
12th Workshop on Parallel
Programming and Run-Time
Management Techniques for
Many-core Architectures

10th Workshop on Design Tools
and Architectures for Multicore
Embedded Computing Platforms

PARMA-DITAM 2021, January 19, 2021, Budapest, Hungary

Edited by

João Bispo
Stefano Cherubin
José Flich

OASIcs – Vo l . 88 – PARMA-DITAM 2021 www.dagstuh l .de/oas i c s

Editors

João Bispo
University of Porto, Portugal
jbispo@fe.up.pt

Stefano Cherubin
Codeplay Software Ltd, London, United Kingdom
stefanix@acm.org

José Flich
Universitat Politècnica de València, Spain
jflich@disca.upv.es

ACM Classification 2012
Hardware → Reconfigurable logic and FPGAs; Software and its engineering → Compilers; Computer
systems organization → Parallel architectures; Theory of computation → Concurrency

ISBN 978-3-95977-181-8

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-181-8.

Publication date
March, 2021

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.PARMA-DITAM.2021.0

ISBN 978-3-95977-181-8 ISSN 1868-8969 https://www.dagstuhl.de/oasics

https://orcid.org/0000-0002-3017-9449
mailto:jbispo@fe.up.pt
https://orcid.org/0000-0002-5579-5942
mailto:stefanix@acm.org
https://orcid.org/0000-0001-8581-6284
mailto:jflich@disca.upv.es
https://www.dagstuhl.de/dagpub/978-3-95977-181-8
https://www.dagstuhl.de/dagpub/978-3-95977-181-8
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2021.0
https://www.dagstuhl.de/dagpub/978-3-95977-181-8
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

0:iii

OASics – OpenAccess Series in Informatics

OASics is a series of high-quality conference proceedings across all fields in informatics. OASics volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

PARMA-DITAM 2021

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

In a moment of exceptional changes,
We remember all the people we lost.

May they inspire us to look ahead
To the new opportunities we found.

Contents

Preface
João Bispo, Stefano Cherubin, and José Flich . 0:ix

Regular Papers

Towards Adaptive Multi-Alternative Process Network
Hasna Bouraoui, Chadlia Jerad, and Jeronimo Castrillon . 1:1–1:11

BifurKTM: Approximately Consistent Distributed Transactional Memory for
GPUs

Samuel Irving, Lu Peng, Costas Busch, and Jih-Kwon Peir . 2:1–2:15

The Impact of Precision Tuning on Embedded Systems Performance: A Case
Study on Field-Oriented Control

Gabriele Magnani, Daniele Cattaneo, Michele Chiari, and Giovanni Agosta 3:1–3:13

Resource Aware GPU Scheduling in Kubernetes Infrastructure
Aggelos Ferikoglou, Dimosthenis Masouros, Achilleas Tzenetopoulos, Sotirios Xydis, and
Dimitrios Soudris . 4:1–4:12

Invited Paper

HPC Application Cloudification: The StreamFlow Toolkit
Iacopo Colonnelli, Barbara Cantalupo, Roberto Esposito, Matteo Pennisi, Concetto
Spampinato, and Marco Aldinucci . 5:1–5:13

12th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and
10th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
2021).
Editors: João Bispo, Stefano Cherubin, and José Flich

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Preface

This volume collects the papers presented at the 12th Workshop on Parallel Programming
and Run-Time Management Techniques for Many-core Architectures, and the 10th Workshop
on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-
DITAM 2021). The workshop is co-located with the 2021 edition of the HiPEAC conference
and was held on January 19, 2021. Although the workshop was originally planned to take
place at Budapest, Hungary, due to the COVID-19 pandemic it switched to a virtual online
event.

The current trend towards many-core and the emerging accelerator-based architecture
requires a global rethinking of software and hardware design. The PARMA-DITAM workshop
focuses on many-core architectures, parallel programming models, design space exploration,
tools and run-time management techniques to exploit the features of such (heterogeneous)
many-core processor architectures from embeddded to high performance computing platforms.

The scope of the PARMA-DITAM workshop include the following topics:
Parallel programming models and languages, compilers and virtualization techniques
Runtime adaptivity, runtime management, power management and memory management
Heterogeneous and reconfigurable many-core architectures and design space exploration
Design tools and methodologies for many-core architectures
Parallel applications for many-core platforms
Architectures and compiler techniques to accelerate deep neural networks

12th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and
10th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
2021).
Editors: João Bispo, Stefano Cherubin, and José Flich

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Towards Adaptive Multi-Alternative Process
Network
Hasna Bouraoui !

Technische Universität Dresden, Germany

Chadlia Jerad !

University of Manouba, Tunisia
University of Carthage, Tunis, Tunisia

Jeronimo Castrillon !

Technische Universität Dresden, Germany

Abstract
With the increase of voice-controlled systems, speech based recognition applications are gaining more
attention. Such applications need to adapt to hardware platforms to offer the required performance.
Given the streaming nature of these applications, dataflow models are a common choice for model-
based design and execution on parallel embedded platforms. However, most of today’s models are
built on top of classical static dataflow with adaptivity extensions to express data parallelism. In
this paper, we define and describe an approach for algorithmic adaptivity to express richer sets
of variants and trade-offs. For this, we introduce multi-Alternative Process Network (mAPN), a
high-level abstract representation where several process networks of the same application coexist. We
describe an algorithm for automatic generation of all possible alternatives. The mAPN is enriched
with meta-data serving to endow the alternatives with annotations in terms of a specific metric,
helping to extract the most suitable alternative depending on the available computational resources
and application/user constraints. We motivate the approach by the automatic subtitling application
(ASA) as use case and run the experiments on an mAPN sample consisting of 12 randomly selected
possible variants.

2012 ACM Subject Classification Theory of computation → Streaming models

Keywords and phrases High level process network, algorithmic adaptivity, automatic subtitling
application

Digital Object Identifier 10.4230/OASIcs.PARMA-DITAM.2021.1

1 Introduction

With the proliferation of digitalization and the easy access to storage capacity, large volumes
of audio data including broadcasts and meetings are increasingly generated and stored. As a
result, a growing need for automated processing of human language has emerged, leading
to the advent of many audio processing applications. One example is Audio Indexing,
enabling the search and retrieval of who spoke what from an audio source. Another example
is the Automatic Subtitling Application (ASA)[1, 11], where Speaker Recognition (SpkR),
Speech Recognition (SpR), and Speaker Diarization (SD) are all combined. For the design of
such complex applications, embedded programmers need to understand algorithmic variants
implementing the same functionality (i.e. algorithmic adaptivity) and how can they be
deployed in parallel into possibly different many-core platforms (i.e. parallelism adaptivity).
In any given situation, characterized by available hardware resources and application/user
constraints, it is difficult to manually select the adequate algorithm while delivering the
required performance.

These streaming applications can exploit the parallelism of embedded many-core platforms
especially when described using appropriate Models of Computation (MoC [18]). For example,
Synchronous Dataflow (SDF) work well for describing one particular algorithmic variant.

© Hasna Bouraoui, Chadlia Jerad, and Jeronimo Castrillon;
licensed under Creative Commons License CC-BY 4.0

12th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and
10th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
2021).
Editors: João Bispo, Stefano Cherubin, and José Flich; Article No. 1; pp. 1:1–1:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hasna.bouraoui@tu-dresden.de
https://orcid.org/0000-0002-2832-1979
mailto:chadlia.jerad@ensi-uma.tn
https://orcid.org/0000-0002-5442-3098
mailto:jeronimo.castrillon@tu-dresden.de
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2021.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

1:2 Adaptive mAPN

Figure 1 Representation of the Automatic Subtitling Application.

However, it is ill-suited to express the adaptivity required today. For static models (e.g.,
Cyclo-Static Dataflow (CSDF) [4] and Parameterized Synchronous Dataflow (PSDF) [3])
adaptivity is at the token production and consumption levels. However, Dynamic models
allow for topology updates. A prominent example is Scenario-Aware Dataflow (SADF) [21]
which expresses behavioral adaptivity by modifying the application graph or varying the
amount of parallelism. However, this model suffers from limitations with regard to the size
and complexity of the model itself [5, 12]. Otherwise, one option would be to have a different
graph for every single variant of the ASA algorithms to be arbitrated at run time. Obviously,
such a solution may not be practical and would lead to a combinatorial explosion on top
of being prohibitively complex to manage. In this paper, we propose a novel model for
compact representation and exploration of multiple algorithmic variants in one single-source
specification. Our model, called mAPN, extends the well-known Kahn Process Network
(KPN) [15] model. mAPN carries annotations on metrics and enables automatic exploration
of the different implementations to choose a well-suited variant. The main contributions of
this paper are:

We introduce mAPN to capture multiple algorithmic variants, beyond what existing
models allow, in a compact single-source specification (cf. Sec. 3.1).
We present an algorithm for the automatic exploration of several variants based on mAPN
annotations and the constraints introduced by the designer (cf. Sec. 3.2).
We demonstrate the analysis fidelity of our approach for the ASA use case. cf. Sec. 4

2 Motivational example

In this paper we use ASA as a case study to demonstrate the need for parallelism and
algorithmic adaptivity. ASA is a complex application that combines the functionality of
SpkR, SD and SpR, to recognize who is speaking, when s/he is speaking, and what s/he
is saying, respectively. The different functionalities share common phases (e.g., Feature
Extraction (FE)), as well as common algorithms serving different phases (i.e. Classification,
Pattern Matching (PM), and Speaker Change Detection (SCD)). Fig. 1 illustrates a coarse-
grained representation of ASA. To better grasp the scale at which the number of possible
implementations can grow, we will detail the VAD, FE, and PM phases. For FE, speaker
characteristics can be categorized based on different features. Prominent algorithms for feature
extraction are MFCC, FBCC, PLP, and LPC [24, 23, 17]. These possible implementations
are schematically shown in Fig. 1. For each particular phase, processes with the same
number represent common nodes of these algorithms. The PM phase exhibits three possible

H. Bouraoui, C. Jerad, and J. Castrillon 1:3

implementations: Euclidean Distance (ED) and Cosine Similarity (CS) (i.e. compact, or
expanded if we consider parallelism adaptivity). In absolute terms, no variant is better than
all the others. Which variant is best depends on the application/user constraints and the
desired target hardware.

Depending on these constraints, one has to specialize the phases for each functionality.
Phase reuse and algorithmic choices create a large space of possible variants for ASA. Some
researchers use classical techniques that are accurate and can run on embedded hardware
with resource constraints. Other approaches are based on deep learning, requiring large
databases. This gain in complexity makes it hard from a developer point of view to choose the
right implementation of the application beforehand. This becomes even harder considering
the diversity of possible target hardware, as the achieved performance of an implementation
may significantly differ from one hardware to another. In any given situation, it is difficult
to manually select an adequate algorithm under application/user/HW constraints. To ease
development, applications such as ASA are not written from scratch, but are built from
existing implementations. This is known as the Algorithm Selection Problem [19], which
shifts the burden from finding the right solution to identifying and composing appropriate
existing algorithms. In this paper we propose a novel model to support designers in this
process, named mAPN.

3 mAPN

3.1 mAPN Formalization
A KPN is a directed graph composed of a set of concurrent processes (nodes), communicating
through unidirectional unbounded First In First Out (FIFO) channels (edges) having blocking
reads and non blocking writes semantics. Formally, a KPN is a tuple G = (P, Ch), where
P is a set of processes, and Ch ⊆ P × P a set of channels. A Multi-Alternative Process
Network (mAPN) is a graph that concisely represents many different KPNs. We use colors
to tag and then generate all possible alternatives. Let Ξ = {ξ1, ξ2, ..., ξn} be the set of colors.
ξ∗ ∈ Ξ denotes a particular neutral color and P(Ξ) the power set of Ξ. Similar to KPNs, an
mAPN is a directed graph composed of processes and channels. However, and unlike KPNs,
channels are annotated with colors indicating the local alternatives that the channel belongs
to. Formally,

▶ Definition 1 (mAPN). A multi-Alternative Process Network is a tuple G = (P, Ch, col),
where P is a set of processes, Ch is a set of channels Ch ⊆ P × P and col is a function that
maps each channel to a subset of colors, that is col : Ch → P(Ξ).

Let wr, rd : Ch → P be two functions that map each channel to the process that
writes into it, respectively reads from it. In a similar way, we define ŵr, r̂d : P → P(Ch)
that map each process into a subset of Ch it writes to, respectively, it reads from (i.e.,
ŵr(p) = {ch ∈ Ch, wr(ch) = p}). We call source processes (Src) the subset of P that do not
read from any channel. Analogously, sink processes (Snk) do not write to any channel. That
is, Src = {p ∈ P, r̂d(p) = ∅}, and Snk = {p ∈ P, ŵr(p) = ∅}. The function ĉolrd returns
the colors a process reads from. Analogously, ĉolwr returns the colors a process writes to
(i.e., ĉolwr(p) = ∪

ch∈ŵr(p)col(ch)). In the sample mAPN of Fig. 2, the colors of the channel
that connects process v to x (chx

v), has colors { , }, while col(chp
b) = { }. Note also that

Src = {a, v}, Snk = {u} and ĉolwr(p) = { , , }.
A colored subgraph Gξ = (P ξ, Chξ) of an mAPN G = (P, Ch) gathers all the channels

having the same color ξ, and the processes connected to them. The neutral color ξ∗

(black color in Fig. 2) marks the nominal end-to-end implementation of the application

PARMA-DITAM 2021

1:4 Adaptive mAPN

Figure 2 mAPN of a synthetic example.

(cf. Definition 2). Colored subgraphs represent local alternatives. For example, the purple
subgraph connecting processes c and f is a local alternative to the black subgraph, replacing
the functionality of d and e. For clarity reasons, nodes in the figure receive the colors of the
local alternative they belong to. Local alternatives can be nested, as is the case of the blue
and green ones. Consequently, the flow from b to d can go through c (black), through p and
q (green), or through p and r (composition of green and blue).

▶ Definition 2 (Nominal alternative). A nominal alternative Gξ∗ = (P ξ∗
, Chξ∗) of an mAPN

G = (P, Ch, col) is an end-to-end subgraph of G where ∀ch ∈ Chn, ξ∗ ∈ col(Chn), and
Src, Snk ⊂ P ξ∗ .

We distinguish processes from/at which local alternatives fork/join. These processes are
important since they identify anchor nodes for generating alternatives. We classify them into
the following subsets:

F is the subset of processes of P that write different channels with different colors.
Formally, F = {p ∈ P, ∃chi, chj ∈ ŵr(p), i ̸= j, col(chi) ̸= col(chj)}.
J is the subset of processes of P that read different channels with different colors.
Formally, J = {p ∈ P, ∃chi, chj ∈ r̂d(p), i ̸= j, col(chi) ̸= col(chj)}.

In the mAPN of Fig. 2, F = {b, c, p, v, g} and J = {d, e, f, j, u}. Based on the nominal
alternative and the collection of local alternatives forming an mAPN, one can generate all
possible alternatives. Generation is based on a set of assumptions that the mAPN is a
well-formed. Concretely:

▶ Definition 3 (Well-formed mAPN). A well-formed mAPN G = (P, Ch, col) has the following
properties: (i) existence of a nominal alternative, (ii) every sink node of a colored subgraph
is a join node, (iii) every source node of a colored subgraph is a fork node, (iv) colors cannot
be re-used in disjoint subgraphs, and (v) preserving KPN semantics (that is, for a fork node,
the number of write channels per color must be the same).

KPN semantics preservation does not include a condition over the number of read channels
per color for a join node. Process u in Fig. 2 is a counter example, as we have two branches
of alternatives coming from two distinct source nodes.

We structure an mAPN so that alternatives are created from products over the sets of
generated sub-KPNs. These subsets are generated from mAPN subgraphs, and we call them
closed. Nesting alternatives occur only within such subgraphs. Three subgraphs are marked
by dashed gray boxes in Fig. 2, each one itself, a well-formed mAPN. By adding anchor
nodes to every element of the product of sub-KPNs, we get the set of all possible alternatives.
We define a closed mAPN as follows:

H. Bouraoui, C. Jerad, and J. Castrillon 1:5

Algorithm 1 Generation of Kahn Process Networks.
param: G : (P, Ch, col), M, V, C

return: KPNs : {kpni}i

1: procedure AltGen
2: KP Ns, KP N ′

s ← ∅
3: {GO

i }i ← getClosedGraphs(G)
4: (Pcom, Chcom)← rmCommon(G, {GO

i }i)
5: for every GO

i do
6: KP N ′

s ← AltGenRecur(GO
i)

7: KP Ns← mixNmatch(KP Ns, KP N ′
s)

8: for kpni = (Pi, Chi) ∈ KP Ns do
9: kpni ← (Pi ∪ Pcom, Chi ∪ Chcom)

10: v = ν(kpni, M, V) ▷ Metrics evaluation of kpni

11: if v ⊭ C then ▷ Checking constraints
12: KP Ns← KP Ns \ {kpni}
13: return KP Ns

▶ Definition 4 (Closed mAPN). A closed mAPN GO = (P O, ChO, colO) of a well formed
mAPN G = (P, Ch, col) has the following properties: (i) GO is a well formed mAPN,
SrcO ⊂ F and SnkO ⊂ J , (ii) no loop backs are allowed across closed mAPNs, (iii) a closed
mAPN is minimal, that is it cannot include a composition of two or more closed sub-mAPNs,
and (iv) the set of colors that fork within a closed subgraph is the same that joins.

3.2 Exploration algorithm

Algorithm 1 describes the generation process by: (i) extracting closed graphs (line 3), (ii)
generating the set of KPNs for each one and mixing and matching them (lines 5–7), (iii)
adding anchor nodes for each partially constructed KPN (line 9). After adding adding anchor
nodes, the KPN is complete and can then be evaluated (line 10) using the rules of aggregation,
and checked against the given constraints (line 11). If the constraints are not satisfied, that
particular KPN is removed from the set of alternatives to return (line 12).

The recursive procedure AltGenRecur() (Algorithm 2) visits source nodes (line 4) and
generates a set of KPNs for each one. Given a source process p, the algorithm iterates
over the local alternatives, i.e., colors of the channels p writes to (for in line 6). For every
colored subgraph (kpnξ) having p as source (line 7), if kpnξ reaches sink processes without
including any fork, then it is a complete generated local KPN (lines 8, 9), and is added
to the set of generated KPNs starting from p (line 19). This is the example of the purple
colored subgraph starting from the fork source c of GO

1 . Otherwise, a recursive call over the
computed subgraph G′ (line 17) will return alternatives, to be mixed and matched (line 18).
Computing G′ depends on whether there are nested alternatives, or a sink of G is not reached.
In the first case, G′ is the subgraph of G that starts from the immediately encountered fork
nodes of the colored subgraph kpnξ (lines 11-14). For example, if we consider the green
colored subgraph, G′ will be the entire subgraph of GO

1 that has process p as source. In the
second case, i.e. no sink is reached, G′ is the subgraph that starts from sink processes of
kpnξ (lines 16). This is the case of the three colored subgraphs of GO

1 starting from process
p. mixNmatch() takes two sets of KPNs and computes all possible combinations of their
elements (i.e., set product).

PARMA-DITAM 2021

1:6 Adaptive mAPN

Algorithm 2 Recursive generation of Kahn process networks.
param: G : (P, Ch, col)
return: KPNs : {kpni}i

1: procedure AltGenRecur
2: KP Ns, KP Np

s ← ∅
3: Src← {p ∈ P, r̂d(p) = ∅}
4: for p ∈ Src do
5: KP N ′

s ← ∅
6: for ξ ∈ ĉolwr(p) do ▷ Iterate over colors
7: kpnξ = (Pξ, Chξ)← subgraph(G, {p}, ξ)
8: if (Pξ ∩ F = {p}) ∧ (Snk/kpnξ

⊆ Snk) then
9: KP N ′

s ← {kpnξ}
10: else
11: if (Pξ ∩ F ̸= {p}) then ▷ Nested alt.
12: {pj}j ← getClosest(p, Pξ \ {p} ∩ F)
13: G′ ← subgraph(G, {pj}j)
14: kpnξ ← kpnξ \ {kpnξ ∩G′}
15: else ▷ No sink is reached
16: G′ ← subgraph(G, Snk/kpnξ

)
17: KP N ′

s ← AltGenRecur(G′)
18: KP N ′

s ← mixNmatch({kpnξ}, KP N ′
s)

19: KP Np
s ← KP Np

s ∪KP N ′
s

20: KP Ns← mixNmatch(KP Ns, KP Np
s)

21: return KP Ns

4 Evaluation

4.1 The mAPN model of ASA

We demonstrate our approach on an ASA application. Recall the coarse-grained graph presen-
ted in Fig. 1. The figure shows an example of existing implementations and commonalities
across them, characterizing the large design space of algorithmic variants for this application.
Several approaches and algorithms for each phase can be found in the literature. Readers
may refer to [6] for a detailed survey. In this section we explain the most common algorithms
for SpkR, SR and SpR, and how they can be combined in one graph to create a different ASA
implementation. Each phase in Fig. 1 is replaced by one or more possible implementations
using different colors. Fig. 3 represents one possible compact graph for the ASA application.
The voice activity detection (VAD) has two different variants while FE has 7. By mixing and
matching these two phases, we generate 14 possible variants implementing the part ending at
node 13. So far, we have excluded adaptive parallelism in the variants. To exploit Task-level
parallelism (TLP), expanded/compacted versions of a Process Node (PN) can be added as an
additional algorithmic variants. This is similar to the work presented in [20]. The algorithm
that implements the MFCC FE can be executed by one PN (i.e. Node 28), or expanded
over several PNs (5 PNs:9-13). The same process can be applied to all the local variants
of the FE phase leading to 7 additional algorithmic variants just for this phase. Similarly,
Data-level parallel (DLP) versions of some phases can be deployed to balance the load across
application phases, as seen in [16]. For example, in the pattern matching phase (node 15), a
new alternative can be created where multiple Euclidean Distance (ED) nodes run in parallel
and then send the results to the merge node. Every added possibility implementing a local
phase in the compact graph greatly enriches the space of implementation variants. After only
adding the discussed TLP/DLP alternatives, the number of possible variants reaches 672.

H. Bouraoui, C. Jerad, and J. Castrillon 1:7

Figure 3 Multi-Alternative Process Network for ASA.

4.2 Experimental Results
For the experimentation, we implemented for the VAD the black alternatives corresponding to
an MFCC-based VAD as presented in Fig. 3. In phase FE, we explore parallelism adaptivity
by applying TLP to the implementation of the MFCC algorithm (compact version, 28, vs.
expanded version, 8 to 13), and algorithmic adaptivity by adding an FBCC implementation
(9-29-30-31). SCD phase presents algorithmic adaptivity: ED (node 15) vs. CS (43); while
the k-means algorithm (18) is used for clustering. Finally, DLP is applied to the PM phase
by varying the number of ED-Compact nodes (21) to be either 1 or 4. We implemented these
algorithms and end up with 12 possible alternatives in total (combinations of 32 different
process ids).

We explore the space of alternatives to select feasible ones and compare it to a brute
force approach, where all implementations are generated and executed. As an evaluation
metric, we use the execution time as a metric under a constraint of 55s. To factor the errors
introduced by estimation, we use actual measurements using the estimator of the SLX tool
suite1 on the target hardware. Based on these estimations, evaluation of alternatives are
performed using the max-plus algebra traditionally used for timing analysis of dataflow
graphs [13]. Experiments are made on a speech of 5 minutes of length, and considering two
platforms: Odroid XU42 and a GPP3 (GPP).

As shown in Table 1, column Estimations contains the execution time estimates on
both platforms. Each assessed alternative is then considered feasible (✓), or rejected (✗)
depending on whether it respects the defined constraint or not (not exceeding 55s). Under
column Real Exp.Results, we present the experimentally measured wall-clock time for these
alternatives. The column R/F (right/false decision) lists the correctness of the decision

1 https://www.silexica.com/
2 Exynos 5422 big.LITTLE chip: 4 Cortex-A15 and 4 Cortex-A7 cores
3 3.40GHz quad-core Intel(R) Core(TM) i7-6700 CPU

PARMA-DITAM 2021

https://www.silexica.com/

1:8 Adaptive mAPN

Table 1 Experimental results.

Estimations Real
Exp. Results

Odroid GPP Odroid R/F GPP R/F
Alt 1: {VAD-FE(Bessel)-SCD(ED)-Cl-PM(DLP-4)} 102.36 ✗ 26.24 ✓ 56.43 R 20.66 R

Alt 2: {VAD-FE(Exp.MFCC)-SCD(ED)-Cl-PM(DLP-4)} 52.11 ✓ 11.53 ✓ 24.43 R 9.94 R
Alt 3: {VAD-FE(Comp.MFCC)-SCD(ED)-Cl-PM(DLP-4)} 51.80 ✓ 10.56 ✓ 23.66 R 9.66 R

Alt 4: {VAD-FE(Bessel)-SCD(ED)-Cl-PM(DLP-1)} 115.20 ✗ 30.74 ✓ 67.69 R 25.73 R
Alt 5: {VAD-FE(Exp.MFCC)-SCD(ED)-Cl-PM(DLP-1)} 64.95 ✗ 16.03 ✓ 53.78 F 20.54 R

Alt 6: {VAD-FE(Comp.MFCC)-SCD(ED)-Cl-PM(DLP-1)} 64.64 ✗ 15.06 ✓ 52.78 F 19.51 R
Alt 7: {VAD-FE(Bessel)-SCD(CS)-Cl-PM(DLP-4)} 102.35 ✗ 26.23 ✓ 45.72 F 20.93 R

Alt 8: {VAD-FE(Exp.MFCC)-SCD(CS)-Cl-PM(DLP-4)} 52.10 ✓ 11.52 ✓ 23.10 R 10.05 R
Alt 9: {VAD-FE(Comp.MFCC)-SCD(CS)-Cl-PM(DLP-4)} 51.79 ✓ 10.55 ✓ 23.68 R 9.32 R

Alt 10: {VAD-FE(Bessel)-SCD(CS)-Cl-PM(DLP-1)} 115.19 ✗ 30.73 ✓ 56.88 R 20.42 R
Alt 11: {VAD-FE(Exp.MFCC)-SCD(CS)-Cl-PM(DLP-1)} 64.94 ✗ 16.02 ✓ 53.74 F 19.94 R

Alt 12: {VAD-FE(Comp.MFCC)-SCD(CS)-Cl-PM(DLP-1)} 64.63 ✗ 15.05 ✓ 55.47 R 20.01 R

made about the feasibility of each alternative. By using a time constraint of 55s, Table 1
shows that estimations reaches a success rate of 66.66% and 100% on Odroid and GPP
respectively. Besides being able to decide on which alternative to use, we are also interested
on how fast such a decision can be made. For the brute force approach, and considering the
Odroid platform, choosing among the 12 alternatives requires an execution time of 537.37s.
By extrapolating to 672 alternatives, this would correspond to around 8h. Conversely, the
mAPN approach only requires to assess 32 different nodes to cover the 12 alternatives which
takes 206.2s. This extrapolates to 16m considering the 672 alternatives (covered by 49 nodes
as in Fig. 3). We notice that the estimations are generally slower than the real results,
which can be explained by the fact that we are not taking into consideration the pipelining
parallelism hidden in the KPN dataflow graph. In addition, using better assessment leads to
more accurate estimation. However, this is kept out of the scope of this paper.

Further analysis is done to show the fidelity of the estimation. Fig. 4 illustrates the
correlation plot between the estimated cost of an alternative and the actual execution time of
the real implementation. The grey area in the plot represents the 95% confidence intervals of
the results following the smoothing method. We also sort the results of the 12 alternatives and
compute the rank correlation to measure the ordinal association between them. This results
in 0.936 and 0.802, using the Spearman’s ρ and Kendall’s τ methods respectively. Recall that
1 represents a perfect alignment between the two rankings. For both methods, very high
agreement levels are achieved, proving that our mAPN, ensure an acceptable ordering of the
alternatives in terms of the considered metric. Even with the noticed deviation between the
estimations and the measures, we are still able to say which alternative is better than the
other without a time consuming evaluation of all alternatives in the target hardware. This
helps the user to decide on the feasible and adequate ones in a large space of variants.

5 Related work

Many research works propose methods for parallelism adaptivity. Flextream [14] studied
adaptable compilation of a running application to the changing hardware characteristics.
Adaptivity is achieved by replicating stateless processes to form a more fine-grained graph.
Authors in [22] went further and proposed actor merging for sequentially executing processes.
Likewise, Lee et al [7] proposed an optimal method to adapt the running application to
available resources. Optimality refers to memory footprint under core-count constraints to

H. Bouraoui, C. Jerad, and J. Castrillon 1:9

Figure 4 Fidelity analysis of the mAPN.

reduce energy consumption. [10] extended the semantics of SDFs to increase expressiveness
and enable the specification of dynamic reconfigurable signal processing applications. They
exploit static and adaptive task, data and pipeline parallelism. The work in [9] determines
the minimal required performance of the hardware to be used for Macro Dataflow. Similarly,
authors in [16], vary parallelism at run-time for KPN applications by duplicating stateless
processes. Previous works considered one possible implementation of a particular application.
They expressed adaptivity by breaking its tasks further down, or consolidate them into less
tasks if few hardware resources are available. They do not support deeper implementation
changes where different algorithms can be used to perform the same task. Authors in [8]
present a methodology that allows for multiple algorithmic variants for a given actor in an
application. These algorithmic variants are passed as metadata to the compiler, which selects
the best implementation for a given platform. Authors in [2] introduce a new programming
language to ensure algorithmic choice at the language level. They provide algorithmic choices
to the compiler. However, these two approaches do not support adapting the graph topology.
Our approach is more general, combining parallelism adaptivity with algorithmic adaptivity.

6 Conclusion

In this paper we introduced mAPN, a novel model where multiple algorithmic variants are
concisely represented in one compact graph. The abstract high-level model we proposed is
built on top of KPN, taking advantage of its formal properties. Provided with additional
information (annotation in terms of chosen metric), this model enlarges the variant space and
eases the process of retaining feasible variants while meeting application/user/HW constraints.
Furthermore, our approach is generic, combining parallelism adaptivity with algorithmic
adaptivity. We motivated the mAPN approach with variants of ASA. We evaluated the
end-to-end paths of the co-existing algorithmic variants in the graph using annotation on
processes in terms of execution time. Being able to reason about these metrics and algorithmic
adaptivity with a concise model will be key to achieve the most suitable implementation in
terms of considered application/user/HW constraints. In future work, we will investigate
efficient run-time algorithmic switching mechanisms, and considering annotation over more
abstract domain-specific metrics like accuracy or robustness.

PARMA-DITAM 2021

1:10 Adaptive mAPN

References
1 C. Aliprandi, C. Scudellari, I. Gallucci, N. Piccinini, M. Raffaelli, A. del Pozo, A. Alvarez, Ha.

Arzelus, R. Cassaca, T. Luis, et al. Automatic live subtitling: state of the art, expectations
and current trends. In Proceedings of NAB Broadcast Engineering Conference: Papers on
Advanced Media Technologies, Las Vegas, page 23, 2014.

2 Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and Saman
Amarasinghe. Petabricks: a language and compiler for algorithmic choice. ACM Sigplan
Notices, 44(6):38–49, 2009.

3 Bishnupriya Bhattacharya and Shuvra S Bhattacharyya. Parameterized dataflow modeling for
dsp systems. IEEE Transactions on Signal Processing, 49(10):2408–2421, 2001.

4 G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cycle-static dataflow. IEEE
Transactions on Signal Processing, 44(2):397–408, 1996.

5 Adnan Bouakaz, Pascal Fradet, and Alain Girault. A survey of parametric dataflow models of
computation. ACM Transactions on Design Automation of Electronic Systems (TODAES),
22(2):1–25, 2017.

6 Hasna Bouraoui, Chadlia Jerad, Anupam Chattopadhyay, and Nejib Ben Hadj-Alouane.
Hardware architectures for embedded speaker recognition applications: a survey. ACM
Transactions on Embedded Computing Systems (TECS), 16(3):78, 2017.

7 Dai Bui and Edward A Lee. Streamorph: a case for synthesizing energy-efficient adaptive
programs using high-level abstractions. In Proceedings of EMSOFT, page 20. IEEE Press,
2013.

8 Jeronimo Castrillon, Stefan Schürmans, Anastasia Stulova, Weihua Sheng, Torsten Kempf,
Rainer Leupers, Gerd Ascheid, and Heinrich Meyr. Component-based waveform development:
The nucleus tool flow for efficient and portable software defined radio. Analog Integrated
Circuits and Signal Processing, 69(2-3):173–190, December 2011.

9 Marco Danelutto, Daniele De Sensi, and Massimo Torquati. A power-aware, self-adaptive
macro data flow framework. Parallel Processing Letters, 27(01):1740004, 2017.

10 Karol Desnos, Maxime Pelcat, Jean-François Nezan, Shuvra S Bhattacharyya, and Slaheddine
Aridhi. Pimm: Parameterized and interfaced dataflow meta-model for mpsocs runtime recon-
figuration. In 2013 International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), pages 41–48. IEEE, 2013.

11 Brecht Desplanques, Kris Demuynck, and Jean-Pierre Martens. Adaptive speaker diarization
of broadcast news based on factor analysis. Computer Speech & Language, 46:72–93, 2017.

12 Pascal Fradet, Alain Girault, Ruby Krishnaswamy, Xavier Nicollin, and Arash Shafiei. RDF:
Reconfigurable Dataflow (extended version). Research Report RR-9227, INRIA Grenoble -
Rhône-Alpes, December 2018. URL: https://hal.inria.fr/hal-02079683.

13 Amir Hossein Ghamarian, Marc CW Geilen, Sander Stuijk, Twan Basten, Bart D Theelen,
Mohammad Reza Mousavi, Arno JM Moonen, and Marco JG Bekooij. Throughput analysis
of synchronous data flow graphs. In Sixth International Conf. on Application of Concurrency
to System Design (ACSD’06), pages 25–36. IEEE, 2006.

14 Amir H Hormati, Yoonseo Choi, Manjunath Kudlur, Rodric Rabbah, Trevor Mudge, and
Scott Mahlke. Flextream: Adaptive compilation of streaming applications for heterogeneous
architectures. In Proceedings of PACT, pages 214–223. IEEE, 2009.

15 Gilles KAHN. The semantics of a simple language for parallel programming. In Information
Processing, 74:471–475, 1974.

16 Robert Khasanov, Andrés Goens, and Jeronimo Castrillon. Implicit data-parallelism in Kahn
process networks: Bridging the MacQueen Gap. In Proceedings of PARMA-DITAM, pages
20–25. ACM, 2018.

17 Mohaddeseh Nosratighods, Eliathamby Ambikairajah, and Julien Epps. Speaker verification
using a novel set of dynamic features. In 18th International Conference on Pattern Recognition
(ICPR’06), volume 4, pages 266–269. IEEE, 2006.

https://hal.inria.fr/hal-02079683

H. Bouraoui, C. Jerad, and J. Castrillon 1:11

18 Claudius Ptolemaeus. System Design, Modeling, and Simulation using Ptolemy II, 2014.
Ptolemy.org, 2014.

19 John R. Rice et al. The algorithm selection problem. Advances in computers, 15(65-118):5,
1976.

20 Lars Schor, Iuliana Bacivarov, Hoeseok Yang, and Lothar Thiele. Adapnet: Adapting process
networks in response to resource variations. In Proceedings of CASES, page 22. ACM, 2014.

21 Sander Stuijk, Marc Geilen, Bart Theelen, and Twan Basten. Scenario-aware dataflow:
Modeling, analysis and implementation of dynamic applications. In Proceedings of SAMOS,
pages 404–411. IEEE, 2011.

22 Anastasia Stulova, Rainer Leupers, and Gerd Ascheid. Throughput driven transformations
of synchronous data flows for mapping to heterogeneous mpsocs. In Proceedings of SAMOS,
pages 144–151. IEEE, 2012.

23 Roberto Togneri and Daniel Pullella. An overview of speaker identification: Accuracy and
robustness issues. IEEE Circuits and Systems Magazine, 11(2):23–61, 2011.

24 OB Tuzun, M Demirekler, and KB Nakiboglu. Comparison of parametric and non-parametric
representations of speech for recognition. In Electrotechnical Conference, 1994. Proceedings.,
7th Mediterranean, pages 65–68. IEEE, 1994.

PARMA-DITAM 2021

BifurKTM: Approximately Consistent Distributed
Transactional Memory for GPUs
Samuel Irving
Louisiana State University, Baton Rouge, LA, USA

Lu Peng
Louisiana State University, Baton Rouge, LA, USA

Costas Busch
Augusta University, GA, USA

Jih-Kwon Peir
University of Florida, Gainesville, FL, USA

Abstract
We present BifurKTM, the first read-optimized Distributed Transactional Memory system for GPU
clusters. The BifurKTM design includes: GPU KoSTM, a new software transactional memory
conflict detection scheme that exploits relaxed consistency to increase throughput; and KoDTM,
a Distributed Transactional Memory model that combines the Data- and Control- flow models to
greatly reduce communication overheads.

Despite the allure of huge speedups, GPUs are limited in use due to their programmability and
extreme sensitivity to workload characteristics. These become daunting concerns when considering
a distributed GPU cluster, wherein a programmer must design algorithms to hide communication
latency by exploiting data regularity, high compute intensity, etc. The BifurKTM design allows
GPU programmers to exploit a new workload characteristic: the percentage of the workload that is
Read-Only (e.g. reads but does not modify shared memory), even when this percentage is not known
in advance. Programmers designate transactions that are suitable for Approximate Consistency, in
which transactions “appear” to execute at the most convenient time for preventing conflicts. By
leveraging Approximate Consistency for Read-Only transactions, the BifurKTM runtime system
offers improved performance, application flexibility, and programmability without introducing any
errors into shared memory.

Our experiments show that Approximate Consistency can improve BkTM performance by up to
34x in applications with moderate network communication utilization and a read-intensive workload.
Using Approximate Consistency, BkTM can reduce GPU-to-GPU network communication by 99%,
reduce the number of aborts by up to 100%, and achieve an average speedup of 18x over a similarly
sized CPU cluster while requiring minimal effort from the programmer.

2012 ACM Subject Classification Computer systems organization → Heterogeneous (hybrid) systems

Keywords and phrases GPU, Distributed Transactional Memory, Approximate Consistency

Digital Object Identifier 10.4230/OASIcs.PARMA-DITAM.2021.2

1 Introduction

GPUs have become the device of choice for high performance and scientific computing
due to their high computational throughput and high memory bandwidth compared to
the CPU. The popularity of the GPU has ushered in the era of “General Purpose GPU
Computin” in which Graphics Processors are increasingly used for applications that they
were not originally designed for, including applications with recursion, irregular memory
access, atomic operations, real-time communication between the GPU and its host processor
[15], and even real-time communication between the GPU and remote devices using MPI [12].

© Samuel Irving, Lu Peng, Costas Busch, and Jih-Kwon Peir;
licensed under Creative Commons License CC-BY 4.0

12th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and
10th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
2021).
Editors: João Bispo, Stefano Cherubin, and José Flich; Article No. 2; pp. 2:1–2:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/OASIcs.PARMA-DITAM.2021.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 BifurKTM: Approximately Consistent Distributed Transactional Memory for GPUs

Despite its strengths and increasing flexibility, the GPU suffers from poor program-
mability, as GPU programmers must meticulously balance performance, correctness, and
code readability [7]. Programmers must be wary to: avoid critical warp divergence caused
by misuses of the GPU’s Single Instruction Multiple Data architecture; be wary of the
GPUs weak memory model and requirement that programmers manually control several
distinct memory spaces; and be careful to ensure data integrity for degrees of parallelism
several orders-of-magnitude greater than traditional CPUs. These concerns are magnitude
exponentially when scaling GPU applications to the cluster scale.

Transactional Memory (TM) [8] has emerged as a concurrency control strategy that can
ensure GPU program correctness while greatly improving programmability. When using
TM, programmers simply mark the beginning and end of critical sections that are then
converted, at compile time, into architecture-safe implementations that guarantee correctness
and dead-lock freedom regardless of application behavior. TM allows programmers to quickly
develop performant versions of complex applications without complete understandings of the
underlying hardware, workload behavior, or synchronization requirements. These advantages
have motivated research into Hardware TM [7, 4, 5], Software TM (STM) [3], and Distributed
TM (DTM) [11] for GPUs. Transactional Memory implementations are often modular and
highly customizable, allowing programmers to try a variety of performance optimization
techniques and hardware configurations without rewriting the program.

We present BifurKTM, the first distributed Transactional Memory system for GPU
clusters that uses Approximate Consistency [1] to improve the performance. BifurKTM
allows programmers to benefit from the GPU’s high computational throughput and high
memory bandwidth despite the presence of GPU-initiated remote communication and irregular
memory accesses in their application. Furthermore, BifurKTM allows GPU programmers to
leverage a new application property to improve performance: the percentage of the workload
that reads but does not modify shared memory.

The contributions of this paper are as follows:
1. We propose GPU KoSTM: a read-optimized conflict detection protocol for GPUs to

reduce conflicts using Approximate Consistency.
2. We propose KoDTM: a distributed transactional memory model using K-Opacity [1] to

reduce node-to-node communication frequency using Approximate Consistency.
3. Based on GPU KoSTM and KoDTM, we design BifurKTM: an implementation of GPU

DTM that achieves better speedups over CPU clusters using Fine-Grained locking and
existing GPU DTM designs.

2 Background and Related Work

Software Transactional Memory (STM) for the GPU must have two key components 1) a
strategy for detecting conflicts and 2) a method for transforming the original transaction,
written by the programmer, into an implementation that ensures deadlock freedom, correct-
ness, and forward progress despite the addition of loops unanticipated by the programmer
(retry after abortion, repeat non-blocking atomic operation, etc.).

Lightweight GPU STM [10] uses a fall-through transformation, in which each transaction
is placed inside a while-loop that is repeated until all threads in a warp are successful; threads
are “masked off” when a conflict is detected. To allow for long-running remote operations
and the pausing and resuming of transactions, a state-machine transformation is used in
CUDA DTM; this transformation introduces many additional branching overheads, but
allows threads within the same warp to execute the stages of the transaction completely out
of sync [11]. GPU KoSTM relies on a combination of the fall-through and state-machine
transformations.

S. Irving, L. Peng, C. Busch, and J.-K. Peir 2:3

Strict Consistency Relaxed Consistency

Actual vs Apparent Execution Order

Figure 1 Conflict between Update (solid) and Read-Only transactions (striped) is prevented while
maintaining serializability. When using Relaxed Consistency, the Read-Only (striped) transactions
“appear” to have executed earlier than they actually did (compared to the solid Update transaction).

Distributed Transactional Memory (DTM) [9] has been implemented for traditional CPU
clusters using two models: (1) the Data-Flow model [14], in which objects move between
nodes but transaction execution is stationary; and (2) the Control-Flow model [16], in which
shared memory is statically mapped but transactions execute across multiple nodes using
Remote Procedure Calls (RPCs). DTM for GPU clusters has only been implemented using
the Control-Flow model, which avoids the overheads of maintaining a coherent data cache
on the GPU which can greatly impair performance [11]. DTM requires support threads
that are not explicitly created by the programmer for facilitating remote communication
and executing RPCs. Alongside GPU DTM research, there is ongoing research in using
Transactional Memory to facilitate cooperation between the CPU and GPU [2], [17], which
faces similar challenges due to the requisite communication between different memory spaces,
large number of working threads, and high penalties for synchronizing both devices.

Approximate Consistency has been proposed as a method to reduce conflicts by allowing
transactions to “appear” as if they executed in a “more convenient” order that would not
have resulted in a conflict [1]. The term “approximate” is used in the sense that transactions
appear to execute “approximately” when issued by the application; the runtime system is
not producing estimates of current values. Fig. 1 shows how relaxed consistency allows
three Read-Only transactions to appear to have been executed before a conflict with Update
transaction, allowing all transactions to finish earlier while maintaining serializability.

3 Design

BifurKTM (BkTM) is an implementation of Distributed Transactional Memory (DTM) for
GPU clusters designed for applications in which workloads typically exhibit characteristics
well-suited for the GPU architecture, but irregular memory accesses and atomic operations
present major challenges to the programmer. The goal of BkTM is to relax the high barrier
of entry required for performant GPU programming by allowing developers to ignore the
underlying GPU hardware and network topology while still ensuring that a program runs
correctly and to completion. Though some knowledge of the system is required to achieve
large speedups over corresponding CPU clusters, The goal of BkTM is to allow developers to
create distributed GPU applications in minutes that have historically taken days or months.

PARMA-DITAM 2021

2:4 BifurKTM: Approximately Consistent Distributed Transactional Memory for GPUs

DTM
Interface

Logical View Physical View

GPU
Thread

CPU CPU NIC

PCI-E Bus

GPU

NODE 0

MEM

GPU

MEM

Figure 2 BkTM System Overview showing how the network topology, off-device communication,
and distributed memory spaces are “hidden” behind the DTM interface (from the perspective of
GPU threads).

When using BkTM, the programmer can achieve correctness and performance while being
blind to the underlying GPU architecture and network topology, as shown in Fig. 2. To use
BkTM: the programmer has two key responsibilities; 1) marking the beginning and end of
critical sections and 2) marking which data is shared between nodes. At compile-time, BkTM
will transform transactions into multiple GPU-safe implementations that can be repeated
until successful, despite atomic operations and remote communications. Memory accesses
within the loop are converted into TM_READs and TM_WRITEs, which direct memory
accesses into the STM manager. Finally, a programmer can choose to mark a critical section
as “Read-Only”, allowing the BkTM runtime system an opportunity to improve performance.

The BkTM runtime system guarantees shared data integrity and strict correctness at
all times. Any transaction that might modify shared memory (“Update Transaction”) is
not allowed to use the Approximate Consistency optimizations; the use of Approximate
Consistency is limited exclusively to transactions declare in advance that they will not make
changes to shared memory (“Read-Only Transactions”). Correctness and deadlock freedom
is guaranteed at the device level by the KoSTM protocol, and at the cluster-level by KoDTM
detailed in section 3.2.

BkTM is built on top of a custom Partitioned Global Address Space (PGAS) implementa-
tion, though the principles here described can be adapted to any Distributed Shared Memory
implementation. A PGAS allows GPU threads to read and write the locally mapped partition
with minimal overheads and no additional atomic operations. In BkTM: a single-copy model
is used for modifiable data, which is evenly divided between devices. Attempts to modify
data in a partition owned by a remote device will incur a series of network communications
before the transaction can complete; network communications along the critical path for a
transaction can be devastating for overall GPU performance as off-device bandwidth and
latency immediately become bottlenecks for transactional throughput. BkTM prevents
some remote accesses by introduces a virtual memory hierarchy between the device and the
network, as shown in Fig. 3. The Read-Only cache contains copies of remote partitions, and
eliminates the need for long-latency remote partition accesses for read only transactions. In

S. Irving, L. Peng, C. Busch, and J.-K. Peir 2:5

Partitioned Global Address Space

Partition 0

GPU 0

Network

K-Shared Cache 0

K-Stale P0 K-Stale P1

Partition 1

GPU 1

Partition 2

GPU 2

K-Shared Cache 1

K-Stale P2 K-Stale P3

Partition 3

GPU 3

Figure 3 BkTM Virtual Memory Hierarchy showing that each GPU has 1) fast access to a
local partition 2) fast read-only access to K-Stale copies of partitions for GPUs within the same
sub-cluster, and 3) comparatively slow access to all partitions via the network.

this work we term Read-Only K-Opaque copies of remote partitions as “K-Shared” copies
that can be used by “K-Reading” nodes. Modifiable values are statically mapped to a home
node, which must track and update K-Shared copies on remote nodes.

The GPU is a particularly unforgiving device for developers, where the penalties for
misunderstanding application behavior can be devastating to performance and expose the
system to deadlocks. While BkTM makes the usual TM guarantees for deadlock-freedom,
forward progress, etc. the system cannot capitalize on any the GPU advantages (with respect
to CPUs) unless they are fundamental to the workload: this can be any of 1) compute
intensity, 2) high data access regularity, 3) high parallelizability, and, as introduced in this
work, 4) high read intensity. The absence of all of these critical advantages ensures that
GPU-to-GPU bandwidth will be the bottleneck of the system, and the high FLOPS and
local memory bandwidth of the GPU become irrelevant to performance.

In BkTM, Read-Only transactions are allowed to access “stale” copies of shared data
objects, even if the current version is being modified by another thread or if the only
modifiable version is owned by another device, provided the stale version is within “K”
versions of the current (K-Opaque). Both GPU KoSTM and KoDTM work together to
guarantee K-Opacity across all devices. While this strategy cannot introduce any error to
the system, whether K-Stale values are acceptable for read-only purposes is at the digression
of the programmer.

3.1 GPU K-Opaque Software Transactional Memory (KoSTM)
BkTM uses novel software transactional memory model, GPU K-Opaque Software Transac-
tional Memory (KoSTM), that prevents conflicts between Read-Only and Update transactions,
while maintaining performance, data integrity, and minimizing memory overheads. GPU
KoSTM allows transactions to read from old versions of shared objects as long as they are
within K versions of the current version. In this work, only Read-Only transactions to use
Approximately Consistency; Update transactions that might modify shared objects must use
precise values.

Update Transactions detect and resolve conflicts eagerly using atomic operations and
usage metadata for each shared object, shared memory access, and transaction creation. Read-
Only transactions recover a version access history, use lazy conflict detection, and require no

PARMA-DITAM 2021

2:6 BifurKTM: Approximately Consistent Distributed Transactional Memory for GPUs

Modifiable
Object

Shadow

Owning Tx ID

Oldest Version

Current Version

Current
Value

K-Shared
RO Object

MRSW
Structure

Version A

Version B

K-Stale
Value A

K-Stale
Value B

(a) Shadow Entry.

Addresses Addr1

Undo Log

Obj1

Log Size

. . .

. . .

Read Log
Ver1 . . .

(b) Access Log.

Transaction Cache Entry

Transaction Local
Memory

Input

Param 1
Param 2

. . .

Forward

Remote Nested Tx

Var 1
Var 2

. . .

State
Parent

PC
ID

RO?

(c) Transaction meta-data.

Figure 4 GPU KoSTM Meta-Data. Optimizations for Read-Only Transactions are highlighted
in orange. (a) Shadow entries store usage information for each shared memory object; (b) Access
Logs are created for each in progress transaction and are used to track changes to Shadow Entries;
(c) Transaction Meta-Data contains raw transaction inputs and facilitates the creation of Remote
Nested Transactions.

atomic operations. GPU KoSTM guarantees strict correctness for Update transactions, as
exclusive locks and strict data management guarantee data integrity. Read-Only transactions
do not modify Shadow Entries or shared data values. The meta-data used for GPU KoSTM
is shown in Fig. 4 as explained in the following subsections. All KoSTM meta-data is stored
in GPU Global Memory. The total memory overhead of the system is the combination of all
Shadow Entries, Access Logs, and Transaction Meta-Data.

3.1.1 Shadow Entries
The GPU KoSTM Shadow Entry for modifiable objects has three components: 1) the
“Owning Tx ID” integer that is used to track ownership and prevent two transactions from
modifying a shared object at the same time and 2) an integer representing the current version
of the shared object and 3) an integer containing the version of the oldest K-Shared copy in
the system. GPU KoSTM ensures that these versions never differ by more than K-1.

Read-Only transactions are allowed to access K-Shared copies of shared objects, which
use a separate Shadow Entry containing a Multiple-Reader Single-Writer (MRSW) structure
comprised of two version numbers and two object values. This structure allows the K-Shared
object to be duplicated without the use of atomic operations, even while the writer is updating
the current version. Including K-Shared objects, Shadow Entry memory overheads range
from 200% if shared objects are very large up to 800% if shared objects are very small.

When an object is modified, Update transactions must update the oldest value in the
K-Shared shadow and update the version number, before finalizing and releasing exclusive
ownership of the shared object. Read-Only transactions with only access to K-Shared versions
of the object can always retrieve a valid K-Opaque copy of the object value by 1) storing the
largest version (max(a,b)), 2) copying the object value into local memory, 3) performance a
CUDA threadFence, and 4) confirming that the largest version has not changed, ensuring
that the copied value was not modified by any other thread.

3.1.2 Access Log
A history of all successful data accesses is stored in an undo log for Update transactions and
a Read Log for Read-Only transactions. Transactions only ever use either the Undo Log OR
the Read Log; the Read Log is kept separate to avoid type casting overheads.

S. Irving, L. Peng, C. Busch, and J.-K. Peir 2:7

Control Flow DTMLocal STMAPPLICATION

Work
Local
FAST
LANE

Remote
FAST
LANE

SLOW LANE
EXECUTION

SLOW LANE
FINALIZATION

Increasingly difficult to hide communication latency

D
TM

KO
FAST
LANE

Cache Miss

Cache Hit
Cache Miss

. . .

Figure 5 The Control-Flow Model is used for all Transactions. Memory accesses that resolve
to the local memory partition can be completed “quickly” without remote communication (“Local
Fast Lane”); local-partition misses require either a single Remoted-Nested Transaction (“Remote
Fast Lane”) or potentially a chain of nested transactions (“Slow Lane Execution”); BFKTM allows
some Read-Only transactions to avoid created Remote-Nested Transactions by hitting the K-Shared
cache (“KO Fast Lane”).

At first access: Update Transactions perform an atomic compare-and-swap on the Owning
Transaction ID stored in the object’s Shadow Entry. If the object has no current owner, then
the transaction is allowed to continue. The transaction must then check that incrementing
the version counter at commit-time would not result in a KO violation by ensuring that the
Shadow Entry indicates that the current version is at most K-2 versions ahead of the oldest
version. If this is not the case, then the transaction is aborted.

Update transactions store the address, a copy of the current value, and increment the
log size by 1. Read-Only transactions perform the same record keeping, but instead store
the address and version number that was read. Depending on the size of the shared object,
recording a version number can be significantly faster than creating a copy of the object.

Update transactions are eagerly aborted at access-time, while Read-Only transactions
cannot be aborted until validation. This allows read-only transactions to avoid atomic
operations while still guaranteeing K-Opacity.

3.1.3 Transaction Life-Cycle
The initialization and validation of Update transactions are unchanged in this work; any
Update transaction still in the ACTIVE state at the time of validation has been successful.
Successful update transactions increment the current version counter by 1.

Read-Only transactions must re-check all versions in the Read Log to ensure that each
version used is within K versions of the current version. Accesses to the local partition are
compared against the current version in the modifiable object Shadow Entry; accesses to
K-Shared objects must be greater than or equal to the lowest version number in the K-Shared
Shadow Entry.

3.2 Distributed TM Model: KoDTM
BkTM’s DTM model uses a combination of the Control- and Data-Flow models. Control-
Flow, in which Transaction execution moves between nodes to reach statically-mapped data,
is used for Update transactions and Read-Only transactions when the K-Shared caching

PARMA-DITAM 2021

2:8 BifurKTM: Approximately Consistent Distributed Transactional Memory for GPUs

is unsuccessful. The Data-Flow model is used exclusively for Read-Only transactions and
works to maintain K-Opaque copies of remote partitions and allow Read-Only transactions
to bypass remote communications.

BkTM uses a control flow model to guarantee strict correctness for Update transactions in
Fig. 5 and for Read-Only transactions that miss the K-Shared cache. Transaction execution
is divided into a “Fast Lane”, which optimistically assumes there will be no off-device
communication on the critical execution path for the transaction. When this assumption
fails (i.e. in the event of a partition-miss), execution is halted and moved to the “Slow
Lane”, either by sending the input variables alone (as a Forward) or sending transaction-local
variables to create a remote nested transaction. BkTM aims to keep execution in the Fast
Lanes by allowing partition-misses to use K-Opaque copies of remote transactions as if they
were the current version. Fig. 5 refers to Read-Only transactions that have avoided remote
communication by exploiting K-opacity as being in the “KO Fast lane”.

Fig. 6 shows the components used in the KoDTM data flow model. K-Opaque copies of
remote partitions are stored on-device in the K-Opaque Cache. System-wide enforcement of
the k-consistency is controlled by the Broadcaster thread on the host CPU, which scatters
values to remote devices without halting GPU execution in six step process:

1) The broadcaster thread copies the local version shadow entries into host memory and
then 2) copies the current local partition values. This ensures that the values copied are
newer than or equal to the version numbers copied. The MRSW structure in Fig. 4a allow
this copy to occur entirely asynchronously without disrupting GPU transactions. 3) Versions
and values are combined into a single message that is MPI Scattered to all nodes in possession
of a K-Shared copy. 4) KoDTM listener threads receive the new values, CUDA asynchronous
memcpy them into device memory, and then use a stream-synchronize to ensure the values
are visible. 5) The original broadcasting thread waits at an MPI Barrier until all KoDTM
listener threads have copied the updated values into device memory and arrive at the barrier,
indicating all threads in the system with access to the K-Shared copies now see the scattered
versions. 6) The versions copied into host memory in step 1 are now copied back into device
memory, now indicating the oldest existing K-Shared versions. Compared to Transaction
execution, this is long latency process and update transactions may be pessimistically aborted
if they are expected to cause KO violations if allowed to proceed. However, this strategy
allows remote communications to start as soon as possible rather than waiting until they
are initiated by the GPU. Broadcaster threads repeatedly loop through these steps for each
shared partition during application execution.

To limit the negative impact on Update transactions, we allow the programmer to limit
the maximum number of K-Shared copies using the “K-Share limit” parameter which is
explored in our experiments.

3.3 Strict Correctness with Approximate Consistency
GPU KoSTM and KoDTM both exploit relaxed consistency by allowing Read-Only transac-
tions to execute as if they completed at a more “convenient” time. That is to say: K-consistent
values are never approximate nor are they invalid, but they may be outdated at the time
of commit. Furthermore, approximate consistency does not guarantee that there was a
specific “instant” where all read versions existed at the same time, rather that there was
an instance where all read versions were within K modifications from the current version.
KoSTM and KoDTM do not actually modify the transaction execution order histories, but
instead allows certain types of conflicting transactions to proceed uninterrupted. Relaxed
consistency always results in an execution order and shared memory state that are strictly
correct.

S. Irving, L. Peng, C. Busch, and J.-K. Peir 2:9

Read-
Only Tx

Modifiable
Values

GPU 1

CPU
1

Version
Shadow

CPU
2

GPU 2

1

2

3

5

6Update
Tx

Usage
Shadow

K-Shared
Cache 1

K-Shared
Cache 2

4

CUDA Asynchronous Memcpy
MPI Scatter
MPI Barrier

Partition & Cache Miss

SWITCH
TO SLOW

LANE

Partition or Cache Hit

K-Shared Broadcaster Threads

Figure 6 The Data-Flow Model is used to guarantee K-Stale values in the K-Shared cache that
is used only by Read-Only transactions. The Host CPU broadcasts the local Version Shadow, and
Modifiable Values to remote nodes. These broadcasts are received by remote CPUs and copied into
the local K-Shared Cache. No transaction ever initiates data movement; this process is performed
automatically by the system.

0

5

10

15

20

N
or

m
al

ize
d

Tx
/S

CPU FGL

CUDA DTM

BkTM

34

Figure 7 Performance comparisons for workloads with a 75% read-intensity (K=8, 32 Devices,
No K-share limit).

Note that no “error” is ever introduced into shared memory through the use of Approxim-
ate Consistency. Any transaction that might modify a shared object is required to maintain
strict atomicity, consistency, correctness, etc. The programmer must explicitly mark regions
where utilization of approximate consistency is acceptable. Whether or not approximate
consistency is acceptable for a given application can be subjective and requires a deep
understanding of the underlying thread behavior. Programmers can only use approximate
consistency in scenarios where stale values cannot be used to introduce error into shared
memory.

4 Experimental Analysis

To evaluate the performance of BifurKTM we use a 16 node cluster, where each node contains
two CPUs, 2.8GHz E5-2689v2 Xeon processors, and two GPUs, NVIDIA k20x. Nodes are
connected using a 56 Gigabit/sec Infiniband network. Benchmarks are written in CUDA

PARMA-DITAM 2021

2:10 BifurKTM: Approximately Consistent Distributed Transactional Memory for GPUs

0.00001

0.001

0.1

10

1000

N
o

rm
al

iz
e

d
 A

b
o

rt
s/

Tx

(a) Normalized Abort rate.

0

0.05

0.1

0.15

0.2

N
o

rm
a

li
ze

d
 B

W
/T

x

(b) Normalized GPU-to-GPU Communic-
ation Overhead.

Figure 8 BkTM greatly reduces the GPU-to-GPU communication overheads, but has inconsistent
effect on abort rate. Values are normalized against CUDA DTM.

and then compiled using CUDA 9.2 and MPICH 3.1.1 in Red Hat Enterprise Linux 6. We
use 9 irregular memory access and dynamic data structure benchmarks used in prior works
[6, 13, 10, 11]. BifurKTM is implemented in CUDA, using MPI for communication, and uses
pre-processor directives to make multiple transformations of each transaction at compile-time.

The benchmarks used in this work, their workload configurations, and shared memory
sizes are shown in Table 1. We consider benchmarks with behaviors favorable to the GPU
(compared to the CPU) despite the presence of irregular memory accesses requiring atomic
operations. Inputs are randomly generated in place to simulate the behavior of a server
receiving random requests from clients. Update transactions are unchanged from their
implementations in prior works. We run each benchmark in each configuration three times
and report the average.

Read-Only transactions are typically short and involve retrieving a single value from
an array or a dynamic data structure: HIST randomly generates a number and reads the
number of times it has been generated previously; KMEANS reads the location of the cluster
that is closest to a given point; BANK reads the current balance for a given bank account;
SSSP, LIST, TREE, and SKIP search a dynamic data structure for a given key and return
the associated value if it is found; and finally, HASH+S and HASH+M read one and 20
values from a shared hash table. Hash+M has a larger read/write set in an effort to configure
the benchmark for antagonistic behavior. Note that the Read-Only transactions require
atomic operations due to the presence of Update transactions that could change any value at
any time.

In our first experiment, we compare the performance of BkTM to CPU FGL, where work
is only done by the CPUs in the cluster and correctness is assured using Fine-Grained locking,
and to CUDA DTM using Pessimistic Software Transactional Memory using the cluster
configurations shown in Table 2. Performance values are normalized by the performance
of the CUDA DTM. Fig. 7 shows that BkTM+K8 achieves a geometric mean speed up
of 6.5x over CUDA DTM, and a speedup of 18x over CPU FGL, when using an K=8 and
having no limit on the number of K-Shared read-only copies. BkTM’s speedups are primarily
attributed to significant reductions in GPU-to-GPU communication overheads despite some
increases in the abort rate as shown in Fig. 8. Note that aborting local Update Transactions
to ensure cluster-wide K-Opacity requires no communication and thus these aborts are much
cheaper than Remote Nested Transaction aborts. BifurKTM eliminates some expensive
Remote-Nested aborts in favor of many cheap local aborts, making aborts cheaper on average
compared to CUDA DTM. Compared to CPU FGL, BkTM additionally benefits from the
GPU’s 100x higher computational throughput and 5x higher memory bandwidth.

S. Irving, L. Peng, C. Busch, and J.-K. Peir 2:11

Table 1 Benchmark Configurations.

HIST and KMEANS perform very long computations before performing very short
transactions with low conflict rates. We observe that BkTM has no noticeable impact on the
abort rate in Fig. 8a, and reduces communication overheads by 98%, yielding a 7x speedup
over CUDA DTM.

BANK and SSSP have very short critical sections with very little time spent outside
of the transaction. These behaviors are very disadvantages for GPU clusters unless the
workloads exhibit high partition-locality, which limits the usefulness of the K-Shared cache.
Having short transactions and high transactional through-puts, the BANK and SSSP both
incur massive increases in the abort rate, as update transactions must be pessimistically
aborted to ensure K-consistency between K-shared broadcasts. Both benchmarks achieve a
modest speedup owing to the 80% reduction in GPU-to-GPU communication overheads.

Dynamic data structure benchmarks show strong speedups proportional to the average
search time of the structure. LIST, TREE, SKIP, and HASH all see large decreases in the
abort rate as well as the communication overheads owing to the compounding advantages
of reduced local contention from 1) GPU KoSTM preventing conflicts between Read-Only
and Update transactions, 2) KoDTM allowing at least 80% of remote communication to be
avoided, 3) fewer changes to the shared data structure prevents non atomic insertion/retrieval
location searches from being repeated. TREE achieves the lowest speedup of 2.4x owing to
the very short O(logN) search times and corresponding high update frequency; while list,
with a significantly longer O(N) search time, achieves the largest speedup of 34x.

Finally, we observe a 20x speedup for the HASH-M benchmark, which in our experiments
performance 20 simultaneous insertions into a shared hash table backed by linked lists.
HASH-M’s abort rate is greatly increased, as 20 modifications per Update transaction forces
abortions to prevent KO violations. The large speedup is attributed to the 95% reduction in
GPU-to-GPU communication overheads as shown in Fig. 8b, as all Read-Only transactions
hit the K-Share cache. Note that the communication overheads discussed in this work do
not include CPU-initiated communications which are used for broadcasting K-Shared values.
These broadcasts do compete for communication bandwidth, but they are not along the
critical path for any particular transaction and thus do not directly impact performance like
a GPU-initiated communication does.

In our experiments, we observe large performance improvements despite huge increases
in the abort rate due to the cost asymmetry between a local abort-and-retry, which requires
no off-device communication, and the creation of a remote-nested transaction when reading
data outside of the local partition which can have a six order-of-magnitudes longer latency
caused by remote communication on the critical path. At larger cluster sizes or shared data
sizes, the bandwidth between devices will become a critical bottleneck preventing the usage
of a read-only copy on every remote node.

PARMA-DITAM 2021

2:12 BifurKTM: Approximately Consistent Distributed Transactional Memory for GPUs

Table 2 Cluster Configurations.

In this event, the programmer can either 1) restructure data accesses to decrease partition-
miss-rate, or 2) relax K until bandwidth no longer limits update frequency (as shown in Fig.
10b).

0

5

10

15

20

25

30

35

40

0 4 8 12 16 20 24 28 32

N
o

rm
a

liz
e

d
 T

x/
S

K-Shared Copy Limit

HIST

BANK

LIST

HASH-M

(a) Speedup over BkTM with
strict consistency.

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 4 8 12 16 20 24 28 32

N
o

rm
al

iz
ed

 A
b

o
rt

s/
Tx

K-Shared Copy Limit

(b) Aborts per Committed Trans-
action.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 4 8 12 16 20 24 28 32

N
o

rm
al

iz
ed

 B
w

/T
x

K-Shared Copy Limit

HIST

BANK

LIST

HASH-M

(c) Communication overhead.

Figure 9 Impact of limiting the number of K-Shared copies on BkTM performance (K=8).

0

2

4

6

8

10

12

14

16

18

0 4 8 12 16 20 24 28 32

N
o

rm
al

iz
ed

 T
x/

S

K

(a) Speedup over BkTM with
strict consistency.

0.00001

0.001

0.1

10

1000

100000

10000000

0 4 8 12 16 20 24 28 32

N
o

rm
al

iz
ed

 A
b

o
rt

s/
Tx

K

HIST

BANK

LIST

HASH-M

(b) Aborts per Committed Trans-
action.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 4 8 12 16 20 24 28 32

N
o

rm
a

liz
e

d
 B

w
/T

x

K

HIST

BANK

LIST

HASH-M

(c) Communication overheads.

Figure 10 Impact of relaxed consistency on BkTM performance (K-Share limit of 16).

4.1 Balancing Staleness and Throughput
In this section, we study the effect of relaxing consistency and limiting the number of
K-Opaque read-only copies of each partition for workloads with a read-intensity of 75%.
These two levers allow the programmer to balance two key trade-offs of the BkTM design.
We use the shorthand “BkTM+KX” to refer to BkTM configurations with different degrees
of approximate consistency, where X=0 refers to “strict consistency”.

In Fig. 9 we observe that BkTM+K8 achieves a geometric mean speedup of 13.3x over
BkTM+K0 due to a 96% reduction in communication overheads. To enforce cluster-wide
K-Opacity while using K-Shared data copies, BkTM+K8 incurs a massive increase in the
abort-rate. The abort-rate can be mitigated allowing RO transactions to read staler versions
by increasing K. We observe that the best performing version of all benchmarks has an
unlimited number of K-Shared partition copies, despite the large increases in abort rate,
while still enforcing a modest staleness limit of K=8.

S. Irving, L. Peng, C. Busch, and J.-K. Peir 2:13

As the system allows more K-Shared copies of each partition, the time required to update
those copies increases and the limit on the rate at which shared objects can change is lowered.
In Fig. 9b we observe a sharp increase in the abort rate for the HASH-M benchmark at a
K-Share limit of 2: the time required to update 2 remote partition copies becomes a bottleneck
for local update transaction performance. Similarly, maintaining even one K-Shared remote
copy hurts BANK update transaction performance. For both benchmarks, the increased
throughput of read-only transactions offsets the negative impact on update transactions.

On the other hand, in Fig. 9c we observe spikes in the communication overheads for the
BANK and LIST benchmarks as the costs of KO-violation abort & retry are not offset by the
RO advantages. We observe that maintaining the K-Shared cache hurts BkTM performance
by 24% when allowing only one K-Shared copy of each partition. BkTM+K8 does not show
a speedup for the BANK benchmark until 8 devices are allowed to have K-Shared copies of
remote partitions.

In Fig. 10, we observe that increasing the degree of Opacity, K, allows update transactions
to make more modifications between partition broadcasts to remote readers which can either
1) reduce the number of local aborts caused to ensure global K-Opacity; OR 2) increasing
the number of K-Readers, which requires larger, slower broadcasts. Increasing K has a
limited impact on RO transactions on K-Sharing nodes as the local copy is guaranteed to
be K-Opaque on first access. We observe that increasing K slightly reduces communication
overheads in Fig. 10c due to the significantly reduced abort rate.

Increasing K will have a binary effect on update transaction throughput: either K is
greater than the number of updates that occur between K-Reader broadcasts or it is not. In
Fig. 10b we observe that HIST’s update frequency is low and thus increasing K has no impact
on the abort rate. In contrast, BANK has a very high frequency and even K=32 is not enough
to prevent aborts between K-Reader updates. We see HIST and HASH-M cross break-even
points at K=2 and K=16 respectively, where we see 99.9% reductions in their abort-rates.
Whether or not a possible staleness of 15 is worth the increased update-throughput is at the
discretion of the programmer.

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100

N
o

rm
al

iz
ed

 T
x/

S

% Read-Only Transactions

HIST

BANK

LIST

HASH-M

(a) Speedup over BkTM without
relaxed consistency.

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 20 40 60 80 100

N
o

rm
al

iz
e

d
 A

b
o

rt
s/

T
x

% Read-Only Transactions

HIST

BANK

LIST

HASH-M

(b) Aborts Rate.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100

N
o

rm
al

iz
ed

 B
w

/T
x

% Read-Only Transactions

HIST

BANK

LIST

HASH-M

(c) Communication Overheads.

Figure 11 Impact of workload composition on BkTM performance (K=8, 32 Read-Only Copies).

4.2 Workload Sensitivity
In this study we study the performance of BkTM, normalized by BkTM without relaxed
consistency, as the read-intensity of the workload changes. We here define read-intensity as
the percentage of all committed transactions that anticipated that no changes would be made
to shared memory before the transaction began. The STM system is informed of anticipated
read-only execution using information provided by the programmer. Here we use K=8 and
allow all 32 nodes to store K-Opaque read-only copies of the full PGAS.

PARMA-DITAM 2021

2:14 BifurKTM: Approximately Consistent Distributed Transactional Memory for GPUs

In Fig. 11, we observe large speedups driven primarily by huge reductions in commu-
nication overheads for very read-intensive workloads, despite large increases in the abort
rate in some cases. With a read-intensity of 10% we observe that BkTM+K8 achieves only
70% of the performance of BkTM+K0 as the majority-update workload does not benefit
from the read-optimizations. Poor performance can be attributed to the maintenance of
remote read-only partition copies, which can only be K versions behind the local version.
These overheads can be hidden with a read-intensity of 25% where BkTM+K8 gains a 1.3x
speedup.

At the maximum read-intensity test, 90%, BkTM+K8 shows a geometric mean spee-
dup of 9.6x over BkTM+K0. The LIST benchmark shows particularly large performance
improvements owing to the compounding effects of low update frequency, more reliable
pre-transaction insertion-point searches, greatly reduced communication overheads, and a
greatly reduced abort rate from prevent conflicts between read-only transactions.

In Fig. 11b all benchmarks except HIST show exponentially decreasing abort rates as the
read-intensity increases; the abort rate and update frequency of HIST are both so low that
the abort rate is unaffected by varying the read-intensity. HASH-M and BANK show greatly
increased caused by the high shared-object update frequency causing update transactions
to abort and restart while waiting for remote partition copies to be updated. With a read-
intensity of 90%, the update frequency is finally low enough that the broadcaster no longer
causes aborts to ensure K-Opacity. LIST crosses a similar breaking point at read-intensity
of 25%. The exact value for this update frequency is different for each benchmark and is
determined by the bandwidth between devices, shared object sizes, and how easily messages
can be batched and sent to the same destination node.

5 Conclusion

In this work, we explore the performance of BifurKTM (BkTM), which allows programmers to
improve GPU cluster performance by allowing Read-Only transactions to execute at a more
convenient time. By rearranging the apparent execution order, BkTM can greatly reduce the
conflict rate between transactions and nearly eliminate the communication overheads. We
demonstrate that a GPU cluster using BkTM, even workloads with a low read-intensity, can
greatly outperform a CPU cluster despite irregular memory accesses and the overheads of
accessing distributed shared memory.

Though GPU clusters using BKTM remain sensitive to workload composition, we increase
GPU cluster flexibility and achieve a greater high performance range using relaxed consistency.
This work relies on the programmer to recognize such opportunities by understanding the
underlying application behavior. Finally, the BkTM incurs at least a 200% memory overhead
due to the requirement for storing multiple copies of shared objects. We expect future
technologies to further relax these constraints by increasing GPU on-device memory, off-chip
bandwidth, and increasing the overall diversity of GPU applications.

References

1 Basem Assiri and Costas Busch. Approximate consistency in transactional memory. Interna-
tional Journal of Networking and Computing, 8(1):93–123, 2018.

2 Daniel Castro, Paolo Romano, Aleksandar Ilic, and Amin M Khan. Hetm: Transactional
memory for heterogeneous systems. In 2019 28th International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 232–244. IEEE, 2019.

S. Irving, L. Peng, C. Busch, and J.-K. Peir 2:15

3 Daniel Cederman, Philippas Tsigas, and Muhammad Tayyab Chaudhry. Towards a software
transactional memory for graphics processors. In EGPGV, pages 121–129, 2010.

4 Sui Chen and Lu Peng. Efficient gpu hardware transactional memory through early conflict res-
olution. In 2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 274–284. IEEE, 2016.

5 Sui Chen, Lu Peng, and Samuel Irving. Accelerating gpu hardware transactional memory
with snapshot isolation. In Computer Architecture (ISCA), 2017 ACM/IEEE 44th Annual
International Symposium on, pages 282–294. IEEE, 2017.

6 Pascal Felber, Christof Fetzer, Patrick Marlier, and Torvald Riegel. Time-based software
transactional memory. IEEE Transactions on Parallel and Distributed Systems, 21(12):1793–
1807, 2010.

7 Wilson WL Fung, Inderpreet Singh, Andrew Brownsword, and Tor M Aamodt. Hardware
transactional memory for gpu architectures. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 296–307. ACM, 2011.

8 Maurice Herlihy and J Eliot B Moss. Transactional memory: Architectural support for lock-free
data structures. In Proceedings of the 20th annual international symposium on computer
architecture, pages 289–300, 1993.

9 Maurice Herlihy and Ye Sun. Distributed transactional memory for metric-space networks.
Distributed Computing, 20:195–208, 2007.

10 Anup Holey and Antonia Zhai. Lightweight software transactions on gpus. In Parallel
Processing (ICPP), 2014 43rd International Conference on, pages 461–470. IEEE, 2014.

11 Samuel Irving, Sui Chen, Lu Peng, Costas Busch, Maurice Herlihy, and Christopher Michael.
Cuda-dtm: Distributed transactional memory for gpu clusters. In Proceedings of the 7th
International Conference on Networked Systems, 2019.

12 Jiri Kraus. An introduction to cuda-aware mpi. Weblog entry]. PARALLEL FORALL, 2013.
13 Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. Stamp: Stanford

transactional applications for multi-processing. In 2008 IEEE International Symposium on
Workload Characterization, pages 35–46. IEEE, 2008.

14 Sudhanshu Mishra, Alexandru Turcu, Roberto Palmieri, and Binoy Ravindran. Hyflowcpp: A
distributed transactional memory framework for c++. In Network Computing and Applications
(NCA), 2013 12th IEEE International Symposium on, pages 219–226. IEEE, 2013.

15 John Nickolls, Ian Buck, and Michael Garland. Scalable parallel programming. In 2008 IEEE
Hot Chips 20 Symposium (HCS), pages 40–53. IEEE, 2008.

16 Mohamed M Saad and Binoy Ravindran. Snake: control flow distributed software transactional
memory. In Symposium on Self-Stabilizing Systems, pages 238–252. Springer, 2011.

17 Alejandro Villegas, Angeles Navarro, Rafael Asenjo, and Oscar Plata. Toward a software
transactional memory for heterogeneous cpu–gpu processors. The Journal of Supercomputing,
pages 1–16, 2017.

PARMA-DITAM 2021

The Impact of Precision Tuning on Embedded
Systems Performance:
A Case Study on Field-Oriented Control
Gabriele Magnani !

DEIB, Politecnico di Milano, Italy

Daniele Cattaneo !

DEIB, Politecnico di Milano, Italy

Michele Chiari !

DEIB, Politecnico di Milano, Italy

Giovanni Agosta !

DEIB, Politecnico di Milano, Italy

Abstract
Field Oriented Control (FOC) is an industry-standard strategy for controlling induction motors
and other kinds of AC-based motors. This control scheme has a very high arithmetic intensity
when implemented digitally – in particular it requires the use of trigonometric functions. This
requirement contrasts with the necessity of increasing the control step frequency when required, and
the minimization of power consumption in applications where conserving battery life is paramount
such as drones. However, it also makes FOC well suited for optimization using precision tuning
techniques. Therefore, we exploit the state-of-the-art FixM methodology to optimize a miniapp
simulating a typical FOC application by applying precision tuning of trigonometric functions. The
FixM approach itself was extended in order to implement additional algorithm choices to enable a
trade-off between execution time and code size. With the application of FixM on the miniapp, we
achieved a speedup up to 278%, at a cost of an error in the output less than 0.1%.

2012 ACM Subject Classification Hardware → Power estimation and optimization; Software and
its engineering → Compilers; Applied computing → Consumer health

Keywords and phrases Approximate Computing, Field-oriented control, Precision Tuning

Digital Object Identifier 10.4230/OASIcs.PARMA-DITAM.2021.3

Funding Work supported by the FET-HPC project RECIPE, G.A. n. 801137.

1 Introduction

Approximate Computing is an increasingly popular approach to achieve large performance
and energy improvements in error-tolerant applications [1, 27, 13]. This class of techniques
aims at trading off computation accuracy for performance and energy. In particular, precision
tuning is an approximate computing technique that trades off the accuracy of mathematical
operations for performance and energy by employing less precise data types, e.g. fixed point
instead of floating point, or bfloat16 [20] instead of standard IEEE-754 32-bit floating point
numbers.

This non-trivial task is usually performed manually by embedded systems programmers,
and in general by software developers that need to achieve high performance with limited
resources. However, this operation is error-prone and tedious, especially when large code
bases are involved. Thus, a significant research effort has been spent over the recent years
to build compiler-based tools to support or entirely replace the programmer effort [10]. In
particular, recent advances optimize mathematical functions whose computation is usually
off-loaded to a library [9].

© Gabriele Magnani, Daniele Cattaneo, Michele Chiari, and Giovanni Agosta;
licensed under Creative Commons License CC-BY 4.0

12th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and
10th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
2021).
Editors: João Bispo, Stefano Cherubin, and José Flich; Article No. 3; pp. 3:1–3:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gabriele.magnani@mail.polimi.it
https://orcid.org/0000-0001-9729-5826
mailto:daniele.cattaneo@polimi.it
https://orcid.org/0000-0003-1453-3257
mailto:michele.chiari@polimi.it
https://orcid.org/0000-0001-7742-9233
mailto:agosta@acm.org
https://orcid.org/0000-0002-0255-4475
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2021.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2 The Impact of Precision Tuning on Embedded Systems Performance

However, these advances are generally proven on benchmark suites, which are not
necessarily representative of specific embedded systems domains. In particular, the PolyBench
suite [35] is primarily composed of kernels from the High Performance Computing domain,
whereas the CPU variant of AxBench only provides one kernel for each domain addressed,
for a total of seven kernels. Therefore, there is a distinct lack of analyses of the performance
impact of automated precision tuning on embedded-specific application domains. Given the
wide variety of such domains, the trade-off between generality and accuracy of the benchmark
can be addressed by exploiting the miniapp concept [28, 19, 18], which provides a middle
ground between the full application (which provides accuracy at the expense of generality)
and kernels (which provide some generality at the expense of accuracy).

Among microcontroller-based embedded application domains, the control of electrical
motor drives – a classical topic in power electronics – remains very relevant also thanks to the
wide diffusion of drones and the maker culture. Field-oriented control (FOC) is one of the
two main techniques employed to control such motors. Although it is more computationally
intensive than its competitor, Direct Torque Control, the availability of cheap but powerful
microcontrollers makes it relevant [32, 4]. We select a FOC controller as a miniapp on which
we exercise the full capabilities of a modern compilation toolchain supporting precision tuning
for operation on low-power microcontrollers, which are usually not endowed with a floating
point unit to save area and power. FOC controllers are mainly composed of the Clarke and
Park transforms, in both the direct and inverse form, coupled to proportional/integral (PI)
controllers. The two transforms extensively leverage trigonometric functions and square root
computation, posing a challenge for the optimization that is best addressed through tunable
generation of mathematical functions.

Contribution

In this work, we provide two main contributions. First, we explore the practical applicability
of modern precision tuning tools to embedded systems applications, focusing on the specific
domain of motor control systems through a dedicated case study.

Second, we improve the FixM library beyond the proof-of-concept provided in [9] by
adding the capability of choosing between multiple algorithms. In particular, FixM can now
choose between the industry-standard CORDIC [31] algorithm and a simple look-up-table
(LUT) implementation.

Organization of the paper

The rest of this paper is organized as follows. In section 2 we briefly survey the existing tools
for precision tuning, to select the most appropriate for the optimization of the FOC miniapp.
In section 3 we provide a brief background on FOC and a characterization of the FOC
miniapp employed as a case study in our work. In section 4 we report on our experimental
evaluation, while in section 5 we draw some conclusions and highlight future directions.

2 Related Work

With the growing interest in recent years towards precision tuning as a technique for perform-
ance and energy optimization, and with the growing spread of error-tolerant applications
in a diverse range of application domains, the literature has seen a number of approaches
to automating this task. A full discussion of the topic is beyond the scope of this work,
therefore the interested reader is referred to recent surveys such as [2, 10, 27].

G. Magnani, D. Cattaneo, M. Chiari, and G. Agosta 3:3

Precision tuning approaches can be divided into two broad categories: static and dynamic.
Dynamic approaches such as [3, 11, 34, 25, 16], while providing more fine tuning of the data
type width, lead to excessive overheads for low-power embedded applications. [11, 25, 16]
recompile computational kernels just-in-time to fine-tune them to the current input. The time
and energy overhead of recompilation makes this approach sub-optimal for low-power, realtime
settings. [34] performs an offline noise-sensitivity analysis to identify error-tolerant areas
of the program, and then dynamically reduces the accuracy of floating-point computations
at runtime. The main drawbacks of this work is that the offline analysis requires a dataset
representative of real world inputs, which might not be available, and hardware support for
floating-point precision scaling. The requirement of a representative input dataset is also a
drawback of Autoscaler for C [22] and PetaBricks [3].

Another class of approaches more directly tailored for embedded systems is that of
hardware/software codesign approaches, where the hardware computing units are generated
according to the minimum necessary precision [21, 26]. These approaches, while very effective,
are not applicable to many real world cases. Indeed, the industrial scenario of embedded
systems is predominantly composed of small and medium sized system integration companies
that work with a range of platforms from large semiconductor manufacturers such as Texas
Instruments and ST Microelectronics, with limited opportunities for full-scale hardware/soft-
ware codesign. Furthermore, this scenario requires to avoid the introduction of custom
programming languages and runtimes, both because of the limitations of the underlying
hardware and because embedded systems developers often have focused competences on
domain-specific tools that generate C code, or directly write embedded C code. This makes
dedicated languages such as PetaBricks unsuitable in this scenario.

Thus, we constrain the discussion to tools that can be used for static precision tuning, i.e.
to provide a single mixed precision version of the original code that satisfies the user-defined
precision requirements while optimizing a given performance metric. Such tools gather the
information required to apply their optimizations to the code without requiring extensive
testing, but rather through static analyses. Among them, the most representative of the state
of the art are Precimonious [23], Daisy [15], and taffo [12], which are all candidates for use in
embedded systems scenarios. Of these, Daisy operates as a source-to-source compiler, which
can be considered a drawback, since it may prevent information from the source from reaching
the compiler optimization phases directly, possibly introducing overheads. Precimonius and
taffo operate as llvm plugins, thus providing a greater degree of integration. Finally, only
taffo provides dedicated support for mathematical library optimizations [9]. Thus, we select
taffo with the FixM extension as the tool for our investigation.

3 Application scenario

The topic of motor control systems is as old as the invention of the first brushed direct
current (DC) motor. For over a century, since the mid-1800s, this kind of motors were
the favored technology for applications where some degree of control of motor speed and
torque was required, because it could be easily achieved through simple techniques such as
split windings in the motor and rheostats. Two-phase alternating current (AC) motors or
induction motors were much harder to control electrically with the technology of the time.
With the advent of solid-state power electronics in the mid-1970’s, and the development of
control theory, it became possible to electronically control AC motors. The most efficient of
such controllers are active, in other words they employ feedback from sensors in the motor
itself to achieve greater precision in the behavior of the motor.

PARMA-DITAM 2021

3:4 The Impact of Precision Tuning on Embedded Systems Performance

To this day, one of the most popular state-of-the-art control schemes for AC induction
motors is Field-Oriented Control (FOC). FOC was first proposed by Blaschke [5], and it
belongs to a wider class of motor control approaches named variable-frequency drive (VFD),
as it involves variation of the frequency of the electrical power fed into the motor. The
main alternative to FOC for motor control is Dynamic Torque Control (DTC), which was
developed by Takahashi et al. [30]. This control scheme is simpler to implement. However, it
is less effective at low speeds, and produces higher ripple in the torque and the current [8].
A digital implementation of FOC was described by Gabriel et al. in 1980 [17].

In this section, we briefly discuss the relevance of FOC in the current industrial landscape,
and then we enter into details with respect to its implementation. Finally, we describe the
structure of the miniapp we use, and the improvements to FixM that we implemented.

3.1 Relevant applications of FOC
The applications where FOC is most relevant are all those cases where it is desired to
efficiently operate a motor to achieve a set torque or rotation speed. Nowadays, FOC
is seeing increasing adoption because the higher computational power required by digital
implementations was compensated by the development of high-performance microcontrollers
which are able to execute the control loop at ever higher frequencies. In fact, far from
standing still, the field of its applications has seen a considerable expansion.

In industrial applications, the last two decades saw the widespread adoption of FOC for
all AC motors, where in the past passive control schemes were employed. This development
was spurred by an increased preference for permanent-magnet (PM) brushless DC and AC
motors, alongside with induction motors (IMs) and other such high-efficiency motors that
require the use of FOC to achieve their highest rated torque [6].

Another application field where FOC is in massive use is in high-power electric propulsion
systems employing induction motors, such as electric trains and automobiles. While electric
trains are a consolidated presence in the public transport scenario, the increased preference
of electric engines in automobiles over internal combustion engines is a recent phenomenon
because of the reduced environmental impact and the development of battery technology that
significantly lifted previous range limitations. FOC applied to automobile-grade induction
motors has been successfully employed in the industry, for example in vehicles such as the
General Motor EV1 and the Tesla Model S. Therefore, FOC is the key to the impressive
acceleration and range efficiency performance of this class of automobiles [29].

An additional use case of FOC that has arisen in the last decade are drones, utility devices
that are increasingly replacing heavyweight solutions such as helicopters in applications such
as surveillance, video production and more [24].

In the eolic industry, FOC is also used as a control approach for the machine-side-converter
component of permanent magnet synchronous generators for wind turbines. Control of the
torque of the turbine is key to achieving the highest possible efficiency in all conditions [33].

3.2 Principle of Operation
FOC targets induction motors or permanent magnet synchronous motors. In such motors
the drive coils are mounted on the stator, and the rotor is free to rotate around the coils.
Motion is achieved by attraction or repulsion of a permanent magnet affixed to the rotor
through the magnetic field produced by the current passing through the coils in the stator.
Indeed, the output of the FOC control equations is the voltage to be applied to these coils as
a function of time. To produce a continuous rotation, the coils – or electromagnets – must
alternate their magnetic polarity at a precisely controlled rate.

G. Magnani, D. Cattaneo, M. Chiari, and G. Agosta 3:5

The central idea behind FOC is to analyze the magnetic flux generated by the current
passing through the coils of the motor through vectors in the complex space. In motor space,
the frame of reference considered by FOC is composed by three two-dimensional current
vectors ia, ib and ic which are laid out with a 120° angle between them. These three vectors
model the three electromagnets used by a typical induction motor. This frame of reference
is commonly denoted as the three-phase system axis, or abc-space. The complex current īs

induced through the stator is therefore expressed as:

īs = ia + e
2jπ

3 ib + e
4jπ

3 ic

where j =
√

−1 is imaginary unit.
The three-phase system describes the current passing through the coils in a geometric

and therefore time-variant means. Since in this three-dimensional frame of reference one of
the base vectors can be constructed as the linear combination of the other two, it is possible
to reduce this space to a simpler still time-variant two-dimensional frame of reference. This
operation is performed through the Clarke transformation. Given the three-phase currents
ia, ib and ic in a balanced system where ia + ib + ic = 0, such transform calculates equivalent
currents iα and iβ in the two-phase orthogonal stator space as:

[
iα

iβ

]
=

 1 0 0
1√
3

2√
3 0

0 0 0


ia

ib

ic


To convert this time-dependent frame of reference to a time-independent rotating space, a

second transform is employed, named the Park transformation. Such transformation operates
as follows, given iα and iβ and a rotor flux angle ϑ:[

id

iq

]
=

[
cos ϑ sin ϑ

− sin ϑ cos ϑ

] [
iα

iβ

]
In induction motors, the rotor flux angle ϑ is measured using a pair of Hall sensors around

the perimeter of the motor. The id and iq variables represent respectively the flux component
and the torque component of the rotation of the motor. To achieve control of the motor, the
FOC approach uses a PI regulator or another kind of regulator on the id and iq variables to
compute the pq-space voltage components vd and vq. We denote the target id and iq as idRef
and iqRef . These voltages are transformed to time-variant αβ-space by applying the reverse
Park transform, and then the inverse Clarke transform or another modulation scheme such
as PWM to obtain the voltages to the coils in the starting abc-space.

3.3 Structure of the Miniapp
From the description of the operation of the FOC control approach, we easily determine
that it has a very high arithmetic intensity. In particular, the computation of the Park
and the inverse Park transform requires four computations of sin and four computations
of cos of a variable angle measured from sensors. Finally, we can deduce that FOC is
error tolerant from the application of control engineering principles, and from fact that the
inputs to the control system are intrinsically uncertain sensor measurements. Therefore, this
application is particularly suited for the application of the FixM methodology, as it matches
both effectiveness requirements of such methodology – error tolerance and high arithmetic
intensity.

The miniapp we use for analyzing the ability of FixM to optimize the FOC control
scheme is composed by:

PARMA-DITAM 2021

3:6 The Impact of Precision Tuning on Embedded Systems Performance

SinePWM

Input readings

FOC Mod.
 type SpaceVectorPWM

(not used)

Inverse Park Transform Clarke Transform

Figure 1 Structure of the FOC miniapp. Light blue elements are the computationally intensive
kernel. Shaded elements are not used, but are present in the miniapp structure to maintain
compatibility with the Arduino SimpleFOCLibrary, from which the original code has been extracted.

An input generator, which is tasked with producing simulated values of ia, ib, ϑ, iqRef
and idRef as required by the FOC system.
The computational kernel, which performs a single discrete pass of the FOC control
algorithm using the inputs generated by the previous component of the miniapp.

The input generator is designed to be lightweight, in order to approximate the computational
load which would be required in a realistic application for reading the sensors and the target
idRef and iqRef from an external system or another software component running on the
same microcontroller. Additionally, the input generator is deterministic, in order to allow
comparisons of the quality of the control action across different precision settings.

The miniapp performs a fixed number of iterations of the FOC kernel combined with the
input generator, reporting the last values of ia, ib and ic generated by the FOC controller at
regular intervals. At the end of the miniapp’s execution cycle, the measured number of clock
cycles required for the computation are printed. This allows the comparison of the execution
time between differently optimized versions of the miniapp. Figure 1 show a block diagram
of the miniapp control flow graph.

3.4 Enhancements to FixM
As presented in [9], FixM is only capable of optimizing sin and cos trigonometric functions
by replacing floating point implementations with customized fixed point code depending
on the required precision. The fixed point versions of these functions always employed the
CORDIC [31] algorithm, as it is fast – it executes in constant time given a fixed amount
of bits in the output – and has a very small code size. However, we observe that when
the number of different bit partitionings used in the optimized program are small, it is
worthwhile to penalize code size in exchange for improved execution time. In particular,
we can replace the implementation based on CORDIC with a look-up-table (LUT) based
implementation. A LUT is implemented by computing and storing a customizable number
of sin values from the input range [0- π

2] at compile time. Since storing the function’s value
for each possible input may take up too much memory, only values for evenly-spaced inputs
are stored. Their granularity determines the precision of the implementation, at the expense
of memory consumption. Additionally, the size of the LUT is reduced by exploiting the
periodicity and symmetry properties of trigonometric functions. At runtime, the angle to
lookup is adjusted using trigonometric transformations to fit the right range and compute the
correct function. Thus, LUTs essentially nullify the constant factors intrinsic in a complex

G. Magnani, D. Cattaneo, M. Chiari, and G. Agosta 3:7

algorithm such as CORDIC, because they only involve a single memory lookup with some
minor prior computation to perform a calculation. This approach comes at the cost of a
much larger data segment, and the higher the precision, the larger the code size.

In order to allow the automatic trade-off of code size and execution time, we added a
parameter to FixM called Z. The Z parameter expresses the proportion of space available
for additional code, excluding any occupation attributable by the optimizations performed
by FixM. Depending on the value of Z, FixMAGE decides at compile time whether to
generate a look-up-table or a CORDIC implementation of a given trigonometric function. By
default, Z is set to 0, and in that setting it forces FixMAGE to always generate CORDIC
implementations. Conversely, Z = 1 will always generate LUTs instead of using CORDIC.
Intermediate values let FixMAGE decide which implementation to choose depending on the
frequency of use of that implementation and its cost in terms of bytes.

More in detail, FixMAGE models such decision process as a knapsack problem, where
each item i is a function instance, its value vi is equal to the number of times the function is
used, and its weight wi is equal to the estimated size occupied by the LUT computed as:

wi = Mi · dd · 1 − Z

dc · N + df · Ṅ

where Mi is the number of items in the LUT, N is the number of llvm-ir instructions in
the program, Ṅ is the number of functions in the program, and dc, df and dd are weights
for each instruction, function and LUT entry respectively. The additional parameters dc,
df and dd depend on the architecture. In particular, dc is the average code density, df is
the function call prologue and epilogue overhead, and dd is the size of a single LUT table
item. Therefore, the term A = dc · N + df · Ṅ estimates the code size of the program being
compiled. The term B = Mi · dd estimates the size of the LUTs. For a conventional 32-bit
ARM architecture we use dc = 4, df = 64 and dd = 4. In order to minimize the compilation
time, the knapsack problem is solved using the greedy algorithm proposed by Dantzig [14].

4 Experimental Evaluation

In this section, we evaluate the effectiveness of the enhancements presented in Section 3.4 in
the optimization of a FOC controller. We evaluate its benefits in terms of energy consumption,
execution time and code size of the optimized program. We also measure the impact on
computation accuracy, to make sure the optimization does not induce errors in the output
that are large enough to compromise the controller’s functionality.

Energy consumption and code size are especially important for this application, since the
typical hardware platforms on which FOC controllers operate are (possibly) battery-powered
embedded systems with limited memory. In this respect, we evaluate FixMAGE by varying
the proportion of trigonometric functions implemented with CORDIC vs. LUT, to assess
the ability of the approach to modulate the output code size arbitrarily. Execution time is
also of primary importance, not only because it directly influences energy consumption, but
because – for the controller to be effective – it must provide updated control variables to the
motor at an appropriate frequency.

The miniapp benchmark application used in the evaluation has been assembled as
described in Section 3.3. In particular, the computational kernel has been obtained by
extracting the FOC controller code from Arduino SimpleFOCLibrary,1 version 2.0. This

1 https://github.com/simplefoc/Arduino-FOC

PARMA-DITAM 2021

https://github.com/simplefoc/Arduino-FOC

3:8 The Impact of Precision Tuning on Embedded Systems Performance

library provides a robust FOC implementation, compatible with a wide set of the most
common Microcontroller Unit (MCU) architectures. Arduino SimpleFOCLibrary is written
in the C++ programming language, and computes all the transforms required by FOC in
single-precision floating-point arithmetic. Therefore, it is well suited to the application of
FixM for converting all floating-point computations into fixed-point types, whereas other
implementations may contain a hand-written fixed-point-based implementation.

No modifications have been made to the extracted code, besides the insertion of a few
variable annotations required by taffo.

4.1 Hardware Setup

We run our benchmark on two different hardware platforms, representative of the hardware
class of low-medium-range MCUs, with limited central memory and CPU frequency. This is
the hardware class on which a FOC application could be typically run.

The first platform, codenamed F2 in the following, is an STM3220G-EVAL evaluation
board featuring a 120 MHz Cortex-M3 ARM CPU, with 128 KB of internal RAM, 2 MB of
SRAM, and 1 MB of flash memory. This board’s CPU has no native support of floating-point
arithmetic, which must be completely implemented in software.

The second platform, codenamed F4 in the following, is a STM32F4-Discovery board
with an 168 MHz Cortex-M4 ARM CPU and 192 KB of RAM. Although the CPU is slower
than that of the first board, it implements floating-point arithmetic in-hardware.

4.2 Software Configuration

For each platform, we compiled the benchmark application with taffo and our enhanced
version of FixM. The version of the llvm toolchain which we employed was version 10.0.1.
First of all, we must observe that the implementation of FOC found in the SimpleFOCLibrary
library is optimized such that only two trigonometric function evaluations are required in
each kernel loop iteration. The miniapp was compiled with several different FixM settings
to evaluate the tradeoff of using the implementation based on look-up-tables as opposed to
the implementation based on CORDIC:
C2 This configuration always uses CORDIC for both trigonometric calls
L1C1 This configuration uses a LUT for the first trigonometric call, but a CORDIC imple-

mentation for the second call
C1L1 This configuration uses a LUT for the second trigonometric call, but a CORDIC

implementation for the first
L2 This configuration always uses LUTs for both trigonometric calls

We evaluated our approach by comparing such versions of the benchmark with two different
baselines. The first one has been obtained by compiling the application with the standard
GCC-based compiler toolchain of the platform, as distributed by ST Microelectronics, using
only floating-point arithmetic, and with the implementation of the standard mathematical
library provided by newlib version 2.5.0. The second one consists of the application compiled
against the llvm toolchain with taffo, which enables the conversion of floating-point
arithmetic into fixed-point computations, but still employs the standard floating-point
mathematical library for the trigonometric functions.

G. Magnani, D. Cattaneo, M. Chiari, and G. Agosta 3:9

4.3 Evaluation Methodology
The execution time of the benchmark was measured by instrumenting it appropriately with
code that queries the internal clock of each device. To obtain more consistent measurements,
the reported execution times are the average 100 runs of the benchmark. To compare the
version of the benchmark optimized with FixM to the baselines, we compute its speedup.
Let t1 and t2 be two time measurements: the speedup of t1 on t2 is:

S = 100
(

t2

t1
− 1

)
Additionally, we use the speedup to evaluate the potential for energy savings. Indeed,

since the speedup grows inversely proportional with the amount of clock cycles spent in the
execution of the computational kernel, and the amount of clock cycles grows proportionally
with the energy consumption [7], it transitively follows that a high speedup is a strong
indication of lower energy consumptions.

The benchmark application was arranged so that it outputs the desired values of the
motor control variables as a vector of numbers. We evaluated the accuracy of such results by
computing the average Relative Error (RE) between the three versions of the benchmark. Let
X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) be the result vectors of two different versions
of the benchmark. We first compute the average absolute error as:

AE = avg
1≤i≤n

|xi − yi|

and then the relative error as:

RE = AE

avg1≤i≤n |ei|

Finally, the percentage relative error can be computed simply by multiplying RE by 100.

4.4 Discussion
Figure 2 shows the performance and accuracy results of our experimental campaign, which
confirms that FixM is needed to achieve a speedup on the FOC miniapp. Indeed, taffo
alone suffers from the impact of the mathematical functions, which require to convert back
and forth between floating and fixed point. The introduction of LUTs provides a reasonable
benefit in performance, at a limited accuracy impact with respect to CORDIC. The results
are confirmed on both platforms, showing the robustness of the FixM framework.

Table 1 shows the impact in memory footprint. The “All Code” column shows the code
size (without data) including external support libraries (for example the C standard libraries,
and the ST Microelectronics CMSIS-compliant HAL). The “Appl. Code” column shows the
size of the code of the FOC miniapp, without counting any external library. Finally, the
“Constants” column shows the size of the constant data section of the executable. While
taffo and FixM do not exhibit a significant overhead – actually FixM with CORDIC
even saves some space – the use of LUTs does impose an overhead due to the lookup tables
themselves. In fact, the size required by the LUTs alone is higher than the size of the code
of the application.

In order to evaluate the efficacy of the trade-off between code and execution time, we
compare the code size estimated by FixMAGE to the actual size of the application code
after compilation. With parameters dc = 4, df = 64 and dd = 4, the estimated code size A is

PARMA-DITAM 2021

3:10 The Impact of Precision Tuning on Embedded Systems Performance

F2 F4

Platform

0

100

200

300

400

500

600
E
xe
cu
ti
on

ti
m
e
[m

s]
taffo

Float

FixM (C2)

FixM (C1L1)

FixM (L1C1)

FixM (L2)

(a) Comparison of execution times by platform
and approximation method.

taffo FixM
(C2)

FixM
(C1L1)

FixM
(L1C1)

FixM
(L2)

Method

0

10−6

10−5

10−4

10−3

10−2

10−1

A
ve
ra
ge

R
el
at
iv
e
E
rr
or

[%
]

(b) Comparison of average percentage relative er-
rors by approximation method.

Figure 2 Experimental evaluation: performance and accuracy.

Table 1 Size of the generated code in bytes, split across code and constants. The code figures
are further split into the code that is part of the FOC miniapp (Appl. Code) and the full code size
when also taking into consideration the platform-specific support libraries (All Code).

F2 F4
Method All Code Appl. Code Constants Code Appl. Code Constants

Float 7424 1892 672 6840 1892 696
taffo 8912 832 688 8216 900 704
FixM (C2) 6000 2538 476 5132 2548 496
FixM (L1C1) 6404 2204 8668 5608 2252 8688
FixM (C1L1) 6452 2158 8668 5620 2240 8688
FixM (L2) 6048 1804 8412 5200 1832 8432

equal to 2020 bytes (N = 281, Ṅ = 14) which matches the experimentally determined code
size for the Float baseline within a margin of error of ≈ 6%. The LUT size B is exact (8192
bytes) as the LUTs are generated by FixMAGE itself.

Figure 3 shows the design space of precision tuning according to the three metrics
considered in this work – performance (Exec Time in ms), accuracy (Error in percentage),
and memory footprint (Size in bytes). While FixM using CORDIC provides good performance
and small code size at minimum accuracy loss, and is therefore a preferable solution to the
use of floating point and taffo alone, the use of LUTs provides further performance at the
expense of both precision and memory footprint. Mixed solutions (using CORDIC for one
operation and LUT for the other) provide an intermediate point that is not Pareto-dominated
by either FixM with CORDIC or FixM with both LUTs. Thus, the expansion of FixM to
generate also LUTs proves a valuable addition that expands the design space, providing the
designer with much needed choices, which can be exerted to cope with specific application
constraints. E.g., in case space is tight due to the need to pack more application kernels

G. Magnani, D. Cattaneo, M. Chiari, and G. Agosta 3:11

200 300 400 500 600
Exec Time

0.00

0.02

0.04

0.06

0.08

0.10

E
rr
or

[%
]

F2

Size

6476

8096

9600

14460

15072

15120

Method

Float

FixM (C2)

FixM (L2)

FixM (L1C1)

FixM (C1L1)

taffo

100 150 200 250 300 350 400
Exec Time

0.00

0.02

0.04

0.06

0.08

0.10

E
rr
or

[%
]

F4

Size

5628

7536

8920

13632

14296

14308

Method

Float

FixM (C2)

FixM (L2)

FixM (L1C1)

FixM (C1L1)

taffo

Figure 3 Design space for the two platforms in terms of execution time, error, and memory
footprint. Execution time is measured in ms, Size in bytes, Error in percentage.

on a small platform, CORDIC can be prioritized, whereas if the response time is critical
more space can be poured into the design to improve performance with the use of one or two
LUTs.

5 Conclusions

In this paper, we have explored the impact of precision tuning of arithmetic operations
in the application domain of induction motor drive control, through a dedicated miniapp
based on a popular Open Source implementation of Field-oriented control. We extended the
FixM methodology to manage the trade-off between execution time and code size, achieving
a speedup up to 278%, at the cost of a minimal reduction in output error – lesser than
0.1%. Future directions involve the identification of other application domains for which
miniapps could be needed, and therefore the construction of a library of domain-specific
miniapps. Furthermore, FixM can be further extended to cover more mathematical functions,
depending on the needs of the applications.

References

1 A. Agrawal et al. Approximate computing: Challenges and opportunities. In 2016 IEEE
International Conference on Rebooting Computing (ICRC), pages 1–8, 2016.

2 Massimo Alioto, Vivek De, and Andrea Marongiu. Energy-quality scalable integrated circuits
and systems: Continuing energy scaling in the twilight of moore’s law. IEEE J. Emerg. Sel.
Topics Circuits Syst., 8(4):653–678, December 2018. doi:10.1109/JETCAS.2018.2881461.

3 Jason Ansel, Yee L. Wong, Cy Chan, Marek Olszewski, Alan Edelman, and Saman Amarasinghe.
Language and compiler support for auto-tuning variable-accuracy algorithms. In Int. Symp.
on Code Generation and Optimization (CGO 2011), pages 85–96, April 2011. doi:10.1109/
CGO.2011.5764677.

PARMA-DITAM 2021

https://doi.org/10.1109/JETCAS.2018.2881461
https://doi.org/10.1109/CGO.2011.5764677
https://doi.org/10.1109/CGO.2011.5764677

3:12 The Impact of Precision Tuning on Embedded Systems Performance

4 Vladislav M. Bida, Dmitry V. Samokhvalov, and Fuad Sh Al-Mahturi. PMSM vector control
techniques—a survey. In 2018 IEEE Conference of Russian Young Researchers in Electrical
and Electronic Engineering (EIConRus), pages 577–581. IEEE, 2018.

5 Felix Blaschke. Das verfahren der feldorientierung zur regelung der asynchronmaschine.
Siemens Forschungs und Entwicklungsberichte, 1972.

6 I. Boldea. Electric generators and motors: An overview. CES Transactions on Electrical
Machines and Systems, 1(1):3–14, 2017. doi:10.23919/TEMS.2017.7911104.

7 Carlo Brandolese, Simone Corbetta, and William Fornaciari. Software energy estimation
based on statistical characterization of intermediate compilation code. In Proceedings of the
2011 International Symposium on Low Power Electronics and Design, 2011, Fukuoka, Japan,
August 1-3, 2011, pages 333–338, 2011.

8 D. Casadei, F. Profumo, G. Serra, and A. Tani. Foc and dtc: two viable schemes for
induction motors torque control. IEEE Transactions on Power Electronics, 17(5):779–787,
2002. doi:10.1109/TPEL.2002.802183.

9 Daniele Cattaneo, Michele Chiari, Gabriele Magnani, Nicola Fossati, Stefano Cherubin, and
Giovanni Agosta. FixM: Code generation of fixed point mathematical functions. Sustainable
Computing: Informatics and Systems, 29:100478, 2021. doi:10.1016/j.suscom.2020.100478.

10 Stefano Cherubin and Giovanni Agosta. Tools for reduced precision computation: a survey.
ACM Computing Surveys, 53(2), April 2020. doi:10.1145/3381039.

11 Stefano Cherubin, Daniele Cattaneo, Michele Chiari, and Giovanni Agosta. Dynamic precision
autotuning with TAFFO. ACM Trans. Archit. Code Optim., 17(2), May 2020. doi:10.1145/
3388785.

12 Stefano Cherubin, Daniele Cattaneo, Michele Chiari, Antonio Di Bello, and Giovanni Agosta.
TAFFO: Tuning assistant for floating to fixed point optimization. IEEE Embedded Syst. Lett.,
12(1):5–8, 2019. doi:10.1109/LES.2019.2913774.

13 Stefano Cherubin et al. Implications of Reduced-Precision Computations in HPC: Performance,
Energy and Error. In Parallel Computing is Everywhere, volume 32: Advances in Parallel
Computing, pages 297–306, March 2018. International Conference on Parallel Computing
(ParCo), Sep 2017. doi:10.3233/978-1-61499-843-3-297.

14 George B. Dantzig. Discrete-variable extremum problems. Operations Research, 5(2):266–288,
1957. doi:10.1287/opre.5.2.266.

15 Eva Darulova, Einar Horn, and Saksham Sharma. Sound mixed-precision optimization with
rewriting. In Proc. 9th ACM/IEEE Int. Conf. on Cyber-Physical Systems, ICCPS ’18, pages
208–219, 2018. doi:10.1109/ICCPS.2018.00028.

16 Marco Festa, Nicole Gervasoni, Stefano Cherubin, and Giovanni Agosta. Continuous program
optimization via advanced dynamic compilation techniques. In Proceedings of the 10th and 8th
Workshop on Parallel Programming and Run-Time Management Techniques for Many-core
Architectures and Design Tools and Architectures for Multicore Embedded Computing Platforms,
pages 1–6, 2019.

17 R. Gabriel, W. Leonhard, and C. J. Nordby. Field-oriented control of a standard AC motor
using microprocessors. IEEE Transactions on Industry Applications, IA-16(2):186–192, 1980.
doi:10.1109/TIA.1980.4503770.

18 Davide Gadioli et al. Tunable approximations to control time-to-solution in an hpc molecular
docking mini-app. The Journal of Supercomputing, pages 1–29, 2020.

19 Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring, H Carter
Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K Thornquist, and Robert W
Numrich. Improving performance via mini-applications. Sandia National Laboratories, Tech.
Rep. SAND2009-5574, 3, 2009.

20 IEEE Computer Society Standards Committee. Floating-Point Working group of the Micro-
processor Standards Subcommittee. IEEE Standard for Floating-Point Arithmetic. IEEE Std
754-2008, pages 1–70, August 2008. doi:10.1109/IEEESTD.2008.4610935.

https://doi.org/10.23919/TEMS.2017.7911104
https://doi.org/10.1109/TPEL.2002.802183
https://doi.org/10.1016/j.suscom.2020.100478
https://doi.org/10.1145/3381039
https://doi.org/10.1145/3388785
https://doi.org/10.1145/3388785
https://doi.org/10.1109/LES.2019.2913774
https://doi.org/10.3233/978-1-61499-843-3-297
https://doi.org/10.1287/opre.5.2.266
https://doi.org/10.1109/ICCPS.2018.00028
https://doi.org/10.1109/TIA.1980.4503770
https://doi.org/10.1109/IEEESTD.2008.4610935

G. Magnani, D. Cattaneo, M. Chiari, and G. Agosta 3:13

21 H. Keding, M. Willems, M. Coors, and H. Meyr. FRIDGE: A fixed-point design and simulation
environment. In Proceedings of the Conference on Design, Automation and Test in Europe,
DATE ’98, pages 429–435, 1998.

22 Ki-Il Kum, Jiyang Kang, and Wonyong Sung. AUTOSCALER for C: an optimizing floating-
point to integer C program converter for fixed-point digital signal processors. IEEE Trans.
Circuits Syst. II. Analog Digit. Signal Process., 47(9):840–848, September 2000. doi:10.1109/
82.868453.

23 Cindy Rubio-González et al. Precimonious: Tuning assistant for floating-point precision. In
Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’13, pages 27:1–27:12, November 2013. doi:10.1145/2503210.
2503296.

24 Jack Shandle. Field-Oriented Control of Small DC Motors put Drones on a Rising Flight
Path, 2015. Accessed November 28, 2020. URL: https://www.digikey.com/en/articles/
field-oriented-control-of-small-dc-motors-put-drones-on-a-rising-flight-path.

25 C. Silvano et al. The antarex tool flow for monitoring and autotuning energy efficient hpc
systems. In 2017 International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), pages 308–316, 2017. doi:10.1109/SAMOS.2017.8344645.

26 N. Simon, D. Menard, and O. Sentieys. ID.Fix-infrastructure for the design of fixed-point
systems. In University Booth of the Conference on Design, Automation and Test in Europe
(DATE), volume 38, 2011. URL: http://idfix.gforge.inria.fr.

27 Phillip Stanley-Marbell, Armin Alaghi, Michael Carbin, Eva Darulova, Lara Dolecek, Andreas
Gerstlauer, Ghayoor Gillani, Djordje Jevdjic, Thierry Moreau, Mattia Cacciotti, Alexandros
Daglis, Natalie Enright Jerger, Babak Falsafi, Sasa Misailovic, Adrian Sampson, and Damien
Zufferey. Exploiting errors for efficiency: A survey from circuits to applications. ACM
Computing Surveys, 53(3), June 2020. doi:10.1145/3394898.

28 Andrew Stone, John Dennis, and Michelle Strout. Establishing a miniapp as a programmability
proxy. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’12, page 333–334, New York, NY, USA, 2012. Association for
Computing Machinery. doi:10.1145/2145816.2145881.

29 Xiaoli Sun, Zhengguo Li, Xiaolin Wang, and Chengjiang Li. Technology development of
electric vehicles: A review. Energies, 13(1):90, December 2019. doi:10.3390/en13010090.

30 I. Takahashi and T. Noguchi. A new quick-response and high-efficiency control strategy of
an induction motor. IEEE Transactions on Industry Applications, IA-22(5):820–827, 1986.
doi:10.1109/TIA.1986.4504799.

31 Jack Volder. The CORDIC computing technique. In Papers presented at the the March 3-5,
1959, western joint computer conference, pages 257–261, 1959.

32 Fengxiang Wang, Zhenbin Zhang, Xuezhu Mei, José Rodríguez, and Ralph Kennel. Advanced
control strategies of induction machine: Field oriented control, direct torque control and model
predictive control. Energies, 11(1):120, 2018.

33 V. Yaramasu, A. Dekka, M. J. Durán, S. Kouro, and B. Wu. PMSG-based wind energy
conversion systems: survey on power converters and controls. IET Electric Power Applications,
11(6):956–968, 2017. doi:10.1049/iet-epa.2016.0799.

34 Serif Yesil, Ismail Akturk, and Ulya R. Karpuzcu. Toward dynamic precision scaling. IEEE
Micro, 38(4):30–39, July 2018. doi:10.1109/MM.2018.043191123.

35 Tomofumi Yuki. Understanding PolyBench/C 3.2 kernels. In International workshop on
Polyhedral Compilation Techniques (IMPACT), 2014.

PARMA-DITAM 2021

https://doi.org/10.1109/82.868453
https://doi.org/10.1109/82.868453
https://doi.org/10.1145/2503210.2503296
https://doi.org/10.1145/2503210.2503296
https://www.digikey.com/en/articles/field-oriented-control-of-small-dc-motors-put-drones-on-a-rising-flight-path
https://www.digikey.com/en/articles/field-oriented-control-of-small-dc-motors-put-drones-on-a-rising-flight-path
https://doi.org/10.1109/SAMOS.2017.8344645
http://idfix.gforge.inria.fr
https://doi.org/10.1145/3394898
https://doi.org/10.1145/2145816.2145881
https://doi.org/10.3390/en13010090
https://doi.org/10.1109/TIA.1986.4504799
https://doi.org/10.1049/iet-epa.2016.0799
https://doi.org/10.1109/MM.2018.043191123

Resource Aware GPU Scheduling in Kubernetes
Infrastructure
Aggelos Ferikoglou !

Microprocessors and Digital Systems Laboratory, ECE,
National Technical University of Athens, Greece

Dimosthenis Masouros !

Microprocessors and Digital Systems Laboratory, ECE,
National Technical University of Athens, Greece

Achilleas Tzenetopoulos !

Microprocessors and Digital Systems Laboratory, ECE
, National Technical University of Athens, Greece

Sotirios Xydis !

Department of Informatics and Telematics, DIT, Harokopio University of Athens, Greece

Dimitrios Soudris !

Microprocessors and Digital Systems Laboratory, ECE,
National Technical University of Athens, Greece

Abstract
Nowadays, there is an ever-increasing number of artificial intelligence inference workloads pushed
and executed on the cloud. To effectively serve and manage the computational demands, data
center operators have provisioned their infrastructures with accelerators. Specifically for GPUs,
support for efficient management lacks, as state-of-the-art schedulers and orchestrators, threat GPUs
only as typical compute resources ignoring their unique characteristics and application properties.
This phenomenon combined with the GPU over-provisioning problem leads to severe resource
under-utilization. Even though prior work has addressed this problem by colocating applications
into a single accelerator device, its resource agnostic nature does not manage to face the resource
under-utilization and quality of service violations especially for latency critical applications.

In this paper, we design a resource aware GPU scheduling framework, able to efficiently colocate
applications on the same GPU accelerator card. We integrate our solution with Kubernetes, one
of the most widely used cloud orchestration frameworks. We show that our scheduler can achieve
58.8% lower end-to-end job execution time 99%-ile, while delivering 52.5% higher GPU memory
usage, 105.9% higher GPU utilization percentage on average and 44.4% lower energy consumption
on average, compared to the state-of-the-art schedulers, for a variety of ML representative workloads.

2012 ACM Subject Classification Computing methodologies; Computer systems organization →
Cloud computing; Computer systems organization → Heterogeneous (hybrid) systems; Hardware →
Emerging architectures

Keywords and phrases cloud computing, GPU scheduling, kubernetes, heterogeneity

Digital Object Identifier 10.4230/OASIcs.PARMA-DITAM.2021.4

Funding This work has been partially funded by EU Horizon 2020 program under grant agreement
No 825061 EVOLVE (https://www.evolve-h2020.eu).

1 Introduction

In recent years, the adoption of artificial intelligence (AI) and machine learning (ML) ap-
plications is increasing rapidly. Several major Internet service companies including Google,
Microsoft, Apple and Baidu have observed this trend and released their own intelligent
personal assistant (IPA) services, e.g. Siri, Cortana etc., providing a wide range of features.

© Aggelos Ferikoglou, Dimosthenis Masouros, Achilleas Tzenetopoulos, Sotirios Xydis, and Dimitrios
Soudris;
licensed under Creative Commons License CC-BY 4.0

12th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and
10th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
2021).
Editors: João Bispo, Stefano Cherubin, and José Flich; Article No. 4; pp. 4:1–4:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aferikoglou@microlab.ntua.gr
mailto:demo.masouros@microlab.ntua.gr
https://orcid.org/0000-0001-6147-6908
mailto:atzenetopoulos@microlab.ntua.gr
mailto:sxydis@hua.gr
https://orcid.org/0000-0003-3151-2730
mailto:dsoudris@microlab.ntua.gr
https://orcid.org/0000-0002-6930-6847
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2021.4
https://www.evolve-h2020.eu
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2 Resource Aware GPU Scheduling in Kubernetes Infrastructure

Compared to traditional cloud applications such as web-search, IPA applications are signific-
antly more computationally demanding [13]. Accelerators, such as GPUs, FPGAs, TPUs
and ASICs, have been shown to be particularly suitable for these applications from both
performance and total cost of ownership (TCO) perspectives [13]. With the increase in ML
training and inference workloads [18, 13], cloud providers begin to leverage accelerators in
their infrastructures, to catch up with the workload performance demands. This trend is
also evident as Amazon AWS and Microsoft Azure have started offering GPU and FPGA
based infrastructure solutions.

In particular, for the case of ML inference oriented tasks, public clouds have provisioned
GPU resources at the scale of thousands of nodes in data-centers [25]. Since GPUs are
relatively new to the cloud stack, support for efficient management lacks. State-of-the-art
cluster resource orchestrators, like Kubernetes [9], treat GPUs only as a typical compute
resource, thus ignoring their unique characteristics and application properties. In addition,
it is observed that users tend to request more GPU resources than needed [3]. This tendency
is also evident in state-of-the-art frameworks like Tensorflow which by default binds the
whole card memory to an application. This problem, also known as over-provisioning,
combined with the resource agnostic scheduling frameworks lead to under-utilization of the
GPU-acceleration infrastructure and, thus, quality of service (QoS) violations for latency
critical applications such as ML inference engines. To overcome the aforementioned issues,
real-time monitoring, dynamic resource provisioning and prediction of the future status of the
system is required, to enable the efficient utilization of the underlying hardware infrastructure
by guiding the GPU scheduling mechanisms.

In this paper, we propose a novel GPU resource orchestration framework that utilizes
real-time GPU metrics monitoring to assess the real GPU resource needs of applications
at runtime and based on the current state of a specified card decide whether two or more
application can be colocated. We analyze the inherent inefficiencies of state-of-the-art
Kubernetes GPU schedulers concerning the QoS and resource utilization. The proposed
framework estimates the real memory usage of a specified card and predicts the future
memory usage, enabling better inference engine colocation decisions. We show that our
scheduler can achieve 58.8% lower end-to-end job execution time 99%-ile for the majority of
used inference engine workloads, while also providing 52.5% higher GPU memory usage,
105.9% GPU utilization percentage average and 44.4% lower energy consumption compared
with the Alibaba GPU sharing scheduler extension.

2 Related Work

The continuous increase in the amount of containerized workloads uploaded and executed
on the cloud, has revealed challenges concerning the container orchestration. Workload
co-location and multi-tenancy exposed the interference agnostic nature of the state-of-the-art
schedulers [26] while the integration of accelerator resources for ML applications revealed
their resource unawareness [25]. To enable better scheduling decisions, real-time [8] or even
predictive [19] monitoring is required to drive the orchestration mechanisms. Extending
to the case of GPU accelerators, real-time GPU monitoring can allow the colocation of
containers on the accelerator in a conservative manner to avoid out-of-memory issues [25].

Container orchestration on GPU resources has been in the center of attention of both
academia and industry. Throughout the years, various GPU scheduling approaches have been
proposed. Ukidave et al. [27] and Chen et al. [10] have proposed GPU runtime mechanisms
to enable better scheduling of GPU tasks either by predicting task behavior or reordering

A. Ferikoglou, D. Masouros, A. Tzenetopoulos, S. Xydis, and D. Soudris 4:3

queued tasks. More recent works [17, 11] have introduced docker-level container sharing
solutions by allowing multiple containers to fit in the same GPU, as long as the active working
set size of all the containers is within the GPU physical memory capacity. As distributed deep
neural network (DNN) training based applications have started taking advantage of multiple
GPUs in a cluster, the research community proposed application specific schedulers [20] that
focus on prioritizing the GPU tasks that are critical for the DNN model accuracy. Hardware
support for GPU virtualization and preemption were also introduced. Gupta et al. [12]
implemented a task queue in the hypervisor to allow virtualization and preemption of GPU
tasks while Tanasic et al. [24] proposed a technique that improves the performance of high
priority processes by enabling GPU preemptive scheduling. The integration of GPU sharing
schemes on GPU provisioned cloud infrastructures managed by Kubernetes is a trend that is
also observed. Yeh et al. proposed KubeShare [29], a framework that extends Kubernetes
to enable GPU sharing with fine-grained allocation, while Wang et al. [28] introduced a
scheduling scheme that leverages training job progress information to determine the most
efficient allocation and reallocation of GPUs for incoming and running jobs at any time.

Regarding container orchestration within GPU environments, Kubernetes itself includes
experimental support for managing AMD and Nvidia GPUs across several nodes. Kubernetes
GPU scheduler extension [4] exposes a card as a whole meaning that a container can request
one or more GPUs. Even though this implementation does not provide fractional GPU
usage, it allows better isolation and ensures that applications using a GPU are not affected
by others. To overcome this problem, the authors in [1] proposed a GPU sharing scheduling
solution which relies on the existing working mechanism of Kubernetes. Alibaba GPU sharing
extension aims to improve the utilization of GPU resources by exposing the memory of a card
as a custom Kubernetes resource, thus, allowing containers to specify their required amount
of memory. Even though this approach allows the concurrent execution of multiple containers,
its resource agnostic nature makes it dependable on the credibility of the memory requests.
Kube-Knots [25] overcomes this limitation by providing a GPU-aware resource orchestration
layer that addresses the GPU orchestration problem. Kube-Knots dynamically harvests spare
compute cycles by enabling the co-location of latency-critical and batch workloads, thus,
improving the overall resource utilization. This way, it manages to reduce QoS violations
of latency critical workloads, while also improving the energy consumption of the cluster.
However, its predictive nature fails to face the problem of container failures due to incorrect
memory usage predictions and thus GPU memory starvation.

3 Experimental Setup & Specifications

We target high-end server systems equipped with GPU acceleration capabilities found under
today’s data-center environments. Specifically, our work targets an ML-inference cluster,
where a GPU-equipped node is responsible for serving the computational demands of inference
queries effectively. In the proposed framework, whenever an inference engine arrives on the
cluster, the Kubernetes master redirects it to our custom resource aware GPU scheduler.
By leveraging real-time GPU monitoring and prediction, our scheduler decides whether to
schedule it on the GPU, or enqueue the task on a priority queue and delay the execution until
there are enough GPU resources available. Figure 1 shows an overview of our experimental
setup.

Hardware Infrastructure Characterization. All of our experiments have been performed
on a dual-socketed Intel® Xeon® Gold 6138 server equipped with an NVIDIA V100 GPU
accelerator card, the specifications of which are shown in Table 1. On top of the physical

PARMA-DITAM 2021

4:4 Resource Aware GPU Scheduling in Kubernetes Infrastructure

(a) Proposed Scheduling Framework. (b) MLPerf Inference Engine Architecture.

Figure 1 Proposed scheduling framework and MLPerf inference engine architecture.

machine we have deployed three virtual machines, which serve as the nodes of our cluster,
using KVM as our hypervisor. The V100 accelerator is exposed on the inference-server VM
(24 vCPUs, 32GB RAM) using the IOMMU kernel configuration, while the rest of the VMs
(8 vCPUs, 8GB RAM each) are utilized to deploy critical components of our system, such as
the master of our Kubernetes cluster and our monitoring infrastructure.

Software & Monitoring Infrastructure Characterization. On top of the VMs, we deploy
Kubernetes container orchestrator (v1.18) combined with Docker (v19.03) which is nowadays
the most common way of deploying cloud clusters at scale [15]. Our monitoring system
consists of two major components, NVIDIA’s Data-Center GPU Manager exporter (DCGM)
[5] along with Prometheus [6] monitoring toolkit. DCGM exports GPU metrics related to
the frame buffer (FB) memory usage (in MiB), the GPU utilization (%) and the power draw
(in Watts). In particular, a DCGM exporter container is deployed on top of each node of
the cluster through Kubernetes. This container is responsible for capturing and storing the
aforementioned metrics into our Prometheus time-series database every specified interval.
We set the monitoring interval equal to 1 second to be able to capture the state of our
underlying system at run-time. Finally, metrics stored in the Prometheus time-series are
accessed from our custom Kubernetes scheduler by performing Prometheus-specific PromQL
queries, as described in section 5.

Inference Engine Workloads. For the rest of the paper, we utilize MLPerf Inference
[21] benchmark suite for all of our experiments, which is a set of deep learning workloads
performing object detection and image classification tasks. As shown in Figure 1b, each
MLPerf Inference container instance consists of two main components, i) the Inference Engine
and ii) the Load Generator. The Inference Engine component is responsible for performing

Table 1 CPU & GPU Specifications.

Intel® Xeon® Gold 6138
Cores/Threads 20/40
Sockets 2
Base Frequency 2.0 GHz
Memory (MHz) 132 GB (2666)
Hard Drive 1 TB SSD
OS (kernel) Ubuntu 18 (4.15)

NVIDIA V100
Architecture Volta
Comp. Cap. 7.0
CUDA Cores 5120
Memory Size 32 GB HBM2
Interface PCIe 3.0 x16
Sched. Policy Preemptive

A. Ferikoglou, D. Masouros, A. Tzenetopoulos, S. Xydis, and D. Soudris 4:5

the detection and classification tasks. It receives as input the pre-trained DNN model
used during inference (e.g. ResNet, Mobilenet etc.) as well as the corresponding backend
framework (e.g. PyTorch, Tensorflow etc.). The Load Generator module is responsible
for producing traffic on the Inference Engine and measure its performance. It receives as
input the validation dataset (e.g. Imagenet, Coco) as well as the examined scenario and the
number of inference queries to be performed. The scenario can be either Single stream (Load
Generator sends the next query as soon as the previous is completed), Multiple stream (Load
Generator sends a new query after a specified amount of time if the prior query has been
completed, otherwise the new query is dropped and is counted as an overtime query), Server
(Load Generator sends new queries according to a Poisson distribution) and Offline (Load
Generator sends all the queries at start). Considering the above inputs, the Load Generator
performs streaming queries to the Inference Engine and waits for the results. For the rest of
the paper, we utilize the Single Stream scenario and evaluate our inference engine through
the 99%-ile of the measured latency.

4 Motivational Observations and Analysis

Latest advancements in the micro-architecture of NVIDIA’s GPUs allow the transparent,
cooperative execution of CUDA applications on the underlying accelerator, either through
CUDA’s streams [2] or through CUDA’s Multi-Process Service (MPS) [22] capabilities. These
functionalities increase the utilization of GPU accelerators, thus, offering increased computing
capacity, yet, state-of-the-art frameworks, such as Kubernetes do not provide mechanisms
that expose them to end-users. In fact, Kubernetes default GPU scheduler [4] mechanism
provides exclusive access to applications requesting GPU accelerators. Even though, this
approach allows isolation and ensures that applications using a GPU do not interfere with
each other, it can cause high resource under-utilization or QoS violations, especially in
deep-learning inference scenarios on high-end GPUs, which have low requirements in terms
of CUDA cores and memory. In order to allow more prediction services to share the same
GPU and, thus, improve their QoS and the utilization of the card, partitioning of the GPU
memory resource is required. Towards this direction, Alibaba offers a GPU sharing extension
[1], which allows the partitioning of the GPU memory. This scheduler allows end-users to
define the requirements of their workloads in terms of GPU memory and combines this
information with the total available memory of the GPU to decide whether two or more
inference engines can be colocated or not.

To demonstrate the inefficiency of the Kubernetes GPU scheduler extension compared
with Alibaba GPU sharing extension, we perform a straight comparison between them for
the scheduling of a workload that consists of 6 inference engines from the MLPerf suite.

Figure 2 shows the GPU memory utilization (MB), the CUDA cores utilization (%) and
the power usage signals of the inference engine workload for the above-mentioned schedulers.
As shown, the Kubernetes GPU scheduler extension has an average memory utilization of
5GB, which can be considered relatively low compared to the available 32GB memory of the
underlying GPU card. The same observation can be made for the GPU utilization signal
(7.22% on average) and the power consumption (41.5 Watts on average), as the GPU binding
per inference engine leads to resource under-utilization. On the other hand, the average
GPU memory usage for the Alibaba GPU sharing extension is 16GB, which is x3.24 higher.
Similarly, we see an average of 49% utilization improvement (x6.8 increment) and an average
of 52.9 Watts higher power consumption (x1.28 increase). It also leads to a 52.8% decrease
of the average energy consumption as Kubernetes GPU scheduler extension consumption is

PARMA-DITAM 2021

4:6 Resource Aware GPU Scheduling in Kubernetes Infrastructure

(a) GPU Memory Usage Signal (b) GPU Utilization Percentage
Signal

(c) GPU Power Usage Signal

Figure 2 GPU memory usage, utilization percentage and power usage signals for Kubernetes
GPU scheduler extension and Alibaba GPU sharing extension.

(a) Memory Usage Average (b) GPU Utilization Average (c) Power Usage Average

Figure 3 Memory usage, GPU utilization and power consumption averages vs over-provisioning
percentage for Alibaba GPU sharing scheduler extension.

66.4 kJ and Alibaba GPU sharing extension consumption is 31.3 kJ. Finally, we observe that
the overall inference engine workload duration using the Alibaba GPU sharing extension is
x2.67 faster than the Kubernetes GPU scheduler extension, meaning that the card sharing
improves the overall workload duration.

Even though Alibaba’s scheduler outperforms the default one, it highly depends on the
provisioning degree of the inference engine memory request. For example, if an inference
engine requests more memory than it actually needs, this may affect future GPU requests
of other inference engines, which will not be colocated, even though their memory request
can be satisfied. To better understand the impact of the resource over-provisioning problem
within Alibaba’s scheduler, we perform 6 different experiments, where we schedule the
same inference-engine task, each time with a different memory over-provisioning percentage,
ranging from 0% to 250%. Figure 3 depicts the memory usage, the utilization percentage
and the power usage averages. For low over-provisioning percentages, Alibaba GPU sharing
extension leads to high resource utilization due to the inference engine colocation. However,
as shown, it is not able to efficiently sense and handle user-guided over-provisioning scenarios.

5 Resource-aware GPU Sharing Kubernetes scheduler

Figure 4 shows an overview of our proposed resource-aware GPU-sharing scheduler. Whenever
an inference engine is scheduled from the custom scheduler, the corresponding workload enters
a priority queue which defines their scheduling order. The inference engine assigned priority
is proportional to the corresponding GPU memory request. As a result the scheduler always
tries to schedule the inference engines with the bigger memory requests. If a workload is
chosen to be scheduled, the following three co-location mechanisms are successively executed:

A. Ferikoglou, D. Masouros, A. Tzenetopoulos, S. Xydis, and D. Soudris 4:7

Resource Agnostic GPU Sharing. Our custom scheduler holds a variable that is used as
an indicator of the available GPU memory. This variable is initialized to the maximum
available memory of the used card in the GPU node. If the inference engine memory request
is smaller than the value of this variable, the request can be satisfied and the workload can
be scheduled. Whenever an inference engine is scheduled, the value of the indicator variable
is decreased by the amount of the memory request. Resource agnostic GPU sharing does
not face the memory over-provisioning problem as it is not possible to know a priory that
the amount of requested memory is actually the amount that the workload needs to run
properly. In our proposed scheduler, we overcome this problem by using real-time memory
usage data by our GPU monitoring sub-system. The monitoring system data are collected
by performing range queries to Prometheus time series database.

Correlation Based Prediction. Correlation Based Prediction (CBP) [25] provides an estim-
ation for the real memory consumption on a GPU node. The estimation is defined from the
80%-ile of the GPU memory usage rather than the maximum usage. The basic idea of this
algorithm is that GPU applications, on an average, have stable resource usage for most of
their execution, except for the times when the resource demand surges. In addition, the whole
allocated capacity is used for a small portion of the execution time while the applications are
provisioned for the peak utilization. CBP scheduler virtually resizes the running workloads
for a common case, letting more pending inference engines to be colocated.

In order to have an accurate estimation, low signal variability is required. The signal
variability is calculated using the coefficient of variation (CV) metric [7]. If CV is lower than
a defined threshold, the memory usage is defined by calculating the 80%-ile of the signal.
The free GPU memory estimation is equal to the difference of the maximum available GPU
memory and the memory usage estimation. Finally, if the memory request can be satisfied
the workload is scheduled. Otherwise the Peak Prediction algorithm is used.

Peak Prediction. Peak Prediction (PP) [25] relies on the temporal nature of peak resource
consumption within an application. For example, a workload that requires GPU resources
will not allocate all the memory it needs at once. So, although the GPU memory request
cannot be satisfied at the scheduling time, it may be satisfied in the near future. The memory
usage prediction is based on an auto regressive model (AR) [23]. For an accurate prediction
the auto correlation value of order k is calculated. If the auto correlation [16] value is larger
than a defined threshold, auto regression of order 1 is performed using linear regression (LR)
[14]. If the predicted GPU memory request can be satisfied from PP, then the workload is
scheduled. Otherwise, the workload is put into the priority queue and our algorithm attempts
to schedule the next available workload from the queue. As we see, PP scheduling decisions
depend on the accuracy of the used auto-regressive model and thus linear regression. Even
though linear regression is a simplistic approach for predicting the unoccupied memory of
the GPU, it can accurately follow the memory utilization pattern (as we further analyze
in section 6). In addition, its low computing and memory requirements, allows the PP
mechanism to provide fast predictions at runtime with minimal resource interference.

6 Experimental Evaluation

We evaluate our custom scheduler through a rich set of various comparative experiments. We
consider inference engine workloads for differing intervals between consecutive inference engine
arrivals. In each comparative analysis the exact same workload is fed to the Kubernetes GPU
scheduler extension [4], the Alibaba GPU sharing extension [1] and the custom scheduler
multiple times. Each time a different memory over-provisioning percentage is used.

PARMA-DITAM 2021

4:8 Resource Aware GPU Scheduling in Kubernetes Infrastructure

Figure 4 Resource Aware GPU Colocation Algorithm.

(a) End-to-End Job Execution
99%-ile.

(b) Pending Time Average.

Figure 5 End-to-end job execution 99%-ile and pending time average vs over-provisioning
percentage homogeneous workload with MIN=5 and MAX=10.

We provide analysis for homogeneous, i.e., scaling out a single inference service, and
heterogeneous workload scenarios. Each workload creates a different inference engine by
using the MLPerf inference container we described in section 3. An inference engine is fully
defined from the used backend (e.g. Tensorflow, PyTorch etc.), the pre-trained model, the
dataset, the scenario, the GPU memory request and the number of inference queries that
are going to be executed. The interval between two consecutive inference engine arrivals is
defined by the values MIN and MAX (random number in [MIN, MAX] interval in seconds).

6.1 Homogeneous Workload Evaluation
For homogeneous workload, we consider the Tensorflow ssd-mobilenet engine which uses the
Coco (resized 300x300) dataset while each inferences engine executes 1024 queries. Each
inference engine requires approximately 7 GB of GPU memory meaning that in a card with
32 GB memory, only 4 can be safely colocated.

Figure 5 shows the end-to-end 99%-ile and the pending time average for all the available
schedulers, for different over-provisioning percentages. Custom scheduler offers x6.6 (on
average) lower pending time average and x3.6 (on average) lower end-to-end 99%-ile from
Kubernetes default GPU scheduler extension. It also offers x5.2 (on average) lower pending
time average and x2.8 (on average) lower end-to-end 99%-ile from Alibaba GPU sharing
scheduler extension. However, due to the colocation of multiple inference engines, custom
scheduler’s decisions lead to higher inference engine 99%-ile average.

A. Ferikoglou, D. Masouros, A. Tzenetopoulos, S. Xydis, and D. Soudris 4:9

(a) Memory Usage Average. (b) GPU Utilization Average. (c) Power Usage Average.

Figure 6 Memory usage average, GPU utilization average and power consumption averages vs
over-provisioning percentage for homogeneous workload with MIN=5 and MAX=10.

To understand the above mentioned results, the way each mechanism schedules workloads
to the GPU should be analyzed. Kubernetes default GPU scheduler extension allocates the
whole GPU resource for each inference engine, leading to severe increase of the pending time
average (the average time an inference engine waits in the priority queue). The Alibaba
GPU sharing scheduler extension uses a resource agnostic colocation mechanism to schedule
workloads in the same card. In particular, for over-provisioning percentage equal to 0 %
(7 GB memory request) 4 inference engines can be collocated, for 50 % (10 GB memory
request) 3 inference engines can be colocated, for 100 % (14 GB memory request) 2 inference
engines can be colocated and for 150 %, 200 % and 250 % each inference engine allocates
the whole GPU resource. As a result, Alibaba GPU share scheduler extension has similar
results with our custom scheduler for over-provisioning percentages equal to 0 % and 50 %.
Custom scheduler handles the memory over-provisioning problem in a better way because of
its resource aware nature. Figure 5 shows that the proposed scheduler has similar behavior
concerning the quality of service metrics for all the different over-provisioning percentages.

Figure 6 shows the memory usage, the utilization percentage and the power consumption
averages for all the available schedulers for different over-provisioning percentages. Custom
scheduler leads to x3.7 higher memory usage, x16 higher GPU utilization and x1.3 higher
power consumption from Kubernetes default GPU extension. It also leads to x2.2 higher
memory usage, x2.9 higher GPU utilization and x1.2 higher power consumption from Alibaba
GPU sharing scheduler extension. Although we observe an increase in the power usage
average, it should be clear that due to the lower overall workload duration the average energy
consumption is x2.6 lower from the Kubernetes GPU scheduler extension and x2.2 lower
from the Alibaba GPU sharing extension.

In particular, Kubernetes default GPU extension has the lower resource utilization
because each inference engine allocates the whole GPU resource. Alibaba GPU share
scheduler extension has similar results with our custom scheduler only for 0 % and 50 %
over-provisioning percentages. This is expected, since for these over-provisioning percentages
the scheduler can effectively colocate workloads. The higher the over-provisioning percentage
is, the closer the resource utilization is to Kubernetes default GPU extension. Finally, we
observe that our custom scheduler has similar behavior concerning the resource utilization
for all the different over-provisioning percentages.

6.2 Heterogeneous Workload Evaluation
For heterogeneous workload, we consider different inference engines, where each one of them
performs a different number of inference queries, as shown in Table 2. Figure 7 shows the
quality of service metrics for the heterogeneous inference engine workload. Our proposed

PARMA-DITAM 2021

4:10 Resource Aware GPU Scheduling in Kubernetes Infrastructure

Table 2 Inference engines used for heterogeneous workload evaluation.

Model Dataset Queries/Engine (#Engines)

mobilenet Imagenet 1024 (2), 2048 (2)

mobilenet quantized Imagenet 256 (2), 512 (2)

resnet50 Imagenet 4096 (2), 8192 (2)

sd-mobilenet Coco (resized 300x300) 128 (3), 1024 (2)

ssd-mobilenet quantized finetuned Coco (resized 300x300) 64 (2), 1024 (2)

ssd-mobilenet symmetrically quantized finetuned Coco (resized 300x300) 512 (2), 4096 (2)

(a) End-to-End Job Execution
99%-ile.

(b) Pending Time Average.

Figure 7 End-to-end job execution 99%-ile and pending time average vs over-provisioning
percentage heterogeneous workload with MIN=5 and MAX=10.

scheduler offers x11 lower pending time average and x3.2 lower end-to-end 99%-ile and x8.6
lower pending time average and x2.4 lower end-to-end 99%-ile on average compared to the
Kubernetes default and Alibaba’s GPU schedulers respectively. Moreover, Figure 8 shows
the respective GPU metrics. We see that, our scheduler leads to x2.5 higher memory usage,
x6.1 higher GPU utilization and x1.2 higher power consumption compared to Kubernetes
default GPU extension and x1.5 higher memory usage, x2.1 higher GPU utilization and x1.1
higher power consumption compared to Alibaba’s GPU sharing scheduler extension.

Container Restarts Analysis. As it was mentioned in section 5, CBP involves the risk of
incorrect scheduling decisions and thus inference engine failures. CBP’s prediction accuracy
depends on how representative is the free memory signal it receives as input. Since accelerated
applications do not always request GPU resources at the beginning of their execution, it is
possible that the used signal does not depict the real load of the node. Although several
container restarts occured in the previous experiment, we observe that our proposed scheduler
still offers better QoS and GPU resource utilization from the baseline state-of-the-art GPU
schedulers.

7 Conclusion

In this paper, we design a resource aware GPU colocation framework for Kubernetes inference
clusters. We evaluate the inference engine colocation algorithm using workloads that consist
of inference engines using different scenarios. We identify and explain the disadvantages
of the correlation based prediction (CBP) and peak prediction (PP) scheduling schemes.
Finally, we show that our custom scheduling framework improves the defined quality of
service metrics while also increases the GPU resource utilization.

A. Ferikoglou, D. Masouros, A. Tzenetopoulos, S. Xydis, and D. Soudris 4:11

(a) Memory Usage Average. (b) GPU Utilization Average. (c) Power Usage Average.

Figure 8 Memory usage average, GPU utilization average and power consumption averages vs
over-provisioning percentage for heterogeneous workload with MIN=5 and MAX=10.

References
1 Alibaba GPU Sharing Scheduler Extension. URL: https://www.alibabacloud.com/blog/

594926.
2 CUDA Streams. URL: https://leimao.github.io/blog/CUDA-Stream/.
3 GPU Memory Over-provisioning. URL: https://www.logicalclocks.com/blog/

optimizing-gpu-utilization-in-hops.
4 Kubernetes GPU Scheduler Extension. URL: https://kubernetes.io/docs/tasks/

manage-gpus/scheduling-gpus/.
5 NVIDIA Data Center GPU Manager. URL: https://developer.nvidia.com/dcgm.
6 Prometheus. URL: https://prometheus.io/docs/introduction/overview/.
7 B. S. Everitt A.Skrondal. The Cambridge Dictionary of Statistics. Cambridge University

Press, 2554. URL: http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf.
8 Rolando Brondolin, Marco D Santambrogio, and Politecnico Milano. A Black-box Monitoring

Approach to Measure Microservices Runtime Performance. ACM Transactions on Architecture
and Code Optimization, 17(4), 2020.

9 Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes. Borg,
Omega, and Kubernetes. Commun. ACM, 59(5):50–57, April 2016. doi:10.1145/2890784.

10 Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. Baymax: QoS awareness and
increased utilization for non-preemptive accelerators in warehouse scale computers. Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems
- ASPLOS, 02-06-Apri:681–696, 2016. doi:10.1145/2872362.2872368.

11 James Gleeson and Eyal de Lara. Heterogeneous GPU reallocation. 9th USENIX Workshop
on Hot Topics in Cloud Computing, HotCloud 2017, co-located with USENIX ATC 2017, 2017.

12 Vishakha Gupta, Karsten Schwan, Niraj Tolia, Vanish Talwar, and Parthasarathy Ranganathan.
Pegasus: Coordinated scheduling for virtualized accelerator-based systems. In USENIXATC’11:
Proceedings of the 2011 USENIX conference on USENIX annual technical conference, 2011.

13 Johann Hauswald, Michael A Laurenzano, Yunqi Zhang, Cheng Li, Austin Rovinski, Arjun
Khurana, Ronald G Dreslinski, Trevor Mudge, Vinicius Petrucci, Lingjia Tang, and Jason
Mars. Sirius: An Open End-to-End Voice and Vision Personal Assistant and Its Implications
for Future Warehouse Scale Computers. SIGARCH Comput. Archit. News, 43(1):223–238,
March 2015. doi:10.1145/2786763.2694347.

14 Howard J. Seltman. Experimental Design and Analysis. Revista, 20(2), 2016. doi:10.35699/
2316-770x.2013.2692.

15 VMware Inc. Containers on virtual machines or bare metal ? Deploying and Securely Managing
Containerized Applications at Scale, White Paper, December 2018.

16 John A. Gubner. Probability and Random Processes for Electrical and Computer Engineers.
Cambridge University Press, 2554. URL: http://library1.nida.ac.th/termpaper6/sd/
2554/19755.pdf.

PARMA-DITAM 2021

https://www.alibabacloud.com/blog/594926
https://www.alibabacloud.com/blog/594926
https://leimao.github.io/blog/CUDA-Stream/
https://www.logicalclocks.com/blog/optimizing-gpu-utilization-in-hops
https://www.logicalclocks.com/blog/optimizing-gpu-utilization-in-hops
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
https://developer.nvidia.com/dcgm
https://prometheus.io/docs/introduction/overview/
http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf
https://doi.org/10.1145/2890784
https://doi.org/10.1145/2872362.2872368
https://doi.org/10.1145/2786763.2694347
https://doi.org/10.35699/2316-770x.2013.2692
https://doi.org/10.35699/2316-770x.2013.2692
http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf
http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf

4:12 Resource Aware GPU Scheduling in Kubernetes Infrastructure

17 D Kang, T J Jun, D Kim, J Kim, and D Kim. ConVGPU: GPU Management Middleware in
Container Based Virtualized Environment. In 2017 IEEE International Conference on Cluster
Computing (CLUSTER), pages 301–309, 2017. doi:10.1109/CLUSTER.2017.17.

18 Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob Ahn, Jason Mars, and
Lingjia Tang. GrandSLAm. EuroSys ’19: Proceedings of the Fourteenth EuroSys Conference
2019, pages 1–16, 2019. doi:10.1145/3302424.3303958.

19 D Masouros, S Xydis, and D Soudris. Rusty: Runtime Interference-Aware Predictive Monitoring
for Modern Multi-Tenant Systems. IEEE Transactions on Parallel and Distributed Systems,
32(1):184–198, January 2021. doi:10.1109/TPDS.2020.3013948.

20 Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. Optimus: An
Efficient Dynamic Resource Scheduler for Deep Learning Clusters. Proceedings of the 13th
EuroSys Conference, EuroSys 2018, 2018-Janua, 2018. doi:10.1145/3190508.3190517.

21 Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling,
Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou,
Ramesh Chukka, Cody Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave
Fick, J Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B Jablin, Jeff Jiao, Tom St. John,
Pankaj Kanwar, David Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng,
Paulius Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan,
Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem
Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang, and
Yuchen Zhou. MLPerf Inference Benchmark, 2019. arXiv:1911.02549.

22 Multi-process Service. Multi-process service, 2020.
23 Robert Shumway and David Stoffer. Time Series Analysis and Its Applications: With R

Examples. Springer, 2017. doi:10.1007/978-3-319-52452-8.
24 I Tanasic, I Gelado, J Cabezas, A Ramirez, N Navarro, and M Valero. Enabling preemptive

multiprogramming on GPUs. In 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), pages 193–204, 2014.

25 Prashanth Thinakaran, Jashwant Raj Gunasekaran, Bikash Sharma, Mahmut Taylan Kan-
demir, and Chita R. Das. Kube-Knots: Resource Harvesting through Dynamic Container
Orchestration in GPU-based Datacenters. Proceedings - IEEE International Conference on
Cluster Computing, ICCC, 2019-Septe:1–13, 2019. doi:10.1109/CLUSTER.2019.8891040.

26 Achilleas Tzenetopoulos, Dimosthenis Masouros, Sotirios Xydis, and Dimitrios Soudris.
Interference-Aware Orchestration in Kubernetes. In International Conference on High Per-
formance Computing, pages 321–330. Springer, 2020.

27 Y Ukidave, X Li, and D Kaeli. Mystic: Predictive Scheduling for GPU Based Cloud Servers
Using Machine Learning. In 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 353–362, 2016. doi:10.1109/IPDPS.2016.73.

28 Shaoqi Wang, Oscar J Gonzalez, Xiaobo Zhou, and Thomas Williams. An Efficient and
Non-Intrusive GPU Scheduling Framework for Deep Learning Training Systems. Sc, 2020.

29 Ting-An Yeh, Hung-Hsin Chen, and Jerry Chou. KubeShare: A Framework to Manage
GPUs as First-Class and Shared Resources in Container Cloud. In Proceedings of the 29th
International Symposium on High-Performance Parallel and Distributed Computing, HPDC
’20, pages 173–184, New York, NY, USA, 2020. Association for Computing Machinery. doi:
10.1145/3369583.3392679.

https://doi.org/10.1109/CLUSTER.2017.17
https://doi.org/10.1145/3302424.3303958
https://doi.org/10.1109/TPDS.2020.3013948
https://doi.org/10.1145/3190508.3190517
http://arxiv.org/abs/1911.02549
https://doi.org/10.1007/978-3-319-52452-8
https://doi.org/10.1109/CLUSTER.2019.8891040
https://doi.org/10.1109/IPDPS.2016.73
https://doi.org/10.1145/3369583.3392679
https://doi.org/10.1145/3369583.3392679

HPC Application Cloudification: The StreamFlow
Toolkit
Iacopo Colonnelli !

Computer Science Department, University of Torino, Italy

Barbara Cantalupo !

Computer Science Department, University of Torino, Italy

Roberto Esposito !

Computer Science Department, University of Torino, Italy

Matteo Pennisi !

Electrical Engineering Department, University of Catania, Italy

Concetto Spampinato !

Electrical Engineering Department, University of Catania, Italy

Marco Aldinucci !

Department of Computer Science, University of Pisa, Italy

Abstract
Finding an effective way to improve accessibility to High-Performance Computing facilities, still
anchored to SSH-based remote shells and queue-based job submission mechanisms, is an open
problem in computer science.

This work advocates a cloudification of HPC applications through a cluster-as-accelerator pattern,
where computationally demanding portions of the main execution flow hosted on a Cloud Finding
an effective way to improve accessibility to High-Performance Computing facilities, still anchored
to SSH-based remote shells and queue-based job submission mechanisms, is an open problem in
computer science.

This work advocates a cloudification of HPC applications through a cluster-as-accelerator
pattern, where computationally demanding portions of the main execution flow hosted on a Cloud
infrastructure can be offloaded to HPC environments to speed them up. We introduce StreamFlow,
a novel Workflow Management System that supports such a design pattern and makes it possible
to run the steps of a standard workflow model on independent processing elements with no shared
storage.

We validated the proposed approach’s effectiveness on the CLAIRE COVID-19 universal pipeline,
i.e. a reproducible workflow capable of automating the comparison of (possibly all) state-of-the-art
pipelines for the diagnosis of COVID-19 interstitial pneumonia from CT scans images based on Deep
Neural Networks (DNNs).

2012 ACM Subject Classification Computer systems organization → Cloud computing; Computing
methodologies → Distributed computing methodologies

Keywords and phrases cloud computing, distributed computing, high-performance computing,
streamflow, workflow management systems

Digital Object Identifier 10.4230/OASIcs.PARMA-DITAM.2021.5

Category Invited Paper

Supplementary Material Software (Stable): https://github.com/alpha-unito/streamflow
archived at swh:1:dir:34c00b970f3326937c7b1cb6467a4a2c4f5dbdec

Other (StreamFlow website): https://streamflow.di.unito.it

Funding This work has been undertaken in the context of the DeepHealth project, which has received
funding from the European Union’s Horizon 2020 research and innovation programme under grant
agreement No. 825111. This work has been partially supported by the HPC4AI project funded by
Regione Piemonte (POR FESR 2014-20 - INFRA-P).

© Iacopo Colonnelli, Barbara Cantalupo, Roberto Esposito, Matteo Pennisi, Concetto Spampinato, and
Marco Aldinucci;
licensed under Creative Commons License CC-BY 4.0

12th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and
10th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
2021).
Editors: João Bispo, Stefano Cherubin, and José Flich; Article No. 5; pp. 5:1–5:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:iacopo.colonnelli@unito.it
https://orcid.org/0000-0001-9290-2017
mailto:barbara.cantalupo@unito.it
https://orcid.org/0000-0001-7575-3902
mailto:roberto.esposito@unito.it
https://orcid.org/0000-0001-5366-292X
mailto:matteo.pennisi98@gmail.com
https://orcid.org/0000-0002-6721-4383
mailto:concetto.spampinato@unict.it
https://orcid.org/0000-0001-6653-2577
mailto:marco.aldinucci@unito.it
https://orcid.org/0000-0001-8788-0829
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2021.5
https://github.com/alpha-unito/streamflow
https://archive.softwareheritage.org/swh:1:dir:34c00b970f3326937c7b1cb6467a4a2c4f5dbdec
https://streamflow.di.unito.it
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 HPC Application Cloudification: The StreamFlow Toolkit

Acknowledgements We want to thank Emanuela Girardi and Gianluca Bontempi who are coordin-
ating the CLAIRE task force on COVID-19 for their support, and the group of volunteer researchers
who contributed to the development of CLAIRE COVID-19 universal pipeline, they are: Marco
Calandri and Piero Fariselli (Radiomics & medical science, University of Torino, Italy); Marco
Grangetto, Enzo Tartaglione (Digital image processing Lab, University of Torino, Italy); Simone
Palazzo, Isaak Kavasidis (PeRCeiVe Lab, University of Catania, Italy); Bogdan Ionescu, Gabriel
Constantin (Multimedia Lab @ CAMPUS Research Institute, University Politechnica of Bucharest,
Romania); Miquel Perello Nieto (Computer Science, University of Bristol, UK); Inês Domingues
(School of Sciences University of Porto, Portugal).

1 Introduction

If the technical barriers to Cloud-based infrastructures lowered substantially with the advent
of the *-as-a-Service model, most High-Performance Computing (HPC) facilities worldwide
are still anchored to SSH-based remote shells and queue-based job submission mechanisms.

Finding an effective way to improve accessibility to this class of computing resources is
still an open problem in computer science. Indeed, the multiple layers of virtualisation that
characterise modern cloud architectures introduce significant processing overheads and make
it impossible to apply adaptive fine-tuning techniques based upon the underlying hardware
technologies, making them incompatible with performance-critical HPC applications. On the
other hand, HPC centres are not designed for general purpose applications. Only scalable
and computationally demanding programs can effectively benefit from the massive amount
of processing elements and the low-latency network interconnections that characterise HPC
facilities, justifying the high development cost of HPC-enabled applications. Moreover, some
seemingly trivial applications are not supported in HPC environments, e.g. exposing a public
web interface for data visualisation in an air-gapped worker node.

In this work, we promote a cluster-as-accelerator design pattern, in which cluster nodes
act as general interpreters of user-defined tasks sent by a general-purpose host executor
residing on a Cloud infrastructure, as a way to offload computation to HPC facilities in an
intuitive way. Moreover, we propose hybrid workflows, i.e. workflows whose steps can be
scheduled on independent and potentially not intercommunicating execution environments,
as a programming paradigm to express such design pattern.

The StreamFlow toolkit [8], a Workflow Management System (WMS) supporting workflow
executions on hybrid Cloud-HPC infrastructures, is then used to evaluate the effectiveness
of the proposed approach on a real application, a Deep Neural Network (DNN) training
pipeline for COVID-19 diagnosis from Computed Tomography (CT) scans images.

In more detail, Section 2 gives a general background on workflow models and discusses
the state of the art, while Section 3 introduces the proposed approaches. Section 4 describes
the StreamFlow toolkit, which has been used to implement the COVID-related use case
described in Section 5. Finally, Section 6 summarises conclusions and future works.

2 Background and related work

A workflow is commonly represented as an acyclic digraph G = (N, E), where nodes refer
to different portions of a complex program and edges encode dependency relations between
nodes, i.e. a direct edge connecting a node m to a node n means that n must wait for m to
complete before starting its computation.

I. Colonnelli, B. Cantalupo, R. Esposito, M. Pennisi, C. Spampinato, and M. Aldinucci 5:3

When expressing a program in terms of a workflow model, it is necessary to distinguish
between two different classes of semantics [16]:

The host semantics defining the subprograms in workflow nodes, usually expressed in a
general-purpose programming language such as C++, Java or Python;
The coordination semantics defining the interactions between such nodes, i.e. expressing
the workflow model itself.

Tools in charge of exposing coordination semantics to the users and orchestrating workflow
executions are known as Workflow Management Systems (WMSs).

Given their extreme generality, workflow models represent a powerful abstraction for
designing scientific applications and executing them on a diverse set of environments, ranging
from the practitioners’ desktop machines to entire HPC centres. In this vision, WMSs act as
an interface between the domain specialists and the computing infrastructure.

The WMS landscape is very variegated, as it embraces a broad range of very diverse
scientific domains. Nevertheless, when considering the coordination semantics exposed to
the workflow designers, two main classes of tools can be identified: high-level products
implementing a strict separation of concerns between workflow description and application
code, and low-level distributed libraries directly intermingling workflow definition with
business logic.

In the first category, many tools provide a simplified Domain Specific Language (DSL) for
coordination. Some WMSs adopt a Unix-style approach to define workflows in a technology-
neutral way, using a syntax similar to Make [2, 14], while others provide a dataflow program-
ming model to express parallelism easily [11, 22]. Coordination DSLs are quite flexible, but
they introduce a different formalism that users must learn. For this reason, some solutions
prefer to hide or replace coordination languages with a higher level Graphical User Interface
(GUI), trading off complexity against flexibility [1, 17, 7].

Since product-specific DSLs and GUIs tightly couple workflow models to a single WMS,
limiting portability and reusability, there are also efforts in defining vendor-agnostic coordin-
ation languages or standards. The Common Workflow Language (CWL)1 [6] is an open
standard for describing analysis workflows, following a declarative JSON or YAML syntax.
Many products offer support for CWL, either alongside a proprietary coordination DSL [15]
or as a higher-level semantics on top of low-level APIs [21].

A strict separation between host code and coordination logics offers a considerable
abstraction level, promoting ease of understanding, portability and reproducibility across
diverse execution infrastructures, and code reusability for similar purposes. Nevertheless,
the significant overhead introduced by this separation of concerns makes these approaches
suitable only for coarse-grained workflows, where each step performs a considerable amount
of computation.

An alternative to complex and feature-rich WMSs, which puts performances first, is
represented by low-level distributed libraries [23, 20, 19], which directly expose coordination
programming models in the host code. Such libraries commonly allow for the execution of
many interdependent tasks on distributed architectures, supporting scenarios with low-latency
or high-throughput requirements. Despite being very efficient in terms of performances, these
libraries are hard to use for domain experts without programming experience.

When considering targeted execution environments, both categories of solutions come
with some limitations that prevent full support for hybrid architectures, i.e. mixed Cloud-
HPC infrastructures. High-level products usually come with a set of pluggable connectors

1 https://www.commonwl.org

PARMA-DITAM 2021

https://www.commonwl.org

5:4 HPC Application Cloudification: The StreamFlow Toolkit

targeting a broad range of infrastructures, e.g. public cloud services, batch schedulers
(e.g. HTCondor, PBS, SLURM) and Kubernetes clusters. Nevertheless, in most competing
approaches different steps of the same workflow cannot be managed by different connectors,
forcing users to stick with the same infrastructure for the whole execution flow.

On the other side, low-level distributed libraries commonly require the presence of a
shared file-system accessible by all worker nodes in the cluster (e.g. LUSTRE or HDFS),
which is hardly the case in hybrid Cloud-HPC settings. Moreover, inter-node communication
protocols require a bidirectional connection between the controller and the worker agents,
which is not compliant with air-gapped computing nodes that usually characterise HPC
facilities.

Even if some tools [10, 13] offer support for automatic data transfers among worker nodes,
therefore being compatible with hybrid architectures, they rely on specific transfer protocols
(e.g. GridFTP, SRM or Amazon S3) or delegate workflow management to an external batch
scheduler such as HTCondor, actually constraining the set of supported configurations.

3 Hybrid workflows

The workflow abstraction has already been explored for offloading computation to HPC
facilities in a transparent way. Indeed, as discussed in Section 2, many of the existing WMSs
come with a diverse set of connectors, some of them addressing cloud environments and
some others more HPC-oriented. Nevertheless, a far smaller percentage can deal with hybrid
cloud/HPC scenarios for executing a single workflow.

Unfortunately, HPC facilities are not well suited for every kind of application. When
executing complex workflows, it is common to have computation-intensive and highly parallel-
isable steps alternate with sequential or non-compute-bound operations. When scheduling an
application of this kind to an HPC centre, only a subset of workflow steps will effectively take
advantage of the available computing power, resulting in a low cost-benefit ratio. Moreover,
some operations are not supported in HPC facilities, e.g. exposing a web interface for data
visualisation in an air-gapped data centre.

In this vision, a WMS capable of dealing with hybrid workflows, i.e. able to schedule and
coordinate different steps of a workflow on different execution environments [9], represents a
crucial step towards a standard task-based interface to distributed computing. Indeed, the
possibility to assign each portion of a complex application to the computing infrastructure
that best suits its requirements strongly reduces the necessary tradeoffs in relying on such
high-level abstraction, both in terms of performances and costs.

A fundamental step to realising a hybrid WMS is to waive the requirement for any shared
data access space among all the executors, which is instead a constraint imposed by a broad
range of WMSs on the market. Indeed, it is hardly the case that an HPC centre and a
Cloud infrastructure can share a common file-system. This requirement can be removed by
letting the runtime system automatically handle data movements among different executors
whenever needed, keeping the only constraint for the WMS management infrastructure to be
able to reach the whole execution environment.

This strategy enables data movements between every pair of resources, and guarantees
that each of them requires at most two transfer operations: one from the source to the
management infrastructure and one from the management infrastructure to the destination.
Nevertheless, a two-step copy can represent an unsustainable overhead when dealing with
massive amounts of data, a common scenario in modern scientific pipelines.

Making the WMS aware of a workflow’s hybrid nature and letting it autonomously
manage data movements are crucial aspects for performance optimisation in such scenarios.
First of all, scheduling policies privileging data locality can minimise the number of required

I. Colonnelli, B. Cantalupo, R. Esposito, M. Pennisi, C. Spampinato, and M. Aldinucci 5:5

Workflow description
files

HPC Docker/
Kubernetes …CWL interpreter

StreamFlow
extensions Connector

StreamFlow executor

Data manager Deployment
managerScheduler

Model description
files

StreamFlow file

Figure 1 StreamFlow toolkit’s logical stack. The yellow area is related to the definition of the
workflow’s dependency graph, the dark grey area refers to the execution environments, and the
white portions are directly part of StreamFlow codebase.

data transfer operations, moving computation near data whenever possible. Moreover, if
a WMS is aware of the underlying infrastructure topology, it can use the two-step copy
strategy only as a last resort, privileging direct communication channels whenever available.

The hybrid workflows paradigm allows software architects to adopt a cluster-as-accelerator
design pattern [12], in which cluster nodes act as general interpreters of user-defined tasks sent
by a host executor. A similar pattern has been proven very effective to offload computationally
heavy operations to dedicated hardware. For example, cryptographic accelerators have long
been used for offloading security-related computations from the CPU, while GPGPUs
programming models adopt an accelerator pattern to cooperate with the host execution flow.

In this sense, we envision hybrid workflows as a way to enable cloudified HPC applications,
where domain experts can interact with the host execution flow through the user-friendly
*-as-a-Service paradigm, but computationally demanding steps can be easily offloaded to
data centers by means of high-level coordination primitives.

4 The StreamFlow toolkit

The StreamFlow2 tookit [8], whose logical stack is depicted in Figure 1, has been specifically
developed to orchestrate hybrid workflows on top of heterogeneous and geographically
distributed architectures.

Written in Python 3, it can seamlessly integrate with the CWL coordination standard
[6] for expressing workflow models. Alongside, one or more execution environments can be
described in well-known formats, e.g. Helm charts for Kubernetes deployments or Slurm

2 https://streamflow.di.unito.it/

PARMA-DITAM 2021

https://streamflow.di.unito.it/

5:6 HPC Application Cloudification: The StreamFlow Toolkit

CWL description file

CWL semantics dataflow

Workflow semantics dataflow

Parallel execution dataflow

StreamFlow executor

User-level workflow
description

cwltool internal
representation of a workflow

StreamFlow internal
representation of a workflow

Semantic dataflow explicitly
expressing data-parallelism

Runtime master-worker
execution model

Figure 2 StreamFlow toolkit’s layered dataflow model. Yellow blocks refer to the CWL runtime
library’s workflow representations, called cwltool, while the white ones are internal representations
adopted by the different layers of the StreamFlow toolkit.

files for queue jobs. A streamflow.yml file, the entry point of a StreamFlow run, is then in
charge of relating each workflow step with the best suitable execution environment, actually
plugging the hybrid layer in the workflow design process.

CWL semantics can be used to describe a workflow through a declarative JSON or YAML
syntax, written in one or more files with .cwl extension. Plus, an additional configuration
file contains a list of input parameters to initialise a workflow execution. The CWL reference
implementation, called cwltool, is in charge of translating these declarative semantics into
an executable workflow model, such that the runtime layer can efficiently execute independent
steps concurrently.

A commonly adopted executable representation of a workflow is the macro dataflow
graph [4]. Each node of this graph can be represented as a tuple ⟨ck, In(ck), Out(ck)⟩, where:

ck is a command encoding a coarse-grained computation;
In(ck) = {ikj : j ∈ [1, m]} is the set of input ports, i.e. the input dependencies of ck;
Out(ck) = {okj : j ∈ [1, n]} is the set of output ports, i.e. the values returned by ck.

Each edge ⟨okj , ilh⟩ of the graph encodes a dependency relation going from node k to node l,
meaning that node l will receive a token on its input port ilh from the output port okj of the
node k. When a node receives a token on each of its input ports, it enters the fireable state
and can be scheduled for execution. At any given time, all fireable nodes can be concurrently
executed by the runtime layer, provided that enough compute units are available.

The cwltool library natively translates the CWL semantics in a low-level macro dataflow
graph, and it also implements a multi-threaded runtime support. Nevertheless, even if CWL
is the primary coordination language in StreamFlow, the integration with additional workflow
design tools and formats is in plans, making it worthwhile to avoid too tight coupling between
CWL logics and the StreamFlow runtime.

For this reason, the StreamFlow toolkit adopts a layered dataflow model [18], as depicted in
Figure 2. As a first step, StreamFlow translates the CWL dataflow semantics into an internal
workflow representation, explicitly modelling a macro dataflow graph. It is worth noting that
this representation supports much broader semantics, including loops, stream-based input
ports and from-any activation policies.

I. Colonnelli, B. Cantalupo, R. Esposito, M. Pennisi, C. Spampinato, and M. Aldinucci 5:7

When dealing with explicit parallel semantics, whether they are data-parallel constructs
like scatter/gather or stream-parallel patterns like pipeline executions, the same node of
a dataflow graph can be executed multiple times. Therefore, the runtime support needs a
lower, parallelism-aware layer, capable of representing each workflow step as the set of its
execution units. In StreamFlow, such execution units are called jobs and are the only entities
directly visible to the underlying runtime components for scheduling, execution and fault
tolerance purposes.

Another distinctive feature of the StreamFlow WMS is the possibility to manage complex,
multi-agent execution environments, ensuring the co-allocation of multiple heterogeneous
processing elements to execute a single workflow step. The main advantage is introducing a
unique interface to a diverse ecosystem of distributed applications, ranging from MPI clusters
running on HPC facilities to microservices architectures deployed on Kubernetes.

To provide enough flexibility, StreamFlow adopts a three-layered hierarchical representa-
tion of execution environments:

A model is an entire multi-agent infrastructure and constitutes the unit of deployment,
i.e. all its components are always co-allocated when executing a step;
A service is a single agent in a model and constitutes the unit of binding, i.e. each step
of a workflow can be offloaded to a single service for execution;
A resource is a single instance of a potentially replicated service and constitutes the
unit of scheduling, i.e. each step of a workflow is offloaded to a configurable number of
service resources to be processed.

Each model is deployed and managed independently of the others by a dedicated Connector
implementation, which acts as a proxy for an external orchestration library. All Connector
classes inherit from a unique base interface, so that support for different execution envir-
onments can be added to the codebase by merely developing a new implementation and
plugging it in the StreamFlow runtime. In particular, the DeploymentManager class has the
role of invoking the appropriate Connector implementation to create and destroy models
whenever needed.

When a step becomes fireable, and the corresponding model has been successfully deployed,
a Scheduler class is in charge of selecting the best resource to execute it. Indeed, even
if only a single target service can be specified for each task, multiple replicas of the same
service could exist at the same time and, if the underlying orchestrator provides auto-scaling
features, their number could also change in time. Therefore, the Scheduler class relies on
the appropriate Connector to extract the list of compatible resources for a given step.

Then, a scheduling policy is required to choose the best one. Given the very complex
nature of hybrid workflows, a universally best scheduling strategy hardly exists. Indeed, many
different factors (e.g. computing power, data locality, load balancing) can affect the overall
execution time. A Policy interface has been introduced to allow for pluggable scheduling
strategies, with a default implementation trying to minimise the data movement overhead by
privileging data locality aspects.

Finally, the DataManager class must ensure that each service can access all its input
dependencies and perform data transfers whenever necessary. As discussed in Section 3, it is
always possible to move data between resources with a two-step copy operation involving
the StreamFlow management infrastructure. In particular, StreamFlow always relies on this
strategy for inter-model data transfers. Conversely, intra-model copies are performed by the
copy method of the corresponding Connector, which is aware of the infrastructure topology
and can open direct connections between resources whenever possible.

PARMA-DITAM 2021

5:8 HPC Application Cloudification: The StreamFlow Toolkit

TC scans Segmentation
Classification

Augmentation
Validation Performance

metrics
ExplainabilityPre-

processing

Noise reduction: contrast, normalisation

BIMCV-COVID19 dataset:
120k images from 1300+

patients

 Rotations, translations, reflection, …

Segmentation of region of interest

Explainable (with heat map) classifications of COVID-19
lesions, e.g. crazy paving, consolidation, ground glass.

Primary metrics
- Sensitivity (true and false positives)
- Specificity (true and false negatives)
Derived metrics
- Accuracy
- AUC of TPR vs FPR
- Diagnostic Odds Ratio

Pre-training

Figure 3 The CLAIRE COVID-19 universal pipeline.

It is also worth noting that all communications and data transfer operations are started
and managed by the StreamFlow controller, removing the need for a bidirectional channel
between the management infrastructure and the target resources. Therefore, tasks can also
be offloaded to HPC infrastructures with air-gapped worker nodes, since StreamFlow directly
interacts only with the frontend layer.

Moreover, StreamFlow does not need any specific package or library to be installed on
the target resources, other than the software dependencies required by the host application.
Therefore, virtually any target infrastructure reachable by a practitioner can serve as a target
model, as long as a compatible Connector implementation is available.

5 Use case: the CLAIRE COVID-19 universal pipeline

To demonstrate how StreamFlow can help bridge HCP and AI workloads, we present the
CLAIRE COVID-19 universal pipeline developed by the task force on AI & COVID-19 during
the first COVID-19 outbreak to study AI-assisted diagnosis of interstitial pneumonia.

COVID-19 infection caused by the SARS-CoV-2 pathogen is a catastrophic pandemic
outbreak worldwide with an exponential increase in confirmed cases and, unfortunately,
deaths. When the pandemic broke out, among the initiatives aimed at improving the
knowledge of the virus, containing its diffusion, and limiting its effects, the Confederation
of Laboratories for Artificial Intelligence Research in Europe (CLAIRE)3 task force on AI
& COVID-19 supported the set up of a novel European group to study the diagnosis of
COVID-19 pneumonia assisted by Artificial Intelligence (AI). The group was composed
of fifteen researchers in complementary disciplines (Radiomics, AI, and HPC) led by Prof.
Marco Aldinucci [3].

At the start of the pandemic, several studies outlined the effectiveness of radiology
imaging for COVID-19 diagnosis through chest X-Ray and mainly Computed Tomography
(CT), given the pulmonary involvement in subjects affected by the infection. Considering

3 https://https://claire-ai.org/

https://https://claire-ai.org/

I. Colonnelli, B. Cantalupo, R. Esposito, M. Pennisi, C. Spampinato, and M. Aldinucci 5:9

the extension of the infection and the number of cases that daily emerged worldwide, the
need for fast, robust, and medically sustainable diagnosis appeared fundamental. Applying
artificial intelligence to radiology images to make the whole diagnosis process automatic,
while reducing the efforts required by radiologists for visual inspection was relatively straight.

Even if X-Ray represents a cheaper and most effective solution for large scale screening,
its low resolution led AI models to show lower accuracy than those obtained with CT
data. Therefore, CT scan has become the gold standard for investigation on lung diseases.
Several research groups worldwide began to develop deep-learning models for the diagnosis
of COVID-19, mainly in the form of deep Convolutional Neural Networks (CNN), applying
lung disease analysis from CT scans images.

As soon as we started analysing all the solution proposed, it was evident that it is
impossible to select the most promising ones, due to the use of different architectures,
pipelines and datasets. So, we started working on defining a reproducible workflow capable of
automating the comparison of state-of-the-art deep learning models to diagnose COVID-19.

The workflow subsequently evolved towards the CLAIRE COVID-19 universal pipeline
(Figure 3). This pipeline can reproduce different state-of-the-art AI models existing in the
literature for the analysis of medical images. They include the pipeline for the diagnosis of
COVID-19 interstitial pneumonia and other diseases. The pipeline is designed to compare the
different training algorithms and therefore to define a baseline for these techniques allowing
the community to quantitatively measure the progress of AI in the diagnosis of COVID-19
and similar diseases.

The universal pipeline comprises two initial steps: Image Preprocessing and Augmentation,
where standard techniques for cleaning and generating variants of training images are applied.
The final stages are also typical pipeline components implementing Validation of results and
Performance Metrics collection.

The core steps are DNN-based. They are Pre-training, Segmentation and Classification.
Pre-training is an unsupervised learning step and aims to generate a first set of weights for
the next two steps, typically based on supervised learning. The segmentation step isolates
the region of interest (e.g. lung from other tissues), and the classification step labels each
image with a class identified with a kind of lesion that is typical of the disease. Each of
the steps can be implemented using different DNNs, generating different variants of the
pipeline. For each of these stages we selected the best DNNs that have been experimented in
literature, together with a systematic exploration of networks hyperparameters, allowing a
deeper search for the best model. As it can be deduced from Figure 4, the resulting number
of the CLAIRE COVID-19 pipelines variants is 990.

Theoretically, the universal pipeline can reproduce the training of all the best existing
and forthcoming models to diagnose pneumonia and compare their performance. Moving
from theory to practice requires two non-trivial ingredients: a supercomputer of adequate
computational power equipped with many latest generation GPUs and a mechanism capable
of unifying and automating the execution of all variants of the workflow on a supercomputer.

To set up experiments on the pipeline, we chose the biggest dataset publicly available
related to COVID-19’s pathology course, i.e. BIMCV-COVID194, with more than 120k
images from 1300 patients. Supposing to train each pre-trained model for 20 epochs on
such dataset, a single variant of the pipeline takes over 15 hours on a single NVidia V100
GPU, one of the most powerful accelerators in the market with more than 5000 CUDA cores.

4 https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/

PARMA-DITAM 2021

https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/

5:10 HPC Application Cloudification: The StreamFlow Toolkit

SegDNN (5 variants)

1. None
2. Fully-convolutional (ResNet)

3. DeepLabV3 (ResNet)
4. U-net
5. Tiramisu

ClassDNN (11 variants)

1. Inception (3 variants)
2. ResNet (3 variants)

3. DenseNet (3 variants)
4. AlexNet
5. Inception-ResNets

PreDNN (2 variants)

1. Pre-training
2. Self-training

Hyperparameters (9 variants)

A. Learning rate (3 values)
B. Weight decay (3 values)

C. Learning rate decay step (3 values)

Figure 4 Core components of the CLAIRE COVID-19 universal pipeline and their variants.

Therefore, exploring all the 990 pipeline variants would take over two years on the most
powerful GPU currently available and it should also be considered that tuning models for
each variant would need more than one execution, too.

Fortunately, since the universal pipeline has an embarrassingly parallel structure (Figure
5), using a supercomputer could reduce the execution time down to just one day. In the best
case, running all the variants concurrently on 990 different V100 GPUs only takes 15 hours
of wall-clock time. Nevertheless, post-training steps like performance metrics extraction
and comparison are better suited for a Cloud infrastructure, as they do not require much
computing power and can significantly benefit from web-based visualisation tools. Therefore,
the optimal execution of the pipeline advocates a cluster-as-accelerator design pattern.

The bridging of AI and HPC execution models has been solved by managing the universal
pipeline with StreamFlow. The pipeline is naturally modelled as a hybrid workflow, offloading
the training portions to an HPC facility and collecting the resulting networks on the host
execution flow for visualisation purposes. As an interface towards Cloud-HPC infrastructures,
StreamFlow automatically manages data movements and remote step execution, providing
fault tolerance mechanisms such as checkpointing of intermediate results and replay-based
recovery.

At the time of writing, the experiments have begun, and we see the first encouraging
results. We performed the analysis of about 1% of the variants (10 of 990) on the High-
Performance Computing for Artificial Intelligence (HPC4AI) at the University of Torino, a
multi-tenant hybrid Cloud-HPC system with 80 cores and 4 GPUs per node (T4 or V100-
SMX2) [5]. Results show that the CLAIRE COVID-19 universal pipeline can generate models
with excellent accuracy in classifying typical interstitial pneumonia lesions due to COVID-19,
with sensitivity and specificity metrics over 90% in the best cases.

6 Conclusion and future work

HPC is an enabling platform for scientific computing and Artificial Intelligence and a
fundamental tool for high impact research, such as AI-assisted analysis of medical images,
personalised medicine, seismic resiliency, and the green new deal. HPC and Cloud computing

I. Colonnelli, B. Cantalupo, R. Esposito, M. Pennisi, C. Spampinato, and M. Aldinucci 5:11

TC scan
dataset

Pre-
processing

 Collection of
Performance

metrics

Segmentation
Classification
ExplainabilityPre-trainingdata

replica
DNN

weights

data
Classification
Explainabilitydata

replica
DNN

weights

…

Validationmodel

training data test data

Segmentation
Classification
ExplainabilityPre-trainingdata

replica

DNN
weights

data
Classification
Explainability

DNN
weights

Validationmodel

training data test data

Segmentation
Classification
ExplainabilityPre-trainingdata

replica

DNN
weights

data
Classification
Explainability

DNN
weights

Validationmodel

training data test data

metrics

Figure 5 CLAIRE-COVID19 universal pipeline unfolded.

are at the frontier of EU digital sovereignty, which, together with the green new deal, are
two cornerstones of the EU agenda.

With EU 8B€ funding, HPC ranks first for the funding volume in the EU Digital Europe
2021-27. Propelled by Artificial Intelligence, the HPC market analysis reports an overall
CAGR19-24 of 32.9%5, where health is among the driver domains, and where the high-end
HPC (supercomputing) market grows much faster than other segments. However, Europe
struggles to mature an HPC value chain, from advanced research to innovation.

The HPC ecosystem is partitioned into applications, system software, and infrastructures.
We believe that the mainstream industrial adoption of HPC requires a system software
part, enabling technology to transform applications into easily usable services hence into
innovation. While in scientific computing the modernisation of HPC applications is a scientific
desideratum required to boost industrial adoption, in AI the shift toward the Cloud model
of services is a must. AI applications are already modern, and they will not step back.

In the HPC landscape, AI requires a significant shift in current software technology.
Computing resources should be available on-demand as a service, and data should be kept
secure in public and shared infrastructures. StreamFlow, leveraging modern virtualisation
technologies, advocates a new methodology to assemble existing legacy codes in a portable
and malleable way.

In this work, we propose the cluster-as-accelerator design pattern as a way to enable HPC
applications cloudification, allowing practitioners to minimise the price-performance ratio.
Moreover, we advocate hybrid workflow models as an intuitive programming paradigm to
express such design pattern, reducing technical barriers to HPC facilities for domain experts
without a strong computer science background.

The CLAIRE-COVID19 universal pipeline has been designed according to these principles,
offloading training-related steps to an HPC centre and collecting back the resulting networks
on the host execution flow, located on a Cloud infrastructure, for visualisation purposes.

5 Compound Annual Growth Rate.
Source: https://orau.gov/ai_townhall/presentations/1115am-Hyperion_Research_AI_Research.
pdf

PARMA-DITAM 2021

https://orau.gov/ai_townhall/presentations/1115am-Hyperion_Research_AI_Research.pdf
https://orau.gov/ai_townhall/presentations/1115am-Hyperion_Research_AI_Research.pdf

5:12 HPC Application Cloudification: The StreamFlow Toolkit

The StreamFlow toolkit, a Workflow Management System supporting hybrid workflow
executions, has been successfully used to perform a first portion of the planned experiments,
proving the proposed approach’s effectiveness in the AI domain.

The experiments will continue to execute all the variants on HPC4AI, applying the
pipeline on the complete dataset. However, the main goal will be setting a comprehensive
framework, where StreamFlow could manage the pipeline execution on different hybrid HPC
infrastructures.

References
1 Enis Afgan, Dannon Baker, Bérénice Batut, Marius van den Beek, Dave Bouvier, Martin

Cech, John Chilton, Dave Clements, Nate Coraor, Björn A. Grüning, Aysam Guerler, Jennifer
Hillman-Jackson, Saskia D. Hiltemann, Vahid Jalili, Helena Rasche, Nicola Soranzo, Jeremy
Goecks, James Taylor, Anton Nekrutenko, and Daniel J. Blankenberg. The Galaxy platform
for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids
Res., 46(Webserver-Issue):W537–W544, 2018. doi:10.1093/nar/gky379.

2 Michael Albrecht, Patrick Donnelly, Peter Bui, and Douglas Thain. Makeflow: a portable
abstraction for data intensive computing on clusters, clouds, and grids. In Proceedings of
the 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies,
SWEET@SIGMOD 2012, Scottsdale, AZ, USA, May 20, 2012, page 1, 2012. doi:10.1145/
2443416.2443417.

3 Marco Aldinucci. High-performance computing and AI team up
for COVID-19 diagnostic imaging. https://aihub.org/2021/01/12/
high-performance-computing-and-ai-team-up-for-covid-19-diagnostic-imaging/,
January 2021. Accessed: 2021-01-25.

4 Marco Aldinucci, Marco Danelutto, Lorenzo Anardu, Massimo Torquati, and Peter Kilpatrick.
Parallel patterns + macro data flow for multi-core programming. In Proc. of Intl. Euromicro
PDP 2012: Parallel Distributed and network-based Processing, pages 27–36, Garching, Germany,
February 2012. IEEE. doi:10.1109/PDP.2012.44.

5 Marco Aldinucci, Sergio Rabellino, Marco Pironti, Filippo Spiga, Paolo Viviani, Maurizio
Drocco, Marco Guerzoni, Guido Boella, Marco Mellia, Paolo Margara, Idillio Drago, Roberto
Marturano, Guido Marchetto, Elio Piccolo, Stefano Bagnasco, Stefano Lusso, Sara Vallero,
Giuseppe Attardi, Alex Barchiesi, Alberto Colla, and Fulvio Galeazzi. HPC4AI, an AI-on-
demand federated platform endeavour. In ACM Computing Frontiers, Ischia, Italy, May 2018.
doi:10.1145/3203217.3205340.

6 Peter Amstutz, Michael R. Crusoe, Nebojša Tijanić, Brad Chapman, John Chilton, Michael
Heuer, Andrey Kartashov, John Kern, Dan Leehr, Hervé Ménager, Maya Nedeljkovich, Matt
Scales, Stian Soiland-Reyes, and Luka Stojanovic. Common workflow language, v1.0, 2016.
doi:10.6084/m9.figshare.3115156.v2.

7 Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias Kötter, Thorsten
Meinl, Peter Ohl, Christoph Sieb, Kilian Thiel, and Bernd Wiswedel. KNIME: the Konstanz
Information Miner. In Data Analysis, Machine Learning and Applications - Proceedings
of the 31st Annual Conference of the Gesellschaft für Klassifikation e.V., Albert-Ludwigs-
Universität Freiburg, March 7-9, 2007, Studies in Classification, Data Analysis, and Knowledge
Organization, pages 319–326. Springer, 2007. doi:10.1007/978-3-540-78246-9_38.

8 Iacopo Colonnelli, Barbara Cantalupo, Ivan Merelli, and Marco Aldinucci. StreamFlow:
cross-breeding cloud with HPC. IEEE Transactions on Emerging Topics in Computing, August
2020. doi:10.1109/TETC.2020.3019202.

9 Rafael Ferreira da Silva, Rosa Filgueira, Ilia Pietri, Ming Jiang, Rizos Sakellariou, and Ewa
Deelman. A characterization of workflow management systems for extreme-scale applications.
Future Gener. Comput. Syst., 75:228–238, 2017. doi:10.1016/j.future.2017.02.026.

https://doi.org/10.1093/nar/gky379
https://doi.org/10.1145/2443416.2443417
https://doi.org/10.1145/2443416.2443417
https://aihub.org/2021/01/12/high-performance-computing-and-ai-team-up-for-covid-19-diagnostic-imaging/
https://aihub.org/2021/01/12/high-performance-computing-and-ai-team-up-for-covid-19-diagnostic-imaging/
https://doi.org/10.1109/PDP.2012.44
https://doi.org/10.1145/3203217.3205340
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.1007/978-3-540-78246-9_38
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/10.1016/j.future.2017.02.026

I. Colonnelli, B. Cantalupo, R. Esposito, M. Pennisi, C. Spampinato, and M. Aldinucci 5:13

10 Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip Maechling,
Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny, and R. Kent Wenger.
Pegasus, a workflow management system for science automation. Future Generation Comp.
Syst., 46:17–35, 2015. doi:10.1016/j.future.2014.10.008.

11 Paolo Di Tommaso, Maria Chatzou, Evan W. Floden, Pablo P. Barja, Emilio Palumbo,
and Cedric Notredame. Nextflow enables reproducible computational workflows. Nature
Biotechnology, 35(4):316–319, April 2017. doi:10.1038/nbt.3820.

12 Maurizio Drocco, Claudia Misale, and Marco Aldinucci. A cluster-as-accelerator approach
for SPMD-free data parallelism. In Proc. of 24th Euromicro Intl. Conference on Parallel
Distributed and network-based Processing (PDP), pages 350–353, Crete, Greece, 2016. IEEE.
doi:10.1109/PDP.2016.97.

13 Thomas Fahringer, Radu Prodan, Rubing Duan, Jürgen Hofer, Farrukh Nadeem, Francesco
Nerieri, Stefan Podlipnig, Jun Qin, Mumtaz Siddiqui, Hong Linh Truong, Alex Villazón, and
Marek Wieczorek. ASKALON: A development and grid computing environment for scientific
workflows. In Workflows for e-Science, Scientific Workflows for Grids, pages 450–471. Springer,
2007. doi:10.1007/978-1-84628-757-2_27.

14 Johannes Köster and Sven Rahmann. Snakemake - a scalable bioinformatics workflow engine.
Bioinformatics, 28(19):2520–2522, 2012. doi:10.1093/bioinformatics/bts480.

15 Michael Kotliar, Andrey V Kartashov, and Artem Barski. CWL-Airflow: a lightweight
pipeline manager supporting Common Workflow Language. GigaScience, 8(7), July 2019.
doi:10.1093/gigascience/giz084.

16 E.A. Lee and T.M. Parks. Dataflow process networks. Proc. of the IEEE, 83(5):773–801, May
1995. doi:10.1109/5.381846.

17 Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew B.
Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Scientific workflow management and the
Kepler system. Concurrency and Computation: Practice and Experience, 18(10):1039–1065,
2006. doi:10.1002/cpe.994.

18 Claudia Misale, Maurizio Drocco, Marco Aldinucci, and Guy Tremblay. A comparison of big
data frameworks on a layered dataflow model. Parallel Processing Letters, 27(01):1–20, 2017.
doi:10.1142/S0129626417400035.

19 Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric
Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica. Ray: A
distributed framework for emerging AI applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018,
pages 561–577, 2018.

20 Enric Tejedor, Yolanda Becerra, Guillem Alomar, Anna Queralt, Rosa M. Badia, Jordi Torres,
Toni Cortes, and Jesús Labarta. PyCOMPSs: Parallel computational workflows in Python.
Int. J. High Perform. Comput. Appl., 31(1):66–82, 2017. doi:10.1177/1094342015594678.

21 John Vivian, Arjun A. Rao, Frank A. Nothaft, et al. Toil enables reproducible, open source,
big biomedical data analyses. Nature Biotechnology, 35(4):314–316, April 2017. doi:10.1038/
nbt.3772.

22 Justin M. Wozniak, Michael Wilde, and Ian T. Foster. Language features for scalable
distributed-memory dataflow computing. In Proceedings of the 2014 Fourth Workshop on
Data-Flow Execution Models for Extreme Scale Computing, DFM ’14, page 50–53, USA, 2014.
IEEE Computer Society. doi:10.1109/DFM.2014.17.

23 Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur
Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali Ghodsi,
Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache Spark: a unified engine for big data
processing. Commun. ACM, 59(11):56–65, 2016. doi:10.1145/2934664.

PARMA-DITAM 2021

https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1109/PDP.2016.97
https://doi.org/10.1007/978-1-84628-757-2_27
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/gigascience/giz084
https://doi.org/10.1109/5.381846
https://doi.org/10.1002/cpe.994
https://doi.org/10.1142/S0129626417400035
https://doi.org/10.1177/1094342015594678
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1109/DFM.2014.17
https://doi.org/10.1145/2934664

	p000-Frontmatter
	Preface

	p001-Bouraoui
	1 Introduction
	2 Motivational example
	3 mAPN
	3.1 mAPN Formalization
	3.2 Exploration algorithm

	4 Evaluation
	4.1 The mAPN model of ASA
	4.2 Experimental Results

	5 Related work
	6 Conclusion

	p001-ZZZ-Bouraoui
	p002-Irving
	1 Introduction
	2 Background and Related Work
	3 Design
	3.1 GPU K-Opaque Software Transactional Memory (KoSTM)
	3.1.1 Shadow Entries
	3.1.2 Access Log
	3.1.3 Transaction Life-Cycle

	3.2 Distributed TM Model: KoDTM
	3.3 Strict Correctness with Approximate Consistency

	4 Experimental Analysis
	4.1 Balancing Staleness and Throughput
	4.2 Workload Sensitivity

	5 Conclusion

	p002-ZZZ-Irving
	p003-Magnani
	1 Introduction
	2 Related Work
	3 Application scenario
	3.1 Relevant applications of FOC
	3.2 Principle of Operation
	3.3 Structure of the Miniapp
	3.4 Enhancements to FixM

	4 Experimental Evaluation
	4.1 Hardware Setup
	4.2 Software Configuration
	4.3 Evaluation Methodology
	4.4 Discussion

	5 Conclusions

	p003-ZZZ-Magnani
	p004-Ferikoglou
	1 Introduction
	2 Related Work
	3 Experimental Setup & Specifications
	4 Motivational Observations and Analysis
	5 Resource-aware GPU Sharing Kubernetes scheduler
	6 Experimental Evaluation
	6.1 Homogeneous Workload Evaluation
	6.2 Heterogeneous Workload Evaluation

	7 Conclusion

	p005-Colonnelli
	1 Introduction
	2 Background and related work
	3 Hybrid workflows
	4 The StreamFlow toolkit
	5 Use case: the CLAIRE COVID-19 universal pipeline
	6 Conclusion and future work

	p005-ZZZ-Colonnelli

