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Abstract

We introduce the pipeline intervention problem, defined by a layered directed acyclic graph and a
set of stochastic matrices governing transitions between successive layers. The graph is a stylized
model for how people from different populations are presented opportunities, eventually leading
to some reward. In our model, individuals are born into an initial position (i.e. some node in
the first layer of the graph) according to a fixed probability distribution, and then stochastically
progress through the graph according to the transition matrices, until they reach a node in the
final layer of the graph; each node in the final layer has a reward associated with it. The pipeline
intervention problem asks how to best make costly changes to the transition matrices governing
people’s stochastic transitions through the graph, subject to a budget constraint. We consider two
objectives: social welfare maximization, and a fairness-motivated maximin objective that seeks to
maximize the value to the population (starting node) with the least expected value. We consider two
variants of the maximin objective that turn out to be distinct, depending on whether we demand a
deterministic solution or allow randomization. For each objective, we give an efficient approximation
algorithm (an additive FPTAS) for constant width networks. We also tightly characterize the “price
of fairness” in our setting: the ratio between the highest achievable social welfare and the social
welfare consistent with a maximin optimal solution. Finally we show that for polynomial width
networks, even approximating the maximin objective to any constant factor is NP hard, even for
networks with constant depth. This shows that the restriction on the width in our positive results is
essential.
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8:2 Pipeline Interventions

1 Introduction

Inequality can be difficult to correct by the time it manifests itself in consequential domains.
For example, faculty in computer science departments are disproportionately male (Way
et al. [21]), and although the reasons for this are varied and complex, it seems difficult to
correct only by intervening in the process of faculty hiring (although the solution likely
involves some intervention at this stage). The problem is that interventions at the final stage
of a long pipeline may not be enough (or the best way) to address iniquities that compound
starting from earlier stages in the pipeline such as graduate school, college, high school,
enrichment programs, all the way back to birth circumstances. Because each stage of, for
example, employment pipelines feeds into the next, interventions that are isolated to any
one stage can have difficulty controlling effects on final outcomes – and although in practice
it is difficult to fully understand such a system, we would ideally like to design proposed
interventions at a system-wide level, rather than myopically.

Thus motivated, we study an optimization problem within a stylized (and highly simplified)
model of such a pipeline. Our model is a layered directed acyclic graph. The vertices in
the first layer represent a coarse partitioning of possible birth circumstances into a small
number of types – each vertex representing one of these types. There is a probability vector
over these vertices and individuals are “born” into some vertex with these probabilities. The
graph represents a Markov process that determines how individuals progress through the
pipeline. From every vertex there is a stochastic transition matrix specifying the probability
that an individual will progress to each vertex in the next layer of the pipeline. We might
imagine, for example, that the proportion of children that enroll in each of several elementary
schools (the second layer of such a pipeline) varies according to the neighborhood that they
are raised in (the first layer). The proportion of children that then go on to enroll in each
of several high schools may then vary according to the elementary school they attend, and
so on. Finally, vertices at the last layer of the pipeline are associated with payoffs. One
may then calculate the expected payoff of an individual as a function of their initial position.
These payoffs may vary widely depending on this position.

We are concerned with the problem of how best to invest limited resources so as to modify
the transition matrices governing different layers of this pipeline to achieve some goal. In
the main body of the paper, we focus on a stylized model where the costs of modifying
transition matrices are linear, for simplicity of exposition; we extend our results to more
complex and realistic cost functions in the Appendix. We consider two goals: the first is
simply maximizing social welfare – the expected payoff for an individual chosen according to
the given probability vector for the first layer. Although this is a natural objective, it can
easily lead to solutions that are “unfair” in the sense that they will prioritize investments that
lead to improvements for majority populations over minority populations, simply because
majority populations, by their sheer numbers, contribute more to social welfare. The second
goal we study is therefore to maximize the minimum expected payoff of individuals, where
the minimum is taken over all of the initial positions, i.e., layer 1 vertices. This “maximin”
objective is a standard fairness-motivated objective in allocation problems [See Barman and
Krishnamurthy [2], Procaccia and Wang [19], Budish [5]]. In fact, we study two different
variants of this objective, that can be distinguished by the timing with which one wants to
evaluate fairness. The ex-ante maximin objective asks for a distribution over budget-feasible
modifications of the transition matrices, that maximize the minimum expected payoff over
all initial positions. The ex-post maximin objective asks for a single (i.e. deterministic)
budget-feasible modification to the transition matrices. Because the problem we study is
non-convex, these two goals are distinct – which is preferred depends on when one wants to
evaluate the fairness of a solution: before or after the randomization.
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1.1 Overview of Our Results
Briefly, our main contributions are the following:
1. We define and formalize the pipeline intervention problem with the social welfare, ex-ante

maximin, and ex-post maximin objectives. We also prove a separation between the
ex-post and ex-ante maximin solutions.

2. We give an additive fully polynomial-time approximation scheme (FPTAS) for both
the social welfare and ex-post maximin objectives for networks of constant width (but
arbitrarily long depth).

3. We give an efficient reduction from the ex-ante maximin objective problem to the ex-post
maximin objective problem via equilibrium computation in two-player zero-sum games.
Combined with our results from 2, this yields an additive FPTAS for the ex-ante maximin
objective problem for constant width networks as well.

4. We define and prove tight bounds on the “price of fairness”, which compares the optimal
social welfare that can be achieved with a given budget to the social welfare of ex-post
maximin optimal solutions.

5. Finally, we show that the pipeline intervention problem is NP hard even to approximate
in the general case when the width w is not bounded – and hence that our efficient
approximation algorithms cannot be extended to the general case (or even the case of
constant depth, polynomial width networks).

1.2 Related Work
There is an enormous literature in “algorithmic fairness” that has emerged over the last
several years, that we cannot exhaustively summarize here – but see Chouldechova and
Roth [6] for a recent survey. Most of this literature is focused on the myopic effects of a
single intervention, but what is more conceptually related to our paper is work focusing on
the longer-term effects of algorithmic interventions.

Dwork and Ilvento [9] and Bower et. al. [4] study the effects of imposing fairness
constraints on machine learning algorithms that might be composed together in various
ways to reach an eventual outcome. They show that generally fairness constraints imposed
on constituent algorithms in a pipeline or other composition do not guarantee that the
same fairness constraints will hold on the entire mechanism as a whole. (They also study
conditions under which fairness guarantees are well behaved under composition). Two recent
papers (Liu et al. [15], Mouzannar et al. [17]) study parametric models by which classification
interventions in an earlier stage can have effects on the data distribution at later stages, and
show that for many commonly studied fairness constraints, their effects can either be positive
or negative in the long term, depending on the functional form of the relationship between
classification decisions and changes in the agent type distribution.

There is also a substantial body of work studying game theoretic models for how inter-
ventions affect “fairness” goals. This work dates back to Coate and Loury [7], Foster and
Vohra [10] in the economics literature, who propose game theoretic models to rationalize
how unequal outcomes might emerge despite two populations being symmetrically situated.
More recently, in the computer science literature, several papers consider more complicated
models that are similar in spirit to Coate and Loury [7], Foster and Vohra[10]. Hu and
Chen [12] propose a two-stage model of a labor market with a “temporary” (i.e. internship)
and “permanent” stage, and study the equilibrium effects of imposing a fairness constraint
on the temporary stage. Liu et al. [16] consider a model of the labor market with higher
dimensional signals, and study equilibrium effects of subsidy interventions which can lessen
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8:4 Pipeline Interventions

the cost of exerting effort. Kannan et al. [14] study the effects of admissions policies on
a two-stage model of education and employment, in which a downstream employer makes
rational decisions. Jung et al. [13] study a model of criminal justice in which crime rates
are responsive to the classifiers used to determine criminal guilt, and study which fairness
constraints are consistent with the goal of minimizing crime.

2 Model

The pipeline intervention problem is defined by a layered directed acyclic graph G = (V,E),
where V is the set of vertices (or nodes), and E is the set of edges. The vertices are
partitioned into k layers L1, L2, · · ·Lk , each consisting of w vertices. We say that w is the
width of the graph. For every t ∈ [k − 1], there is a directed edge from every u ∈ Lt to every
v ∈ Lt+1; the graph contains no other edge. In turn, every path from layer L1 to layer Lk

must go through exactly one vertex in each layer L2, . . . , Lk−1 in this order. Intuitively,
such a layered graph represents a pipeline, in which individuals start at initial positions
in layer 1, and transition through the graph to final positions in layer k, stochastically
according to transition matrices which we define next. This layered model can be used
to abstractly represent real-life pipelines; such a pipeline, that has received attention in
previous work (e.g. Kannan et al. [14]), is the education and job market one. Nodes in
the initial layer represent a coarse partitioning of the population based on family income
levels and educational background. The second layer could represent pre-K experience. For
example, one could have 3 nodes in the second layer representing no pre-K, Headstart, and
private pre-K. See for example Barnum [3] for a general discussion of as well as pointers
to recent studies on the efficacy of Headstart programs. At the next level or two, nodes
can represent different qualities of K-12 schools, based on a coarse partitioning of their
performance under one of several widely-available metrics, such as the ones provided by U.S.
News [20], Niche [18].

The layer after that could be a coarse partitioning where nodes represent, for example, no
college, technical or vocational school, and 2 and 4-year colleges coarsely grouped together
based on perceived quality according to one of several college rankings. A subsequent layer
could encode the details of a student’s performance in college, such as their major and GPA,
again under a coarse bucketing. The last layer, with numerical rewards could represent
different types of employment with rewards determined by starting salaries and prospects for
advancement.

In a more accurate model, we might perhaps condition the probability of transition from
node u in layer i to node v in layer i+ 1 on the entire path taken by an individual leading
up to node u. However, for mathematical tractability, we make the simplifying assumption
that the process is Markovian, and this transition probability from u is independent of prior
history.

Let M be the set of left stochastic matrices in Rw×w: i.e., M ∈ M if and only if
for all j ∈ [w],

∑
i∈[w]M(i, j) = 1, and for all (i, j) ∈ [w]2, M(i, j) ≥ 0. Let D ,

{x ∈ [0, 1]w :
∑w

k=1 x(k) = 1} be the set of probability distributions over [w]. An instance
of the pipeline intervention problem is defined by three elements:
1. A set of initial transition matrices M0

t ∈M between layers Lt and Lt+1, for all t ∈ [k−1],
such that for all u ∈ Lt, v ∈ Lt+1, M0

t (v, u) denotes the probability of transitioning from
node u to node v. Note that we will multiply any input distribution to the right of any
transition matrix we use in the paper.
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2. An input distribution D1 over the vertices in layer 1, where D1(u) denotes the fraction of
the population that starts at u in L1 as their initial position. Without loss of generality
we assume D1(u) > 0 for all initial positions u ∈ L1.

3. Finally, a reward R(v) ≥ 0 corresponding to each vertex v ∈ Lk in the final layer. We
let R = (v)>v∈Lk

denote the vector of all rewards on layer k. We assume without loss
of generality that the rewards on any two vertices in the final layer are distinct: for all
v, v′ ∈ Lk, R(v) 6= R(v′). We can also assume without loss of generality (up to renaming)
that R(1) > . . . > R(w).

In our model, each vertex u in the starting layer L1 represents the initial position of
some population; abusing notation, we refer to this population also as u. An individual in
population u transitions to a node in layer L2, then a node in layer L3, up until they reach a
node v in destination layer Lk, and obtains a reward of R(v), with probability given by the
transition matrices M0

1 to M0
k−1. The expected reward of an individual from population u is

therefore given by R>Mk−1 · . . . ·M1eu, where eu represents the w-dimensional standard basis
vector corresponding to index u. The aim of the pipeline intervention problem is to modify
the transition matrices between pairs of adjacent layers so as to improve these expected
rewards in some way (we study several objectives) given a finite resource constraint.

We will take the point of view of a centralized designer, who can invest money into
modifying the transition matrices between layers. We assume some edges can be modified,
while some edges cannot; the edges that can be modified are called malleable, and the edges
that cannot be modified are called non-malleable. We denote the set of malleable edges
between layers t and t+1 by Et

mal and the set of non-malleable edges by Et
mal its complement.

Further, we assume that modifying these transitions matrices comes at a cost, and that on a
given layer t, the cost of transforming M0

t to some alternative Mt ∈M is given by:

c(Mt,M
0
t ) ,

∑
(i,j)∈[w]2

∣∣Mt(i, j)−M0
t (i, j)

∣∣ .
I Remark 1. A critique of such cost functions is that they may not be rich enough to model
the cost of improving transitions and opportunities between different stages of, say, the
education pipeline.

To address this, we note that while we focus on these simple cost functions in the main
body of the paper for simplicity of exposition, our algorithmic results (of Sections 4, 5 and 6)
extend to more general and possibly more realistic cost functions – so long as they are
convex and increase at least linearly as the distance

∑
(i,j)∈[w]2

∣∣Mt(i, j)−M0
t (i, j)

∣∣ between
modified transition matrix Mt and initial transition matrix M0

t increases. We discuss this
extension in more detail in the full version [1]

This extension allows us to model more realistic situations such as those where the
cost functions are not linear, but also those where different edges have different costs – as
motivated by the fact that real-life interventions often become more expensive the later they
happen.

The designer has a total budget of B, and can select target transition matrices
(M1, . . . ,Mk−1) so long as the cost of modifying the initial transition matrices to his targets
does not exceed his budget, and only malleable edges have been modified. That is, he must
select target transition matrices subject to the constraint:

k−1∑
t=1

c(Mt,M
0
t ) ≤ B.

ITCS 2021
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We let

F
(
B, M0

1 , . . . , M0
k−1
)

=

{
(M1, . . . , Mk−1) :

k−1∑
t=1

c
(
Mt, M0

t

)
≤ B, Mt ∈M ∀t, Mt(i, j) = M0

t (i, j) ∀(i, j) ∈ Emal
t

}

be the set of feasible sets of transition matrices, given initial matrices M0
1 , . . . ,M

0
k−1 and

budget B. We will consider several objectives that we may wish to optimize. The first is
simply to maximize the overall social welfare (i.e. the expected reward of an individual
chosen according to D1), which is given by

W (M1, . . . ,Mk−1) , R>Mk−1 . . .M1D1.

The second objective aims to compute a “fair” outcome in the sense that it evaluates a
solution according to the expected payoff of the worst-off members of society (here interpreted
as individuals starting at the pessimal initial position), rather than according to the average.
This is the classic maximin objective. It turns out that there are two distinct variants of this
problem, depending on whether one wishes to allow randomized solutions (i.e. distributions
over matrices) or not. We will elaborate on this distinction in the next section, but in the
deterministic variant we wish to optimize

min
j∈[w]

R>Mk−1 . . .M1ej ,

where ej ∈ Rw is the unit vector with ej(j) = 1, and ej(i) = 0 for all i 6= j.

I Remark 2. We have assumed that each layer has exactly w vertices. In fact, all of our
results generalize to the case in which each layer has ≤ w vertices.

2.1 Optimization Problems of Interest
In this paper, we will provide algorithms to solve the following three optimization problems.
We note at the outset that these optimization problems are non-convex, due to the fact that
our objective values are not convex for k ≥ 2. Hence we should not expect efficient algorithms
in the fully general setting; we will give efficient algorithms for networks of constant width w
(i.e. algorithms whose running time is polynomial in the depth of the network k), and show
that outside of this class, the problem is NP hard even to approximate.

Social welfare maximization The first optimization problem we aim to solve is that
of maximizing the social welfare of our network, under our budget constraint:

OPTSW = max
M1,...,Mk−1

R>Mk−1 . . .M1D
0
1

s.t. (M1, . . . ,Mk−1) ∈ F
(
B,M0

1 , . . . ,M
0
k−1
)

(1)

Ex-post maximin problem The second optimization problem aims to maximize the
minimum expected reward that a population can obtain, where the minimum is taken
over all initial positions:

OPTMM = max
M1,...,Mk−1

min
j∈[w]

R>Mk−1 . . .M1ej

s.t. (M1, . . . ,Mk−1) ∈ F
(
B,M0

1 , . . . ,M
0
k−1
)

(2)



E. R. Arunachaleswaran, S. Kannan, A. Roth, and J. Ziani 8:7

Ex-ante maximin problem The third optimization problem has the same objective
as Program 2, but allows randomization over sets of transition matrices that satisfy
the budget constraint. Note that the budget constraint must be satisfied ex-post, for
any realization of the set of transition matrices. To define this optimization prob-
lem, we let ∆F

(
B,M0

1 , . . . ,M
0
k−1
)
the set of probability distributions with support

F
(
B,M0

1 , . . . ,M
0
k−1
)
. The optimization program is given by:

OPTRMM = max
∆M

min
j∈[w]

R>EM∼∆M [Mk−1 . . .M1] ej

s.t. ∆M ∈ ∆F
(
B,M0

1 , . . . ,M
0
k−1
)
, (3)

where the expectation is taken over the randomness of distribution ∆M . Note that where
Program 3 can be viewed as optimizing an ex-ante notion of fairness, in which we are
evaluated on the minimum expected value of individuals starting at any initial position,
before the coins of ∆M are flipped. In contrast, Program 2 evaluates the minimum
expected value of individuals starting at any initial position for an already established
set of transition matrices.

I Remark 3. Programs (1), (2) and (3) all have solutions, and as such the use of maxima
instead of suprema is well defined. To see this, first note that the feasible sets are non-
empty since

(
M0

1 , . . . ,M
0
k−1
)
∈ F

(
B,M0

1 , . . . ,M
0
k−1
)
for all B ≥ 0. For Program (1), the

existence of a maximum is an immediate consequence of the fact that the objective function
is continuous in (M1, . . . ,Mk−1) and F andM are compact sets. For Program (2), note that
no solution can have R>Mk−1 . . .M1ej ≥ ‖R‖∞ for any j, as Mk−1 . . .M1ej is a probability
distribution. Hence, we can rewrite the program as

max
v,M1,...,Mk−1

v

s.t. 0 ≤ v ≤ ‖R‖∞,
R>Mk−1 . . .M1ej ≥ v ∀j ∈ [w],
(M1, . . . ,Mk−1) ∈ F

(
B,M0

1 , . . . ,M
0
k−1
)
.

This is an optimization problem with a continuous objective function over a compact set, so
it admits a solution. A similar argument follows for Program (3).

3 Algorithmic Preliminaries

Our paper uses a dynamic programming approach for solving programs (1) and (2). (Our
solution to program (3) is a game-theoretic reduction to our solution to program (2)). Our
algorithms will search over possible input distributions in D starting from layer Lt for all
t ∈ {2, . . . , k − 2}, and over possible ways of splitting the total budget B and allocating
budget Bt to the transition from layer Lt to layer Lt+1, for all t ∈ [k − 1]. To do so, we will
need to discretize both the budget space [0, B] and the probability space D.

3.1 Cost of Discretizing the Budget

To discretize the budget space, we define B(ε) = {kε, ∀k ∈ N} to be the set of numbers
on the real line that are multiples of ε. We consider the following discretized version of
Program 1:

ITCS 2021
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OPT ε
SW = max

M1,...,Mk−1
R>Mk−1 . . .M1D1

s.t. c(Mt,M
0
t ) ≤ Bt ∀t ∈ [k − 1]

Bt ∈ B(ε) ∀t ∈ [k − 1],
k−1∑
t=1

Bt ≤ B

Mt(i, j) = M0
t (i, j) ∀(i, j) ∈ Emal

t , Mt ∈M ∀t (4)

Program 2 needs an analogous modification. (We do not need to explicitly consider
Program (3), since our solution for this one will be a reduction to our solution to Program (2).)

We show that this discretization does not affect the optimal value of our problems by
much:

B Claim 4. There exists a feasible solution
(
Mε

1 , . . . ,M
ε
k−1
)
to Program (4) (resp. for the

analogous modification of Program ) with objective value at least OPTSW − (k − 1)ε ‖R‖∞
(resp. OPTMM − (k − 1)ε ‖R‖∞).

We provide a brief proof sketch below, and defer the full proof to the full version [1].

Proof Sketch. We prove this result by constructing transition matrices Mε
t that use roughly

ε budget less than M∗t . We show that we can do so so as to only lose welfare of the order of ε
in each of the k− 1 layer transitions we consider, and that this loss composes additively. C

I Definition 5. Let K ⊆ [0, 1]w. We call a subset S of K an ε-net for K with respect to the
`1-norm if and only if for every D ∈ K, there exists D′ ∈ S such that

‖D −D′‖1 ≤ ε.

B Claim 6 (ε-nets in `1-distance for D). Take ε > 0. There exists an ε-net D(ε) of D with
respect to the `1-norm that has size

( 1
ε

)w.

This is a standard proof, which can be found in the full version of this paper [1].

4 Social Welfare Maximization

We want to solve the following optimization problem:

max
M1,...,Mk−1

R>Mk−1 . . .M1D1

s.t.
k−1∑
t=1

c
(
Mt,M

0
t

)
≤ B,

Mt ∈M ∀t ∈ [k − 1], (5)

4.1 A Dynamic Programming Algorithm for Social Welfare
Maximization

In this section, we describe a dynamic programming algorithm for approximately solving the
problem above on long skinny networks. The algorithm will run in polynomial time when the
width w of the network is small; its running time is polynomial in the depth k of the network,
but exponential in the width w. The formal description can be found in the full version. Our
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algorithm works backwards, starting from the final transition matrix from layer Lk−1 to Lk.
It builds up the solutions to sub-problems parameterized by three parameters – a layer t, a
starting distribution over the vertices in layer t, and a budget B≥t that can be used at layers
≥ t. For each sub-problem, it computes an approximately welfare-optimal solution. Once all
of these sub-problems have been solved, the optimal solution to the original problem can be
read off from the “sub-problem” in which t = 1, the starting distribution is the distribution
on initial positions, and B≥1 = B. Here is the informal description of the algorithm:
1. For t going backwards from k − 1 to 1, the algorithm does the following exploration

over budget splits and probability distributions Dt, Dt+1 ∈ D(ε) (an ε-net for the w-
dimensional simplex in `1 norm) on Lt:
a. The algorithm explores all discretized splits of a budget B≥t to be used for layers t

to k − 1 into a budget Bt to expend on layer t and a budget B≥t+1 to expend on
the remaining layers t+ 1 to k − 1, as well as all choices of target output probability
distribution Dt+1 ∈ D(ε) on layer Lt+1 and the starting probability distribution
Dt ∈ D(ε). Informally, we can think of these “target” and “initial” probability
distributions as guesses for what the distribution on vertices in layer t+ 1 and layer t
look like in the optimal solution. Recall that for each Dt+1 and B≥t+1, our algorithm
has already computed a near-optimal solution for a smaller sub-problem, which we
will utilize in the next step.

b. The algorithm then finds a transition matrix from Lt to Lk that maximizes welfare
when the starting distribution on layer t is Dt and the remaining transition matrices
are fixed as in the solution to the corresponding sub-problem. Although the overall
welfare-maximization problem is non-convex, this sub-problem can be solved as a linear
program (Program 6) because all transition matrices except for one have been fixed as
the solution to our sub-problem.

c. Finally, the algorithm picks and stores the recovered transition matrices from layer Lt

to Lk that yield the highest reward, among all the transition matrices recovered from
step 1b.

We remark that while (for notational simplicity) our algorithm is written as if all layers
have size exactly w, it can easily be extended to the case in which all layers have size at
most w.

We briefly note why Program (6) is a linear program. The objective is linear because
only the matrix Mt represents variables. Thus we simply need to verify that the constraint
on the cost is linear.

I Definition 7. We say that a transition matrix Mt ∈M is feasible with respect to a budget
split B≥t, B≥t+1 if and only if

c
(
Mt,M

0
t

)
≤ B≥t+1 −B≥t.

and Mt(i, j) = M0
t (i, j) for every non-malleable edge (i,j).

Note that saying that Mt feasible with respect to B≥t, B≥t+1 is equivalent to saying that
Mt is a feasible solution to Program (6) with parameters B≥t, B≥t+1, Dt, Dt+1 for any
Dt, Dt+1 ∈ D(ε). The constraint c

(
Mt,M

0
t

)
≤ B≥t+1 − B≥t can be equivalently replaced

by 2w2 + 1 linear constraints. To do so, we introduce w2 variables - a1, a2, · · · aw2 . The
constraint can then be rewritten in the form

∑w2

i=1 |fi| ≤ B≥t+1 − B≥t, where each fi is a
linear combination of the variables. We can thus express the budget constraint of Program 6
by the following set of linear constraints:
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Algorithm 1 Dynamic Program for (Approximate) Social Welfare Maximization.

Input: Input distribution D1, reward vector R, initial transition matrices
M0

1 , . . . ,M
0
k−1, budget B, discretization parameter ε.

Output: Transition M(Bε, D0
1) from L1 to Lk.

Initialization: Let B≥k = 0, M(B≥k, Dk) = I, Bε = max{x ∈ B(ε) : x ≤ B}.
for layer t = k − 1, . . . , 1 do

for all distributions Dt ∈ D(ε) if t 6= 1 (Dt = D0
1 if t = 1) and budgets

B≥t ∈ B(ε) with B≥t ≤ B do
for all distributions Dt+1 ∈ D(ε) and budgets B≥t+1 ≤ B≥t such that
B≥t+1 ∈ B(ε) do

Solve linear program

Mt(B≥t, B≥t+1, Dt, Dt+1) = arg max
Mt

R>M(B≥t+1, Dt+1)MtDt

s.t. c
(
Mt, M0

t

)
≤ B≥t −B≥t+1,

Mt(i, j) = M0
t (i, j) ∀(i, j) ∈ Emal

t

Mt ∈M (6)

end
Pick B≥t+1, Dt+1 leading to the highest objective value in Program 6, and set
M(B≥t, Dt) = M(B≥t+1, Dt+1)Mt(B≥t, B≥t+1, Dt, Dt+1).

end
end
Return M(Bε, D1).

1. fi ≤ ai ∀i ∈ [w2]
2. −fi ≤ ai ∀i ∈ [w2]
3.
∑w2

i=1 ai ≤ B≥t+1 −B≥t.
Thus, Program 6 can be written as a linear program with the number of constraints and
variables being polynomial in w.

4.2 Running Time and Social Welfare Guarantees
We provide the running time and social welfare guarantees of Algorithm 8 below.

I Theorem 8. Algorithm 1 instantiated with discretization parameter ε yields a solu-
tion achieving social welfare at least OPT − 3(k − 1)ε‖R‖∞, and has running time
O
(
kB

ε

( 1
ε

)w2

f(w)
)
, where f(w) is any upper-bound on the running time for solving linear

Program 6, which is always polynomial in w.

This immediately yields the following corollary:

I Corollary 9. Algorithm 1 with discretization parameter ε′ = ε
3(k−1) yields social welfare

at least OPT − ε‖R‖∞, and has running time O
(
k2 B

ε

(
k
ε

)w2

f(w)
)
, where f(w) is any

upper-bound on the running time for solving linear Program 6, which is always polynomial
in w.

We observe that this running time is polynomial in k (the depth of the network) and
1/ε (the inverse additive error tolerance), but exponential in w (the width of the network).
Hence our algorithm runs in polynomial time for the class of constant width networks.
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I Remark 10. We note that our additive near-optimality guarantee can be translated into a
multiplicative guarantee. In the case where all edges are malleable, this follows from noting
that given budget B, OPT ≥ B

2w‖R‖∞: this can be reached by investing the totality of
the budget into transitioning every node in the second-to-last layer to the highest reward
node in the last layer, with probability B

2w for each such node. Taking ε = δ · B
6(k−1)w for

some constant δ < 1 gives a multiplicative approximation to the optimal social welfare with
approximation factor 1− δ.

For the case in which non-malleable edges are allowed, a lower bound on OPT is given
by OPT ≥W0. Taking ε = δ · W0

3(k−1)‖R‖∞ yields a multiplicative 1− δ approximation still.

Proof of Theorem 8

The proof of Theorem 8 relies on the following lemma, and its corollary:

I Lemma 11. Let M ∈ Rw×w be a left stochastic matrix, and let D,D′ ∈ D be probability
distributions.

‖MD −MD′‖1 ≤ ‖D −D′‖1.

Proof. Note that

‖M(D −D′)‖1 =
w∑

i=1
|(M(D −D′)) (i)| =

w∑
i=1

∣∣∣∣∣∣
w∑

j=1
M(i, j)(D(j)−D′(j))

∣∣∣∣∣∣
≤

w∑
i=1

w∑
j=1
|M(i, j)(D(j)−D′(j))|

=
w∑

j=1
|D(j)−D′(j)|

w∑
i=1
|M(i, j)|

=
w∑

j=1
|D(j)−D′(j)|

= ‖D −D′‖1,

where the inequality follows from the triangle inequality, and the second-to-last equality from
the fact that

w∑
i=1
|M(i, j)| =

w∑
i=1

M(i, j) = 1 ∀j ∈ [w]

as M is a left stochastic matrix. J

I Corollary 12. Let R ∈ Rw be a real vector and D,D′ ∈ D be probability distributions such
that ‖D −D′‖1 ≤ ε, and M ∈ Rw×w a left stochastic matrix. Then

R>MD ≥ R>MD′ − ‖R‖∞ · ε.

Proof of Corollary 12. ‖R>M(D′ − D)‖1 ≤ ‖R‖∞‖M(D′ − D)‖1 ≤ ‖R‖∞‖D′ − D‖1 ≤
‖R‖∞ · ε , where the first step follows from Holder’s inequality. J

We are now ready to prove Theorem 8:
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Proof of Theorem 8. Let us denote by Bε
1, . . . , B

ε
k−1 a split of the budget for the discretized

problem with Bε
≥t = Bε

t +. . .+Bε
k−1. LetMε

1 , . . . ,M
ε
k−1 a set of transition matrices achieving

welfare R>Mε
k−1 . . .M

ε
1D

0
1 ≥ OPT ε , OPT − (k− 1)ε ‖R‖∞ that is feasible with respect to

budget split Bε
1, . . . , B

ε
k−1. Note that such a budget split and matrices exist by Claim 4. Let

Dε
t the probability distribution on layer t defined by these transition matrices, i.e.

Dε
t = Mε

t−1 . . .M
ε
1D

0
1.

To prove the result, we will show by induction that for all B≥t ≥ Bε
≥t, and for Dt ∈ D(ε)

such that ‖Dt −Dε
t ‖1 ≤ ε,

R>M(B≥t, Dt)Dt ≥ OPT ε − 2(k − t)ε‖R‖∞.

This will directly imply that as Bε is one of the possible values of B≥1,

R>M(Bε, D1)D1 ≥ OPT ε − 2(k − 1)ε ‖R‖∞ .

Combined with Claim 4 that states OPTε ≥ OPT − (k− 1)ε ‖R‖∞, we will obtain the result.
Let us now provide our inductive proof. First, consider the transition from layer Lk−1 to

layer Lk. Note that

OPT ε ≤ R>Mε
k−1 . . .M

ε
1D

0
1 = R>Mε

k−1D
ε
k−1.

Let Dk−1 ∈ D(ε) be such that ‖Dk−1 −Dε
k−1‖ ≤ ε. Note then that by Corollary 12,

R>Mε
k−1Dk−1 ≥ R>Mε

k−1D
ε
k−1 − ε‖R‖∞.

Further, Mε
k−1 is feasible for Program (6) with respect to B≥k−1, B≥k = 0, given B≥k−1 ≥

Bε
≥k−1. As such, for B≥k−1 ≥ Bε

≥k−1, we have that

R>M(B≥k−1, Dk−1)Dk−1 ≥ R>Mε
k−1Dk−1,

and in turn

R>M(B≥k−1, Dk−1)Dk−1 ≥ OPT ε − ε‖R‖∞.

Now, suppose the induction hypothesis holds at layer t+ 1. I.e., for all B≥t+1 ≥ Bε
≥t+1,

for Dt+1 ∈ D(ε) such that ‖Dt+1 −Dε
t+1‖1 ≤ ε,

R>M(B≥t+1, Dt+1)Dt+1 ≥ OPT ε − 2(k − t− 1)ε‖R‖∞.

For any B≥t ≥ Bε
≥t, note that one can set B≥t+1 = Bε

≥t+1 and Bt ≥ Bε
t ; hence, Mε

t

is feasible for Program (6) with respect to Bt ≥ Bε
t , B

ε
≥t+1. Since ‖Dt − Dε

t ‖1 ≤ ε and
‖Dt+1 −Mε

t D
ε
t ‖1 ≤ ε, we have that by Corollary 12,

R>M(Bε
≥t+1, Dt+1)Mε

t Dt ≥ R>M(Bε
≥t+1, Dt+1)Mε

t D
ε
t − ε‖R‖∞

≥ R>M(Bε
≥t+1, Dt+1)Dt+1 − 2ε‖R‖∞.

Using the induction hypothesis, we obtain that R>M(Bε
≥t+1, Dt+1)Mε

t Dt ≥ OPT ε − 2(k −
t)ε‖R‖∞. In particular, we get

R>M(B≥t, Dt)Dt ≥ OPT ε − 2(k − t)ε‖R‖∞,

which concludes the proof of the social welfare guarantee. For the running time, we note that
at each time step t, we solve one instance of Program 6 for each of the (at most) B

ε possible
budget splits of B≥t and for each of the

( 1
ε

)w (by Claim 6) probability distributions in D(ε)
in layer Lt and layer Lt+1; i.e., for each t, the algorithm solves O

(
B
ε

( 1
ε

)w2)
optimization

programs. Then, the algorithm finds the solution of all of these programs with the best
objective value, which can be done in time linear in the number of such solutions, i.e.
O
(

B
ε

( 1
ε

)w2)
. This is repeated for k − 1 values of t. J
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5 (Ex-post) Maximin Value Maximization

Although social welfare maximization is a natural objective, it is well-known that it can
be “unfair” in the sense that it explicitly prioritizes the welfare of larger populations (here
represented as initial positions that have larger probability mass) over smaller populations.
We can alternately evaluate a solution according to the welfare of the least-well-off population
(here represented by the initial position with the smallest expected value) and ask to optimize
that objective. We show how to optimize this objective in this section, when one demands a
deterministic solution.

5.1 A Dynamic Programming Algorithm for Computing an Ex-post
Maximin Allocation

In this subsection, we adapt the dynamic programming approach in Section 4.1 to give an
approximation algorithm for the problem of maximizing the minimum expected reward over
all initial positions. Recall that D, the probability simplex, denotes the set of all possible
probability distributions on a layer. Intuitively, our algorithm for maximizing social welfare
kept track of a single probability distribution in each subproblem: the overall probability
of arriving at each vertex in the layer over both the randomness of an individual’s initial
position, and the randomness of the transition matrix. In order to optimize the minimum
expected value over all initial positions, we will need to keep track of more state. At every
layer Lt, we will keep track of the probability of reaching each vertex in that layer from
each initial position in the starting layer. So, we will now keep track of collections of w
probability distributions in Dw, one for each starting position. We call the elements of Dw

population-wise distributions.
We introduce a discretization A(ε) of Dw, as follows: A(ε) , (D(ε))w, where D(ε) denotes

a ε-net of D (of size
( 1

ε

)w). Given a population-wise probability distribution At ∈ A(ε) at
layer t, we write Aj

t for the probability distribution corresponding to population j. The
algorithm works as follows, just as before, running backwards from the final layer to the first
layer. We describe the algorithm below informally, a formal presentation may be found in
the full version [1].

5.1.1 Algorithm
1. For t going backwards from k − 1 to 1, the algorithm does the following, for every

population-wise distribution At ∈ A(ε) on Lt:
a. The algorithm explores all splits of the budget B≥t for layers t to k into a budget Bt

for the transition from Lt to Lt+1 and a budget B≥t+1 for Lt+1 to Lk, as well as all
choices of output population-wise probability distributions At+1 ∈ A(ε) on layer Lt+1.

b. The algorithm then finds a near-optimal transition matrix from Lt to Lk for every
budget decomposition, by using the previously computed near-optimal solution for
layers Lt+1 to Lk, and solving a program similar to Program 6. The program maximizes
the minimum reward obtained from any initial position, assuming the population-wise
distribution of individuals at layer Lt is given by At.

c. Finally, the algorithm picks and stores the best recovered transition matrices from layer
Lt to Lk that yield the highest reward, among all the transition matrices recovered
from step 1b.

The input population-wise probability distribution A1 ∈ Dw on the first layer is defined in
the following manner, Aj

1 := ej (the j-th basis vector in the usual orthonormal basis of Rw)
for all j ∈ [w].
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Note that the Program in step 1b can be written as a linear program of size polynomial
in w, using the same method that was employed to write Program (6) as a linear program.

5.2 Running Time and Ex-Post Maximin Value Guarantees
Remember that we let OPTMM denote the maximin value value of the given network. The
running time and accuracy guarantees of the described Algorithm are provided below:

I Theorem 13. The Algorithm described in Section 5.1.1 with discretization parameter
ε yields maximin value at least OPTMM − 3(k − 1)ε‖R‖∞, and has running time
O
(
kB

ε

( 1
ε

)w4

g(w)
)
, where g(w) is any upper-bound on the running time for solving the

linear Program in Step 1b, which is always polynomial in w.

This immediately implies the following corollary:

I Corollary 14. The algorithm described in 5.1.1 with discretization parameter ε′ = ε
3(k−1)

yields maximin value at least OPTMM − ε‖R‖∞, and has running time O
(
k2 B

ε

(
k
ε

)w4

g(w)
)
,

where g(w) is a polynomial upper-bound on the running time of the linear Program in Step 1b.

The proof of Theorem 13 is almost identical to that of Theorem 8. We provide a complete
proof in the full version [1].

6 (Ex-ante) Maximin Value Maximization

In this section, we consider the problem of optimizing the ex-ante minimum expected value
over all initial positions: in other words, we allow ourselves to find a distribution over
solutions, and take expectations over the randomness of this distribution, solving:

max
∆M

min
j∈[w]

R>EM∼∆M [Mk−1 . . .M1] ej

s.t. ∆M ∈ ∆F
(
B,M0

1 , . . . ,M
0
k−1
)

(7)

We show in the full version [1] that this can yield strictly higher utility than optimizing
the ex-post minimum value. We then give an algorithm for solving the ex-ante problem by
exhibiting a game theoretic reduction to the ex-post problem.

6.1 Solving the Ex-ante Maximization Problem Using Algorithm 1
Because Program 3 is a max min problem over a polytope, we can view it as a zero-sum game,
and the solution that we want corresponds to a maxmin equilibrium strategy of this game. As
first shown by Freund and Schapire[11], it is possible to compute an approximate equilibrium
of a zero-sum game if we can implement a no-regret learning algorithm for one of the players,
and an approximate best-response algorithm for the other player: if we simply simulate
repeated play of the game between a no-regret player and a best-response player, then the
empirical average of player actions in this simulation converges to the Nash equilibrium of
the game.

This forms the basis of our algorithm. One player plays the “multiplicative weights”
algorithm over the initial positions in layer 1 of the graph. This induces at every round a
distribution over initial positions. The best response problem, which must be solved by the
other player, corresponds to solving a welfare-maximization problem given the distribution
over initial positions represented by the multiplicative weights distribution. Fortunately, this
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is exactly the problem that we have already given a dynamic programming solution for. The
solution in the end corresponds to the uniform distribution over the solutions computed
by the best-response player over the course of the dynamics. The algorithm is described
formally in the full version [1].

Algorithm 2 2-Player Dynamics for the Ex-Ante Maximin Problem.

Input: Time horizon T , reward vector R on layer Lk, initial transition matrices
M0

1 , . . . ,M
0
k−1, budget B, discretization parameter ε.

Output: M1, . . . ,MT ∈ F
(
B,M0

1 , . . . ,M
0
k−1
)
.

Initialization: The no-regret player picks D1 =
( 1

w , . . . ,
1
w

)
∈ D, the uniform

distribution over [w].
for t = 1, . . . , T do

The no-regret player plays distribution Dt ∈ D.
The best-response player chooses M t ∈ F

(
B,M0

1 , . . . ,M
0
k−1
)
such that

R>M t
k−1 . . .M

t
1D

t ≥ max
M∈F

R>Mk−1 . . .M1D
t − ε ‖R‖∞ ,

using Algorithm 1.
The no-regret player observes ut

i = R>Mt
k−1...Mt

1ei

‖R‖∞ for all i ∈ [w], and picks Dt+1

via multiplicative weight update, as follows:

Dt+1(i) = Dt(i)βut
i∑w

j=1D
t(j)βut

j

∀i ∈ [w],

with β = 1
1+
√

2 ln w
T

∈ [0, 1).

end

I Lemma 15. Let T > 0, ∆M be the probability distribution that picks (M1, . . . ,Mk−1) ∈
F(B,M0

1 , . . . ,M
0
k ) with probability

1
T

T∑
t=1

1
{

(M1, . . . ,Mk−1) =
(
M t

1, . . . ,M
t
k−1
)}
,

where M1, . . . ,MT are the outputs of Algorithm 2. Then ∆M
(
ε+

√
2 ln w

T + ln w
T

)
‖R‖∞-

approximately optimizes Program 3.

The proof of Lemma 15 follows from interpreting Program 3 as zero-sum game, noting
that the best response problem for the maximization player corresponds to the welfare-
maximization problem for which we have an efficient algorithm, and then applying the
no-regret dynamic analysis from Freund and Schapire [11]. The details are provided in the
full version [1].

7 Price of Fairness

In this section, we compute lower bounds on a notion of “price of fairness”, and we show
these lower bounds are tight when restricting attention to pipelines whose edges are all
malleable. Specifically, we compare the optimal welfare achievable with the welfare that is
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achievable if we instead use our budget to maximize the minimum value over initial positions
– i.e. if we solve the maximin problem. We focus on the ex-post maximin problem – i.e. we
prove our bounds with respect to deterministic solutions. We note that there may be many
different maximin optimal solutions that differ in their overall welfare, and so we consider
two variants of the price of fairness in our setting – comparing with both the maximum
welfare consistent with a maximin optimal solution, and the minimum welfare consistent
with a maximin optimal solution.

Let OPTSW the optimal value of Program (1) (the optimal social welfare). Let Sf be
the set of solutions to Program (2) (the deterministic maximin problem). Further, define

W (M1, . . . ,Mk−1) , R>Mk−1 . . .M1D
0
1

to be the social welfare achieved by transition matrices M1, . . . ,Mk−1, and

W+
fair , max

(M1,...,Mk−1)∈Sf
W (M1, . . . ,Mk−1),

W−fair , min
(M1,...,Mk−1)∈Sf

W (M1, . . . ,Mk−1)

to be the maximum and minimum social welfare respectively that are consistent with
maximin optimal solutions. We define two variants of “the price of fairness” in our setting
as: P+

f , OP TSW

W +
fair

≥ 1, and

P−f , OP TSW

W−
fair

≥ 1.

Note that P+
f ≤ P

−
f always, as P+

f compares the optimal social welfare with the solution
of Program 2 with highest social welfare , while P−f considers the solution that has the lowest
social welfare. We provide matching lower bounds on P+

f and upper bounds on P−f . This, in
turn, provides tight bounds on the price of fairness with respect to any choice of maximin
solution.

7.1 Lower Bounds on P +
f

Our lower bounds are based on the following construction:

I Example 16. Consider a network with only two layers, L1 and L2, such that L1
has w nodes and L2 has 2 nodes. Suppose the starting distribution is given by D0

1 =
(1− (w − 1)ε, ε, . . . , ε)> for ε > 0 small enough, the reward vector is given by R = (1, 0)>,
and the initial transition matrix M0

1 is given by

M0
1 =

(
0 . . . 0
1 . . . 1

)
.

I.e., in the initial transition matrix, every starting node transitions to the destination node
that has reward 0, and the welfare of the initial network is 0. We assume all edges are
malleable.

I Theorem 17. For all w ∈ N, for any δ > 0, there exists a network with k = 2 with price
of fairness

Pf ≥


w − δ if 0 < B ≤ 2
2w
B − δ if 2 < B ≤ 2w

1 if B ≥ 2w
.

The proof follows from solving the social welfare maximization problem and the maximin
value problem on Example 16. The complete proof is provided in the full version [1].
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7.2 Upper Bounds on P −
f

Importantly, in this section, we restrict ourselves to pipelines such that all edges are malleable.
In this case, we show upper bounds that tightly match the lower bounds of Section 7.1.

Our upper bounds will make use of the following claim, which bounds the maximum
social welfare that can be achieved under budget B.

I Lemma 18.

OPTSW ≤ ‖R‖∞ and OPTSW ≤W 0 + B

2 ‖R‖∞ ,

where W 0 = R>M0
k−1 . . .M

0
1D

0
1 is the initial welfare.

The proof of this lemma is straightforward and is deferred to the full version [1].We will
also need lower bounds on the social welfare achieved by any optimal solution to the maximin
program. The first lower bound is a function of B and w, but is independent of W 0.

I Lemma 19. When all edges are malleable, for any
(
Mf

1 , . . . ,M
f
k−1

)
∈ Sf ,

W
(
Mf

1 , . . . ,M
f
k−1

)
≥ min

(
1, B2w

)
‖R‖∞ .

The proof of Lemma 19 is deferred to the full version [1]. The second lower bound we need
shows that the social welfare achieved by a solution to Program (2) is lower-bounded by the
initial social welfare W 0 = R>M0

k−1 . . .M
0
1D

0
1.

I Lemma 20. When all edges are malleable, for any
(
Mf

1 , . . . ,M
f
k−1

)
∈ Sf ,

W
(
Mf

1 , . . . ,M
f
k−1

)
≥W 0.

We defer the full proof of Lemma 20 to the full version [1]. We can now use Lemmas 18, 19
and 20 to derive nearly tight upper bounds on the price of fairness with respect to the worst
maximin solution:

I Theorem 21. For every instance of the problem in which edges are malleable, we have that

P−f ≤


w + 1 if 0 < B ≤ 2
2w
B if 2 < B ≤ 2w

1 if B ≥ 2w
.

Proof. We divide the proof in three cases:
1. B ≥ 2w. By Lemma 19, it must be the case that any optimal solution to Program (2)

has welfare at least min
(
1, B

2w

)
‖R‖∞ = ‖R‖∞. It is then immediately the case that

OPTSW = ‖R‖∞ by Lemma 18 and Pf = 1.
2. 2 < B ≤ 2w. By Lemma 18, we have OPTSW ≤ ‖R‖∞. Further, by Lemma 19, we have

that any solution to Program (2) has welfare at least B
2w ‖R‖∞. This immediately yields

the result.
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3. 0 < B ≤ 2. By Lemma 18, we have OPTSW ≤W 0 + B
2 ‖R‖∞. By Lemmas 19 and 20, we

have that the social welfare of any maximin solution is at least W 0 and at least B
2w ‖R‖∞.

Therefore, the price of fairness is upper-bounded on the one hand by

P−f ≤
W 0 + B

2 ‖R‖∞
W 0 = 1 +

B
2 ‖R‖∞
W 0

and on the other hand by

P−f ≤
W 0 + B

2 ‖R‖∞
B
2w ‖R‖∞

= w + W 0

B
2w ‖R‖∞

.

When W 0 ≥ B
2w ‖R‖∞, the first bound gives P−f ≤ 1 +

B
2 ‖R‖∞
B

2w ‖R‖∞
= w + 1,

and when W 0 ≤ B
2w ‖R‖∞, the second bound yields P−f ≤ w +

B
2w ‖R‖∞
B

2w ‖R‖∞
= w + 1,

which concludes the proof. J

8 Hardness of Approximation

In this section, we show that the problem of finding the ex-post maximin value of a pipeline
intervention problem instance within an approximation factor of 2 is NP-hard in the general
case, where the width w of the network is not bounded. More specifically, we show that no
algorithm that has a time bound polynomial in w, k and B can give a 2-approximation to the
maximin value unless P = NP . This hardness result holds for k as small as 17. We remark
that our result and proof can be immediately extended to show hardness of C-approximation,
for any constant C, for an appropriate choice of constant depth k.

We show this hardness result via a reduction from a gap version of the vertex cover
problem. The result of Dinur and Safra [8] shows that it is NP-hard to approximate the
minimum vertex cover by a factor smaller than 1.306. In particular, their result shows that
the following gap version of vertex cover is NP-hard: given (G, κ), we wish to either know if
the graph G has a vertex cover of size κ, or has no vertex cover smaller than size 1.306κ.

We provide a description of out reduction below, and defer a formal statement along with
a complete proof to the full version [1].

8.1 The Reduction
Our reduction works as follows: we construct a pipeline intervention instance of constant
width (17 layers) from the given graph. The first layer has a node corresponding to each edge
(u, v) of the original graph, and is connected by edges to nodes corresponding to vertices u
and v on the second layer. We set up the instance so that positive probability mass is only
ever added to a set of edge disjoint paths, where each path corresponds to a vertex in the
original graph. These paths are shown by the dark, solid lines in Figure 1. The main idea
behind the reduction is the following - by observing how allocations finding the maximin
value split the budget over these edge disjoint paths, we can find out which vertices would
form a small vertex cover of the original graph.

Formally, let the given graph G = (V, E) we reduce from have n vertices (|V| = n) and m
edges (|E| = m). We construct of a pipeline intervention problem instance I ′ with k+2 layers
and width w, where k = 15 and w is polynomial in n. The instance I ′ has an associated
budget B(κ, ε) = 2kκε where ε < 1

2 . For the sake of clarity, we refer to the set of vertices V
in the vertex cover instance as “vertices” and the vertices in the instance I ′ as “nodes”. A
complete description of instance I ′ is as follows:
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Figure 1 Constructed Instance of the Pipeline Intervention problem.

1. The first layer, L1, has exactly m nodes, with each edge (u, v) in graph G having a unique
corresponding node of the same label in layer L1.

2. The second layer has exactly n nodes, with each vertex v in graph G, having a unique
corresponding node in layer L2 with label v2.

3. The next k − 1 layers are of the following form - layer Li, for i = 3 to k + 1, has n+ 1
nodes. The first n nodes have labels from the set {vi}v∈V , i..e, each vertex v in the
original graph G has a corresponding node vi in layer Li. The last node is indexed by
xi and exists to capture the “leftover” outward probability from the nodes {vi−1}v∈V in
layer Li−1.

4. The final layer Lk+2 has two reward nodes - y, of reward 1 and z, of reward 0.
We now describe the initial transition matrices.
1. From layer L1 to layer L2: for every node (u, v) in layer L1, the outgoing probability is

equally split between edges to nodes u1 and v1 in layer L2, i.e., edges ((u, v), u1) and
((u, v), v1) each have probability 1

2 .
2. From layer Li to layer Li+1 for i = 2 to k: For all vertices v ∈ V (i.e., the original graph),

the corresponding edge (vi, vi+1) (in our construction) has probability ε. The remaining
outgoing probability out of node vi goes to the leakage node xi+1. We call edges of
the form (vi, xi+1) “leakage” edges. For i ≥ 3, the edge (xi, xi+1) has all the outward
probability, i.e., 1, from node xi.

3. From layer Lk+1 to layer Lk+2: each node in layer Lk+1 is connected to z, the zero reward
node, with probability 1.

We let Pv be the path going through nodes v2, v3 · · · vk+1, y in our construction. We will
refer to {Pv}v∈V as vertex paths. Let E′ be the set of edges found on paths {Pv}v∈V . Let
E′′ contain of all the “leakage” edges in the instance I ′ ,i.e., edges of the form (vi, xi+1) as
well as all edges of the form (vk+1, z). We stipulate, as part of the description of the instance,
that E′ ∪ E′′ is the set of malleable edges in I ′ and that the probability mass on any other
edge cannot be changed. This completes the description of instance I ′.
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