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Abstract
Finding an effective way to improve accessibility to High-Performance Computing facilities, still
anchored to SSH-based remote shells and queue-based job submission mechanisms, is an open
problem in computer science.

This work advocates a cloudification of HPC applications through a cluster-as-accelerator pattern,
where computationally demanding portions of the main execution flow hosted on a Cloud Finding
an effective way to improve accessibility to High-Performance Computing facilities, still anchored
to SSH-based remote shells and queue-based job submission mechanisms, is an open problem in
computer science.

This work advocates a cloudification of HPC applications through a cluster-as-accelerator
pattern, where computationally demanding portions of the main execution flow hosted on a Cloud
infrastructure can be offloaded to HPC environments to speed them up. We introduce StreamFlow,
a novel Workflow Management System that supports such a design pattern and makes it possible
to run the steps of a standard workflow model on independent processing elements with no shared
storage.

We validated the proposed approach’s effectiveness on the CLAIRE COVID-19 universal pipeline,
i.e. a reproducible workflow capable of automating the comparison of (possibly all) state-of-the-art
pipelines for the diagnosis of COVID-19 interstitial pneumonia from CT scans images based on Deep
Neural Networks (DNNs).
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1 Introduction

If the technical barriers to Cloud-based infrastructures lowered substantially with the advent
of the *-as-a-Service model, most High-Performance Computing (HPC) facilities worldwide
are still anchored to SSH-based remote shells and queue-based job submission mechanisms.

Finding an effective way to improve accessibility to this class of computing resources is
still an open problem in computer science. Indeed, the multiple layers of virtualisation that
characterise modern cloud architectures introduce significant processing overheads and make
it impossible to apply adaptive fine-tuning techniques based upon the underlying hardware
technologies, making them incompatible with performance-critical HPC applications. On the
other hand, HPC centres are not designed for general purpose applications. Only scalable
and computationally demanding programs can effectively benefit from the massive amount
of processing elements and the low-latency network interconnections that characterise HPC
facilities, justifying the high development cost of HPC-enabled applications. Moreover, some
seemingly trivial applications are not supported in HPC environments, e.g. exposing a public
web interface for data visualisation in an air-gapped worker node.

In this work, we promote a cluster-as-accelerator design pattern, in which cluster nodes
act as general interpreters of user-defined tasks sent by a general-purpose host executor
residing on a Cloud infrastructure, as a way to offload computation to HPC facilities in an
intuitive way. Moreover, we propose hybrid workflows, i.e. workflows whose steps can be
scheduled on independent and potentially not intercommunicating execution environments,
as a programming paradigm to express such design pattern.

The StreamFlow toolkit [8], a Workflow Management System (WMS) supporting workflow
executions on hybrid Cloud-HPC infrastructures, is then used to evaluate the effectiveness
of the proposed approach on a real application, a Deep Neural Network (DNN) training
pipeline for COVID-19 diagnosis from Computed Tomography (CT) scans images.

In more detail, Section 2 gives a general background on workflow models and discusses
the state of the art, while Section 3 introduces the proposed approaches. Section 4 describes
the StreamFlow toolkit, which has been used to implement the COVID-related use case
described in Section 5. Finally, Section 6 summarises conclusions and future works.

2 Background and related work

A workflow is commonly represented as an acyclic digraph G = (N, E), where nodes refer
to different portions of a complex program and edges encode dependency relations between
nodes, i.e. a direct edge connecting a node m to a node n means that n must wait for m to
complete before starting its computation.
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When expressing a program in terms of a workflow model, it is necessary to distinguish
between two different classes of semantics [16]:

The host semantics defining the subprograms in workflow nodes, usually expressed in a
general-purpose programming language such as C++, Java or Python;
The coordination semantics defining the interactions between such nodes, i.e. expressing
the workflow model itself.

Tools in charge of exposing coordination semantics to the users and orchestrating workflow
executions are known as Workflow Management Systems (WMSs).

Given their extreme generality, workflow models represent a powerful abstraction for
designing scientific applications and executing them on a diverse set of environments, ranging
from the practitioners’ desktop machines to entire HPC centres. In this vision, WMSs act as
an interface between the domain specialists and the computing infrastructure.

The WMS landscape is very variegated, as it embraces a broad range of very diverse
scientific domains. Nevertheless, when considering the coordination semantics exposed to
the workflow designers, two main classes of tools can be identified: high-level products
implementing a strict separation of concerns between workflow description and application
code, and low-level distributed libraries directly intermingling workflow definition with
business logic.

In the first category, many tools provide a simplified Domain Specific Language (DSL) for
coordination. Some WMSs adopt a Unix-style approach to define workflows in a technology-
neutral way, using a syntax similar to Make [2, 14], while others provide a dataflow program-
ming model to express parallelism easily [11, 22]. Coordination DSLs are quite flexible, but
they introduce a different formalism that users must learn. For this reason, some solutions
prefer to hide or replace coordination languages with a higher level Graphical User Interface
(GUI), trading off complexity against flexibility [1, 17, 7].

Since product-specific DSLs and GUIs tightly couple workflow models to a single WMS,
limiting portability and reusability, there are also efforts in defining vendor-agnostic coordin-
ation languages or standards. The Common Workflow Language (CWL)1 [6] is an open
standard for describing analysis workflows, following a declarative JSON or YAML syntax.
Many products offer support for CWL, either alongside a proprietary coordination DSL [15]
or as a higher-level semantics on top of low-level APIs [21].

A strict separation between host code and coordination logics offers a considerable
abstraction level, promoting ease of understanding, portability and reproducibility across
diverse execution infrastructures, and code reusability for similar purposes. Nevertheless,
the significant overhead introduced by this separation of concerns makes these approaches
suitable only for coarse-grained workflows, where each step performs a considerable amount
of computation.

An alternative to complex and feature-rich WMSs, which puts performances first, is
represented by low-level distributed libraries [23, 20, 19], which directly expose coordination
programming models in the host code. Such libraries commonly allow for the execution of
many interdependent tasks on distributed architectures, supporting scenarios with low-latency
or high-throughput requirements. Despite being very efficient in terms of performances, these
libraries are hard to use for domain experts without programming experience.

When considering targeted execution environments, both categories of solutions come
with some limitations that prevent full support for hybrid architectures, i.e. mixed Cloud-
HPC infrastructures. High-level products usually come with a set of pluggable connectors

1 https://www.commonwl.org
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targeting a broad range of infrastructures, e.g. public cloud services, batch schedulers
(e.g. HTCondor, PBS, SLURM) and Kubernetes clusters. Nevertheless, in most competing
approaches different steps of the same workflow cannot be managed by different connectors,
forcing users to stick with the same infrastructure for the whole execution flow.

On the other side, low-level distributed libraries commonly require the presence of a
shared file-system accessible by all worker nodes in the cluster (e.g. LUSTRE or HDFS),
which is hardly the case in hybrid Cloud-HPC settings. Moreover, inter-node communication
protocols require a bidirectional connection between the controller and the worker agents,
which is not compliant with air-gapped computing nodes that usually characterise HPC
facilities.

Even if some tools [10, 13] offer support for automatic data transfers among worker nodes,
therefore being compatible with hybrid architectures, they rely on specific transfer protocols
(e.g. GridFTP, SRM or Amazon S3) or delegate workflow management to an external batch
scheduler such as HTCondor, actually constraining the set of supported configurations.

3 Hybrid workflows

The workflow abstraction has already been explored for offloading computation to HPC
facilities in a transparent way. Indeed, as discussed in Section 2, many of the existing WMSs
come with a diverse set of connectors, some of them addressing cloud environments and
some others more HPC-oriented. Nevertheless, a far smaller percentage can deal with hybrid
cloud/HPC scenarios for executing a single workflow.

Unfortunately, HPC facilities are not well suited for every kind of application. When
executing complex workflows, it is common to have computation-intensive and highly parallel-
isable steps alternate with sequential or non-compute-bound operations. When scheduling an
application of this kind to an HPC centre, only a subset of workflow steps will effectively take
advantage of the available computing power, resulting in a low cost-benefit ratio. Moreover,
some operations are not supported in HPC facilities, e.g. exposing a web interface for data
visualisation in an air-gapped data centre.

In this vision, a WMS capable of dealing with hybrid workflows, i.e. able to schedule and
coordinate different steps of a workflow on different execution environments [9], represents a
crucial step towards a standard task-based interface to distributed computing. Indeed, the
possibility to assign each portion of a complex application to the computing infrastructure
that best suits its requirements strongly reduces the necessary tradeoffs in relying on such
high-level abstraction, both in terms of performances and costs.

A fundamental step to realising a hybrid WMS is to waive the requirement for any shared
data access space among all the executors, which is instead a constraint imposed by a broad
range of WMSs on the market. Indeed, it is hardly the case that an HPC centre and a
Cloud infrastructure can share a common file-system. This requirement can be removed by
letting the runtime system automatically handle data movements among different executors
whenever needed, keeping the only constraint for the WMS management infrastructure to be
able to reach the whole execution environment.

This strategy enables data movements between every pair of resources, and guarantees
that each of them requires at most two transfer operations: one from the source to the
management infrastructure and one from the management infrastructure to the destination.
Nevertheless, a two-step copy can represent an unsustainable overhead when dealing with
massive amounts of data, a common scenario in modern scientific pipelines.

Making the WMS aware of a workflow’s hybrid nature and letting it autonomously
manage data movements are crucial aspects for performance optimisation in such scenarios.
First of all, scheduling policies privileging data locality can minimise the number of required
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Workflow description 
files

HPC Docker/
Kubernetes …CWL interpreter

StreamFlow 
extensions Connector

StreamFlow executor

Data manager Deployment 
managerScheduler

Model description
files

StreamFlow file

Figure 1 StreamFlow toolkit’s logical stack. The yellow area is related to the definition of the
workflow’s dependency graph, the dark grey area refers to the execution environments, and the
white portions are directly part of StreamFlow codebase.

data transfer operations, moving computation near data whenever possible. Moreover, if
a WMS is aware of the underlying infrastructure topology, it can use the two-step copy
strategy only as a last resort, privileging direct communication channels whenever available.

The hybrid workflows paradigm allows software architects to adopt a cluster-as-accelerator
design pattern [12], in which cluster nodes act as general interpreters of user-defined tasks sent
by a host executor. A similar pattern has been proven very effective to offload computationally
heavy operations to dedicated hardware. For example, cryptographic accelerators have long
been used for offloading security-related computations from the CPU, while GPGPUs
programming models adopt an accelerator pattern to cooperate with the host execution flow.

In this sense, we envision hybrid workflows as a way to enable cloudified HPC applications,
where domain experts can interact with the host execution flow through the user-friendly
*-as-a-Service paradigm, but computationally demanding steps can be easily offloaded to
data centers by means of high-level coordination primitives.

4 The StreamFlow toolkit

The StreamFlow2 tookit [8], whose logical stack is depicted in Figure 1, has been specifically
developed to orchestrate hybrid workflows on top of heterogeneous and geographically
distributed architectures.

Written in Python 3, it can seamlessly integrate with the CWL coordination standard
[6] for expressing workflow models. Alongside, one or more execution environments can be
described in well-known formats, e.g. Helm charts for Kubernetes deployments or Slurm

2 https://streamflow.di.unito.it/
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CWL description file

CWL semantics dataflow

Workflow semantics dataflow

Parallel execution dataflow

StreamFlow executor

User-level workflow 
description

cwltool internal
representation of a workflow

StreamFlow internal 
representation of a workflow

Semantic dataflow explicitly 
expressing data-parallelism

Runtime master-worker 
execution model

Figure 2 StreamFlow toolkit’s layered dataflow model. Yellow blocks refer to the CWL runtime
library’s workflow representations, called cwltool, while the white ones are internal representations
adopted by the different layers of the StreamFlow toolkit.

files for queue jobs. A streamflow.yml file, the entry point of a StreamFlow run, is then in
charge of relating each workflow step with the best suitable execution environment, actually
plugging the hybrid layer in the workflow design process.

CWL semantics can be used to describe a workflow through a declarative JSON or YAML
syntax, written in one or more files with .cwl extension. Plus, an additional configuration
file contains a list of input parameters to initialise a workflow execution. The CWL reference
implementation, called cwltool, is in charge of translating these declarative semantics into
an executable workflow model, such that the runtime layer can efficiently execute independent
steps concurrently.

A commonly adopted executable representation of a workflow is the macro dataflow
graph [4]. Each node of this graph can be represented as a tuple ⟨ck, In(ck), Out(ck)⟩, where:

ck is a command encoding a coarse-grained computation;
In(ck) = {ikj : j ∈ [1, m]} is the set of input ports, i.e. the input dependencies of ck;
Out(ck) = {okj : j ∈ [1, n]} is the set of output ports, i.e. the values returned by ck.

Each edge ⟨okj , ilh⟩ of the graph encodes a dependency relation going from node k to node l,
meaning that node l will receive a token on its input port ilh from the output port okj of the
node k. When a node receives a token on each of its input ports, it enters the fireable state
and can be scheduled for execution. At any given time, all fireable nodes can be concurrently
executed by the runtime layer, provided that enough compute units are available.

The cwltool library natively translates the CWL semantics in a low-level macro dataflow
graph, and it also implements a multi-threaded runtime support. Nevertheless, even if CWL
is the primary coordination language in StreamFlow, the integration with additional workflow
design tools and formats is in plans, making it worthwhile to avoid too tight coupling between
CWL logics and the StreamFlow runtime.

For this reason, the StreamFlow toolkit adopts a layered dataflow model [18], as depicted in
Figure 2. As a first step, StreamFlow translates the CWL dataflow semantics into an internal
workflow representation, explicitly modelling a macro dataflow graph. It is worth noting that
this representation supports much broader semantics, including loops, stream-based input
ports and from-any activation policies.
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When dealing with explicit parallel semantics, whether they are data-parallel constructs
like scatter/gather or stream-parallel patterns like pipeline executions, the same node of
a dataflow graph can be executed multiple times. Therefore, the runtime support needs a
lower, parallelism-aware layer, capable of representing each workflow step as the set of its
execution units. In StreamFlow, such execution units are called jobs and are the only entities
directly visible to the underlying runtime components for scheduling, execution and fault
tolerance purposes.

Another distinctive feature of the StreamFlow WMS is the possibility to manage complex,
multi-agent execution environments, ensuring the co-allocation of multiple heterogeneous
processing elements to execute a single workflow step. The main advantage is introducing a
unique interface to a diverse ecosystem of distributed applications, ranging from MPI clusters
running on HPC facilities to microservices architectures deployed on Kubernetes.

To provide enough flexibility, StreamFlow adopts a three-layered hierarchical representa-
tion of execution environments:

A model is an entire multi-agent infrastructure and constitutes the unit of deployment,
i.e. all its components are always co-allocated when executing a step;
A service is a single agent in a model and constitutes the unit of binding, i.e. each step
of a workflow can be offloaded to a single service for execution;
A resource is a single instance of a potentially replicated service and constitutes the
unit of scheduling, i.e. each step of a workflow is offloaded to a configurable number of
service resources to be processed.

Each model is deployed and managed independently of the others by a dedicated Connector
implementation, which acts as a proxy for an external orchestration library. All Connector
classes inherit from a unique base interface, so that support for different execution envir-
onments can be added to the codebase by merely developing a new implementation and
plugging it in the StreamFlow runtime. In particular, the DeploymentManager class has the
role of invoking the appropriate Connector implementation to create and destroy models
whenever needed.

When a step becomes fireable, and the corresponding model has been successfully deployed,
a Scheduler class is in charge of selecting the best resource to execute it. Indeed, even
if only a single target service can be specified for each task, multiple replicas of the same
service could exist at the same time and, if the underlying orchestrator provides auto-scaling
features, their number could also change in time. Therefore, the Scheduler class relies on
the appropriate Connector to extract the list of compatible resources for a given step.

Then, a scheduling policy is required to choose the best one. Given the very complex
nature of hybrid workflows, a universally best scheduling strategy hardly exists. Indeed, many
different factors (e.g. computing power, data locality, load balancing) can affect the overall
execution time. A Policy interface has been introduced to allow for pluggable scheduling
strategies, with a default implementation trying to minimise the data movement overhead by
privileging data locality aspects.

Finally, the DataManager class must ensure that each service can access all its input
dependencies and perform data transfers whenever necessary. As discussed in Section 3, it is
always possible to move data between resources with a two-step copy operation involving
the StreamFlow management infrastructure. In particular, StreamFlow always relies on this
strategy for inter-model data transfers. Conversely, intra-model copies are performed by the
copy method of the corresponding Connector, which is aware of the infrastructure topology
and can open direct connections between resources whenever possible.

PARMA-DITAM 2021
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Figure 3 The CLAIRE COVID-19 universal pipeline.

It is also worth noting that all communications and data transfer operations are started
and managed by the StreamFlow controller, removing the need for a bidirectional channel
between the management infrastructure and the target resources. Therefore, tasks can also
be offloaded to HPC infrastructures with air-gapped worker nodes, since StreamFlow directly
interacts only with the frontend layer.

Moreover, StreamFlow does not need any specific package or library to be installed on
the target resources, other than the software dependencies required by the host application.
Therefore, virtually any target infrastructure reachable by a practitioner can serve as a target
model, as long as a compatible Connector implementation is available.

5 Use case: the CLAIRE COVID-19 universal pipeline

To demonstrate how StreamFlow can help bridge HCP and AI workloads, we present the
CLAIRE COVID-19 universal pipeline developed by the task force on AI & COVID-19 during
the first COVID-19 outbreak to study AI-assisted diagnosis of interstitial pneumonia.

COVID-19 infection caused by the SARS-CoV-2 pathogen is a catastrophic pandemic
outbreak worldwide with an exponential increase in confirmed cases and, unfortunately,
deaths. When the pandemic broke out, among the initiatives aimed at improving the
knowledge of the virus, containing its diffusion, and limiting its effects, the Confederation
of Laboratories for Artificial Intelligence Research in Europe (CLAIRE)3 task force on AI
& COVID-19 supported the set up of a novel European group to study the diagnosis of
COVID-19 pneumonia assisted by Artificial Intelligence (AI). The group was composed
of fifteen researchers in complementary disciplines (Radiomics, AI, and HPC) led by Prof.
Marco Aldinucci [3].

At the start of the pandemic, several studies outlined the effectiveness of radiology
imaging for COVID-19 diagnosis through chest X-Ray and mainly Computed Tomography
(CT), given the pulmonary involvement in subjects affected by the infection. Considering

3 https://https://claire-ai.org/

https://https://claire-ai.org/
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the extension of the infection and the number of cases that daily emerged worldwide, the
need for fast, robust, and medically sustainable diagnosis appeared fundamental. Applying
artificial intelligence to radiology images to make the whole diagnosis process automatic,
while reducing the efforts required by radiologists for visual inspection was relatively straight.

Even if X-Ray represents a cheaper and most effective solution for large scale screening,
its low resolution led AI models to show lower accuracy than those obtained with CT
data. Therefore, CT scan has become the gold standard for investigation on lung diseases.
Several research groups worldwide began to develop deep-learning models for the diagnosis
of COVID-19, mainly in the form of deep Convolutional Neural Networks (CNN), applying
lung disease analysis from CT scans images.

As soon as we started analysing all the solution proposed, it was evident that it is
impossible to select the most promising ones, due to the use of different architectures,
pipelines and datasets. So, we started working on defining a reproducible workflow capable of
automating the comparison of state-of-the-art deep learning models to diagnose COVID-19.

The workflow subsequently evolved towards the CLAIRE COVID-19 universal pipeline
(Figure 3). This pipeline can reproduce different state-of-the-art AI models existing in the
literature for the analysis of medical images. They include the pipeline for the diagnosis of
COVID-19 interstitial pneumonia and other diseases. The pipeline is designed to compare the
different training algorithms and therefore to define a baseline for these techniques allowing
the community to quantitatively measure the progress of AI in the diagnosis of COVID-19
and similar diseases.

The universal pipeline comprises two initial steps: Image Preprocessing and Augmentation,
where standard techniques for cleaning and generating variants of training images are applied.
The final stages are also typical pipeline components implementing Validation of results and
Performance Metrics collection.

The core steps are DNN-based. They are Pre-training, Segmentation and Classification.
Pre-training is an unsupervised learning step and aims to generate a first set of weights for
the next two steps, typically based on supervised learning. The segmentation step isolates
the region of interest (e.g. lung from other tissues), and the classification step labels each
image with a class identified with a kind of lesion that is typical of the disease. Each of
the steps can be implemented using different DNNs, generating different variants of the
pipeline. For each of these stages we selected the best DNNs that have been experimented in
literature, together with a systematic exploration of networks hyperparameters, allowing a
deeper search for the best model. As it can be deduced from Figure 4, the resulting number
of the CLAIRE COVID-19 pipelines variants is 990.

Theoretically, the universal pipeline can reproduce the training of all the best existing
and forthcoming models to diagnose pneumonia and compare their performance. Moving
from theory to practice requires two non-trivial ingredients: a supercomputer of adequate
computational power equipped with many latest generation GPUs and a mechanism capable
of unifying and automating the execution of all variants of the workflow on a supercomputer.

To set up experiments on the pipeline, we chose the biggest dataset publicly available
related to COVID-19’s pathology course, i.e. BIMCV-COVID194, with more than 120k
images from 1300 patients. Supposing to train each pre-trained model for 20 epochs on
such dataset, a single variant of the pipeline takes over 15 hours on a single NVidia V100
GPU, one of the most powerful accelerators in the market with more than 5000 CUDA cores.

4 https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/
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Figure 4 Core components of the CLAIRE COVID-19 universal pipeline and their variants.

Therefore, exploring all the 990 pipeline variants would take over two years on the most
powerful GPU currently available and it should also be considered that tuning models for
each variant would need more than one execution, too.

Fortunately, since the universal pipeline has an embarrassingly parallel structure (Figure
5), using a supercomputer could reduce the execution time down to just one day. In the best
case, running all the variants concurrently on 990 different V100 GPUs only takes 15 hours
of wall-clock time. Nevertheless, post-training steps like performance metrics extraction
and comparison are better suited for a Cloud infrastructure, as they do not require much
computing power and can significantly benefit from web-based visualisation tools. Therefore,
the optimal execution of the pipeline advocates a cluster-as-accelerator design pattern.

The bridging of AI and HPC execution models has been solved by managing the universal
pipeline with StreamFlow. The pipeline is naturally modelled as a hybrid workflow, offloading
the training portions to an HPC facility and collecting the resulting networks on the host
execution flow for visualisation purposes. As an interface towards Cloud-HPC infrastructures,
StreamFlow automatically manages data movements and remote step execution, providing
fault tolerance mechanisms such as checkpointing of intermediate results and replay-based
recovery.

At the time of writing, the experiments have begun, and we see the first encouraging
results. We performed the analysis of about 1% of the variants (10 of 990) on the High-
Performance Computing for Artificial Intelligence (HPC4AI) at the University of Torino, a
multi-tenant hybrid Cloud-HPC system with 80 cores and 4 GPUs per node (T4 or V100-
SMX2) [5]. Results show that the CLAIRE COVID-19 universal pipeline can generate models
with excellent accuracy in classifying typical interstitial pneumonia lesions due to COVID-19,
with sensitivity and specificity metrics over 90% in the best cases.

6 Conclusion and future work

HPC is an enabling platform for scientific computing and Artificial Intelligence and a
fundamental tool for high impact research, such as AI-assisted analysis of medical images,
personalised medicine, seismic resiliency, and the green new deal. HPC and Cloud computing
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Figure 5 CLAIRE-COVID19 universal pipeline unfolded.

are at the frontier of EU digital sovereignty, which, together with the green new deal, are
two cornerstones of the EU agenda.

With EU 8B€ funding, HPC ranks first for the funding volume in the EU Digital Europe
2021-27. Propelled by Artificial Intelligence, the HPC market analysis reports an overall
CAGR19-24 of 32.9%5, where health is among the driver domains, and where the high-end
HPC (supercomputing) market grows much faster than other segments. However, Europe
struggles to mature an HPC value chain, from advanced research to innovation.

The HPC ecosystem is partitioned into applications, system software, and infrastructures.
We believe that the mainstream industrial adoption of HPC requires a system software
part, enabling technology to transform applications into easily usable services hence into
innovation. While in scientific computing the modernisation of HPC applications is a scientific
desideratum required to boost industrial adoption, in AI the shift toward the Cloud model
of services is a must. AI applications are already modern, and they will not step back.

In the HPC landscape, AI requires a significant shift in current software technology.
Computing resources should be available on-demand as a service, and data should be kept
secure in public and shared infrastructures. StreamFlow, leveraging modern virtualisation
technologies, advocates a new methodology to assemble existing legacy codes in a portable
and malleable way.

In this work, we propose the cluster-as-accelerator design pattern as a way to enable HPC
applications cloudification, allowing practitioners to minimise the price-performance ratio.
Moreover, we advocate hybrid workflow models as an intuitive programming paradigm to
express such design pattern, reducing technical barriers to HPC facilities for domain experts
without a strong computer science background.

The CLAIRE-COVID19 universal pipeline has been designed according to these principles,
offloading training-related steps to an HPC centre and collecting back the resulting networks
on the host execution flow, located on a Cloud infrastructure, for visualisation purposes.

5 Compound Annual Growth Rate.
Source: https://orau.gov/ai_townhall/presentations/1115am-Hyperion_Research_AI_Research.
pdf
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The StreamFlow toolkit, a Workflow Management System supporting hybrid workflow
executions, has been successfully used to perform a first portion of the planned experiments,
proving the proposed approach’s effectiveness in the AI domain.

The experiments will continue to execute all the variants on HPC4AI, applying the
pipeline on the complete dataset. However, the main goal will be setting a comprehensive
framework, where StreamFlow could manage the pipeline execution on different hybrid HPC
infrastructures.
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