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Abstract
The theory of majorizing measures, extensively developed by Fernique, Talagrand and many others,
provides one of the most general frameworks for controlling the behavior of stochastic processes. In
particular, it can be applied to derive quantitative bounds on the expected suprema and the degree
of continuity of sample paths for many processes.

One of the crowning achievements of the theory is Talagrand’s tight alternative characterization
of the suprema of Gaussian processes in terms of majorizing measures. The proof of this theorem
was difficult, and thus considerable effort was put into the task of developing both shorter and easier
to understand proofs. A major reason for this difficulty was considered to be theory of majorizing
measures itself, which had the reputation of being opaque and mysterious. As a consequence, most
recent treatments of the theory (including by Talagrand himself) have eschewed the use of majorizing
measures in favor of a purely combinatorial approach (the generic chaining) where objects based on
sequences of partitions provide roughly matching upper and lower bounds on the desired expected
supremum.

In this paper, we return to majorizing measures as a primary object of study, and give a viewpoint
that we think is natural and clarifying from an optimization perspective. As our main contribution,
we give an algorithmic proof of the majorizing measures theorem based on two parts:

We make the simple (but apparently new) observation that finding the best majorizing measure
can be cast as a convex program. This also allows for efficiently computing the measure using
off-the-shelf methods from convex optimization.
We obtain tree-based upper and lower bound certificates by rounding, in a series of steps, the
primal and dual solutions to this convex program.

While duality has conceptually been part of the theory since its beginnings, as far as we are aware
no explicit link to convex optimization has been previously made.
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73:2 Majorizing Measures for the Optimizer

1 Introduction

Let (Zx)x∈X denote a family of centered (mean zero) jointly Gaussian random variables,
indexed by points of a set X. A fundamental statistic of such a process is the expected
supremum E[supx∈X Zx], which provides an important measure of the size of the process.
This statistic has applications in a wide variety of areas. We list some relevant examples.
In convex geometry, one can associate a process to any symmetric convex body K, whose
supremum gives lower bounds on the size of the largest nearly spherical sections of K [13].
In the context of dimensionality reduction, one can associate a Gaussian process to any
point set S in Rd whose squared expected supremum upper bounds the projection dimension
needed to approximately preserve distances between points in S [7, 14]. In the study of
Markov Chains, the square of the expected supremum of the Gaussian free field of a graph
G was shown to characterize the cover time of the simple random walk on G [3].

The above list of applications, which is by no means exhaustive, help motivate the interest
in many areas of Mathematics for obtaining a fine grained understanding of such suprema.
We now retrace some of the key developments in the theory of Gaussian processes leading
up to Talagrand’s celebrated majorizing measure theorem [17], which gives an alternate
characterization of Gaussian suprema in terms of an optimization problem over measures on
X. The goal of this paper is to give a novel optimization based perspective on this theory, as
well as a new constructive proof of Talagrand’s theorem. For this purpose, some of the earlier
concepts, in particular, majorizing measures, will be central to the exposition. We will also
cover some generalizations of the theory to the non-Gaussian setting, as our results will be
applicable there as well. Throughout our exposition, we rely on the terminology introduced
by van Handel [22] for the various combinatorial objects within the theory (i.e., labelled nets,
admissible nets and packing trees).

1.1 Bounding the Supremum of Stochastic Processes
In what follows we use the notation A . B (A & B) if there exists an absolute constant
c > 0 such that A ≤ cB (cA ≥ B). We use A � B to denote A . B and A & B.

A first basic question one may ask is what information about the Gaussian process
(Zx)x∈X is sufficient to exactly characterize the expected supremum? An answer to this
problem was given by Sudakov [16], strengthening a result of Slepian [15]. Sudakov showed
that it is uniquely identified by the natural (pseudo) distance metric

d(u, v) := E[(Zu − Zv)2]1/2, ∀u, v ∈ X. (1.1)

In fact, Sudakov proved the following stronger comparison theorem: if (Yx)x∈X and (Zx)x∈X
are Gaussian processes on the same index set X and for every u, v ∈ X, it holds that
E[(Yu − Yv)2] ≤ E[(Zu − Zv)2], then E[supx Yx] ≤ E[supx Zx].

Given the above, it is natural to wonder what properties of the metric space X allow us
to obtain upper and lower bounds on E[supx∈X Zx]? A first intuitively relevant quantity
is the diameter of X defined by D(X) := supu,v∈X d(u, v). For any u, v ∈ X, we have the
following simple lower bound:

E[sup
x
Zx] ≥ E[max{Zu, Zv}] = E[max{Zu − Zv, 0}] + E[Zv]

= 1
2E[|Zu − Zv|] = d(u, v)√

2π
. (1.2)

Here, we use that E[Zv] = 0, and that Zu − Zv is Gaussian with variance d(u, v)2. Thus
E[supx Zx] ≥ D(X)/

√
2π.
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Instead of looking at two maximally separated points, one might expect to get stronger
lower bounds using a large set of well-separated points in X. Such an inequality was given
by Sudakov [16], who showed that

max
r>0

r
√

logNX(r) . E[sup
x
Zx],

where NX(r) := min{|S| | S ⊆ X,∀x ∈ X,mins∈S d(x, s) ≤ r} is the minimum size of an
r-net of X. This is in fact a direct consequence of Sudakov’s comparison theorem. Precisely,
the restriction of the process {Zx}x∈X to a suitable r-net S, chosen greedily so that every two
points in S are at distance at least r, majorizes the maximum of |S| ≥ NX(r) independent
Gaussians with standard deviation r/

√
2, where a standard computation then yields the

left-hand side.
On the upper bound side, Dudley [4] proved that the covering numbers can in fact be

chained together to upper bound the supremum:

E[sup
x
Zx] .

∫ ∞
0

√
logNX(r)dr. (1.3)

Note that the integral can be restricted to the range r ∈ (0,D(X)], since logNX(D(X)) =
log 1 = 0. Dudley’s proof of this inequality was extremely influential and showed the power
of combining simple tail bounds on pairs of variables Zu − Zv to get a global bound on
the supremum. In particular, the main inequality used in Dudley’s proof is the standard
Gaussian tail bound: for u, v ∈ X, and for any s > 0

P[|Zu − Zv| ≥ d(u, v) · s] ≤ 2e−s
2/2. (1.4)

The strategy of combining the above inequalities to control the maximum of a process is
what is now called chaining.

Basics of Chaining. The concept of chaining is central to this paper, so we explain the
basic mechanics here. As it will be more convenient for the exposition, we will more directly
work with symmetric version of the supremum

sup
x1,x2∈X

Zx1 − Zx2

which is always non-negative. Note that since (Zx)x∈X and (−Zx)x∈X are identically
distributed,

E
[

sup
x1,x2∈X

Zx1 − Zx2

]
= E

[
sup
x∈X

Zx

]
+ E

[
sup
x∈X
−Zx

]
= 2E

[
sup
x∈X

Zx

]
,

and thus the expected supremum is the same after dividing by 2.
From here, instead of bounding the expectation, we focus on upper bounding the median

of supx1,x2∈X Zx1 − Zx2 , which is known to be within a constant factor of the expectation.
Precisely, we seek to compute a numberM > 0 such that P[supx1,x2∈X Zx1−Zx2 ≥M ] ≤ 1/2.
To arrive at such bounds, we define the notion of a chaining tree.

I Definition 1.1 (Chaining Tree). A (Gaussian) chaining tree C for a finite metric space
(X, d) is a rooted spanning tree on X, with root node w ∈ X, together with probability
labels pe ∈ (0, 1/2), for each edge e ∈ E[C]. The edge probabilities are required to satisfy

ITCS 2021
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∑
e∈E[C] pe ≤ 1/2. For each edge {u, v} = e ∈ E[C], we define the induced edge length

le := le(pe, e) to satisfy

PZ∈N (0,d(u,v)2)[|Z| ≥ le] = pe. (1.5)

For each x ∈ X, let Px denote the unique path from x to the root w in C. We define the
value of C to be

val(C) = max
x∈X

∑
e∈Px

le. (1.6)

For a Gaussian process (Zx)x∈X , where d is the induced metric as in (1.1), for any
chaining tree C on X, we now show that

P
[

sup
x1,x2

Zx1 − Zx2 ≥ 2 · val(C)
]
≤ 1/2. (1.7)

By construction, for any edge {u, v} ∈ E[C] we first note that

P[|Zu − Zv| ≥ le] = pe,

recalling that Zu − Zv is distributed as N (0, d(u, v)2). Since
∑
e∈C pe ≤ 1/2, by the union

bound the event E defined as “|Zu − Zv| ≤ lu,v, ∀{u, v} ∈ E[C]”, holds with probability at
least 1/2. For x ∈ X, let us now define Px to be the unique path from the root w to x in C.

Conditioning on the event E , by the triangle inequality

|Zx − Zw| ≤
∑

{u,v}∈Px

|Zu − Zv| ≤
∑
e∈Px

le. (1.8)

Applying the triangle inequality again, we have that

sup
x1,x2

Zx1 − Zx2 ≤ 2 sup
x∈X
|Zx − Zw| ≤ 2 · val(C).

The bound (1.7) now follows since the above occurs with probability at least 1/2.
To work with such chaining trees, it is important to have easy approximations of the edge

lengths used above. For e = {u, v} ∈ E[C] and pe ∈ (0, 1/2], it is well known that

le � d(u, v)
√

log(1/pe). (1.9)

Note that by the standard Gaussian tail bounds (1.4), for any p ∈ (0, 1), we have the
upper bound, le ≤ d(u, v)

√
2 log(2/pe).

To relate to earlier lower bounds, it is instructive to see that val(C) & D(X), for any
chaining tree. Firstly, since each pu,v ∈ (0, 1/2], by (1.9), it follows that lu,v & d(u, v). From
here, for any pair of points u, v ∈ X, by the triangle inequality 2 · val(C) pays for the cost
of going from u to the root w and from w to v, yielding the desired upper bound on the
diameter.

Chaining beyond Gaussians. Importantly, in the above framework, the only element specific
to Gaussian processes is the edge length function (1.5). As our results will apply to this
more general setting, we explain how chaining can straightforwardly be adapted to work
with processes satisfying appropriate tail bounds.

Let us examine a jointly distributed sequence of random variables (Zx)x∈X indexed by a
metric space (X, d). To constrain the process we will make the following assumptions on
the tails. Let f : R+ → R+ be a continuous and non-increasing probability density function
on the non-negative reals and let F (s) =

∫∞
s
f(t)dt denote the complementary cumulative

distribution function. Then, for all x1, x2 ∈ X and s ≥ 0, we assume that

P[|Zx1 − Zx2 | ≥ d(x1, x2) · s] ≤ F (s). (1.10)
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I Definition 1.2 (Chaining Functional). We define the chaining functional induced by f to be
h(p) := hf (p) = F−1(p), for p ∈ (0, 1], which is well-defined since f is non-increasing. Note
that h(1) = 0 and that h(p) is strictly decreasing on (0, 1]. We say that h is of log-concave
type if the density f is log-concave.

A property that we make crucial use of is that h(p) is, in fact, a convex function of p ∈ (0, 1].
To see this, for p ∈ (0, 1), a direct computation yields that h′(p) = 1/F ′(h(p)) = −1/f(h(p)),
where the derivative is well-defined since f is continuous and non-decreasing. Since f(s) is
non-increasing and h(p) is strictly decreasing, h′(p) is non-decreasing and hence, h is convex.
Throughout the rest of the paper, we will mainly be interested in chaining functionals of
log-concave type.

To apply the chaining framework to the process (Zx)x∈X , we use a chaining tree C exactly
as in Definition 1.1 except that we now compute the edge lengths according to the chaining
functional h. Specifically, for e = {u, v} ∈ E[C] and probability pe ∈ (0, 1), we define

le := le(e, pe) := d(u, v) · h(pe). (1.11)

We now define valh(C) exactly as in (1.6), using h to compute the edge lengths.
With this setup, with an identical proof to the previous section, we have the inequality

P
[

sup
x1,x2∈X

Zx1 − Zx2 ≥ 2 · valh(C)
]
≤ 1

2 .

As in the Gaussian setup, it is useful to keep in mind what the “trivial” diameter lower
bound on valh(C) should be. Since the edge probability pe ∈ (0, 1/2], for e = {u, v} ∈ E[C],
we have that le ≥ d(u, v) · h(1/2). Therefore, for any u, v ∈ X, by the triangle inequality, the
cost of the paths from u or v to the root w is at least d(u, v) · h(1/2) for any chaining tree T .
In particular, for any chaining tree C, we derive the lower bound

2 · valh(C) ≥ D(X) · h(1/2). (1.12)

It is important to note that the Gaussian chaining setup is indeed a special case of
the above. Precisely, in that setup the edge lengths are lu,v := d(u, v) · hf (pu,v), where
f(s) =

√
2
π e
−s2/2 is the density of the absolute value of the standard Gaussian.

Dudley’s Construction. To gain intuition about how to apply the chaining framework, we
now explain how to build and analyze the chaining tree used in Dudley’s inequality. For
simplicity of notation, let us assume that the diameter D(X) = 1. For each k ≥ 0, let Nk
denote a 2−k-net of X of minimum size, i.e., satisfying |Nk| = NX(2−k). By our diameter
assumption, N0 = {w} is clearly a single point, which gives the root of the tree C. From
here, we construct the tree by induction on k ≥ 1. At iteration k ≥ 1, we attach each
element of Nk not already in C to a closest point in C. From here, we set the edge probability
pu,v = pk := 2−(k+1)/|Nk| and let lu,v > 0 be minimal subject to P[|Zu − Zv| ≥ lu,v] ≤ pk.
This completes the construction.

To analyze the tree C, we make the following observations. Firstly, the number of edges we
add to the tree at iteration k is at most |Nk|. Therefore, the total probability sum is at most∑∞
k=1 |Nk| · pk = 1/2, and hence C is a valid chaining tree. Second, any edge {u, v} added

during iteration k satisfies d(u, v) ≤ 2−k+1. Consequently, by the Gaussian tail bound (1.4),

lu,v . d(u, v)
√

log(1/pk) . 2−k+1
(√

logNX(2−k) +
√
k + 1

)
.

ITCS 2021
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In particular, the value of C satisfies

val(C) .
∞∑
k=1

2−k+1
(√

logNX(2−k) +
√
k + 1

)
. 1 +

∞∑
k=1

2−k+1
√

log(NX(2−k)).

One can now easily show that the above expression is upper bounded by (1.3) by discretizing
the range of the integral along powers of 2 (recalling that D(X) = 1).

The Method of Majorizing Measures. Given the above, it is natural to wonder how one
might construct an optimal chaining tree for a given process (Zx)x∈X . A principal goal
of this paper will be to give efficient constructions for such trees. At first sight, this may
seem like a daunting task, as one must somehow simultaneously optimize over all spanning
trees and edge probabilities. Nevertheless, a major step towards this goal was achieved for
Gaussian processes by Fernique [5], who proved the following remarkable theorem:

E
[

sup
x∈X

Zx

]
. γ2(X) := inf

µ
sup
x∈X

∫ ∞
0

g(µ(B(x, r)))dr. (1.13)

Some definitions are in order. Firstly, the infimum over µ is taken over all probability
measures on X. Secondly, g(p) :=

√
log(1/p), for p ∈ [0, 1] corresponds to (an approximation

of) the Gaussian edge length function in (1.5). Lastly, B(x, r) = {y ∈ X : d(x, y) ≤ r} is the
metric ball of radius r around x, where d is the canonical metric induced by the Gaussian
process.

Importantly, the natural analogue of γ2 for the general setup in (1.10) also yields upper
bounds on the expected supremum, provided the tails of f decay sufficiently quickly. In
particular, for (Zx)x∈X satisfying (1.10), for any “nice enough” f , we have that

E
[

sup
x1,x2∈X

Zx1 − Zx2

]
. γh(X) := inf

µ
sup
x∈X

∫ ∞
0

h(µ(B(x, r)))dr, (1.14)

where h is as in (1.11). Note that since h(1) = 0, one can truncate the range of the integral
to r ∈ [0,D(X)]. Very general results of the above type can be found in [18, 1]. We note
that the requirements of the process in these works are parametrized is a somewhat different
way in terms of Orlicz norms. In this work, we will focus on the setting where the chaining
functional h is of log-concave type (where the tail density f is log-concave), where these
different parametrizations are equivalent. Prototypical examples in this class are the tail
densities of exponential type, which are proportional to e−xq , x ≥ 0, for q ≥ 1, and where
h(p) � ln1/q(1/p) for p ∈ (0, 1/2).

Given that any probability measure µ can be used to upper bound the expected supremum,
Fernique dubbed the above technique the method of majorizing measures. It is worthwhile
to note that Fernique did not prove inequality (1.13) via chaining. He relied instead on a
more general technique, which first proves a generic concentration inequality for real valued
functions on the metric space, and recovers the desired inequality by averaging over the
ensemble of functions induced by the process. The fact that one can recover the same
bound via chaining for Gaussian processes would only be proved later, at first implicitly
in Talagrand [17], and explicitly in [21], where the latter work also covered processes of
exponential type mentioned above.

As noted above, the quantity γ2(X) and more generally γh(X) (for h of log-concave type),
rather miraculously models the value of the best chaining tree as a continuous optimization
problem. As majorizing measures may seem like rather opaque objects at first sight, we
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believe it is instructive to note that from a chaining tree C, one can construct a measure µ
whose value in (1.13) is at most 3 · valh(C). The construction is simple: set µw = 1/2 on the
root w, and for each e = {u, v} ∈ E[C] (with v closer to the root than u), set µu = pe. The
details of the comparison can be found in the appendix of the full version of the paper.

From the above discussion, we see that the majorizing measures are indeed powerful
tools for upper bounding suprema. Given this, together with the many tools for lower
bounding Gaussian suprema (which are not available in general), Fernique [5] conjectured that
majorizing measures should fully characterize the expected supremum of Gaussian processes.
This conjecture was verified in the ground-breaking work of Talagrand [17], which is now
called the majorizing measures theorem:
I Theorem 1.3 (Fernique-Talagrand [5, 17]). For any centered Gaussian process (Zx)x∈X
over the metric space X = (X, d), where d is the canonical metric induced by the process, we
have

E
[

sup
x∈X

Zx

]
� γ2(X).

The original proof of the majorizing measure theorem [17] was considered notoriously
difficult. Due to its importance in the theory of stochastic processes, many simpler as well as
different proofs were found [19, 20, 21, 12, 2, 22], often by Talagrand himself.

As stated at the beginning of the introduction, the goal of this paper is to give an
alternative constructive proof of this theorem using a convex optimization approach. In
particular, our starting point is the simple observation that γh(X) is in fact a convex program,
which follows directly from the convexity of h1. While simple (and most certainly known
to experts), we have not seen this observation leveraged in earlier proofs. In our context,
convexity will allow for near-optimal solutions to γh(X) to be efficiently computed using
off-the-shelf methods. Furthermore, convex duality will allow us to inspect the structure of
solutions to natural dual program(s) for γh(X), enabling us to reason about lower bounds.
Our proof will operate entirely at the level of the metric space, and will produce a natural
combinatorial variant of an optimal primal-dual solution pair for γh(X), namely a chaining
tree and packing tree (defined shortly). These solutions will in fact be obtained by “rounding”
solutions to the corresponding continuous programs. Specializing to the Gaussian case, we
recover the majorizing measure theorem by an easy comparison between the value of the
Gaussian supremum and the value of the combinatorial solutions (which are tailor made for
this purpose). This strategy has the benefit of clearly separating the role of the metric space
and the role of the Gaussian process, which are often intertwined in difficult to disentangle
ways in many proofs.

We now review some of the key ideas in known proofs, which will be important for our
approach as well. In particular, we will require appropriate dual analogue to chaining trees.

Primal Proof Strategies. Given what we have seen so far, a main missing ingredient is a
stronger form of lower bound for the value of the Gaussian supremum (noting that chaining
already provides the upper bound). For this purpose, we examine the natural functional
induced by the process on subsets of X, defining

G(S) := E
[
sup
x∈S

Zx

]
, ∀S ⊆ X. (1.15)

1 The formulation γ2(X) is “essentially convex”. This is because g(p) is only convex on the interval
[0, 1/

√
e], which is easily remedied. We note this non-convexity is principally due to g(p) being a poor

approximation of (1.5) for p ∈ [1/
√

e, 1].

ITCS 2021



73:8 Majorizing Measures for the Optimizer

The following functional inequality, named the “super-Sudakov” inequality in [22], was
proven in [19]: there exists γ ∈ (0, 1), such that given an r-separated (non-empty) subsets
A1, . . . , AN ⊆ S, i.e., satisfying d(Ai, Aj) ≥ r, ∀i 6= j, and D(Ai) ≤ γr, ∀i ∈ [N ], then

G(S) ≥ γ · r · g(1/N) + min
i∈[N ]

G(Ai), (1.16)

where g(x) =
√

log 1/x for x ∈ [0, 1], as before.
In [19], Talagrand gave a construction which takes a functional G on X satisfying (1.16),

and produces (a variant of) a chaining tree C satisfying val(C) . G(X). Talagrand’s
construction is based on a recursive partitioning scheme, where the partitions roughly
correspond to subtrees, which greedily chooses metric balls of large G value to construct
the partition. We note that this construction comes in different flavors, each yielding more
structured versions of chaining trees (i.e., labelled nets [19] and admissible nets [20]). By
instantiating G to be the functional given by (1.15) immediately yields Theorem 1.3. While
Talagrand’s construction was certainly algorithmic, the Gaussian functional G is not easy to
compute (at least deterministically). As mentioned previously, in [21], Talagrand also gave
another procedure that directly converts measures to chaining trees. Note that this yields a
good chaining tree from a good measure, but by itself does not yield Theorem 1.3.

Dual Proof Strategies. One reason the “difficult” Gaussian functional G was required to
prove Theorem 1.3 is that there was no simple dual object to compare to that certifies a
lower bound. From the convex optimization perspective, this should morally correspond
to a solution to the dual of γ2(X) (or γh(X)). Such an object, called a packing tree in the
terminology of [22], was in fact developed in Talagrand’s original proof [17] for the Gaussian
case, and extended to general chaining functionals in [10].

I Definition 1.4 (Packing Tree). Let α ∈ (0, 1
10 ]. An α-packing tree T on a finite metric

space (X, d) is a rooted tree on subsets of X, with root node W ⊆ X, together with a labelling
χ : T → Z≥0. We enforce that every leaf node V ∈ T is a singleton, i.e., V = {x} for some
x ∈ X. We denote leaf(T ) ⊆ X to be the union of all leaf nodes of T . Every node V ∈ T
has a (possibly empty) set of children C1, . . . , Ck ⊆ V which are pairwise disjoint. We let
deg+(V ) := k denote the number of children of V . We enforce the follow metric properties
on T :
1. For any child C of V ∈ T , we have that D(C) ≤ αχ(V )+1 ·D(X).
2. For V ∈ T and distinct children C1, C2 of V , we have d(C1, C2) ≥ 1

10α
χ(V ) ·D(X).

The value of an α-packing tree T with respect to a chaining functional h is defined as

valh(T ) := inf
x∈leaf(T )

∑
V ∈Px\{x}

αχ(V ) ·D(X) · h(1/deg+(V )), (1.17)

where Px is the unique path from the root W to the leaf {x}. We use the shorthand val2(T )
to denote the value with respect to the Gaussian functional g.

We remark that we do not count the edge going to the parent in deg+(V ) mostly for
notational convenience – in this case, nodes with a sole child do not contribute to the value
of the packing tree. Also, there is quite a bit of flexibility in the parameters of the packing
tree, which are chosen above for convenience. Packing trees are objects that allow us to chain
lower bounds together in analogy to upper bounds via chaining trees. The combinatorial
structure of a packing tree is more constrained than that of a chaining tree however, and
their construction (at least more from the perspective of the analysis) is more delicate.
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In the Gaussian setting, an α-packing tree T is perfectly tailored for combining the
“super-Sudakov” inequalities given by (1.16). In particular, for α = 1/(2γ), a direct proof by
induction starting from the leaves of the tree certifies that G(X) & val2(T ) (see Theorem
6.36 in [22]). This was in fact first established in [17] using Slepian’s lemma instead of (1.16).
Independently of any process however, they also directly serve as combinatorial lower bounds
for γh(X).

I Lemma 1.5. Let α ∈ (0, 1
10 ]. For a finite metric space (X, d), an α-packing tree T on X,

and any chaining functional h, we have

γh(X) ≥ 1
2(1− α) · valh(T ).

While known to experts, it is not so easy to find combinatorial proofs of the above
inequality, i.e. not related to a process, in the literature (see for example Exercise 6.12 in [22]
or Lemma 3.7 in [3]). We include a proof in the appendix of the full version of the paper.

Talagrand’s original proof of the majorizing measures theorem worked almost entirely on
the dual side. As generalized in [10], the main work in the proof was in fact to construct an
α-packing tree T satisfying valh(T ) & γh(T ) (for h of log-concave type). As for the primal
side, the construction is based on similar greedy ball (sub-)partitioning using an appropriate
functional H on X satisfying a so-called “super-chaining” inequality in the terminology
of [22]. Specifically, for any set S ⊆ X, and a partition S = tNi=1Pi, H satisfies

H(S) ≤ max
i∈[N ]

β ·D(S)h(1/(i+ 1)) +H(Pi), (1.18)

for some absolute constant β > 0. Interestingly, the functional H used in [17, 10] was a
variant of γh(X), which is deterministically computable, and not the Gaussian functional in
the case h = g (though this works as well [22]). This construction was in fact leveraged in [3]
to give a deterministic polynomial time dynamic programming algorithm for computing a
nearly optimal packing tree.

1.2 Our Results

1.2.1 A Constructive Min-Max Theorem
The main result of this paper is the following constructive variant of the combinatorial core
of the majorizing measure theorem.

I Theorem 1.6. Let (X, d) be an n point metric space, h be a chaining functional of log-
concave type. Then there is a deterministic algorithm which computes a chaining tree C∗ and
an 1/10-packing tree T ∗ satisfying

valh(C∗) � valh(T ∗),

using Õ(nω+1) arithmetic operations and evaluations of h and h′, where ω ≤ 2.373 is the
matrix multiplication constant.

We note that the packing tree parameter 1/10 can be made smaller at the cost increasing
the hidden constant in the � notation. Recall that for any pair of trees C and T as above,
we have already seen that

valh(C) & γh(X) & valh(T ), (1.19)
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so the pair in Theorem 1.6 form a nearly-optimal primal-dual pair. Furthermore, in the
Gaussian setting where h = g, replacing γ2(X) above by E[supx Zx] corresponds to the “easy
direction” of the majorizing measures theorem. Plugging in the solutions from Theorem 1.6
immediately yield the hard direction of the theorem. This allows us to view the metric space
part of the majorizing measure theorem as an instance of a combinatorial min-max theorem.
We remark that such a combinatorial min-max characterization of the Majorizing Measures
theorem was already observed by Guédon and Zvavitch [8]. They showed that the value
of the optimal packing tree defines a functional that satisfies the super-Sudakov inequality;
when combined with Talagrand’s framework, this implies the combinatorial min-max theorem
described above. This does not directly yield deterministic constructions of nearly-optimal
chaining or packing trees, however.

Ding, Lee and Peres [3] essentially used this observation of [8] along with a suitable
dynamic program to give an efficient deterministic algorithm to compute nearly optimal
packing trees, as mentioned previously. For nearly optimal chaining trees, we make the
simple observation (which seems to have gone unnoticed) that these can extracted from
Talagrand’s [21] “rounding” algorithm applied to a nearly optimal solution for the efficiently
solvable convex program γh(X). By themselves however, these algorithms do not directly
say much about how the values of these different trees relate to each other.

In Theorem 1.6, we build further on the convex programming approach. At a high level,
we build the primal and dual solutions at the same time and rely on convex programming
duality to ensure they have (nearly) the same value. In essence, we replace the “magic
functionals” satisfying super-Sudakov or super-chaining inequalities that appear in Talag-
rand’s constructions with convex duality. As we will see in the next section, the dual objects
will also correspond to probability measures. In contrast to the primal however, where the
rounding to a suitable chaining tree can be done in one shot, the dual measures will require
multiple levels of rounding.

The primal and dual solutions we require correspond to nearly optimal primal and
dual measures associated with a saddle-point formulation of γh(X) (see (1.20) in the next
subsection). There are in fact many existing solvers that are able to compute nearly optimal
solutions to such saddle point problems, where we will rely on a recent fast solver of [9]. This
computation in fact forms the bulk of the running time of the algorithm in Theorem 1.6.
The details of this part of the algorithm can be found in the full version of this paper. An
interesting open problem is whether one can reduce the running time of Theorem 1.6 to
Õ(n2), which would be nearly-linear in the input size (recall that an n point metric consists
of n2 distances). The main bottleneck is the use of an all purpose blackbox solver [9] to
approximately solve (1.20), and it seems likely that an appropriately tailored first-order
method could bring the running time down to Õ(n2).

While our main contribution is conceptual, we expect and hope that novel and interesting
applications of an “algorithmic” theory of chaining will be found. As a contribution on this
front, we give an application of Theorem 1.6 in the context of derandomization: we give
a deterministic algorithm for computing Johnson-Lindenstrauss projections achieving the
guarantees of Gordon’s theorem [7], where we rely on the chaining based proof from [14]. As
far as we are aware, no prior deterministic construction was known.

1.2.2 Simplifying the Dual of γh(X)
For simplicity of notation, throughout this section (and most of the paper), we will assume that
(X, d) is a fixed n-point metric space and that h is a chaining functional of log-concave type
satisfying |h′(1)| = 1 (interpreted as the left directional derivative). Under this normalization



S. Borst, D. Dadush, N. Olver, and M. Sinha 73:11

on h, the trivial diameter lower bound on γh(X) will be at least D(X)/4, which we will
use to convert additive errors to multiplicative ones. This normalization is without loss of
generality, and can be achieved by appropriately scaling the h and the metric d so that γh(X)
remains unchanged (see Section 2.1 for a full explanation).

We now describe the dual formulation of γh(X) and describe the process of simplifying
it. For this purpose, we start with the basic saddle-point formulation of γh(X):

γh(X) = min
µ

max
x∈X

∫ ∞
0

h(µ(B(x, r)))dr = min
µ

max
ν

∫
X

∫ ∞
0

h(µ(B(x, r)))drdν(x) (1.20)

where ν also ranges over all probability measures on X (the optimal ν above puts mass 1 on
any maximizer of

∫∞
0 h(µ(B(x, r))dr).

To obtain the dual program to γh(X), we interchange µ and ν:

γh(X) ≥ max
ν

min
µ

∫
X

∫ ∞
0

h(µ(B(x, r)))drdν(x) := γ∗
h(X). (1.21)

In particular, for any fixed dual measure ν, we have

γh(X) ≥ min
µ

∫
X

∫ ∞
0

h(µ(B(x, r)))drdν(x). (1.22)

Since the objective
∫
X

∫∞
0 h(µ(B(x, r)))drdν(x) is convex in µ and linear in ν, and the

probability simplex is compact and convex, by Sion’s theorem the value of both convex
programs is equal. That is, γh(X) = γ∗

h(X). The measures required within the construction
in Theorem 1.6 will be nearly optimal primal and dual measures µ∗ and ν∗ to γh(X) and
γ∗
h(X) respectively.
Unfortunately, it is not clear at this point that the dual is terribly useful. In particular,

even evaluating the objective in (1.22) for a given dual measure ν requires solving a non-
trivial convex optimization problem (note that the corresponding objective of γh(X) can
be computed by simply evaluating n integrals). Rather surprisingly, it turns out that for h
of log-concave type, one can in fact “guess” a near-optimal µ in (1.22), namely, we can set
µ = ν.

I Lemma 1.7. For any probability measure ν on X, we have that∫
X

∫ ∞
0

h(ν(B(x, r))drdν(x) ≤ 2 min
µ

∫
X

∫ ∞
0

h(µ(B(x, r)))drdν(x) + D(X)/e,

where the minimum is taken over all probability measures µ.

The proof of the above proceeds on a “per scale” basis. More precisely, for a given
r > 0, we show that

∫
X
h(ν(B(x, 2r))dν(x) ≤

∫
X
h(µ(B(x, r)))dν(x) + 1/e. This statement is

easily restated in graph-theoretic terms, by defining a graph G = (X1 ∪X2, E), with X1, X2
both being copies of X and where x1 ∈ X1 is adjacent to x2 ∈ X2 if d(x1, x2) ≤ r. Then
µ(B(x, r)) corresponds to the mass under µ within the neighborhood of x, and ν(B(x, 2r))
to the mass under ν within the two-hop neighborhood of x. In this setting, we use a tool
from combinatorial optimization, namely, a generalization of Hall’s theorem. We note the
two properties needed from h above are that h be decreasing and maxa∈(0,1] |ah′(a)| ≤ 1.
The latter property in fact follows from h being of log-concave type and the normalization
|h′(1)| = 1.

Motivated by the above, we consider the following simplification of γ∗
h(X), which we call

the entropic dual:

δEnt
h (X) := max

ν

∫
X

∫ ∞
0

h(ν(B(x, r)))drdν(x). (1.23)

ITCS 2021



73:12 Majorizing Measures for the Optimizer

This corresponds to the value ν using the nearly optimal guess for µ in (1.22), which is now
readily computable. The following direct corollary relates the value of the entropic dual to
the actual dual.

I Corollary 1.8.

γ∗
h(X) ≤ δEnt

h (X) ≤ 2γ∗
h(X) + D(X)/e.

In terms of the additive error above, as mentioned at the beginning of the section, D(X)/4
will be the trivial lower bound on γ∗

h(X) = γh(X). Therefore, the right hand in Theorem 1.8
is at most (2 + 4/e)γ∗

h(X) in the worst-case. In most interesting cases however, one would
expect γh(X) to be far from the trivial lower bound, in which case one can think of the right
hand side as (2 + o(1))γ∗

h(X).
We are now ready to give the final simplified form of the dual whose value will most

directly relate to the value of packing trees: we define the simplified dual by

δh(X) := max
ν

min
x∈X,ν(x)>0

∫ ∞
0

h(ν(B(x, r)))dr. (1.24)

Note that we restrict to the minimum of the points supported by ν. These will correspond
to the potential leaf nodes in the packing tree. Furthermore, the minimum in (1.24) is in
direct analogy to the minimum cost of a path down a packing tree.

Trivially, since we replaced the average by a minimum, we have that δEnt
h (X) ≥ δh(X).

We show that the reverse direction also holds up to additive error. For a probability measure
ν on X and for any subset S ⊆ X, satisfying ν(S) > 0, define νS by

νS(A) := νS(A ∩ S)/ν(S),∀A ⊆ X, (1.25)

i.e., νS is the conditional probability measure induced by ν on S. The following lemma shows
that one can easily convert a measure ν with large δEnt

h value to one with large δh value via
conditioning.

I Lemma 1.9. For any probability measure ν on X, there exists S ⊆ {x ∈ X : ν(x) > 0}
such that∫

X

∫ ∞
0

h(ν(B(x, r)))dr ≤ min
x∈S

∫ ∞
0

h(νS(B(x, r)))dr + D(X).

Furthermore, S can be computed using at most O(n3) arithmetic operations and evaluations
of h.

The algorithm achieving the above is in fact very simple: we start with S = {x ∈ X :
ν(x) > 0}, and iteratively kick out the element x ∈ S with lowest value as long as the above
inequality is not met.

Combining Corollary 1.8 and Lemma 1.9, we obtain the following relations between the
dual program γ∗

h(X) and the simplified dual δh(X).

I Theorem 1.10.

γ∗
h(X)−D(X) ≤ δh(X) ≤ 2γ∗

h(X) + D(X)/e.

Furthermore, given any probability measure ν on X, one can compute S ⊆ {x ∈ X : ν(x) > 0}
satisfying∫

X

∫ ∞
0

h(ν(B(x, r)))drdν(x) ≤ min
x∈S

∫ ∞
0

h(νS(B(x, r)))dr + D(X),

using at most O(n3) arithmetic operations and evaluations of g.
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We are in fact not the first to examine the δEnt
h (X) and δh(X) programs. The analysis

of solutions to δEnt
2 (X) (i.e., h = g) in fact already goes back all the way to Fernique [5].

Starting from a Gaussian process (Zx)x∈X , Fernique examined the measure ν on X satisfying
ν(u) = P[Zu = maxx∈X Zx], ∀u ∈ X, where we assume X is finite and that the maximum is
uniquely attained with probability 1. For this “argmax” measure ν, it was shown that

E
[

sup
x∈X

Zx

]
�
∫
X

∫ ∞
0

g(ν(B(x, r)))drdν(x),

where the inequalities . and & where proven by Fernique [5] and Talagrand [17] respectively.
The relationship between γh(X) and δh(X) was also already studied by Naor and

Mendel [11] as well as Bednorz [2]. In particular, for any continuous h satisfying
limx→0+ h(x) =∞ (i.e., not necessarily of log-concave type), [11, 2] showed that γh(X) ≤
δh(X). This was proved using Brouwer’s fixed-point theorem, which was used to find a
measure µ where the quantities

∫∞
0 h(µ(B(x, r)))dr are equal for all x ∈ X. Recalling that

γh(X) = γ∗
h(X), this bound is stronger than γ∗

h(X) −D(X) ≤ δh(X) in Theorem 1.10.
However, we do not require limx→0+ h(x) =∞ (e.g., h(x) = 1− x is valid for us), which is
crucially used to prove the existence of the above Brouwer measure. Mendel and Naor [11]
further prove that δh(X) . γh(X), for any decreasing h satisfying h(x2) . h(x). This is
achieved by rounding any dual measure ν to what they call an ultrametric skeleton, which
one can interpret as a very sophisticated analogue of a packing tree which is agnostic to h.
These skeletons are also used to derive optimal bounds for the largest subset of a metric
space embeddable into `2 with small distortion (known as a non-linear Dvoretzky theorem).
[11] asked whether one can improve their bound to δh(X) ≤ (2 + o(1))γh(X), where the
factor of 2 is tight up to o(1) factors for an n-point star-metric with h = g. Up to the
additive constant (which is often o(1) compared to γh(X)) and the restriction that h be of
log-concave type, Theorem 1.10 resolves their question in the affirmative.

1.2.3 Rounding Measures to Trees
Towards proving our main theorem (Theorem 1.6), we show how to round a measure ρ to
chaining and packing trees with values approximately γh(ρ,X) and δh(ρ,X) respectively.
As remarked before, the primal rounding strategy was already introduced by Talagrand [21]
himself. While the algorithm is simple, it is based on a not terribly intuitive variant of ball
partitioning, which is perhaps due to the structure of the object he converts to (an admissible
sequence). In the present work, we show that Talagrand’s basic greedy ball partitioning
scheme with the functional replaced by a measure, very transparently yields a construction
of good chaining trees. The greedy ball partition algorithm iteratively selects centers that
maximize the measure of balls of a smaller radius and removes a ball of a larger radius
centered at the previously chosen points. One does this until the removed pieces form a
partition and then proceeds recursively on those pieces. Here we show that this can be
implemented in near linear time in the input size which is O(n2) for an n-point metric space.

I Theorem 1.11. There exists a deterministic algorithm that runs in O(n2 logn) time and
given a probability measure ρ on an n-point metric space X, finds a chaining tree C such that
valh(C) . γh(ρ,X).

On the dual side, as far as we are aware there were no rounding strategies to compute
packing trees starting from a measure ρ. The previous approaches for rounding [17, 10, 3]
were based on defining a functional that satisfies the previously mentioned “super-chaining”
inequality and used a greedy partitioning procedure based on the value of this functional.
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This analysis was rather delicate and somewhat mysterious. Moreover, the corresponding
functionals in these instances were themselves solutions to optimization problem on the
metric space, so implementing this strategy deterministically was rather slow. In fact, Ding,
Lee and Peres [3] showed that using a carefully constructed dynamic program, one can
implement the above strategy and compute a packing tree in polynomial time in the input
size when the metric space is given as the input. Although, they don’t specify a precise
bound on the running time, one can directly infer a O(n4) deterministic running time for
building a packing tree; with an additional observation, this can in fact be improved to a
O(n3 logn) bound.2

In this work, we revisit the above approach and show that in fact, one can round a
probability measure ρ on the metric space to a packing tree with approximately the same
value as δh(ρ,X). This has certain advantages over a rounding strategy using functionals
as it can be implemented in near linear time in the input size. Moreover, this rounding
algorithm is quite similar to the primal rounding algorithm and in our opinion clarifies why
such a construction works. In particular, the basic strategy of choosing centers that maximize
the measure of a smaller ball remains exactly the same – one just selects smaller balls to add
as children and recurses on them instead, followed by some post-processing.

I Theorem 1.12. There exists a deterministic algorithm that runs in O(n2 logn) time and
given a probability measure ρ on an n-point metric space X, finds a (1/10)-packing tree T
such that δh(p,X) . valh(T ).

1.2.4 Proof of the Combinatorial Min-Max Theorem (Theorem 1.6)
Of course, without a way to compute measures which have almost optimal values for γh(ρ,X)
and δh(ρ,X), the above rounding algorithms would not have been very useful. Fortunately,
we can obtain almost optimal primal and dual measures µ and ν by solving the saddle point
formulation (1.20) of γh(X). Plugging the measure µ in Theorem 1.11 gives us a chaining
tree C∗ such that valh(C∗) . γ(µ,X) � γh(X).

On the dual side, the measure ν is not enough as it might not be a good solution to
the approximate dual δh(X). However, using Theorem 1.10, one can find a set S ⊂ X

such that the probability measure νS obtained by conditioning ν on the set S satisfies
δh(νS , X) � γh(X). Plugging the measure νS in Theorem 1.12, gives us a packing tree T ∗
satisfying δh(νS , X) . valh(T ∗). Combining the two yields that

valh(C∗) . γh(X) � δh(νS , X) . valh(T ∗). (1.26)

Recall that the weak duality relation (1.19) between chaining and packing trees implies
the reverse inequality for valh(T ) . valh(C) for any chaining tree C and any packing tree T .
Thus, (1.26) gives us the combinatorial min-max statement given by Theorem 1.6. Moreover,
this can be made algorithmic by solving the saddle point formulation and using the algorithm
to find the set S given by Theorem 1.10. The details for solving the saddle point formulation
are given in the appendix of the full version of this paper and the algorithm to find the set S
is presented in the proof of Theorem 1.10.

2 Their running time is O(n2) times the number of “distance scales” in the metric, meaning the number of
dyadic intervals [2k, 2k+1) containing at least one distance d(u, v) in the metric. To bound the number
of distance scales by O(n log n), compute a minimum spanning tree T in the complete graph describing
the metric. Consider any edge e = {v, w} not in the tree, and let m(v, w) denote an edge on the path
between v and w in T of maximum length. Then e has length at least the length of m(v, w) since T is
an MST, but not more than n times larger. That is, the distance scale of e is in a range of size O(log n)
of the distance scale of m(v, w). Now consider assigning each non-tree edge {v, w} to m(v, w); there are
O(log n) distance scales assigned to each tree edge, so O(n log n) in total.
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1.3 Organization
In Section 2, we list some basic notation as well as the main useful properties of chaining
functionals of log-concave type. In Section 3, we simplify the dual program γ∗

h(X), proving
the main inequalities relating it to the entropic and simplified duals δEnt

h (X) and δh(X)
respectively. Other details including near-linear time rounding algorithms from measures
to chaining trees and packing trees, deterministic construction of Johnson-Lindenstrauss
projections achieving Gordon’s bound, using a black-box solver to compute nearly-optimal
primal and dual measures for the saddle-point formulation of γh(X), and proofs of other
technical statements can be found in the full version of this paper.

2 Preliminaries

Notation. Throughout this paper, log denotes the natural logarithm unless the base is
explicitly mentioned. We use [k] to denote the set {1, 2, . . . , k}. For a vector z ∈ Rn, we
will use zi or z(i) interchangeably to denote the i-th coordinate of z. Given a probability
measure µ over a set X, we use Ex∼µ[f(x)] to denote the expectation of f(x) where x is
sampled from µ.

2.1 Properties of Chaining Functionals
Recall that we work with a chaining functional h : (0, 1] → R+ defined by h(p) = F−1(p),
where F (s) =

∫∞
s
f(x)dx and where f is non-decreasing and continuous probability density

on R+. We assume throughout the rest of the paper that h is of log-concave type, i.e., that
f is log-concave.

The fundamental property of such functionals, that we make extensive use of, is the
following:

I Proposition 2.1. For a chaining functional h of log-concave type,

h(ab) ≤ h(a) + h(b) for a, b ∈ (0, 1].

Before giving a proof, we note that the above property appears in [10] as the base
assumption for the chaining functionals they consider. The above shows that this condition
is very natural and applies to a wide variety of functionals.

Proof. Let us define ϕ : [0,∞)→ [0,∞) as ϕ(t) := h(e−t). We will show that ϕ is concave
on its domain, which implies that h is sub-additive as

h(ab) = ϕ

(
log 1

ab

)
≤ 1

2ϕ
(

2 log 1
a

)
+1

2ϕ
(

2 log 1
b

)
≤ ϕ

(
log 1

a

)
+ϕ

(
log 1

b

)
= h(a)+h(b),

where both inequalities follow from concavity and ϕ(0) = 0.
To see that ϕ is concave, we show that ϕ′(t) = −e−th′(e−t) = e−t

f(F−1(e−t)) is a decreasing
function of t. Substituting x = F−1(e−t), and noting that f is decreasing, it suffices to show
that F (x)

f(x) is decreasing for x on the positive real line. Taking arbitrary 0 ≤ x1 ≤ x2, we have
that

F (x1)
f(x1) =

∫ ∞
0

f(x1 + t)
f(x1) dt ≥

∫ ∞
0

f(x2 + t)
f(x2) dt = F (x2)

f(x2) ,

where the inequality follows from the following elementary property of non-negative log-
concave functions: for any four points a ≤ b ≤ c ≤ d, we have that f(b)f(c) ≥ f(a)f(d)
which in the above scenario implies that f(x1+t)

f(x1) ≥
f(x2+t)
f(x2) . This completes the proof of the

proposition. J
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When working on a metric space (X, d) with a chaining functional h, we observe the
following rescaling symmetry: for any constant β > 0, if we replace h by βh (equivalently,
the density function f is replaced by z → βf(βz)) and d(u, v) by d(u, v)/β for all u, v ∈ X,
the values of the various quantities we consider remain unaffected. In particular, if we
have an underlying process (Zx)x∈X amenable to X and f as in (1.10), the condition
P[|Zx1 −Zx2 | ≥ d(x1, x2)s] ≤ F (s) is identical for both scalings, and the values of the various
programs and trees we consider remain unchanged.

So from now on, we make the convenient choice that f(0) = 1. This implies that the
(left) derivative h′(1) = −1/f(0) = −1. We maintain this normalization for the remainder of
the paper.

Given this normalization, the following useful bound is easy to show.

I Proposition 2.2. For every a ∈ (0, 1], we have that

−1 ≤ ah′(a) ≤ 0 and h(a) ≤ log(1/a).

Proof. As h is decreasing, h′(a) ≤ 0 for a ∈ (0, 1]. Therefore, for any a,

ah′(a) = lim
ε→0+

a(h(a)− h(a(1− ε)))
a− a(1− ε) ≥ lim

ε→0+

h(a)− h(a)− h(1− ε)
1− (1− ε)

= lim
ε→0+

h(1)− h(1− ε)
1− (1− ε) = h′(1) = −1, (2.1)

where the first inequality follows from sub-multiplicativity and the last equality holds since
h(1) = 0. The first statement in the proposition follows.

To see the second statement, one can observe that as h is decreasing, (2.1) implies the
following differential inequality : h′(a) ≥ − 1

a for every a ∈ (0, 1]. Together with the boundary
condition that h(1) = 0, this implies that h(a) ≤ log(1/a). J

3 Dual simplifications

In this section, we provide the main arguments that allow for rounding a solution to γ∗
h(X)

to a solution to the simplified dual, via the entropic dual, as described in Section 1.2.2.

Proof of Lemma 1.7. Our goal is to prove that taking µ = ν in (1.22) does not cause too
much error. We will prove this on a “per scale” basis:

I Lemma 3.1. For any probability measures µ and ν on X, and any r > 0, we have∫
X

h(ν(B(x, 2r))dν(x) ≤
∫
X

h(µ(B(x, r)))dν(x) + 1/e.

Lemma 1.7 follows easily from this:∫
X

∫ ∞
0

h(ν(B(x, r)))drdν(x) ≤ min
µ

∫
X

∫ D(X)

0

(
h(µ(B(x, r/2))) + 1/e

)
drdν(x)

≤ 2 min
µ

∫
X

∫ ∞
0

h(µ(B(x, r)))drdν(x) + D(X)/e.

Proof of Lemma 3.1. We first recast the statement in graph theoretic terms. Let us define
a bipartite graph on the vertex set X1 ∪X2 where each Xi for i ∈ [2] is a copy of the index
set X. We add an edge between two vertices x1 ∈ X1, x2 ∈ X2 if d(x1, x2) ≤ r – note that
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every vertex has an edge incident to it. Define the weight of a vertex x ∈ Xi as µ(x) and
the weight of a vertex x ∈ X2 as ν(x). Let E denote the set of edges in the graph, let N(S)
be the neighbors of a subset of the vertices S ⊂ X1 ∪X2 and let N2(S) = N(N(S)). For
brevity, we will write N(x) instead of N({x}) for singleton sets.

With this setup, the statement we want to prove is∑
x∈X2

ν(x)h(ν(N2(x))) ≤
∑
x∈X2

ν(x)h(µ(N(x)) + 1/e. (3.1)

To prove the above, we will use the following structural result which is a consequence of
the theory of principal sequences of matroids [6], applied to transversal matroids; we include
a self-contained proof in the full version of the paper.

I Proposition 3.2. There exist sequences ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sk = X1 and 0 < β1 < β2 <

· · · < βk, such that
1. βiµ(Si \ Si−1) = ν(N(Si) \N(Si−1)) for all i ∈ [k].
2. For all i ∈ [k] and A ⊆ X1 \ Si−1, we have that βiµ(A) ≤ ν(N(A) \N(Si−1)).

The proposition above can be viewed as a kind of strengthening of Hall’s theorem. For
instance, if there is a fractional perfect matching between µ and ν, i.e., a way of transporting
mass distributed according to µ on X1 along edges of the graph to yield precisely the
distribution ν on X2, then the claim will be satisfied with k = 1, S1 = X1 and β1 = 1,
for in this case, µ(A) ≤ ν(N(A)) for any A ⊆ X1 (essentially the easy direction of Hall’s
theorem). If there is no fractional perfect matching, Hall’s theorem implies the existence
of a set S ⊂ X1 with ν(N(S)) < µ(S). In the proposition, S1 is the “least matchable” set:
only a β1 fraction of the mass in S1 can be transported to N(S1). The full sequence is then
obtained by removing S1 and N(S1) and repeating on the remainder.

Taking the sequences guaranteed by the proposition, define β̃i := min{βi, 1}.
We split the left hand side of (3.1) as follows:

∑
x∈X2

ν(x)h(ν(N2(x))) =
k∑
i=1

∑
x∈N(Si)\N(Si−1)

ν(x)h(ν(N2(x))).

Note that for any i ∈ [k], if x ∈ X2 \ N(Si−1), then N(x) ⊆ X1 \ Si−1, and hence,
Proposition 3.2 implies that β̃iµ(N(x)) ≤ ν(N2(x)). Furthermore, using sub-multiplicativity
of h and Proposition 2.2, we find that for any i ∈ [k] and x ∈ N(Si) \N(Si−1),

h(ν(N2(x))) = h

(
µ(N(x)) · ν(N2(x)

µ(N(x))

)
≤ h(µ(N(x))) + h

(
min

{
1, ν(N2(x))
µ(N(x))

})
≤ h(µ(N(x)) + h(β̃i) ≤ h(µ(N(x)) + log

(
1
β̃i

)
.

For the first inequality above, sub-multiplicativity is used when ν(N2(x))
µ(N(x)) > 1; otherwise, the

inequality follows because h is decreasing and h(1) = 0. (The first inequality does still hold
if µ(N(x)) = 0, taking the minimum in the second term to have value 1 in this case, again
because h is decreasing.)

The second inequality again uses that h is decreasing, as well as that β̃i ≤ 1 for every
i ∈ [k]; and the final inequality uses Proposition 2.2.

ITCS 2021
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Let ` be maximal such that β̃` < 1; so βi = β̃i for i ≤ `. Summing the last inequality
over all i ∈ [k] and x ∈ N(Si) \N(Si−1), we obtain

∑
x∈X2

ν(x)h(ν(N2(x))) ≤
∑
x∈X2

ν(x)h(µ(N(x))) +
k∑
i=1

ν(N(Si) \N(Si−1)) · log
(

1
β̃i

)

=
∑
x∈X2

ν(x)h(µ(N(x))) +
∑̀
i=1

β̃iµ(Si \ Si−1) · log
(

1
β̃i

)

≤
∑
x∈X2

ν(x)h(µ(N(x))) +
(

max
β∈(0,1]

β log
(

1
β

))∑̀
i=1

µ(Si \ Si−1),

where the second line follows from Proposition 3.2. From this (3.1) readily follows as∑`
i=1 µ(Si \ Si−1) ≤

∑k
i=1 µ(Si \ Si−1) = µ(X1) = 1 and maxβ∈(0,1] β log

(
1
β

)
= 1/e. J

Proof of Lemma 1.9. For convenience, define

H(µ, t) :=
∫ ∞

0
h(µ(B(t, r)))dr and H(µ, ν) :=

∫
X

H(µ, t)dν(t).

Start by setting S = {x ∈ X : ν(x) > 0}. Consider the following greedy algorithm:

As long as H(νS , νS) > minx∈S H(νS , x) + D(X), choose s ∈ S so that H(νS , s) is
minimized, and remove s from S.

Note that H(νS , νS) ≤ minx∈S H(νS , x) + D(X) when this terminates, since it is vacuous
for S = ∅.

We will now show that H(νS , νS) can only increase during the progression of the algorithm.
This suffices to prove the lemma, since then upon termination

H(ν, ν) ≤ H(νS , νS) ≤ min
x∈S

H(νS , x) + D(X).

So, consider a moment in the algorithm where s ∈ S is about to be removed from S,
yielding S′ := S \ {s}. From our choice of s,

H(νS , νS) > H(νS , s) + D(X). (3.2)

Let α = 1/(1− νS(s)); so νS′(t) = ανS(t) for t 6= s, and νS′(s) = 0. Thus

B Claim 3.3. For every t ∈ X,

H(νS′ , t) ≥ H(νS , t)−D(X) · (α− 1).

Proof. Recall that h is convex and satisfies −1 ≤ ah′(a) ≤ 0 for any a ∈ (0, 1] by Proposi-
tion 2.2. Thus for any z ∈ (0, 1],

h(z) ≥ h(z/α) + z(1− 1/α)h′(z/α)
= h(z/α)− (α− 1)

∣∣(z/α)h′(z/α)
∣∣ ≥ h(z/α)− (α− 1). (3.3)
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Now notice that for any T ⊆ S, we have that νS(T ) ≥ νS′(T )/α. Therefore, since h is
decreasing,

H(νS , t) =
∫ D(X)

0
h(νS(B(t, r)))dr

≤
∫ D(X)

0
h(νS′(B(t, r))/α))dr

≤
∫ D(X)

0
h(νS′(B(t, r)))dr + D(X) · (α− 1) = H(νS′ , t) + D(X) · (α− 1),

where the last inequality follows from (3.3). C

We can now compare H(νS′ , νS′) with H(νS , νS):

H(νS′ , νS′) ≥ H(νS , νS′)−D(X) · (α− 1) (by Claim 3.3)

= 1
1−νS(s) (H(νS , νS)− νS(s)H(νS , s))− νS(s)

1−νS(s) ·D(X)

≥ 1
1−νS(s)

(
H(νS , νS)− νS(s)(H(νS , νS)−D(X))

)
− νS(s)

1−νS(s) ·D(X) (by (3.2))

= H(νS , νS ,

which finishes the proof of Lemma 1.9.

Runtime Analysis. It is easily seen that the algorithm can be implemented in O(n3) time.
First, by pre-processing the input, we may assume that the pairs of points are sorted by
their pairwise distances – this only adds an additional overhead of O(n2 logn). Then, as in
each iteration we remove one element, there are O(n) iterations to compute the final set
S′. Furthermore, in each of these iterations, we are required to compute a minimizer s of
H(νS , x). This takes O(n2) time since for each x ∈ S, one can compute the measure of all
possible balls B(x, r) in O(n) time using a straightforward dynamic program.
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