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Abstract
The problem of scheduling tasks on p processors so that no task ever gets too far behind is often
described as a game with cups and water. In the p-processor cup game on n cups, there are two
players, a filler and an emptier, that take turns adding and removing water from a set of n cups. In
each turn, the filler adds p units of water to the cups, placing at most 1 unit of water in each cup,
and then the emptier selects p cups to remove up to 1 unit of water from. The emptier’s goal is to
minimize the backlog, which is the height of the fullest cup.

The p-processor cup game has been studied in many different settings, dating back to the late
1960’s. All of the past work shares one common assumption: that p is fixed. This paper initiates
the study of what happens when the number of available processors p varies over time, resulting in
what we call the variable-processor cup game.

Remarkably, the optimal bounds for the variable-processor cup game differ dramatically from
its classical counterpart. Whereas the p-processor cup has optimal backlog Θ(logn), the variable-
processor game has optimal backlog Θ(n). Moreover, there is an efficient filling strategy that yields
backlog Ω(n1−ε) in quasi-polynomial time against any deterministic emptying strategy.

We additionally show that straightforward uses of randomization cannot be used to help the
emptier. In particular, for any positive constant ∆, and any ∆-greedy-like randomized emptying
algorithm A, there is a filling strategy that achieves backlog Ω(n1−ε) against A in quasi-polynomial
time.
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1 Introduction

A fundamental challenge in processor scheduling is how to perform load balancing, that is,
how to share processors among tasks in order to keep any one task from getting too far
behind. Consider n tasks executing in time slices on p < n processors. During each time slice,
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a scheduler must select p (distinct) tasks that will be executed during the slice; up to one
unit of work is completed on each executed task. During the same time slice, however, up to
p units of new work may be allocated to the tasks, with different tasks receiving different
amounts of work. The goal of a load-balancing scheduler is to bound the backlog of the
system, which is defined to be the maximum amount of uncompleted work for any task.

As a convention, the load balancing problem is often described as a game involving water
and cups. The p-processor cup game is a multi-round game with two players, an emptier
and a filler, that takes place on n initially empty cups. At the beginning of each round, the
filler adds up to p units of water to the cups, subject to the constraint that each cup receives
at most 1 unit of water. The emptier then selects up to p distinct cups and removes up to
1 unit of water from each of them. The emptier’s goal is to minimize the amount of water
in the fullest cup, also known as the backlog. In terms of processor scheduling, the cups
represent tasks, the water represents work assigned to each task, and the emptier represents
a scheduling algorithm.

Starting with the seminal paper of Liu [31], work on the p processor cup game has spanned
more than five decades [7, 21, 8, 30, 28, 34, 6, 24, 31, 32, 17, 10, 26, 1, 16, 29]. In addition
to processor scheduling [7, 21, 8, 30, 28, 34, 6, 24, 31, 32, 1, 29, 17], applications include
network-switch buffer management [22, 4, 36, 20], quality of service guarantees [7, 1, 29],
and data structure deamortization [2, 17, 16, 3, 35, 23, 18, 25, 9].

The game has also been studied in many different forms. Researchers have studied the
game with a fixed-filling-rate constraint [7, 21, 8, 30, 28, 34, 6, 24, 31, 32], with various
forms of resource augmentation [10, 26, 29, 17], with both oblivious and adaptive adversaries
[1, 7, 31, 10, 26, 11], with smoothed analysis [26, 10], with a semi-clairvoyant emptier [29],
with competitive analysis [5, 19, 15], etc.

For the plain form of the p-processor cup game, the greedy emptying algorithm (i.e., always
empty from the fullest cups) is known to be asymptotically optimal [1, 10, 26], achieving
backlog O(logn). The optimal backlog for randomized emptying algorithms remains an open
question [17, 10, 26] and is known to be between Ω(log logn) and O(log logn+ log p) [26].

This paper: varying resources

Although cup games have been studied in many forms, all of the prior work on cup games
shares one common assumption: the number p of processors is fixed.

In modern computing, however, computers are often shared among multiple applications,
users, and even virtual OS’s. The result is that the amount of resources (e.g., memory,
processors, cache, etc.) available to a given application may fluctuate over time. The problem
of handling cache fluctuations has received extensive attention in recent years (see work on
cache-adaptive analysis [33, 12, 13, 14, 27]), but the problem of handling a varying number
of processors remains largely unstudied.

This paper introduces the variable-processor cup game, in which the filler is allowed
to change p (the total amount of water that the filler adds, and the emptier removes, from
the cups per round) at the beginning of each round. Note that we do not allow the resources
of the filler and emptier to vary separately. That is, as in the standard game, we take the
value of p for the filler and emptier to be identical in each round. This restriction is crucial
since, if the filler is allowed more resources than the emptier, then the filler could trivially
achieve unbounded backlog.

A priori having variable resources offers neither player a clear advantage. When the
number p of processors is fixed, the greedy emptying algorithm (i.e., always empty from the
fullest cups), is known to achieve backlog O(logn) [1, 10, 26] regardless of the value of p.
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This seems to suggest that, when p varies, the correct backlog should remain O(logn). In
fact, when we began this project, we hoped for a straightforward reduction between the two
versions of the game.

Results

We show that the variable-processor cup game is not equivalent to the standard p-processor
game. By strategically controlling the number p of processors, the filler can achieve substan-
tially larger backlog than would otherwise be possible.

We begin by constructing filling strategies against deterministic emptying algorithms.
We show that for any positive constant ε, there is a filling strategy that achieves backlog
Ω(n1−ε) within 2polylog(n) rounds. Moreover, if we allow for n! rounds, then there is a filling
strategy that achieves backlog Ω(n). In contrast, for the p-processor cup game with any fixed
p, the backlog never exceeds O(logn).

Our lower-bound construction is asymptotically optimal. By introducing a novel set of
invariants, we deduce that the greedy emptying algorithm never lets backlog exceed O(n).

A natural question is whether randomized emptying algorithms can do better. In
particular, when the emptier is randomized, the filler is taken to be oblivious, meaning that
the filler cannot see what the emptier does at each step. Thus the emptier can potentially
use randomization to obfuscate their behavior from the filler, preventing the filler from being
able to predict the heights of cups.

When studying randomized emptying strategies, we restrict ourselves to the class of
greedy-like emptying strategies. This means that the emptier never chooses to empty
from a cup c over another cup c′ whose fill is more than ω(1) greater than the fill of c.
All of the known randomized emptying strategies for the classic p-processor cup game are
greedy-like [10, 26].

Remarkably, the power of randomization does not help the emptier very much in the
variable-processor cup game. For any constant ε > 0, we give an oblivious filling strategy
that achieves backlog Ω(n1−ε) in quasi-polynomial time (with probability 1− 2− polylogn),
no matter what (possibly randomized) greedy-like strategy the emptier follows.

Our results combine to tell a surprising story. They suggest that the problem of varying
resources poses a serious theoretical challenge for the design and analysis of load-balancing
scheduling algorithms. There are many possible avenues for future work. Can techniques
from beyond worst-case analysis (e.g., smoothing, resource augmentation, etc.) be used to
achieve better bounds on backlog? What about placing restrictions on the filler (e.g., bounds
on how fast p can change), allowing the emptier to be able to be semi-clairvoyant, or making
stochastic assumptions on the filler? We believe that all of these questions warrant further
attention.

Paper outline

In Section 2 we establish the conventions and notations that we will use to discuss the variable-
processor cup game. In Section 3 we analyze the greedy emptying algorithm, showing that it
achieves backlog O(n). We then turn our attention to designing (both oblivious and adaptive)
filling strategies that achieve large backlog. Section 4 gives a technical overview of the filling
strategies and their analyses. Section 5 then gives a full treatment of the filling strategies in
the case where the filler is adaptive; the full treatment of the case where the filler is oblivious
is deferred to the extended version of this paper.

ITCS 2021
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2 Preliminaries

The cup game consists of a sequence of rounds. Let St denote the state of of the cups at the
start of round t. At the beginning of the round, the filler chooses the number of processors
pt for the round. Next, the filler distributes pt units of water among the cups (with at most
1 unit of water to any particular cup). Now the game is at the intermediate state for
round t, which we call state It. Finally the emptier chooses pt cups to empty at most 1 unit
of water from, which marks the conclusion of round t. The state is then St+1.

If the emptier empties from a cup c on round t such that the fill of c is less than 1 in state
It, then c now has 0 fill (not negative fill); we say that the emptier zeroes out c on round t.
Note that on any round where the emptier zeroes out a cup the emptier has removed less
total fill from the cups than the filler has added to the cups; hence the average fill of the
cups has increased.

We denote the fill of a cup c at state S by fillS(c). Let the mass of a set of cups X at
state S be mS(X) =

∑
c∈X fillS(c). Denote the average fill of a set of cups X at state S by

µS(X).1 Note that µS(X)|X| = mS(X). Let the backlog at state S be maxc fillS(c), let
the anti-backlog at state S be minc fillS(c). Let the rank of a cup at a given state be its
position in the list of the cups sorted by fill at the given state, breaking ties arbitrarily but
consistently. For example, the fullest cup at a state has rank 1, and the least full cup has
rank n. Let [n] = {1, 2, . . . , n}, let i+ [n] = {i+ 1, i+ 2, . . . , i+ n}. For a state S, let S(r)
denote the rank r cup at state S, and let S({r1, r2, . . . , rm}) denote the set of cups of ranks
r1, r2, . . . rm.

As a tool in the analysis we define a new variant of the cup game: the negative-fill cup
game. In the negative-fill cup game, when the emptier empties from a cup, the cup’s fill
always decreases by exactly 1, i.e. there is no zeroing out. We refer to the standard version
of the cup game where cups can zero out as the standard-fill cup game.

The notion of negative fill will be useful in our lower-bound constructions, in which we
want to construct a strategy for the filler that achieves large backlog. By analyzing a filling
strategy on the negative-fill game, we can then reason about what happens if we apply the
same filling strategy recursively to a set of cups S whose average fill µ is larger than 0; in
the recursive application, the average fill µ acts as the “new 0”, and fills less than µ act as
negative fills.

Note that it is strictly easier for the filler to achieve high backlog in the standard-fill cup
game than in the negative-fill cup game; hence a lower bound on backlog in the negative-fill
cup game also serves as a lower bound on backlog in the standard-fill cup game. On the
other hand, during the upper bound proof we use the standard-fill cup game: this makes it
harder for the emptier to guarantee its upper bound.

Other Conventions

When discussing the state of the cups at a round t, we will take it as given that we are
referring to the starting state St of the round. Also, when discussing sets, we will use XY as
a shorthand for X ∪ Y . Finally, when discussing the average fill µSt

(X) of a set of cups, we
will sometimes ommit the subscript St when the round number is clear.

1 For both mass and average fill, in cases where S is clear from context, we may omit the subscript,
writing m(X) or µ(X).
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3 Upper Bound

In this section we analyze the greedy emptier, which always empties from the p fullest
cups. We prove in Corollary 2 that the greedy emptier prevents backlog from exceeding
O(n). In order to analyze the greedy emptier, we establish a system of invariants that hold
at every step of the game.

The main result of the section is the following theorem.

I Theorem 1. In the variable-processor cup game on n cups, the greedy emptier maintains,
at every step t, the invariants

µSt(St([k])) ≤ 2n− k (1)

for all k ∈ [n].

By applying Theorem 1 to the case of k = 1, we arrive at a bound on backlog:

I Corollary 2. In the variable-processor cup game on n cups, the greedy emptying strategy
never lets backlog exceed O(n).

Proof of Theorem 1. We prove the invariants by induction on t. The invariants hold trivially
for t = 1 (the base case for the inductive proof): the cups start empty so µS1(S1([k])) = 0 ≤
2n− k for all k ∈ [n].

Fix a round t ≥ 1, and any k ∈ [n]. We assume the invariant for all values of k′ ∈ [n] for
state St (we will only explicitly use two of the invariants for each k, but the invariants that
we need depend on the choice of pt by the filler) and show that the invariant on the k fullest
cups holds on round t+ 1, i.e. that

µSt+1(St+1([k])) ≤ 2n− k.

Note that because the emptier is greedy it always empties from the cups It([pt]). Let A,
with a = |A|, be A = It([min(k, pt)]) ∩ St+1([k]); A consists of the cups that are among the
k fullest cups in It, are emptied from, and are among the k fullest cups in St+1. Let B, with
b = |B|, be It([min(k, pt)])\A; B consists of the cups that are among the k fullest cups in state
It, are emptied from, and are not among the k fullest cups in St+1. Let C = It(a+b+[k−a]),
with c = k − a = |C|; C consists of the cups with ranks a+ b+ 1, . . . , k + b in state It. The
set C is defined so that St+1([k]) = AC, since once the cups in B are emptied from, the cups
in B are not among the k fullest cups, so cups in C take their places among the k fullest
cups.

Note that k − a ≥ 0 as a+ b ≤ k, and also |ABC| = k + b ≤ n, because by definition the
b cups in B must not be among the k fullest cups in state St+1 so there are at least k + b

cups. Note that a+ b = min(k, pt). We also have that A = It([a]) and B = It(a+ [b]), as
every cup in A must have higher fill than all cups in B in order to remain above the cups in
B after 1 unit of water is removed from all cups in AB.

We now establish the following claim, which we call the interchangeability of cups:

B Claim 3. There exists a cup state S′t such that: (a) S′t satisfies the invariants (1), (b)
S′t(r) = It(r) for all ranks r ∈ [n], and (c) the filler can legally place water into cups in order
to transform S′t into It.

Proof. Fix r ∈ [n]. We will show that St can be transformed into a state Srt by relabelling
only cups with ranks in [r] such that (a) Srt satisfies the invariants (1), (b) Srt ([r]) = It([r])
and (c) the filler can legally place water into cups in order to transform Srt into It.

ITCS 2021
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Say there are cups x, y with x ∈ St([r]) \ It([r]), y ∈ It([r]) \ St([r]). Let the fills of cups
x, y at state St be fx, fy; note that

fx > fy. (2)

Let the amount of fill that the filler adds to these cups be ∆x,∆y ∈ [0, 1]; note that

fx + ∆x < fy + ∆y. (3)

Define a new state S′t where cup x has fill fy and cup y has fill fx. Note that the filler
can transform state S′t into state It by placing water into cups as before, except changing the
amount of water placed into cups x and y to be fx − fy + ∆x and fy − fx + ∆y, respectively.

In order to verify that the transformation from S′t to It is a valid step for the filler, one
must check three conditions. First, the amount of water placed by the filler is unchanged:
this is because (fx − fy + ∆x) + (fy − fx + ∆y) = ∆x + ∆y. Second, the fills placed
in cups x and y are at most 1: this is because fx − fy + ∆x < ∆y ≤ 1 (by (3)) and
fy − fx + ∆x < ∆x ≤ 1 (by (2)). Third, the fills placed in cups x and y are non-negative:
this is because fx − fy + ∆x > ∆x ≥ 0 (by (2)) and fy − fx + ∆y > ∆x ≥ 0 (by (3)).

We can repeatedly apply this process to swap each cup in It([r]) \ St([r]) into being in
S′t([r]). At the end of this process we will have some state Srt for which Srt ([r]) = It([r]). Note
that Srt is simply a relabeling of St, hence it must satisfy the same invariants (1) satisfied by
St. Further, Srt can be transformed into It by a valid filling step.

Now we repeatedly apply this process, in descending order of ranks. In particular, we
have the following process: create a sequence of states by starting with Sn−1

t , and to get
to state Srt from state Sr+1

t apply the process described above. Note that Sn−1
t satisfies

Sn−1
t ([n− 1]) = It([n− 1]) and thus also Sn−1

t (n) = It(n). If Sr+1
t satisfies Sr+1

t (r′) = It(r′)
for all r′ > r + 1 then Srt satisfies Srt (r′) = It(r′) for all r > r, because the transition from
Sr+1
t to Srt has not changed the labels of any cups with ranks in (r+ 1, n], but the transition

does enforce Srt ([r]) = It([r]), and consequently Srt (r + 1) = It(r + 1). We continue with
the sequential process until arriving at state S1

t in which we have S1
t (r) = It(r) for all r.

Throughout the process each Srt has satisfied the invariants (1), so S1
t satisfies the invariants

(1). Further, throughout the process from each Srt it is possible to legally place water into
cups in order to transform Srt into It.

Hence S1
t satisfies all the properties desired, and the proof of Claim 3 is complete. C

Claim 3 tells us that we may assume without loss of generality that St(r) = It(r) for each
rank r ∈ [n]. We will make this assumption for the rest of the proof.

In order to complete the proof of the theorem, we break it into three cases.

B Claim 4. If some cup in A zeroes out in round t, then the invariant µSt+1(St+1([k])) ≤ 2n−k
holds.

Proof. Say a cup in A zeroes out in step t. Of course

mSt+1(It([a− 1])) ≤ (a− 1)(2n− (a− 1))

because the a− 1 fullest cups must have satisfied the invariant (with k = a− 1) on round t.
Moreover, because fillSt+1(It+1(a)) = 0

mSt+1(It([a])) = mSt+1(It([a− 1])).

Combining the above equations, we get that

mSt+1(A) ≤ (a− 1)(2n− (a− 1)).
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Furthermore, the fill of all cups in C must be at most 1 at state It to be less than the fill of
the cup in A that zeroed out. Thus,

mSt+1(St+1([k])) = mSt+1(AC)
≤ (a− 1)(2n− (a− 1)) + k − a
= a(2n− a) + a− 2n+ a− 1 + k − a
= a(2n− a) + (k − n) + (a− n)− 1
< a(2n− a)

as desired. As k increases from 1 to n, k(2n − k) strictly increases (it is a quadratic in k
that achieves its maximum value at k = n). Thus a(2n − a) ≤ k(2n − k) because a ≤ k.
Therefore,

mSt+1(St+1([k])) ≤ k(2n− k). C

B Claim 5. If no cups in A zero out in round t and b = 0, then the invariant µSt+1(St+1([k])) ≤
2n− k holds.

Proof. If b = 0, then St+1([k]) = St([k]). During round t the emptier removes a units of fill
from the cups in St([k]), specifically the cups in A. The filler cannot have added more than
k fill to these cups, because it can add at most 1 fill to any given cup. Also, the filler cannot
have added more than pt fill to the cups because this is the total amount of fill that the filler
is allowed to add. Hence the filler adds at most min(pt, k) = a+ b = a+ 0 = a fill to these
cups. Thus the invariant holds:

mSt+1(St+1([k])) ≤ mSt
(St([k])) + a− a ≤ k(2n− k). C

The remaining case, in which no cups in A zero out and b > 0 is the most technically
interesting.

B Claim 6. If no cups in A zero out on round t and b > 0, then the invariant
µSt+1(St+1([k])) ≤ 2n− k holds.

Proof. Because b > 0 and a + b ≤ k we have that a < k, and c = k − a > 0. Recall that
St+1([k]) = AC, so the mass of the k fullest cups at St+1 is the mass of AC at St plus any
water added to cups in AC by the filler, minus any water removed from cups in AC by the
emptier. The emptier removes exactly a units of water from AC. The filler adds no more
than pt units of water to AC (because the filler adds at most pt total units of water per
round) and the filler also adds no more than k = |AC| units of water to AC (because the
filler adds at most 1 unit of water to each of the k cups in AC). Thus, the filler adds no
more than a+ b = min(pt, k) units of water to AC. Combining these observations we have:

mSt+1(St+1([k])) ≤ mSt(AC) + b. (4)

The key insight necessary to bound this is to notice that larger values for mSt(A)
correspond to smaller values for mSt

(C) because of the invariants; the higher fill in A pushes
down the fill that C can have. By capturing the pushing-down relationship combinatorially
we will achieve the desired inequality.

We can upper bound mSt
(C) by

mSt
(C) ≤ c

b+ c
mSt

(BC)

= c

b+ c
(mSt

(ABC)−mSt
(A))

ITCS 2021



16:8 The Variable-Processor Cup Game

because µSt(C) ≤ µSt(B) without loss of generality by the interchangeability of cups. Thus
we have

mSt(AC) ≤ mSt(A) + c

b+ c
mSt(BC) (5)

= c

b+ c
mSt

(ABC) + b

b+ c
mSt

(A). (6)

Note that the expression in (6) is monotonically increasing in both µSt
(ABC) and µSt

(A).
Thus, by numerically replacing both average fills with their extremal values, 2n − |ABC|
and 2n− |A|. At this point the claim can be verified by straightforward (but quite messy)
algebra (and by combining (4) with (6)). We instead give a more intuitive argument, in
which we examine the right side of (5) combinatorially.

Consider a new configuration of fills F achieved by starting with state St, and moving
water from BC into A until µF (A) = 2n − |A|. 2 This transformation increases (strictly
increases if and only if we move a non-zero amount of water) the right side of (5). In
particular, if mass ∆ ≥ 0 fill is moved from BC to A, then the right side of (5) increases by
b
b+c∆ ≥ 0. Note that the fact that moving water from BC into A increases the right side of
(5) formally captures the way the system of invariants being proven forces a tradeoff between
the fill in A and the fill in BC – that is, higher fill in A pushes down the fill that BC (and
consequently C) can have.

Since µF (A) is above µF (ABC), the greater than average fill of A must be counter-
balanced by the lower than average fill of BC. In particular we must have

(µF (A)− µF (ABC))|A| = (µF (ABC)− µF (BC))|BC|.

Note that

µF (A)− µF (ABC)
= (2n− |A|)− µF (ABC)
≥ (2n− |A|)− (2n− |ABC|)
= |BC|.

Hence we must have

µF (ABC)− µF (BC) ≥ |A|.

Thus

µF (BC) ≤ µF (ABC)− |A| ≤ 2n− |ABC| − |A|. (7)

Combing (5) with the fact that the transformation from St to F only increases the right side
of (5), along with (7), we have the following bound:

mSt
(AC) ≤ mF (A) + cµF (BC)

≤ a(2n− a) + c(2n− |ABC| − a)
≤ (a+ c)(2n− a)− c(a+ c+ b)
≤ (a+ c)(2n− a− c)− cb. (8)

2 Note that whether or not F satisfies the invariants is irrelevant.
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By (4) and (8), we have that

mSt+1(St+1([k])) ≤ mSt
(AC) + b

≤ (a+ c)(2n− a− c)− cb+ b

= k(2n− k)− cb+ b

≤ k(2n− k),

where the final inequality uses the fact that c ≥ 1. This completes the proof of the claim.
C

We have shown the invariant holds for arbitrary k, so given that the invariants all hold
at state St they also must all hold at state St+1. Thus, by induction we have the invariant
for all rounds t ∈ N. J

4 Technical overview of lower bounds

The rest of the paper is devoted to the construction of filler strategies that match (or nearly
match) the upper bound in Section 3.

This section gives a technical overview of the main technical ideas used in the filler
constructions. Full versions of the constructions are given in Section 5 (for adaptive fillers)
and in the extended version of this paper (for oblivious fillers).

4.1 Adaptive Lower Bound
In Section 5 we provide an adaptive filling strategy that achieves backlog Ω(n1−ε); in this
subsection we sketch the proof of the result.

First we note that there is a trivial algorithm, that we call trivalg, for achieving backlog
at least 1/2 on at least 2 cups in time O(1).

The essential ingredient in our lower-bound construction is what we call the Amplifica-
tion Lemma. The lemma takes as input a filling strategy that achieves some backlog curve
f (i.e., on n cups, the strategy achieves backlog f(n)), and outputs a new filling strategy
that achieves a new amplified backlog curve f ′.

I Lemma 7 (Lemma 12). Let alg(f) be a filling strategy that achieves backlog f(n) on n

cups (in the negative-fill cup game). There exists a filling strategy alg(f ′), the amplification
of alg(f), that achieves backlog at least

f ′(n) ≥ (1− δ)f(b(1− δ)nc) + f(dδne).

Proof Sketch. The filler designates an anchor set A of size dδne and a non-anchor set B
of size b(1− δ)nc.

The filler’s strategy begins with M phases, for some parameter M to be determined later.
In each phase, the filler applies alg(f) to the non-anchor set B, while simultaneously placing
1 unit of water into each cup of A on each step. If there is ever a step during the phase in
which the emptier does not remove water from every cup in A, then the phase is said to be
emptier neglected. On the other hand, if a phase is not emptier neglected, then at the
end of the phase, the filler swaps the cup in B with largest fill with the cup in A whose fill is
smallest.

After the M phases are complete, the filler then recursively applies alg(f) to the cups A.
This completes the filling strategy alg(f ′).
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The key to analyzing alg(f ′) is to show that, at the end of the M -th phase, the average
fill of the cups A satisfies µ(A) ≥ (1 − δ)f(|B|). This, in turn, means that the recursive
application of alg(f) to A will achieve backlog (1− δ)f(|B|) + f(|A|), as desired.

Now let us reason about µ(A). If a phase is emptier neglected, then the total amount of
water placed into A during the phase is at least 1 greater than the total amount of water
removed. Hence µ(A) increases by at least 1/|A|. On the other hand, if a phase is not
emptier neglected, then alg(f) will successfully achieve backlog µ(B) + f(|B|) on the cups B
during the phase. At the end of the phase, the filler will then swap a cup from B with large
fill with a cup from A. Thus, in each phase, we either have that µ(A) increases by 1/|A|, or
that a cup with large fill gets swapped into A. After sufficiently many phases, one can show
that µ(A) is guaranteed to become at least (1− δ)f(|B|) + f(|A|). J

We use the Amplification Lemma to give two lower bounds on backlog: one with reasonable
running time, the other with slightly better backlog.

I Theorem 8 (Theorem 13). There is an adaptive filling strategy for achieving backlog
Ω(n1−ε) for constant ε ∈ (0, 1/2) in running time 2O(log2 n).

Proof Sketch. We construct a sequence of filling strategies with alg(fi+1) the amplification
of alg(fi) using δ = Θ(1) determined as a function of ε, and alg(f0) = trivalg. Choosing δ
appropriately as a function of ε, and letting c be some (small) positive constant, we show by
induction on i that, for all k ≤ 2ci, alg(fi) achieves backlog Ω(k1−ε) on k cups in running
time 2O(log2 k). Taking i = Θ(logn) completes the proof. J

I Theorem 9 (Theorem 15). There is an adaptive filling strategy for achieving backlog Ω(n)
in running time O(n!).

Proof Sketch. We construct a sequence of filling strategies with alg(fi+1) the amplification
of alg(fi) using δ = 1/(i+ 1), and alg(f0) a filling strategy for achieving backlog 1 on O(1)
cups in O(1) time (this is a slight modification of trivalg). We show by induction that
alg(fΘ(n)) achieves backlog Ω(n) in running time O(n!). J

4.2 Oblivious Lower Bound
We now consider what happens if the filler is an oblivious adversary, meaning that the
filler cannot see what the emptier does at each step. The emptier, in turn, is permitted to
use randomization in order to make its behavior unpredictable to the filler. We focus on
randomized emptying algorithms that satisfy the so-called ∆-greedy-like property: the
emptier never empties from a cup c over another cup c′ whose fill is more than ∆ greater
than the fill of c.

The next theorem gives an oblivious filling strategy that achieves backlog Ω(n1−ε) against
any ∆-greedy-like emptier for any ∆ ∈ Ω(1) (or, more precisely, any ∆ ≤ 1

128 log log logn).

I Theorem 10. There is an oblivious filling strategy for the variable-processor cup game
on N cups that achieves backlog at least Ω(N1−ε) for any constant ε > 0 in running time
2polylog(N) with probability at least 1 − 2− polylog(N) against a ∆-greedy-like emptier with
∆ ≤ 1

128 log log logN .

Note that Theorem 10 uses N for the number of cups rather than using n. When
describing the recursive strategy that the filler uses, we will use N to denote the true total
number of cups, and n to denote the number of cups within the recursive subproblem
currently being discussed.
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The filling strategy used in Theorem 10 is closely related the adaptive filling strategy
described in Section 4.1. The fact that the filling strategy must now be oblivious, however,
introduces several new technical obstacles.

Problem 1: Distinguishing between neglected and non-neglected phases

Recall that the Amplification Lemma in Section 4.1 proceeds in phases, where the filler
behaves differently at the end of each phase depending on whether or not the emptier ever
neglected the anchor set A during that phase. If the filler is oblivious, however, then it
cannot detect which phases are neglected.

To solve this problem, the first thing to notice is that the total number of times that the
emptier can neglect the anchor set (within a given recursive subproblem of the Amplification
Lemma) is, without loss of generality, at most N2. Indeed, if the emptier neglects the anchor
set more than N2 times, then the total amount of water in cups A will be at least N2. Since
the amount of water in the system as a whole is non-decreasing, there will subsequently
always be at least one cup in the system with fill N or larger, and thus the filler’s strategy
trivially achieves backlog N .

Assume that there are at most N2 phases that the emptier neglects. The filler does
not know which phases these are, and the filler does not wish to ever move a cup from the
non-anchor set to the anchor set during a phase that the emptier neglected (since, during
such a phase, there is no guarantee on the amount of water in the cup from B). To solve this
problem, we increase the total number of phases in the Amplification Lemma to be some
very large number M = 2polylogN , and we have the filler select |A| random phases at the end
of which to move a cup from the non-anchor set to the anchor set. With high probability,
none of the |A| phases that the filler selects are neglected by the emptier.

Problem 2: Handling the probability of failure

Because the filler is now oblivious (and the emptier is randomized) the guarantee offered
by the filling strategy is necessarily probabilistic. This makes the Amplification Lemma
somewhat more difficult, since each application of alg(f) now has some probability of failure.

We ensure that the applications of alg(f) succeed with such high probability that we can
ignore the possibility of any of them failing on phases when we need them to succeed. This
necessitates making sure that the base-case construction alg(f0) succeeds with very high
probability.

Fortunately, we can take a base-case construction alg0 that succeeds with only constant
(or even sub-constant) probability, and perform an Amplification-Lemma-like construction in
order to obtain a new filling strategy alg1 that achieves slightly smaller backlog, but that
has a very high probability of succeeding.

To construct alg1, we begin by performing the Amplification-Lemma construction on
alg0, but without recursing after the final phase. Even though many of the applications of
alg0 may fail, with high probability at least one application succeeds. This results in some
cup c∗ in A having high fill. Unfortunately, the filler does not know which cup has high fill,
so it cannot simply take c∗. What the filler can do, however, is select some cup c, decrease
the number of processors to 1, and then spend a large number of steps simply placing 1
unit of water into cup c in each step. By the ∆-greediness of the emptier, the emptier is
guaranteed to focus on emptying from cup c∗ (rather than cup c) until c attains large fill.
This allows for the filler to obtain a cup c that the filler knows contains a large amount of
water (with high probability). We use this approach to construct a base-case filling strategy
alg(f ′0) that succeeds with high probability.
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Problem 3: Non-flat starting states

The next problem that we encounter is that, at the beginning of any given phase, the cups
in the non-anchor set may not start off with equal heights. Instead, some cups may contain
very large amounts of water while others contain very small (and even negative) amounts of
water3. This is not a problem for an adaptive filler, since the filler knows which cups contain
small/large amounts of water, but it is a problem for an oblivious filler.

To avoid the scenario in which the cups in B are highly unequal, we begin each phase by
first performing a flattening construction on the cups B, which causes the cups in B to
all have roughly equal fills (up to ±O(∆)). The flattening construction uses the fact that
the emptier is ∆-greedy-like to ensure that cups which are overly full get flattened out by
the emptier.

Putting the pieces together

By combining the ideas above, as well as handling other issues that arise (e.g., one must be
careful to ensure that the average fills of A and B do not drift apart in unpredictable ways),
one can prove Theorem 10.

5 Adaptive Filler Lower Bound

In this section we give a 2polylogn-time filling strategy that achieves backlog n1−ε for any
positive constant ε. We also give a O(n!)-time filling strategy that achieves backlog Ω(n).
These results formalize the ideas described in Section 4.1.

We begin with a trivial filling strategy that we call trivalg that gives backlog at least
1/2 when applied to at least 2 cups.

I Proposition 11. Consider an instance of the negative-fill 1-processor cup game on n cups,
and let the cups start in any state with average fill is 0. If n ≥ 2, there is an O(1)-step
adaptive filling strategy trivalg that achieves backlog at least 1/2. If n = 1, trivalg achieves
backlog 0 in running time 0.

Proof. If n = 1, trivalg does nothing and achieves backlog 0; for the rest of the proof we
consider the case n ≥ 2.

Let a and b be the fullest and second fullest cups in the in the starting configuration,
and let their initial fills be fill(a) = α,fill(b) = β. If α ≥ 1/2 the filler need not do anything,
the desired backlog is already achieved. Otherwise, if α ∈ [0, 1/2], the filler places 1/2− α
fill into a and 1/2 + α fill into b (which is possible as both fills are in [0, 1], and they sum
to 1). Since α+ β ≥ 0 we have β ≥ −α. Clearly a and b now both have fill at least 1/2. The
emptier cannot empty from both a and b as p = 1, so even after the emptier empties from a
cup we still have backlog 1/2, as desired. J

Next we prove the Amplification Lemma, which takes as input a filling strategy alg(f)
and outputs a new filling strategy alg(f ′) that we call the amplification of alg(f). alg(f ′)
is able to achieve higher fill than alg(f); in particular, we will show that by starting with a
filling strategy alg(f0) for achieving constant backlog and then forming a sufficiently long
sequence of filling strategies alg(f0), alg(f1), . . . , alg(fi∗) with alg(fi+1) the amplification of
alg(fi), we get a filling strategy for achieving poly(n) backlog.

3 Recall that, in order for our lower-bound construction to be able to call itself recursively, we must
analyze the construction in the negative-fill version of the variable-processor cup game.
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I Lemma 12 (Adaptive Amplification Lemma). Let δ ∈ (0, 1/2] be a parameter. Let alg(f)
be an adaptive filling strategy that achieves backlog f(n) < n in the negative-fill variable-
processor cup game on n cups in running time T (n) starting from any initial cup state where
the average fill is 0.

Then there exists an adaptive filling strategy alg(f ′) that achieves backlog f ′(n) satisfying

f ′(n) ≥ (1− δ)f(b(1− δ)nc) + f(dδne)

and f ′(n) ≥ f(n) in the negative-fill variable-processor cup game on n cups in running time

T ′(n) ≤ n dδne · T (b(1− δ)nc) + T (dδne)

starting from any initial cup state where the average fill is 0.

Proof. Let nA = dδne , nB = n− nA = b(1− δ)nc.
The filler defaults to using alg(f) if

f(n) ≥ (1− δ)f(nB) + f(nA).

In this case using alg(f) achieves the desired backlog in the desired running time. In the
rest of the proof, we describe our strategy for the case where we cannot simply use alg(f) to
achieve the desired backlog.

Let A, the anchor set, be initialized to consist of the nA fullest cups, and let B
the non-anchor set be initialized to consist of the rest of the cups (so |B| = nB). Let
h = (1− δ)f(nB).

The filler’s strategy can be summarized as follows:
Step 1: Make µ(A) ≥ h by using alg(f) repeatedly on B to achieve cups with fill at least
µ(B) + f(nB) in B and then swapping these into A. While doing this the filler always places
1 unit of fill in each anchor cup.
Step 2: Use alg(f) once on A to obtain some cup with fill µ(A) + f(nA).
Note that in order to use alg(f) on subsets of the cups the filler will need to vary p.

We now describe how to achieve Step 1, which is complicated by the fact that the emptier
may attempt to prevent the filler from achieving high fill in a cup in B.

The filling strategy always places 1 unit of water in each anchor cup. This ensures that
no cups in the anchor set ever have their fill decrease. If the emptier wishes to keep the
average fill of the anchor cups from increasing, then emptier must empty from every anchor
cup on each step. If the emptier fails to do this on a given round, then we say that the
emptier has neglected the anchor cups.

We say that the filler applies alg(f) to B if it follows the filling strategy alg(f) on B
while placing 1 unit of water in each anchor cup. An application of alg(f) to B is said to be
successful if A is never neglected during the application of alg(f) to B. The filler uses a
series of phases that we call swapping-processes to achieve the desired average fill in A.
In a swapping-process, the filler repeatedly applies alg(f) to B until a successful application
occurs, and then takes the cup generated by alg(f) within B on this successful application
with fill at least µ(B) + f(|B|) and swaps it with the least full cup in A so long as the swap
increases µ(A). If the average fill in A ever reaches h, then the algorithm immediately halts
(even if it is in the middle of a swapping-process) and is complete.

We give pseudocode for the filling strategy in Algorithm 1.
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Algorithm 1 Adaptive Amplification (Step 1).

Input: alg(f), δ, set of n cups
Output: Guarantees that µ(A) ≥ h

A← nA fullest cups, B ← rest of the cups
Always place 1 fill in each cup in A
while µ(A) < h do . Swapping-Processes

Immediately exit this loop if ever µ(A) ≥ h
successful ← false
while not successful do

Apply alg(f) to B, alg(f) gives cup c
if fill(c) ≥ h then

successful ← true
Swap c with least full cup in A

Note that

µ(A) · |A|+ µ(B) · |B| = µ(AB) ≥ 0,

as µ(AB) starts as 0, but could become positive if the emptier skips emptyings. Thus we
have

µ(A) ≥ −µ(B) · b(1− δ)nc
dδne

≥ −1− δ
δ

µ(B).

Thus, if at any point B has average fill lower than −h · δ/(1− δ), then A has average fill at
least h, so the algorithm is finished. Thus we can assume in our analysis that

µ(B) ≥ −h · δ/(1− δ). (9)

We will now show that the filler applies alg(f) to B at most hnA total times. Each time the
emptier neglects the anchor set, the mass of the anchor set increases by 1. If the emptier
neglects the anchor set hnA times, then the average fill in the anchor set increases by h.
Since µ(A) started as at least 0, and since µ(A) never decreases (note in particular that cups
are only swapped into A if doing so will increase µ(A)), an increase of h in µ(A) implies that
µ(A) ≥ h, as desired.

Consider the fill of a cup c swapped into A at the end of a swapping-process. Cup c’s fill
is at least µ(B) + f(nB), which by (9) is at least

−h · δ

1− δ + f(nB) = (1− δ)f(nB) = h.

Thus the algorithm for Step 1 succeeds within |A| swapping-processes, since at the end of
the |A|-th swapping process either every cup in A has fill at least h, or the algorithm halted
before |A| swapping-processes because it already achieved µ(A) ≥ h.

After achieving µ(A) ≥ h, the filler performs Step 2, i.e. the filler applies alg(f) to A,
and hence achieves a cup with fill at least

µ(A) + f(|A|) ≥ (1− δ)f(nB) + f(nA),

as desired.
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Now we analyze the running time of the filling strategy alg(f ′). First, recall that in Step 1
alg(f ′) calls alg(f) on B, which has size nB, as many as hnA times. Because we mandate
that h < n, Step 1 contributes no more than (n · nA) · T (nB) to the running time. Step 2
requires applying alg(f) to A, which has size nA, once, and hence contributes T (nA) to the
running time. Summing these we have

T ′(n) ≤ n · nA · T (nB) + T (nA). J

We next show that by recursively using the Amplification Lemma we can achieve backlog
n1−ε.

I Theorem 13. There is an adaptive filling strategy for the variable-processor cup game on
n cups that achieves backlog Ω(n1−ε) for any constant ε > 0 of our choice in running time
2O(log2 n).

Proof. Take constant ε ∈ (0, 1/2). Let c, δ be constants that will be chosen (later) as
functions of ε satisfying c ∈ (0, 1), 0 < δ � 1/2. We show how to achieve backlog at least
cn1−ε − 1.

Let alg(f0) = trivalg, the algorithm given by Proposition 11; recall trivalg achieves
backlog f0(k) ≥ 1/2 for all k ≥ 2, and f0(1) = 0. Next, using the Amplification Lemma we
recursively construct alg(fi+1) as the amplification of alg(fi) for i ≥ 0. Define a sequence gi
with

gi =
{
d16/δe , i = 0,
bgi−1/(1− δ)c i ≥ 1.

We claim the following regarding this construction:

B Claim 14. For all i ≥ 0,

fi(k) ≥ ck1−ε − 1 for all k ∈ [gi]. (10)

Proof. We prove Claim 14 by induction on i. For i = 0, the base case, (10) can be made
true by taking c sufficiently small; in particular, taking c < 1 makes (10) hold for k = 1,
and, as g0 > 2, taking c small enough to make cg1−ε

0 − 1 ≤ f0(g0) = 1/2 makes (10) hold for
k ∈ [2, g0] by monotonicity of k 7→ ck1−ε − 14.

As our inductive hypothesis we assume (10) for fi; we aim to show that (10) holds for
fi+1. Note that, by design of gi, if k ≤ gi+1 then bk · (1− δ)c ≤ gi. Consider any k ∈ [gi+1].
First we deal with the trivial case where k ≤ g0. In this case

fi+1(k) ≥ fi(k) ≥ · · · ≥ f0(k) ≥ ck1−ε − 1.

Now we consider the case where k ≥ g0. Since fi+1 is the amplification of fi we have

fi+1(k) ≥ (1− δ)fi(b(1− δ)kc) + fi(dδke).

By our inductive hypothesis, which applies as dδke ≤ gi, bk · (1− δ)c ≤ gi, we have

fi+1(k) ≥ (1− δ)(c · b(1− δ)kc1−ε − 1) + c dδke1−ε − 1.

4 Note that it is important here that ε and δ are constants, that way c is also a constant.

ITCS 2021



16:16 The Variable-Processor Cup Game

Dropping the floor and ceiling, incurring a −1 for dropping the floor, we have

fi+1(k) ≥ (1− δ)(c · ((1− δ)k − 1)1−ε − 1) + c(δk)1−ε − 1.

Because (x− 1)1−ε ≥ x1−ε − 1, as x 7→ x1−ε is a sub-linear sub-additive function, we have

fi+1(k) ≥ (1− δ)c · (((1− δ)k)1−ε − 2) + c(δk)1−ε − 1.

Moving the ck1−ε to the front we have

fi+1(k) ≥ ck1−ε ·
(

(1− δ)2−ε + δ1−ε − 2(1− δ)
k1−ε

)
− 1.

Because (1− δ)2−ε ≥ 1− (2− ε)δ, a fact called Bernoulli’s Identity, we have

fi+1(k) ≥ ck1−ε ·
(

1− (2− ε)δ + δ1−ε − 2(1− δ)
k1−ε

)
− 1.

Of course −2(1− δ) ≥ −2, so

fi+1(k) ≥ ck1−ε ·
(

1− (2− ε)δ + δ1−ε − 2
k1−ε

)
− 1.

Because

−2
k1−ε ≥

−2
g1−ε

0
≥ −2(δ/16)1−ε ≥ −δ1−ε/2,

which follows from our choice of g0 = d16/δe and the restriction ε < 1/2, we have

fi+1(k) ≥ ck1−ε ·
(
1− (2− ε)δ + δ1−ε − δ1−ε/2

)
− 1.

Finally, combining terms we have

fi+1(k) ≥ ck1−ε ·
(
1− (2− ε)δ + δ1−ε/2

)
− 1.

Because δ1−ε dominates δ for sufficiently small δ, there is a choice of δ = Θ(1) such that

1− (2− ε)δ + δ1−ε/2 ≥ 1.

Taking δ to be this small we have,

fi+1(k) ≥ ck1−ε − 1,

completing the proof. We remark that the choices of c, δ are the same for every i in the
inductive proof, and depend only on ε. C

To complete the proof, we will show that gi grows exponentially in i. This implies that
there exists i∗ ≤ O(logn) such that gi∗ ≥ n, and hence we have an algorithm alg(fi∗) that
achieves backlog cn1−ε − 1 on n cups, as desired.

We lower bound the sequence gi with another sequence g′i defined as

g′i =
{

4/δ, i = 0
g′i−1/(1− δ)− 1, i > 0.
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Solving this recurrence, we find

g′i = 4− (1− δ)2

δ

1
(1− δ)i ≥

1
(1− δ)i ,

which clearly exhibits exponential growth. In particular, let i∗ =
⌈
log1/(1−δ) n

⌉
. Then,

gi∗ ≥ g′i∗ ≥ n, as desired.
Let the running time of fi(n) be Ti(n). From the Amplification Lemma we have following

recurrence bounding Ti(n):

Ti(n) ≤ n dδne · Ti−1(b(1− δ)nc) + Ti−1(dδne)
≤ 2n2Ti−1(b(1− δ)nc).

It follows that alg(fi∗), recalling that i∗ ≤ O(logn), has running time

Ti∗(n) ≤ (2n2)O(logn) ≤ 2O(log2 n),

as desired. J

Now we provide a construction that can achieve backlog Ω(n) in very long games. The
construction can be interpreted as the same argument as in Theorem 13 but with an extremal
setting of δ to Θ(1/n)5.

I Theorem 15. There is an adaptive filling strategy that achieves backlog Ω(n) in time
O(n!).

Proof. First we construct a slightly stronger version of trivalg that achieves backlog 1 on
n ≥ n0 = 8 cups, instead of just backlog 1/2; this simplifies the analysis.

B Claim 16. There is a filling algorithm trivalg2 that achieves backlog at least 1 on n0 = 8
cups.

Proof. Let trivalg1 be the amplification of trivalg using δ = 1/2. On 4 cups trivalg1 achieves
backlog at least (1/2)(1/2) + 1/2 = 3/4. Let trivalg2 be the amplification of trivalg1 using
δ = 1/2. On 8 cups trivalg2 achieves backlog at least (1/2)(3/4) + 3/4 ≥ 1. C

Let alg(f0) = trivalg2; we have f0(k) ≥ 1 for all k ≥ n0. For i > 0 we construct alg(fi) as
the amplification of alg(fi−1) using the Amplification Lemma with parameter δ = 1/(i+ 1).

We claim the following regarding this construction:

B Claim 17. For all i ≥ 0,

fi((i+ 1)n0) ≥
i∑

j=0

(
1− j

i+ 1

)
. (11)

Proof. We prove Claim 17 by induction on i. When i = 0, the base case, (11) becomes
f0(n0) ≥ 1 which is true. Assuming (11) for fi−1, we now show (11) holds for fi. Because fi
is the amplification of fi−1 with δ = 1/(i+ 1), we have by the Amplification Lemma

fi((i+ 1) · n0) ≥
(

1− 1
i+ 1

)
fi−1(i · n0) + fi−1(n0).

5 Or more precisely, setting δ in each level of recursion to be Θ(1/n), where n is the subproblem size;
note in particular that δ changes between levels of recursion, which was not the case in the proof of
Theorem 13.
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Since fi−1(n0) ≥ f0(n0) ≥ 1 we have

fi((i+ 1) · n0) ≥
(

1− 1
i+ 1

)
fi−1(i · n0) + 1.

Using the inductive hypothesis we have

fi((i+ 1) · n0) ≥
(

1− 1
i+ 1

) i−1∑
j=0

(
1− j

i

)
+ 1.

Note that(
1− 1

i+ 1

)
·
(

1− j

i

)
= i

i+ 1 ·
i− j
i

= i− j
i+ 1 = 1− j + 1

i+ 1 .

Thus we have the desired bound:

fi((i+ 1) · n0) ≥
i∑

j=1

(
1− j

i+ 1

)
+ 1 =

i∑
j=0

(
1− j

i+ 1

)
. C

Let i∗ = bn/n0c − 1, which by design satisfies (i∗ + 1)n0 ≤ n. By Claim 17 we have

fi∗((i∗ + 1) · n0) ≥
i∗∑
j=0

(
1− j

i∗ + 1

)
= i∗/2 + 1.

As i∗ = Θ(n), we have thus shown that alg(fi∗) can achieve backlog Ω(n) on n cups.
Let Ti be the running time of alg(fi). The recurrence for the running running time

of fi∗ is

Ti(n) ≤ n · n0Ti−1(n− n0) +O(1).

Clearly Ti∗(n) ≤ O(n!). J
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