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Abstract
H̊astad showed that any De Morgan formula (composed of AND, OR and NOT gates) shrinks by
a factor of O(p2) under a random restriction that leaves each variable alive independently with
probability p [SICOMP, 1998]. Using this result, he gave an Ω̃(n3) formula size lower bound for the
Andreev function, which, up to lower order improvements, remains the state-of-the-art lower bound
for any explicit function.

In this work, we extend the shrinkage result of H̊astad to hold under a far wider family of random
restrictions and their generalization – random projections. Based on our shrinkage results, we obtain
an Ω̃(n3) formula size lower bound for an explicit function computed in AC0. This improves upon
the best known formula size lower bounds for AC0, that were only quadratic prior to our work. In
addition, we prove that the KRW conjecture [Karchmer et al., Computational Complexity 5(3/4),
1995] holds for inner functions for which the unweighted quantum adversary bound is tight. In
particular, this holds for inner functions with a tight Khrapchenko bound.

Our random projections are tailor-made to the function’s structure so that the function maintains
structure even under projection – using such projections is necessary, as standard random restrictions
simplify AC0 circuits. In contrast, we show that any De Morgan formula shrinks by a quadratic
factor under our random projections, allowing us to prove the cubic lower bound.

Our proof techniques build on the proof of H̊astad for the simpler case of balanced formulas.
This allows for a significantly simpler proof at the cost of slightly worse parameters. As such, when
specialized to the case of p-random restrictions, our proof can be used as an exposition of H̊astad’s
result.
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1 Introduction

1.1 Background

Is there an efficient computational task that cannot be perfectly parallelized? Equivalently,
is P 6⊆ NC1? The answer is still unknown. The question can be rephrased as follows: is
there a function in P that does not have a (De Morgan) formula of polynomial size?

The history of formula lower bounds for functions in P goes back to the 1960s, with the
seminal result of Subbotovskaya [30] that introduced the technique of random restrictions.
Subbotovskaya showed that the Parity function on n variables requires formulas of size at
least Ω(n1.5). Khrapchenko [22], using a different proof technique, showed that in fact the
Parity function on n variables requires formulas of size Θ(n2). Later, Andreev [3] came up
with a new explicit function (now known as the Andreev function) for which he was able
to obtain an Ω(n2.5) size lower bound. This lower bound was subsequently improved by
[18, 25, 14, 31] to n3−o(1).

The line of work initiated by Subbotovskaya and Andreev relies on the shrinkage of
formulas under p-random restrictions. A p-random restriction is a randomly chosen partial
assignment to the inputs of a function. Set a parameter p ∈ (0, 1). We fix each variable
independently with probability 1− p to a uniformly random bit, and we keep the variable
alive with probability p. Under such a restriction, formulas shrink (in expectation) by a
factor more significant than p. Subbotovskaya showed that De Morgan formulas shrink to at
most p1.5 times their original size, whereas subsequent works of [25, 18] improved the bound
to p1.55 and p1.63, respectively. Finally, H̊astad [14] showed that the shrinkage exponent of
De Morgan formulas is 2, or in other words, that De Morgan formulas shrink by a factor
of p2−o(1) under p-random restrictions. Tal [31] improved the shrinkage factor to O(p2) –
obtaining a tight result, as exhibited by the Parity function.

In a nutshell, shrinkage results are useful to proving lower bounds as long as the explicit
function being analyzed maintains structure under such restrictions and does not trivialize.
For example, the Parity function does not become constant as long as at least one variable
remains alive. Thus any formula F that computes Parity must be of at least quadratic size,
or else the formula F under restriction, keeping each variable alive with probability 100/n,
would likely become a constant function, whereas Parity would not. Andreev’s idea is similar,
though he manages to construct a function such that under a random restriction keeping
only Θ(log n) of the variables, the formula size should be at least Ω̃(n) (in expectation). This
ultimately gives the nearly cubic lower bound.

The KRW Conjecture

Despite much effort, proving P 6⊆ NC1, and even just breaking the cubic barrier in formula
lower bounds, have remained a challenge for more than two decades. An approach to solve
the P versus NC1 problem was suggested by Karchmer, Raz and Wigderson [20]. They
conjectured that when composing two Boolean functions, f and g, the formula size of the
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resulting function, f � g, is (roughly) the product of the formula sizes of f and g.1 We will
refer to this conjecture as the “KRW conjecture”. Under the KRW conjecture (and even under
weaker variants of it), [20] constructed a function in P with no polynomial-size formulas. It
remains a major open challenge to settle the KRW conjecture.

A few special cases of the KRW conjecture are known to be true. The conjecture
holds when either f or g is the AND or the OR function. H̊astad’s result [14] and its
improvement [31] show that the conjecture holds when the inner function g is the Parity
function and the outer function f is any function. This gives an alternative explanation to
the n3−o(1) lower bound for the Andreev function. Indeed, the Andreev function is at least as
hard as the composition of a maximally-hard function f on log n bits and g = Parityn/ log n,
where the formula size of f is Ω̃(n) and the formula size of Parityn/ log n is Θ(n2/ log2 n).
Since the KRW conjecture holds for this special case, the formula size of the Andreev function
is at least Ω̃(n3). In other words, the state-of-the-art formula size lower bounds for explicit
functions follow from a special case of the KRW conjecture – the case in which g is the Parity
function. Moreover, this special case follows from the shrinkage of De Morgan formulas under
p-random restrictions.

Bottom-Up versus Top-Down Techniques

Whereas random restrictions are a “bottom-up” proof technique [15], a different line of
work suggested a “top-down” approach using the language of communication complexity.
The connection between formula size and communication complexity was introduced in the
seminal work of Karchmer and Wigderson [21]. They defined for any Boolean function f a
two-party communication problem KW f : Alice gets an input x such that f(x) = 1, and Bob
gets an input y such that f(y) = 0. Their goal is to identify a coordinate i on which xi 6= yi,
while minimizing their communication. It turns out that there is a one-to-one correspondence
between any protocol tree solving KW f and any formula computing the function f . Since
protocols naturally traverse the tree from root to leaf, proving lower bounds on their size or
depth is done usually in a top-down fashion. This framework has proven to be very useful in
proving formula lower bounds in the monotone setting (see, e.g., [21, 10, 28, 20, 27, 11, 26]).
Moreover, a recent work by Dinur and Meir [6] was able to reprove H̊astad’s cubic lower
bound using the framework of Karchmer and Wigderson. As Dinur and Meir’s proof showed
that top-down techniques can replicate H̊astad’s cubic lower bound, a natural question (which
motivated this project) arose:

Are top-down techniques superior to bottom-up techniques?

Towards that, we focused on a candidate problem: prove a cubic lower bound for an explicit
function in AC0.2 Based on the work of Dinur and Meir [6], we suspected that such a lower
bound could be achieved using top-down techniques. We were also certain that the problem
cannot be solved using the random restriction technique. Indeed, in order to prove a lower
bound on a function f using random restrictions, one should argue that f remains hard
under a random restriction, however, it is well-known that functions in AC0 trivialize under
p-random restrictions [7, 1, 32, 12]. Based on this intuition, surely random restrictions cannot
show that a function in AC0 requires cubic size. Our intuition turned out to be false.

1 More precisely, the original KRW conjecture [20] concerns depth complexity rather than formula
complexity. The variant of the conjecture for formula complexity, which is discussed above, was posed
in [9].

2 Recall that AC0 is the class of functions computed by constant depth polynomial size circuits composed
of AND and OR gates of unbounded fan-in, with variables or their negation at the leaves.

I T C S 2 0 2 1
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1.2 Our results
In this work, we construct an explicit function in AC0 which requires De Morgan formulas
of size n3−o(1). Surprisingly, our proof is conducted via the bottom-up technique of random
projections, which is a generalization of random restrictions (more details below).

I Theorem 1. There exists a family of Boolean functions hn : {0, 1}n → {0, 1} for n ∈ N
such that
1. hn can be computed by uniform depth-4 unbounded fan-in formulas of size O(n3).
2. The formula size of hn is at least n3−o(1).

Prior to our work, the best formula size lower bounds on an explicit function in AC0

were only quadratic [24, 5, 19, 4].
Our hard function is a variant of the Andreev function. More specifically, recall that the

Andreev function is based on the composition f � g, where f is a maximally-hard function
and g is the Parity function. Since Parity is not in AC0, we cannot take g to be the Parity
function in our construction. Instead, our hard function is obtained by replacing the Parity
function with the Surjectivity function of [4].

As in the case of the Andreev function, we establish the hardness of our function by
proving an appropriate special case of the KRW conjecture. To this end, we introduce
a generalization of the complexity measure of Khrapchenko [22], called the min-entropy
Khrapchenko bound. We prove the KRW conjecture for the special case in which the outer
function f is any function, and g is a function whose formula complexity is bounded tightly by
the min-entropy Khrapchenko bound. We then obtain Theorem 1 by applying this version of
the KRW conjecture to the case where g is the Surjectivity function. We note that our KRW
result also implies the known lower bounds in the cases where g is the Parity function [14]
and the Majority function [8].

Our KRW result in fact applies more generally, to functions g whose formula complexity is
bounded tightly by the “soft-adversary method”, denoted Advs(g), which is a generalization
of Ambainis’ unweighted adversary method [2].

Our proof of the special case of the KRW conjecture follows the methodology of H̊astad [13],
who proved the special case in which g is Parity on m variables. H̊astad proved that De Morgan
formulas shrink by a factor of (roughly) p2 under p-random restrictions. Choosing p = 1/m

shrinks a formula for f � g by a factor of roughly m2, which coincides with the formula
complexity of g. On the other hand, on average each copy of g simplifies to a single input
variable, and so f � g simplifies to f . This shows that L(f � g) & L(f) · L(g).

Our main technical contribution is a new shrinkage theorem that works in a far wider range
of scenarios than just p-random restrictions. Given a function g with soft-adversary bound
Advs(g), we construct a random projection3 which, on the one hand, shrinks De Morgan
formulas by a factor of Advs(g), and on the other hand, simplifies f � g to f . We thus show
that L(f�g) & L(f)·Advs(g), and in particular, if Advs(g) ≈ L(g), then L(f�g) & L(f)·L(g),
just as in H̊astad’s proof. Using these random projections, that are tailored specifically to
the structure of the function f � g so that f � g simplifies to f under projection, enables us
to overcome the aforementioned difficulty. In contrast, p-random restrictions that do not
respect the structure of f � g would likely result in a restricted function that is much simpler
than f and in fact would be a constant function with high probability.

3 A projection is a mapping from the set of the variables {x1, . . . , xn} to the set
{y1, . . . , ym, y1, . . . , ym, 0, 1}, where y1, . . . , ym are formal variables.
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Our shrinkage theorem applies more generally to two types of random projections, which
we call fixing projections and hiding projections. Fixing projections are random projections
in which fixing the value of a variable results in a projection which is much more probable.
Hiding projections are random projections in which fixing the value of a variable hides
which coordinates it appeared on. We note that our shrinkage theorem for fixing projections
captures H̊astad’s result for p-random restrictions as a special case.

The proof of our shrinkage theorem is based on H̊astad’s proof [14], but also simplifies
it. In particular, we take the simpler argument that H̊astad uses for the special case of
completely balanced trees, and adapt it to the general case. As such, our proof avoids a
complicated case analysis, at the cost of slightly worse bounds. Using our bounds, it is
nevertheless easy to obtain the n3−o(1) lower bound for the Andreev function. Therefore, one
can see the specialization of our shrinkage result to p-random restrictions as an exposition of
H̊astad’s cubic lower bound.

An example: our techniques when specialized to f � Majoritym

To illustrate our choice of random projections, we present its instantiation to the special
case of f � g where f : {0, 1}k → {0, 1} is non-constant and g = Majoritym for some odd
integer m. In this case, the input variables to f � g are composed of k disjoint blocks,
B1, . . . , Bk, each containing m variables. We use the random projection that for each block
Bi = {xm(i−1)+1, . . . , xmi}, picks one variable in the block Bi uniformly at random, projects
this variable to the new variable yi, and fixes the rest of the variables in the block in a
balanced way so that the number of zeros and ones in the block is equal (i.e., we have
exactly (m− 1)/2 zeros and (m− 1)/2 ones). It is not hard to see that under this choice,
f � g simplifies to f . On the other hand, we show that this choice of random projections
shrinks the formula complexity by a factor of ≈ 1/m2. Combining the two together, we get
that L(f �Majoritym) & L(f) ·m2. Note that in this distribution of random projections,
the different coordinates are not independent of one another, and this feature allows us to
maintain structure.

1.3 Related work

Our technique of using tailor-made random projections was inspired by the celebrated result
of Rossman, Servedio, and Tan [29, 16] that proved an average-case depth hierarchy. In fact,
the idea to use tailor-made random restrictions goes back to H̊astad’s thesis [17, Chapter 6.2].
Similar to our case, in [17, 29, 16], p-random restrictions are too crude to separate depth d

from depth d + 1 circuits. Given a circuit C of depth d + 1, the main challenge is to construct
a distribution of random restrictions or projections (tailored to the circuit C) that on the
one hand maintains structure for C, but on the other hand simplify any depth d circuit C ′.

Full Version

Due to space constraints, we have only included in this extended abstract the introduction of
our paper. We defer the reader to the full version of the paper for more details and complete
proofs.
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