The Impact of Precision Tuning on Embedded
Systems Performance:
A Case Study on Field-Oriented Control

Gabriele Magnani &
DEIB, Politecnico di Milano, Italy

Daniele Cattaneo =
DEIB, Politecnico di Milano, Italy

Michele Chiari &
DEIB, Politecnico di Milano, Italy

Giovanni Agosta &
DEIB, Politecnico di Milano, Italy

—— Abstract

Field Oriented Control (FOC) is an industry-standard strategy for controlling induction motors
and other kinds of AC-based motors. This control scheme has a very high arithmetic intensity
when implemented digitally — in particular it requires the use of trigonometric functions. This
requirement contrasts with the necessity of increasing the control step frequency when required, and
the minimization of power consumption in applications where conserving battery life is paramount
such as drones. However, it also makes FOC well suited for optimization using precision tuning
techniques. Therefore, we exploit the state-of-the-art FIxM methodology to optimize a miniapp
simulating a typical FOC application by applying precision tuning of trigonometric functions. The
F1xM approach itself was extended in order to implement additional algorithm choices to enable a
trade-off between execution time and code size. With the application of FIXM on the miniapp, we
achieved a speedup up to 278%, at a cost of an error in the output less than 0.1%.

2012 ACM Subject Classification Hardware — Power estimation and optimization; Software and
its engineering — Compilers; Applied computing — Consumer health

Keywords and phrases Approximate Computing, Field-oriented control, Precision Tuning
Digital Object Identifier 10.4230/OASIcs. PARMA-DITAM.2021.3

Funding Work supported by the FET-HPC project RECIPE, G.A. n. 801137.

1 Introduction

Approximate Computing is an increasingly popular approach to achieve large performance
and energy improvements in error-tolerant applications [1, 27, 13]. This class of techniques
aims at trading off computation accuracy for performance and energy. In particular, precision
tuning is an approximate computing technique that trades off the accuracy of mathematical
operations for performance and energy by employing less precise data types, e.g. fixed point
instead of floating point, or bfloat16 [20] instead of standard IEEE-754 32-bit floating point
numbers.

This non-trivial task is usually performed manually by embedded systems programmers,
and in general by software developers that need to achieve high performance with limited
resources. However, this operation is error-prone and tedious, especially when large code
bases are involved. Thus, a significant research effort has been spent over the recent years
to build compiler-based tools to support or entirely replace the programmer effort [10]. In
particular, recent advances optimize mathematical functions whose computation is usually
off-loaded to a library [9)].

? Gabriele Magnani,.Daniele Cattan.eo, Michele Chiari, and Giovanni Agosta;

37 icensed under Creative Commons License CC-BY 4.0
12th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and
10th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM

2021).
Editors: Joao Bispo, Stefano Cherubin, and José Flich; Article No. 3; pp. 3:1-3:13

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:gabriele.magnani@mail.polimi.it
https://orcid.org/0000-0001-9729-5826
mailto:daniele.cattaneo@polimi.it
https://orcid.org/0000-0003-1453-3257
mailto:michele.chiari@polimi.it
https://orcid.org/0000-0001-7742-9233
mailto:agosta@acm.org
https://orcid.org/0000-0002-0255-4475
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2021.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2

The Impact of Precision Tuning on Embedded Systems Performance

However, these advances are generally proven on benchmark suites, which are not
necessarily representative of specific embedded systems domains. In particular, the PolyBench
suite [35] is primarily composed of kernels from the High Performance Computing domain,
whereas the CPU variant of AXBENCH only provides one kernel for each domain addressed,
for a total of seven kernels. Therefore, there is a distinct lack of analyses of the performance
impact of automated precision tuning on embedded-specific application domains. Given the
wide variety of such domains, the trade-off between generality and accuracy of the benchmark
can be addressed by exploiting the miniapp concept [28, 19, 18], which provides a middle
ground between the full application (which provides accuracy at the expense of generality)
and kernels (which provide some generality at the expense of accuracy).

Among microcontroller-based embedded application domains, the control of electrical
motor drives — a classical topic in power electronics — remains very relevant also thanks to the
wide diffusion of drones and the maker culture. Field-oriented control (FOC) is one of the
two main techniques employed to control such motors. Although it is more computationally
intensive than its competitor, Direct Torque Control, the availability of cheap but powerful
microcontrollers makes it relevant [32, 4]. We select a FOC controller as a miniapp on which
we exercise the full capabilities of a modern compilation toolchain supporting precision tuning
for operation on low-power microcontrollers, which are usually not endowed with a floating
point unit to save area and power. FOC controllers are mainly composed of the Clarke and
Park transforms, in both the direct and inverse form, coupled to proportional/integral (PI)
controllers. The two transforms extensively leverage trigonometric functions and square root
computation, posing a challenge for the optimization that is best addressed through tunable
generation of mathematical functions.

Contribution

In this work, we provide two main contributions. First, we explore the practical applicability
of modern precision tuning tools to embedded systems applications, focusing on the specific
domain of motor control systems through a dedicated case study.

Second, we improve the F1XxM library beyond the proof-of-concept provided in [9] by
adding the capability of choosing between multiple algorithms. In particular, FIXM can now
choose between the industry-standard CORDIC [31] algorithm and a simple look-up-table
(LUT) implementation.

Organization of the paper

The rest of this paper is organized as follows. In section 2 we briefly survey the existing tools
for precision tuning, to select the most appropriate for the optimization of the FOC miniapp.
In section 3 we provide a brief background on FOC and a characterization of the FOC
miniapp employed as a case study in our work. In section 4 we report on our experimental
evaluation, while in section 5 we draw some conclusions and highlight future directions.

2 Related Work

With the growing interest in recent years towards precision tuning as a technique for perform-
ance and energy optimization, and with the growing spread of error-tolerant applications
in a diverse range of application domains, the literature has seen a number of approaches
to automating this task. A full discussion of the topic is beyond the scope of this work,
therefore the interested reader is referred to recent surveys such as [2, 10, 27].

G. Magnani, D. Cattaneo, M. Chiari, and G. Agosta

Precision tuning approaches can be divided into two broad categories: static and dynamic.
Dynamic approaches such as [3, 11, 34, 25, 16], while providing more fine tuning of the data
type width, lead to excessive overheads for low-power embedded applications. [11, 25, 16]
recompile computational kernels just-in-time to fine-tune them to the current input. The time
and energy overhead of recompilation makes this approach sub-optimal for low-power, realtime
settings. [34] performs an offline noise-sensitivity analysis to identify error-tolerant areas
of the program, and then dynamically reduces the accuracy of floating-point computations
at runtime. The main drawbacks of this work is that the offline analysis requires a dataset
representative of real world inputs, which might not be available, and hardware support for
floating-point precision scaling. The requirement of a representative input dataset is also a
drawback of Autoscaler for C' [22] and PetaBricks [3].

Another class of approaches more directly tailored for embedded systems is that of
hardware/software codesign approaches, where the hardware computing units are generated
according to the minimum necessary precision [21, 26]. These approaches, while very effective,
are not applicable to many real world cases. Indeed, the industrial scenario of embedded
systems is predominantly composed of small and medium sized system integration companies
that work with a range of platforms from large semiconductor manufacturers such as Texas
Instruments and ST Microelectronics, with limited opportunities for full-scale hardware/soft-
ware codesign. Furthermore, this scenario requires to avoid the introduction of custom
programming languages and runtimes, both because of the limitations of the underlying
hardware and because embedded systems developers often have focused competences on
domain-specific tools that generate C code, or directly write embedded C code. This makes
dedicated languages such as PetaBricks unsuitable in this scenario.

Thus, we constrain the discussion to tools that can be used for static precision tuning, i.e.
to provide a single mixed precision version of the original code that satisfies the user-defined
precision requirements while optimizing a given performance metric. Such tools gather the
information required to apply their optimizations to the code without requiring extensive
testing, but rather through static analyses. Among them, the most representative of the state
of the art are Precimonious [23], Daisy [15], and TAFFO [12], which are all candidates for use in
embedded systems scenarios. Of these, Daisy operates as a source-to-source compiler, which
can be considered a drawback, since it may prevent information from the source from reaching
the compiler optimization phases directly, possibly introducing overheads. Precimonius and
TAFFO operate as LLVM plugins, thus providing a greater degree of integration. Finally, only
TAFFO provides dedicated support for mathematical library optimizations [9]. Thus, we select
TAFFO with the FIXM extension as the tool for our investigation.

3 Application scenario

The topic of motor control systems is as old as the invention of the first brushed direct
current (DC) motor. For over a century, since the mid-1800s, this kind of motors were
the favored technology for applications where some degree of control of motor speed and
torque was required, because it could be easily achieved through simple techniques such as
split windings in the motor and rheostats. Two-phase alternating current (AC) motors or
induction motors were much harder to control electrically with the technology of the time.
With the advent of solid-state power electronics in the mid-1970’s, and the development of
control theory, it became possible to electronically control AC motors. The most efficient of
such controllers are active, in other words they employ feedback from sensors in the motor
itself to achieve greater precision in the behavior of the motor.

3:3

PARMA-DITAM 2021

3:4

The Impact of Precision Tuning on Embedded Systems Performance

To this day, one of the most popular state-of-the-art control schemes for AC induction
motors is Field-Oriented Control (FOC). FOC was first proposed by Blaschke [5], and it
belongs to a wider class of motor control approaches named variable-frequency drive (VFD),
as it involves variation of the frequency of the electrical power fed into the motor. The
main alternative to FOC for motor control is Dynamic Torque Control (DTC), which was
developed by Takahashi et al. [30]. This control scheme is simpler to implement. However, it
is less effective at low speeds, and produces higher ripple in the torque and the current [8].
A digital implementation of FOC was described by Gabriel et al. in 1980 [17].

In this section, we briefly discuss the relevance of FOC in the current industrial landscape,
and then we enter into details with respect to its implementation. Finally, we describe the
structure of the miniapp we use, and the improvements to FIxM that we implemented.

3.1 Relevant applications of FOC

The applications where FOC is most relevant are all those cases where it is desired to
efficiently operate a motor to achieve a set torque or rotation speed. Nowadays, FOC
is seeing increasing adoption because the higher computational power required by digital
implementations was compensated by the development of high-performance microcontrollers
which are able to execute the control loop at ever higher frequencies. In fact, far from
standing still, the field of its applications has seen a considerable expansion.

In industrial applications, the last two decades saw the widespread adoption of FOC for
all AC motors, where in the past passive control schemes were employed. This development
was spurred by an increased preference for permanent-magnet (PM) brushless DC and AC
motors, alongside with induction motors (IMs) and other such high-efficiency motors that
require the use of FOC to achieve their highest rated torque [6].

Another application field where FOC is in massive use is in high-power electric propulsion
systems employing induction motors, such as electric trains and automobiles. While electric
trains are a consolidated presence in the public transport scenario, the increased preference
of electric engines in automobiles over internal combustion engines is a recent phenomenon
because of the reduced environmental impact and the development of battery technology that
significantly lifted previous range limitations. FOC applied to automobile-grade induction
motors has been successfully employed in the industry, for example in vehicles such as the
General Motor EV1 and the Tesla Model S. Therefore, FOC is the key to the impressive
acceleration and range efficiency performance of this class of automobiles [29].

An additional use case of FOC that has arisen in the last decade are drones, utility devices
that are increasingly replacing heavyweight solutions such as helicopters in applications such
as surveillance, video production and more [24].

In the eolic industry, FOC is also used as a control approach for the machine-side-converter
component of permanent magnet synchronous generators for wind turbines. Control of the
torque of the turbine is key to achieving the highest possible efficiency in all conditions [33].

3.2 Principle of Operation

FOC targets induction motors or permanent magnet synchronous motors. In such motors
the drive coils are mounted on the stator, and the rotor is free to rotate around the coils.
Motion is achieved by attraction or repulsion of a permanent magnet affixed to the rotor
through the magnetic field produced by the current passing through the coils in the stator.
Indeed, the output of the FOC control equations is the voltage to be applied to these coils as
a function of time. To produce a continuous rotation, the coils — or electromagnets — must
alternate their magnetic polarity at a precisely controlled rate.

G. Magnani, D. Cattaneo, M. Chiari, and G. Agosta

The central idea behind FOC is to analyze the magnetic flux generated by the current
passing through the coils of the motor through vectors in the complex space. In motor space,
the frame of reference considered by FOC is composed by three two-dimensional current
vectors i4, 1 and i, which are laid out with a 120° angle between them. These three vectors
model the three electromagnets used by a typical induction motor. This frame of reference
is commonly denoted as the three-phase system azis, or abc-space. The complex current i,
induced through the stator is therefore expressed as:

- . 25 E LA
lg =1l +€ 3 1p+€e 3 1,

where j = y/—1 is imaginary unit.

The three-phase system describes the current passing through the coils in a geometric
and therefore time-variant means. Since in this three-dimensional frame of reference one of
the base vectors can be constructed as the linear combination of the other two, it is possible
to reduce this space to a simpler still time-variant two-dimensional frame of reference. This
operation is performed through the Clarke transformation. Given the three-phase currents
iq, tp and i, in a balanced system where i, 4 ip + i, = 0, such transform calculates equivalent
currents i, and ig in the two-phase orthogonal stator space as:

1 0 0| [iq
ol _ | L 2]|,
is| |3 V3 ‘
0 0 0] L

To convert this time-dependent frame of reference to a time-independent rotating space, a
second transform is employed, named the Park transformation. Such transformation operates
as follows, given i, and ig and a rotor flux angle ¥:

ig| | cos? sind| |iq

L’J B [— sind cos 19} |:25]

In induction motors, the rotor flux angle ¥ is measured using a pair of Hall sensors around
the perimeter of the motor. The ¢4 and ¢, variables represent respectively the flux component
and the torque component of the rotation of the motor. To achieve control of the motor, the
FOC approach uses a PI regulator or another kind of regulator on the iq and 7, variables to
compute the pg-space voltage components vg and v,. We denote the target iq and iq as iqref
and i4per. These voltages are transformed to time-variant af8-space by applying the reverse

Park transform, and then the inverse Clarke transform or another modulation scheme such
as PWM to obtain the voltages to the coils in the starting abc-space.

3.3 Structure of the Miniapp

From the description of the operation of the FOC control approach, we easily determine
that it has a very high arithmetic intensity. In particular, the computation of the Park
and the inverse Park transform requires four computations of sin and four computations
of cos of a variable angle measured from sensors. Finally, we can deduce that FOC is
error tolerant from the application of control engineering principles, and from fact that the
inputs to the control system are intrinsically uncertain sensor measurements. Therefore, this
application is particularly suited for the application of the FIxM methodology, as it matches
both effectiveness requirements of such methodology — error tolerance and high arithmetic
intensity.

The miniapp we use for analyzing the ability of FIXM to optimize the FOC control
scheme is composed by:

3:5

PARMA-DITAM 2021

3:6 The Impact of Precision Tuning on Embedded Systems Performance

SinePWM

Inverse Park Transform — Clarke Transform
p-

FOC Mod.
type SpaceVectorPWM

(not used)

e—» Input readings

Figure 1 Structure of the FOC miniapp. Light blue elements are the computationally intensive
kernel. Shaded elements are not used, but are present in the miniapp structure to maintain
compatibility with the Arduino SimpleFFOCLibrary, from which the original code has been extracted.

An input generator, which is tasked with producing simulated values of i, i, ¥, iqRes

and i4grer as required by the FOC system.

The computational kernel, which performs a single discrete pass of the FOC control

algorithm using the inputs generated by the previous component of the miniapp.

The input generator is designed to be lightweight, in order to approximate the computational
load which would be required in a realistic application for reading the sensors and the target
idref and iqres from an external system or another software component running on the
same microcontroller. Additionally, the input generator is deterministic, in order to allow
comparisons of the quality of the control action across different precision settings.

The miniapp performs a fixed number of iterations of the FOC kernel combined with the
input generator, reporting the last values of i,, i, and i. generated by the FOC controller at
regular intervals. At the end of the miniapp’s execution cycle, the measured number of clock
cycles required for the computation are printed. This allows the comparison of the execution
time between differently optimized versions of the miniapp. Figure 1 show a block diagram
of the miniapp control flow graph.

3.4 Enhancements to FixM

As presented in [9], FIXM is only capable of optimizing sin and cos trigonometric functions
by replacing floating point implementations with customized fixed point code depending
on the required precision. The fixed point versions of these functions always employed the
CORDIC [31] algorithm, as it is fast — it executes in constant time given a fixed amount
of bits in the output — and has a very small code size. However, we observe that when
the number of different bit partitionings used in the optimized program are small, it is
worthwhile to penalize code size in exchange for improved execution time. In particular,
we can replace the implementation based on CORDIC with a look-up-table (LUT) based
implementation. A LUT is implemented by computing and storing a customizable number
of sin values from the input range [0-7] at compile time. Since storing the function’s value
for each possible input may take up too much memory, only values for evenly-spaced inputs
are stored. Their granularity determines the precision of the implementation, at the expense
of memory consumption. Additionally, the size of the LUT is reduced by exploiting the
periodicity and symmetry properties of trigonometric functions. At runtime, the angle to
lookup is adjusted using trigonometric transformations to fit the right range and compute the
correct function. Thus, LUTs essentially nullify the constant factors intrinsic in a complex

G. Magnani, D. Cattaneo, M. Chiari, and G. Agosta

algorithm such as CORDIC, because they only involve a single memory lookup with some
minor prior computation to perform a calculation. This approach comes at the cost of a
much larger data segment, and the higher the precision, the larger the code size.

In order to allow the automatic trade-off of code size and execution time, we added a
parameter to FIXM called Z. The Z parameter expresses the proportion of space available
for additional code, excluding any occupation attributable by the optimizations performed
by FixM. Depending on the value of Z, FIXMAGE decides at compile time whether to
generate a look-up-table or a CORDIC implementation of a given trigonometric function. By
default, Z is set to 0, and in that setting it forces FIXMAGE to always generate CORDIC

implementations. Conversely, Z = 1 will always generate LUTs instead of using CORDIC.

Intermediate values let FIXMAGE decide which implementation to choose depending on the
frequency of use of that implementation and its cost in terms of bytes.

More in detail, FIXMAGE models such decision process as a knapsack problem, where
each item i is a function instance, its value v; is equal to the number of times the function is
used, and its weight w; is equal to the estimated size occupied by the LUT computed as:

1-Z7

w; ZZAfi'dd' S
d, ']V>+-df -N

where M; is the number of items in the LUT, N is the number of LLVM-IR instructions in
the program, N is the number of functions in the program, and d., dy and dg are weights
for each instruction, function and LUT entry respectively. The additional parameters d.,
ds and dgq depend on the architecture. In particular, d. is the average code density, dy is
the function call prologue and epilogue overhead, and dg is the size of a single LUT table
item. Therefore, the term A =d. - N + dy - N estimates the code size of the program being
compiled. The term B = M; - dg estimates the size of the LUTs. For a conventional 32-bit
ARM architecture we use d. = 4, dy = 64 and dg = 4. In order to minimize the compilation
time, the knapsack problem is solved using the greedy algorithm proposed by Dantzig [14].

4 Experimental Evaluation

In this section, we evaluate the effectiveness of the enhancements presented in Section 3.4 in
the optimization of a FOC controller. We evaluate its benefits in terms of energy consumption,
execution time and code size of the optimized program. We also measure the impact on
computation accuracy, to make sure the optimization does not induce errors in the output
that are large enough to compromise the controller’s functionality.

Energy consumption and code size are especially important for this application, since the
typical hardware platforms on which FOC controllers operate are (possibly) battery-powered
embedded systems with limited memory. In this respect, we evaluate FIXMAGE by varying
the proportion of trigonometric functions implemented with CORDIC vs. LUT, to assess
the ability of the approach to modulate the output code size arbitrarily. Execution time is
also of primary importance, not only because it directly influences energy consumption, but
because — for the controller to be effective — it must provide updated control variables to the
motor at an appropriate frequency.

The miniapp benchmark application used in the evaluation has been assembled as
described in Section 3.3. In particular, the computational kernel has been obtained by
extracting the FOC controller code from Arduino SimpleFOCLibrary,! version 2.0. This

! https://github.com/simplefoc/Arduino-FOC

3:7

PARMA-DITAM 2021

https://github.com/simplefoc/Arduino-FOC

3:8

The Impact of Precision Tuning on Embedded Systems Performance

library provides a robust FOC implementation, compatible with a wide set of the most
common Microcontroller Unit (MCU) architectures. Arduino SimpleFOCLibrary is written
in the C4++ programming language, and computes all the transforms required by FOC in
single-precision floating-point arithmetic. Therefore, it is well suited to the application of
FixM for converting all floating-point computations into fixed-point types, whereas other
implementations may contain a hand-written fixed-point-based implementation.

No modifications have been made to the extracted code, besides the insertion of a few
variable annotations required by TAFFO.

4.1 Hardware Setup

We run our benchmark on two different hardware platforms, representative of the hardware
class of low-medium-range MCUs, with limited central memory and CPU frequency. This is
the hardware class on which a FOC application could be typically run.

The first platform, codenamed F2 in the following, is an STM3220G-EVAL evaluation
board featuring a 120 MHz Cortex-M3 ARM CPU, with 128 KB of internal RAM, 2 MB of
SRAM, and 1 MB of flash memory. This board’s CPU has no native support of floating-point
arithmetic, which must be completely implemented in software.

The second platform, codenamed F/ in the following, is a STM32F4-Discovery board
with an 168 MHz Cortex-M4 ARM CPU and 192 KB of RAM. Although the CPU is slower
than that of the first board, it implements floating-point arithmetic in-hardware.

4.2 Software Configuration

For each platform, we compiled the benchmark application with TAFFO and our enhanced
version of F1XM. The version of the LLVM toolchain which we employed was version 10.0.1.
First of all, we must observe that the implementation of FOC found in the Simple FOCLibrary
library is optimized such that only two trigonometric function evaluations are required in
each kernel loop iteration. The miniapp was compiled with several different F1XM settings
to evaluate the tradeoff of using the implementation based on look-up-tables as opposed to
the implementation based on CORDIC:

C2 This configuration always uses CORDIC for both trigonometric calls

L1C1 This configuration uses a LUT for the first trigonometric call, but a CORDIC imple-
mentation for the second call

C1L1 This configuration uses a LUT for the second trigonometric call, but a CORDIC
implementation for the first

L2 This configuration always uses LUTs for both trigonometric calls

We evaluated our approach by comparing such versions of the benchmark with two different
baselines. The first one has been obtained by compiling the application with the standard
GCC-based compiler toolchain of the platform, as distributed by ST Microelectronics, using
only floating-point arithmetic, and with the implementation of the standard mathematical
library provided by newlib version 2.5.0. The second one consists of the application compiled
against the LLVM toolchain with TAFFO, which enables the conversion of floating-point
arithmetic into fixed-point computations, but still employs the standard floating-point
mathematical library for the trigonometric functions.

G. Magnani, D. Cattaneo, M. Chiari, and G. Agosta

4.3 Evaluation Methodology

The execution time of the benchmark was measured by instrumenting it appropriately with
code that queries the internal clock of each device. To obtain more consistent measurements,
the reported execution times are the average 100 runs of the benchmark. To compare the
version of the benchmark optimized with FIXM to the baselines, we compute its speedup.
Let ¢1 and t5 be two time measurements: the speedup of t; on t5 is:

S =100 (t2 —1)
tq

Additionally, we use the speedup to evaluate the potential for energy savings. Indeed,
since the speedup grows inversely proportional with the amount of clock cycles spent in the
execution of the computational kernel, and the amount of clock cycles grows proportionally
with the energy consumption [7], it transitively follows that a high speedup is a strong
indication of lower energy consumptions.

The benchmark application was arranged so that it outputs the desired values of the
motor control variables as a vector of numbers. We evaluated the accuracy of such results by
computing the average Relative Error (RE) between the three versions of the benchmark. Let
X = (x1,22,...,2,) and Y = (y1,¥ya2,...,yn) be the result vectors of two different versions
of the benchmark. We first compute the average absolute error as:

AE = avg |z; — yil
1<i<n

and then the relative error as:

AFE

aAvVgi<i<n leil

RE =
Finally, the percentage relative error can be computed simply by multiplying RE by 100.

4.4 Discussion

Figure 2 shows the performance and accuracy results of our experimental campaign, which
confirms that FIxM is needed to achieve a speedup on the FOC miniapp. Indeed, TAFFO
alone suffers from the impact of the mathematical functions, which require to convert back
and forth between floating and fixed point. The introduction of LUTs provides a reasonable
benefit in performance, at a limited accuracy impact with respect to CORDIC. The results
are confirmed on both platforms, showing the robustness of the FIxM framework.

Table 1 shows the impact in memory footprint. The “All Code” column shows the code
size (without data) including external support libraries (for example the C standard libraries,
and the ST Microelectronics CMSIS-compliant HAL). The “Appl. Code” column shows the
size of the code of the FOC miniapp, without counting any external library. Finally, the
“Constants” column shows the size of the constant data section of the executable. While
TAFFO and FIXM do not exhibit a significant overhead — actually FIxM with CORDIC
even saves some space — the use of LUTs does impose an overhead due to the lookup tables
themselves. In fact, the size required by the LUTs alone is higher than the size of the code
of the application.

In order to evaluate the efficacy of the trade-off between code and execution time, we
compare the code size estimated by FIXMAGE to the actual size of the application code
after compilation. With parameters d. = 4, dy = 64 and d4 = 4, the estimated code size A is

3:9

PARMA-DITAM 2021

3:10

The Impact of Precision Tuning on Embedded Systems Performance

TAFFO m FixM (C1L1) 10714
600 1 B Float FIXM (L1C1)
FiIxM (C2) mmm FixM (L2)
10724
5001
=
— — 103
£ 4001 5 10
o w
E 2
< &y
-2 300 < 10
3 [
£ &
i &
z 5
2001 <10
1001
10°°
0 0 . . _
F2 F4 TAFFO FixM FixM FixM FixM
(€2) (CiL1) (L1C1) (L2)
Platform Method
(@) Comparison of execution times by platform (b) Comparison of average percentage relative er-
and approximation method. rors by approximation method.

Figure 2 Experimental evaluation: performance and accuracy.

Table 1 Size of the generated code in bytes, split across code and constants. The code figures
are further split into the code that is part of the FOC miniapp (Appl. Code) and the full code size
when also taking into consideration the platform-specific support libraries (All Code).

F2 F4
Method All Code Appl. Code Constants Code Appl. Code Constants
Float 7424 1892 672 6840 1892 696
TAFFO 8912 832 688 8216 900 704
FixM (C2) 6000 2538 476 5132 2548 496
FixM (L1C1) 6404 2204 8668 5608 2252 8688
FixM (C1L1) 6452 2158 8668 5620 2240 8688
FixM (L2) 6048 1804 8412 5200 1832 8432

equal to 2020 bytes (N = 281, N = 14) which matches the experimentally determined code
size for the Float baseline within a margin of error of ~ 6%. The LUT size B is exact (8192
bytes) as the LUTs are generated by FIXMAGE itself.

Figure 3 shows the design space of precision tuning according to the three metrics
considered in this work — performance (Ezec Time in ms), accuracy (Error in percentage),
and memory footprint (Size in bytes). While F1xM using CORDIC provides good performance
and small code size at minimum accuracy loss, and is therefore a preferable solution to the
use of floating point and TAFFO alone, the use of LUTs provides further performance at the
expense of both precision and memory footprint. Mixed solutions (using CORDIC for one
operation and LUT for the other) provide an intermediate point that is not Pareto-dominated
by either FIxM with CORDIC or FixM with both LUTs. Thus, the expansion of FixM to
generate also LUTs proves a valuable addition that expands the design space, providing the
designer with much needed choices, which can be exerted to cope with specific application
constraints. E.g., in case space is tight due to the need to pack more application kernels

G. Magnani, D. Cattaneo, M. Chiari, and G. Agosta

F2 F4
0.101 ™ Size 0101 ™ Size
6476 5628
8096 7536
0.081 e 9600 0.081 e 8020
o 14460 o 13632
o 15072 o 14296
o 15120 o 14308
0.06 4 Method 0.06 4 Method
= + e Float = + e Float
s x FixM (C2) s x FIxM (C2)
"ﬁ * = FIxM (L2) e * = FIxM (L2)
0.041 0.04
+ FIxM (L1C1) + FIxM (L1C1)
¢ FIxM (CIL1) ¢ FIxM (CIL1)
* TAFFO + TAFFO
0.021 0.021
0.00 + 0.00] +
200 300 400 500 600 100 150 200 250 300 350 400
Exec Time Exec Time

Figure 3 Design space for the two platforms in terms of execution time, error, and memory
footprint. Execution time is measured in ms, Size in bytes, Error in percentage.

on a small platform, CORDIC can be prioritized, whereas if the response time is critical

more space can be poured into the design to improve performance with the use of one or two
LUTs.

5 Conclusions

In this paper, we have explored the impact of precision tuning of arithmetic operations
in the application domain of induction motor drive control, through a dedicated miniapp
based on a popular Open Source implementation of Field-oriented control. We extended the
F1xM methodology to manage the trade-off between execution time and code size, achieving
a speedup up to 278%, at the cost of a minimal reduction in output error — lesser than
0.1%. Future directions involve the identification of other application domains for which
miniapps could be needed, and therefore the construction of a library of domain-specific
miniapps. Furthermore, FIXM can be further extended to cover more mathematical functions,
depending on the needs of the applications.

—— References

1 A. Agrawal et al. Approximate computing: Challenges and opportunities. In 2016 IEEE
International Conference on Rebooting Computing (ICRC), pages 1-8, 2016.

2 Massimo Alioto, Vivek De, and Andrea Marongiu. Energy-quality scalable integrated circuits
and systems: Continuing energy scaling in the twilight of moore’s law. IEEE J. Emerg. Sel.
Topics Circuits Syst., 8(4):653-678, December 2018. doi:10.1109/JETCAS.2018.2881461.

3 Jason Ansel, Yee L. Wong, Cy Chan, Marek Olszewski, Alan Edelman, and Saman Amarasinghe.
Language and compiler support for auto-tuning variable-accuracy algorithms. In Int. Symp.
on Code Generation and Optimization (CGO 2011), pages 85-96, April 2011. doi:10.1109/
CG0.2011.5764677.

3:11

PARMA-DITAM 2021

https://doi.org/10.1109/JETCAS.2018.2881461
https://doi.org/10.1109/CGO.2011.5764677
https://doi.org/10.1109/CGO.2011.5764677

3:12

The Impact of Precision Tuning on Embedded Systems Performance

10

11

12

13

14

15

16

17

18

19

20

Vladislav M. Bida, Dmitry V. Samokhvalov, and Fuad Sh Al-Mahturi. PMSM vector control
techniques—a survey. In 2018 IEEE Conference of Russian Young Researchers in Electrical
and Electronic Engineering (EIConRus), pages 577-581. IEEE, 2018.

Felix Blaschke. Das verfahren der feldorientierung zur regelung der asynchronmaschine.
Siemens Forschungs und Entwicklungsberichte, 1972.

I. Boldea. Electric generators and motors: An overview. CES Transactions on Electrical
Machines and Systems, 1(1):3-14, 2017. doi:10.23919/TEMS.2017.7911104.

Carlo Brandolese, Simone Corbetta, and William Fornaciari. Software energy estimation
based on statistical characterization of intermediate compilation code. In Proceedings of the
2011 International Symposium on Low Power Electronics and Design, 2011, Fukuoka, Japan,
August 1-8, 2011, pages 333-338, 2011.

D. Casadei, F. Profumo, G. Serra, and A. Tani. Foc and dtc: two viable schemes for
induction motors torque control. IEEE Transactions on Power Electronics, 17(5):779-787,
2002. doi:10.1109/TPEL.2002.802183.

Daniele Cattaneo, Michele Chiari, Gabriele Magnani, Nicola Fossati, Stefano Cherubin, and
Giovanni Agosta. FixM: Code generation of fixed point mathematical functions. Sustainable
Computing: Informatics and Systems, 29:100478, 2021. doi:10.1016/j.suscom.2020.100478.
Stefano Cherubin and Giovanni Agosta. Tools for reduced precision computation: a survey.
ACM Computing Surveys, 53(2), April 2020. doi:10.1145/3381039.

Stefano Cherubin, Daniele Cattaneo, Michele Chiari, and Giovanni Agosta. Dynamic precision
autotuning with TAFFO. ACM Trans. Archit. Code Optim., 17(2), May 2020. doi:10.1145/
3388785.

Stefano Cherubin, Daniele Cattaneo, Michele Chiari, Antonio Di Bello, and Giovanni Agosta.
TAFFO: Tuning assistant for floating to fixed point optimization. IEEE Embedded Syst. Lett.,
12(1):5787 2019. doi:10.1109/LES.2019.2913774.

Stefano Cherubin et al. Implications of Reduced-Precision Computations in HPC: Performance,
Energy and Error. In Parallel Computing is FEverywhere, volume 32: Advances in Parallel
Computing, pages 297-306, March 2018. International Conference on Parallel Computing
(ParCO), Sep 2017. doi:10.3233/978-1-61499-843-3-297.

George B. Dantzig. Discrete-variable extremum problems. Operations Research, 5(2):266-288,
1957. doi:10.1287/opre.5.2.266.

Eva Darulova, Einar Horn, and Saksham Sharma. Sound mixed-precision optimization with
rewriting. In Proc. 9th ACM/IEEFE Int. Conf. on Cyber-Physical Systems, ICCPS ’18, pages
208-219, 2018. doi:10.1109/ICCPS.2018.00028.

Marco Festa, Nicole Gervasoni, Stefano Cherubin, and Giovanni Agosta. Continuous program
optimization via advanced dynamic compilation techniques. In Proceedings of the 10th and 8th
Workshop on Parallel Programming and Run-Time Management Techniques for Many-core
Architectures and Design Tools and Architectures for Multicore Embedded Computing Platforms,
pages 1-6, 2019.

R. Gabriel, W. Leonhard, and C. J. Nordby. Field-oriented control of a standard AC motor
using microprocessors. IEEE Transactions on Industry Applications, IA-16(2):186-192, 1980.
doi:10.1109/TIA.1980.4503770.

Davide Gadioli et al. Tunable approximations to control time-to-solution in an hpc molecular
docking mini-app. The Journal of Supercomputing, pages 1-29, 2020.

Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring, H Carter
Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K Thornquist, and Robert W
Numrich. Improving performance via mini-applications. Sandia National Laboratories, Tech.
Rep. SAND2009-5574, 3, 2009.

IEEE Computer Society Standards Committee. Floating-Point Working group of the Micro-
processor Standards Subcommittee. IEEE Standard for Floating-Point Arithmetic. IEEE Std
754-2008, pages 1-70, August 2008. doi:10.1109/IEEESTD.2008.4610935.

https://doi.org/10.23919/TEMS.2017.7911104
https://doi.org/10.1109/TPEL.2002.802183
https://doi.org/10.1016/j.suscom.2020.100478
https://doi.org/10.1145/3381039
https://doi.org/10.1145/3388785
https://doi.org/10.1145/3388785
https://doi.org/10.1109/LES.2019.2913774
https://doi.org/10.3233/978-1-61499-843-3-297
https://doi.org/10.1287/opre.5.2.266
https://doi.org/10.1109/ICCPS.2018.00028
https://doi.org/10.1109/TIA.1980.4503770
https://doi.org/10.1109/IEEESTD.2008.4610935

G. Magnani, D. Cattaneo, M. Chiari, and G. Agosta

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

H. Keding, M. Willems, M. Coors, and H. Meyr. FRIDGE: A fixed-point design and simulation
environment. In Proceedings of the Conference on Design, Automation and Test in Europe,
DATE ’98, pages 429-435, 1998.

Ki-II Kum, Jiyang Kang, and Wonyong Sung. AUTOSCALER for C: an optimizing floating-
point to integer C program converter for fixed-point digital signal processors. IEEE Trans.
Clircuits Syst. II. Analog Digit. Signal Process., 47(9):840-848, September 2000. doi:10.1109/
82.868453.

Cindy Rubio-Gonzélez et al. Precimonious: Tuning assistant for floating-point precision. In
Proceedings of the International Conference on High Performance Computing, Networking,

Storage and Analysis, SC 13, pages 27:1-27:12, November 2013. doi:10.1145/2503210.

2503296.

Jack Shandle. Field-Oriented Control of Small DC Motors put Drones on a Rising Flight
Path, 2015. Accessed November 28, 2020. URL: https://www.digikey.com/en/articles/
field-oriented-control-of-small-dc-motors-put-drones-on-a-rising-flight-path.
C. Silvano et al. The antarex tool flow for monitoring and autotuning energy efficient hpc
systems. In 2017 International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), pages 308-316, 2017. doi:10.1109/SAMOS.2017.8344645.
N. Simon, D. Menard, and O. Sentieys. ID.Fix-infrastructure for the design of fixed-point
systems. In University Booth of the Conference on Design, Automation and Test in Europe
(DATE), volume 38, 2011. URL: http://idfix.gforge.inria.fr.

Phillip Stanley-Marbell, Armin Alaghi, Michael Carbin, Eva Darulova, Lara Dolecek, Andreas
Gerstlauer, Ghayoor Gillani, Djordje Jevdjic, Thierry Moreau, Mattia Cacciotti, Alexandros
Daglis, Natalie Enright Jerger, Babak Falsafi, Sasa Misailovic, Adrian Sampson, and Damien
Zufferey. Exploiting errors for efficiency: A survey from circuits to applications. ACM
Computing Surveys, 53(3), June 2020. doi:10.1145/3394898.

Andrew Stone, John Dennis, and Michelle Strout. Establishing a miniapp as a programmability
proxy. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 12, page 333-334, New York, NY, USA, 2012. Association for
Computing Machinery. doi:10.1145/2145816.2145881.

Xiaoli Sun, Zhengguo Li, Xiaolin Wang, and Chengjiang Li. Technology development of
electric vehicles: A review. Energies, 13(1):90, December 2019. doi:10.3390/en13010090.

I. Takahashi and T. Noguchi. A new quick-response and high-efficiency control strategy of
an induction motor. IEEE Transactions on Industry Applications, IA-22(5):820-827, 1986.
d0i:10.1109/TIA.1986.4504799.

Jack Volder. The CORDIC computing technique. In Papers presented at the the March 3-5,
1959, western joint computer conference, pages 257-261, 1959.

Fengxiang Wang, Zhenbin Zhang, Xuezhu Mei, José Rodriguez, and Ralph Kennel. Advanced
control strategies of induction machine: Field oriented control, direct torque control and model
predictive control. Energies, 11(1):120, 2018.

V. Yaramasu, A. Dekka, M. J. Duran, S. Kouro, and B. Wu. PMSG-based wind energy
conversion systems: survey on power converters and controls. IET Electric Power Applications,
11(6):956-968, 2017. doi:10.1049/iet-epa.2016.0799.

Serif Yesil, Ismail Akturk, and Ulya R. Karpuzcu. Toward dynamic precision scaling. I[EEE
Micro, 38(4):30-39, July 2018. doi:10.1109/MM.2018.043191123.

Tomofumi Yuki. Understanding PolyBench/C 3.2 kernels. In International workshop on
Polyhedral Compilation Techniques (IMPACT), 2014.

3:13

PARMA-DITAM 2021

https://doi.org/10.1109/82.868453
https://doi.org/10.1109/82.868453
https://doi.org/10.1145/2503210.2503296
https://doi.org/10.1145/2503210.2503296
https://www.digikey.com/en/articles/field-oriented-control-of-small-dc-motors-put-drones-on-a-rising-flight-path
https://www.digikey.com/en/articles/field-oriented-control-of-small-dc-motors-put-drones-on-a-rising-flight-path
https://doi.org/10.1109/SAMOS.2017.8344645
http://idfix.gforge.inria.fr
https://doi.org/10.1145/3394898
https://doi.org/10.1145/2145816.2145881
https://doi.org/10.3390/en13010090
https://doi.org/10.1109/TIA.1986.4504799
https://doi.org/10.1049/iet-epa.2016.0799
https://doi.org/10.1109/MM.2018.043191123

	1 Introduction
	2 Related Work
	3 Application scenario
	3.1 Relevant applications of FOC
	3.2 Principle of Operation
	3.3 Structure of the Miniapp
	3.4 Enhancements to FixM

	4 Experimental Evaluation
	4.1 Hardware Setup
	4.2 Software Configuration
	4.3 Evaluation Methodology
	4.4 Discussion

	5 Conclusions

