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Abstract
We investigate the algorithmic problem of selling information to agents who face a decision-making
problem under uncertainty. We adopt the model recently proposed by Bergemann et al. [4], in which
information is revealed through signaling schemes called experiments. In the single-agent setting, any
mechanism can be represented as a menu of experiments. Our results show that the computational
complexity of designing the revenue-optimal menu depends heavily on the way the model is specified.
When all the parameters of the problem are given explicitly, we provide a polynomial time algorithm
that computes the revenue-optimal menu. For cases where the model is specified with a succinct
implicit description, we show that the tractability of the problem is tightly related to the efficient
implementation of a Best Response Oracle: when it can be implemented efficiently, we provide
an additive FPTAS whose running time is independent of the number of actions. On the other
hand, we provide a family of problems, where it is computationally intractable to construct a best
response oracle, and we show that it is NP-hard to get even a constant fraction of the optimal
revenue. Moreover, we investigate a generalization of the original model by Bergemann et al. [4]
that allows multiple agents to compete for useful information. We leverage techniques developed
in the study of auction design (see e.g. [5, 1, 6, 7, 8]) to design a polynomial time algorithm that
computes the revenue-optimal mechanism for selling information.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases Mechanism Design, Algorithmic Game Theory, Information Design

Digital Object Identifier 10.4230/LIPIcs.ITCS.2021.81

Related Version A full version of the paper is available at https://arxiv.org/abs/2011.14570.

Funding Yang Cai: Supported by a Sloan Foundation Research Fellowship and the NSF Award
CCF-1942583 (CAREER).
Grigoris Velegkas: Partially supported by a PhD Scholarship from the Onassis Foundation and a
PhD Scholarship from the Bodossaki Foundation.

Acknowledgements We would like to thank Dirk Bergemann for helpful discussions and the an-
onymous reviewers for their valuable comments and suggestions.

1 Introduction

Decision-making heavily relies on information availability. The uneven distribution of
information thus enables markets for trading information. Imagine a bank reviewing a
loan application. Information about the borrower’s financial status clearly influences the
bank’s lending decisions. In this setting, the bank already has some private knowledge about
the borrower, i.e., through prior interactions, but may still be willing to pay to acquire
supplemental information to guide its decision-making. Indeed, Equifax, the credit report
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agency, provides its business consumers, e.g., banks and credit card companies, a product
called Undisclosed Debt Monitoring, that tracks negative information about individual
borrowers. 1

How should the information owner reveal and price the information? We adopt the model
introduced by Bergemann et al. [4] to study this problem. Their model involves a data buyer
and a data seller. The data buyer faces a decision under uncertainty, and his payoff depends
on the action he decides to take and the underlying state of the world. Initially, the buyer
only has some imperfect knowledge about the state, i.e. a prior distribution over the possible
states. This piece of information is private to the buyer. On the contrary, the data seller
knows the state of the world and can sell supplemental information to the buyer. Since the
buyer’s willingness to pay for supplemental information is determined by the precision of his
own prior belief, we refer to the buyer’s prior belief as his type. How does the seller optimize
her revenue if the buyer’s type is assumed to be drawn from a known distribution? To screen
heterogeneous buyer types, the seller offers a menu of information products. Each product
has the form of a statistical experiment, whose result reveals a signal that is correlated with
the underlying state. Bergemann et al. [4] investigate what experiments should be included
and how to price them. They obtain analytic solution of the revenue-optimal menu in two
special cases: (i) the case with only two possible buyer types and (ii) the case with two states
and two possible actions for the buyer to choose from. However, general characterization of
the revenue-optimal menu remains elusive. In this paper, we initiate the algorithmic study of
this problem and investigate the computational complexity for finding the revenue-optimal
menu.

Our first result considers an explicit representation of the problem, where the input
contains the buyer’s type distribution and his payoff for each action and state pair.

Result I: We design an algorithm that computes the revenue-optimal menu in time polynomial
in the number of buyer types, the number of buyer actions, and the number of underlying
states. (Theorem 3)

For many settings of interest, the model is too expensive to be specified explicitly but has
a natural succinct implicit description. Consider the following motivating example. Suppose
there is a traffic network G, and a binary state ω that indicates the level of congestion on
the edges of G. A driver wants to go from a vertex s to another vertex t, and his payoff is
H minus the expected travel time from s to t using the path he picks. 2 Of course, which
path is the fastest depends on the driver’s belief of the state ω. Suppose Waze is offering a
service that provides the driver supplemental information about the congestion. How should
Waze price its service? In this setting, the driver is the data buyer and the number of actions
available to him is exactly the number of s− t paths, which can be exponential in the size of
the network G. Applying our first result is thus computationally inefficient in this setting.
Our second result concerns exactly these settings with succinct implicit descriptions. We
show that the key to tractability is the existence of a computationally efficient Best Response
Oracle, that is, an oracle that accepts a distribution over the underlying state as input and
outputs an action with the highest expected payoff. Clearly, in the example above, it is
straightforward to construct a computationally efficient best response oracle – simply assign
the expected congestion on each edge as its length and run any shortest path algorithm on
the graph G. We show that finding the revenue-optimal menu is tractable as long as there
exists a best response oracle.

1 https://www.equifax.com/business/undisclosed-debt-monitoring/
2 H is a sufficiently large constant so that the payoff is always nonnegative.
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Result II: For any setting with a constant number of possible underlying states, we design
an FPTAS to compute an up-to-ε optimal menu, i.e., a menu whose revenue is at most ε
less than the optimum, given access to a best response oracle. 3 (Theorem 9)

Without the best response oracle, we show that it is NP-hard to even find a constant
factor approximation to the optimal revenue for a family of succinctly describable instances
with only two underlying states and one buyer type. (Theorem 12)

We also investigate extensions of the basic model studied in Bergemann et al. [4]. First,
we consider the setting where multiple data buyers are competing with each other to receive
an informative signal from the data seller. We obtain the following generalization of Result I.

Result III: We design an algorithm that computes the revenue-optimal mechanism in time
polynomial in the total number of buyer types, the number of buyer actions, and the
number of underlying states. (Theorem 19)

Note that the straightforward generalization of Result I only gives an algorithm that runs
in time polynomial in the total number of buyer type profiles, which is exponential in the
number of buyers. Our algorithm in Result III runs in time polynomial in the total number
of buyer types, which is the description size for specifying each buyer’s type distribution.

In Section 5, we discuss another natural extension. We can treat a buyer’s payoffs for
taking actions in various states as the buyer’s private information and may be different
across buyers. In other words, a buyer type is no longer just the buyer’s prior belief of the
underlying state but also his payoff function. We show that all our results (c.f. Result I, II,
and III) can be easily extended to handle this case, and the modification is summarized in
Section 5.

Our Approach

In the explicit model, we first show that the revenue-optimal menu can be captured by
a LP with polynomially many decision variables but exponentially many constraints. We
leverage a technique introduced by Chen et al. [15] to transform it to an equivalent LP with
polynomially many constraints. In the implicit model with a best response oracle, the main
difficulty is that the optimal menu may contain experiments that use an arbitrary number
of signals, and as a result the menu cannot even be represented in polynomial time. To
overcome this difficulty, we first argue that there always exists an up-to-ε optimal menu
that only contains experiments that use a small number of signals, then apply an algorithm
similar to the one in the explicit model to find such a menu. For the multi-agent setting,
one can use a LP similar to the one in the explicit model to capture the optimal mechanism.
The issue with this approach is that both of the number of variables and constraints are
exponential in the number of agents, which is too large to solve. Our solution is inspired by
an approach used to computing the revenue-optimal multi-item auctions [5, 1, 6, 7, 8]. The
key idea is to first represent mechanisms in a succinct way known as the “reduced forms”
and use a LP to search for the revenue-optimal reduced form. However, as a reduced form
is only a succinct description, given a reduced form, it is not obvious what mechanism it
corresponds to. Indeed, it is not even clear whether it corresponds to any mechanism. The
main technical barrier we overcome is to design efficient algorithms to (i) check the feasibility
of a reduced form and (ii) to implement a feasible reduced form as an actual mechanism.

3 Our algorithm runs in time polynomial in the total number of buyer types and 1/ε.
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1.1 Related Work
Relationship with Monopoly Pricing

A well-studied problem from mechanism design, the monopoly pricing problem, bears some
resemblance to our problem. The monopoly pricing problem asks what is the revenue-
optimal mechanism to sell one or more items to a buyer, whose valuation/willingness to
pay for the items is drawn from a known distribution. In single-dimensional settings,
the problem is completely resolved by [35, 36]. In multi-dimensional settings, complete
characterizations are known only in several special cases [27, 28, 30, 18, 26, 22, 21], but
simple and approximately optimal mechanisms [13, 14, 31, 2, 34, 37, 9, 12], as well as
algorithmic characterizations [5, 1, 6, 7, 8] have been discovered in fairly general settings.
The nature of information goods adds an extra layer of difficulty to the pricing problem. The
value of information is determined by how much such information can improve the quality
of decision-making. Buyers with different beliefs do not simply have different values for
different experiments, but they may even disagree on their ranking. This richness in buyer
valuations does not happen in single-dimensional monopoly pricing, but already exists in
single-dimensional information pricing, where there are only two possible underlying states. 4
As a result, the optimal menu in information pricing has a more complex structure. For
example, Bergemann et al. [4] showed that even in the two-state case, the seller sometimes
needs to use randomized experiments to maximize her revenue. In this work, we show that
despite the new challenges of selling information products, some of the algorithmic ideas
from monopoly pricing are still useful.

Relationship with Information Design

Similar to our problem, the designer constructs a signaling scheme that reveals partial
information about the underlying state to influence the action of the agents in information
design [32]. There has been growing interest in the algorithmic study of information
design [24, 23, 25, 16, 19, 10]. The fundamental difference between our setting and information
design is that, in our setting, the buyer’s action does not have direct effect on the seller’s
utility. The seller only derives utility from the monetary transfers received from the buyer.

Relationship with other Information-Selling Models

The work that is most related to the problem we are studying is by Babaoiff et al. [3].
Similar to us, they consider a seller who knows the state of the world ω and wants to sell
information to a buyer whose prior is drawn from some distribution Θ. However, there is
a subtle but crucial difference between our models. In their work, the seller’s information
disclosure strategy and the price are allowed to be dependent on the realized state of the
world ω. By contrast, our model requires the seller to commit to a mechanism before the
realization of the state ω. Their main results state that (i) when ω and the buyer’s type are
independently distributed, revelation principle holds, i.e., a single-round interaction suffices;
and (ii) when ω and the buyer’s type are correlated, a full surplus extraction mechanism,
similar to Crémer and McLean [17], exists and can be computed efficiently. These results
differ quite substantially from the structural results for the model we study here [4]. For
instance, full surplus extraction is in general impossible in our model. In a recent work,
Chen et al. [15] extends the results by Babaioff et al. [3] to the setting where the buyer is
budget-constrained, and improves upon some of the algorithmic results.

4 In this case, the buyer’s prior belief can be represented using a single real number in [0, 1].
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2 Preliminaries

Model and Notation

The data buyer faces a decision problem under uncertainty. The state of the world ω is drawn
from a state space Ω. The buyer chooses an action a from an action space A. Throughout
the paper, we use m to denote the size of A. The buyer’s ex-post utility for choosing
action a under state ω is defined to be uω,a and is assumed to lie in [0, 1]. The buyer has
some prior information about the state of the world which is denoted by θ and comes from
a set Θ ⊆ ∆Ω. We call θ the type of the buyer, and use θω to denote the probability that
the buyer assigns to the event that the state of the world is ω. The type of the buyer is
distributed according to F . Apart from the buyer, there is also a seller who observes the
state of the world and is willing to sell supplemental information to the buyer. We refer to
the buyer as he and to the seller as she.

Experiment

The seller provides supplemental information to the buyer via a signaling scheme which
we call experiment. A signaling scheme is a commitment to |Ω| probability distributions
over a set of different signals S, such that when the state of the world is realized, the seller
draws a signal from the corresponding distribution and sends it to the buyer. We denote
such an experiment by E = (S, π(E)), where π(E) : Ω→ ∆S denotes the distributions that
experiment E is using. We denote the probability that experiment E sends signal sk when
the state of the world is ω by πω,k(E) = Pr[sk|ω]. In this work, it is useful to think of the
experiment π(E) as a matrix whose rows are indexed by the states of the world and columns
are indexed by the signals. A menu of experiments is a collectionM = {(E, t(E))}, where
t(E) ∈ [0, 1] is the payment the buyer has to make when he purchases experiment E. In the
multi-agent setting, a menu is insufficient to generate the optimal revenue, and our goal there
is to compute the revenue-optimal mechanism. In the single-agent setting, the interaction
between the seller and the buyer works as follows:
1. The seller posts a menuM.
2. The state of the world ω and the type of the buyer θ are realized.
3. The buyer chooses some experiment E from the menu based on his type and pays t(E).
4. The seller sends the buyer a signal s that is drawn from πω,·(E).
5. The buyer chooses an action a, based on his original belief θ and the signal s, and receives

utility uω,a.

The Value of an Experiment

To understand the behavior of the buyer, we first explain how the buyer evaluates an
experiment. We first explain how the buyer would act if the only information available
to him was his type θ. Since the buyer picks an action that maximizes his expected
utility, his best move without receiving any additional information from the seller is a(θ) =
arg maxa

∑
ω θωuω,a and his base utility following that move is u(θ) = maxa

∑
ω θωuω,a. If

he receives extra information from the seller, he updates his beliefs and may choose a new
action that induces higher expected value based on his posterior distribution over the states.
After receiving signal sk from experiment E his belief about the state of the world is

Pr[ω|sk, θ] = θωπω,k(E)∑
ω′∈Ω θω′πω′,k(E) .

ITCS 2021
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Hence, the best action is

a(sk|θ) ∈ arg max
a

∑
ω

(
θωπω,k(E)∑

ω′∈Ω θω′πω′,k(E)

)
uω,a,

which yields conditional expected utility

u(sk|θ) := max
a

∑
ω

(
θωπω,k(E)∑
ω′ θω′πω′,k(E)

)
uω,a.

When it is clear from the context, we might drop θ in the previous expressions. Notice
that after computing his posterior, the buyer’s conditional expected utility is linear in the
actions so we can assume w.l.o.g. that he picks a single action and not a distribution over
actions. Taking the expectation over the signal he will receive, we denote the value of the
experiment E for type θ to be

Vθ(E) =
∑
sk∈S

max
a

{∑
ω

θωπω,k(E)uω,a

}
.

We assume that the buyer is quasilinear. We denote the expected net utility of type θ
for experiment E as Vθ(E)− t(E).

Notice that two different types θ, θ′ may have different favorite actions under the same
signal. As a result, Vθ(E) is not a linear function over θ for a fixed experiment E even
when the type θ is single-dimensional, i.e., |Ω| = 2. This is in sharp contrast to standard
single-dimensional auction design settings, where the agent’s value is always a linear function
over the type when the allocation is fixed. 5

IC and IR Menu

The buyer chooses the experiment that gives him the highest net utility, and we slightly
abuse notation and denote by E(θ) the experiment of the menuM that type θ prefers

E(θ) = arg max
E

Vθ(E)− t(E).

If all experiments give him expected net utility smaller than his base utility u(θ), he will
not purchase any experiment. For convenience, we assume that there is a null experiment
that provides no information offered at price 0, so now without loss of generality every type
takes an experiment from the menu. We sometimes abuse notation to call a menu Incentive
Compatible (IC) and Individually Rational (IR). By that, we mean that every buyer type θ
selects the experiment (E(θ), t(θ)) that maximizes his expected net utility. Formally, these
constraints are captured by the following two sets of inequalities:

Vθ(E(θ))− t(θ) ≥ Vθ(E(θ′))− t(θ′), ∀θ, θ′ ∈ Θ,
Vθ(E(θ))− t(θ) ≥ u(θ), ∀θ ∈ Θ.

Once we have fixed the parameters of the model, we denote by Rev(M) the revenue that
menuM generates and by OPT the optimal revenue in this setting.

5 Indeed, this linearity even holds for quite general multi-dimensional settings in auction design, for
example, when the buyer has additive valuations.
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3 Optimal Menu for a Single Agent

In this section, we consider the problem of computing the optimal menu for a single agent.
As we will show, the computational complexity of the problem is tightly related to the way
that the problem is specified. We consider three different models.

Explicit model: the distribution F and the ex-post utility matrix U are given explicitly
in the input.
Implicit model with a best response (BR) oracle: the distribution F is given along
with a best response oracle. The best response oracle accepts a distribution over the
states as input and outputs the action that generates the highest expected utility w.r.t.
the input distribution.
Implicit model with succinct description: the distribution F is given along with
the description of a Turing Machine that computes the ex-post utility of any pair of state
and action in time polynomial in the description size.

We summarize our results with respect to the three different models: (i) we show that
computing the optimal menu in the explicit model is captured by a polynomial size LP; (ii)
even though the number of actions in the implicit model with BR oracle may be arbitrarily
large, we provide an FPTAS to find an up-to-ε optimal menu for settings with a constant
number of underlying states; (iii) we construct a succinctly representable instance of the
problem such that computing a constant factor approximation or an up-to-ε optimal menu is
NP-hard.

3.1 Explicit Model
In this section, we discuss the basic setting where the model is explicitly given. First, we
state a structural result of the optimal menu that allows us to restrict the number of signals.

I Definition 1 (Responsive Experiment). A buyer type θ is responsive to an experiment
E if every signal s of E leads θ to a different optimal choice of action and, in particular
a(sk | θ) = ak for all sk ∈ S.

Note that if an experiment E is responsive to any buyer type, E has exactly m signals.
An intuitive way to think about Definition 1 is that signal si of E recommends the buyer
to take a action ai, and type θ is responsive to E if θ always follow the recommendation.
Importantly, a different type θ′ may not be responsive to experiment E and does not follow
the recommendations. We now state the structural result from [4] that states that it is
without loss of generality to consider a menu where each buyer type purchases a responsive
experiment.

I Lemma 2 (Adapted from Proposition 1 from [4]). A menu M is responsive if for every
buyer type θ, it chooses a responsive experiment E(θ) from the menu. We define the outcome
of a menu as the joint distribution of states, actions, and monetary transfers resulting from
every buyer type’s optimal choice of experiment and subsequent choice of action. The outcome
of every menu can be attained by a responsive menu.

The proof of Lemma 2 is based on a revelation-principle type of argument. More precisely,
assume that some type θ prefers an experiment E(θ) for which he is not responsive. Then,
we can merge all the signals si1 , . . . , si` of E(θ) that lead the type to take the same action
ak and just send the merged signal as the new k-th signal sk. Equipped with the structural
result, we are ready to show how to capture the design of the optimal menu as a LP. Since

ITCS 2021
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there exists an optimal menu that is responsive, every experiment in this menu has at most
m signals. For every buyer type θ, we use π(θ) to denote the experiment type θ purchases,
where πω,i(θ) is the probability to send signal si when the state is ω. {πω,i(θ)}ω∈Ω,i∈[m],θ∈Θ
is the first set of variables. We also have the prices for each experiment {t(θ)}θ∈Θ as variables.
The main difference between selling experiments and selling items is that different types
may interpret the same experiment differently. More specifically, for a responsive experiment
(π(θ), t(θ)), the optimal choice of action for type θ after receiving signal si is simply action
ai; while for a different type θ′, the best action after receiving signal si can be a completely
different action aj due to a different induced posterior. As our LP is designed to compute
the optimal and responsive menu, we need to guarantee that for any type θ, purchasing
experiment (π(θ, t(θ)) and following the recommendation is better than purchasing any
experiment (π(θ′), t(θ′)) for a different type θ′ and subsequently choosing the optimal action
based on the induced posterior. We remark that the straightforward formulation of the
previous constraints requires one to consider all the possible mappings from signals to actions,
resulting in a LP that has exponentially many constraints in m. Although this huge LP can
be solved using the ellipsoid algorithm, we use a technique inspired by Chen et al. [15] that
allows us to formulate it using only polynomially many constraints in m.

See Figure 1 for our LP. Besides the variables representing the experiments and prices, we
introduce a new set of variables {zi(θ, θ′)}i∈[m],θ,θ′∈Θ. zi(θ, θ′) serves as an upper bound of
the conditional expected utility that θ gets when he considers misreporting as θ′ and receives
signal si, which is guaranteed by the second set of constraints. The first set of constraints
make sure that for any type θ, the net utility of purchasing experiment E(θ) and following
its recommendations is no worse than the utility of purchasing any other experiment and
subsequently choosing the best action under each signal. Note that we allow θ′ to be the
same θ in the first set of constraints, which guarantees that the menu is responsive. The
third set of constraints guarantees that purchasing experiment (π(θ), t(θ)) is no worse than
θ’s base utility. We refer to these constraints as the individual rationality (IR) constraints.
The last two constraints guarantee that π(θ) is indeed an experiment.

I Theorem 3. The LP in Figure 1 can be solved in time polynomial in m = |A|, |Ω|, and
|Θ|, and its optimal solution is the revenue-optimal menu.

Proof of Theorem 3. The number of constraints and the number of variables of the LP
in Figure 1 is polynomial in m, |Ω|, |Θ|, so it is clear that it can be solved in polynomial
time. We now argue that its solution is indeed the optimal responsive menu, hence the
optimal menu as guaranteed by Lemma 2. Observe that every responsive menu corresponds
to a feasible solution of the LP. This is because if {(π(θ), t(θ))}θ∈Θ is a responsive menu,
then we can satisfy all the constraints by setting zi(θ, θ′) = maxaj

∑
ω θωπω,i(θ′)uω,aj .

Conversely, note that every feasible solution of the LP induces a responsive menu that simply
chooses the experiment E(θ) as (π(θ), t(θ)) for each type θ ∈ Θ. This is because (i) the
first and second sets of constraints guarantee that E(θ) is a responsive experiment for θ
(this follows from setting θ′ to be θ in both the first and second set of constraints) and
Vθ(E(θ))− t(θ) ≥ Vθ(E(θ′))− t(θ′) ; (ii) the IR constraints ensure that V (E(θ))− t(θ) ≥ u(θ).
Hence, the optimal solution corresponds to the revenue-optimal menu. J

3.2 Implicit Model with a Best Response Oracle
In this section, we study the case where the model is provided implicitly. We prove that,
given access to a best response oracle, our algorithm can compute an up-to-ε optimal menu

in time poly
(
|Θ|, |Ω|

|Ω|2

ε|Ω|2+|Ω|

)
, which is independent of the number of actions.
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Variables:
{πω,i(θ)}ω∈Ω,i∈[m],θ∈Θ, denoting the experiments in the menu.
{t(θ)}θ∈Θ, denoting the prices of the experiments.
{zi(θ, θ′)}i∈[m],θ,θ′∈Θ, helper variables. zi(θ, θ′) represents an upper bound of the
conditional expected utility of signal si from experiment E(θ′) for type θ.

Linear Program:

max
∑
θ∈Θ

F (θ)t(θ)

s.t.
∑
i∈[m]

∑
ω∈Ω

θωπω,i(θ)uω,ai − t(θ) ≥
∑
i∈[m]

zi(θ, θ′)− t(θ′), ∀θ, θ′ ∈ Θ (IC)

zi(θ, θ′) ≥
∑
ω

θωπω,i(θ′)uω,aj , ∀θ, θ′ ∈ Θ,∀i, j ∈ [m]∑
i∈[m]

∑
ω∈Ω

θωπω,i(θ)uω,ai − t(θ) ≥ u(θ), ∀θ ∈ Θ (IR)∑
i∈[m]

πω,i(θ) = 1, ∀θ ∈ Θ, ω ∈ Ω

πω,i(θ) ≥ 0, ∀θ ∈ Θ,∀ω ∈ Ω,∀i ∈ [m]

Figure 1 A linear program to find the revenue-optimal menu in the explicit model.

We first prove a structural result which shows that no matter how large the actual action
set A may be, there is some A′ ⊆ A such that a menuM that recommends actions only from
A′ has negligible revenue loss compared to OPT. Moreover, |A′| depends only on |Ω| and
the additive approximation error. We also show that these sets can be computed efficiently.

I Theorem 4. For any constant ε > 0 , given access to a BR oracle we can compute for each

type θ ∈ Θ a set of actions Aθ by querying O
(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
times the BR oracle, so that there

exists an IC and IR menu M, whose experiments all contain no more than O

(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
many signals. Moreover, every type θ only uses actions from Aθ upon receiving any of these
signals generated by his experiment. Finally, the revenue ofM is at least OPT−O(

√
ε).

We present some lemmas that are used in the proof of Theorem 4. Firstly, we show that
given a menuM and ε, we can create a menuM′ with the following two properties: (i) the
number of signals thatM′ uses depends only on |Ω| and ε, and every type θ values the new
experiment he gets at most O(ε) less than his original experiment. The proof is based on the
idea that merging signals of an experiment E that are close does not decrease the value of
the experiment by much.

I Lemma 5. Let ε > 0 be some given constant and let E = {E(θ)}θ∈Θ be a set of experiments,
where each E(θ) uses an arbitrary number of signals. Then, we can create a set of experiments
E′ = {E′(θ)}θ∈Θ that uses O(( |Ω|ε )|Ω|) signals per player such that Vθ(E′(θ)) ≥ Vθ(E(θ))−2ε.

We now argue that when we merge two signals, no type can value any experiment more
than he did before.

B Claim 6. Let E(θ) be the initial experiment that is offered to type θ and E′(θ) the
experiment that is offered to θ after the merge. Then, for any type θ′ ∈ Θ it holds that
Vθ(E′(θ′)) ≤ Vθ(E(θ′)).

ITCS 2021
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So far we have established the existence of a menu M′ whose number of signals is
significantly smaller than the initial one. However, if we do not have access toM we cannot
computeM′. Lemma 7 shows that we can overcome this issue. By “rounding” the entries of
the experiment so that for any type the value this experiment generates does not change
much. Now, since there is a small number of signals, and the size of every experiment depends
only on ε and |Ω|, we can do an exhaustive search over the discretized entries.

I Lemma 7. Let {E(θ)}θ∈Θ be a set of experiments, where each E(θ) uses signals from
S. We also let 0 < δ < 1 be a given number such that 1/δ ∈ N. Then, we can create a set
of experiments {E′(θ)}θ∈Θ that uses signals from S′ with |S′| = |S|, such that E′(θ) is a
valid experiment with πω,s′(E′(θ)) being a multiple of δ for all ω ∈ Ω, s′ ∈ S′, θ ∈ Θ, and
|Vθ(E′(θ′))− Vθ(E(θ′))| ≤ δ|S|, for all θ, θ′ ∈ Θ.

One construction that will be useful in our proofs is the ε-IC to IC transformation.
Lemma 8 shows that if we have a menu whose IC, IR constraints are violated by at most
ε, we can modify the prices so that it becomes IC, IR and has negligible O(

√
ε) revenue

loss. The construction is based on a technique developed [20, 11] and frequently used in
the Mechanism Design literature. In the single agent setting, the idea is to offer a small
multiplicative discount to all types to make sure that if they want to deviate to some other
experiment, this will not be much cheaper than the one they were buying in the initial ε-IC
menu.

I Lemma 8. LetM = {Ei, t(Ei)}i∈[k] be a menu with k experiments. Suppose that the IC,
IR constraints are violated by at most ε. Then, we can compute a new set of prices {t̃(Ei)}i∈[k]

such that the menu M̃ = {Ei, t̃(Ei)}i∈[k] is IR, IC and Rev(M̃) ≥ (1−
√
ε)Rev(M)−

√
ε−ε,

in time O(k).

We are now ready to present a sketch of the proof for Theorem 4. Assume that we start
with the optimal menuM∗. By Lemma 5, Claim 6, and Lemma 7, we know that we can
modify the experiments inM∗ so that they use only discretized signals. Moreover, the new
menu is approximately IC and IR. We then apply Lemma 8 to obtain a menu that is IC
and IR by sacrificing a negligible amount of revenue. Finally, to compute the collection of
action sets that the types will choose after receiving the signals, we query BR oracle on all
the possible discretized distributions where the signals are drawn from.

So far we have only shown a structural result about the existence of a menu that uses

O

(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
signals and gives an additive O(

√
ε)-approximation to the optimal revenue. We

now argue that we can use a LP (Figure 2) to find such a menu. This is done by combining
the result of Theorem 4 and modifying the LP we used in Section 3.1.

I Theorem 9. For any ε > 0, any set Θ of types, given access to a BR oracle, we can use the
LP in Figure 2 to compute a menuM that achieves Rev(M) ≥ OPT−O(

√
ε). The number of

queries to the BR oracle is poly
(
|Θ|, |Ω|

|Ω|2

ε|Ω|2+|Ω|

)
and the running time is poly

(
|Θ|, |Ω|

|Ω|2

ε|Ω|2+|Ω|

)
.

Moreover, each experiment contains at most O
(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
many signals, and each type θ

only chooses actions from a set of actions Aθ with size O
(
|Ω||Ω|

2

ε|Ω|2+|Ω|

)
.

So far, the number of experiments in our constructions depends on the number of types |Θ|.
We show that the number of experiments needed for an up-to-ε optimal menu is independent
of |Θ|. We achieve this by dropping experiments that are offered to types who are close in
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Variables:
{πω,i(θ)}ω∈Ω,i∈[|Aθ|],θ∈Θ, denoting the experiments in the menu.
{t(θ)}θ∈Θ, denoting the prices of the experiments.
{zi(θ, θ′)}i∈[|Aθ′ |]θ,θ′∈Θ, helper variables. zi(θ, θ′) represents an upper bound of the
conditional expected utility of signal si from experiment E(θ′) for type θ.

Linear Program:

max
∑
θ∈Θ

F (θ)t(θ)

s.t.
∑

i∈[|Aθ|]

∑
ω∈Ω

θωπω,i(θ)uω,aτθ(i) − t(θ) ≥
∑

i∈[|A
θ′ |]

zi(θ, θ′)− t(θ′), ∀θ, θ′ ∈ Θ (IC)

zi(θ, θ′) ≥
∑
ω

θωπω,i(θ′)uω,aj , ∀θ, θ′ ∈ Θ, ∀i ∈ [|Aθ′ |], ∀aj ∈ A∑
i∈[|Aθ|]

∑
ω∈Ω

θωπω,i(θ)uω,aτθ(i) − t(θ) ≥ u(θ), ∀θ ∈ Θ (IR)∑
i∈[|Aθ|]

πω,i(θ) = 1, ∀θ ∈ Θ, ω ∈ Ω

πω,i(θ) ≥ 0, ∀θ ∈ Θ, ∀ω ∈ Ω, ∀i ∈ [|Aθ|]

Figure 2 A linear program to find an approximately revenue-optimal menu in the implicit model.

TV-distance. We show that this leads to a menu that preserves the revenue, is O(|Ω|ε)-IC, IR
and has O

(
|Ω|2|Ω|
ε|Ω|

)
different experiments. Finally, we apply the ε-IC to IC transformation

to the modified menu.

I Lemma 10. LetM = {E(θ), t(θ)}θ∈Θ be a menu of experiments. Then, for any θ, θ′ ∈ Θ
with dTV (θ, θ′) ≤ ε it holds that Vθ(E(θ′))− t(θ′) ≥ Vθ(E(θ))− t(θ)− 2|Ω|ε.

We are now ready to prove that we can create a menu that offers a small number of
experiments and loses negligible revenue compared to OPT. We do that in two steps, since
we are dealing with an action space and type space that are arbitrary. The first step is to
shrink the action space that we are considering. In order to do that, we use Theorem 4 that
guarantees the existence of a menu which loses negligible revenue and only considers actions
from smaller action spaces. The next step is to divide the state space into regions in which
all the types are within ε in TV-distance. Lemma 10 shows us that if we consider offering a
single experiment to all the types in the same region, their values for the new experiment
will not change much compared to the one they were getting. Finally, we apply Lemma 8 to
solve the issue that the menu resulting from dropping experiments might not be IC, IR.

I Theorem 11. Consider an environment with a type space Θ, action space A and state
space Ω. Then, given some ε > 0 and access to a BR oracle we can find a menu M that
generates revenue at least OPT −O(

√
ε) and offers at most O

(
|Ω|2|Ω|
ε|Ω|

)
experiments, in time

poly
(
|Θ|, |Ω|

|Ω|2

ε|Ω|2+|Ω|

)
.

3.3 Implicit Model with Succinct Description
In this section, we consider a setting where the model has a succinct implicit description.
We show that no algorithm can obtain even a constant factor approximation to the optimal
revenue for this setting, unless P = NP. To be more precise, we consider the following problem.
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Information Pricing SAT (IP-SAT): find the revenue-optimal menu in the following
setting:

State space Ω, type space Θ.
for each state ω, Φω is a boolean formula in CNF over variables in X = {x1, . . . , xn}
Action space A: all the possible truth assignments of the variables in X
uω,a = # satisfied clauses of Φω with assignment a

# clauses of Φω

IP-SAT is a hard problem for the buyer in general, as maximizing his net utility requires
solving an NP-hard problem. We show here that designing an approximately revenue-optimal
menu for IP-SAT is also computationally intractable for the seller. Of course, it is not even
clear what the optimal menu looks like in general for IP-SAT as we only have a limited
characterization of the optimal menu. In Theorem 12, we construct a special family of
IP-SAT instances with 2 states and 1 buyer type, and show how to reduce SAT to it.

I Theorem 12. For any constant ε > 0, there does not exit a polynomial time algorithm A
that computes an menu with revenue at least (1/2 + ε)OPT− ε

2m+4 in the IP-SAT problem
with m+ 2 clauses, unless P = NP .

Proof of Theorem 12. Let Φ = C1∧ . . .∧Cm be any SAT instance over variables x1, . . . , xn.
We show that given A we can decide whether Φ is satisfiable. We create the following IP-SAT
instance: there are two states ω1, ω2, a single type θ = ( 1

2 ,
1
2 ) and we set Φω1 = (C1 ∨ y) ∧

. . .∧ (Cm∨y)∧ (x1∨y)∧ (¬x1∨y),Φω2 = (C1∨¬y)∧ . . .∧ (Cm∨¬y)∧ (x1∨¬y)∧ (¬x1∨¬y)
to be the two SAT instances with m + 2 clauses that the buyer faces. At each state, the
actions are the possible assignments of the variables x1, . . . , xn, y. Let Ψ be some boolean
formula in CNF and a some assignment of its variables. We define za(Ψ) to be the number of
clauses in Ψ that a satisfies and w(Ψ) the total number of clauses in Ψ. Then, at each state
ω when the agent chooses assignment a we define his ex-post utility to be uω,a = za(Φω)

w(Φω) .
From Bergemann et al. [4], we know the optimal menu should contain only the fully

informative experiment E∗, and the price for this experiment is Vθ(E∗)− u(θ). 6 Clearly,
Vθ(E∗) = 1, because the buyer can pick y to be T and F in states ω1, ω2 respectively and
satisfy all clauses. We now focus our attention on u(θ). Assume that without receiving
any information the buyer decides to set y = T . This is w.l.o.g. since it is symmetric
with the case he decides to set y = F . When the state is ω1, he satisfies all the clauses.
According to his prior, this happens 1/2 of the time, so we see that so far u(θ) ≥ 1/2. Let
us consider which assignment he should pick when the state is ω2. Observe that no matter
which value he picks for x1, he will always satisfy exactly one of the last two clauses in Φ2.
Hence, for variables x1, . . . , xn he better pick the assignment a that maximizes za(Φ). Let
k = maxa za(Φ). Then u(θ) = 1/2 + (k+ 1)/(2m+ 4) = m+k+3

2m+4 . Hence, the optimal revenue
is Vθ(E∗)− u(θ) = 1− m+k+3

2m+4 = m−k+1
2m+4 . If Φ is satisfiable, then k = m, so OPT = 1

2m+4 .
If Φ is not satisfiable then k ≤ m− 1 so OPT ≥ 2

2m+4 . Now assume that there is such an
algorithm A and denote Rev(A) the revenue generated by the mechanism output by A. If Φ
is not satisfiable, since OPT ≥ 2

2m+4 , it must be that Rev(A) > 1
2m+4 . On the other hand,

if Φ is not satisfiable we have that Rev(A) ≤ 1
2m+4 . Hence, the existence of A allows us to

distinguish between satisfiable and unsatisfiable SAT formulas. J

6 The fully informative experiment simply sends out a signal to reveal the state.
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I Remark 13. Since m is linear in the description length of the problem, given access to a
BR oracle, for any ε > 0 we can set ε′ = c(mε)2, for some appropriate constant c > 0, and
then apply Theorem 9. Since |Ω| = 2 and |Θ| = 1, the revenue we get is at least OPT− ε
and the running time is O

(
1

(mε)10

)
. However, this does not contradict with the result of

Theorem 12, since in this setting the BR oracle solves an NP-hard problem.

4 Multi-Agent Setting

In this section, we consider a multi-agent generalization of the model by Bergemann et al. [4].
More specifically, we assume that there are n buyers who are interested in acquiring extra
information from the seller and each buyer’s ex-post utility only depends on the state of
the world and his own action. We further assume that the types of the buyers are drawn
independently from their own type distributions. If there is no competition among them, the
solution to the problem follows immediately from the single-agent setting, since the seller
can offer each agent his optimal menu separately. Thus, we focus on a more interesting case
where the buyers are competitors and only one of them can receive an informative signal.

Input Model and New Notation

We first need to introduce some new notation. We use Θi to denote the type space of buyer
i and F i(θi) to denote the probability that buyer i’s type is θi. We use Θ to denote the
set of all type profiles and F (θ) to denote ×i∈[n]F

i(θi). We assume the action space A is
the same for each buyer i, but the ex-post utility uiω,a for choosing action a under state ω
may be different for different buyers. We consider the explicit model, that is, for each buyer
i, both F i and the ex-post utility matrix U i = {uiω,a}ω∈Ω,a∈A are given as input. We use
ui(θi) to denote the base utility of buyer i for choosing the best action under distribution θi.

Interaction between the Seller and Buyers

The interaction happens in the following order:
1. The seller commits to a mechanism{(

Π(θ) =
(
Π1(θ), . . . ,Πn(θ)

)}
,
{
t(θ) =

(
t1(θ), . . . , tn(θ)

))}
θ∈Θ,

and announces the mechanism to all buyers.
2. The types of the buyers θ = (θ1, . . . , θn) are realized.
3. Each buyer i privately submits his type θi to the seller.
4. The seller chooses buyer i as the winner with probability pi(θ).
5. The seller observes the state of the world ω and sends buyer i a signal s according to the

signaling scheme Πi(θ) and charges buyer i price ti(θ).
6. Each buyer i chooses an action ai and receives ex-post utility uiω,ai .

There are some subtle issues in our model that require further clarification. The most
important of them being the following. After the winner has been chosen, does he observe
the signaling scheme Πi(θ) that the seller uses to generate the signal s? In this work, we
consider the setting where the signaling scheme Πi(θ) is not revealed and the winner only
observes the realized signal. 7 Some remarks are in order. Firstly, the seller may want to

7 One may worry that the winner can obtain extra information from the price ti(θ). To avoid this, we
will design a mechanism so that the price for buyer i only depends on i’s type θi. This is without loss
of generality, as we can simply set the price to be Eθ−i [ti(θ)].
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preserve the privacy of the buyers, and revealing Πi(θ) allows the winner i to infer the other
buyers’ priors. Secondly, hiding the implemented signaling scheme Πi(θ) from the winner
allows the seller to design a mechanism with less stringent IC constraints and thus generates
higher revenue for the seller. This is because the winner does not know the exact experiment
he is getting, if he wants to deviate from the recommendation he must map the same signal
to the same action for all potential experiments that he may win. Therefore, he would map
the signal to an action that induces the highest expected utility, where the expectation is
over the other bidders’ types and the chosen experiment. On the other hand, if the buyer
knew which experiment the signal is drawn from, he could use a mapping that is the best for
each particular experiment.

Our goal in this section is to design a polynomial time algorithm to find the Bayesian
Incentive Compatible (BIC) and Interim Individually Rational (IIR) mechanism that achieves
the highest revenue among all BIC and IIR mechanisms for our model. It is not hard to see
that Lemma 2 generalizes to our multi-agent setting. We begin by introducing an extension
of the LP in Figure 1 to the multi-agent setting. Define Πi(θ) =

(
πiω,j(θ)

)
ω∈Ω,j∈[m], p

i(θ),
and ti(θ) as the decision variables for every buyer i and type profile θ. Recall that m = |A|.

max
∑
θ∈Θ

F (θ)
∑
i∈[n]

ti(θ)

s.t
∑
θ−i

F−i(θ−i)

∑
ω∈Ω,
j∈[m]

θiωπ
i
ω,j(θi, θ−i)uiω,aj + (1− pi(θ))ui(θi)− ti(θi, θ−i)

 ≥
∑
θ−i

F−i(θ−i)

(∑
j∈[m]

zij(θi, θ̃i, θ−i) + (1− pi(θ̃i, θ−i))ui(θi)− ti(θ̃i, θ−i)

)
, ∀i, ∀θi, θ̃i (BIC)∑

θ−i

F−i(θ−i)zij(θi, θ̃i, θ−i) ≥
∑
θ−i

F−i(θ−i)
∑
ω

θiωπ
i
ω,j(θ̃i, θ−i)uω,ak , ∀i, ∀j, k,∀θi, θ̃i

∑
θ−i

F−i(θ−i)

∑
ω∈Ω,
j∈[m]

θiωπ
i
ω,j(θ)uω,aj + (1− pi(θ))ui(θi)− ti(θ)

 ≥ ui(θi), ∀i, θi (IIR)

∑
j∈[m]

πiω,j(θ) = pi(θ), ∀i,∀θ,∀ω (feasibility)∑
i∈[n]

pi(θ) ≤ 1, ∀θ (feasibility)

πiω,j(θ) ≥ 0, ∀i,∀θ,∀ω,∀j (feasibility)

Observe that the number of variables is exponential in n and the number of constraints
is exponential in both n and m. There is no hope to solve this LP in polynomial time.
The main challenge is how to remove the exponential dependence on n. To overcome this
obstacle, we use a method that is powerful in the study of multi-item auctions, that is,
rewriting the LP using a more succinct representation of the mechanism known as the reduced
form [5, 1, 6, 7, 8]. We first define the reduced form of a mechanism.

I Definition 14 (Reduced Form). Given a mechanism M =
(
{Π(θ)}θ∈Θ , {t(θ)}θ∈Θ

)
,

we define its reduced form
{

Π̂i(θi)
}
i∈[n],θi∈Θi

, where Π̂i(θi) = {π̂iω,j(θi)}ω∈Ω,j∈[m] and

π̂iω,j(θi) = Eθ−i [πiω,j(θ)] for each state ω and j ∈ [m], and its interim prices {t̂i(θi)}i∈[n],θi∈Θi ,
where t̂i(θi) = Eθ−i [ti(θ)]. We use P(F ) to denote the set of all reduced forms for a particular
type distribution F .
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It is not hard to see that P(F ) is a closed convex set, as the set of all mechanisms is
clearly closed and convex, and P(F ) is simply a linear transformation of that set. Intuitively,
the reduced form is the “expected experiment and price” that the each buyer believes he will
be allocated when his type is realized, and the expectation is taken over the randomness of
the other buyers’ types.

I Lemma 15. For any type distribution F , P(F ) is a closed convex set.

The LP in Figure 3 searches for the reduced form of the revenue-optimal mechanism.
Notice that the size of the reduced-form LP is substantially smaller than the original one,
and the number of variables is polynomial in the number of agents. With these new variables
we can still express the BIC and IIR constraints of the initial LP. However, it is not yet clear
how to check whether these variables correspond to an actual feasible mechanism. In the
next section, we show how to design a separation oracle that checks the feasibility efficiently.

Variables:
{π̂iω,j(θi)}ω∈Ω,i∈[n],θi∈Θi,j∈[m], denoting the reduced form of the mechanism.
{t̂i(θi)}i∈[n],θi∈Θi , denoting the interim prices.
{p̂i(θi)}i∈[n],θi∈Θi , denoting the allocation probabilities of the experiment
{ẑij(θi, θ̃i)}i∈[n],j∈[m],θi,θ̃i∈Θi , helper variables. ẑ

i
j(θi, θ̃i) represents an upper bound of

the conditional expected utility of signal sj for type θi.
Linear Program:

max
∑
i∈[n]

∑
θi∈Θi

F i(θi)t̂i(θi)

subject to
∑
j∈[m]

∑
ω∈Ω

θiωπ̂
i
ω,j(θi)uiω,aj + (1− p̂i(θi))ui(θi)− t̂i(θi) ≥∑

j∈[m]

ẑij(θi, θ̃i) + (1− p̂i(θ̃i))ui(θi)− t̂i(θ̃i), ∀i, ∀θi, θ̃i (BIC)

ẑij(θi, θ̃i) ≥
∑
ω∈Ω

θiωπ̂
i
ω,j(θ̃i)uiω,ak ∀i,∀θi, θ̃i, ∀j, k∑

j∈[m]

∑
ω∈Ω

θiωπ̂
i
ω,j(θi)uiω,aj + (1− p̂i(θi))ui(θi)− t̂i(θi) ≥ ui(θi), ∀i,∀θi (IIR)

p̂i(θi) =
∑
j∈[m]

π̂iω,j(θi) ∀i,∀ω,∀θi

{π̂iω,j(θi)}ω∈Ω,i∈[n],θi∈Θi,j∈[m] ∈ P(F ) (Feasibility)

Figure 3 A linear program to find the reduced form of the revenue-optimal mechanism in the
multi-agent setting.

4.1 Feasibility of Reduced Forms
To design a separation oracle for the set P(F ), we invoke the equivalence between Optimization
and Separation in Linear Programming [29, 33], which states that being able to optimize any
linear function over a convex set P is equivalent to having a separation oracle for P . It is a
well-known fact that given a separation oracle for P one can optimize any linear function
using the ellipsoid method. Interestingly, the reverse is also true. If there is an algorithm to
optimize any linear function over P , one can construct a separation oracle for P using the
ellipsoid method. We state a strengthened version of the equivalence due to Cai et al. [7].
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The reason that we need to be able to decompose a feasible point into corners of the polytope
is that we eventually need to able to implement the reduced forms as a feasible mechanism.
We elaborate more on this later.

I Theorem 16 (Adapted from Theorem H.1 of [7]). Let P be a d-dimensional closed convex
region, and let A be any polynomial-time algorithm that takes any direction w ∈ Rd as input
and outputs the extreme point A(w) ∈ P in direction w such that A(w) · w ≥ ·maxx∈P x · w.
Then we can design a polynomial time separation oracle SO for P such that, whenever
SO(x) = “yes”, the execution of SO explicitly finds directions w1, . . . , wk such that x lies in
the convex hull of {A(w1), . . . ,A(wk)}.

To apply this equivalence, we need to show how we can optimize a linear function over
the set of feasible reduced-form variables. Recall that we use Πi(θ) =

(
πiω,j(θ)

)
ω∈Ω,j∈[m] and

Π̂i(θi) =
(
π̂iω,j(θi)

)
ω∈Ω,j∈[m] to denote the ex-post signaling scheme and its reduced form.

We will treat Πi(θ) and Π̂i(θi) as m|Ω|-dimensional vectors. The following maximization
problem plays a crucial role in our approach.

I Definition 17. Consider any type profile θ. Let {Xi(θi)}i∈[n],θi∈Θi be a collection of
m|Ω|-dimensional vectors. We define a Virtual Payoff Maximizer (VPM) w.r.t. these weight
vectors VPM({Xi(θi)}i∈[n],θi∈Θi) to be the ex-post signaling scheme Π(θ) that maximizes the
following quantity

∑
i Πi(θi) ·Xi(θi) for every type profile θ. The corresponding reduced form

Π̂(θ) is called rVPM({Xi(θi)}i∈[n],θi∈Θi). In order to ensure that the maximizer is unique,
we break ties lexicographically.

When there is no confusion, we also write V PM(w), rV PM(w) as the maximizers for
the weight vector w.

I Lemma 18. Given an arbitrary collection of weights {Xi(θi)}i∈[n],θi∈Θi we can find the
exact optimal solution of

maxΠ̂∈P(F )
∑
i∈[n]

∑
θi∈Θi Π̂i(θi) ·Xi(θi) in time O

(
m|Ω|

(∑
i∈[n] |Θi|

)
+
(∑

i∈[n] |Θi|
)2
)
.

Proof of Lemma 18. We first rewrite the maximization problem

max
Π̂∈P(F )

∑
i∈[n]

∑
θi∈Θi

Π̂i(θi) ·Xi(θi) = max
Π

∑
i,θi,θ−i

F−i(θ−i)Πi(θi, θ−i) ·Xi(θi) =

max
Π

∑
i,θ

F (θ)Πi(θ) · X
i(θi)

F i(θi) = max
Π

∑
θ

F (θ)
∑
i

Πi(θ) · X̃i(θi),

where X̃i(θi) = Xi(θi)
F i(θi) .

Let θ be a type profile. We now characterize the solution of maxΠ(θ)
∑
i Πi(θ) · X̃i(θi).

If we allocate the experiment to buyer i, the maximum value we can derive is vi(θi) =∑
ω maxa X̃i

ω,a(θi). Clearly, the optimal solution of the linear function above is to always
allocate the experiment to the buyer with the largest vi(θi).

The ex-post signaling scheme that maximizes
∑
θ F (θ)

∑
i Πi(θ) · X̃i(θi) is the one that

always allocates the experiment to the buyer with the largest vi(θi) for every type profile
θ. To solve maxΠ̂∈P(F )

∑
i∈[n]

∑
θi∈Θi Π̂i(θi) ·Xi(θi), we only need to calculate the reduced

form of this ex-post signaling scheme and we denote it using Π̂∗
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We first compute vi(θi) =
∑
ω maxa xiω,a(θi) for every buyer i and every type θi. This step

takes time O
(
m|Ω|

(∑
i∈[n] |Θi|

))
, and there are

∑
i∈[n] |Θi| different such values. Next, for

each buyer, we sort vi(θi). This step takes time O
(∑

i∈[n] |Θi| log |Θi|
)
. To compute Π̂i

∗(θi),
we only need to calculate the probability of the event that over the random draws of θ−i, there
exists another buyer ` 6= i either v`(θ`) > vi(θi) or ` < i and v`(θ`) = vi(θi). This probability
can be computed in time O

(∑
i∈[n] |Θi|

)
for each buyer i and type θi. Hence, in total we

can optimize the linear function in time O
(
m|Ω|

(∑
i∈[n] |Θi|

)
+
(∑

i∈[n] |Θi|
)2
)
. J

Combining Theorem 16 and Lemma 18, we have a polynomial time algorithm to solve
the LP in Figure 3, but we still need to turn the reduced form into an ex-post signaling
scheme. We again use an idea from computing the optimal multi-item auctions, that is, first
decomposing the optimal reduced form into a distribution over extreme points of P(F ), then
implementing all the extreme points that appear in the distribution using a VPM ex-post
signaling scheme.

I Theorem 19. We design an algorithm to compute the revenue-optimal mechanism in time
poly

(
n,m, |Ω|,

∑
i∈[n] |Θi|

)
. Moreover, the mechanism can be implemented as a distribution

over m|Ω|
(∑

i∈[n] |Θi|
)

+ 1 VPM ex-post signaling schemes.

5 Further Extensions and Future Directions

In this section, we discuss further generalizations of the model by Bergemann et al. [4] and
future research directions that we believe are interesting to pursue.

5.1 Extensions of the Original Model
Enlarged Buyer Type

Recall that in the original model the only private information of the buyer is his private
belief of the underlying state, which is realized at the beginning of the interaction with the
seller. Importantly, the payoffs are public knowledge and remain the same across different
buyers. A natural generalization one can consider is to allow the buyer to draw not only his
prior belief θ, but also his payoff function u : Ω×A→ [0, 1] from some distribution.

To be more specific, we consider the setting where a buyer’s type ρ = (θ, u) is drawn
from some distribution F at the beginning of the interaction between the buyer and the
seller, and ρ is private to the buyer. As in the original model, we assume that the seller has
access to this distribution. We remark that all of our positive results from Section 3 and
Section 4, except for Theorem 11, hold in this extended model as well. The only difference
in our constructions is that instead of indexing the variables by θ we now index them by ρ.

Misspecified Model

Another generalization we consider in the single-agent setting is the misspecified model. In
this model the seller has access to some type distribution F̃ which is within ε in TV-distance
with the real type distribution F . Moreover, the seller has access to a type space Θ̃ with the
following two properties: |Θ̃| = |Θ|, for all θ̃ ∈ Θ̃ there is some θ ∈ Θ for which dTV (θ̃, θ) ≤ ε.
Then, the menu that the seller designs for the misspecified distributions can be modified
so that it guarantees only a negligible revenue loss when it is evaluated in the true setting.
Lemma 20 formalizes this claim.
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I Lemma 20. Let F̃ , F be the distributions of the types that the seller has access to and
the true distribution of the types, respectively. Let also {θ̃i}i∈[k], {θi}i∈[k] be the types
that the seller has access to and the true types, respectively. Assume that dTV (F̃ , F ) ≤
ε1, dTV (θ̃i, θi) ≤ ε2,∀i ∈ [k]. We also let M̃ = {Ẽ(θ̃i), t̃(θ̃i)}i∈[k] be an IC, IR menu that has
revenue Rev(M̃) under the misspecified distributions and uses at most |S| signals. Then,
we can compute a set of prices {t(θ̃i)}i∈[k] so thatM = {Ẽ(θi), t(θi)}i∈[k] is IR, IC and has
Rev(M) ≥ Rev(M̃)−O

(
ε1 +

√
|Ω|ε2

)
under the true distributions.

Note that Lemma 20 allows us to generalize our results and obtain approximately-optimal
menus when we only have black-box access to the distribution of the types. That is, we take
enough samples to learn the distribution within Total Variation distance ε and then apply
Lemma 20.

5.2 Future Directions
We believe that the design of Information Markets is a very important problem that has
not received sufficient attention by the Theory of Computation community. There are many
interesting questions waiting be addressed.

1. In the single-buyer setting where we only have access to the action space via a BR oracle
the running time of our algorithms is exponential in the number of states. An immediate
question to ask is whether we can get an FPTAS or even a PTAS that has a better
dependence on the number of states.

2. In the multi-agent setting, we consider the case in which the seller does not reveal the
signaling scheme that she uses to send a signal to the winner. An interesting question
is whether we can have efficient algorithms in the setting where the seller reveals the
signaling scheme to the buyer.

3. Currently, in the multi-agent setting we assume that the ex-post utility of each buyer
depends only on the state of the world and the action he takes. Is the problem of designing
the optimal mechanism when the ex-post utilities also depend on the actions of the other
buyers tractable?
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