Understanding the Relative Strength of QBF

CDCL Solvers and QBF Resolution
Olaf Beyersdorff

Friedrich Schiller Universitat Jena, Germany
olaf.beyersdorff@uni-jena.de

Benjamin B6hm
Friedrich Schiller Universitiat Jena, Germany
benjamin.boehm@uni-jena.de

—— Abstract

QBF solvers implementing the QCDCL paradigm are powerful algorithms that successfully tackle
many computationally complex applications. However, our theoretical understanding of the strength
and limitations of these QCDCL solvers is very limited.

In this paper we suggest to formally model QCDCL solvers as proof systems. We define different
policies that can be used for decision heuristics and unit propagation and give rise to a number of
sound and complete QBF proof systems (and hence new QCDCL algorithms). With respect to the
standard policies used in practical QCDCL solving, we show that the corresponding QCDCL proof
system is incomparable (via exponential separations) to Q-resolution, the classical QBF resolution
system used in the literature. This is in stark contrast to the propositional setting where CDCL and
resolution are known to be p-equivalent.

This raises the question what formulas are hard for standard QCDCL, since Q-resolution lower
bounds do not necessarily apply to QCDCL as we show here. In answer to this question we prove
several lower bounds for QCDCL, including exponential lower bounds for a large class of random
QBFs.

We also introduce a strengthening of the decision heuristic used in classical QCDCL, which does
not necessarily decide variables in order of the prefix, but still allows to learn asserting clauses. We
show that with this decision policy, QCDCL can be exponentially faster on some formulas.

We further exhibit a QCDCL proof system that is p-equivalent to Q-resolution. In comparison
to classical QCDCL, this new QCDCL version adapts both decision and unit propagation policies.

2012 ACM Subject Classification Theory of computation — Proof complexity
Keywords and phrases CDCL, QBF, QCDCL, proof complexity, resolution, Q-resolution
Digital Object Identifier 10.4230/LIPIcs.ITCS.2021.12

Related Version This is an extended abstract. A full version of the paper is available at https:
//eccc.weizmann.ac.il/report/2020/053/.

Funding Olaf Beyersdorff: John Templeton Foundation (grant no. 60842), Carl Zeiss Foundation.

1 Introduction

SAT solving has revolutionised the way we perceive and approach computationally complex
problems. While traditionally, NP-hard problems were considered computationally intract-
able, today SAT solvers routinely and successfully solve instances of NP-hard problems
from virtually all application domains, and in particular problem instances of industrial
relevance [53]. Starting with the classic DPLL algorithm from the 1960s [25, 26], there
have been a number of milestones in the evolution of SAT solving, but clearly one of the
breakthrough achievements was the introduction of clause learning in the late 1990s, leading
to the paradigm of conflict-driven clause learning (CDCL) [43,55], the predominant technique

© Olaf Beyersdorff and Benjamin Béhm;

oY licensed under Creative Commons License CC-BY
12th Innovations in Theoretical Computer Science Conference (ITCS 2021).
Editor: James R. Lee; Article No. 12; pp. 12:1-12:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2870-1648
mailto:olaf.beyersdorff@uni-jena.de
https://orcid.org/0000-0002-6098-5572
mailto:benjamin.boehm@uni-jena.de
https://doi.org/10.4230/LIPIcs.ITCS.2021.12
https://eccc.weizmann.ac.il/report/2020/053/
https://eccc.weizmann.ac.il/report/2020/053/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2

Understanding the Relative Strength of QBF CDCL Solvers and QBF Resolution

of modern SAT solving. CDCL ingeniously combines a number of crucial ingredients, among
them variable decision heuristics, unit propagation, clause learning from conflicts, and restarts
(cf. [42] for an overview).

Inspired by the success of SAT solving, many researchers have concentrated on the task
to extend the reach of these technologies to computationally even more challenging settings
with quantified Boolean formulas (QBF) receiving key attention. As a PSPACE-complete
problem, the satisfiability problem for QBFs encompasses all problems from the polynomial
hierarchy and allows to encode many problems far more succinctly than in propositional
logic (cf. [51] for applications).

One of the main techniques in QBF solving is the propositional CDCL technique, lifted
to QBF in the form of QCDCL [56]. However, solving QBFs presents additional challenges
as the quantifier type of variables (existential and universal) needs to be taken into account
as well as the variable dependencies stemming from the quantifier prefix.! This particularly
impacts the variable selection heuristics and details of the unit propagation within QCDCL.
In addition to QCDCL there are further QBF solving techniques, exploiting QBF features
absent in SAT, such as expanding universal variables in expansion solving [36] and dependency
schemes in dependency-aware solving [40,47,52]. Compared to SAT solving, QBF solving is
still at an earlier stage. However, QBF solving has seen huge improvements during the past
15 years [49], and there are problems of practical relevance where QBF solvers outperform
SAT solvers [28].

The enormous success of SAT and QBF solving of course raises theoretical questions of
utmost importance: why are these solvers so successful and what are their limitations? The
main approach through understanding these questions comes from proof complexity [20,46].
The central problem in proof complexity is to determine the size of the smallest proof for
a given formula in a specified proof system, typically defined through a set of axioms and
inference rules. Traces of runs of SAT/QBF solvers on unsatisfiable instances yield proofs of
unsatisfiability, whereby each solver implicitly defines a proof system. In particular, SAT
solvers implementing the DPLL and CDCL paradigms are based on resolution [46], which is
arguably the most studied proof system in proof complexity.

Propositional resolution operates on clauses and uses the resolution rule

cv xO s DD vV (1)
as its only inference rule to derive a new clause C' V D from the two parent clauses C'V x
and D V z.2 There is a host of lower bounds and lower bound techniques available for
propositional resolution (cf. [5,38,50] for surveys).

While it is relatively easy to see that the classic DPLL branching algorithm [25,26] exactly
corresponds to tree-like resolution (where resolution derivations are in form of a tree), the
relation between CDCL and resolution is far more complex. On the one hand, resolution
proofs can be generated efficiently from traces of CDCL runs on unsatisfiable formulas [4], a
crucial observation being that learned clauses are derivable by resolution [4,43]. The opposite
simulation is considerably more difficult, with a series of works [1,4,33,48] culminating in
the result that CDCL can efficiently simulate arbitrary resolution proofs, i.e., resolution and
CDCL are equivalent. This directly implies that all known lower bounds for proof size in
resolution translate into lower bounds for CDCL running time. In addition, other measures
such as proof space model memory requirements of SAT solvers, thereby implying lower
bounds on memory consumption, in particular when considering time-space tradeoffs [45].

L In this paper we focus on prenex QBFs with a CNF matrix.

2 We denote such a resolution inference with pivot = by (C' V x) B (D V z) throughout the paper.

O. Beyersdorff and B. Bohm

Exciting as this equivalence between CDCL and resolution is from a theoretical point
of view, it has to be interpreted with care. Proof systems are inherently non-deterministic
procedures, while CDCL algorithms are largely deterministic (some randomisation might
occasionally be used). To overcome this discrepancy, the simulations of resolution by
CDCL [4,48] use arbitrary decision heuristics and perform excessive restarts, both of which
diverge from practical CDCL policies. Indeed, in very recent work [54] it was shown
that CDCL with practical decision heuristics such as VSIDS [55] is exponentially weaker

than resolution, and similar results have been obtained for further decision heuristics [44].

Regarding restarts there is intense research aiming to determine the power of CDCL without
restarts from a proof complexity perspective (cf. [19,21]).

On the QBF level, this naturally raises the question what proof system corresponds to
QCDCL. As in propositional proof complexity, QBF resolution systems take a prominent
place in the QBF proof system landscape, with the basic and historically first Q-resolution
system [37] receiving key attention. Q-resolution is a refutational system that proves the
falsity of fully quantified prenex QBFs with a CNF matrix (QCNFs). The system allows to
use the propositional resolution rule (1) under the conditions that the pivot x is an existential
variable and the resolvent C'V D is non-tautological. In addition, Q-resolution uses a universal
reduction rule

CVu
c (2)

where u is a universal literal that in the quantifier prefix is quantified right of all variables
in C, i.e., none of the literals in C' depends on u. For Q-resolution we have a number of lower
bounds [3,8,12] as well as lower bound techniques, some of them lifted from propositional proof
complexity [13,15], but more interestingly some of them genuine to the QBF domain [8,10]
that unveil deep connections between proof size and circuit complexity [11,16], unparalleled
in the propositional domain.

Unlike in the relation between SAT and CDCL, it is has been open whether QCDCL runs
can be efficiently translated into Q-resolution. Instead, QCDCL runs can be simulated by
the stronger QBF resolution system of long-distance Q-resolution [2,56]. In fact, this system
originates from solving, where it was noted that clauses learned from QCDCL conflicts
can be derived in long-distance Q-resolution [56]. Long-distance Q-resolution implements a
more liberal use of the resolution rule (1), which allows to derive certain tautologies. In
general, allowing to derive tautologies with (1) is unsound. However, the tautologies allowed
in long-distance Q-resolution do not present problems for soundness and are exactly those
clauses needed when learning clauses in QCDCL. Hence long-distance Q-resolution simulates
QCDCL [2,56]. However, it is known that long-distance Q-resolution allows exponentially
shorter proofs than Q-resolution for some QBFs [8,9,27].

We also remark that there are further QBF resolution systems (cf. [18] for an overview) and
even stronger QBF calculi [11,14,23,34]. Some of these correspond to other solving approaches
in QBF, such as the system VExp+Res [36] that captures expansion QBF solving [6].

In summary, it is fair to say that the relations between QCDCL solving and QBF
resolution (either Q-resolution or long-distance Q-resolution) are currently not well understood.
In particular, an analogue of the equivalence of CDCL SAT solving and propositional
resolution [1,4,48] is currently absent in the QBF domain. This brings us to the topic of this
paper. However, rather than giving an overview of our results in this introduction, we will
describe our results in Sections 3 to 7, after stating some preliminaries in Section 2. Most
proofs will be omitted in this extended abstract due to space constraints.

12:3

ITCS 2021

12:4

Understanding the Relative Strength of QBF CDCL Solvers and QBF Resolution

2 Preliminaries

2.1 Propositional and quantified formulas

We will consider propositional and quantified formulas over a countable set of variables.
Variables and negations of variables are called literals, i.e., for a variable x we can form two
literals: z and its negation Z. Sometimes we write 2! instead of z and x° instead of z. We
denote the corresponding variable as var(x) := var(z) := .

A clause is a disjunction £1 V ...V £,, of some literals ¢1,...,¢,,. We will sometimes view
a clause as a set of literals, i.e., we will use the notation ¢ € C if the literal ¢ is one of the
literals in the clause C. If m = 1, we will often write (¢1) to emphasize the difference between
literals and clauses. The empty clause is the clause consisting of zero literals, denoted by
(L). For reasons of consistency it is helpful to define an empty literal, denoted by L in our
case. As a consequence, we have L € (L), although we define the empty clause as a clause
with zero literals.

The negation of a clause C = ¥¢1 V...V £, is called a term, i.e., terms are conjunctions
b A ... A Ly, of literals. Similarly terms can be considered as sets of literals. A CNF
(conjunctive normal form) is a conjunction of clauses.

Let C = ¢1 V...V {y,. We define var(C) := {var(¢1),...,var({;,)}. For a CNF ¢ =
Ci A...AC, we define var(¢) := [J;_, var(C;).

A clause or a set C of literals is called tautological, if there is a variable x with z,z € C.

An assignment o of a set of variables X is a non-tautological set of literals, such that for
all x € X there is £ € o with var(¢) = z. The restriction of a clause C' by an assignment o is
defined as

T (true) if CNo #0,
Cly = V¢ otherwise.
tec
{go
For example, let C =tV zV yV z and define the assignment o := {Z, z, w}. Then we have
C|, =tV y. Note that the set of assigned variables might differ from var(C). In our case, o
is an assignment of the set X := {z, z, w}.

One can interpret o as an operator that sets all literals from o to the Boolean constant 1.
We denote the set of assignments of X by (X). A CNF ¢ entails another CNF ¢ if each
assignment that satisfies ¢ also satisfies ¢ (denoted by ¢ E v).

A @QBF (quantified Boolean formula) ® = Q - ¢ is a propositional formula ¢ (also called
matriz) together with a prefiz Q. A prefix Q121Q225 . .. Qrxy consists of variables x1, ...,z
and quantifiers @1, ...,Qx € {3,V}. We obtain an equivalent formula if we unite adjacent
quantifiers of the same type. Therefore we can always assume the prefix to be in the form

Q=Q1X1Q5X;...QLX,

with nonempty sets of variables X7, ..., X and quantifiers @7, ..., Q% € {3,V} such that
Q; # Qi for i € [s — 1]. For a variable z in Q we denote the quantifier level with respect
to Q by lv(z) = lve(x) = i, if © € X;. Variables from ® are called existential, if the
corresponding quantifier is 3, and wuniversal if the quantifier is V. We denote the set of
existential variables from ® by varg(®), and the set of universal variables by vary(®).

A QBF with CNF matrix is called a QCNF. We require that all clauses from a matrix
of a QCNF are non-tautological, otherwise we just delete these clauses. This requirement
is crucial for the correctness of the derivation rules we define later for QBF proof systems.
Since we will only discuss refutational proof systems, we will always assume that all QCNFs
we consider are false.

O. Beyersdorff and B. Bohm

A QBF can be interpreted as a game between two players: The 3-player and the V-player.
These players have to assign the respective variables one by one along the quantifier order
from left to right. The V-player wins the game if and only if the matrix of the QBF gets
falsified by this assignment. It is well known that for every false QBF & = Q - ¢ there exists
a winning strategy for the V-player.

2.2 Q-resolution and long-distance Q-resolution

Let €7 and Cf be two clauses of a QCNF @ and let £ be an existential literal with var(f) &
var(C1) Uvar(Cs). The resolvent of Cy V £ and Cs V £ over £ is defined as

(CLV)5 (Co v E) = Cy V O

Let C :=u1V.. Vu,Vr1 V... Vr,Vu1 V... Vv, be a clause from ®, where uq, ..., U, V1, ..., Us
are universal literals, x1,...,x, are existential literals and
{v e C: visuniversal and lv(v) > lv(z;) for all i € [n]} = {v1,...,vs}.

Then we can perform a reduction step and obtain
red(C):==u1 V...Vup VI V...V x,.

For a CNF ¢ = {C4,...,Cy} we define red(¢) := {red(C:),...,red(C)}.

Q-resolution [37] is a refutational proof system for false QCNFs. A Q-resolution proof 7 of
a clause C from a QCNF ® = 9 - ¢ is a sequence of clauses 7 = (1, ...,C,, with C,, = C.
Each C; has to be derived by one of the following three rules:

Azxiom: C; € ¢;

Resolution: C; = C} 51 C}, for some J,k <iand x € varg(®), and C; is non-tautological;

Reduction: C; =red(C};) for some j < i.

Note that none of our axioms are tautological by definition. A refutation of a QCNF @ is
a proof of the empty clause (L).

For the simulating QCDCL runs, long-distance Q-resolution was introduced in [2,56]. This
extension of Q-resolution allows to derive universal tautologies under certain conditions. As
in Q-resolution, there are three rules by which a clause C; can be derived. The axiom and
reduction rules are identical to Q-resolution, but the resolution rule is changed to

Resolution (long-distance): C; = C; 1 Cy, for some j, k < i and z € vars(®). The

resolvent C; is allowed to contain a tautology w V u if w is a universal variable. If

u € var(C;) Nvar(Cy), then we additionally require lv(u) > lv(z).

Note that a long-distance Q-resolution proof without tautologies is just a Q-resolution
proof.

Creating universal tautologies without any assumptions is unsound in general. For
example, consider the true QCNF ¥ :=Vu3z - (uV Z) A (u V x). There is a winning strategy
for the 3-player by assigning x equal to u. Hence, the step red ((u V) B (uVv x)) =(1)is
unsound since we resolved over an existential literal = with vy (2) > lvg(u) while generating
u 'V u.

12:5

ITCS 2021

12:6

Understanding the Relative Strength of QBF CDCL Solvers and QBF Resolution

3 Our framework: versions of QCDCL as formal proof systems

We now start to describe the framework for our results. Technically, this paper hinges on the
formalisation of QCDCL solving as precisely defined proof systems, which can subsequently
be analysed from a proof-complexity perspective. For this we need to formally define central
ingredients of QCDCL solving, including trails, decision policies, unit propagation, and
clause learning (cf. [18] for background). For decisions and unit propagation we will consider
different policies: those corresponding to QCDCL solving in practice and new policies, yet
unexplored. We will show that the corresponding QCDCL proof systems are all sound and
complete.
We start with defining trails, decisions, unit propagations and our collection of policies.

» Definition 1 (trails and policies for decision/unit propagation). Let ® = Q- ¢ be a QCNF
in n variables. A trail T for ® is a sequence of literals (or L) of variables from ® with
specific properties. We distinguish two types of literals in T : decision literals, that can be
both existential and universal, and propagated literals, that are either existential or 1. Most
of the time we write a trail T as

T= (p(O,l)v -+ P(0,90)5 d17p(1,1)a < P,g1)i e ;dl‘ap(’r71)7 s 7p('r797.))-

We typically denote decision literals by d; and propagated literals by p(; ;). To emphasize
decisions, we will set decision literals in the trail in boldface and put a semicolon at the
end of each decision level. The literal p; ;) represents the §" propagated literal at the it
decision level, determined by the corresponding decision d;. The decision level O is the only
level without a decision literal. Similarly as with clauses, we can view T as a set of literals
or as an assignment and use the notation x € T if the literal x is contained in T .

Let s € {0,...,r} andt € {0,...,gs}. The subtrail of T at time (s,t) is the trail
consisting of all literals from the leftmost literal in T up to (and including) psy), if t # 0, or
ds otherwise. We denote this subtrail by T|[s,t]. The subtrail T|[0,0] is the empty trail.

We impose some further requirements for T to be a trail for a QCNF ®. The decisions
have to be non-tautological and non-repeating, i.e., we require var(d;) # var(dy) for each
i#£ke{0,...,r}. If L €T, then this must be the last (rightmost) literal in T. In this case
we say that T has run into a conflict.

We define four policies, concerning the decision of literals, from which we can choose
exactly one at a time:

LEV-ORD - For each d; € T we have lv(d;) < lw(x) for all x € var(¢p)\var(Ti — 1, g;-1]).

This means that we have to decide the variables along the quantification order.

ASS-ORD - We can decide a literal dy, if it is existential, or if it is universal and lv(dy) <

... < lv(dk).

ASS-R-ORD - We can only decide an existential variable x next, if and only if we already

decided all universal variables uw with lv(u) < lv(x) before.

ANY-ORD - We can choose any remaining literal as the next decision.

We define two more policies concerning unit propagation. Again, we have to choose
exactly one:

RED - For each p(; jy € T there has to be a clause C € ¢ such that red(C|r; j—11) = (Pg,j))-

NO-RED - For each p(; jy € T there has to be a clause C € ¢ with C|ry; -1 = (P@i5))-

O. Beyersdorff and B. Bohm

These clauses C as described in the unit-propagation policies are called antecedent clauses
and will be denoted by anter(p(; j)) = C. There could be more than one such suitable clause,
in which case we will just choose one of them arbitrarily. The antecedent clauses clearly
depend on the unit propagation policy we use.

The size of a trail T is measured by |T| (i.e., the cardinality of T as a set). Because each
trail can at most contain all variables, we have |T| € O(n).

We remark that QCDCL as used in practice employs the policies LEV-ORD and RED, and
the decision policy ANY-ORD originates from CDCL.

The policies RED and NO-RED determine the notion of unit clauses, which are important
for unit propagation.

» Definition 2 (unit clauses). Let C' be a clause. In the policy RED, we call C' @ unit clause
if red(C) = (x) for an existential literal x or x = L. Otherwise, for NO-RED, we call C' a
unit clause if C' = (x) for an existential literal x or x = L.

Note that (u) is not a unit clause under the policy NO-RED for a universal literal .

In (Q)CDCL, whenever a trail 7 runs into a conflict, i.e., a clause C from ® is falsified,
we perform conflict analysis in the form of clause learning. This results in a clause D that
follows from ® and describes a reason for the conflict. Such conflict clauses are obtained
by performing resolution (for CDCL) and long-distance Q-resolution (for QCDCL), starting
from the conflict clause C' and resolving along the propagated variables in 7 in reverse order
(skipping resolution steps when the pivot is missing).

» Definition 3 (learnable clauses). Let ® = Q- ¢ be a QCNF and let

T = (p(O,l)v -+ P(0,90)3 dlvp(l,l)a - P,g1)r s drap(r,l)v e vp(r,gr))

be a trail with pe.g.y = L that follows policies P € {LEV-ORD, ASS-ORD, ASS-R-ORD,
ANY-ORD} and R € {RED,NO-RED}. We call a clause learnable from T if it appears
in the sequence

ET = (C(T,gr)7 ey C(T71), ey C(l,gl)’ ey C(1,1), C(O,go), ey C(O,l))
where C,. g, := red(ante(p(r,g,))),
P(ij) >
Cip = red (C(i’j+1) < red(ante(p(i’j)))) if Piig) € Clijt)s
J Clien) otherwise
forie{0,...,r}, j €lgi—1], and

P(i,g;)

red (C(i+1,1) > red(ante(p(i’gi)))) if Dirgs) € Clit1,1)5

Cliv1,1) otherwise

Clig:) =

forie{0,...,r—1}.

Note that clause learning works independently from the used policy. Even if we choose the
policy NO-RED, we might have to make reduction steps in this process. After the construction
of each trail 7 we will choose to learn exactly one clause from L5. The actual choice
represents a kind of nondeterminism in the learning process.

Next we formalise natural trails, where we are not allowed to skip unit propagations.

12:7

ITCS 2021

12:8

Understanding the Relative Strength of QBF CDCL Solvers and QBF Resolution

» Definition 4 (natural trails). We call a trail T natural, if the following holds: For any
time (s,t), s € {0,...,r} and t € [gs], if {D1,...,Dn} are all clauses from the corresponding
QCNF that become unit clauses (£1),...,(¢r) under the assignment T[s,t — 1], then the next
propagated literal has to be one of the £; together with D; as antecedent clause. If one of the
l; is L, then we have to choose this ;. ILe., conflicts have higher priority.

The next definition presents the main framework for this paper. Having defined trails in
a general sense, we specify how a trail can be generated during a QCDCL run. We introduce
the notion of QCDCL-based proofs consisting of three components: the naturally created
trails, the clauses learned from each trail, and the proof of each learned clause.

» Definition 5 (QCDCL proof systems). Let ® = Q - ¢ be a QCNF in n variables. We call a

triple of sequences

t=(T1y s Tm)s (Crye oo, Cr),y (T1y ooy)

=:0(¢) =:A(¢) =:p(¢)

a QCDCLg proof from ® of a clause C' for P € {LEV-ORD, ASS-ORD, ASS-R-ORD, ANY-ORD}
and R € {RED, NO-RED}, if for all i € [m] the trail T; follows the policies P and R and
uses the QCNF Q - (¢ U{C1,...,Ci_1}), where Cj € L7, is a clause learnable from T; and
Cym = C. Each m; is the derivation of the clause C; from Q- (¢ U{C4,...,C;_1}) as defined
recursively in Definition 3. We will denote (T1,...,Tm) by 0(¢), (C1,...,Cn) by A(t) and

(m1,...,7m) by p(¢). Note that all these trails need to run into a conflict in order to start
clause learning. If C' = (L) we call v a refutation.
We also require that Ty is natural and for each i € {2,...,m} there exist indices (s,t)
such that the following holds:
Tils,t] = Ti—1[s, t].
For each subtrail T;[a,b] with T;[s,t] C T;la,b] and L & T;[a,b] let Dq,..., Dy, be all the
clauses in pU{C4,...,C;—1} such that under the assignment T;[a,] these clauses get unit
(under the policy R) with corresponding literals {1, ..., L. Then we have to propagate one

of these literals next, i.e., {; € T;la,b+ 1] for some j € [h], and take the corresponding
clause D; as antecedent.

In the situation above, if L € {{1,...,4y}, then L € T;[a,b+ 1]. Le., we have to run into
a conflict as soon as we find one.

We call this process backtracking to T;[s,t]. Backtracking to T;[0,0] is called restarting.

The size of a proof v is measured by [¢| := 377 |T;| € O(mn).

The corresponding (refutational) proof system for false QCNFs is denoted QCDCL;. We
will refer to these systems as QCDCL proof systems. A trail T that follows the policies P
and R is a QCDCLY, trail.

Note that the first trail 77 of each proof ¢ is always natural.

Combining the two policies RED and NO-RED for unit propagation and the four policies
ANY-ORD, LEV-ORD, ASS-ORD, and ASS-R-ORD, we obtain six QCDCL systems. These are
depicted in Figure 1 (we are not interested in the systems QCDCLRS O and QCDCLRSR-O%
since ASS-ORD and ASS-R-ORD would not be beneficial in these combinations). As mentioned,
combining LEV-ORD with RED yields the standard QCDCL system, and we will also write
QCDCL for QCDCLEE: ™. The other five variants are introduced here for the first time.

The decision policies ASS-ORD and ASS-R-ORD might seem slightly unintuitive at first
sight. We show that these policies guarantee the learning of so-called asserting clauses
(Definition 6) in association with NO-RED resp. RED.

O. Beyersdorff and B. Bohm

[long-distance Q-resolution]

[Q-resolution]
[acocfer (
[QCDCLASO™] [

QCDCLRM-O%]

QCDCLgg RO]

qepcLpe |

[QCDCLEY:-O% — QCDCL]

Figure 1 Overview of the defined QCDCL proof systems. Lines denote p-simulations and follow
by definition and Theorem 8.
A proof system P p-simulates a proof system S if each S proof can be efficiently transformed into a
P proof of the same formula [24]. If the systems p-simulate each other, they are p-equivalent.

It will turn out that 7y, ..., 7, in Definition 5 are in fact valid long-distance Q-resolution
proofs. To prove this, we will argue that in proof systems with NO-RED we cannot derive
any tautologies, while with RED we can at most derive universal tautologies.

Next we introduce asserting learning schemes. These are commonly used in practice
since they guarantee a kind of progression in a run. These learning schemes are important to
prevent a trail from backtracking too often.

» Definition 6 (asserting clauses and asserting learning schemes). Let ® := Q- ¢ be a QCNF
in any of the defined QCDCL systems. Let

T = (P©,1)s > P0,90): d1sPA,1)5 - - - P(1,91)3 - - 3 Des D(r1)s - 5 Prygr) = L)

be a trail which follows the corresponding policies and L1 the sequence of learnable clauses.
A nonempty clause C' € L is called an asserting clause, if it becomes unit after backtracking,
i.e., there exists a time (s,t) with s € {0,...,7 — 1} and t € [gs] such that Cly(sy is a unit
clause under the corresponding system.

Let T be the set of trails T for ® such that L € T. A learning scheme £ is a map with
domain T, which maps each T to a clause £(T) € L.

A learning scheme & is called asserting if it maps to asserting clauses or (L) as long as
L7 contains such.

It is not guaranteed that we will always find asserting clauses for trails. For example
consider the false QCNF Vudz - (uVz) A (uVZ)A(uVx)A(uVz) and the trail T = (x;u, L)
under the system QCDCLANR®®. We can only learn the clause (@ V Z), which is non-unit
under 710, 0] = (.

However, we can always learn asserting clauses when using one of the policies ASS-ORD
or ASS-R-ORD, which is the reason why we introduced these policies.

» Lemma 7.
Let T be a trail under the policies ASS-ORD and NO-RED. If (1) & Ly, then there exists
an asserting clause D € L.
Let T be a trail under the policies ASS-R-ORD and RED. If (L) & L, then there exists
an asserting clause D € L.

12:9

ITCS 2021

12:10

Understanding the Relative Strength of QBF CDCL Solvers and QBF Resolution

We establish that all systems depicted in Figure 1 are sound and complete.

» Theorem 8. All defined QCDCL proof systems are sound and complete QBF proof systems.
In particular, all QCDCL calculi are p-simulated by long-distance Q-resolution and the proof
systems with NO-RED are even p-simulated by Q-resolution.

Soundness is shown via efficiently constructing long-distance Q-resolution proofs from QCDCL
proofs. Crucially, when using the unit-propagation policy NO-RED, then no long-distance
steps are actually needed and we just construct Q-resolution proofs. The resulting simulations
are depicted in Figure 1. Simulations between the QCDCL calculi follow by definition. We
remark already here that this simulation order simplifies further due to our results in the
following sections (cf. Figure 2).

Proving that QCDCL decisions do not necessarily need to follow the order of quantification
(as is done in practical QCDCL with policy LEV-ORD), might be a somewhat surprising
discovery. It seems to us that inside the QBF community there is the wide-spread belief that
following the quantification order in decisions is needed for soundness (cf. e.g. [30,41,56]).
While this is true for QDPLL [22,30],% it is actually not needed in QCDCL: the quantification
order is immaterial for the decisions as long as the quantification order is correctly taken
into account when deriving learned clauses (Theorem 8).5 Hence our theoretical work also
opens the door towards new solving approaches in practice (cf. the discussion in Section 8).

From a theoretical point of view, formalising the QCDCL ingredients into proof systems
enables a precise proof-theoretic analysis of the QCDCL systems and their comparison to
Q-resolution. This will be the underlying feature of our results in the following two sections,
showing the incomparability of Q-resolution and QCDCL (Section 4) and the lower bounds
for QCDCL (Section 5). We will use it further to obtain a version of QCDCL that is even
p-equivalent to Q-resolution (Section 6).

4 QCDCL and Q-resolution are incomparable

This section establishes that QCDCL and Q-resolution are incomparable by exponential
separations, i.e., there exist QBFs that are easy for QCDCL, but require exponential-size
Q-resolution refutations, and vice versa. As explained above, this is in stark contrast to the
propositional setting, where CDCL and resolution are equivalent.

» Theorem 9. The systems Q-resolution and QCDCL are incomparable.

Proving Theorem 9 requires two families of QBFs. For the first we take the parity
formulas.

» Definition 10 ([12]). The QCNF QParity,, consists of the prefic z; ... x,V2z3ta .. . L, and
the matriz

.1’1\/1‘2\/1?2, 1 VxoVie, T1 VoV i, i‘l\/.fg\/fg,
xX; \/ti,1 \/t_l', xX; \/t_ifl \/ti, (Ei \/ti,1 \/lfi7 i’i \/{i,1 \/{Z‘,
taVz, tha VZ

forie{2,...,n}.

In fact we thought so too, prior to this paper.

The fact that the earlier QDPLL algorithm [22] needs to obey the quantifier order might have been the
reason why this policy was adopted in QCDCL as well [56].

We note, however, that the approach of dependency learning [47] starts with an empty set of dependency
conditions (cf. [7,52] for background on dependencies) and incrementally learns new dependencies. As
decisions only need to respect the learned dependencies, they can initially be made out of order [47].

O. Beyersdorff and B. Bohm

The formulas assert that there is an input z1,...,z, such that the parity @ie[n] x; is
not equal to z. Since z is universally quantified, this means that @ie[n] x; should be neither
0 nor 1, an obvious contradiction. The parity computation is encoded by using variables t;
for the prefix sums jep) ©5- Using strategy extraction for Q-resolution [2,12] and the result
that the parity function is hard for bounded-depth circuits [29,32], one can show that the
QParity,, formulas require exponential-size Q-resolution refutations [12].

Here we show that QParity,, is easy for QCDCL.

» Proposition 11. QParity, has polynomial-size proofs in QCDCL.

This requires to construct specific trails and clauses learned from these trails that together
comprise a short QCDCL proof of the formulas.
For the opposite separation we consider the following QBFs:

» Definition 12. Let PHP" ! be the set of clauses for the pigeonhole principle with n holes
and n + 1 pigeons using variables x1,...,zs,. Let Trapdoor,, be the QUNF with the prefix
Fyi,...,ys, YwIt, xy, ..., x5, Yu and the matriz

PHP" " (21, ..., 2y,)

—~
B~ W
N

yi Vi Vu, y; VI;Vu
wuVwVt VoVt g VwVt g VoV

—
ot
=

fori=1,...,s,.

We show that these formulas Trapdoor,, require exponential-size QCDCL refutations. In
QCDCL, variables have to be decided in order of the quantifier prefix, hence each QCDCL trail
for Trapdoor,, has to start with the y variables, which by unit propagation (used together
with universal reduction) propagates x; = y; for ¢ € [s,] by clauses (4). Therefore the trail
runs into a conflict on the PHP clauses (3). This happens repeatedly, forcing QCDCL to
produce a resolution refutation of the clauses (3), which by the propositional resolution lower
bound by Haken [31] has to be of exponential size.

Lev-OrD

» Proposition 13. The QCNF's Trapdoor,, require exponential-size QCDCLg., =" refutations.

On the other hand, it is easy to obtain short Q-resolution refutations of Trapdoor, by
just using the clauses (5).

» Proposition 14. The QCNFs Trapdoor, have constant-size Q-resolution refutations.

This establishes the separation of QCDCL and Q-resolution. We remark that in earlier
work, Janota [35] showed that QCDCL with a specific asserting learning scheme requires large

running time on some class of QBFs, whereas the same formulas are easy for Q-resolution.

Of course, this raises the question whether another learning scheme might produce short
QCDCL runs. In contrast, our Theorem 9 rules out any simulation of Q-resolution by QCDCL
(or vice versa), regardless of the learning scheme used.

5 Lower bounds for QCDCL

The incomparability of Q-resolution and QCDCL raises the immediate question of what
formulas are hard for QCDCL. Previous research has largely concentrated on showing lower
bounds for Q-resolution (e.g. [8,12,37]). However, by our results from the last section, these
lower bounds do not necessarily apply to QCDCL, and prior to this paper no dedicated lower
bounds for QCDCL (with arbitrary learning schemes) were known.

12:11

ITCS 2021

12:12

Understanding the Relative Strength of QBF CDCL Solvers and QBF Resolution

Here we show that several formulas from the QBF literature, including the equality
formulas and a large class of random QBFs [8] are indeed hard for QCDCL.
We start by defining a proof system in which we can analyse hardness in classical QCDCL.

» Definition 15. We call a long-distance Q-resolution proof m of a clause C' from a QCNF &
a long-distance QCDCL resolution proof of C' from ®, if there exists a QCDCLEYO% proof ¢

of C from ® such that the long-distance Q-resolution proof 7 is obtained by pasting together
the sub-proofs (71, ..., Tm) from ¢ (cf. Definition 5).

The system long-distance QCDCL resolution identifies a fragment of long-distance Q-
resolution, which collects all long-distance Q-resolution proofs that appear in QCDCLE:O
derivations. By definition therefore, long-distance QCDCL resolution and QCDCLEO® are
p-equivalent proof systems.

Our next goal is to identify a whole class of QCNFs that witness the hardness of QCDCL.

The equality formulas from [8] are arguably one of the simplest families of QBFs that are
interesting from a proof complexity perspective. The formula Equality, is defined as the

QCNF
i=1

These formulas are of the type X4, i.e., they have two quantifier alternations starting with 3.
Inspired by this construction, [8] considered a class of randomly generated QCNFs, again
of type 5.

» Definition 16 ([8]). For each 1 < i <mn let C’i(l), ce C’i(cn) be clauses picked uniformly at
random from the set of clauses containing 1 literal from the set U; = {ul(.l), e ,ugm)} and
2 literals from X; = {xl(-l), ... ,a:l(.")}. Define the randomly generated QCNF Q(n,m,c) as:

Q(n,ym,c) = 3X1,... . X VU1, ..., UpFtr,. o tn - \ \NEVCI)VA (V. V).

i=1j=1

Suitably choosing the parameters ¢ and m, we obtain false QBFs with high probability.

Both the equality and the random formulas require exponential-size proofs in Q-resolution
(the random formulas whp) [8]. This is shown in [8] via the size-cost-capacity technique,
a semantically grounded QBF lower-bound technique that infers Q-resolution hardness for
formulas ®,, (and in fact hardness for even stronger systems) from lower bounds for the size
of countermodels for ®,,.

It is not clear how to directly apply this technique to QCDCL. Instead, we identify a
property, which we term the XT'-property, that we can use to lift hardness from Q-resolution
to QCDCL.

» Definition 17. Let ® be a QCNF of the form IXVUIT - ¢ with sets of variables X =
{z1,...,xa}, U={us,...,;up} and T = {t1,...,t.}.

We call a clause C in the variables of ®

T-clause, if var(C)NX =0, var(C)NU =0 and var(C)NT # 0,

XT-clause, if var(C)NX # 0, var(C)NU =0 and var(C)NT # B,

XUT-clause, if var(C)NX # 0, var(C)NU # O and var(C)NT # (.

We say that © fulfils the XT-property if ¢ contains no XT-clauses as well as no unit
T-clauses and there do not exist two T-clauses C1,Cs € ¢ that are resolvable.

O. Beyersdorff and B. Bohm

Intuitively, this says that in a ¥4 formula ® with quantifier prefix of the form IXYU3T with
blocks of variables X, U, T, there is no direct connection between the X and T variables,
i.e., ® does not contain clauses with X and T variables, but no U variables.
We can then prove that QCDCL runs on formulas with this X T-property can be efficiently
transformed into Q-resolution refutations, not only into long-distance Q-resolution refutations.
We first show that under the XT-property we cannot derive any XT-clauses.

» Lemma 18. It is not possible to derive XT-clauses by long-distance Q-resolution from a
QCNF @ that fulfils the XT-property.

Proof. Assume that we can derive an X7T-clause C by a long-distance Q-resolution proof
7 from ®. Let D be the first XT-clause in 7 (D might be equal to C'). Since ® contains
no XT-clauses as axioms, the last step before D has to be a resolution or reduction. A
reduction is not possible since the reduced universal literal would have been blocked by a
T-literal in D.

Therefore D is the resolvent of two preceding clauses Dy and Ds. If we resolve over an
X-literal, then one of these clauses has to be an XT-clause. The same is true for a resolution
over a T-literal. However, this contradicts the fact that D was the first XT-clause in 7. <«

The next lemma shows that under the XT-property it is also not possible to derive any
non-axiomatic 7T-clauses.

» Lemma 19. Let ® be a QCNF with the XT -property and let C be a T-clause derived by
long-distance Q-resolution from ®. Then C is an axiom from .

We will show later that we need to resolve two XUT-clauses over an X-literal in order
to introduce tautologies. Now we prove that this is not possible in long-distance QCDCL
resolution under the X T-property.

» Lemma 20. [t is not possible to resolve two XUT-clauses over an X-literal in a long-
distance QCDCL resolution proof of a QCNF ® that fulfils the X T-property.

Proof. Assume there is a long-distance QCDCL resolution proof 7 that contains such a
resolution step over an X-literal . Let C; and Cs be the corresponding X UT-clauses. One
of these clauses, say C, had to be an antecedent clause in a QCDCLRESO™ trail T that
implied x. Since our decisions in the trail are level-ordered and we did not skip any decisions,
either x was propagated at decision level 0, or at a decision level in which we decided another
X-literal.

Because C; is an XUT-clause, we can find a T-literal t € C;. The literal ¢ must have
been propagated before we implied = (¢ could not have been decided because the decisions
are level-ordered). That means that for the same trail we can find E := anter (). Now,
FE cannot be a unit T-clause by the XT-property and Lemma 19. Hence F must contain
further X-, U-, or T-literals. If E contains a U-literal, then we would have had to decide
this U-literal before we use E as an antecedent clause, contradicting the level-order of our
decisions. Also, this U-literal cannot be reduced since we want to imply a T-literal with the
help of E. Therefore we conclude that E contains an X-literal or a T-literal. If E contains
an X-literal, then F is an XT-clause, which is not possible by Lemma 18.

Therefore E contains at least another T-literal ¢ € E. As before, the literal ¢ was
propagated before we implied ¢ and z. We set E’ := antes (/) and argue in the same way as
with E. This process would repeat endlessly, which is a contradiction since we only have

finitely many T-variables. <

12:13

ITCS 2021

12:14

Understanding the Relative Strength of QBF CDCL Solvers and QBF Resolution

Thus for formulas with the XT-property we can lift Q-resolution lower bounds to QCDCL,
yielding the next theorem.

» Theorem 21. If ® fulfils the XT-property and requires Q-resolution refutations of size s,
then each QCDCL refutation of ® has size at least s as well.

Proof. Let 7 be a long-distance QCDCL resolution refutation of ®. We show that 7 does not
contain any tautological clause C and hence 7 is in fact a Q-resolution proof.

Assume that 7 contains some tautological clause C'. W.l.o.g. let C be the first tautological
clause in 7. Clearly, C' has to be derived by a resolution step over an X-literal. Let C; and
C5 be the parent clauses of C. Both of them contain some X-literals and some U-literals.
They also have to contain T-literals, otherwise we would reduce all U-literals (in the learning
process we reduce as soon as possible). Therefore C; and Cy are both XUT-clauses that are
resolved over an X-literal, which is not possible by Lemma 20.

Therefore such a clause C' cannot exist. Hence each long-distance QCDCL resolution
refutation of @ is even a Q-resolution refutation and the result follows. <

It is quite easy to check that both the equality formulas as well as the random formulas
above have the XT-property. Thus we obtain:

» Corollary 22.
Equality,, requires QCDCL refutations of size 2™.
Let 1 < ¢ < 2 be a constant and m < (1 — €)logyn for some constant € > 0. With
probability 1 — o(1) the random QCNF Q(n,m,c) is false and requires QCDCL refutations
of size 2927,

Our findings so far reveal an interesting picture on QCDCL hardness. Firstly, Proposition 11
and Corollary 22 imply that not all Q-resolution hardness results lift to QCDCL: the lower
bounds for equality and random formulas shown via size-cost-capacity [8] do, but the lower
bounds for parity shown via circuit complexity [12] do not.

Secondly, it is worth to compare the QCDCL hardness results for Trapdoor from the
previous section to the QCDCL hardness results shown here for equality and random formulas.
The hardness of Trapdoor lifts from propositional hardness for PHP, while the hardness of
equality and random formulas lifts from Q-resolution hardness. In fact, this can be made
formal by using a model of QBF proof systems with access to an NP oracle [17], which
allows to collapse propositional subderivations of arbitrary size into just one oracle inference
step. Hardness under the NP-oracle version of Q-resolution guarantees that the hardness
is “genuine” to QBF and not lifted from propositional resolution. We show here that this
notion of “genuine” QBF hardness, tailored towards QCDCL, also holds for the QCDCL lower
bounds for equality and the random QBFs.

» Proposition 23. The number of reduction steps in each long-distance QCDCL resolution
refutation (and also each QCDCLEY-O% refutation) of Equality,, is at least 2. The analogous
result holds for the false formulas Q(n, m,c) with 29Un°) reduction steps.

On the other hand, the parity formulas also exhibit “genuine” QBF hardness, as they
are hard in the NP-oracle version of Q-resolution [10]. Since they are easy for QCDCL
(Proposition 11), this means that not all genuine Q-resolution lower bounds lift to QCDCL.

Thirdly, hardness for QCDCL can of course also stem from hardness for long-distance
Q-resolution, since the latter system p-simulates the former. However, there are only very
few hardness results for long-distance Q-resolution known in the literature [3,12,13], hence

O. Beyersdorff and B. Bohm

our hardness results shown here should be also valuable for practitioners, in particular the
hardness results for the large class of random QCNFs. It is also worth noting that the equality
formulas are easy for long-distance Q-resolution [9], hence our results imply an exponential
separation between QCDCL and long-distance Q-resolution.

» Proposition 24. Long-distance Q-resolution is exponentially stronger than QCDCL, i.e., long-
distance Q-resolution p-simulates QCDCL and there are QCNFs that require exponential-size
proofs in QCDCL, but admit polynomial-size proofs in long-distance Q-resolution.

6 A QCDCL system that characterises Q-resolution

In one of our main results we obtain a QCDCL characterisation of Q-resolution. Of course,
given that Q-resolution and QCDCL are incomparable (Section 4), we cannot hope to achieve
such a characterisation by simply strengthening some of the QCDCL policies.® As explained
in the previous section, traditional QCDCL is using the decision policy LEV-ORD and the
unit-propagation policy RED. To obtain a QCDCL system equivalent to Q-resolution, we will
have to change both policies. We will strengthen the decision policy and replace LEV-ORD by
ANY-ORD (we could also replace it with the intermediate version ASS-ORD). In addition, we
will somewhat weaken the unit propagation policy from RED to NO-RED.”
This leads to the following characterisation of Q-resolution.

» Theorem 25. Q-resolution, QCDCLAY % and QCDCLAS O are p-equivalent proof sys-
tems.

In particular, each Q-resolution refutation @ of a QCNF in n variables can be transformed
into a QCDCLAS SR -refutation of size O(n - |x|) that uses an arbitrary asserting learning
scheme.

One part of the simulation above was already shown in Theorem 8, where we proved that
all QCDCL systems with NO-RED are p-simulated by Q-resolution. The technically most
challenging part is the reverse simulation where we need to construct QCDCLAS O™ trails

from Q-resolution proofs. The main conceptual notion we use is that of reliable clauses.

» Definition 26. Let & = Q- ¢ be a QCNF and C be a non-tautological clause. If there is a
QCDCLAS SR trail T, an existential literal £ € C and a set of literals a C C\{l} such that
« s the set of decision literals in T and € € T, then C is called unreliable with respect to ®.
Alternatively, we say that the decisions C' are blocking each other.

If C is not unreliable, we call C reliable.

Intuitively, a reliable clause C' can be used to form a QCDCLASO® trail by using all

negated literals from C' as decisions. This way we progress through the Q-resolution proof,
successively learning clauses and making all clauses C' in the Q-resolution proof unreliable
until we obtain the empty clause.

This construction bears some similarities to the simulation of Q-resolution by CDCL [48],
but poses further technical challenges due to quantification and the additional rules of
Q-resolution. In the inductive argument for Theorem 25 we therefore need to distinguish
three cases on whether C is an axiom or derived by resolution or reduction, each requiring
its own lemma (Lemmas 27, 28, and 29). For the following lemmas, let £ be an arbitrary,
but fixed asserting learning scheme.

5 Such hope might not have seemed totally implausible prior to this paper, e.g. [35] states that ‘CDCL
QBF solving appears to be quite weak compared to general Q-resolution’

7 While intuitively NO-RED might indeed appear weaker then RED (it produces fewer unit propagations),
we show in the next section that they are in fact incomparable, cf. Figure 2.

12:15

ITCS 2021

12:16

Understanding the Relative Strength of QBF CDCL Solvers and QBF Resolution

» Lemma 27. Let ® := Q- ¢ be a QCNF in n variables and C € ¢. If C is reliable with
respect to ®, there exists a QCDCLAS S -proof v with trails T, ..., Ty, from ® of some clause

E that uses the learning scheme & such that || € O(n3). If E # (L), then C is unreliable
with respect to Q- (¢ U{&(Th), ..., &(Ts)})-

» Lemma 28. Let & := Q- ¢ be a QCNF in n wvariables. Also let C1 V x be a clause
that is unreliable with respect to U := Q - with ¢ C ¢ and Cy V T unreliable with respect
to Y := Q-7 with T C ¢, such that C1 V Cs is non-tautological. Let £ be an asserting
learning scheme. If Cy V Cs is reliable with respect to ®, there exists a QCDCLf\‘,ZS_'ROE’;D—pmof L
with () =Th,..., Ty, from ® of some clause E that uses the learning scheme § such that

lt] € O(n3). If E # (L), then C1V Cy is unreliable with respect to Q- (¢pU{&(Th), ... E(Tr0) D).

» Lemma 29. Let & := Q- ¢ be a QCNF in n variables, let D := CVuy V...V u, beanon-
tautological clause with universal literals uy, ..., Uy, and red(D) = C, such that D is unreliable
with respect to a QCNF WV = Q - with ¢ C ¢. Let € be an asserting learning scheme. If C
is reliable with respect to ®, there exists a QCDCLAS Sor-proof ¢ with 6(1) = T1, ..., Ty, from
® of some clause E that uses the learning scheme & such that || € O(n3). If E # (1), then

C is unreliable with respect to Q - (¢ U{E(T1), ..., &(Ts,)})-

We also point out that in comparison to the notion of 1-empowering clauses from [48], our
argument via reliability yields somewhat better bounds on the simulation, thereby implying
a slight quantitative improvement by a factor of n in the simulation in [48]:

» Theorem 30. Let ¢ be a CNF in n variables and let m be a resolution refutation of ¢.
Then ¢ has a CDCL refutation of size O(n3|x|).

7 The simulation order of QCDCL proof systems

We can now analyse the simulation order of the defined QCDCL and QBF resolution systems,
cf. Figure 2 which almost completely determines the simulations and separations between
the systems involved (cf. Section 8 for the open cases).
We highlight the most interesting findings (in addition to the results already described).
Firstly, we show that the unit-propagation policies RED and NO-RED are incomparable
when fixing the decision policy LEV-ORD used in practical QCDCL.

» Theorem 31. The systems QCDCLAE Q™ and QCDCLES O™ are incomparable.

For the separations we use the QBFs QParity, and Trapdoor,,. For practice, this results
means that it is a priori not clear that the unit-propagation policy as used in practical
QCDCL is actually preferable to the simpler unit-propagation policy from CDCL (which
would work in QCDCL as well).

Secondly, we show that replacing the decision policy LEV-ORD in QCDCL with the more
liberal decision policy ASS-R-ORD yields exponentially shorter QCDCL runs, which we
demonstrate on the Equality,, formulas.

» Theorem 32. QCDCLASRO® s exponentially stronger than QCDCLES O

Again, this theoretical result identifies potential for improvements in practical solving (cf.
also the discussion in the concluding Section 8).

Thirdly, we recall the formulas Lon,, that were introduced by Lonsing in [39]. Originally,
these QCNFs were constructed to separate QBF solvers that differ in the implemented
dependency schemes (we do not consider these concepts here, though).

O. Beyersdorff and B. Bohm

/ strictly stronger
(p-simulation 4 exponential separation)

[LD-Q-resolution]
incomparable (exponential separations

.7 in both directions) v\'\’\'\,\,\’\’\’\’\

/ p-simulation @
(equivalence/separation open) [QCDCL/-\SS— R-OrD]

A

REeD

[Q-resolution=, QCDCLYZ X =, QCDCLY R }£>{§CDCL§;@m::QCch

QCDCLEE-OR

Theorem 9 (QParity,,, Trapdoor,,)
[8,12,27] (Equality,,, QParity, , KBKF,)
Theorem 31 (QParity, , Trapdoor,,)
Theorem 32 (Equality,,)

@EEEEE)

Proposition 34 (Lony,)

Figure 2 The simulation order of QCDCL and QBF resolution systems. The table contains
pointers to the separating formulas.

» Definition 33 (Lonsing [39]). Let Lon,, be the QCNF

Ja, b, by, ..., b, Ve, yIe,d-(aVaVe)A(aVOVb V...Vbs)A(DVYyVd)A(xVec)

Sn

A (zVE) APHP L (by, ... b)) .

It was shown in [39] that these formulas become easy to refute by choosing the standard
dependency scheme. However, Lon,, serve as witnesses for separating our systems as well.

» Proposition 34. The QCNFs Lon, require exponential-size proofs in the proof systems
QCDCLEY-O% 4nd QCDCLEY SR but have constant-size proofs in QCDCLASROR and Q-

REeDp
resolution.

8 Conclusion

In this paper we performed a formal, proof-theoretic analysis of QCDCL. In particular, we
focused on the relation of QCDCL and Q-resolution, showing both the incomparability of
practically-used QCDCL to Q-resolution as well as the equivalence of a new QCDCL version
to Q-resolution.

In addition to the theoretical contributions of this paper, we believe that our findings
will also be interesting for practitioners. Firstly, because we have shown the first rigorous
dedicated hardness results for QCDCL, not only in terms of formula families with at most
one instance per input size (as is typical in proof complexity), but also in terms of a large
family of random QBFs.

Secondly, we believe that it would be interesting to test the potential of our new QCDCL
variants for practical solving. Though we have formulated these as proof systems, it should
be fairly straightforward to incorporate our new policies into actual QCDCL implementations.

12:17

ITCS 2021

12:18

Understanding the Relative Strength of QBF CDCL Solvers and QBF Resolution

In particular, the insight that decisions do not need to follow the order of quantification in
the prefix should be a welcome discovery. Of course, when just using the policy ANY-ORD,
it is not clear that asserting clauses can always be learnt. Therefore, we suggest that for
practical implementations, the most interesting new systems should be QCDCLAS R and
QCDCLRERO® Both facilitate liberal decision policies, not necessarily following the prefix
order, while still allowing to learn asserting clauses. Since both systems are incomparable,
it is a priori not clear which one to prefer in practice. However, we would suggest that
QCDCLRERO% ghould be the more interesting system, since it uses the same unit propagation
as QCDCL, but provides an exponential strengthening of QCDCL (as shown in Theorem 32)
via the decision policy ASS-R-ORD.
We close with some open questions that are triggered by the results presented here:
Can we find an alternative formula instead of Trapdoor, for the separation between
Q-resolution and QCDCL (easy for Q-resolution, hard for QCDCL)? L.e., we are primarily
interested in formulas whose hardness does not depend on propositional resolution.

RsS-ROR 4nd long-distance Q-resolution?

Can we even find a separation between QCDCLRY "% and long-distance Q-resolution, or

are the systems possibly even equivalent?

Can we find a separation between QCDCL

—— References

1 Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algorithms with
many restarts and bounded-width resolution. J. Artif. Intell. Res., 40:353-373, 2011.

2 Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its applications.
Form. Methods Syst. Des., 41(1):45-65, 2012.

3 Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. QBF resolution systems and
their proof complexities. In Proc. International Conference on Theory and Applications of
Satisfiability Testing (SAT), pages 154-169, 2014.

4 Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and harnessing
the potential of clause learning. J. Artif. Intell. Res. (JAIR), 22:319-351, 2004. doi:10.1613/
jair.1410.

5 Paul Beame and Toniann Pitassi. Propositional proof complexity: Past, present, and future.
In G. Paun, G. Rozenberg, and A. Salomaa, editors, Current Trends in Theoretical Computer
Science: Entering the 21st Century, pages 42-70. World Scientific Publishing, 2001.

6 Olaf Beyersdorff and Joshua Blinkhorn. Lower bound techniques for QBF expansion. Theory
Comput. Syst., 64(3):400-421, 2020.

7 Olaf Beyersdorff, Joshua Blinkhorn, Leroy Chew, Renate A. Schmidt, and Martin Suda.
Reinterpreting dependency schemes: Soundness meets incompleteness in DQBF. J. Autom.
Reason., 63(3):597-623, 2019.

8 Olaf Beyersdorff, Joshua Blinkhorn, and Luke Hinde. Size, cost, and capacity: A semantic
technique for hard random QBFs. Logical Methods in Computer Science, 15(1), 2019.

9 Olaf Beyersdorff, Joshua Blinkhorn, and Meena Mahajan. Building strategies into QBF proofs.
In STACS, LIPIcs, pages 14:1-14:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2019.

10 Olaf Beyersdorff, Joshua Blinkhorn, and Meena Mahajan. Hardness characterisations and
size-width lower bounds for QBF resolution. In Proc. ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 209-223. ACM, 2020.

11 Olaf Beyersdorff, Ilario Bonacina, Leroy Chew, and Jan Pich. Frege systems for quantified
Boolean logic. J. ACM, 67(2), 2020.

12 Olaf Beyersdorff, Leroy Chew, and Mikolds Janota. New resolution-based QBF calculi and
their proof complexity. ACM Transactions on Computation Theory, 11(4):26:1-26:42, 2019.

https://doi.org/10.1613/jair.1410
https://doi.org/10.1613/jair.1410

O. Beyersdorff and B. Bohm

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. Feasible interpolation for
QBF resolution calculi. Logical Methods in Computer Science, 13, 2017.

Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. Understanding cutting
planes for QBFs. Inf. Comput., 262:141-161, 2018.

Olaf Beyersdorff, Leroy Chew, and Karteek Sreenivasaiah. A game characterisation of tree-like
Q-Resolution size. J. Comput. Syst. Sci., 104:82—-101, 2019.

Olaf Beyersdorff and Luke Hinde. Characterising tree-like Frege proofs for QBF. Inf. Comput.,
268, 2019.

Olaf Beyersdorff, Luke Hinde, and Jan Pich. Reasons for hardness in QBF proof systems.
ACM Transactions on Computation Theory, 12(2), 2020.

Olaf Beyersdorff, Mikolas Janota, Florian Lonsing, and Martina Seidl. Quantified Boolean
formulas. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook
of Satisfiability, 2nd edition, Frontiers in Artificial Intelligence and Applications. IOS press,
2021.

Maria Luisa Bonet, Sam Buss, and Jan Johannsen. Improved separations of regular resolution
from clause learning proof systems. J. Artif. Intell. Res., 49:669-703, 2014.

Samuel R. Buss. Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic,
163(7):906-917, 2012.

Samuel R. Buss, Jan Hoffmann, and Jan Johannsen. Resolution trees with lemmas: Resolution
refinements that characterize DLL algorithms with clause learning. Logical Methods in
Computer Science, 4(4), 2008. doi:10.2168/LMCS-4(4:13)2008.

Marco Cadoli, Andrea Giovanardi, and Marco Schaerf. An algorithm to evaluate quantified
Boolean formulae. In Proc. AAAI Conference on Artificial Intelligence (AAAI), pages 262-267,
1998.

Stephen A. Cook and Tsuyoshi Morioka. Quantified propositional calculus and a second-order
theory for NC'. Arch. Math. Log., 44(6):711-749, 2005.

Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36-50, 1979.

Martin Davis, George Logemann, and Donald W. Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394-397, 1962. doi:10.1145/368273.368557.

Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7:210-215, 1960.

Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-distance resolution: Proof generation
and strategy extraction in search-based QBF solving. In Proc. Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR), pages 291-308, 2013.

Peter Faymonville, Bernd Finkbeiner, Markus N. Rabe, and Leander Tentrup. Encodings
of bounded synthesis. In Proc. Tools and Algorithms for the Construction and Analysis of
Systems - 23rd International Conference (TACAS), pages 354-370, 2017.

Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13-27, 1984.

Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. Reasoning with quantified Boolean
formulas. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pages
761-780. IOS Press, 2009.

Amin Haken. The intractability of resolution. Theoretical Computer Science, 39:297-308,
1985.

Johan Hastad. Computational Limitations of Small Depth Circuits. MIT Press, Cambridge,
1987.

Philipp Hertel, Fahiem Bacchus, Toniann Pitassi, and Allen Van Gelder. Clause learning can
effectively p-simulate general propositional resolution. In Proc. AAAI Conference on Artificial
Intelligence (AAAI), pages 283-290, 2008. URL: http://www.aaai.org/Library/AAAI/2008/
aaai08-045. php.

12:19

ITCS 2021

https://doi.org/10.2168/LMCS-4(4:13)2008
https://doi.org/10.1145/368273.368557
http://www.aaai.org/Library/AAAI/2008/aaai08-045.php
http://www.aaai.org/Library/AAAI/2008/aaai08-045.php

12:20

Understanding the Relative Strength of QBF CDCL Solvers and QBF Resolution

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53
54

55

56

Marijn J. H. Heule, Martina Seidl, and Armin Biere. Solution validation and extraction for
QBF preprocessing. J. Autom. Reason., 58(1):97-125, 2017.

Mikolas Janota. On Q-resolution and CDCL QBF solving. In Proc. International Conference
on Theory and Applications of Satisfiability Testing (SAT’16), pages 402-418, 2016.

Mikolas Janota and Joao Marques-Silva. Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci., 577:25—-42, 2015.

Hans Kleine Biining, Marek Karpinski, and Andreas Flogel. Resolution for quantified Boolean
formulas. Inf. Comput., 117(1):12-18, 1995.

Jan Krajicek. Proof complezity, volume 170 of Encyclopedia of Mathematics and Its Applications.
Cambridge University Press, 2019.

Florian Lonsing. Dependency Schemes and Search-Based QBF Solving: Theory and Practice.
PhD thesis, Johannes Kepler University Linz, 2012.

Florian Lonsing and Uwe Egly. DepQBF 6.0: A search-based QBF solver beyond traditional
QCDCL. In Proc. International Conference on Automated Deduction (CADE), pages 371-384,
2017.

Florian Lonsing, Uwe Egly, and Allen Van Gelder. Efficient clause learning for quantified
Boolean formulas via QBF pseudo unit propagation. In Proc. International Conference on
Theory and Applications of Satisfiability Testing (SAT), pages 100-115, 2013.

Jodo P. Marques Silva, Inés Lynce, and Sharad Malik. Conflict-driven clause learning SAT
solvers. In Handbook of Satisfiability. IOS Press, 2009.

Jodo P. Marques Silva and Karem A. Sakallah. GRASP - a new search algorithm for satisfiability.
In ICCAD, pages 220-227, 1996. doi:10.1145/244522.244560.

Nathan Mull, Shuo Pang, and Alexander A. Razborov. On CDCL-based proof systems with
the ordered decision strategy. In Proc. International Conference on Theory and Applications
of Satisfiability Testing (SAT’20), pages 149-165. Springer, 2020.

Jakob Nordstrom. Short Proofs May Be Spacious : Understanding Space in Resolution. PhD
thesis, Royal Institute of Technology, Stockholm, Sweden, 2008.

Jakob Nordstrém. On the interplay between proof complexity and SAT solving. SIGLOG
News, 2(3):19-44, 2015.

Tomés Peitl, Friedrich Slivovsky, and Stefan Szeider. Dependency learning for QBF. J. Artif.
Intell. Res., 65:180-208, 2019.

Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell., 175(2):512-525, 2011. doi:10.1016/j.artint.2010.10.002.
Luca Pulina and Martina Seidl. The 2016 and 2017 QBF solvers evaluations (QBFEVAL’16
and QBFEVAL’17). Artif. Intell., 274:224-248, 2019.

Nathan Segerlind. The complexity of propositional proofs. Bulletin of Symbolic Logic,
13(4):417-481, 2007.

Ankit Shukla, Armin Biere, Luca Pulina, and Martina Seidl. A survey on applications of
quantified Boolean formulas. In Proc. IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), pages 78-84, 2019.

Friedrich Slivovsky and Stefan Szeider. Soundness of Q-resolution with dependency schemes.
Theoretical Computer Science, 612:83-101, 2016.

Moshe Y. Vardi. Boolean satisfiability: theory and engineering. Commun. ACM, 57(3):5, 2014.
Marc Vinyals. Hard examples for common variable decision heuristics. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), 2020.

Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik. Efficient conflict
driven learning in Boolean satisfiability solver. In Proc. IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 279-285, 2001.

Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified Boolean satisfiability
solver. In Proc. IEEE/ACM International Conference on Computer-aided Design (ICCAD),
pages 442-449, 2002.

https://doi.org/10.1145/244522.244560
https://doi.org/10.1016/j.artint.2010.10.002

	Introduction
	Preliminaries
	Propositional and quantified formulas
	Q-resolution and long-distance Q-resolution

	Our framework: versions of QCDCL as formal proof systems
	QCDCL and Q-resolution are incomparable
	Lower bounds for QCDCL
	A QCDCL system that characterises Q-resolution
	The simulation order of QCDCL proof systems
	Conclusion

