f to a “normal form” that is more amenable to implementation in
a quantum computer. The workspace of A includes an input address register used to specify
which bit of the input the machine wishes to read and an input query bit which stores the
result of the most recent query of the input. Assume without loss of generality that the first
dlogne bits of the workspace hold the input address register, and bit dlogne+ 1 holds the
current bit of input being read.

I Lemma 27 (Normal Form Circuit for Time-Space Bounded Computation). Let f be a function
computed by a random-access machine A in time t(n) and space s(n) on inputs of length n.
Then, there exists a sequence of uniform Boolean circuits C1, . . . , Cr, such that:
1. for all 1 < i ≤ r − 1, Ci has s inputs and s outputs,
2. C1 has no inputs and s outputs,
3. Cr has s inputs and 1 output,
4.
∑r
i=1 |Ci| = O(ts2) where |Ci| denotes the size of Ci,

and furthermore

f(y) = Cr ◦R ◦ Cr−1 ◦ · · · ◦R ◦ C1, (11)

where R : {0, 1}s(n) → {0, 1}s(n), on input z ∈ {0, 1}s(n), sets zdlogne+1 = yz1z2...zdlogne and
leaves the remainder of z unchanged. Here, we write sj to denote the jth bit of a string s.

In Lemma 27, the circuits Ci are used to simulate steps in the workspace of the machine,
and the function R perform random accesses to the n-bit input y, by setting its (dlogne+1)th
output bit to the bit of y whose index is specified by the first dlogne bits. Note that y is the
original length-n input to f and n may be much larger than s(n). Lemma 27, along with
Corollary 28 allow us to translate a RAM to a quantum circuit with s(n) wires and with
intermittent QRAM calls: the Boolean circuits {Ci} can be replaced with quantum circuits
in the usual way and each R can be replaced by a QRAM call. Proofs of Lemma 27 and
Corollary 28 can be found in the full version.

I Corollary 28. Let f : {0, 1}m → {0, 1} be a function computable in classical time t and
space s by a random-access machine. Then, the transformation |y〉 |0〉 7→ |y〉 |f(y)〉 can be
implemented by a quantum computer with quantum random-access to its input in time O(ts2).

We now state the main lemma of this subsection.

I Lemma 29 (Grover’s Algorithm for Time-Space Bounded Computation). Given a function
f : {0, 1}m → {0, 1} that can be computed in classical time t and space s by a random-
access machine, there is a quantum algorithm taking time O(2m2 (ts2 +m)) that finds a value
α ∈ {0, 1}m such that f(α) = 1, assuming one exists, with probability at least 2

3 . In particular,
when m = x logn, t = nd, s = O(logn), we obtain a time bound of Õ(nd+ x

2 ).

Proof. (Sketch) We run Grover’s algorithm. Per Corollary 26, we need O(2m2 ) Grover
iterations. Grover diffusion is dominated by the cost of implementing the function itself,
which by Corollary 28 is O(ts2). Inversion about the mean takes O(m) time. J



A. S. Mudigonda and R. R. Williams 50:17

4.3 Proving Main Theorem 2
We are now in a position to apply Grover’s algorithm to prove a generic slowdown rule.

I Lemma 30. If ∃ · BQTIME 1
3 ,1[n] ⊆ TS[nc] then

. . . (Qk−1n
ak−1)bk−1(Qknak)bkTS[nd] ⊆ . . . (Qk−1n

ak−1)bk−1TS[nc·max(ak,bk,bk−1,1, 2d
3 )].

Therefore, under the assumption ∃ · BQTIME 1
3 ,1[n] ⊆ TS[nc] we may apply a generic

slowdown rule with parameters α = 2
3 and c. Lemma 30 corresponds to the following sequence

of operations:

1. Classical Speedup (Corollary 5)
2. Grover’s algorithm to invert a classical function with classical input (Lemma 29)
3. Direct application of ∃ · BQTIME[n] ⊆ TS[nc]

Proof. By classical speedup, we have

. . . (Qknak)bkTS[nd] ⊆ . . . (Qknmax(ak,x))max(bk,x)(Qk+1x logn)bkTS[nd−x]. (12)

Consider the function g : {0, 1}nmax(bk,x) × {0, 1}x logn → {0, 1} which implements the
TS[nd−x] verifier from the right-hand-side of (12) given as inputs the nmax(bk,x) bits of
output from the kth stage/quantifier and the (x logn)-bit string chosen by the (k + 1)th
stage/quantifier. We will apply Lemma 29 to the function gz := g(z, ·), where z is the output
from the kth stage of the class (not the (k + 1)th stage!). In particular, we can use Grover’s
algorithm to search over the space of possible values of the last quantifier of (x logn) bits.
Thus, the inputs to gz are strings of length m = x logn. The runtime of gz is O(ts2) by
Corollary 28, as gz just needs to evaluate the verifier on z (the output of the kth stage) and
a length m-input. Therefore, applying Lemma 29,

⊆ . . . (Qk−1n
ak−1)bk−1(Qknmax(ak,x))max(bk,x)BQTIME[nd− x2 ].

Without loss of generality, suppose that Qk = ∃. Then, we can continue the sequence of
inclusions as follows:

⊆ . . . (Qk−1n
ak−1)bk−1∃ · BQTIME[nmax(ak,bk,x,d− x2 )]

⊆ . . . (Qk−1n
ak−1)bk−1TS[nc·max(bk−1,ak,bk,x,d− x2 ,1)].

(Note we need a 1 in the maximum in the last equation, because our assumption ∃ ·
BQTIME 1

3 ,1[n] ⊆ TS[nc] only implies ∃ · BQTIME[nδ] ⊆ TS[nc] for δ < 1.) To minimize the
exponent, we take x = 2a0

3 , yielding the exponent in the lemma statement. J

I Remark 31. Note that in the proof of Lemma 30 we do not need to account for the
the nbk exponent on the (k + 1)th stage/quantifier when computing the the runtime of
gz when preparing to apply Lemma 29. This is because the quantifier (Qk+1x logn)bk on
the right-hand-side of (12), which arises due to a speedup rule, has a bk in the exponent
only because it needs to copy and pass on the output of the kth stage. This is normally
necessary because the verifier on the right-hand-side of (12) needs to run from configuration
to configuration on the original verifier’s input and hence needs to be able to access the
original input (i.e., the input to the verifier on the left-hand-side of the inclusion). However,
by our definition of gz, we don’t need to worry about the cost of copying the output from
the kth stage z is itself the output of the kth stage. We don’t need to copy and pass on the
original input because gz already has it! Put differently, because we’re collapsing two stages
into one, we don’t need to expend time on computation that’s only used to pass input along.
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Note that every possible proof involving slowdown and Grover’s algorithm (Lemma 29) can
be carried out using Lemma 30 as the only rule for removing quantifiers, as we can only
apply Lemma 29 between a speedup and a slowdown. (More details on why are in the full
version.) Plugging α = 2

3 into Main Theorem 1, we obtain the following corollary.

I Corollary 32. ∃ · BQTIME 1
3 ,1[n] 6⊆ TS[nc] for c < 3+

√
3

2 ≈ 2.366.

Since ∃ · BQTIME[n] ⊆ QCMATIME[n], this proves Main Theorem 2.

5 Lower Bounds Against BPTS

We turn to proving lower bounds against randomized algorithms. In this section, we will
use both Corollary 5 and Corollary 8 as speedup rules. The randomized slowdown rule is
straightforward.

I Lemma 33 (“Randomized” Slowdown Rule). Assuming ∃ ·BPTIME[n] ⊆ BPTS[nc], we have

(Q1n
a1 )b1 . . . (Qknak )bkBPTS[nd] ⊆ (Q1n

a1 )b1 . . . (Qk−1n
ak−1 )bk−1 BPTS[nc·max(d,bk,ak,bk−1)].

I Lemma 34. Suppose that, under the assumption ∃ · BPTIME[n] ⊆ BPTS[nc] for some c,
there is an alternation-trading proof with at least two inclusions proving that BPTS[nd] ⊆
BPTS[nd′ ] for d < d′. Then, the assumption is false.

A proof of this lemma can be found in the full version. Recall that by Lemma 15, we
may suppress some of the exponents when writing alternating complexity classes. We will do
so throughout the remainder of this section.

Now that we have the preliminaries out of the way, let us prove some lower bounds. The
first part of Main Theorem 3 is an immediate corollary of the following theorem.

I Theorem 35. ∃ · BPTIME[n] 6⊆ TS[nc] for c < r1, where r1 ≈ 1.466 is the largest root of
the polynomial x3 − x2 − 1 = 0.

Proof. Our analysis is similar to the proof of Main Theorem 1. The bound will arise by
applying the annotation 1k0k+2 with the appropriate speedup parameters as k →∞. We
will choose parameters {xi} so that the following sequence of inclusions is valid.

BPTS[nd] ⊆ (∃n1)(∀nx1)(∃nx2) . . . (Qknxk)(Qk+1n
xk)TS[n(d−x1−x2−···−xk)] 1k0k+2

⊆ (∃n1)(∀nx1)(∃nx2) . . . (Qknxk)BPTS[nc(d−x1−x2−···−xk)] 1k00k+1

⊆ (∃n1)(∀nx1) . . . (Qknxk)BPTS[ncxk ]

⊆ (∃n1)(∀nx1) . . . (Qk−1n
xk−1)BPTS[nc

2xk ] 1k000k

⊆ (∃n1)(∀nx1) . . . (Qk−1n
xk−1)BPTS[ncxk−1 ]

. . . 1k000k−10

⊆ (∃n1)BPTS[nc
2x1 ]

⊆ BPTS[nc
3x1 ] 1k0k+10

⊆ BPTS[nd]

In order for all of the above inclusions to hold, we take

x1 := d

c3 , xi := (c(1− ε))1−i · x1 = d(1− ε)1−i

ci+2

for ε := 1
k . This automatically satisfies all the constraints except for the one corresponding

to the third line, which requires
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c(d− x1 − x2 − · · · − xk) ≤ cxk

⇐⇒ 1− 1
c3

(
1− ε
c

)k−1
− 1
c3

k−1∑
i=0

(
1− ε
c

)i
< 0

⇐⇒ 1− 1
c3

(
1− ε
c

)k−1
− 1
c3

1− 1−ε
ck

1− 1−ε
c

< 0.

As k →∞, several terms vanish. We are left with

1− 1
c3(1− 1

c )
< 0 ⇐⇒ c3 − c2 − 1 < 0.

The largest root is at c ≈ 1.466. J

When we are allowed to introduce quantum operations and use Lemma 30, we can do
slightly better than this.

I Theorem 36. ∃ · BQTIME[n] 6⊆ TS[nc] for c < 1.5.

The second part of Main Theorem 3 is an immediate corollary of the previous theorem.

Proof. (Sketch) Let d > 1.5. We have the following sequence of containments:

BPTS[nd] ⊆ (∃n1)(∀n 2d
3 )(∃2d

3 logn)1TS[n d3 ]

⊆ (∃n1)(∀n 2d
3 )BQTIME[n 2d

3 ]

⊆ (∃n1)BPTS[n 2cd
3 ],

where we’ve used Lemma 29 in the second inclusion. When c < 1.5, we have 2c
3 < 1. Thus,

we can repeat this procedure until we derive the inclusion

BPTS[nd] ⊆ (∃n1)BPTS[n dc ]

⊆ BPTS[nd
′
]

for d′ < d. To get a contradiction, we can apply the ideas of Lemma 34 modulo some
additional technical details that we relegate to the full version. J
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Abstract
The linear search problem, informally known as the cow path problem, is one of the fundamental
problems in search theory. In this problem, an immobile target is hidden at some unknown position
on an unbounded line, and a mobile searcher, initially positioned at some specific point of the line
called the root, must traverse the line so as to locate the target. The objective is to minimize the
worst-case ratio of the distance traversed by the searcher to the distance of the target from the root,
which is known as the competitive ratio of the search.

In this work we study this problem in a setting in which the searcher has a hint concerning the
target. We consider three settings in regards to the nature of the hint: i) the hint suggests the
exact position of the target on the line; ii) the hint suggests the direction of the optimal search (i.e.,
to the left or the right of the root); and iii) the hint is a general k-bit string that encodes some
information concerning the target. Our objective is to study the Pareto-efficiency of strategies in
this model. Namely, we seek optimal, or near-optimal tradeoffs between the searcher’s performance
if the hint is correct (i.e., provided by a trusted source) and if the hint is incorrect (i.e., provided by
an adversary).
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1 Introduction

Searching for a target is a common task in everyday life, and an important computational
problem with numerous applications. Problems involving search arise in such diverse areas as
drilling for oil in multiple sites, the forest service looking for missing backpackers, search-and-
rescue operations in the open seas, and navigating a robot between two points on a terrain.
All these problems involve a mobile searcher which must locate an immobile target, often
also called hider, that lies in some unknown point in the search domain, i.e, the environment
in which the search takes place. The searcher starts from some initial placement within the
domain, denoted by O, which we call the root. There is, also, some underlying concept of
quality of search, in the sense that we wish, in informal terms, for the searcher to be able to
locate the target as efficiently as possible.

One of the simplest, yet fundamental search problems is searching on an infinite line that
is unbounded both to the left and to the right of the root. In this problem, which goes back
to Bellman [17] and Beck and Newman [10], the objective is to find a search strategy that
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minimizes the competitive ratio of search. More precisely, let S denote the search strategy,
i.e., the sequence of moves that the searcher performs on the line. Given a target t, let d(S, t)
denote the total distance that the searcher has traveled up to the time it locates the target,
and d(t) the distance of t from O. We define the competitive ratio of S as

cr(S) = sup
t

d(S, t)
d(t) .

A strategy of minimum competitive ratio is called optimal. The problem of optimizing the
competitive ratio of search on the line is known as the linear search problem (mostly within
Mathematics and Operations Research), but is also known in Computer Science as the cow
path problem.

It has long been known that the optimal (deterministic) competitive ratio of linear search
is 9 [15], and is derived by a simple doubling strategy. Specifically, let the two semi-infinite
branches of the line be labeled with 0, 1 respectively. Then in iteration i, with i ∈ N, the
searcher starts from O, traverses branch i mod 2 to distance 2i, and returns to the root.

Linear search, and its generalization, the m-ray search problem, in which the search
domain consists of m semi-infinite branches have been studied in several settings. Substantial
work on linear search was done in the ’70s and ’80s predominantly by Beck and Beck, see
e.g., [11, 16, 12, 13, 14]. Gal showed that a variant of the doubling strategy is optimal for
m-ray search [25, 26]. These results were later rediscovered and extended in [9].

Other related work includes the study of randomization [41] and [30]; multi-searcher
strategies [35]; searching with turn cost [23, 3]; the variant in which some probabilistic inform-
ation on the target is known [27, 28]; the related problem of designing hybrid algorithms [29];
searching with an upper bound on the distance of the target from the root [34] and [20]; fault
tolerant search [22, 33]; and performance measures beyond the competitive ratio [31, 38, 4].
Competitive analysis has been applied beyond the linear and star search, for example in
searching within a graph [32, 24, 6].

1.1 Searching with a hint
Previous work on competitive analysis of deterministic search strategies has mostly assumed
that the searcher has no information about the target, whose position is adversarial to the
search. In practice, however, we expect that the searcher may indeed have some information
concerning the target. For instance, in a search-and-rescue mission, there may be some
information on the last sighting of the missing person, or the direction the person had taken
when last seen. The question then is: how can the searcher leverage such information, and
to what possible extent?

If the hint comes from a source that is trustworthy, that is, if the hint is guaranteed
to be correct, then the performance of search can improve dramatically. For example, in
our problem, if the hint is the branch on which the target lies, then the optimal search is
to explore that branch until the target is found, and the competitive ratio is 1. There is,
however, an obvious downside: if the hint is incorrect, the search may be woefully inefficient
since the searcher will walk eternally on the wrong branch, and the competitive ratio in this
case is unbounded.

We are thus interested in analyzing the efficiency of search strategies in a setting in which
the hint may be compromised. To this end, we first need to define formally the concept of
the hint, as well as an appropriate performance measure for the search strategy. In general,
the hint h is a binary string of size k, where the i-th bit is a response to a query Qi. For
example, one can define a single query Q as “Is the target within distance at most 100 from
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O?” and a one-bit hint, so that the hint answers a range query. For another example, if
Q=“Is the target to the left or to the right of O?”, then a 1-bit hint informs the searcher
about the direction it should pursue. From the point of view of upper bounds (positive
results), we are interested in settings in which the queries and the associated hints have some
natural interpretation, such as the ones given above. From the point of view of lower bounds
(impossibility results), we are interested on the limitations of general k-bit hint strings which
may be associated with any query, as we will discuss in more detail later.

Concerning the second issue, namely evaluating the performance of a search strategy S
with a hint h, note first that S is a function of h. We will analyze the competitiveness of
S(h) in a model in which the competitive ratio is not defined by a single value, but rather by
a pair (cS,h, rS,h). The value cS,h describes the competitive ratio of S(h) assuming that h is
trusted, and thus guaranteed to be correct. The value rS,h describes the competitive ratio of
S(h) when the hint is given by an adversarial source. More formally, we define

cS,h = sup
t

inf
h

d(S(h), t, h)
d(t) , and rS,h = sup

t
sup
h

d(S(h), t, h)
d(t) , (1)

where d(S(h), t, h) denotes the distance traversed in S(h) for locating a target t with a hint
h. We will call cS,h the consistency of S(h), and rS,h the robustness of S(h). To simplify
notation, we will often write S instead of S(h) when it is clear from context that we refer to
a strategy with a hint h.

For example, if the hint h is the branch on which the target lies, then the strategy
that always trusts the hint is (1,∞) competitive, whereas the strategy that ignores the
hint entirely is (9, 9)-competitive. Our objective is then to find strategies that are provably
Pareto-optimal or Pareto-efficient in this model, and thus identify the strategies with the
best tradeoff between robustness and consistency.

Our model is an adaptation, to search problems, of the untrusted advice framework for
online algorithms proposed by Angelopoulos et al. [5]. In their work, the online algorithm is
given some additional information, or advice which may, or may not be correct. To the best
of our knowledge, our setting is a first attempt to quantify, in an adversarial setting, the
impact of general types of predictions in search games. It is also in line with recent advances
on improving the performance of online algorithms using predictions, such as the work of
Lykouris and Vassilvitskii [36], who introduced the concepts of consistency and robustness in
the context of paging, and the work of Purohit et al. [39], who applied it to general online
problems. Our framework for the k-bit hint is also related to other work in Machine Learning,
such as clustering with k noisy queries, e.g., the work of Mazumdar and Saha [37].

It should be emphasized that there is previous work that has studied the impact of specific
types of hints on the performance of search strategies, such as bounds on the maximum or
the minimum distance of the target from the root, e.g., [34, 20, 27]. However, the hint in
these works is always assumed to be trusted and correct.

1.2 Contribution
In this work we study the power of limitations of linear search with hints. Let r ≥ 9 be
a parameter that in general will denote the robustness of a search strategy, and let br be
defined as

br =
ρr +

√
ρ2
r − 4ρr

2 , where ρr = (r − 1)/2.

We consider the following classes of hints:

ITCS 2021
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The hint is the position of the target. Here, the hint describes the exact location of the
target on the line: its distance from O, along with the branch (0 or 1) on which it lies.
We present a strategy that is ( br−1

br+1 , r)-competitive, and we prove it is Pareto-optimal.
The hint is the branch on which the target lies. Here, the hint is information on whether
the searcher is to the left or to the right of the root. We present a strategy that, given
parameters b > 1 and δ ∈ (0, 1), has consistency c = 1 + 2 · ( b2

b2−1 + δ b3

b2−1 ), and robustness
r = 1 + 2 · ( b2

b2−1 + 1
δ

b3

b2−1 ). Again, we prove that this strategy is Pareto-optimal.
The hint is a general k-bit string. In the previous settings, the hint is a single bit, which
answers the corresponding query. Here we address the question: how powerful can be
a single-bit hint, or more generally a k-bit hint? In other words, how powerful can k
binary queries be for linear search? We give several upper and lower bounds on the
competitiveness of strategies in this setting. First, we look at the case of a single-bit
hint. Here, we give a 9-robust strategy that has consistency at most 1 + 4

√
2, whereas we

show that no 9-robust strategy can have consistency less than 5, for any associated query.
For general robustness r, we give upper and lower bounds that apply to some specific,
but broadly used class of strategies, including geometric strategies (see Section 2 for a
definition and Theorem 10 for the statement of the result). For general k, and for a given
r ≥ 9, we give an r-robust strategy whose consistency decreases rapidly as function of k
(Proposition 11).

In terms of techniques, for the first setting described above (in which the hint is the
position of the target), the main idea is to analyze a geometric strategy with “large” base,
namely br, for r ≥ 9. The technical difficulty here is the lower bound; to this end, we prove
a lemma that shows, intuitively, that for any r-robust strategy, the search length of the
i-th iteration cannot be too big compared to the previous search lengths (Lemma 2). This
technical result may be helpful in more broad settings (e.g., we also apply it in the setting in
which the advice is a general k-bit string).

Concerning the second setting, in which the hint describes the branch, we rely on tools
developed by Schuierer [40] for lower-bounding the performance of search strategies; more
precisely on a theorem for lower-bounding the supremum of a sequence of functionals. But
unlike [40], we use the theorem in a parameterized manner, that allows us to express the
tradeoffs between the consistency and the robustness of a strategy, instead of their average.

Concerning the third, and most general setting, our upper bounds (i.e., the positive
results) come from a strategy that has a natural interpretation: it determines a partition
of the infinite line into 2k subsets, and the hint describes the partition in which the target
lies. The lower bounds (negative results) come from information-theoretic arguments, as is
typical in the field of advice complexity of online algorithms (see, e.g., the survey [21]).

The broader objective of this work is to initiate the study of search games with some
limited, but potentially untrusted information concerning the target. As we will show, the
problem becomes challenging even in a simple search domain such as the infinite line. The
framework should be readily applicable to other search games, and the analysis need not
be confined to the competitive ratio, or to worst-case analysis. For example, search games
in bounded domains are often studied assuming a probability distribution on the target,
with the objective to minimize the expected search time (for several such examples see the
book [1]). However, very little work has addressed the setting in which the searcher may
have access to hints, such as the High-Low search games described in Section 5.2 of [1], in
which a searcher wants to locate a hider on the unit interval by a sequence of guesses. Again,
our model is applicable, in that one would like to find the best tradeoff on the expected time
to locate the target assuming a trusted or untrusted hint.
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2 Preliminaries

In the context of searching on the line, a search strategy X can be defined as an infinite set
of pairs (xi, si), with i ∈ N, xi ∈ R≥1 and si ∈ {0, 1}. We call i an iteration and xi the length
of the i-th search segment. More precisely, in the i-th iteration, the searcher starts from the
root O, traverses branch si up to distance xi from O, then returns to O. It suffices to focus
on strategies for which xi+2 ≥ xi, i.e., in any iteration the searcher always searches a new
part of the line. We will sometimes omit the si’s from the definition of the strategy, if the
direction is not important, i.e., the searcher can start by moving either to the left or to the
right of O. In this case, there is the implicit assumption that si and si+1 have complementary
parities, since any strategy that revisits the same branch in consecutive iterations can be
transformed to another strategy that is no worse, and upholds the assumption. We make
the standing assumption that the target lies within distance at least a fixed value, otherwise
every strategy has unbounded competitive ratio. In particular, we will assume that t is such
that d(t) ≥ 1.

Given a strategy X = (x0, x1, . . .) (which we will denote by X = (xi), for brevity), its
competitive ratio is given by the expression

cr(X) = 1 + 2 sup
i≥0

∑i
j=1 xj

xi−1
, (2)

where x−1 is defined to be equal to 1. This expression is obtained by considering all the
worst-case positions of the target, namely immediately after the turn point of the i-th segment
(see e.g., [40]).

Geometric sequences are important in search problems, since they often lead to efficient,
or optimal strategies (see, e.g., Chapters 7 and 9 in [1]). We call the search strategy Gb = (bi)
geometric with base b. From (2), we obtain that

cr(Gb) = 1 + 2 b2

b− 1 . (3)

For example, for the standard doubling strategy in which xi = 2i, hence b = 2, the above
expression implies a competitive ratio of 9.

For any r ≥ 4 define ρr to be such that r = 1 + 2ρr, thus ρr = (r − 1)/2. Moreover,
from (3) and the definition of br, we have that cr(Gbr

) = r.
In the context of searching with a hint, we will say that a strategy is (c, r)-competitive if

it has consistency at most c and robustness at most r; equivalently we say that the strategy
is c-consistent and r-robust. Clearly, an r-robust strategy gives rise to a strategy with no
hints, and with competitive ratio at most r.

We conclude with some definitions that will be useful in Section 4. Let X = (x0, x1, . . .)
denote a sequence of positive numbers. We define αX as

αX = limn→∞x
1/n
n .

We also define as X+i the subsequence of X starting at i, i.e, X+i = (xi, xi+1, . . .). Last, we
define the sequence Gb(γ0, . . . γn−1) as

Gb(γ0, . . . γn−1) = (γ0, γ1a, γ2a
2, . . . γn−1a

n−1, γ0a
n, γ1a

n+1, . . .).

ITCS 2021
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3 Hint is the position of the target

In this section we study the setting in which the hint is related to the exact position of
the target. Namely, the hint h describes the distance d(t) of the target t from the root,
as well as the branch on which it hides. For any r ≥ 9, we will give a strategy that is
( br+1
br−1 , r)-competitive. Moreover, we will show that this is Pareto-optimal. We begin with
the upper bound.

I Theorem 1. For any r ≥ 9 there exists a ( br+1
br−1 , r)-competitive strategy for linear search

in which the hint is the position of the target.

Proof. From the hint h, we have as information the distance d(t) as well as the branch t on
which the target t lies; without loss of generality, suppose that this branch is the branch 0.
Recall that this information may or may not be correct, and the searcher is oblivious to this.

Consider the geometric strategy Gbr = (bir), with i ∈ N, and recall that Gbr is r-robust
(as discussed in Section 2). There must exist an index jt such that bjt−2

r < d(t) ≤ bjt
r . Define

λ = bjt
r /d(t) ≥ 1, and let G′ denote the strategy G′ = ({ 1

λb
i
r, si}), where the si’s are defined

such that that si+1 6= si, for all i, and sjt
= 0.

In words, G′ is obtained by “shrinking” the search lengths of Gbr
by a factor equal to λ,

and by choosing the right parity of branch for starting the search, in a way that, if the hint
is trusted, then in G′ the searcher will locate the target right as it is about to turn back to
O at the end of the jt-th iteration.

Since Gbr
is r-robust, so is the scaled-down strategy G′; this is because the worst-case

competitive ratio is attained for targets hiding right after the turn points of the segments. It
remains then to bound the consistency cG′ of G′. Suppose that the hint is trusted. We have
that

d(G′, t) = 1
λ

(2
jt−1∑
i=0

bir + bjt
r ),

and since d(t) = bjt
r /λ we can bound cG′ from above by

d(G′, t)
d(t) = 1 + 2 bjt

r − 1
bjt
r (br − 1)

≤ 1 + 2
br − 1 = br + 1

br − 1 .

We conclude that G′ is ( br+1
br−1 , r)-competitive. J

Next, we will show that the strategy of Theorem 1 is Pareto-optimal. To this end, we
will need a technical lemma concerning the segment lengths of any r-robust strategy.

I Lemma 2. For any r-robust strategy X = (xi), it holds that

xi ≤
(
br + br

i+ 1

)
xi−1,

for all i ≥ 1, where x−1 is defined to be equal to 1.

We obtain a useful corollary concerning the sum of the first i− 1 search lengths of an
r-robust strategy.

I Corollary 3. For any r-robust strategy X = (xi), it holds that
i−1∑
j=0

xj ≥
xi

1 + 1
i+1

(
br

br − 1 −
i+ 2
i+ 1

)
,

and for every ε ∈ (0, 1], there exists i0 such that for all i > i0,
∑i−1
j=0 xj ≥ ( 1

br−1 − ε)xi.
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We can now show a lower bound on the competitiveness of every strategy that matches
the upper bound of Theorem 1.

I Theorem 4. For every (c, r)-competitive strategy for linear search in which the hint is the
position of the target, it holds that c ≥ br+1

br−1 − ε, for any ε > 0.

Proof. Let X = (xi) denote an r-robust strategy, with a hint that specifies the position of a
target t. Suppose that X locates the target at the jt-th iteration. We have that

c = d(X, t)
d(t) =

2
∑jt−1
i=0 xi + d(t)
d(t) ≥

2
∑jt−1
i=0 xi + xjt

xjt

= 1 + 2
∑jt−1
i=0 xi
xjt

.

Note that the target t can be chosen to be arbitrarily far from O, which means that
jt can be unbounded (otherwise the strategy would not have bounded robustness). From
Corollary 3 this implies that

∑jt−1
i=0 xi can be arbitrarily close to xjt

1
br−1 , and therefore c is

arbitrarily close to 1 + 2 1
br−1 = br+1

br−1 , which concludes the proof. J

4 Hint is the direction of search

In this section we study the setting in which the hint is related to the direction of the search.
More precisely, the hint is a single bit that dictates whether the target is to the left or to the
right of the root O. Again, we are interested in Pareto-optimal strategies with respect to
competitiveness: namely, for any fixed r ≥ 9, what is the smallest c such that there exist
(c, r)-competitive strategies?

A related problem was studied by Schuierer [40], which is called biased search. One
defines the left and right competitive ratios, as the competitive ratio of a search, assuming
that the target hides to the left of the root, or to the right of the root, respectively. However,
the searcher does not know the target’s branch. Of course we know that the maximum of the
left and the right competitive ratios is at least 9 (and for the doubling strategy, this is tight).
[40] shows that for any search strategy on the line (not necessarily 9-robust), the average of
the left and the right competitive ratios is at least 9. At first glance, one may think that this
could be an unsurprising, and perhaps even trivial result; however this is not the case. The
proof in [40] is not straightforward, and relies in a generalization of a theorem of [25] which
lower bounds the supremum of a sequence of functionals by the supremum of much simpler,
geometric functionals. We will discuss this theorem shortly.

The problem studied in [40] is related to our setting: the left and right competitive ratios
correspond to the consistency c and the robustness r of the strategy. Hence from [40] we
know that c+ r ≥ 18. However, there is a lot of room for improvement. In this section we
will show a much stronger tradeoff between c and r, and we will further prove that it is tight.
For example, we will show that for any (c, r)-competitive strategy, if c approaches 5 from
above, then r approaches infinity (in contrast, in this case, the lower bound of [40] yields
r ≥ 13). In fact, we will show that c+ r is minimized when c = r = 9. To this end, we will
apply a parameterized analysis based on Schuierer’s approach. We begin with the upper
bound, by analyzing a specific strategy.

I Theorem 5. For every b ≥ 1, and δ ∈ (0, 1], there is a (c, r)-competitive strategy for linear
search with the hint being the direction of search, in which

c = 1 + 2 · ( b2

b2 − 1 + δ
b3

b2 − 1) and r = 1 + 2 · ( b2

b2 − 1 + 1
δ

b3

b2 − 1).
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Proof. Suppose, without loss of generality, that the hint points to branch 0. Consider a
strategy X = ({xi, i mod 2}), which starts with branch 0, and alternates between the two
branches. This strategy has consistency and robustness given by the following expressions,
as a consequence of (2):

c = 1 + 2 · sup
k≥0
{
∑2k+1
i=0 xi
x2k

} and r = 1 + 2 · sup
k≥0
{
∑2k
i=0 xi
x2k−1

}, (4)

where x−1 is defined to be equal to 1.
In addition, the search lengths of X are defined by

xi = bi, if i even and xi = δbi, if i is odd,

where we require that b > 1, and δ ∈ (0, 1]. Note that X is “biased” with respect to branch
0, which makes sense since the hint points to that branch.

Substituting these values into (4), we obtain that

c = 1 + 2 · sup
k≥0
{
∑k
i=0 b

2i

b2k + δ

∑k
i=0 b

2i+1

b2k } = 1 + 2 · sup
k≥0
{ b

2(k+1) − 1
(b2 − 1)b2k + δ

b2k+3 − 1
(b2 − 1)b2k }

≤ 1 + 2 · ( b2

b2 − 1 + δ
b3

b2 − 1).

Similarly, we have that

r = 1 + 2 · sup
k≥0
{1
δ

∑k

i=0 b
2i

b2k−1 +
∑k−1

i=0 b
2i+1

b2k−1 } = 1 + 2 · sup
k≥0
{1
δ

b2(k+1) − 1
(b2 − 1)b2k−1 + b2k+1 − 1

(b2 − 1)b2k−1 }

≤ 1 + 2 · (1
δ

b3

b2 − 1 + b2

b2 − 1). J

For example, if δ = 1, and b = 2, then Theorem 5 shows that there exists a (9, 9)-
competitive strategy. Interestingly, the theorem shows that as the consistency c approaches
5 from above, the robustness r of the strategy must approach infinity. This is because the
function b2

b−1 is minimized for b = 2, and hence for c to approach 5 from above, it must be
that b approaches 2, and δ approaches 0. But then 1

δ must approach infinity, and so must r.
We will show that the strategy of Theorem 5 is Pareto-optimal. To this end, we will use

the following theorem of [40]. Recall the definitions of αX , X+i and Ga(γ0, . . . γn−1) given
in Section 2.

I Theorem 6 (Theorem 1 in [40]). Let p, q be two positive integers, and X = (x0, x1, . . .) a
sequence of positive numbers with supn≥0 xn+1/xn <∞ and αX > 0. Suppose that Fk is a
sequence of functionals that satisfy the following properties:
(1) Fk(X) depends only on x0, x1, . . . xpk+q,
(2) Fk(X) is continuous in every variable, for all positive sequences X,
(3) Fk(aX) = Fk(X), for all a > 0,
(4) Fk(X + Y ) ≤ max(Fk(X), Fk(Y )), for all positive sequences X,Y , and
(5) Fk+i(X) ≥ Fk(X+ip), for all i ≥ 1.
Then there exist p positive numbers γ0, γ1, γp−1 such that

sup
0≤k<∞

Fk(X) ≥ sup
0≤k<∞

Fk(GαX
(γ0, . . . , γp−1)).
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We will use Theorem 6 to prove a tight lower bound on the competitiveness of any
strategy X.

I Theorem 7. For every (c, r)-competitive strategy, there exists α > 1, and δ ∈ (0, 1] such
that c ≥ 1 + 2 · ( α2

α2−1 + δ α3

α2−1 ), and r ≥ 1 + 2 · ( α2

α2−1 + 1
δ

α3

α2−1 ).

Proof. Let X = (x0, x1, . . .) denote a (c, r)-competitive strategy, and suppose, without loss
of generality, that the hint specifies that the target is in the branch labeled 0. There are
two cases concerning X: either the first exploration is on the branch labeled 0, or on the
branch labeled 1. Let us assume the first case; at the end, we will argue that the second case
follows from a symmetrical argument. As we argued in the proof of Theorem 5, in this case
the competitiveness of X is described by (4). Let us define the functionals

Ck =
∑2k+1
i=0 xi
x2k

and Rk =
∑2k
i=0 xi
x2k−1

.

Then we have that

c = 1 + 2 · sup
k≥0

Ck and r = 1 + 2 · sup
k≥0

Rk. (5)

The functional Ck satisfies the conditions of Theorem 6 with p = 2, as shown in [40] therefore
there exist γ0, γ1 > 0 such that

sup
k≥0

Ck ≥ sup
k≥0

Ck(GαX
(γ0, γ1)) = sup

k≥0

γ0 + γ1αX + γ0α
2
X + . . .+ γ0α

2
Xk + γ1α

2k+1
X

γ0α2k
X

= sup
k≥0
{
∑k
i=0 α

2i
X

α2k
X

+ γ1

γ0

∑k
i=0 α

2i+1
X

α2k
X

}.

If αX ≤ 1, then the above implies that supk≥0 Ck =∞ (another way of dismissing this case
is that if αX ≤ 1, then X is bounded and the two branches are not explored to infinity, as
required by any strategy of bounded consistency). We can thus assume that αX > 1, and we
obtain that

sup
k≥0

Ck ≥ sup
k≥0
{
α2k+2
X − 1

(α2
X − 1)α2k

X

+ γ1

γ0

α2k+3
x − 1

(α2
X − 1)α2k

X

} = α2
X

α2
X − 1 + γ1

γ0

α3
X

α2
X − 1 . (6)

We can lower-bound r using a similar argument, and obtain

sup
k≥0

Rk ≥ sup
k≥0
{γ0

γ1

α2k+2
X − 1

(α2
X − 1)α2k−1

X

+ α2k+1
x − 1

(α2
X − 1)α2k−1

X

} = γ0

γ1

α3
X

α2
X − 1 + α2

X

α2
X − 1 . (7)

Let us define δ = γ1
γ0
> 0. The result follows then by combining (5), (6) and (7). Note

that if we require that c ≤ r, it must be that δ ≤ 1, since αX > 1.
It remains to consider the symmetric case, in which in X, the first explored branch is

branch 1. In this case the analysis is essentially identical: in (5) we substitute Ck with Rk
and vice versa, in the expressions of c and r, and in the resulting lower bounds we require
that δ > 1. J

It is important to note that in the proof of Theorem 7 we used the fact that the values
γ0 and γ1 depend only on X and not on any functionals defined over X, as follows from the
proof of Theorem 6 in [40].
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Theorem 7 implies that any (c, r)-competitive strategy X is such that

c+ r ≥ 2 + 4 α2
X

α2
X − 1 + 2(δ + 1

δ
) α3

X

α2
X − 1 ,

which is minimized at δ = 1, hence c+ r is minimized only if c = r = 1 + 2 α2
X

αX−1 ≥ 9. We
conclude that the average of a strategy’s consistency and robustness (or the average of the
left and right competitive ratio, in the terminology of [40]) is minimized only by strategies
that are 9-robust.

5 Hint is a k-bit string

In this section we study the setting in which the searcher has access to a hint string of k bits.
We first consider the case k = 1. In Section 5.1 we will study the more general case.

It should be clear that even a single-bit hint is quite powerful, and that the setting is
non-trivial. For example, the bit can indicate the right direction for search, as discussed in
Section 4, but it allows for other possibilities, such as whether the target is at distance at
most D from the root, for some chosen D. The latter was studied in [27], assuming that the
hint is correct. More generally, the hint can induce a partition of the infinite line into two
subsets L1 and L2, such that the hint dictates whether the target is hiding on L1 or L2.

We begin with the upper bound, namely we describe a specific search strategy, and the
corresponding hint bit (as well as the query which it responds). Consider two strategies of
the form

X1 = (bir) and X2 = (bi+
1
2

r ).

Note that both X1 and X2 are r-robust: X1 is geometric with base br, whereas X2 is obtained
from X1 by scaling the search lengths by a factor equal to b1/2

r . We also require that the two
strategies start by searching the same branch, hence in every iteration, they likewise search
the same branch.

We can now define a strategy Z with a single bit hint, which indicates whether the
searcher should choose strategy X1 or strategy X2. For any given target, one of the two
strategies will outperform the other, assuming the hint is trusted. Thus, an equivalent
interpretation of the hint is in the form of a partition of the infinite line into two sets L1
and L2, such that if the target is in Li, then Xi is the preferred strategy, with i ∈ [1, 2]. See
Figure 1 for an illustration.

The following result bounds the performance of this strategy, and its proof will follow as
a corollary of a more general theorem concerning k-bit strings that we show in Section 5.1
(Theorem 11).

I Proposition 8. For given r ≥ 9, the above-defined strategy Z is r-robust and has consistency
at most 1 + 2a

3/2

a−1 , where a = br, if r ≤ 10, and a = 3, otherwise.

Note that if r = 9, then Z has consistency 1+4
√

2 ≈ 6.657. For r ∈ [9, 10], the consistency
of Z is decreasing in r, as one expects. For r ≥ 10, the consistency is 1 + 3

√
3 ≈ 6.196.

We now turn our attention to lower bounds. To this end, we observe that a single-bit hint
h has only the power to differentiate between two fixed strategies, say X = (xi), and Y = (yi),
i.e., two strategies that are not defined as functions of h. We say that Z is determined by
strategies X and Y , and the bit h.
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O

Figure 1 Illustration of strategy Z, using the first four segments of strategies X1 and X2. Blue
(dark)and orange (faded) segments correspond to the search segments of strategies X1 and X2,
respectively. The parts of the line in blue (resp. orange) indicate the hiding intervals for the target
such that X1 (resp. X2) is preferred, and thus chosen by the hint.

Setting up the lower-bound proofs

We give some definitions and notation that will be used in the proofs of Theorems 9 and 10.
Let Z be determined by strategies X and Y , and a single-bit hint h. Let C denote the lower
bound on the consistency of Z that we wish to show. For given i, define T iX = 2

∑i
j=0 xj+xi−1,

and similarly for T iY . Define also q = r/C.
Note that a searcher that follows strategy X will turn towards the root at iteration i− 1,

after having explored some branch βi ∈ {0, 1} up to distance xi−1. Thus, X barely misses
a target that may be hiding at branch βi, and at distance xi−1 + ε from O, with ε > 0
infinitesimally small, and thus requires time T iX to discover it. We will denote this hiding
position of a potential target by Pi. If, on the other hand, the searcher follows Y , then it
can locate a target at position Pi at a time that may be smaller than T iX ; let τi denote this
time. When strategy Y locates a target hiding at Pi, it does so by exploring branch βi to
a length greater than xi−1. Let ji be the iteration at which Y locates Pi, thus yji

≥ xi−1.
Last, let Qi denote the position in branch βi and at distance yji + ε from O. In words, if a
target hides at Qi, then strategy Y barely misses it when executing the search segment yji

.
We first show a lower bound on the consistency of 9-robust strategies. In the proof we

will not replace all parameters with the corresponding values (e.g., we will sometimes use r
to refer to robustness, instead of the value 9). We do so because the arguments in the proof
can be applied to other settings, as will become clear in the proof of Theorem 10.

I Theorem 9. For any (c, 9)-competitive strategy with single-bit hint, it holds that c ≥ 5.

Proof. We will prove the result by way of contradiction. Let C = 5, and suppose that
there is a strategy Z of consistency strictly less than C. Let Z be determined by two fixed
strategies X and Y . Both X and Y must be r-robust (i.e., 9-robust), otherwise Z cannot be
r-robust.

Fix i0 ∈ N. Suppose first that i0 is such that for all i ≥ i0, we have τi ≥ 1
qT

i
X . In this

case, for a target at position Pi, defined earlier, X requires time T iX to locate it, whereas Y
requires time at least τi ≥ 1

qT
i
X to locate it, thus the minimum time X or Y can locate this

target is 1
qT

i
X . Therefore, the consistency of Z is at least

c ≥ sup
i≥i0

T iX
q · xi−1

= 1
q

sup
i≥i0

T iX
xi−1

≥ C

r
· r = C, (8)
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which is a contradiction. Here, we used crucially the fact that supi≥i0
T i

X

xi−1
≥ 9, for any

9-robust strategy X and any i01. Specifically, there exists sufficiently large i such that T iX is
arbitrarily close to 9xi−1.

It must then be that i0 does not obey the property described above, namely for some
i ≥ i0 we have that τi ≤ 1

qT
i
X . Since X is r = 9-robust, it must also be that T i

X

xi−1
≤ r, as can

be seen if a target hides at Pi. We therefore obtain that

τi ≤
1
q
T iX ≤

1
q
· r · xi−1 = Cxi−1. (9)

We can also give a lower bound on τi, as follows. Recall that we denote by yji
the segment at

which strategy Y locates a target at position Pi. For arbitrarily small ε > 0, we can choose
i0 sufficiently large, which also implies that ji can also be sufficiently large (since otherwise
Y would not have finite robustness), so that Corollary 3 applies. To simplify the arguments,
in the remainder of the proof we will assume that the corollary applies with ε = 0; this has
no effect on correctness, since we want to show a lower bound of the form C − δ on the
consistency, and ε can be made as small as we want in comparison to δ. More precisely, we
obtain that

τi = 2
ji∑
l=0

yl + xi−1 ≥
2

br − 1yji + xi−1. (10)

Combining (9) and (10) we have

yji
≤ C − 1

2 (br − 1)xi−1. (11)

In particular, since r = 9 and C = 5, we have that yji
≤ 2xi−1.

Consider now a target at position Qi, and recall that this position is at distance infinites-
imally larger than yji

. We will show that in both X and Y , there exists an i ≥ i0 such that
the searcher walks distance at least C · yji before reaching this position, which implies that
Z has consistency at least C, and which yields the contradiction.

Consider first strategy Y . In this case, the searcher walks distance at least T ji

Y , to reach
Qi, from the definition of TY . Since r = 9, we know that supi≥i0

T
ji
Y

yji
≥ 9, for any i0, hence

there exists an i ≥ i0 such that the distance walked by the searcher is at least r · yji
, and

hence at least C · yji .
Consider now strategy X. In this case, in order to arrive at position Qi, the searcher

needs to walk distance T iX , then at least an additional distance yji − xi−1 to reach Qi. Let
us denote by Di

X this distance. We have

Di
X = T iX + yji − xi−1

≥ 9xi−1 + yji
− xi−1 (From Corollary 3 and since T iX is arbitrarily close to 9xi−1)

= 8xi−1 + yji
. (12)

We then bound the ratio Di
X/yji

from below as follows.

Di
X

yji

≥ 8xi−1 + yji

yji

= 1 + 8xi−1

yji

≥ 1 + 8 xi−1

2 · xi−1
(From the fact that yji

≤ 2 · xi−1)

= 5. (13)

We thus conclude that C ≥ 5, which yields the contradiction, and completes the proof. J

1 In general, this statement is not immediately true for arbitrary r > 9.
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Showing a lower bound on the consistency, as a function of general r > 9 is quite hard,
even for the case of a single-bit hint. The reason is that as r increases, so does the space
of r-robust strategies. For example, any geometric strategy Gb has robustness r, as long
as b ∈ [ ρr−

√
ρ2

r−4ρr

2 ,
ρr+
√
ρ2

r−4ρr

2 ]. In what follows we will show a lower bound for a class
of strategies which we call asymptotic. More precisely, recall the definition of T iX . We
call an r-robust strategy S asymptotic if supi≥i0

T i
X

xi−1
= r, for all fixed i0. In words, in an

asymptotic strategy, the worst-case robustness (i.e., the worst case competitive ratio without
any hint) can always be attained by targets placements sufficiently far from the root. All
geometric strategies, including the doubling strategy, have this property, and this holds
for many strategies that solve search problems on the line and the star, such as the ones
described in the introduction. Note also that the strategies X1 and X2 that determine the
strategy Z in the statement of Proposition 8 are asymptotic, since they are near-geometric.
Thus, the lower bound we show in the next theorem implies that in order to substantially
improve consistency, one may have to resort to much more complex, and most likely irregular
strategies.

I Theorem 10. Let Z denote a strategy with 1-bit hint which is determined by two r-robust,
asymptotic strategies X and Y . Then Z is (c, r)-competitive, with c ≥ 1 + 2br

br−1 .

5.1 k-bit hints
Here we consider the general setting in which the hint is a k-bit string, for some fixed k.
First, we give an upper bound that generalizes Proposition 8. We will adapt an algorithm
proposed in [5] for the online bidding problem with untrusted advice. Consider 2k strategies
X0, . . . , X2k−1, where

Xj = (ai+
j

2k )i≥0,

for some a to be determined later, and where all the Xj have the same parity: they all search
the same branch in their first iteration and, therefore in every iteration as well. Define a
strategy Z, which is determined by X0, . . . , X2k−1, and in which the k-bit hint h dictates
the index j of the chosen strategy Xj . In other words, h answers the query Qh=“which
strategy among X0, . . . , X2k−1 should the searcher choose?”. An equivalent interpretation
is that the statements of the Xj ’s induce a partition of the line, such that for every given
target position, one of the Xj ’s is the preferred strategy. Thus every bit i of the hint can
be thought, equivalently, as the answer to a partition query Qi of the line, i.e., of the form
“does the target belong in a subset Li of the line or not?”.

I Theorem 11. For every r ≥ 9, the strategy Z defined above is (c, r)-competitive with

c ≤ 1 + 2a
1+ 1

2k

a−1 , where a = br, if ρr ≤ (1+2k)2

2k , and a = 1 + 2k, otherwise.

For example, for r = 9, we obtain a strategy that is (1 + 22+ 1
2k , 9)-competitive. Thus,

the consistency decreases rapidly, as function of k, and approaches 5.
Last, it is easy to see that no 9-robust strategy with hint string of any size can have

consistency better than 3. To see this, let X be any 9-robust strategy, and let it be the
iteration in which it locates a target t. Since t can be arbitrarily far from O, it is unbounded,
and thus Corollary 3 applies. We thus have that

d(X, t)
d(t) =

∑it−1
j=0 xj + d(t)

d(t) = 1 + 2
∑it−1
j=0 xj

d(t) ≥ 1 + 2
∑it−1
j=0 xj

xit
≥ 1 + 2(1− ε)xit

xit
,

thus the consistency of X cannot be smaller that 3− ε, for any ε. The same holds then for
any strategy that is determined by any number of 9-robust strategies, and thus for any hint.
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6 Conclusion

We introduced a model that allows us to analyze the performance of search strategies with
some information on the target. As explained in the introduction, the eventual goal is to
apply this model to many other search problems, within or beyond competitive analysis, and
for deterministic or randomized strategies. A good starting point is the generalization of
linear search, namely the m-ray star problem, which has a long history of research, and has a
broad connection to resource allocation problems (see, e.g. [33, 8, 18]). In this context, there
are m tasks and the goal is to allocate resources to each of them, without knowing ahead of
time which task will be the crucial one. The hint can be interpreted as some information
concerning the instance (e.g., the index of the crucial task, or the time we may have to
allocate to each one of the tasks in order to guarantee some good solution).

Another direction is to consider the case in which the hint comes with some error η, as
in recent works in Machine Learning [36, 39, 37]. The ultimate goal would be to describe
Pareto-efficient solutions in which the competitive ratio of the search also degrades gently
as η increases. This is a challenging task, since one will have to strike a balance between
the robustness, the consistency, and the competitive ratio, both from the point of upper
and lower bounds. But there is a major obstacle as far as linear search is concerned. That
is, unlike other online problems, the competitive ratio of linear search is not necessarily
an increasing function of the error η. For example, consider the case in which there is a
prediction of the position of the target, and suppose that we have a “bad” search strategy,
which does not perform well if the error is small (i.e., turns right before discovering the
target). However, it is possible that with significant error, the target happens to be found
just as the searcher is about to turn and return to O, in one of the iterations. In this case,
the strategy is quite efficient. These are counterintuitive complications that need to be taken
into consideration in terms of defining efficiency in this setting.

In very recent work [7], we addressed the above questions in the context of a related
problem in AI, namely the problem of contract scheduling under the acceleration ratio. There
are interesting connections between searching on the line and contract scheduling [19, 2], and
the techniques we developed and the results we showed in [7] should be readily applicable in
searching on the line with noisy predictions.
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Abstract
We consider financial networks, where banks are connected by contracts such as debts or credit
default swaps. We study the clearing problem in these systems: we want to know which banks end
up in a default, and what portion of their liabilities can these defaulting banks fulfill. We analyze
these networks in a sequential model where banks announce their default one at a time, and the
system evolves in a step-by-step manner.

We first consider the reversible model of these systems, where banks may return from a default. We
show that the stabilization time in this model can heavily depend on the ordering of announcements.
However, we also show that there are systems where for any choice of ordering, the process lasts
for an exponential number of steps before an eventual stabilization. We also show that finding the
ordering with the smallest (or largest) number of banks ending up in default is an NP-hard problem.
Furthermore, we prove that defaulting early can be an advantageous strategy for banks in some
cases, and in general, finding the best time for a default announcement is NP-hard. Finally, we
discuss how changing some properties of this setting affects the stabilization time of the process,
and then use these techniques to devise a monotone model of the systems, which ensures that every
network stabilizes eventually.
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1 Introduction

The world’s financial system is a highly complex network where banks and other financial
institutions are interconnected by various kinds of contracts. These connections create a
strong interdependence between the banks: if one of them goes bankrupt, then this also
affects others, causing a cascading effect through the network. Such ripple effects also had
an important role in the financial crisis of 2008, and hence there is an increasing interest in
the network-based properties of these systems.

One fundamental question in these networks is the so-called clearing problem: given
a network of banks and contracts, we need to decide which of the banks can fulfill their
payment obligations, and which of the banks cannot, and thus have to report a default. This
question is of high interest both for financial authorities and for the banks involved.

With two simple kinds of contracts, one can already build a financial network model
that captures a wide range of phenomena in real-life financial systems. Previous work has
mostly focused on the equilibrium states in these models, i.e. the fixed final states where
the recovery rates of banks are consistent with their current assets and liabilities. However,
in practice, most events in a financial system happen gradually, one after another: a single
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bank announces a default, which might prompt another bank to reevaluate its situation, and
also need to call being in default. This sequential development is an inherent part of the way
financial networks behave, and as such, it is crucial to understand.

In particular, there is a range of natural questions that only arise if we study how
the system develops in a step-by-step fashion. Can we reach every equilibrium state in a
sequential manner? How does the ordering of default announcements influence the final
outcome? Is there an optimal strategy of timing the announcements, either from a financial
authority’s or a single bank’s perspective? How long can the sequential process last, and in
particular, is it guaranteed to always stabilize eventually?

In this paper we analyze the development of financial systems in a sequential model,
where banks update their situation one after another. We first study the reversible model,
which is a natural sequential setting in such networks. We analyze this model from three
main perspectives:

Stabilization time: We show that a system can easily keep running infinitely in this
model. Moreover, the time of stabilization heavily depends on the ordering of default
announcements. We also present a more complex system that does stabilize eventually,
but only after exponentially many steps.
Globally best solution: We show that finding the ordering which results in the smallest
(or largest) number of defaulting banks in the final state is NP-hard.
Defaulting strategies: We study the best defaulting strategy of a single bank, and show
that surprisingly, a bank may achieve the best outcome by announcing its default as early
as possible. We also prove that in general, finding the best time to report a default is
NP-hard.

Moreover, since the possibly infinite runtime is the most unrealistic aspect of this model,
we analyze the reasons behind this phenomenon, and we discuss how it can be avoided in
our sequential model.

Monotone sequential model: We show that with two minor changes to the setting (a more
sophisticated update rule and a slightly different handling of defaulting banks), we can
develop a monotone model variant where the recovery rate of banks can only decrease,
and the system is always guaranteed to stabilize after quadratically many steps. We also
compare this setting to the reversible model in terms of defaulting strategies.

2 Related Work

The network-based analysis of financial systems has been rapidly gaining attention in the last
decade. Most studies are based on the early financial network model of Eisenberg and Noe [11],
which only assumes simple debt contracts between the banks. The propagation of shocks has
been analyzed in many variants of this base model over the last decade [9, 5, 4, 1, 13, 15]; in
particular, the model has been extended by default costs [20], cross-ownership relations [24, 12]
or game-theoretic aspects [6].

However, the common ground in these model variants is that they can only describe long
positions between the banks: a better outcome for one bank always means a better (or the
same) outcome for other banks. This already allows us to capture how the default of a single
bank can cause a ripple effect in the system, but it also ensures that there is always an
equilibrium which is simultaneously best for all banks [11, 20]. As such, long positions cannot
represent e.g. the opposing interests of banks in real-world financial systems. In particular,
banks in practice often have short positions on each other when a worse situation for one
bank is more favorable to another bank, mostly due to various kinds of financial derivatives.
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The recent work of Schuldenzucker et. al. [22] presents a more refined model where the
network also contains credit default swaps (CDSs) besides regular debt contracts. CDSs are
financial derivatives that essentially allow banks to bet on the default of another bank in the
system; they have played a dominant role in the financial crisis of 2008 [14], and have been
thoroughly studied in the financial literature [10, 16]. While CDSs are still a rather simple
kind of derivative, they already allow us to model short positions in the network; as such,
their introduction to the system leads to remarkably richer behavior. In our paper, we also
assume these two kinds of contracts in the network.

The work of [22, 23] discusses various properties of this new model: they show that
systems may have multiple solutions (equilibrium states) in this model, and finding a solution
is PPAD-complete. They also show that with default costs, these systems might not have a
solution at all, and deciding whether a solution exists becomes NP-hard. The work of [19]
studies a range of objective functions for selecting the best solution in this model, showing
that the best equilibrium is not efficiently approximable to a nc factor for any c < 1

4 . The
work of [18] analyzes the model from a game-theoretical perspective, discussing how the
removal or modification of contracts can lead to more favorable equilibria for the acting
banks, and showing that such operations can lead to game-theoretical dilemmas.

However, all these results only analyze the model in terms of equilibrium states. This
is indeed important when the market is hit by a large shock, and a central authority has
to analyze the whole system, identify its equilibria, and possibly select one of them to
artificially implement. However, apart from these rare occasions, the network mostly evolves
sequentially, with banks announcing defaults in a step-by-step manner. For an understanding
of real-world networks, it is also essential to study this gradually developing behavior of the
process besides the equilibrial outcomes.

Sequential models of financial networks have already been studied in several papers;
however, most of them consider some variant of the debt-only model with long positions
[7, 2]. The paper of [22] notes that sequential clearing in their model would be dependent
on the order of defaults, but does not investigate this direction any further. At the other
end of the scale, the work of [3] introduces a very general sequential model (where payment
obligations can be a function of all banks and all previous time steps), with a specific focus
on expressing concrete real-world examples in this setting. As such, to our knowledge, there
is no survey that considers a simple network model with both long and short positions, and
analyzes the step-by-step development of financial systems in this model.

Finally, we point out that the clearing problem indeed has a high relevance in practice,
e.g. when financial authorities conduct stress tests to analyze the sensitivity of real-world
networks. One concrete example for a study of this problem is the European Central Bank’s
stress test framework [8].

3 Model Definition

3.1 Banks and contracts
Our financial system model consists of a set of banks (or nodes) B. We denote individual
banks by u, v or w, and the number of banks by n = |B|. Banks are connected by two kinds
of contracts that both describe a specific payment obligation from a debtor bank u to a
creditor bank v. The amount of payment obligation is called the weight of the contract.

The simpler kind of connection is a simple debt contract, which obliges the debtor u to
pay a specific amount δ to the creditor v. This liability is unconditional, i.e. u owes this
amount to v in any case.

ITCS 2021
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Besides debts, banks can also enter into conditional debt contracts where the payment
obligation depends on some external event in the system. One of the most frequent forms
of such a conditional debt is a credit default swap (CDS), which obliges u to pay a specific
amount to v in case a specific third bank w (the reference entity) is in default. More
specifically, if w can only fulfill a rw portion of its payment obligations (known as the
recovery rate of w), then a CDS of weight δ implies a payment obligation of δ · (1− rw) from
u to v. For simplicity, we assume that all conditional debt contracts are CDSs.

In practice, CDS contracts can, for example, be used by a bank as an insurance policy
against the default of its debtors. If v suspects that its debtor w might not be able to fulfill
its payment obligation, then v can enter into a CDS contract (as creditor) in reference to
w; if w goes into default and is indeed unable to pay, then v receives some payment on this
CDS instead. However, banks may also enter into CDSs for other reasons, e.g. speculative
bets about future developments in the market. As a sanity assumption, we assume that no
bank can enter into a contract with itself or in reference to itself.

Besides the contracts between banks, a financial system is described by the amount of
funds (in financial terms: external assets) owned by each bank, denoted by ev for a specific
bank v. The external assets and the incoming payments describe the total amount of assets
available to v, while the outgoing contracts describe the total amount of payment obligations
of v. If v is not able to fulfill all these obligations from its assets, then we say that v is in
default. If v is in default, then the fraction of liabilities that v is able to pay is the recovery
rate of v, denoted by rv. Note that rv ∈ [0, 1], and v is in default if rv < 1. We represent the
recovery rates of all banks in a recovery rate vector r ∈ [0, 1]B .

For an example, consider the financial system in Figure 1a with 3 banks. The banks have
external assets of eu = 2, ev = 1 and ew = 0. Bank u has a debt of weight 2 towards both v
and w, and there is a CDS of weight 2 from w to v, with u as the reference entity. In this
network, u has a total payment obligation of 4, but only has assets of 2, so u is in default,
with a recovery rate of ru = 2

4 = 1
2 . Bank u must use its funds of 2 to pay 1 unit of money

to both w and v, proportionally to its obligations. Since ru = 1
2 , the CDS from w to v will

induce a payment obligation of 2 · (1 − ru) = 1. The payment of 1 coming from u allows
w to fulfill this obligation to v, thus narrowly avoiding default (hence rw = 1). Finally, v
receives 1 unit from both u and w, has funds of 1 itself, and no payment obligations, so it
has a positive equity of 3, and rv = 1.

For convenience, we will use a simplified version of this notation in our figures: we only
show the weight δ of a contract when δ 6= 1, and we only show the external assets of v
explicitly if ev 6= 0. We also write ev = ∞ to conveniently indicate that v can pay its
liabilities in any case.

We also note that many of our constructions in the paper contain banks that have the
exact same amount of assets and liabilities, like w in this example. This is a somewhat
artificial “edge case” that still ensures rw = 1. However, this is only for the sake of simplicity;
we could avoid these edge cases by providing more assets to the banks in question.

Finally, we point out that contracts in a real-world financial system are often results of
an earlier transaction between the banks, i.e. the creditor v previously offering a loan to
the debtor u. We assume that such earlier payments are implicitly represented in eu, and
as such, the external assets and the contracts are together sufficient to describe the current
state of the system.



P.A. Papp and R. Wattenhofer 52:5

2

2

2·(1−
r
v )

u v

w

2

0

1

(a)

2 3

1−rw
u v

w

∞ 1

(b)

Figure 1 Two example systems on 3 banks. External assets are shown in rectangles besides the
banks. Simple debts are denoted by blue arrows from debtor to creditor, while CDSs are denoted by
light brown arrows from debtor to creditor, with the payment obligation shown beside the arrow.

3.2 Assets, liabilities and equilibria
We now formally define the liabilities and assets of banks in our systems. Note that due to
the conditional debts, the payment obligations in a network are always a function of the
recovery rate vector r.

Assuming a specific vector r, the liability lu,v of a bank u towards a bank v is defined as
the sum of payment obligation from u to v on all contracts, i.e.

lu,v(r) = δu,v +
∑
w∈V

δw
u,v · (1− rw),

where δu,v is the weight of the simple debt contract from u to v (if this contract exists, and
0 otherwise), and δw

u,v is the weight of the CDS from u to v in reference to w (if it exists,
and 0 otherwise). The total liability of u is simply the sum of liabilities to all other banks:
lu(r) =

∑
v∈V lu,v(r).

However, the actual payment pu,v from u to v can be less than lu,v if u is in default. If u is
in default, then it has to spend all of its assets to make payments to creditors. Most financial
system models assume that in this case, u has to follow the principle of proportionality, i.e.
it has to make payments proportionally to the corresponding liabilities. This means that if u
can pay an ru portion of its total liabilities, and it has a liability of lu,v towards v, then the
payment from u to v is pu,v(r) = ru · lu,v(r).

On the other hand, we can define the assets of a bank v as the sum of v’s external assets
and its incoming payments in the network; that is,

av(r) = ev +
∑
u∈V

pu,v(r).

If v is in default, then all these assets are used for v’s payment obligations; otherwise, av − lv
of these assets remain at v. Note that while both av(r) and lv(r) are formally a function of r,
we often simplify this notation to av and lv when the recovery rate is clear from the context.

Recall that the recovery rate of v indicates the portion of payment obligations that v is
able to fulfill. As such, a valid choice of rv requires rv = 1 if we have av ≥ lv, and rv = av

lv
if

av < lv. For simplicity, let us introduce a separate function R to denote this dependence on
av and lv; that is, we define the function R : [0,∞)× [0,∞) → [0, 1] as

R(a, l) =
{

1, if a ≥ l
a
l , otherwise.

We say that a vector r ∈ [0, 1]B is an equilibrium (or a clearing vector) of the system
if for each bank v ∈ B, we have rv = R( av(r), lv(r) ); that is, if the recovery rate vector
is consistent with the assets and liabilities it generates in the network. Previous work has
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mostly focused on the analysis of different equilibrium states. Recall that while it is mostly
straightforward to find the equilibrium states in our example constructions, the problem is
PPAD-hard in general [23].

We have already seen a simple example equilibrium in Figure 1a; for another example
that is slightly more challenging to compute, let us consider Figure 1b. Here bank u is again
always able to pay its liabilities, so ru = 1 in any case. Furthermore, neither rv = 1 nor
rw = 1 can provide an equilibrium in this network, so both v and w must be in default in
any solution. Thus any equilibrium must have

rv = av

lv
= 1 + 1− rw

3 and rw = aw

lw
= 3 · rv

2 .

This implies that the only equilibrium is rv = 4
9 , rw = 2

3 .

3.3 Sequential models of defaulting

We have defined the equilibria of the system as the states r that would fulfill the payment
criteria if every bank were to simultaneously update its recovery rate to r. However, in
practice, the announcement of defaults usually happens in a sequential manner, due to
different sources of delay in the system: even if it is clear from av and lv that a bank v is
only able to fulfill a specific rv portion of its liabilities, this might not be immediately known
to the creditors of v (due to incomplete information), or the legal framework may first allow
v to try to obtain further funds before officially having to announce its default. As such, the
officially announced recovery rate rv might not always equal R(av, lv), and v has to explicitly
announce the changes in rv in order to make other banks aware of this situation.

Hence in our sequential model, each step of the process will consist of a single bank
announcing an update to its recovery rate. That is, given the assets av and liabilities lv
currently available to v, if the official recovery rate rv does not equal R(av, lv), then bank v
can (and eventually has to) announce a new official recovery rate of rv := R(av, lv). Since
this affects both the payments received by the debtors of v and the payment obligations on
CDSs in reference to v, it can have various effects on the system, providing new assets and
liabilities to some banks; as a result, these banks may also end up with a higher or lower
asset/liability balance than their currently announced recovery rate, and thus they will also
have to execute a new update at some point.

More formally, we consider discrete time steps t = 0, 1, 2, ... . Each step consists of a
single bank v announcing an update to rv. That is, if v has assets av

(t−1) and liabilities
lv

(t−1), but a recovery rate of rv
(t−1) 6= R

(
av

(t−1), lv
(t−1)) at time t− 1, then we say that v is

updatable at time t− 1. In each time step t, we select a bank v that is updatable at time
t− 1, and define the state of the system at time t by (i) setting rv

(t) = R
(
av

(t−1), lv
(t−1)) for

the bank v that executes the update, (ii) setting ru
(t) = ru

(t−1) for every other bank u 6= v,
and (iii) calculating au

(t) and lu(t) for all u ∈ B based on this new vector r(t).

We assume that initially, each bank v has rv
(0) = 1, and we compute av

(0) and lv
(0)

accordingly. We say that the sequential process stabilizes in round t if there is no updatable
bank in round t.
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4 Basic Properties

We begin by discussing some fundamental properties of this sequential setting.

4.1 Reversibility and infinite cycling
One important property of the sequential model is that even if a bank v goes into default,
it can easily return from this default later. That is, future updates in the system might
increase the payment obligation on an incoming CDS of v, thus increasing av and possibly
raising av

lv
above 1 again. This is in line with real-world financial systems, where returning

from a default is also often possible if a bank acquires new assets. Due to this property, we
also refer to this setting as the reversible model.

Note that in practice, defaulting banks are often given a limited amount of time to obtain
new assets and thus reverse a default; however, our sequential setting does not define an
explicit timing of defaults (only their order), so such rules are not straightforward to include
in our model. Nonetheless, we point out that many of our example constructions also work if
we assume that defaults are only reversible for a specific (constant) number of rounds.

Another important property is that in a cyclic network topology, our model can easily
result in an infinite loop of updates. Consider the example in Figure 2, where the default of v
indirectly provides new assets to v. Since rv = 1 initially, u must first update to ru = 0, and
as a result, v must update to rv = 0. However, this leads to new liabilities in the network,
providing assets to both u and (indirectly) to v, so u (and then v) must update its rate back
to ru = rv = 1. This returns the system to its initial state, where u (and v) will continue by
updating their recovery rates to 0 again.

If we keep repeating these few steps, then u and v alternate between ru = rv = 0 and
ru = rv = 1 endlessly. Note that the system does have an equilibrium in ru = rv = 1

2 ;
however, instead of converging to this state, the banks keep on periodically repeating the
same few steps. The possibility of such behavior in a sequential setting has already been
noted in [22] or [3] before. While this looping behavior is certainly undesired, it follows
straightforwardly from the reversibility of defaults and the existence of cycles in the network
topology. As such, these situation could also occur in real-world systems, requiring a financial
authority to intervene and set the system artificially to its equilibrium.

4.2 Dependence on the order of updates
Another key property of the sequential model is that the final outcome becomes dependent
on the ordering of updates, i.e. whether some banks announce their default earlier or later.

We show a simple example of this dependence on the branching gadget of Figure 3, which
has already been used as a building block in the works of [23] and [19]. In this system,
neither of the two banks u and v have any assets initially, so they are unable to fulfill their
obligations. However, if u is the first one to report default (updating to a new recovery rate
of av

(0)/ lv
(0) = 0), then this provides 1 unit of new assets to v, which means that v does not

default anymore; the system stabilizes with ru = 0, rv = 1. Similarly, if v is the first one to
execute an update, then this provides new assets to u, and the system stabilizes with ru = 1,
rv = 0. Thus both banks are strongly motivated to delay their default announcement as long
as possible, as this might allow them to avoid defaulting entirely.

We can also note that there are further equilibrium states where both u and v are in
default, e.g. when ru = 1

2 and rv = 1
2 ; due to its symmetry, one might even argue that this

is the “fair” equilibrium to implement. However, this equilibrium is not reachable in any
way through sequential updates; the only possible endstates of the sequential model are
(ru, rv) = (0, 1) and (ru, rv) = (1, 0) as described above.
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Figure 4 Example of an
equilibrium that is not reach-
able in the sequential model.

This shows that even in terms of the final outcome, the sequential model can significantly
differ from the static analysis of the system. This is not due to the presence of fractional
recovery rates: we can also easily have equilibria with integer (i.e., 0 or 1) recovery rates that
is not reachable in a sequential setting. In Figure 4, bank u is the only node who can execute
an update, which immediately leads to the unique final state ru = 0, rv = rw = 1. However,
ru = 1 with rv = rw = 0 also forms an equilibrium in this system, so this phenomenon is
indeed a result of the sequential nature of our model.

5 Results

We now move on to a deeper analysis of the model. We mainly focus on the length and
outcome of the sequential process, and how the ordering of updates affects these properties.

Since our proofs will require more complex constructions, we switch to a simpler notation
in our figures: instead of directly showing the liability δ · (1− rw) on a CDS, we only label
the CDS by the weight δ and the reference entity w, or simply by w when δ = 1. Nonetheless,
recall that each such CDS still denotes a liability of δ · (1− rw).

5.1 Stabilization time
One fundamental question is the number of rounds it takes until the sequential process
stabilizes, i.e. until no node can execute an update anymore. We first analyze this aspect in
detail.

We have already seen in Figure 2 that even in simple examples, it can easily happen that
the system does not stabilize at all.

I Corollary 1. There is a system which never stabilizes.

Furthermore, with the appropriate ordering of default announcements, we can also obtain
any finite value as a stabilization time.

I Lemma 2. For any integer k, there exists a system and an ordering such that the system
stabilizes after exactly k steps.

Proof. Consider the system on Figure 5. Similarly to Figure 2, this system allows us to
produce an arbitrarily long sequence by switching only u and v repeatedly. However, when
w announces a default, then both u and v gain enough assets to fulfill their obligations, so
the system stabilizes after at most 2 more updates.

This allows us reach any magnitude of stabilization time, apart from a constant offset. We
can then simply add O(1) more independent defaulting nodes to reach the desired value k. J
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This already shows that stabilization time can heavily depend on the order of updates. A
more extreme case of this is when the choice of the first update already decides between two
very different outcomes for the system.

I Lemma 3. There is a system where depending on the first update, the system either
stabilizes in 1 step, or does not ever stabilize.

Proof. Figure 6 is obtained by combining the base ideas of Figures 2 and 3. In this network,
either bank w1 or w2 must execute the first update.

If w2 is the first to announce rw2 = 0, then w1 receives a payment of 1, and the system
immediately stabilizes; no other bank will make an update.

However, if we update rw1 = 0 first, then w2 survives, but on the other hand, u receives
no assets at all. In this case, nodes u and v are in the same situation as in Figure 2, and
thus the upper part of the system will never stabilize. J

Finally, infinite loops are not the only examples of long stabilization: it is also possible
that the system does stabilize eventually, but for any ordering of updates, this only happens
after exponentially many steps.

I Theorem 4. There is a system where for any possible ordering, the system eventually
stabilizes, but only after 2Ω(n) steps.

Proof sketch. This proof requires a significantly more complex construction than our previous
statements. We only outline the main idea of the construction here, and we discuss the
details in the full version of the paper.

The first step of the proof is to build a stable bit gadget, which represents a mutable
binary variable. The gadget offers a simple interface to set the bit to 0 or 1 through external
conditions, and otherwise maintains its current value until the next such operation is executed.

Besides this, we create gadgets that describe logical states of an abstract process, similarly
to a finite automaton. We also encode conditional transitions between these state gadgets,
i.e. ensure that the system can only enter a given logical state if some banks currently have
a specific recovery rate. This allows us to describe a logical process where the next state of
the system is always determined by the current state and the current value of some stable
bit gadgets.

Using these tools, we can essentially design a binary counter on k = Ω(n) bits, with k
stable bits representing the bits of the counter. This counter will proceed to count from 0 to
2k − 1, and only stabilize after the counting has finished, resulting in a sequence of at least
2k steps.

The most challenging task is to ensure that in every step of the process, there is only one
possible update we can execute next: the appropriate next step of the counting procedure.
To achieve this, we not only need to ensure that some banks become updatable at specific
times, but we also have to force the banks to indeed execute these updates, by encoding
them as requirements in the transition conditions of our logical states. This results in a
heavily restricted construction where there is essentially only one valid ordering of updates:
the one that corresponds to the step-by-step incrementation of the binary counter. J

Note that another possible approach for measuring the stabilization time of our systems
is to consider the number of defaulting steps, i.e. to only count the steps when a bank v
updates from rv = 1 to rv < 1. One can check that our results on stabilization time also
hold for this alternative metric.
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Figure 6 Example system
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Figure 7 Example system for
Lemma 6, i.e. where the number
of defaults depends on the choice of
the first update.

Finally, as a theoretical curiosity, we point out that our binary variable and state machine
gadgets in the proof of Theorem 4 demonstrate that we can essentially use financial networks
as a model of computation. We discuss the expressive power of this model in the full version
of the paper.

I Theorem 5. We can use financial networks to simulate any Turing-machine with a finite
tape.

5.2 Outcome with the fewest defaults
In case of a larger shock, a financial authority could also be interested in the final state of
the system, and in particular, the number of banks that end up in default. This can again
heavily depend on the order of updates; in fact, even a single decision in the ordering can be
critical from this perspective.

I Lemma 6. Depending on the first update, the number of defaults can be either O(1) or
n−O(1).

Proof. Consider the system on Figure 7. If u is the first to report a default with ru = 0,
then v receives 1 unit of payment, and thus no other node defaults. On the other hand, if v
reports a default first, then u survives, but all the nodes in the lower chain have no incoming
assets, and thus they all have to report a default eventually. So based on the first update,
the number of defaults is either 1 or n− 3. J

Hence if the authority has some influence over the ordering of updates, e.g. by allowing
more flexibility to some banks than to others, then it could dramatically reduce the number
of banks that end up in default. Unfortunately, even if we have complete control over the
ordering, it is still hard to find the best possible ordering (in terms of the number of defaults
in the final outcome).

I Theorem 7. It is NP-hard to find the number of defaulting nodes in the best possible
ordering.

Proof. We reduce the question to the MAXSAT problem: given a boolean formula in
conjunctive normal form, the goal of MAXSAT is to find the assignment of variables that
satisfies the highest possible number of clauses [17].
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Figure 8 Clause gadget for the MAXSAT re-
duction in Theorem 7.
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Figure 9 Clause gadget for the MAX-
SAT reduction in Theorem 8.

Assume we have a MAXSAT problem on k variables x1, ..., xk, and m clauses. Note
that in our financial systems, the branching gadget of Figure 3 is a natural candidate for
representing a boolean variable, since in any sequence, exactly one of u and v will eventually
default. We point out that this gadget has already been used for similar purposes before in
[23] and [19].

Hence for each variable xi, we create a separate branching gadget in our system, and
consider node u to represent the literal xi, and node v to represent the literal ¬xi. That is,
we will consider xi = true if u defaults, while we consider xi = false if v defaults.

Furthermore, for each clause of the input formula, we create the clause gadget shown in
Figure 8, with the CDSs labeled by the banks representing the literals in the clause. For
example, the gadget in the figure is obtained for the clause (x1 ∨ x3 ∨ ¬x4). If any of the
banks x1, x3 or ¬x4 default, then v receives enough assets to pay its debt, whereas otherwise,
v must eventually default.

If we aim to avoid as many defaults as possible, then the reasonable ordering strategy
is to first evaluate all the variable gadgets, and the clause gadgets only afterwards. In this
case, each bank v of a clause gadget survives if and only if there is a true literal in the
corresponding clause. This way the number of defaulting nodes in the final state is always
exactly k in the variable gadgets, and at most m− opt in the clause gadgets, where opt
denotes the maximal number of satisfiable clauses in our MAXSAT problem. Thus the
minimal number of defaulting nodes in the system is altogether k +m− opt. Finding this
value also allows us to determine opt, which completes our reduction. J

To analyze the effects of a shock, one might also be interested in the worst possible
ordering; a similar reduction shows that this is also hard to find.

I Theorem 8. It is NP-hard to find the number of defaulting nodes in the worst possible
ordering.

Proof. We can apply the same reduction from MAXSAT as before; we only need to slightly
change the clause gadgets. Consider the clause gadget of Figure 9 for the example clause
(x1 ∨ x3 ∨ ¬x4). To maximize the number of defaulting banks in this system, we can first
evaluate the variables gadgets, which then allows us to produce an extra default for each
clause that has a true literal. Thus the maximum number of defaulting nodes is k + opt,
which completes our reduction. J

5.3 Individual defaulting strategies
It is also natural to consider the effect of the ordering from the perspective of a single bank
v. More specifically, is v motivated to immediately report its own default? Can it achieve a
better outcome for itself by carefully timing its updates?

Intuitively, one would expect that banks are motivated to report their default as late as
possible, in hope of obtaining further assets in the meantime. This is indeed true in many
cases. For example, in the branching gadget of Figure 3, u and v clearly have a short position
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in each other, and if either of them can wait long enough such that the other bank reports a
default first, then it obtains new assets from the incoming CDS and thus manages to avoid a
default entirely.

However, due to the complex interconnections in a network, it is in fact also possible that
v achieves a better outcome if it reports a default earlier; it is even possible that this is the
only strategy which allows v to avoid a default in the endstate of the system. We consider
this one of our most surprising results.

I Theorem 9. There exists a system where a bank v1 can only avoid a default in the final
state of the system if v1 is the first bank to report a default.

Proof. Consider the system in Figure 10, where only v1 or v2 can report a default initially,
since no other node has any liabilities.

Assume that v1 is the first to report a default, updating to rv1 = 0. This influences the
network in two ways: v2 obtains assets of 1, and u2 now has a new liability of 1 as a result.

Thus the next update can only be executed by u2, resulting in ru2 = 0. On the one hand,
this provides assets to u1; on the other hand, it creates liabilities for w2. As a result, the
next update can only be executed by w2.

When w2 announces rw2 = 0, this results in more liabilities for the defaulting u2, and
more assets for v1. These assets make v1 the only updatable next node, bringing v1 back
from its default with rv1 = 1.

When v1 announces rv1 = 1, then u2 loses some of its liabilities, and v2 loses its assets.
This does not affect u2, which remains at ru2 = 0 due to the default of w2; however, v2 now
also has to report a default. The system finally stabilizes after v2 updates to rv2 = 0: the
assets/liabilities of v1 and u1 are affected, but neither of them has to make an update. Thus
the final solution has rv1 = 1 and rv2 = 0.

On the other hand, if v2 is the first to report default, then due to the symmetry of the
system, the final outcome will have rv1 = 0 and rv2 = 1. Note that in both cases, after the
first update is executed, the remaining steps are already determined, and no alternative
ordering is possible. Hence the only way for v1 to avoid a default in the final outcome is to
be the first one to report a default. J

We can also show that in general, it is NP-hard to find the best default-reporting strategy
for a bank. This even holds if the behavior of the rest of the network is “predictable”, i.e.
if there is essentially only one ordering that the system can follow. This implies that any
interpretation of this problem, e.g. optimizing a bank’s best-case payoff or worst-case payoff,
is also hard.

I Theorem 10. It is NP-hard to find the time of defaulting that provides the highest payoff
to a specific bank in the final outcome.

Proof sketch. The main idea of the proof is to combine the binary counter construction of
Theorem 4 with the MAXSAT reduction. That is, given a binary counter on k = Θ(n) bits,
we add a new node v to the system such that
(a) v can choose to default anytime,
(b) the default of v terminates the counting process, stabilizing the counter in its current

state,
(c) v then comes back from its default, and its assets in the final state are proportional to

the amount of clauses satisfied in a SAT formula, where the value of the variables is
derived from the finalized state of the bits in the counter.
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This means that the counter essentially enumerates all the possible value assignments of
the variables, and the best defaulting strategy is obtained if counting is terminated at the
assignment that satisfies the highest number of clauses. However, finding this assignment is
NP-hard.

The details of the construction are discussed in the full version of the paper. J

6 Achieving Stabilization

While the reversible sequential model is realistic from many perspectives, the infinite looping
property is clearly not reasonable in real-world systems. As such, it is natural to ask if there
is a way to modify the model to avoid this situation, and instead ensure that every financial
system stabilizes eventually.

In this section, we investigate the causes of this infinite behavior in the sequential model.
We first show that we require more sophisticated update rules to avoid a specific kind of
infinite behavior, namely when the system converges to an equilibrium. We then discuss
liability freezing, a different (but in some sense also realistic) approach of handling defaulting
banks in the network. Finally, we show that if we combine these two modifications, we can
obtain a monotone sequential model where our systems always stabilize after polynomially
many steps.

6.1 More sophisticated update rules

Convergence to an equilibrium. Since the addition of conditional debt contracts drastically
increases the complexity of the model, it is a natural first assumption that such an infinite
pattern can only arise if the system contains a CDS. However, this is not the case: we can
also obtain a (slightly different kind of) infinite sequence in systems with only regular debts.

Consider the example system in Figure 11. Since bank u has lu = 2 and au = 1 initially, it
can begin by updating its recovery rate to ru = 1

2 . As a result, v and w must also announce
recovery rates of rv = rw = 1

2 . With au = 1
2 , bank u now has to update to ru = 1

4 , which then
gives rv = rw = 1

4 . Each such round prompts another round of updates, slowly converging to
ru = rv = rw = 0. While this is indeed the only equilibrium of the system, the process takes
infinitely many steps to reach this state.
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Explicit computation of equilibria. Such a convergence process can easily occur in any
network with cycles; as real-world financial systems are also known to contain cycles [21],
we can easily encounter such a situation in practice. In this case, it seems that a financial
authority (or the banks involved) have no other option than to explicitly compute this
equilibrium, and set their recovery rates to the appropriate values.

Fortunately, it is known that in case of fixed liabilities in the network (i.e. only simple
debts), this is computationally feasible: there always exists a single maximal solution that is
simultaneously best for all banks, and this solution can be found in polynomial time [20],
essentially by repeatedly solving a system of linear equations. Thus an authority could indeed
find this solution, and banks could directly update to these recovery rates in order to skip
the convergence steps.

This allows us to introduce the notion of smart updates: after each updating step, we can
consider the current liabilities in the network fixed, and we assume that the equilibrium of
the system is computed under these liabilities (essentially reducing the convergence process
to a single step). This equilibrium defines a tentative recovery rate for each bank v, denoted
by rv. In smart updates, we assume that whenever v executes an update, it always updates
to rv := rv.

In the example of Figure 11, this means that the tentative recovery rates ru = rv = rw = 0
are already computed initially, and thus any bank executing an update will immediately set
its recovery rate to 0. This way the process already stabilizes after each bank has executed
one update. In general, we achieve stabilization in this setting when rv = rv for each bank v
in the network.

While the explicit computation of equilibria may seem artificial, in practice, defaulting
banks are often subject to more thorough supervision by the authorities. As such, it is not
so unrealistic that the situation of a defaulting bank v is first analyzed by an authority, and
this analysis determines the official recovery rate of v.

Also, recall that while equilibria are easy to find in debt-only networks, the introduction
of CDSs changes this picture entirely. With CDSs, there can easily be multiple equilibria
that are Pareto-optimal, and finding any of them is already a PPAD-hard problem [23].
Thus this explicit computation of rv is only possible for a single step of the process, when
we consider the current payment obligation on each CDS fixed. As defaults rarely happen
simultaneously in practice, it can indeed be realistic to assume that we can analyze the
current (fixed) liabilities in the network after each new update.

Finally, note that smart updating is not yet enough to avoid an infinite convergence. In
the system shown in Figure 12, v can initially fulfill its obligations, while u must update to
ru = 1

2 . This creates new liabilities of 2 for v, leading to the tentative recovery rates rv = 2
3

and thus ru = 1
3 after this first step. If u updates again (to ru = 1

3 ), then the liability on the
CDS again increases, and thus the next computed equilibrium has an even lower ru.

Each step of this process provides new tentative recovery rates, obtained as rv = 2
5−4·ru

and ru = rv

2 = 1
5−4·ru

. This results in an infinite convergence to the equilibrium rv = 1
2 ,

ru = 1
4 . Note that we can observe this behavior regardless of whether v ever updates its

recovery rate to the new rv value; the assets of u are calculated independently of the recovery
rate reported by v.

Optimistic updates. Another natural variant of smart updates is the optimistic update rule.
To avoid the convergence phenomenon of Figure 11, this setting also assumes that the system
is analyzed by an authority after each update. However, defaulting and non-defaulting nodes
are now handled in a different manner in this analysis. More specifically, if a bank v is not
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Figure 12 Example of infinite convergence in a network, even in case of smart updates. Recall
that the label 4u on the CDS describes a payment obligation of 4 · (1− ru).

in default (it has rv = 1 currently), then it is given the benefit of a doubt: we assume that it
can fulfill its obligations, regardless of how many assets it currently has. On the other hand,
banks in default are handled the same way as in case of smart updates.

This distinction can indeed be realistic: if v is non-defaulting, then av might not even be
known to other banks, so the creditors of v have no better option than to assume that they
will receive all payments from v. On the other hand, the assets of defaulting banks are under
more thorough scrutiny in most legal frameworks.

Formally, optimistic update means that after each step of the process, we use a modified
version of the liability network to compute the equilibrium. Whenever there is a contract of
current weight δ from u to v with ru = 1, then we remove this contract from the network, and
instead (i) we add a new debt of weight δ from u to an artificial sink node s, ensuring that u
still has this liability, and (ii) we increase the value of ev by δ, ensuring that v always has
these assets. In contrast, if ru < 1, we do not execute any changes on the outgoing contracts.
This modified network ensures that until a bank reports a default, its lack of assets does not
affect its creditors. We then use the same algorithm of [20] to find the equilibrium in this
modified system, and set the next tentative recovery rates accordingly.

Revisiting the system in Figure 12, we see that bank u can again first update to ru = 1
2 ,

which results in rv = 2
3 . However, with optimistic updates, u cannot make an update again:

until v adjusts its recovery rate to this new value, the tentative recovery rate of u remains 1
2 ,

since we still expect to get the entire payment from the non-defaulting v. Note, however,
that optimistic updating still does not prevent an infinite convergence in this system if, for
example, u and v keep on updating alternatingly.

6.2 Liability freezing
We have seen that neither smart nor optimistic updating prevents an infinite sequential
process in itself. For this, we also need to change another aspect of our model, namely how
the contracts of v are handled once v goes into default.

Debts are rather simple from this perspective: they describe a previously established
payment obligation in the network, so there is no incentive to change them if v defaults.

CDSs, however, pose a more complicated question, since they describe payment obligations
that are dynamically changing. So far, we assumed that even after v defaults, the payment
obligations on its CDSs keep changing as the reference entities are updated. Another possible
approach is to assume liability freezing: whenever v goes into default, the liabilities on any
incoming or outgoing CDS are fixed at the current value for the rest of the process. That is,
a CDS with weight δ and reference entity w at time t is essentially converted into a simple
debt contract with weight δ · (1− rw

(t)), and this weight does not change in the future, even
if rw is updated.

This can be realistic when there is a larger time difference between subsequent defaults:
by the time the next default happens, the previous bank has already completed the first
phase of the insolvency process, and its incoming/outgoing payments have been established
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and fixed. Indirectly, such a framework suggests that if v defaults, then it is expected to
immediately “cash in” its incoming debts and fulfill its payment obligations, and not wait for
a more favorable situation.

The main advantage of this approach is that if we combine liability freezing with optimistic
updates, it provides a monotone sequential model where recovery rates can only decrease
throughout the process. Intuitively, when a bank w makes an update, then CDSs in reference
to w could only provide more assets to a bank v if we still have rv = 1, as otherwise the
liability on the CDS is already fixed. However, if rv = 1, then the optimistic approach
assumes anyway that v can pay its liabilities, and thus the update has no effect on other
banks in the system.

This monotonic property ensures that any system stabilizes eventually in this model; on
the other hand, it also means that once a bank v announces a default in this model, it has
no possibility to reverse this default in the future, and its recovery rate can only get smaller
with further updates.

By revisiting Figure 2, we can observe that both liability freezing and optimistic updates
are crucial ingredients to achieve this monotonicity. Without liability freezing, the system
loops infinitely if u and v make updates in an alternating fashion, both with smart and with
optimistic updates. On the other hand, if we combine liability freezing with smart updates,
then v can still alternate between rv = 0 and rv = 1 indefinitely; if u never makes an update,
then the liability on the CDS will never be fixed at a specific value.

6.3 Stabilization in the monotone model
We now discuss the main properties of the monotone model. We first show that the model
indeed ensures an eventual stabilization for any ordering. The key observation for this is
that the recovery rate of banks can never increase in this model.

I Theorem 11. The recovery rate of a bank can only decrease in the monotone model.

Proof. The main idea is to show that for any bank v, rv can only increase if we still have
rv = 1 currently. This shows that we can never have rv > rv, and thus no update can
increase rv.

Assume that node w updates rw in a specific step, and assume for contradiction that this
is the first step that increases rv for some bank v with rv < 1. This means that the current
update is still a decrease of rw, since we must have rw < rw. The update of rw can have two
kinds of effects on the system: it can change the liabilities on CDSs that are in reference to
w, and it can result in a lower amount of assets for the creditors of w. We analyze these two
effects separately.

Since the monotone model has liability freezing, the liability on a CDS from u to v (in
reference to w) can only change if we currently still have ru = rv = 1. Thus while this
extra payment may increase rv, we will still have rv ≤ rv afterwards. Since the model uses
optimistic updates and ru = rv = 1, both u and v only have debts towards the artificial sink
s in the input graph of the equilibrium algorithm (which computes the tentative recovery
rates), so the changes to ru and rv do not affect the tentative recovery rate of any other
node.

As for the creditors of w, we consider two cases. If this is not a defaulting step (we
already had rw < 1 before the update), then updating rw does not change the liabilities in
the input graph of the equilibrium algorithm (apart from the case of some non-defaulting
nodes, as discussed above), so the tentative recovery rates will remain unchanged.
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On the other hand, if this is a defaulting step, then the outgoing debts of w will now be
redirected from s to the actual creditors of w. However, this operation can only result in
less assets for a bank. More specifically, one can observe that any configuration of payments
in this new graph is also a valid configuration of payments in the original graph before the
redirection step. Hence if the rv value of any bank v increases with this step, then this
contradicts the fact that the previous rv was obtained from a maximal equilibrium of the
system. J

I Theorem 12. The monotone model allows at most n defaulting and O(n2) updating steps.

Proof. Since recovery rates are always decreasing, every bank can default at most once, thus
the number of defaulting steps is at most n.

For the O(n2) upper bound, we show that there are at most n updating steps between
any two consecutive defaulting steps. This is rather straightforward: recall from the proof of
Theorem 11 that if bank w executes a non-defaulting update, then this can only change the
value of rv for banks v that are not in default. Thus for any bank v in default, rv can not
change between two defaulting steps of the process. This means that any bank can execute
at most 1 updating step between two consecutive defaulting steps, limiting the number of
steps in this period to n. J

We point out that this upper bound is asymptotically tight: we can easily construct
a system and an ordering that indeed takes Ω(n2) steps in the monotone model. The
construction does not even require CDSs in the network; it only contains simple debt
contracts.

I Lemma 13. There is a system with an ordering that lasts for Ω(n) defaulting and Ω(n2)
updating steps.

Proof. Let m be a parameter with m = Θ(n), and consider Figure 13. All the banks w1,
..., wm will eventually report a default in this system, so the number of defaulting steps is
indeed m = Ω(n).

Let w1, ..., wm report a default in this order throughout the process. After wi has
reported a default, bank v can always decrease its recovery rate to a new value of rv = m−i

m .
Finally, after each such update of v, assume that all the nodes u1, ..., um make an update
step, also announcing a new recovery rate of m−i

m ; they can indeed all do this due to the
update executed by v. This ordering has Ω(m2) = Ω(n2) updating steps altogether. J

6.4 Defaulting strategies
Finally, we discuss how the monotone model compares to the reversible model in terms of
defaulting strategies.

When finding the globally best ordering, the two models turn out to be very similar. In
fact, our proofs from Section 5.2 can also be carried over to the monotone model without
any changes.

I Corollary 14. Lemma 6 and Theorems 7 and 8 also hold in the monotone model.

In terms of individual defaulting strategies, the branching gadget again provides a simple
example where late defaulting is beneficial: by delaying their updates, banks u and v can
again entirely avoid a default.
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Figure 14 Example system where early defaulting is the
best strategy in the monotone model.

However, early defaulting is a more difficult question in this setting. In particular, we
cannot hope for a result that is analogous to Theorem 9, since once a bank reports a default,
there is no way to reverse this in the future. Nonetheless, early defaulting can still be a
beneficial strategy in the monotone model: there are cases when a bank cannot avoid an
eventual default in any way, but early defaulting can still allow the bank to have a higher
recovery rate in the final state.

I Theorem 15. There exists a system where a bank v only obtains its highest possible
recovery rate in the final state of the system if v is the first bank to report a default.

Proof. Consider the system in Figure 14, where either v1 or v2 can execute the first update.
We analyze the defaulting strategies of bank v1 in this system.

Assume that v1 is the first to execute a step, announcing rv1 = 3
4 . This gives new assets

to v2 (resulting in rv2 = 1), and new liabilities to u2 (resulting in ru2 = 0). The next update
can only be executed by u2, setting ru2 = 0; at this point, the system stabilizes.

On the other hand, assume that v2 first announces rv2 = 0. This provides rv1 = 1 and
ru1 = 0, so as a next step, u1 will announce a default. However, this results in new liabilities
for w, so as a next step, w has to update to rw = 1

3 . With this, v1 only has 2 assets altogether,
so v1 must announce rv1 = 1

2 . Hence v1 achieves a lower recovery rate in the final state if it
is not the first bank to announce a default.

Note that with some further modifications, we can also make the example symmetric to
ensure that both v1 and v2 are motivated to be the first one to default. J

Finally, one might also wonder if the monotone model allows an analogous result to
Theorem 10, i.e. a hardness result on finding the best defaulting strategy of a single bank.
However, note that the simple formulation of Theorem 10 was possible due to the fact that
the proof construction only allowed one possible ordering in the rest of the system.

If we were to introduce a similar setting in the monotone model, then the banks could
always find the best outcome in polynomial time, since the sequence can only last for O(n2)
steps. As such, in the monotone model, we can only expect similar hardness results for more
complex formulations of this problem, such as finding the best defaulting time with respect
to, e.g., the best-case or worst-case ordering of the remaining banks in the system.
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Abstract
We study the first-order convex optimization problem, where we have black-box access to a (not
necessarily smooth) function f : Rn → R and its (sub)gradient. Our goal is to find an ε-approximate
minimum of f starting from a point that is distance at most R from the true minimum. If f is
G-Lipschitz, then the classic gradient descent algorithm solves this problem with O((GR/ε)2) queries.
Importantly, the number of queries is independent of the dimension n and gradient descent is optimal
in this regard: No deterministic or randomized algorithm can achieve better complexity that is still
independent of the dimension n.

In this paper we reprove the randomized lower bound of Ω((GR/ε)2) using a simpler argument
than previous lower bounds. We then show that although the function family used in the lower
bound is hard for randomized algorithms, it can be solved using O(GR/ε) quantum queries. We then
show an improved lower bound against quantum algorithms using a different set of instances and
establish our main result that in general even quantum algorithms need Ω((GR/ε)2) queries to solve
the problem. Hence there is no quantum speedup over gradient descent for black-box first-order
convex optimization without further assumptions on the function family.
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1 Introduction

The classic gradient descent algorithm, first proposed by Cauchy in 1847, is a popular
algorithm for minimizing functions in high-dimensional spaces. For some problems, such as
the case of convex function minimization that we consider in this paper, gradient descent
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provably converges to the function’s global minimum. For other problems, such as finding
good parameters of a deep neural network, gradient descent does not necessarily converge to
a global minimum, and yet it has remarkable performance in practice.

Given the algorithm’s popularity, it is interesting to ask if gradient descent can be sped up
on a quantum computer. However, it’s not obvious how to formalize this question since it’s
not clear what it means for a quantum algorithm to speed up a given classical algorithm. For
example, the best known classical algorithm for integer factorization is the general number
field sieve (GNFS). Does Shor’s quantum algorithm for integer factorization speed up GNFS,
or is it simply a different algorithm that solves the same problem?

One way to formalize the question Can quantum computers speed up gradient descent? is
to consider a computational problem that is provably solved by gradient descent, and for
which gradient descent is optimal among all classical algorithms. We can then ask if quantum
algorithms can solve this problem faster than gradient descent. The second condition, that
gradient descent is optimal among classical algorithms, is required since otherwise quantum
computers would trivially be able to outperform gradient descent by using the best classical
algorithm.

Fortunately, there is a canonical optimization task that is solved optimally by gradient
descent: convex optimization with black-box first-order oracles. A more thorough introduction
to the theory of black-box convex optimization can be found in the textbooks by Nemirovsky
and Yudin [22], Nesterov [23, 24], and the monograph by Bubeck [11].

1.1 First-order convex optimization
Let’s start with the unconstrained convex minimization problem for a convex function
f : Rn → R. Here we want to find an x ∈ Rn that’s ε-close to minimizing the function f .
More precisely, if we let x∗ := argminx∈Rn f(x), then our goal is to find any x ∈ Rn such
that f(x)− f(x∗) ≤ ε.

To obtain algorithms that are very general, this problem is often studied in the setting
of black-box optimization. Here we do not assume any particular structure of the function
f (e.g., that f is a low-degree polynomial), and only assume that we have some efficient
method of computing f by an algorithm or circuit. In other words, we view f as a black box.

If we only had access to a black-box computing f , this would be zeroth-order optimization.
In first-order optimization, we additionally assume we can also compute the gradient of
f , or more precisely, since the gradient may not exist, we assume we can compute some
subgradient of f (defined in Section 2). We call this oracle the first-order oracle and denote
it by FO(f). In this work we consider arbitrary convex functions that are not necessarily
smooth,1 and so we cannot assume that the gradient exists. Our goal is to solve the function
minimization problem while minimizing the number of calls or queries to the black boxes for
f and some subgradient of f .

One might wonder why we consider queries to f and the subgradient of f to cost the
same. This assumption is justified in many practical situations because of the cheap gradient
principle [16], which says that “the cost to evaluate the gradient ∇f is bounded above
by a small constant times the cost to evaluate the function itself.” This provably holds
in many models of computation; E.g., for arithmetic circuits over + and ×, it can be
proved that the complexity of computing the gradient is at most 5 times the complexity

1 In the optimization literature, a smooth function is a function that is differentiable everywhere in its
domain, so the gradient is well defined, and whose gradient has bounded Lipschitz constant.
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of computing f [6]. The conversion of source code computing f to code computing ∇f
can often be done automatically in many programming languages, and such methods are
called automatic differentiation or algorithmic differentiation [16]. These same principles
essentially carry over to the computation of subgradients [18]. In the quantum setting, there
is additional motivation to assume that a function and its gradient cost roughly the same
since we can obtain the gradient (or a subgradient) of a function from a black-box computing
the function, as shown in a sequence of papers that make increasingly weaker assumptions
on the function oracle [17, 15, 13, 3].

Now that we have black-box access to f and FO(f), we also need a starting point x0 ∈ Rn
to begin our search for a minimum. We require this to be an input, and the complexity will
depend on how close this is to x∗, since otherwise the interesting portion of the function
where the minimum is achieved might be hiding in some small corner of Rn that we cannot
efficiently locate with only black-box access. Since we can easily shift the function by a fixed
vector, without loss of generality we assume x0 = ~0 is the origin. Let the distance between
x0 = ~0 and x∗2 be R := ‖x∗‖.3 For convenience, we will assume that R is part of the input
as well, although this can be relaxed by binary searching for the correct value of R.

Finally, it is also reasonable that the complexity of our algorithms depend on how quickly
f can change, since the value of f at some point only constrains its values at nearby points if
the function does not change too rapidly. Let G be an upper bound on the Lipschitz constant
of f (defined in Section 2), and we assume this is part of the input as well.

We are now ready to formally define the first-order convex minimization problem in the
black-box setting. We use B(x,R) := {y : ‖x− y‖ ≤ R} to denote an `2-ball of radius R
around x.

I Problem 1 (First-order convex minimization). Let f : Rn → R have Lipschitz constant at
most G on B(~0, R), and let

x∗ := argmin
x∈B(~0,R)

f(x). (1)

Then given n, G, R, and ε > 0, the goal is to output a solution x ∈ B(~0, R) such that
f(x)− f(x∗) ≤ ε while minimizing the number of queries to f and FO(f).4

Note that we allow algorithms to query the function and gradient oracles at any point in
Rn even though the domain we are minimizing over is B(~0, R). This only makes our lower
bounds stronger, and the algorithms discussed in this paper never query the oracles outside
the domain.

As we discuss in Section 2, although the problem seems to involve 4 parameters, the
parameters G, R, and ε are not independent since we can rescale the input and output spaces
of f and assume G = 1 and R = 1 without loss of generality. Thus any upper or lower bound
on the complexity of this problem will be a function of n and GR/ε.

1.2 Classical algorithms for first-order convex minimization
Gradient descent, or in this case subgradient descent, is a simple algorithm that starts from
a point x0 and takes a small step (governed by a step size η) in the opposite direction of the
subgradient returned at x0. Intuitively this brings us closer to the minimum since we are
stepping in the direction where f decreases the most.

2 If x∗ is not unique, we can let R be the distance between x0 and the closest x∗ to it.
3 Throughout this paper ‖·‖ always denotes the standard `2 norm in Rn defined as ‖z‖ :=

√∑
i
z2

i .
4 For simplicity, we assume that these oracles output real numbers to arbitrarily many bits of precision.

Since the main results of this paper are lower bounds, this only makes our results stronger.
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We can now describe the performance of subgradient descent for Problem 1. Since this
is a constrained optimization problem, we use the projected subgradient descent algorithm,
which is subgradient descent with the added step of projecting the current vector back onto
the ball B(~0, R) after every step.

I Theorem 2 (Complexity of projected subgradient descent). The projected subgradient descent
algorithm solves Problem 1 using (GR/ε)2 queries to f and FO(f).

A proof of this is included in the full version of this paper. Observe that the query
complexity of this algorithm, the number of queries made by the algorithm, is independent
of n.5 This is quite surprising at first and partly explains why gradient descent and its
variants are popular in high-dimensional applications. More generally, we call such algorithms
dimension-independent algorithms.

There also exist dimension-dependent algorithms for Problem 1 that work well when n is
small. For example, the center of gravity method [11] solves this problem with O(n log(GR/ε))
queries, which is very reasonable when n is small (and the algorithm is very efficient in terms
of ε). In this work we focus on dimension-independent algorithms and assume that n is
polynomially larger than the other parameters in the problem.

When n is large, we cannot improve over projected subgradient descent (Theorem 2)
using any deterministic or randomized algorithm. We reprove the (well known) optimality of
this algorithm among deterministic and randomized algorithms. This result is presented in
Section 3.

I Theorem 3 (Randomized lower bound). For any G, R, and ε, there exists a family of
convex functions f : Rn → R with n = O((GR/ε)2), with Lipschitz constant at most G on
B(~0, R), such that any classical (deterministic or bounded-error randomized) algorithm that
solves Problem 1 on this function family must make Ω((GR/ε)2) queries to f or FO(f) in
the worst case.

This lower bound on query complexity has been shown in several prior works [22, 26, 12],
but we believe our proof is simpler and the dimension n required in our proof seems to be
smaller than that in prior works. Note that while several expositions of gradient descent
prove the lower bound for deterministic algorithms, very few sources establish a lower bound
against randomized algorithms.

Our lower bound uses the following hard family of functions: For any z ∈ {−1,+1}n,
let fz(x1, . . . , xn) = maxi∈[n] zixi,6 where n = O(1/ε2). These functions are convex with
Lipschitz constant 1. We show that finding an ε-approximate minimum within B(~0, 1)
requires Ω(n) queries to the oracles. We establish the lower bound by showing that with
high probability, every query of a randomized algorithm only reveals O(1) bits of information
about the string z, but an ε-approximate solution to this problem allows us to reconstruct
the string z, which has n bits of information.

1.3 Quantum algorithms for first-order convex minimization
We then turn to quantum algorithms for solving Problem 1. At first, it might seem that
since gradient descent is a sequential, adaptive algorithm where each step depends on the
previous one, there is little hope of quantum algorithms outperforming gradient descent.

5 Of course, the time complexity of implementing this algorithm will be at least linear in n since each
query to either oracle requires us to manipulate a vector of length n.

6 We use [n] to denote the set of positive integers less than or equal to n, i.e., [n] := {1, . . . , n}.
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On the other hand, consider the hard family of functions described above that witnesses
the classical randomized lower bound in Theorem 3. While this is hard for classical algorithms,
we show in Section 3.1 that there is a quantum algorithm that solves the problem on this
family obtaining a quadratic speedup over any classical algorithm (and in particular, over
gradient descent).

I Theorem 4 (Quantum algorithm for classically hard function family). There is a quantum
algorithm that solves Problem 1 on the class of functions that appear in the classical lower
bound of Theorem 3 using O(GR/ε) queries to the oracle for f .

Notably, unlike most quadratic speedups in quantum computing, the source of this
quadratic speedup is not Grover’s algorithm or amplitude amplification. Theorem 4 uses
Belovs’ quantum algorithm for learning symmetric juntas, which is constructed by exhibiting a
feasible solution to the dual semidefinite program of the negative-weights adversary bound [7].

Now that we have shown a quadratic quantum speedup on a family of instances known
to be hard for classical algorithms, there is some hope that quantum algorithms may provide
some speedup for the general first-order convex minimization problem. Alas, our next result
(established in Section 4), which is our main result, shows that this is not the case, and
quantum algorithms cannot in general yield a speedup over classical algorithms for first-order
convex minimization.

I Theorem 5 (Quantum lower bound). For any G, R, and ε, there exists a family of convex
functions f : Rn → R with n = Õ((GR/ε)4), with Lipschitz constant at most G on B(~0, R),
such that any quantum algorithm that solves Problem 1 with high probability on this function
family must make Ω((GR/ε)2) queries to f or FO(f) in the worst case.

Our lower bound uses ideas from the lower bound against parallel randomized algorithms
recently established by Bubeck, Jiang, Lee, Li, and Sidford [12].

At a high level, the hard family of functions used in the randomized lower bound does
not work for quantum algorithms because although classical algorithms can only learn O(1)
bits of information per query, quantum algorithms can make queries in superposition and
learn a little information about many bits simultaneously. We remedy this by choosing a
new family of functions in which with high probability, no matter what query the quantum
algorithm makes, the oracle’s response is essentially the same. This allows us to control what
the quantum algorithm learns per query, but now the instance is more complicated and the
quantum algorithm learns O(n) bits of information per query. Since the final output of the
algorithm is a vector in Rn, we cannot use the argument used before that simply compared
the information learned per query to the total information that needs to be learned. Instead
we use the venerable hybrid argument [8] to control what the quantum algorithm learns and
show that it cannot find an ε-approximate solution to the minimization problem.

1.4 Related work
Classically, there is a long history of the study of oracle complexity (also known as black-box
complexity or query complexity) for deterministic and randomized algorithms for non-smooth
and smooth convex optimization. The setting considered in this paper, first-order convex
optimization, where the algorithm has query access to the function value and the gradient,
is very well studied. This topic is too vast to survey here, but we refer the reader to
[22, 23, 24, 11] for more information about upper and lower bounds that can be shown in
this setting.
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There also has been work in the classical parallel setting, where in each round the
algorithm is allowed to query polynomially many points and the goal is to minimize the
number of rounds [21, 4, 14, 12]. Our work is most closely related to this setting and borrows
many ideas from these works. Although quantum algorithms and parallel classical algorithms
are incomparable in power, the constructions used to thwart parallel classical algorithms in
these papers also help with showing quantum lower bounds.

In the quantum setting, there has been some work on convex optimization in the oracle
model. There is also work on quantum gradient descent not in the oracle model. For example,
one situation studied is where the dimension n of the optimization space is very large and
the vectors are encoded in quantum states of dimension logn. See [25, 19] and the references
therein for more information. Another setting is the work on semidefinite programming,
an important special case of convex optimization, but these algorithms exploit the specific
structure of semidefinite programs [10, 2, 9, 1] and are not directly related to our work.

While in the classical setting, in general, a function value oracle is weaker than a gradient
oracle, this is not the case in the quantum setting. Given a function value oracle, one can get
a gradient oracle quite efficiently (with an Õ(1) overhead) [17, 15, 3, 13]. A similar result also
holds for simulating a separation oracle given a membership oracle for convex bodies [3, 13].
As discussed before, our focus in this paper is to see if quantum algorithms can outperform
classical algorithms when given a function oracle and gradient oracle since in many relevant
settings, gradient computation is cheap in the classical case as well.

The most related works are the papers by Chakrabarti, Childs, Li, and Wu [13] and van
Apeldoorn, Gilyén, Gribling, and de Wolf [3]. These papers establish very similar results so
we cover them together. These papers study the problem of black-box convex optimization,
and their results are phrased in the slightly different language of membership and separation
oracles, but this is not the main difference between their work and our work. Indeed, it is
possible to recast our problem in their setting (see the discussion in the introduction in [3]
for how to do this). The main difference is that their algorithms are dimension-dependent
and have complexities that depend on n, whereas we’re working in the parameter regime
where n is large and so we seek algorithms that are independent of n.

Specifically, [13] and [3] consider the problem of minimizing a linear function over a convex
body given via a membership or separation oracle. A membership oracle for a convex body
tells us whether a given point x is in the convex body and a separation oracle in addition when
x is not in the body outputs a hyperplane that separates x from the convex body. Classically,
the problem of outputting an ε-approximate solution can be solved with O(n2 polylog(·))
queries to a membership oracle [20], where we are suppressing polylogarithmic dependence
on several parameters (including ε). These two papers show a quantum algorithm that
makes only O(npolylog(·)) membership queries. The key technical component of this is a
construction of a separation oracle from a membership oracle with only polylogarithmic
overhead. To do this, they first show how to obtain an approximate subgradient oracle from
a function oracle with only polylogarithmic overhead.

There are also several lower bounds shown in these papers. In [3], the authors prove
that quantum algorithms do not give any advantage over classical algorithms in the setting
where we are not given a point inside the convex body to start with. This setting is not
directly comparable to our setting, as far as we are aware. In the setting where we do know
a point inside the convex body, which is very similar to our setting, [3, 13] prove a lower
bound of Ω(

√
n), which is quadratically worse than their algorithm. While, in general, their

results are incomparable to our results, one specific comparison to our results is that [13,
Theorem 3.3] essentially shows a Ω̃(min{GR/ε,

√
n}) lower bound on the number of oracle
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calls to a function value oracle for the setting in Problem 1.7 Note that this is quadratically
worse than our tight lower bound (Theorem 5) in the dimension-independent setting (i.e.,
when the dimension n is large compared to GR/ε).

1.5 Paper organization and summary of contributions
We first present some preliminaries on convex optimization in Section 2. In Section 3 we
reprove the lower bound for randomized algorithms (Theorem 3) using a simpler argument
compared to prior works. In Section 3.1, we show that quantum algorithms can solve the
hard instance from Theorem 3 faster than randomized algorithms, obtaining a quadratic
speedup (Theorem 4). In Section 4, we present a different hard instance and show our main
result that quantum algorithms cannot obtain any speedup over gradient descent for the
first-order convex optimization problem (Theorem 5). We conclude with open problems in
Section 5.

2 Convex optimization preliminaries

As described in the introduction, we are interested in approximately minimizing a convex
function f : Rn → R on some closed convex set K ⊆ Rn. A function f : Rn → R is convex if
for all x, y ∈ Rn and t ∈ [0, 1],

tf(x) + (1− t)f(y) ≥ f(tx+ (1− t)y). (2)

A set K ⊆ Rn is convex if the line segment joining two points in K is also contained
in K. We will consider convex sets of bounded size, and specifically let 2R be the diameter
of K, i.e.,

max
x,y∈K

‖x− y‖ ≤ 2R, (3)

where ‖z‖ :=
√∑

z2
i is the Euclidean norm.

It turns out that the query complexity of first-order convex optimization depends only on
R no matter how complicated the set K happens to be. However, to obtain an algorithm with
efficient time complexity we require that the set K be simple enough that we can efficiently
implement a projection operator for K. This means given any y ∈ Rn, we can efficiently
compute PK(y) ∈ K, which satisfies ‖PK(y)− y‖ = minz∈K ‖z − y‖. Since the main result of
this paper is a lower bound, our lower bound is stronger if shown for a simple convex set K.
So throughout this paper we work with the set K = B(~0, R), the `2-ball of radius R around
the origin.

In the model of first-order black-box optimization, we have access to a black-box that
computes the function f on any input x ∈ Rn. In addition to this, we also have a first-order
oracle, FO(f), which when queried at any point x ∈ Rn returns some vector gx ∈ Rn that
satisfies for all y ∈ Rn,

f(y) ≥ f(x) + 〈gx, y − x〉 . (4)

Since f is convex, it is known that such a vector gx exists for all x ∈ Rn [23]. Any vector gx
satisfying (4) is called a subgradient of f at x, and the set of all subgradients at x is called
the subdifferential at x and denoted by ∂f(x). If f is differentiable at x then gx is unique
and equal to ∇f(x), the gradient of f at x, defined as

7 This is equivalent to our setting, where we have a function value and gradient oracle, due to their results.
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∇f(x) :=
(
∂f(x)
∂x1

, . . . ,
∂f(x)
∂xn

)
. (5)

We will say that the function f has Lipschitz constant at most G in K if ‖gx‖ ≤ G for every
x ∈ K.8

As described in Problem 1, we are interested in algorithms that take as inputs the
parameters n, G, R, and ε > 0, and have access to f and a first-order oracle FO(f), and
output x ∈ B(~0, R) such that f(x)− f(x∗) ≤ ε, where x∗ := argminx∈B(~0,R) f(x).

In the quantum setting, we have quantum analogues of these oracles. There is a
straightforward generalization of any oracle to the quantum setting, which makes the
classical oracle reversible and then allows queries in superposition to this oracle. This
quantum generalization of the oracle is justified by the fact that if we had a classical circuit
or algorithm computing a function f , then it is possible in a completely black-box manner
to construct the quantum oracle corresponding to f , and this oracle would then support
superposition queries. We discuss quantum oracles in more detail in Section 4, but for now it
is sufficient to consider them as computing the same functions as the classical oracles, except
that they can additionally be queried in superposition.

Note that it is sufficient to consider the special case of the problem where G = R = 1.
While this seems like a special case, given an f and K with Lipschitz constant G, radius R,
and optimization accuracy ε, we can instead minimize f̂(x) := 1

GRf (Rx) over K̂ := K/R,
which have Lipschitz constant and radius 1 up to an accuracy of ε

GR . So we consider
G = R = 1 without loss of generality, or for general G and R, the complexity must be a
function of GR/ε.

The query complexity of an algorithm that solves Problem 1 is the maximum number of
oracle calls it makes for fixed values of n, G, R, and ε, where the maximum is taken over all
convex functions f with Lipschitz constant at most G, and all first order oracles FO(f) for
f (i.e., the algorithm must work for any choice of first-order oracle that correctly outputs
some subgradient of f at x). As discussed, the query complexity must be a function of n and
GR/ε. Furthermore, since we’re interested in dimension-independent algorithms, we study
algorithms that only depend on GR/ε and not on n.

Given a class of algorithms, such as deterministic, randomized, or quantum algorithms,
the query complexity of first-order Lipschitz convex optimization for that class of algorithms
is the minimum query complexity of any algorithm in that class that solves Problem 1.

As we will see in the next section, the randomized query complexity of this problem
(and hence the deterministic query complexity) is at least Ω((GR/ε)2) in the dimension-
independent setting.

3 Randomized Lower Bound

In this section, we prove a lower bound for randomized first-order methods for non-smooth
convex optimization, restated here for convenience:

8 This is slightly different from the usual definition of the Lipschitz constant where we would say f is
G-Lipschitz in K if for all x, y ∈ K, |f(x)− f(y)| ≤ G‖x− y‖. Our definition is the same as requiring
the function f to be G-Lipschitz according to this definition in an open set that contains K.
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I Theorem 3 (Randomized lower bound). For any G, R, and ε, there exists a family of
convex functions f : Rn → R with n = O((GR/ε)2), with Lipschitz constant at most G on
B(~0, R), such that any classical (deterministic or bounded-error randomized) algorithm that
solves Problem 1 on this function family must make Ω((GR/ε)2) queries to f or FO(f) in
the worst case.

This randomized lower bound is known and multiple proofs can be found in the literature
[22, 26]. Our proof is elementary and we did not find it written anywhere, although it is
conceptually similar to the one in [22], and so we include it here for completeness. Our proof
also has the dimension n = Θ(1/ε2), without any log factors, which is the best possible.
As far as we are aware, the previous proofs (for randomized algorithms) required larger
dimension than this.9 As we will see later, the family of instances used is also interesting
because we can get a quantum speedup for it, because of which we have to look at other
instances to prove the quantum lower bound.

We can now define the family of convex functions used in the lower bound. For any ε > 0,
we set n =

⌊
.9/ε2

⌋
and look at the following class of functions.

I Definition 6. Let z ∈ {−1,+1}n. Let fz : Rn → R be defined as

fz(x1, . . . , xn) = max
i∈[n]

zixi. (6)

Each such function is convex since it is a maximum of convex functions [23, Theorem
3.1.5]. Note that if fz(x) = zixi for some i ∈ [n], then ziei is a subgradient of fz at x (since
fz(x) + 〈ziei, y − x〉 = ziyi ≤ fz(y)). Hence the function is 1-Lipschitz. We can also see that
within the unit ball the function is minimized at the point

x∗ = −1√
n

∑
i∈[n]

ziei, (7)

and fz(x∗) = −1/
√
n. Clearly given x∗ we can recover z from it. We now show z can even

be recovered from an ε-approximate minimum of fz.

I Lemma 7. Let x be such that fz(x) − fz(x∗) ≤ ε. Then we can recover z ∈ {−1,+1}n
from x ∈ Rn.

Proof. Let sx ∈ {−1,+1}n be the vector with (sx)i = sign(xi), where sign(a) = +1 if a ≥ 0
and sign(a) = −1 otherwise. We claim that z = −sx. Toward a contradiction, if (sx)i 6= −zi
for some i, then (sx)i = zi, since these only take values in {−1,+1}. In this case, xi and
zi agree in sign, and hence fz(x) ≥ zixi ≥ 0. Since ε < 1/

√
n (because of our choice of n

above) the point x cannot satisfy fz(x)− fz(x∗) ≤ ε. J

Since this function is not differentiable everywhere, for our lower bound we need to specify
the behavior of the subgradient oracle on all inputs. The function is not differentiable only
at x ∈ Rn where the maximum is achieved at multiple indices. In this case, the subgradient
oracle responds as if the maximum was achieved on the smallest such index i, i.e., it responds
with ziei. Note that for this function, querying the subgradient oracle allows us to simulate
a call to the function oracle as well, since the response is ziei for the index i that achieves
the maximum, so the function evaluates to zixi at that point, which we can compute since
we know x. So we can assume without loss of generality that an algorithm only queries the
subgradient oracle.

9 The result of [26] requires dimension roughly 1/ε8. We also believe the result in [22] requires a larger
dimension than our claim.
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Now that the problem is fully specified, we will show that any randomized optimization
algorithm using the function oracle and this subgradient oracle will require Ω(n) queries in
order to solve Problem 1 with a constant probability of success.

The following will be the crux of the lower bound. Let I ⊆ [n]. We say a distribution D
over {−1,+1}n is I-fixed if for z ∼ D the random variable zI is fixed and zI is uniform over
{−1,+1}I .

I Lemma 8. Let z be distributed according to an I-fixed distribution. Let x be an arbitrary
query made to the fz oracle. After one query to the subgradient oracles, the conditional
distribution on z given the answer is I ′-fixed with I ⊆ I ′ and E[|I ′|] ≤ |I|+ 2.

Proof. Let x be the algorithm’s query. The index i that achieves the maximum in the
definition of fz(x) can be computed as follows. Let i1, . . . , in be the ordering of the indices
1 to n in decreasing order of |xi|, with ties broken with the natural ordering on integers.
The oracle outputs fz(x) = zijxij and chooses the subgradient zijeij where j is the smallest
index for which xij agrees in sign with zij , and if no such index exists, then j = n.

Since fz(x) can be computed given the subgradient zijeij , the only information obtained
from a query is the prefix {zik}k≤j . In other words, if the subgradient oracle responds with
zijeij , then we have learned that for all indices k ≤ j, we must have sign(xi) = −zi, but we
have not learned any more since the oracle’s output does not depend on the bits of z with
index ik with k > j. After this query, we know the bits zik with k ≤ j, but conditioned on
these, the distribution on the remaining bits of z continues to be uniform. This is an I ′-fixed
distribution with I ′ = I ∪{ik}k≤j . Intuitively, I ′ cannot be much larger than I since an index
ik is part of this set only if the algorithm correctly guessed the sign of zik for this index and
all indices with a smaller value of k. Since the initial distribution z was uniformly at random
outside of I and x is fixed, the probability of correctly guessing the first index (according to
the ij ordering) that was not fixed is 1/2, the probability of guessing the first two is 1/4 and
so on. Thus the expected number of new entries fixed by one query is

∑n\|I|
k=1 k · 1

2k ≤ 2. J

We can use this to show establish the final claim.

I Lemma 9. Let z be sampled uniformly at random from {−1,+1}n. If a randomized
algorithm A outputs an x with fz(x)− fz(x∗) ≤ ε with probability at least 2/3, then its query
complexity is at least n/3− 1.

Proof. When A outputs a point x, we will require it to also query the oracle at x to see if it
is indeed ε-optimal. This can increase its query complexity by at most one. Let the query
complexity of this modified A be t. Whenever A does output an ε-optimal point, Lemma 7
implies that the conditional distribution on z is [n]-fixed. For each i ∈ [0, .., t], let Ii be the
random variable such that the distribution on z after i queries of A is Ii-fixed (Lemma 8
implies that after any sequence of queries it will be an I-fixed distribution for some I). Since
z is sampled uniformly at random from {−1,+1}n, I0 = ∅. And since we want the algorithm
to succeed with probability at least 2/3, E[|It|] ≥ 2n/3.

However, |It| =
∑t
i=1 |Ii| − |Ii−1|, and it is a simple consequence of Lemma 8 that

E[|Ii| − |Ii−1|] ≤ 2 for all i. So by the linearity of expectation, E[|It|] ≤ 2t and hence
t ≥ n/3. J

This proves a lower bound of Ω(1/ε2) on the randomized query complexity of first-order
convex minimization for a function with G = R = 1. As noted earlier, this is without loss of
generality and implies the more general bound in Theorem 3.
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3.1 Quantum speedup
In this section we discuss Theorem 4, restated for convenience:

I Theorem 4 (Quantum algorithm for classically hard function family). There is a quantum
algorithm that solves Problem 1 on the class of functions that appear in the classical lower
bound of Theorem 3 using O(GR/ε) queries to the oracle for f .

The quantum speedup for the above class of functions relies on Belovs’ quantum algorithm
for Combinatorial Group Testing [7]. Belovs showed that given access to an oracle making
OR queries to an n-bit string, the n-bit string can be learned in O(

√
n) quantum queries.

The proof of Theorem 4 then follows by noting that for any S ⊆ [n], one can find out if there
is an i ∈ S such that zi = 1 by querying x = 1√

n

∑
i∈S ei. Hence within O(

√
n) queries, the

entire string z ∈ {−1,+1}n can be learned. This proof is provided in more detail in the full
version of the paper.

A similar problem is also studied in [13], which they solve using a quantum algorithm for
the search with wildcards problem, which is a special case of the combinatorial group testing
problem studied by Belovs.

Note that this quantum algorithm is also essentially optimal for this problem and it is
not hard to show an Ω(

√
n/ logn) lower bound for quantum algorithms. A similar lower

bound is shown in [13, Theorem 3.3], and a simpler sketch of such a lower bound is also
given in the full version.

4 Quantum lower bound

In this section, we show that for any ε, there exists a 1-Lipschitz family of functions such
that any quantum algorithm that solves Problem 1 on the unit ball must make 1

100ε2 queries.
In other words, there is no quantum first-order convex optimization algorithm that always
outperforms the classical gradient descent algorithm described in Theorem 2. The function
we will use was introduced by Nemirovsky and Yudin [22]. To show the quantum lower
bound, we adapt to the quantum setting the lower bound strategy of Bubeck et al. [12] in
the model of parallel algorithms.

We restate the main result proved in this section for convenience:

I Theorem 5 (Quantum lower bound). For any G, R, and ε, there exists a family of convex
functions f : Rn → R with n = Õ((GR/ε)4), with Lipschitz constant at most G on B(~0, R),
such that any quantum algorithm that solves Problem 1 with high probability on this function
family must make Ω((GR/ε)2) queries to f or FO(f) in the worst case.

We start by first proving a qualitatively similar, but simpler result with a larger value
of n = Õ((GR/ε)6) in Section 4.4. If we only care about the optimality of gradient
descent in the dimension-independent setting, this lower bound is sufficient. But if we also
want to understand the trade-off between dimension-independent and dimension-dependent
algorithms, then we would like to show this lower bound with as small a value of n as we
can. In the full version of the paper, we improve the lower bound to achieve the value of n
stated in this theorem.

4.1 Function family and basic properties
We start by defining the family of functions F = {f : Rn → R} that we use. The function
family F depends on the dimension n and two other parameters k and γ. Since the function
family we choose depends on ε, the parameters n, k, and γ will be functions of ε. Our choice
of n, k, and γ will become clear later, but for now we simply choose them as follows. Let
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k := 1
100ε2 =⇒ ε = 1

10
√
k

and γ := 1
10k3/2 = 100ε3. (8)

We choose n such that it satisfies

γ ≥ 8
√

logn
n

=⇒ n := O

(
log(1/ε)

ε6

)
= Õ

(
1
ε6

)
. (9)

The discussion before Lemma 11 explains the choice of k and the discussion after Lemma 12
explains the choice of γ. For the dimension n, see the discussion at the beginning of
Section 4.2.

We now define the function family for these specific choices of n, k, and γ.

I Definition 10 (Hard function family). Let V = {(v1, . . . , vk) | ∀i, j,∈ [k], 〈vi, vj〉 = δij} be
the set of all k-tuples of orthonormal vectors in Rn. Let the family of functions F = {fV }V ∈V
be defined as

f(v1,v2,...,vk)(x) := max
i∈[k]

{
g

(i)
V (x)

}
, where g(i)

V (x) := 〈vi, x〉+ (k − i)γ‖x‖. (10)

We will show that any quantum algorithm that solves Problem 1 on the functions in this
family must make k queries. As we will prove, informally what happens is each query of the
quantum algorithm to the gradient oracle only reveals a single direction vi to the algorithm.
In fact, with very high probability the vectors are revealed in order, so that the algorithm
first learns v1, then v2, and so on. As we will show in Lemma 12, any ε-optimal solution
must overlap significantly with all vi, and thus any quantum algorithm must make k queries.
Since we want to show an Ω(1/ε2) bound, we choose k to be a small multiple of 1/ε2, which
explains our choice for k in Equation (8).

We now establish some basic properties of these functions.

I Lemma 11 (Properties of fV ). For any V ∈ V, let fV and g(i)
V be as in Definition 10.

Then fV is convex with Lipschitz constant at most 1 + kγ ≤ 2 on B(~0, 1), and

for x 6= ~0, ∇g(i)
V (x) = vi + (k − i)γx/‖x‖, and (11)

for x = ~0, ∂g
(i)
V (~0) = {vi + (k − i)γu | u ∈ B(~0, 1)}, and (12)

for any x, ∂fV (x) = ConvexHull
(
{u ∈ ∂g(i)

V (x) | g(i)
V (x) = fV (x)}

)
, (13)

where the convex hull of a set of vectors is the set of all convex combinations of vectors in
the set. Lastly, for any α > 0, fV (αx) = αfV (x) and ∂fV (αx) = ∂fV (x).

Proof. For all V ∈ V, fV : Rn → R is convex. This follows because linear functions and
norms are convex functions [23, Example 3.1.1], and the sum or maximum of convex functions
is convex [23, Theorem 3.1.5].

Let us now compute the subgradients of g(i)
V (x) = 〈vi, x〉 + (k − i)γ‖x‖. The linear

function 〈vi, x〉 is differentiable and its gradient is simply vi. The Euclidian norm ‖x‖
is differentiable everywhere except at x = ~0. At x 6= ~0, the gradient of ‖x‖ is x/‖x‖
and at x = 0, the set of subgradients is B(~0, 1) [23, Example 3.1.5]. We also know that
∂(α1f1(x)+α2f2(x)) = α1∂f1(x)+α2∂f2(x) [23, Lemma 3.1.9], which gives us the expressions
for the subgradients of g(i)

V .
For a function that is the maximum of functions g(i)

V , we know that the set of subgradients
is simply the convex hull of subgradients of those g(i)

V which achieve the maximum at the
given point x [23, Lemma 3.1.10].
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The Lipschitz constant of a function is the maximum norm of any subgradient of the
function. Since any vector in ∂g(i)

V has norm 1 + kγ, and any vector in ∂fV is the convex
combination of vectors with norm at most 1 + kγ, the Lipschitz constant of fV is at most
1 + kγ ≤ 2.

Finally, it is easy to see from the definition of fV that for α > 0, fV (αx) = αf(x)
since each term in the max gets multiplied by α. For ∂fV (αx), note that this is a convex
combination of ∂g(i)

V (αx), and these do not depend on α. J

For convenience we work with this family of functions with Lipschitz constant at most 2
instead of 1, which doesn’t change the asymptotic bounds since we could just divide every
function fV by 2.

The last property essentially says that querying the function or its subgradient on a
scalar multiple of a vector x gives us only as much information as querying it on x. Thus we
can assume that an algorithm only queries the oracles within the unit ball without loss of
generality.

Now let us discuss the vector x∗ ∈ B(~0, 1) that minimizes fV (x) and vectors that ε-
approximately solve the minimization problem. First note that if γ were equal to 0, then the
function would simply be maxi∈[k]〈vi, x〉, which requires us to minimize the component of
x in k different directions subject to it being a unit vector. The solution to this is simply
−1√
k

∑
i vi. Now −1/

√
k = −10ε, so the overlap of x with each direction vi is a large multiple

of ε. So even an ε-approximate solution must have reasonable overlap with each of the vectors
vi. Specifically, each overlap must be at least −9ε. Now in our function fV the term γ is
not 0, but that term at most perturbs the function by kγ = ε, which again is much smaller
than 10ε, and thus even approximate solutions must have significant overlaps with all vi. We
formalize these properties below.

I Lemma 12 (Properties of the minimum). For any V ∈ V, let fV : Rn → R be the function
in Definition 10 and let x∗ := argminx∈B(~0,1) fV (x). Then fV (x∗) ≤ −9ε. Furthermore, any
x ∈ Rn that satisfies |fV (x)− fV (x∗)| ≤ ε must satisfy for all i ∈ [k], 〈vi, x〉 ≤ −8ε.

Proof. Consider the vector y = −1√
k

∑
i∈[k] vi. This is a vector in B(~0, 1), satisfying fV (y) ≤

−1√
k

+ (k − 1)γ ≤ −1√
k

+ kγ = −10ε+ ε = −9ε, because we have 10ε = 1√
k
and kγ = 1

10
√
k

= ε.
Thus fV (x∗) ≤ fV (y) ≤ −9ε.

Now consider any vector x with |fV (x) − fV (x∗)| ≤ ε, which implies fV (x) ≤ −8ε.
If 〈vi, x〉 > −8ε for any i ∈ [k], then fV (x) ≥ 〈vi, x〉 + (k − i)γ‖x‖ > −8ε, which is a
contradiction. J

This result crucially uses the relation between γ and k and because we want kγ to be a
constant factor (say 10) smaller than

√
1/k, this informs our choice of γ in Equation (8).

Our choice of n in Equation (9) will be discussed in the next section.

4.2 Probabilistic facts about the function family
So far all the properties we have discussed of our function family hold for any V ∈ V, but
now we want to talk about a hard distribution over such functions. Specifically we want to
talk about choosing a uniformly random (according to the Haar measure) V from the infinite
set V. It is easy to see how to sample a random V once we can sample unit vectors from a
subspace. We start by choosing v1 to be a Haar random unit vector from Rn, let v2 be a
Haar random unit vector from span(v1)⊥, and so on, until vk is a Haar random unit vector
in span(v1, v2, . . . , vk−1)⊥.
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We can now discuss what determines our choice of n. By construction, the family of
functions F has the property that if the input vector x has equal inner product with all
vectors vi, then the maximum will be achieved uniquely on the first term i = 1 because the
additive term (k − i)γ‖x‖ is largest for i = 1. Now what we want to ensure is that this
property holds even when x does not have equal inner product with all vi, but x is chosen
uniformly at random from B(~0, 1). Or equivalently, we want this property to hold when x is
fixed, but the set V is chosen uniformly at random.

In either case, the inner product of x with a random unit vector v will be a random
variable with mean 0 due to symmetry. But the expected value of |〈v, x〉|2 for a random
unit vector v is 1/n, and in fact it will be tightly concentrated around 1/n. The following
proposition follows from [5, Lemma 2.2].

I Proposition 13. Let x ∈ B(~0, 1). Then for a random unit vector v, and all c > 0,

Pr
v

(|〈x, v〉| ≥ c) ≤ 2e−nc
2/2. (14)

We choose γ so that it is very unlikely (polynomially small in n) that the maximum is not
achieved at i = 1. From Proposition 13, we see that the probability of any |〈vi, x〉|2 being
larger than a constant multiple of logn/n is inverse polynomially small. So it is sufficient to
take γ2 to be a large constant multiple of logn/n as in Equation (9).

In our lower bound we will need a slightly stronger result. We can show that if the vectors
v1, . . . , vt−1 are fixed (and hence known to the algorithm), and the remaining vectors vt, . . . , vk
are chosen uniformly at random such that the set of vectors {v1, . . . , vk} is orthonormal,
then the maximum will be achieved in the set [t] with high probability. This generalizes the
previous claim, which is the case of t = 1, where none of the vectors were fixed.

I Lemma 14 (Most probable argmax). Let 1 ≤ t ≤ k be integers and {v1, . . . , vt−1} be a
set of orthonormal vectors. Let {vt, . . . , vk} be chosen uniformly at random so that the set
{v1, . . . , vk} is orthonormal. Then

∀x ∈ B(~0, 1) : Pr
vt,...,vk

(
max
i∈[k]
〈vi, x〉+ (k − i)γ‖x‖ 6= max

i∈[t]
〈vi, x〉+ (k − i)γ‖x‖

)
≤ 1
n7 . (15)

Proof. Let Ex denote the event whose probability we want to upper bound. Since Ex and
Eαx, for any α ∈ [0, 1], are the same event, we can assume without loss of generality that
‖x‖ = 1. If event Ex occurs, then it must hold that

max
i∈{t+1,...,k}

〈vi, x〉+ (k − i)γ > max
i∈[t]
〈vi, x〉+ (k − i)γ ≥ 〈vt, x〉+ (k − t)γ. (16)

We want to show that this event is very unlikely. To do so, let Fx be the event that for all
i ∈ {t, . . . , k}, 〈vi, x〉 ∈ [−γ2 ,+

γ
2 ]. Note that if Fx occurs, then the terms in the max are in

decreasing order, and we have

〈vt, x〉+ (k − t)γ ≥ 〈vt+1, x〉+ (k − t− 1)γ ≥ · · · ≥ 〈vk−1, x〉+ γ ≥ 〈vk, x〉, (17)

which contradicts Equation (16). Thus if Ex holds then the complement of Fx, F̄x must hold,
which means Pr(Ex) ≤ Pr(F̄x). So let us show that Fx is very likely.

The event F̄x holds only if there exists an i ∈ {t, . . . , k} such that 〈vi, x〉 /∈ [−γ2 ,+
γ
2 ].

We can upper bound this probability for any particular i ∈ {t, . . . , k} using Proposition 13
and the fact that vi is chosen uniformly at random from an n− t+ 1-dimension ball. This
probability is at most 2e−(n−t+1)γ2/8 = 2e−(n−t+1)·8 log n

n ≤ 2 · 2−8 logn = 2/n8, with the
inequality holding because n > 4t. The probability that this happens for any i is at most
(k − t+ 1) ≤ k times this probability, by the union bound. Using the fact that 2k < n, we
get that Pr(Ex) ≤ Pr(F̄x) < 1/n7. J
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Finally, we show that even if we knew the vectors v1, . . . , vk−1, we cannot guess a vector x
that is an ε-approximate solution to our problem, because it won’t have enough overlap with
vk, which is unknown. In other words, for an algorithm to output an ε-optimal solution, it
essentially must know the entire set V .

I Lemma 15 (Cannot guess x∗). Let k > 0 be an integer and {v1, . . . , vk−1} be a set of
orthonormal vectors. Let vk be chosen uniformly at random from span(v1, . . . , vk−1)⊥ and
let V = (v1, . . . , vk). Then

∀x ∈ B(~0, 1) : Pr
vk

(fV (x)− fV (x∗) ≤ ε) ≤ 2e−Ω(k2). (18)

Proof. From Lemma 12, we know that an ε-optimal solution x must satisfy 〈vk, x〉 ≤ −8ε.
But vk is chosen uniformly at random from the space span(v1, . . . , vk−1)⊥ and any vector
x ∈ B(~0, 1) projected to that space also has length at most 1. So from Proposition 13 we
know that for any x ∈ B(~0, 1),

Pr
vk

(〈vk, x〉 ≤ −8ε) ≤ Pr
vk

(|〈vk, x〉| ≥ 8ε) ≤ 2e−32(n−k+1)ε2
≤ 2e−Ω(k2). (19)

4.3 Quantum query model
We now formally define the quantum query model in our setting. In the usual quantum
query model the set of allowed queries is finite, whereas in our setting it is natural to allow
the quantum algorithm to query the oracles at any point x ∈ Rn. Due to Lemma 11, it is
sufficient to allow the algorithm to query any x ∈ B(~0, 1), but this is still a continuous space
of queries, and hence a query vector could be a superposition over infinitely many states.
Instead of formalizing this notion of quantum algorithms, we allow the algorithm to make
discrete queries only, but to arbitrarily high precision. The reader is encouraged to not get
bogged down by details and to think of the registers as storing the real values that they
ideally should, but in the rest of this section we define these algorithms more carefully so
that all the spaces involved are finite and well defined. This formalization is not specific to
the quantum setting and is done classically as well if we do not want to manipulate real
numbers as atomic objects.

All the real numbers that appear will be represented using some b bits of precision, where
b can be chosen by the algorithm. The reader should imagine b being arbitrarily large, say
exponentially larger than all the parameters involved in the problem, so that the inaccuracy
involved by using this representation is negligible. Then the algorithm represents the input
x ∈ B(~0, 1) using b bits of precision per coordinate. The oracle’s response will also use b
bits of precision per real number. For a given choice of b, the quantum algorithm will have
some probability of success of solving the problem at hand. We then define the success
probability of quantum algorithms that make q queries by taking a supremum over all b of
q-query algorithms that solve the problem.

We can now define the oracles more precisely. Classically, the function oracle for a
function f : Rn → R would simply implement the map x 7→ f(x), where we represent each
entry of x and the output f(x) using b bits, so x ∈ {0, 1}bn and f(x) ∈ {0, 1}b. Let’s say we
have a classical circuit that implements this map using G gates, say over the gate set of AND,
OR, and NOT gates. Then it is easy to construct, in a completely black-box way, a quantum
circuit using O(G) gates (say over the gate set of Hadamard, CNOT, and T) that performs
the unitary U |x〉|y〉 = |x〉|y ⊕ f(x)〉, for every x ∈ {0, 1}bn, and y ∈ {0, 1}b. This is why it is
standard to assume that the quantum oracle corresponding to the classical map x 7→ f(x)
is a unitary that performs U |x〉|y〉 = |x〉|y ⊕ f(x)〉. We apply the same construction for
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the FO(f) oracle to get the quantum analogue of the classical map x 7→ gx, where gx is
some subgradient of f at x. Lastly, for convenience we will combine both the function and
subgradient oracle into one oracle that when queried with x returns f(x) and a subgradient
at x. Since our function family is parameterized by V ∈ V, we call this oracle OV .

Let A be a quantum query algorithm that makes q queries. A is described by a sequence
of unitaries UqOV Uq−1OV Uq−2OV · · ·U1OV U0 applied to an initial state, say |0〉. We assume
that the output of A, which is a vector x, is determined by measuring the first n registers
storing real numbers using b bits.

4.4 Lower bound
We can now prove the quantum lower bound. Let A be a k − 1 query quantum algorithm
that solves Problem 1 on all the functions fV for V ∈ V. Due to Lemma 11, we can assume
that the algorithm only queries the oracles with vectors x ∈ B(~0, 1). We also need to describe
the behavior of the subgradient oracle on inputs where the subgradient is not unique. On
such inputs x, the subgradient is not unique because several indices i ∈ [k] simultaneously
achieve the maximum in fV (x). In this case, the subgradient will answer as if the smallest
index i in this set achieved the maximum. Now let A be described by the sequence of
unitaries Uk−1OV Uk−2OV · · ·OV U1OV U0 acting on the starting state |0〉. Let this sequence
of unitaries be called A. Then the final state of the algorithm is A|0〉.

Recall that we defined fV (x) = maxi∈[k]{g
(i)
V (x)}. Let us also define functions f (j)

V where
the maximization is only over the first j indices instead of all k indices. Specifically, let
f

(j)
V := maxi∈[j]{g

(i)
V (x)}. We previously defined the oracle OV as corresponding to the

function fV . Let O(j)
V be the oracle corresponding to the functions f (j)

V .
Now we define a sequence of unitaries starting with A0 = A as follows:

A0 := Uk−1OV Uk−2OV · · ·OV U1OV U0

A1 := Uk−1OV Uk−2OV · · ·OV U1O
(1)
V U0

A2 := Uk−1OV Uk−2OV · · ·O(2)
V U1O

(1)
V U0 (20)

...

Ak−1 := Uk−1O
(k−1)
V Uk−2O

(k−2)
V · · ·O(2)

V U1O
(1)
V U0

We want to show that the algorithm A0 does not solve our problem. To do so, we will
employ the hybrid argument, in which we show that the output of the algorithm Ai and Ai+1
is close, and thus the output of A0 and Ak−1 is close. Finally, we argue that the algorithm
Ak−1 does not solve our problem because the oracles in the algorithm do not know vk. Let
us first establish these two claims.

I Lemma 16 (Ak−1 does not solve the problem). Let A be a k − 1 query algorithm and let
Ak−1 be defined as above. Let pV be the probability distribution over x ∈ B(~0, 1) obtained by
measuring the output state Ak−1|0〉. Then PrV,x∼pV

(fV (x)− fV (x∗) ≤ ε) ≤ 2e−Ω(k2).

Proof. We want to show that the probability (over the random choice of V and the internal
randomness of the algorithm) that Ak−1 outputs an x that satisfies f(x)− f(x∗) ≤ ε is very
small.

Let us establish the claim for any fixed choice of v1, . . . vk−1, since if the claim holds for
any fixed choice of these vectors, then it also holds for any probability distribution over them.
For a fixed choice of vectors, this claim is just Prvk,x∼pV

(fV (x) − fV (x∗) ≤ ε) ≤ 2e−Ω(k2).
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Now since the algorithm Ak−1 only has oracles O(i)
V for i < k, the probability distribution

pV only depends on v1, . . . , vk−1. Since these are fixed, this is just a fixed distribution p. So
we can instead establish our claim for all x ∈ B(~0, 1), which will also establish it for any
distribution.

So what we need to establish is that for any x ∈ B(~0, 1), Prvk
(fV (x) − fV (x∗) ≤ ε) ≤

2e−Ω(k2), which is exactly what we showed in Lemma 15. J

I Lemma 17 (At and At−1 have similar outputs). Let A be a k − 1 query algorithm and let
At for t ∈ [k − 1] be the unitaries defined in Equation (20). Then

E
V

(
‖At|0〉 −At−1|0〉‖2

)
≤ 4
n7 . (21)

Proof. From the definition of the unitaries in Equation (20) and the unitary invariance of
the spectral norm, we see that ‖At|0〉 −At−1|0〉‖ = ‖(O(t)

V −OV )Ut−1O
(t−1)
V · · ·O(1)

V U0|0〉‖.
Let us again prove the claim for any fixed choice of vectors v1, . . . , vt−1, which will imply
the claim for any distribution over those vectors. Once we have fixed these vectors, the state
Ut−1O

(t−1)
V · · ·O(1)

V U0|0〉 is a fixed state, which we can call |ψ〉. Thus our problem reduces to
showing for all quantum states |ψ〉,

E
vt,...,vk

(
‖(O(t)

V −OV )|ψ〉‖2
)
≤ 4
n7 . (22)

Now we can write an arbitrary quantum state as |ψ〉 =
∑
x αx|x〉|φx〉, where x is the query

made to the oracle, and
∑
x |αx|2 = 1. Thus the LHS of Equation (22) is equal to

E
vt,...,vk

∥∥∥∥∥∑
x

αx(O(t)
V −OV )|x〉|φx〉

∥∥∥∥∥
2
 ≤∑

x

|αx|2 E
vt,...,vk

(
‖(O(t)

V −OV )|x〉|φx〉‖2
)
. (23)

Since |αx|2 defines a probability distribution over x, we can again upper bound the right
hand side for any x instead. Since O(t)

V and OV behave identically for some inputs x, the
only nonzero terms are those where the oracles respond differently, which can only happen if
f

(t)
V (x) 6= fV (x). When the response is different, we can upper bound ‖(O(t)

V −OV )|x〉|φx〉‖2
by 4 using the triangle inequality. Thus for any x ∈ B(~0, 1), we have

E
vt,...,vk

(
‖(O(t)

V −OV )|x〉|φx〉‖2
)
≤ 4 Pr

vt,...,vk

(f (t)
V (x) 6= fV (x)) ≤ 4/n7, (24)

where the second inequality follows from Lemma 14. The first inequality requires more
explanation. It is based on the claim that if f (t)

V (x) = fV (x) then on such inputs x, the
oracles O(t)

V and OV must behave identically. In other words, for such an input x, for any
|φx〉, we have O(t)

V |x〉|φx〉 = OV |x〉|φx〉. The oracle responds with the function value and the
subgradient, and we have already assumed that the function values are equal, so we only
need to show that if f (t)

V (x) = fV (x), then the subgradient oracle’s response is also identical
for both functions. Since f (t)

V (x) = fV (x), the maximum in the definition of fV was achieved
by some index in the first t indices (and possibly other indices as well). But our definition of
the subgradient oracle says that if multiple indices achieve the maximum, the subgradient
oracle will respond as if the smallest index achieved the maximum. Hence the response of
the subgradient oracle for the two functions will also be identical. J

Finally we can put these two lemmas together to prove our lower bound.
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I Lemma 18 (A does not solve the problem). Let A be a k − 1 query algorithm. Let pV
be the probability distribution over x ∈ B(~0, 1) obtained by measuring the output state A|0〉.
Then PrV,x∼pV

(fV (x)− fV (x∗) ≤ ε) ≤ 1
poly(n) .

Proof. Let PV be the projection operator that projects a quantum state |ψ〉 onto the
space spanned by vectors |x〉 for x such that fV (x) − fV (x∗) ≤ ε. Then ‖PVA |0〉 ‖2 =
Prx∼pV

(fV (x)−fV (x∗) ≤ ε). We know from Lemma 16 that EV
(
‖PVAk−1 |0〉‖2

)
≤ 2e−Ω(k2).

We prove our upper bound on the probability by showing that it is approximately the same
as EV

(
‖PVAk−1 |0〉‖2

)
.

Lemma 17 states that for all 1 ≤ t < k, EV
(
‖At|0〉 −At−1|0〉‖2

)
≤ 4

n7 . Using telescoping
sums and the Cauchy-Schwarz inequality, we see that

E
V

(
‖Ak−1|0〉 −A|0〉‖2

)
≤ E

V


 ∑
t∈[k−1]

‖At|0〉 −At−1|0〉‖

2
 (25)

≤ E
V

 ∑
t∈[k−1]

‖At|0〉 −At−1|0〉‖2
 ∑

t∈[k−1]

12

 ≤ 4k
n7 · k. (26)

For all V ,

|‖PVAk−1 |0〉‖ − ‖PVA |0〉‖| ≤ ‖PVAk−1 |0〉 − PVA |0〉‖ ≤ ‖Ak−1 |0〉 −A |0〉‖ (27)

and so

E
V

((
‖PVAk−1 |0〉‖ − ‖PVA |0〉‖

)2) ≤ 4k2

n7 . (28)

We want an upper bound on EV
(
‖PVA |0〉‖2 − ‖PVAk−1 |0〉‖2

)
, which is no larger than

2EV
(
‖PVA |0〉‖−‖PVAk−1 |0〉‖

)
since ‖PVA |0〉‖+‖PVAk−1 |0〉‖ ≤ 2. We get such a bound

by applying Jensen’s inequality to Equation (28): EV
(
‖PVA |0〉‖−‖PVAk−1 |0〉‖

)
≤ 2k/

√
n7,

and so EV
(
‖PVA |0〉‖2 − ‖PVAk−1 |0〉‖2

)
≤ 4k/

√
n7.

We can now use linearity of expectation and upper bound our required probability as

Pr
V,x∼pV

(fV (x)− fV (x∗) ≤ ε) = E
V

(
‖PVA |0〉‖2

)
≤ 2e−Ω(k2) + 4k/

√
n7 ≤ 1

poly(n) . (29)

Note that this establishes a statement similar to Theorem 5, except with a polynomially
larger value of n. This result is sufficient to establish the optimality of gradient descent in
the dimension-independent setting. To reduce the value of n, we modify the function above
using a wall function introduced by [12]. The details of this modification and the resulting
quantitatively better lower bound can be found in the full version of the paper.

5 Open problems

We showed that in the black-box setting, no quantum algorithm can beat gradient descent in
general, in the dimension-independent regime. Here are some interesting questions left open
by our work:

1. We showed in Theorem 4 that the class of functions used in the randomized lower bound
can be solved faster with quantum queries. Is there a more interesting class of functions
on which we can achieve a quantum speedup?
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2. Can the quantum lower bound in Section 4 be made to work using the simpler class of
functions fV (x) = maxi〈vi, x〉, which is our function with γ = 0? If so, this might also
decrease the dimension n required.

3. Can we establish tight quantum lower bounds in the parameter regime where dimension-
dependent algorithms outperform gradient descent? When 1/ε is a large polynomial in
n, the complexity of gradient descent is also a large polynomial in n, but a dimension-
dependent algorithm such as the center of gravity method [11] yields an O(n logn) upper
bound. Can we establish an Ω̃(n) lower bound in this regime? The function used in the
randomized lower bound in Section 3 yields an Ω̃(

√
n) lower bound and this is the best

bound we are aware of. This is essentially the same as the problem left open by [13, 3],
but phrased in the language of membership and separation oracles.

4. What can we say about other standard settings in convex optimization beyond first-order
non-smooth convex optimization? Other natural settings include assuming the function
is smooth, having the ability to query a prox oracle instead of a subgradient oracle, etc.
Can quantum algorithms provide a speedup in the black-box model in these settings over
the respective best classical algorithms in that setting?
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Abstract
We study a new type of separations between quantum and classical communication complexity,
separations that are obtained using quantum protocols where all parties are efficient, in the sense
that they can be implemented by small quantum circuits, with oracle access to their inputs. Our
main result qualitatively matches the strongest known separation between quantum and classical
communication complexity [8] and is obtained using a quantum protocol where all parties are efficient.
More precisely, we give an explicit partial Boolean function f over inputs of length N , such that:
(1) f can be computed by a simultaneous-message quantum protocol with communication complexity

polylog(N) (where at the beginning of the protocol Alice and Bob also have polylog(N) entangled
EPR pairs).

(2) Any classical randomized protocol for f , with any number of rounds, has communication
complexity at least Ω̃

(
N1/4).

(3) All parties in the quantum protocol of Item (1) (Alice, Bob and the referee) can be implemented
by quantum circuits of size polylog(N) (where Alice and Bob have oracle access to their inputs).

Items (1), (2) qualitatively match the strongest known separation between quantum and classical
communication complexity, proved by Gavinsky [8]. Item (3) is new. (Our result is incomparable
to the one of Gavinsky. While he obtained a quantitatively better lower bound of Ω

(
N1/2) in the

classical case, the referee in his quantum protocol is inefficient).
Exponential separations of quantum and classical communication complexity have been studied

in numerous previous works, but to the best of our knowledge the efficiency of the parties in the
quantum protocol has not been addressed, and in most previous separations the quantum parties
seem to be inefficient. The only separations that we know of that have efficient quantum parties
are the recent separations that are based on lifting [10, 5]. However, these separations seem to
require quantum protocols with at least two rounds of communication, so they imply a separation
of two-way quantum and classical communication complexity but they do not give the stronger
separations of simultaneous-message quantum communication complexity vs. two-way classical
communication complexity (or even one-way quantum communication complexity vs. two-way
classical communication complexity).

Our proof technique is completely new, in the context of communication complexity, and is
based on techniques from [15]. Our function f is based on a lift of the forrelation problem, using
xor as a gadget.
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1 Introduction

Exponential separations between quantum and classical communication complexity have
been established in various models and settings. These separations give explicit examples
of partial functions that can be computed by quantum protocols with very small commu-
nication complexity, while any classical randomized protocol requires significantly higher
communication complexity. However, to the best of our knowledge, in all these works the
efficiency of the quantum players in the quantum protocol has not been addressed and in
most of these separations, the quantum players are inefficient.

Communication complexity studies the amount of communication needed to perform
computational tasks that depend on two (or more) inputs, each given to a different player.
The efficiency of the players in a communication complexity protocol is usually not addressed.
If the players need to read their entire inputs, their time complexity is at least the length
of the inputs. However, the inputs may be represented compactly by a black box and
(particularly in the quantum case) we can hope for players that can be implemented very
efficiently by small (say, poly-logarithmic size) quantum circuits, with oracle access to their
inputs.

Our main result qualitatively matches the strongest known separation between quantum
and classical communication complexity [8] and is obtained using quantum protocols where
all players are efficient. To prove our results we use a completely different set of techniques,
based on techniques from the recent oracle separation of BQP and PH [15].

1.1 Previous Work
The relative power of quantum and classical communication complexity has been studied
in numerous of works. While it is unknown whether quantum communication can offer
exponential advantage over randomized communication for total functions, a series of works
gave explicit examples of partial Boolean functions (promise problems) that have quantum
protocols with very small communication complexity, while any classical protocol requires
exponentially higher communication complexity. The history of exponential advantage of
quantum communication, that is most relevant to our work, is briefly summarized below.

Buhrman, Cleve and Wigderson gave the first (exponential) separation between zero-error
quantum communication complexity and classical deterministic communication complex-
ity [4]. Raz gave the first exponential separation between two-way quantum communication
complexity and two-way randomized communication complexity [14]. Bar-Yossef et al [3]
(for search problems) and Gavinsky et al [9] (for promise problems) gave the first (expo-
nential) separations between one-way quantum communication complexity and one-way
randomized communication complexity. Klartag and Regev gave the first (exponential)
separation between one-way quantum communication complexity and two-way random-

https://arxiv.org/abs/1911.02218
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ized communication complexity [16]. Finally, Gavinsky gave an (exponential) separation
between simultaneous-message quantum communication complexity and two-way randomized
communication complexity [8].

We note that Gavinsky’s work is the strongest separation known today and essentially
subsumes the separations discussed above. More precisely, Gavinsky [8] gave an explicit
partial Boolean function f over inputs of length N , such that:
1. f can be computed by a simultaneous-message quantum protocol with communication

complexity polylog(N): Alice and Bob simultaneously send quantum messages of length
polylog(N) to a referee, who performs a quantum measurement on the messages and
announces the answer. (At the beginning of the protocol Alice and Bob also have
polylog(N) entangled EPR pairs).
We note that this also implies a one-way quantum protocol where Alice sends a message
of length polylog(N) qubits to Bob, who performs a measurement and announces the
answer (or vice versa).

2. Any classical randomized protocol for f has communication complexity at least Ω
(
N1/2).

A drawback of Gavinsky’s separation, in the context of our work, is that the referee in
his quantum protocol is inefficient as it is required to perform O(N) quantum operations
(and this seems to be crucial in his lower bound proof).

As mentioned before, to the best of our knowledge, the efficiency of the quantum
players has not been addressed in previous works on separations of quantum and classical
communication complexity. The only separations that we know of that do have efficient
quantum parties are the separations that follow from the recent randomized query-to-
communication lifting theorems of [10, 5], applied to problems for which we know that
quantum decision trees offer an exponential advantage over randomized ones, such as the
forrelation problem of [1, 2]. However, lifting with the gadgets used in [10, 5] seems to
require quantum protocols with two rounds of communication. Thus, these theorems only
imply a separation of two-way quantum and classical communication complexity and do not
give the stronger separations of simultaneous-message quantum communication complexity
vs. two-way classical communication complexity (or even one-way quantum communication
complexity vs. two-way classical communication complexity).

1.2 Our Result
We recover Gavinsky’s state of the art separation, using entirely different techniques. While
the parameters in our bounds are weaker, our quantum protocol is efficient, in the sense that
it involves just polylog(N) amount of work by Alice, Bob and the referee, when the players
have blackbox access to their inputs. In other words, the output of the entire simultaneous
protocol can be described by a polylog(N) size quantum circuit, with oracle access to the
inputs.

More precisely, our main result gives an explicit partial Boolean function f over inputs of
length N , such that:
1. As in Gavinsky’s work, f can be computed by a simultaneous-message quantum protocol

with communication complexity polylog(N): Alice and Bob simultaneously send quantum
messages of length polylog(N) to a referee, who performs a quantum measurement on
the messages and announces the answer. (At the beginning of the protocol Alice and Bob
also have polylog(N) entangled EPR pairs).
As before, this also implies a one-way quantum protocol where Alice sends a message
of length polylog(N) qubits to Bob, who performs a measurement and announces the
answer (or vice versa).
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2. Any classical randomized protocol for f has communication complexity at least Ω̃
(
N1/4).

3. All parties in the quantum protocol of Item (1) (Alice, Bob and the referee) can be
implemented by quantum circuits of size polylog(N) (where Alice and Bob have oracle
access to their input).

The problem that we define is a lift of the forrelation problem of [1, 2, 15] with xor
as the gadget. Our proof technique follows the Fourier-analysis framework of [15]. Our proof
offers an entirely new and possibly simpler approach for communication complexity lower
bounds. We believe this technique may be applicable in a broader setting. We note that
lower bounds for lifting by xor, using a Fourier-analysis approach, were previously studied
in [13, 11].

1.3 Our Communication Complexity Problem
Let N = 2n and HN be the N ×N normalized Hadamard matrix. Let x = (x1, x2) be an
input where x1, x2 ∈ {−1, 1}N . We define the forrelation of x as the correlation between the
second half x2 and the Hadamard transform of the first half x1.

forr(x) :=
〈

1√
N
HN (x1)

∣∣∣∣∣ 1√
N
x2

〉

The communication problem for which our separation holds is a lift of the forrelation
problem of [15], with xor as the gadget. Let x, y ∈ {−1, 1}2N . Alice gets x and Bob gets y
and their goal is to compute the partial function F defined by

F (x, y) :=
{

1 if forr(x · y) ≥ 1
200 ·

1
lnN

−1 if forr(x · y) ≤ 1
400 ·

1
lnN .

Here x · y refers to the coordinate-wise product of the vectors x, y. We refer to this problem
as the forrelation problem.

I Theorem 1. The forrelation problem can be solved in the quantum simultaneous with
entanglement model with O(log3 N) bits of communication, when Alice and Bob are given
access to O(log3 N) bits of shared entanglement. Moreover, the protocol is efficient, as it can
be implemented by a O(log3 N) size quantum circuit with oracle access to inputs.

The quantum upper bound on F follows from the fact that the xor of the inputs can be
computed by a simultaneous-message quantum protocol, when the players share entanglement,
and the fact that forr(x) can be estimated by a small size quantum circuit [1, 2, 15].

I Theorem 2. The randomized bounded-error interactive communication cost of the forrela-
tion problem is Ω̃(N 1

4 ).

1.4 An Overview of the Lower Bound
In this section, we outline the proof of the lower bound. We use the forrelation distribution D
on {−1, 1}2N as defined by [15]. We define a distribution V on inputs to the communication
problem, obtained by sampling z ∼ D, and x ∈ {−1, 1}2N uniformly at random, and
setting y := x · z. Alice gets x and Bob gets y. It can be shown that the distribution V
has considerable support over the yes instances of F , while the uniform distribution U on
{−1, 1}4N has large support over the no instances of F . This fact along with the following
theorem implies a lower bound on the randomized communication cost of F .
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I Theorem 3. Consider the following distribution. A string z ∈ {−1, 1}2N is drawn from the
forrelation distribution, x ∼ U2N is drawn uniformly and y := x · z. Alice gets x and Bob gets
y. Given any deterministic communication protocol C : {−1, 1}2N ×{−1, 1}2N → {−1, 1} of
cost c ≥ 1, its expectation when the inputs are drawn from this distribution is close to when
the inputs are drawn from the uniform distribution. That is,∣∣∣∣∣∣ E

x∼U2N
z∼D

[C(x, x · z)]− E
x,y∼U2N

[C(x, y)]

∣∣∣∣∣∣ ≤ O
(

c2

N1/2

)
.

In other words, no deterministic protocol of cost o(N1/4) has considerable advantage in
distinguishing the above distribution from the uniform distribution.

We now outline the proof of this theorem. Any cost c protocol induces a partition of
the input space into at most 2c rectangles. Let A × B be any rectangle, and let 1A,1B :
{−1, 1}2N → {0, 1} be the indicator functions of A and B respectively. Note that for all
distributions S on {−1, 1}2N , we have

E
z∼S,

E
x∼U2N

[1A(x)1B(x · z)] = E
z∼S

[(1A ∗ 1B)(z)] .

Here, the notation f∗g refers to the convolution of Boolean functions f and g. This identity
implies that our goal is to show that the expectation of the function

∑
A×B(1A ∗1B)(z) over

a uniformly distributed z is close to the expectation over z ∼ D. An essential contribution of
the works of [15] and [7] is the following result. For any family of functions F that is closed
under restrictions, to show that the family is fooled by the forrelation distribution, it suffices
to bound the `1-norm of the second level Fourier coefficients of the family. More precisely,
the maximum advantage of a function f ∈ F in distinguishing the uniform distribution and
D, is at most O

(
1√
N

)
times the maximum second level Fourier mass of a function f ∈ F .

Since small cost communication protocols form a family of functions closed under restrictions,
the same reasoning applies here. In this paper however, we present a complete proof of
this connection. We then provide the following bound on the second level Fourier mass
corresponding to a small cost protocol.

B Claim 1. Let C(x, y) : {−1, 1}2N × {−1, 1}2N → {−1, 1} be any deterministic protocol
of cost c ≥ 1, let D(x, z) : R2N × R2N → R refer to the unique multilinear extension of
C(x, x · z) and H : R2N → R be defined by H(z) = Ex∼U2ND(x, z). Then,

L2(H) ,
∑
|S|=2

|Ĥ(S)| ≤ 120c2.

We now describe the proof of this claim. Let A×B be a rectangle in the partition induced
by the cost c protocol. An important property of the convolution of two functions f, g is
that for all subsets S ⊆ [n], we have f̂ ∗ g(S) = f̂(S)ĝ(S). This, along with Cauchy-Schwarz
implies that

∑
|S|=2

∣∣∣ ̂1A ∗ 1B(S)
∣∣∣ =

∑
|S|=2

∣∣∣1̂A(S)1̂B(S)
∣∣∣ ≤

∑
|S|=2

1̂A(S)2

1/2∑
|S|=2

1̂B(S)2

1/2

.

We then use a well known inequality on Fourier coefficients. It appears as “Level-k Inequalities”
in Ryan Odonnell’s book [12, Chapter 9.5] and it states that for a function f : {−1, 1}n →
{0, 1} with expectation E[f ] = α, for any k ≤ 2 ln(1/α), we have

∑
|S|=k

(
f̂(S)

)2
≤
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O(α2 lnk(1/α)). For simplicity, assume that |A| = |B| = 2(n−c)/2. The previous paragraphs
and the assumption that E[1A],E[1B] = 1

2c/2 imply that the advantage of a rectangle is at
most O

(
1√
N

1
2c c

2
)
. Adding the contributions from all rectangles implies that the advantage

of a cost c protocol is at most O
(
c2
√
N

)
. This implies that every protocol of cost o(N1/4)

has advantage at most o(1) in distinguishing between U and V. The bound in the case of a
general partition follows from a concavity argument. This completes the proof overview.

Open Questions

We conjecture that the correct randomized communication complexity for this problem is
Ω̃(
√
N) and that the above proof technique can be strengthened to show this. One way

to do this would be to show a better bound on the Fourier coefficients of deterministic
communication protocols. In particular, it would suffice to show a bound of O(c ·poly log(N))
on the second level Fourier mass of protocols with c-bits of communication.

2 Preliminaries

For n ∈ N, let [n] denote the set {1, 2, . . . , n}. For a vector x ∈ Rn and i ∈ [n], we refer
to the i-th coordinate of x by either x(i) or xi. For a subset S ⊂ [n], let xS ∈ R|S| be
the restriction of x to coordinates in S. For vectors x, y ∈ Rn, let x · y be their point-wise
product, i.e., the vector whose i-th coordinate is xiyi. Let 〈x|y〉 be the real inner product∑
i xiyi between x and y. Let v−1 be the coordinate-wise inverse of a vector v ∈ (R \ 0)n.

2.1 Fourier Analysis on the Boolean Hypercube
The set {−1, 1}n is referred to as the Boolean hypercube in n dimensions, or the n-
dimensional hypercube. We sometimes refer to it by {0, 1}n, using the bijection mapping
(x1, . . . , xn) ∈ {0, 1}n to ((−1)x1 , . . . , (−1)xn) ∈ {−1, 1}n. We also represent elements of
{−1, 1}n by elements of [2n], using the bijection mapping ((−1)x1 , . . . , (−1)xn) ∈ {−1, 1}n
to 1 +

∑n
i=1 2i−1xi ∈ [2n]. We typically use N to denote 2n. Let In denote the n×n identity

matrix. Let Un be the uniform distribution on {−1, 1}n. Let F := {F : {−1, 1}n → R} be
the set of all functions from the n-dimensional hypercube to the real numbers. This is a
real vector space of dimension 2n. We define an inner product over this space. For every
f, g,∈ F , let

〈f, g〉 := E
x∼Un

[f(x)g(x)] .

For any universe U and a subset S ⊆ U , we use 1S : U → {0, 1} to refer to the indicator
function of S defined by:

1S(x) :=
{

1 if x ∈ S
0 otherwise.

The set of indicator functions of singleton sets {1{a} : a ∈ {−1, 1}n} is the standard
orthogonal basis for F . The character functions form an orthonormal basis for F . These
are functions χS : {−1, 1}n → {−1, 1} associated to every set S ⊆ [n] and are defined
at every point x ∈ {−1, 1}n by χS(x) :=

∏
i∈S xi. For a function f ∈ F , and S ⊆ [n],

we define its S-th Fourier coefficient to be f̂(S) := Ex∼Un [f(x)χS(x)]. Every f ∈ F can
be expressed as f(x) =

∑
S⊆[n] f̂(S)χS(x). For f : {−1, 1}n → R and k ∈ {0, . . . , n}, let

Lk(f) :=
∑
S⊆[n],|S|=k

∣∣∣f̂(S)
∣∣∣ refer to the level k Fourier mass of f .
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Given functions f, g : {−1, 1}n → R, their convolution f ∗ g : {−1, 1}n → R is defined
as f ∗ g(x) := E

y∼Un
[f(y)g(y · x)]. A standard fact about convolution of functions is that

f̂ ∗ g(S) = f̂(S)ĝ(S) for all S ⊆ [n].

2.2 Quantum Computation
Let Hm be the Hilbert space of dimension 2m defined by the complex span of the orthonormal
basis {|x〉 : x ∈ {−1, 1}m}. We sometimes express these basis elements by integers {|i〉 : i ∈
[2m]} by the same correspondence as before.

Fix any universal set of gates for quantum computation. A quantum circuit Q :
{−1, 1}n → {−1, 1}m of space S consists of a set of S registers, the first n of which
are initialized to |x〉, the input, while the rest are initialized to |1〉. It further consists of
a sequence of operators chosen from the universal set of gates, along with a description of
which register they act on. The size of a circuit is the number of operators. The output of a
circuit is defined to be the contents of the first m registers. Since we want the output to be
Boolean, we assume that the circuit measures these registers and returns the outcome. Thus,
a quantum circuit is inherently probabilistic.

We now describe quantum circuits with query or oracle access. In this model, all registers
are initialized to |1〉 and the input x ∈ {−1, 1}n is not written into the registers. Instead, it
is compactly presented to the algorithm using a blackbox, a device which for every index
i ∈ [n], returns x(i)|i〉 when it is given |i〉 as input. More precisely, for every possible input
x ∈ {−1, 1}n, the oracle to x is the linear operator Ox : Hdlogne → Hdlogne which maps the
basis states |i〉 to xi|i〉 whenever i ∈ [n] and otherwise leaves it fixed. This indeed restricts
to a unitary operation on pure states, as its action on the basis states is described by a
diagonal {−1, 1}-matrix. This serves as the quantum analogue of a classical oracle, which is
a blackbox that returns x(i) on input i ∈ [n]. A quantum circuit with oracle access to inputs
is a quantum circuit that is allowed to use the Ox operator in addition to the usual operators,
where x is the input to the computation. The size of the circuit is the total number of gates
used from the universal gate set plus the number of oracle queries used. We say that an
algorithm is efficient, if it is described by a circuit of size at most poly logn with oracle
access to inputs. Note that it is possible to use the oracle Ox to explicitly write down the
input x into n registers, however, this requires n oracle calls and n registers. It is often the
case that this step is unnecessary.

2.3 Classical & Quantum Communication Complexity
Let f : {−1, 1}n × {−1, 1}m → {−1, 1} be a partial Boolean function. Alice (respectively
Bob) receives a private input x ∈ {−1, 1}n (respectively y ∈ {−1, 1}m) and the players’
goal is to compute f(x, y) if (x, y) is in the support of f , while exchanging as few bits as
possible. An input (x, y) is said to be a yes (respectively no) instance if f(x, y) = −1
(respectively if f(x, y) = 1). We assume familiarity with bounded-error randomized and
quantum communication complexity. In quantum communication with entanglement, Alice
and Bob are given m independent copies of the Bell state for some m ∈ N. In this case,
we say that Alice and Bob share m bits of entanglement. In the simultaneous model of
communication, Alice and Bob are not allowed to exchange messages with each other. Instead,
they are allowed one round of communication with a referee Charlie, to whom they can only
send qubits. The referee then performs some quantum operation on the qubits he receives
and returns a bit as the output. As before, a bounded-error simultaneous protocol computes
f if for all (x, y) in the support of f , with probability at least 2/3, the referee’s output agrees
with f(x, y). The cost is the total number of qubits that Alice and Bob send the referee.
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Note that in each of the above models of communication, every function f : {−1, 1}n ×
{−1, 1}m → {−1, 1} has communication cost at most n+m, since the players may simply
reveal their entire inputs. Hence, a small cost protocol is one in which the communication
cost is at most poly log(n+m).

A communication protocol is said to be efficient if it can be implemented by a small size
circuit with oracle access Ox, Oy to the inputs x, y. Protocols with small communication cost
are not necessarily efficient, as they may require computationally intensive processing on the
messages, or they may require the players to make several probes into their inputs.

2.4 The Forrelation Distribution D
Let x ∼ D refer to a random variable x distributed according to the probability distribution
D. We use PD to refer to the probability measure associated with D and Px∼D(E(x)) to refer
to the probability of event E(x) when x ∼ D. For an event E(x), we will denote by D|E(x)
(respectively D|¬E(x)), the distribution D conditioned on the event E(x) occurring (respect-
ively, the event E(x) not occurring). Let ε ≥ 0 be a parameter, f(x) : Rn → R a function and

D a distribution on Rn. We say that D fools f with error ε if
∣∣∣∣ E
x∼Un

[f(x)]− E
x∼D

[f(x)]
∣∣∣∣ ≤ ε.

Let N (µ, σ2) denote a Gaussian distribution of mean µ ∈ R and variance σ2 ∈ R≥0. We
will repeatedly use the following standard facts about Gaussians.

Gaussian Concentration inequality: For X ∼ N (µ, σ2), we have P[|X − µ| ≥ a] ≤ e−
a2

2σ2 .
The sum

∑
iXi of independent Gaussians Xi ∼ N (µi, σ2

i ) is distributed according to
N (
∑
i µi,

∑
i σ

2
i ).

Let N = 2n. The Hadamard matrix HN is an N ×N unitary matrix. We let x and y in
{0, 1}n index rows and columns of HN respectively. The entries of HN are as follows.

HN (x, y) :=
{

1√
N

if
∑
i xiyi mod 2 = 0

−1√
N

otherwise

Let x = (x1, x2) for x1, x2 ∈ {−1, 1}N . We define the forrelation of x as the correlation
between the second half x2 and the Hadamard transform of the first half x1.

forr(x) :=
〈

1√
N
HN (x1)

∣∣∣∣∣ 1√
N
x2

〉

We state the definition of the forrelation distribution, as defined in [15]. Fix a parameter
ε = 1

50 lnN . We first define an auxilliary Gaussian distribution G generated by sampling the
first half uniformly at random and letting the second half be the Hadamard transform of the
first half. More precisely,
1. Sample x1, . . . , xN ∼ N (0, ε).
2. Let y = HNx.
3. Output (x, y).
This is a Gaussian random variable in 2N dimensions of mean 0 and covariance matrix given
by

ε

[
IN HN

HN IN

]
.
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Let trnc : R→ [−1, 1] be the truncation function which on input α > 1, returns 1, α < −1
returns −1 and otherwise returns α. This naturally defines a function trnc : R2N → [−1, 1]2N
obtained by truncating each coordinate. We now define a distribution D over {−1, 1}2N

generated from G by truncating the sample and then independently sampling each coordinate
as follows.
1. Sample z ∈ G.
2. For each coordinate i ∈ [2N ] independently, let z′i = 1 with probability 1+trnc(zi)

2 and −1
with probability 1−trnc(zi)

2 .
3. Output z′.
We refer to the distribution D as the forrelation distribution. We state Claim 6.3 from [15]
which implies that a vector drawn from this distribution has large forrelation on expectation.
The proof is omitted.

I Lemma 2. Let D be the forrelation distribution as defined previously. Then,

Ez∼D[forr(z)] ≥ ε

2 .

2.5 Multilinear Functions on D
Given a function f : {−1, 1}n → R, there is a unique multilinear polynomial f̃ : Rn → R
which agrees with f on {−1, 1}n. This polynomial is called the multilinear extension of f . The
multilinear extension of any character function χS(x) is precisely

∏
i∈S xi. The multilinear

extension f̃ of f satisfies f̃(x) =
∑
S⊆[n] f̂(S)

∏
i∈S xi for all x ∈ Rn. We sometimes identify

f with its multilinear extension. The main content of this section is that bounded multilinear
functions have similar expectations under G and under D.

B Claim 3. Let F : R2N → R be any multinear function F =
∑
S F̂ (S)χS . Then,

E
z′∼D

[F (z′)] = E
z∼G

[F (trnc(z))].

The proof of this claim is identical to that of Equation (2) in [15]. The details can be
found in the full version of this paper. The following claim states that Ez∼G [F (trnc(z))] is
pretty close to Ez∼G [F (z)] for a bounded multilinear function F . Its proof is identical to
that in [15], so we omit it. The underlying idea is that ε is small, so the random variable
z ∼ G has an exponentially decaying norm, furthermore, bounded multilinear functions F on
{−1, 1}2N cannot grow faster than exponentially in the norm of the argument.

B Claim 4. Let F (z) be any multilinear polynomial mapping {−1, 1}2N to [−1, 1]. Let
z0 ∈ [−1/2, 1/2]2N , p ≤ 1

2 and N > 1. Then,

Ez∼G [|F (trnc(z0 + pz))− F (z0 + pz)|] ≤ 8
N5 .

We remark that the bound in [15] is 8
N2 . The improved bound of 8

N5 in Claim 4 follows from
our choice of ε = 1

50 lnN , as opposed to ε = 1
24 lnN as in [15].

2.6 Moments of G
In this section we state some facts about the moments of the forrelation distribution that
will be useful later. We use the following notation to refer to the moments of G.

Ĝ(S, T ) := E
(x,y)∼G

∏
i∈S

xi
∏
j∈T

yj
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The following claim and its proof are analogous to Claim 4.1 in [15].

B Claim 5. Let S, T ⊆ [N ] and i, j ∈ [N ]. Let k1 = |S|, k2 = |T |. Then,
1. Ĝ({i}, {j}) = εN−1/2(−1)〈i,j〉.
2. Ĝ(S, T ) = 0 if k1 6= k2.
3.
∣∣∣Ĝ(S, T )

∣∣∣ ≤ εkk!N−k/2 if k = k1 = k2.

4.
∣∣∣Ĝ(S, T )

∣∣∣ ≤ ε|S| for all S, T .
3 The Forrelation Communication Problem

In this section we formally state the main theorems of this paper.
Let ε = 1

50 lnN be the parameter as before, defining the forrelation distribution. We
restate Theorem 3.

I Theorem 3. Consider the following distribution. A string z ∈ {−1, 1}2N is drawn from the
forrelation distribution, x ∼ U2N is drawn uniformly and y := x · z. Alice gets x and Bob gets
y. Given any deterministic communication protocol C : {−1, 1}2N ×{−1, 1}2N → {−1, 1} of
cost c ≥ 1, its expectation when the inputs are drawn from this distribution is close to when
the inputs are drawn from the uniform distribution. That is,∣∣∣∣∣∣ E

x∼U2N
z∼D

[C(x, x · z)]− E
x,y∼U2N

[C(x, y)]

∣∣∣∣∣∣ ≤ O
(

c2

N1/2

)
.

In other words, no deterministic protocol of cost o(N1/4) has considerable advantage in
distinguishing the above distribution from the uniform distribution.

I Definition 6 (The Forrelation Problem). Alice is given x ∈ {−1, 1}2N and Bob is given
y ∈ {−1, 1}2N . Their goal is to compute the partial boolean function F defined as follows.

F (x, y) =
{
−1 if forr(x · y) ≥ ε/4
1 if forr(x · y) ≤ ε/8.

We restate Theorem 1 and Theorem 2.

I Theorem 1. The forrelation problem can be solved in the quantum simultaneous with
entanglement model with O(log3 N) bits of communication, when Alice and Bob are given
access to O(log3 N) bits of shared entanglement. Moreover, the protocol is efficient, as it can
be implemented by a O(log3 N) size quantum circuit with oracle access to inputs.

The upper bound on the quantum communication complexity of the forrelation problem
follows from the fact that the xor of the inputs can be computed by a simultaneous-message
quantum protocol, when the players share entanglement, and the fact that forr(◦) can be
estimated by a small size quantum circuit [1, 2, 15]. The proof of Theorem 1 can be found
in the full version of this paper.

I Theorem 2. The randomized bounded-error interactive communication cost of the forrela-
tion problem is Ω̃(N 1

4 ).

The lower bound on the randomized communication complexity of the forrelation problem
follows from Theorem 3 and Lemma 2. The proof of Theorem 2 can be found in the full
version of this paper. We now describe the proof of Theorem 3.
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4 Proof of Theorem 3 : Distributional Lower Bound

Let C : {−1, 1}2N × {−1, 1}2N → {−1, 1} be any deterministic protocol of cost at most c.
Let D : {−1, 1}2N × {−1, 1}2N → {−1, 1} be defined as follows. For x, z ∈ {−1, 1}2N ,

D(x, z) := C(x, x · z).

We will also use D(x, z) to refer to its mulilinear extension. Note that our goal is to show
that the function E

x∼U2N
[D(x, z)] of z is fooled by D. Towards this, we will prove that it is

fooled by pG for small p. This approach was first used in [6] and is analogous to Claim 7.2
in [15].

I Lemma 7. Let p ≤ 1
2N and let C(x, y) be any deterministic protocol of cost c ≥ 1 for

the forrelation problem. As before, let D(x, z) : R2N × R2N → R refer to the multilinear
extension of C(x, x · z). Let P ∈ [−p, p]2N . Then,∣∣∣∣∣∣ E

z∼P ·G
x∼U2N

[D(x, z)]− E
z,x∼U2N

[D(x, z)]

∣∣∣∣∣∣ ≤ 120εc2p2
√
N

+ p4N3.

Proof of Lemma 7. We begin by observing some properties of the distribution P · G. The
sample z ∼ P · G is obtained by scaling the i-th coordinate of z′ ∼ G by Pi for each i ∈ [2N ].
This implies that for all S ⊆ [2N ],

E
z∼P ·G

[χS(z)] =
(∏
i∈S

Pi

)
E
z∼G

[χS(z)] . (1)

Part (2.) of Claim 5 implies that the odd moments of G are zero. Equation (1) implies that
this is also true for P · G. That is, for all S ⊆ [2N ],

|S| is odd =⇒ E
z∼P ·G

[χS(z)] = 0. (2)

Part (3.) of Claim 5 implies that for S ⊆ [2N ], |S| = 2k, the S-th moment Ez∼GχS(z) is at
most εkk!N−k/2 in magnitude. Along with equation (1), this implies that for k ∈ N,

|S| = 2k =⇒
∣∣∣∣ E
z∼P ·G

[χS(z)]
∣∣∣∣ ≤

(∏
i∈S

Pi

)
εkk!N−k/2 ≤ p2kεkk!N−k/2. (3)

We now proceed with the proof of the lemma. Let

∆ :=

∣∣∣∣∣∣ E
z∼P ·G
x∼U2N

[D(x, z)]− E
z,x∼U2N

[D(x, z)]

∣∣∣∣∣∣ .
Note that this is the quantity we wish to bound in the lemma. For ease of notation, let
H : {−1, 1}2N → [−1, 1] be defined at every point z ∈ {−1, 1}2N by

H(z) := E
x∼U2N

[D(x, z)] .

We identify H(z) with its multilinear extension. Note that by uniqueness of multilinear
extensions, the above equality holds even for z ∈ R2N . This implies that

E
z∼P ·G
x∼U2N

[D(x, z)] = E
z∼P ·G

[H(z)] and E
z,x∼U2N

[D(x, z)] = E
z∼U2N

[H(z)].
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This, along with the definition of ∆ implies that

∆ =
∣∣∣∣ E
z∼P ·G

[H(z)]− E
z∼U2N

[H(z)]
∣∣∣∣ .

Note that H(z) =
∑
S Ĥ(S)χS(z) for all z ∈ R2N . This implies that for all distributions Z

on R2N , we have E
z∼Z

[H(z)] =
∑
S Ĥ(S) E

z∼Z
[χS(z)]. This implies that

∆ =

∣∣∣∣∣∣
∑

S⊆[2N ]

Ĥ(S)
(

E
z∼P ·G

[χS(z)]− E
z∼U2N

[χS(z)]
)∣∣∣∣∣∣ .

For any probability distribution, the moment corresponding to the empty set is 1 by definition.
For all non empty sets S, we have E

z∼U2N
[χS(z)] = 0. Using this fact in the above equality,

along with the triangle inequality, we have

∆ =

∣∣∣∣∣∣
∑

∅6=S⊆[2N ]

Ĥ(S) E
z∼P ·G

[χS(z)]

∣∣∣∣∣∣ ≤
∑

∅6=S⊆[2N ]

∣∣∣Ĥ(S)
∣∣∣ ∣∣∣∣ E
z∼P ·G

[χS(z)]
∣∣∣∣ .

We use the bounds from (2) and (3) on the moments of P · G to derive the following.

∆ ≤
∑
|S|=2k
k≥1

∣∣∣Ĥ(S)
∣∣∣ p2kεkk!N−k/2

=
∑
k≥1

L2k(H)p2kεkk!N−k/2

We upper bound L2k(H) by
(2N

2k
)
when k ≥ 2. This implies that

∆ ≤ L2(H) εp
2

√
N

+
∑
k≥2

(
2N
2k

)
p2kεkk!N−k/2

≤ L2(H) εp
2

√
N

+
∑
k≥2

22kN2k

(2k)! p2kεkk!N−k/2

≤ L2(H) εp
2

√
N

+
∑
k≥2

N3k/2p2k4kεk.

In the summation
∑
k≥2 N

3k/2p2k4kεk, we see that every successive term is smaller than the
previous by a factor of at least 1/4. This is because the assumption p ≤ 1

2N implies that
p2N3/2 ≤ p2N2 ≤ 1

4 and because 4ε ≤ 1. Thus, we can bound this summation by twice the
first term, which is 16p4N3ε2. This implies that

∆ ≤ L2(H) εp
2

√
N

+ 32p4N3ε2.

Since ε = 1
50 lnN ≤

1
32 , we may bound 32p4N3ε2 by p4N3. This implies that

∆ ≤ L2(H) εp
2

√
N

+ p4N3.

We restate Claim 1 which provides a bound on L2(H).
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B Claim 1. Let C(x, y) : {−1, 1}2N × {−1, 1}2N → {−1, 1} be any deterministic protocol
of cost c ≥ 1, let D(x, z) : R2N × R2N → R refer to the unique multilinear extension of
C(x, x · z) and H : R2N → R be defined by H(z) = Ex∼U2ND(x, z). Then,

L2(H) ,
∑
|S|=2

|Ĥ(S)| ≤ 120c2.

This claim along with the preceding inequality implies that

∆ ≤ 120c2 εp
2

√
N

+ p4N3.

This completes the proof of Lemma 7. J

Proof of Claim 1. In order to bound the level-2 Fourier mass of H, we will use the following
lemma. Its statement and proof appear as “Level-k Inequalities” on Page 259 of “Analysis of
Boolean Functions” [12].

I Lemma 8 (Level-k Inequalities). Let F : {−1, 1}n → {0, 1} have mean E[F ] = α and let
k ∈ N be at most 2 ln(1/α). Then,∑
|S|=k

(
F̂ (S)

)2
≤ α2

(
2e
k

ln(1/α)
)k

.

We now show the desired bound on L2(H). Since C is a deterministic protocol of cost
at most c, it induces a partition of the input space {−1, 1}2N × {−1, 1}2N into at most 2c
rectangles. Let P be this partition and let A×B index rectangles in P , where A (respectively
B) is the set of Alice’s (respectively Bob’s) inputs compatible with the rectangle. Let
C(A× B) ∈ {−1, 1} be the output of the protocol on inputs from a rectangle A× B ∈ P.
For all x, y ∈ {−1, 1}2N , we have

C(x, y) =
∑

A×B∈P
C(A×B)1A(x)1B(y).

By definition, D(x, z) = C(x, x · z). This implies that

D(x, z) =
∑

A×B∈P
C(A×B)1A(x)1B(x · z).

Taking an expectation over x ∼ U2N of the above identity implies that

H(z) , E
x∼U2N

[D(x, z)] =
∑

A×B∈P
C(A×B)

(
1A ∗ 1B

)
(z).

This implies that for any S ⊆ [n], we have

Ĥ(S) =
∑

A×B∈P
C(A×B) ̂1A ∗ 1B(S) =

∑
A×B∈P

C(A×B)1̂A(S)1̂B(S).

We thus obtain

L2(H) =
∑
|S|=2

∣∣∣Ĥ(S)
∣∣∣

=
∑
|S|=2

∣∣∣∣∣ ∑
A×B∈P

C(A×B)1̂A(S)1̂B(S)

∣∣∣∣∣
≤

∑
A×B∈P

∑
|S|=2

|1̂A(S)||1̂B(S)|.
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We apply Cauchy Schwarz to the term
∑
|S|=2 |1̂A(S)||1̂B(S)| to obtain

L2(H) ≤
∑

A×B∈P

( ∑
|S|=2

1̂A(S)2
)1/2( ∑

|S|=2

1̂B(S)2
)1/2

.

For ease of notation, let µ(A) = |A|
22N denote the measure of a set A ⊆ {−1, 1}2N under U2N .

We first ensure that for each rectangle A × B ∈ P, we have µ(A) ≤ 1
e and µ(B) ≤ 1

e . We
may do this by adding 2 extra bits of communication for each player. For k = 2, we have
k = 2 ln(e) ≤ 2 ln 1

µ(A) and k ≤ 2 ln 1
µ(B) . We apply Lemma 8 on the indicator functions 1A

and 1B for k = 2 to obtain∑
|S|=2

(
1̂A(S)

)2
≤ µ(A)2

(
e ln(1/µ(A))

)2
and

∑
|S|=2

(
1̂B(S)

)2
≤ µ(B)2

(
e ln(1/µ(B))

)2
.

Substituting this in the bound for L2(H), we have

L2(H) ≤ e2
∑

A×B∈P
µ(A)µ(B) ln 1

µ(A) ln 1
µ(B) .

Let ∆ := e2 ∑
A×B∈P

µ(A)µ(B) ln 1
µ(A) ln 1

µ(B) be the expression in the R.H.S. of the above.

Note that it suffices to upper bound ∆. Consider the case when P consists of 2c rect-
angles A × B, each of which satisfies µ(A) = µ(B) = 1

2c/2 . In this case, ∆ evaluates to
e2∑

A×B∈P
1
2c ( c ln 2

2 )2 = O(c2). This proves the lemma in this special case. A similar bound
holds for the general case and the proof follows from a concavity argument that we describe
now.

Since µ(A), µ(B) ≤ 1, we have the following inequality.

∆ , e2
∑

A×B∈P
µ(A)µ(B) ln 1

µ(A) ln 1
µ(B)

≤ e2
∑

A×B∈P
µ(A)µ(B) ln 1

µ(A)µ(B) ln 1
µ(A)µ(B)

= e2
∑

A×B∈P
µ(A×B)

(
ln 1
µ(A×B)

)2
.
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Let f : [0,∞) → R be defined by f(p) := p ln(1/p)2. A small calculation shows that
f is a concave function in the interval [0, 0.3] (see Figure 7). Let αi ∈ [0, 0.3] for i ∈ [k].
Jensen’s inequality applied to f states that for i ∼ [k] drawn uniformly at random, we have
Ei[f(αi)] ≤ f(Ei[αi]). This implies that

k∑
i=1

αi ln(1/αi)2 ≤

(
k∑
i=1

αi

)
ln
(

k∑k
i=1 αi

)2

.

We apply this inequality to the terms in ∆ by substituting αi with µ(A×B). We may do
this since the assumption that µ(A), µ(B) ≤ 1

e implies that µ(A × B) ≤ 1
e2 ≤ 0.3. This

implies that

∆ ≤ e2

( ∑
A×B∈P

µ(A×B)
)

ln
(

2c+4∑
A×B∈P µ(A×B)

)2

Since
∑
A×B∈P µ(A×B) = 1, we have

∆ ≤ e2(c+ 4)2(ln 2)2 ≤ 120c2.

This completes the proof of Claim 1. C

We now show that an analogue of Lemma 7 holds for restricted protocols, similarly to
Claim 7.3 in [15].

I Lemma 9. Let p ≤ 1
4N and C(x, y) be any deterministic protocol of cost c ≥ 1 for the

forrelation problem. As before, let D(x, z) : R2N×R2N → R refer to the multilinear extension
of C(x, x · z). Let z0 ∈ [−1/2, 1/2]2N . Then,∣∣∣∣∣∣ E

z∼pG
x∼U2N

[D(x, z0 + z)]− E
z,x∼U2N

[D(x, z0 + z)]

∣∣∣∣∣∣ ≤ 120εc2(2p)2
√
N

+ (2p)4N3.

I Corollary 10. Under the same hypothesis as in Lemma 9,∣∣∣Ez∼pG [D(0, z0 + z)]−D(0, z0)
∣∣∣ ≤ 120εc2(2p)2

√
N

+ (2p)4N3.

Proof of Corollary 10 from Lemma 9. Since D(x, z) is a multilinear polynomial, for all
z ∈ R2N , we have Ex∼U2N [D(x, z)] = D(0, z). This implies that for all z0 ∈ R2N ,

E
z∼pG
x∼U2N

[D(x, z0 + z)] = Ez∼pG [D(0, z0 + z)].

For all z0 ∈ R2N , since Ez∼U2N [D(0, z0 + z)] = D(0, z0), we have

E
z,x∼U2N

[D(x, z0 + z)] = D(0, z0).

The proof of Corollary 10 follows from the above two equalities and Lemma 9. J

Proof of Lemma 9. Similarly to the approach of [6, 15], we will express D(x, z0 + z) as the
average output of restricted protocols (C ◦ ρ)(x, x · z), on which we can use Lemma 7 to
derive the result. These restricted protocols roughly correspond to Alice and Bob fixing
a common subset I ⊆ [2N ] of their inputs in a predetermined way and then running the
original protocol. We formalize this now.
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A restriction ρ of R2N is an element of {−1, 1, ∗}2N . It defines an action ρ : R2N → R2N

in the following natural way. For any z ∈ R2N and i ∈ [2N ],

(ρ(z))(i) :=
{
ρ(i) if ρ(i) ∈ {−1, 1}
z(i) otherwise.

Let sign : (R\0)→ {−1, 1} be the function which maps real numbers to their sign. Given
z0 ∈ [−1/2, 1/2]2N , let Rz0 be a distribution over restrictions of R2N defined as follows. For
each i ∈ [2N ], independently, set1:

ρ(i) :=
{
sign(z0(i)) with probability |z0(i)|
∗ with probability 1− |z0(i)|.

Let P ∈ R2N be such that Pi := 1
1−|z0(i)| for every i ∈ [2N ]. Note that the assumption of

z0 ∈ [−1/2, 1/2]2N ensures that P is a well defined element of [1, 2]2N . For any z ∈ R2N and
i ∈ [2N ], the expected value of the ith coordinate of ρ(z) when ρ ∼ Rz0 can be computed as
follows.

E
ρ∼Rz0

[(ρ(z))(i)] = |z0(i)|sign(z0(i)) + (1− |z0(i)|)z(i) = z0(i) + 1
Pi
z(i)

This implies that for any fixed x, z ∈ R2N and z0 ∈ [−1/2, 1/2]2N , since D is a multilinear
function, we have

E
ρ∼Rz0

[D(x, ρ(z))] = D(x, E
ρ∼Rz0

[ρ(z)]) = D(x, z0 + P−1 · z).

Replacing z with P · z in the above equality implies that

E
ρ∼Rz0

[D(x, ρ(P · z))] = D(x, z0 + z).

This equality allows us to rewrite the L.H.S. of Lemma 9 as follows.

∆ :=

∣∣∣∣∣∣ E
z∼pG,
x∼U2N

[D(x, z0 + z)]− E
z,x∼U2N

[D(x, z0 + z)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
z∼pP ·G,
x∼U2N

E
ρ∼Rz0

[D(x, ρ(z))]− E
z∼P ·U2N ,
x∼U2N

E
ρ∼Rz0

[D(x, ρ(z))]

∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
ρ∼Rz0

 E
z∼pP ·G,
x∼U2N

[D(x, ρ(z))]− E
z∼P ·U2N ,
x∼U2N

[D(x, ρ(z))]

∣∣∣∣∣∣ .

For a multilinear polynomial, its expectation over a product distribution depends only on
the mean of that distribution. This allows us to replace the expectation of D(x, ρ(z)) over
z ∼ P · U2N by an expectation over z ∼ U2N . We thus obtain

∆ =

∣∣∣∣∣∣ E
ρ∼Rz0

 E
z∼pP ·G,
x∼U2N

[D(x, ρ(z))]− E
z∼U2N ,
x∼U2N

[D(x, ρ(z))]

∣∣∣∣∣∣ (4)

1 If z0(i) is zero, then ρ(i) = ∗ with probability 1.
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For any ρ ∈ {−1, 1, ∗}2N and u ∈ {−1, 1}2N , we define a substitution ρu : R2N → R2N

obtained from ρ and u as follows. For any x ∈ R2N and i ∈ [2N ],

(ρu(x))(i) :=
{
u(i) if ρ(i) ∈ {−1, 1}
x(i) otherwise.

This is an action on R2N which replaces the values of coordinates specified by ρ, with values
from u. For every fixed ρ, as we vary over x, u ∼ U2N the distribution of ρu(x) is exactly
U2N . This implies that for all z ∈ R2N , ρ ∈ {−1, 1, ∗}2N ,

E
x∼U2N

[D(x, ρ(z))] = E
x,u∼U2N

[D(ρu(x), ρ(z))].

Substituting this in equation (4), we have

∆ =

∣∣∣∣∣∣ E
ρ∼Rz0

E
u∼U2N

 E
z∼pP ·G,
x∼U2N

[D(ρu(x), ρ(z))]− E
z,x∼U2N

[D(ρu(x), ρ(z))]

∣∣∣∣∣∣ .
Applying Triangle Inequality on the above, we have

∆ ≤ E
ρ∼Rz0

E
u∼U2N

∣∣∣∣∣∣ E
z∼pP ·G,
x∼U2N

[D(ρu(x), ρ(z))]− E
z,x∼U2N

[D(ρu(x), ρ(z))]

∣∣∣∣∣∣ . (5)

Fix any ρ ∈ {−1, 1, ∗}2N and u ∈ {−1, 1}2N . For every x, z ∈ {−1, 1}2N , we have
D(x, z) = C(x, x · z), furthermore, ρu(x), ρ(z) ∈ {−1, 1}2N . This implies that for every
x, z ∈ {−1, 1}2N ,

D(ρu(x), ρ(z)) = C(ρu(x), ρu(x) · ρ(z)). (6)

This prompts us to define a communication protocol C ◦ ρu where Alice and Bob first
restrict their inputs and then run the original protocol C. The restriction is that for each
coordinate i ∈ [2N ] with ρi ∈ {−1, 1}, Alice overwrites her input xi with ui while Bob
overwrites his input yi with ρiui. The main property of this restricted protocol is that for all
x, z ∈ {−1, 1}2N ,

(C ◦ ρu)(x, x · z) = C(ρu(x), ρu(x) · ρ(z)).

This, along with equation (6) implies that D(ρu(x), ρ(z)) is the unique multilinear extension
of (C ◦ ρu)(x, x · z). The cost of C ◦ ρu is at most that of C since Alice and Bob don’t
need to communicate to restrict their inputs. We now use Lemma 7 on C ◦ ρu to argue
that pP · G fools E

x∼U2N
[D(ρu(x), ρ(z))]. The conditions of the lemma are satisfied since

pP ∈ [−2p, 2p]2N , p ≤ 1
4N , and C ◦ ρu is a protocol of cost at most c and whose multilinear

extension is D(ρu(x), ρ(z)). The lemma implies that∣∣∣∣∣∣ E
z∼pP ·G,
x∼U2N

[D(ρu(x), ρ(z))]− E
z∼U2N ,
x∼U2N

[D(ρu(x), ρ(z))]

∣∣∣∣∣∣ ≤ 120εc2(2p)2
√
N

+ (2p)4N3.

Substituting this in inequality (5) completes the proof of Lemma 9. J
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Proof of Theorem 3. Since D(x, z) is the multilinear extension of C(x, x · z) and since D
and U2N are distributions over {−1, 1}2N , we have

Ex∼U2N ,z∼D[C(x, x · z)] = Ex∼U2N ,z∼D[D(x, z)] = Ez∼D[D(0, z)].

When x ∼ U2N and y ∼ U2N are independently sampled, the distribution of (x, x · y) is U4N .
This implies that

Ex,y∼U2N [C(x, y)] = Ex,y∼U2N [D(x, x · y)] = D(0, 0).

The above two equations allow us to rewrite the quantity in the L.H.S. of Theorem 3 as
follows.

∆ :=

∣∣∣∣∣∣ E
x∼U2N
z∼D

[C(x, x · z)]− E
x,y∼U2N

[C(x, y)]

∣∣∣∣∣∣ =
∣∣∣Ez∼D[D(0, z)]−D(0, 0)

∣∣∣
Claim 3 applied on the multilinear polynomial D implies that Ez∼D[D(0, z)] =

Ez∼G [D(0, trnc(z))]. Substituting this in the above equality implies that

∆ =
∣∣∣Ez∼G [D(0, trnc(z))]−D(0, 0)

∣∣∣.
Let t = 16N4, p = 1√

t
= 1

4N2 . Let z(1), . . . , z(t) ∼ G be independent samples and let Z refer
to this collection of random variables. For i ∈ [t], define z≤(i) := p(z(1) + . . . + z(i)). By
convention, z≤(0) := 0. Note that for i ∈ [t], z≤(i) has a Gaussian distribution with mean
0 and covariance matrix as p2i times that of G. Thus, z≤(t) is sampled according to G.
Substituting this in the previous equality implies that

∆ =
∣∣EZ [D(0, trnc(z≤t))]−D(0, 0)

∣∣ .
To bound the above quantity, for each 0 ≤ i ≤ t− 1, we show a bound on

∆i :=
∣∣∣EZ [D(0, trnc(z≤(i+1)))]− EZ [D(0, trnc(z≤(i)))]

∣∣∣.
Since z≤(0) = 0, the triangle inequality implies that ∆ ≤

∑t−1
i=0 ∆i.

Fix any i ∈ {0, . . . , t − 1}. We now bound ∆i. Let Ei be the event that z≤(i) /∈
[−1/2, 1/2]2N . We first observe that Ei is a low probability event. Since each z≤(i)(j) is
distributed as N (0, p2iε), where p2i ≤ 1 and ε = 1/(50 lnN), we have

P[z≤(i)(j) /∈ [−1/2, 1/2]] ≤ P[|N (0, ε)| ≥ 1/2] ≤ exp(−1/8ε) ≤ exp(−6 lnN) = 1
N6

Applying a Union bound over coordinates j ∈ [2N ], we have for each 0 ≤ i ≤ t,

P[Ei] = P[z≤(i) /∈ [−1/2, 1/2]2N ] ≤ 2N 1
N6 ≤

2
N5 . (7)

When Ei does not occur, we have trnc(z≤(i)) = z≤(i) ∈ [−1/2, 1/2]2N . For every fixed
value of z≤(i) in this range, we apply Corollary 10 with parameters p = 1

4N2 , z0 = z≤(i) and
z = z≤(i+1) − z≤(i) = pz(i+1). Note that the conditions in the hypothesis are satisfied since
z0 ∈ [−1/2, 1/2]2N , p ≤ 1/(4N) and the random variable pz(i+1) is distributed as pG. The
corollary implies that for every z≤(i) ∈ [−1/2, 1/2]2N ,∣∣∣EZ [D(0, z≤(i+1)) | z≤(i)

]
− EZ

[
D(0, z≤(i)) | z≤(i)

] ∣∣∣ ≤ 120εc2(2p)2

N1/2 + (2p)4N3.
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Since ¬Ei implies that z≤(i) ∈ [−1/2, 1/2]2N , we have∣∣∣EZ [D(0, z≤(i+1)) | ¬Ei
]
− EZ

[
D(0, z≤(i)) | ¬Ei

] ∣∣∣ ≤ 120εc2(2p)2

N1/2 + (2p)4N3.

We apply Claim 4 on the multilinear polynomial D(0, z) : [−1, 1]2N → [−1, 1] with the
parameters p = 1

4N2 , z0 = z≤(i) and z = z(i+1). Note that the conditions are satisfied since
z0 ∈ [1/2, 1/2]2N and p ≤ 1

2 . The claim implies that∣∣∣EZ [D(0, z≤(i+1)) | ¬Ei
]
− EZ

[
D(0, trnc(z≤(i+1))) | ¬Ei

] ∣∣∣ ≤ 8
N5 .

The previous two inequalities, along with the triangle inequality, imply that

∣∣∣EZ [D(0, trnc(z≤(i+1))) | ¬Ei
]
−EZ

[
D(0, z≤(i)) | ¬Ei

] ∣∣∣ ≤ 120εc2(2p)2

N1/2 +(2p)4N3 + 8
N5 .

(8)

Note that for every possible values of z≤(i+1) and z≤(i), the differenceD(0, trnc(z≤(i+1)))−
D(0, trnc(z≤(i))) is bounded in magnitude by 2, since D(0, trnc(z)) maps R2N to [−1, 1].
This implies that∣∣∣EZ [D(0, trnc(z≤(i+1))) | Ei

]
− EZ

[
D(0, trnc(z≤(i))) | Ei

] ∣∣∣ ≤ 2.

Thus, we have

∆i ≤ P[¬Ei] ·
∣∣∣EZ [D(0, trnc(z≤(i+1))) | ¬Ei]− EZ [D(0, trnc(z≤(i))) | ¬Ei]

∣∣∣
+ P[Ei] ·

∣∣∣EZ [D(0, trnc(z≤(i+1))) | Ei]− EZ [D(0, trnc(z≤(i))) | Ei]
∣∣∣

≤
∣∣∣EZ [D(0, trnc(z≤(i+1))) | ¬Ei]− EZ [D(0, trnc(z≤(i))) | ¬Ei]

∣∣∣+ 2P[Ei]

=
∣∣∣EZ [D(0, trnc(z≤(i+1))) | ¬Ei]− EZ [D(0, z≤(i)) | ¬Ei]

∣∣∣+ 2P[Ei]

≤ 120εc2(2p)2

N1/2 + (2p)4N3 + 8
N5 + 4

N5 .

The equality in the fourth line follows from the fact that whenever Ei does not occur,
trnc(z≤(i)) = z≤(i) by definition. The last inequality follows from inequalities (7) and (8).
Along with the fact that t = 1

p2 = 16N4, and ε ≤ 1, this implies that

∆ ≤
t−1∑
i=0

∆i ≤ t
(120εc2(2p)2

N1/2 + (2p)4N3 + 12
N5

)
≤ 480εc2

N1/2 + 16p2N3 + 192
N

= O

(
c2

N1/2 + 1
N

)
= O

(
c2

N1/2

)
.

The last inequality follows from the assumption that c ≥ 1. This completes the proof of
Theorem 3. J
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Abstract

Traditional learning approaches for classification implicitly assume that each mistake has the same
cost. In many real-world problems though, the utility of a decision depends on the underlying
context x and decision y; for instance, misclassifying a stop sign is worse than misclassifying a
road-side postbox. However, directly incorporating these utilities into the learning objective is often
infeasible since these can be quite complex and difficult for humans to specify.

We formally study this as agnostic learning with unknown utilities: given a dataset
S = {x1, . . . , xn} where each data point xi ∼ Dx from some unknown distribution Dx, the ob-
jective of the learner is to output a function f in some class of decision functions F with small excess
risk. This risk measures the performance of the output predictor f with respect to the best predictor
in the class F on the unknown underlying utility u∗ : X ×Y 7→ [0, 1]. This utility u∗ is not assumed
to have any specific structure and is allowed to be any bounded function. This raises an interesting
question whether learning is even possible in our setup, given that obtaining a generalizable estimate
of utility u∗ might not be possible from finitely many samples. Surprisingly, we show that estimating
the utilities of only the sampled points S suffices to learn a decision function which generalizes well.

With this insight, we study mechanisms for eliciting information from human experts which
allow a learner to estimate the utilities u∗ on the set S. While humans find it difficult to directly
provide utility values reliably, it is often easier for them to provide comparison feedback based on
these utilities. We show that, unlike in the realizable setup, the vanilla comparison queries where
humans compare a pair of decisions for a single input x are insufficient. We introduce a family of
elicitation mechanisms by generalizing comparisons, called the k-comparison oracle, which enables
the learner to ask for comparisons across k different inputs x at once. We show that the excess
risk in our agnostic learning framework decreases at a rate of O

(
1
k

)
with such queries. This result

brings out an interesting accuracy-elicitation trade-off – as the order k of the oracle increases, the
comparative queries become harder to elicit from humans but allow for more accurate learning.
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1 Introduction

Our focus is on learning predictive models for decision-making tasks. Current paradigms for
classification tasks use datasets consisting of scenarios1 x along with the decisions y taken
by human experts to learn a decision function2 f : X 7→ Y. For instance, in economics such
decisions correspond to whether buyers bought an item at a suggested price [2, 9], in robotics
such feedback comprises expert demonstrations in imitation learning [1, 4], and in machine
learning literature such supervision consists of labels selected by human annotators [10, 13].

When we optimize models to predict correctly on these datasets, we often implicitly
assume that all mistakes are equally costly, and that each scenario x in the data is just as
important. In reality though, this is rarely the case. For instance, the standard 0− 1 loss for
classification tasks assigns a unit of loss for each mistake, but misclassifying a stop sign is
significantly more dangerous than misclassifying a road-side postbox. In Figure 1, we expand
on this insight and illustrate how learning from such revealed decisions can often lead to
suboptimal decision functions.

What is missing from this classical framework is that for most decision-making tasks
there exists an underlying function u∗ : X × Y 7→ [0, 1] which evaluates the utility of a
decision y depending on the surrounding context x. Depending on the decision task, such
utility functions can encode buyer preferences in economics, rewards for robotic skills, or
misprediction costs for classification. However, these utility functions are a priori unknown
to the learner since the dataset consists only of context-decision pairs (x, y). Furthermore,
asking human experts to write down these complex utility functions can be quite challenging
and prone to serious errors [3].

One commonly studied approach, referred to as learning from revealed preferences in
economics [9, 6] and inverse reinforcement learning (IRL) in the machine learning literature [19,
26], assumes that the utility function u∗ belongs to some pre-specified class and uses the
fact that decision y was the optimal decision for scenario x to learn estimates of these
utilities. This setup is called the well-specified or realizable setup. However, this posited
utility class can be misspecified in that the underlying utility u∗ might not belong to this
class. The correctness of such learning approaches crucially relies on the well specified
assumption and offers no guarantees on how their performance degrades in the presence of
class misspecifications.

We overcome this uncertainty in specifying the utility function u∗ by proposing an agnostic
learning framework which places no assumptions on the class of utility functions. Instead,
we consider decision functions belonging to some class F = {f | f : X 7→ Y} and study the
objective of obtaining the “best” decision rule in F with respect to the unknown utility u∗.
Formally, given the decision class F and samples from a distribution Dx over the feature
space X , the objective of the learner is to output a model f̂ ∈ F with small excess risk or
regret

err(f̂ ,F) : = sup
f∈F

Ex∼Dx
[u∗(x, f(x))]− Ex∼Dx

[u∗(x, f̂(x))] . (1)

Our proposed notion of excess risk measures the performance of an estimator f̂ by comparing
its decisions with those of the best predictive model in the class F under the utility u∗.

1 We use the term scenario/context/feature for the vector x interchangeably.
2 We consider finite decision spaces Y.
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Figure 1 Consider a binary decision-task with decisions G(reen) and B(lue). The instance space
comprises of three equiprobable clusters of datapoints x1, x2 and x3, and have associated utilities u∗

for decisions B and G. The colour of the datapoints represents the decision with higher utility. The
function class F consists of linear predictors. In the traditional learning setups where the dataset
consists of pairs (x, y), no learner will have enough information to select between f1 and f2 since
the 0− 1 error for both is 1/3. In contrast, using a 2-comparison oracle, a learner can ask a query
of the form “Which of u∗(x1,G) + u∗(x3,B) or u∗(x1,B) + u∗(x3,G) is bigger?”. This allows them
to infer that correctly predicting x3 gives a higher overall utility and output the optimal decision
function f2.

Contrast this with the classical agnostic learning framework [15] where the evaluation metric
for classification measures what proportion of datapoints f̂ predicts correctly

errcl(f̂ ,F) : = sup
f∈F

Ex∼Dx
[I[f(x) 6= yx]]− Ex∼Dx

[I[f̂(x) 6= yx]] , (2)

where yx = argmaxy∈Y u∗(x, y) represents the expert decision (revealed decision) for scenario
x. Our above framework generalizes the proper agnostic learning framework – we restrict
our attention to proper learners which output models f̂ ∈ F and the decision class F is
agnostic towards the unknown underlying utility u∗. Indeed, our agnostic framework allows
for misspecification in the decision class F and allows for situations where no predictive
model f ∈ F matches the expert predictions yx for all instances x.

As highlighted by Figure 1, such a misspecification in the function class F implies that
no decision function f ∈ F will be able to perfectly fit these optimal decisions yx for all
points x ∈ S. In order to solve the agnostic learning problem, it is necessary for the
learner to understand the how costly these different mistakes are relative to each other.
From the learners perspective, observing only the optimal decisions yx for each instance
x, such as revealed preferences or expert demonstrations, are clearly insufficient to obtain
any information about these costs. One way to overcome this information-theoretic limit of
revealed decisions is to directly elicit the utilities from humans – for scenarios x and decision
y, ask an expert “What is the utility u∗(x, y) for taking the decision y given situation x?”.
However, since the underlying utility u∗ can be quite complex, humans are inept at answering
them reliably [17, 23]. For instance, it can be challenging for humans to correctly specify the
costs of mispredicting, say, a stop sign as a red signal relative to that of predicting it as a
post-box.

On the other hand, it is often easier for humans to provide comparative evaluations based
on these utilities [24, 14] and allow the learner to obtain relative feedback. Using these, the
learner can query an expert with comparison or preference queries asking “For instance x,
which of the two utilities u∗(x, y1) or u∗(x, y2) is larger?”. Such vanilla comparisons can
allow the learner to infer relative utilities for decisions y1 and y2 for a given context x; the
learner can conclude that mispredicting stop sign as post-box is worse than mispredicting it

ITCS 2021
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as a red signal. However, such feedback still does not provide any information about the
mistake costs across different examples – given a choice, should the learner correctly predict
a stop-sign or correctly predict a post-box?

While vanilla comparisons are insufficient for the agnostic setup, let us consider the other
extreme: suppose that we have access to an oracle which can provide us with comparisons of
overall utilities for functions f1, f2 ∈ F . That is, the oracle can answer question of the form
“Which of the two overall utilities Ex[u∗(x, f1(x))] or Ex[u∗(x, f2(x))] is larger?”. Given access
to such an oracle, we will be able to find the optimal classifier in the class F . We call this the
∞-comparison oracle since such preferences requires a human to reason about the utilities
over the entire feature space X at once. Even for a small image classification task with a
million images, this would require a human to compare the utility of a million simultaneous
predictions! While this approach does allows for optimal estimation, the trade-off is that
it puts the complete burden of learning on the human’s side. It is worth highlighting that
the comparisons between lotteries used to establish the von Neumann-Morgenstern utility
theorem [18] can be shown to be a special case of such an ∞-comparison oracle.

While comparison queries only allow comparison within a single instance, the ∞-
comparison oracle takes the other extreme and requires a comparison along all instances.
However, we need not restrict our self to either of these extremes; our key insight is that there
is a natural spectrum of such comparisons, which we call k-comparisons which interpolate
between the single or 1-comparison and the ∞-comparison oracle. Such comparison queries
allow a learner to pick k instances {x1, . . . , xk} and two sets of corresponding decision,
{y1, . . . , yk} and {y′1, . . . , y′k}, and ask “Which of the cumulative utilities

∑
i u
∗(xi, yi) or∑

i u
∗(xi, y′i) is bigger?”. For instance, for the example in Figure 1, giving the learner access

to a 2-comparison oracle allows the algorithm to output the optimal decision function.
These higher-order comparison oracles form a natural hierarchy of elicitation mechanisms

for the learner with a k′-oracle being strictly more informative than a k-oracle for k′ > k.
They allow for a natural trade-off between accuracy and elicitation in the learning with
unknown utilities framework. As we increase the order k of the oracle, the learner can obtain
finer information about the utilities u∗ and output functions with lower excess risk. However,
this increase in information comes at the expense of asking for a harder elicitation from the
human expert.

Our Contributions

We propose a novel framework, which we call agnostic learning with unknown utilities, for
studying decision problems wherein the learner is evaluated with respect to an unknown
utility function. Within this framework, we show that standard approaches which work
well in the realizable setup, such as revealed preferences as well as vanilla comparisons,
can perform quite poorly in the face of misspecification and can have excess risk Ω(1). To
overcome this, we propose a family of elicitation mechanisms, the k-comparisons, which
allows the learner access to finer information from an human expert with increasing values
of the order k. Our main results, detailed in Section 3, provide a tight characterization of
the excess risk as a function of the order k of the comparison oracle available to the learner.
These result brings out an interesting accuracy-elicitation trade-off – as the order k of the
oracle increases, the comparative queries allow for more accurate learning in our setup but
become harder to elicit from humans.

We would like to highlight that increasing the order k of the comparisons could lead to
potentially biased and noisy responses from the human expert. As a consequence, there might
be an additional trade-off involving the quality of the information obtained by increasing the
order. While we do not focus on this aspect of elicitation, it is an interesting direction for
future work.
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Paper Organization

The remainder of the paper is organized as follows: Section 2 introduces our agnostic learning
with unknown utilities problem setup and the k-comparison elicitation mechanism, and
Section 3 gives an overview of our main results and algorithmic contributions. In Section 4,
we study excess risk bounds for the binary decision problem in our framework and propose
our algorithm, Comptron, to learn from higher-order comparisons and in Section 5, we study
adaptive estimators which are optimal for each instance of our problem. While these sections
contain a formal statement of all our main results, due to space limitations, we defer some of
the proofs to full version of the paper.

2 Problem formulation

In this section, we formally state our learning with unknown utilities problem and introduce
the k-comparison oracle. Let X ⊆ Rd represent the space of feature vectors, Y denote the
corresponding decision space and F denote a class of decision making functions, given as
F = {f | f : X 7→ Y}. Our framework considers an underlying utility function u∗ : X ×Y 7→
[0, 1] which assigns a non-negative real value for making a decision y ∈ Y given a situation
x ∈ X . Further, let us denote the set

U = {u | u : X × Y 7→ [0, 1]} (3)

of all possible such utility functions. For any distribution Dx over the feature space X , we
define the expected utility of a decision function f ∈ F as U(f ;u∗) : = Ex∼Dx [u∗(x, f(x))].
Observe that such an expected utility model assumes that the utilities are additive across
the different instances x and is a commonly studied model both in the machine learning,
statistics and economics literature. We denote the excess risk of a function f with respect to
the function class F by

err(f,F ;u∗) : = max
f ′∈F

U(f ′;u∗)− U(f ;u∗). (4)

Further, we denote the optimal decision for any instance x with respect to the underlying
utility u∗ by yx : = argmaxy∈Y u∗(x, y).

Similar to the classical agnostic learning setup [15], we assume that the learner does not
know the underlying distribution Dx of the instances. However, our setup differs from it
in that we do not assume that the underlying utility function u∗ is known to the learner.
Instead, we provide the learner access to an oracle which allows the learner to elicit responses
to higher-order preferences queries.

Comparison Oracle

Since the utility function u∗ is unknown to the learner, our framework allows the learner
access to an oracle which provides comparative feedback based on the utilities u∗. We
consider a family of such oracles Ok, each indexed by its order k which determines the
number of different instances the learner is allowed to specify in the comparison query. For
an oracle Ok, a learner is allowed to select a set of k situations x ∈ X k and two pairs of
corresponding decisions y1,y2 ∈ Yk. The oracle then compares, in a possibly noisy manner,
the cumulative utilities of the pair (x,y1) and (x,y2) and responds with the feedback on
which one is larger. As the order k of the oracle increases, the queries become more complex
– an expert is required to evaluate a larger number of instances at once. This family of
comparison oracles captures a natural hierarchy of elicitation mechanisms where with each
increasing value of k, a learner has access to more information about the utility function u∗.
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Formally, we represent a k-query by a tuple (x,y1,y2) where the input x = (x1, . . . , xk)
comprises k feature vectors and the corresponding decision vectors y1 = (y1, . . . , yk) and
y2 = (y′1, . . . , y′k).3 Given such a query q, the oracle Ok provides the learner a binary response

Ok(q = (x,y1,y2)) =
{
I [u∗(x,y1) ≥ u∗(x,y2)] with prob. 1− ηq
1− I [u∗(x,y1) ≥ u∗(x,y2)] otherwise

, (5)

where the parameter 0 ≤ ηq < 1
2 represents the noise level corresponding to query q. Thus,

the oracle4 Ok provides noisy comparisons of the cumulative utilities u∗(x,y1) and u∗(x,y2)
with varying noise level ηq. Observe that we allow the noise levels ηq to be different for each
query q.

Problem Statement

We are interested in the agnostic learning with unknown utilities problem where a learner
is provided n samples S = {x1, . . . , xn} with each xi ∼ Dx and access to the k-comparison
oracle described above, and is required to output a decision function f̂ ∈ F such that error
err(f̂ ,F) is small. The caveat is to do so with a minimum number of calls, which we term
the query complexity nq of learning, to the comparison oracle Ok. Quantitatively, we would
like to characterize the excess risk from equation (4) in terms of the number of sampled
instances n, the order k of the comparison oracle and properties of the decision function
class F , and the associated oracle query complexity nq to obtain this bound.

Obtaining such bounds on the excess risk err(f,F ;u∗) in terms of the order k allow us to
quantify the trade-offs in learning better decision functions at the expense of requiring more
complex information from the human expert. Going forward, we focus on the binary decision
making problem where the label space Y = {0, 1} for clarity of exposition. Whenever our
results can be extended to arbitrary decision sets, we provide a small remark about this
extension.

3 Main results

With the formal problem setup in place, we discuss our main results for learning in this
framework of unknown utilities. At a high level, our objective is to understand how the
excess risk err(f,F ;u∗) defined in equation (4) behaves as a function of the oracle order k –
specifically, at what rates does learning in our proposed framework get easier as we allow
learner to elicit more complex information from the oracle?

For our main results, on the upper bound side, we design estimators for learning from
the k-comparison oracle, and on the lower bound side, we study information-theoretic limits
of learning with such higher-order comparisons. While we state our results for the binary
decision problem where the label space Y = {0, 1} for clarity, most of our results can be
generalized to arbitrary outcome space Y.

3 We overload our notation and represent the cumulative utilities of the k inputs (x, y) by
u∗(x, y) =

∑
i
u∗(xi, yi).

4 Note that while the oracle depends on the underlying utility function u∗, our notation suppresses this
dependence for clarity. We use the notation Ok(q; u∗) whenever we want to make this dependence
explicit.
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3.1 Excess risk with k-comparison oracle (Section 4)
We study a class of plug-in estimators which are based on the following two-step procedure:
i. Obtain estimate û of the true utility u∗ on the sampled datapoints.
ii. Output utility maximizing function f̂k,n with respect to the estimated utility û.

For learning the parameters û, we introduce the Comptron (Algorithm 1) and Rob-
Comptron (Algorithm 2) algorithms for the noiseless and noisy comparison oracles respectively.
We show that when these estimates û are combined with the two-step plug-in estimator, the
excess risk of the function f̂k,n scales as O( 1

k ) and an additive complexity term capturing
uniform convergence of the decision class F with respect to the true utility u∗.

I Theorem 1 (Informal, noiseless comparisons). Given n samples, the excess risk for the
function f̂k,n ∈ F output by the plug-in estimator using estimates û from Comptron satisfies

err(f̂k,n,F ;u∗) ≤ Complexityn(F ;u∗) +O

(
1
k

)
·

(
1
n

n∑
i=1

I[fERM(xi) 6= yi]
)
,

where the ERM function fERM ∈ argmaxf∈F
∑n
i=1 u

∗(xi, f(xi)). Furthermore, Comptron
makes only O(n log k) queries to the oracle Ok.

We make a few remarks on this result. First, observe that the complexity term depends on
the true utility function u∗ and not on the estimates û. This ensures that the complexity term
does not depend on the utility class U but rather only on the specific utility u∗ – indeed, the
class U consists of all bounded function and uniform convergence might not even be possible
with finite sample for a large class of distributions Dx. Second, the additional error of O( 1

k )
accounts for the fact that the utilities u∗ are unknown. One can learn better decision functions
by increasing the order k of the comparison oracle but this comes at the cost of the human
expert answering a more complex set of queries. Furthermore, this error is multiplied by the
0− 1 prediction error of the optimal on-sample classifier fERM = argmaxf∈F

∑
i u
∗(xi, f(xi)).

This implies that in the well-specified setup, where there exists an f ∈ F such that f(xi) = yi
on the sampled datapoints, the second term becomes 0 and the learner pays no additional
error for not knowing the utilities u∗. Third, observe that our proposed algorithms, Comptron
and Rob-Comptron, are query efficient; both require only O(n log k) calls to the k-comparison
oracle to produce “good” estimates û.

The proof of the above theorem proceeds in two steps. First, we adapt the classical proof
for upper bounding the risk of ERM procedures to show that the gap err(f̂k,n,F) decomposes
into the complexity term and estimation error ‖û−u∗‖S,∞, evaluated on the dataset S. Next,
we show that this estimation error scales as O

( 1
k

)
for the Comptron and Rob-Comptron

procedures.
Next, we address the optimality of the above plug-in procedure by studying the

information-theoretic limits of learning with a k-comparison oracle. Specifically, in Theo-
rem 9 we establish that the rate of 1

k is indeed minimax optimal – for any k > 1 and any
predictor f̂ in some class F , we can construct utility functions u∗ such that excess risk
err(f̂ ,F ;u∗) = Ω

( 1
k

)
. These lower bounds imply that traditional comparison based learning,

corresponding to k = 1, is insufficient for learning good decision rules in our framework.

3.2 Instance-optimal learning (Section 5)
While the previous results show that the error rate of O( 1

k ) is optimal on worst-case instances,
some instances of our learning with unknown utilities problem might be easier than these
worst-case ones and one would expect the excess risk to be smaller for them. In this section,
we study estimators whose error adapts to hardness of the specific problem instance.
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To begin with, in Proposition 11 we establish that the plug-in estimator with Comptron
estimates û is not optimal for all instances – it does not adapt to these easier instances.
Inspired from the robust optimization literature, we introduce a randomized estimator prob
and show that it is instance-optimal. Informally, we establish in Theorem 13 that for any
instance (Dx, u∗,F) of the problem, the excess risk for prob is characterized by a local modulus
of continuity; this modulus captures how quickly the optimal decision function in class F
can change in a small neighborhood around u∗ for the distribution Dx. In Theorem 12, we
derive a lower bound on the local minimax excess risk and show that the local modulus is
indeed the correct instance-dependent complexity measure for this problem.

However, note that such adaptivity to the hardness of the instance comes at the cost
of query efficiency. Our estimator prob makes an exponential number O(nk) of calls to the
oracle Ok.

4 Binary decision-making with k-comparisons

In this section, we obtain upper and lower bounds on the excess risk for the binary prediction
problem with unknown utilities where the learner can elicit utility information using a
k-comparison oracle. In Section 4.1, we introduce algorithms which learn decision-making
rules from higher-order preference queries and obtain upper bounds on the excess risk for
such estimators. Then, in Section 4.2, we turn to the information-theoretic limits of learning
from k-queries and obtain lower bounds on the minimax risk of any estimator.

Recall from Section 2, our setup gives the learner access to a dataset S = {x1, . . . , xn}
comprising n points, each sampled i.i.d. from an underlying distribution Dx and to a
comparison oracle Ok. Before proceeding to define the estimator, we introduce some notation.
For any function f ∈ F , let us denote the empirical cumulative utility with respect to utility
function u∗ and the corresponding empirical utility maximizer as

Ûn(f ;u∗) = 1
n

∑
i

u∗(xi, f(xi)) and fERM ∈ argmax
f∈F

Ûn(f ;u∗) , (6)

where the subscript n encodes the dependence on the number of samples. If the underlying
utility u∗ were in fact known to the learner, it would have output the classifier fERM, which,
from the classical learning theory literature, is known to have favorable generalization
properties [22]. For the case of unknown utilities, we extend this ERM procedure to a natural
two-stage plug-in estimator which outputs the minimizer with respect to an estimate ûk of
these utilities.

4.1 Excess-risk upper bounds for plug-in estimator
Building on the ERM estimator fERM described in equation (6), we design a two stage plug-in
estimator f̂k,n, where the subscript k represents the order of the comparison oracle used to
obtain the estimate.

In the first stage, we form estimates ûk of the true utility function u∗ on the sampled
datapoints S using the k-comparison oracle. The predictor f̂k,n ∈ F is then given by the
empirical utility maximizer with respect to ûk, that is,

f̂k,n ∈ argmax
f∈F

1
n

n∑
i=1

ûk(xi, f(xi)). (7)

Before detailing out the procedures for producing utility estimates ûk, we present our first
main result which shows that the excess risk err(f̂k,n,F ;u∗) can be upper bounded as a sum
of two terms: (i) a complexity term corresponding to the rate of uniform convergence of the
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cumulative utility U(f ;u∗) over the decision class F and (ii) an estimation error term which
denotes how well the estimates ûk approximate u∗ on the sampled datapoints. Our result
measures this estimation error in terms of a data-dependent norm

‖u‖S,∞ : = sup
i∈[n]

sup
y∈Y
|u(xi, y)|. (8)

Recall from equation (6) that the function fERM is the minimizer of the empirical utility
Ûn(f ;u∗). While the following results hold for general decision spaces Y, we later specialize
this in Proposition 3 for the binary prediction setup.

I Theorem 2 (Excess-risk upper bound). Given datapoints S = {x1, . . . , xn} such that each
xi ∼ Dx, and an estimate ûk of the true utility function u∗, the plug-in estimate f̂k,n from
equation (7) satisfies

err(f̂k,n,F ; u∗) ≤

2 · sup
f∈F

(
|U(f ; u∗)− Ûn(f ; u∗)|

)
+ 2‖u∗ − ûk‖S,∞ ·

(
1
n

n∑
i=1

I[fERM(xi) 6= f̂k,n(xi)]

)
. (9)

A few comments on Theorem 2 are in order. First, notice that the upper bound on the
risk err(f̂k,n,F ;u∗) is a deterministic bound comprising two terms. The uniform convergence
term captures how fast the empirical utility Ûn(f ;u∗) converge to the population utility
U(f ;u∗) uniformly over the decision class F . Using standard bounds [8], one can show that
this term is upper bounded by the empirical Rademacher complexity of the class F on the
datapoints S, that is,

sup
f∈F

(
|U(f ;u∗)− Ûn(f ;u∗)|

)
≤ Eε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εiu
∗(xi, f(xi))

∣∣∣∣∣
]

: = R̂n(F ◦ u∗) (10)

where each εi is an i.i.d. Rademacher random variable taking values {−1,+1} equiprobably.
Such complexity measures are commonly studied in the learning theory literature and one
can obtain sample complexity rates for a wide range of decision classes including parametric
decision classes and non-parametric kernel classes amongst others.

The second term in equation (9) is given by a product of two terms. The first part
‖u∗− ûk‖S,∞ captures the on-sample approximation error of the estimates ûk. Notice that, in
general, the problem of estimating u∗ uniformly over the space X is infeasible since the class
U contains the set of all bounded functions on X ×Y . However, the fact that we are required
to estimate the utilities u∗ only on the sampled datapoints S makes learning feasible in our
framework. The second part, 1

n

∑n
i=1 I[fERM(xi) 6= f̂k,n(xi)] ≤ 1 the mismatch between the

predictions of fERM, obtained with complete knowledge of u∗, and of f̂k,n, obtained from
estimates ûk. Notice that whenever the function class F is correctly specified on S, that is,
there exists a function f ∈ F such that f(xi) = yi), then the predictions of f̂k,n and fERM
will coincide. This follows since the labels yi can be inferred using a 1-comparison. In such a
well-specified setup, this second term vanishes and we recover the upper bound in terms of
the uniform convergence term. Surprisingly, this exhibits that not knowing the utility u∗
affects learnability only when the function class F is misspecified.

Proof. We begin by decomposing the excess error err(f̂k,n,F ;u∗) and then handle each term
in the decomposition separately. Recall that the function fERM is the maximizer of the
empirical utility Ûn(f ;u∗). Then, for any decision function f ∈ F , consider the error
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err(f̂k,n, f ; u∗) = U(f ; u∗)− Ûn(f ; u∗) + Ûn(f ; u∗)− Ûn(fERM; u∗) + Ûn(fERM; u∗)− Ûn(f̂k,n; u∗)

+ Ûn(f̂k,n; u∗)− U(f̂k,n; u∗)
(i)
≤ 2 sup

f∈F

(
|U(f ; u∗)− Ûn(f ; u∗)|

)
+ Ûn(fERM; u∗)− Ûn(f̂k,n; u∗)︸ ︷︷ ︸

Term (I)

, (11)

where the inequality (i) follows by noting that fERM is the maximizer of Ûn(f ;u∗). We now
focus our attention on Term (I) in the above expression.

Ûn(fERM;u∗)− Ûn(f̂k,n;u∗) = Ûn(fERM;u∗)− Ûn(fERM; û) + Ûn(fERM; û)− Ûn(f̂k,n; û)

+ Ûn(f̂k,n; û)− Ûn(f̂k,n;u∗)
(i)
≤ 2
n

n∑
i=1

I[fERM(xi) 6= f̂k,n(xi)] · sup
y∈Y
|u∗(xi, y)− û(xi, y)|

≤ 2‖u∗ − û‖S,∞ ·
(

1
n

n∑
i=1

I[fERM(xi) 6= f̂k,n(xi)]
)
,

where (i) follows by noting that f̂k,n maximizes the utility Ûn(f ; û). Plugging the bound
above in equation (11) completes the proof. J

We now specialize the result of Theorem 2 to the binary prediction setup where the
label space Y = {0, 1}. Recall that for each datapoint xi, we denote the true label by
yi = argmaxy u∗(xi, y). We now introduce the notion of utility gaps ugap(xi) which measures
the excess utility a learner gains by predicting a datapoint xi correctly relative to an incorrect
prediction. Formally, the gap ugap(xi) for datapoint xi with respect to some utility function
u ∈ U is given as

ugap(xi) : = u(xi, yi)− u(xi, ȳi) , (12)

where we denote the incorrect label by ȳ = 1−y. With this notation, the following proposition
obtains an upper bound on the excess error of plug-in estimator f̂k,n for the binary prediction
problem in terms of the estimation error in these gaps ugap(xi).

I Proposition 3 (Upper bounds for binary prediction). Consider the binary decision making
problem with label space Y = {0, 1}. Given n datapoints {x1, . . . , xn} such that each datapoint
xi ∼ Dx, and an estimate ûk of the utility function u∗, the plug-in estimator f̂k,n from
equation (7) satisfies

err(f̂k,n,F ; u∗) ≤ 2 · sup
f∈F

(
|U(f ; u∗)− Û(f ; u∗)|

)
+ 2 max

i
[u∗gap(xi)− ûgap(xi)] ·

(
1
n

n∑
i=1

I[fERM(xi) 6= yi]

)
. (13)

The proof of the above proposition follows similar to Theorem 2 and is deferred to the full
version. This specializes the result of Theorem 2 and shows that for the binary prediction
problem, estimating the utility gaps ugap well for each datapoint suffices

The upper bound on excess risk given by Proposition 3 shows that the function f̂k,n
derived from estimates ûk will have small error as long as the estimates ûgap(xi) approximate
the true utility gaps u∗gap(xi) for each datapoint xi. Therefore, in the following sections, we
focus on procedures for obtaining the utility estimates ûgap using the k-comparison oracle.
we separate the presentation based on whether the oracle Ok provides noiseless comparisons
(ηq = 0 for all q) or whether the oracle evaluations are noisy.
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Algorithm 1 Comptron: Comparison based Coordinate-Perceptron for estimating u∗gap.

Input: Datapoints S = {x1, . . . , xn}, k-comparison oracle Ok
Initialize: Set T = log2 k − 1
Obtain yi = argmaxy u∗(xi, y) for each i using 1-comparison.
Obtain index imax using 2-comparisons such that imax = argmaxi u∗gap(xi).
Set initial estimates û0

gap = [û0
gap(x1), . . . , û0

gap(xn)] = u∗max : = u∗gap(ximax ).
(Note that exact value of u∗max is not required since comparison queries are relative)
for t = 1, . . . , T do

for i = 1, . . . , n do
Denote by λ = k

2u∗max

(
ût−1

gap (xi)− u∗max
2t

)
and query qi,t = (x,y1,y2) where

x=(xi, . . . , xi︸ ︷︷ ︸
k
2 times

, ximax , . . . , ximax︸ ︷︷ ︸
λ times

), y1 =(yi, . . . , yi︸ ︷︷ ︸
k
2 times

, 1− yimax , . . . , 1− yimax︸ ︷︷ ︸
λ times

), y2 =1−y1.

Query oracle Ok with qi,t and receive response ri,t.

Update ûtgap(xi) = ût−1
gap (xi)− I[ri,t = 0] · u

∗
max
2t .

Output: Gap estimates ûTgap

4.1.1 Estimating u∗gap with noiseless oracle
In this section, we propose our algorithm for estimating the gaps u∗gap when the k-comparison
oracle is noiseless. Recall from equation (5), for a query q = (x,y1,y2) comprising k feature
vectors x = (x1, . . . , xk), and two decision vectors y1 = (y1, . . . , yk) and y2 = (y′1, . . . , y′k),
such a noiseless oracle deterministically outputs

Ok(q = (x,y1,y2)) = I [u∗(x,y1) ≥ u∗(x,y2)] ,

where recall that u∗(x,y) =
∑
i∈[k] u

∗(xi, yi) is the sum of the utilities under u∗ for the
tuple (x,y). In the binary prediction setup, such queries allow a learner to specify a set of k
instances x and a subset Sq ⊂ x and ask the oracle “whether correctly predicting instances
in Sq has higher utility or the instances in the complement x \ Sq?”.

Recall that Proposition 3 shows that excess risk for the plug-in estimator can be bounded
by the worst-error |u∗gap(xi)− ûgap(xi)| over the set of sampled datapoints S. To obtain such
estimates, we introduce Comptron in Algorithm 1 which is a coordinate-wise variant of the
classical perceptron algorithm [20]. At a high level, Comptron is an iterative procedure which
estimates the utility gaps u∗gap(xi) for each xi relative to the largest gap

u∗max : = max
i∈[n]

u∗gap(xi) ≤ 1. (14)

At each iteration t, the queries qi,t are selcted such that ût−1
gap (x,y1) > ût−1

gap (x,y2) under the
current estimates ût−1

gap . If the oracle’s response is ri,t = 1, the estimates are consistent with
the response and it keeps the current estimate. On the other hand, if the response ri,t = 0,
the algorithm decreases its current estimate of the ith datapoint in order to be consistent
with this query. Comptron repeats the above procedure for T = log2 k − 1 timesteps and
finally outputs the estimates ûTgap.

It is worth highlighting here that Comptron initializes all the estimates as the largest gap,
that is, û0

gap(xi) = u∗max. Such an initialization is purely symbolic in nature and the algorithm
does not require knowledge of this value. This is because the comparison queries qi,t allows
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the algorithm to compare the estimates ûgap with u∗max and the algorithm maintains its
estimates ûtgap as a multiplicative factor of u∗max for iterations t. Further, we can use symbolic
estimates to output the plug-in estimator since it is invariant to scaling the utility gaps by a
positive constant,

argmax
f∈F

n∑
i=1

û(xi, f(xi)) ≡ argmax
f∈F

n∑
i=1

ûgap(xi) · I[f(xi) = yi]

≡ argmax
f∈F

n∑
i=1

ûgap(xi)
u∗max

· I[f(xi) = yi] .

The following lemma provides an upper bound on the estimation error of Comptron
and shows that the output estimates ûgap(xi) are within a factor O(u

∗
max
k ) of the true gaps

u∗gap(xi).

I Lemma 4 (Estimation error of Algorithm 1). Given access to datapoints S = {x1, . . . , xn}
and k-comparison oracle Ok, Comptron (Algorithm 1) uses O(n log k) queries to the oracle
and produces estimates ûgap such that

max
i∈[n]

∣∣ûgap(xi)− u∗gap(xi)
∣∣ ≤ 2u∗max

k
. (15)

We defer the proof of the lemma to the full version. The proof proceed via an inductive
argument where we show that the confidence interval around u∗gap(xi) shrinks by a factor of
1
2 in each iteration for every datapoint xi. Given the above estimation error guarantee for
Comptron, the following corollary combines these with the excess risk bounds of Proposition 3
to obtain an upper bound on the excess risk of f̂k,n.

I Corollary 5. Consider the binary decision making problem with label space Y = {0, 1}.
Given n datapoints {x1, . . . , xn} such that each xi ∼ Dx, the plug-in estimate f̂k,n from
equation (7), when instantiated with the output of Comptron (Algorithm 1), satisfies

err(f̂k,n,F ;u∗) ≤ 2 · sup
f∈F

(
|U(f ;u∗)− Û(f ;u∗)|

)
+ 2u∗max

k
·

(
1
n

n∑
i=1

I[fERM(xi) 6= yi]
)
.

Corollary 5 exhibits the advantage of using higher-order comparisons for the learning with
unknown utilities problem – as the order k increases, the error of the plug-in estimate decreases
additively as O

( 1
k

)
. It is worth noting here that while the higher-order comparisons allow

the learner to better estimate the underlying utilities, the problem gets harder from the side
of the human expert. Indeed, with higher values of k, the expert is required to compare
utilities across k different possible situations which can make the elicitation a harder task.

While the results in this section exhibit how the excess risk err(f̂k,n;F) varies as a function
of k, they rely on the oracle responses being noiseless. In the next section, we consider the
setup where the oracle responses can be noisy and propose a robust version of the Comptron
algorithm for learning in this scenario.

4.1.2 Estimating u∗gap with noisy oracle
In contrast to the deterministic noiseless oracle of the previous section, here, we consider
learning with unkown utilities when the oracle Ok can output noisy responses to each query.
Recall from equation (5), for any query q, the noisy k-comparison oracle the correct response
with probability 1− ηq and flips the response with probability ηq for some value of ηq < 1

2 .
While we allow this error probability to vary across different queries, we assume that this
error is bounded uniformly across all queries by some constant η < 1

2 .
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Algorithm 2 Rob-Comptron: Robust Comptron for estimating u∗gap with noisy oracle.

Input: Datapoints S = {x1, . . . , xn}, k-comparison oracle Ok, noise level η,
confidence δ

Initialize: T = log2 k − 1, J = 8
(1−2η)2 log

(
nT
δ

)
Obtain yi = argmaxy u∗(xi, y) for each i using 1-comparison.
Obtain index imax using 2-comparisons such that imax = argmaxi u∗gap(xi).
Set initial estimates û0

gap = [û0
gap(x1), . . . , û0

gap(xn)] = u∗max symbolically
for t = 1, . . . , T do

for i = 1, . . . , n do
Denote by λ = k

2u∗max

(
ût−1

gap (xi)− u∗max
2t

)
Set query qi,t = (x,y1,y2) where

x=(xi, . . . , xi︸ ︷︷ ︸
k
2 times

, ximax , . . . , ximax︸ ︷︷ ︸
λ times

), y1 =(yi, . . . , yi︸ ︷︷ ︸
k
2 times

, 1− yimax , . . . , 1− yimax︸ ︷︷ ︸
λ times

), y2 =1−y1.

for j = 1, . . . , J do
Query oracle Ok with qi,t and receive response ri,j,t.

Update ûtgap(xi) = ût−1
gap (xi)− I[ 1

J

∑
j ri,j,t <

1
2 ] · u

∗
max
2t .

Output: Gap estimates ûTgap

I Assumption 6. For the noisy k-comparison oracle described in equation (5), we have that
ηq ≤ η < 1

2 for all queries q.

From an algorithmic perspective, it is well known that the perceptron algorithm itself is not
noise-stable and can oscillate if there are datapoints x which have noisy labels. In order to
overcome this limitation, several noise-robust perceptron variants have been proposed in the
literature; see [16] for an extensive review.

We build on this line of work and present Rob-Comptron (Algorithm 2), a noise-robust
variant of the deterministic Comptron algorithm. The main difference is the presence of an
additional inner-loop with index j which repeatedly queries qi,t for J = Õ

(
1

(1−2η)2

)
times.

In each iteration, the update is again a coordinate-wise perceptron update which matches
the prediction of the current estimate with the average of the oracle responses. Such an
averaging has been previously used in the context of learning halfspaces from noisy data
both in a passive [11] and active [25] framework.

The following lemma provides an upper bound on the estimation error of the gap estimates
produced by Rob-Comptron.

I Lemma 7 (Estimation error of Algorithm 2). Given access to datapoints S = {x1, . . . , xn}
and noisy k-comparison oracle Ok satisfying Assumption 6 with parameter η, Rob-Comptron
(Algorithm 2) uses O

(
n

(1−2η)2 · log k · log n log k
δ

)
queries and produces estimates ûgap such

that

max
i∈[n]

∣∣ûgap(xi)− u∗gap(xi)
∣∣ ≤ 2u∗max

k
, (16)

with probability at least 1− δ.
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In comparison to Comptron which requires O(n log k) queries to the comparison oracle, the
robust variant Rob-Comptron requires a fraction 1

(1−2η)2 more queries to achieve a similar
estimation error. Such an increase in query complexity is typical of learning with such noisy
oracles in the binary classification setup [5, 7, 12, 25].

Similar to Corollary 5 in the previous section, we can combine the above high-probability
bound on the estimation error to obtain a bound on the excess risk which scales as 1

k with
the order k of the comparison oracle.

I Corollary 8. Consider the binary decision making problem with label space Y = {0, 1}.
Given n datapoints {x1, . . . , xn} such that each xi ∼ Dx, the plug-in estimate f̂k,n from
equation (7), when instantiated with the output of Comptron (Algorithm 1), satisfies

err(f̂k,n,F ;u∗) ≤ 2 · sup
f∈F

(
|U(f ;u∗)− Û(f ;u∗)|

)
+ 2u∗max

k
·

(
1
n

n∑
i=1

I[fERM(xi) 6= yi]
)
.

with probability at least 1− δ.

We omit the proof of this corollary since it essentially follows the same steps as that for
Corollary 5. This corollary establishes that by increasing the query complexity by a factor
of O (1/(1−2η)2), one can recover the same additive 1

k excess risk bound of the deterministic
setup. Combined, Corollaries 5 and 8 establish the trade-offs in the reduction of the excess
risk while eliciting more complex information about the underlying utility u∗ through the
k-comparison oracle.

4.2 Information-theoretic lower bounds
In the previous section, we studied the learning with unknown utility problem from an
algorithmic perspective and showed that the plug-in estimator with Comptron estimates û
achieve an excess risk bound which scales as O( 1

k ) with the order k of the comparison. In
this section, we ask whether such a scaling of the error term is optimal and study this lower
bound question from an information-theoretic perspective.

Recall from Theorem 2 that the excess risk decomposes into two terms: (i) a uniform
convergence term for the decision class F with respect to utility function u∗ and (ii) an
estimation error term corresponding to how well ûk approximates u∗ on the sampled data-
points. When the underlying utility function u∗ is known, classical results from the learning
theory literature the uniform convergence complexity term is in general unavoidable [21].
With this, we take the infinite-data limit, where the learner is assumed to have access to the
distribution Dx, and study whether the excess error of O( 1

k ) is necessary.
Our notion of minimax risk is based on the subset of utility functions which cannot be

distinguished by any learner with access to a k-comparison oracle. Formally, given any oracle
Ok(· ;u∗), where we have made the dependence on the utility u∗ explicit, we denote by
Uk,u∗ the subset of utility functions in the class U which are consistent with the responses
of Ok(· ;u∗). With this, we define the information-theoretic minimax risk Mk(F ,Dx) with
respect to the function class F and distribution Dx as

Mk(F ,Dx) : = sup
Ok(· ;u∗)

inf
p∈∆F

sup
u∈Uk,u∗

Ef∼p [err(f,F ;u)] , (17)

where the infimum is taken over all procedures which take as input the distribution Dx
over the instances and access to a k-comparison oracle, and output a possibly randomized
estimate p ∈ ∆F . The above notion of minimax risk can be viewed as a three-stage game
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between the learner and the environment. The sequence of supremum and infimum depicts
the order in which information is revealed in this game. The environment first selects a
k-query oracle O(· ;u∗) with underlying utility u∗. The learner is then provided access to
the underlying distribution Dx, function class F and the oracle O(· ;u∗) based on which it
outputs a possibly randomized decision function given by p ∈ ∆F . The environment is then
allowed to select the worst-case utility u such that it is consistent with the k-oracle O(· ;u∗)
and the learner is evaluated in expectation over this chosen utility. We call this the minimax
risk of learning with respect to class F and distribution Dx.

Our next main result shows that there exist instances of the binary prediction problem
(F ,Dx) such that the minimax risk Mk(F ,Dx) is lower bounded by 1

k for any k ≥ 2 up
to some universal constants. Observe that this matches the corresponding upper bounds
obtained in Corollaries 5 and 8 exhibiting that the proposed plug-in estimator in equation (7)
with Comptron (Rob-Comptron for noisy oracle) utilities is indeed minimax optimal for the
binary prediction setup.

I Theorem 9. There exists a universal constant c > 0 such that for any k ≥ 2, there exist a
binary prediction problem instance (F ,Dx) such that

Mk(F ,Dx) ≥ c

k
.

A few comments on Theorem 9 are in order. First, the above result shows a family of lower
bounds for our learning with unknown utilities framework – one for each value of the order
k. Specifically, it shows that for every k ≥ 2, there exists a worst-case instance such that any
algorithm will incur an error of Ω( 1

k ). Compare this with the upper bounds on excess risk
from the previous section. In the limit of infinite data, Corollaries 5 and 8 exhibit that the
excess risk err(f̂k,n,F ;u∗) = O( 1

k ) for the plug-in estimator f̂k,n. This establishes that the
plug-in estimator with Comptron and Rob-Comptron utility estimates is indeed minimax
optimal.

Proof. In order to establish a lower bound on the minimax risk Mk, we will construct two
utility functions u1, u2 ∈ U such that the k-comparison oracle has identical responses for
both these utility functions. For the purpose of our construction, we will consider noiseless
oracle; the problem only becomes harder for the learner if the oracle responses are noisy.
Given these two utility functions, we next show that their maximizers f1 and f2 are different
for some function class F . We then combine these two insights to obtain the final minimax
bound.

For our lower bound construction, we will focus on a setup where the features are one
dimensional with X = R and the linear decision function class

Flin = {fa | fa(x) = sign(ax), a ∈ [−1, 1]} .

Recall that for any point x, we represent by ugap(x) = u(x, yx) − u(x, ȳx) the utility gain
corresponding to the function u. Before constructing the explicit example, we present a
technical lemma which highlights a limitation of a k-comparison oracle – it establishes that a
k-oracle will not be able to distinguish utility functions for which the utility gaps are in the
range (1− 1

k , 1).

I Lemma 10. Consider any utility functions u1, u2 ∈ U . Let datapoints x have utility gain
uigap(x) for i = {1, 2}. For any two points x1, x2 such that

u1
gap(x1) = u2

gap(x1) = ugap(x1) and
(

1− 1
k

)
· ugap(x1) ≤ uigap(x2) ≤ ugap(x1) ,

the oracle responses for any query q = (x,y1,y2) comprising points x1 and x2 are identical
for u∗ = u1 or u∗ = u2.
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We defer the proof of the above lemma to the full version. Taking this as given, we proceed
with our lower bound construction.

Utility functions u1 and u2. Our construction considers two datapoints x+ = +1 and
x− = −1 and two utility functions u and ũ satisfying

u1(x+, 1) > u1(x+, 0) and u1(x−, 1) > u1(x−, 0) ,
u2(x+, 1) > u2(x+, 0) and u2(x−, 1) > u2(x−, 0).

Observe that under these utilities, any function fa ∈ Flin can make a correct decision for
either point x+ or point x− but not for both simultaneously. Given these datapoints, the
two utility functions are given by

u1(x+, 1) = 1, u1(x−, 1) = 1− γ1 where γ1 = 1
2(3k + 1)

u2(x+, 1) = 1, u2(x−, 1) = 1− γ2 where γ2 = 2
(3k + 1) ,

and ui(x, 0) = 0 for both i = {1, 2}. Observe that both γ1, γ2 have been set to satisfy the
conditions of Lemma 10, that is,(

1− 1
k

)
· ugap(x+) ≤ uigap(x−) ≤ ugap(x+) for i = {1, 2}.

Distribution Dx. For any k > 2, consider the distribution Dx over the points {x+, x−} such
that

Pr(x = x+) = 3k
6k + 1 and Pr(x = x−) = 3k + 1

6k + 1 .

By Lemma 10, we have that using the k-comparison oracle, no learner can distinguish between
the utility functions u1 and u2 on the distribution Dx. Further, recall that any classifier
fa ∈ Flin can either predict x+ or x− correctly. We now obtain a bound on the excess risk
err(fa,F ;u) for both these cases separately.

Case 1: fa(x+) = 1. In this case, the utility gap is maximized by setting the utility u = u1
in the minimax risk. The corresponding excess risk is given by

err(fa,F ;u1) = (3k + 1)(1− γ1)
6k + 1 − 3k

6k + 1 = 1
2(6k + 1) . (18)

Case 2: fa(x−) = 1. In this case, the utility gap is maximized by setting the utility u = u2
and the excess risk is given by

err(fa,F ;u2) = 3k
6k + 1 −

(3k + 1)(1− γ2)
6k + 1 = 1

(6k + 1) . (19)

Noting that any predictor f̂ will output a function corresponding to one of the two cases
above and combining equations (18) and (19) establishes the desired claim. J

While the information theoretic results of this section showed that the plug-in estimator
is minimax optimal, the next section focuses on whether this estimator is able to adapt to
easier problem instances – specifically, whether our estimation procedures Comptron and
Rob-Comptron are optimal for every problem instance? We answer this in the negative and
introduce a new estimator which is instance optimal. However, such an adaptivity to easier
instances comes at the cost of an exponential query complexity.



K. Bhatia, P. L. Bartlett, A.D. Dragan, and J. Steinhardt 55:17

5 Instance-optimal guarantees for binary prediction

In the previous section, we proposed query-efficient algorithms, Comptron and Rob-Comptron,
for learning a function f̂k,n with small excess risk using only Õ(n log k) queries to the k-
comparison oracle. Further, the upper bounds in Corollaries 5 and 8 along with the lower
bound of Theorem 9 establish that our proposed algorithms are indeed minimax optimal
over the class of utility functions U . Given this, it is natural to ask whether our proposed
algorithms are instance wise-optimal, that is, do they achieve the best possible excess-risk
bounds for all u∗ ∈ U?

To simplify our presentation, we study this question at the population level,5 where we
assume that the learner has access to the underlying distribution Dx. This allows us to
focus on the excess risk as a function of the order k of the comparison oracle and ignore the
uniform convergence term. We also restrict our attention to the deterministic noiseless oracle
since one can reduce the noisy oracle to the noiseless oracle by using the averaging technique
presented in Section 4.1.

The following proposition shows that the plug-in estimator with Comptron utilities are
not instance-optimal, that is, it does not adapt to the hardness of the learning with unknown
utilities problem instance. Specifically, it constructs a problem instance (F ,Dx) with a
noiseless oracle and shows that the estimate6 f̂k from equation (7) with Comptron utility
estimates has an excess risk of 1

k while there exists an estimator, which uses all k-queries
and is able to achieve zero excess risk.

Recall that for any utility u∗ ∈ U , we denote by Uk,u∗ the subset of utility functions in
the class U which are indistinguishable from u∗ under the k-comparison oracle O(· ;u∗).

I Proposition 11 (Plug-in with Comptron estimates is not instance-optimal). For every k > 2,
there exists an binary prediction instance (F ,Dx) along with an oracle Ok such that
a) The error of the plug-in estimate f̂k from equation (7) with estimated utilities ûk from

Comptron (Algorithm 1) is non-zero, that is,

err(f̂k,F ;u∗) = 1
k
.

b) There exists an optimal predictor f̃ with zero excess-risk, that is,

sup
u∈Uk,u∗

err(f̃ ,F ;u) = 0.

We make a few remarks about the proposition. While the first part of the proposition
shows that the excess risk err(f̂k,F ;u∗) = 1

k , the second part makes a stronger claim about
the performance of f̃ on all utilities u ∈ Uk,u∗ . This shows that the predictor f̃ performs
well when evaluated on an entire neighborhood around the true utility u∗.

Having established that our estimators from the previous section are not adaptive, we
introduce a notion of local minimax risk and study estimators which are instance-optimal.
We begin by precisely defining this notion of instance-wise minimax optimality. Recall from
Section 4.2, our notion of minimax risk Mk(F ,Dx) was a worst-case notion – the minimax
risk was defined as a supremum over all oracles Ok(· ;u∗). We extend this global minimax
notion to a local minimax one. In particular, for any u∗ ∈ U , we define the local minimax
risk around u∗ as

5 Our analysis could be extended to the finite sample setup using the bound obtained in Theorem 2.
6 Since we are working at the population level, we have dropped the subscript n from f̂k,n
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Mk(F ,Dx;u∗) : = inf̂
f

sup
u∈U|u∗

[
err(f̂ ,F ;u)

]
, (20)

where the infimum is again over the set of all estimators which output a function f̂ ∈ F
given access to distribution Dx and k-comparison oracle Ok. Observe that this local notion
of minimax risk concerns the performance of an algorithm f̂ around a specific instance u∗ as
compared to the worst-case instance.

For any utility function u ∈ U , we define its population maximizer fu ∈
argmaxf∈F U(f ;u). With this notation, our next theorem provides a lower bound on
this local minimax risk in terms of a local modulus of continuity with respect to the set Uk,u∗ .

I Theorem 12 (Local minimax lower bound). For any distribution Dx over feature space
X , utility function u∗ ∈ U , function class F and order k of the comparison oracle, the local
minimax risk

Mk(F ,Dx;u∗) ≥ 1
2 · sup

u1,u2∈ Uk,u∗

(
U(fu1 ;u1)− U(fu1+u2

2
;u1)

)
. (21)

Proof. Consider any two utility functions u1, u2 ∈ Uk,u∗ and let ū = u1+u2
2 . We can then

lower bound the minimax risk as

Mk(F ,Dx;u∗) ≥ inf
f∈F

(
1
2 err(f,F ;u1) + 1

2 err(f,F ;u2)
)

= 1
2 err(fū,F ;u1) + 1

2 err(fū,F ;u2)

≥ 1
2 (U(fu1 ;u1)− U(fū;u1)) ,

where the last equality follows by noting that err(fū,F ;u2) ≥ 0. Since the above holds for
any choice of u1, u2, the desired bound follows by taking a supremum over these values. J

A few comments on Theorem 12 are in order. The theorem establishes that the local minimax
risk Mk(F ,Dx) is lower bounded by a local modulus of continuity,

sup
u1,u2∈ Uk,u∗

(
U(fu1 ;u1)− U(fu1+u2

2
;u1)

)
, (22)

which captures the worst-case variation in the performance of utility maximizers of utility in
a neighborhood of u∗. For any two utilities u1, u2 ∈ Uk,u∗ , it measures the performance drop
in the utility of a learner uses the maximizer fu1+u2

2
in place of fu1 when the underlying

utility is u1.
Given this lower bound on the local minimax risk Mk(F ,Dx), it is natural to ask whether

this local modulus of continuity exactly captures the instance-specific hardness of the problem.
To this end, our next result answers this in the affirmative. In particular, it shows that for
any u∗, the randomized minimax robust estimator prob ∈ ∆F , given by

prob ∈ argmin
p∈∆F

sup
u∈Uk,u∗

Ef∼p[err(f,F ;u)], (23)

(nearly-)obtains the same excess-risk bound as that given by the lower bound in Theorem 12.
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I Theorem 13 (Upper bounds for prob). For any distribution Dx over feature space X , utility
function u∗ ∈ U and function class F , the expected excess risk of the randomized estimator
given by the distribution prob ∈ ∆F is

E[err(prob,F ;u∗)] = sup
pu

(Eu′∼pu
[U(fu′ ;u′)− U(fpu

;u′)])

≤ sup
u1,u2∈ Uk,u∗

(U(fu1 ;u1)− U(fu2 ;u1)) , (24)

where the distribution pu ∈ ∆Uk,u∗ is over the space of utility functions consistent with u∗.

We defer the proof of Theorem 13 to the full version. Compared with the lower bound
of Theorem 12, the bound in (24) shows that the local minimax risk can indeed be upper
bounded by a similar local modulus of continuity. Observe that the while the lower bound
evaluates the performance loss of the maximizer fu1+u2

2
, the upper bound is evaluated on

fu2 . While the minimax estimator prob in equation (23) is defined at the population level,
we can naturally extend it to the finite sample regime as

p̂rob,n ∈ argmin
p∈∆F

sup
u∈Ûk,u∗

Ef∼p[Û(fu;u)− Û(f ;u)] (25)

where the class of utilities Ûk,u∗ represents the set of all n-dimensional vectors in [0, 1]n which
are consistent with responses to all k-queries on the set of sampled datapoints S. Using a
similar analysis as in Theorem 2, one can then upper bound the excess risk of this estimator
in terms of the local modulus on the dataset S and an additional uniform convergence term.

In comparison to the Comptron procedure which uses O(n log k) queries to the comparison
oracle for estimating utilities, the estimator p̂rob,n uses O(nk) queries to construct the set
Ûk,u∗ . Thus, while this estimator adapts to the problem hardness, such an adaptation comes
at the cost of an exponential increase in query complexity. Achieving instance-optimality by
using fewer queries is an interesting question for future research.
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We study the setup where each of n users holds an element from a discrete set, and the goal is to
count the number of distinct elements across all users, under the constraint of (ε, δ)-differentially
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ε and for some δ inverse quasi-polynomial in n. We do so by building on the moment-matching
method from the literature on distribution estimation.
In the multi-message shuffle setting, we give a protocol with at most one message per user in
expectation and with an error of Õ(

√
n) for any constant ε and for any δ inverse polynomial

in n. Our protocol is also robustly shuffle private, and our error of
√
n matches a known lower

bound for such protocols.
Our proof technique relies on a new notion, that we call dominated protocols, and which can also
be used to obtain the first non-trivial lower bounds against multi-message shuffle protocols for the
well-studied problems of selection and learning parity.

Our first lower bound for estimating the number of distinct elements provides the first ω(
√
n)

separation between global sensitivity and error in local differential privacy, thus answering an open
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1 Introduction

Differential privacy (DP) [20, 19] has become a leading framework for private-data analysis,
with several recent practical deployments [25, 39, 28, 3, 16, 1]. The most commonly studied
DP setting is the so-called central (aka curator) model whereby a single authority (sometimes
referred to as the analyst) is trusted with running an algorithm on the raw data of the users
and the privacy guarantee applies to the algorithm’s output.

The absence, in many scenarios, of a clear trusted authority has motivated the study of
distributed DP models. The most well-studied such setting is the local model [31] (also [44]),
denoted henceforth by DPlocal, where the privacy guarantee is enforced at each user’s output
(i.e., the protocol transcript). While an advantage of the local model is its very strong privacy
guarantees and minimal trust assumptions, the noise that has to be added can sometimes be
quite large. This has stimulated the study of “intermediate” models that seek to achieve
accuracy close to the central model while relying on more distributed trust assumptions. One
such middle-ground is the so-called shuffle (aka anonymous) model [29, 8, 12, 24], where the
users send messages to a shuffler who randomly shuffles these messages before sending them
to the analyzer; the privacy guarantee is enforced on the shuffled messages (i.e., the input to
the analyzer). We study both the local and the shuffle models in this work.

1.1 Counting Distinct Elements
A basic function in data analytics is estimating the number of distinct elements in a domain
of size D held by a collection of n users, which we denote by CountDistinctn,D (and simply
by CountDistinctn if there is no restriction on the universe size). Beside its use in database
management systems, it is a well-studied problem in sketching, streaming, and communication
complexity (e.g., [30, 9] and the references therein). In central DP, it can be easily solved
with constant error using the Laplace mechanism [20]; see also [36, 15, 38, 14].

We obtain new results on (ε, δ)-DP protocols for CountDistinct in the local and shuffle
settings2.

1.1.1 Lower Bounds for Local DP Protocols
Our first result is a lower bound on the additive error of DPlocal protocols3 for counting
distinct elements.

I Theorem 1. For any ε = O(1), no public-coin (ε, o(1/n))-DPlocal protocol can solve4
CountDistinctn,n with error o(n).

The lower bound in Theorem 1 is asymptotically tight5. Furthermore, it answers a
question of Vadhan [42, Open Problem 9.6], who asked if there is a function with a gap
of ω(

√
n) between its (global) sensitivity and the smallest achievable error by any DPlocal

2 For formal definitions, please refer to Section 2. We remark that, throughout this work, we consider the
non-interactive local model where all users apply the same randomizer (see Definition 15). We briefly
discuss in Section 1.4 possible extensions to interactive local models. See the full version for how to
generalize our results to the relaxed setting where each user can apply different randomizers to their
inputs.

3 See Section 2 for the the formal (standard) definition of public-coin DP protocols. Note that private-coin
protocols are a sub-class of public-coin protocols, so all of our lower bounds apply to private-coin
protocols as well.

4 Throughout this work, we say that a randomized algorithm solves a problem with error e if with
probability 0.99 it incurs error at most e.

5 The trivial algorithm that always outputs 0 incurs an error n.



L. Chen, B. Ghazi, R. Kumar, and P. Manurangsi 56:3

protocol.6 As the global sensitivity of the number of distinct elements is 1, Theorem 1
exhibits a (natural) function for which this gap is as large as Ω(n). While Theorem 1 applies
to the constant ε regime, it turns out we can prove a lower bound for much less private
protocols (i.e., having a much larger ε value) at the cost of polylogarithmic factors in the
error:

I Theorem 2. For some ε = ln(n)−O(ln lnn) and D = Θ(n/ polylog(n)), no public-coin
(ε, n−ω(1))-DPlocal protocol can solve CountDistinctn,D with error o(D).

To prove Theorem 2, we build on the moment matching method from the literature on
(non-private) distribution estimation, namely [43, 45], and tailor it to CountDistinct in the
DPlocal setting (see Section 3.1 for more details on this connection). The bound on the
privacy parameter ε in Theorem 2 turns out to be very close to tight: the error drops
quadratically when ε exceeds lnn. This is shown in the next theorem:

I Theorem 3. There is a (ln(n) +O(1))-DPlocal protocol solving CountDistinctn,n with error
O(
√
n).

1.1.2 Lower Bounds for Single-Message Shuffle DP Protocols
In light of the negative result in Theorem 2, a natural question is whether CountDistinct
can be solved in a weaker distributed DP setting such as the shuffle model. It turns out
that this is not possible using any shuffle protocol where each user sends no more than 1
message (for brevity, we will henceforth denote this class by DP1

shuffle, and more generally
denote by DPkshuffle the variant where each user can send up to k messages). Note that the
class DP1

shuffle includes any method obtained by taking a DPlocal protocol and applying the
so-called amplification by shuffling results of [24, 6].

In the case where ε is any constant and δ is inverse quasi-polynomial in n, the improvement
in the error for DP1

shuffle protocols compared to DPlocal is at most polylogarithmic factors:

I Theorem 4. For all ε = O(1), there are δ = 2− polylog(n) and D = n/ polylog(n) such that
no public-coin (ε, δ)-DP1

shuffle protocol can solve CountDistinctn,D with error o(D).

We note that Theorem 4 essentially answers a more general variant of Vadhan’s question:
it shows that even for DP1

shuffle protocols (which include DPlocal protocols as a sub-class) the
gap between sensitivity and the error can be as large as Ω̃(n) .

The proof of Theorem 4 follows by combining Theorem 2 with the following connection
between DPlocal and DP1

shuffle:

I Lemma 5. For any ε = O(1) and δ ≤ δ0 ≤ 1/n, if the randomizer R is (ε, δ)-DP1
shuffle on

n users, then R is
(
lnn− ln(Θε(log δ−1

0 / log δ−1)), δ0
)
-DPlocal.

We remark that Lemma 5 provides a stronger quantitative bound than the qualitatively
similar connections in [12, 27]; specifically, we obtain the term ln(Θε(log δ−1

0 / log δ−1)), which
was not present in the aforementioned works. This turns out to be crucial for our purposes,
as this term gives the O(ln lnn) term necessary to apply Theorem 2.

6 To the best of our knowledge, the largest previously known gap between global sensitivity and error
was O(

√
n), which is achieved, e.g., by binary summation [11]. For CountDistinct, the lower bound

of [21] on pan-private algorithms against two intrusions along with the equivalence shown by [2] between
this model and sequential local DP, imply a lower bound of Ω(n) against pure DP protocols. A lower
bound against approximate DP protocols can then be obtained via the transformation of [10]; however,
this lower bound would only hold for an ε bounded strictly below one (e.g., 1/4), whereas our lower
bound in Theorem 1 holds for ε an arbitrarily large constant.
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1.1.3 A Communication-Efficient Shuffle DP Protocol
In contrast with Theorem 4, Balcer et al. [5] recently gave a DPshuffle protocol for
CountDistinctn,D with error O(

√
D). Their protocol sends Ω(D) messages per user. We

instead show that an error of Õ(
√
D) can still be guaranteed with each user sending in

expectation at most one message each of length O(logD) bits.

I Theorem 6. For all ε ≤ O(1) and δ ≤ 1/n, there is a public-coin (ε, δ)-DPshuffle protocol
that solves CountDistinctn with error

√
min(n,D) ·poly(log(1/δ)/ε) where the expected number

of messages sent by each user is at most one.

In the special case where D = o(n/ poly(ε−1 log(δ−1))), we moreover obtain a private-coin
DPshuffle protocol achieving the same guarantees as in Theorem 6 (see the full version for a
formal statement). Note that Theorem 6 is in sharp contrast with the lower bound shown in
Theorem 4 for DP1

shuffle protocols. Indeed, for δ inverse quasi-polynomial in n, the former
implies a public-coin protocol with less than one message per-user in expectation having
error Õ(

√
n) whereas the latter proves that no such protocol exists, even with error as large

as Ω̃(n), if we restrict each user to send one message in the worst case.
A strengthening of DPshuffle protocols called robust DPshuffle protocols7 was studied

by [5], who proved an Ω
(√

min(D,n)
)
lower bound on the error of any protocol solving

CountDistinctn,D. Our protocols are robust DPshuffle and, therefore, achieve the optimal error
(up to polylogarithmic factors) among all robust DPshuffle protocols, while only sending at
most one message per user in expectation.

1.2 Dominated Protocols and Multi-Message Shuffle DP Protocols
The technique underlying the proof of Theorem 1 can be extended beyond DPlocal protocols
for CountDistinct. It applies to a broader category of protocols that we call dominated, defined
as follows:

I Definition 7. We say that a randomizer R : X →M is (ε, δ)-dominated, if there exists a
distribution D onM such that for all x ∈ X and all E ⊆M,

Pr[R(x) ∈ E] ≤ eε · Pr
D

[E] + δ.

In this case, we also say R is (ε, δ)-dominated by D. We define (ε, δ)-dominated protocols in
the same way as (ε, δ)-DPlocal, except that we require the randomizer to be (ε, δ)-dominated
instead of being (ε, δ)-DP.

Note that an (ε, δ)-DPlocal randomizer R is (ε, δ)-dominated: we can fix a y∗ ∈ X and take
D = R(y∗). Therefore, our new definition is a relaxation of DPlocal.

We show that multi-message DPshuffle protocols are dominated, which allows us to prove
the first non-trivial lower bounds against DPO(1)

shuffle protocols.
Before formally stating this connection, we recall why known lower bounds against

DP1
shuffle protocols [12, 27, 4] do not extend to DPO(1)

shuffle protocols.8 These prior works
use the connection stating that any (ε, δ)-DP1

shuffle protocol is also (ε+ lnn, δ)-DPlocal [12,

7 Roughly speaking, they are DPshuffle protocols whose transcript remains private even if a constant
fraction of users drop out from the protocol.

8 We remark that [26] developed a technique for proving lower bounds on the communication complexity
(i.e., the number of bits sent per user) for multi-message protocols. Their techniques do not apply to
our setting as our lower bounds are in terms of the number of messages, and do not put any restriction
on the message length. Furthermore, their technique only applies to pure-DP where δ = 0, whereas ours
applies also to approximate-DP where δ > 0.
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Theorem 6.2]. It thus suffices for them to prove lower bounds for DPlocal protocols with low
privacy requirement (i.e., (ε+ lnn, δ)-DPlocal), for which lower bound techniques are known
or developed. For ε-DP1

shuffle protocols, [4] showed that they are also ε-DPlocal; therefore,
lower bounds on DPlocal protocols automatically translate to lower bounds on pure-DP1

shuffle
protocols. To apply this proof framework to DPO(1)

shuffle protocols, a natural first step would be
to connect DPO(1)

shuffle protocols to DPlocal protocols. However, as observed by [4, Section 4.1],
there exists an ε-DPO(1)

shuffle protocol that is not DPlocal for any privacy parameter. That
is, there is no analogous connection between DPlocal protocols and multi-message DPshuffle
protocols, even if the latter can only send O(1) messages per user.

In contrast, the next lemma captures the connection between multi-message DPshuffle
and dominated protocols.

I Lemma 8. If R is (ε, δ)-DPkshuffle on n users, then it is (ε+ k(1 + lnn), δ)-dominated.

By considering dominated protocols and using Lemma 8, we obtain the first lower
bounds for multi-message DPshuffle protocols for two well-studied problems: Selection and
ParityLearning.

1.2.1 Lower Bounds for Selection
The Selection problem on n users is defined as follows. The ith user has an input xi ∈ {0, 1}D

and the goal is to output an index j ∈ [D] such that
n∑
i=1

xi,j ≥

(
max
j∗

n∑
i=1

xi,j∗

)
− n/10.

Selection is well-studied in DP (e.g., [17, 40, 41]) and its variants are useful primitives for
several statistical and algorithmic problems including feature selection, hypothesis testing
and clustering. In central DP, the exponential mechanism of [35] yields an ε-DP algorithm
for Selection when n = Oε(logD). On the other hand, it is known that any (ε, δ)-DPlocal
protocol for Selection with ε = O(1) and δ = O(1/n1.01) requires n = Ω(D logD) users [41].
Moreover, [12] obtained a (ε, 1/nO(1))-DPDshuffle protocol for n = Õε(

√
D). By contrast, for

DP1
shuffle protocols, a lower bound of Ω(D1/17) was obtained in [12] and improved to Ω(D)

in [27].
The next theorem give a lower bounds for Selection that holds against approximate-

DPkshuffle protocols. To the best of our knowledge, this is the first lower bound even for k = 2
(and even for the special case of pure protocols, where δ = 0).

I Theorem 9. For any ε = O(1), any public-coin (ε, o(1/D))-DPkshuffle protocol that solves

Selection requires n ≥ Ω
(
D

k

)
.

We remark that combining the advanced composition theorem for DP and known DPshuffle
aggregation algorithms, one can obtain a (ε, 1/poly(n))-DPkshuffle protocol for Selection with
Õ(D/

√
k) samples for any k ≤ D (see the full version for details).

1.2.2 Lower Bounds for Parity Learning
In ParityLearning, there is a hidden random vector s ∈ {0, 1}D, each user gets a random vector
x ∈ {0, 1}D together with the inner product 〈s, x〉 over F2, and the goal is to recover s. This
problem is well-known for separating PAC learning from the Statistical Query (SQ) learning
model [32]. In DP, it was studied by [31] who gave a central DP protocol (also based on the
exponential mechanism) computing it for n = O(D), and moreover proved a lower bound of
n = 2Ω(D) for any DPlocal protocol, thus obtaining the first exponential separation between
the central and local settings.

ITCS 2021



56:6 On Distributed Differential Privacy and Counting Distinct Elements

We give a lower bound for ParityLearning that hold against approximate-DPkshuffle protocols:

I Theorem 10. For any ε = O(1), if P is a public-coin (ε, o(1/n))-DPkshuffle protocol that
solves ParityLearning with probability at least 0.99, then n ≥ Ω(2D/(k+1)).

Our lower bounds for ParityLearning can be generalized to the Statistical Query (SQ)
learning framework of [32] (see the full version for more details).

Independent Work

In a recent concurrent work, Cheu and Ullman [13] proved that robust DPshuffle protocols
solving Selection and ParityLearning require Ω(

√
D) and Ω(2

√
D) samples, respectively. Their

results have no restriction on the number of messages sent by each user, but they only hold
against the special case of robust protocols. Our results provide stronger lower bounds when
the number of messages per user is less than

√
D, and apply to the most general DPshuffle

model without the robustness restriction.

1.3 Lower Bounds for Two-Party DP Protocols
Finally, we consider another model of distributed DP, called the two-party model [33], denoted
DPtwo-party. In this model, there are two parties, each holding part of the dataset. The DP
guarantee is enforced on the view of each party (i.e., the transcript, its private randomness,
and its input). See the full version for a formal treatment.

McGregor et al. [33] studied the DPtwo-party and proved an interesting separation of Ωε(n)
between the global sensitivity and ε-DP protocol in this model. However, this lower bound
does not extend to the approximate-DP case (where δ > 0); in this case, the largest known
gap (also proved in [33]) is only Ω̃ε(

√
n), and it was left as an open question if this can be

improved9. We answer this question by showing that the gap of Ω̃ε(n) holds even against
approximate-DP protocols:

I Theorem 11. For any ε = O(1) and any sufficiently large n ∈ N, there is a function
f : {0, 1}2n → R whose global sensitivity is one and such that no (ε, o(1/n))-DPtwo-party
protocol can compute f to within an error of o(n/ logn).

The above bound is tight up to a logarithmic factors in n, as it is trivial to achieve an
error of n.

The proof of Theorem 11 is unlike others in the paper; in fact, we only employ simple
reductions starting from the hardness of inner product function already shown in [33].
Specifically, our function is a sum of blocks of inner product modulo 2. While this function
is not symmetric, we show that it can be easily symmetrized (see the full version for details).

1.4 Discussions and Open Questions
In this work, we study DP in distributed models, including the local and shuffle settings. By
building on the moment matching method and using the newly defined notion of dominated
protocols, we give novel lower bounds in both models for three fundamental problems:
CountDistinct, Selection, and ParityLearning. While our lower bounds are (nearly) tight in a
large setting of parameters, there are still many interesting open questions, three of which
we highlight below:

9 The conference version of the paper [33] actually claimed to also have a lower bound Ωε(n) for the
approximate-DP case as well. However, it was later found to be incorrect; see [34] for more discussions.
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DPshuffle Lower Bounds for Protocols with Unbounded Number of Messages.
Our connection between DPshuffle and dominated protocols becomes weaker as k →∞
(Lemma 8). As a result, it cannot be used to establish lower bounds against DPshuffle
protocols with a possibly unbounded number of messages. In fact, we are not aware of
any separation between central DP and DPshuffle without a restriction on the number
of messages and without the robustness restriction. This remains a fundamental open
question. (In contrast, separations between central DP and DPlocal are well-known, even
for basic functions such as binary summation [11].)
Lower Bounds against Interactive Local/Shuffle Model. Our lower bounds hold
in the non-interactive local and shuffle DP models, where all users send their messages
simultaneously in a single round. While it seems plausible that our lower bounds can
be extended to the sequentially interactive local DP model [17] (where each user speaks
once but not simultaneously), it is unclear how to extend them to the fully interactive
local DP model.
The situation for DPshuffle however is more complicated. We remark that certain definitions
could lead to the model being as powerful as the central model (in terms of achievable
accuracy and putting aside communication constraints); see e.g., [29] on how to perform
secure computations under a certain definition of the shuffle model. A very recent work
provides a formal treatment of an interactive setting for the shuffle model [7].
DP1

shuffle Lower Bounds for CountDistinct with Larger δ. All but one of our lower
bounds hold as long as δ = n−ω(1), which is a standard assumption in the DP literature.
The only exception is that of Theorem 4, which requires δ = 2−Ω(logc n) for some constant
c > 0. It is interesting whether this can be relaxed to δ = n−ω(1).

2 Preliminaries

2.1 Notation
For a function f : X → R, a distribution D on X , and an element z ∈ X , we use f(D) to
denote E

x←D
[f(x)] and Dz to denote Pr

x←D
[x = z]. For a subset E ⊆ X , we use DE to denote∑

z∈E
Dz = Pr

x←D
[x ∈ E]. We also use UD to denote the uniform distribution over {0, 1}D.

For two distributions D1 and D2 on sets X and Y respectively, we use D1 ⊗D2 to denote
their product distribution over X × Y. For two random variables X and Y supported on
RD for D ∈ N, we use X + Y to denote the random variable distributed as a sum of two
independent samples from X and Y . For any set S, we denote by S∗ the set consisting of
sequences on S, i.e., S∗ = ∪n≥0Sn. For x ∈ R, let [x]+ denote max(x, 0). For a predicate P ,
we use 1[P ] to denote the corresponding Boolean value of P , that is, 1[P ] = 1 if P is true,
and 0 otherwise.

For a distribution D on a finite set X and an event E ⊆ X such that Pr
z←D

[z ∈ E ] > 0, we
use D|E to denote the conditional distribution such that

(D|E)z =
{

Dz

Prz←D[z∈E] if z ∈ E ,
0 otherwise.

Slightly overloading the notation, we also use α ·D1 +(1−α) ·D2 to denote the mixture of
distributions D1 and D2 with mixing weights α and (1− α) respectively. Whether + means
mixture or convolution will be clear from the context unless explicitly stated.
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2.2 Differential Privacy
We now recall the basics of differential privacy that we will need. Fix a finite set X , the space
of user reports. A dataset X is an element of X ∗, namely a tuple consisting of elements of
X . Let hist(X) ∈ N|X | be the histogram of X: for any x ∈ X , the xth component of hist(X)
is the number of occurrences of x in the dataset X. We will consider datasets X,X ′ to be
equivalent if they have the same histogram (i.e., the ordering of the elements x1, . . . , xn does
not matter). For a multiset S whose elements are in X , we will also write hist(S) to denote
the histogram of S (so that the xth component is the number of copies of x in S).

Let n ∈ N, and consider a dataset X = (x1, . . . , xn) ∈ Xn. For an element x ∈ X , let

fX(x) = hist(X)x
n

be the frequency of x in X, namely the fraction of elements of X that are
equal to x. Two datasets X,X ′ are said to be neighboring if they differ in a single element,
meaning that we can write (up to equivalence) X = (x1, x2, . . . , xn) and X ′ = (x′1, x2, . . . , xn).
In this case, we write X ∼ X ′. Let Z be a set; we now define the differential privacy of a
randomized function P : Xn → Z as follows.

I Definition 12 (Differential privacy (DP) [20, 19]). A randomized algorithm P : Xn → Z is
(ε, δ)-DP if for every pair of neighboring datasets X ∼ X ′ and for every set S ⊆ Z, we have

Pr[P (X) ∈ S] ≤ eε · Pr[P (X ′) ∈ S] + δ,

where the probabilities are taken over the randomness in P . Here, ε ≥ 0 and δ ∈ [0, 1].

If δ = 0, then we use ε-DP for brevity and informally refer to it as pure-DP; if δ > 0, we
refer to it as approximate-DP. We will use the following post-processing property of DP.

I Lemma 13 (Post-processing, e.g., [22]). If P is (ε, δ)-DP, then for every randomized
function A, the composed function A ◦ P is (ε, δ)-DP.

2.3 Shuffle Model
We briefly review the shuffle model of DP [8, 24, 12]. The input to the model is a dataset
(x1, . . . , xn) ∈ Xn, where item xi ∈ X is held by user i. A protocol P : X → Z in the shuffle
model consists of three algorithms:

The local randomizer R : X → M∗ takes as input the data of one user, xi ∈ X , and
outputs a sequence (yi,1, . . . , yi,mi) of messages; here mi is a positive integer.
To ease discussions in the paper, we will further assume that the randomizer R pre-shuffles
its messages. That is, it applies a random permutation π : [mi]→ [mi] to the sequence
(yi,1, . . . , yi,mi

) before outputting it.10

The shuffler S : M∗ →M∗ takes as input a sequence of elements ofM, say (y1, . . . , ym),
and outputs a random permutation, i.e., the sequence (yπ(1), . . . , yπ(m)), where π ∈ Sm is a
uniformly random permutation on [m]. The input to the shuffler will be the concatenation
of the outputs of the local randomizers.
The analyzer A : M∗ → Z takes as input a sequence of elements of M (which will be
taken to be the output of the shuffler) and outputs an answer in Z that is taken to be
the output of the protocol P .

10Therefore, for every x ∈ X and any two tuples z1, z2 ∈ M∗ that are equivalent up to a permutation,
R(x) outputs them with the same probability.
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We will write P = (R,S,A) to denote the protocol whose components are given by R, S,
and A. The main distinction between the shuffle and local model is the introduction of the
shuffler S between the local randomizer and the analyzer. As in the local model, the analyzer
is untrusted in the shuffle model; hence privacy must be guaranteed with respect to the input
to the analyzer, i.e., the output of the shuffler. Formally, we have:

I Definition 14 (DP in the Shuffle Model, [24, 12]). A protocol P = (R,S,A) is (ε, δ)-DP if,
for any dataset X = (x1, . . . , xn), the algorithm

(x1, . . . , xn) 7→ S(R(x1), . . . , R(xn))

is (ε, δ)-DP.

Notice that the output of S(R(x1), . . . , R(xn)) can be simulated by an algorithm that takes
as input the multiset consisting of the union of the elements of R(x1), . . . , R(xn) (which
we denote as

⋃
i

R(xi), with a slight abuse of notation) and outputs a uniformly random

permutation of them. Thus, by Lemma 13, it can be assumed without loss of generality for
privacy analyses that the shuffler simply outputs the multiset

⋃
i

R(xi). For the purpose of

analyzing the accuracy of the protocol P = (R,S,A), we define its output on the dataset
X = (x1, . . . , xn) to be P (X) := A(S(R(x1), . . . , R(xn))). We also remark that the case of
local DP, formalized in Definition 15, is a special case of the shuffle model where the shuffler
S is replaced by the identity function:

I Definition 15 (Local DP [31]). A protocol P = (R,A) is (ε, δ)-DP in the local model (or
(ε, δ)-locally DP) if the function x 7→ R(x) is (ε, δ)-DP.

We say that the output of the protocol P on an input dataset X = (x1, . . . , xn) is P (X) :=
A(R(x1), . . . , R(xn)).

We denote DP in the shuffle model by DPshuffle, and the special case where each user can
send at most11 k messages by DPkshuffle. We denote DP in the local model by DPlocal.

Public-Coin DP

The default setting for local and shuffle models is private-coin, i.e., there is no randomness
shared between the randomizers and the analyzer. We will also study the public-coin variants
of the local and shuffle models. In the public-coin setting, each local randomizer also takes a
public random string α ← {0, 1}∗ as input. The analyzer is also given the public random
string α. We use Rα(x) to denote the local randomizer with public random string being
fixed to α. At the start of the protocol, all users jointly sample a public random string from
a publicly known distribution Dpub.

Now, we say that a protocol P = (R,A) is (ε, δ)-DP in the public-coin local model, if the
function

x 7→
α←Dpub

(α,Rα(x))

is (ε, δ)-DP.

11We may assume w.l.o.g. that each user sends exactly k messages; otherwise, we may define a new symbol
⊥ and make each user sends ⊥ messages so that the number of messages becomes exactly k.
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Similarly, we say that a protocol P = (R,S,A) is (ε, δ)-DP in the public-coin shuffle
model, if for any dataset X = (x1, . . . , xn), the algorithm

(x1, . . . , xn) 7→
α←Dpub

(α, S(Rα(x1), . . . , Rα(xn)))

is (ε, δ)-DP.

2.4 Useful Divergences
We will make use of two important divergences between distributions, the KL-divergence
and the χ2-divergence, defined as

KL(P ||Q) = E
z←P

log
(
Pz
Qz

)
and χ2(P ||Q) = E

z←Q

[
Pz −Qz
Qz

]2
.

We will also use Pinsker’s inequality, whereby the total variation distance lower-bounds
the KL-divergence:

KL(P ||Q) ≥ 2
ln 2‖P −Q‖

2
TV .

2.5 Fourier Analysis
We now review some basic Fourier analysis and then introduce two inequalities that will be
heavily used in our proofs. For a function f : {0, 1}D → R, its Fourier transform is given by the
function f̂(S) := E

x←UD

[f(x) · (−1)
∑

i∈S
xi ]. We also define ‖f‖22 = E

x←UD

[f(x)2]. For k ∈ N,

we define the level-k Fourier weight as Wk[f ] :=
∑

S⊆[D],|S|=k

f̂(S)2. For convenience, for

s ∈ {0, 1}D, we will also write f̂(s) to denote f(χs), where χs is the set {i : i ∈ [D]∧ si = 1}.
One key technical lemma is the Level-1 Inequality from [37], which was also used in [27].

I Lemma 16 (Level-1 Inequality). Suppose f : {0, 1}D → R≥0 is a non-negative-valued
function with f(x) ∈ [0, L] for all x ∈ {0, 1}D, and E

x∼UD

[f(x)] ≤ 1. Then, W1[f ] ≤
6 ln(L+ 1).

We also need the standard Parseval’s identity.

I Lemma 17 (Parseval’s Identity). For all functions f : {0, 1}D → R,

‖f‖22 =
∑
S⊆[D]

f̂(S)2.

3 Overview of Techniques

In this section, we describe the main intuition behind our lower bounds. As alluded to in
Section 1, we give two different proofs of the lower bounds for CountDistinct in the DPlocal
and DPshuffle settings, each with its own advantages:

Proof via Moment Matching. Our first proof is technically the hardest in our work.
It applies to the much more challenging low-privacy setting (i.e., (lnn − O(ln lnn), δ)-
DPlocal), and shows an Ω(n/polylog(n)) lower bound on the additive error (Theorem 2).
Together with our new improved connection between DP1

shuffle and DPlocal (Lemma 5), it
also implies the same lower bound for protocols in the DP1

shuffle model. The key ideas
behind the first proof will be discussed in Section 3.1.
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Proof via Dominated Protocols. Our second proof has the advantage of giving the
optimal Ω(n) lower bound on the additive error (Theorem 1), but only in the constant
privacy regime (i.e., (O(1), δ)-DPlocal), and it is relatively simple compared to the first
proof.
Moreover, the second proof technique is very general and is a conceptual contribution: it
can be applied to show lower bounds for other fundamental problems (i.e., Selection and
ParityLearning; Theorems 9 and 10) against multi-message DPshuffle protocols. We will
highlight the intuition behind the second proof in Section 3.2.

While our lower bounds also work for the public-coin DPshuffle models, throughout this
section, we focus on private-coin models in order to simplify the presentation. The full proofs
extending to public-coin protocols are given in the full version.

3.1 Lower Bounds for CountDistinct via Moment Matching
To clearly illustrate the key ideas behind the first proof, we will focus on the pure-DP case
where each user can only send O(logn) bits. In the full version, we generalize the proof to
approximate-DP and remove the restriction on communication complexity.

I Theorem 18 (A Weaker Version of Theorem 2). For ε = ln(n/ log7 n) and D = n/ log5 n,
no ε-DPlocal protocol where each user sends O(logn) bits can solve CountDistinctn,D with
error o(D).

Throughout our discussion, we use R : [D] → M to denote a ln(n/ log7 n)-DPlocal
randomizer. By the communication complexity condition of Theorem 18, we have that
|M| ≤ poly(n).

Our proof is inspired by the lower bounds for estimating distinct elements in the property
testing model, e.g., [43, 45]. In particular, we use the so-called Poissonization trick. To
discuss this trick, we start with some notation. For a vector ~λ ∈ RD, we use ~Poi(~λ) to denote
the joint distribution of D independent Poisson random variables:

~Poi(~λ) := (Poi(~λ1),Poi(~λ2), . . . ,Poi(~λn)).

For a distribution ~U on RD, we define the corresponding mixture of multi-dimensional
Poisson distributions as follows:

E[ ~Poi(~U)] := E
~λ←~U

~Poi(~λ).

For two random variables X and Y supported on RM, we use X + Y to denote the
random variable distributed as a sum of two independent samples from X and Y .

Shuffling the Outputs of the Local Protocol. Our first observation is that the analyzer for
any local protocol computing CountDistinct should achieve the same accuracy if it only sees
the histogram of the randomizers’ outputs. This holds because only seeing the histogram
of the outputs is equivalent to shuffling the outputs by a uniformly random permutation,
which is in turn equivalent to shuffling the users in the dataset uniformly at random. Since
shuffling the users in a dataset does not affect the number of distinct elements, it follows that
only seeing the histogram does not affect the accuracy. Therefore, we only have to consider
the histogram of the outputs of the local protocol computing CountDistinct. For a dataset W ,
we use HistR(W ) to denote the distribution of the histogram with randomizer R.
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Poissonization Trick. Given a distribution D onM, suppose we draw a sample m← Poi(λ),
and then draw m samples from D. If we use N to denote the random variable corresponding
to the histogram of these m samples, it follows that each coordinate of N is independent,
and N is distributed as ~Poi(λ~µ), where ~µi = Di for each i ∈M.

We can now apply the above trick to the context of local protocols (recall that by our
first observation, we can focus on the histogram of the outputs). Suppose we build a dataset
by drawing a sample m ← Poi(λ) and then adding m users with input z. By the above
discussion, the corresponding histogram of the outputs with randomizer R is distributed
as ~Poi(λ · R(z)), where R(z) is treated as an |M|-dimensional vector corresponding to its
probability distribution.

Moment-Matching Random Variables. Our next ingredient is the following construction
of two moment-matching random variables used in [45]. Let L ∈ N and Λ = Θ(L2). There
are two random variables U and V supported on {0} ∪ [1,Λ], such that E[U ] = E[V ] = 1 and
E[U j ] = E[V j ] for every j ∈ [L]. Moreover U0 − V0 > 0.9. That is, U and V have the same
moments up to degree L, while the probabilities of them being zero differs significantly. We
will set L = logn and hence Λ = Θ(log2 n).

Construction of Hard Distribution via Signal/Noise Decomposition. Recalling that
D = n/ log5 n, we will construct two input distributions for CountDistinctn,D.12 A sample
from both distributions consists of two parts: a signal part with D many users in expectation,
and a noise part with n−D many users in expectation.

Formally, for a distribution W over R≥0 and a subset E ⊆ [D], the dataset distributions
DWsignal and DEnoise are constructed as follows:

DW
signal: for each i ∈ [D], we independently draw λi ←W , and ni ← Poi(λi), and add ni

many users with input i.
DE

noise: for each i ∈ E, we independently draw ni ← Poi((n−D)/|E|), and add ni many
users with input i.

We are going to fix a “good” subset E of [D] such that |E| ≤ 0.02 · D (we will later
specify the other conditions for being “good”). Therefore, when it is clear from the context,
we will use Dnoise instead of DEnoise.

Our two hard distributions are then constructed as DU := DUsignal + Dnoise and DV :=
DVsignal +Dnoise. Using the fact that E[U ] = E[V ] = 1, one can verify that there are D users
in each of DUsignal and DVsignal in expectation. Similarly, one can also verify there are n−D
users in Dnoise in expectation. Hence, both DU and DV have n users in expectation. In fact,
the number of users from both distributions concentrates around n.

We now justify our naming of the signal/noise distributions. First, note that the number
of distinct elements in the signal parts DUsignal and DVsignal concentrates around (1−E[e−U ]) ·D
and (1− E[e−V ]) ·D respectively. By our condition that U0 − V0 > 0.9, it follows that the
signal parts of DU and DV separates their numbers of distinct elements by at least 0.4D.
Second, note that although Dnoise has n−D � D many users in expectation, they are from
the subset E of size less than 0.02 · n. Therefore, these users collectively cannot change the
number of distinct elements by more than 0.02 · n, and the numbers of distinct elements in
DU and DV are still separated by Ω(D).

12 In fact, in our presentation the number of inputs in each dataset from our hard distributions will not be
exactly n, but only concentrated around n. This issue can be easily resolved by throwing “extra” users
in the dataset; we refer the reader to the full version for the details.
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Decomposition of Noise Part. To establish the desired lower bound, it now suffices to
show for the local randomizer R, it holds that HistR(DU ) and HistR(DV ) are very close in
statistical distance. For W ∈ {U, V }, we can decompose HistR(DW ) as

HistR(DW ) =
∑
i∈[D]

~Poi(W ·R(i)) +
∑
i∈[E]

~Poi((n−D)/|E| ·R(i)).

By the additive property of Poisson distributions, letting ~ν = (n−D)/|E| ·
∑
i∈[E]R(i), we

have that
∑
i∈[E]

~Poi((n−D)/|E| ·R(i)) = ~Poi(~ν).
Our key idea is to decompose ~ν carefully into D+1 nonnegative vectors ~ν(0), ~ν(1), . . . , ~ν(D),

such that ~ν =
∑D
i=0 ~ν

(i). Then, for W ∈ {U, V }, we have

HistR(DW ) = ~Poi(~ν(0)) +
∑
i∈[D]

~Poi(W ·R(i) + ~ν(i)).

To show that HistR(DU ) and HistR(DV ) are close, it suffices to show that for each i ∈ [D], it
is the case that ~Poi(U ·R(i) + ~ν(i)) and ~Poi(V ·R(i) + ~ν(i)) are close. We show that they are
close when ~ν(i) is sufficiently large on every coordinate compared to R(i).

I Lemma 19. For each i ∈ [D], and every ~λ ∈ (R≥0)M, if ~λz ≥ 2Λ2 ·R(i)z for every z ∈M,
then13

‖E[ ~Poi(U ·R(i) + ~λ)]− E[ ~Poi(V ·R(i) + ~λ)]‖TV ≤
1
n2 .

To apply Lemma 19, we simply set ~ν(i) = (2Λ2) ·R(i) and ~ν(0) = ~ν −
∑
i∈[D] ~ν

(i). Letting
~µ =

∑
i∈[D]R(i), the requirement that ~ν(0) has to be nonnegative translates to ~νz ≥ 2Λ2 · ~µz,

for each z ∈M.

Construction of a Good Subset E. So we want to pick a subset E ⊆ [D] of size at most
0.02 ·D such that the corresponding ~νE = (n−D)/|E| ·

∑
i∈[E]R(i) satisfies ~νEz ≥ 2Λ2 ·~µz for

each z ∈M. We will show that a simple random construction works with high probability:
i.e., one can simply add each element of [D] to E independently with probability 0.01.

More specifically, for each z ∈M, we will show that with high probability ~νEz ≥ 2Λ2 · ~µz.
Then the correctness of our construction follows from a union bound (and this step crucially
uses the fact that |M| ≤ poly(n)).

Now, let us fix a z ∈M. Let m∗ = maxi∈[D]R(i)z. Since R is ln(n/ log7 n)-DP, it follows
that ~νz ≥ n−D

n/ log7 n
·m∗ ≥ log7 n

2 ·m∗. We consider the following two cases:
1. If m∗ ≥ ~µz/ log2 n, we immediately get that ~νz ≥ log5 n/2 · ~µz ≥ 2Λ2 · ~µz (which uses the

fact that Λ = Θ(log2 n)).
2. If m∗ < ~µz/ log2 n, then in this case, the mass ~µz is distributed over at least log2 n many

components R(i)z. Applying Hoeffding’s inequality shows that with high probability over
E, it is the case that ~νEz ≥ Θ(n/D) ·~µz ≥ Λ2 ·~µz (which uses the fact that D = n/ log5 n).

See the full version for a formal argument and how to get rid of the assumption that
|M| ≤ poly(n).

13We use ‖D1 −D2‖T V to denote the total variation (aka statistical) distance between two distributions
D1,D2.
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The Lower Bound. From the above discussions, we get that

‖HistR(DU )−HistR(DV )‖TV ≤
D∑
i=1
‖E[ ~Poi(U ·R(i)+~ν(i))]−E[ ~Poi(V ·R(i)+~ν(i))]‖TV ≤ 1/n.

Hence, the analyzer of the local protocol with randomizer R cannot distinguish DU and
DV , and thus it cannot solve CountDistinctn,D with error o(D) and 0.99 probability. See the
full version for a formal argument and how to deal with the fact that there may not be
exactly n users in dataset from DU or DV .

Single-Message DPshuffle Lower Bound. To apply the above lower bound to DP1
shuffle

protocols, the natural idea is to resort to the connection between the DP1
shuffle and DPlocal

models. In particular, [12] showed that (ε, δ)-DP1
shuffle protocols are also (ε+ lnn, δ)-DPlocal.

It may seem that the lnn privacy guarantee is very close to the lnn − O(ln lnn) one
in Theorem 2. But surprisingly, it turns out (as was stated in Theorem 3) that there is
a (lnn+O(1))-DPlocal protocol solving CountDistinctn,n (hence also CountDistinctn,D) with
error O(

√
n). Hence, to establish the DP1

shuffle lower bound (Theorem 4), we rely on the
following stronger connection between DP1

shuffle and DPlocal protocols.

I Lemma 20 (Simplification of Lemma 5). For every δ ≤ 1/nω(1), if the randomizer R is
(O(1), δ)-DP1

shuffle on n users, then R is
(
ln(n log2 n/ log δ−1), n−ω(1))-DPlocal.

Setting δ = 2− logk n for a sufficiently large k and combining Lemma 20 and Theorem 2 gives
us the desired lower bound against DP1

shuffle protocols.

3.2 Lower Bounds for CountDistinct and Selection via Dominated Protocols
We will first describe the proof ideas behind Theorem 1, which is restated below. Then, we
apply the same proof technique to obtain lower bounds for Selection (the lower bound for
ParityLearning is established similarly; see the full version for details).

I Lemma 21 (Detailed Version of Theorem 1). For ε = o(lnn), no (ε, o(1/n))-dominated
protocol can solve CountDistinct with error o(n/eε).

Hard Distributions for CountDistinctn,n. We now construct our hard instances for
CountDistinctn,n. For simplicity, we assume n = 2D for an integer D, and identify the
input space [n] with {0, 1}D by a fixed bijection. Let UD be the the uniform distribu-
tion over {0, 1}D. For (`, s) ∈ [2] × {0, 1}D, we let D`,s be the uniform distribution on
{x ∈ {0, 1}D : 〈x, s〉 = `}.

We also use Dα`,s to denote the mixture of D`,s and UD which outputs a sample from D`,s
with probability α and a sample from UD with probability 1− α.

For a parameter α > 0, we consider the following two dataset distributions with n users:

Wuniform: each user gets an i.i.d. input from UD. That is, Wuniform := U⊗nD .
Wα: to sample a dataset from Wα, we first draw (`, s) from [2] × {0, 1}D uni-
formly at random, then each user gets an i.i.d. input from Dα`,s. Formally, Wα :=
E(`,s)←[2]×{0,1}D (Dα`,s)⊗n.

Since for every `, s, it holds that |supp(D1
`,s)| ≤ n/2, the number of distinct elements from

any dataset inW1 is at most n/2. On the other hand, since UD is a uniform distribution over
n elements, a random dataset from Wuniform =W0 has roughly (1− e−1) · n > n/2 distinct
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elements with high probability. Hence, the expected number of distinct elements of datasets
from Wα is controlled by the parameter α. A simple but tedious calculation shows that it is
approximately (1− e−1 · cosh(α)) · n, which can be approximated by (1− e−1 · (1 + α2)) · n
for n−0.1 < α < 0.01. Hence, any protocol solving CountDistinct with error o(α2n) should be
able to distinguish between the above two distributions. Our goal is to show that this is
impossible for (ε, o(1/n))-dominated protocols.

Bounding KL Divergence for Dominated Protocols. Our next step is to upper-bound the
statistical distance ‖HistR(Wuniform)− HistR(Wα)‖TV . As in previous work [41, 27, 23], we
may upper-bound the KL divergence instead. By the convexity and chain-rule properties of
KL divergence, it follows that

KL(HistR(Wα)||HistR(Wuniform)) ≤ E
(`,s)←[2]×{0,1}D

KL(R(Dα`,s)⊗n||R(UD)⊗n)

= n · E
(`,s)←[2]×{0,1}D

KL(R(Dα`,s)||R(UD)). (1)

Bounding the Average KL Divergence between a Family and a Single Distribution. We
are now ready to introduce our general tool for bounding average KL divergence quantities
like (1). We first set up some notation. Let I be an index set and {λv}v∈I be a family of
distributions on X , let π be a distribution on I, and µ be a distribution on X . For simplicity,
we assume that for every x ∈ X and v ∈ I, it holds that (λv)x ≤ 2 · µx (which is true for
{Dα`,s}(`,s)∈[2]×{0,1}D and UD).

I Theorem 22. Let W : R→ R be a concave function such that for all functions ψ : X → R≥0

satisfying ψ(µ) ≤ 1, it holds that

E
v←π

[
(ψ(λv)− ψ(µ))2] ≤W (‖ψ‖∞).

Then for an (ε, δ)-dominated randomizer R, it follows that

E
v←π

[KL(R(λv)||R(µ))] ≤ O (W (2eε) + δ) .

Similar theorems are proved in the previous work [17, 18, 41, 23] but only for locally
private randomizers. Theorem 22 can be seen as a generalization of these previous results to
dominated protocols.

Bounding (1) via Fourier Analysis. To apply Theorem 22, for f : X → R≥0 with f(UD) =
Ex∈{0,1}D [f(x)] ≤ 1, we want to bound

E
(`,s)←[2]×{0,1}D

[(f(Dα`,s)− f(UD))2] = E
s∈{0,1}D

α2 · f̂(s)2.

By Parseval’s Identity (see Lemma 17),∑
s∈{0,1}D

f̂(s)2 = E
x∈{0,1}D

f(x)2 ≤ f(UD) · ‖f‖∞ ≤ ‖f‖∞.

Therefore, we can set W (L) := α2 · L2D , and apply Theorem 22 to obtain

E
(`,s)←[2]×{0,1}D

KL(R(Dα`,s)||R(UD)) ≤ O(α2 · eε/n+ δ).
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We set α such that α2 = c/eε for a sufficiently small constant c and note that δ = o(1/n).
It follows that

KL(HistR(Wα)||HistR(Wuniform)) ≤ 0.01,

and therefore

‖HistR(Wα)− HistR(Wuniform)‖TV ≤ 0.1

by Pinsker’s inequality. Hence, we conclude that (ε, o(1/n))-dominated protocols cannot
solve CountDistinctn,n with error o(n/eε), completing the proof of Lemma 21. Now Theorem 1
follows from Lemma 21 and the fact that (ε, δ)-DPlocal protocols are also (ε, δ)-dominated.

Lower Bounds for Selection against Multi-Message DPshuffle Protocols. Now we show how
to apply Theorem 22 and Lemma 20 to prove lower bounds for Selection. For (`, j) ∈ [2]× [D],
let D`,j be the uniform distribution on all length-D binary strings with jth bit being `.
Recall that UD is the uniform distribution on {0, 1}D. Again we aim to upper-bound the
average-case KL divergence E(`,j)←[2]×[D] KL(R(D`,j)||R(UD)).

To apply Theorem 22, for f : X → R≥0 with f(UD) = Ex∈{0,1}D [f(x)] ≤ 1, we want to
bound

E
(`,j)←[2]×[D]

[(f(Dα`,j)− f(UD))2] = E
j∈[D]

f̂({j})2.

By Lemma 16, it is the case that∑
j∈[D]

f̂({j})2 ≤ O(log ‖f‖∞).

Therefore, we can setW (L) := c1 · logL
D for an appropriate constant c1, and apply Theorem 22

to obtain

E
(`,j)←[2]×[D]

KL(R(D`,j)||R(UD)) ≤ O
( ε
D

+ δ
)
.

Combining this with Lemma 20 completes the proof (see the full version for the details).
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Abstract
The goal in reconfiguration problems is to compute a gradual transformation between two feasible
solutions of a problem such that all intermediate solutions are also feasible. In the Matching
Reconfiguration Problem (MRP), proposed in a pioneering work by Ito et al. from 2008, we are given
a graph G and two matchings M and M ′, and we are asked whether there is a sequence of matchings
in G starting with M and ending at M ′, each resulting from the previous one by either adding or
deleting a single edge in G, without ever going through a matching of size < min{|M |, |M ′|}−1. Ito et
al. gave a polynomial time algorithm for the problem, which uses the Edmonds-Gallai decomposition.

In this paper we introduce a natural generalization of the MRP that depends on an integer
parameter ∆ ≥ 1: here we are allowed to make ∆ changes to the current solution rather than
1 at each step of the transformation procedure. There is always a valid sequence of matchings
transforming M to M ′ if ∆ is sufficiently large, and naturally we would like to minimize ∆. We first
devise an optimal transformation procedure for unweighted matching with ∆ = 3, and then extend
it to weighted matchings to achieve asymptotically optimal guarantees. The running time of these
procedures is linear.

We further demonstrate the applicability of this generalized problem to dynamic graph matchings.
In this area, the number of changes to the maintained matching per update step (the recourse bound)
is an important quality measure. Nevertheless, the worst-case recourse bounds of almost all known
dynamic matching algorithms are prohibitively large, much larger than the corresponding update
times. We fill in this gap via a surprisingly simple black-box reduction: Any dynamic algorithm for
maintaining a β-approximate maximum cardinality matching with update time T , for any β ≥ 1, T
and ε > 0, can be transformed into an algorithm for maintaining a (β(1 + ε))-approximate maximum
cardinality matching with update time T + O(1/ε) and worst-case recourse bound O(1/ε). This
result generalizes for approximate maximum weight matching, where the update time and worst-case
recourse bound grow from T + O(1/ε) and O(1/ε) to T + O(ψ/ε) and O(ψ/ε), respectively; ψ is
the graph aspect-ratio. We complement this positive result by showing that, for β = 1 + ε, the
worst-case recourse bound of any algorithm produced by our reduction is optimal. As a corollary,
several key dynamic approximate matching algorithms – with poor worst-case recourse bounds – are
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57:2 A Generalized Matching Reconfiguration Problem

1 Introduction

The study of graph algorithms is mostly concerned with the measure of (static) runtime.
Given a graph optimization problem, the standard objective is to design a fast (possibly
approximation) algorithm, and ideally complement it with a matching lower bound on the
runtime of any (approximation) algorithm for solving the problem. As an example, computing
(from scratch) a 2-approximate minimum vertex cover (VC) can be done trivially in linear
time, whereas a better-than-2 approximation for the minimum VC cannot be computed in
polynomial time under the unique games conjecture [46].

The current paper is motivated by a natural need arising in networks that are prone to
temporary or permanent changes. Such changes are sometimes part of the normal behavior
of the network, as in dynamic networks, but changes could also be the result of unpredictable
failures of nodes and edges, particularly in faulty networks. Consider a large-scale network
G = (V,E,w) for which we need to solve, perhaps approximately, some graph optimization
problem, and the underlying solution (e.g., a maximum matching) is being used for some
practical purpose (e.g., scheduling in packet switches) throughout a long time span. If the
network changes over time, the quality of the used solution may degrade until it is too poor
to be used in practice and it may even become infeasible.

Instead of the standard objectives of optimization, the questions that arise here concern
reoptimization: Can we “efficiently” transform one given solution (the source) to another
one (the target) under “real-life constraints”? The efficiency of the transformation procedure
could be measured in terms of running time, but in some applications making even small
changes to the currently used solution may incur huge costs, possibly much higher than
the runtime cost of computing (from scratch) a better solution; we shall use “procedure”
and “process” interchangeably. In particular, this is often the case whenever the edges of
the currently used solution are “hard-wired” in some physical sense, as in road networks.
Various real-life constraints or objectives may be studied; the one we focus on in this work
is that at any step (or every few steps) throughout the transformation process the current
solution should be both feasible and of quality no worse (by much) than that of either the
source or target solutions. This constraint is natural as it might be prohibitively expensive
or even impossible to carry out the transformation process instantaneously. Instead, the
transformation can be broken into phases each performing ≤ ∆ changes to the transformed
solution, where ∆ ≥ 1 is some parameter, so that the solution obtained at the end of each
phase – to be used instead of the source solution – is both feasible and of quality no (much)
worse than either the source or target. The transformed solution is to eventually coincide
with the target solution.

The arising reoptimization meta-problem generalizes the well-studied framework of recon-
figuration problems, which we discuss in Section 1.1. It is interesting from both practical and
theoretical perspectives, since even the most basic and well-understood optimization problems
become open in this setting. E.g., for the VC problem, given a better-than-2 approximate
target VC, can we transform to it from any source VC subject to the above constraints? This
is an example for a problem that is computationally hard in the standard sense but might be
easy from a reoptimization perspective. In contrast, perhaps computationally easy problems,
such as approximate maximum matching, are hard from a reoptimization perspective?

This meta-problem captures tension between (1) the global objective of transforming one
global solution to another, and (2) the local objective of transforming gradually while having
a feasible and high quality solution throughout the process. A similar tension is captured by
various models of computation that involve locality, including dynamic graph algorithms,
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distributed computing, property testing and local computation algorithms (LCA). The study
of the meta-problem presented here could borrow from these related research fields, but,
more importantly, we anticipate that it will also contribute to them; indeed, we present here
an application of this meta-problem to dynamic graph algorithms.

1.1 Graph Reconfiguration
The framework of reconfiguration problems has been subject to growing interest in recent
years. The term reconfiguration was coined in the work of Ito et al. [41], which unified earlier
related problems and terminology (see, e.g., [40, 31, 22]) into a single framework. The general
goal is to compute a transformation between two feasible solutions of a problem such that
all intermediate solutions are also feasible, where each pair of consecutive solutions need to
be adjacent under a fixed polynomially testable symmetric adjacency relation on the set of
feasible solutions. Such a transformation arises naturally in many contexts, such as solving
puzzles, motion planning, questions of evolvability (can genotype evolve into another one
via individual “adjacent” mutations?), and similarity of DNA sequences in computational
genomics and particularly gene editing, which is among the hottest scientific topics these
days; see the surveys of [58, 51] for further details. In most previous work, two solutions are
called adjacent if their symmetric difference has size 1. The most well-studied problem under
this framework is graph matching. For brevity, we shall only discuss here papers on graph
matching; see the surveys [58, 51] for discussions on other problems.

In the Matching Reconfiguration Problem (MRP), proposed in [41], we are given a
graph G and two matchings M and M ′, and we are asked whether there is a sequence of
matchings in G starting with M and ending at M ′, each resulting from the previous one by
either adding or deleting a single edge in G, without ever going through a matching of size
< min{|M |, |M ′|} − 1. Ito et al. gave a polynomial time algorithm for the problem, which
uses the Edmonds-Gallai decomposition. In particular, in some cases such a transformation
does not exist, and much of the difficulty is in the decision problem (decide if exists or
not). The problem of generalizing this algorithm for weighted matchings was proposed as an
open problem in [41], and remained open to date, partially since the algorithm of [41] for
unweighted matchings already relies on a rather intricate decomposition. The work of [41]
triggered interesting followups on MRP [44, 42, 39, 43, 21, 27]. In all these followups, the
symmetric difference between two adjacent matchings is rather strict: it is fixed by either 1 or
2 in [44, 42, 39, 27], whereas in the context of perfect matchings the symmmetric difference
is an alternating cycle of length 4 [21, 43]. Perhaps since the symmetric difference in all
the previous work is so strict, the goal was polynomial-time algorithms and hardness for
the problem. The natural generalization of parameterizing the symmetric difference by an
arbitrary ∆,∆ ≥ 1 – as in our reoptizmiation meta-problem, was not studied in prior work.

1.2 Our contribution
We study two fundamental graph matching problems under the aforementioned meta-problem:
(approximate) maximum cardinality matching (MCM) and maximum weight matching
(MWM). Our meta-problem is, in fact, inherently different than the original MRP. We are
not interested in the decision version of the problem – we take ∆ to be large enough so that a
transformation is guaranteed to exist. Thus we shift the focus from per-instance optimization
to existential optimization, and our goal is to optimize ∆ so that any source matching can
be transformed to any target matching by performing at most ∆ changes per step, while
never reaching a much worse matching than either the source or the target along the way.
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By “worse” we mean either in terms of size or weight, and we must indeed do a bit worse
in some cases even for large ∆; the original MRP formulation for unweighted matchings
allows to go down by 1 unit of size, and this slack is required also for large ∆. For weighted
graphs, naturally, a bigger slack is required. For both unweighted and weighted matchings,
we provide transformation procedures with near-optimal guarantees and linear running time.
Our results are summarized next; the transformation for approximate MWM (Theorem 2) is
the most technically challenging part of this work.

I Theorem 1 (MCM). For any source and target matchingsM andM′, one can transform
M into (a possibly superset of)M′ via a sequence of phases consisting of ≤ 3 operations each
(i.e., ∆ = 3), such that the matching at the end of each phase throughout this transformation
is a valid matching for G of size ≥ min{|M|, |M′| − 1}. The runtime of this transformation
procedure is O(|M|+ |M′|).

I Theorem 2 (MWM). For any source and target matchingsM andM′ with w(M′) > w(M),
and any ε > 0, one can transform M into (a possibly superset of) M′ via a sequence
of phases consisting of O( 1

ε ) operations each (i.e., ∆ = O( 1
ε )), such that the matching

obtained at the end of each phase throughout this transformation is a valid matching for G
of weight ≥ max{w(M)−W, (1− ε)w(M)}, where W = maxe∈M w(e). The runtime of this
transformation procedure is O(|M|+ |M′|).

I Remark. Theorem 2 assumes that w(M′) > w(M). This assumption is made without
loss of generality, since, if w(M′) ≤ w(M), we can apply a reversed transformation, so
that the matching will always be of weight ≥ max{w(M′) − W ′, (1 − ε)w(M′)}, where
W ′ = maxe∈M′ w(e).

In Section 5, we show that the guarantees provided by Theorems 1 and 2 are tight and
asymptotically tight, respectively. Although our results may lead to the impression that there
exists an efficient gradual transformation process to any graph optimization problem, we
briefly discuss in Section 7 two trivial hardness results for the minimum VC and maximum
independent set problems.

1.2.1 Application: A worst-case recourse bound for dynamic matching
algorithms

In the standard fully dynamic setting we start from an empty graph G0 on n fixed vertices,
and at each time step i a single edge (u, v) is either inserted to the graph Gi−1 or deleted
from it, resulting in graph Gi. In the vertex update setting we have vertex updates instead of
edge updates; this setting was mostly studied for bipartite graphs [24, 25, 14].

The problem of maintaining a large matching in fully dynamic graphs was subject to
intensive interest recently [52, 10, 50, 38, 53, 56, 18, 14, 29, 3, 32, 13]. The basic goal is to
devise an algorithm for maintaining a large matching while keeping a tab on the update time,
i.e., the time required to update the matching at each step. One may try to optimize the
amortized (average) update time of the algorithm or its worst-case (maximum) update time,
but both measures are defined with respect to a worst-case sequence of graphs.

“Maintaining” a matching with update time uT translates into maintaining a data
structure with update time uT , which answers queries regarding the matching with a low,
ideally constant, query time qT . For a queried vertex v the answer is the only matched edge
incident on v, or null if v is free, while for a queried edge e the answer is whether edge e
is matched or not. All queries made following the same update step i should be answered
consistently with respect to the same matching, hereafter the output matching (at step i),
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but queries made in the next update step i+ 1 may be answered with respect to a completely
different matching. Thus even if the worst-case update time is low, the output matching
may change significantly from one update step to the next; some natural scenarios where the
output matching changes significantly per update step are discussed in Section 2.

The number of changes (or replacements) to the output matching per update step is an
important measure of quality, sometimes referred to as the recourse bound, and the problem
of optimizing it has received growing attention recently [33, 30, 37, 25, 26, 14, 15, 2, 47]. In
applications such as job scheduling, web hosting, streaming content delivery, data storage
and hashing, a replacement of a matched edge by another one may be costly, possibly much
more than the runtime of computing these replacements. Moreover, when the recourse bound
is low, one can efficiently output all the changes to the matching following every update
step, which could be important in practical scenarios. In particular, a low recourse bound is
important when the matching algorithm is used as a black-box subroutine inside a larger
data structure or algorithm [17, 1]; see Section 2.3 for more details. We remark that the
recourse bound (generally defined as the number of changes to some underlying structure
per update step) has been well studied in the areas of dynamic and online algorithms for a
plethora of optimization problems besides graph matching, such as MIS, set cover, Steiner
tree, flow and scheduling; see [34, 36, 37, 9, 48, 6, 28, 35, 54], and the references therein.

There is a strong separation between the state-of-the-art amortized versus worst-case
bounds for dynamic matching algorithms, in terms of both the time and the recourse bounds.
A similar separation exists for numerous other problems, such as dynamic minimum spanning
forest. In various practical scenarios, particularly in systems designed to provide real-time
responses, a strict tab on the worst-case update time or on the worst-case recourse bound is
crucial, thus an algorithm with a low amortized guarantee but a high worst-case guarantee is
useless.

Despite the importance of the recourse bound measure, all known algorithms but one in
the area of dynamic matchings (described in detail in the full version [55]; see Appendix C
therein) provide no nontrivial worst-case recourse bounds whatsoever! The sole exception is
an algorithm for maintaining a maximal matching with a worst-case update time O(

√
m) and

a constant recourse bound [50]. In this paper we fill in this gap via a surprisingly simple yet
powerful black-box reduction (throughout β-MCM is a shortcut for β-approximate MCM):

I Theorem 3. Any dynamic algorithm maintaining a β-MCM with update time T ,1 for any
β ≥ 1, T and ε > 0, can be transformed into an algorithm maintaining a (β(1 + ε))-MCM
with update time T + O(1/ε) and worst-case recourse bound O(1/ε). If the original time
bound T is amortized/worst-case, so is the resulting time bound of T + O(1/ε), while the
recourse bound O(1/ε) always holds in the worst-case. This applies to the fully dynamic
setting under edge and/or vertex updates.

The proof of Theorem 3 is carried out in two steps. First we prove Theorem 1 by
showing a simple transformation process for any two matchingsM andM′ of the same static
graph. The second step of the proof, which is the key insight behind it, is that the gradual
transformation process can be used essentially as is in fully dynamic graphs, while incurring
a negligible loss to the size and approximation guarantee of the transformed matching.

In Section 6 we complement the positive result provided by Theorem 3 by proving that
the recourse bound O(1/ε) is optimal (up to a constant factor) in the regime β = 1 + ε.
In fact, the lower bound Ω(1/ε) on the recourse bound holds even in the amortized sense

1 Besides answering queries, we naturally assume that at any update step the entire matching can be
output within time (nearly) linear in its size. All known algorithms satisfy this assumption.
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and even in the incremental (insertion only) and decremental (deletion only) settings. For
larger values of β, taking ε to be a sufficiently small constant gives rise to an approximation
guarantee arbitrarily close to β with a constant recourse bound.

A corollary of Theorem 3. As a corollary of Theorem 3, all previous algorithms [38, 16,
53, 29, 3, 13, 59] with low worst-case update time are strengthened to achieve a worst-case
recourse bound of O(1/ε) with only an additive overhead of O(1/ε) to the update time.
(Some of these results were already strengthened in this way by using a previous version of
the current work, which was posted to arXiv in 2018.) Since the update time of all these
algorithms is larger than O(1/ε), we get a recourse bound of O(1/ε) with no loss whatsoever
in the update time! Moreover, all known algorithms with low amortized update time can be
strengthened in the same way; e.g., in SODA’19 [32] (cf. [24]) it was shown that one can
maintain a (1 + ε)-MCM in the incremental edge update setting with a constant (depending
exponentially on ε) amortized update time. While this algorithm yields a constant amortized
recourse bound, no nontrivial (i.e., o(n)) worst-case recourse bound was known for this
problem. Theorem 3 strengthens the result of [32] to maintain a (1+ε)-MCM with a constant
amortized update time and the optimal worst-case recourse bound of O(1/ε). Since the
recourse bound is an important measure of quality, this provides a significant contribution to
the area of dynamic matching algorithms.

Weighted matchings. The result of Theorem 3 can be generalized for approximate MWM
in graphs with bounded aspect ratio ψ, by using the much more intricate transformation
provided by Theorem 2 (compared to Theorem 1), as summarized in the next theorem. (The
aspect ratio ψ = ψ(G) of a weighted graph G = (V,E,w) is defined as ψ = maxe∈E w(e)

mine∈E w(e) .)

I Theorem 4. Any dynamic algorithm for maintaining a β-approximate MWM (shortly,
β-MWM) with update time T in a dynamic graph with aspect ratio always bounded by ψ,
for any β ≥ 1, T, ε > 0 and ψ, can be transformed into an algorithm for maintaining a
(β(1 + ε))-MWM with update time T +O(ψ/ε) and worst-case recourse bound O(ψ/ε). If the
original time bound T is amortized/worst-case, so is the resulting time bound of T +O(ψ/ε),
while the recourse bound O(ψ/ε) always holds in the worst-case. This applies to the fully
dynamic setting under edge and/or vertex updates.

Scenarios with high recourse bounds. There are various scenarios where high recourse
bounds may naturally arise. In such scenarios our reductions (Theorems 3 and 4) can
come into play to achieve low worst-case recourse bounds. Furthermore, although a direct
application of our reductions may only hurt the update time, we demonstrate the usefulness
of these reductions in achieving low update time bounds in some natural settings (where
we might not care at all about recourse bounds); this, we believe, provides another strong
motivation for our reductions. The details are provided in Section 2.

1.3 Related work
We discussed in Section 1.1 prior work on graph reconfiguration problems. Other than this
line of work, there are also inherently different lines of work on “reoptimiziation”, which
indeed can be interpreted broadly – there is an extensive and diverse body of research devoted
to various notions of reoptimization; see [57, 8, 23, 20, 7, 11, 12, 54, 19], and the references
therein. The common goal in all previous work on reoptimization (besides the one discussed
in Section 1.1 on reconfiguration) is to (efficiently) compute an exact or approximate solution
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to a new problem instance by using the solution for the old instance, where typically the
solution for the new instance should be close to the original one under certain distance
measure. Our work is inherently different than all such previous work, since our starting
point is that some solution to the new problem instance is given, and the goal is to compute a
gradual transformation process (subject to some constraints) between the two given solutions.
Also, our work is inherently different than previous work on reconfiguration, as explained in
Section 1.2.

1.4 Organization
We start (Section 2) with discussing some scenarios where high recourse bounds may naturally
arise. We continue (Section 3) by describing a basic scheme for dynamic approximate
matchings that was introduced in [38]. In Section 4.1 we present a simple transformation
process for MCM in static graphs, thus proving Theorem 1. This result is generalized
for MWM via a more intricate transformation process that proves Theorem 2, which is
deferred to the full version [55] (see Appendix D therein) due to space constraints. These
transformations, which apply to static graphs, are adapted to the fully dynamic setting in
Sections 4.2 and 4.3, thus proving Theorems 3 and 4, respectively. The optimality of these
transformations is discussed in Section 5. Our lower bound of Ω(1/ε) on the recourse bound
of (1 + ε)-MCMs is provided in Section 6. We conclude with a discussion in Section 7.

2 Scenarios with high recourse bounds

In this section we discuss some scenarios where high recourse bounds may naturally arise.
In all such scenarios our reductions (Theorems 3 and 4) can come into play to achieve low
worst-case recourse bounds; for clarity we focus in this discussion, sometimes implicitly, on
large (unweighted) matching, but the entire discussion carries over with very minor changes
to the generalized setting of weighted matchings.

Section 2.3 demonstrates that, although we may not care at all about recourse bounds,
maintaining a large (weight) matching with a low update time requires in some cases the
use of a dynamic matching algorithm with a low recourse bound; this is another situation
where our reductions can come into play, but more than that, we believe that it provides an
additional strong motivation for our reductions.

2.1 Randomized algorithms
Multiple matchings. Given a randomized algorithm for maintaining a large matching in
a dynamic graph, it may be advantageous to run multiple instances of the algorithm (say
polylog(n)), since this may increase the chances that at least one of those instances provides
a large matching with high probability (w.h.p.) at any point in time. Notice, however, that
it is not the same matching that is guaranteed to be large throughout the entire update
sequence, hence the ultimate algorithm (or data structure), which outputs the largest among
the polylog(n) matchings, may need to switch between a pool of possibly very different
matchings when going from one update step to the next. Thus even if the recourse bound of
the given randomized algorithm is low, and so each of the maintained matchings changes
gradually over time, we do not get any nontrivial recourse bound for the ultimate algorithm.

Large matchings. Sometimes the approximation guarantee of the given randomized al-
gorithm holds w.h.p. only when the matching is sufficiently large. This is the case with the
algorithm of [29] that achieves polylog(n) worst-case update time, where the approximation
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guarantee of 2 + ε holds w.h.p. only when the size of the matching is Ω(log5 n/ε4). To
perform efficiently, [29] also maintains a matching that is guaranteed to be maximal (and
thus provide a 2-MCM) when the maximum matching size is smaller than δ = O(log5 n/ε4),
via a deterministic procedure with a worst-case update time of O(δ). The ultimate algorithm
of [29] switches between the matching given by the randomized algorithm and that by the
deterministic procedure, taking the larger of the two. Thus even if the recourse bounds
of both the randomized algorithm and the deterministic procedure are low, the worst-case
recourse bound of the ultimate algorithm, which might be of the order of the “large matching”
threshold, could be very high. (The large matching threshold is the threshold on the matching
size above which a high probability bound on the approximation guarantee holds.) In [29]
the large matching threshold is δ = O(log5 n/ε4), so the recourse bound is reasonably low.
(This is not the bottleneck for the recourse bound of [29], as discussed next.) In general,
however, the large matching threshold may be significantly higher than polylog(n).

Long update sequences. For the probabilistic guarantees of a randomized dynamic al-
gorithm to hold w.h.p., the update sequence must be of bounded length. In particular,
polylogarithmic guarantees on the update time usually require that the length of the update
sequence will be polynomially bounded. This is the case with numerous dynamic graph
algorithms also outside the scope of graph matchings (cf. [45, 1]), and the basic idea is to
partition the update sequence into sub-sequences of polynomial length each and to run a
fresh instance of the dynamic algorithm in each sub-sequence. In the context of matchings,
the algorithm of [29] uses this approach. Notice, however, that an arbitrary sub-sequence
(other than the first) does not start from an empty graph. Hence, for the ultimate algorithm
of [29] to provide a low worst-case update time, it has to gradually construct the graph at
the beginning of each sub-sequence from scratch and maintain for it a new gradually growing
matching, while re-using the “old” matching used for the previous sub-sequence throughout
this gradual process. Once the gradually constructed graph coincides with the true graph,
the ultimate algorithm switches from the old matching to the new one. (See [29] for further
details.) While this approach guarantees that the worst-case update time of the algorithm is
in check, it does not provide any nontrivial worst-case recourse bound.

2.2 From amortized to worst-case

There are techniques for transforming algorithms with low amortized bounds into algorithms
with similar worst-case bounds. For approximate matchings, such a technique was first
presented in [38]. Alas, the transformed algorithms do not achieve any nontrivial worst-case
recourse bound; see Section 3 for details.

2.3 When low update time requires low recourse bound

When a dynamic matching algorithm is used as a black-box subroutine inside a larger data
structure or algorithm, a low recourse bound of the algorithm used as a subroutine is needed
for achieving a low update time for the larger algorithm. We next consider a natural question
motivating this need; one may refer to [17, 1] for additional motivation.

I Question 1. Given k dynamic matchings of a dynamic graph G, whose union is guaranteed
to contain a large matching for G at any time, for an arbitrary parameter k, can we combine
those k matchings into a large dynamic matching for G efficiently?
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This question may arise when there are physical limitations, such as memory constraints,
e.g., as captured by MapReduce-style computation, where the edges of the graph are
partitioned into k parties. More specifically, consider a fully dynamic graph G of huge scale,
for which we want to maintain a large matching with low update time. The edges of the
graph are dynamically partitioned into k parties due to memory constraints, each capable of
maintaining a large matching for the graph induced by its own edges with low update time,
and the only guarantee on those k dynamically changing matchings is the following global
one: The union of the k matchings at any point in time contains a large matching for the
entire dynamic graph G. (E.g., if we maintain at each update step the invariant that the
edges of G are partitioned across the k parties uniformly at random, such a global guarantee
can be provided via the framework of composable randomized coresets [49, 5, 4].)

This question may also arise when the input data set is noisy. Coping with noisy input
usually requires randomization, which may lead to high recourse bounds as discussed in
Section 2.1. Let us revisit the scenario where we run multiple instances of a randomized
dynamic algorithm with low update time; denote the number of such instances by k. If
the input is noisy, we may not be able to guarantee that at least one of the k maintained
matchings is large w.h.p. at any point in time, as suggested in Section 2.1. A weaker, more
reasonable assumption is that the union of those k matchings contains a large matching.

The key observation is that it is insufficient to maintain each of the k matchings with
low update time, even in the worst-case, as each such matching may change significantly
following a single update step, thereby changing significantly the union of those matchings.
“Feeding” this union to any dynamic matching algorithm would result with poor update time
bounds, even in the amortized sense. Consequently, to resolve Question 1, each of the k
maintained matchings must change gradually over time, or in other words, the underlying
algorithm(s) needed for maintaining those matchings should guarantee a low recourse bound.
A low amortized/worst-case recourse bound of the underlying algorithm(s) translates into a
low amortized/worst-case update time of the ultimate algorithm, provided of course that the
underlying algorithm(s) for maintaining those k matchings, as well as the dynamic matching
algorithm to which their union is fed, all achieve a low amortized/worst-case update time.

3 The scheme of [38]

This section provides a short overview of a basic scheme for dynamic approximate matchings
from [38]. Although such an overview is not required for proving Theorems 3 and 4, it is
instructive to provide it, as it shows that the scheme of [38] is insufficient for providing
any nontrivial worst-case recourse bound. Also, the scheme of [38] exploits a basic stability
property of matchings, which we use for proving Theorems 3 and 4, thus an overview of this
scheme may facilitate the understanding of our proof.

3.1 The amortization scheme of [38]
The stability property of matchings used in [38] is that the maximum matching size changes
by at most 1 following each update step. Thus if we have a β-MCM, for any β ≥ 1, the
approximation guarantee of the matching will remain close to β throughout a long update
sequence. Formally, the following lemma is a simple adaptation of Lemma 3.1 from [38];
its proof is given in Appendix E of the full version [55]. (Lemma 3.1 of [38] is stated for
approximation guarantee 1 + ε and for edge updates, whereas Lemma 5 here holds for any
approximation guarantee and also for vertex updates.)
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I Lemma 5. Let ε′ ≤ 1/2. Suppose Mt is a β-MCM for Gt, for any β ≥ 1. For
i = t, t+ 1, . . . , t+ bε′ · |Mt|c, letM(i)

t denote the matchingMt after removing from it all
edges that got deleted during updates t+ 1, . . . , i. ThenM(i)

t is a (β(1 + 2ε′))-MCM for Gi.

For concreteness, we shall focus on the regime of approximation guarantee 1 + ε, and
sketch the argument of [38] for maintaining a (1 + ε)-MCM in fully dynamic graphs. (As
Lemma 5 applies to any approximation guarantee β ≥ 1 + ε, it is readily verified that the
same argument carries over to any approximation guarantee.)

One can compute a (1 + ε/4)-MCM Mt at a certain update step t, and then re-use
the same matchingM(i)

t throughout all update steps i = t, t+ 1, . . . , t′ = t+ bε/4 · |Mt|c
(after removing from it all edges that got deleted from the graph between steps t and i). By
Lemma 5, assuming ε ≤ 1/2,M(i)

t provides a (1 + ε)-MCM for all graphs Gi. Next compute
a fresh (1 + ε/4)-MCM Mt′ following update step t′ and re-use it throughout all update
steps t′, t′ + 1, . . . , t′ + bε/4 · |Mt′ |c, and repeat. In this way the static time complexity
of computing a (1 + ε)-MCM M is amortized over 1 + bε/4 · |M|c = Ω(ε · |M|) update
steps. Note that the static computation time of an approximate matching is O(|M| · α/ε2),
where α is the arboricity bound; refer to Appendix F in the full version [55]. (This bound
on the static computation time was established in [53]; it reduces to O(|M| ·

√
m/ε2) and

O(|M| ·∆/ε2) for general graphs and graphs of degree bounded by ∆, respectively, which
are the bounds provided by [38].)

3.2 A Worst-Case Update time
In the amortization scheme of [38] described above, a (1 + ε/4)-MCMM is computed from
scratch, and then being re-used throughout bε/4 · |M|c additional update steps. The worst-
case update time is thus the static computation time of an approximate matching, namely,
O(|M| · α/ε2). To improve the worst-case guarantee, the tweak used in [38] is to simulate
the static approximate matching computation within a “time window” of 1 + bε/4 · |M|c
consecutive update steps, so that following each update step the algorithm simulates only
O(|M| · α/ε2)/(1 + bε/4 · |M|c = O(α · ε−3) steps of the static computation. During this
time window the gradually-computed matching, denoted byM′, is useless, so the previously-
computed matchingM is re-used as the output matching. This means that each matching is
re-used throughout a time window of twice as many update steps, hence the approximation
guarantee increases from 1+ε to 1+2ε, but we can reduce it back to 1+ε by a straightforward
scaling argument. Note that the gradually-computed matching does not include edges that
got deleted from the graph during the time window.

3.3 Recourse bounds
Consider an arbitrary time window used in the amortization scheme of [38], and note that the
same matching is being re-used throughout the entire window. Hence there are no changes to
the matching in the “interior” of the window except for those triggered by adversarial deletions,
which may trigger at most one change to the matching per update step. On the other hand,
at the start of any time window (except for the first), the output matching is switched from
the old matchingM to the new oneM′, which may require |M|+ |M′| replacements to the
output matching at that time. Note that the amortized number of replacements per update
step is quite low, being upper bounded by (|M|+ |M′|)/(1 + bε/4 · |M|c). In the regime of
approximation guarantee β = O(1), we have |M| = O(|M′|), hence the amortized recourse
bound is bounded by O(1/ε). For a general approximation guarantee β, the naive amortized
recourse bound is O(β/ε).
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On the negative side, the worst-case recourse bound may still be as high as |M|+ |M′|,
even after performing the above tweak. Indeed, that tweak only causes the time windows to
be twice longer, and it does not change the fact that once the computation ofM′ finishes, the
output matching is switched from the old matchingM to the new oneM′ instantaneously,
which may require |M|+ |M′| replacements to the output matching at that time.

4 Proofs of Theorems 3 and 4

This section is mostly devoted (see Sections 4.1 and 4.2) to the proof of Theorem 3. At the
end of this section (Section 4.3) we sketch the adjustments needed for deriving the result of
Theorem 4, whose proof follows along similar lines to those of Theorem 3.

4.1 A simple transformation in static graphs
This section is devoted to the proof of Theorem 1, which provides the first step in the
proof of Theorem 3. We remark that this proof can be viewed as a “warm up” to that of
Theorem 2 for MWM, which is deferred to the full version [55] (see Appendix D therein),
and is considerably more technically involved.

Let M and M′ be two matchings for the same graph G. Our goal is to gradually
transformM into (a possibly superset of)M′ via a sequence of constant-time operations to
be described next, each making at most 3 changes to the matching, such that the matching
obtained at any point throughout this transformation process is a valid matching for G of size
at least min{|M|, |M′| − 1}. It is technically convenient to denote byM∗ the transformed
matching, which is initialized asM at the outset, and being gradually transformed intoM′;
we refer toM andM′ as the source and target matchings, respectively. Each operation starts
by adding a single edge ofM′ \M∗ toM∗ and then removing fromM∗ the at most two
edges incident on the newly added edge; thus at most 3 changes to the matching are made
per operation. It is instructive to assume that |M′| > |M|, as the motivation for applying
this transformation, which will become clear in Section 4.2, is to increase the matching size;
in this case the size |M∗| of the transformed matchingM∗ never goes below the size |M| of
the source matchingM.

We say that an edge of M′ \M∗ that is incident on at most one edge of M∗ is good,
otherwise it is bad, being incident on two edges ofM∗. SinceM∗ has to be a valid matching
throughout the transformation process, adding a bad edge toM∗ must trigger the removal
of two edges from M∗. Thus if we keep adding bad edges to M∗, the size of M∗ may
halve throughout the transformation process. The following lemma shows that if all edges of
M′\M∗ are bad, the transformed matchingM∗ is at least as large as the target matchingM′.

I Lemma 6. If all edges ofM′ \M∗ are bad, then |M∗| ≥ |M′|.

Proof. Consider a bipartite graph L ∪R, where each vertex in L corresponds to an edge of
M′ \M∗ and each vertex in R corresponds to an edge ofM∗ \M′, and there is an edge
between a vertex in L and a vertex in R iff the corresponding matched edges share a common
vertex in the original graph. If all edges ofM′ \M∗ are bad, then any edge ofM′ \M∗ is
incident on two edges ofM∗, and sinceM′ is a valid matching, those two edges cannot be
inM′. In other words, the degree of each vertex in L is exactly 2. Also, the degree of each
vertex in R is at most 2, asM′ is a valid matching. It follows that |R| ≥ |L|, or in other
words |M∗ \M′| ≥ |M′ \M∗|, yielding |M∗| ≥ |M′|. J
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The transformation process is carried out as follows. At the outset we initializeM∗ =M
and compute the sets G and B of good and bad edges inM′ \M∗ =M′ \M within time
O(|M|+ |M′|) in the obvious way, and store them in doubly-linked lists. We keep mutual
pointers between each edge ofM∗ and its at most two incident edges in the corresponding
linked lists G and B. Then we perform a sequence of operations, where each operation starts
by adding an edge ofM′ \M∗ toM∗, giving precedence to good edges (i.e., adding a bad
edge toM∗ only when there are no good edges to add), and then removing fromM∗ the at
most two edges incident on the newly added edge. Following each such operation, we update
the lists G and B of good and bad edges inM′ \M∗ within constant time in the obvious way.
This process is repeated untilM′ \M∗ = ∅, at which stage we haveM∗ ⊇M′. Note that
the number of operations performed before emptyingM′ \M∗ is bounded by |M′|, since
each operation removes at least one edge fromM′ \M∗. It follows that the total runtime of
the transformation process is bounded by O(|M|+ |M′|).

It is immediate thatM∗ remains a valid matching throughout the transformation process,
as we pro-actively remove from it edges that share a common vertex with new edges added
to it. To complete the proof of Theorem 1 it remains to prove the following lemma.

I Lemma 7. At any moment in time we have |M∗| ≥ min{|M|, |M′| − 1}.

Proof. Suppose for contradiction that the lemma does not hold, and consider the first time
step t∗ throughout the transformation process in which |M∗| < min{|M|, |M′| − 1}. Since
initially |M∗| = |M| and as every addition of a good edge toM∗ triggers at most one edge
removal from it, time step t∗ must occur after an addition of a bad edge. Recall that a bad
edge is added toM∗ only when there are no good edges to add. Just before this addition we
have |M∗| ≥ |M′| by Lemma 6, thus we have |M∗| ≥ |M′| − 1 after adding that edge to
M∗ and removing the two edges incident on it from there, yielding a contradiction. J

I Remark 8. When |M| < |M′|, it is possible to gradually transform M to M′ without
ever being in deficit compared to the initial value ofM, i.e., |M∗| ≥ |M| throughout the
transformation process. However, if |M′| ≤ |M|, this no longer holds true; refer to Section
5.1 for more details.

4.2 The Fully Dynamic Setting
In this section we provide the second step in the proof of Theorem 3, showing that the simple
transformation process described in Section 4.1 for static graphs can be generalized for the
fully dynamic setting, thus completing the proof of Theorem 3.

Consider an arbitrary dynamic algorithm, Algorithm A, for maintaining a β-MCM with
an update time of T , for any β ≥ 1 and T . The matching maintained by Algorithm A,
denoted by MA

i , for i = 1, 2, . . ., may change significantly following a single update step.
All that is guaranteed by Algorithm A is that it can update the matching following every
update step within a time bound of T , either in the worst-case sense or in the amortized
sense, following which queries regarding the matching can be answered in (nearly) constant
time. Recall also that we assume that, for any update step i, the matchingMA

i provided by
Algorithm A at step i can be output within time (nearly) linear in the matching size.

Our goal is to output a matching M̃ = M̃i, for i = 1, 2, . . ., possibly very different from
MA = MA

i , which changes very slightly from one update step to the next. To this end,
the basic idea is to use the matching MA provided by Algorithm A at a certain update
step, and then re-use it (gradually removing from it edges that get deleted from the graph)
throughout a sufficiently long window of Θ(ε·|MA|) consecutive update steps, while gradually
transforming it into a larger matching, provided again by Algorithm A at some later step.
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The gradual transformation process is obtained by adapting the process described in
Section 4.1 for static graphs to the fully dynamic setting. Next, we describe this adaptation.
We assume that β = O(1); the case of a general β is addressed in Section 4.2.1.

Consider the beginning of a new time window, at some update step t. Denote the
matching provided by Algorithm A at that stage byM′ =MA

t and the matching output by
our algorithm byM = M̃t. Recall that the entire matchingM′ =MA

t can be output in time
(nearly) linear in its size, and we henceforth assume thatM′ is given as a list of edges. (For
concreteness, we assume that the time needed for storing the edges ofM′ in an appropriate
list is O(|M′|.) WhileM′ is guaranteed to provide a β-MCM at any update step, including
t, the approximation guarantee ofM may be worse. Nevertheless, we will show (Lemma
9) thatM provides a (β(1 + 2ε′))-MCM for Gt. Under the assumption that β = O(1), we
thus have |M| = O(|M′|). The length of the time window is W = Θ(ε · |M|), i.e., it starts
at update step t and ends at update step t′ = t + W − 1. During this time window, we
gradually transformM into (a possibly superset of)M′, using the transformation described in
Section 4.1 for static graphs; recall that the matching output throughout this transformation
process is denoted byM∗. We may assume that |M|, |M′| = Ω(1/ε), where the constant
hiding in the Ω-notation is sufficiently large; indeed, otherwise |M|+ |M′| = O(1/ε) and
there is no need to apply the transformation process, as the trivial worst-case recourse bound
is O(1/ε).

We will show (Lemma 9) that the output matching M̃i provides a (β(1 +O(ε))-MCM
at any update step i. Two simple adjustments are needed for adapting the transformed
matchingM∗ of the static setting to the fully dynamic setting:

To achieve a low worst-case recourse bound and guarantee that the overhead in the
update time (with respect to the original update time) is low in the worst-case, we cannot
carry out the entire computation at once (i.e. following a single update step), but should
rather simulate it gradually over the entire time window of the transformation process.
Specifically, recall that the transformation process for static graphs consists of two phases,
a preprocessing phase in which the matchingM′ =MA

t and the sets G and B of good and
bad edges inM′ \M are computed, and the actual transformation phase that transforms
M∗, which is initialized asM, into (a possibly superset of)M′. Each of these phases
requires time O(|M|+ |M′|) = O(|M|). The first phase does not make any replacements
toM∗, whereas the second phase consists of a sequence of at most |M′| constant-time
operations, each of which may trigger a constant number of replacements toM∗. The
computation of the first phase is simulated in the first W/2 update steps of the window,
performing O(|M|+ |M′|)/(W/2) = O(1/ε) computation steps and zero replacements to
M∗ following every update step. The computation of the second phase is simulated in
the second W/2 update steps of the window, performing O(|M|+ |M′|)/(W/2) = O(1/ε)
computation steps and replacements toM∗ following every update step.
Denote by M∗i the matching output at the ith update step by the resulting gradual
transformation process, which simulates O(1/ε) computation steps and replacements to
the output matching following every update step. WhileM∗i is a valid matching for the
(static) graph Gt at the beginning of the time window, some of its edges may get deleted
from the graph in subsequent update steps i = t + 1, t + 2, . . . , t′. Consequently, the
matching that we shall output for graph Gi, denoted by M̃i, is the one obtained from
M∗i by removing from it all edges that got deleted from the graph between steps t and i.

Once the current time window terminates, a new time window starts, and the same
transformation process is repeated, with M̃t′ serving asM andMA

t′ serving asM′. Since
all time windows are handled in the same way, it suffices to analyze the output matching of
the current time window, and this analysis would carry over to the entire update sequence.
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It is immediate that the output matching M̃i is a valid matching for any i = t, t+1, . . . , t′.
Moreover, since we make sure to simulate O(1/ε) computation steps and replacements
following every update step, the worst-case recourse bound of the resulting algorithm is
bounded by O(1/ε) and the update time is bounded by T +O(1/ε), where this time bound
is worst-case/amortized if the time bound T of Algorithm A is worst-case/amortized.

It is left to bound the approximation guarantee of the output matching M̃i. Recall that
W = Θ(ε · |M|), and write W = ε′ · |M|, with ε′ = Θ(ε). (We assume that ε is sufficiently
small so that ε′ ≤ 1/2. We need this restriction on ε′ to apply Lemma 5.)

I Lemma 9. M̃t and M̃t′ provide a (β(1+2ε′))-MCM for Gt and Gt′ , respectively. Moreover,
M̃i provides a (β((1 + 2ε′)2))-MCM for Gi, for any i = t, t+ 1, . . . , t′.

Proof. First, we bound the approximation guarantee of the matching M̃t′ , which is obtained
fromM∗t′ by removing from it all edges that got deleted from the graph throughout the time
window. By the description of the transformation process,M∗t′ is a superset ofM′, hence
M̃t′ is a superset of the matching obtained fromM′ by removing from it all edges that got
deleted throughout the time window. SinceM′ is a β-MCM for Gt, Lemma 5 implies that
M̃t′ is a (β(1 + 2ε′))-MCM for Gt′ . More generally, this argument shows that the matching
obtained at the end of any time window is a (β(1 + 2ε′))-MCM for the graph at that step.

Next, we argue that the matching obtained at the start of any time window (as described
above) is a (β(1 + 2ε′))-MCM for the graph at that step. This assertion is trivially true for
the first time window, where both the matching and the graph are empty. For any subsequent
time window, this assertion follows from the fact that the matching at the start of a new
time window is the one obtained at the end of the old time window, for which we have
already shown that the required approximation guarantee holds. It follows that M̃t =M is
a (β(1 + 2ε′))-MCM for Gt.

Finally, we bound the approximation guarantee of the output matching M̃i in the entire
time window. (It suffices to consider the interior of the window.) Lemma 7 implies that
|M∗i | ≥ min{|M|, |M′| − 1}, for any i = t, t+ 1, . . . , t′. We argue thatM∗i is a (β(1 + 2ε′))-
MCM for Gt. If |M∗i | ≥ |M|, then this assertion follows from the fact that M provides
such an approximation guarantee. We henceforth assume that |M∗i | ≥ |M′| − 1. Recall that
|M′| = Ω(1/ε) = Ω(1/ε′), where the constants hiding in the Ω-notation are sufficiently large,
hence removing a single edge fromM′ cannot hurt the approximation guarantee by more
than an additive factor of, say ε′, i.e., less than β(2ε′). Since M′ provides a β-MCM for
Gt, it follows thatM∗i is indeed a (β(1 + 2ε′))-MCM for Gt, which completes the proof of
the above assertion. Consequently, Lemma 5 implies that M̃i, which is obtained fromM∗i
by removing from it all edges that got deleted from the graph between steps t and i, is a
(β((1 + 2ε′)2))-MCM for Gi. J

4.2.1 A general approximation guarantee
In this section we consider the case of a general approximation parameter β ≥ 1. The
bound on the approximation guarantee of the output matching provided by Lemma 9,
namely (β((1 + 2ε′)2)), remains unchanged. Recalling that ε′ ≤ 1/2, it follows that the
size ofM′ cannot be larger than that ofM by more than a factor of (β((1 + 2ε′)2)) ≤ 2β.
Consequently, the number of computation steps and replacements performed per update
step, namely, O(|M|+ |M′|)/(W/2), is no longer bounded by O(1/ε), but rather by O(β/ε).
To achieve a bound of O(1/ε) for a general β, we shall use a matchingM′′ different from
M′, which includes a possibly small fraction of the edges ofM′. Recall that we can output
` arbitrary edges of the matching M′ = MA

t in time (nearly) linear in `, for any integer
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` = 1, 2, . . . , |M′|. LetM′′ be a matching that consists of (up to) 2|M| arbitrary edges ofM′;
that is, if |M′| > 2|M|,M′′ consists of 2|M| arbitrary edges ofM′, otherwiseM′′ =M′.
We argue thatM′′ is a β-MCM for Gt. Indeed, if |M′| > 2|M| the approximation guarantee
follows from the approximation guarantee ofM and the fact thatM′′ is twice larger than
M, whereas in the complementary case the approximation guarantee follows from that of
M′. In any case it is immediate that |M′′| = O(|M|). (For concreteness, we assume that
the time needed for storing the edges ofM′′ in an appropriate list is O(|M′′|) = O(|M|).)
We may henceforth carry out the entire transformation process withM′′ taking the role of
M′, and in this way guarantee that the number of computation steps and replacements to
the output matching performed per update step is reduced from O(β/ε) to O(1/ε).

4.3 Proof of Theorem 4

The proof of Theorem 4 is very similar to the one of Theorem 3. Specifically, we derive
Theorem 4 by making a couple of simple adjustments to the proof of Theorem 3 given above,
which we sketch next. First, instead of using the transformation of Theorem 1, we use the
one of Theorem 2, whose proof appears in Appendix D of the full version [55]. Second,
the stability property of unweighted matchings used in the proof of Theorem 3 is that the
maximum matching size changes by at most 1 following each update step. This stability
property enables us in the proof of Theorem 3 to consider a time window of W = Θ(ε · |M|)
update steps, so that any β-MCM computed at the beginning of the window will provide
(after removing from it all the edges that get deleted from the graph) a (β(1 + ε))-MCM
throughout the entire window, for any β ≥ 1. It is easy to see that this stability property
generalizes for weighted matchings, where the maximum matching weight may change by an
additive factor of at most ψ. (Recall that the aspect ratio of the dynamic graph is always
bounded by ψ; also, we may assume by scaling that the minimum edge weight is 1.) In order
to obtain a (β(1 + ε))-MWM throughout the entire time window, it suffices to consider a
time window of W ′ = W ′ψ = W/ψ = Θ(ε · |M|/ψ), i.e., a time window shorter than that used
for unweighted matchings by a factor of ψ, and as a result the update time of the resulting
algorithm will grow from T +O(1/ε) to T +O(ψ/ε) and the worst-case recourse bound will
grow from O(1/ε) to O(ψ/ε).

5 Optimality of our Transformations

5.1 Unweighted matchings

In the unweighted case, when |M| < |M′|, Theorem 1 states thatM can gradually transform
intoM′ without ever being in deficit compared to the initial value ofM, i.e., |M∗| ≥ |M|
throughout the entire transformation process. If |M′| ≤ |M|, however, this no longer
holds; in this case the theorem states that we’ll reach a deficit of at most 1 unit. To
see that this bound is tight, consider the case when |M| = |M′| and H = M⊕M′ is a
simple alternating cycle that consists of all edges inM andM′, and thus of length 2|M|.
Throughout any transformation process and until handling the last edge of the cycle, it must
be that |M∗| < |M| if ∆ < 2|M|.

I Remark. In fact, the same situation will occur if ∆ = 2. In the particular case of ∆ = 1,
we’ll be in deficit of up to 2 throughout the process – adding the first edge ofM′ requires us
to delete its two incident edges inM, which already leads to a deficit of 2 units.
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5.2 Weighted matchings
In the weighted case, quantifying this deficit throughout the process is more subtle, but
the worst-case scenario remains essentially the same: |M| = |M′|, all edges have weight
W and H =M⊕M′ is a simple alternating cycle that consists of all edges inM andM′.
Throughout any transformation process and until handling the last edge of the cycle, it
must be that w(M∗) ≤ w(M) −W if ∆ < 2|M|. In general, the deficit to the weight of
the matching is inverse linear in ∆, hence taking ∆ to be Θ(1/ε) ensures that the weight of
the matching throughout the process never goes below (1− ε)w(M). Interestingly, here a
similar situation occurs also when w(M′) > w(M). Specifically, consider the same example
as above but add η to each edge weight ofM′, i.e., assume that the edge weights ofM and
M′ are now W and W ′ = W + η, respectively. Then the deficit is no longer W as before
(for 1 < ∆ < 2|M|), but rather W − b∆/2c · η (for 1 < ∆ < 2|M|). Indeed, adding the first
edge ofM′ requires the deletion of its two incident edges inM, at which stage the deficit is
W − η; from that moment onwards, a single edge ofM is deleted so that another edge of
M′ can be added, which reduces η from the deficit each time. Therefore, if ∆ · η = W , the
deficit is always at least W/2, while w(M′) > w(M) +W/2. This scenario shows that the
bound of Theorem 2 is asymptotically tight.
I Remark. If ∆ = 1, we’ll be in deficit of 2W (rather than W ) throughout the process,
similarly to the unweighted case. In the degenerate case thatM andM′ consist of a single
edge each and ∆ = 1, the weight after the first edge deletion reduces to 0.

6 Optimality of the Recourse Bound

In this section we show that an approximation guarantee of (1 + ε) requires a recourse bound
of Ω(1/ε), even in the amortized sense and even in the incremental (insertion only) and
decremental (deletion only) settings. We only consider edge updates, but the argument
extends seamlessly to vertex updates. This lower bound of Ω(1/ε) on the recourse bound
does not depend on the update time of the algorithm in any way. Let us fix ε to be any
parameter satisfying ε = Ω(1/n), ε� 1, where n is the (fixed) number of vertices.

Consider a simple path P` = (v1, v2, . . . , v2`) of length 2`− 1, for an integer ` = c(1/ε)
such that ` ≥ 1 and c is a sufficiently small constant. (Thus P` spans at least two but no
more than n vertices.) There is a single maximum matchingMOPT

` for P`, of size `, which
is also the only (1 + ε)-MCM for P`. After adding the two edges (v0, v1) and (v2`, v2`+1) to
P`, the maximum matching MOPT

` for the old path P` does not provide a (1 + ε)-MCM
for the new path, (v0, v1, . . . , v2`+1), which we may rewrite as P`+1 = (v1, v2, . . . , v2(`+1)).
The only way to restore a (1 + ε)-approximation guarantee is by removing all ` edges of
MOPT

` and adding the remaining `+ 1 edges instead, which yieldsMOPT
`+1 . One may carry

out this argument repeatedly until the length of the path reaches, say, 4`− 1. The amortized
number of replacements to the matching per update step throughout this process is Ω(1/ε).
Moreover, the same amortized bound, up to a small constant factor, holds if we start from
an empty path instead of a path of length 2`− 1. We then delete all 4`− 1 edges of the final
path and start again from scratch, which may reduce the amortized bound by another small
constant. In this way we get an amortized recourse bound of Ω(1/ε) for the fully dynamic
setting.

To adapt this lower bound to the incremental setting, we construct n′ = Θ(ε · n) vertex-
disjoint copies P 1, P 2, . . . , Pn

′ of the aforementioned incremental path, one after another, in
the following way. Consider the ith copy P i, from the moment its length becomes 2`− 1 and
until it reaches 4`−1. If at any moment during this gradual construction of P i, the matching
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restricted to P i is not the (only) maximum matching for P i, we halt the construction of P i
and move on to constructing the (i + 1)th copy P i+1, and then subsequent copies, in the
same way. A copy whose construction started but was halted is called incomplete; otherwise
it is complete. (There are also empty copies, whose construction has not started yet.) For any
incomplete copy P j , the matching restricted to it is not the maximum matching for P j , hence
its approximation guarantee is worse than 1 + ε; more precisely, the approximation guarantee
provided by any matching other than the maximum matching for P j is at least 1 + c′ · ε, for a
constant c′ that can be made as large as we want by decreasing the aforementioned constant
c, or equivalently, `. (Recall that ` = c(1/ε).) If the matching restricted to P j is changed to
the maximum matching for P j at some later moment in time, we return to that incomplete
copy and resume its construction from where we left off, thereby temporarily suspending
the construction of some other copy Pj′ . The construction of P j may get halted again, in
which case we return to handling the temporarily suspended copy Pj′ , otherwise we return
to handling Pj′ only after the construction of P j is complete, and so forth. In this way we
maintain the invariant that the approximation guarantee of the matching restricted to any
incomplete copy (whose construction is not temporarily suspended) is at least 1 + c′ · ε, for a
sufficiently large constant c′. While incomplete copies may get completed later on, a complete
copy remains complete throughout the entire update sequence. At the end of the update
sequence no copy is empty or temporarily suspended, i.e., any copy at the end of the update
sequence is either incomplete or complete. The above argument implies that any complete
copy has an amortized recourse bound of Ω(1/ε), over the update steps restricted to that
copy. Observe also that at least a constant fraction of the n′ copies must be complete at the
end of the update sequence, otherwise the entire matching cannot provide a (1 + ε)-MCM
for the entire graph, i.e., the graph obtained from the union of these n′ copies. It follows
that the amortized recourse bound over the entire update sequence is Ω(1/ε).

The lower bound for the incremental setting can be extended to the decremental setting
using a symmetric argument to the one given above.

7 Discussion

This paper introduces a natural generalization of the MRP, and provides near-optimal
transformations for the problems of MCM and MWM.

One application of this meta-problem is to dynamic graph algorithms. In particular, by
building on our transformation for maximum cardinality matching we have shown that any
algorithm for maintaining a β-MCM can be transformed into an algorithm for maintaining a
β(1 + ε)-MCM with essentially the same update time as that of the original algorithm and
with a worst-case recourse bound of O(1/ε), for any β ≥ 1 and ε > 0. This recourse bound
is optimal for the regime β = 1 + ε. We also extended this result for weighted matchings,
but there is a linear dependence on the aspect-ratio of the graph in the update time and
recourse bounds. It would be interesting to improve this dependency to be polylogaritmic in
the aspect-ratio.

A natural direction for future work is to study additional basic graph problems under
this generalized framework. Although our positive results may lead to the impression that
there exists an efficient gradual transformation process to any optimization graph problem,
we conclude with a sketch of two trivial hardness results.

For the maximum independent set problem any gradual transformation process cannot
provide any nontrivial approximation guarantee, regardless of the approximation guarantees
of the source and target independent sets. To see this, denote the source approximate
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maximum independent set (the one we start from) by S and the target approximate maximum
independent set (the one we gradually transform into) by S ′, and suppose there is a complete
bipartite graph between S and S ′. Since we cannot add even a single vertex of S ′ to the
output independent set S∗ (which is initialized as S) before removing from it all vertices
of S and assuming each step of the transformation process makes only ∆ changes to S∗,
the approximation guarantee of the output independent set must reach Ω(|S ′|/∆) at some
moment throughout the transformation process. In other words, the approximation guarantee
may be arbitrarily large.

As another example, an analogous argument shows that for the minimum vertex cover
problem, any gradual transformation process cannot provide an approximation guarantee
better than |C|+|C

′|
|C′| > 2, where C and C′ are the source and target vertex covers, respectively.

On the other hand, one can easily see that the approximation guarantee throughout the
entire transformation process does not exceed |C|+|C

′|
|COP T | , where C

OPT is a minimum vertex
cover for the graph, by gradually adding all vertices of the target vertex cover C′ to the
output vertex cover C∗ (which is initialized as C), and later gradually removing the vertices
of C from the output vertex cover C∗.

These examples demonstrate a basic limitation of our generalized framework, and suggest
that further research of this framework is required. One interesting direction for further
research is studying the maximum independent set and minimum vertex cover problems
for bounded degree graphs; note that the trivial hardness results mentioned above do not
apply directly to bounded degree graphs. More generally, studying additional combinatorial
optimization problems under this framework may contribute to a deeper understanding of
its inherent limitations and strengths, and in particular, to finding additional applications of
this framework, possibly outside the area of dynamic matching algorithms.
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Abstract
We consider the sensitivity of algorithms for the maximum matching problem against edge and
vertex modifications. When an algorithm A for the maximum matching problem is deterministic,
the sensitivity of A on G is defined as maxe∈E(G) |A(G)4A(G − e)|, where G − e is the graph
obtained from G by removing an edge e ∈ E(G) and 4 denotes the symmetric difference. When A
is randomized, the sensitivity is defined as maxe∈E(G) dEM(A(G), A(G− e)), where dEM(·, ·) denotes
the earth mover’s distance between two distributions. Thus the sensitivity measures the difference
between the output of an algorithm after the input is slightly perturbed. Algorithms with low
sensitivity, or stable algorithms are desirable because they are robust to edge failure or attack.

In this work, we show a randomized (1− ε)-approximation algorithm with worst-case sensitivity
Oε(1), which substantially improves upon the (1 − ε)-approximation algorithm of Varma and
Yoshida (SODA’21) that obtains average sensitivity nO(1/(1+ε2)) sensitivity algorithm, and show
a deterministic 1/2-approximation algorithm with sensitivity exp(O(log∗ n)) for bounded-degree
graphs. We then show that any deterministic constant-factor approximation algorithm must have
sensitivity Ω(log∗ n). Our results imply that randomized algorithms are strictly more powerful than
deterministic ones in that the former can achieve sensitivity independent of n whereas the latter
cannot. We also show analogous results for vertex sensitivity, where we remove a vertex instead of
an edge.

Finally, we introduce the notion of normalized weighted sensitivity, a natural generalization of
sensitivity that accounts for the weights of deleted edges. For a graph with weight function w, the
normalized weighted sensitivity is defined to be the sum of the weighted edges in the symmetric
difference of the algorithm normalized by the altered edge, i.e., maxe∈E(G)

1
w(e)w (A(G)4A(G− e)).

Hence the normalized weighted sensitivity measures the weighted difference between the output of
an algorithm after the input is slightly perturbed, normalized by the weight of the perturbation.
We show that if all edges in a graph have polynomially bounded weight, then given a trade-off
parameter α > 2, there exists an algorithm that outputs a 1

4α -approximation to the maximum
weighted matching in O(m logα n) time, with normalized weighted sensitivity O(1).
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1 Introduction

The problem of finding the maximum matching in a graph is a fundamental problem in graph
theory with a wide range of applications in computer science. For example, the maximum
matching problem on a bipartite graph G captures a typical example where a number of
possible clients want to access content distributed across multiple providers. Each client can
download their specific content from a specific subset of the possible providers, but each
provider can only connect to a limited number of clients. A maximum matching between
clients and providers would ensure that the largest possible number of clients receive their
content.

However in many modern applications, the underlying graph G represents some large
dataset that is often dynamic or incomplete. In the above example, the content preference
of clients may change, which alters the set of suppliers that provide their desired content.
Connections between specific providers and clients may become online or offline, effectively
adding or removing edges in the underlying graph. Providers and clients may themselves
join or leave the network, adding or removing entire vertices from the graph. Thus, it is
reasonable to assume that our knowledge of important properties of G may also change or
be incomplete. Nevertheless, we must extract information from our current knowledge of G
either for pre-processing or to perform tasks on the current infrastructure. At the same time,
we would like to maintain as much consistency as possible when updates to G are revealed.

Motivated by a formal definition of consistency of algorithms across graph updates, Varma
and Yoshida [12] first defined the average sensitivity of a deterministic algorithm A to be
the Hamming distance1 between the output of A on graphs G and G− e, where G′ is the
graph formed by deleting a random edge of G. Then, they defined average sensitivity for
randomized algorithms as

E
e∼E(G)

[dEM(A(G), A(G− e))] ,

where dEM(·, ·) denotes the earth mover’s distance and G − e is the graph obtained from
G by deleting an edge e ∈ E(G). For the maximum matching problem, they showed a
randomized 1/2-approximation algorithm with average sensitivity O(1) and a randomized
(1− ε)-approximation algorithm with average sensitivity O(n1/(1+ε2)).

Worst case sensitivity. In this work, we continue the study of sensitivity for the maximum
matching problem. Instead of average sensitivity as in [12], we consider a stronger notion
of (worst-case) sensitivity. Specifically, the sensitivity of a deterministic algorithm A is the
maximum Hamming distance between the output of A on graphs G and G′, where G′ is the
graph formed by deleting an edge of G. Then, the sensitivity of a randomized algorithm A is

max
e∈E(G)

dEM(A(G), A(G− e)).

Clearly, the sensitivity of an algorithm is no smaller than its average sensitivity. As a natural
variant, we also consider vertex sensitivity, where we delete a vertex instead of an edge.
To avoid confusion, sensitivity with respect edge deletion will be sometimes called edge
sensitivity.

1 Here we regard the output as a binary string so we can think of the Hamming distance between outputs.
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1.1 Our Contributions
We first show that, for any ε > 0, there exists a randomized (1− ε)-approximation algorithm
whose sensitivity solely depends on ε (Section 2).

I Theorem 1. For any ε > 0, there exists an algorithm that outputs a (1− ε)-approximation
to the maximum matching problem with probability at least 0.99, using time complexity
O((n+m) ·K) and edge/vertex sensitivity O(3K), where K = (1/ε)2O(1/ε)

.

This result improves upon the previous (1− ε)-approximation algorithm [12] in that (1)
the sensitivity is constant instead of O(n1/(1+ε2)) and (2) it bounds worst-case sensitivity
instead of average sensitivity.

We observe that approximation is necessary to achieve a small sensitivity. For example,
consider an n-cycle for an even n, and let M1 and M2 be the two maximum matchings of
size n/2 in the graph. Consider a deterministic algorithm that always outputs a maximum
matching, say, M1 for the n-cycle. Then, it must output M2 after removing an edge in M1,
and hence the sensitivity is Ω(n). With a similar reasoning, we can show a lower bound of
Ω(n) for randomized algorithms. Also as we show in Section 4.3, the dependency on ε in
Theorem 1 is necessary.

Next, we show a deterministic algorithm for finding a maximal matching on bounded
degree graphs that has low sensitivity (Section 3). Note that it has approximation ratio 1/2
because the size of any maximal matching is a 1/2-approximation to the maximum matching.

I Theorem 2. There exists a deterministic algorithm that finds a maximal matching with
edge/vertex sensitivity ∆O(6∆+log∗ n), where ∆ is the maximum degree of a vertex in the
graph.

Then, we show that randomness is necessary to achieve sensitivity independent of n
(Section 4):

I Theorem 3. Any deterministic constant-factor approximation algorithm for the maximum
matching problem has edge sensitivity Ω(log∗ n).

Namely, we show in Section 4.2 that we cannot obtain sublinear sensitivity just by
derandomizing the randomized greedy algorithm. Theorems 1 and 3 imply that randomized
algorithms are strictly more powerful than deterministic ones in that the former can achieve
sensitivity independent of n whereas the latter cannot for the maximum matching problem.

We then introduce the idea of weighted sensitivity, which is a natural generalization of
sensitivity for both the average and worst cases. For the problems that we consider, the
sensitivity of a deterministic graph algorithm is the number of edges that changes in the
output induced by the alteration of a single vertex/edge in the input. Thus for a weighted
graph, the weighted sensitivity is the total weight of the edges that are changed in the output,
following the deletion of a vertex/edge. For randomized algorithms, the definition extends
naturally to the earth mover’s distance between the distributions with the corresponding
weighted loss function. Finally, we can also normalize by the weight of the edge that is
deleted.

The motivation for studying weighted sensitivity is natural; in many applications with
evolving data, the notion of sensitivity arises in the context of recourse, a quantity that
measures the change in the underlying topology of the optimal solution. For example in the
facility location problem, the goal is to construct a set of facilities to minimize the sum of
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the costs of construction and service to a set of consumers. As the information about the
set of consumers evolves, it would be ideal to minimize the number of relocations for the
facilities, due to the construction costs, which is measured by the sensitivity of the algorithm.
However, as construction costs may not be uniform, a more appropriate quantity to minimize
would be the total cost of the relocations for the facilities, which is measured by the weighted
sensitivity.

Similarly, matchings are often used to maximize flow across a bipartite graph, but the
physical structures that support the flow may incur varying costs to construct or demolish,
corresponding to the amount of flow that the structures support. In this case, we note that
it may not be possible for the worst case weighted sensitivity to be small. For example, if a
single edge has weight nC for some large constant C and the remaining edges have weight 1,
any constant factor approximation to the maximum weighted matching must include the
heavy edge. But if the heavy edge is then removed from the graph, the weighted sensitivity
of any constant factor approximation algorithm is Ω(nC). This issue is circumvented by the
normalized weighted sensitivity, which scales the sensitivity by the weight of the deleted edge.
We give approximation algorithms for maximum weighted matching with low normalized
weighted worst-case sensitivity.

I Theorem 4. Let G = (V,E) be a weighted graph with 1
nc ≤ w(e) ≤ nc for some constant

c > 0 and all e ∈ E. For a trade-off parameter α > 2, there exists an algorithm that
outputs a 1

4α -approximation to the maximum weighted matching in O(m logα n) time and has
normalized weighted sensitivity O(1).

Our results also extend to α = 2 and general worst-case weighted sensitivity, i.e., weighted
sensitivity that is not normalized. We detail these algorithms in Section 5.

1.2 Proof Sketch
We explain the idea behind the algorithm of Theorem 1. For simplicity, we focus on edge
sensitivity. We note that if we only sought a 1/2-approximation to the maximum matching,
then it would suffice to find any maximal matching. Although the well-known greedy
algorithm produces a maximal matching, the output of the algorithm is highly sensitive to
the ordering of the edges in the input. One may hope that, if we choose an ordering of the
edges uniformly at random, then the resulting output will be stable against edge deletions to
the underlying graph. This is not immediately obvious because the deleted edge will appear
about halfway through the ordering (of the edges in the original graph) in expectation, so it
seems possible that it can impact about the remaining half of the edges. Luckily, we show
that the edges at the beginning of the ordering are significantly more important, so that
even if the deleted edge appears about halfway through the ordering, the sensitivity of the
maximal matching is O(1) (Section 2.3.1). Our analysis is similar to [2], who show that the
vertices at the beginning of an ordering are significantly more important in maintaining a
maximal independent set in the dynamic distributed model.

Adapting this idea to a (1− ε)-approximation is more challenging. The natural approach
is to take a maximal matching and repeatedly find a large number of augmenting paths,
but the change of even a single edge in a maximal matching can potentially impact a large
number of edges if the augmenting paths are found in a sequential manner. We instead
adapt a layered graph of [9] that is used to randomly find a large number of augmenting
paths in a small number of passes in the streaming model. Crucially, we instead find a large
number of disjoint augmenting paths in a small number of parallel rounds, which results in
low sensitivity.
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Now we turn to explaining the idea behind Theorem 2. Again we focus on edge sensitivity.
Our algorithm first uses a deterministic local computation algorithm (LCA) of [4] for 6∆-
coloring a graph G with maximum degree ∆, using O(∆ log∗ n) probes to an adjacency list
oracle. Here we want to design an algorithm that answer queries about the colors of vertices
by making a series of probes to the oracle. The answers of the algorithm must be consistent so
that there exists at least one proper coloring that is consistent with the answers. In our case,
each probe to the oracle is a query (v, i) with v ∈ V and a positive integer i. If the degree of
v is at least i, the oracle responds with the i-th neighbor of v to the probe. Otherwise, the
oracle outputs a special symbol ⊥. In particular, the deterministic 6∆-coloring LCA only
probes vertices that are within a “small” neighborhood of the query.

Given a coloring for G, we then give a local distributed algorithm that takes a coloring
of a graph and outputs a maximal matching. It follows from a framework of [10] that our
local distributed algorithm can actually be simulated by a deterministic LCA that again only
probes a “small” neighborhood of the query. Thus to bound the sensitivity of the algorithm,
we bound the number of queries for which a deleted edge would be probed. Since only a
small number of queries probes the deleted edge, then the output of the algorithm only has
a small number of changes and thus low worst-case sensitivity.

Our lower bound of Theorem 3 considers the set of length-t cycles on a graph with n
vertices. Any matching on length-t cycles can be represented as a series of indicator variables
denoting whether edge i ∈ [t] is in the matching. We can then interpret the indicator variables
as an integer encoding from 0 to 2t − 1 through the natural binary representation. Ramsey
theory claims that for t = O(log∗ n), there exists a set S of t + 1 nodes of n so that any
subset of t nodes has the same encoding. We then choose G and G′ to be the cycle graphs
consisting of the first t nodes of S and the last t nodes of S, respectively. Since the encodings
of the matchings of G and G′ are the same, but the edge indices are shifted by one, it follows
that Ω(t) edges must be in the symmetric difference between G and G′, which implies from
t = O(log∗ n) that the worst-case sensitivity of the algorithm must be Ω(log∗ n).

1.3 Related Work
Varma and Yoshida [12] introduced the notion of sensitivity and performed a systematic study
of average sensitivity on many graph problems. Namely, they gave efficient approximation
algorithms with low average sensitivities for the minimum spanning forest problem, the global
minimum cut problem, the minimum s-t cut problem, and the maximum matching problem.
They also introduced a low-sensitivity algorithm for linear programming, and proved many
fundamental properties of average sensitivity, such as sequential or parallel composition.
Peng and Yoshida [11] gave an algorithm for the problem of spectral clustering with average
sensitivity λ2

λ2
3
, where λi is the i-th smallest eigenvalue of the normalized Laplacian, which is

small when there are exactly two clusters in the graph.
The effects of graph updates have also been studied significantly in the dynamic/online

model, where updates to the graph arrive in a stream, and the goal is to maintain some
data structure to answer queries on the underlying graph so that both the update time
and query time are efficient. Consequently, most of the literature for dynamic algorithms
focuses on optimizing these quantities, rather than the changes in the output as the data
evolves. Sensitivity analysis is more relevant when the goal of the dynamic/offline model is
to minimize the number of changes between successive outputs of the algorithm over the
stream.

Lattanzi and Vassilvitski [8] studied the problem of consistent k-clustering, where the
goal is to maintain a constant-factor approximation to some underlying k-clustering problem,
such as k-center, k-median, or k-means, while minimizing the total number of changes to the
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set of centers as the stream evolves. In this setting, each change to the set of center is known
as a recourse. Whereas the model of [8] allows only insertions of new points, algorithms
with low sensitivity are robust against both insertions and deletions. Cohen-Addad et. al. [3]
further considered the facility location problem in this model of maintaining a constant-factor
approximation while minimizing the total recourse. Although the algorithm of [3] addresses
both the insertions and deletions of points, their total recourse across the stream is O(n),
where n is the length of the stream; this is inherent to the difficulty of their problem in the
model. Whereas their work already provides an amortized O(1) recourse per update, we also
study the worst-case sensitivity in our work.

1.4 Preliminaries
For a positive integer n, let [n] denote the set {1, 2, . . . , n}. For a positive integer n and
p ∈ [0, 1], let B(n, p) be the binomial distribution with n trials and success probability p. We
use the notation Oε(·) to omit dependencies on ε.

Let G = (V,E) be a graph. For an edge e ∈ E, let NG(e) be the “neighboring” edges of e
in G, that is, NG(e) = {e′ ∈ E | e′ 6= e, |e′ ∩ e| ≥ 1}. We omit the subscript if it is clear from
the context.

For two (vertex or edge) sets S and S′, let dH(S, S′) = |S4S′|, where 4 denotes the
symmetric difference. Abusing the notation, for set of paths P and P ′, we write dH(P,P ′) to
denote dH(∪P∈PV (P ),∪P∈P′V (P )). For two random sets X and X ′, let dEM(X,X ′) be the
earth mover’s distance between X and X, where the distance between two sets is measured
by dH, that is,

dEM(X,X ′) = min
D

E
(S,S′)∼D

dH(S, S′),

where D is a distribution such that its marginal on the first and second coordinates are X
and X ′, respectively. For a real-valued function β on graphs, we say that the sensitivity of a
(randomized) algorithm A that outputs a set of edges is at most β if

dEM(A(G), A(G− e)) ≤ β(G)

holds for every e ∈ E(G).
Given a matching M in a graph G = (V,E), we call a vertex free if it does not appear as

the endpoint of any edge in M . A path (v1, v2, . . . , v2`+2) of length 2`+ 1 is an augmenting
path if v1 and v2`+2 are free vertices and (vi, vi+1) ∈M for even i and (vi, vi+1) ∈ E \M for
odd i.

2 Randomized (1 − ε)-Approximation

In this section, we prove Theorem 1. Our algorithm, which we describe in Section 2.1, is a
slight modification of the multi-pass streaming algorithm due to McGregor [9]. We discuss
its approximation guarantee and sensitivity in Sections 2.2 and 2.3, respectively.

2.1 Algorithm Description
A key step of McGregor’s algorithm is to find a large set of augmenting paths of a specified
length in a batch manner using the layered graph, given below. Given a graph G = (V,E), a
matching M ⊆ E, and a positive integer `, the layered graph H = H(G) consists of `+ 2
layers L0, L1, . . . , L`+1, where L0 = L`+1 = V and L1 = L2 = · · · = L` = V × V .
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For each vertex v ∈ V , we sample iv ∈ {0, ` + 1} uniformly at random independently
from others. We say that the copy of v in the Liv -th layer is active and that the other copy is
inactive. For each edge {u, v} ∈M , with probability half, we sample a value i(u,v) ∈ {1, . . . , `}
uniformly at random and set i(v,u) = ⊥, where ⊥ is a special symbol, and with the remaining
probability half, we sample a value i(v,u) ∈ {1, . . . , `} uniformly at random and set i(u,v) = ⊥.
For each edge {u, v} ∈ E \M , we set i(u,v) = i(v,u) = ⊥. We say that the copy of (u, v) in
the Li(u,v)-th is active if i(u,v) 6= ⊥ and is inactive otherwise. Intuitively, some orientation
of each edge {u, v} in the matching M is assigned to a random internal layer in H and
edges of G that are not in the matching are not initially assigned to any layer in H. For
i = 0, . . . , ` + 1, we denote by L̃i the set of active vertices in Li. Let L =

⋃`+1
i=0 Li be the

vertex set of H, and let L̃ =
⋃`+1
i=0 L̃i be the set of active vertices in H.

The edges in the layered graph H are those between active vertices that can be a part of
an augmenting path in G. More specifically,

We add an edge between t ∈ L̃0 and (u, v) ∈ L̃1 if t is free in M and t is adjacent to v.
We add an edge between (u, v) ∈ L̃` and s ∈ L̃`+1 if s is free in M and s is adjacent to u.
We add an edge between (u, v) ∈ L̃i and (u′, v′) ∈ L̃i+1 for i ∈ [`− 1] if v is adjacent to
u′.

Note that inactive vertices are isolated in H.

M M

1

2 3

4

56

L0

1

2

3

4

5

6

L1
...

(5, 6)

(4, 5)

(3, 4)

(2, 3)

(1, 2)

...

L2
...

(5, 6)

(8, 5)

(3, 4)

(2, 3)

(1, 2)

...

L3

1

2

3

4

5

6

Figure 1 Example of an active layered graph with respect to a matching M , in solid lines. The
free vertex 5 appears in L0 and the free vertex 6 appears in L3. The augmenting path found by the
layered graph is represented by a dashed purple line.

We introduce the following definition to handle augmenting paths for a matching M in a
graph G via paths in its corresponding layered graph.

I Definition 5. We say that a path vi, vi−1, . . . , v0 with vj ∈ L̃j (j ∈ {0, 1, . . . , i}) is an
i-path. Note that an (`+ 1)-path in H corresponds to an augmenting path of length 2`+ 1
in G.

The layered graph defined above is slightly different from the original one due to Mc-
Gregor [9] in that he did not include inactive vertices in H, as they are irrelevant to find
augmenting paths. However as we consider sensitivity of algorithms, it is convenient to fix
the vertex set so that it is independent of the current matching M .
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We briefly define the randomized greedy subroutine RandomizedGreedy on a graph
G = (V,E) as follows. The subroutine first chooses a random ordering π over edges and
then starting with an empty matching M , the procedure iteratively adds the i-th edge in
the ordering π to M if the edge is not adjacent to any edge in M , until it has processed all
edges. See Algorithm 1 for the full details.

Algorithm 1 Randomized Greedy Algorithm.

1 Procedure RandomizedGreedy(Graph G = (V,E))
2 Generate a permutation π of E uniformly at random;
3 Greedily add edges to a maximal matching M , in the order of π;
4 Output M ;

Algorithm 2 shows our algorithm for finding a large set of augmenting paths of length
2`+ 1 given a matching M in a graph G. For a matching M and a vertex v belonging to an
edge e in M , let ΓM (v) denote the other endpoint of e. Similarly, for a vertex set S such that
each edge in M uses at most one vertex in S, let ΓM (S) denote the set of other endpoints.
For subsets L and R of adjacent layers in H, let RandomizedGreedy(L,R) denote the
randomized greedy on the induced bipartite graph H[L ∪ R]. FindPaths tries to find a
large set of vertex disjoint i-paths from S ⊆ Li to L0. The result is stored as a tag function
t : V (H) → V (H) ∪ {untagged, dead end}. Here, t(v) is initialized to untagged, and it will
represent the next vertex in the i-path found. If we could not find any i-path starting from
v, t(v) is set to deadend.

The difference from McGregor’s algorithm is that we run the loop in FindPaths 1/δ
times instead of running it until |M ′| ≤ δ|M |. This makes sure that we compute a maximal
matching the same number of times no matter what G and M are, and it is more convenient
when analyzing the sensitivity.

Our algorithm for the maximum matching problem (Algorithm 3) simply runs Augment-
ingPaths sufficiently many times for various choice of ` and then keep applying the obtained
augmenting paths. Before analyzing its approximation ratio and sensitivity, we analyze its
running time.

I Lemma 6. The total running time of Algorithm 3 is O(n+m)K, where K = (1/ε)2O(1/ε)
.

Proof. Observe that the outer loop of Algorithm 3 runs for r iterations and the inner loop
runs for k iterations, where k = dε−1 + 1e and r = 4k2(16k + 20)(k − 1)(2k)k. Each inner
loop runs an instance of AugmentingPaths with parameters ` ≤ k and δ = 1

r(2k+2) , which
creates a layered graph with O(`) layers in O((n+m)k) time, and then calls FindPaths.
For each time that FindPaths is called, the value of δ is squared and the value of ` is
decremented, starting at ` = k until ` = 1. Thus, the loop in FindPaths is run at most
1
δ = O

(
(r(2k + 2))2k

)
times and each loop uses time O(n+m). Hence, the total runtime is

O(n+m)K, where K = (1/ε)2O(1/ε)
. J

2.2 Approximation Ratio
In this section, we analyze the approximation ratio of Algorithm 3.

I Lemma 7 ([9]). Suppose FindPaths(·, ·, j, ·) is called δ−2i−j+1+1 times in the recursion
for FindPaths(H,S, i, δ). Then at most 2δ|Li| paths are removed from consideration as
being (i+ 1)-paths.
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Algorithm 2 Augmentation Algorithm.

1 Procedure AugmentingPaths(G,M, `, δ)
2 Construct a layered graph H using G, M , and `;
3 t(v)← untagged for every vertex v in H;
4 FindPaths(H,L`+1, `, δ, t);
5 Convert t to a set of augmenting paths in G;
6 Apply the augmenting paths to M .
7 Procedure FindPaths(H,S, i, δ, t)
8 M ′ ← RandomizedGreedy(S,Li−1 ∩ t−1(untagged));
9 S′ ← ΓM ′(S);

10 if i = 1 then
11 for u ∈ S do
12 if u ∈ ΓM ′(L0) then
13 t(u)← ΓM ′(u)
14 if u ∈ S \ ΓM ′(L0) then
15 t(u)← dead end.

16 return t.
17 for d1/δe times do
18 FindPaths(H,S′, i− 1, δ2, t);
19 for v ∈ S′ \ t−1(dead end) do
20 t(ΓM ′(v))← v.
21 M ′ ← RandomizedGreedy(S ∩ t−1(untagged), Li−1 ∩ t−1(untagged));
22 S′ ← ΓM ′(S ∩ t−1(untagged)).
23 for v ∈ S ∩ t−1(untagged) do
24 t(v)← dead end.
25 return

Algorithm 3 Algorithm for maximum matching.

1 Procedure Matching(G, ε)
2 Let π be a random ordering of the edges of G;
3 Let M be the greedy maximal matching of G induced by π;
4 k ← dε−1 + 1e;
5 r ← 4k2(16k + 20)(k − 1)(2k)k;
6 for ` = 1 to k do
7 for i = 1 to r do
8 M ′`,i ← AugmentingPaths(G,M, `, 1

r(2k+2) );
9 M ←M ⊕M ′`,i.

10 return M .

Let Li be the set of graphs whose vertices are partitioned into i + 2 layers, L0, . . . , Li+1
and whose edges are a subset of

⋃i+1
j=1(Lj × Lj−1). Then we immediately have the following

lemma, analogous to Lemma 2 in [9]:
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I Lemma 8. For a graph G ∈ Li, FindPaths(H,S, i, δ) finds at least (γ − δ)|M | of the
(i+ 1)-paths among some maximal set of (i+ 1)-paths of size γ|M |.

We require the following structural property relating maximal and maximum matchings
through the set of connected components in the symmetric difference.

I Lemma 9 (Lemma 1 in [9]). Let M be a maximal matching and M∗ be a maximum
matching. Let C be the set of connected components in M∗4M . Let α` be the constant so
that α`|M | is the number of connected components in C with ` edges from M , excluding those
with ` edges from M∗. If max`∈[k] α` ≤ 1

2k2(k+1) , then |M | ≥
|M∗|

1+1/k .

We also require the following result by [9] bounding the number of augmenting paths found
by AugmentingPaths.

I Lemma 10 (Theorem 1 in [9]). If G has α`|M | augmenting paths of length 2`+ 1, then
the number of augmenting paths of length 2`+ 1 found by AugmentingPaths is at least
(b`β` − δ)|M |, where b` = 1

2`+1 and β` ∼ B
(
α`|M |, 1

2(2`)`

)
.

We now show that Algorithm 3 outputs a (1− ε)-approximation to the maximum matching.

I Theorem 11. Algorithm 3 finds a (1− ε)-approximation to the maximum matching with
probability at least 0.99.

Proof. We say the algorithm enters phase ` when the number of layers in the layered
graph has been incremented to `, i.e., each invocation of the outer for loop corresponds
to a separate phase. We say the algorithm enters round i in phase ` after the subroutine
AugmentingPaths has completed i− 1 iterations within phase `. Let M`,i be the matching
M prior to the call to AugmentingPaths in round i of phase `. Let α`,i|M`,i| be the
number of length 2` + 1 augmenting paths of M`,i. Thus by Lemma 10, the subroutine
AugmentingPaths augments M`,i by at least (b`β`,i − δ)|M`,i| edges in round i of phase
`, where b` = 1

2`+2 , δ is a parameter that we choose later, and β`,i is a random variable
distributed according to B

(
α`,i|M`,i|, 1

2(2`)`

)
. Let M be the output matching. Then by

Bernoulli’s inequality, we have

Pr [|M | ≥ 2|M1,1|] ≥ Pr

|M1,1|
∏

`∈[k],i∈[r]

(1 + max (0, b`β`,i − δ)) ≥ 2|M1,1|


≥ Pr

∑
`∈[k]

max
i∈[r]

b`β`,i ≥ 2 + rδ

 .
We would like to analyze

∑
`∈[k] maxi∈[r] b`β`,i, but the analysis is challenging due to

dependencies between multiple rounds and phases. We thus define independent variables
X1, . . . , Xk and use a coupling argument.

We define A` = maxi∈[r] b`β`,i|M`,i| to be an upper bound on the maximum number of
augmented edges during phase ` of the algorithm. Suppose by way of contradiction that
maxi∈[r] α`,i < α0 := 1

2k2(k−1) for each of the phases 1 ≤ ` ≤ k. Then Lemma 9 would imply
that at some point M`,i is sufficiently large. Thus we have maxi∈[r] α`,i ≥ α0.

We have A` = maxi∈[r] b`β`,i|M`,i|, b` = 1
2`+2 , and β`,i|M`,i| ∼ B

(
α`,i|M`,i|, 1

2(2`)`

)
. Now

for ` ≤ k, we have that 1
2(2`)` ≥

1
2(2k)k . Thus maxi∈[r] α`,i ≥ α0 and |M`,i| ≥ |M`,1| implies

that the distribution of A` statistically dominates the distribution of b` · B
(
α0|M`,1|, 1

2(2k)k

)
.
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Hence if we define X` to be independent random variables distributed as B
(
α0|M`,1|, 1

2(2k)k

)
for each ` ∈ [r], then the distribution of A` statistically dominates the distribution of b` ·X`.
Thus,

Pr

∑
`∈[k]

max
i∈[r]

b`β`,i ≥ 2 + rδ

 ≥ Pr

∑
`∈[k]

max
i∈[r]

b`β`,i|M`,i| ≥ (2 + rδ)|Mk,r|


= Pr

∑
`∈[k]

A` ≥ (2 + rδ)|Mk,r|


≥ Pr

∑
`∈[k]

X` ≥
4 + 2rδ
bk

· |M1,1|

 ,
where the final inequality results from M1,1 being a maximal matching and b` ≥ bk for ` ∈ [k].

Now the variables X` are independent but not identically distributed. Nevertheless, we
can write Y =

∑
`∈[k]X` and note that the distribution of Y statistically dominates the

distribution of Z ∼ B
(
α0|M1,1|r, 1

2(2k)k

)
since |M`,i| ≥ |M1,1| for all ` ∈ [k] and i ∈ [r].

Thus for bk = 1
2k+2 and δ = bk

r ,

Pr

∑
`∈[k]

X` ≥
4 + 2rδ
bk

· |M1,1|

 ≥ Pr
[
Z ≥ 4 + 2bk

bk
|M1,1|

]
= Pr[Z ≥ |M1,1|(8k + 10)].

For r = 2(2k)k(16k+20)
α0

, we have that E[Z] = (16k + 20)|M1,1|. Thus from a simple Chernoff
bound,

Pr[Z ≥ |M1,1|(8k + 10)] = 1− Pr
[
Z <

E[Z]
2

]
> 1− e−2(16k+20)|M1,1| ≥ 0.99.

Putting things together, we have Pr [|M | ≥ 2|M1,1|] ≥ 0.99, which implies that there exists a
maximum matching with more than double the number of edges of a maximal matching and
is a contradiction. Therefore, our assumption that maxi∈[r] α`,i ≥ α0 := 1

2k2(k−1) for each of
the phases 1 ≤ ` ≤ k must have been invalid. However, if α`,i < 1

2k2(k−1) for some i ∈ [r]
and ` ∈ [k], then by Lemma 9, we have for k = dε−1 + 1e and sufficiently small ε > 0 that

|M`,i| ≥
|M∗|

1 + 1/k ≥
|M∗|
1 + ε

≥ (1− ε)|M∗|,

with probability at least 0.99. Thus, Algorithm 3 outputs a (1 − ε) approximation the
maximum matching with probability at least 0.99. J

Boosting the Success Probability. To increase the probability of success to 1− p for any
p ∈ (0, 1), a naïve approach would be to run O

(
log 1

p

)
iterations of Algorithm 3 in parallel.

However, the sensitivity analysis becomes considerably more challenging. Instead, we note
that the 1

e probability of failure is actually a significant weakening of the e−2(16k+20)|M1,1|

probability of failure. Thus, increasing k by a factor of O
(

log 1
p

)
increases the probability of

success to 1− p. However, for subconstant p, it also substantially increases the asymptotic
sensitivity of Algorithm 3.
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2.3 Sensitivity of the Randomized Greedy and Algorithm 3
To analyze the sensitivity of Algorithm 3, we first analyze the sensitivity of the randomized
greedy algorithm.

2.3.1 Sensitivity of the Randomized Greedy
In this section, we study the sensitivity of the randomized greedy with respect to vertex
deletions. Recall that given a graph G = (V,E), the randomized greedy works as follows.
First, it chooses a random ordering π over edges. Then starting with an empty matching M ,
it iteratively adds the i-th edge in the ordering π to M if it is not adjacent to any edge in
M . The main result of this section is the following.

I Theorem 12. Let A be the randomized greedy for the maximum matching problem. Then,
for any graph G = (V,E) and a vertex v ∈ V , we have dEM(A(G), A(G− v)) ≤ 1.

We need to consider deleting vertices to analyze the sensitivity of our randomized (1− ε)-
approximation algorithm for the maximum matching problem in Section 2. Our analysis is a
slight modification of a similar result for the maximal independent set problem [2]. Hence,
we defer the proof to the full version of the paper.

2.3.2 Sensitivity of Algorithm 3
We first analyze the sensitivity of AugmentingPaths. Let us fix the graphs G = (V,E)
and G′ = (V,E′), and matchings M ⊆ E and M ′ ⊆ E′, a positive integer `, and δ > 0. Let
H and H ′ be the layered graphs constructed using G,M, ` and G′,M ′, `, respectively, and
let L̃ and L̃′ be the set of active vertices in H and H ′, respectively.

I Lemma 13. We have dH(L̃, L̃′) ≤ 3dH(E,E′) + 3dH(M,M ′).

Proof. Each edge modification in the graph or the matching may cause activate/inactivate
at most three vertices in the layered graph (two of them are in the first and last layers, and
the remaining one is in one of the middle layers), and hence the lemma follows. J

For two tag functions t, t′ : V (H) → V (H) ∪ {untagged, deadend}, we define dH(t, t′) =
|{v ∈ V (H) | t(v) 6= t′(v)}|. We will use symbols t and t′ to denote tag functions for H and
H ′, respectively. Note that the supposed domain of t′ is V (H ′), but it is equal to V (H).

I Lemma 14. Let P = AugmentingPaths(G,M, `, δ) and
P ′ = AugmentingPaths(G′,M ′, `, δ). Then, we have

dEM (P,P ′) ≤ (dH(E,E′) + dH(M,M ′)) · 3K ,

where K = (1/ε)2O(1/ε)
.

Proof. Let A and A′ denote AugmentingPaths(G,M, δ, `) and
AugmentingPaths(G′,M ′, δ, `), respectively. Let M1,M2, . . . ,MK and M ′1,M

′
2, . . . ,M

′
K

be the sequences of matchings constructed during the process of A and A′, respectively.
Note that A and A′ construct the same number of matchings, and that K ≤ (1/ε)2O(1/ε)

,
which follows by a similar argument to that in the proof of Lemma 6. For i ∈ [K], let Si
and S′i be the vertex sets on which Mi and M ′i , respectively, are constructed, that is, the
vertex set passed on to RandomizedGreedy, and let ti and t′i be the tag functions right
before constructing Mi and M ′i , respectively. By Lemma 13, we have dEM(S1, S

′
1) ≤ c,

where c = 3dH(M,M ′) + 3dH(E,E′). First, because each difference between Mi−1 and M ′i−1
increases the Hamming distance between ti and t′i by one, we have
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dEM(ti, t′i) ≤ dEM(Mi−1,M
′
i−1) + dEM(ti−1, t

′
i−1)

≤
i−1∑
j=1

dEM(Mj ,M
′
j) + dEM(t1, t′1) =

i−1∑
j=1

dEM(Mj ,M
′
j).

Then we have

dEM(Si, S′i) ≤ dEM(Mi−1,M
′
i−1) + dEM(ti, t′i) ≤ 2

i−1∑
j=1

dEM(Mi,M
′
i) ≤ 2

i−1∑
j=1

dEM(Sj , S′j),

where the last inequality is due to Theorem 12. Solving this recursion, we get

i∑
j=1

dEM(Sj , S′j) ≤ c · 3i−1,

and hence we have dEM(SK , S′K) = 2 · 3K−2c, and the claim follows. J

We now show that the sensitivity of Algorithm 3 is Oε(1).

I Theorem 15. The sensitivity of Algorithm 3 is at most 3K , where K = (1/ε)2O(1/ε)
.

Proof. Let G = (V,E) be a graph and G′ = (V,E′) = G − e for some e ∈ E. Let
M0,M1, . . . ,Mkr be the sequence of matchings we construct in Algorithm 3 on G, where M0
is the matching constructed at Line 3, and Mj is the matching constructed at Line 3 in the
round i of the phase ` such that j = (`− 1)r+ i. We define M ′0,M ′1, . . . ,M ′kr similarly using
G′. Then, we have by Theorem 12

dEM(M0,M
′
0) ≤ 1,

and we have by Lemma 14

dEM(Mi,M
′
i) ≤ dEM(Mi−1,M

′
i−1) + (dEM(E,E′) + dEM(Mi−1,M

′
i−1)) · 3K

= dEM(Mi−1,M
′
i−1)(3K + 1) + 3K

for i ∈ [kr], where K = (1/ε)2O(1/ε)
. Solving the recursion, we get

dEM(Mkr,M
′
kr) ≤ 2

(
1 + 3K

)kr − 1,

and we have the desired bound. J

The proof of Theorem 1 then follows from Theorem 11 and Theorem 15.

Sensitivity to Vertex Deletions

We remark that Algorithm 3 also has sensitivity O(3K), for K = (1/ε)2O(1/ε)
, to vertex

deletions. Recall that Lemma 13 crucially relies on each edge deletion changing at most three
vertices in the layered graph. That is, due to the construction of the layered graph, each edge
deletion changes at most two altered vertices in the first and last layers, and at most one
altered vertex in one of the middle layers. This is because the first layer and the last layer
encode the vertex set V , while each matched edge is assigned to one of the middle layers.
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Observe that when we delete a vertex v, at most one vertex in the vertex set V is altered,
so that the first and last layer of the layered graph each have one change. Moreover, at
most one matched edge is incident to v, so at most one vertex in one of the middle layers is
altered as well. Thus, at most three vertices in the layered graph are changed as a result of
the vertex deletion, so the sensitivity of Algorithm 3 to vertex deletions is again O(3K), for
K = (1/ε)2O(1/ε)

.

3 Deterministic Maximal Matching for Bounded-Degree Graphs

In this section, we give a deterministic algorithm for computing a maximal matching that
has low sensitivity on bounded-degree graphs. The main idea is to use deterministic local
computation algorithms with a small number of probes to find a maximal matching. Our
algorithm uses two main ingredients. The first ingredient is a deterministic LCA of [4] for 6∆-
coloring a graph with maximum degree ∆, using O(∆ log∗ n) probes. The second ingredient
is a framework of [10] that simulates local distributed algorithms using a deterministic LCA.
In particular, we use the framework to simulate an algorithm that takes a coloring of a graph
and outputs a maximal matching. We give the details for the local distributed algorithm in
Algorithm 5.

To bound the sensitivity of the algorithm, it suffices to analyze the number of queries for
which a deleted edge would be probed. Crucially, both the deterministic LCA of [4] and the
framework of [10] only probe edges (incident to vertices) within a small radius of the query.
Thus, only a small number of queries will probe the edge that is altered, so that the output
of the algorithm only has a small number of changes.

We first require a deterministic LCA of [4] for 6∆-coloring a graph with degree ∆, using
a small number of probes within distance O(∆ log∗ n) of the query. We give the full details
in Algorithm 4, which has the following guarantee.

I Lemma 16 ([4]). There exists a deterministic LCA ColoringLCA for 6∆-coloring a
graph with degree ∆, using O(∆ log∗ n) probes.

We now describe a local distributed algorithm that takes a coloring of a graph and outputs
a maximal matching. The algorithm iterates over all colors and adds any edge adjacent to a
vertex of a particular color to the greedy matching if there is no other adjacent edge already
present in the matching. We give the algorithm in full in Algorithm 5.

Putting things together, we obtain a deterministic maximal matching algorithm in
Algorithm 6.

We next require the following framework of [10] that simulates local distributed algorithms
using a deterministic LCA. In particular, we will implement Algorithm 5.

I Lemma 17 ([7, 10]). Given access to an oracle that takes vertices of an underlying as
queries and outputs a color for the queried vertex, there exists a deterministic LCA that can
implement Coloring-to-MM using ∆O(c) probes.

Given a ColoringLCA for 6∆-coloring, the LCA for maximal matching in Lemma 17 uses
the following idea. For a query edge e, we first call ColoringLCA for every vertex with
distance roughly 6∆ from e. Parnas and Ron [10] then shows it suffices to run Algorithm 5
locally on the graph of radius roughly 6∆ from e.

We now show that our deterministic LCA based algorithm outputs a maximal matching
with low worst case sensitivity for low-degree graphs.
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Algorithm 4 LCA Algorithm ColoringLCA for 6∆-coloring with O(∆ log∗ n) probes.

1 Procedure FormForests(G,∆)
2 //Decompose graph into ∆ oriented forests;
3 for i = 1 to ∆ do
4 Let Nu(i) denote the i-th neighbor of u according to the IDs of the vertices;
5 Let Ei = {(u, v) : id(u) < id(v), v = Nu(i)};
6 Let Gi = (V,Ei) be the oriented tree, where the root has no out-going edges;

7 Procedure ColorForests(Gi,∆)
8 for Θ(log∗ n) rounds do
9 for each nodes u do

10 if u is a root node then
11 Set φu to 0;
12 else
13 Let v be the parent of u in Gi;
14 Let au be the index of the least significant bit with φu 6= φv;
15 Let bu be the value of the au-th bit of u;
16 φu ← au ◦ bu.

Algorithm 5 Maximal Matching Algorithm Coloring-to-MM.

1 Procedure Coloring-to-MM(G colored with c colors)
2 M ← ∅;
3 for color i = 1 to i = c do
4 if edge (u, v) has either φu = i or φv = i then
5 Add (u, v) to M if no adjacent edge is in M .

Algorithm 6 Maximal Matching Algorithm.

1 Procedure Coloring-to-MM(Graph G)
2 Coloring GC = ColoringLCA(G,∆);
3 Output Coloring-to-MM(GC);

Proof of Theorem 2. Consider running the deterministic LCA from Lemma 17 that simu-
lates Coloring-to-MM on a graph G and a graph G′ := G− e, for some e ∈ E. Let S be
the set of vertices that are assigned different colors in G and G′ by ColoringLCA. First
observe that e is within distance Θ(log∗ n) from at most ∆Θ(log∗ n) other vertices. Hence,
from Lemma 16 we have |S| ≤ ∆Θ(log∗ n). Moreover, each vertex u ∈ S is within distance
O
(
6∆) from at most ∆O(6∆) other vertices. Thus the total number of edges that differ

between the matchings M and M ′ output by Coloring-to-MM for G and G′ respectively
is at most

∆Θ(log∗ n) ·∆O(6∆) = ∆O(6∆+log∗ n). J

It is clear that an almost identical analysis goes through for vertex sensitivity.

ITCS 2021
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4 Lower Bounds for Maximum Matching

In this section, we show lower bounds for deterministic and randomized algorithms for the
maximum matching problem.

4.1 Deterministic Lower Bound
In this section, we prove Theorem 3, which claims that any deterministic algorithm for the
maximum matching problem has edge sensitivity Ω(log∗ n). Our proof relies on Ramsey’s
theorem. First we introduce some definitions. Let Y be a finite set. We say that X is a
k-subset of Y if X ⊆ Y and |X| = k. Let Y (k) = {X ⊆ Y | |X| = k} be the collection of all
k-subsets of Y . A c-labeling of Y (k) is an arbitrary function f : Y (k) → [c]. Then we say
that X ⊆ Y is monochromatic in f if f(A) = f(B) for all A,B ∈ X(k). Let Rc(n; k) be the
smallest integer N such that the following holds: for any set Y with at least N elements, and
for any c-labeling f of Y (k), there is an n-subset of Y that is monochromatic in f . If no such
N exists, Rc(n; k) =∞. Define twr(k) as the tower of twos of height k, that is, twr(1) = 2
and twr(k + 1) = 2twr(k). We will use the following formulation of Ramsey’s theorem.

I Theorem 18 (Special case of Theorem 1 in [6]). For any positive integer t, R2t(t+ 1; t) ≤
twr(O(t)).

We now show that any deterministic constant-factor approximation algorithm for the
maximum matching problem has edge sensitivity Ω(log∗ n).

Proof of Theorem 3. Let A be an arbitrary deterministic algorithm that outputs a maximal
matching, let t be a positive integer, which will be determined later. Let G be a class of graphs
on the vertex set [n] consisting of a cycle v1, . . . , vt with v1 < v2 < · · · < vt and n− t isolated
vertices. Given a matchingM on the cycle v1, . . . , vt, we encode it to an integer 0 ≤ k ≤ 2t−1
so that the i-th bit of k is 1 if and only if the edge {vi, vi+1} belongs to M , where we regard
vt+1 = v1. Then, we can regard the algorithm A as a function f :

([n]
t

)
→ {0, 1, . . . , 2t − 1},

that is, given a set {v1, . . . , vt} ⊆ [n] with v1 < v2 < · · · < vt, we compute a matching
on the cycle v1, . . . , vt, and encode it to an integer. Then if n ≥ R2t(t + 1; t), which
holds when t = O(log∗ n) by Theorem 18, there exists a set S = {s0, s1, . . . , st} ⊆ [n]
with s0 < s1 < · · · < st such that f(T ) is constant whenever T ⊆ S with |T | = t. Let
G,G′ ∈ G be the graph with cycles s0, . . . , st−1 and s1, . . . , st, respectively, and let M and
M ′ be the matching output by A on G and G′, respectively. As M and M ′ have the same
encoding, {si, si+1 mod t} ∈ M if and only if {si+1, si+2} ∈ M ′, where we regard st+2 = s1.
Note that, however, if {si, si+1 mod t} ∈ M then {si+1 mod t, si+2 mod t} 6∈ M ′. It follows
that dH(M,M ′) = Ω(|M |) = Ω(t), where the last equality holds because A has a constant
approximation ratio. J

4.2 Lower Bounds for Deterministic Greedy Algorithm
As we have seen in Section 2.3.1, the randomized greedy algorithm has O(1) sensitivity even
for vertex deletion. Can we derandomize it without increasing the sensitivity? To make
the question more precise, let V be a set of n vertices and π be a permutation over

(
V
2
)
.

Then, let Aπ denote the greedy algorithm such that, starting with an empty matching M , it
iteratively adds the i-th edge with respect to π to M if and only if the edge does not share
an endpoint with any edge in M . We now show that the answer to the question is negative.

I Theorem 19. For any permutation π over
(
V
2
)
, the algorithm Aπ has sensitivity Ω(n).
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Proof. We say that an element e of a poset covers another element e′ if e > e′, where > is
the order relation of the poset, and there is no other element e′′ such that e > e′′ > e′. Then,
we construct a poset P on the element set

(
V
2
)
in which a pair e ∈

(
V
2
)
covers another pair

e′ ∈
(
V
2
)
if π(e) > π(e′) and |e ∩ e′| ≥ 1. Note that the size of any antichain in P is at most

n/2: A set of elements of size more than n/2 must have two elements e, e′ with |e ∩ e′| ≥ 1,
which form a chain of length two. Hence, we need at least

(
n
2
)
/(n/2) = n− 1 antichains to

cover all the elements in P . Then by Mirsky’s theorem, there exists a chain, say, e1, . . . , en−1,
of size n − 1 in P . From the construction of P , e1, . . . , en−1 forms a path of length n − 1.
Then, Aπ on the path e1, . . . , en−1 outputs edges with odd indices, whereas Aπ on the path
e2, . . . , en−1 outputs edges with even indices, and hence the sensitivity of Aπ is Ω(n). J

4.3 Lower Bounds for Randomized Algorithms
The following shows that sensitivity must increase as approximation ratio goes to one.

I Theorem 20. Let ε > 0. Any (possibly randomized) (1− ε)-approximation algorithm for
the maximum matching problem has sensitivity Ω(1/ε).

Proof. For simplicity, we assume 1/10ε is an even integer. Let A be an arbitrary (1 − ε)-
approximation algorithm for the maximum matching problem, and let G be a graph consisting
of a cycle of length 1/10ε and n−1/10ε isolated vertices. Clearly G has two disjoint maximum
matchings, say, M1,M2, of size 1/20ε. Let p1 and p2 be the probability that A on G outputs
M1 and M2, respectively. Then as A has approximation ratio 1− ε, we have

p1 ·
1

20ε + p2 ·
1

20ε + (1− p1 − p2) ·
(

1
20ε − 1

)
≥ 1− ε

20ε .

Hence, we have p1 +p2 ≥ 19/20, and it follows that at least one of p1 ≥ 19/40 and p2 ≥ 19/40
hold. Without loss of generality, we assume p1 ≥ 19/40.

Let G′ be the graph obtained from G by removing one edge in M1. Then, G′ has a
unique maximum matching M2. Let p′2 be the probability that A on G′ outputs M2. As A
has approximation ratio 1− ε, we have

p2 ·
1

20ε + (1− p2) ·
(

1
20ε − 1

)
≥ 1− ε

20ε ,

which implies p′2 ≥ 19/20. Hence, the sensitivity of A is at least

max
(

Pr[A(G) = M1]−Pr[A(G′) 6= M2], 0
)
·dH(M1,M2) ≥

(
19
40 −

1
20

)
· 1
10ε = Ω

(
1
ε

)
.J

5 Weighted Sensitivity and Maximum Weighted Matching

In this section, we consider a generalization of sensitivity to weighted graphs, and show an
approximation algorithm with low sensitivity for the maximum weighted matching problem.

5.1 Weighted Sensitivity
Given a weight function over the edges w : E → R of a graph G = (V,E) and two edge sets
S and S′, let

dwH(S, S′) =
∑

e∈S4S′
w(E),
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where 4 again denotes the symmetric difference. For random edge sets X and X ′, we use
dwEM(X,X ′) to denote the weighted earth mover’s distance between X and X with respect
to w, so that

dwEM(X,X ′) = min
D

E
(S,S′)∼D

dwH(S, S′),

be the weighted Hamming distance between S and S′ with respect to w, where D is a
distribution such that its marginal distributions on the first and second coordinates are
X and X ′, respectively. For a real-valued function β on graphs, we say that the weighted
sensitivity of an algorithm A that outputs a set of edges is at most β if for every graph
G = (V,E), a weight function w : E → R, and an edge e ∈ E,

dwEM(A(G), A(G− e)) ≤ β(G).

A priori, it is not clear whether the weighted sensitivity of an algorithm should correlate
with the weight of removed edges. Thus we say that the normalized weighted sensitivity is at
most β if

dwEM(A(G), A(G− e))
w(e) ≤ β(G).

5.2 Algorithm Description
We use a simple approach of partitioning the input by weight, finding a maximal matching
on each partition, and finally forming a weighted matching by greedily adding edges from
the maximal matchings, beginning with the matchings in the largest weight classes. The
approach is known to give a (4 + ε)-approximation [1, 5] to the maximum weighted matching.
However to bound the weighted sensitivity of our algorithm, we must choose ε carefully.

Formal description of our algorithm is given in Algorithm 7. It first defines subsets of
edges Ei, where we assume the weight of each edge is polynomially bounded in n, so that
1 ≤ w(e) ≤ nc for some constant c. For a parameter α > 1, we define Ei to be the subset
of edges in E with weight at least αi. Algorithm 7 first draws a random permutation π

of the edges and greedily forms a maximal matching Mi on each set Ei induced by π. It
then greedily adds edges to a maximal matching, starting from the matching of the heaviest
weight class and moving downward. That is, we initialize M to be the empty set and greedily
add edges of Mi to M , starting with i = O(logα nc) and decrementing i after each iteration.

I Theorem 21 ([1, 5]). Algorithm 7 gives an 1
4α -approximation to the maximum weighted

matching and uses runtime O (m logα n) on a graph with m edges and n vertices.

5.3 Sensitivity Analysis
We first require the following key structural lemma that we use to prove Theorem 12 in the
full version of the paper.

I Lemma 22. In expectation, the deletion of an edge e alters at most one edge in Mi, i.e.,
at most one edge in Mi is inserted or deleted in expectation.

The sensitivity analysis follows from the observation that the deletion of an edge e can only
affect the matchings Ei for which αi ≤ w(e). Moreover by Lemma 22, the deletion of edge e
affects at most one edge in Ei, in expectation. Thus in expectation, the deletion of e affects
at most two edges in Ei−1 in expectation and inductively, the deletion of e affects at most 2j
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Algorithm 7 Algorithm for maximum weighted matching.

1 Procedure Matching(G, ε, w)
2 Let C be a sufficiently large constant and α > 1 be a trade-off parameter.;
3 Let π be a random ordering of the edges of G;
4 For each i = 0 to i = C logn, let Ei be the set of edges with weight at least αi;
5 Let Mi be the greedy maximal matching of Ei induced by π;
6 M ← ∅;
7 for i = C logn to 0 do
8 for e ∈Mi do
9 if e is not adjacent to M then

10 M ←M ∪ {e};

11 return M .

edges in Ei−j in expectation. On the other hand, the weight of each edge in Ei−j is at most
αi−j so the weighted sensitivity is

∑
j α

i−j2j . Hence for α = 2, the weighted sensitivity is
O(2i logn) and for α > 2, the weighted sensitivity is O(2i). Similarly for normalized weighted
sensitivity, we rescale by 1

2i so that the normalized weighted sensitivity is O(logn) for α = 2
and O(1) for α > 2. We now formalize this intuition.

I Theorem 23. Suppose 1 ≤ w(e) ≤W ≤ nc for some absolute constants W, c > 0 for all
e ∈ E. The weighted sensitivity of Algorithm 7 is O(W logn) for α = 2 and O(W ) for α > 2.
The normalized weighted sensitivity of Algorithm 7 is O(logn) for α = 2 and O(1) for α > 2.

Proof. Let e be an edge of weight w(e) ∈ [2i, 2i+1] for some integer i ≥ 0 and suppose e is
removed from G. For j ≤ i, let Sj be the set of edges in Ej affected by the deletion of edge e,
so that by Lemma 22, E[|Si|] ≤ 1. Then we have E[|Si| ∪ {e}] ≤ 2 so that Lemma 22 implies
that E[|Si−1|] ≤ 2. Now suppose that for a fixed j ≤ i, we have E

[∣∣∣{e} ∪⋃ik=j Sk

∣∣∣] ≤ 2i−j .
Then Lemma 22 implies that E[|Sj−1|] ≤ 2i−j so that

E

∣∣∣∣∣∣{e} ∪
i⋃

k=j−1
Sk

∣∣∣∣∣∣
 ≤ 2i−j+1.

Hence by induction, we have E[|Sj |] ≤ 2i−j .
Since each edge of Ei has weight at most αi, then we have

dEM(A(G), A(G− e)) =
i∑

j=0
2i−jαj ,

where A(G) represents the output of Algorithm 7 on G. Under the assumption that
1 ≤ w(e) ≤ nc for some absolute constant c > 0 for all e ∈ E, then i = O(logn). Hence
for α = 2, we have

∑i
j=0 2i−jαj = O(2i logn) = O(W logn) and for α > 2, we have∑i

j=0 2i−jαj = O(2i) = O(W ). Moreover, we have

dEM(A(G), A(G− e)) ≤ 1
2i+1

i∑
j=0

2i−jαj ,

so that dEM(A(G), A(G − e)) ≤ O(logn) for α = 2 and dEM(A(G), A(G − e)) = O(1) for
α > 2. J
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Together, Theorem 21 and Theorem 23 give the full guarantees of Algorithm 7.

I Theorem 24. Let G = (V,E) be a weighted graph with w(e) ≤ W ≤ nc for some
constant c > 0 and all e ∈ E. For a trade-off parameter α, there exists an algorithm that
outputs a 1

4α -approximation to the maximum weighted matching in O(m logα n) time. For
α = 2, the algorithm has weighted sensitivity O(W logn) and normalized weighted sensitivity
O(logn). For α > 2, the algorithm has weighted sensitivity O(W ) and normalized weighted
sensitivity O(1).

We again emphasize that the worst case weighted sensitivity of any constant factor approxim-
ation algorithm to the maximum weighted matching problem is at least Ω(W ). Recall that if
an edge of weight W = nc is altered in a graph whose remaining edges have weight 1, then
any constant factor approximation to the maximum weighted matching must include the
heavy edge for sufficiently large c > 0, which incurs cost Ω(W ) in the weighted sensitivity.
Thus for α > 2, Algorithm 7 performs well with respect to both weighted sensitivity and
normalized weighted sensitivity.
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Abstract
In 1979, Hylland and Zeckhauser [23] gave a simple and general scheme for implementing a one-sided
matching market using the power of a pricing mechanism. Their method has nice properties – it is
incentive compatible in the large and produces an allocation that is Pareto optimal – and hence
it provides an attractive, off-the-shelf method for running an application involving such a market.
With matching markets becoming ever more prevalent and impactful, it is imperative to finally
settle the computational complexity of this scheme.

We present the following partial resolution:
1. A combinatorial, strongly polynomial time algorithm for the dichotomous case, i.e., 0/1 utilities,

and more generally, when each agent’s utilities come from a bi-valued set.
2. An example that has only irrational equilibria, hence proving that this problem is not in PPAD.
3. A proof of membership of the problem in the class FIXP.
4. A proof of membership of the problem of computing an approximate HZ equilibrium in the class

PPAD.

We leave open the (difficult) questions of determining if computing an exact HZ equilibrium is
FIXP-hard and an approximate HZ equilibrium is PPAD-hard.
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1 Introduction

In a brilliant and by-now classic paper, Hylland and Zeckhauser [23] gave a simple and
general scheme for implementing a one-sided matching market using the power of a pricing
mechanism1. Their method produces an allocation that is Pareto optimal, envy-free [23]
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and is incentive compatible in the large [22]. The Hylland-Zeckhauser (HZ) scheme can be
viewed as a marriage between fractional perfect matching and a linear Fisher market, both
of which admit not only polynomial time algorithms but also combinatorial ones. These
facts have enticed numerous researchers over the years to seek an efficient algorithm for the
HZ scheme. The significance of this problem has only grown in recent years, with ever more
diverse and impactful matching markets being launched into our economy, e.g., see [17].

Our work on resolving this problem started with an encouraging sign, when we obtained
a combinatorial, strongly polynomial time algorithm for the dichotomous case, in which all
utilities are 0/1, by melding a prefect matching algorithm with the combinatorial algorithm
of [13] for the linear Fisher market, see Section 4. This algorithm can be extended to solve a
more general problem which we call the bi-valued utilities case, in which each agent’s utilities
can take one of only two values, though the two values can be different for different agents.
However, this approach did not extend any further, as described in the next section.

One-sided matching markets can be classified along two dimensions: whether the utility
functions are cardinal or ordinal, and whether agents have initial endowments or not. Under
this classification, the HZ scheme is (cardinal, no endowments). Section 1.2 gives mechanisms
for the remaining three possibilities as well as their game-theoretic properties. Ordinal and
cardinal utility functions have their individual pros and cons, and neither dominates the
other. Whereas the former are easier to elicit, the latter are far more expressive, enabling an
agent to not only report if she prefers one good to another but also by how much, thereby
producing higher quality allocations as illustrated in Example 1, which is taken from [20].

I Example 1. ([20]) The instance has three types of goods, T1, T2, T3, and these goods are
present in the proportion of (1%, 97%, 2%). Based on their utility functions, the agents
are partitioned into two sets A1 and A2, where A1 constitute 1% of the agents and A2, 99%.
The utility functions of agents in A1 and A2 for the three types of goods are (1, ε, 0) and
(1, 1− ε, 0), respectively, for a small number ε > 0. The main point is that whereas agents
in A2 marginally prefer T1 to T2, those in A1 overwhelmingly prefer T1 to T2. Clearly, the
ordinal utilities of all agents in A1 ∪A2 are the same. Therefore, a mechanism based on such
utilities will not be able to make a distinction between the two types of agents. On the other
hand, the HZ mechanism, which uses cardinal utilities, will fix the price of goods in T3 to be
zero and those in T1 and T2 appropriately so that by-and-large the bundles of A1 and A2
consist of goods from T1 and T2, respectively.

While studying the dichotomous case of two-sided markets, Bogomolnaia and Moulin [5]
called it an “important special case of the bilateral matching problem.” Using the Gallai-
Edmonds decomposition of a bipartite graph, they gave a mechanism that is Pareto optimal
and group strategyproof. They also gave a number of applications of their setting, some of
which are natural applications of one-sided markets as well, e.g., housemates distributing
rooms, having different features, in a house. Furthermore, they say, “Time sharing is the
simplest way to deal fairly with indivisibilities of matching markets: think of a set of workers
sharing their time among a set of employers.” It turns out that the HZ (fractional) equilibrium
allocation is a superior starting point for the problem of designing a randomized time-sharing
mechanism; this is discussed in Remark 5 after introducing the HZ model. Roth, Sonmez
and Unver [29] extended these results to general graph matching under dichotomous utilities;
this setting is applicable to the kidney exchange marketplace.
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1.1 The gamut of possibilities

The most useful solution for practical applications would of course have been a combinatorial,
polynomial time algorithm for the entire scheme. At the outset, this didn’t seem unlikely,
especially in view of the existence of such an algorithm for the dichotomous case. Next we
considered the generalization of the bi-valued utilities case to tri-valued utilities, in particular,
to the case of {0, 1

2 , 1} utilities. However, even this case appears to be intractable.
Underlying the polynomial time solvability of a linear Fisher market is the property of

weak gross substitutability2. We note that this property is destroyed as soon as one goes
to a slightly more general utility function, namely piecewise-linear, concave and separable
over goods (SPLC utilities), and this case is PPAD-complete3 [32]; the class PPAD was
introduced in [28]. Since equilibrium allocations for the HZ scheme do not satisfy weak gross
substitutability, e.g., see Example 9, we were led us to seek a proof of PPAD-completeness.

A crucial requirement for membership in PPAD is to show that there is always a rational
equilibrium if all parameters of the instance are rational numbers. However, even this is
not true; we found an example which admits only irrational equilibria, see Section 6. This
example consists of four agents and goods, and hence can be viewed as belonging to the
four-valued utilities case; see Remark 17 for other intriguing aspects of this example.

The irrationality of solutions suggests that the appropriate class for this problem is the
class FIXP, introduced in [16]. The proof in [23], showing the existence of an equilibrium, uses
Kakutani’s theorem and does not seem to lend itself in any easy way to showing membership
in FIXP. For this purpose, we give a new proof of the existence of equilibrium. Our proof
defines a suitable Brouwer function which adjusts prices and allocations in case they are not
an equilibrium. It uses elementary arithmetic operations that improve their optimality or
feasibility of the current prices and allocations. The adjustment scheme is such that the only
stable prices and allocations are forced to be equilibria.

Next, we define the notion of an approximate equilibrium. This is still required to be a
fractional perfect matching on agents and goods; agents’ allocations are allowed to be slightly
suboptimal and/or their cost is allowed to slightly exceed the budget of 1 dollar. We show
that the problem of computing such an approximate equilibrium is in PPAD. This involves
relating approximate equilibria to the approximate fixed points of the Brouwer function we
defined for our proof of membership in FIXP. We leave open the questions of determining if
the computation (to desired accuracy) of an exact HZ equilibrium is FIXP-hard, and if the
computation of an approximate HZ equilibrium is PPAD-hard.

1.2 Related work

We first present mechanisms for the remaining three possibilities for the classification of
one-sided matching market mechanisms given in the Introduction. The famous Top Trading
Cycles mechanism is (ordinal, endowments) [30]; it is efficient, strategyproof and core-stable.
Under (ordinal, no endowments) are Random Priority [27], which is strategyproof though
not efficient or envy-free, and Probabilistic Serial [4], which is efficient and envy-free but not
strategyproof. Under (cardinal, endowments) is ε-Approximate ADHZ (for Arrow-Debreu
Hylland-Zeckhauser) scheme [20], which satisfies Pareto optimality, approximate envy-freeness
and incentive compatibility in the large.

2 Namely, if you increase the price of one good, the demand of another good cannot decrease.
3 Independently, PPAD-hardness was also established in [10].
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We are aware of only the following two computational results on the HZ scheme. Using
the algebraic cell decomposition technique of [2], [12] gave a polynomial time algorithm for
computing an equilibrium for an Arrow-Debreu market under piecewise-linear, concave (PLC)
utilities (not necessarily separable over goods) if the number of goods is fixed. One can see
that their algorithm can be adapted to yield a polynomial time algorithm for computing an
equilibrium for the HZ scheme if the number of goods is a fixed constant. Extending these
methods, [1] gave a polynomial time algorithm for the case that the number of agents is a
fixed constant.

There are several results establishing membership and hardness in PPAD and FIXP for
equilibria computation problems in different settings. The quintessential complete problem
for PPAD is 2-Nash [11, 7] and that for FIXP is multiplayer Nash equilibrium [16]. For the
latter problem, computing an approximate equilibrium is PPAD-complete [11].

For the case of market equilibria, in the economics literature, there are two parallel
streams of results: one assumes that an excess demand function is given and the other
assumes a specific class of utility functions. [16] proved FIXP-completeness of Arrow-Debreu
markets whose excess demand functions are algebraic. This result is for the first stream
and it does not establish FIXP-completeness of Arrow-Debreu markets under any specific
class of utility functions. Results for the second stream include proofs of membership in
FIXP for Arrow-Debreu markets under Leontief and piecewise-linear concave (PLC) utility
functions in [35] and [18], respectively. This was followed by a proof of FIXP-hardness for
Arrow-Debreu markets with Leontief and PLC utilities [19]. For the case of Arrow-Debreu
markets with CES (constant elasticity of substitution) utility functions, [9] show membership
in FIXP but leave open FIXP-hardness.

For the CES market problem stated above, computing an approximate equilibrium is
PPAD-complete, and the same holds more generally for a large class of “non-monotonic”
markets [9]. Computing an (exact or approximate) equilibrium under separable, piecewise-
linear, concave (SPLC) utilities for Arrow-Debreu and Fisher markets is also known to be
PPAD-complete [8, 10, 32].

In recent years, several researchers have proposed Hylland-Zeckhauser-type mechanisms
for a number of applications, e.g., see [6, 22, 25, 26]. The basic scheme has also been
generalized in several different directions, including two-sided matching markets, adding
quantitative constraints, and to the setting in which agents have initial endowments of goods
instead of money, see [14, 15].

2 The Hylland-Zeckhauser Scheme

Hylland and Zeckhauser [23] gave a general mechanism for a one-sided matching market
using the power of a pricing mechanism. Their formulation is as follows: Let A = {1, 2, . . . n}
be a set of n agents and G = {1, 2, . . . , n} be a set of n indivisible goods. The mechanism
will allocate exactly one good to each agent and will have the following two properties:

The allocation produced is Pareto optimal.
The mechanism is incentive compatible in the large.

The Hylland-Zeckhauser scheme is a marriage between linear Fisher market and fractional
perfect matching. The agents will reveal to the mechanism their desires for the goods by
stating their von Neumann-Mogenstern utilities. Let uij represent the utility of agent i for
good j. We will use language from the study of market equilibria to describe the rest of the
formulation. For this purpose, we next define the linear Fisher market model.
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A linear Fisher market consists of a set A = {1, 2, . . . n} of n agents and a set G =
{1, 2, . . . ,m} of m infinitely divisible goods. By fixing the units for each good, we may
assume without loss of generality that there is a unit of each good in the market. Each
agent i has money mi and utility uij for a unit of good j. If xij , 1 ≤ j ≤ m is the bundle
of goods allocated to i, then the utility accrued by i is

∑
j uijxij . Each good j is assigned a

non-negative price, pj . Allocations and prices, x and p, are said to form an equilibrium if
each agent obtains a utility maximizing bundle of goods at prices p and the market clears,
i.e., each good is fully sold and all money of agents is fully spent.

In order to mold the one-sided market into a linear Fisher market, the HZ scheme renders
goods divisible by assuming that there is one unit of probability share of each good. An
allocation to an agent is a collection of probability shares over the goods. Let xij be the
probability share that agent i receives of good j. Then,

∑
j uijxij is the expected utility

accrued by agent i. Each good j has price pj ≥ 0 in this market and each agent has 1
dollar with which it buys probability shares. The entire allocation must form a fractional
perfect matching in the complete bipartite graph over vertex sets A and G as follows: there
is one unit of probability share of each good and the total probability share assigned to
each agent also needs to be one unit. Subject to these constraints, each agent should buy
a utility maximizing bundle of goods having the smallest possible cost. Note that the last
condition is not required in the definition of a linear Fisher market equilibrium. It is needed
here to guarantee that the allocation obtained is Pareto optimal, see [23] for proof of Pareto
optimality. A second departure from the linear Fisher market equilibrium is that in the
latter, each agent i must spend her money mi fully; in the HZ scheme, i need not spend
her entire dollar. Since the allocation is required to form a fractional perfect matching, all
goods are fully sold. We will define these to be equilibrium allocation and prices; we state
this formally below after giving some preliminary definitions.

I Definition 2. Let x and p denote arbitrary (non-negative) allocations and prices of goods.
By size, cost and value of agent i’s bundle we mean∑

j∈G

xij ,
∑
j∈G

pjxij and
∑
j∈G

uijxij ,

respectively. We will denote these by size(i), cost(i) and value(i), respectively.

IDefinition 3 (Hylland and Zeckhauser [23]). Allocations and prices (x, p) form an equilibrium
for the one-sided matching market stated above if:
1. The total probability share of each good j is 1 unit, i.e.,

∑
i xij = 1.

2. The size of each agent i’s allocation is 1, i.e., size(i) = 1.
3. The cost of the bundle of each agent is at most 1.
4. Subject to constraints 2 and 3, each agent i maximizes her expected utility at minimum

possible cost, i.e., maximize value(i), subject to size(i) = 1, cost(i) ≤ 1, and lastly, cost(i)
is smallest among all utility-maximizing bundles of i.

Using Kakutani’s fixed point theorem, the following is shown:

I Theorem 4 (Hylland and Zeckhauser [23]). Every instance of the one-sided market defined
above admits an equilibrium; moreover, the corresponding allocation is Pareto optimal.

Finally, if this “market” is large enough, no individual agent will be able to improve her
allocation by misreporting utilities nor will she be able to manipulate prices. For this reason,
the HZ scheme is incentive compatible in the large.
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As stated above, Hylland and Zeckhauser view each agent’s allocation as a lottery over
goods. In this viewpoint, agents accrue utility in an expected sense from their allocations.
Once these lotteries are resolved in a manner faithful to the probabilities, an assignment
of indivisible goods will result. The latter can be done using the well-known Theorem of
Birkhoff [3] and von Neumann [34] which states that any doubly stochastic matrix can be
written as a convex combination of permutation matrices, i.e., perfect matchings; moreover,
this decomposition can be obtained efficiently. Next, pick one of these perfect matchings
from the discrete distribution given by coefficients in the convex combination. As is well
known, since the lottery over goods is Pareto optimal ex ante, the integral allocation, viewed
stochastically, will also be Pareto optimal ex post.

Another viewpoint, forwarded by Bogomolnaia and Moulin [5], considers the fractional
perfect matching, or equivalently the doubly-stochastic matrix, as the output of the mechan-
ism, i.e., without resorting to randomized rounding. This viewpoint assumes that the agents
are going to “time-share” the goods or resources and the doubly-stochastic matrix, which is
derived from a market mechanism, provides a “fair” way of doing so.
I Remark 5. In their paper studying the dichotomous case of two-sided matching markets,
Bogomolnaia and Moulin [5] state that the preferred way of dealing with indivisibilities
inherent in matching markets is to resort to time sharing using randomization. Their method
builds on the Gallai-Edmonds decomposition of the underlying bipartite graph; this classifies
vertices into three categories: disposable, over-demanded and perfectly matched. This is
a much more coarse insight into the demand structure of vertices than that obtained via
the HZ equilibrium. The latter is the output of a market mechanism in which equilibrium
prices reflect the relative importance of goods in an accurate and precise manner, based
on the utilities declared by buyers, and equilibrium allocations are as equitable as possible
across buyers. Hence the latter yields a more fair and desirable randomized time-sharing
mechanism.

3 Properties of Optimal Allocations and Prices

Let p be given prices which are not necessarily equilibrium prices. An optimal bundle for
agent i, xi, is a solution to the following LP, which has two constraints, one for size and one
for cost.

max
∑

j

xijuij (1)

s.t. (2)∑
j

xij = 1 (3)

∑
j

xijpj ≤ 1 (4)

∀j xij ≥ 0 (5)

Taking µi and αi to be the dual variables corresponding to the two constraints, we get
the dual LP:

min αi + µi (6)
s.t. (7)
∀i, j αipj + µi ≥ uij (8)

αi ≥ 0 (9)
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Clearly µi is unconstrained. µi will be called the offset on i’s utilities. By complementary
slackness, if xij is positive then αipj = uij − µi. All goods j satisfying this equality will
be called optimal goods for agent i. The rest of the goods, called suboptimal, will satisfy
αipj > uij − µi. Obviously an optimal bundle for i must contain only optimal goods.

The parameter µi plays a crucial role in ensuring that i’s optimal bundle satisfies both
size and cost constraints. If a single good is an effective way of satisfying both size and
cost constraints, then µi plays no role and can be set to zero. However, if different goods
are better from the viewpoint of size and cost, then µi attains the right value so they both
become optimal and i buys an appropriate combination. We provide an example below to
illustrate this.

I Example 6. Suppose i has positive utilities for only two goods, j and k, with uij =
10, uik = 2 and their prices are pj = 2, pk = 0.1. Clearly, neither good satisfies both size
and cost constraints optimally: good j is better for the size constraint and k is better for the
cost constraint. If i buys one unit of good j, she spends 2 dollars, thus exceeding her budget.
On the other hand, she can afford to buy 10 units of k, giving her utility of 20; however, she
has far exceeded the size constraint. It turns out that her optimal bundle consists of 9/19
units of j and 10/19 units of k; the costs of these two goods being 18/19 and 1/19 dollars,
respectively. Clearly, her size and cost constraints are both met exactly. Her total utility
from this bundle is 110/19. It is easy to see that αi = 80/19 and µi = 30/19, and for these
settings of the parameters, both goods are optimal.

We next show that equilibrium prices are invariant under the operation of scaling the
difference of prices from 1.

I Lemma 7. Let p be an equilibrium price vector and fix any r > 0. Let p′ be such that
∀j ∈ G, p′j − 1 = r(pj − 1). Then p′ is also an equilibrium price vector.

Proof. Consider an agent i. Clearly,
∑

j∈G pjxij ≤ 1. Now,∑
j∈G

p′jxij =
∑
j∈G

(rpj − r + 1)xij ≤ 1,

where the last inequality follows by using
∑

j∈G xij = 1. J

Using Lemma 7, it is easy to see that if the allocation x provides optimal bundles to
all agents under prices p then it also does so under p′. In the rest of this paper we will
enforce that the minimum price of a good is zero, thereby fixing the scale. Observe that
the main goal of the Hylland-Zeckhauser scheme is to yield the “correct” allocations to
agents; the prices are simply a vehicle in the market mechanism to achieve this. Hence
arbitrarily fixing the scale does not change the essential nature of the problem. Moreover,
setting the minimum price to zero is standard [23] and can lead to simplifying the equilibrium
computation problem as shown in Remark 8.

I Remark 8. We remark that on the one hand, the offset µi is a key enabler in construing
optimal bundles, on the other, it is also a main source of difficulty in computing equilibria
for the HZ scheme. We identify here an interesting case in which µi = 0 and this difficulty
is mitigated. In particular, this holds for all agents in the dichotomous case presented in
Section 4. Suppose good j is optimal for agent i, uij = 0 and pj = 0, then it is easy to check
that µi = 0. If so, the optimal goods for i are simply the maximum bang-per-buck goods;
the latter notion is replete in market equilibrium papers, e.g., see [13].
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Finally, we extend Example 6 to illustrate that optimal allocations for the Hylland-
Zeckhauser model do not satisfy the weak gross substitutes condition in general.

I Example 9. In Example 6, let us raise the price of k to 0.2 dollars. Then the optimal
allocation for i changes to 4/9 units of j and 5/9 units of k. Notice that the demand for j
went down from 9/19 to 4/9. One way to understand this change is as follows: Let us start
with the old allocation of 10/19 units of k. Clearly, the cost of this allocation of k went up
from 1/19 to 2/19, leaving only 17/19 dollars for j. Therefore size of j needs to be reduced
to 17/38. However, now the sum of the sizes becomes 37/38, i.e., less than a unit. We wish
to increase this to a unit while still keeping cost at a unit. The only way of doing this is to
sell some of the more expensive good and use the money to buy the cheaper good. This is
the reason for the decrease in demand of j.

4 Strongly Polynomial Algorithm for Bi-Valued Utilities

In this section, we will study the restriction of the HZ scheme to the bi-valued utilities case,
which is defined as follows: for each agent i, we are given a set {ai, bi}, where 0 ≤ ai < bi,
and the utilities uij , ∀j ∈ G, are picked from this set. However first, using a perfect matching
algorithm and the combinatorial algorithm [13] for linear Fisher markets, we will give a
strongly polynomial time algorithm for the dichotomous case, i.e., when all utilities uij are
0/1. Next we define the notion of equivalence of utility functions and show that the bi-valued
utilities case is equivalent to the dichotomous case, thereby extending the dichotomous case
algorithm to this case.

We need to clarify that we will not use the main algorithm from [13], which uses the notion
of balanced flows and l2 norm to achieve polynomial running time. Instead, we will use the
“simple algorithm” presented in Section 5 in [13]. Although this algorithm is not proven to be
efficient, the simplified version we define below, called Simplified DPSV Algorithm, is efficient;
in fact it runs in strongly polynomial time, unlike the balanced-flows-based algorithm of [13].
Remark 8 provides an insight into what makes the dichotomous case computationally easier.

We note that recently, [20] gave a rational convex program (RCP) for the dichotomous
case of HZ, and more recently, [33] made a small modification to our algorithm to obtain a
mechanism that is proven to be strategyproof. An RCP, defined in [31], is a nonlinear convex
program all of whose parameters are rational numbers and which always admits a rational
solution in which the denominators are polynomially bounded. An RCP can be solved exactly
in polynomial time using the ellipsoid algorithm and diophantine approximation [21, 24], and
therefore directly implies the existence of a polynomial time algorithm for the underlying
problem.

Notation. We will denote by H = (A,G,E) be the bipartite graph on vertex sets A and
G, and edge set E, with (i, j) ∈ E iff uij = 1. For A′ ⊆ A and G′ ⊆ G, we will denote by
H[A′, G′] the restriction of H to vertex set A′ ∪ G′. If ν is a matching in H, ν ⊆ E, and
(i, j) ∈ ν then we will say that ν(i) = j and ν(j) = i. For any subset S ⊆ A (S ⊆ G), N(S)
will denote the set of neighbors, in G (A), of vertices in S.

If H has a perfect matching, the matter is straightforward as stated in Steps 1a and 1b;
allocations and prices are clearly in equilibrium. For Step 2, we need the following lemma.

I Lemma 10. The following hold:
1. For any set S ⊆ A2, |N(S)| ≥ |S|.
2. For any set S ⊆ G1, |N(S) ∩A1| ≥ |S|.
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Proof.
1. If |N(S)| < |S| then (G1 ∪N(S)) ∪ (A2 − S) is a smaller vertex cover for H, leading to a

contradiction.
2. If |N(S)∩A1| < |S| then (G1 − S)∪ (A2 ∪N(S)) is a smaller vertex cover for H, leading

to a contradiction. J

The first part of Lemma 10 together with Hall’s Theorem implies that a maximum
matching in H[A2, G2] must match all agents. Therefore in Step 2a, each agent i ∈ A2 is
allocated one unit of a unique good from which it derives utility 1 and having price zero;
clearly, this is an optimal bundle of minimum cost for i. The number of goods that will
remain unmatched in G2 at the end of this step is |G2| − |A2|.

Algorithm 1 Algorithm for the Dichotomous Case.

1. If H has a perfect matching, say ν, then do:
a. ∀i ∈ A: allocate good ν(i) to i.
b. ∀j ∈ G: pj ← 0. Go to Step 3.

2. Else do:
a. Find a minimum vertex cover in H, say G1 ∪A2, where G1 ⊂ G and A2 ⊂ A.

Let A1 = A−A2 and G2 = G−G1.
b. Find a maximum matching in H[A2, G2], say ν.
c. ∀i ∈ A2: allocate good ν(i) to i.
d. ∀j ∈ G2: pj ← 0.
e. Run the Simplified DPSV Algorithm on agents A1 and goods G1.
f. ∀i ∈ A1: Allocate unmatched goods of G2 to satisfy the size constraint.

3. Output the allocations and prices computed and Halt.

Allocations are computed for agents in A1 as follows. First, Step 2e uses the Simplified
DPSV Algorithm, which we describe below, to compute equilibrium allocations and prices
for the submarket consisting of agents in A1 and goods in G1. At the end of this step, the
money of each agent in A1 is exhausted; however, her allocation may not meet the size
constraint. To achieve the latter, Step 2f allocates the unmatched zero-priced goods from G2
to agents in A1. Clearly, the total deficit in size is |A1| − |G1|. Since this equals |G2| − |A2|,
the market clears at the end of Step 2f. As shown in Lemma 11, each agent in A1 also gets
an optimal bundle of goods of minimum cost.

Let p be the prices of goods in G1 at any point in this algorithm. As a consequence of the
second part of Lemma 10, the equilibrium price of each good in G1 will be at least 1. The
Simplified DPSV algorithm will initialize prices of goods in G1 to 1 and declare all goods
active. The algorithm will always raise prices of active goods uniformly4.

For S ⊆ G1 let p(S) denote the sum of the equilibrium prices of goods in S. A key notion
from [13] is that of a tight set; set S ⊆ G1 is said to be tight if p(S) = |N(S)|, the latter
being the total money of agents in A1 who are interested in goods in S. If set S is tight,
then the local market consisting of goods in S and agents in N(S) clears. To see this, one
needs to use the flow-based procedure given in [13] to show that each agent i ∈ N(S) can
be allocated 1 dollar worth of those goods in S from which it accrues unit utility. Thus
equilibrium has been reached for goods in S.

4 In [13], prices of active goods are raised multiplicatively, which amounts to raising prices of active goods
uniformly for our simplified setting.
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As the algorithm raises prices of all goods in G1, at some point a set S will go tight. The
algorithm then freezes the prices of its goods and removes them from the active set. It then
proceeds to raise the prices of currently active goods until another set goes tight, and so on,
until all goods in G1 are frozen.

We can now explain in what sense we need a “simplified” version of the DPSV algorithm.
Assume that at some point, S ⊂ G1 is frozen and goods in G1−S are active and their prices
are raised. As this happens, agents in A1 − N(S) start preferring goods in S relative to
those in G1 − S. In the general case, at some point, an agent i ∈ (A1 −N(S)) will prefer
a good j ∈ S as much as her other preferred goods. At this point, edge (i, j) is added to
the active graph. As a result, some set S′ ⊆ S, containing j, will not be tight anymore and
will be unfrozen. However, in our setting, the utilities of agents in (A1 −N(S)) for goods in
S is zero, and therefore no new edges are introduced and tight sets never become unfrozen.
Hence the only events of the Simplified DPSV Algorithm are raising of prices and freezing
of sets. Clearly, there will be at most n freezings. One can check details in [13] to see that
the steps executed with each freezing run in strongly polynomial time, hence making the
Simplified DPSV Algorithm a strongly polynomial time algorithm5.

I Lemma 11. Each agent in A1 will get an optimal bundle of goods of minimum cost.

Proof. First note that for agents in A1, there are no utility 1 goods in G2 – this follows
from the fact that no vertices from A1 ∪G2 are in the vertex cover picked. Therefore, for
i ∈ A1, an optimum bundle consists of the cheapest way of obtaining one dollar worth of
goods from N{i}, which are in G1, together with the right amount of zero-priced goods from
G2 to satisfy the size constraint.

Assume that the algorithm freezes k sets, S1, . . . Sk, in that order; the union of these
sets being G1. Let p1, p2, . . . pk be the prices of goods in these sets, respectively. Clearly,
successive freezings will be at higher and higher prices and therefore, 1 ≤ p1 < p2 < . . . < pk,
and for 1 ≤ j ≤ k, pj = |N(Sj)|/|Sj |. If i ∈ N(Sj), the algorithm will allocate 1/pj amount
of goods to i from Sj , costing 1 dollar.

By definition of neighborhood of sets, if i ∈ N(Sj), then i cannot have edges to S1, . . . Sj−1
and can have edges to Sj+1, . . . , Sk. Therefore, the cheapest goods from which it accrues
unit utility are in Sj , the set from which she gets 1 dollar worth of allocation. The rest of
the allocation of i, in order to meet i’s size constraint, will be from G2, which are zero-priced
and from which i gets zero utility. Clearly, i gets an optimal bundle of minimum cost. J

Since all steps of the algorithm, namely finding a maximum matching, a minimum vertex
cover and running the Simplified DPSV Algorithm, can be executed in strongly polynomial
time, we get:

I Lemma 12. The algorithm given finds equilibrium prices and allocations for the dichotomous
case of the Hylland-Zeckhauser scheme. It runs in strongly polynomial time.

I Definition 13. Let I be an instance of the HZ scheme and let the utility function of agent
i be ui = {ui1, ui12, . . . , uin}. Then u′i = {u′i1, u′i12, . . . , u

′
in} is equivalent to ui if there are

two numbers s > 0 and h ≥ 0 such that for 1 ≤ j ≤ n, u′ij = s · uij + h. The numbers s and
h will be called the scaling factor and shift, respectively.

5 In contrast, in the general case, the number of freezings is not known to be bounded by a polynomial in
n, as stated in [13].
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I Lemma 14. Let I be an instance of the HZ scheme and let the utility function of agent i
be ui. Let u′i be equivalent to ui and let I ′ be the instance obtained by replacing ui by u′i in I.
Then x and p are equilibrium allocation and prices for I if and only if they are also for I ′.

Proof. Let s and h be the scaling factor and shift that transform ui to u′i. By the statement
of the lemma, xi = {xi1, . . . , xin} is an optimal bundle for i at prices p and hence is a solution
to the optimal bundle LP (1). The objective function of this LP is

n∑
j=1

uijxij .

Next observe that the objective function of the corresponding LP for i under instance I ′ is
n∑

j=1
u′ijxij =

n∑
j=1

(s · uij + h)xij = h+ s ·
n∑

j=1
uijxij ,

where the last equality follows from the fact that
∑n

j=1 xij = 1. Therefore, the objective
function of the second LP is obtained from the first by scaling and shifting. Furthermore,
since the constraints of the two LPs are identical, the optimal solutions of the two LPs are
the same. Finally, for each i ∈ A: the bundle under allocation x is a minimum cost optimal
bundle for I if and only if it is also for I ′. The lemma follows. J

Next, let ui be bi-valued with the two values being 0 ≤ a < b. Obtain u′i from ui by
replacing a by 0 and b by 1. Then, u′i is equivalent to ui, with the shift and scaling being
a and b − a, respectively. Therefore the bi-valued instance can be transformed to a unit
instance, with both having the same equilibria. Now using Lemma 12 we get:

I Theorem 15. There is a strongly polynomial time algorithm for the bi-valued utilities case
of the Hylland-Zeckhauser scheme.

5 Characterizing Optimal Bundles

In this section we give a characterization of optimal bundles for an agent at given prices p
which are not necessarily equilibrium prices. This characterization will be used in Section 6.

Notation. For each agent i, let G∗i ⊆ G denote the set of goods from which i derives
maximum utility, i.e., G∗i = arg maxj∈G{uij}. With respect to an allocation x, let Bi = {j ∈
G | xij > 0}, i.e., the set of goods in i’s bundle.

We identify the following four types of optimal bundles.
Type A bundles: αi = 0 and cost(i) < 1.
By complementary slackness, optimal goods will satisfy uij = µi and suboptimal goods

will satisfy uij < µi. Hence the set of optimal goods is G∗i and Bi ⊆ G∗i . Note that the prices
of goods in Bi can be arbitrary, as long as cost(i) < 1.

Type B bundles: αi = 0 and cost(i) = 1.
The only difference from the previous type is that cost(i) is exactly 1.
Type C bundles: αi > 0 and all optimal goods for i have the same utility.
Recall that good j is optimal for i if6 αipj = uij − µi. Suppose goods j and k are both

optimal. Then uij = uik and αipj = uij − µi = uik − µi = αipk, i.e., pj = pk. Since αi > 0,

6 Note that under this case, optimal goods are not necessarily maximum utility goods; the latter may be
suboptimal because their prices are too high.
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by complementary slackness, cost(i) = 1. Further, since size(i) = 1, we get that each optimal
good has price 1.

Type D bundles: αi > 0 and not all optimal goods for i have the same utility.
Suppose goods j and k are both optimal and uij 6= uik. Then αipj = uij − µi 6=

uik − µi = αipk, i.e., pj 6= pk. Therefore optimal goods have at least two different prices.
Since αi > 0, by complementary slackness, cost(i) = 1. Further, since size(i) = 1, there must
be an optimal good with price more than 1 and an optimal good with price less than 1.
Finally, if good z is suboptimal for i, then αipz < uiz − µi.

6 An Example Having Only Irrational Equilibria

Our example has 4 agents A1, . . . , A4 and 4 goods g1, . . . , g4
7. The agents’ utilities for the

goods are given in Table 1, with rows corresponding to agents and columns to goods.

Table 1 Agents’ utilities.

g1 g2 g3 g4

A1 2 4 0 8
A2 2 3 0 8
A3 2 0 5 0
A4 0 4 5 0

Thus, agents A1 and A2 like, to varying degrees, three goods only, g1, g2, g4, while agents
A3 and A4 like two goods each, {g1, g3} and {g2, g3}, respectively. The precise values of the
utilities are not that important; the important aspects are: which goods each agent likes, the
order between them, and the ratios u14−u12

u12−u11
and u24−u22

u22−u21
. Notice that the latter are unequal.

We show that this example has a unique equilibrium solution with minimum price 0. In
this solution, good g1 has price 0, and all the other goods have positive irrational values.
Agents A1, A3 and A4 buy the goods that they like, and A2 buys g1 and g4 only.

Specifically, we show the following:

I Theorem 16. The stated instance has a unique equilibrium. In this equilibrium, the
allocations to agents and prices of goods, other than the zero-priced good, are all irrational
numbers. The prices are as follows:
p1 = 0, p2 = (23−

√
17)/32, p3 = (9 +

√
17)/8, p4 = (69− 3

√
17)/32.

Letting ri = |1− pi|, the allocations xij of each good gj to each agent Ai are as follows:

A1 : x11 = 1− r3

1 + r3
− r4

1 + r4
, x12 = r2

r2 + r3
, x13 = 0, x14 = r4

1 + r4

A2 : x21 = r4

1 + r4
, x22 = 0, x23 = 0, x24 = 1

1 + r4

A3 : x31 = r3

1 + r3
, x32 = 0, x33 = 1

1 + r3
, x34 = 0

A4 : x41 = 0, x42 = r3

r2 + r3
, x43 = r2

r2 + r3
, x44 = 0

7 It can be shown, by analyzing relations in the bipartite graph on agents and goods with edges
corresponding to non-zero allocations, that any instance with 3 agents and 3 goods and rational utilities
has a rational equilibrium.



V.V. Vazirani and M. Yannakakis 59:13

The proof of the theorem is given in the full paper. Even for a small instance like this
one, the analysis of the HZ equilibria is not simple. We outline here the main steps. Consider
any equilibrium with minimum price 0. We first analyze qualitatively the prices of the goods
with respect to 0 and 1: We show that the zero-priced good must be good 1; good 2 must
have price strictly between 0 and 1, and goods 3 and 4 must have price strictly greater than
1. Next we characterize qualitatively which goods are bought in non-zero quantity by each
agent: We show that every agent buys only goods that she likes. Agents A3 and A4 buy
both goods that they like, but only one of agents A1, A2 buys all three goods that she likes.
If A1 buys g1, g2, g4, then A2 buys only g1, g4. If A2 buys g1, g2, g4, then A1 buys only g2, g4.
Finally, we analyze quantitatively each of these two cases. In each case, we show that the
prices satisfy a system of (nonlinear) equations, and the system has a unique nonnegative
solution. Furthermore, the prices determine uniquely the allocation. In the first case where
A1 buys all three goods that she likes, the unique solution and the corresponding allocations
are as given in the Theorem. In the second case where agent A2 buys all three goods, we show
that there is no equilibrium: the unique prices that satisfy the equations yield allocations
that violate the market clearance conditions (a good is oversold). The analysis uses heavily
the primal-dual complementary slackness equations. We refer to the full paper for the details.
I Remark 17. Observe that in the equilibrium, the allocations of all four agents are irrational
even though each one of them spends their dollar completely and the allocations form a
fractional perfect matching, i.e., add up to 1 for each good and each agent.

7 Membership of Exact Equilibrium in FIXP

In this section, we will prove that the problem of computing an HZ equilibrium lies in the
class FIXP, which was introduced in [16]. This is the class of problems that can be cast, in
polynomial time, as the problem of computing a fixed point of an algebraic Brouwer function.
Recall that basic complexity classes, such as P, NP, NC and #P, are defined via machine
models. For the class FIXP, the role of “machine model” is played by one of the following: a
straight line program, an algebraic formula, or a circuit; further it must use the standard
arithmetic operations of +, - * /, min and max. We will establish membership in FIXP using
straight line programs. Such a program should satisfy the following:
1. The program does not have any conditional statements, such as if ... then ... else.
2. It uses the standard arithmetic operations of +, - * /, min and max.
3. It never attempts to divide by zero.

A total problem is one which always has a solution, e.g., Nash equilibrium and Hylland-
Zeckhauser equilibrium. A total problem is in FIXP if there is a polynomial time algorithm
which given an instance I of length |I| = n, outputs a polynomial sized straight line program
which computes a function FI on a closed, convex, real-valued domain D(n) satisfying: each
fixed point of FI is a solution to instance I.

Let p and x denote the allocation and price variables. We will give a function F over these
variables and a closed, compact, real-valued domain D for F . The function will be specified
by a polynomial length straight line program using the algebraic operations of +,−, ∗, /,min
and max, hence guaranteeing that it is continuous. We will prove that all fixed points of F
are equilibrium allocations and prices, hence proving that Hylland-Zeckhauser is in FIXP.

Notation. We denote the set {1, . . . .n} by [n]. xi denotes agent i’s bundle. For each agent
i, choose one good from G∗i and denote it by i∗. If e is an expression, we will use (e)+ as a
shorthand for max{0, e}.
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Domain D = Dp × Dx, where Dp and Dx are the domains for p and x, respectively,
with Dp = {p | ∀j ∈ [n], pj ∈ [0, n]} and Dx = {x | ∀i ∈ [n],

∑
j∈G xij = 1, and ∀i, j ∈ [n],

xij ≥ 0}.
Let (p′, x′) = F (p, x). (p, x) can be viewed as being composed of n+1 vectors of variables,

namely p and for each i ∈ [n], xi. Similarly, we will view F as being composed of n + 1
functions, Fp and for each i ∈ [n], Fi, where p′ = Fp(p, x) and for each i ∈ [n], x′i = Fi(p, x).
The straight line programs for Fp and Fi are given in the figures below.

It is easy to see that if Fi alters a bundle, the new bundle still remains in the domain; in
particular, ∀i ∈ [n], size(i) = 1. Similarly, it is easy to see that the output of Fp is in the
domain Dp.

Requirements on equilibria. Observe that (p, x) will be an equilibrium for the market if, in
addition to the conditions imposed by the domain, it satisfies the following:
1. ∀j ∈ [n],

∑
i∈A xij = 1.

2. ∀i ∈ [n], cost(i) ≤ 1.
3. ∀i ∈ [n], xi is an optimal bundle for i. Furthermore, cost(i) is minimum over all optimal

bundles.

Function F has been constructed in such a way that if any of these conditions is not
satisfied by (p, x), then F (p, x) 6= (p, x), i.e., (p, x) is not a fixed point of F . Equivalently,
we show that every fixed point of F must satisfy all these conditions and is therefore an
equilibrium. The converse also holds. That is, we show:

I Lemma 18. Every fixed point (x, p) of F is an equilibrium of the matching market.
Conversely, every equilibrium (p, x), where some good has price 0, is a fixed point of F .

Algorithm 2 Straight line program for function Fp.

1. For all j ∈ [n] do: pj ← min{n,max{0, pj +
∑

i∈A xij − 1}}
2. r ← minj∈[n]{pj}
3. For all j ∈ [n] do: pj ← pj − r

The proof of correctness for the function F is nontrivial, and is given in the full paper.
The proof makes essential use of the characterization of the optimal bundles from Section
5. We first show that F has the following key property: if (p, x) is a fixed point, then no
step of F will change (p, x), i.e., it couldn’t be that some step(s) of F change (p, x) and
some other step(s) change it back, restoring it to (p, x). This is easy to check for Fp. The
proof for Fi is more delicate and uses a potential function argument based on the changes
in value(i) =

∑
j uijxij and cost(i) =

∑
j pjxij caused by any change in the allocation xi in

every step of the algorithm for Fi. Given the key property, we then show that if a pair (x, p)
does not satisfy one of the equilibrium requirements, then some step of F will change (x, p),
hence (x, p) is not a fixed point. We refer to the full paper for the details of the proofs.

Thus, we have:

I Theorem 19. The problem of computing an exact equilibrium for the Hylland-Zeckhauser
scheme is in FIXP.
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Algorithm 3 Straight line program for function Fi.

1. r ← (
∑

j pjxij − 1)+.
2. For all j ∈ [n] do: xij ← xij+r·(1−pj)+

1+r·
∑

k
(1−pk)+

3. t← (1−
∑

j pjxij)+
4. For all k /∈ G∗i do:

a. d← min{xik,
t

n2 }
b. xik ← xik − d
c. xii∗ := xii∗ + d

5. For all pairs j, k of goods s.t. uij ≤ uik do:
a. d← min{xij , (pj − pk)+}
b. xij ← xij − d/n
c. xik ← xik + d/n

6. For all triples j, k, l of goods such that uij < uik < uil do:
a. d← min{xik, ((uil − uik)(pk − pj)− (uik − uij)(pl − pk))+}
b. xik ← xik − d
c. xij ← xij + uil−uik

uil−uij
d

d. xil ← xil + uik−uij

uil−uij
d

7. For all triples j, k, l of goods such that uij < uik < uil do:
a. d := min(xij , xil, ((uik − uij)(pl − pk)− (uil − uik)(pk − pj))+)
b. xik := xik + d

c. xij := xij − uil−uik

uil−uij
d

d. xil := xil − uik−uij

uil−uij
d

8 Membership of Approximate Equilibrium in PPAD

In this section we define approximate equilibria, and show that the problem of computing an
approximate equilibrium is in PPAD.

First let us scale the utilities of all the agents so that they lie in [0, 1]. This can be done
clearly without loss of generality without changing the equilibria.

I Definition 20. A pair (p, x) of (non-negative) prices and allocations is an ε-approximate
equilibrium for a given one-sided market if:
1. The total probability share of each good j is 1 unit, i.e.,

∑
i xij = 1.

2. The size of each agent i’s allocation is 1, i.e., size(i) = 1.
3. The cost of the allocation of each agent is at most 1 + ε.
4. The value of the allocation of each agent i is at least v∗(i)− ε where v∗(i) is the value

of the optimal bundle for agent i under prices p, i.e. the optimal value of the program:
maximize value(i), subject to size(i) = 1 and cost(i) ≤ 1. Furthermore, we require that
the cost of the allocation xi is at most c∗(i) − ε, where c∗(i) is the minimum cost of a
bundle for agent i that has the maximum value v∗(i).

The corresponding computational problem is: Given a one-sided matching market M
and a rational ε > 0 (in binary as usual), compute an ε-approximate equilibrium for M .
Polynomial time in this context means time that is polynomial in the encoding size of the
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marketM and log(1/ε). We define also a more relaxed version, called a relaxed ε-approximate
equilibrium where condition 1 is relaxed to |

∑
i xij − 1| ≤ ε for all goods j. It is easy to see

that the two versions are polynomially equivalent, i.e., if one can be solved in polynomial
time then so can the other.

I Proposition 21. The problems of computing an ε-approximate equilibrium and a relaxed
approximate equilibrium are polynomially equivalent.

Note however, that in general an ε-approximate equilibrium may not be close to an actual
equilibrium of the matching market. This phenomenon is similar to the case of market
equilibria for the standard exchange markets and to the case of Nash equilibria for games.

We will show membership of the approximate equilibrium problem in PPAD by showing
that a relaxed approximate equilibrium can be obtained from an approximate fixed point of
a variant of the function F defined in Section 7.

I Definition 22. A weak ε-approximate fixed point of a function F (or weak ε-fixed point
for short) is a point x such that ||F (x)− x||∞ ≤ ε.

Let F be a family of functions, where each function FI in F corresponds to an instance I
of a problem (in our case a one-sided matching market) that is encoded as usual by a string.
The function FI maps a domain DI , to itself. We assume that DI is a polytope defined
by a set of linear inequalities with rational coefficients which can be computed from I in
polynomial time; this clearly holds for our problem. We use |I| to denote the length of the
encoding of an instance I (i.e., the length of the string). If x is a rational vector, we use
size(x) to denote the number of bits in a binary representation of x.

I Definition 23. A family F of functions is polynomially computable if there is a polynomial
q and an algorithm that, given the string encoding I of a function FI ∈ F and a rational
point x ∈ DI , computes FI(x) in time q(|I|+ size(x)).
A family F of functions is polynomially continuous if there is a polynomial q such that for
every FI ∈ F and every rational ε > 0 there is a rational δ such that log(1/δ) ≤ q(|I|+log(1/ε))
and such that ||x− y||∞ ≤ δ implies ||FI(x)− FI(y)||∞ ≤ ε for all x, y ∈ DI .

It was shown in [16] that, if a family of functions is polynomially computable and
polynomially continuous, then the corresponding weak approximate fixed point problem
(given I and rational δ > 0, compute a weak δ-approximate fixed point of FI) is in PPAD.
The family F of functions for the online matching market problem defined in Section 7 is
obviously polynomially computable. It is easy to check also that it is polynomially continuous.

We will use a variant F ′ of the function F of Section 7, where the functions Fi for
the allocations are modified as follows. Step 5 for all pairs j, k of goods, and steps 6,
and 7 for all triples j, k, l are applied all independently in parallel to the allocation that
results after step 4. In order for the allocation to remain feasible (i.e. have xij ≥ 0 for
all i, j), we change line 5a in F ′i to d ← min{xij

3 , (pj − pk)+}, change line 6a to d ←
min{ xik

3n2 , ((uil − uik)(pk − pj) − (uik − uij)(pl − pk))+}, and we change line 7a to d ←
min{ xij

3n2 ,
xil

3n2 , ((uik − uij)(pl − pk)− (uil − uik)(pk − pj))+}. In this way, a coordinate xij

can be decreased by the operations of step 5 for all pairs j, k at most by xij/3 in total, and
the same is true for the total decrease from the operations of steps 6 and 7 for all triples
involving good j; therefore, the coordinates xij remain nonnegative. The function for the
prices remains the same as before. All the properties shown in Section 7 for F hold also
for F ′. The family F ′ of these functions F ′I is clearly also polynomially computable and
polynomially continuous.
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Let I be a given instance of the matching market problem. Every utility uij is a rational
number, without loss of generality in [0, 1], which is given as the ratio of two integers
represented in binary. Let m be the maximum number of bits needed to represent a utility.
Note that every nonzero uij is at least 1/2m and the difference between any two unequal
utilities is at least 1/22m. Given a positive rational ε (wlog in [0, 1]), let δ = ε/(n1026m).
Note that log(1/δ) is bounded by a polynomial in |I| and log(1/ε). We show the following:

I Lemma 24. Every weak δ-approximate fixed point of F ′I is a relaxed ε-approximate
equilibrium of the market I.

The proof follows and adapts the proof in Section 7 of the analogous statement for the
exact fixed points. The proof is rather involved; we refer to the full paper for the details. As
a consequence of Lemma 24 and Proposition 21 we have:

I Theorem 25. The problem of computing an ε-approximate equilibrium of a given matching
market is in PPAD.

9 Discussion

As stated in the Introduction, a conclusive proof of intractability of the HZ scheme, via
either a proof of FIXP-hardness for exact equilibrium or PPAD-hardness for approximate
equilibrium, has eluded us. One of the difficulties is the following: Optimal bundles of agents
in an HZ equilibrium may include zero-utility zero-priced goods as “fillers” to satisfy the
size constraint, e.g., observe their use in our Algorithm for the case of dichotomous utilities.
In this easy setting, we knew which were the “filler” goods. However, when faced with a
complex instance of HZ, we don’t a priori know which zero-utility goods will be used as
“fillers”. Therefore, even though an agent may have very few positive utility goods, other
goods are also in play, thereby giving no “control” on the equilibrium outcome.

We propose exploring the following avenue, in addition to the usual ones, for arriving
at evidence of intractability: Relax the notion of polynomial time reducibility suitably and
obtain a weaker result than FIXP-hardness or PPAD-hardness.

Other open problems related to our work are: obtain efficient algorithms for computing
approximate equilibria, suitably defined, and identify other special cases, besides the bi-valued
case, for which equilibrium is easy to compute. Additionally, generalizations and variants of
the HZ scheme deserve attention, most importantly to two-sided matching markets [14].

Encouraged by success on the bi-valued utilities case, we considered its generalization to
the tri-valued utilities case, in particular, {0, 1

2 , 1} utilities. We believe even this case has
instances with only irrational equilibria. Finding such an example or proving rationality is
non-trivial and we leave it as an open problem. Furthermore, it will not be surprising if even
this case is intractable; resolving this is a challenging open problem.
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Abstract
We design a randomized algorithm that finds a Hamilton cycle in O(n) time with high probability in
a random graph Gn,p with edge probability p ≥ C log n/n. This closes a gap left open in a seminal
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1 Introduction

A Hamilton cycle is a cycle in a graph that visits every vertex exactly once. Determining
whether a graph has a Hamilton cycle is a notoriously difficult problem that has been tackled
in various ways. In general, it is known to be NP-hard, putting it in a bag of complexity
theory together with colorability or SAT, problems for which one has tried to find polynomial
time algorithms for a long time without any success so far.

While the Hamilton cycle problem is a difficult problem in general, it turns out that for
most graphs it is actually not. To illustrate this, we take a closer look at the Erdős-Rényi
random graph Gn,p which is an n-vertex graph with each edge being present independently
with probability p. The existence question of the Hamilton cycle problem is very well
understood, cf. the comprehensive survey by Frieze [13]. Let H be the set of Hamiltonian
graphs, then for Gn,p it holds that (Komlós and Szemerédi [19] and Korshunov [20])

Pr[Gn,p(n) ∈ H] =


0, p(n) = log(n)+log log(n)−ω(1)

n

e−e−c

, p(n) = log(n)+log log(n)+c+o(1)
n

1, p(n) = log(n)+log log(n)+ω(1)
n ,

which is limitwise the same as the threshold for when Gn,p has minimum degree 2. So really
vertices of degree one are the bottleneck for random graphs. In fact, it is known that if we
add the edges randomly one by one, the moment we reach minimum degree 2 is the same as
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the moment the graph becomes Hamiltonian with high probability [1]. And this threshold is
also robust (e.g. [22, 23]). For other random graph models like the random graph with m

edges Gn,m, the random regular graph Gn,r or the k-out which takes k random edges from
every vertex the corresponding thresholds for Hamiltonicity are also known [7,9,11,26,29].
Similar to the classical random graph case also in these cases the thresholds coincides with
a local obstruction such as minimum degree two or any two vertices have a neighborhood
of size at least 3. And this is not a coincidence. Randomness gives us such nice expansion
properties that only the small structures can be an obstruction to the Hamilton cycle. This
phenomenon has been observed also for other properties such as connectivity, containing a
perfect matching or colorability.

The proofs of Komlos and Szemeredi and Korshunov are just existential, i.e. they
determine the threshold for the existence of Hamilton cycle, but do not provide an efficient
algorithm for finding it. In a seminal paper, Angluin and Valiant [4] show that with the input
given as a random adjacency list one can find Hamilton cycles in Gn,p for p ≥ C log n/n in
O(n log2 n) time with high probability. There are two ways in which this result is possibly
non-optimal: the lower bound on p and the runtime. The first point was considered by
Shamir and then Bollobas, Fenner and Frieze, who brought the bound down to the existence
threshold of Gn,p. In more recent works the runtime has also been optimized for graphs
given in adjacency matrix form, assuming a pair of vertices can be queried in constant time.
We summarize these results in the table below. There are various related results that are
hard to compare, as their setting is slightly different [2,12,14,15]. Some of the results are
assuming the graph is given as an adjacency matrix with black box queries and the runtime
O(n/p) is optimal in that model.

Authors Year Time p(n) Graph Model
Angluin, Valiant [4] ‘79 O(n log2(n)) p ≥ C log(n)

n
adj. list

Shamir [28] ‘83 O(n2) p ≥ log(n)+(3+ε) log log(n)
n

adj. list
Bollobas, Fenner, Frieze [8] ‘87 n4+o(1) p ≥ Existence threshold adj. list
Gurevich, Shelah [16] ‘87 O(n/p) p const. adj. matrix
Thomason [30] ‘89 O(n/p) p ≥ Cn−1/3 adj. matrix
Alon, Krivelevich [3] ‘20 O(n/p) p ≥ 70n−1/2 adj. matrix

In this paper we consider the second question that was left open in the Angluin-Valiant
paper: can the runtime be improved. Note that a graph with p ≥ C log n/n has Θ(n log n)
edges. Thus, improving the runtime below this bound requires a sublinear algorithm, i.e.
sublinear in the input size. These are algorithms that produce an output without reading
the input completely (see e.g. [27] for an overview of the topic). Such algorithms are less
restrictive than those designed for online or a (semi-)streaming model as they allow some
control over which part of an input is used. However for graphs with n vertices and m� n

edges the algorithm is only allowed to read o(m) edges, i.e., a negligible fraction of the input
– but nevertheless has to compute the desired output correctly.

1.1 Our contribution
In this paper we show that given a random graph with edge probability p ≥ C log n/n, for
an appropriately chosen constant C, we can find a Hamilton cycle in O(n) time with high
probability. This time is clearly optimal, as the algorithm has to return Ω(n) edges. We
assume that the graph is given to us with randomly ordered adjacency lists, such that we
can query the next neighbor in those lists for any vertex in constant time.
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Figure 1 Algorithm uses a random walk like strategy, blue edge is the newneighbor().

I Theorem 1. There exists a randomized algorithm R which finds a Hamilton cycle in
a random graph Gn,p in O(n) time with high probability, provided p ≥ C log n/n for a
sufficiently large constant C.

Note that “with high probability” is always meant to mean with probability 1 − o(1)
tending to one as n tends to infinity and takes into account all sources of randomness: i.e.,
the randomness of the algorithm, the random graph and the randomness of the datastructure
used to store the graph (random ordering of the adjacency lists).

Our paper is organized as follows. Section 2 contains the algorithm and the proof of
Theorem 1. It is based on three technical lemmas that we prove in Section 3.

2 Algorithm

The most commonly used technique for efficient cycle extensions is Posa rotations. This
is also the case for the original algorithm of Angluin and Valiant [4], which we outline in
Section 2.1 below, cf. also Figure 2.To reduce the runtime to O(n) we reduce the total number
of Posa rotations that are required and simultaneously also restrict ourselves to certain types
of Posa rotations so that we can realize each of them in O(log n) time.

2.1 Finding A Hamilton Cycle via Posa Rotations
We sketch here the algorithm of Angluin and Valiant. The main idea of their algorithm is to
perform a greedy random walk until all vertices are incorporated in the path/cycle. This
means we start from an arbitrary vertex and query a neighbor of that vertex. If the neighbor
is already contained in the path we have built so far we consider this a failure and we query
a new neighbor. Otherwise we add the neighbor to the path and continue from the new
endpoint vertex (see Figure 1).

Once the path is long enough (at least n/2) we add possible Posa rotations. Assume we
start with a path P = (v1, . . . , vs), then if we find two edges such that for some index i ∈ [s]
the edges are of the form {vi+1, vs} and {vi, vj} for some j > i + 1, we can rearrange the
path to form a new path P ′ = (v1, . . . , vi, vj , vj+1, . . . , vs, vi+1, . . . , vj−1) and now the new
path has the same vertex set but a different endpoint vertex. This we call a Posa rotation.
Additionally we will always want long Posa rotations meaning s− i must be at least n/2 to
ensure that we can find the second edge needed quickly with high probability.

So during our Algorithm if the neighbor (vi+1) of the endpoint of the path (vs) has
distance at least n/2 from the endpoint along the path we use that edge to build a cycle
and continue from the vertex preceding the neighbor (vi) on the path (see Figure 2). This
leaves a cycle of size at least n/2 and if we ever find one of the vertices on the cycle to be
the neighbor of the current endpoint we reincorporate the large cycle by appending it to the
path (again giving a new endpoint).

Many details need to be considered on how random variables interact, etc., but leaving
those aside one can easily convince oneself that on average the current vertex changes after a
constant number of queries to a new random vertex, and that the number of queries until
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Figure 2 Posa rotation, detaching a large cycle.

Figure 3 Reincorporating the large cycle.

the path length increases by one is geometrically distributed and has an expectation of
n/(n− i) where i is the current length of the path. The total number of Posa rotations is
thus bounded by

O

(
n∑

i=1

n

i

)
= O(n log n).

As each Posa rotation takes time log n to realize this gives a total running time of O(n log2 n).

2.2 Our Algorithm
We give a short overview of the new algorithm we propose. The algorithm comes in two
phases. In phase 1 we find two random perfect matchings. The union of these two random
perfect matchings forms a two regular graph, i.e., a set of disjoint cycles or double edges
covering all vertices. It is not difficult to show that the number of cycles is with high
probability bounded by 2 log n. In phase 2 of the algorithm we stitch these 2 log n cycles
together.

For the analysis of the algorithm it is very helpful to assume that a query for a new
neighbor of some vertex v returns a vertex w that is uniformly distributed over all vertices
in V − v and independent from all previous queries. Of course such an assumption a priori
does not hold if we simply return the next vertex from the adjacency list of v. We realize
this by directing the edges and resampling. More formally, we will show the following
lemma in Section 3; in the remainder of Section 2 we will use the corresponding function
newneighbor() as a black box.

I Lemma 8 (newneighbor). It is possible to interact with the graph Gn,p, p ≥ C log n
n ,

with an algorithmic procedure newneighbor(v) which has the following properties with high
probability:
(i) Calling newneighbor(v) returns a neighbor of v distributed uniformly among V −v and

independent of all calls so far – as long as we make at most O(n) calls to newneighbor()
altogether and every vertex is queried at most 100 log n times.

(ii) The total run time of all O(n) calls is O(n).
Note that this algorithm uses both internal randomness as well as the randomness

of Gn,p. If newneighbor(v) ever returns ’there are no more neighbors’ we immediately
terminate the entire algorithm and return failure. To avoid this, we will prove that we query
newneighbor(v) from any vertex at most 100 log n times w.h.p. and choose C large enough
so that with high probability the minimum degree of the random graph is large enough.
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2.2.1 Phase 1: Perfect Matching
In the first phase of the algorithm we show that we can find a perfect matching in O(n)
time. We call the algorithmic procedure described in this section FastPerfectMatching,
see Algorithm 1. In fact, for an easier understanding of the required ideas, we work in this
section with a random bipartite random graph. This can easily be done by partitioning the
vertex set V into two equal sets A and B arbitrarily (if n is odd we set one vertex aside
and include it in phase 2) and only considering the edges between A and B. Formally, the
function newABneighbor(v) calls newneighbor(v) until we receive a neighbor which is in
B (resp. A).

B Claim 2. If we call newABneighbor() for a sequence of O(n) vertices, in which every
vertex v ∈ A ∪ B occurs at most log n times, then with high probability this results in at
most O(n) calls to newneighbor() with at most 6 log n calls per vertex.

The claim holds because any call of newneighbor() has probability at least 1/2 to be in the
correct partition and, by our assumptions on newneighbor(), the calls are independent. We
can thus apply concentration bounds for binomial distributions and union bound for every
vertex. Clearly, newABneighbor() still has a uniform and independent distribution over all
vertices of the opposite partition.

Let G be the balanced bipartite graph with partitions A and B. During the algorithm
we will maintain a matching M which covers some of the vertices and is empty at first. At
any point in time, we denote by AM the vertices in A that are covered by the matching and
with A0 the unmatched vertices. Equivalently for BM and B0.

Additionally we need a set of edges that expand well from the vertices of A. And we
need to be able to keep track of them efficiently and on the fly. So for any vertex v we define
the d-neighborhood of v, Nd(v) ⊆ V (G), to be the set of the first dde calls to the function
newABneighbor(v). In particular this implies that for any d′ < d the d′-neighborhood is
contained in the d-neighborhood of v. Similarly, the d-neighborhood of a set of vertices S,
denoted by Nd(S), is defined as the union of the d-neighborhoods of all vertices in S. We
expose and keep track of the d-neighborhood of the unmatched vertices A0, Nd(|A0|)(A0),
for the function d(t) = min(

√
n/t, log n). This gives us a neighborhood large enough for the

random walks to be effective, but small enough so that we do not need too much time to
update/expose.

To increase the matching we call a subroutine IncreaseMatching. IncreaseMatching
takes as argument the current matching M and an unmatched vertex v ∈ B0. It proceeds as
follows. If v is in Nd(A0) we add the corresponding neighbor in A0 and v to the matching. If
not we take w = newABneighbor(v). If w is in A0 we add the edge {w, v} to M . If neither
of the two is the case, then w ∈ AM and there exists a unique u such that {w, u} is currently
in M . We swap {w, u} for {w, v}, thereby making u a new unmatched vertex, and repeat
IncreaseMatching with u, cf. Figure 4.

Clearly, during the run of the algorithm we also have to dynamically update the d-
neighborhood of A0. In particular this means removing Nd(w) of a newly matched vertex w

and, if d(|A0|) increases, adding vertices from additional calls to newABneighbor() for every
vertex in A0.

To bound the runtime of Algorithm 2, FastPerfectMatching, we observe first that we
increase the matching exactly n times, which is inline with our desired bound of O(n). We
can thus concentrate on bounding the recursive calls to IncreaseMatching in line 13 of
IncreaseMatching.

ITCS 2021
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A0

B0

AM

M
d− neighborhood

newneighbor(v)

v
BM

a)b)

c)

u

Figure 4 For IncreaseMatching three things can happen. Either a) the vertex is already in the
neighborhood of A0, in which case we match immediatly, b) the vertex newABneighbor(v) is in
A0, which also gets matched, or c) newABneighbor(v) is in AM . Then we swap the matching and
continue from the partner of the newABneighbor(v).

Algorithm 1 FastPerfectMatching(G).

1: B0 ← B; BM ← {}; A0 ← A; AM ← {};
2: d ← 0; M ← {}
3: while B0 6= {} do
4: v ← arbitrary vertex from B0 . and remove from B0
5: IncreasingMatching(G, M, v); . see Algorithm 2

6: while d < min
(√

n
|A0| , log(n)

)
do

7: d← d + 1
8: Add newABneighbor(v) to the d-neighborhood for every vertex in v ∈ A0

9: return Matching M

I Lemma 3. Let Li denote the number of calls IncreaseMatching in line 13, while |A0| = i

for any i ∈ [n]. Then the Li are dominated by independent geometric distributions with
success probability pi = i·d(i)

100n .

Proof. Whenever we are at a vertex v in B we expose an edge to a random neighbor in the
set A. If that vertex is in A0 we match v and |A0| decreases by one so we end the count of
L|A0|. Otherwise we swap with a matched vertex and get a new starting point in B0. As
newABneighbor() is independent and uniform, and the matching forms a bijection between
AM and BM , the fact that the vertex is not in A0, implies that we get a new random vertex
u in BM for the next call. If this vertex is in the exposed d-neighborhood of A0 we stop and
match to a vertex in A0 also ending the count of L|A0|.

To assess the probability of stopping, we use the expansion properties of the d-neighborhood
of A0 that are inherited from the random graph. This means in particular that the exposed
neighborhood of A0, Nd(|A0|)(A0), has size at least 1

100 |A0| ·d(|A0|), cf. Lemma 9 in Section 3
for a proof. The probability of hitting a vertex in A0 or the d-neighborhood of A0 (while
looking at the matched vertex of w in BM ) is thus at least |A0|·d(|A0|)

100n . Every new call of
newABneighbor() is independent by Lemma 8, thus Li is dominated by an independent
geometric distribution with success probability as claimed. J
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Algorithm 2 IncreaseMatching(G, M, v).

1: if v ∈ Nd(A0) then
2: w ← [neighbor of v] ∈ A0
3: Add {v, w} to M

4: Remove w from A0 and update Nd(A0)
5: return
6: w ← newABneighbor(v)
7: if w ∈ A0 then
8: Add {v, w} to M

9: Remove w from A0 and update Nd(A0)
10: return
11: u← unique vertex with {u, w} ∈M

12: Remove {u, w} from M and replace with {v, w}
13: IncreaseMatching(G, M, u)
14: return

We are now ready to proof the desired complexity bound:

I Proposition 4. FastPerfectMatching finds a perfect matching in a balanced random
bipartite graph in time O(n) with high probability.

Proof. There are two main contributions to the running time of the Algorithm. First the
subroutine IncreaseMatching, which we prove to be fast with the help of Lemma 3, and
secondly the updating and revealing of the d-neighborhood.

Recall that Li is the random variable corresponding to the number of calls of
IncreaseMatching in line 13, while |A0| = i for any i ∈ [n]. We set L =

∑n
i=1 Li. Note that

we can ignore the calls in line 5 of FastPerfectMatching, as these add only at total of O(n)
to the run time. From Lemma 3 we know that there exists a coupling to a geometrically
distributed random variable L′ such that L′i � Li and L′i is geometrically distributed with
pi = i·d(i)

100n .
From the definition of L′i we know that E[L′i] = 100n

i·d(i) and V ar[L′i] = 1−pi

p2
i
≤ 1

p2
i
≤

( 100n
i·d(i) )2. Recall that d(i) =

√
n/i whenever i ≥ n

(log n)2 . The total time used for those sets
can thus be bounded in expectation by

n∑
i= n

(log n)2

E[L′i] = O
(

n∑
i=1

√
n√
i

)
= O(n),

as
∑n

i=1 i−1/2 ≤
∫ n

0 x−1/2 dx = 2
√

n. If i ≤ n
log(n)2 , then d(i) = log n, and the total expected

time used for these sets is thus bounded by

n
(log n)2∑

i=1
E[L′i] = O

(
n∑

i=1

n

i · log(n)

)
= O(n).

We thus have that E[L′] = Θ(n) as well. To show that the actual run time is concentrated
around the expectation we apply Chebyshev’s inequality. A similar case distinction as above
gives us
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V ar[L′] ≤
n∑

i= n
(log n)2

10000n

i
+

n
(log n)2∑

i=1

10000n2

i2 · (log n)2 = O
(

n2

(log n)2

)
.

By Chebyshev’s inequality we thus get

Pr[L ≥ 2E[L′]] ≤ Pr[L′ ≥ 2E[L′]] ≤ V ar[L′]
(E[L′])2 ≤ O

(
1

(log n)2

)
,

which concludes the first part of the proof.

To bound the time needed to expose the d-neighborhoods, we observe first that we can
order the vertices in A by the order in which they join the matching. As Nd′(v) ⊆ Nd(v) ∀d′ ≤
d, we thus have to expose for the i-th vertex in this ordering at most d(n − i) + 1 edges,
where d(x) = min{

√
n/x, log n}. Thus, the total number of exposed edges is bounded by

n∑
i=1

(d(n− i) + 1) =

n
(log n)2∑

i=1
(d(i) + 1) +

n∑
i= n

(log n)2

(d(i) + 1)

≤

n
(log n)2∑

i=1
(log n + 1) +

n∑
i= n

(log n)2

√
n

i
≤ 4n.

Additionally we show the number of calls to the newABneighbor() function is at most log n

for every vertex w.h.p.. For any v ∈ B we call newABneighbor(v) exactly once for each
time it appears as the matched partner of newABneighbor(v). As the distribution on the
neighbors is uniform on A and we only use IncreaseMatching O(n) many times in total,
the probability that v ∈ B occurs at least log n times is at most(

O(n)
log n

)(
1
n

)log n

= O(n−2),

with room to spare. We can thus apply a union bound over all vertices in B to see that
w.h.p. no vertex in B has more than log n calls to newABneighbor(). Clearly the same holds
for vertices in A, as we only expose the d-neighborhood and d(|A0|) ≤ log n always. This
concludes the proof of Proposition 4. J

2.2.2 Phase 2: Incorporating the Cycle Factor
In the previous section we have seen that we can find a perfect matching in O(n) time. In
this section we show how we can extend this algorithm to find a Hamilton cycle. To do this
we first call the perfect matching algorithm twice, reseting the d-neighborhoods after the first
run. By our assumption on the independence on the calls to the function newneighbor(),
we thereby get two independent random perfect matchings. Their union forms a union of
cycles (or double edges) covering all vertices (if the number of vertices was odd we add the
single vertex excluded in phase 1 here back as a cycle with one vertex). Our task in this
phase is to join these cycles into a single cycle. We start with a lemma that bounds the
number of cycles that we need to join.

I Lemma 5. The union of two random independent perfect matchings in a bipartite graph
contains at most 2 log n cycles with high probability.
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Proof. We claim that the two independent perfect matchings can be seen as a random
permutation of [n/2]. Indeed, without loss of generality we may assume that M1 is just the
identity (by renumbering the vertices appropriately). M1 and M2 are independent which
implies M2 corresponds to a random assignment of B to A. The union of the two matchings
thus defines a random permutation of A.

For random permutations the number of cycles has been well studied and is related to
the Stirling numbers of the first kind. Using a double counting argument one can easily see
that the expected number of cycles of length 2k will be 1/k. The total expected number of
cycles is thus equal to the nth harmonic number. It is also well-known that this random
variable is concentrated, see e.g. [5] or [6, 21]. Thus, with high probability the number of
cycles is bounded by 2 log n, as claimed. J

Description of Algorithm 3 JoinCycles. To glue the cycles together we proceed in three
phases. First we greedily combine cycles into a path, until this path has length at least 3n/4.
Then we incorporate the remaining cycles one by one using Algorithm 4 AddSingleCycle.
Finally, we close the Hamilton path into a Hamilton cycle (Lemma 7).

The idea behind the first phase is straightforward. We start with an arbitrary cycle
and break it apart into a path P . Consider the endvertex pend of that path. We use
newneighbor() to query a new neighbor of pend. If that neighbor is in a new cycle (which
will happen with probability at least 1/4, as long as the path P contains at most 3n/4
vertices), we attach that cycle to P , thereby also getting a new endpoint pend. If the latter
did not happen, we query a new neighbor. In order to ensure that we do not query to many
vertices from a single vertex, we repeat the query for new neighbors at most 40 log n times.
If we have not been successful by then, we give up. It is easy to see that the probability for
ever giving up at this stage of the algorithm is bounded by o(1). It is also easy to see that
the total time spent until the path has length at least 3/4n is bounded by O(n).

Once the path has length at least 3n/4, the probability that a new neighbor is in one
of the remaining cycles gets too small (for our purpose) and we thus change strategy. In
particular, we add long Posa rotations, so that we can try various endpoints. This is the
purpose of the procedure AddSingleCycle (Algorithm 4).

We use a set U to keep track of used vertices. Those are vertices for which we already
queried neighbors within the algorithm JoinCycles. We denote the current path by
P = (pstart, .., pend). We also assume that we have access to a function predP (v) that determ-
ines the vertex before v on the path (null for pstart), and a function halfp(v) which is true iff
v is in the first half of P . We denote the cycle C that we want to add as C = (cstart, ..., cend),
where cstart is an arbitrary vertex at which we cut C into a path. We now explore neigh-
borhoods of vertices at once. To do this we denote by newneighbor(v, 40 log n) the set
of vertices that we obtain if we apply newneighbor(v) 40 log n times. Let Nstart = P ∩
newneighbor(cstart, 40 log n) and Nend = P ∩ newneighbor(cend, 40 log n) denote the in-
tersections of these neighborhood vertices with the path P . Until the cycle C is part of
the path P we do the following (Figure 5). Let N(pend) = newneighbor(pend, 40 log n) and
check for all v ∈ N(pend) if predP (v) ∈ Nstart. If so we also check if halfp(v) is true.

If we find a vertex v for which both conditions hold, we join the cycle here. To do
this look at Nend and take a vertex q ∈ newneighbor(cend, 40 log n) such that halfP (q) is
false and predP (q) 6∈ U . Then we add the cycle to the path by constructing the new path
Pnew = (pstart, ..., predP (v)) + (cstart, ..., cend) + (q, ..., pend) + (v, ..., predP (q)). Then add
pend, cstart and cend to the used vertices U . (If we cannot find q we abort the algorithm; it
will be easy to show that the probability that this happens is negligible.)

ITCS 2021
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newneighbor(cstart, log n)

newneighbor(pend, log n)

a) success b) failure: Posa rotate and repeat

Figure 5 Incorporating a single new cycle with AddSingleCycle. The dark red path indicating
the new Path after an iteration of the while loop.

Algorithm 3 JoinCycles(G, C = M1 ∪M2).

1: U ← {}
2: C0 ← first cycle of M1 ∪M2, (c0,start, ..., c0,end);
3: P ← (c0,start, ..., c0,end);
4: pend ← last vertex of P;
5: while |P | ≤ 3n

4 do
6: N ← newneighbor(pend, 40 log n);
7: U ← add pend;
8: v ← Search N for v such that v 6∈ P

9: (v, ..., ci,end)← cycle of v;
10: P ← P + (v, ..., ci,end);
11: pend ← ci,end;
12: while |P | 6= n do
13: Ci ← any cycle not in P

14: AddSingleCycle(G, P, Ci, U) . See Algorithm 4
15: return
16: // If any of the “Search” parts of the algorithm fail, we abort the algorithm and return

failure.

If the check fails for all v ∈ N(pend) we perform a Posa rotation. To do this is we take a
v ∈ N(pend), v 6= pstart, such that halfP (v) is true and such that predP (v) 6∈ U , and then
take a q ∈ newneighbor(predP (v), 40 log n) such that both halfp(q) is false and predP (q)
is unused. We then use v and q to construct a new path with a new endpoint, namely
Pnew = (pstart, ..., predP (v)) + (q, ..., pend) + (v, ..., predP (q)). Now we can repeat the above
procedure with Pnew and the new endpoint pnewend = predP (q). (If we cannot find v or q

we abort the algorithm; again it will be easy to show that the probability that this happens
is negligible.)

To store the path and cycles we use AVL trees with a linked list. The linked list just stores
the vertices in the order as they appear in the path resp. cycle. For the AVL tree we take the
ordering in the path/linked list as an ordering of the vertices. With this ordering at hand,
the AVL tree is well defined, and it allows for searching resp. answering the query half(v)
in O(log n) time. In addition, splitting the path resp. concatenating two paths correspond
to splitting an AVL tree at a given vertex (into a tree containing all smaller vertices and a
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Algorithm 4 AddSingleCycle(G, P, Ci, U).

1: // Function halfP (v) returns true if and only if v is in the first half of P ;
2: // For any vertex v ∈ P , predP (v) denotes the vertex before v on the path P ;
3: pend ← last vertex of P ;
4: Nstart ← newneighbor(cstart, 40 log n) ∩P ;
5: Nend ← newneighbor(cend, 40 log n);
6: U ← add cstart and cend;
7: while true do
8: N ← newneighbor(pend, 40 log n);
9: U ← add pend;
10: if ∃v ∈ N s.t. predP (v) ∈ Nstart and halfP (v) = true then
11: q ← Search Nend for q such that halfp(q) = false and predP (q) 6∈ U ;
12: P ← (pstart, ..., predP (v)) + (cstart, ..., cend) + (q, ..., pend) + (v, ..., predP (q));
13: return
14: else
15: v ← Search N for v such that halfP (v) = true ;
16: N ← newneighbor(predP (v), 40 log n);
17: U ← add predP (v);
18: q ← Search N for q such that halfP (q) = false and predP (q) 6∈ U ;
19: P ← (pstart, ..., predP (v)) + (q, ..., pend) + (v, ..., predP (q));
20: pend ← predP (q);
21: // If any of the “Search” parts of the algorithm fail, we abort the algorithm and return

failure.

tree containing the remaining vertices) resp. concatenate two AVL trees in which the largest
vertex in one tree is smaller than the smallest vertex in the other tree. It is well known
that both of these operations can be done for AVL trees in O(log n) time, cf. Lemma 10 in
Section 3 for more details.

I Proposition 6. Applying the procedure AddSingleCycle at most 2 log n times will run in
time O(n) with high probability.

Proof. We want to bound the number of Posa rotations we need to perform while we add at
most 2 log n cycles. Each Posa rotation occurs at the end of a while loop in the pseudocode.

To incorporate a cycle we want to find a vertex v which, in the order of the path, is right
after a vertex in Nstart and is in the first half of P . P has size at least 3n/4 so the number
of vertices in the first half is at least n/4. A random vertex therefore has a chance of at
least 1/4 to be in the first half of P . So every vertex in newneighbor(cstart, 40 log n) has
probability at least 1/4 independently of being in the first half of P and different from the
other vertices. This implies that the number of vertices in Nstart which are also in the first
half of P dominates a binomial distributed random variable F ∼ Bin(40 log n, 1/4). For F

we know the expectation to be 10 log n and by a Chernoff bound (11) the probability that F

is less than log n is O(n−2). We observe that where the Posa rotation happens is independent
of Nstart. So we apply a union bound that on fixed O(n) many rotations of P the probability
that there are less than log n vertices of Nstart in the first half of P is in O(n−1). This implies
that any call to newneighbor(pend) has a chance of at least log n/n to be right after a vertex
in Nstart and also in the first half of P . As each call to newneighbor() is independent, the
number of tries we must make is geometrically distributed with success probability log n/n

and we must succeed at most 2 log n many times. This means the number of Posa rotations
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is dominated by a negative binomial distributed random variable R ∼ NB(2 log n, log n/n).
So by the concentration of the negative binomial distribution (Lemma 14) the probability
that we need to try more than 4n times is at most O(log−1 n). Before every Posa rotation
we try newneighbor(pend, 40 log n) so 40 log n tries. This proves an upper bound on the
number of Posa rotations of O(n/ log n) with high probability.
Posa rotation. We summarize the operations we need to do per Posa rotation. This assumes
that we already failed to find v which is both after a vertex in Nstart and also in the first
half of P . We expose 40 log n new neighbors of pend and 40 log n of the vertex before v

on the path, we need to Posa rotate by splitting the path twice and then joining twice.
Checking whether a vertex is in U and adding vertices to U is a constant time operation
with a lookup table. All of these operations by choice of proper datastructure (Lemma 8 and
10) are done in O(log n). So over all Posa rotations these sum up to a runtime of at most
O(n). Additionally we need to find the vertex v in the first half of P with predP (v) 6∈ U .
Since U is much smaller than n/8 and |P | ≥ 3n/4 the number of possible vertices is at
least n/4. This means that if we test a random vertex, the probability that halfp() returns
true and its predecessor is not in U is at least 1/4. So the number times we need to call
halfP () is dominated by a geometric distribution with success probability 1/4. Similarly
to find the vertex q in the second half of P with predP (q) 6∈ U , the number of times we
need to call halfP () is also dominated by a geometric distribution with success probability
1/4. So over all rotations, the number of times we need to call halfP () is dominated by a
negative binomial distribution H ∼ NB(2 · O(n/ log n), 1/4). So by the concentration of the
negative binomial distribution (Lemma 14) the probability that we need to call halfP more
than O(n/ log n) times is O(log n/n). And since we can perform halfP () in time O(log n)
by Lemma 10 these have a total runtime of O(n) with high probability.
Incorporating cycles. Very similarly we bound the time we need to incorporate the cycles.
To find the vertex v which in the order of the path is right after a vertex in Nstart and is in
the first half of P we need to call halfP until we succeed. Note that since |Nstart| ≤ 40 log n

and as we proved above at least log n vertices of them are in the first half of P , every call
to halfP () from a random vertex after a vertex in Nstart has a chance of succeeding of at
least 1/40. This means the number of times we call halfP is again dominated by a negative
binomial distribution NB(2 log n, 1/40) and this runtime is negligible with high probability.
As we only incorporate a cycle 2 log n times, also the join and split operations as well as the
exposing of Nend and searching for q are negligible compared to the O(n) runtime.

Note also that we only call newneighbor() of vertices we then add to U and then not
again during the entire algorithm so no vertex has newneighbor() called more than 40 log n

times. At most O(n/ log n) many vertices are added to U , and U is small enough so that it
is always much smaller than n/8.

This concludes the proof of Proposition 6. J

I Lemma 7. Given a Hamilton path we can transform it to a Hamilton cycle in O(n) time.
Proof. Calling the algorithm AddSingleCycle with the cycle being pstart, but instead looking
for v such that a vertex after v is in the neighborhood of pstart instead of a predecessor gives
us a cycle C = (pstart, ..., v) + (pend, ..., afterP (v)). Analysis of runtime equivalent to the
analysis of AddSingleCycle. J

Propositions 4 and 6 as well as Lemma 7 show that all components of the algorithm run in
time O(n). It is also easy to check that both phases together require at most 50 log n calls to
newneighbor() from any fixed vertex, so the assumptions of Lemma 8 do hold. So choosing
C large enough, say C = 200, suffices to guarantee that with high probability the random
graph is such that all vertices have more neighbors than we query. This thus concludes the
proof of Theorem 1.
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3 Datastructures

In this section we give the details of the data structures that we used within our algorithm.

3.1 Querying a new vertex
As explained above, we assumed throughout the analysis of our algorithm that we have
access to a function newneighbor(v), that returns for a given vertex v a neighbor w that is
uniformly distributed in V − v and whose result is independent from all previous calls.

I Lemma 8 (newneighbor). It is possible to interact with the graph Gn,p, p ≥ C log n
n ,

with an algorithmic procedure newneighbor(v) which has the following properties with high
probability:
(i) Calling newneighbor(v) returns a neighbor of v distributed uniformly among V −v and

independent of all calls so far – as long as we make at most O(n) calls to newneighbor()
altogether and every vertex is queried at most 100 log n times.

(ii) The total run time of all O(n) calls is O(n).

Proof. To realize such a function newneighbor(), it is important to make the adjacency lists
independent of each other. To realize this we transform the graph G (which is distributed as
a random graph Gn,p) into a directed graph G′ distributed as Dn,p/2 (in which each directed
edge is present independently with probability p/2). It is well know how this can be done.
In particular, we can sample Dn,p/2 from Gn,p as a subgraph such that every edge in the
directed graph is also an undirected edge in the Gn,p. More precisely, we do the following for
every edge {i, j} of G: with probability

1
2 −

p

4 set (i, j) ∈ G′ and (j, i) 6∈ G′

1
2 −

p

4 set (i, j) 6∈ G′ and (j, i) ∈ G′

p

4 set (i, j) ∈ G′ and (j, i) ∈ G′

p

4 set (i, j) 6∈ G′ and (j, i) 6∈ G′

In order to be consistent with the transformation from G to G′ and to not lose too much
time we only direct the edges once we see it for the first time. To recall the made decision,
we store the random choices of the edges that we have we encountered so far into a hashtable.
Thus, we can check for each edge that we obtain from querying the adjacency list of a vertex
in G, whether we have seen this edge already and if so, which orientation we have chosen.
The hash table has size n and we use a hashfunction which is 4-wise independent. This way
the variance of the number of collisions is equal to a random function, and therefore the
time we need for hashing is O(n) +O(number of collisions) = O(n), which can be seen by
applying Chebyshev’s inequality. A more detailed argument of why linear probing with hash
functions works in this context can be found in [24,31].

Finally, we want the distribution of the next edge to be uniform among the vertices. For
this we need to resample from the already seen edges. Assuming we have revealed d many
edges from v we flip a biased coin. With probability d/(n− 1) we retake an old neighbor
and output it, one chosen uniformly at random, and with probability 1− d/(n− 1) we take
the next vertex in the adjacency list (which is also in Dn,p). Otherwise, we return one of
the previously seen neighbors uniformly at random. In this way any vertex has probability
exactly 1/(n− 1) to be returned by newneighbor(v). J
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3.2 Expansion

What we need from the random graph are properties of good expansion. Given the adjacency
list of a vertex v we define the d-neighborhood Nd(v) ⊆ V (G) to be the set of the first dde
calls to the function newABneighbor(v). In the analysis of the algorithm we make use of
the following lemma.

I Lemma 9 (Neighborhood Lemma). Let Gn/2,n/2,p be a random bipartite graph with p ≥
C log(n)

n and partitions A and B. Then with high probability we have for all subsets A′ ⊆ A

that the d-neighborhood of A′ is of size at least

|Nd(A′)(A′)| ≥
1

100 |A
′| · d(A′), (1)

where d(A′) = min(
√

n
|A′| , log(n)).

Proof. The proof follows from a straight forward calculation of probabilities. Let us assume
by contradiction there exists a set A′ ⊆ A with |Nd(A′)(A′)| < 1

100 |A
′| ·d(A′). Then there is a

set B′ ⊆ B of size |B′| = 1
100 |A

′| · d(A′) containing this d-neighborhood, Nd(A′)(A′) ⊆ B′. So
this is a probability we want to bound from above. The probability for a single vertex in A′

to have its d-neighborhood contained in a fixed set B′ is
(
|B′|

n

)d(A′)
since the d-neighborhood

is d(A′) vertices chosen from B uniformly and independently at random. The probability for
two specific sets A′ ⊆ A and B′ ⊆ B to have this property is (|B′|/n)|A

′|·d(A′). Now take the
union bound over all possible sets A′ and B′ (with |B′| = 1

100 |A
′| · d(A′)):

Pr[(1) false] ≤
∑

A′,B′

Pr[B′ contains Nd(A′)(A′)] =
n∑

i=1

(
n

i

)(
n

1
100 i d(i)

)( 1
100 i · d(i)

n

)i·d(i)

.

Then we apply an approximation for the binomial coefficients:
(

n
k

)
≤
(

en
k

)k. We see that
1
4 log 100n

i·d(i) ≥ log(e · n/i)/d(i) so

Pr[(1) false] ≤
n∑

i=1
exp

(
i · d(i) ·

(
−1

2 log
(

100n

i · d(i)

)))
.

Now d(i) is a known function of i. So we distinguish between two cases. When i ≥
n/ log2(n), then d(i) =

√
n/i. And we can calculate (i ≤ n)

n∑
i=1

(
i1/4 · n1/4

10 · n1/2

)√n i

≤
n∑

i=1

(
1
10

)√n i

≤ O(n−2).

On the other hand if i ≤ n/ log2(n), then d(i) = log(n). And we can calculate

n/ log2(n)∑
i=1

(
i1/2 · log(n)1/2

10 · n1/2

)i log(n)

≤
n/ log2(n)∑

i=1

(
1

10 · log(n)1/2

)i log(n)
≤ O(n−2).

Together this implies that the lemma holds for random graphs with probability ≥ 1 −
O(n−2). J
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3.3 AVL Trees
I Lemma 10 (AVL Trees). We can store a path (or cycle) in an AVL tree joint with a linked
list datastructure and can perform the following operations (where we view the cycle as a
path split at an arbitrary point):

For any vertex v find the vertex preceding or succeeding it in the path in constant time
O(1)
For any vertex v searching the path it is in and determining whether it is in the first or
second half of it in time O(log n)
Split the path into two paths in time O(log n)
Concatenate two paths into one by adding the endpoint of one to the start of the other in
time O(log n)

Proof. We combine an AVL tree, which is a balanced binary search tree, with a linked list.
The AVL tree is built on the order sequence of the path as if numbering the vertices along
the path from 1 to |P |. The linked list ensures that going forward and backward on the path
is done in constant time, where the AVL tree can perform search (for the half function) in
O(log n). A split of the path is nothing other than splitting the AVL tree at a leaf node into
two trees such that all the nodes smaller go into one tree and all the nodes larger go into the
other. The concatenate is the inverse of the split and only requires attaching the smaller tree
to the larger one at the appropriate node and rebalancing up to the root. Both operations
run in O(log n) time.AVL trees are by now a part of basic datastructure lectures and in
particular the split and concatenate operations can be found e.g. in the book by Knuth [18]
see page 473, which also cites from [10] or more generally on AVL trees see [25]. J

4 Concluding remarks

In this paper we presented a simple randomized algorithm based on iterative random walks
that construct a Hamilton cycle in time linear in the number of vertices. Our algorithm
is based on first building (two) random perfect matchings. The key idea here is to expose
more and more edges of the currently unmatched vertices, where the exact number of these
exposed neighbors is a function of the currently unmatched vertices. Our analysis requires
that the density of the random graph Gn,p is at least p ≥ C log n

n . C is chosen such that we
have a sufficient minimum degree with high probability.

We leave it as an open question whether our approach can be modified to also find
Hamilton cycles in Gn,p for p at the threshold for existence of Hamilton cycles. This certainly
requires additional ideas.
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A Concentration Inequalities

We mention here some well-known inequalities used to show concentration on random
variables. By the concentration of a random variable X we usually mean there exist constants
c and C such that with high probability cE[X] ≤ X ≤ CE[X]. Often also we ask C to be 2.
Although these are by no means new insights, we present them here for completion and
as a help for the reader. The Chernoff and Chebyshev inequality can be found e.g. in the
book [17].

I Theorem 11 (Chernoff Inequality). If X is distributed as a binomial random variable
X ∼ Bin(n, p) and 0 < ε ≤ 3/2, then

Pr[|X − E[X]| ≥ εE[X]] ≤ 2e−
ε2E[X]

3 .

I Theorem 12 (Chebyshev Inequality). For any random variable X for which the variance
V ar[X] exists,

Pr[|X − E[X]| ≥ t] ≤ V ar[X]
t2 .

We use the term negative binomial distribution in the analysis and since this is defined
slightly differently sometimes we give here the definition we use.

I Definition 13. Let Xi be independent bernoulli random variables with probability of being
one is p for any i ∈ N. For any r ∈ N let Y be index of the r-th Xi which evaluates to 1.
Then Y has a negative binomial distribution NB(r, p).

We observe that a negative binomial distribution Y ∼ NB(r, p) is equivalent to Y being
distributed as the sum of r geometric random variables with success probability p. Further a
simple corollary from the Chebyshev inequality:

I Corollary 14. For a negative binomial distributed variable Y ∼ NB(r, p)

Pr

[
Y ≥ 2r

p

]
≤ 1

r
.

Proof. We calculate E[Y ] = r/p and V ar[Y ] = r(1− p)/p2 and apply Chebyshev.

Pr

[
Y ≥ 2r

p

]
≤ Pr

[
|Y − E[Y ]| ≥ r

p

]
Chebyshev

≤ 1− p

r
≤ 1

r
J
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Abstract
We study the communication complexity of computing functions F : {0, 1}n × {0, 1}n → {0, 1} in
the memoryless communication model. Here, Alice is given x ∈ {0, 1}n, Bob is given y ∈ {0, 1}n and
their goal is to compute F (x, y) subject to the following constraint: at every round, Alice receives a
message from Bob and her reply to Bob solely depends on the message received and her input x (in
particular, her reply is independent of the information from the previous rounds); the same applies
to Bob. The cost of computing F in this model is the maximum number of bits exchanged in any
round between Alice and Bob (on the worst case input x, y). In this paper, we also consider variants
of our memoryless model wherein one party is allowed to have memory, the parties are allowed to
communicate quantum bits, only one player is allowed to send messages. We show that some of
these different variants of our memoryless communication model capture the garden-hose model of
computation by Buhrman et al. (ITCS’13), space-bounded communication complexity by Brody
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Thus the memoryless communication complexity model provides a unified framework to study all
these space-bounded communication complexity models.

We establish the following main results: (1) We show that the memoryless communication
complexity of F equals the logarithm of the size of the smallest bipartite branching program
computing F (up to a factor 2); (2) We show that memoryless communication complexity equals
garden-hose model of computation; (3) We exhibit various exponential separations between these
memoryless communication models.
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constant c > 1 for which the memoryless communication complexity is at least c logn? Note that
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1 Introduction

Yao [44] introduced the model of communication complexity in 1979 and ever since its
introduction, communication complexity has played a pivotal role in understanding various
problems in theoretical computer science. In its most general form in this model, the goal is
the following: there are two separated parties usually referred to as Alice and Bob, Alice
is given an n-bit string x ∈ {0, 1}n and similarly Bob is given y ∈ {0, 1}n and together
they want to compute F (x, y) where F : {0, 1}n × {0, 1}n → {0, 1} is a function known to
both of them. Here Alice and Bob are given unlimited computational time and memory
and the cost of any communication protocol between Alice and Bob is the total number of
bits exchanged between them. Clearly a trivial protocol is Alice sends her input x to Bob
who can then compute F (x, y), which takes n bits of communication. Naturally, the goal
in communication complexity is to minimize the number of bits of communication between
them before computing F (x, y). The deterministic communication complexity of a function F
(denoted D(F )) is defined as the total number of bits of communication before they can
decide F (x, y) on the worst-case inputs x, y.

Since its introduction there have been various works that have extended the standard
deterministic communication model to the setting where Alice and Bob are allowed to share
randomness and need to output F (x, y) with high probability (probability taken over the
randomness in the protocol). Apart from this there have been studies on non-deterministic
communication complexity [42], quantum communication complexity [43] (wherein Alice and
Bob are allowed to share quantum bits and possibly have shared entanglement), unbounded
error communication complexity [36] and their variants. One-way variants have also been
considered where only Alice sends messages to Bob. Study of these different models of commu-
nication complexity and their variants have provided many important results in the fields of
VLSI [34], circuit lower bounds [22], algorithms [1], data structures [32], property testing [7],
streaming algorithms [6], computational complexity [8], extended formulations [18].1

1.1 Background
Space-bounded communication complexity. In the context of our current understanding of
computation, the study of space required to solve a problem is a central topic in complexity
theory. Several space-bounded models such as width-bounded branching programs [28],
limited depth circuits, straight line protocols [29] have been widely studied in this context.
In this direction variants of communication complexity have also been analyzed to better
understand communication-space trade-offs [23, 26, 28]. In particular, the relation between
space-bounded computation and communication complexity was formally initiated by Brody
et al. [11] who considered the following question: what happens if we change the standard
communication model such that, in each step of communication, Alice and Bob are limited
in their ability to store the information from the previous rounds (which includes their
private memory and messages exchanged). In this direction, they introduced a new model
wherein Alice and Bob each are allowed to store at most s(n) bits of memory and showed
that unlike the standard communication complexity, in this model super-linear lower bounds
on the amount of communication is possible.2 Brody et al. mainly studied the one-way
communication complexity variant of this limited memory model in which Bob can have two

1 For more on communication complexity and its applications, we refer the interested reader to the
standard textbooks for communication complexity [27, 31].

2 We remark that the separations obtained by [11] were for non-Boolean functions.
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types of memory: an oblivious memory (depends only on Alice’s message) and a non-oblivious
memory (for computation). With these definitions, they obtained memory hierarchy theorems
for such communication models analogous to the space hierarchy theorem in the Turing
machine world.

Overlay communication complexity. Subsequently, Papakonstantinou, et al. [35] defined a
similar space-bounded one-way communication model wherein Alice has unlimited memory
and Bob has either no memory or constant-sized memory. At each round, messages from
Alice to Bob consist of at most t(n) bits and the complexity of computing F is the maximum
t(n) required over all inputs to F . They characterized the complexity in this model by an
elegant combinatorial object called the rectangle overlay (which is defined in Section 4.2).
They also managed to establish connections between their model and the well-known com-
munication complexity polynomial hierarchy, introduced by Babai, Frankl and Simon [3].
Papakonstantinou et al. [35] showed that the message length in their model corresponds to
the oblivious memory in a variant of space-bounded model, introduced by Brody et al. [11],
where Bob only has access to an oblivious memory.

Garden-hose model. Another seemingly unrelated complexity model, the garden-hose
complexity was introduced by Buhrman et al. [15] to understand quantum attacks on
position-based cryptographic schemes (see Section 5.1 for a formal definition). Polynomial size
garden-hose complexity is known to be equivalent to Turing machine log-space computations
with pre-processing. In the garden-hose model two distributed players Alice and Bob use
several pipes to send water back and forth and compute Boolean functions based on whose side
the water spills. Garden-hose model was shown to have many connections to well-established
complexity models like formulas, branching programs and circuits. A long-standing open
question in this area is, is there an explicit function on n bits whose garden-hose complexity
is super-linear in n?

Branching programs. Another unrelated computation model is the branching program.
Understanding the size of De Morgan formulas that compute Boolean functions has a long
history. In particular, there has been tremendous research in understanding lower bounds on
size of De Morgan formulas computing a Boolean function. Similar to formulas, branching
programs have also been well-studied in complexity theory. For both branching programs
and formulas, we have explicit functions which achieve quadratic (in input size) lower bounds
on the size of the branching program/formula computing them. A few years ago, Tal [40]
considered bipartite formulas for F : X × Y → {0, 1} (where each internal node computes
an arbitrary function on either X or Y , but not both) and showed that the inner product
function requires quadratic-sized formulas to compute. In the same spirit as Tal’s result, a
natural open question is, is there an explicit bipartite function which requires super-linear
sized bipartite branching programs to compute?

Given these different models of computation, all exploring the effects on computation
under various restrictions, a natural question is, can we view all of them in a unified way:

Is there a model of communication that captures all the above computational models?

In this work we introduce a very simple and new framework called the memoryless
communication complexity which captures all the computational models mentioned above.

ITCS 2021
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1.2 Memoryless Communication Models

We introduce a natural model of communication complexity which we call the memoryless
communication complexity. Here, like the standard communication complexity, there are
two parties Alice and Bob given x, y respectively and they need to compute F (x, y), where
F : {0, 1}n × {0, 1}n → {0, 1} is known to both of them. However, we tweak the standard
communication model in the following two ways: The first change is that Alice is “memoryless”,
i.e., at every round Alice computes the next message to send solely based on only her input x
and the message received from Bob in this round. She does not remember the entire transcript
of messages that were communicated in the previous rounds and also forgets all the private
computation she did in the previous rounds. Similarly Bob computes a message which he
sends to Alice, based only on his input y and the message received from Alice in the current
round. After Bob sends his message, he also forgets the message received and all his private
computations. Alice and Bob repeat this procedure for a certain number of rounds before
one of them outputs F (x, y).

The second crucial change in the memoryless communication model is that the cost of
computing F in this model is the size of the largest message communicated between Alice
and Bob in any round of the protocol (here size refers to the number of bits in the message).
Intuitively, we are interested in knowing what is the size of a re-writable message register
(passed back and forth between Alice and Bob) sufficient to compute a function F on all
inputs x and y, wherein Alice and Bob do not have any additional memory to remember
information between rounds. We denote the memoryless communication cost of computing
F as NM(F ) (where NM stands for “no-memory”). We believe this communication model
is very natural and as far as we are aware this memoryless communication model wasn’t
defined and studied before in the classical literature.

Being more formal, we say F : {0, 1}n × {0, 1}n → {0, 1} can be computed in the
memoryless communication model with complexity t, if the following is true. For every
x, y ∈ {0, 1}n there exists functions {fx, gy : {0, 1}t → {0, 1}t} such that, on input x, y, Alice
and Bob use fx and gy respectively to run the following protocol: the first message in the
protocol is fx(0t) from Alice to Bob and thereafter, for every message mB Bob receives, he
replies with deterministic m′ = gy(mB) and similarly for every message mA Alice receives
she replies with m′′ = fx(mA). The protocol terminates when the transcript is (1t−1b) at
which point they output b as their guess for F (x, y); and we say the protocol computes F if
for every x, y, the output b equals F (x, y). NM(F ) is defined as the smallest t that suffices
to compute F (using the protocol above) for every x, y ∈ {0, 1}n.

It is worth noting that in the memoryless communication protocol, Alice and Bob do not
even have access to clocks and hence cannot tell in which round they are in (without looking
at the message register). Hence, every memoryless protocol can be viewed as Alice and Bob
applying deterministic functions (depending on their inputs) which map incoming messages
to out-going messages. Also note that unlike the standard communication complexity, where
a single bit-message register suffices for computing all functions (since everyone has memory),
in the NM model because of the memoryless-ness we need more than a single bit register for
computing almost all functions.

For better understanding, let us look at a protocol for the standard equality function
defined as EQn : {0, 1}n × {0, 1}n → {0, 1} where EQn(x, y) = 1 if and only if x = y. It
is well-known that D(EQn) = n. In our model, we show that NM(EQn) ≤ logn + 1: for
i = 1, . . . , n, at the ith round, Alice sends the (logn+ 1)-bit message (i, xi) and Bob returns
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(i, [xi = yi]),3 Alice increments i and repeats this protocol for n rounds. In case Bob finds
an i for which xi 6= yi, he outputs 0, if not after n rounds they output 1. Note that this
protocol didn’t require Alice and Bob to have any memory and the length of the longest
message in this protocol was logn + 1. We discuss more protocols later in the paper and
formally describe the memoryless communication model in Section 3.

Variants of the memoryless model. Apart from the memoryless communication complexity,
we will also look at the “memory-nomemory communication complexity” wherein Alice is
allowed to have memory (i.e., Alice can know which round she is in, can remember the
entire transcript and her private computations of each round) whereas Bob doesn’t have any
memory during the protocol. The goal of the players remains to compute a function F and
the cost of these protocols (denoted by M(F )) is still defined as the smallest size of a message
register required between them on the worst inputs. Apart from this, we will also consider
the quantum analogues of these two communication models wherein the only difference is
that Alice and Bob are allowed to send quantum bits. We formally describe these models of
communication in Section 3. In order to aid the reader we first set up some notation which
we use to describe our results: for F : {0, 1}n × {0, 1}n → {0, 1}, let
1. NM(F ) be the memoryless communication complexity of computing F wherein Alice and

Bob both do not have any memory.
2. M(F ) be the memory-nomemory communication complexity of computing F where Alice

has memory and Bob doesn’t have memory
Apart from these, we will also allow quantum bits of communication between Alice and Bob
and the complexities in these models are denoted by QNM(F ) and QM(F ). Additionally, we
will consider the one-way communication variants wherein only Alice can send messages to Bob
and the complexities in these models are denoted by NM→(F ),M→(F ),QNM→(F ),QM→(F ).

1.3 Our Contributions
The main contribution in this paper is to first define the model of the memoryless communic-
ation complexity and consider various variants of this model (only some of which were looked
at before in the literature). We emphasize that we view our main contribution as a new simple
communication model that provides a conceptual – rather than technical – contribution
to studying space complexity, bipartite branching programs and garden-hose complexity
under a single model. Given the vast amount of research in the field of communication
complexity, we believe that our memoryless model is a very natural model of computation.
We now state of various connections between our memoryless communication model and
other computational models.

1. Characterization in terms of branching programs. It is well-known that standard
models of communication complexity are characterized by the so-called (monochromatic)
“rectangles” that partition the communication matrix of the function Alice and Bob are trying
to compute. In the study of the memoryless model, Papakonstantinou et al. [35] specifically
consider the memory-nomemory model of communication complexity wherein Alice has a
memory and Bob doesn’t and they are restricted to one-way communication from Alice
to Bob. They show a beautiful combinatorial rectangle-overlay characterization (denoted

3 Here [·] is the indicator of an event in the parenthesis.
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RO(F )) of the memory-no memory communication model.4 One natural idea is to improve
the RO(F ) complexity to a more fine-grained rectangle measure that could potentially also
characterize NM(F ), but this doesn’t seem to be true. The fact that both Alice and Bob do
not have memory, doesn’t allow them to “narrow” down into a rectangle allowing them to
compute the function, instead they narrow down into a set of rectangles. This motivates
the question, is there a natural characterization of even the memoryless communication
model, in which both Alice and Bob do not have memory? Here we answer this in the
positive. We provide a characterization of memoryless communication complexity using
branching programs. In particular, we show that for every F : {0, 1}n × {0, 1}n → {0, 1},
the memoryless complexity NM(F ) is (up to a factor 2) equal to the logarithm of the size of
the smallest bipartite branching program computing F .5 We give a proof of this statement
in Theorem 14.

2. Characterization in terms of garden-hose complexity. The garden-hose model of
computation was introduced by Buhrman et al. [15] to understand quantum attacks on
position-based cryptographic schemes. It is a playful communication model where two players
compute a function with set of pipes, hoses and water going back-and-forth through them.
Alice and Bob start with s pipes and based on their private inputs “match” some of the
openings of the pipes on their respective sides. Alice also connects a water tap to one of the
open pipes. Then based on which side the water spills they decide on the function value.
Naturally they want to minimize the number of pipes required over all possible inputs and
the garden-hose complexity GH(F ) is defined to be the minimum number of pipes required
to compute F this way. Given its puzzle-like structure, there have been several works to
understand this model and various connections between the garden-hose model and other
branches of theoretical computer science were established [15, 25, 39, 14, 16, 38, 17].

On the other hand, space-bounded communication complexity was introduced by Brody
et al. [11] to study the effects on communication complexity when they players are limited
in their ability to store information from previous rounds. Here Alice and Bob each have
at most s(n) bits of memory. Based on their private inputs x, y they want to compute the
function in a manner in which at each round Alice receives a single bit message from Bob
and based on her input x, the incoming message mB and her previous s(n)-bit register
content, she computes a new s(n)-bit register and decides whether to stop and output 0/1
or to continue. Bob does the same. space-bounded communication complexity SM(F ) of
computing a function F is the minimum register size s(n) required to compute the function
on the hardest input.

It was already shown by [11] that for every function, the logarithm of the garden-
hose complexity and the space-bounded communication complexity is factor 2 related.
It is also easy to show that our newly defined memoryless communication complexity is
also factor 2 related to the space-bounded communication complexity by [11]: NM(F ) ≤
2 · SM(F ) + 1, and SM(F ) ≤ NM(F ) + log NM(F ). We give a proof of this statement in
Lemma 20. Thus it immediately follows that the logarithm of the garden-hose complexity
and the memoryless communication complexity of any function is also at most factor 3
related. However we improve this relation using an elegant trick of [30] that allows one to
make computations reversible; and thereby show that for every function F , NM(F ) and
GH(F ) are equal up to an additive term 4.

log GH(F )− 4 ≤ NM(F ) ≤ log GH(F ).

4 This rectangle-overlay complexity is formally defined in Section 4.2.
5 We defer the formal definition of such branching programs to Section 2 and Section 4.2.
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We give a proof of this in Theorem 21. Hence, the memoryless communication complex-
ity model provides a clean framework for studying all these apparently different looking
computational models.

As an immediate application of this new characterization of the garden-hose model, we get
a better upper bound for the garden-hose complexity of the indirect storage access function.

I Definition 1 (Indirect Storage Access). Let n ≥ 4 and m ≥ 2 be such that n = 2m +
log (m/(logm)). The Indirect storage access function ISAn : {0, 1}n → {0, 1} is defined
on the input string (~x, ~y1, . . . , ~y2k , ~z) where k = log

(
m

log m

)
, ~x ∈ {0, 1}m, ~y ∈ {0, 1}log m,

~z ∈ {0, 1}k. Then ISAn(~x, ~y1, · · · , ~y2k , ~z) is evaluated as follows: compute a = Int(z) ∈ [2k],
then compute b = Int(~ya) ∈ [m] and output xb.

For the communication complexity version Alice gets ~x, ~z and Bob gets ~y1, . . . , ~y2k , they
want to compute ISAn(~x, ~y1, . . . , ~y2k , ~z).

It was conjectured in [25] that the Indirect Storage Access function has garden-hose
complexity Ω(n2). This function is known to have Ω(n2) lower bound for the branching
program [41] and thus is believed to be hard for garden-hose model in general.6 But it is easy
to see that NM(ISA) ≤ logn: Alice sends ~z to Bob who then replies with ~yInt(z). Finally Alice
computes the output. Thus using the memoryless-garden-hose equivalence (in Theorem 21)
we immediately get GH(ISA) ≤ 16n (thereby refuting the conjecture of [25]).

3. Separating these models. We then establish the following inequalities relating the
various models of communication complexity.7

M(F )

≤

QM(F )

≤ NM(F )

? ≤

QNM(F )

= log GH(F )

=

2 · S(F )

≤ M→(F )

≤

QM→(F )

≤ NM→(F )

≤

QNM→(F )

Furthermore, except the inequality marked by (?), we show the existence of various functions
F : {0, 1}n × {0, 1}n → {0, 1} for which every inequality is exponentially weak. In order to
prove these exponential separations we use various variants of well-known functions such as in-
ner product, disjointness, Boolean hidden matching problem, gap-hamming distance problem.
Giving exponential separations between quantum and classical communication complexity8 is
an extensively studied subject [13, 12, 21, 4, 20] and in this paper we show such separations
can also be obtained in the memoryless models. We provide the proof in Theorems 17 and 18.

In this paper, we are not been able to give a large separation between QNM and NM,
primarily because all lower bound techniques we have for NM seem to apply for QNM as
well, e.g., the deterministic one-way communication complexity and the non-deterministic
communication complexity9. The only “trivial” separation we can give is a factor-2 gap

6 In a typical garden-hose protocol for computing ISAn, Alice uses m pipes to describe ~z to Bob (each
pipe for a different value of ~z). Bob can then use another set of m pipes to send ~yInt(z) to Alice. But
since ~yis need to be unique it appears that Bob needs m set of such m pipes in the worst case. This
many-to-one mapping seems unavoidable and hard to tackle in the garden-hose model in general. Hence
ISAn appears to have an Ω(n2) garden-hose complexity.

7 Some of the inequalities are straightforward but we explicitly state it for completeness.
8 These exponential separations are in the standard communication model where the communication
complexity is the total number of bits or qubits exchanged between Alice and Bob.

9 We note that [15] defined a quantum version of the garden-hose model which differs from the classical
model only by the ability of the players to have pre-shared entanglements. They used it to exhibit an
exponential classical-quantum separation. Our definition of the quantum version of the memoryless
model is a more natural generalization which involves exchanging quantum registers. Thus their
exponential separation does not imply a similar separation in our model.
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between QNM and NM using the standard idea of super-dense coding (which in fact applies
to all classical memoryless protocols). Observe that by our our garden-hose characterization
earlier, this factor-2 separation translates to a quadratic separation between “quantum-
garden-hose” model and the classical garden-hose model.

Since NM(F ) is at most M→(F ) for any F , memory-no memory communication complexity
can be use to design garden-hose protocols. Using this method we obtain a sub-quadratic
garden-hose protocol for computing the function Disjointness with quadratic universe which
was conjecture to have a quadratic complexity in [25]. We discuss this protocol in Section 5.1.

4. Towards obtaining better formula bounds. Finally, it was shown by Klauck and
Podder [25] that any formulae of size s consisting of arbitrary fan-in 2 gates (i.e., formulae
over the binary basis of fan-in 2 gates) can be simulated by a garden-hose protocol of size s1+ε

for any arbitrary ε > 0. In this work, we show that an arbitrary garden-hose protocol can be
simulated by a memoryless protocol without any additional loss, i.e., a size s garden-hose
protocol can be turned into a memoryless protocol of size log s. In particular, putting together
these two connections, it implies that a size s formula can be turned into a memoryless
protocol of size (1 + ε) log s. Thus our result provides a new way of proving formulae size
lower bound for arbitrary function F by analyzing the memoryless protocol of F .10 The
best known lower bound for formulae size (over the basis of all fan-in 2 gate) is Ω(n2/logn),
due to Nečiporuk from 1966 [33]. Analogous to the Karchmer-Wigderson games [24] and
Goldman and Håstad [22] techniques which uses communication complexity framework to
prove circuit lower bounds our new communication complexity framework is a new tool for
proving formulae size lower bounds. We note that in the memoryless model, constants really
matter, e.g., a lower bound of logn is not same as a lower bound of 2 logn as the former
would give an n lower bound, whereas the latter will yield an n2 lower bound for the formula
size. This is similar, in flavour, to the circuit depth lower bound where it took several decades
of research to get from the trivial logn lower bound to the sophisticated 3 logn lower bound
by Håstad [22]. In formula size terminology this translate to going from n to n3.

Brody et al. [11] conjectured that the problem of reachability in a graph requires Ω(log2 n)
non-oblivious memory. However as we have mentioned earlier the space-bounded communica-
tion complexity and the memoryless communication complexity of any function are equal up
to a constant factor. Thus proving this conjecture would imply the same lower bound on the
memoryless communication complexity and in turn imply an nlog n formula-size lower bound
for reachability, which would be a break-through in complexity theory. In fact, because of the
same general formula to memoryless communication simulation, showing even a (2 + ε) logn
lower bound for reachability would be very interesting.

Finally an additional benefit to our characterization is the following: information theory
has been used extensively to understand communication complexity [5, 6, 19, 10, 9] (just
to cite a few references). As far as we are aware, usage of information theoretic techniques
haven’t been explored when understanding the models of computation such as formula
size, branching programs and garden-hose model. We believe our characterization using
memoryless communication model might be an avenue to use information-theoretic ideas to
prove stronger lower bounds in these areas.

10Here, the inputs x, y are distributed among two players and their goal is to compute (F ◦ g)(x, y) where
g is a constant-sized gadget.
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Open questions. In this work, our main contribution has been to describe a seemingly-
simple model of communication complexity and characterize its complexity using branching
programs. We believe that our work could open up a new direction of research and results in
this direction. Towards this, here we mention the natural open question (referring the reader
to the full version for more open questions): Is there a function F : {0, 1}n×{0, 1}n → {0, 1}
and a universal constant c > 1 for which we have NM(F ) ≥ c logn. In particular, there are
two consequences of such a result: (a) Using our relation to garden-hose model in Section 5.1,
such a function will lead to the first super-linear nc lower bound for garden-hose complexity,
(b) using our characterized to branching programs, this would result in the first super-linear
nc lower bound for bipartite branching programs (analogous to Tal’s first super-linear lower
bound on bipartite formula size11 of inner-product [40]). Also if we could show this for
c ≥ 2 + ε, this would imply a Ω(n2+ε) lower bound for general formula size, improving upon
the best lower bound by Nečiporuk [33]. One possible candidate function which we haven’t
been to rule out is the distributed 3-clique function: suppose Alice is given x ∈ {0, 1}(

n
2) and

Bob is given y ∈ {0, 1}(
n
2). We view their inputs as jointly labelling of the

(
n
2
)
edges of a

graph on n vertices, then does the graph with edges labelled by x⊕ y have a triangle? Also,
what is the complexity of the k-clique problem?

2 Preliminaries

Notation. Let [n] = {1, . . . , n}. For x ∈ {0, 1}n, let Int(x) ∈ {0, . . . , 2n − 1} be the integer
representation of the n-bit string x. We now define a few standard functions which we use
often in this paper. The equality function EQn : {0, 1}n → {0, 1}n → {0, 1} is defined as
EQn(x, y) = 1 if and only if x = y. The disjointness function DISJn defined as DISJn(x, y) = 0
if and only if there exists i such that xi = yi = 1. The inner product function IPn is defined
as IP(x, y) =

∑
i xi · yi (mod 2) (where · is the standard bit-wise product).

We now define formulae, branching programs and refer the interested reader to Wegener’s
book [41] for more on the subject.

I Definition 2 (Branching programs (BP)). A branching program for computing a Boolean
function f : {0, 1}n → {0, 1} is a directed acyclic graph with a source node labelled S and
two sink nodes labelled 0 and 1. Every node except the source and sink nodes are labelled
by an input variable xi. The out-degree of every node is two and the edges are labelled by 0
and 1. The source node has in-degree 0 and the sink nodes have out-degree 0. The size of a
branching program is the number of nodes in it. We say a branching program computes f if
for all x ∈ f−1(1) (resp. x ∈ f−1(0)) the algorithm starts from the source, and depending on
the value of xi ∈ {0, 1} at each node the algorithm either moves left or right and eventually
reaches the 1-sink (resp. 0-sink) node. We denote BP (f) as the size (i.e., the number of
nodes) of the smallest branching program that computes f for all x ∈ {0, 1}n.

11Note that no super-linear lower bound is known for bipartite formulas that use all gates with fan-in 2
(in particular XOR gates).
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3 Memoryless Communication Complexity

In this section we define memoryless communication complexity model and its variants.

3.1 Deterministic Memoryless Communication Model
The crucial difference between the memoryless communication model and standard commu-
nication model is that, at any round of the communication protocol Alice and Bob do not
have memory to remember previous transcripts and their private computations from the
previous rounds. We now make this formal.

I Definition 3 (Two-way Deterministic memoryless communication complexity). Let F :
{0, 1}n × {0, 1}n → {0, 1}. Here there are two parties Alice and Bob whose goal is to
compute F . Every s-bit memoryless protocol is defined by a set of functions {fx}x∈{0,1}n

and {gy}y∈{0,1}n wherein fx, gy : {0, 1}s → {0, 1}s. On input x, y to Alice and Bob respect-
ively a memoryless protocol is defined as follows: at every round Alice obtains a message
mB ∈ {0, 1}s from Bob, she computes mA = fx(mB) ∈ {0, 1}s and sends mA to Bob. On
receiving mA, Bob computes m′B = gy(mA) and replies with m′B ∈ {0, 1}s to Alice. They
alternately continue doing this for every round until the protocol ends. Without loss of gener-
ality we assume the protocol ends once mA,mB ∈ {1s−10, 1s−11}, then the function output is
given by the last bit. So, once the transcript is 1s−1b, Alice and Bob output F (x, y) = b.12

We say a protocol PF computes F correctly if for every (x, y), Bob outputs F (x, y). We
let cost(PF , x, y) be the smallest s for which PF computes F on input (x, y). Additionally,
we let

cost(PF ) = max
x,y

cost(PF , x, y)

and the memoryless communication complexity of computing F in this model is defined as

NM(F ) = min
PF

cost(PF ),

where is the minimum is taken over all protocols PF that compute F correctly.

We crucially remark that in the memoryless model, the players do not even have access
to a clock and hence they cannot tell which round of the protocol they are in. At every
round they just compute their local functions {fx}x, {gy}y on the message they received and
proceed according to the output of these functions.

One-way Deterministic Memoryless Model. Similar to the definition above, one can define
the one-way memoryless communication complexity wherein only Alice is allowed to send
messages to Bob and the remaining aspects of this model is the same as Definition 3. We
denote the complexity in this model by NM→(F ). It is easy to see that since Alice does not
have any memory she cannot send multi-round messages to Bob as there is no way for her
to remember in which round she is in. Also Bob cannot send messages back to Alice for
her to keep a clock. Hence all the information from Alice to Bob has to be conveyed in a
single round. Thus one-way memoryless communication complexity is equal to the standard
deterministic one-way communication complexity.13

I Fact 4. For all function F we have NM→(F ) = D→(F ).

12Without loss of generality, we assume that the first message is between Alice and Bob and she sends
fx(0s) ∈ {0, 1}s to Bob.

13Without loss of generality, in any one-way standard communication complexity protocol of cost c Alice
can send all the c bits in a single round.
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3.2 Deterministic Memory-No Memory Communication Model
We now consider another variant of the memoryless communication model wherein one party
is allowed to have a memory but the other party doesn’t. In this paper, we always assume
that Alice has a memory and call this setup the memory no-memory model. In this work, we
will not consider the other case wherein Bob has a memory and Alice doesn’t have a memory.
Note that this setting is asymmetric i.e., there exists functions for which the complexity of
the function can differ based on whether Alice or Bob has the memory.

Two-way Memory-No Memory Communication Model. Here the players are allowed to
send messages in both directions. For a function F : {0, 1}n × {0, 1}n → {0, 1}, we denote
the complexity in this model as M(F ). Observe that M(F ) is trivially upper bounded by
logn for every F : for every i ∈ [n], Alice can send i and Bob replies with yi. Since Alice
has memory, after n rounds she has complete knowledge of y ∈ {0, 1}n and computes F (x, y)
locally and sends it to Bob.

One-way Memory-No Memory Communication Model. Here we allow only Alice to send
messages to Bob. Since Alice has a memory she can send multiple messages one after another,
but Bob cannot reply to her messages. Hence, after receiving any message Bob computes
the function gy(·) ∈ {0, 1,⊥} and if he obtains {0, 1}, he outputs 0 or 1, and continues if he
obtains ⊥. We denote the communication complexity in this model by M→(F ). This model
was formally studied by Papakonstantinou et al. [35] as overlay communication complexity
(we discuss their main contributions in Section 4).

Finally, we can also have a model where both players have memory and hence both players
can remember the whole transcript of the computation. This is exactly the widely-studied
standard communication complexity except that the complexity measure here is the size of
the largest transcript (so the complexity in our model is just 1 since they could exchange a
single bit for n rounds and compute an arbitrary function on 2n bits) and the latter counts
the total number of bits exchanged in a protocol.

Quantum memoryless Models. Here we introduce the quantum memoryless communication
model. There are a few ways one can define the quantum extension of the classical memoryless
model. We find the following exposition the simplest to explain. This quantum communication
model is defined exactly as the classical memoryless model except that Alice and Bob
are allowed to communicate quantum states. A T round quantum protocol consists of
the following: Alice and Bob have local k-qubit memories A,B respectively,14 they share
a m-qubit message register M and for every round they perform a q-outcome POVM
P = {P1, . . . , Pq} for q = 2m (which could potentially depend on their respective inputs x
and y). Let {Ux}x∈{0,1}n , {Vy}y∈{0,1}n be the set of (m+ k)-dimensional unitaries acting on
(A,M) and (B,M) respectively (this is analogous to the look-up tables {fx, gy : {0, 1}m →
{0, 1}m}x,y∈{0,1}n used by Alice and Bob in the classical memoryless protocol). Let ψ0 =
(A,M) be the all-0 mixed state. Then, the quantum protocol between Alice and Bob can be
written as follows: on input x, y to Alice and Bob respectively, on the ith round (for i ≥ 1)
Alice sends ψi for odd i and Bob replies with ψi+1 defined as follows:

ψi = TrA(P ◦ Uxψi−1)⊗ |0〉〈0|B,

where P ◦ Uxψi−1 is the post-measurement state after performing the POVM P on the
state Uxψi−1 and TrA(·) refers to taking the partial trace of register A. Similarly, define

14After each round of communication, these registers are set to the all-0 register.
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ψi = |0〉〈0|A⊗TrB(P ◦ Uyψi),

where TrB(·) takes the partial trace of register B. Intuitively, the states ψi (similarly ψi+1)
can be thought of as follows: after applying unitaries Ux to the registers (A,M), Alice applies
the q-outcome POVM P which results in a classical outcome and post-measurement state on
the registers (A,M) and she discards her private memory register and initializes the register B
in the all-0 state. The quantum communication protocol terminates at the ith round once the
q-outcome POVM P results in the classical outcome {(1m−1, b)}b∈{0,1}.15 After they obtain
this classical output, Alice and Bob output b. We say a protocol computes F if for every
x, y ∈ {0, 1}n, with probability at least 2/3 (probability taken over the randomness in the
protocol), after a certain number of rounds the POVM measurement results in (1m−1, F (x, y)).
The complexity of computing F in the quantum memoryless model, denoted QNM(F ) is
the smallest m such that there is a m-qubit message protocol that computes F . As defined
before, we also let QM→(F ) (resp. QNM→(F )) to be the model in which Alice has a memory
(has no memory) and Bob doesn’t have a memory and the communication happens from
Alice to Bob.

Note that unlike the classical case, with quantum messages there is no apparent way for
the players to know with certainty if they have received a designated terminal state (and
whether they should stop and output 0/1) without disturbing the message content. Thus a
natural choice is to integrate a partial measurement of the message register at each round
into the definition.

Notation. For the remaining part of the paper we abuse notation by letting NM(F ), QNM(F )
denote the memoryless complexity of computing F and we let NM model (resp. QNM model)
be the memoryless communication model (resp. quantum memoryless communication model).
Additionally, we omit explicitly writing that Alice and Bob exchange the final message
1s−1f(x, y) once either parties have computed f(x, y) (on input x, y respectively).

4 Understanding and characterization of memoryless models

We now state a few observations and relations regarding the memoryless communication mod-
els.

I Fact 5. For every F : {0, 1}n × {0, 1}n → {0, 1}, we have M(F ) ≤ NM(F ) ≤ 2M→(F ) ≤
2NM→(F ).

We refer the reader to the full version of the paper for the proof. As we mentioned earlier,
our main contribution in this paper is the memoryless NM model of communication. We saw
in Fact 4 that NM→(F ) is equal to the standard one-way deterministic communication com-
plexity of computing F . The M→(F ) model was introduced and studied by Papakonstantinou
et al. [35]. Additionally observe that the strongest model of communication complexity M(F )
is small for every function F .

I Fact 6. For every F : {0, 1}n × {0, 1}n → {0, 1}, we have M(F ) ≤ logn.

15We remark that a good quantum communication protocol should be such that for every i ∈ [T ], the
probability of obtaining (1m−1, 1⊕ F (x, y)) when measuring ψi using the POVM P should be ≤ 1/3.



S. Arunachalam and S. Podder 61:13

To see this, observe that in the M model (i.e., two-way memory-no memory model), on the
ith round, Alice sends i ∈ [n] and Bob (who doesn’t have memory) sends the message yi to
Alice. Alice stores yi and increments i to i+ 1 and repeats. After n rounds Alice simply has
the entire y and computes F (x, y) on her own (note that F is known to both Alice and Bob).

Below we give few protocols in the NM model to give more intuition of this model.

Algorithms in the memoryless model. In the introduction we described a logn+ 1 protocol
for the equality function. Below we describe a protocol for the inner product function. For
the inner product function IPn, a simple protocol is as follows: For i = 1, . . . , n, on the ith
round, Alice sends

(
i, xi,

∑i−1
j=0 xi · yi (mod 2)

)
which takes logn+ 2 bits and Bob replies

with (i, xi,
∑i−1

j=0 xi · yi + xi · yi (mod 2)
)

=
(
i, xi,

∑i
j=0 xi · yi (mod 2)

)
.16 They repeat

this protocol for n rounds and after the nth round, they have computed IPn(x, y). Hence
NM(IPn) ≤ logn+ 2. Now we describe a protocol for the disjointness function DISJn. Here
a logn protocol is as follows: Alice sends the first coordinate i ∈ [n] for which xi = 1 and
Bob outputs 0 if yi = 1, if not Bob replies with the first j after i for which yj = 1 and they
repeat this procedure until i or j equals n. It is not hard to see that DISJn(x, y) = 0 if
and only if there exists k for which xk = yk = 1 in which case Alice and Bob will find such
(smallest) k in the protocol above, if not the protocol will run for at most n rounds and they
decide that DISJn(x, y) = 1. We now mention a non-trivial protocol in the NM model for
the majority function defined as MAJn(x, y) = [

∑
i xi · yi ≥ n/2 + 1]. A trivial protocol for

MAJn is similar to the IPn protocol, on the (i + 1)th round, Alice sends (i, xi,
∑n

i=1 x
·
iyi)

(without the (mod 2)) and Bob replies with (i, xi,
∑n+1

i=1 xi · yi). Note that this protocol
takes 2 logn+ 1 bits (logn for sending the index i ∈ [n] and logn to store

∑n
i=1 xi · yi ∈ [n]).

Apriori this seems the best one can do, but interestingly using intricate ideas from number
theory there exists a n log3 n [37, 25] garden-hose protocol for computing MAJn. Plugging
this in with Theorem 21 we get a protocol of cost logn+ 3 log logn for computing MAJn in
the NM model.

An interesting question is, are these protocols for IPn,EQn, DISJn, MAJn optimal? Are
there more efficient protocols possibly with constant bits of communication in each round?
In order to understand this, in the next section we show that the memoryless communication
complexity is lower bounded by the standard deterministic one-way communication complexity.
Using this connection, we can show the tightness of the first three protocols. Additionally,
we show that NM(MAJn) ≥ logn, thus the exact status of NM(MAJn) ∈ {logn, . . . , logn+
3 log logn} remains an intriguing open question.

4.1 Lower bounds on memoryless communication complexity
In the introduction, we mentioned that it is an interesting open question to find an explicit
function F for which NM(F ) ≥ 2 logn. Unfortunately we do not even know of an explicit
function for which we can prove lower bounds better than logn + ω(1) (we discuss more
about this in the open questions). However, it is not hard to show that for a random function
F , the memoryless communication complexity of F is large.

I Lemma 7. Let F : {0, 1}n×{0, 1}n → {0, 1} be a random function. Then, NM(F ) = Ω(n).

16Technically Bob need not send back the bit xi.
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The proof is via a simple counting argument. We refer the reader to the full version of
the paper for the definition. We remark that similar ideas used in this lemma can be used
to show that for all s < s′, there exists functions that can be computed using s′ bits of
communication in each round but not s bits of communication. This gives rise to a space
hierarchy theorem for the NM model.

4.1.1 Deterministic one-way communication complexity and memoryless
complexity

We now give a very simple lower bound technique for the memoryless communication model
in terms of deterministic one-way communication. Although this lower bound is “almost
immediate”, as we mentioned in the introduction, it already gives us non-trivial lower bounds
on the NM complexity of certain functions.

I Fact 8.
NM(F ) ≥ log

(
D→(F )/log D→(F )

)
, and QNM(F ) ≥ Ω

(
log
(

D→(F )/log D→(F )
))

.

Using this lemma, we immediately get the following corollary.

I Corollary 9. Let n ≥ 2. Then NM(EQn),NM(IPn),NM(DISJn),NM(MAJn),NM(Index),
NM(BHM) is Ω(logn). Similarly, we have QNM complexity of these functions are Ω(logn).

This corollary follows immediately from Fact 8 because the detereministic-one way commu-
nication complexity of these functions are at least n (by a simple adverserial argument),
thereby showing that the (logn)-bit protocols we described in the beginning of this section
for the first three of these functions is close-to-optimal. However one drawback of Fact 8 is it
cannot be used to prove a lower bound that is better than logn since D→(F ) ≤ n for every
function F : {0, 1}n × {0, 1}n → {0, 1}.

4.2 Characterization of memoryless communication
Papakonstantinou et al. [35] consider the memory-nomemory model of communication
complexity wherein Alice has a memory and Bob doesn’t and they are restricted to one-way
communication from Alice to Bob. They show a beautiful combinatorial rectangle-overlay
characterization (denoted RO(F )) of the M→ model. We refer the reader to the full version
of the paper for the definition.

One of the main results of [35] was the following characterization.

I Theorem 10 ([35]). For every F , we have log RO(F ) ≤ M→(F ) ≤ 2 log RO(F ).

A natural question following their work is, can we even characterize our new general framework
of communication complexity wherein both Alice and Bob do not have memory and the
communication can be two-way. Generalizing the rectangle-based characterization of [35] to
our setting seemed non-trivial because in our communication model the memoryless-ness
of the protocol doesn’t seem to provide any meaningful way to split the communication
matrix into partitions or overlays (as far as we could analyze). Instead we characterize our
communication model in terms of bipartite branching programs, which we define below.17

17For a definition of general branching program (BP), refer to Section 2.
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I Definition 11 (Bipartite Branching Program (BBP)). Let F : {0, 1}n × {0, 1}n → {0, 1}. A
bipartite branching program is a BP that computes F in the following way: for every (x, y),
each node in the branching program is either labelled by a function fi ∈ F = {fi : {0, 1}n →
{0, 1}}i or by gj ∈ G = {gj : {0, 1}n → {0, 1}}j ; the output edge is labelled by 0 or 1 and the
output of the function in the node label decides which edge to follow. The size of a BBP is the
number of nodes in it. We define BBP(F ) as the size of the smallest program that computes
F for all (x, y) ∈ {0, 1}2n.

Observe that in a BBP every node no longer just queries x ∈ {0, 1}n at an arbitrary
index i (like in the standard BP), but instead is allowed to compute an arbitrary Boolean
function on x or y. Of course, another natural generalization of BBP is, why should the
nodes of the program just compute Boolean-valued functions? We now define the generalized
BBP wherein each node can have out-degree k (instead of out-degree 2 in the case of BBP
and BP).

I Definition 12 (Generalized Bipartite Branching Program (GBBP)). Let k ≥ 1. A generalized
bipartite branching program is a BBP that computes F in the following way: for every
(x, y), each node in the branching program can have out-degree k and labelled by the node
fi ∈ F = {fi : {0, 1}n → [k]}i, or by gj ∈ G = {gj : {0, 1}n → [k]}j; the output edges are
labelled by {1, . . . , k} and the output of the function in the node label decides which edge to
follow. The size of a GBBP is the number of nodes in it. We define GBBP(F ) as the size of
the smallest program that computes F for all (x, y) ∈ {0, 1}2n.

We now show that the generalized bipartite branching programs are not much more powerful
than bipartite branching programs, in fact these complexity measures are quadratically related.

I Fact 13. For F : {0, 1}n × {0, 1}n → {0, 1}, we have GBBP(F ) ≤ BBP(F ) ≤ GBBP(F )2.

It is not clear if the quadratic factor loss in the simulation above is necessary and we
leave it as an open question. We are now ready to prove our main theorem relating NM
communication model and bipartite branching programs.

I Theorem 14. For every F , we have 1
2 log BBP(F ) ≤ NM(F ) ≤ log BBP(F ).

We refer the reader to the full version of the paper for the proof. Earlier we saw that
GBBP is polynomially related to BBP. We now observe that both these measures can be
exponentially smaller than standard branching program size.18

I Fact 15. The parity function PARITYn(x, y) =
∑

i xi ⊕ yi (mod 2) gives an exponential
separation between generalized bipartite branching programs and branching programs.

Time Space Trade-off for Memoryless. Finally, we mention a connection between our
communication model and time-space trade-offs. In particular, what are the functions that
can be computed if we limit the number of rounds in the memoryless protocol? Earlier
we saw that, an arbitrary memoryless protocol of cost s for computing a function F could
consist of at most 2s+1 rounds of message exchanges. If sending one message takes one unit
of time, we can ask whether it is possible to simultaneously reduce the message size s and
the time t required to compute a function. The fact below gives a time-space trade-off in
terms of deterministic communication complexity.

18The function we use here is the standard function that separates bipartite formula size from formula
size.
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I Fact 16. For every k ≥ 1 and function F : {0, 1}n ×{0, 1}n → {0, 1}, we have NMk(F ) ≥
D(F )/k, where NMk(F ) is the NM communication complexity of computing F with at most k
rounds of communication, and D(F ) is the standard deterministic communication complexity.

It is not hard to now see that the number of rounds in an NM(F ) protocol corresponds
to the depth of the generalized bipartite branching program computing F . So an immediate
corollary of the fact above is, even for simple functions such as equality, inner product, if we
restrict the depth of GBBP to be o(n), then we can show exponential-size lower bounds on
such GBBPs computing these functions. Similarly note that one can separate QNM and NM
model of communication if we bound the number of rounds: consider the problem where Alice
and Bob get x, y ∈ {0, 1}n respectively promised that, x = y or Hamming distance between
x, y is n/2. In this case, clearly NMk(F ) ≥ n/k (from the fact above), which in particular
means that constant-round NM protocols need to send Ω(n) bits. In contrast, in the QNM
model, Alice could simply send O(1) copies of a fingerprint state |ψx〉 = 1√

n

∑
i(−1)xi |i〉 (in

a single round) and due to the promise, Bob can perform swap test between |ψx〉, |ψy〉 and
decide if x = y or the Hamming distance is n/2 with probability 1.

5 Relations between memoryless communication models

In this section, we show that there exists exponential separations between the four memoryless
communication models defined in Section 3 (and in particular, Fact 5).

I Theorem 17. There exists functions F for which the following inequalities (as shown in
Fact 5) is exponentially weak19 M(F ) ≤ NM(F ) ≤ 2M→(F ) ≤ 2NM→(F ).

We refer the reader to the full version of the paper for the definition. We now ex-
hibit exponential separations between the quantum and classical memoryless models of
communication complexity.

I Theorem 18. There exist functions F : D → {0, 1} where D ⊆ {0, 1}n × {0, 1}n for
which the following inequalities are exponentially weak: (i) QNM→(F ) ≤ NM→(F ), (ii)
QM→(F ) ≤ M→(F ), (iii) QM(F ) ≤ M(F ).20

We refer the reader to the full version of the paper for the definition. One drawback
in the exponential separations above is that we allow a quantum protocol to err with
constant probability but require the classical protocols to be correct with probability 1. We
remark that except the second inequality, the remaining inequalities also show exponential
separations between the randomized memoryless model (wherein Alice and Bob have public
randomness and are allowed to err in computing the function) versus the corresponding
quantum memoryless model. A natural question is to extend these separations even when
the classical model is allowed to err with probability at least 1/3.

5.1 Relating the Garden-hose model, Space-bounded communication
complexity and Memoryless complexity

In this section, we show that the memoryless communication complexity NM(F ) of a Boolean
function F is equal to the logarithm of the garden-hose complexity up to an additive constant
and is equal to the space-bounded communication complexity up to factor 2. But first we
briefly define the garden-hose model and the space-bounded communication complexity model.

19We remark that the functions exhibiting these exponential separations are different for the three
inequalities.

20Again, the functions exhibiting these separations are different for the three inequalities.
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Garden-hose model [15]. In the garden-hose model of computation, Alice and Bob are
neighbours (who cannot communicate) and have few pipes going across the boundary of their
gardens. Based on their private inputs x, y and a function F : {0, 1}n × {0, 1}n → {0, 1}
known to both, the players connect some of the opening of the pipes on their respective
sides with garden-hoses. Additionally, Alice connects a tap to one of the pipes on her side.
Naturally, based on the garden-hose connections, water travels back and forth through some
of the pipes and finally spills on either Alice’s or Bob’s side, based on which they decide if
a function F on input x, y evaluates to 0 or 1. It is easy to show that Alice and Bob can
compute every function using this game. The garden-hose complexity GH(F ) is defined to
be the minimum number of pipes required to compute F this way for all possible inputs
x, y to Alice and Bob. For more on garden-hose complexity, we refer the interested reader
to [15, 25, 38, 39].

Space-bounded communication complexity [11]. Alice and Bob each have at most s(n)
bits of memory. Based on their private inputs x, y they want to compute the function
F : {0, 1}n × {0, 1}n → {0, 1} in the following manner: At each round Alice receives a single
bit message mB ∈ {0, 1} from Bob and based on her input x, the incoming message mB

and her previous s(n)-bit register content, she computes a new s(n)-bit register and decides
whether to stop and output 0/1 or to continue. Bob does the same. At the beginning of
the game, the register contents of both players are set to the all-zero strings. The game
then starts by Alice sending the first message and continues until one of players outputs
0/1. space-bounded communication complexity SM(F ) of computing a function F is the
minimum register size s(n) required to compute F on the worst possible input (x, y). Brody
et al. [11] claimed that space-bounded communication complexity is equal to the garden-hose
communication complexity upto factor 2.

B Claim 19 ([11]). For every function F there exists constants c ∈ (0, 1), d ∈ N+ such that
c · 2SM(F ) ≤ GH(F ) ≤ 22SM(F )+2 + d.

We show the following relation between

I Lemma 20. For every function F , NM(F ) ≤ 2SM(F ) + 1, SM(F ) ≤ NM(F ) + log NM(F )

We refer the reader to the full version of the paper for a proof. Using the Claim 19 and
Lemma 20 we can conclude that the logarithm of the garden-hose complexity is equal to the
memoryless NM complexity up to factor 2. This seems interesting already given we can connect
these two models, but in the NM model, even factor-2s are important since they are related to
formula lower bounds. Now we show that it is possible to further tighten the relation in the
lemma above. Below we show that NM is actually equivalent to the logarithm of the garden-
hose complexity up to an additive term of 4. The first observation relating the garden-hose
model and memoryless communication complexity is that, the garden-hose model is exactly
the NM communication model, except that in addition to the memoryless-ness of Alice and
Bob, there is a bijection between the incoming and the outgoing messages of both players (i.e.,
the local functions Alice and Bob apply {fx : {0, 1}s → {0, 1}s}x, {gy : {0, 1}s → {0, 1}s}y

are bijective functions. We now state and prove the theorem which shows how GH is related
to the standard memoryless communication model.

I Theorem 21. For F , we have log GH(F )− 4 ≤ NM(F ) ≤ log GH(F ).

We refer the reader to the full version of the paper for a proof. Interestingly, Theorem 21
together with Theorem 17 gives us a way to construct a garden-hose protocol using an M→
protocol and, as we will see below, this could result in potentially stronger upper bound on
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the garden-hose model. In an earlier work of Klauck and Podder [25], it was conjectured that
the disjointness function with input size m = n · 2 logn (i.e., with set size n and universe size
n2) has a quadratic lower bound Ω(m2) in the garden-hose model. Here, we show that GH
protocol for this problem has cost O(m2/log2 m). Although the improvement is only by a
logarithmic-factor, we believe that this complexity can be reduced further which we leave as
an open question.

Disjointness with quadratic universe: Alice and Bob are given n numbers each from [n2] as
a m = n · 2 logn long bit strings. Their goal is to check if all of their 2n numbers are unique.
Without loss we can assume that the n numbers on the respective sides of Alice and Bob are
unique, if not they can check it locally and output 0 without any communication. Then an
M→ protocol for computing this function is as follows: Alice keeps sending all her numbers
to Bob one by one (using her local memory to keep track of which numbers she has already
sent). This requires 2 logn size message register on every round. Bob upon receiving any
number from Alice, checks if any number of his side matches the number received. If there is
a match he outputs 0, else he continues. For the last message Alice sends the number along
with a special marker. Bob performs his usual check and output 1 if the check passes and
the marker is present. Clearly the cost of this protocol is 2 logn and thus from Theorem 21
the garden-hose protocol for computing this function has cost n2. Since the input size is
m = n · 2 logn, the cost of the garden-hose protocol is O(m2/log2 m).
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We show that standard extragradient methods (i.e. mirror prox [26] and dual extrapolation [28])
recover optimal accelerated rates for first-order minimization of smooth convex functions. To
obtain this result we provide fine-grained characterization of the convergence rates of extragradient
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for solving variational inequalities (VIs) in monotone operators. This family of problems
includes convex optimization and finding the saddle point of a convex-concave game. Due
to applications of the latter to adversarial and robust training, extragradient methods have
received significant recent attention in the machine learning community, see e.g. [12, 24, 16].
Further, extragradient methods have been the subject of increasing study by the theoretical
computer science and optimization communities due to recent extragradient-based runtime
improvements for problems including maximum flow [34] and zero-sum games [10, 11].

© Michael B. Cohen, Aaron Sidford, and Kevin Tian;
licensed under Creative Commons License CC-BY

12th Innovations in Theoretical Computer Science Conference (ITCS 2021).
Editor: James R. Lee; Article No. 62; pp. 62:1–62:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:micohen@mit.edu
mailto:sidford@stanford.edu
mailto:kjtian@stanford.edu
https://doi.org/10.4230/LIPIcs.ITCS.2021.62
https://arxiv.org/abs/2011.06572
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


62:2 Relative Lipschitzness in Extragradient Methods

Given a Lipschitz monotone operator and a bounded strongly-convex regularizer, mirror
prox [26] and dual extrapolation [28] achieve O(T−1) regret for solving the associated VI
after T iterations. This rate is worst-case optimal when the Lipschitzness of the operator
and strong convexity of the regularizer are with respect to the Euclidean norm [30]. However,
in certain structured problems related to VIs, alternative analyses and algorithms can yield
improved rates. For instance, when minimizing a smooth convex function (i.e. one with a
Lipschitz gradient), it is known that accelerated rates of O(T−2) are attainable, improving
upon the standard O(T−1) extragradient rate for the naive associated VI. Further, algorithms
inspired by extragradient methods have been developed recovering the O(T−2) rate [13, 37].

Additionally, alternative analyses of extragradient methods, such as optimism [32] and
area convexity [34] have shown that under assumptions beyond a Lipschitz operator and
a strongly convex regularizer, improved rates can be achieved. These works leveraged
modified algorithms which run efficiently under such non-standard assumptions. Further,
the area convexity-based methods of [34] have had a number of implications, including
faster algorithms for `∞ regression, maximum flow and multicommodity flow [34] as well as
improved parallel algorithms for work-efficient positive linear programming [8] and optimal
transport [17].

In this work we seek a better understanding of these structured problems and the somewhat
disparate-seeming analyses and algorithms for solving them. We ask, are the algorithmic
changes enabling these results necessary? Can standard mirror prox and dual extrapolation
be leveraged to obtain these results? Can we unify analyses for these problems, and further
clarify the relationship between acceleration, extragradient methods, and primal-dual methods?

Towards addressing these questions, we provide a general condition, which we term
relative Lipschitzness (cf. Definition 1), and analyze the convergence of mirror prox and
dual extrapolation for a monotone relatively Lipschitz operator.1 This condition is derived
directly from the standard analysis of the methods and is stated in terms of a straightforward
relationship between the operator g and the regularizer r which define the algorithm. Our
condition is inspired by both area convexity as well as the “relative smoothness” condition
in convex optimization [6, 23], and can be thought of as a generalization of the latter to
variational inequalities (see Lemma 3). Further, through this analysis we show that standard
extragradient methods directly yield accelerated rates for smooth minimization and recover
the improved rates of [34] for box-constrained `∞ regression, making progress on the questions
outlined above. We also show our methods recover certain randomized accelerated rates and
have additional implications, outlined below.

Extragradient methods directly yield acceleration. In Section 4, we show that applying
algorithms of [26, 28] to a minimax formulation of minx∈Rd f(x), when f is smooth and
strongly convex, yields accelerated rates when analyzed via relative Lipschitzness. Specifically,
we consider the following problem, termed the Fenchel game in [37]:

min
x∈Rd

max
y∈Rd

〈y, x〉 − f∗(y), (1)

1 A somewhat similarly-named property appeared in [22], which also studied mirror descent algorithms
under relaxed conditions; their property ‖g(x)‖2

∗ ≤
MVx(y)
‖y−x‖2 for all x, y, is different than the one we

propose. Further, during the preparation of this work, the relative Lipschitzness condition we propose
was also independently stated in [36] (unbeknownst to the authors of this paper until recently). However,
the work [36] does not derive the various consequences of relative Lipschitzness contained in this work
(e.g. recovery of acceleration and randomized acceleration, as well as applications of area convexity).
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and show that when f is µ-strongly convex and L-smooth, O(
√
L/µ) iterations of either mirror

prox [26] or dual extrapolation [28] produces an average iterate which halves the function
error of f . By repeated application, this yields an accelerated linear rate of convergence
and the optimal O(T−2) rates for non-strongly convex, smooth function minimization by
a reduction [4]. Crucially, to attain this rate we give a sharpened bound on the relative
Lipschitzness of the gradient operator of (1) with respect to a primal-dual regularizer.

Our result advances a recent line of research, [1, 2, 13], on applying primal-dual analyses to
shed light on the mysterious nature of acceleration. Specifically, [1, 2] show that the classical
algorithm of [27] can be rederived via applying primal-dual “optimistic” dynamics, inspired
by the framework of [32]. Further, [13] showed that an appropriate discretization of dynamics
inspired by extragradient algorithms yields an alternative accelerated algorithm. While
these results clarify the primal-dual nature of acceleration, additional tuning is ultimately
required to obtain their final algorithms and analysis. We obtain acceleration as a direct
application of known frameworks, i.e. standard mirror prox and dual extrapolation, applied
to the formulation (1), and hope this helps demystify acceleration.

In the full version of the paper, we further show that analyzing extragradient methods
tailored to strongly monotone operators via relative Lipschitzness, and applying this more
fine-grained analysis to a variant of the objective (1), also yields an accelerated linear rate
of convergence. The resulting proof strategy extends readily to accelerated minimization of
smooth and strongly convex functions in general norms, as we discuss at the end of Section 4,
and we believe it may be of independent interest.

Finally, we remark that there has been documented difficulty in accelerating the min-
imization of relatively smooth functions [15]; this was also explored more formally by [14].
It is noted in [15], as well as suggested in others (e.g. in the development of area convexity
[34]) that this discrepancy may be due to acceleration fundamentally requiring conditions on
relationships between groups of three points, rather than two. Our work, which presents an
alternative three-point condition yielding accelerated rates, sheds light on this phenomenon
and we believe it is an interesting future direction to explore the relationships between our
condition and other alternatives in the literature which are known to yield acceleration.

Area convexity for bilinear box-simplex games. In Section 5, we draw a connection between
relative Lipschitzness and the notion of an “area convex” regularizer, proposed by [34]. Area
convexity is a property which weakens strong convexity, but is suitable for extragradient
algorithms with a linear operator. It was introduced in the context of solving a formulation of
approximate undirected maximum flow via box-constrained `∞ regression, or more generally
approximating bilinear games between a box variable and a simplex variable. The algorithm
of [34] applied to bilinear games was a variant of standard extragradient methods and
analyzed via area convexity, which was proven via solving a subharmonic partial differential
equation. We show that mirror prox, as analyzed by a local variant of relative Lipschitzness,
yields the same rate of convergence as implied by area convexity, for box-simplex games. Our
proof of this rate is straightforward and based on a simple Cauchy-Schwarz argument after
demonstrating local stability of iterates.

Randomized extragradient methods via local variance reduction. In general, the use of
stochastic operator estimates in the design of extragradient algorithms for solving general
VIs is not as well-understood as their use in the special case of convex function minimization.
The best-known known stochastic methods for solving VIs [19] with bounded-variance
stochastic estimators obtain O(T−1/2) rates of convergence; this is by necessity, from known
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classical lower bounds on the rate of the special case of stochastic convex optimization [25].
Towards advancing the randomized extragradient toolkit, we ask: when can improved O(T−1)
rates of convergence be achieved by stochastic algorithms for solving specific VIs and fine-
grained bounds on estimator variance (i.e. more local notions of variance)? This direction is
inspired by analogous results in convex optimization, where reduced-variance and accelerated
rates have been obtained, matching and improving upon their deterministic counterparts
[18, 33, 3, 20, 29, 5].

For the special case of bilinear games, this question was recently addressed by the
works [31, 10], using proximal reductions to attain improved rates. In this work, we give a
framework for direct stochastic extragradient method design bypassing the variance bottleneck
limiting prior algorithms to a O(T−1/2) rate of convergence for problems with block-separable
structure. We identify a particular criterion of randomized operators used in the context of
extragradient algorithms (cf. Proposition 12) which enables O(T−1) rates of convergence.
Our approach is a form of “local variance reduction”, where estimators in an iteration of
the method share a random seed and we take expectations over the whole iteration in the
analysis. Our improved estimator design exploits the separable structure of the problem; it
would be interesting to design a more general variance reduction framework for randomized
extragradient methods.

Formally, we apply our local variance reduction framework in Section 6 to show that an
instance of our new randomized extragradient methods recover acceleration for coordinate-
smooth functions, matching the known tight rates of [5, 29]. Along the way, we give a
variation of relative Lipschitzness capturing an analagous property between a locally variance-
reduced randomized gradient estimator and a regularizer, which we exploit to obtain our
runtime. We note that a similar approach was taken in [35] to obtain faster approximate
maximum flow algorithms in the bilinear minimax setting; here, we generalize this strategy
and give conditions under which our variance reduction technique obtains improved rates for
extragradient methods more broadly.

Additional contributions. A minor contribution of our framework is that we show, in the full
version of the paper, that relative Lipschitzness implies new rates for minimax convex-concave
optimization, taking a step towards closing the gap with lower bounds with fine-grained
dependence on problem parameters. Under operator-norm bounds on blocks of the Hessian
of a convex-concave function, as well as blockwise strong convexity assumptions, [38] showed
a lower bound on the convergence rate to obtain an ε-approximate saddle point. When the
blockwise operator norms of the Hessian are roughly equal, [21] gave an algorithm matching
the lower bound up to a polylogarithmic factor, using an alternating scheme repeatedly
calling an accelerated proximal point reduction. Applying our condition with a strongly
monotone variant of the mirror prox algorithm of [26] yields a new fine-grained rate for
minimax optimization, improving upon the runtime of [21] for a range of parameters. Our
algorithm is simple and the analysis follows directly from a tighter relative Lipschitzness
bound; we note the same result can also be obtained by considering an operator norm bound
of the problem after a rescaling of space, but we include this computation because it is a
straightforward implication of our condition.

Finally, in the full version, we also discuss the relation of relative Lipschitzness to another
framework for analyzing extragradient methods: namely, we note that our proof of the
sufficiency of relative Lipschitzness recovers known bounds for optimistic mirror descent [32].
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2 Notation

General notation. Variables are in Rd unless otherwise noted. ei is the ith standard basis
vector. ‖·‖ denotes an arbitrary norm; the dual norm is ‖·‖∗, defined as ‖x‖∗ := max‖y‖≤1 y

>x.
For a variable on two blocks z ∈ X × Y , we refer to the blocks by zx and zy. We denote the
domain of f : Rd → R by X ; when unspecified, X = Rd. When f is clear from context, x∗ is
any minimizing argument. We call any x with f(x) ≤ f(x∗) + ε an ε-approximate minimizer.

Bregman divergences. The Bregman divergence induced by convex r is

V rx (y) := r(y)− r(x)− 〈∇r(x), y − x〉 .

The Bregman divergence is always nonnegative, and convex in its argument. We define the
following proximal operation with respect to a divergence from point z.

Proxrx(g) := argminy {〈g, y〉+ V rx (y)} . (2)

Functions. We say f is L-smooth in ‖·‖ if ‖∇f(x)−∇f(y)‖∗ ≤ L ‖x− y‖, or equivalently
f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2 ‖y − x‖
2 for x, y ∈ X . If f is twice-differentiable, equival-

ently y>∇2f(x)y ≤ L ‖y‖2. We say differentiable f is µ-strongly convex if for some µ ≥ 0,
f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2 ‖y − x‖
2 for x, y ∈ X . We also say f is µ-strongly convex

with respect to a distance-generating function r if V fx (y) ≥ µV rx (y) for all x, y ∈ X . Further,
we use standard results from convex analysis throughout, in particular facts about Fenchel
duality, and defer these definitions and proofs to the full version of the paper.

Saddle points. We call function h(x, y) of two variables convex-concave if its restrictions to
x and y are convex and concave respectively. We call (x, y) an ε-approximate saddle point if
maxy′{h(x, y′)} −minx′{h(x′, y)} ≤ ε. We equip any differentiable convex-concave function
with gradient operator g(x, y) := (∇xh(x, y),−∇yh(x, y)).

Monotone operators. We call operator g : Z → Z∗ monotone if 〈g(w)− g(z), w − z〉 ≥
0 for all w, z ∈ Z. Examples include the gradient of a convex function and gradient
operator of a convex-concave function. We call g m-strongly monotone with respect to r if
〈g(w)− g(z), w − z〉 ≥ m (V rw(z) + V rz (w)). We call z∗ ∈ Z the solution to the variational
inequality (VI) in a monotone operator g if 〈g(z∗), z∗ − z〉 ≤ 0 for all z ∈ Z.2 Examples
include the minimizer of a convex function and the saddle point of a convex-concave function.

3 Extragradient convergence under relative Lipschitzness

We give a brief presentation of mirror prox [26], and a convergence analysis under relative
Lipschitzness. Our results also hold for dual extrapolation [28], which can be seen as a “lazy”
version of mirror prox updating a state in dual space (see [9]); we defer details to the full
version of the paper.

I Definition 1 (Relative Lipschitzness). For convex r : Z → R, we call operator g : Z → Z∗
λ-relatively Lipschitz with respect to r if for every three z, w, u ∈ Z,

〈g(w)− g(z), w − u〉 ≤ λ (V rz (w) + V rw(u))

2 This is also known as a “strong solution”. A “weak solution” is a z∗ with 〈g(z), z∗ − z〉 ≤ 0 for all z.
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Algorithm 1 Mirror-Prox(z0, T ): Mirror prox [26].

Input: Distance generating r, λ-relatively Lipschitz monotone g : Z → Z∗, initial point
z0 ∈ Z
for 0 ≤ t < T do
wt ← Proxrzt(

1
λg(zt))

zt+1 ← Proxrzt(
1
λg(wt))

end for

Definition 1 can be thought of as an alternative to a natural nonlinear analog of the area
convexity condition of [34] displayed below:

〈g(w)− g(z), w − u〉 ≤ λ
(
r(z) + r(w)− r(u)− 3r

(
z + w + u

3

))
.

Our proposed alternative is well-suited for the standard analyses of extragradient methods
such as mirror prox and dual extrapolation. For the special case of bilinear minimax problems
in a matrix A, the left hand side of Definition 1 measures the area of a triangle in a geometry
induced by A.

Relative Lipschitzness encapsulates the more standard assumptions that g is Lipschitz
and r is strongly convex (Lemma 2), as well as the more recent assumptions that f is convex
and relatively smooth with respect to r [6, 23] (Lemma 3).

I Lemma 2. If g is L-Lipschitz and r is µ-strongly convex in ‖·‖, g is L/µ-relatively Lipschitz
with respect to r.

Proof. By Cauchy-Schwarz, Lipschitzness of g, and strong convexity of r,

〈g(w)− g(z), w − u〉 ≤ ‖g(w)− g(z)‖∗ ‖w − u‖ ≤ L ‖w − z‖ ‖w − u‖

≤ L

2

(
‖w − z‖2 + ‖w − u‖2

)
≤ L

µ
(V rz (w) + V rw(u)) . J

I Lemma 3. If f is L-relatively smooth with respect to r, i.e. V fx (y) ≤ LV rx (y) for all x and
y, then g, defined by g(x) := ∇f(x) for all x, is L-relatively Lipschitz with respect to r.

Proof. By assumption of relative smoothness of f and the definition of divergence,

L (V r
z (w) + V r

w(u)) ≥ V f
z (w) + V f

w (u)

= f(w)−
[
f(z) +∇f(z)>(w − z)

]
+ f(u)−

[
f(w) +∇f(w)>(u− w)

]
= V f

z (u)−∇f(z)>(z − u)−∇f(z)>(w − z) +∇f(w)>(w − u)

= V f
z (u) + 〈g(w)− g(z), u− z〉 .

The result follows from the fact that V fz (u) ≥ 0 by convexity of f . J

We now give an analysis of Algorithm 1 showing the average “regret” 〈g(wt), wt − u〉 of
iterates decays at a O(T−1) rate. This strengthens Lemma 3.1 of [26].

I Proposition 4. The iterates {wt} of Algorithm 1 satisfy for all u ∈ Z,∑
0≤t<T

〈g(wt), wt − u〉 ≤ λV rz0
(u).
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Proof. First-order optimality conditions of wt, zt+1 with respect to u imply

1
λ
〈g(zt), wt − zt+1〉 ≤ V rzt(zt+1)− V rwt(zt+1)− V rzt(wt),

1
λ
〈g(wt), zt+1 − u〉 ≤ V rzt(u)− V rzt+1

(u)− V rzt(zt+1).
(3)

Adding and manipulating gives, via relative Lipschitzness (Definition 1),

1
λ
〈g(wt), wt − u〉 ≤ V rzt(u)− V rzt+1

(u) + 1
λ
〈g(wt)− g(zt), wt − zt+1〉 − V rwt(zt+1)− V rzt(wt)

≤ V rzt(u)− V rzt+1
(u).

(4)

Finally, summing and telescoping (4) yields the desired conclusion. J

We briefly comment on how to use Proposition 4 to approximately solve convex-concave
games in a function f(x, y). By applying convexity and concavity appropriately to the
regret guarantee (and dividing by T , the iteration count), one can replace the left hand
side of the guarantee with the duality gap of an average point w̄ against a point u, namely
f(wx, uy)− f(ux, wy). By maximizing the right hand side over u, this can be converted into
an overall duality gap guarantee. For some of our applications in following sections, u will
be some fixed point (rather than a best response) and the regret statement will be used in a
more direct manner to prove guarantees.

4 Acceleration via relative Lipschitzness

We show that directly applying Algorithm 1 to the optimization problem (1) recovers an
accelerated rate for first-order convex function minimization (for simplicity, we focus on the
`2 norm here; our methods extend to general norms, discussed in the full version of the
paper). Our main technical result, Lemma 5, shows the gradient operator of (1) is relatively
Lipschitz in the natural regularizer induced by f , which combined with Proposition 4 gives
our main result, Theorem 7. Crucially, our method regularizes the dual variable with f∗, the
Fenchel dual of f , which we show admits efficient implementation, allowing us to obtain our
improved bound on the relative Lipschitzness parameter.

I Lemma 5 (Relative Lipschitzness for the Fenchel game). Let f : Rd → R be L-smooth and
µ-strongly convex in the Euclidean norm ‖·‖2. Let g(x, y) = (y,∇f∗(y)− x) be the gradient
operator of the convex-concave problem (1), and define the distance-generating function
r(x, y) := µ

2 ‖x‖
2
2 + f∗(y). Then, g is 1 +

√
L
µ -relatively Lipschitz with respect to r.

Proof. Consider three points z = (zx, zy), w = (wx, wy), u = (ux, uy). By direct calculation,

〈g(w)− g(z), w − u〉 = 〈wy − zy, wx − ux〉+ 〈−wx + zx +∇f∗(wy)−∇f∗(zy), wy − uy〉 . (5)

By Cauchy-Schwarz and L−1-strong convexity of f∗ respectively, we have

〈wy − zy, wx − ux〉+ 〈zx − wx, wy − uy〉 ≤ ‖wy − zy‖2 ‖w
x − ux‖2 + ‖zx − wx‖2 ‖w

y − uy‖2

≤
√
L

µ

(
µ

2 ‖w
x − zx‖2

2 + µ

2 ‖w
x − ux‖2

2 + 1
2L ‖w

y − zy‖2
2 + 1

2L ‖w
y − uy‖2

2

)
≤
√
L

µ
(V r

z (w) + V r
w(u)) .

(6)
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The second line used Young’s inequality twice. Furthermore, by convexity of f∗ from zy

to uy,

〈∇f∗(wy)−∇f∗(zy), wy − uy〉
= 〈∇f∗(zy), uy − zy〉 − 〈∇f∗(wy), uy − wy〉 − 〈∇f∗(zy), wy − zy〉
≤ f∗(uy)− f∗(zy)− 〈∇f∗(wy), uy − wy〉 − 〈∇f∗(zy), wy − zy〉

= V f∗

zy (wy) + V f∗

wy (uy) ≤ V r
z (w) + V r

w(u).

(7)

The last inequality used separability of r and nonnegativity of divergences. Summing the
bounds (6) and (7) and recalling (5) yields the conclusion, where we use Definition 1. J

We also state a convenient fact about the form our iterates take.

I Lemma 6. In the setting of Lemma 5, let zt = (xt, yt), wt = (xt+ 1
2
, yt+ 1

2
) be iterates

produced by running Algorithm 1 on the pair g, r. Suppose y0 = ∇f(v0) for some v0. Then,
yt+ 1

2
and yt+1 can be recursively expressed as yt+ 1

2
= ∇f(vt+ 1

2
), yt+1 = ∇f(vt+1), for

vt+ 1
2
← vt + 1

λ
(xt − vt), vt+1 ← vt + 1

λ

(
xt+ 1

2
− vt+ 1

2

)
.

Proof. We prove this inductively; consider some iteration t. Assuming yt = ∇f(vt), by
definition

yt+ 1
2

= argminy
{〈

1
λ

(∇f∗(yt)− xt) , y
〉

+ V f
∗

yt (y)
}

= argmaxy
{〈

1
λ

(xt − vt) + vt, y

〉
− f∗(y)

}
= ∇f

(
vt + 1

λ
(xt − vt)

)
.

Here, we used standard facts about convex conjugates. A similar argument shows that we
can compute implicitly yt+1 = ∇f(vt + 1

λ (xt+ 1
2
− vt+ 1

2
)). J

We now prove Theorem 7, i.e. that we can halve function error in O
(√

L
µ

)
iterations of

Algorithm 1. Simply iterating Theorem 7 yields a linear rate of convergence for smooth,
strongly convex functions, yielding an ε-approximate minimizer in O

(√
L
µ log f(x0)−f(x∗)

ε

)
iterations.

I Theorem 7. In the setting of Lemma 5, run T ≥ 4λ iterations of Algorithm 1 initialized
at z0 = (x0,∇f(x0)) on the pair g, r with λ = 1 +

√
L
µ , and define

v̄ = 1
T

∑
0≤t<T

vt+ 1
2
where wt =

(
xt+ 1

2
,∇f(vt+ 1

2
)
)
.

Then we have f(v̄)− f(x∗) ≤ 1
2 (f(x0)− f(x∗)), where x∗ minimizes f .

Proof. First, we remark that this form of wt follows from Lemma 6, and correctness of λ
follows from Lemma 5. By an application of Proposition 4, letting u = (x∗,∇f(x∗)),

1
T

∑
0≤t<T

〈g(wt), wt − u〉 ≤
λ

T
· V rz0

(u) ≤ 1
4

(µ
2 ‖x0 − x∗‖22 + V f

∗

∇f(x0)(∇f(x∗))
)

= 1
4

(µ
2 ‖x0 − x∗‖22 + f(x0)− f(x∗)

)
≤ 1

2 (f(x0)− f(x∗)) .
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The second line used the definition of divergence in f∗ and strong convexity of f , which
implies f(x0) ≥ f(x∗) + µ

2 ‖x0 − x∗‖22. Moreover, by the definition of g and ∇f(x∗) = 0,
1
T

∑
0≤t<T

〈g(wt), wt − u〉 = 1
T

∑
0≤t<T

〈
∇f(vt+ 1

2
), xt+ 1

2
− x∗

〉
+
〈
vt+ 1

2
− xt+ 1

2
,∇f(vt+ 1

2
)
〉

≥ 1
T

∑
0≤t<T

f(vt+ 1
2
)− f(x∗) ≥ f(v̄)− f(x∗).

The last line used convexity twice. Combining these two derivations yields the conclusion. J

For convenience, we state the full algorithm of Theorem 7 as Algorithm 2.

Algorithm 2 EG-Accel(x0, ε): Extragradient accelerated smooth minimization.

Input: x0 ∈ Rd, f L-smooth and µ-strongly convex in ‖·‖2, and ε0 ≥ f(x0)− f(x∗)
Output: ε-approximate minimizer of f
λ← 1 +

√
L/µ, x(0) ← x0, T ← 4dλe, K ← dlog2

ε0
ε e

for 0 ≤ k < K do
x0 ← x(k), v0 ← x0
for 0 ≤ t < T do
xt+ 1

2
← xt − 1

µλ∇f(vt) and vt+ 1
2
← vt + 1

λ (xt − vt)
xt+1 ← xt − 1

µλ∇f(vt+ 1
2
) and vt+1 ← vt + 1

λ (xt+ 1
2
− vt+ 1

2
)

end for
x(k+1) ← 1

T

∑
0≤t<T vt+ 1

2
end for
return x(K)

In the full version of the paper, we give an alternative proof of acceleration leveraging
relative Lipschitzness, as well as a variant of extragradient methods suited for strongly
monotone operators, by applying these tools to the saddle point problem (to be contrasted
with (1))

min
x∈Rd

f(x) = min
x∈Rd

max
y∈Rd

µ

2 ‖x‖
2
2 + 〈y, x〉 − h∗(y), where h(x) := f(x)− µ

2 ‖x‖
2
2 .

This alternative proof strategy readily generalizes the accelerated rate of Theorem 7 to
general norms. While the rates attained by this alternative method are slightly less sharp
(losing a L

µ factor in the logarithm) when compared to Theorem 7, the analysis is arguably
simpler. This is in the sense that our alternative strategy shows a potential function decreases
at a linear rate in every iteration, rather than requiring O(

√
L/µ) iterations to halve it.

5 Area convexity rates for box-simplex games via relative Lipschitzness

In this section, we show that a local variant of Definition 1 recovers the improved convergence
rate achieved by [34] for box-constrained `∞-regression, and more generally box-simplex
bilinear games. Specifically, we will use the following result, a simple extension to Proposition 4
which states that relative Lipschitzness only must hold with respect to triples of algorithm
iterates.

I Corollary 8. Suppose Algorithm 1 is run with a monotone operator g and a distance
generating r satisfying, for all iterations t,

〈g(wt)− g(zt), wt − zt+1〉 ≤ λ
(
V rzt(wt) + Vwt(zt+1)

)
. (8)

Then, the conclusion of Proposition 4 holds.
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Proof. Observe that the only applications of relative Lipschitzness in the proof of Proposi-
tion 4 are of the form (8) (namely, in (4)). Thus, the same conclusion still holds. J

We use Corollary 8 to give an alternative algorithm and analysis recovering the rates
implied by the use of area convexity in [34], for box-simplex games, which we now define.

I Definition 9 (Box-simplex game). Let A ∈ Rm×n be a matrix and let b ∈ Rm, c ∈ Rn be
vectors. The associated box-simplex game, and its induced monotone operator g, are

min
x∈[−1,1]n

max
y∈∆m

f(x, y) := y>Ax− 〈b, y〉+ 〈c, x〉 , g(x, y) :=
(
A>y + c, b−Ax

)
. (9)

Here, ∆m := {y ∈ Rm≥0 :
∑
i∈[m] yi = 1} is the nonnegative probability simplex in m

dimensions.

By a simple reduction that at most doubles the size of the input (stacking A, b with
negated copies, cf. Section 3.1 of [35]), Definition 9 is a generalization of the box-constrained
`∞-regression problem

min
x∈[−1,1]m

‖Ax− b‖∞ .

The work of [34] proposed a variant of extragradient algorithms, based on taking primal-dual
proximal steps in the following regularizer:3

r(x, y) := y>|A|(x2) + 10 ‖A‖∞→∞
∑
i∈[m]

yi log yi. (10)

Here, |A| is the entrywise absolute value of A. The convergence rate of this algorithm was
proven in [34] via an analysis based on “area convexity” of the pair (g, r), which required a
somewhat sophisticated proof based on solving a partial differential equation over a triangle.
We now show that the same rate can be obtained by the extragradient algorithms of [26, 28],
and analyzed via local relative Lipschitzness (8).4 We first make the following simplication
without loss of generality.

I Lemma 10. For all x ∈ [−1, 1]n the value of maxy∈∆m f(x, y) in (9) is unchanged if
we remove all coordinates of b with bi ≥ mini∗∈[m] bi∗ + 2 ‖A‖∞→∞, and the corresponding
rows of A. Therefore, in designing an algorithm to solve (9) to additive error with linear
pre-processing it suffices to assume that bi ∈ [0, 2 ‖A‖∞→∞] for all i ∈ [m].

Proof. For any x ∈ [−1, 1]n, letting i∗ ∈ argmini∈[m]bi we have

max
y∈∆m

y> (Ax− b) = max
i∈[m]

[Ax− b]i ≥ −‖A‖∞→∞ ‖x‖∞ − min
i∗∈[m]

bi ≥ −‖A‖∞→∞ − bi∗ .

However, [Ax− b]i ≤ ‖A‖∞→∞− bi for all i ∈ [m]. Consequently, any coordinate i ∈ [m] that
satisfies bi ≥ bi∗ + 2 ‖A‖∞→∞ has [Ax− b]i ≤ [Ax− b]i∗ and the value of maxy∈∆m f(x, y)
is unchanged if this entry of bi and the corresponding row of A is removed. Further, note
that 〈y,1〉 is a constant for all y ∈ ∆m. Consequently, in linear time we can remove all
the coordinates i with bi ≥ mini∗∈[m] bi∗ + 2 ‖A‖∞→∞ and shift all the coordinates by an
additive constant so that the minimum coordinate of a remaining bi is 0 without affecting
additive error of any x. J

3 We let ‖A‖∞→∞ := sup‖x‖∞=1 ‖Ax‖∞, i.e. the `∞ operator norm of A or max `1 norm of any row.
4 Although our analysis suffices to recover the rate of [34] for `∞ regression, the analysis of [34] is in

some sense more robust (and possibly) more broadly applicable than ours, as it does not need to reason
directly about how much the iterates vary in a step. Understanding or closing this gap is an interesting
open problem.
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We now prove our main result regarding the use of mirror prox to solve box-simplex
games, using the regularizer analyzed (with a slightly different algorithm) in [34].

I Theorem 11. Assume the preprocessing of Lemma 10 so that b ∈ [0, 2 ‖A‖∞→∞]m.
Consider running Algorithm 1 on the operator in (9) with λ = 3, using the regularizer in
(10). The resulting iterates satisfy (8), and thus satisfy the conclusion of Proposition 4.

Proof. Fix a particular iteration t. We first claim that the simplex variables wyt and zyt+1
obey the following multiplicative stability property: entrywise,

wyt , z
y
t+1 ∈

[
1
2z

y
t , 2z

y
t

]
. (11)

We will give the proof for wyt as the proof for zyt+1 follows from the same reasoning. Recall
that

wt = argminw∈∆n×[−1,1]m

{〈
1
λ
g(zt), w

〉
+ V rzt(w)

}
,

and therefore, defining (x)2 and (zxt )2 as the entrywise square of these vectors,

wyt = argminy∈∆m 〈γyt , y〉+ 10 ‖A‖∞→∞
∑
i∈[m]

yi log yi
[zyt ]i

where γyt := 1
λ

(b−Azxt ) + |A|
[
(x)2 − (zxt )2

]
.

Consequently, applying log and exp entrywise we have

wyt ∝ exp
(

log zyt −
1

10 ‖A‖∞→∞
γyt

)
.

This implies the desired (11), where we use that ‖γyt ‖∞ ≤ 3 ‖A‖∞→∞, and exp(0.6) ≤ 2.
Next, we have by a straightforward calculation (Lemma 3.4, [34] or Lemma 6, [17]) that

∇2r(x, y) �
(

diag
(
|A:j |>y

)
0

0 ‖A‖∞→∞ diag
(

1
yi

)) . (12)

By expanding the definition of Bregman divergence, we have

V rzt(wt) =
∫ 1

0

∫ α

0
‖wt − zt‖2∇2r(zt+β(wt−zt)) dβdα.

Fix some β ∈ [0, 1], and let zβ := zt + β(wt − zt). Since the coordinates of zβ also satisfy the
stability property (11), by the lower bound of (12), we have

‖wt − zt‖2∇2r(zβ) ≥
∑

i∈[m],j∈[n]

|Aij |

(
[zyβ ]i [wxt − zxt ]2j + 1

[zyβ ]i
[wyt − z

y
t ]2i

)

≥ 1
2

∑
i∈[m],j∈[n]

|Aij |
(

[zyt ]i [wxt − zxt ]2j + 1
[zyt ]i

[wyt − z
y
t ]2i
)
.

By using a similar calculation to lower bound V rwt(zt+1), we have by Young’s inequality the
desired
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V r
zt(wt) + V r

wt(zt+1) ≥ 1
4

∑
i∈[m],j∈[n]

|Aij |
(

[zy
t ]i [wx

t − zx
t ]2j + 1

[zy
t ]i

[wy
t − z

y
t ]2i

)
+ 1

4
∑

i∈[m],j∈[n]

|Aij |
(

[zy
t ]i [wx

t − zx
t+1]2j + 1

[zy
t ]i
[
wy

t − z
y
t+1
]2

i

)
≥ 1

3
∑

i∈[m],j∈[n]

Aij

(
[wy

t − z
y
t ]i [wx

t − zx
t+1]j −

[
wy

t − z
y
t+1
]

i
[wx

t − zx
t ]j
)

= 1
λ
〈g(wt)− g(zt), wt − zt+1〉 . J

The range of the regularizer r is bounded by O(‖A‖∞→∞ logm), and hence the itera-
tion complexity to find an ε additively-approximate solution to the box-simplex game is
O(‖A‖∞→∞ logm

ε ). Finally, we comment that the iteration complexity of solving the subprob-
lems required by extragradient methods in the regularizer r to sufficiently high accuracy
is logarithmically bounded in problem parameters via a simple alternating minimization
scheme proposed by [34]. Here, we note that the error guarantee e.g. Proposition 4 is robust
up to constant factors to solving each subproblem to ε additive accuracy, and appropriately
using approximate optimality conditions (for an example of this straightforward extension,
see Corollary 1 of [17]).

6 Randomized coordinate acceleration via expected relative
Lipschitzness

We show relative Lipschitzness can compose with randomization. Specifically, we adapt
Algorithm 2 to coordinate smoothness, recovering the accelerated rate first obtained in
[5, 29]. We recall f is Li-coordinate-smooth if its coordinate restriction is smooth, i.e.
|∇if(x+ cei)−∇if(x)| ≤ Li|c| ∀x ∈ X , c ∈ R; for twice-differentiable coordinate smooth f ,
∇2
iif(x) ≤ Li.
Along the way, we build a framework for randomized extragradient methods via “local

variance reduction” in Proposition 12. In particular, we demonstrate how for separable
domains our technique can yield O(T−1) rates for stochastic extragradient algorithms,
bypassing a variance barrier encountered by prior methods [19]. Throughout, let f : Rd → R
be Li-smooth in coordinate i, and µ-strongly convex in ‖·‖2, and define the distance generating
function r(x, y) = µ

2 ‖x‖
2
2 + f∗(y).

Our approach modifies that of Section 4 in the following ways. First, our iterates are
defined via stochastic estimators which “share randomness” (use the same coordinate in both
updates). Concretely, fix some iterate zt = (xt,∇f(vt)). For a distribution {pi}i∈[d], sample
i ∼ pi and let

gi(zt) :=
(

1
pi
∇if(vt), vt − xt

)
, w

(i)
t =

(
x

(i)
t+ 1

2
,∇f(vt+ 1

2
)
)

:= Proxrzt

(
1
λ
gi(zt)

)
,

gi(w(i)
t ) :=

(
1
pi
∇if(vt+ 1

2
), vt+ 1

2
−
(
xt + 1

pi
∆(i)
t

))
for ∆(i)

t := x
(i)
t+ 1

2
− xt,

z
(i)
t+1 =

(
x

(i)
t+1,∇f(v(i)

t+1)
)

:= Proxrzt

(
1
λ
gi(w(i)

t )
)
.

(13)
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By observation, gi(zt) is unbiased for g(zt); however, the same cannot be said for gi(w(i)
t ), as

the random coordinate was used in the definition of w(i)
t . Nonetheless, examining the proof

of Proposition 4, we see that the conclusion

〈g(w̄t), w̄t − u〉 ≤ V rzt(u)− E
[
V r
z

(i)
t+1

(u)
]

still holds for some point w̄t, as long as

E
[〈
gi(w(i)

t ), w(i)
t − u

〉]
= 〈g(w̄t), w̄t − u〉 ,

E
[〈
gi(w(i)

t )− gi (zt) , w(i)
t − z

(i)
t+1

〉]
≤ λE

[
V rzt(w

(i)
t ) + V r

w
(i)
t

(z(i)
t+1)

]
.

(14)

We make this concrete in the following claim, a generalization of Proposition 4 which handles
randomized operator estimates as well as an expected variant of relative Lipschitzness. We
remark that as in Corollary 8, the second condition in (14) only requires relative Lipschitzness
to hold for the iterates of the algorithm, rather than globally.

I Proposition 12. Suppose in every iteration of Algorithm 1, steps are conducted with respect
to randomized gradient operators

{
gi(zt), gi(w(i)

t )
}

satisfying (14) for some {w̄t}. Then, for
all u ∈ Z,

E

 ∑
0≤t<T

〈g (w̄t) , w̄t − u〉

 ≤ λV rz0
(u).

Proof. The proof follows identically to that of Proposition 4, where we iterate taking
expectations over (4), each time applying the two conditions in (14). J

For the rest of this section, we overload gi to mean the choices used in (13). This choice
is motivated via the following two properties, required by (14).

I Lemma 13. Let w̄t := (xt +
∑
i∈[d] ∆(i)

t ,∇f(vt+ 1
2
)). Then ∀u, taking expectations over

iteration t,

E
[〈
gi(w(i)

t ), w(i)
t − u

〉]
= 〈g(w̄t), w̄t − u〉 .

Proof. Note vt+ 1
2
is deterministic regardless of the sampled i ∈ [d]. Expanding for u =

(ux, uy),

E
[〈
gi(w(i)

t ), w(i)
t − u

〉]
=
∑
i∈[d]

pi

(〈
1
pi
∇if(vt+ 1

2
), x(i)

t+ 1
2
− ux

〉

+
〈
vt+ 1

2
−
(
xt + 1

pi
∆(i)
t

)
, yt+ 1

2
− uy

〉)
= 〈g(w̄t), w̄t − u〉 .

Here, we used the fact that ∇if(vt+ 1
2
) is 1-sparse. J

I Lemma 14 (Expected relative Lipschitzness). Let λ = 1 + S1/2/
√
µ, where S1/2 :=∑

i∈[d]
√
Li. Then, for the iterates (13) with pi =

√
Li/S1/2, taking expectations over

iteration t,

E
[〈
gi(w(i)

t )− gi (zt) , w(i)
t − z

(i)
t+1

〉]
≤ λE

[
V rzt(w

(i)
t ) + V r

w
(i)
t

(z(i)
t+1)

]
.
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Proof. Equivalently, we wish to show that

E
[〈
gi(w(i)

t )− gi (zt) , w(i)
t − z

(i)
t+1

〉]
≤
(

1 +
S1/2√
µ

)
E
[
V rzt(w

(i)
t ) + V r

w
(i)
t

(z(i)
t+1)

]
.

The proof is patterned from Lemma 5. By direct calculation, the left hand side is

E
[〈
gi(w(i)

t )− gi (zt) , w(i)
t − z

(i)
t+1

〉]
=
∑
i∈[d]

pi

(
1
pi

〈
∇if(vt+ 1

2
)−∇if (vt) , x(i)

t+ 1
2
− x(i)

t+1

〉
+ 1
pi

〈
xt − x(i)

t+ 1
2
,∇if(vt+ 1

2
)−∇if(v(i)

t+1)
〉)

+
∑
i∈[d]

pi

〈
vt+ 1

2
− vt,∇f(vt+ 1

2
)−∇f(v(i)

t+1)
〉
.

(15)

We first bound the second and third lines of (15):

1
pi

(〈
∇if(vt+ 1

2
)−∇if (vt) , x(i)

t+ 1
2
− x(i)

t+1

〉
+
〈
xt − x(i)

t+ 1
2
,∇if(vt+ 1

2
)−∇if(v(i)

t+1)
〉)

≤
S1/2√
µ

(
µ

2

∥∥∥x(i)
t+ 1

2
− x(i)

t+1

∥∥∥2

2
+ 1

2Li

∥∥∥∇if(vt+ 1
2
)−∇if(v(i)

t+1)
∥∥∥2

2

+µ

2

∥∥∥xt − x(i)
t+ 1

2

∥∥∥2

2
+ 1

2Li

∥∥∥∇if(vt+ 1
2
)−∇if (vt)

∥∥∥2

2

)
≤
S1/2√
µ

(
V rzt(w

(i)
t ) + V r

w
(i)
t

(z(i)
t+1)

)
.

(16)

The first inequality used the definition pi =
√
Li/S1/2 and Cauchy-Schwarz, and the second

used strong convexity and Lemma 13 of the full version of the paper. Next, we bound the
fourth line of (15):〈

vt+ 1
2
− vt,∇f(vt+ 1

2
)− E

[
∇f(v(i)

t+1)
]〉

≤ V f
∗

∇f(vt)

(
∇f(vt+ 1

2
)
)

+ V f
∗

∇f(v
t+ 1

2
)

(
E
[
∇f(v(i)

t+1)
])

≤ V f
∗

∇f(vt)

(
∇f(vt+ 1

2
)
)

+ E
[
V f
∗

∇f(v
t+ 1

2
)

(
∇f(v(i)

t+1)
)]

≤ E
[
V rzt(w

(i)
t ) + V r

w
(i)
t

(z(i)
t+1)

]
.

The first inequality is (7), the second is convexity of Bregman divergence, and the third used
nonnegativity of µ2 ‖·‖

2
2. Combining with an expectation over (16) yields the claim. J

Crucially, our proof of these results uses the fact that our randomized gradient estimators
are 1-sparse in the x component, and the fact that we “shared randomness” in the definition
of the gradient estimators. Moreover, our iterates are efficiently implementable, under the
“generalized partial derivative oracle” of prior work [20, 5, 29], which computes ∇if(ax+ by)
for x, y ∈ Rd and a, b ∈ R. In many settings of interest, these oracles can be implemented
with a dimension-independent runtime; we defer a discussion to previous references.

I Lemma 15 (Iterate maintenance). We can implement each iteration of Algorithm 3 using
two generalized partial derivative oracle queries and constant additional work.
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We defer a formal statement to the full version of the paper. Combining Lemma 13 and
Lemma 14, (14) is satisfied with λ = 1 + S1/2/

√
µ. Finally, all of these pieces directly imply

the following, via the proof of Theorem 7 and iterating expectations. We give our full method
as Algorithm 3.

I Theorem 16 (Coordinate acceleration). Algorithm 3 produces an ε-approximate minimizer
of f in

O

∑
i∈[d]

√
Li
µ

log
(
f(x0)− f(x∗)

ε

) iterations in expectation,

with iteration complexity given by Lemma 15.

Proof. This follows from the proof of Theorem 7, using Proposition 12 in place of Proposi-
tion 4. J

Algorithm 3 EG-Coord-Accel(x0, ε): Extragradient accelerated coordinate minimization.

Input: x0 ∈ Rd, f {Li}i∈[d]-coordinate smooth and µ-s.c. in ‖·‖2, and ε0 ≥ f(x0)− f(x∗)

λ← 1 +
∑
i∈[d]

√
Li/µ, T ← 4dλe, K ← dlog2

ε0
ε e, A←

(
1 1

κ −
1
κ2

0 1− 1
κ + 1

κ2

)
p0 ← x0, q0 ← x0, B0 ← I2×2
for 0 ≤ k < K do

Sample τ uniformly in [0, T − 1]
for 0 ≤ t < τ do
Sample i ∝

√
Li

Compute ∇if(vt), ∇if((1− λ−1)vt + λ−1xt) via generalized partial derivative oracle
st ←

(
1

µλpi
∇if((1− λ−1)vt + λ−1xt) 1

µλ2p2
i
∇if(vt)

)
Bt+1 ← BtA,

(
pt+1 qt+1

)
←
(
pt qt

)
− stBt+1

−1

end for
B0 ←

(
[Bτ ]12 [Bτ ]12
[Bτ ]22 [Bτ ]22

)
, p0 ← pτ , q0 ← qτ

end for
return [Bτ ]12pτ + [Bτ ]22qτ

7 Discussion

We give a general condition for extragradient algorithms to converge at a O(T−1) rate. In turn,
we show that this condition (coupled with additional tools such as locality, randomization,
or strong monotonicity) yields a recipe for tighter convergence guarantees in structured
instances. While our condition applies generally, we find it interesting to broaden the types
of instances where it obtains improved runtimes by formulating appropriate VI problems.
For example, can we recover acceleration in settings such as finite-sum convex optimization
(i.e. for stochastic gradient methods) [3] or composite optimization [7]? Moreover, we are
interested in the interplay between (tighter analyses of) extragradient algorithms with other
algorithmic frameworks. For example, is there a way to interpolate between our minimax
algorithm and the momentum-based framework of [21] to obtain tight runtimes for minimax
optimization? Ultimately, our hope is that our methods serve as an important stepping
stone towards developing the toolkit for solving e.g. convex-concave games and variational
inequalities in general.
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Abstract
The slow convergence rate and pathological curvature issues of first-order gradient methods for train-
ing deep neural networks, initiated an ongoing effort for developing faster second-order optimization
algorithms beyond SGD, without compromising the generalization error. Despite their remarkable
convergence rate (independent of the training batch size n), second-order algorithms incur a daunting
slowdown in the cost per iteration (inverting the Hessian matrix of the loss function), which renders
them impractical. Very recently, this computational overhead was mitigated by the works of [79, 23],
yielding an O(mn2)-time second-order algorithm for training two-layer overparametrized neural
networks of polynomial width m.

We show how to speed up the algorithm of [23], achieving an Õ(mn)-time backpropagation
algorithm for training (mildly overparametrized) ReLU networks, which is near-linear in the dimension
(mn) of the full gradient (Jacobian) matrix. The centerpiece of our algorithm is to reformulate
the Gauss-Newton iteration as an `2-regression problem, and then use a Fast-JL type dimension
reduction to precondition the underlying Gram matrix in time independent of M , allowing to find
a sufficiently good approximate solution via first-order conjugate gradient. Our result provides a
proof-of-concept that advanced machinery from randomized linear algebra – which led to recent
breakthroughs in convex optimization (ERM, LPs, Regression) – can be carried over to the realm of
deep learning as well.
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1 Introduction

Understanding the dynamics of gradient-based optimization of deep neural networks has been
a central focal point of theoretical machine learning in recent years [49, 81, 80, 48, 31, 4, 5, 3,
13, 58, 9, 67, 27, 39, 22]. This line of work led to a remarkable rigorous understanding of the
generalization, robustness and convergence rate of first-order (SGD-based) algorithms, which
are the standard choice for training DNNs. By contrast, the computational complexity of
implementing gradient-based training algorithms (e.g., backpropagation) in such non-convex
landscape is less understood, and gained traction only recently due to the overwhelming size
of training data and complexity of network design [55, 32, 51, 23, 79].

The widespread use first-order methods such as (stochastic) gradient descent in training
DNNs is explained, to a large extent, by its computational efficiency – recalculating the
gradient of the loss function at each iteration is simple and cheap (linear in the dimension
of the full gradient), let alone with the advent of minibatch random sampling [37, 23].
Nevertheless, first-order methods have a slow rate of convergence in non-convex settings
(typically Ω(poly(n) log(1/ε)) for overparametrized networks, see e.g., [79]) for reducing the
training error below ε, and it is increasingly clear that SGD-based algorithms are becoming
a real bottleneck for many practical purposes. This drawback initiated a substantial effort
for developing fast training methods beyond SGD, aiming to improve its convergence rate
without compromising the generalization error [16, 53, 55, 32, 44, 59, 23, 79].

Second-order gradient algorithms (which employ information about the Hessian of the loss
function), pose an intriguing computational tradeoff in this context: On one hand, they are
known to converge extremely fast, at a rate independent of the input size (i.e., only O(log 1/ε)
iterations [79]), and offer a qualitative advantage in overcoming pathological curvature issues
that arise in first-order methods, by exploiting the local geometry of the loss function. This
feature implies another practical advantage of second order methods, namely, that they do
not require tuning the learning rate [23, 79]. On the other hand, second-order methods
have a prohibitive cost per iteration, as they involve inverting a dynamically-changing dense
Hessian matrix. This drawback explains the scarcity of second order methods in large scale
non-convex optimization, in contrast to its popularity in the convex setting.

The recent works of [23, 79] addressed the computational bottleneck of second-order
algorithms in optimizing deep neural nets, and presented a training algorithm for overpara-
metrized neural networks with smooth (resp. ReLU) activations, whose running time is
O(mn2), where m is the width of the neural network, and n is the size of the training data
in Rd. The two algorithms, which achieve essentially the same running time, are based on
the classic Gauss-Newton algorithm (resp. “Natural gradient” algorithm) combined with the
recent introduction of Neural Tangent Kernels (NTK) [38]. The NTK formulation utilizes a
local-linearization of the loss function for overparametrized neural networks, which reduces
the optimization problem of DNNs to that of a kernel regression problem: The main insight
is that when the network is overparametrized, i.e., sufficiently wide m & n4 ([67]), the neural
network becomes locally convex and smooth, hence the problem is equivalent to a kernel
regression problem with respect to the NTK function [38], and therefore solving the latter
via (S)GD is guaranteed to converge to a global minimum. The training algorithm of [23]
draws upon this equivalence, by designing a second-order variation of the Gauss-Newton
algorithm (termed “Gram-Gauss-Newton”), yielding the aforementioned runtime for smooth
activation functions.

Single vs. Multilayer Network Training. Following [23, 79], we focus on two-layer (i.e.,
single hidden-layer) neural networks. While our algorithm extends to the multilayer case
(with a slight comprise on the width dependence), we argue that, as far as training time,
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the two-layer case is not only the common case, but in fact the only interesting case for
constant training error: Indeed, in the multilayer case (L ≥ 2), we claim that the mere
cost of feed-forward computation of the network’s output is already Ωε(m2nL). Indeed,
the total number of parameters of L-layer networks is M = (L− 1)m2 +md, and as such,
feed-forward computation requires, at the very least, computing a single product of m×m
(dense) matrices W with a m × 1 vector for each training data, which already costs m2n

time:

ŷi = a>σL

WL︸︷︷︸
m×m

σL−1

WL−1︸ ︷︷ ︸
m×m

. . . σ1(W1︸︷︷︸
m×d

xi)

 .

Therefore, sublinear-time techniques (as we present) appear futile in the case of multi-
layer overparametrized networks, where it is possible to achieve linear time (in M) using
essentially direct (lossless) computation (see next subsection). It may still be possible to
use sublinear algorithms to improve the running time to O(m2nL+ poly(n)), though in for
overparametrized DNNs this seems a minor saving.

1.1 Our Result
Our main result is a quadratic speedup to the algorithm of [23], yielding an essentially
optimal training algorithm for overparametrized two-layer neural networks. Moreover, in
contrast to [23], our algorithm applies to the more complex and realistic case of ReLU
activation functions. Our main result is shown below (For a more comprehensive comparison,
see Table 1 below and references therein).

I Theorem 1. Suppose the width of a two layer ReLU neural network satisfies

m = Ω(max{λ−4n4, λ−2n2d log(n/δ)}),

where λ > 0 denotes the minimum eigenvalue of the Gram matrix (see Eq. (5) below), n is
the number of training data, d is the input dimension. Then with probability 1− δ over the
random initialization of neural network and the randomness of the training algorithm, our
algorithm achieves

‖ft+1 − y‖2 ≤
1
2‖ft − y‖2.

The computational cost of each iteration is Õ(mnd+ n3), and the running time for reducing
the training loss to ε is Õ((mnd+ n3) log(1/ε)). Using fast matrix-multiplication, the total
running time can be further reduced to Õ((mnd+ nω) log(1/ε)).1

I Remark 2. We stress that that our algorithm runs in (near) linear time even for networks
with width m & n2 and in fact, under the common belief that ω = 2, this is true so long as
m & n (!). This means that the bottleneck for linear-time training of small-width DNNs is
not computational, but rather analytic: The overparametrization requirements (m & n4) in
Theorem 1 stems from current-best analysis of the convergence guarantees of (S)GD-based
training of ReLU networks, and any improvement on these bounds would directly yield
linear-time training for thinner networks using our algorithm.

1 Here, ω < 2.373 denotes the fast matrix-multiplication (FMM) constant for multiplying two n × n
matrices [73, 46].
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Table 1 Summary of state-of-art algorithms for training two-layer neural networks. n denotes
the training batch size (number of input data points in Rd) and ε denote the desired accuracy of
the training loss. For simplicity, here we assume d = O(1) and omit poly(logn, 1/λ) terms. The
result of [23] applies only to smooth activation gates and not to ReLU networks. Comparison to
SGD algorithms is omitted from this table since they require a must stronger assumption on the
width m for convergence, and have slower convergence rate than GD [48, 4, 5].

Ref. Method #Iters Cost/iter Width ReLU?
[31] Gradient descent O(n2 log(1/ε)) O(mn) Ω(n6) Yes
[67] Gradient descent O(n2 log(1/ε)) O(mn) Ω(n4) Yes
[77] Adaptive gradient descent O(n log(1/ε)) O(mn) Ω(n6) Yes
[23] Gram-Gaussian-Newton (GGN) O(log log(1/ε)) O(mn2) Ω(n4) No
[23] Batch-GGN O(n2 log(1/ε)) O(m) Ω(n18) No
[79] Natural gradient descent O(log(1/ε)) O(mn2) Ω(n4) Yes
Ours O(log(1/ε)) O(mn) Ω(n4) Yes

Techniques. The majority of ML optimization literature on overparametrized network
training is dedicated to understanding and minimizing the number of iterations of the
training process [79, 23] as opposed to the cost per iteration, which is the focus of our paper.
Our work shows that it is possible to harness the toolbox of randomized linear algebra –
which was heavily used in the past decade to reduce the cost of convex optimization tasks
– in the nonconvex setting of deep learning as well. A key ingredient in our algorithm is
linear sketching, where the main idea is to carefully compress a linear system underlying
an optimization problem, in a way that preserves a good enough solution to the problem
yet can be solved much faster in lower dimension. This is the essence of the celebrated
Sketch-and-Solve (S&S) paradigm [24]. As we explain below, our main departure from the
classic S&S framework (e.g., [59]) is that we cannot afford to directly solve the underlying
compressed regression problem (as this approach turns out to be prohibitively slow for our
application). Instead, we use sketching (or sampling) to facilitate fast preconditioning of
linear systems (in the spirit of [68, 43, 62, 74]), which in turn enables to solve the compressed
regression problem to very high accuracy via first-order conjugate gradient descent. This
approach essentially decouples the sketching error from the final precision error of the Gauss-
Newton step, enabling a much smaller sketch size. We believe this (somewhat unconventional)
approach to non-convex optimization is the most enduring message of our work.

1.2 Related Work
Second-order methods in non-convex optimization. Despite the prevalence of first order
methods in deep learning applications, there is a vast body of ongoing work [18, 17, 55,
35, 36, 23, 79] aiming to design more scalable second-order algorithms that overcome the
limitations of (S)GD for optimizing deep models. Grosse and Martens [55, 35] designed
the K-FAC method, where the idea is to use Kronecker-factors to approximate the Fisher
information matrix, combined with natural gradient descent. This approach has been further
explored and extended by [78, 34, 54]. Gupta et al. [36] designed the “Shampoo method”,
based on the idea of structure-aware preconditioning. Anil et al. [7] further validate the
practical perfromance of Shampoo and incorporated it into hardware. However, despite
sporadic empirical evidence of such second-order methods (e.g., K-FAC and Shampoo), these
methods generally lack a provable theoretical guarantee on the performance when applied to
deep neural networks. Furthermore, in the overparametrized setting, their cost per-iteration
in general is at least Ω(mn2).
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We remark that in the convex setting, theoretical guarantees for large-scale second-order
algorithms have been established (e.g.,[1, 59, 56, 21]), but such rigorous analysis in non-
convex setting was only recently proposed ([23, 79]). Our algorithm bears some similarities
to the NewtonSketch algorithm of [59], which also incorporates sketching into second order
Newton methods. A key difference, however, is that the algorithm of [59] works only for
convex problems, and requires access to (∇2f(x))1/2 (i.e., the square-root of the Hessian).
Most importantly, though, [59] use the standard (black-box) Sketch-and-Solve paradigm to
reduce the computational cost, while this approach incurs large computation overhead in our
non-convex setting. By contrast, we use sketching as a subroutine for fast preconditioning.
As a by-product, in the full version of this paper we show how to apply our techniques to
give a substantial improvement over [59] in the convex setting.

The aforementioned works of [79] and [23] are most similar in spirit to ours. Zhang et
al. [79] analyzed the convergence rate of Natural gradient descent algorithms for two-layer
(overparametrized) neural networks, and showed that the number of iterations is independent
of the training data size n (essentially log(1/ε)). They also demonstrate similar results for the
convergence rate of K-FAC in the overparametrized regime, albeit with larger requirement
on the width m. Another downside of K-FAC is the high cost per iteration (∼ mn2). Cai et
al. [23] analyzed the convergence rate of the so-called Gram-Gauss-Newton algorithm for
training two-layer (overparametrized) neural network with smooth activation gates. They
proved a quardratic (i.e., doubly-logarithnmic) convergence rate in this setting (log(log(1/ε)))
albeit with O(mn2) cost per iteration. It is noteworthy that this quadratic convergence
rate analysis does not readily extend to the more complex and realistic setting of ReLU
activation gates, which is the focus of our work. [23] also prove bounds on the convergence of
“batch GGN”, showing that it is possible to reduce the cost-per-iteration to m, at the price of
O(n2 log(1/ε)) iterations, for very heavily overparametrized DNNs (currently m = Ω(n18)).

Sketching. The celebrated “Sketch and Solve” (S&S) paradigm [24] was originally developed
to speed up the cost of solving linear regression and low-rank approximation problems. This
dimensionality-reduction technique has since then been widely developed and applied to both
convex and non-convex numerical linear algebra problems [20, 61, 76, 6, 14, 12, 72, 28, 65,
64, 15], as well as machine-learning applications [10, 11, 50, 75]. The most direct application
of the sketch-and-solve technique is overconstrained regression problems, where the input is
a linear system [A, b] ∈ Rn×(d+1) with n� d, and we aim to find an (approximate) solution
x̂ ∈ Rd so as to minimize the residual error ‖Ax̂− b‖2.

In the classic S&S paradigm, the underlying regression solver is treated as a black box,
and the computational savings comes from applying it on a smaller compressed matrix. Since
then, sketching (or sampling) has also been used in a non-black-box fashion for speeding-
up optimization tasks, e.g., as a subroutine for preconditioning [74, 62, 68, 43] or fast
inverse-maintenance in Linear Programming solvers, semi-definite programming, cutting
plane methods, and empirical-risk minimization [25, 42, 40, 41, 47].

Overparametrization in neural networks. A long and active line of work in recent deep
learning literature has focused on obtaining rigorous bounds on the convergence rate of various
local-search algorithms for optimizing DNNs [48, 31, 4, 5, 8, 9, 67, 39]. The breakthrough
work of Jacob et al. [38] and subsequent developments2 introduced the notion of neural tangent
kernels (NTK), implying that for wide enough networks (m & n4), (stochastic) gradient
descent provably converges to an optimal solution, with generalization error independent of
the number of network parameters.

2 For a complete list of references, we refer the readers to [8, 9].
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2 Technical Overview

We now provide a streamlined overview of our main result, Theorem 1. As discussed in the
introduction, our algorithm extends to multi-layer ReLU networks , though we focus on the
two-layer case (one-hidden layer), which is the most interesting case where one can indeed
hope for linear training time.

The main, and most expensive step, of the GGN (or natural gradient descent) algorithms
[23, 79] is multiplying, in each iteration t, the inverse of the Gram matrix Gt := JtJ

>
t with

the Jacobian matrix Jt ∈ Rn×m, whose ith row contains the gradient of the m = md network
gates w.r.t the ith datapoint xi (in our case, under ReLU activation).

Naiively computing Gt would already take mdn2 time, however, the tensor product
structure of the Jacobian J in fact allows to compute Gt in n · Tmat(m, d, n)� mn2 time,
where Tmat(m, d, n) is the cost of fast rectangular matrix multiplication[73, 46, 33].3 Since
the Gram-Gauss-Newton (GGN) algorithm requires O(log log 1/ε) iterations to converge to an
ε-global minimum of the `2 loss [23], this observation yields an O(n · Tmat(m, d, n) log log 1/ε)
total time algorithm for reducing the training loss below ε. While already nontrivial, this is
still far from linear running time (� mdn).

We show how to carry out each Gauss-Newton iteration in time Õ(mnd+n3), at the price
of slightly compromising the number of iterations to O(log 1/ε), which is inconsequential
for the natural regime of constant dimension d and constant ε4. Our first key step is
to reformulate the Gauss-Newton iteration (multiplying G−1

t by the error vector) as an
`2-regression problem:

min
gt

‖JtJ>t gt − (ft − y)‖2 (1)

where (ft − y) is the training error with respect to the network’s output and the training
labels y. Since the Gauss-Newton method is robust to small perturbation errors (essentially
[71, 70]), our analysis shows that it is sufficient to find an approximate solution g′t such that
J>t g

′
t satisfies

‖JtJ>t g′t − y‖2 ≤ γ‖y‖2, for γ ≈ 1/n. (2)

The benefit of this reformulation is that it allows to use linear sketching to first compress
the linear system, significantly reducing the dimension of the optimization problem and
thereby the cost of finding a solution, at the price of a small error in the found solution
(this is the essence of the sketch-and-solve paradigm [24]). Indeed, a (variation of) the
Fast-JL sketch [2, 52] guarantees that we can multiply the matrix J>t ∈ Rm×n by a much
smaller Õ(n/δ2)×m matrix S, such that (i) the multiplication takes near-linear time Õ(mn)
time (using the FFT algorithm), and (ii) SJ>t is a δ-spectral approximation of J>t (i.e.,
‖JtS>SJ>t x‖2 = (1± δ)‖Gtx‖2 for every x). Since both computing and inverting the matrix
G̃t := JtS

>SJ>t takes Õ(n3/δ2) time, the overall cost of finding a δ-approximate solution to

3 To see this, observe that the kronecker-product structure of J (here J ∈ Rn×md can be constructed
from an n×m matrix and an n×d matrix) allows computing Jh for any h ∈ Rmd using fast rectangular
matrix multiplication in time Tmat(m, d, n) which is near linear time in the dimension of J and h (that
is, n×m+ n× d for J and md for h) so long as d ≤ nα = n0.31 [33], hence computing G = JJ> can
be done using n independent invocations of the aforementioned subroutine, yielding n · Tmat(m, d, n) as
claimed.

4 We also remark that this slowdown in the convergence rate is also a consequence of a direct extension
of the analysis in [23] to ReLU activation functions.
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the regression problem becomes at most Õ(mn+ n3/δ2). Alas, as noted in Equation (2), the
approximation error of the found solution must be polynomially small γ ∼ 1/n in order to
guarantee the desired convergence rate (i.e., constant decrease in training error per iteration).
This means that we must set δ ∼ γ ∼ 1/n, hence the cost of the naiive “sketch-and-solve”
algorithm would be at least Õ(n3/δ2) = Õ(n5), which is a prohibitively large overhead in
both theory and practice (and in particular, no longer yields linear runtime whenever m� n4

which is the current best overparametrization guarantee [67]). Since the O(1/δ2) dependence
of the JL embedding is known to be tight in general [45], this means we need to take a more
clever approach to solve the regression (1). This is where our algorithm departs from the
naiive sketch-and-solve method, and is the heart of our work.

Our key idea is to use dimension reduction – not to directly invert the compressed matrix
– but rather to precondition it quickly. More precisely, our approach is to use a (conjugate)
gradient-descent solver for the regression problem itself, with a fast preconditioning step,
ensuring exponentially faster convergence to very high (polynomially small) accuracy. Indeed,
conjugate gradient descent is guaranteed to find a γ-approximate solution to a regression
problem minx ‖Ax− b‖2 in O(

√
κ log(1/γ)) iterations, where κ(A) is the condition number

of A (i.e., the ratio of maximum to minimum eigenvalue). Therefore, if we can ensure that
κ(Gt) is small, then we can γ-solve the regression problem in ∼ mn log(1/γ) = Õ(mn) time,
since the per-iteration cost of first-order SGD is linear (∼ mn).

The crucial advantage of our approach is that it decouples the sketching error from the
final precision of the regression problem: Unlike the usual “sketch-and-solve” method, where
the sketching error δ directly affects the overall precision of the solution to (2), here δ only
affects the quality of the preconditioner (i.e., the ratio of max/min singular values of the
sketch G̃t), hence it suffices to take a constant sketching error δ = 0.1 (say), while letting
the SGD deal with the final precision (at it has logarithmic dependence on γ).

Indeed, by setting the sketching error to δ = 0.1 (say), the resulting matrix G̃t = JtS
>SJ>t

is small enough (n × Õ(n)) that we can afford running a standard (QR) algorithm to
precondition it, at another Õ(n3) cost per iteration. The output of this step is a matrix
G̃′t := Prec(G̃t) with a constant condition number κ(G̃′t) which preserves G̃′tx ≈`2 G̃t
up to (1 ± δ)2 relative error. At this point, we can run a (conjugate) gradient descent
algorithm, which is guaranteed to find a γ ≈ 1/n approximate solution to (1) in time
Õ((mn log((1 + δ)/γ) + n3), as desired.

We remark that, by definition, the preconditioning step (on the JL sketch) does not
preserve the eigen-spectrum of Gt, which is in fact necessary to guarantee the fast convergence
of the Gauss-Newton iteration . The point is that this preconditioning step is only preformed
as a local subroutine so as to solve the regression problem, and does not affect the convergence
rate of the outer loop.

3 Preliminaries

3.1 Model and Problem Setup
We denote by n the number of data points in the training batch, and by d the data
dimension/feature-space (i.e., xi ∈ Rd). We denote by m the width of neural network, and
by L the number of layers and by M the number of parameters. We assume the data has
been normalized, i.e., ‖x‖2 = 1. We begin with the two-layer neural network in the following
section, and then extend to multilayer networks. Consider a two-layer ReLU activated neural
network with m neurons in the (single) hidden layer:

f(W,x, a) = 1√
m

m∑
r=1

arφ(w>r x),
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where x ∈ Rd is the input, w1, · · · , wm ∈ Rd are weight vectors in the first layer, a1, · · · , am ∈
R are weights in the second layer. For simplicity, we consider a ∈ {−1,+1}m is fixed over
all the iterations, this is natural in deep learning theory [48, 31, 4, 3, 67]. Recall the ReLU
function φ(x) = max{x, 0}. Therefore for r ∈ [m], we have

∂f(W,x, a)
∂wr

= 1√
m
arx1w>

r x≥0. (3)

Given n input data points (x1, y1), (x2, y2), · · · (xn, yn) ∈ Rd × R. We define the objective
function L as follows

L(W ) = 1
2

n∑
i=1

(yi − f(W,xi, a))2.

We can compute the gradient of L in terms of wr

∂L(W )
∂wr

= 1√
m

n∑
i=1

(f(W,xi, a)− yi)arxi1w>
r xi≥0. (4)

We define the prediction function ft : Rd×n → Rn at time t as follow

ft =


1√
m

∑m
r=1 ar · φ(〈wr(t), x1〉)

1√
m

∑m
r=1 ar · φ(〈wr(t), x2〉)

...
1√
m

∑m
r=1 ar · φ(〈wr(t), xn〉)


where Wt = [w1(t)>, w2(t)>, · · · , wm(t)>]> ∈ Rmd and X = [x1, x2, · · · , xn] ∈ Rd×n .

For each time t, the Jacobian matrix J ∈ Rn×md is defined via the following formulation:

Jt = 1√
m


a1x
>
1 1〈w1(t),x1〉≥0 a2x

>
1 1〈w2(t),x1〉≥0 · · · amx

>
1 1〈wm(t),x1〉≥0

a1x
>
2 1〈w1(t),x2〉≥0 a2x

>
2 1〈w2(t),x2〉≥0 · · · amx

>
2 1〈wm(t),x2〉≥0

...
...

. . .
...

a1x
>
n 1〈w1(t),xn〉≥0 a2x

>
n 1〈w2(t),xn〉≥0 . . . amx

>
n 1〈wm(t),xn〉≥0

 .
The Gram matrix Gt is defined as Gt = JtJ

>
t , whose (i, j)-th entry is

〈
f(Wt,xi)
∂W ,

f(Wt,xj)
∂W

〉
.

The crucial observation of [38, 31] is that the asymptotic of the Gram matrix equals a positive
semidefinite kernel matrix K ∈ Rn×n, where

K(xi, xj) = E
w∈N (0,1)

[
x>i xj1〈w,xi〉≥0,〈w,xj〉≥0

]
. (5)

I Assumption 3. We assume the least eigenvalue λ of the kernel matrix K defined in Eq. (5)
satisfies λ > 0.

3.2 Subspace embedding
Subspace embedding was first introduced by Sarlós [63], it has been extensively used in
numerical linear algebra field over the last decade [24, 57, 19, 66]. For a more detailed survey,
we refer the readers to [74]. The formal definition is:

I Definition 4 (Approximate subspace embedding, ASE [63]). A (1± ε) `2-subspace embedding
for the column space of an N × k matrix A is a matrix S for which for all x ∈ Rk,
‖SAx‖2

2 = (1 ± ε)‖Ax‖2
2. Equivalently, ‖I − U>S>SU‖2 ≤ ε, where U is an orthonormal

basis for the column space of A.
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Combining Fast-JL sketching matrix [2, 30, 69, 29, 52, 60] with a classical ε-net argu-
ment [74] gives subspace embedding,

I Lemma 5 (Fast subspace embedding [52, 74]). Given a matrix A ∈ RN×k with N = poly(k),
then we can compute a S ∈ Rkpoly(log(k/δ))/ε2×k that gives a subspace embedding of A with
probability 1− δ, i.e., with probability 1− δ, we have :

‖SAx‖2 = (1± ε)‖Ax‖2

holds for any x ∈ Rn, ‖x‖2 = 1. Moreover, SA can be computed in O(Nk · poly log k) time.

4 Our Algorithm

Our main algorithm is shown in Algorithm 1. We have the following convergence result of
our algorithm.

I Theorem 6. Suppose the width of a ReLU neural network satisfies

m = Ω(max{λ−4n4, λ−2n2d log(16n/δ)}),

then with probability 1−δ over the random initialization of neural network and the randomness
of the training algorithm, our algorithm (procedure FasterTwoLayer in Algorithm 1)
achieves

‖ft+1 − y‖2 ≤
1
2‖ft − y‖2.

The computation cost in each iteration is Õ(mnd+ n3), and the running time for reducing
the training loss to ε is Õ((mnd+ n3) log(1/ε)). Using fast matrix-multiplication, the total
running time can be further reduced to Õ((mnd+ nω) log(1/ε)).

Algorithm 1 Faster algorithm for two-layer neural network.

1: procedure FasterTwoLayer() . Theorem 6
2: W0 is a random Gaussian matrix . W0 ∈ Rmd
3: while t < T do
4: Compute the Jacobian matrix Jt . Jt ∈ Rn×md
5: Find an ε0 approximate solution using Algorithm 2 . ε0 ∈ (0, 1

6
√
λ/n]

min
gt

‖JtJ>t gt − (ft − y)‖2 (6)

6: Update Wt+1 ←Wt − J>t gt
7: t← t+ 1
8: end while
9: end procedure

The main difference between [23, 79] and our algorithm is that we perform an approximate
Newton update (see line 6). The crucial observation here is that the Newton method is robust
to small loss, thus it suffices to present a fine approximation. This observation is well-known
in the convex optimization but unclear to the non-convex (but overparameterized) neural
network setting. Another crucial observation is that instead of directly approximating the
Gram matrix, it is suffices to approximate (JtJ>t )−1gt = G−1

t gt. Intuitively, this follows from

J>t gt ≈ Jt(JtJ>t )−1(ft − y) = (J>t Jt)†Jt(ft − y),

ITCS 2021



63:10 Training (Overparametrized) Neural Networks

where (J>t Jt)† denotes the pseudo-inverse of J>t Jt and the last term is exactly the Newton
update. This observation allows us to formulate the problem a regression problem (see
Eq. (6)), on which we can introduce techniques from randomize linear algebra and develop
fast algorithm that solves it in near linear time.

4.1 Fast regression solver

Algorithm 2 Fast regression.

1: procedure FastRegression(A, ε) . Lemma 7
2: . A ∈ RN×k is a full rank matrix, ε ∈ (0, 1/2) is the desired precision
3: Compute a subspace embedding SA . S ∈ Rkpoly(log k)×k

4: Compute R such that SAR orthonormal columns via QR decomposition . R ∈ Rk×k
5: z0 ← ~0 ∈ Rk
6: while ‖A>ARzt − y‖2 ≥ ε do
7: zt+1 ← zt − (R>A>AR)>(R>A>ARzt −R>y)
8: end while
9: return Rzt

10: end procedure

The core component of our algorithm is a fast regression solver (shown in Algorithm 2).
The regression solver provides an approximate solution to minx ‖A>Ax−y‖ where A ∈ RN×k
(N � k). We perform preconditioning on the matrix of A>A (line 3 – 4) and use gradient
descent to derive an approximation solution (line 6 – 8).

I Lemma 7. Let N = Ω(kpoly(log k)). Given a matrix A ∈ RN×k, let κ denote the condition
number of A 5, consider the following regression problem

min
x∈Rk

‖A>Ax− y‖2. (7)

Using procedure FastRegression (in Algorithm 2), with probability 1− δ, we can compute
an ε-approximate solution x′ satisfying

‖A>Ax′ − y‖2 ≤ ε‖y‖2

in Õ
(
Nk log(κ/ε) + k3) time.

Speedup in Convex Optimization. It should come as no surprise that our techniques can
help accelerating a broad class of solvers in convex optimization problems as well. In the
full version of this paper, we elaborate on this application, and in particular show how our
technique improves the runtime of the “Newton-Sketch” algorithm of [59].

5 Conclusion and Open Problems

Our work provides a computationally-efficient (near-linear time) second-order algorithm for
training sufficiently overparametrized two-layer neural network, overcoming the drawbacks
of traditional first-order gradient algorithms. Our main technical contribution is developing
a faster regression solver which uses linear sketching for fast preconditioning (in time

5 κ = σmax(A)/σmin(A)
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independent of the network width). As such, our work demonstrates that the toolbox of
randomized linear algebra can substantially reduce the computational cost of second-order
methods in non-convex optimization, and not just in the convex setting for which it was
originally developed (e.g., [59, 74, 25, 42, 40, 41, 47]).

Finally, we remark that, while the running time of our algorithm is Õ(Mn + n3) (or
O(Mn+nω) using FMM), it is no longer (near) linear for networks with parameters M ≤ n2

(resp. M . nω−1). While it is widely believed that ω = 2 [26], FMM algorithms are
impractical at present, and it would therefore be very interesting to improve the extra
additive term from n3 to n2+o(1) (which seems best possible for dense n× n matrices), or
even to n3−ε using a practically viable algorithm. Faster preconditioners seem key to this
avenue.
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Abstract
Given a directed acyclic graph (DAG) G = (V,E), we say that G is (e, d)-depth-robust (resp.
(e, d)-edge-depth-robust) if for any set S ⊂ V (resp. S ⊆ E) of at most |S| ≤ e nodes (resp. edges)
the graph G−S contains a directed path of length d. While edge-depth-robust graphs are potentially
easier to construct many applications in cryptography require node depth-robust graphs with small
indegree. We create a graph reduction that transforms an (e, d)-edge-depth-robust graph with m
edges into a (e/2, d)-depth-robust graph with O(m) nodes and constant indegree. One immediate
consequence of this result is the first construction of a provably (n log logn

logn , n
(logn)1+log logn )-depth-

robust graph with constant indegree, where previous constructions for e = n log logn
logn had d = O(n1−ε).

Our reduction crucially relies on ST-Robust graphs, a new graph property we introduce which may
be of independent interest. We say that a directed, acyclic graph with n inputs and n outputs is
(k1, k2)-ST-Robust if we can remove any k1 nodes and there exists a subgraph containing at least k2

inputs and k2 outputs such that each of the k2 inputs is connected to all of the k2 outputs. If the
graph if (k1, n− k1)-ST-Robust for all k1 ≤ n we say that the graph is maximally ST-robust. We
show how to construct maximally ST-robust graphs with constant indegree and O(n) nodes. Given
a family M of ST-robust graphs and an arbitrary (e, d)-edge-depth-robust graph G we construct a
new constant-indegree graph Reduce(G,M) by replacing each node in G with an ST-robust graph
from M. We also show that ST-robust graphs can be used to construct (tight) proofs-of-space and
(asymptotically) improved wide-block labeling functions.
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1 Introduction

Given a directed acyclic graph (DAG) G = (V,E), we say that G is (e, d)-reducible (resp.
(e, d)-edge reducible) if there is a subset S ⊆ V (resp. S ⊆ E) of |S| ≤ e nodes (resp.
edges) such that G − S does not contain a directed path of length d. If a graph is not
(e, d)-reducible (resp. (e, d)-edge reducible) we say that the graph is (e, d)-depth robust (resp.
(e, d)-edge-depth-robust). Depth robust graphs have found many applications in the field of
cryptography in the construction of proofs of sequential work [11], proofs of space [7, 12],
and in the construction of data independent memory hard functions (iMHFs). For example,
highly depth robust graphs are known to be necessary [1] and sufficient [3] to construct
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iMHF’s with high amortized space time complexity. While edge depth-robust graphs are
often easier to construct [14], most applications require node depth-robust graphs with small
indegree.

It has been shown [17] that in any DAG withm edges and n nodes and any i ≤ log2 n, there
exists a set Si of mi

logn edges that will destroy all paths of length n/2i forcing depth(G−Si) ≤ n
2i .

For DAGs with constant indegree we have m = O(n) edges so an equivalent condition holds
for node depth robustness [1], since a node can be removed by removing all the edges incident
to it. In particular, there exists a set Si of O( ni

logn ) nodes such that depth(G − Si) ≤ n
2i

for all i < logn. It is known how to construct an (c1n/ logn, c2n)-depth-roubst graph, for
suitable c1, c2 > 0 [3] and an (c3n, c4n

1−ε)-depth-robust graph for small ε for [14].
An open challenge is to construct constant indegree (c1ni/ logn, c2n/2i)-depth-robust

graphs which match the Valiant bound [17] for intermediate values of i = ω(1) and i = o(logn).
For example, when i = log logn then the Valiant bound [17] does not rule out the existence
of (c1ni/ logn, c2n/ logn)-depth-robust graphs with constant indegree. Such a graph would
yield asymptotically stronger iMHFs [5]. While there are several constructions that are
conjectured to be (c1ni/ logn, c2n/ logn)-depth-robust the best provable lower bound for
(e = cni/ logn, d)-depth robustness of a constant indegree graph is d = Ω(n1−ε). For edge-
depth robustness we have constructions of graphs with m = O(n logn) edges which are
(ei, di)-edge depth robust for any i with ei = mi/ logn and di = n/ logi+1 n – much closer to
matching the Valiant bound [17].

1.1 Contributions
Our main contribution is a graph reduction that transforms any (e, d)-edge-depth-robust
graph with m edges into a (e/2, d)-depth-robust graph with O(m) nodes and constant
indegree. Our reduction utilizes ST-Robust graphs, a new graph property we introduce and
construct. We believe that ST-Robust graphs may be of independent interest.

Intuitively, a (k1, k2)-ST-Robust graph with n inputs I and n outputs O satisfies the
property that, even after deleting k1 nodes from the graph we can find k2 inputs x1, . . . , xk2

and k2 outputs y1, . . . , yk2 such that every input xi (i ∈ [k2]) is still connected to every
output yj (j ∈ [k2]). If we can guarantee that the each directed path from xi to yj has length
d then we say that the graph is (k1, k2, d)-ST-Robust. A maximally depth-robust graph
should be (k1, n− k1) -depth robust for any k1.

I Definition 1 (ST-Robust). Let G = (V,E) be a DAG with n inputs, denoted by set I and
n outputs, denoted by set O. Then G is (k1, k2)-ST-robust if ∀D ⊂ V (G) with |D| ≤ k1,
there exists subgraph H of G − D with |I ∩ V (H)| ≥ k2 and |O ∩ V (H)| ≥ k2 such that
∀s ∈ I ∩ V (H) and ∀t ∈ O ∩ V (H) there exists a path from s to t in H. If ∀s ∈ I ∩ V (H)
and ∀t ∈ O ∩ V (H) there exists a path from s to t of length ≥ d then we say that G is
(k1, k2, d)-ST-robust.

I Definition 2 (Maximally ST-Robust). Let G = (V,E) be a constant indegree DAG with
n inputs and n outputs. Then G is c1-maximally ST-robust (resp. c1 max ST-robust with
depth d) if there exists a constant 0 < c1 ≤ 1 such that G is (k, n − k)-ST-robust (resp.
(k, n−k, d)-ST-robust) for all k with 0 ≤ k ≤ c1n. If c1 = 1, we just say that G is maximally
ST-Robust.

We show how to construct maximally ST-robust graphs with constant indegree and
O(n) nodes and we show how maximally ST-robust graphs can be used to transform any
(e, d)-edge-depth-robust graph G with m edges into a (e/2, d)-depth-robust graph G′ with
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O(m) nodes and constant indegree. Intuitively, in our reduction each node v ∈ V (G) with
degree δ(v) is replaced with a maximally ST-robust graph Mδ(v) with δ(v) inputs/outputs.
Incoming edges into v are redirected into the inputs Iδ(v) of the ST-robust graph. Similarly,
v’s outgoing edges are redirected out of the outputs Oδ(v) of the ST-robust graph. Because
Mδ(v) is maximally ST-robust, when a node is removed from Mδ(v) the set of inputs and
outputs where each input connects to every output has at most one input and one output
node removed. Each input or output node removed from Mδ(v) corresponds to removing at
most one edge from the original graph. Thus, removing k nodes from Mδ(v) corresponds to
destroying at most 2k edges in the original graph G.

Our reduction gives us a fundamentally new way to design node-depth-robust graphs: de-
sign an edge-depth-robust graph (easier) and then reduce it to a node-depth-robust graph. The
reduction can be used with a construction from [14] to construct a (n log logn

logn , n
(logn)1+log logn )-

depth-robust graph. We conjecture that several prior DAG constructions (e.g, [4, 8, 14]) are
actually (n log logn, n

logn )-edge-depth-robust. If any of these conjectures are true then our
reduction would immediately yield the desired (n log logn

logn , n
logn )-depth-robust graph.

We also present several other applications for maximally ST-robust graphs including
(tight) proofs-of-space and wide block-labeling functions.

2 Edge to Node Depth-Robustness

In this section, we use the fact that linear sized, constant indegree, maximally ST-robust
graphs exist to construct a transformation of an (e, d)-edge-depth robust graph with m edges
into an (e, d)-node-depth robust graph with constant indegree and O(m) nodes. In the next
section we will construct a family of ST-robust graphs that satisfies Theorem 3.

I Theorem 3 (Key Building Block). There exists a family of graphs M = {Mn}∞n=1 with
the property that for each n ≥ 1, Mn has constant indegree, O(n) nodes, and is maximally
ST-Robust.

2.1 Reduction Definition
Let G = (V,E) be a DAG, and let M be as in Theorem 3. Then we define Reduce(G, M) in
construction 4 as follows:

I Construction 4 (Reduce(G, M)). Let G = (V,E) and let M be the family of graphs
defined above. For each Mn ∈ M, we say that Mn = (V (Mn), E(Mn)), with V (Mn) =
I(Mn) ∪O(Mn) ∪D(Mn), where I(Mn) are the inputs of Mn, O(Mn) are the outputs, and
D(Mn) are the internal vertices. For v ∈ V , let δ(v) = max{indegee(v), outdegree(v)}
Then we define Reduce(G) = (VR, ER), where VR = {(v, w)|v ∈ V,w ∈ V (Mδ(v))} and
ER = Einternal ∪ Eexternal. We let Einternal = {((v, u′), (v, w′))|v ∈ V, (u′, w′) ∈ E(Mδ(v))}.
Then for each v ∈ V , we define an In(v) = {u : (u, v) ∈ E} and Out(v) = {u : (v, u) ∈ E}
and then pick two injective mappings πin,v : In(v) → I(V (Mδ(v))) and πout,v : Out(v) →
O(V (Mδ(v))). We let Eexternal = {((u, πout,u(v)), (v, πin,v(u))) : (u, v) ∈ E}.

Intuitively, to costruct Reduce(G, M) we replace every node of G with a constant indegree,
maximally ST-robust graph, mapping the edges connecting two nodes from the outputs of one
ST-robust graph to the inputs of another. Then for every e = (u,w) ∈ E, add an edge from
an output of Mδ(u) to an input of Mδ(w) such that the outputs of Mδ(u) have outdegree at
most 1, and the inputs of Mδ(w) have indegree at most 1. If v ∈ V is replaced by Mδ(v), then
we call v the genesis node and Mδ(v) its metanode.
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· · ·
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· · ·
vi vi+1 vi+2

· · ·
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· · ·
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· · ·
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Mδ(vj) Mδ(vj+1)

· · ·

Figure 1 Diagram of the transformation Reduce(G,M).

2.2 Proof of Main Theorem
We now state the main result of this section which says that if G is edge-depth robust then
Reduce(G,M) is node depth-robust.

I Theorem 5. Let G be an (e, d)-edge-depth-robust DAG with m edges. Let M be a family
of max ST-Robust graphs with constant indegree. Then G′ = (V ′, E′) = Reduce(G,M) is
(e/2, d)-depth robust. Furthermore, G′ has maximum indegree maxv∈V (G){indeg

(
Mδ(v)

)
},

and its number of nodes is
∑
v∈V (G)

∣∣∣V (Mδ(v))
∣∣∣ where δ(v) = max{indeg(v), outdeg(v)}.

A formal proof can be found in Appendix B. We briefly outline the intuition for this
proof below.

Proof (Intuition). The first thing we node is that each graph Mδ(v) has constant indegree at
most cδ(v) nodes for some constant c > 0. Therefore, the graph G′ has

∑
v∈V (G)

∣∣∣V (Mδ(v))
∣∣∣ ≤

c
∑
v δ(v) ≤ 2cm nodes and G′ has constant indegree.
Now for any set S ⊆ V ′ of nodes we remove from G′ we will map S to a corresponding

set Sirr ⊆ E of at most |Sirr| ≤ 2|S| irrepairable edges in G. We then prove that any path
P in G− Sirr corresponds to a longer path P ′ in G′ − S that is at least as long. Intuitively,
each incoming edge (u, v) (resp. outgoing edge (v, w)) in E(G) corresponds to an input
node (resp. output node) in v’s corresponding metanode Mδ(v) which we will label xu,v
(resp. yv,w). If S ⊆ V ′ removes at most k nodes from the metanode Mδ(v) then, by maximal
ST-robustness, we still can find δ(v)− k inputs and δ(v)− k outputs that are all pairwise
connected. If xu,v (resp. yv,w) is not part of this pairwise connected subgraph then we will
add the corresponding edge (u, v) (resp. (v, w)) to the set Sirr. Thus, the set Sirr will have
size at most 2|S| Claim 30 in the appendix).

Intuitively, any path P in G− Sirr can be mapped to a longer path P ′ in G′ − S (Claim
29). If P contains the edges (u, v), (v, w) then we know that the input node xu,v and output
node yu,v node in Mδ(v) are still connected in G′ − S. J

I Corollary 6 (of Theorem 5). If there exists some constants c1, c2, such that we have a
family M = {Mn}∞n=1 of linear sized |V (Mn)| ≤ c1n, constant indegree indeg(Mn) ≤ c2, and
maximally ST-Robust graphs, then Reduce(G,M) has maximum indegree c2 and the number
of nodes is at most 2c1m.
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The next corollary states that if we have a family of maximally ST-Robust graphs with
M = {Mk}∞k=1 depth dk then we can transform any (e, d)-edge-depth-robust DAG G = (V,E)
with maximum degree δ = maxv∈V δ(v) into (e/2, d · dδ)-depth robust graph. Instead of
replacing each node v ∈ G with a copy of Mδ(v), we instead replace each node with a copy
of Mδ,v := Mδ, attaching the edges same way as in Construction 4. Thus the transformed
graph G′ has |V (G)| × |Mδ| nodes and constant indegree. Intuitively, any path P of length d
in G− Sirr now maps to a path P ′ of length d× dδ – if P contains the edges (u, v), (v, w)
then we know that the input node xu,v and output node yu,v node in Mδ,v are connected in
G′ − S by a path of length at least dδ.

I Corollary 7 (of Theorem 5). Suppose that there exists a family M = {Mk}∞k=1 of max
ST-Robust graphs with depth dk and constant indegree. Given any (e, d)-edge-depth-robust
DAG G with n nodes and maximum degree δ we can construct a DAG G′ with n×|Mδ| nodes
and constant indegree that is (e/2, d · dδ)-depth robust.

Proof (sketch). Instead of replacing each node v ∈ G with a copy of Mδ(v), we instead
replace each node with a copy ofMδ,v := Mδ, attaching the edges same way as in Construction
4. Thus the transformed graph G′ has |V (G)| × |Mδ| nodes and constant indegree. Let
S ⊂ V (G′) be a set of nodes that we will remove from G′. By Claim 29, there exists a
path P in G′ − S that passes through d metanodes Mδ,v1 , . . . ,Mδ,vd . Since Mδ is maximally
ST-robust with depth dδ the sub-path Pi = P ∩Mδ,vi through each metanode has length
|Pi| ≥ dδ. Thus, the total length of the path is at least

∑
i |Pi| ≥ d · dδ. J

I Corollary 8 (of Theorem 5). Let ε > 0 be any fixed constant. Given any family {Gm}∞m=1
of (em, dm)-edge-depth-robust DAGs Gm with m nodes and maximum indegree δm then for
some constants c1, c2 > 0 we can construct a family {Hm}∞m=1 of DAGs such that each DAG
Hm is (em/2, dm · δ1−ε

m )-depth robust, Hm has maximum indegree at most c2 (constant) and
at most

∣∣V (Hm)
∣∣ ≤ c1mδm nodes.

Proof (sketch). This follows immediately from Corollary 7 and from our construction of
a family Mε = {Mk,ε}∞k=1 of max ST-Robust graphs with depth dk > k1−ε and constant
indegree. J

I Corollary 9 (of Theorem 5). Let {em}∞m=1 and {dm}∞m=1 be any sequence. If there exists a
family {Gm}∞m=1 of (em, dm)-edge-depth-robust graphs, where each DAG Gm has m edges,
then there is a corresponding family {Hn}∞n=1 of constant indegree DAGs such that each Hn

has n nodes and is (Ω(en),Ω(dn))-depth-robust.

The original Grate’s construction [14], G, has N = 2n nodes and m = n2n edges and for
any s ≤ n, and is (s2n, N∑s

j=0 (nj)
)-edge-depth-robust. For node depth-robustness we only had

matching constructions when s = O(1) [2, 3] and s = Ω(logN) [14] – no comparable lower
bounds were known for intermediate s.

I Corollary 10 (of Theorem 5). There is a family of constant indegree graphs {Gn} such
that Gn has O (N = 2n) nodes and Gn is (sN/(2n), N∑s

j=0 (nj)
)-edge-depth-robust for any

1 ≤ s ≤ logn

In particular, setting s = log logn and applying the indegree reduction from Theorem 5,
we see that the transformed graph G′ has constant indegree, N ′ = O(n2n) nodes, and is
(N

′ log logN ′

logN ′ , N ′

(logN ′)1+log logN′ )-depth-robust. Blocki et al. [5] showed that if there exists a
node depth robust graph with e = Ω(N log logN/ logN) and d = Ω(N log logN/ logN) then
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one can obtain another constant indegree graph with pebbling cost Ω(N2 log logN/ logN)
which is optimal for constant indegree graphs. We conjecture that the graphs in [8] are
sufficiently edge depth robust to meet these bounds after being transformed by our reduction.

3 ST Robustness

In this section we show how to construct maximally ST-robust graphs with constant indegree
and linear size. We first introduce some of the technical building blocks used in our
construction including superconcentrators [10,13,16] and grates [14]. Using these building
blocks we then provide a randomized construction of a c1-maximally ST-robust DAG with
linear size and constant indegree for some constant c1 > 0 – sampled graphs are c1-maximally
ST-robust DAG with high probability. Finally, we use c1-maximally ST-robust DAGs to
construct a family of maximally ST-robust graphs with linear size and constant indegree.

3.1 Technical Ingredients
We now introduce other graph properties that will be useful for constructing ST-robust
graphs.

Grates
A DAG G = (V,E) with n inputs I and n outputs O is called a (c0, c1)-grate if for any subset
S ⊂ V of size |S| ≤ c0n at least c1n

2 input output pairs (x, y) ∈ I ×O remain connected by
a directed path from x to y in G− S. Schnitger [14] showed how to construct (c0, c1)-grates
with O(n) nodes and constant indegree for suitable constants c0, c1 > 0. The notion of an
maximally ST-robust graph is a strictly stronger requirement since there is no requirement
on which pairs are connected. However, we show that a slight modification of Schnitger’s [14]
construction is a (cn, n/2)-ST-robust for a suitable constant c. We then transform this graph
into a c1-maximally ST-robust graph by sandwiching it in between two superconcentrators.
Finally, we show how to use several c1-maximally ST-robust graphs to construct a maximally
ST-robust graph.

Superconcentrators
We say that a directed acyclic graph G = (V,E) with n input vertices and n output vertices
is an n-superconcentrator if for any r inputs and any r outputs, 1 ≤ r ≤ n, there are
r vertex-disjoint paths in G connecting the set of these r inputs to these r outputs. We
note that there exists linear size, constant indegree superconcentrators [10, 13, 16] and we
use this fact throughout the rest of the paper. For example, Pippenger [13] constructed an
n-superconcentrator with at most 41n vertices and indegree at most 16.

Connectors
We say that an n-superconcentrator is an n-connector if it is possible to specify which input
is to be connected to which output by vertex disjoint paths in the subsets of r inputs and r
outputs. Connectors and superconcentrators are potential candidates for ST-robust graphs
because of their highly connective properties. In fact, we can prove that any connectors
n-connector is maximally ST-robust – the proof of Theorem 11 can be found in the
appendix. While we have constructions of n-connector graphs these graphs have O(n logn)
vertices and indegree of 2, an information theoretic technique of Shannon [15] can be used to
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prove that any n-connector with constant indegree requires at least Ω(n logn) vertices – see
discussion in the appendix. Thus, we cannot use n-connectors to build linear sized ST-robust
graphs. However, Shannon’s information theoretic argument does not rule out the existence
of linear size ST-robust graphs.

I Theorem 11. If G is an n-connector, then G is (k, n− k)-ST-robust, for all 1 ≤ k ≤ n.

3.2 Linear Size ST-robust Graphs
ST-robust graphs have similar connective properties to connectors, so a natural question to
ask is whether ST-robust graphs with constant indegree require Ω(n logn) vertices. In this
section, we show that linear size ST-robust graphs exist by showing that a modified version
of the Grates construction [14] becomes c-maximally ST-robust when sandwiched between
two superconcentrators for some constant c.

In the proof of Theorem A in [14], Schnitger constructs a family of DAGs (Hn|n ∈ N)
with constant indegree δH , where n is the number of nodes and Hn is (cn, n2/3)-depth-robust,
for suitable constant c > 0. We construct a similar graph Gn as follows:

I Construction 12 (Gn). We begin with H1
n, H2

n and H3
n, three isomorphic copies of Hn with

disjoint vertex sets V1, V2 and V3. For each top vertex v ∈ V3 sample τ vertices xv1, . . . , xvτ
independently and uniformly at random from V2 and for each i ≤ τ add each directed edge
(xvi , v) to Gn to connect each of these sampled nodes to v. Similarly, for each node vertex
u ∈ V2 sample τ vertices xu1 , . . . , xuτ from V1 independently and uniformly at random and add
each directed edge (xui , u) to Gn. Note that indeg(Gn) ≤ indeg(Hn) + τ .

Schnitger’s construction only utilizes two isomorphic copies of Hn and the edges connecting
H1
n and H2

n a sampled by picking τ random permutations. In our case the analysis is greatly
simplified by picking the edges uniformly and we will need three layers to prove ST-robustness.
We will use the following lemma from the Grates paper as a building block. A proof of
Lemma 13 is included in the appendix for completeness.

I Lemma 13 ([14]). For some suitable constant c > 0 any any subset S of cn/2 vertices of
Gn the graph H1

n − S contains k = cn1/3/2 vertex disjoint paths A1, . . . , Ak of length n2/3

and H2
n − S contains k vertex disjoint paths B1, . . . , Bk of the same length.

We use Lemma 13 to help establish our main technical Lemma 14. We sketch the proof
of Lemma 14 below. A formal proof can be found in Appendix B.

I Lemma 14. Let Gn be defined as in Construction 12. Then for some constants c > 0,
with high probability Gn has the property that for all S ⊂ V (Gn) with |S| = cn/2 there exists
A ⊆ V (H1

n) and B ⊆ V (H3
n) such that for every pair of nodes u ∈ A and v ∈ B the graph

Gn − S contains a path from u to v and |A|, |B| ≥ 9cn/40.

Proof (sketch). Fixing any S we can apply Lemma 13 to find k := cn1/3/2 vertex disjoint
paths P i1,S , . . . , P ik,S in Hi

n of length n2/3 for each i ≤ 3. Here, c is the constant from Lemma
13. Let U ij,S be the upper half of the j-th path in Hi

n and Lij,S be the lower half and define
the event BADupper

i,S to be the event that there exists at least k/10 indices j ≤ k s.t., U2
j,S is

disconnected from L3
i,S . We construct B by taking the union of all of upper paths U3

i,S in
H3
n for each non-bad (upper) indices i. Similarly, we define BADlower

i,S to be the event that
there exists at least k/10 indices j ≤ k s.t. U1

i,S is disconnected from L2
j,S and we construct

A be taking the union of all of the lower paths L1
i,S in H1

n for each non-bad (lower) indices
i. We can now argue that any pair of nodes u ∈ A and v ∈ B is connected by invoking
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the pigeonhole principle i.e., if u ∈ L1
i,S and v ∈ U3

i′,S for good indices i and i′ then there
exists some path P 2

j in the middle layer H2
n which can be used to connect u to v. We still

need to argue that |A|, |B| ≥ cn/3 for some constant c. To lower bound |B| we introduce
the event BADS = |{i : BADupper

i,S }| > k
10 and note that unless BADS occurs we have

|B| ≥ (9k/10)n2/3/2 = 9cn/40. Finally, we show that P[BADS ] is very small and then use
union bounds to show that, for a suitable constant τ , the probability P[∃SBADS ] becomes
negligibly small. A symmetric argument can be used to show that |A| ≥ 9cn/40. J

We now use Gn to construct c-maximally ST-robust graphs with linear size.

I Construction 15 (Mn). We construct the family of graphs Mn as follows: Let the graphs
SC1

n and SC2
n be linear sized n-superconcentrators with constant indegree δSC [13], and let

H1
n, H2

n and H3
n be defined and connected as in Gn, where every output of SC1

n is connected
to a node in H1

n, every node of H3
n is connected to an input of SC2

n.

SC1
n H1

n

Random Edges

H2
n

Random Edges

H3
n SC2

n

Figure 2 A diagram of the constant indegree, linear sized, ST-robust graph Mn.

I Theorem 16. There exists a constant c′ > 0 such that for all sets S ⊂ V (Mn) with
|S| ≤ c′n/2, Mn is (|S|, n − |S|)-ST-robust, with n inputs and n outputs and constant
indegree.

Proof. Let c′ = 9c/40, where c is the constant from Gn. Consider Mn − S. Then because
|S ∩ (H1

n ∪H2
n)| ≤ |S| ≤ c′n/2 ≤ cn/2, by Lemma 14 with a high probability there exists

sets A in H1
n and B in H3

n with |A|, |B| ≥ 9
10k

n2/3

2 = 9
40cn = c′n, such that every node in

A connects to every node in B. By the properties of superconcentrators, the size of the
set BAD1 of inputs u in SC1

n that can’t reach any node in A in Mn − S. We claim that
|BAD1| ≤ |S| ≤ c′n. Assume for contradiction that |BAD1| > |S| then SC1

n contains at
least min{|BAD1|, |A|} > |S| node disjoint paths between BAD1 and A. At least one of
these node disjoint paths does not intersect S which contradicts the definition of BAD1.
Similarly, we can bound the size of BAD2, the set of outputs in SCn which are not reachable
from any node in B. Given any input u 6∈ BAD1 of SC1

n and any output v 6∈ BAD2 of SC2
n

we can argue that u is connected to v in Mn − S since we can reach some node x ∈ A from
u and v can be reached from some node y ∈ B and any such pair x, y is connected by a path
in Mn − S. It follows that Mn is (|S|, n− |S|)-ST-robust. J

I Corollary 17 (of Theorem 16). For all ε > 0, there exists a family of DAGs M = {M ε
n}∞n=1,

where each M ε
n is a c-maximally ST-robust graphs with |V (Mn)| ≤ cεn, indegree(Mn) ≤ cε,

and depth d = n1−ε.

Proof (sketch). In the proof of Lemma 13, we used (cn, n2/3)-depth robust graphs. When
considering the paths Ai and Bj , we were considering connecting the upper half of one path
to the lower half of another. Thus, after we remove nodes from Mn, there exists a path of
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length at least n2/3 that connects any remaining input to any remaining output. Thus Mn

is c-maximally ST-robust with depth d = n2/3. In [14], Schnitger provides a construction
that is (cn, n1−ε)-depth robust for all constant ε > 0. By the same arguments we used in
this section, we can construct c-maximally ST-robust graphs with depth d = n1−ε, where
the constant c depends on ε. J

3.3 Constructing Maximal ST-Robust Graphs

In this section, we construct maximal ST-robust graphs, which are 1-maximally ST-robust,
from c-maximally ST-robust graphs. We give the following construction:

I Construction 18 (O(Mn)). Let Mn be a c-maximally ST-robust graph on O(n) nodes. Let
O be a set o1, o2, . . . , on of n output nodes and let I be a set i1, i2, . . . , in of n input nodes.
Let Sj for 1 ≤ j ≤ d 1

c e be a copy of Mn with outputs oj1, o
j
2, . . . , o

j
n and inputs ij1, i

j
2, . . . , i

j
n.

Then for all 1 ≤ j ≤ n and for all 1 ≤ k ≤ n, add a directed edge from ik to ijk and from ojk
to ok.

Because we connect d 1
c e copies of Mn to the output nodes, O(Mn) has indegree

max{δ, d 1
c e}, where δ is the indegree of Mn. Also, if Mn has kn nodes, then O(Mn) has

(kd 1
c e+ 2)n nodes. We now show that O(Mn) is a maximal ST-robust graph.

I Theorem 19. Let Mn be a c-maximally ST-robust graph. Then O(Mn) is a maximal
ST-robust graph.

Proof. Let R ⊂ V (O(Mn)) with |R| = k. Let R = RI ∪ RM ∪ RO, where RI = R ∩ I,
RO = R∩O, and RM = R∩

(
∪d1/cei=1 Si

)
. Consider O(Mn)−R. We see that |RM | ≤ k, so by

the Pidgeonhole Principal at least one Sj has less than cn nodes removed, say it has t nodes
removed for t ≤ cn. Hence t ≤ |RM |. Since Sj is c-max ST-robust there exists a subgraph
H of Sj R containing n− t inputs and n− t outputs such that every input is connected to
all of the outputs. Let H ′ be the subgraph induced by the nodes in V (H) ∪ I ′ ∪O′, where
I ′ = {(ia, iba)|iba ∈ H} and O′ = {(oba, oa)|oba ∈ H}.

B Claim 20. The graph H ′ contains at least n− k inputs and n− k outputs and there is a
path between every pair of input and output nodes.

Proof. The set |I \ I ′| ≤ |I ∩ R| + |V (Sj) ∩ R| ≤ |R| ≤ k. Similarly, |O \ O′| ≤ |O ∩ R| +
|V (Sj)∩R| ≤ |R| ≤ k. Let v ∈ I ′ be some input. By the connectivity of H, v can reach all of
the outputs in O′. Thus there is a path between every pair of input and output nodes. C

Thus O(Mn) is (k, n − k)-ST-robust for all 1 ≤ k ≤ n. Therefore O(Mn) is a maximal
ST-robust graph. J

I Corollary 21 (of Theorem 19). For all ε > 0, there exists a family Mε = {M ε
k}∞k=1 of max

ST-robust graphs of depth d = n1−ε such that |V (M ε
k)| ≤ cεn and indegree(M ε

k) ≤ cε.

Proof. Apply Construction 18 to the family graphs Mε = {M ε
k}∞k=1 from Corollary 17. Then

by Theorem 19, the family of graphs {O(M ε
k)}∞k=1 is the desired family. J
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4 Applications of ST-Robust Graphs

As outlined previously maximally ST-Robust graphs give us a tight connection between
edge-depth robustness and node-depth robustness. Because edge-depth-robust graphs are
often easier to design than node-depth robust graphs [14] this gives us a fundamentally new
approach to construct node-depth-robust graphs. Beyond this exciting connection we can also
use ST-robust graphs to construct perfectly tight proofs of space [9, 12] and asymptotically
superior wide-block labeling functions [6].

4.1 Tight Proofs of Space

In Proof of Space constructions [12] we want to find a DAG G = (V,E) with small indegree
along with a challenge set VC ⊆ V . Intuitively, the prover will label the graph G using a hash
function H (often modeled as a random oracle in security proofs) such that a node v with
parents v1, . . . , vδ is assigned the label Lv = H(Lv1 , . . . , Lvδ ). The prover commits to storing
Lv for each node v in the challenge set VC . The pair (G,VC) is said to be (s, t, ε)-hard if for
any subset S ⊆ V of size |S| ≤ s at least (1− ε) fraction of the nodes in VC have depth ≥ t
in G− S – a node v has depth ≥ t in G− S if there is a path of length ≥ t ending at node v.
Intuitively, this means that if a cheating prover only stores s ≤ |VC | labels and is challenged
to reproduce a random label Lv with v ∈ VC that, except with probability ε, the prover will
need at least t sequential computations to recover Lv – as long as t is sufficiently large the
verifier the cheating prover will be caught as he will not be able to recover the label Lv in a
timely fashion. Pietrzak argued that (s, t, ε)-hard graphs translate to secure Proofs of Space
in the parallel random oracle model [12].

We want G to have small indegree δ(G) (preferably constant) as the prover will need
O(Nδ(G)) steps and we want |VC | = Ω(N) and we want ε to be small while s, t should be
larger. Pietrzak [12] proposed to let Gε be an ε-extreme depth-robust graph with N ′ = 4N
nodes and to let VC = [3N + 1, 4N ] be the last N nodes in this graph. An ε-extreme
depth-robust graph with N ′ nodes is (e, d)-depth robust for any e + d ≤ (1 − ε)N . Such
a graph is (s,N, s/N + 4ε)-hard for any s ≤ N . Alwen et al. [4] constructed ε-extreme
depth-robust graphs with indegree δ(G) = O(logN) though the hidden constants seem to be
quite large. Thus, it would take time O(N logN) for the prover to label the graph G. We
remark that ε = s/|VC | is the tightest possible bound one can hope for as the prover can
always store s labels from the set VC .

We remark that if we take VC to be any subset of output nodes from a maximally
ST-robust graph and overlay and (e = s, d = t)-depth robust graph over the input nodes
then the resulting graph will be (s, t, ε = s/|VC |)-hard – optimally tight in ε. In particular,
given a DAG G = (V = [N ], E) with N nodes devine the overlay graph HG by starting with
a maximally ST-Robust graph with |V | inputs I = {x1, . . . , x|V |} and |V | outputs O then
for every directed edge (u, v) ∈ E(G) we add the directed edge (xu, xv) to E(HG) and we
specify a target set VC ⊆ O. Fisch [9] gave a practical construction of (G,VC) with indegree
O(logN) that is (s,N, ε = s/N + ε′)-hard. The constant ε′ can be arbitrarily small though
the number of nodes in the graph scales with O(N log 1/ε′). Utililizing ST-robust graphs we
fix ε′ = 0 without increasing the size of the graph1.

1 As a disclaimer we are not claiming that our construction would be more efficient than [9] for practical
parameter settings.
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I Theorem 22. If G is (e, d)-depth robust then the pair (HG, VC) specified above is (s, t =
d+ 1, s/|VC |)-hard for any s ≤ e.

Proof. Let S be a subset of |S| ≤ s nodes in HG. By maximal ST-robustness we can find a
set A of N − |S| inputs and B of N − |S| outputs such that every pair of nodes u ∈ A and
v ∈ B are connected in HG − S. We also note since A contains all but s nodes from G that
some node u ∈ A is the endpoint of a path of length t by (s, t)-depth-robustness of G. Since
u is connected to every node in B this means that every node v ∈ B is the endpoint of a
path of length at least t+ 1. J

This result immediately leads to a (s,N1−ε, s/N)-hard pair for any s ≤ N which the
prover can label in O(N) time as the DAG G has constant indegreee. We expect that in
many settings t = N1−ε would be sufficiently large to ensure that a cheating prover is caught
with probability s/N after each challenge i.e., if the verifier expects a response within 3
seconds, but it would take longer to evaluate the hash function H N1−ε sequential times.

I Corollary 23. For any constant ε > 0 there is a constant indegree DAG G with O(N) nodes
along with a target set VC ⊆ V (G) of N nodes such that the pair (G,VC) is (s, t = N1−ε, s/N)-
hard for any s ≤ N .

Proof (sketch). Let G be an
(
N,N1−ε)-depth robust graph with N ′ = O(N) nodes and

constant indegree from [14]. We can then take VC to be any subset of N output nodes in the
graph HG and apply Theorem 22. J

If one does not want to relax the requirement that t = Ω(N) then we can provide a
perfectly tight construction with O(N logN) nodes and constant indegree. Since the graph
has constant indegree it will take O(N logN) work for the prover to label the graph. This is
equivalent to [12], but with perfect tightness ε = s/N .

I Corollary 24. For any constant ε > 0 there is a constant indegree DAG G with N ′ =
O(N logN) nodes along with a target set VC ⊆ V (G) of N nodes such that the pair (G,VC)
is (s, t, s/N)-hard for any s ≤ N .

Proof (sketch). Let G be an (N,N logN)-depth robust graph with N ′ = O(N logN) nodes
and constant indegree from [2]. We can then take VC to be any subset of N output nodes in
the graph HG and apply Theorem 22. J

Finally, if we want to ensure that the graph only has O(N) nodes and t = Ω(N) we can
obtain a perfectly tight construction with indegree δ(G) = O(logN).

I Corollary 25. For any constant ε > 0 there is a DAG G with O(N) nodes and indegree
δ(G) = O(logN) along with a target set VC ⊆ V (G) of N nodes such that the pair (G,VC)
is (s,N, s/N)-hard for any s ≤ N .

Proof (sketch). Let G be an (N,N)-depth robust graph with N ′ = 3N nodes from [4]. We
can then take VC to be any subset of N output nodes in the graph HG and apply Theorem
22. J

4.2 Wide-Block Labeling Functions
Chen and Tessaro [6] introduced source-to-sink depth robust graphs as a generic way of
obtaining a wide-block labeling function Hδ,W : {0, 1}δW → {0, 1}W from a small-block
function Hfix : {0, 1}2L → {0, 1}L (modeled as an ideal primitive). In their proposed
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approach one transforms a graph G with indegree δ and into a new graph G′ by replacing
every node with a source-to-sink depth-robust graph. Labeling a graph G with a wide-block
labeling function is now equivalent to labeling G′ with the original labeling function Hfix.
The formal definition of Source-to-Sink-Depth-Robustness is presented below:

I Definition 26 (Source-to-Sink-Depth-Robustness (SSDR) [6]). A DAG G = (V,E) is (e, d)-
source-to-sink-depth-robust (SSDR) if and only if for any S ⊂ V where |S| ≤ e, G− S has a
path (with length at least d) that starts from a source node of G and ends up in a sink node
of G.

If G is (e, d)-depth robust and G′ is constructed by replacing every node v in G with a
(e∗, d∗)-source-to-sink-depth-robust (SSDR) and orienting incoming (resp. outgoing) edges
into the sources (resp. out of the sinks) then the graph G′ is (ee∗, dd∗)-depth robust [6] and
has cumulative pebbling complexity at least ed(e∗d∗) [3]. The SSDR graphs constructed in [6]
are (K4 ,

δK2

2 )-SSDR with O(δK2) vertices and constant indegree. They fix K := W/L as the
ratio between the length of outputs for Hδ,W : {0, 1}δW → {0, 1}W and the ideal primitive
Hfix. Their graph has δK source nodes for a tunable parameter δ ∈ N, O(δK2) vertices
and constant indegree. Ideally, since we are increasing the number of nodes by a factor of
δK2 we would like to see the cumulative pebbling complexity increase by a quadratic factor
of δ2K4. Instead, if we start with an (e, d)-depth robust graph with cumulative pebbling
complexity O(ed) their final graph G′ has cumulative pebbling complexity ed× δK3

8 . Chen
and Tessaro left the problem of finding improved source-to-sink depth-robust graphs as an
open research question.

Our construction of ST-robust graphs can asymptotically2 improve some of their construc-
tions, specifically their constructions of source-to-sink-depth-robust graphs and wide-block
labeling functions.

I Theorem 27. Let G be a maximal ST-robust graph with depth d and n inputs and outputs.
Then G is an (n− 1, d)-SSDR graph.

Proof. By the maximal ST-robustness property, n− 1 arbitrary nodes can be removed from
G and there will still exist at least one input node that is connected to at least one output
node. Since G has depth d, the path between the input node and output node must have
length at least d. J

By applying Theorem 27 to the construction in Corollary 19, we can construct a family of
(δK, (δK)1−ε)-SSDR graphs with O(δK) nodes and constant indegree and δK sources. In this
case the cumulative pebbling complexity of our construction would be already be ed×δ2K2−ε

which is much closer to the quadratic scaling that we would ideally like to see. We are off
by just Kε for a constant ε > 0 that can be arbitrarily small. To make the comparison
easier we could also applying Theorem 27 to obtain a family of (δK2, (δK2)1−ε)-SSDR
graphs with O(δK2)-nodes and constant indegree. While the size of the SSDR matches [6]
our new graph is (eδK2, d(δK2)1−ε)-depth robust and has cumulative pebbling complexity
ed× δ2−εK4−2ε � edδK3.

2 While we improve the asymptotic performance we do not claim to be more efficient for practical values
of δ,K.
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A Connector Graphs

We say that a directed acyclic graph G = (V,E) with n input vertices and n output vertices
is an n-connector if for any ordered list x1, . . . , xr of r inputs and any ordered list y1, . . . , yr
of r outputs, 1 ≤ r ≤ n, there are r vertex-disjoint paths in G connecting input node xi to
output node yi for each i ≤ r.

A.1 Connector Graphs are ST-Robust
We remarked in the paper that any n-connector is maximally ST-robust.

I Reminder of Theorem 11. If G is an n-connector, then G is (k, n− k)-ST-robust, for

all 1 ≤ k ≤ n.

Proof of Theorem 11. Let D ⊆ V (G) with |D| = k. Consider G − D. Let A =
{(s1, t1), . . . , (sm, tm)}, where the input si ∈ S is disconnected from the output ti ∈ T

in G−D, or si ∈ D or ti ∈ D. Let B = ∅.
Perform the following procedure on A and B: Pick any pair (sp, tp) ∈ A and add sp and

tp to B. Then remove the pair from A along with any other pair in A that shares either sp
or tp. Continue until A is empty.

If we consider the nodes of B in G, then there are |B| vertex-disjoint paths between the
pairs in B by the connector property, and in G−D at least one vertex is removed from each
path. Thus |B| ≤ k, or we have a contradiction.

If (s, t) ∈ G− (D ∪ B) are an input to output pair, and s is disconnected from t, then
by the definition of A and B we would have a contradiction, since (s, t) would still be in A.
Thus all of the remaining inputs in G− (D ∪B) are connected to all the remaining outputs.

Hence, if we let H = G− (D ∪B), then H is a subgraph of G with at least n− k inputs
and n− k outputs, and there is a path going from each input of H to each of its outputs.
Therefore, G is (k, n− k)-ST-robust for all 1 ≤ k ≤ n. J

Butterfly Graphs

A well known family of constant indegree n-connectors, for n = 2k, are the k-dimensional
butterfly graphs Bk, which are formed by connecting two FFT graphs on n inputs back to
back. By Theorem 11, the butterfly graph is also a maximally ST-robust graph. However,
the butterfly graph has Ω(n logn) nodes and does not yield a ST-robust graph of linear size.
Since Bk has O(n logn) vertices and indegree of 2, a natural question to ask is if there exists
n-connectors with O(n) vertices and constant indegree.

A.2 Connector Graphs Have Ω(n log n) vertices
An information theoretic argument of Shannon [15] rules out the possibility of linear size
n-connectors.

I Theorem 28 (Shannon [15]). An n-connector with constant indegree requires at least
Ω(n logn) vertices.

Intuitively, given a n-connector with constant indegree with constant indegree and m
edges Shannon argued that we can use the n-connector to encode any permutatation of [n]
using m bits. In more detail fixing any permuation π we can find n node disjoint paths
from input i to output π(i). Because the paths are node disjoint we can encode π simply
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Figure 3 The butterfly graph B3 is both an 8-superconcentrator and an 8-connector. All edges
are directed from left to right.

by specifying the subset Sπ of directed edges which appear in one of these node disjoint
paths. We require at most m bits to encode Sπ and from Sπ we can reconstruct the set of
node-disjoint paths and recover π. Thus, we must have m = Θ(n logn) since we require
logn! = Θ(n logn) bits to encode a permutation.

We stress that this information theoretic argument breaks down if the graph G is only
ST-robust. We are guaranteed that G contains a path from input i to output π(i), but
we are not guaranteed that all of the paths are node disjoint. Thus, Sπ is insufficient to
reconstruct π.

B Missing Proofs

I Reminder of Theorem 5. Let G be an (e, d)-edge-depth-robust DAG with m

edges. Let M be a family of max ST-Robust graphs with constant indegree. Then
G′ = (V ′, E′) = Reduce(G,M) is (e/2, d)-depth robust. Furthermore, G′ has maximum
indegree maxv∈V (G){indeg

(
Mδ(v)

)
}, and its number of nodes is

∑
v∈V (G)

∣∣∣V (Mδ(v))
∣∣∣ where

δ(v) = max{indeg(v), outdeg(v)}.

Proof of Theorem 5. We know that each graph in M has constant indegree, and that each
node v in G will be replaced with a graph in M with indegree indeg

(
Mδ(v)

)
. Thus G′ has

maximum indegree maxv∈V (G){indeg
(
Mδ(v)

)
}. Furthermore, the metanode corresponding

to the node v has size |Mδ(v)|. Thus G′ has
∑
v∈V (G)

∣∣∣Mδ(v)

∣∣∣ nodes.
Let S ⊂ V (G′) be a set of nodes that we will remove from G′. For a specific node v ∈ V (G)

we let Sv = S ∩ ({v} × Vδ(v)) denote the subset of nodes deleted from the corresponding
metanode. We say that the node v ∈ V (G) is irrepairable with respect to S if |Sv| ≥ δ(v);
otherwise we say that v is repairable. If a node v is repairable, then because the metanodes
are maximally ST-Robust we can find subsets Iv,S and Ov,S (with |Iv,S |, |Ov,S | ≥ δ(v)−|Sv|)
such that each input node s ∈ Iv,S is connected to every output node in Ov,S .

ITCS 2021
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We say that an edge (u, v) ∈ E(G) is irrepairable with respect if u or v is irrepairable, or if
the corresponding edge e′ = (u′, v′) ∈ E(G′) has u′ 6∈ Ou,S or v′ 6∈ Iv,S . We let Sirr ⊂ E(G)
be the set of irrepairable edges after we remove S from G. We begin the proof by first
proving two claims.

B Claim 29. Let P be a path of length d in G− Sirr. Then there exists a path of length at
least d in G′ − S.

Proof. In G− Sirr we have removed all of the irreparable edges, so any path in the graph
contains only repairable edges. By definition, if (u, v) is a repairable edge, both u and v will
be repairable, and (u, πout,u(v)) ∈ Ou,S and (v, πin,v(u)) ∈ Iv,S . Thus the edge corresponding
to (u, v) in G′−S will connect the metanodes of u and v, and (u, πout,u(v)) connects to every
node in Iu,S and (v, πout,v(u)) connects to every node in Ov,S . Thus the edges in G′ − S
corresponding to the edges in P form a path of length at least d. C

B Claim 30. Let Sirr ⊂ E(G) be the set of irreparable edges with respect to the removed
set S. Then

|Sirr| ≤ 2|S|.

Proof. If a node v is repairable with respect to S then let Sinirr,v ⊆ E(G) (resp. Soutirr,v) denote
the subset of edges (u, v) ∈ E(G) (resp. (v, u) ∈ E(G)) that are irrepairable because of Sv
i.e., the corresponding edge e′ = (u′, v′) ∈ E(G′) has v′ 6∈ Iv,S (resp. the corresponding edge
(v′, u′) ∈ E(G′) has v′ 6∈ Ov,S). Let Sirr,v = Sinirr,v ∪ Soutirr,v. Similarly, if v is irrepairable we
let Sirr,v = {(u, v) : (u, v) ∈ E(G)} ∪ {(v, u) : (v, u) ∈ E(G)} denote the set of all of v’s
incoming and outgoing edges. We note that |Sirr| ≤

∑
v

∣∣Sirr,v∣∣ since Sirr =
⋃
v Sirr,v any

irrepairable edge must be in one of the sets Sirr,v. Now we claim that |Sirr,v| ≤ |Sv| where
Sv = S ∩ ({v} × Vδ(v)) denote the subset of nodes deleted from the corresponding metanode.
We now observe that∣∣Sirr,v∣∣ ≤ ∣∣∣Sinirr,v∣∣∣+

∣∣∣Sinirr,v∣∣∣
≤
(
δ(v)− |Iv,S |

)
+
(
δ(v)− |Ov,S |

)
≤ 2|Sv| .

The last inequality invokes maximal ST-robustness to show that δ(v) − |Ov,S | ≤ |Sv| and
δ(v)−|Iv,S | ≤ |Sv|. If a node v is irrepairable then the subsets Iv,S and Ov,S might be empty
since δ(v) − |Sv| ≤ 0, but it still holds that δ(v) − |Ov,S | ≤ |Sv| and δ(v) − |Iv,S | ≤ |Sv|.
Thus, we have

Thus

|Sirr| ≤
∑
v

∣∣Sirr,v∣∣ ≤∑
v

2|Sv| ≤ 2|S| . C

J

I Reminder of Corollary 7. (of Theorem 5) Suppose that there exists a family M = {Mk}∞k=1
of max ST-Robust graphs with depth dk and constant indegree. Given any (e, d)-edge-depth-
robust DAG G with n nodes and maximum degree δ we can construct a DAG G′ with n×|Mδ|
nodes and constant indegree that is (e/2, d · dδ)-depth robust.

Proof of Corollary 7 (sketch). We slightly modify our reduction. Instead of replacing each
node v ∈ G with a copy of Mδ(v), we instead replace each node with a copy of Mδ,v := Mδ,
attaching the edges same way as in Construction 4. Thus the transformed graph G′ has
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|V (G)| × |Mδ| nodes and constant indegree. Let S ⊂ V (G′) be a set of nodes that we will
remove from G′. By Claim 29, there exists a path P in G′−S that passes through d metanodes
Mδ,v1 , . . . ,Mδ,vd . The only difference is that each Mδ,vi is maximally ST-robust with depth
dδ meaning we can assume that the sub-path Pi = P ∩Mδ,vi through each metanode has
length |Pi| ≥ dδ. Thus, the total length of the path is at least

∑
i |Pi| ≥ d · dδ. J

I Reminder of Lemma 13 [14]. For some suitable constant c > 0 any any subset S of
cn/2 vertices of Gn the graph H1

n − S contains k = cn1/3/2 vertex disjoint paths A1, . . . , Ak
of length n2/3 and H2

n − S contains k vertex disjoint paths B1, . . . , Bk of the same length.

Proof of Lemma 13 [14]. Consider H1
n − S. Since H1

n is (cn, n2/3)-depth-robust and |S| =
cn/2, there must exist a path A1 = (v1, . . . , vn2/3) in H1

n − S. Remove all vertices of A1 and
repeat to find A2, . . .. Then we finish with cn/(2n2/3) = cn1/3/2 vertex disjoint paths of
length n2/3. We perform the same process on H2

n to find the Bi. J

I Reminder of Lemma 14. Let Gn be defined as in Construction 12. Then for some
constants c > 0, with high probability Gn has the property that for all S ⊂ V (Gn) with
|S| = cn/2 there exists A ⊆ V (H1

n) and B ⊆ V (H3
n) such that for every pair of nodes u ∈ A

and v ∈ B the graph Gn − S contains a path from u to v and |A|, |B| ≥ 9cn/40.

Proof of Lemma 14. By Lemma 13, we know that in Gn − S there exists k := c′n1/3/2
vertex disjoint paths A1, . . . , Ak in H1

n of length n2/3 and k vertex disjoint paths B1, . . . , Bk
in H2

n of length n2/3. Here, c′ is the constant from Lemma 13. Let U ij,S be the upper half of
the j-th path in Hi

n and Lij,S be the lower half, both of which are relative to the removed
set S.

Now for each i ≤ k define the event BADi,S to be the event that there exists j ≤ k s.t.,
U1
j,S is disconnected from L2

i,S . We now set GOODS = [k] \ {i : BADi,S} and define

BS :=
k⋃

i∈GOODS

U2
i,S , and AS :=

k⋃
i=1

L1
i,S .

Now we claim that for every node u ∈ AS and v ∈ BS the graph Gn − S contains a path
from u to v. Since u ∈ AS we have u ∈ L1

i,S for some i ≤ k. Thus, all nodes in U1
i,S are

reachable from u. Since, v ∈ BS we have v ∈ U2
j,S for some good j ∈ GOOD. We know

that v is reachable from any node in L2
j,S . By definition of GOODS there must be an edge

(x, y) from some node x ∈ U1
i,S to some node y ∈ L2

j,S since we already know that there is a
directed path from u to x and from y to v there is a directed path from u to v. Thus, every
pair of nodes in AS and BS are connected.

We have |AS | ≥ kn2/3 = c′n/2. It remains to argue that for any set S the resulting set
|BS | = |GOODS |n2/3 is sufficiently large. Now we define the event

BADS := |{i : BADi,S}| >
k

10 .

Intuitively, BADS occurs when more than a small fraction of the events BADi,S occur.
Assuming that BADS never occurs then for any set S we have

|BS | ≥ |GOODS |n2/3 ≥ (9/10)kn2/3 = 9c′n/20 .

Consider, for the sake of finding the probabilities, that S is fixed before all of the random
edges are added to Gn. We will then union bound over all choices of sets S. First we consider
the probability that a single upper path, say U1

1,S is disconnected from a particular lower
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path, say L2
1,S . There are n1/3 possible lower parts to connect to, and there are n2/3/2 nodes

in the upper part that can connect to the lower part, and there are τ random edges added
from each node in the upper part, so we have that

P
[
U1

1,S disconnected from L2
1,S

]
≤
(

1− 1
2n1/3

)τn2/3/2
≤
(

1
e

)τn1/3/4
.

Union bounding over all indices j we have

P
[
BADi,S

]
≤ k

(
1
e

)τn1/3/4
=
(

1
e

)τn1/3/4−ln k
.

We remark that for i 6= j the event BADi,S is independent of BADj,S since the τ random
incoming edges connected to L2

i are sampled independently of the edges for L2
j .

We will show that the probability of the event BADS is very small and then take a union
bound over all possible S to show our desired result.

P [BADS ] ≤
(

k

k/10

)
P
[
BAD1,S ∧ . . . ∧BADk/10,S

]
=
(

k

k/10

)
P
[
BADupper

1,S

]k/10

≤
(

k

k/10

)(1
e

)τn1/3/4−ln k
 k

10

=
(

k

k/10

)(
1
e

)(kτn1/3−4k ln k)/40
.

Finally, we take the union bound over every possible S of size cn/2 nodes. Since Gn has 2n
nodes there are at most 22n = e2n ln 2 such sets. Thus,

P [∃S s.t. BADS ] ≤ e2n ln 2P
[
BADupper

S

]
≤
(

1
e

)(kτn1/3−4k ln k)/40−2n ln 2
.

By selecting a sufficiently large constant like τ = 800/c′ we can ensure that (kτn1/3 −
4k ln k)/40− 2n ln 2 = 20n− 2n ln 2− (k ln k)/10 ≥ n so that

P [∃S s.t. BADS ] ≤ 2−n .

Thus, except with negigible probability for any S of size cn/2 the event BADS does not
occur for any set S selected after Gn is sampled. J
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Abstract
We introduce the hemicubic codes, a family of quantum codes obtained by associating qubits with
the p-faces of the n-cube (for n > p) and stabilizer constraints with faces of dimension (p ± 1).
The quantum code obtained by identifying antipodal faces of the resulting complex encodes one
logical qubit into N = 2n−p−1(n

p

)
physical qubits and displays local testability with a soundness

of Ω(1/ log(N)) beating the current state-of-the-art of 1/ log2(N) due to Hastings. We exploit this
local testability to devise an efficient decoding algorithm that corrects arbitrary errors of size less
than the minimum distance, up to polylog factors.

We then extend this code family by considering the quotient of the n-cube by arbitrary linear
classical codes of length n. We establish the parameters of these generalized hemicubic codes.
Interestingly, if the soundness of the hemicubic code could be shown to be constant, similarly to the
ordinary n-cube, then the generalized hemicubic codes could yield quantum locally testable codes of
length not exceeding an exponential or even polynomial function of the code dimension.
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1 Quantum LDPC codes, local testability and robustness of
entanglement

Entanglement is arguably the central concept of quantum theory and despite decades of study,
many questions about it remain unsolved today. One particular mystery is the robustness
of phases of highly entangled states, such as the ones involved in quantum computation.
Given such a state, does it remain entangled in the presence of noise? A closely related
question concerns low-energy states of local Hamiltonians: while ground states, i.e., states of
minimal energy, are often highly entangled, is it also the case of higher energy states? These
questions are related through the concept of quantum error correction: logical information is
often encoded in a quantum error correcting code (QECC) in order to be processed during a
quantum computation, and the ground space of a local Hamiltonian is nothing but a special
case of a QECC called quantum low-density parity-check (LDPC) code.
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Physically it indeed makes sense to implement quantum error correction by relying on
local interaction, for example by encoding the quantum state in the degenerate ground space
of a local Hamiltonian, that is an N -qubit operator H ∝

∑
i Πi, where each Πi is a projector

acting nontrivially on a small number q of qubits (we talk of q-local terms). By “small”,
one usually means constant or sometimes logarithmic in N . A quantum stabilizer code is a
subspace of the space (C2)⊗N of N qubits defined as the common +1 eigenspace of a set
{S1, . . . , Sm} of commuting Pauli operators, that is, the space

span{|ψ〉 ∈ (C2)⊗N : Si|ψ〉 = |ψ〉,∀i ∈ [m]}.

Such a code is said to be LDPC if all the generators Si act nontrivially on at most q qubits
for small q. With this language, a quantum LDPC stabilizer code corresponds to the ground
space of the local Hamiltonian H = 1

m

∑m
i=1 Πi, with Πi = 1

2 (I − Si).
Entanglement can be quantified in many ways, but a relevant definition is to say that

a quantum state is highly entangled (or displays long-range entanglement) if it cannot be
obtained by processing an initial product state via a quantum circuit of constant depth.
By contrast, a quantum state that can be obtained that way, and which is therefore of the
form Ucirc

(
⊗ni=1 |φi〉

)
for some |φi〉 ∈ C2, is said to be trivial. An important property of

trivial states is that they admit an efficient classical description and that one can efficiently
compute the value of local observables such as Πi for such states: this is because the operator
U†circΠiUcirc remains local (since the circuit has constant depth) and its expectation can
therefore be computed efficiently for a product state. In particular, such a classical description
can serve as a witness that a local Hamiltonian admits a trivial state of low energy. It is
well known how to construct N -qubit Hamiltonians with highly entangled ground states,
for instance by considering a Hamiltonian associated with a quantum LDPC code with
non-constant minimum distance [9], but the question of the existence of local Hamiltonians
such that low-energy states are non-trivial remains poorly understood.

The no low-energy trivial state (NLTS) conjecture asks whether there exists a local
Hamiltonian such that all states of small enough (normalized) energy are nontrivial [20].
More precisely, is there some H = 1

m

∑m
i=1 Πi as above, such that there exists a constant

α > 0 such that all states ρ satisfying tr(ρH) ≤ α are nontrivial? What is interesting with
the NLTS conjecture is that it is a consequence of the quantum PCP conjecture [1], and
therefore corresponds to a possible milestone on the route towards establishing the quantum
PCP conjecture. We note that there are several versions of the quantum PCP conjecture in
the literature, corresponding to the quantum generalizations of equivalent versions of the
classical PCP theorem, but not known to be equivalent in the quantum case, and that the
multiprover version was recently established [28]. Here, however, we are concerned with the
Hamiltonian version of the quantum PCP conjecture which still remains wide open. This
conjecture is concerned with the complexity of the Local Hamiltonian problem: given a local
Hamiltonian as before, two numbers a < b and the promise that the minimum eigenvalue of
the Hamiltonian is either less than a, or greater than b, decide which is the case. The quantum
PCP conjecture asserts that this problem is QMA-hard when the gap b− a is constant. This
generalizes the PCP theorem that says that the satisfiability problem is NP-hard when the
relative gap is constant [11]. Here, QMA is the class of languages generalizing NP (more
precisely generalizing MA), where the witness can be a quantum state and the verifier is
allowed to use a quantum computer. Assuming that NP 6⊆ QMA, we see that Hamiltonians
with trivial states of low energy cannot be used to prove the quantum PCP conjecture since
the classical description of such states would be a witness that could be checked efficiently
by a classical verifier. In other words, if the quantum PCP conjecture is true, it implies that
NLTS holds. The converse statement is unknown.
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Eldar and Harrow made progress towards the NLTS conjecture by establishing a simpler
variant, called NLETS [15], by giving an explicit local Hamiltonian where states close to
ground states are shown to be nontrivial. (See also Ref. [29] for an alternate proof exploiting
approximate low-weight check codes.) The subtlety here is that closeness is not defined as
“low energy” as in NLTS, but by the existence of a low weight operator mapping the state
to a ground state. Viewing the ground space as a quantum LDPC code, [15] shows that
states which are δN -close to the code (for some sufficiently small δ > 0) are nontrivial. The
NLTS conjecture asks for something stronger: that all states with energy less than a small,
constant, fraction of the operator norm of the Hamiltonian are nontrivial. Of course, states
close to the codespace have a low (normalized) energy or syndrome weight, but the converse
does not hold in general, and this is what makes the NLTS conjecture difficult to tackle.

One case where the distance to the code is tightly related to the syndrome weight is
for locally testable codes (LTC): classical locally testable codes are codes for which one can
efficiently decide, with high probability, whether a given word belongs to the code or is far
from it, where efficiency is quantified in the number of queries to the coordinates of the
word. To see the link between the two notions, the idea is to distinguish between codewords
and words far from the code by computing a few elements of the syndrome and deciding
that the word belongs to the code if all these elements are zero. An LTC is such that any
word at constant relative distance from the code will have a constant fraction of unsatisfied
checknodes, that is a syndrome of weight linear in the blocklength. The Hadamard code
which maps a k-bit word x to a string of length 2k corresponding to the evaluations at x of
all linear functions provides such an example with the syndrome corresponding to all possible
linearity tests between the bits of the word: indeed, any word that satisfies most linearity
tests can be shown to be close to the codespace [6].

While LTCs have been extensively studied in the classical literature [19] and provide a
crucial ingredient for the proof of the classical PCP theorem, their quantum generalization
is relatively new and much less understood. The concept was only recently introduced in
a paper by Aharonov and Eldar [2] which showed that the classical approaches to local
testability seem to fail in the quantum world: for instance, defining a code on a (hyper)graph
with too much expansion seems to be a bad idea. In any case, if quantum LTCs with constant
minimum distance existed, they would provide a proof of the NLTS conjecture [15], and
this motivates trying to understand whether such codes can exist. Let us, however, mention
that while classical LTCs are useful for performing alphabet reduction in the context of the
PCP theorem, the same doesn’t seem to apply in the quantum regime since it is known
that directly quantizing Dinur’s combinatorial proof of the PCP theorem [11] is bound to
fail [8, 1].

An additional difficulty in the quantum case is that good quantum LDPC codes are not
even known to exist. While taking a random LDPC code yields a code with linear minimum
distance with high probability in the classical case, the same statement is not known to hold
in the quantum setting. Even restricting our attention to codes only encoding a constant
number of logical qubits, it is hard to find families of codes with minimum distance much
larger than

√
N : a construction due to Freedman, Meyer and Luo gives a minimum distance

Θ(N1/2 log1/4 N) [18] while recent constructions based on high-dimensional expanders yield
a polylogarithmic improvement [23, 16, 24] and hold the current record for quantum LDPC
codes. (Note that considering subsystem codes [30] or approximate codes [10, 5] is helpful to
get a large minimum distance [4, 29, 7].) For these reasons, while a lot of work on classical
LTCs focusses on codes with linear minimum distance and aims at minimizing the length of
the code, the current goals in the quantum case are much more modest at this point.
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A possible formal definition of a quantum LTC was suggested by [15], which we detail
now. Recall that the objective is to relate two notions: the distance of a state to the code,
and the energy of the state. A quantum code, or equivalently, its associated Hamiltonian,
will be locally testable if any word at distance t from the code (or the ground space) has
energy Ω(t) and if this energy can be estimated by accessing only a small number of qubits
(this is why we insist on having local terms in the Hamiltonian). First, one defines a quantum
version of the Hamming distance as follows. Consider the code space C ⊂ (C2)⊗N and define
its t-fattening Ct as the span of states at distance at most t from C:

Ct := Span{(A1 ⊗ · · · ⊗An)|ψ〉 : |ψ〉 ∈ C, |{i : Ai 6= I}| ≤ t},

where the Ai are single-qubit Pauli matrices. States at distance t belong to Ct, but not to
Ct−1, which we formalize by considering the projector ΠCt onto Ct and forming the distance
operator

DC :=
∑
t

t(ΠCt
−ΠCt−1).

Informally, the eigenspace of DC with eigenvalue t corresponds to states which are at distance
t from the code. We now define the averaged normalized Hamiltonian HC associated with
the quantum code C with q-local projections (Π1, . . . ,Πm):

HC = 1
m

m∑
i=1

Πi.

The normalization by m ensures that ‖HC‖ ≤ 1. With these notations, we say that a q-local
quantum code C ⊆ (C2)⊗n is an (s, q)-quantum LTC with soundness s ∈ [0, 1] if1

HC �
s

N
DC , (1)

where A � B means that the operator A−B is positive semidefinite. In words, condition (1)
means that any low-energy state is close to the codespace in terms of the quantum Hamming
distance, and that simple energy tests allow one to distinguish codewords from states far
from the code. More precisely, one can distinguish between a codeword (with energy 0) and a
state at distance δN from the code (therefore with energy ≥ sδ) by measuring approximately
1/(sδ) terms of the Hamiltonian. Ideally, one would want the soundness s and the locality q
to be constant, so that accessing a constant number of qubits would suffice to distinguish
codewords from states at distance greater than δN from the code, for constant δ > 0.

Known constructions of quantum LTCs are rare. For instance, quantum expander codes
yield one example of (s, q)-quantum LTCs with both s = O(1), q = O(1), but with the major
caveat that Eq. (1) doesn’t hold in general, but only on the restriction of the Hilbert space
consisting of states O(

√
N)-close to the codespace [27]. In fact, there exist states at distance

Ω(
√
N) violating only a single projection Πi. This means that such codes cannot be used to

establish the NLTS conjecture. By allowing the locality to be logarithmic in the number of
qubits instead of constant, that is q = O(logN), a recent construction of Hastings [21] yields
a quantum LTC with soundness s = O

(
1

log2 N

)
, without any restriction on the validity of

Eq. (1). The construction is a generalization of the toric code where instead of taking the
product of two 1-cycles of length p, one rather considers the product of two d-cycles of area
pd for the appropriate values of p = ω(1) and d = ω(1).

1 In a previous version of this manuscript, https://arxiv.org/abs/1911.03069v1, we were additionally
normalizing the Hamiltonian by q, leading to a soundness value of s/q. We remove this extra factor
here, in accordance with the literature in classical and quantum locally testable codes.

https://arxiv.org/abs/1911.03069v1
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Our results

In this work, we present a different construction of a quantum LTC which shares with
Hastings’ the property that it is set in a high-dimensional space with d = Θ(logN) and
therefore a similar locality2 q = Θ(logN). Our code, however, achieves a slightly better
soundness r = Ω

(
1

logN

)
, and in fact, we were not able to rule out that the soundness is not

constant, which would be optimal. While this hemicube code only encodes a single logical
qubit, we can introduce a generalized family of codes with polynomial rate. These codes
are obtained starting with the chain complex associated to the n-dimensional Hamming
cube, where we identify faces corresponding to the same coset of a classical code of length
n. A CSS quantum code is obtained by placing qubits on the p-faces and stabilizers either
on (p− 1)-faces or (p+ 1)-faces, with constraints given by the incidence relations between
the faces in the cube. While this construction is arguably quite natural, computing the
parameters (dimension and minimum distance) of this code family turned out to be rather
subtle, relying in nontrivial arguments from algebraic topology. The parameters of the CSS
code resulting from the quotient of the cube by a linear code of parameters [n, k, d] are

r
2n−p−k

(
n
p

)
,
(
p+k−1
p

)
,min

{(
d
p

)
, 2n−p−k

}z

when qubits are placed on p-faces for p ≤ d− 2. Whether these codes are also locally testable
is left as an open question. In that case, these would provide the first examples of quantum
LTCs of exponential or even polynomial length in the code dimension. Remember indeed
that both the hemicubic and Hastings’ codes have constant dimension.

2 Construction of the hemicubic code

We start with the simplest member of our quantum code family, corresponding to the
quotient of the n-cube by the repetition code. It has been known since Kitaev [25] that
one can associate a quantum CSS code with any chain complex of binary vector spaces
of the form: C2

∂2−→ C1
∂1−→ C0, where the boundary operators ∂2 and ∂1 satisfy ∂1∂2 = 0.

One first defines two classical codes CX = ker ∂1 and CZ = (Im ∂2)⊥ = ker ∂T2 . These codes
satisfy C⊥Z ⊆ CX since ∂1∂2 = 0 and the resulting quantum CSS code is the linear span of{∑

z∈C⊥
Z
|x+ z〉 : x ∈ CX

}
, where

{
|x〉 : x ∈ FN2

}
is the canonical basis of (C2)⊗N and N

is the dimension of the central space C1 of the chain complex. One obtains in this way
a quantum code of length N and dimension dim(CX/C⊥Z ) = dim(CX) + dim(CZ) − N . Its
minimum distance is given by dmin = min(dX , dZ) with dX = min{|w| : w ∈ CX \ C⊥Z } and
dZ = min{|w| : w ∈ CZ \ C⊥X}. Here, |w| stands for the Hamming weight of the word w.

Our construction relies on the n-dimensional hemicube, where a p-face is formed by a pair
of antipodal p-dimensional faces of the Hamming cube {0, 1}n. A p-face of the Hamming
cube is a string of n-elements from {0, 1, ∗} where symbol ∗ appears exactly p times. Let us
denote by Cnp the Fn2 -vector space spanned by p-faces of the hemicube. Boundary ∂p and
coboundary δp operators are obtained by extending the natural operators for the Hamming
cube to the hemicube

∂p x1 . . . xn :=
⊕

i s.t.xi=∗
x1 . . . xi−10xi+1 . . . xn ⊕ x1 . . . xi−11xi+1 . . . xn

δp x1 . . . xn :=
⊕

i s.t.xi 6=∗
x1 . . . xi−1 ∗ xi+1 . . . xn

2 We note that in both our construction and Hastings’, each qubit is only involved in a logarithmic
number of constraints.
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and are further extended to p-chains by linearity. We reserve the notation + for the standard
addition in F2 and use ⊕ for summing chains. The hemicubic code is then defined as the
CSS code obtained from the chain complex

Cnp+1
∂p+1−−−→ Cnp

∂p−→ Cnp−1.

Choosing p = αn for 0 < α < 1, the resulting code will be LDPC with generators
of logarithmic weight since the boundary and coboundary operators act nontrivially on
O(n) = O(logN) coordinates. The dimension of the hemicubic code corresponds to that of
the homology groups Hn

p = ker ∂p
/
Im ∂p+1. Since the hemicube, viewed as a cellular complex,

has the same topology as the real projective plane, its homology groups all have the same
dimension equal to 1. We note that the quantum code obtained here can be described with
a completely different approach exploiting Khovanov homology [3]. Obtaining the minimum
distance of the code requires more care since one needs to find lower bounds on the weight
of minimal nontrivial cycles and cocycles in the hemicube. Summarizing, we establish the
following result.

I Theorem 1. The hemicubic code is a CSS code with parameters
r
N = 2n−p−1(n

p

)
, 1, dmin = min

{(
n
p

)
, 2n−p−1

}z
.

Let α∗ ≈ 0.227 be the unique nonzero solution of h(α∗) = 1− α∗ where h is the binary
entropy function. Then choosing p = bα∗nc yields a quantum code family with dmin ≥

√
N

1.62 [3].

3 Local testability of the hemicubic code

We now turn our attention to the local testability of the hemicubic code. This property
results from isoperimetric bounds on the hemicube.

I Theorem 2. The hemicubic code is locally testable with soundness s = Ω
(

1
logN

)
.

This improves over Hastings’ construction [22] obtained by taking the product of two n-spheres
and which displays soundness s = Θ

(
log−2(N)

)
. It would be interesting to understand

whether the bounds of Theorem 2 are tight or not. At the moment, we believe it might
be possible to get rid of the logarithmic factor and obtain a constant soundness for the
hemicubic code. This would then match the soundness of the standard Hamming cube, which
does not encode any logical qubit since its associated complex has zero homology.

We say that a p-chain X is a filling of Y if ∂X = Y and that a p-cochain X is a cofilling
of Y if δX = Y . The main tools to establish the soundness of the hemicubic code are upper
bounds on the size of fillings (resp. cofillings) for boundaries (resp. coboundaries) in the
cube. Denoting the Hamming weight of chains and cochains by ‖ ‖, we have:

I Lemma 3. Let E be a p-chain of Cnp . Then there exists a p-chain F which is a filling of
∂E, satisfying ∂F = ∂E such that

‖F‖ ≤ n− p
2 ‖∂E‖.

Let E be a p-cochain of Cnp . Then there exists a p-cochain F which is a cofilling of δE,
satisfying δF = δE such that

‖F‖ ≤ (p+ 1)‖δE‖.
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It is straightforward to translate these results in the language of quantum codes. Let us
represent an arbitrary Pauli error of the form

⊗
i∈EX ,j∈EZ

XiZj by a couple E = (EX , EZ)
where EX is the support of the X-type errors and EZ is the support of the Z-type error.
Interpreting EX as a p-chain and EZ as a p-cochain, we see that the syndrome of E is given
by the pair (∂EX , δEZ). In order to compute the soundness of the quantum code, one needs
to lower bound the ratio:

min
(EX ,EZ )

‖∂EX‖+ ‖δEZ‖
‖[EX ]‖+ ‖[EZ ]‖ ≥ min

{
min
EX

‖∂EX‖
‖[EX ]‖ ,min

EZ

‖δEZ‖
‖[EZ ]‖

}
,

where the minimum is computed over all errors with a nonzero syndrome, i.e., for p-chains EX
which are not a p-cycle and p-cochains EZ which are not a p-cocycle. In these expressions, we
denote by [E] the representative of the equivalence class of error E, with the smallest weight.
Indeed, recall that two errors differing by an element of the stabilizer group are equivalent.
The fact that one considers [E] instead of E makes the analysis significantly subtler in the
quantum case than in the classical case. A solution is to work backward (as was also done
by Dotterrer in the case of the Hamming cube [13]): start with a syndrome and find a small
weight error giving rise to this syndrome. This is essentially how we establish Lemma 3:

min
EX ,∂EX 6=0

‖∂EX‖
‖[EX ]‖ ≥

2
n− p

, min
EZ ,δEZ 6=0

‖δEZ‖
‖[EZ ]‖ ≥

1
p+ 1 .

This implies the soundness in Theorem 2 since n− p, p+ 1 = Θ(logN).
While Dotterrer established tight bounds for the size of (co)fillings in the Hamming cube,

we do not know whether the bounds of Lemma 3 are tight. Right now, we lose a logarithmic
factor in the case of the hemicube, but it is not clear that this should be the case. In fact, it
is not even excluded that the hemicube could display a better soundness than the standard
cube. We expand on these ideas in the full version of the paper [26].

4 An efficient decoding algorithm for the hemicubic code

The existence of the small fillings and cofillings promised by the soundness of the code
is particularly interesting in the context of decoding since it guarantees the existence of
a low-weight error associated to any low-weight syndrome. To turn this into an efficient
decoding algorithm, the main idea is to notice that one can efficiently find the required
fillings and cofilings and therefore find Pauli errors giving the observed syndrome. While
finding the smallest possible fillings or cofillings does not appear to be easy, finding ones
satisfying the bounds of Lemma 3 can be done efficiently.

We note, however, that the decoding algorithm does not seem to perform so well against
random errors of linear weight. In particular, arguments from percolation theory that would
imply that errors tend to only form small clusters and that therefore it is sufficient to correct
these errors (similarly to [17] for instance) will likely fail here because of the logarithmic
weight of the generators. Indeed, the factor graph of the code has logarithmic degree and
there does not exist a constant threshold for the error probability such that below this
threshold, errors appear in clusters of size o(N). In addition, and more importantly, our
decoding algorithm is not local in the sense that it explores only the neighborhood of some
violated constraints to take a local decision, and for this reason, it is not entirely clear
whether the algorithm processes disconnected clusters of errors independently.

I Theorem 4. The hemicubic code comes with an efficient decoding algorithm that corrects
adversarial errors of weight O(dmin/ log2 N) with complexity O(n4N).
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The decoding complexity is quasilinear in the error size and the algorithm can be parallelized
to run in logarithmic depth. Finding a filling (or cofilling) can be done recursively by fixing
one of the n coordinates and finding fillings in the projective cube of dimension n− 1. While
the choice of the special coordinate is not immediately obvious if one wants to find the
smallest filling, it is nevertheless possible to make a reasonably good choice efficiently by
computing upper bounds on the final filling size for each possible choice of coordinate. We
establish Theorem 4 in the full version of the paper [26].

5 Generalized hemicubic codes: quotients by arbitrary linear codes

A key remark is that identifying antipodal p-faces of the n-cube is equivalent to considering
the cosets of the repetition code {0n, 1n} in the cube complex. It is therefore tempting to
generalize this approach by identifying the elements of the cosets of arbitrary linear codes
C with parameters [n, k, d]. We form in this way a new complex where two p-faces x and y
are identified if there exists a codeword c ∈ C such that x = y + c. Recall that addition is
coordinate-wise here and that ∗ is an absorbing element.

Deriving the parameters of the quantum CSS code associated to these new complexes
has been surprisingly challenging. In particular it does not seem particularly obvious that
the quantum parameters, especially the minimum distance, should depend only on the
parameters [n, k, d] of the classical code C and not otherwise on its particular structure: it
turns out indeed to be the case however. We managed to derive the quantum parameters by
exhibiting explicit representatives of the F2-homology and cohomology classes, through a
double induction on p and the classical code dimension k. We obtain a lower bound on the
minimum homologically non-trivial cycle weight by exhibiting a set of representatives of a
cohomology class all of which must be orthogonal to the cycle, and in particular intersect it.
Since a non-trivial cycle meets this bound it is exact. A similar method is used to derive the
minimum non-trivial cocycle weight and we obtain the following theorem.

I Theorem 5. The quantum code obtained as the quotient of the n-cube by a linear code
[n, k, d] admits parameters

r
2n−p−k

(
n
p

)
,
(
p+k−1
p

)
,min

{(
d
p

)
, 2n−p−k

}z

when qubits are placed on p-faces for p ≤ d− 2.

An interesting case is k = 2, which yields a quantum code of exponential length (that is,
dimension logarithmic in the code length):

r
2n−p−2(n

p

)
, p+ 1,min

{(
d
p

)
, 2n−p−2

}z
.

We are only able to prove a lower bound on the soundness of the code (for X-errors)
of Ω(1/p!). However, a much improved soundness would follow from the conjectured filling
and cofilling constants of the original hemicubic complex: generalized hemicubic codes are
therefore candidates for quantum locally testable codes of growing dimension, of which no
examples are presently known.

6 Discussion and open questions

In this paper, we have introduced a family of quantum code constructions that live on the
quotient of the n-dimensional Hamming cube by classical linear codes. Despite the apparent
simplicity of the construction, it does not seem to have appeared before in the literature.
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Deriving the parameters of these codes turned out to be significantly subtler than expected,
and quite surprisingly, the parameters of the quantum code only depend on the parameters of
the classical code and not on any additional structure. The simplest member of our quantum
code family, the hemicubic code, basically inherits its local testability from the soundness
of the Hamming cube, which was established by Dotterrer. In our view, the fact that our
code construction relies so much on the Hamming cube may be expected to yield additional
advantages, through the import of other interesting properties from the cube, as well as tools
from Boolean analysis.

The most pressing question is to understand whether the generalized hemicubic codes also
display local testability. At the moment, we can only establish it for the simplest member
of the family, which only encodes a single logical qubit. If we could show that the codes
corresponding to the quotient of the Hamming cube by arbitrary linear codes of dimension k
remain locally testable, then this would provide the first examples of quantum locally testable
codes of exponential (if k > 1) or polynomial (if k = Ω(n)) length. As we discuss in the full
version of the paper [26], improving our bound on the soundness of the one-qubit hemicubic
code from 1

logN to constant would already prove that the generalized code with k = 2 remains
locally testable. An indication that such an improvement might be possible comes from the
0-qubit code defined on the standard hypercube (without identifying antipodal faces) which
indeed displays constant soundness [12]. More generally, the question of what parameters are
achievable for quantum locally testable codes is essentially completely open at the moment.

Another intriguing question is whether the hemicubic code might help towards establishing
the NLTS conjecture (albeit with a quasilocal Hamiltonian with terms of logarithmic weight)
or more generally whether it is relevant for many-body physics. As mentioned earlier, any
quantum LTC with linear minimum distance would yield such a proof [15]. The hemicubic
code, however, is restricted by a O(

√
N) minimum distance, and the argument of [15] does

not directly apply anymore. This is in particular a line of research followed by Eldar which
relies on the hemicubic code and which provides positive partial results [14]. We note that in
the physics context of the Local Hamiltonian, it is crucial that every individual quantum
system (say, qubit) is acted upon by a small number of terms. In this sense, the problem is
somewhat more constrained than in the local testability case where one is typically fine if
the number of qubits is much larger than the number of constraints. Our quantum codes
satisfy this requirement since each qubit is only involved in a logarithmic number of local
constraints.

Finally, while classical LTCs have found a number of applications in recent years, notably
for constructing PCPs, it is fair to say that not much is presently known about possible
applications of quantum LTCs. At the same time, local testability is a notion that makes
perfect sense in the quantum regime and it seems reasonable to think that quantum LTCs
might also find applications. Finding explicit families encoding a non-constant number of
qubits is a natural first step.
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1 Introduction

Consider the search problem of producing a witness that two multi-variate polynomials
f and g over a field are different. A simple probabilistic polynomial-time algorithm for
this problem randomly picks an element t from the domain and outputs it if f(t) 6= g(t).
Even though this algorithm is simple and efficient and the error probability can be made
arbitrarily small, Gat and Goldwasser [3] pointed out a deficiency: two different runs of
the algorithm can produce two different witnesses with very high probability. Well-known
probabilistic algorithms for several search problems, such as finding a large prime number or
computing generators of cyclic groups, also exhibit this deficiency. This raises the question
of whether we can design a probabilistic algorithm for search problems that will output
the same witness on multiple executions, with high probability. Motivated by the above
question, Gat and Goldwasser [3] introduced the notion of pseudodeterministic algorithms1.
Informally, a probabilistic algorithm M is pseudodeterministic if for every x, there exists a

1 Originally termed Bellagio algorithms
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unique value v such that Pr[M(x) = v] is high. Pseudodeterministic algorithms are appealing
in several contexts, such as distributed computing and cryptography, where it is desirable
that different invocations of an algorithms by different parties should produce the same
output. In complexity theory, the notion of pseudodeterminism clarifies the relationship
between search and decision problems in the context of randomized computation. It is not
known whether derandomizing BPP to P implies derandomization of probabilistic search
algorithms. However, BPP = P implies that pseudodeterministic search algorithms can be
made deterministic [5].

Prior Work
Since its introduction, pseudodeterminism and its generalizations have received consider-
able attention. In particular, designing pseudodeterministic algorithms for problems that
admit polynomial-time randomized algorithms but without known deterministic algorithms
continues to be a key line of research with some success. Gat and Goldwasser showed that
there exist polynomial-time pseudodeterministic algorithms for algebraic problems such as
finding quadratic non-residues and finding certificates that two multivariate polynomials
are different [3]. Goldwasser and Grossman exhibited a pseudodeterministic NC algorithm
for computing matchings in bipartite graphs [8]. Grossman designed a pseudodeterministic
algorithm for computing primitive roots whose runtime matches the best known Las Vegas
algorithm [11]. Oliveira and Santhanam [13] showed that there is a sub-exponential time
pseudodeterministic algorithm for generating primes that works at infinitely many input
lengths.

Subsequent works extended pseudodeterminism to several other scenarios. Works of
Goemans, Goldwasser, Grossman, and Holden investigated pseudodeterminism in the context
of interactive proofs [9, 4]. Goldwasser, Grossman, Mohanty and Woodruff [10] investig-
ated pseudodeterminism in the data stream model. They showed that certain streaming
problems admit faster pseudodeterministic algorithms in comparison to their deterministic
counterparts. They also obtain space lower bounds for sketch based pseudodeterministic
estimation of `2 norm. Goldreich, Goldwasser, and Ron [5] investigated pseudodeterminism
in the context of sublinear-time algorithms. Dixon, Pavan, and Vinodchandran [2] studied
pseudodeterminism in the context of approximation algorithms and showed that making
Stockmeyer’s [16] well-known approximate counting algorithm pseudodeterministic will yield
new circuit lower bounds. Oliveira and Santhanam studied pseudodeterminism in the con-
text of learning algorithms and showed that some randomized learning algorithms can be
made pseudodeterministic under certain complexity theoretic assumptions [14]. Since then
a few generalizations of pseudodeterminism such as reproducible algorithms, influential bit
algorithms and multi-pseudodeterministic algorithms have been introduced [12, 7].

Multi-Pseudodeterminism

Our main focus is on the notion of multi-pseudodeterminism recently introduced by
Goldreich [7]. Consider the problem of estimating the average value of a function that
is defined over a large but finite universe. It is well known that there is an efficient ad-
ditive error, probabilistic approximation for this problem. So far, we do not know how to
make this algorithm pseudodeterministic. Suppose that we relax the restriction of pseudo-
determinism - instead of requiring that the algorithm outputs an unique approximation,
the algorithm must output one of two approximate values with high probability. Then
it is very easy to obtain such probabilistic algorithms [7]. Motivated by this, Goldreich
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introduced the notion of multi-pseudodeterminism. For a positive integer k, a probabilistic
algorithm A is k-pseudodeterministic if, for every input x, there exists a set Sx of size
at most k such that A(x) belongs to Sx with probability at least k+1

k+2 . Thus a pseudode-
terministic algorithm is 1-pseudodeterministic. Goldreich’s work established several key
properties of multi-pseudodeterministic algorithms. This work showed that, as with the case
of probabilistic and pseudodeterministic algorithms, error reduction is possible for multi-
pseudodeterministic algorithms. Goldreich’s work also established an equivalence between
multi-pseudodeterminism and reproducible algorithms introduced by Grossman and Liu [12]
and presented a composition result for multi-pseudodeterministic algorithms.

Our Contributions
Our main focus is on the notion of multi-pseudodeterminism. The notion of multi-
pseudodeterminism is especially interesting because there are computational problems that
admit 2-pseudodeterministic algorithms for which we do not know of any pseudodetermin-
istic algorithms. As mentioned earlier, it can be shown that randomized approximation
algorithms can be made 2-pseudodeterministic (see Section 2). Thus it is significant to
investigate the possibility of designing pseudodeterministic algorithms for problems that
admit k-pseudodeterministic algorithms for small values of k.

Our main contribution is to show the existence of complete problems for multi-
pseudodeterministic computations in the following sense: (1) these computational problems ad-
mit 2-pseudodeterministic algorithms, and (2) if there exists a pseudodeterministic algorithm
for any of these problems, then all multi-valued functions that admit k-pseudodeterministic
algorithms for a constant k, also admit pseudodeterministic algorithms.

The computational problems we consider are the following. We note that all of these
problems admit 2-pseudodeterministic algorithms.

I Definition 1 (Computational Problems).
Collision Probability Estimation Problem. Given a Boolean circuit C : {0, 1}n →
{0, 1}, give a (ε, δ)-additive approximation of the collision probability of C.
Acceptance Probability Estimation Problem: Given a Boolean circuit C :
{0, 1}n → {0, 1}, give a (ε, δ)-additive approximation for Prx∈Un

[C(x) = 1].
Entropy Estimation Problem: Given a Boolean circuit C : {0, 1}n → {0, 1}, give an
(ε, δ)-additive approximation of the entropy of the distribution C(Un).

We first show that if any of the above problems have a pseudodeterministic algorithm,
then all 2-pseudodeterministic algorithms can be made pseudodeterministic and thus any
(ε, δ)-approximation algorithm for a function f can be made pseudodeterministic.

Result 1: If any of the problems from Definition 1 admits a pseudodeterministic algorithm,
every function that has a (ε, δ)-approximation algorithm has a pseudodeterministic (ε, δ)-
approximation algorithm.

Next we extend this result to k-pseudodeterminism.

Result 2: If any of the problems from Definition 1 admits a pseudodeterministic algorithm,
then any multivalued function that admits a k-pseudodeterministic algorithm also admits a
pseudodeterministic algorithm.

Note that the above result holds for any multivalued function computation. Search
problems are multivalued functions whose outputs have an efficient verification procedure.
Much of the work on pseudodeterminism focuses on problem in the class Search-BPP: search
problems that have randomized algorithms whose outputs can be verified in BPP [6]. We
extend the above result to problems in Search-BPP.
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Result 3: If any of the problems from Definition 1 admits a pseudodeterministic algorithm,
then any problem in Search-BPP has a pseudodeterministic algorithm.

Extending this result on Search-BPP to other classes of multivalued functions is an
interesting question. Note that there are natural multivalued functions that admit efficient
probabilistic algorithms but are not known to be in Search-BPP (because of the lack of an
efficient verification procedure). For example the problem of outputting a Boolean function
with high circuit complexity has a simple probabilistic algorithm but not known to be in
Search-BPP.

2 Pseudodeterminism in Approximation Algorithms

In this section, we establish that Collision Probability Estimation Problem is com-
plete. We first define the notions of pseudodeterminism and multi-pseudodeterminism for
approximation algorithms formally. In general, an approximation algorithm can output
different good approximations on different random choices. For an approximation algorithm
A to be k-pseudodeterministic, A has to output with high probability at most k good
approximations for any input.

I Definition 2 (Multiplicative Approximation). Let f be a function whose range is the
integers. We say that a probabilistic algorithm A is an (ε, δ)-multiplicative approxima-
tion algorithm for f if for every x, the random variable A(x) has the following property:
Pr
[
f(x)

(1+ε) ≤ A(x) ≤ (1 + ε)f(x)
]
≥ (1− δ). We say that A is an (ε, δ) k-pseudodeterministic

multiplicative approximation algorithm for f if for every x there exists a set of integers Vx
such that |Vx| ≤ k and for every v ∈ Vx

f(x)
(1 + ε) ≤ v ≤ (1 + ε)f(x) and Pr[A(x) ∈ Vx] ≥ 1− δ.

When k = 1, we call the algorithm pseudodeterministic.

I Definition 3 (Additive Approximation). Let f be a function whose range is [0, 1]. We
say that a probabilistic polynomial-time algorithm A is an (ε, δ)-additive approximation
algorithm for f if for every x, the random variable A(x) has the following property:
Pr [(f(x)− ε ≤ A(x) ≤ f(x) + ε] ≥ (1− δ). We say that A is an (ε, δ) k-pseudodeterministic
additive approximation algorithm for f if for every x there exists a set Vx ⊆ [0, 1] such that
for all v ∈ Vx

f(x)− ε ≤ v ≤ f(x) + ε and Pr[A(x) ∈ Vx] ≥ 1− δ.

When k = 1, we call the algorithm pseudodeterministic.

I Remark. In general, for (ε, δ) approximation algorithms (additive or multiplicative), error
reduction is possible when δ < 1/2 and is bounded away from 1/2. This is done by repeating
the algorithm multiple times and taking the median value. Thus without loss of generality,
we may assume that for every (ε, δ) approximation algorithm, δ ≤ 1/2n. Similarly, the error
probability of (ε, δ) pseudodeterministic approximation algorithms can be reduced to less
than 1/2n.

Goldreich [7] observed that every additive error approximation algorithm can be made
2-pseudodeterministic; this extends to multiplicative approximation algorithms as well.
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I Proposition 4. Every optimization problem that admits an (ε, δ) multiplicative approx-
imation algorithm admits a (2ε+ ε2, δ) 2-pseudodeterministic multiplicative approximation
algorithm. Similarly, every optimization problem that admits an (ε, δ) additive approximation
algorithm admits a (2ε, δ) 2-pseudodeterministic additive approximation algorithm.

Proof. We give a proof for the multiplicative case. A similar argument holds for additive
approximation algorithms. Let f be a function and let A be an (ε, δ)-multiplicative approx-
imation algorithm for f . The proposed 2-pseudodeterministic algorithm B will first run A(x)
to get an approximation v. B outputs vi from a set of points P (defined next) by choosing
the smallest vi ∈ P that is larger than v. P is defined as the set of points {vi | i ∈ N} where
vi =

⌈
(1 + ε)i

⌉
.

Observe that vi+1 = (1 + ε)vi for all i. For any input x, A(x) outputs a value in the
range

[
f(x)

(1+ε) , (1 + ε)f(x)
]
and this range will contain at most 2 values from P . Hence B

is 2-pseudodeterministic. Rounding up to the nearest value in P makes the approximation
factor at most (1 + ε)2 = 1 + 2ε+ ε2. J

2.1 Completeness of Collision Probability Estimation
In this section, we prove that Collision Probability Estimation Problem is complete
for approximation algorithms in the context of pseudodeterminism. We start with the
following observation.

I Proposition 5. Collision Probability Estimation Problem admits (ε, δ) 2-
pseudodeterministic additive approximation algorithms for every ε < 1 and δ < 1.

Proof. We can estimate collision probability of C by generating O(1/ε2 log 1/δ) independent
pairs of strings 〈xi, yi〉 and counting the number of times C(xi) = C(yi). Simple application of
Chernoff bound implies that this is a (ε, δ) additive approximation algorithm. By the previous
proposition, we can convert this algorithm into a 2-pseudodeterministic algorithm. J

We now prove the main theorem of the section.

I Theorem 6. There exists ε′ > 0 such that if Collision Probability Estimation
Problem has an (ε′, δ)-pseudodeterministic additive approximation algorithm, then every
function f that admits a (ε, δ) multiplicative approximation algorithm (resp. additive), has a
(2ε+ ε2, δ)-pseudodeterministic multiplicative approximation algorithm (resp. additive).

Proof. We first provide intuition behind the proof. By Proposition 4, we can assume that f
has a (ε′, δ) 2-pseudodeterministic algorithm A, where ε′ = 2ε+ ε2. The idea is to combine
two strategies. For an input x, let a and b be the two good outputs of A(x). Consider the
case when one of the good outputs, say a, has a noticeably higher probability of occurrence
than b. In that case we can run A several times and output the most frequent output. With
high probability A(x) will output a. Another case is when both a and b appear with roughly
equal probability. In this case, we can run A several times and output the smallest value.
Since a and b appear with equal probability, the probability that in several runs of A we will
see both a and b is very high and hence, this strategy will output min{a, b}. The challenge is
to decide which of these cases holds (note that these cases are not disjoint). However, if we
have a pseudodeterministic algorithm for Collision Probability Estimation Problem,
then we show that we can pseudodeterministically choose a good strategy. Now we provide
details.
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Let B be a pseudodeterministic algorithm that estimates collision probabilities of Boolean
circuits. In particular, assume that B can pseudodeterministically estimate the collision
probability of a circuit, CP(C), with additive error 1/49 with probability ≥ 11

12 . Without
loss of generality we assume that the success probability of A is ≥ 48/49. Assume that A
uses m random bits on input x. Consider the following algorithm A′.
Algorithm A′: On input x, A′(x) constructs a Boolean circuit Cx : {0, 1}m → {0, 1} that on
input r, simulates A(x, r), where A′(x) runs B on Cx to obtain an estimate of CP(Cx). If
B(Cx) ≥ 51

98 , A
′ runs A(x) three times and outputs the most frequent result. Otherwise, if

B(Cx) < 51
98 , A

′ runs A(x) 16 times and outputs the smallest value. y

Now we will show that A′ is a pseudodeterministic algorithm for f . Since A is 2-
pseudodeterministic, there exists a set Sx of size at most 2 such that Pr[A(x) ∈ Sx] ≥ 48/49
and every element in Sx is a (1 + ε′) multiplicative approximation of f(x). We first consider
the case where the size of Sx is 1, say Sx = {a}. Note that in this case CP(Cx) is at least
(48/49)2 > 0.9. Thus A′(x) runs A three times and outputs the most frequent result, which
is a with probability at least (48/49)3 ≥ 0.9. Thus A′(x) is pseudodeterministic. Thus, in
the rest of the proof, assume that Sx = {a, b}. Let p = Pr[A(x) = a] and q = Pr[A(x) = b].
Assume without loss of generality that p ≥ q. We first establish a relationship among p, q
and CP(Cx).

B Claim 7. If CP(Xx) > 25
49 , then p > q + 1/7

Proof. We prove the contrapositive: if p ≤ q + 1/7, then CP(Cx) ≤ 25
49 . Notice that CP(Cx)

is maximized when p = q + 1
7 and δ = 0, where δ is the error probability of A. Since

p+ q + δ = 1, it follows that p = 4/7 and q = 3/7. Thus, CP(Cx) ≤ (4/7)2 + (3/7)2 = 25/49.
C

B Claim 8. If CP(Cx) < 26
49 , then q >

1
7

Proof. We prove the contrapositive: if q ≤ 1
7 , then Pr [CP(Cx)] ≥ 26

49 . Note that CP(Cx) is
minimized when p is as close to q as possible, and all other outputs are different from a and
b. Then q = 1

7 and p = 1− 1
7 −

1
49 = 41

49 ≥
5
7 . Thus CP(Cx) ≥

( 1
7
)2 +

( 5
7
)2 = 26

49 C

B Claim 9. If p > q + 1/7, then the probability that in 3 independent runs A(x) outputs a
at least twice is ≥ 57/100.

Proof. The worst case is when p = q+1/7 and δ = 1/49. In this case, p = 55
98 and q = 41

98 . The
probability that A(x) outputs a at least twice in three runs is ≥

( 55
98
)3 + 3

( 57
98
)2 44

98 ≥
57

100 .
C

B Claim 10. Let E be following event: “Among 16 independent runs of A(x), every run
outputs either a or b and at least one run outputs a and at least one run outputs b”. If q ≥ 1

7 ,
then Pr[E] ≥ 3/5.

Proof. Note that the probability of E is at most the sum of the probabilities of i) A(x) /∈
{a, b}, ii) Every run of A(x) outputs only a, and iii) Every run of A(x) outputs only
b. This sum is maximized when q = 1/7, δ = 1/49, p = 1 − 1/7 − 1/49. In this case,
Pr
[
E
]
≤ 1− (1− δ)16p16 + q16 ≤

( 6
7
)16 +

( 1
7
)16 + 1−

( 48
49
)16

< 2
5 . C

B Claim 11. A′ is pseudodeterministic.
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Let y be the pseudodeterministic output of the probability estimator B on input Cx. If
y > 51

98 , then CP(Cx) ≥ 25
49 . By Claim 7, p > q + 1/7. By Claim 9, the probability that A(x)

outputs a more often than b among three runs is at least 57
100 . Since y >

51
98 , A

′ will run A 3
times and output the most frequent result; this will output a with probability ≥ 57

100 .
On the other hand, if y ≤ 51

98 , then CP(Cx) ≤ 53
98 . By Claim 8, q ≥ 1/7. Since y ≤ 51

98 ,
A′ will run A 16 times and output the lexicographically smallest result. By Claim 10, Pr[A
outputs only a and b, and outputs a and b at least once] ≥ 3

5 , so Pr[A′ outputs min(a, b)] ≥ 3
5 .

So, given that B outputs y, A′ will output one particular value x with probability ≥ 57
100 .

Pr[A′ outputs x] ≥ Pr[B outputs y] Pr[A′ outputs x|B outputs y] ≥ 11
12

57
100 ≥

52
100 . This can

be increased to 1− 1
n using standard amplification techniques. J

3 Pseudodeterminism for Multi-valued Functions

In this section, we generalize the results from the previous section to k-pseudodeterminism.
Goldreich [7] defined the notion of k-pseudodeterminism for search problems and this definition
can be extended to multivalued functions. A function f is multivalued if f(x) is a subset
of the range (possibly empty set). Note that search problems can be cast as multivalued
functions: Let R be a binary relation associated with a search problem, and define f(x) as
the set of all y such that 〈x, y〉 ∈ R.

I Definition 12. Let f be a multivalued function, i.e, f(x) is a set. We say that f admits
pseudodeterministic algorithms if there is a probabilistic polynomial-time algorithm A such
that for every x, there exists a v ∈ f(x) such that A(x) = v with probability at least 2/3. The
function f admits k-pseudodeterministic algorithms if there is a probabilistic polynomial-time
algorithm A such that for every x, there exists a set Sx ⊆ f(x) of size at most k and the
probability that A(x) ∈ S(x) is at least k+1

k+2 .

Goldreich [7] showed that if we threshold success probability to at least k+1
k+2 , the the

success probability for k-pseudodeterministic algorithms can be amplified to 1− 1/2p(n) for
any polynomial p(·).

We show that if Collision Probability Estimation Problem can be made pseudo-
deterministic, then any k-pseudodeterministic algorithm for a multi-valued function problem
can be made pseudodeterministic for a constant k. We first show how to reduce the size of
the output set from k to k − 1.

I Theorem 13. If Collision Probability Estimation Problem has a (ε, δ)-
pseudodeterministic additive approximation algorithm with ε = 1/100, then for every
multi-valued function f that admits a k-pseudodeterministic algorithm, f has a (k − 1)-
pseudodeterministic algorithm.

Proof. Let B be a pseudodeterministic algorithm for Collision Probability Estimation
Problem. In particular, assume that B, given a circuit C, estimates CP(C) to within 1

100
additive error with probability 1− δ, where n is the length of the input to C.

Let A be a k-pseudodeterministic algorithm for a multi-valued function f with error
probability δ ≤ 1

72k . That is, A, on input x, outputs from a set Sx ⊆ f(x) of size ≤ k, with
probability ≥ 1− 1

72k . We call the elements of Sx good outputs of A. Let m be the number
of random bits used by A. We will design a (k − 1)-pseudodeterministic algorithm A′ as
follows:
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Algorithm A′: On input x, first construct a circuit Cx that gets as input r and outputs
A(x, r). Then compute B(Cx).

If B(Cx) < 65
100 , run A n times on independent random bits. Output the lexicographically

smallest element that appears at least n
12k times.

If B(Cx) ≥ 65
100 , run A n times using independent random bits. Output the most frequent

value. y

As in the proof of Theorem 6, it is easy to see that if the size of Sx is 1, A′(x) is
pseudodeterministic. Thus in the rest of the proof, we assume that the size of Sx is at least 2.
For the proof of correctness, we first establish certain claims relating the collision probability
of Cx and the behavior of A.

B Claim 14. If CP(CX) ≤ 2
3 , then there exist two good outputs a and b of A so that

Pr[A(x) = a] ≥ 1
6k and Pr[A(x) = b] ≥ 1

6k .

Proof. Suppose only one good output a of A has probability ≥ 1
6k . Then that output has

probability ≥ 5
6 − δ. This is because if the other (k− 1) good outputs have probability < 1

6k ,
the total probability of outputs other than a is < 1/6 + δ. Thus Pr[A(x) = a] ≥ 5

6 − δ.

CP(Cx) ≥ Pr[A outputs a on both runs]

≥
(

5
6 − δ

)2

≥ 25
36 − 2δ ≥ 2

3

The last inequality holds since δ ≤ 1
72k and k ≥ 2. C

B Claim 15. Let a, b be the most and least likely good outputs of A with probabilities p
and q respectively. If CP(Cx) > 64

100 , then p > q + 1
8k .

Proof. If p ≤ q + 1
8k , then p ≤

9
8k −

δ
k ≤

9
8k . Then CP(Cx) ≤ k · 81

64k2 + δ2 = 81
64k + δ2. For

k ≥ 2, and δ ≤ 1
72k , this quantity is ≤ 64

100 .
C

Now we will prove correctness of A′. On input x, let y be the pseudodeterministic output
of B(Cx). We will consider two cases: y ≤ 65

100 and y > 65
100 .

Case: y ≤ 65
100

B Claim 16. If y ≤ 65
100 , then there exists a set S′(x) ⊂ Sx of size at most k − 1 such that

Pr[A′(x) ∈ S′x] ≥ 1− 2e−
n

72k2 − δ

Proof. Note that B(Cx) outputs y with probability at least 1 − δ. Thus, if y ≤ 65
100 , then

with probability ≥ 1− δ, A′ will run A n times and output the lexicographically smallest
result that appears at least n

12k times. Since y ≤ 65
100 , CP(Cx) ≤ 66

100 < 2
3 . Therefore by

Claim 14, there are at least 2 elements a and b from Sx that A outputs with probability
≥ 1

6k . Let b be the lexicographically larger of the two. We set S′x = Sx \ {b}. Clearly S′x
contains at most k− 1 elements. Thus the probability that A′(x) outputs an element outside
of S′x is at most the sum of the probabilities of the following events: i) A′ outputs b ii) A′
outputs an element that is not in Sx, iii) B(Cx) does not output y.



P. Dixon, A. Pavan, and N. V. Vinodchandran 66:9

We first bound the probability that A′ outputs b. For A′ to output b, it must be the case
that in the n runs of A the value b is output at least n/12k times and the value a is output
at most n/12k times. Thus

Pr[A′(x) = b] ≤ Pr[ A(x) outputs a less than n/12k times among n runs]

Since the probability that A(x) outputs a is least n/6k, the expected number of times A(x)
outputs a in n runs is ≥ n

6k . Thus by Chernoff bound, this is at most e−n/72k2 . We now
bound the probability of the second event. The probability that A(x) does not belong to Sx
is at most 1/72k. For A′(x) to output an element c that is not in Sx, it must be the case
that c is output ≥ n/12k times among n runs of A. Again by Chernoff bound, this is at
most e−n/18k2 . Finally, the probability that B(Cx) does not output y is at most δ. Thus
A′(x) ∈ S′x with probability at least 1− 2e−n/72k2 − δ. C

Case: y > 65
100

B Claim 17. If y > 65
100 , there exists a sets S′x ⊆ Sx of size at most k − 1 such that

Pr[A′(x) ∈ S′x] ≥ 1− 2e− n
8k − δ

Proof. If y > 65
100 , then with probability ≥ 1− δ, A′ will run A n times and output the most

frequent result. Also, CP(Cx) > 64
100 . By Claim 15, p > q + 1

8k where p is the probability of
the most likely element a from Sx and q is the probability of least likely element b from Sx.
We define S′x as Sx − {b}. As before, the probability that the output of A′ does not belong
to S′x is at most the sum of the probabilities of: i) A′(x) outputs b ii) the output of A′(x)
does not belong to Sx iii) B(Cx) does not output y.

We will first analyze the probability of the event that A′ outputs b. For this, consider the
event E = ‘A outputs b more often than a in n trials’. Clearly, the probability that A′(x)
outputs b is at most Pr[E]. Define random variables Xi that take value 0 if A(x) outputs a
in ith run, 1 if A(x) outputs b in the ith run, and 1/2 otherwise. Note that E[Xi] = 1

2 −
p−q

2 ,
which is at most 1

2 −
1

16k . Let X =
∑n
i=1 Xi. Now, Pr[E] is Pr[X > n/2].

Pr [X > n/2] = Pr
[∑

Xi

n
> 1/2

]
≤ Pr

[∣∣∣∣∑Xi

n
− E[Xi]

∣∣∣∣ ≥ 1
16k

]
≤ e−n/256k2

by Chernoff bound

To bound the probability of the second event, consider the probability that A(x) outputs an
element not in Sx more frequently than a in n runs. Since the probability that A(x) outputs
an element that is not in Sx is at most 1/72k , by the same argument the probability of this
event is at most e−n/256k2 . Finally the probability that B(Cx) does not output y is at most
δ. The claim follows. C

Combining Claims 16 and 17, we have that A′ outputs a value from S′x with probability
at least 1 − 2e−n/72k2 − δ ≥ k

k+1 for large enough n, since δ can be made exponentially
small. J

We now state the main result of this section.
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I Theorem 18. If Collision Probability Estimation Problem has a (ε, δ)-
pseudodeterministic additive approximation algorithm with ε = 1/100, every multi-valued
function f that admits a k-pseudodeterministic algorithm, has a pseudodeterministic al-
gorithm.

Proof. Let B be the pseudodeterministic algorithm for Collision Probability Estim-
ation Problem, where B runs in time nc with error probability ≤ δ. To convert a
k−pseudodeterministic algorithm to a pseudodeterministic algorithm, we repeatedly apply
Theorem 13. We start with a k-pseudodeterministic algorithm Ak whose runtime is bounded
by nt. On input x, Ak−1 constructs CAk,x with size ≤ 4n2t. Ak−1 computes B(C), which
takes ≤ 4cn2tc time, then runs Ak(x) n times. In total, Ak−1(x) takes ≤ nt+1 +4cn2tc ≤ n4tc.
Applying this conversion (k − 1) times, we obtain A1, a pseudodeterministic algorithm with
runtime of O(nt(4c)k ). Since k is a constant the runtime is polynomial. Note that in each
iteration, the error probability remains the same. Thus A1 is pseudodeterministic. J

3.1 Circuit Probability Acceptance
In this subsection we observe the equivalence of Collision Probability Estimation
Problem and Acceptance Probability Estimation Problem in the context of pseudo-
determinism.

I Proposition 19. There exist ε, ε′ > 0 such that Collision Probability Estimation
Problem has an (ε, δ)-pseudodeterministic additive approximation algorithm if and only
if Acceptance Probability Estimation Problem has am (ε′, δ)-pseudodeterministic
additive approximation algorithm.

Proof. It is easy to see that Acceptance Probability Estimation Problem admits an
(ε, δ) additive approximation algorithm. Thus by Proposition 4, it has a 2-pseudodeterministic
(ε, δ) approximation algorithm. By Theorem 6, if Collision Probability Estimation
Problem admits a pseudodeterministic algorithm, then Acceptance Probability Es-
timation Problem admits a pseudodeterministic algorithm.

Let B be a pseudodeterministic algorithm for Acceptance Probability Estimation
Problem. Consider the following algorithm to estimate the collision probability of a circuit
C: If B(C) outputs v, output v2 + (1−v)2. Let p = Pr[C(Un) = 1]. If v ∈ (p− ε, p+ ε), then
the output of B belongs to (CP(C)− 8ε,CP(C) + 8ε). Clearly B is pseudodeterministic. J

The following result is a corollary of the above proposition and Theorem 18.

I Theorem 20. There exists ε′ > 0 such that if Acceptance Probability Estimation
Problem admits an (ε′, δ) pseudodeterministic additive approximation algorithm, then
every function f that admits an (ε, δ) multiplicative approximation algorithm has a (3ε, δ)-
pseudodeterministic multiplicative approximation algorithm.

3.2 Entropy Estimation
In this subsection we show that Entropy Estimation Problem and Acceptance Prob-
ability Estimation Problem are equivalent in the context of pseudodeterminism. We
first observe that Entropy Estimation Problem admits an (ε, δ), 2-pseudodeterministic
additive approximation algorithm.

I Proposition 21. There is an (ε, δ) 2-pseudodeterministic approximation algorithm for the
Entropy Estimation Problem.
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Proof. Given a circuit C, let p = Pr[C(Un) = 1]. As in Proposition 5, compute an
approximate value q of p and output H(q). It follows that H(q) is an approximation
of H(p) due to the known result that entropy can be approximated by the empirical
distribution obtained from sampling, for example see [15, 1]. By Proposition 4, we obtain a
2-pseudodeterministic algorithm. J

Note that the above proof yields the following.

I Proposition 22. There exist ε and ε′ such that if Acceptance Probability Estimation
Problem has an (ε, δ) pseudodeterministic additive error approximation algorithm, then En-
tropy Estimation Problem has (ε′, δ) pseudodeterministic, additive error approximation
algorithm.

Next we reduce Acceptance Probability Estimation Problem to Entropy Es-
timation Problem. Thus a pseudodeterministic algorithm for Entropy Estimation
Problem implies a pseudodeterministic algorithm for Acceptance Probability Estima-
tion Problem.

The main technical result that we show is that an approximation of the entropy of C(Un)
can be used to approximate the probability that C(Un) = 1. It is possible that this technical
result is known or is a folklore; we could not find a reference. Thus, for completeness a proof
is provided in the appendix.

I Theorem 23. Suppose that there is a (ε, δ) pseudodeterministic approximation algorithm for
Entropy Estimation Problem for a sufficiently small ε. Then there is a (1/100, δ+e−O(n))
pseudodeterministic approximation algorithm for Acceptance Probability Estimation
Problem.

Using Proposition 19 and Theorem 23, we obtain that both Acceptance Probab-
ility Estimation Problem and Entropy Estimation Problem are complete for
k-pseudodeterministic computations.

I Theorem 24. There exist ε > 0, such that if either of Acceptance Probability Estima-
tion Problem or Entropy Estimation Problem admit (ε, δ)-pseudodeterministic, addit-
ive approximation algorithm, then every multivalued function that has a k-pseudodeterministic
algorithm has a pseudodeterministic algorithm.

4 Pseudodeterminism for Search Problems

In this section we show that if any of the 3 computational problems we consider has pseudode-
terministic approximation schemes then every problem in Search-BPP has pseudodeterministic
algorithms. The class Search-BPP was formally introduced by Goldrecich [6]

I Definition 25 (Search BPP [6]). A search problem is a relation R ⊆ {0, 1}∗ × {0, 1}∗. For
every x, the witness set Wx of x with respect to R is {y | (x, y) ∈ R}. A search problem R

is in search-BPP (1) if there exists a probabilistic polynomial-time algorithm A such that
for every x for which Wx 6= φ, A(x) ∈ Wx with probability ≥ 2/3, (2) and there exists a
probabilistic polynomial time algorithm B such that if (x, y) ∈ R, then B(x, y) accepts with
probability > 2/3, and if (x, y) 6∈ R then B(x, y) accepts with probability < 1/3.

We will first show that if Acceptance Probability Estimation Problem has a
pseudodeterministic, additive, approximation scheme, then Search-BPP problems can be
made pseudodeterministic. Then we will use Theorem 20 to prove that if Acceptance
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Probability Estimation Problem has a (ε, δ) pseudodeterministic approximation al-
gorithm, then Search-BPP problems admit pseudodeterministic algorithms. We first recall
the definition of approximation scheme.

I Definition 26. A function f : Σ∗ → Q has an additive, approximation scheme if there is a
probabilistic polynomial time algorithm A that gets x, ε, and δ as input and

Pr[f(x)− ε ≤ A(x, ε, δ) ≤ f(x) + ε] ≥ 1− δ

I Theorem 27. If Acceptance Probability Estimation Problem has a pseudode-
terministic, additive, approximation algorithm scheme, then every problem in Search-BPP
has a pseudodeterministic algorithm.

Proof. Let R be a problem in Search-BPP and let A and B be probabilistic algorithms that
witness R in search-BPP according to the definition.

The idea is to use the method of conditional probabilities to construct a good random
choice zA for A on input x first, and then output A(x, zA). The search for zA will be
aided by the pseudodeterministic approximation algorithm for Acceptance Probability
Estimation Problem.

Consider the following probabilistic algorithm B′ that, on input x of length n, first
simulates A to get an output y and then runs B(x, y) and accepts if B accepts. Then
Pr[B′(x) accepts] ≥ 2/5. Let m = p(n) be the polynomial bounding the length of the
random string of B′. We will view the random string r that B′ uses as rArB where rA
is the random string that B′ uses to simulate A and rB is to simulate B. Let Aape be a
pseudodeterministic approximation algorithm for Acceptance Probability Estimation
Problem. We will use Aape with error ε ≤ 1

n·p(n) and confidence 1− δ ≥ 1− 1
n·p(n) .

For an input x let C(rArB) be the Boolean circuit that simulates B′ on x using random
string r = rArB and outputs 1 if and only if B′ accepts x on r. Thus for any x where
Wx 6= φ, Pr[C = 1] ≥ 2/5. For a binary string z ∈ {0, 1}l, let Cz : {0, 1}m−l → {0, 1} be the
circuit obtained by fixing the first l bits of C’s input to z. We now describe the algorithm
AR for the search problem that pseudodeterministically outputs a y ∈Wx.
Algorithm PseudoAR: On input x, construct the circuit C that gets r = rArB as input
and outputs 1 if B′ accepts (x, r) on random string r = rArB. Initialize z = λ, the
empty string. Iterate from i = 1 to m = p(n). At the ith iteration, simulate Aape(Cz0)
(pseudodeterministically) to approximate Pr[Cz0(r) = 1] up to an additive error ε and
confidence (1 − δ) to get a value v. If v ≥ 2/5 − (2i + 1)ε then z ← z0 otherwise z ← z1.
Continue to the next iteration. After the mth iteration let z = zAzB be the binary string of
length m constructed. Output A(x, zA). y

Correctness: Since error probability of Aape is ≤ 1
n·m , and we are making m calls to Aape,

by the union bound, the probability that any one of the calls makes an error is ≤ 1/n. For
the rest of the argument we assume all the calls to Aape pseudodeterministically output an
approximation to acceptance probability within an additive error of ε.

B Claim 28. For every i, for the string z constructed at the end of the ith iteration,
Pr[Cz = 1] ≥ 2

5 − 2iε.

Proof. We prove this by induction on i. For i = 0, the hypothesis holds since Pr[C = 1] ≥ 2/5.
Assume the hypothesis holds for i. Consider the (i + 1)th iteration. Using conditional
probabilities, after the ith iteration, Pr[Cz0 = 1] ≥ 2

5 − 2iε or Pr[Cz1 = 1] ≥ 2
5 − 2iε. Suppose

at the (i + 1)th iteration the value v returned by Aape(Cz0) is ≥ 2/5 − (2i + 1)ε. Then z
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is updated to z0 by the algorithm and from the approximation guarantee of Aape we have
that Pr[Cz0 = 1] ≥ 2/5 − (2i + 1)ε − ε = 2/5 − 2(i + 1)ε. On the other hand suppose
v < 2/5 − (2i + 1)ε. Then z is updated to z1. Also Pr[Cz0 = 1] < v + ε = 2/5 − 2iε and
hence Pr[Cz1 = 1] ≥ 2/5− 2iε ≥ 2/5− 2(i+ 1)ε C

Thus for any 1 ≤ i ≤ m Pr[Cz = 1] ≥ 2/3− 1/n and hence the algorithm outputs a z so
that B′(x, z) accepts. Hence the output of the algorithm A(x, zA) ∈Wx.

The algorithm PseudoAR can be seen as a deterministic algorithm making subroutine calls
to the pseudodeterministic algorithm Aape. Hence the overall algorithm is pseudodeterministic.
The probability of error is bounded by any one of the calls to Aape making an error which is
≤ 1/n. J

Next we will show that if Acceptance Probability Estimation admits (ε, δ) pseudode-
terministic additive approximation, then admits pseudodeterministic additive approximation
scheme.

I Proposition 29. There exists ε > 0 such that if Acceptance Probability Estimation
admits an (ε, δ) pseudodeterministic additive approximation, then it admits a pseudodetermin-
istic approximation scheme.

Proof. We first note that Acceptance Probability Estimation Problem admits an
additive, approximation scheme. By Theorem 20, there is an ε′ > 0 such that if Acceptance
Probability Estimation Problem has an (ε′, δ) pseudodeterministic approximation
algorithm, then every (ε, δ)-additive approximation algorithm for a function f can be made
into a (3ε, δ) pseudodeterministic, additive approximation algorithm. The same proof shows
that if f admits an approximation scheme, then it can be made into a pseudodeterministic
approximation scheme. J

The main result of this section is a corollary of the above proposition and Theorem 27.

I Theorem 30. There exists ε > 0 such that if Acceptance Probability Estimation
Problem has a (ε, δ) pseudodeterministic approximation algorithm algorithm, then every
problem in Search-BPP has a pseudodeterministic algorithm.
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A Proof of Theorem 23

We first start with the following lemma. Here H is the binary entropy function H(p) =
−p log p− (1− p) log(1− p).

B Claim 31. Let 0 ≤ a+ b ≤ 1. H(a+ b) ≥ H(a) + b log 1−a−b
a+b

Proof.

H(a+ b) = −(a+ b) log(a+ b)− (1− a− b) log(1− a− b)
= −a log(a+ b)− (1− a) log(1− a− b)− b log(a+ b)− (−b) log(1− a− b)
≥ −a log(a)− (1− a) log(1− a) + b(log(1− a− b)− log(a+ b))

= H(a) + b log 1− a− b
a+ b

where the third line follows by Gibbs’ inequality. C

We now provide a proof of Theorem 23.

Proof of Theorem 23. Suppose A is a pseudodeterministic algorithm that, given a Boolean
circuit C, outputs (ε, δ) approximation of H(C(Un)). Let r = Pr[C(Un) = 1]. Our goal is to
design a pseudodeterministic algorithm to estimate r. Let q be the smaller of 1− r and r.
We will first design a pseudodeterministic algorithm B that outputs a value p such that p is
within 1/100 of q.
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B(C) runs A(C) to obtain y. If y ≥ H( 1
2 −

1
100 ) + ε, then output 1

2 . Otherwise, do a
binary search for p in the range (0, 1/2) such that −p log p − (1 − p) log(1 − p) lies within
[y, y + 1/2n). We consider two cases.
Case 1: y ≥ H( 1

2 −
1

100 ) + ε. In this case, then clearly 1
2 −

1
100 ≤ r ≤ 1

2 + 1
100 . B(C) will

output 1
2 , which is within 1

100 of r = Pr[C = 1], with probability ≥ 1− δ.
Case 2: y < H( 1

2 −
1

100 ) + ε. Since |H(p) − y| ≤ 1/2n and |H(q) − y| ≤ ε, we have that
|H(p)−H(q)| ≤ ε+ 1/2n = ε′. Now we bound how far p is from q. For this we need the
following two technical claims.

B Claim 32. Let a ≤ 1
2 . If H(a) ≤ H( 1

2 −
1

100 ) + ε′, then a ≤ 1
2 −

1
100 + 1

c , for any c that
satisfies ε′ ≤ 1

2c log( 102c−200
98c+200 ).

Proof.

H(a) ≤ H
(

1
2 −

1
100

)
+ 2ε

≤ H
(

1
2 −

1
100

)
+ 1
c

log
(

102c− 200
98c+ 200

)
= H

(
1
2 −

1
100

)
+ 1
c

log
( 1

2 + 1
100 −

1
c

1
2 −

1
100 + 1

c

)
≤ H

(
1
2 −

1
100 + 1

c

)
by Claim 31

Thus a ≤ 1
2 −

1
100 + 1

c . C

B Claim 33. Let a = b+` where a ≤ 1
2 , a, b, ` ≥ 0. IfH(a)−H(b) ≤ ε′ and a ≤ 1

2−
1

100 + 1
c ≤

1
2 ,

then ` ≤ ε′

log 102c−200
98c+200

Proof.

ε′ ≥ H(a)−H(b)
= H(b+ `)−H(b)

≥ H(b) + ` log
(

1− b− `
b+ `

)
−H(b)(ByClaim 31)

= ` log
(

1− a
a

)
Since a ≤ 1

2 , the minimum value for this is when a is as close to 1
2 as possible.

≥ ` log
1− ( 1

2 −
1

100 + 1
c )

( 1
2 −

1
100 + 1

c )

= ` log 102c− 200
98c+ 200

⇒ ` ≤ ε′

log 102c−200
98c+200

C

B Claim 34. If ε′ is sufficiently small, then there is a constant c satisfying

ε′

log 102c−200
98c+200

≤ 1
100 and ε′ ≤ 1

2c log
(

102c− 200
98c+ 200

)
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Proof. It can be verified that when ε′ = 1/42000 and c = 1100, the above inequalities are
satisfied. C

Now we are ready to prove that |p− q| ≤ 1
100

B Claim 35. |p− q| ≤ 1
100

Proof. First, suppose p > q. Then p = q+ `. Since, y < H( 1
2 −

1
100 ) + ε and |y−H(p)| ≤ 1

2n ,
so H(p) ≤ H( 1

2 −
1

100 ) + ε+ 1
2n = H( 1

2 −
1

100 ) + ε′.By Claim 34, we have that c = 1/1100.
By claim 32, p ≤ 1

2 −
1

100 + 1
c . By claim 33, we obtain that ` ≤ ε′

log 102c−200
98c+200

≤ 1/100, thus
p ≤ q + 1/100. A similar argument shows that if p < q, then p ≥ q − 1/100. C

We found a value p that is 1/100-close to q, and the goal is to estimate r = Pr[C(Un) = 1],
where q = min{r, 1− r}. Thus p is either close to r or to 1− r. Now we run C(Un), n times;
if there are more 1s than 0s output 1− p; else output p. Using Chernoff bounds, it follows
that the output is 1/100-close to q with probability ≤ 1− e−2n/(1102).

Finally, recall that we needed ε′ = ε+ 1/2n ≤ 1/42000. Thus we can take ε ≤ 1/43000
(for large enough n). So, if it’s possible to pseudodeterministically estimate H(Pr[C = 1])
within 1

43000 with probability 1−δ, it’s possible to pseudodeterministically estimate Pr[C = 1]
within 1

100 with probability 1− δ − e−2n/(1102). J
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Abstract
This paper considers a variant of the online paging problem, where the online algorithm has access
to multiple predictors, each producing a sequence of predictions for the page arrival times. The
predictors may have occasional prediction errors and it is assumed that at least one of them makes
a sublinear number of prediction errors in total. Our main result states that this assumption suffices
for the design of a randomized online algorithm whose time-average regret with respect to the
optimal offline algorithm tends to zero as the time tends to infinity. This holds (with different regret
bounds) for both the full information access model, where in each round, the online algorithm
gets the predictions of all predictors, and the bandit access model, where in each round, the online
algorithm queries a single predictor.

While online algorithms that exploit inaccurate predictions have been a topic of growing interest
in the last few years, to the best of our knowledge, this is the first paper that studies this topic in the
context of multiple predictors for an online problem with unbounded request sequences. Moreover, to
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A critical bottleneck in the performance of digital computers, known as the “memory wall”,
is that the main memory (a.k.a. DRAM) is several orders of magnitude slower than the
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responds much faster than the main memory. However, the cache is inherently smaller than
the main memory which means that some of the memory items requested by the running
program may be missing from the cache. When such a cache miss occurs, the multiprocessor
is required to fetch the requested item from the main memory into the cache; if the cache is
already full, then some previously stored item must be evicted to make room for the new one.
Minimizing the number of cache misses is known to be a primary criterion for improving the
computer’s performance [26, 17].

The aforementioned challenge is formalized by means of a classic online problem called
paging [21] (a.k.a. unweighted caching), defined over a main memory that consists of n ∈ Z>0
pages and a cache that holds k ∈ Z>0 pages at any given time, k < n. The execution of a
paging algorithm Alg progresses in T ∈ Z>0 discrete rounds, where round t ∈ T occupies the
time interval [t, t−1). An instance of the paging problem is given by a sequence σ = {σt}t∈[T ]
of page requests so that request σt ∈ [n] is revealed at time t ∈ [T ]. Denoting the cache
configuration of Alg at time t by Ct ⊂ [n], |Ct| = k, if σt ∈ Ct, then Alg does nothing in
round t; otherwise (σt /∈ Ct), a cache miss occurs and Alg should bring the requested page
into the cache so that σt ∈ Ct+1. Since |Ct+1| = |Ct| = k, it follows that upon a cache miss,
Alg must evict some page i ∈ Ct and its policy is reduced to the selection of this page i. The
cost incurred by Alg on σ is defined to be the number of cache misses it suffers throughout
the execution, denoted by

costσ(Alg) = |{t ∈ [T ] : σt /∈ Ct}| ,

taking the expectation if Alg is a randomized algorithm. When σ is clear from the context,
we may omit the subscript, writing cost(Alg) = costσ(Alg).

NAT and the FitF Algorithm. To avoid cumbersome notation, we assume hereafter that
the request sequence σ is augmented with a suffix of n virtual requests so that σT+i = i for
every i ∈ [n]. This facilitates the definition of the next arrival time (NAT) of page i ∈ [n]
with respect to time t ∈ [T ] as the first time after t at which page i is requested, denoted by

At(i) = min{t′ > t | σt′ = i} .

Based on that, we can define the FitF (stands for furthest in the future) paging algorithm
that on a cache miss at time t ∈ [T ], evicts the page i ∈ Ct that maximizes At(i). A classic
result of Belady [5] states that FitF is optimal in terms of the cost it incurs for the given
request sequence σ; we subsequently denote OPTσ = costσ(FitF) and omit the subscript,
writing OPT = OPTσ, when σ is clear from the context. It is important to point out that FitF
is an offline algorithm as online algorithms are oblivious to the NATs.

Regret. We define the regret of an online paging algorithm Alg on σ as

regretσ(Alg) = costσ(Alg)− OPTσ

and omit the subscript, writing regret(Alg) = regretσ(Alg) when σ is clear from the context.
Our goal in this paper is to develop an online algorithm that admits a vanishing regret,
namely, an online algorithm Alg for which it is guaranteed that

lim
T→∞

sup
{

regretσ(Alg) | σ ∈ [n]T
}

T
= 0 .

The following theorem states that this goal is hopeless unless the online algorithm has access
to some additional information; its proof should be a folklore, we add it in the full version [11]
of this paper for completeness.
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I Theorem 1. Fix n = k+1 and let σ be a request sequence generated by picking σt uniformly
at random (and independently) from [n] for t = 1, . . . , T . Then, E (cost(Alg)) ≥ Ω

(
T
k

)
for

any (possibly randomized) online paging algorithm Alg, whereas E(OPT) ≤ O
(

T
k log k

)
.

1.1 Machine Learned Predictions
Developments in machine learning (ML) technology suggest a new direction for reducing the
number of cache misses by means of predicting the request sequence. Indeed, recent studies
have shown that neural networks can be employed to predict the memory pages accessed by a
program with high accuracy [16, 9, 22, 19, 23]. When provided with an accurate prediction of
the request sequence σ, one can simply simulate FitF, thus ensuring an optimal performance.

Unfortunately, the predictions generated by ML techniques are usually not 100% accurate
as a result of a distribution drift between the training and test examples or due to adversarial
examples [24, 18]. This gives rise to a growing interest in developing algorithmic techniques
that can overcome inaccurate predictions, aiming for the design of online algorithms with
performance guarantee that improves as the predictions become more accurate [18, 20, 1, 25].
The existing literature in this line of research studies a setting where the online algorithm Alg
is provided with a sequence of predictions for σ and focuses on bounding Alg’s competitive
ratio as a function of the proximity of this sequence to σ (more on that in Section 2).

The current paper tackles the challenge of overcoming inaccurate predictions from a
different angle: Motivated by the abundance of forecasting algorithms that may be trained
on different data sets or using different models (e.g., models that are robust to adversarial
examples [15]), we consider a decision maker with access to multiple predicting sequences
for σ. Our main goal is to design an online algorithm Alg that admits a vanishing regret
assuming that at least one of the predicting sequences is sufficiently accurate, even though
the decision maker does not know in advance which predicting sequence it is.

Explicit Predictors. Formally, we consider M ∈ Z>0 predictors whose role is to predict the
request sequence σ. In the most basic form, referred to hereafter as the explicit predictors
setting, each predictor j ∈ [M ] produces a page sequence πj = {πjt }t∈[T ] ∈ [n]T , where
πjt aims to predict σt for every t ∈ [T ], and the sequences π1, . . . , πM are revealed to the
online algorithm Alg at the beginning of the execution. Under the explicit predictors setting,
predictor j ∈ [M ] is said to have a prediction error in round t ∈ [T ] if πjt 6= σt. We measure
the accuracy of predictor j by means of her cumulative prediction error

ηje = ηe(πj) =
∣∣∣{t ∈ [T ] : πjt 6= σt

}∣∣∣
and define ηmin

e = min{ηje | j ∈ [M ]}.
The fundamental assumption that guides the current paper, referred to hereafter as

the good predictor assumption, is that there exists at least one predictor whose cumulative
prediction error is sublinear in T , namely, ηmin

e = o(T ). We emphasize that Alg has no a
priori knowledge of η1

e , . . . , η
M
e nor does it know the predictor that realizes ηmin

e . Our main
research question can now be stated as follows:

Does the good predictor assumption provide a sufficient condition for the existence of
an online algorithm that admits a vanishing regret?

NAT Predictors. For the paging problem, it is arguably more natural to consider the setting
of NAT predictors, where predictor j ∈ [M ] produces in each round t ∈ [T ], a prediction
ajt ∈ (t, T + n] for the NAT At(σt) of the page that has just been requested. Under this
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setting, predictor j ∈ [M ] is said to have a prediction error in round t ∈ [T ] if ajt 6= At(σt).
As in the explicit predictors setting, we measure the accuracy of (NAT) predictor j by means
of her cumulative prediction error, now defined as

ηjN =
∣∣∣{t ∈ [T ] : ajt 6= At(σt)

}∣∣∣ (1)

(this measure is termed classification loss in [18]), and define ηmin
N = min{ηjN | j ∈ [M ]}.1

The NAT predictors version of the good predictor assumption states that ηmin
N = o(T ).

Given a page sequence π = {πt}t∈[T ] ∈ [n]T augmented with a suffix of n pages such
that πT+i = i for every i ∈ [n], we say that (NAT) predictor j ∈ [M ] is consistent with π
if ajt = min{t′ > t | πt′ = σt} for every t ∈ [T ]; if the page sequence π is not important or
clear from the context, then we may say that predictor j is consistent without mentioning π.
The key observation here is that if predictor j is consistent with a page sequence π, then ηjN
provides a good approximation for ηe(π), specifically,

ηe(π)− n ≤ ηjN ≤ 2 · ηe(π) (2)

(the proof is deferred to the full version [11]). This means that the setting of NAT predictors
is stronger than that of explicit predictors in the sense that NAT predictor j ∈ [M ] can
be simulated (consistently) from explicit predictor j by deriving the NAT prediction ajt in
round t ∈ [T ] from the (explicit) predictions πjt+1, π

j
t+2, . . . , π

j
T , while ensuring that ηjN is

a good approximation for ηje. Therefore, unless stated otherwise, we subsequently restrict
our attention to NAT predictors and in particular omit the subscript from the cumulative
prediction error notation, writing ηj = ηjN and ηmin = ηmin

N . It is important to point out
though that the results established in the current paper hold regardless of whether the (NAT)
predictors are consistent or not.

Access Models. Recall that the (NAT) predictors j ∈ [M ] produce their predictions in
an online fashion so that the NAT prediction ajt is produced in round t. This calls for
a distinction between two access models that determine the exact manner in which ajt is
revealed to the online paging algorithm Alg. First, we consider the full information access
model, where in each round t ∈ [T ], Alg receives ajt for all j ∈ [M ]. Motivated by systems
in which accessing the ML predictions is costly in both time and space (thus preventing
Alg from querying multiple predictors in the same round and/or predictions belonging to
past rounds), we also consider the bandit access model, where in each round t ∈ [T ], Alg
receives ajt for a single predictor j ∈ [M ] selected by Alg in that round. To make things
precise, we assume, under both access models, that if Alg has to evict a page in round t,
then the decision on the evicted page is made prior to receiving the prediction(s) in that
round. Notice though that the information that Alg receives from the predictor(s) is not
related to the evicted page and as such, should not be viewed as a feedback that Alg receives
in response to the action it takes in the current round.

1.2 Our Contribution
Consider a (single) predictor that in each round t ∈ [T ], produces a prediction at for the NAT
At(σt) of the page that has just been requested and let η be her cumulative prediction error.
Our first technical contribution comes in the form pf a thorough analysis of the performance

1 In Section 2, we provide a refined definition for the cumulative prediction error of a NAT predictor that
is more robust against adversarial interference such as shifting each atj by a constant. For simplicity of
the exposition, the definition presented in Eq. (1) is used throughout the current section; we emphasize
though that all our results hold for the stronger notion of prediction error as defined in Section 2.
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of a simple online paging algorithm called Sim that simulates FitF, replacing the actual
NATs with the ones derived from the prediction sequence {at}t∈[T ]. Using some careful
combinatorial arguments, we establish the following bound.

I Theorem 2. The regret of Sim satisfies regret(Sim) ≤ O(η + k).

Relying on online learning techniques, Blum and Burch [6] develop an online algorithm
“multiplexer” that given multiple online algorithms as subroutines, produces a randomized
online algorithm that performs almost as good as the best subroutine in hindsight. Applying
Theorem 2 to the M predictors so that each predictor j ∈ [M ] yields its own online paging
algorithm Simj and plugging algorithms Sim1, . . . , SimM into the multiplexer of [6], we
establish the following theorem, thus concluding that the good predictor assumption implies
an online paging algorithm with a vanishing regret under the full information access model.

I Theorem 3. There exists a randomized online paging algorithm that given full information
access to M NAT predictors with minimum cumulative prediction error ηmin, has regret at
most O

(
ηmin + k + (Tk logM)1/2

)
.

Combined with (2), we obtain the same asymptotic regret bound for explicit predictors.

I Corollary 4. There exists a randomized online paging algorithm that given access to
M explicit predictors with minimum cumulative prediction error ηmin

e , has regret at most
O
(
ηmin
e + k + (Tk logM)1/2

)
.

The explicit predictors setting is general enough to make it applicable to virtually any
online problem. This raises the question of whether other online problems admit online
algorithms with a vanishing regret given access to explicit predictors whose minimum
cumulative prediction error is sublinear in T . We view the investigation of this question as
an interesting research thread that will hopefully arise from the current paper.

Going back to the setting of NAT predictors, one wonders if a vanishing regret can be
achieved also under the bandit access model since the technique of [6] unfortunately does not
apply to this more restricted access model. An inherent difficulty in the bandit access model
is that we cannot keep track of the cache configuration of Simj unless predictor j is queried in
each round (which means that no other predictor can be queried). To overcome this obstacle,
we exploit certain combinatorial properties of the Sim algorithm to show that Simj can be
“chased” without knowing its current cache configuration, while bounding the accumulated
cost difference. By a careful application of online learning techniques, this allows us to
establish the following theorem, thus concluding that the good predictor assumption implies
an online paging algorithm with a vanishing regret under the bandit access model as well.

I Theorem 5. There exists a randomized online paging algorithm that given bandit access
to M NAT predictors with minimum cumulative prediction error ηmin, has regret at most
O
(
ηmin + T 2/3kM1/2).

1.3 Related Work and Discussion
We say that an online algorithm Alg for a minimization problem P has competitive ratio
α if for any instance σ of P, the cost incurred by Alg on σ is at most α · OPTσ + β, where
OPTσ is the cost incurred by an optimal offline algorithm on σ and β is a constant that
may depend on P, but not on σ [21, 7]. In comparison, the notion of regret as defined in
the current paper uses the optimal offline algorithm as an absolute (additive), rather than
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relative (multiplicative), benchmark. Notice that the vanishing regret condition cannot be
expressed in the scope of the competitive ratio definition. In particular, α = 1 is a stronger
requirement than vanishing regret as the latter can accommodate an additive parameter β
that does depend on σ as long as it is sublinear in T = |σ|. On the other hand, α > 1 implies
a non-vanishing regret when OPTσ scales linearly with T .

As mentioned in Section 1.1, most of the existing literature on augmenting online
algorithms with ML predictions is restricted to the case of a single predictor [18, 20, 1, 25].
The goal of these papers is to develop online algorithms with two guarantees: (i) their
competitive ratio tends to O(1) (though not necessarily to 1) as the predictor’s accuracy
improves; and (ii) they are robust in the sense that regardless of the predictor’s accuracy,
their competitive ratio is not much worse than that of the best online algorithm that has no
access to predictions.

In contrast, the current paper addresses the setting of multiple predictors, working under
the assumption that at least one of them is sufficiently accurate, and seeking to develop
online algorithms with a vanishing regret. To the best of our knowledge, this is the first
paper that aims at this direction.

Most closely related to the current paper are the papers of [18, 20, 25] on online paging
with predictions. The authors of these papers stick to the setting of a (single) NAT predictor
and quantify the predictor’s accuracy by means of the L1-norm. Specifically, taking {at}t∈[T ]
to be the sequence of NAT predictions, they define the predictor’s cumulative prediction error
to be ]L1 =

∑
t |at −At(σt)|. It is easy to see that for any NAT predictor, the cumulative

prediction error as defined in (1) is never larger than its ]L1, while the former can be
Ω(T )-times smaller.

In particular, Lykouris and Vassilvitskii [18] design a randomized online paging al-
gorithm whose competitive ratio is at most O

(
min

{
1 +

√
]L1/OPT, log k

})
. Rohatgi

[20] presents an improved randomized online algorithm with competitive ratio up-
bounded by O

(
min

{
1 + log k

k
]L1
OPT , log k

})
and accompany this with a lower bound of

Ω
(

min
{

1 + 1
k log k

]L1
OPT , log k

})
. Notice that the online algorithms presented in [18, 20] belong

to the marking family of paging algorithms [13] and it can be shown that the competitive
ratio of any such algorithm is bounded away from 1 even when provided with a fully accurate
predictor (consider for example the paging instance defined by setting n = 4, k = 2, and
σt = (t mod 4) + 1 for every t ∈ [T ]).

Recently, Wei [25] advanced the state of the art of this problem further, present-
ing a randomized O

(
min

{
1 + 1

k
]L1
OPT , log k

})
-competitive online paging algorithm. To do

so, Wei analyzes an algorithm called BlindOracle, that can be viewed as a variant of
our Sim algorithm (see Section 1.2), and proves that its competitive ratio is at most
min

{
1 +O

(
]L1
OPT

)
, O
(

1 + 1
k
]L1
OPT

)}
. He then plugs this algorithm into the multiplexer of [6]

together with an O(log k)-competitive off-the-shelf randomized online paging algorithm to
obtain the promised competitive ratio. Notice that the bound that Wei establishes on the
competitive ratio of BlindOracle immediately implies an O(]L1) bound on the regret of this
algorithm. As such, Theorem 2 can be viewed as a refinement of Wei’s result, bounding the
regret as a function of η rather than the weaker measure of ]L1.

Antoniadis et al. [1] studies online algorithms with ML predictions in the context of the
metrical task system (MTS) problem [8]. They consider a different type of predictor that in
each round t ∈ [T ], provides a prediction ŝt for the state st of an optimal offline algorithm,
measuring the prediction error by means of ]Distances =

∑
t∈[T ] dist(st, ŝt), where dist(·, ·)

is the distance function of the underlying metric space. It is well known that any paging
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instance I can be transformed into an MTS instance IMTS. Antoniadis et al. prove that
the prediction sequence {at}t∈[T ] of a NAT predictor for I can also be transformed into a
prediction sequence {ŝt}t∈[T ] for IMTS. However, the resulting prediction error ]Distances
of the latter sequence is incomparable to the prediction error ]L1 of the former; this remains
true also for the stronger notion of cumulative prediction error as defined in (1).

Online algorithms with access to multiple predictors have been studied by Gollapudi and
Panigrahi for the ski rental problem [14]. Among other results, they prove that a competitive
ratio of α = 4

3 (resp., α =
√

5+1
2 ) can be achieved by a randomized (resp., deterministic)

online algorithm that has access to two predictors assuming that at least one of them provides
an accurate prediction for the number of skiing days. Notice that the length of the request
sequence in the ski rental problem is inherently bounded by the cost of buying the ski gear;
this is in contrast to the paging problem considered in the current paper, where much of the
challenge comes from the unbounded request sequence.

The reader may have noticed that some of the terminology used in the current paper
is borrowed from the online learning domain [10]. The main reason for this choice is that
the research objectives of the current paper are, to a large extent, more in line with the
objectives common to the online learning literature than they are in line with the objectives
of the literature on online computation. In particular, as discussed already, we measure
the quality of our online algorithms by means of their regret (rather than competitiveness),
indicating that the online algorithm can be viewed as a decision maker that tries to learn
the best offline algorithm.

1.4 Paper’s Organization
The remainder of this paper is organized as follows. In Section 2, we refine the notion of
cumulative prediction error as defined in (1) and compare the refined notion with the number
of inversions used in some of the related literature [20, 25]. The analysis of the Sim algorithm
(using a single predictor), leading to the proof of Theorem 2, is carried out in Section 3.
Section 4 is then dedicated to the setting of multiple (NAT) predictors under the bandit
access model and establishes Theorem 5. As discussed in Section 1.3, Theorem 3, dealing
with the full information access model, follows from Theorem 2 combined with a technique
of [6]; this is explained in more detail in the full version [11].

2 Measurements of Prediction Errors

The measurement of the prediction errors plays an important role in the study on online
paging algorithms augmented by predictions. This part makes a comparison between different
measurements for the scenario where there is a single NAT predictor. To avoid ambiguity, in
this part we use ]ErrorRounds to represent the measurement defined in Eq. (1) for the single
predictor j. In the following, the superscript j for the predictor is omitted for convenience.

In the analysis of [25], the prediction errors are measured with the number of inverted
pairs. For a pair of two rounds {t, t′}, we say it is an inverted pair if At(σt) < At′(σt′) and
at ≥ at′ . Let INV be the set of all the inverted pairs, and define ]InvertedPairs = |INV|. To
compare the measurement ]InvertedPairs with ]ErrorRounds, we also define the following
notations.

]InvertedRounds .=
∣∣∣{t | ∃t′ s.t. {t, t′} ∈ INV}

∣∣∣
]ErrorRoundsInInversion .=

∣∣∣{t |At(σt) 6= at ∧ ∃t′ s.t. {t, t′} ∈ INV}
∣∣∣
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First, it trivially holds that ]InvertedRounds ≤ 2·]InvertedPairs, and ]InvertedPairs
can be Ω(T ) times larger than ]InvertedRounds. To see the second claim, consider the
following sequence σ of requested pages and a prediction sequence π.

σt =
{

1 if t ≤ T
2

2 if t > T
2
, and πt =

{
2 if t ≤ T

2

1 if t > T
2
.

It can be verified that for a sequence of predictions in the form of NATs that are consistent
with the settings above, ]InvertedPairs is in the order of T 2 while ]InvertedRounds is in
the order of T .

Second, we claim that ]InvertedRounds and ]ErrorRounds are incomparable, which
means that there exists an example where ]InvertedRounds is Ω(T ) times larger than
]ErrorRounds, and vice versa. Still, we demonstrate these examples with the sequence σ of
requests and the prediction sequence π, and the claims above can be verified after converting
the predictions in the form of requests to consistent predictions in the form of NATs. The
configuration of the first example is given as follows.

σt =
{

(t mod (k − 1)) + 1 if 1 < t < T

k otherwise
, and π =

{
(t mod (k − 1)) + 1 if t > 2
k otherwise

.

The second example is configured as follows.

σt = (t mod (k − 1)) + 1 , and π =
{

((t− 1) mod (k − 1)) + 1 if t > 1
k otherwise

.

Third, it is obvious that

]ErrorRoundsInInversion ≤ min
{
]ErrorRounds, ]InvertedRounds

}
.

Although in Section 1.1 we define ηj for every predictor j in the form of ]ErrorRounds for sim-
plicity, our technique indeed works for the better measurement ]ErrorRoundsInInversion.
Therefore, in the technical parts of the current paper, including Section 3 and Section 4, we
use the following refined definition of ηj by abuse of notation:

ηj
.=
∣∣∣{t |At(σt) 6= ajt ∧ ∃t′ s.t. {t, t′} ∈ INVj}

∣∣∣ ,
where INVj = {(t, t′)|At(σt) < At′(σt′) ∧ ajt ≥ a

j
t′}.

3 Single NAT Predictor

We start with the NAT predictor setting with M = 1. In such a case, there is no difference
between the full information access model and the bandit access model. Throughout this
section, we still omit the superscript j for the index of the predictor.

The algorithm Sim that we consider for this setting simulates FitF with maintaining a
value ât(i), which we call the remedy prediction, for each round t ∈ [T ] and each page i ∈ [n].
In particular, for each page i ∈ [n], Sim sets

â1(i) =
{
a1 if i = σ1

Z + 1 otherwise
, and

∀ t ∈ [2, T ] ât(i) =


at if i = σt

Z if ât−1(i) ≤ t ∧ i 6= σt ∧ ât−1(i) ≤ ât−1(σt) < Z

ât−1(i) otherwise
,

(3)
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where Z > T + n is a sufficiently large integer. For each round t when a cache miss happens,
the algorithm evicts the page êt = i that maximizes ât(i), and ties are broken in an arbitrary
way. The following statements can be directly inferred from Eq. (3).

I Lemma 6. The following properties are satisfied for every round t ∈ [T ]:
If at > At(σt), then for each round t′ ∈ [t,min{T,At(σt)− 1}], we have ât′(σt) > At′(σt).
If at < At(σt), then for each round t′ ∈ [t,min{T,At(σt)− 1}], either ât′(σt) < At′(σt)
or ât′(σt) = Z > At′(σt). Particularly, if t′ ≤ at − 1, then ât′(σt) < At′(σt).
If at = At(σt), then for each round t′ ∈ [t,min{T,At(σt)− 1}], we have ât′(σt) = At′(σt).

Next, we will analyze the cost incurred by Sim and show that it has a vanishing regret.

3.1 Definitions and Notations for Analysis
For each round t, we use et and êt to represent the pages that are evicted by FitF and Sim,
respectively. We say et =⊥ (resp. êt =⊥) if FitF (resp. Sim) does not evict any page.

For each page i ∈ [n] and each round t ∈ [T ], define Rt(i) to be the last round before t
when i is requested. Formally,

Rt(i)
.=
{

max{t′ < t | σt′ = i} if ∃ t′ ∈ [1, t) s.t. σt′ = i

−1 otherwise
. (4)

The following results can be inferred from Eq. (4) and Lemma 6.
For any round t ∈ [T ], let Ct and Ĉt be the cache profiles incurred by FitF and Sim,

respectively. More specifically, C1 and Ĉ1 represent the cache items given at the beginning.
To provide tools for the more complicated scenario where there are multiple predictors, the
analysis in this section is carried out without assuming that C1 = Ĉ1. For each t ∈ [T−1], the
cache profile Ct (resp. Ĉt) is updated to Ct+1 (resp. Ĉt+1) immediately after FitF (resp. Sim)
has processed the request σt. The cache profiles of FitF and Sim after serving σT are denoted
by CT+1 and ĈT+1, respectively.

Denote the intersection between the cache profiles at each round t ∈ [T ] by It = Ct ∩ Ĉt.
Define the distance between the cache profiles to be dt = k − |It|. We use δt to represent the
difference in the costs between FitF and Sim for serving σt. Formally, δt

.= 1σt /∈Ĉt − 1σt /∈Ct .
Define Hyx for x ∈ Z, y ∈ Z to be the set of rounds t ∈ [T ] where the dt+1 − dt = x and

δt = y. Let Hx =
⋃
yHyx and Hy =

⋃
xHyx.

For a round t ∈ [T ], we say that t is a troublemaker if and only if t satisfies(
êt 6=⊥

)
∧
(
êt ∈ It

)
∧ At(êt) ∈ [T ] ∧

(
êt ∈ CAt(êt)

)
∧
(
et =⊥ ∨ et /∈ It

)
. (5)

The set of troublemaker rounds is denoted by Γ. For any troublemaker γ ∈ Γ and any round
t ∈ (γ, T ], we say γ is active at t if t < Aγ(êγ). The set of troublemakers that are active at t
is denoted by Γt ⊆ Γ ∩ [t− 1]. The active period [γ + 1, Aγ(êγ)− 1] of γ is denoted by θγ .

Preliminary results. The following results are directly inferred from the definitions above.

I Lemma 7. For any round t and any page i, the following properties are satisfied.
If Rt(i) = −1 and i 6= σt, then ât(i) = Z + 1, and vice versa.
The equality ât(i) = At(i) holds if ar = Ar(σr), where r = Rt(i).

Proof. The first statement can be proved inductively with using Eq. (3). The first statement
implies that if ât(i) = At(i), then Rt(i) 6= −1. Therefore, the second statement can be
inferred from Lemma 6. J
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I Lemma 8. |{t | êt 6=⊥ ∧Rt(êt) = −1}| ≤ k.

Proof. For each round t and each page i ∈ Ĉt, the equality Rt(i) = −1 holds only if i ∈ Ĉ1.
The initial cache profile Ĉ1 contains k different pages, and for each page i ∈ Ĉ1, if there exist
two rounds t, t′ with t < t′ and êt = êt′ = i, then Rt′(i) ≥ t 6= −1. This implies that there
are at most k rounds t with Rt(êt) = −1. J

I Lemma 9. |{t | Rt(σt) = −1 ∧ t ∈ H1
0}| ≤ k

Proof. For a round t ∈ H1
0, we have σt ∈ Ct. Since Rt(σt) = −1, we have σt ∈ C1. Then

this lemma can be proved in a similar way with Lemma 8. J

I Lemma 10. For every round t and any troublemaker γ ∈ Γt, we have (1) êγ ∈ Ct \ Ĉt,
and (2) êγ 6= êγ′ for any troublemaker γ′ ∈ Γt with γ 6= γ′.

Proof. The first statement is directly inferred from the definition of active troublemakers.
Now consider the second statement. Without loss of generality, we assume that γ < γ′. Then
the first statement shows that êγ /∈ Ĉγ′ , which means that Sim cannot evict êγ at γ′. J

3.2 Reducing Cost Analysis to Troublemaker Counting
I Lemma 11. For each round t ∈ [T ], we have dt+1 − dt ∈ {−1, 0, 1} and δt ∈ {−1, 0, 1}.

The proof of Lemma 11 is deferred to the full version [11]. This lemma implies that for
the sets Hyx, we only need to consider the parameters x, y ∈ {−1, 0, 1}. The following result
on Hyx can be inferred from the proof of Lemma 11.

I Lemma 12. It holds that H1 = H0
1 = {t | et 6=⊥

∧
êt 6=⊥

∧
et 6= êt

∧
êt ∈ It

∧
et ∈ It}.

Lemma 12 implies that H1
1 = ∅, therefore, cost(Sim) − OPT can be bounded by |H1| −

|H−1| = |H1
0|+ |H1

−1| − |H−1|.

I Lemma 13. |H−1| ≤ |H1|+ k.

Proof. By definition, H−1 is the set of rounds t with dt+1 − dt < 0, and H1 is the set of
rounds t with dt+1 − dt > 0. Since d1 ≤ k and dt ≥ 0 for every t ∈ [T + 1], this proposition
holds. J

Lemma 13 allows us to bound |H1
−1| with |H1|. The following result follows from the

mechanisms of FitF and Sim in choosing the page for eviction when cache miss happens.

I Lemma 14. For each round t ∈ H1, we have At(êt) < At(et) and ât(et) ≤ ât(êt).

For each round t ∈ H1, we say that t blames another round t′ specified as follows. Let
r = Rt(êt) and r′ = Rt(et), then the round blamed by t is

t′ =


r if (r 6= −1) ∧ (ar 6= Ar(σr))
r′ if

(
r = −1 ∨ ar = Ar(σr)

)
∧
(
r′ 6= −1 ∧ ar′ 6= Ar′(σr′)

)
−1 otherwise

.

I Lemma 15. For each t ∈ H1, let t′ be the round blamed by t. If t′ = −1, then Rt(êt) = −1.
If Rt(êt) 6= −1, then there exists a round t′′ such that {t′, t′′} ∈ INV.
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Proof. For the first claim, suppose on the contrary r = Rt(êt) 6= −1. Now consider two
cases, r′ 6= −1 and r′ = −1, where r′ = Rt(et).

r′ 6= −1: Since t′ = −1, in such a case we have ar = Ar(σr) and ar′ = Ar′(σr′). By
Lemma 7, it holds that ât(êt) = ar = Ar(σr) = At(êt). Similarly, we have ât(et) = At(et).
This conflicts with Lemma 14.
r′ = −1: By Lemma 7, in such a case we have ât(et) = Z + 1, because et 6= σt. As it still
holds that ât(êt) = At(êt) < Z, we have ât(êt) < ât(et), which conflicts with Lemma 14.

For the second claim, since Rt(êt) 6= −1, Lemma 7 indicates that ât(êt) ≤ Z. Now
consider the following two cases.

ât(êt) < Z: By Lemma 14, in such a case we also have ât(et) < Z. It can be inferred from
Eq. (3) that ât(êt) = ar and ât(et) = ar′ . Notice that the second equality holds because
ât(et) < Z means that r′ 6= −1. Then by Lemma 14, we have ar′ = ât(et) ≤ ât(êt) = ar
and Ar(σr) = At(êt) < At(et) = Ar′(σr′). This means that the pair {r, r′} is an inversion.
Since Rt(êt) = −1, we have either t′ = r or t′ = r′. By taking

t′′ =
{
r′ if t′ = r

r if t′ = r′
,

this claim is proved.
ât(êt) = Z: Let t1 be the first round in (r, t] so that ât1(êt) = Z. Then Eq. (3)
indicates that ât1−1(σt1) < Z. By Lemma 7, we have r1 = Rt1(σt1) 6= −1. Then,
Ar1(σr1) = t1 < At(êt) = Ar(σr). Moreover, ât1−1(σr) ≤ ât1−1(σt1) < Z means that
ar = ât1−1(σr) and ar1 = ât1−1(σt1). Therefore, the pair {r1, r} is an inversion. Then
this claim is established if t′ = r. This equation holds because (1) r = Rt(êt) 6= −1, and
(2) Lemma 7 implies that Ar(σr) 6= ar, because otherwise ât(êt) = At(êt) < Z.

This completes the proof. J

I Lemma 16. For each round t′ 6= −1, it can be blamed by at most two rounds in H1.

Proof. Suppose that t′ is blamed by t ∈ H1 such that t′ = Rt(et). Then for any round
t′′ ∈ H1 with t′ < t′′ < t, it cannot blame t′ by taking t′ = Rt′′(et′′). This is because if there
exists such a round t′′, then by definition we have et = et′′ . In such a case, there must exist
a round t̃ ∈ (t′′, t) with σt̃ = et, otherwise et /∈ Ct. This conflicts with the definition that
Rt(et) is the last round before t when et is requested. For any t′′ ∈ H1 with t′′ > t, it cannot
blame t′ by taking t′ = Rt′′(et′′), either. Still, if et = et′′ , there must exist a round t̃ ∈ (t, t′′)
with σt̃ = et. In such a case, Rt′′(et′′) ≥ t̃ > t > t′. The case t′ = Rt(êt) is symmetric with
the case above. J

I Lemma 17. It holds that |H1| ≤ 2 · η + k and |H1
−1| ≤ 2 · η + 2k.

Proof. The statement |H1| ≤ 2 · η + k follows from Lemma 8, Lemma 15 and Lemma 16.
The statement |H1

−1| ≤ 2 · η + 2k then follows from Lemma 13. J

Next, we analyze |H1
0| with the notion of troublemakers defined in Section 3.1. In

particular, for two rounds t, t′ with t′ < t, we say t′ is the parent of t and t is the child of t′
if t ∈ H1

0 and t′ = max{t′′ < t | σt ∈ Ĉt′′}.

I Lemma 18. Every round t ∈ H1
0 \ {t̃ | Rt̃(σt̃) = −1} has one parent t′ ∈ Γ ∪H1, and any

round t′ has at most one child.
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Proof. Since t /∈ {t̃ | Rt̃(σt̃) = −1}, the page σt is requested at round r = Rt(i) ∈ [1, t),
which gives that σt ∈ Ĉr+1. As t ∈ H1

0, we know that σt /∈ Ĉt. Therefore, there must exist a
round t′′ ∈ [r + 1, t) with σt = êt′′ ∈ Ĉt′′ . Since {t′′ | t′′ < t ∧ σt ∈ Ĉt′′} 6= ∅, the existence
of the parent round of t is ensured.

For the parent t′ of round t, we know that êt′ = σt, because σt ∈ Ĉt′ \ Ĉt′+1. Then we
have êt′ 6=⊥ and êt′ ∈ It′ , where the second equality holds because σt ∈ Ct and σt′′ 6= σt
for every t′′ ∈ [t′, t − 1]. Then by the definitions of the parent round and H1

0, we have
At′(êt′) = t ∈ [T ] and êt′ ∈ Ct, which means that êt′ ∈ CAt′ (êt′ ). Therefore, t

′ ∈ Γ if et′ =⊥
or et′ /∈ It′ . If et′ 6=⊥ and et′ ∈ It, then we have et′ 6= êt′ , because otherwise êt′ /∈ Ct. By
Lemma 12, in such a case we have t′ ∈ H1.

It remains to prove that any round t′ has at most one child. Suppose that t′ has two
children t1, t2 with t1 < t2. In such a case, σt2 = êt′ = σt1 ∈ Ĉt1+1, which conflicts with the
definition of the parent round. J

Putting Lemma 9, Lemma 17, and Lemma 18 together gives the following result.

I Theorem 19. cost(Sim)− OPT ≤ 4η + 4k + |Γ| − |H−1|.

We defer the proof of Theorem 19 to the full version [11]. The upper bound on |Γ|− |H−1|
is studied in the next subsection.

3.3 Labeling for Troublemakers
From the high level, the analysis in this part on |Γ| − |H−1| is done by showing that each
troublemaker γ either can be mapped a distinct round in H−1, or can be mapped to a round
t < γ that has a prediction error. We specify the mappings with a procedure called Labeling,
which is designed to avoid mapping too many troublemakers to a single prediction error.
Notice that Labeling is only used in the analysis, while the paging algorithm is unaware of
the output generated by Labeling.

Procedure Labeling takes
〈
{At(i)}t∈[T ],i∈[n], {at}t∈[T ]

〉
as the input, which implicitly

encodes the operations of FitF and Sim, and for each troublemaker γ ∈ Γ, Labeling outputs
a labeling function λγ : θγ 7→

(
[n]∪ ⊥

)
, which maps each round in the active period θγ of γ

to either a page i or an empty value. For each γ ∈ Γ and each round t in the active period θγ
with λγ(t) 6=⊥, we say that page i = λγ(t) is labelled by γ. Procedure Labeling is presented
in Algorithm 1 with notions defined as follows.

∀t ∈ [T ] : Lt
.=
⋃
γ∈Γt

λγ(t) , and Φt
.= Ĉt \

(
Ct ∪ Lt

)
,

∀t ∈ [2, T ] : Ψt
.= Ĉt \

(
Ct ∪ Lt−1

)
.

Briefly speaking, for every γ ∈ Γ, Labeling picks an arbitrary page i = δ̂γ from Φγ and
labels i with γ for the first round in the active period of γ, which means setting λγ(γ+ 1) = i.
For convenience, the NAT of i after γ is denoted by τγ . Then we consider the following cases.

τγ > Aγ(êγ): Then the label on δ̂γ is kept throughout the active period θγ of γ.
τγ < Aγ(êγ) and δ̂γ ∈ Ĉτγ : This means that δ̂γ is not evicted by Sim before its NAT after
γ. In such a case, the label on δ̂γ is kept until the last round before its NAT.
τγ < Aγ(êγ) and δ̂γ /∈ Ĉτγ : In such a case, a labelled page is evicted by Sim before its
NAT after γ. For each round t with such an eviction, we label a new page at round t+ 1
in Ψt+1 with γ. We stop labelling new pages either when the labelled page is requested,
or the NAT of the previous labelled page after the previous round is less than the NAT
of the current labelled page.
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Algorithm 1 Procedure Labeling.

Input: {At(i)}t∈[T ],i∈[n], {at}t∈[T ]
Output: {λγ}γ∈Γ

1 for each γ ∈ Γ do
2 Pick an arbitrary element i ∈ Φγ and set δ̂γ = i;
3 Set λγ(γ + 1) = δ̂γ and τγ = Aγ(δ̂γ);
4 if τγ > Aγ(êγ) then
5 Set λγ(t) = δ̂γ for all the remaining rounds t in θγ;
6 else
7 Set t = γ + 2;
8 while t < Aγ(êγ) do
9 if λγ(t− 1) = σt−1 then

10 break;
11 if λγ(t− 1) 6= êt−1 then
12 Set λγ(t) = λγ(t− 1);
13 else
14 Pick an arbitrary element i from Ψt and set λγ(t) = i;
15 if At−1(λγ(t)) > At−1(λγ(t− 1)) then
16 Set λγ(t′) = i for every round t′ ∈ [t+ 1,min{Aγ(êγ), At(i)});
17 Set t = min{Aγ(êγ), At(i)} − 1;
18 break;
19 Set t = t+ 1;
20 Set λγ(t′) =⊥ for every t′ ∈ [t, Aγ(êγ));

Before describing how Procedure Labeling is applied to map each troublemaker to a
round with a prediction error or a round in H−1, we first prove that this procedure is
consistent by showing that Φt (resp. Ψt) is not empty whenever we need to find a new page
to label from Φt (resp. Ψt). For every troublemaker round t ∈ Γ, define

ζt =
{
σt if et =⊥
et otherwise

.

Then we have the following results.

I Lemma 20. For each troublemaker round t ∈ Γ, we have (1) ζt 6=⊥, (2) ζt ∈ Ct \ Ĉt, and
(3) for any γ ∈ Γt, we have ζt 6= êγ .

Proof. Claim (1) and (2) are obvious. Now consider claim (3). Since γ < t < Aγ(êγ),
σt 6= êγ , because otherwise t = Aγ(êγ). By the definition of troublemakers, êγ ∈ CAγ(êγ), so
for any t ∈ [γ + 1, Aγ(êγ)− 1], it holds that et 6= êγ . J

I Lemma 21. For each troublemaker round t ∈ Γ, it holds that |Φt| ≥ 1.

Proof. By Lemma 10 and Lemma 20, we have Ct \ Ĉt ⊇ {êγ}γ∈Γt ∪{ζt} . Still by Lemma 20,
it follows that ζt 6= êγ for every γ ∈ Γt, then |Ct \ Ĉt| ≥

∣∣{êγ}γ∈Γt
∣∣+ 1 =

∣∣Γt∣∣+ 1 . Because
|Ct| = |Ĉt|, we have |Ĉt \ Ct| ≥

∣∣∣Γt∣∣∣+ 1. Since for every γ with t ∈ θγ , we have γ ∈ Γt, then
it always holds that |Lt| ≤ |Γt| . This finishes the proof. J

I Lemma 22. For each round t ∈ [T ], we have Ct ∩ Lt = ∅.
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Proof. This proposition is true because for any round t when we find a new page i to label,
i /∈ Ct, and the label on any page i is cancelled before i is requested. J

I Lemma 23. For every γ ∈ Γ and every t ∈ [γ + 2, Aγ(êγ)− 1], if êt−1 = λγ(t− 1), then
Ψt 6= ∅.

Proof. First, consider the case where Φt−1 6= ∅. For each page i ∈ Φt−1, we know i 6= êt−1
because i /∈ Lt−1 while êt−1 = λγ(t − 1) ∈ Lt−1. This gives i ∈ Ĉt. Moreover, we have
i 6= σt−1 because êt−1 6=⊥. This gives i /∈ Ct. Therefore, i ∈ Ĉt \ (Ct ∪ Lt−1) = Ψt.

Now consider Φt−1 is empty. In such a case, |Ĉt−1 \ Ct−1| = |Lt−1|. Lemma 10 indicates
that for every γ′ ∈ Γt′ with t′ ∈ θγ′ , we have êγ′ ∈ Ct′ − Ĉt′ . Then |Ĉt−1 \ Ct−1| = |Lt−1|
implies that Ct−1 \ Ĉt−1 = {êγ′}γ′∈Γt−1 . By the definition of active troublemakers, σt−1 /∈
Ct−1 − Ĉt−1. Also, we have σt−1 /∈ It−1 = Ct−1 ∩ Ĉt−1, because êt−1 6=⊥. Therefore,
σt−1 /∈ Ct−1, which means that et−1 6=⊥. Still by the definition of the troublemakers, we
have et−1 /∈ {êγ′}γ′∈Γt−1 = Ct−1 \ Ĉt−1. Thus, et−1 ∈ It−1 ⊆ Ĉt−1. By Lemma 22, we
have et−1 /∈ Lt−1 and et−1 6= êt−1. Putting et−1 6= êt−1 and et−1 ∈ Ĉt−1 together, we get
et−1 ∈ Ĉt − Ct. Therefore, et−1 ∈ Ψt. J

Lemma 21 and Lemma 23 ensure the consistency of Procedure Labeling.

I Lemma 24. For every round t and any page i ∈ [n], there exists at most one troublemaker
γ ∈ Γt so that λγ = i.

The proof of Lemma 24 is deferred to the full version [11]. It also gives the following
byproduct.

I Lemma 25. For each round t ∈ [2, T ], we have |Lt \ Lt−1| ≤ 1.

Let t be an arbitrary round with êt 6=⊥. Suppose that there exists a page i ∈ Ĉt satisfying
At(i) > At(êt), i /∈ Lt, and i ∈ Lt′ for every t′ ∈ [t+ 1,min{At(êt), t◦}], where

t◦ =
{

min{t′′ | t′′ > t ∧ êt′′ = i} if ∃t′′ ∈ (t+ 1, T ] s.t. êt′′ = i

∞ otherwise
. (6)

Lemma 25 implies that such a page i is unique if it exists. In such a case, we say that the
page i is the competitor of êt, and the round t has an abettor round t∗ specified as follows.
Let r = Rt(êt) and r′ = Rt(i), then the abettor of t is

t∗ =


r if r 6= −1 ∧ Ar(σr) 6= ar

r′ if
(
r = −1 ∨ Ar(σr) = ar

)
∧
(
r′ 6= −1 ∧ Ar′(σr′) 6= ar′

)
−1 otherwise

. (7)

I Lemma 26. For any round t∗ ∈ [T ], the number of rounds in
{
t | êt 6=⊥ ∧Rt(êt) 6=

−1 ∧ t∗ is the abettor of t
}
is at most two.

Proof. It can be proved in a similar way with Lemma 16 that
{
t | êt 6=⊥ ∧Rt(êt) 6=

−1 ∧ t∗ is the abettor of t ∧ t∗ = Rt(êt)
}
contains at most one round. It remains to prove

that
{
t | êt 6=⊥ ∧Rt(êt) 6= −1 ∧ t∗ is the abettor of t ∧ t∗ = Rt(i)

}
contains at most a

single round, where i is the competitor of êt as defined in Eq. (6). Notice that different
from the case considered in the proof of Lemma 16, the page i may not be evicted by FitF.
Therefore, we need to utilize the properties of procedure Labeling to prove the uniqueness
of the round t which satisfies t∗ = Rt(i).
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B Claim 27. If a round t has an abettor t∗ = Rt(i) with i being the competitor of êt and
r = Rt(êt) 6= −1, then it holds that ât(i) < Z and ât′(i) = Z for any round t′ ∈ [At(êt), At(i)).

Proof. Since t∗ = Rt(i) and r 6= −1, we have Ar(σr) = ar, which by Lemma 7 gives
At(êt) = ât(êt) < Z. Following Lemma 14, we have ât(i) ≤ At(êt) and ât(i) < Z. If there
exists a round t′′ ∈ (t, At(êt)) so that ât′′(i) = Z, then it follows from Eq. (3) that for any
round t′ ∈ [At(êt), At(i)), it holds that ât′(i) = Z, which means that this proposition holds.
We proceed to prove that âAt(êt)(i) = Z if ât′′(i) 6= Z holds for every round t′′ ∈ (t, At(êt)).
In such a case, it can be inferred from Eq. (3) that ât′′(i) = ât(i). Since Ar(σr) = ar,
Lemma 7 indicates that ât′′(êt) = At′′(êt) = At(êt) = ât(êt) and ât′′(êt) < Z hold for any
round t′′ ∈ (t, At(êt)). Combining ât′′(êt) = ât(êt) with ât′′(i) = ât(i) gives ât′′(êt) ≥ ât′′(i).
Therefore, âAt(êt)−1(i) ≤ âAt(êt)−1(êt) < Z. Moreover, we have âAt(êt)−1(i) < At(êt)
because At(êt) ≥ ât(i) = ât′′(i) holds for every t′′ ∈ (t, At(êt)). By Eq. (3), the conditions
for âAt(êt)(i) = Z are all satisfied. Thus, the equality ât′(i) = Z holds for any round
t′ ∈ [At(êt), At(i)). C

For any round t′ ∈ (t∗, t), the round t∗ cannot be the abettor of t′ with taking t∗ = Rt′(i),
because otherwise,

if At′(êt′) ≥ t, then by the definition of abettors, we have i ∈ Lt, which conflicts with the
requirement in the definition of abettors; else
if At′(êt′) < t, then we get ât(i) = Z with using the second statement in Claim 27, which
conflicts with the first statement in Claim 27.

Therefore, this proposition holds. J

The following result can be proved by following the same line of arguments with the proof
of Lemma 15.

I Lemma 28. Let t be an arbitrary round that has an abettor t∗. If t∗ = −1, then Rt(êt) = −1.
If Rt(êt) 6= −1, then there exists a round t′ such that {t∗, t′} ∈ INV.

I Remark 29. Notice that the statement of Lemma 28 is consistent because for any round t
having an abettor, by definition we have êt 6=⊥.

For an arbitrary round t, if there exists a page i in Ĉt satisfies (1) At(i) ≤ T , (2) i /∈ Lt
and (3) i ∈ Lt′ for every t′ ∈ [t+ 1, At(i)], we say that t4 = At(i) is the savior of t.

I Lemma 30. If a round t has a savior t4, then (1) t4 ∈ H−1, and (2) for any t4 ∈ H−1,
it is the savior of at most one step t.

Proof. The first claim follows from the definition of H−1. For any round t′ ∈ [t+ 1, t4], t4
is not the savior of t′, because σt4 ∈ Lt′ . Therefore, the second claim holds. J

I Theorem 31. |Γ| − |H−1| ≤ 2 · η + k.

Proof. The main idea of this proof is to show that each troublemaker can be mapped to a
distinct broker round, and each broker either has an abettor or has a savior. In particular,
we classify the troublemakers γ ∈ Γ into the following three categories.
1. {γ ∈ Γ | τγ > Aγ(êγ)}: Here, the troublemaker γ as a round has an abettor t∗, because

δ̂γ ∈ Lt for every step t ∈ [γ + 1,min{Aγ(êγ), t◦}] where t◦ is defined in the same way
with Eq. (6). In such a case, we say γ is the broker of itself.

2. {γ ∈ Γ | τγ < Aγ(êγ) ∧ δ̂γ ∈ Ĉτγ}: Now the troublemaker γ as a round has a savior
τγ , because by the definition of the troublemaker, Aγ(êγ) ≤ T , which gives τγ ≤ T .
Moreover, it holds for every round t ∈ [γ + 1, Aγ(δ̂γ)] that δ̂γ ∈ Lt. The broker for such a
troublemaker γ is also itself.
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3. {γ ∈ Γ | τγ < Aγ(êγ) ∧ δ̂γ /∈ Ĉτγ}: In such a case, let i be the last page labelled by γ and
t be the first round with λγ(t) = i. Since δ̂γ /∈ Ĉτγ , we have t− 1 ∈ θγ . Let i′ = λγ(t− 1),
then we have i′ ∈ Ĉt−1 because êt−1 = i′. Also, we have i ∈ Ĉt−1, because i is chosen
from Ψt ⊆ Ĉt \ Ct and i 6= êt−1. Now consider two subcases.
At−1(i′) < At−1(i): In such a case, the round t− 1 has an abettor t∗, because we have
i ∈ Lt′ for every t′ ∈ [t,min{At−1(i), τγ , t◦}], which satisfies the requirement in the
definition of abettors because τγ > At−1(i′).
At−1(i′) > At−1(i): It can be proved inductively that At−1(i) < τγ , which implies that
At−1(i) ≤ T . By definition, it follows that t− 1 has a savior t4 = At−1(i).

The round t−1 is said to be the broker of the troublemaker γ. Lemma 24 ensures that the
round t− 1 cannot be the broker of two different troublemakers, because êt−1 = λγ(t− 1).
Moreover, by Lemma 25, the broker t− 1 is not a troublemaker.

To sum up, each troublemaker γ can be mapped to a distinct broker t, and each broker t
either has an abettor or has a savior. Then by Lemma 26, Lemma 28 and Lemma 30, this
theorem holds. J

The following result is obtained by combining Theorem 19 and Theorem 31.

I Theorem 32. It follows that cost(Sim)− OPT ≤ 6η + 5k.

Because the cumulative prediction error is assumed to satisfy η ∈ o(T ), we have cost(Sim)−
OPT ∈ o(T ). Therefore, Sim has the vanishing regret when there is a single predictor.

4 Multiple NAT Predictors

This section extends the result obtained in Section 3 to the general case where there are
M > 1 predictors making NAT predictions under the bandit access model. Our results on
the full information access model are deferred to the full version [11].

For the bandit access model, in this part, we design an algorithm called Sightless Chasing
and Switching (S-C&S) and prove that it has the vanishing regret.

The procedure of S-C&S is described in Algorithm 2. It is assumed that S-C&S is provided
with blackbox accesses to the online algorithm Implicitly Normalized Forecaster (INF) [2]
for the Multiarmed Bandit Problem (MBP) [3]. The MBP problem is an online problem
defined over Υ ∈ Z>0 rounds and a set X of arms. An oblivious adversary specifies a cost
function Fυ : X 7→ [0, 1] for each round υ ∈ [Υ] that maps each arm x ∈ X to a cost in [0, 1].
An algorithm for MBP needs to choose an arm xυ at the beginning of each round υ ∈ [Υ],
and then the cost Fυ(xυ) incurred by the chosen arm xυ is revealed to the algorithm. The
objective of MBP is to minimize the cumulative cost incurred by the chosen arms {xυ}υ∈Υ.

I Theorem 33 ([2]). The algorithm INF ensures that the chosen arms {xυ}υ∈[Υ] satisfy∑
υ∈[Υ]

Fυ(xυ)− min
x∗∈X

∑
υ∈[Υ]

Fυ(x∗) ∈ O
(√
|X| ·Υ

)
.

Our algorithm S-C&S partitions the rounds into consecutive epochs of length τ ∈ Z>0
and initializes INF by setting Υ =

⌈
T
τ

⌉
and X = [M ], which means that each epoch in the

online paging problem is mapped to a round in MBP, and each predictor is taken as an
arm. The choice of the value for τ is discussed later. At the beginning of the first round
tυ1 = (υ − 1)τ + 1 in each epoch υ ∈ [Υ], S-C&S accesses INF to pick one predictor jtυ1 . Then,
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Algorithm 2 Algorithm S-C&S.

Input: {σt}t∈[T ], MBP algorithm INF, initial cache profile Ĉ1
Output: {êt}t∈[T ]

1 Initialize the MBP algorithm INF with the number of rounds Υ = dT/τe and the set
of arms X = [M ];

2 for each round t ∈ [T ] do
3 if t mod τ = 1 then
4 Invoke INF to choose a predictor jt ∈ [M ];
5 Set j = jt;
6 else
7 Set j = jt′ with t′ = bt/τc · τ + 1;
8 Query the predictor j to obtain the prediction ajt ;
9 for each page i ∈ [n] do

10 if i = σt then
11 Set ât(i) = ajt ;
12 else if t mod τ = 1 then
13 Set ât(i) = Z + 1;
14 else if ât−1(i) = t ∧ i 6= σt ∧ ât−1(i) ≤ ât−1(σt) < Z then
15 Set ât(i) = Z;
16 else
17 Set ât(i) = ât−1(i);
18 if σt /∈ Ĉt then
19 Set êt be the page i ∈ Ct that maximizes ât(i) with breaking ties arbitrarily;
20 Update Ĉt+1 = (Ĉt \ {êt}) ∪ {σt};
21 else
22 Set êt =⊥, and set Ĉt+1 = Ĉt;
23 if t mod τ = 0 then
24 Set f = 0;
25 for each round t′ ∈ [t− τ + 1, t] do
26 if (t′ = t− τ + 1) ∨ (êt′ 6=⊥) ∨

(
(êt′ =⊥) ∧ (t′ >

t− τ + 1) ∧ (ât′−1(σt′) = Z + 1)
)

then
27 Set f = f + 1;
28 Send f

τ to INF as the cost incurred by jt−τ+1 in the epoch t
τ ;

S-C&S simulates the algorithm Sim, which is proposed in Section 3, throughout the epoch
υ with taking tυ1 as its initial round, Ĉtυ1 as its initial cache profile, and jtυ1 as the single
predictor. At the end of the last round tυτ = υ · τ in epoch υ, S-C&S sends

Fυ(jtυ1 ) = 1
n

∣∣∣{t′ ∈ [tυ1 , tυτ ]
∣∣∣(t′ = tυ1 ) ∨ (êt′ 6=⊥) ∨

(
(êt′ =⊥) ∧ (t′ > tυ1 ) ∧ (ât′−1(σt′) = Z+1)

)∣∣∣ (8)

to INF as the cost Fυ(jt1) of choosing jt1 for υ.
Notice that in MBP, the cost functions are generated by an oblivious adversary. We take

this setting as a requirement that the cost function Fυ for each round υ in MBP should not
depend on the arms chosen in the previous rounds x1, x2, . . . , xυ−1. The following result
shows that by feeding INF a cost that can be larger than the normalized cost that is actually
incurred by S-C&S in the epoch, this requirement is satisfied.

ITCS 2021
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I Lemma 34. Let Fυ
(
jtυ1

∣∣∣jt11 , . . . , jtυ−1
1

)
be the cost sent by S-C&S to INF at the end of an

arbitrary epoch υ conditioned on the the predictors chosen for the previous epochs jt11 , . . . , jtυ−1
1

.

Then for any different sequence of predictors j̃t11 , . . . , j̃tυ−1
1

, we have Fυ
(
jtυ1

∣∣∣jt11 , . . . , jtυ−1
1

)
=

Fυ

(
jtυ1

∣∣∣j′t11 , . . . , j′tυ−1
1

)
.

Proof. For the epoch υ, a round t is said to be fresh if for any earlier round t′ < t in υ,
it holds that σt 6= σt′ . We first consider the case where are at least k fresh rounds in the
epoch, which means that at least k different pages are requested. Let t be the first round
after the first k fresh rounds. We first consider the interval [tυ1 , t− 1]. For each page i ∈ [n]
and each round t′ ∈ [tυ1 , t − 1], we say i is marked at t′ if there exists a round t′′ ∈ [tυ1 , t′]
with σt′′ = i, otherwise i is said to be unmarked at t′. Then it can be inferred from Lemma 7
that ât′(i) = Z + 1 if i is unmarked at t′, and ât′(i) ≤ Z if i is marked at t′. Thus, there is
no marked page getting evicted before t, and any round t′ ∈ [tυ1 , t− 1] that satisfies êt′ 6=⊥
must be a fresh round.

B Claim 35. For each round t′ ∈ [tυ1 , t− 1], it is counted by Eq. (8) if and only if t′ is fresh.

Proof. By definition, the round tυ1 is a fresh round. Now consider a round t′ ∈ [tυ1 + 1, t− 1].
As mentioned above, if êt′ 6=⊥, then t′ is fresh. Also, if t′ is fresh, then it can be inferred
from Lemma 7 that ât′−1(σt′) = Z + 1. If t′ is not fresh, which means that σt′ is marked,
then it holds that êt′ =⊥ and ât′−1(σt′) ≤ Z. Therefore, this claim holds. C

Therefore, the contribution of the rounds in [tυ1 , t− 1] to Fυ(jtυ1 ) is always k
n , which is

independent of j1
t1 , . . . , j

υ−1
t1 . A similar result can also be obtained when there are less than

k fresh rounds in the epoch υ.
At the beginning of round t, Ĉt contains exactly the first k different pages required in the

epoch υ, and for each page i ∈ Ĉt, the remedy prediction ât(i) is computed only based on
{a
jtυ1
t′ }t′∈[tυ1 ,t] and {σt′}t′∈[tυ1 ,t]. Therefore, for any t

′ ≥ t, the decision on êt′ is independent
of the choices over j1

t1 , . . . , j
υ−1
t1 .

Furthermore, since at round t − 1, every page i ∈ Ĉt−1 is marked, then for any round
t′ ≥ t with êt =⊥, the page σt′ has been requested at least once in the interval [tυ1 , t′ − 1],
which means that ât′−1(σt′) ≤ Z. This observation is formally stated in the following claim.

B Claim 36. For any round t′ ≥ t, it is counted by Eq. (8) if and only if êt′ 6=⊥.

Thus, the contribution of the rounds in [t, υ ·τ ] to Fυ(jtυ1 ) does not depend on the previous
epochs {j1

t1 , . . . , j
υ−1
t1 }, either. J

For an epoch υ ∈ Υ and a predictor j ∈ [M ] chosen for υ, let ]Evictionsυ(j) = |{t ∈
[tυ1 , tυτ ] | êt 6=⊥}|. The following result is also obtained by combining Claim 35 with Claim 36.

I Lemma 37. For each epoch υ, ]Evictionsυ(j) ≤ τ · Fυ(j) ≤ ]Evictionsυ(j) + k .

The following result is obtained by putting Theorem 32, Theorem 33, Lemma 34, and
Lemma 37 together.

I Theorem 38. By taking τ =
⌊
T

1
3
⌋
, the regret of S-C&S is bounded by O

(
kT

2
3
√
M + ηmin).

The proof of this theorem is deferred to the full version [11]. By assumption, we have
ηmin ∈ o(T ). Therefore, Theorem 38 implies that S-C&S has a vanishing regret.

Note that the result in this section cannot be obtained by using the results in [12] directly,
because the algorithms proposed in [12] requires to know the cache profile of the algorithm
Sim that follows each predictor, which is unavailable under the bandit access model.
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Abstract
Oblivious RAM (ORAM) is a machinery that protects any RAM from leaking information about
its secret input by observing only the access pattern. It is known that every ORAM must incur a
logarithmic overhead compared to the non-oblivious RAM. In fact, even the seemingly weaker notion
of differential obliviousness, which intuitively “protects” a single access by guaranteeing that the
observed access pattern for every two “neighboring” logical access sequences satisfy (ε, δ)-differential
privacy, is subject to a logarithmic lower bound.

In this work, we show that any Turing machine computation can be generically compiled into a
differentially oblivious one with only doubly logarithmic overhead. More precisely, given a Turing
machine that makes N transitions, the compiled Turing machine makes O(N · log logN) transitions
in total and the physical head movements sequence satisfies (ε, δ)-differential privacy (for a constant
ε and a negligible δ). We additionally show that Ω(log logN) overhead is necessary in a natural
range of parameters (and in the balls and bins model).

As a corollary, we show that there exist natural data structures such as stack and queues (sup-
porting online operations) on N elements for which there is a differentially oblivious implementation
on a Turing machine incurring amortized O(log logN) overhead per operation, while it is known
that any oblivious implementation must consume Ω(logN) operations unconditionally even on a
RAM. Therefore, we obtain the first unconditional separation between obliviousness and differential
obliviousness in the most natural setting of parameters where ε is a constant and δ is negligible.
Before this work, such a separation was only known in the balls and bins model. Note that the lower
bound applies in the RAM model while our upper bound is in the Turing machine model, making
our separation stronger.
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1 Introduction

An oblivious RAM (ORAM), introduced in the seminal work of Goldreich and Ostrovsky [17,
30, 18], is a tool for “encrypting” the access pattern of any RAM so that it looks “unrelated”
to the underlying data. It is known that any ORAM scheme must incur at least Ω(logN)
overhead, where N is the size of the memory. This was first shown by Goldreich and
Ostrovsky [18] in the balls and bins model2 and assuming that no cryptographic assumptions
are used. More recently, Larsen and Nielsen [25] proved the same lower bound without the
two aforementioned restrictions but requiring the ORAM to support operations arriving
in an online manner. In fact, a follow-up work by Jacob et al. [23] showed that Ω(logN)
overhead is necessary even for obliviously implementing very specific data structures (as
defined in [43]) such as stacks, queues, and more.

Apparently, logarithmic overhead is necessary even for implementing a RAM with a
(seemingly) much weaker security guarantee than full obliviousness. Persiano and Yeo [34]
considered the notion of differentially oblivious RAM,3 a relaxation of ORAM that only
protects individual operations by guaranteeing (ε, δ)-differential privacy for the observed
access pattern of the RAM (see Section 2.3 for a formal definition).4 Differential obliviousness
was also studied in the context of specific functionalities by Chan et al. [7] and Beimel et
al. [4]. It is shown that there are tasks for which obtaining differential obliviousness might be
easier than full obliviousness. For instance, Chan et al. [7] show that there is a differentially
oblivious algorithm for sorting N records according to a 1-bit key while maintaining the
relative ordering of records with identical keys in time O(N · log logN),5 while [26] showed
a conditional Ω(N · logN) lower bound for full fledged obliviousness in the balls and bins
model. This leaves the following natural question open.

Is there an unconditional separation between obliviousness and differential obliviousness?

Let us remark that in the above question we are interested in the most standard models
and range of parameters. For RAMs, we consider the standard word-RAM where each
memory word is large enough to store its own logical address, where word-level addition and
Boolean operations can be done in unit cost, and where the CPU has constant number of
private registers. For (ε, δ)-differential obliviousness, we want schemes that are secure for ε
being a fixed constant and δ being a negligible function. For Turing machines, we allow an
arbitrary number (which is fixed as part of the machine’s description) of one-dimensional
bi-directional infinite work tapes, where in every step the head can moved left, right, or stay
in place.

2 This model assumes that each memory word as “indivisible” and restricts the ORAM to only move
blocks around and not apply any non-trivial encoding of the underlying secret data; see Boyle and
Naor [6].

3 Persiano and Yeo [34] called this notion differentially private RAM, but we prefer to use differentially
oblivious RAM to (1) relate to the notion of oblivious RAM and stress that the goal is to preserve the
physical access pattern’s privacy and (2) be aligned with previous work on the topic (Chan et al. [7]).

4 Usually, differential privacy concerns the observed output of some algorithm. In our context, the output
of an algorithm consists of the transcript of the computation: the physical memory accesses performed
during the computation.

5 Maintaining the relative ordering of records is called stability. Without stability, sorting records according
to 1-bit keys is known to be doable (deterministically and obliviously) in linear time [2, 3].
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1.1 Our Results
We present a large class of functionalities that can be made differentially oblivious with
only O(log logN) overhead. The class includes many natural and useful algorithms and
data structures such as stacks and queues and therefore implies an unconditional separation
between obliviousness and differential obliviousness.

I Theorem 1 (A separation; informal). There exists a data structure (e.g., a stack or a queue)
supporting N operations for which:
1. Any oblivious implementation (even on a RAM) requires Ω(N · logN) operations;
2. There is an (ε, δ)-differentially oblivious two-tape Turing machine (defined below) that

requires

O (N · (log(1/ε) + log logN + log log(1/δ)))

operations.
In particular, letting ε > 0 be a constant and δ = 2− log2 N (which is negligible), the
number of operations incurred by the differentially oblivious machine is O(N · log logN).

The above theorem follows from a much more general result about differentially oblivious
Turing machines. Oblivious Turing machines were first introduced in 1979 by Pippenger
and Fischer [35]. In this model, “memory accesses” correspond to the head’s movements
throughout the execution of the algorithm (i.e., Left, Right, or Stay). Pippenger and Fischer
showed how any multi-tape Turing machine can be obliviously simulated by a two-tape
Turing machine with a logarithmic slowdown in running time. More precisely, any Turing
machine that makes N steps can be simulated obliviously while consuming O(N · logN)
steps. The simulation is deterministic and perfectly oblivious: the same sequence of head
movements is observed for any two inputs.

Adapting the notion of differential obliviousness to the Turing machine model, we show
that any Turing machine that makes N steps can be simulated by a differentially oblivious
machine while making only O(N · log logN) steps. Here, neighboring sequences of head
movements are ones where only one transition is different. For instance, the logical sequences
of transitions {Left, Right, Left, Right} and {Left, Right, Right, Right} are neighboring.

I Theorem 2 (A differentially oblivious Turing machine; see Theorem 11). For any ε, δ > 0, any
k-tape Turing machine that makes at most N steps can be simulated by an (ε, δ)-differentially
oblivious machine with max{2, k} tapes making O(N · (log(1/ε) + log logN + log log(1/δ)))
steps.

As above, letting ε > 0 be a constant and δ = δ(N) be a particular negligible function, the
number of steps incurred by the differentially oblivious machine is O(N · log logN). We
note that the constant hidden in the O notation depends only on the description size of the
given Turing machine (i.e., its alphabet size, number of tapes, etc). Let us remark that the
number of tapes we use is essentially optimal since even without any security requirements
simulating a k-tape Turing machine for k ≥ 3 on a (k − 1)-tape one is not known to be
possible with better than logarithmic overhead in steps (Hennie and Stearns [22]). Also,
simulating a 2-tape machine on a single tape machine has polynomial overhead (Hartmanis
and Stearns [20] for the upper bound and Hennie [21] for a lower bound).

Theorem 1 follows from Theorem 2 as follows. Consider (for instance) the stack data
structure on N elements, supporting (“online”) Push and Pop operations. By Theorem 2
and using the fact that a stack can be implemented in linear time on a Turing machine,
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there is an (ε, δ)-differentially oblivious Turing machine implementing it whose overhead is
O(log logN) for a constant ε and negligible δ, as above. As mentioned, the logarithmic lower
bound follows from Jacob et al. [23].

Lastly, we observe that a lower bound of Chan et al. [7] can be tweaked to show that our
construction is essentially optimal by showing that Ω(log logN) overhead is necessary for
differential obliviousness in a natural range of parameters and in the balls and bins model.

I Theorem 3 (A lower bound; see Theorem 13). There exists an algorithmic task for which
there is a Turing machine that on input of size N completes it in O(N) steps. On the
other hand, for any 0 < s ≤

√
N , ε > 0, 0 < β < 1, and 0 ≤ δ ≤ β · (ε/s) · e−2ε·s, any

(ε, δ)-differentially oblivious implementation in the balls and bins model (even on a RAM)
for this task must consume Ω(N · log s) steps with probability 1− β.

In particular, for a constant ε > 0 and s ≥ log2N , we can set δ = 2−Ω(log2 N) (which is
negligible) and get that Ω(log s) = Ω(log logN) overhead is necessary. Note that if we want
δ = 2−N0.1 , then the lower bound above says that the best we can hope for is Ω(logN)
overhead. As mentioned, with logarithmic overhead we can actually get perfect obliviousness
for any Turing machine [35].

1.2 Related Work

Goldreich and Ostrovsky [17, 18] showed that any RAM that uses a memory of size N
and makes T accesses, can be made oblivious using only O(T · poly logN) accesses. The
resulting RAM is probabilistic and obliviousness holds against polynomial-time distinguishers
assuming the existence of one-way functions. The concept of oblivious RAM has inspired an
immense amount of research. One line of work, focuses on applications of such compilers
to cryptography and security, including applications in cloud computing, secure processor
design, multi-party computation, and more (for example, [31, 38, 39, 5, 14, 36, 29, 15,
42, 16, 27, 45, 28, 44]). Another line of work, focuses on improving the overhead of the
compiler [37, 24, 19, 8, 40, 41]. Only recently, a couple of works [32, 2] have resolved the
problem by presenting a compiler whose overhead is O(logN) (while still relying on one-way
functions).

Patel et al. [33] considered the natural question of what kind of security can one hope for
while limiting the overhead of a RAM simulation to constant. They show a construction
of an (ε, 0)-differentially oblivious RAM with O(1) overhead for ε = O(logN) and also
assuming that the client can store ω(logN) records. They also proved a lower bound which
quantitatively improves upon the one of [34] in the dependence on ε but is qualitatively
worse since it is in the balls and bins model. Throughout this work, we focus on the setting
where ε is a fixed constant and also that the client’s storage is a constant number of blocks.

The work of Pippenger and Fischer [35] came in a long line of works trying to pin down
the exact relation between various different computational models. One notable work is that
of Hennie and Stearns [22] who showed that any multi-tape Turing machine can be simulated
by a two-tape machine with logarithmic overhead. Pippenger and Fischer’s result can be
viewed as a similar compiler except that their resulting machine is also oblivious. Note that
the result of [22] is the reason why one should not hope to improve the number of tapes in
the resulting machine in Theorem 2 to two (as this task, even without privacy, is not known
to be possible with less than logarithmic overhead). Simulating a 2-tape Turing machine on
a single tape machine requires polynomial overhead due to Hartmanis and Stearns [20] and
Hennie [21].
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Some of our ideas in the differentially oblivious Turing machine construction are reminis-
cent of the aforementioned differentially oblivious algorithm (in the RAM model) for stable
tight compaction due to Chan et al. [7]. Technically, their algorithm uses similar tools from
the differential privacy literature (namely, differentially private prefix sums due to Chan et
al. and Dwork et al. [9, 10, 12]) but the way they use it differ in nature from our approach.
Partly, this is because our target machine is a Turing machine rather than a RAM, and
therefore, standard building blocks such as oblivious sorting (which they use) are inapplicable.
Second, even if we allow compiling a Turing machine to a differentially oblivious RAM (rather
than insisting on Turing machine as the target machine), we still cannot directly use their
techniques for constructing stable tight compaction because their techniques which rely on
oblivious sorting are offline in nature; and thus not compatible with the online nature of our
differentially oblivious simulation.

1.3 Technical Roadmap
In this overview we will focus on simulating a Turing machine with a single tape for N steps.
There are many complications and technical difficulties that arise in the multi-tape case, but
we refer to the technical sections for details.

Given a Turing machine our goal is to hide the location of the head during the execution
of the machine, in a differentially private manner. To this end, we first develop an efficiently
differentially private algorithm for estimating the location of the head at pre-defined points
in time. Naively, we could add a fresh Laplacian noise every time we need an estimate, but
this will incur at least

√
N loss in the privacy budget (by standard composition theorems).

To get around this, inspired by the work of Chan et al. [7], we use a differentially private
prefix sum algorithm [9, 10, 12] to account for the location of the head. Recall that in the
prefix sum algorithm, a stream of number arrives in an online manner and the algorithm
outputs the sum of all number seen so far, after seeing every number. We set up the numbers
to correspond to head movements (“Left” for -1 and “Right” for 1) and show that this
approach incurs only poly logN loss in privacy budget, which is good enough in terms of
privacy. One challenge that we run into is that we need to implement the differentially private
prefix sum algorithm on a Turing machine. It turns out that every time we need to get an
estimate of the head’s location (i.e., get a prefix sum), we need to pay some non-trivial factor
in running time and so we need to minimize the number of such estimations. Therefore, we
design our algorithm to work with only one estimate of the head’s location every poly logN
steps and amortize the cost of this estimation while processing the next poly logN steps of
the Turing machine.

Once we have a good-enough estimate of the head’s location every poly logN steps, all
that is left is to copy the nearby positions to a smaller oblivious Turing machine which we
use to simulate the next poly logN steps. We set up the parameters in such a way that
we copy enough positions around the estimated head’s location to actually include the real
head position along with the relevant tape around it to perform the next poly logN steps
so the above is well defined. The oblivious Turing machine that we need must provide an
“initialization” procedure that allow us to start an oblivious Turing machine from an existing
memory, and a “destruction” procedure which allows us to extract the memory to its original
structure in the end of the execution. Pippenger and Fischer’s [35] construction does not
provide such procedures so we describe a variant that does. As an independent contribution,
our new oblivious Turing Machine is described in a language that more closely resembles the
hierarchical oblivious RAM construction of Goldreich and Ostrovsky [17, 18] so it might be
easier to understand for those who are familiar with the latter.
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Lastly, let us remark that the above description was very high level and glossed over
many technical details. For example, one technicality arises because we have to use the
tapes sparingly in the compiled Turing machine to get a theorem that is tight in the number
of tapes. To achieve this, we delevop algorithmic tricks that allow us to reuse the same
tape for multiple purposes without without incurring any overhead in asymptotic running
time. Another technical challenge arises because unlike earlier explorations on differentially
obliviousness [7, 4], our target machine is a Turing machine rather than a RAM. This imposes
additional constraints for our algorithm design, since we cannot use common building blocks
such as oblivious sorting. Moreover, the online nature of our differentially oblivious simulation
also renders some previous building blocks inadequent (which we discuss more in the Related
Work section). We refer to the technical sections for details.

2 Preliminaries

For an integer n ∈ N we denote by [n] the set {1, . . . , n}. A function negl : N → R+ is
negligible if for every constant c > 0 there exists an integer Nc such that negl(λ) < λ−c for
all λ > Nc.

2.1 Turing Machines

We follow the presentation of Arora and Barak [1] for the definition of a k-tape Turing
machine. A tape is an infinite bi-directional line of cells, each of which can hold a symbol from
a finite set called the alphabet. Each tape is associated to a tape head that can potentially
read or write symbols to the tape one cell at a time. The machine’s computation is divided
into discrete time steps, and the head can either stay in place or move left or right one cell
in each step. More formally, a Turing machine M is described by a tuple (Γ, Q, δ), where
Γ is a set of symbols that M ’s tapes can contain, Q is the set of M ’s possible states, and
δ : Q× Γk → Q× Γk × {L, S,R}k is M ’s transition function.

If the machine is in state q ∈ Q and (σ1, σ2, . . . , σk) are the symbols currently being read
in the k tapes, and δ(q, (σ1, . . . , σk)) = (q′, (σ′1, . . . , σ′k), z), where z ∈ {L, S,R}k, then at the
next step the σ symbols in the k tapes will be replaced by the σ′ symbols, the machine will
be in state q′, and the k heads will move Left, Right, Stay in place, as given by z. There are
additionally a read-only tape for the input and a write-only tape for the output, and perhaps
a randomness tape if needed, but we ignore those when counting the number of tapes and
only account for the work tapes.

The definition above is quite robust to the choices one makes regarding the alphabet size,
the number of tapes, etc, since they are all equivalent in terms of complexity up to small
factors. We recall the known facts which can be found, for example, in Arora and Barak [1].

I Fact 4. It holds that:
1. Every function f that is computable in time T using alphabet Γ, can be computed in time

O(log |Γ| · T ) using an alphabet of size O(1).
2. Every function f that is computable in time T using k tapes, can be computed in time

O(k · T 2) on a single tape machine and in time O(k · T · log T ) on a two-tape machine.
3. Every function f that is computable in time T using k bi-directional tapes, can be computed

in time O(T ) using k standard (uni-directional) tapes.
4. Every function f that is computable in time T using k tapes, can be computed in time

k · T using k tapes such that in each step only one of the tapes moves.
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We mention the dependence on k in the above terms for explicitness even though it is a
constant.

In this work, we care about logarithmic factors so, by default, our Turing machine model
is that of a two-tape machine. By the above, it does not matter if we consider uni-directional
or bi-directional tapes. Constant factors in the alphabet size do not matter as well. All of
the above only affect the constants which are hidden inside the O notation.

2.2 Differential Privacy
Differential privacy, introduced by Dwork et al. [11], is a property of algorithms that, very
roughly, guarantees “security” for a single record in the input. Namely, if the algorithm
acts on the information of a set of individuals, from the output it is hard to decide whether
a particular individual’s information was used in the computation. This is formalized as
follows. Let A be a probabilistic algorithm that takes as input a dataset. Let Im(A) be the
set of all possible outputs of A. The algorithm A is said to be (ε, δ)-differentially private if
for all datasets D0 and D1, that differ only on one entry, and all possible subsets S ⊆ Im(A),
it holds that

Pr[A(D0) ∈ S] ≤ eε · Pr[A(D1) ∈ S] + δ,

where e is the base of the natural logarithm.
We refer to Dwork and Roth [13] for more information on differential privacy.

2.3 (Differentially) Oblivious Turing Machines
Obliviousness. Obliviousness is nowadays usually defined for RAMs and it guarantees
that the access pattern of the RAM is “independent” of the underlying input. More
specifically, given a RAM M and an input I, we consider a random variable Accesses(M, I)
that corresponds to the ordered sequence of memory locationsM accesses during an execution
on input I. We then require that the distribution of Accesses(M, I1) is indistinguishable from
Accesses(M, I2) for any I1 and I2 of the same length. The precise notion of indistinguishability
can be either computational, statistical, or perfect, depending on the context.

A Turing machine can be thought of as a restricted version of RAM where random accesses
are not allowed but any two consecutive accessed addresses must be to adjacent locations
(i.e., the head can move at most one cell at a time). Adapting the notion of obliviousness to
the Turing machine model requires that the tape’s head movements during the execution of
the algorithm to not leak information about the inputs. Again one can define various notions
of obliviousness, including computation, statistical, or perfect. We consider the strong notion
of deterministic perfect obliviousness.

I Definition 5 (Oblivious Turing machine). A Turing machine M is said to be oblivious if
for every input x ∈ {0, 1}∗ and i ∈ [N ], the location of each of M ’s heads at the ith step of
execution on input x is only a function of |x| and i.

Differential obliviousness. Differential obliviousness was introduced by Chan et al. [7] as
a relaxation of obliviousness for RAMs. At a high level, this security notion only protects
individual operations, rather than the whole sequence of operations. This is formalized by
requiring (ε, δ)-differential privacy for the observed access pattern of the RAM. In this case,
two sequences of accesses I0 and I1 are neighboring if they are of the same length and differ
in exactly one location accessed.
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When we adapt the notion to the Turing machine model, one needs to distinguish between
the input of the computation and the induced sequence of head movements that this input
causes. While in some cases the two are analogous (which is the case in some of our results),
in other cases there might be a gap. Namely, there are cases where the inputs are very close
(in say, Hamming distance) and yet the resulting head movements are far from each other.
Nevertheless, defining neighboring inputs w.r.t the observed sequence of head movements,
as we do next, still implies a privacy guarantee for the inputs using standard group privacy
theorems [11].

I Definition 6 (Neighboring inputs). Let M be a k-tape Turing machine. For J ∈ {0, 1}∗, let
Movements(M,J) ∈ ({L,R, S}k)∗ be the sequence of head movements that M does on input
J. Two inputs J0,J1 ∈ {0, 1}∗ are called neighboring if
1. |Movements(M,J0)| = |Movements(M,J1)| and
2. Movements(M,J0) and Movements(M,J1) differ in exactly one location.
That is, letting (`b,11 , . . . , `b,1k ), . . . , (`b,N1 , . . . , `b,Nk ) = Movements(M,Jb) for b ∈ {0, 1}, there
is exactly one pair (i∗, j∗) ∈ [N ] × [k] such that `0,i

∗

j∗ 6= `1,i
∗

j∗ while for all other (i, j) ∈
[N ]× [k] \ {(i∗, j∗)}, it holds that `0,ij = `1,ij .

Given this notion of neighboring inputs, we give the definition of differential obliviousness.

I Definition 7 ((ε, δ)-differentially oblivious Turing machine). A Turing machine M satis-
fies (ε, δ)-differential privacy iff for any neighboring inputs J0 and J1 and any set S ∈
({L,R, S}k)∗ of possible sequence of head movements, it holds that

Pr [Movements(M,J0) ∈ S] ≤ eε · Pr [Movements(M,J1)) ∈ S] + δ.

3 Estimating Heads’ Locations

In this section, we present an algorithm running on a Turing machine that outputs estimates
to the location of the heads in a Turing machine computation. More precisely, the input to
the algorithm is a sequence of movements of the heads of the machine (i.e., Left, Right or
Stay for each tape), and it outputs an estimate to the location of the head in a-priori fixed
intervals of time in an online fashion. The algorithm (1) outputs an estimate which is not
too far from the true position of the head, (2) the estimates is differentially private, (3) the
algorithm’s head movements themselves are oblivious (i.e., data-independent), and (4) the
algorithm is very efficient. The intervals at which we output an estimate on the location of
the heads are denoted p.

I Theorem 8. There exists an algorithm EstimateHeadε,δ such that for any ε, δ > 0, the
following holds. Fix any stream a = a1, a2, . . . , aN ∈ {L, S,R}k that corresponds to the
movements of the heads of a k-tape Turing machine. Let σi =

∑i·p
j=1 ai for i ∈ [N/p] (i.e.,

the true position of the heads every p steps). Let {σ̃i}i∈[N/p] denote a possible output of the
algorithm EstimateHeadε,δ when fed a as an input in an online fashion. It holds that:
1. Utility: With probability 1 over the randomness of EstimateHeadε,δ, it holds that

max
i∈[N/p]

|σ̃i − σi| ∈ O
(
(1/ε) · log1.5N · log(1/δ)

)
.

2. Differential privacy: EstimateHeadε,δ is (ε, δ)-differentially private. Here, neighboring
sequences are defined in the natural way by allowing only one of the k indices in one of
the N ai’s to differ between the two sequences.

3. Obliviousness: The algorithm itself is perfectly oblivious.
4. Efficiency: The algorithm runs in time O (k ·N + k · (N/p) · (logN)).
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Proof. The algorithm builds on the differentially private prefix-sum algorithm of Chan et
al. [9, 10] and Dwork et al. [12]. Their algorithms address the problem of continuously
estimating the prefix sums of elements in a given stream of numbers while maintaining
differential privacy. We follow the presentation of these algorithm from Dwork and Roth [13,
§12.3]. The algorithm is given a stream of numbers b = b1, b2, . . . , bN ∈ {−1, 0, 1} that
the algorithm sees in an online fashion. The algorithm outputs, after seeing b1, . . . , bj an
approximation of

∑j
i=1 bi. This task is almost what we need to prove our theorem for k = 1

(i.e., the machine has one tape). Indeed, a movement left (resp. right) can be interpreted as
-1 (resp. 1) and staying in place corresponds to seeing 0. The location of the head is exactly
the sum of those numbers. Additionally, it is not hard to observe that their algorithm is in
fact oblivious (see below). Nevertheless, the running time of their algorithm on a Turing
machine is O(N · logN) (see below). So, we need to (1) extend the algorithm to handle any
k ≥ 1 tapes and (2) show how to implement it in the specified running time on a Turing
machine. Since both goals are somewhat non-trivial to achieve, let us first briefly recall their
algorithm and state its guarantees, and then describe our modifications.

Assume that N is a power of 2 (for simplicity and without loss of generality). We associate
the N numbers to leaves of a full binary tree and then label each node in the tree with an
“interval”. The ith leaf (for i ∈ [N ]) is labeled with [i, i]. An internal node is labeled with the
interval that is the union of the intervals associated with its children. Now, with each node,
labeled [s, t] in this tree, we associate a noisy count that approximates the sum of the values
seen in positions s, s+1, . . . , t by adding noise from the appropriate distribution. In [9, 10, 12]
the added noise was sampled from Lap((1+log2N)/ε), where Lap(s) denotes the (continuous)
Laplace distribution with mean 0 and variance 2s2. To output σ̃i (i.e., the approximation
of
∑i
j=1 aj), we write i in binary to find at most log2N intervals whose union is [1, t], and

compute the sum of the corresponding noisy counts. These intervals are associated to the
nodes which are called the frontier. This algorithm satisfies (ε, 0)-differential privacy and
satisfies the following utility property: With probability 1− δ over the randomness of the
algorithm,

max
i∈[N/p]

|σ̃i − σi| ≤ O
(
(1/ε) · log1.5N · log(1/δ)

)
.

It is easy to turn the utility property to be satisfied with probability 1 by outputting the
exact prefix sum in the clear whenever the error in the output is too large. This causes the
algorithm to be (ε, δ/2)-differentially private, as needed.

Handling multiple tapes. We extend the algorithm to handle k tapes by maintaining k
prefix sums computed in parallel. This clearly does not hurt utility or obliviousness and only
incurs a k factor in running time. However, naively, it incurs a k factor in differential privacy.
Nevertheless, we observe that considering any two neighboring sequences of inputs, k − 1 of
the tapes will have the exact same access pattern while only one will differ in one position,
and so this extension, in fact, does not incur a k factor in differential privacy.

Running time. The main challenge is to maintain an updated version of the noisy counts
associated to the nodes in the frontier. Recall that the frontier is of size log2N + 1. Naively,
with the above algorithm, computing the frontier at time i+ 1 from the frontier at time i
may cost up to O(logN) work which is too expensive for us. However, recall that we do not
need a prefix sum after every ai, but rather we want to output one after every p inputs. So,
instead of having a full binary tree where the leaves correspond to each input, we consider a
full binary tree where each leaf corresponds to a sequence of p inputs and it is labeled by
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their sum. The depth of this tree is log2(N/p) and the point is that we need to compute the
“next” frontier (which costs about log2N) only once every p operations, so the total cost is
O(k · (N/p) · logN) plus the time it takes to aggregate the sum itself which is O(k ·N), as
needed. J

I Remark 9 (Sampling from Lap). We emphasize that the above algorithm assumes that
a Turing machine is capable of sampling from Lap(·) in O(1) time. This is assumed for
simplicity of presentation. However, it is possible to efficiently compute an estimate of this
distribution on a standard Turing machine. The cost of this approximation is small good
enough to obtain (asymptotically) the same final result in Theorem 11. Therefore, the
assumption being made in this section is without loss of generality in the context of our main
result. See details in Appendix A.

4 Oblivious Turing Machines

A classical result by Pippenger and Fischer [35] shows that any Turing machine computation
can be made perfectly oblivious (i.e., Definition 5) on a two-tape machine with amortized
logarithmic overhead. More precisely, any Turing machine that makes at most N steps can
be made perfectly oblivious while making O(N · logN) steps.

In our application we need an oblivious Turing machine which support two additional
properties. The first, called “initialization”, is that one can initialize an oblivious Turing
machine with a given memory (as opposed to starting off with an empty memory). The
second, called “destruction”, returns the state of the memory in a linear fashion.

Our construction is similar in spirit to the one of Pippenger and Fischer [35]. However,
we present it in a language that more closely resembles the hierarchical oblivious RAM
construction of Goldreich and Ostrovsky [17, 18] so it might be easier to understand for
those who are familiar with the latter.

I Theorem 10 (Oblivious Turing machine, revisited). Any k-tape Turing machine that makes at
most N steps can be executed obliviously on a two-tape Turing machine with O(N) space and
with O(k ·N · logN) steps. Additionally, the machine supports initialization and destruction.

Proof. We will present the main idea in the special case where the given Turing machine
has only a single tape and the resulting machine will have ` = dlogNe tapes. Later, we will
explain how to handle multiple tape machines in the input and simulate them obliviously
with just two tapes (at the same cost).

We have ` tapes and sometimes we will refer to these tapes as “levels” (analogously to
levels in [18]’s hierarchical ORAM construction). For each i ≥ 1, level Ti is a tape that
contains at most `i , 2i − 1 elements and it is thought of as a cyclic buffer. That is, the
element on the right of the (2i − 1)th element in level Ti is the 1st one. Our construction
will maintain the following invariant. Let p be the pointer to the current head location of
the original Turing machine. At the end of every 2i steps, Ti stores the content of the tape
at positions [p− 2i−1 : p+ 2i−1].

According to this, level T1 will always store the content of the cell pointed to by the head,
level T2 stores the content of cells p− 1, p, p+ 1, and so on. Notice that the same cell may
be part of several levels and not all of the values will be consistent with each other. The
freshest copy of a cell is always in the Ti with the smallest i that contains the cell. Reading
the value of the cell pointed to by the head or writing to that cell is done by reading or
writing (respectively) directly to T1.
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For every i ≥ 0, at the end of every 2i steps, the following reorganization steps are
performed:
1. Ti+1 writes its updated contents to Ti+2. This is done by making a pass over Ti+2 and

scanning over Ti+1 as a cycle buffer, making a real write whenever needed and making a
dummy write otherwise.

2. Ti+1 copies the corresponding segment it ought to store from Ti+2. This is done, as above,
by making a pass over Ti+2 and scanning over Ti+1 as a cycle buffer, making a real write
whenever needed and making a dummy write otherwise.

Correctness follows immediately by description. Perfect obliviousness follows from the
fact that the head’s movements are deterministic and a-priori fixed. For efficiency, consider
any sequence of N steps. A read or a write are done at a single operations cost by just
accessing T1. It remains to account for the cost of the reorganization steps. Note that the
N operations are confined to levels Ti for i ≤ logN + 2. By description and recalling that
the size of level Ti is 2i − 1, the total amount of steps performed by the oblivious Turing
machine is bounded by

logN+2∑
i=1

⌈
N

2i−1

⌉
·O(|Ti+2|) ∈ O(N · logN).

We now explain how to remove the simplifying assumptions we had, the first being that
the input machine has only one tape and the second being that the resulting oblivious
machine uses logN many tapes. Let us first handle the former, letting k be the number of
tapes used by the input machine. We use an encoding trick. We encode the k tapes into a
single tape by first placing all the first cells from each tape, then the second cell, and so on.
Each “track” will have its own head marker. By the construction of the oblivious Turing
machine, all the tracks can be processed simultaneously (recall that our head movement
sequence is deterministic), incurring a k multiplicative factor.

Now, we explain how to modify our Turing machine to use only two tapes. As a first step,
let us place the different levels one after the other on the single tape. Naively, this incurs a
blowup in running time due to the reorganization steps. Indeed, in the reorganization steps,
we need to scan two levels “in parallel” as cyclic buffers. The only way to do this with a
single tape is by moving back and forth in the tape which is too expensive. This is where
we will use the second tape. When such a “parallel” scan is needed, we will copy one of the
levels to the second tape, do the “parallel” scan by scanning both tapes in parallel, and then
copy it back. This only incurs a constant overhead.

Initialization and destruction. In our application, we will need to an oblivious Turing
machine with two additional features so we explain how to implement them next. The first
is that we need to support initialization with a given memory which might not necessarily
be empty. We implement this by starting with an empty memory, as described above, and
modifying the memory one element at a time. If the number of steps that we eventually
perform on the Turing machine is about the size of the initial memory, the cost of this step
will be amortized away.

The second feature is a destruction procedure which outputs the memory at the end of
the computation in a linear fashion. This is not so immediate since our construction does
not store the memory in a linear fashion. Recall that our construction satisfies that at the
end of every 2i steps, the cells corresponding to the level Ti store the content of the tape at
positions [p− 2i−1 : p+ 2i−1]. This means that if “destruct” is invoked after a power-of-2
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many steps, the memory is stored exactly in the cells corresponding to some level and one
can make one linear scan to extract those elements and put them one next to the other.
If destruct is invoked after some other number of steps, we need to modify this procedure
slightly by collecting the most updated memory values of each cell from the appropriate level
(now, the most updated values are spread amongst different cells). This again can be done
by a single scan. J

5 A Differentially Oblivious Turing Machine

In this section, we describe our transformation from any Turing machine into a differentially
oblivious one.

I Theorem 11. For any ε, δ > 0, any k-tape Turing machine that makes at most N steps
and consumes S space can be transformed into an (ε, δ)-differentially oblivious max{2, k}-tape
Turing machine that makes O(N · (log(1/ε) + log logN + log log(1/δ))) steps and consumes
O(S + (1/ε) · log2N · log(1/δ)) space.

The construction of the differentially oblivious Turing machine uses the oblivious Turing
machine construction from Section 4 and the head’s location estimation algorithm from
Theorem 3. We will present the construction in steps. We first assume that the input
machine uses only one tape and the resulting machine will use many tapes. Then, we will
explain how to get rid of both simplifying assumptions and therefore obtain Theorem 11.

5.1 From One Tape to Four Tapes

Assume first that the given machine, M , uses only a single tape. We first present a
construction that compiles M into a differentially oblivious Turing machine dpM with 4
tapes. Fix ε, δ > 0 for the rest of this section.

Tape allocation. The resulting Turing machine, dpM , will consist of four tapes, numbered
1, 2, 3, and 4, in the following order:
1. One tape to simulate the input Turing machine computation (recall that we assumed

that the input machine has only one tape).
2. Two tapes for running an oblivious Turing machine (according to Section 4).
3. One tape to compute differentially private head’s location estimation algorithm (according

to Section 3).

The algorithm. As mentioned, we use the oblivious Turing machine implementation from
Section 4 but since its overhead is logarithmic (in the running time of the non-oblivious
machine), we do not want to apply it directly on our machine. Instead, we are going to break
down the computation of the original machine into epochs and invoke the oblivious machine
only within epochs. Concretely, we split the computation of M into epochs of size

p , (1/ε) · log2N · log(1/δ).

Each such epoch will be executed in its own “fresh” oblivious Turing machine and so the
overhead will only be a doubly logarithmic factor in N . Next, we explain how dpM works.
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Algorithm dpMε,δ.

1. Set h0
≈ = 0 be the initial approximate position of the head (it is equal to the real

position).
2. Break the T -step computation into epochs of p steps of computation. For epoch

i = 1, . . . , N/p, do:
a. Copy an area of size 4p + 1 around hi−1

≈ , namely [hi−1
≈ − 2p, hi−1

≈ + 2p] to the
oblivious Turing machine (Theorem 10). Perform the next p steps of computation
there. At the end of the epoch, copy the state of these 4p + 1 cells back to the
main tape.

b. In parallel, keep track of the movements of the head and count the offset of the
head compared to the previous location, hi−1

≈ . At the end of the epoch, invoke
the differentially private head’s location estimation algorithm (Theorem 8) with
privacy parameters ε and δ to update the location of the head hi≈.

I Theorem 12. For any ε, δ > 0 and given any single-tape Turing machine M that makes
at most N steps and consumes S space, the 4-tape machine dpMε,δ is (ε, δ)-differentially
oblivious, makes at most O(N · (log(1/ε) + log logN + log log(1/δ))) steps and consumes
O(S + (1/ε) · log2N · log(1/δ)) space.

Proof. We first prove correctness, ignoring obliviousness. Consider any sequence of operations.
At any point in time, the oblivious Turing machine contains 2p+1 memory cells and performs
all necessary operations within. For correctness, by description, it is enough to show that
the p operations are indeed contained within those 2p+ 1 cells. Indeed, for this to hold it is
enough to argue that hi≈ is close enough to the real location of the head: hi≈ − 2p ≤ hi − p
and hi≈ + 2p ≥ hi + p, where hi is the true location of the head. In other words, we need to
show that

|hi≈ − hi| ≤ p.

By the utility property of the head’s location estimation algorithm (Theorem 8), we know
that |hi≈ − hi| ≤ (1/ε) · log1.5N · log(1/δ) (this is the upper bound on the additive error
of each each head’s location estimation for every i). Now, the above inequality follows by
recalling that p = (1/ε) · log2N · log(1/δ).

To prove (ε, δ)-differential obliviousness, consider any two sequences of operations I0
and I1 that differ at one operation. Consider the random variable Ĩb corresponding to the
physical tape heads locations on input Ib for b ∈ {0, 1}. Say the two sequences I0 and I1 differ
in the ith operation and are otherwise identical. Then, the first i− 1 operations result with
identical distributions of head locations in both executions (as all the underlying building
blocks are perfectly oblivious). The only difference is in the ith operation. There, the
head’s locations might differ due to a different distribution of the head’s location estimation
algorithm (Theorem 8). However, we are guaranteed that this algorithm is (ε, δ)-differentially
private. The rest of the heads’ movements are perfectly oblivious: the oblivious Turing
machine is perfectly oblivious, the head’s location estimation algorithm itself is perfectly
oblivious, and the other operations that we do in the implementation of dpM are trivially
oblivious.

Lastly, we analyze efficiency by counting the total amount of work and space required to
handle any sequence N operations that consume S space. Step 2a costs O(p · log p) operations
and space due to Theorem 10 (the rest of the operations can be implemented in O(p) time
and space). Computing the differentially private head’s location estimation in Step 2b takes
overall O(N + (N/p) · (logN + log(1/δ)) < O(N) time due to Theorem 8 (i.e., constant
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amortized work per access). Otherwise, simulating the original computation and accounting
for the location of the head, requires O(N) work and space. Overall, over N operations,
the total space is O(N + p · log p) and the work is bounded by O(N · log p). Plugging in
p = (1/ε) · log2N · log(1/δ) completes the proof. J

5.2 From One Tape to Two Tapes
In this section we show how to obtain the same result as in the previous section (i.e.,
Theorem 12), except that our resulting Turing machine will only use two tapes (instead of
four). One tape will be used for the simulation of the original Turing machine plus one of
the tapes of the oblivious Turing machine and the other tape will be used to perform the
head’s location estimation algorithm and the other tape of the oblivious Turing machine.

Recall that the tapes used for the oblivious Turing machine, both consume about p space,
but one interacts with the main tape (call it tape oTM1) and the other acts as a scratch
pad and the values that are written there are never accessed outside of the oblivious Turing
machine implementation (call it tape oTM2). We will merge tape oTM2 into the tape that
simulates the original computation, and tape oTM1 to the tape that computes the prefix
sums.

Tape 1 (Main Tape). This tape will consist of the main computation tape as well as a
blank area which is used for tape oTM2 of the oblivious Turing machine. We use the fact
that the required space for the oblivious Turing machine is O(p) cells and so we will maintain
such a “space of blanks” which will not be too far from the real position of the head and
will be used whenever a new oblivious Turing machine is instantiated. Let us denote by
SoTM = O(p) the space consumption of the oblivious Turing machine. Our first tape, the one
that simulates the computation of the original Turing machine, will maintain the invariant
that in distance SoTM from the location of the approximate head h≈ to the right, there are
SoTM blank cells (the last blank cell has distance 2SoTM from h≈). If this invariant holds,
then whenever an epoch begins, we can move to the blank area and use it as the oblivious
Turing machine tape. At the end of the epoch, we can go back to where we were. Since we
perform p operations inside the oblivious Turing machine, the amortized cost of moving back
and forth is O(1) per operation which is what we need.

We thus need to explain how to maintain the above invariant. The idea is to move the
blank area together with the location of the head once every epoch. Namely, once we update
the approximate position of the head h≈, we will also move the blank area appropriately so
that its distance from the new h≈ is as we require. Moving the blank area, as above, can
be done simply in time O(p) using a designated size O(p) space in the other tape (tape 2) –
this is done by moving the area that needs to go to the blank area to tape 2 (and replacing
it with blanks), and then copying by moving both heads “in parallel”.

Tape 2 (Secondary Tape). This tape will consist of three areas, each of size O(p). One of
these areas will be used for moving the blank area in tape 1, as we explained above. Another
area is for the computation of the head’s location estimation – this algorithm has state of
size O(logN) < O(p) (which contains a frontier of a tree of noisy sums per interval). The
third part is for tape oTM1 of the oblivious Turing machine (which also uses O(p) space).

The first and second parts in this tape are accessed at the end of every epoch and some
computation of length O(p) is performed on each of them (either updating the prefix sum or
moving data around). Since each epoch handles O(p) operations, the amortized cost of this
part is O(1) per operation of the original machine. The third part, in contrast, is accessed
throughout the epoch, and there we get O(log p) overhead per operation.
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5.3 From k Tapes to k Tapes (for k ≥ 2)
This extension is done by making two changes. First we use k tapes to simulate the
computation of the original k-tape machine (instead of just a single tape). Second, we use the
algorithm for estimating the head’s position which works for k tape machines (Theorem 8) –
this incurs an overhead of k operations per step. Recall that this algorithm just runs the
algorithm for estimating the head’s position of a single tape k times (independently). It
remains to explain where we execute this algorithm and also where we execute the oblivious
Turing machine since now we do not have an extra work tape.

The idea is to first modify each tape to have two “blank areas”, each as above. Say that
one blank area will be on the left of the head’s position and the other one on the right. The
one on the left will act as the “Main Tape” in the above construction and the one on the
right as the “Secondary Tape” for another tape. Concretely, tape (i+ 1) mod k acts as the
“Secondary Tape” of tape i (for all i ∈ [k]).

That is, the blank area on the left of the head of tape i, is used to simulate the computation
of tape i in the original machine and also to execute tape oTM2 of the oblivious Turing
machine when simulating tape i (this is exactly the same usage of the blank area as above).
The blank area on the right of the head of tape i consists of three areas: (1) an area used to
maintain the blank areas in tape (i+ 1) mod k, (2) an area used for the computation of the
head’s location estimation of tape (i+ 1) mod k, and (3) tape oTM1 of the oblivious Turing
machine when simulating tape (i + 1) mod k. Overall, these changes incur an extra O(k)
factor in the overhead of the simulation.

6 Lower Bound

In this section we prove that our differentially oblivious Turing machine is optimal in terms
of overhead in a natural range of parameters. Specifically, we prove the following theorem.

I Theorem 13. There exists an algorithmic task for which there is a Turing machine that on
input of size N completes it in O(N) steps. On the other hand, for any 0 < s ≤

√
N , ε > 0,

0 < β < 1, and 0 ≤ δ ≤ β · (ε/s) · e−2ε·s, any (ε, δ)-differentially oblivious implementation
(even on a RAM and in the balls and bins model) for this task must consume Ω(N · log s)
steps with probability 1− β.

Proof. In the work of Chan et al. [7] the following theorem concerning the required overhead
to stably sort a set of balls according to associated 1-bit keys while maintaining differential
obliviousness. Here, we assume that the balls are opaque and so no non-trivial encoding on
them can be done [6].

I Theorem 14 (Theorem 4.7 in [7]). Let 0 < s ≤
√
N . Suppose ε > 0, 0 < β < 1, and

0 ≤ δ ≤ β · (ε/s) · e−2ε·s. Then, any (even randomized) stable sorting algorithm for balls
according to associated 1-bit keys in the RAM model that is (ε, δ)-differentially oblivious must
have some input, on which it incurs at least Ω(N · log s) memory accesses with probability at
least 1− β.

The task of stably sorting N balls according to associated 1-bit keys can be implemented
using a Turing machine in O(N) steps. Consider an input of the form (k1, v1), . . . , (kN , vN ),
where ki ∈ {0, 1} is a 1-bit key and vi is the ith ball. The idea is to scan the input from
the beginning and whenever we see an element (ki, vi) we do one of the following. If ki = 0,
we write (ki, vi) to the next position in the output tape. If ki = 1, we write it to the next
position in the work tape. After we finish scanning the input, we scan the output again and
write all elements from first to last into the output tape. It is immediate that this algorithm
is correct and has O(N) running time. J
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A Sampling Noise on a Turing machine

One of the operations our differentially oblivious Turing machine needs to do is to sample from
the (continuous) Laplacian distribution Lap(x); this is used in the algorithm for estimating the
head’s location; see Section 3. There, we need to generate a sample from Lap((1 + log2N)/ε)
and we need to do this about N times. Recall that a Laplacian distribution is unbounded and
samples need infinite precision. We show that with small tolerable loss in precision (which
does not affect our final result), one can sample an approximation from this distribution on
a standard Turing machine.

We assume that ln(1/ε) is an integer so that we do not have rounding issues. Also, recall
that δ is a negligible function of the form exp(− log2N)). First, we switch to a bounded
version of the distribution, chopping off the tail which contains elements that occur with
negligible probability. We can assume the we sample from the range±(log(N)/ε)·poly log(1/δ).
Let us call δ0 the probability mass that we chopped off. Sampling from the bounded version
turns our (ε, δ′)-differentially private prefix sum algorithm into an (ε, δ)-differentially private
one, where δ = δ′+N · (eε · δ0 + δ0). To see this, observe that we have essentially N instances
of the Lap noise and so by a simple union bound, the statistical distance between each event
w.r.t the bounded distribution happens with probability at most N · δ0 larger than in the
unbounded version. Namely, for any set S, Pr[Xbounded ∈ S] ≤ Pr[X ∈ S] + N · δ0, where
Xbounded is the output of the mechanism when using bounded noise and X is the original
mechanism. Then, by differential privacy, Pr[X ∈ S] + N · δ0 ≤ eε Pr[Y ∈ S] + δ′ + Nδ0,
where Y is another arbitrary event sampled from the unbounded noise version. Then again
by bounding the noise used in Y , we get

Pr[Xbounded ∈ S] ≤ eε(Pr[Ybounded ∈ S] +Nδ0) + δ′ +Nδ0.

Since we think of δ0 as being negligible in N and ε being a constant, δ is also negligible.6

6 The above analysis was very loose. In particular, one can do a tighter analysis and not lose the
linear-in-N factor in δ but for our purposes it does not matter since δ is negligible in N anyway.
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The next step is to represent each element in the bounded range with finite precision.
We want to lose at most δ factor in precision (which will add another additive δ factor to
our additive error), and so if we use ` bits of precision, we have the inequality:

2−` · ((logN)/ε) · poly log(1/δ) ≤ δ.

This means that it is enough to use ` ∈ O(log((logN · log log(1/δ))/(εδ)) bits of precision
which can be bounded by O(log2(1/δ)) bits since δ is negligible in N and ε is a constant.
Therefore, all operations can be executed efficiently enough (in time O(poly logN)), which
by slightly changing parameters (e.g., the value of p), does not affect our asymptotic upper
bound on the running time of our differentially private Turing machine.
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Abstract
Most correlation inequalities for high-dimensional functions in the literature, such as the Fortuin-
Kasteleyn-Ginibre inequality and the celebrated Gaussian Correlation Inequality of Royen, are
qualitative statements which establish that any two functions of a certain type have non-negative
correlation. We give a general approach that can be used to bootstrap many qualitative correlation
inequalities for functions over product spaces into quantitative statements. The approach combines
a new extremal result about power series, proved using complex analysis, with harmonic analysis of
functions over product spaces. We instantiate this general approach in several different concrete
settings to obtain a range of new and near-optimal quantitative correlation inequalities, including:

A quantitative version of Royen’s celebrated Gaussian Correlation Inequality [23]. In [23] Royen
confirmed a conjecture, open for 40 years, stating that any two symmetric convex sets must be
non-negatively correlated under any centered Gaussian distribution. We give a lower bound
on the correlation in terms of the vector of degree-2 Hermite coefficients of the two convex
sets, conceptually similar to Talagrand’s quantitative correlation bound for monotone Boolean
functions over {0, 1}n [26]. We show that our quantitative version of Royen’s theorem is within
a logarithmic factor of being optimal.
A quantitative version of the well-known FKG inequality for monotone functions over any finite
product probability space. This is a broad generalization of Talagrand’s quantitative correlation
bound for functions from {0, 1}n to {0, 1} under the uniform distribution [26]; the only prior
generalization of which we are aware is due to Keller [17, 15, 16], which extended [26] to product
distributions over {0, 1}n. In the special case of p-biased distributions over {0, 1}n that was
considered by Keller, our new bound essentially saves a factor of p log(1/p) over the quantitative
bounds given in [17, 15, 16]. We also give a quantitative version of the FKG inequality for
monotone functions over the continuous domain [0, 1]n, answering a question of Keller [16].
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69:2 Quantitative Correlation Inequalities via Semigroup Interpolation

1 Introduction

Correlation inequalities are theorems stating that for certain classes of functions and certain
probability distributions D, any two functions f, g in the class must be non-negatively
correlated with each other under D, i.e. it must be the case that ED[fg]−ED[f ] ED[g] ≥ 0.
Inequalities of this type have a long history, going back at least to a well-known result of
Chebyshev, “Chebyshev’s order inequality,” which states that for any two nondecreasing
sequences a1 ≤ · · · ≤ an, b1 ≤ · · · ≤ bn and any probability distribution p over [n] =
{1, . . . , n}, it holds that

n∑
i=1

aibipi ≥

(
n∑
i=1

aipi

)(
n∑
i=1

bipi

)
.

Modern correlation inequalities typically deal with high dimensional rather than one dimen-
sional functions. Results of this sort have proved to be of fundamental interest in many fields
such as combinatorics, analysis of Boolean functions, statistical physics, and beyond.

Perhaps the simplest high-dimensional correlation inequality is the well known Harris-
Kleitman theorem [10, 19], which states that if f, g : {0, 1}n → {0, 1} are monotone functions
(meaning that f(x) ≤ f(y) whenever xi ≤ yi for all i) then E[fg] − E[f ] E[g] ≥ 0, where
expectations are with respect to the uniform distribution over {0, 1}n. The Harris-Kleitman
theorem has a one-paragraph proof by induction on n; on the other end of the spectrum
is the Gaussian Correlation Inequality (GCI), which states that if K,L ⊆ Rn are any
two symmetric convex sets and D is any centered Gaussian distribution over Rn, then
ED[KL]−ED[K] ED[L] ≥ 0 (where we identify sets with their 0/1-valued indicator functions).
This was a famous conjecture for four decades before it was proved by Thomas Royen in
2014 [23]. Other well-known correlation inequalities include the Fortuin-Kasteleyn-Ginibre
(FKG) inequality [7], which is an important tool in statistical mechanics and probabilistic
combinatorics; the Griffiths–Kelly–Sherman (GKS) inequality [9, 18], which is a correlation
inequality for ferromagnetic spin systems; and various generalizations of the GKS inequality
to quantum spin systems [8, 25].

1.1 Quantitative Correlation Inequalities
Here, we attempt to obtain quantitative correlation inequalities. Consider the following
representative example: For two monotone Boolean functions f, g : {0, 1}n → {0, 1}, as
discussed above, the Harris-Kleitman theorem states that E[fg]−E[f ] E[g] ≥ 0. It is easy to
check that the Harris-Kleitman inequality is tight if and only if f and g depend on disjoint
sets of variables. One might therefore hope to get an improved bound by measuring how
much f and g depend simultaneously on the same coordinates. Such a bound was obtained
by Talagrand [26] in an influential paper (appropriately titled “How much are increasing sets
correlated?”).

To explain Talagrand’s main result, we recall the standard notion of influence from the
analysis of Boolean functions [21]. For a Boolean function f : {0, 1}n → {0, 1}, the influence
of coordinate i on f is defined to be Inf i[f ] := Prx∼Un [f(x) 6= f(x⊕i)], where Un is the
uniform distribution on {0, 1}n and x⊕i is obtained by flipping the ith bit of x. Talagrand
proved the following quantitative version of the Harris–Kleitman inequality:

E[fg]−E[f ] E[g] ≥ 1
C
·Ψ
(

n∑
i=1

Inf i[f ]Inf i[g]
)

(1)
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Table 1 Qualitative and quantitative correlation inequalities. Here γ denotes the standard Gaus-
sian distribution N (0, 1)n; {0, 1}np denotes the p-biased hypercube (with no subscript corresponding
to p = 1/2, i.e. the uniform distribution); π denotes any distribution over {0, . . . ,m− 1}; and [0, 1]n
is endowed with the Lebesgue measure.

Qualitative Bounds Quantitative Bounds

Monotone f, g ∈ L2(Rn, γ) [7] [14]

Symmetric, convex K,L ⊆ Rnγ [23] Theorem 21

Convex f, g ∈ L2(Rn, γ) [11] Deferred to full version.

Monotone f, g : {0, 1}n → {0, 1} [10, 19, 7] [26]

Monotone f, g : {0, 1}np → R [7] [15], Theorem 29

Monotone f, g : {0, . . . ,m− 1}nπ → R [7] Theorem 29

Monotone f, g ∈ L2([0, 1]n) [22] Deferred to full version.

where Ψ(x) := x/ log(e/x), C > 0 is an absolute constant, and the expectations are with
respect to the uniform measure. A simple corollary of this result is that E[fg] = E[f ] E[g] if
and only if the sets of influential variables for f and g are disjoint. In [26] itself, Talagrand
gives an example for which Equation (1) is tight up to constant factors.

Talagrand’s result has proven to be influential in the theory of Boolean functions, and
several works [15, 16, 17, 12] have obtained extensions and variants of this inequality for
product distributions over {0, 1}n. An analogue of Talagrand’s inequality in the setting of
monotone functions over Gaussian space was obtained by Keller, Mossel and Sen [14] using a
new notion of “geometric influences.” Beyond these results, we are not aware of quantitative
correlation inequalities in other settings, even though (as discussed above) a wide range of
qualitative correlation inequalities are known. In particular, even for very simple and concrete
settings such as the solid cube [0, 1]n endowed with the uniform measure or the m-ary cube
{0, 1, . . . ,m− 1}n with a product measure, no quantitative versions of the FKG inequality
were known (see the discussion immediately following Theorem 4 of Keller [13]). As a final
example, no quantitative version of the Gaussian Correlation Inequality was previously
known.

1.2 Our Contributions

We establish a general framework to transfer qualitative correlation inequalities into quanti-
tative correlation inequalities. We apply this general framework to obtain a range of new
quantitative correlation inequalities, which include the following:
1. Quantitative versions of Royen’s Gaussian Correlation Inequality and Hu’s correlation

inequality [11] for symmetric convex functions over Gaussian space;
2. A quantitative FKG inequality for a broad class of product distributions, including

arbitrary product distributions over finite domains and the uniform distribution over
[0, 1]n.

ITCS 2021
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All these results are obtained in a unified fashion via simple proofs that are substantially
different from previous works [26, 15, 16, 17, 12]. We also give several lower bound examples,
including one which shows that our quantitative version of the Gaussian Correlation Inequality
is within a logarithmic factor of the best possible bound.

We note that the special case of item 2 above with the uniform distribution on {0, 1}n
essentially recovers Talagrand’s correlation inequality [26]. In more detail, our bound is
weaker than that obtained in [26] by a logarithmic factor, but our proof is significantly
simpler and easily generalizes to other domains. For p-biased distributions over {0, 1}n, our
bound avoids any dependence on p compared to the results of Keller [15, 16, 17] which have
a p log(1/p) dependence (though, similar to the situation vis-a-vis [26], we lose a logarithmic
factor in other dependencies). Finally, for the uniform distribution over [0, 1]n, our result
gives an answer to a question posed by Keller [16], who wrote “It seems tempting to find a
generalization of Talagrand’s result to the continuous setting, but it is not clear what is the
correct notion of influences in the continuous case that should be used in such generalization.”

1.3 The Approach

We start with a high level meta-observation before explaining our framework and techniques
in detail. While the statements of the Harris-Kleitman inequality, the FKG inequality,
and the Gaussian Correlation Inequality have a common flavor, the proofs of these results
are extremely different from each other. (As noted earlier, the Harris-Kleitman inequality
admits a simple inductive proof which is only a few lines long; in contrast the Gaussian
Correlation Inequality was an open problem for nearly four decades, and no inductive proof
for it is known.) Thus, at first glance, it is not clear how one might come up with a common
framework to obtain quantitative versions of these varied qualitative inequalities.

Our approach circumvents this difficulty by using the qualitative inequalities essentially
as “black boxes.” This allows us to extend the qualitative inequalities into quantitative ones
while essentially sidestepping the difficulties of proving the initial qualitative statements
themselves.

1.3.1 Our General Framework

In this subsection we give an overview of our general framework and the high-level ideas
underlying it, with our quantitative version of the Gaussian Correlation Inequality serving
as a running example throughout for concreteness.

We begin by defining a function Φ : [0, 1]→ [0, 1] which will play an important role in
our results:

Φ(x) := min
{
x,

x

log2(1/x)

}
. (2)

(Note the similarity between Φ and the function Ψ mentioned earlier that arose in Talagrand’s
quantitative correlation inequality [26]; the difference is that Φ is smaller by essentially a
logarithmic factor in the small-x regime.)

Let F be a family of real-valued functions on some domain (endowed with measure µ)
with Eµ

[
f2] ≤ 1 for all f ∈ F . For example, the Gaussian Correlation Inequality is a

correlation inequality for the family Fcsc of centrally symmetric, convex sets (identified with
their 0/1-indicator functions), and µ is the standard Gaussian measure N (0, 1)n, usually
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denoted γ.1 A quantitative correlation inequality for f, g ∈ F gives a (non-negative) lower
bound on the quantity Ex∼µ[f(x)g(x)]−Ex∼µ[f(x)] Ey∼µ[g(y)], typically in terms of some
measure of “how much f and g simultaneously depend on the same coordinates.” Our general
approach establishes such a quantitative inequality in two main steps:

Step 1: For this step, we require an appropriate family of “noise operators” (Tρ)ρ∈[0,1]
with respect to the measure µ. Very briefly, each of these operators Tρ will be a (re-indexed
version of a) symmetric Markov semigroup whose stationary distribution is µ; this is defined
more precisely in Section 4. (Looking ahead, we will see, for example, that in the case of the
GCI, the appropriate noise operator is the Ornstein-Uhlenbeck noise operator, defined in
Definition 18.) The crucial property we require of the family (Tρ)ρ∈[0,1] with respect to F is
what we refer to as monotone compatibility:

I Definition 1 (Monotone compatibility). A class of functions F and background measure µ
is said to be monotone compatible with respect to a family of noise operators (Tρ)ρ∈[0,1] if
(i) for all f, g ∈ F , the function

q(ρ) := E
x∼µ

[f(x)Tρg(x)]

is a non-decreasing function of ρ, and (ii) for ρ = 1 we have T1 = Id (the identity operator).

The notion of monotone compatibility should be seen as a mild extension of qualitative
correlation inequalities. As an example, in the case of the Gaussian Correlation Inequality,
Royen’s proof [23] in fact shows that that the family Fcsc is monotone compatible with
Ornstein-Uhlenbeck operators.

Step 2: We express the operator Tρ in terms of its eigenfunctions. In all the cases we
consider in this paper, the eigenvalues of the operator Tρ are

{
ρj
}
j≥0. Let {Wj}j≥0 be the

corresponding eigenspaces. Consequently, we can express q(ρ)− q(0) as

q(ρ)− q(0) = E
x∼µ

[f(x)Tρg(x)]− E
x∼µ

[f(x)] · E
y∼µ

[g(y)] =
∑
j>0

ρj E[fj(x)gj(x)], (3)

where fj (respectively gj) is the projection of f (respectively g) on the space Wj . To go
back to our running example, for the Gaussian Correlation Inequality, Wj is the subspace
spanned by degree-j Hermite polynomials on Rn.

Define aj := E[fj(x)gj(x)], so q(ρ) =
∑
j≥0 ajρ

j . Now, corresponding to any family
F and noise operators (Tρ)ρ∈[0,1], there will be a unique j∗ ∈ N such that the following
properties hold:
1. If aj∗ = 0, then Ex∼µ[f(x)g(x)] = Ex∼µ[f(x)] · Ey∼µ[g(y)]. In other words, aj∗

qualitatively captures the “slack” in the correlation inequality (in fact, as we will soon see,
aj∗ also gives a quantitative lower bound on this slack). For example, for the Gaussian
Correlation Inequality, it turns out that j∗ = 2 (for most of the other applications of our
general framework in this paper, it turns out that j∗ = 1).

2. For any i such that j∗ does not divide i, ai = 0.

1 Since convexity is preserved under linear transformation, no loss of generality is incurred in assuming
that the background measure is the standard normal distribution N (0, 1)n rather than an arbitrary
centered Gaussian.

ITCS 2021



69:6 Quantitative Correlation Inequalities via Semigroup Interpolation

Now, from the fact that the spaces {Wj} are orthonormal and the fact that every f ∈ F
has Eµ

[
f2] ≤ 1, it follows that

∑
j>0 |aj | ≤ 1. Our main technical lemma, Lemma 12,

implies (see the proof of Theorem 14) that for any such power series q(·), there exists some
ρ∗ ∈ [0, 1] such that

q(ρ∗)− q(0) ≥ 1
C
· Φ(aj∗).

The proof crucially uses tools from complex analysis. As the class F is monotone compatible
with the operators (Tρ)ρ∈[0,1], recalling Equation (3), it follows that

q(1)− q(0) = E
x∼µ

[f(x)g(x)]− E
x∼µ

[f(x)] · E
y∼µ

[g(y)] ≥ 1
C
· Φ(aj∗), (4)

which is the desired quantitative correlation inequality for F .
I Remark 2. We emphasize the generality of our framework; the argument sketched above
can be carried out in a range of different concrete settings. For example, by using the Harris-
Kleitman qualitative correlation inequality for monotone Boolean functions in place of the
GCI, and the Bonami-Beckner noise operator over {0, 1}n in place of the Ornstein-Uhlenbeck
noise operator, the above arguments give a simple proof of the following (slightly weaker)
version of Talagrand’s correlation inequality (Equation (1)):

E[fg]−E[f ] E[g] ≥ 1
C
· Φ
(

n∑
i=1

Inf i[f ]Inf i[g]
)
, (5)

for an absolute constant C > 0. While our bound is weaker than that of [26] by a log factor
(recall the difference between Ψ and Φ), our methods are applicable to a much wider range
of settings (such as the GCI and the other applications given in this paper). Finally, we
emphasize that our proof strategy is really quite different from that of [26]; for example,
[26]’s proof relies crucially on bounding the degree-2 Fourier weight of monotone Boolean
functions by the degree-1 Fourier weight, whereas our strategy does not analyze the degree-2
spectrum of monotone Boolean functions at all.
I Remark 3. Coupled with the first property described above, Equation (4) shows that aj∗
not only qualitatively captures the “correlation gap”

E
x∼µ

[f(x)g(x)]− E
x∼µ

[f(x)] · E
y∼µ

[g(y)],

but also provides a quantitative lower bound on this gap.

2 Preliminaries

In this section we give preliminaries setting notation, recalling useful background on noise
operators and orthogonal decomposition of functions over product spaces, and recalling a
well-known result that we will require from complex analysis.

2.1 Noise Operators and Orthogonal Decompositions
Let (Ω, π) be a probability space; we do not require Ω to be finite, and we assume without
loss of generality that π has full support.

The background we require for noise operators on functions in L2(Ω, π) is most naturally
given using the language of “Markov semigroups.” Our exposition below will be self-contained;
for a general and extensive resource on Markov semigroups, we refer the interested reader to [1].
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I Definition 4 (Markov semigroup). A collection of linear operators (Pt)t≥0 on L2(Ω, π) is
said to be a Markov semigroup if
1. P0 = Id;
2. for all s, t ∈ [0,∞), we have Ps ◦ Pt = Ps+t; and
3. for all t ∈ [0,∞) and all f, g ∈ L2(Ω, π), the following hold:

a. Identity: Pt1 = 1 where 1 is the identically-1 function.
b. Positivity: Ptf ≥ 0 almost everywhere if f ≥ 0 almost everywhere.2

It is well known that a Markov semigroup can be constructed from a Markov process
and vice versa [1]. We call a Markov semigroup symmetric if the underlying Markov process
is time-reversible; the following definition is an alternative elementary characterization of
symmetric Markov semigroups. (Recall that for f, g ∈ L2(Ω, π) the inner product 〈f, g〉 is
defined as Ex∼π[f(x)g(x)].)

I Definition 5 (Symmetric Markov semigroup). A Markov semigroup (Pt)t≥0 on L2(Ω, π) is
symmetric if for all t ∈ [0,∞), the operator Pt is self-adjoint; equivalently, for all t ∈ [0,∞)
and all f, g ∈ L2(Ω, π), we have 〈f,Ptg〉 = 〈Ptf, g〉.

We note that the families of noise operators (Uρ)ρ∈[0,1] and (Tρ)ρ∈[0,1] that we consider
in Section 5 and Section 6 respectively will be parametrized by ρ ∈ [0, 1] where ρ = e−t for
t ∈ [0,∞), as is standard in theoretical computer science. (For example, the Bonami-Beckner
noise operator operator Tρ mentioned in the Introduction, which is a special case of the Tρ
operator defined in Section 6, corresponds to Pt for (Pt)t≥0 a suitable Markov semigroup
and ρ = e−t.)

Given a Markov semigroup (Pt)t≥0 on the probability space (Ω, π), we can naturally
define the Markov semigroup (⊗ni=1Pti)ti≥0 on L2 (Ωn, π⊗n). We write Pt to denote this
semigroup, and write Pt to denote the Markov semigroup (⊗ni=1Pt)t≥0. We next define a
decomposition of L2 (Ωn, π⊗n) that is particularly well-suited to the action of a Markov
semigroup (Pt)t≥0.

IDefinition 6 (Chaos decomposition). Consider a Markov semigroup (Pt)t≥0 on L2 (Ωn, π⊗n).
We call an orthogonal decomposition of

L2 (Ωn, π⊗n) =
∞⊕
i=0
Wi

a chaos decomposition with respect to the Markov semigroup (Pt)t≥0 if
1. W0 = span(1) where 1 is the identically-1 function (i.e. W0 = R).
2. For all t ≥ 0, there exists λt ∈ [0, 1] such that if f ∈ Wi, then Ptf = λitf .
3. If t1 > t2, then λt1 < λt2 .

I Remark 7. The term “chaos decomposition” is used in the literature to describe the
spectral decomposition of L2(Rn, γ) with respect to the Laplacian of the Ornstein–Uhlenbeck
semigroup (see Proposition 19); its usage in the broader sense defined above is not standard
(to our knowledge).
I Remark 8. Given an orthogonal decomposition L2 (Ωn, π⊗n) =

⊕
iWi, for f ∈ L2 (Ωn, π⊗n)

we will write f = ⊕ifi where fi is the projection of f onto Wi.

2 Note that this implies the following order property: if f ≥ g almost everywhere, then Ptf ≥ Ptg almost
everywhere.
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We note that λ0 = 1, and as 1 ∈ W0, it follows that f0 = 〈f, 1〉. We revisit the definition
of monotone compatibility given in the introduction in the language of Markov semigroups:

I Definition 9 (Monotone compatibility). Let (Pt)t≥0 be a Markov semigroup on L2 (Ωn, π⊗n).
We say that (Pt)t≥0 is monotone compatible with a family of functions F ⊆ L2 (Ωn, π⊗n) if
for all f, g ∈ F , we have

∂

∂t
〈Ptf, g〉 ≤ 0.

Recalling that our noise operators such as (Tρ)ρ∈[0,1] are reparameterized versions of the
Markov semigroup operators (Pt)t≥0 under the reparameterization Tρ = Pt with ρ = e−t,
and recalling item 1 in Definition 4, we see that Definition 9 coincides with Definition 1.

I Example 10. To provide intuition for Definition 9, a useful concrete example to consider is

Ω = {0, 1} and π = the uniform distribution on Ω, so L2 (Ωn, π⊗n) is the space of all
real-valued functions on the Boolean cube {0, 1}n under the uniform distribution;
Fmon = the class of all monotone Boolean functions, i.e. all f : {0, 1}n → {0, 1} such
that if xi ≤ yi for all i then f(x) ≤ f(y);
(Pt)t≥0 is defined by Pt = Te−t , where Tρ is the Bonami-Beckner operator. We remind
the reader that for any f : {0, 1}n → R and any 0 ≤ ρ ≤ 1, the function Tρf(x) is defined
to be Ey∼Nρ(x)[f(y)], where “y ∼ Nρ(x)” means that y ∈ {0, 1}n is randomly chosen by
independently setting each yi to be xi with probability ρ and to be uniform random with
probability 1− ρ.

In this setting, as will be shown later, we have that for any two monotone functions
f, g ∈ F , the function Ex∼{±1}n [Tρf(x)g(x)] is a non-decreasing function of ρ; hence
∂
∂t Ex∼{±1}n [Ptf(x)g(x)] is always at most 0 (note that as t increases ρ = e−t decreases), so
(Pt)t≥0 is monotone compatible with Fmon.

2.2 Complex Analysis
Let U ⊆ C be a connected, open set. Recall that a function f : U → C is said to be
holomorphic if at every point in U it is complex differentiable in a neighborhood of the point.
For U a connected closed set, f is said to be holomorphic if it is holomorphic in an open set
containing U . Our main technical lemma appeals to the following classical result, a proof of
which can be found in [24].

I Theorem 11 (Hadamard Three Circles Theorem). Suppose f is holomorphic on the annulus
{z ∈ C | r1 ≤ |z| ≤ r2}. For r ∈ [r1, r2], let M(r) := max|z|=r |f(z)|. Then

log
(
r2

r1

)
logM(r) ≤ log

(r2

r

)
logM(r1) + log

(
r

r1

)
logM(r2).

3 A New Extremal Bound for Power Series with Bounded Length

Given a complex power series p(t) =
∑∞
i=1 cit

i where ci ∈ C, its length is defined to be the
sum of the absolute values of its coefficients, i.e.

∑∞
i=1 |ci|. Our main technical lemma is a

lower bound on the sup-norm of complex power series with no constant term and bounded
length:3

3 The “3/2” in the lemma below could be replaced by any constant bounded above 1; we use 3/2 because
it is convenient in our later application of Lemma 12.
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I Lemma 12 (Main technical lemma). Let p(t) =
∑∞
i=1 cit

i with c1 = 1 and
∑∞
i=1 |ci| ≤M

where M ≥ 3/2. Then:

sup
t∈[0,1]

|p(t)| ≥ Θ(1)
log2M

.

The proof given below is inspired by arguments with a similar flavor in [3, 4], where the
Hadamard Three Circles Theorem is used to prove various extremal bounds on polynomials.

Proof. Consider the meromorphic map (easily seen to have a single pole at z = 0) given by

h(z) = A

(
z + 1

z

)
+B,

which maps origin-centered circles to ellipses centered at B. Let 0 < δ < c be a parameter
that we will fix later, where 0 < c < 1 is an absolute constant that will be specified later.
We impose the following constraints on A and B:

−2A+B = δ
17
4 A+B = 1,

and note that these constraints imply that A = 4(1−δ)
25 and B = 8+17δ

25 .
We define three circles in the complex plane that we will use for the Hadamard Three

Circles Theorem:
1. Let C1 be the circle centered at 0 with radius 1. Note that for all z ∈ C1, the value h(z)

is a real number in the interval
[
δ, 16+9δ

25
]
⊆ [δ, 1).

2. Let r > 1 be such that h(−r) = 0, so r+ 1
r = 8+17δ

4−4δ = 2 + Θ(δ) and hence r = 1 + Θ(
√
δ),

which is less than 4. Define C2 to be the circle centered at 0 with radius r.
3. Let C3 be the circle centered at 0 with radius 4. Note that |h(z)| ≤ 1 for z ∈ C3.

Define q(t) := p(t)
t . Note that q(0) = c1 = 1 and that for all z ∈ C such that |z| ≤ 1, we

have |q(z)| ≤M . Define ψ(z) := q(h(z)). Note that ψ is holomorphic on C\{0}; in particular,
it is holomorphic on the annulus defined by C1 and C3. Consequently, by Theorem 11, we
have:

log
(

4
1

)
logα(r) ≤ log

(
4
r

)
logα(1) + log

(r
1

)
logα(4)

with α(r) := sup|z|=r |ψ(z)|. As h(−r) = 0, we have ψ(−r) = 1 and so logα(r) ≥ 0.
Consequently, the left hand side of the above inequality is non-negative, which implies:

1 ≤ α(1)log ( 4
r ) · α(4)log r.

As log
( 4
r

)
= Θ(1), log r = log

(
1 + Θ

(√
δ
))

= Θ
(√

δ
)
, and α(4) ≤M , we get:

1 ≤ α(1)Θ(1) ·MΘ(√δ), and hence M−Θ(√δ) ≤ α(1).

By (i) and the definition of α, we have:

sup
t∈[δ,1)

q(t) ≥M−Θ(√δ) and hence sup
t∈[0,1]

p(t) ≥ sup
δ∈[0,1]

δM−Θ(√δ).

Setting δ = Θ(1)
log2 M

, we get that

sup
t∈[0,1]

|p(t)| ≥ Θ(1)
log2M

,

and the lemma is proved. J
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It is natural to wonder whether Lemma 12 is quantitatively tight. The polynomial
p(t) = t(1 − t)logM is easily seen to have length M and supt∈[0,1] p(t) = Θ(1/ logM), and
it is tempting to wonder whether this might be the smallest achievable value. However, it
turns out that the 1/ log2M dependence of Lemma 12 is in fact the best possible result; a
proof of the following result can be found in the appendix to the full version of this paper.

B Claim 13. For sufficiently large M , there exists a real polynomial p(t) =
∑d
i=1 cit

i with
c1 = 1 and

∑d
i=1 |ci| ≤M such that

sup
t∈[0,1]

p(t) ≤ O
((

1
logM

)2
)
.

4 A General Approach to Quantitative Correlation Inequalities

This section presents our general approach to obtaining quantitative correlation inequalities
from qualitative correlation inequalities. While our main result, Theorem 14, is stated in
an abstract setting, subsequent sections will instantiate this result in concrete settings that
provided the initial impetus for this work. Section 5 deals with the setting of centrally
symmetric, convex sets over Gaussian space, and Section 6 deals with finite product domains.

I Theorem 14 (Main Theorem). Consider a symmetric Markov semigroup (Pt)t≥0 on
L2 (Ωn,Π⊗n) with a chaos decomposition

L2 (Ωn,Π⊗n) =
⊕
`

W`.

Let (Pt)t≥0 be monotone compatible with F ⊆ L2 (Ωn,Π⊗n), where ‖f‖ ≤ 1 for all f ∈ F .
Furthermore, suppose that there exists j∗ ∈ N>0 such that every f ∈ F has a decomposition as

f =
∞⊕
`=0

f`·j∗ ,

i.e. f` = 0 for j∗ - `. Then for all f, g ∈ F , we have

〈f, g〉 − f0g0 ≥
1
C
· Φ (〈fj∗ , gj∗〉) , (6)

where recall from Equation (2) that Φ : [0, 1]→ [0, 1] is Φ(x) = min
{
x, x

log2(1/x)

}
and C > 0

is a universal constant.

The proof of the above theorem uses an interpolating argument along the Markov
semigroup, and appeals to Lemma 12 to obtain the lower bound.

Proof of Theorem 14. Fix f, g ∈ F and let us write a` := 〈f`, g`〉. It follows from Defi-
nition 6 that f`, g` are eigenfunctions of Pt with eigenvalue λ`t. This, together with the
assumption that f = ⊕j∗|`f` and g = ⊕j∗|`g`, implies that for t > 0 we have

〈Ptf, g〉 =
∑
j∗|`

λ`t〈f`, g`〉 =
∑
j∗|`

a`λ
`
t. (7)
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Here we remark that the argument to Φ(·) in the right hand side of Equation (6) is
non-negative, i.e. aj∗ ≥ 0. To see this, observe that

aj∗ = ∂

∂λj
∗

t

〈Ptf, g〉 = ∂

∂t
〈Ptf, g〉 ·

∂t

∂λj
∗

t

≥ 0

where we used the monotone compatibility of F with (Pt)t≥0 and Property 3 of Definition 6.
Returning to Equation (7), rearranging terms gives that

〈Ptf, g〉 − f0g0 =
∑
`>0
j∗|`

a`λ
`
t = aj∗p(λj

∗

t ), where p(λj
∗

t ) := λj
∗

t + 1
aj∗

∑
`>j∗

j∗|`

a`λ
`
t. (8)

As λt ∈ [0, 1], we re-parametrize u := λj
∗

t and write b` := a`j∗

aj∗
for ease of notation; this

gives us

p(u) = u+
∑
`≥2

b`u
`.

By the Cauchy–Schwarz inequality, we have

a2
` = 〈f`, g`〉2 ≤ 〈f`, f`〉〈g`, g`〉 = ‖f`‖2‖g`‖2, and hence |a`| ≤ ‖f`‖‖g`‖.

Once again using the Cauchy–Schwarz inequality, we get

∑
`

|a`| ≤
∑
`=0
‖f`‖ · ‖g`‖ ≤

√√√√(∑
`

‖f`‖2
)
·

(∑
`

‖g`‖2
)
≤ 1

where the last inequality follows from the assumption that ‖f‖ ≤ 1 for all f ∈ F . This
implies that∑

`

|b`| =
1
|aj∗ |

∑
`

|a`·j∗ | ≤
1
|aj∗ |

= 1
aj∗

.

where the last equality holds because of aj∗ ≥ 0 as shown earlier. If aj∗ > 2/3 then∑
`≥2 |bi| ≤ 1/2 while b1 = 1, from which it easily follows that supu∈[0,1] p(u) ≥ 1/2. If

aj∗ < 2/3 then the power series p(u) satisfies the assumptions of Lemma 12 with M = 1
aj∗

.
This gives us

sup
u∈[0,1]

p(u) ≥ min
{

1
2 ,Θ

(
1

log2 (a−1
j∗

))} .
It follows from Definition 6 that as t ranges over (0,∞), λt and consequently u ranges over
the interval (0, 1]. Together with Equation (8), this implies that

sup
t∈(0,∞)

〈Ptf, g〉−f0g0 = sup
t∈(0,∞)

aj∗ ·p(λt) = aj∗ · sup
u∈(0,1]

p(u) ≥ Θ
(

min
{
aj∗ ,

aj∗

log2 (a−1
j∗

)}) .
However, because of monotone compatibility, we have that 〈Ptf, g〉 is decreasing in t. As
P0 = Id, we can conclude that

〈f, g〉 − f0g0 ≥ Θ
(

min
{
aj∗ ,

aj∗

log2 (a−1
j∗

)}) ,
which completes the proof. J
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5 A Quantitative Extension of the Gaussian Correlation Inequality

In this section, we prove a quantitative versions of Royen’s Gaussian Correlation Inequality
(GCI) [23] for symmetric convex sets. We start by recalling some elementary facts about
harmonic analysis over Gaussian space in Section 5.1, after which we derive our “robust”
form of the Gaussian Correlation Inequality in Section 5.2 as a consequence of Theorem 14.
In Section 5.3 we discuss how our robust GCI can be viewed as a Gaussian-space analogue
of Talagrand’s celebrated correlation inequality for monotone Boolean functions over the
Boolean hypercube [26]. We analyze the tightness of our robust GCI in Section 5.4.

5.1 Harmonic (Hermite) Analysis over Gaussian space
Our notation and terminology presented in this subsection follows Chapter 11 of [21]. We
say that an n-dimensional multi-index is a tuple α ∈ Nn, and we define

supp(α) := {i : αi 6= 0}, #α := |supp(α)|, |α| :=
n∑
i=1

αi. (9)

We write N (0, 1)n to denote the n-dimensional standard Gaussian distribution. For
n ∈ N>0, we write L2(Rn, γ) to denote the space of functions f : Rn → R that have finite
2nd moment ‖f‖22 under the standard Gaussian measure γ, that is:

‖f‖22 = E
z∼N (0,1)n

[
f(z)2]1/2 <∞.

We view L2(Rn, γ) as an inner product space with 〈f, g〉 := Ez∼N (0,1)n [f(z)g(z)] for f, g ∈
L2(Rn, γ). We recall the “Hermite basis” for L2(R, γ):

I Definition 15 (Hermite basis). The Hermite polynomials (hj)j∈N are the univariate
polynomials defined as

hj(x) = (−1)j√
j!

exp
(
x2

2

)
· d

j

dxj
exp

(
−x

2

2

)
.

I Proposition 16 (Proposition 11.33, [21]). The Hermite polynomials (hj)j∈N form a complete,
orthonormal basis for L2(R, γ). For n > 1 the collection of n-variate polynomials given by
(hα)α∈Nn where

hα(x) :=
n∏
i=1

hαi(x)

forms a complete, orthonormal basis for L2(Rn, γ).

Given a function f ∈ L2(Rn, γ) and α ∈ Nn, we define its Hermite coefficient on α as
f̃(α) = 〈f, hα〉. It follows that f is uniquely expressible as f =

∑
α∈Nn f̃(α)hα with the

equality holding in L2(Rn, γ); we will refer to this expansion as the Hermite expansion of f .
One can check that Parseval’s and Plancharel’s identities hold in this setting.

I Proposition 17 (Plancharel’s identity). For f, g ∈ L2(Rn, γ), we have:

〈f, g〉 = E
z∼N (0,1)n

[f(z)g(z)] =
∑
α∈Nn

f̃(α)g̃(α),

and as a special case we have Parseval’s identity,

〈f, f〉 = E
z∼N (0,1)n

[f(z)2] =
∑
α∈Nn

f̃(α)2.
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Next we recall the standard Gaussian noise operator (parameterized so that the noise
rate ρ ranges over [0, 1]):

IDefinition 18 (Ornstein-Uhlenbeck semigroup). We define the Ornstein-Uhlenbeck semigroup
as the family of operators (Uρ)ρ∈[0,1] on the space of functions f ∈ L1(Rn, γ) given by

Uρf(x) := E
g∼N (0,1)n

[
f
(
ρ · x+

√
1− ρ · g

)]
.

The Ornstein-Uhlenbeck semigroup is sometimes referred to as the family of Gaussian
noise operators or Mehler transforms. The Ornstein-Uhlenbeck semigroup acts on the Hermite
expansion as follows:

I Proposition 19 (Proposition 11.33, [21]). For f ∈ L2(Rn, γ), the function Uρf has Hermite
expansion

Uρf =
∑
α∈Nn

ρ|α|f̃(α)hα.

5.2 A Robust Extension of the Gaussian Correlation Inequality
We start by making a crucial observation regarding Royen’s proof of the Gaussian correlation
inequality (GCI) [23]. Recall that the GCI states that if K and L are the indicator functions
of two centrally symmetric (i.e. K(x) = 1 implies K(−x) = 1), convex sets, then they are
non-negatively correlated under the Gaussian measure; that is,

E
x∼N (0,1)n

[K(x)L(x)]− E
x∼N (0,1)n

[K(x)] E
y∼N (0,1)n

[K(y)] ≥ 0.

In order to prove this, Royen interpolates between E[K] E[L] and E[KL] via the Ornstein-
Uhlenbeck semigroup, and shows that this interpolation is monotone nondecreasing; indeed,
note that

〈U1K,L〉 = E
x∼N (0,1)n

[K(x)L(x)], and that 〈U0K,L〉 E
x∼N (0,1)n

[K(x)] E
y∼N (0,1)n

[K(y)].

Thus, Royen’s main result can be interpreted as follows (we refer the interested reader to
a simplified exposition of Royen’s proof by Latała and Matlak [20] for further details):

I Proposition 20 (Royen’s Theorem, [23]). Let Fcsc ⊆ L2 (Rn, γ) be the family of indicators
of centrally symmetric, convex sets, and let (Uρ)ρ∈[0,1] be the Ornstein-Uhlenbeck semigroup.
Then for K,L ∈ Fcsc, we have

∂

∂ρ
〈UρK,L〉 ≥ 0 for all 0 < ρ < 1.

In particular, Fcsc is monotone compatible with (Uρ)ρ∈[0,1].

Recall that we are parametrizing the Ornstein-Uhlenbeck semigroup by ρ ∈ [0, 1] where
ρ = e−t for t ∈ [0,∞); see the discussion following Definition 4. We can now state our main
result:

I Theorem 21 (Quantitative GCI). Let Fcsc ⊆ L2 (Rn, γ) be the family of indicators of
centrally symmetric, convex sets. Then for K,L ∈ Fcsc, we have

E[KL]−E[K] E[L] ≥ 1
C
· Φ

∑
|α|=2

K̃(α)L̃(α)


where recall from Equation (2) that Φ : [0, 1]→ [0, 1] is Φ(x) = min

{
x, x

log2(1/x)

}
and C > 0

is a universal constant.
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Proof. Consider the orthogonal decomposition

L2(Rn, γ) =
∞⊕
i=0
Wi

where Wi = span {hα : |α| = i}; the orthogonality of this decomposition follows from Propo-
sition 16. From Proposition 19, it follows that this decomposition is in fact a chaos decompo-
sition (recall Definition 6) with respect to the Ornstein-Uhlenbeck semigroup (Uρ)ρ∈[0,1].

If K ∈ Fcsc, then K(x) = K(−x) as K is the indicator of a centrally symmetric set; in
other words, K is an even function. Consequently, its Hermite expansion is given by

K =
∞⊕
i=0
|α|=2i

hα.

Furthermore, from Proposition 17, we have that

‖K‖2 =
∑
α∈Nn

K̃(α)2 = E
[
K2] ≤ 1.

It follows that the hypotheses of Theorem 14 hold for Fcsc with j∗ = 2; consequently, for
K,L ∈ Fcsc we have

〈U1K,L〉 − 〈U0K,L〉 = E[KL]−E[K] E[L] ≥ 1
C
· Φ

∑
|α|=2

K̃(α)L̃(α)

 ,

which completes the proof of the theorem. J

It is natural to ask whether Theorem 21 can be extended to a broader class of functions
than 0/1-valued indicator functions of centrally symmetric, convex sets Fcsc. Indeed, the
GCI implies the monotone compatibility of centrally symmetric, quasiconcave4, non-negative
functions (which is a larger family of functions than Fcsc) with the Ornstein-Uhlenbeck
semigroup. This allows us to once again use Theorem 14 to obtain a quantitative correlation
inequality for this family of functions; we defer this to the full version of this paper.

5.3 Interpreting Theorem 21
Recall Talagrand’s correlation inequality [26]: If f, g : {0, 1}n → {0, 1} are monotone Boolean
functions, then

E[fg]−E[f ] E[g] ≥ 1
C
·Ψ
(

n∑
i=1

f̂(i)ĝ(i)
)

where Ψ(x) = x
log(e/x) . However (see Chapter 2 of [21]), for monotone f : {+1,−1}n →

{+1,−1}, we have f̂(i) = Inf i[f ] where

Inf i[f ] := Pr
x∼{+1,−1}n

[
f(x) 6= f

(
x⊕i

)]
.

4 A function f : Rn → R is quasiconcave if for all λ ∈ [0, 1] we have f (λx+ (1− λ)y) ≥ min {f(x), f(y)}.
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In other words, the degree-1 Fourier coefficient f̂(i) captures the “dependence” of f on its
ith coordinate, and the quantity

∑n
i=1 f̂(i)ĝ(i) captures the extent to which “both f and g

simultaneously depend on the same coordinates”. This intuitively explains why it is plausible
for such a quantity to appear in Talagrand’s inequality.

Inspired by the resemblance between our quantitative Gaussian correlation inequality and
Talagrand’s correlation inequality, we believe that the (negated) degree-2 Hermite coefficients
of centrally symmetric, convex sets over Gaussian space are natural analogues of the degree-1
Fourier coefficients (i.e. the coordinate influences) of monotone Boolean functions. However,
while functions on the Boolean hypercube have influences only along n “directions”, there
are infinitely many directions over Gaussian space. We make the following definition:

I Definition 22 (Influences for Fcsc). Let K ⊆ Rn be a centrally symmetric, convex set.
Given a unit vector v ∈ Sn−1, we define the influence of K along direction v as

Infv[K] := −K̃(2v) = E
x∼N (0,1)n

[−K(x)h2(v · x)]

where h2(x) = x2−1√
2 is the degree-2 univariate Hermite polynomial (see Section 11.2 of [21]).

It follows from the proof of Theorem 14 that the quantity
∑
|α|=2 K̃(α)L̃(α) forK,L ∈ Fcsc

is non-negative. In fact more is true: if K is a centrally symmetric, convex set, then each
Infei [K] is itself non-negative. The proof of the following proposition can be found in the
appendix to the full version of this paper.

I Proposition 23 (Influences are non-negative). If K is a centrally symmetric, convex set,
then Infv[K] ≥ 0 for all v ∈ Sn−1, with equality holding if and only if K(x) = K(y) whenever
xv⊥ = yv⊥ (the projection of x orthogonal to v coincides with that of y), except possibly on a
set of measure zero.

It is natural to define the “total influence of K” to be Inf [K] :=
∑n
i=1 Infei [K]; we

observe that this quantity is given by

Inf [K] = −
n∑
i=1

K̃(2ei) =
Ex∼N (0,1)n

[
−f(x) · (‖x‖2 − n)

]
√

2
,

and hence it is invariant under orthogonal transformations (i.e. any orthonormal basis
v1, . . . , vn could have been used in place of e1, . . . , en in defining Inf [K]).

The above discussion suggests that the notion of “influences” for centrally symmetric,
convex sets in Gaussian space proposed in Definition 22 is indeed “influence-like”. A
forthcoming paper [5] will further explore this notion.

5.4 On the Tightness of Theorem 21
In [26], Talagrand gave the following family of example functions for which Equation (1) is
tight up to constant factors: let f, g : {0, 1}n → {0, 1} be given by

f(x) =
{

1
∑
i xi ≥ n− k

0 otherwise
, and g(x) =

{
1
∑
i xi > k

0 otherwise

where k ≤ n/2. Writing ε to denote E[f ], we have ε2 = ε− ε(1− ε) = E[fg]−E[f ] E[g], and
it can be shown that Ψ

(∑n
i=1 f̂(i)ĝ(i)

)
= Θ(ε2), so Equation (1) is tight up to constant

factors. We note that in this example f and g are the indicator functions of Hamming balls,
and that f ⊆ g (i.e. f(x) = 1 implies that g(x) = 1).
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Motivated by this example, we consider an analogous pair of functions in the setting of
centrally symmetric, convex sets over Gaussian space, where we use origin-centered balls of
different radii in place of Hamming balls. In particular, let K,L ∈ Fcsc be n-dimensional
origin-centered balls of radii r1 and r2 respectively such that r1 < r2 with

E[K] = ε and E[L] = 1− ε

where the expectations are taken with respect to the n-dimensional Gaussian measure.
As K ⊆ L, we have E[KL] − E[K] E[L] = ε − ε(1 − ε) = ε2. Since K(x1, . . . , xn) =
K(x1, . . . , xi−1,−xi, xi+1, . . . , xn) for all x ∈ Rn and all i ∈ [n], it easily follows that
K̃(ei+ej) = E[K(x)xixj ] = 0 for all i 6= j, and the same is true for L. Furthermore, as K,L
are rotationally invariant, we have K̃(2ei) = K̃(2ej) and L̃(2ei) = L̃(2ej) for all i, j ∈ [n]. It
follows that

−
∑
|α=2|

K̃(α) = −
n∑
i=1

K̃(2ei) = 1√
2

E
x∼N (0,1)n

[
K(x)

(
n− ‖x‖2

)]
.

An application of the Berry-Esseen Central Limit Theorem (see [2, 6] or, for example,
Section 11.5 of [21]) together with standard anti-concentration bounds on Gaussian tails (we
omit the details here; a complete calculation can be found in the full version of this paper)
gives that

E
x∼N (0,1)n

[
K(x)

(
n− ‖x‖2

)]
= Ω

(
ε

√
n ln

(
2
ε

))
.

A similar calculation for L gives that −L̃(2ei) = Ω
(
ε
√

1
n ln

( 2
ε

))
, from which it follows that∑n

i=1 K̃(2ei)L̃(2ei) = Ω
(
ε2 ln

( 2
ε

))
. Recalling Equation (2), we get that for small enough ε,

the quantity

Φ

∑
|α|=2

K̃(α)L̃(α)

 = Ω
(

ε2

log(2/ε)

)
,

which lets us conclude that Theorem 21 is tight to within a logarithmic factor.

6 Generalizing Talagrand’s Inequality to Arbitrary Finite Product
Domains

The main result of this section, Theorem 29, is an extension of Talagrand’s correlation
inequality [26] to real-valued functions on general, finite, product spaces. (Recall that
Talagrand’s inequality applies only to Boolean-valued functions on the domain {0, 1}n under
the uniform distribution.)

6.1 Harmonic Analysis over Finite Product Spaces
Our notation and terminology presented in this subsection follows Chapter 8 of [21]. We use
multi-index notation for α ∈ Nn as defined in Equation (9).

Let (Ω, π) be a finite probability space with |Ω| = m ≥ 2, where we always assume
that the distribution π over Ω has full support (i.e. π(ω) > 0 for every ω ∈ Ω). We write
L2(Ωn, π⊗n) for the real inner product space of functions f : Ωn → R, with inner product
〈f, g〉 := Ex∼π⊗n [f(x)g(x)].
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It is easy to see that there exists an orthonormal basis for the inner product space
L2(Ω, π), i.e. a set of functions φ0, . . . , φm−1 : Ω → R, with φ0 = 1, that are orthonormal
with respect to π. Moreover, such a basis extends to an orthonormal basis for L2(Ωn, π⊗n)
by a straightforward n-fold product construction: given a multi-index α ∈ Nn<m, if we define
φα ∈ L2(Ωn, π⊗n) as

φα(x) :=
n∏
i=1

φαi(xi),

then the collection (φα)α∈Nn<m is an orthonormal basis for L2(Ωn, π⊗n) (see Proposition 8.13
of [21]). So every function f : Ωn → R has a decomposition

f =
∑

α∈Nn<m

f̂(α)φα. (10)

This can be thought of as a “Fourier decomposition” for f , in that it satisfies both Parseval’s
and Plancharel’s identities (see Proposition 8.16 of [21]). We now proceed to define a noise
operator for finite product spaces.

I Definition 24 (Noise operator for finite product spaces). Fix a finite product probability
space L2(Ωn, π⊗n). For ρ ∈ [0, 1] we define the noise operator for L2(Ωn, π⊗n) as the linear
operator

Tρf(x) := E
y∼Nρ(x)

[f(y)],

where “y ∼ Nρ(x)” means that y ∈ Ωn is randomly chosen as follows: for each i ∈ [n], with
probability ρ set yi to be xi and with the remaining 1− ρ probability set yi by independently
making a draw from π.

I Proposition 25 (Proposition 8.28 of [21])). We have Tρf =
∑
α ρ

#αf̂(α)φα.

6.2 A Quantitative Correlation Inequality for Finite Product Domains
Throughout this subsection, let Ω = {0, 1, . . . ,m − 1} endowed with the natural ordering
(though any m-element totally ordered set would do). We will consider monotone functions
on (Ωn, π⊗); while our results hold in the more general setting of functions on (Ωn,⊗ni=1πi),
we stick to the setting of L2(Ωn, π⊗n) for ease of exposition.

In order to appeal to Theorem 14, we must first show that the family of monotone
(nondecreasing) functions on Ωn is monotone compatible with the Bonami–Beckner noise
operator (see Definition 24). To this end, we define noise operators that act on each coordinate
of the input:

I Definition 26 (coordinate-wise noise operators). Let Ti
ρ be the operator on functions

f : Ωn → R defined by

Tiρf(x) = E
y∼Nρ(xi)

[f(x1, . . . ,y, . . . , xn)],

and define Tρ1,...,ρnf := T1
ρ1
◦ T2

ρ2
◦ . . . ◦ Tnρnf .

This is well-defined as the operators Tiρi and Tjρj commute.

I Lemma 27. Let Ω = {0, 1, . . . ,m− 1} and let f : Ωn → R be a monotone function. Then
Tiρf : Ωn → R is a monotone function.
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Proof. Suppose x, y ∈ Ωn are such that xi ≤ yi for all i ∈ [n]. We wish to show that
Tiρf(x) ≤ Tiρf(y), which is equivalent to showing

E
z∼Nρ(xi)

[
f
(
xi 7→z

)]
≤ E

z∼Nρ(yi)

[
f
(
yi 7→z

)]
.

Indeed, because of the monotonicity of f , via the natural coupling we have

E
z∼Nρ(xi)

[
f
(
xi 7→z

)]
= δf(x) + (1− δ) E

z∼Ωn

[
f
(
xi 7→z

)]
≤ δf(y) + (1− δ) E

z∼Ωn

[
f
(
yi 7→z

)]
= E

z∼Nρ(yi)

[
f
(
yi 7→z

)]
. J

I Lemma 28. Let Ω = {0, 1, . . . ,m− 1} and let f, g : Ωn → R be monotone functions. Then
〈Tρf, g〉 is nondecreasing in ρ ∈ [0, 1].

Proof. We have

〈Tρ1,...,ρnf, g〉 = 〈Tρ,1,...,1f, T1,ρ2,...,ρng〉 =
〈
T1
ρ1
f, h
〉

where h := T1,ρ2,...,ρng. It follows from a repeated application of Lemma 27 that h is
monotone. Now, note that〈

T1
ρ1
f, h
〉

= f̂
(
0̄
)
· ĥ
(
0̄
)

+
∑
α1>0

ρ1f̂(α)ĥ(α) +
∑
0̄ 6=α
α1=0

f̂(α)ĥ(α)

where 0̄ = (0, . . . , 0). By Cheybshev’s order inequality, we know that
〈
T1

1f, h
〉
≥
〈
T1

0f, h
〉

=
f̂
(
0̄
)
· ĥ
(
0̄
)

+
∑

0̄ 6=α,α1=0 f̂(α)ĥ(α). From the above expression, we have:

∂

∂ρ1

〈
T1
ρ1
f, h
〉

=
∑
α1>0

f̂(α)ĥ(α)

which must be nonnegative since
〈
T1

1f, h
〉
≥
〈
T1

0f, h
〉
, and so we can conclude that

〈
T1
ρ1
f, h
〉

is nondecreasing in ρ1. The result then follows by repeating this for each coordinate. J

Let Fmon ⊆ L2(Ωn, π⊗n) be the family of monotone functions f : Ωn → R. Then
Lemma 28 shows that Fmon is monotone compatible with the Bonami–Beckner noise operator.
We can now prove our Talagrand-analogue for monotone functions over Ωn:

I Theorem 29. Let Ω = {0, 1, . . . ,m− 1}n and let Fmon ⊆ L2(Ωn, π⊗n) denote the family
of monotone functions on Ωn such that ‖f‖ ≤ 1 for all f ∈ Fmon. Then for f, g ∈ Fmon, we
have

E[fg]−E[f ] E[g] ≥ 1
C
· Φ

 ∑
#α=1

f̂(α)ĝ(α)


where recall from Equation (2) that Φ : [0, 1]→ [0, 1] is Φ(x) = min

{
x, x

log2(1/x)

}
and C > 0

is a universal constant.

Proof. Consider the orthogonal decomposition

L2(Ωn, π⊗n) =
n⊕
i=0
Wi

where Wi = span {φα : #α = i}; the orthogonality of this decomposition follows from the
orthonormality of (φα)α∈Nn<m . Furthermore, this decomposition is a chaos decomposition
with respect to the Bonami–Beckner operator (Tρ)ρ∈[0,1]). It follows that the hypotheses of
Theorem 14 hold for Fmon with j∗ = 1, from which the result follows. J
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Theorem 29 can be interpreted in terms of the Efron–Stein decomposition of a function
(see Chapter 8 of [21]); a complete discussion of this can be found in the full version of this
paper.

6.3 Comparison with Keller’s Inequality for the p-biased Hypercube
In this subsection, we restrict our attention to the p-biased hypercube, i.e. {+1,−1}np :=
({+1,−1}n, π⊗np ) where πp(−1) = p and πp(+1) = 1 − p. In this setting our Theorem 29
generalizes Talagrand’s inequality in two ways: it holds for real-valued monotone functions on
{+1,−1}n that have 2-norm at most 1 (rather than just monotone Boolean functions), and it
holds for any p (as opposed to just p = 1/2). Keller [15, 16] has earlier given a generalization
of Talagrand’s inequality that holds for general p and for real-valued monotone functions
with ∞-norm at most 1:

I Theorem 30 (Theorem 7 of [15]; see also [17] for a slightly weaker version). Let
f, g ∈ L2({0, 1}n, π⊗np ) be monotone functions such that for all x ∈ {+1,−1}n, we have
|f(x)|, |g(x)| ≤ 1. Then

E[fg]−E[f ] E[g] ≥ 1
C
·H(p) ·Ψ

(
n∑
i=1

f̂p(i)ĝp(i)
)

where f̂p(i) is the p-biased degree-1 Fourier coefficient on coordinate i, Ψ : [0, 1]→ [0, 1] is
given by Ψ(x) = x

log(e/x) as in Section 1.1, C > 0 is a universal constant, and H : [0, 1]→ [0, 1]
is the binary entropy function H(x) = −x log x− (1− x) log(1− x).

Comparing Theorem 29 to Theorem 30, we see that the latter has an extra factor of
H(p), whereas the former shows that in fact no dependence on p is necessary (but the former
has an extra factor of 1/log

(
1/
∑
i f̂p(i)ĝp(i)

)
). Theorem 29 can be significantly stronger

than Theorem 30 in a range of natural settings because of these differences. We show that
for every ω(1)/n ≤ p ≤ 1/2, there is a pair of {+1,−1}-valued functions f, g (depending on
p) such that under the p-biased distribution (i) the quantity E[fg]−E[f ] E[g] is at least an
absolute constant independent of n and p; (ii) the RHS of Theorem 29 is at least an absolute
constant independent of n and p; but (iii) the RHS of Theorem 30 is Θ(p log(1/p)). A proof
can be found in the appendix to the full version of this paper.
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Shrinkage of Decision Lists and DNF Formulas
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Abstract

We establish nearly tight bounds on the expected shrinkage of decision lists and DNF formulas
under the p-random restriction Rp for all values of p ∈ [0, 1]. For a function f with domain {0, 1}n,
let DL(f) denote the minimum size of a decision list that computes f . We show that

E[ DL(f�Rp) ] ≤ DL(f)log2/(1−p)( 1+p
1−p

)
.

For example, this bound is
√

DL(f) when p =
√

5−2 ≈ 0.24. For Boolean functions f , we obtain the
same shrinkage bound with respect to DNF formula size plus 1 (i.e., replacing DL(·) with DNF(·) + 1
on both sides of the inequality).
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1 Introduction

Random restrictions are a powerful tool in circuit complexity and the analysis of Boolean
functions. A restriction is a partial assignment to the input bits of a function f on the
hypercube {0, 1}n. For a parameter p ∈ [0, 1], the p-random restriction Rp independently
leaves each input bit free with probability p and otherwise assigns it to 0 or 1 with equal
probability. We denote by f�Rp the function obtained from f by restricting its inputs to the
subcube of {0, 1}n that correspond to Rp.

Random restrictions are known to reduce the complexity of functions in simple models of
computations, such as decision trees (DT), decision lists (DL), DNF formulas (DNF), and
DeMorgan formulas (L); the symbols in parentheses are notation for the corresponding size
measures (see Section 2 for definitions). With respect to DeMorgan formula leaf-size L, it
is easy to see that L(f�Rp) has expectation at most p · L(f). (This follows by linearity
of expectation from the observation that each input literal in a minimal formula for f is
eliminated by Rp with probability p.) Subbotovskaya [25] was the first to show that the
expected shrinkage factor is in fact significantly smaller than p (she showed an upper bound
O(p3/2) for p ≥ 1/L(f)2/3). A subsequent line of results [1, 14, 19, 11, 26], culminating in an
p2−o(1) bound of Håstad [11] and a low-order improvement by Tal [26], eventually established
an asymptotically tight bound:

I Theorem 1 (Shrinkage of DeMorgan formulas [26]). For all Boolean functions f ,

E[ L(f�Rp) ] = O( p2L(f) + p
√
L(f) ).
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The constant 2 in the exponent p in Theorem 1 is known as the “shrinkage exponent”
of DeMorgan formulas. Shrinkage under Rp has also been studied for restricted types of
formulas, namely read-once, monotone, and bounded-depth (AC0). It was shown in [5, 13]
that read-once formulas have shrinkage exponent log√5−1(2) ≈ 3.27. The shrinkage exponent
of monotone formulas is between 2 and log√5−1(2) and conjectured to equal the latter;
determining the exact constant is a longstanding question (Open Problem 4). In the AC0

setting (bounded-depth formulas with unbounded and and or gates), it is known that depth-d
formulas with fan-in m shrink to expected size O(1) under Rp when p is O(1/ logm)d−1 [22].
However, it is open to determine the shrinkage rate for larger p, particularly in the “mild
random restriction” regime where p is Ω(1) or 1− o(1) (Open Question 2).

The results of this paper give nearly tight bounds on the shrinkage under Rp of depth-2
formulas (also known as DNF and CNF formulas), as well as the more general computational
model of decision lists. Before stating our main result, it is instructive to first consider
shrinkage in the simpler model of decision trees. For a function f on the hypercube (with
domain {0, 1}n and arbitrary range), we denote by DT(f) the minimum number of leaves
(i.e., output nodes) in a decision tree that computes f . The following bound is shown by
straightforward induction on DT(f). (I believe this bound is probably folklore, but could
not find a reference so have included the short proof in Section 3.1.)

I Theorem 2 (Shrinkage of decision trees). For all functions f on the hypercube,

E[ DT(f�Rp) ] ≤ DT(f)log2(1+p).

This bound holds with equality when f is a parity function.

Decision lists are a natural computational model that has been studied in many contexts
[3, 4, 16, 9, 21]. A decision list of size m is a sequence L = ((C1, b1), . . . , (Cm, bm)) where
b1, . . . , bm are arbitrary output values and C1, . . . , Cm are conjunctive clauses (ands of
literals) such that C1 ∨ · · · ∨Cm is a tautology.1 L computes a function on the hypercube as
follows: on input x ∈ {0, 1}n, the output is bi for the first index i ∈ [m] such that Ci(x) is
satisfied. We denote by DL(f) the minimum size of a decision list that computes f .

Decision lists are a generalization decision trees: every decision tree is equivalent to a
decision list of the same size, and thus DL(f) ≤ DT(f) for all functions f on the hypercube.2
Boolean decision lists, in which b1, . . . , bm ∈ {0, 1}, are moreover a generalization of both
DNF and CNF formulas. In particular, DNF formulas are the special case where b1 = · · · =
bm−1 = 1 and bm = 0. Following custom, we count the size of a DNF formula as m − 1
instead of m, and thus DL(f) ≤ DNF(f) + 1 for all Boolean functions f .

Despite decision lists and DNF/CNF formulas being more complex computational models
than decision trees, our main result shows that they shrink at a similar rate under Rp.

1 In other words, every input x ∈ {0, 1}n satisfies at least one of C1, . . . , Cm. Without loss of generality,
Cm may be chosen as the empty (always true) conjunctive clause >. We allow C1 ∨ · · · ∨ Cm to be an
arbitrary tautology in order to more naturally define the class of orthogonal decision lists later on in
Section 3.3.

2 The name “decision list” elsewhere commonly refers to (what we call) width-1 decision trees, in which
each clause is a single literal (i.e., an input variable xi or its negation xi). Whereas unbounded-width
decision lists are a generalization decision trees, width-1 decision lists are instead a special case.
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I Theorem 3 (Shrinkage of decision lists and DNF formulas). For all functions f on the
hypercube,

E[ DL(f�Rp) ] ≤ DL(f)γ(p) where γ(p) := log 2
1−p

( 1+p
1−p ).

If f is Boolean, then also E[ DNF(f�Rp) + 1 ] ≤ (DNF(f) + 1)γ(p) (and similarly for
CNF(·) + 1).

Figure 1 Plots of γ(p) := log 2
1−p

( 1+p
1−p ) (blue) and log2(1 + p) (red).

Note that γ : [0, 1] → [0, 1] is an increasing function with γ(0) = 0 and γ(1) = 1 (see
Figure 1). The bound of Theorem 3 is thus nontrivial for all values of p ∈ (0, 1). This bound
is moreover close to optimal: log2(1 + p) is a lower bound on the best possible function γ(p)
(Section 3.4). As corollaries, we obtain additional bounds ODL(f)γ(p) and wODL(f)γ(p) on
the shrinkage of orthogonal and weakly orthogonal decision lists (Corollary 14), as well as
(L2(f) + 1)γ(2p) for depth-2 formula leaf-size (Corollary 18).

Theorem 3 yields the following bounds for particular settings of p in terms of m = DL(f):

E[ DL(f�Rp) ] ≤



2 for p = O( 1
logm ),

√
m for p =

√
5− 2 ≈ 0.24,

m/2 for p = 1−O( log logm
logm ),

m− 1 for p = 1−O( logm
m ).

For small p = O(1/ logm), a variant of Håstad’s Switching Lemma (discussed below) actually
implies a stronger inequality E[ DT(f�Rp) ] ≤ 2 with DT in place of DL (Corollary 6). The-
orem 3 is mainly interesting for larger values of p. In particular, the “mild random restriction”
regime when p is Ω(1) or 1− o(1) has important applications in pseudorandomness [8, 20],
DNF sparsification [7, 17] and hypercontractivity [18].

1.1 Switching lemmas and size measures vs. width/depth measures

We have so far discussed the shrinkage of various complexity measures under the p-random
restriction Rp. The switching lemmas stated below can be viewed as apples-to-oranges
shrinkage results that bound one complexity measure on f�Rp in terms of another complexity
measure on f . Here there is a useful distinction between “size measures” DT, DL, DNF
and their corresponding “width/depth measures”, denoted by DTdepth, DLwidth, DNFwidth.
Width/depth measures are typically related to the logarithm of size measures: functions

ITCS 2021
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with size complexity m are approximable by (or in some cases equivalent to) functions with
width/depth complexity O(logm). Håstad’s Switching Lemma [10] gives a tail bound on the
decision tree size of f�Rp in terms of the decision list width of f .3

I Theorem 4 (Switching Lemma [10]). For all functions f on the hypercube and t ∈ N,

P[ DTdepth(f�Rp) ≥ t ] ≤ O(p · DLwidth(f))t.

A variant of the Switching Lemma with log DL(f) in place of DLwidth(f) was proved
in [22].

I Theorem 5 (Switching Lemma in terms of decision list size [22]). For every function f on
the hypercube and t ∈ N,

P[ DTdepth(f�Rp) ≥ t ] ≤ O(p · log DL(f))t.

We remark that Theorem 5 follows directly from Theorem 4 for t ≤ O(log DL(f)) (by
the standard width reduction argument), but not for larger t. Obtaining a tail bound for all
t ∈ N is essentially to the following:

I Corollary 6 (Decision tree size of decision lists). For all functions f on {0, 1}n,

E[ DT(f�Rp) ] ≤ 2 and DT(f) ≤ O(2(1−p)n) where p = O(1/ log DL(f)).

As previously mentioned, Corollary 6 strengthen the bound E[ DL(f�Rp) ] ≤ 2 for
p = O(1/ log DL(f)) that follows from Theorem 3 (albeit for p that is a constant factor
smaller). However, note that Corollary 6 is trivial for p above Ω(1/ log DL(f)). A different
switching lemma for large p (even 1 − o(1)) in terms of DNFwidth(f) was introduced by
Segerlind, Buss and Impagliazzo [24] and quantitatively improved by Razborov [20]. It is
unclear if these switching lemmas for “mild random restriction” have analogues in terms of
log DL(f); if so, that might entail a shrinkage bound for DL that is nontrivial for all p ∈ (0, 1),
although potentially weaker than Theorem 3.

Our proof of Theorem 3 involves an application of Jensen’s inequality with respect to a
certain carefully defined probability distribution on the set of clauses in a decision list L.
This distribution is related to (but not identical to) the distribution of the first satisfied
clause of L under a uniform random input. A similar convexity argument appears in the
proof of Theorem 5 in [22]. A second key idea, the notion of “useful indices” of L under
a restriction %, comes from a recent paper of Lovett, Wu and Zhang [17] who proved the
following result as the main lemma in establishing tight bound on the sparsification of
bounded-width decision lists.

I Theorem 7 (Decision list shrinkage in terms of width [17]). For every function f on the
hypercube,

E[ DL(f�Rp) ] ≤
(

4
1− p

)DLwidth(f)
.

Note that our main result, Theorem 3, stands in relation to Theorem 7 just as Theorem
5 does to Theorem 4: in both cases we are essentially replacing DLwidth(f) with log DL(f).

3 In its application to AC0 circuit lower bounds, Theorem 4 is usually stated (more narrowly) in the form
P[ CNFwidth(f�Rp) ≥ t ] ≤ O(p · DNFwidth(f))t

for Boolean functions f . The name “Switching Lemma” refers to the conversion of a DNF formula to a
CNF formula. The more general bound stated in Theorem 4 is implicit in proofs of [10].
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1.2 Other related work

There are different ways to quantify the effect of random restrictions on complexity measures.
Instead of bounding expectation, one may show that shrinkage occurs with high probability.
For DeMorgan formulas, high probability shrinkage results were shown in [23, 15]. Shrinkage
results and switching lemmas have also been studied for random restrictions other than Rp

(see [2]). Very interesting recent work of Filmus, Meir and Tal [6] extends the technique of
Håstad [11] to obtain p2−o(1) factor shrinkage bounds for DeMorgan formulas under a family
of pseudorandom projections that generalize Rp.

2 Preliminaries

Throughout this paper, p is an arbitrary parameter in [0, 1]. All inequalities involving p hold
for all values in [0, 1]. We often use the special case of Jensen’s inequality E[Xc ] ≤ E[X ]c
where X is a nonnegative random variable and c ∈ [0, 1] (in particular, when c is log2(1 + p)
or γ(p)). We write N for the natural numbers {0, 1, 2, . . . }, and for m ∈ N, we write [m] for
{1, . . . ,m}.

2.1 Functions and restrictions on the hypercube

Function on the hypercube refers to any function with domain {0, 1}n where n is a positive
integer. A Boolean function is a function on the hypercube with codomain {0, 1}. (The
parameter n plays no role in most results in this paper, so we suppress its mention whenever
possible.)

A restriction is a partial assignment of Boolean variables x1, . . . , xn to values 0 and 1;
this is formally defined as a function % : {1, . . . , n} → {0, 1, ∗} where %(i) = ∗ signifies that xi
is left free by %. We denote by Stars(%) ⊆ [n] the set of free variables under %. For a function
f on the hypercube {0, 1}n and a restriction %, we denote by f�% the restricted function on
the subcube {0, 1}Stars(%) defined in the obvious way: (f�%)(y) = f(x) where x ∈ {0, 1}n is
the input with xi = yi if i ∈ Stars(%) and xi = %(i) otherwise.

For p ∈ [0, 1], the p-random restriction Rp is the random restriction that independently
leaves each variable xi free with probability p and otherwise sets xi to 0 or 1 with equal
probability. Thus, for any particular restriction %, we have P[ Rp = % ] = p|Stars(%)|((1 −
p)/2)n−|Stars(%)|.

2.2 Complexity measures DL,DT,DNF,CNF and their width/depth
versions

I Definition 8 (DNF formulas). We first define literals, conjunctive clauses, and DNF formulas
over n variables.

A literal is a Boolean variable xi or negated Boolean variable xi where i ∈ {1, . . . , n}.
A conjunctive clause (a.k.a. term) is an expression C of the form `1 ∧ · · · ∧ `w where
`1, . . . , `w are literals on disjoint variables. The parameter w is the width of C; this may
be any nonnegative integer. The conjunctive clause of width zero is denoted by >.
A DNF formula is an expression F of the form C1 ∨ · · · ∨ Cm where C1, . . . , Cm are
conjunctive clauses. The parameter m is the size of F ; this may be any nonnegative
integer. The DNF formula of size 0 is denoted by ⊥. The width of F is defined as the
maximum width of any Ci.
CNF formulas are defined dually (with the roles of ∨ and ∧ exchanged).
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Every literal, conjunctive clause, and DNF formula computes a Boolean function {0, 1}n →
{0, 1} in the usual way.

A DNF formula F is a tautology if it computes the identically 1 function. Note that any
DNF formula that includes the empty conjunctive clause > is a tautology.

I Definition 9 (Decision lists).
A decision list is an expression L of the form ((C1, b1), . . . , (Cm, bm)) where b1, . . . , bm
are arbitrary output values (not necessarily Boolean) and C1, . . . , Cm are conjunctive
clauses such that C1 ∨ · · · ∨ Cm is a tautology. The parameter m is the size of L; this
may be any positive integer. The width of C is defined as the maximum width of any Ci.

A decision list L computes a function {0, 1}n → {b1, . . . , bm} as follows: on input x, the
output is b` where i ∈ [m] is the minimum index such that Ci(x) = 1. (Note that the final
clause Cm may be replaced by > without changing the function computed by L.)

I Definition 10 (Decision trees).
A decision tree is a rooted binary tree T in which each leaf is labeled by an output value
(not necessarily Boolean) and each non-leaf node is labeled by a variable xi, with the
edges to its two children labeled “xi = 0” and “xi = 1”. The size of T is the number
of leaves; this may be any positive integer. The depth of T is the maximum number of
non-leaf nodes on any root-to-leaf branch; this may be any nonnegative integer.

I Definition 11 (Associated complexity measures). For a function f with domain {0, 1}n
(and arbitrary codomain), let

DT(f) := minimum size of a decision tree that computes f,
DL(f) := minimum size of a decision list that computes f,

When f is Boolean, we additionally define

DNF(f) := minimum size of a DNF formula that computes f,
CNF(f) := minimum size of a CNF formula that computes f.

For constant functions 0 and 1, note that DNF(0) = 0 and DNF(1) = 1 according to our
definition, since 0 is computed by the empty DNF formula, while 1 is computed by the DNF
formula with a single empty clause. Also note that CNF(f) = DNF(¬f).

Each of the above size measures has a corresponding width/depth measure. These are
denoted by

DTdepth(f), DLwidth(f), DNFwidth(f), CNFwidth(f).

I Proposition 12 (see [3, 16]). These size measures satisfy the following inequalities for all
Boolean functions:

1 ≤ DL ≤
{

DNF + 1
CNF + 1

}
≤ DNF + CNF ≤ DT.

The corresponding width/depth measures satisfy:

0 ≤ DLwidth ≤


DNFwidth
CNFwidth
d log2(DT) e

 ≤ DTdepth ≤ DNFwidth · CNFwidth.

The above inequalities that involve decision trees and decision lists also apply to non-Boolean
functions on the hypercube.
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We introduce additional computational models later on: (weakly) orthogonal decision
lists in Section 3.3 and AC0 formulas in Section 4.

3 Shrinkage of decision trees and decision lists

We prove Theorems 2 and 3 in Sections 3.1 and 3. We then discuss extensions of our
shrinkage bound to (weakly) orthogonal decision lists in Section 3.3 and tightness of the
bounds Section 3.4.

3.1 Shrinkage of decision trees

Proof of Theorem 2. Let T be a decision tree (with arbitrary output values). We must
show that

E[ size(T �Rp) ] ≤ size(T )log2(1+p).

We argue by induction of the size of T . The inequality is trivial in the base case that T has
size 1.

Assume T has size m ≥ 2. Then T has the form “If xi = 0 then T0 else T1” where T0, T1
are decision trees of size m0,m1 ≥ 1 with m0 +m1 = m. Without loss of generality, T0 and
T1 never query xi. We have

E[ size(T �Rp) ] = pE
[

size(T �Rp)
∣∣ Rp(xi) = ∗

]
+ 1− p

2

(
E
[

size(T0�Rp)
∣∣ Rp(xi) = 0

]
+E

[
size(T1�Rp)

∣∣ Rp(xi) = 1
])

= 1 + p

2

(
E[ size(T0�Rp) ] +E[ size(T1�Rp) ]

)
≤ 1 + p

2

(
(m0)log2(1+p) + (m1)log2(1+p)

)
(induction hypothesis)

≤ (1 + p)
(
m

2

)log2(1+p)
(Jensen’s inequality)

= mlog2(1+p).

As for tightness of the bound: If f is a parity function f(x1, . . . , xk) = x1⊕ · · ·⊕xk, then
we have DT(f) = 2k and

E[ DT(f�Rp) ] = E[ 2Bin(k,p) ] =
k∑
i=0

2iP[ Bin(k, p) = i ]

=
k∑
i=0

(
k

i

)
(2p)i(1− p)k−i = (1 + p)k = DT(f)log2(1+p).J

3.2 Shrinkage of decision lists

We now prove our main result on the shrinkage of decision lists and DNF formulas.

Proof of Theorem 3. Let f be any function on the hypercube and let p ∈ [0, 1]. (Note:
Neither the hypercube dimension n nor the nature of output values of f play no role in our
analysis.)
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Let L = ((C1, b1), . . . , (Cm, bm)) be a decision list of minimum size that computes f , that
is, with m = DL(f). For ` ∈ [m], let |C`| denote the width of the clause C` (i.e., the number
of literals in C`). Without loss of generality, we have |C1|, . . . , |Cm−1| ≥ 1 and |Cm| = 0 (i.e.,
Cm is the empty clause >).

Following Lovett, Wu and Zhang [17], for a restriction %, we define the set U(%) ⊆ [m] of
useful indices of L under % by

U(%) := {` ∈ [m] : ∃ x consistent with % s.t. C`(x) = 1 and C1(x) = · · · = C`−1(x) = 0}.

If U(%) = {`1, . . . , `t} where 1 ≤ `1 < · · · < `t ≤ m, then the restricted function f�% is
computed by the decision list L�% defined by

L�% := ((C`1�%, b`1), . . . , (C`t�%, b`t))

where C`i
�% is the sub-clause of C`i

on the variables left unrestricted by %. (Note that
C`1 ∨ · · · ∨ C`t is a tautology, so L�% is indeed a decision list.) Thus, we have

DL(f�%) ≤ |U(%)|. (1)

For example, suppose m = 4 and

C1 = x1 ∧ x3, C2 = x1 ∧ x4, C3 = x2 ∧ x3, C4 = >.

For %1 := {x1 7→ 1} (the restriction fixing x1 to 1 and leaving other variables free), we
have

U(%1) = {1, 3, 4}, L�%1 = ((x3, b1), (x2 ∧ x3, b3), (>, b4)).

For %2 := {x1 7→ 1, x2 7→ 1}, we have

U(%2) = {1, 3}, L�%2 = ((x3, b1), (x3, b3)).

In particular, the final clause C4 is not useful under %2 (since any input consistent with
%2 satisfies C1 or C3).

Now comes a key definition: let µ = (µ1, . . . , µm) be the probability density vector
(defining a probability distribution on [m])

µ` := P
%∼Rp

[ max(U(%)) = ` and C`�% ≡ 1 ] for ` ∈ [m− 1],

µm := P
%∼Rp

[ max(U(%)) = m or Cmax(U(%))�% 6≡ 1 ].

Since events max(U(%)) = ` are mutually exclusive, clearly we have µ1 + · · ·+ µm = 1.

Note that max(U(%)) = ` does not imply C`�% ≡ 1, that is, µ` does not necessarily equal
P%∼Rp

[ max(U(%)) = ` ]. This is illustrated by the restriction %2 in the above example,
for which we have max(U(%2)) = 3, yet C3�%2 = x3 6≡ 1. Restrictions %1 and %2 both
contribute to probability mass µ4: in the case of %1, this is because max(U(%1)) = 4,
and in the case of %2, this is because Cmax(U(%2))�%2 6≡ 1.

For each ` ∈ [m], we have µ` ≤ P[ C`�% ≡ 1 ] = ((1− p)/2)|C`| and therefore

|C`| ≤ log2/(1−p)(1/µ`). (2)
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We require one more definition. For a restriction % and a useful index ` ∈ U(%), let %(`) be
the restriction obtained by augmenting % by the unique satisfying assignment for the clause
C`. That is, %(`) fixes a variable xi to a ∈ {0, 1} if, and only if, % fixes xi to a or xi = a in
the satisfying assignment to C`.

As in proofs of the Switching Lemma, we will use the fact that

P[ Rp = % ]
P[ Rp = %(`) ]

=
(

2p
1− p

)|Stars(%)∩Vars(C`)|
(3)

since %(`) has exactly |Stars(%) ∩Vars(C`)| fewer unrestricted variables (“stars”) than %.

As observed in [17], for every ` ∈ U(%), we have U(%(`)) = U(%) ∩ [`] and therefore

max(U(%(`))) = ` and C`�%
(`) ≡ 1. (4)

Thus, %(`) contributes to the probability mass µ`.

As a consequence of (3) and (4), we claim that for all ` ∈ [m],

P
%∼Rp

[ ` ∈ U(%) ] ≤ µ`
(

1 + p

1− p

)|C`|

. (5)

In the case ` = m, this follows from m ∈ U(%)⇒ max(U(%)) = m. For ` ∈ [m− 1], this is
shown as follows:

P
%∼Rp

[ ` ∈ U(%) ]

=
∑

S⊆Vars(C`)

P
%∼Rp

[ ` ∈ U(%) and Stars(%) ∩Vars(C`) = S ]

(4)
≤

∑
S⊆Vars(C`)

P
%∼Rp

[ ` = max(U(%(`))) and C`�%(`) ≡ 1 and Stars(%) ∩Vars(C`) = S ]

=
∑

S⊆Vars(C`)

∑
% : `=max(U(%(`))) and C`�%(`)≡1 and Stars(%)∩Vars(C`)=S

P[ Rp = % ]

=
∑

S⊆Vars(C`)

∑
σ : `=max(U(σ)) and C`�σ≡1

∑
% : %(`)=σ and Stars(%)∩Vars(C`)=S

P[ Rp = % ]

(3)=
∑

S⊆Vars(C`)

∑
σ : `=max(U(σ)) and C`�σ≡1

∑
% : %(`)=σ, Stars(%)∩Vars(C`)=S

(
2p

1− p

)|S|
P[ Rp = σ ]

=
∑

S⊆Vars(C`)

(
2p

1− p

)|S| ∑
σ : `=max(U(σ)), C`�σ≡1

P[ Rp = σ ] (% is determined by σ and S)

= µ`
∑

S⊆Vars(C`)

(
2p

1− p

)|S|
(definition of µ`)

= µ`

(
1 + p

1− p

)|C`|

(binomial expansion of (1 + 2p
1−p )|C`|).

Finally, we obtain the shrinkage bound of Theorem 3 by the following calculation, which
uses Jensen’s inequality in addition to the above observations:
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E
%∼Rp

[ DL(f�%) ]
(1)
≤ E

%∼Rp

[ |U(%)| ] =
∑
`∈[m]

P
%∼Rp

[ ` ∈ U(%) ]

(5)=
∑
`∈[m]

µ`

(
1 + p

1− p

)|C`|

(2)
≤
∑
`∈[m]

µ`

(
1 + p

1− p

)log2/(1−p)(1/µ`)

= E
`∼µ

[ (
1
µ`

)γ(p) ]
(def. of γ(p) = log 2

1−p
( 1+p

1−p ))

≤
(
E
`∼µ

[
1
µ`

])γ(p)

(Jensen’s inequality)

= mγ(p).

Since m = DL(f), this complete the proof of our bound on decision list shrinkage.

We shall now assume that f is Boolean and C1∨· · ·∨Cm is a minimum size DNF formula
computing f . Let L be the equivalent decision list ((C1, 1), . . . , (Cm, 1), (>, 0)) of size m+ 1.
The shrinkage bound

E[ DNF(f�Rp) + 1 ] ≤ (DNF(f) + 1)γ(p)

now follows from the above analysis, noting that DNF(f�%)+1 ≤ size(L�%) for all restrictions %.
J

3.3 Shrinkage of (weakly) orthogonal decision lists

I Definition 13. Let L = ((C1, b1), . . . , (Cm, bm)) be a decision list. We say that L is

orthogonal if each input x satisfies exactly one of the conjunctive clauses C1, . . . , Cm,
weakly orthogonal if each input x satisfies at most one of C1, . . . , Cm−1.

(Note that if L is weakly orthogonal, then it remains so after replacing Cm with >. In
contrast, an orthogonal decision list has Cm = > if and only if m = 1.)

For a function f on the hypercube, we denote by (w)ODL(f) the minimum size of a
(weakly) orthogonal decision list that computes f . These complexity measures lies in-between
DL and DT:

DL ≤ wODL ≤ ODL ≤ DT.

Our proof of Theorem 3 implies a shrinkage bound for ODL and wODL in the same way
as for DNF + 1.

I Corollary 14. For every function f on the hypercube,

E[ ODL(f�Rp) ] ≤ ODL(f)γ(p) and E[ wODL(f�Rp) ] ≤ wODL(f)γ(p).

This follows from the observation that if L is orthogonal, then so is L�% for any restriction
%, and if L is semi-orthogonal, then L�% is semi-orthogonal after replacing the final conjunctive
clause with >.
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3.4 Lower bound on the optimal γ(p)

What is the optimal function γ(p) that may be chosen in the bound on decision list shrinkage
of Theorem 3? We observe that γ(p) cannot be improved beyond log2(1+p). The lower bound
is given by a (non-Boolean) function f computed by a read-once decision tree of depth k and
size 2k, in which each internal node queries a distinct variable and each leaf returns a distinct
output value. For this f , we have DL(f) = 2k and E[ DL(f�Rp) ] = (1+p)k = DL(f)log2(1+p).
The same function also shows that γ(p) in Corollary 14 cannot improved beyond log2(1 + p).
Since this function is not Boolean, it does not imply a lower bound on DNF shrinkage;
however, a similar bound can be shown asymptotically by considering parity functions.

4 Shrinkage of AC0 formulas

Our bound the shrinkage DNF and CNF formulas implies an (only slightly weaker) bound on
the shrinkage of depth-2 formula leaf-size. We also discuss the relationship between leaf-size
and a related size measure on AC0 formulas, the number of depth-1 gates.

I Definition 15. An AC0 formula is a formula composed unbounded fan-in and and or
gates with inputs labeled by literals. We measure depth by the maximum number of gates
on an input-to-output path; the expression “depth-d formula” refers to an AC0 formula of
depth at most d. As with DeMorgan formulas, the leaf-size of an AC0 formula is the number
of leaves labeled by literals. An alternative size measure is the number of depth-1 gates (that
have only literals as inputs). This number is at least half the total number of gates in any
formula with no (useless) gates of fan-in 1.

For a Boolean function f and d ≥ 2, we denote by Ld(f) the minimum leaf-size of depth-d
formula that computes f , and we denote by Fd(f) the minimum number of depth-1 gates in
a depth-d formula that computes f . Note that Ld(f) = 1 iff f is a literal, and Fd(f) = 1 iff
f is a nonempty conjunctive or disjunctive clause, and Ld(f) = Fd(f) = 0 iff f is constant
(hence computed by a single and or or gate with fan-in zero, which as a formula has no
inputs and no depth-1 gates).

Finally, we denote by F(f) the minimum number of depth-1 gates in an (unbounded
depth, unbounded fan-in) formula that computes f .

Note that F2 = min{DNF, CNF}. Theorem 3 therefore implies:

I Corollary 16. For all Boolean functions f ,

E[ F2(f�Rp) + 1 ] ≤ (F2(f) + 1)γ(p).

Over n-variable Boolean functions, clearly Fd ≤ Ld ≤ n · Fd and F ≤ L ≤ n · F . The
next lemma shows that, under a 1/2-random restriction, Fd shrinks below Ld and F shrinks
below L (independent of n).

I Lemma 17. For all Boolean functions f and d ≥ 2,

E[ Ld(f�R1/2) ] ≤ Fd(f) and E[ L(f�R1/2) ] ≤ F(f).

Proof. Let F be a [depth-d] AC0 formula that computes f using the minimum number of
depth-1 gates. By linearity of expectation, it suffices to show that each depth-1 subformula
of F (i.e., conjunctive or disjunctive clause) has expected leaf-size at most 1 under R1/2.
Indeed, for any k ≥ 1 and p ∈ [0, 1],
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E[ L(andk�Rp) ] = E[ L(ork�Rp) ] =
k∑
j=0

j

(
k

j

)
pj
(

1− p
2

)k−j
= kp

(
1− p

2

)k−1
.

When p = 1
2 , we have k

2
( 3

4
)
k−1 < 1 for all k ≥ 1. J

Using Lemma 17, we obtain the following bound on the shrinkage of depth-2 formula leaf-
size L2, which has a slightly worse exponent γ(2p) compared to γ(p) for F2 in Corollary 16.

I Corollary 18 (Shrinkage of depth-2 formula leaf-size). For all Boolean functions f ,

E[ L2(f�Rp) + 1 ] ≤ (L2(f) + 1)γ(2p).

Proof. Viewing Rp as a composition of R1/2 (first) and R2p (second), we have

E[ L2(f�Rp) + 1 ] = E
%∼R2p

[
E

σ∼R1/2
[ L2((f�%)�σ) + 1 ]

]
≤ E
%∼R2p

[ F2(f�%) + 1 ] (Lemma 17)

= (F2(f) + 1)γ(2p) (Corollary 16)

≤ (L2(f) + 1)γ(2p) (F2 ≤ L2). J

As an additional consequence of Lemma 17, we observe that F has the same expected
shrinkage factor (up to a constant factor) as DeMorgan leaf-size L.

I Corollary 19 (Shrinkage of unbounded fan-in, unbounded depth formulas). For all Boolean
functions f ,

E[ F(f�Rp) ] = O( p2F(f) + p
√
F(f) ).

Proof. Assume p ≤ 1/2, since the bound is trivial otherwise. Viewing Rp as a composition
of R2p (first) and R1/2 (second), we have

E[ F(f�Rp) ] = E
σ∼R1/2

[
E

%∼R2p

[ F((f�σ)�%) ]
]

≤ E
σ∼R1/2

[
E

%∼R2p

[ L((f�σ)�%) ]
]

(F ≤ L)

= E
σ∼R1/2

[
O
(
4p2L(f�σ) + 2p

√
L(f�σ)

) ]
(Theorem 1)

= O
(
p2 E

σ∼R1/2
[ L(f�σ) ] + p

√
E

σ∼R1/2
[ L(f�σ) ]

)
(Jensen’s inequality)

= O( p2F(f) + p
√
F(f) ) (Lemma 17). J



B. Rossman 70:13

5 Open problems

We conclude by mentioning some questions raised by this work.

I Open Problem 1. Determine the optimal function γDL(p) in Theorem 3. We have shown
that

log2(1 + p) = γDT(p) ≤ γDL(p) ≤ log 2
1−p

( 1+p
1−p ).

A simpler problem is to determine the least constant CDL such that E[ DL(f�Rp) ] ≤
O(DL(f)CDL·p). It follows from our bounds that 1

ln 2 = CDT ≤ CDL ≤ 2
ln 2 . The same questions

may be asked with respect to complexity measures ODL, wODL and DNF.

I Open Problem 2. Determine the shrinkage rate of depth-d AC0 formulas for d ≥ 3. We
expect that

E[ Ld(f�Rp) ] ≤ Ld(f)O(p1/(d−1)). (6)

Ideally the constant in this big-O should not depend on d.

We remark that inequality (6) is known to hold for small p = O(1/ logLd(f))d−1, when
the bound is O(1). This can be shown using the (Multi-)Switching Lemma of Håstad [12].
It is also a direct consequence of the following result of the author [22], which generalizes
Corollary 6 (on the decision tree size of decision lists) to AC0 formulas of any depth.

I Theorem 20 (Decision tree size of AC0 formulas [22]). For all functions f : {0, 1}n → {0, 1}
computable by depth-d AC0 formulas with fan-in m (and leaf-size at most nmd−1),

E[ DT(f�Rp) ] ≤ 2 and DT(f) ≤ O(2(1−p)n) where p = O(1/ logm)d−1.

A related question:

I Open Problem 3. Prove a stronger version of Theorem 20 for depth-d AC0 formulas with
m = Fd(f)1/(d−1) (instead of fan-in, which is larger for unbalanced formulas). Such a result
could be helpful in proving the shrinkage bound (6).

Finally, we repeat the longstanding question concerning shrinkage of monotone formulas:

I Open Problem 4. Determine the shrinkage exponent of monotone formulas. That is, find
the maximum constant Γm such that

E[ Lm(f�Rp) ] ≤ O(pΓm−o(1)Lm(f) + 1)

for all monotone Boolean functions f , where Lm is monotone formula leaf-size. It is known
that 2 = ΓDeMorgan ≤ Γm ≤ Γread-once = log√5−1(2) ≈ 3.27, and the second inequality is
believed to be tight [5, 13].
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Abstract
We prove that a sufficiently strong parallel repetition theorem for a special case of multiplayer
(multiprover) games implies super-linear lower bounds for multi-tape Turing machines with advice.
To the best of our knowledge, this is the first connection between parallel repetition and lower
bounds for time complexity and the first major potential implication of a parallel repetition theorem
with more than two players.

Along the way to proving this result, we define and initiate a study of block rigidity, a weakening
of Valiant’s notion of rigidity [36]. While rigidity was originally defined for matrices, or, equivalently,
for (multi-output) linear functions, we extend and study both rigidity and block rigidity for general
(multi-output) functions. Using techniques of Paul, Pippenger, Szemerédi and Trotter [28], we show
that a block-rigid function cannot be computed by multi-tape Turing machines that run in linear
(or slightly super-linear) time, even in the non-uniform setting, where the machine gets an arbitrary
advice tape.

We then describe a class of multiplayer games, such that, a sufficiently strong parallel repetition
theorem for that class of games implies an explicit block-rigid function. The games in that class
have the following property that may be of independent interest: for every random string for the
verifier (which, in particular, determines the vector of queries to the players), there is a unique
correct answer for each of the players, and the verifier accepts if and only if all answers are correct.
We refer to such games as independent games. The theorem that we need is that parallel repetition
reduces the value of games in this class from v to vΩ(n), where n is the number of repetitions.

As another application of block rigidity, we show conditional size-depth tradeoffs for boolean
circuits, where the gates compute arbitrary functions over large sets.
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1 Introduction

We study relations between three seemingly unrelated topics: parallel repetition of multiplayer
games, a variant of Valiant’s notion of rigidity, that we refer to as block rigidity, and proving
super-linear lower bounds for Turing machines with advice.
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71:2 Block Rigidity: Multiplayer Parallel Repetition Implies Lower Bounds for TMs

1.1 Super-Linear Lower Bounds for Turing Machines
Deterministic multi-tape Turing machines are the standard model of computation for defining
time-complexity classes. Lower bounds for the running time of such machines are known by
the time-hierarchy theorem [18], using a diagonalization argument. Moreover, the seminal
work of Paul, Pippenger, Szemerédi and Trotter gives a separation of non-deterministic
linear time from deterministic linear time, for multi-tape Turing machines [28] (using ideas
from [20] and [27]). That is, it shows that DTIME(n) ( NTIME(n). This result has been
slightly improved to give DTIME(n

√
log∗ n) ( NTIME(n

√
log∗ n) [33].

However, the above mentioned lower bounds do not hold in the non-uniform setting,
where the machines are allowed to use arbitrary advice depending on the length of the input.
In the non-uniform setting, no super-linear lower bound is known for the running time of
deterministic multi-tape Turing machines. Moreover, such bounds are not known even for a
multi-output function.

1.2 Block Rigidity
The concept of matrix rigidity was introduced by Valiant as a means to prove super-linear
lower bounds against circuits of logarithmic depth [36]. Since then, it has also found
applications in communication complexity [32] (see also [39, 25]). We extend Valiant’s notion
of rigid matrices to the concept of rigid functions, and further to block-rigid functions. We
believe that these notions are of independent interest. We note that block-rigidity is a weaker
condition than rigidity and hence it may be easier to find explicit block-rigid functions.
Further, our result gives a new application of rigidity.

Over a field F, a matrix A ∈ Fn×n is said to be an (r, s)-rigid matrix if it is not possible
to reduce the rank of A to at most r, by changing at most s entries in each row of A. Valiant
showed that if A ∈ Fn×n is (εn, nε)-rigid for some constant ε > 0, then A is not computable
by a linear-circuit of logarithmic depth and linear size. As in many problems in complexity,
the challenge is to find explicit rigid matrices. By explicit, we mean that a polynomial
time deterministic Turing machine should be able to output a rigid matrix A ∈ Fn×n on
input 1n. The best known bounds on explicit rigid matrices are far from what is needed to
get super-linear circuit lower bounds (see [15, 35, 34, 24, 26, 23, 2, 17, 1, 4]).

We extend the above definition to functions f : {0, 1}n → {0, 1}n, by saying that f is
not an (r, s)-rigid function if there exists a subset X ⊆ {0, 1}n of size at least 2n−r, such
that over X, each output bit of f can be written as a function of some s input bits (see
Definition 7). By a simple counting argument (see Proposition 8), it follows that random
functions are rigid with good probability.

We further extend this definition to what we call block-rigid functions (see Definition 11).
For this, we’ll consider vectors x ∈ {0, 1}nk, which are thought of as composed of k blocks,
each of size n. We say that a function f : {0, 1}nk → {0, 1}nk is not an (r, s)-block-rigid
function, if there exists a subset X ⊆ {0, 1}nk of size at least 2nk−r, such that over X, each
output block of f can be written as a function of some s input blocks.

We conjecture that it is possible to obtain large block-rigid functions, using smaller rigid
functions. For a function f : {0, 1}k → {0, 1}k, we define the function f⊗n : {0, 1}nk →
{0, 1}nk as follows. For each x = (xij)i∈[n],j∈[k] ∈ {0, 1}nk, we define f⊗n(x) to be the vector
obtained by applying f to (xi1, . . . , xik), in place for each i ∈ [n] (see Definition 13).

I Conjecture 1. There exists a universal constant c > 0 such that the following is true. Let
f : {0, 1}k → {0, 1}k be an (r, s)-rigid function, and n ∈ N. Then, f⊗n : {0, 1}nk → {0, 1}nk

is a (cnr, cs)-block-rigid function.
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We prove the following theorem. It is restated and proved as Theorem 28 in Section 5.

I Theorem 2. Let t : N→ N be any function such that t(n) = ω(n). Assuming Conjecture
1, there exists an (explicitly given) function f : {0, 1}∗ → {0, 1}∗ such that
1. On inputs x of length n bits, the output f(x) is of length at most n bits.
2. The function f is computable by a multi-tape deterministic Turing machine that runs in

time O(t(n)) on inputs of length n.
3. The function f is not computable by any multi-tape deterministic Turing machine that

takes advice and runs in time O(n) on inputs of length n.

More generally, we show that families of block-rigid functions cannot be computed by
non-uniform Turing machines running in linear-time. This makes it interesting to find such
families that are computable in polynomial time. The following theorem is restated as
Theorem 29.

I Theorem 3. Let k : N → N be a function such that k(n) = ω(1) and k(n) = 2o(n), and
fn : {0, 1}nk(n) → {0, 1}nk(n) be a family of (εnk(n), εk(n))-block-rigid functions, for some
constant ε > 0. Let M be any multi-tape deterministic linear-time Turing machine that takes
advice. Then, there exists n ∈ N, and x ∈ {0, 1}nk(n), such that M(x) 6= fn(x).

As another application, based on Conjecture 1, we show size-depth tradeoffs for boolean
circuits, where the gates compute arbitrary functions over large (with respect to the input
size) sets (see Section 6).

1.3 Parallel Repetition
In a k-player game G, questions (x1, . . . , xk) are chosen from some joint distribution µ. For
each j ∈ [k], player j is given xj and gives an answer aj that depends only on xj . The
players are said to win if their answers satisfy a fixed predicate V (x1, . . . , xk, a1, . . . , ak). We
note that V might be randomized, that is, it might depend on some random string that is
sampled independently of (x1, . . . , xk). The value of the game val(G) is defined to be the
maximum winning probability over the possible strategies of the players.

It is natural to consider the parallel repetition G⊗n of such a game G. Now, the questions
(x(i)

1 , . . . , x
(i)
k ) are chosen from µ, independently for each i ∈ [n]. For each j ∈ [k], player

j is given (x(1)
j , . . . , x

(n)
j ) and gives answers (a(1)

j , . . . , a
(n)
j ). The players are said to win if

the answers satisfy V (x(i)
1 , . . . , x

(i)
k , a

(i)
1 , . . . , a

(i)
k ) for every i ∈ [n]. The value of the game

val(G⊗n) is defined to be the maximum winning probability over the possible strategies of the
players. Note that the players are allowed to correlate their answers to different repetitions
of the game.

Parallel repetition of games was first studied in [13], owing to its relation with multiprover
interactive proofs [3]. It was hoped that the value val(G⊗n) of the repeated game goes down
as val(G)n. However, this is not the case, as shown in [14, 10, 11, 31].

A lot is known about parallel repetition of 2-player games. The, so called, parallel
repetition theorem, first proved by Raz [30] and further simplified and improved by
Holenstein [19], shows that if val(G) < 1, then val(G⊗n) ≤ 2−Ω(n/s), where s is the length of
the answers given by the players. The bounds in this theorem were later made tight even for
the case when the initial game has small value (see [8] and [5]).

Much less is known for k-player games with k ≥ 3. Verbitsky [38] showed that if
val(G) < 1, then the value of the the repeated game goes down to zero as n grows larger.
The result shows a very weak rate of decay, approximately equal to 1

α(n) , where α is the

ITCS 2021
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inverse-Ackermann function, owing to the use of the density Hales-Jewett theorem (see [16]
and [29]). A recent result by Dinur, Harsha, Venkat and Yuen [7] shows exponential decay,
but only in the special case of what they call expanding games. This approach fails when the
input to the players have strong correlations.

In this paper (see Section 4), we show that a sufficiently strong parallel repetition theorem
for multiplayer games implies Conjecture 1. The following theorem is proved formally as
Theorem 19 in Section 4.

I Theorem 4. There exists a family {GS,k} of k-player games (where S is some parameter),
such that a strong parallel repetition theorem for all games in {GS,k} implies Conjecture 1.

Although the games in this family do not fit into the framework of [7], they satisfy some
very special properties. Every k-player game in the family satisfies the following:
1. The questions to the k-players are chosen as follows: First, k bits, x1, . . . , xk ∈ {0, 1},

are drawn uniformly and independently. Each of the k-players sees some subset of these
k-bits.

2. The predicate V satisfies the condition that on fixing the bits x1, . . . , xk, there is a unique
accepting answer for each player (independently of all other answers) and the verifier
accepts if every player answers with the accepting answer. We refer to games that satisfy
this property as independent games.

We believe that these properties may allow us to prove strong upper bounds on the value
of parallel repetition of such games, despite our lack of understanding of multiplayer parallel
repetition. The bounds that we need are that parallel repetition reduces the value of such
games from v to vΩ(n), where n is the number of repetitions (as is proved in [8] and [5] for
2-player games).

1.4 Open Problems
1. The main open problem is to make progress towards proving Conjecture 1, possibly

using the framework of parallel repetition. The remarks after Theorem 28 mention some
weaker statements that suffice for our applications. The examples of matrix-transpose
and matrix-product in Section 8 also serve as interesting problems.

2. Our techniques, which are based on [28], heavily exploit the fact that the Turing machines
have one-dimensional tapes. Time-space lower bounds for satisfiability in the case of
multi-tape Turing machines with random access [12], and Turing machines with one
d-dimensional tape [37], are known. Extending such results to the non-uniform setting is
an interesting open problem.

3. The question of whether a rigid-matrix A ∈ Fn×n2 is rigid when seen as a function
A : {0, 1}n → {0, 1}n is very interesting (see Section 7). This question is closely related to
a Conjecture of Jukna and Schnitger [21] on the linearization of depth-2 circuits. This is
also related to the question of whether data structures for linear problems can be optimally
linearized (see [9]). We note that there are known examples of linear problems for which
the best known data-structures are non-linear, without any known linear data-structure
achieving the same bounds (see [22]).

2 Preliminaries

Let N = {1, 2, 3, . . .} be the set of all natural numbers. For any k ∈ N, we use [k] to denote
the set {1, 2, . . . , k}.

We use F to denote an arbitrary finite field, and F2 to denote the finite field on two
elements.
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Let x ∈ {0, 1}k. For i ∈ [k], we use xi to denote the ith coordinate of x. For S ⊆ [k], we
denote by x|S the vector (xi)i∈S , which is the restriction of x to coordinates in S.

We also consider vectors x ∈ {0, 1}nk, for some n ∈ N. We think of these as composed
of k blocks, each consisting of a vector in {0, 1}n. That is, x = (xij)i∈[n],j∈[k]. By abuse of
notation, for S ⊆ [k], we denote by x|S the vector (xij)i∈[n],j∈S , which is the restriction of x
to the blocks indexed by S.

Let A ∈ Fnk×nk be an nk × nk matrix. We think of A as a block-matrix consisting of k2

blocks, each block being an n× n matrix. That is, A = (Aij)i,j∈[k], where for all i, j ∈ [k],
Aij ∈ Fn×n. For each i ∈ [k], we call (Aij)j∈[k] the ith block-row of A.

For every n ∈ N, we define log∗ n = min{` ∈ N ∪ {0} : log2 log2 . . . log2︸ ︷︷ ︸
` times

n ≤ 1}.

3 Rigidity and Block Rigidity

3.1 Rigidity
The concept of matrix rigidity was introduced by Valiant [36]. It is defined as follows.

I Definition 5. A matrix A ∈ Fn×n is said to be an (r, s)-rigid matrix if it cannot be written
as A = B + C, where B has rank at most r, and C has at most s non-zero entries in each
row.

Valiant [36] showed the existence of rigid matrices by a simple counting argument. For
the sake of completeness, we include this proof.

I Proposition 6. For any constant 0 < ε ≤ 1
8 , and any n ∈ N, there exists a matrix A ∈ Fn×n

that is an (εn, εn)-rigid matrix.

Proof. Fix any 0 < ε ≤ 1
8 . We bound the number of n×n matrices that are not (εn, εn)-rigid

matrices.
1. Any n× n matrix with rank at most r can be written as the product of an n× r and an

r×n matrix. Hence, the number of matrices of rank at most εn is at most |F|2εn
2
≤ |F|

n2
4 .

2. The number of matrices that have at most εn non-zero entries in each row is at most((
n

εn

)
|F|εn

)n
≤
(e
ε

)εn2

|F|εn
2

= |F|εn
2(1+log|F| eε )

< |F|
3n2

4 .

We used the binomial estimate
(
n
r

)
≤
(
en
r

)r.
Since each matrix that is not an (r, s)-rigid matrix can be written as the sum of a matrix
with rank at most r, and a matrix with at most s non-zero entries in each row, the number of
matrices that are not (εn, εn)-rigid matrices is strictly less than |F|

n2
4 · |F|

3n2
4 = |F|n

2
, which

is the total number of n× n matrices. J

Observe that a matrix A ∈ Fn×n2 is not an (r, s)-rigid matrix if and only if there is a
subspace X ⊆ Fn2 of dimension at least n− r, and a matrix C with at most s non-zero entries
in each row, such that Ax = Cx for all x ∈ X.

We use this formulation to extend the concept of rigidity to general functions.

I Definition 7. A function f : {0, 1}n → {0, 1}n is said to be an (r, s)-rigid function
if for every subset X ⊆ {0, 1}n of size at least 2n−r, and subsets S1, . . . , Sn ⊆ [n] of
size s, and functions g1, . . . , gn : {0, 1}s → {0, 1}, there exists x ∈ X such that f(x) 6=
(g1(x|S1), g2(x|S2), . . . , gn(x|Sn)).

ITCS 2021
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Using a similar counting argument as in Proposition 6, we show the existence of rigid
functions.

I Proposition 8. For any constant 0 < ε ≤ 1
8 , and any (large enough) integer n, there exists

a function f : {0, 1}n → {0, 1}n that is an (εn, εn)-rigid function.

Proof. Fix any constant 0 < ε ≤ 1
8 , and any integer n ≥ 2

ε . We count the number of
functions f : {0, 1}n → {0, 1}n that are not (εn, εn)-rigid functions.
1. Note that in Definition 7, it is without loss of generality to assume that |X| = 2n−εn. The

number subsets X ⊆ {0, 1}n of size 2n−εn is
( 2n

2n−εn
)
≤ (e2εn)2n−εn

< 22εn2n−εn ≤ 2n4 2n−εn .

2. The number of subsets S1, . . . , Sn ⊆ [n] of size εn is at most
(
n
εn

)n
< nεn

2
< 2n4 2n−εn .

3. The number of functions g1, . . . , gn : {0, 1}εn → {0, 1} is at most 2n2εn < 2n4 2n−εn .
4. The number of choices for values of f on {0, 1}n \X is at most 2n(2n−|X|) ≤ 2n(2n−2n−εn).
Hence, the total number of functions f : {0, 1}n → {0, 1}n that are not (εn, εn)-rigid functions
is strictly less than

(
2n4 2n−εn

)3
2n2n−n2n−εn < 2n2n . J

3.2 Block Rigidity
In this section, we introduce the notion of block rigidity.

I Definition 9. A matrix A ∈ Fnk×nk is said to be an (r, s)-block-rigid matrix if it cannot be
written as A = B + C, where B has rank at most r, and C has at most s non-zero matrices
in each block-row.

Observe that if A ∈ Fnk×nk is an (r, ns)-rigid matrix, then it is also (r, s)-block-rigid
matrix. Combining this with Proposition 6, we get the following.

I Observation 10. For any constant 0 < ε ≤ 1
8 , and positive integers n, k, there exists an

(εnk, εk)-block-rigid matrix A ∈ Fnk×nk.

Following the definition of rigid-functions in Section 3.1, we define block-rigid functions
as follows.

I Definition 11. A function f : {0, 1}nk → {0, 1}nk is said to be an (r, s)-block-rigid
function if for every subset X ⊆ {0, 1}nk of size at least 2nk−r, and subsets S1, . . . , Sk ⊆ [k]
of size s, and functions g1, . . . , gk : {0, 1}ns → {0, 1}n, there exists x ∈ X such that
f(x) 6= (g1(x|S1), g2(x|S2), . . . , gk(x|Sk)).

Observe that if f : {0, 1}nk → {0, 1}nk is an (r, ns)-rigid function, then it is also (r, s)-
block-rigid function. Combining this with Proposition 8, we get the following.

I Observation 12. For any constant 0 < ε ≤ 1
8 , and (large enough) integers n, k, there exists

an (εnk, εk)-block-rigid function f : {0, 1}nk → {0, 1}nk.

Note that n = 1 in the definition of block-rigid matrices (functions) gives the usual
definition of rigid matrices (functions). For our applications, we will mostly be interested in
the case when n is much larger than k.

3.3 Rigidity Amplification
A natural question is whether there is a way to amplify rigidity. That is, given a rigid
matrix (function), is there a way to obtain a larger matrix (function) which is rigid, or even
block-rigid.
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I Definition 13. Let f : {0, 1}k → {0, 1}k be any function. Define f⊗n : {0, 1}nk → {0, 1}nk

as following. Let x = (xij)i∈[n],j∈[k] ∈ {0, 1}nk and i ∈ [n], j ∈ [k]. The (i, j)th coordinate of
f⊗n(x) is defined to be the jth coordinate of f(xi1, xi2, . . . , xik).

Basically, applying f⊗n on x ∈ {0, 1}nk is the same as applying f on (xi1, xi2, . . . , xik),
in place for each i ∈ [n]. For a linear function given by matrix A ∈ Fk×k2 , this operation
corresponds to A⊗ In, where In is the n× n identity matrix, and ⊗ denotes the Kronecker
product of matrices.

It is easy to see that if f is not rigid, then f⊗n is not block-rigid.

I Observation 14. Suppose f : {0, 1}k → {0, 1}k is not an (r, s)-rigid function. Then f⊗n
is not an (nr, s)-block-rigid function.

The converse of Observation 14 is more interesting. We believe that it is true, and restate
Conjecture 1 below.

I Conjecture 15. There exists a universal constant c > 0 such that the following is true. Let
f : {0, 1}k → {0, 1}k be an (r, s)-rigid function, and n ∈ N. Then, f⊗n : {0, 1}nk → {0, 1}nk

is a (cnr, cs)-block-rigid function.

4 Parallel Repetition

In this section, we show an approach to prove Conjecture 15 regarding rigidity amplification.
This is based on proving a strong parallel repetition theorem for a k-player game.

Fix some k ∈ N, a function f : {0, 1}k → {0, 1}k, an integer 1 ≤ s < k, and S =
(S1, . . . , Sk), where each Si ⊆ [k] is of size s. We define a k-player game GS as follows:

The k-players choose functions g1, . . . , gk : {0, 1}s → {0, 1}, which we call a strategy. A
verifier chooses x1, . . . , xk ∈ {0, 1} uniformly and independently. Let x = (x1, . . . , xk) ∈
{0, 1}k. For each j ∈ [k], Player j is given the input x|Sj , and they answer aj = gj(x|Sj ) ∈
{0, 1}. The verifier accepts if and only if f(x) = (a1, . . . , ak). The goal of the players is to
maximize the winning probability. Formally, the value of the game is defined as

val(GS) := max
g1,...,gk

Pr
x1,...,xk∈{0,1}

[f(x) = (g1(x|S1), . . . , gk(x|Sk))] .

The n-fold repetition of GS , denoted by G⊗nS is defined as follows. The players choose a
strategy g1, . . . , gk : {0, 1}ns → {0, 1}n. The verifier chooses x1, . . . , xk ∈ {0, 1}n uniformly
and independently. Let x = (x1, . . . , xk) ∈ {0, 1}nk. Player j is given the input x|Sj , and
they answer aj = gj(x|Sj ) ∈ {0, 1}

n. The verifier accepts if and only if f⊗n(x) = (a1, . . . , ak).
That is, for each i ∈ [n], j ∈ [k], the jth bit of f(xi1, . . . , xik) equals the ith bit of aj . The
value of this repeated game is

val(G⊗nS ) := max
g1,...,gk

Pr
x1,...,xk∈{0,1}n

[
f⊗n(x) = (g1(x|S1), . . . , gk(x|Sk))

]
.

From Definition 11, we get the following:

I Observation 16. Let f : {0, 1}k → {0, 1}k be a function, and n ∈ N. Then, f⊗n is
an (r, s)-block-rigid function if and only if for every S = (S1, . . . , Sk) with set sizes as s,
val(G⊗nS ) < 2−r.

Proof. Let f⊗n be an (r, s)-block-rigid function. Suppose, for the sake of contradiction,
that S = (S1, . . . , Sk) is such that val(G⊗nS ) ≥ 2−r. Let the functions g1, . . . , gk :
{0, 1}ns → {0, 1}n be an optimal strategy for the players. Define X :=

ITCS 2021
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{
x ∈ {0, 1}nk : f⊗n(x) = (g1(x|S1), . . . , gk(x|Sk))

}
. Then, |X| = val(GS) · 2nk ≥ 2nk−r,

which contradicts the block rigidity of f⊗n.
Conversely, suppose that f⊗n is not (r, s)-block-rigid. Then, there exists X ⊆ {0, 1}nk

with |X| ≥ 2nk−r, subsets S1, . . . , Sk ⊆ [k] of size s, and functions g1, . . . , gk : {0, 1}ns →
{0, 1}n, such that for all x ∈ X, f⊗n(x) = (g(x|S1), . . . , g(x|Sk)). Let S = (S1, . . . , Sk), and
suppose the players use strategy g1, . . . , gk. Then, val(G⊗nS ) ≥ |X| · 2−nk ≥ 2−r. J

In particular, for n = 1, Observation 16 gives the following:

I Observation 17. A function f : {0, 1}k → {0, 1}k is an (r, s)-rigid-function if and only if
for every S = (S1, . . . , Sk) with set sizes as s, val(GS) < 2−r.

We conjecture the following strong parallel repetition theorem.

I Conjecture 18. There exists a constant c > 0 such that the following is true. Let
f : {0, 1}k → {0, 1}k be any function, and S = (S1, . . . , Sk) be such that for each i ∈ [k],
Si ⊆ [k] is of size s. Then, for all n ∈ N, val(G⊗nS ) ≤ (val(GS))cn.

Combining Observation 16 and 17, we get the following:

I Theorem 19. Conjecture 18 =⇒ Conjecture 15.

I Remarks.
(i) By looking only at some particular player, it can be shown that if val(GS) < 1, then

val(G⊗nS ) ≤ 2−Ω(n). In fact, such a result holds for all independent games. The harder
part seems to be showing strong parallel repetition when the initial game has small
value.

(ii) Observe that the game GS has a randomized predicate in the case ∪kj=1Sj 6= [k]. This
condition can be removed (even for general independent games) by introducing a new
player. This player is given the random string used by the verifier, and is always
required to answer a single bit equal to zero. This maintains the independent game
property, and ensures that the predicate used by the verifier is a deterministic function
of the vector of input queries to the players.

5 Turing Machine Lower Bounds

In this section, we show a conditional super-linear lower bound for multi-tape deterministic
Turing machines that can take advice.

Without loss of generality, we only consider machines that have a separate read-only input
tape. We assume that the advice string, which is a function of the input length, is written
on a separate advice tape at the beginning of computation. We are interested in machines
that compute multi-output functions. For this, we assume that at the end of computation,
the machine writes the entire output on a separate write-only output tape, and then halts.

We consider the following problem.

I Definition 20. Let k : N→ N be a function. We define the problem Tensork as follows:
Input: (f, x), where f : {0, 1}k → {0, 1}k is a function, and x ∈ {0, 1}nk, for some n ∈ N
and k = k(n).
Output: f⊗n(x) ∈ {0, 1}nk.

The function f is given as input in the form of its entire truth table. The input x =
(xij)i∈[n],j∈[k] is given in the order (x11, . . . , xn1, x12, . . . , xn2, . . . , x1k, . . . , xnk). The total
length of the input is m(n) := 2kk + nk.
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We observe that if the function k : N→ N grows very slowly with n, the problem Tensork
can be solved by a deterministic Turing machine in slightly super-linear time.

I Observation 21. Let k : N→ N be a function. There exists a deterministic Turing machine
that solves the problem Tensork in time O(nk2k), on input (f, x) of length nk + 2kk, where
k = k(n).

Proof. We note that applying f⊗n on x = (xij)i∈[n],j∈[k] is the same as applying f on
(xi1, xi2, . . . , xik), in place for each i ∈ [n]. A Turing machine can do the following:
1. Find n and k, using the fact that the description of f is of length 2kk, and that of x is of

length nk.
2. Rearrange the input so that for each i ∈ [n], the part (xi1, xi2, . . . , xik) is written

consecutively on the tape.
3. Using the truth table of f , compute the output for each such part.
4. Rearrange the entire output back to the desired form.
The total time taken is O(nk + nk2 + nk2k + nk2) = O(nk2k). J

We now state and prove the main technical theorem of this section.

I Theorem 22. Let k : N → N be a function such that k(n) = ω(1) and k(n) = o(log2 n).
Let m = m(n) := 2kk + nk, where k = k(n).

Suppose M is a deterministic multi-tape Turing machine that takes advice, and runs
in linear time in the length of its input. Assuming Conjecture 15, the machine M does
not solve the problem Tensork correctly for all inputs. That is, there exists n ∈ N, and
y = (f, x) ∈ {0, 1}m such that M(y) 6= f⊗n(x).

There are two main technical ideas that will be useful to us. The first is the notion of
block-respecting Turing machines, defined by Hopcroft, Paul and Valiant [20]. The second is
a graph theoretic result, which was proven by Paul, Pippenger, Szemerédi and Trotter [28],
and was used to show a separation between deterministic and non-deterministic linear time.

I Definition 23. Let M be a Turing machine, and let b : N→ N be a function. Partition the
computation of M , on any input y of length m, into time segments of length b(m), with the
last segment having length at most b(m). Also, partition each of the tapes of M into blocks,
each consisting of b(m) contiguous cells.

We say that M is block-respecting with respect to block size b, if on inputs of length m,
the tape heads of M cross blocks only at times that are integer multiples of b(m).

I Lemma 24. [20] Let t : N→ N be a function, and M be a multi-tape deterministic Turing
machine running in time t(m) on inputs of length m. Let b : N→ N be a function such that
b(m) is computable from 1m by a multi-tape deterministic Turing machine running in time
O(t(m)). Then, the language recognized by M is also recognized by a multi-tape deterministic
Turing Machine M ′, which runs in time O(t(m)), and is block-respecting with respect to b.

The rest of this section is devoted to the proof of Theorem 22. Let k : N → N be a
function such that k(n) = ω(1) and k(n) = o(log2 n). Let m = m(n) := 2kk + nk, where
k = k(n).

Suppose that M is a deterministic multi-tape Turing Machine, which on input y =
(f, x) ∈ {0, 1}m, takes advice, runs in time O(m), and outputs f⊗n(x).

Let b : N→ N be a function such that b(m) = n. By our assumption that k(n) = o(log2 n),
we can assume that the input y = (f, x) ∈ {0, 1}m consists of k + 1 blocks, where the first
block contains f (possibly padded by blank symbols to the left), and the remaining k blocks
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contain x. By Lemma 24, we can further assume that M is block-respecting with respect to
b. Note that we can assume n to be a part of the advice, and hence we don’t need to care
about the computability of b.

For an input y = (f, x) ∈ {0, 1}m, the number of time segments for which M runs on x
is at most O(m)

b(m) = O(nk)
n = O(k) := a(n).

We define the computation graph GM (y), for input y ∈ {0, 1}m, as follows.

I Definition 25. The vertex set of GM (y) is defined to be VM (y) = {1, . . . , a(n)}. For each
1 ≤ i < j ≤ a(n), the edge set EM (y) has the edge (i, j), if either
(i) j = i+ 1, or
(ii) there is some tape, such that, during the computation on y, M visits the same block

on that tape in both time-segments i and j, and never visits that block during any
time-segment strictly between i and j.

In a directed acyclic graph G, we say that a vertex u is a predecessor of a vertex v, if
there exists a directed path from u to v.

I Lemma 26 ([28]). For every y, the graph GM (y) satisfies the following:
1. Each vertex in GM (y) has degree O(1).
2. There exists a set of vertices J ⊂ VM (y) in GM (y), of size O

(
a(n)

log∗ a(n)

)
such that every

vertex of GM (y) has at most O
(

a(n)
log∗ a(n)

)
many predecessors in the induced subgraph on

the vertex set VM (y) \ J .
We note that the constants here might depend on the number of tapes of M .

I Lemma 27. Let ε > 0 be any constant and Y ⊆ {0, 1}m be any subset of the inputs.
For all (large enough) n, there exists a subset Y ⊆ Y of size |Y | ≥ |Y| · 2−εnk, and subsets
S1, . . . , Sk ⊆ [k] of size εk, such that for each y = (f, x) ∈ Y , and each i ∈ [k], the ith block
(of length n) of f⊗n(x) can be written as a function of x|Si and the truth-table of f .

Proof. For input y = (f, x) ∈ {0, 1}m, let J(y) ⊂ VM (y) be a set as in Lemma 26.
Let C(y) denote the following information about the computation of M :

(i) The internal state of M at the end of each time-segment.
(ii) The position of all tape heads at the end of each time-segment.
(iii) For each time segment in J(y), and for each tape of M , the final transcription (of

length n) of the block that was visited on this tape during this segment.

Let g : Y → {0, 1}∗ be the function given by g(y) = (GM (y), J(y), C(y)). Observe that
the output of g can be described using O

(
k log2 k + nk

log∗ k

)
bits. By our assumption that

k(n) = ω(1) and k(n) = o(log2 n), we have that for large n, this is at most εnk bits. Hence,
there exists a set Y ⊆ Y of size |Y | ≥ |Y| · 2−εnk, such that for each y ∈ Y , g(y) takes on
some fixed value (G = (V,E), J, C).

Now, consider any y = (f, x) ∈ Y . The machine writes the k blocks of the output
f⊗n(x) on the output tape in the last k time segments before halting. For each of these time
segments, the corresponding vertex in G has at most O

(
k

log∗ k

)
≤ εk predecessors in the

induced subgraph on V \ J . These further correspond to at most εk distinct blocks of y that
are visited (on the input tape) during these predecessor time segments. Since the relevant
block transcriptions at the end of time segments for vertices in J are fixed in C, each output
block can be written as a function of at most εk blocks of y. For the ith block of output,
without loss of generality, this includes the first block of y, which contains the truth table of
f , and blocks of x which indexed by some subset Si ⊆ [k] of size εk. J
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Proof of Theorem 22. Let δ = 1
8 . Fix some sufficiently large n, and a (δk, δk)-rigid function

f0 : {0, 1}k → {0, 1}k. The existence of such a function is guaranteed by Proposition 8. By
Conjecture 15, the function f⊗n0 is an (εnk, εk)-block-rigid function for some constant ε > 0.
On the other hand, Lemma 27, with Y =

{
(f0, x) : x ∈ {0, 1}nk

}
, shows that f⊗n0 is not an

(εnk, εk)-block-rigid function for any constant ε > 0. J

We now restate and prove Theorem 2.

I Theorem 28. Let t : N→ N be any function such that t(n) = ω(n). Assuming Conjecture
15, there exists a function f : {0, 1}∗ → {0, 1}∗ such that
1. On inputs x of length n bits, the output f(x) is of length at most n bits.
2. The function f is computable by a multi-tape deterministic Turing machine that runs in

time O(t(n)) on inputs of length n.
3. The function f is not computable by any multi-tape deterministic Turing machine that

takes advice and runs in time O(n) on inputs of length n.

Proof. Let k : N → N be a function such that k(n) = ω(1), k(n) = o(log2 n), and nk2k ≤
t(2kk + nk). The theorem then follows from Observation 21 and Theorem 22. J

I Remarks.
(i) We note that for the proof of Theorem 22, it suffices to find, for infinitely many n,

a single function f : {0, 1}k(n) → {0, 1}k(n) such that f⊗n is an (εnk, εk)-block-rigid
function, where ε > 0 is a constant. This would show that M cannot give the correct
answer to Tensork for inputs of the form (f, x), where x ∈ {0, 1}nk.

(ii) For the proof of Theorem 22, it can be shown that it suffices for the following condition
to hold for infinitely many n, and some constant ε > 0. Let S1, . . . , Sk ⊆ [k] be fixed sets
of size εk, and f : {0, 1}k → {0, 1}k be a function chosen uniformly at random. Then,
with probability at least 1 − 2−ω(k log2 k), the function f⊗n is an (εnk, εk)-block-rigid
function against the fixed sets S1, . . . , Sk. We note that the probability here is not good
enough to be able to union bound over S1, . . . , Sk and get a single function as mentioned
in the previous remark.

Essentially the same argument as that of Theorem 22 also proves Theorem 3, which we
restate below.

I Theorem 29. Let k : N→ N be a function such that k(n) = ω(1) and k(n) = 2o(n), and
fn : {0, 1}nk(n) → {0, 1}nk(n) be a family of (εnk(n), εk(n))-block-rigid functions, for some
constant ε > 0. Let M be any multi-tape deterministic linear-time Turing machine that takes
advice. Then, there exists n ∈ N, and x ∈ {0, 1}nk(n), such that M(x) 6= fn(x).

The above theorem makes it interesting to find families of block-rigid functions that are
computable in polynomial time.

6 Size-Depth Tradeoffs

In this section, we will consider boolean circuits over a set F . These are directed acyclic graphs
with each node v labelled either as an input node or by an arbitrary function gv : F ×F → F .
The input nodes have in-degree 0 and all other nodes have in-degree 2. Some nodes are
further labelled as output nodes, and they compute the outputs (in the usual manner), when
the inputs are from the set F . The size of the circuit is defined to be the number of edges in
the graph. The depth of the circuit is defined to be the length of a longest directed path
from an input node to an output node.
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Valiant [36] showed that if A ∈ Fn×n is an (εn, nε)-rigid matrix for some constant ε > 0,
then the corresponding function cannot be computed by an O(n)-size and O(log2 n)-depth
linear circuit over F. By a linear circuit, we mean that each gate computes a linear function
(over F) of its inputs. A similar argument can be used to prove the following.

I Lemma 30 ([36]). Suppose f : {0, 1}nk → {0, 1}nk is an (εnk, kε)-block-rigid function,
for some constant ε > 0. Then, the function g : ({0, 1}n)k → ({0, 1}n)k corresponding to f
cannot be computed by an O(k)-size and O(log2 k)-depth circuit over the set F = {0, 1}n.

I Theorem 31. Let k : N → N be a function such that k(n) = ω(1) and k(n) = o(log2 n).
Let m = m(n) := 2kk + nk, where k = k(n).

Assuming Conjecture 15, the problem Tensork is not solvable by O(k)-size and O(log2 k)-
depth circuits over the set F = {0, 1}n. Here, the input (f, x) to the circuit is given in the
form of k + 1 elements in {0, 1}n, the first one being the truth table of f , and the remaining
k being the blocks of x.

Proof. Let δ = 1
8 . Fix some large n, and a (δk, δk)-rigid function f0 : {0, 1}k → {0, 1}k,

where k = k(n). The existence of such a function is guaranteed by Proposition 8. Assuming
Conjecture 15, the function f⊗n0 is an (εnk, εk)-block-rigid function, for some universal
constant ε > 0. By Lemma 30, the corresponding function on ({0, 1}n)k cannot be computed
by an O(k)-size and O(log2 k)-depth circuit over F = {0, 1}n. Since f0 can be hard-wired in
any circuit solving Tensork, we have the desired result. J

7 Rigid Matrices and Rigid Functions

A natural question to ask is whether the functions corresponding to rigid matrices are rigid
functions or not.

I Conjecture 32. There exists a universal constant c > 0 such that whenever A ∈ Fn×n2 is
an (r, s)-rigid matrix, the corresponding function A : Fn2 → Fn2 is a (cr, cs)-rigid function.

We show that a positive answer to the above resolves a closely related conjecture by
Jukna and Schnitger [21].

I Definition 33. Consider a depth-2 circuit, with x = (x1, . . . , xn) as the input variables,
w gates in the middle layer, computing boolean functions h1, . . . , hw and m output gates,
computing boolean functions g1, . . . , gm. The circuit computes a function f = (f1, . . . , fm) :
Fn2 → Fm2 satisfying fi(x1 . . . , xn) = gi(x, h1(x), . . . , hw(x)), for each i ∈ [m]. The width of
the circuit is defined to be w. The degree of the circuit is defined to be the maximum over all
gates gi, of the number of wires going directly from the inputs x1, . . . , xn to gi.

We remark that Lemma 27 essentially shows that any function computable by a
deterministic linear-time Turing Machine has a depth-2 circuit of small width and small
“block-degree”.

I Conjecture 34 ([21]). Suppose f : Fn2 → Fn2 is a linear function computable by a depth-2
circuit with width w and degree d. Then, f is computable by a depth-2 circuit, with width
O(w), and degree O(d), each of whose gates compute a linear function.

I Observation 35. Conjecture 32 =⇒ Conjecture 34.

Proof. Suppose f : Fn2 → Fn2 is a linear function computable by a depth-2 circuit with width
w and degree d. Then, there exists a set X ⊆ Fn2 of size at least 2n−w, such that for each
x ∈ X, the value of the functions computed by the gates in the middle layer is the same.
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Hence, for each x ∈ X, each element of f(x) can be written as a function of at most d
elements of x. This shows that f is not an (w, d)-rigid function. Assuming Conjecture 32, the
matrix A ∈ Fn×n2 for the function f is not a (cw, cd)-rigid matrix, for some constant c > 0.
Then, A = B +C, where the rank of B is at most cw, and C has at most cd non-zero entries
in each row. Now, there exist matrices B1 ∈ Fn×cw2 and B2 ∈ Fcw×n2 , such that B = B1B2.
Then, f is computable by a linear depth-2 circuit with width cw and degree cd, where the
middle layer computes output of the function corresponding to B2. J

8 Future Directions

In this section, we state some well known problems related to matrices. It seems interesting
to study the block-rigidity of the these functions.

8.1 Matrix Transpose

The matrix-transpose problem is described as follows:
Input: A matrix X ∈ Fn×n2 as a vector of length n2 bits, in row-major order, for some
n ∈ N.
Output: The matrix X column-major order (or equivalently, the transpose of X in
row-major order).

It is well known (see [6] for a short proof) that the above problem can be solved on a
2-tape Turing machine in time O(N logN), on inputs of length N = n2. We believe that this
cannot be solved by Turing machines in linear-time, and that the notion of block-rigidity
might be a viable approach to prove this. Next, we observe some structural details about
the problem.

The matrix-transpose problem computes a linear function, whose N ×N matrix A on
inputs of length N = n2 is described as follows. For each i, j ∈ [n], let eij ∈ Fn×n2 denote the
matrix whose (i, j)th entry is 1 and rest of the entries are zero. The matrix A is an N ×N
matrix made up of n2 blocks, with the (i, j)th block equal to eji.

Using a similar argument as in Observation 16, one can show that the value of the
following game captures the block-rigidity of the matrix-transpose function. Fix integers
n ∈ N, 1 ≤ s < n, and a collection S = (S1, . . . , Sn), where each Si ⊆ [n] is of size s. We
define an n-player game GS as follows: A verifier chooses a matrix X ∈ Fn×n2 , with each
entry being chosen uniformly and independently. For each j ∈ [n], player j is given the rows
of the matrix indexed by Sj , and they answer yj ∈ Fn2 . The verifier accepts if and only if for
each j ∈ [n], yj equals the jth column of X.

I Conjecture 36. There exists a constant c > 0 such that the function given by the matrix
A is a (cn2, cn)-block-rigid function. Equivalently, for each collection S with set sizes as cn,
the value of the game GS is at most 2−cn2 .

We note that the above game is of independent interest from a combinatorial point of
view as well. Basically, it asks whether there exists a large family of n × n matrices, in
which each column can be represented as some function of a small fraction of the rows. The
problem of whether the matrix A is a block-rigid matrix is also interesting. This corresponds
to the players in the above game using strategies which are linear functions.
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8.2 Matrix Product
The matrix-product problem is described as follows:

Input: Matrices X,Y ∈ Fn×n2 as vectors of length n2 bits, in row-major order, for some
n ∈ N.
Output: The matrix Z = XY in row-major order.

The block-rigidity of the matrix-product function is captured by the following game:
Fix integers n ∈ N, 1 ≤ s < n, and collections S = (S1, . . . , Sn), T = (T1, . . . , Tn) where
each Si, Ti ⊆ [n] is of size s. We define a n-player game GS,T as follows: A verifier chooses
matrices X,Y ∈ Fn×n2 , with each entry being chosen uniformly and independently. For each
j ∈ [n], player j is given the rows of the matrices X and Y indexed by Sj and Tj respectively,
and they answer yj ∈ Fn2 . The verifier accepts if and only if for each j ∈ [n], yj equals the
jth row of XY .

I Conjecture 37. There exists a constant c > 0 such that for each S, T with set sizes as cn,
the value of the game GS,T is at most 2−cn2 .

One may change the row-major order for some (or all) of the matrices to column-major
order. It is easy to modify the above game in such a case.
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Abstract
Blockchain is a disruptive new technology introduced around a decade ago. It can be viewed as a
method for recording timestamped transactions in a public database. Most of blockchain protocols
do not scale well, i.e., they cannot process quickly large amounts of transactions. A natural idea to
deal with this problem is to use the blockchain only as a timestamping service, i.e., to hash several
transactions tx1, . . . , txm into one short string, and just put this string on the blockchain, while at
the same time posting the hashed transactions tx1, . . . , txm to some public place on the Internet
(“off-chain”). In this way the transactions txi remain timestamped, but the amount of data put
on the blockchain is greatly reduced. This idea was introduced in 2017 under the name Plasma
by Poon and Buterin. Shortly after this proposal, several variants of Plasma have been proposed.
They are typically built on top of the Ethereum blockchain, as they strongly rely on so-called smart
contracts (in order to resolve disputes between the users if some of them start cheating). Plasmas
are an example of so-called off-chain protocols.

In this work we initiate the study of the inherent limitations of Plasma protocols. More
concretely, we show that in every Plasma system the adversary can either (a) force the honest
parties to communicate a lot with the blockchain, even though they did not intend to (this is
traditionally called mass exit); or (b) an honest party that wants to leave the system needs to quickly
communicate large amounts of data to the blockchain. What makes these attacks particularly hard
to handle in real life is that these attacks do not have so-called uniquely attributable faults, i.e. the
smart contract cannot determine which party is malicious, and hence cannot force it to pay the fees
for the blockchain interaction. An important implication of our result is that the benefits of two of
the most prominent Plasma types, called Plasma Cash and Fungible Plasma, cannot be achieved
simultaneously.

Besides of the direct implications on real-life cryptocurrency research, we believe that this work
may open up a new line of theoretical research, as, up to our knowledge, this is the first work that
provides an impossibility result in the area of off-chain protocols.
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1 Introduction

What does it mean to timestamp a digital document? Haber and Stornetta in their seminal
paper [17] define timestamping as a method to certify when a given document was created.
In many settings the timestamped document T remains secret after it was timestamped,
until its creator decides to make it public. This is often because of efficiency reasons – for
example in the scheme of [17] what is really timestamped is the cryptographic hash1 H(T )
(not T ), which leads to savings in communication between T ’s creator and the timestamping
service. Sometimes the secrecy of T is actually a desired feature. According to [29] several
researchers in the past (including Galileo Galilei and Isaac Newton) have used ad-hoc methods
to timestamp their research ideas before publishing them, in order to later claim priority.

Recently, in the context of blockchain, timestamping has been used in a slightly different
way. Namely, in the paper that introduced this technology [25], the “timestamping” mechan-
ism is such that T ’s creator does not only get a proof that T has been created at a given time,
but also that it has been made public at this time. Let us call this kind of scheme public
timestamping, and let us refer to the former type of timestamping as secret timestamping.
The public timestamping feature of blockchain has been one of the main reasons why this
technology attracted so much attention. In fact one of the first projects that use blockchain
for purposes other than purely financial was Namecoin that used the timestamping to create
a decentralized domain name system (see, e.g., [19] for more on this project).

In many cases timestamping is expensive, and its costs grow linearly with the length of
the timestamped document. This is especially true for blockchain-based solutions, where all
parties in the network need to reach consensus about what document was published and
when. For example, Bitcoin (the blockchain system introduced in [25]) can process at most
around 1MB of data per 10 minutes. In Ethereum, which is another very popular blockchain
system [31] “timestamping” a word of 32 bytes cost currently around USD 0.80. A similar
problem appears in several other blockchain protocols. We give a short introduction to
blockchain in Sec. 1.1. For a moment let us just say that typical blockchains come with
their own virtual currencies (also called cryptocurrencies). In the most standard case the
“timestamped” messages define financial transfers between the network participants, and are
hence called transactions. We will refer to timestamping a transaction as posting it on the
blockchain.

To summarize, from the efficiency point of view the secret timestamping is better than
the public one (as only hashes need to be timestamped). From the security perspective these
two types of timestamping are incomparable as the fact that the timestamped document
T needs to be published can be considered to be both an advantage and a disadvantage,
depending on the particular application. For example, one could argue that considering
timestamped hashes of academic papers as being sufficient evidence for claiming priority
would slow down scientific progress, as it would disincentive making the papers public (until,
say, the author writes down all followup papers that build upon the timestamped paper).

1 In this paper we assume reader’s familiarity with basic cryptographic notions such as hash functions,
negligible functions, etc. For an introduction to this topic see, e.g., [20].
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A natural question therefore is as follows. Suppose we have access to a timestamping
service that is expensive to use (so we would rather timestamp only very short messages
there). Can we use it to “emulate” public timestamping that would be cheap for long
documents T? Of course this “emulation” cannot work in general, since some scenarios may
simply require a proof that the whole T was available publicly at a given time. So the best
we can hope for is to find some applications which permit such emulation. An idea for such
emulation emerged recently within the cryptocurrency community under the names Plasma
or commit chains2 [26, 21, 16, 28, 24]. Very informally speaking, Plasma allows to “compress”
a number of blockchain transactions tx1, . . . , txm into one very short string h = H(T ), where
T := (tx1, . . . , txm). The transactions can from from different parties called users. The only
document that gets posted on the blockchain is h. The compression and posting h is done by
one designated party called the operator (denoted Op). Besides of posting h, the operator
publishes all the transactions T on some public network (say: on her web-page). Since this
publication is not done on the blockchain we also say that it is performed off-chain.

Publishing T off-chain is important since only then each user can verify that her transaction
was indeed included into the hashed value. Moreover, typical Plasma designs use as H the
so-called Merkle-tree hashing with tx1, . . . , txm being the labels of the leaves (see the full
version of this paper [11] for more on this technique). Thanks to this, every user can prove
that his transaction was included in H(T ) with a proof of length O(logn). If the operator
does not include some txi in T then the user U that produced txi can always post txi directly
to the blockchain. In this case using Plasma does not bring any benefits to U compared
to just using the blockchain directly from the beginning. However, in reality it is expected
that this is not going to happen often, especially since the operators are envisioned to be
commercial entities that will charge some fee for their services.

What is much more problematic is the case when the malicious operator does not publish
T off-chain. This situation is typically referred to as data unavailability. Note that data
unavailability is subjective, i.e., the parties can have different views on whether it happened
or not. This is because, unlike the situation on the blockchain, there may be no consensus
on what was published off-chain. Moreover, there is no way to produce a proof that data
unavailability happens: even if some parties complain on the blockchain that they did not
receive T there is no way to determine (just by looking at the blockchain) whether they are
right, or if they are just falsely accusing the operator. The situation when a disagreement
between parties happens but there is no “blockchain-only” way to verify which party is corrupt,
is commonly referred to as a non-uniquely attributable fault. Finally, some Plasma protocols
require all the honest parties to immediately act on blockchain after a data unavailability
attack happened. This is called “mass exit”, although (for the reasons explained in Sec. 1.1
in this paper we call it “large forced on-chain action”)

Plasma comes in many variants and has been discussed in countless articles (see Sec. 1.1).
One of the most fundamental distinction is between the two types of Plasma systems: Plasma
Cash and Fungible Plasma. As we explain in more detail in Sec. 1.1 they both serve for the
“emulation” that we outlined above, but have different incomparable features. From one
point of view Fungible Plasma is better than Plasma Cash since it is “fungible”, which means
that the money can be arbitrarily divided and merged. On the other hand: Fungible Plasma
suffers from some problems that Plasma Cash does not have, namely the adversary can cause
a “non-uniquely attributable large forced mass actions” (we explain these notions Sec. 1.1).
The cryptocurrency community has been unsuccessfully looking for a Plasma solution that

2 In this paper we mostly use the name “Plasma” due to its brevity.
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would have the benefits of both Plasma Cash and Fungible Plasma. The main result of
this paper is that such Plasma cannot be achieved simultaneously. In other words, we
show inherent limitations of the compression technique, at least for compressing blockchain
financial transactions. Our paper can also be viewed as initiating the theoretical analysis of
lower bounds for the smart contract protocols. We write more about our contribution in
Sec. 1.2. First, however, let us provide some more introduction to blockchain and to Plasmas.

1.1 Introduction to Plasma
Let us start with providing some more background on blockchain and smart contracts.
Blockchain can be viewed as a public ledger containing timestamped transactions that have
to satisfy some correctness constraints. Moreover, several blockchains permit to execute
the so-called smart contracts [27] (or simply: “contracts”), which informally speaking, are
“self-executable” agreements described in form of computer programs. Examples of such
blockchain platforms include Ethereum, Hyperledger Fabric, or Cardano. Typically, it is
assumed that contracts are deterministic and have a public state. Moreover, they can own
some coins. Executing a contract is done by posting transactions on the blockchain and it
costs fees that depend on the computational complexity of the given operation, and on the
amount of data that needs to be transmitted to the contract.

Let us now explain the basic idea of Plasma, and introduce some standard terminology.
Since it is an informal presentation, we mix the definition of the protocol with its construction.
In the formal sections of the paper these two parts are separated (the definition appears
in Sec. 2, and the constructions in the full version of this paper [11]). As highlighted
above Plasma address the scalability problem of blockchain by keeping the massive bulk
of transactions outside of the blockchain (“off-chain”). The parties that are involved in
the protocol rely on a smart contract that is deployed on the ledger of the underlying
cryptocurrency, but they try to minimize interacting with it. Typically, this interaction
happens only when the parties join and leave the protocol, or when they disagree. Since all
parties know that in case of disagreement, disputes can always be settled on the ledger, there
is no incentive for the users to disagree, and honest behavior is enforced.

In the optimistic case, when the parties involved in the protocol play honestly, and the
off-chain transactions never hit the ledger, these protocols significantly reduce transaction fees
and allow for instantaneous executions. Off-chain protocols also resemble an idea explored in
cryptography around two decades ago under the name “optimistic protocols” [7, 1]. In this
model the parties are given access to a trusted server that is “expensive to use”, and hence
they do not want to contact it, unless it is absolutely necessary

Plasma’s operator Op provides a “simulated ledger”, in which other parties can deposit
their coins, and then perform operations between each other. The key requirement is that
its users do not need to trust the operator, and in particular if they discover that she is
cheating, then they can safely withdraw their funds. The latter is called an exit from the
simulated ledger, and requires communication with the underlying ledger.

Plasma protocols come in different variants (see Sec. 1.1), however, they are all based
on a single framework proposed in [26]. The parties that execute Plasma are: the users
U1, . . . , Un, and the operator Op. Moreover, the parties have access to a contract on the
blockchain. In our formal modeling this contract will be represented as a trusted interactive
machine Γ with public state, owning some amount of coins. Each user Ui has some number
of coins initially deposited in his Plasma account which is maintained by Γ. This number
is called a balance and is denoted with bi ∈ Z≥0. Users’ balances are changing dynamically
during the execution of the protocol. The total number of coins owned by the contract Γ is
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equal to the sum of all balances of its users. A vector
−→
b := (b1, . . . , bn) is called a Plasma

chain. When referring to the underlying blockchain (i.e. the one on which Γ is deployed) we
use the term main chain. Note that the operator Op has no account and only facilitates
transfers of the users. In some variants of Plasma (see Sec. 1.1) the operator blocks some
amount of coins (called operator’s collateral) that can be used to compensate the users their
losses in case she misbehaves.

Let us briefly describe the different operations that parties of the Plasma protocol can
execution during the lifetime of the system. We divide time into epochs (e.g. 1 epoch takes
1 hour). In the ith epoch the operator sends some information Ci to Γ. We can think of
Ci as “compressed” information about the vector (b1, . . . , bn) containing the users’ balances.
By “compressed” we mean that |Ci| is much shorter than the description of (b1, . . . , bn), and
usually its length is constant in every epoch. We will refer to Ci as a “commitment” to
(b1, . . . , bn). The length of Ci is called the commit size.

In each epoch every user Ui can request to exit, by which we mean that all bi coins from
her Plasma account get converted to the “real” coins on the main chain, and she is no longer
a part of this Plasma chain (which, in our formal modeling will be indicated by setting
bi := ⊥). Plasma’s security properties guarantee that every user can exit with all the coins
that she currently has in the given Plasma chain. It is often required that exiting can be
done cheaply, and in particular that the total length of the messages sent by the exiting user
to Γ is small. The amount of data that a user needs to send to Γ in order to exit the Plasma
chain is called the exit size.

Finally, any two users of the same Plasma chain can make transfers between each other.
Suppose Uk wants to transfer v coins from her account to Uj . This transfer operation
involves only communicating with Uj , and with the operator Op, while no interaction with
the contract Γ is needed. Under normal circumstances (i.e. when the operator is honest) the
next Plasma block that is committed to the main chain will simply have v coins deduced
from Uk’s account and v coins added to Uj ’s account.3

1.1.1 Challenges in designing Plasma systems
The main challenge when designing a Plasma system is to guarantee that every user can exit
with her money. This is usually achieved as follows: each Ci is a commitment to (b1, . . . , bn),
computed using a Merkle tree. An honest operator Op is obliged to obey the following rule:
Explaining commitments – each time Op sends Ci to Γ, she sends the corresponding

−→
b :=

(b1, . . . , bn) to all the users.

Technically, sending
−→
b to the users can be realized, e.g., by publishing it on the operator’s

web-page (i.e.: “off-chain”). Every user Uj can now check if she has the correct amount on
her account and if Ci was computed correctly. Moreover, thanks to the properties of Merkle
trees, Uj has a short proof of size O(log(n)) that bj has been “committed” into Ci.

The above description assume that the operator is honest. If she is corrupt things get
more complicated. Note that Ci sent by the operator to Γ is publicly known (due to the
properties of the underlying blockchain). Hence, we can assume that all the users agree on
whether Ci was published and what is its exact value. The situation is different when it
comes to the vector

−→
b that should be published off-chain. In particular, if

−→
b has not been

published, then the users have no way to prove this to Γ. This is because whether some data

3 To keep things simple, in this paper we do not discuss things like “transfer receipts”, i.e., confirmations
for the sender that the coins have been transferred.
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has been published off-chain or not does not have a digital evidence that can be interpreted
by Γ. This leads us to the following attack that can be carried out by a malicious operator,
and is intensively studied by the cryptocurrency community (see, e.g., [3]).

Data unavailability attack – in this attack the corrupt operator publishes Ci but does not
publish

−→
b .

Note that this attack has no extra cost for the operator because from the point of view of the
smart contract Γ, the operator behaves honestly, and hence the users cannot complain to Γ
and request, e.g., that Op sends

−→
b to Γ. Furthermore determining if this attack happened is

“subjective”, i.e., every user Uj has to detect it herself. Moreover, in case of data unavailability
it is impossible for Γ to determine whether Uj or Op is dishonest, since a sheer declaration
of Uj that Op did not send him the data obviously cannot serve as a proof that it indeed
happened. This leads to the following definition.

Non-uniquely attributable faults – this refers to the situation when the contract has to
intervene in the execution of the protocol (because the protocol is under attack), but it
unable to determine which party misbehaved (see, e.g., [2]).

Non-uniquely attributable faults appear typically in situations when a party claims that it
has not received a message from another party. In contrast if a contract is able to determine
which party is corrupt then we have a uniquely-attributable fault. A typical example of
such a fault is when a party signs two contradictory messages. Unfortunately, non-uniquely
attributable faults are hard to handle in real life, since it is not clear which party should pay
the fees for executing the smart contract, or which party should be punished for misbehaving.
In particular, what is unavoidable in such a case is that a malicious party P can force
another participant P ′ to lose money on fees (potentially also loosing money herself). This
phenomenon is known as griefing [2].

When a user realizes that the operator is dishonest, then she often needs to start quickly
interacting with Γ in order to protect her coins. This action has to be done quickly, and has
to be performed by each honest user. This leads to the following definition.

Forced on-chain action of size α – this term refers to the situation that honest parties who
did not intend to perform an exit are forced by the adversary to quickly interact with Γ,
and the total length of the messages sent by them to Γ is α. Informally, when α is large
(e.g. α = Ω(n)) we say this is a mass forced on-chain action.

Note that this definition talks about all honest “parties”, and hence it includes also the
case when the operator is honest, but it is forced to act because of the behavior of the
corrupt users. Typically α = Ω(n) and by “quickly” we mean “1 epoch”. In most Plasma
proposals [23, 26, 4] “interacting with the smart contract” means simply exiting the Plasma
chain with all the coins. Hence, a more common term for this situation is “mass exit”. Since
in our work we are dealing with the lower bounds, we need to be ready to cover also other,
non-standard, ways of protecting honest users’ coins. For example, it could be the case that a
user Uj does not exit immediately, but, instead, keeps her coins in a special account “within
Γ” and withdraws them much later. Of course, this requires interacting with Γ immediately,
but, technically speaking does not require “exiting”. To capture such situations, we use the
term “forced on-chain action”, instead of “mass exit”.

After a party announces an exit, we need to ensure that she is exiting with the right
amount of coins. The main problem comes from the fact that we cannot require that users
exit from the last Ci by sending the explanation for her balance bi to Γ. This is because it
could be the case that a given user does not know the explanation

−→
b of Ci (due to the data

unavailability attack). For a description of how this can be done in practice see [26, 4], or
the full version of this paper [11].
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Mass exits (or large forced on-chain actions) caused by data unavailability are considered
a major problem for Plasma constructions. They are mentioned multiple times in the original
Plasma paper [26] (together with some ad-hoc mechanism for mitigating them). They are
also routinely discussed on “Ethereum’s Research Forum”4, with even conferences organized
on this topic5. One of the main reasons why the mass exits are so problematic is that they
may results in blockchain congestion (i.e., situations when too many users want to send
transactions to the underlying blockchain). Moreover, the adversary can choose to attack
Plasma precisely in the moments when the blockchain is already close to being congested
(see, e.g., [30] for a description of real-life incident of the Ethereum blockchain congestion).
She can also attack different Plasma chains (established over the same main chain) so their
users simultaneously send large amounts of data to the blockchain. In order to be prepared
for such events in real-life Plasma proposals it is sometimes suggested that the time T for
reacting to data unavailability should be very large (e.g. T = 2 weeks). This, unfortunately,
has an important downside, namely that also an honest coin withdrawal requires time T .

Consider a non-fungible Plasma that supports coin identifiers from some set C. In a
non-fungible Plasma the Plasma chain is of a different form than before: instead of a vector
of balances

−→
b , it is a function f : C → {U1, . . . , Un,⊥} that assigns to every coin c ∈ C its

current owner f(c) (or ⊥ if the coin has been withdrawn). Similar to before the commitment
to the value of f will be done using Merkle trees. Whenever a coin is withdrawn its identifier
c is sent to the smart contract Γ, and hence it becomes public. This is important for the
mechanism that prevents parties from stealing coins. To this end, each user U monitors Γ,
and sends a complaint whenever some (corrupt) user U ′ tries to withdraw one of U ’s coins.
For the contract Γ to decide if c belongs to U or U ′ can require some additional interaction,
but the system is designed in such a way that the honest user is guaranteed that finally she
will win such dispute. Hence, every malicious attempt to withdraw someone else’s coin will
be stopped.

The main difference between Plasma Cash and Fungible Plasma is that in Plasma Cash
every user has to “protect” only her own coins. Thanks to this, even in case of the data
unavailability attack, each honest user U does not need to immediately take any action.
Instead, she can just monitor Γ, and has to act only if someone tries to withdraw one of U ’s
coins. Of course, the corrupt user can still force all the honest ones to quickly act on the
blockchain. However, this requires much more effort from them than in Fungible Plasma,
namely: they need to withdraw many coins of the honest users at once, hence forcing the
honest users to react. This is “fairer” both honest and malicious users have to make similar
effort. Most importantly, however, this attack has uniquely-attributable faults.

This advantage of Plasma Cash comes at a price, namely the “exit size” is not constant
anymore, as it depends on the number of coins that a user has (since each coin has to be
withdrawn “independently”). The Ethereum research community has been making some
efforts to deal with this problem. One promising approach is to “compress” the information
about withdrawn coins. For example one could assume that the identifiers in C are natural
numbers. Then a user U who owns coins from some interval [a, . . . , b] (with a, b ∈ N)
could simply withdraw them by posting a message “User U withdraws all coins from the
interval [a, . . . , b] (instead of withdrawing each i ∈ [a, . . . , b] independently). This, of course,
works only if the coins that users own can be divided into such intervals. Some authors
(in particular V. Buterin) have been suggesting “defragmentation” techniques for achieving

4 Available at: ethresear.ch.
5 See: ethresear.ch/t/data-unavailability-unconference-devcon4.
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such a distribution of coins. This is based on the assumption that the parties periodically
cooperate to “clean up” the system. Hence, it does not work in a fully malicious settings6 (if
the goal of the adversary is to prevent the cleaning procedure).

1.1.2 The landscape of Plasmas
Soon after the original groundbreaking work on Plasma [26], some concrete variants have
been proposed. Some of them we already described in Sec. 1.1. Since this paper focuses
on the impossibility results, we do not provide a complete overview of the many different
variants that exist and what features they achieve. Plasma projects that are frequently
mentioned in the media are Loom, Bankex, NOCUST and OmiseGO [28, 24]. This area is
mostly developed by a very vibrant on-line community that typically communicates results
in form of so-called “white-papers”, blog articles, or post on discussion forums (such as the
“Ethereum Research Forum”, see footnote 4 on page 7). See also the diagram called “Plasma
World Map” illustrating the different flavors of Plasma in the full version of this paper [11].
A notable exception are NOCUST and NOCUST-ZKP described in [21]. This work, up
to our knowledge, is the first academic paper on this topic. It provides a formal protocol
description (with several interesting innovations such as “ Merkle interval trees”) and a
security argument. Moreover, the authors of [21] describe a version of NOCUST that puts a
collateral on the operator (this is done in order to achieve instant transaction confirmation).
The authors of [21] (see also [16]) introduce the term “commit chains”. Yet, unfortunately,
they do not define a full formal security model that we could re-use in our work.

Let us also mention some of the so-called “distributed exchanges” that look very similar to
Plasma. One example is StarkDEX (informally described in [15]), which is also based on the
idea of a central operator batching transactions using Merkle trees, and a procedure for the
users to “escape” from the system if something goes wrong. This protocol uses non-interactive
zero-knowledge protocols to ensure correctness of the operator’s actions (similar approach
has been informally sketched in the original Plasma paper [26], and has been also used in
NOCUST-ZKP [21]). While zero knowledge can be used to demonstrate that some data
was computed correctly, it cannot be used to prove that the off-chain data was published at
all. Consequently, the authors of this system also encountered the challenge of handling the
data unavailability attack. Currently, in StarkDEX this problem is solved by introducing an
external committee that certifies if data is available.7 StarkDEX plans to eventually replace
the committee-based solution with an approach that is only based on trusting the underlying
blockchain. Our result however shows that in general this will be impossible, as long as
fungibility and short exits are required (unless the operator puts a huge collateral).

1.2 Our contribution and organization of the paper
We initiate the study of lower bounds (or: “impossibility results”) in the area of off-chain
protocols. Our results can also be viewed as a part of a general research program of “bringing
order to Plasma”. We believe that the scientific cryptographic community can provide
significant help in the efforts to systematize this area, and to determine the formal security
guarantees of the protocols (in a way that is similar to the work on “Bitcoin backbone” [14],
or more recently on “Mimblewimble” [13], state channels [9], or the Lightning Network [22]).

6 See ethresear.ch/t/plasma-cash-defragmentation and subsequent posts by Buterin on the Ethereum
Research Forum.

7 See their FAQs at https://www.starkdex.io.
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Investigating the limits of what Plasma can achieve is part of this process. We focus on proving
lower bounds that concern the necessity of mass forced on-chain actions, especially caused
by the attack that have no uniquely attributable faults (as a result of data unavailability).
This is motivated by the fact that such attacks are particularly important for the off-chain
protocols: since the main goal of such protocols is to move the transactions off -chain, the
necessity of quickly acting on-chain can be viewed as a big disadvantage.

We start with a formal definition of Plasma (this is done in Sec. 2). Since in this work we
are interested only in the impossibility results, our definition is very restrictive for practical
systems. By “restrictive” we mean that we make several assumptions about how the protocol
operates. For example we have very strict synchronicity rules, and in particular we only
allow the users to start the Plasma operations in certain moments (see “payment orders”
and “exit orders” phases in Sec. 2.1). Obviously, such restrictions make our lower bounds
only stronger, since they also apply to a more realistic model (without such restrictions). We
believe that fully formalizing real-life Plasma (e.g. in the style of [12, 10, 22]) is an important
future research project, but it is beyond the scope of this work.

Our main result is presented in Thm. 1, stated formally in Sec. 3. It states that in certain
cases the adversary can force mass on-chain actions of the honest users of any Plasma system.
One subtle point that we want to emphasize is that whenever we talk about “forcing actions”
on the honest users, we mean a situation when the users that did not want to exit (in a
given epoch) are forced to act on-chain. This is important, as otherwise our theorem would
hold trivially (one can always imagine a scenario when lots of users decide to exit Plasma
because of some other, external, reasons). The notion of “wanting to exit” is formalized by
an environment machine Z (borrowed from the Universal Composability framework [8]) that
“orders” the parties to behave in certain way.

More formally, Thm. 1 states that in Plasma either there exists an attack that provokes
a mass action, or there is an attack that requires a party that exits to post long messages on
the blockchain (i.e. this Plasma has large exits). Moreover, both attacks have no uniquely
attributable faults. Note that, strictly speaking, this theorem also covers Plasma systems
where the commit size is large (even Ω(n))8, but in this case it holds trivially since the honest
operator needs to send the large commitments to Γ even if everybody is honest (hence: there
is an “unprovoked” mass action in every epoch).

The most interesting practical implication of this theorem is that it confirms the need for
“two different” Plasma flavors, as long as the operator is not required to put aside a collateral
of size comparable to the total amount of coins in the system9. One way to look at it is:
either we want to have a Plasma system that does not have large exits, in which case we need
to have (non-uniquely attributable) mass actions (this is Fungible Plasma/Plasma MVP); or
alternatively we insist on having Plasma without such mass actions, but then we have to live
with large exits (as in Plasma Cash). Our theorem implies that there is no Plasma that would
combine the benefits of both Fungible Plasma and Plasma Cash, and hence can serve as a
justification why both approaches are complementary. Before our result one could hope that
the opposite is true and that, e.g., the only reason why Plasma Cash is popular is its relative
simplicity (compared to Fungible Plasma). Besides of this reason, and the general scientific
interest, we believe that our lower bound has some other important practical applications. In
particular, lower bounds often serve as a guideline for constructing new systems or tweaking

8 In practice, Plasma systems with unbounded commit size are not interesting since they do not bring any
advantages to the users. Moreover, they can be trivially constructed just by putting every transaction
on the main chain.

9 This is clearly impractical for most of the applications. Actually most of Plasma constructions assume
no such collateral at all.
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the definitions. We hope it will contribute to consolidate the countless research efforts in
constructing new Plasma systems10 and simplify identifying proposals that are not sound
(e.g., because they claim to achieve the best of both worlds).

Let us also stress that our Thm. 1 does not rely on any assumptions of complexity-
theoretic type and does not use a concept of “black-box separations” [18]. This means
that the lower bound that we prove cannot be circumvented by introducing any kind of
strong cryptographic assumptions. Hence, of course, it also holds for Plasmas that use
non-interactive zero-knowledge (like NOCUST-ZKP [21] or StarkDEX [15]). Moreover, we
manage to generalize our lower bound. Thm. 1 even holds for Plasma systems where the
operator deposits a certain amount of coins for compensating parties for malicious behavior
(e.g., it could be used when a malicious operator does not explain commitments).

For completeness, we also describe (in the full version of this paper [11]) “positive” results,
i.e., two protocols that satisfy our security definition (Plasma Cash and Fungible Plasma).
We stress that we do not consider it to be a part of our main contribution, and we do not
claim novelty with these constructions, as they strongly rely on ideas published earlier (in
particular [26, 5, 23, 4, 21, 15]).

Notation. For a formal definition of an interactive (Turing) machine and a protocol, see,
e.g., [8]. In our modeling the communication between the parties is synchronous and happens
in rounds (see Section 2). During the execution of the protocol a party P may send messages
to a party P ′. A transcript of the messages sent from P to P ′ is a sequence {(mi, ti)}`i=1,
where each mi was sent by P to P ′ in the ti-th round. A transcript of messages sent from
some set of parties to a different set of parties is a sequence {(Wi,W

′
i ,mi, ti)}`i=1, where

each mi was sent by Wi to W ′i in the ti-th round. By the length of a transcript we mean its
bit-length (in some fixed encoding). We sometimes refer to it also as communication size
(between the parties).

2 Plasma Payment Systems

A Plasma payment system (or “Plasma” for short) is a protocol Π consisting of a randomized
non-interactive machine Ψ representing the setup of the system; deterministic11 interactive
poly-time machines U1, . . . , Un,Op representing the users and the operator of the Plasma
system (respectively); and a deterministic interactive poly-time machine Γ, which represents
the Plasma contract. We use the notation U = {U1, . . . , Un} to refer to the set of users of
the system. The contract machine Γ has no secret state, and moreover its entire execution
history is known to all the parties. We can think of it as a Turing machine that keeps the
entire log of its execution history, and moreover all the other parties in the system have a
(read-only) access to this log. The Plasma system comes with a parameter γ ∈ R≥0 called
operator’s collateral fraction. Informally, this parameter describes the amount of coins that
are held by the operator as a “collateral” (as a fraction of user’s coins). These coins can be
used to cover users’ losses if the operator misbehaves. This is formally captured in Section 2.2
(see “limited responsibility of the operator”). If γ = 0 then we say that the operator is not
collateralized. We introduce the notion of collateral in order to make our results stronger
and to cover also cases of real-life systems that have such a collateral (e.g., NOCUST, see
Section 1.1).

10 see https://ethresear.ch/c/plasma/.
11We assume that these machines are deterministic, since all their internal randomness will be passed to

them by Ψ.

https://ethresear.ch/c/plasma/
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The protocol is attacked by a randomized poly-time adversary A. We assume that A can
corrupt any number of users and the operator except the contract Γ (hence Γ can be seen
as a trusted third party). Once A corrupts a party P , she learns all its secrets, and takes
full control over it (i.e. she can send messages on behalf of P ). A party that has not been
corrupted is called honest. An execution of a Plasma payment system Π is parametrized by
the security parameter 1λ.

To model the fact that users perform actions, we use the concept of an environment Z
(which is also a poly-time machine) that is responsible for “orchestrating” the execution of
the protocol. The environment can send and receive messages from all the parties (it also has
full access to the state of Γ). It also knows which parties are corrupt and which are honest.
For an adversary A and an environment Z, a pair (A,Z) will be called an attack (on a given
Plasma system Π). The contract machine Γ can output special messages (attribute-fault, P )
(where P ∈ U ∪ {Op}). In this case we say that Γ attributed a fault to P . We require that
the probability that Γ attributes a fault to an honest party is negligible in λ. An attack
(A,Z) has no attributable faults if the probability that Γ attributes a fault to some party is
negligible.

2.1 Protocol operation
Let us now describe the general scheme in which a Plasma payment protocol operates. In
this section, we focus only on describing what messages are sent between the parties. The
“semantics” of these messages, and the security properties of the protocol are described
in Section 2.2. We assume that all the parties are connected by authenticated and secret
communication channels, and a message sent by a party P in the ith round, arrives to P ′ at
the beginning of the (i+ 1)th round. The communication is synchronous and happens in
rounds. It consists of three stages, namely: “setup”, “initialization”, and “payments”. The
execution starts with the setup stage. In this stage parameter 1λ is passed to all the machines
in Π. Upon receiving this parameter, machine Ψ samples a tuple (ψU1 , . . . ψUn

, ψOp, ψΓ)
(where each ψP ∈ {0, 1}∗). Then for each P ∈ {U1, . . . , Un,Op,Γ} the string ψP is passed to
P . Afterwards, the parties proceed to the initialization stage. In this stage the environment
generates a sequence (ainit

1 , . . . , ainit
n ) of non-negative integers and passes it to the contract Γ

(recall that the state of Γ is public, and hence, as a consequence, all the parties in the system
also learn the ainit

i ’). Then the protocol proceeds to the payment stage. This stage consist of
an unbounded number of epochs. Each ith epoch (for i = 1, 2, . . .) is divided into two phases.

Payment phase. In this phase the environment sends a number of payment orders to the
users (for simplicity we assume that this happens simultaneously in a single round).
Each order has a form of a message “(send, v, Ui)”, where v ∈ Z≥0, and Ui ∈ U . It
can happen that some users receive no payment orders in a given epoch. It is also ok
if a user receives more than one order in an epoch. Informally, the meaning of these
messages is as follows: if a user Uj receives a “(send, v, Ui)” message, then she is ordered
to transfer v coins to user Ui. We require that this message can only be sent if none of
bi and bj are equal to ⊥ (i.e.: if none of Ui and Uj “exited”, see below). The parties
execute a multiparty sub-protocol. During this executions some of the users send a
message “(received, v, Ui)” to the environment Z. This sub-protocol ends when Γ outputs
a message payments-processed.

Exit phase. In this phase the environment sends exit orders to some of the users (again:
this happens in a single round). Each such order is simply a message “exit”. Informally,
sending this message to some Ui means that Ui is ordered to exit the system with all
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her coins. The environment can send an exit message to Ui only if bi 6= ⊥ (i.e. Ui has
not already “exited”, see below). The parties again execute a multiparty protocol. The
protocol ends when Γ outputs a sequence

{(exited, Uij , vij )}mj=1, (1)

where m is some non-negative integer, and each Uij ∈ U and vij ∈ Z≥0. For each Uij
in Eq. (1) we say that Uij exited (with vij coins), and we let bij := ⊥. We require that
no party can exit more than once. In other words: it cannot happen that two messages
(exited, Ui, v) and (exited, Ui, v′) are issued by Γ.

We make some assumptions on the communication between the parties. Informally we require
that if U and U ′ are some honest users, then the procedure of transferring coins from U to
U ′ is done by a “sub-protocol” involving only parties in the set U and U ′. Since we do not
have a concept of “sub-protocol” this is formalized as follows:

Communication locality. Two honest users U and U ′ exchange messages only in epochs in
which they do transactions between each other (i.e. a message (send, U, v) is sent by Z to
U ′, for some v).

This requirement is very natural since Plasma is supposed to work even when an arbitrary
set of users is corrupt. Hence, relying on the other users’ help in financial transfers would be
impractical. Up to our knowledge all “pure” Plasma proposals in the literature satisfy this
requirement. On the other hand: it may not hold if we incorporate some techniques that
assume some type of cooperation between larger sets of parties (e.g. consensus mechanisms).
Examples include: Buterin’s Plasma Chash defragmentation (where a large set of users has
to regularly cooperate in order to “clean-up” the system), and StarkDEX’s “data availability
committee” (see Section 1.1), if we treat the committee members as “users”. One way to
view our result is that it implies that such techniques are inherent for every fungible Plasma.

2.2 Security properties
During the interaction with the protocol, the environment keeps track of balances of honest
users (we do not define balances of dishonest users). Formally, for each honest user Ui it
maintains a variable bi ∈ Z≥0 ∪ {⊥} (a balance of Ui), where the symbol “⊥” means that a
party exited. It also maintains a variable t ∈ Z≥0 (initially set to 0) that is used to keep track
on the amount of coins that have been withdrawn. The rules for maintaining these variables
are as follows. Initially, for each i := 1, . . . , n the environment Z lets bi := ainit

i . Whenever Γ
outputs (exited, Ui, v) (for some Ui and v) we let bi := ⊥ and increment t by v. Each time Z
receives a message (received, v, Ui) from some honest Uj , it adds v to bj (recipient balance)
and, if Ui (sender) is honest too, subtracts v from bi. We require that the environment never
issues an order if Ui or Uj exited (i.e. if bi = ⊥ or bj = ⊥). The environment also never
sends an order exit to the same user more than once, and it never sends exit order to a user
Ui that already exited (i.e. such that bi = ⊥). We have the following security properties.

Responsiveness to “send” orders. Suppose Op, Ui, and Uj are honest, and the environment
issued an order (send, v, Ui) to Uj then in the same epoch party Ui sends a message
“(received, v, Uj)” to the environment.

Correctness of “received” messages. Suppose Ui and Uj are honest and Ui outputs a
message “(received, v, Uj)”, then environment has issued an order (send, v, Ui) to Uj
in the same epoch.
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Responsiveness to “exit” orders. Suppose Ui is honest and the environment issued an order
exit to Ui then in the same epoch Γ outputs a message (exited, Ui, v) (for some v).

No forced exits if operator honest. Suppose Op and Ui are honest and Γ outputs message
(exited, Ui, v) at epoch r, then environment has sent the order exit to Ui in the same
epoch.

Fairness for the users. If Γ outputs a message (exited, Ui, v) (for some honest Ui) then v ≥ bi
(where bi is the current balance of Ui).

Limited responsibility of the operator. If the operator is honest, then the total amount of
coins that are withdrawn from the system is at most ainit

1 + · · ·+ ainit
n . Otherwise (if she

is dishonest) the total amount of coins that are withdrawn from the system is at most
d(1 + γ)(ainit

1 + · · ·+ ainit
n )e. This definition captures the notion of operator’s collateral,

and the fact that it is used (to cover users’ losses) if the operator is caught cheating.

If an attack (A,Z) succeeds to violate any of the requirements from this section, then we
say that (A,Z) broke a given Plasma payment system. We say that Π is secure if for every
environment (A,Z) the probability that A breaks Π is negligible in 1λ.

As explained in the introduction, certain attacks on Plasma are of particular importance,
due to the fact that they are hard to handle in real life. We say that (A,Z) force an on-chain
action of size M (in some epoch i) if the following happened. Let T be the set of honest
parties that did not receive any order from Z in epoch i. Then the total length of messages
sent by parties from T to Γ is at least M . As explained in the introduction, the term that is
more standard than “forced on-chain action” is “mass exit”. See 1.1 for a discussion why
“forced on-chain action” is a better term when impossibility results are considered.

3 Our main result

We now present Thm. 1, which is the main result of this paper. The main implication of this
theorem is that for every non-collateralized Plasma system there exists an attack that provokes
a mass forced on-chain action, i.e., it forces the honest users to make large communication
with the contract even if they did not receive any exit order from the environment (see point
1 in the statement of the theorem), unless a given Plasma system has large exits (point 2).
Moreover, this can be done by an attack that has no uniquely attributable faults. This fact
cannot be circumvented by putting a collateral on the operator, unless this collateral is very
large.

I Theorem 1 (Mass forced on-chain actions or large exits without uniquely attributable faults
are necessary). Let Π be a secure Plasma payment system with n users and let γ ≥ 0 be the
operator’s collateral fraction. Then either
1. there exists an attack on Π that causes a forced on-chain action of size greater than

(n− dγne · log2 n− 5)/4 with probability at least 1/16 + negl(λ), or
2. there exists an attack on Π such that one honest user, when ordered to exit by the

environment, makes communication to Γ of size at least (n − dγne · log2 n − 5)/4 with
probability at least 1/16 + negl(λ).

Moreover, both attacks have no uniquely attributable faults.

One way to look at this theorem is as follows. First, consider a non-collateralized Plasma, i.e.,
assume that γ = 0. Let P1 be a class of non-collateralized Plasma that with overwhelming
probability do not have uniquely attributable forced on-chain actions (of any size larger than
0). In this case point 1 cannot hold, and hence, every Plasma Π ∈ P1 needs to satisfy point 2.
This means that there exists an attack on every Π ∈ P1 such that one honest user, when

ITCS 2021



72:14 Exploring the Limits of Plasma

ordered to exit by the environment, makes communication to Γ of size at least (n − 5)/4
with probability around 1/16. Or, in other words: every Plasma from class P1 must have
a large exist size with noticeable probability. We know Plasma with such properties: it is
essentially Plasma Cash (see the full version of this paper [11])

On the other hand, let P2 be a class of non-collateralized Plasmas that with high
probability have no large exits, in the sense of point 2 of Thm. 1. This means that point 1
has to hold, which implies that every Π ∈ P2 needs to have large (at least around (n− 5)/4)
non-uniquely attributable mass forced on-chain actions. Plasma with such properties is called
Fungible Plasma (see the full version of this paper [11]) Hence, informally speaking, Thm. 1
states that we cannot have the “best of two types of Plasma” simultaneously.

If we consider non-zero collaterals, i.e., we let γ > 0 then the situation does not improve
much, unless the collateral fraction is large, i.e., the total collateral blocked by the operator
is at least around n · γ = n/ log2 n

12. This essentially means that we cannot get around
the bounds from Thm. 1 by introducing collateral, unless the amount of coins blocked in
operator’s collateral is of roughly the same order as the total amount of coins stored by
the users.

Note that even trivial versions of Plasma “fit” into Thm. 1. For example, consider Plasma
in which the operator always puts all the transactions on-chain. Of course, the details would
need to be worked out, but clearly such a Plasma can be made secure. The existence of such
a trivial Plasma does not contradict our Thm. 1, since it clearly satisfies point 1: a large
number of transfers in one epoch will cause a forced mass on-chain action (by the operator).
The same also holds if every user needs to put each transaction on-chain.

4 Proof of Theorem 1

Before we present the proof let us introduce some auxiliary machinery. This is done in the
next section.

4.1 Isolation scenario
Let Π be a Plasma payment system, let Z be an environment, and let W be some subset of
the users of Π. We now introduce a procedure that we call isolation of W. In this scenario
Π is executed as in the normal execution, except that we “isolate” the users W ⊆ U from the
operator. More precisely: all the messages sent between any U ∈ W and the operator Op
are dropped, i.e., they never arrive to the destination. This scenario can be viewed as an
“attack” although it does not fit into the framework from Section 2.1, since it violates the
assumption that messages sent by an honest party to another honest party always arrive to
the destination.

Although the isolation scenario cannot be performed within our model, it can be “emulated”
by corrupting either the operator Op, or the users from W. In the first case we corrupt the
operator and instruct him to behave as if she was honest, except that she does not send
messages to the users in W and ignores all messages sent by these users. This will be called
the data unavailability (DU) attack against W by the operator. In the second, symmetric
case (the pretended data unavailability (PDU) attack by W on the operator) we corrupt the
users in W. Then, every user U ∈ W behaves as if she was honest, except that she does not
send messages to Op, and ignores all messages from Op.

12This is because we need to have γ ≈ 1/ log2 n to make the expression “(n− dγne · log2 n− 5)/4” equal
to 0.



S. Dziembowski, G. Fabiański, S. Faust, and S. Riahi 72:15

If this is the only type of malicious behavior, then “from the point of view” of all the
other parties, and, most importantly, from the point of view of the contract machine Γ, it is
impossible to say who is corrupt (the users in W or the operator Op). More precisely, we
have the following.

I Observation 1. Let Π be a Plasma payment system and consider the attack that isolates
users in some set W from the operator. Let Z be an arbitrary environment and let T W,Zisolate
be the random variable denoting the transcript of messages received by Γ. Moreover, let
T W,ZPDU and T W,ZDU be the random variable denoting the transcripts of messages received by
Γ in the PDU attack and in the DU attack (respectively), both with environment Z. Then
T W,ZDU

d= T W,Zisolate
d= T W,ZPDU .

This fact is useful in the proof of the following simple lemma.

I Lemma 1. Fix an arbitrary Plasma Π. Let W be some set of users. Suppose A performs
a DU attack against W or a PDU attack by W (either by corrupting the operator or by
corrupting the users), and let Z be arbitrary. Then the attack (A,Z) has no uniquely
attributable faults.

Proof. From the security of Π we get that if the users are corrupt then the probability that
Γ attributes a fault to them is negligible. Symmetrically, if the operator is corrupt then the
probability that Γ attributes a fault to her is negligible. By Observation 1 the transcripts of
messages received by Γ in both attacks are distributed identically, so the probability that Γ
attributes any fault has to be negligible. J

4.2 Proof overview
Fix some secure Plasma payment system Π that works for n users. We construct either an
attack such that

Pr

 the set of all honest users makes communication to Γ of size
at least (n− dγne · log2 n− 5)/4

(without receiving an exit order from the environment)

 ≥ 1/16 + negl(λ), (2)

or an attack such that

Pr

 user U1, when ordered to exit by the environment, makes
communication to Γ of size at least

(n− dγne · log2 n− 5)/4

 ≥ 1/16 + negl(λ). (3)

In both of these attacks the amount of coins given to the users is n, but our proof can be
generalized to cover cases when it is required that the amount of coins is larger than n (we
comment more on this at the end of Section 4). On the other hand, the proof does not go
through in the (unrealistic) case when this amount is very small (sublinear in n).

The attacks that we construct in both cases ((2) and (3)) have no uniquely attributable
faults. Note that for n ≤ 5 Eq. (3) holds trivially, and therefore we can assume that n > 5.
Let Υ denote the family of all non-empty proper subsets of {U2, . . . , Un}, i.e. sets V such
that ∅ ( V ( {U2, . . . , Un} (note that U1 6∈ V). Since we assumed that n > 5 we have
that log |Υ| = log2(2n−1 − 2) ≥ n− 2, and, in particular, Υ is non-empty. In the proof we
construct an experiment (denoted by Exp(V) and presented in details in the full version
of this paper [11]) and analyze its performance, assuming that V is sampled uniformly at
random from Υ. Depending on this analysis, the experiment Exp(V) can be “transformed”
into an attack that satisfies Eq. (2) or Eq. (3).
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Experiment Exp(V) “simulates” an execution of two epochs of Plasma Π. In the first
epoch the adversary isolates the users in {U2, . . . , Un} \ V from the operator (in the attacks
that we construct later this will be done either by corrupting these users, or the operator).
The environment gives 1 coin to each user U ∈ U . Then, in the “payment” phase of the
first epoch all the users from V transfer their coins to U1. In the “exit” phase of the first
epoch user U1 receives an exit order from the environment and consequently exits with all
her coins. Note that in the first epoch every party behaved honestly (except of the isolation
attack against the users in {U2, . . . , Un} \ V), and hence U1 is guaranteed to successfully exit
with her coins (she has 1 such coin from the “initialization” phase, and |V| coins that were
transferred to her by the users in V).

Of course the honest parties from {U2, . . . , Un} \ V will usually realize that they are
isolated from the operator. As a reaction to this they may send some messages to Γ. This, in
turn can provoke the other parties to react by sending their messages to Γ. Hence, in general
there can be a longer interaction between all the parties and Γ in this phase. Let T 1 be the
transcript of the messages sent by the users in {U2, . . . , Un} \ V to Γ in both phases, let T 2

be the messages sent by the users in V and the operator to Γ in both phases, let T 3 be the
messages sent by U1 to Γ in the “payment” phase, and finally let T 4 be the messages sent by
U1 to Γ in the “exit” phase. The first epoch of the experiment Exp(V) and the transcripts
are depicted on Fig. 1.

users U2, … ,U𝑛 ∖ 𝒱users 𝒱
user U1

1+|𝒱|

1 1 1 1 1 1 1 1 1

payment phase

inital accounts

accounts after
the first epoch⊥ 0 0 0 0 1 1 1 1

operator Op

exit phase

users isolated from the operatorusers not isolated from the operator

main 
chain

𝒯4
T 1T 2

T 2 T 3

Figure 1 The first epoch of the experiment Exp(V). Gray circles denote the parties, and the T i’s
denote the transcripts of the communication with Γ (see, e.g., Section 4.2 for their definitions).

Before discussing the second epoch of the experiment, let us note that in the first epoch
the only way in which we deviate from the totally honest execution is the “isolation” of
{U2, . . . , Un} \ V . This will later allow us to be “flexible” and corrupt different sets of parties
({Op} or {U2, . . . , Un} \ V) depending on the results of our analysis of Exp(V). This will
be different in the second epoch, where we always assume that parties from V are corrupt.
This is ok because while constructing the attacks that satisfy (2) or (3) we will only use the
first epoch of Exp(V). The only reason to have the second epoch of Exp(V) is to make sure
that the users have to send large amounts of data to Γ during the first epoch, as otherwise
corrupt V can steal the money (in the second epoch).

Let us now present some more details of the second epoch. Initially we corrupt all the
users from V and “rewind” them to the state that they had at the beginning of the first
epoch. This is done in order to let them “pretend” that they still have their coins. We then
let all of them try to (“illegally”) exit with these coins. Technically, “rewinding a user U” is
done via a procedure denoted ReconstructU . This procedure outputs the state that U would
have at the end of the “payment” phase if she did not transfer her coins to U1. To make
it look consistent with the state of Γ, this procedure takes as input the transcripts defined
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above. Then, each user U ∈ V tries to exit (in the “exit” phase) from her state computed
by ReconstructU . Also the honest users try to exit (they receive an “exit” order from the
environment). Let Q be the set of users that managed to exit with at least 1 coin. From the
security of Plasma we get that Q is equal to the set of honest users ({U2, . . . , Un} \ V) plus a
small (of size at most dγne) subset D of dishonest users.

The key observation is now that all that is needed to “simulate” the second epoch of Exp(V)
are the transcripts T 1, T 2, T 3, and T 4. On the other hand V can be approximately computed
from Q (i.e., we can compute V with elements D missing, where |D| = dγne). Hence the
variable (T 1, T 2, T 3, T 4) carries enough information to “approximately” describe V . Thanks
to this we can construct a “compression” algorithm that “compresses” a random V ←$ Υ by
simulating the first epoch of Exp(V) and obtaining (T 1, T 2, T 3, T 4) and then “decompresses”
it by simulating the second epoch, and computing the output as V := {U2, . . . , Un} \ Q (the
additional dγne elements can be simply listed as an additional output of C and passed to D
as input that has to be added to the output of D).

On the other hand, clearly (for completeness we show this fact in the full version of this
paper [11]), a random V ←$ Υ with high probability cannot be compressed to a string that is
significantly shorter than log |Υ| ≥ n − 2. This implies that with a noticeable probability
|(T 1, T 2, T 3, T 4)| ≈ n − dγne log2 n, where dγne log2 n is the number of bits needed to
describe set D.

Obviously, the above fact implies that for at least one i ∈ {1, . . . , 4} we have that
T i ≥ (n − dγne log2 n)/4 with noticeable probability for concrete parameters). The rest
of the proof of Thm. 1 is based on the case analysis of the implications of “T i ≥ n/4” for
different i’s. More concretely, we show that in the first three cases (i = 1, 2, and 3) we can
construct attacks that satisfy Eq. (2), and in case i = 4 – an attack that satisfies Eq. (3).
All these attacks are based on the experiment Exp(V), but are only using its first epoch. In
the proof we exploit the fact that the only malicious behavior that happens in this epoch is
the “isolation” (i.e., not sending messages). Hence, we can use Observation 1 and “switch”
between scenarios when different groups of parties are corrupt (while still getting the same
transcripts T i). Moreover these attacks do not have uniquely attributable faults.

The detailed proof of Thm. 1 can be found in the full version of this paper [11].

I Remark 1. Our proof would also go through even if the total balance of the users a is
arbitrarily large. The only difference would be that instead of giving 1 coin to every user,
the environment would give to each user Ui (for i > 1) ba/nc coins, and to user U1 the
environment would give the remaining coins (say). The rest of the proof would be essentially
identical to the proof of Thm. 1.

I Remark 2. Although the attack presented requires two epochs, the second epoch only
captures the scenario where the underlying protocol is insecure and hence it can be seen as a
“thought experiment”. In other words, if the honest parties do not make large communication
with the contact Γ in the first epoch, they risk loosing their coins in the second epoch.
Therefore, under the assumption that the plasma system is indeed secure and consequently
parties make large communication with Γ in the first epoch, the adversary cannot steal any
coins in the second epoch and hence the second epoch would become obsolete.

Conclusion

The main contribution of this work is that we have shown that the distinction between
Plasma Cash and Fungible Plasma is inherent, i.e., we ruled out the possibility of constructing
Plasma that combines benefits of both Plasmas. We believe that, besides of the general
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scientific interest, our work (especially ruling out existence of some Plasma constructions)
can help the practical blockchain community in developing Plasma protocols, and in general
can bringing more understanding in what is possible and what is impossible in the area of
off-chain protocols, and under what assumptions. It can also serve as a formal justification
why “hybrid” approaches (such a “rollups”) [6] may be needed in real life. We also hope that
this work may expand the scope of theory by identifying a new area where theoretical lower
bounds can have direct impact on the real life problems.
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The theory of majorizing measures, extensively developed by Fernique, Talagrand and many others,
provides one of the most general frameworks for controlling the behavior of stochastic processes. In
particular, it can be applied to derive quantitative bounds on the expected suprema and the degree
of continuity of sample paths for many processes.

One of the crowning achievements of the theory is Talagrand’s tight alternative characterization
of the suprema of Gaussian processes in terms of majorizing measures. The proof of this theorem
was difficult, and thus considerable effort was put into the task of developing both shorter and easier
to understand proofs. A major reason for this difficulty was considered to be theory of majorizing
measures itself, which had the reputation of being opaque and mysterious. As a consequence, most
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measures in favor of a purely combinatorial approach (the generic chaining) where objects based on
sequences of partitions provide roughly matching upper and lower bounds on the desired expected
supremum.

In this paper, we return to majorizing measures as a primary object of study, and give a viewpoint
that we think is natural and clarifying from an optimization perspective. As our main contribution,
we give an algorithmic proof of the majorizing measures theorem based on two parts:

We make the simple (but apparently new) observation that finding the best majorizing measure
can be cast as a convex program. This also allows for efficiently computing the measure using
off-the-shelf methods from convex optimization.
We obtain tree-based upper and lower bound certificates by rounding, in a series of steps, the
primal and dual solutions to this convex program.

While duality has conceptually been part of the theory since its beginnings, as far as we are aware
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1 Introduction

Let (Zx)x∈X denote a family of centered (mean zero) jointly Gaussian random variables,
indexed by points of a set X. A fundamental statistic of such a process is the expected
supremum E[supx∈X Zx], which provides an important measure of the size of the process.
This statistic has applications in a wide variety of areas. We list some relevant examples.
In convex geometry, one can associate a process to any symmetric convex body K, whose
supremum gives lower bounds on the size of the largest nearly spherical sections of K [13].
In the context of dimensionality reduction, one can associate a Gaussian process to any
point set S in Rd whose squared expected supremum upper bounds the projection dimension
needed to approximately preserve distances between points in S [7, 14]. In the study of
Markov Chains, the square of the expected supremum of the Gaussian free field of a graph
G was shown to characterize the cover time of the simple random walk on G [3].

The above list of applications, which is by no means exhaustive, help motivate the interest
in many areas of Mathematics for obtaining a fine grained understanding of such suprema.
We now retrace some of the key developments in the theory of Gaussian processes leading
up to Talagrand’s celebrated majorizing measure theorem [17], which gives an alternate
characterization of Gaussian suprema in terms of an optimization problem over measures on
X. The goal of this paper is to give a novel optimization based perspective on this theory, as
well as a new constructive proof of Talagrand’s theorem. For this purpose, some of the earlier
concepts, in particular, majorizing measures, will be central to the exposition. We will also
cover some generalizations of the theory to the non-Gaussian setting, as our results will be
applicable there as well. Throughout our exposition, we rely on the terminology introduced
by van Handel [22] for the various combinatorial objects within the theory (i.e., labelled nets,
admissible nets and packing trees).

1.1 Bounding the Supremum of Stochastic Processes
In what follows we use the notation A . B (A & B) if there exists an absolute constant
c > 0 such that A ≤ cB (cA ≥ B). We use A � B to denote A . B and A & B.

A first basic question one may ask is what information about the Gaussian process
(Zx)x∈X is sufficient to exactly characterize the expected supremum? An answer to this
problem was given by Sudakov [16], strengthening a result of Slepian [15]. Sudakov showed
that it is uniquely identified by the natural (pseudo) distance metric

d(u, v) := E[(Zu − Zv)2]1/2, ∀u, v ∈ X. (1.1)

In fact, Sudakov proved the following stronger comparison theorem: if (Yx)x∈X and (Zx)x∈X
are Gaussian processes on the same index set X and for every u, v ∈ X, it holds that
E[(Yu − Yv)2] ≤ E[(Zu − Zv)2], then E[supx Yx] ≤ E[supx Zx].

Given the above, it is natural to wonder what properties of the metric space X allow us
to obtain upper and lower bounds on E[supx∈X Zx]? A first intuitively relevant quantity
is the diameter of X defined by D(X) := supu,v∈X d(u, v). For any u, v ∈ X, we have the
following simple lower bound:

E[sup
x
Zx] ≥ E[max{Zu, Zv}] = E[max{Zu − Zv, 0}] + E[Zv]

= 1
2E[|Zu − Zv|] = d(u, v)√

2π
. (1.2)

Here, we use that E[Zv] = 0, and that Zu − Zv is Gaussian with variance d(u, v)2. Thus
E[supx Zx] ≥ D(X)/

√
2π.
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Instead of looking at two maximally separated points, one might expect to get stronger
lower bounds using a large set of well-separated points in X. Such an inequality was given
by Sudakov [16], who showed that

max
r>0

r
√

logNX(r) . E[sup
x
Zx],

where NX(r) := min{|S| | S ⊆ X,∀x ∈ X,mins∈S d(x, s) ≤ r} is the minimum size of an
r-net of X. This is in fact a direct consequence of Sudakov’s comparison theorem. Precisely,
the restriction of the process {Zx}x∈X to a suitable r-net S, chosen greedily so that every two
points in S are at distance at least r, majorizes the maximum of |S| ≥ NX(r) independent
Gaussians with standard deviation r/

√
2, where a standard computation then yields the

left-hand side.
On the upper bound side, Dudley [4] proved that the covering numbers can in fact be

chained together to upper bound the supremum:

E[sup
x
Zx] .

∫ ∞
0

√
logNX(r)dr. (1.3)

Note that the integral can be restricted to the range r ∈ (0,D(X)], since logNX(D(X)) =
log 1 = 0. Dudley’s proof of this inequality was extremely influential and showed the power
of combining simple tail bounds on pairs of variables Zu − Zv to get a global bound on
the supremum. In particular, the main inequality used in Dudley’s proof is the standard
Gaussian tail bound: for u, v ∈ X, and for any s > 0

P[|Zu − Zv| ≥ d(u, v) · s] ≤ 2e−s
2/2. (1.4)

The strategy of combining the above inequalities to control the maximum of a process is
what is now called chaining.

Basics of Chaining. The concept of chaining is central to this paper, so we explain the
basic mechanics here. As it will be more convenient for the exposition, we will more directly
work with symmetric version of the supremum

sup
x1,x2∈X

Zx1 − Zx2

which is always non-negative. Note that since (Zx)x∈X and (−Zx)x∈X are identically
distributed,

E
[

sup
x1,x2∈X

Zx1 − Zx2

]
= E

[
sup
x∈X

Zx

]
+ E

[
sup
x∈X
−Zx

]
= 2E

[
sup
x∈X

Zx

]
,

and thus the expected supremum is the same after dividing by 2.
From here, instead of bounding the expectation, we focus on upper bounding the median

of supx1,x2∈X Zx1 − Zx2 , which is known to be within a constant factor of the expectation.
Precisely, we seek to compute a numberM > 0 such that P[supx1,x2∈X Zx1−Zx2 ≥M ] ≤ 1/2.
To arrive at such bounds, we define the notion of a chaining tree.

I Definition 1.1 (Chaining Tree). A (Gaussian) chaining tree C for a finite metric space
(X, d) is a rooted spanning tree on X, with root node w ∈ X, together with probability
labels pe ∈ (0, 1/2), for each edge e ∈ E[C]. The edge probabilities are required to satisfy
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∑
e∈E[C] pe ≤ 1/2. For each edge {u, v} = e ∈ E[C], we define the induced edge length

le := le(pe, e) to satisfy

PZ∈N (0,d(u,v)2)[|Z| ≥ le] = pe. (1.5)

For each x ∈ X, let Px denote the unique path from x to the root w in C. We define the
value of C to be

val(C) = max
x∈X

∑
e∈Px

le. (1.6)

For a Gaussian process (Zx)x∈X , where d is the induced metric as in (1.1), for any
chaining tree C on X, we now show that

P
[

sup
x1,x2

Zx1 − Zx2 ≥ 2 · val(C)
]
≤ 1/2. (1.7)

By construction, for any edge {u, v} ∈ E[C] we first note that

P[|Zu − Zv| ≥ le] = pe,

recalling that Zu − Zv is distributed as N (0, d(u, v)2). Since
∑
e∈C pe ≤ 1/2, by the union

bound the event E defined as “|Zu − Zv| ≤ lu,v, ∀{u, v} ∈ E[C]”, holds with probability at
least 1/2. For x ∈ X, let us now define Px to be the unique path from the root w to x in C.

Conditioning on the event E , by the triangle inequality

|Zx − Zw| ≤
∑

{u,v}∈Px

|Zu − Zv| ≤
∑
e∈Px

le. (1.8)

Applying the triangle inequality again, we have that

sup
x1,x2

Zx1 − Zx2 ≤ 2 sup
x∈X
|Zx − Zw| ≤ 2 · val(C).

The bound (1.7) now follows since the above occurs with probability at least 1/2.
To work with such chaining trees, it is important to have easy approximations of the edge

lengths used above. For e = {u, v} ∈ E[C] and pe ∈ (0, 1/2], it is well known that

le � d(u, v)
√

log(1/pe). (1.9)

Note that by the standard Gaussian tail bounds (1.4), for any p ∈ (0, 1), we have the
upper bound, le ≤ d(u, v)

√
2 log(2/pe).

To relate to earlier lower bounds, it is instructive to see that val(C) & D(X), for any
chaining tree. Firstly, since each pu,v ∈ (0, 1/2], by (1.9), it follows that lu,v & d(u, v). From
here, for any pair of points u, v ∈ X, by the triangle inequality 2 · val(C) pays for the cost
of going from u to the root w and from w to v, yielding the desired upper bound on the
diameter.

Chaining beyond Gaussians. Importantly, in the above framework, the only element specific
to Gaussian processes is the edge length function (1.5). As our results will apply to this
more general setting, we explain how chaining can straightforwardly be adapted to work
with processes satisfying appropriate tail bounds.

Let us examine a jointly distributed sequence of random variables (Zx)x∈X indexed by a
metric space (X, d). To constrain the process we will make the following assumptions on
the tails. Let f : R+ → R+ be a continuous and non-increasing probability density function
on the non-negative reals and let F (s) =

∫∞
s
f(t)dt denote the complementary cumulative

distribution function. Then, for all x1, x2 ∈ X and s ≥ 0, we assume that

P[|Zx1 − Zx2 | ≥ d(x1, x2) · s] ≤ F (s). (1.10)
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I Definition 1.2 (Chaining Functional). We define the chaining functional induced by f to be
h(p) := hf (p) = F−1(p), for p ∈ (0, 1], which is well-defined since f is non-increasing. Note
that h(1) = 0 and that h(p) is strictly decreasing on (0, 1]. We say that h is of log-concave
type if the density f is log-concave.

A property that we make crucial use of is that h(p) is, in fact, a convex function of p ∈ (0, 1].
To see this, for p ∈ (0, 1), a direct computation yields that h′(p) = 1/F ′(h(p)) = −1/f(h(p)),
where the derivative is well-defined since f is continuous and non-decreasing. Since f(s) is
non-increasing and h(p) is strictly decreasing, h′(p) is non-decreasing and hence, h is convex.
Throughout the rest of the paper, we will mainly be interested in chaining functionals of
log-concave type.

To apply the chaining framework to the process (Zx)x∈X , we use a chaining tree C exactly
as in Definition 1.1 except that we now compute the edge lengths according to the chaining
functional h. Specifically, for e = {u, v} ∈ E[C] and probability pe ∈ (0, 1), we define

le := le(e, pe) := d(u, v) · h(pe). (1.11)

We now define valh(C) exactly as in (1.6), using h to compute the edge lengths.
With this setup, with an identical proof to the previous section, we have the inequality

P
[

sup
x1,x2∈X

Zx1 − Zx2 ≥ 2 · valh(C)
]
≤ 1

2 .

As in the Gaussian setup, it is useful to keep in mind what the “trivial” diameter lower
bound on valh(C) should be. Since the edge probability pe ∈ (0, 1/2], for e = {u, v} ∈ E[C],
we have that le ≥ d(u, v) · h(1/2). Therefore, for any u, v ∈ X, by the triangle inequality, the
cost of the paths from u or v to the root w is at least d(u, v) · h(1/2) for any chaining tree T .
In particular, for any chaining tree C, we derive the lower bound

2 · valh(C) ≥ D(X) · h(1/2). (1.12)

It is important to note that the Gaussian chaining setup is indeed a special case of
the above. Precisely, in that setup the edge lengths are lu,v := d(u, v) · hf (pu,v), where
f(s) =

√
2
π e
−s2/2 is the density of the absolute value of the standard Gaussian.

Dudley’s Construction. To gain intuition about how to apply the chaining framework, we
now explain how to build and analyze the chaining tree used in Dudley’s inequality. For
simplicity of notation, let us assume that the diameter D(X) = 1. For each k ≥ 0, let Nk
denote a 2−k-net of X of minimum size, i.e., satisfying |Nk| = NX(2−k). By our diameter
assumption, N0 = {w} is clearly a single point, which gives the root of the tree C. From
here, we construct the tree by induction on k ≥ 1. At iteration k ≥ 1, we attach each
element of Nk not already in C to a closest point in C. From here, we set the edge probability
pu,v = pk := 2−(k+1)/|Nk| and let lu,v > 0 be minimal subject to P[|Zu − Zv| ≥ lu,v] ≤ pk.
This completes the construction.

To analyze the tree C, we make the following observations. Firstly, the number of edges we
add to the tree at iteration k is at most |Nk|. Therefore, the total probability sum is at most∑∞
k=1 |Nk| · pk = 1/2, and hence C is a valid chaining tree. Second, any edge {u, v} added

during iteration k satisfies d(u, v) ≤ 2−k+1. Consequently, by the Gaussian tail bound (1.4),

lu,v . d(u, v)
√

log(1/pk) . 2−k+1
(√

logNX(2−k) +
√
k + 1

)
.
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In particular, the value of C satisfies

val(C) .
∞∑
k=1

2−k+1
(√

logNX(2−k) +
√
k + 1

)
. 1 +

∞∑
k=1

2−k+1
√

log(NX(2−k)).

One can now easily show that the above expression is upper bounded by (1.3) by discretizing
the range of the integral along powers of 2 (recalling that D(X) = 1).

The Method of Majorizing Measures. Given the above, it is natural to wonder how one
might construct an optimal chaining tree for a given process (Zx)x∈X . A principal goal
of this paper will be to give efficient constructions for such trees. At first sight, this may
seem like a daunting task, as one must somehow simultaneously optimize over all spanning
trees and edge probabilities. Nevertheless, a major step towards this goal was achieved for
Gaussian processes by Fernique [5], who proved the following remarkable theorem:

E
[

sup
x∈X

Zx

]
. γ2(X) := inf

µ
sup
x∈X

∫ ∞
0

g(µ(B(x, r)))dr. (1.13)

Some definitions are in order. Firstly, the infimum over µ is taken over all probability
measures on X. Secondly, g(p) :=

√
log(1/p), for p ∈ [0, 1] corresponds to (an approximation

of) the Gaussian edge length function in (1.5). Lastly, B(x, r) = {y ∈ X : d(x, y) ≤ r} is the
metric ball of radius r around x, where d is the canonical metric induced by the Gaussian
process.

Importantly, the natural analogue of γ2 for the general setup in (1.10) also yields upper
bounds on the expected supremum, provided the tails of f decay sufficiently quickly. In
particular, for (Zx)x∈X satisfying (1.10), for any “nice enough” f , we have that

E
[

sup
x1,x2∈X

Zx1 − Zx2

]
. γh(X) := inf

µ
sup
x∈X

∫ ∞
0

h(µ(B(x, r)))dr, (1.14)

where h is as in (1.11). Note that since h(1) = 0, one can truncate the range of the integral
to r ∈ [0,D(X)]. Very general results of the above type can be found in [18, 1]. We note
that the requirements of the process in these works are parametrized is a somewhat different
way in terms of Orlicz norms. In this work, we will focus on the setting where the chaining
functional h is of log-concave type (where the tail density f is log-concave), where these
different parametrizations are equivalent. Prototypical examples in this class are the tail
densities of exponential type, which are proportional to e−xq , x ≥ 0, for q ≥ 1, and where
h(p) � ln1/q(1/p) for p ∈ (0, 1/2).

Given that any probability measure µ can be used to upper bound the expected supremum,
Fernique dubbed the above technique the method of majorizing measures. It is worthwhile
to note that Fernique did not prove inequality (1.13) via chaining. He relied instead on a
more general technique, which first proves a generic concentration inequality for real valued
functions on the metric space, and recovers the desired inequality by averaging over the
ensemble of functions induced by the process. The fact that one can recover the same
bound via chaining for Gaussian processes would only be proved later, at first implicitly
in Talagrand [17], and explicitly in [21], where the latter work also covered processes of
exponential type mentioned above.

As noted above, the quantity γ2(X) and more generally γh(X) (for h of log-concave type),
rather miraculously models the value of the best chaining tree as a continuous optimization
problem. As majorizing measures may seem like rather opaque objects at first sight, we
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believe it is instructive to note that from a chaining tree C, one can construct a measure µ
whose value in (1.13) is at most 3 · valh(C). The construction is simple: set µw = 1/2 on the
root w, and for each e = {u, v} ∈ E[C] (with v closer to the root than u), set µu = pe. The
details of the comparison can be found in the appendix of the full version of the paper.

From the above discussion, we see that the majorizing measures are indeed powerful
tools for upper bounding suprema. Given this, together with the many tools for lower
bounding Gaussian suprema (which are not available in general), Fernique [5] conjectured that
majorizing measures should fully characterize the expected supremum of Gaussian processes.
This conjecture was verified in the ground-breaking work of Talagrand [17], which is now
called the majorizing measures theorem:
I Theorem 1.3 (Fernique-Talagrand [5, 17]). For any centered Gaussian process (Zx)x∈X
over the metric space X = (X, d), where d is the canonical metric induced by the process, we
have

E
[

sup
x∈X

Zx

]
� γ2(X).

The original proof of the majorizing measure theorem [17] was considered notoriously
difficult. Due to its importance in the theory of stochastic processes, many simpler as well as
different proofs were found [19, 20, 21, 12, 2, 22], often by Talagrand himself.

As stated at the beginning of the introduction, the goal of this paper is to give an
alternative constructive proof of this theorem using a convex optimization approach. In
particular, our starting point is the simple observation that γh(X) is in fact a convex program,
which follows directly from the convexity of h1. While simple (and most certainly known
to experts), we have not seen this observation leveraged in earlier proofs. In our context,
convexity will allow for near-optimal solutions to γh(X) to be efficiently computed using
off-the-shelf methods. Furthermore, convex duality will allow us to inspect the structure of
solutions to natural dual program(s) for γh(X), enabling us to reason about lower bounds.
Our proof will operate entirely at the level of the metric space, and will produce a natural
combinatorial variant of an optimal primal-dual solution pair for γh(X), namely a chaining
tree and packing tree (defined shortly). These solutions will in fact be obtained by “rounding”
solutions to the corresponding continuous programs. Specializing to the Gaussian case, we
recover the majorizing measure theorem by an easy comparison between the value of the
Gaussian supremum and the value of the combinatorial solutions (which are tailor made for
this purpose). This strategy has the benefit of clearly separating the role of the metric space
and the role of the Gaussian process, which are often intertwined in difficult to disentangle
ways in many proofs.

We now review some of the key ideas in known proofs, which will be important for our
approach as well. In particular, we will require appropriate dual analogue to chaining trees.

Primal Proof Strategies. Given what we have seen so far, a main missing ingredient is a
stronger form of lower bound for the value of the Gaussian supremum (noting that chaining
already provides the upper bound). For this purpose, we examine the natural functional
induced by the process on subsets of X, defining

G(S) := E
[
sup
x∈S

Zx

]
, ∀S ⊆ X. (1.15)

1 The formulation γ2(X) is “essentially convex”. This is because g(p) is only convex on the interval
[0, 1/

√
e], which is easily remedied. We note this non-convexity is principally due to g(p) being a poor

approximation of (1.5) for p ∈ [1/
√

e, 1].
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The following functional inequality, named the “super-Sudakov” inequality in [22], was
proven in [19]: there exists γ ∈ (0, 1), such that given an r-separated (non-empty) subsets
A1, . . . , AN ⊆ S, i.e., satisfying d(Ai, Aj) ≥ r, ∀i 6= j, and D(Ai) ≤ γr, ∀i ∈ [N ], then

G(S) ≥ γ · r · g(1/N) + min
i∈[N ]

G(Ai), (1.16)

where g(x) =
√

log 1/x for x ∈ [0, 1], as before.
In [19], Talagrand gave a construction which takes a functional G on X satisfying (1.16),

and produces (a variant of) a chaining tree C satisfying val(C) . G(X). Talagrand’s
construction is based on a recursive partitioning scheme, where the partitions roughly
correspond to subtrees, which greedily chooses metric balls of large G value to construct
the partition. We note that this construction comes in different flavors, each yielding more
structured versions of chaining trees (i.e., labelled nets [19] and admissible nets [20]). By
instantiating G to be the functional given by (1.15) immediately yields Theorem 1.3. While
Talagrand’s construction was certainly algorithmic, the Gaussian functional G is not easy to
compute (at least deterministically). As mentioned previously, in [21], Talagrand also gave
another procedure that directly converts measures to chaining trees. Note that this yields a
good chaining tree from a good measure, but by itself does not yield Theorem 1.3.

Dual Proof Strategies. One reason the “difficult” Gaussian functional G was required to
prove Theorem 1.3 is that there was no simple dual object to compare to that certifies a
lower bound. From the convex optimization perspective, this should morally correspond
to a solution to the dual of γ2(X) (or γh(X)). Such an object, called a packing tree in the
terminology of [22], was in fact developed in Talagrand’s original proof [17] for the Gaussian
case, and extended to general chaining functionals in [10].

I Definition 1.4 (Packing Tree). Let α ∈ (0, 1
10 ]. An α-packing tree T on a finite metric

space (X, d) is a rooted tree on subsets of X, with root node W ⊆ X, together with a labelling
χ : T → Z≥0. We enforce that every leaf node V ∈ T is a singleton, i.e., V = {x} for some
x ∈ X. We denote leaf(T ) ⊆ X to be the union of all leaf nodes of T . Every node V ∈ T
has a (possibly empty) set of children C1, . . . , Ck ⊆ V which are pairwise disjoint. We let
deg+(V ) := k denote the number of children of V . We enforce the follow metric properties
on T :
1. For any child C of V ∈ T , we have that D(C) ≤ αχ(V )+1 ·D(X).
2. For V ∈ T and distinct children C1, C2 of V , we have d(C1, C2) ≥ 1

10α
χ(V ) ·D(X).

The value of an α-packing tree T with respect to a chaining functional h is defined as

valh(T ) := inf
x∈leaf(T )

∑
V ∈Px\{x}

αχ(V ) ·D(X) · h(1/deg+(V )), (1.17)

where Px is the unique path from the root W to the leaf {x}. We use the shorthand val2(T )
to denote the value with respect to the Gaussian functional g.

We remark that we do not count the edge going to the parent in deg+(V ) mostly for
notational convenience – in this case, nodes with a sole child do not contribute to the value
of the packing tree. Also, there is quite a bit of flexibility in the parameters of the packing
tree, which are chosen above for convenience. Packing trees are objects that allow us to chain
lower bounds together in analogy to upper bounds via chaining trees. The combinatorial
structure of a packing tree is more constrained than that of a chaining tree however, and
their construction (at least more from the perspective of the analysis) is more delicate.
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In the Gaussian setting, an α-packing tree T is perfectly tailored for combining the
“super-Sudakov” inequalities given by (1.16). In particular, for α = 1/(2γ), a direct proof by
induction starting from the leaves of the tree certifies that G(X) & val2(T ) (see Theorem
6.36 in [22]). This was in fact first established in [17] using Slepian’s lemma instead of (1.16).
Independently of any process however, they also directly serve as combinatorial lower bounds
for γh(X).

I Lemma 1.5. Let α ∈ (0, 1
10 ]. For a finite metric space (X, d), an α-packing tree T on X,

and any chaining functional h, we have

γh(X) ≥ 1
2(1− α) · valh(T ).

While known to experts, it is not so easy to find combinatorial proofs of the above
inequality, i.e. not related to a process, in the literature (see for example Exercise 6.12 in [22]
or Lemma 3.7 in [3]). We include a proof in the appendix of the full version of the paper.

Talagrand’s original proof of the majorizing measures theorem worked almost entirely on
the dual side. As generalized in [10], the main work in the proof was in fact to construct an
α-packing tree T satisfying valh(T ) & γh(T ) (for h of log-concave type). As for the primal
side, the construction is based on similar greedy ball (sub-)partitioning using an appropriate
functional H on X satisfying a so-called “super-chaining” inequality in the terminology
of [22]. Specifically, for any set S ⊆ X, and a partition S = tNi=1Pi, H satisfies

H(S) ≤ max
i∈[N ]

β ·D(S)h(1/(i+ 1)) +H(Pi), (1.18)

for some absolute constant β > 0. Interestingly, the functional H used in [17, 10] was a
variant of γh(X), which is deterministically computable, and not the Gaussian functional in
the case h = g (though this works as well [22]). This construction was in fact leveraged in [3]
to give a deterministic polynomial time dynamic programming algorithm for computing a
nearly optimal packing tree.

1.2 Our Results

1.2.1 A Constructive Min-Max Theorem
The main result of this paper is the following constructive variant of the combinatorial core
of the majorizing measure theorem.

I Theorem 1.6. Let (X, d) be an n point metric space, h be a chaining functional of log-
concave type. Then there is a deterministic algorithm which computes a chaining tree C∗ and
an 1/10-packing tree T ∗ satisfying

valh(C∗) � valh(T ∗),

using Õ(nω+1) arithmetic operations and evaluations of h and h′, where ω ≤ 2.373 is the
matrix multiplication constant.

We note that the packing tree parameter 1/10 can be made smaller at the cost increasing
the hidden constant in the � notation. Recall that for any pair of trees C and T as above,
we have already seen that

valh(C) & γh(X) & valh(T ), (1.19)
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so the pair in Theorem 1.6 form a nearly-optimal primal-dual pair. Furthermore, in the
Gaussian setting where h = g, replacing γ2(X) above by E[supx Zx] corresponds to the “easy
direction” of the majorizing measures theorem. Plugging in the solutions from Theorem 1.6
immediately yield the hard direction of the theorem. This allows us to view the metric space
part of the majorizing measure theorem as an instance of a combinatorial min-max theorem.
We remark that such a combinatorial min-max characterization of the Majorizing Measures
theorem was already observed by Guédon and Zvavitch [8]. They showed that the value
of the optimal packing tree defines a functional that satisfies the super-Sudakov inequality;
when combined with Talagrand’s framework, this implies the combinatorial min-max theorem
described above. This does not directly yield deterministic constructions of nearly-optimal
chaining or packing trees, however.

Ding, Lee and Peres [3] essentially used this observation of [8] along with a suitable
dynamic program to give an efficient deterministic algorithm to compute nearly optimal
packing trees, as mentioned previously. For nearly optimal chaining trees, we make the
simple observation (which seems to have gone unnoticed) that these can extracted from
Talagrand’s [21] “rounding” algorithm applied to a nearly optimal solution for the efficiently
solvable convex program γh(X). By themselves however, these algorithms do not directly
say much about how the values of these different trees relate to each other.

In Theorem 1.6, we build further on the convex programming approach. At a high level,
we build the primal and dual solutions at the same time and rely on convex programming
duality to ensure they have (nearly) the same value. In essence, we replace the “magic
functionals” satisfying super-Sudakov or super-chaining inequalities that appear in Talag-
rand’s constructions with convex duality. As we will see in the next section, the dual objects
will also correspond to probability measures. In contrast to the primal however, where the
rounding to a suitable chaining tree can be done in one shot, the dual measures will require
multiple levels of rounding.

The primal and dual solutions we require correspond to nearly optimal primal and
dual measures associated with a saddle-point formulation of γh(X) (see (1.20) in the next
subsection). There are in fact many existing solvers that are able to compute nearly optimal
solutions to such saddle point problems, where we will rely on a recent fast solver of [9]. This
computation in fact forms the bulk of the running time of the algorithm in Theorem 1.6.
The details of this part of the algorithm can be found in the full version of this paper. An
interesting open problem is whether one can reduce the running time of Theorem 1.6 to
Õ(n2), which would be nearly-linear in the input size (recall that an n point metric consists
of n2 distances). The main bottleneck is the use of an all purpose blackbox solver [9] to
approximately solve (1.20), and it seems likely that an appropriately tailored first-order
method could bring the running time down to Õ(n2).

While our main contribution is conceptual, we expect and hope that novel and interesting
applications of an “algorithmic” theory of chaining will be found. As a contribution on this
front, we give an application of Theorem 1.6 in the context of derandomization: we give
a deterministic algorithm for computing Johnson-Lindenstrauss projections achieving the
guarantees of Gordon’s theorem [7], where we rely on the chaining based proof from [14]. As
far as we are aware, no prior deterministic construction was known.

1.2.2 Simplifying the Dual of γh(X)
For simplicity of notation, throughout this section (and most of the paper), we will assume that
(X, d) is a fixed n-point metric space and that h is a chaining functional of log-concave type
satisfying |h′(1)| = 1 (interpreted as the left directional derivative). Under this normalization
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on h, the trivial diameter lower bound on γh(X) will be at least D(X)/4, which we will
use to convert additive errors to multiplicative ones. This normalization is without loss of
generality, and can be achieved by appropriately scaling the h and the metric d so that γh(X)
remains unchanged (see Section 2.1 for a full explanation).

We now describe the dual formulation of γh(X) and describe the process of simplifying
it. For this purpose, we start with the basic saddle-point formulation of γh(X):

γh(X) = min
µ

max
x∈X

∫ ∞
0

h(µ(B(x, r)))dr = min
µ

max
ν

∫
X

∫ ∞
0

h(µ(B(x, r)))drdν(x) (1.20)

where ν also ranges over all probability measures on X (the optimal ν above puts mass 1 on
any maximizer of

∫∞
0 h(µ(B(x, r))dr).

To obtain the dual program to γh(X), we interchange µ and ν:

γh(X) ≥ max
ν

min
µ

∫
X

∫ ∞
0

h(µ(B(x, r)))drdν(x) := γ∗
h(X). (1.21)

In particular, for any fixed dual measure ν, we have

γh(X) ≥ min
µ

∫
X

∫ ∞
0

h(µ(B(x, r)))drdν(x). (1.22)

Since the objective
∫
X

∫∞
0 h(µ(B(x, r)))drdν(x) is convex in µ and linear in ν, and the

probability simplex is compact and convex, by Sion’s theorem the value of both convex
programs is equal. That is, γh(X) = γ∗

h(X). The measures required within the construction
in Theorem 1.6 will be nearly optimal primal and dual measures µ∗ and ν∗ to γh(X) and
γ∗
h(X) respectively.
Unfortunately, it is not clear at this point that the dual is terribly useful. In particular,

even evaluating the objective in (1.22) for a given dual measure ν requires solving a non-
trivial convex optimization problem (note that the corresponding objective of γh(X) can
be computed by simply evaluating n integrals). Rather surprisingly, it turns out that for h
of log-concave type, one can in fact “guess” a near-optimal µ in (1.22), namely, we can set
µ = ν.

I Lemma 1.7. For any probability measure ν on X, we have that∫
X

∫ ∞
0

h(ν(B(x, r))drdν(x) ≤ 2 min
µ

∫
X

∫ ∞
0

h(µ(B(x, r)))drdν(x) + D(X)/e,

where the minimum is taken over all probability measures µ.

The proof of the above proceeds on a “per scale” basis. More precisely, for a given
r > 0, we show that

∫
X
h(ν(B(x, 2r))dν(x) ≤

∫
X
h(µ(B(x, r)))dν(x) + 1/e. This statement is

easily restated in graph-theoretic terms, by defining a graph G = (X1 ∪X2, E), with X1, X2
both being copies of X and where x1 ∈ X1 is adjacent to x2 ∈ X2 if d(x1, x2) ≤ r. Then
µ(B(x, r)) corresponds to the mass under µ within the neighborhood of x, and ν(B(x, 2r))
to the mass under ν within the two-hop neighborhood of x. In this setting, we use a tool
from combinatorial optimization, namely, a generalization of Hall’s theorem. We note the
two properties needed from h above are that h be decreasing and maxa∈(0,1] |ah′(a)| ≤ 1.
The latter property in fact follows from h being of log-concave type and the normalization
|h′(1)| = 1.

Motivated by the above, we consider the following simplification of γ∗
h(X), which we call

the entropic dual:

δEnt
h (X) := max

ν

∫
X

∫ ∞
0

h(ν(B(x, r)))drdν(x). (1.23)
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This corresponds to the value ν using the nearly optimal guess for µ in (1.22), which is now
readily computable. The following direct corollary relates the value of the entropic dual to
the actual dual.

I Corollary 1.8.

γ∗
h(X) ≤ δEnt

h (X) ≤ 2γ∗
h(X) + D(X)/e.

In terms of the additive error above, as mentioned at the beginning of the section, D(X)/4
will be the trivial lower bound on γ∗

h(X) = γh(X). Therefore, the right hand in Theorem 1.8
is at most (2 + 4/e)γ∗

h(X) in the worst-case. In most interesting cases however, one would
expect γh(X) to be far from the trivial lower bound, in which case one can think of the right
hand side as (2 + o(1))γ∗

h(X).
We are now ready to give the final simplified form of the dual whose value will most

directly relate to the value of packing trees: we define the simplified dual by

δh(X) := max
ν

min
x∈X,ν(x)>0

∫ ∞
0

h(ν(B(x, r)))dr. (1.24)

Note that we restrict to the minimum of the points supported by ν. These will correspond
to the potential leaf nodes in the packing tree. Furthermore, the minimum in (1.24) is in
direct analogy to the minimum cost of a path down a packing tree.

Trivially, since we replaced the average by a minimum, we have that δEnt
h (X) ≥ δh(X).

We show that the reverse direction also holds up to additive error. For a probability measure
ν on X and for any subset S ⊆ X, satisfying ν(S) > 0, define νS by

νS(A) := νS(A ∩ S)/ν(S),∀A ⊆ X, (1.25)

i.e., νS is the conditional probability measure induced by ν on S. The following lemma shows
that one can easily convert a measure ν with large δEnt

h value to one with large δh value via
conditioning.

I Lemma 1.9. For any probability measure ν on X, there exists S ⊆ {x ∈ X : ν(x) > 0}
such that∫

X

∫ ∞
0

h(ν(B(x, r)))dr ≤ min
x∈S

∫ ∞
0

h(νS(B(x, r)))dr + D(X).

Furthermore, S can be computed using at most O(n3) arithmetic operations and evaluations
of h.

The algorithm achieving the above is in fact very simple: we start with S = {x ∈ X :
ν(x) > 0}, and iteratively kick out the element x ∈ S with lowest value as long as the above
inequality is not met.

Combining Corollary 1.8 and Lemma 1.9, we obtain the following relations between the
dual program γ∗

h(X) and the simplified dual δh(X).

I Theorem 1.10.

γ∗
h(X)−D(X) ≤ δh(X) ≤ 2γ∗

h(X) + D(X)/e.

Furthermore, given any probability measure ν on X, one can compute S ⊆ {x ∈ X : ν(x) > 0}
satisfying∫

X

∫ ∞
0

h(ν(B(x, r)))drdν(x) ≤ min
x∈S

∫ ∞
0

h(νS(B(x, r)))dr + D(X),

using at most O(n3) arithmetic operations and evaluations of g.



S. Borst, D. Dadush, N. Olver, and M. Sinha 73:13

We are in fact not the first to examine the δEnt
h (X) and δh(X) programs. The analysis

of solutions to δEnt
2 (X) (i.e., h = g) in fact already goes back all the way to Fernique [5].

Starting from a Gaussian process (Zx)x∈X , Fernique examined the measure ν on X satisfying
ν(u) = P[Zu = maxx∈X Zx], ∀u ∈ X, where we assume X is finite and that the maximum is
uniquely attained with probability 1. For this “argmax” measure ν, it was shown that

E
[

sup
x∈X

Zx

]
�
∫
X

∫ ∞
0

g(ν(B(x, r)))drdν(x),

where the inequalities . and & where proven by Fernique [5] and Talagrand [17] respectively.
The relationship between γh(X) and δh(X) was also already studied by Naor and

Mendel [11] as well as Bednorz [2]. In particular, for any continuous h satisfying
limx→0+ h(x) =∞ (i.e., not necessarily of log-concave type), [11, 2] showed that γh(X) ≤
δh(X). This was proved using Brouwer’s fixed-point theorem, which was used to find a
measure µ where the quantities

∫∞
0 h(µ(B(x, r)))dr are equal for all x ∈ X. Recalling that

γh(X) = γ∗
h(X), this bound is stronger than γ∗

h(X) −D(X) ≤ δh(X) in Theorem 1.10.
However, we do not require limx→0+ h(x) =∞ (e.g., h(x) = 1− x is valid for us), which is
crucially used to prove the existence of the above Brouwer measure. Mendel and Naor [11]
further prove that δh(X) . γh(X), for any decreasing h satisfying h(x2) . h(x). This is
achieved by rounding any dual measure ν to what they call an ultrametric skeleton, which
one can interpret as a very sophisticated analogue of a packing tree which is agnostic to h.
These skeletons are also used to derive optimal bounds for the largest subset of a metric
space embeddable into `2 with small distortion (known as a non-linear Dvoretzky theorem).
[11] asked whether one can improve their bound to δh(X) ≤ (2 + o(1))γh(X), where the
factor of 2 is tight up to o(1) factors for an n-point star-metric with h = g. Up to the
additive constant (which is often o(1) compared to γh(X)) and the restriction that h be of
log-concave type, Theorem 1.10 resolves their question in the affirmative.

1.2.3 Rounding Measures to Trees
Towards proving our main theorem (Theorem 1.6), we show how to round a measure ρ to
chaining and packing trees with values approximately γh(ρ,X) and δh(ρ,X) respectively.
As remarked before, the primal rounding strategy was already introduced by Talagrand [21]
himself. While the algorithm is simple, it is based on a not terribly intuitive variant of ball
partitioning, which is perhaps due to the structure of the object he converts to (an admissible
sequence). In the present work, we show that Talagrand’s basic greedy ball partitioning
scheme with the functional replaced by a measure, very transparently yields a construction
of good chaining trees. The greedy ball partition algorithm iteratively selects centers that
maximize the measure of balls of a smaller radius and removes a ball of a larger radius
centered at the previously chosen points. One does this until the removed pieces form a
partition and then proceeds recursively on those pieces. Here we show that this can be
implemented in near linear time in the input size which is O(n2) for an n-point metric space.

I Theorem 1.11. There exists a deterministic algorithm that runs in O(n2 logn) time and
given a probability measure ρ on an n-point metric space X, finds a chaining tree C such that
valh(C) . γh(ρ,X).

On the dual side, as far as we are aware there were no rounding strategies to compute
packing trees starting from a measure ρ. The previous approaches for rounding [17, 10, 3]
were based on defining a functional that satisfies the previously mentioned “super-chaining”
inequality and used a greedy partitioning procedure based on the value of this functional.

ITCS 2021



73:14 Majorizing Measures for the Optimizer

This analysis was rather delicate and somewhat mysterious. Moreover, the corresponding
functionals in these instances were themselves solutions to optimization problem on the
metric space, so implementing this strategy deterministically was rather slow. In fact, Ding,
Lee and Peres [3] showed that using a carefully constructed dynamic program, one can
implement the above strategy and compute a packing tree in polynomial time in the input
size when the metric space is given as the input. Although, they don’t specify a precise
bound on the running time, one can directly infer a O(n4) deterministic running time for
building a packing tree; with an additional observation, this can in fact be improved to a
O(n3 logn) bound.2

In this work, we revisit the above approach and show that in fact, one can round a
probability measure ρ on the metric space to a packing tree with approximately the same
value as δh(ρ,X). This has certain advantages over a rounding strategy using functionals
as it can be implemented in near linear time in the input size. Moreover, this rounding
algorithm is quite similar to the primal rounding algorithm and in our opinion clarifies why
such a construction works. In particular, the basic strategy of choosing centers that maximize
the measure of a smaller ball remains exactly the same – one just selects smaller balls to add
as children and recurses on them instead, followed by some post-processing.

I Theorem 1.12. There exists a deterministic algorithm that runs in O(n2 logn) time and
given a probability measure ρ on an n-point metric space X, finds a (1/10)-packing tree T
such that δh(p,X) . valh(T ).

1.2.4 Proof of the Combinatorial Min-Max Theorem (Theorem 1.6)
Of course, without a way to compute measures which have almost optimal values for γh(ρ,X)
and δh(ρ,X), the above rounding algorithms would not have been very useful. Fortunately,
we can obtain almost optimal primal and dual measures µ and ν by solving the saddle point
formulation (1.20) of γh(X). Plugging the measure µ in Theorem 1.11 gives us a chaining
tree C∗ such that valh(C∗) . γ(µ,X) � γh(X).

On the dual side, the measure ν is not enough as it might not be a good solution to
the approximate dual δh(X). However, using Theorem 1.10, one can find a set S ⊂ X

such that the probability measure νS obtained by conditioning ν on the set S satisfies
δh(νS , X) � γh(X). Plugging the measure νS in Theorem 1.12, gives us a packing tree T ∗
satisfying δh(νS , X) . valh(T ∗). Combining the two yields that

valh(C∗) . γh(X) � δh(νS , X) . valh(T ∗). (1.26)

Recall that the weak duality relation (1.19) between chaining and packing trees implies
the reverse inequality for valh(T ) . valh(C) for any chaining tree C and any packing tree T .
Thus, (1.26) gives us the combinatorial min-max statement given by Theorem 1.6. Moreover,
this can be made algorithmic by solving the saddle point formulation and using the algorithm
to find the set S given by Theorem 1.10. The details for solving the saddle point formulation
are given in the appendix of the full version of this paper and the algorithm to find the set S
is presented in the proof of Theorem 1.10.

2 Their running time is O(n2) times the number of “distance scales” in the metric, meaning the number of
dyadic intervals [2k, 2k+1) containing at least one distance d(u, v) in the metric. To bound the number
of distance scales by O(n log n), compute a minimum spanning tree T in the complete graph describing
the metric. Consider any edge e = {v, w} not in the tree, and let m(v, w) denote an edge on the path
between v and w in T of maximum length. Then e has length at least the length of m(v, w) since T is
an MST, but not more than n times larger. That is, the distance scale of e is in a range of size O(log n)
of the distance scale of m(v, w). Now consider assigning each non-tree edge {v, w} to m(v, w); there are
O(log n) distance scales assigned to each tree edge, so O(n log n) in total.
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1.3 Organization
In Section 2, we list some basic notation as well as the main useful properties of chaining
functionals of log-concave type. In Section 3, we simplify the dual program γ∗

h(X), proving
the main inequalities relating it to the entropic and simplified duals δEnt

h (X) and δh(X)
respectively. Other details including near-linear time rounding algorithms from measures
to chaining trees and packing trees, deterministic construction of Johnson-Lindenstrauss
projections achieving Gordon’s bound, using a black-box solver to compute nearly-optimal
primal and dual measures for the saddle-point formulation of γh(X), and proofs of other
technical statements can be found in the full version of this paper.

2 Preliminaries

Notation. Throughout this paper, log denotes the natural logarithm unless the base is
explicitly mentioned. We use [k] to denote the set {1, 2, . . . , k}. For a vector z ∈ Rn, we
will use zi or z(i) interchangeably to denote the i-th coordinate of z. Given a probability
measure µ over a set X, we use Ex∼µ[f(x)] to denote the expectation of f(x) where x is
sampled from µ.

2.1 Properties of Chaining Functionals
Recall that we work with a chaining functional h : (0, 1] → R+ defined by h(p) = F−1(p),
where F (s) =

∫∞
s
f(x)dx and where f is non-decreasing and continuous probability density

on R+. We assume throughout the rest of the paper that h is of log-concave type, i.e., that
f is log-concave.

The fundamental property of such functionals, that we make extensive use of, is the
following:

I Proposition 2.1. For a chaining functional h of log-concave type,

h(ab) ≤ h(a) + h(b) for a, b ∈ (0, 1].

Before giving a proof, we note that the above property appears in [10] as the base
assumption for the chaining functionals they consider. The above shows that this condition
is very natural and applies to a wide variety of functionals.

Proof. Let us define ϕ : [0,∞)→ [0,∞) as ϕ(t) := h(e−t). We will show that ϕ is concave
on its domain, which implies that h is sub-additive as

h(ab) = ϕ

(
log 1

ab

)
≤ 1

2ϕ
(

2 log 1
a

)
+1

2ϕ
(

2 log 1
b

)
≤ ϕ

(
log 1

a

)
+ϕ

(
log 1

b

)
= h(a)+h(b),

where both inequalities follow from concavity and ϕ(0) = 0.
To see that ϕ is concave, we show that ϕ′(t) = −e−th′(e−t) = e−t

f(F−1(e−t)) is a decreasing
function of t. Substituting x = F−1(e−t), and noting that f is decreasing, it suffices to show
that F (x)

f(x) is decreasing for x on the positive real line. Taking arbitrary 0 ≤ x1 ≤ x2, we have
that

F (x1)
f(x1) =

∫ ∞
0

f(x1 + t)
f(x1) dt ≥

∫ ∞
0

f(x2 + t)
f(x2) dt = F (x2)

f(x2) ,

where the inequality follows from the following elementary property of non-negative log-
concave functions: for any four points a ≤ b ≤ c ≤ d, we have that f(b)f(c) ≥ f(a)f(d)
which in the above scenario implies that f(x1+t)

f(x1) ≥
f(x2+t)
f(x2) . This completes the proof of the

proposition. J
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When working on a metric space (X, d) with a chaining functional h, we observe the
following rescaling symmetry: for any constant β > 0, if we replace h by βh (equivalently,
the density function f is replaced by z → βf(βz)) and d(u, v) by d(u, v)/β for all u, v ∈ X,
the values of the various quantities we consider remain unaffected. In particular, if we
have an underlying process (Zx)x∈X amenable to X and f as in (1.10), the condition
P[|Zx1 −Zx2 | ≥ d(x1, x2)s] ≤ F (s) is identical for both scalings, and the values of the various
programs and trees we consider remain unchanged.

So from now on, we make the convenient choice that f(0) = 1. This implies that the
(left) derivative h′(1) = −1/f(0) = −1. We maintain this normalization for the remainder of
the paper.

Given this normalization, the following useful bound is easy to show.

I Proposition 2.2. For every a ∈ (0, 1], we have that

−1 ≤ ah′(a) ≤ 0 and h(a) ≤ log(1/a).

Proof. As h is decreasing, h′(a) ≤ 0 for a ∈ (0, 1]. Therefore, for any a,

ah′(a) = lim
ε→0+

a(h(a)− h(a(1− ε)))
a− a(1− ε) ≥ lim

ε→0+

h(a)− h(a)− h(1− ε)
1− (1− ε)

= lim
ε→0+

h(1)− h(1− ε)
1− (1− ε) = h′(1) = −1, (2.1)

where the first inequality follows from sub-multiplicativity and the last equality holds since
h(1) = 0. The first statement in the proposition follows.

To see the second statement, one can observe that as h is decreasing, (2.1) implies the
following differential inequality : h′(a) ≥ − 1

a for every a ∈ (0, 1]. Together with the boundary
condition that h(1) = 0, this implies that h(a) ≤ log(1/a). J

3 Dual simplifications

In this section, we provide the main arguments that allow for rounding a solution to γ∗
h(X)

to a solution to the simplified dual, via the entropic dual, as described in Section 1.2.2.

Proof of Lemma 1.7. Our goal is to prove that taking µ = ν in (1.22) does not cause too
much error. We will prove this on a “per scale” basis:

I Lemma 3.1. For any probability measures µ and ν on X, and any r > 0, we have∫
X

h(ν(B(x, 2r))dν(x) ≤
∫
X

h(µ(B(x, r)))dν(x) + 1/e.

Lemma 1.7 follows easily from this:∫
X

∫ ∞
0

h(ν(B(x, r)))drdν(x) ≤ min
µ

∫
X

∫ D(X)

0

(
h(µ(B(x, r/2))) + 1/e

)
drdν(x)

≤ 2 min
µ

∫
X

∫ ∞
0

h(µ(B(x, r)))drdν(x) + D(X)/e.

Proof of Lemma 3.1. We first recast the statement in graph theoretic terms. Let us define
a bipartite graph on the vertex set X1 ∪X2 where each Xi for i ∈ [2] is a copy of the index
set X. We add an edge between two vertices x1 ∈ X1, x2 ∈ X2 if d(x1, x2) ≤ r – note that
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every vertex has an edge incident to it. Define the weight of a vertex x ∈ Xi as µ(x) and
the weight of a vertex x ∈ X2 as ν(x). Let E denote the set of edges in the graph, let N(S)
be the neighbors of a subset of the vertices S ⊂ X1 ∪X2 and let N2(S) = N(N(S)). For
brevity, we will write N(x) instead of N({x}) for singleton sets.

With this setup, the statement we want to prove is∑
x∈X2

ν(x)h(ν(N2(x))) ≤
∑
x∈X2

ν(x)h(µ(N(x)) + 1/e. (3.1)

To prove the above, we will use the following structural result which is a consequence of
the theory of principal sequences of matroids [6], applied to transversal matroids; we include
a self-contained proof in the full version of the paper.

I Proposition 3.2. There exist sequences ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sk = X1 and 0 < β1 < β2 <

· · · < βk, such that
1. βiµ(Si \ Si−1) = ν(N(Si) \N(Si−1)) for all i ∈ [k].
2. For all i ∈ [k] and A ⊆ X1 \ Si−1, we have that βiµ(A) ≤ ν(N(A) \N(Si−1)).

The proposition above can be viewed as a kind of strengthening of Hall’s theorem. For
instance, if there is a fractional perfect matching between µ and ν, i.e., a way of transporting
mass distributed according to µ on X1 along edges of the graph to yield precisely the
distribution ν on X2, then the claim will be satisfied with k = 1, S1 = X1 and β1 = 1,
for in this case, µ(A) ≤ ν(N(A)) for any A ⊆ X1 (essentially the easy direction of Hall’s
theorem). If there is no fractional perfect matching, Hall’s theorem implies the existence
of a set S ⊂ X1 with ν(N(S)) < µ(S). In the proposition, S1 is the “least matchable” set:
only a β1 fraction of the mass in S1 can be transported to N(S1). The full sequence is then
obtained by removing S1 and N(S1) and repeating on the remainder.

Taking the sequences guaranteed by the proposition, define β̃i := min{βi, 1}.
We split the left hand side of (3.1) as follows:

∑
x∈X2

ν(x)h(ν(N2(x))) =
k∑
i=1

∑
x∈N(Si)\N(Si−1)

ν(x)h(ν(N2(x))).

Note that for any i ∈ [k], if x ∈ X2 \ N(Si−1), then N(x) ⊆ X1 \ Si−1, and hence,
Proposition 3.2 implies that β̃iµ(N(x)) ≤ ν(N2(x)). Furthermore, using sub-multiplicativity
of h and Proposition 2.2, we find that for any i ∈ [k] and x ∈ N(Si) \N(Si−1),

h(ν(N2(x))) = h

(
µ(N(x)) · ν(N2(x)

µ(N(x))

)
≤ h(µ(N(x))) + h

(
min

{
1, ν(N2(x))
µ(N(x))

})
≤ h(µ(N(x)) + h(β̃i) ≤ h(µ(N(x)) + log

(
1
β̃i

)
.

For the first inequality above, sub-multiplicativity is used when ν(N2(x))
µ(N(x)) > 1; otherwise, the

inequality follows because h is decreasing and h(1) = 0. (The first inequality does still hold
if µ(N(x)) = 0, taking the minimum in the second term to have value 1 in this case, again
because h is decreasing.)

The second inequality again uses that h is decreasing, as well as that β̃i ≤ 1 for every
i ∈ [k]; and the final inequality uses Proposition 2.2.
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Let ` be maximal such that β̃` < 1; so βi = β̃i for i ≤ `. Summing the last inequality
over all i ∈ [k] and x ∈ N(Si) \N(Si−1), we obtain

∑
x∈X2

ν(x)h(ν(N2(x))) ≤
∑
x∈X2

ν(x)h(µ(N(x))) +
k∑
i=1

ν(N(Si) \N(Si−1)) · log
(

1
β̃i

)

=
∑
x∈X2

ν(x)h(µ(N(x))) +
∑̀
i=1

β̃iµ(Si \ Si−1) · log
(

1
β̃i

)

≤
∑
x∈X2

ν(x)h(µ(N(x))) +
(

max
β∈(0,1]

β log
(

1
β

))∑̀
i=1

µ(Si \ Si−1),

where the second line follows from Proposition 3.2. From this (3.1) readily follows as∑`
i=1 µ(Si \ Si−1) ≤

∑k
i=1 µ(Si \ Si−1) = µ(X1) = 1 and maxβ∈(0,1] β log

(
1
β

)
= 1/e. J

Proof of Lemma 1.9. For convenience, define

H(µ, t) :=
∫ ∞

0
h(µ(B(t, r)))dr and H(µ, ν) :=

∫
X

H(µ, t)dν(t).

Start by setting S = {x ∈ X : ν(x) > 0}. Consider the following greedy algorithm:

As long as H(νS , νS) > minx∈S H(νS , x) + D(X), choose s ∈ S so that H(νS , s) is
minimized, and remove s from S.

Note that H(νS , νS) ≤ minx∈S H(νS , x) + D(X) when this terminates, since it is vacuous
for S = ∅.

We will now show that H(νS , νS) can only increase during the progression of the algorithm.
This suffices to prove the lemma, since then upon termination

H(ν, ν) ≤ H(νS , νS) ≤ min
x∈S

H(νS , x) + D(X).

So, consider a moment in the algorithm where s ∈ S is about to be removed from S,
yielding S′ := S \ {s}. From our choice of s,

H(νS , νS) > H(νS , s) + D(X). (3.2)

Let α = 1/(1− νS(s)); so νS′(t) = ανS(t) for t 6= s, and νS′(s) = 0. Thus

B Claim 3.3. For every t ∈ X,

H(νS′ , t) ≥ H(νS , t)−D(X) · (α− 1).

Proof. Recall that h is convex and satisfies −1 ≤ ah′(a) ≤ 0 for any a ∈ (0, 1] by Proposi-
tion 2.2. Thus for any z ∈ (0, 1],

h(z) ≥ h(z/α) + z(1− 1/α)h′(z/α)
= h(z/α)− (α− 1)

∣∣(z/α)h′(z/α)
∣∣ ≥ h(z/α)− (α− 1). (3.3)
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Now notice that for any T ⊆ S, we have that νS(T ) ≥ νS′(T )/α. Therefore, since h is
decreasing,

H(νS , t) =
∫ D(X)

0
h(νS(B(t, r)))dr

≤
∫ D(X)

0
h(νS′(B(t, r))/α))dr

≤
∫ D(X)

0
h(νS′(B(t, r)))dr + D(X) · (α− 1) = H(νS′ , t) + D(X) · (α− 1),

where the last inequality follows from (3.3). C

We can now compare H(νS′ , νS′) with H(νS , νS):

H(νS′ , νS′) ≥ H(νS , νS′)−D(X) · (α− 1) (by Claim 3.3)

= 1
1−νS(s) (H(νS , νS)− νS(s)H(νS , s))− νS(s)

1−νS(s) ·D(X)

≥ 1
1−νS(s)

(
H(νS , νS)− νS(s)(H(νS , νS)−D(X))

)
− νS(s)

1−νS(s) ·D(X) (by (3.2))

= H(νS , νS ,

which finishes the proof of Lemma 1.9.

Runtime Analysis. It is easily seen that the algorithm can be implemented in O(n3) time.
First, by pre-processing the input, we may assume that the pairs of points are sorted by
their pairwise distances – this only adds an additional overhead of O(n2 logn). Then, as in
each iteration we remove one element, there are O(n) iterations to compute the final set
S′. Furthermore, in each of these iterations, we are required to compute a minimizer s of
H(νS , x). This takes O(n2) time since for each x ∈ S, one can compute the measure of all
possible balls B(x, r) in O(n) time using a straightforward dynamic program.
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Abstract
We study the outcome in a matching market where both sides have limited ability to consider
options. For example, in the national residency matching program, doctors are limited to apply to a
small set of hospitals, and hospitals are limited by the time required to interview candidates.

Our main findings are the following: (1) In markets where jobs can only consider a limited
number of candidates for interview, it increases the size of the resulting matching if the system has
a limit on the number of applications a candidate can send. (2) The fair system of all applicants
being allowed to apply to the exact same number of positions maximizes the expected size of the
matching. More particularly, starting from an integer k as the number of applications, the matching
size decreases as a few applicants are allowed to apply to one additional position (and then increases
again as they are all allowed to apply to k + 1). Although it seems natural to expect that the size of
the matching would be a monotone increasing and concave function in the number of applications,
our results show that neither is true. These results hold even in a market where a-priori all jobs and
all candidates are equally likely to be good, and the judgments of different employers and candidates
are independent.

Our main technical contribution is computing the expected size of the matching found via the
deferred acceptance algorithm as a function of the number of interviews and applications in a market
where preferences are uniform and independent. Through simulations we confirm that these findings
extend to markets where rankings become correlated after the interviews.
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1 Introduction

Matching is a fundamental paradigm in a variety of real-world situations and arises in various
domains, e.g., students applying to attend schools, or colleges, applicants get matched with
jobs at various job markets, and medical residents get matched with hospitals, just to name
a few. In some of these domains, matchings are found through a centralized algorithm such
as the deferred acceptance algorithm by Gale and Shapley [5]. Prominent examples include:
national residency matching program (NRMP) for assigning medical students to hospital
residency programs; schools assignments in some cities the US; and college admissions in
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some countries [10]. Although the deferred acceptance algorithm is designed for centralized
markets, it can also be thought of as a rough model of how uncoordinated matching markets
as applicants collect offers and as they turn down offers, new offers may be made.

An important aspect that is not modeled under the classical deferred acceptance algorithm
is the fact that both sides of the market can only consider a limited set of options. This
is the issue we will focus on in the current paper. The deferred acceptance algorithm is
typically studied assuming that participants express their full list of ordered preferences.
However, typically both sides of the match are limited in the number of options they can
consider. In some markets, such as the national residency matching program, there are
application limits imposed by the system. But even without such explicit limits, preparing
applications and interviewing applicants is costly and time consuming; and hence typically
extremely limited. Applications, e.g. for college admission, often require writing specialized
essays. Residency programs, as well as some of the colleges, and almost all jobs, interview
their applicants, which requires significant time and effort. In large matching markets it is
not feasible for either side to consider a large set. For instance, in NRMP, there are nearly
5000 residency programs and applicants have to limit their choices. Similarly, interviewing
consumes significant time of the hospitals, and so hospitals can only grant interviews to a
limited set of doctors. An alternative view of the limitations of the employer side is a limit
on the offers they can make for one position: based on their interviews with all or a subset
of the applicants, they may consider only a limited number of their favorite applicants. Such
selective offer making is observed in the academic job markets, e.g., when some high ranked
departments prefer to wait till next year, rather than make offers to applicants they liked less.

The goal of this paper is to study the effect of the number of applications and the number
of interviews on the resulting matching. We think of our procedure as a simplified version
of the matching process of the national residency matching program. In this program, the
matching mechanism has two stages. In the first stage, doctors express their interest to a set
of hospitals, and hospitals choose to interview a subset of the applicants. In the second stage,
both doctors and hospitals submit their ordered preference list over the set they interviewed
with. The centralized matching market uses these preference lists to perform the deferred
acceptance algorithm and outputs the final matching.

We will primarily consider a symmetric market, where doctors and hospitals are similar
in terms of popularity, and as a primary metric of the social welfare of the system, we
will mainly consider the size of the matching found. In asymmetric markets, where some
applicants and some jobs are a-priori better and preferred by most applicants, the limit on
the number of choices gives rise to strategic issues resulting in top candidates getting too
many offers, and a number of jobs remaining unfilled – see the discussion in related literature
section. In this paper we isolate the effect of limitation from strategicness. We focus on
large symmetric markets, where it will be equilibrium for both sides to report their true
preferences. We find a number of surprising effects of this limited choice, resulting in two
policy recommendations.

With limited ability granting interviews, social welfare may be maximized by also severely
limiting the number of applications one applicant can send.

The best social welfare is achieved by a fair system, where all applicants can send the
same number of applications. Allowing a small subset to send even just one additional
application decreases the overall welfare of the system.
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1.1 Main Results
The main contribution of the paper is studying the effect of limitation on the number
of applications and interviews in matching markets. In contrast to the majority of the
previous work that focused on correlated preferences, we completely abstract away the role
of correlation, consider a purely random model, and study the role of randomness extensively.
The main results of the paper are as following.

We compute the expected size of matching resulted from the deferred acceptance algorithm
as a function of the limit on the number of applications and interviews. See Proposition 6,
Theorem 10, and Proposition 20.
We find the optimal way for distributing the applications among applicants, when the
total number of allowed applications is fixed. The maximum size of matching is achieved
when all doctors apply to the same number of positions or two consecutive integers. See
Proposition 11.
With a fixed number of interviews per position, the size of the matching as a function
of the number of applications is a scallop-shape figure (see Figures 2 to 5), where the
function between consecutive integers is U-shaped.

Contribution to Balls in Bins Literature

Numerous findings in the matching literature utilize the results and techniques form balls in
bins problems. Although this paper is written in the matching language, it has analogues in
balls in bins language and contributes to that literature as well. For example consider the
following problem: There is a set of n balls and n bins. Each ball d has kd copies. Each bin
has capacity one. All copies of the balls are thrown independently and uniformly at random
to the bins. Each bin only accepts one ball at random among those that have been thrown
to it. We are interested in S which is the expected number of unique balls (counting only a
single copy from each ball) that land in bins. Various questions can be asked in this scenario.
For example, what is the optimal value of S? What distribution for kd achieves this value?
Section 3, which is a warm-up for our main result, completely analyses this problem and
surprisingly shows the optimal value of S is ≈ 0.68 for large enough n and it is achieved
when there are 3 copies from each ball, kd = 3.

1.2 Related Work
Papers studying matching with short lists have different viewpoints on how the short lists are
selected. For example, Immorlica and Mahdian [6], Kojima and Pathak [8], and Arnosti [1]
study matchings when preference lists are inherently short, i.e. the participants prefer to
stay unmatched rather than being matched outside their preference lists. In contrast, Avery
and Levin [2], Kadam [7], Drummond et al. [4], and Beyhaghi et al. [3] study how applicants
make the strategic choice to select a limited number of positions for their short preference
lists. In this paper, because of the uniform preference of participants we do not focus on
their strategic behavior.

Arnosti [1], Lee and Schwarz [9], and Kadam [7] study efficiency of matching either as
matching size or social welfare in presence of short lists. Arnosti evaluates social welfare
under different preference models. However, unlike our paper, in [1] the preference lists are
limited only for one side of the market. Similar to us, Lee and Schwarz study matching
size in a setting with an interview stage, where the ex-ante preferences are i.i.d. However,
they solve the problem of some doctors not receiving any offer while others receive many, by
coordinating the set of doctors that each hospital interviews. In contrast, in this paper, we

ITCS 2021



74:4 Randomness and Fairness in Two-Sided Matching with Limited Interviews

assume that the interviews are selected in a decentralized way without imposing coordination;
and our solution is to limit the number of applications and let the applicants have the same
number of applications. Similar to our work, Kadam studies a model with limit on both
sides of the market and shows that limiting the length of lists can have positive effects of
the size of matching. However, in [7] these effects are due to almost common preferences:
When some doctors are more preferred, with a stricter limit on the interviews for doctors,
the more preferred doctors do not accept interviews with less preferred hospitals. In this
paper, we show that limiting the length can be helpful in the exactly opposite case where all
participants are identical in terms of popularity.

Roadmap
The rest of the paper is organized as follows. Section 2 discusses the model and preliminaries.
In Section 3, as a warm-up we analytically compute the size of the matching when the number
of interviews is limited to one. In Section 4, we compute the size of the matching for arbitrary
number of interviews. Section 5 discusses two extensions to the main result in Section 4. In
Section 5.1, we show that the same phenomena remain true in unbalanced markets (when
the two sides are of different size). In Section 5.2, we study a model where the hospitals and
doctors preferences are a-priori uniform, but become correlated after interviewing.

2 Preliminaries

We explain our model in Section 2.1, and discuss the unlimited interview case in Section 2.2.

2.1 Model
There is a finite set of doctors D and a finite set of hospitals H, with |D| = n and |H| = rn.
We are interested in one-to-one matchings between doctors and hospitals.

Description of the Game

We consider a two-stage matching mechanism. In the first stage, each doctor applies to a set
of hospitals and requests interviews. Hospitals then choose a subset from their applications
to conduct interviews. In the interview process, doctors and hospitals refine their preferences.
In the second stage, at the end of interviews, both doctors and hospitals order the list that
they interviewed with, based on their preferences. They submit their ordered preferences to
the system which performs a doctor-proposing deferred acceptance algorithm to determine
the final assignment of doctors to hospitals. The algorithm starts with all doctors unmatched.
In each step, the algorithm simulates all unmatched doctors, who have not yet exhausted
their options, propose to their most preferred hospital among those to which he/she has
not yet proposed. Now the algorithm simulates that each hospital tentatively accepts their
most preferred doctor from the doctors now proposing and the one who has been tentatively
assigned to this hospital, and rejects all other doctors. The procedure is repeated until all
unmatched doctors have been rejected from every hospital in their lists.

We use the following terminology throughout the whole paper.
Application: The procedure in the first stage where the doctors submit an application and

ask for interview.
Grant interview or reject for interview: The procedure in the first stage where the hospitals

grant interviews to a number of doctors that have applied for the position and reject the
rest.
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Valid application: Any application that is granted an interview is a valid application. Other
applications are invalid.

Proposal: The procedure in the second stage that simulates doctors proposing to hospitals
as steps of the deferred acceptance algorithm.

Offer: In the special case where the hospitals limit their number of interviews to one,
conducting interviews is of no use because the hospital offers the position to the selected
doctor in any case. Therefore, we use offer instead of interview in this case.

Limits on Applications and Interviews

Each doctor d is allowed to apply to kd positions. In the simpler case, there is a universal
limit on the number of applications, kd = k, inspired by NRMP granting all doctors 10 initial
applications. There is a universal limit k′ on the number of interviews each hospital can
conduct.

Random Preferences

For the most of the paper, we assume that everybody’s preference comes independently from
uniform distribution over the other side. Both doctors and hospitals refine their preference
order for the list they interviewed. However, the overall distribution of doctors preferences
and hospitals preferences stays uniform and independent. For analytic purposes we can
assume that preferences stay unchanged after the interviews.

I Observation 1. Suppose prior to interviews preferences are drawn independently from
uniform distributions, and after interviews, the overall distribution of preferences are uniform
and independent. In this case, assuming that the preferences remained unchanged leads to
the same analytic results including the same matching size.

I Observation 2. Being truthful is a Bayes Nash equilibrium.1 We assume both doctors
and hospitals follow this strategy and are truthful during the matching procedure: In the
first stage, doctors apply to their favorite hospitals; and hospitals grant interviews to their
favorite applicants. In the second stage, both doctors and hospitals submit the list that they
interviewed, ordered from the most preferred to the least preferred.

Efficiency Measure

We focus on the size of the matching as our notion of efficiency. We define social welfare as
the ratio of size of the matching outcome to the size of the maximum matching. Since we
assume all doctors/hospitals prefer to be matched to any hospital/doctor rather than being
unmatched, in a maximum-size matching everybody on the less populated side of the market
is matched.

I Definition 3 (Social Welfare). We define social welfare of the matching outcome as the
ratio of the size of the matching outcome compared to the size of the maximum-size matching.
In a two sided market, maximum-size matching will be the size of the smaller side of the
market.

1 For more discussion, see the appendix.
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Large Markets

The results consider outcome in “large markets” as introduced in [1]. Formally, a sequence
of markets indexed by n are considered. In this sequence, the number of applications k, the
number of interviews k′, and the ratio of number of hospitals to doctors r are held constant.
The nth market is characterized by a set of doctors Dn and a set of hospitals Hn. Consider
n = |Dn| = |Hn|/r. The results in this paper study the properties of the matching for
n→∞.

2.2 No Limit for Granting Interviews
In this section, we recall an analysis from [3] with n doctors and n hospitals in the market.
In this case there is no limit on the number of interviews by hospitals and doctors are allowed
to list only up to k hospitals, for k << n. When doctors apply to k hospitals, Proposition 4
finds the probability p of a single random proposal resulting to a permanent match as n
grows to infinity. The main idea is that in the limit as n goes to infinity, the probability of a
proposal resulting in a match is independent of the previous proposals of the applicant being
rejected.

I Proposition 4 ([1]). When each doctor applies to k hospitals, the probability p of a single
random proposal resulting in a permanent match in the deferred acceptance procedure, satisfies
the following equation.

(1− p)k = e−(1−(1−p)k)/p (1)

Proof sketch. Since the outcome of the deferred acceptance algorithm does not depend on
the order in which doctors propose, we may hold out a single doctor d and run the deferred
acceptance algorithm on the remainder of the market. Now consider doctor d proposing to
her favorite position. Her first few proposals may get rejected. Once a hospital accepts her
proposal, it may reject a different doctor, who may propose for her next position, etc. We
call the resulting sequence of rejections a rejection chain. The probability that a proposal
of doctor d causes a rejection chain that gets doctor d rejected from the hospital that first
accepted her vanishes as the market grows, therefore we may assume that d’s first tentatively
accepted proposal will lead to a permanent match. Also, in a large market, the rejection
of d’s first m proposals does not affect the probability of acceptance of other proposals.
Thus, from d’s perspective, each hospital that she applied to in the first stage, should be
available to her with some probability p, and their availability should be independent. With
this argument, the probability that d matches is 1− (1− p)k, and the expected number of
hospitals d proposes to is

1 + (1− p) + (1− p)2 + ...+ (1− p)k−1 = 1
p

(1− (1− p)k).

From the point of view of each hospital, each of these proposals is sent to them roughly with
probability 1/n; thus the probability that a hospital receives at least one proposal is

1− (1− 1/n)
n
p (1−(1−p)k);

which approaches 1 − e−(1−(1−p)k)/p when n → ∞. Since doctors match with probability
1− (1− p)k, and the number of doctors and hospitals that match must be equal, we have
that (1− p)k = e−(1−(1−p)k)/p. J
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I Proposition 5. Suppose that either all the doctors apply to the same number of hospitals or
a fraction of them apply to k while others apply to k+ 1 hospitals. In a setting where there is
no limit on the number of interviews by hospitals and the preferences are uniformly random,
the social welfare of the matching is increasing in the expected number of applications.

Proof. See the appendix. J

3 Warm-Up: Single Offer

In this section, we find the efficiency of matching as a function of the expected number of
applications by doctors, when hospitals only select one applicant in the first stage of the
mechanism. We begin with the case where all doctors apply to the same number of hospitals,
kd = k, and then we move to the case where doctors send different number of applications.
We find allocating the number of applications equally results in the most efficient matching
and allowing a small subset to apply to an extra position or restricting a small set to apply
to one less position, results in a smaller matching.

In this part we assume that hospitals only select one of their applicants in the first stage
of the matching. As discussed in Observation 2, they choose their favorite applicant. Since
interviews are conducted to compare the selected doctors, in this case that only one doctor
is selected, interviews are of no use from the hospitals’ point of view. Therefore the hospital
immediately offers the position to the selected doctor. Consequently, the outcome of the
deferred acceptance algorithm can be easily found in this case; each doctor will be matched
to his/her favorite hospital among those who gave an offer. Therefore without going through
the complication of the deferred acceptance algorithm, each doctor accepts the most preferred
offer. This discussion implies that the size of matching in this case, is the number of doctors
who receive an offer.

3.1 Same Number of Applications
First, we study the social welfare of the matching with respect to the number of applications
by doctors, where all doctors apply to the same number of hospitals, k.

I Proposition 6. Suppose for all d, kd = k and k′ = 1. The social welfare equals 1− (1−
(1−e−k)

k )k.

To illustrate some of the main points in the proof of the proposition we start with a
simple example in which doctors are allowed to send one application.

I Example 7. When k = k′ = 1, the social welfare of the matching approaches (1−1/e) ≈ 0.63
in a large market. In a matching between hospitals and doctors the size of matching equals
the number of matched hospitals. Each hospital that receives an application is matched.
The reason is when a hospital accepts a doctor, that doctor does not have any other offers
and accepts the match. The probability of a hospital receiving at least one application is
1− (1− 1/n)n which tends to 1− 1/e with n approaching ∞.

Now, we consider the general case of arbitrary k. The following definition is central to
our proof.

I Definition 8 (covered hospital). A hospital is covered if it receives at least one application.
The number of covered hospitals equals the number of offers.

ITCS 2021



74:8 Randomness and Fairness in Two-Sided Matching with Limited Interviews

Proof of Proposition 6. First, we find the expected number of covered hospitals. By Obser-
vation 2, doctors apply to their favorite positions. Since doctors preferences are independent,
the set of hospitals that a doctor applies to is independent from other doctors. Although a
doctor applies to k different hospitals and these applications are not technically independent,
as n grows large, the dependence between different applications of a doctor becomes negligible
tends to 0. In other words, the probability that a fresh random choice of a doctor is identical
to a previous choice approaches to 0. Therefore, we assume that different applications of a
doctor are independent. The independence among applications of the same doctor and the
set of applications of different doctors, implies the nk hospitals chosen by applications are
selected uniformly and independently at random. The probability of a hospital receiving any
application is ≈ 1− (1− 1/n)nk, which tends to (1− e−k) in the limit.

Now, we formulate the probability of a doctor being matched. A doctor is matched if one
of its applications turns to an offer. The probability of application (d, h) turning into an
offer depends on the number of applications that hospital h has received. (Each hospital
gives offer to one of its applications.) However, doctors have no knowledge about the number
applications a hospital receives and to them all hospitals look identical in terms of the number
of applications they have. Thus, from a doctor’s perspective, each of their applications has
the same probability of turning into an offer. Let p be the probability of an application
turning to an offer. The probability of a doctor being matched equals 1− (1− p)k.

So far, we found the probability of a hospital being covered and the probability of a
doctor being matched as a function of p. Now, we can relate these two terms. The main
observation here is that the probability of an application turning to an offer, p, equals the
ratio between the number of offers and all applications. Therefore, p = 1−e−k

k .
The expected social welfare of matching is equal to the probability of a doctor being

matched, which is (1− (1− (1−e−k)
k )k). J

Figure 1 shows the size of matching with respect to the number of applications.
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Figure 1 Size of matching with respect to the number of applications, when hospitals make only
one offer.

Positive and negative effects of having more applications

As shown in Figure 1, having more applications can have both positive and negative effects:
As a positive effect, with more applications the number of hospitals who receive an application
increases. This can potentially increase the size of matching. On the other hand, as the
number of applications increases, the hospitals become more congested. Since he total number
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of offers is limited by the number of hospitals (each hospital makes at most one offer), this
causes an increase in the probability of rejection of an application. This may increase the
number of doctors with no offer, leading to a negative effect on the size of matching. As
seen in the picture, The biggest jump in the size of matching occurs when moving from one
application to two applications. When increasing the number of applications from one to
two, the fraction of covered hospitals changes from 1− 1/e ≈ 0.63 to 1− 1/e2 ≈ 0.86, which
is the highest increase when adding more applications. This causes the highest increase in
the matching size. The increase stops with only three number of applications, with which the
fraction of covered hospitals is 1− 1/e3 ≈ 0.95. From this point forward the negative effect
takes over and because of the random allocation of hospitals some doctors receive multiple
offers while others receive none.

The following example considers the extreme case where doctors apply to all hospitals.
Interestingly, the size of the matching in this case equals to the case where doctors were
allowed to apply to a single hospital.

I Example 9 (One application equals n applications.). With n applications for each doctor and
hospitals accepting one interview, the social welfare of the matching approaches (1− 1/e) ≈
0.63 in a large market.

Proof. Since hospital preferences are uniformly random, each hospital selects an applicant
to make an offer to, uniformly at random. Because doctors have n applications, the set of
doctors applying to each hospital is the set of all doctors. Therefore the number of doctors
who receive an offer is:

limn→∞1− (1− 1
n

)n = 1− 1
e

J

3.2 Fractional Expected Number of Applications: A Scallop-Shape
Function

Unlike Section 3.1, where there was a universal limit on the number of applications by
doctors, in this subsection we study the social welfare when doctors are allowed to send
different number of applications. First we show that for any expected number of applications
x, the optimal social welfare occurs when doctors send either dxe or bxc applications. Then
we study the social welfare as a function of the expected number of applications. We observe
that granting extra applications to a small set of doctors and also retracting an application
from a small set both hurt the market; suggesting that unfair treatment is not efficient in
terms of social welfare.

I Theorem 10. The social welfare of the matching with expected number of applications
k < x < k + 1, when applicants either apply to k or k + 1 positions is:

(dxe − x)(1− (1− (1− e−x)
x

)k) + (x− bxc)(1− (1− (1− e−x)
x

)k+1);

this function is illustrated in Figure 2.

The following proposition shows that for any expected number of applications x, the
optimal social welfare occurs when doctors send either dxe or bxc applications.

I Proposition 11. With any expected number of applications, x, the distribution of number
of applications that achieves the highest social welfare, is one that allocates bxc applications
to some doctors and dxe to the others, such that the expected number of applications equals x.
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Proof. Suppose the applications are distributed in a different way. Therefore, there are
two doctors with l and k applications such that k − l ≥ 2. We show that the size of
matching is improved if we allocate f = b(k+ l)/2c and c = d(k+ l)/2e applications to those
doctors. This alteration does not change the probability of receiving offers by other doctors
as the applications are independent from doctors’ perspective. So the only difference is the
probability of receiving offers by these two doctors. Let p be the probability of a random
application to lead to an offer. We claim

1− (1− p)k + 1− (1− p)l ≤ 1− (1− p)c + 1− (1− p)f .

Since (1 − p)c and (1 − p)f have the same product as (1 − p)k and (1 − p)l, their sum is
larger when the two factors are far apart, therefore:

(1− p)c + (1− p)f ≤ (1− p)k + (1− p)l

which implies the conclusion. J

I Remark. This argument shows that in order to find the optimal social welfare for different
expected number of applications, we only need to study the case where doctors apply to the
same number of hospitals –as studied in Section 3.1– or two consecutive numbers.

Proof of Theorem 10. This proof is similar to that of Proposition 6. From a doctor’s
perspective, the probability of a random application, leading to an offer is c/A, where c is the
number of covered hospitals, and A is the number of applications. With nx applications, the
fraction of covered hospitals equals (1− e−x). Thus, the probability of an application turning
to an offer equals (1− e−x)/x. Therefore, the expected social welfare of the matching which
is the same as the probability of a random doctor receiving an offer is:

(dxe − x)(1− (1− (1− e−x)
x

)k) + (x− bxc)(1− (1− (1− e−x)
x

)k+1). J
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Figure 2 Size of matching with respect to expected number of applications, when hospitals make
only one offer.

The scallop-shape Figure 2 illustrates the size of matching as a function of expected
number of applications. The unusual behavior of the function at integer points shows that
allowing a small group to apply to one more position, or limiting the number of applications
of a small group to one less application, has a negative effect on size of matching.
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I Observation 12 (3 applications per doctor is the most efficient). Theorem 10, depicted
in Figure 6, and Proposition 11 imply that for any expected number of applications per
doctor, and any independent distribution of those applications to doctors, the efficiency of
the matching never exceeds ≈ 0.68. This efficiency is achieved when all doctors apply to 3
hospitals. This is in sharp contrast with unlimited number of interviews (Proposition 5).

4 Granting multiple interviews

In this section we describe our approach for the general case. The key simplifying feature of
the single-offer case was that each hospital immediately made an offer to their top applicant
and each doctor was matched to their most preferred hospital that they received an offer
from. However, with multiple interviews, finding the final matching requires actually running
the usual procedure of the deferred acceptance algorithm.

The main result of this section is the following.

I Theorem 13. Suppose each doctor has k applications and each hospital grants interviews
to at most k′ doctors. The social welfare of the matching in this case is 1− (1− p)k where
0 < p < 1 is the solution to

1− (1− p)k =
k′−1∑
i=1

[g(i, k, p)f(i; k)] + g(k′, k, p)(1− F (k′ − 1; k));

where g(i, k, p) = 1 − (1 − 1−(1−p)k

pk )i, f(i; k) = kie−k

i! is the pmf of Poisson distribution
with mean k, and F (·; k) is the CDF of that distribution. Also when the expected number
of applications is x such that x− bxc = z, the social welfare is upperbounded by (1− z)(1−
(1− p)bxc) + z(1− (1− p)dxe), where 0 < p < 1 is the solution to

(1− z)(1− (1− p)k) + z(1− (1− p)k+1) =
k′−1∑
i=1

[h(i, x, p)f(i; x)] + h(k′, x, p)(1− F (k′ − 1; x));

and h(i, x, p) = (1− (1− (1−(x−bxc))(1−(1−p)bxc)+(x−bxc)(1−(1−p)dxe)
px )i). The upperbound is

tight when all doctors apply to either k or k + 1 positions.

Before proceeding with the proof we give a high-level overview of the main steps. In
a market of two equal sides the probability of a doctor being matched is equal to the
probability of a hospital being matched. We use this equation to find the size of matching.
The formula for probability of a doctor being matched is similar to the previous section;
however, formulating the probability of a hospital being matched is more complicated. The
main technical portion of this section is devoted to formulating this probability. First, we
define a modified implementation of the matching procedure which results in the same
outcome as the original implementation, but is easier to deal with for analytic purposes.
The new implementation introduces a concept called “semi-proposal”. Later, we find the
relationship between the number of applications, valid applications, proposals, and semi-
proposals. The probability of a hospital being matched can be formulated in terms of the
number of proposals. Finally, by finding the three other quantities, we find the number of
proposals, and formulate the probability of a hospital being matched.

Modified Implementation of Matching Procedure. For the sake of analysis, it is useful
to define a modified implementation of the matching procedure. Similar to the original
implementation, in the first stage doctors apply to hospitals using all their applications and
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hospitals conduct interviews with a subset of their applicants. The difference between the two
implementations arises in the second stage. In the modified implementation, doctors submit
their ordered preferences including both the hospitals they interviewed and the hospitals that
rejected them for interview. Therefore, when the system simulates doctor-proposing deferred
acceptance algorithm, doctors are allowed to propose using any of their applications; both
valid and invalid ones. Since the invalid applications do not exist in hospitals’ lists they get
rejected immediately and the outcomes of both implementations are the same. In contrast
to the modified implementation, we refer to the main procedure previously defined as the
original implementation.

Semi-proposal. The procedure in the second stage of the modified implementation that
simulates doctors proposing to hospitals as steps of the deferred acceptance algorithm. Note
that this includes both the proposals that do not really count (because the hospital didn’t
extend an interview) and those that led to an interview.

I Lemma 14. The expected number of semi-proposals made by a doctor is 1−(1−p)k

p , where
p is the probability of a random application turning to a permanent match.

Proof. By Proposition 4 from a doctor’s perspective each hospital they propose to is
available to them with equal probability, and their availabilities are independent2. Consider
the modified implementation defined above. In the second stage of the game doctors
send semi-proposals to hospitals. Let p be the probability of a random semi-proposal
becoming a permanent match. By independence the probability that a doctor becomes
matched is 1− (1− p)k. Also the expected number of semi-proposals made by a doctor is
1 + (1− p) + . . .+ (1− p)k−1 = 1−(1−p)k

p . J

I Lemma 15. For any application A = (d, h), consider Esemi(A) as the event that A turns
to a semi-proposal, i.e., d sends a semi-proposal to h, and Evalid(A) as the event where A is
valid. Esemi(A) and Evalid(A) are independent.

Proof. Application A = (d, h) is turned into a semi-proposal if the previous semi-proposals
of d are rejected. Similarly, a valid application V is turned into a proposal if the previous
semi-proposals are rejected. Since preferences are distributed uniformly at random for both
doctors and hospitals, the fact that A is valid or invalid is independent of the rank of h in the
preference list of d. Therefore, the probability of A turning into a semi-proposal conditioned
on it being valid is equal to the unconditional probability. J

I Corollary 16. The probability of a random valid application turning into a proposal, pV→P ,
equals the probability of a random application into a semi-proposal, pA→S. This probability is
P
A = S

V , where P, A, S, and V represent the number of proposals, applications, semi-proposals
and valid applications, respectively.

Proof. Lemma 15 implies pV→P = pA→S . The first probability equals the ratio of total
number of proposals to valid applications, and the second equals the total number of
semi-proposals to applications. J

A key observation for finding the number of valid applications is the following.

2 Note that considering proposals with replacement is accurate up to lower order terms; with constant
proposals, a doctor will make a repeat only with vanishingly small probability.
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I Observation 17. The number of applications that a hospital receives in the first stage
forms a binomial distribution which converges to a Poisson distribution with mean k in the
limit. This is due to the independent and uniform preferences of doctors.

I Lemma 18. The expected number of proposals that a hospital receives is

1− (1− p)k

p
·

∑k′−1
i=1

[
i · kie−k

i!

]
+ k′(1− e−k

∑k′−1
i=0

ki

i! )

k
.

Proof. By Corollary 16, PA = S
V . In order to find P, we need A, S, and V. By definition,

A = k and by Lemma 14, S = 1−(1−p)k

p . Therefore, we only need to find V. Recall that an
application (d, h) is valid if hospital h does not reject it in the first stage. A hospital rejects
an application only if it receives more than k′. Therefore, by Observation 17, the expected
number of valid applications per hospital is,

V =
k′−1∑
i=1

i · k
ie−k

i! + k′(1− e−k
k′−1∑
j=0

kj

j! ).

Substituting A, S, and P in Corollary 16, the expected number of proposals a hospital
receives is

1− (1− p)k

p
·
∑k′−1

i=1 i · kie−k

i! + k′(1− e−k
∑k′−1

i=0
ki

i! )
k

. J

Now we find the probability that a random hospital is matched.

I Lemma 19. The probability of a random hospital being matched is

k′−1∑
i=1

[g(i, k, p)f(i; k)] + g(k′, k, p)(1− F (k′ − 1; k));

where g(i, k, p) = 1 − (1 − 1−(1−p)k

pk )i, f(i; k) = kie−k

i! is the pmf of Poisson distribution
with mean k, F (·; k) is the CDF of that distribution, and p is the probability of a random
application turning to a permanent match.

Proof. From the hospitals’ point of view, each of their valid applications has the same
probability of becoming a proposal. Let q be the probability of a random valid application
turning into a proposal. In a doctors-proposing deferred-acceptance algorithm, if a hospital
is once tentatively matched it will remain matched forever. A hospital becomes tentatively
matched if it receives a proposal, in other words if at least one of its valid applications
becomes a proposal. The probability that a random hospital with j valid applications receives
a proposal is 1 − (1 − q)j . Therefore, the probability that a random hospital is matched
equals,

k′−1∑
i=1

[
(1− (1− q)i)k

ie−k

i!

]
+ (1− (1− q)k′)(1− e−k

k′−1∑
i=0

ki

i! ).

The probability of a random valid application turning into a proposal, q, is equal to the ratio
of the total number of proposals to the total number of valid applications. By Lemma 15,
this ratio is equal to the ratio of the total number of semi-proposals to the total number of
applications. Therefore, q = 1−(1−p)k

pk . J

ITCS 2021



74:14 Randomness and Fairness in Two-Sided Matching with Limited Interviews

Proof of Theorem 13. Lemma 14, Lemma 19 and the fact that in a matching of two equal
sides, the probability of a random doctor being matched is equal to a hospital being matched
implies:

1− (1− p)k =
k′−1∑
i=1

[g(i, k, p)f(i; k)] + g(k′, k, p)(1− F (k′ − 1; k)).

Similar reasoning holds when the expected number of applications is an arbitrary real number
x such that each doctor has either bxc or dxe applications, deriving the formula for general x.
By Proposition 11, the size of the matching with expected k ≤ x < k + 1 applications is
maximized when all doctors apply to either k or k+1 positions. This concludes the proof. J
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Figure 3 Size of matching with respect to expected number of application. The curves represents
the settings where hospitals allow one to five interviews. The lowest curve belongs to one interview
and the highest curve to five interviews.

5 Extensions

In this section we discuss two extensions to our main results in Section 4. Section 5.1 discusses
the extension to unbalanced markets where the number of doctors and positions is different.
Section 5.2 discusses the extension to correlated preferences.

5.1 Beyond Balanced Markets
In this part, we show that the phenomenon of the positive effect of setting the same limit for
all doctors is not limited to a balanced market – where the number of applicants and positions
are the same – but extends to unbalanced markets with different number of applicants and
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positions. Although the same phenomenon exits more generally, the exact function is not
preserved and the optimum number of applications depends on the ratio between the sizes of
the two sides.

We study the case where hospitals make one offer (similar to Section 3) and the ratio
of the number of hospitals to the number of doctors is r. The results from Section 4 with
multiple interviews also generalize to this setting. However, for simplicity and similarity
of the outcomes, we just present the results for the model with one offer. Similar to the
previous section, we can compute the size of the matching as a function of the expected
number of applications, when doctors send k or k + 1 applications.

I Proposition 20. The expected fraction of matched doctors with expected number of applic-
ations k < x < k+ 1, when applicants either apply to k or k+ 1 positions and when the ratio
of number of hospitals to number of doctors is r is:

(dxe − x)(1− (1− r(1− e−x/r)
x

)k) + (x− bxc)(1− (1− r(1− e−x/r)
x

)k+1).

Proof. As shown in the proof of Proposition 6, from the doctors perspective, the probability
of a random application, leading to an offer is CA , where C is the number of covered hospitals
and A is the number of application. From the hospitals perspective, each application is
equally likely to be sent to each hospital. Therefore the number of applications received
is distributed as a Poisson distribution with λ = x

r . So the number of expected covered
hospitals is rn(1− e−x/r) and the probability of a random application, leading to an offer is
r(1−e−x/r)

x . Therefore the expected fraction of doctors who are matched which is the same as
the probability of a random doctor receiving an offer is:

(dxe − x)(1− (1− r(1− e−x/r)
x

)k) + (x− bxc)(1− (1− r(1− e−x/r)
x

)k+1). J

Based on Definition 3, the social welfare of a matching is the ratio of the size of the
matching to the size of maximum matching; and in unbalanced markets, the maximum size
is the size of the smaller side of the matching. For r ≥ 1, the doctors make the smaller
side therefore the social welfare is equal to expected fraction of doctors who are matched as
computed in Proposition 20. If r < 1, the social welfare is the expected fraction of doctors
who are matched as computed in Proposition 20 divided by r.

Section 5.1 shows the social welfare of the matching as a function of expected number of
applications for r = 1

2 , 1, 2. In the figure, the red function refers to r = 2, the blue function
to r = 1/2 and the green function to r = 1.

As seen in the figure a similar structure holds for unbalanced networks, but the optimal
number of applications depends on the factor of balancedness r. When the number of
hospitals is half of the number of doctors, the market achieves its maximum size when each
doctor applies to just one position. With more applications, hospitals become more congested;
and the number of covered hospitals and therefore the number of total offers does not increase
significantly. Therefore, the rejection probability of applications increases and with higher
probability a doctor remains unmatched. In contrast, when the number of hospitals is more
than the number of doctors, allowing more applications has a positive effect. With more
applications –while the number of applications is still small– more hospitals receive at least
one application; therefore, the number of offers increases considerably.

Also, note that in the figure, the social welfare of the balanced market is generally lower
than the social welfare of markets with r = 1/2, 2. This is not surprising since by definition
the social welfare is the fraction of matched individuals on the smaller side of the market:
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Figure 4 Social welfare of the matching with respect to the expected number of applications.
The red curve refers to r = 2, blue curve to r = 1/2 and the green curve to r = 1, where r is the
ratio of the number of hospitals to doctors.

doctors for r ≤ 1, and hospitals for r > 1. For r = 2, with the same number of applications
per doctor, more hospitals are covered that leads to more offers and a higher fraction of
matched doctors. For r = 1/2, with the same number of applications, a higher fraction of
hospitals is covered which leads to a higher fraction of matched hospitals.

5.2 Beyond Uniform Preferences
In this part, we go beyond the uniform and independent assumptions and use simulations to
show that the properties of limited interviews exist more generally. The model studied in
the previous sections assumes that doctors and hospitals preferences remain uniform and
independent after the interview stage. We relax this assumption. We study a model where
the two sides have no information prior to the matching procedure. However, after the
interview stage, all participants refine their lists with information learned in the interviews.
Therefore, preference lists may become correlated.

Without prior knowledge about the other side, the behaviors in the first stage is similar to
what stated previously: there is a Bayes Nash Equilibrium such that doctors and hospitals pick
the top of their lists. In the second stage, doctors and hospitals are not anymore identical
in terms of popularity. We will be assuming that preferences among the interviews are
independent samples from a distribution that reflects popularity. Immorlica and Mahdian [6]
show that in a large market short preference lists sampled from a distribution, all participants
are likely to prefer to be truthful. While this is not exactly the same as our model, analogous
to this case, we will make the assumption in our simulation that participants do act truthfully.

To show how generally the properties hold, for simulations we study the other extreme
in preferences: completely aligned preferences after interviews. We use a market of 10,000
doctors and hospitals. Similar to previous sections we start with uniform and independent
preference in the first stage. For the second stage we simulate running the deferred acceptance
algorithm when hospitals agree on a random preference over doctors. Figure 5 shows the
size of matching as a function of number of applications when the number of interviews for
hospitals is limited to two and four interviews.
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Figure 5 Size of matching with respect to expected number of application. In the first stage the
preferences are uniform and independent. In the second stage hospitals preferences are aligned. The
bottom curve belongs to two interviews and the top one to four interviews.

As observed in Figure 5, the properties of limited interviews are not restricted to uniform
preferences. They hold even in the other extreme case where the preferences are completely
correlated after interviews.
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A Missing Proofs

Discussion of Observation 2. The truthful equilibrium is due to the independence and
symmetry and the private information model (the doctors and hospitals are unaware of the
number of applications and preference lists of others). At all times, no hospital or doctor
is more popular than the rest. Therefore from a doctor’s point of view the probability of
acceptance in all hospitals is the same and there is no benefit in not applying to a favorite
hospital or be non-truthful about the preference order. The same holds for hospitals. J

Proof of Proposition 5. We show that if one of the doctors who previously had k applica-
tions, now has k + 1 applications and the number of applications of other doctors remain
the same, the size of the matching can only increase. By Observation 2, both doctors and
hospitals are truthful, therefore we are comparing the size of matching as the result of
deferred acceptance algorithm when doctor d has an extra application and all other doctors
have the same number of applications. Since the deferred acceptance algorithm is oblivious
to the order in which doctors proposes, we may hold out the last application of doctor d
and find the outcome when the doctor d does not have this application in his/her list. The
result of the deferred acceptance algorithm, without this application is the same as the case
where doctor d had k applications. We show that this last application can only increase the
number of matching. If doctor d is matched with one of his/her first k proposals, the last
application does not change. If doctor d proposes to k+ 1st hospital, it can only increase the
number of hospitals who have received any proposal. J
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Figure 6 Size of matching with respect to expected number of applications, when hospitals make
only one offer. (Extended version of Figure 2.)
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A conjecture of Hopkins (2018) posits that for certain high-dimensional hypothesis testing problems,
no polynomial-time algorithm can outperform so-called “simple statistics”, which are low-degree
polynomials in the data. This conjecture formalizes the beliefs surrounding a line of recent work
that seeks to understand statistical-versus-computational tradeoffs via the low-degree likelihood ratio.
In this work, we refute the conjecture of Hopkins. However, our counterexample crucially exploits
the specifics of the noise operator used in the conjecture, and we point out a simple way to modify
the conjecture to rule out our counterexample. We also give an example illustrating that (even after
the above modification), the symmetry assumption in the conjecture is necessary. These results do
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understand what class of problems it is applicable to.
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1 Introduction

A primary goal of computer science is to understand which problems can be solved by
efficient algorithms. Given the formidable difficulty of proving unconditional computational
hardness, state-of-the-art results typically rely on unproven conjectures. While many such
results rely only upon the widely-believed conjecture P 6= NP, other results have only
been proven under stronger assumptions such as the unique games conjecture [19, 20], the
exponential time hypothesis [16], the learning with errors assumption [25], or the planted
clique hypothesis [17, 4].

It has also been fruitful to conjecture that a specific algorithm (or limited class of
algorithms) is optimal for a suitable class of problems. This viewpoint has been particularly
prominent in the study of average-case noisy statistical inference problems, where it appears
that optimal performance over a large class of problems can be achieved by methods such as
the sum-of-squares hierarchy (see [24]), statistical query algorithms [18, 5], the approximate
message passing framework [9, 22], and low-degree polynomials [15, 14, 13]. It is helpful
to have such a conjectured-optimal meta-algorithm because this often admits a systematic
analysis of hardness. However, the exact class of problems for which we believe these methods
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are optimal has typically not been precisely formulated. In this work, we explore this issue
for the class of low-degree polynomial algorithms, which admits a systematic analysis via the
low-degree likelihood ratio.

The low-degree likelihood ratio [15, 14, 13] has recently emerged as a framework for
studying computational hardness in high-dimensional statistical inference problems. It
has been shown that for many “natural statistical problems,” all known polynomial-time
algorithms only succeed in the parameter regime where certain “simple” (low-degree) statistics
succeed. The power of low-degree statistics can often be understood via a relatively simple
explicit calculation, yielding a tractable way to precisely predict the statistical-versus-
computational tradeoffs in a given problem. These “predictions” can rigorously imply
lower bounds against a broad class of spectral methods [21, Theorem 4.4] and are intimately
connected to the sum-of-squares hierarchy (see [14, 13, 24]). Recent work has (either explicitly
or implicitly) carried out this type of low-degree analysis for a variety of statistical tasks
[3, 15, 14, 13, 2, 1, 21, 8, 6, 23, 7]. For more on these methods, we refer the reader to the
PhD thesis of Hopkins [13] or the survey article [21].

Underlying the above ideas is the belief that for certain “natural” problems, low-degree
statistics are as powerful as all polynomial-time algorithms – we refer broadly to this belief
as the “low-degree conjecture”. However, formalizing the notion of “natural” problems is
not a straightforward task. Perhaps the easiest way to illustrate the meaning of “natural”
is by example: prototypical examples (studied in the previously mentioned works) include
planted clique, sparse PCA, random constraint satisfaction problems, community detection
in the stochastic block model, spiked matrix models, tensor PCA, and various problems of a
similar flavor. All of these can be stated as simple hypothesis testing problems between a
“null” distribution (consisting of random noise) and a “planted” distribution (which contains
a “signal” hidden in noise). They are all high-dimensional problems but with sufficient
symmetry that they can be specified by a small number of parameters (such as a “signal-
to-noise ratio”). For all of the above problems, the best known polynomial-time algorithms
succeed precisely in the parameter regime where simple statistics succeed, i.e., where there
exists a O(logn)-degree polynomial of the data whose value behaves noticeably different
under the null and planted distributions (in a precise sense). Thus, barring the discovery of
a drastically new algorithmic approach, the low-degree conjecture seems to hold for all the
above problems. In fact, a more general version of the conjecture seems to hold for runtimes
that are not necessarily polynomial: degree-D statistics are as powerful as all nΘ̃(D)-time
algorithms, where Θ̃ hides factors of logn [13, Hypothesis 2.1.5] (see also [21, 8]).

A precise version of the low-degree conjecture was formulated in the PhD thesis of
Hopkins [13]. This includes precise conditions on the null distribution ν and planted
distribution µ which capture most of the problems mentioned above. The key conditions are
that there should be sufficient symmetry, and that µ should be injected with at least a small
amount of noise. Most of the problems above satisfy this symmetry condition (a notable
exception being the spiked Wishart model1, which satisfies a mild generalization of it), but
it remained unclear whether this assumption was needed in the conjecture. On the other
hand, the noise assumption is certainly necessary, as illustrated by the example of solving a
system of linear equations over a finite field: if the equations have an exact solution then it
can be obtained via Gaussian elimination even though low-degree statistics suggest that the

1 Here we mean the formulation of the spiked Wishart model used in [1], where we directly observe
Gaussian samples instead of only their covariance matrix.



J. Holmgren and A. S. Wein 75:3

problem should be hard; however, if a small amount of noise is added (so that only a 1− ε
fraction of the equations can be satisfied) then Gaussian elimination is no longer helpful, and
the low-degree conjecture seems to hold.

In this work we investigate more precisely what kinds of noise and symmetry conditions
are needed in the conjecture of Hopkins [13]. Our first result (Theorem 4) actually refutes
the conjecture in the case where the underlying random variables are real-valued. Our
counterexample exploits the specifics of the noise operator used in the conjecture, along with
the fact that a single real number can be used to encode a large (but polynomially bounded)
amount of data. In other words, we show that a stronger noise assumption than the one
in [13] is needed; Remark 6 explains a modification of the conjecture that we do not know how
to refute. Our second result (Theorem 7) shows that the symmetry assumption in [13] cannot
be dropped, i.e., we give a counterexample for a weaker conjecture that does not require
symmetry. Both of our counterexamples are based on efficiently decodable error-correcting
codes.

Notation
Asymptotic notation such as o(1) and Ω(1) pertains to the limit n→∞. We say that an event
occurs with high probability if it occurs with probability 1− o(1), and we use the abbreviation
w.h.p. (“with high probability”). We use [n] to denote the set {1, 2, . . . , n}. The Hamming
distance between vectors x, y ∈ Fn (for some field F ) is ∆(x, y) = |{i ∈ [n] : xi 6= yi}| and
the Hamming weight of x is ∆(x, 0).

2 The Low-Degree Conjecture

We now state the formal variant of the low-degree conjecture proposed in the PhD thesis
of Hopkins [13, Conjecture 2.2.4]. The terminology used in the statement will be explained
below.

I Conjecture 1. Let X be a finite set or R, and let k ≥ 1 be a fixed integer. Let N =
(
n
k

)
.

Let ν be a product distribution on XN . Let µ be another distribution on XN . Suppose that
µ is Sn-invariant and (logn)1+Ω(1)-wise almost independent with respect to ν. Then no
polynomial-time computable test distinguishes Tδµ and ν with probability 1− o(1), for any
δ > 0. Formally, for all δ > 0 and every polynomial-time computable t : XN → {0, 1} there
exists δ′ > 0 such that for every large enough n,

1
2 P
x∼ν

(t(x) = 0) + 1
2 P
x∼Tδµ

(t(x) = 1) ≤ 1− δ′.

We now explain some of the terminology used in the conjecture, referring the reader to [13]
for the full details. We will be concerned with the case k = 1, in which case Sn-invariance of µ
means that for any x ∈ Xn and any π ∈ Sn (the symmetric group) we have Pµ(x) = Pµ(π ·x)
where π acts by permuting coordinates. The notion of D-wise almost independence captures
how well degree-D polynomials can distinguish µ and ν. For our purposes, we do not need
the full definition of D-wise almost independence (see [13]), but only the fact that it is
implied by exact D-wise independence, defined as follows.

I Definition 2. A distribution µ on XN is D-wise independent with respect to ν if for any
S ⊆ [N ] with |S| ≤ D we have equality of the marginal distributions µ|S = ν|S.

Finally, the noise operator Tδ is defined as follows.
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I Definition 3. Let ν be a product distribution on XN and let µ be another distribution
on XN . For δ ∈ [0, 1], let Tδµ be the distribution on XN generated as follows. To sample
z ∼ Tδµ, first sample x ∼ µ and y ∼ ν independently, and then, independently for each i, let

zi =
{
xi with probability 1− δ,
yi with probability δ.

(Note that Tδ depends on ν but the notation suppresses this dependence; ν will always be
clear from context.)

3 Main Results

We first give a counterexample that refutes Conjecture 1 in the case X = R.

I Theorem 4. The following holds for infinitely many n. Let X = R, and ν = Unif([0, 1]n).
There exists a distribution µ on Xn such that µ is Sn-invariant (with k = 1) and Ω(n)-wise
independent with respect to ν, and for some constant δ > 0 there exists a polynomial-time
computable test distinguishing Tδµ and ν with probability 1− o(1).

The proof is given in Section 5.1.

I Remark 5. We assume a standard model of finite-precision arithmetic over R, i.e., the
algorithm t can access polynomially-many bits in the binary expansion of its input.

Note that we refute an even weaker statement than Conjecture 1 because our counterexample
has exact Ω(n)-wise independence instead of only (logn)1+Ω(1)-wise almost independence.

I Remark 6. Essentially, our counterexample exploits the fact that a single real number
can be used to encode a large block of data, and that the noise operator Tδ will leave many
of these blocks untouched (effectively allowing us to use a super-constant alphabet size).
We therefore propose modifying Conjecture 1 in the case X = R by using a different noise
operator that applies a small amount of noise to every coordinate instead of resampling a
small number of coordinates. If ν is i.i.d. N (0, 1) then the standard Ornstein-Uhlenbeck
noise operator is a natural choice (and in fact, this is mentioned by [13]). Formally, this
is the noise operator Tδ that samples Tδµ as follows: draw x ∼ µ and y ∼ ν and output√

1− δx+
√
δy.

Our second result illustrates that in the case where X is a finite set, the Sn-invariance
assumption cannot be dropped from Conjecture 1. (In stating the original conjecture,
Hopkins [13] remarked that he was not aware of any counterexample when the Sn-invariance
assumption is dropped).

I Theorem 7. The following holds for infinitely many n. Let X = {0, 1} and ν =
Unif({0, 1}n). There exists a distribution µ on Xn such that µ is Ω(n)-wise independ-
ent with respect to ν, and for some constant δ > 0 there exists a polynomial-time computable
test distinguishing Tδµ and ν with probability 1− o(1).

The proof is given in Section 5.2.
Both of our counterexamples are in fact still valid in the presence of a stronger noise

operator Tδ that adversarially changes any δ-fraction of the coordinates.
The rest of the paper is organized as follows. Our counterexamples are based on error-

correcting codes, so in Section 4 we review the basic notions from coding theory that we will
need. In Section 5 we construct our counterexamples and prove our main results.
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4 Coding Theory Preliminaries

Let F = Fq be a finite field. A linear code C (over F ) is a linear subspace of Fn. Here n
is called the (block) length, and the elements of C are called codewords. The distance of C
is the minimum Hamming distance between two codewords, or equivalently, the minimum
Hamming weight of a nonzero codeword.

I Definition 8. Let C be a linear code. The dual distance of C is the minimum Hamming
weight of a vector in Fn that is orthogonal to all codewords. Equivalently, the dual distance
is the distance of the dual code C⊥ = {x ∈ Fn : 〈x, c〉 = 0 ∀c ∈ C}.

The following standard fact will be essential to our arguments.

I Proposition 9. If C is a linear code with dual distance d, then the uniform distribution
over codewords is (d− 1)-wise independent with respect to the uniform distribution on Fn.

Proof. This is a standard fact in coding theory, but we give a proof here for completeness.
Fix S ⊆ [n] with |S| ≤ d− 1. For some k, we can write C = {x>G : x ∈ F k} for some k× n
generator matrix G whose rows form a basis for C. Let GS be the k × |S| matrix obtained
from G by keeping only the columns in S. It is sufficient to show that if x is drawn uniformly
from F k then x>GS is uniform over F |S|. The columns of GS must be linearly independent,
because otherwise there is a vector y ∈ Fn of Hamming weight ≤ d− 1 such that Gy = 0,
implying y ∈ C⊥, which contradicts the dual distance. Thus there exists a set T ⊆ [k] of |S|
linearly independent rows of GS (which form a basis for F |S|). For any fixed choice of x[k]\T
(i.e., the coordinates of x outside T ), if the coordinates xT are chosen uniformly at random
then x>GS is uniform over F |S|. This completes the proof. J

I Definition 10. A code C admits efficient decoding from r errors and s erasures if there is
a deterministic polynomial-time algorithm D : (F ∪ {⊥})n → Fn ∪ {fail} with the following
properties.

For any codeword c ∈ C, let c′ ∈ Fn be any vector obtained from c by changing the values
of at most r coordinates (to arbitrary elements of F ), and replacing at most s coordinates
with the erasure symbol ⊥. Then D(c′) = c.
For any arbitrary c′ ∈ Fn (not obtained from some codeword as above), D(c′) can output
any codeword or fail (but must never output a vector that is not a codeword2).

Note that the decoding algorithm knows where the erasures have occurred but does not know
where the errors have occurred.

Our first counterexample (Theorem 4) is based on the classical Reed-Solomon codes
RSq(n, k), which consist of univariate polynomials of degree at most k evaluated at n
canonical elements of the field Fq, and are known to have the following properties.

I Proposition 11 (Reed-Solomon Codes). For any integers 0 ≤ k < n and for any prime
power q ≥ n, there is a length-n linear code C over Fq with the following properties:

the dual distance is k + 2,
C admits efficient decoding from r errors and s erasures whenever 2r + s < n− k.

Proof. See e.g., [11] for the construction and basic facts regarding Reed-Solomon codes
RSq(n, k). The distance of RSq(n, k) is n−k. It is well known that the dual code of RSq(n, k)
is RSq(n, n − k − 2), which proves the claim about dual distance. Efficient decoding is
discussed e.g., in Section 3.2 of [11]. J

2 The codes we deal with in this paper can be efficiently constructed, and so it is easy to test whether a
given vector is a codeword. Thus, this assumption is without loss of generality.
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Our second counterexample (Theorem 7) is based on the following construction of efficiently
correctable binary codes with large dual distance. A proof (by Guruswami) can be found
in [26, Theorem 4]. Similar results were proved earlier [27, 10, 12].

I Proposition 12. There exists a universal constant ζ ≥ 1/30 such that for every integer
i ≥ 1 there is a linear code C over F2 = {0, 1} of block length n = 42 · 8i+1, with the following
properties:

the dual distance is at least ζn, and
C admits efficient decoding from ζn/2 errors (with no erasures).

5 Proofs

Before proving the main results, we state some prerequisite notation and lemmas.

I Definition 13. Let F be a finite field. For S ⊆ [n] (representing erased positions), the
S-restricted Hamming distance ∆S(x, y) is the number of coordinates in [n] \ S where x and
y differ:

∆S(x, y) = |{i ∈ [n] \ S : xi 6= yi}|.

We allow x, y to belong to either Fn or F [n]\S, or even to (F ∪{⊥})n so long as the “erasures”
⊥ occur only in S.

The following lemma shows that a random string is sufficiently far from any codeword.

I Lemma 14. Let C be a length-n linear code over a finite field F . Suppose C admits
efficient decoding from 2r errors and s erasures, for some r, s satisfying r ≤ (n−s)/(8e). For
any fixed choice of at most s erasure positions S ⊆ [n], if x is a uniformly random element
of F [n]\S then

Px(∃c ∈ C : ∆S(c, x) ≤ r) ≤ (r + 1)2−r.

Proof. Let Br(c) = {x ∈ F [n]\S : ∆S(c, x) ≤ r} ⊆ F [n]\S denote the Hamming ball (with
erasures S) of radius r and center c, and let |Br| denote its cardinality (which does not
depend on c). We have the following basic bounds on |Br|:(

n− |S|
r

)
(|F | − 1)r ≤ |Br| ≤ (r + 1)

(
n− |S|
r

)
(|F | − 1)r.

Since decoding from 2r errors and s erasures is possible, the Hamming balls {B2r(c)}c∈C are
disjoint, and so

Px(∃c ∈ C : ∆S(c, x) ≤ r) ≤ |Br|/|B2r|

≤ (r + 1)
(
n− |S|
r

)(
n− |S|

2r

)−1
(|F | − 1)−r

≤ (r + 1)
(
n− |S|
r

)(
n− |S|

2r

)−1
.

Using the standard bounds
(
n
k

)k ≤ (nk) ≤ (nek )k, this becomes

≤ (r + 1)
(

4er
n− |S|

)r
≤ (r + 1)

(
4er
n− s

)r
which is at most (r + 1)2−r provided r ≤ (n− s)/(8e). J
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I Lemma 15. Let j1, . . . , jn be uniformly and independently chosen from [n]. For any
constant α < 1/e, the number of indices i ∈ [n] that occur exactly once among j1, . . . , jn is
at least αn with high probability.

Proof. Let Xi ∈ {0, 1} be the indicator that i occurs exactly once among j1, . . . , jn, and let
X =

∑n
i=1Xi. We have (as n→∞)

E[Xi] = n(1/n)(1− 1/n)n−1 → e−1,

E[X2
i ] = E[Xi], and for i 6= i′,

E[XiXi′ ] = n(n− 1)(1/n)2(1− 2/n)n−2 → e−2.

This means E[X] = (1 + o(1))n/e and

Var(X) =
∑
i

(E[X2
i ]− E[Xi]2) +

∑
i 6=i′

(E[XiXi′ ]− E[Xi]E[Xi′ ])

≤ n(1 + o(1))(e−1 − e−2) + n(n− 1) · o(1)
= o(n2).

The result now follows by Chebyshev’s inequality. J

5.1 Proof of Theorem 4
The idea of the proof is as follows. First imagine the setting where µ is not required to be
Sn-invariant. By using each real number to encode an element of F = Fq, we can take ν to
be the uniform distribution on Fn and take µ to be a random Reed-Solomon codeword in
Fn. Under Tδµ, the noise operator will corrupt a few symbols (“errors”), but the decoding
algorithm can correct these and thus distinguish Tδµ from ν.

In order to have Sn-invariance, we need to modify the construction. Instead of observing
an ordered list y = (y1, . . . , yn) of symbols, we will observe pairs of the form (i, yi) (with each
pair encoded by a single real number) where i is a random index. If the same i value appears
in two different pairs, this gives conflicting information; we deal with this by simply throwing
it out and treating yi as an “erasure” that the code needs to correct. If some i value does
not appear in any pairs, we also treat this as an erasure. The full details are given below.

Proof of Theorem 4. Let C be the length-n code from Proposition 11 with k = dαne for
some constant α ∈ (0, 1) to be chosen later. Fix a scheme by which a real number encodes a
tuple (j, y) with j ∈ [n] and y ∈ F = Fq, in such a way that a uniformly random real number
in [0, 1] encodes a uniformly random tuple (j, y). More concretely, we can take n = q = 2m
for some integer m ≥ 1, in which case (j, y) can be directly encoded using the first 2m bits
of the binary expansion of a real number. Under x ∼ ν, each coordinate xi encodes an
independent uniformly random tuple (ji, yi). Under µ, let each coordinate xi be a uniformly
random encoding of (ji, yi), drawn as follows. Let c̃ be a uniformly random codeword from
C. Draw j1, . . . , jn ∈ [n] independently and uniformly. For each i, if ji is a unique index (in
the sense that ji 6= ji′ for all i′ 6= i) then set yi = c̃ji ; otherwise choose yi uniformly from F .

Note that µ is Sn-invariant. Since the dual distance of C is k + 2 = Ω(n), it follows
(using Proposition 9) that µ is Ω(n)-wise independent with respect to ν. By choosing δ > 0
and α > 0 sufficiently small, we can ensure that 16δn + (2n/3 + 4δn) < n − k and so C
admits efficient decoding from 8δn errors and 2n/3 + 4δn erasures (see Proposition 11). The
algorithm to distinguish Tδµ and ν is as follows. Given a list of (ji, yi) pairs, produce c′ ∈ Fn
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by setting c′ji = yi wherever ji is a unique index (in the above sense), and setting all other
positions of c′ to ⊥ (an “erasure”). Let S ⊆ [n] be the indices i for which c′i =⊥. Run the
decoding algorithm on c′; if it succeeds and outputs a codeword c such that ∆S(c, c′) ≤ 4δn
then output “Tδµ”, and otherwise output “ν”.

We can prove correctness as follows. If the true distribution is ν then Lemma 15 guarantees
|S| ≤ 2n/3 (w.h.p.). Since the non-erased values in c′ are uniformly random, Lemma 14
ensures there is no codeword c with ∆S(c, c′) ≤ 4δn (w.h.p.), provided we choose δ ≤ 1/(96e),
and so our algorithm outputs “ν” (w.h.p).

Now suppose the true distribution is Tδµ. In addition to the ≤ 2n/3 erasures caused
by non-unique ji’s sampled from µ, each coordinate resampled by Tδ can create up to 2
additional erasures and can also create up to 2 errors (i.e., coordinates i for which c′i 6=⊥ but
c′i 6= c̃i). Since at most 2δn coordinates get resampled (w.h.p.), this means we have a total
of (up to) 4δn errors and 2n/3 + 4δn erasures. This means decoding succeeds and outputs c̃
(i.e., the true codeword used to sample µ), and furthermore, ∆S(c̃, c′) ≤ 4δn. J

5.2 Proof of Theorem 7
The idea of the proof is similar to the previous proof, and somewhat simpler (since we do not
need Sn-invariance). We take ν to be the uniform distribution on binary strings and take
µ to be the uniform distribution on codewords, using the binary code from Proposition 12.
The decoding algorithm is able to correct the errors caused by Tδ.

Proof of Theorem 7. Let C be the code from Proposition 12. Each codeword c ∈ C is an
element of Fn2 , which can be identified with {0, 1}n = Xn. Let µ be the uniform distribution
over codewords. Since the dual distance of C is at least ζn, we have from Proposition 9 that
µ is Ω(n)-wise independent with respect to the uniform distribution ν. We also know that C
admits efficient decoding from ζn/2 errors.

Let δ = min{1/(16e), ζ/8}. The algorithm to distinguish Tδµ and ν, given a sample c′, is
to run the decoding algorithm on c′; if decoding succeeds and outputs a codeword c such
that ∆(c, c′) ≤ 2δn then output “Tδµ”, and otherwise output “ν”.

We can prove correctness as follows. If c′ is drawn from Tδµ then c′ is separated from
some codeword c by at most 2δn ≤ ζn/4 errors (w.h.p.), and so decoding will find c. If
instead c′ is drawn from ν then (since δ ≤ 1/(16e)) by Lemma 14, there is no codeword
within Hamming distance 2δn of c′ (w.h.p.). J
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Abstract
Locally decodable codes (LDCs) allow any single encoded message symbol to be retrieved from a
codeword with good probability by reading only a tiny number of codeword symbols, even if the
codeword is partially corrupted. LDCs have surprisingly many applications in computer science and
mathematics (we refer to [13, 10] for extensive surveys). But despite their ubiquity, they are poorly
understood. Of particular interest is the tradeoff between the codeword length N as a function of
message length k when the query complexity—the number of probed codeword symbols—and alphabet
size are constant. The Hadamard code is a 2-query LDC of length N = 2O(k) and this length is
optimal in the 2-query regime [11]. For q ≥ 3, near-exponential gaps persist between the best-known
upper and lower bounds. The family of Reed-Muller codes, which generalize the Hadamard code,
were for a long time the best-known examples, giving q-query LDCs of length exp(O(k1/(q−1))),
until breakthrough constructions of matching vector LDCs of Yekhanin and Efremenko [12, 6].

In contrast with other combinatorial objects such as expander graphs, the probabilistic method
has so far not been successfully used to beat the best explicit LDC constructions. In [3], a probabilistic
framework was given that could in principle yield best-possible LDCs, albeit non-constructively. A
special instance of this framework connects LDCs with a probabilistic version of Szemerédi’s theorem.
The setup for this is as follows: For a finite abelian group G of size N = |G|, let D ⊆ G be a random
subset where each element is present with probability ρ independently of all others. For k ≥ 3 and
ε ∈ (0, 1), let E be the event that every subset A ⊆ G of size |A| ≥ ε|G| contains a proper k-term
arithmetic progression with common difference in D. For fixed ε > 0 and sufficiently large N , it is
an open problem to determine the smallest value of ρ — denoted ρk — such that Pr[E] ≥ 1

2 . In [3]
it is shown that there exist k-query LDCs of message length Ω(ρkN) and codeword length O(N).
As such, Szemerédi’s theorem with random differences, in particular lower bounds on ρk, can be
used to show the existence of LDCs. Conversely, this connection indirectly implies the best-known
upper bounds on ρk for all k ≥ 3 [8, 4]. However, a conjecture from [9] states that over ZN we have
ρk ≤ Ok(N−1 logN) for all k, which would be best-possible. Truth of this conjecture would imply
that over this group, Szemerédi’s theorem with random differences cannot give LDCs better than
the Hadamard code. For finite fields, Altman [1] showed that this is false. In particular, over Fnp
for p odd, he proved that ρ3 ≥ Ω(p−n n2); generally, ρk ≥ Ω(p−n nk−1) holds when p ≥ k + 1 [2].
In turn, these bounds are conjectured to be optimal for the finite-field setting, which would imply
that over finite fields, Szemerédi’s theorem with random differences cannot give LDCs better than
Reed-Muller codes.

The finite-field conjecture is motivated mainly by the possibility that so-called dual functions
can be approximated well by polynomial phases, functions of the form e2πiP (x)/p where P is a
multivariate polynomial over Fp. We show that this is false. Using Yekhanin’s matching-vector-code
construction, we give dual functions of order k over Fnp that cannot be approximated in L∞-distance
by polynomial phases of degree k − 1. This answers in the negative a natural finite-field analog of a
problem of Frantzikinakis over N [7, Problem 1].
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Abstract
We consider a model where an agent has a repeated decision to make and wishes to maximize their
total payoff. Payoffs are influenced by an action taken by the agent, but also an unknown state of
the world that evolves over time. Before choosing an action each round, the agent can purchase
noisy samples about the state of the world. The agent has a budget to spend on these samples, and
has flexibility in deciding how to spread that budget across rounds. We investigate the problem of
choosing a sampling algorithm that optimizes total expected payoff. For example: is it better to buy
samples steadily over time, or to buy samples in batches? We solve for the optimal policy, and show
that it is a natural instantiation of the latter. Under a more general model that includes per-round
fixed costs, we prove that a variation on this batching policy is a 2-approximation.
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1 Introduction

The growing demand for machine learning practitioners is a testament to the way data-driven
decision making is shaping our economy. Data has proven so important and valuable because
so much about the current state of the world is a priori unknown. We can better understand
the world by investing in data collection, but this investment can be costly; deciding how much
data to acquire can be a non-trivial undertaking, especially in the face of budget constraints.
Furthermore, the value of data is typically not linear. Machine learning algorithms often see
diminishing returns to performance as their training dataset grows [22, 10]. This non-linearity
is further complicated by the fact that a data-driven decision approach is typically intended
to replace some existing method, so its value is relative to the prior method’s performance.

As a motivating example for these issues, consider a politician who wishes to accurately
represent the opinion of her constituents. These constituents have a position on a policy, say
the allocation of funding to public parks. The politician must choose her own position on
the policy or abstain from the discussion. If she states a position, she experiences a disutility
that is increasing in the distance of her position from that of her constituents. If she abstains,
she incurs a fixed cost for failing to take a stance. To help her make an optimal decision she
can hire a polling firm that collects data on the participants’ positions.
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We focus on the dynamic element of this story. In many decision problems, the state of
the world evolves over time. In the example above, the opinions of the constituents might
change as time passes, impacting the optimal position of the politician. As a result, data
about the state of the world becomes stale. Furthermore, many decisions are not made a
single time; instead, decisions are made repeatedly. In our example, the politician can update
funding levels each fiscal quarter.

When faced with budget constraints on data collection and the issue of data staleness,
decisions need to be made about when to collect data and when to save budget for the future,
and whether to make decisions based on stale data or apply a default, non-data-driven policy.
Our main contribution is a framework that models the impact of such budget constraints on
data collection strategies. In our example, the politician has a budget for data collection.
A polling firm charges a fixed cost to initiate a poll (e.g., create the survey) plus a fee per
surveyed participant. The politician may not have enough budget to hire the firm to survey
every constituent every quarter. Should she then survey fewer constituents every quarter?
Or survey a larger number of constituents every other quarter, counting on the fact that
opinions do not drift too rapidly?

We initiate the study with arguably the simplest model that exhibits this tension. The
state of the world (constituents’ opinions) is hidden but drawn from a known prior distribution,
then evolves stochastically. Each round, the decision-maker (politician) can collect one or
more noisy samples that are correlated with the hidden state at a cost affine in the number
of samples (conduct a poll). Then she chooses an action and incurs a loss. Should the
decision-maker not exhaust her budget in a given round, she can bank it for future rounds. A
sampling algorithm describes an online policy for scheduling the collection of samples given
the budget and past observations.

We instantiate this general framework by assuming Gaussian prior, perturbations and
sample noise.1 We capture the decisions that need to be made as the problem of estimating
the current state value, using the classic squared loss to capture the cost of making a decision
using imprecise information. Alternatively, there is always the option to not make a decision
based on the data and instead accept a default constant loss. We assume a budget on the
number of samples collected per unit time, and importantly this budget can be banked for
future rounds if desired.

1.1 A Simple Example
To illustrate our technical model, suppose the hidden state (constituents’ average opinion) is
initially drawn from a mean-zero Gaussian of variance 1. In each round, the state is subject
to mean-zero Gaussian noise of variance 1 (the constituents update their opinions), which is
added to the previous round’s state. Also, any samples we choose to take are also subject to
mean-zero Gaussian noise of variance 1 (polls are imperfect). Our budget for samples is 1 per
period, and one can either guess at the hidden state (incurring a penalty equal to the squared
loss) or pass and take a default loss of 3/4. What is the expected average loss of the policy
that takes a single sample each round, and then takes the optimal action? As it turns out,
the expected loss is precisely φ− 1 ≈ 0.618, where φ is the golden ratio 1+

√
5

2 (see Section 3.5
for the analysis). However, this is not optimal: saving up the allotted budget and taking

1 A Gaussian prior is justified in our running example if we assume a large population limit of constituents’
opinions. That the prior estimate of drift is also Gaussian is likewise motivated as the number of periods
grows large. We discuss alternative distributional assumptions on the prior, perturbations and noise in
Section 6.
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two samples every other round leads to an expected loss of 0.75+
√

2−1
2 ≈ 0.582. The intuition

behind the improvement is that taking a single sample every round beats the outside option,
but not by much; it is better to beat the outside option significantly on even-numbered
rounds (by taking 2 samples), then simply use the outside option on odd-numbered rounds.
It turns out that one cannot improve on this by saving up for 3 or more rounds to take
even more samples all at once. However, one can do better by alternating between taking
no samples for two periods and then two samples each for two periods, which results in a
long-run average loss of ≈ 0.576.

1.2 Our Results
As we can see from the example above, the space of policies to consider is quite large. One
simple observation is that since samples become stale over time it is never optimal to collect
samples and then take the outside option (i.e., default fixed-cost action) in the same round;
it would be better to defer data collection to later rounds where decisions will be made based
on data. As a result, a natural class of policies to consider is those which alternate between
collecting samples and saving budget. Such “on-off” policies can be thought of as engaging
in “data drives” while neglecting data collection the rest of the time.

Our main result is that these on-off policies are asymptotically optimal, with respect
to all dynamic policies. Moreover, it suffices to collect samples at a constant rate during
the sampling part of the policy’s period. Our argument is constructive, and we show how
to compute an asymptotically optimal policy. This policy divides time into exponentially-
growing chunks and collects data in the latter end of each chunk.

The solution above assumes that costs are linear in the number of samples collected. We
next consider a more general model with a fixed up-front cost for the first sample collected
in each round. This captures the costs associated with setting up the infrastructure to
collects samples on a given round, such as hiring a polling firm which uses a two-part tariff.
Under such per-round costs, it can be suboptimal to sample in sequential periods (as in an
on-off policy), as this requires paying the fixed cost twice. For this generalized cost model,
we consider simple and approximately optimal policies. When evaluating performance, we
compare against a null “baseline” policy that eschews data collection and simply takes the
outside option every period. We define the value of a policy to be its improvement over this
baseline, so that the null policy has a value of 0 and every policy has non-negative value.
While this is equivalent to simply comparing the expected costs of policies this alternative
measure is intended to capture how well a policy leverages the extra value obtainable from
data; we feel that this more accurately reflects the relative performance of different policies.

We focus on a class of lazy policies that collect samples only at times when the variance
of the current estimate is worse than the outside option. This class captures a heuristic
based on a threshold rule: the decision-maker chooses to collect data when they do not have
enough information to gain over the outside option. We show the optimal lazy policy is a
1/2-approximation to the optimal policy. The result is constructive, and we show how to
compute an asymptotically optimal lazy policy. Moreover, this approximation factor is tight
for lazy policies.

To derive these results, we begin with the well-known fact that the expected loss under
the squared loss cost function is the variance of the posterior. We use an analysis based
on Kalman filters [23], which are used to solve localization problems in domains such as
astronautics [27], robotics [34], and traffic monitoring [36], to characterize the evolution of
variance given a sampling policy. We show how to maximize value using geometric arguments
and local manipulations to transform an optimal policy into either an on-off policy or a lazy
policy, respectively.
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We conclude with two extensions. We described our results for a discrete-time model, but
one might instead consider a continuous-time variant in which samples, actions, and state
evolution occur continuously. We show how to extend all of our results to such a continuous
setting. Second, we describe a non-Gaussian instance of our framework, where the state of
the world is binary and switches with some small probability each round. We solve for the
optimal policy, and show that (like the Gaussian model) it is characterized by non-uniform,
bursty sampling.

1.3 Other Motivating Examples
We motivated our framework with a toy example of a politician polling his or her constituents.
But we note that the model is general and applies to other scenarios as well. For example,
suppose a phone uses its GPS to collect samples, each of which provides a noisy estimate
of location (reasonably approximated by Gaussian noise). The “cost” of collecting samples
is energy consumption, and the budget constraint is that the GPS can only reasonably
use a limited portion of the phone’s battery capacity. The worse the location estimate
is, the less useful this information is to apps; sufficiently poor estimates might even have
negative value. However, as an alternative, apps always have the outside option of providing
location-unaware functionality. Our analysis shows that it is approximately optimal to
extrapolate from existing data to estimate the user’s location most of the time, and only use
the GPS in “bursts” once the noise of the estimate exceeds a certain threshold. Note that in
this scenario the app never observes the “ground truth” of the phone’s location. Similarly,
our model might capture the problem faced by a firm that runs user studies when deciding
which features to include in a product, given that such user studies are expensive to run and
preferences may shift within the population of customers over time.

1.4 Future Directions
Our results provide insight into the trade-offs involved in designing data collection policies
in dynamic settings. We construct policies that navigate the trade-off between cost of data
collection and freshness of data, and show how to optimize data collection schedules in a
setting with Gaussian noise. But perhaps our biggest contribution is conceptual, in providing
a framework in which these questions can be formalized and studied. We view this work as
a first step toward a broader study of the dynamic value of data. An important direction
for future work is to consider other models of state evolution and/or sampling within our
framework, aimed at capturing other applications. For example, if the state evolves in a
heavy-tailed manner, as in the non-Gaussian instance explored in Section 6, then we show
it is beneficial to take samples regularly in order to detect large, infrequent jumps in state
value, and then adaptively take many samples when such a jump is evident. We solve this
extension only for a simple two-state Markov chain. Can we quantify the dynamic value
of data and find an (approximately) optimal and simple data collection policy in a general
Markov chain?

1.5 Related work
While we are not aware of other work addressing the value of data in a dynamic setting, there
has been considerable attention paid to the value of data in static settings. Arietta-Ibarra
et al. [4] argue that the data produced by internet users is so valuable that they should be
compensated for their labor. Similarly, there is growing appreciation for the value of the
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data produced on crowdsourcing platforms like Amazon Mechanical Turk [6, 20]. Other
work has emphasized that not all crowdsourced data is created equal and studied the way
tasks and incentives can be designed to improve the quality of information gathered [17, 30].
Similarly, data can have non-linear value if individual pieces are substitutes or complements [8].
Prediction markets can be used to gather information over time, with participants controlling
the order in which information is revealed [11].

There is a growing line of work attempting to determine the marginal value of training
data for deep learning methods. Examples include training data for classifying medical
images [9] and chemical processes [5], as well as for more general problems such as estimating
a Gaussian distribution [22]. These studies consider the static problem of learning from
samples, and generally find that additional training data exhibits decreasing marginal value.
Koh and Liang [25] introduced the use of influence functions to quantify how the performance
of a model depends on individual training examples.

While we assume samples are of uniform quality, other work has studied agents who have
data of different quality or cost [29, 7, 16]. Another line studies the way that data is sold in
current marketplaces [32], as well as proposing new market designs [28]. This includes going
beyond markets for raw data to markets which acquire and combine the outputs of machine
learning models [33].

Our work is also related to statistical and algorithmic aspects of learning a distribution
from samples. A significant body of recent work has considered problems of learning
Gaussians using a minimal number of noisy and/or adversarial samples [21, 13, 14, 26, 15].
In comparison, we are likewise interested in learning a hidden Gaussian from which we obtain
noisy samples (as a step toward determining an optimal action), but instead of robustness to
adversarial noise we are instead concerned about optimizing the split of samples across time
periods in a purely stochastic setting.

Our investigation of data staleness is closely related to the issue of concept drift in
streaming algorithms; see, e.g., Chapter 3 of [2] Concept drift refers to scenarios where the
data being fed to an algorithm is pulled from a model that evolves over time, so that, for
example, a solution built using historical data will eventually lose accuracy. Such scenarios
arise in problems of histogram maintenance [18], dynamic clustering [3], and others. One
problem is to quantify the amount of drift occurring in a given data stream [1]. Given that
such drift is present, one approach to handling concept drift is via sliding-window methods,
which limit dependence on old data [12]. The choice of window size captures a tension
between using a lot of stale data or a smaller amount of fresh data. However, in work on
concept drift one typically cannot control the rate at which data is collected.

Another concept related to staleness is the “age of information.” This captures scenarios
where a source generates frequent updates and a receiver wishes to keep track of the current
state, but due to congestion in the transmission technology (such as a queue or database
locks) it is optimal to limit the rate at which updates are sent [24, 31]. Minimizing the age of
information can be captured as a limit of our model where a single sample suffices to provide
perfect information. Recent work has examined variants of the model where generating
updates is costly [19], but the focus in this literature is more on the management of the
congestible resource. Closer to our work, several recent papers have eliminated the congestible
resource and studied issues such as an energy budget that is stochastic and has limited
storage capacity [37] and pricing schemes for when sampling costs are non-uniform [35, 38].
Relative to our work these papers have simpler models of the value of data and focus on
features of the sampling policy given the energy technology and pricing scheme, respectively.
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2 Model

We first describe our general framework, then describe a specific instantiation of interest in
Section 2.1. Time occurs in rounds, indexed by t = 1, 2, . . . . There is a hidden state variable
xt ∈ Ω that evolves over time according to a stochastic process. The initial state x1 is drawn
from known distribution F1. Write mt for the (possibly randomized) evolution mapping
applied at round t, so that xt+1 ← mt(xt).

In every round, the decision-maker chooses an action yt ∈ A, and then suffers a loss
`(yt, xt) that depends on both the action and the hidden state. The evolution functions
(mt) and loss function ` are known to the decision-maker, but neither the state xt nor the
loss `(yt, xt) is directly observed.2 Rather, on each round before choosing an action, the
decision-maker can request one or more independent samples that are correlated with xt,
drawn from a known distribution Γ(xt).

Samples are costly, and the decision-maker has a budget that can be used to obtain
samples. The budget is B per round, and can be banked across rounds. A sampling policy
results in a number of samples st taken in each round t, which can depend on all previous
observations. The cost of taking st samples in round t is C(st) ≥ 0. We assume that C is
non-decreasing and C(0) = 0. A sampling policy is valid if

∑T
t=1 C(st) ≤ B · T for all T . For

example, C(st) = st corresponds to a cost of 1 per sample, and setting C(st) = st + z · 1st>0
adds an additional cost of z for each round in which at least one sample is collected.

To summarize: on each round, the decision-maker chooses a number of samples st to
observe, then chooses an action yt. Their loss `(yt, xt) is then realized, the value of xt is
updated to xt+1, and the process proceeds with the next round. The goal is to minimize the
expected long-run average of `(yt, xt), in the limit as t→∞, subject to

∑T
t=0 C(st) ≤ B · T

for all T ≥ 1.

2.1 Estimation under Gaussian Drift
We will be primarily interested in the following instantiation of our general framework. The
hidden state variable is a real number (i.e., Ω = R) and the decision-maker’s goal is to
estimate the hidden state in each round. The initial state is x1 ∼ N(0, ρ), a Gaussian with
mean 0 and variance ρ > 0. Moreover, the evolution process mt sets xt+1 = xt + δt, where
each δt ∼ N(0, ρ) independently. We recall that the decision-maker knows the evolution
process (and hence ρ) but does not directly observe the realizations δt.

Each sample in round t is drawn from N(xt, σ) where σ > 0. Some of our results will
also allow fractional sampling, where we think of an α ∈ (0, 1) fraction of a sample as a
sample drawn from N(xt, σ/α).3 The action space is A = R ∪ {⊥}. If the decision-maker
chooses yt ∈ R, her loss is the squared error of her estimate (yt − xt)2. If she is too unsure
of the state, she may instead take a default action yt =⊥, which corresponds to not making
a guess; this results in a constant loss of c > 0. Let Gt be a random variable whose law

2 Assuming that the ground truth for `(yt, xt) is unobserved captures scenarios like our political example,
and approximates settings where the decision maker only gets weak feedback, feedback at a delay, or
feedback in aggregate over a long period of time. Observing the loss provides additional information
about xt+1, and this could be considered a variant of our model where the decision-maker gets some
number of samples “for free” each round from observing a noisy version of the loss.

3 One can view fractional sampling as modeling scenarios where the value of any one single sample is
quite small; i.e., has high variance, so that a single “unit” of variance is derived from taking many
samples. E.g., sampling a single constituent in our polling example. It also captures settings where it is
possible to obtain samples of varying quality with different levels of investment.
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is the decision maker’s posterior after observing whatever samples are taken in round t as
well as all previous samples. The decision maker’s subjective expected loss when guessing
yt ∈ R is E[(yt −Gt)2]. This is well known to be minimized by taking yt = E[Gt], and that
furthermore the expected loss is E[(E[Gt] − Gt)2] = V ar(Gt). It is therefore optimal to
guess yt = E[Gt] if and only if Var(Gt) < c, otherwise pass.

We focus on deriving approximately optimal sampling algorithms. To do so, we need to
track the variance of Gt as a function of the sampling strategy. As the sample noise and
random state permutations are all zero-mean Gaussians, Gt is a zero-mean Gaussian as well,
and the evolution of its variance has a simple form.

I Lemma 1. Let vt be the variance of Gt and suppose each δt ∼ N(0, ρ) independently,
and that each sample is subject to zero-mean Gaussian noise with variance σ. Then, if the
decision-maker takes s samples in round t+ 1, the variance of Gt+1 is

vt+1 = vt + ρ

1 + s
σ (vt + ρ) .

The proof, which is deferred to the full version of the paper along with all other proofs,
follows from our model being a special case of the model underlying a Kalman filter.

The optimization problem therefore reduces to choosing a number of samples st to take in
each round t in order to minimize the long-run average of min(vt, c), the loss of the optimal
action. That is, the goal is to minimize lim supT→∞ 1

T

∑T
t=1 min(vt, c), where we take the

superior limit so that the quantity is defined even when the average is not convergent. We
choose C(st) = st + z · 1st>0, so this optimization is subject to the budget constraint that,
at each time T ≥ 1,

∑T
t=1 st + z · 1st>0 ≤ BT . This captures two kinds of information

acquisition costs faced by the decision-maker. First she faces a cost per sample, which we
have normalized to one. Second, she faces a fixed cost z (which may be 0) on each day she
chooses to take samples, expressed in terms of the number of samples that could instead
have been taken on some other day had this cost not been paid. This captures the costs
associated with setting up the infrastructure to collects samples on a given round, such as
getting data collectors to the location where they are needed, hiring a polling firm which
uses a two-part tariff, or establishing a satellite connection to begin using a phone’s GPS.

A useful baseline performance is the cost of a policy that takes no samples and simply
chooses the outside option at all times. We refer to this as the null policy. The value of a
sampling policy s, denoted Val(s), is defined to be the difference between its cost and the
cost of the null policy: lim infT→∞ 1

T

∑T
t=1 max(c − vt, 0). Note that maximizing value is

equivalent to minimizing cost, which we illustrate in Section 3.1. We say that a policy is
α-approximate if its value is at least an α fraction of the optimal policy’s value.

3 Analyzing Variance Evolution

Before moving on to our main results, we show how to analyze the evolution of the variance
resulting from a given sampling policy. We first illustrate our model with a particularly
simple class of policies: those where st takes on only two possible values. We then analyze
arbitrary periodic policies, and show via contraction that they result in convergence to a
periodic variance evolution.

3.1 Visualizing the Decision Problem
To visualize the problem, we begin by plotting the result of an example policy where the
spending rate is constant for some interval of rounds, then shifts to a different constant
spending rate. Figure 1 illustrates one such policy. The spending rates are indicated as

ITCS 2021
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Figure 1 The variance for a piecewise-constant sampling policy, and its loss and benefit.

alternating line segments, while the variance is an oscillating curve, always converging toward
the current spending rate. Note that this particular policy is periodic, in the sense that the
final variance is the same as the initial variance. The horizontal line gives one possible value
for the cost of the outside option. Given this, the optimal policy is to guess whenever the
orange curve is below the green line and take the outside option whenever it is above it.
Thus, the loss associated with this spending policy is given by the orange shaded area in
Figure 1. Minimizing this loss is equivalent to maximizing the green shaded area, which
corresponds to the value of the spending policy. The null policy, which takes no samples and
has variance greater than c always (possibly after an initial period if v0 < c), has value 0.

3.2 Periodic Policies
We next consider policies that are periodic. A periodic policy with period R has the property
that st = st+R for all t ≥ 1. Such policies are natural and have useful structure. In a periodic
policy, the variance (vt) converges uniformly to being periodic in the limit as t→∞. This
follows because the impact of sampling on variance is a contraction map.

I Definition 2. Given a normed space X with norm || · ||, a mapping Ψ: X → X is a
contraction map if there exists a k < 1 such that, for all x, y ∈ X, ||Ψ(x)−Ψ(y)|| ≤ k||x−y||.

I Lemma 3. Fix a sampling policy s, and a time R ≥ 1, and suppose that s takes a strictly
positive number of samples in each round t ≤ R. Let Ψ be the mapping defined as follows:
supposing that v0 = x and v is the variance function resulting from sampling policy s, set
Ψ(x) := vR. Then Ψ is a contraction map over the non-negative reals, under the absolute
value norm.

The proof appears in the full version of the paper. It is well known that a contraction map
has a unique fixed point, and repeated application will converge to that fixed point. Since
we can view the impact of the periodic sampling policy as repeated application of mapping
Ψ to the initial variance in order to obtain v0, vR, v2R, . . . , we conclude that the variance
will converge uniformly to a periodic function for which vt = vt+R. Thus, for the purpose of
evaluating long-run average cost, it will be convenient (and equivalent) to replace the initial
condition on v0 with a periodic boundary condition v0 = vR, and then choose s to minimize
the average cost over a single period, 1

R

∫ R
0 min{vt, c}dt, subject to the budget constraint

that, at any round T ≤ R, we have
∑T
t=1 st ≤ BT .

3.3 Lazy Policies
Write ṽ = vt−1 + ρ for the variance that would be obtained in round t if st = 0. We say that
a policy is lazy if st = 0 whenever ṽt < c. That is, samples are collected only at times where
the variance would otherwise be at or above the outside option value c. Intuitively, we can
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think of such a policy as collecting a batch of samples in one round, then “free-riding” off of
the resulting information in subsequent rounds. The free-riding occurs until the posterior
variance grows large enough that it becomes better to select the outside option, at which
point the policy may collect another batch of samples.

If a policy is lazy, then its variance function v increases by ρ whenever ṽt < c, with
downward steps only at times corresponding to when samples are taken. Furthermore, the
value of such a policy decomposes among these sampling instances: for any t where st > 0,
resulting in a variance of vt < c, if we write h = bc− vtc then we can attribute a value of
1
2h(h+ 1) + (h+ 1)(c− vt − h). Geometrically, this is the area of the “discrete-step triangle”
formed between the increasing sequence of variances vt and the constant line at c, over the
time steps t, . . . , t+ h+ 1.

3.4 On-Off Policies
An On-Off policy is a periodic policy parameterized by a time interval T and a sampling rate
S. Roughly speaking, the policy alternates between intervals where it samples at a rate of S
each round, and intervals where it does not sample. The two interval lengths sum to T , and
the length of the sampling interval is set as large as possible subject to budget feasibility.
More formally, the policy sets st = 0 for all t ≤ (1− α) · T , where α = min{B/S, 1} ∈ [0, 1]
and st = S for all t such that (1− α)T < t ≤ T . This policy is then repeated, on a cycle of
length T . The fraction α is chosen to be as large as possible, subject to the budget constraint.

3.5 Simple Example Revisited
We can now justify the simple example we presented in the introduction, where ρ = σ = 1,
B = 1, and c = 0.75. The policy that takes a single sample each round is periodic
with period 1, and hence will converge to a variance that is likewise equal each round.
This fixed point variance, v∗, satisfies v∗ = v∗+1

1+(v∗+1) by Lemma 1. Solving for v∗ yields
v∗ =

√
5−1
2 < 0.75, which is the average cost per round.

If instead the policy takes k samples every k rounds, this results in a variance that is
periodic of period k. After the round in which samples are taken, the fixed-point variance
satisfies v∗ = v∗+k

1+k(v∗+k) , again by Lemma 1. Solving for v∗, and noting that v∗ + 1 ≥ 1 > c,
yields that the cost incurred by this policy is minimized when k = 2.

To solve for the policy that alternates between taking no samples for two round, followed
by taking two samples on each of two rounds, suppose the long-run, periodic variances
are v1, v2, v3, v4, where samples are taken on rounds 3 and 4. Then we have v2 = v1 + 1,
v3 = v2+1

1+2(v2+1) , v4 = v3+1
1+2(v3+1) , and v1 = v4 + 1. Combining this sequence of equations yields

4v2
1 + 4v1 − 13 = 0, which we can solve to find v1 = −1+

√
14

2 ≈ 1.3708. Plugging this into the
equations for v2, v3, v4 and taking the average of min{vi, 0.75} over i ∈ {1, 2, 3, 4} yields the
reported average cost of ≈ 0.576.

4 Solving for the Optimal Policy

In this section we show that when the cost of sampling is linear in the total number of
samples taken (i.e., z = 0)4, and when fractional sampling is allowed, then the supremum
value over all on-off policies is an upper bound on the value of any policy. This supremum

4 Recall that z is the fixed per-round cost of taking a positive number of samples. Even when z = 0, there
is still a positive per-sample cost.

ITCS 2021



77:10 Buying Data over Time

is achieved in the limit as the time interval T grows large. So, while no individual policy
achieves the supremum, one can get arbitrarily close with an on-off policy of sufficiently long
period. Proofs appear in the full version of the paper.

We begin with some definitions. For a given period length T > 0, write sT for the on-off
policy of period T with optimal long-run average value. Recall Val(sT ) is the value of policy
sT . We first argue that larger time horizons lead to better on-off policies.

I Lemma 4. With fractional samples, for all T > T ′, we have Val(sT ) > Val(sT ′).

Write V ∗ = supT→∞Val(sT ). Lemma 4 implies that V ∗ = limT→∞Val(sT ) as well. We
show that no policy satisfying the budget constraint can achieve value greater than V ∗.

I Theorem 5. With fractional samples, the value of any valid policy s is at most V ∗.

The proof of Theorem 5 proceeds in two steps. First, for any given time horizon T , it
is suboptimal to move from having variance below the outside option to above the outside
option; one should always save up budget over the initial rounds, then keep the variance
below c from that point onward. This follows because the marginal sample cost of reducing
variance diminishes as variance grows, so it is more sample-efficient to recover from very high
variance once than to recover from moderately high variance multiple times.

Second, one must show that it is asymptotically optimal to keep the variance not just
below c, but uniform. This is done by a potential argument, illustrating that a sequence
of moves aimed at “smoothing out” the sampling rate can only increase value and must
terminate at a uniform policy. The difficulty is that a sample affects not only the value
in the round it is taken, but in all subsequent rounds. We make use of an amortization
argument that appropriately credits value to samples, and use this to construct the sequence
of adjustments that increase overall value while bringing the sampling sequence closer to
uniform in an appropriate metric.

We also note that it is straightforward to compute the optimal on-off policy for a given
time horizon T , by choosing the sampling rate that maximizes [value per round] × [fraction of
time the policy is “on”]. One can implement a policy whose value asymptotically approaches
V ∗ by repeated doubling of the time horizon. Alternatively, since limT→∞Val(sT ) = V ∗, sT
will be an approximately optimal policy for sufficiently large T .

5 Approximate Optimality of Lazy Policies

In the previous section we solved for the optimal policy when z = 0, meaning that there
is no fixed per-round cost when sampling. We now show that for general z, lazy policies
are approximately optimal, obtaining at least 1/2 of the value of the optimal policy. Proofs
appears in the full version of the paper.

We begin with a lemma that states that, for any valid sampling policy and any sequence
of timesteps, it is possible to match the variance at those timesteps with a policy that only
samples at precisely those timesteps, and the resulting policy will be valid.

I Lemma 6. Fix any valid sampling policy s (not necessarily lazy) with resulting variances
(vt), and any sequence of timesteps t1 < t2 < . . . < t` < . . . . Then there is a valid policy s′
such that {t | s′t > 0} ⊆ {t1, . . . , t`, . . . }, resulting in a variances (v̆t) with v̆ti ≤ vti for all i.

The intuition is that if we take all the samples we would have spent between timesteps t`
and t`+1 and instead spend them all at t`+1 the result will be a (weakly) lower variance at
t`+1. We next show that any policy can be converted into a lazy policy at a loss of at most
half of its value.
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Figure 2 Visualizing the construction in the proof of Theorem 7. Variance (vertical) is plotted
against time (horizontal). We approximate the value of an optimal policy’s variance (orange) given
c (green). The squares (drawn in blue) cover the gap between the curves, except possibly when
|vt − c| < ε (for technical reasons). The lazy policy samples on rounds corresponding to the left edge
of each square, bringing the variance to each square’s bottom-left corner.

I Theorem 7. The optimal lazy policy is 1/2-approximate.

See Figure 2 for an illustration of the intuition behind the result. Consider an arbitrary
policy s, with resulting variance sequence (vt). Imagine covering the area between (vt) and c
with squares, drawn left to right with their upper faces lying on the outside option line, each
chosen just large enough so that vt never falls below the area covered by the squares. The area
of the squares is an upper bound on Val(s). Consider a lazy policy that drops a single atom
on the left endpoint of each square, bringing the variance to the square’s lower-left corner.
The value of this policy covers at least half of each square. Moreover, Lemma 6 implies this
policy is (approximately) valid, as it matches variances from the original policy, possibly
shifted early by a constant number of rounds. This shifting can introduce non-validity; we
fix this by delaying the policy’s start by a constant number of rounds without affecting the
asymptotic behavior.

The factor 1/2 in Theorem 7 is tight. To see this, fix the value of c and allow the budget
B to grow arbitrarily large. Then the optimal value tends to c as the budget grows, since
the achievable variance on all rounds tends to 0. However, the lazy policy cannot achieve
value greater than c/2, as this is what would be obtained if the variance reached 0 on the
rounds on which samples are taken.

Finally, while this result is non-constructive, one can compute a policy whose value
approaches an upper bound on the optimal lazy policy, in a similar manner to the optimal
on-off policy. One can show the best lazy policy over any finite horizon has an “off” period
(with no sampling) followed by an “on” period (where vt ≤ c). One can then solve for the
optimal number of samples to take whenever ṽt > c by optimizing either value per unit of
(fixed plus per-sample) sampling cost, or by fully exhausting the budget, whichever is better.
Details appear in the full version of the paper.

6 Extensions and Future Directions

We describe two extensions of our model in the appendix. First, we consider a continuous-time
variant where samples can be taken continously subject to a flow cost, in addition to being
requested as discrete atoms. The decision-maker selects actions continuously, and aims to
minimize loss over time. All of our results carry forward to this continuous extension.

Second, returning to discrete time, we consider a non-Gaussian instance of our framework.
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Figure 3 Simulating the optimal policy for the non-Gaussian extension. The round number is
on the horizontal axis. The hidden state of the world is binary and evolves stochastically (blue).
The optimal policy tracks a posterior distribution over the hidden state (red), and takes samples
in order to maintain a tuned level of certainty (dashed green). Note that most rounds have only a
small number of samples, with occasional spikes triggered adaptively in response to uncertainty.

In this model, there is a binary hidden state of the world, which flips each round independently
with some small probability ε > 0. The decision-maker’s action in each round is to guess the
hidden state of this simple two-state Markov process, and the objective is to maximize the
fraction of time that this guess is made correctly. Each sample is a binary signal correlated
with the hidden state, matching the state of the world with probability 1

2 +δ where δ > 0. The
decision-maker can adaptively request samples in each round, subject to the accumulating
budget constraint, before making a guess.

In this extension, as in our Gaussian model, the optimal policy collects samples non-
uniformly. In fact, the optimal policy has a simple form: it sets a threshold θ > 0 and takes
samples until the entropy of the posterior distribution falls below θ. Smaller θ leads to higher
accuracy, but also requires more samples on average, so the best policy will set θ as low as
possible subject to the budget constraint. Notably, the result of this policy is that sampling
tends to occur at a slow but steady rate, keeping the entropy around θ, except for occasional
spikes of samples in response to a perceived change in the hidden state. See Figure 3 for a
visualization of a numerical simulation with a budget of 6 samples (on average) per round.

More generally, whenever the state evolves in a heavy-tailed manner, it is tempting to
take samples regularly in order to detect large, infrequent jumps in state value, and then
adaptively take many samples when such a jump is evident. This simple model is one scenario
where such behavior is optimal. More generally, can we quantify the dynamic value of data
and find an (approximately) optimal data collection policy for more complex Markov chains,
or other practical applications?
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Abstract
Peer prediction mechanisms incentivize agents to truthfully report their signals even in the absence
of verification by comparing agents’ reports with those of their peers. In the detail-free multi-task
setting, agents are asked to respond to multiple independent and identically distributed tasks, and
the mechanism does not know the prior distribution of agents’ signals. The goal is to provide an
ε-strongly truthful mechanism where truth-telling rewards agents “strictly” more than any other
strategy profile (with ε additive error) even for heterogeneous agents, and to do so while requiring
as few tasks as possible.

We design a family of mechanisms with a scoring function that maps a pair of reports to a
score. The mechanism is strongly truthful if the scoring function is “prior ideal”. Moreover, the
mechanism is ε-strongly truthful as long as the scoring function used is sufficiently close to the
ideal scoring function. This reduces the above mechanism design problem to a learning problem –
specifically learning an ideal scoring function. Because learning the prior distribution is sufficient
(but not necessary) to learn the scoring function, we can apply standard learning theory techniques
that leverage side information about the prior (e.g., that it is close to some parametric model).
Furthermore, we derive a variational representation of an ideal scoring function and reduce the
learning problem into an empirical risk minimization.

We leverage this reduction to obtain very general results for peer prediction in the multi-task
setting. Specifically,
Sample Complexity. We show how to derive good bounds on the number of tasks required for

different types of priors–in some cases exponentially improving previous results. In particular,
we can upper bound the required number of tasks for parametric models with bounded learning
complexity. Furthermore, our reduction applies to myriad continuous signal space settings. To
the best of our knowledge, this is the first peer-prediction mechanism on continuous signals
designed for the multi-task setting.

Connection to Machine Learning. We show how to turn a soft-predictor of an agent’s signals (given
the other agents’ signals) into a mechanism. This allows the practical use of machine learning
algorithms that give good results even when many agents provide noisy information.
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1 Introduction

Peer prediction is the problem of information elicitation without verification. Peer prediction
mechanisms exploit the interdependence in agents’ signals to incentive agents to report their
private signal truthfully even when the reports cannot be directly verified. In the multi-task
setting [5], each agent is asked to respond to multiple, independent tasks. For example:

I Example 1 (Commute time). We can collect data from drivers to estimate the commute
time of a certain route. Each driver’s daily commute time might be modeled in the following
way: each day, the route has an expected time generated from a Gaussian distribution, and
each driver’s commute time is the expected time perturbed by independently distributed
Gaussian noise.

Peer prediction from strategic agents has been attracting a surge of interest in economics
and computer science. Several previous works [1, 16, 19] can be understood as using particular
learning algorithms to learn nice payment functions that capture the interdependence in
agents’ reports. In this paper, we decouple these two components: mechanism design and
learning algorithms. This framework provides a clean black-box reduction from learning
algorithms to peer prediction mechanism.

One advantage of our framework is that we can use results from machine learning about
complexity of learning parameters of priors to obtain bounds on the sample complexity
(number of tasks required) of our mechanism. For instance, using our reduction, we can
easily exponentially improve the required number of tasks in the previous work [28].

Two features of our mechanisms enable us to work in more complicated settings. First,
our mechanisms use mutual information to pay agents. This allows us to use aggregation
algorithms and pay an agent the mutual information between her reports and the aggregated
outcome of the other agents. For example, suppose the agents’ report’s average quality is
low, and a large fraction of agents report random noise. In that case, we can use aggregation
to enhance the signal to noise ratio and provide a robust incentive to strategic workers. The
second feature of our mechanisms is a variational formulation, which ensures one-sided error
such that we can only underestimate the mutual information but not overestimate it. Thus,
we can use deep learners or other rich enough functions to learn a good payment in practice.

In addition to the above contributions, we also improve previous work in two axes: the
truthfulness guarantee and the prior assumption.

The truthful guarantee explains how good the truth-telling strategy is in the mechanism
(formally defined in Sect.2.1). Is truth-telling always the best response regardless of other’s
strategy (dominantly truthful)? Or is truth-telling a Bayesian Nash equilibrium in which
agents receive strictly higher payment than any other non-permutation equilibrium (strongly
truthful) where a permutation equilibrium is one where agents report a permutation of the
signals? A slightly weaker property is informed truthful where no strategy profile pays strictly
more than truth-telling, and truth-telling pays more than any uninformative equilibrium. Our
pairing mechanisms is dominantly truthful if the number of tasks is infinite and approximately
strongly truthful when the number of tasks is finite.

Another axis upon which to measure a peer prediction mechanism’s performance is its
assumption on the prior of agents’ signals. There are two motivations to understand how
general the prior can be. First, in practice, we need a peer prediction mechanism that
works for general settings, e.g., continuous signals in the aforementioned commute time
example. Second, a mechanism’s prior assumption often reveals why the mechanism works.
Thus, improving prior assumptions can push our theoretical understanding of peer prediction
mechanisms.
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It is well-known that a necessary condition for the truth-telling strategy profile to be a
strict Bayesian Nash equilibrium is that agents’ signals need to be stochastic relevant (Defini-
tion 5) [32]. However, when is stochastic relevance a sufficient condition? Previous multi-task
peer prediction mechanisms make ad hoc assumptions on agents’ private signals (positively
correlated [5], fine-grained [16], strictly correlated [11], or latent variable models [19]) which
are discussed in Sect. 2.2. This restricts the settings in which they can be used. Moreover,
all the above mechanisms only work when agents’ signals are in a finite space1.

In this paper, we show stochastic relevance is also a sufficient condition in the multi-tasks
setting. Our pairing mechanisms are approximately-strongly truthful as long as the prior
is stochastic relevant. In particular, the space of agents’ signals can be countably infinite
or even continuous. To the authors’ knowledge, our mechanism is the first (detail-free)
multi-task mechanism that works all stochastically relevant priors.

Besides the above properties, we also require our mechanisms 1) are minimal which only
elicit the agents’ signals and no additional information; 2) are detail-free which do not require
foreknowledge of the prior; and 3) have low sample number, where each agent only needs to
answer a few questions for the mechanism to achieve approximately strong truthfulness.

Our Techniques. Prior work [16] has shown that paying agents according to the Φ mutual
information (a generalization of the Shannon mutual information) between their signals is
a good idea. This is because, if agents try to strategically manipulate their signals, the Φ
mutual information can only decrease. However, a key open question is how to compute
the mutual information while having access to only a few signals for each agent. Moreover,
the computation needs to be done in a way that maintains the incentive guarantees of the
mechanism.

We solve this issue. First, we convert the mechanism design problem into an optimization
problem (Theorem 16). The Φ mutual information of a pair of random variables can be
defined as the Φ divergence between two distributions: the joint distribution and the product
of marginal distributions. The Φ divergence is just a measure of distance between the two
distributions and contains the KL-divergence as a special case. The problem of computing
the Φ divergence, using variational representation as a bridge, can be changed into the
optimization problem of finding the best “distinguisher” between these two distributions.
We call such a distinguisher a scoring function. The optimal scoring function (distinguisher)
can differentiate the two distributions with a score equal to the Φ divergence, whereas any
other scoring function (distinguisher) yields a lower score. Thus, once one has this optimal
scoring function, estimating the Φ divergence (and hence Φ mutual information) is easy –
just compute its score. In this paper we call the optimal scoring function for a particular
prior P , the (P,Φ)-ideal scoring function which can be easily computed when the prior P is
known.

Our mechanism will reward agents according to some scoring function. Importantly,
agents’ ex-ante payments under prior P are maximized when both the distinguisher used
is the (P,Φ)-ideal scoring function, and the agents are truth-telling. Consequently, if we
already have the (P,Φ)-ideal scoring function, the mechanism incentivizes truthful reporting.
Additionally, agents will receive a smaller payout if the mechanism fails to find the optimal
scoring function. Thus agents are naturally incentivized to aid the mechanism in finding it
and cannot gain by deceiving the mechanism into using a suboptimal scoring function.

1 Discretization approach is not practical in most situations. See [17] for more discussion.
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Compared with Kong and Schoenebeck [16], our variational characterization provides a
better truthfulness guarantee when the number of tasks is finite. We can uniformly upper
bound the ex-ante payments under any non-truthful strategy profile (Definition 4) even when
the learning algorithm cannot estimate the ideal scoring functions under those non-truthful
strategies. This property is vital for continuous signal spaces where agents may adversarially
adopt the worst possible strategy profiles to compromise the learning algorithm.

The above observations transform the problem from designing a mechanism to simply
learning the (P,Φ)-ideal scoring function given samples from a prior. We provide two
algorithms to learn the scoring function. The first one is a generative approach which
estimates the whole density function of the prior and computes a scoring function from it.
In a discriminative approach, we formulate the estimation of the ideal scoring function as
a convex optimization problem, empirical risk minimization [22], and estimate the scoring
function directly. This latter approach allows us to use state-of-art convex optimization
solvers to estimate good scoring functions.

Our Contributions. In this paper, we leverage the above insights to design a Φ-pairing
mechanism that is minimal and detail-free for heterogeneous agents. In particular:
Sample Complexity. We show how to derive good bounds on the number of tasks required

for different types of priors–in some cases exponentially improving previous results. In
particular, we can upper bound the required number of tasks for parametric models with
bounded learning complexity (as measured by a continuous analog of the VC dimension).
Furthermore, our reduction applies to myriad continuous signal space settings. To the
best of our knowledge, this is the first peer-prediction mechanism on continuous signals
designed for the multi-question setting.

Connections to Machine Learning. In this paper, we discuss how to convert information
elicitation design into three learning problems. 1) The first one is a generative approach
which estimates the whole density function of the prior and computes a scoring function
from it. 2) We formulate the estimation of the ideal scoring function as a convex
optimization problem, empirical risk minimization, and estimate the scoring function
directly. 3) Finally, we show how to turn a soft-predictor of an agent’s signals (given the
other agents’ signals) into a mechanism. This allows the practical use of machine learning
algorithms that give good results even when many agents provide noisy information.

Stronger Properties. In the finite setting, we obtain ε-strongly truthful mechanisms for any
stochastically relevant prior. Prior works either only apply to more restrictive settings [11],
or achieve a weaker notion of truthfulness (informed truthfulness) [28, 1].

1.1 Related Work
Multi-task setting. In the multi-task setting, Dasgupta and Ghosh [5] propose a strongly
truthful mechanism when the signal space is binary and every pair of agents’ signals are
assumed to be positively correlated. Both Kong and Schoenebeck [16] and Shnayder et
al. [28] independently generalize Dasgupta and Ghosh [5] to discrete signal spaces, though in
different manners illustrated as follows.

Kong and Schoenebeck [16] present the Φ-mutual information mechanism, a multi-task
peer prediction mechanism for the finite signal space setting with arbitrary interdependence
between signals. Unfortunately, the sample number is infinite. They show that their
mechanism is strongly truthful as long as the prior is “fine-grained” where, roughly speaking,
no two signals can be interpreted as different names for the same signal. To define their
mechanism they introduce the notion of Φ-mutual information (of which Shannon mutual
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Table 1 Comparison to previous work.

D&G [5] CA [28, 1] Φ-MIM [16] DMI [11] Φ-pairing
mechanism

Signal space binary finite finite finite continuous
Prior
Assumptions

positive
correlated

stochastic
relevant

fine
-grained

strictly
correlated

stochastic
relevant

Truthful X X X X X

Informed-truthful X X X X X

Strongly truthful X X X X

Detail-free X X X X X

information is a special case) where Φ is any convex function. Their mechanism pays each
agent the Φ-mutual information between her reports and the reports of another randomly
chosen agent. Strategic behavior is shown to not increase Φ-mutual information by a
generalized version of the data processing inequality. Unfortunately, their analysis requires
infinite sample number to measure this Φ-mutual information and does not handle errors in
estimation.

Shnayder et al. [28] introduce the Correlated Agreement (CA) mechanism which
also generalizes Dasgupta and Ghosh [5] to any finite signal space. On the one hand, the CA
mechanism can assume the knowledge of the “signal structure” (which tells which signals
are positively and negatively correlated). In this case they can provide a mechanism that is
truthful with sample number of two.2 On the other hand, when agents are homogeneous the
CA mechanism can learn the signal structure, albeit with some chance of error. The CA
mechanism is shown to be robust to this error, and is ε-informed truthful (a slightly weaker
notion than strongly truthful). Agarwal et al. [1] extend the above work [28] to a particular
setting of heterogeneous agents where agents are (close to) one of a fixed number of types.
They establish a O(n) sample number in this new setting where n is the number of agents.

Note that in the above works, a new robustness (error) analysis is required for each
different setting of interdependence between signals. Interestingly, the CA mechanism can
be viewed as a special case of the aforementioned Φ-mutual information mechanism using
the total variation distance mutual information (i.e., Φ(a) = |a− 1|/2). However, instead
of directly computing this mutual information, the CA mechanism obtains a consistent
estimator of it [16]. Similarly, in the special case that our mechanism implements the total
variation distance, we also recover the CA mechanism. However, our analysis is entirely
different.

Kong [11] shows an elegant way of obtaining strongly truthful mechanisms (DMI mechan-
ism) for the multitask setting. Our results are incommensurate with these results. In our
results, the sample complexity grows with the ε in the desired ε-strongly truthful guarantee
but is independent of the number of signals. In Kong [11], there is an exact strongly truthful
guarantee but sample complexity grows in the size of the signal space. However, the prior
structure needs to be strictly correlated, which is a stronger assumption than stochastic
relevance. We provide a comparison in Table 1 and Sect. 2.2. In particular, her mechan-
ism requires all agents’ report spaces are finite and have the same size. This restricts the
application of an aggregation algorithm (as mentioned in the introduction and Sect. 7).

2 The original paper shows it requires 3, but it actually only needs 2 tasks.
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Single task setting. In general, agents do not (necessarily) have multiple identical and
independent signals. Without this property, most of the mechanisms require knowledge of a
common prior (not detail-free) or for agents to report their whole posterior distribution of
other’s signals (not minimal). The later solution is especially difficult to apply to complicated
signal spaces (e.g. asking agents to report their probability density function of others’
continuous signals).

Miller et al. [20] introduce the peer prediction mechanism which is the first mechanism
that has truth-telling as a strict Bayesian Nash equilibrium and does not need verification.
However, their mechanism requires the full knowledge of the common prior and there exist
some equilibria that are paid more than truth-telling. In particular, the oblivious equilibrium
pays strictly more than truth-telling. Kong et al. [12] modify the original peer prediction
mechanism such that truth-telling pays strictly better than any other equilibrium but still
requires the full knowledge of the common prior. Prelec [23] designs the first detail-free peer
prediction mechanism – Bayesian truth serum (BTS) in the one quesetion setting. Several
other works study the one-question setting of BTS [24, 25, 31, 14, 27]. For continuous
signals, Radanovic and Faltings [25] apply a discretization approach and use a new payment
method, but that is also non-minimal. Goel and Faltings [10] work on a mixture of normal
distributions with an infinite number of agents.

Miscellany. Liu and Chen [18] design a peer prediction mechanism where each agents’
responses are not compared to another agents’, but rather the output of a machine learning
classifier that learns from all the other agents’ responses. Liu and Chen [19] design a non-
minimal approximate dominant strategy mechanism that uses surrogate loss functions as
tools to correct for the mistakes in agents’ reports. Kong and Schoenebeck [15] studies the
related goal for forecast elicitation, and like the present work uses Fenchel’s duality to reward
truth-telling (though in a different manner).

One interesting, but orthogonal, line of work looks at “cheap” signals, where agents can
coordinate on less useful information. For example, instead of grading an assignment based
on correctness, a grader could only spot check the grammar. Gao et al. [9] introduces the
issue, while Kong and Schoenebeck [13] shows a partial solution using conditional mutual
information.

The recent book [7] surveys additional results from this area.

1.2 Structure of Paper

Sect. 2 introduces some basic notions. In particular, Sect. 2.2 defines scoring functions, which
will play an important role in this paper.

At the beginning of Sect. 3, we define a central component of our Φ-pairing mechanism,
Mechanism 1, which takes agents’ report and a scoring function K as input. In Sect. 4, we
consider the full information setting. We show, in the Mechanism 1 with an ideal scoring
function, agents are incentivized to report their signals truthfully. In Sect. 5, we prove
Theorem 11, and main technical lemmas. In Sect. 6, we define a notion of approximation of
an ideal scoring function and introduce our framework that reduces the mechanism problem
for information elicitation to a learning problem for an ideal scoring function (Theorem 16).
In Sect. 6.3, we focus on the learning problem introduced in Sect. 6. We first show two
sufficient conditions for approximating an ideal scoring function in Sect. 6.3.1. Then, we
present two algorithms to derive approximately ideal scoring functions from agents’ reports
in Sect. 6.3.2.

In Sect. 7, we generalize Mechanism 1 to more than two agents. We show how machine
learning techniques can be naturally integrated with our mechanism.
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2 Preliminaries

We use (Ω,F , µ) to denote a measure space where F is a σ-algebra on the outcome space
Ω and µ is a measure. Let ∆Ω denote the set of distributions of over (Ω,F),3 and P as a
subset of distributions in ∆Ω. Given a distribution P , we also use P to denote the density
function where P (ω) is the probability density of outcome ω ∈ Ω. We use uppercase for a
random object X and lowercase for the outcome x. In this paper we consider Φ to be a
convex continuous function and use dom(Φ) to denote its domain.

2.1 Mechanism Design for Information Elicitation
For simplicity we first consider two agents, Alice and Bob, who work on a set of m tasks
denoted as [m]. For each task s ∈ [m], Alice receives a signal xs in X and Bob a signal ys
in Y. We use (X,Y) ∈ (X × Y)m to denote the signal profile of Alice and Bob which is
generated from a prior distribution P. In this paper, we make the following assumption:

I Assumption 2 (A priori similar tasks [5]). P is a prior, and each task is identically and
independently (i.i.d.) generated: there exists a distribution PX,Y over X × Y such that
P = PmX,Y , Moreover, we assume the marginal distributions have full supports, PX(x) > 0
and PY (y) > 0 for all x ∈ X and y ∈ Y.

Given a report profile of Alice, x̂ ∈ Xm and Bob, ŷ ∈ Ym, an information elicitation
mechanism M = (MA,MB) with m tasks pays MA(x̂, ŷ) ∈ R to Alice, and MB(x̂, ŷ) ∈ R to
Bob. In the rest of the paper we often only define notions for Alice, and define Bob’s in the
symmetric way.

Besides Assumption 2, we assume their strategies are uniform and independent across
different tasks which is also made in previous work [5, 28, 16].

I Assumption 3 (Uniform strategy). Formally, the strategy of Alice is a random function
θA : X → ∆X where θA(x, x̂) is the probability that Alice reports x̂ conditioning on her
private information x. That is, each report only depends on the corresponding signal.

For instance, given Alice receiving x ∈ Xm the probability that Alice reports x̂ ∈ Xm
is Pr[X̂ = x̂] =

∏
s∈[m] θA(xs, x̂s). We call θ = (θA, θB) a the strategy profile. The

ex-ante payment to Alice under a strategy profile θ and a prior P in mechanism M is
uA(θ;P,M) , E(X,Y)

[
E(X̂,Ŷ) [EM[MA(x̂, ŷ)]] | (x,y)

]
where we use a semicolon to separate

the variable, θ, and parameters P andM. Note that a strategy profile θ can be seen as a
Markov operator on the signal space X × Y , so that Alice and Bob’s reports, θ ◦ P , is also a
distribution on the signal space X × Y.

In the literature on peer-prediction, there are three important classes of strategies. We
use τ to denote the truth-telling strategy profile where both agents’ reports are equal to
their private signals with probability 1, e.g., Alice’s strategy is τA(x, x̂) = I[x = x̂]. A strategy
profile is a permutation strategy profile if both agents’ strategy are a (deterministic)
permutation, a bijection between signals and reports. Finally, a strategy profile is oblivious
or uninformed if even one of the agents’ strategies does not depend on their signal: that is
for Alice θA(x, x̂) = θA(x′, x̂) for all x, x′, and x̂ in X . Note that the set of permutation
strategy profiles includes the truth-telling strategy profile τ but does not include any oblivious
strategy profiles.

3 We assume these distribution has a density function with respect to the µ, P � µ for all P ∈ ∆Ω. The
distributions in ∆Ω depend on F and µ, but we omit it to simplify the notation. The density is defined
as the Radon–Nikodym derivative dP

dµ which exists because P is dominated by µ.
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Truthful Guarantees. We now define some truthfulness guarantees for our mechanismM
that differ in how unique the high payoff of truth-telling strategy profile is:
Truthful: the truth-telling strategy profile τ is a Bayesian Nash Equilibrium, and has the

highest payment to both Alice and Bob.
Informed-truthful [28]: Truthful and also for each agent τ is strictly better than any obli-

vious strategy profiles. For any oblivious strategy profile θ, uA(τ ;P,M) > uA(θ;P,M)
and uB(τ ;P,M) > uB(θ;P,M).

Strongly truthful [28, 16]: Truthful and also for each agent τ is strictly better than all non-
permutation strategy profiles. For any non-permutation strategy profile θ, uA(τ ;P,M) >
uA(θ;P,M) and uB(τ ;P,M) > uB(θ;P,M).

Dominant truthful: Each agent report truthfully leads to higher expected payoff than other
strategies, regardless of other agent’s reporting strategies. For any strategy profile θ, we
have uA(τ ;P,M) > uA(θ;P,M) and uB(τ ;P,M) > uB(θ;P,M).

We can also call a general mapping truthful, informed-truthful, strongly truthful, dominant
truthful when it satisfy the corresponding property.

In this work, we consider an approximate version of above statements with low sample
number. For example, given ε > 0, a mechanismM with m(ε) tasks (the sample number)4 is
ε-strongly truthful with m(ε) tasks if there exists a mapping from strategy profiles to ex-ante
payments such that 1) this mapping is strongly truthful; 2) for all ε the ex-ante payments of
our mechanism with m(ε) tasks is within ε of this mapping.

Now we define the sample number for approximately truthfulness guarantees.

I Definition 4. Given a family of joint signal distributions P and a function S : R>0 → N
we say a mechanismM is ε-strongly truthful on P with S(ε) number of tasks, if there
exists a strongly truthful mapping F = (FA, FB) from joint signal distributions and strategy
profiles to payments such that for all ε > 0 and m ≥ S(ε)

the ex-ante payment under the truth-telling strategy profile inM with m number of tasks
is within ε additive error from F : for all P ∈ P, uA(τ ;P,M) ≥ FA(τ , P )− ε;
and the ex-ante payment under any strategy profile θ in M with m number of tasks is
bounded above by F : for all P ∈ P, and θ, uA(θ;P,M) ≤ FA(θ, P ).

And the inequality also holds for Bob’s ex-ante payment. Furthermore, we sayM is (δ, ε)-
strongly truthful on P with S(δ, ε) if the above conditions holds with probability 1− δ for
all δ ∈ (0, 1) and ε > 0. Additionally, we sayM is ε-informed-truthful (ε-truthful) with
S(ε) number of tasks if it is ε close to an informed-truthful (truthful) mapping.

Note that our notion of ε-truthfulness guarantee is quite strong. In particular, the second
item requires for any strategy profile θ, the ex-ante payment is upper bounded by a strongly
truthful (informed-truthful, truthful) mapping.

2.2 Prior Assumptions
There are two axes to compare these peer prediction mechanism: truthful guarantee and
prior assumption. Truthful guarantee asks how good the truth-telling strategy is. Prior
assumption addresses how general these mechanisms are. We first introduce the weakest
possible notion of interdependence that we used in our paper. Then we survey other notions
proposed in previous works. Finally, we provide concrete examples to show the distinction
between those notions of interdependence.

4 Here mechanism which can take different length of report m. Or we can consider a family of mechanisms
(Mm) parameterized by the sample number (the number of tasks) m.
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I Definition 5 (Stochastic Relevant [28]). We call PX,Y stochastic relevant if for any two
distinct signals x, x′ ∈ X PX,Y [Y | X = x] 6= PX,Y [Y | X = x′]. That is, Alice’s posteriors
on Bob’s signals are different when Alice receives signal x or x′. And symmetrically, the
same holds for Bob’s posterior on Alice’s signals.

Stochastic relevancy is the weakest assumption we can hope for designing peer prediction
mechanisms. Proposition 6 shows that if agent’s signal are not stochastic relevant an agent
can always misreport regardless other agents’ reports even if the mechanism knows the
information structure.

I Proposition 6 (Elicitability [32]). If the prior PX,Y is not stochastic relevant, there is no
mechanism that has truth-telling as a strict Bayesian Nash equilibrium.

Besides the above notion, previous peer prediction mechanisms make ad hoc assumptions on
agents’ private signals.

Kong and Schoenebeck [16] studies fine-grained joint distributions. A joint distribution
PX,Y is fine-grained if for any distinct pairs of signals (x, y) and (x′, y′), PX,Y (x,y)

PX(x)PY (y) 6=
PX,Y (x′,y′)
PX(x′)PY (y′) . Kong [11] considers strictly correlated distributions. A joint distribution P

on a finite space X 2 is strictly correlated if the determinant of distribution P ∈ R|X |×|X| is
nonzero. Those two notions are both stronger than stochastic relevance.

2.3 Convex Analysis and Φ-divergence
Informally, Φ-divergences quantify the difference between a pair of distributions over a
common measurable space.

I Definition 7 (Φ-divergence [3, 21, 2]). Let Φ : [0,∞) → R be a convex function with
Φ(1) = 0. Let P and Q be two probability distributions on a common measurable space (Ω,F).
The Φ-divergence of Q from P where P � Q is defined as DΦ(P‖Q) , EQ [Φ (P/Q)] .5

We can use these divergences to measure interdependency between two random variables
X and Y . Formally, Let PX,Y be a distribution over (x, y) ∈ X × Y, and PX and PY be
marginal distributions of X and Y respectively. We set PXPY be the tensor product between
PX and PY such that PXPY (x, y) = PX(x)PY (y). We call DΦ(PX,Y ‖PXPY ) the Φ-mutual
information between X and Y .

Given a joint distribution PX,Y , let joint to marginal product ratio at (x, y) on
PX,Y be JPP (x, y) := PX,Y (x,y)

PX(x)PY (y) which is ratio between joint probability divided by the
product of the probabilities at (x, y). We will omit subscript P when there is no ambiguity.
This ratio widely studied. For instance, it’s called observed to expected ratio in life sciences
literature, or lift in data mining for binary random variable. Additionally, log JP(x, y) is
called point-wise mutual information. Finally, note that Φ mutual information is the average
of joint to marginal product ratio applied to Φ.

Now, we introduce some basic notions in convex analysis [26]. Let Φ : [0,+∞)→ R be a
convex function. The convex conjugate Φ∗ of Φ is defined as: Φ∗(b) = supa∈dom(Φ){ab−Φ(a)}.
Moreover Φ = Φ∗∗ if Φ is continuous.

By Young-Fenchel inequality [8], we can rewrite the Φ-divergence of Q from P in a
variational form. This formulation is important to understand our mechanisms.

5 P/Q is the Radon-Nikodym derivative between measures P and Q, and it is equal to the ratio of density
function.
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I Theorem 8 (Variational representation [22]).

DΦ(P‖Q) = sup
k:Ω→dom(Φ∗)

{
E

ω∼P
[k(ω)]− E

ω∼Q
[Φ∗(k(ω))]

}
, 6

and the equality holds DΦ(P‖Q) = Eω∼P [k(ω)]−Eω∼Q[Φ∗(k(ω))] if and only if k ∈ ∂Φ (P/Q)
almost everywhere on Q.7

2.4 Scoring Function
Our constructions and analysis will make heavy use of the following functionals – scoring
functions.

I Definition 9 (Scoring function). A scoring function K : X × Y → R is a functional
(real-valued function) that maps from a pair of reports to a real value. Given a convex
function Φ, a scoring function K?

P,Φ is a (PX,Y ,Φ)-ideal scoring function if

K?
P,Φ(x, y) ∈ ∂Φ

(
PX,Y (x, y)
PX(x)PY (y)

)
= ∂Φ(JPP (x, y)). (1)

We will use P and PX,Y interchangeably later, and say K? is ideal without specifying P and
Φ when it’s clear.

A (P,Φ)-ideal scoring function is the joint to marginal product ratio applied to ∂Φ which is
a monotone increasing function if Φ is differentiable. joint to marginal product ratio encodes
the signal structure of PX,Y which measure how interdependent x and y is. Alternatively, the
scoring function serves as a “distinguisher” which tries to decide whether a pair of reports
came from the joint distribution or the product of the marginal distributions.

Furthermore, the ideal scoring function can also be easily computed from the density
function PX,Y .

2.5 Functional Complexity
In this section, we provide some standard notions to characterize the complexity of learning
functionals which are standard [29, 30]. We will use these notions to characterize the
complexity of learning an ideal scoring function.

Let K be a pre-specified class of functionals k : X × Y → R. Given k ∈ K, L > 0, and
a distribution PX,Y , we define the Bernstein norm as ρ2

L(k;P ) , 2L2 EP [exp (|k|/L)− 1−
|k|/L], and ρL(K;P ) , supk∈K ρL(k, P ). Let N[],L(δ,K, P ) be the smallest value of n for
which there exists n pairs of functions {(kLj , kUj )} such that 1) ρL(kUj − kLj ;P ) ≤ δ for all
j and 2) for all k ∈ K there is a j, kLj (x, y) ≤ k(x, y) ≤ kUj (x, y) for all (x, y) ∈ X × Y.
Then H[],L(δ,K, P ) , logN[],L(δ,K, P ) is called the generalized entropy with bracketing. We
further define the entropy integral as J[],L(R,K, P ) ,

∫ R
0
√
H[],L(u,K, P )du.

Our results will show that constant number of questions suffice as long as the ideal scoring
functions is in some bounded complexity space K where J[],L(R,K, P ) and ρL(K;P ) are
bounded.

6 The sup is taken over k with finite Eω∼P [k(ω)] and Eω∼Q[Φ∗(k(ω))].
7 ∂Φ is the subgradient of Φ, and the formal definition can be found in [26]. Here we only use the equality

condition when Ω is finite.
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3 Φ-Divergence Pairing Mechanisms

In this section, we first define a class of multi-task peer-prediction mechanismsMΦ,K . The
mechanism is parametrized by a convex function Φ and a scoring function K (Definition 9).
Then we briefly discuss how to obtain a good scoring function, and develop algorithms for
estimating good scoring function.

The process of this mechanism is quite simple. Given a scoring function K and Φ, we
arbitrarily choose one task b, and two distinct tasks p and q from m ≥ 2 tasks. Alice gets
paid by Eqn. (2) the scoring function on her and Bob’s reports on task b minus the Φ∗
applied to the scoring function on her report on p and Bob’s report on q. In this way, agents
are paid by a scoring function on a correlated task minus a regularized scoring function on
two uncorrelated tasks.

Algorithm 1 Φ-divergence pairing mechanism with a scoring function K for two agents,MΦ,K .

Input: A report profile (x̂, ŷ) where both Alice and Bob submit report for all m ≥ 2 tasks.
Parameters: A convex function Φ : [0,∞)→ R, its conjugate Φ∗, and a scoring function

K : X × Y → dom(Φ∗) ⊆ R.
1: For Alice, arbitrarily pick three tasks b, p and q where p and q are distinct. We call b

the bonus task, p the penalty task to Alice, and q the penalty task to Bob.
2: Based on Alice’s reports on b and p (x̂b and x̂p) and Bob’s reports on b and q (ŷb and
ŷq), the payment to Alice is

MΦ,K
A (x̂, ŷ) , K (x̂b, ŷb)− Φ∗ (K (x̂p, ŷq)) . (2)

3: The payment of Bob is defined similarly.

To simplify the notion, we use uA or uA(θ, P,K) to denote the ex-ante payment to Alice
under a strategy profile θ and a joint signal distribution P in pairing mechanism with a
scoring function K.

In general, the truthfulness guarantees of Mechanism 1 depends on the degeneracy of
Alice’s and Bob’s signal distribution P and convex function Φ. In this paper, we consider
three different conditions which will be used in the statement of our results.

I Assumption 10. In this paper, we consider the following three different settings.
1. no assumption;
2. PX,Y is stochastic relevant;
3. Besides the above conditions, X and Y are finite sets, Φ is strictly convex and differentiable,

and Φ∗ is strictly convex.

3.1 Obtaining a Good Scoring Function
The Φ-pairing mechanismMΦ,K is not stand-alone mechanism for information elicitation,
because it requires a scoring function K as a parameter. We will see shortly in Sect. 4
and 6, the truthfulness guarantees of the pairing mechanism depends on the quality of the
scoring function. In this paper, we consider three different models for mechanism designers
to estimate good scoring functions which are discussed in the rest of the sections:

Direct access of K?
P,Φ. In Sect. 4, we first consider the mechanism knows a (P,Φ)-ideal

scoring function K?
P,Φ. Note that if the mechanism knows the prior P , it can compute

the (P,Φ)-ideal scoring function, but the converse is not necessarily true.
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General reduction to a learning problem. In Sect. 6, besides the reports from Alice and
Bob, mechanism may exploit Alice and Bob’s previous scoring function and other side
information. For example the joint distribution between Alice and Bob can be approx-
imated by some parametric model, say joint Gaussian distributions. We introduce our
framework (Mechanism 2) that reduces the problem into a learning problem.

Estimation from samples. Finally, in the multi-task setting, if Alice and Bob truthfully
report their signals, it is possible to estimate the (P,Φ)-ideal scoring function from those
reports. However, the mechanism needs to incentive them to be truthful. In Sect. 6.3, we
propose two learning methods to estimate good scoring functions. Combining them with
our framework (Mehcanism 2), we can have detail-free ε-strongly truthful mechanisms
with high probability.

4 Pairing Mechanisms in the Known Prior Setting

If the the mechanismMΦ,K? has an (P,Φ)-ideal scoring function K? where P is the joint
distribution to Alice’s and Bob’s signals, the mechanism has the following properties. We
defer the proof to Sect. 5.

I Theorem 11. Let an integer m be greater than 2, a functional Φ be a continuous convex
function with [0,∞) ⊆ dom(Φ), P with PX,Y be a common prior between Alice and Bob
satisfying Assumption 2. Let τ be the truth-telling strategy profile, and K? be a (P,Φ)-ideal
scoring function.

The Φ-pairing mechanism with K?,MΦ,K? has the following properties: For any strategy
profile θ, 8

uA (θ, P,K?) ≤ uA (τ , P,K?) . (3)

Furthermore, under the four conditions in Assumption 10 respectively, the mechanism
MΦ,K? is
1. truthful,
2. informed-truthful, or
3. strongly truthful.

In the following example, we show how Mechanism 1 with a (P,Φ)-ideal scoring function
works, and illustrate the difference between informed-truthful and strongly truthful.

5 Main Technical Lemmas and Proof of Theorem 11

To prove Theorem 11, we use the following lemmas which are also important in the rest of
the paper.

We first show the ex-ante payment under the truth-telling strategy profile in the Φ-pairing
mechanism with (P,Φ)-ideal scoring function is the Φ-mutual information between Alice’s
and Bob’s signals.

I Lemma 12 (Truth-telling). If K? is a (PX,Y ,Φ)-ideal scoring function,

uA(τ , P,K?) = DΦ(PX,Y ‖PXPY ).

8 There are some minor details when X and Y are not finite set. Here we require θ to have finite∫
K? dθA dθBdPX,Y ,and

∫
Φ∗(K?) dθA dθBdPXPY .
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Moreover, if PX,Y is stochastic relevant, DΦ(PX,Y ‖PXPY ) > 0.
Then we show any deviation from the truth-telling strategy profile or an ideal scoring

function cannot improve Alice (and Bob’s) ex-ante payment. The proof uses the variational
representation of Φ-divergence (Theorem 8).

I Lemma 13 (Manipulation). For any strategy profile θ and scoring function K,
uA(θ, P,K) ≤ DΦ(PX,Y ‖PXPY ).

Note that combining these two lemmas we have an even stronger result than inequality (3)
which is a key tool in this paper: For any scoring function K and strategy profile θ,

uA (θ, P,K) ≤ uA (τ , P,K?) . (4)

I Lemma 14 (Oblivious strategy). If θ is an oblivious strategy profile, for any scoring function
K, uA(θ, P,K) ≤ 0.

I Lemma 15. Moreover, given Conditions 3 in Assumption 10, the equality in (4) for Alice
or Bob occurs if and only if
1. θ = (πA, πB) which is a permutation strategy profile, and
2. For all x ∈ X and y ∈ Y, K(πA(x), πB(y)) = Φ′ (JP(x, y)).
Informally, Lemma 15 shows if the pair of a strategy profile and a scoring function (θ,K)
have (4) equal only if there is a “conjugated” structure between the strategy and the scoring
function. The proof uses the pigeonhole principle on the finite signal spaces and shows if the
equality holds under a non permutation strategy profile, P is not stochastic relevant.

With the above four lemmas, we are ready to prove Theorem 11.

Proof of Theorem 11. There are four statements to show.
First, (3) is a direct result of (4). Furthermore, (3) proves that truth-telling is a Bayesian

Nash equilibrium, and has highest ex-ante payment to Alice. This shows the mechanism is
truthful.

By Lemma 14, the ex-ante payment to Alice (and Bob) is non-positive. Combining this
and Lemma 12, we prove the Φ-pairing mechanism with (P,Φ)-ideal scoring function is
informed-truthful when P is stochastic relevant.

To show our mechanism is strongly truthful, under Condition 3 in Assumption 10, we use
the first part of Lemma 15. If the ex-ante payment under some strategy profile is equal to the
ex-ante payment under the truth-telling strategy profile, the strategy profile is a permutation
strategy profile. J

6 The Pairing Mechanism in the Detail Free Settings

With Sect. 5, we can see that to achieve the truthfulness guarantees, it suffices to have a
“good” scoring function. That is if the ex-ante payment to Alice under the truth-telling
strategy profile is close to the Φ-mutual information between Alice’s and Bob’s signals, by
(4), the ex-ante payment under an untruthful-strategy is less than the ex-ante payment under
the truth-telling strategy profile.

In Sect. 6.1 we formalize the notions of a good scoring function and of the accuracy of a
learning algorithm L for scoring functions. In Sect. 6.2, we state our main result, Theorem 16,
which reduces the mechanism design problem to a learning problem for an ideal scoring
function, and provides some intuition about the proof of the theorem.
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6.1 Accuracy of Scoring Rules and Learning Algorithms
Now we define a good scoring function, and the accuracy of a learning algorithm L. Given Φ,
a prior PX,Y and ε > 0, we say that a scoring function K is ε-ideal on (PX,Y ,Φ), if for
Alice

uA(τ , P,K) ≥ uA(τ , P,K?
P,Φ)− ε = DΦ(PX,Y ‖PXPY )− ε, (5)

and the similar inequality holds for Bob. Additionally, For mL ∈ N, we say a learning
algorithm for scoring functions with mL samples, as a function from (xL,yL) ∈ (X ×Y)mL to
a scoring functionK. Given P , a set of distributions on X×Y , and a function SL : R×R→ N,
we say such a learning algorithm L is (δ, ε)-accurate on (P,Φ) with SL(δ, ε) samples, if
for all PX,Y ∈ P, δ ∈ (0, 1), ε > 0, and mL ≥ SL(δ, ε):

Pr
(xL,yL)∼PmL

X,Y

[uA(τ , P,L(xL,yL)) > DΦ(PX,Y ‖PXPY )− ε] ≥ 1− δ.

That is, given mL i.i.d. samples from PX,Y , the probability that the output, L(xL,yL), is
ε-ideal on (P,Φ) is greater than 1− δ. Note that we require the algorithm L to approximate
the ideal scoring uniformly on all distributions in P.

6.2 Pairing Mechanism with Learning Algorithms
Now we replace a fixed scoring function with an accurate learning algorithm L in Mechanism 1.
Intuitively, in the detail-free setting, the Mechanism 2 first runs a learning algorithm on
Alice’s and Bob’s report profile to derive a scoring function, and then pays Alice and Bob by
Mechanism 1.

Algorithm 2 Φ-divergence pairing mechanism with a learning algorithmMΦ,L.

Parameters: A convex function Φ, and a learning algorithm L with mL samples.
Input: A report profile (x̂, ŷ) from Alice and Bob on m tasks where m ≥ 2 +mL.
1: Partition m tasks (arbitrarily) into a set of learning tasks ML and a set of scoring tasks
MS where |ML| ≥ mL and |MS | ≥ 2. Let (x̂L, ŷL) be the reports from Alice and Bob
on the learning tasks ML, and (x̂S , ŷS) be the reports on the scoring tasks.

2: Run the learning algorithm and derive Kest = L(x̂L, ŷL).
3: Run the Φ-pairing mechanism (Mechanism 1) with the scoring function Kest, and pay

Alice and Bob accordingly.

I Theorem 16. Let Φ be a continuous convex function with [0,∞) ⊆ dom(Φ), mL be an
integer, L be a learning algorithm on mL samples, a function SL : R× R→ N, and P be a
set of joint distributions on X × Y.

Suppose the common prior between Alice and Bob satisfying Assumption 2 with PX,Y ∈
P, and L is (δ, ε)-accurate on (P,Φ) with SL(δ, ε) samples. Under three conditions in
Assumption 10 respectively, Mechanism 2 is
1. (δ, ε)-truthful on P with a 2 + SL(δ, ε) number of tasks;
2. (δ, ε)-informed-truthful on P with a 2 + SL(δ, ε) number of tasks;
3. (δ, ε)-strongly truthful on P with a 2 + SL(δ, ε) number of tasks.
Here L only outputs an ε-ideal scoring function on the joint distribution of agents’ signals.
Still, the algorithm can have an arbitrarily large error when agents are not truthtelling. For
instance, there may exists a non-truth-telling strategy profile θ such that θ ◦ P is not in P,
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and the output of L is not ε-ideal on (θ ◦ P,Φ). Nevertheless, Mechanism 2 still can upper
bound their ex-ante payment under such non-truth-telling strategy profiles. Furthermore, if
the learning algorithm is ε-ideal on (θ ◦P,Φ) for all strategy profile θ, the pairing mechanism
is indeed approximately dominantly truthful.

6.3 Learning Ideal Scoring Functions
Theorem 16 reduces the mechanism design problem to a learning problem for an ideal scoring
function. However, Eqn. (5) may be hard to verify. We provide two natural sufficient
conditions for ε-ideal scoring functions in Sect. 6.3.1, and we will provide two concrete
learning algorithms for scoring function in Sect. 6.3.2.

6.3.1 Sufficient Conditions for Approximately Φ-Ideal Scoring Functions
Bregman divergence. Given a, b ∈ R and a strictly convex and twice differentiable Φ : R→
R, the standard Bregman divergence is Φ(a)− Φ(b)−∇Φ(b)>(a− b). It can be extended to
Bregman divergence between two functionals f and g over a probability space (Ω,F , P ) [4]

BΦ,P (f, g) =
∫

Φ(f(ω))− Φ(g(ω))−∇Φ(g(ω))>(f(ω)− g(ω))dP (ω).

I Lemma 17 (Bregman divergence and accuracy). If Φ is strictly convex and twice dif-
ferentiable on [0,∞), DΦ(PX,Y ‖PXPY ) − uA(τ , P,K) = BΦ∗,PXPY

(K,K?). Therefore, if
BΦ∗,PXPY

(K,K?) ≤ ε, K is an ε-ideal scoring function on (Φ, P ).

Since Bregman divergence capture an average distance between a scoring function K and
the ideal one, if the scoring function K is uniformly close to the ideal one K?, the Bergman
divergence between K and K? is also small.

Total variation distance. On the other hand, we may first learn the prior P and compute an
approximately ideal scoring function afterward. This indirect method is also useful, because
estimating the probability density function is a much well studied problem.

I Theorem 18 (Total variation to accuracy). Given Φ is a convex function and a prior PX,Y
over a finite space X × Y, suppose there exist constants 0 < α < 1 and cL such that

∀x ∈ X , y ∈ Y, PX,Y (x, y) > 2α or PX,Y (x, y) = 0, (6)
∀z, w ∈ [α, 1/α], |Φ(z)− Φ(w)| ≤ cL|z − w|. (7)

If ‖P̂X,Y − PX,Y ‖TV ≤ δ < α,9 K̂(x, y) ∈ ∂Φ
(

P̂X,Y

P̂X⊗P̂Y

)
is a 6cL

α2 δ-ideal scoring function.

The first condition says the smallest nonzero probability PX,Y (x, y) is either constantly away
from zero or equal to zero, and the second condition requires the function Φ is Lipschitz
in [α, 1/α]. With these conditions, if we have a good estimation P̂ for P with small total
variation distance, we can compute a very accurate scoring function K̂ from P̂ . As we will
see in Sect. 6.3.2, the empirical distributions with mL samples satisfies this condition with
high probability for large enough mL.

9 ‖P̂ − P̂‖TV =
∑

ω∈Ω |P (ω)− P̂ (ω)| is the total variation distance between P and P̂ .
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6.3.2 Learning Algorithms for Scoring Functions
Generative approach. Recall that if P is known, the ideal scoring function can be computed
directly. In a generative approach, we try to estimate the probability density function P from
reports and derive the scoring function afterward under the truth-telling strategy profile. In
general this generative approach is useful when P is on a finite space, or P is a parametric
model by Theorem 18. Here we provide an example of a generative approach.

A standard way of learning probability density function is to use empirical distribution
on mL samples. The following theorem shows that the empirical distribution gives a good
estimation in terms of total variation distance.

I Lemma 19 (Theorem 3.1 in [6]). For all ε > 0, δ > 0, finite domain Ω, and distribution in
P in ∆Ω, there exists M = O

( 1
ε2 max(|Ω|, log(1/δ))

)
such that for all mL ≥M the empirical

distribution P̂mL
with mL i.i.d. samples, ‖P − P̂mL

‖TV ≤ ε with probability at least 1− δ.

Therefore, we can design a learning algorithm Lemp as follows: estimate joint distribution
PX,Y by their empirical distributions P̂X,Y and derive K̂ from Theorem 18. By Theorem 18
and Lemma 19, such algorithm is ε-accurate with 1− δ probability.

Discriminative approach. Instead of density estimation, a discriminative approach estimates
an ideal scoring functions directly. This enables more freedom of algorithm design. Here we
use the variational representation (Theorem 8), and give an optimization characterization of
an ideal scoring function.

Given the assumption 2, under the truth-telling strategy profile we can have i.i.d. samples
of (u, v) where u is sampled from PX,Y and v is sampled from PXPY independently. Taking
LΦ(a, b) , a− Φ∗(b) as the risk function, we can convert the estimation of the ideal scoring
functions to empirical risk minimization (maximization) over a training set (ut, vt) with
t = 1, 2, . . . , bmL/3c,

K̃ = arg max
k∈K

∑
t

LΦ(k(ut), k(vt)) = arg max
k∈K

{∫
k(ω)dP̂X,Y (ω)−

∫
Φ∗(k(ω))d ˆPXPY (ω)

}
(8)

where K is a pre-specified class of functionals k : X ×Y → R, P̂X,Y and ˆPXPY are empirical
distributions on bmL/3c samples from distributions PX,Y and PXPY respectively.

Assuming that K is a convex set of functionals, the implementation of (8) only requires
solving a convex optimization problem over function space K which is well studied [22]. With
these results, we show the empirical risk maximizer K̃ with respect to LΦ is ε-accurate with
large probability under some conditions on K and prior PX,Y . Furthermore, this error can
be seen as the generalized error of the empirical risk maximizer.

I Theorem 20. Consider a distribution P over X × Y; a strictly convex and a twice
differentiable function Φ on [0,∞) with its gradient Φ′ and conjugate Φ∗; a family of
functional K from X × Y to dom(Φ∗); and Φ∗(K) = {Φ∗(k) : k ∈ K}. Suppose
1. the (P,Φ)-ideal scoring function K? = Φ′

(
PX,Y

PXPY

)
is in K, and

2. there exist constants (Ll, Rl, Dl)l=1,2

a. supk∈K ρL1(k, PX,Y ) ≤ R1, and
∫ R1

0
√
H[],L1(u,K, PX,Y )du ≤ D1

b. supl∈Φ∗(K) ρL2(l, PXPY ) ≤ R2 and
∫ R2

0
√
H[],L2(u,Φ∗(K), PXPY )du ≤ D2

There exists M = O
( 1
ε2 log 1

δ

)
, such that for all mL ≥M , K̃ is ε-accurate on prior P with

probability 1− δ.
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Informally, Theorem 20 requires the functional class K contains an ideal scoring function
and it has a constant complexity (generalized entropy with bracketing). Under these
conditions, the empirical risk minimizer (maximizer) can estimate the ideal scoring function
accurately even when the signal space can be integers, real numbers, or Euclidean spaces.

Here we give a outline of the proof. By Lemma 17, it is sufficient to show the empirical risk
minimizer K̃ has small Bregman divergence form the ideal one. Moreover, if the estimation
K is the empirical risk maximizer, this error can be upper bounded by the distance between
the empirical distribution and the real distribution (Lemma 21). Therefore, we can use
functional form of Central Limit Theorem to upper bound the error. We defer the proof to
the full version.

I Lemma 21. Let K̃ be the estimate of K? obtained by solving Eqn. (8), and K? ∈ K Then

BΦ∗,PXPY (K̃,K?) ≤ sup
k∈K

∣∣∣∣∫ Φ∗(k − Φ∗(K?)d(P̃X P̃Y − PXPY )−
∫

(k −K?) d(P̃X,Y − PX,Y )
∣∣∣∣ .

7 Machine Learning and Multiple Agents

We have discussed the Φ-pairing mechanisms on two agents, Alice and Bob. What can we do
if there are more than two agents, Alice, Bob, . . . ? We first discuss a naive approach that
reduces the multiple agents setting to the two agent setting: Randomly select two agents, pay
them according to a two agent mechanism, and pay the other agents 0. In this mechanism,
as long as the mutual information between any two agents’ signals is lower bounded, the
sample complexity does not grow with the number of agents.

This naive approach is clearly wasteful and not useful in practice. It throws away nearly
all the information agents provide, and will yield payments with high variance. Nonetheless
it can provide some strong theoretical guarantees if the sole goal is obtaining approximately
informed truthful mechanisms. In a way, this improves the sample complexity of Agarwal et
al. [1] from O(n) to constant with an almost trivial analysis.

Yet, the progression of these papers does provide key insights. In Shnayder et al. [28],
agents are paired up with every other agent, enough samples are drawn to estimate the
pairwise joint distributions and this is used to (in our parlance) learn an ideal scoring function.
Agarwal et al. [1] then assumes structure on the joint prior of all agents, and leverages this
particular structure to better learn the ideal scoring function.

These approaches seem much more promising in practice. In the case where the mu-
tual information between any two agents is lower bounded by a constant, they will not
asymptotically improve the sample complexity, but in real life, constants matter.

Moreover, these technique may lead to better asymptotic analysis when the average
pair-wise mutual information goes to zero. For example, say only Alice and Bob work on the
tasks and the rest of agents report random noise. Alice will now only have positive expected
payment if she and Bob are both randomly selected. As the number of agents increases, her
expected payment will go to zero. However, if the sample complexity is large enough that a
learning algorithm can pick out Alice and Bob from the crowd of noise, a mechanism might
be able to appropriately reward them.

Intuitively, in such a case, we can pair Alice simultaneously with all other agents, and
run our mechanism using the concatenation of all other agent’s signals as “Bob”’s signal.
As the number of agents increases, this approach ensures Alice’s expected payment is non-
decreasing because the mutual information does not decrease by adding more information –
the additional agents’ reports. However, the sample complexity for ideal scoring function
will increase, perhaps even exponentially.
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We propose two novel approaches that exploit the power of current machine learning
algorithms to compute the mutual information between Alice’s signal and the rest of the
agents with limited sample complexity.

Computing the Φ-Mutual Information between Xi and X−i. Our variation method is
well suited to the challenge of reliably computing the Φ-mutual information between Alice’s
reports, Xi, and those of the other agents, X−i.

Recall that Mechanism 2 reduces the mechanism design problem to learning a scoring
rule, which Eqn. (1) reduces to learning

JPP (xi, x−i) =
PXi,X−i(xi, x−i)
PXi

(xi)PY (x−i)
=
PXi|X−i

(xi | x−i)
PXi

(xi)
.

Therefore, it is enough to learn both the marginal distribution, PXi(xi) and PXi|X−i
(xi |

x−i). The former can be estimated empirically. However, when the number of agents is large,
the later is high dimensional and must be learned. Fortunately, this is just a soft-classifier
which produces a forecast to predict her report rather than a single report. which, given the
reports of every agent but Alice on a particular task, (soft) predicts Alice’s report on the
same task.

Therefore, we can derive an approximate ideal scoring rule by using machine learning
techniques to produce a (soft) prediction of Alice’s report for an answer given the reports
of the other agents. Specifically, the machine learning algorithm outputs f(·, ·) such that
f(xi, x−i) = PXi|X−i

(xi | x−i).
Using Mechanism 2, we can divide the tasks into training and testing tasks. The training

tasks are used to learn f and to estimate PX(x). We can compute Kest from f and PX(x),
and then use Mechanism 2 to pay the agents.

Note that for the guarantees of Theorem 16 to hold, it is required that f is learned
accurately on truthful strategy profiles. However, we do not require the learning algorithms
perform well on non-truthful strategy profiles.

Latent Variable Models. Our pairing mechanisms are particularly powerful when the prior
P on agents’ signals is a latent variable model. In a latent variable model, signals are
mutually independent conditioned on the latent variables. Examples include Dawid-Skene
models, Gaussian mixture models, hidden Markov models, and latent Dirichlet allocations.
When P is a latent variable model, we can pay Alice the (approximate) mutual information
between her report and each task’s latent variable.
1. Given a latent label recovery algorithm, e.g., [33], we run such algorithm on all reports

except Alice’s, and get estimate of latent label for each tasks (Y1, . . . , Ym);
2. Then, using Alice’s report (X1, . . . , Xm) and the estimated latent label (Y1, . . . , Ym) we

can run Mechanism 2 with the generated method to pay Alice the mutual information
between Alice’s report and the latent labels.

This mechanism is (approximate) strongly truthful, because the Φ-mutual information
between Alice and the others’ reports is less than the Φ-mutual information between her
reports and the tasks’ latent variable due to data processing inequality. This approach has
the following advantages. First, this provides a reduction from aggregation to elicitation.
Second, paying mutual information between Alice’s reports and the latent variable resolves
the problems that the above naive approaches have. Alice’s payment increases as the number
of agents increases by the data processing inequality and the sample complexity of scoring
function mirrors that of the latent label algorithm, which typically will not increase.
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Abstract
Inspired by applications on search engines and web servers, we consider a load balancing problem
with a general convex objective function. In this problem, we are given a bipartite graph on a
set of sources S and a set of workers W and the goal is to distribute the load from each source
among its neighboring workers such that the total load of workers are as balanced as possible. We
present a new distributed algorithm that works with any symmetric non-decreasing convex function
for evaluating the balancedness of the workers’ load. Our algorithm computes a nearly optimal
allocation of loads in O(logn log2 d/ε3) rounds where n is the number of nodes, d is the maximum
degree, and ε is the desired precision. If the objective is to minimize the maximum load, we modify
the algorithm to obtain a nearly optimal solution in O(logn log d/ε2) rounds. This improves a line
of algorithms that require a polynomial number of rounds in n and d and appear to encounter a
fundamental barrier that prevents them from obtaining poly-logarithmic runtime [6,7,13,15]. In our
paper, we introduce a novel primal-dual approach with multiplicative weight updates that allows us
to circumvent this barrier. Our algorithm is inspired by [1] and other distributed algorithms for
optimizing linear objectives but introduces several new twists to deal with general convex objectives.
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From the combinatorial optimization perspective, one can formulate the serving require-
ments with packing and covering constraints and model this problem as an allocation/match-
ing instance in a bipartite graph. Although feasibility of the allocation is the first problem to
study, in practice, we face a wider range of objectives to optimize. Emergency mechanisms
in data centers allow the excess load to be served with the buffer capacities locally or be
shifted to alternative data centers globally with services like Global Server Load Balancing.

This motivates service level objectives (SLO) in terms of quantile statistics of machine
utilization values or other convex functions that are much more sensitive to higher utilization
values instead of standard linear objective functions in matching theory that have uniform
partial derivatives across the whole range of valid utilization values. One particular frequently
occurring scenario is when the underlying properties of the load balancing instance determines
some phase transition utilization threshold (say 0.95) beyond which the service starts to
deteriorate. Thus, the cost objective function we are trying to minimize should have
completely different behaviours on the two sides of this threshold and linear functions are
unable to capture this exponential growth in the cost function.

To accommodate this wide range of objectives, in this paper we focus on the load balancing
problem with a general convex objective function. The problem is defined on a bipartite
graph, with a set of sources S on one side, and a set of workers W on the other. For each
source, we must distribute its load among its neighboring workers. The goal is to minimize a
convex function of the workers’ loads (where the load of a worker is the total load it receives
from all incoming sources). Fractional allocations are allowed, as in the real-world setting,
there are usually huge amounts of query requests coming from each source.

The problem described above can be solved as a convex program. However, in real-world
settings, the graph could contain billions of nodes and be too large to store in one piece.
Thus, for an algorithm to be scalable, it has to be implementable in a distributed manner.
In this paper, we work in the CONGEST model that is standard in distributed algorithms
literature (see e.g. [4]). Under this model, computation proceeds in rounds and in each
round, each node may send a logarithmic number of bits to each of its neighbors. Previous
distributed algorithms for load balancing (with a convex objective), such as [6, 7, 13, 15],
require a number of distributed rounds that is polynomial in the number of nodes or the
maximum degree of a node. This could still be prohibitive for real-world applications where
each node could have a large number of neighbors. The main contribution of this paper is to
provide the first distributed algorithm that computes an approximately optimal solution to
the load balancing problem with a convex objective and runs in a poly-logarithmic number of
distributed rounds. Our main theorem is stated below.
I Theorem 1 (Informal). Assume the objective function Φ is convex, symmetric, and
non-decreasing in each variable. Then for any ε < 1, our algorithm computes a (1 + ε)-
approximation to the optimal solution in O

(
logn log2 d

ε3

)
rounds, where n, d denote the number

of nodes and the maximum degree respectively. 1

In the special case where the objective is the max function, i.e. the goal is to minimize
the maximum load, we obtain a distributed algorithm with an improved round complexity of
O
(

logn log d
ε2

)
, which is faster than a direct application of a parallel mixed positive LP solver

(see [11]) by an O
(

logn
ε

)
factor.

1 Technically, we need a few additional assumptions on the objective function Φ in order to obtain a
(1 + ε)-approximation in terms of objective value. Formally, our theorem is stated in terms of an
ε-approximate solution which is defined in the main body but for natural objective functions such as Lp

norms for p > 1, our algorithm obtains a (1 + ε)-approximation in objective value. See the remark at
the end of Section 2 for more details.
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I Theorem 2 (Informal). When the objective is the max function, our algorithm computes a
(1 + ε)-approximation to the optimal solution and runs in O

(
logn log d

ε2

)
rounds.

1.1 Related work
There is extensive work on distributed algorithms for optimizing linear objective functions
such as packing, covering and positive LPs [2,3,5,10,11,17,18]. In these settings, distributed
algorithms with poly-logarithmic convergence rates are known. In particular, for general
positive LPs, there is a distributed algorithm that computes a (1 + ε)-approximation in
O( log3 n

ε3 ) rounds; for the special case of pure packing and pure covering LPs, a better runtime
of O

(
log2 n
ε2

)
is known [11]. We refer the interested reader to the thesis [16] for a more

detailed survey. While the techniques in these works can be applied to our problem when the
objective function is linear, optimizing a general convex objective is significantly different.
Whereas for a linear objective, the optimum always occurs at one of the vertices of the
feasible polytope, for a convex objective, the optimum may be in the interior. Therefore, it
seems that existing algorithms for optimizing linear objectives cannot be directly applied.

As mentioned previously, there are works that study a convex load balancing objective
[6, 7, 13, 15]. The algorithms proposed in these works have distributed runtime that depends
polynomially on the number of nodes or the maximum degree whereas our algorithm has
only polylogarithmic dependence on these parameters.

There has also been work on discrete load balancing i.e. when the sources are not
divisible (so fractional allocations are not allowed). A recent line of work [4, 8, 9] obtains
constant-factor approximation algorithms in the local and congest models. More specifically,
Czygrinow et al. [8] give a distributed 2-approximation algorithm that runs in O(d5) rounds.
Assadi et al. [4] gives an O(1)-approximation algorithm for unweighted loads and an O(logn)
approximation algorithm for weighted loads with polylogarithmic round complexity in the
congest model. For the less restrictive local model, they present an O(1)-approximation
algorithm for weighted loads with polylogarithmic round complexity. In general, when the
sources are not divisible, one cannot hope to compute, say, a (1 + ε)-approximation efficiently.
Thus, these works focus on constant-factor approximation, whereas in our setting, we focus
on computing a nearly optimal solution.

1.2 Technical Overview
One key limitation for previous works on (continuous) load balancing [6, 7, 13, 15] is that
they rely on an algorithm that, for each source, additively shifts load from higher-loaded
neighbors to lower-loaded neighbors. However, the step size must be set to O(1/d) in order
for the algorithm to be stable and thus the number of rounds required depends linearly (or
even worse) on the maximum degree d.

Since the load balancing problem is convex, another natural approach is to apply general
convex optimization algorithms that can be implemented in a distributed manner. However,
straight-forward applications of first-order convex optimization algorithms also get stuck
with a linear dependence on d because both the diameter of the feasible polytope and the
condition number of the convex optimization problem can depend linearly on the maximum
degree.

We circumvent the aforementioned limitations by adopting a different algorithmic frame-
work and we introduce a novel algorithm based on a primal-dual approach with multiplicative-
weight updates. One of the central insights in our algorithm is that if we know the target

ITCS 2021
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capacities in the optimal solution, then we can compute the allocation of the sources that
achieves the optimum as this essentially reduces to solving a linear problem. More generally,
for a given set of target capacities, we can essentially test whether it is achievable. This
motivates the following iterative procedure: we start with very high target capacities and
iteratively update the target capacities downwards while checking feasibility until we reach a
solution that is barely feasible.

For checking feasibility, we use a proportional allocation algorithm based on the work
in [1] for maximum matching. We update the load assignment according to the proportional
allocation algorithm and then update the target capacities based on whether each worker has
too much or too little load. We start our algorithm with a feasible solution (by setting the
target capacities to be very high) and can easily maintain feasibility throughout the entire
process. The difficulty lies in proving optimality. An important observation is that after
running the proportional allocation algorithm for a sufficient number of iterations, if there
are workers whose load differs significantly from their target capacity, then it is possible to
(implicitly) construct a certificate that this imbalance must happen in any feasible allocation.
For the special case when the objective is the max function, it is not too difficult to complete
the proof using the above ideas as it suffices to maintain the same target capacity for all the
workers and decrease all capacities together. When the algorithm stops, we only need to
show that there exists a set of workers that is saturated, in the sense that their total capacity
is roughly equal to the total load of the sources whose neighbors are all included in this
set. For general convex objectives, we will need a more refined analysis since the workers
may have different target capacities. We will prove that the solution that we compute is
optimal at multiple levels. In particular, our algorithm allows us to (implicitly) construct a
multi-level cut that serves as a hierarchy of certificates that, when combined, imply that the
entire solution is nearly optimal.

2 Preliminary

We now formalize our problem and introduce notation. In the load balancing problem, the
input is a bipartite graph G(S,W,E), where we use S (|S| = nS) to denote the set of sources
and W (|W | = nW ) to denote the set of workers. We write n = nS + nW . We assume there
is a load associated with each source s ∈ S. For simplicity of presentation, we assume each
source has one unit of load, although following the same proof method, the results obtained
in this paper can be generalized to arbitrary weighted loads. For each source s ∈ S, we
use Ns to denote the set of workers that are connected to the source s. Similarly, we use Nw
to denote all the sources that are connected to worker w. We use d to denote the maximum
degree of a node (source or worker) in the graph. For a subset of workers X ⊂ W , let
N(X) ⊂ S be the set of sources s with the property that all of the neighbors of s are in X.

We want to assign loads along the edges of the graph such that all of the sources are
served and the loads of the workers are as balanced as possible. We use xs,w to denote the
amount of load assigned from source s to worker w. We assume the load is splittable and
fractional allocations are allowed. For each worker w, define its load Lw to be

Lw =
∑
s∈Nw

xs,w.

In this paper, our objective is to minimize some convex function of the loads. We assume the
objective function Φ : RnW → R is symmetric, convex, and non-decreasing in each variable.
Formally, we aim to solve the following optimization problem in a distributed manner:
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minimize Φ(L1, . . . , LnW )

subject to
∑
w∈Ns

xs,w = 1 ∀s ∈ S

Lw =
∑
s∈Nw

xs,w ∀w ∈W (1)

xs,w ≥ 0 ∀s ∈ S,w ∈W
xs,w = 0 ∀(s, w) /∈ E

Given any load vector L = (L1, · · · , LnW ) ∈ RnW , we say it is feasible if there exists a feasible
assignment {xs,w}s∈S,w∈W that satisfies the constraints of Eq. (1). Our algorithm will find
an ε-approximate solution as defined below.

I Definition 3 (ε-approximate solution). We say L = (L1, · · · , LnW ) is an ε-approximate
solution, if L is feasible and for any other feasible solution (L′1, · · · , L′nW ), we have

Φ(L1, . . . , LnW ) ≤ Φ
(
(1 + ε)L′1, . . . , (1 + ε)L′nW

)
.

We are primarily interested in the case where 1/ε is constant or poly-logarithmic in n so
runtime that is polynomial in 1/ε is acceptable.
I Remark 4. The definition of ε-approximate solution is stated in terms of scaling the
inputs of the convex function rather than scaling the value of the convex function itself. An
ε-approximate solution would directly imply a (1 +O(ε)) approximation on the optimal value
for any Lipschitz continuous function together with a mild lower bound assumption on the
optimal value. In particular, it implies (1 + ε)-approximation (in terms of objective value)
for widely used functions such as Lp norms for p ≥ 1.

In general, it is impossible to achieve a multiplicative approximation without additional
assumptions on the objective. For instance, if we take Φ = max (max(L1, . . . , LnW )− OPT, 0)
where OPT is the minimum possible value of max(L1, . . . , LnW ), then achieving a multiplic-
ative approximation would require solving the problem exactly.

3 Algorithm

We first give a high level overview of our main algorithm (the pseudocode is given in
Algorithm 1). The algorithm maintains a target capacity Cw and a weight aw for each
worker w ∈W . For any source s ∈ S, the amount of load it assigns to its neighbor worker w
(w ∈ Nw) is proportional to the weight aw (see Line 13). Our algorithm always maintains a
(near) feasible solution under the target capacity. It gradually decreases the target capacity
and adjusts the weights, until reaching a nearly optimal solution. The algorithm updates
the capacity once per epoch (see Line 8 to Line 12). While in each epoch, the algorithm
freezes the target capacity and attempts to find a feasible assignment via the Proportional
Allocation algorithm (see Algorithm 2). The Proportional Allocation algorithm
was originally proposed in [1] for finding an approximate maximum matching. It adjusts
the weight of workers based on the following rules: If the current load exceeds the target
capacity, it decreases the weight by a multiplicative factor of (1 + ε); it increases the weight
otherwise. After repeating the weight updating rules for Õ

(
logn log d

ε2

)
steps, our algorithm

updates the target capacities on workers based on the gap between the target capacity and
the current load. The algorithm will fix workers whose load significantly exceeds the target
capacity meaning that for these workers, the target capacity never changes anymore.
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Algorithm 1 General Load Balancing.

1: Input: Graph G, set of workers W , set of sources S
2: Initialize weights aw = 1 for all workers w ∈W .
3: Initialize capacity upper bounds Cw = d for all workers w ∈W
4: Set all workers w to be unfixed
5: Set A = 2 log(d/ε)

ε and B = 100 log(n/ε)·log(d/ε)
ε2

6: for r = 0, 1, . . . , A− 1 do
7: x← Proportional Allocation(G,C, a, ε, B)
8: for w ∈W do
9: if w is unfixed and Lw < (1 + 10ε)Cw then

10: Set Cw ← Cw
1+ε

11: else
12: Set w to fixed
13: return xs,w = aw∑

w∈Ns
aw

The pseudocode of the Proportional Allocation algorithm is given in Algorithm 2.
We note that each time we run Proportional Allocation and update the weights aw,
we do not reinitialize the weights. We continue updating from the weights computed in the
previous step.

Algorithm 2 Proportional Allocation [1] (G,C, a, ε, B).

Input: Graph G, set of workers W , set of sources S
Input: Target capacity Cw for each worker
Input: Initial weight aw for each worker
Input: Precision ε
input: Number of rounds B
for t = 0, 1, . . . , B − 1 do

Set xs,w = aw∑
w∈Ns

aw
for all edge variables xs,w

for w ∈W do
If Lw > Cw then update aw ← aw

1+ε
If Lw < Cw then update aw ← (1 + ε)aw

return xs,w = aw∑
w∈Ns

aw

4 Analysis

Our main result is formally stated in Theorem 5, we sketch the high-level idea of the proof
here. The main idea in the proof of Theorem 5 is to show that if we have fixed the sets
of workers W1,W2, . . . ,Wr in iterations 1, 2, . . . , r, then the number of sources whose only
neighbors are in the set W1 ∪ · · · ∪Wr is at least (1−O(ε))

∑
w∈W1∪···∪Wr

Cw. This would
then certify that our solution is essentially optimal for the total load among the set of workers
in W1 ∪ · · · ∪Wr. While this claim is not technically true, Lemma 12 is a slight modification
that involves considering a superset of W1 ∪ · · · ∪Wr and it suffices for our purposes. Once
we have a hierarchy of certificates for r = 1, 2, . . . , A − 1 we can prove that the solution
computed by our algorithm is essentially optimal overall.
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I Theorem 5. Assume the objective function Φ : RnW → R+ is convex, symmetric, and
non-decreasing in each variable. For 0 < ε < 1, Algorithm 1 computes an O(ε)-approximate
solution in O

(
logn log2 d

ε3

)
distributed rounds.

In the proof of Theorem 5, the bulk of the work is in proving Lemma 12. We will first
prove some basic facts about the behavior of the loads and target capacities throughout the
execution of Algorithm 1 in Section 4.1. We then introduce the concept of majorization
for analyzing convex functions in Section 4.2. In Section 4.3, we prove Lemma 12. A key
observation about the proportional allocation algorithm of [1] is that at the end, if the load
on a worker is significantly less than the target capacity, its weight aw must be increased
at every round and if the load on a worker is significantly more than the target capacity,
its weight aw must be decreased at every round. Thus, there must be a large multiplicative
gap between weights on underallocated and overallocated workers. Since loads are allocated
proportionally, if some source is connected to both underallocated workers and overallocated
workers, almost all of the load is actually being sent to the underallocated workers. Exploiting
this intuition (we will need a slightly more precise statement in the proof), we can construct
the desired certificate and complete the proof of Lemma 12. Finally, combining Lemma 12
with the tools introduced in Section 4.2 for analyzing convex functions, we complete the
proof of Theorem 5.

4.1 Basic Observations
Notation

For a load variable Lw and indices 0 ≤ r < A, 0 ≤ t ≤ B, we let Lr,tw denote its value when
the algorithm is executed to the timestep r, t i.e. we have completed r full iterations of
Proportional Allocation and t rounds within the next iteration of Proportional
Allocation. We adopt the same notation for xs,w, sw and Cw.
Below is an informal summary of the properties that we will prove in this section.

Loads gradually move toward the target capacities
Loads never significantly exceed the target capacity
For fixed workers, their load is roughly equal to their target capacity
Any significantly underallocated workers must have their weight increased at every
previous timestep

We begin with a simple observation that after each weight update, the load on each worker
moves toward the target capacity.

I Lemma 6. Consider indices 0 ≤ r < A, 0 ≤ t < B then
If Lr,tw > Cr,tw then Lr,tw

(1+ε)2 ≤ Lr,t+1
w ≤ Lr,tw

If Lr,tw < Cr,tw then Lr,tw ≤ Lr,t+1
w ≤ (1 + ε)2Lr,tw

Proof. We prove the the first claim and the second one follows from the same argument.
Suppose Lr,tw > Cr,tw , then we know that ar,t+1

w = ar,tw /(1 + ε). Together with the fact that
ar,tw′ ∈ [(1 + ε)−1ar,tw′ , (1 + ε)ar,tw′ ] holds for all worker w′ ∈W , we have

Lr,t+1
w =

∑
s∈Nw

ar,t+1
w∑

w′∈Ns a
r,t+1
w′

≤
∑
s∈Nw

ar,tw · (1 + ε)−1∑
w′∈Ns a

r,t
w′ · (1 + ε)−1

= Lr,tw

and

Lr,t+1
w =

∑
s∈Nw

ar,t+1
w∑

w′∈Ns a
r,t+1
w′

≥
∑
s∈Nw

ar,tw · (1 + ε)−1∑
w′∈Ns a

r,t
w′ · (1 + ε)

= Lr,tw
(1 + ε)2 . J
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Next, we observe that the load on any worker can never significantly exceed its target
capacity.

I Lemma 7. For all workers w, we have at all timesteps r, t,

Lr,tw ≤ (1 + 10ε)(1 + ε)Cr,tw .

Proof. We prove the claim by induction on r and t. The base case is clearly true as

L0,0
w ≤ d = C0,0

w .

Suppose the claim holds up to r, t. If 0 ≤ t < B, then Lemma 6 implies the desired for
r, t+ 1. If t = B, then we are in one of the following two cases

Lr,Bw < (1 + 10ε)Cr,Bw , which implies Lr+1,0
w < (1 + 10ε)(1 + ε)Cr+1,0

w

Lr,Bw ≥ (1 + 10ε)Cr,Bw , which implies Cr+1,0
w = Cr,Bw

The first case is clearly resolved. For the second case, we can use the induction hypothesis to
get the desired. J

When a worker becomes fixed, we observe that at all future timesteps, its load is close to
its target capacity.

I Lemma 8. For a worker w, once w is fixed, we have

Lr,tw ≥
Cr,tw

(1 + ε)2

holds for all future timesteps.

Proof. When w is fixed, we must have Lw > Cw. Combining Lemma 6 with the fact that
we no longer update Cw, we get the desired. J

For any worker whose load is significantly lower than its capacity, we note that its weight
aw must have been increased at every previous timestep.

I Lemma 9. Consider a worker w such that for some 0 ≤ r < A, if

Lr,Bw ≤ Cr,Bw
(1 + ε)2 ,

then

aw = (1 + ε)(r+1)B ,

i.e. if a worker is significantly underallocated when we reach the capacity update step, then
its weight must have been increased at every step.

Proof. This follows immediately from Lemma 6 and the fact that the capacities Cw are
weakly decreasing. J

4.2 Majorization
We present a basic inequality about convex functions that will be useful later on for bounding
the objective value. We first introduce the concept of majorization.



S. Ahmadian, A. Liu, B. Peng, and M. Zadimoghaddam 79:9

I Definition 10 (Majorization). For two sequences of real numbers (x1, . . . , xn) and
(y1, . . . , yn), let π, σ be permutations such that

xπ(1) ≥ · · · ≥ xπ(n), yσ(1) ≥ · · · ≥ yσ(n).

We say (x1, . . . , xn) weakly majorizes (y1, . . . , yn) if for all 1 ≤ k ≤ n

k∑
i=1

xπ(i) ≥
k∑
i=1

yσ(i).

If we also have that

n∑
i=1

xπ(i) =
n∑
i=1

yσ(i)

then we say (x1, . . . , xn) majorizes (y1, . . . , yn)

Intuitively, a sequence (x1, . . . , xn) majorizes a sequence (y1, . . . , yn) if the terms of
(x1, . . . , xn) are more imbalanced. The following inequality states that a symmetric convex
function takes larger values when the inputs are more imbalanced:

I Lemma 11. Let f be a convex function that is symmetric and non-decreasing in each of
the variables. Given sequences (x1, . . . , xn) and (y1, . . . , yn) such that (x1, . . . , xn) weakly
majorizes (y1, . . . , yn), we have

f(x1, . . . , xn) ≥ f(y1, . . . , yn).

If (x1, . . . , xn) majorizes (y1, . . . , yn) then the above inequality holds without the assumption
that f is non-decreasing.

Proof. [12] proves the above inequality when (x1, . . . , xn) majorizes (y1, . . . , yn), we adapt
it to the case that (x1, . . . , xn) weakly majorizes (y1, . . . , yn). In particular, we prove that
there exists a sequence (y′1, . . . , y′n) such that y′i ≥ yi for all 1 ≤ i ≤ n and (x1, . . . , xn)
majorizes (y′1, . . . , y′n). WLOG, we assume x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn. We construct
the sequence as follows. We first set y′1 to be the largest value so that (x1, . . . , xn) weakly
majorizes (y′1, y2 . . . , yn). After determining the value of y′1, we set y′2 to be the largest value
so that (x1, . . . , xn) weakly majorizes (y′1, y′2, y3, . . . , yn). We repeat this process to set all of
y′3, . . . , y

′
n. Now, for each index i ∈ [n], there exists an index j with j ≥ i such that

x1 + · · ·+ xj = y′1 + · · ·+ y′i + yi+1 + · · ·+ yj ,

as otherwise, this would contradict the maximality of y′i. Hence, we conclude that

x1 + · · ·+ xn = y′1 + · · ·+ y′n,

so (x1, . . . , xn) majorizes (y′1, . . . , y′n), as desired. J

4.3 Main Proof
Now we are ready to analyze the performance of the algorithm. The following lemma is
essential to our proof. Intuitively, it allows us to construct a set of cuts that “certify” that
the solution computed by the algorithm is essentially optimal.
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I Lemma 12. Let X0 = ∅. We can construct sets X1, . . . , XA ⊂ W with the following
properties:

X1 ⊂ X2 ⊂ · · · ⊂ XA

|N(Xr)| ≥
∑r−1
i=0 |Xi+1\Xi| · d

(1+ε)i+10

Xi contains all of the workers that are fixed after executing Proportional Allocation
and capacity updates for r = 0, 1, . . . , i− 1

Proof. We prove the claim by induction. Assume that we have already constructed
X1, . . . , Xi−1. Let F i be the set of workers that become fixed after completing the ca-
pacity updates for r = i− 1 but are not fixed before this. For any worker w ∈ F i, we must
have

ai−1,t+1
w = ai−1,t

w

1 + ε
∀ 0 ≤ t < B.

This is because if this was not the case, we must have Li−1,t0
w < Ci−1,t0

w for some t0 and by
Lemma 6, this implies Li−1,t

w ≤ (1 + ε)2Ci−1,t
w holds for all t ≥ t0. This contradicts the fact

that worker w gets fixed in the execution of the capacity updates for r = i− 1. Thus, we
conclude for any w ∈ F i

ai−1,B
w ≤ (1 + ε)(i−1)B .

Let Y = F i\(F i ∩Xi−1). If Y is empty then it suffices to set Xi = Xi−1. Assume Y is
not empty, then for any integer 0 ≤ j ≤ B, define Zj as

Zj := {w|w ∈W,aw ≤ (1 + ε)(i−1)B+j}.

We note that Y ⊆ Z0 ⊆ Z1 ⊆ · · · ⊆ ZB and therefore Z0 6= ∅.
Since B ≥ 100 log(n/ε)·log(d/ε)

ε2 , there must exist some index j satisfying

10 log
(
d

ε

)
· 1
ε
≤ j < B

and

|Zj\Xi−1| ≤ (1 + ε) ·
∣∣∣Zj−10 log( dε )· 1ε

\Xi−1

∣∣∣ . (2)

We set Xi = Zj ∪Xi−1 and prove it satisfies all three properties in the rest of the proof.
The first and third properties are clearly satisfied, i.e., Zj ∪Xj−1 is a superset of Xk−1 and
it contains all of the workers that are fixed after i executions of proportional allocation.
It remains to verify the second one

For any worker w ∈ Zj−10 log( dmax
ε )· 1ε

, if the worker w is connected to some source s, such
that s has another neighbor worker w′ with w′ /∈ Zj , then we have

xi−1,B
s,w ≤ ai−1,B

w

ai−1,B
w + ai−1,B

w′

<
(1 + ε)(i−1)B+j−10 log( dε )· 1ε

(1 + ε)(i−1)B+j . ≤
( ε
d

)10

Therefore, the total contributions xi−1,B
s,w from all sources s with a neighbor not in Zj to

the worker w is at most∑
s∈Nw

Ns∩(W\Zj)6=∅

xi−1,B
s,w ≤

( ε
d

)10
· d ≤

( ε
d

)9
. (3)
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Now we bound the changes of |N(Xi)| comparing to |N(Xi−1)|. Consider the graph
Gi−1,B at timestep (i− 1, B). We restrict the graph to the one induced by the set of workers
Zj and the set of sources N(Zj). For each worker w ∈ Zj−10 log( dε )· 1ε

\Xi−1, its load in Gi−1,B

satisfies

Li−1,B
w ≥ Ci−1,B

w

(1 + ε)2 ≥
d

(1 + ε)i+1 (4)

The first step comes from Lemma 9, the second step comes from the fact that Ci−1,B
w =

d/(1 + ε)i−1.
Thus the load of worker w in the restricted graph is at least∑

s∈Nw
Ns∩(W\Zj)=∅

xr,Ar−1,Br
s,w = Lr,Ar−1,Br

w −
∑
s∈Nw

Ns∩(W\Zj)6=∅

xr,Ar−1,Br
s,w

≥ d

(1 + ε)i+1 −
( ε
d

)9

≥ d

(1 + ε)i+2 . (5)

The second step comes from Eq. (3)(4).
Consequently, we have

|N(Xi)| − |N(Xi−1)| = |N(Zj ∪Xi−1)| − |N(Xi−1)|

≥
∑

w∈Zj\Xi−1

∑
s∈Nw

Ns∩(W\Zj)=∅

xr,Ar−1,Br
s,w

≥ d

(1 + ε)i+2

∣∣∣Zj−10 log( dε )· 1ε
\Xi−1

∣∣∣
≥ d

(1 + ε)i+3 |Zj\Xi−1|

= d

(1 + ε)i+3 |Xi\Xi−1| .

The third step follows from Eq. (5), the fourth step follows from Eq. (2) We complete the
induction here. J

Let X0 = ∅, X1, . . . , XA be the sets constructed in Lemma 12. In the following two
lemmas, we will compare our solution with the optimal solution using the hierarchy of
certificates given by Lemma 12.

I Lemma 13. Consider a feasible assignment and suppose the loads on the workers are
L1, . . . , LnW . Then the sequence (L1, . . . , LnW ) weakly majorizes the following sequence Γ1:
|X1\X0| copies of d

(1+ε)11

|X2\X1| copies of d
(1+ε)12

...
|XA\XA−1| copies of d

(1+ε)10+A

All remaining terms are set to 0

ITCS 2021
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Proof. Since the last nW − |XA| term of Γ1 is 0, it suffices to prove majorization for the first
nW − |XA| indices. For any index 1 ≤ j ≤ nW − |XA|, suppose |Xr| < j ≤ |Xr+1| holds for
some r (0 ≤ r ≤ A− 1). By Lemma 12, we have

∑
w∈Xr+1

Lw ≥
r∑
i=0
|Xi+1\Xi| ·

d

(1 + ε)i+10

and

∑
w∈Xr

Lw ≥
r−1∑
i=0
|Xi+1\Xi| ·

d

(1 + ε)i+10

Suppose G(r, j) consists of the largest j − |Xr| workers in Xr+1\Xr, then we have∑
w∈Xr∪G(r,j)

Lw ≥
∑
w∈Xr

Lw + j − |Xr|
|Xr+1| −Xr

∑
w∈Xr+1\Xr

Lw

= j − |Xr|
|Xr+1| −Xr

∑
w∈Xr+1

Lw + |Xr+1| − j
|Xr+1| −Xr

∑
w∈Xr

Lw

≥ j − |Xr|
|Xr+1| −Xr

·
r∑
i=0
|Xi+1\Xi| ·

d

(1 + ε)i+10

+ |Xr+1| − j
|Xr+1| −Xr

r−1∑
i=0
|Xi+1\Xi| ·

d

(1 + ε)i+10

=
r−1∑
i=0
|Xi+1\Xi| ·

d

(1 + ε)i+10 + (j − |Xi|) ·
d

(1 + ε)r+10

Thus completing the proof. J

I Lemma 14. Consider the assignment returned by our algorithm and suppose the loads on
the workers are L′1, L′2, . . . , L′nW . Then the sequence (L′1, . . . , L′nW ) is weakly majorized by
the following sequence Γ2
|X1\X0| copies of (1+50ε)d

(1+ε)1

|X2\X1| copies of (1+50ε)d
(1+ε)2

...
|XA\XA−1| copies of (1+50ε)d

(1+ε)A
All remaining terms set to 0

Proof. For each index 1 ≤ i ≤ A, define W i to be the set of workers that are fixed after
completing i full executions of proportional allocation and capacity update step.
Consider any worker w that satisfies

Lw ≥
(1 + 40ε)d

(1 + ε)i .

By Lemma 7, the capacity of worker w can be bounded as

Cw ≥
(1 + 20ε)d

(1 + ε)i .
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Now it is clear that this can only happen if the worker w is fixed before round i. In particular,
the number of such workers is at most |W i|. Meanwhile, we know that |Xi| ≥ |W i| by
Lemma 12. Thus, if we only consider the |XA| largest terms of the sequence (L′1, . . . , L′nW ),
they are entry-wise dominated by the terms of Γ2.

Since all terms after the |XA|th term of Γ2 are 0, to complete the proof of the weak
majorization, it suffices to show that the sum of all of the terms of Γ2 is at least L′1 +· · ·+L′nW .
Let U be the set of workers that are not fixed at the end of the execution of the algorithm.
For all worker w ∈ U , due to the choice of A, we have

L′w ≤ (1 + 10ε)CA−1,B
w = (1 + 10ε)d

(1 + ε)A−1 ≤
ε

d
,

and therefore,∑
w∈U

L′w ≤
εnW
d

. (6)

Since the number of sources is at least nW
d , we have∑

w∈W
L′w ≥

nW
d
. (7)

WLOG, we can assume L′1 ≥ L′2 ≥ · · · ≥ L′nW . We then have

A−1∑
i=0
|Xi+1\Xi| ·

(1 + 40ε)d
(1 + ε)i ≥

|XA|∑
j=1

L′j ≥
∑

w∈W\U

L′w ≥ (1− ε)
∑
w∈W

L′w.

The second step holds due to the fact that the total number of workers that are fixed by the
end of the algorithm is at most |XA| (see Lemma 12). The last step follows from Eq. (6)(7).

Consequently, we have

A−1∑
i=0
|Xi+1\Xi| ·

(1 + 50ε)d
(1 + ε)i ≥

∑
w∈W

L′w,

which completes the proof. J

Combining Lemma 13 and Lemma 14, we get

I Corollary 15. Consider the assignment returned by our algorithm, and suppose the
loads are L′1, . . . , L

′
nW . For any feasible allocation, the loads L1, . . . , LnW must satisfy

that (L1, . . . , LnW ) weakly majorizes(
L′1

1+100ε , . . . ,
L′nW

1+100ε

)
Now we can easily wrap up the proof of Theorem 5.

Proof of Theorem 5. Let the loads in the output of our algorithm be L′1, . . . , L′nW and let
the loads in the optimal solution be L1, . . . , LnW . Then

Φ(L′1, . . . , L′nW ) ≤ Φ ((1 + 100ε)L1, . . . , (1 + 100ε)LnW )

where we use Corollary 15 and Lemma 11. The above inequality immediately implies the
desired. J
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5 Improved algorithm for minimizing max load

If the objective is the max function, i.e., we want to minimize the maximum load on workers,
we can further reduce the number of distributed rounds to O

(
logn log d

ε2

)
. The idea is to start

with a coarse estimation and gradually decrease the precision parameter down to ε. The key
observation is that each time we decrease the precision value, we only need to run a constant
number of rounds of Proportional Allocation to refine our estimation and the number
of distributed rounds of the algorithm is dominated by the number of rounds for the smallest
precision parameter, which is O

(
logn log d

ε2

)
.

In Appendix B, we present an example showing that our analysis of our algorithm is
tight. More specifically, we show that any proportional allocation based algorithm that starts
from a uniform initialization and has step size bounded by ε must run at least Ω

(
logn log d

ε2

)
rounds to compute a 1 + ε-approximation.

To facilitate the presentation, we first define the precision sequence we use in the algorithm.

I Definition 16. We define the sequence {εr}r∈N and {Br}r∈N as follow.
For any r ≥ 0, εr+1 = (1 + εr)1/2 − 1 and ε0 = d− 1.
For any r ≥ 0, Br = 2 log1+εr (n) log1+εr (d/ε) + 8 log1+εr (n)

We further define R(n, ε) to be the smallest index such that (1 + εr)5 ≤ 1 + ε.

Algorithm 3 Load Balancing for the Max objective.

1: Initialize weights aw = 1 for all workers w ∈W .
2: Initialize capacity upper bounds C = dmax.
3: Set R = R(n, ε).
4: for r = 0, 1, . . . , R− 1 do
5: Reset aw = 1, ∀w ∈W
6: while True do
7: Run Proportional Allocation for Br rounds with initial parameters aw, εr,
Cw = C ∀w,

8: if ∃w ∈W such that Lw ≥ (1 + εr)4C then
9: Break the while loop
10: else
11: C ← C

1+εr

12: C ← C(1 + εr)8

13: for s, w do
14: Output xs,w = aw∑

w∈Ns
aw

I Theorem 17. When the objective is the max function, Algorithm 3 returns an (1 + ε)
approximate solution to the load balancing problem after O

(
log(n) log(d/ε)

ε2

)
iterations.

Notations

For any 0 ≤ r ≤ R− 1, we use Ar to denote the number of calls we make to Proportional
Allocation within the while loop of round r. For the load variable Lw, we slightly abuse
of notation and for any 0 ≤ r ≤ R− 1, 0 ≤ a ≤ Ar − 1, 0 ≤ t ≤ Br, we use Lr,a,tw to denote
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the load on worker w when the algorithm is executed to the timestep r, a, t, i.e. we finished
r outer loops and completed a full iterations of Proportional Allocation, and then
t rounds within the next iteration of Proportional Allocation. We apply the same
notation for aw and xs,w. For the capacity variable, since we maintain the same capacity
over all workers and the capacity does not change during the execution of Proportional
Allocation, we simplify the notation and use Cr,a to denote the capacity on the worker
side right after we finished r outer loops and completed a full iterations of Proportional
Allocation but before we perform the update on the capacity.

The following observation, a restatement of Lemma 6, still holds.

I Lemma 18. For any 0 ≤ r ≤ R− 1, 0 ≤ a ≤ Ar − 1, 0 ≤ t ≤ Br − 1
If Lr,a,tw > Cr,a then Lr,a,tw

(1+εr)2 ≤ Lr,a,t+1
w ≤ Lr,a,tw

If Lr,a,tw < Cr,a then Lr,a,tw ≤ Lr,a,t+1
w ≤ (1 + εr)2Lr,a,tw

The following Lemma follows immediately from Lemma 18.

I Lemma 19. Consider a worker w such that for some 0 ≤ r < R, 0 ≤ a < Ar,

Lr,a,Brw ≤ Cr,aw
(1 + εr)2

then

aw = (1 + εr)(a+1)Br

i.e. if a worker is significantly underallocated then its weight must have been increased at
every step.

We proceed next to the following key lemma, which says when we break the while loop
for any round r, we actually find a certificate lower bound on the optimal value. The proof of
Lemma 20 bares some similarities with Lemma 12, the difference is that we need to deal with
the case that εr is large. The detailed proof is provided in Appendix A for completeness.

I Lemma 20. For any 0 ≤ r < R, we can find a subset of worker Wr ⊆W such that

|N(Wr)| ≥ |Wr| ·
Cr,Ar

(1 + εr)4 .

We next show that at the end of each round of Proportional Allocation, the load
on any worker can never significantly exceed its target capacity.

I Lemma 21. For all workers w, we have at all timesteps r, a with 0 ≤ r < R, 0 ≤ a ≤ Ar−1

Lr,a,Brw ≤ (1 + εr)5Cr,a+1.

Proof. We prove by induction on (r, a). The base case hold trivially as L0,0,Br
w ≤ dmax =

C0,1(1 + ε0). Suppose the claim holds up to (r, a), it is easy to see it holds for (r, a + 1).
This is due to Lemma 18 and the fact that we stop if Lw ≥ (1 + εr)4C for any worker.

It remains to show that if the claim holds up to (r,Ar − 1), then it also holds for
(r + 1, 0). This would complete the proof. We prove by contradiction. Suppose Lr+1,0,Br

w ≥
(1 + εr)5Cr+1,1, then we know that we need to break out the loop and followed by Lemma 20,
there exists a subset of workers Wr+1 ⊆W such that

|N(Wr+1)| ≥ |Wr+1| ·
Cr+1,1

(1 + εr+1)4
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This actually says that the optimal solution is at least

OPT ≥ Cr+1,1

(1 + εr+1)4 = Cr+1,1

(1 + εr)2 = Cr,Ar (1 + εr)6.

However, by induction, we have that Lr,Ar−1,Br
w ≤ (1 + εr)5Cr,Ar . this says that we actually

have a solution with max load bounded by (1 + εr)5Cr,Ar , i.e., OPT ≤ (1 + εr)5Cr,Ar This
comes to a contradiction and we conclude the proof here. J

I Lemma 22. For 0 ≤ r < R, the optimal solution satisfies

OPT ∈ [(1 + εr)−4Cr,Ar , (1 + εr)5Cr,Ar ]

Proof. The lower bound comes from Lemma 20. The upper bound comes from Lemma 21. J

We can now wrap up the proof of Theorem 17

Proof of Theorem 17. The correctness of the algorithm comes as a direct corollary of
Lemma 22. For the running time, for any 0 ≤ r < R, we claim that Ar ≤ 30. The claim
holds trivially for r = 0 and for r ≥ 1, we have

OPT < (1 + εr)6Cr,Ar = (1 + εr)6−ArCr,0 = (1 + εr−1)3−Ar/2Cr,0

= (1 + εr−1)11−Ar/2Cr−1,Ar−1 ≤ (1 + εr−1)15−Ar/2OPT

The first inequality follows from the upper bound of Lemma 21, the second step follows from
Cr,Ar = (1 + ε)−ArCr,0. The third step follows from the fact that (1 + εr) = (1 + εr−1)1/2,
the fourth step follows from the fact that Cr,0 = (1 + εr−1)8Cr−1,Ar−1 , the last inequality
follows from the lower bound of Lemma 21.

The total number of iterations is then bounded by
R∑
r=0

ArBr ≤ 30
R∑
r=0

Br .
R∑
r=0

log1+εr (n) log1+εr (d/εr) + log1+εr (n)

=
εr≥1∑
r=0

log1+εr (n) log1+εr (d/εr) +
R∑

r:εr≤1
log1+εr (n) log1+εr (d/εr)

.
εr≥1∑
r=0

log1+εr (n) log1+εr (d/εr) +
R∑

r:εr≤1

logn log(d/ε)
ε2r

. logn log d+ logn log(d/ε)
ε2

= O

(
logn log(d/ε)

ε2

)
Thus completing the proof. J
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A Missing proof from Section 5

Proof of Lemma 20. We prove the lemma for a fixed r. Define

F :=
{
w|w ∈W,Lr,Ar−1,Br

w > (1 + εr)4Cr,Ar
}
,

i.e., F is the subset of workers whose load significantly outweigh the target capacity and
break the while loop. For any worker w ∈ F , we assert that its weight aw must decrease
every timestep during the last call to proportional allocation, i.e.,

ar,Ar−1,t+1
w = ar,Ar−1,t

w

1 + εr
∀ 0 ≤ t < Br.

This is because if Lr,Ar−1,t0 < Cr,Ar−1 for some t0, then by Lemma 18, we know that
Lr,Ar−1,t
w ≤ (1 + εr)2Cr,Ar−1 holds for all t ≥ t0, which contradicts with the fact that

Lr,Ar−1,Br
w > (1 + εr)4Cr,Ar . Thus we conclude that

aAr−1,Br
w ≤ (1 + εr)(Ar−1)Br ∀w ∈ F.

For any 0 ≤ j ≤ Br, define

Zj =
{
w|w ∈W,aAr−1,Br

w ≤ (1 + εr)(Ar−1)Br+j
}
.

We note that F ⊆ Z0 ⊆ Z1 · · · ⊆ ZBj = W and therefore Z0 6= ∅.
Since Br = 2 log1+εr (n) log1+εr (d/ε)+8 log1+εr (n), there must exist some index j satisfies

2 log1+εr (d/ε) + 8 ≤ j < Br

and

|Zj | ≤ (1 + εr)|Zj−2 log1+εr (d/ε)−8|. (8)

We set Wr = Zj and will show that |N(Zj)| ≥ |Zj | · Cr,Ar/(1 + εr)4 in the rest of the
proof. For any worker w ∈ Zj−2 log1+εr (d/ε)−8, if worker w is connected to some source s such
that s has another neighbor w′ with w′ /∈ Zj . Then we have

xr,Ar−1,Br
s,w ≤ ar,Ar−1,Br

w

ar,Ar−1,Br
w + ar,Ar−1,Br

w′

≤ (1 + εr)(Ar−1)Br+j−2 log1+εr (d/ε)−8

(1 + εr)(Ar−1)Br+j+1

≤ ε2r
d2(1 + εr)9 ≤

εr
d2(1 + εr)8 .

Hence, the total contributions xr,Ar−1,Br
s,w from all sources s with a neighbor not in Zj to

worker w is at most∑
s∈Nw

Ns∩(W\Zj)6=∅

xr,Ar−1,Br
s,w ≤ εr

d2(1 + εr)8 · d ≤
εr

d(1 + εr)8 . (9)

Consider the restricted graph between the source set N(Zj) and the worker set Zj , for each
worker w ∈ Zj−2 log1+εr (d/ε)−8, by Lemma 19, we know that its load satisfies

Lr,Ar−1,Br
w ≥ Cr,Ar−1

(1 + εr)2 .
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Hence the load of worker w in the restricted graph is at least∑
s∈Nw

Ns∩(W\Zj)=∅

xr,Ar−1,Br
s,w = Lr,Ar−1,Br

w −
∑
s∈Nw

Ns∩(W\Zj)6=∅

xr,Ar−1,Br
s,w

≥ Cr,Ar

(1 + εr)2 −
εr

dmax(1 + εr)8

≥ Cr,Ar

(1 + εr)3 (10)

The second step follows from Eq. (9), the last step follows from Cr,Ar ≥ (1 + εr)−5 holds all
the time.

Thus, we have

|N(Zj)| =
∑
w∈Zj

∑
s∈Nw

Ns∩(W\Zj)=∅

xr,Ar−1,Br
s,w

≥
∑

w∈Zj−2 log1+εr (dmax/ε)−4

∑
s∈Nw

Ns∩(W\Zj)=∅

xr,Ar−1,Br
s,w

≥ |Zj−2 log1+εr (dmax/ε)−4| ·
Cr,Ar

(1 + εr)3

≥ Cr,Ar

(1 + εr)4 · |Zj |.

The third step follows from Eq. (10), the last step follows from Eq. (9). We complete the
proof here. J

B Tightness

Here we present an example showing that our analysis of our algorithm is tight for the case
of the max function even if we know the optimum value in advance. More formally, we
show that starting from a state where all of the weights are initialized to 1 and the precision
parameter is set to ε, running Ω

(
log2 n
ε2

)
iterations of proportional allocation is actually

necessary.
Note here we assume 1/ε = no(1) i.e. the desired tolerance is much larger than n−1.

Consider the following graph G. Let k = 0.5 logn/ε. We have sets S1, S2, . . . , Sk of
sources and sets W1,W2, . . . ,Wk of workers. For all i let

|Si| = |Wi| = (1− ε)iεn.

In G, there is a perfect matching between the vertices of Wi and the vertices of Si for all
1 ≤ i ≤ k. Also, there is a complete bipartite graph between the vertices of Si and Wi+1 for
1 ≤ i ≤ k − 1.

Consider the initial state where all of the sources distribute their load uniformly
among the adjacent workers. In this case the maximum load among all of the workers is

1 + |Sk−1| · |Wk|
|Wk|+ 1 ≥ 2.
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However, in the optimal allocation, each set of sources Si assigns all of its load to the workers
in Wi according to the perfect matching and the maximum load among all of the workers is
1. Now we will show that for some positive constant c, starting from the initial state where
all sources distribute their load uniformly, after c log2 n

ε2 iterations of proportional allocation,
the maximum load among all of the workers is at least 1 + 0.1ε.

First observe that within each set Wi, by symmetry, all of the weights of the workers are
equal at all times. Let wti denote the weight of a worker in Wi after t rounds. If there exists
an i such that

wti ≥ wti−1n
−0.1

then consider the sources in Si−1. The amount of their load going to the workers in Wi is at
least |Si−1|·|Wi|

|Wi|+n0.1 ≥ |Si|. Thus the total load going to workers in Wk ∪Wk−1 ∪ · · · ∪Wi is at
least

|Sk|+ · · ·+ |Si|+ |Si|.

Note that |Sk|, |Sk−1|, . . . , |Si| is a geometric series with ratio 1
1−ε so

|Si| ≥ 0.1ε(|Sk|+ · · ·+ |Si|).

Thus, there is some worker among Wk ∪Wk−1 ∪ · · · ∪Wi with load at least

(1 + 0.1ε)(|Sk|+ · · ·+ |Si|)
(|Wk|+ · · ·+ |Wi|)

= 1 + 0.1ε.

On the other hand, if we have

wti ≤ wti−1n
−0.1

for all i, then the ratio between the smallest and largest weight among all of the workers
must be at least n0.1k. However, this ratio is 1 at the beginning and increases by a factor of
at most (1 + ε)2 each round so the number of rounds must be at least

Ω
(

logn
ε

k

)
= Ω

(
log2 n

ε2

)
.

I Remark 23. Based on this example, an obvious modification would be to adaptively increase
the step size of the proportional allocation updates for certain workers depending on their
current load. However, note that initially all workers that are not in W1 or Wk have load
very close to 1. In other words, for every worker, there is another worker in its two-hop
neighborhood whose load is very close to the optimal load of 1. If we significantly increased
the step size, then we would no longer have the stability conditions (Lemma 7 and Lemma 21)
and our analysis would have to be quite different.
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1 Introduction

The goal of this work is to model and investigate sublinear-time algorithms that run on graphs
with incomplete information. Typically, sublinear-time models assume that algorithms have
query or sample access to an input graph. However, this assumption does not accurately
reflect reality in some situations. Consider, for example, the case of a social network where
vertices represent individuals and edges represent friendships. Individuals might want to hide
their friendship relations for privacy reasons. When input graphs are represented by their
adjacency lists, such missing information can be modeled as erased entries in the lists. In
this work, we initiate an investigation of sublinear-time algorithms whose inputs are graphs
represented by the adjacency lists with some of the entries adversarially erased.

In our erasure-resilient model of sublinear-time graph algorithms, an algorithm gets a
parameter α ∈ [0, 1] and query access to the adjacency lists of a graph with at most an α
fraction of the entries in the adjacency lists erased. We call such a graph α-erased or, when
α is clear from the context, partially erased. Algorithms access partially erased graphs via
degree and neighbor queries. The answer to a degree query v is the degree of the vertex v. A
neighbor query is of the form (v, i), and the answer is the ith entry in the adjacency list of v.
If the ith entry is erased1, the answer is a special symbol ⊥. A completion of a partially erased
graph G is a valid graph represented by adjacency lists (with no erasures) that coincide with
the adjacency lists of G on all nonerased entries. We formulate our computational tasks in
terms of valid completions of partially erased input graphs and analyze the performance of
our erasure-resilient algorithms in the worst case over all α-erased graphs. We investigate
representative problems from two fundamental classes of computational tasks in our model:
graph property testing and estimating a graph parameter.

In the context of graph property testing [15], we study the problem of testing whether a
partially erased graph is connected. Our model is a generalization of the general graph model
of Parnas and Ron [23] (which is in turn a generalization of the bounded degree model of
Goldreich and Ron [16]) to the setting with erasures. A partially erased graph G has property
P (in our case, is connected) if there exists a completion of G that has the property. For
ε ∈ (0, 1), such a graph with m edges (more precisely, 2m entries in its adjacency lists) is ε-far
from P (in our case, from being connected) if every completion of G is different in at least εm
edges from every graph with the property. The goal of a testing algorithms is to distinguish,
with high probability, α-erased graphs that have the property from those that are ε-far. For
testing connectedness in our erasure-resilient model, we discover a threshold phenomenon:
when the fraction of erasures is less than ε, this property can be tested efficiently (in time
independent of the size of the graph); when the fraction of erasures is at least ε, then a number
of queries linear in the size of the graph is required to test connectedness. Additionally, when
there are no erasures, our tester has better query complexity than the best previously known
standard tester for connectedness [23, 5], also mentioned in the book on property testing
by Goldreich [14]. Our tester has optimal dependence on ε, as evidenced by a recent lower
bound in [21] for this fundamental property.

Next, we study erasure-resilient algorithms for estimating the average degree of a graph.
The problem of estimating the average degree of a graph, in the case with no erasures,
was studied by Feige [13], Goldreich and Ron [17], and Eden et al. [9, 10]. Feige designed
an algorithm that, for all ε > 0, makes O(

√
n/ε) degree queries to an n-node graph and

outputs, with high probability, an estimate that is within a factor of 2 + ε of the average

1 One can consider a more general model where the degrees of some vertices can also be erased. Our
algorithms continue to work in this model, since one can determine the degree of a vertex using O(logn)
neighbor queries (irrespective of whether these queries are made to erased adjacency entries).
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degree. He also showed that to get a 2-approximation, one needs Ω(n) degree queries.
Goldreich and Ron proved that if an algorithm can make uniformly random neighbor queries
(that is, obtain a uniformly random neighbor of a specified vertex) then, for all ε > 0, the
average degree can be estimated to within a factor of 1 + ε using O(

√
n · poly(logn, 1/ε))

queries. Eden et al. proved a tighter bound of O(
√
n · log logn · poly(1/ε)) on the query

complexity of this problem and provided a simpler analysis. We describe an algorithm that
estimates the average degree of α-erased graphs to within a factor of 1 + min(2α, 1) + ε

using O(
√
n · log logn · poly(1/ε)) queries. Our result can be thought of as an interpolation

between the results in [13] and [17, 9, 10]. In particular, when there are no erasures, that is,
when α = 0, we get a (1 + ε)-approximation; when all adjacency entries are erased, and only
the degree queries are useful, that is, when α = 1, we obtain a (2 + ε)-approximation. We
also show that our result cannot be improved significantly: to get a (1 + α)-approximation,
Ω(n) queries are necessary.

Discussion of our model

For the case of graph property testing, our model is an adaptation of the erasure-resilient
model for testing properties of functions by Dixit et al. [7]. Dixit et al. designed erasure-
resilient testers for many properties of functions, including monotonicity, the Lipschitz
property, and convexity. The conceptual difference between the two models is that the
adjacency lists representation of a graph cannot be viewed as a function. (This is not the
case for the adjacency matrix representation.) For a function, erased entries can be filled
in arbitrarily and, as a result, they never contribute to the distance to the property. For
the adjacency lists representation, this is not the case: erasures have to be filled so that the
resulting completion is a valid graph. The restrictions on how they can be filled may result
in some contribution to the distance coming from the erased entries2. For example, consider
the property of bipartiteness. Let B be a complete balanced bipartite graph (U, V ;E), and
let B′ be obtained from B by adding an erased entry to the adjacency list of every vertex in
U . Then, in every completion of B′, all formerly erased entries have to be changed to make
the graph bipartite.

Furthermore, Dixit et al. [7] gave results only on property testing in the erasure-resilient
model. We go beyond property testing in our exploration of erasure-resilient algorithms by
considering more general computational tasks.

Finally, our model opens up many new research directions, some of which are discussed
in Section 4.

1.1 The Model
We consider simple undirected graphs G = (V,E) represented by adjacency lists, where some
entries in the adjacency lists could be adversarially erased (these entries are denoted by ⊥).

I Definition 1.1 (α-erased graph; completion). Let α ∈ [0, 1] be a parameter. An α-erased
graph on a vertex set V is a concatenation of the adjacency lists of a simple undirected graph
(V,E) with at most an α fraction of all entries (that is, at most 2α|E| entries) in the lists
erased. A completion of an α-erased graph G is the adjacency lists representation of a simple
undirected graph G′ that coincides with G on all nonerased entries.

2 Because of this, we make an adjustment to the model of Dixit et al. [7]: we measure the distance to the
property as a fraction of the completion representation that needs to be changed, as opposed to the
fraction of the nonerased representation that needs to be changed.

ITCS 2021
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By definition, every partially erased graph has a completion, because it was obtained by
erasing entries in a valid graph.

Given a partially erased graph G over a vertex set V , we use n to denote |V | and m to
denote the number of edges in any completion of G, that is, half the sum of lengths of the
adjacency lists of all the vertices in G. The average degree, that is, 2m/n, is denoted by d.
For u ∈ V , we use Adj(u) to denote the adjacency list of u. The degree u, denoted deg(u), is
the length of Adj(u).

I Definition 1.2 (Nonerased and half-erased edges). Let G be a partially erased graph over a
vertex set V . For vertices u, v ∈ V , the set {u, v} is a nonerased edge in G if u is present in
Adj(v) and vice versa. The set {u, v} is a half-erased edge if u is in Adj(v) but v is not in
Adj(u), or vice versa.

Our algorithms make two types of queries: degree queries and neighbor queries. A degree
query specifies a vertex v, and the answer is deg(v). A neighbor query specifies (v, i), and
the answer is the ith entry in Adj(v).

I Definition 1.3 (Distance to a property; erasure-resilient property tester). Let α ∈ [0, 1],
ε ∈ (0, 1) be parameters. An α-erased graph G satisfies a property P if there exists a
completion of G that satisfies P. An α-erased graph G is ε-far from a property P if every
completion G′ of G is different in at least εm edges from every graph that satisfies P.

An α-erasure-resilient ε-tester for a property P gets parameters α ∈ [0, 1], ε ∈ (0, 1) and
query access to an α-erased graph G. The tester accepts, with probability at least 2/3, if G
satisfies P. The tester rejects, with probability at least 2/3, if G is ε-far from P.

1.2 Our Results
In this section, we state our main results for the erasure-resilient model of sublinear-time
algorithms.

1.2.1 Testing Connectedness
The problem of testing connectedness in the general graph model (that we further generalize
to the erasure-resilient setting) was studied by Parnas and Ron [23]. The results on this
fundamental problem are described in Section 10.2.1 in [14]. The best tester for this problem
to date, due to [5], had query complexity O

( 1
(εd)2

)
.

We give two erasure-resilient testers for connectedness: one for small values of α and
another for intermediate values of α. Both testers work for all3 values of the proximity
parameter, ε. We first give a tester that works for all α < ε/2. (This tester is presented in
Section 2.1.)

I Theorem 1.4. There exists an α-erasure-resilient ε-tester for connectedness of graphs
with the average degree d that has O

(
min

{ 1
((ε−2α)d)2 ,

1
ε−2α log 1

(ε−2α)d

})
query and time

complexity and works for every ε ∈ (0, 2/d) and α ∈ [0, ε/2). The tester has 1-sided error.
When the average degree d of the input graph is unknown, α-erasure-resilient ε-testing of
connectedness (with 1-sided error) has query and time complexity O( 1

ε−2α log 1
ε−2α ).

3 For ε ≥ 2/d, we have εm ≥ n. Then testing connectedness is trivial, since every graph can be made
connected by adding at most n− 1 edges.
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Importantly, when the input adjacency lists have no erasures (i.e., when α = 0), our
tester has better query complexity than the previously known best (standard) tester for
connectedness, which was due to [5]. We present a standalone algorithm for this important
special case in the full version of this article [20]. By substituting α = 0 in Theorem 1.4, we
get O

(
min

{ 1
(εd)2 ,

1
ε log 1

εd

})
query complexity for the case when d is known and O( 1

ε log 1
ε )

query complexity when d is unknown. For the case with no erasures, the improvement in
query complexity as a function of ε is from O( 1

ε2 ) to O( 1
ε log 1

ε ). The latter is optimal, as
evidenced by an Ω( 1

ε log 1
ε ) lower bound for testing connectedness of graphs of degree 2 in [21].

We note that Berman et al. [5] already proved that testing connectedness of graphs (with
no erasures) in the bounded degree graph model of [16] has query complexity O( 1

ε log 1
εD )

where D denotes the degree bound. Our result shows that the same query complexity (with
D replaced by d) is attainable in the general graph model.

Our first tester looks for small connected components that do not have any erasures.
When α ∈ [ε/2, ε), some α-erased graphs that are ε-far from connected may not have any
connected component that is free of erasures. Consequently, our first tester fails to reject such
graphs. We give a different algorithm (presented in Section 2.2) which works by looking for
a subset of vertices that has at most one erasure and gets completed to a unique connected
component in every completion of the partially erased graph. (In the beginning of Section 2.2,
we give an explanation, illustrated by Figure 1, of why two erasures in a witness may render
it not detectable from a local view obtained by a sublinear algorithm.)

I Theorem 1.5. There exists an α-erasure-resilient ε-tester for connectedness of graphs with
the average degree d that has O

( 1
(ε−α)2·d

·min
{ 1

(ε−α)·d2 , 1
})

query and time complexity and

works for every ε ∈ (0, 2/d) and α ∈ [0, ε). The tester has 1-sided error.

Finally, we show that when α ≥ ε, the task of α-erasure-resilient ε-testing of connectedness
requires examining a linear portion of the graph representation. That is, we discover a phase
transition in the complexity of this problem when the fraction of erasures α reaches the
proximity parameter ε.

I Theorem 1.6. For all ε ∈ (0, 1/7], every ε-erasure-resilient ε-tester for connectedness that
makes only degree and neighbor queries requires a number of queries linear in the size of the
graph representation.

To prove this theorem, we construct (in Section 2.3) a family of partially erased graphs
for which it is hard to distinguish connected graphs from graphs that are far from connected.
The average degree of the graphs in our constructions is constant. So, the lower bound for
this graph family is Ω(n) = Ω(m).

1.2.2 Estimating the Average Degree

In Section 3.1, we give an erasure-resilient algorithm for estimating the average degree by
generalizing the algorithm of Eden et al. [9, 10] to work for the case with erasures.

I Theorem 1.7. Let α ∈ [0, 1] and ε ∈ (0, 1/2). There exists an algorithm that makes
O(
√
n · log logn · poly(1/ε)) degree queries and uniformly random neighbor queries to an

α-erased input graph of average degree d ≥ 1 and outputs, with probability at least 2/3, an
estimate d̃ satisfying (1 − ε) · d < d̃ < (1 + 2 min(α, 1

2 ) + ε) · d. The running time of the
algorithm is the same as its query complexity.

ITCS 2021
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For graphs with no erasures, a good estimate of the number of edges gives a good estimate
of the average degree. Feige’s algorithm [13] (that has access only to degree queries) counts
some edges twice and gets an estimate of the average degree that is within a factor of 2 + ε.
Goldreich and Ron [17] and Eden et al. [9, 10] avoid the issue of double-counting by ranking
vertices according to their degrees and estimating, within a factor of 1 + ε, the number of
edges going from lower-ranked to higher-ranked vertices. These algorithms use degree queries
and uniformly random neighbor queries. Having erasures in the adjacency lists is, in a rough
sense, equivalent to not having access to some of the neighbor queries. This results in the
additional 2α error term in the approximation guarantee. Consequently, when the fraction of
erasures approaches 1/2, all the “relevant” entries in the adjacency lists of the input graph
could be erased, and we enter the regime of having access only to degree queries.

In Section 3.2, we show that, for any fraction α ∈ (0, 1], estimating the average degree
of an α-erased graph to within a factor of (1 + α) requires Ω(n) queries. In other words,
the approximation ratio of our erasure-resilient algorithm for estimating the average degree
cannot be improved significantly.

I Theorem 1.8. Let α ∈ (0, 1] be rational. For all γ < α, at least Ω(n) queries are necessary
for every algorithm that makes degree and neighbor queries to an α-erased graph with the
average degree d and outputs, with probability at least 2/3, an estimate d̃ ∈

[
d, (1 + γ)d

]
.

1.3 Research Directions and Further Observations

There are numerous research questions that arise from our work. In Section 4, we discuss
some of them and also give additional observations about variants of our model. We mention
open questions about another (weaker) threshold in erasure-resilient testing of connectedness,
about erasure-resilient testing of monotone graph properties, about the relationship between
testing with erasures and testing with errors, and about the variant of our model that allows
only symmetric erasures. We show that some of the questions we discuss are open in our
model, but easy in the bounded-degree version of our model.

1.4 Related Work

Erasure-resilient sublinear-time algorithms, in the context of testing properties of functions,
were first investigated by Dixit et al. [7], and further studied by Raskhodnikova et al. [25],
Pallavoor et al. [22], and Ben-Eliezer et al. [3].

Property testing in the general graph model was first studied by Parnas and Ron [23],
who considered a relaxed version of the problem of testing whether the input graph has small
diameter. Kaufman et al. [19] studied the problem of testing bipartiteness in the general
graph model and obtained tight upper and lower bounds on its complexity.

Sublinear-time algorithms for estimating various graph parameters have also received
significant attention. There are sublinear-time algorithms for estimating the weight of a
minimum weight spanning tree [6], the number of connected components [6, 4], the average
degree [13, 17], the average pairwise distance [17], moments of the degree distribution [18, 9],
and subgraph counts [18, 8, 11, 12, 1, 2].
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2 Erasure-Resilient Testing of Connectedness

In this section, we present our results on erasure-resilient testing of connectedness in graphs.

2.1 An Erasure-Resilient Connectedness Tester for α < ε/2
In this section, we present our connectedness tester for small α and prove Theorem 1.4. The
tester looks for witnesses to disconnectedness in the form of connected components with no
erasures. It repeatedly performs a breadth first search (BFS) from a random vertex until it
finds a witness to disconnectedness or exceeds a specified query budget.

A simple counting argument shows that if a partially erased graph is far from connected
then it has many small witnesses to disconnectedness. Moreover, the size of the average
witness among them is at most some bound b (that we calculate later). Our tester uses BFS
to detect a witness to disconnectedness of size at most b.

The best tester for connectedness to date, by Berman et al. [5], uses a technique called
the work investment strategy. Specifically, their algorithm repeatedly samples a uniformly
random vertex v, guesses the size of the witness to disconnectedness C(v) containing v, and
then performs a BFS from v for |C(v)|2 queries. Clearly, |C(v)|2 queries are enough to detect
C(v). Using the fact that the expected size of a witness is b, they argue that their algorithm
has complexity O(b2).

The new idea in our connectedness tester is to perform the BFS from a uniformly random
vertex v for |C(v)| · deg(v)/2 queries. The expected value of the latter quantity is bounded by
E(v), where E(v) denotes the number of edges in the witness containing v, and the expectation
is over the choice of a uniformly random vertex from C(v). That is, in expectation, the
number of queries that we invest into the BFS from v is enough to detect C(v). We show
that, overall, the expected complexity of this algorithm is Õ(b · d), which is smaller than
O(b2) when b > d.

Our erasure-resilient tester is Algorithm 1, with a small standard modification to ensure
that the stated complexity bounds hold in the worst case (not just in expectation). It is
obtained by running the algorithm of Berman et al. (generalized to handle erasures) when
b < d and running the above algorithm otherwise.

Before stating the algorithm, we formalize the notion of the witness to disconnectedness
and argue that partially erased graphs that are far from being connected have many witnesses
to disconnectedness.

I Definition 2.1 (Witness to disconnectedness). A set C of vertices is a witness to disconnect-
edness in a partially erased graph G if the adjacency lists of vertices in C have no erasures,
and C forms a connected component in every completion of G.

I Observation 2.2. Let ε ∈ (0, 2/d) and G′ be an m-edge graph (with no erasures) that is
ε-far from connected. Then G′ has at least εm+ 1 connected components.

Next, in Claim 2.3, we argue that if the fraction of erasures is small, many of the connected
components present in a completion G′ are also present as witnesses to disconnectedness
in G.

B Claim 2.3. Let ε ∈ (0, 2/d) and α ∈ [0, ε/2). The number of witnesses to disconnectedness
in an α-erased graph G that is ε-far from connected is at least (ε− 2α)m.

Proof. By Observation 2.2, every completionG′ ofG has at least εm+1 connected components.
The number of connected components in G′ with at least one erased entry in the union of
its adjacency lists (with respect to G) is at most 2αm. Hence, the number of connected
components in G′ that do not have any erased entry in the union of its adjacency lists (with
respect to G) is at least εm− 2αm = (ε− 2α)m. The claim follows. C

ITCS 2021
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Let b = 2/((ε− 2α) · d). By Claim 2.3, the size of the average witness to disconnectedness
is at most b. Now we are ready to state Algorithm 1.

Algorithm 1 Erasure-Resilient Connectedness Tester for α < ε/2.

input :The average degree d, parameters ε ∈ (0, 2/d), α ∈ [0, ε/2); query access to
an α-erased graph G.

1 Let b← 2/((ε− 2α) · d). // the average size of a witness is at most b

2 for i ∈ [dlog(4b)e] do
3 repeat

⌈ 4b ln 6
2i

⌉
times

4 Sample a vertex v uniformly and independently at random.
5 if b ≤ d log b then
6 Run a BFS from v until it encounters an erased entry or (2i + 1) vertices.

else
7 Query deg(v);
8 Run a BFS from v until it encounters an erased entry or (2i−1 · deg(v) + 1)

edges.
9 if the BFS explored an entire connected component and didn’t encounter an

erasure then reject.
10 Accept.

Clearly, Algorithm 1 accepts all connected partially erased graphs.

I Lemma 2.4. Let ε ∈ (0, 2/d) and α ∈ [0, ε/2). Let G be an α-erased graph that is ε-far
from connected. Then Algorithm 1 rejects G with probability at least 5/6.

Proof. Let V be the vertex set of G. We start by defining the quality of a vertex v ∈ V .
The definition is different for the two cases, corresponding to the two stopping conditions
Algorithm 1 uses for BFS. First, we consider the case when b ≤ d · log b, that is, when
Algorithm 1 runs the version of BFS specified in Step 6.

I Definition 2.5 (Quality of a vertex when b ≤ d·log b). The quality of a vertex v, denoted q(v),
is defined as follows. If v belongs to a witness to disconnectedness in G then q(v) = 1/|C(v)|,
where C(v) denotes the witness to disconnectedness that v belongs to. Otherwise, q(v) = 0.

The important feature of q(v) is that, for a witness C to disconnectedness,
∑
v∈C q(v) = 1.

Next, we define the quality of a vertex for the case when b > d · log b, that is, when
Algorithm 1 runs the version of BFS specified in Step 8.

I Definition 2.6 (Quality of a vertex when b > d · log b). Fix a completion G′ of G. For a
vertex v ∈ V , let C(v) denote the connected component (in G′) containing v, and let E(v)
denote the number of edges in C(v). The quality of a vertex v, denoted q(v), is defined as

q(v) =


0 if C(v) contains at least one erased entry in G,
deg(v)
2E(v)

if E(v) > 0,
1 if E(v) = 0.

Like for q(v) from Definition 2.5, for a witness C to disconnectedness,
∑
v∈C q(v) = 1.
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The rest of the proof of Lemma 2.4 is the same for both cases. We analyze the expected
quality of a uniformly random vertex v ∈ V . Since

∑
v∈C q(v) = 1, by Claim 2.3,

E
v∈V

[q(v)] = 1
n

∑
v∈V

q(v) = 1
n

∑
C:C is a witness

to disconnectedness

1 ≥ (ε− 2α)m
n

= 1
b
.

Finally, we apply the following work investment strategy lemma [5, Lemma 2.5].

I Lemma 2.7 ([5]). Let X be a random variable that takes values in [0, 1]. Suppose
E[X] ≥ β, and let t = dlog(4/β)e. For all i ∈ [t], let pi = Pr[X ≥ 2−i] and ki = 4 ln 6

2iβ . Then∏t
i=1(1− pi)ki ≤ 1

6 .

We apply Lemma 2.7 with X equal to q(v) for a uniformly random v ∈ V . Set β = 1/b
and t = dlog(4/β)e. For i ∈ [t], set pi to be the probability that a vertex v sampled uniformly
at random belongs to a witness to disconnectedness of G that has at most (i) 2i vertices,
when b ≤ d · log b; (ii) 2i−1 · deg(v) edges, otherwise. That is, pi = Pr[X ≥ 2−i]. Similarly,
for i ∈ [t], let ki = 4 ln 6

2iβ . Then the probability that Step 9 of the tester does not reject is∏t
i=1(1− pi)ki . By Lemma 2.7, this step rejects with probability at least 5/6. J

Proof of Theorem 1.4. We start by analyzing the query and time complexity of Algorithm 1.
Case 1: When b ≤ d · log b, the query and time complexity of Algorithm 1 is∑

i∈[dlog(4b)e]

⌈
4b ln 6

2i

⌉
· 22i = O

(
b2) = O(min{b2, bd · log b}).

Case 2: When b > d · log b, the expected query and time complexity of Algorithm 1 is∑
i∈[dlog 4be]

⌈
4b ln 6

2i

⌉
· 2i · E

s∈V
[deg(s)] = O(bd log b) = O(min{b2, bd · log b}).

Substituting the value of b, we get

O(min{b2, bd · log b}) = O

(
min

{
1

((ε− 2α)d)2
,

1
ε− 2α log 1

(ε− 2α)d

})
.

The final tester is obtained by running Algorithm 1 and then aborting and accepting if the
number of queries exceeds six times its expectation. The final tester then has the query
complexity and the running time stated in Theorem 1.4.

The final tester never rejects a connected partially erased graph. However, a partially
erased graph that is ε-far from connected can get accepted incorrectly if Algorithm 1 accepts
it or if the final algorithm aborts. The probability of the former event is at most 1/6, by
Lemma 2.4. The probability of aborting is also at most 1/6, by Markov’s inequality. By a
union bound, the final algorithm accepts incorrectly with probability at most 1/3, completing
the proof of the theorem for the case when d is given to the algorithm.

We can adjust the algorithm to work without access to the average degree at a small cost
in query and time complexity. The details appear in the full version [20]. J

2.2 Our Erasure-Resilient Connectedness Tester for α ∈ [ε/2, ε)
In this section, we prove Theorem 1.5. We describe and analyze a 1-sided error α-erasure-
resilient ε-tester for connectedness that can work with more erasures in the input graph than
Algorithm 1 can handle. Specifically, the tester works for all α < ε. However, it has better
performance than Algorithm 1 only for α ∈ [ε/2, ε).

ITCS 2021
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v1 v2 v3 v4 v5 v6

Figure 1 An example of a component with
two erasures, where a BFS from any vertex fails
to detect that this component is disconnected
from the rest of the graph.

v1 v2 v3 v4 v5 v6

Figure 2 An example of a generalized witness
to disconnectedness, where only a BFS from
v1 (but not from any other vertex) detects the
generalized witness.

A dotted line represents an erasure in the adjacency list of the corresponding vertex. An arrow
pointing from a vertex a in the direction of a vertex b represents that b ∈ Adj(a), but a /∈ Adj(b).

When α > ε/2, an α-erased graph that is ε-far from being connected may not contain
any witnesses to disconnectedness as defined in Section 2.1. Specifically, every set C of nodes
that gets completed to a connected component could have an erasure in the union of the
adjacency lists of the nodes in C. To get around this issue, our tester looks for a generalized
witness to disconnectedness, which is, intuitively, a connected component with at most one
erasure. Observe that a component with two erasures could have a unique completion, but
impossible to certify as a separate connected component from the local view from any of its
vertices. Figure 1 shows an example of a small component, where a BFS from any vertex
will be unable to certify that the graph is disconnected.

Our tester repeatedly performs a BFS from a random vertex until it detects a generalized
witness to disconnectedness, or exceeds a specified query budget. We show, by a counting
argument, that every partially erased graph that is far from connected has several small
generalized witnesses to disconnectedness. The correctness of the tester is ensured by the
observation that each such witness C contains at least one vertex from which all the other
vertices in C are reachable. (It is possible to have exactly one vertex in C from which all the
other vertices are reachable. Figure 2 shows an example of a connected component, where a
BFS can detect the generalized witness to disconnectedness only if started at vertex v1, but
will fail to do so from all other vertices.)

Before we state our tester, we formalize the notion of generalized witnesses.

I Definition 2.8 (Generalized witness to disconnectedness). Given a partially erased graph G
over a vertex set V , a set C ⊂ V is a generalized witness to disconnectedness of G if
1. there is at most one erased entry (⊥) in

⋃
v∈C Adj(v),

2. every nonerased entry in
⋃
v∈C Adj(v) is a vertex from C,

3. if ⊥ ∈ Adj(u) for some u ∈ C then u ∈ Adj(v) but v /∈ Adj(u) for some v ∈ C; moreover,
each node in C is reachable via a BFS from v.

Definition 2.8 implies that the only erasure, if any, in the union of the adjacency lists
of the nodes in C is part of a half-erased edge within C, and that C forms a connected
component in every completion of G.

Let b = 4/((ε− α)d). Our tester is presented in Algorithm 2. In the rest of the section,
we analyze the correctness and complexity of the tester.

I Definition 2.9 (Small and big sets). Let G be a partially erased graph and let ε? ∈ (0, 2/d)
be a parameter. The representation length of a set C of nodes is the sum of lengths of the
adjacency lists of nodes in C. The set C is ε?-small if either

ε? ≥ 4/d2 and C contains at most 4/(ε? · d) vertices, or
ε? < 4/d2 and C has representation length at most 4/ε?.

The set C is ε?-big otherwise.

Claim 2.10 shows that a partially erased graph that is far from connected has sufficiently
many small generalized witnesses to disconnectedness.
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Algorithm 2 Erasure-Resilient Connectedness Tester for α ∈ [ε/2, ε).

input :The average degree d, parameters ε ∈ (0, 2/d), α ∈ [0, ε); query access to an
α-erased graph G.

1 Let b← 4/((ε− α)d).
2 repeat db ln 3e times
3 Sample a vertex s uniformly and independently at random.
4 Run a BFS starting from s using at most min{b2, b · d} neighbor queries.
5 if Step 4 detected a generalized witness to disconnectedness then
6 Reject.
7 Accept.

B Claim 2.10. Let ε ∈ (0, 2/d), α ∈ [0, ε). Let G be an α-erased graph that is ε-far from
connected. The number of (ε− α)-small generalized witnesses to disconnectedness of G is at
least (ε− α)m/2.

Proof. We first argue that there are many small connected components in every completion
G′ of G and then prove that many of these are generalized witnesses in G.

Consider a completion G′ of G. If ε − α ≥ 4/d2, the number of (ε − α)-big connected
components in G′ is at most n/b = (ε− α)m/2. If ε− α < 4/d2, the number of (ε− α)-big
connected components in G′ is at most 2m/(b · d) = (ε− α)m/2, since the representation
length of the vertex set V of G is 2m. By Observation 2.2, the total number of connected
components in G′ is at least εm+1. Hence, the number of (ε−α)-small connected components
in G′ is at least (ε+ α)m/2.

Let C ⊂ V denote the set of vertices corresponding to an (ε − α)-small connected
component in G′. If

⋃
v∈C Adj(v) has no erasures, then C is a generalized witness to

disconnectedness of G. Next, assume that
⋃
v∈C Adj(v) has exactly one erasure. We show

that the set C is a generalized witness to disconnectedness of G. Condition 1 is satisfied
by definition. Condition 2 is true since C forms a connected component in G′. To see
that Condition 3 holds, let u ∈ C be the vertex with ⊥ ∈ Adj(u). Since C is a connected
component in G′, this erased entry was completed with the label of another vertex v ∈ C.
Moreover, every vertex in C is reachable by a BFS from v, since C forms a connected
component in G′, and the erased entry is not needed for these searches because it would lead
back to v. Therefore, C is a generalized witness to disconnectedness of G if

⋃
v∈C Adj(v) has

exactly one erasure.
Among the (ε−α)-small connected components in G′, at most αm have at least 2 erased

entries in the union of their adjacency lists. Hence, the number of (ε− α)-small generalized
witnesses to disconnectedness of G is at least ((ε+ α)m/2)− αm = (ε− α)m/2. C

Lemma 2.11 below implies Theorem 1.5.

I Lemma 2.11. For every ε ∈ (0, 2/d) and α ∈ [0, ε), Algorithm 2 is an α-erasure-resilient
ε-tester for connectedness of graphs with the average degree d. It has O(b2d ·min{b/d, 1})
query and time complexity.

Proof. Consider an α-erased graph G over a vertex set V . Assume that G is connected,
that is, there exists a connected completion G′ of G. Consider an arbitrary C ⊂ V . There
exist vertices u ∈ C and v ∈ V \ C such that Adj(u) in G′ contains v. Hence, C is not a
generalized witness to disconnectedness of G. Therefore, the tester accepts G.

ITCS 2021
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v
⋆v

⋆

G
+

G
−

Figure 3 The partially erased graphs G+ and G− described in the proof of Theorem 1.6. The
dotted lines represent erased entries in the adjacency lists of the corresponding vertices. In G+, the
directed edges from v? point to the vertices in its adjacency list. The circles represent cycles.

Next, assume that G is ε-far from connected. Let W denote the family of all (ε − α)-
small generalized witnesses to disconnectedness of G. Let C ⊂ V be an element of W. If
ε − α ≥ 4/d2, the representation length of C is at most b2 ≤ b · d. If ε − α < 4/d2, the
representation length of C is at most b·d < b2. Hence, the representation length of C is at most
min{b2, b · d}. If

⋃
v∈C Adj(v) has no erasures then every vertex in C is reachable from every

other vertex in C. Otherwise, the vertex v in Condition 3 of Definition 2.8 is such a vertex. If
Algorithm 2 performs a BFS from v, it will detect a generalized witness to disconnectedness
after at most min{b2, b · d} queries and reject. Since |W| ≥ (ε− α)m/2 and each generalized
witness in W has at least one vertex from which the generalized witness is detectable by a
BFS, a single iteration of Algorithm 2 rejects with probability at least |W|/n = 1/b. Hence,
Algorithm 2 rejects with probability at least 1− (1− (1/b))db ln 3e ≥ 1− exp(− ln 3) = 2/3.

Step 4 of Algorithm 2 makes at most min{b2, bd} queries. Thus, the query complexity
of Algorithm 2 is O(b ·min{b2, bd}), which simplifies to the claimed expression. Checking
(in Step 5) whether a set C is a generalized witness to disconnectedness can be done with a
constant number of passes over the adjacency lists of vertices in C. Since the algorithm queried
all entries in them, its running time is asymptotically equal to its query complexity. J

2.3 A Lower Bound for Erasure-Resilient Connectedness Testing
In this section, we prove Theorem 1.6. We note that hard graphs in our construction have
constant average degree. That is, for those graphs, our lower bound is Ω(n) = Ω(m).

Proof of Theorem 1.6. We apply Yao’s minimax principle, as stated in [26]. Specifically,
we construct distributions D+ and D−, the former over connected graphs and the latter
over graphs that are ε-far from connected, such that every deterministic ε-erasure-resilient
ε-tester for connectedness makes Ω(m) queries to distinguish the two distributions.

Without loss of generality, assume that t = (1− ε)/(2ε) is an integer. Observe that t ≥ 3
as ε ≤ 1/7. Let k be an even number and n = kt+ 1. We first construct two partially erased
n-node graphs G+ and G−, depicted in Figure 3. The vertices of G+ are partitioned into
k + 1 sets. Each of the first k sets induces a t-node cycle. Exactly one node in each cycle
has degree 3 and has an erasure in its adjacency list, in addition to its two neighbors on
the cycle. The last set contains a single node v? of degree k. Its adjacency list contains the
labels of the degree-3 vertices in the cycles. The graph G− is the same as G+, except that in
G−, we have that Adj(v?) is empty, that is, v? is isolated.
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We can obtain a connected completion ofG+ by connecting the vertex v? to all the degree-3
vertices. In contrast, at least k/2 edges need to be added to every completion of G− to make it
connected. Hence, the distance from G− to connectedness is (k/2)/(kt+k/2) = 1/(2t+1) = ε.

The fraction of erased entries in the adjacency lists of G+ and G− are 1/(2t + 2) and
1/(2t+ 1), respectively. That is, G+ and G− are both α-erased graphs for α = 1/(2t+ 1) = ε.

The distributions D+ and D− are uniform over the sets of all partially erased graphs
isomorphic to G+ and G−, respectively. Each partially erased graph sampled from D+ is
connected. Each partially erased graph sampled from D− is ε-far from connected.

B Claim 2.12. Every deterministic algorithm A has to make Ω(n) queries to distinguish D+

and D− with probability at least 2/3.

Proof. Let q denote the number of queries made by A and assume q ≤ n/6. In this proof,
we use v? as a shorthand for the vertex from the singleton set in the construction of D+

and D−, as opposed to the label of that vertex. Since D+ and D− differ only on v?, it is
important to understand when A gets any information about v?.

I Definition 2.13 (Node status). Given a sequence of queries made by A and answers it has
received so far, a node v is known if it has been queried (via a degree or neighbor query) or
received as an answer to a (neighbor) query; otherwise, it is unknown.

The node v? is unknown before A makes its first query. Since v? cannot be received as an
answer to a query for the graphs in the support of D+ and D−, it can become known only if
A queries an unknown node that happens to be v?. At most two new nodes become known
per query. So, the probability (over the distribution D+ or D−) that a specific unknown
node queried by A turns out to be v? is at most 1/(n− 2q). Let p denote the probability
that v? becomes known by the end of an execution of A. By a union bound over all queries
made by A, we have, p ≤ q

n−2q ≤
n/6

n−n/3 = 1
4 .

If v? is unknown by the end of a particular execution then the view of the partially
erased graph obtained by A in that execution arises with the same probability under D+ and
under D−. Such an execution of A can distinguish D+ and D− with probability at most 1/2.
Therefore, the probability that A distinguishes D+ and D− is at most p+(1−p)· 12 = 1

2 + p
2 <

2
3 .
C

In our construction, m = Θ(n). Thus, every ε-erasure-resilient ε-tester for connectedness
that uses only degree and neighbor queries must make Ω(m) queries in the worst case over
the input graph, completing the proof of Theorem 1.6. J

3 Estimating the Average Degree of a Graph

In this section, we present our results on erasure-resilient estimation of the average degree of
graphs.

3.1 An Algorithm for Estimating the Average Degree
In this section, we describe and analyze the algorithm (claimed in Theorem 1.7) for estimating
the average degree of (or, equivalently, the number of edges in) a partially erased graph. Our
algorithm is a generalization of the algorithm for counting the number of edges in graphs
by Eden et al. [9, 10] to the case of partially erased graphs. We first give an algorithm
(Algorithm 3) that takes a crude estimate of the average degree as input and outputs a
more accurate estimate. Using a standard technique similar to the binary search, our final
algorithm uses Algorithm 3 as a subroutine to gradually refine its estimate of the average
degree. The final algorithm and the complete proof of Theorem 1.7 appear in the full version.
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Algorithm 3, like the algorithm of Eden et al. [9, 10], works by empirically estimating
a random variable whose expectation is close to the number of edges in the graph. We
first rank vertices according to their degrees, breaking ties arbitrarily. Then we orient the
nonerased edges of the graph from lower-ranked to higher-ranked endpoints. This orientation
allows us to attribute each nonerased edge to its lower-ranked endpoint in order to avoid
double-counting the edge. Since the number of edges between high-degree vertices is small,
we ignore such edges. Algorithm 3 samples low-degree vertices uniformly at random and
estimates, via sampling, the number of edges “credited” to them.

The crucial difference in the behavior of the algorithm in the case of partially erased
graphs is the following. When we sample an erased entry from the adjacency list of a
low-degree vertex u, we assume that it gets completed to a vertex ranked higher than u

and, therefore, attribute the corresponding edge to u. Consequently, some erased edges get
counted twice. This results in the additional term depending on the fraction of erasures in
the approximation guarantee.

The ranking of (or the total ordering on) the vertices of a graph is defined below.

I Definition 3.1 (Total ordering ≺). In a partially erased graph G, for any two vertices
u, v, we write u ≺ v if either deg(u) < deg(v), or deg(u) = deg(v) and u is lexicographically
smaller than v.

Algorithm 3 Erasure-Resilient Algorithm for Improving an Estimate of Average Degree.

input :Parameters ε ∈ (0, 1/2), δ ∈ (0, 1/3); query access to a partially erased
graph G on n nodes; a crude estimate d̂ of the average degree of G.

1 Set s←
⌈
660 ln(2/δ)

√
n

ε5·d̂

⌉
.

2 for i = 1 to s do
3 Sample a node u from V uniformly at random and query its degree, deg(u).
4 Query a uniformly random entry from Adj(u) and let v be the answer.
5 If v 6= ⊥ then query its degree, deg(v).

6 if deg(u) ≤ 4
√
nd̂/ε and either v = ⊥ or u ≺ v then

7 χi ← deg(u)
else

8 χi ← 0

9 return d̃ = 2 · 1
s

s∑
i=1

χi .

I Lemma 3.2. Let G be an α-erased n-node graph with the average degree d ≥ 1. Let d̂ be a
crude estimate of the average degree, given as an input to Algorithm 3. Then the output d̃ of
Algorithm 3 satisfies the following:
1. If d̂ ≥ d

8 then, with probability at least 3/4, we have d̃ ≤ 8d.
2. Furthermore, if d8 ≤ d̂ ≤ 8d then with probability at least 1− δ,

(1− ε) · d < d̃ < (1 + ε+ 2 min(α, 1
2 )) · d.

The query complexity of the algorithm is Θ
(√

n

ε5·d̂
· log 1

δ

)
.
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Proof. The algorithm makes at most two degree queries and one neighbor query in each
iteration, and it runs for Θ

(√
n

ε5·d̂
·log 1

δ

)
iterations. Hence, the bound on its query complexity

is as claimed in the lemma.
To prove the guarantees on the output estimate d̃, we first show that for all i ∈ [s],

the expected value of χi is a good estimate to the average degree of the partially erased
graph, where s is the number of samples taken by Algorithm 3. We then apply Markov’s
inequality and Chernoff bound to prove parts 1 and 2 of the lemma, respectively. For all
i ∈ [s], the random variables χi set by the algorithm are mutually independent and identically
distributed. Hence, it suffices to bound E[χ1].

B Claim 3.3. If d̂ ≥ d
8 then

(
1− ε

2

)
· d2 < E[χ1] ≤

(
1 + 2 min

(
α,

1
2

))
· d2 .

Proof. Let m = nd/2 denote the total number of edges in the graph, and

H =
{
u ∈ V

∣∣∣ deg(u) > 4
√
nd̂/ε

}
denote the set of high degree vertices. Let m̂ = nd̂/2 be the number of edges in the graph
estimated from the input parameter d̂. Since d̂ ≥ d/8, we have m̂ ≥ m/8. Hence,

|H| < 2m

4
√
nd̂/ε

= m

2
√

2m̂/ε
≤ m√

m/ε
=
√
εm, (1)

where the first inequality holds because the sum of degrees of high-degree vertices is at most
2m, and the second inequality follows from m̂ ≥ m/8.

The following quantity, d+(u), was defined in [10] for (standard) graphs. We extend their
definition to partially erased graphs.

I Definition 3.4. For a vertex u in a partially erased graph G, let N(u) denote the set
of (nonerased) neighbors present in Adj(u). Let d+(u) = |{v ∈ N(u) | u ≺ v}| denote the
number of nonerased neighbors of u that are higher than u w.r.t. the ordering on vertices (as
in Definition 3.1).

Roughly, d+(u) denotes the number of nonerased neighbors of u with the degree higher
than that of u. The following fact is based on an observation by [10].

I Fact 3.5. For a partially erased graph G over a vertex set V , the sum
∑
u∈V d

+(u) ≤ m.
The inequality can be replaced with equality when G has no erasures.

The fact holds because each nonerased and half-erased edge in G is counted exactly once
and at most once, respectively, in the sum

∑
u∈V d

+(u).
Let u1, u2, . . . , u|H| be a labeling of the the high degree vertices such that u1 ≺ u2 ≺

. . . ≺ u|H|. For each j ∈ [|H|], observe that d+(uj) ≤ |H| − j, as d+(uj) is at most the
number of vertices that are higher than uj in the ordering. Hence,

∑
u∈H

d+(u) ≤
|H|∑
j=1

(|H| − j) =
|H|−1∑
k=0

k <
|H|2

2 <
εm

2 , (2)

where the last inequality follows from (1).
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Let d⊥(u) denote the number of erased entries in Adj(u). The expectation

E[χ1] = 1
n

∑
u∈V \H

d+(u) + d⊥(u)
deg(u) · deg(u) = 1

n

∑
u∈V \H

(d+(u) + d⊥(u)) (3)

since the degree of the sampled vertex u is assigned to χ1 if and only if
1. deg(u) ≤ 4

√
nd̂/ε, i.e., u ∈ V \ H; and

2. the queried entry from Adj(u) is either a vertex v � u or ⊥.

We now bound the quantity on the right hand side of (3) from below and above. Let G′
be an arbitrary completion of G, and let d+

G′(·) denote the quantity defined in Definition 3.4
with respect to G′ (instead of G). For each u ∈ V , observe that d+(u) + d⊥(u) ≥ d+

G′(u).
Note that the upper bound in (2) still holds if we replace d+(·) with d+

G′(·). Hence, by (3),

E[χ1] ≥ 1
n

∑
u∈V \H

d+
G′(u) = 1

n

(
m−

∑
u∈H

d+
G′(u)

)
>
(

1− ε

2

) m
n
. (4)

On the other hand, by (3),

E[χ1] ≤ 1
n

∑
u∈V

(d+(u) + d⊥(u)) ≤ (1 + 2α)m
n
, (5)

where the last inequality uses Fact 3.5 and
∑
u∈V d

⊥(u) ≤ 2αm. Since d+(u)+d⊥(u) ≤ deg(u)
for all u ∈ V , by (3),

E[χ1] ≤ 1
n

∑
u∈V

deg(u) = 2m
n
. (6)

This completes the proof of Claim 3.3 because, using (4),(5) and (6), we get(
1− ε

2

)
· m
n
< E[χ1] ≤

(
1 + 2 min

(
α,

1
2

))
· m
n
. C

Let random variable χ = 1
s

∑s
i=1 χi denote the mean of χi’s calculated in Step 9 of

Algorithm 3. Since all χi’s are independent and identically distributed, E[χ] = E[χ1].
Furthermore, the output d̃ of the algorithm is 2χ and hence, E[d̃] = 2E[χ]. By Claim 3.3, if
d̂ ≥ d/8 then E[d̃] ≤ 2d. By Markov’s inequality, Pr[d̃ > 8d] ≤ Pr[d̃ > 4E[d̃]] ≤ 1/4. This
completes the proof of part 1 of Lemma 3.2.

Now consider the case when d
8 ≤ d̂ ≤ 8d. Observe that 0 ≤ χi ≤ 4

√
nd̂/ε for all i ∈ [s]

by Step 6. Hence, by an application of the Hoeffding bound,

Pr
[
|χ− E[χ]| ≥ ε

2 · E[χ]
]
≤ 2 exp

(
− ε2/4

2 + ε/2 ·
sE[χ]

4

√
ε

nd̂

)
< δ,

where we used ε < 1/2 and d̂ ≤ 8d in the simplification. Hence, with probability at least
1− δ, we have,

(
1− ε

2
)
·E[χ1] < χ <

(
1 + ε

2
)
·E[χ1]. Since d̃ = 2χ, by Claim 3.3, we get that

with probability at least 1− δ,(
1− ε

2

)(
1− ε

2

)
· d < d̃ <

(
1 + ε

2

)(
1 + 2 min

(
α,

1
2

))
· d,

proving part 2 of Lemma 3.2. J

The rest of the proof of Theorem 1.7 appears in the full version of this article [20].
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Figure 4 The partially erased graphs G1 and G2 described in the proof of Theorem 1.8. The
dotted lines represent erased entries in the adjacency lists of corresponding vertices. The lines with
arrows indicate that the entry corresponds to the vertex to which the arrow points to. The circles
represent the (1− λ)(n− 1)-cycles.

3.2 A Lower Bound for Estimating the Average Degree
In this section, we prove Theorem 1.8.

Proof of Theorem 1.8. Fix λ = 2α
1+α . Note that λ ∈ (0, 1] since α ∈ (0, 1]. Consider any

integer n such that λ(n− 1) is an even integer. Since α is rational, there are infinitely many
such n. We define two n-node graphs, G1 and G2 (see Figure 4). Both graphs contain a cycle
consisting of (1− λ)(n− 1) vertices. Of the remaining λ(n− 1) + 1 vertices, both graphs
have λ(n − 1) vertices of degree 1, with the only entry in the adjacency list of each such
vertex erased. The last vertex, called v?, is where G1 and G2 differ. In G1, we have that
Adj(v?) consists of the labels of the λ(n− 1) degree-1 vertices. In contrast, in G2, the vertex
v? is isolated.

The graph G1 can only be completed to a graph consisting of two components: a cycle
of length (1− λ)(n− 1) and a star consisting of λ(n− 1) edges. The graph G2 can only be
completed to a graph consisting of a cycle of length (1− λ)(n− 1), one isolated vertex, and
a matching of size λ(n− 1)/2. Hence, the total lengths of the adjacency lists of G1 and G2
are 2(n− 1) and (2− λ)(n− 1), respectively. The number of entries erased in both graphs is
λ(n− 1). So, the fraction of erased entries in the adjacency lists of G1 and G2 are λ

2 and
λ

2−λ , respectively. Hence, both G1 and G2 are α-erased, as λ
2−λ = α. The average degree

of G1 and G2 are 2(n−1)
n and (2−λ)(n−1)

n , respectively. The ratio of the average degrees is
2

2−λ = 1 + α.
The rest of the proof is similar to that of Theorem 1.6. We define two distributions D1

and D2 as the uniform distributions over the set of all graphs isomorphic to G1 and G2,
respectively. To differentiate between the two distributions, any tester must necessarily query
v? which requires Ω(n) queries. The ratio of the average degrees of the two distributions is
1 + α. Hence, to approximate the average degree within a factor of (1 + γ), where γ < α,
any tester must query Ω(n) vertices. J
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4 Conclusion and Open Questions

In this work, we initiate the study of sublinear-time algorithms for problems on partially
erased graphs. Our investigation opens up a plethora of research directions and possibilities
for future work. Next, we discuss several specific open questions arising from our work.

Phase Transitions in the Complexity of Erasure-Resilient Connectedness Testing

As shown in Section 2, there is a phase transition in the complexity of connectedness testing
at α = ε from time independent of the size of the graph to Ω(n). Our upper bound on the
complexity of this problem exhibits another, less drastic phase transition at α = ε/2, when
the asymptotic dependence of the running time on ε and α changes. We conjecture that
this second phase transition is inherent (and not an artifact of our techniques). It would be
interesting to investigate whether connectedness testing when α ∈ [ε/2, ε) is fundamentally
different from the same problem when α ∈ [0, ε/2).

Erasure-Resilient Testing of Monotone Properties in the Bounded-Degree Model

A property of a graph is monotone if it is preserved under deletion of edges and vertices. That
is, if G satisfies a monotone property then so does every subgraph of G. Many important
graph properties, including bipartiteness, 3-colorability, and triangle-freeness, are monotone.

In the bounded-degree property testing model [16], an n-node graph G with the degree
bound D is represented as a concatenation of n adjacency lists, each of length D. For a
vertex v ∈ G and an index i ∈ [D], a neighbor query (v, i) returns a valid vertex in the graph
if i ≤ deg(v) and a special symbol, say ␣ , if i > deg(v). The graph G is ε-far from satisfying
a property P if at least εnD entries in the adjacency lists of G need to be modified to make
it satisfy P.

Bounded-degree property testing can be generalized in a natural way to account for
erased entries in adjacency lists. A bounded-degree graph is α-erased if at most αnD entries
of its adjacency lists are erased. We observe that a tester for a monotone property of
bounded-degree graphs can be made erasure-resilient via a simple transformation.

I Observation 4.1. Let P be a monotone property of graphs. Suppose there exists an
ε-tester for P in the bounded-degree model that makes q(ε, n,D) queries. Then there exists
an α-erasure-resilient ε-tester for P in the bounded-degree model that makes at most D2 ·
q(ε− 2α, n,D) queries and works for all α ∈ (0, ε/2).

This transformation is not efficient for general graphs, as the maximum degree of a
graph can be n− 1. It is interesting to understand how much erasure-resilience affects query
complexity of testing monotone properties in our erasure-resilient model for general graphs.

Erasure-Resilient vs. Tolerant Testing of Graphs

For 0 ≤ ε1 < ε2 < 1, an (ε1, ε2)-tolerant tester for a property P must accept, with high
probability, if the input is ε1-close4 to P and reject, with high probability, if the input is
ε2-far from P [24]. Dixit et al. [7] observed that, for properties of functions, erasure-resilient
testing is no harder than tolerant testing. Specifically, a tolerant tester for a property of
functions can be easily converted to an erasure-resilient tester with the same complexity.

4 An object is ε1-close to a property P if it is not ε1-far from P.
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The new tester can run the tolerant tester, filling in the queried erasures with arbitrary
values. However, this argument fails in the case of testing properties of graphs represented as
adjacency lists, since the erased entries have to be filled in so that the resulting completion
is a valid graph. In the bounded-degree model, we can use a (2α, ε − 2α)-tolerant tester
for a property P to obtain an α-erasure-resilient ε-tester for P with an overhead O(D2)
in query complexity via a transformation similar to the one explained in our discussion
of monotone properties. It is an important open question to understand the relationship
between erasure-resilient and tolerant testing in the general graph model.

Symmetric vs. Asymmetric Erasures

Our definition of partially erased graphs is general in the sense that erased entries may
be asymmetric: an edge (u, v) can be erased in Adj(u), but not in Adj(v). A partially
erased graph has only symmetric erasures if it has no half-erased edges, that is, u ∈ Adj(v)
iff v ∈ Adj(u) for any two nodes u, v. It is an interesting direction to investigate which
computational tasks are strictly easier in the model with symmetric erasures compared to
the model with asymmetric erasures.
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Abstract
We investigate the algorithmic problem of selling information to agents who face a decision-making
problem under uncertainty. We adopt the model recently proposed by Bergemann et al. [4], in which
information is revealed through signaling schemes called experiments. In the single-agent setting, any
mechanism can be represented as a menu of experiments. Our results show that the computational
complexity of designing the revenue-optimal menu depends heavily on the way the model is specified.
When all the parameters of the problem are given explicitly, we provide a polynomial time algorithm
that computes the revenue-optimal menu. For cases where the model is specified with a succinct
implicit description, we show that the tractability of the problem is tightly related to the efficient
implementation of a Best Response Oracle: when it can be implemented efficiently, we provide
an additive FPTAS whose running time is independent of the number of actions. On the other
hand, we provide a family of problems, where it is computationally intractable to construct a best
response oracle, and we show that it is NP-hard to get even a constant fraction of the optimal
revenue. Moreover, we investigate a generalization of the original model by Bergemann et al. [4]
that allows multiple agents to compete for useful information. We leverage techniques developed
in the study of auction design (see e.g. [5, 1, 6, 7, 8]) to design a polynomial time algorithm that
computes the revenue-optimal mechanism for selling information.
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1 Introduction

Decision-making heavily relies on information availability. The uneven distribution of
information thus enables markets for trading information. Imagine a bank reviewing a
loan application. Information about the borrower’s financial status clearly influences the
bank’s lending decisions. In this setting, the bank already has some private knowledge about
the borrower, i.e., through prior interactions, but may still be willing to pay to acquire
supplemental information to guide its decision-making. Indeed, Equifax, the credit report
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agency, provides its business consumers, e.g., banks and credit card companies, a product
called Undisclosed Debt Monitoring, that tracks negative information about individual
borrowers. 1

How should the information owner reveal and price the information? We adopt the model
introduced by Bergemann et al. [4] to study this problem. Their model involves a data buyer
and a data seller. The data buyer faces a decision under uncertainty, and his payoff depends
on the action he decides to take and the underlying state of the world. Initially, the buyer
only has some imperfect knowledge about the state, i.e. a prior distribution over the possible
states. This piece of information is private to the buyer. On the contrary, the data seller
knows the state of the world and can sell supplemental information to the buyer. Since the
buyer’s willingness to pay for supplemental information is determined by the precision of his
own prior belief, we refer to the buyer’s prior belief as his type. How does the seller optimize
her revenue if the buyer’s type is assumed to be drawn from a known distribution? To screen
heterogeneous buyer types, the seller offers a menu of information products. Each product
has the form of a statistical experiment, whose result reveals a signal that is correlated with
the underlying state. Bergemann et al. [4] investigate what experiments should be included
and how to price them. They obtain analytic solution of the revenue-optimal menu in two
special cases: (i) the case with only two possible buyer types and (ii) the case with two states
and two possible actions for the buyer to choose from. However, general characterization of
the revenue-optimal menu remains elusive. In this paper, we initiate the algorithmic study of
this problem and investigate the computational complexity for finding the revenue-optimal
menu.

Our first result considers an explicit representation of the problem, where the input
contains the buyer’s type distribution and his payoff for each action and state pair.

Result I: We design an algorithm that computes the revenue-optimal menu in time polynomial
in the number of buyer types, the number of buyer actions, and the number of underlying
states. (Theorem 3)

For many settings of interest, the model is too expensive to be specified explicitly but has
a natural succinct implicit description. Consider the following motivating example. Suppose
there is a traffic network G, and a binary state ω that indicates the level of congestion on
the edges of G. A driver wants to go from a vertex s to another vertex t, and his payoff is
H minus the expected travel time from s to t using the path he picks. 2 Of course, which
path is the fastest depends on the driver’s belief of the state ω. Suppose Waze is offering a
service that provides the driver supplemental information about the congestion. How should
Waze price its service? In this setting, the driver is the data buyer and the number of actions
available to him is exactly the number of s− t paths, which can be exponential in the size of
the network G. Applying our first result is thus computationally inefficient in this setting.
Our second result concerns exactly these settings with succinct implicit descriptions. We
show that the key to tractability is the existence of a computationally efficient Best Response
Oracle, that is, an oracle that accepts a distribution over the underlying state as input and
outputs an action with the highest expected payoff. Clearly, in the example above, it is
straightforward to construct a computationally efficient best response oracle – simply assign
the expected congestion on each edge as its length and run any shortest path algorithm on
the graph G. We show that finding the revenue-optimal menu is tractable as long as there
exists a best response oracle.

1 https://www.equifax.com/business/undisclosed-debt-monitoring/
2 H is a sufficiently large constant so that the payoff is always nonnegative.
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Result II: For any setting with a constant number of possible underlying states, we design
an FPTAS to compute an up-to-ε optimal menu, i.e., a menu whose revenue is at most ε
less than the optimum, given access to a best response oracle. 3 (Theorem 9)

Without the best response oracle, we show that it is NP-hard to even find a constant
factor approximation to the optimal revenue for a family of succinctly describable instances
with only two underlying states and one buyer type. (Theorem 12)

We also investigate extensions of the basic model studied in Bergemann et al. [4]. First,
we consider the setting where multiple data buyers are competing with each other to receive
an informative signal from the data seller. We obtain the following generalization of Result I.

Result III: We design an algorithm that computes the revenue-optimal mechanism in time
polynomial in the total number of buyer types, the number of buyer actions, and the
number of underlying states. (Theorem 19)

Note that the straightforward generalization of Result I only gives an algorithm that runs
in time polynomial in the total number of buyer type profiles, which is exponential in the
number of buyers. Our algorithm in Result III runs in time polynomial in the total number
of buyer types, which is the description size for specifying each buyer’s type distribution.

In Section 5, we discuss another natural extension. We can treat a buyer’s payoffs for
taking actions in various states as the buyer’s private information and may be different
across buyers. In other words, a buyer type is no longer just the buyer’s prior belief of the
underlying state but also his payoff function. We show that all our results (c.f. Result I, II,
and III) can be easily extended to handle this case, and the modification is summarized in
Section 5.

Our Approach

In the explicit model, we first show that the revenue-optimal menu can be captured by
a LP with polynomially many decision variables but exponentially many constraints. We
leverage a technique introduced by Chen et al. [15] to transform it to an equivalent LP with
polynomially many constraints. In the implicit model with a best response oracle, the main
difficulty is that the optimal menu may contain experiments that use an arbitrary number
of signals, and as a result the menu cannot even be represented in polynomial time. To
overcome this difficulty, we first argue that there always exists an up-to-ε optimal menu
that only contains experiments that use a small number of signals, then apply an algorithm
similar to the one in the explicit model to find such a menu. For the multi-agent setting,
one can use a LP similar to the one in the explicit model to capture the optimal mechanism.
The issue with this approach is that both of the number of variables and constraints are
exponential in the number of agents, which is too large to solve. Our solution is inspired by
an approach used to computing the revenue-optimal multi-item auctions [5, 1, 6, 7, 8]. The
key idea is to first represent mechanisms in a succinct way known as the “reduced forms”
and use a LP to search for the revenue-optimal reduced form. However, as a reduced form
is only a succinct description, given a reduced form, it is not obvious what mechanism it
corresponds to. Indeed, it is not even clear whether it corresponds to any mechanism. The
main technical barrier we overcome is to design efficient algorithms to (i) check the feasibility
of a reduced form and (ii) to implement a feasible reduced form as an actual mechanism.

3 Our algorithm runs in time polynomial in the total number of buyer types and 1/ε.
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1.1 Related Work
Relationship with Monopoly Pricing

A well-studied problem from mechanism design, the monopoly pricing problem, bears some
resemblance to our problem. The monopoly pricing problem asks what is the revenue-
optimal mechanism to sell one or more items to a buyer, whose valuation/willingness to
pay for the items is drawn from a known distribution. In single-dimensional settings,
the problem is completely resolved by [35, 36]. In multi-dimensional settings, complete
characterizations are known only in several special cases [27, 28, 30, 18, 26, 22, 21], but
simple and approximately optimal mechanisms [13, 14, 31, 2, 34, 37, 9, 12], as well as
algorithmic characterizations [5, 1, 6, 7, 8] have been discovered in fairly general settings.
The nature of information goods adds an extra layer of difficulty to the pricing problem. The
value of information is determined by how much such information can improve the quality
of decision-making. Buyers with different beliefs do not simply have different values for
different experiments, but they may even disagree on their ranking. This richness in buyer
valuations does not happen in single-dimensional monopoly pricing, but already exists in
single-dimensional information pricing, where there are only two possible underlying states. 4
As a result, the optimal menu in information pricing has a more complex structure. For
example, Bergemann et al. [4] showed that even in the two-state case, the seller sometimes
needs to use randomized experiments to maximize her revenue. In this work, we show that
despite the new challenges of selling information products, some of the algorithmic ideas
from monopoly pricing are still useful.

Relationship with Information Design

Similar to our problem, the designer constructs a signaling scheme that reveals partial
information about the underlying state to influence the action of the agents in information
design [32]. There has been growing interest in the algorithmic study of information
design [24, 23, 25, 16, 19, 10]. The fundamental difference between our setting and information
design is that, in our setting, the buyer’s action does not have direct effect on the seller’s
utility. The seller only derives utility from the monetary transfers received from the buyer.

Relationship with other Information-Selling Models

The work that is most related to the problem we are studying is by Babaoiff et al. [3].
Similar to us, they consider a seller who knows the state of the world ω and wants to sell
information to a buyer whose prior is drawn from some distribution Θ. However, there is
a subtle but crucial difference between our models. In their work, the seller’s information
disclosure strategy and the price are allowed to be dependent on the realized state of the
world ω. By contrast, our model requires the seller to commit to a mechanism before the
realization of the state ω. Their main results state that (i) when ω and the buyer’s type are
independently distributed, revelation principle holds, i.e., a single-round interaction suffices;
and (ii) when ω and the buyer’s type are correlated, a full surplus extraction mechanism,
similar to Crémer and McLean [17], exists and can be computed efficiently. These results
differ quite substantially from the structural results for the model we study here [4]. For
instance, full surplus extraction is in general impossible in our model. In a recent work,
Chen et al. [15] extends the results by Babaioff et al. [3] to the setting where the buyer is
budget-constrained, and improves upon some of the algorithmic results.

4 In this case, the buyer’s prior belief can be represented using a single real number in [0, 1].
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2 Preliminaries

Model and Notation

The data buyer faces a decision problem under uncertainty. The state of the world ω is drawn
from a state space Ω. The buyer chooses an action a from an action space A. Throughout
the paper, we use m to denote the size of A. The buyer’s ex-post utility for choosing
action a under state ω is defined to be uω,a and is assumed to lie in [0, 1]. The buyer has
some prior information about the state of the world which is denoted by θ and comes from
a set Θ ⊆ ∆Ω. We call θ the type of the buyer, and use θω to denote the probability that
the buyer assigns to the event that the state of the world is ω. The type of the buyer is
distributed according to F . Apart from the buyer, there is also a seller who observes the
state of the world and is willing to sell supplemental information to the buyer. We refer to
the buyer as he and to the seller as she.

Experiment

The seller provides supplemental information to the buyer via a signaling scheme which
we call experiment. A signaling scheme is a commitment to |Ω| probability distributions
over a set of different signals S, such that when the state of the world is realized, the seller
draws a signal from the corresponding distribution and sends it to the buyer. We denote
such an experiment by E = (S, π(E)), where π(E) : Ω→ ∆S denotes the distributions that
experiment E is using. We denote the probability that experiment E sends signal sk when
the state of the world is ω by πω,k(E) = Pr[sk|ω]. In this work, it is useful to think of the
experiment π(E) as a matrix whose rows are indexed by the states of the world and columns
are indexed by the signals. A menu of experiments is a collectionM = {(E, t(E))}, where
t(E) ∈ [0, 1] is the payment the buyer has to make when he purchases experiment E. In the
multi-agent setting, a menu is insufficient to generate the optimal revenue, and our goal there
is to compute the revenue-optimal mechanism. In the single-agent setting, the interaction
between the seller and the buyer works as follows:
1. The seller posts a menuM.
2. The state of the world ω and the type of the buyer θ are realized.
3. The buyer chooses some experiment E from the menu based on his type and pays t(E).
4. The seller sends the buyer a signal s that is drawn from πω,·(E).
5. The buyer chooses an action a, based on his original belief θ and the signal s, and receives

utility uω,a.

The Value of an Experiment

To understand the behavior of the buyer, we first explain how the buyer evaluates an
experiment. We first explain how the buyer would act if the only information available
to him was his type θ. Since the buyer picks an action that maximizes his expected
utility, his best move without receiving any additional information from the seller is a(θ) =
arg maxa

∑
ω θωuω,a and his base utility following that move is u(θ) = maxa

∑
ω θωuω,a. If

he receives extra information from the seller, he updates his beliefs and may choose a new
action that induces higher expected value based on his posterior distribution over the states.
After receiving signal sk from experiment E his belief about the state of the world is

Pr[ω|sk, θ] = θωπω,k(E)∑
ω′∈Ω θω′πω′,k(E) .
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Hence, the best action is

a(sk|θ) ∈ arg max
a

∑
ω

(
θωπω,k(E)∑

ω′∈Ω θω′πω′,k(E)

)
uω,a,

which yields conditional expected utility

u(sk|θ) := max
a

∑
ω

(
θωπω,k(E)∑
ω′ θω′πω′,k(E)

)
uω,a.

When it is clear from the context, we might drop θ in the previous expressions. Notice
that after computing his posterior, the buyer’s conditional expected utility is linear in the
actions so we can assume w.l.o.g. that he picks a single action and not a distribution over
actions. Taking the expectation over the signal he will receive, we denote the value of the
experiment E for type θ to be

Vθ(E) =
∑
sk∈S

max
a

{∑
ω

θωπω,k(E)uω,a

}
.

We assume that the buyer is quasilinear. We denote the expected net utility of type θ
for experiment E as Vθ(E)− t(E).

Notice that two different types θ, θ′ may have different favorite actions under the same
signal. As a result, Vθ(E) is not a linear function over θ for a fixed experiment E even
when the type θ is single-dimensional, i.e., |Ω| = 2. This is in sharp contrast to standard
single-dimensional auction design settings, where the agent’s value is always a linear function
over the type when the allocation is fixed. 5

IC and IR Menu

The buyer chooses the experiment that gives him the highest net utility, and we slightly
abuse notation and denote by E(θ) the experiment of the menuM that type θ prefers

E(θ) = arg max
E

Vθ(E)− t(E).

If all experiments give him expected net utility smaller than his base utility u(θ), he will
not purchase any experiment. For convenience, we assume that there is a null experiment
that provides no information offered at price 0, so now without loss of generality every type
takes an experiment from the menu. We sometimes abuse notation to call a menu Incentive
Compatible (IC) and Individually Rational (IR). By that, we mean that every buyer type θ
selects the experiment (E(θ), t(θ)) that maximizes his expected net utility. Formally, these
constraints are captured by the following two sets of inequalities:

Vθ(E(θ))− t(θ) ≥ Vθ(E(θ′))− t(θ′), ∀θ, θ′ ∈ Θ,
Vθ(E(θ))− t(θ) ≥ u(θ), ∀θ ∈ Θ.

Once we have fixed the parameters of the model, we denote by Rev(M) the revenue that
menuM generates and by OPT the optimal revenue in this setting.

5 Indeed, this linearity even holds for quite general multi-dimensional settings in auction design, for
example, when the buyer has additive valuations.
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3 Optimal Menu for a Single Agent

In this section, we consider the problem of computing the optimal menu for a single agent.
As we will show, the computational complexity of the problem is tightly related to the way
that the problem is specified. We consider three different models.

Explicit model: the distribution F and the ex-post utility matrix U are given explicitly
in the input.
Implicit model with a best response (BR) oracle: the distribution F is given along
with a best response oracle. The best response oracle accepts a distribution over the
states as input and outputs the action that generates the highest expected utility w.r.t.
the input distribution.
Implicit model with succinct description: the distribution F is given along with
the description of a Turing Machine that computes the ex-post utility of any pair of state
and action in time polynomial in the description size.

We summarize our results with respect to the three different models: (i) we show that
computing the optimal menu in the explicit model is captured by a polynomial size LP; (ii)
even though the number of actions in the implicit model with BR oracle may be arbitrarily
large, we provide an FPTAS to find an up-to-ε optimal menu for settings with a constant
number of underlying states; (iii) we construct a succinctly representable instance of the
problem such that computing a constant factor approximation or an up-to-ε optimal menu is
NP-hard.

3.1 Explicit Model
In this section, we discuss the basic setting where the model is explicitly given. First, we
state a structural result of the optimal menu that allows us to restrict the number of signals.

I Definition 1 (Responsive Experiment). A buyer type θ is responsive to an experiment
E if every signal s of E leads θ to a different optimal choice of action and, in particular
a(sk | θ) = ak for all sk ∈ S.

Note that if an experiment E is responsive to any buyer type, E has exactly m signals.
An intuitive way to think about Definition 1 is that signal si of E recommends the buyer
to take a action ai, and type θ is responsive to E if θ always follow the recommendation.
Importantly, a different type θ′ may not be responsive to experiment E and does not follow
the recommendations. We now state the structural result from [4] that states that it is
without loss of generality to consider a menu where each buyer type purchases a responsive
experiment.

I Lemma 2 (Adapted from Proposition 1 from [4]). A menu M is responsive if for every
buyer type θ, it chooses a responsive experiment E(θ) from the menu. We define the outcome
of a menu as the joint distribution of states, actions, and monetary transfers resulting from
every buyer type’s optimal choice of experiment and subsequent choice of action. The outcome
of every menu can be attained by a responsive menu.

The proof of Lemma 2 is based on a revelation-principle type of argument. More precisely,
assume that some type θ prefers an experiment E(θ) for which he is not responsive. Then,
we can merge all the signals si1 , . . . , si` of E(θ) that lead the type to take the same action
ak and just send the merged signal as the new k-th signal sk. Equipped with the structural
result, we are ready to show how to capture the design of the optimal menu as a LP. Since
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there exists an optimal menu that is responsive, every experiment in this menu has at most
m signals. For every buyer type θ, we use π(θ) to denote the experiment type θ purchases,
where πω,i(θ) is the probability to send signal si when the state is ω. {πω,i(θ)}ω∈Ω,i∈[m],θ∈Θ
is the first set of variables. We also have the prices for each experiment {t(θ)}θ∈Θ as variables.
The main difference between selling experiments and selling items is that different types
may interpret the same experiment differently. More specifically, for a responsive experiment
(π(θ), t(θ)), the optimal choice of action for type θ after receiving signal si is simply action
ai; while for a different type θ′, the best action after receiving signal si can be a completely
different action aj due to a different induced posterior. As our LP is designed to compute
the optimal and responsive menu, we need to guarantee that for any type θ, purchasing
experiment (π(θ, t(θ)) and following the recommendation is better than purchasing any
experiment (π(θ′), t(θ′)) for a different type θ′ and subsequently choosing the optimal action
based on the induced posterior. We remark that the straightforward formulation of the
previous constraints requires one to consider all the possible mappings from signals to actions,
resulting in a LP that has exponentially many constraints in m. Although this huge LP can
be solved using the ellipsoid algorithm, we use a technique inspired by Chen et al. [15] that
allows us to formulate it using only polynomially many constraints in m.

See Figure 1 for our LP. Besides the variables representing the experiments and prices, we
introduce a new set of variables {zi(θ, θ′)}i∈[m],θ,θ′∈Θ. zi(θ, θ′) serves as an upper bound of
the conditional expected utility that θ gets when he considers misreporting as θ′ and receives
signal si, which is guaranteed by the second set of constraints. The first set of constraints
make sure that for any type θ, the net utility of purchasing experiment E(θ) and following
its recommendations is no worse than the utility of purchasing any other experiment and
subsequently choosing the best action under each signal. Note that we allow θ′ to be the
same θ in the first set of constraints, which guarantees that the menu is responsive. The
third set of constraints guarantees that purchasing experiment (π(θ), t(θ)) is no worse than
θ’s base utility. We refer to these constraints as the individual rationality (IR) constraints.
The last two constraints guarantee that π(θ) is indeed an experiment.

I Theorem 3. The LP in Figure 1 can be solved in time polynomial in m = |A|, |Ω|, and
|Θ|, and its optimal solution is the revenue-optimal menu.

Proof of Theorem 3. The number of constraints and the number of variables of the LP
in Figure 1 is polynomial in m, |Ω|, |Θ|, so it is clear that it can be solved in polynomial
time. We now argue that its solution is indeed the optimal responsive menu, hence the
optimal menu as guaranteed by Lemma 2. Observe that every responsive menu corresponds
to a feasible solution of the LP. This is because if {(π(θ), t(θ))}θ∈Θ is a responsive menu,
then we can satisfy all the constraints by setting zi(θ, θ′) = maxaj

∑
ω θωπω,i(θ′)uω,aj .

Conversely, note that every feasible solution of the LP induces a responsive menu that simply
chooses the experiment E(θ) as (π(θ), t(θ)) for each type θ ∈ Θ. This is because (i) the
first and second sets of constraints guarantee that E(θ) is a responsive experiment for θ
(this follows from setting θ′ to be θ in both the first and second set of constraints) and
Vθ(E(θ))− t(θ) ≥ Vθ(E(θ′))− t(θ′) ; (ii) the IR constraints ensure that V (E(θ))− t(θ) ≥ u(θ).
Hence, the optimal solution corresponds to the revenue-optimal menu. J

3.2 Implicit Model with a Best Response Oracle
In this section, we study the case where the model is provided implicitly. We prove that,
given access to a best response oracle, our algorithm can compute an up-to-ε optimal menu

in time poly
(
|Θ|, |Ω|

|Ω|2

ε|Ω|2+|Ω|

)
, which is independent of the number of actions.
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Variables:
{πω,i(θ)}ω∈Ω,i∈[m],θ∈Θ, denoting the experiments in the menu.
{t(θ)}θ∈Θ, denoting the prices of the experiments.
{zi(θ, θ′)}i∈[m],θ,θ′∈Θ, helper variables. zi(θ, θ′) represents an upper bound of the
conditional expected utility of signal si from experiment E(θ′) for type θ.

Linear Program:

max
∑
θ∈Θ

F (θ)t(θ)

s.t.
∑
i∈[m]

∑
ω∈Ω

θωπω,i(θ)uω,ai − t(θ) ≥
∑
i∈[m]

zi(θ, θ′)− t(θ′), ∀θ, θ′ ∈ Θ (IC)

zi(θ, θ′) ≥
∑
ω

θωπω,i(θ′)uω,aj , ∀θ, θ′ ∈ Θ,∀i, j ∈ [m]∑
i∈[m]

∑
ω∈Ω

θωπω,i(θ)uω,ai − t(θ) ≥ u(θ), ∀θ ∈ Θ (IR)∑
i∈[m]

πω,i(θ) = 1, ∀θ ∈ Θ, ω ∈ Ω

πω,i(θ) ≥ 0, ∀θ ∈ Θ,∀ω ∈ Ω,∀i ∈ [m]

Figure 1 A linear program to find the revenue-optimal menu in the explicit model.

We first prove a structural result which shows that no matter how large the actual action
set A may be, there is some A′ ⊆ A such that a menuM that recommends actions only from
A′ has negligible revenue loss compared to OPT. Moreover, |A′| depends only on |Ω| and
the additive approximation error. We also show that these sets can be computed efficiently.

I Theorem 4. For any constant ε > 0 , given access to a BR oracle we can compute for each

type θ ∈ Θ a set of actions Aθ by querying O
(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
times the BR oracle, so that there

exists an IC and IR menu M, whose experiments all contain no more than O

(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
many signals. Moreover, every type θ only uses actions from Aθ upon receiving any of these
signals generated by his experiment. Finally, the revenue ofM is at least OPT−O(

√
ε).

We present some lemmas that are used in the proof of Theorem 4. Firstly, we show that
given a menuM and ε, we can create a menuM′ with the following two properties: (i) the
number of signals thatM′ uses depends only on |Ω| and ε, and every type θ values the new
experiment he gets at most O(ε) less than his original experiment. The proof is based on the
idea that merging signals of an experiment E that are close does not decrease the value of
the experiment by much.

I Lemma 5. Let ε > 0 be some given constant and let E = {E(θ)}θ∈Θ be a set of experiments,
where each E(θ) uses an arbitrary number of signals. Then, we can create a set of experiments
E′ = {E′(θ)}θ∈Θ that uses O(( |Ω|ε )|Ω|) signals per player such that Vθ(E′(θ)) ≥ Vθ(E(θ))−2ε.

We now argue that when we merge two signals, no type can value any experiment more
than he did before.

B Claim 6. Let E(θ) be the initial experiment that is offered to type θ and E′(θ) the
experiment that is offered to θ after the merge. Then, for any type θ′ ∈ Θ it holds that
Vθ(E′(θ′)) ≤ Vθ(E(θ′)).
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So far we have established the existence of a menu M′ whose number of signals is
significantly smaller than the initial one. However, if we do not have access toM we cannot
computeM′. Lemma 7 shows that we can overcome this issue. By “rounding” the entries of
the experiment so that for any type the value this experiment generates does not change
much. Now, since there is a small number of signals, and the size of every experiment depends
only on ε and |Ω|, we can do an exhaustive search over the discretized entries.

I Lemma 7. Let {E(θ)}θ∈Θ be a set of experiments, where each E(θ) uses signals from
S. We also let 0 < δ < 1 be a given number such that 1/δ ∈ N. Then, we can create a set
of experiments {E′(θ)}θ∈Θ that uses signals from S′ with |S′| = |S|, such that E′(θ) is a
valid experiment with πω,s′(E′(θ)) being a multiple of δ for all ω ∈ Ω, s′ ∈ S′, θ ∈ Θ, and
|Vθ(E′(θ′))− Vθ(E(θ′))| ≤ δ|S|, for all θ, θ′ ∈ Θ.

One construction that will be useful in our proofs is the ε-IC to IC transformation.
Lemma 8 shows that if we have a menu whose IC, IR constraints are violated by at most
ε, we can modify the prices so that it becomes IC, IR and has negligible O(

√
ε) revenue

loss. The construction is based on a technique developed [20, 11] and frequently used in
the Mechanism Design literature. In the single agent setting, the idea is to offer a small
multiplicative discount to all types to make sure that if they want to deviate to some other
experiment, this will not be much cheaper than the one they were buying in the initial ε-IC
menu.

I Lemma 8. LetM = {Ei, t(Ei)}i∈[k] be a menu with k experiments. Suppose that the IC,
IR constraints are violated by at most ε. Then, we can compute a new set of prices {t̃(Ei)}i∈[k]

such that the menu M̃ = {Ei, t̃(Ei)}i∈[k] is IR, IC and Rev(M̃) ≥ (1−
√
ε)Rev(M)−

√
ε−ε,

in time O(k).

We are now ready to present a sketch of the proof for Theorem 4. Assume that we start
with the optimal menuM∗. By Lemma 5, Claim 6, and Lemma 7, we know that we can
modify the experiments inM∗ so that they use only discretized signals. Moreover, the new
menu is approximately IC and IR. We then apply Lemma 8 to obtain a menu that is IC
and IR by sacrificing a negligible amount of revenue. Finally, to compute the collection of
action sets that the types will choose after receiving the signals, we query BR oracle on all
the possible discretized distributions where the signals are drawn from.

So far we have only shown a structural result about the existence of a menu that uses

O

(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
signals and gives an additive O(

√
ε)-approximation to the optimal revenue. We

now argue that we can use a LP (Figure 2) to find such a menu. This is done by combining
the result of Theorem 4 and modifying the LP we used in Section 3.1.

I Theorem 9. For any ε > 0, any set Θ of types, given access to a BR oracle, we can use the
LP in Figure 2 to compute a menuM that achieves Rev(M) ≥ OPT−O(

√
ε). The number of

queries to the BR oracle is poly
(
|Θ|, |Ω|

|Ω|2

ε|Ω|2+|Ω|

)
and the running time is poly

(
|Θ|, |Ω|

|Ω|2

ε|Ω|2+|Ω|

)
.

Moreover, each experiment contains at most O
(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
many signals, and each type θ

only chooses actions from a set of actions Aθ with size O
(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
.

So far, the number of experiments in our constructions depends on the number of types |Θ|.
We show that the number of experiments needed for an up-to-ε optimal menu is independent
of |Θ|. We achieve this by dropping experiments that are offered to types who are close in
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Variables:
{πω,i(θ)}ω∈Ω,i∈[|Aθ|],θ∈Θ, denoting the experiments in the menu.
{t(θ)}θ∈Θ, denoting the prices of the experiments.
{zi(θ, θ′)}i∈[|Aθ′ |]θ,θ′∈Θ, helper variables. zi(θ, θ′) represents an upper bound of the
conditional expected utility of signal si from experiment E(θ′) for type θ.

Linear Program:

max
∑
θ∈Θ

F (θ)t(θ)

s.t.
∑

i∈[|Aθ|]

∑
ω∈Ω

θωπω,i(θ)uω,aτθ(i) − t(θ) ≥
∑

i∈[|A
θ′ |]

zi(θ, θ′)− t(θ′), ∀θ, θ′ ∈ Θ (IC)

zi(θ, θ′) ≥
∑
ω

θωπω,i(θ′)uω,aj , ∀θ, θ′ ∈ Θ, ∀i ∈ [|Aθ′ |], ∀aj ∈ A∑
i∈[|Aθ|]

∑
ω∈Ω

θωπω,i(θ)uω,aτθ(i) − t(θ) ≥ u(θ), ∀θ ∈ Θ (IR)∑
i∈[|Aθ|]

πω,i(θ) = 1, ∀θ ∈ Θ, ω ∈ Ω

πω,i(θ) ≥ 0, ∀θ ∈ Θ, ∀ω ∈ Ω, ∀i ∈ [|Aθ|]

Figure 2 A linear program to find an approximately revenue-optimal menu in the implicit model.

TV-distance. We show that this leads to a menu that preserves the revenue, is O(|Ω|ε)-IC, IR
and has O

(
|Ω|2|Ω|
ε|Ω|

)
different experiments. Finally, we apply the ε-IC to IC transformation

to the modified menu.

I Lemma 10. LetM = {E(θ), t(θ)}θ∈Θ be a menu of experiments. Then, for any θ, θ′ ∈ Θ
with dTV (θ, θ′) ≤ ε it holds that Vθ(E(θ′))− t(θ′) ≥ Vθ(E(θ))− t(θ)− 2|Ω|ε.

We are now ready to prove that we can create a menu that offers a small number of
experiments and loses negligible revenue compared to OPT. We do that in two steps, since
we are dealing with an action space and type space that are arbitrary. The first step is to
shrink the action space that we are considering. In order to do that, we use Theorem 4 that
guarantees the existence of a menu which loses negligible revenue and only considers actions
from smaller action spaces. The next step is to divide the state space into regions in which
all the types are within ε in TV-distance. Lemma 10 shows us that if we consider offering a
single experiment to all the types in the same region, their values for the new experiment
will not change much compared to the one they were getting. Finally, we apply Lemma 8 to
solve the issue that the menu resulting from dropping experiments might not be IC, IR.

I Theorem 11. Consider an environment with a type space Θ, action space A and state
space Ω. Then, given some ε > 0 and access to a BR oracle we can find a menu M that
generates revenue at least OPT −O(

√
ε) and offers at most O

(
|Ω|2|Ω|
ε|Ω|

)
experiments, in time

poly
(
|Θ|, |Ω|

|Ω|2

ε|Ω|2+|Ω|

)
.

3.3 Implicit Model with Succinct Description
In this section, we consider a setting where the model has a succinct implicit description.
We show that no algorithm can obtain even a constant factor approximation to the optimal
revenue for this setting, unless P = NP. To be more precise, we consider the following problem.
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Information Pricing SAT (IP-SAT): find the revenue-optimal menu in the following
setting:

State space Ω, type space Θ.
for each state ω, Φω is a boolean formula in CNF over variables in X = {x1, . . . , xn}
Action space A: all the possible truth assignments of the variables in X
uω,a = # satisfied clauses of Φω with assignment a

# clauses of Φω

IP-SAT is a hard problem for the buyer in general, as maximizing his net utility requires
solving an NP-hard problem. We show here that designing an approximately revenue-optimal
menu for IP-SAT is also computationally intractable for the seller. Of course, it is not even
clear what the optimal menu looks like in general for IP-SAT as we only have a limited
characterization of the optimal menu. In Theorem 12, we construct a special family of
IP-SAT instances with 2 states and 1 buyer type, and show how to reduce SAT to it.

I Theorem 12. For any constant ε > 0, there does not exit a polynomial time algorithm A
that computes an menu with revenue at least (1/2 + ε)OPT− ε

2m+4 in the IP-SAT problem
with m+ 2 clauses, unless P = NP .

Proof of Theorem 12. Let Φ = C1∧ . . .∧Cm be any SAT instance over variables x1, . . . , xn.
We show that given A we can decide whether Φ is satisfiable. We create the following IP-SAT
instance: there are two states ω1, ω2, a single type θ = ( 1

2 ,
1
2 ) and we set Φω1 = (C1 ∨ y) ∧

. . .∧ (Cm∨y)∧ (x1∨y)∧ (¬x1∨y),Φω2 = (C1∨¬y)∧ . . .∧ (Cm∨¬y)∧ (x1∨¬y)∧ (¬x1∨¬y)
to be the two SAT instances with m + 2 clauses that the buyer faces. At each state, the
actions are the possible assignments of the variables x1, . . . , xn, y. Let Ψ be some boolean
formula in CNF and a some assignment of its variables. We define za(Ψ) to be the number of
clauses in Ψ that a satisfies and w(Ψ) the total number of clauses in Ψ. Then, at each state
ω when the agent chooses assignment a we define his ex-post utility to be uω,a = za(Φω)

w(Φω) .
From Bergemann et al. [4], we know the optimal menu should contain only the fully

informative experiment E∗, and the price for this experiment is Vθ(E∗)− u(θ). 6 Clearly,
Vθ(E∗) = 1, because the buyer can pick y to be T and F in states ω1, ω2 respectively and
satisfy all clauses. We now focus our attention on u(θ). Assume that without receiving
any information the buyer decides to set y = T . This is w.l.o.g. since it is symmetric
with the case he decides to set y = F . When the state is ω1, he satisfies all the clauses.
According to his prior, this happens 1/2 of the time, so we see that so far u(θ) ≥ 1/2. Let
us consider which assignment he should pick when the state is ω2. Observe that no matter
which value he picks for x1, he will always satisfy exactly one of the last two clauses in Φ2.
Hence, for variables x1, . . . , xn he better pick the assignment a that maximizes za(Φ). Let
k = maxa za(Φ). Then u(θ) = 1/2 + (k+ 1)/(2m+ 4) = m+k+3

2m+4 . Hence, the optimal revenue
is Vθ(E∗)− u(θ) = 1− m+k+3

2m+4 = m−k+1
2m+4 . If Φ is satisfiable, then k = m, so OPT = 1

2m+4 .
If Φ is not satisfiable then k ≤ m− 1 so OPT ≥ 2

2m+4 . Now assume that there is such an
algorithm A and denote Rev(A) the revenue generated by the mechanism output by A. If Φ
is not satisfiable, since OPT ≥ 2

2m+4 , it must be that Rev(A) > 1
2m+4 . On the other hand,

if Φ is not satisfiable we have that Rev(A) ≤ 1
2m+4 . Hence, the existence of A allows us to

distinguish between satisfiable and unsatisfiable SAT formulas. J

6 The fully informative experiment simply sends out a signal to reveal the state.
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I Remark 13. Since m is linear in the description length of the problem, given access to a
BR oracle, for any ε > 0 we can set ε′ = c(mε)2, for some appropriate constant c > 0, and
then apply Theorem 9. Since |Ω| = 2 and |Θ| = 1, the revenue we get is at least OPT− ε
and the running time is O

(
1

(mε)10

)
. However, this does not contradict with the result of

Theorem 12, since in this setting the BR oracle solves an NP-hard problem.

4 Multi-Agent Setting

In this section, we consider a multi-agent generalization of the model by Bergemann et al. [4].
More specifically, we assume that there are n buyers who are interested in acquiring extra
information from the seller and each buyer’s ex-post utility only depends on the state of
the world and his own action. We further assume that the types of the buyers are drawn
independently from their own type distributions. If there is no competition among them, the
solution to the problem follows immediately from the single-agent setting, since the seller
can offer each agent his optimal menu separately. Thus, we focus on a more interesting case
where the buyers are competitors and only one of them can receive an informative signal.

Input Model and New Notation

We first need to introduce some new notation. We use Θi to denote the type space of buyer
i and F i(θi) to denote the probability that buyer i’s type is θi. We use Θ to denote the
set of all type profiles and F (θ) to denote ×i∈[n]F

i(θi). We assume the action space A is
the same for each buyer i, but the ex-post utility uiω,a for choosing action a under state ω
may be different for different buyers. We consider the explicit model, that is, for each buyer
i, both F i and the ex-post utility matrix U i = {uiω,a}ω∈Ω,a∈A are given as input. We use
ui(θi) to denote the base utility of buyer i for choosing the best action under distribution θi.

Interaction between the Seller and Buyers

The interaction happens in the following order:
1. The seller commits to a mechanism{(

Π(θ) =
(
Π1(θ), . . . ,Πn(θ)

)}
,
{
t(θ) =

(
t1(θ), . . . , tn(θ)

))}
θ∈Θ,

and announces the mechanism to all buyers.
2. The types of the buyers θ = (θ1, . . . , θn) are realized.
3. Each buyer i privately submits his type θi to the seller.
4. The seller chooses buyer i as the winner with probability pi(θ).
5. The seller observes the state of the world ω and sends buyer i a signal s according to the

signaling scheme Πi(θ) and charges buyer i price ti(θ).
6. Each buyer i chooses an action ai and receives ex-post utility uiω,ai .

There are some subtle issues in our model that require further clarification. The most
important of them being the following. After the winner has been chosen, does he observe
the signaling scheme Πi(θ) that the seller uses to generate the signal s? In this work, we
consider the setting where the signaling scheme Πi(θ) is not revealed and the winner only
observes the realized signal. 7 Some remarks are in order. Firstly, the seller may want to

7 One may worry that the winner can obtain extra information from the price ti(θ). To avoid this, we
will design a mechanism so that the price for buyer i only depends on i’s type θi. This is without loss
of generality, as we can simply set the price to be Eθ−i [ti(θ)].
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preserve the privacy of the buyers, and revealing Πi(θ) allows the winner i to infer the other
buyers’ priors. Secondly, hiding the implemented signaling scheme Πi(θ) from the winner
allows the seller to design a mechanism with less stringent IC constraints and thus generates
higher revenue for the seller. This is because the winner does not know the exact experiment
he is getting, if he wants to deviate from the recommendation he must map the same signal
to the same action for all potential experiments that he may win. Therefore, he would map
the signal to an action that induces the highest expected utility, where the expectation is
over the other bidders’ types and the chosen experiment. On the other hand, if the buyer
knew which experiment the signal is drawn from, he could use a mapping that is the best for
each particular experiment.

Our goal in this section is to design a polynomial time algorithm to find the Bayesian
Incentive Compatible (BIC) and Interim Individually Rational (IIR) mechanism that achieves
the highest revenue among all BIC and IIR mechanisms for our model. It is not hard to see
that Lemma 2 generalizes to our multi-agent setting. We begin by introducing an extension
of the LP in Figure 1 to the multi-agent setting. Define Πi(θ) =

(
πiω,j(θ)

)
ω∈Ω,j∈[m], p

i(θ),
and ti(θ) as the decision variables for every buyer i and type profile θ. Recall that m = |A|.

max
∑
θ∈Θ

F (θ)
∑
i∈[n]

ti(θ)

s.t
∑
θ−i

F−i(θ−i)

∑
ω∈Ω,
j∈[m]

θiωπ
i
ω,j(θi, θ−i)uiω,aj + (1− pi(θ))ui(θi)− ti(θi, θ−i)

 ≥
∑
θ−i

F−i(θ−i)

(∑
j∈[m]

zij(θi, θ̃i, θ−i) + (1− pi(θ̃i, θ−i))ui(θi)− ti(θ̃i, θ−i)

)
, ∀i, ∀θi, θ̃i (BIC)∑

θ−i

F−i(θ−i)zij(θi, θ̃i, θ−i) ≥
∑
θ−i

F−i(θ−i)
∑
ω

θiωπ
i
ω,j(θ̃i, θ−i)uω,ak , ∀i, ∀j, k,∀θi, θ̃i

∑
θ−i

F−i(θ−i)

∑
ω∈Ω,
j∈[m]

θiωπ
i
ω,j(θ)uω,aj + (1− pi(θ))ui(θi)− ti(θ)

 ≥ ui(θi), ∀i, θi (IIR)

∑
j∈[m]

πiω,j(θ) = pi(θ), ∀i,∀θ,∀ω (feasibility)∑
i∈[n]

pi(θ) ≤ 1, ∀θ (feasibility)

πiω,j(θ) ≥ 0, ∀i,∀θ,∀ω,∀j (feasibility)

Observe that the number of variables is exponential in n and the number of constraints
is exponential in both n and m. There is no hope to solve this LP in polynomial time.
The main challenge is how to remove the exponential dependence on n. To overcome this
obstacle, we use a method that is powerful in the study of multi-item auctions, that is,
rewriting the LP using a more succinct representation of the mechanism known as the reduced
form [5, 1, 6, 7, 8]. We first define the reduced form of a mechanism.

I Definition 14 (Reduced Form). Given a mechanism M =
(
{Π(θ)}θ∈Θ , {t(θ)}θ∈Θ

)
,

we define its reduced form
{

Π̂i(θi)
}
i∈[n],θi∈Θi

, where Π̂i(θi) = {π̂iω,j(θi)}ω∈Ω,j∈[m] and

π̂iω,j(θi) = Eθ−i [πiω,j(θ)] for each state ω and j ∈ [m], and its interim prices {t̂i(θi)}i∈[n],θi∈Θi ,
where t̂i(θi) = Eθ−i [ti(θ)]. We use P(F ) to denote the set of all reduced forms for a particular
type distribution F .
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It is not hard to see that P(F ) is a closed convex set, as the set of all mechanisms is
clearly closed and convex, and P(F ) is simply a linear transformation of that set. Intuitively,
the reduced form is the “expected experiment and price” that the each buyer believes he will
be allocated when his type is realized, and the expectation is taken over the randomness of
the other buyers’ types.

I Lemma 15. For any type distribution F , P(F ) is a closed convex set.

The LP in Figure 3 searches for the reduced form of the revenue-optimal mechanism.
Notice that the size of the reduced-form LP is substantially smaller than the original one,
and the number of variables is polynomial in the number of agents. With these new variables
we can still express the BIC and IIR constraints of the initial LP. However, it is not yet clear
how to check whether these variables correspond to an actual feasible mechanism. In the
next section, we show how to design a separation oracle that checks the feasibility efficiently.

Variables:
{π̂iω,j(θi)}ω∈Ω,i∈[n],θi∈Θi,j∈[m], denoting the reduced form of the mechanism.
{t̂i(θi)}i∈[n],θi∈Θi , denoting the interim prices.
{p̂i(θi)}i∈[n],θi∈Θi , denoting the allocation probabilities of the experiment
{ẑij(θi, θ̃i)}i∈[n],j∈[m],θi,θ̃i∈Θi , helper variables. ẑ

i
j(θi, θ̃i) represents an upper bound of

the conditional expected utility of signal sj for type θi.
Linear Program:

max
∑
i∈[n]

∑
θi∈Θi

F i(θi)t̂i(θi)

subject to
∑
j∈[m]

∑
ω∈Ω

θiωπ̂
i
ω,j(θi)uiω,aj + (1− p̂i(θi))ui(θi)− t̂i(θi) ≥∑

j∈[m]

ẑij(θi, θ̃i) + (1− p̂i(θ̃i))ui(θi)− t̂i(θ̃i), ∀i, ∀θi, θ̃i (BIC)

ẑij(θi, θ̃i) ≥
∑
ω∈Ω

θiωπ̂
i
ω,j(θ̃i)uiω,ak ∀i,∀θi, θ̃i, ∀j, k∑

j∈[m]

∑
ω∈Ω

θiωπ̂
i
ω,j(θi)uiω,aj + (1− p̂i(θi))ui(θi)− t̂i(θi) ≥ ui(θi), ∀i,∀θi (IIR)

p̂i(θi) =
∑
j∈[m]

π̂iω,j(θi) ∀i,∀ω,∀θi

{π̂iω,j(θi)}ω∈Ω,i∈[n],θi∈Θi,j∈[m] ∈ P(F ) (Feasibility)

Figure 3 A linear program to find the reduced form of the revenue-optimal mechanism in the
multi-agent setting.

4.1 Feasibility of Reduced Forms
To design a separation oracle for the set P(F ), we invoke the equivalence between Optimization
and Separation in Linear Programming [29, 33], which states that being able to optimize any
linear function over a convex set P is equivalent to having a separation oracle for P . It is a
well-known fact that given a separation oracle for P one can optimize any linear function
using the ellipsoid method. Interestingly, the reverse is also true. If there is an algorithm to
optimize any linear function over P , one can construct a separation oracle for P using the
ellipsoid method. We state a strengthened version of the equivalence due to Cai et al. [7].
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The reason that we need to be able to decompose a feasible point into corners of the polytope
is that we eventually need to able to implement the reduced forms as a feasible mechanism.
We elaborate more on this later.

I Theorem 16 (Adapted from Theorem H.1 of [7]). Let P be a d-dimensional closed convex
region, and let A be any polynomial-time algorithm that takes any direction w ∈ Rd as input
and outputs the extreme point A(w) ∈ P in direction w such that A(w) · w ≥ ·maxx∈P x · w.
Then we can design a polynomial time separation oracle SO for P such that, whenever
SO(x) = “yes”, the execution of SO explicitly finds directions w1, . . . , wk such that x lies in
the convex hull of {A(w1), . . . ,A(wk)}.

To apply this equivalence, we need to show how we can optimize a linear function over
the set of feasible reduced-form variables. Recall that we use Πi(θ) =

(
πiω,j(θ)

)
ω∈Ω,j∈[m] and

Π̂i(θi) =
(
π̂iω,j(θi)

)
ω∈Ω,j∈[m] to denote the ex-post signaling scheme and its reduced form.

We will treat Πi(θ) and Π̂i(θi) as m|Ω|-dimensional vectors. The following maximization
problem plays a crucial role in our approach.

I Definition 17. Consider any type profile θ. Let {Xi(θi)}i∈[n],θi∈Θi be a collection of
m|Ω|-dimensional vectors. We define a Virtual Payoff Maximizer (VPM) w.r.t. these weight
vectors VPM({Xi(θi)}i∈[n],θi∈Θi) to be the ex-post signaling scheme Π(θ) that maximizes the
following quantity

∑
i Πi(θi) ·Xi(θi) for every type profile θ. The corresponding reduced form

Π̂(θ) is called rVPM({Xi(θi)}i∈[n],θi∈Θi). In order to ensure that the maximizer is unique,
we break ties lexicographically.

When there is no confusion, we also write V PM(w), rV PM(w) as the maximizers for
the weight vector w.

I Lemma 18. Given an arbitrary collection of weights {Xi(θi)}i∈[n],θi∈Θi we can find the
exact optimal solution of

maxΠ̂∈P(F )
∑
i∈[n]

∑
θi∈Θi Π̂i(θi) ·Xi(θi) in time O

(
m|Ω|

(∑
i∈[n] |Θi|

)
+
(∑

i∈[n] |Θi|
)2
)
.

Proof of Lemma 18. We first rewrite the maximization problem

max
Π̂∈P(F )

∑
i∈[n]

∑
θi∈Θi

Π̂i(θi) ·Xi(θi) = max
Π

∑
i,θi,θ−i

F−i(θ−i)Πi(θi, θ−i) ·Xi(θi) =

max
Π

∑
i,θ

F (θ)Πi(θ) · X
i(θi)

F i(θi) = max
Π

∑
θ

F (θ)
∑
i

Πi(θ) · X̃i(θi),

where X̃i(θi) = Xi(θi)
F i(θi) .

Let θ be a type profile. We now characterize the solution of maxΠ(θ)
∑
i Πi(θ) · X̃i(θi).

If we allocate the experiment to buyer i, the maximum value we can derive is vi(θi) =∑
ω maxa X̃i

ω,a(θi). Clearly, the optimal solution of the linear function above is to always
allocate the experiment to the buyer with the largest vi(θi).

The ex-post signaling scheme that maximizes
∑
θ F (θ)

∑
i Πi(θ) · X̃i(θi) is the one that

always allocates the experiment to the buyer with the largest vi(θi) for every type profile
θ. To solve maxΠ̂∈P(F )

∑
i∈[n]

∑
θi∈Θi Π̂i(θi) ·Xi(θi), we only need to calculate the reduced

form of this ex-post signaling scheme and we denote it using Π̂∗
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We first compute vi(θi) =
∑
ω maxa xiω,a(θi) for every buyer i and every type θi. This step

takes time O
(
m|Ω|

(∑
i∈[n] |Θi|

))
, and there are

∑
i∈[n] |Θi| different such values. Next, for

each buyer, we sort vi(θi). This step takes time O
(∑

i∈[n] |Θi| log |Θi|
)
. To compute Π̂i

∗(θi),
we only need to calculate the probability of the event that over the random draws of θ−i, there
exists another buyer ` 6= i either v`(θ`) > vi(θi) or ` < i and v`(θ`) = vi(θi). This probability
can be computed in time O

(∑
i∈[n] |Θi|

)
for each buyer i and type θi. Hence, in total we

can optimize the linear function in time O
(
m|Ω|

(∑
i∈[n] |Θi|

)
+
(∑

i∈[n] |Θi|
)2
)
. J

Combining Theorem 16 and Lemma 18, we have a polynomial time algorithm to solve
the LP in Figure 3, but we still need to turn the reduced form into an ex-post signaling
scheme. We again use an idea from computing the optimal multi-item auctions, that is, first
decomposing the optimal reduced form into a distribution over extreme points of P(F ), then
implementing all the extreme points that appear in the distribution using a VPM ex-post
signaling scheme.

I Theorem 19. We design an algorithm to compute the revenue-optimal mechanism in time
poly

(
n,m, |Ω|,

∑
i∈[n] |Θi|

)
. Moreover, the mechanism can be implemented as a distribution

over m|Ω|
(∑

i∈[n] |Θi|
)

+ 1 VPM ex-post signaling schemes.

5 Further Extensions and Future Directions

In this section, we discuss further generalizations of the model by Bergemann et al. [4] and
future research directions that we believe are interesting to pursue.

5.1 Extensions of the Original Model
Enlarged Buyer Type

Recall that in the original model the only private information of the buyer is his private
belief of the underlying state, which is realized at the beginning of the interaction with the
seller. Importantly, the payoffs are public knowledge and remain the same across different
buyers. A natural generalization one can consider is to allow the buyer to draw not only his
prior belief θ, but also his payoff function u : Ω×A→ [0, 1] from some distribution.

To be more specific, we consider the setting where a buyer’s type ρ = (θ, u) is drawn
from some distribution F at the beginning of the interaction between the buyer and the
seller, and ρ is private to the buyer. As in the original model, we assume that the seller has
access to this distribution. We remark that all of our positive results from Section 3 and
Section 4, except for Theorem 11, hold in this extended model as well. The only difference
in our constructions is that instead of indexing the variables by θ we now index them by ρ.

Misspecified Model

Another generalization we consider in the single-agent setting is the misspecified model. In
this model the seller has access to some type distribution F̃ which is within ε in TV-distance
with the real type distribution F . Moreover, the seller has access to a type space Θ̃ with the
following two properties: |Θ̃| = |Θ|, for all θ̃ ∈ Θ̃ there is some θ ∈ Θ for which dTV (θ̃, θ) ≤ ε.
Then, the menu that the seller designs for the misspecified distributions can be modified
so that it guarantees only a negligible revenue loss when it is evaluated in the true setting.
Lemma 20 formalizes this claim.
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I Lemma 20. Let F̃ , F be the distributions of the types that the seller has access to and
the true distribution of the types, respectively. Let also {θ̃i}i∈[k], {θi}i∈[k] be the types
that the seller has access to and the true types, respectively. Assume that dTV (F̃ , F ) ≤
ε1, dTV (θ̃i, θi) ≤ ε2,∀i ∈ [k]. We also let M̃ = {Ẽ(θ̃i), t̃(θ̃i)}i∈[k] be an IC, IR menu that has
revenue Rev(M̃) under the misspecified distributions and uses at most |S| signals. Then,
we can compute a set of prices {t(θ̃i)}i∈[k] so thatM = {Ẽ(θi), t(θi)}i∈[k] is IR, IC and has
Rev(M) ≥ Rev(M̃)−O

(
ε1 +

√
|Ω|ε2

)
under the true distributions.

Note that Lemma 20 allows us to generalize our results and obtain approximately-optimal
menus when we only have black-box access to the distribution of the types. That is, we take
enough samples to learn the distribution within Total Variation distance ε and then apply
Lemma 20.

5.2 Future Directions
We believe that the design of Information Markets is a very important problem that has
not received sufficient attention by the Theory of Computation community. There are many
interesting questions waiting be addressed.

1. In the single-buyer setting where we only have access to the action space via a BR oracle
the running time of our algorithms is exponential in the number of states. An immediate
question to ask is whether we can get an FPTAS or even a PTAS that has a better
dependence on the number of states.

2. In the multi-agent setting, we consider the case in which the seller does not reveal the
signaling scheme that she uses to send a signal to the winner. An interesting question
is whether we can have efficient algorithms in the setting where the seller reveals the
signaling scheme to the buyer.

3. Currently, in the multi-agent setting we assume that the ex-post utility of each buyer
depends only on the state of the world and the action he takes. Is the problem of designing
the optimal mechanism when the ex-post utilities also depend on the actions of the other
buyers tractable?
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Abstract
We study the n-party noisy broadcast channel with a constant fraction of malicious parties. Specific-
ally, we assume that each non-malicious party holds an input bit, and communicates with the others
in order to learn the input bits of all non-malicious parties. In each communication round, one of
the parties broadcasts a bit to all other parties, and the bit received by each party is flipped with a
fixed constant probability (independently for each recipient). How many rounds are needed?

Assuming there are no malicious parties, Gallager gave an O(n log logn)-round protocol for the
above problem, which was later shown to be optimal. This protocol, however, inherently breaks
down in the presence of malicious parties.

We present a novel n · Õ
(√

logn
)
-round protocol, that solves this problem even when almost

half of the parties are malicious. Our protocol uses a new type of error correcting code, which we
call a locality sensitive code and which may be of independent interest. Roughly speaking, these
codes map “close” messages to “close” codewords, while messages that are not close are mapped to
codewords that are very far apart.

We view our result as a first step towards a theory of property preserving interactive coding, i.e.,
interactive codes that preserve useful properties of the protocol being encoded. In our case, the
naive protocol over the noiseless broadcast channel, where all the parties broadcast their input bit
and output all the bits received, works even in the presence of malicious parties. Our simulation of
this protocol, unlike Gallager’s, preserves this property of the original protocol.
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82:2 Computation over the Noisy Broadcast Channel with Malicious Parties

1 Introduction

The field of interactive coding, pioneered by Schulman [16, 17, 18], asks the following question:

Let Π be a communication protocol designed to work over a noiseless channel. Can Π
be converted to a noise resilient protocol Π′ with similar communication complexity?

Many works, mainly over the last decade, give affirmative answers to this question for the
two-party channel, as well as various multi-party distributed channels. For example, it
was shown that protocols in the extensively studied message passing model (peer-to-peer
channels) and in the shared blackboard model (broadcast channel), can be simulated by
protocols that tolerate stochastic noise, i.e., noise that flips each of the communicated bits
with constant probability [15, 1, 4, 7, 12, 6, 13, 5]. These only incur a small (sub-logarithmic
and in many cases, even constant) multiplicative overhead to the communication. Here, by
“simulate” we mean that the new protocols retain the same input-output behavior as the
original protocols1.

Property preserving interactive coding. While the simulation protocols Π′, designed by
the aforementioned interactive coding works, are communication efficient and preserve the
input-output behavior of the original protocols Π, they often lose the “structure” of the
original protocols together with some of the basic properties making the original protocols
useful. For instance, the importance of celebrated distributed protocols for the consensus
and the leader election problems stems from their fault tolerance properties – the fact that
they keep the same input-output behavior, even in the presence of malicious parties that
may exhibit crashes or even Byzantine failures2.

We study the above interactive coding question in a different light: Assume that the
original communication protocol Π satisfies a special property P , can Π be converted to
a noise resilient protocol Π′ that still satisfies P? Specifically, we focus on protocols with
the property P = “Π is resilient to a constant fraction of malicious parties”, and give a
simulation protocol Π′ over a noisy channel that also satisfies P .

The noisy broadcast channel. In this paper, we consider this new “property preserving”
interactive coding question in the noisy broadcast model, a noisy version of the shared
blackboard model, first suggested by El Gamal in 1984 [8]. In this model, a set of n parties,
each holding a private input, communicate over a noisy broadcast channel. In each round,
one of the parties broadcasts a bit to all the other parties, and the bit received by each of
the other parties is flipped with some constant probability ε > 0 (independently for each
recipient).

We revisit the basic problem suggested by El Gamal, regarding the computation of the
identity function over the noisy broadcast channel: assume that each party receives a single
bit as an input and that the parties’ mutual goal is for all parties to learn all input bits. That
is, party i gets a bit xi ∈ {0, 1} and needs to output f(x1, x2, · · · , xn) = (x1, x2, · · · , xn).
How many communication rounds are needed? Observe that, over the noiseless broadcast

1 The parties participating in the distributed protocol are assumed to each have an input at the beginning
of the protocol and give an output when the protocol terminates. We often think of the entire transcript
received by a party as its output.

2 Recall, for example, that in the consensus problem, each party gets an input bit and all parties need
to output the input bit of one of the parties (and, in particular, all parties need to output the same
bit). Indeed, there are short trivial protocols with the required input-output behavior, but these are not
resilient to malicious parties.
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channel, this can be done in n rounds by simply having each party broadcast its bit. In 1988,
Gallager [7] showed that O(n log logn) broadcast rounds suffice to solve the problem over
the noisy broadcast channel, with polynomially small error probability. Note that this also
means that any function on n input bits can be computed over the noisy broadcast channel
in O(n log logn) rounds3, making the identity function “complete” for the computation of
such functions. Gallager’s result was shown to be tight in the beautiful 2005 paper by Goyal,
Kindler, and Saks [10].

The noisy broadcast channel with malicious parties. We consider El Gamal’s question in
the presence of malicious parties. Specifically, assume that a constant fraction of the parties
participating in the protocol are malicious. These parties are controlled by a know-it-all
adversary that sees all inputs, as well as all the sent and received bits. The rest of the parties
are assumed to be honest and following the protocol, and they may not know the identity of
the malicious parties.

Due to the presence of malicious parties, it is unrealistic to expect all parties to compute
the identity function (neither over the noiseless broadcast channel, nor over the noisy
broadcast channel) for two reasons: (i) the malicious parties will deliberately give incorrect
outputs; (ii) a malicious party with an input xi can behave as if it is holding the input 1−xi,
preventing the honest parties from learning its input. Therefore, we relax our requirement and
only ask that each honest party outputs the input bits of all other honest parties. Specifically,
we want that for every input x, the following condition is satisfied with high probability:

(∗) Each party i outputs (x̃i1, x̃i2, · · · , x̃in), where if both i and i′ are honest, then
x̃ii′ = xi

′ (otherwise, x̃ii′ can be arbitrary).

Over the noiseless broadcast channel, it is easy to see that the simple aforementioned n-round
protocol, where each party broadcasts its bit once and outputs all the bits it received, satisfies
this relaxed condition. How many rounds of communication are needed when we work over
the noisy broadcast channel?

1.1 Our Results
The main result of this paper is a novel n · Õ(

√
logn)-round protocol for computing the

identity function under the relaxed condition (∗), in the presence of a constant fraction of
malicious parties and stochastic noise. While more costly than Gallager’s protocol, which
utterly breaks down in the presence of even a single malicious party (see discussion in
Subsection 2.3), our protocol does beat the naive O(n logn) protocol4.

We note that our protocol assumes the statistical variant of the noisy broadcast channel
(see, e.g., [12, 13]), where the noise flips every sent bit with probability exactly ε. Generalizing
the protocol for the fault tolerant noisy broadcast channel where the noise can flip the jth bit
received by the ith party with a different probability for different is and js, as long as these
probabilities are all between 0 and ε, is left open (see more about this in Subsection 2.6).

3 To compute the function g(x1, x2, · · · , xn), the parties run the protocol that computes the identity
function. After the protocol, each party knows x1, x2, · · · , xn and can evaluate g(·) by itself.

4 In the naive protocol, each party broadcasts its bit Θ(logn) times. Party i outputs (x̃i
1, x̃

i
2, · · · , x̃i

n),
where x̃i

i′ is the majority of the bits party i received from party i′. If both parties i and i′ are honest,
the bit x̃i

i′ is the input of party i′, except with polynomially small probability, and by a union bound,
our relaxed property holds, except with polynomially small probability.

ITCS 2021
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I Theorem 1. Let ε, θ < 1/2 and n be large enough. There exists an n · Õ(
√

logn)-round
randomized protocol with private and public randomness5 over the noisy broadcast channel
with noise rate exactly ε, that computes the identity function in the presence of a θ-fraction
of malicious parties (i.e., satisfies condition (∗)) with error 1/n. Furthermore, the protocol is
computationally efficient – the algorithm for each party runs in almost-linear, i.e., n1+o(1),
time.

As discussed above, due to the “completeness” of the identity function, our result also
implies that any n-bit function (each party gets a single input bit) can be computed over
the noisy broadcast channel in the presence of a constant fraction of malicious parties in
n · Õ(

√
logn) rounds.

1.2 Our Techniques and the Notion of Locality Sensitive Codes
The starting point of our construction is Gallager’s protocol. At the heart of this protocol is
a clever trick that uses (standard) error correcting codes. While Gallager’s trick inherently
breaks in the presence of malicious parties, we draw inspiration from his ideas and design a
different protocol using a new type of codes that we call locality sensitive codes.

Roughly speaking, our locality sensitive codes map “close” messages to “close” codewords,
while messages that are not close are mapped to codewords that are very far apart. In more
detail, our alphabet set is the set of integers. Two messages m,m′ ∈ Zk that are close in
every coordinate (|mi −m′i| ≤ α for every i ∈ [k]) will be mapped to codewords that are close
in almost every coordinate, but two messages that are far apart in at least one coordinate
are mapped to codewords that are far in almost all coordinates. Note that locality sensitive
codes are a generalization of classical error correcting codes. Indeed, by setting α = 0 we can
interpret “closeness” as “equality” (two messages are close only if they are identical) and
retrieve the definition of standard error correcting codes – identical messages are mapped
to identical codewords and non-identical messages are mapped to codewords with a large
distance.

We mention that the definition of locality sensitive codes is reminiscent of that of locality
sensitive hash functions, often used by algorithms for the approximate nearest neighbor
problem and other related problems (see, e.g., [2, 3]). However, while locality sensitive hash
functions are hash functions, and as such, are contracting the message, locality sensitive
codes stretch the message. Since the problem studied in this paper is, at least seemingly, very
different from other known applications of locality sensitive hash functions, devising further
connections between locality sensitive codes and locality sensitive hashes will be interesting.

1.3 Future Directions
Our work suggests several future directions, we list a few below.

Improving our result. One obvious interesting question is whether our result in Theorem 1 is
optimal in terms of communication complexity, or whether it can be improved. In particular,
is it possible to match Gallager’s construction and design an O(n log logn) protocol for the

5 Observe that private and public randomness are “incomparable” in our model: the public random string
is known to all parties, including the malicious parties. The private random strings are each known to a
single party, and, in particular, the private random string of an honest party is not known to any of the
malicious parties (see Subsection 3.3).
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identity function that handles stochastic noise and also works in the presence of a constant
fraction of malicious parties6? One direction towards this goal is to improve the construction
of locality sensitive error correcting codes.

Interactive codes preserving other properties. In this paper, we consider the property
P = “Π is resilient to a constant fraction of malicious parties” and show that in certain
cases, protocols Π that satisfy P can be compiled into noise resilient protocols that still
respect P . Can this be done for other useful properties P? We mention that work of [9]
can be interpreted as asking a similar question with P = “Π is computing some function f
privately” (and with adversarial noise), and answering it in the negative.

General interactive coding with malicious parties. As mentioned in Subsection 1.1, The-
orem 1 implies a similar simulation for any n-bit function. Thus, one could have hoped that
our simulation would also extend to functions with more than n input bits (i.e., the case
where parties get long inputs), allowing us to convert any t-round noiseless protocol with
malicious parties to a t · Õ(

√
logn)-round protocol over the noisy broadcast channel with

malicious parties. However, even without the presence of malicious parties, we suspect that
the overhead in making a broadcast protocol noise resilient can be a multiplicative factor of
Ω̃(logn) (and, in particular, a multiplicative O(log logn) overhead á la Gallager does not
always suffice).

Interactive coding with malicious parties over different models. While we believe that
there is no scheme with a small overhead that converts protocols in the noiseless broadcast
channel that are resilient to malicious parties to protocols in the noisy broadcast channel
that are resilient to malicious parties, such a scheme may exist for other channels, such as
the (synchronous or asynchronous) peer-to-peer model. If it does, this scheme would imply
noise resilient consensus and leader election protocols in the respective models. We mention
that noise resilient consensus is considered in [11], under a different noise model.

Better than optimal interactive coding with adversarial noise. Another interesting direc-
tion is further exploring the relaxed requirement (∗). In this paper, we design a protocol for
the identity function that satisfies (∗) even in the presence of a constant fraction of malicious
parties and stochastic noise. Does such a protocol exist in the presence of a more general
type of noise – say, if we allow the adversary to corrupt a different set of parties in each round
or if we allow general adversarial noise, where the adversary can corrupt a constant fraction
of the received bits? While prior works argue that in multi-party settings it is impossible to
handle more than a 1/n fraction of adversarial noise, as with this budget, the adversary can
corrupt one of the parties completely, this may be possible under a relaxed definition along
the lines of (∗).

2 Overview of Our Protocol

In this section, we build up to our protocol step by step, covering our main ideas.

2.1 The Identity Problem Over the Broadcast Channel
In the broadcast channel, there are n parties that communicate with one another. This
communication happens through bit “broadcasts”, namely, bits sent from one of the n
parties to all the parties. The party sending these bits computes them using the bits it

6 Goyal et al. [10], proved their lower bounds for the statistical model assumed in this paper, where
each received bit is flipped with probability exactly ε. Therefore, our result cannot be improved to an
o(n log logn)-round protocol.
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received during the communication that happened so far and its own private input. The
end-goal of this communication is to compute a joint function of all the private inputs while
communicating as few bits as possible.

An important setting (indeed, complete in certain respects) is when all the n parties have
a bit as their input, and they want to know the inputs of all the other parties. Formally, party
i ∈ [n] has a bit xi and should output the bit string x1, x2, · · · , xn after the communication.
We shall call this problem the identity problem in the rest of this document.

The identity problem admits a simple and optimal n round communication protocol over
the broadcast channel: In round i ∈ [n], party i broadcasts their bit xi to all the parties.
After n rounds, all the parties would have received all the bits and can output the string
x1, x2, · · · , xn.

This simple protocol boasts of some nice and non-trivial properties. For example, even
if an (arbitrarily large) subset of parties do not follow the protocol and are malicious, we
still have the guarantee that all non-malicious parties will output the bit of all other non-
malicious parties correctly. This property makes sure that, when this protocol is run on
a large distributed system, it will be resilient to a subset of the parties failing or being
taken over by an adversary. Moreover, the protocol described is also communicationally and
computationally efficient.

However, this protocol also has a major weakness in that it crucially relies on the fact
that the channel does not corrupt any of the bits sent, which are received exactly by all
the parties. Is it possible to have a protocol that is resilient to both malicious parties and
channel corruptions?

2.2 The Noisy Broadcast Channel and Gallager’s Protocol
To study the above question, one needs to move to the noisy broadcast channel. This channel
is identical to the broadcast channel except that it has stochastic noise, namely, there is a
parameter 0 < ε < 1

2 such that when any of the parties broadcasts a bit b over the channel,
all the parties may either receive b, with (independent) probability 1− ε, or may receive the
bit 1− b, with probability ε.

The protocol for the identity problem described above can even be simulated over the
noisy broadcast channel, albeit with higher communication. For example, one may repeat
each bit broadcast during the protocol O(logn) times, and this will ensure that all the
parties receive the bit sent except with probability polynomially small in n. A simple union
bound over all the n parties and all the n bits shows that the protocol does solve the identity
problem except with probability polynomially small in n.

In fact, not only does this protocol solve the identity problem in a way that is resilient to
channel corruptions, it also preserves the property of the original protocol of being resilient
to malicious parties. Indeed, even if an arbitrarily large subset of parties in the protocol are
malicious, all the non-malicious parties will output the bits of all the malicious parties with
high probability.

2.2.1 Gallager’s Protocol [7]
The main drawback of this protocol is that it communicates O(n logn) bits and it is not
immediately clear if this is optimal in terms of communication. In fact, without the restriction
of being resilient to malicious parties, Gallager, in his elegant work [7], showed that it is
provably not so, exhibiting a protocol that communicates O(n log logn) bits and is resilient
to channel corruptions7.

7 [10] later showed that Gallager’s protocol is optimal up to constant factors.
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The main idea behind Gallager’s improved protocol can be easily understood from an
information theoretic viewpoint. Consider the O(logn) rounds where a given party broadcasts
in the simple O(n logn) communication protocol. In the first few rounds when this party
broadcasts, each bit broadcast gives a relatively large amount of information about its input
to all the other parties. However, as the number of repetitions increases, the other parties
already know the input bit with significant probability and each bit sent starts to give lesser
and lesser information about the party’s input. Thus, by independently repeating their
inputs later in the protocol, the parties are wasting a lot of communication to convey a
small amount of information about their inputs. This is clearly suboptimal and a more
sensible approach is to “combine” the inputs of several of the parties into fewer bits, while
maintaining that the information conveyed is the same.

Actually implementing this idea requires ingenuity, and [7] does it by having a protocol
with three stages as described below8:

Stage Broadcast: This stage of Gallager’s protocol has O(n log logn) rounds and in this
stage, all the parties broadcast their input O(log logn) times. As the total number of
broadcasts per party is small (only O(log logn)), all the broadcasts in this stage convey
a large amount of information to the other parties.
Because all the parties broadcast O(log logn) times in stage Broadcast, after this stage,
any party can decode (by simple majority based decoding) the input of any other party
correctly, except with probability at most 1

polylog(n) .
Stage Guess: In this stage, the parties divide themselves into families of size A = Θ(logn).
As the size of the families is Θ(logn), a simple union bound shows that any party in
a family can decode the inputs of all other parties in the family correctly, except with
probability at most 1

polylog(n) .
In fact, as the noise received by all the parties is independent, we also have concentration
and, except with probability polynomially small in n, we have that at least 90% of the
parties in a family correctly decode the inputs of all the parties in the family.
Stage Boost: This is the most important stage of the protocol, where the parties
“combine” multiple input bits and give information about all of the combined bits in
the same communication bit. Recall that before this stage, the parties are divided into
families of size A, and, except with probability polynomially small in n, at least 90% of
the parties in a family know the input of all the parties in the family.
We describe stage Boost from the perspective of a single family, noting that the behavior
of all the families is symmetric. Party i in this family, for all i ∈ [A], takes the vector of
bits it decoded for all the parties in the family, encodes this vector using a constant rate
error correcting code, and broadcasts the ith coordinate of this encoding9. Observe that
as this coordinate depends on all the decoded bits, transmitting it conveys information
about all the A bits in the family. Indeed, it is this combination that reduces the failure
probability (“boosts” the success probability) of the protocol from 1

polylog(n) to 1
poly(n)

without wasting Ω(logn) communication per party and allows us to union bound over all
parties and all bits.
Due to the fact that 90% of the parties in a family encode the same (correct) vector of
inputs, at least 90% of the sent coordinates are actually coordinates from one codeword.
As the channel corrupts each sent symbol with a small constant probability, for any one
of the n parties, it holds, except with probability polynomially small in n, that at least

8 We note that [7] does not describe his protocol in terms of these stages. However, it will be helpful for
us to talk about his protocol in this framework.

9 We assume in this description that the error correcting code takes a bit string to a string over a larger
alphabet but of the same length, and assume for simplicity that the parties can broadcast symbols from
this larger alphabet in one round.
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80% of the received coordinates come from the same (correct) codeword. Because this is
a codeword of a good error correcting code, these 80% of the coordinates suffice to decode
the inputs of all parties in the family correctly, except with probability polynomially small
in n, and a union bound over all families and all parties finishes the proof of correctness
of Gallager’s protocol.

2.3 Gallager’s Protocol in the Presence of Malicious Parties

Gallager’s protocol shows that if resilience to malicious parties is not required, then the
simple O(n logn) bit communication protocol can be improved. Our main result is stronger,
showing that it is possible to do better than the O(n logn) bit communication protocol while
maintaining its resilience against malicious parties. Before we describe our ideas, however, it
will be helpful to first understand where Gallager’s protocol fails if some of the parties are
malicious.

At first glance, one may mistakenly believe that Gallager’s protocol is also resilient to
malicious parties. Indeed, the bits broadcast by the parties in stage Broadcast do not depend
on the bits received by them, no communication happens in stage Guess, and the argument
described in Subsubsection 2.2.1 would work (with slightly different parameters) as long
as no family has a lot, say more than 10%, of malicious parties. As the families are size
A = Θ(logn), this last property can be ensured, except with probability polynomially small
in n, by, say, partitioning the parties into families randomly before the execution of the
protocol.

However, delving deeper reveals a major problem. Recall that, for stage Boost to work,
stage Guess must ensure that, except with probability polynomially small in n, at least 90%
of the parties in any family have the same (correct) decoding for the input bits of all the
parties in the family. As the parties perform majority based decoding in stage Guess, this is
equivalent to saying that, for at least 90% of the parties in a family, the majority bit they
receive for all the parties in the family in stage Broadcast is the same (and correct) except
with probability polynomially small in n.

The last property is true if there are no malicious parties. Indeed, all parties repeatedly
broadcast their input in stage Broadcast, and because the channel only corrupts with a small
constant probability, a simple concentration argument shows that, except with probability
polynomially small in n, the majority bit received by at least 90% of the parties in a family
will be the same as the bit sent.

However, if one of the parties in a family is malicious, it may, in stage Broadcast, broadcast
the bit 0 half the time and the bit 1 the other half of the time. This implies that the majority
bit received by any other party is equally likely to be 0 or 1, and only around 50% of the
parties in the family can agree on the inputs of all the other parties in the family. To make
matters worse, if a constant fraction (and not just 1) of the parties in the family are malicious,
and all of them behave this way, then no two parties in the family will agree on the inputs of
all the parties in the family (with large probability).

Before describing how our protocol gets around this problem, we quickly note that the
source of this problem is not that the parties perform majority based decoding and decode to
a bit only if it is heard at least 50% of the time. Even if the parties have another threshold,
say 70%, the malicious parties can simply broadcast 0 in 30% of their broadcasts in stage
Broadcast, and 1 in the remaining 70%, and cause the same problem.
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2.4 Our Approach: Boosting Before Guessing
We define the “true count” of a party to be the number of times it broadcasts 1 in stage
Broadcast. The example from the foregoing section shows that, when there is a malicious
party i whose true count is half of the total broadcasts by party i in stage Broadcast, then
majority based decoding implies that no more than 50% of the parties in the family of party i
agree on the bit they decoded for party i.

Nonetheless, the fact that the channel corrupts only a small constant fraction of the bits
sent implies that, except with probability at most 1

polylog(n) , all the parties in the family of
party i can approximately decode the true count for party i. Our main idea is to run stage
Boost on these true counts directly, without first executing stage Guess to decode the true
counts to bits.

Indeed, if we can run stage Boost on the true counts, and get all the parties to agree on
an approximation for the true counts that is correct except with probability polynomially
small in n, we can union bound over all parties and all counts to conclude that, except with
probability polynomially small in n, all the parties know all the true counts approximately
correctly. Once this happens, the parties can discard all counts that are close to 1

2 , as these
can only be from malicious parties, and run stage Guess on the remaining counts to get the
input bits of all the non-malicious parties correctly.

2.4.1 Computing the Encodings
There is however, a key difference between boosting the true counts and boosting the guessed
bits. While boosting the guessed bits, Gallager’s protocol ensured that most of the parties
in a family have the same Boolean vector u ∈ {0, 1}A of the bits guessed for parties in the
family. This allowed an error correcting code of u to be computed in a distributed way, where
every party i in the family contributes coordinate i by encoding its Boolean vector.

With the true counts, this is no longer possible as no party in the family is likely to have
the vector of true counts exactly, and the parties merely possess a good approximation of
it. That is, if p ∈ ZA denotes the vector of the true counts for the family, each party in
the family now has a different approximation q ∈ ZA of p. The task to be solved now is
to compute an encoding of p in a distributed manner, when parties only have access to the
approximations q!

This task seems to be impossible for standard error correcting codes, for which changing
any of the coordinates of the message being encoded even slightly may result in a codeword
completely unrelated to the original codeword. What we need instead is an error correcting
code that is also “locality sensitive”, namely, for two messages (not necessarily Boolean) q1
and q2 that are close in all the coordinates, the encodings of q1 and q2 are also close in most
of the coordinates. On the other hand, if q1 and q2 are far in any of the coordinates, then
their encodings must be far in almost all of the coordinates.

Connection to locality sensitive hashing. Our description above may remind the reader
of the area of locality sensitive hashing, where vectors in Rd are hashed into buckets such
that vectors that are close to each other are likely to be hashed into the same bucket, while
vectors that are far apart are likely to be hashed to different buckets.

Our description of locality sensitive error correcting codes is related, but different. Firstly,
by definition, a hash function loses information to make the data more manageable while
an error correcting code adds more redundant information to make the data resilient to
corruptions. Moreover, a locality sensitive hash only requires the hash values of two inputs
that are far to be different, while in our definition of locality sensitive error correcting codes,

ITCS 2021



82:10 Computation over the Noisy Broadcast Channel with Malicious Parties

we will require the codewords to not only be different, but also far apart, in most of the
coordinates. In fact, how far they can be will be critical in determining the communication
complexity of our protocol.

2.5 Locality Sensitive Error Correcting Codes
As described above, we desire a code C that is locality sensitive. Namely, it has the following
properties:
1. (“close” → “close”): If two messages q1 and q2 are such that their coordinate-wise

difference is at most α in absolute value, for some α ≥ 0, then the difference of most of
the coordinates of C(q1) and the corresponding coordinate of C(q2) is at most β, for some
β ≥ 0.

2. (“not close” → “far”): If there exists a coordinate where messages q1 and q2 differ by
more than α′, for some α′ > α, then the difference of most of the coordinates of C(q1)
and the corresponding coordinate of C(q2) is more than β in absolute value.

2.5.1 Constructing Locality Sensitive Error Correcting Codes
We present a randomized construction of locality sensitive error correcting codes that proceeds
in two steps. First, we construct a version of the codes over the alphabet Z with weak
parameters by taking each coordinate of the codeword to be a random linear function of
the coordinates of the messages being encoded (details later). The codes we construct in
this step will satisfy the property in item 1 above for an extremely large, say 99.99% of the
coordinates but will satisfy the property in item 2 for only 50% of the coordinates.

This is followed by an amplification step where we combine independent copies of the
codes constructed in the previous step to get better parameters. Specifically, we take L
copies, for some constant L, and construct a “joint” codeword each of whose coordinates
∈ ZL is a tuple consisting of the corresponding coordinate in all the codewords. A pair of
such joint coordinates is considered to be far if any one of the constituent coordinates is far.
By setting L to be the right amount, we can make sure that the constant in item 1 only
degrades slightly, say to 99%, while the constant in item 2 improves drastically to 99%.

It remains to describe step 1, the construction of un-amplified locality sensitive error
correcting codes. As mentioned earlier, every coordinate of these codes is a random linear
function of the coordinates of the message being encoded. The coefficients in this linear
function belong to {−1, 1} chosen independently and uniformly. A simple concentration
argument shows that, for messages q1 and q2 of length k > 0 whose coordinate-wise difference
is at most α, the value of such a random linear function will not differ by more than O

(
α
√
k
)
,

with high probability. Thus, setting β = O
(
α
√
k
)
ensures that item 1 above is satisfied.

It remains to show why item 2 is satisfied. For this, assume that two messages q1 and q2
of length k are being encoded such that q1 and q2 differ by at least α′ > α in at least one
coordinate. Let us assume without loss of generality that this is the last coordinate. Then,
for any choice of coefficients for the first k − 1 coordinates, there exists a choice in {−1, 1}
of the coefficient for the last coordinate such that the difference in the value of the linear
function is at least α′ in magnitude. Indeed, either the difference without the last coordinate
is positive, in which we can select the value in {−1, 1} that will make the difference increase
by α′, or it is negative, in which case we can select the other value and make the difference
decrease by α′. In either case, the resulting difference is at least α′ in absolute value.

This implies that, with probability at least 1
2 , setting β = α′ satisfies item 2 finishing the

argument.
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2.6 Our Protocol
Armed with locality sensitive error correcting codes, we now describe our protocol. Note
that our description has parameters such as k, m, α, etc. and we set these parameters to
appropriate values later in the sketch. Recall that the n parties are divided into families
of size A = Θ(logn) randomly and this ensures that, except with probability polynomially
small in n, all families have a small fraction of malicious parties.

We divide our protocol into the same three stages as in Gallager’s protocol, although the
order of the stages is different.

Stage Broadcast: In this stage, all the parties broadcast their input m times (we set m
later in this sketch). The parameter m will be chosen so that, except with probability at
most 1

polylog(n) , all the parties in a family receive approximately the same counts of the
number of 1s from all other parties in the family up to an additive error of α.
As in Gallager’s protocol, as the noise received by each party is independent, except with
probability polynomially small in n, at least 90% of the parties in any family receive the
same counts up to an additive error of α.
Stage Boost: Notwithstanding the high level similarity to it, in that the parties in a
family join forces to convince all the parties of the approximately correct counts, stage
Boost in our protocol is very different from stage Boost in Gallager’s protocol.
In our protocol, we first divide the families into A

k groups of k parties each. Then, for
all i, party i in the family computes, using a locality sensitive error correcting code, an
encoding for each group in the family of the vector of counts it received from that group
in stage Broadcast, and broadcasts coordinate i of all the A

k encodings.
All the parties then combine the coordinates received from the different parties in a
family to get a codeword for all the A

k groups in the family, and decode it to get the
individual counts for the parties in the group. We note that these decoded counts are
within α′ of the true counts. Indeed, 90% of the parties in the family sent coordinates from
encodings of counts that were within α of the true counts. Only a small constant fraction
of coordinates were altered due to corruptions, and another small number of coordinates
were sent by malicious parties in each family. Therefore, most of the coordinates received
are from encodings of vectors within α of the true counts. Due to the property in item 1
above, these coordinates are within β of the corresponding coordinates in the encoding of
the true counts.
Because of the large number of coordinates that are within β of the corresponding
coordinates in the encoding of the true counts, due to item 2 above, these coordinates
are unlikely to come from a vector that is not within α′ of the true counts. Consequently,
except with probability polynomially small in n, all the parties decode to a vector of
counts within α′ of the true counts, as desired. We will set α′ to be the same order of
magnitude as m, but smaller, say α′ = m

10 .
Stage Guess: In this stage, the parties simply perform majority based decoding of the
counts decoded after stage Boost. This results in correct outputs for non-malicious parties
because their true counts are either 0, if they have input 0, or m, if they have input 1. As
the decoded counts are only α′ = m

10 off from the true counts, majority based decoding
will work correctly for the non-malicious parties.

Setting the parameters. Recall the size of a family is A = Θ(logn). We already explained
α′ = m

10 , and our construction of locality sensitive error correcting codes in Subsection 2.5
implies β = O

(
α
√
k
)

= m
10 as well. The number of bits communicated by a given party in our

protocol is m in stage Broadcast and (roughly) A
k in stage Boost. Thus, total communication

by a party equals
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m+ A

k
= m+O

(
A · α

2

m2

)
.

In the fault tolerant model, where the best guarantee obtainable is α = Θ(m), the expression
above is at least Ω(logn) and we do not get any gains over the protocol in Subsection 2.2.
However, in the statistical model, where the more predictable nature of the noise allows us
to use concentration bounds and get α = Θ(

√
m), the expression above is minimized when

m = Θ
(√

logn
)
, and we get an improvement over the protocol in Subsection 2.2. Observe

that, perhaps surprisingly, the malicious parties are weaker in the model with “more” noise,
and this is because the noise is also more predictable.

Mixability of the encodings. We finish the section by covering one subtlety about stage
Boost that we omitted from the description above. In our implementation, instead of party i
in the family sending coordinate i of the encoding it computed, we have it send a random
coordinate along with the identity of the coordinate. As a typical coordinate will satisfy the
properties in item 1 and item 2 above, this does not affect our analysis by much, but it does
help us avoid the pathological case where all parties send a coordinate that is atypical in
that it does not satisfy item 1 and item 2.

We note that this pathological case never arose in Gallager’s implementation as there, the
coordinates sent by different parties in a family were different coordinates from the encodings
of the same message, and thus, only a small number of them could possibly be atypical. For
us, the parties send encodings of nearby messages, and it is possible that all coordinates that
are sent are atypical for the encoding where they came from, hence, this extra randomization
step.

3 Models and Formal Problem Definition

3.1 Noisy Copies
Let ε ∈ [0, 1/2) be a noise parameter and k ∈ N. An ε-noise bit is a {0, 1}-valued random
variable that takes value 1 with probability exactly ε. An ε-noise k-vector N is a sequence of
k independent ε-noise bits. For a bit-vector x ∈ {0, 1}k, an ε-noisy copy of x is a random
variable of the form x⊕N , where ⊕ denotes the bitwise XOR, and N is an ε-noise k-vector.
More generally, if X is any random variable taking values in {0, 1}k an ε-noisy copy of X is
a random variable of the form X ⊕N , where N is an ε-noise k-vector chosen independently
from X.

3.2 The Noisy Broadcast Model
The (statistical) noisy broadcast model considers n parties P1, · · · , Pn. Let X and Y be sets.
The input is a vector x ∈ Xn, and each of the parties Pi initially has coordinate xi ∈ X . The
goal is for party Pi to evaluate a function f i : Xn → Y at x, i.e., output yi = f i(x). This
goal is to be accomplished by a noisy broadcast protocol.

The specification of a (deterministic) protocol over the noisy broadcast model with noise
rate exactly ε consists of:
1. The number s ∈ {0} ∪ N of broadcasts used in the protocol.
2. A sequence i1, · · · , is ∈ [n] of indices of parties (with repetitions allowed).
3. A sequence g1, · · · , gs of broadcast functions, where gj : X × {0, 1}j−1 → {0, 1}.
4. For all i, an output function hi : X × {0, 1}s → Y for Pi.
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Running a protocol. The execution of a noisy broadcast protocol Π depends on the input x,
and on a noise vector N . We will think of N as a concatenation of s independent ε-noise
n-vectors N1, · · · , Ns. Let j ∈ [s]. In the jth step of the execution of Π, party Pij broadcasts
a bit bj and all the parties i ∈ [n], receive bij = bj ⊕ Nj [i], an independent noisy copy of
bj . Formally, the bit broadcast by Pij at step j is bj = gj(xij , b

ij
1 , b

ij
2 , · · · , b

ij
j−1), that is, the

value of gj on the input of Pij and the j− 1 bits received by Pij during the first j− 1 rounds.
The output of Pi is yi = hi(xi, bi1, · · · , bis), that is, the value of hi on the input of Pi and the
s-vector of bits received by Pi.

Note that the assumed model is non-adaptive or oblivious: the sequence of parties who
broadcast is fixed in advance and does not depend on the execution. Without this requirement,
the noise could lead to several parties speaking at the same time (a collision). Moreover,
this problem will be more serious when we introduce malicious parties, who may decide to
speak all the time causing collisions in every round. Finally, note that the model rules out
communication by silence: when it is the turn of a party to speak, it must speak.

3.3 The Noisy Broadcast Model with Malicious Parties
So far, we assumed that all participating parties are collaborating and following the protocol.
We now consider the model where a subset Mal ⊂ [n] of the parties, called the malicious
parties, are controlled by an adversary and may not follow the protocol. The set of malicious
parties is determined prior to the execution of the protocol and is unchanged throughout
the duration of the execution. We consider randomized protocols in this malicious setting
and allow parties to use both private randomness (known to a single party) and public
randomness (known to all parties). Observe that in the standard (non-malicious) setting,
public randomness can always be used in lieu of private randomness. This is no longer
possible in our malicious setting, as will be apparent next.

The adversary controlling the malicious parties is assumed to know the inputs of all
the parties, the shared random string, and the private random strings of the parties in
Mal. In addition, in round j ∈ [s], the adversary knows the channel’s prior noise vectors
N1, N2, · · · , Nj−1, and thus also knows all the bits that were sent and received by all the
parties in all the previous rounds. (Note that the adversary does not know either the private
random strings of the honest parties or the noise in the channel in future rounds). The
parties in [n] \Mal are still assumed to be following the protocol and are called honest parties.

Computing functions. Let x ∈ Xn be an input for the parties and let Mal be the set of
malicious parties. We say that the input x′ ∈ Xn is consistent with x and Mal if x̂i = xi for
every i ∈ [n] \Mal.

Let θ ∈ [0, 1/2) and assume that n is a sufficiently large function of θ. Let δ ≥ 0. We
say that a randomized protocol Π over the noisy broadcast channel with noise rate exactly ε
computes the functions {f i}i∈[n] in the presence of θ-fraction of malicious parties with error
δ if whenever the set of malicious parties Mal satisfies |Mal| ≤ θn, then for every x ∈ Xn,
with probability at least 1 − δ, the following holds: For every i ∈ [n] \ Mal, there exists
x̂ ∈ Xn that is consistent with x and Mal, such that the output of Pi in Π is yi = f i(x̂).
Here, the probability is over the private and public randomness and the noise in the channel.

We say that a randomized protocol Π over the noisy broadcast channel with noise rate
exactly ε computes the identity function in the presence of θ-fraction of malicious parties
with error δ if X = {0, 1} and Y = {0, 1}n and Π computes the functions {f i}i∈[n] in the
presence of θ-fraction of malicious parties with error δ, where f i : {0, 1}n → {0, 1}n is given
by f i(x) = x. Simplified for the identity function, the above means that whenever |Mal| ≤ θn,

ITCS 2021



82:14 Computation over the Noisy Broadcast Channel with Malicious Parties

then, for every input x, with probability at least 1− δ, the following holds: For all i ∈ [n],
Pi outputs a vectors yi = (x̃i1, x̃i2, · · · , x̃in), where if i, i′ ∈ [n] \Mal, then x̃ii′ = xi

′ (otherwise,
x̃ii′ can be arbitrary), as suggested by (∗).

4 Preliminaries

Please refer to the full version for the missing proofs.

4.1 Concentration Inequalities
I Lemma 2 (Multiplicative Chernoff bound). Suppose X1, · · · , Xn are independent random
variables taking values in [0, 1]. Let X denote their sum and let µ = E[X] denote the sum’s
expected value. Then,

Pr (X ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ , ∀0 ≤ δ,

Pr (X ≤ (1− δ)µ) ≤ e−
δ2µ

2 , ∀0 ≤ δ ≤ 1.

In particular, we have that:

Pr (X ≥ (1 + δ)µ) ≤ e−
δµ
3 ·min(δ,1), ∀0 ≤ δ,

Pr (|X − µ| ≥ δµ) ≤ 2 · e−
δ2µ

3 , ∀0 ≤ δ ≤ 1.

We derive a couple of corollaries of Lemma 2, that will be convenient for us to use.

I Corollary 3. Suppose X1, · · · , Xn are independent random variables taking values in [0, 1].
Let X denote their sum and let µ = E[X] denote the sum’s expected value. Then, for all
∆ ≥ 2µ, we have:

Pr(X ≥ ∆) ≤ e−∆
6 .

Proof. As ∆ ≥ 2µ, we have ∆ = (1 + δ)µ for some δ ≥ 1. Applying Lemma 2 with this δ,
we get Pr(X ≥ ∆) ≤ e−

∆−µ
3 ≤ e−∆

6 , as desired. J

I Corollary 4. Suppose X1, · · · , Xn are independent random variables taking values in [−1, 1]
such that E[Xi] = 0 for all i ∈ [n]. If X =

∑n
i=1 Xi denotes their sum, then, for all 0 ≤ δ ≤ 1,

we have

Pr(|X| ≥ δn) ≤ 2 · e− δ
2n
6 .

Proof. Apply Lemma 2 on the variables Xi+1
2 . J

We shall also use the following version of Chernoff bound for negatively correlated random
variables:

I Definition 5 (Negatively Correlated Random Variables). For n > 0, let X1, · · · , Xn be
random variables that take values in {0, 1}. We say that the random variables X1, · · · , Xn are
negatively correlated if for all subsets S ⊆ [n], we have Pr(∀i∈S : Xi=1) ≤

∏
i∈S Pr(Xi = 1).

I Lemma 6 (Generalized Chernoff Bound; cf. [14]). For n > 0, let X1, · · · , Xn be negatively
correlated random variables that take values in {0, 1}. Let X denote their sum and let
µ = E[X] denote the sum’s expected value. Then, for any δ ≥ 0, we have:

Pr (X > (1 + δ) · µ) ≤ e−
δ2µ
2+δ .

In particular, we have that:

Pr (X > (1 + δ)µ) ≤ e−
δµ
3 ·min(δ,1), ∀δ ≥ 0.
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4.2 Results From Coding Theory
We use the following standard result for error-correcting codes, and include a proof for
completeness.

I Lemma 7. Let δ > 0 and define K0 = d10/δ2e. For all n > 0, there exists a function
ECCn,δ : {0, 1}n → {0, 1}K0n such that for all s 6= t ∈ {0, 1}n, we have

∆(ECCn,δ(s),ECCn,δ(t)) >
(

1
2 − δ

)
·K0n.

5 Locality Sensitive Error Correcting Codes

Let n > 0 and x, y ∈ Zn be vectors. For z ∈ Z, define

sepz(x, y) = {i ∈ [n] | |xi − yi| > z}.

Observe that |sep0(·)| is simply the Hamming distance between the vectors x and y, and is
therefore, a metric. For general z ∈ Z however, the function |sepz(·)| may not be a metric.
In this paper, we work with the following generalization of the function sep(·).

I Definition 8. Let n,L > 0 and x, y ∈
(
ZL
)n be vectors. For z ∈ Z, define

sepz(x, y) = {i ∈ [n] | ∃l ∈ [L] : |xi,l − yi,l| > z}.

I Lemma 9. Let n,L > 0 and x1, x2, y ∈
(
ZL
)n be vectors. For z1, z2 ∈ Z, we have

sepz1(x1, y) = ∅ ∧ sepz1+z2(x2, y) 6= ∅ =⇒ sepz2(x1, x2) 6= ∅.

5.1 Definition
We now define locality sensitive error correcting codes. Throughout this section and the
next, we fix integers m, k > 100.

I Definition 10. Let n,L > 0 and C : ({0} ∪ [m])k →
(
ZL
)n. Let α, α′, β, µ, µ′ > 0 be

parameters. We say that the function C is an (n,L, α, α′, β, µ, µ′)-locality sensitive error
correcting code if it has the following two properties:

(α, β, µ)-locality sensitive: For all x, y ∈ ({0} ∪ [m])k, we have:

sepα(x, y) = ∅ =⇒
∣∣sepβ(C(x),C(y))

∣∣ ≤ (1− µ)n.

(α′, β, µ′)-error correcting: For all x, y ∈ ({0} ∪ [m])k, we have:

sepα′(x, y) 6= ∅ =⇒
∣∣sepβ(C(x),C(y))

∣∣ ≥ µ′n.
We sometimes say C is a locality sensitive error correcting code or C is an (n,L)-locality

sensitive error correcting code if we do not wish to emphasize the other parameters. Our
protocol requires C to have a short representation as stated below:

I Definition 11 (Representation Length). Let n,L > 0 and C be an (n,L)-locality sensitive
error correcting code. Define:

‖C‖ = max
x∈({0}∪[m])k

max
i∈[n]

max
l∈[L]

|Ci,l(x)|.

Observe that for all x ∈ ({0} ∪ [m])k, the value of C(x), can be encoded using 10 ·
log(10 · ‖C‖+ 10) bits. We shall use this to show that our protocol does not communicate a
lot of bits.
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5.2 Proof of Existence
We have:

I Theorem 12. Let θ < 1
2 and n ≥

(
100

1−2θ

)3
· k logm. There exists a locality sensitive error

correcting code C with parameters:(
n, 10 · log 10

1− 2θ , 4
√
m log k, β, β, 1

2 + θ,
1
2 + θ

)
,

where β = 24
√
mk · log k · log 10

1−2θ . Moreover, C satisfies ‖C‖ ≤ mk and C can be computed
in time polynomial in (m, k, n, L)10

6 Mixability of Codewords

We show that the encodings of similar (but not identical) inputs under a locality sensitive
error correcting code can be “mixed” together while maintaining properties similar to the
original codewords. In order to formalize this, we first generalize the function sep(·) from
Definition 8.
I Definition 13. Let n,L > 0, x ∈

(
ZL
)n, and z ∈ Z. For n′ > 0 and a vector of pairs

y ∈
(
[n]×

(
ZL
))n′ , define

sep-mixz(x, y) =
{
i ∈ [n′] | ∃l ∈ [L] :

∣∣xyi,1,l − (yi,2)l
∣∣ > z

}
.

Intuitively, every coordinate in y has two components, the first points to a coordinate
in x and the second one is a value in ZL (a symbol in the code’s alphabet). The function
sep-mixz(·) compares each coordinate in y to the coordinate it points to in x and checks if
they “differ” by more than z.

An easy corollary of the above definition is the following where for a set S ⊆ [n′], we use
the notation y|S to denote the vector y restricted to the coordinates in S.

I Corollary 14. Let n,L > 0, x ∈
(
ZL
)n, and z ∈ Z. Also, let n′ > 0 and y ∈

(
[n]×

(
ZL
))n′ .

We have for all S ⊆ [n′] that:

sep-mixz(x, y) ∩ S = sep-mixz(x, y|S).

Fix an (n,L, α, α′, β, µ, µ′)-locality sensitive error correcting code C for the rest of this
section. We show that:
I Lemma 15. Let x ∈ ({0} ∪ [m])k and n′ > 0. For i′ ∈ [n′], let yi′ ∈ ({0} ∪ [m])k be given.
If, for j1, j2, · · · , jn′ ∈ [n], we have

Y (j1, j2, · · · , jn′) =
(
(j1,Cj1(y1)), (j2,Cj2(y2)), · · · , (jn′ ,Cjn′ (yn′))

)
,

then, when j1, j2, · · · , jn′ are sampled uniformly at random, we have for all ∆1 ≥ 2 ·(
n′ − n′

n ·mini′∈[n′]
∣∣sepβ(C(x),C(yi′))

∣∣) that:

Pr
(
n′ −

∣∣sep-mixβ(C(x), Y (j1, j2, · · · , jn′))
∣∣ ≥ ∆1

)
≤ exp

(
−∆1

6

)
.

We also have, for all ∆2 ≥ 2 · n
′

n ·maxi′∈[n′]
∣∣sepβ(C(x),C(yi′))

∣∣ that
Pr
(∣∣sep-mixβ(C(x), Y (j1, j2, · · · , jn′))

∣∣ ≥ ∆2
)
≤ exp

(
−∆2

6

)
.

10 In fact, as C will only encode messages of logarithmic length in our protocol, the running time of our
protocol will be almost-linear even if encoding C took sub-exponential time.
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7 Our Protocol

We are now ready to state our protocol. Recall that there are n parties amongst which at
most θn are malicious. The following hold:

θ <
1
2 , ε = 1

10 , n > 100100
100

1−2θ
. (1)

We define the following parameters:

k =
√

logn( 1
2 − θ

)2 ·
1(

log 10
1−2θ

)2 , m = 50000k ·
(

log 10
1− 2θ

)2
· log logn,

α = 4
√
m log k, β = 24

√
mk · log k · log 10

1− 2θ <
m

6 ,

L = 10 · log 10
1− 2θ , A = 1020 · logn( 1

2 − θ
)3 ·

4θ
min(4θ, 1− 2θ) ,

` = 1010 · log
(

logn
1
2 − θ

)
.

(2)

For the rest of this paper, we reserve C : ({0} ∪ [m])k →
(
ZL
)A to be a locality sensitive

error correcting code with parameters:(
A,L, α, β, β,

199 + 2θ
200 ,

199 + 2θ
200

)
.

Such a code is promised by Theorem 12. We have by Definition 10 that, for all x, y ∈ [m]k,

sepα(x, y) = ∅ =⇒
∣∣sepβ(C(x),C(y))

∣∣ ≤ A · (1− 2θ
200

)
.

sepβ(x, y) 6= ∅ =⇒
∣∣sepβ(C(x),C(y))

∣∣ ≥ A · (199 + 2θ
200

)
. (3)

Additionally, we reserve ECC to be the one promised by Lemma 7 for n← ` and δ ← 1
10 .

By Lemma 7, we have s 6= t ∈ {0, 1}` that:

∆(ECC(s),ECC(t)) > 2
5 · 1000` = 400`. (4)

7.1 Partitioning the Parties
The n parties are randomly divided into n/A families of A parties each. Each family is
further divided into A/k groups of k parties each. Formally, this division is performed using
the following random process: First, sample a permutation uniformly at random from the
set Sn of permutations on [n]. Then, for a ∈ [n/A], family a is the set of parties

Fa = {σ(A(a− 1) + 1), σ(A(a− 1) + 2), · · · , σ(A(a− 1) +A)}.

For b ∈ [A/k], group b in family Fa is the set of parties

Ga,b = {σ(A(a− 1) + k(b− 1) + 1), · · · , σ(A(a− 1) + k(b− 1) + k)}

As the families are chosen randomly, no family has a lot of malicious parties with high
probability. Formally,

I Lemma 16. It holds that:

Pr
σ∼Sn

(
∃a ∈ [n/A] : |Fa ∩Mal| ≥ A · 1 + 2θ

4

)
≤ 1
n30 .
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7.2 Our Protocol
For the rest of this section and the analysis, fix a partition of the parties into families such
that no family has more that 1+2θ

4 fraction of malicious parties. Due to Lemma 16, this
happens except with probability at most 1

n30 . We note that this partition allows us to
denote a party i ∈ [n] using either (a, j) ∈ [n/A] × [A], emphasizing its family and index
within the family, or (a, b, c) ∈ [n/A]× [A/k]× [k], emphasizing its family, its group, and the
index within the groups. These ways to denote a party i are equivalent and we use them
interchangeably.

Our protocol is symmetric for all the parties and is described in Algorithm 1 from the
perspective of party i. In the algorithm, we sometimes use “partial indexing”, e.g., we write
qa,b′ to mean the concatenation of the values qa,b′,c′ for all possible values of c′.

Please refer to the full version for details about the analysis.

Algorithm 1 Our protocol from the perspective of party i = (a, j) = (a, b, c).

Stage Broadcast:

1: Broadcast input xi a total of m times.
2: For b′ ∈ [A/k] and c′ ∈ [k], let qa,b′,c′ ← number of 1s received from party (a, b′, c′).

Stage Boost:

3: For b′ ∈ [A/k], sample za,b′ privately and uniformly from [A]. Let va,b′ ← Cza,b′ (qa,b′).
Broadcast ECC((za,b′ , va,b′)) (note that ` bits suffice to encode (za,b′ , va,b′)).

4: For a′ ∈ [n/A], j′ ∈ [A], and b′′ ∈ [A/k], decode the b′′th value received from party (a′, j′)
to get C̃a′,b′′,j′ = (z̃a′,b′′,j′ , ṽa′,b′′,j′).

Stage Guess:

5: For a′ ∈ [n/A] and b′ ∈ [A/k], p̃a′,b′ ← arg minp′∈({0}∪[m])k
∣∣sep-mixβ(C(p′), C̃a′,b′)

∣∣.
6: For i′ = (a′, b′, c′) ∈ [n], output x̃i′ = 1

(
p̃a′,b′,c′ ≥ m

2
)
.
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Abstract
We study the problem of sampling a uniformly random directed rooted spanning tree, also known as
an arborescence, from a possibly weighted directed graph. Classically, this problem has long been
known to be polynomial-time solvable; the exact number of arborescences can be computed by a
determinant [33], and sampling can be reduced to counting [18, 16]. However, the classic reduction
from sampling to counting seems to be inherently sequential. This raises the question of designing
efficient parallel algorithms for sampling. We show that sampling arborescences can be done in RNC.

For several well-studied combinatorial structures, counting can be reduced to the computation
of a determinant, which is known to be in NC [9]. These include arborescences, planar graph perfect
matchings, Eulerian tours in digraphs, and determinantal point processes. However, not much is
known about efficient parallel sampling of these structures. Our work is a step towards resolving
this mystery.
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1 Introduction

Algorithms for (approximately) counting various combinatorial structures are often based on
the equivalence between (approximate) counting and sampling [18, 16]. This is indeed the
basis of the Markov Chain Monte Carlo (MCMC) method to approximate counting, which is
arguably the most successful approach to counting, resolving long-standing problems such as
approximating the permanent [17] and computing the volume of convex sets [13].

Approximate sampling and counting are known to be equivalent for a wide class of
problems, including the so-called self-reducible ones [18, 16]. This equivalence is nontrivial
and most useful in the direction of reducing counting to sampling. However, for some
problems, the “easier” direction of this equivalence, namely the reduction from sampling
to counting, proves useful. For these problems, almost by definition, we can count via
approaches other than MCMC.
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One of the mysterious approaches to counting is via determinant computations. A range
of counting problems can be (exactly) solved by simply computing a determinant. A non-
exhaustive list is provided below.

Spanning trees in a graph can be counted by computing a determinant related to the
Laplacian of the graph, a result known as the matrix-tree theorem [22].
Arborescences in a directed graph can be counted by computing a determinant related to
the directed Laplacian [33].
The number of perfect matchings in a planar graph can be computed as the Pfaffian
(square root of the determinant) of an appropriately signed version of the adjacency
matrix, a.k.a. the Tutte matrix [20].
The number of Eulerian tours in an Eulerian digraph is directly connected to the number
of arborescences, and consequently the determinant related to the directed Laplacian
[1, 34].
Given vectors v1, . . . , vn ∈ Rd, the volume sampling distribution on subsets S ∈

([n]
d

)
can

be defined as follows:

P[S] ∝ det ([vi]i∈S)2
.

The partition function of this distribution is simply det(
∑
i viv

ᵀ
i ) (see, e.g., [10]).

The number of non-intersecting paths between specified terminals in a lattice, and more
generally applications of the Lindström-Gessel-Viennot lemma [24, 14].

Efficient counting for these problems follows the polynomial-time computability of the
associated determinants. In turn, one obtains efficient sampling algorithms for all of these
problems; we remark that ot all of these problems are known to be self-reducible, but
nevertheless “easy” slightly varied sampling to counting reductions exist for all of them.

While polynomial-time sampling for all of these problems has long been settled, we reopen
the investigation of these problems by considering efficient parallel sampling algorithms.
We focus on the computational model of PRAM, and specifically on the complexity classes
NC and RNC. Here, a polynomially bounded number of processors are allowed access to
a shared memory, and the goal is for the running time to be polylogarithmically bounded;
the class RNC has additionally access to random bits. Determinants can be computed
efficiently in parallel, in the class NC [9], and as a result there are NC counting algorithms
for all of aforementioned problems. However, the sampling to counting reductions completely
break down for parallel algorithms, as there seems to be an inherent sequentiality in these
reductions.

Take spanning trees in a graph as an example. The classic reduction from sampling to
counting proceeds as follows:

for each edge e do
A← number of spanning trees containing e
B ← total number spanning trees
Flipping a coin with bias A/B, decide whether e should be part of the tree.
Either contract or delete the edge e based on this decision.

Each iteration of this loop uses a counting oracle to compute A,B. However the decision
of whether to include an edge e as part of the tree affects future values of A,B for other edges,
and this seems to be the inherent sequentiality in this algorithm. The sampling-to-counting
reduction for all other listed problems encounters the same sequentiality obstacle.
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In this paper, we take a step towards resolving the mysterious disparity between count-
ing and sampling in the parallel algorithms world. We resolve the question of sampling
arborescences in weighted directed graphs, and as a special case spanning trees in weighted
undirected graphs, using efficient parallel algorithms with access to randomness, a.k.a. the
class RNC.

We remark that the special case of sampling spanning trees in unweighted undirected
graphs was implicitly solved by the work of Teng [30], who showed how to simulate random
walks in RNC. When combined with earlier work of Aldous [2] and Broder [6], this algorithm
would simulate a random walk on the graph, and from its transcript extract a random
spanning tree. However, adding either weights or directions to the graph results in the need
for potentially exponentially large random walks, which cannot be done in RNC. Our work
removes this obstacle.

I Theorem 1. There is an RNC algorithm which takes a directed graph G = (V,E) together
with edge weights w : E → R≥0 as input and outputs a random directed rooted tree T , a.k.a.
an arborescence. The output T follows the distribution

P[T ] ∝
∏
e∈T

w(e).

1.1 Related Work and Techniques

There is a long line of research on algorithms for sampling and counting spanning trees and
more generally arborescences. The matrix-tree theorem of Kirchhof [22] showed how to count
spanning trees in undirected graphs, and later Tutte [33] generalized this to arborescences in
digraphs. Somewhat surprisingly Aldous [2] and Broder [6] showed that random spanning
trees and more generally random arborescences of a graph can be extracted from the transcript
of a random walk on the graph itself. The main focus of subsequent work on this problem
has been on improving the total running time of sequential algorithms for sampling. After
a long line of work [35, 7, 21, 25, 12, 11], Schild [28] obtained the first almost-linear time
algorithm for sampling spanning trees. More recently Anari, Liu, Oveis Gharan, and Vinzant
[3] improved this to nearly-linear time. Many of these works are based on speeding up the
Aldous-Broder algorithm. Our main result, Theorem 1, is also built on the Aldous-Broder
algorithm, but we focus on parallelizing it instead of optimizing the total running time.

No almost-linear time algorithm is yet known for sampling arborescences in digraphs,
as opposed to spanning trees in undirected graphs. While sampling spanning trees has a
multitude of application (see [28]), there are a number of applications for the directed graph
generalization. Most notably, there is a many-to-one direct correspondence between Eulerian
tours in an Eulerian digraph and arborescences of the graph. This correspondence, known
as the BEST theorem [1, 34] allows one to generate random Eulerian tours by generating
random arborescences (see [8]). We leave the question of whether the correspondence in
the BEST theorem is implementable in NC to future work, but note that sampling Eulerian
tours has interesting applications in biology and sequence processing [19, 27]. We remark
that, unlike directed graphs, generating random Eulerian tours of undirected Eulerian graphs
in polynomial time is a major open problem [32].

In a slightly different direction related to this work, Balaji and Datta [4] considered the
space complexity of counting arborescences. They showed this problem is in L for graphs of
bounded tree-width, obtaining algorithms for counting Eulerian tours in these digraphs as
well.
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Figure 1 Starting from left
it takes Θ(W ) steps to cover.

Figure 2 A random walk started from the left node covers
all n nodes in time Θ(2n).

Perhaps in the first major result of its kind in the search for RNC sampling algorithms,
Teng [31] showed implicitly how to sample spanning trees in undirected graphs in RNC.
Teng [31] showed how to parallelize the simulation of a random walk on a graph; more
precisely, he showed how to output a length L trace of a walk on size n Markov chains
in parallel running time polylog(L, n) using only poly(L, n) many processors. The Aldous-
Broder algorithm extracts an arborescence from the trace of a random walk by extracting the
so-called first-visit edge to each vertex. If a random walk is simulated until all vertices are
visited at least once, the trace of the random walk has enough information to extract all such
first-visit edges. This allows RNC sampling of arborescences in graphs where the number of
steps needed to visit all vertices, known as the cover time, is polynomially bounded. While
the cover time of a random walk on an undirected unweighted graph is polynomially bounded
in the size of the graph (see, e.g., [23]), adding either weights or directions can make the
cover time exponentially large. See Figures 1 and 2.

We overcome the obstacle of exponentially large cover times, by taking a page from some
of the recent advances on the sequential sampling algorithms for spanning trees. Instead of
simulating the entirety of the random walk until cover time, we extract only the first-visit
edges to each vertex. We use the same insight used in several prior works that once a region
of the graph has been visited, subsequent visits of the random walk can be shortcut to the
first edge that exits this region. However, this involves a careful construction of a hierarchy
of “regions”, and bounding the number of steps needed inside each region to fully cover it.
Unlike undirected graphs, in directed graphs arguing about the covering time of a region
becomes complicated. We build on some of the techniques developed by Boczkowski, Peres,
and Sousi [5] to bound these covering times in the case of Eulerian digraphs. We then reduce
the arborescence sampling problem for arbitrary digraphs to that of Eulerian digraphs.

1.2 Overview of the Algorithm
At a high-level, our algorithm first proceeds by reducing the problem to sampling an
arborescence from an Eulerian graph. We then construct a “loose decomposition” of the
Eulerian graph into weighted cycles. We then construct a hierarchy of vertex sets by starting
with the empty graph and adding the weighted cycles one by one, from the lowest weight
to the highest, adding the connected components in each iteration to the hierarchy. This
results in a hierarchical clustering of vertices, with the intuitive property that once we enter
a cluster, we spend a lot of time exploring inside before exiting. Our algorithm proceeds by
“simulating” polynomially many jumps between the children of each cluster, before exiting
that cluster. The resulting jumps are then stitched together at all levels of the hierarchy to
form a partial subset of the transcript of a random walk.

The shallow “simulation” of edges jumping across children of a cluster in the hierarchy can
be done in RNC by using a doubling trick as in the work of Teng [31]; in order to “simulate”
L jumping edges, we combine the first L/2 with the last L/2 in a recursive fashion. A naive
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implementation of this is not parallelizable however, as one needs to know where the first L/2
jumps eventually land before “simulating” the rest. However since the number of locations is
polynomially bounded, one can precompute an answer for each possible landing location in
parallel to simulating the first L/2 edges. Once shallow jumps are simulated, our algorithm
then proceeds by stitching these jumping edges with jumping edges of one level lower (i.e.,
inside of the children clusters), and so on. Again, a naive implementation of this stitching
is not in RNC, but we employ a similar doubling trick and an additional caching trick to
parallelize everything. We then argue that with high probability all of the edges extracted
by this algorithm contain the first-visit edges to every vertex.

2 Preliminaries

We use the notation [n] to denote the set {1, ..., n}. We use the notation Õ(.) to hide
polylogarithmic factors. When we use the term high probability, we mean with probability
1− poly( 1

n ), where n is the size of the input, and the polynomial can be taken arbitrarily
large by appropriately setting parameters.

2.1 Graph Theory Notations
When a graph G = (V,E) is clear from the context, we use n to refer to |V | and m to refer
to |E|.

For a subset of vertices S ⊂ V , δ+(S) denotes the set all incoming edges {e = (u, v) | v ∈
S, u /∈ S}. Similarly, δ−(S) will denote the set of all outgoing edges {e = (u, v) | u ∈ S, v /∈ S}.
Lastly, let G(S) denote the subgraph induced by S.

I Definition 2. Given a weighed graph G = (V,E) with weights w : E → R≥0, a subset of
the vertices S ⊆ V is said to be strongly connected by edges of weight wc if for every s, t,∈ S,
there exists a path of edges inside S connecting s to t such that every edge e of the path has
weight w(e) ≥ wc.

I Definition 3. An arborescence is a directed graph rooted at vertex r such that for any
other vertex v, there is exactly one path from v to r.

Arborescences are also known as directed rooted trees and are a natural analog of spanning
trees in directed graphs. When a background graph G = (V,E) is clear from context, by an
arborescence we mean a subgraph of G that is an aborescence.

Given digraph G = (V,E) together with a weight function w : E → R>0, the random
arborescence distribution is the distribution that assigns to each arborescence T probability

P[T ] ∝
∏
e∈T

w(e).

When w is not given, it is assumed to be the constant 1 function, and the random arborescence
distribution becomes uniformly distributed over all arborescences. We view an undirected
graph G = (V,E) as a directed graph with double the number of edges, with each undirected
edge producing two directed copies in the two possible directions. It is easy to see that the
weighted/uniform random arborescence distribution on the directed version of an undirected
graph is the same as the weighted/uniform spanning tree distribution on the original graph;
viewing each arborescence without directions yields the corresponding spanning tree.

We call a (possibly weighted) digraph G = (V,E) Eulerian if∑
e∈δ+(v)

w(e) =
∑

e∈δ−(v)

w(e)

for all vertices v. Note that the directed version of an undirected graph is automatically
Eulerian.
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2.2 Random Walks and Arborescences
Our approach centers around the Aldous-Broder algorithm on directed graphs [2, 6]. Their
work reduces the task of randomly generating a spanning tree or arborescence to simulating
a random walk on the graph until all vertices have been visited. While most famously known
for generating spanning trees, this algorithm can be used to generate arborescences as well.

A weighted digraph defines a natural random walk. This is a Markov process X0, X1, . . . ,
where each Xi is obtained as a random neighbor of Xi−1 by choosing an outgoing edge with
probability proportional to its weight, and transitioning to its endpoint.

P[Xi | Xi−1] ∝ w(Xi−1, Xi).

A stationary distribution π is a distribution on the vertices such that if X0 is chosen according
to π, then all Xi are distributed as π. Under mild conditions, namely strong connectivity
and aperiodicity, the stationary distribution is unique.

A random walk on an undirected graph is known to be time-reversible. That is if X0
is started from the stationary distribution, then (Xi, Xi+1) is identical in distribution to
(Xi+1, Xi). This does not hold for directed graphs. However the time reversal of the process
. . . , Xi, Xi+1, . . . corresponds to a random walk on a different digraph.

I Definition 4. For a weighted digraph G = (V,E) with weights w : E → R≥0 and stationary
distribution π, define the time-reversal to be the graph G′ = (V,E′) on the same set of
vertices, with edges reversed in direction, and weights given by

w′(v, u) = π(u)w(u, v)/π(v).

The random walk on G′ shares the same stationary distribution π as G. The random walk
on G′ (started from π) is identical in distribution to the time-reversed random walk on G
(started from π); see [23].

I Theorem 5 ([2, 6]). Suppose that G = (V,E) is a strongly connected weighted graph, with
weights given by w : E → R>0. Perform a time-reversed random walk, starting from a vertex
r, until all vertices are visited at least once. For each vertex v ∈ V \ {r}, record the edge
used in the random walk to reach v for the first time. Let T be the collection of all these
first-visit edges (with directions reversed). Then T is an arboresence of G rooted at r, and

P[T ] ∝
∏
e∈T

w(e)

This allows us to sample r-rooted arborescence from a digraph by performing a random
walk on the time-reversal. It is also known that among all arborescences, the total weight
of those rooted at r is proportional to π(r), where π is the stationary distribution [2, 6].
Therefore to resolve Theorem 1, it is enough to show how to sample r-rooted arborescences.

I Theorem 6. There is an RNC algorithm which takes a directed graph G = (V,E) together
with edge weights w : E → R≥0 and a root vertex r ∈ V as input and outputs a random
r-rooted arborescence, where

P[T ] ∝
∏
e∈T

w(e).

We can fix the root because the stationary distribution π can be computed in NC, by solving
a system of linear equations.
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2.3 Parallel Algorithms
In this paper we consider parallel algorithms run on the PRAM model, and we will construct
algorithms to show that sampling problems are in the class RNC, the randomized version of
NC. In this class, we are allowed to use polynomially (in the input size) many processors
who share access to a common random access memory, and also have access to random bits.
The running time of our algorithms must be polylogarithmic in the input size.

While our work hinges upon the simulation of a random walk, a process which is inherently
sequential, for polynomially many steps, such a task is known to be in RNC through the use
of a “doubling trick.”

I Theorem 7 ([31]). Suppose that G = (V,E) is a directed graph, with weights given by
w : E → R≥0. The transcript of a random walk starting from a given vertex v0 ∈ V and
running for L time steps can be produced in the PRAM model using poly(|E|, L) processors
in polylog(|E|, L) time.

Theorem 5 and Theorem 7 naturally lead to a parallel algorithm that randomly samples
arborescences using poly(|E|, L) processors and polylog(|E|, L) time where L is the cover
time of the digraph. However, L can be exponential in the size of the graph as the cover
time depends closely on the edge weights of a graph. In directed graphs, the cover time can
be exponential even if we do not allow weights. See Figures 1 and 2.

Luckily, Theorem 5 only needs the first-visit edges to produce the random arborescence.
This insight has been heavily used to improve the running time of sequential algorithms
for sampling spanning trees [21, 25, 28], by shortcutting the random walk. Here we use the
same insight to design an RNC algorithm. Our algorithm identifies a hierarchy of clusters of
vertices S ⊆ V and will only simulate incoming and outgoing edges of each cluster as opposed
to the entire walk. To do this, we will use a well-known primitive that the probability of
entering or exiting a cluster through any edge can be computed using a system of linear
equations.

I Lemma 8 (see, e.g., [28]). Given a set S ⊂ V and vertex v ∈ S, the probability of a random
walk started at v exiting S through any particular edge e ∈ δ−(S) can be computed by solving
a system of linear equations involving the Laplacian.

Some of the most powerful primitives for NC algorithms come from linear algebra. In
particular, multiplying matrices, computing determinants, and inverting matrices all have
NC algorithms [9]. Combining this with Lemma 8 we obtain the following folklore result.

I Lemma 9. Given a set S ∈ V and vertex v ∈ S, the probability of a random walk started
at v exiting S through any particular edge e ∈ δ−(S) can be computed in NC.

2.4 Schur Complements
A key tool which we shall use in our analysis of random walks is Schur complements.

I Definition 10. For any weighted digraph G = (V,E), for any subset of the vertices S ⊆ V ,
we define the graph GS to be the Schur complement of S̄. GS is the directed graph formed by
starting with the induced sub-graph of S. Then, for every pair of vertices (u, v) in S, add
an edge from u to v with weight deg(u)P[u −→ v], where P[u −→ v] is the probability that a
random walk on G currently at u exits S with the next move and its first return to S is at
the vertex v.
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Then, it is easy to see that for any starting vertex v0 ∈ S, the distribution over random
walk transcripts in GS starting at v0 is the same as the distribution over random walk
transcripts in G starting at v0 with all vertices outside of S removed. We also observe that:

I Proposition 11. For any Eulerian weighted digraph G = (V,E), for any subset of the
vertices S ⊂ V , the Schur complement GS is also an Eulerian weighted digraph and the
degree of any vertex in S is the same in GS as in G.

3 Reduction to Eulerian Graphs

A key part of our algorithm is the analysis of the time it takes for random walks to cover
regions of a digraph. Cover times are in general difficult to analyze on directed graphs, but
the situation becomes much easier on Eulerian graphs. For more precise statements, see
Section 6. As a first step in our algorithm, we show how to reduce the design of sampling
algorithms on arbitrary digraphs to Eulerian ones.

We can reduce the problem of sampling an arborescence of digraph G to sampling a
random arborescence rooted at vertex r on strongly connected Eulerian digraph G′′ as follows
in Algorithm 1. We begin by selecting the vertex at which the arborescence is rooted, using
the Markov chain tree theorem [2, 6].

I Theorem 12 (The Markov chain tree theorem). Let G = (V,E) be a weighted directed
graph. Assume that the natural Markov chain associated with G has stationary distribution
π = (π1, . . . , πn). Then we have the following relationship between π and the arborescences
of G:

πi =
∑
{w(T ) | T arborescence rooted at i}∑

{w(T ) | T arborescence} ,

where w(T ) is product of edge weights in T .

Finding the stationary distribution of a random walk on some graph G reduces to solving a
system of n linear equations and can be done in NC.

After the root r ∈ V of an arborescence is selected, we can add outgoing edges from
r to graph G to guarantee that G is strongly connected. As no arborescence rooted at r
will contain these new edges, the addition of such edges does not affect the distribution of
arborescences rooted at r. Then, we note that for any vertex v, if we multiply the weights
of all edges in δ−(v) by some constant, the distribution of arborescences rooted at any
vertex does not change. We can therefore rescale edges to ensure that the resulting graph is
Eulerian.

I Proposition 13. Graph G′′ is Eulerian.

Proof. We have that, for all v in G′∑
(u,v)∈δ+(v)

π′(u) w
′(u, v)

deg′out(u)
= π′(v)

Then, considering G′′ :

deg′′in(v) =
∑

(u,v)∈δ+(v)

w′′(u, v) =
∑

(u,v)∈δ+(v)

w′(u, v)π′(u)
deg′out(u)

= π′(v)

= π′(v)
∑

(v,x)∈δ−(v)

w′(v, x)
deg′out(v)

=
∑

(v,x)∈δ−(v)

w′′(v, x) = deg′′out(v) J
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Algorithm 1 Reduction to strongly-connected Eulerian graphs.

Compute the stationary distribution π(v) of a random walk on G
Choose vertex r to be the root of the arborescence with probability π(r)
G′ = (V,E′)←− G
for v ∈ V \ {r} in parallel do

if e′ = (r, v) /∈ E then
Add e′ to E′ with weight w′(e) = 1

Compute the stationary distribution π′(v) of a random walk on G′
G′′ = (V,E′′)←− G′
for v ∈ V do

for e = (v, u) ∈ E′′ do
w′′(e)←− w′(e)

deg′out(v)π
′(v)

Randomly sample an arborescence rooted at r from G′′

Thus, in RNC, the task of randomly sampling an arborescence in some digraph can be
reduced to the task of randomly sampling an arborescence rooted at some vertex r from a
strongly connected Eulerian digraph.

4 Cycle Decomposition

Because Theorem 5 only needs the first-visit edges to produce a random arborescence, our
main idea is to create a hierarchical clustering of the graph that we call T . Every element
S ∈ T in the clustering is a subset of V which is strongly connected by edges of relatively
high weight compared to the edges in δ−(S). Intuitively, a random walk will spend much
time traversing edges inside a cluster, before venturing out. Aside from first visit edges, any
other traversals do not need to be simulated, thus much of the work can be avoided by only
simulating the first few edges which enter or exit a cluster. Consider the pseudocode in
Algorithm 2 for generating one such decomposition:

Algorithm 2 Generating a hierarchical decomposition.

for edge e ∈ G in parallel do
Find a cycle Ce of edges such that e ∈ Ce and for every e′ ∈ C,we′ ≥ we

m using
Algorithm 3

Sort the cycles found by minimum edge weight in decreasing order C1, C2, . . . , Cm
T ←− {}
for i = 1, 2, . . .m in parallel do

Find Si,1,Si,2 . . .Si,j , the vertex sets of the connected components in
(V,C1 ∪ C2 ∪ · · · ∪ Ci)
Add all elements found to T

for Si,j ∈ T \ Sm,1 in parallel do
Find the node of the form Si+1,k such that Si,j ⊂ Si+1,k and assign Si+1,k as the
parent of Si,j

Contract duplicate nodes in T
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Algorithm 3 FindCycle(e = (e0, e1), G = (E, V )).

Construct G′ = (V,E′), where E′ = {e′ ∈ E : we′ ≥ we

m }
for v1, v2 ∈ V in parallel do

if (v1, v2) ∈ E′ then
R(v1, v2, 1)←−True

for v ∈ V in parallel do
R(v, v, 0)←−True
R(v, v, 1)←−True

for l ∈ {2, 4, . . . 2lnn} do
for v1, v2, v3 ∈ V in parallel do

if R(v1, v2, l/2) and R(v2, v3, l/2) then
R(v1, v3, l)←−True

c0 ←− e1, c2dln ne ←− e0
for l ∈ {2dlnne−1, 2dlnne−2, . . . 1} do

for i ∈ [2dlnne] such that l is the largest power of 2 which divides i in parallel
do

Set ci to be some vertex such that R(ci−l, ci, l) and R(ci, ci+l, l)

Prune the transcript of vertices {c0, c1, . . . , c2dln ne} to remove any duplicates and
return the resulting cycle.

We use Algorithm 3 to construct a cycle of comparably high-weight edges containing a
given edge e. The collection of these cycles is a “loose decomposition” of the Eulerian graph
into cycles. While an Eulerian graph can be decomposed into cycles in general, we do not
know if this can be done in NC. Instead we find a collection of cycles whose sum and poly(m)
times it sandwich the Eulerian graph.

For each edge e, Algorithm 3 successfully returns a cycle since,

I Proposition 14. In directed weighted Eulerian graph G = (V,E) for any edge e ∈ E, there
exists a cycle of edges Ce such that e ∈ Ce and for all e′ ∈ Ce, w′e ≥ we

m

Proof. Note that any Eulerian digraph can be decomposed into at most m cycles where each
cycle contains edges of uniform weight. Then, for any edge e, one of these cycles must have
weight at least we

m . J

Given that a cycle is found containing every edge in G, it follows that Algorithm 2 successfully
generates a hierarchical decomposition which satisfies:

I Proposition 15. T is a laminar family, i.e. has the following properties:
1. Every node S of T is a subset of V and is the vertex set of a connected component of G.
2. Children of any node in T are proper subsets of it.
3. |T | ≤ 2n.
Given this clustering T , for any S ∈ T , we say an edge e ∈ E jumps between children of S if
S is the lowest node in T which contains both endpoints of e. We call e a jumping edge of S.

In addition, we note that

I Lemma 16. For any S ∈ T , let wmax(S) be the maximum weight among the jumping
edges of S. G(S) is strongly connected by edges of weight wmax(S)

m .
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Proof. We prove by contradiction. Assume that there is some edge e jumping between
children of S and two vertices u, v ∈ S such that every path between u, v contains an edge
of weight less than we

m . Let the cycles which connect S in Algorithm 2 be C1, . . . Ck, with
Ck being the cycle with an edge of minimum weight. Then, consider the path of edges
connecting u to v only containing edges in these cycles. The weight of every edge in the path
must be greater than w(Ck), the weight of the minimum weight edge in Ck. Thus by our
assumption we must have that we

m > w(Ck).
But now consider Ce, the cycle found containing edge e with minimum edge weight

w(Ce) ≥ we

m . As w(Ce) > w(Ck), this cycle must have been used to construct a child of S in
T . This implies the e is contained in a child of S and is therefore not a jumping edge of S, a
contradiction. J

Lemma 16 intuitively states that the nodes in T are tightly connected by edges of relatively
high weight compared to incoming or outgoing edges. This will be critical in bounding the
number of edges which need to be simulated.

5 Parallel Sampling

For clarity, a partially sampled random walk shall be represented as an alternating series of
clusters and edges: S1, e1,S2, e2, . . . , where each Si ∈ T and ei ∈ δ−(Si) ∩ δ+(Si+1). The
sequence has a natural interpretation of a random walk in Si which then exits Si through ei
to continue in Si+1 before traversing ei+1 and so on.

Once we have a hierarchical decomposition T found in Section 4, a natural way to use
such a decomposition is to simulate a random walk as follows:
1. Simulate just the edges jumping between high-level clusters of a random walk, producing

a transcript of the form S1, e1,S2, e2, . . . .
2. For each i, recursively simulate a random walk on Si conditioned on exiting Si though

edge ei.
While this recursive procedure as described is not in RNC, using doubling tricks and memo-
ization, we show how to perform this in RNC. One can view this as a generalization of the
doubling trick used by Teng [31].

5.1 Simulating Jumping Edges
To simulate edges jumping across children of a node, we generalize the techniques of [31] to
the following:

I Theorem 17. Suppose that G = (V,E) is a directed graph, with weights given by w : E →
R≥0. Let S ⊆ V be the disjoint union of S1,S2, . . .Sk, where S and each Si is strongly
connected. The transcript of first L edges jumping across different Si in a random walk
starting from a given vertex v0 ∈ S and conditioned on exiting S though some edge e ∈ δ−(S)
can produced in the PRAM model using poly(|E|, L) processors and polylog(|E|, L) time.

Proof. We denote this function JumpingEdges(S, v0, e, L). See Algorithm 4 for pseudocode.
Note that we can condition a walk on S to exit via some edge e ∈ δ−(S) by considering a
random walk on the graph induced by S with an additional edge e and an absorbing state at
the endpoint of e. For any vertex v ∈ S, let Sv denote the unique Si which contains v.

From Lemma 9, for any v ∈ S, the probability that a random walk currently at v exits
Sv though each edge in δ−(Sv) can be computed in NC. Thus, after using poly(|E|, L)
processors and polylog(|E|, L) time to compute all such probabilities for every vertex v ∈ S,
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we can assume access to a deterministic function Next(v,X) which takes a vertex v ∈ S and
number X ∈ [0, 1] and outputs and edge e ∈ δ−(Sv) such that if X is chosen uniformly from
[0, 1], then the probability that Next(v,X) returns some edge e ∈ δ−(Sv) is the probability a
random walk currently at v exits Sv through edge e.

Given this function, if we generate independent uniformly random numbers X1, ..., XL ∈
[0, 1], the transcript of the jumping edges in random walk can be extracted by starting at
v = v0 and repeatedly applying Next(v,Xi) to get the next vertex v, for i ∈ [L]. Of course,
a naive implementation does not leverage parallelism, so we instead use a doubling trick.

We compute the values End(v, t, l) which would be the final edge jumping between children
of S when we run a random walk starting at v, and applying Next with random inputs
Xt, Xt+1, ..., Xt+l−1. For l = 1, these are 1-step random walks and we use Next to compute
them. For simplicity, we allow the first argument of End to also be an edge, in which case the
random walk starts at the ending vertex of that edge. Then we use the following identity,
which allows us to compute End values for a particular l from End values for l

2 .

End(v, t, l) = End(End(v, t, l/2), t, l/2)

This is because we can break an l-step random walk into two l/2-step random walks. So
we can compute all End values when l ranges over powers of 2, in log(L) steps.

Finally to compute the edge taken by the random walk at any time l = 1, ..., L, we simply
write down l as a sum of powers of 2, and repeatedly use the End function to compute the
l-th edge of the random walk which jumps between children of S. J

Algorithm 4 JumpingEdges(S, v0, eend, L).

for t ∈ {1, 2, . . . L} in parallel do
Let Xt be a uniformly random number sampled from [0, 1]
for v ∈ S in parallel do

End(v, t, 1)←− Next(v, S)

for l ∈ {2, 4, 8, . . . , 2blnLc} do
for v ∈ S, t ∈ {0, 1, . . . L− 1− l} in parallel do

End(v, t, l) ←− End(End(v, t, l2 ), t, l2 )

for l ∈ 1, 2, . . . L in parallel do
Decompose l as a sum of subset S ⊂ {1, 2, . . . 2blnLc−1}
e←− (∗, v0)
t←− 0
for s ∈ S do

e←− End(e, t, s)
t←− t+ s

el ←− e
vl ←− the ending vertex of el

if ek = eend for some k then
return Sv0 , e1,Sv1 , e2, . . .Svk−1 , ek = eend

else
return Sv0 , e1,Sv1 , e2, . . . ,SL−1, eL,S, eend
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I Remark 18. For clarity of exposition, we allow sampling numbers from [0, 1]. However
sampling a number with polynomially many bits is enough for our purposes. In our algorithms,
we only need to compare our samples Xt with deterministic numbers derived from the input.
To this end, we can simply sample the first N digits of the binary expansion of Xt for some
large N . The probability that the comparison of Xt and a fixed number is not determined
from the first N digits is 2−N . By taking N to be polynomially large, the probability of
failure will be bounded by an exponentially small number. If one insists on avoiding even
this small probability of failure, we can continue sampling digits of Xt whenever we run into
a situation where the first N are not enough. Since the probability of running into failure is
very small, the overall expected running time still remains polylogarithmic.

5.2 Extracting First-Visit Edges
For a cluster, once we know which edges jump across its children, we can recursively fill
in the transcript of the walk. This is because we now have a similar subproblem for each
child node, where we have a starting vertex, and a prespecified exit edge. However, a naive
implementation of this is not in RNC.

Instead our strategy is to again use a doubling trick. Consider a node S of T and a vertex
v ∈ S. Using the algorithm JumpingEdges, we can extract the edges that jump across children
of S. We can then extend these to include edges that jump across children of children of S
by more applications of JumpingEdges. We will construct a function AllEdges(S, v, e, L, l)
that besides the arguments to JumpingEdges also takes an integer l ≥ 1. The goal of this
function is to extract from the transcript of a random walk started at v and conditioned on
exiting S through e, the first L edges which jump between descendants of depth at most l
below S in T . Then, each intermediate node in the transcript is either an individual vertex,
an lth descendant of S, or a cluster for with L edges jumping between its children have
already been found. We will show that for polynomially large L, this transcript will contain
all first-visit edges with high probability.

A natural approach for computing AllEdges is as follows. We already know how to
compute AllEdges for l = 1; that is just a call to JumpingEdges. Once the value of AllEdges
has been computed for all settings of parameters for a particular l, we can compute it for 2l
by the following procedure:
1. Let the transcript returned by AllEdges(S, v, e, L, l) be S1, e2,S2, e2, . . . ,Sk, ek.
2. For each intermediate node Si that is not a single vertex, if the transcript does not already

contain L edges jumping between children of Si, let u be the endpoint of ei−1 and replace
Si, ei with AllEdges(Si, u, e, L, l)

3. Trim the transcript to only contain at most the first L edges jumping between children
of any node

There is one key problem with this approach. We cannot precompute AllEdges(·, ·, ·, ·, l)
and use the same precomputed answer to fill in the gaps for larger values of l. Each time we
need to use AllEdges for a particular setting of its input parameters, we really need to use
fresh randomness; otherwise the transcript we extract will not be from a true random walk.

We resolve this by using a caching trick. Instead of computing AllEdges(S, v, e, L, l) for
each setting of parameters once and reusing the same output for larger subproblems, we
compute M possible answers for a large enough M and store all M answers. For larger
subproblems, every time that we need to use the values of a smaller subproblem, we randomly
pick one of the stored M answers. We will inevitably reuse some of the answers in this
process; however when we restrict our attention to the unraveling of a particular answer for
a subproblem there is a high probability of not having reused any answers. We will formalize
this in Lemma 19.
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Pseudocode for computing AllEdges can be found in Algorithm 5. In the end we use
AllEdges(V, v, ∅, L, |V |) to extract a list of edges, and with high probability all first-visit
edges will be among this list

Algorithm 5 Computing the random walk transcript extracts.

for S ∈ T , e ∈ δ−(S) ∪ {∅}, v ∈ S, i ∈ [M ] in parallel do
AllEdges(S, v, e, L, 1)[i]←− JumpingEdges(S, v, e, L)

for l ∈ {1, 2, . . . 2dlgLe−1} do
for S ∈ T , e ∈ δ−(S) ∪ {∅}, v ∈ S, i ∈ [M ] in parallel do

if l is greater than depth of the deepest child of S then
AllEdges(S, v, e, L, 2l)[i]←− AllEdges(S, v, e, L, l)[i]

else
Let S1, e1,S2, e2, . . .Sk be the output of AllEdges(S, v, e, L, l)[i]
for j ∈ [k] in parallel do

if the transcript does not already contain L edges jumping between
children of Sj then

Replace Si, ei with a randomly chosen instance of
AllEdges(Sj , v′, ej , L, l) where v′ is the endpoint of ej−1

Trim the resulting transcript to only contain at most the first L edges
jumping between children of any node. Save the resulting transcript as a
solution to AllEdges(S, v, e, L, 2l)[i]

if the final transcript of AllEdges(V, v, ∅, L, |V |) contain multiple subsequences
which depend on the same call to JumpingEdges then

Replace all but the first subsequence with a freshly sampled transcript

I Lemma 19. For M = poly(L), when we unravel the recursion tree for the computation of
the value AllEdges(V, v, ∅, L, |V |), no stored answer of AllEdges for any of the subproblems
will be used more than once with high probability.

Proof. Note that for any any S ∈ T, v ∈ S, e ∈ δ−(S), the recursion tree for an answer to
AllEdges(V, v, ∅, L, |V |) will rely on at most L calls to JumpingEdges(S, v, e, L) since each
call to JumpingEdges(S, v, e, L) corresponds to a subsequence of the final transcript which
ends in e, and e can only occur L times in the transcript by the definition of AllEdges. As
each sample of JumpingEdges(S, v, e, L) is chosen uniformly at random from M samples, for
polynomially large M , the probability of the same sample being chosen twice can be made
small and of the form 1

poly(n) . Lastly via a union bound over polynomially many possible
combinations of arguments for JumpingEdges, we have that for polynomially large M , which
high probability no stored answer of JumpingEdges or AllEdges will be used more than
once. J

Putting everything together, we have shown that:

I Theorem 20. Suppose that G = (V,E) is a directed graph, with weights given by w : E −→
R>0. Let T denote a hierarchical decomposition of G. The transcript of a random walk
starting at v0 ∈ V which contains first L edges jumping between children of S for any S ∈ T
can produced in the PRAM model using poly(|E|, L) processors in polylog(|E|, L) expected
time.
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6 Hierarchical Exploration Time

The last element needed to obtain an RNC algorithm for the random sampling of arborescences
is to show that for the decomposition achieved above, for polynomially large L, simulating
the first L edges which jump across each node S ∈ T will contain all first-visit edges to each
vertex with high probability. We do this by bounding the number of edge traversals between
children of each node before that node is covered. We build on techniques developed by
Boczkowski, Peres, and Sousi [5].

We start by bounding the number of times a given vertex is visited before cover time.
For any v, s, t ∈ V , let Hv(s, t) denote the expected number of times a random walk starting
at s visits v before reaching t; in the case that s = t, Hv(s, s) denotes the number of times a
walk starting at s reaches v before returning to s.

It is easy to see that Hv satisfies a triangle inequality, namely:

I Proposition 21. On any directed graph G = (V,E), for any v, s, t, u,∈ V : Hv(s, t) ≤
Hv(s, u) +Hv(u, t).

Additionally, as the stationary distribution of vertices on an Eulerian graph is proportional
to the degree of a vertex, it follows that:

I Proposition 22. On any directed Eulerian graph G = (V,E), for any v, s ∈ V : Hv(s, s) =
1

π(s)π(v) = deg(v)
deg(s)

Proof. Consider the Schur complement GS where S = {v, s}. Since G is Eulerian, so is GS
and the degrees of v, s are the same in G and GS . Letting the weights of edges in GS be
w(v, s), w(s, v), w(v, v), w(s, s), we must have w(s, v) = w(v, s) for GS to be Eulerian. As
random walks on GS are distributed like random walks on G whose transcripts have been
restricted to only contain vertices in S, the values of Hv(s, s), Hv(v, s) are the same for a
walk on G as for one on GS . Considering one-step transitions, we can construct the following
system of equations:

Hv(s, s) = w(s, v)
deg(s) (Hv(v, s) + 1) + w(s, s)

deg(s) 0,

Hv(v, s) = w(v, v)
deg(v) (Hv(v, s) + 1) + w(v, s)

deg(v) 0.

Solving yields Hv(v, s) = w(v,v)
w(v,s) and Hv(s, s) = w(s,v)

deg(s)

(
w(v,v)
w(v,s) + 1

)
= w(s,v)

deg(s)
deg(v)
w(v,s) = deg(v)

deg(s) .
J

For any two vertices which are connected by an edge, we have:

I Lemma 23. On any directed Eulerian graph G = (V,E), for any v, s, t ∈ V such that
e = (s, t) ∈ E, Hv(s, t) ≤ deg(v)

w(s,t)

Proof. Note that every time the walk is currently at s, there is a w(s,t)
deg(s) chance of moving to

t, thus, in expectation, the expected number of times the walk returns to s before reaching t
is at most deg(s)

w(s,t) . Between each return to s, the expected number of visits to v is deg(v)
deg(s) by

Proposition 22. Thus, we conclude that:

Hv(s, t) ≤
deg(s)
w(s, t)

deg(v)
deg(s) = deg(v)

w(s, t) . J

On graphs which are strongly connected by edges of some weight wc, this observation
leads to the conclusion that:
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I Lemma 24. On an Eulerian directed graph G = (V,E) strongly connected by edges of
weight wc, for any s, t ∈ V , Hs(s, t) ≤ deg(s)n

wc

Proof. By connectivity assumptions, there exists a sequence of at most n vertices s =
v0, v1, . . . , vk = t which form a path connecting s and t such that w(vi−1, vi) ≥ wc for all
i ∈ [k]. Then, combining Proposition 21 with Lemma 23,

Hs(s, t) ≤
k∑
i=1

Hs(vi−1, vi) ≤
k∑
i=1

deg(s)
w(vi−1, vi)

≤ ndeg(s)
wc

. J

This trivially bounds the expected number of returns to a vertex s before a graph G is
covered by a random walk by n2 deg(s)

wc
.

I Remark 25. While this bound is sufficient for our purposes, using Matthew’s trick, this
bound can be further tightened to n logn deg(s)

wc
[26].

I Lemma 26. For any node S ∈ T in the decomposition obtained by Algorithm 2, the
expected number of edges traversed between children of S before every vertex in S has been
visited is at most n2m2.

Proof. For each edge e = (u, v) which jumps between children of S, the expected number of
times edge e is traversed is we

deg(u) times the expected number of times vertex u is reached
by a random walk before all vertices in S are reached. To bound the number of times u is
reached before S is covered, consider a random walk on the Schur complement GS . The
expected number of times u is reached in a random walk on G before S is covered is the same
as the expected number of times u is reached by a random walk on GS before GS is covered.

By Proposition 11, GS will be Eulerian and the degrees of all vertices in S will be the
same in G and GS . By Lemma 16, S is strongly connected by edges of weight wmax(S)

m , and
so GS is as well. Then, by Lemma 24, the expected number of times u is hit before GS is
covered is at most by deg(u)n2m

wmax
. Thus, the expected number of times edge e is traversed

before S is covered is at most
deg(u)n2m

wmax

we
deg(u) ≤ n

2m

since wc ≥ we

m . As there are at most m jumping edges of S, in expectation, at most n2m2

edge traversals between children of S will occur before every vertex in S has been reached. J

Thus, for large enough L = poly(n,m), by Markov’s inequality, with high probability
every node S ∈ T is covered by the time L edges have jumped across S. This means the
transcript returned by AllEdges will contain all first visit edges with high probability. As
this transcript is polynomial in length, all first visit edges and the corresponding arborescence
they form can be extracted and returned in NC.

7 Discussion and Open Problems

We showed how to sample arborescences, and as a special case spanning trees, from a given
weighted graph using an RNC algorithm. While this is a step in resolving the disparity
between parallel sampling and parallel counting algorithms, more investigation is needed. In
particular, for the list of problems with determinant-based counting in Section 1, designing
RNC sampling algorithms remains open.

One of these problems in particular, namely sampling Eulerian tours from an Eulerian
digraph, is intimately connected to sampling arborescences, due to the BEST theorem [1, 34].
However the reduction, while polynomial-time implementable, is not known to be in NC.



N. Anari, N. Hu, A. Saberi, and A. Schild 83:17

I Question 27. Is there an algorithm for sampling Eulerian tours uniformly at random in
Eulerian digraphs?

The important tool our result relied on was the Aldous-Broder algorithm. So it is natural
to ask whether there are generalizations of the Aldous-Broder result to settings beyond
spanning trees and arborescences. In particular the bases of a regular matroid are a proper
generalization of spanning trees in a graph, and they have a decomposition in terms of
graphic, co-graphic, and some special constant-sized matroids [29].

I Question 28. Can we sample from a regular matroid, or equivalently from a volume-based
distribution defined by totally unimodular vectors in RNC?

Yet another direction for generalization are higher-dimensional equivalents of spanning
trees and arborescences. For example, Gorodezky and Pak [15] provided a generalization of
the algorithm of Wilson [35] for sampling arborescences from graphs to hypergraphs. While
Wilson’s algorithm is different from that of Aldous-Broder, it is closely related. Can these
generalizations be efficiently parallelized?
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Abstract
Mechanisms with money are commonly designed under the assumption that agents are quasi-linear,
meaning they have linear disutility for spending money. We study the implications when agents
with non-linear (specifically, convex) disutility for payments participate in mechanisms designed
for quasi-linear agents. We first show that any mechanism that is truthful for quasi-linear buyers
has a simple best response function for buyers with non-linear disutility from payments, in which
each bidder simply scales down her value for each potential outcome by a fixed factor, equal to her
target return on investment (ROI). We call such a strategy ROI-optimal. We prove the existence
of a Nash equilibrium in which agents use ROI-optimal strategies for a general class of allocation
problems. Motivated by online marketplaces, we then focus on simultaneous second-price auctions
for additive bidders and show that all ROI-optimal equilibria in this setting achieve constant-factor
approximations to suitable welfare and revenue benchmarks.
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Abstract
We introduce a model for ant trail formation, building upon previous work on biologically feasible
local algorithms that plausibly describe how ants maintain trail networks. The model is a variant of
a reinforced random walk on a directed graph, where ants lay pheromone on edges as they traverse
them and the next edge to traverse is chosen based on the level of pheromone; this pheromone
decays with time. There is a bidirectional flow of ants in the network: the forward flow proceeds
along forward edges from source (e.g. the nest) to sink (e.g. a food source), and the backward flow
in the opposite direction. Some fraction of ants are lost as they pass through each node (modeling
the loss of ants due to exploration observed in the field). We initiate a theoretical study of this
model. We note that ant navigation has inspired the field of ant colony optimization, heuristics that
have been applied to several combinatorial optimization problems; however the algorithms developed
there are considerably more complex and not constrained to being biologically feasible.

We first consider the linear decision rule, where the flow divides itself among the next set of
edges in proportion to their pheromone level. Here, we show that the process converges to the path
with minimum leakage when the forward and backward flows do not change over time. On the other
hand, when the forward and backward flows increase over time (caused by positive reinforcement
from the discovery of a food source, for example), we show that the process converges to the shortest
path. These results are for graphs consisting of two parallel paths (a case that has been investigated
before in experiments). Through simulations, we show that these results hold for more general
graphs drawn from various random graph models; proving this convergence in the general case is an
interesting open problem. Further, to understand the behaviour of other decision rules beyond the
linear rule, we consider a general family of decision rules. For this family, we show that there is
no advantage of using a non-linear decision rule, if the goal is to find the shortest or the minimum
leakage path. We also show that bidirectional flow is necessary for convergence to such paths. Our
results provide a plausible explanation for field observations, and open up new avenues for further
theoretical and experimental investigation.
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Abstract
A prophet inequality states, for some α ∈ [0, 1], that the expected value achievable by a gambler who
sequentially observes random variables X1, . . . , Xn and selects one of them is at least an α fraction
of the maximum value in the sequence. We obtain three distinct improvements for a setting that
was first studied by Correa et al. (EC, 2019) and is particularly relevant to modern applications in
algorithmic pricing. In this setting, the random variables are i.i.d. from an unknown distribution and
the gambler has access to an additional βn samples for some β ≥ 0. We first give improved lower
bounds on α for a wide range of values of β; specifically, α ≥ (1 + β)/e when β ≤ 1/(e− 1), which is
tight, and α ≥ 0.648 when β = 1, which improves on a bound of around 0.635 due to Correa et al.
(SODA, 2020). Adding to their practical appeal, specifically in the context of algorithmic pricing,
we then show that the new bounds can be obtained even in a streaming model of computation
and thus in situations where the use of relevant data is complicated by the sheer amount of data
available. We finally establish that the upper bound of 1/e for the case without samples is robust
to additional information about the distribution, and applies also to sequences of i.i.d. random
variables whose distribution is itself drawn, according to a known distribution, from a finite set of
known candidate distributions. This implies a tight prophet inequality for exchangeable sequences
of random variables, answering a question of Hill and Kertz (Contemporary Mathematics, 1992),
but leaves open the possibility of better guarantees when the number of candidate distributions is
small, a setting we believe is of strong interest to applications.
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Abstract
We extend the definitions of complexity measures of functions to domains such as the symmetric
group. The complexity measures we consider include degree, approximate degree, decision tree
complexity, sensitivity, block sensitivity, and a few others. We show that these complexity measures
are polynomially related for the symmetric group and for many other domains.

To show that all measures but sensitivity are polynomially related, we generalize classical
arguments of Nisan and others. To add sensitivity to the mix, we reduce to Huang’s sensitivity
theorem using “pseudo-characters”, which witness the degree of a function.

Using similar ideas, we extend the characterization of Boolean degree 1 functions on the symmetric
group due to Ellis, Friedgut and Pilpel to the perfect matching scheme. As another application of
our ideas, we simplify the characterization of maximum-size t-intersecting families in the symmetric
group and the perfect matching scheme.
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1 Introduction

A classical result in complexity theory states that a Boolean function f : t0, 1un Ñ t0, 1u
of degree d can be computed using a decision tree of depth polypdq. Conversely, a Boolean
function computed by a decision tree of depth d has degree at most d. Thus degree and
decision tree complexity are polynomially related. Other complexity measures which are
polynomially related to the degree include approximate degree, certificate complexity, and
block sensitivity. Recently, Huang [9] added sensitivity to the list.

Can we prove similar results for Boolean functions on other domains? Such domains
have been introduced to complexity theory in recent years: for example, O’Donnell and
Wimmer [13] used Boolean functions on the so-called “slice” to construct optimal nets for
monotone functions; Barak et al. [1] used Boolean functions on the Reed–Muller code to
construct and analyze the influential “short code”; and recently, Khot, Minzer and Safra [10]
proved the 2-to-2 conjecture using Boolean functions on the Grassmann scheme.

Although yet to see applications to complexity theory, perhaps the most appealing domain
is the symmetric group. We say that a function f : Sn Ñ R has degree at most d if any of
the following equivalent conditions hold:
1. fpπq can be written as a linear combination of d-juntas, which are functions depending

on πpi1q, . . . , πpidq for some i1, . . . , id P rns.
2. Representing the input as a permutation matrix, f can be written as a degree d polynomial

in the entries of the matrix.
3. f has Fourier-degree d, that is, it is supported on isotypic components corresponding to

partitions λ with λ1 ě n´ d.
(The reader who is not familiar with representation theory can ignore the last definition.)

What is the correct generalization of decision tree? We take our inspiration from the
work of Ellis, Friedgut and Pilpel [4], which characterized the Boolean degree 1 functions
on Sn. These are functions that depend on some πpiq or on some π´1pjq. This suggests the
following definition: a decision tree for functions on Sn is a decision tree with queries of the
form “πpiq “?” and “π´1pjq “?”. Essentially the same definition (“matching decision trees”)
is used in lower bounds on the pigeonhole principle [14].

We show that this is a good definition by proving that degree and decision tree complexity
are polynomially related for the symmetric group. In fact, we are able to generalize many
other complexity measures to the symmetric group, and show that all of them are polynomially
related:

I Theorem 1. The following complexity measures (appropriately defined) are all polynomially
related for Boolean functions over the symmetric group: degree, approximate degree, decision
tree complexity, certificate complexity, unambiguous certificate complexity, sensitivity, block
sensitivity, fractional block sensitivity, quantum query complexity.

Our results hold for many other domains, such as the perfect matching scheme (the set
of all perfect matchings in K2n) and balanced slices (the balanced slice consists of all vectors
in t0, 1u2n with equally many 0s and 1s, and is also known as the Johnson scheme Jp2n, nq).

We prove Theorem 1 and its generalizations in an abstract framework based on simplicial
complexes. In this framework, every point in the domain is a set. For example:
1. Boolean cube: We identify each vector x P t0, 1un with the set tpi, xiq : i P rnsu.
2. Symmetric group: We identify each permutation π P Sn with the set tpi, πpiqq : i P rnsu.
A function has degree d if it can be written as a linear combination of functions of the form
“the input set contains S”, where |S| ď d; this generalizes the usual notion of degree in these
two domains. Our decision trees allow any queries of the form “which element of the set Q
does the input set contain?”, as long as there is a unique answer for every input.
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With this setup in place, we are able to polynomially relate all complexity measures
other than sensitivity by generalizing classical arguments, as presented by Buhrman and
de Wolf [2], for example. To add sensitivity to the mix, we reduce to Huang’s sensitivity
theorem [9] using basic representation theory.

Generalizing ideas of Gopalan et al. [8], we also prove the following simple result:

I Theorem 2. If a function on the symmetric group has sensitivity s, then it can be recovered
from its evaluation on a ball of radius Opsq around an arbitrary permutation.

Using this, we show that low sensitivity functions can be computed efficiently:

I Theorem 3. If a function on the symmetric group has sensitivity s, then it can be computed
using a circuit of size nOpsq.

This should be compared to a decision tree for the function, which corresponds to a
balanced formula of size nOpDq, where D ě s is the decision tree complexity.

1.1 Degree 1 functions
Our results show that in a wide variety of domains, Boolean degree 1 functions can be
computed by constant depth decision trees. Can we say more?

Boolean degree 1 functions on the Boolean cube are dictators, that is, depend on a
single coordinate, and the same holds for functions on the balanced slice. Ellis, Friedgut and
Pilpel [4] showed that the same holds for the symmetric group, with the correct interpretation
of “dictator”: a function depending only on some πpiq, or only on some π´1pjq. In contrast,
Filmus and Ihringer [6] showed that Boolean degree 1 functions on the Grassmann scheme
(k-dimensional subspaces of an n-dimensional vector space over a finite field) could depend
on two different “data points”.

Among the domains we consider, in many cases Boolean degree 1 functions are trivially
dictators. In some other cases, describing all Boolean degree 1 functions seems difficult. We
identify one case in which the problem is feasible:

I Theorem 4. A Boolean function on the perfect matching scheme has degree at most 1 if
and only if it is one of the following: a constant function; a function depending on the match
of some vertex i; or a function depending on whether the perfect matching intersects some
triangle.

Incidentally, this is another example in which there are non-dictatorial degree 1 functions,
namely those depending on intersections with a triangle.

We prove Theorem 4 using polyhedral techniques. As in the proof of the corresponding
result for the symmetric group by Ellis, Friedgut and Pilpel (which we paraphrase using
our methods), we first characterize all nonnegative degree 1 functions, using the classical
characterization of supporting hyperplanes of the perfect matching polytope. To deduce the
result for Boolean functions, we use a simple result from the theory of complexity measures:
a degree 1 function has sensitivity at most 1.

The reader is perhaps wondering about nonnegative functions of higher degree. Can
we say anything intelligent about them? It turns out that the answer is negative already
for the Boolean cube: classical results on the Sherali–Adams hierarchy [7] show that there
exist nonnegative degree 2 functions which, if written as nonnegative linear combinations
of monomials over literals (that is, products of factors of the form xi and 1´ xj), require
degree Ωpnq.
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1.2 Application to Erdős–Ko–Rado theory
The work of Ellis, Friedgut and Pilpel, which has already been mentioned several times, is
about intersecting families of permutations. A subset F Ď Sn is t-intersecting if any two
π1, π2 P F agree on the image of at least t points. In other words, if we think of π1, π2 as
sets (as in our setup), then |π1 X π2| ě t. How large can a t-intersecting family be? One
construction is a t-star :

F “ tπ P Sn : πpi1q “ j1, . . . , πpitq “ jtu.

Ellis et al. show that for large enough n (depending on t), these families have the maximum
possible size, and moreover uniquely so: every t-intersecting family of the maximum size
pn´ tq! is a t-star. Unfortunately, their argument for the uniqueness claim is wrong, see [5].
Uniqueness can be recovered from the work of Ellis [3], which proves a much stronger result,
and is quite complicated.

We give a much simpler proof of uniqueness, using the connection between degree and
certificate complexity:

I Theorem 5. For every t, d, the following holds for large enough n. If f is the characteristic
vector of a t-intersecting family and deg f ď d, then either f is contained in a t-star, or the
corresponding family contains Oppn´ t´ 1q!q permutations.

Ellis et al. show that a t-intersecting family of size pn´ tq! must have degree t (for large
enough n), and so Theorem 5 shows that for large enough n, such a family must be a t-star.

Theorem 5 generalizes to other domains for which similar intersection theorems are known,
such as the perfect matching scheme [11, 12], and to cross-t-intersecting families.

We see Theorem 5 as a contribution of theoretical computer science to extremal combin-
atorics. It illustrates the usefulness of the theory developed in this work.
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Abstract
In several applications of real-time matching of demand to supply in online marketplaces, the
platform can allow for some latency to batch the demand and improve the matching’s efficiency.
Motivated by these scenarios, we study the optimal trade-off between batching and inefficiency in
online allocations. In particular, we consider K-stage variants of the classic vertex weighted bipartite
b-matching and AdWords problems, where online vertices arrive in K batches. Our main result
for both problems is an optimal

(
1− (1− 1/K)K

)
-competitive (fractional) matching algorithm,

improving the classic (1−1/e) competitive ratios known for the online variant of these problems [2, 1].
Our main technique is using a family of convex-programming based matchings that distribute the

demand in a particularly balanced way among supply in different stages. More precisely, we identify
a sequence of polynomials with decreasing degrees that can be used as strictly concave regularizers of
the optimal matching linear program to form this family. By providing structural decompositions
of the underlying graph using the optimal solutions of these convex programs, we develop a new
multi-stage primal-dual framework to analyze the fractional multi-stage algorithm that returns the
corresponding regularized optimal matching in each stage (by solving the stage’s convex program).
We further show a matching upper-bound by providing an unweighted instance of the problem in
which no online algorithm obtains a competitive ratio better than

(
1− (1− 1/K)K

)
. We extend

our results to integral allocations in the vertex weighted b-matching problem with large budgets,
and in the AdWords problem with small bid over budget ratios.

2012 ACM Subject Classification Theory of computation→ Algorithmic game theory and mechanism
design; Theory of computation → Online algorithms

Keywords and phrases Online Bipartite Matching, Primal-Dual Analysis, Multi-stage Allocation,
Batching

Digital Object Identifier 10.4230/LIPIcs.ITCS.2021.88

Category Extended Abstract

Related Version A full version of the paper is available at https://ssrn.com/abstract=3689448.

Acknowledgements The authors would like to thank Yeganeh Alimohammadi for participating in
the early stages of this project, and to Amin Saberi for helpful discussions regarding the presentation
of this work.

References
1 Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online vertex-weighted

bipartite matching and single-bid budgeted allocations. In Proceedings of the twenty-second
annual ACM-SIAM symposium on Discrete Algorithms, pages 1253–1264. SIAM, 2011.

2 Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized
online matching. Journal of the ACM (JACM), 54(5):22–es, 2007.

© Yiding Feng and Rad Niazadeh;
licensed under Creative Commons License CC-BY

12th Innovations in Theoretical Computer Science Conference (ITCS 2021).
Editor: James R. Lee; Article No. 88; pp. 88:1–88:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yidingfeng2021@u.northwestern.edu
mailto:rad.niazadeh@chicagobooth.edu
https://doi.org/10.4230/LIPIcs.ITCS.2021.88
https://ssrn.com/abstract=3689448
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




Shrinkage Under Random Projections, and Cubic
Formula Lower Bounds for AC0
Yuval Filmus
Technion – Israel Institute of Technology, Haifa, Israel
https://yuvalfilmus.cs.technion.ac.il
yuvalfi@cs.technion.ac.il

Or Meir
Department of Computer Science, University of Haifa, Israel
https://cs.haifa.ac.il/˜ormeir/
ormeir@cs.haifa.ac.il

Avishay Tal
Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, CA, USA
http://www.avishaytal.org
atal@berkeley.edu

Abstract
H̊astad showed that any De Morgan formula (composed of AND, OR and NOT gates) shrinks by
a factor of O(p2) under a random restriction that leaves each variable alive independently with
probability p [SICOMP, 1998]. Using this result, he gave an Ω̃(n3) formula size lower bound for the
Andreev function, which, up to lower order improvements, remains the state-of-the-art lower bound
for any explicit function.

In this work, we extend the shrinkage result of H̊astad to hold under a far wider family of random
restrictions and their generalization – random projections. Based on our shrinkage results, we obtain
an Ω̃(n3) formula size lower bound for an explicit function computed in AC0. This improves upon
the best known formula size lower bounds for AC0, that were only quadratic prior to our work. In
addition, we prove that the KRW conjecture [Karchmer et al., Computational Complexity 5(3/4),
1995] holds for inner functions for which the unweighted quantum adversary bound is tight. In
particular, this holds for inner functions with a tight Khrapchenko bound.

Our random projections are tailor-made to the function’s structure so that the function maintains
structure even under projection – using such projections is necessary, as standard random restrictions
simplify AC0 circuits. In contrast, we show that any De Morgan formula shrinks by a quadratic
factor under our random projections, allowing us to prove the cubic lower bound.

Our proof techniques build on the proof of H̊astad for the simpler case of balanced formulas.
This allows for a significantly simpler proof at the cost of slightly worse parameters. As such, when
specialized to the case of p-random restrictions, our proof can be used as an exposition of H̊astad’s
result.
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1 Introduction

1.1 Background

Is there an efficient computational task that cannot be perfectly parallelized? Equivalently,
is P 6⊆ NC1? The answer is still unknown. The question can be rephrased as follows: is
there a function in P that does not have a (De Morgan) formula of polynomial size?

The history of formula lower bounds for functions in P goes back to the 1960s, with the
seminal result of Subbotovskaya [30] that introduced the technique of random restrictions.
Subbotovskaya showed that the Parity function on n variables requires formulas of size at
least Ω(n1.5). Khrapchenko [22], using a different proof technique, showed that in fact the
Parity function on n variables requires formulas of size Θ(n2). Later, Andreev [3] came up
with a new explicit function (now known as the Andreev function) for which he was able
to obtain an Ω(n2.5) size lower bound. This lower bound was subsequently improved by
[18, 25, 14, 31] to n3−o(1).

The line of work initiated by Subbotovskaya and Andreev relies on the shrinkage of
formulas under p-random restrictions. A p-random restriction is a randomly chosen partial
assignment to the inputs of a function. Set a parameter p ∈ (0, 1). We fix each variable
independently with probability 1− p to a uniformly random bit, and we keep the variable
alive with probability p. Under such a restriction, formulas shrink (in expectation) by a
factor more significant than p. Subbotovskaya showed that De Morgan formulas shrink to at
most p1.5 times their original size, whereas subsequent works of [25, 18] improved the bound
to p1.55 and p1.63, respectively. Finally, H̊astad [14] showed that the shrinkage exponent of
De Morgan formulas is 2, or in other words, that De Morgan formulas shrink by a factor
of p2−o(1) under p-random restrictions. Tal [31] improved the shrinkage factor to O(p2) –
obtaining a tight result, as exhibited by the Parity function.

In a nutshell, shrinkage results are useful to proving lower bounds as long as the explicit
function being analyzed maintains structure under such restrictions and does not trivialize.
For example, the Parity function does not become constant as long as at least one variable
remains alive. Thus any formula F that computes Parity must be of at least quadratic size,
or else the formula F under restriction, keeping each variable alive with probability 100/n,
would likely become a constant function, whereas Parity would not. Andreev’s idea is similar,
though he manages to construct a function such that under a random restriction keeping
only Θ(log n) of the variables, the formula size should be at least Ω̃(n) (in expectation). This
ultimately gives the nearly cubic lower bound.

The KRW Conjecture

Despite much effort, proving P 6⊆ NC1, and even just breaking the cubic barrier in formula
lower bounds, have remained a challenge for more than two decades. An approach to solve
the P versus NC1 problem was suggested by Karchmer, Raz and Wigderson [20]. They
conjectured that when composing two Boolean functions, f and g, the formula size of the
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resulting function, f � g, is (roughly) the product of the formula sizes of f and g.1 We will
refer to this conjecture as the “KRW conjecture”. Under the KRW conjecture (and even under
weaker variants of it), [20] constructed a function in P with no polynomial-size formulas. It
remains a major open challenge to settle the KRW conjecture.

A few special cases of the KRW conjecture are known to be true. The conjecture
holds when either f or g is the AND or the OR function. H̊astad’s result [14] and its
improvement [31] show that the conjecture holds when the inner function g is the Parity
function and the outer function f is any function. This gives an alternative explanation to
the n3−o(1) lower bound for the Andreev function. Indeed, the Andreev function is at least as
hard as the composition of a maximally-hard function f on log n bits and g = Parityn/ log n,
where the formula size of f is Ω̃(n) and the formula size of Parityn/ log n is Θ(n2/ log2 n).
Since the KRW conjecture holds for this special case, the formula size of the Andreev function
is at least Ω̃(n3). In other words, the state-of-the-art formula size lower bounds for explicit
functions follow from a special case of the KRW conjecture – the case in which g is the Parity
function. Moreover, this special case follows from the shrinkage of De Morgan formulas under
p-random restrictions.

Bottom-Up versus Top-Down Techniques

Whereas random restrictions are a “bottom-up” proof technique [15], a different line of
work suggested a “top-down” approach using the language of communication complexity.
The connection between formula size and communication complexity was introduced in the
seminal work of Karchmer and Wigderson [21]. They defined for any Boolean function f a
two-party communication problem KW f : Alice gets an input x such that f(x) = 1, and Bob
gets an input y such that f(y) = 0. Their goal is to identify a coordinate i on which xi 6= yi,
while minimizing their communication. It turns out that there is a one-to-one correspondence
between any protocol tree solving KW f and any formula computing the function f . Since
protocols naturally traverse the tree from root to leaf, proving lower bounds on their size or
depth is done usually in a top-down fashion. This framework has proven to be very useful in
proving formula lower bounds in the monotone setting (see, e.g., [21, 10, 28, 20, 27, 11, 26]).
Moreover, a recent work by Dinur and Meir [6] was able to reprove H̊astad’s cubic lower
bound using the framework of Karchmer and Wigderson. As Dinur and Meir’s proof showed
that top-down techniques can replicate H̊astad’s cubic lower bound, a natural question (which
motivated this project) arose:

Are top-down techniques superior to bottom-up techniques?

Towards that, we focused on a candidate problem: prove a cubic lower bound for an explicit
function in AC0.2 Based on the work of Dinur and Meir [6], we suspected that such a lower
bound could be achieved using top-down techniques. We were also certain that the problem
cannot be solved using the random restriction technique. Indeed, in order to prove a lower
bound on a function f using random restrictions, one should argue that f remains hard
under a random restriction, however, it is well-known that functions in AC0 trivialize under
p-random restrictions [7, 1, 32, 12]. Based on this intuition, surely random restrictions cannot
show that a function in AC0 requires cubic size. Our intuition turned out to be false.

1 More precisely, the original KRW conjecture [20] concerns depth complexity rather than formula
complexity. The variant of the conjecture for formula complexity, which is discussed above, was posed
in [9].

2 Recall that AC0 is the class of functions computed by constant depth polynomial size circuits composed
of AND and OR gates of unbounded fan-in, with variables or their negation at the leaves.

I T C S 2 0 2 1
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1.2 Our results
In this work, we construct an explicit function in AC0 which requires De Morgan formulas
of size n3−o(1). Surprisingly, our proof is conducted via the bottom-up technique of random
projections, which is a generalization of random restrictions (more details below).

I Theorem 1. There exists a family of Boolean functions hn : {0, 1}n → {0, 1} for n ∈ N
such that
1. hn can be computed by uniform depth-4 unbounded fan-in formulas of size O(n3).
2. The formula size of hn is at least n3−o(1).

Prior to our work, the best formula size lower bounds on an explicit function in AC0

were only quadratic [24, 5, 19, 4].
Our hard function is a variant of the Andreev function. More specifically, recall that the

Andreev function is based on the composition f � g, where f is a maximally-hard function
and g is the Parity function. Since Parity is not in AC0, we cannot take g to be the Parity
function in our construction. Instead, our hard function is obtained by replacing the Parity
function with the Surjectivity function of [4].

As in the case of the Andreev function, we establish the hardness of our function by
proving an appropriate special case of the KRW conjecture. To this end, we introduce
a generalization of the complexity measure of Khrapchenko [22], called the min-entropy
Khrapchenko bound. We prove the KRW conjecture for the special case in which the outer
function f is any function, and g is a function whose formula complexity is bounded tightly by
the min-entropy Khrapchenko bound. We then obtain Theorem 1 by applying this version of
the KRW conjecture to the case where g is the Surjectivity function. We note that our KRW
result also implies the known lower bounds in the cases where g is the Parity function [14]
and the Majority function [8].

Our KRW result in fact applies more generally, to functions g whose formula complexity is
bounded tightly by the “soft-adversary method”, denoted Advs(g), which is a generalization
of Ambainis’ unweighted adversary method [2].

Our proof of the special case of the KRW conjecture follows the methodology of H̊astad [13],
who proved the special case in which g is Parity on m variables. H̊astad proved that De Morgan
formulas shrink by a factor of (roughly) p2 under p-random restrictions. Choosing p = 1/m

shrinks a formula for f � g by a factor of roughly m2, which coincides with the formula
complexity of g. On the other hand, on average each copy of g simplifies to a single input
variable, and so f � g simplifies to f . This shows that L(f � g) & L(f) · L(g).

Our main technical contribution is a new shrinkage theorem that works in a far wider range
of scenarios than just p-random restrictions. Given a function g with soft-adversary bound
Advs(g), we construct a random projection3 which, on the one hand, shrinks De Morgan
formulas by a factor of Advs(g), and on the other hand, simplifies f � g to f . We thus show
that L(f�g) & L(f)·Advs(g), and in particular, if Advs(g) ≈ L(g), then L(f�g) & L(f)·L(g),
just as in H̊astad’s proof. Using these random projections, that are tailored specifically to
the structure of the function f � g so that f � g simplifies to f under projection, enables us
to overcome the aforementioned difficulty. In contrast, p-random restrictions that do not
respect the structure of f � g would likely result in a restricted function that is much simpler
than f and in fact would be a constant function with high probability.

3 A projection is a mapping from the set of the variables {x1, . . . , xn} to the set
{y1, . . . , ym, y1, . . . , ym, 0, 1}, where y1, . . . , ym are formal variables.
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Our shrinkage theorem applies more generally to two types of random projections, which
we call fixing projections and hiding projections. Fixing projections are random projections
in which fixing the value of a variable results in a projection which is much more probable.
Hiding projections are random projections in which fixing the value of a variable hides
which coordinates it appeared on. We note that our shrinkage theorem for fixing projections
captures H̊astad’s result for p-random restrictions as a special case.

The proof of our shrinkage theorem is based on H̊astad’s proof [14], but also simplifies
it. In particular, we take the simpler argument that H̊astad uses for the special case of
completely balanced trees, and adapt it to the general case. As such, our proof avoids a
complicated case analysis, at the cost of slightly worse bounds. Using our bounds, it is
nevertheless easy to obtain the n3−o(1) lower bound for the Andreev function. Therefore, one
can see the specialization of our shrinkage result to p-random restrictions as an exposition of
H̊astad’s cubic lower bound.

An example: our techniques when specialized to f � Majoritym

To illustrate our choice of random projections, we present its instantiation to the special
case of f � g where f : {0, 1}k → {0, 1} is non-constant and g = Majoritym for some odd
integer m. In this case, the input variables to f � g are composed of k disjoint blocks,
B1, . . . , Bk, each containing m variables. We use the random projection that for each block
Bi = {xm(i−1)+1, . . . , xmi}, picks one variable in the block Bi uniformly at random, projects
this variable to the new variable yi, and fixes the rest of the variables in the block in a
balanced way so that the number of zeros and ones in the block is equal (i.e., we have
exactly (m− 1)/2 zeros and (m− 1)/2 ones). It is not hard to see that under this choice,
f � g simplifies to f . On the other hand, we show that this choice of random projections
shrinks the formula complexity by a factor of ≈ 1/m2. Combining the two together, we get
that L(f �Majoritym) & L(f) ·m2. Note that in this distribution of random projections,
the different coordinates are not independent of one another, and this feature allows us to
maintain structure.

1.3 Related work

Our technique of using tailor-made random projections was inspired by the celebrated result
of Rossman, Servedio, and Tan [29, 16] that proved an average-case depth hierarchy. In fact,
the idea to use tailor-made random restrictions goes back to H̊astad’s thesis [17, Chapter 6.2].
Similar to our case, in [17, 29, 16], p-random restrictions are too crude to separate depth d

from depth d + 1 circuits. Given a circuit C of depth d + 1, the main challenge is to construct
a distribution of random restrictions or projections (tailored to the circuit C) that on the
one hand maintains structure for C, but on the other hand simplify any depth d circuit C ′.

Full Version

Due to space constraints, we have only included in this extended abstract the introduction of
our paper. We defer the reader to the full version of the paper for more details and complete
proofs.
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