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Abstract
We design a randomized algorithm that finds a Hamilton cycle in O(n) time with high probability in
a random graph Gn,p with edge probability p ≥ C log n/n. This closes a gap left open in a seminal
paper by Angluin and Valiant from 1979.
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1 Introduction

A Hamilton cycle is a cycle in a graph that visits every vertex exactly once. Determining
whether a graph has a Hamilton cycle is a notoriously difficult problem that has been tackled
in various ways. In general, it is known to be NP-hard, putting it in a bag of complexity
theory together with colorability or SAT, problems for which one has tried to find polynomial
time algorithms for a long time without any success so far.

While the Hamilton cycle problem is a difficult problem in general, it turns out that for
most graphs it is actually not. To illustrate this, we take a closer look at the Erdős-Rényi
random graph Gn,p which is an n-vertex graph with each edge being present independently
with probability p. The existence question of the Hamilton cycle problem is very well
understood, cf. the comprehensive survey by Frieze [13]. Let H be the set of Hamiltonian
graphs, then for Gn,p it holds that (Komlós and Szemerédi [19] and Korshunov [20])

Pr[Gn,p(n) ∈ H] =


0, p(n) = log(n)+log log(n)−ω(1)

n

e−e−c

, p(n) = log(n)+log log(n)+c+o(1)
n

1, p(n) = log(n)+log log(n)+ω(1)
n ,

which is limitwise the same as the threshold for when Gn,p has minimum degree 2. So really
vertices of degree one are the bottleneck for random graphs. In fact, it is known that if we
add the edges randomly one by one, the moment we reach minimum degree 2 is the same as
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the moment the graph becomes Hamiltonian with high probability [1]. And this threshold is
also robust (e.g. [22, 23]). For other random graph models like the random graph with m

edges Gn,m, the random regular graph Gn,r or the k-out which takes k random edges from
every vertex the corresponding thresholds for Hamiltonicity are also known [7,9,11,26,29].
Similar to the classical random graph case also in these cases the thresholds coincides with
a local obstruction such as minimum degree two or any two vertices have a neighborhood
of size at least 3. And this is not a coincidence. Randomness gives us such nice expansion
properties that only the small structures can be an obstruction to the Hamilton cycle. This
phenomenon has been observed also for other properties such as connectivity, containing a
perfect matching or colorability.

The proofs of Komlos and Szemeredi and Korshunov are just existential, i.e. they
determine the threshold for the existence of Hamilton cycle, but do not provide an efficient
algorithm for finding it. In a seminal paper, Angluin and Valiant [4] show that with the input
given as a random adjacency list one can find Hamilton cycles in Gn,p for p ≥ C log n/n in
O(n log2 n) time with high probability. There are two ways in which this result is possibly
non-optimal: the lower bound on p and the runtime. The first point was considered by
Shamir and then Bollobas, Fenner and Frieze, who brought the bound down to the existence
threshold of Gn,p. In more recent works the runtime has also been optimized for graphs
given in adjacency matrix form, assuming a pair of vertices can be queried in constant time.
We summarize these results in the table below. There are various related results that are
hard to compare, as their setting is slightly different [2,12,14,15]. Some of the results are
assuming the graph is given as an adjacency matrix with black box queries and the runtime
O(n/p) is optimal in that model.

Authors Year Time p(n) Graph Model
Angluin, Valiant [4] ‘79 O(n log2(n)) p ≥ C log(n)

n
adj. list

Shamir [28] ‘83 O(n2) p ≥ log(n)+(3+ε) log log(n)
n

adj. list
Bollobas, Fenner, Frieze [8] ‘87 n4+o(1) p ≥ Existence threshold adj. list
Gurevich, Shelah [16] ‘87 O(n/p) p const. adj. matrix
Thomason [30] ‘89 O(n/p) p ≥ Cn−1/3 adj. matrix
Alon, Krivelevich [3] ‘20 O(n/p) p ≥ 70n−1/2 adj. matrix

In this paper we consider the second question that was left open in the Angluin-Valiant
paper: can the runtime be improved. Note that a graph with p ≥ C log n/n has Θ(n log n)
edges. Thus, improving the runtime below this bound requires a sublinear algorithm, i.e.
sublinear in the input size. These are algorithms that produce an output without reading
the input completely (see e.g. [27] for an overview of the topic). Such algorithms are less
restrictive than those designed for online or a (semi-)streaming model as they allow some
control over which part of an input is used. However for graphs with n vertices and m� n

edges the algorithm is only allowed to read o(m) edges, i.e., a negligible fraction of the input
– but nevertheless has to compute the desired output correctly.

1.1 Our contribution
In this paper we show that given a random graph with edge probability p ≥ C log n/n, for
an appropriately chosen constant C, we can find a Hamilton cycle in O(n) time with high
probability. This time is clearly optimal, as the algorithm has to return Ω(n) edges. We
assume that the graph is given to us with randomly ordered adjacency lists, such that we
can query the next neighbor in those lists for any vertex in constant time.
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Figure 1 Algorithm uses a random walk like strategy, blue edge is the newneighbor().

I Theorem 1. There exists a randomized algorithm R which finds a Hamilton cycle in
a random graph Gn,p in O(n) time with high probability, provided p ≥ C log n/n for a
sufficiently large constant C.

Note that “with high probability” is always meant to mean with probability 1 − o(1)
tending to one as n tends to infinity and takes into account all sources of randomness: i.e.,
the randomness of the algorithm, the random graph and the randomness of the datastructure
used to store the graph (random ordering of the adjacency lists).

Our paper is organized as follows. Section 2 contains the algorithm and the proof of
Theorem 1. It is based on three technical lemmas that we prove in Section 3.

2 Algorithm

The most commonly used technique for efficient cycle extensions is Posa rotations. This
is also the case for the original algorithm of Angluin and Valiant [4], which we outline in
Section 2.1 below, cf. also Figure 2.To reduce the runtime to O(n) we reduce the total number
of Posa rotations that are required and simultaneously also restrict ourselves to certain types
of Posa rotations so that we can realize each of them in O(log n) time.

2.1 Finding A Hamilton Cycle via Posa Rotations
We sketch here the algorithm of Angluin and Valiant. The main idea of their algorithm is to
perform a greedy random walk until all vertices are incorporated in the path/cycle. This
means we start from an arbitrary vertex and query a neighbor of that vertex. If the neighbor
is already contained in the path we have built so far we consider this a failure and we query
a new neighbor. Otherwise we add the neighbor to the path and continue from the new
endpoint vertex (see Figure 1).

Once the path is long enough (at least n/2) we add possible Posa rotations. Assume we
start with a path P = (v1, . . . , vs), then if we find two edges such that for some index i ∈ [s]
the edges are of the form {vi+1, vs} and {vi, vj} for some j > i + 1, we can rearrange the
path to form a new path P ′ = (v1, . . . , vi, vj , vj+1, . . . , vs, vi+1, . . . , vj−1) and now the new
path has the same vertex set but a different endpoint vertex. This we call a Posa rotation.
Additionally we will always want long Posa rotations meaning s− i must be at least n/2 to
ensure that we can find the second edge needed quickly with high probability.

So during our Algorithm if the neighbor (vi+1) of the endpoint of the path (vs) has
distance at least n/2 from the endpoint along the path we use that edge to build a cycle
and continue from the vertex preceding the neighbor (vi) on the path (see Figure 2). This
leaves a cycle of size at least n/2 and if we ever find one of the vertices on the cycle to be
the neighbor of the current endpoint we reincorporate the large cycle by appending it to the
path (again giving a new endpoint).

Many details need to be considered on how random variables interact, etc., but leaving
those aside one can easily convince oneself that on average the current vertex changes after a
constant number of queries to a new random vertex, and that the number of queries until
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Figure 2 Posa rotation, detaching a large cycle.

Figure 3 Reincorporating the large cycle.

the path length increases by one is geometrically distributed and has an expectation of
n/(n− i) where i is the current length of the path. The total number of Posa rotations is
thus bounded by

O

(
n∑

i=1

n

i

)
= O(n log n).

As each Posa rotation takes time log n to realize this gives a total running time of O(n log2 n).

2.2 Our Algorithm
We give a short overview of the new algorithm we propose. The algorithm comes in two
phases. In phase 1 we find two random perfect matchings. The union of these two random
perfect matchings forms a two regular graph, i.e., a set of disjoint cycles or double edges
covering all vertices. It is not difficult to show that the number of cycles is with high
probability bounded by 2 log n. In phase 2 of the algorithm we stitch these 2 log n cycles
together.

For the analysis of the algorithm it is very helpful to assume that a query for a new
neighbor of some vertex v returns a vertex w that is uniformly distributed over all vertices
in V − v and independent from all previous queries. Of course such an assumption a priori
does not hold if we simply return the next vertex from the adjacency list of v. We realize
this by directing the edges and resampling. More formally, we will show the following
lemma in Section 3; in the remainder of Section 2 we will use the corresponding function
newneighbor() as a black box.

I Lemma 8 (newneighbor). It is possible to interact with the graph Gn,p, p ≥ C log n
n ,

with an algorithmic procedure newneighbor(v) which has the following properties with high
probability:
(i) Calling newneighbor(v) returns a neighbor of v distributed uniformly among V −v and

independent of all calls so far – as long as we make at most O(n) calls to newneighbor()
altogether and every vertex is queried at most 100 log n times.

(ii) The total run time of all O(n) calls is O(n).
Note that this algorithm uses both internal randomness as well as the randomness

of Gn,p. If newneighbor(v) ever returns ’there are no more neighbors’ we immediately
terminate the entire algorithm and return failure. To avoid this, we will prove that we query
newneighbor(v) from any vertex at most 100 log n times w.h.p. and choose C large enough
so that with high probability the minimum degree of the random graph is large enough.
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2.2.1 Phase 1: Perfect Matching
In the first phase of the algorithm we show that we can find a perfect matching in O(n)
time. We call the algorithmic procedure described in this section FastPerfectMatching,
see Algorithm 1. In fact, for an easier understanding of the required ideas, we work in this
section with a random bipartite random graph. This can easily be done by partitioning the
vertex set V into two equal sets A and B arbitrarily (if n is odd we set one vertex aside
and include it in phase 2) and only considering the edges between A and B. Formally, the
function newABneighbor(v) calls newneighbor(v) until we receive a neighbor which is in
B (resp. A).

B Claim 2. If we call newABneighbor() for a sequence of O(n) vertices, in which every
vertex v ∈ A ∪ B occurs at most log n times, then with high probability this results in at
most O(n) calls to newneighbor() with at most 6 log n calls per vertex.

The claim holds because any call of newneighbor() has probability at least 1/2 to be in the
correct partition and, by our assumptions on newneighbor(), the calls are independent. We
can thus apply concentration bounds for binomial distributions and union bound for every
vertex. Clearly, newABneighbor() still has a uniform and independent distribution over all
vertices of the opposite partition.

Let G be the balanced bipartite graph with partitions A and B. During the algorithm
we will maintain a matching M which covers some of the vertices and is empty at first. At
any point in time, we denote by AM the vertices in A that are covered by the matching and
with A0 the unmatched vertices. Equivalently for BM and B0.

Additionally we need a set of edges that expand well from the vertices of A. And we
need to be able to keep track of them efficiently and on the fly. So for any vertex v we define
the d-neighborhood of v, Nd(v) ⊆ V (G), to be the set of the first dde calls to the function
newABneighbor(v). In particular this implies that for any d′ < d the d′-neighborhood is
contained in the d-neighborhood of v. Similarly, the d-neighborhood of a set of vertices S,
denoted by Nd(S), is defined as the union of the d-neighborhoods of all vertices in S. We
expose and keep track of the d-neighborhood of the unmatched vertices A0, Nd(|A0|)(A0),
for the function d(t) = min(

√
n/t, log n). This gives us a neighborhood large enough for the

random walks to be effective, but small enough so that we do not need too much time to
update/expose.

To increase the matching we call a subroutine IncreaseMatching. IncreaseMatching
takes as argument the current matching M and an unmatched vertex v ∈ B0. It proceeds as
follows. If v is in Nd(A0) we add the corresponding neighbor in A0 and v to the matching. If
not we take w = newABneighbor(v). If w is in A0 we add the edge {w, v} to M . If neither
of the two is the case, then w ∈ AM and there exists a unique u such that {w, u} is currently
in M . We swap {w, u} for {w, v}, thereby making u a new unmatched vertex, and repeat
IncreaseMatching with u, cf. Figure 4.

Clearly, during the run of the algorithm we also have to dynamically update the d-
neighborhood of A0. In particular this means removing Nd(w) of a newly matched vertex w

and, if d(|A0|) increases, adding vertices from additional calls to newABneighbor() for every
vertex in A0.

To bound the runtime of Algorithm 2, FastPerfectMatching, we observe first that we
increase the matching exactly n times, which is inline with our desired bound of O(n). We
can thus concentrate on bounding the recursive calls to IncreaseMatching in line 13 of
IncreaseMatching.

ITCS 2021
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A0

B0

AM

M
d− neighborhood

newneighbor(v)

v
BM

a)b)

c)

u

Figure 4 For IncreaseMatching three things can happen. Either a) the vertex is already in the
neighborhood of A0, in which case we match immediatly, b) the vertex newABneighbor(v) is in
A0, which also gets matched, or c) newABneighbor(v) is in AM . Then we swap the matching and
continue from the partner of the newABneighbor(v).

Algorithm 1 FastPerfectMatching(G).

1: B0 ← B; BM ← {}; A0 ← A; AM ← {};
2: d ← 0; M ← {}
3: while B0 6= {} do
4: v ← arbitrary vertex from B0 . and remove from B0
5: IncreasingMatching(G, M, v); . see Algorithm 2

6: while d < min
(√

n
|A0| , log(n)

)
do

7: d← d + 1
8: Add newABneighbor(v) to the d-neighborhood for every vertex in v ∈ A0

9: return Matching M

I Lemma 3. Let Li denote the number of calls IncreaseMatching in line 13, while |A0| = i

for any i ∈ [n]. Then the Li are dominated by independent geometric distributions with
success probability pi = i·d(i)

100n .

Proof. Whenever we are at a vertex v in B we expose an edge to a random neighbor in the
set A. If that vertex is in A0 we match v and |A0| decreases by one so we end the count of
L|A0|. Otherwise we swap with a matched vertex and get a new starting point in B0. As
newABneighbor() is independent and uniform, and the matching forms a bijection between
AM and BM , the fact that the vertex is not in A0, implies that we get a new random vertex
u in BM for the next call. If this vertex is in the exposed d-neighborhood of A0 we stop and
match to a vertex in A0 also ending the count of L|A0|.

To assess the probability of stopping, we use the expansion properties of the d-neighborhood
of A0 that are inherited from the random graph. This means in particular that the exposed
neighborhood of A0, Nd(|A0|)(A0), has size at least 1

100 |A0| ·d(|A0|), cf. Lemma 9 in Section 3
for a proof. The probability of hitting a vertex in A0 or the d-neighborhood of A0 (while
looking at the matched vertex of w in BM ) is thus at least |A0|·d(|A0|)

100n . Every new call of
newABneighbor() is independent by Lemma 8, thus Li is dominated by an independent
geometric distribution with success probability as claimed. J



R. Nenadov, A. Steger, and P. Su 60:7

Algorithm 2 IncreaseMatching(G, M, v).

1: if v ∈ Nd(A0) then
2: w ← [neighbor of v] ∈ A0
3: Add {v, w} to M

4: Remove w from A0 and update Nd(A0)
5: return
6: w ← newABneighbor(v)
7: if w ∈ A0 then
8: Add {v, w} to M

9: Remove w from A0 and update Nd(A0)
10: return
11: u← unique vertex with {u, w} ∈M

12: Remove {u, w} from M and replace with {v, w}
13: IncreaseMatching(G, M, u)
14: return

We are now ready to proof the desired complexity bound:

I Proposition 4. FastPerfectMatching finds a perfect matching in a balanced random
bipartite graph in time O(n) with high probability.

Proof. There are two main contributions to the running time of the Algorithm. First the
subroutine IncreaseMatching, which we prove to be fast with the help of Lemma 3, and
secondly the updating and revealing of the d-neighborhood.

Recall that Li is the random variable corresponding to the number of calls of
IncreaseMatching in line 13, while |A0| = i for any i ∈ [n]. We set L =

∑n
i=1 Li. Note that

we can ignore the calls in line 5 of FastPerfectMatching, as these add only at total of O(n)
to the run time. From Lemma 3 we know that there exists a coupling to a geometrically
distributed random variable L′ such that L′i � Li and L′i is geometrically distributed with
pi = i·d(i)

100n .
From the definition of L′i we know that E[L′i] = 100n

i·d(i) and V ar[L′i] = 1−pi

p2
i
≤ 1

p2
i
≤

( 100n
i·d(i) )2. Recall that d(i) =

√
n/i whenever i ≥ n

(log n)2 . The total time used for those sets
can thus be bounded in expectation by

n∑
i= n

(log n)2

E[L′i] = O
(

n∑
i=1

√
n√
i

)
= O(n),

as
∑n

i=1 i−1/2 ≤
∫ n

0 x−1/2 dx = 2
√

n. If i ≤ n
log(n)2 , then d(i) = log n, and the total expected

time used for these sets is thus bounded by

n
(log n)2∑

i=1
E[L′i] = O

(
n∑

i=1

n

i · log(n)

)
= O(n).

We thus have that E[L′] = Θ(n) as well. To show that the actual run time is concentrated
around the expectation we apply Chebyshev’s inequality. A similar case distinction as above
gives us

ITCS 2021
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V ar[L′] ≤
n∑

i= n
(log n)2

10000n

i
+

n
(log n)2∑

i=1

10000n2

i2 · (log n)2 = O
(

n2

(log n)2

)
.

By Chebyshev’s inequality we thus get

Pr[L ≥ 2E[L′]] ≤ Pr[L′ ≥ 2E[L′]] ≤ V ar[L′]
(E[L′])2 ≤ O

(
1

(log n)2

)
,

which concludes the first part of the proof.

To bound the time needed to expose the d-neighborhoods, we observe first that we can
order the vertices in A by the order in which they join the matching. As Nd′(v) ⊆ Nd(v) ∀d′ ≤
d, we thus have to expose for the i-th vertex in this ordering at most d(n − i) + 1 edges,
where d(x) = min{

√
n/x, log n}. Thus, the total number of exposed edges is bounded by

n∑
i=1

(d(n− i) + 1) =

n
(log n)2∑

i=1
(d(i) + 1) +

n∑
i= n

(log n)2

(d(i) + 1)

≤

n
(log n)2∑

i=1
(log n + 1) +

n∑
i= n

(log n)2

√
n

i
≤ 4n.

Additionally we show the number of calls to the newABneighbor() function is at most log n

for every vertex w.h.p.. For any v ∈ B we call newABneighbor(v) exactly once for each
time it appears as the matched partner of newABneighbor(v). As the distribution on the
neighbors is uniform on A and we only use IncreaseMatching O(n) many times in total,
the probability that v ∈ B occurs at least log n times is at most(

O(n)
log n

)(
1
n

)log n

= O(n−2),

with room to spare. We can thus apply a union bound over all vertices in B to see that
w.h.p. no vertex in B has more than log n calls to newABneighbor(). Clearly the same holds
for vertices in A, as we only expose the d-neighborhood and d(|A0|) ≤ log n always. This
concludes the proof of Proposition 4. J

2.2.2 Phase 2: Incorporating the Cycle Factor
In the previous section we have seen that we can find a perfect matching in O(n) time. In
this section we show how we can extend this algorithm to find a Hamilton cycle. To do this
we first call the perfect matching algorithm twice, reseting the d-neighborhoods after the first
run. By our assumption on the independence on the calls to the function newneighbor(),
we thereby get two independent random perfect matchings. Their union forms a union of
cycles (or double edges) covering all vertices (if the number of vertices was odd we add the
single vertex excluded in phase 1 here back as a cycle with one vertex). Our task in this
phase is to join these cycles into a single cycle. We start with a lemma that bounds the
number of cycles that we need to join.

I Lemma 5. The union of two random independent perfect matchings in a bipartite graph
contains at most 2 log n cycles with high probability.
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Proof. We claim that the two independent perfect matchings can be seen as a random
permutation of [n/2]. Indeed, without loss of generality we may assume that M1 is just the
identity (by renumbering the vertices appropriately). M1 and M2 are independent which
implies M2 corresponds to a random assignment of B to A. The union of the two matchings
thus defines a random permutation of A.

For random permutations the number of cycles has been well studied and is related to
the Stirling numbers of the first kind. Using a double counting argument one can easily see
that the expected number of cycles of length 2k will be 1/k. The total expected number of
cycles is thus equal to the nth harmonic number. It is also well-known that this random
variable is concentrated, see e.g. [5] or [6, 21]. Thus, with high probability the number of
cycles is bounded by 2 log n, as claimed. J

Description of Algorithm 3 JoinCycles. To glue the cycles together we proceed in three
phases. First we greedily combine cycles into a path, until this path has length at least 3n/4.
Then we incorporate the remaining cycles one by one using Algorithm 4 AddSingleCycle.
Finally, we close the Hamilton path into a Hamilton cycle (Lemma 7).

The idea behind the first phase is straightforward. We start with an arbitrary cycle
and break it apart into a path P . Consider the endvertex pend of that path. We use
newneighbor() to query a new neighbor of pend. If that neighbor is in a new cycle (which
will happen with probability at least 1/4, as long as the path P contains at most 3n/4
vertices), we attach that cycle to P , thereby also getting a new endpoint pend. If the latter
did not happen, we query a new neighbor. In order to ensure that we do not query to many
vertices from a single vertex, we repeat the query for new neighbors at most 40 log n times.
If we have not been successful by then, we give up. It is easy to see that the probability for
ever giving up at this stage of the algorithm is bounded by o(1). It is also easy to see that
the total time spent until the path has length at least 3/4n is bounded by O(n).

Once the path has length at least 3n/4, the probability that a new neighbor is in one
of the remaining cycles gets too small (for our purpose) and we thus change strategy. In
particular, we add long Posa rotations, so that we can try various endpoints. This is the
purpose of the procedure AddSingleCycle (Algorithm 4).

We use a set U to keep track of used vertices. Those are vertices for which we already
queried neighbors within the algorithm JoinCycles. We denote the current path by
P = (pstart, .., pend). We also assume that we have access to a function predP (v) that determ-
ines the vertex before v on the path (null for pstart), and a function halfp(v) which is true iff
v is in the first half of P . We denote the cycle C that we want to add as C = (cstart, ..., cend),
where cstart is an arbitrary vertex at which we cut C into a path. We now explore neigh-
borhoods of vertices at once. To do this we denote by newneighbor(v, 40 log n) the set
of vertices that we obtain if we apply newneighbor(v) 40 log n times. Let Nstart = P ∩
newneighbor(cstart, 40 log n) and Nend = P ∩ newneighbor(cend, 40 log n) denote the in-
tersections of these neighborhood vertices with the path P . Until the cycle C is part of
the path P we do the following (Figure 5). Let N(pend) = newneighbor(pend, 40 log n) and
check for all v ∈ N(pend) if predP (v) ∈ Nstart. If so we also check if halfp(v) is true.

If we find a vertex v for which both conditions hold, we join the cycle here. To do
this look at Nend and take a vertex q ∈ newneighbor(cend, 40 log n) such that halfP (q) is
false and predP (q) 6∈ U . Then we add the cycle to the path by constructing the new path
Pnew = (pstart, ..., predP (v)) + (cstart, ..., cend) + (q, ..., pend) + (v, ..., predP (q)). Then add
pend, cstart and cend to the used vertices U . (If we cannot find q we abort the algorithm; it
will be easy to show that the probability that this happens is negligible.)

ITCS 2021
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newneighbor(cstart, log n)

newneighbor(pend, log n)

a) success b) failure: Posa rotate and repeat

Figure 5 Incorporating a single new cycle with AddSingleCycle. The dark red path indicating
the new Path after an iteration of the while loop.

Algorithm 3 JoinCycles(G, C = M1 ∪M2).

1: U ← {}
2: C0 ← first cycle of M1 ∪M2, (c0,start, ..., c0,end);
3: P ← (c0,start, ..., c0,end);
4: pend ← last vertex of P;
5: while |P | ≤ 3n

4 do
6: N ← newneighbor(pend, 40 log n);
7: U ← add pend;
8: v ← Search N for v such that v 6∈ P

9: (v, ..., ci,end)← cycle of v;
10: P ← P + (v, ..., ci,end);
11: pend ← ci,end;
12: while |P | 6= n do
13: Ci ← any cycle not in P

14: AddSingleCycle(G, P, Ci, U) . See Algorithm 4
15: return
16: // If any of the “Search” parts of the algorithm fail, we abort the algorithm and return

failure.

If the check fails for all v ∈ N(pend) we perform a Posa rotation. To do this is we take a
v ∈ N(pend), v 6= pstart, such that halfP (v) is true and such that predP (v) 6∈ U , and then
take a q ∈ newneighbor(predP (v), 40 log n) such that both halfp(q) is false and predP (q)
is unused. We then use v and q to construct a new path with a new endpoint, namely
Pnew = (pstart, ..., predP (v)) + (q, ..., pend) + (v, ..., predP (q)). Now we can repeat the above
procedure with Pnew and the new endpoint pnewend = predP (q). (If we cannot find v or q

we abort the algorithm; again it will be easy to show that the probability that this happens
is negligible.)

To store the path and cycles we use AVL trees with a linked list. The linked list just stores
the vertices in the order as they appear in the path resp. cycle. For the AVL tree we take the
ordering in the path/linked list as an ordering of the vertices. With this ordering at hand,
the AVL tree is well defined, and it allows for searching resp. answering the query half(v)
in O(log n) time. In addition, splitting the path resp. concatenating two paths correspond
to splitting an AVL tree at a given vertex (into a tree containing all smaller vertices and a
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Algorithm 4 AddSingleCycle(G, P, Ci, U).

1: // Function halfP (v) returns true if and only if v is in the first half of P ;
2: // For any vertex v ∈ P , predP (v) denotes the vertex before v on the path P ;
3: pend ← last vertex of P ;
4: Nstart ← newneighbor(cstart, 40 log n) ∩P ;
5: Nend ← newneighbor(cend, 40 log n);
6: U ← add cstart and cend;
7: while true do
8: N ← newneighbor(pend, 40 log n);
9: U ← add pend;
10: if ∃v ∈ N s.t. predP (v) ∈ Nstart and halfP (v) = true then
11: q ← Search Nend for q such that halfp(q) = false and predP (q) 6∈ U ;
12: P ← (pstart, ..., predP (v)) + (cstart, ..., cend) + (q, ..., pend) + (v, ..., predP (q));
13: return
14: else
15: v ← Search N for v such that halfP (v) = true ;
16: N ← newneighbor(predP (v), 40 log n);
17: U ← add predP (v);
18: q ← Search N for q such that halfP (q) = false and predP (q) 6∈ U ;
19: P ← (pstart, ..., predP (v)) + (q, ..., pend) + (v, ..., predP (q));
20: pend ← predP (q);
21: // If any of the “Search” parts of the algorithm fail, we abort the algorithm and return

failure.

tree containing the remaining vertices) resp. concatenate two AVL trees in which the largest
vertex in one tree is smaller than the smallest vertex in the other tree. It is well known
that both of these operations can be done for AVL trees in O(log n) time, cf. Lemma 10 in
Section 3 for more details.

I Proposition 6. Applying the procedure AddSingleCycle at most 2 log n times will run in
time O(n) with high probability.

Proof. We want to bound the number of Posa rotations we need to perform while we add at
most 2 log n cycles. Each Posa rotation occurs at the end of a while loop in the pseudocode.

To incorporate a cycle we want to find a vertex v which, in the order of the path, is right
after a vertex in Nstart and is in the first half of P . P has size at least 3n/4 so the number
of vertices in the first half is at least n/4. A random vertex therefore has a chance of at
least 1/4 to be in the first half of P . So every vertex in newneighbor(cstart, 40 log n) has
probability at least 1/4 independently of being in the first half of P and different from the
other vertices. This implies that the number of vertices in Nstart which are also in the first
half of P dominates a binomial distributed random variable F ∼ Bin(40 log n, 1/4). For F

we know the expectation to be 10 log n and by a Chernoff bound (11) the probability that F

is less than log n is O(n−2). We observe that where the Posa rotation happens is independent
of Nstart. So we apply a union bound that on fixed O(n) many rotations of P the probability
that there are less than log n vertices of Nstart in the first half of P is in O(n−1). This implies
that any call to newneighbor(pend) has a chance of at least log n/n to be right after a vertex
in Nstart and also in the first half of P . As each call to newneighbor() is independent, the
number of tries we must make is geometrically distributed with success probability log n/n

and we must succeed at most 2 log n many times. This means the number of Posa rotations
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is dominated by a negative binomial distributed random variable R ∼ NB(2 log n, log n/n).
So by the concentration of the negative binomial distribution (Lemma 14) the probability
that we need to try more than 4n times is at most O(log−1 n). Before every Posa rotation
we try newneighbor(pend, 40 log n) so 40 log n tries. This proves an upper bound on the
number of Posa rotations of O(n/ log n) with high probability.
Posa rotation. We summarize the operations we need to do per Posa rotation. This assumes
that we already failed to find v which is both after a vertex in Nstart and also in the first
half of P . We expose 40 log n new neighbors of pend and 40 log n of the vertex before v

on the path, we need to Posa rotate by splitting the path twice and then joining twice.
Checking whether a vertex is in U and adding vertices to U is a constant time operation
with a lookup table. All of these operations by choice of proper datastructure (Lemma 8 and
10) are done in O(log n). So over all Posa rotations these sum up to a runtime of at most
O(n). Additionally we need to find the vertex v in the first half of P with predP (v) 6∈ U .
Since U is much smaller than n/8 and |P | ≥ 3n/4 the number of possible vertices is at
least n/4. This means that if we test a random vertex, the probability that halfp() returns
true and its predecessor is not in U is at least 1/4. So the number times we need to call
halfP () is dominated by a geometric distribution with success probability 1/4. Similarly
to find the vertex q in the second half of P with predP (q) 6∈ U , the number of times we
need to call halfP () is also dominated by a geometric distribution with success probability
1/4. So over all rotations, the number of times we need to call halfP () is dominated by a
negative binomial distribution H ∼ NB(2 · O(n/ log n), 1/4). So by the concentration of the
negative binomial distribution (Lemma 14) the probability that we need to call halfP more
than O(n/ log n) times is O(log n/n). And since we can perform halfP () in time O(log n)
by Lemma 10 these have a total runtime of O(n) with high probability.
Incorporating cycles. Very similarly we bound the time we need to incorporate the cycles.
To find the vertex v which in the order of the path is right after a vertex in Nstart and is in
the first half of P we need to call halfP until we succeed. Note that since |Nstart| ≤ 40 log n

and as we proved above at least log n vertices of them are in the first half of P , every call
to halfP () from a random vertex after a vertex in Nstart has a chance of succeeding of at
least 1/40. This means the number of times we call halfP is again dominated by a negative
binomial distribution NB(2 log n, 1/40) and this runtime is negligible with high probability.
As we only incorporate a cycle 2 log n times, also the join and split operations as well as the
exposing of Nend and searching for q are negligible compared to the O(n) runtime.

Note also that we only call newneighbor() of vertices we then add to U and then not
again during the entire algorithm so no vertex has newneighbor() called more than 40 log n

times. At most O(n/ log n) many vertices are added to U , and U is small enough so that it
is always much smaller than n/8.

This concludes the proof of Proposition 6. J

I Lemma 7. Given a Hamilton path we can transform it to a Hamilton cycle in O(n) time.
Proof. Calling the algorithm AddSingleCycle with the cycle being pstart, but instead looking
for v such that a vertex after v is in the neighborhood of pstart instead of a predecessor gives
us a cycle C = (pstart, ..., v) + (pend, ..., afterP (v)). Analysis of runtime equivalent to the
analysis of AddSingleCycle. J

Propositions 4 and 6 as well as Lemma 7 show that all components of the algorithm run in
time O(n). It is also easy to check that both phases together require at most 50 log n calls to
newneighbor() from any fixed vertex, so the assumptions of Lemma 8 do hold. So choosing
C large enough, say C = 200, suffices to guarantee that with high probability the random
graph is such that all vertices have more neighbors than we query. This thus concludes the
proof of Theorem 1.
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3 Datastructures

In this section we give the details of the data structures that we used within our algorithm.

3.1 Querying a new vertex
As explained above, we assumed throughout the analysis of our algorithm that we have
access to a function newneighbor(v), that returns for a given vertex v a neighbor w that is
uniformly distributed in V − v and whose result is independent from all previous calls.

I Lemma 8 (newneighbor). It is possible to interact with the graph Gn,p, p ≥ C log n
n ,

with an algorithmic procedure newneighbor(v) which has the following properties with high
probability:
(i) Calling newneighbor(v) returns a neighbor of v distributed uniformly among V −v and

independent of all calls so far – as long as we make at most O(n) calls to newneighbor()
altogether and every vertex is queried at most 100 log n times.

(ii) The total run time of all O(n) calls is O(n).

Proof. To realize such a function newneighbor(), it is important to make the adjacency lists
independent of each other. To realize this we transform the graph G (which is distributed as
a random graph Gn,p) into a directed graph G′ distributed as Dn,p/2 (in which each directed
edge is present independently with probability p/2). It is well know how this can be done.
In particular, we can sample Dn,p/2 from Gn,p as a subgraph such that every edge in the
directed graph is also an undirected edge in the Gn,p. More precisely, we do the following for
every edge {i, j} of G: with probability

1
2 −

p

4 set (i, j) ∈ G′ and (j, i) 6∈ G′

1
2 −

p

4 set (i, j) 6∈ G′ and (j, i) ∈ G′

p

4 set (i, j) ∈ G′ and (j, i) ∈ G′

p

4 set (i, j) 6∈ G′ and (j, i) 6∈ G′

In order to be consistent with the transformation from G to G′ and to not lose too much
time we only direct the edges once we see it for the first time. To recall the made decision,
we store the random choices of the edges that we have we encountered so far into a hashtable.
Thus, we can check for each edge that we obtain from querying the adjacency list of a vertex
in G, whether we have seen this edge already and if so, which orientation we have chosen.
The hash table has size n and we use a hashfunction which is 4-wise independent. This way
the variance of the number of collisions is equal to a random function, and therefore the
time we need for hashing is O(n) +O(number of collisions) = O(n), which can be seen by
applying Chebyshev’s inequality. A more detailed argument of why linear probing with hash
functions works in this context can be found in [24,31].

Finally, we want the distribution of the next edge to be uniform among the vertices. For
this we need to resample from the already seen edges. Assuming we have revealed d many
edges from v we flip a biased coin. With probability d/(n− 1) we retake an old neighbor
and output it, one chosen uniformly at random, and with probability 1− d/(n− 1) we take
the next vertex in the adjacency list (which is also in Dn,p). Otherwise, we return one of
the previously seen neighbors uniformly at random. In this way any vertex has probability
exactly 1/(n− 1) to be returned by newneighbor(v). J
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3.2 Expansion

What we need from the random graph are properties of good expansion. Given the adjacency
list of a vertex v we define the d-neighborhood Nd(v) ⊆ V (G) to be the set of the first dde
calls to the function newABneighbor(v). In the analysis of the algorithm we make use of
the following lemma.

I Lemma 9 (Neighborhood Lemma). Let Gn/2,n/2,p be a random bipartite graph with p ≥
C log(n)

n and partitions A and B. Then with high probability we have for all subsets A′ ⊆ A

that the d-neighborhood of A′ is of size at least

|Nd(A′)(A′)| ≥
1

100 |A
′| · d(A′), (1)

where d(A′) = min(
√

n
|A′| , log(n)).

Proof. The proof follows from a straight forward calculation of probabilities. Let us assume
by contradiction there exists a set A′ ⊆ A with |Nd(A′)(A′)| < 1

100 |A
′| ·d(A′). Then there is a

set B′ ⊆ B of size |B′| = 1
100 |A

′| · d(A′) containing this d-neighborhood, Nd(A′)(A′) ⊆ B′. So
this is a probability we want to bound from above. The probability for a single vertex in A′

to have its d-neighborhood contained in a fixed set B′ is
(
|B′|

n

)d(A′)
since the d-neighborhood

is d(A′) vertices chosen from B uniformly and independently at random. The probability for
two specific sets A′ ⊆ A and B′ ⊆ B to have this property is (|B′|/n)|A

′|·d(A′). Now take the
union bound over all possible sets A′ and B′ (with |B′| = 1

100 |A
′| · d(A′)):

Pr[(1) false] ≤
∑

A′,B′

Pr[B′ contains Nd(A′)(A′)] =
n∑

i=1

(
n

i

)(
n

1
100 i d(i)

)( 1
100 i · d(i)

n

)i·d(i)

.

Then we apply an approximation for the binomial coefficients:
(

n
k

)
≤
(

en
k

)k. We see that
1
4 log 100n

i·d(i) ≥ log(e · n/i)/d(i) so

Pr[(1) false] ≤
n∑

i=1
exp

(
i · d(i) ·

(
−1

2 log
(

100n

i · d(i)

)))
.

Now d(i) is a known function of i. So we distinguish between two cases. When i ≥
n/ log2(n), then d(i) =

√
n/i. And we can calculate (i ≤ n)

n∑
i=1

(
i1/4 · n1/4

10 · n1/2

)√n i

≤
n∑

i=1

(
1
10

)√n i

≤ O(n−2).

On the other hand if i ≤ n/ log2(n), then d(i) = log(n). And we can calculate

n/ log2(n)∑
i=1

(
i1/2 · log(n)1/2

10 · n1/2

)i log(n)

≤
n/ log2(n)∑

i=1

(
1

10 · log(n)1/2

)i log(n)
≤ O(n−2).

Together this implies that the lemma holds for random graphs with probability ≥ 1 −
O(n−2). J
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3.3 AVL Trees
I Lemma 10 (AVL Trees). We can store a path (or cycle) in an AVL tree joint with a linked
list datastructure and can perform the following operations (where we view the cycle as a
path split at an arbitrary point):

For any vertex v find the vertex preceding or succeeding it in the path in constant time
O(1)
For any vertex v searching the path it is in and determining whether it is in the first or
second half of it in time O(log n)
Split the path into two paths in time O(log n)
Concatenate two paths into one by adding the endpoint of one to the start of the other in
time O(log n)

Proof. We combine an AVL tree, which is a balanced binary search tree, with a linked list.
The AVL tree is built on the order sequence of the path as if numbering the vertices along
the path from 1 to |P |. The linked list ensures that going forward and backward on the path
is done in constant time, where the AVL tree can perform search (for the half function) in
O(log n). A split of the path is nothing other than splitting the AVL tree at a leaf node into
two trees such that all the nodes smaller go into one tree and all the nodes larger go into the
other. The concatenate is the inverse of the split and only requires attaching the smaller tree
to the larger one at the appropriate node and rebalancing up to the root. Both operations
run in O(log n) time.AVL trees are by now a part of basic datastructure lectures and in
particular the split and concatenate operations can be found e.g. in the book by Knuth [18]
see page 473, which also cites from [10] or more generally on AVL trees see [25]. J

4 Concluding remarks

In this paper we presented a simple randomized algorithm based on iterative random walks
that construct a Hamilton cycle in time linear in the number of vertices. Our algorithm
is based on first building (two) random perfect matchings. The key idea here is to expose
more and more edges of the currently unmatched vertices, where the exact number of these
exposed neighbors is a function of the currently unmatched vertices. Our analysis requires
that the density of the random graph Gn,p is at least p ≥ C log n

n . C is chosen such that we
have a sufficient minimum degree with high probability.

We leave it as an open question whether our approach can be modified to also find
Hamilton cycles in Gn,p for p at the threshold for existence of Hamilton cycles. This certainly
requires additional ideas.
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A Concentration Inequalities

We mention here some well-known inequalities used to show concentration on random
variables. By the concentration of a random variable X we usually mean there exist constants
c and C such that with high probability cE[X] ≤ X ≤ CE[X]. Often also we ask C to be 2.
Although these are by no means new insights, we present them here for completion and
as a help for the reader. The Chernoff and Chebyshev inequality can be found e.g. in the
book [17].

I Theorem 11 (Chernoff Inequality). If X is distributed as a binomial random variable
X ∼ Bin(n, p) and 0 < ε ≤ 3/2, then

Pr[|X − E[X]| ≥ εE[X]] ≤ 2e−
ε2E[X]

3 .

I Theorem 12 (Chebyshev Inequality). For any random variable X for which the variance
V ar[X] exists,

Pr[|X − E[X]| ≥ t] ≤ V ar[X]
t2 .

We use the term negative binomial distribution in the analysis and since this is defined
slightly differently sometimes we give here the definition we use.

I Definition 13. Let Xi be independent bernoulli random variables with probability of being
one is p for any i ∈ N. For any r ∈ N let Y be index of the r-th Xi which evaluates to 1.
Then Y has a negative binomial distribution NB(r, p).

We observe that a negative binomial distribution Y ∼ NB(r, p) is equivalent to Y being
distributed as the sum of r geometric random variables with success probability p. Further a
simple corollary from the Chebyshev inequality:

I Corollary 14. For a negative binomial distributed variable Y ∼ NB(r, p)

Pr

[
Y ≥ 2r

p

]
≤ 1

r
.

Proof. We calculate E[Y ] = r/p and V ar[Y ] = r(1− p)/p2 and apply Chebyshev.

Pr

[
Y ≥ 2r

p

]
≤ Pr

[
|Y − E[Y ]| ≥ r

p

]
Chebyshev

≤ 1− p

r
≤ 1

r
J
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