
Distributed Load Balancing: A New Framework
and Improved Guarantees
Sara Ahmadian
Google Research, New York, NY, USA
sahmadian@google.com

Allen Liu
MIT, Cambridge, MA, USA
cliu568@mit.edu

Binghui Peng
Columbia University, New York, NY, USA
bp2601@columbia.edu

Morteza Zadimoghaddam
Google Research, Cambridge, MA, USA
zadim@google.com

Abstract
Inspired by applications on search engines and web servers, we consider a load balancing problem
with a general convex objective function. In this problem, we are given a bipartite graph on a
set of sources S and a set of workers W and the goal is to distribute the load from each source
among its neighboring workers such that the total load of workers are as balanced as possible. We
present a new distributed algorithm that works with any symmetric non-decreasing convex function
for evaluating the balancedness of the workers’ load. Our algorithm computes a nearly optimal
allocation of loads in O(logn log2 d/ε3) rounds where n is the number of nodes, d is the maximum
degree, and ε is the desired precision. If the objective is to minimize the maximum load, we modify
the algorithm to obtain a nearly optimal solution in O(logn log d/ε2) rounds. This improves a line
of algorithms that require a polynomial number of rounds in n and d and appear to encounter a
fundamental barrier that prevents them from obtaining poly-logarithmic runtime [6,7,13,15]. In our
paper, we introduce a novel primal-dual approach with multiplicative weight updates that allows us
to circumvent this barrier. Our algorithm is inspired by [1] and other distributed algorithms for
optimizing linear objectives but introduces several new twists to deal with general convex objectives.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Load balancing, Distributed algorithms

Digital Object Identifier 10.4230/LIPIcs.ITCS.2021.79

Funding Binghui Peng: Research supported by NSF IIS-1838154, NSF CCF-1703925 and NSF
CCF-1763970.

1 Introduction

Emerging web based services including commercial web search engines face challenging
resource efficiency targets in their serving data centers. Motivated by the growing demand
in fast responding services, they aim for sub-second latency targets. Therefore they replicate
the data across distributed machines in data centers to allow for serving queries in parallel as
well as cloning the search algorithm to expedite computation tasks. With billions of queries
to serve on a daily basis [14], load balancing becomes a critical challenge in resource efficiency
and optimizing the computation fleet.

© Sara Ahmadian, Allen Liu, Binghui Peng, and Morteza Zadimoghaddam;
licensed under Creative Commons License CC-BY

12th Innovations in Theoretical Computer Science Conference (ITCS 2021).
Editor: James R. Lee; Article No. 79; pp. 79:1–79:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sahmadian@google.com
mailto:cliu568@mit.edu
mailto:bp2601@columbia.edu
mailto:zadim@google.com
https://doi.org/10.4230/LIPIcs.ITCS.2021.79
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

79:2 Distributed Load Balancing

From the combinatorial optimization perspective, one can formulate the serving require-
ments with packing and covering constraints and model this problem as an allocation/match-
ing instance in a bipartite graph. Although feasibility of the allocation is the first problem to
study, in practice, we face a wider range of objectives to optimize. Emergency mechanisms
in data centers allow the excess load to be served with the buffer capacities locally or be
shifted to alternative data centers globally with services like Global Server Load Balancing.

This motivates service level objectives (SLO) in terms of quantile statistics of machine
utilization values or other convex functions that are much more sensitive to higher utilization
values instead of standard linear objective functions in matching theory that have uniform
partial derivatives across the whole range of valid utilization values. One particular frequently
occurring scenario is when the underlying properties of the load balancing instance determines
some phase transition utilization threshold (say 0.95) beyond which the service starts to
deteriorate. Thus, the cost objective function we are trying to minimize should have
completely different behaviours on the two sides of this threshold and linear functions are
unable to capture this exponential growth in the cost function.

To accommodate this wide range of objectives, in this paper we focus on the load balancing
problem with a general convex objective function. The problem is defined on a bipartite
graph, with a set of sources S on one side, and a set of workers W on the other. For each
source, we must distribute its load among its neighboring workers. The goal is to minimize a
convex function of the workers’ loads (where the load of a worker is the total load it receives
from all incoming sources). Fractional allocations are allowed, as in the real-world setting,
there are usually huge amounts of query requests coming from each source.

The problem described above can be solved as a convex program. However, in real-world
settings, the graph could contain billions of nodes and be too large to store in one piece.
Thus, for an algorithm to be scalable, it has to be implementable in a distributed manner.
In this paper, we work in the CONGEST model that is standard in distributed algorithms
literature (see e.g. [4]). Under this model, computation proceeds in rounds and in each
round, each node may send a logarithmic number of bits to each of its neighbors. Previous
distributed algorithms for load balancing (with a convex objective), such as [6, 7, 13, 15],
require a number of distributed rounds that is polynomial in the number of nodes or the
maximum degree of a node. This could still be prohibitive for real-world applications where
each node could have a large number of neighbors. The main contribution of this paper is to
provide the first distributed algorithm that computes an approximately optimal solution to
the load balancing problem with a convex objective and runs in a poly-logarithmic number of
distributed rounds. Our main theorem is stated below.
I Theorem 1 (Informal). Assume the objective function Φ is convex, symmetric, and
non-decreasing in each variable. Then for any ε < 1, our algorithm computes a (1 + ε)-
approximation to the optimal solution in O

(
logn log2 d

ε3

)
rounds, where n, d denote the number

of nodes and the maximum degree respectively. 1

In the special case where the objective is the max function, i.e. the goal is to minimize
the maximum load, we obtain a distributed algorithm with an improved round complexity of
O
(

logn log d
ε2

)
, which is faster than a direct application of a parallel mixed positive LP solver

(see [11]) by an O
(

logn
ε

)
factor.

1 Technically, we need a few additional assumptions on the objective function Φ in order to obtain a
(1 + ε)-approximation in terms of objective value. Formally, our theorem is stated in terms of an
ε-approximate solution which is defined in the main body but for natural objective functions such as Lp

norms for p > 1, our algorithm obtains a (1 + ε)-approximation in objective value. See the remark at
the end of Section 2 for more details.

S. Ahmadian, A. Liu, B. Peng, and M. Zadimoghaddam 79:3

I Theorem 2 (Informal). When the objective is the max function, our algorithm computes a
(1 + ε)-approximation to the optimal solution and runs in O

(
logn log d

ε2

)
rounds.

1.1 Related work
There is extensive work on distributed algorithms for optimizing linear objective functions
such as packing, covering and positive LPs [2,3,5,10,11,17,18]. In these settings, distributed
algorithms with poly-logarithmic convergence rates are known. In particular, for general
positive LPs, there is a distributed algorithm that computes a (1 + ε)-approximation in
O(log3 n

ε3) rounds; for the special case of pure packing and pure covering LPs, a better runtime
of O

(
log2 n
ε2

)
is known [11]. We refer the interested reader to the thesis [16] for a more

detailed survey. While the techniques in these works can be applied to our problem when the
objective function is linear, optimizing a general convex objective is significantly different.
Whereas for a linear objective, the optimum always occurs at one of the vertices of the
feasible polytope, for a convex objective, the optimum may be in the interior. Therefore, it
seems that existing algorithms for optimizing linear objectives cannot be directly applied.

As mentioned previously, there are works that study a convex load balancing objective
[6, 7, 13, 15]. The algorithms proposed in these works have distributed runtime that depends
polynomially on the number of nodes or the maximum degree whereas our algorithm has
only polylogarithmic dependence on these parameters.

There has also been work on discrete load balancing i.e. when the sources are not
divisible (so fractional allocations are not allowed). A recent line of work [4, 8, 9] obtains
constant-factor approximation algorithms in the local and congest models. More specifically,
Czygrinow et al. [8] give a distributed 2-approximation algorithm that runs in O(d5) rounds.
Assadi et al. [4] gives an O(1)-approximation algorithm for unweighted loads and an O(logn)
approximation algorithm for weighted loads with polylogarithmic round complexity in the
congest model. For the less restrictive local model, they present an O(1)-approximation
algorithm for weighted loads with polylogarithmic round complexity. In general, when the
sources are not divisible, one cannot hope to compute, say, a (1 + ε)-approximation efficiently.
Thus, these works focus on constant-factor approximation, whereas in our setting, we focus
on computing a nearly optimal solution.

1.2 Technical Overview
One key limitation for previous works on (continuous) load balancing [6, 7, 13, 15] is that
they rely on an algorithm that, for each source, additively shifts load from higher-loaded
neighbors to lower-loaded neighbors. However, the step size must be set to O(1/d) in order
for the algorithm to be stable and thus the number of rounds required depends linearly (or
even worse) on the maximum degree d.

Since the load balancing problem is convex, another natural approach is to apply general
convex optimization algorithms that can be implemented in a distributed manner. However,
straight-forward applications of first-order convex optimization algorithms also get stuck
with a linear dependence on d because both the diameter of the feasible polytope and the
condition number of the convex optimization problem can depend linearly on the maximum
degree.

We circumvent the aforementioned limitations by adopting a different algorithmic frame-
work and we introduce a novel algorithm based on a primal-dual approach with multiplicative-
weight updates. One of the central insights in our algorithm is that if we know the target

ITCS 2021

79:4 Distributed Load Balancing

capacities in the optimal solution, then we can compute the allocation of the sources that
achieves the optimum as this essentially reduces to solving a linear problem. More generally,
for a given set of target capacities, we can essentially test whether it is achievable. This
motivates the following iterative procedure: we start with very high target capacities and
iteratively update the target capacities downwards while checking feasibility until we reach a
solution that is barely feasible.

For checking feasibility, we use a proportional allocation algorithm based on the work
in [1] for maximum matching. We update the load assignment according to the proportional
allocation algorithm and then update the target capacities based on whether each worker has
too much or too little load. We start our algorithm with a feasible solution (by setting the
target capacities to be very high) and can easily maintain feasibility throughout the entire
process. The difficulty lies in proving optimality. An important observation is that after
running the proportional allocation algorithm for a sufficient number of iterations, if there
are workers whose load differs significantly from their target capacity, then it is possible to
(implicitly) construct a certificate that this imbalance must happen in any feasible allocation.
For the special case when the objective is the max function, it is not too difficult to complete
the proof using the above ideas as it suffices to maintain the same target capacity for all the
workers and decrease all capacities together. When the algorithm stops, we only need to
show that there exists a set of workers that is saturated, in the sense that their total capacity
is roughly equal to the total load of the sources whose neighbors are all included in this
set. For general convex objectives, we will need a more refined analysis since the workers
may have different target capacities. We will prove that the solution that we compute is
optimal at multiple levels. In particular, our algorithm allows us to (implicitly) construct a
multi-level cut that serves as a hierarchy of certificates that, when combined, imply that the
entire solution is nearly optimal.

2 Preliminary

We now formalize our problem and introduce notation. In the load balancing problem, the
input is a bipartite graph G(S,W,E), where we use S (|S| = nS) to denote the set of sources
and W (|W | = nW) to denote the set of workers. We write n = nS + nW . We assume there
is a load associated with each source s ∈ S. For simplicity of presentation, we assume each
source has one unit of load, although following the same proof method, the results obtained
in this paper can be generalized to arbitrary weighted loads. For each source s ∈ S, we
use Ns to denote the set of workers that are connected to the source s. Similarly, we use Nw
to denote all the sources that are connected to worker w. We use d to denote the maximum
degree of a node (source or worker) in the graph. For a subset of workers X ⊂ W , let
N(X) ⊂ S be the set of sources s with the property that all of the neighbors of s are in X.

We want to assign loads along the edges of the graph such that all of the sources are
served and the loads of the workers are as balanced as possible. We use xs,w to denote the
amount of load assigned from source s to worker w. We assume the load is splittable and
fractional allocations are allowed. For each worker w, define its load Lw to be

Lw =
∑
s∈Nw

xs,w.

In this paper, our objective is to minimize some convex function of the loads. We assume the
objective function Φ : RnW → R is symmetric, convex, and non-decreasing in each variable.
Formally, we aim to solve the following optimization problem in a distributed manner:

S. Ahmadian, A. Liu, B. Peng, and M. Zadimoghaddam 79:5

minimize Φ(L1, . . . , LnW)

subject to
∑
w∈Ns

xs,w = 1 ∀s ∈ S

Lw =
∑
s∈Nw

xs,w ∀w ∈W (1)

xs,w ≥ 0 ∀s ∈ S,w ∈W
xs,w = 0 ∀(s, w) /∈ E

Given any load vector L = (L1, · · · , LnW) ∈ RnW , we say it is feasible if there exists a feasible
assignment {xs,w}s∈S,w∈W that satisfies the constraints of Eq. (1). Our algorithm will find
an ε-approximate solution as defined below.

I Definition 3 (ε-approximate solution). We say L = (L1, · · · , LnW) is an ε-approximate
solution, if L is feasible and for any other feasible solution (L′1, · · · , L′nW), we have

Φ(L1, . . . , LnW) ≤ Φ
(
(1 + ε)L′1, . . . , (1 + ε)L′nW

)
.

We are primarily interested in the case where 1/ε is constant or poly-logarithmic in n so
runtime that is polynomial in 1/ε is acceptable.
I Remark 4. The definition of ε-approximate solution is stated in terms of scaling the
inputs of the convex function rather than scaling the value of the convex function itself. An
ε-approximate solution would directly imply a (1 +O(ε)) approximation on the optimal value
for any Lipschitz continuous function together with a mild lower bound assumption on the
optimal value. In particular, it implies (1 + ε)-approximation (in terms of objective value)
for widely used functions such as Lp norms for p ≥ 1.

In general, it is impossible to achieve a multiplicative approximation without additional
assumptions on the objective. For instance, if we take Φ = max (max(L1, . . . , LnW)− OPT, 0)
where OPT is the minimum possible value of max(L1, . . . , LnW), then achieving a multiplic-
ative approximation would require solving the problem exactly.

3 Algorithm

We first give a high level overview of our main algorithm (the pseudocode is given in
Algorithm 1). The algorithm maintains a target capacity Cw and a weight aw for each
worker w ∈W . For any source s ∈ S, the amount of load it assigns to its neighbor worker w
(w ∈ Nw) is proportional to the weight aw (see Line 13). Our algorithm always maintains a
(near) feasible solution under the target capacity. It gradually decreases the target capacity
and adjusts the weights, until reaching a nearly optimal solution. The algorithm updates
the capacity once per epoch (see Line 8 to Line 12). While in each epoch, the algorithm
freezes the target capacity and attempts to find a feasible assignment via the Proportional
Allocation algorithm (see Algorithm 2). The Proportional Allocation algorithm
was originally proposed in [1] for finding an approximate maximum matching. It adjusts
the weight of workers based on the following rules: If the current load exceeds the target
capacity, it decreases the weight by a multiplicative factor of (1 + ε); it increases the weight
otherwise. After repeating the weight updating rules for Õ

(
logn log d

ε2

)
steps, our algorithm

updates the target capacities on workers based on the gap between the target capacity and
the current load. The algorithm will fix workers whose load significantly exceeds the target
capacity meaning that for these workers, the target capacity never changes anymore.

ITCS 2021

79:6 Distributed Load Balancing

Algorithm 1 General Load Balancing.

1: Input: Graph G, set of workers W , set of sources S
2: Initialize weights aw = 1 for all workers w ∈W .
3: Initialize capacity upper bounds Cw = d for all workers w ∈W
4: Set all workers w to be unfixed
5: Set A = 2 log(d/ε)

ε and B = 100 log(n/ε)·log(d/ε)
ε2

6: for r = 0, 1, . . . , A− 1 do
7: x← Proportional Allocation(G,C, a, ε, B)
8: for w ∈W do
9: if w is unfixed and Lw < (1 + 10ε)Cw then

10: Set Cw ← Cw
1+ε

11: else
12: Set w to fixed
13: return xs,w = aw∑

w∈Ns
aw

The pseudocode of the Proportional Allocation algorithm is given in Algorithm 2.
We note that each time we run Proportional Allocation and update the weights aw,
we do not reinitialize the weights. We continue updating from the weights computed in the
previous step.

Algorithm 2 Proportional Allocation [1] (G,C, a, ε, B).

Input: Graph G, set of workers W , set of sources S
Input: Target capacity Cw for each worker
Input: Initial weight aw for each worker
Input: Precision ε
input: Number of rounds B
for t = 0, 1, . . . , B − 1 do

Set xs,w = aw∑
w∈Ns

aw
for all edge variables xs,w

for w ∈W do
If Lw > Cw then update aw ← aw

1+ε
If Lw < Cw then update aw ← (1 + ε)aw

return xs,w = aw∑
w∈Ns

aw

4 Analysis

Our main result is formally stated in Theorem 5, we sketch the high-level idea of the proof
here. The main idea in the proof of Theorem 5 is to show that if we have fixed the sets
of workers W1,W2, . . . ,Wr in iterations 1, 2, . . . , r, then the number of sources whose only
neighbors are in the set W1 ∪ · · · ∪Wr is at least (1−O(ε))

∑
w∈W1∪···∪Wr

Cw. This would
then certify that our solution is essentially optimal for the total load among the set of workers
in W1 ∪ · · · ∪Wr. While this claim is not technically true, Lemma 12 is a slight modification
that involves considering a superset of W1 ∪ · · · ∪Wr and it suffices for our purposes. Once
we have a hierarchy of certificates for r = 1, 2, . . . , A − 1 we can prove that the solution
computed by our algorithm is essentially optimal overall.

S. Ahmadian, A. Liu, B. Peng, and M. Zadimoghaddam 79:7

I Theorem 5. Assume the objective function Φ : RnW → R+ is convex, symmetric, and
non-decreasing in each variable. For 0 < ε < 1, Algorithm 1 computes an O(ε)-approximate
solution in O

(
logn log2 d

ε3

)
distributed rounds.

In the proof of Theorem 5, the bulk of the work is in proving Lemma 12. We will first
prove some basic facts about the behavior of the loads and target capacities throughout the
execution of Algorithm 1 in Section 4.1. We then introduce the concept of majorization
for analyzing convex functions in Section 4.2. In Section 4.3, we prove Lemma 12. A key
observation about the proportional allocation algorithm of [1] is that at the end, if the load
on a worker is significantly less than the target capacity, its weight aw must be increased
at every round and if the load on a worker is significantly more than the target capacity,
its weight aw must be decreased at every round. Thus, there must be a large multiplicative
gap between weights on underallocated and overallocated workers. Since loads are allocated
proportionally, if some source is connected to both underallocated workers and overallocated
workers, almost all of the load is actually being sent to the underallocated workers. Exploiting
this intuition (we will need a slightly more precise statement in the proof), we can construct
the desired certificate and complete the proof of Lemma 12. Finally, combining Lemma 12
with the tools introduced in Section 4.2 for analyzing convex functions, we complete the
proof of Theorem 5.

4.1 Basic Observations
Notation

For a load variable Lw and indices 0 ≤ r < A, 0 ≤ t ≤ B, we let Lr,tw denote its value when
the algorithm is executed to the timestep r, t i.e. we have completed r full iterations of
Proportional Allocation and t rounds within the next iteration of Proportional
Allocation. We adopt the same notation for xs,w, sw and Cw.
Below is an informal summary of the properties that we will prove in this section.

Loads gradually move toward the target capacities
Loads never significantly exceed the target capacity
For fixed workers, their load is roughly equal to their target capacity
Any significantly underallocated workers must have their weight increased at every
previous timestep

We begin with a simple observation that after each weight update, the load on each worker
moves toward the target capacity.

I Lemma 6. Consider indices 0 ≤ r < A, 0 ≤ t < B then
If Lr,tw > Cr,tw then Lr,tw

(1+ε)2 ≤ Lr,t+1
w ≤ Lr,tw

If Lr,tw < Cr,tw then Lr,tw ≤ Lr,t+1
w ≤ (1 + ε)2Lr,tw

Proof. We prove the the first claim and the second one follows from the same argument.
Suppose Lr,tw > Cr,tw , then we know that ar,t+1

w = ar,tw /(1 + ε). Together with the fact that
ar,tw′ ∈ [(1 + ε)−1ar,tw′ , (1 + ε)ar,tw′] holds for all worker w′ ∈W , we have

Lr,t+1
w =

∑
s∈Nw

ar,t+1
w∑

w′∈Ns a
r,t+1
w′

≤
∑
s∈Nw

ar,tw · (1 + ε)−1∑
w′∈Ns a

r,t
w′ · (1 + ε)−1

= Lr,tw

and

Lr,t+1
w =

∑
s∈Nw

ar,t+1
w∑

w′∈Ns a
r,t+1
w′

≥
∑
s∈Nw

ar,tw · (1 + ε)−1∑
w′∈Ns a

r,t
w′ · (1 + ε)

= Lr,tw
(1 + ε)2 . J

ITCS 2021

79:8 Distributed Load Balancing

Next, we observe that the load on any worker can never significantly exceed its target
capacity.

I Lemma 7. For all workers w, we have at all timesteps r, t,

Lr,tw ≤ (1 + 10ε)(1 + ε)Cr,tw .

Proof. We prove the claim by induction on r and t. The base case is clearly true as

L0,0
w ≤ d = C0,0

w .

Suppose the claim holds up to r, t. If 0 ≤ t < B, then Lemma 6 implies the desired for
r, t+ 1. If t = B, then we are in one of the following two cases

Lr,Bw < (1 + 10ε)Cr,Bw , which implies Lr+1,0
w < (1 + 10ε)(1 + ε)Cr+1,0

w

Lr,Bw ≥ (1 + 10ε)Cr,Bw , which implies Cr+1,0
w = Cr,Bw

The first case is clearly resolved. For the second case, we can use the induction hypothesis to
get the desired. J

When a worker becomes fixed, we observe that at all future timesteps, its load is close to
its target capacity.

I Lemma 8. For a worker w, once w is fixed, we have

Lr,tw ≥
Cr,tw

(1 + ε)2

holds for all future timesteps.

Proof. When w is fixed, we must have Lw > Cw. Combining Lemma 6 with the fact that
we no longer update Cw, we get the desired. J

For any worker whose load is significantly lower than its capacity, we note that its weight
aw must have been increased at every previous timestep.

I Lemma 9. Consider a worker w such that for some 0 ≤ r < A, if

Lr,Bw ≤ Cr,Bw
(1 + ε)2 ,

then

aw = (1 + ε)(r+1)B ,

i.e. if a worker is significantly underallocated when we reach the capacity update step, then
its weight must have been increased at every step.

Proof. This follows immediately from Lemma 6 and the fact that the capacities Cw are
weakly decreasing. J

4.2 Majorization
We present a basic inequality about convex functions that will be useful later on for bounding
the objective value. We first introduce the concept of majorization.

S. Ahmadian, A. Liu, B. Peng, and M. Zadimoghaddam 79:9

I Definition 10 (Majorization). For two sequences of real numbers (x1, . . . , xn) and
(y1, . . . , yn), let π, σ be permutations such that

xπ(1) ≥ · · · ≥ xπ(n), yσ(1) ≥ · · · ≥ yσ(n).

We say (x1, . . . , xn) weakly majorizes (y1, . . . , yn) if for all 1 ≤ k ≤ n

k∑
i=1

xπ(i) ≥
k∑
i=1

yσ(i).

If we also have that

n∑
i=1

xπ(i) =
n∑
i=1

yσ(i)

then we say (x1, . . . , xn) majorizes (y1, . . . , yn)

Intuitively, a sequence (x1, . . . , xn) majorizes a sequence (y1, . . . , yn) if the terms of
(x1, . . . , xn) are more imbalanced. The following inequality states that a symmetric convex
function takes larger values when the inputs are more imbalanced:

I Lemma 11. Let f be a convex function that is symmetric and non-decreasing in each of
the variables. Given sequences (x1, . . . , xn) and (y1, . . . , yn) such that (x1, . . . , xn) weakly
majorizes (y1, . . . , yn), we have

f(x1, . . . , xn) ≥ f(y1, . . . , yn).

If (x1, . . . , xn) majorizes (y1, . . . , yn) then the above inequality holds without the assumption
that f is non-decreasing.

Proof. [12] proves the above inequality when (x1, . . . , xn) majorizes (y1, . . . , yn), we adapt
it to the case that (x1, . . . , xn) weakly majorizes (y1, . . . , yn). In particular, we prove that
there exists a sequence (y′1, . . . , y′n) such that y′i ≥ yi for all 1 ≤ i ≤ n and (x1, . . . , xn)
majorizes (y′1, . . . , y′n). WLOG, we assume x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn. We construct
the sequence as follows. We first set y′1 to be the largest value so that (x1, . . . , xn) weakly
majorizes (y′1, y2 . . . , yn). After determining the value of y′1, we set y′2 to be the largest value
so that (x1, . . . , xn) weakly majorizes (y′1, y′2, y3, . . . , yn). We repeat this process to set all of
y′3, . . . , y

′
n. Now, for each index i ∈ [n], there exists an index j with j ≥ i such that

x1 + · · ·+ xj = y′1 + · · ·+ y′i + yi+1 + · · ·+ yj ,

as otherwise, this would contradict the maximality of y′i. Hence, we conclude that

x1 + · · ·+ xn = y′1 + · · ·+ y′n,

so (x1, . . . , xn) majorizes (y′1, . . . , y′n), as desired. J

4.3 Main Proof
Now we are ready to analyze the performance of the algorithm. The following lemma is
essential to our proof. Intuitively, it allows us to construct a set of cuts that “certify” that
the solution computed by the algorithm is essentially optimal.

ITCS 2021

79:10 Distributed Load Balancing

I Lemma 12. Let X0 = ∅. We can construct sets X1, . . . , XA ⊂ W with the following
properties:

X1 ⊂ X2 ⊂ · · · ⊂ XA

|N(Xr)| ≥
∑r−1
i=0 |Xi+1\Xi| · d

(1+ε)i+10

Xi contains all of the workers that are fixed after executing Proportional Allocation
and capacity updates for r = 0, 1, . . . , i− 1

Proof. We prove the claim by induction. Assume that we have already constructed
X1, . . . , Xi−1. Let F i be the set of workers that become fixed after completing the ca-
pacity updates for r = i− 1 but are not fixed before this. For any worker w ∈ F i, we must
have

ai−1,t+1
w = ai−1,t

w

1 + ε
∀ 0 ≤ t < B.

This is because if this was not the case, we must have Li−1,t0
w < Ci−1,t0

w for some t0 and by
Lemma 6, this implies Li−1,t

w ≤ (1 + ε)2Ci−1,t
w holds for all t ≥ t0. This contradicts the fact

that worker w gets fixed in the execution of the capacity updates for r = i− 1. Thus, we
conclude for any w ∈ F i

ai−1,B
w ≤ (1 + ε)(i−1)B .

Let Y = F i\(F i ∩Xi−1). If Y is empty then it suffices to set Xi = Xi−1. Assume Y is
not empty, then for any integer 0 ≤ j ≤ B, define Zj as

Zj := {w|w ∈W,aw ≤ (1 + ε)(i−1)B+j}.

We note that Y ⊆ Z0 ⊆ Z1 ⊆ · · · ⊆ ZB and therefore Z0 6= ∅.
Since B ≥ 100 log(n/ε)·log(d/ε)

ε2 , there must exist some index j satisfying

10 log
(
d

ε

)
· 1
ε
≤ j < B

and

|Zj\Xi−1| ≤ (1 + ε) ·
∣∣∣Zj−10 log(dε)· 1ε

\Xi−1

∣∣∣ . (2)

We set Xi = Zj ∪Xi−1 and prove it satisfies all three properties in the rest of the proof.
The first and third properties are clearly satisfied, i.e., Zj ∪Xj−1 is a superset of Xk−1 and
it contains all of the workers that are fixed after i executions of proportional allocation.
It remains to verify the second one

For any worker w ∈ Zj−10 log(dmax
ε)· 1ε

, if the worker w is connected to some source s, such
that s has another neighbor worker w′ with w′ /∈ Zj , then we have

xi−1,B
s,w ≤ ai−1,B

w

ai−1,B
w + ai−1,B

w′

<
(1 + ε)(i−1)B+j−10 log(dε)· 1ε

(1 + ε)(i−1)B+j . ≤
(ε
d

)10

Therefore, the total contributions xi−1,B
s,w from all sources s with a neighbor not in Zj to

the worker w is at most∑
s∈Nw

Ns∩(W\Zj)6=∅

xi−1,B
s,w ≤

(ε
d

)10
· d ≤

(ε
d

)9
. (3)

S. Ahmadian, A. Liu, B. Peng, and M. Zadimoghaddam 79:11

Now we bound the changes of |N(Xi)| comparing to |N(Xi−1)|. Consider the graph
Gi−1,B at timestep (i− 1, B). We restrict the graph to the one induced by the set of workers
Zj and the set of sources N(Zj). For each worker w ∈ Zj−10 log(dε)· 1ε

\Xi−1, its load in Gi−1,B

satisfies

Li−1,B
w ≥ Ci−1,B

w

(1 + ε)2 ≥
d

(1 + ε)i+1 (4)

The first step comes from Lemma 9, the second step comes from the fact that Ci−1,B
w =

d/(1 + ε)i−1.
Thus the load of worker w in the restricted graph is at least∑

s∈Nw
Ns∩(W\Zj)=∅

xr,Ar−1,Br
s,w = Lr,Ar−1,Br

w −
∑
s∈Nw

Ns∩(W\Zj)6=∅

xr,Ar−1,Br
s,w

≥ d

(1 + ε)i+1 −
(ε
d

)9

≥ d

(1 + ε)i+2 . (5)

The second step comes from Eq. (3)(4).
Consequently, we have

|N(Xi)| − |N(Xi−1)| = |N(Zj ∪Xi−1)| − |N(Xi−1)|

≥
∑

w∈Zj\Xi−1

∑
s∈Nw

Ns∩(W\Zj)=∅

xr,Ar−1,Br
s,w

≥ d

(1 + ε)i+2

∣∣∣Zj−10 log(dε)· 1ε
\Xi−1

∣∣∣
≥ d

(1 + ε)i+3 |Zj\Xi−1|

= d

(1 + ε)i+3 |Xi\Xi−1| .

The third step follows from Eq. (5), the fourth step follows from Eq. (2) We complete the
induction here. J

Let X0 = ∅, X1, . . . , XA be the sets constructed in Lemma 12. In the following two
lemmas, we will compare our solution with the optimal solution using the hierarchy of
certificates given by Lemma 12.

I Lemma 13. Consider a feasible assignment and suppose the loads on the workers are
L1, . . . , LnW . Then the sequence (L1, . . . , LnW) weakly majorizes the following sequence Γ1:
|X1\X0| copies of d

(1+ε)11

|X2\X1| copies of d
(1+ε)12

...
|XA\XA−1| copies of d

(1+ε)10+A

All remaining terms are set to 0

ITCS 2021

79:12 Distributed Load Balancing

Proof. Since the last nW − |XA| term of Γ1 is 0, it suffices to prove majorization for the first
nW − |XA| indices. For any index 1 ≤ j ≤ nW − |XA|, suppose |Xr| < j ≤ |Xr+1| holds for
some r (0 ≤ r ≤ A− 1). By Lemma 12, we have

∑
w∈Xr+1

Lw ≥
r∑
i=0
|Xi+1\Xi| ·

d

(1 + ε)i+10

and

∑
w∈Xr

Lw ≥
r−1∑
i=0
|Xi+1\Xi| ·

d

(1 + ε)i+10

Suppose G(r, j) consists of the largest j − |Xr| workers in Xr+1\Xr, then we have∑
w∈Xr∪G(r,j)

Lw ≥
∑
w∈Xr

Lw + j − |Xr|
|Xr+1| −Xr

∑
w∈Xr+1\Xr

Lw

= j − |Xr|
|Xr+1| −Xr

∑
w∈Xr+1

Lw + |Xr+1| − j
|Xr+1| −Xr

∑
w∈Xr

Lw

≥ j − |Xr|
|Xr+1| −Xr

·
r∑
i=0
|Xi+1\Xi| ·

d

(1 + ε)i+10

+ |Xr+1| − j
|Xr+1| −Xr

r−1∑
i=0
|Xi+1\Xi| ·

d

(1 + ε)i+10

=
r−1∑
i=0
|Xi+1\Xi| ·

d

(1 + ε)i+10 + (j − |Xi|) ·
d

(1 + ε)r+10

Thus completing the proof. J

I Lemma 14. Consider the assignment returned by our algorithm and suppose the loads on
the workers are L′1, L′2, . . . , L′nW . Then the sequence (L′1, . . . , L′nW) is weakly majorized by
the following sequence Γ2
|X1\X0| copies of (1+50ε)d

(1+ε)1

|X2\X1| copies of (1+50ε)d
(1+ε)2

...
|XA\XA−1| copies of (1+50ε)d

(1+ε)A
All remaining terms set to 0

Proof. For each index 1 ≤ i ≤ A, define W i to be the set of workers that are fixed after
completing i full executions of proportional allocation and capacity update step.
Consider any worker w that satisfies

Lw ≥
(1 + 40ε)d

(1 + ε)i .

By Lemma 7, the capacity of worker w can be bounded as

Cw ≥
(1 + 20ε)d

(1 + ε)i .

S. Ahmadian, A. Liu, B. Peng, and M. Zadimoghaddam 79:13

Now it is clear that this can only happen if the worker w is fixed before round i. In particular,
the number of such workers is at most |W i|. Meanwhile, we know that |Xi| ≥ |W i| by
Lemma 12. Thus, if we only consider the |XA| largest terms of the sequence (L′1, . . . , L′nW),
they are entry-wise dominated by the terms of Γ2.

Since all terms after the |XA|th term of Γ2 are 0, to complete the proof of the weak
majorization, it suffices to show that the sum of all of the terms of Γ2 is at least L′1 +· · ·+L′nW .
Let U be the set of workers that are not fixed at the end of the execution of the algorithm.
For all worker w ∈ U , due to the choice of A, we have

L′w ≤ (1 + 10ε)CA−1,B
w = (1 + 10ε)d

(1 + ε)A−1 ≤
ε

d
,

and therefore,∑
w∈U

L′w ≤
εnW
d

. (6)

Since the number of sources is at least nW
d , we have∑

w∈W
L′w ≥

nW
d
. (7)

WLOG, we can assume L′1 ≥ L′2 ≥ · · · ≥ L′nW . We then have

A−1∑
i=0
|Xi+1\Xi| ·

(1 + 40ε)d
(1 + ε)i ≥

|XA|∑
j=1

L′j ≥
∑

w∈W\U

L′w ≥ (1− ε)
∑
w∈W

L′w.

The second step holds due to the fact that the total number of workers that are fixed by the
end of the algorithm is at most |XA| (see Lemma 12). The last step follows from Eq. (6)(7).

Consequently, we have

A−1∑
i=0
|Xi+1\Xi| ·

(1 + 50ε)d
(1 + ε)i ≥

∑
w∈W

L′w,

which completes the proof. J

Combining Lemma 13 and Lemma 14, we get

I Corollary 15. Consider the assignment returned by our algorithm, and suppose the
loads are L′1, . . . , L

′
nW . For any feasible allocation, the loads L1, . . . , LnW must satisfy

that (L1, . . . , LnW) weakly majorizes(
L′1

1+100ε , . . . ,
L′nW

1+100ε

)
Now we can easily wrap up the proof of Theorem 5.

Proof of Theorem 5. Let the loads in the output of our algorithm be L′1, . . . , L′nW and let
the loads in the optimal solution be L1, . . . , LnW . Then

Φ(L′1, . . . , L′nW) ≤ Φ ((1 + 100ε)L1, . . . , (1 + 100ε)LnW)

where we use Corollary 15 and Lemma 11. The above inequality immediately implies the
desired. J

ITCS 2021

79:14 Distributed Load Balancing

5 Improved algorithm for minimizing max load

If the objective is the max function, i.e., we want to minimize the maximum load on workers,
we can further reduce the number of distributed rounds to O

(
logn log d

ε2

)
. The idea is to start

with a coarse estimation and gradually decrease the precision parameter down to ε. The key
observation is that each time we decrease the precision value, we only need to run a constant
number of rounds of Proportional Allocation to refine our estimation and the number
of distributed rounds of the algorithm is dominated by the number of rounds for the smallest
precision parameter, which is O

(
logn log d

ε2

)
.

In Appendix B, we present an example showing that our analysis of our algorithm is
tight. More specifically, we show that any proportional allocation based algorithm that starts
from a uniform initialization and has step size bounded by ε must run at least Ω

(
logn log d

ε2

)
rounds to compute a 1 + ε-approximation.

To facilitate the presentation, we first define the precision sequence we use in the algorithm.

I Definition 16. We define the sequence {εr}r∈N and {Br}r∈N as follow.
For any r ≥ 0, εr+1 = (1 + εr)1/2 − 1 and ε0 = d− 1.
For any r ≥ 0, Br = 2 log1+εr (n) log1+εr (d/ε) + 8 log1+εr (n)

We further define R(n, ε) to be the smallest index such that (1 + εr)5 ≤ 1 + ε.

Algorithm 3 Load Balancing for the Max objective.

1: Initialize weights aw = 1 for all workers w ∈W .
2: Initialize capacity upper bounds C = dmax.
3: Set R = R(n, ε).
4: for r = 0, 1, . . . , R− 1 do
5: Reset aw = 1, ∀w ∈W
6: while True do
7: Run Proportional Allocation for Br rounds with initial parameters aw, εr,
Cw = C ∀w,

8: if ∃w ∈W such that Lw ≥ (1 + εr)4C then
9: Break the while loop
10: else
11: C ← C

1+εr

12: C ← C(1 + εr)8

13: for s, w do
14: Output xs,w = aw∑

w∈Ns
aw

I Theorem 17. When the objective is the max function, Algorithm 3 returns an (1 + ε)
approximate solution to the load balancing problem after O

(
log(n) log(d/ε)

ε2

)
iterations.

Notations

For any 0 ≤ r ≤ R− 1, we use Ar to denote the number of calls we make to Proportional
Allocation within the while loop of round r. For the load variable Lw, we slightly abuse
of notation and for any 0 ≤ r ≤ R− 1, 0 ≤ a ≤ Ar − 1, 0 ≤ t ≤ Br, we use Lr,a,tw to denote

S. Ahmadian, A. Liu, B. Peng, and M. Zadimoghaddam 79:15

the load on worker w when the algorithm is executed to the timestep r, a, t, i.e. we finished
r outer loops and completed a full iterations of Proportional Allocation, and then
t rounds within the next iteration of Proportional Allocation. We apply the same
notation for aw and xs,w. For the capacity variable, since we maintain the same capacity
over all workers and the capacity does not change during the execution of Proportional
Allocation, we simplify the notation and use Cr,a to denote the capacity on the worker
side right after we finished r outer loops and completed a full iterations of Proportional
Allocation but before we perform the update on the capacity.

The following observation, a restatement of Lemma 6, still holds.

I Lemma 18. For any 0 ≤ r ≤ R− 1, 0 ≤ a ≤ Ar − 1, 0 ≤ t ≤ Br − 1
If Lr,a,tw > Cr,a then Lr,a,tw

(1+εr)2 ≤ Lr,a,t+1
w ≤ Lr,a,tw

If Lr,a,tw < Cr,a then Lr,a,tw ≤ Lr,a,t+1
w ≤ (1 + εr)2Lr,a,tw

The following Lemma follows immediately from Lemma 18.

I Lemma 19. Consider a worker w such that for some 0 ≤ r < R, 0 ≤ a < Ar,

Lr,a,Brw ≤ Cr,aw
(1 + εr)2

then

aw = (1 + εr)(a+1)Br

i.e. if a worker is significantly underallocated then its weight must have been increased at
every step.

We proceed next to the following key lemma, which says when we break the while loop
for any round r, we actually find a certificate lower bound on the optimal value. The proof of
Lemma 20 bares some similarities with Lemma 12, the difference is that we need to deal with
the case that εr is large. The detailed proof is provided in Appendix A for completeness.

I Lemma 20. For any 0 ≤ r < R, we can find a subset of worker Wr ⊆W such that

|N(Wr)| ≥ |Wr| ·
Cr,Ar

(1 + εr)4 .

We next show that at the end of each round of Proportional Allocation, the load
on any worker can never significantly exceed its target capacity.

I Lemma 21. For all workers w, we have at all timesteps r, a with 0 ≤ r < R, 0 ≤ a ≤ Ar−1

Lr,a,Brw ≤ (1 + εr)5Cr,a+1.

Proof. We prove by induction on (r, a). The base case hold trivially as L0,0,Br
w ≤ dmax =

C0,1(1 + ε0). Suppose the claim holds up to (r, a), it is easy to see it holds for (r, a + 1).
This is due to Lemma 18 and the fact that we stop if Lw ≥ (1 + εr)4C for any worker.

It remains to show that if the claim holds up to (r,Ar − 1), then it also holds for
(r + 1, 0). This would complete the proof. We prove by contradiction. Suppose Lr+1,0,Br

w ≥
(1 + εr)5Cr+1,1, then we know that we need to break out the loop and followed by Lemma 20,
there exists a subset of workers Wr+1 ⊆W such that

|N(Wr+1)| ≥ |Wr+1| ·
Cr+1,1

(1 + εr+1)4

ITCS 2021

79:16 Distributed Load Balancing

This actually says that the optimal solution is at least

OPT ≥ Cr+1,1

(1 + εr+1)4 = Cr+1,1

(1 + εr)2 = Cr,Ar (1 + εr)6.

However, by induction, we have that Lr,Ar−1,Br
w ≤ (1 + εr)5Cr,Ar . this says that we actually

have a solution with max load bounded by (1 + εr)5Cr,Ar , i.e., OPT ≤ (1 + εr)5Cr,Ar This
comes to a contradiction and we conclude the proof here. J

I Lemma 22. For 0 ≤ r < R, the optimal solution satisfies

OPT ∈ [(1 + εr)−4Cr,Ar , (1 + εr)5Cr,Ar]

Proof. The lower bound comes from Lemma 20. The upper bound comes from Lemma 21. J

We can now wrap up the proof of Theorem 17

Proof of Theorem 17. The correctness of the algorithm comes as a direct corollary of
Lemma 22. For the running time, for any 0 ≤ r < R, we claim that Ar ≤ 30. The claim
holds trivially for r = 0 and for r ≥ 1, we have

OPT < (1 + εr)6Cr,Ar = (1 + εr)6−ArCr,0 = (1 + εr−1)3−Ar/2Cr,0

= (1 + εr−1)11−Ar/2Cr−1,Ar−1 ≤ (1 + εr−1)15−Ar/2OPT

The first inequality follows from the upper bound of Lemma 21, the second step follows from
Cr,Ar = (1 + ε)−ArCr,0. The third step follows from the fact that (1 + εr) = (1 + εr−1)1/2,
the fourth step follows from the fact that Cr,0 = (1 + εr−1)8Cr−1,Ar−1 , the last inequality
follows from the lower bound of Lemma 21.

The total number of iterations is then bounded by
R∑
r=0

ArBr ≤ 30
R∑
r=0

Br .
R∑
r=0

log1+εr (n) log1+εr (d/εr) + log1+εr (n)

=
εr≥1∑
r=0

log1+εr (n) log1+εr (d/εr) +
R∑

r:εr≤1
log1+εr (n) log1+εr (d/εr)

.
εr≥1∑
r=0

log1+εr (n) log1+εr (d/εr) +
R∑

r:εr≤1

logn log(d/ε)
ε2r

. logn log d+ logn log(d/ε)
ε2

= O

(
logn log(d/ε)

ε2

)
Thus completing the proof. J

References
1 Shipra Agrawal, Vahab Mirrokni, and Morteza Zadimoghaddam. Proportional allocation:

Simple, distributed, and diverse matching with high entropy. In International Conference on
Machine Learning, pages 99–108, 2018.

2 Zeyuan Allen-Zhu and Lorenzo Orecchia. Using optimization to break the epsilon barrier: A
faster and simpler width-independent algorithm for solving positive linear programs in parallel.
In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms,
pages 1439–1456. SIAM, 2014.

S. Ahmadian, A. Liu, B. Peng, and M. Zadimoghaddam 79:17

3 Zeyuan Allen-Zhu and Lorenzo Orecchia. Nearly linear-time packing and covering lp solvers.
Mathematical Programming, 175(1-2):307–353, 2019.

4 Sepehr Assadi, Aaron Bernstein, and Zachary Langley. Improved bounds for distributed load
balancing. arXiv preprint, 2020. arXiv:2008.04148.

5 Baruch Awerbuch and Rohit Khandekar. Stateless distributed gradient descent for positive
linear programs. SIAM Journal on Computing, 38(6):2468–2486, 2009.

6 Petra Berenbrink, Tom Friedetzky, and Zengjian Hu. A new analytical method for parallel,
diffusion-type load balancing. Journal of Parallel and Distributed Computing, 69(1):54–61,
2009.

7 Petra Berenbrink, Tom Friedetzky, and Russell Martin. Dynamic diffusion load balancing.
In International Colloquium on Automata, Languages, and Programming, pages 1386–1398.
Springer, 2005.

8 Andrzej Czygrinow, Michal Hanćkowiak, Edyta Szymańska, and Wojciech Wawrzyniak. Distrib-
uted 2-approximation algorithm for the semi-matching problem. In International Symposium
on Distributed Computing, pages 210–222. Springer, 2012.

9 Magnús M Halldórsson, Sven Köhler, Boaz Patt-Shamir, and Dror Rawitz. Distributed backup
placement in networks. Distributed Computing, 31(2):83–98, 2018.

10 Michael Luby and Noam Nisan. A parallel approximation algorithm for positive linear
programming. In Proceedings of the twenty-fifth annual ACM symposium on Theory of
computing, pages 448–457, 1993.

11 Michael W Mahoney, Satish Rao, Di Wang, and Peng Zhang. Approximating the solution
to mixed packing and covering lps in parallel o (epsilonˆ{-3}) time. In 43rd International
Colloquium on Automata, Languages, and Programming (ICALP 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2016.

12 Albert W Marshall and Frank Proschan. An inequality for convex functions involving ma-
jorization. Technical report, BOEING SCIENTIFIC RESEARCH LABS SEATTLE WASH,
1964.

13 Yuval Rabani, Alistair Sinclair, and Rolf Wanka. Local divergence of markov chains and
the analysis of iterative load-balancing schemes. In Proceedings 39th Annual Symposium on
Foundations of Computer Science (Cat. No. 98CB36280), pages 694–703. IEEE, 1998.

14 Google Search Statistics. Internet Live Stats, 2020. URL: https://www.internetlivestats.
com/google-search-statistics/.

15 Raghu Subramanian and Isaac D Scherson. An analysis of diffusive load-balancing. In
Proceedings of the sixth annual ACM symposium on Parallel algorithms and architectures,
pages 220–225, 1994.

16 Di Wang. Fast Approximation Algorithms for Positive Linear Programs. PhD thesis, UC
Berkeley, 2017.

17 Di Wang, Satish Rao, and Michael W Mahoney. Unified acceleration method for packing
and covering problems via diameter reduction. In 43rd International Colloquium on Auto-
mata, Languages, and Programming (ICALP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2016.

18 Neal E Young. Sequential and parallel algorithms for mixed packing and covering. In
Proceedings 42nd IEEE symposium on foundations of computer science, pages 538–546. IEEE,
2001.

ITCS 2021

http://arxiv.org/abs/2008.04148
https://www.internetlivestats.com/google-search-statistics/
https://www.internetlivestats.com/google-search-statistics/

79:18 Distributed Load Balancing

A Missing proof from Section 5

Proof of Lemma 20. We prove the lemma for a fixed r. Define

F :=
{
w|w ∈W,Lr,Ar−1,Br

w > (1 + εr)4Cr,Ar
}
,

i.e., F is the subset of workers whose load significantly outweigh the target capacity and
break the while loop. For any worker w ∈ F , we assert that its weight aw must decrease
every timestep during the last call to proportional allocation, i.e.,

ar,Ar−1,t+1
w = ar,Ar−1,t

w

1 + εr
∀ 0 ≤ t < Br.

This is because if Lr,Ar−1,t0 < Cr,Ar−1 for some t0, then by Lemma 18, we know that
Lr,Ar−1,t
w ≤ (1 + εr)2Cr,Ar−1 holds for all t ≥ t0, which contradicts with the fact that

Lr,Ar−1,Br
w > (1 + εr)4Cr,Ar . Thus we conclude that

aAr−1,Br
w ≤ (1 + εr)(Ar−1)Br ∀w ∈ F.

For any 0 ≤ j ≤ Br, define

Zj =
{
w|w ∈W,aAr−1,Br

w ≤ (1 + εr)(Ar−1)Br+j
}
.

We note that F ⊆ Z0 ⊆ Z1 · · · ⊆ ZBj = W and therefore Z0 6= ∅.
Since Br = 2 log1+εr (n) log1+εr (d/ε)+8 log1+εr (n), there must exist some index j satisfies

2 log1+εr (d/ε) + 8 ≤ j < Br

and

|Zj | ≤ (1 + εr)|Zj−2 log1+εr (d/ε)−8|. (8)

We set Wr = Zj and will show that |N(Zj)| ≥ |Zj | · Cr,Ar/(1 + εr)4 in the rest of the
proof. For any worker w ∈ Zj−2 log1+εr (d/ε)−8, if worker w is connected to some source s such
that s has another neighbor w′ with w′ /∈ Zj . Then we have

xr,Ar−1,Br
s,w ≤ ar,Ar−1,Br

w

ar,Ar−1,Br
w + ar,Ar−1,Br

w′

≤ (1 + εr)(Ar−1)Br+j−2 log1+εr (d/ε)−8

(1 + εr)(Ar−1)Br+j+1

≤ ε2r
d2(1 + εr)9 ≤

εr
d2(1 + εr)8 .

Hence, the total contributions xr,Ar−1,Br
s,w from all sources s with a neighbor not in Zj to

worker w is at most∑
s∈Nw

Ns∩(W\Zj)6=∅

xr,Ar−1,Br
s,w ≤ εr

d2(1 + εr)8 · d ≤
εr

d(1 + εr)8 . (9)

Consider the restricted graph between the source set N(Zj) and the worker set Zj , for each
worker w ∈ Zj−2 log1+εr (d/ε)−8, by Lemma 19, we know that its load satisfies

Lr,Ar−1,Br
w ≥ Cr,Ar−1

(1 + εr)2 .

S. Ahmadian, A. Liu, B. Peng, and M. Zadimoghaddam 79:19

Hence the load of worker w in the restricted graph is at least∑
s∈Nw

Ns∩(W\Zj)=∅

xr,Ar−1,Br
s,w = Lr,Ar−1,Br

w −
∑
s∈Nw

Ns∩(W\Zj)6=∅

xr,Ar−1,Br
s,w

≥ Cr,Ar

(1 + εr)2 −
εr

dmax(1 + εr)8

≥ Cr,Ar

(1 + εr)3 (10)

The second step follows from Eq. (9), the last step follows from Cr,Ar ≥ (1 + εr)−5 holds all
the time.

Thus, we have

|N(Zj)| =
∑
w∈Zj

∑
s∈Nw

Ns∩(W\Zj)=∅

xr,Ar−1,Br
s,w

≥
∑

w∈Zj−2 log1+εr (dmax/ε)−4

∑
s∈Nw

Ns∩(W\Zj)=∅

xr,Ar−1,Br
s,w

≥ |Zj−2 log1+εr (dmax/ε)−4| ·
Cr,Ar

(1 + εr)3

≥ Cr,Ar

(1 + εr)4 · |Zj |.

The third step follows from Eq. (10), the last step follows from Eq. (9). We complete the
proof here. J

B Tightness

Here we present an example showing that our analysis of our algorithm is tight for the case
of the max function even if we know the optimum value in advance. More formally, we
show that starting from a state where all of the weights are initialized to 1 and the precision
parameter is set to ε, running Ω

(
log2 n
ε2

)
iterations of proportional allocation is actually

necessary.
Note here we assume 1/ε = no(1) i.e. the desired tolerance is much larger than n−1.

Consider the following graph G. Let k = 0.5 logn/ε. We have sets S1, S2, . . . , Sk of
sources and sets W1,W2, . . . ,Wk of workers. For all i let

|Si| = |Wi| = (1− ε)iεn.

In G, there is a perfect matching between the vertices of Wi and the vertices of Si for all
1 ≤ i ≤ k. Also, there is a complete bipartite graph between the vertices of Si and Wi+1 for
1 ≤ i ≤ k − 1.

Consider the initial state where all of the sources distribute their load uniformly
among the adjacent workers. In this case the maximum load among all of the workers is

1 + |Sk−1| · |Wk|
|Wk|+ 1 ≥ 2.

ITCS 2021

79:20 Distributed Load Balancing

However, in the optimal allocation, each set of sources Si assigns all of its load to the workers
in Wi according to the perfect matching and the maximum load among all of the workers is
1. Now we will show that for some positive constant c, starting from the initial state where
all sources distribute their load uniformly, after c log2 n

ε2 iterations of proportional allocation,
the maximum load among all of the workers is at least 1 + 0.1ε.

First observe that within each set Wi, by symmetry, all of the weights of the workers are
equal at all times. Let wti denote the weight of a worker in Wi after t rounds. If there exists
an i such that

wti ≥ wti−1n
−0.1

then consider the sources in Si−1. The amount of their load going to the workers in Wi is at
least |Si−1|·|Wi|

|Wi|+n0.1 ≥ |Si|. Thus the total load going to workers in Wk ∪Wk−1 ∪ · · · ∪Wi is at
least

|Sk|+ · · ·+ |Si|+ |Si|.

Note that |Sk|, |Sk−1|, . . . , |Si| is a geometric series with ratio 1
1−ε so

|Si| ≥ 0.1ε(|Sk|+ · · ·+ |Si|).

Thus, there is some worker among Wk ∪Wk−1 ∪ · · · ∪Wi with load at least

(1 + 0.1ε)(|Sk|+ · · ·+ |Si|)
(|Wk|+ · · ·+ |Wi|)

= 1 + 0.1ε.

On the other hand, if we have

wti ≤ wti−1n
−0.1

for all i, then the ratio between the smallest and largest weight among all of the workers
must be at least n0.1k. However, this ratio is 1 at the beginning and increases by a factor of
at most (1 + ε)2 each round so the number of rounds must be at least

Ω
(

logn
ε

k

)
= Ω

(
log2 n

ε2

)
.

I Remark 23. Based on this example, an obvious modification would be to adaptively increase
the step size of the proportional allocation updates for certain workers depending on their
current load. However, note that initially all workers that are not in W1 or Wk have load
very close to 1. In other words, for every worker, there is another worker in its two-hop
neighborhood whose load is very close to the optimal load of 1. If we significantly increased
the step size, then we would no longer have the stability conditions (Lemma 7 and Lemma 21)
and our analysis would have to be quite different.

	Introduction
	Related work
	Technical Overview

	Preliminary
	Algorithm
	Analysis
	Basic Observations
	Majorization
	Main Proof

	Improved algorithm for minimizing max load
	Missing proof from Section 5
	Tightness

