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Abstract
We extend the definitions of complexity measures of functions to domains such as the symmetric
group. The complexity measures we consider include degree, approximate degree, decision tree
complexity, sensitivity, block sensitivity, and a few others. We show that these complexity measures
are polynomially related for the symmetric group and for many other domains.

To show that all measures but sensitivity are polynomially related, we generalize classical
arguments of Nisan and others. To add sensitivity to the mix, we reduce to Huang’s sensitivity
theorem using “pseudo-characters”, which witness the degree of a function.

Using similar ideas, we extend the characterization of Boolean degree 1 functions on the symmetric
group due to Ellis, Friedgut and Pilpel to the perfect matching scheme. As another application of
our ideas, we simplify the characterization of maximum-size t-intersecting families in the symmetric
group and the perfect matching scheme.
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1 Introduction

A classical result in complexity theory states that a Boolean function f : t0, 1un Ñ t0, 1u
of degree d can be computed using a decision tree of depth polypdq. Conversely, a Boolean
function computed by a decision tree of depth d has degree at most d. Thus degree and
decision tree complexity are polynomially related. Other complexity measures which are
polynomially related to the degree include approximate degree, certificate complexity, and
block sensitivity. Recently, Huang [9] added sensitivity to the list.

Can we prove similar results for Boolean functions on other domains? Such domains
have been introduced to complexity theory in recent years: for example, O’Donnell and
Wimmer [13] used Boolean functions on the so-called “slice” to construct optimal nets for
monotone functions; Barak et al. [1] used Boolean functions on the Reed–Muller code to
construct and analyze the influential “short code”; and recently, Khot, Minzer and Safra [10]
proved the 2-to-2 conjecture using Boolean functions on the Grassmann scheme.

Although yet to see applications to complexity theory, perhaps the most appealing domain
is the symmetric group. We say that a function f : Sn Ñ R has degree at most d if any of
the following equivalent conditions hold:
1. fpπq can be written as a linear combination of d-juntas, which are functions depending

on πpi1q, . . . , πpidq for some i1, . . . , id P rns.
2. Representing the input as a permutation matrix, f can be written as a degree d polynomial

in the entries of the matrix.
3. f has Fourier-degree d, that is, it is supported on isotypic components corresponding to

partitions λ with λ1 ě n´ d.
(The reader who is not familiar with representation theory can ignore the last definition.)

What is the correct generalization of decision tree? We take our inspiration from the
work of Ellis, Friedgut and Pilpel [4], which characterized the Boolean degree 1 functions
on Sn. These are functions that depend on some πpiq or on some π´1pjq. This suggests the
following definition: a decision tree for functions on Sn is a decision tree with queries of the
form “πpiq “?” and “π´1pjq “?”. Essentially the same definition (“matching decision trees”)
is used in lower bounds on the pigeonhole principle [14].

We show that this is a good definition by proving that degree and decision tree complexity
are polynomially related for the symmetric group. In fact, we are able to generalize many
other complexity measures to the symmetric group, and show that all of them are polynomially
related:

I Theorem 1. The following complexity measures (appropriately defined) are all polynomially
related for Boolean functions over the symmetric group: degree, approximate degree, decision
tree complexity, certificate complexity, unambiguous certificate complexity, sensitivity, block
sensitivity, fractional block sensitivity, quantum query complexity.

Our results hold for many other domains, such as the perfect matching scheme (the set
of all perfect matchings in K2n) and balanced slices (the balanced slice consists of all vectors
in t0, 1u2n with equally many 0s and 1s, and is also known as the Johnson scheme Jp2n, nq).

We prove Theorem 1 and its generalizations in an abstract framework based on simplicial
complexes. In this framework, every point in the domain is a set. For example:
1. Boolean cube: We identify each vector x P t0, 1un with the set tpi, xiq : i P rnsu.
2. Symmetric group: We identify each permutation π P Sn with the set tpi, πpiqq : i P rnsu.
A function has degree d if it can be written as a linear combination of functions of the form
“the input set contains S”, where |S| ď d; this generalizes the usual notion of degree in these
two domains. Our decision trees allow any queries of the form “which element of the set Q
does the input set contain?”, as long as there is a unique answer for every input.
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With this setup in place, we are able to polynomially relate all complexity measures
other than sensitivity by generalizing classical arguments, as presented by Buhrman and
de Wolf [2], for example. To add sensitivity to the mix, we reduce to Huang’s sensitivity
theorem [9] using basic representation theory.

Generalizing ideas of Gopalan et al. [8], we also prove the following simple result:

I Theorem 2. If a function on the symmetric group has sensitivity s, then it can be recovered
from its evaluation on a ball of radius Opsq around an arbitrary permutation.

Using this, we show that low sensitivity functions can be computed efficiently:

I Theorem 3. If a function on the symmetric group has sensitivity s, then it can be computed
using a circuit of size nOpsq.

This should be compared to a decision tree for the function, which corresponds to a
balanced formula of size nOpDq, where D ě s is the decision tree complexity.

1.1 Degree 1 functions
Our results show that in a wide variety of domains, Boolean degree 1 functions can be
computed by constant depth decision trees. Can we say more?

Boolean degree 1 functions on the Boolean cube are dictators, that is, depend on a
single coordinate, and the same holds for functions on the balanced slice. Ellis, Friedgut and
Pilpel [4] showed that the same holds for the symmetric group, with the correct interpretation
of “dictator”: a function depending only on some πpiq, or only on some π´1pjq. In contrast,
Filmus and Ihringer [6] showed that Boolean degree 1 functions on the Grassmann scheme
(k-dimensional subspaces of an n-dimensional vector space over a finite field) could depend
on two different “data points”.

Among the domains we consider, in many cases Boolean degree 1 functions are trivially
dictators. In some other cases, describing all Boolean degree 1 functions seems difficult. We
identify one case in which the problem is feasible:

I Theorem 4. A Boolean function on the perfect matching scheme has degree at most 1 if
and only if it is one of the following: a constant function; a function depending on the match
of some vertex i; or a function depending on whether the perfect matching intersects some
triangle.

Incidentally, this is another example in which there are non-dictatorial degree 1 functions,
namely those depending on intersections with a triangle.

We prove Theorem 4 using polyhedral techniques. As in the proof of the corresponding
result for the symmetric group by Ellis, Friedgut and Pilpel (which we paraphrase using
our methods), we first characterize all nonnegative degree 1 functions, using the classical
characterization of supporting hyperplanes of the perfect matching polytope. To deduce the
result for Boolean functions, we use a simple result from the theory of complexity measures:
a degree 1 function has sensitivity at most 1.

The reader is perhaps wondering about nonnegative functions of higher degree. Can
we say anything intelligent about them? It turns out that the answer is negative already
for the Boolean cube: classical results on the Sherali–Adams hierarchy [7] show that there
exist nonnegative degree 2 functions which, if written as nonnegative linear combinations
of monomials over literals (that is, products of factors of the form xi and 1´ xj), require
degree Ωpnq.

ITCS 2021
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1.2 Application to Erdős–Ko–Rado theory
The work of Ellis, Friedgut and Pilpel, which has already been mentioned several times, is
about intersecting families of permutations. A subset F Ď Sn is t-intersecting if any two
π1, π2 P F agree on the image of at least t points. In other words, if we think of π1, π2 as
sets (as in our setup), then |π1 X π2| ě t. How large can a t-intersecting family be? One
construction is a t-star :

F “ tπ P Sn : πpi1q “ j1, . . . , πpitq “ jtu.

Ellis et al. show that for large enough n (depending on t), these families have the maximum
possible size, and moreover uniquely so: every t-intersecting family of the maximum size
pn´ tq! is a t-star. Unfortunately, their argument for the uniqueness claim is wrong, see [5].
Uniqueness can be recovered from the work of Ellis [3], which proves a much stronger result,
and is quite complicated.

We give a much simpler proof of uniqueness, using the connection between degree and
certificate complexity:

I Theorem 5. For every t, d, the following holds for large enough n. If f is the characteristic
vector of a t-intersecting family and deg f ď d, then either f is contained in a t-star, or the
corresponding family contains Oppn´ t´ 1q!q permutations.

Ellis et al. show that a t-intersecting family of size pn´ tq! must have degree t (for large
enough n), and so Theorem 5 shows that for large enough n, such a family must be a t-star.

Theorem 5 generalizes to other domains for which similar intersection theorems are known,
such as the perfect matching scheme [11, 12], and to cross-t-intersecting families.

We see Theorem 5 as a contribution of theoretical computer science to extremal combin-
atorics. It illustrates the usefulness of the theory developed in this work.
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