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Abstract
Most correlation inequalities for high-dimensional functions in the literature, such as the Fortuin-
Kasteleyn-Ginibre inequality and the celebrated Gaussian Correlation Inequality of Royen, are
qualitative statements which establish that any two functions of a certain type have non-negative
correlation. We give a general approach that can be used to bootstrap many qualitative correlation
inequalities for functions over product spaces into quantitative statements. The approach combines
a new extremal result about power series, proved using complex analysis, with harmonic analysis of
functions over product spaces. We instantiate this general approach in several different concrete
settings to obtain a range of new and near-optimal quantitative correlation inequalities, including:

A quantitative version of Royen’s celebrated Gaussian Correlation Inequality [23]. In [23] Royen
confirmed a conjecture, open for 40 years, stating that any two symmetric convex sets must be
non-negatively correlated under any centered Gaussian distribution. We give a lower bound
on the correlation in terms of the vector of degree-2 Hermite coefficients of the two convex
sets, conceptually similar to Talagrand’s quantitative correlation bound for monotone Boolean
functions over {0, 1}n [26]. We show that our quantitative version of Royen’s theorem is within
a logarithmic factor of being optimal.
A quantitative version of the well-known FKG inequality for monotone functions over any finite
product probability space. This is a broad generalization of Talagrand’s quantitative correlation
bound for functions from {0, 1}n to {0, 1} under the uniform distribution [26]; the only prior
generalization of which we are aware is due to Keller [17, 15, 16], which extended [26] to product
distributions over {0, 1}n. In the special case of p-biased distributions over {0, 1}n that was
considered by Keller, our new bound essentially saves a factor of p log(1/p) over the quantitative
bounds given in [17, 15, 16]. We also give a quantitative version of the FKG inequality for
monotone functions over the continuous domain [0, 1]n, answering a question of Keller [16].
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1 Introduction

Correlation inequalities are theorems stating that for certain classes of functions and certain
probability distributions D, any two functions f, g in the class must be non-negatively
correlated with each other under D, i.e. it must be the case that ED[fg]−ED[f ] ED[g] ≥ 0.
Inequalities of this type have a long history, going back at least to a well-known result of
Chebyshev, “Chebyshev’s order inequality,” which states that for any two nondecreasing
sequences a1 ≤ · · · ≤ an, b1 ≤ · · · ≤ bn and any probability distribution p over [n] =
{1, . . . , n}, it holds that

n∑
i=1

aibipi ≥

(
n∑
i=1

aipi

)(
n∑
i=1

bipi

)
.

Modern correlation inequalities typically deal with high dimensional rather than one dimen-
sional functions. Results of this sort have proved to be of fundamental interest in many fields
such as combinatorics, analysis of Boolean functions, statistical physics, and beyond.

Perhaps the simplest high-dimensional correlation inequality is the well known Harris-
Kleitman theorem [10, 19], which states that if f, g : {0, 1}n → {0, 1} are monotone functions
(meaning that f(x) ≤ f(y) whenever xi ≤ yi for all i) then E[fg] − E[f ] E[g] ≥ 0, where
expectations are with respect to the uniform distribution over {0, 1}n. The Harris-Kleitman
theorem has a one-paragraph proof by induction on n; on the other end of the spectrum
is the Gaussian Correlation Inequality (GCI), which states that if K,L ⊆ Rn are any
two symmetric convex sets and D is any centered Gaussian distribution over Rn, then
ED[KL]−ED[K] ED[L] ≥ 0 (where we identify sets with their 0/1-valued indicator functions).
This was a famous conjecture for four decades before it was proved by Thomas Royen in
2014 [23]. Other well-known correlation inequalities include the Fortuin-Kasteleyn-Ginibre
(FKG) inequality [7], which is an important tool in statistical mechanics and probabilistic
combinatorics; the Griffiths–Kelly–Sherman (GKS) inequality [9, 18], which is a correlation
inequality for ferromagnetic spin systems; and various generalizations of the GKS inequality
to quantum spin systems [8, 25].

1.1 Quantitative Correlation Inequalities
Here, we attempt to obtain quantitative correlation inequalities. Consider the following
representative example: For two monotone Boolean functions f, g : {0, 1}n → {0, 1}, as
discussed above, the Harris-Kleitman theorem states that E[fg]−E[f ] E[g] ≥ 0. It is easy to
check that the Harris-Kleitman inequality is tight if and only if f and g depend on disjoint
sets of variables. One might therefore hope to get an improved bound by measuring how
much f and g depend simultaneously on the same coordinates. Such a bound was obtained
by Talagrand [26] in an influential paper (appropriately titled “How much are increasing sets
correlated?”).

To explain Talagrand’s main result, we recall the standard notion of influence from the
analysis of Boolean functions [21]. For a Boolean function f : {0, 1}n → {0, 1}, the influence
of coordinate i on f is defined to be Inf i[f ] := Prx∼Un [f(x) 6= f(x⊕i)], where Un is the
uniform distribution on {0, 1}n and x⊕i is obtained by flipping the ith bit of x. Talagrand
proved the following quantitative version of the Harris–Kleitman inequality:

E[fg]−E[f ] E[g] ≥ 1
C
·Ψ
(

n∑
i=1

Inf i[f ]Inf i[g]
)

(1)
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Table 1 Qualitative and quantitative correlation inequalities. Here γ denotes the standard Gaus-
sian distribution N (0, 1)n; {0, 1}np denotes the p-biased hypercube (with no subscript corresponding
to p = 1/2, i.e. the uniform distribution); π denotes any distribution over {0, . . . ,m− 1}; and [0, 1]n
is endowed with the Lebesgue measure.

Qualitative Bounds Quantitative Bounds

Monotone f, g ∈ L2(Rn, γ) [7] [14]

Symmetric, convex K,L ⊆ Rnγ [23] Theorem 21

Convex f, g ∈ L2(Rn, γ) [11] Deferred to full version.

Monotone f, g : {0, 1}n → {0, 1} [10, 19, 7] [26]

Monotone f, g : {0, 1}np → R [7] [15], Theorem 29

Monotone f, g : {0, . . . ,m− 1}nπ → R [7] Theorem 29

Monotone f, g ∈ L2([0, 1]n) [22] Deferred to full version.

where Ψ(x) := x/ log(e/x), C > 0 is an absolute constant, and the expectations are with
respect to the uniform measure. A simple corollary of this result is that E[fg] = E[f ] E[g] if
and only if the sets of influential variables for f and g are disjoint. In [26] itself, Talagrand
gives an example for which Equation (1) is tight up to constant factors.

Talagrand’s result has proven to be influential in the theory of Boolean functions, and
several works [15, 16, 17, 12] have obtained extensions and variants of this inequality for
product distributions over {0, 1}n. An analogue of Talagrand’s inequality in the setting of
monotone functions over Gaussian space was obtained by Keller, Mossel and Sen [14] using a
new notion of “geometric influences.” Beyond these results, we are not aware of quantitative
correlation inequalities in other settings, even though (as discussed above) a wide range of
qualitative correlation inequalities are known. In particular, even for very simple and concrete
settings such as the solid cube [0, 1]n endowed with the uniform measure or the m-ary cube
{0, 1, . . . ,m− 1}n with a product measure, no quantitative versions of the FKG inequality
were known (see the discussion immediately following Theorem 4 of Keller [13]). As a final
example, no quantitative version of the Gaussian Correlation Inequality was previously
known.

1.2 Our Contributions

We establish a general framework to transfer qualitative correlation inequalities into quanti-
tative correlation inequalities. We apply this general framework to obtain a range of new
quantitative correlation inequalities, which include the following:
1. Quantitative versions of Royen’s Gaussian Correlation Inequality and Hu’s correlation

inequality [11] for symmetric convex functions over Gaussian space;
2. A quantitative FKG inequality for a broad class of product distributions, including

arbitrary product distributions over finite domains and the uniform distribution over
[0, 1]n.

ITCS 2021
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All these results are obtained in a unified fashion via simple proofs that are substantially
different from previous works [26, 15, 16, 17, 12]. We also give several lower bound examples,
including one which shows that our quantitative version of the Gaussian Correlation Inequality
is within a logarithmic factor of the best possible bound.

We note that the special case of item 2 above with the uniform distribution on {0, 1}n
essentially recovers Talagrand’s correlation inequality [26]. In more detail, our bound is
weaker than that obtained in [26] by a logarithmic factor, but our proof is significantly
simpler and easily generalizes to other domains. For p-biased distributions over {0, 1}n, our
bound avoids any dependence on p compared to the results of Keller [15, 16, 17] which have
a p log(1/p) dependence (though, similar to the situation vis-a-vis [26], we lose a logarithmic
factor in other dependencies). Finally, for the uniform distribution over [0, 1]n, our result
gives an answer to a question posed by Keller [16], who wrote “It seems tempting to find a
generalization of Talagrand’s result to the continuous setting, but it is not clear what is the
correct notion of influences in the continuous case that should be used in such generalization.”

1.3 The Approach

We start with a high level meta-observation before explaining our framework and techniques
in detail. While the statements of the Harris-Kleitman inequality, the FKG inequality,
and the Gaussian Correlation Inequality have a common flavor, the proofs of these results
are extremely different from each other. (As noted earlier, the Harris-Kleitman inequality
admits a simple inductive proof which is only a few lines long; in contrast the Gaussian
Correlation Inequality was an open problem for nearly four decades, and no inductive proof
for it is known.) Thus, at first glance, it is not clear how one might come up with a common
framework to obtain quantitative versions of these varied qualitative inequalities.

Our approach circumvents this difficulty by using the qualitative inequalities essentially
as “black boxes.” This allows us to extend the qualitative inequalities into quantitative ones
while essentially sidestepping the difficulties of proving the initial qualitative statements
themselves.

1.3.1 Our General Framework

In this subsection we give an overview of our general framework and the high-level ideas
underlying it, with our quantitative version of the Gaussian Correlation Inequality serving
as a running example throughout for concreteness.

We begin by defining a function Φ : [0, 1]→ [0, 1] which will play an important role in
our results:

Φ(x) := min
{
x,

x

log2(1/x)

}
. (2)

(Note the similarity between Φ and the function Ψ mentioned earlier that arose in Talagrand’s
quantitative correlation inequality [26]; the difference is that Φ is smaller by essentially a
logarithmic factor in the small-x regime.)

Let F be a family of real-valued functions on some domain (endowed with measure µ)
with Eµ

[
f2] ≤ 1 for all f ∈ F . For example, the Gaussian Correlation Inequality is a

correlation inequality for the family Fcsc of centrally symmetric, convex sets (identified with
their 0/1-indicator functions), and µ is the standard Gaussian measure N (0, 1)n, usually



A. De, S. Nadimpalli, and R. A. Servedio 69:5

denoted γ.1 A quantitative correlation inequality for f, g ∈ F gives a (non-negative) lower
bound on the quantity Ex∼µ[f(x)g(x)]−Ex∼µ[f(x)] Ey∼µ[g(y)], typically in terms of some
measure of “how much f and g simultaneously depend on the same coordinates.” Our general
approach establishes such a quantitative inequality in two main steps:

Step 1: For this step, we require an appropriate family of “noise operators” (Tρ)ρ∈[0,1]
with respect to the measure µ. Very briefly, each of these operators Tρ will be a (re-indexed
version of a) symmetric Markov semigroup whose stationary distribution is µ; this is defined
more precisely in Section 4. (Looking ahead, we will see, for example, that in the case of the
GCI, the appropriate noise operator is the Ornstein-Uhlenbeck noise operator, defined in
Definition 18.) The crucial property we require of the family (Tρ)ρ∈[0,1] with respect to F is
what we refer to as monotone compatibility:

I Definition 1 (Monotone compatibility). A class of functions F and background measure µ
is said to be monotone compatible with respect to a family of noise operators (Tρ)ρ∈[0,1] if
(i) for all f, g ∈ F , the function

q(ρ) := E
x∼µ

[f(x)Tρg(x)]

is a non-decreasing function of ρ, and (ii) for ρ = 1 we have T1 = Id (the identity operator).

The notion of monotone compatibility should be seen as a mild extension of qualitative
correlation inequalities. As an example, in the case of the Gaussian Correlation Inequality,
Royen’s proof [23] in fact shows that that the family Fcsc is monotone compatible with
Ornstein-Uhlenbeck operators.

Step 2: We express the operator Tρ in terms of its eigenfunctions. In all the cases we
consider in this paper, the eigenvalues of the operator Tρ are

{
ρj
}
j≥0. Let {Wj}j≥0 be the

corresponding eigenspaces. Consequently, we can express q(ρ)− q(0) as

q(ρ)− q(0) = E
x∼µ

[f(x)Tρg(x)]− E
x∼µ

[f(x)] · E
y∼µ

[g(y)] =
∑
j>0

ρj E[fj(x)gj(x)], (3)

where fj (respectively gj) is the projection of f (respectively g) on the space Wj . To go
back to our running example, for the Gaussian Correlation Inequality, Wj is the subspace
spanned by degree-j Hermite polynomials on Rn.

Define aj := E[fj(x)gj(x)], so q(ρ) =
∑
j≥0 ajρ

j . Now, corresponding to any family
F and noise operators (Tρ)ρ∈[0,1], there will be a unique j∗ ∈ N such that the following
properties hold:
1. If aj∗ = 0, then Ex∼µ[f(x)g(x)] = Ex∼µ[f(x)] · Ey∼µ[g(y)]. In other words, aj∗

qualitatively captures the “slack” in the correlation inequality (in fact, as we will soon see,
aj∗ also gives a quantitative lower bound on this slack). For example, for the Gaussian
Correlation Inequality, it turns out that j∗ = 2 (for most of the other applications of our
general framework in this paper, it turns out that j∗ = 1).

2. For any i such that j∗ does not divide i, ai = 0.

1 Since convexity is preserved under linear transformation, no loss of generality is incurred in assuming
that the background measure is the standard normal distribution N (0, 1)n rather than an arbitrary
centered Gaussian.

ITCS 2021
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Now, from the fact that the spaces {Wj} are orthonormal and the fact that every f ∈ F
has Eµ

[
f2] ≤ 1, it follows that

∑
j>0 |aj | ≤ 1. Our main technical lemma, Lemma 12,

implies (see the proof of Theorem 14) that for any such power series q(·), there exists some
ρ∗ ∈ [0, 1] such that

q(ρ∗)− q(0) ≥ 1
C
· Φ(aj∗).

The proof crucially uses tools from complex analysis. As the class F is monotone compatible
with the operators (Tρ)ρ∈[0,1], recalling Equation (3), it follows that

q(1)− q(0) = E
x∼µ

[f(x)g(x)]− E
x∼µ

[f(x)] · E
y∼µ

[g(y)] ≥ 1
C
· Φ(aj∗), (4)

which is the desired quantitative correlation inequality for F .
I Remark 2. We emphasize the generality of our framework; the argument sketched above
can be carried out in a range of different concrete settings. For example, by using the Harris-
Kleitman qualitative correlation inequality for monotone Boolean functions in place of the
GCI, and the Bonami-Beckner noise operator over {0, 1}n in place of the Ornstein-Uhlenbeck
noise operator, the above arguments give a simple proof of the following (slightly weaker)
version of Talagrand’s correlation inequality (Equation (1)):

E[fg]−E[f ] E[g] ≥ 1
C
· Φ
(

n∑
i=1

Inf i[f ]Inf i[g]
)
, (5)

for an absolute constant C > 0. While our bound is weaker than that of [26] by a log factor
(recall the difference between Ψ and Φ), our methods are applicable to a much wider range
of settings (such as the GCI and the other applications given in this paper). Finally, we
emphasize that our proof strategy is really quite different from that of [26]; for example,
[26]’s proof relies crucially on bounding the degree-2 Fourier weight of monotone Boolean
functions by the degree-1 Fourier weight, whereas our strategy does not analyze the degree-2
spectrum of monotone Boolean functions at all.
I Remark 3. Coupled with the first property described above, Equation (4) shows that aj∗
not only qualitatively captures the “correlation gap”

E
x∼µ

[f(x)g(x)]− E
x∼µ

[f(x)] · E
y∼µ

[g(y)],

but also provides a quantitative lower bound on this gap.

2 Preliminaries

In this section we give preliminaries setting notation, recalling useful background on noise
operators and orthogonal decomposition of functions over product spaces, and recalling a
well-known result that we will require from complex analysis.

2.1 Noise Operators and Orthogonal Decompositions
Let (Ω, π) be a probability space; we do not require Ω to be finite, and we assume without
loss of generality that π has full support.

The background we require for noise operators on functions in L2(Ω, π) is most naturally
given using the language of “Markov semigroups.” Our exposition below will be self-contained;
for a general and extensive resource on Markov semigroups, we refer the interested reader to [1].
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I Definition 4 (Markov semigroup). A collection of linear operators (Pt)t≥0 on L2(Ω, π) is
said to be a Markov semigroup if
1. P0 = Id;
2. for all s, t ∈ [0,∞), we have Ps ◦ Pt = Ps+t; and
3. for all t ∈ [0,∞) and all f, g ∈ L2(Ω, π), the following hold:

a. Identity: Pt1 = 1 where 1 is the identically-1 function.
b. Positivity: Ptf ≥ 0 almost everywhere if f ≥ 0 almost everywhere.2

It is well known that a Markov semigroup can be constructed from a Markov process
and vice versa [1]. We call a Markov semigroup symmetric if the underlying Markov process
is time-reversible; the following definition is an alternative elementary characterization of
symmetric Markov semigroups. (Recall that for f, g ∈ L2(Ω, π) the inner product 〈f, g〉 is
defined as Ex∼π[f(x)g(x)].)

I Definition 5 (Symmetric Markov semigroup). A Markov semigroup (Pt)t≥0 on L2(Ω, π) is
symmetric if for all t ∈ [0,∞), the operator Pt is self-adjoint; equivalently, for all t ∈ [0,∞)
and all f, g ∈ L2(Ω, π), we have 〈f,Ptg〉 = 〈Ptf, g〉.

We note that the families of noise operators (Uρ)ρ∈[0,1] and (Tρ)ρ∈[0,1] that we consider
in Section 5 and Section 6 respectively will be parametrized by ρ ∈ [0, 1] where ρ = e−t for
t ∈ [0,∞), as is standard in theoretical computer science. (For example, the Bonami-Beckner
noise operator operator Tρ mentioned in the Introduction, which is a special case of the Tρ
operator defined in Section 6, corresponds to Pt for (Pt)t≥0 a suitable Markov semigroup
and ρ = e−t.)

Given a Markov semigroup (Pt)t≥0 on the probability space (Ω, π), we can naturally
define the Markov semigroup (⊗ni=1Pti)ti≥0 on L2 (Ωn, π⊗n). We write Pt to denote this
semigroup, and write Pt to denote the Markov semigroup (⊗ni=1Pt)t≥0. We next define a
decomposition of L2 (Ωn, π⊗n) that is particularly well-suited to the action of a Markov
semigroup (Pt)t≥0.

IDefinition 6 (Chaos decomposition). Consider a Markov semigroup (Pt)t≥0 on L2 (Ωn, π⊗n).
We call an orthogonal decomposition of

L2 (Ωn, π⊗n) =
∞⊕
i=0
Wi

a chaos decomposition with respect to the Markov semigroup (Pt)t≥0 if
1. W0 = span(1) where 1 is the identically-1 function (i.e. W0 = R).
2. For all t ≥ 0, there exists λt ∈ [0, 1] such that if f ∈ Wi, then Ptf = λitf .
3. If t1 > t2, then λt1 < λt2 .

I Remark 7. The term “chaos decomposition” is used in the literature to describe the
spectral decomposition of L2(Rn, γ) with respect to the Laplacian of the Ornstein–Uhlenbeck
semigroup (see Proposition 19); its usage in the broader sense defined above is not standard
(to our knowledge).
I Remark 8. Given an orthogonal decomposition L2 (Ωn, π⊗n) =

⊕
iWi, for f ∈ L2 (Ωn, π⊗n)

we will write f = ⊕ifi where fi is the projection of f onto Wi.

2 Note that this implies the following order property: if f ≥ g almost everywhere, then Ptf ≥ Ptg almost
everywhere.

ITCS 2021
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We note that λ0 = 1, and as 1 ∈ W0, it follows that f0 = 〈f, 1〉. We revisit the definition
of monotone compatibility given in the introduction in the language of Markov semigroups:

I Definition 9 (Monotone compatibility). Let (Pt)t≥0 be a Markov semigroup on L2 (Ωn, π⊗n).
We say that (Pt)t≥0 is monotone compatible with a family of functions F ⊆ L2 (Ωn, π⊗n) if
for all f, g ∈ F , we have

∂

∂t
〈Ptf, g〉 ≤ 0.

Recalling that our noise operators such as (Tρ)ρ∈[0,1] are reparameterized versions of the
Markov semigroup operators (Pt)t≥0 under the reparameterization Tρ = Pt with ρ = e−t,
and recalling item 1 in Definition 4, we see that Definition 9 coincides with Definition 1.

I Example 10. To provide intuition for Definition 9, a useful concrete example to consider is

Ω = {0, 1} and π = the uniform distribution on Ω, so L2 (Ωn, π⊗n) is the space of all
real-valued functions on the Boolean cube {0, 1}n under the uniform distribution;
Fmon = the class of all monotone Boolean functions, i.e. all f : {0, 1}n → {0, 1} such
that if xi ≤ yi for all i then f(x) ≤ f(y);
(Pt)t≥0 is defined by Pt = Te−t , where Tρ is the Bonami-Beckner operator. We remind
the reader that for any f : {0, 1}n → R and any 0 ≤ ρ ≤ 1, the function Tρf(x) is defined
to be Ey∼Nρ(x)[f(y)], where “y ∼ Nρ(x)” means that y ∈ {0, 1}n is randomly chosen by
independently setting each yi to be xi with probability ρ and to be uniform random with
probability 1− ρ.

In this setting, as will be shown later, we have that for any two monotone functions
f, g ∈ F , the function Ex∼{±1}n [Tρf(x)g(x)] is a non-decreasing function of ρ; hence
∂
∂t Ex∼{±1}n [Ptf(x)g(x)] is always at most 0 (note that as t increases ρ = e−t decreases), so
(Pt)t≥0 is monotone compatible with Fmon.

2.2 Complex Analysis
Let U ⊆ C be a connected, open set. Recall that a function f : U → C is said to be
holomorphic if at every point in U it is complex differentiable in a neighborhood of the point.
For U a connected closed set, f is said to be holomorphic if it is holomorphic in an open set
containing U . Our main technical lemma appeals to the following classical result, a proof of
which can be found in [24].

I Theorem 11 (Hadamard Three Circles Theorem). Suppose f is holomorphic on the annulus
{z ∈ C | r1 ≤ |z| ≤ r2}. For r ∈ [r1, r2], let M(r) := max|z|=r |f(z)|. Then

log
(
r2

r1

)
logM(r) ≤ log

(r2

r

)
logM(r1) + log

(
r

r1

)
logM(r2).

3 A New Extremal Bound for Power Series with Bounded Length

Given a complex power series p(t) =
∑∞
i=1 cit

i where ci ∈ C, its length is defined to be the
sum of the absolute values of its coefficients, i.e.

∑∞
i=1 |ci|. Our main technical lemma is a

lower bound on the sup-norm of complex power series with no constant term and bounded
length:3

3 The “3/2” in the lemma below could be replaced by any constant bounded above 1; we use 3/2 because
it is convenient in our later application of Lemma 12.
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I Lemma 12 (Main technical lemma). Let p(t) =
∑∞
i=1 cit

i with c1 = 1 and
∑∞
i=1 |ci| ≤M

where M ≥ 3/2. Then:

sup
t∈[0,1]

|p(t)| ≥ Θ(1)
log2M

.

The proof given below is inspired by arguments with a similar flavor in [3, 4], where the
Hadamard Three Circles Theorem is used to prove various extremal bounds on polynomials.

Proof. Consider the meromorphic map (easily seen to have a single pole at z = 0) given by

h(z) = A

(
z + 1

z

)
+B,

which maps origin-centered circles to ellipses centered at B. Let 0 < δ < c be a parameter
that we will fix later, where 0 < c < 1 is an absolute constant that will be specified later.
We impose the following constraints on A and B:

−2A+B = δ
17
4 A+B = 1,

and note that these constraints imply that A = 4(1−δ)
25 and B = 8+17δ

25 .
We define three circles in the complex plane that we will use for the Hadamard Three

Circles Theorem:
1. Let C1 be the circle centered at 0 with radius 1. Note that for all z ∈ C1, the value h(z)

is a real number in the interval
[
δ, 16+9δ

25
]
⊆ [δ, 1).

2. Let r > 1 be such that h(−r) = 0, so r+ 1
r = 8+17δ

4−4δ = 2 + Θ(δ) and hence r = 1 + Θ(
√
δ),

which is less than 4. Define C2 to be the circle centered at 0 with radius r.
3. Let C3 be the circle centered at 0 with radius 4. Note that |h(z)| ≤ 1 for z ∈ C3.

Define q(t) := p(t)
t . Note that q(0) = c1 = 1 and that for all z ∈ C such that |z| ≤ 1, we

have |q(z)| ≤M . Define ψ(z) := q(h(z)). Note that ψ is holomorphic on C\{0}; in particular,
it is holomorphic on the annulus defined by C1 and C3. Consequently, by Theorem 11, we
have:

log
(

4
1

)
logα(r) ≤ log

(
4
r

)
logα(1) + log

(r
1

)
logα(4)

with α(r) := sup|z|=r |ψ(z)|. As h(−r) = 0, we have ψ(−r) = 1 and so logα(r) ≥ 0.
Consequently, the left hand side of the above inequality is non-negative, which implies:

1 ≤ α(1)log ( 4
r ) · α(4)log r.

As log
( 4
r

)
= Θ(1), log r = log

(
1 + Θ

(√
δ
))

= Θ
(√

δ
)
, and α(4) ≤M , we get:

1 ≤ α(1)Θ(1) ·MΘ(√δ), and hence M−Θ(√δ) ≤ α(1).

By (i) and the definition of α, we have:

sup
t∈[δ,1)

q(t) ≥M−Θ(√δ) and hence sup
t∈[0,1]

p(t) ≥ sup
δ∈[0,1]

δM−Θ(√δ).

Setting δ = Θ(1)
log2 M

, we get that

sup
t∈[0,1]

|p(t)| ≥ Θ(1)
log2M

,

and the lemma is proved. J
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It is natural to wonder whether Lemma 12 is quantitatively tight. The polynomial
p(t) = t(1 − t)logM is easily seen to have length M and supt∈[0,1] p(t) = Θ(1/ logM), and
it is tempting to wonder whether this might be the smallest achievable value. However, it
turns out that the 1/ log2M dependence of Lemma 12 is in fact the best possible result; a
proof of the following result can be found in the appendix to the full version of this paper.

B Claim 13. For sufficiently large M , there exists a real polynomial p(t) =
∑d
i=1 cit

i with
c1 = 1 and

∑d
i=1 |ci| ≤M such that

sup
t∈[0,1]

p(t) ≤ O
((

1
logM

)2
)
.

4 A General Approach to Quantitative Correlation Inequalities

This section presents our general approach to obtaining quantitative correlation inequalities
from qualitative correlation inequalities. While our main result, Theorem 14, is stated in
an abstract setting, subsequent sections will instantiate this result in concrete settings that
provided the initial impetus for this work. Section 5 deals with the setting of centrally
symmetric, convex sets over Gaussian space, and Section 6 deals with finite product domains.

I Theorem 14 (Main Theorem). Consider a symmetric Markov semigroup (Pt)t≥0 on
L2 (Ωn,Π⊗n) with a chaos decomposition

L2 (Ωn,Π⊗n) =
⊕
`

W`.

Let (Pt)t≥0 be monotone compatible with F ⊆ L2 (Ωn,Π⊗n), where ‖f‖ ≤ 1 for all f ∈ F .
Furthermore, suppose that there exists j∗ ∈ N>0 such that every f ∈ F has a decomposition as

f =
∞⊕
`=0

f`·j∗ ,

i.e. f` = 0 for j∗ - `. Then for all f, g ∈ F , we have

〈f, g〉 − f0g0 ≥
1
C
· Φ (〈fj∗ , gj∗〉) , (6)

where recall from Equation (2) that Φ : [0, 1]→ [0, 1] is Φ(x) = min
{
x, x

log2(1/x)

}
and C > 0

is a universal constant.

The proof of the above theorem uses an interpolating argument along the Markov
semigroup, and appeals to Lemma 12 to obtain the lower bound.

Proof of Theorem 14. Fix f, g ∈ F and let us write a` := 〈f`, g`〉. It follows from Defi-
nition 6 that f`, g` are eigenfunctions of Pt with eigenvalue λ`t. This, together with the
assumption that f = ⊕j∗|`f` and g = ⊕j∗|`g`, implies that for t > 0 we have

〈Ptf, g〉 =
∑
j∗|`

λ`t〈f`, g`〉 =
∑
j∗|`

a`λ
`
t. (7)
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Here we remark that the argument to Φ(·) in the right hand side of Equation (6) is
non-negative, i.e. aj∗ ≥ 0. To see this, observe that

aj∗ = ∂

∂λj
∗

t

〈Ptf, g〉 = ∂

∂t
〈Ptf, g〉 ·

∂t

∂λj
∗

t

≥ 0

where we used the monotone compatibility of F with (Pt)t≥0 and Property 3 of Definition 6.
Returning to Equation (7), rearranging terms gives that

〈Ptf, g〉 − f0g0 =
∑
`>0
j∗|`

a`λ
`
t = aj∗p(λj

∗

t ), where p(λj
∗

t ) := λj
∗

t + 1
aj∗

∑
`>j∗

j∗|`

a`λ
`
t. (8)

As λt ∈ [0, 1], we re-parametrize u := λj
∗

t and write b` := a`j∗

aj∗
for ease of notation; this

gives us

p(u) = u+
∑
`≥2

b`u
`.

By the Cauchy–Schwarz inequality, we have

a2
` = 〈f`, g`〉2 ≤ 〈f`, f`〉〈g`, g`〉 = ‖f`‖2‖g`‖2, and hence |a`| ≤ ‖f`‖‖g`‖.

Once again using the Cauchy–Schwarz inequality, we get

∑
`

|a`| ≤
∑
`=0
‖f`‖ · ‖g`‖ ≤

√√√√(∑
`

‖f`‖2
)
·

(∑
`

‖g`‖2
)
≤ 1

where the last inequality follows from the assumption that ‖f‖ ≤ 1 for all f ∈ F . This
implies that∑

`

|b`| =
1
|aj∗ |

∑
`

|a`·j∗ | ≤
1
|aj∗ |

= 1
aj∗

.

where the last equality holds because of aj∗ ≥ 0 as shown earlier. If aj∗ > 2/3 then∑
`≥2 |bi| ≤ 1/2 while b1 = 1, from which it easily follows that supu∈[0,1] p(u) ≥ 1/2. If

aj∗ < 2/3 then the power series p(u) satisfies the assumptions of Lemma 12 with M = 1
aj∗

.
This gives us

sup
u∈[0,1]

p(u) ≥ min
{

1
2 ,Θ

(
1

log2 (a−1
j∗

))} .
It follows from Definition 6 that as t ranges over (0,∞), λt and consequently u ranges over
the interval (0, 1]. Together with Equation (8), this implies that

sup
t∈(0,∞)

〈Ptf, g〉−f0g0 = sup
t∈(0,∞)

aj∗ ·p(λt) = aj∗ · sup
u∈(0,1]

p(u) ≥ Θ
(

min
{
aj∗ ,

aj∗

log2 (a−1
j∗

)}) .
However, because of monotone compatibility, we have that 〈Ptf, g〉 is decreasing in t. As
P0 = Id, we can conclude that

〈f, g〉 − f0g0 ≥ Θ
(

min
{
aj∗ ,

aj∗

log2 (a−1
j∗

)}) ,
which completes the proof. J

ITCS 2021



69:12 Quantitative Correlation Inequalities via Semigroup Interpolation

5 A Quantitative Extension of the Gaussian Correlation Inequality

In this section, we prove a quantitative versions of Royen’s Gaussian Correlation Inequality
(GCI) [23] for symmetric convex sets. We start by recalling some elementary facts about
harmonic analysis over Gaussian space in Section 5.1, after which we derive our “robust”
form of the Gaussian Correlation Inequality in Section 5.2 as a consequence of Theorem 14.
In Section 5.3 we discuss how our robust GCI can be viewed as a Gaussian-space analogue
of Talagrand’s celebrated correlation inequality for monotone Boolean functions over the
Boolean hypercube [26]. We analyze the tightness of our robust GCI in Section 5.4.

5.1 Harmonic (Hermite) Analysis over Gaussian space
Our notation and terminology presented in this subsection follows Chapter 11 of [21]. We
say that an n-dimensional multi-index is a tuple α ∈ Nn, and we define

supp(α) := {i : αi 6= 0}, #α := |supp(α)|, |α| :=
n∑
i=1

αi. (9)

We write N (0, 1)n to denote the n-dimensional standard Gaussian distribution. For
n ∈ N>0, we write L2(Rn, γ) to denote the space of functions f : Rn → R that have finite
2nd moment ‖f‖22 under the standard Gaussian measure γ, that is:

‖f‖22 = E
z∼N (0,1)n

[
f(z)2]1/2 <∞.

We view L2(Rn, γ) as an inner product space with 〈f, g〉 := Ez∼N (0,1)n [f(z)g(z)] for f, g ∈
L2(Rn, γ). We recall the “Hermite basis” for L2(R, γ):

I Definition 15 (Hermite basis). The Hermite polynomials (hj)j∈N are the univariate
polynomials defined as

hj(x) = (−1)j√
j!

exp
(
x2

2

)
· d

j

dxj
exp

(
−x

2

2

)
.

I Proposition 16 (Proposition 11.33, [21]). The Hermite polynomials (hj)j∈N form a complete,
orthonormal basis for L2(R, γ). For n > 1 the collection of n-variate polynomials given by
(hα)α∈Nn where

hα(x) :=
n∏
i=1

hαi(x)

forms a complete, orthonormal basis for L2(Rn, γ).

Given a function f ∈ L2(Rn, γ) and α ∈ Nn, we define its Hermite coefficient on α as
f̃(α) = 〈f, hα〉. It follows that f is uniquely expressible as f =

∑
α∈Nn f̃(α)hα with the

equality holding in L2(Rn, γ); we will refer to this expansion as the Hermite expansion of f .
One can check that Parseval’s and Plancharel’s identities hold in this setting.

I Proposition 17 (Plancharel’s identity). For f, g ∈ L2(Rn, γ), we have:

〈f, g〉 = E
z∼N (0,1)n

[f(z)g(z)] =
∑
α∈Nn

f̃(α)g̃(α),

and as a special case we have Parseval’s identity,

〈f, f〉 = E
z∼N (0,1)n

[f(z)2] =
∑
α∈Nn

f̃(α)2.
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Next we recall the standard Gaussian noise operator (parameterized so that the noise
rate ρ ranges over [0, 1]):

IDefinition 18 (Ornstein-Uhlenbeck semigroup). We define the Ornstein-Uhlenbeck semigroup
as the family of operators (Uρ)ρ∈[0,1] on the space of functions f ∈ L1(Rn, γ) given by

Uρf(x) := E
g∼N (0,1)n

[
f
(
ρ · x+

√
1− ρ · g

)]
.

The Ornstein-Uhlenbeck semigroup is sometimes referred to as the family of Gaussian
noise operators or Mehler transforms. The Ornstein-Uhlenbeck semigroup acts on the Hermite
expansion as follows:

I Proposition 19 (Proposition 11.33, [21]). For f ∈ L2(Rn, γ), the function Uρf has Hermite
expansion

Uρf =
∑
α∈Nn

ρ|α|f̃(α)hα.

5.2 A Robust Extension of the Gaussian Correlation Inequality
We start by making a crucial observation regarding Royen’s proof of the Gaussian correlation
inequality (GCI) [23]. Recall that the GCI states that if K and L are the indicator functions
of two centrally symmetric (i.e. K(x) = 1 implies K(−x) = 1), convex sets, then they are
non-negatively correlated under the Gaussian measure; that is,

E
x∼N (0,1)n

[K(x)L(x)]− E
x∼N (0,1)n

[K(x)] E
y∼N (0,1)n

[K(y)] ≥ 0.

In order to prove this, Royen interpolates between E[K] E[L] and E[KL] via the Ornstein-
Uhlenbeck semigroup, and shows that this interpolation is monotone nondecreasing; indeed,
note that

〈U1K,L〉 = E
x∼N (0,1)n

[K(x)L(x)], and that 〈U0K,L〉 E
x∼N (0,1)n

[K(x)] E
y∼N (0,1)n

[K(y)].

Thus, Royen’s main result can be interpreted as follows (we refer the interested reader to
a simplified exposition of Royen’s proof by Latała and Matlak [20] for further details):

I Proposition 20 (Royen’s Theorem, [23]). Let Fcsc ⊆ L2 (Rn, γ) be the family of indicators
of centrally symmetric, convex sets, and let (Uρ)ρ∈[0,1] be the Ornstein-Uhlenbeck semigroup.
Then for K,L ∈ Fcsc, we have

∂

∂ρ
〈UρK,L〉 ≥ 0 for all 0 < ρ < 1.

In particular, Fcsc is monotone compatible with (Uρ)ρ∈[0,1].

Recall that we are parametrizing the Ornstein-Uhlenbeck semigroup by ρ ∈ [0, 1] where
ρ = e−t for t ∈ [0,∞); see the discussion following Definition 4. We can now state our main
result:

I Theorem 21 (Quantitative GCI). Let Fcsc ⊆ L2 (Rn, γ) be the family of indicators of
centrally symmetric, convex sets. Then for K,L ∈ Fcsc, we have

E[KL]−E[K] E[L] ≥ 1
C
· Φ

∑
|α|=2

K̃(α)L̃(α)


where recall from Equation (2) that Φ : [0, 1]→ [0, 1] is Φ(x) = min

{
x, x

log2(1/x)

}
and C > 0

is a universal constant.
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Proof. Consider the orthogonal decomposition

L2(Rn, γ) =
∞⊕
i=0
Wi

where Wi = span {hα : |α| = i}; the orthogonality of this decomposition follows from Propo-
sition 16. From Proposition 19, it follows that this decomposition is in fact a chaos decompo-
sition (recall Definition 6) with respect to the Ornstein-Uhlenbeck semigroup (Uρ)ρ∈[0,1].

If K ∈ Fcsc, then K(x) = K(−x) as K is the indicator of a centrally symmetric set; in
other words, K is an even function. Consequently, its Hermite expansion is given by

K =
∞⊕
i=0
|α|=2i

hα.

Furthermore, from Proposition 17, we have that

‖K‖2 =
∑
α∈Nn

K̃(α)2 = E
[
K2] ≤ 1.

It follows that the hypotheses of Theorem 14 hold for Fcsc with j∗ = 2; consequently, for
K,L ∈ Fcsc we have

〈U1K,L〉 − 〈U0K,L〉 = E[KL]−E[K] E[L] ≥ 1
C
· Φ

∑
|α|=2

K̃(α)L̃(α)

 ,

which completes the proof of the theorem. J

It is natural to ask whether Theorem 21 can be extended to a broader class of functions
than 0/1-valued indicator functions of centrally symmetric, convex sets Fcsc. Indeed, the
GCI implies the monotone compatibility of centrally symmetric, quasiconcave4, non-negative
functions (which is a larger family of functions than Fcsc) with the Ornstein-Uhlenbeck
semigroup. This allows us to once again use Theorem 14 to obtain a quantitative correlation
inequality for this family of functions; we defer this to the full version of this paper.

5.3 Interpreting Theorem 21
Recall Talagrand’s correlation inequality [26]: If f, g : {0, 1}n → {0, 1} are monotone Boolean
functions, then

E[fg]−E[f ] E[g] ≥ 1
C
·Ψ
(

n∑
i=1

f̂(i)ĝ(i)
)

where Ψ(x) = x
log(e/x) . However (see Chapter 2 of [21]), for monotone f : {+1,−1}n →

{+1,−1}, we have f̂(i) = Inf i[f ] where

Inf i[f ] := Pr
x∼{+1,−1}n

[
f(x) 6= f

(
x⊕i

)]
.

4 A function f : Rn → R is quasiconcave if for all λ ∈ [0, 1] we have f (λx+ (1− λ)y) ≥ min {f(x), f(y)}.
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In other words, the degree-1 Fourier coefficient f̂(i) captures the “dependence” of f on its
ith coordinate, and the quantity

∑n
i=1 f̂(i)ĝ(i) captures the extent to which “both f and g

simultaneously depend on the same coordinates”. This intuitively explains why it is plausible
for such a quantity to appear in Talagrand’s inequality.

Inspired by the resemblance between our quantitative Gaussian correlation inequality and
Talagrand’s correlation inequality, we believe that the (negated) degree-2 Hermite coefficients
of centrally symmetric, convex sets over Gaussian space are natural analogues of the degree-1
Fourier coefficients (i.e. the coordinate influences) of monotone Boolean functions. However,
while functions on the Boolean hypercube have influences only along n “directions”, there
are infinitely many directions over Gaussian space. We make the following definition:

I Definition 22 (Influences for Fcsc). Let K ⊆ Rn be a centrally symmetric, convex set.
Given a unit vector v ∈ Sn−1, we define the influence of K along direction v as

Infv[K] := −K̃(2v) = E
x∼N (0,1)n

[−K(x)h2(v · x)]

where h2(x) = x2−1√
2 is the degree-2 univariate Hermite polynomial (see Section 11.2 of [21]).

It follows from the proof of Theorem 14 that the quantity
∑
|α|=2 K̃(α)L̃(α) forK,L ∈ Fcsc

is non-negative. In fact more is true: if K is a centrally symmetric, convex set, then each
Infei [K] is itself non-negative. The proof of the following proposition can be found in the
appendix to the full version of this paper.

I Proposition 23 (Influences are non-negative). If K is a centrally symmetric, convex set,
then Infv[K] ≥ 0 for all v ∈ Sn−1, with equality holding if and only if K(x) = K(y) whenever
xv⊥ = yv⊥ (the projection of x orthogonal to v coincides with that of y), except possibly on a
set of measure zero.

It is natural to define the “total influence of K” to be Inf [K] :=
∑n
i=1 Infei [K]; we

observe that this quantity is given by

Inf [K] = −
n∑
i=1

K̃(2ei) =
Ex∼N (0,1)n

[
−f(x) · (‖x‖2 − n)

]
√

2
,

and hence it is invariant under orthogonal transformations (i.e. any orthonormal basis
v1, . . . , vn could have been used in place of e1, . . . , en in defining Inf [K]).

The above discussion suggests that the notion of “influences” for centrally symmetric,
convex sets in Gaussian space proposed in Definition 22 is indeed “influence-like”. A
forthcoming paper [5] will further explore this notion.

5.4 On the Tightness of Theorem 21
In [26], Talagrand gave the following family of example functions for which Equation (1) is
tight up to constant factors: let f, g : {0, 1}n → {0, 1} be given by

f(x) =
{

1
∑
i xi ≥ n− k

0 otherwise
, and g(x) =

{
1
∑
i xi > k

0 otherwise

where k ≤ n/2. Writing ε to denote E[f ], we have ε2 = ε− ε(1− ε) = E[fg]−E[f ] E[g], and
it can be shown that Ψ

(∑n
i=1 f̂(i)ĝ(i)

)
= Θ(ε2), so Equation (1) is tight up to constant

factors. We note that in this example f and g are the indicator functions of Hamming balls,
and that f ⊆ g (i.e. f(x) = 1 implies that g(x) = 1).
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Motivated by this example, we consider an analogous pair of functions in the setting of
centrally symmetric, convex sets over Gaussian space, where we use origin-centered balls of
different radii in place of Hamming balls. In particular, let K,L ∈ Fcsc be n-dimensional
origin-centered balls of radii r1 and r2 respectively such that r1 < r2 with

E[K] = ε and E[L] = 1− ε

where the expectations are taken with respect to the n-dimensional Gaussian measure.
As K ⊆ L, we have E[KL] − E[K] E[L] = ε − ε(1 − ε) = ε2. Since K(x1, . . . , xn) =
K(x1, . . . , xi−1,−xi, xi+1, . . . , xn) for all x ∈ Rn and all i ∈ [n], it easily follows that
K̃(ei+ej) = E[K(x)xixj ] = 0 for all i 6= j, and the same is true for L. Furthermore, as K,L
are rotationally invariant, we have K̃(2ei) = K̃(2ej) and L̃(2ei) = L̃(2ej) for all i, j ∈ [n]. It
follows that

−
∑
|α=2|

K̃(α) = −
n∑
i=1

K̃(2ei) = 1√
2

E
x∼N (0,1)n

[
K(x)

(
n− ‖x‖2

)]
.

An application of the Berry-Esseen Central Limit Theorem (see [2, 6] or, for example,
Section 11.5 of [21]) together with standard anti-concentration bounds on Gaussian tails (we
omit the details here; a complete calculation can be found in the full version of this paper)
gives that

E
x∼N (0,1)n

[
K(x)

(
n− ‖x‖2

)]
= Ω

(
ε

√
n ln

(
2
ε

))
.

A similar calculation for L gives that −L̃(2ei) = Ω
(
ε
√

1
n ln

( 2
ε

))
, from which it follows that∑n

i=1 K̃(2ei)L̃(2ei) = Ω
(
ε2 ln

( 2
ε

))
. Recalling Equation (2), we get that for small enough ε,

the quantity

Φ

∑
|α|=2

K̃(α)L̃(α)

 = Ω
(

ε2

log(2/ε)

)
,

which lets us conclude that Theorem 21 is tight to within a logarithmic factor.

6 Generalizing Talagrand’s Inequality to Arbitrary Finite Product
Domains

The main result of this section, Theorem 29, is an extension of Talagrand’s correlation
inequality [26] to real-valued functions on general, finite, product spaces. (Recall that
Talagrand’s inequality applies only to Boolean-valued functions on the domain {0, 1}n under
the uniform distribution.)

6.1 Harmonic Analysis over Finite Product Spaces
Our notation and terminology presented in this subsection follows Chapter 8 of [21]. We use
multi-index notation for α ∈ Nn as defined in Equation (9).

Let (Ω, π) be a finite probability space with |Ω| = m ≥ 2, where we always assume
that the distribution π over Ω has full support (i.e. π(ω) > 0 for every ω ∈ Ω). We write
L2(Ωn, π⊗n) for the real inner product space of functions f : Ωn → R, with inner product
〈f, g〉 := Ex∼π⊗n [f(x)g(x)].
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It is easy to see that there exists an orthonormal basis for the inner product space
L2(Ω, π), i.e. a set of functions φ0, . . . , φm−1 : Ω → R, with φ0 = 1, that are orthonormal
with respect to π. Moreover, such a basis extends to an orthonormal basis for L2(Ωn, π⊗n)
by a straightforward n-fold product construction: given a multi-index α ∈ Nn<m, if we define
φα ∈ L2(Ωn, π⊗n) as

φα(x) :=
n∏
i=1

φαi(xi),

then the collection (φα)α∈Nn<m is an orthonormal basis for L2(Ωn, π⊗n) (see Proposition 8.13
of [21]). So every function f : Ωn → R has a decomposition

f =
∑

α∈Nn<m

f̂(α)φα. (10)

This can be thought of as a “Fourier decomposition” for f , in that it satisfies both Parseval’s
and Plancharel’s identities (see Proposition 8.16 of [21]). We now proceed to define a noise
operator for finite product spaces.

I Definition 24 (Noise operator for finite product spaces). Fix a finite product probability
space L2(Ωn, π⊗n). For ρ ∈ [0, 1] we define the noise operator for L2(Ωn, π⊗n) as the linear
operator

Tρf(x) := E
y∼Nρ(x)

[f(y)],

where “y ∼ Nρ(x)” means that y ∈ Ωn is randomly chosen as follows: for each i ∈ [n], with
probability ρ set yi to be xi and with the remaining 1− ρ probability set yi by independently
making a draw from π.

I Proposition 25 (Proposition 8.28 of [21])). We have Tρf =
∑
α ρ

#αf̂(α)φα.

6.2 A Quantitative Correlation Inequality for Finite Product Domains
Throughout this subsection, let Ω = {0, 1, . . . ,m − 1} endowed with the natural ordering
(though any m-element totally ordered set would do). We will consider monotone functions
on (Ωn, π⊗); while our results hold in the more general setting of functions on (Ωn,⊗ni=1πi),
we stick to the setting of L2(Ωn, π⊗n) for ease of exposition.

In order to appeal to Theorem 14, we must first show that the family of monotone
(nondecreasing) functions on Ωn is monotone compatible with the Bonami–Beckner noise
operator (see Definition 24). To this end, we define noise operators that act on each coordinate
of the input:

I Definition 26 (coordinate-wise noise operators). Let Ti
ρ be the operator on functions

f : Ωn → R defined by

Tiρf(x) = E
y∼Nρ(xi)

[f(x1, . . . ,y, . . . , xn)],

and define Tρ1,...,ρnf := T1
ρ1
◦ T2

ρ2
◦ . . . ◦ Tnρnf .

This is well-defined as the operators Tiρi and Tjρj commute.

I Lemma 27. Let Ω = {0, 1, . . . ,m− 1} and let f : Ωn → R be a monotone function. Then
Tiρf : Ωn → R is a monotone function.

ITCS 2021



69:18 Quantitative Correlation Inequalities via Semigroup Interpolation

Proof. Suppose x, y ∈ Ωn are such that xi ≤ yi for all i ∈ [n]. We wish to show that
Tiρf(x) ≤ Tiρf(y), which is equivalent to showing

E
z∼Nρ(xi)

[
f
(
xi 7→z

)]
≤ E

z∼Nρ(yi)

[
f
(
yi 7→z

)]
.

Indeed, because of the monotonicity of f , via the natural coupling we have

E
z∼Nρ(xi)

[
f
(
xi 7→z

)]
= δf(x) + (1− δ) E

z∼Ωn

[
f
(
xi 7→z

)]
≤ δf(y) + (1− δ) E

z∼Ωn

[
f
(
yi 7→z

)]
= E

z∼Nρ(yi)

[
f
(
yi 7→z

)]
. J

I Lemma 28. Let Ω = {0, 1, . . . ,m− 1} and let f, g : Ωn → R be monotone functions. Then
〈Tρf, g〉 is nondecreasing in ρ ∈ [0, 1].

Proof. We have

〈Tρ1,...,ρnf, g〉 = 〈Tρ,1,...,1f, T1,ρ2,...,ρng〉 =
〈
T1
ρ1
f, h
〉

where h := T1,ρ2,...,ρng. It follows from a repeated application of Lemma 27 that h is
monotone. Now, note that〈

T1
ρ1
f, h
〉

= f̂
(
0̄
)
· ĥ
(
0̄
)

+
∑
α1>0

ρ1f̂(α)ĥ(α) +
∑
0̄ 6=α
α1=0

f̂(α)ĥ(α)

where 0̄ = (0, . . . , 0). By Cheybshev’s order inequality, we know that
〈
T1

1f, h
〉
≥
〈
T1

0f, h
〉

=
f̂
(
0̄
)
· ĥ
(
0̄
)

+
∑

0̄ 6=α,α1=0 f̂(α)ĥ(α). From the above expression, we have:

∂

∂ρ1

〈
T1
ρ1
f, h
〉

=
∑
α1>0

f̂(α)ĥ(α)

which must be nonnegative since
〈
T1

1f, h
〉
≥
〈
T1

0f, h
〉
, and so we can conclude that

〈
T1
ρ1
f, h
〉

is nondecreasing in ρ1. The result then follows by repeating this for each coordinate. J

Let Fmon ⊆ L2(Ωn, π⊗n) be the family of monotone functions f : Ωn → R. Then
Lemma 28 shows that Fmon is monotone compatible with the Bonami–Beckner noise operator.
We can now prove our Talagrand-analogue for monotone functions over Ωn:

I Theorem 29. Let Ω = {0, 1, . . . ,m− 1}n and let Fmon ⊆ L2(Ωn, π⊗n) denote the family
of monotone functions on Ωn such that ‖f‖ ≤ 1 for all f ∈ Fmon. Then for f, g ∈ Fmon, we
have

E[fg]−E[f ] E[g] ≥ 1
C
· Φ

 ∑
#α=1

f̂(α)ĝ(α)


where recall from Equation (2) that Φ : [0, 1]→ [0, 1] is Φ(x) = min

{
x, x

log2(1/x)

}
and C > 0

is a universal constant.

Proof. Consider the orthogonal decomposition

L2(Ωn, π⊗n) =
n⊕
i=0
Wi

where Wi = span {φα : #α = i}; the orthogonality of this decomposition follows from the
orthonormality of (φα)α∈Nn<m . Furthermore, this decomposition is a chaos decomposition
with respect to the Bonami–Beckner operator (Tρ)ρ∈[0,1]). It follows that the hypotheses of
Theorem 14 hold for Fmon with j∗ = 1, from which the result follows. J
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Theorem 29 can be interpreted in terms of the Efron–Stein decomposition of a function
(see Chapter 8 of [21]); a complete discussion of this can be found in the full version of this
paper.

6.3 Comparison with Keller’s Inequality for the p-biased Hypercube
In this subsection, we restrict our attention to the p-biased hypercube, i.e. {+1,−1}np :=
({+1,−1}n, π⊗np ) where πp(−1) = p and πp(+1) = 1 − p. In this setting our Theorem 29
generalizes Talagrand’s inequality in two ways: it holds for real-valued monotone functions on
{+1,−1}n that have 2-norm at most 1 (rather than just monotone Boolean functions), and it
holds for any p (as opposed to just p = 1/2). Keller [15, 16] has earlier given a generalization
of Talagrand’s inequality that holds for general p and for real-valued monotone functions
with ∞-norm at most 1:

I Theorem 30 (Theorem 7 of [15]; see also [17] for a slightly weaker version). Let
f, g ∈ L2({0, 1}n, π⊗np ) be monotone functions such that for all x ∈ {+1,−1}n, we have
|f(x)|, |g(x)| ≤ 1. Then

E[fg]−E[f ] E[g] ≥ 1
C
·H(p) ·Ψ

(
n∑
i=1

f̂p(i)ĝp(i)
)

where f̂p(i) is the p-biased degree-1 Fourier coefficient on coordinate i, Ψ : [0, 1]→ [0, 1] is
given by Ψ(x) = x

log(e/x) as in Section 1.1, C > 0 is a universal constant, and H : [0, 1]→ [0, 1]
is the binary entropy function H(x) = −x log x− (1− x) log(1− x).

Comparing Theorem 29 to Theorem 30, we see that the latter has an extra factor of
H(p), whereas the former shows that in fact no dependence on p is necessary (but the former
has an extra factor of 1/log

(
1/
∑
i f̂p(i)ĝp(i)

)
). Theorem 29 can be significantly stronger

than Theorem 30 in a range of natural settings because of these differences. We show that
for every ω(1)/n ≤ p ≤ 1/2, there is a pair of {+1,−1}-valued functions f, g (depending on
p) such that under the p-biased distribution (i) the quantity E[fg]−E[f ] E[g] is at least an
absolute constant independent of n and p; (ii) the RHS of Theorem 29 is at least an absolute
constant independent of n and p; but (iii) the RHS of Theorem 30 is Θ(p log(1/p)). A proof
can be found in the appendix to the full version of this paper.
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