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Abstract

We construct an explicit and structured family of 3XOR instances which is hard for O(
√

log n)
levels of the Sum-of-Squares hierarchy. In contrast to earlier constructions, which involve a random
component, our systems are highly structured and can be constructed explicitly in deterministic
polynomial time.

Our construction is based on the high-dimensional expanders devised by Lubotzky, Samuels
and Vishne, known as LSV complexes or Ramanujan complexes, and our analysis is based on two
notions of expansion for these complexes: cosystolic expansion, and a local isoperimetric inequality
due to Gromov.

Our construction offers an interesting contrast to the recent work of Alev, Jeronimo and the
last author (FOCS 2019). They showed that 3XOR instances in which the variables correspond to
vertices in a high-dimensional expander are easy to solve. In contrast, in our instances the variables
correspond to the edges of the complex.
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38:2 Explicit SoS Lower Bounds from High-Dimensional Expanders

1 Introduction

We describe a new family of instances of 3XOR, based on high-dimensional expanders, that are
hard for the Sum-of-Squares (SoS) hierarchy of semidefinite programming relaxations, which
is the most powerful algorithmic framework known for optimizing over constraint satisfaction
problems. Unlike previous constructions of 3XOR hard instances for SoS, our construction
is explicit, as it is based on the explicit construction of high-dimensional expanders due to
Lubotzky, Samuels and Vishne [34, 35], which we refer to henceforth as LSV complexes.

I Theorem 1.1. There exists a constant µ ∈ (0, 1) and an infinite family of 3XOR instances
on n variables, constructible in deterministic polynomial time, satisfying the following:

No assignment satisfies more than 1− µ fraction of the constraints.
Relaxations obtained by O(

√
logn) levels of the SoS hierarchy fail to refute the instances.

We remark that the result in the above theorem differs from the previous results for
random instances of 3XOR, proved by Grigoriev [20] and Schoenebeck [36], in two ways.

While random instances are known to be hard for Ω(n) levels of the SoS hierarchy, the
above theorem only gives a gap for Ω(

√
logn) levels.

Our instances on the LSV complexes exhibit an integrality gap of 1 − µ vs. 1, while
random instances exhibit a gap of 1/2 + ε vs. 1. However, our construction can also be
combined with reductions in the SoS hierarchy [37] hierarchy, reductions can be used to
obtain explicit 3XOR instances with a gap of 1/2 + ε vs. 1− ε for any ε > 0. Indeed, this
yields explicit hard instances with optimal gaps for all approximation resistant predicates
based on pairwise independent subgroups [10].

Structured instances from high-dimensional expanders

High-dimensional expanders (HDXs) are a high-dimensional analog of expander graphs. In
recent years they have found a variety of applications in theoretical computer science, such
as efficient CSP optimization [3], improved sampling algorithms [6, 4, 5, 11], quantum LDPC
codes [17, 30], novel lattice constructions [29], direct sum testing [19], and others. Explicit
constructions of HDXs have also led to improved list-decoding algorithms [13, 2] and to
sparser agreement tests [14, 12]. In this work, we show how these explicit constructions can
be used to construct explicit hard instances for SoS.

High-dimensional expanders are bounded-degree (hyper)graphs (or rather, simplicial
complexes) with certain expansion properties. A simplicial complex is a non-empty collection
of down-closed sets. Given a simplicial complex X, we will refer by X(i) the family of all
i-dimensional sets in X (i.e., sets of size i+ 1). The dimension of the simplicial complex X is
the maximal dimension of any set in it. It will be convenient to refer to the sets of dimension
0, 1, 2, 3 as vertices, edges, triangles, tetrahedra, respectively. Thus, a graph G = (V,E) is a
1-dimensional complex, while in this work we will be using complexes of dimension at least
2. Given a 2-dimensional complex X = (X(0), X(1), X(2)), there are two natural ways to
construct a 3XOR instance based on X – a vertex-variable construction and an edge-variable
construction. Let β : X(2)→ F2 be any F2-valued function on the set X(2) of triangles.

Vertex-variable construction: The 3XOR instance corresponding to (X,β) consists of the
following constraints: xu + xv + xw = β{u,v,w} for each {u, v, w} ∈ X(2).

Edge-variable construction: The 3XOR instance corresponding to (X,β) consists of the
following constraints: x{u,v} + x{v,w} + x{w,u} = β{u,v,w} for each {u, v, w} ∈ X(2).
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The vertex-variable construction whose underlying structure is a high-dimensional ex-
pander has been studied by Alev, Jeronimo and the last author [3]. They gave an efficient
algorithm for approximating vertex-variable constraint satisfaction problems (not necessarily
3XOR) on an underlying high-dimensional expander. Their result is a generalization to higher
dimensions of the corresponding result for graphs that “CSPs are easy on expanders” [7, 24].
They prove this by showing that certain types of random walks on vertices converge very
fast on high-dimensional expanders. However, the same analysis fails to show a similar
result for the edge-variable construction, as the corresponding random walk on edges of a
high-dimensional expander does not mix. Our work shows that this difference isn’t just a
technical limitation of their analysis; it is inherent. The edge-variable variant is truly hard, at
least for SoS. This demonstrates an interesting subtlety in the structure of high-dimensional
expanders, and how it relates to optimization.

To understand our edge-variable construction better, it will be convenient to set up some
notation. Let Ci denote the set of all F2-valued functions on X(i). For each 0 ≤ i < d,
consider the operator δi : Ci → Ci+1 defined as follows:

δif(s) :=
∑
u∈s

f(s− {u}).

This is usually referred to as the coboundary operator. Let Bi be the image of δi−1, and let
Zi be the kernel of δi. Clearly, Bi, Zi ⊆ Ci. Furthermore, it is not hard to see that Bi ⊆ Zi.
It easily follows from the definitions that the edge-variable construction corresponding to
(X,β) is a satisfiable instance iff β ∈ B2.

Typically, soundness of SoS-hard instances is proved by choosing β at random from C2.
In contrast, we construct our explicit instances by choosing the function β more carefully, and
relying on a certain type of expansion property of the complex. Recall that B2 ⊂ Z2, and
the instance is satisfiable iff β ∈ B2. Complexes for which B2 = Z2 are said to have trivial
second cohomology. We will be working with complexes with non-trivial second cohomology,
i.e., B2 6= Z2. This lets us choose a β ∈ Z2 \B2 to prove soundness. It is known that the
explicit constructions of HDXs due to Lubotzky, Samuels and Vishne [34, 35] have non-trivial
second cohomology.1 In fact, these complexes have the stronger property (due to a theorem
of Evra and Kaufman [16]) that all β ∈ Z2 \B2 are not only not in B2, but in fact far from
any function in B2. This latter property follows from the cosystolic expansion of the complex,
and forms the basis for the soundness of our instances.

How do we prove the completeness of our instance, namely, that SoS fails to detect that
it is a negative instance? The LSV construction is a quotient of the so-called affine building
which is, from a topological point of view, a simple “Euclidean-like” object with trivial
cohomologies. The hardness of our instance comes from the inherent difference between the
LSV complex and the building, which cannot be seen through local balls whose radius is at
most the injectivity radius of the complex, in our case Θ(logn). Locally, the LSV quotient is
isomorphic to the building. However, unlike the building, the LSV complex is a quotient with
non-trivial cohomologies. The hardness comes from the fact that local views cannot capture
the cohomology, which is a global property. Given this observation, the proof of completeness
can be carried out following the argument of Ben-Sasson and Wigderson [8] that any short
resolution proof is narrow, and Grigoriev [20] and Schoenebeck [36]’s transformation from
resolution lower bounds to SoS lower bounds.

1 More accurately, their construction depends on the group defining the quotient. They show that a
certain choice of groups yields non-trivial second cohomology.

ITCS 2021
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Technically, we rely on two very different types of expansion or isoperimetry. In our proof
of completeness, we rely on an isoperimetric inequality called Gromov’s filling inequality,
that says that balls are essentially the objects with smallest boundary in any CAT(0) space
(a class of spaces that includes both Euclidean spaces and the affine building). In our proof
of soundness, we rely on the cosystolic expansion of the LSV complex, as proven by Evra and
Kaufman [16], which implies that any non-trivial element in the cohomology has constant
weight. Both of these statements are related to expansion, yet they are distinct from other
notions of expansion used in previous SoS lower bounds. Interestingly, both notions are
natural generalizations of edge-expansion to higher dimensions. Isoperimetric expansion is a
classical notion asking for the smallest possible boundary of a body with certain volume. In
graphs, it is common to interpret this notion as the edge-expansion, bounding the smallest
possible number of edges leaving a set, relative to its size. Moving to higher dimensions, there
are several nonequivalent [23] ways to generalize edge-expansion, most notably a spectral
variant and a topological variant. The topological variant is the one we require for our
soundness analysis. This type of expansion is an extension of the notion of coboundary
expansion first defined by Linial-Meshulam [32] and then independently by Gromov [22].
This is a subtle notion that is related to the local-testability of the cocycle space, see [28].

Relation to previous SoS gap constructions

All previous constructions of hard instances for SoS can be viewed in the vertex/edge-variable
framework (typically vertex-variable). To the best of our knowledge, all known hard instances,
proving inapproximability in the SoS hierarchy, are random instances; either both the complex
X and the function β are random, or just the function β is random. The proof of SoS hardness
of these random instances relies on very strong expansion of the underlying complex [36] or
on certain pseudorandom properties [31], both of which are not yet known to be explicitly
constructible. Moreover, the randomness in the choice of the β specifying the right-hand
sides of the equations in these constructions, is used for a union bound over all (exponentially
many) assignments to the variables, and such arguments are often difficult to derandomize.

On the other hand, explicit hard instances for SoS are known in proof complexity (e.g.,
Tseitin tautologies on expanders). However, these instances are only minimally unsatisfiable,
and transforming them to an integrality gap instance requires a highly non-local reduction
(such as the PCP theorem). While SoS gap instances can easily be combined with local
reductions, this is not true for non-local ones.

In contrast to the above, our integrality gap instances are “anti-random”. They are very
structured and easily distinguishable from random instances. For example, all balls around
a vertex up to some radius are identical and have very specific structure. Naturally, the
typical analysis that works for random instances cannot work here. For example, soundness
for random instances is based on choosing a random β and using a union-bound argument to
show that with high probability, every solution violates nearly half of the constraints. In
contrast, for us, a random β is not a good choice because the local structure will quickly
detect local contradictions, ruining the completeness altogether.

Open directions

Our construction of explicit hard SoS instances based on HDXs begs several questions, some
of which we discuss below.

Improved soundness Our construction yields 3XOR hard instances which are at most (1−µ)-
satisfiable, owing to the cosystolic expansion of the underlying HDX (more precisely,
CoSys2(X) ≥ µ, see Section 2.2 for the definition of CoSys2). Coupled with reductions
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in the SoS hierarchy [37], this yields 3XOR hard instances which are at most (1/2 + ε)-
satisfiable for every ε ∈ (0, 1). Can we obtain such a result directly from the HDX
construction (bypassing reductions), say by constructing HDXs which satisfy CoSys2(X) ≥
1/2− ε? In addition to maintaining the HDX structure, bypassing reductions would also
allow for perfect completeness, which is lost while using NP-hardness reductions.

Fooling more levels of the SoS hierarchy Our hard instances fool only O(
√

logn) levels of
the SoS hierarchy, as our argument is based on the injectivity radius of the complexes,
which is O(logn), and we suffer a further square-root loss due to the use of Gromov’s
isoperimetry inequality. It is possible that a much stronger lower bound holds for these
instances. Can one construct explicit hard instances that fool linearly many levels of the
SoS hierarchy?

HDX dimension and CSP definition We find the contrast between the vertex-variable and
edge-variable constructions baffling: while the vertex-variable construction is easy, our
result demonstrates the hardness of the edge-variable construction. As we go to higher
dimensions of HDX, there are more ways to define CSPs. Which of these are easy and
which are hard?

2 Preliminaries

2.1 The Sum-of-Squares Hierarchy
The sum-of-squares hierarchy2 provides a hierarchy of semidefinite programming (SDP)
relaxations, for various combinatorial optimization problems. Figure 1 describes the relaxation
given by t levels of the hierarchy for an instance I of 3XOR in n variables, with m constraints
of the form xi1 + xi2 + xi3 = βi1i2i3 over F2. We also use I to denote the set of all tuples
{i1, i2, i3} present as constraints. A solution to the relaxation is specified by a collection of
unit vectors {uS}S⊆[n],|S|≤t, satisfying the constraints in the program. The objective equals
the fraction of constraints “satisfied” by the SDP solution. To prove a lower bound on the

maximize 1
2 + 1

2m
·

∑
{i1,i2,i3}∈I

(−1)βi1i2i3 ·
〈
u{i1,i2,i3}, u∅

〉
subject to 〈uS1 , uS2〉 = 〈uS3 , uS4〉 ∀ S1∆S2 = S3∆S4, |S1| , . . . , |S4| ≤ t

‖uS‖ = 1 ∀S, |S| ≤ t

Figure 1 Relaxation for 3XOR given by t levels of the SoS hierarchy.

value of the SDP relaxation, we will use the following result, which shows the existence of
vectors uS yielding an objective value of 1, when the given system of XOR constraints does
not have any “low-width” refutations. Formally, we consider a system called XOR-resolution,
where the only rule allows us to combine two equations `1 = b1 and `2 = b2 to derive the
equation `1 + `2 = b1 + b2. A refutation is a derivation of 0 = 1. The width of a refutation
is the maximum number of variables in any equation used in the refutation. We include a
proof of the following lemma in Appendix A.

2 For more on Sum-of-Squares, see the recent monograph by Fleming, Kothari and Pitassi [18].

ITCS 2021
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I Lemma 2.1 ([36, Lemma 13], [37, Theorem 4.2]). Let Λ be a system of equations in n

variables over F2, which does not admit any refutations of width at most 2t. Then there
exist vectors {uS}S⊆[n],|S|≤t satisfying the constraints in Figure 1, such that for all equations∑

i∈T xi = bT in Λ with |T | ≤ t, we have 〈uT ,u∅〉 = (−1)bT .

2.2 Simplicial Complexes
A simplicial complex X is a non-empty collection of sets (known as faces) which is closed
downwards. The i-dimensional faces X(i) are all sets of size i + 1. The dimension of the
complex is the maximal dimension of a face. Faces of that dimension are known as facets.
Faces of dimensions 0, 1, 2, 3 are called vertices, edges, triangles, and tetrahedra, respectively.

Graphs are 1-dimensional simplicial complexes. The skeleton of a simplicial complex is
the graph obtained by retaining only faces of dimension at most 1.

Links. Let X be a d-dimensional simplicial complex. The link Xs of a face s ∈ X(i) is a
simplicial complex of dimension d− (i+ 1) given by Xs(j) := {t : s ∪ t ∈ X(j + i+ 1)}. In
other words, Xs contains all faces in X which contain s, with s itself removed.

Balls. Let X be a simplicial complex. A ball of radius r around a vertex v is the subcomplex
induced by all vertices at distance at most r from v, as measured on the skeleton of X. That
is, the subcomplex contains a face of X if it contains all the vertices of the face.

Covering map. A covering map from a simplicial complex Y to a simplicial complex X is a
surjective map ψ : Y (0)→ X(0) from the vertices of Y to X such that for every k ≤ dimY

the image of every k-face {v0, . . . , vk} ∈ Y (k) is a k-face {ψ(v0), . . . , ψ(vk)} ∈ X(k). We
then say that X is covered by Y .

Chains. Fix a d-dimensional simplicial complex X. Let Ci := Ci(X,F2) be the set of all
functions from X(i) to F2. Elements of Ci are also known as i-chains.

For an i-chain f , we define |f | to be the number of non-zero elements in f . For two
i-chains f and g, we define the distance between f and g to be dist(f, g) := |f + g|.

Inner product. For f, f ′ ∈ Ci, let us denote by 〈f, f ′〉i the following sum modulo 2:

〈f, f ′〉i :=
∑

s∈X(i)

f(s)f ′(s).

This is not an inner product in the usual sense as we are working over a field of non-zero
characteristic, but it is convenient notation. We will usually drop the subscript i.

Dual space. Given any subspace V ⊂ Ci, the dual of V (under 〈·, ·〉i) is defined as:

V ⊥ := {f ∈ Ci | for all g ∈ V, 〈f, g〉i = 0}.

Boundaries, Cycles, Homology. The boundary operator ∂i : Ci → Ci−1 is given by

∂if(s) :=
∑

t∈X(i) : t⊃s

f(t).
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It gives rise to boundaries Bi and cycles Zi:

Bi := im ∂i+1, Zi := ker ∂i.

In the case of graphs, Z1 consists of all sums of cycles (in the usual sense).
The coboundary operator δi : Ci → Ci+1, which is the adjoint of the boundary operator,

is given by

δif(t) :=
∑

s∈X(i) : s⊂t

f(s) =
∑
u∈t

f(t− {u}).

It gives rise to coboundaries and cocycles:

Bi := im δi−1, Zi := ker δi.

We will usually drop the subscript i when invoking ∂, δ.
It is easy to see that Bi ⊂ Zi (every boundary is a cycle) and Bi ⊂ Zi (every coboundary

is a cocycle). For example, in a 2-dimensional complex, the boundary of every triangle is
a cycle. We call such cycles trivial cycles. Modding out by trivial cycles and cocycles, we
obtain the homology and cohomology spaces

Hi := Zi/Bi, Hi := Zi/Bi.

The dimensions of these spaces (which are identical) measure the number of “holes” in a
particular dimension. Nice complexes (such as the buildings considered below) have no holes.

The following claim shows that that the coboundary operator is the adjoint of the
boundary operator.

B Claim 2.2. Let f ∈ Ci, g ∈ Ci−1. Then 〈f, δg〉i = 〈∂f, g〉i−1.

Proof.

〈f, δi−1g〉i =
∑
t∈X(i)

f(t) · δi−1g(t) =
∑
t∈X(i)

f(t) ·

 ∑
s∈X(i−1) : s⊂t

g(s)


=

∑
s∈X(i−1)

 ∑
t∈X(i) : t⊃s

f(t)

 · g(s) = 〈∂if, g〉i−1 . C

The following two claims show that the dimensions of homology and cohomology spaces
are identical.

B Claim 2.3. Zi = (Bi)⊥, Zi = (Bi)⊥.

Proof. Zi = ker ∂i = ker δ∗i−1 = (im δi−1)⊥ = (Bi)⊥ . C

B Claim 2.4. dimHi = dimHi

Proof.

dimHi = dimZi − dimBi

= dimCi − dimBi − dimBi [By Claim 2.3]
= dimZi − dimBi [By Claim 2.3]
= dimHi . C

ITCS 2021
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Cosystoles. We define, following Evra and Kaufman [16, Definition 2.14], the i-cosystole of
a complex X to be the minimal (fractional) size of f ∈ Zi \Bi,

CoSysi(X) := min
f∈Zi\Bi

|f |/|X(i)|.

2.3 The Building B(d+1)

The infinite k-regular tree is the unique connected k-regular graph without cycles. Affine
buildings are higher-dimensional analogs of the infinite k-regular tree. For d = 1, the
one-dimensional affine building B(1) is the k-regular tree. For higher dimensions they are
regular in the sense that all vertex links are bounded and identical in structure, they are
connected and contractible,3 and so have vanishing cohomologies, that is, the cohomology
spaces H1, . . . ,Hd−1 are trivial, where d is the dimension.

We won’t describe B(d+1) any further; the interested reader can check [26, 1]. A crucial
property of B(d+1) which we will need in the sequel is its being a CAT(0) space,4 which is
a geometric definition capturing non-positive curvature; see [9] for more information. The
property of being CAT(0) has the following implication, due to Gromov [21, 25, 38]:

I Theorem 2.5 (Gromov’s filling inequality for CAT(0) spaces). For every cycle f ∈ Z1 there
is a filling g ∈ C2 such that f = ∂g and |g| = O(|f |2).

Gromov’s filling inequality is an isoperimetric inequality. It generalizes the classic
isoperimetric inequality in the plane, which states that any simple closed curve of length L
encloses a region whose area is at most L2/4π.

The isoperimetric inequality in the plane can be stated in an equivalent way: the boundary
of any bounded region of area A is a curve whose length is at least

√
4πA. This inequality

fails for unbounded regions, which could have infinite area but finite boundary (for example,
consider the complement of a circle). In the same way, Gromov’s inequality doesn’t imply
that each g ∈ C2 satisfies |∂g| = Ω(

√
|g|). Rather, we have to replace |g| with minh∈Z2 |g+h|.

Gromov’s filling inequality also applies to i-chains, with an exponent of i+ 1, but we will
only need the case i = 1.

In the sequel, we will apply Gromov’s filling inequality not to the building itself, but
rather to balls in the building. The CAT(0) property almost immediately implies that a ball
in a CAT(0) space is itself CAT(0) [9, Exercise II.1.6]. Furthermore, it is well-known that
CAT(0) spaces are contractible, and so have vanishing homologies.

I Lemma 2.6. Balls in B(d+1) have vanishing homologies and satisfy Gromov’s filling
inequality.

2.4 The LSV quotient
Whereas the affine building is an infinite simplicial complex, Lubotzky, Samuels and Vishne
constructed a growing family of finite complexes that are obtained from quotients of the
affine building. These quotients have a growing number of vertices, and locally, in a ball

3 A complex is contractible, roughly speaking, if it can be continuously deformed to a point (technically,
it is homotopy-equivalent to a point). Since (co)homologies are preserved by such deformations, all
(co)homologies of a contractible complex vanish.

4 A space is CAT(0) if for every triangle x, y, z, the distance between x and the midpoint of y, z is at
most the corresponding distance in a congruent triangle in Euclidean space.
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around each vertex, the complex is isomorphic to the affine building. Moreover, they gave
a very explicit algorithm for constructing these complexes by first constructing a Cayley
graph with an explicit set of generators, and then the higher dimensional faces are simply
the cliques in the Cayley graph.

I Theorem 2.7 (Lubotzky, Samuels, Vishne [34, Theorem 1.1]). Let q be a prime power, d ≥ 2.
For every e > 1 the group G = PGLd(Fpe) has an (explicit) set of

[
d
1
]
q

+
[
d
2
]
q

+ . . .+
[
d
d−1
]
q

generators, such that the Cayley complex of G with respect to these generators is a Ramanujan
complex X covered by B(d)(F ) for F = Fq((y)).

The precise definition of “Ramanujan complex” is not important for this context. For us,
there are three important aspects of this theorem: efficient construction, local structure, and
global structure.

Efficient construction Firstly, the fact that the complex is constructible in polynomial time.
Local structure Next, we highlight the fact that locally the complex looks like the building.

The fact that X is covered by B(d) means that the neighborhood of a vertex in X and in
B(d) look exactly the same. It turns out that for the LSV complexes this continues to be
true also for balls of larger radius around any vertex. This is a higher-dimensional analog
of the graph property of containing no short cycles (locally looking like a tree). Define
the injectivity radius of X to be the largest r such that the covering map B(d) ψ→ X is
injective from balls of radius ≤ r in B(d) and the ball of radius ≤ r in X. We do not
mention the centers of the balls as they are all isomorphic.
I Theorem 2.8 (Lubotzky and Meshulam [33], see also [15, Corollary 5.2]). Let X be the
LSV complex above. Then the injectivity radius 5 r(X) of X satisfies

r(X) ≥
logq |X|

2(d− 1)(d2 − 1) −
1
2

where |X| is the number of vertices in X.
Global structure Finally, we look at the second cohomology group of the LSV complexes.

Kaufman, Kazhdan and Lubotzky [27] showed that the groups defining the LSV quotient
complexes can be chosen so that the second homology is non-empty.
I Proposition 2.9 (Kaufman, Kazhdan, Lubotzky [27, Proposition 3.6]). There is an
infinite and explicit sequence of LSV complexes with a non-vanishing second cohomology.
We remark that Kaufman, Kazhdan and Lubotzky [27] proved that these complexes exist.
To show that they are also efficiently constructible, we look into their proof to recall the
construction: start with any LSV complex X viewed as a Cayley graph of a group G.
Find some element of order 2 in G (such an element always exists), and then quotient
X by this element, thus obtaining a complex Y that is itself is a Ramanujan complex
because it is a quotient of one. Y is clearly efficiently constructible from X, and has half
as many vertices. This construction shows (see [27, Proposition 3.5]) that H1(Y ) 6= 0.
Furthermore, the proof of [27, Proposition 3.6] shows that because G has “property T”
one can deduce also that H2(Y ) 6= 0.

5 This theorem was proven by Lubotzky and Meshulam [33]. They stated their theorem using a slightly
different definition for injectivity radius but one can prove that the two definitions coincide in this case.
This was reproven by Evra, Golubev and Lubotzky [15] who use the definition of injectivity radius that
is convenient for us.
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Evra and Kaufman proved [16, Theorem 1] that quotients of B(d) (and even a more
general class of complexes) are so-called “cosystolic expanders” which in particular implies
the following.
I Theorem 2.10 (Evra and Kaufman [16, Part of Theorem 1]). Let {Xn} be a family of
LSV complexes. There exists some constant µ > 0 that depends only on q and d but not
on the size n of the complex, such that every f ∈ Z2(X) \ B2(X) must have weight at
least µ · |X(2)|.

3 Main Result

3.1 Local Geometry of LSV Complexes
The infinite sequence of complexes we will be working with are the LSV complexes described in
Section 2.4 above. The properties we care about are (1) that they are efficiently constructible,
(2) that small balls in these complexes are isomorphic to the affine building, which satisfies
certain isoperimetric inequalities because it is a CAT(0) space, and (3) that each complex
has a two-dimensional cocycle with linear distance from the set of coboundaries. The second
and third properties provide the tension between the local and the global structure of these
complexes that we now harness for our hardness.

To construct an SDP solution, we will need to show that our instance based on the LSV
complex “locally looks satisfiable”. To this end, we will first develop some local properties of
the LSV complex.

Note that each h ∈ C2 corresponds to a set of triangles. For the following statements,
we consider two triangles to be connected if they share an edge. This can be used to define
connected components. Note that if h can be split into connected components h1, . . . , hs,
then the components correspond to disjoint sets of triangles. Moreover, no triangle in hi
shares an edge with a triangle in hj when i 6= j, which also implies that the boundaries ∂hi
and ∂hj correspond to disjoint sets of edges.

We prove the following claims by mapping small connected sets in X(2) to corresponding
sets in the infinite building B. The first proposition shows that there can be no small
non-trivial cancellations (i.e., not coming from tetrahedra).

I Proposition 3.1. Let h0 ∈ C2 be a connected set of triangles such that |h0| < r and
∂h0 = 0. Then h0 ∈ B2.

Proof. Since |h0| < r, there is a ball N of radius r that contains the support of h0. By
assumption, the covering map ψ : B → X has injectivity radius of at least r. This means
that there is a radius-r ball N̂ = ψ−1(N) in B that is isomorphically mapped by ψ to
N. Look at ĥ0 = ψ−1(h0) ∈ C2(N̂), the chain isomorphic to h0 in the building. Clearly
∂ĥ0 = ψ−1(∂h0) = 0, and since balls in the building have zero homologies by Lemma 2.6,
we deduce that ĥ0 itself must be a boundary, i.e. there must be some ĝ0 ∈ C3(N̂) such that
∂ĝ0 = ĥ0. Moving back to X, we see that g0 := ψ(ĝ0) ∈ C3(X) necessarily satisfies ∂g0 = h0,
and so h0 ∈ B2. J

This proposition states that locally (i.e., within the injective radius r), Z2 looks like B2.
We thus have a complex whose cohomology group is non-trivial, yet locally, the homology
group “looks” trivial. Note that this is a twist on what we had claimed in the introduction,
a complex whose cohomology group is non-trivial, yet locally, the cohomology group “looks”
trivial. However, these are identical statements owing to Claim 2.4.

The next proposition shows that Gromov’s filling inequality in the infinite building B can
be used to yield a similar consequence for small sets in the finite complex X.
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I Proposition 3.2. Let h0 ∈ C2 be a connected set of triangles such that |h0| < r and
|h0| ≤ |h0 + h| for all h ∈ B2. Then, |∂h0| ≥ c · |h0|1/2, where c > 0 is an absolute constant.

Proof. As before, the support of h0 is contained in a ball N of X which is isomorphic under
ψ to a ball N̂ in B. Let ĥ0 = ψ−1(h0) ∈ C2(B), and let f̂0 = ∂ĥ0. We now apply the filling
theorem of Gromov, which holds in N̂ due to Lemma 2.6, to deduce that there is some ĥ1
that fills f̂0, namely ∂ĥ1 = f̂0, and whose size is at most |ĥ1| = O(|f̂0|2).

Now ∂(ĥ0 − ĥ1) = f̂0 − f̂0 = 0. Since the ball N̂ has zero homologies by Lemma 2.6,
ĥ0 − ĥ1 itself must be a boundary: there must be some ĝ ∈ C3(N̂) such that ∂ĝ = ĥ0 − ĥ1.
Pushing ĝ and ĥ1 back to X, we get g = ψ(ĝ) and h1 = ψ(ĥ1), which satisfy ∂g = h0 − h1.
At this point we have a small h1 that is close via a boundary to h0. Finally, observe that
f0 = ∂h0 satisfies f0 = ψ−1(f̂0). So

|f0| = |f̂0| ≥ c · |ĥ1|1/2 = c · |h1|1/2 ≥ c · |h0|1/2,

where the last inequality used that |h0| ≤ |h0 + (h1 − h0)|, since h1 − h0 = ∂g ∈ B2. J

3.2 Fooling Ω(
√

log n) levels of SoS Hierarchy
Let X be a d-dimensional LSV complex, with |X(1)| = n and non-trivial second cohomology
group, as per Proposition 2.9. Below, we construct an instance of 3XOR in n variables using
this complex, and prove a lower bound on the integrality gap of the relaxation obtained by
Ω(
√

logn) levels of the SoS hierarchy.

Construction

We construct a system of equations on X by putting a variable x{a,b} for each edge {a, b} ∈
X(1) of the complex, and an equation

x{a,b} + x{b,c} + x{c,a} = β{a,b,c}

for each triangle {a, b, c} ∈ X(2), where β is an arbitrary element of Z2 \B2.
Recall that X can be constructed efficiently. Given X, we can find a vector β ∈ Z2 \B2

using elementary linear algebra. Therefore the entire system can be constructed efficiently.

Soundness

Soundness of this system follows easily from the fact that the cosystole is large.

B Claim 3.3 (Soundness). Every assignment to the system defined above falsifies at least µ
fraction of the equations.

Proof. An assignment to the variables is equivalent to an f ∈ C1. Every equation satisfied
by f is a triangle in which δf({a, b, c}) = β{a,b,c}, and so the number of unsatisfied equations
is dist(δf, β) = |δf + β|. Since δf ∈ B2 and β ∈ Z2 \ B2, also δf + β ∈ Z2 \ B2, and so
|δf + β|/|X(2)| ≥ CoSys2(X) ≥ µ. In other words, the assignment falsifies at least a µ
fraction of the equations. C

The main work is to prove completeness, namely to show that the system looks locally
satisfiable.
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Completeness

Our main result is that this system appears satisfiable to the Sum-of-Squares hierarchy with
O(
√

logn) levels. Grigoriev [20] and Schoenebeck [36] showed that to prove such a statement
it suffices to analyze the refutation width of the system of equations (see Lemma 2.1). If the
refutation width is at least w, then w/2 levels of the Sum-of-Squares hierarchy cannot refute
the system.

A system of linear equations over F2 can be refuted using a proof system known as
XOR-resolution, in which the only inference rule is: given `1 = b1 and `2 = b2, deduce
`1 + `2 = b1 + b2 mod 2; here `1, `2 are XORs of variables, and b1, b2 are constants. A
refutation has the structure of a directed acyclic graph (DAG) where each non-leaf node has
two incoming edges. A refutation is a derivation which starts with the given linear equations,
placed at the leaves of a DAG, and reaches the equation 0 = 1 at the root of the DAG. The
width of a linear equation ` = b is the number of variables appearing in `. The width of a
refutation is the maximum width of an equation in any of the nodes of the DAG.

In the remainder of this section, we prove the following theorem, which together with
Lemma 2.1 implies Theorem 1.1.

I Theorem 3.4. The construction above requires width at least Ω(
√
r) to refute in XOR-

resolution, where r = Θ(logn) is the injectivity radius of the complex.

The proof follows classical arguments of Ben-Sasson and Wigderson [8] regarding lower
bounds on resolution width, which were also used in the proof of Schoenebeck [36]. Whereas
Ben-Sasson and Wigderson relied on boundary expansion, we rely on Gromov’s filling
inequality (and so lose a square root).

Suppose we are given a refutation for this system, and consider the corresponding DAG.
Each leaf ν in the DAG is labeled by a triangle Tν ∈ X(2). Define

hν := 1Tν ∈ C2, bν := βTν ∈ F2.

For each inner node ν in the DAG, let ν1, ν2 be its two incoming nodes. Define inductively,

hν := hν1 + hν2 ∈ C2, bν := bν1 + bν2 ∈ F2.

I Proposition 3.5. For every node ν, bν = 〈β, hν〉.

Proof. This is immediate by following inductively the structure of the DAG. J

As in [8], we next define a complexity measure for each node of the DAG. While in [8] the
complexity measure is based on the number of “leaf equations” used to derive the one at a
given node, we will need to discount sets of triangles corresponding to tetrahedra, as these
cannot lead to contradictions. Recall that B2 = im ∂3 is the set of triangle chains that “come
from” tetrahedra chains, which we consider as the “trivial” cycles. We define a complexity
measure at each node,

κ(ν) := dist(hν , B2) = min
h∈B2

|hν + h|

that measures the distance of hν from these trivial cycles. The complexity measure κ satisfies
the following sub-additivity property.
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I Proposition 3.6. If ν is an inner node in the DAG with ν1, ν2 its two incoming nodes,
then

κ(ν) ≤ κ(ν1) + κ(ν2).

Proof. Let h1, h2 ∈ B2 be such that κ(ν1) = |hν1 + h1| and κ(ν2) = |hν2 + h2|. Recall that
hν = hν1 + hν2 . Then, we have

κ(ν1) + κ(ν2) = |hν1 + h1|+ |hν2 + h2| ≥ |hν1 + hν2 + h1 + h2|
= |hν + h1 + h2| ≥ κ(ν). J

We also need the fact that the complexity of a node with a contradiction must be non-zero.

I Proposition 3.7. If κ(ν) = 0 then bν = 0.

Proof. If κ(ν) = 0 then hν ∈ B2. Hence bν = 〈β, hν〉 = 0 since β ∈ Z2 = (B2)⊥
(Claim 2.3). J

Next, we consider the width of each node in the DAG. For a node ν, let

fν := ∂hν ∈ C1.

Thus fν indicates the set of variables appearing in the left-hand side of the equation on node
ν. So the width of the system is the maximum, over all nodes ν in the DAG, of |fν |.

We can now prove Theorem 3.4 using the above complexity measure, and results from
Section 3.1.

Proof of Theorem 3.4. Let ν∗ denote the root of the DAG. By virtue of being a refutation,
bν∗ = 1 while fν∗ = 0. In other words, ∂hν∗ = fν∗ = 0, which means that hν∗ ∈ Z2. Since
bν∗ = 1, we also have by Proposition 3.7 that κ(ν∗) > 0.

Let h ∈ B2 be such that κ(ν∗) = |hν∗ + h|, and let h1, . . . , hs be the disjoint connected
components of hν∗ + h. We will first show that κ(ν∗) = |hν∗ + h| ≥ r. Assuming κ(ν∗) < r,
we have that

|h1|+ · · ·+ |hs| = |hν∗ + h| < r.

Also, since

∂h1 + · · ·+ ∂hs = ∂(hν∗ + h) = ∂hν∗ = 0,

we must have that ∂hi = 0 for each i ∈ [s], since connected components have disjoint
boundaries. Applying Proposition 3.1 to each hi, we get that hi ∈ B2 for each i ∈ [s].
However, this implies hν∗ + h ∈ B2 and hence κ(ν∗) = 0, which is a contradiction.

Using sub-additivity (Proposition 3.6), κ(ν∗) ≥ r, and the fact that the leaves of the DAG
satisfy κ(ν) = 1, we get that there must be some internal node ν for which r/2 ≤ κ(ν) < r.
We can find such a node by starting at the root and always going to the child with higher
complexity, until reaching a node ν such that κ(ν) < r. We will prove that for such a node,
we must have |fν | = Ω(

√
r).

As before, let h ∈ B2 now be such that κ(ν) = |hν + h|, and let h1, . . . , hs be the disjoint
connected components of hν + h. We have that |hi| ≤ |hν + h| < r for each i ∈ [s]. By the
minimality of |hν + h|, we also have that for any h′ ∈ B2 and any i ∈ [s],

|hi|+ |hν + h− hi| = |hν + h| ≤ |hν + h+ h′| ≤ |hi + h′|+ |hν + h− hi|.
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Thus, |hi| is also minimal for each i, and we can apply Proposition 3.2 to each connected
component hi, to obtain

|fν | = |∂(hν + h)| = |∂h1|+ · · ·+ |∂hs| ≥ c · |h1|1/2 + · · ·+ c · |hs|1/2

≥ c · (|h1|+ · · ·+ |hs|)1/2

= c · |hν + h|1/2 ≥ (c/
√

2) ·
√
r. J
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A Proof of Lemma 2.1

I Lemma 2.1 ([36, Lemma 13], [37, Theorem 4.2]). Let Λ be a system of equations in n

variables over F2, which does not admit any refutations of width at most 2t. Then there
exist vectors {uS}S⊆[n],|S|≤t satisfying the constraints in Figure 1, such that for all equations∑

i∈T xi = bT in Λ with |T | ≤ t, we have 〈uT ,u∅〉 = (−1)bT .

Proof. We assume that Λ is closed under width-2t XOR-resolution, replacing Λ by its closure
if necessary, and also that it contains the trivial equation 0 = 0. We will now construct the
unit vectors uS .

Define a relation ∼ on subsets of [n] of size at most t as follows: S ∼ T iff there exists an
equation

∑
i∈S∆T xi = b in Λ for some b ∈ F2. It is easy to check that the relation is reflexive

and symmetric. It is also transitive since for S1 ∼ S2, S2 ∼ S3, we can add the corresponding
equations to obtain one of the form

∑
i∈S1∆S3

xi = b for some b ∈ F2. Since |S1| , |S3| ≤ t,
this equation has at most 2t variables and must be in Λ by the closure property. Thus, we
have an equivalence relation which partitions all sets of size at most t into equivalence classes,
say C1, . . . , Cs. Choose an arbitrary representative Ri for each class Ci, and let R(S) denote
the representative for the class containing S. For convenience, we choose R(∅) = ∅.

We now construct the SDP vectors. Let e1, . . . , es be an arbitrary orthonormal set of
vectors, and assign uRi = ei for all i ∈ [s]. Note that for any S with |S| ≤ t, there must be a
unique equation of the form

∑
i∈S∆R(S) xi = bS in Λ, since two different equations can be

used to obtain a width-2t refutation. We assign the vector for S as

uS := (−1)bS · uR(S).

The vectors are unit-length by construction. Note that if S1∆S2 = S3∆S4, we must have
S1 ∼ S2 ⇔ S3 ∼ S4. If S1 6∼ S2, then we have that 〈uS1 ,uS2〉 = 〈uS3 ,uS4〉 = 0. Otherwise,
we have R(S1) = R(S2), R(S3) = R(S4), and equations of the form∑

i∈Sj∆R(Sj)

xi = bSj , j ∈ {1, 2, 3, 4}.

We must also have bS1 + bS2 = bS3 + bS4 , since otherwise we obtain two different equations
with variables in S1∆S2 = S3∆S4, yielding a refutation. This suffices to satisfy the SDP
constraints, since

〈uS1 ,uS2〉 = (−1)bS1 +bS2 ·
〈
uR(S1),uR(S2)

〉
= (−1)bS1 +bS2 = (−1)bS3 +bS4 = 〈uS3 ,uS4〉.

Finally, for any equation
∑
i∈T xi = bT in Λ with |T | ≤ t, we get 〈uT ,u∅〉 = (−1)bT , since

we must have T ∼ ∅ and R(T ) = ∅. J
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