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Abstract
We consider financial networks, where banks are connected by contracts such as debts or credit
default swaps. We study the clearing problem in these systems: we want to know which banks end
up in a default, and what portion of their liabilities can these defaulting banks fulfill. We analyze
these networks in a sequential model where banks announce their default one at a time, and the
system evolves in a step-by-step manner.

We first consider the reversible model of these systems, where banks may return from a default. We
show that the stabilization time in this model can heavily depend on the ordering of announcements.
However, we also show that there are systems where for any choice of ordering, the process lasts
for an exponential number of steps before an eventual stabilization. We also show that finding the
ordering with the smallest (or largest) number of banks ending up in default is an NP-hard problem.
Furthermore, we prove that defaulting early can be an advantageous strategy for banks in some
cases, and in general, finding the best time for a default announcement is NP-hard. Finally, we
discuss how changing some properties of this setting affects the stabilization time of the process,
and then use these techniques to devise a monotone model of the systems, which ensures that every
network stabilizes eventually.
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1 Introduction

The world’s financial system is a highly complex network where banks and other financial
institutions are interconnected by various kinds of contracts. These connections create a
strong interdependence between the banks: if one of them goes bankrupt, then this also
affects others, causing a cascading effect through the network. Such ripple effects also had
an important role in the financial crisis of 2008, and hence there is an increasing interest in
the network-based properties of these systems.

One fundamental question in these networks is the so-called clearing problem: given
a network of banks and contracts, we need to decide which of the banks can fulfill their
payment obligations, and which of the banks cannot, and thus have to report a default. This
question is of high interest both for financial authorities and for the banks involved.

With two simple kinds of contracts, one can already build a financial network model
that captures a wide range of phenomena in real-life financial systems. Previous work has
mostly focused on the equilibrium states in these models, i.e. the fixed final states where
the recovery rates of banks are consistent with their current assets and liabilities. However,
in practice, most events in a financial system happen gradually, one after another: a single
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bank announces a default, which might prompt another bank to reevaluate its situation, and
also need to call being in default. This sequential development is an inherent part of the way
financial networks behave, and as such, it is crucial to understand.

In particular, there is a range of natural questions that only arise if we study how
the system develops in a step-by-step fashion. Can we reach every equilibrium state in a
sequential manner? How does the ordering of default announcements influence the final
outcome? Is there an optimal strategy of timing the announcements, either from a financial
authority’s or a single bank’s perspective? How long can the sequential process last, and in
particular, is it guaranteed to always stabilize eventually?

In this paper we analyze the development of financial systems in a sequential model,
where banks update their situation one after another. We first study the reversible model,
which is a natural sequential setting in such networks. We analyze this model from three
main perspectives:

Stabilization time: We show that a system can easily keep running infinitely in this
model. Moreover, the time of stabilization heavily depends on the ordering of default
announcements. We also present a more complex system that does stabilize eventually,
but only after exponentially many steps.
Globally best solution: We show that finding the ordering which results in the smallest
(or largest) number of defaulting banks in the final state is NP-hard.
Defaulting strategies: We study the best defaulting strategy of a single bank, and show
that surprisingly, a bank may achieve the best outcome by announcing its default as early
as possible. We also prove that in general, finding the best time to report a default is
NP-hard.

Moreover, since the possibly infinite runtime is the most unrealistic aspect of this model,
we analyze the reasons behind this phenomenon, and we discuss how it can be avoided in
our sequential model.

Monotone sequential model: We show that with two minor changes to the setting (a more
sophisticated update rule and a slightly different handling of defaulting banks), we can
develop a monotone model variant where the recovery rate of banks can only decrease,
and the system is always guaranteed to stabilize after quadratically many steps. We also
compare this setting to the reversible model in terms of defaulting strategies.

2 Related Work

The network-based analysis of financial systems has been rapidly gaining attention in the last
decade. Most studies are based on the early financial network model of Eisenberg and Noe [11],
which only assumes simple debt contracts between the banks. The propagation of shocks has
been analyzed in many variants of this base model over the last decade [9, 5, 4, 1, 13, 15]; in
particular, the model has been extended by default costs [20], cross-ownership relations [24, 12]
or game-theoretic aspects [6].

However, the common ground in these model variants is that they can only describe long
positions between the banks: a better outcome for one bank always means a better (or the
same) outcome for other banks. This already allows us to capture how the default of a single
bank can cause a ripple effect in the system, but it also ensures that there is always an
equilibrium which is simultaneously best for all banks [11, 20]. As such, long positions cannot
represent e.g. the opposing interests of banks in real-world financial systems. In particular,
banks in practice often have short positions on each other when a worse situation for one
bank is more favorable to another bank, mostly due to various kinds of financial derivatives.
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The recent work of Schuldenzucker et. al. [22] presents a more refined model where the
network also contains credit default swaps (CDSs) besides regular debt contracts. CDSs are
financial derivatives that essentially allow banks to bet on the default of another bank in the
system; they have played a dominant role in the financial crisis of 2008 [14], and have been
thoroughly studied in the financial literature [10, 16]. While CDSs are still a rather simple
kind of derivative, they already allow us to model short positions in the network; as such,
their introduction to the system leads to remarkably richer behavior. In our paper, we also
assume these two kinds of contracts in the network.

The work of [22, 23] discusses various properties of this new model: they show that
systems may have multiple solutions (equilibrium states) in this model, and finding a solution
is PPAD-complete. They also show that with default costs, these systems might not have a
solution at all, and deciding whether a solution exists becomes NP-hard. The work of [19]
studies a range of objective functions for selecting the best solution in this model, showing
that the best equilibrium is not efficiently approximable to a nc factor for any c < 1

4 . The
work of [18] analyzes the model from a game-theoretical perspective, discussing how the
removal or modification of contracts can lead to more favorable equilibria for the acting
banks, and showing that such operations can lead to game-theoretical dilemmas.

However, all these results only analyze the model in terms of equilibrium states. This
is indeed important when the market is hit by a large shock, and a central authority has
to analyze the whole system, identify its equilibria, and possibly select one of them to
artificially implement. However, apart from these rare occasions, the network mostly evolves
sequentially, with banks announcing defaults in a step-by-step manner. For an understanding
of real-world networks, it is also essential to study this gradually developing behavior of the
process besides the equilibrial outcomes.

Sequential models of financial networks have already been studied in several papers;
however, most of them consider some variant of the debt-only model with long positions
[7, 2]. The paper of [22] notes that sequential clearing in their model would be dependent
on the order of defaults, but does not investigate this direction any further. At the other
end of the scale, the work of [3] introduces a very general sequential model (where payment
obligations can be a function of all banks and all previous time steps), with a specific focus
on expressing concrete real-world examples in this setting. As such, to our knowledge, there
is no survey that considers a simple network model with both long and short positions, and
analyzes the step-by-step development of financial systems in this model.

Finally, we point out that the clearing problem indeed has a high relevance in practice,
e.g. when financial authorities conduct stress tests to analyze the sensitivity of real-world
networks. One concrete example for a study of this problem is the European Central Bank’s
stress test framework [8].

3 Model Definition

3.1 Banks and contracts
Our financial system model consists of a set of banks (or nodes) B. We denote individual
banks by u, v or w, and the number of banks by n = |B|. Banks are connected by two kinds
of contracts that both describe a specific payment obligation from a debtor bank u to a
creditor bank v. The amount of payment obligation is called the weight of the contract.

The simpler kind of connection is a simple debt contract, which obliges the debtor u to
pay a specific amount δ to the creditor v. This liability is unconditional, i.e. u owes this
amount to v in any case.

ITCS 2021
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Besides debts, banks can also enter into conditional debt contracts where the payment
obligation depends on some external event in the system. One of the most frequent forms
of such a conditional debt is a credit default swap (CDS), which obliges u to pay a specific
amount to v in case a specific third bank w (the reference entity) is in default. More
specifically, if w can only fulfill a rw portion of its payment obligations (known as the
recovery rate of w), then a CDS of weight δ implies a payment obligation of δ · (1− rw) from
u to v. For simplicity, we assume that all conditional debt contracts are CDSs.

In practice, CDS contracts can, for example, be used by a bank as an insurance policy
against the default of its debtors. If v suspects that its debtor w might not be able to fulfill
its payment obligation, then v can enter into a CDS contract (as creditor) in reference to
w; if w goes into default and is indeed unable to pay, then v receives some payment on this
CDS instead. However, banks may also enter into CDSs for other reasons, e.g. speculative
bets about future developments in the market. As a sanity assumption, we assume that no
bank can enter into a contract with itself or in reference to itself.

Besides the contracts between banks, a financial system is described by the amount of
funds (in financial terms: external assets) owned by each bank, denoted by ev for a specific
bank v. The external assets and the incoming payments describe the total amount of assets
available to v, while the outgoing contracts describe the total amount of payment obligations
of v. If v is not able to fulfill all these obligations from its assets, then we say that v is in
default. If v is in default, then the fraction of liabilities that v is able to pay is the recovery
rate of v, denoted by rv. Note that rv ∈ [0, 1], and v is in default if rv < 1. We represent the
recovery rates of all banks in a recovery rate vector r ∈ [0, 1]B .

For an example, consider the financial system in Figure 1a with 3 banks. The banks have
external assets of eu = 2, ev = 1 and ew = 0. Bank u has a debt of weight 2 towards both v
and w, and there is a CDS of weight 2 from w to v, with u as the reference entity. In this
network, u has a total payment obligation of 4, but only has assets of 2, so u is in default,
with a recovery rate of ru = 2

4 = 1
2 . Bank u must use its funds of 2 to pay 1 unit of money

to both w and v, proportionally to its obligations. Since ru = 1
2 , the CDS from w to v will

induce a payment obligation of 2 · (1 − ru) = 1. The payment of 1 coming from u allows
w to fulfill this obligation to v, thus narrowly avoiding default (hence rw = 1). Finally, v
receives 1 unit from both u and w, has funds of 1 itself, and no payment obligations, so it
has a positive equity of 3, and rv = 1.

For convenience, we will use a simplified version of this notation in our figures: we only
show the weight δ of a contract when δ 6= 1, and we only show the external assets of v
explicitly if ev 6= 0. We also write ev = ∞ to conveniently indicate that v can pay its
liabilities in any case.

We also note that many of our constructions in the paper contain banks that have the
exact same amount of assets and liabilities, like w in this example. This is a somewhat
artificial “edge case” that still ensures rw = 1. However, this is only for the sake of simplicity;
we could avoid these edge cases by providing more assets to the banks in question.

Finally, we point out that contracts in a real-world financial system are often results of
an earlier transaction between the banks, i.e. the creditor v previously offering a loan to
the debtor u. We assume that such earlier payments are implicitly represented in eu, and
as such, the external assets and the contracts are together sufficient to describe the current
state of the system.
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Figure 1 Two example systems on 3 banks. External assets are shown in rectangles besides the
banks. Simple debts are denoted by blue arrows from debtor to creditor, while CDSs are denoted by
light brown arrows from debtor to creditor, with the payment obligation shown beside the arrow.

3.2 Assets, liabilities and equilibria
We now formally define the liabilities and assets of banks in our systems. Note that due to
the conditional debts, the payment obligations in a network are always a function of the
recovery rate vector r.

Assuming a specific vector r, the liability lu,v of a bank u towards a bank v is defined as
the sum of payment obligation from u to v on all contracts, i.e.

lu,v(r) = δu,v +
∑
w∈V

δw
u,v · (1− rw),

where δu,v is the weight of the simple debt contract from u to v (if this contract exists, and
0 otherwise), and δw

u,v is the weight of the CDS from u to v in reference to w (if it exists,
and 0 otherwise). The total liability of u is simply the sum of liabilities to all other banks:
lu(r) =

∑
v∈V lu,v(r).

However, the actual payment pu,v from u to v can be less than lu,v if u is in default. If u is
in default, then it has to spend all of its assets to make payments to creditors. Most financial
system models assume that in this case, u has to follow the principle of proportionality, i.e.
it has to make payments proportionally to the corresponding liabilities. This means that if u
can pay an ru portion of its total liabilities, and it has a liability of lu,v towards v, then the
payment from u to v is pu,v(r) = ru · lu,v(r).

On the other hand, we can define the assets of a bank v as the sum of v’s external assets
and its incoming payments in the network; that is,

av(r) = ev +
∑
u∈V

pu,v(r).

If v is in default, then all these assets are used for v’s payment obligations; otherwise, av − lv
of these assets remain at v. Note that while both av(r) and lv(r) are formally a function of r,
we often simplify this notation to av and lv when the recovery rate is clear from the context.

Recall that the recovery rate of v indicates the portion of payment obligations that v is
able to fulfill. As such, a valid choice of rv requires rv = 1 if we have av ≥ lv, and rv = av

lv
if

av < lv. For simplicity, let us introduce a separate function R to denote this dependence on
av and lv; that is, we define the function R : [0,∞)× [0,∞) → [0, 1] as

R(a, l) =
{

1, if a ≥ l
a
l , otherwise.

We say that a vector r ∈ [0, 1]B is an equilibrium (or a clearing vector) of the system
if for each bank v ∈ B, we have rv = R( av(r), lv(r) ); that is, if the recovery rate vector
is consistent with the assets and liabilities it generates in the network. Previous work has

ITCS 2021
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mostly focused on the analysis of different equilibrium states. Recall that while it is mostly
straightforward to find the equilibrium states in our example constructions, the problem is
PPAD-hard in general [23].

We have already seen a simple example equilibrium in Figure 1a; for another example
that is slightly more challenging to compute, let us consider Figure 1b. Here bank u is again
always able to pay its liabilities, so ru = 1 in any case. Furthermore, neither rv = 1 nor
rw = 1 can provide an equilibrium in this network, so both v and w must be in default in
any solution. Thus any equilibrium must have

rv = av

lv
= 1 + 1− rw

3 and rw = aw

lw
= 3 · rv

2 .

This implies that the only equilibrium is rv = 4
9 , rw = 2

3 .

3.3 Sequential models of defaulting

We have defined the equilibria of the system as the states r that would fulfill the payment
criteria if every bank were to simultaneously update its recovery rate to r. However, in
practice, the announcement of defaults usually happens in a sequential manner, due to
different sources of delay in the system: even if it is clear from av and lv that a bank v is
only able to fulfill a specific rv portion of its liabilities, this might not be immediately known
to the creditors of v (due to incomplete information), or the legal framework may first allow
v to try to obtain further funds before officially having to announce its default. As such, the
officially announced recovery rate rv might not always equal R(av, lv), and v has to explicitly
announce the changes in rv in order to make other banks aware of this situation.

Hence in our sequential model, each step of the process will consist of a single bank
announcing an update to its recovery rate. That is, given the assets av and liabilities lv
currently available to v, if the official recovery rate rv does not equal R(av, lv), then bank v
can (and eventually has to) announce a new official recovery rate of rv := R(av, lv). Since
this affects both the payments received by the debtors of v and the payment obligations on
CDSs in reference to v, it can have various effects on the system, providing new assets and
liabilities to some banks; as a result, these banks may also end up with a higher or lower
asset/liability balance than their currently announced recovery rate, and thus they will also
have to execute a new update at some point.

More formally, we consider discrete time steps t = 0, 1, 2, ... . Each step consists of a
single bank v announcing an update to rv. That is, if v has assets av

(t−1) and liabilities
lv

(t−1), but a recovery rate of rv
(t−1) 6= R

(
av

(t−1), lv
(t−1)) at time t− 1, then we say that v is

updatable at time t− 1. In each time step t, we select a bank v that is updatable at time
t− 1, and define the state of the system at time t by (i) setting rv

(t) = R
(
av

(t−1), lv
(t−1)) for

the bank v that executes the update, (ii) setting ru
(t) = ru

(t−1) for every other bank u 6= v,
and (iii) calculating au

(t) and lu(t) for all u ∈ B based on this new vector r(t).

We assume that initially, each bank v has rv
(0) = 1, and we compute av

(0) and lv
(0)

accordingly. We say that the sequential process stabilizes in round t if there is no updatable
bank in round t.



P.A. Papp and R. Wattenhofer 52:7

4 Basic Properties

We begin by discussing some fundamental properties of this sequential setting.

4.1 Reversibility and infinite cycling
One important property of the sequential model is that even if a bank v goes into default,
it can easily return from this default later. That is, future updates in the system might
increase the payment obligation on an incoming CDS of v, thus increasing av and possibly
raising av

lv
above 1 again. This is in line with real-world financial systems, where returning

from a default is also often possible if a bank acquires new assets. Due to this property, we
also refer to this setting as the reversible model.

Note that in practice, defaulting banks are often given a limited amount of time to obtain
new assets and thus reverse a default; however, our sequential setting does not define an
explicit timing of defaults (only their order), so such rules are not straightforward to include
in our model. Nonetheless, we point out that many of our example constructions also work if
we assume that defaults are only reversible for a specific (constant) number of rounds.

Another important property is that in a cyclic network topology, our model can easily
result in an infinite loop of updates. Consider the example in Figure 2, where the default of v
indirectly provides new assets to v. Since rv = 1 initially, u must first update to ru = 0, and
as a result, v must update to rv = 0. However, this leads to new liabilities in the network,
providing assets to both u and (indirectly) to v, so u (and then v) must update its rate back
to ru = rv = 1. This returns the system to its initial state, where u (and v) will continue by
updating their recovery rates to 0 again.

If we keep repeating these few steps, then u and v alternate between ru = rv = 0 and
ru = rv = 1 endlessly. Note that the system does have an equilibrium in ru = rv = 1

2 ;
however, instead of converging to this state, the banks keep on periodically repeating the
same few steps. The possibility of such behavior in a sequential setting has already been
noted in [22] or [3] before. While this looping behavior is certainly undesired, it follows
straightforwardly from the reversibility of defaults and the existence of cycles in the network
topology. As such, these situation could also occur in real-world systems, requiring a financial
authority to intervene and set the system artificially to its equilibrium.

4.2 Dependence on the order of updates
Another key property of the sequential model is that the final outcome becomes dependent
on the ordering of updates, i.e. whether some banks announce their default earlier or later.

We show a simple example of this dependence on the branching gadget of Figure 3, which
has already been used as a building block in the works of [23] and [19]. In this system,
neither of the two banks u and v have any assets initially, so they are unable to fulfill their
obligations. However, if u is the first one to report default (updating to a new recovery rate
of av

(0)/ lv
(0) = 0), then this provides 1 unit of new assets to v, which means that v does not

default anymore; the system stabilizes with ru = 0, rv = 1. Similarly, if v is the first one to
execute an update, then this provides new assets to u, and the system stabilizes with ru = 1,
rv = 0. Thus both banks are strongly motivated to delay their default announcement as long
as possible, as this might allow them to avoid defaulting entirely.

We can also note that there are further equilibrium states where both u and v are in
default, e.g. when ru = 1

2 and rv = 1
2 ; due to its symmetry, one might even argue that this

is the “fair” equilibrium to implement. However, this equilibrium is not reachable in any
way through sequential updates; the only possible endstates of the sequential model are
(ru, rv) = (0, 1) and (ru, rv) = (1, 0) as described above.

ITCS 2021
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This shows that even in terms of the final outcome, the sequential model can significantly
differ from the static analysis of the system. This is not due to the presence of fractional
recovery rates: we can also easily have equilibria with integer (i.e., 0 or 1) recovery rates that
is not reachable in a sequential setting. In Figure 4, bank u is the only node who can execute
an update, which immediately leads to the unique final state ru = 0, rv = rw = 1. However,
ru = 1 with rv = rw = 0 also forms an equilibrium in this system, so this phenomenon is
indeed a result of the sequential nature of our model.

5 Results

We now move on to a deeper analysis of the model. We mainly focus on the length and
outcome of the sequential process, and how the ordering of updates affects these properties.

Since our proofs will require more complex constructions, we switch to a simpler notation
in our figures: instead of directly showing the liability δ · (1− rw) on a CDS, we only label
the CDS by the weight δ and the reference entity w, or simply by w when δ = 1. Nonetheless,
recall that each such CDS still denotes a liability of δ · (1− rw).

5.1 Stabilization time
One fundamental question is the number of rounds it takes until the sequential process
stabilizes, i.e. until no node can execute an update anymore. We first analyze this aspect in
detail.

We have already seen in Figure 2 that even in simple examples, it can easily happen that
the system does not stabilize at all.

I Corollary 1. There is a system which never stabilizes.

Furthermore, with the appropriate ordering of default announcements, we can also obtain
any finite value as a stabilization time.

I Lemma 2. For any integer k, there exists a system and an ordering such that the system
stabilizes after exactly k steps.

Proof. Consider the system on Figure 5. Similarly to Figure 2, this system allows us to
produce an arbitrarily long sequence by switching only u and v repeatedly. However, when
w announces a default, then both u and v gain enough assets to fulfill their obligations, so
the system stabilizes after at most 2 more updates.

This allows us reach any magnitude of stabilization time, apart from a constant offset. We
can then simply add O(1) more independent defaulting nodes to reach the desired value k. J
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This already shows that stabilization time can heavily depend on the order of updates. A
more extreme case of this is when the choice of the first update already decides between two
very different outcomes for the system.

I Lemma 3. There is a system where depending on the first update, the system either
stabilizes in 1 step, or does not ever stabilize.

Proof. Figure 6 is obtained by combining the base ideas of Figures 2 and 3. In this network,
either bank w1 or w2 must execute the first update.

If w2 is the first to announce rw2 = 0, then w1 receives a payment of 1, and the system
immediately stabilizes; no other bank will make an update.

However, if we update rw1 = 0 first, then w2 survives, but on the other hand, u receives
no assets at all. In this case, nodes u and v are in the same situation as in Figure 2, and
thus the upper part of the system will never stabilize. J

Finally, infinite loops are not the only examples of long stabilization: it is also possible
that the system does stabilize eventually, but for any ordering of updates, this only happens
after exponentially many steps.

I Theorem 4. There is a system where for any possible ordering, the system eventually
stabilizes, but only after 2Ω(n) steps.

Proof sketch. This proof requires a significantly more complex construction than our previous
statements. We only outline the main idea of the construction here, and we discuss the
details in the full version of the paper.

The first step of the proof is to build a stable bit gadget, which represents a mutable
binary variable. The gadget offers a simple interface to set the bit to 0 or 1 through external
conditions, and otherwise maintains its current value until the next such operation is executed.

Besides this, we create gadgets that describe logical states of an abstract process, similarly
to a finite automaton. We also encode conditional transitions between these state gadgets,
i.e. ensure that the system can only enter a given logical state if some banks currently have
a specific recovery rate. This allows us to describe a logical process where the next state of
the system is always determined by the current state and the current value of some stable
bit gadgets.

Using these tools, we can essentially design a binary counter on k = Ω(n) bits, with k
stable bits representing the bits of the counter. This counter will proceed to count from 0 to
2k − 1, and only stabilize after the counting has finished, resulting in a sequence of at least
2k steps.

The most challenging task is to ensure that in every step of the process, there is only one
possible update we can execute next: the appropriate next step of the counting procedure.
To achieve this, we not only need to ensure that some banks become updatable at specific
times, but we also have to force the banks to indeed execute these updates, by encoding
them as requirements in the transition conditions of our logical states. This results in a
heavily restricted construction where there is essentially only one valid ordering of updates:
the one that corresponds to the step-by-step incrementation of the binary counter. J

Note that another possible approach for measuring the stabilization time of our systems
is to consider the number of defaulting steps, i.e. to only count the steps when a bank v
updates from rv = 1 to rv < 1. One can check that our results on stabilization time also
hold for this alternative metric.

ITCS 2021
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Finally, as a theoretical curiosity, we point out that our binary variable and state machine
gadgets in the proof of Theorem 4 demonstrate that we can essentially use financial networks
as a model of computation. We discuss the expressive power of this model in the full version
of the paper.

I Theorem 5. We can use financial networks to simulate any Turing-machine with a finite
tape.

5.2 Outcome with the fewest defaults
In case of a larger shock, a financial authority could also be interested in the final state of
the system, and in particular, the number of banks that end up in default. This can again
heavily depend on the order of updates; in fact, even a single decision in the ordering can be
critical from this perspective.

I Lemma 6. Depending on the first update, the number of defaults can be either O(1) or
n−O(1).

Proof. Consider the system on Figure 7. If u is the first to report a default with ru = 0,
then v receives 1 unit of payment, and thus no other node defaults. On the other hand, if v
reports a default first, then u survives, but all the nodes in the lower chain have no incoming
assets, and thus they all have to report a default eventually. So based on the first update,
the number of defaults is either 1 or n− 3. J

Hence if the authority has some influence over the ordering of updates, e.g. by allowing
more flexibility to some banks than to others, then it could dramatically reduce the number
of banks that end up in default. Unfortunately, even if we have complete control over the
ordering, it is still hard to find the best possible ordering (in terms of the number of defaults
in the final outcome).

I Theorem 7. It is NP-hard to find the number of defaulting nodes in the best possible
ordering.

Proof. We reduce the question to the MAXSAT problem: given a boolean formula in
conjunctive normal form, the goal of MAXSAT is to find the assignment of variables that
satisfies the highest possible number of clauses [17].
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Figure 8 Clause gadget for the MAXSAT re-
duction in Theorem 7.

x1
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¬x4
v

Figure 9 Clause gadget for the MAX-
SAT reduction in Theorem 8.

Assume we have a MAXSAT problem on k variables x1, ..., xk, and m clauses. Note
that in our financial systems, the branching gadget of Figure 3 is a natural candidate for
representing a boolean variable, since in any sequence, exactly one of u and v will eventually
default. We point out that this gadget has already been used for similar purposes before in
[23] and [19].

Hence for each variable xi, we create a separate branching gadget in our system, and
consider node u to represent the literal xi, and node v to represent the literal ¬xi. That is,
we will consider xi = true if u defaults, while we consider xi = false if v defaults.

Furthermore, for each clause of the input formula, we create the clause gadget shown in
Figure 8, with the CDSs labeled by the banks representing the literals in the clause. For
example, the gadget in the figure is obtained for the clause (x1 ∨ x3 ∨ ¬x4). If any of the
banks x1, x3 or ¬x4 default, then v receives enough assets to pay its debt, whereas otherwise,
v must eventually default.

If we aim to avoid as many defaults as possible, then the reasonable ordering strategy
is to first evaluate all the variable gadgets, and the clause gadgets only afterwards. In this
case, each bank v of a clause gadget survives if and only if there is a true literal in the
corresponding clause. This way the number of defaulting nodes in the final state is always
exactly k in the variable gadgets, and at most m− opt in the clause gadgets, where opt
denotes the maximal number of satisfiable clauses in our MAXSAT problem. Thus the
minimal number of defaulting nodes in the system is altogether k +m− opt. Finding this
value also allows us to determine opt, which completes our reduction. J

To analyze the effects of a shock, one might also be interested in the worst possible
ordering; a similar reduction shows that this is also hard to find.

I Theorem 8. It is NP-hard to find the number of defaulting nodes in the worst possible
ordering.

Proof. We can apply the same reduction from MAXSAT as before; we only need to slightly
change the clause gadgets. Consider the clause gadget of Figure 9 for the example clause
(x1 ∨ x3 ∨ ¬x4). To maximize the number of defaulting banks in this system, we can first
evaluate the variables gadgets, which then allows us to produce an extra default for each
clause that has a true literal. Thus the maximum number of defaulting nodes is k + opt,
which completes our reduction. J

5.3 Individual defaulting strategies
It is also natural to consider the effect of the ordering from the perspective of a single bank
v. More specifically, is v motivated to immediately report its own default? Can it achieve a
better outcome for itself by carefully timing its updates?

Intuitively, one would expect that banks are motivated to report their default as late as
possible, in hope of obtaining further assets in the meantime. This is indeed true in many
cases. For example, in the branching gadget of Figure 3, u and v clearly have a short position
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in each other, and if either of them can wait long enough such that the other bank reports a
default first, then it obtains new assets from the incoming CDS and thus manages to avoid a
default entirely.

However, due to the complex interconnections in a network, it is in fact also possible that
v achieves a better outcome if it reports a default earlier; it is even possible that this is the
only strategy which allows v to avoid a default in the endstate of the system. We consider
this one of our most surprising results.

I Theorem 9. There exists a system where a bank v1 can only avoid a default in the final
state of the system if v1 is the first bank to report a default.

Proof. Consider the system in Figure 10, where only v1 or v2 can report a default initially,
since no other node has any liabilities.

Assume that v1 is the first to report a default, updating to rv1 = 0. This influences the
network in two ways: v2 obtains assets of 1, and u2 now has a new liability of 1 as a result.

Thus the next update can only be executed by u2, resulting in ru2 = 0. On the one hand,
this provides assets to u1; on the other hand, it creates liabilities for w2. As a result, the
next update can only be executed by w2.

When w2 announces rw2 = 0, this results in more liabilities for the defaulting u2, and
more assets for v1. These assets make v1 the only updatable next node, bringing v1 back
from its default with rv1 = 1.

When v1 announces rv1 = 1, then u2 loses some of its liabilities, and v2 loses its assets.
This does not affect u2, which remains at ru2 = 0 due to the default of w2; however, v2 now
also has to report a default. The system finally stabilizes after v2 updates to rv2 = 0: the
assets/liabilities of v1 and u1 are affected, but neither of them has to make an update. Thus
the final solution has rv1 = 1 and rv2 = 0.

On the other hand, if v2 is the first to report default, then due to the symmetry of the
system, the final outcome will have rv1 = 0 and rv2 = 1. Note that in both cases, after the
first update is executed, the remaining steps are already determined, and no alternative
ordering is possible. Hence the only way for v1 to avoid a default in the final outcome is to
be the first one to report a default. J

We can also show that in general, it is NP-hard to find the best default-reporting strategy
for a bank. This even holds if the behavior of the rest of the network is “predictable”, i.e.
if there is essentially only one ordering that the system can follow. This implies that any
interpretation of this problem, e.g. optimizing a bank’s best-case payoff or worst-case payoff,
is also hard.

I Theorem 10. It is NP-hard to find the time of defaulting that provides the highest payoff
to a specific bank in the final outcome.

Proof sketch. The main idea of the proof is to combine the binary counter construction of
Theorem 4 with the MAXSAT reduction. That is, given a binary counter on k = Θ(n) bits,
we add a new node v to the system such that
(a) v can choose to default anytime,
(b) the default of v terminates the counting process, stabilizing the counter in its current

state,
(c) v then comes back from its default, and its assets in the final state are proportional to

the amount of clauses satisfied in a SAT formula, where the value of the variables is
derived from the finalized state of the bits in the counter.
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Figure 10 Example where early defaulting is the best
strategy, with multiple source and sink nodes for a cleaner
topology.
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Figure 11 Infinite conver-
gence to an equilibrium state.

This means that the counter essentially enumerates all the possible value assignments of
the variables, and the best defaulting strategy is obtained if counting is terminated at the
assignment that satisfies the highest number of clauses. However, finding this assignment is
NP-hard.

The details of the construction are discussed in the full version of the paper. J

6 Achieving Stabilization

While the reversible sequential model is realistic from many perspectives, the infinite looping
property is clearly not reasonable in real-world systems. As such, it is natural to ask if there
is a way to modify the model to avoid this situation, and instead ensure that every financial
system stabilizes eventually.

In this section, we investigate the causes of this infinite behavior in the sequential model.
We first show that we require more sophisticated update rules to avoid a specific kind of
infinite behavior, namely when the system converges to an equilibrium. We then discuss
liability freezing, a different (but in some sense also realistic) approach of handling defaulting
banks in the network. Finally, we show that if we combine these two modifications, we can
obtain a monotone sequential model where our systems always stabilize after polynomially
many steps.

6.1 More sophisticated update rules

Convergence to an equilibrium. Since the addition of conditional debt contracts drastically
increases the complexity of the model, it is a natural first assumption that such an infinite
pattern can only arise if the system contains a CDS. However, this is not the case: we can
also obtain a (slightly different kind of) infinite sequence in systems with only regular debts.

Consider the example system in Figure 11. Since bank u has lu = 2 and au = 1 initially, it
can begin by updating its recovery rate to ru = 1

2 . As a result, v and w must also announce
recovery rates of rv = rw = 1

2 . With au = 1
2 , bank u now has to update to ru = 1

4 , which then
gives rv = rw = 1

4 . Each such round prompts another round of updates, slowly converging to
ru = rv = rw = 0. While this is indeed the only equilibrium of the system, the process takes
infinitely many steps to reach this state.

ITCS 2021



52:14 Sequential Defaulting in Financial Networks

Explicit computation of equilibria. Such a convergence process can easily occur in any
network with cycles; as real-world financial systems are also known to contain cycles [21],
we can easily encounter such a situation in practice. In this case, it seems that a financial
authority (or the banks involved) have no other option than to explicitly compute this
equilibrium, and set their recovery rates to the appropriate values.

Fortunately, it is known that in case of fixed liabilities in the network (i.e. only simple
debts), this is computationally feasible: there always exists a single maximal solution that is
simultaneously best for all banks, and this solution can be found in polynomial time [20],
essentially by repeatedly solving a system of linear equations. Thus an authority could indeed
find this solution, and banks could directly update to these recovery rates in order to skip
the convergence steps.

This allows us to introduce the notion of smart updates: after each updating step, we can
consider the current liabilities in the network fixed, and we assume that the equilibrium of
the system is computed under these liabilities (essentially reducing the convergence process
to a single step). This equilibrium defines a tentative recovery rate for each bank v, denoted
by rv. In smart updates, we assume that whenever v executes an update, it always updates
to rv := rv.

In the example of Figure 11, this means that the tentative recovery rates ru = rv = rw = 0
are already computed initially, and thus any bank executing an update will immediately set
its recovery rate to 0. This way the process already stabilizes after each bank has executed
one update. In general, we achieve stabilization in this setting when rv = rv for each bank v
in the network.

While the explicit computation of equilibria may seem artificial, in practice, defaulting
banks are often subject to more thorough supervision by the authorities. As such, it is not
so unrealistic that the situation of a defaulting bank v is first analyzed by an authority, and
this analysis determines the official recovery rate of v.

Also, recall that while equilibria are easy to find in debt-only networks, the introduction
of CDSs changes this picture entirely. With CDSs, there can easily be multiple equilibria
that are Pareto-optimal, and finding any of them is already a PPAD-hard problem [23].
Thus this explicit computation of rv is only possible for a single step of the process, when
we consider the current payment obligation on each CDS fixed. As defaults rarely happen
simultaneously in practice, it can indeed be realistic to assume that we can analyze the
current (fixed) liabilities in the network after each new update.

Finally, note that smart updating is not yet enough to avoid an infinite convergence. In
the system shown in Figure 12, v can initially fulfill its obligations, while u must update to
ru = 1

2 . This creates new liabilities of 2 for v, leading to the tentative recovery rates rv = 2
3

and thus ru = 1
3 after this first step. If u updates again (to ru = 1

3 ), then the liability on the
CDS again increases, and thus the next computed equilibrium has an even lower ru.

Each step of this process provides new tentative recovery rates, obtained as rv = 2
5−4·ru

and ru = rv

2 = 1
5−4·ru

. This results in an infinite convergence to the equilibrium rv = 1
2 ,

ru = 1
4 . Note that we can observe this behavior regardless of whether v ever updates its

recovery rate to the new rv value; the assets of u are calculated independently of the recovery
rate reported by v.

Optimistic updates. Another natural variant of smart updates is the optimistic update rule.
To avoid the convergence phenomenon of Figure 11, this setting also assumes that the system
is analyzed by an authority after each update. However, defaulting and non-defaulting nodes
are now handled in a different manner in this analysis. More specifically, if a bank v is not
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Figure 12 Example of infinite convergence in a network, even in case of smart updates. Recall
that the label 4u on the CDS describes a payment obligation of 4 · (1− ru).

in default (it has rv = 1 currently), then it is given the benefit of a doubt: we assume that it
can fulfill its obligations, regardless of how many assets it currently has. On the other hand,
banks in default are handled the same way as in case of smart updates.

This distinction can indeed be realistic: if v is non-defaulting, then av might not even be
known to other banks, so the creditors of v have no better option than to assume that they
will receive all payments from v. On the other hand, the assets of defaulting banks are under
more thorough scrutiny in most legal frameworks.

Formally, optimistic update means that after each step of the process, we use a modified
version of the liability network to compute the equilibrium. Whenever there is a contract of
current weight δ from u to v with ru = 1, then we remove this contract from the network, and
instead (i) we add a new debt of weight δ from u to an artificial sink node s, ensuring that u
still has this liability, and (ii) we increase the value of ev by δ, ensuring that v always has
these assets. In contrast, if ru < 1, we do not execute any changes on the outgoing contracts.
This modified network ensures that until a bank reports a default, its lack of assets does not
affect its creditors. We then use the same algorithm of [20] to find the equilibrium in this
modified system, and set the next tentative recovery rates accordingly.

Revisiting the system in Figure 12, we see that bank u can again first update to ru = 1
2 ,

which results in rv = 2
3 . However, with optimistic updates, u cannot make an update again:

until v adjusts its recovery rate to this new value, the tentative recovery rate of u remains 1
2 ,

since we still expect to get the entire payment from the non-defaulting v. Note, however,
that optimistic updating still does not prevent an infinite convergence in this system if, for
example, u and v keep on updating alternatingly.

6.2 Liability freezing
We have seen that neither smart nor optimistic updating prevents an infinite sequential
process in itself. For this, we also need to change another aspect of our model, namely how
the contracts of v are handled once v goes into default.

Debts are rather simple from this perspective: they describe a previously established
payment obligation in the network, so there is no incentive to change them if v defaults.

CDSs, however, pose a more complicated question, since they describe payment obligations
that are dynamically changing. So far, we assumed that even after v defaults, the payment
obligations on its CDSs keep changing as the reference entities are updated. Another possible
approach is to assume liability freezing: whenever v goes into default, the liabilities on any
incoming or outgoing CDS are fixed at the current value for the rest of the process. That is,
a CDS with weight δ and reference entity w at time t is essentially converted into a simple
debt contract with weight δ · (1− rw

(t)), and this weight does not change in the future, even
if rw is updated.

This can be realistic when there is a larger time difference between subsequent defaults:
by the time the next default happens, the previous bank has already completed the first
phase of the insolvency process, and its incoming/outgoing payments have been established
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and fixed. Indirectly, such a framework suggests that if v defaults, then it is expected to
immediately “cash in” its incoming debts and fulfill its payment obligations, and not wait for
a more favorable situation.

The main advantage of this approach is that if we combine liability freezing with optimistic
updates, it provides a monotone sequential model where recovery rates can only decrease
throughout the process. Intuitively, when a bank w makes an update, then CDSs in reference
to w could only provide more assets to a bank v if we still have rv = 1, as otherwise the
liability on the CDS is already fixed. However, if rv = 1, then the optimistic approach
assumes anyway that v can pay its liabilities, and thus the update has no effect on other
banks in the system.

This monotonic property ensures that any system stabilizes eventually in this model; on
the other hand, it also means that once a bank v announces a default in this model, it has
no possibility to reverse this default in the future, and its recovery rate can only get smaller
with further updates.

By revisiting Figure 2, we can observe that both liability freezing and optimistic updates
are crucial ingredients to achieve this monotonicity. Without liability freezing, the system
loops infinitely if u and v make updates in an alternating fashion, both with smart and with
optimistic updates. On the other hand, if we combine liability freezing with smart updates,
then v can still alternate between rv = 0 and rv = 1 indefinitely; if u never makes an update,
then the liability on the CDS will never be fixed at a specific value.

6.3 Stabilization in the monotone model
We now discuss the main properties of the monotone model. We first show that the model
indeed ensures an eventual stabilization for any ordering. The key observation for this is
that the recovery rate of banks can never increase in this model.

I Theorem 11. The recovery rate of a bank can only decrease in the monotone model.

Proof. The main idea is to show that for any bank v, rv can only increase if we still have
rv = 1 currently. This shows that we can never have rv > rv, and thus no update can
increase rv.

Assume that node w updates rw in a specific step, and assume for contradiction that this
is the first step that increases rv for some bank v with rv < 1. This means that the current
update is still a decrease of rw, since we must have rw < rw. The update of rw can have two
kinds of effects on the system: it can change the liabilities on CDSs that are in reference to
w, and it can result in a lower amount of assets for the creditors of w. We analyze these two
effects separately.

Since the monotone model has liability freezing, the liability on a CDS from u to v (in
reference to w) can only change if we currently still have ru = rv = 1. Thus while this
extra payment may increase rv, we will still have rv ≤ rv afterwards. Since the model uses
optimistic updates and ru = rv = 1, both u and v only have debts towards the artificial sink
s in the input graph of the equilibrium algorithm (which computes the tentative recovery
rates), so the changes to ru and rv do not affect the tentative recovery rate of any other
node.

As for the creditors of w, we consider two cases. If this is not a defaulting step (we
already had rw < 1 before the update), then updating rw does not change the liabilities in
the input graph of the equilibrium algorithm (apart from the case of some non-defaulting
nodes, as discussed above), so the tentative recovery rates will remain unchanged.
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On the other hand, if this is a defaulting step, then the outgoing debts of w will now be
redirected from s to the actual creditors of w. However, this operation can only result in
less assets for a bank. More specifically, one can observe that any configuration of payments
in this new graph is also a valid configuration of payments in the original graph before the
redirection step. Hence if the rv value of any bank v increases with this step, then this
contradicts the fact that the previous rv was obtained from a maximal equilibrium of the
system. J

I Theorem 12. The monotone model allows at most n defaulting and O(n2) updating steps.

Proof. Since recovery rates are always decreasing, every bank can default at most once, thus
the number of defaulting steps is at most n.

For the O(n2) upper bound, we show that there are at most n updating steps between
any two consecutive defaulting steps. This is rather straightforward: recall from the proof of
Theorem 11 that if bank w executes a non-defaulting update, then this can only change the
value of rv for banks v that are not in default. Thus for any bank v in default, rv can not
change between two defaulting steps of the process. This means that any bank can execute
at most 1 updating step between two consecutive defaulting steps, limiting the number of
steps in this period to n. J

We point out that this upper bound is asymptotically tight: we can easily construct
a system and an ordering that indeed takes Ω(n2) steps in the monotone model. The
construction does not even require CDSs in the network; it only contains simple debt
contracts.

I Lemma 13. There is a system with an ordering that lasts for Ω(n) defaulting and Ω(n2)
updating steps.

Proof. Let m be a parameter with m = Θ(n), and consider Figure 13. All the banks w1,
..., wm will eventually report a default in this system, so the number of defaulting steps is
indeed m = Ω(n).

Let w1, ..., wm report a default in this order throughout the process. After wi has
reported a default, bank v can always decrease its recovery rate to a new value of rv = m−i

m .
Finally, after each such update of v, assume that all the nodes u1, ..., um make an update
step, also announcing a new recovery rate of m−i

m ; they can indeed all do this due to the
update executed by v. This ordering has Ω(m2) = Ω(n2) updating steps altogether. J

6.4 Defaulting strategies
Finally, we discuss how the monotone model compares to the reversible model in terms of
defaulting strategies.

When finding the globally best ordering, the two models turn out to be very similar. In
fact, our proofs from Section 5.2 can also be carried over to the monotone model without
any changes.

I Corollary 14. Lemma 6 and Theorems 7 and 8 also hold in the monotone model.

In terms of individual defaulting strategies, the branching gadget again provides a simple
example where late defaulting is beneficial: by delaying their updates, banks u and v can
again entirely avoid a default.
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the monotone model.
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Figure 14 Example system where early defaulting is the
best strategy in the monotone model.

However, early defaulting is a more difficult question in this setting. In particular, we
cannot hope for a result that is analogous to Theorem 9, since once a bank reports a default,
there is no way to reverse this in the future. Nonetheless, early defaulting can still be a
beneficial strategy in the monotone model: there are cases when a bank cannot avoid an
eventual default in any way, but early defaulting can still allow the bank to have a higher
recovery rate in the final state.

I Theorem 15. There exists a system where a bank v only obtains its highest possible
recovery rate in the final state of the system if v is the first bank to report a default.

Proof. Consider the system in Figure 14, where either v1 or v2 can execute the first update.
We analyze the defaulting strategies of bank v1 in this system.

Assume that v1 is the first to execute a step, announcing rv1 = 3
4 . This gives new assets

to v2 (resulting in rv2 = 1), and new liabilities to u2 (resulting in ru2 = 0). The next update
can only be executed by u2, setting ru2 = 0; at this point, the system stabilizes.

On the other hand, assume that v2 first announces rv2 = 0. This provides rv1 = 1 and
ru1 = 0, so as a next step, u1 will announce a default. However, this results in new liabilities
for w, so as a next step, w has to update to rw = 1

3 . With this, v1 only has 2 assets altogether,
so v1 must announce rv1 = 1

2 . Hence v1 achieves a lower recovery rate in the final state if it
is not the first bank to announce a default.

Note that with some further modifications, we can also make the example symmetric to
ensure that both v1 and v2 are motivated to be the first one to default. J

Finally, one might also wonder if the monotone model allows an analogous result to
Theorem 10, i.e. a hardness result on finding the best defaulting strategy of a single bank.
However, note that the simple formulation of Theorem 10 was possible due to the fact that
the proof construction only allowed one possible ordering in the rest of the system.

If we were to introduce a similar setting in the monotone model, then the banks could
always find the best outcome in polynomial time, since the sequence can only last for O(n2)
steps. As such, in the monotone model, we can only expect similar hardness results for more
complex formulations of this problem, such as finding the best defaulting time with respect
to, e.g., the best-case or worst-case ordering of the remaining banks in the system.
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