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Abstract
A leading proposal for verifying near-term quantum supremacy experiments on noisy random
quantum circuits is linear cross-entropy benchmarking. For a quantum circuit C on n qubits and a
sample z ∈ {0, 1}n, the benchmark involves computing |〈z|C|0n〉|2, i.e. the probability of measuring
z from the output distribution of C on the all zeros input. Under a strong conjecture about
the classical hardness of estimating output probabilities of quantum circuits, no polynomial-time
classical algorithm given C can output a string z such that |〈z|C|0n〉|2 is substantially larger than

1
2n (Aaronson and Gunn, 2019). On the other hand, for a random quantum circuit C, sampling z
from the output distribution of C achieves |〈z|C|0n〉|2 ≈ 2

2n on average (Arute et al., 2019).
In analogy with the Tsirelson inequality from quantum nonlocal correlations, we ask: can a

polynomial-time quantum algorithm do substantially better than 2
2n ? We study this question in the

query (or black box) model, where the quantum algorithm is given oracle access to C. We show that,
for any ε ≥ 1

poly(n) , outputting a sample z such that |〈z|C|0n〉|2 ≥ 2+ε
2n on average requires at least

Ω
(

2n/4

poly(n)

)
queries to C, but not more than O

(
2n/3) queries to C, if C is either a Haar-random

n-qubit unitary, or a canonical state preparation oracle for a Haar-random n-qubit state. We also
show that when C samples from the Fourier distribution of a random Boolean function, the naive
algorithm that samples from C is the optimal 1-query algorithm for maximizing |〈z|C|0n〉|2 on
average.
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1 Introduction

A team based at Google has claimed the first experimental demonstration of quantum
computational supremacy on a programmable device [9]. The experiment involved random
circuit sampling, where the task is to sample (with nontrivial fidelity) from the output
distribution of a quantum circuit containing random 1- and 2-qubit gates. To verify their
experiment, they used the so-called Linear Cross-Entropy Benchmark, or Linear XEB.
Specifically, for an n-qubit quantum circuit C and samples z1, . . . , zk ∈ {0, 1}n, the benchmark
is given by:

b = 2n

k
·
k∑
i=1
|〈zi|C|0n〉|2.
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13:2 The Quantum Supremacy Tsirelson Inequality

The goal is for b to be large with high probability over the choice of the random circuit
and the randomness of the sampler, as this demonstrates that the observations tend to
concentrate on the outputs that are more likely to be measured under the ideal distribution
for C (i.e. the noiseless distribution in which z is measured with probability |〈z|C|0n〉|2).
We formalize this task as the b-XHOG task:

I Problem 1 (b-XHOG, or Linear Cross-Entropy Heavy Output Generation). Given a quantum
circuit C on n qubits, output a sample z ∈ {0, 1}n such that E

[
|〈z|C|0n〉|2

]
≥ b

2n , where the
expectation is over an implicit distribution over circuits C and over the randomness of the
algorithm that outputs z.

Here, b “large” means b bounded away from 1, as outputting z uniformly at random
achieves b = 1 on average for any C. On the other hand, if z is drawn from the ideal noiseless
distribution for C, and if the random circuits C empirically exhibit the Porter-Thomas
distribution on output probabilities, then sampling from C achieves b ≈ 2 [9, 2].

Under a strong complexity-theoretic conjecture about the classical hardness of nontrivially
estimating output probabilities of quantum circuits, Aaronson and Gunn showed that no
classical polynomial-time algorithm can solve b-XHOG for any b ≥ 1 + 1

poly(n) on random
quantum circuits of polynomial size [2]. Thus, a physical quantum computer that solves
b-XHOG for b ≥ 1 + Ω(1) is considered strong evidence of quantum computational supremacy.

In this work, we ask: can an efficient quantum algorithm for b-XHOG do substantially
better than b = 2? That is, what is the largest b for which a polynomial-time quantum
algorithm can solve b-XHOG on random circuits? Note that the largest b we could hope for
is achieved by the optimal sampler that always outputs the string z maximizing |〈z|C|0n〉|2.
If the random circuits induce a Porter-Thomas distribution on output probabilities, then
this solves b-XHOG for b = Θ(n), because the probabilities of a Porter-Thomas distribution
approach i.i.d. exponential random variables (see Fact 10 below). However, finding the
largest output probability might be computationally difficult even on a quantum computer,
which is why we restrict our attention to efficient quantum algorithms.

We refer to our problem as the “quantum supremacy Tsirelson inequality” in reference to
the Bell [11] and Tsirelson [18] inequalities for quantum nonlocal correlations (for a modern
overview, see [20]). Under this analogy, the quantity b in XHOG plays a similar role as the
probability p of winning some nonlocal game. For example, the Bell inequality for the CHSH
game [19] states that no classical strategy can win the game with probability p > 3

4 ; we view
this as analogous to the conjectured inability of efficient classical algorithms to solve b-XHOG
for any b > 1. By contrast, a quantum strategy with pre-shared entanglement allows players
to win the CHSH game with probability p = cos2 (π

8
)
≈ 0.854 > 3

4 . An experiment that wins
the CHSH game with probability p > 3

4 , a violation of the Bell inequality, is analogous to an
experimental demonstration of b-XHOG for b > 1 on a quantum computer that establishes
quantum computational supremacy. Finally, the Tsirelson inequality for the CHSH game
states that any quantum strategy involving arbitrary pre-shared entanglement wins with
probability p ≤ cos2 (π

8
)
. Hence, an upper bound on b for efficient quantum algorithms is

the quantum supremacy counterpart to the Tsirelson inequality. We emphasize that our
choice to refer to this as a “Tsirelson inequality” is purely by analogy; we do not claim that
the question involving quantum supremacy or the techniques one might use to answer it are
otherwise related to quantum nonlocal correlations.

1.1 Our Results
We study the quantum supremacy Tsirelson inequality in the quantum query (or black box)
model. That is, we consider distributions over quantum circuits that make queries to a
randomized quantum or classical oracle, and ask how many queries to the oracle are needed
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to solve b-XHOG, in terms of b. Our motivation for studying this problem in the query model
is twofold. First, quantum query results often give useful intuition for what to expect in the
real world, and can provide insight into why naive algorithmic approaches fail. Second, we
view this as an interesting quantum query complexity problem in its own right. Whereas most
other quantum query lower bounds involve decision problems [5] or relation problems [12],
XHOG is more like a weighted, average-case relation problem, because we only require that
|〈z|C|0n〉|2 be large on average. Contrast this with the relation problem considered in [1],
where the task is to output a z such that |〈z|C|0n〉|2 is greater than some threshold.

Note that there are known quantum query complexity lower bounds for relation prob-
lems [9], and even relation problems where the output is a quantum state [6, 25]. Yet, it is
unclear whether existing quantum query lower bound techniques are useful here. Whereas the
adversary method tightly characterizes the quantum query complexity of decision problems
and state conversion problems [24], it is not even known to characterize the query complexity
of relation problems (unless they are efficiently verifiable) [12]. The adversary method appears
to be essentially useless for saying anything about XHOG, which is not efficiently verifiable
and is not a relation problem in the traditional sense.1

The XHOG task is well-defined for any distribution of random quantum circuits, so this
gives us a choice in selecting the distribution. We focus on three classes of oracle circuits
that either resemble random circuits used in practical experiments, or that were previously
studied in the context of quantum supremacy.

Canonical State Preparation Oracles

Because the linear cross-entropy benchmark for a circuit C depends only on the state
|ψ〉 := C|0n〉 produced by the circuit on the all zeros input, it is natural to consider an
oracle Oψ that prepares a random state |ψ〉 without leaking additional information about |ψ〉.
Formally, we choose a Haar-random n-qubit state |ψ〉, and fix a canonical state |⊥〉 orthogonal
to all n-qubit states.2 Then, we take the oracle Oψ that acts as Oψ|⊥〉 = |ψ〉, Oψ|ψ〉 = |⊥〉,
and Oψ|ϕ〉 = |ϕ〉 for any state |ϕ〉 that is orthogonal to both |⊥〉 and |ψ〉. Equivalently,
Oψ is the reflection about the state |ψ〉−|⊥〉2 . Finally, we let C be the composition of Oψ
with any unitary that sends |0n〉 to |⊥〉, so that C|0n〉 = |ψ〉. This model is often chosen
when proving lower bounds for quantum algorithms that query state preparation oracles
(see e.g. [7, 3, 13]), in part because the ability to simulate Oψ follows in a completely black
box manner from the ability to prepare |ψ〉 unitarily without garbage (see Lemma 7 below).
Hence, the oracle Oψ is “canonical” in the sense that it is uniquely determined by |ψ〉 and is
not any more powerful than any other oracle that prepares |ψ〉 without garbage.

Haar-Random Unitaries

A random polynomial-size quantum circuit C does not behave like a canonical state prepara-
tion oracle: C|x〉 looks like a random quantum state for any computational basis state |x〉,
not just x = 0n. Indeed, random quantum circuits are known to information-theoretically
approximate the Haar measure in certain regimes [14, 21], and it seems plausible that they
are also computationally difficult to distinguish from the Haar measure. Thus, one could
alternatively model random quantum circuits by Haar-random n-qubit unitaries.

1 As we will see later, however, the polynomial method [10] plays an important role in one of our results.
2 We can always assume that a convenient |⊥〉 exists by extending the Hilbert space, if needed. For

example, if |ψ〉 is an n-qubit state, a natural choice is to encode |ψ〉 by |ψ〉|1〉 and to choose |⊥〉 = |0n〉|0〉.

ITCS 2021



13:4 The Quantum Supremacy Tsirelson Inequality

Fourier Sampling Circuits

Finally, we consider quantum circuits that query a random classical oracle. For this, we use
Fourier Sampling circuits, which Aaronson and Chen [1] previously studied in the context
of proving oracular quantum supremacy for a problem related to XHOG. Fourier Sampling
circuits are defined asH⊗nUfH⊗n, where Uf is a phase oracle for a uniformly random Boolean
function f : {0, 1}n → {−1, 1}. On the all-zeros input, Fourier Sampling circuits output
a string z ∈ {0, 1}n with probability proportional to the squared Fourier coefficient f̂(z)2.
This model has the advantage that in principle, one can prove the corresponding quantum
supremacy Bell inequality for classical algorithms given query access to f , and that in
some cases one can replace f by a pseudorandom function to base quantum supremacy on
cryptographic assumptions [1].

Summary of Results

Our first result is an exponential lower bound on the number of quantum queries needed to
solve (2 + ε)-XHOG given either of the two types of quantum oracles that we consider:

I Theorem 2 (Informal version of Theorem 14 and Theorem 17). For any ε ≥ 1
poly(n) , any

quantum query algorithm for (2 + ε)-XHOG with query access to either:
(1) a canonical state preparation oracle Oψ for a Haar-random n-qubit state |ψ〉, or
(2) a Haar-random n-qubit unitary,
requires at least Ω

(
2n/4

poly(n)

)
queries.

We do not know if Theorem 2 is optimal, but we show in Theorem 15 that a simple
algorithm based on the quantum collision finding algorithm [16] solves (2 + Ω(1))-XHOG
using O

(
2n/3) queries to either oracle.

Finally, we show that for Fourier Sampling circuits, the naive algorithm of simply
running the circuit is optimal among all 1-query algorithms:

I Theorem 3 (Informal version of Theorem 19). Any 1-query quantum algorithm for b-XHOG
with Fourier Sampling circuits achieves b ≤ 3.3

1.2 Our Techniques
The starting point for our proof of the Tsirelson inequality with a canonical state preparation
oracle Oψ is a result of Ambainis, Rosmanis, and Unruh [7], which shows that any algorithm
that queries Oψ can be approximately simulated by a different algorithm that makes no
queries, but starts with copies of a resource state that depends on |ψ〉. This resource state
consists of polynomially many (in the number of queries to Oψ) states of the form α|ψ〉+β|⊥〉,
i.e. copies of |ψ〉 in superposition with |⊥〉. Our strategy is to show that if any algorithm
solves b-XHOG given this resource state, then a similar algorithm solves b-XHOG given
copies of |ψ〉 alone. Then, we prove a lower bound on the number of copies of |ψ〉 needed
to solve b-XHOG. To do so, we argue that if |ψ〉 is Haar-random, then the best algorithm

3 Note that the value of b achieved by the naive quantum algorithm for XHOG depends on the class of
circuits used. In contrast to Haar-random circuits that achieve b ≈ 2, Fourier Sampling circuits achieve
b ≈ 3 (see Proposition 18). This stems from the fact that the amplitudes of a Haar-random quantum
state are approximately distributed as complex normal random variables, whereas the amplitudes of a
state produced by a random Fourier Sampling circuit are approximately distributed as real normal
random variables.
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for b-XHOG given copies of |ψ〉 is a simple collision-finding algorithm: measure all copies
of |ψ〉 in the computational basis, and output whichever string z ∈ {0, 1}n appears most
frequently in the measurement results. For a Haar-random n-qubit state, the chance of seeing
any collisions is exponentially unlikely (unless the number of copies of |ψ〉 is exponentially
large in n), and so this does not do much better than measuring a single copy of |ψ〉 and
outputting the result.

To prove the analogous lower bound for b-XHOG with a Haar-random unitary oracle,
we show more generally that the canonical state preparation oracles and Haar-random
unitary oracles are essentially equivalent as resources, which may be of independent interest.
More specifically, we show that for an n-qubit state |ψ〉, given query access to Oψ, one can
approximately simulate (to exponential precision) a random oracle that prepares |ψ〉. By
“random oracle that prepares |ψ〉,” we mean an n-qubit unitary Uψ that acts as Uψ|0n〉 = |ψ〉
but Haar-random everywhere else. We can construct such a Uψ by taking an arbitrary
n-qubit unitary that maps |0n〉 to |ψ〉, then composing it with a Haar-random unitary on
the (2n − 1)-dimensional subspace orthogonal to |0n〉.

Our lower bound for Fourier Sampling circuits uses an entirely different technique.
We use the polynomial method of Beals et al. [10], which shows that for any quantum
algorithm that makes T queries to a classical oracle, the output probabilities of the algorithm
can be expressed as degree-2T polynomials in the variables of the classical oracle. Our
key observation is that the average linear XEB score achieved by such a quantum query
algorithm can also be expressed as a polynomial in the variables of the classical oracle. We
further observe that this polynomial is constrained by the requirement that the polynomials
representing the output probabilities must be nonnegative and sum to 1. This allows us to
upper bound the largest linear XEB score achievable by the maximum value of a certain
linear program, whose variables are the coefficients of the polynomials that represent the
output probabilities of the algorithm. To upper bound this quantity, we exhibit a solution to
the dual linear program.

Due to space constraints, we defer the proofs to the full version of this paper, available at
https://arxiv.org/abs/2008.08721.

2 Preliminaries

2.1 Notation
We use [N ] to denote the set {1, 2, . . . , N}. We use 1 to denote the identity matrix (of
implicit size). We let TD(ρ, σ) denote the trace distance between density matrices ρ and σ,
and let ||A||� denote the diamond norm of a superoperator A acting on density matrices (see
[4] for definitions). For a unitary matrix U , we use U · U† to denote the superoperator that
maps ρ to UρU†. In a slight abuse of notation, if A denotes a quantum algorithm (which may
consist of unitary gates, measurements, oracle queries, and initialization of ancilla qubits),
then we also use A to denote the superoperator corresponding to the action of A on input
density matrices.

2.2 Oracles for Quantum States
We frequently consider quantum algorithms that query quantum oracles. In this model, a
query to a unitary matrix U consists of a single application of either U , U†, or controlled
versions of U or U†. We also consider quantum algorithms that make queries to random
oracles. In analogue with the classical random oracle model, such calls are not randomized

ITCS 2021
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13:6 The Quantum Supremacy Tsirelson Inequality

at each query. Rather, a unitary U is chosen randomly (from some distribution) at the start
of the execution of the algorithm, and thereafter all queries for the duration of the algorithm
are made to U .

We now define several types of unitary oracles that we will use. These definitions (and
associated lemmas giving constructions of them) have appeared implicitly or explicitly in
prior work, e.g. [7, 3, 13, 8]. For completeness, we provide proofs of the constructions in the
full version.

I Definition 4. For an n-qubit quantum state |ψ〉, the reflection about |ψ〉, denoted Rψ, is
the n-qubit unitary Rψ := 1− 2|ψ〉〈ψ|.

In other words, |ψ〉 is a −1 eigenstate of Rψ, and all states orthogonal to |ψ〉 are +1
eigenstates. Note that some authors define the reflection about |ψ〉 to be the negation of
this operator (e.g. [26, 28, 8]), while others follow our convention (e.g. [15, 23, 3]). This
makes little difference, as these definitions are equivalent up to a global phase (or, if using
the controlled versions, equivalent up to a Pauli Z gate).

The following lemma shows that Rψ can be simulated given any unitary that prepares
|ψ〉 from the all-zeros state, possibly with unentangled garbage.

I Lemma 5. Let U be a unitary that acts as U |0n〉|0m〉 = |ψ〉|ϕ〉, where |ψ〉 and |ϕ〉 are n-
and m-qubit states, respectively. Then one can simulate T queries to the reflection Rψ using
2T + 1 queries to U .

I Definition 6. For a quantum state |ψ〉, the canonical state preparation oracle for |ψ〉,
denoted Oψ, is the reflection about the state |ψ〉−|⊥〉√

2 , where |⊥〉 is some canonical state
orthogonal to |ψ〉.

Unless otherwise specified, we generally assume that if |ψ〉 is an n-qubit state, then |⊥〉
is orthogonal to the space of n-qubit states under a suitable encoding (see Footnote 2).

The next lemma shows that Oψ can be simulated from any oracle that prepares |ψ〉
without garbage:

I Lemma 7. Let U be an n-qubit unitary that satisfies U |0n〉 = |ψ〉. Then one can simulate
T queries to Oψ using 4T + 2 queries to U .

We introduce the notion of a random state preparation oracle, which, to our knowledge,
is new.

I Definition 8. For an n-qubit state |ψ〉 we define a random state preparation oracle for |ψ〉,
denoted Uψ, as follows. We fix an arbitrary n-qubit unitary V that satisfies V |0n〉 = |ψ〉, then
choose a Haar-random unitary W that acts on the (2n − 1)-dimensional subspace orthogonal
to |0n〉 in the space of n-qubit states. Finally, we set Uψ = VW .

The invariance of the Haar measure guarantees that this distribution over Uψ is inde-
pendent of the choice of V , and hence this is well-defined. Note that while we often refer
to Uψ as a single unitary matrix, Uψ really refers to a distribution over unitary matrices.
Notice also that if |ψ〉 is distributed as a Haar-random n-qubit state, then Uψ is distributed
as a Haar-random n-qubit unitary.

2.3 Other Useful Facts
We use the following formula for the distance between unitary superoperators in the diamond
norm.
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I Fact 9 ([4]). Let V and W be unitary matrices, and suppose d is the distance between 0
and the polygon in the complex plane whose vertices are the eigenvalues of VW †. Then∣∣∣∣V · V † −W ·W ∣∣∣∣� = 2

√
1− d2.

Finally, we observe that for a Haar-random n-qubit quantum state, the information-
theoretically largest linear XEB achievable is O(n).

I Fact 10. Let |ψ〉 be a Haar-random n-qubit quantum state. Then:

E
|ψ〉

[
max

z∈{0,1}n
|〈z|ψ〉|2

]
≤ O(n)

2n .

3 Canonical State Preparation Oracles

In this section, we prove the quantum supremacy Tsirelson inequality for XHOG with a
canonical state preparation oracle for a Haar-random state. We first sketch the important
ideas in the proof. At the heart of our proof is the following lemma, due to Ambainis,
Rosmanis, and Unruh [7]. It shows that any quantum algorithm that makes queries to
a canonical state preparation oracle Oψ can be approximately simulated by a quantum
algorithm that makes no queries to Oψ, and instead receives various copies of |ψ〉 and
superpositions of |ψ〉 with some canonical orthogonal state.

I Lemma 11 ([7]). Let A be a quantum query algorithm that makes T queries to Oψ. Then
for any k, there is a quantum algorithm B that makes no queries to Oψ, and a quantum
state |R〉 of the form:

|R〉 :=
k⊗
j=1

αj |ψ〉+ βj |⊥〉

such that for any state |ϕ〉:

TD(A(|ϕ〉〈ϕ|), B(|R〉〈R|, |ϕ〉〈ϕ|)) ≤ O
(
T√
k

)
.

So long as k � T 2, the output of B will be arbitrarily close to the output of A in trace
distance. We will use this and Fact 10 to show that if A solves b-XHOG for some b > 2, then
so does B. Then, to prove a lower bound on the number of queries T to Oψ needed to solve
b-XHOG, it suffices to instead lower bound k, the number of states of the form αj |ψ〉+βj |⊥〉
needed to solve b-XHOG.

When |ψ〉 is a Haar-random state, notice that the linear XEB depends only on the
magnitude of the amplitudes in |ψ〉; the phases are irrelevant. So, when considering algorithms
that attempt to solve b-XHOG given only a state |R〉 of the form used in Lemma 11, we
might as well assume that the algorithm randomly reassigns the phases on |ψ〉. More formally,
define the mixed state σR as

σR := E
diagonal U

[
U⊗k|R〉〈R|U†⊗k

]
, (1)

where the expectation is over the diagonal unitaries U such that the entries 〈i|U |i〉 are i.i.d.
uniformly random complex phases (and by convention, 〈⊥|U |⊥〉 = 1). Then, the algorithm’s
average linear XEB score on σR is identical to its average linear XEB score on |R〉, because
of the invariance of the Haar measure with respect to phases.

ITCS 2021



13:8 The Quantum Supremacy Tsirelson Inequality

Next, we observe that one can prepare σR by measuring k copies of |ψ〉 in the compu-
tational basis. We prove this in Lemma 12. So, when considering algorithms for XHOG
that start with |R〉, it suffices to instead consider algorithms that simply measure k copies
of |ψ〉 in the computational basis. Such algorithms are much easier to analyze, because
once we have measured the k copies of |ψ〉, we can assume (by convexity) that any optimal
such algorithm for XHOG outputs a string z deterministically given the k measurement
results. And in that case, clearly the optimal strategy is to output whichever z maximizes
the posterior expectation of |〈z|ψ〉|2 given the measurement results. We analyze this strategy
in Lemma 13, and show that roughly 2n/2 copies of |ψ〉 are needed to solve b-XHOG for b
bounded away from 2. The intuition is that the posterior expectation of |〈z|ψ〉|2 increases
only when we see z at least twice in the measurement results. However, the probability that
any two measurement results are the same is tiny – on the order of 2−n – and so we need to
measure at least 2n/2 copies of |ψ〉 to see any collisions with decent probability.

We now proceed to proving the necessary lemmas.

I Lemma 12. Let |ψ〉 =
∑N
i=1 ψi|i〉 be an unknown quantum state, and consider a state |R〉

of the form:

|R〉 :=
k⊗
j=1

αj |ψ〉+ βj |⊥〉,

where αj , βj are known for j ∈ [k], and the vectors {|1〉, |2〉, . . . , |N〉, |⊥〉} form an orthonor-
mal basis. Define the mixed state σR as above. Then there exists a protocol to prepare σR by
measuring k copies of |ψ〉 in the computational basis.

To give some intuition, we note that it is simpler to prove Lemma 12 in the case where
αj = 1 for all j. In that case, σR can be viewed as an Nk ×Nk density matrix where both
the rows and columns are indexed by strings in [N ]k. Then, the averaging over diagonal
unitaries implies that σR is obtained from (|R〉〈R|)⊗k by zeroing out all entries where the
index corresponding to the row is not a reordering of the index corresponding to the column.
In fact, one can show that σR is expressible as a mixture of pure states, where each pure state
is a uniform superposition over basis states that are reorderings of each other. Moreover, the
probability associated with each pure state in this mixture is precisely the probability that
one of the reorderings is observed when we measure k copies of |ψ〉 in the computational basis.
So, to prepare σR, it suffices to measure |ψ〉⊗k and then output the uniform superposition
over reorderings of the measurement result.

The proof of Lemma 12 is similar, but we instead have to randomly set some of the
measurement results to ⊥ with probability |βj |2.

Combining Lemma 11 and Lemma 12, we have reduced the problem of lower bounding
the number of Oψ queries needed to solve b-XHOG, to lower bounding the number of copies
of |ψ〉 needed to solve b-XHOG. The next lemma lower bounds this latter quantity.

I Lemma 13. Let |ψ〉 be a Haar-random n-qubit quantum state. Consider a quantum
algorithm that receives as input |ψ〉⊗k and outputs a string z ∈ {0, 1}n. Then:

E
|ψ〉,z

[
|〈z|ψ〉|2

]
≤ 2

2n + O(k2)
4n .

We note that one should not expect Lemma 13 to be tight for large k (say, k = Ω
(
2n/2)).

For example, to achieve b = 4, we need at least enough samples to see m ≥ 3 with good
probability. But Pr[m ≥ 3] is negligible unless k = Ω

(
22n/3). More generally, a tight bound
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on the number of copies of |ψ〉 needed to achieve a particular value of b seems closely related
to the number of measurements of |ψ〉 needed to see m ≥ b− 1. This is like a sort of “balls
into bins” problem [22, 27] with k balls and 2n bins, but where the probabilities associated
to each bin follow a Dirichlet prior rather than being uniform.

We finally have the tools to prove the main result of this section.

I Theorem 14. Any quantum query algorithm for (2 + ε)-XHOG with query access to Oψ
for a Haar-random n-qubit state |ψ〉 requires Ω

(
2n/4ε5/4

n

)
queries.

Lastly, we give an upper bound on the number of queries needed to nontrivially beat
the naive algorithm for XHOG with Oψ. In fact, the following algorithm works with any
oracle that prepares a Haar-random state (including a Haar-random unitary), because the
algorithm only needs copies of |ψ〉 and the ability to perform the reflection Rψ. We thank
Scott Aaronson for suggesting this approach based on quantum collision-finding.

I Theorem 15. There is a quantum algorithm for (2 + Ω(1))-XHOG that makes O
(
2n/3)

queries to a state preparation oracle for a Haar-random n-qubit state |ψ〉.

4 Random State Preparation Oracles

In this section, we show that a canonical state preparation oracle and a random state
preparation oracle are essentially equivalent, and use it to prove the quantum supremacy
Tsirelson inequality for XHOG with a Haar-random oracle.

By Lemma 7, for a state |ψ〉, query access to a random state preparation oracle Uψ
implies query access to the canonical state preparation oracle Oψ with constant overhead.
The reverse direction is less obvious. We know from the definition of Uψ (Definition 8) that
one can simulate Uψ given any n-qubit unitary V that prepares |ψ〉 from |0n〉. So, it is
tempting to let V = Oψ with |⊥〉 = |0n〉 to argue that Oψ allows simulating Uψ. However,
this is only possible if |0n〉 is orthogonal to |ψ〉. And while we previously argued that we
can always find a canonical state |⊥〉 that is orthogonal to |ψ〉 (Footnote 2), this requires
extending the Hilbert space, so that Oψ no longer acts on n qubits!

To address this, imagine that we knew an explicit n-qubit state |ψ⊥〉 orthogonal to |ψ〉.
Notice that we could perfectly swap |ψ〉 and |ψ⊥〉: the composition OψOψ⊥Oψ sends |ψ〉 to
|ψ⊥〉, |ψ⊥〉 to |ψ〉, and acts trivially on all states orthogonal to |ψ〉 and |ψ⊥〉. In particular,
this swaps |ψ〉 and |ψ⊥〉 while acting only on the space of n-qubit states. Next, if we know
|ψ⊥〉 explicitly, we can certainly come up with an n-qubit unitary that sends |0n〉 to |ψ⊥〉.
By composing such a unitary with OψOψ⊥Oψ, we are left with an n-qubit unitary that sends
|0n〉 to |ψ〉. This is sufficient to construct Uψ, by Definition 8.

While we do not necessarily have such a state |ψ⊥〉, a random n-qubit state |ϕ〉 will be
exponentially close to such a |ψ⊥〉 with overwhelming probability. The next theorem shows
that we can use this observation to approximately simulate Uψ given Oψ, by going through
the steps above and keeping track of deviation from the ideal construction in terms of 〈ψ|ϕ〉.

I Theorem 16. Let |ψ〉 be an n-qubit state. Consider a quantum query algorithm A that
makes T queries to Uψ. Then there is a quantum query algorithm B that makes 2T queries
to Oψ such that:∣∣∣∣∣∣∣∣ E

Uψ
[A]−B

∣∣∣∣∣∣∣∣
�
≤ 10T + 4

2n/2 .

The above theorem implies that the oracle Oψ in Theorem 14 can be replaced by a
Haar-random n-qubit unitary.

ITCS 2021
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I Theorem 17. Any quantum query algorithm for (2 + ε)-XHOG with query access to Uψ for
a Haar-random n-qubit state |ψ〉 (i.e. a Haar-random n-qubit unitary) requires Ω

(
2n/4ε5/4

n

)
queries.

5 Fourier Sampling Circuits

In this section, we prove the quantum supremacy Tsirelson inequality for single-query
algorithms over Fourier Sampling circuits.

Throughout this section, we let N = 2n, and let Fn := {f : {0, 1}n → {−1, 1}} denote the
set of all n-bit Boolean functions. Given a function f ∈ Fn, we define the Fourier coefficient

f̂(z) := 1
2n

∑
x∈{0,1}n

f(x)(−1)x·z

for each z ∈ {0, 1}n. We also define the characters χz : {0, 1}n → {−1, 1} for each z ∈ {0, 1}n:

χz(x) := (−1)x·z.

Given oracle access to a function f ∈ Fn, the Fourier Sampling quantum circuit for
f consists of a layer of Hadamard gates, then a single query to f , then another layer of
Hadamard gates, so that the resulting circuit samples a string z ∈ {0, 1}n with probability
f̂(z)2. In the context of XHOG, we consider the distribution of Fourier Sampling circuits
where the oracle f is chosen uniformly at random from Fn.

I Proposition 18. Fourier Sampling circuits over n qubits solve (3− 2
2n )-XHOG.

The following theorem shows the optimality of the 1-query algorithm for XHOG with
Fourier Sampling circuits:

I Theorem 19. Any 1-query algorithm for b-XHOG over n-qubit Fourier Sampling
circuits satisfies b ≤ 3− 2

2n .

To prove Theorem 19, we use the polynomial method of Beals et al. [10]. Consider a
quantum query algorithm that makes T queries to f ∈ Fn and outputs a string z ∈ {0, 1}n.
The polynomial method implies that for each z ∈ {0, 1}n, the probability that the algorithm
outputs z can be expressed as a real multilinear polynomial of degree 2T in the bits of f .
We write such a polynomial as:

pz(f) =
∑

S⊂{0,1}n,|S|≤2T

cz,S ·
∏
x∈S

f(x).

Then, the expected XEB score of this quantum query algorithm is given by:

1
2N

∑
f∈Fn

∑
z∈{0,1}n

pz(f) · f̂(z)2. (2)

Our key observation is that the quantity (2) is linear in the coefficients cz,S . This allows us
to express the largest XEB score achievable by polynomials of degree 2T as a linear program,
with the constraints that the polynomials {pz(f) : z ∈ {0, 1}n} must represent a probability
distribution. Then, the objective value of the linear program can be upper bounded by giving
a solution to the dual linear program.
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6 Discussion

The most natural question left for future work is whether our bounds could be improved.
Our lower bounds for b-XHOG with Oψ or Uψ show that for constant ε, (2 + ε)-XHOG
requires Ω

(
2n/4

poly(n)

)
queries to either oracle, while the best upper bound we know of solves

(2 + ε)-XHOG in O
(
2n/3) queries. We conjecture that this upper bound is tight.

One possible approach towards improving the lower bound for b-XHOG with Oψ (and by
extension, Uψ) is to use the polynomial method, as we did for the Fourier Sampling lower
bound. Indeed, the output probabilities of an algorithm that makes T queries to Oψ can be
expressed as degree-2T polynomials in the entries of Oψ. If we write |ψ〉 =

∑N
i=1 αi|i〉, then

these are polynomials in the amplitudes α1, . . . , αN and the conjugates of the amplitudes
α∗1, . . . , α

∗
N . Because of the invariance of the Haar measure with respect to phases, and

because the linear XEB score depends only on the magnitudes of the amplitudes, we can
further assume without loss of generality that the output probabilities are polynomials in the
variables |α1|2, . . . , |αN |2, which are equivalently the measurement probabilities of |ψ〉 in the
computational basis. We can also assume that these polynomials are homogeneous, because
the input variables satisfy

∑N
i=1 |αi|2 = 1. Like in our Fourier Sampling lower bound,

the polynomials are constrained to represent a probability distribution for all valid inputs.
However, unlike the Fourier Sampling lower bound, this introduces uncountably many
constraints in the primal linear program. It may still be possible to exhibit a solution to the
dual linear program if only finitely many of the constraints are relevant (such an approach
was used in [17], for example).

Our b-XHOG bound for Fourier Sampling circuits is tight, but it only applies to
single-query algorithms. In principle, our lower bound approach via the polynomial method
could be generalized to algorithms that make additional queries, by increasing the degree of
the polynomials in the linear program and exhibiting another dual solution. The challenge
seems to be that the parity constraint on the monomials with nonzero coefficients becomes
unwieldy when working with higher degree polynomials.

Beyond possible improvements to the query complexity bounds, it would be interesting
to give some evidence that beating the naive XHOG algorithm is hard in the real world.
Aaronson and Gunn [2] showed that (1 + ε)-XHOG is classically hard, assuming the classical
hardness of nontrivially estimating the output probabilities of random quantum circuits. It
is not clear whether a similar argument could work for quantum algorithms, though, because
sampling from a random quantum circuit gives a better-than-trivial algorithm for estimating
its output probabilities.
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