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—— Abstract

A binary code Enc : {0,1}* — {0,1}" is (3 — ¢, L)-list decodable if for every w € {0,1}", there
exists a set List(w) of size at most I, containing all messages m € {0,1}" such that the relative

Hamming distance between Enc(m) and w is at most % — €. A g-query local list-decoder for Enc is a
randomized procedure Dec that when given oracle access to a string w, makes at most g oracle calls,
and for every message m € List(w), with high probability, there exists j € [L] such that for every
i € [k], with high probability, Dec® (i, j) = m,.

We prove lower bounds on ¢, that apply even if L is huge (say L = 2’“0'9) and the rate of Enc is
small (meaning that n > 2%):

For e = 1/k” for some constant 0 < v < 1, we prove a lower bound of ¢ = Q(logE#), where § is
the error probability of the local list-decoder. This bound is tight as there is a matching upper
bound by Goldreich and Levin (STOC 1989) of ¢ = O(%ﬁﬂ) for the Hadamard code (which
has n = 2F). This bound extends an earlier work of Grinberg, Shaltiel and Viola (FOCS 2018)
which only works if n < 2% and the number of coins tossed by Dec is small (and therefore does
not apply to the Hadamard code, or other codes with low rate).

For smaller ¢, we prove a lower bound of roughly ¢ = Q(ﬁ) To the best of our knowledge,
this is the first lower bound on the number of queries of local list-decoders that gives ¢ > k for
small e.

Local list-decoders with small € form the key component in the celebrated theorem of Goldreich
and Levin that extracts a hard-core predicate from a one-way function. We show that black-box
proofs cannot improve the Goldreich-Levin theorem and produce a hard-core predicate that is hard
to predict with probability % + ﬁ when provided with a one-way function f : {0,1}¢ — {0, 1},
where f is such that circuits of size poly(¢) cannot invert f with probability p = 1/ oVt (or even
p= 1/29“)). This limitation applies to any proof by black-box reduction (even if the reduction is
allowed to use nonuniformity and has oracle access to f).
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1 Introduction

We prove limitations on local list-decoding algorithms and on reductions establishing hard-core
predicates.

1.1 Locally list-decodable codes

List-decodable codes are a natural extension of (uniquely decodable) error-correcting codes,
as it allows (list) decoding for error regimes where unique decoding is impossible. This
is an extensively studied area; see [8] for a survey. In this paper, we will be interested in
list-decoding of binary codes.

» Definition 1 (List-decodable code). For a function Enc : {0,1}¥ — {0,1}", and w € {0,1}",
we define

Listt"(w) = {m € {0,1}"* : dist(Enc(m),w) < a}.!

We say that Enc is (v, L)-list-decodable if for every w € {0,1}", | List®™(w)| < L.

Enc
a

(w) on input w € {0,1}".
Local unique decoding algorithms are algorithms that given an index 7 € [k], make few

The task of algorithmic list-decoding is to produce the list List

oracle queries to w, and reproduce the bit m; (with high probability over the choice of
their random coins), where m denotes the unique codeword close to w. This notion of local
decoding has many connections and applications in computer science and mathematics [18].

We will be interested in local list-decoding algorithms that receive oracle access to a
received word w € {0,1}", as well as inputs ¢ € [k] and j € [L]. We will require that for
every m € List2"°(w), with high probability, there exists a j € [L] such that for every i € [k],
when Dec receives oracle access to w and inputs 4, j, it produces m; with high probability

over its choice of random coins. This motivates the next definition.

» Definition 2 (Randomized local computation). We say that a procedure P(i,r) locally
computes a string m € {0, 1}* with error &, if for every i € [k], Pr[P(i,R) =m;] > 1—§
(where the probability is over a uniform choice of the “string of random coins” R).

The definition of local list-decoders considers an algorithmic scenario that works in two
steps:

At the first step (which can be thought of as a preprocessing step) the local list-decoder

Dec is given oracle access to w and an index j € [L]. It tosses random coins (which we

denote by rshared),

At the second step, the decoder receives the additional index i € [k], and tosses additional

coins 7.

1 For two strings z,y € {0,1}" we use dist(z,y) to denote the relative Hamming distance between z and
y, namely, dist(z,4) = | {i € [n] : z: # yi} |/n.
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It is required that for every w € {0,1}" and m € List?™(w), with probability 2/3 over the
choice of the shared coins 7174, there exists j € [L] such that when the local list-decoder
receives j, it locally computes m (using its “non-shared” coins 7). The definition uses two
shared are “shared” between different choices of
i € [k] and allow different i’s to “coordinate”. The coins r, are chosen independently for

different choices of i € [k].

types of random coins because the coins 7

This is formally stated in the next definition.

» Definition 3 (Local list-decoder). Let Enc : {0,1}* — {0,1}" be a function. An (o, L,q,6)-
local list-decoder (LLD) for Enc is an oracle procedure Decl) that receives oracle access to a
word w € {0,1}"™, and makes at most q calls to the oracle. The procedure Dec also receives
nputs:

i € [k] : The index of the symbol that it needs to decode.

Jj €[L] : An index to the list.

Two strings r’"red r that are used as random coins.
It is required that for every w € {0,1}", and for every m € ListZ™(w), with probability at
least 2/3 over choosing a uniform string r"*°d  there exists j € [L] such that the procedure

P, j pevarea (i,7) = Dec® (i, j, r™ared 1)

locally computes m with error 6. If we omit §, then we mean § =1/3.

» Remark 4 (On the generality of Definition 3). The goal of this paper is to prove lower bounds
on local list-decoders, and so, making local list-decoders as general as possible, makes our
results stronger. We now comment on the generality of Definition 3.
In Definition 3 we do not require that L = | List2"¢(w)], and allow the local list-decoder
to use a larger L. This means that on a given w, there may be many choices of j € [L]
such that the procedure P,, ; jeharea (i, 7) = Dec® (4, 7, rshared ) Jocally computes messages
m ¢ List2™(w).
In Definition 3 we do not place any restriction on the number of random coins used by
the local list-decoder, making the task of local list-decoding easier.
We allow Dec to make adaptive queries to its oracle.
We are only interested in the total number of queries made by the combination of the
two steps. It should be noted that w.l.o.g., a local list-decoder can defer all its queries to
the second step (namely, after it receives the input ¢), and so, this definition captures
local list-decoding algorithms which make queries to the oracle at both steps.
To the best of our knowledge, all known local list-decoders in the literature are of the
form presented in Definition 3.

1.1.1 Lower bounds on the query complexity of local list-decoders

In this paper we prove lower bounds on the number of queries ¢ of (% —¢,L,q,0)-local
list-decoders. Our goal is to show that the number of queries ¢ has to be large, when € is
small. Our lower bounds apply even if the size of the list L is huge and approaches 2 (note
that a local list-decoder can trivially achieve L = 2 with a list of all messages). Our lower
bounds also apply even if the rate of the code is very small, and n > 2%.

We remark that this parameter regime is very different than the one studied in lower

bounds on the number of queries of local decoders for uniquely decodable codes (that is, for
1
4>
main focus in uniquely decodable codes is to show that local decoders for codes with “good

L = 1). By the Plotkin bound, uniquely decodable codes cannot have € < =, and so, the

rate” and “large” € = (1), must make many queries. In contrast, we are interested in the
case where € is small, and want to prove lower bounds that apply to huge lists and small rate.
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Lower bounds for large ¢

Our first result is a tight lower bound of ¢ = Q(logi#) on the number of queries, assuming
1

¢ is sufficiently large, namely e > 15 for some constant 0 < v < 1).

» Theorem 5 (Tight lower bounds for large €). There exists a universal constant v > 0 such
that for any L < 2k0'9, ee (k7 i), and § € (k77 %), we have that every (% —¢,L,q,9)-local
list-decoder for Enc : {0,1}* — {0,1}" must have q = Q(b%#).

Theorem 5 is tight in the sense that the Hadamard code (which has length n = 2¥) has
(3 —6L=0(1/e),q= O(bgﬁ#), d) local list-decoders [6]. In fact, the Hadamard code
was the motivation for this research, and is a running example in this paper.

Our results show that even if we allow list sizes L which approach 2%, it is impossible to
reduce the number of queries for the Hadamard code. Our results also show that even if we
are willing to allow very small rate n > 2%, and huge list sizes, it is impossible to have codes
whose local list-decoders make fewer queries than the local list-decoders for the Hadamard
code.

Comparison to previous work

Theorem 5 improves and extends an earlier work by Grinberg, Shaltiel and Viola [7] that
gave the same bound of ¢ = Q(logE#) for a more limited parameter regime: Specifically, in
[7], for the lower bound to hold, it is also required that n < 2K for some constant v > 0,
and that the total number of coins tossed by the local list-decoder is less than k* — log L.?
We stress that because of these two limitations, the lower bounds of [7] do not apply to the

Hadamard code and other low rate codes.

Extensions to large alphabet and erasures

The scenario that we consider in Theorem 5 has binary alphabet, and decoding from errors.

We remark that in the case of large alphabets, or decoding from erasures, there are local

log(l/é)) (

list-decoders which achieve ¢ = O( which is smaller than what is possible for binary

alphabet and decoding from errors), as was shown for the case of Hadamard codes in [11].

M) for decoding from

Our results extend to give a matching lower bound of ¢ = Q(
erasures (for any alphabet size), and also the same lower bound on decoding from errors for

any alphabet size. The exact details are deferred to the final version.

Lower bounds for small €

The best bound on ¢ that Theorem 5 (as well as the aforementioned lower bounds of [7])
can give is ¢ > k%1, The next theorem shows that even for small € < 1 /k, we can obtain a
lower bound on ¢ which is polynomial in 1/e.

» Theorem 6 (Lower bounds for small €). There exist universal constants [3,c1,co > 0 such

that for every L < 3-2%, 6 < % and € > % we have that every (% —¢, L, q,0)-local list-decoder
for Enc : {0,1}* — {0,1}™ must have q > m — colog L.

2 The work of [7] is concerned with proving lower bounds on the number of queries of “nonuniform
reductions for hardness amplification” [17, 15, 3, 7]. As explained in [17, 15, 3, 7] such lower bounds
translate into lower bounds on local list-decoders, by “trading” the random coins of a local list-decoder
for “nonuniform advice” for the reduction, and proving a lower bound on the number of queries made
by the reduction.
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Note that for sufficiently small € = 1/(log k)*™), we get g = Q7z55my)- It follows that
together, Theorems 5 and Theorem 6 give a lower bound of ¢ = 9(61/2%0(1)) that applies to
every choice of € > Q(ﬁ) To the best of our knowledge, Theorem 6 is the first lower bound
on local list-decoders that is able to prove a lower bound of ¢ > k (and note that this is what
we should expect when € < %) We also remark that the requirement that e is not too small
compared to n (as is made in Theorem 6) is required (as we cannot prove lower bounds on
the number of queries in case € < +).

Goldreich and Levin [6] showed that locally list-decodable codes with small € < 1/k can
be used to give constructions of hard-core predicates. We explain this connection in the next
section.

1.2 Hard-core predicates

The celebrated Goldreich-Levin theorem [6] considers the following scenario: There is a
computational task where the required output is non-Boolean and is hard to compute on
average. We would like to obtain a hard-core predicate, which is a Boolean value that is hard
to compute on average.

The Goldreich-Levin theorem gives a solution to this problem, and in retrospect, the
theorem can also be viewed as a (3 — ¢, L' = O(4), ¢ = O(%),6 = 5 )-local list-
decoder for the Hadamard code, defined by: Enc'®d : {0, 1}% — {0,1}"=2", where for every

r€{0,1}*

Enc?(z), = Z Xi Ty mod 2.
i€[k]

In retrospect, the Goldreich-Levin theorem can also be seen as showing that any locally
list-decodable code with suitable parameters can be used to produce hard-core predicates.

We consider two scenarios for the Goldreich-Levin theorem depending on whether we
want to extract a hard-core bit from a function g : {0, 1}* — {0, 1} that is hard to compute
on a random input, or to extract a hard-core bit from a one-way function f : {0,1}* — {0,1}*
that is hard to invert on a random output.

1.2.1 Functions that are hard to compute

Here the goal is to transform a non-Boolean function g that is hard to compute on a random
input, into a predicate gP™? that is hard to compute on a random input. More precisely:

Assumption: There is a non-Boolean function that is hard to compute with probability p.

Namely, a function g : {0,1}* — {0, 1}* such that for every circuit C of size s,

Pr [C(z) = g(z)] < p.?

Uy

Conclusion: There is a predicate gP™? : {0,1}* — {0,1} that is hard to compute with
probability % + e
Namely, for every circuit C’ of size s’,
1
Pr [C'(x) = "™ (@) < 2+

$<_UIZ’ 2

3 We use U, to denote the uniform distribution on ¢ bits.

ITCS 2021
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Requirements: The goal is to show that for every g, there exists a function ¢gP**? with as
small an € as possible, without significant losses in the other parameters (meaning that s’
is not much smaller than s, and ¢’ is not much larger than ¢).

The Goldreich-Levin theorem for this setting can be expressed as follows.

» Theorem 7 (Goldreich-Levin for functions that are hard to compute [6]). For every function
90,1} = {0, 1}, define gPet : {0,1}7=2 — {0,1} by g7*(w,7) = Enc"*(g(x)), and
p = 53w = poly(e). If for every circuit C of size s,

Pr [C(z) = g(=)] < p,

Uy
then for every circuit C' of size s’ = WM = s-poly(3),
1
Pr [C'(z) = ¢""*Yz)] < = +e.
I(—Uge 2

The Hadamard code can be replaced by any locally list-decodable code with list size L
for decoding from radius 1 — €, with ¢ queries for § = 1/(2k). For such a code (assuming
also that the local list-decoder can be computed efficiently) one gets the same behavior.
Specifically, if the initial function is sufficiently hard and p = 57,
function is hard to compute, up to % + € for circuits of size roughly s’ = s/q.

€

then the Boolean target

Is it possible to improve the Goldreich-Levin theorem for p < 1/s?

Suppose that we are given a function g : {0,1}* — {0, 1}* that is hard to compute for circuits
of size s = poly(¢), with success say p =1/ 2V%, When applying Theorem 7, we gain nothing
compared to the case that p = 1/poly(¢). In both cases, we can obtain € = 1/poly(¢), but not
smaller! (Since otherwise s’ = s - poly(e/f) is smaller than 1 and the result is meaningless).

This is disappointing, as we may have expected to obtain € = p = 1/2\/2, or at least, to
gain over the much weaker assumption that p = 1/poly(¢). This leads to the following open
problem:

» Open problem 8 (Improve Goldreich-Levin for functions that are hard to compute). Suppose
we are given a function g : {0,1}* — {0,1}* such that circuits C of size s = poly({) cannot
compute g with success p = 1/2\/2. Is it possible to convert g into a predicate with hardness
1tefore=1/2M7

This is not possible to achieve using the Hadamard code, because the number of queries
is ¢ > 1/€, and Theorem 7 requires s > s’ - ¢ > q > 1/e, which dictates that ¢ > 1/s.

Note that when p is small, we can afford list-decodable codes with huge list sizes of
L =~ 1/p. Motivated by this observation, we can ask the following question:

Is it possible to solve this open problem by substituting the Hadamard code with
a better code? Specifically, is it possible for local list-decoders to have ¢ = 60% if

allowed to use huge lists of size say 2‘/E, approaching the trivial bound 2¢? (Note that
in the Hadamard code, the list size used is poly(1/€) = poly(k) which is exponentially
smaller).

We show, in Theorem 6, that it is impossible to solve the open problem by replacing the
Hadamard code with a different locally list-decodable code.

The natural next question is whether we can use other techniques (not necessarily local
list-decoding) to achieve the goal stated above. In this paper, we show that this cannot be
done by black-box techniques:
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» Informal Theorem 9 (Black-box impossibility result for functions that are hard to compute).
If p > QK%, s = 2°0 s larger than some fized polynomial in £, and € = ﬁ, then there does
not exist a map that converts a function g into a function gP**d together with a black-box
reduction showing that gP*d is a hard-core predicate for g.

The parameters achieved in Theorem 9 rule out black-box proofs in which € = sTluw not
only for s = poly(¢) and p = 2=V? (as in Open problem 8) but also for p = 2= and
allowing much larger s as long as s = 2°().

The precise statement of Theorem 9 is stated in Theorem 19, and the precise model is
explained in Section 3.1.

To the best of our knowledge, this is the first result of this kind, that shows black-box
impossibility results for Open problem 8. Moreover, we believe that the model that we
introduce in Section 3.1 is very general and captures all known black-box techniques. In
particular, our model (which we view as a conceptual contribution) allows the reduction
to introduce nonuniformity when converting an adversary C’ that breaks gP™? into an
adversary C' that breaks g. See discussion in Remark 14.

1.2.2 Functions that are hard to invert

Here the goal is to transform a one-way function f into a new one-way function f**VOWF and
a predicate fP*4 such that it is hard to compute fP™d(z) given f2*VOWF(z). More precisely:
Assumption: There is a one-way function that is hard to invert with probability p.

Namely, a function f : {0,1}* — {0, 1}* such that for every circuit C of size s,

Pr [O(f(x)) € f7H(f(2))] < p.

w(—Ug
Conclusion: There is a one-way function fPe¥OWF . {0 1} — {0,1}*, and a predicate
fPred 40,1} — {0,1}, such that it is hard to predict fP*d(z) with advantage :+e

when given access to freVOWF(z),

Namely, for every circuit C” of size ',

Py [C/(fONT (2) = (e < 5 e

z<—ng -

The goal is to show that for every f, there exist functions freVOWF  fpred with as small €
as possible, without significant losses in the other parameters (meaning that: s’ is not
much smaller than s, and ¢ is not much larger than ¢).

The Goldreich-Levin theorem for this setting can be expressed as follows.

» Theorem 10 (Goldreich-Levin for functions that are hard to invert). For a function f :
{0,1}¢ — {0,1}¢, define frevOWE . 10,1124 — {0,1}2¢ by fRevOWVE (2 r) = (f(z),7), fPred:
{0,1}%¢ — {0,1} by frred(z,r) = EncHad(x),n, and p = 555 = poly(e). If for every circuit
C of size s,

Pr [O(f(x)) € f7(f(2))] < p,

a:(—Ug

then for every circuit C' of size s’ = m = s-poly(5),

Pr(C((f OV @) = e < 5 e

z<+Usy -

33:7
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» Remark 11. The problem of obtaining a hard-core predicate for one-way functions, is
interesting only if an unbounded adversary ¢ : {0,1} — {0,1} can predict fP**4(z) when
given fWOWF () as input. If this is not required, then one can take ¢’ = £+ 1, fPrd(z) =y,

frevOWE (g Zna1) = f(@a, ..., Tpy1). However, this is trivial, and is not useful in

and
applications. Therefore, when considering this problem, we will assume that there exists
such a ¢ : {0,1}¢ — {0,1}.

A natural example is the case where the original one-way function f and the constructed
function fWOWF are one-way permutations. In fact, in the case that f, frVOWF(z) are
permutations, the setup of “functions that are hard to invert” can be seen as a special case
of the setup of functions that are “hard to compute” by taking g = f~1, and gP™(y) =
fpred((fnewOWF)—l (y))

We point out that, in this setting, the circuit C” that is trying to invert f (that is, to
compute g) has an advantage over its counterpart in the setup of “functions that are hard
to compute”: It can use the efficient algorithm that computes the “forward direction” of f,
when trying to invert f. In terms of g, this means that the circuit C” can compute g—! for
free.

Is it possible to improve the Goldreich-Levin theorem for p < 1/s7

The same problem that we saw with functions that are hard to compute, also shows up
in the setup of functions that are hard to invert. Suppose that we are given a function
f:{0,1}* — {0,1}* that is hard to invert for circuits of size s = poly(¢) with success,
say, p =1/ 2V¢. When applying Theorem 10, we gain nothing compared to the case that
p = 1/poly(¢). In both cases, we can obtain € = 1/poly(¢), but not smaller! This is expressed
in the next open problem:

» Open problem 12 (Improve Goldreich-Levin for functions that are hard to invert). If we
are given a one-way function f : {0,1}* — {0,1}* such that circuits C of size s = poly()
cannot invert f with success p = 1/2ﬂ. Is it possible to obtain a hard-core predicate fP*ed
with hardness % + ¢ for e = 1/4“N) for some choice of one-way function freVOWF 2

In this paper, we show that this cannot be done by black-box techniques. The formulation
of Theorem 13 below, is very similar to that of Theorem 9 with some small modification in
the parameters.

» Informal Theorem 13 (Black-box impossibility result for functions that are hard to invert).
If p> 2745 s = 2000 s larger than some fized polynomial in £, and € = s“’% then there
does not exist a map that converts a function f into functions freVOWF fered 4o0ether with
a black-box reduction showing that fP™*% is a hard-core predicate for freVOWF,

To the best of our knowledge, this is the first result of this kind, that shows black-box
impossibility results for open problem 12. Moreover, we believe that the model that we
introduce is very general, and captures all known black-box techniques. In particular, our
model (which we view as a conceptual contribution) allows the reduction to compute the easy
direction of the function f, and to introduce nonuniformity when converting an adversary C’
that breaks fP™4 into an adversary C that breaks f.

» Remark 14 (The model we use for black-box proofs). Many different models of “black-box
techniques” for cryptographic primitives were studied in the literature and the reader is
referred to [12] for a discussion and a taxonomy. The model for “black-box technique” that
we use is described in detail in Section 3. The notion that we use is incomparable to the
ones discussed in [12], specifically:



N. Ron-Zewi, R. Shaltiel, and N. Varma

We require that there is a “transformation map” which given any function f produces
functions freVOWF and fpred however, unlike [12], we do not make the rquirement that
this transformation map can be efficiently computed.

We require that there is a reduction Red such that for any f, and for every adversary C’
(not necessarily efficient) breaking the security of fPred, Red”“" can be used to invert f-

However, we give reductions more power: We also allow Red to introduce nonuniformity
(that could depend on C’ and f). Formally, for every adversaty C’ that breaks the
security of P4 we require that there exists a short nonuniform advice string a such
that Redc/’f(~7a) inverts f.

1.3 More related work

Lower bounds on the number of queries of local decoders for uniquely decodable
codes

In this paper, we prove lower bounds on the number of queries of local list-decoders. There
is a long line of work that is concerned with proving lower bounds on the number of queries
of uniquely decodable codes. As we have explained in Section 1.1.1, the parameter regime
considered in the setting of uniquely decodable codes is very different than the parameter
regime we consider here [18].

Lower bounds on nonuniform black-box reductions for hardness amplification

A problem that is closely related to proving lower bounds on the number of queries of local
list-decoders is the problem of proving lower bounds on the number of queries of nonuniform
black-box reductions for hardness amplification. We have already discussed this line of work
[17, 15, 3, 7, 14] in Section 1.1.1.

Lower bounds on such reductions can be translated to lower bounds on local list-decoders
(as long as the number of coins tossed by the local list-decoders is small). We remark that
for the purpose of hardness amplification, it does not make sense to take codes with small
rate (namely, codes with n = 2’“0(1)). The focus of Theorem 5 is to handle such codes.

Additionally, when using codes for hardness amplification, it does not make sense to take
¢ < 1/k (or even € < 1/Vk). In contrast, the parameter regime considered in Theorem 6
focuses on small e.

Motivated by hardness amplification, there is also a related line of work studying limita-
tions on the complexity of local list decoders (and specifically, whether these decoders need
to compute the majority function) [17, 15, 9, 3, 7, 14].

Another approach to prove limitations on hardness amplification is to show that assuming
certain cryptographic assumptions, hardness amplification that is significantly better that
what is currently known is impossible, see e.g., [5] for a discussion.

Other improvements of the Goldreich-Levin theorem

In this paper, we are interested in whether the Goldreich-Levin theorem can be improved.
Specifically, we are interested in improvements where, when the original function has hardness
p = 2720 for polynomial size circuits, then the hard-core predicate has hardness % + € for
e = (~“(M) We remark that there are other aspects of the Goldreich-Levin theorem that one
may want to improve.
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When given an initial non-Boolean function on £ bits, the Goldreich-Levin theorem
produces a hard-core predicate on ¢/ = 2¢ bits. It is possible to make ¢ smaller (specifically,
¢ = £+ O(log(1/€)) by using other locally list-decodable codes instead of Hadamard.
Our limitations apply to any construction (even one that is not based on codes) and in
particular also for such improvements.

It is sometimes desirable to produce many hard-core bits (instead of the single hard-core
bit) that is obtained by a hard-core predicate. This can be achieved by using “extractor
codes” with a suitable local list-decoding algorithm. The reader is referred to [16] for
more details. Once again, our limitations obviously apply also for the case of producing
many hard-core bits.

Organization of the paper

We give a high level overview of our technique in Section 2. Some of our results on hard-core
predicates appear in Section 3 (which includes a precise description of the model and formal
restatements of Theorem 9) We refer the interested reader to the full version [13] for a precise
description of the model and formal restatement of Theorem 13. Section 4 contains some
concluding remarks and open problems. All proofs can be found in the full version.

2  Technique

In this section we give a high level overview of our technique. Our approach builds on
earlier work for proving lower bounds on the number of queries of reductions for hardness
amplification [17, 15, 7]. In this section, we give a high level overview of the arguments used
to prove our main theorems.

2.1 Local list-decoders on random noisy codewords

”

Following [17, 15, 7], we will consider a scenario which we refer to as “random noisy codewords
in which a uniformly chosen message m is encoded, and the encoding is corrupted by a binary
symmetric channel.

» Definition 15 (Binary symmetric channels). Let BSC} be the experiment in which a string
Z €{0,1}" is sampled, where Z = Z1, ..., Zy is composed of i.i.d. bits, such that for every
i €[n], Pr[Z; =1] = p.

» Definition 16 (Random noisy codewords). Given a function Enc : {0,1}* — {0,1}" and
p > 0 we consider the following experiment (which we denote by RNSYE“C):

A message m < {0,1}* is chosen uniformly.

A noise string z <~ BSCy) is chosen from a binary symmetric channel.

We define w = Enc(m) & z.
We use (m, z,w) < RNSYEnC to denote m, z,w which are sampled by this experiment. We
omit Enc if it is clear from the context.

Our goal is to prove lower bounds on the number of queries ¢ of a (3 — €, L, ¢, §)-local
list-decoder Dec for a code Enc : {0,1}¥ — {0,1}". For this purpose, we will consider the

experiment RNSY), for the values p = 1 — 2¢ and p = 1.

For p = % —2¢, and (m, z,w) + RNSY%%, by a Chernoff bound, the Hamming weight

of z is, with very high probability, less than % — €. This implies that dist(w, Enc(m)) < % — ¢,

meaning that m € List]?i (w). It follows that there must exist j € [L] such that when given

input j, and oracle access to w, the decoder Dec recovers the message m.
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For p = 3, and (m, z, w) + RNSY 1 the string z is uniformly distributed and independent

of m. Thls means that w = Enc(m ) @ z is uniformly distributed and independent of m.

Consequently, when Dec is given oracle access to w, there is no information in w about the
message m, and so, for every j € [L], the probability that Dec recovers m when given input
7 and oracle access to w is exponentially small.

Loosely speaking, this means that Dec can be used to distinguish BSC1 . from BSC1 .

It is known that distinguishing these two distributions requires many querles We state this
informally below.

» Informal Theorem 17. Any function T : {0,1}9 — {0, 1} that distinguishes BSCY _,_ from
2
BSCY with advantage §, must have ¢ = Q(logi#),
2

Thus, in order to prove a tight lower bound of ¢ = Q(bgiﬁ), it is sufficient to show
how to convert a (1 €, L, q,6)-local list-decoder Dec, into a function T that distinguishes

BSCq _,, from BSCq with advantage 6. Note that we can allow T to be a “randomized

procedure that tosses coins, as by an averaging argument, such a randomized procedure can
be turned into a deterministic procedure.

2.2  Warmup: the case of unique decoding

Let us consider the case that L = 1 (that is unique decoding). We stress that this case is
uninteresting, as by the Plotkin bound, it is impossible for nontrivial codes to be uniquely
decodable for € < i, and so, there are no local decoders for L =1 and € < %, regardless of
the number of queries. Nevertheless, this case will serve as a warmup for the approach we
use later.

Our goal is to convert Dec into a randomized procedure T : {0,1}9 — {0,1} that

distinguishes BSC(i_2 from BSCq The procedure T' will work as follows: On input

x + {0,1}9, we choose m «+ {0, 1} and ¢ < [k]. We then run Dec on input ¢, and when
Dec makes its t’th query ¢; € [n] to the oracle, we answer it by Enc(m)y, @ x¢. That is, we
answer as if Dec is run with input ¢ and oracle access to w = Enc(m) @ z, for z chosen from
a binary symmetric channel. The final output of T is whether Dec reproduced m;. This
procedure T simulates Dec" (i), and therefore distinguishes BSCq _,, from BSC%, implying
the desired lower bound. ’

Both Theorem 5 and Theorem 6 will follow by modifying the basic approach to handle
L > 1. In the remainder of this section, we give a high level overview of the methods that we
use. The formal section of this paper does not build on this high level overview, and readers
can skip this high level overview and go directly to the formal section if they wish.

2.3 Reducing to the coin problem for AC°

We start with explaining the approach of proving Theorem 6. Consider a randomized
procedure C that on input z € {0,1}", chooses m < {0,1}* and prepares w = Enc(m) @ 2.
The procedure then computes Dec" (i, j) for all choices of i € [k] and j € [L] and accepts if
there exists a j € [L] such that Dec"(:, j) recovers m. By the same rationale as in Section 2.2,
C distinguishes B801 . from B801 This does not seem helpful, because C receives n
input bits, and we cannot use Theorem 17 to get a lower bound on q.
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Inspired by a lower bound on the size of nondeterministic reductions for hardness
amplification due to Applebaum et al. [2], we make the following observation: The procedure
C' can be seen as k - L computations (one for each choice of ¢ € [k] and j € [L]) such that:

These k - L computations can be run in parallel.

Once these computations are made, the final answer C'(z) is computed by a constant-depth

circuit.

Each of the k- L computations makes ¢ queries into z, and therefore can be simulated by

a size O(q - 29) circuit of depth 2.

Overall, this means that we can implement C' by a circuit of size s = poly(k, L,2%) and
constant depth. (In fact, a careful implementation gives depth 3).

This is useful because there are lower bounds showing that small constant-depth circuits
cannot solve the “coin problem”. Specifically, by the results of Cohen, Ganor and Raz [4]
circuits of size s and depth d cannot distinguish BSC§726 from BSC% with constant advantage,
unless s > exp(€2(—t7)).* This gives the bound stated in Theorem 6.

We find it surprising that an information theoretic lower bound on the number of queries
of local list-decoders is proven by considering concepts like constant-depth circuits from
circuit complexity.

Extending the argument to lower bounds on hard-core predicates

It turns out that this argument is quite versatile, and this is the approach that we use to
prove Theorems 9 and 13. Loosely speaking, in these theorems, we want to prove a lower
bound on the number of queries made by a reduction that, when receiving oracle access to
an adversary that breaks the hard-core predicate, is able to compute (or invert) the original
function too well. Such lower bounds imply that such reductions do not produce small
circuits when used in black-box proofs for hard-core predicates.

We will prove such lower bounds by showing that a reduction that makes ¢ queries can
be used to construct a circuit of size s &~ 29 and constant depth that solves the coin problem.
Interestingly, this argument crucially relies on the fact that constant-depth circuits can
distinguish BSC from BSC5, with size poly(n/e) which follows from the classical results of
Ajtai on constant depth circuits for approximate majority [1].?

2.4 Conditioning on a good j

A disadvantage of the approach based on the coin problem is that at best, it can give lower
bounds of ¢ = Q(1/+/€), and cannot give tight lower bounds of the form g = Q(M). In

order to achieve such a bound (as is the case in Theorem 5) we will try to reduce to ETheorem
17 which does give a tight bound in case € is not too small.

Our approach builds on the earlier work of Grinberg, Shaltiel and Viola [7] that we
surveyed in Section 1.1.1. When given a (% —¢€,L,q,0)-local list-decoder Dec, we say that
an index j € [L] is decoding, if in the experiment (m, 2, w) € RNSY 1 _,., when Dec is given
oracle access to w and input j, then with probability 1 — 106 over ¢ € [k], we have that
Dec" (i, j) recovers m;.

These results of [4] improve upon earlier work of Shaltiel and Viola [15] that gave slightly worse bound.
These results are tight as shown by Limaye et al. [10] (that also extended the lower bound to hold for
circuits that are also allowed to use parity gates).

The proof of Theorem 13 uses an additional versatility of the argument (which we express in the
terminology of codes): The argument works even if the individual procedures that are run in parallel are
allowed to have some limited access to the message m, as long as this does not enable them to recover
m. This property is used to handle reductions in a cryptographic setup, where reductions have access
to the easy direction of a one-way function.
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We use a careful averaging argument to show that there exists an index j' € [L], and a fixed
choice of the random coins of Dec, such that j' is decoding with probability at least Q(1/L).
We then consider the experiment RNSY’%JE in which we choose (m, z,w) + RNSY%_QE
conditioned on the event {j’ is decoding}.

We have made progress, because in the experiment RNSY%_26 there exists a unique 5’
that is decoding, and so, when we implement the strategy explained in Section 2.2 we only
need to consider this single 7, which intuitively means that our scenario is similar to the
warmup scenario of unique decoding described in Section 2.2.

The catch is that when choosing (m, z, w) « RNSY'%_QE, we no longer have that z is
distributed like BSC%L_26 (as the distribution of z may be skewed by conditioning on the
event that j' is decoding).

Shaltiel and Viola [15] (and later work [7, 14]) developed tools to handle this scenario.
Loosely speaking, using these tools, it is possible to show that a large number of messages
m are “useful” in the sense that there exists an event A,, such that if we consider (m, z, w)
that are chosen from RNSY/%_26 conditioned on A,,, then there exists a subset B(m) C [n]

of small size b, such that zp(,,) is fixed, and z[,)\ p(m) is distributed like BSCZ:I;F.
1_2¢
If the number of possible choices for sets B(m) is small, then by the pigeon-hole principle,

there exists a fixed choice B that is good for a large number of useful messages m. This can
be used to imitate the argument we used in the warmup, and prove a lower bound.®

Extending the argument to the case of small rate

A difficulty, that prevented [7] from allowing length as large as n = 2%, is that B(m) is a
subset of [n], and so, even if b = |B| = 1, the number of possible choices for such sets is at
least n. For the pigeon-hole principle argument above, we need that the number of messages
(that is 2) is much larger than the number of possible choices for B(m) (which is at least
n). This means that one can only handle n which is sufficiently smaller than 2*, and this
approach cannot apply to codes with small rate (such as the Hadamard code).

We show how to solve this problem, and prove lower bounds for small rate codes. From
a high level, our approach can be explained as follows: We consider the distribution of
B(m) ={Y1(m) < ... <Yy(m)} for a uniformly chosen useful m. We first show that if all
the Y;’s have large min-entropy, then it is possible to prove a lower bound on ¢ by reducing
to Theorem 17 (the details of this are explained in the actual proof).

If on the other hand, one of the Y;’s has low min-entropy, then we will restrict our
attention to a subset of useful messages on which Yj is fixed. Loosely speaking, this reduces
b by one, while not reducing the number of useful messages by too much (because the low

min-entropy condition says that the amount of information that Y; carries on m is small).

In this trench warfare, in every iteration, we lose a fraction of useful messages, for the sake
of decreasing b by one. Thus, eventually, we either reach the situation that all the Y;’s have
large min-entropy, in which case we are done, or we reach the situation where B is fixed for
all messages which we can also handle by the above.

We can withstand the losses and eventually win if € is sufficiently larger than 1/v/k.

8 Loosely speaking, this is because for good messages, in the conditioned experiment, z is distributed like
BSC%_26 (except that some bits of z are fixed as a function of m). Furthermore, as there are many
good messages, the local list-decoder does not have enough information to correctly recover the message
when given oracle access to Enc(m) & BSCT = BSC".

2 2
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3 Limitations on black-box proofs for hard-core predicates

In this section, we present some of our results regarding the limitations on black-box proofs
for hard-core predicate theorems. Specifically, we state our results for functions that are
hard to compute, give a formal restatement of Theorem 9. Due to space limitation, the
formal model and precise statement of results for the case of functions that are hard to invert
appear in the full version [13].

3.1 The case of functions that are hard to compute
3.1.1 The model for black-box proofs

In this section, we state and explain our model for black-box proofs for hard core predicates,
in the setting of functions that are hard to compute. The formal definition is given in
Definition 18. Below, we provide a detailed explanation for the considerations made while
coming up with the formal definition. The reader can skip directly to the formal definition if
he wishes.

Explanation of the model

Recall that (as explained in Section 1.2.1) the Goldreich-Levin theorem (stated precisely in
Theorem 7) has the following form:
We are given an arbitrary hard function g : {0,1}* — {0,1}*. (Intuitively, it is assumed
that it is hard to compute g with success probability p).
There is a specified construction that transforms g into a predicate gP*ed : {0,1} — {0,1}
for some ¢’ related to £. (Intuitively, we will want to argue that gP™? is a hard-core
predicate that is hard to compute with success % +e).
We will model this construction as a map Con, which, given g produces ¢gP*. We place
no limitations on the map Con (and, in particular, do not require that gPred
efficiently computed if g is). This only makes our results stronger.
In the case of Theorem 7, we have that: Con(g) = gP**¢ where ¢/ = 2/ and we think of
the '-bit long input of gP**? as two strings x,r € {0, 1}*, setting:

g7 (x,r) = Enc"™(g(2)), = (D g(x)i - ;) mod 2.
1€[{)

can be

We model the proof showing that gP™d is a hard-core predicate in the following way: The
proof is a pair (Con, Red) where Red) is an oracle procedure, such that when Red(")
receives oracle access to an “adversary” h: {0,1} — {0,1} that breaks the security of
gPd, we have that Red” breaks the security of g. More precisely, we require that: for
every g: {0,1}* — {0,1}* and for every h : {0,1}* — {0,1} such that:

Pr [h(e) = " (@) 2 5 +e.

:EHU[/ -
it holds that:

Pr [Red"(z) = g(x)] > p.
a:(—Ug
In the actual definition, we will allow the reduction to have more power (which only
makes our results stronger). As we are aiming to prove a result on circuits (which
are allowed to use nonuniform advice) we will allow the reduction to receive an advice
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string « of length ¢, where, this advice string can depend on g and h. This leads to the
following strengthening of the requirement above. Namely, we will require that: for every
g:{0,1}* = {0,1}¢ and for every h : {0,1}¢ — {0,1}, that:

Pr [h(r) = g"*(2)] > 5 + e

CE(—U[/ -
there exists a € {0,1}! such that:

Pr [Red"(z,a) = g(z)] > p.
Uy
We remark that in many related settings (for example, “hardness amplification”; see
[15, 7], for a discussion) known proofs by reduction critically make use of the ability
to introduce nonuniformity, and so, we feel that when ruling out black-box proofs in
scenarios involving circuits, it is necessary to consider nonuniform black-box reductions.
We make no restrictions on the complexity of the procedure Red('), except for requiring
that it makes at most ¢ queries to its oracle (for some parameter ¢). Our black-box
impossibility results will follow from proving lower bounds on g¢.

Formal definition
We now give a formal definition of our model for black-box proofs for hard-core predicates.

» Definition 18 (Nonuniform black-box proofs for hard-core predicates for hard-to-compute
functions). A pair (Con,Red) is a nonuniform black-box proof for hard-core predicates for
hard-to-compute functions with parameters £,¢', p, €, that uses q queries, and t bits of advice if:
Con 4s a construction map which given a function g : {0,1}¢ — {0,1}*, produces a
function Con(g) = gP*d, where g4 : {0,1}* — {0,1}.
Red") is a reduction, that is an oracle procedure that, given oracle access to a function
h: {0, 1}2, — {0, 1}, makes at most q queries to its oracle.
Furthermore, for every functions g : {0,1}¢ — {0,1}¢ and h: {0,1}* — {0,1} such that:

P [(r) = " (@) > § +e.

(L‘<—U2/ -
there exists o € {0,1}*, such that:

Pr [Red"(z,a) = g(z)] > p.

z+Uy

The role of the number of queries, and black-box impossibility results

We now explain the role of the parameter ¢ (that measures the number of queries made by
Red) and why lower bounds on ¢ translate into black-box impossibility results.

For this purpose, it is illustrative to examine the argument showing that nonuniform black-
box proofs yield hard-core predicates: When given a pair (Con, Red) that is a nonuniform
black-box proof for hard-core predicates for hard-to-compute functions with parameters
0,0, p, €, that uses q queries, and t bits of advice, we obtain that for any function g : {0,1}¢ —
{0,1}¢, if there exists a circuit €’ : {0,1}¢" — {0,1} of size s’ such that:

Py [C/(a) =g (@)] > 5+

x<—U¢/ -

then there exists a € {0,1}, such that:
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Pr [Red” (z,0) = g(z)] > p.
x+Uy
Note that if the reduction Red can be implemented by a circuit of size r, then the circuit
C(z) = Red® (z,q) is a circuit of size:

s=r+t+gq-s

that computes g with success probability p.

It follows that in a black-box proof, with ¢ queries, and ¢ bits of advice, we get a hard-core
theorem that needs to assume that the original function g has hardness against circuits of
size s, for:

s>q+t.

3.1.2 Precise statements of limitations

Our main result on black-box proofs for hard-core predicates in the setting of functions that
are hard to compute is the following theorem.

» Theorem 19. There exists a universal constant B > 0 such that for every sufficiently large
£ and ¢ we have that if (Con, Red) is a nonuniform black-box proof for hard-core predicates
for hard-to-compute functions with parameters £, 0, p, e, that uses q queries, and t bits of

advice, and furthermore € > ﬁ, t <23 and p > 22%, then

4> 05) - Ot +0)

We now explain why Theorem 19 implies the informal statement made in Theorem 9.
Recall that in Section 3.1.1 we explained that when using a nonuniform black-box proof to
obtain a hard-core predicate, we get a hard-core predicate theorem in which s > ¢ + t.

Theorem 19 implies that for s > £2/# it is impossible for such a proof to establish ¢ = 1/ 55
(even if p is very small). This follows as otherwise, using the fact that s > g+t > t, we get
that:

¢> Q(Eiﬁ) _O(t+0) > Qs?) - O(t) > s,

which is a contradiction to s > ¢+t > ¢. In particular, the parameter setting considered in
Theorem 9, in which s = 2°¥) and e = s“"%’ is impossible to achieve.

4 Conclusion and open problems

Unlike Theorem 5 (that handles large €), Theorem 6 (that handles small €) does not achieve

a bound of ¢ = Q(bgi#), and only achieves a bound of Q(ﬁ) A natural open problem is

to improve the bound on ¢ for small € to match the bound for large e.
In the case of large ¢, Theorem 5 can be extended to handle local list-decoding from

M) on the number of queries of local

erasures, and gives a lower bound of ¢ = Q(
list-decoders that decode from a 1 — € fraction of erasures. We do not see how to extend the

proof of Theorem 6 to erasures.
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The model of black-box proofs that we introduce in Section 3 is quite general, and to the

best of our knowledge, covers all known proofs in the literature on hard-core predicates for

general one-way functions. Is it possible to circumvent the black-box limitations and answer

open problems 8 and 12 for specific candidates for one-way functions?

More generally, is it possible to come up with non-black-box techniques that circumvent

the limitations?
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