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Abstract

Traditional learning approaches for classification implicitly assume that each mistake has the same
cost. In many real-world problems though, the utility of a decision depends on the underlying
context x and decision y; for instance, misclassifying a stop sign is worse than misclassifying a
road-side postbox. However, directly incorporating these utilities into the learning objective is often
infeasible since these can be quite complex and difficult for humans to specify.

We formally study this as agnostic learning with unknown utilities: given a dataset
S = {x1, . . . , xn} where each data point xi ∼ Dx from some unknown distribution Dx, the ob-
jective of the learner is to output a function f in some class of decision functions F with small excess
risk. This risk measures the performance of the output predictor f with respect to the best predictor
in the class F on the unknown underlying utility u∗ : X ×Y 7→ [0, 1]. This utility u∗ is not assumed
to have any specific structure and is allowed to be any bounded function. This raises an interesting
question whether learning is even possible in our setup, given that obtaining a generalizable estimate
of utility u∗ might not be possible from finitely many samples. Surprisingly, we show that estimating
the utilities of only the sampled points S suffices to learn a decision function which generalizes well.

With this insight, we study mechanisms for eliciting information from human experts which
allow a learner to estimate the utilities u∗ on the set S. While humans find it difficult to directly
provide utility values reliably, it is often easier for them to provide comparison feedback based on
these utilities. We show that, unlike in the realizable setup, the vanilla comparison queries where
humans compare a pair of decisions for a single input x are insufficient. We introduce a family of
elicitation mechanisms by generalizing comparisons, called the k-comparison oracle, which enables
the learner to ask for comparisons across k different inputs x at once. We show that the excess
risk in our agnostic learning framework decreases at a rate of O

(
1
k

)
with such queries. This result

brings out an interesting accuracy-elicitation trade-off – as the order k of the oracle increases, the
comparative queries become harder to elicit from humans but allow for more accurate learning.
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55:2 Agnostic Learning with Unknown Utilities

1 Introduction

Our focus is on learning predictive models for decision-making tasks. Current paradigms for
classification tasks use datasets consisting of scenarios1 x along with the decisions y taken
by human experts to learn a decision function2 f : X 7→ Y. For instance, in economics such
decisions correspond to whether buyers bought an item at a suggested price [2, 9], in robotics
such feedback comprises expert demonstrations in imitation learning [1, 4], and in machine
learning literature such supervision consists of labels selected by human annotators [10, 13].

When we optimize models to predict correctly on these datasets, we often implicitly
assume that all mistakes are equally costly, and that each scenario x in the data is just as
important. In reality though, this is rarely the case. For instance, the standard 0− 1 loss for
classification tasks assigns a unit of loss for each mistake, but misclassifying a stop sign is
significantly more dangerous than misclassifying a road-side postbox. In Figure 1, we expand
on this insight and illustrate how learning from such revealed decisions can often lead to
suboptimal decision functions.

What is missing from this classical framework is that for most decision-making tasks
there exists an underlying function u∗ : X × Y 7→ [0, 1] which evaluates the utility of a
decision y depending on the surrounding context x. Depending on the decision task, such
utility functions can encode buyer preferences in economics, rewards for robotic skills, or
misprediction costs for classification. However, these utility functions are a priori unknown
to the learner since the dataset consists only of context-decision pairs (x, y). Furthermore,
asking human experts to write down these complex utility functions can be quite challenging
and prone to serious errors [3].

One commonly studied approach, referred to as learning from revealed preferences in
economics [9, 6] and inverse reinforcement learning (IRL) in the machine learning literature [19,
26], assumes that the utility function u∗ belongs to some pre-specified class and uses the
fact that decision y was the optimal decision for scenario x to learn estimates of these
utilities. This setup is called the well-specified or realizable setup. However, this posited
utility class can be misspecified in that the underlying utility u∗ might not belong to this
class. The correctness of such learning approaches crucially relies on the well specified
assumption and offers no guarantees on how their performance degrades in the presence of
class misspecifications.

We overcome this uncertainty in specifying the utility function u∗ by proposing an agnostic
learning framework which places no assumptions on the class of utility functions. Instead,
we consider decision functions belonging to some class F = {f | f : X 7→ Y} and study the
objective of obtaining the “best” decision rule in F with respect to the unknown utility u∗.
Formally, given the decision class F and samples from a distribution Dx over the feature
space X , the objective of the learner is to output a model f̂ ∈ F with small excess risk or
regret

err(f̂ ,F) : = sup
f∈F

Ex∼Dx
[u∗(x, f(x))]− Ex∼Dx

[u∗(x, f̂(x))] . (1)

Our proposed notion of excess risk measures the performance of an estimator f̂ by comparing
its decisions with those of the best predictive model in the class F under the utility u∗.

1 We use the term scenario/context/feature for the vector x interchangeably.
2 We consider finite decision spaces Y.
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Figure 1 Consider a binary decision-task with decisions G(reen) and B(lue). The instance space
comprises of three equiprobable clusters of datapoints x1, x2 and x3, and have associated utilities u∗

for decisions B and G. The colour of the datapoints represents the decision with higher utility. The
function class F consists of linear predictors. In the traditional learning setups where the dataset
consists of pairs (x, y), no learner will have enough information to select between f1 and f2 since
the 0− 1 error for both is 1/3. In contrast, using a 2-comparison oracle, a learner can ask a query
of the form “Which of u∗(x1,G) + u∗(x3,B) or u∗(x1,B) + u∗(x3,G) is bigger?”. This allows them
to infer that correctly predicting x3 gives a higher overall utility and output the optimal decision
function f2.

Contrast this with the classical agnostic learning framework [15] where the evaluation metric
for classification measures what proportion of datapoints f̂ predicts correctly

errcl(f̂ ,F) : = sup
f∈F

Ex∼Dx
[I[f(x) 6= yx]]− Ex∼Dx

[I[f̂(x) 6= yx]] , (2)

where yx = argmaxy∈Y u∗(x, y) represents the expert decision (revealed decision) for scenario
x. Our above framework generalizes the proper agnostic learning framework – we restrict
our attention to proper learners which output models f̂ ∈ F and the decision class F is
agnostic towards the unknown underlying utility u∗. Indeed, our agnostic framework allows
for misspecification in the decision class F and allows for situations where no predictive
model f ∈ F matches the expert predictions yx for all instances x.

As highlighted by Figure 1, such a misspecification in the function class F implies that
no decision function f ∈ F will be able to perfectly fit these optimal decisions yx for all
points x ∈ S. In order to solve the agnostic learning problem, it is necessary for the
learner to understand the how costly these different mistakes are relative to each other.
From the learners perspective, observing only the optimal decisions yx for each instance
x, such as revealed preferences or expert demonstrations, are clearly insufficient to obtain
any information about these costs. One way to overcome this information-theoretic limit of
revealed decisions is to directly elicit the utilities from humans – for scenarios x and decision
y, ask an expert “What is the utility u∗(x, y) for taking the decision y given situation x?”.
However, since the underlying utility u∗ can be quite complex, humans are inept at answering
them reliably [17, 23]. For instance, it can be challenging for humans to correctly specify the
costs of mispredicting, say, a stop sign as a red signal relative to that of predicting it as a
post-box.

On the other hand, it is often easier for humans to provide comparative evaluations based
on these utilities [24, 14] and allow the learner to obtain relative feedback. Using these, the
learner can query an expert with comparison or preference queries asking “For instance x,
which of the two utilities u∗(x, y1) or u∗(x, y2) is larger?”. Such vanilla comparisons can
allow the learner to infer relative utilities for decisions y1 and y2 for a given context x; the
learner can conclude that mispredicting stop sign as post-box is worse than mispredicting it

ITCS 2021
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as a red signal. However, such feedback still does not provide any information about the
mistake costs across different examples – given a choice, should the learner correctly predict
a stop-sign or correctly predict a post-box?

While vanilla comparisons are insufficient for the agnostic setup, let us consider the other
extreme: suppose that we have access to an oracle which can provide us with comparisons of
overall utilities for functions f1, f2 ∈ F . That is, the oracle can answer question of the form
“Which of the two overall utilities Ex[u∗(x, f1(x))] or Ex[u∗(x, f2(x))] is larger?”. Given access
to such an oracle, we will be able to find the optimal classifier in the class F . We call this the
∞-comparison oracle since such preferences requires a human to reason about the utilities
over the entire feature space X at once. Even for a small image classification task with a
million images, this would require a human to compare the utility of a million simultaneous
predictions! While this approach does allows for optimal estimation, the trade-off is that
it puts the complete burden of learning on the human’s side. It is worth highlighting that
the comparisons between lotteries used to establish the von Neumann-Morgenstern utility
theorem [18] can be shown to be a special case of such an ∞-comparison oracle.

While comparison queries only allow comparison within a single instance, the ∞-
comparison oracle takes the other extreme and requires a comparison along all instances.
However, we need not restrict our self to either of these extremes; our key insight is that there
is a natural spectrum of such comparisons, which we call k-comparisons which interpolate
between the single or 1-comparison and the ∞-comparison oracle. Such comparison queries
allow a learner to pick k instances {x1, . . . , xk} and two sets of corresponding decision,
{y1, . . . , yk} and {y′1, . . . , y′k}, and ask “Which of the cumulative utilities

∑
i u
∗(xi, yi) or∑

i u
∗(xi, y′i) is bigger?”. For instance, for the example in Figure 1, giving the learner access

to a 2-comparison oracle allows the algorithm to output the optimal decision function.
These higher-order comparison oracles form a natural hierarchy of elicitation mechanisms

for the learner with a k′-oracle being strictly more informative than a k-oracle for k′ > k.
They allow for a natural trade-off between accuracy and elicitation in the learning with
unknown utilities framework. As we increase the order k of the oracle, the learner can obtain
finer information about the utilities u∗ and output functions with lower excess risk. However,
this increase in information comes at the expense of asking for a harder elicitation from the
human expert.

Our Contributions

We propose a novel framework, which we call agnostic learning with unknown utilities, for
studying decision problems wherein the learner is evaluated with respect to an unknown
utility function. Within this framework, we show that standard approaches which work
well in the realizable setup, such as revealed preferences as well as vanilla comparisons,
can perform quite poorly in the face of misspecification and can have excess risk Ω(1). To
overcome this, we propose a family of elicitation mechanisms, the k-comparisons, which
allows the learner access to finer information from an human expert with increasing values
of the order k. Our main results, detailed in Section 3, provide a tight characterization of
the excess risk as a function of the order k of the comparison oracle available to the learner.
These result brings out an interesting accuracy-elicitation trade-off – as the order k of the
oracle increases, the comparative queries allow for more accurate learning in our setup but
become harder to elicit from humans.

We would like to highlight that increasing the order k of the comparisons could lead to
potentially biased and noisy responses from the human expert. As a consequence, there might
be an additional trade-off involving the quality of the information obtained by increasing the
order. While we do not focus on this aspect of elicitation, it is an interesting direction for
future work.
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Paper Organization

The remainder of the paper is organized as follows: Section 2 introduces our agnostic learning
with unknown utilities problem setup and the k-comparison elicitation mechanism, and
Section 3 gives an overview of our main results and algorithmic contributions. In Section 4,
we study excess risk bounds for the binary decision problem in our framework and propose
our algorithm, Comptron, to learn from higher-order comparisons and in Section 5, we study
adaptive estimators which are optimal for each instance of our problem. While these sections
contain a formal statement of all our main results, due to space limitations, we defer some of
the proofs to full version of the paper.

2 Problem formulation

In this section, we formally state our learning with unknown utilities problem and introduce
the k-comparison oracle. Let X ⊆ Rd represent the space of feature vectors, Y denote the
corresponding decision space and F denote a class of decision making functions, given as
F = {f | f : X 7→ Y}. Our framework considers an underlying utility function u∗ : X ×Y 7→
[0, 1] which assigns a non-negative real value for making a decision y ∈ Y given a situation
x ∈ X . Further, let us denote the set

U = {u | u : X × Y 7→ [0, 1]} (3)

of all possible such utility functions. For any distribution Dx over the feature space X , we
define the expected utility of a decision function f ∈ F as U(f ;u∗) : = Ex∼Dx [u∗(x, f(x))].
Observe that such an expected utility model assumes that the utilities are additive across
the different instances x and is a commonly studied model both in the machine learning,
statistics and economics literature. We denote the excess risk of a function f with respect to
the function class F by

err(f,F ;u∗) : = max
f ′∈F

U(f ′;u∗)− U(f ;u∗). (4)

Further, we denote the optimal decision for any instance x with respect to the underlying
utility u∗ by yx : = argmaxy∈Y u∗(x, y).

Similar to the classical agnostic learning setup [15], we assume that the learner does not
know the underlying distribution Dx of the instances. However, our setup differs from it
in that we do not assume that the underlying utility function u∗ is known to the learner.
Instead, we provide the learner access to an oracle which allows the learner to elicit responses
to higher-order preferences queries.

Comparison Oracle

Since the utility function u∗ is unknown to the learner, our framework allows the learner
access to an oracle which provides comparative feedback based on the utilities u∗. We
consider a family of such oracles Ok, each indexed by its order k which determines the
number of different instances the learner is allowed to specify in the comparison query. For
an oracle Ok, a learner is allowed to select a set of k situations x ∈ X k and two pairs of
corresponding decisions y1,y2 ∈ Yk. The oracle then compares, in a possibly noisy manner,
the cumulative utilities of the pair (x,y1) and (x,y2) and responds with the feedback on
which one is larger. As the order k of the oracle increases, the queries become more complex
– an expert is required to evaluate a larger number of instances at once. This family of
comparison oracles captures a natural hierarchy of elicitation mechanisms where with each
increasing value of k, a learner has access to more information about the utility function u∗.

ITCS 2021
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Formally, we represent a k-query by a tuple (x,y1,y2) where the input x = (x1, . . . , xk)
comprises k feature vectors and the corresponding decision vectors y1 = (y1, . . . , yk) and
y2 = (y′1, . . . , y′k).3 Given such a query q, the oracle Ok provides the learner a binary response

Ok(q = (x,y1,y2)) =
{
I [u∗(x,y1) ≥ u∗(x,y2)] with prob. 1− ηq
1− I [u∗(x,y1) ≥ u∗(x,y2)] otherwise

, (5)

where the parameter 0 ≤ ηq < 1
2 represents the noise level corresponding to query q. Thus,

the oracle4 Ok provides noisy comparisons of the cumulative utilities u∗(x,y1) and u∗(x,y2)
with varying noise level ηq. Observe that we allow the noise levels ηq to be different for each
query q.

Problem Statement

We are interested in the agnostic learning with unknown utilities problem where a learner
is provided n samples S = {x1, . . . , xn} with each xi ∼ Dx and access to the k-comparison
oracle described above, and is required to output a decision function f̂ ∈ F such that error
err(f̂ ,F) is small. The caveat is to do so with a minimum number of calls, which we term
the query complexity nq of learning, to the comparison oracle Ok. Quantitatively, we would
like to characterize the excess risk from equation (4) in terms of the number of sampled
instances n, the order k of the comparison oracle and properties of the decision function
class F , and the associated oracle query complexity nq to obtain this bound.

Obtaining such bounds on the excess risk err(f,F ;u∗) in terms of the order k allow us to
quantify the trade-offs in learning better decision functions at the expense of requiring more
complex information from the human expert. Going forward, we focus on the binary decision
making problem where the label space Y = {0, 1} for clarity of exposition. Whenever our
results can be extended to arbitrary decision sets, we provide a small remark about this
extension.

3 Main results

With the formal problem setup in place, we discuss our main results for learning in this
framework of unknown utilities. At a high level, our objective is to understand how the
excess risk err(f,F ;u∗) defined in equation (4) behaves as a function of the oracle order k –
specifically, at what rates does learning in our proposed framework get easier as we allow
learner to elicit more complex information from the oracle?

For our main results, on the upper bound side, we design estimators for learning from
the k-comparison oracle, and on the lower bound side, we study information-theoretic limits
of learning with such higher-order comparisons. While we state our results for the binary
decision problem where the label space Y = {0, 1} for clarity, most of our results can be
generalized to arbitrary outcome space Y.

3 We overload our notation and represent the cumulative utilities of the k inputs (x, y) by
u∗(x, y) =

∑
i
u∗(xi, yi).

4 Note that while the oracle depends on the underlying utility function u∗, our notation suppresses this
dependence for clarity. We use the notation Ok(q; u∗) whenever we want to make this dependence
explicit.
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3.1 Excess risk with k-comparison oracle (Section 4)
We study a class of plug-in estimators which are based on the following two-step procedure:
i. Obtain estimate û of the true utility u∗ on the sampled datapoints.
ii. Output utility maximizing function f̂k,n with respect to the estimated utility û.

For learning the parameters û, we introduce the Comptron (Algorithm 1) and Rob-
Comptron (Algorithm 2) algorithms for the noiseless and noisy comparison oracles respectively.
We show that when these estimates û are combined with the two-step plug-in estimator, the
excess risk of the function f̂k,n scales as O( 1

k ) and an additive complexity term capturing
uniform convergence of the decision class F with respect to the true utility u∗.

I Theorem 1 (Informal, noiseless comparisons). Given n samples, the excess risk for the
function f̂k,n ∈ F output by the plug-in estimator using estimates û from Comptron satisfies

err(f̂k,n,F ;u∗) ≤ Complexityn(F ;u∗) +O

(
1
k

)
·

(
1
n

n∑
i=1

I[fERM(xi) 6= yi]
)
,

where the ERM function fERM ∈ argmaxf∈F
∑n
i=1 u

∗(xi, f(xi)). Furthermore, Comptron
makes only O(n log k) queries to the oracle Ok.

We make a few remarks on this result. First, observe that the complexity term depends on
the true utility function u∗ and not on the estimates û. This ensures that the complexity term
does not depend on the utility class U but rather only on the specific utility u∗ – indeed, the
class U consists of all bounded function and uniform convergence might not even be possible
with finite sample for a large class of distributions Dx. Second, the additional error of O( 1

k )
accounts for the fact that the utilities u∗ are unknown. One can learn better decision functions
by increasing the order k of the comparison oracle but this comes at the cost of the human
expert answering a more complex set of queries. Furthermore, this error is multiplied by the
0− 1 prediction error of the optimal on-sample classifier fERM = argmaxf∈F

∑
i u
∗(xi, f(xi)).

This implies that in the well-specified setup, where there exists an f ∈ F such that f(xi) = yi
on the sampled datapoints, the second term becomes 0 and the learner pays no additional
error for not knowing the utilities u∗. Third, observe that our proposed algorithms, Comptron
and Rob-Comptron, are query efficient; both require only O(n log k) calls to the k-comparison
oracle to produce “good” estimates û.

The proof of the above theorem proceeds in two steps. First, we adapt the classical proof
for upper bounding the risk of ERM procedures to show that the gap err(f̂k,n,F) decomposes
into the complexity term and estimation error ‖û−u∗‖S,∞, evaluated on the dataset S. Next,
we show that this estimation error scales as O

( 1
k

)
for the Comptron and Rob-Comptron

procedures.
Next, we address the optimality of the above plug-in procedure by studying the

information-theoretic limits of learning with a k-comparison oracle. Specifically, in Theo-
rem 9 we establish that the rate of 1

k is indeed minimax optimal – for any k > 1 and any
predictor f̂ in some class F , we can construct utility functions u∗ such that excess risk
err(f̂ ,F ;u∗) = Ω

( 1
k

)
. These lower bounds imply that traditional comparison based learning,

corresponding to k = 1, is insufficient for learning good decision rules in our framework.

3.2 Instance-optimal learning (Section 5)
While the previous results show that the error rate of O( 1

k ) is optimal on worst-case instances,
some instances of our learning with unknown utilities problem might be easier than these
worst-case ones and one would expect the excess risk to be smaller for them. In this section,
we study estimators whose error adapts to hardness of the specific problem instance.

ITCS 2021
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To begin with, in Proposition 11 we establish that the plug-in estimator with Comptron
estimates û is not optimal for all instances – it does not adapt to these easier instances.
Inspired from the robust optimization literature, we introduce a randomized estimator prob
and show that it is instance-optimal. Informally, we establish in Theorem 13 that for any
instance (Dx, u∗,F) of the problem, the excess risk for prob is characterized by a local modulus
of continuity; this modulus captures how quickly the optimal decision function in class F
can change in a small neighborhood around u∗ for the distribution Dx. In Theorem 12, we
derive a lower bound on the local minimax excess risk and show that the local modulus is
indeed the correct instance-dependent complexity measure for this problem.

However, note that such adaptivity to the hardness of the instance comes at the cost
of query efficiency. Our estimator prob makes an exponential number O(nk) of calls to the
oracle Ok.

4 Binary decision-making with k-comparisons

In this section, we obtain upper and lower bounds on the excess risk for the binary prediction
problem with unknown utilities where the learner can elicit utility information using a
k-comparison oracle. In Section 4.1, we introduce algorithms which learn decision-making
rules from higher-order preference queries and obtain upper bounds on the excess risk for
such estimators. Then, in Section 4.2, we turn to the information-theoretic limits of learning
from k-queries and obtain lower bounds on the minimax risk of any estimator.

Recall from Section 2, our setup gives the learner access to a dataset S = {x1, . . . , xn}
comprising n points, each sampled i.i.d. from an underlying distribution Dx and to a
comparison oracle Ok. Before proceeding to define the estimator, we introduce some notation.
For any function f ∈ F , let us denote the empirical cumulative utility with respect to utility
function u∗ and the corresponding empirical utility maximizer as

Ûn(f ;u∗) = 1
n

∑
i

u∗(xi, f(xi)) and fERM ∈ argmax
f∈F

Ûn(f ;u∗) , (6)

where the subscript n encodes the dependence on the number of samples. If the underlying
utility u∗ were in fact known to the learner, it would have output the classifier fERM, which,
from the classical learning theory literature, is known to have favorable generalization
properties [22]. For the case of unknown utilities, we extend this ERM procedure to a natural
two-stage plug-in estimator which outputs the minimizer with respect to an estimate ûk of
these utilities.

4.1 Excess-risk upper bounds for plug-in estimator
Building on the ERM estimator fERM described in equation (6), we design a two stage plug-in
estimator f̂k,n, where the subscript k represents the order of the comparison oracle used to
obtain the estimate.

In the first stage, we form estimates ûk of the true utility function u∗ on the sampled
datapoints S using the k-comparison oracle. The predictor f̂k,n ∈ F is then given by the
empirical utility maximizer with respect to ûk, that is,

f̂k,n ∈ argmax
f∈F

1
n

n∑
i=1

ûk(xi, f(xi)). (7)

Before detailing out the procedures for producing utility estimates ûk, we present our first
main result which shows that the excess risk err(f̂k,n,F ;u∗) can be upper bounded as a sum
of two terms: (i) a complexity term corresponding to the rate of uniform convergence of the



K. Bhatia, P. L. Bartlett, A.D. Dragan, and J. Steinhardt 55:9

cumulative utility U(f ;u∗) over the decision class F and (ii) an estimation error term which
denotes how well the estimates ûk approximate u∗ on the sampled datapoints. Our result
measures this estimation error in terms of a data-dependent norm

‖u‖S,∞ : = sup
i∈[n]

sup
y∈Y
|u(xi, y)|. (8)

Recall from equation (6) that the function fERM is the minimizer of the empirical utility
Ûn(f ;u∗). While the following results hold for general decision spaces Y, we later specialize
this in Proposition 3 for the binary prediction setup.

I Theorem 2 (Excess-risk upper bound). Given datapoints S = {x1, . . . , xn} such that each
xi ∼ Dx, and an estimate ûk of the true utility function u∗, the plug-in estimate f̂k,n from
equation (7) satisfies

err(f̂k,n,F ; u∗) ≤

2 · sup
f∈F

(
|U(f ; u∗)− Ûn(f ; u∗)|

)
+ 2‖u∗ − ûk‖S,∞ ·

(
1
n

n∑
i=1

I[fERM(xi) 6= f̂k,n(xi)]

)
. (9)

A few comments on Theorem 2 are in order. First, notice that the upper bound on the
risk err(f̂k,n,F ;u∗) is a deterministic bound comprising two terms. The uniform convergence
term captures how fast the empirical utility Ûn(f ;u∗) converge to the population utility
U(f ;u∗) uniformly over the decision class F . Using standard bounds [8], one can show that
this term is upper bounded by the empirical Rademacher complexity of the class F on the
datapoints S, that is,

sup
f∈F

(
|U(f ;u∗)− Ûn(f ;u∗)|

)
≤ Eε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εiu
∗(xi, f(xi))

∣∣∣∣∣
]

: = R̂n(F ◦ u∗) (10)

where each εi is an i.i.d. Rademacher random variable taking values {−1,+1} equiprobably.
Such complexity measures are commonly studied in the learning theory literature and one
can obtain sample complexity rates for a wide range of decision classes including parametric
decision classes and non-parametric kernel classes amongst others.

The second term in equation (9) is given by a product of two terms. The first part
‖u∗− ûk‖S,∞ captures the on-sample approximation error of the estimates ûk. Notice that, in
general, the problem of estimating u∗ uniformly over the space X is infeasible since the class
U contains the set of all bounded functions on X ×Y . However, the fact that we are required
to estimate the utilities u∗ only on the sampled datapoints S makes learning feasible in our
framework. The second part, 1

n

∑n
i=1 I[fERM(xi) 6= f̂k,n(xi)] ≤ 1 the mismatch between the

predictions of fERM, obtained with complete knowledge of u∗, and of f̂k,n, obtained from
estimates ûk. Notice that whenever the function class F is correctly specified on S, that is,
there exists a function f ∈ F such that f(xi) = yi), then the predictions of f̂k,n and fERM
will coincide. This follows since the labels yi can be inferred using a 1-comparison. In such a
well-specified setup, this second term vanishes and we recover the upper bound in terms of
the uniform convergence term. Surprisingly, this exhibits that not knowing the utility u∗
affects learnability only when the function class F is misspecified.

Proof. We begin by decomposing the excess error err(f̂k,n,F ;u∗) and then handle each term
in the decomposition separately. Recall that the function fERM is the maximizer of the
empirical utility Ûn(f ;u∗). Then, for any decision function f ∈ F , consider the error
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err(f̂k,n, f ; u∗) = U(f ; u∗)− Ûn(f ; u∗) + Ûn(f ; u∗)− Ûn(fERM; u∗) + Ûn(fERM; u∗)− Ûn(f̂k,n; u∗)

+ Ûn(f̂k,n; u∗)− U(f̂k,n; u∗)
(i)
≤ 2 sup

f∈F

(
|U(f ; u∗)− Ûn(f ; u∗)|

)
+ Ûn(fERM; u∗)− Ûn(f̂k,n; u∗)︸ ︷︷ ︸

Term (I)

, (11)

where the inequality (i) follows by noting that fERM is the maximizer of Ûn(f ;u∗). We now
focus our attention on Term (I) in the above expression.

Ûn(fERM;u∗)− Ûn(f̂k,n;u∗) = Ûn(fERM;u∗)− Ûn(fERM; û) + Ûn(fERM; û)− Ûn(f̂k,n; û)

+ Ûn(f̂k,n; û)− Ûn(f̂k,n;u∗)
(i)
≤ 2
n

n∑
i=1

I[fERM(xi) 6= f̂k,n(xi)] · sup
y∈Y
|u∗(xi, y)− û(xi, y)|

≤ 2‖u∗ − û‖S,∞ ·
(

1
n

n∑
i=1

I[fERM(xi) 6= f̂k,n(xi)]
)
,

where (i) follows by noting that f̂k,n maximizes the utility Ûn(f ; û). Plugging the bound
above in equation (11) completes the proof. J

We now specialize the result of Theorem 2 to the binary prediction setup where the
label space Y = {0, 1}. Recall that for each datapoint xi, we denote the true label by
yi = argmaxy u∗(xi, y). We now introduce the notion of utility gaps ugap(xi) which measures
the excess utility a learner gains by predicting a datapoint xi correctly relative to an incorrect
prediction. Formally, the gap ugap(xi) for datapoint xi with respect to some utility function
u ∈ U is given as

ugap(xi) : = u(xi, yi)− u(xi, ȳi) , (12)

where we denote the incorrect label by ȳ = 1−y. With this notation, the following proposition
obtains an upper bound on the excess error of plug-in estimator f̂k,n for the binary prediction
problem in terms of the estimation error in these gaps ugap(xi).

I Proposition 3 (Upper bounds for binary prediction). Consider the binary decision making
problem with label space Y = {0, 1}. Given n datapoints {x1, . . . , xn} such that each datapoint
xi ∼ Dx, and an estimate ûk of the utility function u∗, the plug-in estimator f̂k,n from
equation (7) satisfies

err(f̂k,n,F ; u∗) ≤ 2 · sup
f∈F

(
|U(f ; u∗)− Û(f ; u∗)|

)
+ 2 max

i
[u∗gap(xi)− ûgap(xi)] ·

(
1
n

n∑
i=1

I[fERM(xi) 6= yi]

)
. (13)

The proof of the above proposition follows similar to Theorem 2 and is deferred to the full
version. This specializes the result of Theorem 2 and shows that for the binary prediction
problem, estimating the utility gaps ugap well for each datapoint suffices

The upper bound on excess risk given by Proposition 3 shows that the function f̂k,n
derived from estimates ûk will have small error as long as the estimates ûgap(xi) approximate
the true utility gaps u∗gap(xi) for each datapoint xi. Therefore, in the following sections, we
focus on procedures for obtaining the utility estimates ûgap using the k-comparison oracle.
we separate the presentation based on whether the oracle Ok provides noiseless comparisons
(ηq = 0 for all q) or whether the oracle evaluations are noisy.
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Algorithm 1 Comptron: Comparison based Coordinate-Perceptron for estimating u∗gap.

Input: Datapoints S = {x1, . . . , xn}, k-comparison oracle Ok
Initialize: Set T = log2 k − 1
Obtain yi = argmaxy u∗(xi, y) for each i using 1-comparison.
Obtain index imax using 2-comparisons such that imax = argmaxi u∗gap(xi).
Set initial estimates û0

gap = [û0
gap(x1), . . . , û0

gap(xn)] = u∗max : = u∗gap(ximax ).
(Note that exact value of u∗max is not required since comparison queries are relative)
for t = 1, . . . , T do

for i = 1, . . . , n do
Denote by λ = k

2u∗max

(
ût−1

gap (xi)− u∗max
2t

)
and query qi,t = (x,y1,y2) where

x=(xi, . . . , xi︸ ︷︷ ︸
k
2 times

, ximax , . . . , ximax︸ ︷︷ ︸
λ times

), y1 =(yi, . . . , yi︸ ︷︷ ︸
k
2 times

, 1− yimax , . . . , 1− yimax︸ ︷︷ ︸
λ times

), y2 =1−y1.

Query oracle Ok with qi,t and receive response ri,t.

Update ûtgap(xi) = ût−1
gap (xi)− I[ri,t = 0] · u

∗
max
2t .

Output: Gap estimates ûTgap

4.1.1 Estimating u∗gap with noiseless oracle
In this section, we propose our algorithm for estimating the gaps u∗gap when the k-comparison
oracle is noiseless. Recall from equation (5), for a query q = (x,y1,y2) comprising k feature
vectors x = (x1, . . . , xk), and two decision vectors y1 = (y1, . . . , yk) and y2 = (y′1, . . . , y′k),
such a noiseless oracle deterministically outputs

Ok(q = (x,y1,y2)) = I [u∗(x,y1) ≥ u∗(x,y2)] ,

where recall that u∗(x,y) =
∑
i∈[k] u

∗(xi, yi) is the sum of the utilities under u∗ for the
tuple (x,y). In the binary prediction setup, such queries allow a learner to specify a set of k
instances x and a subset Sq ⊂ x and ask the oracle “whether correctly predicting instances
in Sq has higher utility or the instances in the complement x \ Sq?”.

Recall that Proposition 3 shows that excess risk for the plug-in estimator can be bounded
by the worst-error |u∗gap(xi)− ûgap(xi)| over the set of sampled datapoints S. To obtain such
estimates, we introduce Comptron in Algorithm 1 which is a coordinate-wise variant of the
classical perceptron algorithm [20]. At a high level, Comptron is an iterative procedure which
estimates the utility gaps u∗gap(xi) for each xi relative to the largest gap

u∗max : = max
i∈[n]

u∗gap(xi) ≤ 1. (14)

At each iteration t, the queries qi,t are selcted such that ût−1
gap (x,y1) > ût−1

gap (x,y2) under the
current estimates ût−1

gap . If the oracle’s response is ri,t = 1, the estimates are consistent with
the response and it keeps the current estimate. On the other hand, if the response ri,t = 0,
the algorithm decreases its current estimate of the ith datapoint in order to be consistent
with this query. Comptron repeats the above procedure for T = log2 k − 1 timesteps and
finally outputs the estimates ûTgap.

It is worth highlighting here that Comptron initializes all the estimates as the largest gap,
that is, û0

gap(xi) = u∗max. Such an initialization is purely symbolic in nature and the algorithm
does not require knowledge of this value. This is because the comparison queries qi,t allows
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the algorithm to compare the estimates ûgap with u∗max and the algorithm maintains its
estimates ûtgap as a multiplicative factor of u∗max for iterations t. Further, we can use symbolic
estimates to output the plug-in estimator since it is invariant to scaling the utility gaps by a
positive constant,

argmax
f∈F

n∑
i=1

û(xi, f(xi)) ≡ argmax
f∈F

n∑
i=1

ûgap(xi) · I[f(xi) = yi]

≡ argmax
f∈F

n∑
i=1

ûgap(xi)
u∗max

· I[f(xi) = yi] .

The following lemma provides an upper bound on the estimation error of Comptron
and shows that the output estimates ûgap(xi) are within a factor O(u

∗
max
k ) of the true gaps

u∗gap(xi).

I Lemma 4 (Estimation error of Algorithm 1). Given access to datapoints S = {x1, . . . , xn}
and k-comparison oracle Ok, Comptron (Algorithm 1) uses O(n log k) queries to the oracle
and produces estimates ûgap such that

max
i∈[n]

∣∣ûgap(xi)− u∗gap(xi)
∣∣ ≤ 2u∗max

k
. (15)

We defer the proof of the lemma to the full version. The proof proceed via an inductive
argument where we show that the confidence interval around u∗gap(xi) shrinks by a factor of
1
2 in each iteration for every datapoint xi. Given the above estimation error guarantee for
Comptron, the following corollary combines these with the excess risk bounds of Proposition 3
to obtain an upper bound on the excess risk of f̂k,n.

I Corollary 5. Consider the binary decision making problem with label space Y = {0, 1}.
Given n datapoints {x1, . . . , xn} such that each xi ∼ Dx, the plug-in estimate f̂k,n from
equation (7), when instantiated with the output of Comptron (Algorithm 1), satisfies

err(f̂k,n,F ;u∗) ≤ 2 · sup
f∈F

(
|U(f ;u∗)− Û(f ;u∗)|

)
+ 2u∗max

k
·

(
1
n

n∑
i=1

I[fERM(xi) 6= yi]
)
.

Corollary 5 exhibits the advantage of using higher-order comparisons for the learning with
unknown utilities problem – as the order k increases, the error of the plug-in estimate decreases
additively as O

( 1
k

)
. It is worth noting here that while the higher-order comparisons allow

the learner to better estimate the underlying utilities, the problem gets harder from the side
of the human expert. Indeed, with higher values of k, the expert is required to compare
utilities across k different possible situations which can make the elicitation a harder task.

While the results in this section exhibit how the excess risk err(f̂k,n;F) varies as a function
of k, they rely on the oracle responses being noiseless. In the next section, we consider the
setup where the oracle responses can be noisy and propose a robust version of the Comptron
algorithm for learning in this scenario.

4.1.2 Estimating u∗gap with noisy oracle
In contrast to the deterministic noiseless oracle of the previous section, here, we consider
learning with unkown utilities when the oracle Ok can output noisy responses to each query.
Recall from equation (5), for any query q, the noisy k-comparison oracle the correct response
with probability 1− ηq and flips the response with probability ηq for some value of ηq < 1

2 .
While we allow this error probability to vary across different queries, we assume that this
error is bounded uniformly across all queries by some constant η < 1

2 .
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Algorithm 2 Rob-Comptron: Robust Comptron for estimating u∗gap with noisy oracle.

Input: Datapoints S = {x1, . . . , xn}, k-comparison oracle Ok, noise level η,
confidence δ

Initialize: T = log2 k − 1, J = 8
(1−2η)2 log

(
nT
δ

)
Obtain yi = argmaxy u∗(xi, y) for each i using 1-comparison.
Obtain index imax using 2-comparisons such that imax = argmaxi u∗gap(xi).
Set initial estimates û0

gap = [û0
gap(x1), . . . , û0

gap(xn)] = u∗max symbolically
for t = 1, . . . , T do

for i = 1, . . . , n do
Denote by λ = k

2u∗max

(
ût−1

gap (xi)− u∗max
2t

)
Set query qi,t = (x,y1,y2) where

x=(xi, . . . , xi︸ ︷︷ ︸
k
2 times

, ximax , . . . , ximax︸ ︷︷ ︸
λ times

), y1 =(yi, . . . , yi︸ ︷︷ ︸
k
2 times

, 1− yimax , . . . , 1− yimax︸ ︷︷ ︸
λ times

), y2 =1−y1.

for j = 1, . . . , J do
Query oracle Ok with qi,t and receive response ri,j,t.

Update ûtgap(xi) = ût−1
gap (xi)− I[ 1

J

∑
j ri,j,t <

1
2 ] · u

∗
max
2t .

Output: Gap estimates ûTgap

I Assumption 6. For the noisy k-comparison oracle described in equation (5), we have that
ηq ≤ η < 1

2 for all queries q.

From an algorithmic perspective, it is well known that the perceptron algorithm itself is not
noise-stable and can oscillate if there are datapoints x which have noisy labels. In order to
overcome this limitation, several noise-robust perceptron variants have been proposed in the
literature; see [16] for an extensive review.

We build on this line of work and present Rob-Comptron (Algorithm 2), a noise-robust
variant of the deterministic Comptron algorithm. The main difference is the presence of an
additional inner-loop with index j which repeatedly queries qi,t for J = Õ

(
1

(1−2η)2

)
times.

In each iteration, the update is again a coordinate-wise perceptron update which matches
the prediction of the current estimate with the average of the oracle responses. Such an
averaging has been previously used in the context of learning halfspaces from noisy data
both in a passive [11] and active [25] framework.

The following lemma provides an upper bound on the estimation error of the gap estimates
produced by Rob-Comptron.

I Lemma 7 (Estimation error of Algorithm 2). Given access to datapoints S = {x1, . . . , xn}
and noisy k-comparison oracle Ok satisfying Assumption 6 with parameter η, Rob-Comptron
(Algorithm 2) uses O

(
n

(1−2η)2 · log k · log n log k
δ

)
queries and produces estimates ûgap such

that

max
i∈[n]

∣∣ûgap(xi)− u∗gap(xi)
∣∣ ≤ 2u∗max

k
, (16)

with probability at least 1− δ.
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In comparison to Comptron which requires O(n log k) queries to the comparison oracle, the
robust variant Rob-Comptron requires a fraction 1

(1−2η)2 more queries to achieve a similar
estimation error. Such an increase in query complexity is typical of learning with such noisy
oracles in the binary classification setup [5, 7, 12, 25].

Similar to Corollary 5 in the previous section, we can combine the above high-probability
bound on the estimation error to obtain a bound on the excess risk which scales as 1

k with
the order k of the comparison oracle.

I Corollary 8. Consider the binary decision making problem with label space Y = {0, 1}.
Given n datapoints {x1, . . . , xn} such that each xi ∼ Dx, the plug-in estimate f̂k,n from
equation (7), when instantiated with the output of Comptron (Algorithm 1), satisfies

err(f̂k,n,F ;u∗) ≤ 2 · sup
f∈F

(
|U(f ;u∗)− Û(f ;u∗)|

)
+ 2u∗max

k
·

(
1
n

n∑
i=1

I[fERM(xi) 6= yi]
)
.

with probability at least 1− δ.

We omit the proof of this corollary since it essentially follows the same steps as that for
Corollary 5. This corollary establishes that by increasing the query complexity by a factor
of O (1/(1−2η)2), one can recover the same additive 1

k excess risk bound of the deterministic
setup. Combined, Corollaries 5 and 8 establish the trade-offs in the reduction of the excess
risk while eliciting more complex information about the underlying utility u∗ through the
k-comparison oracle.

4.2 Information-theoretic lower bounds
In the previous section, we studied the learning with unknown utility problem from an
algorithmic perspective and showed that the plug-in estimator with Comptron estimates û
achieve an excess risk bound which scales as O( 1

k ) with the order k of the comparison. In
this section, we ask whether such a scaling of the error term is optimal and study this lower
bound question from an information-theoretic perspective.

Recall from Theorem 2 that the excess risk decomposes into two terms: (i) a uniform
convergence term for the decision class F with respect to utility function u∗ and (ii) an
estimation error term corresponding to how well ûk approximates u∗ on the sampled data-
points. When the underlying utility function u∗ is known, classical results from the learning
theory literature the uniform convergence complexity term is in general unavoidable [21].
With this, we take the infinite-data limit, where the learner is assumed to have access to the
distribution Dx, and study whether the excess error of O( 1

k ) is necessary.
Our notion of minimax risk is based on the subset of utility functions which cannot be

distinguished by any learner with access to a k-comparison oracle. Formally, given any oracle
Ok(· ;u∗), where we have made the dependence on the utility u∗ explicit, we denote by
Uk,u∗ the subset of utility functions in the class U which are consistent with the responses
of Ok(· ;u∗). With this, we define the information-theoretic minimax risk Mk(F ,Dx) with
respect to the function class F and distribution Dx as

Mk(F ,Dx) : = sup
Ok(· ;u∗)

inf
p∈∆F

sup
u∈Uk,u∗

Ef∼p [err(f,F ;u)] , (17)

where the infimum is taken over all procedures which take as input the distribution Dx
over the instances and access to a k-comparison oracle, and output a possibly randomized
estimate p ∈ ∆F . The above notion of minimax risk can be viewed as a three-stage game
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between the learner and the environment. The sequence of supremum and infimum depicts
the order in which information is revealed in this game. The environment first selects a
k-query oracle O(· ;u∗) with underlying utility u∗. The learner is then provided access to
the underlying distribution Dx, function class F and the oracle O(· ;u∗) based on which it
outputs a possibly randomized decision function given by p ∈ ∆F . The environment is then
allowed to select the worst-case utility u such that it is consistent with the k-oracle O(· ;u∗)
and the learner is evaluated in expectation over this chosen utility. We call this the minimax
risk of learning with respect to class F and distribution Dx.

Our next main result shows that there exist instances of the binary prediction problem
(F ,Dx) such that the minimax risk Mk(F ,Dx) is lower bounded by 1

k for any k ≥ 2 up
to some universal constants. Observe that this matches the corresponding upper bounds
obtained in Corollaries 5 and 8 exhibiting that the proposed plug-in estimator in equation (7)
with Comptron (Rob-Comptron for noisy oracle) utilities is indeed minimax optimal for the
binary prediction setup.

I Theorem 9. There exists a universal constant c > 0 such that for any k ≥ 2, there exist a
binary prediction problem instance (F ,Dx) such that

Mk(F ,Dx) ≥ c

k
.

A few comments on Theorem 9 are in order. First, the above result shows a family of lower
bounds for our learning with unknown utilities framework – one for each value of the order
k. Specifically, it shows that for every k ≥ 2, there exists a worst-case instance such that any
algorithm will incur an error of Ω( 1

k ). Compare this with the upper bounds on excess risk
from the previous section. In the limit of infinite data, Corollaries 5 and 8 exhibit that the
excess risk err(f̂k,n,F ;u∗) = O( 1

k ) for the plug-in estimator f̂k,n. This establishes that the
plug-in estimator with Comptron and Rob-Comptron utility estimates is indeed minimax
optimal.

Proof. In order to establish a lower bound on the minimax risk Mk, we will construct two
utility functions u1, u2 ∈ U such that the k-comparison oracle has identical responses for
both these utility functions. For the purpose of our construction, we will consider noiseless
oracle; the problem only becomes harder for the learner if the oracle responses are noisy.
Given these two utility functions, we next show that their maximizers f1 and f2 are different
for some function class F . We then combine these two insights to obtain the final minimax
bound.

For our lower bound construction, we will focus on a setup where the features are one
dimensional with X = R and the linear decision function class

Flin = {fa | fa(x) = sign(ax), a ∈ [−1, 1]} .

Recall that for any point x, we represent by ugap(x) = u(x, yx) − u(x, ȳx) the utility gain
corresponding to the function u. Before constructing the explicit example, we present a
technical lemma which highlights a limitation of a k-comparison oracle – it establishes that a
k-oracle will not be able to distinguish utility functions for which the utility gaps are in the
range (1− 1

k , 1).

I Lemma 10. Consider any utility functions u1, u2 ∈ U . Let datapoints x have utility gain
uigap(x) for i = {1, 2}. For any two points x1, x2 such that

u1
gap(x1) = u2

gap(x1) = ugap(x1) and
(

1− 1
k

)
· ugap(x1) ≤ uigap(x2) ≤ ugap(x1) ,

the oracle responses for any query q = (x,y1,y2) comprising points x1 and x2 are identical
for u∗ = u1 or u∗ = u2.

ITCS 2021



55:16 Agnostic Learning with Unknown Utilities

We defer the proof of the above lemma to the full version. Taking this as given, we proceed
with our lower bound construction.

Utility functions u1 and u2. Our construction considers two datapoints x+ = +1 and
x− = −1 and two utility functions u and ũ satisfying

u1(x+, 1) > u1(x+, 0) and u1(x−, 1) > u1(x−, 0) ,
u2(x+, 1) > u2(x+, 0) and u2(x−, 1) > u2(x−, 0).

Observe that under these utilities, any function fa ∈ Flin can make a correct decision for
either point x+ or point x− but not for both simultaneously. Given these datapoints, the
two utility functions are given by

u1(x+, 1) = 1, u1(x−, 1) = 1− γ1 where γ1 = 1
2(3k + 1)

u2(x+, 1) = 1, u2(x−, 1) = 1− γ2 where γ2 = 2
(3k + 1) ,

and ui(x, 0) = 0 for both i = {1, 2}. Observe that both γ1, γ2 have been set to satisfy the
conditions of Lemma 10, that is,(

1− 1
k

)
· ugap(x+) ≤ uigap(x−) ≤ ugap(x+) for i = {1, 2}.

Distribution Dx. For any k > 2, consider the distribution Dx over the points {x+, x−} such
that

Pr(x = x+) = 3k
6k + 1 and Pr(x = x−) = 3k + 1

6k + 1 .

By Lemma 10, we have that using the k-comparison oracle, no learner can distinguish between
the utility functions u1 and u2 on the distribution Dx. Further, recall that any classifier
fa ∈ Flin can either predict x+ or x− correctly. We now obtain a bound on the excess risk
err(fa,F ;u) for both these cases separately.

Case 1: fa(x+) = 1. In this case, the utility gap is maximized by setting the utility u = u1
in the minimax risk. The corresponding excess risk is given by

err(fa,F ;u1) = (3k + 1)(1− γ1)
6k + 1 − 3k

6k + 1 = 1
2(6k + 1) . (18)

Case 2: fa(x−) = 1. In this case, the utility gap is maximized by setting the utility u = u2
and the excess risk is given by

err(fa,F ;u2) = 3k
6k + 1 −

(3k + 1)(1− γ2)
6k + 1 = 1

(6k + 1) . (19)

Noting that any predictor f̂ will output a function corresponding to one of the two cases
above and combining equations (18) and (19) establishes the desired claim. J

While the information theoretic results of this section showed that the plug-in estimator
is minimax optimal, the next section focuses on whether this estimator is able to adapt to
easier problem instances – specifically, whether our estimation procedures Comptron and
Rob-Comptron are optimal for every problem instance? We answer this in the negative and
introduce a new estimator which is instance optimal. However, such an adaptivity to easier
instances comes at the cost of an exponential query complexity.
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5 Instance-optimal guarantees for binary prediction

In the previous section, we proposed query-efficient algorithms, Comptron and Rob-Comptron,
for learning a function f̂k,n with small excess risk using only Õ(n log k) queries to the k-
comparison oracle. Further, the upper bounds in Corollaries 5 and 8 along with the lower
bound of Theorem 9 establish that our proposed algorithms are indeed minimax optimal
over the class of utility functions U . Given this, it is natural to ask whether our proposed
algorithms are instance wise-optimal, that is, do they achieve the best possible excess-risk
bounds for all u∗ ∈ U?

To simplify our presentation, we study this question at the population level,5 where we
assume that the learner has access to the underlying distribution Dx. This allows us to
focus on the excess risk as a function of the order k of the comparison oracle and ignore the
uniform convergence term. We also restrict our attention to the deterministic noiseless oracle
since one can reduce the noisy oracle to the noiseless oracle by using the averaging technique
presented in Section 4.1.

The following proposition shows that the plug-in estimator with Comptron utilities are
not instance-optimal, that is, it does not adapt to the hardness of the learning with unknown
utilities problem instance. Specifically, it constructs a problem instance (F ,Dx) with a
noiseless oracle and shows that the estimate6 f̂k from equation (7) with Comptron utility
estimates has an excess risk of 1

k while there exists an estimator, which uses all k-queries
and is able to achieve zero excess risk.

Recall that for any utility u∗ ∈ U , we denote by Uk,u∗ the subset of utility functions in
the class U which are indistinguishable from u∗ under the k-comparison oracle O(· ;u∗).

I Proposition 11 (Plug-in with Comptron estimates is not instance-optimal). For every k > 2,
there exists an binary prediction instance (F ,Dx) along with an oracle Ok such that
a) The error of the plug-in estimate f̂k from equation (7) with estimated utilities ûk from

Comptron (Algorithm 1) is non-zero, that is,

err(f̂k,F ;u∗) = 1
k
.

b) There exists an optimal predictor f̃ with zero excess-risk, that is,

sup
u∈Uk,u∗

err(f̃ ,F ;u) = 0.

We make a few remarks about the proposition. While the first part of the proposition
shows that the excess risk err(f̂k,F ;u∗) = 1

k , the second part makes a stronger claim about
the performance of f̃ on all utilities u ∈ Uk,u∗ . This shows that the predictor f̃ performs
well when evaluated on an entire neighborhood around the true utility u∗.

Having established that our estimators from the previous section are not adaptive, we
introduce a notion of local minimax risk and study estimators which are instance-optimal.
We begin by precisely defining this notion of instance-wise minimax optimality. Recall from
Section 4.2, our notion of minimax risk Mk(F ,Dx) was a worst-case notion – the minimax
risk was defined as a supremum over all oracles Ok(· ;u∗). We extend this global minimax
notion to a local minimax one. In particular, for any u∗ ∈ U , we define the local minimax
risk around u∗ as

5 Our analysis could be extended to the finite sample setup using the bound obtained in Theorem 2.
6 Since we are working at the population level, we have dropped the subscript n from f̂k,n
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Mk(F ,Dx;u∗) : = inf̂
f

sup
u∈U|u∗

[
err(f̂ ,F ;u)

]
, (20)

where the infimum is again over the set of all estimators which output a function f̂ ∈ F
given access to distribution Dx and k-comparison oracle Ok. Observe that this local notion
of minimax risk concerns the performance of an algorithm f̂ around a specific instance u∗ as
compared to the worst-case instance.

For any utility function u ∈ U , we define its population maximizer fu ∈
argmaxf∈F U(f ;u). With this notation, our next theorem provides a lower bound on
this local minimax risk in terms of a local modulus of continuity with respect to the set Uk,u∗ .

I Theorem 12 (Local minimax lower bound). For any distribution Dx over feature space
X , utility function u∗ ∈ U , function class F and order k of the comparison oracle, the local
minimax risk

Mk(F ,Dx;u∗) ≥ 1
2 · sup

u1,u2∈ Uk,u∗

(
U(fu1 ;u1)− U(fu1+u2

2
;u1)

)
. (21)

Proof. Consider any two utility functions u1, u2 ∈ Uk,u∗ and let ū = u1+u2
2 . We can then

lower bound the minimax risk as

Mk(F ,Dx;u∗) ≥ inf
f∈F

(
1
2 err(f,F ;u1) + 1

2 err(f,F ;u2)
)

= 1
2 err(fū,F ;u1) + 1

2 err(fū,F ;u2)

≥ 1
2 (U(fu1 ;u1)− U(fū;u1)) ,

where the last equality follows by noting that err(fū,F ;u2) ≥ 0. Since the above holds for
any choice of u1, u2, the desired bound follows by taking a supremum over these values. J

A few comments on Theorem 12 are in order. The theorem establishes that the local minimax
risk Mk(F ,Dx) is lower bounded by a local modulus of continuity,

sup
u1,u2∈ Uk,u∗

(
U(fu1 ;u1)− U(fu1+u2

2
;u1)

)
, (22)

which captures the worst-case variation in the performance of utility maximizers of utility in
a neighborhood of u∗. For any two utilities u1, u2 ∈ Uk,u∗ , it measures the performance drop
in the utility of a learner uses the maximizer fu1+u2

2
in place of fu1 when the underlying

utility is u1.
Given this lower bound on the local minimax risk Mk(F ,Dx), it is natural to ask whether

this local modulus of continuity exactly captures the instance-specific hardness of the problem.
To this end, our next result answers this in the affirmative. In particular, it shows that for
any u∗, the randomized minimax robust estimator prob ∈ ∆F , given by

prob ∈ argmin
p∈∆F

sup
u∈Uk,u∗

Ef∼p[err(f,F ;u)], (23)

(nearly-)obtains the same excess-risk bound as that given by the lower bound in Theorem 12.
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I Theorem 13 (Upper bounds for prob). For any distribution Dx over feature space X , utility
function u∗ ∈ U and function class F , the expected excess risk of the randomized estimator
given by the distribution prob ∈ ∆F is

E[err(prob,F ;u∗)] = sup
pu

(Eu′∼pu
[U(fu′ ;u′)− U(fpu

;u′)])

≤ sup
u1,u2∈ Uk,u∗

(U(fu1 ;u1)− U(fu2 ;u1)) , (24)

where the distribution pu ∈ ∆Uk,u∗ is over the space of utility functions consistent with u∗.

We defer the proof of Theorem 13 to the full version. Compared with the lower bound
of Theorem 12, the bound in (24) shows that the local minimax risk can indeed be upper
bounded by a similar local modulus of continuity. Observe that the while the lower bound
evaluates the performance loss of the maximizer fu1+u2

2
, the upper bound is evaluated on

fu2 . While the minimax estimator prob in equation (23) is defined at the population level,
we can naturally extend it to the finite sample regime as

p̂rob,n ∈ argmin
p∈∆F

sup
u∈Ûk,u∗

Ef∼p[Û(fu;u)− Û(f ;u)] (25)

where the class of utilities Ûk,u∗ represents the set of all n-dimensional vectors in [0, 1]n which
are consistent with responses to all k-queries on the set of sampled datapoints S. Using a
similar analysis as in Theorem 2, one can then upper bound the excess risk of this estimator
in terms of the local modulus on the dataset S and an additional uniform convergence term.

In comparison to the Comptron procedure which uses O(n log k) queries to the comparison
oracle for estimating utilities, the estimator p̂rob,n uses O(nk) queries to construct the set
Ûk,u∗ . Thus, while this estimator adapts to the problem hardness, such an adaptation comes
at the cost of an exponential increase in query complexity. Achieving instance-optimality by
using fewer queries is an interesting question for future research.
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