
38th International Symposium on
Theoretical Aspects of Computer
Science

STACS 2021, March 16–19, 2021, Saarbrücken, Germany
(Virtual Conference)

Edited by

Markus Bläser
Benjamin Monmege

LIPIcs – Vo l . 187 – STACS 2021 www.dagstuh l .de/ l ip i c s

Editors

Markus Bläser
Saarland University, Germany
mblaeser@cs.uni-saarland.de

Benjamin Monmege
Aix-Marseille University, France
benjamin.monmege@univ-amu.fr

ACM Classification 2012
Mathematics of computing → Combinatorics; Mathematics of computing → Graph theory; Theory of
computation → Formal languages and automata theory; Theory of computation → Logic; Theory of
computation → Design and analysis of algorithms; Theory of computation → Computational complexity
and cryptography; Theory of computation → Models of computation

ISBN 978-3-95977-180-1

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-180-1.

Publication date
March, 2021

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.STACS.2021.0

ISBN 978-3-95977-180-1 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:mblaeser@cs.uni-saarland.de
https://orcid.org/0000-0002-4717-9955
mailto:benjamin.monmege@univ-amu.fr
https://www.dagstuhl.de/dagpub/978-3-95977-180-1
https://www.dagstuhl.de/dagpub/978-3-95977-180-1
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.STACS.2021.0
https://www.dagstuhl.de/dagpub/978-3-95977-180-1
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

STACS 2021

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Markus Bläser and Benjamin Monmege . 0:ix–0:x

Conference Organization
. 0:xi–0:xv

Invited Talks

Optimization, Complexity and Invariant Theory
Peter Bürgisser . 1:1–1:20

First-Order Transductions of Graphs
Patrice Ossona de Mendez . 2:1–2:7

On the Fluted Fragment
Lidia Tendera . 3:1–3:1

Regular Papers

Improved (Provable) Algorithms for the Shortest Vector Problem via Bounded
Distance Decoding

Divesh Aggarwal, Yanlin Chen, Rajendra Kumar, and Yixin Shen 4:1–4:20

An FPT Algorithm for Elimination Distance to Bounded Degree Graphs
Akanksha Agrawal, Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, and
Saket Saurabh . 5:1–5:11

A Unified Framework of Quantum Walk Search
Simon Apers, András Gilyén, and Stacey Jeffery . 6:1–6:13

Achieving Anonymity via Weak Lower Bound Constraints for k-Median and
k-Means

Anna Arutyunova and Melanie Schmidt . 7:1–7:17

Bidimensional Linear Recursive Sequences and Universality of Unambiguous
Register Automata

Corentin Barloy and Lorenzo Clemente . 8:1–8:15

Tight Approximation Guarantees for Concave Coverage Problems
Siddharth Barman, Omar Fawzi, and Paul Fermé . 9:1–9:17

Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case
Libor Barto, Diego Battistelli, and Kevin M. Berg . 10:1–10:16

A Characterization of Wreath Products Where Knapsack Is Decidable
Pascal Bergsträßer, Moses Ganardi, and Georg Zetzsche . 11:1–11:17

Synchronizing Strongly Connected Partial DFAs
Mikhail V. Berlinkov, Robert Ferens, Andrew Ryzhikov, and Marek Szykuła 12:1–12:16

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

On Euclidean Steiner (1 + ε)-Spanners
Sujoy Bhore and Csaba D. Tóth . 13:1–13:16

A Nearly Optimal Deterministic Online Algorithm for Non-Metric Facility
Location

Marcin Bienkowski, Björn Feldkord, and Paweł Schmidt . 14:1–14:17

An Asymptotically Fast Polynomial Space Algorithm for Hamiltonicity Detection
in Sparse Directed Graphs

Andreas Björklund . 15:1–15:12

Online Simple Knapsack with Reservation Costs
Hans-Joachim Böckenhauer, Elisabet Burjons, Juraj Hromkovič, Henri Lotze, and
Peter Rossmanith . 16:1–16:18

Inapproximability of Diameter in Super-Linear Time: Beyond the 5/3 Ratio
Édouard Bonnet . 17:1–17:13

The Approximation Ratio of the 2-Opt Heuristic for the Euclidean Traveling
Salesman Problem

Ulrich A. Brodowsky and Stefan Hougardy . 18:1–18:15

A Framework of Quantum Strong Exponential-Time Hypotheses
Harry Buhrman, Subhasree Patro, and Florian Speelman . 19:1–19:19

The Complexity of the Distributed Constraint Satisfaction Problem
Silvia Butti and Victor Dalmau . 20:1–20:18

Distance Computations in the Hybrid Network Model via Oracle Simulations
Keren Censor-Hillel, Dean Leitersdorf, and Volodymyr Polosukhin 21:1–21:19

Simple Multi-Pass Streaming Algorithms for Skyline Points and Extreme Points
Timothy M. Chan and Saladi Rahul . 22:1–22:14

One-Tape Turing Machine and Branching Program Lower Bounds for MCSP
Mahdi Cheraghchi, Shuichi Hirahara, Dimitrios Myrisiotis, and Yuichi Yoshida . . 23:1–23:19

Inference and Mutual Information on Random Factor Graphs
Amin Coja-Oghlan, Max Hahn-Klimroth, Philipp Loick, Noela Müller,
Konstantinos Panagiotou, and Matija Pasch . 24:1–24:15

The Edit Distance to k-Subsequence Universality
Joel D. Day, Pamela Fleischmann, Maria Kosche, Tore Koß, Florin Manea, and
Stefan Siemer . 25:1–25:19

Barrington Plays Cards: The Complexity of Card-Based Protocols
Pavel Dvořák and Michal Koucký . 26:1–26:17

Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries
Thomas Erlebach, Michael Hoffmann, and Murilo Santos de Lima 27:1–27:18

Church Synthesis on Register Automata over Linearly Ordered Data Domains
Léo Exibard, Emmanuel Filiot, and Ayrat Khalimov . 28:1–28:16

A Faster Algorithm for Finding Tarski Fixed Points
John Fearnley and Rahul Savani . 29:1–29:16

Contents 0:vii

Solving One Variable Word Equations in the Free Group in Cubic Time
Robert Ferens and Artur Jeż . 30:1–30:17

Diverse Collections in Matroids and Graphs
Fedor V. Fomin, Petr A. Golovach, Fahad Panolan, Geevarghese Philip, and
Saket Saurabh . 31:1–31:14

Rice-Like Theorems for Automata Networks
Guilhem Gamard, Pierre Guillon, Kevin Perrot, and Guillaume Theyssier 32:1–32:17

Auction Algorithms for Market Equilibrium with Weak Gross Substitute
Demands and Their Applications

Jugal Garg, Edin Husić, and László A. Végh . 33:1–33:19

Efficiently Testing Simon’s Congruence
Paweł Gawrychowski, Maria Kosche, Tore Koß, Florin Manea, and
Stefan Siemer . 34:1–34:18

Finding an Optimal Alphabet Ordering for Lyndon Factorization Is Hard
Daniel Gibney and Sharma V. Thankachan . 35:1–35:15

Reachability in Two-Parametric Timed Automata with One Parameter Is
EXPSPACE-Complete

Stefan Göller and Mathieu Hilaire . 36:1–36:18

Refined Notions of Parameterized Enumeration Kernels with Applications to
Matching Cut Enumeration

Petr A. Golovach, Christian Komusiewicz, Dieter Kratsch, and Van Bang Le 37:1–37:18

Average-Case Algorithms for Testing Isomorphism of Polynomials, Algebras, and
Multilinear Forms

Joshua A. Grochow, Youming Qiao, and Gang Tang . 38:1–38:17

Geometric Cover with Outliers Removal
Zhengyang Guo and Yi Li . 39:1–39:15

Parameterised Counting in Logspace
Anselm Haak, Arne Meier, Om Prakash, and Raghavendra Rao B. V. 40:1–40:17

Digraph Coloring and Distance to Acyclicity
Ararat Harutyunyan, Michael Lampis, and Nikolaos Melissinos 41:1–41:15

Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity
Jacob Holm and Eva Rotenberg . 42:1–42:18

b-Coloring Parameterized by Clique-Width
Lars Jaffke, Paloma T. Lima, and Daniel Lokshtanov . 43:1–43:15

A Ramsey Theorem for Finite Monoids
Ismaël Jecker . 44:1–44:13

An Improved Sketching Algorithm for Edit Distance
Ce Jin, Jelani Nelson, and Kewen Wu . 45:1–45:16

Locality Sensitive Hashing for Efficient Similar Polygon Retrieval
Haim Kaplan and Jay Tenenbaum . 46:1–46:16

STACS 2021

0:viii Contents

Binary Matrix Completion Under Diameter Constraints
Tomohiro Koana, Vincent Froese, and Rolf Niedermeier . 47:1–47:14

Absorbing Patterns in BST -Like Expression-Trees
Florent Koechlin and Pablo Rotondo . 48:1–48:15

Cluster Editing Parameterized Above Modification-Disjoint P3-Packings
Shaohua Li, Marcin Pilipczuk, and Manuel Sorge . 49:1–49:16

Exploiting Dense Structures in Parameterized Complexity
William Lochet, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi 50:1–50:17

Subgroup Membership in GL(2,Z)
Markus Lohrey . 51:1–51:17

Lower Bounds for Graph-Walking Automata
Olga Martynova and Alexander Okhotin . 52:1–52:13

An Improved Approximation Algorithm for the Maximum Weight Independent
Set Problem in d-Claw Free Graphs

Meike Neuwohner . 53:1–53:20

Complexity of the List Homomorphism Problem in Hereditary Graph Classes
Karolina Okrasa and Paweł Rzążewski . 54:1–54:17

Spectrum Preserving Short Cycle Removal on Regular Graphs
Pedro Paredes . 55:1–55:19

Fine-Grained Complexity of the List Homomorphism Problem: Feedback Vertex
Set and Cutwidth

Marta Piecyk and Paweł Rzążewski . 56:1–56:17

6-Uniform Maker-Breaker Game Is PSPACE-Complete
Md Lutfar Rahman and Thomas Watson . 57:1–57:15

Resolution with Symmetry Rule Applied to Linear Equations
Pascal Schweitzer and Constantin Seebach . 58:1–58:16

Quantum Approximate Counting with Nonadaptive Grover Iterations
Ramgopal Venkateswaran and Ryan O’Donnell . 59:1–59:12

Preface

The International Symposium on Theoretical Aspects of Computer Science (STACS) confer-
ence series is an internationally leading forum for original research on theoretical aspects of
computer science. Typical areas are:

algorithms and data structures, including: design of parallel, distributed, approximation,
parameterized and randomized algorithms; analysis of algorithms and combinatorics
of data structures; computational geometry, cryptography, algorithmic learning theory,
algorithmic game theory;
automata and formal languages, including: algebraic and categorical methods, coding
theory;
complexity and computability, including: computational and structural complexity theory,
parameterized complexity, randomness in computation;
logic in computer science, including: finite model theory, database theory, semantics,
specification verification, rewriting and deduction;
current challenges, for example: natural computing, quantum computing, mobile and net
computing, computational social choice.

STACS is held alternately in France and in Germany. This year’s conference (taking place
virtually from March 16 to 19 in Saarbrücken) is the 38th in the series. Previous meetings
took place in Paris (1984), Saarbrücken (1985), Orsay (1986), Passau (1987), Bordeaux
(1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), Würzburg (1993),
Caen (1994), München (1995), Grenoble (1996), Lübeck (1997), Paris (1998), Trier (1999),
Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart
(2005), Marseille (2006), Aachen (2007), Bordeaux (2008), Freiburg (2009), Nancy (2010),
Dortmund (2011), Paris (2012), Kiel (2013), Lyon (2014), München (2015), Orléans (2016),
Hannover (2017), Caen (2018), Berlin (2019), and Montpellier (2020).

The interest in STACS has remained at a very high level over the past years. The STACS
2021 call for papers led to 228 submissions with authors from 37 countries. Each paper
was assigned to three program committee members who, at their discretion, asked external
reviewers for reports. For the seventh time within the STACS conference series, there was
also a rebuttal period during which authors could submit remarks to the PC concerning
the reviews of their papers. In addition, STACS 2021 employed a lightweight double-blind
reviewing process for the first time: submissions should not reveal the identity of the authors
in any way. However, it was was still possible for authors to disseminate their ideas or draft
versions of their paper as they normally would, for instance by posting drafts on the web or
giving talks on their results. The committee selected 56 papers during a four-week electronic
meeting held in November and December 2020. This means an acceptance rate below 25%.
As co-chairs of the program committee, we would like to sincerely thank all its members
and the 408 external reviewers for their valuable work. In particular, there were intense and
interesting discussions inside the PC committee. The very high quality of the submissions
made the selection an extremely difficult task.

We would like to express our thanks to the three invited speakers: Peter Bürgisser
(TU Berlin, Germany), Patrice Ossona de Mendez (CAMS, Paris, France), and Lidia Tendera
(Opole University, Poland).

STACS 2020 in Montpellier was one of the last conferences that took place physically
before the lockdown happened the next week. We very much hoped that STACS 2021
would be one of the first conferences that takes place physically again, with an option of
38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Preface

remote participation for participants who could not come to Saarbrücken due to the Covid-19
situation. Unfortunately, the overall Covid-19 situation got worse again in autumn and winter
and therefore, this is not possible. Therefore, STACS 2021 will happen as a virtual conference
as many other conferences before, with pre-recorded videos, short online presentations and
discussions, and online social events.

We thank the Dagstuhl team for assisting us in the publication process and the final
production of the proceedings. These proceedings contain extended abstracts of the accepted
contributions and abstracts of the invited talks and the tutorials. The authors retain their
rights and make their work available under a Creative Commons license. The proceedings
are published electronically by Schloss Dagstuhl – Leibniz-Center for Informatics within their
LIPIcs series. Finally we would like to thank Saarland University for its support.

Saarbrücken and Marseilles, March 2021 Markus Bläser and Benjamin Monmege

Conference Organization

Program Committee

C. Aiswarya Chennai Mathematical Institute, India
Antoine Amarilli Telecom Paris, France
Christel Baier Technische Universität Dresden, Germany
Petra Berenbrink University of Hamburg, Germany
Markus Bläser Saarland University, Germany, co-chair
Mikołaj Bojańczyk University of Warsaw, Poland
Nicolas Bousquet CNRS, Université Lyon 1, France
Dmitry Chistikov University of Warwick, UK
Radu Curticapean ITU Copenhagen, Denmark
Jérôme Durand-Lose University of Orléans, France
Anna Gal University of Texas, Austin, USA
Eun Jung Kim CNRS, University Paris Dauphine, France
François Le Gall Nagoya University, Japan
Erik Jan van Leeuwen Utrecht University, The Netherlands
Martin Loebl Charles University, Prague, Czech Republic
Carsten Lutz University of Bremen, Germany
Irène Marcovici Université de Lorraine, France
Kitty Meeks University of Glasgow, UK
Tobias Mömke University of Augsburg, Germany
Benjamin Monmege Aix-Marseille University, France, co-chair
Pat Morin Carleton University, Canada
Igor Potapov University of Liverpool, UK
Chandan Saha IISc Bangalore, India
Kai Salomaa Queen’s University, Canada
Ramprasad Saptharishi TIFR Mumbai, India
Thatchaphol Saranurak TTI Chicago, USA
Sven Schewe University of Liverpool, UK
Markus L. Schmid Humboldt-University Berlin, Germany
Hadas Shachnai Technion, Israel
Shay Solomon Tel Aviv University, Israel
Magnus Wahlström Royal Holloway, UK

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xii Conference Organization

Steering committee

Olaf Beyersdorff Friedrich-Schiller-Universität Jena
Dietmar Berwanger CNRS, Université Paris-Saclay, France
Martin Dietzfelbinger Technische Universität Ilmenau, Germany
Arnaud Durand Université de Paris, France
Christoph Dürr CNRS, Sorbonne Université, France, co-chair
Henning Fernau Universität Trier, Germany
Arne Meier Leibniz Universität Hannover, Germany
Cyril Nicaud Université Paris-Est, France
Rolf Niedermeier Technische Universität Berlin, Germany
Natacha Portier ENS Lyon, France
Thomas Schwentick Technische Universität Dortmund, Germany, co-chair
Ioan Todinca Université d’Orléans, France

Local organizing committee (Saarland University)

Markus Bläser, chair
Julian Dörfler
Felix Freiberger
Sabine Nermerich
Sandra Neumann
Kristina Scherbaum
Charilaos Zisopoulos

Conference Organization 0:xiii

Subreviewers

408 external subreviewers assisted the PC. We apologize to every subreviewer who does not
appear in this list (because his or her review was entered manually into easychair).

Mohammad Ali Abam Amir Abboud Pierre Aboulker
Duncan Adamson Peyman Afshani Jungho Ahn
Saeed Akhoondian Amiri Carme Alvarez Antonios Antoniadis
Simon Apers Sepehr Assadi Yossi Azar
Ashwinkumar Badanidiyuru Oana Balalau Sayan Bandyapadhyay
Benoit Barbot Siddharth Barman Valentin Bartier
Libor Barto Bruno Bauwens Ruben Becker
Paul Bell Thomas Bellitto Aleksandrs Belovs
Ran Ben Basat Huxley Bennett Benjamin Bergougnoux
Christoph Berkholz Siddharth Bhandari Arnab Bhattacharyya
Laurent Bienvenu Felix Biermeier Ahmad Biniaz
Achim Blumensath Greg Bodwin Adrien Boiret
Édouard Bonnet Pierre Bourhis Joshua Brakensiek
Cornelius Brand Karl Bringmann Caroline Brosse
Benjamin Merlin Bumpus Elisabet Burjons Laurine Bénéteau
Martin Böhm Michaël Cadilhac Cezar Campeanu
Florent Capelli Chiara Capresi Arnaud Carayol
Clément Carbonnel Lorenzo Carlucci Nofar Carmeli
Olivier Carton Katrin Casel Jerome Casse
Sourav Chakraborty Jérémie Chalopin T-H. Hubert Chan
Witold Charatonik Philippe Chassaing Evangelos Chatziafratis
Yun Kuen Cheung Nai-Hui Chia Rajesh Chitnis
Da-Jung Cho Keerti Choudhary Tobias Christiani
Thomas Colcombet Ágnes Cseh Murilo da Silva
Konrad K. Dabrowski Clément Dallard Victor Dalmau
Amit Daniely Bireswar Das Joel Day
Paloma de Lima Arnaud De Mesmay Mateus De Oliveira Oliveira
Martin Delacourt Argyrios Deligkas Holger Dell
Martin Dietzfelbinger Cunsheng Ding Michael Dinitz
Rod Downey Stephane Durocher Talya Eden
Eduard Eiben Hicham El-Zein Khaled Elbassioni
Ehsan Emamjomeh-Zadeh David Eppstein Kousha Etessami
Léo Exibard Yaron Fairstein Nazim Fates
Uriel Feige Moran Feldman Laurent Feuilloley
Jiri Fiala Nathanaël Fijalkow Jirka Fink
Jacob Focke Viktor Fredslund-Hansen Tom Friedetzky
Tobias Friedrich Martin Fürer Maximilien Gadouleau
Andreas Galanis Chaya Ganesh Ankit Garg
Paul Gastin Zsolt Gazdag Gilles Geeraerts
Sevag Gharibian Reza Gheissari Suprovat Ghoshal
George Giakkoupis Archontia Giannopoulou Yuval Gil
Marinus Gottschau Nicolas Grelier Benoit Groz
Tom Gur Vladimir Gusev Gregory Gutin
Stefan Göller Christopher Hahn Magnús M. Halldórsson

STACS 2021

0:xiv Conference Organization

Thekla Hamm Yassine Hamoudi Tero Harju
David Harris Prahladh Harsha Meng He
Marc Heinrich Benjamin Hellouin de Menibus Milan Hladík
Petr Hlineny Markus Holzer Juha Honkala
Hamed Hosseinpour Mathieu Hoyrup Jing Huang
Marcus Hutter Rupert Hölzl John Iacono
Tanmay Inamdar Davis Issac Louis Jachiet
Meena Jagadeesan Damien Jamet Rajesh Jayaram
Mark Jerrum Artur Jeż Zhengfeng Ji
Vincent Jugé Marcin Jurdzinski Dominik Kaaser
Tomas Kaiser Ida Kantor Akitoshi Kawamura
Yasushi Kawase Neeraj Kayal Alexandr Kazda
Chris Keeler Thomas Kesselheim Azadeh Khaleghi
Arindam Khan Kamyar Khodamoradi Evangelos Kipouridis
Elena Kirshanova Sándor Kisfaludi-Bak Martin Klazar
Peter Kling Dušan Knop Jakob Bæk Tejs Knudsen
Sang-Ki Ko Tomohiro Koana Yusuke Kobayashi
Petr Kolman Dennis Komm Christian Komusiewicz
Stavros Konstantinidis Bahram Kouhestani Martin Koutecky
Lukasz Kowalik Alexander Kozachinskiy Laszlo Kozma
Jan Kratochvil Stefan Kratsch Andrei Krokhin
Manfred Kufleitner Ariel Kulik Mrinal Kumar
Dietrich Kuske Antti Kuusisto O-Joung Kwon
Marvin Künnemann Pierre L’Ecuyer Arnaud Labourel
Victor Lagerkvist Michael Lampis Martin Lange
Sophie Laplante Hung Le Euiwoong Lee
Engel Lefaucheux Daniel Lemire Nathan Lhote
Jason Li Jian Li Yinan Li
Mathieu Liedloff Nutan Limaye Vincent Limouzy
Zhiheng Liu William Lochet Théodore Lopez
Anand Louis Vladimir Lysikov Christof Löding
Ramanujan M. Sridharan Hugh Macpherson Manfred Madritsch
Meena Mahajan Soumen Maity Guillaume Malod
Nikhil Mande Silviu Maniu David Manlove
Pasin Manurangsi Nicolas Markey Eric Martin
Arnaud Mary Fionn Mc Inerney Samuel McCauley
Arne Meier Paul Melotti Stefan Mengel
Neeldhara Misra Pranabendu Misra Dieter Mitsche
Takaaki Mizuki Tulasimohan Molli Mikael Monet
Benoît Monin Matthew Moore Antoine Mottet
Shay Mozes Partha Mukhopadhyay Filip Murlak
Ahad N. Zehmakan Tigran Nagapetyan Vineet Nair
Jonathan Narboni Guyslain Naves Joe Neeman
Rian Neogi Timothy Ng Valtteri Niemi
Matthias Niewerth Andrey Nikolaev Harumichi Nishimura
Reino Niskanen Thomas Nowak Krzysztof Nowicki
Pascal Ochem Joanna Ochremiak Alexander Okhotin
Karolina Okrasa Aurélien Ooms Jakub Opršal

Conference Organization 0:xv

Sebastian Ordyniak Yota Otachi Prashant Pandey
Charles Paperman Julie Parreaux Paweł Parys
Pavel Paták Vincent Penelle Pan Peng
Anthony Perez William Pettersson Astrid Pieterse
Michał Pilipczuk Michael Pinsker Jakob Piribauer
Ilia Ponomarenko Amaury Pouly M. Praveen
Thomas Prest Gabriele Puppis Karin Quaas
Jaikumar Radhakrishnan Saladi Rahul Patrick Rall
Venkatesh Raman Michael Rao Cyrus Rashtchian
Mayank Rathee Malin Rau Liam Roditty
Ansis Rosmanis Peter Rossmanith Aviad Rubinstein
Paweł Rzążewski Prakash Saivasan Sai Sandeep
Bryce Sandlund Swagato Sanyal Ignasi Sau
Thomas Sauerwald Rosario Scatamacchia Kevin Schewior
Martin Schirneck Sylvain Schmitz Philipp Schneider
Steffen Schuldenzucker Roy Schwartz Pavel Semukhin
Pierre Senellart Maria Serna Olivier Serre
C. Seshadhri Alexander Shen Suhail Sherif
Sebastian Siebertz Florian Sikora Alexander Skopalik
Michael Skotnica Michał Skrzypczak Friedrich Slivovsky
Michiel Smid Taylor Smith Krzysztof Sornat
Andreas Spillner Joachim Spoerhase Srikanth Srinivasan
Piyush Srivastava B Srivathsan Katherine Staden
Giannos Stamoulis Rafał Stefański Frank Stephan
Manon Stipulanti Milos Stojakovic Yann Strozecki
Donald Stull C. R. Subramanian Yuichi Sudo
Warut Suksompong John Sylvester Jean-Marc Talbot
Suguru Tamaki Till Tantau Jakub Tarnawski
Sébastien Tavenas Sam Thomas Michaël Thomazo
Kevin Tian Hans Raj Tiwary Ioan Todinca
Csaba Toth Behrouz Touri Meng-Tsung Tsai
Konstantinos Tsakalidis Madhur Tulsiani Mykhaylo Tyomkyn
Duru Türkoğlu Ryuhei Uehara Pavel Valtr
André van Renssen Daniel Vaz Rahul Vaze
José Verschae Pavel Veselý Tiphaine Viard
Jan Vondrak Polina Vytnova Michael Walter
Stefan Walzer Haitao Wang Justin Ward
Kunihiro Wasa Nicole Wein Albert H. Werner
Andreas Wiese Sebastian Wild Damien Woods
Marcin Wrochna Christian Wulff-Nilsen Jan Philipp Wächter
Kuan Yang Eylon Yogev Yuichi Yoshida
Se-Young Yun Viktor Zamaraev Or Zamir
Amir Zandieh Meirav Zehavi Peter Zeman
Hang Zhou Pawel Zielinski Jakub Łącki

STACS 2021

Optimization, Complexity and Invariant Theory
Peter Bürgisser !

Institut für Mathematik, Technische Universität Berlin, Germany

Abstract
Invariant and representation theory studies symmetries by means of group actions and is a well
established source of unifying principles in mathematics and physics. Recent research suggests its
relevance for complexity and optimization through quantitative and algorithmic questions. The
goal of the talk is to give an introduction to new algorithmic and analysis techniques that extend
convex optimization from the classical Euclidean setting to a general geodesic setting. We also point
out surprising connections to a diverse set of problems in different areas of mathematics, statistics,
computer science, and physics.

2012 ACM Subject Classification Theory of computation → Continuous optimization

Keywords and phrases geometric invariant theory, geodesic optimization, non-commutative op-
timization, null cone, operator scaling, moment polytope, orbit closure intersection, geometric
programming

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.1

Category Invited Talk

Related Version Full Version: https://arxiv.org/abs/1910.12375

Funding Peter Bürgisser : Supported by the ERC under the European Union’s Horizon 2020 research
and innovation programme (grant agreement no. 787840.)

Acknowledgements The talk (and this write-up) are mainly based on the joint articles [14, 15] with
Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter and Avi Wigderson. I am grateful to
my coauthors for inspiration and enlightening discussions and thank Levent Dogan, Yinan Li, Visu
Makam, Harold Nieuwboer and Philipp Reichenbach for valuable feedback.

1 Introduction

Consider a group G that acts by linear transformations on the complex Euclidean space
V = Cm. This partitions V into orbits: For a vector v ∈ V , the orbit Ov consists of all
vectors of the form g · v to which the action of a group element g ∈ G can map v.

The most basic algorithmic question in this setting is as follows. Given a vector v ∈ V ,
compute (or approximate) the smallest ℓ2-norm of any vector in the orbit of v, that is,
inf{∥w∥2 : w ∈ Ov}. Remarkably, this simple question, for different groups and actions,
captures natural important problems in computational complexity, algebra, analysis, statistics
and quantum information. When restricted to commutative groups G, this amount to
unconstrained geometric programming (see Section 2). In particular, this already captures
all linear programming problems!

Starting with [37, 39], a series of recent works including [38, 16, 34, 62, 2, 13] designed
algorithms and analysis tools to handle this basic and other related optimization problems
over non-commutative groups G. In all these works, the groups at hand are products of at
least two copies of rather specific linear groups (SL(n)’s or tori), to support the algorithms
and analysis. These provided efficient solutions for some applications, and through algorithms,
the resolution of some purely structural mathematical open problems.

We mention here some of the diverse applications of the paradigm of optimization over
non-commutative groups.

© Peter Bürgisser;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 1; pp. 1:1–1:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pbuerg@math.tu-berlin.de
https://doi.org/10.4230/LIPIcs.STACS.2021.1
https://arxiv.org/abs/1910.12375
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Optimization, Complexity and Invariant Theory

1. Algebraic identities: Given an arithmetic formula (with inversion gates) in non-
commuting variables, is it identically zero?

2. Quantum information: Given density matrices describing local quantum states of
various parties, is there a global pure state consistent with the local states?

3. Eigenvalues of sums of Hermitian matrices: Given three real n-vectors, do there
exist three Hermitian n × n matrices A, B, C with these prescribed spectra, such that
A + B = C?

4. Analytic inequalities: Given m linear maps Ai : Rn → Rni and p1, . . . , pm ≥ 0, does
there exist a finite constant C such that for all integrable functions fi : Rni → R+ we
have∫

x∈Rn

∏m
i=1 fi(Aix)dx ≤ C

∏m
i=1∥fi∥1/pi

?

These inequalities are the celebrated Brascamp-Lieb inequalities, which capture the
Cauchy-Schwarz, Hölder, Loomis-Whitney, and many further inequalities.

5. Maximum Likelihood Estimation Consider a centered Gaussian random variable
Y ∈ Rn with a covariance matrix Ψ being an element of the matrix normal model
M(p, q) = {Ψ1 ⊗ Ψ2 | Ψ1 ∈ PDp, Ψ2 ∈ PDq}. What is the number of samples needed to
achieve almost surely the existence and uniqueness of maximum likelihood estimators?

At first glance, it is far from obvious that solving any of these problems has any relation
to either optimization or groups. However, not only symmetries naturally exist in all of
them, but they also help both in formulating them as optimization problems over groups,
suggesting natural algorithms (or at least heuristics) for them, and finally in providing tools
for analyzing these algorithms. It perhaps should be stressed that symmetries exist in many
examples in which the relevant groups are commutative (e.g., perfect matching in bipartite
graphs, matrix scaling, and more generally in linear, geometric, and hyperbolic programming);
however in these cases, standard convex optimization or combinatorial algorithms can be
designed and analyzed without any reference to these existing symmetries.

Polynomial time algorithms were first given in [37] for Problem 1 (the works [50, 27, 49]
later discovered completely different algebraic algorithms), in [13] for Problem 2 (cf. [79] and
the structural results [57, 25, 22, 21, 81, 80, 19]), in [59, 64, 68, 17, 34] for Problem 3 (the
celebrated structural result in [59] and the algorithmic results of [64, 68, 17] solved the decision
problem, while [34] solved the search problem), and in [38] for Problem 4. However the
algorithms in [38, 34, 13] remain exponential time in various input parameters, exemplifying
only one aspect of many in which the current theory and understanding is lacking. Problem 5
was recently solved by in [4, 29], proving a conjecture in [32] and generalized to tensor normal
models in [30].

The unexpected connections revealed in this study are far richer than the mere relevance of
optimization and symmetries to such problems. One type are connections between problems
in disparate fields. For example, the analytic Problem 4 turns out to be a special case of
the algebraic Problem 1. Moreover, Problem 1 has (well-studied) differently looking but
equivalent formulations in quantum information theory and in invariant theory, which are
automatically solved by the same algorithm. Another type of connections are of purely
structural open problems solved through such geodesic algorithms, reasserting the importance
of the computational lens in mathematics. One was the first dimension-independent bound
on the Paulsen problem in operator theory, obtained ingeniously through such an algorithm
in [62] (this work was followed by [46], who gave a strikingly simpler proof and stronger
bounds). Another was a quantitative bound on the continuity of the best constant C in

P. Bürgisser 1:3

Problem 4 (in terms of the input data), important for non-linear variants of such inequalities.
This bound was obtained through the algorithm in [38] and relies on its efficiency; previous
methods used compactness arguments that provided no bounds.

We have no doubt that more unexpected applications and connections will follow. The
most extreme and speculative perhaps among such potential applications is to develop a
deterministic polynomial-time algorithm for the polynomial identity testing (PIT) problem.
Such an algorithm will imply major algebraic or Boolean lower bounds, namely either
separating VP from VNP, or proving that NEXP has no small Boolean circuits [51]. We
note that this goal was a central motivation of the initial work in this sequence [37], which
provided such a deterministic algorithm for Problem 1 above, the non-commutative analog
of PIT. The “real” PIT problem (in which variables commute) also has a natural group of
symmetries acting on it, which does not quite fall into the frameworks developed so far. Yet,
the hope of proving lower bounds via optimization methods is a fascinating (and possibly
achievable) one. This agenda of hoping to shed light on the PIT problem by the study of
invariant theoretic questions was formulated in the fifth paper of the Geometric Complexity
Theory (GCT) series [66, 67], but see [40].

In this talk, we describe the main results of the paper [15], which unifies and generalizes
the above mentioned works. A key to all of them are the notions of geodesic convexity
(which generalizes the familiar Euclidean notion of convexity) and the moment map (which
generalizes the familiar Euclidean gradient) in the curved space and new metrics induced
by the group action. The paper [15] naturally extends the familiar first and second order
methods of standard convex optimization. Geodesic analogs of these methods are designed,
which, respectively, have oracle access to first and second order “derivatives” of the function
being optimized, and apply to any (reductive) group action. The first order method developed
(which is a non-commutative version of gradient descent) replaces and extends the use of
“alternate minimization” in most past works, and thus can accommodate more general group
actions. For instance, this covers the cases of symmetric tensors (bosons) and antisymmetric
tensors (fermions) with the standard action of SL(n), where alternating minimization does
not apply. The second order method developed in [15] greatly generalizes the one used for
the particular group action corresponding to operator scaling in [2]. It may be thought
of as a geodesic analog of the “trust region method” [24] or the “box-constrained Newton
method” [23, 3] applied to a regularized function. For both methods, in this non-commutative
setting, we recover the familiar convergence behavior of the classical commutative case: to
achieve “proximity” ε to the optimum, the first order method converges in O(1/ε) iterations
and the second order method in O(poly log(1/ε)) iterations.

As in the commutative case, the fundamental challenge is to understand the “constants”
hidden in the big-O notation of each method. These depend on “smoothness” properties
of the function optimized, which in turn are determined by the action of the group G on
the space V that defines the optimization problem. The main technical contributions of the
theory developed in [15] is to identify the key parameters which control this dependence,
and to bound them for various actions to obtain concrete running time bounds. These
parameters depend on a combination of algebraic and geometric properties of the group
action, in particular the irreducible representations occurring in it. As mentioned, despite
the technical complexity of defining (and bounding) these parameters, the way they control
convergence of the algorithms is surprisingly elegant. The paper [15] also develops important
technical tools which naturally extend ones common in the commutative theory, including
regularizers, diameter bounds, numerical stability, and initial starting points, which are key
to the design and analysis of the presented (and hopefully future) algorithms in the geodesic

STACS 2021

1:4 Optimization, Complexity and Invariant Theory

setting. As in previous works, we also address other optimization problems beyond the basic
“norm minimization” question above, in particular the minimization of the moment map, and
the membership problem for moment polytopes; a very rich class of polytopes (typically with
exponentially many vertices and facets) which arises magically from any such group action.

2 Non-commutative optimization

We now give an introduction to non-commutative optimization and contrast its geometric
structure and convexity properties with the familiar commutative setting. The basic setting is
that of a continuous group G acting linearly on an m-dimensional complex vector space V ∼=
Cm. Think of G as either the group of n × n complex invertible matrices, denoted GL(n),
or the group of diagonal such matrices, denoted T(n).1 The latter corresponds to the
commutative case and the former is a paradigmatic example of the non-commutative case.
An (linear) action (also called representation) of a group G on a complex vector space V

is a group homomorphism π : G → GL(V), that is, an association of an invertible linear
map π(g) : V → V for every group element g ∈ G satisfying π(g1g2) = π(g1)π(g2) for
all g1, g2 ∈ G.2 Further suppose that V is also equipped with a Hermitian inner product
⟨·, ·⟩ and hence a norm ∥v∥ := ⟨v, v⟩.

Given a vector v ∈ V one can consider the optimization problem of taking the infimum
of the norm in the orbit of the vector v under the action of G. More formally, we define the
capacity of v (with respect to π) by

cap(v) := inf
g∈G

∥π(g)v∥.

This notion generalizes the matrix and operator capacities developed in [45, 42] (to see this,
carry out the optimization over one of the two group variables) as well as the polynomial
capacity of [44]. It turns out that this simple-looking optimization problem is already very
general in the commutative case and, in the non-commutative case, captures all examples
discussed in the introduction.

Let us first consider the commutative case, G = T(n) acting on V . In this simple case,
all actions π have a very simple form. We give two equivalent descriptions, first of how
any representation π splits into one-dimensional irreducible representations, and another
describing π as a natural scaling action on n-variate polynomials with m monomials.

The irreducible representations are given by an orthonormal basis v1, . . . , vm of V such
that the vj are simultaneous eigenvectors of all the matrices π(g). That is, for all g =
diag(g1, . . . , gn) ∈ T(n) and j ∈ [m], we have

π(g)vj = λj(g)vj , where λj(g) =
∏n

i=1 g
ωj,i

i (2.1)

for fixed integer vectors ω1, . . . , ωm ∈ Zn, which are called weights and encode the simultan-
eous eigenvalues, and completely determine the action. Below we also refer to the weights of
a representation π of GL(n), defined as the weights of π restricted to T(n).

A natural way to view all these actions is as follows. The natural action of T(n) on
Cn by matrix-vector multiplication induces an action of T(n) on n-variate polynomials
V = C[x1, x2, . . . , xn]: simply, any group element g = diag(g1, . . . , gn) “scales” each xi to
gixi. Note that any monomial xω =

∏n
i=1 x

ω(i)
i (where ω is the integer vector of exponents)

is an eigenvector of this action, with an eigenvalue λ(g) =
∏n

i=1 g
ω(i)
i .

1 The theory works whenever the group is connected, algebraic and reductive.
2 We further assume that π is a morphism of algebraic groups, i.e., given by rational functions.

P. Bürgisser 1:5

Now fix m integer vectors ωj as above. Consider the linear space of n-variate Laurent
polynomials (monomials may have negative exponents) with the following m monomials:
vj = xωj =

∏n
i=1 x

ωj,i

i . The action on any polynomial v =
∑m

j=1 cjvj is precisely the one
described above, scaling each coefficient by the eigenvalue of its monomial. The norm ∥v∥ of
a polynomial is the sum of the square moduli of its coefficients. Now let us calculate the
capacity of this action. For any v =

∑m
j=1 cjvj ,

cap(v)2 = infg1,...,gn∈C∗
∑m

j=1 |cj |2
∏n

i=1 |gi|2ωj,i = infx∈Rn

∑m
j=1 |cj |2ex·ωj , (2.2)

where we used the change of variables xi = log |gi|2, which makes the problem convex (in
fact, log-convex). This class of optimization problems (of optimizing norm in the orbit
of a commutative group) is known as geometric programming and is well-studied in the
optimization literature (see, e.g., Chapter 4.5 in [10]). Hence for non-commutative groups,
one can view computing cap(v) as non-commutative geometric programming. Is there a
similar change of variables that makes the problem convex in the non-commutative case? It
does not seem so. However, the non-commutative case also satisfies a notion of convexity,
known as geodesic convexity, which we will study next.

2.1 Geodesic convexity
Geodesic convexity generalizes the notion of convexity in the Euclidean space to arbitrary
Riemannian manifolds. We will not go into the notion of geodesic convexity in this generality
but just mention what it amounts to in our concrete setting of norm optimization for G =
GL(n).

It turns out the appropriate way to define geodesic convexity in this case is as follows. Fix
an action π of GL(n) and a vector v. Then log∥π(etHg)v∥ is convex in the real parameter t

for every Hermitian matrix H and g ∈ GL(n). This notion of convexity is quite similar to
the notion of Euclidean convexity, where a function is convex iff it is convex along all lines.
However, it is far from obvious how to import optimization techniques from the Euclidean
setting to work in this non-commutative geodesic setting. An essential ingredient we describe
next is the geodesic notion of a gradient, called the moment map.

2.2 Moment map
The moment map is by definition the gradient of the function log∥π(g)v∥ (understood as a
function of v), at the identity element of the group, g = I. It captures how the norm of the
vector v changes when we act on it by infinitesimal perturbations of the identity.

Again, we start with the commutative case G = T(n) acting on the multivariate Laurent
polynomials. For a direction vector h ∈ Rn and a real perturbation parameter t, let eth =
diag

(
eth1 , . . . , ethn

)
. Then, for G = T(n), the moment map is the function µ : V \ {0} → Rn,

defined by the following property:

µ(v) · h = ∂t=0
[
log

∥∥π(diag(eth)v
∥∥]

,

for all h ∈ Rn. That is, the directional derivative in direction h is given by the dot product
µ(v) · h. Here one can see that the moment map matches the notion of Euclidean gradient.
For the action of T(n) in Equation (2.1), we have

µ(v) = ∇x=0 log
(m∑

j=1
|cj |2ex·ωj

)
=

∑m
j=1 |cj |2ωj∑m

j=1 |cj |2
. (2.3)

STACS 2021

1:6 Optimization, Complexity and Invariant Theory

Note that the gradient µ(v) at any point v is a convex combination of the weights. Viewing v

as a polynomial, the gradient thus belongs to the so-called Newton polytope of v, namely
the convex hull of the exponent vectors of its monomials. Conversely, every point in that
polytope is a gradient of some polynomial v with these monomials. We will soon return to
this curious fact!

We now proceed to the non-commutative case, focusing on G = GL(n). Denote by
Herm(n) the set of n × n complex Hermitian matrices.3 Here directions will be parametrized
by H ∈ Herm(n). For the case of G = GL(n), the moment map is the function µ : V \ {0} →
Herm(n) defined (in complete analogy to the commutative case above) by the following
property that

tr[µ(v)H] = ∂t=0
[
log

∥∥π(etH)v
∥∥]

for all H ∈ Herm(n). That is, the directional derivative in direction H is given by tr[µ(v)H].
In the commutative case, Equation (2.3) is a convex combination of the weights ωj . Thus,

the image of µ is the convex hull of the weights – a convex polytope. This brings us to
moment polytopes.

2.3 Moment polytopes
One may ask whether the above fact is true for actions of GL(n): is the set {µ(v) : v ∈ V \{0}}
convex? This turns out to be blatantly false: for instance, for the action of GL(n) on Cn by
matrix-vector multiplication the moment map is µ(v) = vv†/∥v∥2, and its image is clearly
not convex. However, there is still something deep and non-trivial that can be said. Given
a Hermitian matrix H ∈ Herm(n), define its spectrum to be the vector of its eigenvalues
arranged in non-increasing order. That is, spec(H) := (λ1, . . . , λn), where λ1 ≥ · · · ≥ λn are
the eigenvalues of H. Amazingly, the set of spectra of moment map images, that is,

∆ :=
{

spec
(
µ(v)

)
: 0 ̸= v ∈ V

}
, (2.4)

is a convex polytope for every representation π [70, 60, 5, 41, 55]! These polytopes are called
moment polytopes.

Let us mention two important examples of moment polytopes. The examples are for
actions of products of GL(n)’s but the above definitions generalize almost immediately.

▶ Example 2.1 (Horn’s problem). Let G = GL(n) × GL(n) × GL(n) act on V = Mat(n) ⊕
Mat(n) as follows: π(g1, g2, g3)(X, Y) := (g1Xg−1

3 , g2Y g−1
3). The moment map in this case is

µ(X, Y) = (XX†, Y Y †, −(X†X + Y †Y))
∥X∥2

F + ∥Y ∥2
F

.

Using that XX† and X†X are positive semidefinite and isospectral, we obtain the following
moment polytopes, which characterize the eigenvalues of sums of Hermitian matrices, i.e.,
Horn’s problem (see, e.g., [36, 9]):

∆ =
{

(spec(A), spec(B), spec(−A − B)) | A, B ∈ Mat(n), A ≥ 0, B ≥ 0, tr A + tr B = 1
}

.

These polytopes are known as the Horn polytopes and correspond to Problem 3 in the intro-
duction. They have been characterized mathematically in [58, 59, 7, 72] and algorithmically
in [64, 68, 17].

3 The reason we are restricting to directions in Rn in the T(n) case and to directions in Hermn in
the GL(n) case is that imaginary and skew-Hermitian directions, respectively, do not change the norm.

P. Bürgisser 1:7

The preceding is one of the simplest example of a moment polytope associated with the
representation of a quiver (the star quiver with two edges); see [31] for this notion. Quiver
representations are relevant for the solution of Problem 5.

▶ Example 2.2 (Tensor action). G = GL(n1)×GL(n2)×GL(n3) acts on V = Cn1 ⊗Cn2 ⊗Cn3

as follows: π(g1, g2, g3)v := (g1 ⊗ g2 ⊗ g3)v. We can think of vectors v ∈ V as tripartite
quantum states with local dimensions n1, n2, n3. Then the moment map for this group
action captures precisely the notion of quantum marginals. That is, µ(v) = (ρ1, ρ2, ρ3), where
ρk = trkc(vv†) denotes the reduced density matrix describing the state of the kth particle.
This corresponds to Problem 2 in the introduction.

The moment polytopes in this case are known as Kronecker polytopes, since they can be
equivalently described in terms of the Kronecker coefficients of the symmetric group. These
polytopes have been studied in [57, 25, 22, 21, 81, 80, 19, 78, 13].

There is a more refined notion of a moment polytope. One can look at the collection of
spectra of moment maps of vectors in the orbit of a particular vector v ∈ V . Surprisingly, its
closure,

∆(v) :=
{

spec
(
µ(w)

)
: w ∈ Ov

}
is a convex polytope as well, called the moment polytope of v [70, 11]! It can equivalently be
defined as the spectra of moment map images of the orbit’s closure in projective space.

2.4 Null cone
Fix a representation π of the group G on a vector space V (again assume G = T(n) or
G = GL(n) for simplicity). The null cone for this group action is defined as the set of
vectors v such that cap(v) = 0:

N := {v ∈ V : cap(v) = 0}.

In other words, v is in the null cone if and only if 0 lies in the orbit-closure of v. It is of
importance in invariant theory due to the results of Hilbert and Mumford [47, 69] which state
that the null cone is the algebraic variety defined by non-constant homogeneous invariant
polynomials of the group action (see, e.g., the excellent textbooks [26, 76]).

Let us see what the null cone for the action of T(n) in Equation (2.1) is. Recall from
Equation (2.2), the formulation for cap(v). It is easy to see that cap(v) = 0 iff there exists
x ∈ Rn such that x · ωj < 0 for all j ∈ supp(v), where supp(v) = {j ∈ [m] : cj ̸= 0} for
v =

∑m
j=1 cjvj . Thus the property of v being in the null cone is captured by a simple

linear program defined by supp(v) and the weights ωj ’s. Hence the null cone membership
problem for non-commutative group actions can be thought of as non-commutative linear
programming.

We know by Farkas’ lemma that there exists x ∈ Rn such that x·ωj < 0 for all j ∈ supp(v)
iff 0 does not lie in conv{ωj : j ∈ supp(v)}. In other words, cap(v) = 0 iff 0 /∈ ∆(v). Is
this true in the non-commutative world? It is! This is the Kempf-Ness theorem [53] and
it is a consequence of the geodesic convexity of the function g → log∥π(g)v∥. The Kempf-
Ness theorem can be thought of as a non-commutative duality theory paralleling the linear
programming duality given by Farkas’ lemma (which corresponds to the commutative world).
Let us now mention an example of an interesting null cone in the non-commutative case.

▶ Example 2.3 (Operator scaling, or left-right action). The action of the group G = SL(n) ×
SL(n) on Mat(n)k via π(g, h)(X1, . . . , Xk) := (gX1hT , . . . , gXkhT) is called the left-right
action. (Recall SL(n) denotes the group of n×n matrices with determinant 1.) The null cone

STACS 2021

1:8 Optimization, Complexity and Invariant Theory

for this action captures non-commutative singularity (see, e.g., [50, 37, 27, 49]) and Problem 1
in the introduction. The left-right action has been crucial in getting deterministic polynomial
time algorithms for the non-commutative rational identity testing problem [50, 37, 27, 49].
The commutative analogue is the famous polynomial identity testing (PIT) problem, for
which designing a deterministic polynomial time algorithm remains a major open question in
derandomization and complexity theory. We remark that the corresponding algebraic variety
Singn,m, consisting of m-tuples in Mat(n) which span only singular matrices, recently has
been shown to be not a null cone [65].

▶ Example 2.4 (Generalized Kronecker quivers). The action of G = GL(n)×GL(n) on k-tuples
of matrices (X1, . . . , Xk) via π(g, h)(X1, . . . , Xk) := (gX1h−1, . . . , gXkh−1) is sometimes also
referred to as the left-right action. It can be obtained from action of Example 2.3 via the
isomorphism h 7→ (h−1)T of GL(n). This action is associated to the generalized Kronecker
quiver.

▶ Example 2.5 (Simultaneous conjugation). The action of the group G = GL(n) on k-tuples
of matrices in V = (Mat(n))d by π(g)(X1, . . . , Xk) := (gX1g−1, . . . , gXkg−1) is associated
to the quiver with a single vertex and k self-loops, briefly called k-loop quiver.

3 Computational problems and state of the art

In this section, we describe the main computational questions that are of interest for the
optimization problems discussed in the previous section and then discuss what is known
about them in the commutative and non-commutative worlds.

▶ Problem 3.1 (Null cone membership). Given (π, v), determine if v is in the null cone, i.e.,
if cap(v) = 0. Equivalently, test if 0 /∈ ∆(v).

The null cone membership problem for GL(n) is interesting only when the action π(g) is
given by rational functions in the gi,j rather than polynomials. This is completely analogous
to the commutative case (e.g., the convex hull of weights ωj with positive entries never
contains the origin). In the important case that π is homogeneous, the null cone membership
problem is interesting precisely when the total degree is zero, so that scalar multiples of
the identity matrix act trivially. Thus, in this case the null cone membership problem
for G = GL(n) is equivalent to the one for G = SL(n).

▶ Problem 3.2 (Scaling). Given (π, v, ε) such that 0 ∈ ∆(v), output a group element g ∈ G

such that ∥ spec(µ(g)v)∥2 = ∥µ(π(g)v)∥F ≤ ε.

In particular, the following promise problem can be reduced to Problem 3.2: Given
(π, v, ε), decide whether 0 ̸∈ ∆(v) under the promise that either 0 ∈ ∆(v) or 0 is ε-far from
∆(v). In fact, there always exists ε > 0, depending only on the group action, such that this
promise is satisfied! Thus, the null cone membership problem can always be reduced to the
scaling problem (see Corollary 4.5 below).

One can develop a non-commutative duality theory [15, Section 3.4] showing that an
efficient agorithm to minimize the norm on an orbit closure of a vector v (i.e., approximate
the capacity of v) under the promise that 0 ∈ ∆(v) results in an efficient algorithm for the
scaling problem and hence for the null cone membership problem. This motivates our next
computational problem.

▶ Problem 3.3 (Norm minimization). Given (π, v, ε) such that cap(v) > 0, output a group
element g ∈ G such that log∥π(g)v∥ − log cap(v) ≤ ε.

P. Bürgisser 1:9

We also consider the moment polytope membership problem for an arbitrary point p ∈ Qn.

▶ Problem 3.4 (Moment polytope membership). Given (π, v, p), determine if p ∈ ∆(v).

The moment polytope membership problem is more general than the null cone membership
problem, but there is a reduction from the former to the latter via the “shifting trick”
from [70, 11], which forms the basis of the algorithms for the moment polytope membership
problem in [15]. As in the case of the null cone, we can consider a scaling version of the
moment polytope membership problem.

▶ Problem 3.5 (p-scaling). Given (π, v, p, ε) such that p ∈ ∆(v), output an element g ∈ G

such that ∥spec(µ(π(g)v)) − p∥2 ≤ ε.

The above problem has been referred to as nonuniform scaling [13] or, for operators,
matrices and tensors, as scaling with specified or prescribed marginals [34]. The following
problem can be reduced to Problem 3.5: Given (π, v, p, ε), decide whether p ∈ ∆(v) under
the promise that either p ∈ ∆(v) or p is ε-far from ∆(v). One can combine the shifting
trick with the non-commutive duality theory to show that there is a value ε > 0 with bitsize
polynomial in the input size such that this is promise is always satisfied [15]. Thus, the
moment polytope membership problem can be reduced to p-scaling.

There are several interesting input models for these problems. One could explicitly
describe the weights ω1, . . . , ωm for an action of T(n) (Equation (2.1)) and then describe v

as
∑m

j=1 cjvj by describing the cj ’s. The analogous description in the non-commutative
world would be to describe the irreducible representations occuring in V . Alternately, one
could give black box access to the function ∥π(g)v∥, or to the moment map µ(π(g)v), etc.
Sometimes π can be a non-uniform input as well, such as a fixed family of representations
like the simultaneous left-right action Example 2.3 as done in [37]. The inputs p and ε will
be given in their binary descriptions but we will see that some of the algorithms run in time
polynomial in their unary descriptions.

▶ Remark 3.6 (Running time in terms of ε). By standard considerations about the bit complexity
of the facets of the moment polytope, it can be shown that polynomial time algorithms for
the scaling problems (Problems 3.2 and 3.5) result in polynomial time algorithms for the
exact versions (Problems 3.1 and 3.4, respectively). Polynomial time requires, in particular,
poly(log(1/ε)) dependence on ε; a poly(1/ε) dependence is only known to suffice in special
cases.

3.1 Commutative groups and geometric programming
In the commutative case, the preceding problems are reformulations of well-studied optimiza-
tion problems and much is known about them computationally. To see this, consider the
action of T(n) as in Equation (2.1), and a vector v =

∑m
j=1 cjvj . It follows from Section 2.4

that v is in the null cone iff 0 /∈ ∆(v) = conv{ωj : cj ̸= 0}. Recall from Equation (2.2), the for-
mulation for cap(v). Since this formulation is convex, it follows that, given ω1, . . . , ωm ∈ Zn

(recall this is the description of π) and c1, . . . , cm ∈ Q[i] (each entry described in binary),
there is a polynomial-time algorithm for the null cone membership problem via linear pro-
gramming [54, 52]. The same is true for the moment polytope membership problem. The
capacity optimization problem is an instance of (unconstrained) geometric programming.
The recent paper [18] describes interior-point methods for this, which run in polynomial
time. Before [18], it was hard to find an exact reference for the existence of a polynomial
time algorithm for geometric programming; however, is was known that polynomial time can

STACS 2021

1:10 Optimization, Complexity and Invariant Theory

be achieved using the ellipsoid algorithm as done for the same problem in slightly different
settings in the papers [43, 74, 75]. There has been work in the oracle setting as well, in
which one has oracle access to the function ∥π(g)v∥. The advantage of the oracle setting is
that one can handle exponentially large representations of T(n) when it is not possible to
describe all the weights explicitly. A very general result of this form is proved in [75]. While
not explicitly mentioned in [75], their techniques can also be used to design polynomial time
algorithms for commutative null cone and moment polytope membership in the oracle setting.
Thus, in the commutative case, Problems 3.1, 3.3, and 3.4 are well-understood.

3.2 Non-commutative actions
Comparatively very little is known in the non-commutative case. In the special case, where
the group is fixed, polynomial time algorithms were given by the use of quantifier elimination
(which is inefficient) and, more recently, by Mulmuley in [67, Theorem 8.5] through a purely
algebraic approach. For instance, this applies to the settings of V = Symd Cn or V = ΛdCn

with the natural action by SL(n), where n is fixed.
For nonfixed groups, the only two non-trivial group actions for which there are known

polynomial-time algorithms for null cone membership (Problem 3.1) are the simultaneous
conjugation (Example 2.5) and the left-right action (Example 2.4). Approximate algorithms
for null cone membership have been designed for the tensor action of products of SL(n)’s [16].
However the running time is exponential in the binary description of ε (i.e., polynomial in
1/ε). This is the reason the algorithm does not lead to a polynomial time algorithm for the
exact null cone membership problem for the tensor action.

Moment polytope membership is already interesting for the polytope ∆ in (2.4), the
moment polytope of the entire representation V (not restricted to any orbit closure). Even
here, efficient algorithms are only known in very special cases, such as for the Horn polytope
(Example 2.1) [64, 68, 17]. The structural results in [8, 72, 78] characterize ∆ in terms of linear
inequalities (it is known that in general there are exponentially many). Mathematically, this is
related to the asymptotic vanishing of certain representation-theoretic multiplicities [11, 20, 6]
whose non-vanishing is in general NP-hard to decide [48]. In [12] it was proved that the
membership problem for ∆ is in NP ∩ coNP. As ∆ and ∆(v) coincide for generic v ∈ V , this
problem captures the moment polytope membership problem (Problem 3.4) for almost all
vectors (all except those in a set of measure zero).

The study of Problem 3.4 in the noncommutative case focused on Brascamp-Lieb polytopes
(which are affine slices of moment polytopes). The paper [38] solved the moment polytope
membership problem in time depending polynomially on the unary complexity of the target
point. In [13], efficient algorithms were designed for the p-scaling problem (Problem 3.5) for
tensor actions, extending the earlier work of [34] for the simultaneous left-right action. The
running times of both algorithms are poly(1/ε); for this reason both algorithms result in
moment polytope algorithms depending exponentially on the binary bitsize of p, as in [38].

Regarding the approximate computation of the capacity (Problem 3.3), efficient algorithms
were previously known only for the simultaneous left-right action. The paper [37] gave an
algorithm to approximate the capacity in time polynomial in all of the input description
except ε, on which it had dependence poly(1/ε). The paper [2] gave an algorithm that de-
pended polynomially on the input description; it has running time dependence poly(log(1/ε))
on the error parameter ε.

In terms of algorithmic techniques, all prior works that were based on optimization
methods fall into two categories. One is that of alternating minimization (which can be
thought of as a large-step coordinate gradient descent, i.e., roughly speaking as a first

P. Bürgisser 1:11

order method). However, alternating minimization is limited in applicability to “multilinear”
actions of products of T(n)’s or GL(n)’s, where the action is linear in each component so
that it is easy to optimize over one component when fixing all the others. This is true for all
the actions described above and hence explains the applicability of alternating minimization
(in fact, in all the above examples, one can even get a closed-form expression for the group
element that has to be applied in each alternating step). The second category are geodesic
analogues of box-constrained Newton’s methods (second order). Recently, [2] designed an
algorithm tailored towards the specific case of the simultaneous left-right action (Example 2.3),
but no second order algorithms were known for other group actions. However, many group
actions of interest – from classical problems in invariant theory about symmetric forms to
the important variant of Problem 2 in the introduction for fermions – are not multilinear nor
can otherwise be captured by the left-right action, and no efficient algorithms were known.
All this motivates the development of new techniques.

The paper [15] shows how these limitations can be overcome. Specifically, it provides both
first and second order algorithms (geodesic variants of gradient descent and box-constrained
Newton’s method) that apply in great generality and identify the main structural parameters
that control the running time of these algorithm. We now describe these contributions in
more detail.

4 Algorithmic and structural results

4.1 Essential parameters and structural results
We define here the essential parameters related to the group action which, in addition to
dictating the running times of our first and second order methods, control the relationships
between the null cone, the norm of the moment map, and the capacity, i.e., between
Problems 3.1–3.3. For details we refer to [15]

We saw in Section 2 that for all actions of T(n) on a vector space V , one can find a basis
of V consisting of simultaneous eigenvectors of the matrices π(g), g ∈ T(n). While this is
in general impossible for non-commutative groups, one can still decompose V into building
blocks known as irreducible subspaces (or subrepresentations).

For GL(n), these are uniquely characterized by nonincreasing sequences λ ∈ Zn; such
sequences λ are in bijection with irreducible representations πλ : GL(n) → GL(Vλ). We say
that λ occurs in π if one of its irreducible subspaces is of type λ. If all the λ occuring in π

have nonnegative entries, then the entries of the matrix π(g) are polynomials in the entries
of g. Such representations π are called polynomial, and if all λ occuring in π have sum exactly
(resp. at most) d, then π is said to be a homogeneous polynomial representation of degree
(resp. at most) d.

Now we can define the complexity measure which captures the smoothness of the optim-
ization problems of interest. One can think of the following measure as a norm of the Lie
algebra representation Π, hence the name weight norm.

▶ Definition 4.1 (Complexity measure I: weight norm). We define the weight norm N(π) of an
action π of GL(n) by N(π) := max{∥λ∥2 : λ occurs in π}, where ∥·∥2 denotes the Euclidean
norm.

Another use of the weight norm is to provide a bounding ball for the moment polytope:
one can show that the moment polytope is contained in a Euclidean ball of radius N(π).
The weight norm is in turn controlled by the degree of a polynomial representation. More
specifically, if π is a polynomial representation of GL(n) of degree at most d, then N(π) ≤ d.

STACS 2021

1:12 Optimization, Complexity and Invariant Theory

We now describe our second measure of complexity which will govern the running time
bound for our second order algorithm. This parameter also features in Theorem 4.3 concerning
quantitative non-commutative duality.

▶ Definition 4.2 (Complexity measure II: weight margin). The weight margin γ(π) of an
action π of GL(n) is the minimum Euclidean distance between the origin and the convex hull
of any subset of the weights of π that does not contain the origin.

Our running time bound will depend inversely on the weight margin. Two interesting
examples with large (inverse polynomial) weight margin are the left-right action (Example 2.3)
and simultaneous conjugation. The existing second order algorithm for the left-right action
relied on the large weight margin of the action [2]. It is interesting that the simultaneous
conjugation action (Example 2.5), the sole other interesting example of an action of a non-
commutative group for which there are efficient algorithms for the null cone membership
problem [71, 33, 28] (which have nothing to do with the weight margin), also happens to
have large weight margin! On the other hand, the only generally applicable lower bound
on the weight margin is N(π)1−nn−1, and indeed this exponential behavior is seen for the
somewhat intractable 3-tensor action (Example 2.2), which has weight margin at most 2−n/3

and weight norm
√

3 [61, 35]. We arrange in a tabular form the above information about the
weight margin and weight norm for various paradigmatic group actions in Table 1 (using a
definition of the weight margin and weight norm that naturally generalizes the one given
above for GL(n)).

Table 1 Weight margin and norm for various representations.

Group action Weight margin γ(π) Weight norm N(π)

Matrix scaling ≥ n−3/2; [63]
√

2
Simultan. left-right action (Example 2.3) ≥ n−3/2; [42]

√
2

Quivers ≥ (
∑

x
n(x))−3/2 √

2
Simultaneous conjugation (Example 2.5) ≥ n−3/2 √

2
3-tensor action (Example 2.2) ≤ 2−n/3; [61, 35]

√
3

Polynomial GL(n)-action of degree d ≥ d−ndn−1 ≤ d

Polynomial SL(n)-action of degree d ≥ (nd)−ndn−1 ≤ d

As the moment map is the gradient of the geodesically convex function log∥v∥, it stands
to reason that as µ(v) tends to zero, ∥v∥ tends to the capacity cap(v). However, in order
to use this relationship to obtain efficient algorithms, we need this to hold in a precise
quantitative sense. To this end, we show in [15] the following fundamental relation between
the capacity and the norm of the moment map, which is a quantitative strengthening of the
Kempf-Ness result [53].

▶ Theorem 4.3 (Noncommutative duality). For v ∈ V \ {0} we have

1 − ∥µ(v)∥F

γ(π) ≤ cap(v)2

∥v∥2 ≤ 1 − ∥µ(v)∥2
F

4N(π)2 .

Equipped with these inequalities, it is easy to relate Problems 3.2 and 3.3.

▶ Corollary 4.4. An output g for the norm minimization problem on input (π, v, ε) is a valid
output for the scaling problem on input (π, v, N(π)

√
8ε). If ε/γ(π) < 1

2 then an output g for
the scaling problem on input (π, v, ε) is a valid output for the norm minimization problem on
input (π, v, 2 log(2)ε

γ(π)).

P. Bürgisser 1:13

Because 0 ∈ ∆(v) if and only if cap(v) > 0, Theorem 4.3 and Corollary 4.4 immediately
yield the accuracy to which we must solve the scaling problem or norm minimization problem
to solve the null cone membership problem:

▶ Corollary 4.5. It holds that 0 ∈ ∆(v) if and only if ∆(v) contains a point of norm smaller
than γ(π). In particular, solving the scaling problem with input (π, v, γ(π)/2) or the norm
minimization problem with (π, v, 1

8 (γ(π)/2N(π))2) suffices to solve the null cone membership
problem for (π, v).

In [15] we also provide analogues of the above corollaries for the moment polytope
membership problem.

4.2 First order methods: structural results and algorithms
As discussed above, in order to approximately compute the capacity in the commutative case,
one can just run a Euclidean gradient descent on the convex formulation in Equation (2.2).
We will see that the gradient descent method naturally generalizes to the non-commutative
setting. It is worth mentioning that there are several excellent sources of the analysis
of gradient descent algorithms for geodesically convex functions (in the general setting
of Riemannian manifolds and not just the group setting that we are interested in); see
e.g., [77, 1, 83, 82, 73, 84] and references therein. The contribution in [15] is mostly in
understanding the geometric properties (such as smoothness) of the optimization problems
that we are concerned with, which allow us to carry out the classical analysis of Euclidean
gradient descent in our setting and to obtain quantitative convergence rates, which are not
present in previous work.

The natural analogue of gradient descent for the optimization problem cap(v) is the
following: start with g0 = I and repeat, for T iterations and a suitable step size η:

gt+1 = e−ηµ(π(gt)v)gt. (4.1)

Finally, return the group element g among g0, . . . , gT −1, which minimizes ∥µ(π(g)v)∥F .
A natural geometric parameter which governs the complexity (number of iterations T , step
size η) of gradient descent is the smoothness of the function to be optimized. The smoothness
parameter for actions of T(n) in Equation (2.1) can be shown to be O(maxj∈[m]∥ωj∥2

2) (see,
e.g., [75]), which is the square of the weight norm defined in Definition 4.1 for this action.
We prove in [15] that, in general, the function log∥π(g)v∥ is geodesically smooth, with a
smoothness parameter which, analogously to the commutative case, is on the order of the
square of the weight norm. We now state the running time for our geodesic gradient descent
algorithm for Problem 3.2.

▶ Theorem 4.6 (First order algorithm for scaling). Fix a representation π : GL(n) → GL(V)
and a unit vector v ∈ V such that cap(v) > 0 (i.e., v is not in the null cone). Then the above
analogue (4.1) of gradient descent, with a number of iterations at most

T = O

(
N(π)2

ε2

∣∣log cap(v)
∣∣) ,

outputs a group element g ∈ GL(n) satisfying ∥µ(π(g)v)∥F ≤ ε.

The analysis of Theorem 4.6 relies on the smoothness of the function Fv(g) := log∥π(g)v∥,
which implies that

Fv(eHg) ≤ Fv(g) + tr
[
µ

(
π(g)v

)
H

]
+ N(π)2∥H∥2

F ,

for all g ∈ GL(n) and for all Hermitian H ∈ Herm(n).
The paper [15] also describes and analyzes a first order algorithm for the p-scaling problem

via the shifting trick.

STACS 2021

1:14 Optimization, Complexity and Invariant Theory

4.3 Second order methods: structural results and algorithms

As mentioned in Section 3, the paper [2] (following the algorithms developed in [3, 23]
for the commutative Euclidean case) developed a second order polynomial-time algorithm
for approximating the capacity for the simultaneous left-right action (Example 2.3) with
running time polynomial in the bit description of the approximation parameter ε. In [15] this
algorithm is generalized to arbitrary groups and actions. It repeatedly optimizes quadratic
Taylor expansions of the objective in a small neighbourhood. Such algorithms also go by
the name “trust-region methods” in the Euclidean optimization literature [24]. The running
time of this algorithm depends inversely on the weight margin defined in Definition 4.2.

▶ Theorem 4.7 (Second-order algorithm for norm minimization). Fix a representation π :
GL(n) → GL(V) and a unit vector v ∈ V such that cap(v) > 0. Put C := | log cap(v)|,
γ := γ(π) and N := N(π). Then the second order algorithm in [15], for a suitably regularized
objective function, outputs g ∈ G satisfying log ∥π(g)v∥ ≤ log cap(v) + ε with a number of
iterations at most

T = O

(
N

√
n

γ

(
C + log n

ε

)
log C

ε

)
.

The two main structural parameters which govern the runtime of the second order
algorithm are the robustness (controlled by the weight norm) and a diameter bound (controlled
by the weight margin). The robustness of a function bounds third derivatives in terms of
second derivatives, similarly to the well-known notion of self concordance (however, in contrast
to the latter, the robustness is not scale-invariant). As a consequence of the robustness, one
shows that the function Fv(g) = log∥π(g)v∥ is sandwiched between two quadratic expansions
in a small neighbourhood:

F (g) + ∂t=0F (etHg) + 1
2e

∂2
t=0F (etHg) ≤ F (eHg) ≤ F (g) + ∂t=0F (etHg) + e

2∂2
t=0F (etHg)

for every g ∈ GL(n) and H ∈ Herm(n) such that ∥H∥F ≤ 1/(4N(π)).
Another ingredient in the analysis of the second order algorithm is to prove the existence

of “well-conditioned” approximate minimizers, i.e., g⋆ ∈ G, with small condition number
satisfying log∥π(g⋆)v∥ ≤ log cap(v) + ε. The bound on the condition numbers of approximate
minimizers helps us ensure that the algorithm’s trajectory always lies in a compact region
with the use of appropriate regularizers. As in [2], this “diameter bound” is obtained by
designing a suitable gradient flow and bounding the (continuous) time it takes for it to
converge. A crucial ingredient of this analysis is Theorem 4.3 relating capacity and norm of
the moment map.

This gradient flow approach, which can be traced back to works in symplectic geometry [56],
is the only one we know for proving diameter bounds in the non-commutative case. In
contrast, in the commutative case several different methods are available (see, e.g., [74, 75]).
It is an important open problem to develop alternative methods for diameter bounds in the
non-commutative case, which will also lead to improved running time bounds for the second
order algorithm.

Finally, we note that [15] also contains results bounding the running time of the obtained
algorithms, beyond the number of oracle calls, in terms of the bitsize needed to describe the
given action π and the given vector v.

P. Bürgisser 1:15

5 Conclusion

We believe that extending this theory will be fruitful both from a mathematical and compu-
tational point of view. The paper [15] points to the following intriguing open problems and
suggests further research directions.
1. Is the null cone membership problem for general group actions in P? A natural intermediate

goal is to prove that they are in NP ∩ coNP. The quantitative duality theory developed
in this paper makes such a result plausible. The same question may be asked about the
moment polytope membership problem for general group actions [12].

2. Can we find more general classes of problems or group actions where our algorithms run
in polynomial time? In view of the complexity parameters we have identified, it is of
particular interest to understand when the weight margin is only inverse polynomially
rather than exponentially small.

3. Interestingly, when restricted to the commutative case discussed in Section 3, our al-
gorithms’ guarantees do not match those of cut methods in the spirit of the ellipsoid
algorithm. Can we extend non-commutative/geodesic optimization to include cut methods
as well as interior point methods? The foundations we lay in extending first and second
order methods to the non-commutative case makes one optimistic that similar extensions
are possible of other methods in standard convex optimization. The paper [18] explicitly
designs and analyses a polynomial time interior-point method in the commutative setting.

4. Can geodesic optimization lead to new efficient algorithms in combinatorial optimization?
We know that it captures algorithmic problems like bipartite matching (and more generally
matroid intersection). How about perfect matching in general graphs – is the Edmonds
polytope a moment polytope of a natural group action?

5. Can geodesic optimization lead to new efficient algorithms in algebraic complexity and
derandomization? We know that the null cone membership problem captures polynomial
identity testing (PIT) in non-commuting variables. The variety corresponding to classical
PIT is however not a null cone [65]. Can our algorithms be extended beyond null cones
to membership in more general classes of varieties?

References
1 Pierre-Antoine Absil, Robert E. Mahony, and Rodolphe Sepulchre. Optimization Algorithms

on Matrix Manifolds. Princeton University Press, 2008. URL: http://press.princeton.edu/
titles/8586.html.

2 Zeyuan Allen-Zhu, Ankit Garg, Yuanzhi Li, Rafael Mendes de Oliveira, and Avi Wigderson.
Operator scaling via geodesically convex optimization, invariant theory and polynomial identity
testing. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018, pages 172–181. ACM, 2018. doi:10.1145/3188745.3188942.

3 Zeyuan Allen-Zhu, Yuanzhi Li, Rafael Mendes de Oliveira, and Avi Wigderson. Much faster
algorithms for matrix scaling. In Chris Umans, editor, 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 890–901. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.87.

4 Carlos Améndola, Kathlén Kohn, Philipp Reichenbach, and Anna Seigal. Invariant theory
and scaling algorithms for maximum likelihood estimation, 2020. arXiv:2003.13662.

5 Michael F Atiyah. Convexity and commuting Hamiltonians. Bulletin of the London Mathem-
atical Society, 14(1):1–15, 1982. doi:10.1112/blms/14.1.1.

6 Velleda Baldoni, Michèle Vergne, and M. Walter. Computation of dilated Kronecker coefficients.
J. Symb. Comput., 84:113–146, 2018. doi:10.1016/j.jsc.2017.03.005.

STACS 2021

http://press.princeton.edu/titles/8586.html
http://press.princeton.edu/titles/8586.html
https://doi.org/10.1145/3188745.3188942
https://doi.org/10.1109/FOCS.2017.87
http://arxiv.org/abs/2003.13662
https://doi.org/10.1112/blms/14.1.1
https://doi.org/10.1016/j.jsc.2017.03.005

1:16 Optimization, Complexity and Invariant Theory

7 Prakash Belkale and Shrawan Kumar. Eigenvalue problem and a new product in co-
homology of flag varieties. Inventiones mathematicae, 166:185–228, 2006. doi:10.1007/
s00222-006-0516-x.

8 Arkady Berenstein and Reyer Sjamaar. Coadjoint orbits, moment polytopes, and the Hilbert–
Mumford criterion. Journal of the American Mathematical Society, 13(2):433–466, 2000.
doi:10.1090/S0894-0347-00-00327-1.

9 Nicole Berline, Michèle Vergne, and Michael Walter. The Horn inequalities from a geometric
point of view. L’Enseignement Mathématique, 63:403–470, 2017. arXiv:1611.06917.

10 Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2014. doi:10.1017/CBO9780511804441.

11 Michel Brion. Sur l’image de l’application moment. In Séminaire d’algebre Paul Dubreil et
Marie-Paule Malliavin, volume 1296 of Lecture Notes in Mathematics, pages 177–192. Springer,
1987.

12 Peter Bürgisser, Matthias Christandl, Ketan D. Mulmuley, and Michael Walter. Membership
in moment polytopes is in NP and coNP. SIAM J. Comput., 46(3):972–991, 2017. doi:
10.1137/15M1048859.

13 Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Mendes de Oliveira, Michael Walter, and Avi
Wigderson. Efficient algorithms for tensor scaling, quantum marginals and moment polytopes.
CoRR, abs/1804.04739, 2018. arXiv:1804.04739.

14 Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Mendes de Oliveira, Michael Walter, and
Avi Wigderson. Towards a theory of non-commutative optimization: Geodesic 1st and
2nd order methods for moment maps and polytopes. In David Zuckerman, editor, 60th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019, pages 845–861. IEEE Computer Society, 2019. doi:
10.1109/FOCS.2019.00055.

15 Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Mendes de Oliveira, Michael Walter, and Avi
Wigderson. Towards a theory of non-commutative optimization: geodesic first and second order
methods for moment maps and polytopes. CoRR, abs/1910.12375, 2019. arXiv:1910.12375.

16 Peter Bürgisser, Ankit Garg, Rafael Mendes de Oliveira, Michael Walter, and Avi Wigderson.
Alternating minimization, scaling algorithms, and the null-cone problem from invariant theory.
In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science Conference, ITCS
2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages 24:1–24:20.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ITCS.2018.24.

17 Peter Bürgisser and Christian Ikenmeyer. Deciding positivity of Littlewood-Richardson
coefficients. SIAM J. Discret. Math., 27(4):1639–1681, 2013. doi:10.1137/120892532.

18 Peter Bürgisser, Yinan Li, Harold Nieuwboer, and Michael Walter. Interior-point methods for
unconstrained geometric programming and scaling problems, 2020. arXiv:2008.12110.

19 Matthias Christandl, Brent Doran, Stavros Kousidis, and Michael Walter. Eigenvalue distri-
butions of reduced density matrices. Communications in Mathematical Physics, 332(1):1–52,
2014. doi:10.1007/s00220-014-2144-4.

20 Matthias Christandl, Brent Doran, and Michael Walter. Computing multiplicities of Lie
group representations. In 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 639–648. IEEE Computer
Society, 2012. doi:10.1109/FOCS.2012.43.

21 Matthias Christandl, Aram W Harrow, and Graeme Mitchison. Nonzero Kronecker coefficients
and what they tell us about spectra. Communications in Mathematical Physics, 270(3):575–585,
2007. doi:10.1007/s00220-006-0157-3.

22 Matthias Christandl and Graeme Mitchison. The spectra of quantum states and the Kronecker
coefficients of the symmetric group. Communications in Mathematical Physics, 261(3):789–797,
2006. doi:10.1007/s00220-005-1435-1.

https://doi.org/10.1007/s00222-006-0516-x
https://doi.org/10.1007/s00222-006-0516-x
https://doi.org/10.1090/S0894-0347-00-00327-1
http://arxiv.org/abs/1611.06917
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1137/15M1048859
https://doi.org/10.1137/15M1048859
http://arxiv.org/abs/1804.04739
https://doi.org/10.1109/FOCS.2019.00055
https://doi.org/10.1109/FOCS.2019.00055
http://arxiv.org/abs/1910.12375
https://doi.org/10.4230/LIPIcs.ITCS.2018.24
https://doi.org/10.1137/120892532
http://arxiv.org/abs/2008.12110
https://doi.org/10.1007/s00220-014-2144-4
https://doi.org/10.1109/FOCS.2012.43
https://doi.org/10.1007/s00220-006-0157-3
https://doi.org/10.1007/s00220-005-1435-1

P. Bürgisser 1:17

23 Michael B. Cohen, Aleksander Madry, Dimitris Tsipras, and Adrian Vladu. Matrix scaling
and balancing via box constrained newton’s method and interior point methods. In Chris
Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, Berkeley, CA, USA, October 15-17, 2017, pages 902–913. IEEE Computer Society, 2017.
doi:10.1109/FOCS.2017.88.

24 Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust Region Methods.
MOS-SIAM Series on Optimization. SIAM, 2000. doi:10.1137/1.9780898719857.

25 Sumit Daftuar and Patrick Hayden. Quantum state transformations and the Schubert calculus.
Annals of Physics, 315(1):80–122, 2005. doi:10.1016/j.aop.2004.09.012.

26 Harm Derksen and Gregor Kemper. Computational invariant theory. Springer, 2015.
27 Harm Derksen and Visu Makam. Polynomial degree bounds for matrix semi-invariants.

Advances in Mathematics, 310:44–63, 2017. doi:10.1016/j.aim.2017.01.018.
28 Harm Derksen and Visu Makam. Algorithms for orbit closure separation for invariants and

semi-invariants of matrices, 2018. arXiv:1801.02043.
29 Harm Derksen and Visu Makam. Maximum likelihood estimation for matrix normal models

via quiver representations, 2020. arXiv:2007.10206.
30 Harm Derksen, Visu Makam, and Michael Walter. Maximum likelihood estimation for tensor

normal models via Castling transforms, 2020. arXiv:2011.03849.
31 Harm Derksen and Jerzy Weyman. An introduction to quiver representations, volume 184.

American Mathematical Society, 2017.
32 Mathias Drton, Satoshi Kuriki, and Peter Hoff. Existence and uniqueness of the Kronecker

covariance MLE, 2020. arXiv:2003.06024.
33 Michael A. Forbes and Amir Shpilka. Explicit noether normalization for simultaneous conjug-

ation via polynomial identity testing. Electron. Colloquium Comput. Complex., 20:33, 2013.
URL: http://eccc.hpi-web.de/report/2013/033.

34 Cole Franks. Operator scaling with specified marginals. In Ilias Diakonikolas, David Kempe,
and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 190–203.
ACM, 2018. doi:10.1145/3188745.3188932.

35 Cole Franks and Philipp Reichenbach. Barriers for recent methods in geodesic optimization.
Preprint, 2020. arXiv:2102.06652.

36 William Fulton. Eigenvalues, invariant factors, highest weights, and Schubert calculus. Bulletin
of the American Mathematical Society, 37(3):209–249, 2000. arXiv:math/9908012.

37 Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigderson. A deterministic
polynomial time algorithm for non-commutative rational identity testing. In Irit Dinur, editor,
IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October
2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 109–117. IEEE Computer
Society, 2016. doi:10.1109/FOCS.2016.95.

38 Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigderson. Algorithmic and
optimization aspects of brascamp-lieb inequalities, via operator scaling. In Hamed Hatami,
Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 397–409. ACM, 2017. doi:10.1145/3055399.3055458.

39 Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigderson. Operator
scaling: Theory and applications. Found. Comput. Math., 20(2):223–290, 2020. doi:10.1007/
s10208-019-09417-z.

40 Ankit Garg, Christian Ikenmeyer, Visu Makam, Rafael Mendes de Oliveira, Michael Walter,
and Avi Wigderson. Search problems in algebraic complexity, GCT, and hardness of generators
for invariant rings. In Shubhangi Saraf, editor, 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of
LIPIcs, pages 12:1–12:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.CCC.2020.12.

STACS 2021

https://doi.org/10.1109/FOCS.2017.88
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1016/j.aop.2004.09.012
https://doi.org/10.1016/j.aim.2017.01.018
http://arxiv.org/abs/1801.02043
http://arxiv.org/abs/2007.10206
http://arxiv.org/abs/2011.03849
http://arxiv.org/abs/2003.06024
http://eccc.hpi-web.de/report/2013/033
https://doi.org/10.1145/3188745.3188932
http://arxiv.org/abs/2102.06652
http://arxiv.org/abs/math/9908012
https://doi.org/10.1109/FOCS.2016.95
https://doi.org/10.1145/3055399.3055458
https://doi.org/10.1007/s10208-019-09417-z
https://doi.org/10.1007/s10208-019-09417-z
https://doi.org/10.4230/LIPIcs.CCC.2020.12
https://doi.org/10.4230/LIPIcs.CCC.2020.12

1:18 Optimization, Complexity and Invariant Theory

41 V. Guillemin and S. Sternberg. Convexity properties of the moment mapping. Inventiones
mathematicae, 67:491–513, 1982.

42 Leonid Gurvits. Classical complexity and quantum entanglement. J. Comput. Syst. Sci.,
69(3):448–484, 2004. doi:10.1016/j.jcss.2004.06.003.

43 Leonid Gurvits. Combinatorial and algorithmic aspects of hyperbolic polynomials. Electron.
Colloquium Comput. Complex., (070), 2004. URL: http://eccc.hpi-web.de/eccc-reports/
2004/TR04-070/index.html.

44 Leonid Gurvits. Hyperbolic polynomials approach to van der waerden/schrijver-valiant like
conjectures: sharper bounds, simpler proofs and algorithmic applications. In Jon M. Kleinberg,
editor, Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle,
WA, USA, May 21-23, 2006, pages 417–426. ACM, 2006. doi:10.1145/1132516.1132578.

45 Leonid Gurvits and Peter N. Yianilos. The deflation-inflation method for certain semidefinite
programming and maximum determinant completion problems. Technical Report, NECI, 1998.

46 Linus Hamilton and Ankur Moitra. The paulsen problem made simple. In Avrim Blum, editor,
10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10-12,
2019, San Diego, California, USA, volume 124 of LIPIcs, pages 41:1–41:6. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ITCS.2019.41.

47 David Hilbert. Über die vollen Invariantensysteme. Math. Ann., 42:313–370, 1893.
48 Christian Ikenmeyer, Ketan D. Mulmuley, and Michael Walter. On vanishing of Kronecker

coefficients. Comput. Complex., 26(4):949–992, 2017. doi:10.1007/s00037-017-0158-y.
49 Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Constructive non-commutative

rank computation is in deterministic polynomial time. In Christos H. Papadimitriou, editor,
8th Innovations in Theoretical Computer Science Conference, ITCS 2017, January 9-11, 2017,
Berkeley, CA, USA, volume 67 of LIPIcs, pages 55:1–55:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.ITCS.2017.55.

50 Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Non-commutative Edmonds’
problem and matrix semi-invariants. Comput. Complex., 26(3):717–763, 2017. doi:10.1007/
s00037-016-0143-x.

51 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests
means proving circuit lower bounds. Comput. Complex., 13(1-2):1–46, 2004. doi:10.1007/
s00037-004-0182-6.

52 Narendra Karmarkar. A new polynomial-time algorithm for linear programming. Comb.,
4(4):373–396, 1984. doi:10.1007/BF02579150.

53 George Kempf and Linda Ness. The length of vectors in representation spaces. In Algebraic
geometry, pages 233–243. Springer, 1979.

54 Leonid G Khachiyan. A polynomial algorithm in linear programming. In Doklady Academii
Nauk SSSR, volume 244, pages 1093–1096, 1979.

55 Frances Kirwan. Convexity properties of the moment mapping, III. Inventiones mathematicae,
77(3):547–552, 1984.

56 Frances Clare Kirwan. Cohomology of quotients in symplectic and algebraic geometry, volume 31.
Princeton University Press, 1984.

57 Alexander Klyachko. Quantum marginal problem and representations of the symmetric group,
2004. arXiv:quant-ph/0409113.

58 Alexander A Klyachko. Stable bundles, representation theory and hermitian operators. Selecta
Mathematica, New Series, 4(3):419–445, 1998. doi:10.1007/s000290050037.

59 A Knutson and T Tao. The honeycomb model of GLn(C) tensor products I: Proof of the
saturation conjecture. Journal of the American Mathematical Society, 12(4):1055–1090, 1999.
arXiv:math/9807160.

60 B. Kostant. On convexity, the Weyl group and the Iwasawa decomposition. Ann. scient.
E.N.S, 6:413–455, 1973.

61 V. M. Kravtsov. Combinatorial properties of noninteger vertices of a polytope in a three-index
axial assignment problem. Cybernetics and Systems Analysis, 43(1):25–33, 2007.

https://doi.org/10.1016/j.jcss.2004.06.003
http://eccc.hpi-web.de/eccc-reports/2004/TR04-070/index.html
http://eccc.hpi-web.de/eccc-reports/2004/TR04-070/index.html
https://doi.org/10.1145/1132516.1132578
https://doi.org/10.4230/LIPIcs.ITCS.2019.41
https://doi.org/10.1007/s00037-017-0158-y
https://doi.org/10.4230/LIPIcs.ITCS.2017.55
https://doi.org/10.1007/s00037-016-0143-x
https://doi.org/10.1007/s00037-016-0143-x
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1007/BF02579150
http://arxiv.org/abs/quant-ph/0409113
https://doi.org/10.1007/s000290050037
http://arxiv.org/abs/math/9807160

P. Bürgisser 1:19

62 Tsz Chiu Kwok, Lap Chi Lau, Yin Tat Lee, and Akshay Ramachandran. The Paulsen problem,
continuous operator scaling, and smoothed analysis. In Ilias Diakonikolas, David Kempe, and
Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 182–189.
ACM, 2018. doi:10.1145/3188745.3188794.

63 Nathan Linial, Alex Samorodnitsky, and Avi Wigderson. A deterministic strongly polynomial
algorithm for matrix scaling and approximate permanents. In Jeffrey Scott Vitter, editor,
Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas,
Texas, USA, May 23-26, 1998, pages 644–652. ACM, 1998. doi:10.1145/276698.276880.

64 Jesús A. De Loera and Tyrrell B. McAllister. On the computation of Clebsch-Gordan coefficients
and the dilation effect. Exp. Math., 15(1):7–19, 2006. doi:10.1080/10586458.2006.10128948.

65 Visu Makam and Avi Wigderson. Singular tuples of matrices is not a null cone (and, the
symmetries of algebraic varieties). CoRR, abs/1909.00857, 2019. arXiv:1909.00857.

66 Ketan Mulmuley. Geometric complexity theory V: equivalence between blackbox derandomiz-
ation of polynomial identity testing and derandomization of noether’s normalization lemma.
In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, October 20-23, 2012, pages 629–638. IEEE Computer Society, 2012.
doi:10.1109/FOCS.2012.15.

67 Ketan Mulmuley. Geometric complexity theory V: Efficient algorithms for Noether normaliza-
tion. Journal of the American Mathematical Society, 30(1):225–309, 2017. arXiv:1209.5993.

68 Ketan D Mulmuley, Hariharan Narayanan, and Milind Sohoni. Geometric complexity theory
III: on deciding nonvanishing of a Littlewood–Richardson coefficient. Journal of Algebraic
Combinatorics, 36(1):103–110, 2012.

69 David Mumford. Geometric invariant theory. Springer-Verlag, 1965.
70 Linda Ness and David Mumford. A stratification of the null cone via the moment map.

American Journal of Mathematics, 106(6):1281–1329, 1984. doi:10.2307/2374395.
71 Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative

models. Comput. Complex., 14(1):1–19, 2005. doi:10.1007/s00037-005-0188-8.
72 Nicolas Ressayre. Geometric invariant theory and the generalized eigenvalue problem. Inven-

tiones mathematicae, 180(2):389–441, 2010. doi:10.1007/s00222-010-0233-3.
73 Hiroyuki Sato, Hiroyuki Kasai, and Bamdev Mishra. Riemannian stochastic variance reduced

gradient algorithm with retraction and vector transport. SIAM J. Optim., 29(2):1444–1472,
2019. doi:10.1137/17M1116787.

74 Mohit Singh and Nisheeth K. Vishnoi. Entropy, optimization and counting. In David B.
Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May
31 - June 03, 2014, pages 50–59. ACM, 2014. doi:10.1145/2591796.2591803.

75 Damian Straszak and Nisheeth K. Vishnoi. Maximum entropy distributions: Bit complexity
and stability. In Alina Beygelzimer and Daniel Hsu, editors, Conference on Learning Theory,
COLT 2019, 25-28 June 2019, Phoenix, AZ, USA, volume 99 of Proceedings of Machine
Learning Research, pages 2861–2891. PMLR, 2019. URL: http://proceedings.mlr.press/
v99/straszak19a.html.

76 Bernd Sturmfels. Algorithms in Invariant Theory. Texts & Monographs in Symbolic Compu-
tation. Springer, 2008. doi:10.1007/978-3-211-77417-5.

77 Constantin Udriste. Convex functions and optimization methods on Riemannian manifolds,
volume 297. Springer, 1994.

78 Michele Vergne and Michael Walter. Inequalities for moment cones of finite-dimensional
representations. Journal of Symplectic Geometry, 15(4):1209–1250, 2017. doi:10.4310/JSG.
2017.v15.n4.a8.

79 Frank Verstraete, Jeroen Dehaene, and Bart De Moor. Normal forms and entanglement
measures for multipartite quantum states. Physical Review A, 68(1):012103, 2003. doi:
10.1103/PhysRevA.68.012103.

STACS 2021

https://doi.org/10.1145/3188745.3188794
https://doi.org/10.1145/276698.276880
https://doi.org/10.1080/10586458.2006.10128948
http://arxiv.org/abs/1909.00857
https://doi.org/10.1109/FOCS.2012.15
http://arxiv.org/abs/1209.5993
https://doi.org/10.2307/2374395
https://doi.org/10.1007/s00037-005-0188-8
https://doi.org/10.1007/s00222-010-0233-3
https://doi.org/10.1137/17M1116787
https://doi.org/10.1145/2591796.2591803
http://proceedings.mlr.press/v99/straszak19a.html
http://proceedings.mlr.press/v99/straszak19a.html
https://doi.org/10.1007/978-3-211-77417-5
https://doi.org/10.4310/JSG.2017.v15.n4.a8
https://doi.org/10.4310/JSG.2017.v15.n4.a8
https://doi.org/10.1103/PhysRevA.68.012103
https://doi.org/10.1103/PhysRevA.68.012103

1:20 Optimization, Complexity and Invariant Theory

80 Michael Walter. Multipartite Quantum States and their Marginals. PhD thesis, ETH Zurich,
2014. doi:10.3929/ethz-a-010250985.

81 Michael Walter, Brent Doran, David Gross, and Matthias Christandl. Entanglement polytopes:
multiparticle entanglement from single-particle information. Science, 340(6137):1205–1208,
2013. doi:10.1126/science.1232957.

82 Hongyi Zhang, Sashank J. Reddi, and Suvrit Sra. Fast stochastic optimization on riemannian
manifolds. CoRR, abs/1605.07147, 2016. arXiv:1605.07147.

83 Hongyi Zhang and Suvrit Sra. First-order methods for geodesically convex optimization.
CoRR, abs/1602.06053, 2016. arXiv:1602.06053.

84 Hongyi Zhang and Suvrit Sra. Towards riemannian accelerated gradient methods. CoRR,
abs/1806.02812, 2018. arXiv:1806.02812.

https://doi.org/10.3929/ethz-a-010250985
https://doi.org/10.1126/science.1232957
http://arxiv.org/abs/1605.07147
http://arxiv.org/abs/1602.06053
http://arxiv.org/abs/1806.02812

First-Order Transductions of Graphs
Patrice Ossona de Mendez ! Ï

Centre d’Analyse et de Mathématique Sociales CNRS UMR 8557, Paris, France
Charles University, Prague, Czech Republic

Abstract
This paper is an extended abstract of my STACS 2021 talk “First-order transductions of graphs”.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Mathematics of
computing → Graph theory

Keywords and phrases Finite model theory, structural graph theory

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.2

Category Invited Talk

Funding This paper is part of a project that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 810115 – Dynasnet).

Acknowledgements I would like to thank Jarik Nešetřil and Sebastian Siebertz for their most
valuable help in preparing this presentation.

1 Introduction

Logical methods in Computer Science have a long history, as witnessed e.g. by the relative
longevity of SQL in relational database management. More recently, Courcelle’s theorem,
which combines second-order logic and tree decompositions of graphs, showed that a many
NP-complete algorithmic problems in graph theory can be solved in polynomial time on
graphs with bounded tree-width (and even on graphs with bounded clique-width). At the
heart of the latter result is the notion of monadic second-order transductions, which are a
way to encode a graph within a structure using coloring and monadic second-order logic
formulas. In this presentation we consider first-order transductions, for which the formulas
have to be first-order formulas. As a counterpart for this strong restriction, many algorithmic
problems become fixed parameter tractable when restricted to nowhere dense classes, which
include classes excluding a topological minor thus, in particular, classes of planar graphs and
classes of graphs with bounded degrees.

In this setting, the main challenge is to extend results obtained in the sparse setting (for
bounded expansion classes and nowhere dense classes) to the dense setting, in a similar way
the results about monadic second-order model checking have been extended from classes
with bounded tree-width to classes with bounded clique-width.

2 Sparse classes

The study of classes of sparse graphs has long been divided into two dual points of view: on the
one hand, classes of graphs with bounded degrees – and particularly classes of regular graphs,
enjoy strong connections with group theory and important combinatorial properties deriving
from spectral properties. On the other hand, classes excluding a minor are strongly related
to topological graph theory, as witnessed by Robertson and Seymour’s Graph Structure
Theorem [36], which is probably the most important result in structural graph theory. It was
believed for a long time that at the source of this duality lied a fundamental gap between

© Patrice Ossona de Mendez;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 2; pp. 2:1–2:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pom@ehess.fr
http://cams.ehess.fr/patrice-ossona-de-mendez/
https://orcid.org/0000-0003-0724-3729
https://doi.org/10.4230/LIPIcs.STACS.2021.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 First-Order Transductions of Graphs

the notions of minor and topological minor. However, the Graph Structure Theorem has
recently been extended to graphs excluding a topological minor by Grohe and Marx [17] (see
also [9]), witnessing that both notions are closer than expected, even though this extension
builds on two types of blocks, namely graphs almost embedded on a surface and graphs with
almost bounded degrees.

Another unifying approach [21] was proposed fifteen years ago by Nešetřil and the author,
based on the concepts of shallow minors [33], of low tree-depth decompositions [22], of
generalized coloring numbers [19, 39], and of quasi-wideness [7]. This approach led to a
taxonomy of classes of sparse graphs, with two main dividing lines, which respectively
delineate classes with bounded expansion [23] and nowhere dense classes [24, 25]. These
types of graph classes received numerous characterizations, and we shall use two of them as
definitions.

For a graph G and a non-negative integer k, we denote by TMk(G) (where TM stands for
topological minor) the set of all graphs H such that some ≤ k-subdivision of H is a subgraph
of G and, by extension, for a class C we define TMk(C) =

⋃
G∈C TMk(G). A class of graphs

C is nowhere dense if TMk(C) has bounded clique number (or, equivalently, if TMk(C) is
not the class G of all graphs) for every integer k for every non-negative integer k. A class C

has bounded expansion if, for each integer k, there is a uniform bound on the average degrees
of the graphs in TMk(C) (or, equivalently, if each of the class TMk(C) is degenerate).

It is remarkable that bounded expansion and nowhere-denseness can be defined indiffer-
ently using shallow topological minors (as above), shallow minors, or shallow immersions
(see [8]). Also, bounded expansion can be defined indifferently using the average degree, the
degeneracy, the chromatic number [8], and even the fractional chromatic number [10]. For an
in-depth study of bounded expansion and nowhere dense classes, we refer the reader to [26].

The main aspect of sparse classes is probably that vertices are easily separated. This
property, which may be formalized in terms of neighborhood covers and uniform quasi-
wideness, is the core of the model checking algorithm of Grohe, Kreutzer, and Siebertz, who
proved the following result [16].

▶ Theorem 2.1. For every nowhere dense class C and every ε > 0 there is an algorithm that
checks in time f(θ) n1+ε if a graph G ∈ C with n vertices satisfies a first-order sentence θ.

For monotone classes of graphs, under standard assumptions from complexity theory,
nowhere-denseness is actually a necessary condition for first-order model checking to be
fixed-parameter tractable.

Also, one of the manifestations of these separability properties lies in the low neighborhood
complexity of bounded expansion and nowhere dense classes. Precisely, for a class C and
an integer d define the maximum number πC

d of traces of the balls of radius d on subsets of
vertices of size n in graphs in C :

πC
d (n) = sup

G∈C
max

A⊆V (G),|A|=n

∣∣{A ∩ Nd(v) : v ∈ V (G)}
∣∣.

Then we have the following characterizations.

▶ Theorem 2.2. A monotone class C has bounded expansion if and only if πC
d (n) = O(n)

for every integer d and it is nowhere dense if and only if πC
d (n) = O(n1+ε) for every integer

d and every ε > 0.

The above characterization of bounded expansion classes was proved by Reidl, Villaamil,
and Stavropoulos [35]; the difficult direction of the characterization of nowhere dense classes
was proved by Gajarskỳ et al. [13] for the case d = 1 and by Eickmeyer et al. [11] for the

P. Ossona de Mendez 2:3

general case. These characterizations have been dramatically strengthened to bounds on
the shattering functions of first-order definable families of subsets of vertices by Pilipczuk,
Siebertz, and Toruńczyk [32], thus unveiling a deep connection between the notions of sparse
classes and the model theoretical notion of classes with low VC-density.

Also, it follows from another separation property, namely uniform quasi-wideness, that
for a monotone class of graphs, nowhere-denseness, stability and dependence are equivalent
properties, where the last two refer to the model theoretical fundamental dividing lines
identified by Shelah in its classification theory [37]. Precisely, based on a result of Podewski
and Ziegler [34] Adler and Adler [1] proved the following collapse.

▶ Theorem 2.3. For a monotone class of graphs C the following are equivalent:
1. C is nowhere dense;
2. C is stable;
3. C is monadically stable;
4. C is dependent;
5. C is monadically dependent.

These two examples witness an intimate connection between graph theoretical and model
theoretical dividing lines. This suggests a possible extension of the ideas and constructions
introduced to deal with sparse graphs by using techniques borrowed from model theory, like
interpretations and transductions. The hope, behind the search for an extension, is the
possibility to define a dense analog of sparsity for hereditary classes of graphs, which would
witness a relatively low complexity. In particular, we expect to cover the case of the small
hereditary classes, which are classes with O(nc n!) labeled graphs with n vertices.

Another outcome of this connection between graph theory and model theory lies in the
existence of totally Borel model theoretical limits for sequences of graphs in a nowhere
dense graph. Here the notion of convergence consists in the convergence, for every first-
order formula φ(x) of the satisfaction probability of φ(x) when considering a uniform and
independent random assignment of the vertices to the free variables [27], which generalizes
the existence of graphing limits for locally convergent sequence of graphs with bounded
degrees (see [20]).

3 Transductions

A (first-order) transduction is a way to encode a structure within another structure by
means of a coloring and a first-order formula. Precisely, a transduction T from graphs to
graphs is defined by a first-order formula φ(x, y) with two free-variable in the language of
vertex-colored graphs. The atomic formulas of this language are of the form x = y, E(x, y)
(meaning x is adjacent to y) and Mi(x) with i ∈ N (meaning x has color i). For a graph G,
the set T(G) contains all the graphs H with vertex set A ⊆ V (G), for which there is a vertex
coloring G+ of G such that H |= E(u, v) if and only if G+ |= φ(u, v). It follows directly from
the definition that T(G) is a hereditary class of graphs. A class D is a T-transduction of a
class C if D ⊆ T(C) :=

⋃
G∈C T(G). The intuition here is that the graphs in the class D are

non essentially more complex than the graphs in the class C as they can be “encoded” within
them. It is easily checked that the existence of a transduction from a class to another defines
a quasi-order. This quasi-order has a maximum, the class of all graphs. Classes that are not
equivalent to this class – which are in some sense reasonably difficult – are exactly those
graphs classes that are monadically dependent, in the model theoretical sense, as follows
from [3]. It also follows from [3] that the so-called monadically stable classes of graphs are
exactly those class that have no transduction to the class of all half-graphs.

STACS 2021

2:4 First-Order Transductions of Graphs

Admittedly, checking if there exists a transduction from a class C to a class D may be
a highly difficult task. However, the special case where D is the class of all graphs (that
is checking if a class is not monadically dependent) is usually easier to handle. Moreover,
if a class C is monadically dependent then checking the existence of a transduction from
C to the class of all half-graphs (that is checking if C is not monadically stable) is much
easier as it is surprisingly sufficient to check if arbitrarily large half-graphs are semi-induced
subgraphs of graphs in C [28].

The structure of the transduction quasi-order seems to be difficult to establish [31]. As
nowhere dense classes are monadically stable [2], every transduction of a nowhere dense class
is also monadically stable. The converse statement is the object of the next conjecture.

▶ Conjecture 3.1. Every monadically stable class of graphs is a transduction of a nowhere
dense class.

In general, when H is a transduction of a known graph G and that both the transduction
and the vertex-coloring used by the transduction to get G are known, the problem of checking
if H satisfies a first-order sentence can be easily transformed in the problem of checking if
the (colored) graph G satisfies a derived formula. However, when only H and some basic
information about G and the transduction are known, the problem may become much more
difficult. For instance, if a graph G is a transduction of a graph with maximum degree d,
computing such a pre-image and a transduction is provably hard. However, Gajarský et al.
[12] proved the following (see [14] for some extension of this result).

▶ Theorem 3.2. For every transduction T and every integer d there exist an integer d′

(depending on T and d) and an interpretation I such that if G is a T-transduction of a graph
H with maximum degree d, then there is a graph H ′ of maximum degree d′, computable in
polynomial time from G, such that G = I(H ′).

This supports the next conjecture.

▶ Conjecture 3.3. First-order model checking is fixed-parameter tractable on monadically
stable classes of graphs.

Some results have been obtained toward this conjecture, showing that first-order model
checking is fixed-parameter tractable on transductions of bounded expansion classes, provided
that a specific decomposition of the graphs in the graphs (a so-called depth-2 low shrub-depth
cover) is given [15]. This result is proved by proving that first-order transductions transport
low shrub-depth covers, which are a generalization of low tree-depth decompositions. A side
consequence of this is that transductions of bounded expansion classes are linearly χ-bounded
(see [15, 30, 28]). Some related results have been obtained for monadically stable classes
with bounded linear rank-width [29] (showing that they are computable transductions of
classes with bounded pathwidth) and for monadically stable classes with bounded rank-width
(showing that they are computable transductions of classes with bounded treewidth) [28].

4 Partially ordered graphs

The use of transductions has been used to extend some properties of bounded expansion
classes and nowhere dense classes within the monadically stable realm. To go further, it
is necessary to introduce, at least locally, some order-like substructures. A way to it is to
consider classes of partially ordered graphs, that is graphs with an additional partial order on
the vertices, a special important case being ordered graphs, which are graphs with a total

P. Ossona de Mendez 2:5

order on the vertices. Another example are tree-ordered graphs, which are graphs with a
tree-order on the vertices. It appears that that the concept of ordered graphs particularly fits
to the study of the recently introduced twin-width invariant [6], inspired by a width invariant
defined on permutations by Guillemot and Marx [18]. Classes with bounded twin-width
include several well studied classes of graphs, like classes of graphs excluding a minor, unit
interval graphs, and classes with bounded clique-width. These classes are small [4] (contain
at most O(nc n!) graphs with n vertices), and have fixed parameter tractable first-order
model checking when a contraction sequence of the graphs is provided [6]. An essential
property of twin-width is that its boundedness is preserved by transductions, as proved by
Bonnet et al. [6].

▶ Theorem 4.1. Every transduction of a class with bounded twin-width has bounded twin-
width.

Simon and Toruńczyk [38] recently announced the following characterization of bounded
twin-width classes, which has been independently proved by Bonnet et al. [5]:

▶ Theorem 4.2. A class of graphs has bounded twin-width if and only if it is the reduct of a
monadically dependent class of ordered graphs.

It is remarkable that for hereditary classes C of ordered graphs one can prove that, under
the standard FPT ̸= AW[∗] assumption from complexity theory, monadic dependence is
equivalent to fixed parameter tractability of first-order model checking [5].

It might be possible that the characterization given by Theorem 4.2 could extend to the
whole realm of monadically dependent classes, by considering tree-orders instead of linear
orders.

▶ Conjecture 4.3. Every monadically dependent class of graphs is a transduction of a
monadically dependent class of tree-ordered graphs, whose reduct (obtained by forgetting the
partial order) is monadically stable.

References
1 H. Adler. An introduction to theories without the independence property. preprint, 2008.

URL: http://www.logic.univie.ac.at/~adler/docs/nip.pdf.
2 H. Adler and I. Adler. Interpreting nowhere dense graph classes as a classical notion of model

theory. European Journal of Combinatorics, 36:322–330, 2014. doi:10.1016/j.ejc.2013.06.
048.

3 J.T. Baldwin and S. Shelah. Second-order quantifiers and the complexity of theories. Notre
Dame Journal of Formal Logic, 26(3):229–303, 1985.

4 E. Bonnet, C. Geniet, E.J. Kim, S. Thomassé, and R. Watrigant. Twin-width II: small classes.
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1977–1996, 2021. doi:10.1137/1.9781611976465.118.

5 E. Bonnet, U. Giocanti, S. Thomassé, and P. Ossona de Mendez. Twin-width IV: low complexity
matrices. in preparation, 2021.

6 E. Bonnet, E.J. Kim, S. Thomassé, and R. Watrigant. Twin-width I: tractable FO model
checking. CoRR, abs/2004.14789, 2020, To appear at FOCS 2020. arXiv:2004.14789.

7 A. Dawar. Homomorphism preservation on quasi-wide classes. Journal of Computer and
System Sciences, 76:324–332, 2010. doi:10.1016/j.jcss.2009.10.005.

8 Z. Dvořák. On forbidden subdivision characterizations of graph classes. European Journal of
Combinatorics, 29(5):1321–1332, 2008. doi:10.1016/j.ejc.2007.05.008.

9 Z. Dvořák. A stronger structure theorem for excluded topological minors, 2012. arXiv:
1209.0129v1.

STACS 2021

http://www.logic.univie.ac.at/~adler/docs/nip.pdf
https://doi.org/10.1016/j.ejc.2013.06.048
https://doi.org/10.1016/j.ejc.2013.06.048
https://doi.org/10.1137/1.9781611976465.118
http://arxiv.org/abs/2004.14789
https://doi.org/10.1016/j.jcss.2009.10.005
https://doi.org/10.1016/j.ejc.2007.05.008
http://arxiv.org/abs/1209.0129v1
http://arxiv.org/abs/1209.0129v1

2:6 First-Order Transductions of Graphs

10 Z. Dvořák, P. Ossona de Mendez, and H. Wu. 1-subdivisions, fractional chromatic number
and Hall ratio. Combinatorica, 2020. to appear. doi:10.1007/s00493-020-4223-9.

11 K. Eickmeyer, A. C Giannopoulou, S. Kreutzer, O. Kwon, M. Pilipczuk, R. Rabinovich, and
S. Siebertz. Neighborhood complexity and kernelization for nowhere dense classes of graphs.
In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.
63.

12 J. Gajarský, P. Hliněný, J. Obdržálek, D. Lokshtanov, and M.S. Ramanujan. A new perspective
on FO model checking of dense graph classes. In Proceedings of the Thirty-First Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 176–184. ACM, 2016.
doi:10.1145/3383206.

13 J. Gajarskỳ, P. Hliněnỳ, J. Obdržálek, S. Ordyniak, F. Reidl, P. Rossmanith, F.S. Villaamil,
and S. Sikdar. Kernelization using structural parameters on sparse graph classes. Journal of
Computer and System Sciences, 84:219–242, 2017. doi:10.1016/j.jcss.2016.09.002.

14 J. Gajarský and D. Kráľ. Recovering sparse graphs. In 43rd International Symposium on
Mathematical Foundations of Computer Science (MFCS 2018). Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.MFCS.2018.29.

15 J. Gajarský, S. Kreutzer, J. Nešetřil, P. Ossona de Mendez, M. Pilipczuk, S. Siebertz, and
S. Toruńczyk. First-order interpretations of bounded expansion classes. ACM Transactions on
Computational Logic, 21(4):Article 29, 2020. doi:10.1145/3382093.

16 M. Grohe, S. Kreutzer, and S. Siebertz. Deciding first-order properties of nowhere dense
graphs. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC
’14, pages 89–98, New York, NY, USA, 2014. ACM. doi:10.1145/2591796.2591851.

17 M. Grohe and D. Marx. Structure theorem and isomorphism test for graphs with excluded
topological subgraphs. SIAM Journal on Computing, 44(1):114–159, 2015. doi:10.1137/
120892234.

18 S. Guillemot and D. Marx. Finding small patterns in permutations in linear time. In Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
82–101, 2014. doi:10.1137/1.9781611973402.7.

19 H.A. Kierstead and W.T. Trotter. Planar graph coloring with an uncooperative partner. J.
Graph Theory, 18(6):569–584, 1994. doi:10.1002/jgt.3190180605.

20 L Lovász. Large Networks and Graph Limits, volume 60 of Colloquium Publications. American
Mathematical Society, 2012.

21 J. Nešetřil and P. Ossona de Mendez. Linear time low tree-width partitions and algorithmic
consequences. In STOC’06. Proceedings of the 38th Annual ACM Symposium on Theory of
Computing, pages 391–400. ACM Press, 2006. doi:10.1145/1132516.1132575.

22 J. Nešetřil and P. Ossona de Mendez. Tree depth, subgraph coloring and homomorphism bounds.
European Journal of Combinatorics, 27(6):1022–1041, 2006. doi:10.1016/j.ejc.2005.01.010.

23 J. Nešetřil and P. Ossona de Mendez. Grad and classes with bounded expansion I. Decomposi-
tions. European Journal of Combinatorics, 29(3):760–776, 2008. doi:10.1016/j.ejc.2006.
07.013.

24 J. Nešetřil and P. Ossona de Mendez. First order properties on nowhere dense structures. The
Journal of Symbolic Logic, 75(3):868–887, 2010. doi:10.2178/jsl/1278682204.

25 J. Nešetřil and P. Ossona de Mendez. On nowhere dense graphs. European Journal of
Combinatorics, 32(4):600–617, 2011. doi:10.1016/j.ejc.2011.01.006.

26 J. Nešetřil and P. Ossona de Mendez. Sparsity (Graphs, Structures, and Algorithms), volume 28
of Algorithms and Combinatorics. Springer, 2012. 465 pages.

27 J. Nešetřil and P. Ossona de Mendez. Existence of modeling limits for sequences of sparse
structures. The Journal of Symbolic Logic, 84(2):452–472, 2019. doi:10.1017/jsl.2018.32.

28 J. Nešetřil, P. Ossona de Mendez, M. Pilipczuk, R. Rabinovich, and S. Siebertz. Rankwidth
meets stability. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2014–2033, 2021. doi:10.1137/1.9781611976465.120.

https://doi.org/10.1007/s00493-020-4223-9
https://doi.org/10.4230/LIPIcs.ICALP.2017.63
https://doi.org/10.4230/LIPIcs.ICALP.2017.63
https://doi.org/10.1145/3383206
https://doi.org/10.1016/j.jcss.2016.09.002
https://doi.org/10.4230/LIPIcs.MFCS.2018.29
https://doi.org/10.1145/3382093
https://doi.org/10.1145/2591796.2591851
https://doi.org/10.1137/120892234
https://doi.org/10.1137/120892234
https://doi.org/10.1137/1.9781611973402.7
https://doi.org/10.1002/jgt.3190180605
https://doi.org/10.1145/1132516.1132575
https://doi.org/10.1016/j.ejc.2005.01.010
https://doi.org/10.1016/j.ejc.2006.07.013
https://doi.org/10.1016/j.ejc.2006.07.013
https://doi.org/10.2178/jsl/1278682204
https://doi.org/10.1016/j.ejc.2011.01.006
https://doi.org/10.1017/jsl.2018.32
https://doi.org/10.1137/1.9781611976465.120

P. Ossona de Mendez 2:7

29 J. Nešetřil, P. Ossona de Mendez, R. Rabinovich, and S. Siebertz. Linear rankwidth meets
stability. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1180–1199, 2020. doi:10.1137/1.9781611975994.72.

30 J. Nešetřil, P. Ossona de Mendez, R. Rabinovich, and S. Siebertz. Classes of graphs with
low complexity: The case of classes with bounded linear rankwidth. European Journal of
Combinatorics, 91:103223, 2021. Special issue dedicated to Xuding Zhu’s 60th birthday.
doi:10.1016/j.ejc.2020.103223.

31 J. Nešetřil, P. Ossona de Mendez, and S. Siebertz. Towards an arboretum of monadically
stable classes of graphs, 2020. arXiv:2010.02607.

32 M. Pilipczuk, S. Siebertz, and S. Toruńczyk. On the number of types in sparse graphs. In
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pages
799–808. ACM, 2018. doi:10.1145/3209108.3209178.

33 S. Plotkin, S. Rao, and W.D. Smith. Shallow excluded minors and improved graph decompo-
sitions. In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 462–470. SIAM, 1994. doi:10.5555/314464.314625.

34 K.-P. Podewski and M. Ziegler. Stable graphs. Fund. Math., 100:101–107, 1978.
35 F. Reidl, F.S. Villaamil, and K. Stavropoulos. Characterising bounded expansion by

neighbourhood complexity. European Journal of Combinatorics, 75:152–168, 2019. doi:
10.1016/j.ejc.2018.08.001.

36 N. Robertson and P.D. Seymour. Graph minors I–XXIII. J. Combin. Theory Ser. B, 1983–2010.
37 S. Shelah. Classification theory and the number of non-isomorphic models. North-Holland,

1990.
38 P. Simon and S. Toruńczyk. A model-theoretic characterization of bounded twin-width.

personal communication, 2020.
39 X. Zhu. Colouring graphs with bounded generalized colouring number. Discrete Math.,

309(18):5562–5568, 2009. doi:10.1016/j.disc.2008.03.024.

STACS 2021

https://doi.org/10.1137/1.9781611975994.72
https://doi.org/10.1016/j.ejc.2020.103223
http://arxiv.org/abs/2010.02607
https://doi.org/10.1145/3209108.3209178
https://doi.org/10.5555/314464.314625
https://doi.org/10.1016/j.ejc.2018.08.001
https://doi.org/10.1016/j.ejc.2018.08.001
https://doi.org/10.1016/j.disc.2008.03.024

On the Fluted Fragment
Lidia Tendera !

Institute of Computer Science, University of Opole, Poland

Abstract
The fluted fragment is a recently rediscovered decidable fragment of first-order logic whose history
is dating back to Quine and the sixties of the 20th century. The fragment is defined by fixing
simultaneously the order in which variables occur in atomic formulas and the order of quantification
of variables; no further restrictions concerning e.g. the number of variables, guardedness or usage of
negation apply. In the talk we review some motivation and the history of the fragment, discuss the
differences between the fluted fragment and other decidable fragments of first-order logic, present
its basic model theoretic and algorithmic properties, and discuss recent work concerning limits of
decidability of its extensions.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory
of computation → Finite Model Theory

Keywords and phrases decidability, fluted fragment, first-order logic, complexity, satisfiability,
non-elementary

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.3

Category Invited Talk

© Lidia Tendera;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tendera@uni.opole.pl
https://orcid.org/0000-0003-0681-4040
https://doi.org/10.4230/LIPIcs.STACS.2021.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Improved (Provable) Algorithms for the Shortest
Vector Problem via Bounded Distance Decoding
Divesh Aggarwal ! Ï

Centre for Quantum Technologies, Singapore
National University of Singapore, Singapore

Yanlin Chen !

Institute of Information Science, Academia Sinica, Taipei, Taiwan

Rajendra Kumar ! Ï

IIT Kanpur, India
National University of Singapore, Singapore

Yixin Shen ! Ï

Université de Paris, IRIF, CNRS, F-75006, France

Abstract
The most important computational problem on lattices is the Shortest Vector Problem (SVP). In this
paper, we present new algorithms that improve the state-of-the-art for provable classical/quantum
algorithms for SVP. We present the following results.

1. A new algorithm for SVP that provides a smooth tradeoff between time complexity and memory
requirement. For any positive integer 4 ≤ q ≤

√
n, our algorithm takes q13n+o(n) time and

requires poly(n) · q16n/q2
memory. This tradeoff which ranges from enumeration (q =

√
n) to

sieving (q constant), is a consequence of a new time-memory tradeoff for Discrete Gaussian
sampling above the smoothing parameter.

2. A quantum algorithm that runs in time 20.9533n+o(n) and requires 20.5n+o(n) classical memory
and poly(n) qubits. This improves over the previously fastest classical (which is also the fastest
quantum) algorithm due to [2] that has a time and space complexity 2n+o(n).

3. A classical algorithm for SVP that runs in time 21.741n+o(n) time and 20.5n+o(n) space. This
improves over an algorithm of [15] that has the same space complexity.

The time complexity of our classical and quantum algorithms are expressed using a quantity
related to the kissing number of a lattice. A known upper bound of this quantity is 20.402n, but in
practice for most lattices, it can be much smaller and even 2o(n). In that case, our classical algorithm
runs in time 21.292n and our quantum algorithm runs in time 20.750n.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Lattices, Shortest Vector Problem, Discrete Gaussian Sampling, Time-Space
Tradeoff, Quantum computation, Bounded distance decoding

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.4

Related Version Full Version: https://arxiv.org/abs/2002.07955

Funding Divesh Aggarwal: This work was partially supported by the Singapore Ministry of Education
under grant MOE2019-T2-1-145, National Research Foundation under grant R-710-000-012-135.
Rajendra Kumar : Supported in part by National Research Foundation Singapore under its AI
Singapore Programme [Award Number: AISG-RP-2018-005].

Acknowledgements We would like to thank Pierre-Alain Fouque, Paul Kirchner, Amaury Pouly and
Noah Stephens-Davidowitz for useful comments and suggestions.

© Divesh Aggarwal, Yanlin Chen, Rajendra Kumar, and Yixin Shen;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 4; pp. 4:1–4:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dcsdiva@nus.edu.sg
https://sites.google.com/site/diveshhomepage/
mailto:jackervator@gmail.com
mailto:rjndr2503@gmail.com
https://sites.google.com/view/rajendrak/home
https://orcid.org/0000-0002-4240-5458
mailto:yixin.shen@irif.fr
https://www.irif.fr/~yixin.shen/
https://doi.org/10.4230/LIPIcs.STACS.2021.4
https://arxiv.org/abs/2002.07955
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Improved (Provable) Algorithms for the Shortest Vector Problem

1 Introduction

A lattice L = L(b1, . . . , bn) := {
∑n

i=1 zibi : zi ∈ Z} is the set of all integer combinations
of linearly independent vectors b1, . . . , bn ∈ Rn. We call n the rank of the lattice and
(b1, . . . , bn) a basis of the lattice.

The most important computational problem on lattices is the Shortest Vector Problem
(SVP). Given a basis for a lattice L ⊆ Rn, SVP asks us to compute a non-zero vector in
L with the smallest Euclidean norm. Starting from the ’80s, the use of approximate and
exact solvers for SVP (and other lattice problems) gained prominence for their applications
in algorithmic number theory [41], convex optimization [32, 34, 20], coding theory [17],
and cryptanalysis tool [56, 14, 40]. The security of many cryptographic primitives is
based on the worst-case hardness of (a decision variant of) approximate SVP to within
polynomial factors [6, 44, 53, 52, 45, 23, 13] in the sense that any cryptanalytic attack
on these cryptosystems that runs in time polynomial in the security parameter implies a
polynomial time algorithm to solve approximate SVP to within polynomial factors. Such
cryptosystems have attracted a lot of research interest due to their conjectured resistance to
quantum attacks.

The SVP is a well studied computational problem in both its exact and approximate
(decision) versions. By a randomized reduction, it is known to be NP-hard to approximate
within any constant factor, and hard to approximate within a factor nc/ log log n for some
c > 0 under reasonable complexity-theoretic assumptions [42, 35, 27]. For an approximation
factor 2O(n), one can solve SVP in time polynomial in n using the celebrated LLL lattice
basis reduction algorithm [41]. In general, the fastest known algorithm(s) for approximating
SVP within factors polynomial in n rely on (a variant of) the BKZ lattice basis reduction
algorithm [54, 55, 7, 21, 25, 3], which can be seen as a generalization of the LLL algorithm
and gives an rn/r approximation in 2O(r) poly(n) time. All these algorithms internally use
an algorithm for solving (near) exact SVP in lower-dimensional lattices. Therefore, finding
faster algorithms to solve SVP is critical to choosing security parameters of cryptographic
primitives.

As one would expect from the hardness results above, all known algorithms for solving
exact SVP, including the ones we present here, require at least exponential time. In fact,
the fastest known algorithms also require exponential space. There has been some recent
evidence [4] showing that one cannot hope to get a 2o(n) time algorithm for SVP if one
believes in complexity theoretic conjectures such as the (Gap) Exponential Time Hypothesis.
Most of the known algorithms for SVP can be broadly classified into two classes: (i) the
algorithms that require memory polynomial in n but run in time nO(n) and (ii) the algorithms
that require memory 2O(n) and run in time 2O(n).

The first class, initiated by Kannan [34, 28, 26, 22, 48], combines basis reduction with
exhaustive enumeration inside Euclidean balls. While enumerating vectors requires 2O(n log n)

time, it is much more space-efficient than other kinds of algorithms for exact SVP.
Another class of algorithms, and currently the fastest, is based on sieving. First developed

by Ajtai, Kumar, and Sivakumar [7], they generate many lattices vectors and then divide-
and-sieve to create shorter and shorter vectors iteratively. A sequence of improvements [51,
49, 46, 50, 2, 5], has led to a 2n+o(n) time and space algorithm by sieving the lattice vectors
and carefully controlling the distribution of output, thereby outputting a set of lattice vectors
that contains the shortest vector with overwhelming probability.

An alternative approach using the Voronoi cell of the lattice was proposed by Micciancio
and Voulgaris [47] and gives a deterministic 22n+o(n)-time and 2n+o(n)-space algorithm for
SVP (and many other lattice problems).

D. Aggarwal, Y. Chen, R. Kumar, and Y. Shen 4:3

There are variants [49, 46, 39, 11] of the above mentioned sieving algorithms that, under
some heuristic assumptions, have an asymptotically smaller (but still 2Θ(n)) time and space
complexity than their provable counterparts.

Algorithms giving a time/space tradeoff

Even though sieving algorithms are asymptotically the fastest known algorithms for SVP,
the memory requirement, in high dimension, has historically been a limiting factor to run
these algorithms. Some recent works [18, 8] have shown how to use new tricks to make it
possible to use sieving on high-dimensional lattices in practice and benefit from their efficient
running time [57].

Nevertheless, it would be ideal and has been a long standing open question to obtain an
algorithm that achieves the “best of both worlds”, i.e. an algorithm that runs in time 2O(n)

and requires memory polynomial in n. In the absence of such an algorithm, it is desirable to
have a smooth tradeoff between time and memory requirement that interpolates between the
current best sieving algorithms and the current best enumeration algorithms.

To this end, Bai, Laarhoven, and Stehlé [10] proposed the tuple sieving algorithm,
providing such a tradeoff based on heuristic assumptions similar in nature to prior sieving
algorithms. They conjectured a running time kn+o(n) and space complexity kn/k+o(n). One
can vary the parameter k to obtain a smooth time/space tradeoff. Nevertherless, it is still
desirable to obtain a provable variant of this algorithm that does not rely on any heuristics.
The complexity of this algorithm was later proven, under the same heuristic assumptions [29],
but only for constant k, therefore leaving the subexponential memory regime open.

Kirchner and Fouque [36] attempted to do this. They claim an algorithm for solving
SVP in time qΘ(n) and in space qΘ(n/q) for any positive integer q > 1. Unfortunately, their
analysis falls short of supporting their claimed result, and the correctness of the algorithm is
not clear. We refer the reader to the full version of the paper for more details.

In addition to the above, Chen, Chung, and Lai [15] propose a variant of the algorithm
based on Discrete Gaussian sampling in [2]. Their algorithm runs in time 22.05n+o(n) and
the memory requirement is 20.5n+o(n). The quantum variant of their algorithm runs in time
21.2553n+o(n) time and has the same space complexity. Their algorithm has the best space
complexity among known provably correct algorithms that run in time 2O(n).

A number of works have also investigated the potential quantum speedups for lattice
algorithms, and SVP in particular. A similar landscape to the classical one exists, although
the quantum memory model has its importance. While quantum enumeration algorithms
only require qubits [9], sieving algorithms require more powerful QRAMs [39, 37].

1.1 Our results
We first present a new algorithm for SVP that provides a smooth tradeoff between the
time complexity and memory requirement of SVP without any heuristic assumptions. This
algorithm is obtained by giving a new algorithm for sampling lattice vectors from the Discrete
Gaussian distribution that runs in time qO(n) and requires qO(n/q2) space.

▶ Theorem 1 (Time-space tradeoff for smooth discrete Gaussian, informal). There is an
algorithm that takes as input a lattice L ⊂ Rn, a positive integer q, and a parameter s above
the smoothing parameter of L, and outputs q16n/q2 samples from DL,s using q13n+o(n) time
and poly(q) · q16n/q2 space.

STACS 2021

4:4 Improved (Provable) Algorithms for the Shortest Vector Problem

Using the standard reduction from Bounded Distance Decoding (BDD) with preprocessing
(where an algorithm solving the problem is allowed unlimited preprocessing time on the
lattice before the algorithm receives the target vector) to Discrete Gaussian Sampling (DGS)
from [16] and a reduction from SVP to BDD given in [15], we obtain the following.

▶ Theorem 2 (Time-space tradeoff for SVP). Let n ∈ N, q ∈ [4,
√

n] be a positive integer. Let
L be the lattice of rank n. There is a randomized algorithm that solves SVP in time q13n+o(n)

and in space poly(n) · q
16n
q2 .

If we take k = q2, then the time complexity of the previous SVP algorithm becomes
k6.5n+o(n) and the space complexity poly(n) · k(8n/k). Our tradeoff is thus the same (up to a
constant in the exponents) as what was claimed by Kirchner and Fouque [36] and proven
in [29] under heuristic assumptions.

Our second result is a quantum algorithm for SVP that improves over the current fastest
quantum algorithm for SVP [2] (Notice that the algorithm in [2] is still the fastest classical
algorithm for SVP).

▶ Theorem 3 (Quantum Algorithm for SVP). There is a quantum algorithm that solves
SVP in 20.9533n+o(n) time and classical 20.5n+o(n) space with an additional number of qubits
polynomial in n.

Our third result is a classical algorithm for SVP that improves over the algorithm from [15]
and results in the fastest classical algorithm that has a space complexity 20.5n+o(n).

▶ Theorem 4 (Algorithm for SVP with 20.5n+o(n) space). There is a classical algorithm that
solves SVP in 21.740n+o(n) time and 20.5n+o(n) space.

The time complexity of our second and third results are obtained using a quantity related
to the kissing number of a lattice. A known upper bound of this quantity is 20.402n, but in
practice for most lattices, it can be much smaller and even 2o(n). In that case, our classical
algorithm runs in time 21.292n and our quantum algorithm runs in time 20.750n. See Section
5 of the full version of the paper for more details [1].

We summarize known provable Classical and Quantum algorithms in Table 1. Note that
all the classical algorithms are also quantum algorithms but they don’t use any quantum
power.

Table 1 Comparison of algorithms for the Shortest vector problem. [39] uses the quantum RAM
model. [15] and our quantum algorithm need only polynomial qubits and 20.5n+o(n) classical space.

Classical Algorithms
Time Space Reference

nn+o(n) poly(n) [34]
2n+o(n) 2n+o(n) [2]

22.05n+o(n) 20.5n+o(n) [15]
21.741n+o(n) 20.5n+o(n) This paper

Quantum Algorithms
Time Space Reference

21.799n+o(n) 21.286n+o(n), QRAM [39]
21.2553n+o(n) 20.5n+o(n) [15]
20.9533n+o(n) 20.5n+o(n) This paper

▶ Remark 5 (Magic constants). Most of the constants that appear in this paper were calculated
by optimising the complexity with respect to a quantity related to the kissing number and
then instantiating with b = 0.402, the best known upper-bound on this quantity. The details
of these calculations are available in the full version, section 5.

https://arxiv.org/abs/2002.07955

D. Aggarwal, Y. Chen, R. Kumar, and Y. Shen 4:5

Roadmap

In the following, we give a high-level overview of our proofs in Section 1.2. Section 2
contain some preliminaries on lattices. The proofs of the time-space tradeoff for Discrete
Gaussian sampling above the smoothing parameter and the time-space tradeoff for SVP
are given in Section 3. Our classical and quantum algorithms for solving SVP with space
complexity 20.5n+o(n) are presented in Section 4. We also shows how the time complexity of
our algorithms varies with a quantity related to the kissing number in Section 5 of the full
version of the paper [1].

1.2 Proof overview
We now include a high-level description of our proofs. Before describing our proof ideas, we
emphasize that it was shown in [16, 2] that given an algorithm for DGS a constant factor c

above the smoothing parameter, we can solve the problem of BDD where the target vector is
within distance αλ1(L) of the lattice, where the constant α < 0.5 depends on the constant c.
Additionally, using [15], one can enumerate all lattice points within distance pδ to a target t

by querying pn times a BDD oracle with decoding distance δ (or pn/2 times if we are given a
quantum BDD oracle). Thus, by choosing p = ⌈λ1(L)/δ⌉ and t = 0, an algorithm for BDD
immediately gives us an algorithm for SVP. Therefore, it suffices to give an algorithm for
DGS above the smoothing parameter.

1.2.1 Time-space tradeoff for DGS above smoothing
Recall that efficient algorithms are known for sampling from a discrete Gaussian with a large
enough parameter (width) [38, 24, 12]. In [2], the authors begin by sampling N = 2n+o(n)

vectors from the Discrete Gaussian distribution with (large) parameter s and then look for
pairs of vectors whose sum is in 2L, or equivalently pairs of vectors that lie in the same
coset c ∈ L /2L. Since there are 2n cosets, if we take Ω(2n) samples from DL,s, almost all of
the resulting vectors (except at most 2n vectors) will be paired and are statistically close
to independent samples from the distribution DL,s/

√
2, provided that the parameter s is

sufficiently above the smoothing parameter.
To reduce the space complexity, we modify the algorithm by generating random samples

and checking if the sum of d of those samples is in qL for some integer q. Intuitively, if we
start with two lists of vectors (L1 and L2) of size qO(n/d) from DL,s, where s is sufficiently
above the smoothing parameter, each of these vectors is contained in any coset qL+c for any
c ∈ L /qL with probability roughly 1/qn. We therefore expect that the coset of a uniformly
random d-combination of vectors from L2 is uniformly distributed in L /qL. The proof of
this statement follows from the Leftover Hash Lemma [31]. We therefore expect that for
any vector v ∈ L1, with high probability, there is a set of d vectors x1, . . . , xd in L2 that
sum to a vector in qL+v, and hence 1

q

(∑d
i=1 xi − v

)
∈ L. A lemma by Micciancio and

Peikert ([43]) shows that this vector is statistically close to a sample from the distribution
DL,s

√
d+1/q. We can find such a combination by trying all subsets of d vectors.

We would like to repeat this and find qO(n/d) (nearly) independent vectors in qL. It is
not immediately clear how to continue since, in order to guarantee independence, one would
not want to reuse the already used vectors x1, . . . , xd and conditioned on the choice of these
vectors, the distribution of the cosets containing the remaining vectors is disturbed and is no
longer nearly uniform. By using a simple combinatorial argument, we show that even after
removing any 1/ poly(d) fraction of vectors from the list L2, the d-combination of vectors in
L2 has at least cqn different cosets. This is sufficient to output qO(n/d) independent vectors
in qL with overwhelming probability.

STACS 2021

4:6 Improved (Provable) Algorithms for the Shortest Vector Problem

1.2.2 A new algorithm for BDD with preprocessing leads to a faster
quantum algorithm for SVP

This result improves the quantum algorithm from [15]. As mentioned above, a BDD oracle
from discrete Gaussian sampling can have a decoding distance αλ1(L) with α < 0.5, and,
using [15], one needs to enumerate all lattice points within distance pαλ1(L) to a target
t by querying pn times a BDD oracle with decoding distance αλ1(L) (or pn/2 times if we
are given a quantum BDD oracle). Hence, we need to take p = 3 so that pαλ1(L) ⩾ λ1(L),
and the search space is at least 3n, or 3n/2 quantum queries. Thus, towards optimizing the
algorithm for SVP, one should aim to solve α-BDD for α slightly larger than 1/3 since a
larger value of α will still lead to the same running time for SVP. Using known bounds,
it can be shown that such an algorithm requires 20.1605n+o(n) independent (preprocessed)
samples from DL,ηε(L)

1 for ε = 2−cn for some constant c.
In [2], the authors gave an algorithm that runs in time 2n/2+o(n) and outputs 2n/2+o(n)

samples from DL,s for any s ≥
√

2η0.5(L), i.e. a factor
√

2 above the smoothing parameter).
In order to obtain samples at the smoothing parameter, we construct a dense lattice L′ of
smaller smoothing parameter than L. We then sample 20.5n+o(n) vectors from DL′,s and
reject those that are not in L. Using the reduction from BDD to DGS, and by repeating this
algorithm, we obtain a 20.661n+o(n) time and 20.5n+o(n)-space algorithm to solve 1/3-BDD
with preprocessing, where each call to BDD requires 20.161n+o(n) time. Thus, the total
time complexity of the classical algorithm is 3n · 20.161n+o(n), and that of the corresponding
quantum algorithm is 3n/2 · 20.161n+o(n).

1.2.3 Covering surface of a ball by spherical caps

As we mentioned above, one can enumerate all lattice points within a pδ distance to a target
t by querying pn times a BDD oracle with decoding distance δ. Our algorithm for BDD is
obtained by preparing samples from the discrete Gaussian distribution. However, note that
the decoding distance of BDD oracle built by discrete Gaussian samples as shown in [16]
is successful if the target vector is within a radius αλ1(L) for α < 1/2 (there is a tradeoff
between α and the number of DGS samples needed), and therefore, if we choose t to be 0, as
we do in the other algorithms mentioned above, then p has to be at least 3 to ensure that the
shortest vector is one of the vectors output by the enumeration algorithm. We observe here
that if we choose a target t to be a random vector “close to” but not at the origin, then the
shortest vector will be within a radius 2δ from the target t with some probability P , and thus
we can find the shortest vector by making 2n/P calls to the BDD oracle. An appropriate
choice of the target t and the factor α gives an algorithm that runs in time 2n · 20.74n+o(n),
which is faster than the algorithm (running in time 3n20.161n+o(n)) mentioned above.

We note that the corresponding quantum algorithm runs in time 2n/2 · 20.74n+o(n), which
is significantly slower than the quantum algorithm mentioned above.

We also note that the running time of this algorithm crucially depends on a quantity
related to the kissing number of a lattice. Since a tight bound on this quantity is not known,
the actual running time of this algorithm might be smaller than that promised above. For a
more elaborate discussion on this, see Section 5 of the full version [1].

1 The number of samples depends on a quantity related to the kissing number of a lattice, we used the
best known upper bound on this quantity due to [33].

D. Aggarwal, Y. Chen, R. Kumar, and Y. Shen 4:7

2 Preliminaries

Let N = {1, 2, . . . , }. We use bold letters x for vectors and denote a vector’s coordinates
with indices xi. We use log to represent the logarithm base 2 and ln to represent the natural
logarithm. Throughout the paper, n will always be the dimension of the ambient space Rn.

Lattices

A lattice L is a discrete subgroup of Rn, i.e. the set L(b1, . . . , bn) = {
∑m

i=1 xibi : xi ∈ Z}
of all integer combinations of m linearly independent vectors b1, . . . , bn ∈ Rn. Such bi’s form
a basis of L. The lattice L is said to be full-rank if n = m. We denote by λ1(L) the first
minimum of L, defined as the length of a shortest non-zero vector of L.

For a rank n lattice L ⊂ Rn, the dual lattice, denoted L∗, is defined as the set of all points
in span(L) that have integer inner products with all lattice points, L∗ = {w⃗ ∈ span(L) :
∀y⃗ ∈ L, ⟨w⃗, y⃗⟩ ∈ Z} . Similarly, for a lattice basis B = (⃗b1, . . . , b⃗n), we define the dual basis
B∗ = (⃗b∗

1, . . . , b⃗∗
n) to be the unique set of vectors in span(L) satisfying ⟨⃗b∗

i , b⃗j⟩ = 1 if i = j,
and 0, otherwise. It is easy to show that L∗ is itself a rank n lattice and B∗ is a basis of L∗.
Given a lattice B = (⃗b1, . . . , b⃗n), we denote ∥B ∥2 = max

i
∥bi∥.

Probability distributions

Given two random variables X and Y on a set E, we denote by dSD the statistical distance
between X and Y , which is defined by

dSD(X, Y) = 1
2

∑
z∈E

∣∣∣Pr
X

[X = z]− Pr
Y

[Y = z]
∣∣∣ =

∑
z∈E :

PrX [X=z]>PrY [Y =z]

(
Pr
X

[X = z]− Pr
Y

[Y = z]
)

.

We write X is ε-close to Y to denote that the statistical distance between X and Y is at
most ε. Given a finite set E, we denote by UE a uniform random variable on E, i.e., for all
x ∈ E, PrUE

[UE = x] = 1
|E| .

Discrete Gaussian Distribution

For any s > 0, define ρs(x) = exp(−π∥x∥2/s2) for all x ∈ Rn. We write ρ for ρ1. For a
discrete set S, we extend ρ to sets by ρs(S) =

∑
x∈S ρs(x). Given a lattice L, the discrete

Gaussian DL,s is the distribution over L such that the probability of a vector y ∈ L is
proportional to ρs(y): PrX∼DL,s

[X = y] = ρs(y)
ρs(L) .

2.1 Lattice problems
The following problem plays a central role in this paper.

▶ Definition 6. For δ = δ(n) ≥ 0, σ a function that maps lattices to non-negative real
numbers, and m = m(n) ∈ N, δ-DGSm

σ (the Discrete Gaussian Sampling problem) is defined
as follows: The input is a basis B for a lattice L ⊂ Rn and a parameter s > σ(L). The goal
is to output a sequence of m vectors whose joint distribution is δ-close to m independent
samples from DL,s.

We omit the parameter δ if δ = 0, and the parameter m if m = 1. We stress that δ

bounds the statistical distance between the joint distribution of the output vectors and m

independent samples from DL,s. We consider the following lattice problems.

STACS 2021

4:8 Improved (Provable) Algorithms for the Shortest Vector Problem

▶ Definition 7. The search problem SVP (Shortest Vector Problem) is defined as follows:
The input is a basis B for a lattice L ⊂ Rn. The goal is to output a vector y ∈ L with
∥y⃗∥ = λ1(L).

▶ Definition 8. The search problem CVP (Closest Vector Problem) is defined as follows:
The input is a basis B for a lattice L ⊂ Rn and a target vector t⃗ ∈ Rn. The goal is to output
a vector y⃗ ∈ L with ∥y⃗ − t⃗∥ = dist(⃗t,L).

▶ Definition 9. For α = α(n) < 1/2, the search problem α-BDD (Bounded Distance Decoding)
is defined as follows: The input is a basis B for a lattice L ⊂ Rn and a target vector t⃗ ∈ Rn

with dist(t,L) ≤ α · λ1(L). The goal is to output a vector y⃗ ∈ L with ∥y⃗ − t⃗∥ = dist(⃗t,L).

Note that while our other problems become more difficult as the approximation factor γ

becomes smaller, α-BDD becomes more difficult as α gets larger.
For convenience, when we discuss the running time of algorithms solving the above

problems, we ignore polynomial factors in the bit-length of the individual input basis vectors
(i.e. we consider only the dependence on the ambient dimension n).

For a lattice L and ε > 0, the smoothing parameter ηε(L) is the smallest s such that
ρ1/s(L∗) = 1 + ε. Recall that if L is a lattice and v ∈ L then ρs(L+ v) = ρs(L) for all s.
The smoothing parameter has the following well-known property.

▶ Lemma 10 ([53, Claim 3.8]). For any lattice L ⊂ Rn, c ∈ Rn, ε > 0, and s ≥ ηε(L),

1− ε

1 + ε
≤ ρs(L+c)

ρs(L) ≤ 1 .

▶ Corollary 11 ([1, Corollary 10]). Let L ⊂ Rn be a lattice, q be a positive integer, and let
s ≥ ηε(qL). Let C be a random coset in L /qL sampled such that Pr[C = qL+c] = ρs(q L +c)

ρs(L) .
Also, let U be a coset in L /qL sampled uniformly at random. Then dSD(C, U) ≤ 2ε .

The following lemma gives a bound on the smoothing parameter.

▶ Lemma 12 ([2, Lemma 2.7]). For any lattice L ⊂ Rn, ε ∈ (0, 1) and k > 1, we have
kηε(L) > ηεk2 (L)

Micciancio and Peikert [43] showed the following result about resulting distribution from
the sum of many Gaussian samples.

▶ Theorem 13 ([43, Theorem 3.3]). Let L be an n dimensional lattice, z ∈ Zm a nonzero
integer vector, si ≥

√
2∥z∥∞ · ηε(L), and L+ci arbitrary cosets of L for i = 1 · · · , m. Let

yi be independent vectors with distributions DL +ci,si
, respectively. Then the distribution of

y =
∑
i

ziyi is mε close to DY,s, where Y = gcd(z)L+
∑
i

zici, and s =
√∑

(zisi)2.

We will need the following reduction from α-BDD to DGS that was shown in [16].

▶ Theorem 14 ([16, Theorem 3.1], [2, Theorem 7.3]). For any ε ∈ (0, 1/200), let ϕ(L) ≡√
ln(1/ε)/π−o(1)

2ηε(L∗) . Then, there exists a randomized reduction from CVPϕ to 0.5-DGSm
ηε

, where
m = O(n log(1/ε)√

ε
) and CVPϕ is the problem of solving CVP for target vectors that are

guaranteed to be within a distance ϕ(L) of the lattice. The reduction preserves the dimension,
makes a single call to the DGS oracle, and runs in time m · poly(n). Furthermore, the
reduction always reduces an instance of CVPϕ on a lattice L to an instance of DGS on the
dual lattice L∗.

D. Aggarwal, Y. Chen, R. Kumar, and Y. Shen 4:9

We need the following relation between the first minimum of lattice and the smoothing
parameter of dual lattice. We will use this to compute the decoding distance of BDD oracle.

▶ Lemma 15 ([2, Lemma 6.1]). For any lattice L ⊂ Rn, ε ∈ (0, 1), we have√
ln(1/ε)

π
< λ1(L)ηε(L∗) <

√
β2n

2πe
· ε−1/n · (1 + o(1)), (1)

and if ε ≤ (e/β2 + o(1))− n
2 , we have√

ln(1/ε)
π

< λ1(L)ηε(L∗) <

√
ln(1/ε) + n ln β + o(n)

π
. (2)

where β(L) = inf{γ : ∀r ≥ 1, N(L, rλ1(L)) ≤ (γr)n}. In particular β(L) ∈ [1, 20.402].

The following theorem proved in [15], is required to solve SVP by exponential number of
calls to α-BDD oracle.

▶ Theorem 16 ([15, Theorem 8]). Given a basis matrix B ⊂ Rn×n for lattice L(B) ⊂ Rn, a
target vector t ∈ Rn, an α-BDD oracle BDDα with α < 0.5, and an integer scalar p > 0. Let
fα

p : Zn
p → Rn be fα

p (s) = −p · BDDα(L, (B s− t)/p) + B s. If dist(L, t) ≤ αλ1(L), then the
list m = {fα

p (s) | s ∈ Zn
p} contains all lattice points within distance pαλ1(L) to t.

We will need the following theorems to sample the DGS vectors with a large width.

▶ Theorem 17 ([2],Proposition 2.17). For any ε ≤ 0.99, there is an algorithm that takes
as input a lattice L ∈ Rn, M ∈ Z>0 (the desired number of output vectors), and s >

2n log log n/ log n · ηε(L), and outputs M independent samples from DL,s in time M · poly(n).

▶ Theorem 18 ([2, Theorem 5.11]). For a lattice L ⊂ Rn, let σ(L) =
√

2η1/2(L). Then
there exists an algorithm that solves exp(−Ω(κ))-DGS2n/2

σ in time 2n/2+polylog(κ)+o(n) with
space O(2n/2) for any κ ≥ Ω(n). Moreover, if the input does not satisfy the promise, and the
input parameter s < σ(L) =

√
2η1/2(L), then the algorithm may output M vectors for some

M ≤ 2n/2 that are exp(−Ω(κ))-close to M independent samples from DL,s.

▶ Lemma 19 ([2, Lemma 5.12]). There is a probabilistic polynomial-time algorithm that
takes as input a lattice L ⊂ Rn of rank n and an integer a with n/2 ≤ a < n and returns
a super lattice L′ ⊃ L of index 2a with L′ ⊆ L /2 such that for any ε ∈ (0, 1), we have
ηε′(L′) ≤ ηε(L)/

√
2 with probability at least 1/2 where ε′ := 2ε2 + 2(n/2)+1−a(1 + ε).

2.2 Probability
We need the following lemma on distribution of vector inner product which directly follows
from the Leftover Hash Lemma [31].

▶ Lemma 20. Let G be a finite abelian group, and let f be a positive integer. Let Y ⊆ {0, 1}f .
Define the inner product ⟨·, ·⟩ : Gf × Y → G by ⟨x, y⟩ =

∑
i xiyi for all x ∈ Gf , y ∈ Y.

Let X, Y be independent and uniformly random variables on Gf ,Y, respectively. Then
dSD((⟨X, Y ⟩, X), (UG, X)) ≤ 1

2 ·
√

|G|
| Y | , where UG is uniform in G and independent of X.

We will also need the Chernoff-Hoeffding bound [30].

▶ Lemma 21. Let X1, . . . , XM be the independent and identically distributed random boolean

variables of expectation p. Then for ε > 0, Pr
[

1
M

M∑
i=1

Xi ≤ p(1− δ)
]
≤
(

e−δ

(1−δ)1−δ

)pM

.

For preliminaries on quantum computing, see [1, Section 2.2]

STACS 2021

4:10 Improved (Provable) Algorithms for the Shortest Vector Problem

3 Algorithms with a time-memory tradeoff for lattice problems

In this section, we present a new algorithm for Discrete Gaussian sampling above the
smoothing parameter.

3.1 Algorithm for Discrete Gaussian Sampling
We now present the main result of this section.

▶ Theorem 22. Let n ∈ N, q ≥ 2, d ∈ [1, n] be positive integers, and let ε > 0. Let C be any
positive integer. Let L be a lattice of rank n, and let s ≥ 2

√
dηε(qL) = 2

√
dqηε(L). There is

an algorithm that, given N = 160d2 ·C ·qn/d independent samples from DL,s, outputs a list of
vectors that is (10dε2dN + 11Cq−5n/2)-close to Cqn/d independent vectors from D

L,

√
8d+1

q s
.

The algorithm runs in time C · (10e · d)8d · q8n+n/d+o(n) and requires memory poly(d) · qn/d

excluding the input and output memory.

Proof. We prove the result for C = 1, and the general result follows by repeating the
algorithm. Let {x1, . . . , xN} be the N input vectors and let {c1, . . . , cN} be the corresponding
cosets in L /qL. The algorithm does the following:
1. Initialize two lists L1 = {x1, . . . , x N

2
} and L2 = {x N

2 +1, . . . , xN} each with N
2 input

vectors, and let Q = 0.
2. Let v be the first vector in L1.
3. Find 8d vectors (by trying all 8d-tuples) xi1 , . . . , xi8d

from L2 such that ci1 +· · ·+ci8d
−v ∈

qL. If no such vectors exist go to step(6).
4. Output the vector xi1 +···+xi8d

−v

q ∈ L, and let Q = Q + 1. If Q = qn/d, then END.
5. Remove vectors xi1 , · · · , xi8d

from L2

6. Remove vector v⃗ from L1 and repeat Steps (2) to (5).

The time complexity of the algorithm is N
2 ·
(

N/2
8d

)
≤ N

2
(

eN
16d

)8d ≤ (10e ·d)8d ·q8n+n/d+o(n),

and memory requirement of the algorithm is immediate. We now show correctness. Let
ε′ = ε2d so that s ≥

√
2ηε′(qL) by Lemma 12. Without loss of generality, we can assume

that the vectors xi for i ∈ [N] are sampled by first sampling ci ∈ L/qL such that Pr[ci =
c] = Pr[DL,s ∈ qL+c] and then sampling the vector xi according to Dq L +ci,s. Moreover,
by Corollary 11, this distribution is 2ε′N -close to sampling ci for i ∈ [N], independently and
uniformly from L /qL, and then sampling the vectors xi according to Dq L +ci,s. We now
assume that the input is sampled from this distribution.

Without loss of generality, we can assume that the algorithm initially gets only the
corresponding cosets as input, and the vectors xij

∈ qL+cij
for j ∈ [8d], and v ∈ qL+c

are sampled from Dq L +cij
,s and Dq L +c,s only before such a tuple is needed in Step 4 of the

algorithm. Since any input vector is used only once in Step 4, these samples are independent
of all prior steps. This implies, by Theorem 13, that the vector obtained in Step 4 of the
algorithm is ε′(8d + 1)-close to being distributed as D

L,s

√
8d+1

q

.

It remains to show that our algorithm finds qn/d vectors (with high probability). Let
N ′ = N

2 be an integer, X be a random variable uniform over (L /qL)N ′ , and let Y be a
random variable independent of X and uniform over vectors in {0, 1}N ′ with Hamming
weight 8d. The number of such vectors is(

N ′

8d

)
≥
(

N ′

8d

)8d

≥ q8n . (3)

D. Aggarwal, Y. Chen, R. Kumar, and Y. Shen 4:11

Let U be a uniformly random coset of L /qL. By Lemma 20 and (3), we have

dSD((⟨X, Y ⟩, X), (U, X)) ≤ 1
2 ·
√

qn

q8n
< q−7n/2 ,

for a large enough value of n. By Markov inequality, with probability greater than 1− (10 ·
q−5n/2) over the choice of x← X, we have that the statistical distance between ⟨x, Y ⟩ and
U is less than q−n

10 , which implies for any v ∈ L /qL,

q−n + q−n

10 > Pr[⟨x, Y ⟩ = v mod qL] > q−n − q−n

10 . (4)

We assume that the input vectors in list L2 satisfy (4), introducing a statistical distance of
at most 10 · q−5n/2. Notice that after the algorithm found i vectors for any i < qn/d, it has
removed 8id vectors from L2. We will show that for each vector from L1 (which is uniformly
sampled from L /qL) with constant probability we will find 8d-vectors in Step (3).

After i < qn/d output vectors have been found, there are M = N ′− 8id vectors remaining
in the list L2. There are

(
M
8d

)
different 8d-combinations possible with vectors remaining in L2.(

N ′

8d

)
/

(
M

8d

)
= N ′ · · · (N ′ − 8d + 1)

M · · · (M − 8d + 1) <

(
N ′

N ′ − 8d(i + 1)

)8d

⩽

(
1 + 8dqn/d

N ′ − 8dqn/d

)8d

=
(

1 + 1
10d− 1

)8d

<
5
2 since N ′ = 80d2qn/d for C = 1 (5)

At the beginning of the algorithm, there are
(

N ′

8d

)
combinations, and hence by (4), each of

the qn cosets appears at least 0.9q−n
(

N ′

8d

)
times. After i < qn/d output vectors have been

found, there are only
(

M
8d

)
combinations left, and

(
N ′

8d

)
−
(

M
8d

)
possible combinations have

been removed. We say that a coset c disappears if there is no set of 8d vectors in L2 that
add to c. In order for a coset to disappear, all of the at least 0.9q−n

(
N ′

8d

)
combinations from

the initial list must be removed. Hence, the number of cosets that disappear is at most
(N′

8d)−(M
8d)

0.9q−n(N′
8d) < 3/5

0.9 qn = 2
3 qn distinct cosets by (5). Hence with probability at least 1/3, we find

8d vectors xi1 , . . . , xi8d
from L2 such that xi1 + · · ·+ xi8d

− v ∈ qL. By Chernoff-Hoeffding
bound with probability greater than 1− e−d2qn/d , the algorithm finds at least qn/d vectors.
In total, the statistical distance from the desired distribution is

(8d + 1)ε′ ·N + 2ε′qn/d + 10 · q−5n/2 + e−d2qn/d

≤ 10dε′ ·N + 11 · q−5n/2. ◀

▶ Corollary 23. Let n ∈ N, q ∈ [4,
√

n] be an integer, and let ε = q−32n/q2 . Let L be a lattice
of rank n, and let s ≥ ηε(L). There is an algorithm that outputs a list of vectors that is
q−Ω(n)-close to q16n/q2 independent vectors from DL,s. The algorithm runs in time q13n+o(n)

and requires memory poly(n) · q16n/q2 .

Proof. Choose d so that 16d − 16 < q2 ⩽ 16d, which is possible when q ⩾ 4, and let
α = q/

√
8d + 1 – this is the ratio by which we decrease the Gaussian width in Theorem 22 –

and note that α ≥ 1.2.
Let p = ⌈2

√
dq⌉ < q2 and k be the smallest integer such that αk · p ≥ 2n log log n/ log n.

Thus k = O(n log log n/ log n). Let g = αkps ≥ 2n log log n/ log n · ηε(L). By Theorem 17, in
time N0 · poly(n), we get N0 = (160d2)kqn/d samples from DL,g.

We now iterate k times the algorithm from Theorem 22. Initially we have N0 vectors. At
the beginning of the i-th iteration for i ≤ k−1, we have Ni := N0 · (160d2)−i vectors that are
∆i-close to being independently distributed from DL,α−ig, where α−ig ⩾ αp · ηε(L). Hence,
we can apply Theorem 22 and get Ni+1 = Ni/160d2 vectors that are ∆i+1-close to being

STACS 2021

4:12 Improved (Provable) Algorithms for the Shortest Vector Problem

independently distributed from DL,α−(i+1)g, where ∆i+1 ⩽ ∆i +4ε2dNi +11(160d2)k−iq−5n/2.
At each iteration we had Ni ≥ 160d2qn/d vectors, a necessary condition to apply Theorem 22.
Therefore after k iterations, we have at least Nk = N0/(160d2)k = qn/d samples that are
∆k-close to being independently distributed from DL,α−kg, where

∆k ⩽ 11q−5n/2
k∑

i=1
(160d2)k−i +

k−1∑
i=0

10dε2dNi

≤ 11(160d2)kq−5n/2 + 10dq−4nqn/d
k−1∑
i=0

(160d2)k−i since 16d ⩾ q2

≤
(

11q−5n/2 + 10dq−4n+n/d
)

(160d2)k+1 = q−5n/2+o(n) since (160d2)k+1 = qo(n).

Any vector distributed as DL,ps is in pL with probability at least p−n. We repeat the
algorithm 2pn = O(q2n) times to obtain pn · 2 · qn/d vectors that are 2pnq−5n/2+o(n) =
q−n/2+o(n) close to 2pn · qn/d independent samples from DL,ps. Of these samples obtained,
we only keep vectors that fall in pL and divide them by p. Let M = pn · 2 · qn/d. By
Chernoff-Hoeffding (Lemma 21) with P = p−n, and δ = 1

2 , the probability to obtain less than

(1 − δ)PM = qn/d samples is at most
(

e−δ

(1−δ)1−δ

)P M

⩽ e− 1
10 qn/d

. Furthermore, d ⩽ q2+16
16

and q 7→ ln q
16+q2 is decreasing for q ⩾ 4, hence for q ⩽

√
n,

qn/d ⩾ e
16n ln q

16+q2 ⩾ e16n ln
√

n
16+n ⩾ e16 ln

√
n−o(1) = Ω(n8).

Hence with probability greater than 1− e− 1
10 qn/d

= 1− q−Ω(n8), we get qn/d vectors from
the distribution DL,s. The statistical distance from the desired distribution is q−Ω(n8) +
q−n/2+o(n) ≤ q−n/2+o(n). We repeat this for q16n/q2

qn/d times, to get q16n/q2 vectors. The total

statistical distance from the desired distribution is q16n/q2

qn/d · q−n/2+o(n) ≤ q−Ω(n). The total
running time is bounded by

q2n

(
q16n/q2

qn/d

)(
poly(n) ·N0 +

k−1∑
i=0

(10ed)8d · (160d2)k−iq8n+n/d+o(n)

)
⩽ q13n+o(n).

The memory usage is slightly more involved: we can think of the k iterations as a pipeline
with k intermediate lists and we observe that as soon as a list (at any level) has more than
160d2q16n/q2 elements, we can apply Theorem 22 to produce q16n/q2 vectors at the next
level. Hence, we can ensure that at any time, each level contains at most 160d2q16n/q2

vectors, so in total we only need to store at most k · 160d2q16n/q2 = poly(n)q16n/q2 vectors,
to which we add the memory usage of the algorithm of Theorem 22 which is bounded by
poly(n) · qn/d ⩽ poly(n) · q16n/q2 . Finally, we run the filter (pL) on the fly at the end of the
k iterations to avoid storing useless samples. ◀

This tradeoff works for any q ≥ 4, and the running time can be bounded by c
n+o(n)
1 · qc2n

for some constants c1 and c2 that we have not tried to optimize.

3.2 Algorithms for BDD and SVP
▶ Theorem 24. Let n ∈ N, q ∈ [4,

√
n] be a positive integer. Let L be a lattice of rank

n, there exists an algorithm that creates a 0.1/q-BDD oracle in time q13n+o(n) and space
poly(n) · q16n/q2 . Every call to this oracle takes time poly(n)q16n/q2 time.

D. Aggarwal, Y. Chen, R. Kumar, and Y. Shen 4:13

Proof. Let ε = q
−32n

q2 and s = ηε(L∗). From corollary 23, there exists an algorithm that
outputs q16n/q2 vectors whose distribution is statistically close to time DL∗,s in q13n+o(n)

and space poly(n) · q16n/q2 .
By Theorem 14, there is a reduction from α-BDD to 1

2 -DGSm
ηε

with m = O(n log(1/ε)√
ε

) =

O(n2

q2 q16n/q2), where the decoding coefficient is α =
√

log(1/ε)/π−o(1)
2ηε(L∗)λ1(L) . By repeating poly(n)

times the algorithm from Corollary 23, we get m vectors from DL∗,ηε(L∗). By Lemma 15,
we get

α(L) =
√

log(1/ε)/π − o(1)
2ηε(L∗)λ1(L) ≥

√
log(1/ε)

2n(β2/e)ε−1/n
· (1−o(1)) ≥ 1

q

√
32 · e · log q

2β2q32/q2 ≥ (10q)−1.

Note that here we are using the fact that the reduction in Theorem 14 always reduces an
instance on a lattice L to an instance on the dual lattice L∗: this is why we generate samples
from DL∗,ηε(L∗) in the preprocessing phase, even before any call to the oracle is made. Finally,
by Theorem 14, each call to the oracle takes time m · poly(n) = O(q16n/q2 poly(n)). ◀

▶ Theorem 25. Let n ∈ N, q ∈ [4,
√

n] be a positive integer. Let L be a lattice of rank n.
There is a randomized algorithm that solves SVP in time q13n+o(n) and in space poly(n) ·q

16n
q2 .

Proof. By Theorem 24, we can construct a 0.1
q -BDD oracle in time q13n+o(n) and in space

poly(n) · q
16n
q2 . Each execution of the BBD oracle now takes O(poly(n)q16n/q2) time. By

Theorem 16, with (10q)n queries to 0.1
q -BDD oracle, we can find the shortest vector. The

total time complexity is q13n+o(n) + poly(n)q16n/q2 · (10q)n = q13n+o(n). ◀

▶ Remark 26. If we take q =
√

n, Theorem 25 gives a SVP algorithm that takes nO(n) time
and poly(n) space. The constant in the exponent of time complexity is worse than the best
enumeration algorithms. When q is a large enough constant, for any constant ε > 0, there
exists a constant C = C(ε) > 2, such that there is a 2Cn time and 2εn space algorithm for
DGS, and SVP. In particular, the time complexity of the algorithm in this regime is worse
than the best sieving algorithms.

4 New space efficient algorithms for SVP

In this section, we present relatively space-efficient classical and quantum algorithms to find
a shortest nonzero lattice vector. Our quantum algorithm is the first provable algorithm for
exact-SVP that takes less than O(2n) time. Recall that there exists an algorithm [15] that,
given a lattice L and a target vector t, outputs all lattice vectors within distance pαλ1(L) to
t, by making pn calls to an α-BDD oracle. We present a quantum algorithm for SVP that
takes 20.9532n+o(n) time and 20.5n+o(n) space with poly(n) qubits. We also present a classical
algorithm for SVP that takes 21.741n+o(n) time and 20.5n+o(n) space.

The strategy followed by [15] is to choose p = ⌈1/α⌉, the target vector t to be the origin,
and sequentially compute the candidate vectors for SVP. There are two ways to reduce the
time complexity: one can improve the BDD oracle or reduce the number of queries. We will
show how to improve both aspects.

4.1 Quantum algorithm for SVP
In order to solve SVP by the method in [15], it is sufficient to use a BDD oracle with decoding
coefficient α slightly greater than 1/3. In [15], the authors use a reduction from BDD to DGS
by [16] and use the Gaussian sampler of [2] to obtain many samples with standard deviation

STACS 2021

4:14 Improved (Provable) Algorithms for the Shortest Vector Problem

equal to
√

2η1/2. This allows them to construct a 0.391-BDD but each call to the BDD oracle
uses many DGS samples. This is wasteful since we really only need a 1/3-BDD. The reason
why it is so expensive is that in the analysis they need to find ε such that ηε >

√
2η1/2 to

apply the reduction, and it requires them to take ε much smaller than would be strictly
necessary to construct a 1/3-BDD oracle; this smaller ε explains the bigger decoding radius.

We obtain a BDD oracle with decoding distance 1/3 by using the same reduction but
making each call cheaper. This is achieved by building a sampler that directly samples at the
smoothing parameter, hence avoiding the

√
2 factor, allowing us to take a bigger ε. In [2],

it was shown how to construct a dense lattice L′ whose smoothing parameter η(L′) is
√

2
times smaller than the original lattice, and that contains all lattice points of the original
lattice. Suppose that we first use such a dense lattice to construct a corresponding discrete
Gaussian sampler with standard deviation equal to s =

√
2η(L′). We then do the rejection

sampling on condition that the output is in the original lattice L. We thus have constructed
a discrete Gaussian sampler of L whose standard deviation is

√
2η(L′) = η(L). Nevertheless,

| L′ /L | will be at least 20.5n, which implies that this procedure needs at least 20.5n input
vectors to produce an output vector. We use this idea to obtain the following lemma.

▶ Lemma 27. There is an probabilistic algorithm that, given a lattice L ⊂ Rn, m ∈ Z+ and
s ≥ η1/3(L) as input, outputs m samples from a distribution (m · 2−Ω(n2))-close to DL,s in
expected time m · 2(n/2)+o(n) and (m + 2n/2) · 2o(n) space.

Proof. Let a = n
2 + 4. We repeat the following until we output m vectors. We use the

algorithm in Lemma 19 to obtain a lattice L′ ⊃ L of index 2a. We then run the algorithm
from Theorem 18 with input (L′, s) to obtain a list of vectors from L′. We output the vectors
in this list that belong to L.

By Theorem 18, we obtain, in time and space 2(n/2)+o(n), M = 2n/2 vectors that are
2−Ω(n2)-close to M vectors independently sampled from DL′,s. Also, by Lemma 19, with
probability at least 1/2, we have s ≥ η1/3(L) ≥

√
2η1/2(L′).

From these M vectors, we will reject the vectors which are not in lattice L. It is easy
to see that the probability that a vector sampled from the distribution DL′,s is in L is at
least ρs(L)/ρs(L′) ≥ 1

2a using Lemma 10. Thus, the probability that we obtain at least one
vector from L (which is distributed as DL,s) is at least

1
2

(
1− (1− 1/2a)2n/2

)
≥ 1

2 ·
(

1− e−2n/2/2n/2+4
)

= 1
2(1− e−1/16).

It implies that after rejection of vectors, with constant probability we will get at least one
vector from DL,s. Thus, the expected number of times we need to repeat the algorithm is
O(m) until we obtain vectors y1, . . . , ym whose distribution is statistically close to being
independently distributed from DL,s. The time and space complexity is clear from the
algorithm. ◀

▶ Theorem 28. For any sufficiently large integer n, any integer m > 0, and a lattice L ⊂ Rn,
there exists an algorithm that creates a 1/3-BDD oracle in 20.6608n+o(n) time and 20.5n+o(n)

space. Every call to this oracle takes 20.1608n+o(n) time and space.

Proof. See full version [1, Theorem 30]; it is similar to Theorem 24 but using Lemma 27. ◀

From [15], we can enumerate all vectors of length p· 13 λ1(L) by making pn calls to 1/3-BDD
oracle. Although naively searching for the minimum in the set of vectors of length less than
or equal to p · 1

3 λ1(L), will find the origin with high probability, one can work around this
issue by shifting the zero vector. Choosing an arbitrary nonzero lattice vector as the shift,
we are guaranteed to obtain a vector of length at least λ1 for p ≥ 3. Hence by combining the
1/3-BDD oracle from Theorem 28 and the quantum minimum finding algorithm from [19,

D. Aggarwal, Y. Chen, R. Kumar, and Y. Shen 4:15

Theorem 1], we can find the shortest vector. Note that, we can directly use the quantum
speedup construction from [15]. The following theorem is a simplified construction for the
quantum algorithm.

▶ Theorem 29. For any n ≥ 5, there is a quantum algorithm that solves SVP in time
20.9533n+o(n) and classical-space 20.5n+o(n) with polynomial number of qubits.

Proof. Let B be a basis of the lattice, BDD1/3 be a 1/3-BDD oracle and let f : Zn
3 → L

be f(s) = −3 · BDD1/3(L, (Bs)/3) + Bs. The algorithm works on three quantum registers
and our goal is to build a superposition of states of the form |s⟩|f(s)⟩|x⟩ where x = ∥f(s)∥
most the time (see the definition of U below). The algorithm goes like this, we first use
Theorem 28 to construct a quantum oracle OBDD on the first two registers that satisfies
OBDD|s⟩|0⟩ = |s⟩|f(s)⟩ for all s ∈ Zn

3 . We then construct another quantum circuit U

satisfying

U(|ω⟩|0⟩) =
{
|ω⟩| ∥ω∥⟩ if ω ̸= 0
|ω⟩| ∥Be1∥+ 1⟩ if ω = 0,

and apply it on the second and third registers. Here e1 ∈ Zn is a vector whose first coordinate
is one and rest are zero. After that, we apply the quantum minimum finding algorithm on
the first and third registers and get an index s′. The output of the algorithm will be f

1/3
3 (s′).

By Theorem 28, in 20.661n+o(n)-time and 20.5n+o(n) space, we can generate 20.161n+o(n)

vectors to construct a 1/3-BDD oracle. Thus OBDD can be built using 20.1608n+o(n) Toffoli
gates and poly(n) qubits. To see that we only need poly(n) qubits, we only keep the vectors
of size smaller than exp(n) in the constuction of OBDD, they thus can all be stored within
poly(n) qubits. Since the vectors are sampled from a Gaussian with width at most exp(n),
the error induced by throwing away the tail of the distribution is negligible. Furthermore all
functions acting on these vectors can be implemented with poly(n) qubits.

We can also construct U efficiently. Hence, the algorithm needs O(20.1608n+o(n)) Toffoli
gates and poly(n) qubits for three registers. As a result by applying the quantum minimum
finding algorithm from [19, Theorem 1], the quantum algorithm takes 30.5n · 20.1608n+o(n) =
20.9533n+o(n) time and 20.5n+o(n) classical space with a polynomial number of qubits.

Lastly, we show that the quantum algorithm will output a shortest non-zero vector with
constant probability. Since ∥Be1∥+ 1 > λ1(L), with at least 1/2 probability one will find
the index i such that f(i) is a shortest nonzero vector by using the quantum minimum
finding algorithm from [19, Theorem 1]. Therefore it suffices to show that there is an index
i ∈ Zn

3 such that ∥f(i)∥ = λ1(L). By Theorem 16, the list {f(s)|s ∈ Zn
3} contains all lattice

points within radius 3 · 1
3 λ1(L) = λ1(L) from 0, including the lattice vector with length

λ1(L). Hence with at least 1/2 probability, the algorithm outputs a non-zero shortest lattice
vector. ◀

4.2 Solving SVP by spherical caps on the sphere
We now explain how to reduce the number of queries to the α-BDD oracle. Consider a
uniformly random target vector t such that α(1− 1

n)λ1(L) ≤ ∥t∥ < αλ1(L), it satisfies the
condition of Theorem 16, i.e. dist(L, t) ≤ αλ1(L). We enumerate all lattice vectors within
distance 2αλ1(L) to t and keep only the shortest nonzero one. We show that for α = 0.4097,
we will get the shortest nonzero vector of the lattice with probability at least 2−0.3298n+o(n).
By repeating this O(20.3298n+o(n)) times, the algorithm will succeed with constant probability.
We rely on the following construction of a 0.4097-BDD oracle.

▶ Theorem 30. For any dimension n ≥ 4, any integer m > 0, and a lattice L ⊂ Rn, there
exists an algorithm that constructs a 0.4097-BDD oracle in 20.9108n+o(n) time and 20.5n+o(n)

space. Each call to the oracle takes 20.4108n+o(n) time and space.

STACS 2021

4:16 Improved (Provable) Algorithms for the Shortest Vector Problem

Proof. See full version [1, Theorem 32]; it is similar to Theorem 24 but using Lemma 27. ◀

▶ Theorem 31. There is a randomized algorithm that solves SVP in time 21.741n+o(n) and
in space 20.5n+o(n) with constant probability.

Proof. On input lattice L(B), use the LLL algorithm [41] to get a number d (the norm of
the first vector of the basis) that satisfies λ1(L) ≤ d ≤ 2n/2λ1(L). For i = 1, . . . , n2, let
di = d/(1 + 1

n)i, and let α = 0.4097. There exists a j such that λ1(L) ≤ dj ≤ (1 + 1
n)λ1(L).

We repeat the following procedure for all i = 1, . . . , n2:
For j = 1 to 20.3298n+o(n), pick a uniformly random vector vij on the surface of the ball

of radius α(1− 1
n)di. By Theorem 16, we can enumerate 2n lattice points using the function

fij : Zn
2 → L defined by fij(x) = B x − 2 · BDDα(L, (B x − vij)/2). At each step we only

store the shortest nonzero vector. At the end, we output the shortest among them.
The running time of the algorithm is straightforward. We make 2n queries to a α-BDD

oracle that takes 20.4108n+o(n) time and space by Theorem 30. We further repeat this
n220.3298n+o(n) times. Therefore the algorithm takes 21.741n+o(n) time and 20.5n+o(n) space.

To prove the correctness of the algorithm, it suffices to show that there exists an i ∈ [n2]
for which the algorithm finds the shortest vector with high probability. Recall that there
exists an i such that λ1(L) ≤ di ≤ (1 + 1

n)λ1(L) and let that index be k. We will show
that for a uniformly random vector v of length α(1− 1

n)dk, if we enumerate 2n vectors by
the function f : Zn

2 → L, f(x) = B x − 2 · BDDα(L, (B x − v)/2), then with probability
2−0.3298n−o(n) there exists x ∈ Zn

2 such that f(x) is the shortest nonzero lattice vector.
We show that we can cover the sphere of radius λ1 by 20.3298n+o(n) balls of radius

2αλ1 = 0.4097 ∗ 2λ1 whose centers are at distance α(1− 1
n)dk ≤ 0.4097λ1 from the origin

(see figure 1). We have two concentric circles of radius α(1− 1
n)dk and λ1, and let P be a

uniformly random point on the surface of the ball of radius α(1− 1
n)dk. A ball of radius 2αλ1

at center P will cover the spherical cap with angle ϕ of the ball of radius λ1. By the law of
the cosines, we can compute ϕ ≈ cos−1(1−3α2

2α) and hence, by [4, Lemma 5.6], if we randomly
choose v, the corresponding spherical caps will cover the shortest vector with probability at
least

∫ ϕ

0 sinn−2 θdθ ≥ 2−0.3298n−o(n). Besides, by Theorem 16, the list {f(x) | x ∈ Zn
2} will

contain all lattice points within radius 2αdk from v. Hence, the list will contain a shortest
vector with probability 2−0.3298n+o(n). By repeating this process 20.3298n+o(n) times, we can
find the shortest vector with constant probability. ◀

O

P
2αλ1

αλ1

λ1
ϕ

Figure 1 One can cover the sphere of radius λ1 by balls of radius 2αλ1, where 1
3 ⩽ α < 1

2 , whose
centers (here P) are at distance αλ1 from the origin O. Each such ball covers a spherical cap of
half-angle ϕ.

D. Aggarwal, Y. Chen, R. Kumar, and Y. Shen 4:17

References
1 Divesh Aggarwal, Yanlin Chen, Rajendra Kumar, and Yixin Shen. Improved (provable)

algorithms for the shortest vector problem via bounded distance decoding (full version), 2020.
arXiv:2002.07955.

2 Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving the
shortest vector problem in 2n time using discrete gaussian sampling: Extended abstract. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, Portland, OR, USA, June 14-17, 2015, pages 733–742, 2015. doi:10.1145/2746539.
2746606.

3 Divesh Aggarwal, Jianwei Li, Phong Q. Nguyen, and Noah Stephens-Davidowitz. Slide
reduction, revisited - filling the gaps in SVP approximation. CoRR, abs/1908.03724, 2019.
arXiv:1908.03724.

4 Divesh Aggarwal and Noah Stephens-Davidowitz. (gap/s) eth hardness of svp. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 228–238, 2018.

5 Divesh Aggarwal and Noah Stephens-Davidowitz. Just take the average! an embarrassingly
simple 2ˆn-time algorithm for SVP (and CVP). In 1st Symposium on Simplicity in Algorithms,
SOSA 2018, January 7-10, 2018, New Orleans, LA, USA, pages 12:1–12:19, 2018. doi:
10.4230/OASIcs.SOSA.2018.12.

6 Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In Proceedings
of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, USA, May 22-24, 1996, pages 99–108, 1996. doi:10.1145/237814.237838.

7 Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector
problem. In Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing,
STOC ’01, pages 601–610, New York, NY, USA, 2001. ACM. doi:10.1145/380752.380857.

8 Martin R Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn W Postlethwaite,
and Marc Stevens. The general sieve kernel and new records in lattice reduction. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages
717–746. Springer, 2019.

9 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen. Quantum lattice enumeration and tweaking
discrete pruning. In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology –
ASIACRYPT 2018, pages 405–434, Cham, 2018. Springer International Publishing.

10 Shi Bai, Thijs Laarhoven, and Damien Stehlé. Tuple lattice sieving. IACR Cryptology ePrint
Archive, 2016:713, 2016. URL: http://eprint.iacr.org/2016/713.

11 Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12, 2016, pages 10–24, 2016. doi:10.1137/1.9781611974331.ch2.

12 Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In Proceedings of the forty-fifth annual ACM symposium on
Theory of computing, pages 575–584. ACM, 2013.

13 Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In
Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14,
2014, pages 1–12, 2014. doi:10.1145/2554797.2554799.

14 Ernest F. Brickell. Breaking iterated knapsacks. In Advances in Cryptology, Proceedings
of CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984, Proceedings, pages
342–358, 1984. doi:10.1007/3-540-39568-7_27.

15 Yanlin Chen, Kai-Min Chung, and Ching-Yi Lai. Space-efficient classical and quantum
algorithms for the shortest vector problem. Quantum Information & Computation, 18(3&4):285–
306, 2018. URL: http://www.rintonpress.com/xxqic18/qic-18-34/0285-0306.pdf.

16 Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. On the closest vector problem
with a distance guarantee. In IEEE 29th Conference on Computational Complexity, CCC 2014,
Vancouver, BC, Canada, June 11-13, 2014, pages 98–109, 2014. doi:10.1109/CCC.2014.18.

STACS 2021

http://arxiv.org/abs/2002.07955
https://doi.org/10.1145/2746539.2746606
https://doi.org/10.1145/2746539.2746606
http://arxiv.org/abs/1908.03724
https://doi.org/10.4230/OASIcs.SOSA.2018.12
https://doi.org/10.4230/OASIcs.SOSA.2018.12
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/380752.380857
http://eprint.iacr.org/2016/713
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1145/2554797.2554799
https://doi.org/10.1007/3-540-39568-7_27
http://www.rintonpress.com/xxqic18/qic-18-34/0285-0306.pdf
https://doi.org/10.1109/CCC.2014.18

4:18 Improved (Provable) Algorithms for the Shortest Vector Problem

17 Rudi de Buda. Some optimal codes have structure. IEEE Journal on Selected Areas in
Communications, 7(6):893–899, 1989. doi:10.1109/49.29612.

18 Léo Ducas. Shortest vector from lattice sieving: A few dimensions for free. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 - 37th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I, volume 10820 of Lecture Notes in
Computer Science, pages 125–145. Springer, 2018. doi:10.1007/978-3-319-78381-9_5.

19 Christoph Dürr and Peter Høyer. A quantum algorithm for finding the minimum. CoRR,
quant-ph/9607014, 1996. arXiv:quant-ph/9607014.

20 András Frank and Éva Tardos. An application of simultaneous diophantine approximation in
combinatorial optimization. Combinatorica, 7(1):49–65, 1987. doi:10.1007/BF02579200.

21 Nicolas Gama and Phong Q. Nguyen. Finding short lattice vectors within mordell’s inequality.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 207–216, 2008. doi:10.1145/1374376.1374408.

22 Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using extreme pruning.
In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, pages 257–278, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

23 Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31
- June 2, 2009, pages 169–178, 2009. doi:10.1145/1536414.1536440.

24 Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Proceedings of the fortieth annual ACM symposium on Theory
of computing, pages 197–206. ACM, 2008.

25 Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise lattice algorithms
using dynamical systems. In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO
2011, pages 447–464, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

26 Guillaume Hanrot and Damien Stehlé. Improved analysis of kannan’s shortest lattice vector
algorithm. In Advances in Cryptology – CRYPTO 2007, 27th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2007, Proceedings, pages 170–186, 2007.
doi:10.1007/978-3-540-74143-5_10.

27 Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem to within
almost polynomial factors. In Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing, pages 469–477, 2007.

28 Bettina Helfrich. Algorithms to construct minkowski reduced and hermite reduced lattice
bases. Theor. Comput. Sci., 41(2–3):125–139, December 1985.

29 Gottfried Herold and Elena Kirshanova. Improved algorithms for the approximate k-list
problem in euclidean norm. In Serge Fehr, editor, Public-Key Cryptography – PKC 2017, pages
16–40, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.

30 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):13–30, 1963.

31 Russell Impagliazzo, Leonid A Levin, and Michael Luby. Pseudo-random generation from
one-way functions. In Proceedings of the twenty-first annual ACM symposium on Theory of
computing, pages 12–24, 1989.

32 Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables. Math. Oper.
Res., 8(4):538–548, 1983. doi:10.1287/moor.8.4.538.

33 Grigorii Anatol’evich Kabatiansky and Vladimir Iosifovich Levenshtein. On bounds for packings
on a sphere and in space. Problemy Peredachi Informatsii, 14(1):3–25, 1978.

34 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,
12(3):415–440, 1987. doi:10.1287/moor.12.3.415.

35 Subhash Khot. Hardness of approximating the shortest vector problem in lattices. J. ACM,
52(5):789–808, 2005. doi:10.1145/1089023.1089027.

https://doi.org/10.1109/49.29612
https://doi.org/10.1007/978-3-319-78381-9_5
http://arxiv.org/abs/quant-ph/9607014
https://doi.org/10.1007/BF02579200
https://doi.org/10.1145/1374376.1374408
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-540-74143-5_10
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1145/1089023.1089027

D. Aggarwal, Y. Chen, R. Kumar, and Y. Shen 4:19

36 Paul Kirchner and Pierre-Alain Fouque. Time-memory trade-off for lattice enumeration in a
ball. Cryptology ePrint Archive, Report 2016/222, 2016. URL: https://eprint.iacr.org/
2016/222.

37 Elena Kirshanova, Erik Mårtensson, Eamonn W Postlethwaite, and Subhayan Roy Moulik.
Quantum algorithms for the approximate k-list problem and their application to lattice sieving.
In International Conference on the Theory and Application of Cryptology and Information
Security, pages 521–551. Springer, 2019.

38 Philip Klein. Finding the closest lattice vector when it’s unusually close. In Proceedings of the
Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’00, page 937–941,
USA, 2000. Society for Industrial and Applied Mathematics.

39 Thijs Laarhoven, Michele Mosca, and Joop Van De Pol. Finding shortest lattice vectors
faster using quantum search. Designs, Codes and Cryptography, 77, December 2015. doi:
10.1007/s10623-015-0067-5.

40 J. C. Lagarias and Andrew M. Odlyzko. Solving low-density subset sum problems. J. ACM,
32(1):229–246, 1985. doi:10.1145/2455.2461.

41 A.K. Lenstra, H.W. Lenstra, and Lászlo Lovász. Factoring polynomials with rational coefficients.
Math. Ann., 261:515–534, 1982.

42 Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within some
constant. In Proceedings of the 39th Annual Symposium on Foundations of Computer Science,
FOCS ’98, page 92, USA, 1998. IEEE Computer Society.

43 Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parameters.
In Advances in Cryptology – CRYPTO 2013 – 33rd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, pages 21–39, 2013. doi:10.1007/
978-3-642-40041-4_2.

44 Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian
measures. In 45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19
October 2004, Rome, Italy, Proceedings, pages 372–381, 2004. doi:10.1109/FOCS.2004.72.

45 Daniele Micciancio and Oded Regev. Lattice-based cryptography, 2008.
46 Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms for the

shortest vector problem. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1468–
1480, 2010. doi:10.1137/1.9781611973075.119.

47 Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time algorithm
for most lattice problems based on voronoi cell computations. SIAM J. Comput., 42(3):1364–
1391, 2013. doi:10.1137/100811970.

48 Daniele Micciancio and Michael Walter. Fast lattice point enumeration with minimal overhead.
In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 276–294, 2015. doi:10.1137/1.
9781611973730.21.

49 Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the shortest vector problem are
practical. J. Mathematical Cryptology, 2(2):181–207, 2008. doi:10.1515/JMC.2008.009.

50 Xavier Pujol and Damien Stehlé. Solving the shortest lattice vector problem in time 22.465n.
IACR Cryptology ePrint Archive, 2009:605, 2009. URL: http://eprint.iacr.org/2009/605.

51 Oded Regev. Lattices in computer science, lecture 8, Fall 2004.
52 Oded Regev. Lattice-based cryptography. In Advances in Cryptology - CRYPTO 2006, 26th

Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24,
2006, Proceedings, pages 131–141, 2006. doi:10.1007/11818175_8.

53 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM, 56(6):34:1–34:40, September 2009. doi:10.1145/1568318.1568324.

54 Claus Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theor.
Comput. Sci., 53:201–224, 1987.

STACS 2021

https://eprint.iacr.org/2016/222
https://eprint.iacr.org/2016/222
https://doi.org/10.1007/s10623-015-0067-5
https://doi.org/10.1007/s10623-015-0067-5
https://doi.org/10.1145/2455.2461
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1137/1.9781611973075.119
https://doi.org/10.1137/100811970
https://doi.org/10.1137/1.9781611973730.21
https://doi.org/10.1137/1.9781611973730.21
https://doi.org/10.1515/JMC.2008.009
http://eprint.iacr.org/2009/605
https://doi.org/10.1007/11818175_8
https://doi.org/10.1145/1568318.1568324

4:20 Improved (Provable) Algorithms for the Shortest Vector Problem

55 Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical al-
gorithms and solving subset sum problems. Math. Program., 66:181–199, 1994. doi:
10.1007/BF01581144.

56 Adi Shamir. A polynomial-time algorithm for breaking the basic merkle-hellman cryptosystem.
IEEE Trans. Information Theory, 30(5):699–704, 1984. doi:10.1109/TIT.1984.1056964.

57 SVP Challenges. https://www.latticechallenge.org/svp-challenge/.

https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://doi.org/10.1109/TIT.1984.1056964
https://www.latticechallenge.org/svp-challenge/

An FPT Algorithm for Elimination Distance to
Bounded Degree Graphs
Akanksha Agrawal !

Indian Institute of Technology Madras, Chennai, India

Lawqueen Kanesh !

The Institute of Mathematical Sciences, HBNI, Chennai, India

Fahad Panolan !

Indian Institute of Technology, Hyderabad, India

M. S. Ramanujan !

University of Warwick, Coventry, UK

Saket Saurabh !

University of Bergen, Norway
The Institute of Mathematical Sciences, HBNI, Chennai, India

Abstract
In the literature on parameterized graph problems, there has been an increased effort in recent years
aimed at exploring novel notions of graph edit-distance that are more powerful than the size of
a modulator to a specific graph class. In this line of research, Bulian and Dawar [Algorithmica,
2016] introduced the notion of elimination distance and showed that deciding whether a given graph
has elimination distance at most k to any minor-closed class of graphs is fixed-parameter tractable
parameterized by k [Algorithmica, 2017]. They showed that Graph Isomorphism parameterized by
the elimination distance to bounded degree graphs is fixed-parameter tractable and asked whether
determining the elimination distance to the class of bounded degree graphs is fixed-parameter
tractable. Recently, Lindermayr et al. [MFCS 2020] obtained a fixed-parameter algorithm for this
problem in the special case where the input is restricted to K5-minor free graphs.

In this paper, we answer the question of Bulian and Dawar in the affirmative for general graphs.
In fact, we give a more general result capturing elimination distance to any graph class characterized
by a finite set of graphs as forbidden induced subgraphs.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Elimination Distance, Fixed-parameter Tractability, Graph Modification

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.5

Funding Akanksha Agrawal: Supported by New Faculty Initiative Grant, IIT Madras, Chennai,
India.
Fahad Panolan: Supported by Seed grant, IIT Hyderabad (SG/IITH/F224/2020-21/SG-79).
M. S. Ramanujan: Supported by EPSRC grant EP/V007793/1.
Saket Saurabh: Supported by funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 819416)
and Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18.

1 Introduction

A popular methodology for studying the parameterized complexity of problems is to consider
parameterization by distance from triviality [16]. In this methodology, the idea is to try and
lift the tractability of special cases of generally hard computational problems, to tractability
of instances that are “close” to these special cases (i.e., close to triviality) for appropriate

© Akanksha Agrawal, Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 5; pp. 5:1–5:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:agrawal@post.bgu.ac.il
https://orcid.org/0000-0002-0656-7572
mailto:lawqueen@imsc.res.in
https://orcid.org/0000-0001-9274-4119
mailto:panolan@iith.ac.in
https://orcid.org/0000-0001-6213-8687
mailto:R.Maadapuzhi-Sridharan@warwick.ac.uk
https://orcid.org/0000-0002-2116-6048
mailto:saket@imsc.res.in
https://orcid.org/0000-0001-7847-6402
https://doi.org/10.4230/LIPIcs.STACS.2021.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 An FPT Algorithm for Elimination Distance to Bounded Degree Graphs

notions of “distance from triviality”. This way of parameterizing graph problems has led to
a rich collection of sophisticated algorithmic and lower bound machinery over the last two
decades.

One direction in which this approach has been extended in recent years is by enhancing
existing notions of distance from triviality by exploiting some form of structure underlying
vertex modulators rather than just the size bound. This line of exploration has led to the
development of several new notions of distance from triviality [12, 5, 6, 15, 14, 11]. Of
primary interest to us in this line of research is the notion of elimination distance introduced
in [5]. Bulian and Dawar [5] introduced the notion of elimination distance in an effort to
define tractable parameterizations that are more general than the modulator size for graph
problems. We refer the reader to Section 2 for a formal definition of this parameter. In
their work, they focused on the Graph Isomorphism (GI) problem and showed that GI is
fixed-parameter tractable (FPT) when parameterized by the elimination distance to graphs
of bounded degree. In follow-up work, Bulian and Dawar [6] showed that deciding whether
a given graph has elimination distance at most k to any minor-closed class of graphs is
fixed-parameter tractable parameterized by k (i.e., can be solved in time f(k)nO(1)) and asked
whether computing the elimination distance to graphs of bounded degree is fixed-parameter
tractable.

Recently, Lindermayr et al. [18] showed that computing elimination distance to bounded
degree graphs is fixed-parameter tractable when the input is planar. However their approach
is specifically adapted to planar graphs (in fact, more generally, K5-minor free graphs) and
they note that their approach does not appear to extend to general graphs. In this paper, we
address the general question and show that the problem is (non-uniformly) fixed-parameter
tractable on general graphs. In fact, we prove a more general result and obtain the result for
elimination distance to graphs of bounded degree as a consequence. Let F be a finite family
of graphs. We say that a graph G is F-free if G does not contain any induced subgraph
isomorphic to a graph in F .

▶ Theorem 1. For every fixed finite family F of finite graphs and k ∈ N, there is an algorithm
AF

k that, given a graph G, runs in time f(k) ·nO(1) for some function f and correctly decides
whether G has elimination distance at most k to the class of F-free graphs.

We remark that the exponent of n in the above running time is a constant depending
on F and independent of k. As a corollary (and with a slight modification of the above
algorithms), we obtain the following result for determining elimination distance to bounded
degree graphs.

▶ Corollary 2. For every k ∈ N, there is an algorithm Ak that, given a graph G and integer
d ∈ N, runs in time f(k, d) · nO(1) for some function f and correctly decides whether G has
elimination distance at most k to the class of graphs of degree at most d.

In the above statement, the exponent of n is a constant independent of both d and k.

Related work

Hols et al. [17] recently presented a comprehensive study of the classic Vertex Cover problem
parameterized by the size of a smallest modulator to graphs that have bounded elimination
distance to specific hereditary graph classes. They provided an elegant (partial) characteriza-
tion of parameterizations that permit polynomial kernelizations for Vertex Cover. Bougeret
et al. [3] introduced a measure called bridge-depth and showed that a minor-closed family of
graphs F has bounded bridge-depth precisely when Vertex Cover admits a polynomial kernel

A. Agrawal, L. Kanesh, F. Panolan, M. S. Ramanujan, and S. Saurabh 5:3

parameterized by the size of a modulator to F (subject to standard complexity theoretic
hypotheses). The notion of elimination distance [5] generalizes the notion of generalized
treedepth introduced by Bouland et al. [4] in an effort to combine the treedepth and max-
leaf number parameters. Building on [5] and extending the approach of combining width
parameters (treedepth in the case of [5]) and modulator size, Ganian et al. [15] proposed a
measure of distance to triviality for CSP that depended on the treewidth of an appropriate
graph defined on backdoor sets (these can be thought of as a version of vertex modulators
appropriate for use in solving ILP and CSP instances). That is, they introduced a way
of combining treewidth and modulator size into a single parameter that is stronger than
elimination distance. More recently, Eiben et al. [11] continued the line of research into
combining modulators and width parameters by studying this parameter in the context of
graph problems, where triviality is expressed in terms of bounded rankwidth.

2 Preliminaries

For an undirected graph G, we use n and m to denote |V (G)| and |E(G)| respectively,
unless mentioned otherwise. For X ⊆ V (G), G[X] denotes the graph with vertex set X
and the edge set {{x, y} ∈ E(G) | x, y ∈ X}. By G−X we denote the graph G[V (G) \X].
Let v ∈ V (G). Then, by NG(v) we denote the set of neighbors of v in G, i.e., the set
{u ∈ V (G) | {u, v} ∈ E(G)}. By NG[v], we denote the closed neighborhood of v in G, i.e.,
NG(v) ∪ {v}. For a set U ⊆ V (G), by NG(U) we denote the set ∪u∈UNG(u) \ U , by NG[U]
we denote the set NG(U) ∪ U . By degG(v), we denote the degree of vertex v in G, i.e., the
number of edges incident on v in G. We drop the subscript whenever the context is clear.

A path P = (v1, v2, · · · , vℓ) in G is a subgraph of G where V (P) = {v1, v2, · · · , vℓ} ⊆ V (G)
is a set of distinct vertices and E(P) = {{vi, vi+1} | i ∈ [ℓ− 1]} ⊆ E(G), where |V (P)| = ℓ

for some ℓ ∈ [|V (G)|]. The above defined path P is called as v1 − vℓ path. We say that the
graph G is connected if for every u, v ∈ V (G), there exists a u− v path in G. A connected
component of G is an inclusion-wise maximal connected induced subgraph of G. The set
C(G) denotes the set of connected components of G. For a tree T and vertices u, v ∈ V (T),
we denote the unique path between u and v by PthT (u, v). A tree is called as a rooted
tree if special vertex in tree is designated to be the root. Let T be a rooted tree with root
r ∈ V (T). We say that a vertex v ∈ V (T) \ {r} is a leaf of T if the degT (v) = 1. Moreover,
if V (T) = {r}, then r is the leaf (as well as the root) of T . A vertex which is not a leaf, is
a non-leaf vertex. Let t, t′ ∈ V (T) such that {t, t′} ∈ E(T) and t′ is not contained in t− r

path in T , then we say that t is the parent of t′ and t′ is a child of t.
A vertex t′ ∈ V (T) (t′ can possibly be the same as t) is a descendant of t, if in T−{parT (t)},

where parT (t) is the parent of t, there is a t − t′ path. Note that when t = r, then
T − {parT (t)} = T , as the parent of r does not exist. (Every vertex in T is a descendant of
r.) By descT (t), we denote the set of all descendants of t in T . We drop the subscript T
from parT (·) and descT (·), when the context is clear.

A rooted forest is a forest where each connected component is a rooted tree. For a rooted
forest F , a vertex v ∈ V (F) that is not a root of any of its rooted trees is a leaf if it is of
degree exactly one in F . We denote the set of leaves in a rooted forest by Lf(F).

The depth, denoted by depth(T) of a rooted tree T is the maximum number vertices in a
root to leaf path in T . The depth, denoted by depth(F) of a rooted forest F is the maximum
over the depths of its rooted trees.

STACS 2021

5:4 An FPT Algorithm for Elimination Distance to Bounded Degree Graphs

▶ Definition 3 (Forest embedding). A forest embedding of a graph G is a pair (F, f), where
F is a rooted forest and f : V (G) → V (F) is a bijective function, such that for each
{u, v} ∈ E(G), either f(u) is a descendant of f(v), or f(v) is a descendant of f(u). The
depth of the forest embedding (F, f) is the depth of the rooted forest F .1

Next, we recall the notion of elimination-distance introduced by Bulian and Dawar [5].
We rephrase their definition and introduce notation that will facilitate our presentation.

▶ Definition 4 (Elimination Distance and (η,H)-decompositions). Consider a family H of
graphs and an integer η ∈ N. An (η,H)-decomposition of a graph G is a tuple (X,Y, F, f :
X → V (F), g : C(G[Y]) → Lf(F) ∪ {⊥}), where (X,Y) is a partition of V (G) and F is a
rooted forest of depth η, such that the following conditions are satisfied:
1. (F, f) is a forest embedding of G[X],
2. each connected component of G[Y] belongs to H, and
3. for a connected component C of G[Y], a vertex v ∈ V (C), and an edge {u, v} ∈ E(G),

either u ∈ Y or f(u) is a vertex in the unique path in F from r to g(C), where r is the
root of the connected component in F containing the vertex g(C).2

We say that G admits an (η′,H)-decomposition if there is some η ≤ η′, for which there is
an (η,H)-decomposition of G. The elimination distance of G to H (or the H-elimination
distance of G) is the smallest integer η∗ for which G admits an (η∗,H)-decomposition.

We remark that when G is a connected graph, no component in C(G[Y]) is mapped to ⊥
(i.e., g is indeed a function from C(G[Y]) to Lf(F)).

Consider an (η,H)-decomposition D = (X,Y, F, f, g) of a graph G. We say that D is an
(η,H)-decomposition of G on forest F . We say that X is the interior part of D and Y is the
exterior part of D. For a leaf u ∈ Lf(F), by P̂D

u we denote the path from u to r in the tree T ,
where T is the tree rooted at r in F , containing u. Moreover, by PD

u , we denote the graph
G[{f−1(w) | w ∈ V (P̂D

u)}]. For a connected component C ∈ C(G[Y]), by CD
ext we denote the

graph G[V (C) ∪ {f−1(w) | w ∈ V (PthF (g(C), r))}], where r is the root of the component of
F containing g(C). (For the above notations we drop the superscript D, when the context is
clear.)

For a graph G, the elimination distance of G to H = {({u}, ∅)} is the treedepth of G,
denoted by td(G). We use the following simple observation in a later section.

▶ Observation 5. Let q be a positive integer and Hq be a family of graphs where each graph
has at most q vertices. If for a graph G, the elimination distance of G to Hq is η, then the
treedepth of G is at most η + q.

Consider a graph G, a non-empty set Q ⊆ V (G), and integers p, q ∈ N. We say that a set
A ⊆ V (G) such that G[A] is connected, is a (Q, p, q)-connected set if Q ⊆ A, |A| = p, and
|N(A)| ≤ q. The next proposition follows from Lemma 3.1 of [13].

▶ Proposition 6. Consider a graph G, a non-empty set Q ⊆ V (G), and integers p, q ∈ N.
The number of (Q, p, q)-connected sets in G is at most 2p+q. Moreover, there exists an
algorithm which runs in 2p+q · nO(1) time and enumerates all (Q, p, q)-connected sets in G′.

1 Sometimes we slightly abuse the notation for simplicity, and say that, for every β ≥ α, (F, f) is a forest
embedding of depth β, where α is the depth of F .

2 If g(C) = ⊥, then u must belong to Y .

A. Agrawal, L. Kanesh, F. Panolan, M. S. Ramanujan, and S. Saurabh 5:5

Unbreakability. To formally introduce the notion of unbreakability, we rely on the definition
of a separation:

▶ Definition 7 (Separation). A pair (X,Y) where X ∪ Y = V (G) is a separation if E(X \
Y, Y \X) = ∅. The order of (X,Y) is |X ∩ Y |.

Roughly speaking, a graph is breakable if it is possible to “break” it into two large parts
by removing only a small number of vertices. Formally,

▶ Definition 8 ((s, c)-Unbreakable graph). Let G be a graph. If there exists a separation
(X,Y) of order at most c such that |X \ Y | ≥ s and |Y \X| ≥ s, called an (s, c)-witnessing
separation, then G is (s, c)-breakable. Otherwise, G is (s, c)-unbreakable.

Counting Monadic Second Order Logic. The syntax of Monadic Second Order Logic
(MSO) of graphs includes the logical connectives ∨, ∧, ¬, ↔, ⇒, variables for vertices, edges,
sets of vertices and sets of edges, the quantifiers ∀ and ∃, which can be applied to these
variables, and five binary relations:
1. u ∈ U , where u is a vertex variable and U is a vertex set variable;
2. d ∈ D, where d is an edge variable and D is an edge set variable;
3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is

that the edge d is incident to u;
4. adj(u, v), where u and v are vertex variables, and the interpretation is that u and v are

adjacent;
5. equality of variables representing vertices, edges, vertex sets and edge sets.

Counting Monadic Second Order Logic (CMSO) extends MSO by including atomic
sentences testing whether the cardinality of a set is equal to q modulo r, where q and r are
integers such that 0 ≤ q < r and r ≥ 2. That is, CMSO is MSO with the following atomic
sentence: cardq,r(S) = true if and only if |S| ≡ q (mod r), where S is a set. We refer
to [1, 8, 9] for a detailed introduction to CMSO.

We will crucially use the following result of Lokshtanov et al. [19] that allows one to
obtain a (non-uniform) FPT algorithm for CMSO-expressible graph problems by designing
an FPT algorithm for the problem on unbreakable graphs.

▶ Proposition 9 (Theorem 1, [19]). Let ψ be a CMSO sentence and let d > 4 be a positive
integer. For all c ∈ N, there exists s ∈ N such that if there exists an algorithm that solves
CMSO[ψ] on (s, c)-unbreakable graphs in time O(nd), then there exists an algorithm that
solves CMSO[ψ] on general graphs in time O(nd).

3 The algorithm for k-Elimination Distance to HF

In the rest of the paper, we fix the family F and let d denote the maximum taken over
the number of vertices in the graphs in F . Recall that HF denotes the family of all F-free
graphs. In the k-Elimination Distance to HF problem, the input is a graph G and the
goal is to determine whether G has elimination distance at most k to HF . Notice that k is
assumed to be fixed since it is part of the problem definition. For a graph G, we say that
X ⊆ V (G) is a k-elimination distance modulator of G to F-free graphs (k-ed modulator to
HF) if G admits a (k,HF)-decomposition.

Lindermayr et al. [18] obtain their algorithm by repeatedly either identifying an irrelevant
vertex or by identifying substructures that they call “connectivity patterns” using which
they formulate an appropriate CMSO formula over a bounded treedepth structure. In their

STACS 2021

5:6 An FPT Algorithm for Elimination Distance to Bounded Degree Graphs

algorithm, they crucially require that the input graph is K5-minor free. Moreover, they
note that in their approach, all difficulties for elimination distance to bounded degree arise
already in bounded degree graphs and conjectured that solving this problem on bounded
degree graphs is sufficient to solve the problem on general graphs.

In our case, instead of focussing on bounded degree inputs as the hard case, we focus on
input graphs that are well-connected everywhere (i.e., (s, c)-unbreakable for appropriate values
of s and c). Towards this, we rely on Proposition 9, which requires the CMSO-expressibility
of the k-Elimination Distance to HF problem.

▶ Lemma 10. k-Elimination Distance to HF is CMSO-expressible.

Proof. Notice that X ⊆ V (G) is a k-ed modulator to HF if and only if G − X is F-free
and the graph Torso(X) has treedepth at most k. Here, Torso(X) is defined as the graph
obtained from G[X] by making the neighborhood of every connected component of G−X

a clique. In other words, for every distinct u, v ∈ X, (u, v) is an edge in Torso(X) if and
only if either (u, v) ∈ E(G) or there is a path in G whose endpoints are u and v and whose
remaining vertices are disjoint from X. We use this characterization of k-ed modulators to
HF to write our CMSO formula.

It is straightforward to assert that a graph is an induced subgraph of G in CMSO.
Therefore, one can write a sentence asserting that X is a vertex subset in G such that G−X

has no induced subgraph isomorphic to a graph in F . Now, consider the class of graphs of
treedepth at most k and notice that these are minor closed and hence characterized by a set
of β(k) forbidden minors for some function β. Recall that k is fixed in our setting and so, we
may assume that these forbidden minors are “hardcoded” into our algorithm. Moreover, it is
well-known that one can assert that a graph is a minor of a given graph, in CMSO. Hence,
it only remains for us to describe how we express in CMSO, the graph Torso(X) for some
X ⊆ V (G). Here, we encode the edge-set of Torso(X) into a new binary relation adj⋆ such
that for u, v ∈ X adj⋆(u, v) if and only if adj(u, v) or there exists a vertex set Y such that
Y ∩X = {u, v} and conn(Y) is true, where conn(Y) is the standard CMSO sentence that
asserts that the graph G[Y] is connected (see, e.g., [10]). This completes the proof of the
lemma. ◀

We remark that it is possible to sidestep the requirement that the forbidden minors for
treedepth k are hardcoded into our algorithm. This can be done by writing a sentence that
is based on the recursive-elimination definition of treedepth (see [6] for this definition) as
opposed to a forbidden minor characterization. See [18] for an example of such a formulation.
In either case, the size of the final CMSO formula for k-Elimination Distance to HF will
depend on k and F .

3.1 k-Elimination Distance to HF on (αk, k)-Unbreakable Graphs
We invoke Proposition 9 with c = k and let αk denote the value of s given by this invocation.
Due to this proposition, it is sufficient for us to give an FPT algorithm for k-Elimination
Distance to HF on (αk, k)-unbreakable graphs and that will be our goal in the rest of this
section.

We begin by recalling a straightforward enumeration algorithm to enumerate all minimal
HF -modulators of bounded size.

▶ Observation 11. There is an algorithm that runs in time dαk+knO(d) and either correctly
concludes that there is no HF -modulator of G of size at most αk + k or outputs a family
Z = {Z1, . . . , Zℓ} of at most dαk+k vertex sets comprising every minimal HF -modulator of
G of size at most αk + k.

A. Agrawal, L. Kanesh, F. Panolan, M. S. Ramanujan, and S. Saurabh 5:7

The above algorithm simply locates an induced subgraph of the given graph which is
isomorphic to a graph in F by brute force and then branches on the vertices in this subgraph.
We note that in the special case of F where F -free graphs are precisely the set of graphs of
degree at most some r, the exponent of n in the above algorithm can be made independent of
r since computing a forbidden structure, i.e., a vertex of degree at least r + 1, is polynomial-
time solvable. Applying this insight allows us to infer Corollary 2 by slightly modifying the
application of Observation 11 in the proof of Theorem 1.

In what follows (Lemma 12–Lemma 14), consider an (αk, k)-unbreakable graph G, and an
integer k such that (G, k) is a yes-instance of (αk, k)-Unbreakable Elimination Distance
to HF . For ease of presentation, we assume that G is a connected graph.

▶ Lemma 12. Let D = (X,Y, F, f : V (X) → V (F), g : C(G[Y]) → Lf(F)) be a (k,HF)-
decomposition of G. Then, the following properties hold:
1. G[Y] contains at most one connected component of size at least αk.
2. If G[Y] does not contain a connected component of size at least αk, then td(G) ≤ αk + k.
3. If td(G) > αk + k, then, G[Y] contains exactly one connected component of size at least

αk and |X| ≤ αk + k.

Proof. Consider the first statement. Suppose to the contrary that there are two connected
components C1, C2 ∈ C(G[Y]), such that |V (C1)| ≥ αk and |V (C2)| ≥ αk. Recall that the
set N(C1) is contained in a single root-to-leaf path in F , and hence has size at most k.
Formally, let g(C1) = u and notice that by the definition of (k,HF)-decomposition (Item
3 of Definition 4), N(C1) ⊆ V (PD

u). Also, since the depth of F is at most k, |V (PD
u)| ≤ k,

and hence |N(C1)| ≤ k. Then, the separation (N [C1], V (G) \ C1) is an (αk, k)-witnessing
separation, a contradiction to G being (αk, k)-unbreakable.

For the second statement, if G[Y] does not contain a connected component of size at
least αk, then indeed D is a (k,Hαk

)-decomposition of G, where Hαk
is the family of graphs

with at most αk vertices each. That is, the elimination distance of G to Hαk
is at most k.

Thus, by Observation 5, td(G) ≤ αk + k.
We now prove the third statement. From the previous two statements, we have that

G[Y] contains exactly one connected component of size at least αk. Let C⋆ be this unique
connected component of size at least αk. Now, suppose that |X| > αk + k. Let g(C⋆) = x.
Then, we have that S = NG(C⋆) ⊆ V (PD

x). Observe that |V (PD
x)| ≤ k and hence |S| ≤ k.

Let V1 = N [V (C⋆)], V2 = V (G) \ V (C⋆). Note that, (X \ S) ⊆ V2, therefore |V2| ≥ αk. We
have that, (V1, V2)-separation of order at most k in G and |V1|, |V2| ≥ αk. This contradicts
the assumption that G is (αk, k)-unbreakable graph. ◀

The above lemma allows us to assume that either the treedepth (and hence also the
treewidth) of the input graph is bounded by αk + k (in which case one can use Lemma 10
and Courcelle’s theorem [8] to solve the problem), or conclude that if (G, k) is a yes-instance,
then the set X is a HF -modulator of size at most αk + k. But, notice that X may not be a
minimal HF -modulator. In fact, this is where the difficulty lies. In the following two lemmas,
we assume that G has treedepth at least αk + k + 1 and present crucial structural properties
on which our main algorithm is based.

▶ Lemma 13. Let D = (X,Y, F, f : V (X) → V (F), g : C(G[Y]) → Lf(F)) be a (k,HF)-
decomposition of G. Moreover, suppose that td(G) > αk + k and let Z ⊆ X such that G− Z

is F-free. Let C⋆ be the unique connected component of G−X of size at least αk. Then, the
following hold:
1. There is a unique connected component of G− Z that contains V (C⋆).
2. V (G) \ V (C⋆) has size at most αk + k.

STACS 2021

5:8 An FPT Algorithm for Elimination Distance to Bounded Degree Graphs

Proof. As C⋆ is a connected component in G−X and Z ⊆ X, there is a unique connected
component in G−Z that contains V (C⋆). This proves the first statement. Now we prove the
second statement of the lemma. Let g(C⋆) = x. Then, we have that S = NG(C⋆) ⊆ V (PD

x).
Observe that |S| ≤ |V (PD

x)| ≤ k. Let V1 = N [V (C⋆)] and V2 = V (G) \ V (C⋆). For the sake
of contradiction, suppose that |V (G) \ V (C⋆)| > αk + k. Then, (V1, V2) is a separation in G

of order at most k and |V1 \ V2|, |V2 \ V1| ≥ αk. This contradicts the assumption that G is a
(αk, k)-unbreakable graph. ◀

▶ Lemma 14. Let D = (X,Y, F, f : V (X) → V (F), g : C(G[Y]) → Lf(F)) be a (k,HF)-
decomposition of G and let Z ⊆ X be a HF -modulator of G. Let C⋆ be the unique connected
component of G − X of size at least αk. Let v⋆ be an arbitrary vertex in C⋆ and let C
be the component of G − Z that contains v⋆. Let J ⊆ N(C) be an arbitrary set of size
min{k + 1, |N(C)|}. Let JC ⊆ V (C) be an arbitrary set of size at most |J | such that
N(JC) ⊇ J . Then, one of the following statements hold:
1. There is a leaf u ∈ Lf(F) such that J ⊆ V (P̂D

u). That is, the vertices in J lie on a single
root-to-leaf path in F .

2. JC ∩X ̸= ∅.
3. JC ̸⊆ V (C⋆).

Proof. Suppose to the contrary that none of these statements hold. That is, there are vertices
v1, v2 ∈ J such that vp is not a descendant of vq in F for distinct p, q ∈ {1, 2}, JC ∩X = ∅
and JC ⊆ V (C⋆). Since N(JC) ⊇ J and JC ⊆ V (C⋆), it follows that J ⊆ N(C⋆). Item 3 of
Definition 4 guarantees that J is contained in P̂D

g(C⋆), implying that out of v1 and v2, one is
the descendant of the other in F . This gives us a contradiction. ◀

We are now ready to present our algorithm for k-Elimination Distance to HF on
(αk, k)-unbreakable graphs.

▶ Lemma 15. k-Elimination Distance to HF on (αk, k)-unbreakable graphs can be solved
in time 2O((αk+k)2)nO(1).

Proof. Let (G, k) be the input. We first check if the treewidth of G is bounded by αk + k

using the algorithm of Bodlaender [2]. If yes, then we solve the problem using Courcelle’s
theorem. Suppose that this is not the case. Suppose that the input (G, k) is a yes-instance
of k-Elimination Distance to HF and let D = (X,Y, F, f : V (X) → V (F), g : C(G[Y]) →
Lf(F)) be a hypothetical (k,HF)-decomposition of G. Using Lemma 12, we may assume
that there is a unique component C⋆ in G[Y] that has size at least αk. Moreover, as the
treewidth of G is at least αk + k, the third statement of this lemma guarantees that X has
size at most αk + k. Our algorithm begins by guessing v⋆ and then uses Observation 11 to
guess a set Z ⊆ X that is a minimal HF -modulator of size at most αk + k. There are n
choices for v⋆ and dαk+k choices for Z. If the algorithm of Observation 11 concludes that a
HF -modulator of size at most αk + k does not exist, then the second statement of Lemma 13
is used to correctly conclude that the input is a no-instance.

It then calls upon a subroutine Alg-special that takes as input G, k and a set Ẑ of size at
most αk + k and either correctly concludes that there is a set X ⊇ Ẑ of size at most αk + k

that is a k-elimination distance modulator to HF , or correctly concludes that one does not
exist. Our main algorithm invokes Alg-special with input G, k and Ẑ := Z. In the rest of the
proof, we describe and analyze Alg-special.

Alg-special first checks whether |Ẑ| ≤ αk + k. If not, then it returns NO. Otherwise,
it locates the component C of G − Ẑ that contains v⋆ (and hence also contains V (C⋆))
and computes J and JC as described in Lemma 14. It then considers the following three
exhaustive possibilites and branches over all of them:

A. Agrawal, L. Kanesh, F. Panolan, M. S. Ramanujan, and S. Saurabh 5:9

(i) the vertices in J lie on a root-to-leaf path in F or
(ii) JC intersects X or
(iii) at least one vertex of JC is not contained in C⋆.

In Case (i), notice that |J | must be at most k since the depth of F is at most k. Hence, by
the definition of J , it must be the case that J = N(C). We now observe that without loss of
generality, C is disjoint from X. This is because C is F -free, N(C) ⊆ X and moreover, N(C)
lies on a root-to-leaf path in F . Thus, to solve the problem in Case (i), it is sufficient to check
for the existence of a set X such that X ⊆ V (G) \ V (C), X ⊇ Ẑ, X has size at most αk + k

and X is a k-elimination distance modulator to HF . However, since X ⊆ V (G) \ V (C), it
follows that X is contained in V (G)\V (C⋆), which has size at most αk +k (second statement
of Lemma 13). Therefore, the existence of X can be verified by going over all possible subsets
of X ⊆ V (G) \ V (C). This completes the description of the algorithm in Case (i).

To handle Case (ii), we recursively call Alg-special on input (G, k, Ẑ∪{v}) for each v ∈ JC

and return YES if at least one of the recursive calls return YES.
Suppose that Cases (i) and (ii) do not hold. We now handle Case (iii) as follows. We know

that for at least one vertex of JC , say, y⋆, the connected component of G[Y] containing y⋆ is
not the same as C⋆. Let Cy⋆ be this component. From the third statement of Lemma 12,
we have that exactly one component of G[Y] has size at least αk. Hence, Cy⋆ has size at
most αk. Moreover, N(Cy⋆) must have size at most k since it is contained in V (PD

g(Cy⋆)),
which has size at most k. Hence, we guess y⋆ ∈ JC , enumerate all (y⋆, αk, k)-connected sets
B and recursively call Alg-special on (G, k, Ẑ ∪ N(B)). Notice that since y⋆ and v⋆ lie in
the same component of G− Ẑ, N(B) contains at least one vertex from V (C) and therefore,
|Ẑ ∪N(B)| > |Ẑ|, indicating that we make progress towards the upper bound of αk + k on Ẑ.

The correctness follows from the fact that the branching is exhaustive (see Lemma 14).
Now we bound the running time of the algorithm Alg-special. Notice that when Ẑ > αk + k,
the algorithm immediately outputs NO. Moreover, notice that the algorithm only recurses
in Cases (ii) and (iii), where the size of Ẑ strictly increases. The number of recursive calls
made in either of these cases is dominated by Case (iii), which is upper bounded by 2O(αk+k)

(see Proposition 6). Hence, we conclude that the number of nodes in the branching tree is
bounded by 2O((αk+k)2). The running time at each node is upper bounded by the brute-force
solution in Case (i) (which is bounded by 2O((αk+k))nO(1)), plus the time to compute JC

and run the algorithm of Proposition 6 |JC | times. Hence, we conclude that the running
time at each node is bounded by 2O((αk+k))nO(1), giving us a bound of 2O((αk+k)2)nO(1) on
the running time of Alg-special. This completes the proof of the lemma. ◀

Lemma 15, Lemma 10 and Proposition 9 imply Theorem 1.

4 Discussions and future work

We believe that our non-uniform FPT algorithm can be made uniform by replacing the
black box invocation of the meta-theorem in Proposition 9 (which is the cause for non-
uniformity) with a hand-crafted application of the recursive understanding technique (see,
for example, [7]). Indeed, one of the main motivations behind this meta-theorem as given
by the authors of [19], is to simplify classification results by avoiding the tedious arguments
required by the recursive understanding approach.

Two further natural directions for further research on this topic arise. On the one hand,
for which other graph classes H is deciding elimination distance to H, fixed-parameter
tractable? A second direction is to investigate the parameterized complexity of various

STACS 2021

5:10 An FPT Algorithm for Elimination Distance to Bounded Degree Graphs

graphs problems parameterized by the elimination distance to F -free graphs and go beyond
the work of Bulian and Dawar for GI parameterized by elimination distance to bounded
degree graphs. The success of the distance-from-triviality programme indicates that the
study of parameterization of basic graph problems by elimination distance to well-studied
graph classes is a promising direction for future research.

References
1 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable

graphs. Journal of Algorithms, 12:308–340, 1991.
2 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.

SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.
3 Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau. Bridge-depth characterizes which

structural parameterizations of vertex cover admit a polynomial kernel. In Artur Czumaj,
Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, July 8–11, 2020, Saarbrücken, Germany (Virtual
Conference), volume 168 of LIPIcs, pages 16:1–16:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.16.

4 Adam Bouland, Anuj Dawar, and Eryk Kopczynski. On tractable parameterizations of graph
isomorphism. In Dimitrios M. Thilikos and Gerhard J. Woeginger, editors, Parameterized
and Exact Computation – 7th International Symposium, IPEC 2012, Ljubljana, Slovenia,
September 12–14, 2012. Proceedings, volume 7535 of Lecture Notes in Computer Science, pages
218–230. Springer, 2012. doi:10.1007/978-3-642-33293-7_21.

5 Jannis Bulian and Anuj Dawar. Graph isomorphism parameterized by elimination distance to
bounded degree. Algorithmica, 75(2):363–382, 2016. doi:10.1007/s00453-015-0045-3.

6 Jannis Bulian and Anuj Dawar. Fixed-parameter tractable distances to sparse graph classes.
Algorithmica, 79(1):139–158, 2017. doi:10.1007/s00453-016-0235-7.

7 Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal
Pilipczuk. Designing FPT algorithms for cut problems using randomized contractions. SIAM
J. Comput., 45(4):1171–1229, 2016. doi:10.1137/15M1032077.

8 Bruno Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite
graphs. Inform. and Comput., 85:12–75, 1990.

9 Bruno Courcelle. The expression of graph properties and graph transformations in monadic
second-order logic. In Handbook of graph grammars and computing by graph transformation,
Vol. 1, pages 313–400. World Sci. Publ, River Edge, NJ, 1997.

10 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

11 Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon. Measuring what matters:
A hybrid approach to dynamic programming with treewidth. In Peter Rossmanith, Pinar
Heggernes, and Joost-Pieter Katoen, editors, 44th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2019, August 26–30, 2019, Aachen, Germany,
volume 138 of LIPIcs, pages 42:1–42:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.MFCS.2019.42.

12 Eduard Eiben, Robert Ganian, and Stefan Szeider. Meta-kernelization using well-structured
modulators. In Thore Husfeldt and Iyad A. Kanj, editors, 10th International Symposium on
Parameterized and Exact Computation, IPEC 2015, September 16–18, 2015, Patras, Greece,
volume 43 of LIPIcs, pages 114–126. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.
doi:10.4230/LIPIcs.IPEC.2015.114.

13 Fedor V. Fomin and Yngve Villanger. Treewidth computation and extremal combinatorics.
Comb., 32(3):289–308, 2012. doi:10.1007/s00493-012-2536-z.

https://doi.org/10.1137/S0097539793251219
https://doi.org/10.4230/LIPIcs.ICALP.2020.16
https://doi.org/10.1007/978-3-642-33293-7_21
https://doi.org/10.1007/s00453-015-0045-3
https://doi.org/10.1007/s00453-016-0235-7
https://doi.org/10.1137/15M1032077
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.4230/LIPIcs.MFCS.2019.42
https://doi.org/10.4230/LIPIcs.IPEC.2015.114
https://doi.org/10.1007/s00493-012-2536-z

A. Agrawal, L. Kanesh, F. Panolan, M. S. Ramanujan, and S. Saurabh 5:11

14 Robert Ganian, Sebastian Ordyniak, and M. S. Ramanujan. Going beyond primal treewidth for
(M)ILP. In Satinder P. Singh and Shaul Markovitch, editors, Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February 4–9, 2017, San Francisco, Califor-
nia, USA, pages 815–821. AAAI Press, 2017. URL: http://aaai.org/ocs/index.php/AAAI/
AAAI17/paper/view/14272.

15 Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Combining treewidth and backdoors for
CSP. In Heribert Vollmer and Brigitte Vallée, editors, 34th Symposium on Theoretical Aspects
of Computer Science, STACS 2017, March 8–11, 2017, Hannover, Germany, volume 66 of
LIPIcs, pages 36:1–36:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.STACS.2017.36.

16 Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A structural view on parameterizing problems:
Distance from triviality. In Rodney G. Downey, Michael R. Fellows, and Frank K. H. A.
Dehne, editors, Parameterized and Exact Computation, First International Workshop, IWPEC
2004, Bergen, Norway, September 14–17, 2004, Proceedings, volume 3162 of Lecture Notes in
Computer Science, pages 162–173. Springer, 2004. doi:10.1007/978-3-540-28639-4_15.

17 Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse. Elimination distances, blocking
sets, and kernels for vertex cover. In Christophe Paul and Markus Bläser, editors, 37th
International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March
10–13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 36:1–36:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.STACS.2020.36.

18 Alexander Lindermayr, Sebastian Siebertz, and Alexandre Vigny. Elimination distance
to bounded degree on planar graphs. In Javier Esparza and Daniel Král’, editors, 45th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2020,
August 24–28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 65:1–65:12. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.65.

19 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Reducing CMSO
model checking to highly connected graphs. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9–13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 135:1–135:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ICALP.2018.135.

STACS 2021

http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14272
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14272
https://doi.org/10.4230/LIPIcs.STACS.2017.36
https://doi.org/10.4230/LIPIcs.STACS.2017.36
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.4230/LIPIcs.STACS.2020.36
https://doi.org/10.4230/LIPIcs.MFCS.2020.65
https://doi.org/10.4230/LIPIcs.ICALP.2018.135

A Unified Framework of Quantum Walk Search
Simon Apers !

Université libre de Bruxelles, Brussels, Belgium
CWI, Amsterdam, The Netherlands

András Gilyén !

California Institute of Technology, Pasadena, CA, USA

Stacey Jeffery !

QuSoft, CWI, Amsterdam, The Netherlands

Abstract

Many quantum algorithms critically rely on quantum walk search, or the use of quantum walks
to speed up search problems on graphs. However, the main results on quantum walk search are
scattered over different, incomparable frameworks, such as the hitting time framework, the MNRS
framework, and the electric network framework. As a consequence, a number of pieces are currently
missing. For example, recent work by Ambainis et al. (STOC’20) shows how quantum walks starting
from the stationary distribution can always find elements quadratically faster. In contrast, the
electric network framework allows quantum walks to start from an arbitrary initial state, but it only
detects marked elements.

We present a new quantum walk search framework that unifies and strengthens these frameworks,
leading to a number of new results. For example, the new framework effectively finds marked
elements in the electric network setting. The new framework also allows to interpolate between the
hitting time framework, minimizing the number of walk steps, and the MNRS framework, minimizing
the number of times elements are checked for being marked. This allows for a more natural tradeoff
between resources. In addition to quantum walks and phase estimation, our new algorithm makes
use of quantum fast-forwarding, similar to the recent results by Ambainis et al. This perspective also
enables us to derive more general complexity bounds on the quantum walk algorithms, e.g., based
on Monte Carlo type bounds of the corresponding classical walk. As a final result, we show how in
certain cases we can avoid the use of phase estimation and quantum fast-forwarding, answering an
open question of Ambainis et al.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Quantum complexity theory

Keywords and phrases Quantum Algorithms, Quantum Walks, Graph Theory

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.6

Related Version Full Version: https://arxiv.org/abs/1912.04233

Funding Simon Apers: Work done while being partially supported by the CWI-Inria International
Lab and the Dutch Research Council (NWO) through QuantERA ERA-NET Cofund project Quan-
tAlgo 680-91-034.
András Gilyén: Funding provided by Samsung Electronics Co., Ltd., for the project “The Com-
putational Power of Sampling on Quantum Computers”, as well as by the Institute for Quantum
Information and Matter, an NSF Physics Frontiers Center (NSF Grant PHY-1733907).
Stacey Jeffery: Supported by an NWO Veni Innovational Research Grant under project number
639.021.752, an NWO WISE Grant, and QuantERA project QuantAlgo 680-91-03. SJ is a CIFAR
Fellow in the Quantum Information Science Program.

© Simon Apers, András Gilyén, and Stacey Jeffery;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 6; pp. 6:1–6:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:smgapers@gmail.com
mailto:agilyen@caltech.edu
mailto:jeffery@cwi.nl
https://doi.org/10.4230/LIPIcs.STACS.2021.6
https://arxiv.org/abs/1912.04233
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 A Unified Framework of Quantum Walk Search

1 Introduction

Quantum walk search refers to the use of quantum walks to solve a search problem on a graph.
Such algorithms can often be thought of as speeding up a classical algorithm based on a random
walk, which makes them relatively easy to design, using only classical intuition. In the last
two decades, this topic has received a great deal of attention, with a rich literature attesting to
the progress on understanding quantum walk algorithmic techniques [1, 25, 3, 22, 19, 7, 13, 2]
and developing applications [11, 21, 16, 8, 9, 23, 17, 14, 18]. Despite this long line of progress,
the main results on quantum walk search lie somewhat scattered in different frameworks,
and a number of pieces are currently missing.

The quantum walk search frameworks that we consider are the hitting time framework
originally due to Szegedy [25], the MNRS framework due to Magniez, Nayak, Roland and
Santha [22], the electric network framework due to Belovs [7], and the controlled quantum
amplification framework by Dohotaru and Høyer [13]. We summarize these frameworks, as
well as the corresponding complexities, in Table 1. In this work we unify these different
frameworks, leading to a number of new results. For example, algorithms developed using
the electric network framework could only detect marked elements. Our unified approach
can be used to develop algorithms that find marked elements, while incurring at most a
logarithmic overhead. We also derive quantum speedups with respect to Monte Carlo type
bounds on the hitting times, as opposed to the usual Las Vegas type (expectation) bounds.

Our result bridges the conceptual gaps between the recent result of Ref. [2] and the
original approaches by Szegedy [25] and Krovi, Magniez, Ozols and Roland [19]. The latter
showed that combining quantum walks with phase estimation or time averaging allows
one to quadratically improve the hitting time of a single marked element, when starting
from the stationary distribution. Ambainis et al. [2] used a novel technique called quantum
fast-forwarding [6] to improve these results to yield quadratic speedups on the hitting time of
arbitrary sets. In this work we show that a similar result can be obtained using only simple
quantum walks, thereby proving a conjecture from [2].

Different Frameworks

While the frameworks we consider are similar, each has advantages and disadvantages. The
earliest hitting time framework was due to Szegedy [25], inspired by an algorithm of Ambainis
for element distinctness [1]. To illustrate this framework, imagine a classical algorithm that
begins by sampling a state from the stationary distribution π of some random walk, described
by a transition matrix P . The algorithm starts from a vertex distributed according to π,
and simulates the random walk. After every step of the walk it checks whether the current
vertex is “marked”. The algorithm terminates after O(HT(P,M)) steps, with HT(P,M) the
hitting time, i.e., the expected number of steps from π before a marked vertex in M , the
marked set, is reached. As such, the algorithm has a constant probability of having found a
marked vertex. To bound the complexity of this algorithm, let the setup cost S denote the
complexity of sampling from π, the update cost U denote the complexity of simulating a step
of the walk, and the checking cost C denote the complexity of checking whether a vertex is
marked. The complexity of the resulting algorithm is then of order S + HT(P,M)(U + C).
The hitting time framework essentially shows how to construct a quantum algorithm with
complexity

S +
√

HT(P,M)(U + C),

S. Apers, A. Gilyén, and S. Jeffery 6:3

where S, U and C are quantum analogues of S, U and C, respectively, denoting the costs in
terms of coherent quantum samples. One of the major drawbacks of the original framework
was that, while the quantum algorithm could detect the presence of a marked vertex, it
was not always guaranteed to find one. In the special case where there is only a single
marked element, Krovi, Magniez, Ozols, and Roland [19] showed how to also find the marked
element in the same complexity. To this end they introduced the concept of interpolated
walks. Combining interpolated walks with another technique called quantum fast-forwarding,
introduced in [6], Ref. [2] more recently showed how to also find a marked element in the
general case. We will refer to this final result as the hitting time framework.

The second framework that we consider is the MNRS framework introduced by Magniez,
Nayak, Roland and Santha [22]. This framework is always capable of finding a marked
vertex, but it can be understood as the quantum analogue of a slightly different random walk
algorithm. Consider a random walk that begins in the stationary distribution. Rather than
checking if the current vertex is marked after every step, the walk takes 1/δ steps between
checks, where δ is the spectral gap of P . Since 1/δ is approximately the mixing time of the
random walk, effectively this process repeatedly samples from the stationary distribution
until a marked vertex is found during a check. If ε is the probability that a vertex sampled
from the stationary distribution is marked, then a marked element is found with constant
probability after O(1/ε) samples.1 As such, the complexity of this classical algorithm is
S + 1

ε (1
δ U + C). The MNRS framework shows how to get a quantum algorithm for finding a

marked vertex with complexity

S + 1√
ε

(1√
δ

U + C
)
.

Since HT(P,M) ≤ 1
εδ , this requires at least as many steps of the walk as the hitting time

framework. On the other hand, HT(P,M) ≥ 1
ε , and so the number of checks can be

significantly smaller than in the hitting time framework. In fact, this amount of checks
performed in the MNRS framework is easily seen to be optimal by a lower bound on black-box
search.2

The third framework that we consider is the electric network framework by Belovs [7]
(published in [8]). This is a generalization of the hitting time framework, allowing for the
walker to start from an arbitrary initial distribution σ (such as a single vertex), rather than
necessarily the stationary distribution. If S(σ) is the complexity of sampling (coherently)
from σ, then the resulting quantum algorithm has complexity

S(σ) +
√
Cσ,M (U(σ) + C),

where U(σ) is the complexity of implementing a step of a slightly modified random walk.
The quantity Cσ,M (see Section 3.1) is a generalization of the commute time. When σ is
supported on a single vertices u, then Cσ,M equals the commute time from u to M , which
is the expected number of steps starting from u to reach some m ∈ M and then return to
u. When σ equals the stationary distribution then Cσ,M = HT (P,M), thus retrieving the
hitting time framework. The obvious advantage of the electric network framework is that it

1 This yields a trivial classical search algorithm with complexity (S + C)/ε which does not walk just uses
sampling. By using amplitude amplification this gives rise to a quantum algorithm with complexity
(S + C)/

√
ε. In case the cost of setup is much larger than that of checking, a random walk that uses the

setup only once can be advantageous, potentially leading to interesting quantum walk based speedups.
2 Consider for instance a quantum walk search algorithm on the complete graph on N vertices. Finding a

single marked element then requires Ω(
√

N) checks by the optimality of Grover’s search algorithm.

STACS 2021

6:4 A Unified Framework of Quantum Walk Search

Table 1 Comparison of different quantum walk frameworks.

Framework Complexity Finds?

Hitting time framework [25, 19, 2] S +
√

HT(P, M)(U + C) Yes

MNRS framework [22] S + 1√
ε
(1√

δ
U + C) Yes

Electric network framework [8, 7] S(σ) +
√

Cσ,M (U(σ) + C) No

Controlled quantum amplification [13] S +
√

HT(P, {m})U + 1√
ε
C Yes

does not necessarily require quantum samples from the stationary distribution of P , which
might be very costly, and can instead begin in a much easier to produce state. A major
disadvantage of this framework, however, is that the quantum algorithm only detects the
presence of marked vertices, as in the original hitting time framework, rather than actually
finding marked vertices.

Finally, we also consider the controlled quantum amplification framework by Dohotaru
and Høyer [13]. They use an extra qubit to control the quantum walk operator3, leading to
an additional degree of freedom. For the case of a unique marked element M = {m}, and
starting from a quantum sample of the stationary distribution, they achieve complexity

S +
√

HT(P, {m})U + 1√
ε

C,

which simultaneously has the lowest number of walk steps (matching the hitting time
framework) and the lowest number of checks (matching the MNRS framework). The clear
downside of this approach is that it is restricted to cases where there is a single marked
element, and one needs to start from the stationary distribution.

2 Contributions

2.1 Finding in the electric network framework
The electric network framework [7] generalizes the hitting time framework [25] by allowing for
arbitrary initial distributions. The downside is that algorithms in this framework only detect
rather than actually find marked vertices. On the other hand, the improved hitting time
framework of [2] shows how to actually find marked vertices in the hitting time framework,
provided that the walk starts from a quantum sample of the stationary distribution. Both
works hence provide complementary but incomparable improvements over the initial hitting
time framework.

In this work we fill this gap by generalizing the results of [2] to the electric network
setting, designing a quantum algorithm that not only detects but also finds marked elements
for any starting distribution σ. This improved version strictly generalizes the results of [2],
and it loses at most a log factor in the complexity compared to the original electric network
framework [7]. In particular, we show the following:

▶ Theorem 1 (Informal). For any distribution σ, there is a quantum walk search algorithm
that finds a marked element from M with constant probability in complexity (up to log factors)

S(σ) +
√
Cσ,M (U(σ) + C).

3 In fact they consider more general operators, but we will focus on their result about quantum walk
search.

S. Apers, A. Gilyén, and S. Jeffery 6:5

To analyze our new algorithm, we use techniques similar to those employed in [2] for
finding in the hitting time framework. However, there is an additional difficulty we must
overcome. The hitting time, HT(P,M), has a useful interpretation in terms of the classical
random walk – that is, with high probability, a marked vertex is encountered within the
first O(HT(P,M)) steps – and this fact is crucial in the analysis of the quantum algorithm
in [2]. In contrast, to the best of our knowledge, the generalized quantity Cσ,M is not well
understood. If σ is supported on a single vertex u, and M contains a single vertex, m,
then Cσ,M is exactly the commute time between u and m. This means that within the first
O(Cσ,M) steps, with high probability, a walker starting from u has visited m, and then
returned to u. For general σ and M , no such interpretation was known. We prove that, under
certain conditions, a similar interpretation holds: with high probability, a walker starting
from σ will hit M , and then return to the support of σ, within the first O(Cσ,M) steps. We
can ensure that the required conditions hold by using a slightly modified walk as in [7],
adding a weighted edge to each vertex in supp(σ). The new combinatorial understanding of
Cσ,M then enables us to employ a similar analysis to that of [2].

2.2 A Unified Framework

While the electric network framework is a generalization of the hitting time framework, the
MNRS framework is incomparable. Since HT(P,M) ≤ 1

εδ , the hitting time framework always
finds a marked vertex using a number of quantum walk steps (updates) less than or equal
to that used by the MNRS framework. On the other hand, HT(P,M) ≥ 1

ε , and hence the
MNRS framework may make fewer calls to the check operation. When the complexity of
implementing the checking operation is much larger than that of the update operation, the
MNRS framework may hence be preferable to both the hitting time framework and the
electric framework. The controlled quantum amplification framework achieves the best of
both worlds, but only for a unique marked element.

In this work we present a new framework that unifies all these individual approaches. For
the sake of intuition, we first describe this framework when the initial state π is used, which
can be seen as a unification between the hitting time framework, the MNRS framework and
the controlled quantum amplification framework. To this end, recall that the hitting time
framework is the quantum analogue of a random walk algorithm that takes HT(P,M) steps
of the random walk described by P , checking at each step if the current vertex is marked. In
contrast, the MNRS framework is the quantum analogue of a random walk algorithm that
takes 1

δ steps of P , thus approximately sampling from the stationary distribution π, and
then checks if the sampled vertex is marked. Since ε is the probability that a sampled vertex
is marked, this process is repeated 1

ε times.
We can define a natural interpolation between both classical algorithm. To this end, take

any t, and consider a classical random walk that repeatedly takes t steps, and then checks
whether the current vertex is marked. The expected number of iterations is then HT(P t,M),
the hitting time of the t-step random walk, described by transition matrix P t. This classical
algorithm finds a marked vertex in complexity S + HT(P t,M)(tU + C). We give a quantum
analogue of this algorithm, generalized to arbitrary4 initial distributions.

4 In case a the initial distribution σ differs from π we need to account for the complexity U(σ) of the
modified update operator, see the full version [5] for details.

STACS 2021

6:6 A Unified Framework of Quantum Walk Search

▶ Theorem 2 (Informal). For any t ∈ N and any distribution σ, there is a quantum walk
search algorithm that finds a marked element from M with constant probability in complexity
(up to log factors)

S(σ) +
√
Cσ,M (P t)(

√
tU(σ) + C).

This theorem and the corresponding quantum walk algorithm gives a common generaliza-
tion of all major previous quantum walk algorithms, and recovers their complexity in the
corresponding special cases (up to log factors). Indeed setting t = 1 we recover Theorem 1.
When σ = π, then Cσ,M (P t) = HT(P t,M), and hence we find the quantum analogue of the
aforementioned random walk algorithm. As such, when σ = π and t = 1, we recover the
hitting time framework. When σ = π and t = 1

δ , we recover the MNRS framework, since a
1/δ-step random walk essentially samples from π at every step, and so HT(P 1/δ,M) ∈ O

(1
ε

)
.

Setting t = εHT(P, {m}), we recover the controlled quantum amplification framework. To
see this, we use a result from [13, Section 6] which proves that HT(P t, {m}) = 1/ε if
t ∈ Ω(εHT(P, {m})). For multiple marked elements, and other intermediate values of t, we
obtain new types of algorithms. We summarize these special cases in the table below.

Table 2 The new quantum walk search framework.

New quantum walk search framework: S(σ) +
√

Cσ,M (P t)(
√

tU(σ) + C)

Hitting time framework σ = π, t = 1

MNRS framework σ = π, t = 1
δ

Electric network framework any σ, t = 1

Controlled quantum amplification σ = π, M = {m}, t = εHT(P, M)

An improved application: backtracking

Electric network based quantum walks have several applications, but arguably the most
well-known application is Montanaro’s quantum speedup for backtracking algorithms [23].
Montanaro’s algorithm uses quantum walk based search in order to find a marked vertex in a
bounded degree tree structure, with an unknown structure, starting from the root. The binary
tree corresponds to a search tree typically coming from a constraint satisfaction problem.
Since already partial assignments can lead to unsatisfiable constraints, the corresponding
parts of the search tree are pruned in order to increase performance. This means that the
graph on which the walk is performed is a priori unknown, but can be explored locally.

Since earlier versions of the electric network based walks did not always allow finding
a marked element, Montanaro needed to construct a modified algorithm that could always
find a marked vertex by directly exploiting the special tree structure. If the search tree has
size T , and the depth of the tree is at most n, then Montanaro’s algorithm finds a marked
vertex in time

Õ
(√

Tn3/2 log(n)
)
.

In order to understand the performance of our walk for finding a marked element, we
need to understand the quantities in Theorem 2. Since we have a simple graph, we can
assume that every edge has weight 1 initially, and Cr,M = TRr,M , where T is the number of
edges in the tree, and Rr,M is the effective resistance between the root r and the set marked
vertices M (cf. Section 3.1). Due to Theorem 2 (for more formal details, see [5]) we can

S. Apers, A. Gilyén, and S. Jeffery 6:7

find a marked element in complexity O
(√

TRr,M log(TRr,M) log log(TRr,M)
)

. If there is a
marked element (or solution), then there is a path of length ≤ n for m the root to a marked
element, which means that the effective resistance is Rr,M ≤ n. Also by using log(T) ∈ O(n)
we can see that a corollary of our results is that we can find a marked element in complexity

O
(√

T log(n)n
)
,

which gives a
√
n log(n) factor improvement over the result of Montanaro.

For comparison, we shall note that another improvement over Montanaro’s algorithm
was achieved by [15]. Their algorithm has complexity

O
(√

TRmax log4(kRr,M)
)
, (1)

where Rmax is the maximal finite (< ∞) effective resistance over subtrees of the graph, and
k is the number of marked vertices. If there are O(1) marked vertices, then the complexity
(1) can be bounded as Õ

(√
Tn log4(n)

)
, which is asymptotically even lower than our bound.

However, the interplay between Rmax, Rr,M , n and k suggest that our complexity will be
typically lower when there is a fair number (> 2 4

√
n log(n)) of marked vertices.

Finally, we note that another improvement over Montanaro’s algorithm was suggested
by Ambainis and Kokainis [4], employing a clever binary search on the size of the search
subtrees T in order to improve the overall runtime. This improvement relies on adaptively
modifying the search graph, rather than optimizing the walk on a fixed graph, and therefore
this approach does not directly fit into our framework.

2.3 Bounds based on Monte Carlo type guarantees of the classical walk
We study quantum walk speedups with respect to Monte Carlo type hitting time bounds
of the corresponding classical random walks. Monte Carlo type hitting times can be upper
bounded in terms of the Las Vegas hitting time of the same walk, but can be also substantially
smaller (see the full version, [5], for an explicit example). Therefore, a quadratic speedup
in terms of Monte Carlo type hitting times is preferable compared to the usual Las Vegas
bounds.

Monte Carlo type hitting time bounds and quadratic speedups for the detection problem
were studied in [20], however, to our knowledge quadratic speedups for finding a marked
vertex were only established for vertex-transitive graphs with a unique marked vertex. Using
our techniques we are able to show that a quadratic speedup (up to a log factor) for finding
a marked vertex can be always achieved for any random walk on undirected weighted graphs.

We define the Monte Carlo hitting time for probability p, denoted HTp(P,M), as the
minimum number of time-steps t, such that P visits a marked vertex within the first t steps
with probability at least p, when started from the stationary distribution π.
▶ Theorem 3. Given an upper bound HTp(P,M) ≤ HTp on the Monte Carlo hitting time
of a reversible Markov Chain P , there is a quantum algorithm that finds a marked vertex
with high probability in complexity√

log(HTp)
p

(
S +

√
HTp log(log(HTp)/p)(U + C)

)
.

Versions of the above theorem including the trade-off analogous to Theorem 2 also easily
follow from our framework. Additionally, in the full version, we also prove some related
Monte Carlo type bounds for the general case when we start in an arbitrary distribution σ

as opposed to the stationary.

STACS 2021

6:8 A Unified Framework of Quantum Walk Search

2.4 Simpler algorithm for hitting time and electric network framework
Similar to the recent work by Ambainis et al. [2], our new quantum algorithm makes use
of a somewhat involved technique called quantum fast-forwarding. For the case t = 1
(recovering the hitting time and electric network framework), we show that our algorithm can
be much simplified while maintaining essentially the same complexity guarantees. The simple
algorithm works by (classically) choosing random interpolation parameters, and applying
the interpolated quantum walk operator for an appropriately chosen (random) number of
steps, starting from |

√
σ⟩, the quantum state whose amplitudes are the square roots of the

probabilities of σ. It was already conjectured in [2] that such a simple approach would work
(for the special case of the hitting time framework). In this work we prove that this simple
algorithm indeed finds a marked vertex, and incurs at most a logarithmic overhead over the
complexity of the more involved fast-forwarding algorithm. Interestingly, our proof relies on
the proof of correctness of the fast-forwarding algorithm.

2.5 Related independent work
While finalizing this manuscript, the authors became aware of the concurrent and independent
work of Stephen Piddock, who developed an alternative refinement of Belovs’ results for
finding marked elements in the electric network framework [24].

3 Summary of technical contributions

We now give a high-level summary of some of our technical results. For the sake of intuition,
we suppose that the random walk P is symmetric – this assumption is not necessary for our
results, but serves to simplify the overview of this section. For the fully detailed statements
and proofs of our results, see the technical version of this article [5].

3.1 Finding in the electric network framework
The electric network framework is almost a strict generalization of the hitting time framework,
except that in the hitting time framework we know how to not only detect, but actually
find a marked vertex, whereas the electric network framework only detects the presence
of a marked vertex. Our first contribution is to show how to find in the electric network
framework. The resulting framework thus generalizes both the hitting time and electric
network frameworks.

Interpolated walks

Letting P be the transition matrix of a random walk, and s ∈ [0, 1] an interpolation parameter,
we define P (s) as the transition matrix of the interpolated walk – the random walk that
acts as P , except that when a marked vertex is encountered, with probability s, the walker
remains in that vertex, and with probability 1 − s, the walker transitions according to P .
That is, if we let PM denote the absorbing walk that behaves as P , except that for any vertex
u ∈ M , a walker at u remains there with probability 1, then we can write5

P (s) = (1 − s)P + sPM .

5 Note that even if P was symmetric, the interpolated walk P (s) can be non-symmetric, however it is
reversible. Fortunately, our results generalize to any reversible (non-symmetric) Markov Chain as well.

S. Apers, A. Gilyén, and S. Jeffery 6:9

Note that if s is sufficiently close to 1, after 10HT(P,M) steps of P (s) starting from the
stationary distribution π, the walker will be in a marked vertex with high probability. In other
words, letting ΠM denote the orthogonal projector onto marked vertices, ΠMP (s)10HT(P,M)π

will be large in ℓ1-norm.
If U(P) is the complexity of taking one step of the random walk P , and C is the complexity

of checking if a vertex is marked, then one step of the random walk P (s) can be implemented
in complexity U(P (s)) = O(U(P) + C).

Quantum fast-forwarding and finding in the hitting time framework

The original hitting time framework also suffered from the drawback that it could detect but
not find marked vertices, until this was recently improved in Ref. [2]. This improvement was
based on a technique called quantum fast-forwarding [6], which shows how, for a symmetric
random walk P , to map any state |ψ⟩ to within ξ-distance of some state of the form
|0⟩P t|ψ⟩ + |1⟩|γ⟩, where ∥|γ⟩∥2 = 1 − ∥P t|ψ⟩∥2, in complexity O

(√
t log 1

ξ U(P)
)

.
The algorithm of Ref. [2] first checks if the initial state is marked, then applies fast-

forwarding to the absorbing walk P (s) for some appropriately chosen s, using |
√
π⟩ as the

initial state, resulting in a state of the form |0⟩P (s)t(I− ΠM)|
√
π⟩ + |1⟩|γ⟩ for t ≈ HT(P,M),

using roughly
√

HT(P,M) calls to the update operator for P (s), for a total cost of about√
tU(P (s)) ≈

√
HT(P,M)(U(P) + C). The probability that measuring this state results in a

marked vertex is ∥ΠMP (s)t(I − ΠM)|
√
π⟩∥2. Ref. [2] lower bounds this probability by the

square of the probability that a random walk, beginning from the distribution π, is in a
marked vertex after t steps, and then in an unmarked vertex again after t′ steps, for any
t′ > t. That is, for all t′ > t:∥∥ΠMP (s)t(I − ΠM)|

√
π⟩

∥∥2 ≥ PrY0∼π(Y0 /∈ M,Yt ∈ M,Yt′ ̸∈ M)2
. (2)

Then all that remains is to prove a statement about the classical random walk: for some
appropriately chosen s, and some value t′ > t, with high probability, after t ≈ HT(P,M)
steps, a random walker is in a marked vertex – easy to achieve by taking s to be sufficiently
close to 1 – and after t′ steps, the walker is not in a marked vertex – necessitating that s is
not too close to 1. The proof of this, while not straightforward, relies only on combinatorial
arguments about the classical random walk.

The electric network framework

A similar statement to Equation (2) can be proven for the electric network framework, but
utilizing it requires significantly more work in understanding the classical random walk.

The electric network framework can be understood in analogy to a classical random walk
that begins in an arbitrary distribution σ, and walks until a marked vertex is found. The
quantum analogue of this process begins in the quantum state |

√
σ⟩ =

∑
u

√
σu|u⟩, and takes√

Cσ,M steps of a random walk P ′(s) that is similar to an interpolated walk P (s), except
that each vertex u ∈ supp(σ) has an extra edge, connecting it to a new degree-1 vertex, with
weight proportional to σu, see Figure 1 (and the full version, [5], for more explanation).

Using fast-forwarding, we can find a marked vertex with probability ∥ΠMP ′(s)t|
√
σ⟩∥2,

in complexity S(σ) +
√
t(U + C) as in [2]. Analogous to Equation (2), we can show that for

any t′ > t, this probability is lower bounded by:∥∥ΠMP ′(s)t|
√
σ⟩

∥∥2 ≥ PrY0∼σ(Yt ∈ M,Yt′ ∈ supp(σ))2
. (3)

STACS 2021

6:10 A Unified Framework of Quantum Walk Search

∝ σu

Figure 1 Modified graph.

Taking t ≈ Cσ,M to be roughly the commute time, we get an algorithm with the right
complexity, and it remains only to show that there is some appropriate choice of s, and some
value t′ > t such that with high probability, a random walk beginning in the distribution σ

is in a marked state after Cσ,M , and has returned to the support of σ after t′ steps. This
requirement on returning to the support of σ sheds a light on why the commute time is the
relevant quantity for the analysis of the quantum walk. Although, the commute time has
some intuitive combinatorial meaning in some special cases, for example when σ is supported
on a single vertex, in the general case it is difficult to grasp the intuitive interpretation of
Cσ,M . Our main technical contribution here is to give such an interpretation, that can then
be used to lower bound the expression in Equation (3).

Interpretation of Cσ,M

A weighted graph can be thought of as modeling an electrical network, where an edge e of
weight we represents a resistor with resistance 1/we (or equivalently, conductance we). The
effective resistance Rσ,M denotes the minimum energy of any unit flow entering the graph
with current σu at vertex u, and exiting the graph through the vertices of M . Then if W
denotes the total weight of all edges in the graph, we define Cσ,M = WRσ,M . To motivate
this perhaps strange-seeming definition, we highlight two special cases:

When σ = π is the stationary distribution of the graph, Cσ,M = HT(P,M).
When σ is supported on a unique vertex s, and M = {t} is a singleton, then Cσ,M is the
commute time between s and t, or the expected number of steps starting from s to reach
t and then return to s.

However, to the best of our knowledge, no such operational interpretation of Cσ,M in the
general case is known. In order to lower bound the expression in Equation (3), we would
like to be able to say that, for appropriately chosen parameter s, with high probability, after
t ≈ Cσ,M steps, a random walker beginning in distribution σ will be in a marked vertex, and
after sufficiently many more steps, the random walker will have returned to the support of σ.
In the special cases outlined above, there is intuitive reason to believe that such a statement
should hold, but in the general case, there is no interpretation that would lead us to believe
that such a statement is true.

We show that, under certain assumptions (that are always satisfied for the modified
graphs described above, cf. Figure 1), we can interpret Cσ,M as a kind of commute time
between the support of σ and the marked set M . In particular, in the full version, [5], we
prove the following, which is sufficient to give a lower bound on Equation (3):

▷ Claim 4 (Informal). Whenever σ is proportional to π on its support, and π(supp(σ)) ≈ 1
Cσ,M

,
with high probability, a random walk starting from σ first hits M and then returns to supp(σ)
within 10Cσ,M steps.

S. Apers, A. Gilyén, and S. Jeffery 6:11

The condition that σ be proportional to π on its support – that is, there exists α such
that σu = απu whenever σu ̸= 0 – may seem strong, but we can satisfy it by modifying
the graph by adding an edge to each u ∈ supp(σ) to a new vertex of degree 1, with edge
weight proportional to σu. If we call this new vertex u (and appropriately rename the vertex
formerly called u), then this change has negligible impact on the dynamics of a random walk
starting from σ, but it ensures that the stationary probability of each of these new vertices
u is proportional to σu. This graph modification is already made in the original electric
network framework, so we automatically satisfy the first condition required for the claim.
The second condition is satisfied by appropriately scaling the weights of the new edges.

3.2 A unified framework
Once we show how to find in the electric network framework, it is a strict generalization
of the hitting time framework. However, it is still incomparable to the MNRS framework.
Our next contribution is to give a new framework that captures both the MNRS framework
and the electric network framework as a special case, and also recovers the main application
of the controlled quantum amplification framework regarding the optimized checking cost.

The main idea of the unified framework is to apply the electric framework machinery,
but to the Markov chain that performs t-steps of P at once. The main technical challenge is
to perform t consecutive update steps of the walk with using the update unitary only about√
t times. This can be performed using fast-forwarding, but we need to be careful, because

after fast-forwarding we still need to apply the modifications to the walk required by the
algorithm for the electric network framework.

Fortunately, we are able to show that these operators, namely interpolating the walk
and modifying the graph on the support of σ, are compatible with fast-forwarding, if one
considers a suitable and general-enough notion of the update operation. To show this we need
to view the quantum walk operators from an angle which is different from the perspective
of earlier quantum walk results, that did not consider fast-forwarding. To be able to grasp
and extract the essential features of the update operator, we view the update operator as a
block-encoding of the Markov chain (or more precisely its discriminant matrix). Then we
describe the effects of the desired modifications using this formalism and then show how to
implement them.

3.3 A plain quantum walk algorithm for finding marked elements
As we described above, our main quantum walk algorithm and its analysis relies on the
use of quantum fast-forwarding. This makes it more complicated than the original “plain”
quantum walk algorithms in e.g. [25, 22, 7]. We nevertheless show that the correctness of
our algorithm implies the correctness of a much simpler algorithm, at least in the regimes
corresponding to the hitting time framework and the electric network framework. Namely,
if we simply pick a random interpolation parameter, run the corresponding plain quantum
walk for at most about

√
Cσ,M steps, and finally measure the walk register, then we find a

marked element with constant probability. This algorithm was proposed in [2, Section 4] for
the hitting time framework, but was only conjectured to be correct.

To derive this result, we literally “dissect” the more complicated fast-forwarding algorithm
by considering an explicit construction of the quantum fast-forwarding routine based on
the linear combination of unitaries technique [12, 10]. The structural properties of this
quantum circuit then imply that the simpler routine should also succeed. Indeed, quantum
fast-forwarding can be represented as a convex combination of plain quantum walk steps,

STACS 2021

6:12 A Unified Framework of Quantum Walk Search

which makes it equivalent to a stochastic algorithm which picks a random iteration number t
according to the convex combination coefficients, and then runs the plain quantum walk for
t steps. To illustrate this, in the full version, Ref. [5], we give a proof of the correctness of
the fast-forwarding technique, and analyze the structure of the constructed circuit.

3.4 Open questions

Our unified framework resolves most open questions about quantum walk based search,
and recovers essentially all major prior upper bounds (up to log factors). However, there
could be room for improving the “Monte Carlo type” bounds in the case of arbitrary initial
distributions. Also in the case of arbitrary initial distributions we lack a good combinatorial
intuition for the quantity Cσ,M appearing in our upper bounds. Finally, we lack a good
general lower bound matching our upper bounds in terms of U and C simultaneously.

References

1 Andris Ambainis. Quantum walk algorithm for element distinctness. In Proceedings of the
45th IEEE Symposium on Foundations of Computer Science (FOCS), pages 22–31, 2004.
arXiv:quant-ph/0311001, doi:10.1109/FOCS.2004.54.

2 Andris Ambainis, András Gilyén, Stacey Jeffery, and Martins Kokainis. Quadratic speedup
for finding marked vertices by quantum walks. In Proceedings of the 52nd ACM Symposium
on the Theory of Computing (STOC), page 412–424, 2020. arXiv:1903.07493, doi:10.1145/
3357713.3384252.

3 Andris Ambainis, Julia Kempe, and Alexander Rivosh. Coins make quantum walks faster.
In Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1099–1108, 2005. arXiv:quant-ph/0402107.

4 Andris Ambainis and Martins Kokainis. Quantum algorithm for tree size estimation, with
applications to backtracking and 2-player games. In Proceedings of the 49th ACM Symposium
on the Theory of Computing (STOC), page 989–1002, 2017. arXiv:1704.06774, doi:10.1145/
3055399.3055444.

5 Simon Apers, András Gilyén, and Stacey Jeffery. A unified framework of quantum walk search,
2019. arXiv:1912.04233.

6 Simon Apers and Alain Sarlette. Quantum fast-forwarding: Markov chains and graph property
testing. Quantum Information and Computation, 19(3&4):181–213, 2019. arXiv:1804.02321,
doi:10.26421/QIC19.3-4.

7 Aleksandrs Belovs. Quantum walks and electric networks, 2013. arXiv:1302.3143.
8 Aleksandrs Belovs, Andrew M. Childs, Stacey Jeffery, Robin Kothari, and Frédéric Magniez.

Time-efficient quantum walks for 3-distinctness. In Proceedings of the 40th International
Colloquium on Automata, Languages, and Programming (ICALP), pages 105–122, 2013.
doi:10.1007/978-3-642-39206-1_10.

9 Daniel J. Bernstein, Stacey Jeffery, Tanja Lange, and Alexander Meurer. Quantum algorithms
for the subset-sum problem. In Proceedings of the 5th International Conference on Post-
Quantum Cryptography (PQCrypto), pages 16–33, 2013. doi:10.1007/978-3-642-38616-9_2.

10 Dominic W. Berry, Andrew M. Childs, and Robin Kothari. Hamiltonian simulation with
nearly optimal dependence on all parameters. In Proceedings of the 56th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 792–809, 2015. arXiv:1501.01715,
doi:10.1109/FOCS.2015.54.

11 Harry Buhrman and Robert Špalek. Quantum verification of matrix products. In Proceedings
of the 17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 880–889, 2006.
arXiv:quant-ph/0409035.

http://arxiv.org/abs/quant-ph/0311001
https://doi.org/10.1109/FOCS.2004.54
http://arxiv.org/abs/1903.07493
https://doi.org/10.1145/3357713.3384252
https://doi.org/10.1145/3357713.3384252
http://arxiv.org/abs/quant-ph/0402107
http://arxiv.org/abs/1704.06774
https://doi.org/10.1145/3055399.3055444
https://doi.org/10.1145/3055399.3055444
http://arxiv.org/abs/1912.04233
http://arxiv.org/abs/1804.02321
https://doi.org/10.26421/QIC19.3-4
http://arxiv.org/abs/1302.3143
https://doi.org/10.1007/978-3-642-39206-1_10
https://doi.org/10.1007/978-3-642-38616-9_2
http://arxiv.org/abs/1501.01715
https://doi.org/10.1109/FOCS.2015.54
http://arxiv.org/abs/quant-ph/0409035

S. Apers, A. Gilyén, and S. Jeffery 6:13

12 Andrew M. Childs and Nathan Wiebe. Hamiltonian simulation using linear combinations
of unitary operations. Quantum Information and Computation, 12(11&12):901–924, 2012.
arXiv:1202.5822, doi:10.26421/QIC12.11-12.

13 Cǎtǎlin Dohotaru and Peter Høyer. Controlled quantum amplification. In Proceedings of the
44th International Colloquium on Automata, Languages, and Programming (ICALP), pages
18:1–18:13, 2017. doi:10.4230/LIPIcs.ICALP.2017.18.

14 Alexander Helm and Alexander May. Subset sum quantumly in 1.17n. In Proceedings of the
13th Conference on the Theory of Quantum Computation, Communication, and Cryptography
(TQC), pages 5:1–5:15, 2018. doi:10.4230/LIPIcs.TQC.2018.5.

15 Michael Jarret and Kianna Wan. Improved quantum backtracking algorithms using effective
resistance estimates. Physical Review A, 97(2):022337, 2018. arXiv:1711.05295, doi:10.
1103/PhysRevA.97.022337.

16 Stacey Jeffery, Robin Kothari, and Frédéric Magniez. Nested quantum walks with quantum
data structures. In Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1474–1485, 2012. arXiv:1210.1199.

17 Ghazal Kachigar and Jean-Pierre Tillich. Quantum information set decoding algorithms. In
Proceedings of the 8th International Conference on Post-Quantum Cryptography (PQCrypto),
pages 69–89, 2017. arXiv:1703.00263, doi:10.1007/978-3-319-59879-6_5.

18 Elena Kirshanova. Improved quantum information set decoding. In Proceedings of the 9th
International Conference on Post-Quantum Cryptography (PQCrypto), pages 507–527, 2018.
arXiv:1808.00714, doi:10.1007/978-3-319-79063-3_24.

19 Hari Krovi, Frédéric Magniez, Maris Ozols, and Jérémie Roland. Quantum walks can find
a marked element on any graph. Algorithmica, 74(2):851–907, 2016. arXiv:1002.2419,
doi:10.1007/s00453-015-9979-8.

20 Frédéric Magniez, Ashwin Nayak, Peter C. Richter, and Miklos Santha. On the hitting times of
quantum versus random walks. Algorithmica, 63(1):91–116, 2012. Earlier version in SODA’09.
arXiv:0808.0084 doi:10.1007/s00453-011-9521-6.

21 Frédéric Magniez, Miklos Santha, and Mario Szegedy. Quantum algorithms for the triangle
problem. SIAM Journal on Computing, 37(2):413–427, 2007. arXiv:quant-ph/0310134,
doi:10.1137/050643684.

22 Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha. Search via quantum
walk. SIAM Journal on Computing, 40(1):142–164, 2011. Earlier version in STOC’07.
arXiv:quant-ph/0608026 doi:10.1137/090745854.

23 Ashley Montanaro. Quantum-walk speedup of backtracking algorithms. Theory of Computing,
14(15):1–24, 2018. arXiv:1509.02374, doi:10.4086/toc.2018.v014a015.

24 Stephen Piddock. Quantum walk search algorithms and effective resistance, 2019. arXiv:
1912.04196.

25 Márió Szegedy. Quantum speed-up of Markov chain based algorithms. In Proceedings of
the 45th IEEE Symposium on Foundations of Computer Science (FOCS), pages 32–41, 2004.
arXiv:quant-ph/0401053, doi:10.1109/FOCS.2004.53.

STACS 2021

http://arxiv.org/abs/1202.5822
https://doi.org/10.26421/QIC12.11-12
https://doi.org/10.4230/LIPIcs.ICALP.2017.18
https://doi.org/10.4230/LIPIcs.TQC.2018.5
http://arxiv.org/abs/1711.05295
https://doi.org/10.1103/PhysRevA.97.022337
https://doi.org/10.1103/PhysRevA.97.022337
http://arxiv.org/abs/1210.1199
http://arxiv.org/abs/1703.00263
https://doi.org/10.1007/978-3-319-59879-6_5
http://arxiv.org/abs/1808.00714
https://doi.org/10.1007/978-3-319-79063-3_24
http://arxiv.org/abs/1002.2419
https://doi.org/10.1007/s00453-015-9979-8
https://arxiv.org/abs/0808.0084
https://doi.org/10.1007/s00453-011-9521-6
http://arxiv.org/abs/quant-ph/0310134
https://doi.org/10.1137/050643684
https://arxiv.org/abs/quant-ph/0608026
https://doi.org/10.1137/090745854
http://arxiv.org/abs/1509.02374
https://doi.org/10.4086/toc.2018.v014a015
http://arxiv.org/abs/1912.04196
http://arxiv.org/abs/1912.04196
http://arxiv.org/abs/quant-ph/0401053
https://doi.org/10.1109/FOCS.2004.53

Achieving Anonymity via Weak Lower Bound
Constraints for k-Median and k-Means
Anna Arutyunova !

Universität Bonn, Germany

Melanie Schmidt !

Universität Köln, Germany

Abstract
We study k-clustering problems with lower bounds, including k-median and k-means clustering with
lower bounds. In addition to the point set P and the number of centers k, a k-clustering problem
with (uniform) lower bounds gets a number B. The solution space is restricted to clusterings where
every cluster has at least B points. We demonstrate how to approximate k-median with lower bounds
via a reduction to facility location with lower bounds, for which O(1)-approximation algorithms are
known.

Then we propose a new constrained clustering problem with lower bounds where we allow points
to be assigned multiple times (to different centers). This means that for every point, the clustering
specifies a set of centers to which it is assigned. We call this clustering with weak lower bounds. We
give an 8-approximation for k-median clustering with weak lower bounds and an O(1)-approximation
for k-means with weak lower bounds.

We conclude by showing that at a constant increase in the approximation factor, we can restrict
the number of assignments of every point to 2 (or, if we allow fractional assignments, to 1 + ϵ). This
also leads to the first bicritera approximation algorithm for k-means with (standard) lower bounds
where bicriteria is interpreted in the sense that the lower bounds are violated by a constant factor.

All algorithms in this paper run in time that is polynomial in n and k (and d for the Euclidean
variants considered).

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases Clustering with Constraints, lower Bounds, k-Means, Anonymity

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.7

Related Version Full Version: https://arxiv.org/abs/2009.03078 [7]

Funding Anna Arutyunova: DFG grant RO 5439/1-1.
Melanie Schmidt: DFG grant SCHM 2765/1-1.

Acknowledgements We thank anonymous reviewers for their detailed comments to a previous
version.

1 Introduction

We study k-clustering problems with lower bound constraints. Imagine the following approach
to publish a reduced version of a large data set: Partition the data into clusters of similar
objects, then replace every cluster by one (weighted) point that represents it best. Publish
these weighted representatives. For example, it is a fairly natural approach for data that can
be modeled as vectors from Rd to replace a data set by a set of mean vectors, where every
mean vector represents a cluster. When representing a cluster by one point, the mean vector
minimizes the squared error of the representation. This is a common use case of k-means
clustering.

© Anna Arutyunova and Melanie Schmidt;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 7; pp. 7:1–7:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arutyunova@informatik.uni-bonn.de
mailto:mschmidt@cs.uni-koeln.de
https://doi.org/10.4230/LIPIcs.STACS.2021.7
https://arxiv.org/abs/2009.03078
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Achieving Anonymity via Weak Lower Bound Constraints for k-Median and k-Means

In this paper, we ask the following: If we want to publish the representatives, it would be
very convenient if the clusters were of sufficient size to ensure a certain level of anonymity
of the individual data points that they represent. Can we achieve this, say, in the case of
k-means clustering or for the related k-median problem?

Using clustering with lower bounds on the cluster sizes to achieve anonymity is an idea
posed by Aggarwal et al. [3]. They introduce it in the setting of radii-based clustering, and
define the r-gather problem: Given a set of points P from a metric space, find a clustering
and centers for the clusters such that the maximum distance between a point and its center is
minimized and such that every cluster has at least r points. They also define the (k, r)-center
problem which is the same problem as the r-gather problem except that the number of
clusters is also bounded by the given number k. So the (k, r)-center problem takes the
k-center clustering objective but restricts the solution space to clusterings where every cluster
has at least r points. Aggarwal et al. [3] give a 2-approximation for both problems.

We pose the same question, but for sum-based objectives such as k-median and k-means.
Here instead of the maximum distance between a point and its center, the (squared) distances
are added up for all points. For a set of points P from a metric space and a number k, the
k-median problem is to find a clustering and centers such that the sum of the distances
of every point to its closest center is minimized. For k-means clustering, the distances are
squared, the metric is usually Euclidean, and the centers are allowed to come from all of Rd.
Now for k-median/k-means clustering with lower bounds, the situation differs in two aspects.
We are given an additional parameter B and solutions now satisfy the additional constraint
that every cluster has at least B points1. To achieve this, points are no longer necessarily
assigned to their closest center but the solution now involves an assignment function of points
to centers. The objective then is to minimize the (squared) sum of distances from every
point to its assigned center. To the best of the authors’ knowledge, k-median and k-means
with lower bounds have not been studied, but for k-median, an O(1)-approximation follows
from known work (see below).

For the related (also sum-based) facility location problem, finding solutions with lower
bounds on the cluster sizes appeared in very different contexts. Given sets P and F from a
finite metric space and opening costs for the points in F , the facility location problem asks to
partition P into clusters and to assign a center from F to each cluster such that the sum of
the distances of every point to its cluster plus the sum of the opening costs of open centers
is minimized. For facility location with lower bounds, an additional parameter B is given
and every cluster has to have at least B points. Karger and Minkoff [20] as well as Guha,
Meyerson and Munagala [13] use relaxed versions of facility location with (uniform) lower
bounds as subroutines for solving network design problems. This inspired the seminal work
of Svitkina [26], who gives a constant-factor approximation algorithm for the facility location
problem with (uniform) lower bounds. Ahmadian and Swamy [5] improve the approximation
ratio to 82.6. Ahmadian and Swamy [6] state that the algorithm by Svitkina can be adapted
for k-median by adequately replacing the first reduction step at the cost of an increase in
the approximation factor.

It is often the case that restricting the number of clusters to k instead of having facility
costs makes the design of approximation algorithms much more cumbersome, in particular
when constraints are involved. For example, the related problem of finding a facility location

1 In the introduction, we stick to uniform lower bounds since this is what we want for anonymity. In the
technical part, we also discuss non-uniform lower bounds.

A. Arutyunova and M. Schmidt 7:3

B − 1 B − 1∆

Figure 1 On the difference between lower-bounded clustering and weakly lower-bounded clustering.

solution where every cluster has to satisfy an upper bound, usually referred to as capacitated
facility location, can be 3-approximated (see Aggarwal et al [2]), but finding a constant-factor
approximation for capacitated k-median clustering is a long standing open problem [1, 16].

We demonstrate that the situation for lower bounds is different. By a relatively straight-
forward approach that we borrow from the area of approximation algorithms for hierarchical
clustering, we show that approximation algorithms for facility location with lower bounds
can be converted into approximation algorithms for k-median with lower bounds (at the cost
of an increase in the approximation ratio), and this reduction works also for more general
k-clustering problems including k-means. This leaves us with two challenges:
1. The resulting approximation algorithm has a very high approximation ratio.
2. For k-means clustering with lower bounds, no bicriteria or true approximation algorithm

is known, and the results for standard facility location with lower bounds do not extend
to the case for squared Euclidean distances: Both known algorithms for facility location
use the triangle inequality an uncontrolled number of times to bound the cost of multiple
reassignment steps. Thus the relaxed triangle inequality is not sufficient, as the resulting
bound would depend on this number. Also the bicriteria algorithms by Karger and
Minkoff [20] and Guha, Meyerson and Munagala [13] require repeated application of the
triangle inequality. Thus, k-means with lower bounds needs a new technique.

To tackle these challenges, we define a new variation of lower-bounded clustering that we
call weakly lower-bounded k-clustering. Here we allow points to be allocated multiple times.
However a point may not be assigned more than once to the same center. This means that
our ‘clustering’ is not a partitioning into subsets, but consists of not necessarily disjoint
clusters (whose union is P). Each cluster has to respect the lower bound. To explain this
idea, consider Figure 1. There are two locations with B − 1 points each, and the distance
between the two locations is ∆. For clustering with a lower bound of B, we can only open
one center, which results in a clustering cost of (B − 1)∆ for k-median (and Ω(B∆2) for
k-means). For clustering with weak lower bound B, we allow to assign points multiple times
(but only to different centers). For each allocation, we pay the connection cost. In Figure 1,
this allows us to open two centers while assigning one point from every location to the other
location. This costs 2∆ for k-median (and Ω(∆2) for k-means) for the two extra assignments.
So even though we pay for more connections, the overall cost is smaller. This means that
clustering with weak lower bounds can have an arbitrarily smaller cost than clustering with
lower bounds, and in a way, this is a benefit: it means that we potentially pay less for having
the lower bounds satisfied. Of course it also means that the gap between the optimal costs of
the two problem variants with (standard) lower bounds and weak lower bounds is unbounded.
We obtain the following results.

We design an 8-approximation algorithm for weakly lower-bounded k-median and an
O(1)-approximation algorithm for weakly lower-bounded k-means. The algorithms are
conceptually simpler than their counterparts for lower-bounded facility location.
Then we show that we can adapt the solutions such that every point is assigned to only
two centers at the cost of a constant factor increase in the approximation ratio. We say
that a solution has b-weak lower bounds if every point is assigned to at most b centers, so
our results satisfy 2-weak lower bounds.

STACS 2021

7:4 Achieving Anonymity via Weak Lower Bound Constraints for k-Median and k-Means

Furthermore, we show that for ϵ ∈ (0, 1) we can also get O(1/ϵ)-approximate solutions
that satisfy (1 + ϵ)-weak lower bounds if we allow fractional assignments of points.
Finally, we show that our result on 2-weak lower bounds also implies a (O(1), O(1))-
bicriteria approximation result for lower bounds, where the lower bounds are satisfied
only to an extent of B/O(1). Applying this result to squared Euclidean distances yields
a bicriteria approximation for k-means with lower bounds, which is the first to the best
of the authors’ knowledge.
Our results also extend to non-uniform lower bounds.

Recall our anonymization goal. When using weakly lower-bounded clustering, we still get the
number of clusters that we desire and we also fully satisfy the anonymity requirement. We
achieve this by distorting the data slightly by allowing data points to influence two clusters.
In the fractional case, we get a solution where every data point is assigned to one main
cluster and then contributes an ϵ-connection to a different cluster. By this small disturbance
of the data set, we can meet the anonymity lower bound requirement for all clusters.

Techniques. The proof that k-clustering can be reduced to facility location builds upon a
known nesting technique from the area of approximation algorithms for hierarchical clustering
and is relatively straightforward. Our conceptional contribution is the definition of weakly
lower-bounded clustering as a means to achieve anonymity. To obtain constant-factor
approximations for weakly lower-bounded clustering, the idea is to incorporate an estimate
for the cost of establishing lower bounds via facility costs, approximate a k-clustering problem
with facility costs and then enforce lower bounds on a solution by connecting the closest
B − ℓ points to a center which previously only had ℓ points. Similar ideas are present in the
literature, which we adapt to our new problem formulation.

The main technical contribution in our paper is the proof that a solution assigning points
to arbitrarily many centers can be converted into a solution where every point is assigned at
most twice (or (1 + ϵ)-times, respectively), not only for k-median, but also for k-means. The
latter means that the proof cannot use subsequent reassignment steps as it is the case in
previous algorithms but has to carefully ensure that points are only reassigned once. We can
also bypass this problem in the construction of a bicriteria algorithm. Previous bicriteria
algorithms for lower bounds do not extend to k-means due to using multiple reassignments.

Related work. Approximation algorithms for clustering have been studied for decades. The
unconstrained k-center problem can be 2-approximated [11, 14] and this is tight under P ̸=
NP [15]. The (k, r)-center problem we discussed above is introduced and 2-approximated
in [3]. We also call this problem k-center with lower bounds. McCutchen and Khuller [25]
study k-center with lower bounds in a streaming setting and provide a (6 + ϵ)-approximation.
One can also consider non-uniform lower bounds, i.e., every center has an individual lower
bound that has to be satisfied if the center is opened. This variant is studied by Ahmadian
and Swamy in [6] and they give a 3-approximation (for the slightly more general k-supplier
problem with non-uniform lower bounds).

The facility location problem has a rich history of approximation algorithms and the
currently best algorithm due to Li [22], achieving an approximation ratio of 1.488, is very
close to the best known lower bound of 1.463 [12]. Bicriteria approximation algorithms for
facility location with lower bounds are developed by Karger and Minkoff [20] and Guha,
Meyerson and Munagala [13]. Svitkina [26] gives the first O(1)-approximation algorithm.
The core of the algorithm is a reduction to facility location with capacities, embedded
in a long chain of pre- and postprocessing steps. Ahmadian and Swamy [5] improve the

A. Arutyunova and M. Schmidt 7:5

approximation guarantee to 82.6. For the case of non-uniform lower bounds, Li [23] gives an
O(1)-approximation algorithm. Although we did not discuss this in the introduction because
it is less relevant to the anonymity motivation, this result also implies an O(1)-approximation
for k-median with non-uniform lower bounds, as we show in the full version of this paper [7,
Appendix A].

The k-median and k-means problems are APX-hard with the best known lower bounds
being 1+2/e [18] and 1.0013 [8, 21]. The k-median problem can be (2.675+ϵ)-approximated [9]
and the best known approximation ratio for the k-means problem is 6.357 + ϵ [4]. To the best
of the authors’ knowledge, k-median and k-means with lower bounds have not been studied
before. For the k-median problem, O(1)-approximations follow relatively easy from the work
on facility location as outlined in the full version [7, Appendix A] and there is a possible
adaptation of the algorithm by Svitkina as mentioned above. The authors are neither aware
of an approximation algorithm or bicriteria algorithm for facility location with lower bounds
that works for squared metrics, nor of one for k-means with lower bounds. We propose a
bicriteria result that is applicable to k-means.

Finding a polynomial constant-factor approximation algorithm for the k-median problem
with upper bounds, i.e., with capacities, is a long standing open problem. Recently, efforts
have been made to obtain FPT approximation algorithms for the problem [1, 10].

2 Preliminaries

A k-clustering problem gets a finite set of input points P , a possibly infinite set of possible
centers F , and a number k ∈ N and asks for a set of centers C ⊂ F with |C| ≤ k and a
mapping a : P → C such that

cost(P, C, a) = cost(C, a) =
∑
x∈P

d(x, a(x))

is minimized, where d : (P ∪ F) × (P ∪ F) → R+ is a distance function that is symmetric
and satisfies that d(x, y) = 0 iff x = y. For the generalized k-median problem, the distance
d satisfies the α-relaxed triangle inequality, i.e., for all x, y, z ∈ P ∪ F , it holds that
d(x, y) ≤ αd(x, z) + αd(y, z).

We define the k-median problem as a generalized k-median problem with P = F (finite)
and α = 1, and the k-means problem by setting F = Rd and P ⊂ F , and choosing d as the
squared Euclidean distance, for which α = 2. For these two problems, choosing the mapping
a : P → C is always optimally done by assigning every point to (one of) its closest center(s).
A generalized facility location problem has the same input as a generalized k-median problem
except that it gets facility costs f : F → R instead of a number k. The goal is to find a set of
centers C ⊂ F without cardinality constraint that minimizes

∑
x∈P d(x, a(x)) +

∑
c∈C f(c).

We use the term facility location not only if d is a metric but also in the case of a distance
function satisfying the α-relaxed triangle inequality, analogously to the generalized k-median
problem defined above.

We study generalized k-median and generalized facility location problems under side
constraints which means that the choice of the mapping a is restricted. The side constraints
that we study are versions of lower bounded clustering, i.e., they demand that every center
gets a minimum number of points that are assigned to it. For clustering with (uniform) lower
bounds, the input contains a number B and every cluster in the solution has to have at least
B points. Non-uniform lower bounds are meaningful in the case of a finite set F and then,
non-uniform lower bounds are given via a function B : F → N. If any points are assigned to
a center c ∈ F in a feasible solution, then it has to be at least B(c) points.

STACS 2021

7:6 Achieving Anonymity via Weak Lower Bound Constraints for k-Median and k-Means

When adding constraints, there is a subtle detail in the definition of generalized k-median
problems for the case P = F : The question whether the center of a cluster has to be part
of the cluster. Notice that without constraints, this makes no difference because assigning
a center to a different center than itself cannot be beneficial. When we add lower bounds,
this can change. We assume that choosing a center outside of the cluster is allowed and
specifically say when the solution is such that centers are members of their clusters.

Our new problem variant called weakly lower-bounded generalized k-median is defined
as follows. Given an instance of the same form as for the unconstrained generalized k-
median problem plus lower bounds B : F → N, the goal is to compute a set of at most k

centers C ⊂ F and an assignment a : P → P(C) such that the lower bound is satisfied, i.e.,
|{x ∈ P | c ∈ a(x)}| ≥ B(c) for all c ∈ C and every point is assigned at least once. If a point
is assigned multiple times the distance of the point to all assigned centers is paid by the
solution. The total cost of a solution is given by

cost(C, a) =
∑
x∈P

∑
c∈a(x)

d(x, c).

If a solution of a weakly lower-bounded clustering problem satisfies that every point is
assigned to at most b centers, then we say that the solution satisfies b-weak lower bounds.

3 Reducing Lower-Bounded k-Clustering to Facility Location

In this section, we observe that by using a known technique from the area of approximation
algorithms for hierarchical clustering, we can turn an approximation algorithm for generalized
facility location with lower bounds into an algorithm for generalized k-median with lower
bounds. The technique is called nesting. Given two solutions S1 and S2 for the same
generalized facility location problem with different number of centers k1 > k2, nesting
describes how to find a solution S with k2 centers which has a cost bounded by a constant
times the costs of S1 and S2 and which is hierarchically compatible with S1, i.e., the clusters
in S result from merging clusters in S1. We use this by computing a solution S1 with an
approximation algorithm for generalized facility location satisfying the lower bounds and a
solution S2 for unconstrained generalized k-median and then combining them via a nesting
step. The resulting solution S has at most k centers and the clusters result from clusters
that satisfy the lower bound – thus they satisfy the lower bound as well. For uniform lower
bounds, the execution of this plan is very straightforward, for non-uniform lower bounds
we have to be a bit more careful and adjust the nesting appropriately. Since most of this
section follows relatively straightforwardly from known work, we defer the details to the full
version [7, Appendix A]. Although the reduction is applicable to generalized k-median, this
only helps to obtain constant-factor approximations for k-median because no approximation
algorithms for generalized facility location with lower bounds are known for α > 1. We get
the following statement from combining the (adjusted) nesting results from Lin et al. [24] and
the approximation algorithms for facility location with uniform lower bounds by Ahmadian
and Swamy [5] and non-uniform lower bounds by Li [23].

▶ Corollary 1. There exist polynomial-time O(1)-approximation algorithms for the k-median
problem with uniform and non-uniform lower bounds.

As a final note we observe that the crucial property of lower bound constraints we use
here is mergeability: If a uniform lower bound is satisfied for a solution, then merging clusters
results in a solution that is still feasible. This is in stark contrast to for example capacitated
clustering. Our reduction works for mergeable constraints in general.

A. Arutyunova and M. Schmidt 7:7

4 Generalized k-Median with Weak Lower Bounds

Now we consider a relaxed version of generalized k-median with lower bounds where points
in P can be assigned multiple times. This relaxation does make sense since we have lower
bounds on the centers, so it can be more valuable to assign points to multiple centers to
satisfy the lower bounds instead of closing the respective centers. To see this we refer to
Figure 1. We call this problem generalized k-median with weak lower bounds.

For ease of presentation, it is sensible to assume that F is finite. We observe that we can
always set F = P at a constant increase in the cost function if we are given a uniform lower
bound. In particular, we assume in this section that F = P holds for k-means.

▶ Lemma 2. Let P be a point set and F be a possibly infinite set of centers. Let a : P → F

be a mapping and define a′(x) = arg miny∈P d(y, a(x)). Then it holds that∑
x∈P

d(x, a′(x)) ≤ 2α ·
∑
x∈P

d(x, a(x)).

Proof. The lemma follows from the relaxed triangle inequality:∑
x∈P

d(x, a′(x)) ≤ α
∑
x∈P

(
d(x, a(x)) + d(a(x), a′(x))

)
≤ 2α ·

∑
x∈P

d(x, a(x)). ◀

To achieve anonymity it is enough to have a uniform lower bound. However if we assume
F = P from the beginning, then our results also hold for non-uniform lower bounds, so we
consider this more general case in this section.

For standard k-median/k-means with weak lower bounds we give an 8-approximate
algorithm and an O(1)-approximate algorithm respectively. Furthermore we show that a
solution to generalized k-median with weak lower bounds can be transformed into a solution
to generalized k-median with 2-weak lower bounds in polynomial time. We show that this
transformation increases the cost only by a factor of α(α + 1). We combine this with the
approximation algorithm for standard k-median/k-means with weak lower bounds and obtain
an approximation algorithm for standard k-median/k-means with 2-weak lower bounds.
If we allow fractional assignments we show how to obtain a solution which assigns every
point by an amount of at most 1 + ϵ for arbitrary ϵ ∈ (0, 1), losing ⌈ 1

ϵ ⌉α(α + 1) + 1 in the
approximation factor.

Computing a solution. To approximate generalized k-median with weak non-uniform lower
bounds, we reduce this problem to generalized k-median with center costs. In this variant
of generalized k-median, the input contains both a number k and center opening costs
f : F → R+. The objective is then

costf (C, a) =
∑
x∈P

d(x, a(x)) +
∑
c∈C

f(c)

while the solution space is constrained to center sets of size at most k as for generalized
k-median. The reduction that we use works by introducing a center cost of

f(c) =
∑

p∈Dc

d(p, c) (1)

for every point c ∈ F . This cost is paid if c becomes a center. Here Dc is the set consisting of
the B(c) nearest points in P to c. The idea for this reduction is adapted from the bicriteria
algorithm for lower-bounded facility location presented by Guha, Meyerson and Munagala
[13] and Karger, Minkoff [20].

STACS 2021

7:8 Achieving Anonymity via Weak Lower Bound Constraints for k-Median and k-Means

Note that for a center c in a feasible solution (C, a) to generalized k-median with weak
lower bounds, the term

∑
p∈Dc

d(p, c) is a lower bound on the assignment cost caused by c.
This leads to the following lemma.

▶ Lemma 3. Let OPT ′ be an optimal solution to the generalized k-median problem with
center costs as defined in (1) and OPT = (O, h) be an optimal solution to generalized
k-median with weak lower bounds. It holds that costf (OPT ′) ≤ 2 cost(OPT).

Proof. For p ∈ P let cp = argmin{d(p, c) | c ∈ h(p)} be the closest center to which p is
assigned in OPT . We define h′(p) = cp for all p ∈ P and obtain a feasible solution (O, h′) to
the generalized k-median problem with center cost. Furthermore we have

costf (OPT ′) ≤ costf (O, h′) =
∑
c∈O

f(c) +
∑
p∈P

d(p, h′(p))

=
∑
c∈O

∑
p∈Dc

d(p, c) +
∑
p∈P

d(p, h′(p))

≤ 2
∑
p∈P

∑
c∈h(p)

d(p, c)

= 2 cost(OPT).

The second inequality follows from the fact that
∑

c∈O

∑
p∈Dc

d(p, c) and
∑

p∈P d(p, h′(p))
are both lower bounds on the assignment cost of OPT . ◀

Let (C, a) be a solution for the generalized k-median problem with center costs. To turn
it into a solution for generalized k-median with weak lower bounds we have to modify the
assignment. Let c ∈ C and nc = |a−1(c)|. We additionally assign mc = max{0, B(c) − nc}
points to c to satisfy the lower bound. Let Sc ⊂ Dc be the set of points in Dc which are not
assigned to c. We choose mc points from Sc and assign them to c. This is feasible since we
are allowed to assign points multiple times. Let (C, a′) be the corresponding solution.

▶ Lemma 4. It holds that cost(C, a′) ≤ costf (C, a).

Proof. The additional assignment cost for each center c ∈ C can be upper bounded by∑
p∈Dc

d(p, c). We obtain

cost(C, a′) ≤
∑
c∈C

∑
p∈Dc

d(p, c) +
∑
p∈P

d(p, a(p))

= costf (C, a). ◀

Lemma 3 and Lemma 4 imply the following corollary.

▶ Corollary 5. Given a γ-approximation for the generalized k-median problem with center
costs, we get a 2γ-approximation for the generalized k-median problem with weak lower bounds
in polynomial time.

For k-median, we combine Corollary 5 with Corollary 5.5 from [27] which shows that an
algorithm by Jain et al. [17] can be used to obtain a 4-approximation for the k-median
problem with center costs. This gives an 8-approximation for k-median with weak lower
bounds. For k-means, we use the algorithm by Jain and Vazirani [19] which was originally
designed for k-median. However, as outlined in the journal version [19], it can be used for
k-means when F = P , and also for k-median with center costs. The two extensions are not
conflicting and can both be applied to obtain an O(1)-approximation for k-means with center
costs for the case F = P .

A. Arutyunova and M. Schmidt 7:9

4.1 Reducing the Number of Assignments per Client
We see that the solution for standard k-median/k-means with weak lower bounds computed
above can assign a point to all centers in the worst case. The number of assigned centers
per point cannot be bounded by a constant. This may not be desirable in the context of
publishing anonymized representatives since the distortion of the original data set is not
bounded.

However, we show that any solution to the generalized k-median problem with weak
lower bounds can be transformed into a solution assigning every point at most twice. This
increases the cost by a factor of α(α + 1). Recall that α is the constant appearing in the
relaxed triangle inequality. This leads to the following theorem.

▶ Theorem 6. Given a solution (C, a) to generalized k-median with weak lower bounds, we
can compute a solution (C̃, ã) to generalized k-median with 2-weak lower bounds (assigning
every point at most twice) in polynomial time such that cost(C̃, ã) ≤ α(α + 1) cost(C, a).

Reassignment process. We start by setting C̃ = C and ã = a and modify both C̃ and ã

until we obtain a feasible solution to generalized k-median with 2-weak lower bounds. During
the process, the centers in C̃ are called currently open, and when a center is deleted from C̃,
we say it is closed. The centers are processed in an arbitrary but fixed order, i.e., we assume
that C = {c1, . . . , ck′} for some k′ ≤ k and process them in order c1, . . . , ck′ . We say that ci

is smaller than cj if i < j.
Let c = ci be the currently processed center. By Pc, we denote the set of points assigned to

c under ã. We divide Pc into three sets P 1
c = {q ∈ Pc | |ã(q)| = 1}, P 2

c = {q ∈ Pc | |ã(q)| = 2}
and P 3

c = {q ∈ Pc | |ã(q)| ≥ 3}. Furthermore with C(P 3
c) we denote all centers which are

connected to at least one point in P 3
c under ã.

If P 3
c is empty, we are done and proceed with the next center in C̃. Otherwise we need

to empty P 3
c . Observe that points in P 3

c are assigned to multiple centers, so if we delete the
connection between one of these points and c, the point is still served by some other center.
However, doing so may violate the lower bound at c. So we have to replace this connection.

As long as P 3
c is non-empty, we do the following. We pick a center d = min C(P 3

c)\{c}
and a point x ∈ P 3

c connected to d. We want to assign a point y from P 1
d to c to free x.

For technical reasons, we restrict the choice of y: We exclude all points from the subset
P 1

d := {q ∈ P 1
d | |a(q)| ≥ 3 and a(q) ∩ {c1, . . . , ci−1} ∩ C̃ ̸= ∅}, i.e., all points which were

assigned to at least 3 centers under the initial assignment a, and where one of these at least
3 centers is still open and smaller than c.

If P 1
d \P 1

d is non-empty, we pick a point y ∈ P 1
d \P 1

d arbitrarily. We set ã(y) = {d, c}
and ã(x) = ã(x)\{c}. So x is no longer connected to c, but to satisfy the lower bound at
c we replace x by y (Figure 2). If P 1

d \P 1
d is empty, our replacement plan does not work.

Instead, we close d. This means that x is now assigned to one center less, and, if this happens
repeatedly, x will at some point no longer be in P 3

c . Since we close d, all points in P 1
d have

x

y

c d

x

y

c d

Figure 2 Connection between x ∈ P 3
c and c is deleted. A point y ∈ P 1

d replaces x.

STACS 2021

7:10 Achieving Anonymity via Weak Lower Bound Constraints for k-Median and k-Means

Algorithm 1 Reducing the number of assigned centers per point to two.

1 define an ordering on the centers c1 ≤ c2 . . . ≤ ck′

2 set C̃ := C and ã := a

3 for all c ∈ C

4 Pc := {q ∈ P | c ∈ ã(q)}
5 P 3

c := {q ∈ Pc | |ã(q)| ≥ 3}, P i
c := {q ∈ Pc | |ã(q)| = i} for i = 1, 2

6 C(P 3
c) :=

⋃
q∈P 3

c
ã(q)

7 for i = 1 to l do
8 while P 3

ci
̸= ∅ do

9 d = min C(P 3
ci

)\{ci}
10 P 1

d = {q ∈ P 1
d | |a(q)| ≥ 3 and a(q) ∩ {c1, . . . , ci−1} ∩ C̃ ̸= ∅}}

11 if P 1
d \P 1

d = ∅ then
12 for all q ∈ P 1

d

13 let e = min(a(q) ∩ C̃)
14 set ã(q) = {e}

15 delete d from C̃ and all connections to d in ã

16 else
17 pick x ∈ P 3

ci
connected to d and y ∈ P 1

d \P 1
d

18 set ã(x) = ã(x)\{ci}, ã(y) = {ci, d}

to be reassigned because they are only connected to d. For each q ∈ P 1
d , we reassign q to the

smallest currently open center in a(q). Notice that such a center exists and is smaller than
c because P 1

d = P 1
d and for every q ∈ P 1

d , there is at least one center in a(q) ∩ C̃ which is
smaller than c.

The entire process is described in Algorithm 1. It satisfies the following invariants.

▶ Lemma 7. Algorithm 1 computes a feasible solution (C̃, ã) to generalized k-median with
2-weak lower bounds. Furthermore the following properties hold during all steps of the
algorithm.
1. The algorithm never establishes connections for points currently assigned more than once.
2. For any center c ∈ C, Pc does not change before c is processed or closed.
3. If a connection between x ∈ P and the currently processed center c ∈ C̃ is deleted by the

algorithm, we have from this time on x /∈ P 3
c until termination. Moreover P 3

c remains
empty after c is processed.

4. While the algorithm processes c ∈ C we always have c < min C(P 3
c)\{c}. Moreover all

currently open centers which are smaller than c remain open until termination.
5. If the algorithm establishes a new connection in Line 14 or Line 18 it remains until

termination.

Proof. The process terminates: For every iteration of the while loop starting in Line 8, either
a point is deleted from P 3

ci
or there is at least one point x ∈ P 3

ci
for which |ã(x)| is reduced

by one. Furthermore |ã(x)| does never increase for any x ∈ P 3
ci

.
The final solution satisfies lower bounds: Every time we delete a connection between a

point and a center it either happens because the center is closed or we replace this connection
by assigning a new point to it. So the lower bounds are satisfied at all open centers.

A. Arutyunova and M. Schmidt 7:11

All points stay connected to a center: Assume that the algorithm deletes the connection
between a point p and the center d it is exclusively assigned to. This only happens if at this
time d is closed by the algorithm. Then p is assigned to another center as defined in Line 14.

We conclude that the solution is feasible.
Property 1: The algorithm establishes connections in Line 14 and Line 18 which always

involve a point currently assigned once.
Property 2: Let c ∈ C. Connections are only changed for the center that is currently

processed or for a smaller center which has been processed already. Thus, the algorithm
does not add or delete any connections involving c before c is processed or closed.

Property 3: Assume that after the connection between x ∈ P 3
c and c is deleted by the

algorithm, x is again part of P 3
c . That would require that the algorithm establishes a

new connection for a point which is connected more than once, which does not happen by
Property 1. For the same reason P 3

c remains empty after c is processed by the algorithm.
Property 4: Assume c is currently processed by the algorithm and d = min C(P 3

c)\{c}. We
know that at this time P 3

d is non-empty, which is by Property 3 only possible if d is
processed after c. Thus we have c < d. This also means that centers can only be closed
by the algorithm if they are not processed so far.

Property 5: If a connection is deleted, the respective point is either connected to more than
two centers or to a center which is closed at this time. A connection in Line 14 or Line
18 is established by the algorithm between a point which is at this time assigned exactly
once and a center which is already processed or currently processed by the algorithm.
Thus the point is from this time on never assigned to more than two centers and the
center remains open until termination by Property 4. So the necessary conditions for a
deletion of this connection are never fulfilled. ◀

We now want to bound the cost of new connections created by the algorithm by the cost of the
original solution. Notice that only Line 18 generates new connections, Line 14 re-establishes
connections that were originally present. So let Nc be the set of all points newly assigned to
c by the algorithm in Line 18 while center c is processed. For y ∈ Nc let dy be the respective
center in Line 9 of Algorithm 1 and xy the point in Line 17 contained in P 3

c and connected
to dy. Using the α-relaxed triangle inequality, we obtain the following upper bound.

d(y, c) ≤ α(d(y, xy) + d(xy, c)) ≤ α
(

α
(
d(y, dy) + d(dy, xy)

)
+ d(xy, c)

)
= α2(

d(y, dy) + d(dy, xy)
)

+ αd(xy, c). (2)

We can apply (2) to all c ∈ C̃ and all y ∈ Nc. This yields the following upper bound on the
cost of the final solution (C̃, ã).

cost(C̃, ã) =
∑
c∈C̃

∑
y∈P :

c∈ã(y)

d(y, c) =
∑
c∈C̃

(∑
y∈Pc\Nc

d(y, c) +
∑

y∈Nc

d(y, c)
)

≤
∑
c∈C̃

(∑
y∈Pc\Nc

d(y, c) +
∑

y∈Nc

α2(d(y, dy) + d(dy, xy)) + αd(xy, c)
)

. (3)

Expression (3) is what we want to pay for. We show in Observation 8 below that all involved
distances contribute to the original cost as well. So in principle, we can bound each summand
by a term in the original cost. But what we need to do is to bound the number of times
that each term in the original cost gets charged. To organize the counting, we count how
many times a specific tuple of a point z and a center f occurs as d(z, f) in (3). Since it is
important at which position a tuple appears, we give names to the different occurrences (also
see Figure 3).

STACS 2021

7:12 Achieving Anonymity via Weak Lower Bound Constraints for k-Median and k-Means

xy

y

c dy

α α2

α2

Figure 3 Bounding the distance between y and c. The respective distances appear with a factor
of α or α2. Tuple (xy, c) is of Type 1 and (xy, dy), (y, dy) are of Type 2.

We say that that a tuple appears as a tuple of Type 0 if it appears as d(y, c) in (3), as
tuple of Type 1 if it appears as d(xy, c), and as tuple of Type 2 if it appears as d(y, dy)
or d(dy, xy). We distinguish the latter type further by calling a tuple occurring as d(y, dy)
a tuple of Type 2.1 and a tuple occurring as d(xy, dy) a tuple of Type 2.2. We say that
(y, dy), (dy, xy) and (xy, c) contribute to the cost of (y, c), where by the cost of (y, c) we mean
the upper bound on d(y, c) in (2) which we want to pay for.

▶ Observation 8. If a tuple (z, f), z ∈ P, f ∈ C, occurs as Type 0, 1 or 2, then f ∈ a(z), so
in particular, d(z, f) occurs as a term in the cost of the original solution.

Proof. For a center c the set Pc\Nc consists of points which are assigned to c by the initial
assignment a or assigned to c while c is not processed by the algorithm. The latter can only
happen if a connection is reestablished in Line 14 which requires that the connection was
already present in (C, a). So Type 0 tuples satisfy the statement.

For Type 1 and 2 tuples, consider y ∈ Nc for some center c and the respective tuples
(xy, c), (y, dy), (xy, dy). Notice that both y and xy are connected to dy the step before y is
assigned to c. By Property 4 of Lemma 7 we have c < dy. Thus we know by Property 2
of Lemma 7 that Pdy

is not changed by the algorithm at least until y is assigned to c. So
dy ∈ a(y) and dy ∈ a(xy) which proves that Type 2 tuples satisfy the statement. Moreover
it holds that c ∈ a(xy) since there is a time where xy ∈ P 3

c . This can, by Property 1 of
Lemma 7, only happen if the connection between xy and c is already part of (C, a). Thus,
Type 1 tuples satisfy the statement. ◀

As indicated above, a tuple (z, f) can contribute to the cost of multiple tuples. Notice that a
tuple occurs at most once as a tuple of Type 0 in (3). To bound the cost of (C̃, ã) we bound
the number of times a tuple appears as Type 1 or Type 2 tuple in (3).

▶ Lemma 9. For all z ∈ P, f ∈ C, the tuple (z, f) can appear in (3) at most once as a tuple
of Type 1 and at most once as a tuple of Type 2.

Proof. In the following, the tuple whose cost the tuple (z, f) contributes to will always be
named (y, c), and we denote the time at which y is newly assigned to c by t.
Type 1: Assume (z, f) contributes to the cost of (y, c) as a tuple of Type 1. Then f = c.

Notice that at the time step before t we must have z ∈ P 3
c and afterwards, z is never

again contained in P 3
c by Property 3 of Lemma 7. Thus the pair (z, c) can never again

be responsible for any reassignment to c, i.e., (z, c) = (z, f) does not contribute to any
further cost as a tuple of Type 1.

Type 2.1: Assume that (z, f) contributes to the cost of (y, c) as a tuple of Type 2.1. Then
z = y. At the time step before t, we have y ∈ P 1

f , f ∈ C(P 3
c), and at time t, we have

y ∈ P 2
c ∩ P 2

f . By Property 5 of Lemma 7, newly established connections are never deleted,
so after time t, it always holds that y ∈ Pc. So even if y is in Pf at a later time, it cannot
be in P 1

f since it is also connected to c. So (y, f) = (z, f) does not contribute to any

A. Arutyunova and M. Schmidt 7:13

further cost as tuple of Type 2.1. Furthermore by Property 1 of Lemma 7 we know that
y is always assigned to fewer than three centers after t which means that (y, f) does not
contribute as tuple of Type 2.2 to the cost of any connection established by the algorithm
after t either.

Type 2.2: Finally we consider the case where (z, f) contributes to the cost of (y, c) as a
tuple of Type 2.2. At time t, the algorithm processes c. By the way the algorithm
chooses f and z, we know that z ∈ P 3

c (at the beginning of the process, i.e., before t) and
f = min C(P 3

c)\{c}. After t, Property 3 of Lemma 7 implies z /∈ P 3
c , which means that

as a tuple of Type 2.2, it can never again contribute to the cost of any tuple containing
c. Assume instead that it contributes (as Type 2.2) to the cost of a tuple (y′, c′) for a
center c′ ≠ c, and some point y′ ∈ P . This is supposed to happen after t, so y′ is newly
assigned to c′ at some time t′ > t. Before c′ is processed, we must always have z ∈ P 3

c′ by
Property 1 and 2 of Lemma 7. So in particular, at time t < t′ we have c′ ∈ C(P 3

c)\{c}.
Moreover we know that at some time while c′ is processed by the algorithm we have
f = min C(P 3

c′)\{c′}. Using Property 4 of Lemma 7 we conclude that c′ < f . Which is a
contradiction since the algorithm chose f and not c′ at time t, i.e., f = min C(P 3

c)\{c}
must hold. Thus, (z, f) cannot contribute to the cost of (y′, c′) as a tuple of Type 2.2.

It is left to show that (z, f) cannot contribute to the cost of any (y′, c′) as a tuple of Type 2.1
at some time t′ > t. For a contribution as Type 2.1, we would have z = y′ and y′ ∈ P 1

f .
We show that in this case y′ is in fact contained in P 1

f . Remember that at time t we have
y′ = z ∈ P 3

c and that this only happens if |a(y′)| ≥ 3 by Property 1 of Lemma 7. Moreover c

is still open by Property 4 of Lemma 7 and is smaller than c′. Thus c ∈ a(y′)∩{e | e < c′}∩C̃,
which proves y′ ∈ P 1

f . Therefore the algorithm does not assign y′ to c′ (see Lines 11-15) and
(z, f) does not contribute as tuple of Type 2.1 to the cost of any connection established by
the algorithm after t. ◀

We now know that a tuple only appears at most once as any of the three tuple types. For
the final counting, we define T0, T1 and T2 as the sets of all tuples of Type 0, 1 and 2,
respectively. We could already prove a bound on the cost now, but to make it slightly smaller
and prove Theorem 6, we need one final statement.

▶ Lemma 10. The set T0 ∩ T1 ∩ T2 is empty.

Proof. Let (z, f) ∈ T0 ∩ T1 ∩ T2. Since (z, f) is of Type 0, the point z must be connected
to f in the final assignment ã. We distinguish whether the connection between z and f was
deleted at some point by the algorithm or not. If it is not deleted, (z, f) cannot be of Type 1
since this would require that z is temporarily not assigned to f . Otherwise the connection
between z and f was deleted while f was processed and later reestablished by the algorithm
in Line 14.

By assumption the tuple is also of Type 2. Assume it is of Type 2.1 and contributes
to the cost of a tuple (y, c) with z = y. We know that c < f by Property 4 of Lemma 7.
Consider the time when z is newly assigned to c. The step before we have z ∈ P 1

f . On the
other hand while f is processed we have z ∈ P 3

f in contradiction to Property 1 of Lemma 7.
Assume finally that (z, f) is of Type 2.2 and contributes to the cost of a tuple (y, c).

Again we have c < f . Consider the time y is newly assigned to c. The step before we have
z ∈ P 3

c and, by Property 1 and 2 of Lemma 7, also z ∈ P 3
f . At the time the connection

between z and f is reestablished by the algorithm, both centers are contained in a(z) ∩ C̃.
This is a contradiction to c < f = min(a(z) ∩ C̃). This completes the proof. ◀

STACS 2021

7:14 Achieving Anonymity via Weak Lower Bound Constraints for k-Median and k-Means

Proof of Theorem 6. Slightly abusing the notation we write d(e) for a tuple e = (z, f) by
which we mean the distance d(z, f). Combining Lemma 9 and 10 we obtain

cost(C̃, ã) ≤
∑
c∈C̃

(∑
y∈Pc\Nc

d(y, c) +
∑

y∈Nc

α2(d(y, dy) + d(dy, xy)) + αd(xy, c)
)

(3)

=
∑

e∈T 0
d(e) + α2

∑
e∈T 2

d(e) + α
∑

e∈T 1
d(e) (4)

≤ (α2 + α) cost(C, a). (5)

By Lemma 9 we know that a tuple only appears at most once as any of the three tuple types.
We replace (3) by summing up the cost of all tuples in Ti for i = 0, 1, 2 with the respective
factor for each type and obtain (4).

Finally by Observation 8 the cost d(e) for e ∈ T0 ∪ T1 ∪ T2 occurs as a term in the original
solution and T0 ∩ T1 ∩ T2 = ∅ by Lemma 10, which proves (5). ◀

So it is possible to reduce the number of assignments per point to two at a constant factor
increase in the approximation factor. We can go even further and allow points to be
fractionally assigned to centers which poses the question if it is possible to bound the assigned
amount by a number smaller than two. Indeed we can prove for every ϵ ∈ (0, 1) that we can
modify a solution to generalized k-median with weak lower bounds such that every point is
assigned by an amount of at most 1 + ϵ and the cost increases by a factor of O(1

ϵ α2). Note
that even if we allow fractional assignments of points to centers, the centers remain either
open or closed, which differentiates our result from a truly fractional solution, where it is also
allowed to open centers fractionally. Furthermore, the new assignment assigns every point to
at most two centers. It is assigned by an amount of one to one center and potentially by an
additional amount of ϵ to a second center.

Since we consider fractional assignments we modify our notation and denote with ãc
x ∈ [0, 1]

the amount by which x ∈ P is assigned to c ∈ C̃, where C̃ is the set of centers. Let
ãx =

∑
c∈C̃

ãc
x be the amount by which x ∈ P is assigned to C̃. The assignment ã is feasible

if ãx ≥ 1 for all x ∈ P and
∑

x∈P ãc
x ≥ B(c) for all c ∈ C̃, and its cost is

cost(C̃, ã) =
∑
c∈C̃

∑
x∈P

ãc
xd(x, c).

We omit the proof of the following theorem as it is similar to the proof of Theorem 6, but
to satisfy lower bounds we can only assign an amount of ϵ from points which are already
assigned once. Therefore we consider suitable sets with ⌈ 1

ϵ ⌉ points, which leads to the increase
of O(1

ϵ) in the approximation factor. For more details we refer to [7, Appendix C].

▶ Theorem 11. Given 0 < ϵ < 1 and a solution (C, a) to generalized k-median with weak
lower bounds, we can compute a solution (C̃, ã) to generalized k-median with (1 + ϵ)-weak
lower bounds, i.e., ãx ≤ 1 + ϵ for all x ∈ P in polynomial time such that cost(C̃, ã) ≤
(⌈ 1

ϵ ⌉α(α + 1) + 1) cost(C, a).

On pages 7-8 we reduce generalized k-median with weak lower bounds to generalized k-median
with center cost and obtain an 8 or O(1)-approximation for k-median or k-means with weak
lower bounds, respectively. We combine this with Theorem 6 to get a solution with 2-weak
lower bounds whose cost is a constant factor away from the problem with weak lower bounds.
Since weak lower bounds are a relaxation of 2-weak lower bounds, we get:

A. Arutyunova and M. Schmidt 7:15

Algorithm 2 A (β, γ max{ αβ
1−β

+1, α2β
1−β

})-bicriteria approximation algorithm to generalized
k-median with lower bounds.

Input : γ-approximate solution (C, a) to generalized k-median with 2-weak lower
bounds, C = {c1, . . . , ck′}

Output : Bicriteria solution (C ′, a′) to generalized k-median with lower bounds.

1 set C ′ = ∅, a′(x) = ⊥ for all x ∈ P

2 N = P

3 for i = 1 to k′ do
4 Ai = {x ∈ P | ci ∈ a(x)}
5 Bi = {x ∈ Ai | a(x) ⊂ {c1 . . . , ci}} ∩ N

6 if Ai ∩ N ≥ βB(ci) then
7 set a′(x) = ci for all x ∈ Ai ∩ N

8 N = N\Ai

9 C ′ = C ′ ∪ {ci}
10 else
11 set a′(x) = arg minc∈C′ d(x, c) for all x ∈ Bi

▶ Corollary 12. Let OPT be an optimal solution to k-median/k-means with 2-weak lower
bounds. We can compute a solution (C, a) in polynomial time for
1. k-median with 2-weak lower bounds with cost(C, a) ≤ 16 cost(OPT)
2. k-means with 2-weak lower bounds with cost(C, a) ≤ O(1) cost(OPT).
Combining the results from Section 4 with Theorem 11 we obtain:

▶ Corollary 13. Let OPT be an optimal solution to k-median/k-means with (1 + ϵ)-weak
lower bounds. We can compute a solution (C, a) in polynomial time for
1. k-median with (1 + ϵ)-weak lower bounds with cost(C, a) ≤ (16⌈ 1

ϵ ⌉ + 8) cost(OPT)
2. k-means with (1 + ϵ)-weak lower bounds with cost(C, a) ≤ O(1

ϵ) cost(OPT).

4.2 A Bicriteria Algorithm to Generalized k-Median with Lower Bounds
A (β, δ)-bicriteria solution for generalized k-median with lower bounds consists of at most k

centers C ′ ⊂ F and an assignment a′ : P → C such that at least βB(c) points are assigned
to c ∈ C ′ by a′ and cost(C ′, a′) ≤ δ cost(OPT). Here OPT denotes an optimal solution to
generalized k-median with lower bounds.

Given a β ≥ 1
2 and a γ-approximate solution to generalized k-median with 2-weak lower

bounds (C, a), we can compute a (β, γ max{ αβ
1−β +1, α2β

1−β })-bicriteria solution in the following
way. Let C = {c1, . . . , ck′} for some k′ ≤ k. We process the centers in order c1, . . . , ck′ and
decide if they are open or closed. We say that ci is smaller than cj if i < j. If we decide
that a center c is open we directly assign at least ⌈βB(c)⌉ points to c. In the beginning all
points are unassigned.

Consider center ci. Let Ai be the set of all points assigned to ci under a. We know that
|Ai| ≥ B(ci). If at least ⌈βB(ci)⌉ points in Ai are not assigned so far, ci remains open and
all currently unassigned points from Ai are assigned to ci (Figure 4). If less than ⌈βB(ci)⌉
points from Ai are unassigned, the center is closed.

Let C ′ denote the centers from {c1, . . . , ci−1} which are open and Bi the set of unassigned
points from Ai which are not connected to any center larger than ci under a. To guarantee
that all points are assigned at the end, we have to care about points in Bi. By assumption
there are at most ⌊βB(ci)⌋ such points. We simply assign a point p ∈ Bi to the nearest
center arg minc∈C′ d(c, p) in C ′.

STACS 2021

7:16 Achieving Anonymity via Weak Lower Bound Constraints for k-Median and k-Means

ci ci

Figure 4 Shows the case where Ai contains at least ⌈βB(ci)⌉ unassigned points. The three points
on the left are already assigned to other centers and the three points on the right are newly assigned
to ci. The gray connections come from a.

The whole procedure is described in Algorithm 2. For the proof of the claimed approxim-
ation factor we refer to [7, Appendix D].

▶ Theorem 14. Given a γ-approximate solution (C, a) to generalized k-median with 2-weak
lower bounds and a fixed β ∈ [0.5, 1), Algorithm 2 computes a (β, γ max{ αβ

1−β + 1, α2β
1−β })-

bicriteria solution to generalized k-median with lower bounds in polynomial time. In particular,
there exists a polynomial-time (1

2 , O(1))-bicriteria approximation algorithm for k-means with
lower bounds.

References
1 Marek Adamczyk, Jaroslaw Byrka, Jan Marcinkowski, Syed Mohammad Meesum, and Michal

Wlodarczyk. Constant-factor FPT approximation for capacitated k-median. In Proceedings
of the 27th Annual European Symposium on Algorithms (ESA), pages 1:1–1:14, 2019. doi:
10.4230/LIPIcs.ESA.2019.1.

2 Ankit Aggarwal, Anand Louis, Manisha Bansal, Naveen Garg, Neelima Gupta, Shubham
Gupta, and Surabhi Jain. A 3-approximation algorithm for the facility location problem
with uniform capacities. Mathematical Programming, 141(1-2):527–547, 2013. doi:10.1007/
s10107-012-0565-4.

3 Gagan Aggarwal, Rina Panigrahy, Tomás Feder, Dilys Thomas, Krishnaram Kenthapadi,
Samir Khuller, and An Zhu. Achieving anonymity via clustering. ACM Transactions on
Algorithms (TALG), 6(3):49:1–49:19, 2010. doi:10.1145/1798596.1798602.

4 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees
for k-means and Euclidean k-median by primal-dual algorithms. In Proceedings of the 58th
Annual Symposium on Foundations of Computer Science (FOCS), pages 61–72, 2017. doi:
10.1109/FOCS.2017.15.

5 Sara Ahmadian and Chaitanya Swamy. Improved approximation guarantees for lower-bounded
facility location. In Proceedings of the 10th International Workshop on Approximation and
Online Algorithms (WAOA), pages 257–271, 2012. doi:10.1007/978-3-642-38016-7_21.

6 Sara Ahmadian and Chaitanya Swamy. Approximation algorithms for clustering problems with
lower bounds and outliers. In Proceedings of the 43rd International Colloquium on Automata,
Languages, and Programming, (ICALP), pages 69:1–69:15, 2016. doi:10.4230/LIPIcs.ICALP.
2016.69.

7 Anna Arutyunova and Melanie Schmidt. Achieving anonymity via weak lower bound constraints
for k-median and k-means. arXiv:2009.03078v2.

8 Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The
hardness of approximation of Euclidean k-means. In Proceedings of the 31st International
Symposium on Computational Geometry (SoCG), pages 754–767, 2015. doi:10.4230/LIPIcs.
SOCG.2015.754.

https://doi.org/10.4230/LIPIcs.ESA.2019.1
https://doi.org/10.4230/LIPIcs.ESA.2019.1
https://doi.org/10.1007/s10107-012-0565-4
https://doi.org/10.1007/s10107-012-0565-4
https://doi.org/10.1145/1798596.1798602
https://doi.org/10.1109/FOCS.2017.15
https://doi.org/10.1109/FOCS.2017.15
https://doi.org/10.1007/978-3-642-38016-7_21
https://doi.org/10.4230/LIPIcs.ICALP.2016.69
https://doi.org/10.4230/LIPIcs.ICALP.2016.69
http://arxiv.org/abs/2009.03078v2
https://doi.org/10.4230/LIPIcs.SOCG.2015.754
https://doi.org/10.4230/LIPIcs.SOCG.2015.754

A. Arutyunova and M. Schmidt 7:17

9 Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh.
An improved approximation for k-median and positive correlation in budgeted optimization.
ACM Transaction on Algorithms (TALG), 13(2):23:1–23:31, 2017. doi:10.1145/2981561.

10 Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight
FPT approximations for k-median and k-means. In Proceedings of the 46th International
Colloqium on Automata, Languages, and Programming (ICALP), pages 42:1–42:14, 2019.
doi:10.4230/LIPIcs.ICALP.2019.42.

11 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science (TCS), 38:293–306, 1985. doi:10.1016/0304-3975(85)90224-5.

12 Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms.
Journal of Algorithms, 31(1):228–248, 1999. doi:10.1006/jagm.1998.0993.

13 Sudipto Guha, Adam Meyerson, and Kamesh Munagala. Hierarchical placement and network
design problems. In Proceedings of the 41st Annual Symposium on Foundations of Computer
Science (FOCS), pages 603–612, 2000. doi:10.1109/SFCS.2000.892328.

14 Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation algorithms
for bottleneck problems. Journal of the ACM, 33(3):533–550, 1986. doi:10.1145/5925.5933.

15 Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck location problems. Discrete
Applied Mathematics (DAM), 1(3):209–215, 1979. doi:10.1016/0166-218X(79)90044-1.

16 Tanmay Inamdar and Kasturi Varadarajan. Capacitated sum-of-radii clustering: An FPT
approximation. In Proceedings of the 28th Annual European Symposium on Algorithms (ESA),
volume 173 of Leibniz International Proceedings in Informatics (LIPIcs), pages 62:1–62:17,
2020. doi:10.4230/LIPIcs.ESA.2020.62.

17 Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V. Vazirani.
Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. Journal
of the ACM, 50(6):795–824, 2003. doi:10.1145/950620.950621.

18 Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing
(STOC), pages 731–740, 2002. doi:10.1145/509907.510012.

19 Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. Journal of the
ACM, 48(2):274–296, 2001. doi:10.1145/375827.375845.

20 David R. Karger and Maria Minkoff. Building Steiner trees with incomplete global knowledge.
In Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS),
pages 613–623, 2000. doi:10.1109/SFCS.2000.892329.

21 Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability
for k-means. Information Processing Letters (IPL), 120:40–43, 2017. doi:10.1016/j.ipl.
2016.11.009.

22 Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem.
Information and Computation, 222:45–58, 2013. doi:10.1016/j.ic.2012.01.007.

23 Shi Li. On facility location with general lower bounds. In Proceedings of the 30th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2279–2290, 2019. doi:10.
1137/1.9781611975482.138.

24 Guolong Lin, Chandrashekhar Nagarajan, Rajmohan Rajaraman, and David P. Williamson.
A general approach for incremental approximation and hierarchical clustering. SIAM Journal
on Computing (SICOMP), 39(8):3633–3669, 2010. doi:10.1137/070698257.

25 Richard Matthew McCutchen and Samir Khuller. Streaming algorithms for k-center clustering
with outliers and with anonymity. In Proceedings of the 11th International Workshop on
Approximation, Randomization and Combinatorial Optimization (APPROX), pages 165–178,
2008. doi:10.1007/978-3-540-85363-3_14.

26 Zoya Svitkina. Lower-bounded facility location. ACM Transactions on Algorithms (TALG),
6(4):69, 2010. doi:10.1145/1824777.1824789.

27 Jens Vygen. Lecture notes – approximation algorithms for facility location problems, 2004/2005.
accessed May 8th, 2019. URL: http://gett.or.uni-bonn.de/~vygen/files/fl.pdf.

STACS 2021

https://doi.org/10.1145/2981561
https://doi.org/10.4230/LIPIcs.ICALP.2019.42
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1006/jagm.1998.0993
https://doi.org/10.1109/SFCS.2000.892328
https://doi.org/10.1145/5925.5933
https://doi.org/10.1016/0166-218X(79)90044-1
https://doi.org/10.4230/LIPIcs.ESA.2020.62
https://doi.org/10.1145/950620.950621
https://doi.org/10.1145/509907.510012
https://doi.org/10.1145/375827.375845
https://doi.org/10.1109/SFCS.2000.892329
https://doi.org/10.1016/j.ipl.2016.11.009
https://doi.org/10.1016/j.ipl.2016.11.009
https://doi.org/10.1016/j.ic.2012.01.007
https://doi.org/10.1137/1.9781611975482.138
https://doi.org/10.1137/1.9781611975482.138
https://doi.org/10.1137/070698257
https://doi.org/10.1007/978-3-540-85363-3_14
https://doi.org/10.1145/1824777.1824789
http://gett.or.uni-bonn.de/~vygen/files/fl.pdf

Bidimensional Linear Recursive Sequences and
Universality of Unambiguous Register Automata
Corentin Barloy !

École Normale Supérieure de Paris, PSL, France

Lorenzo Clemente !

University of Warsaw, Poland

Abstract
We study the universality and inclusion problems for register automata over equality data (A, =).
We show that the universality L(B) = (Σ × A)∗ and inclusion problems L(A) ⊆ L(B) can be solved
with 2-EXPTIME complexity when both automata are without guessing and B is unambiguous,
improving on the currently best-known 2-EXPSPACE upper bound by Mottet and Quaas. When
the number of registers of both automata is fixed, we obtain a lower EXPTIME complexity, also
improving the EXPSPACE upper bound from Mottet and Quaas for fixed number of registers. We
reduce inclusion to universality, and then we reduce universality to the problem of counting the
number of orbits of runs of the automaton. We show that the orbit-counting function satisfies
a system of bidimensional linear recursive equations with polynomial coefficients (linrec), which
generalises analogous recurrences for the Stirling numbers of the second kind, and then we show that
universality reduces to the zeroness problem for linrec sequences. While such a counting approach
is classical and has successfully been applied to unambiguous finite automata and grammars over
finite alphabets, its application to register automata over infinite alphabets is novel.

We provide two algorithms to decide the zeroness problem for bidimensional linear recursive
sequences arising from orbit-counting functions. Both algorithms rely on techniques from linear
non-commutative algebra. The first algorithm performs variable elimination and has elementary
complexity. The second algorithm is a refined version of the first one and it relies on the computation
of the Hermite normal form of matrices over a skew polynomial field. The second algorithm yields
an EXPTIME decision procedure for the zeroness problem of linrec sequences, which in turn yields
the claimed bounds for the universality and inclusion problems of register automata.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases unambiguous register automata, universality and inclusion problems, multi-
dimensional linear recurrence sequences

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.8

Related Version Full Version: https://arxiv.org/abs/2101.01033 [2]

Funding Corentin Barloy: Partially supported by the Polish NCN grant 2017/26/D/ST6/00201.
Lorenzo Clemente: Partially supported by the Polish NCN grant 2017/26/D/ST6/00201.

Acknowledgements We would like to thank Daniel Robertz for kindly providing us with the LDA
package for Maple 16.

1 Introduction

Register automata. Register automata extend finite automata with finitely many registers
holding values from an infinite data domain A which can be compared against the data
appearing in the input. The study of register automata arises naturally in automata theory
as a conservative generalisation of finite automata over finite alphabets Σ to richer but well-
behaved classes of infinite alphabets. The seminal work of Kaminski and Francez introduced
finite-memory automata as the study of register automata over the data domain (A,=)

© Corentin Barloy and Lorenzo Clemente;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 8; pp. 8:1–8:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:corentin.barloy@ens.fr
mailto:clementelorenzo@gmail.com
https://orcid.org/0000-0003-0578-9103
https://doi.org/10.4230/LIPIcs.STACS.2021.8
https://arxiv.org/abs/2101.01033
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Linear Recursive Sequences and Universality of Register Automata

consisting of an infinite set A and the equality relation [21]. The recent book [3] studies
automata theory over other data domains such as (Q,≤), and more generally homogeneous [24]
or even ω-categorical relational structures. Another motivation for the study of register
automata comes from the area of database theory: XML documents can naturally be modelled
as finite unranked trees where data values from an infinite alphabet are necessary to model
the attribute values of the document (cf. [27] and the survey [33]).

The central verification question for register automata is the inclusion problem, which,
for two given automata A,B, asks whether L(A) ⊆ L(B). In full generality the problem is
undecidable and this holds already in the special case of the universality problem L(B) =
(Σ × A)∗ [27, Theorem 5.1], when B has only two registers [3, Theorem 1.8] (or even just
one register in the more powerful model with guessing [3, Exercise 9], i.e., non-deterministic
reassignment in the terminology of [22]). One way to obtain decidability is to restrict the
automaton B. One such restriction requires that B is deterministic: Since deterministic
register automata are effectively closed under complementation, the inclusion problem reduces
to non-emptiness of L(A) ∩ (Σ × A)∗ \ L(B), which can be checked in PSPACE. Another,
incomparable, restriction demands that B has only one register: In this case the problem
becomes decidable [21, Appendix A]1 and non-primitive recursive [18, Theorem 5.2].

Unambiguity. Unambiguous automata are a natural class of automata intermediate between
deterministic and nondeterministic automata. An automaton is unambiguous if there is at
most one accepting run on every input word. Unambiguity has often been used to generalise
decidability results for deterministic automata at the price of a usually modest additional
complexity. For instance, the universality problem for deterministic finite automata (which is
PSPACE-complete in general [38]) is NL-complete, while for the unambiguous variant it is in
PTIME [37, Corollary 4.7], and even in NC2 [39]. An even more dramatic example is provided
by universality of context-free grammars, which is undecidable in general [20, Theorem 9.22],
PTIME-complete for deterministic context-free grammars, and decidable for unambiguous
context-free grammars [31, Theorem 5.5] (even in PSPACE [12, Theorem 10]). (The more
general equivalence problem is decidable for deterministic context-free grammars [34], but
it is currently an open problem whether equivalence is decidable for unambiguous context-
free grammars, as well as for the more general multiplicity equivalence of context-free
grammars [23].) Other applications of unambiguity for universality and inclusion problems
in automata theory include Büchi automata [5, 1], probabilistic automata [17], Parikh
automata [7, 4], vector addition systems [16], and several others (cf. also [14, 15]).

Number sequences and the counting approach. The universality problem for a language
over finite words L ⊆ Σ∗ is equivalent to whether its associated word counting function
fL(n) := |L ∩ Σn| equals |Σ|n for every n. The most classical way of exploiting unambiguity
of a computation model A (finite automaton, context-free grammar, . . .) is to use the fact
that it yields a bijection between the recognised language L(A) and the set of accepting
runs. In this way, fL(n) is also the number of accepting runs of length n, and for the latter
recursive descriptions usually exist. When the class of number sequences to which fL belongs
contains |Σ|n and is closed under difference, this is equivalent to the zeroness problem for
g(n) := |Σ|n − fL(n), which amounts to decide whether g = 0. This approach has been

1 Decidability even holds for the so-called “two-window register automata”, which combined with the
restriction in [21] demanding that the last data value read must always be stored in some register boils
down to a slightly more general class of “1 1

2 -register automata”.

C. Barloy and L. Clemente 8:3

pioneered by Chomsky and Schützenberger [11] who have shown that the generating function
gL(x) =

∑∞
n=0 fL(n) · xn associated to an unambiguous context-free language L is algebraic

(cf. [6]). A similar observation by Stearns and Hunt [37] shows that gL(x) is rational [36,
Chapter 4], when L is regular, and more recently by Bostan et al. [4] who have shown that
gL(x) is holonomic [35] when L is recognised by an unambiguous Parikh automaton. Since
the zeroness problem for rational, algebraic, and holonomic generating functions is decidable,
one obtains decidability of the corresponding universality problems.

Unambiguous register automata. Returning to register automata, Mottet and Quaas
have recently shown that the inclusion problem in the case where B is an unambiguous
register automaton over equality data (without guessing) can be decided in 2-EXPSPACE,
and in EXPSPACE when the numbers of registers of B is fixed [25, Theorem 1]. Note that
already decidability is interesting, since unambiguous register automata without guessing
are not closed under complement in the class of nondeterministic register automata without
guessing [22, Example 4], and thus the classical approach via complementing B fails for
register automata2. (In fact, even for finite automata complementation of unambiguous
finite automata cannot lead to a PTIME universality algorithm, thanks to Raskin’s recent
super-polynomial lower-bound for the complementation problem for unambiguous finite
automata in the class of non-deterministic finite automata [30]). Mottet and Quaas obtain
their result by showing that inclusion can be decided by checking a reachability property of
a suitable graph of triply-exponential size obtained by taking the product of A and B, and
then applying the standard NL algorithm for reachability in directed graphs.

Our contributions. In view of the widespread success of the counting approach to un-
ambiguous models of computation, one may wonder whether it can be applied to register
automata as well. This is the topic of our paper. A naïve counting approach for register
automata immediately runs into trouble since there are infinitely many data words of length
n. The natural remedy is to use the fact that An, albeit infinite, is orbit-finite [3, Sec. 3.2],
which is a crucial notion generalising finiteness to the realm of relational structures used to
model data. In this way, we naturally count the number of orbits of words/runs of a given
length, which in the context of model theory is sometimes known as the Ryll-Nardzewski
function [32]. For example, in the case of equality data (A,=), the number of orbits of words
of length n is the well-known Bell number B(n), and for (Q,≤) one obtains the ordered Bell
numbers (a.k.a. Fubini numbers); cf. Cameron’s book for more examples [9, Ch. 7].

When considering orbits of runs, the run length n seems insufficient to obtain recurrence
equations. To this end, we also consider the number of distinct data values k that appear
on the word labelling the run. For instance, in the case of equality data, the corresponding
orbit-counting function is the well-known sequence of Stirling numbers of the second kind
S(n, k) : QN2 , which satisfies S(0, 0) = 1, S(m, 0) = S(0,m) = 0 for m ≥ 1, and

S(n, k) = S(n− 1, k − 1) + k · S(n− 1, k), for n, k ≥ 1. (1)

These intuitions lead us to define the class of bidimensional linear recursive sequences with
polynomial coefficients (linrec; cf. (2)) which are a class of number sequences in QN2 satisfying
a system of shift equations with polynomial coefficients generalising (1). Linrec are sufficiently

2 In the more general class of register automata with guessing, an unproved conjecture proposed by
Colcombet states that unambiguous register automata with guessing are effectively closed under
complement [15, Theorem 12], implying decidability of the universality and containment problems for
unambiguous register automata with guessing and, a posteriori, unambiguous register automata without
guessing as considered in this paper. No published proof of this conjecture has appeared as of yet.

STACS 2021

8:4 Linear Recursive Sequences and Universality of Register Automata

general to model the orbit-counting functions of register automata and yet amenable to
algorithmic analysis. Our first result is a complexity upper bound for the zeroness problem
for a class of linrec sequences which suffices to model register automata.

▶ Theorem 1. The zeroness problem for linrec sequences with univariate polynomial coeffi-
cients from Q[k] is in EXPTIME.

This is obtained by modelling linrec equations as systems of linear equations with skew
polynomial coefficients (introduced by Ore [29]) and then using complexity bounds on the
computation of the Hermite normal form of skew polynomial matrices by Giesbrecht and
Kim [19]. Our second result is a reduction of the universality and inclusion problems to
the zeroness problem of a system of linrec equations of exponential size. Together with
Theorem 1, this yields improved upper bounds on the former problems.

▶ Theorem 2. The universality L(B) = (Σ × A)∗ and the inclusion problem L(A) ⊆ L(B)
for register automata A,B without guessing with B unambiguous are in 2-EXPTIME, and
in EXPTIME for a fixed number of registers of A,B. The same holds for the equivalence
problem L(A) = L(B) when both automata are unambiguous.

The rest of the paper is organised as follows. In Section 2, we introduce linrec sequences
(cf. [2, Appendix A.3] for a comparison with well known sequence families from the literature
such as the C-recursive, P-recursive, and the more recent polyrec sequences [8]). In Section 3,
we introduce unambiguous register automata and we present an efficient reduction of the
inclusion (and thus equivalence) problem to the universality problem, which allows us to
concentrate on the latter in the rest of the paper. In Section 4, we present a reduction of
the universality problem to the zeroness problem for linrec. In Section 5, we show with
a simple argument based on elimination that the zeroness problem for linrec is decidable,
and in Section 6 we derive a complexity upper bound using non-commutative linear algebra.
Finally, in Section 7 we conclude with further work and an intriguing conjecture. Full proofs,
additional definitions, and examples are provided in the full version of the paper [2].

Notation. Let N, Z, and Q be the set of non-negative integers, resp., rationals. The height
of an integer k ∈ Z is |k|∞ = |k|, and for a rational number a ∈ Q uniquely written as a = p

q

with p ∈ Z, q ∈ N co-prime we define |a|∞ = max{|p|∞ , |q|∞}. Let Q[n, k] denote the ring
of bivariate polynomials. The (combined) degree degP of P =

∑
i,j aijn

ikj ∈ Q[n, k] is the
maximum i+ j s.t. aij ≠ 0 and the height |P |∞ is maxi,j |aij |∞. For a nonempty set A and
n ∈ N, let An be the set of sequences of elements from A of length n, In particular, A0 = {ε}
contains only the empty sequence ε. Let A∗ =

⋃
n∈NA

n be the set of all finite sequences
over A. We use the soft-Oh notation Õ(f(n)) to denote

⋃
c≥0 O(f(n) · logc f(n)).

2 Bidimensional linear recursive sequences with polynomial coefficients

Let f(n, k) : QN2 be a bidimensional sequence. For L ∈ N, the first L-section of f is the
one-dimensional sequence f(L, k) : QN obtained by fixing its first component to L; the second
L-section f(n,L) is defined similarly. The two shift operators ∂1, ∂2 : QN2 → QN2 are

(∂1f)(n, k) = f(n+ 1, k) and (∂2f)(n, k) = f(n, k + 1), for all n, k ≥ 0.

An affine operator is a formal expression of the form A = p00 + p01 · ∂1 + p10 · ∂2 where
p00, p01, p10 ∈ Q[n, k] are bivariate polynomials over n, k with rational coefficients. Let

C. Barloy and L. Clemente 8:5

{f1, . . . , fm} be a set of variables denoting bidimensional sequences3. A system of linear shift
equations over f1, . . . , fm consists of m equations of the form

∂1∂2f1 = A1,1 · f1 + · · · +A1,m · fm,
...

∂1∂2fm = Am,1 · f1 + · · · +Am,m · fm,

(2)

where the Ai,j ’s are affine operators. A bidimensional sequence f : QN2 is linear recursive of
order m, degree d, and height h (abbreviated, linrec) if the following two conditions hold:
1) there are auxiliary bidimensional sequences f2, . . . , fm : QN2 which together with f = f1

satisfy a system of linear shift equations as in (2) where the polynomial coefficients have
(combined) degree ≤ d and height ≤ h.

2) for every 1 ≤ i ≤ m there are constants denoted fi(0,≥ 1), fi(≥ 1, 0) ∈ Q s.t. fi(0, k) =
fi(0,≥ 1) and fi(n, 0) = fi(≥ 1, 0) for every n, k ≥ 1.

If we additionally fix the initial values f1(0, 0), . . . , fm(0, 0), then the system (2) has a unique
solution, which is computable in PTIME.

▶ Lemma 3. The values fi(n, k)’s are computable in deterministic time Õ(m · n · k).

In the following we will use the following effective closure under section.

▶ Lemma 4. If f : QN2 is linrec of order ≤ m, degree ≤ d, and height ≤ h, then its L-sections
f(L, k), f(n,L) : QN are linrec of order ≤ m · (L+ 3), degree ≤ d, and height ≤ h · Ld.

We are interested in the following central algorithmic problem for linrec.

Zeroness problem.
Input: A system of linrec equations (2) together with all initial conditions.
Output: Is it the case that f1 = 0?

In Section 4 we use linrec sequences to model the orbit-counting functions of register automata,
which we introduce next.

3 Unambiguous register automata

We consider register automata over the relational structure (A,=) consisting of a countable
set A equipped with equality as the only relational symbol. Let ā = a1 · · · an ∈ An be
a finite sequence of n data values. An ā-automorphism of A is a bijection α : A → A
s.t. α(ai) = ai for every 1 ≤ i ≤ n, which is extended pointwise to ā ∈ An and to L ⊆ A∗.
For b̄, c̄ ∈ An, we write b̄ ∼ā c̄ whenever there is an ā-automorphism α s.t. α(b̄) = c̄.
The ā-orbit of b̄ is the equivalence class [b̄]ā = {c̄ ∈ An | b̄ ∼ā c̄}, and the set of ā-
orbits of sequences in L ⊆ A∗ is orbitsā(L) = {[b̄]ā | b̄ ∈ L}. In the special case when
ā = ε is the empty tuple, we just speak about automorphism α and orbit [b̄]. A set
X is orbit-finite if orbits(X) is a finite set [3, Sec. 3.2]. All definitions above extend to
A⊥ := A ∪ {⊥} with ⊥ ̸∈ A in the expected way. A constraint φ is a quantifier-free4

formula generated by φ,ψ ::≡ x = ⊥ | x = y | φ ∨ ψ | φ ∧ ψ | ¬φ, where x, y are variables
and ⊥ is a special constant denoting an undefined value. The semantics of a constraint

3 We abuse notation and silently identify variables denoting sequences with the sequences they denote.
4 Since (A, =) is a homogeneous relational structure, and thus it admits quantifier elimination, we would

obtain the same expressive power if we would consider more general first-order formulas instead.

STACS 2021

8:6 Linear Recursive Sequences and Universality of Register Automata

φ(x1, . . . , xn) with n free variables x1, . . . , xn is the set of tuples of n elements which satisfies:
JφK = {a1, . . . , an ∈ An

⊥ | A⊥, x1 : a1, . . . , xn : an |= φ}. A register automaton of dimension
d ∈ N is a tuple A = (d,Σ, L, LI , LF ,−→) where d is the number of registers, Σ is a finite
alphabet, L is a finite set of control locations, of which we distinguish those which are
initial LI ⊆ L, resp., final LF ⊆ L, and “−→” is a set of rules of the form p

σ,φ−−→ q, where
p, q ∈ L are control locations, σ ∈ Σ is an input symbol from the finite alphabet, and
φ(x1, . . . , xd, y, x

′
1, . . . , x

′
d) is a constraint relating the current register values xi’s, the current

input symbol (represented by the variable y), and the next register values of x′
i’s.

▶ Example 5. Let A over |Σ| = 1 have one register x, and four control locations p, q, r, s,
of which p is initial and s is final. The transitions are p

x=⊥∧x′=y−−−−−−−→ q, p x=⊥∧x′=y−−−−−−−→ r,
q

x ̸=y∧x′=x−−−−−−−→ q, q x=y∧x′=x−−−−−−−→ s, r x=y∧x′=x−−−−−−−→ r, and r x ̸=y∧x′=x−−−−−−−→ s. The automaton accepts all
words of the form a(A \ {a})∗a or aa∗(A \ {a}) with a ∈ A.

A register automaton is orbitised if every constraint φ appearing in some transition thereof
denotes an orbit JφK ∈ orbits(A2·d+1

⊥). For example, when d = 1 the constraint φ ≡ x = x′

is not orbitised, however JφK = Jφ0K ∪ Jφ1K splits into two disjoint orbits for the orbitised
constraints φ0 ≡ x = x′ ∧ x = y and φ1 ≡ x = x′ ∧ x ̸= y. The automaton from Example 5
is orbitised. Every register automaton can be transformed in orbitised form by replacing
every transition p

σ,φ−−→ q with exponentially many transitions p σ,φ1−−−→ q, . . . , p
σ,φn−−−→ q, for

each orbit JφiK of JφK ⊆ A2·d+1
⊥ .

A register valuation is a tuple of (possibly undefined) values ā = (a1, . . . , ad) ∈ Ad
⊥. A

configuration is a pair (p, ā), where p ∈ L is a control location and ā ∈ Ad
⊥ is a register

valuation; it is initial if p ∈ LI is initial and all registers are initially undefined ā = (⊥, . . . ,⊥),
and it is final whenever p ∈ LF is so. The semantics of a register automaton A is the infinite
transition system JAK = (C,CI , CF ,−→) where C is the set of configurations, of which
CI , CF ⊆ C are the initial, resp., final ones, and −→ ⊆ C × (Σ × A) × C is the set of all
transitions of the form

(p, ā) σ,a−−→ (q, ā′), with σ ∈ Σ, a ∈ A, and ā, ā′ ∈ Ad
⊥,

s.t. there exists a rule p σ,φ−−→ q where satisfying the constraint A⊥, x̄ : ā, y : a, x̄′ : ā′ |= φ.
A data word is a sequence w = (σ1, a1) · · · (σn, an) ∈ (Σ × A)∗. A run over a data word w

starting at c0 ∈ C and ending at cn ∈ C is a sequence π of transitions of JAK of the form
π = c0

σ1,a1−−−→ c1
σ2,a2−−−→ · · · σn,an−−−−→ cn. We denote with Runs(c0;w; cn) the set of runs over w

starting at c0 and ending in cn, and with Runs(CI ;w; cn) the set of initial runs, i.e., those
runs over w starting at some initial configuration c0 ∈ CI and ending in cn. The run π is
accepting if cn ∈ CF . The language L(A, c) recognised from configuration c ∈ C is the set
of data words labelling some accepting run starting at c; the language recognised from a
set of configurations D ⊆ C is L(A,D) =

⋃
c∈D L(A, c), and the language recognised by the

register automaton A is L(A) = L(A,CI). Similarly, the backward language LR(A, c) is the
set of words labelling some run starting at an initial configuration and ending at c. Thus, we
also have L(A) = LR(A,CF). A register automaton is deterministic if for every input word
there exists at most one initial run, and unambiguous if for every input word there is at most
one initial and accepting run. A register automaton is without guessing if, for every initial
run (p,⊥d) w−→ (q, ā) every non-⊥ data value in ā occurs in the input w, written ā ⊆ w. In
the rest of the paper we will study exclusively automata without guessing. A deterministic
automaton is unambiguous and without guessing. These semantic properties can be decided
in PSPACE with simple reachability analyses (cf. [15]).

C. Barloy and L. Clemente 8:7

▶ Example 6. The automaton from Example 5 is unambiguous and without guessing. An
example of language which can only be recognised by ambiguous register automata is the set
of words where the same data value appears two times L = {u ·a ·v ·a ·w | a ∈ A;u, v, w ∈ A∗}.

▶ Lemma 7. If A is an unambiguous register automaton, then there is a bijection between
the language it recognises L(A) = L(A,CI) = LR(A,CF) and the set of runs starting at some
initial configuration in CI and ending at some final configuration in CF .

We are interested in the following decision problem.

Inclusion problem.
Input: Two register automata A,B over the same input alphabet Σ.
Output: Is it the case that L(A) ⊆ L(B)?

The universality problem asks L(A) = (Σ × A)∗, and the equivalence problem L(A) = L(B).
In general, universality reduces to equivalence, which in turn reduces to inclusion. In our
context, inclusion reduces to universality and thus all three problems are equivalent.

▶ Lemma 8. Let A and B be two register automata.
1. The inclusion problem L(A) ⊆ L(B) with A orbitised and without guessing reduces in

PTIME to the case where A is deterministic. The reduction preserves whether B is 1)
unambiguous, 2) without guessing, and 3) orbitised.

2. The inclusion problem L(A) ⊆ L(B) with A deterministic reduces in PTIME to the
universality problem for some register automaton C. If B is unambiguous, then so is C.
If B is without guessing, then so is C. If A and B are orbitised, then so is C.

4 Universality of unambiguous register automata without guessing

We reduce universality of unambiguous register automata without guessing to zeroness
of bidimensional linrec sequences with univariate polynomial coefficients. The width of
a sequence of data values ā = a1 · · · an ∈ An is #ā = |{a1, . . . , an}|, for a word w =
(σ1, a1) · · · (σn, an) ∈ (Σ × A)∗ we set #w = #(a1 · · · an), and for a run π over w we set
#π = #w. Let the Ryll-Nardzewski function Gp,ā(n, k) of a configuration (p, ā) ∈ C = L×Ad

⊥
count the number of ā-orbits of initial runs of length n and width k ending in (p, ā):

Gp,ā(n, k) = |{[π]ā | w ∈ (Σ × A)n, π ∈ Runs(CI ;w; p, ā),#w = k}| . (3)

▶ Lemma 9. Let ā, b̄ ∈ Ad
⊥. If [ā] = [b̄], then Gp,ā(n, k) = Gp,b̄(n, k) for every n, k ≥ 0.

We thus overload the notation and write Gp,[ā] instead of Gp,ā. Since Ad
⊥ is orbit-finite,

this yields finitely many variables Gp,[ā]’s. By slightly abusing notation, let GCF
(n, k) =∑

[(p,ā)]∈orbits(CF) Gp,[ā](n, k) be the sum of the Ryll-Nardzewski function over all orbits
of accepting configurations. When the automaton is unambiguous, thanks to Lemma 7,
GCF

(n, k) is also the number of orbits of accepted words of length n and width k.

▶ Lemma 10. Let A be an unambiguous register automaton w/o guessing over Σ and let
SΣ(n, k) be the number of orbits of all words of length n and width k. We have L(A) = (A×A)∗

if, and only if, ∀n, k ∈ N ·GCF
(n, k) = SΣ(n, k).

In other words, universality of A reduces to zeroness of G := SΣ −GCF
. The sequence SΣ is

linrec since it satisfies the recurrence in Figure 2 with initial conditions SΣ(0, 0) = 1 and
SΣ(n + 1, 0) = SΣ(0, k + 1) = 0 for n, k ≥ 0. We show that all the sequences of the form

STACS 2021

8:8 Linear Recursive Sequences and Universality of Register Automata

Figure 1 Last-step decomposition.

Gp′,[ā′](n + 1, k + 1) =
∑

[p,ā
σ,a−−→p′,ā′]: a∈ā

Gp,[ā](n, k + 1)︸ ︷︷ ︸
I

+

∑
[p,ā

σ,a−−→p′,ā′]: a ̸∈ā

Gp,[ā](n, k)︸ ︷︷ ︸
II

+ max(k + 1 − #[ā], 0) · Gp,[ā](n, k + 1)︸ ︷︷ ︸
III

 ,

SΣ(n + 1, k + 1) = |Σ| · SΣ(n, k) + |Σ| · (k + 1) · SΣ(n, k + 1),

G(n, k) = SΣ(n, k) −
∑

[p,ā]∈orbits(CF)

Gp,[ā](n, k).

Figure 2 Linrec automata equations.

Gp,[ā] are also linrec and thus also G will be linrec. We perform a last-step decomposition of
an initial run; cf. Figure 1. Starting from some initial configuration (p0,⊥d), the automaton
has read a word w of length n − 1 leading to (p, ā). Then, the automaton reads the last
letter (σ, a) and goes to (p′, ā′) via the transition t = (p, ā σ,a−−→ p′, ā′). The question is in how
many distinct ways can an orbit of the run over w be extended into an orbit of the run over
w · (σ, a). We distinguish three cases.

I: Assume that a appears in register āi = a. Since the automaton is without guessing,
a ∈ w has appeared earlier in the input word and ā′ ⊆ ā (ignoring ⊥’s). Thus, each
ā-orbit of runs [p0,⊥d w−→ p, ā]ā yields, via the fixed t, an ā′-orbit of runs [p0,⊥d w−→
p, ā

σ,a−−→ p′, ā′]ā′ of the same width in just one way.
II: Assume that a is globally fresh a ̸∈ w, and thus in particular a ̸∈ ā since the automaton

is without guessing. Each ā-orbit of runs [p0,⊥d w−→ p, ā]ā of width #w yields, via the
fixed t, a single ā′-orbit of runs [p0,⊥d w−→ p, ā

σ,a−−→ p′, ā′]ā′ of width #(w · a) = #w+ 1.
III: Assume that a ∈ w is not globally fresh, but it does not appear in any register a ̸∈ ā.

Since the automaton is without guessing, every value in ā appears in w. Consequently,
a can be any of the #w distinct values in w, with the exception of #ā values. Each
ā-orbit of runs [p0,⊥

w−→ p, ā]ā of width #w yields #w − #ā ≥ 0 ā′-orbits of runs
[p0,⊥d w−→ p, ā

σ,a−−→ p′, ā′]ā′ of the same width.
(As expected, we do not need unambiguity at this point, since we are counting orbits of
runs.) We obtain the equations in Figure 2, where the sums range over orbits of transitions.
This set of equations is finite since there are finitely many orbits [ā] ∈ orbits(Ad

⊥) of register
valuations, and moreover we can effectively represent each orbit by a constraint [3, Ch. 4].
Strictly speaking, the equations are not linrec due to the “max” operator, however they can
easily be transformed to linrec by considering Gp,[ā](n,K) separately for 1 ≤ K < d; in the
interest of clarity, we omit the full linrec expansion. The initial condition is Gp,[ā](0, 0) = 1 if
p ∈ I initial, and Gp,[ā](0, 0) = 0 otherwise. The two 0-sections satisfy Gp,[ā](n+ 1, 0) = 0 for
n ≥ 0 (if the word is nonempty, then there is at least one data value) and Gp,[ā](0, k+ 1) = 0
for k ≥ 0 (an empty word does not have any data value).

▶ Lemma 11. The sequences Gp,[ā]’s satisfy the system of equations in Figure 2.

C. Barloy and L. Clemente 8:9

▶ Example 12. The equations corresponding to the automaton in Example 5 are as follows.
(Since the automaton is orbitised, we can omit the orbit.) We have Gp(0, 0) = 1, Gq(0, 0) =
Gr(0, 0) = Gs(0, 0) = 0 and for n, k ≥ 0:

Gp(n+ 1, k + 1) = 0,
Gq(n+ 1, k + 1) = Gp(n, k)︸ ︷︷ ︸

II

+ (k + 1) ·Gp(n, k + 1)︸ ︷︷ ︸
III

+Gq(n, k)︸ ︷︷ ︸
II

+ k ·Gq(n, k + 1)︸ ︷︷ ︸
III

,

Gr(n+ 1, k + 1) = Gp(n, k)︸ ︷︷ ︸
II

+ (k + 1) ·Gp(n, k + 1)︸ ︷︷ ︸
III

+Gr(n, k + 1)︸ ︷︷ ︸
I

,

Gs(n+ 1, k + 1) = Gq(n, k + 1)︸ ︷︷ ︸
I

+Gr(n, k)︸ ︷︷ ︸
II

+ k ·Gr(n, k + 1)︸ ︷︷ ︸
III

.

▶ Lemma 13. Let A be an unambiguous register automaton over equality atoms without
guessing with d registers and ℓ control locations. The universality problem for A reduces to
the zeroness problem of the linrec sequence G defined by the system of equations in Figure 2
containing O(ℓ · 2d·log d) variables and equations and constructible in PSPACE. If A is already
orbitised, then the system of equations has size O(ℓ).

5 Decidability of the zeroness problem

In this section, we present an algorithm to solve the zeroness problem of bidimensional linrec
sequences with univariate polynomial coefficients, which is sufficient for linrec sequences
from Figure 2. We first give a general presentation on elimination for bivariate polynomial
coefficients, and then we use the univariate assumption to obtain a decision procedure. We
model the non-commutative operators appearing in the definition of linrec sequences (2) with
Ore polynomials (a.k.a. skew polynomials) [29]5. Let R be a (not necessarily commutative)
ring and σ an automorphism of R. The ring of (shift) skew polynomials R[∂;σ] is defined
as the ring of polynomials but where the multiplication operation satisfies the following
commutation rule: For a coefficient a ∈ R and the unknown ∂, we have

∂ · a = σ(a) · ∂.

(The usual ring of polynomials is recovered when σ is the identity.) The multiplication
extends to monomials as a∂k · b∂l = aσk(b) ·∂k+l and to the whole ring by distributivity. The
degree of a skew monomial a · ∂k is k, and the degree degP of a skew polynomial P is the
maximum of the degrees of its monomials. The degree function satisfies the expected identities
deg(P · Q) = degP + degQ and deg(P + Q) ≤ max(degP, degQ). A skew polynomial is
monic if the coefficient of its monomial of highest degree is 1. The crucial and only property
that we need in this section is that skew polynomial rings admit a Euclidean pseudo-division
algorithm, which in turns allows one to find common left multiples. A skew polynomial ring
R[∂;σ] has pseudo-division if for any two skew polynomials A,B ∈ R[∂;σ] with degA ≥ degB
there is a coefficient a ∈ R and skew polynomials Q,R ∈ R[∂;σ] s.t. a ·A = P ·B +Q and
degQ < degB. We say that a ring R has the common left multiple (CLM) property if for
every a, b ̸= 0, there exists c, d ̸= 0 such that c · a = d · b.

5 The general definition of the Ore polynomial ring R[∂; σ, δ] uses an additional component δ : R → R in
order to model differential operators. We present a simplified version which is enough for our purposes.

STACS 2021

8:10 Linear Recursive Sequences and Universality of Register Automata

▶ Theorem 14 (cf. [28, Sec. 1]). If R has the CLM property, then
1) R[∂;σ] has a pseudo-division, and
2) R[∂;σ] also has the CLM property.
The most important instances of skew polynomials are the first and second Weyl algebras:

W1 = Q[n, k][∂1;σ1] and W2 = W1[∂2;σ2] = Q[n, k][∂1;σ1][∂2;σ2], (4)

where Q[n, k] is the ring of bivariate polynomials, and the shifts satisfy σ1(p(n, k)) :=
p(n + 1, k) and σ2

(∑
i pi(n, k)∂i

1
)

:=
∑

i pi(n, k + 1)∂i
1. Skew polynomials in W2 act on

bidimensional sequences f : QN2 by interpreting ∂1 and ∂2 as the two shifts. A linrec system
of equations (2) can thus be interpreted as a system of linear equations with variables
f1, . . . , fm and coefficients in W2.

▶ Example 15. Continuing our running Example 12, we obtain the following linear system
of equations with W2 coefficients:

∂1∂2 ·Gp = 0,
−(1 + (k + 1)∂2) ·Gp +(∂1∂2 − k∂2 − 1) ·Gq = 0,
−(1 + (k + 1)∂2) ·Gp +(∂1∂2 − ∂2) ·Gr = 0,

−∂2 ·Gq −(1 + k∂2) ·Gr +∂1∂2 ·Gs = 0,
(∂1∂2 − (k + 1)∂2 − 1) · S1 = 0,
Gs − S1 +G = 0.

Since W0 = N[n, k] is commutative, it obviously has the CLM property. By two applications
of Theorem 14, we have (see [2, Appendix D.1] for CLM examples):

▶ Corollary 16. The two Weyl algebras W1 and W2 have the CLM property.

A (linear) cancelling relation (CR) for a bidimensional sequence f : QN2 is a linear
equation of the form

pi∗,j∗(n, k) · ∂i∗

1 ∂
j∗

2 f =
∑

(i,j)<lex(i∗,j∗)

pi,j(n, k) · ∂i
1∂

j
2f, (CR-2)

where pi∗,j∗(n, k), pi,j(n, k) ∈ Q[n, k] are bivariate polynomial coefficients and <lex is the
lexicographic ordering. Cancelling relations for a one-dimensional sequence g : QN are defined
analogously (we use the second variable k as the index for convenience):

qj∗(k) · ∂j∗

2 g =
∑

0≤j<j∗

qj(k) · ∂j
2g. (CR-1)

We use cancelling relations as certificates of zeroness for f when the pi,j ’s are univariate. We
do not need to construct any cancelling relation, just knowing that some exists with the
required bounds suffices.

▶ Lemma 17. The zeroness problem for a bidimensional linrec sequence f : QN2 of order
≤ m and univariate polynomial coefficients in Q[k] admitting some cancelling relation (CR-2)
with leading coefficient pi∗,j∗(k) ∈ Q[k] of degree ≤ e and height ≤ h s.t. each of the one-
dimensional sections f(M,k) ∈ QN for 1 ≤ M ≤ i∗ also admits some cancelling relation
(CR-1) of ∂2-degree ≤ d with leading polynomial coefficients of degrees ≤ e and height ≤ h is
decidable in deterministic time Õ(p(m, i∗, j∗, d, e, h)) for some polynomial p.

C. Barloy and L. Clemente 8:11

Elimination already yields decidability with elementary complexity for the zeroness
problem and thus for the universality/equivalence/inclusion problems of unambiguous register
automata without guessing.

▶ Theorem 18. The zeroness problem for linrec sequences with univariate polynomial
coefficients from Q[k] (or from Q[n]) is decidable.

▶ Example 19. Continuing our running Example 15, we subsequently eliminate
Gp, Gs, Gr, Gq, S finally obtaining (cf. [2, Example 34 in Appendix D.2] for details)

G(n+ 4, k + 4) = (k + 3) ·G(n+ 3, k + 4) +G(n+ 3, k + 3) +
−(k + 2) ·G(n+ 2, k + 4) −G(n+ 2, k + 3). (5)

As expected, all coefficients are polynomials in Q[k] and in particular they do not involve
the variable n. Moreover, we note that the relation above is monic, in the sense that
the lexicographically leading term G(n+ 4, k + 4) has coefficient 1 (cf. Section 7). (Cf. [2,
Example 35] for elimination in a two-register automaton and [2, Example 36] for a one-register
automaton accepting all words of length ≥ 2.)

We omit a precise complexity analysis of elimination because better bounds can be obtained
by resorting to linear non-commutative algebra, which is the topic of the next section.

6 Complexity of the zeroness problem

In this section we present an EXPTIME algorithm to solve the zeroness problem and we
apply this result to register automata. We compute the Hermite normal form (HNF) of
the matrix with skew polynomial coefficients associated to (2) in order to do elimination
in a more efficient way. The complexity bounds provided by Giesbrecht and Kim [19] on
the computation of the HNF lead to the following bounds for cancelling relations; cf. [2,
Appendix E] for further details and full proofs.

▶ Lemma 20. A linrec sequence f ∈ QN2 of order ≤ m, degree ≤ d, and height ≤ h admits a
cancelling relation (CR-2) with the orders i∗, j∗ and the degree of pi∗,j∗ polynomially bounded,
and with height |pi∗,j∗ |∞ exponentially bounded. Similarly, its one-dimensional sections
f(0, k), . . . , f(i∗, k) ∈ QN also admit cancelling relations (CR-1) of polynomially bounded
orders and degree, and exponentially bounded height.

This allows us to prove below the EXPTIME upper-bound for zeroness of Theorem 1, and
the 2-EXPTIME algorithm for inclusion of Theorem 2.

Proof of Theorem 1. Thanks to the bounds from Lemma 20, i∗, j∗ are polynomially
bounded; we can find a polynomial bound d on the ∂2-degrees of the cancelling relations
R0, . . . , Ri∗ for the sections f(0, k), . . . , f(i∗, k), respectively; we can find a polynomial bound
e on the degrees of pi∗,j∗(k) and the leading polynomial coefficients of the Ri’s; and an
exponential bound h on |pi∗,j∗ |∞ and the heights of the leading polynomial coefficients of
the Ri’s. We thus obtain an EXPTIME algorithm by Lemma 17. ◀

This yields the announced upper-bounds for the inclusion problem for register automata.

Proof of Theorem 2. For the universality problem L(B) = (Σ × A)∗, let d be the number
of registers and ℓ the number of control locations of B. By Lemma 13, the universality
problem reduces in PSPACE to zeroness of a linrec system with polynomial coefficients in Q[k]

STACS 2021

8:12 Linear Recursive Sequences and Universality of Register Automata

containing O(ℓ ·2d·log d) variables Gp,[ā] and the same number of equations. By Theorem 1, we
get a 2-EXPTIME algorithm. When the numbers of registers d is fixed, we get an EXPTIME
algorithm. For the inclusion problem L(A) ⊆ L(B), we first orbitise A into an equivalent
orbitised register automaton without guessing A′. A close inspection of the two constructions
leading to C in the proof of Lemma 8 reveal that transitions in C are either transitions from
A′ (and thus already orbitised), or pairs of a transition in B together with a transition in A′,
the second of which is already orbitised. It follows that orbitising C incurs in an exponential
blow-up w.r.t. the number of registers of B, but only polynomial w.r.t. the number of registers
of A′ (and thus of A), since the A′-part in C is already orbitised. Consequently, we can
write (in PSPACE) a system of linrec equations for the universality problem of C of size
exponential in the number of registers of A and of B. By reasoning as in the first part of
the proof, we obtain a EXPTIME algorithm for the universality problem of C, and thus a
2-EXPTIME algorithm for the original inclusion problem L(A) ⊆ L(B). If both the number
of registers of A and of B is fixed, we get an EXPTIME algorithm. The equivalence problem
L(A) = L(B) with both automata A,B unambiguous reduces to two inclusion problems. ◀

7 Further remarks and conclusions

We say that P =
∑

i,j pi,j(n, k) · ∂i
1∂

j
2 is monic if pi∗,j∗ = 1 where (i∗, j∗) is the lexicograph-

ically largest pair (i, j) s.t. pi,j ̸= 0. The cancelling relation (CR-2) in our examples (5) and
[2, (10), (11), (15)] happens to be monic in this sense.

▶ Conjecture 21 (Monicity conjecture). There always exists a monic cancelling relation
(CR-2) for linrec systems obtained from automata equations in Figure 2, and similarly for
their sections (CR-1).

Conjecture 21 has important algorithmic consequences. The exponential complexity in
Theorem 1 comes from the exponential growth of the rational number coefficients (heights) in
the HNF. This is due to the use of Lemma 17, whose complexity depends on the maximal root of
the leading polynomial pi∗,j∗(n, k) from (CR-2). If Conjecture 21 holds, then pi∗,j∗(n, k) = 1,
Lemma 17 would yield a PTIME algorithm for zeroness, and consequently all complexities in
Theorem 2, would drop by one exponential. This provides ample motivation to investigate
the monicity conjecture.

In order to obtain the lower EXPTIME complexity for L(A) ⊆ L(B) in Theorem 2 we
have to fix the number of registers in both automata A and B. The EXPSPACE upper bound
of Mottet and Quaas [25] holds already when only the number of registers of B is fixed, while
we only obtain a 2-EXPTIME upper bound in this case. It is left for future work whether the
counting approach can yield better bounds without fixing the number of registers of A.

The fact that the automata are non-guessing is crucial in each of the cases I, II, and
III of the equations in Figure 2 in order to correctly count the number of orbits of runs.
For automata with guessing from the fact that the current input a is stored in a register we
cannot deduce that a actually appeared previously in the input word w, and thus our current
parametrisation in terms of length and width does not lead to a recursive characterisation.

Finally, it is also left for further work to extend the counting approach to other data
domains such as total order atoms, random graph atoms, etc. . . , and, more generally, to
arbitrary homogeneous and ω-categorical atoms under suitable computability assumptions
(cf. [13]), and to other models of computation such as register pushdown automata [10, 26].

C. Barloy and L. Clemente 8:13

References
1 Christel Baier, Stefan Kiefer, Joachim Klein, Sascha Klüppelholz, David Müller, and James

Worrell. Markov Chains and Unambiguous Büchi Automata. In Swarat Chaudhuri and Azadeh
Farzan, editors, Proc. of CAV’16, pages 23–42, Cham, 2016. Springer International Publishing.

2 Corentin Barloy and Lorenzo Clemente. Bidimensional linear recursive sequences and univer-
sality of unambiguous register automata. arXiv e-prints, January 2021. arXiv:2101.01033.

3 Mikołaj Bojańczyk. Slightly infinite sets, 2019. URL: https://www.mimuw.edu.pl/~bojan/
paper/atom-book.

4 Alin Bostan, Arnaud Carayol, Florent Koechlin, and Cyril Nicaud. Weakly-Unambiguous
Parikh Automata and Their Link to Holonomic Series. In Artur Czumaj, Anuj Dawar, and
Emanuela Merelli, editors, Proc. of ICALP’20, volume 168 of LIPIcs, pages 114:1–114:16,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

5 Nicolas Bousquet and Christof Löding. Equivalence and inclusion problem for strongly
unambiguous büchi automata. In Adrian-Horia Dediu, Henning Fernau, and Carlos Martín-
Vide, editors, Proc. of LATA’10, pages 118–129, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

6 Mireille Bousquet-Mélou. Algebraic generating functions in enumerative combinatorics and
context-free languages. In Volker Diekert and Bruno Durand, editors, Proc. of STACS’05,
pages 18–35, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

7 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Unambiguous constrained automata.
In Hsu-Chun Yen and Oscar H. Ibarra, editors, Proc. of DLT’12, volume 7410 of LNCS, pages
239–250. Springer Berlin Heidelberg, 2012.

8 Michaël Cadilhac, Filip Mazowiecki, Charles Paperman, Michał Pilipczuk, and Géraud Sén-
izergues. On Polynomial Recursive Sequences. In Artur Czumaj, Anuj Dawar, and Emanuela
Merelli, editors, Proc. of ICALP’20, volume 168 of LIPIcs, pages 117:1–117:17, Dagstuhl,
Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

9 Peter J. Cameron. Notes on Counting: An Introduction to Enumerative Combinatorics.
Australian Mathematical Society Lecture Series. Cambridge University Press, 1 edition, 2017.

10 Edward Y. C. Cheng and Michael Kaminski. Context-free languages over infinite alphabets.
Acta Inf., 35(3):245–267, 1998.

11 N. Chomsky and M. P. Schützenberger. The algebraic theory of context-free languages. In
P. Braffort and D. Hirschberg, editors, Computer Programming and Formal Systems, volume 35
of Studies in Logic and the Foundations of Mathematics, pages 118–161. Elsevier, 1963.

12 Lorenzo Clemente. On the complexity of the universality and inclusion problems for unambigu-
ous context-free grammars. In Laurent Fribourg and Matthias Heizmann, editors, Proceedings
8th International Workshop on Verification and Program Transformation and 7th Workshop
on Horn Clauses for Verification and Synthesis, Dublin, Ireland, 25-26th April 2020, volume
320 of EPTCS, pages 29–43. Open Publishing Association, 2020. doi:10.4204/EPTCS.320.2.

13 Lorenzo Clemente and Slawomir Lasota. Reachability analysis of first-order definable pushdown
systems. In Stephan Kreutzer, editor, Proc. of CSL’15, volume 41 of LIPIcs, pages 244–259,
Dagstuhl, 2015.

14 Thomas Colcombet. Forms of Determinism for Automata (Invited Talk). In Christoph Dürr
and Thomas Wilke, editors, Proc. of STACS’12, volume 14 of LIPIcs, pages 1–23, Dagstuhl,
Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

15 Thomas Colcombet. Unambiguity in automata theory. In Jeffrey Shallit and Alexander
Okhotin, editors, Descriptional Complexity of Formal Systems, pages 3–18, Cham, 2015.
Springer International Publishing.

16 Wojciech Czerwiński, Diego Figueira, and Piotr Hofman. Universality Problem for Unambigu-
ous VASS. In Igor Konnov and Laura Kovács, editors, Proc. of CONCUR’20, volume 171 of
LIPIcs, pages 36:1–36:15, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik.

STACS 2021

http://arxiv.org/abs/2101.01033
https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://doi.org/10.4204/EPTCS.320.2

8:14 Linear Recursive Sequences and Universality of Register Automata

17 Laure Daviaud, Marcin Jurdzinski, Ranko Lazic, Filip Mazowiecki, Guillermo A. Pérez, and
James Worrell. When is Containment Decidable for Probabilistic Automatal. In Ioannis
Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, Proc.
of ICALP’18, volume 107 of LIPIcs, pages 121:1–121:14, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

18 Stéphane Demri and Ranko Lazić. LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Logic, 10(3):16:1–16:30, April 2009.

19 Mark Giesbrecht and Myung Sub Kim. Computing the Hermite form of a matrix of Ore
polynomials. Journal of Algebra, 376:341–362, 2013.

20 John Hopcroft, Rajeev Motwani, and Jeffrey Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 2000.

21 Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994.

22 Michael Kaminski and Daniel Zeitlin. Finite-memory automata with non-deterministic re-
assignment. International Journal of Foundations of Computer Science, 21(05):741–760,
2010.

23 Werner Kuich. On the multiplicity equivalence problem for context-free grammars. In
Proceedings of the Colloquium in Honor of Arto Salomaa on Results and Trends in Theoretical
Computer Science, pages 232—-250, Berlin, Heidelberg, 1994. Springer-Verlag.

24 Dugald Macpherson. A survey of homogeneous structures. Discrete Math., 311(15):1599–1634,
August 2011.

25 Antoine Mottet and Karin Quaas. The containment problem for unambiguous register
automata and unambiguous timed automata. Theory of Computing Systems, 2020. doi:
10.1007/s00224-020-09997-2.

26 A.S. Murawski, S.J. Ramsay, and N. Tzevelekos. Reachability in pushdown register automata.
Journal of Computer and System Sciences, 87:58–83, 2017.

27 Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Logic, 5(3):403—-435, July 2004.

28 Oystein Ore. Linear equations in non-commutative fields. Annals of Mathematics, 32(3):463–
477, 1931. URL: http://www.jstor.org/stable/1968245.

29 Oystein Ore. Theory of non-commutative polynomials. Annals of Mathematics, 34(3):480–508,
1933. URL: http://www.jstor.org/stable/1968173.

30 Mikhail Raskin. A Superpolynomial Lower Bound for the Size of Non-Deterministic Com-
plement of an Unambiguous Automaton. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, Proc. of ICALP’18, volume 107 of LIPIcs, pages
138:1–138:11, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

31 Arto Salomaa and Marti Soittola. Automata-theoretic aspects of formal power series. Texts
and Monographs in Computer Science. Springer, 1978.

32 James Schmerl. A decidable ℵ0-categorical theory with a non-recursive Ryll-Nardzewski
function. Fundamenta Mathematicae, 98(2):121–125, 1978.

33 Luc Segoufin. Automata and logics for words and trees over an infinite alphabet. In Zoltán
Ésik, editor, Computer Science Logic, volume 4207 of LNCS, pages 41–57. Springer Berlin
Heidelberg, 2006.

34 Géraud Sénizergues. The equivalence problem for deterministic pushdown automata is decidable.
In Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-Spaccamela, editors, Proc. of
ICALP’97, pages 671–681, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

35 Richard P. Stanley. Differentiably finite power series. European Journal of Combinatorics,
1(2):175–188, 1980.

36 Richard P. Stanley. Enumerative Combinatorics. The Wadsworth & Brooks/Cole Mathematics
Series 1. Springer, 1 edition, 1986.

https://doi.org/10.1007/s00224-020-09997-2
https://doi.org/10.1007/s00224-020-09997-2
http://www.jstor.org/stable/1968245
http://www.jstor.org/stable/1968173

C. Barloy and L. Clemente 8:15

37 R. Stearns and H. Hunt. On the equivalence and containment problems for unambiguous
regular expressions, grammars, and automata. In Proc. of SFCS’81, pages 74–81, Washington,
DC, USA, 1981. IEEE Computer Society. doi:10.1109/SFCS.1981.29.

38 L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time (preliminary
report). In Proc. of STOC’73, pages 1–9, New York, NY, USA, 1973. ACM.

39 Tzeng Wen-Guey. On path equivalence of nondeterministic finite automata. Information
Processing Letters, 58(1):43–46, 1996.

STACS 2021

https://doi.org/10.1109/SFCS.1981.29

Tight Approximation Guarantees for Concave
Coverage Problems
Siddharth Barman !

Indian Institute of Science, Bangalore, India

Omar Fawzi !

Univ. Lyon, ENS Lyon, UCBL, CNRS, Inria, LIP, F-69342, Lyon Cedex 07, France

Paul Fermé !

Univ. Lyon, ENS Lyon, UCBL, CNRS, Inria, LIP, F-69342, Lyon Cedex 07, France

Abstract
In the maximum coverage problem, we are given subsets T1, . . . , Tm of a universe [n] along with an
integer k and the objective is to find a subset S ⊆ [m] of size k that maximizes C(S) :=

∣∣⋃
i∈S

Ti

∣∣.
It is a classic result that the greedy algorithm for this problem achieves an optimal approximation
ratio of 1 − e−1.

In this work we consider a generalization of this problem wherein an element a can contribute
by an amount that depends on the number of times it is covered. Given a concave, nondecreasing
function φ, we define Cφ(S) :=

∑
a∈[n] waφ(|S|a), where |S|a = |{i ∈ S : a ∈ Ti}|. The standard

maximum coverage problem corresponds to taking φ(j) = min{j, 1}. For any such φ, we provide an
efficient algorithm that achieves an approximation ratio equal to the Poisson concavity ratio of φ,
defined by αφ := minx∈N∗

E[φ(Poi(x))]
φ(E[Poi(x)]) . Complementing this approximation guarantee, we establish a

matching NP-hardness result when φ grows in a sublinear way.
As special cases, we improve the result of [4] about maximum multi-coverage, that was based

on the unique games conjecture, and we recover the result of [11] on multi-winner approval-based
voting for geometrically dominant rules. Our result goes beyond these special cases and we illustrate
it with applications to distributed resource allocation problems, welfare maximization problems and
approval-based voting for general rules.

2012 ACM Subject Classification Theory of computation → Packing and covering problems; Theory
of computation → Rounding techniques; Theory of computation → Algorithmic game theory

Keywords and phrases Approximation Algorithms, Coverage Problems, Concave Function

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.9

Related Version Full Version: https://arxiv.org/abs/2010.00970 [3]

Funding This research is supported by the French ANR project ANR-18-CE47-0011 (ACOM). SB
gratefully acknowledges the support of a Ramanujan Fellowship (SERB - SB/S2/RJN-128/2015)
and a Pratiksha Trust Young Investigator Award.

1 Introduction

Coverage functions are central objects of study in combinatorial optimization. Problems
related to optimizing such functions arise in multiple fields, such as operations research [10],
machine learning [14], algorithmic game theory [12], and information theory [2]. The
most basic covering problem is the maximum coverage one. In this problem, we are given
subsets T1, . . . , Tm of a universe [n], along with a positive integer k, and the objective is
to find a size-k subset S ⊆ [m] that maximizes the coverage function C(S) :=

∣∣⋃
i∈S Ti

∣∣. A
fundamental result in the field of approximation algorithms establishes that an approximation
ratio of 1 − e−1 can be achieved for this problem in polynomial-time [15] and, in fact, this
approximation guarantee is tight, under the assumption that P ̸= NP [13].

© Siddharth Barman, Omar Fawzi, and Paul Fermé;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:barman@iisc.ac.in
mailto:omar.fawzi@ens-lyon.fr
mailto:paul.ferme@ens-lyon.fr
https://doi.org/10.4230/LIPIcs.STACS.2021.9
https://arxiv.org/abs/2010.00970
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Tight Approximation Guarantees for Concave Coverage Problems

Note that in the maximum coverage problem, an element a ∈ [n] is counted at most once
in the objective, even if a appears in several selected sets. However, if we think of elements
a ∈ [n] as goods or resources, there are many settings wherein the utility indeed increases
with the number of copies of a that get accumulated. Motivated, in part, by such settings,
we consider a generalization of the maximum coverage problem where an element a can
contribute by an amount that depends on the number of times it is covered.

Given a function φ : N → R+, an integer k ∈ N, a universe of elements [n], positive
weights wa for each a ∈ [n], and subsets T1, . . . , Tm ⊆ [n], the φ-MaxCoverage problem
entails maximizing Cφ(S) :=

∑
a∈[n] waφ(|S|a) over subsets S ⊆ [m] of cardinality k; here

|S|a = |{i ∈ S : a ∈ Ti}|.
This work focuses on functions φ that are nondecreasing and concave (i.e., φ(i+ 2) −

φ(i+ 1) ≤ φ(i+ 1) − φ(i) for i ∈ N). We will also assume that the function φ is normalized
in the sense that φ(0) = 0 and φ(1) = 1.1 Our approximation guarantees are in terms of the
Poisson concavity ratio of φ, which we define as follows

αφ := inf
x∈N∗

E[φ(Poi(x))]
φ(E[Poi(x)]) = inf

x∈N∗

E[φ(Poi(x))]
φ(x) . (1)

Here Poi(x) denotes a Poisson-distributed random variable with parameter x. We will
write αφ(x) := E[φ(Poi(x))]

φ(x) , with αφ(0) = 1. One can show that αφ = minx∈N∗ αφ(x) =
infx∈R+ αφ(x).2 We refer to the full version [3] for more details on the proof of this statement.

Our main result is that φ-MaxCoverage admits an efficient αφ-approximation algorithm,
when φ is normalized nondecreasing concave, and this approximation guarantee is tight when
φ grows sublinearly. Formally,

▶ Theorem 1. For any normalized nondecreasing concave function φ, there exists a
polynomial-time αφ-approximation algorithm for the φ-MaxCoverage problem. Fur-
thermore, for φ(n) = o(n), it is NP-hard to approximate the φ-MaxCoverage problem
within a factor better than αφ + ε, for any constant ε > 0.

Before detailing the proof of the theorem, we provide a few remarks and connections to
related work.

1.1 Applications and related work
We can directly reduce the standard maximum coverage problem to φ-MaxCoverage by
setting φ(j) = min{j, 1}. In this case αφ = 1 − e−1. One can also encapsulate, within our
framework, the ℓ-MultiCoverage problem studied in [4] by instantiating φ(j) = min{j, ℓ}.
In this setting, we recover the approximation ratio αφ = 1 − ℓℓe−ℓ

ℓ! by a simple calculation,
which matches the approximation guarantee obtained in [4]. Note that the hardness result
in [4] was based on the Unique Games Conjecture, whereas the current work proves that this
guarantee is tight under P ̸= NP.

Another application of φ-MaxCoverage is in the context of multiwinner elections that
entail selecting k (out of m) candidates with the objective of maximizing the cumulative
utility of n voters; here, the utility of each voter a ∈ [n] increases as more and more approved
(by a) candidates get selected. One can reduce multiwinner elections to a coverage problem

1 One can always replace a generic φ to a normalized one without changing the optimal solutions through
a simple affine transformation.

2 We require φ to be defined for nonnegative integers and will extend it over R+ by considering its
piecewise linear extension.

S. Barman, O. Fawzi, and P. Fermé 9:3

by considering subset Ti ⊆ [n] as the set of voters that approve of candidate i ∈ [m] and φ(j)
as the utility that an agent achieves from j approved selections.3 Addressing multiwinner
elections in this standard utilitarian model, Dudycz et al. [11] obtain tight approximation
guarantees for some well-studied classes of utilities. Specifically, the result in [11] applies to
the classic proportional approval voting rule, which assigns a utility of

∑j
i=1

1
i for j approved

selections. This voting rule corresponds to the coverage problem with φ(j) =
∑j

i=1
1
i .

Section 4.1 shows that Theorem 1 holds for all the settings considered in [11] and, in fact,
applies more generally. In particular, the voting version of ℓ-MultiCoverage (studied in
[21]) can be addressed by Theorem 1, but not by the result in [11]. Such a separation also
arises when one truncates the proportional approval voting rule to, say, ℓ candidates, i.e.,
upon setting φ(j) =

∑min{j,ℓ}
i=1

1
i . Given that multiwinner elections model multiple real-world

settings (e.g., committee selection [21] and parliamentary proceedings [6]), instantiations
of φ-MaxCoverage in such social-choice contexts substantiate the applicability of our
algorithmic result.

Coverage functions arise in numerous resource-allocation settings, such as sensor alloca-
tion [16], job scheduling, and plant location [10]. The goal, broadly, in such setups is to
select k subsets of resources (out of m pre-specified ones) such that the welfare generated by
the selected resources is maximized–each resource’s contribution to the welfare increases with
the number of times it is selected. This problem can be cast as φ-MaxCoverage by setting
n to be the number of resources, {Ti}i∈[m] as the given collection of subsets, and φ(j) to be
the welfare contribution of a resource when it is covered j times.4 Here, we mention a specific
allocation problem to highlight the relevance of studying φ beyond the standard coverage
and ℓ-coverage formulations (see Section 4.3 for details): in the Vehicle-Target Assign-
ment problem [17, 19] the resources are n targets and covering a target j times contributes
φp(j) = 1−(1−p)j

p to the welfare; here, p ∈ (0, 1) is a given parameter. Interestingly, we find
that for this problem, the approximation ratio αφ we obtain can outperform the Price of
Anarchy (PoA), which corresponds to the approximation ratio of any algorithm where the
agents selfishly maximize their utilities (see Section 4.3 for further discussion of this point).
This is to be contrasted with the resource allocation problem with φ(j) = min{j, ℓ} for which
it was shown in [8] that the Price of Anarchy matches with αφ.

Theorem 1 gives us a tight approximation bound of αφ for all the above-mentioned
applications of φ-MaxCoverage. The values of αφ for these instantiations are listed in
Table 1.

It is relevant to compare the approximation guarantee, αφ, obtained in the current work
with the approximation ratio based on the notion of curvature of submodular functions.
Note that if φ is nondecreasing and concave, then Cφ is submodular. One can show, via a
direct calculation, that for such a submodular Cφ the curvature (as defined in [9]) is given by
c = 1 − (φ(m) −φ(m− 1)) for instances with at most m cover sets. Therefore, the algorithm
of Sviridenko et al. [22] provides an approximation ratio of 1−ce−1 for the φ-MaxCoverage
problem. We note that the Poisson concavity ratio αφ is always greater than or equal to
this curvature-dependent ratio (see full version [3]). Specifically, for p-Vehicle-Target
Assignment, it is strictly better for all p /∈ {0, 1} and for ℓ-MultiCoverage, it is strictly
better for all ℓ ≥ 2 as remarked in [4]. Therefore, for the setting at hand, the current work
improves the approximation guarantee obtained in [22].

3 Indeed, for a subset of candidates S ⊆ [m], the utility of a voter a ∈ [n] is equal to φ(|S|a), with
|S|a = |{i ∈ S : a ∈ Ti}|.

4 Formally, to capture specific welfare-maximization problems in their entirety we have to a consider
φ-MaxCoverage with a matroid constraint, and not just bound the number of selected subsets by k.
Details pertaining to matroid constraints and the reduction appear in Section 2.2 and 4.2, respectively.

STACS 2021

9:4 Tight Approximation Guarantees for Concave Coverage Problems

Table 1 Tight approximation ratios for particular choices of φ in the φ-MaxCoverage problem.
See full version [3] for derivations of these values.

φ-MaxCoverage φ(j) αφ

MaxCoverage min{j, 1} 1 − e−1

ℓ-MultiCoverage min{j, ℓ} 1 − ℓℓe−ℓ

ℓ!
Proportional Approval Voting

∑j

i=1
1
i

αφ(1) ≃ 0.7965 . . .

PAV capped at 3
∑min{j,3}

i=1
1
i

αφ(1) ≃ 0.7910 . . .

p-Vehicle-Target Assignment 1−(1−p)j

p
1−e−p

p

0.1-Vehicle-Target Assignment 1−(1−0.1)j

0.1
1−e−0.1

0.1 ≃ 0.9516 . . .

0.1-VTA capped at 5 1−(1−0.1)min{j,5}

0.1 αφ(5) ≃ 0.8470 . . .

1.2 Remarks on the Poisson concavity ratio αφ

By Jensen’s inequality along with the nonnegativity and concavity of φ, we have that
αφ ∈ [0, 1]. We show that αφ can be computed numerically up to any precision ε > 0, in time
that is polynomial in 1

ε . In fact, one can show that αφ(x) ≥ 1 − ε for all x ≥ Nε := ⌈
(6

ε

)4⌉
(see full version [3]). Thus, we can iterate over all x ∈ {1, 2, . . . , Nε} and find minx∈[Nε] αφ(x)
up to ε precision (under reasonable assumptions on φ). This gives us a method to overall
compute αφ, up to an absolute error of 2ε: if αφ ≤ 1 − ε, then computing minx∈[Nε] αφ(x)
(up to ε precision) suffices. Otherwise, if αφ ≥ 1 − ε, then αφ(1) ≤ 1 provides the desired
bound. Furthermore, we note that even if we consider αφ(x) over all x ∈ R+, an infimum
(i.e., the value of αφ) is achieved at an integer.

1.3 Proof techniques and organization
In Section 2, we present our approximation algorithm for the φ-MaxCoverage. The
algorithm is an application of pipage rounding, a technique introduced in [1], on a linear
programming relaxation of φ-MaxCoverage. We show that the multilinear extension
Fφ of Cφ is efficiently computable and thus, we can compute an integer solution xint from
the optimal fractional one x∗ satisfying Cφ(xint) ≥ Fφ(x∗). Using the notion of convex
order between distributions, we show that Fφ(x∗) ≥

∑
a∈[n] waE[φ(Poi(|x∗|a))], where

|x|a =
∑

i∈[m]:a∈Ti
xi. Comparing this to the value

∑
a∈[n] waφ(|x∗|a) taken by the linear

program, we get a ratio given by the Poisson concavity ratio αφ. The concavity of φ is
crucial at several steps of the proof: it guarantees that the natural relaxation can be written
as a linear program, it is used to relate between sums of Bernouilli random variables and a
Poisson random variable via the convex order, as well as for the fact that we can restrict
the infimum in the definition of αφ to integer values of x. The generalization to matroid
constraints follows in a standard way and is presented in Section 2.2.

In Section 3, we present the hardness result for φ-MaxCoverage. For this, we define a
generalization of the partitioning gadget of Feige [13], extending also [4]. Roughly speaking,
for an integer xφ ∈ N, it is a collection of xφ-covers of the set [n] (an x-cover is a collection
of subsets such that each element a ∈ [n] is covered x times, or in other words, its φ-coverage
is φ(x)n) that are incompatible in the sense that if we take an element from each one of
these xφ-covers, then the φ-coverage is bounded approximately by E[φ(Poi(xφ))]n. Then,
we construct an instance of φ-MaxCoverage from an instance of the NP-hard problem
Label Cover (as in [11]) using such a gadget with xφ ∈ argminx∈N∗αφ(x). Having set up the
partitioning gadget, the analysis of the reduction can be obtained by carefully generalizing
the reductions of [4] and [11].

In Section 4, we present different domains of application of our result.

S. Barman, O. Fawzi, and P. Fermé 9:5

2 Approximation Algorithm for φ-MaxCoverage

Fix a function φ : N → R+ that is normalized, nondecreasing and concave. The φ-
MaxCoverage problem is defined as follows. The input to the problem is given by
positive integers n,m, t and m subsets T1, . . . , Tm of the set [n] (described as characteristic
vectors), the weights wa ∈ Q∗

+ for a ∈ [n] (described as a couple of bitstring of length t),
as well as an integer k ∈ {1, . . . ,m}. The output is a subset S ⊆ [m] of size exactly k that
maximizes Cφ(S) =

∑
a∈[n] waφ(|S|a), where |S|a = |{i ∈ S : a ∈ Ti}|.

Note that the input to this problem can be specified using n(m+ 2t) +O(log nmt) bits.
To reduce the number of parameters, we will assume that t is polynomial in n and m, so
that a polynomial time algorithm for this problem means an algorithm that runs in time
polynomial in n and m. The counting function φ is fixed and does not depend on the
instance of the problem, but for a given instance the problem only depends on the values
φ(0), φ(1), . . . , φ(m). We assume that we have black box access to φ and to ensure that all
the algorithms run in polynomial time, we assume that φ(j) can be described with a number
of bits that is polynomial in j and that this description can be computed in polynomial time.

We now describe the approximation algorithm for φ-MaxCoverage that we analyze.
As described above, we follow the standard relax and round strategy, as in [4]. First, we
define a natural convex relaxation.

▶ Definition 2.1 (Relaxed program).

maximize
∑

a∈[n]

waca

subject to ca ≤ φ(|x|a), ∀a ∈ [n], with |x|a :=
∑

i∈[m]:a∈Ti

xi

0 ≤ xi ≤ 1, ∀i ∈ [m]
m∑

i=1
xi = k .

(2)

As previously mentioned, φ is defined on R+ by extending it in a piecewise linear fashion
on non-integral points. As such, the constraint ca ≤ φ(|x|a) is equivalent to m linear
constraints. In fact, we can define φj to be the linear function φj(t) = (φ(j) − φ(j − 1))t−
(j − 1)φ(j) + jφ(j − 1) for j ∈ [m]. Since φ is concave, we have that for all t ∈ [0,m],
φ(t) = minj∈[m] φj(t). As such, the constraint ca ≤ φ(|x|a) is equivalent to ca ≤ φj(|x|a) for
all j ∈ [m] and so the program from Definition 2.1 is a linear program. Overall there are
n+m variables and (n+ 1)m+ 1 linear constraints, and by assumptions all the coefficients
can be described using a number of bits that is polynomial in n and m. Hence an optimal
solution of this linear program can be found in polynomial time.

Also observe that the program from Definition 2.1 is a relaxation of the φ-MaxCoverage
problem. To see this, given a set S of size k, consider the characteristic vector x ∈ {0, 1}m

defined by xi = 1 if and only if i ∈ S. Then for all a ∈ [n], we can set ca = φ(|x|a) = φ(|S|a),
and we get an objective value of

∑
a∈[n] waφ(|S|a) which is exactly Cφ(S). When solving the

program from Definition 2.1, we get an optimal x∗ ∈ [0, 1]m which is in general not integral.
Next, we describe a method to round it to an integral vector xint ∈ {0, 1}m.

2.1 Rounding
For a submodular function f : {0, 1}m → R , one can use pipage rounding [1, 23, 7] to
transform, in polynomial time, any fractional solution x ∈ [0, 1]m satisfying

∑m
i=1 xi = k

into an integral vector xint ∈ {0, 1}m such that
∑m

i=1 x
int
i = k and F (xint) ≥ F (x), where F

STACS 2021

9:6 Tight Approximation Guarantees for Concave Coverage Problems

corresponds to the multilinear extension of f , provided that F (x) is computable in polynomial
time for a given x; see e.g., [23, Lemma 3.4]. The multilinear extension F : [0, 1]m → R
of f is defined by F (x1, . . . , xm) := E[f(X1, . . . , Xm)], where Xi are independent random
variables with Xi ∼ Ber(xi), i.e., Xi ∈ {0, 1} with P(Xi = 1) = xi. Note that F (x) = f(x)
for an integral vector x ∈ {0, 1}m.

We apply this strategy to Cφ, which is submodular, and the solution x∗ of the LP
relaxation from Definition 2.1. Note that overall the algorithm is polynomial time, since here
F (x) is computable in polynomial time for a given x:

▶ Proposition 2.2 ([3]). Let F (x) := EX∼x[Cφ(X)] for x ∈ {0, 1}m. We have an explicit
formula for F :

F (x) =
n∑

a=1

m∑
k=0

[1
m+ 1

m∑
ℓ=0

ω−ℓk
m+1

∏
j∈[m]:a∈Tj

(1 + (ωℓ
m+1 − 1)xj)

]
φ(k) with ωm+1 := e

2iπ
m+1

Thus, F is computable in polynomial time in n and m.

We now analyze the value returned by the algorithm. Using the property of pipage
rounding, with the notation X = (X1, . . . , Xm) and Ber(x) = (Ber(x1), . . . ,Ber(xm)), we get

Cφ(xint) = EX∼Ber(xint)[Cφ(X)] ≥ EX∼Ber(x∗)[Cφ(X)] .

Then it suffices to relate EX∼Ber(x∗)[Cφ(X)] to the optimal value of the LP relaxation 2.1,
which can only be larger than the optimal value of the φ-MaxCoverage problem.

▶ Theorem 2. Let x, c be a feasible solution of the program from Definition 2.1 and
X ∼ Ber(x). Recalling the definition of αφ and αφ(j) from (1), we have

EX∼Ber(x)[Cφ(X)] ≥
(

min
j∈[m]

αφ(j)
) ∑

a∈[n]

waca

In particular, this implies that the described polynomial time algorithm has an approximation
ratio of αφ:

Cφ(xint) ≥ αφ

∑
a∈[n]

wac
∗
a ≥ αφ max

S⊆[m]:|S|=k
Cφ(S) .

In order to prove this theorem, we need the following lemma:

▶ Lemma 2.3. For φ concave, and p ∈ [0, 1]m, we have:

E
[
φ

(m∑
i=1

Ber(pi)
)]

≥ E
[
φ

(
Poi

(m∑
i=1

pi

))]

Proof. The notion of convex order discussed in [20] allows us to prove this result. We say
that X ≤cx Y ⇐⇒ E[f(X)] ≤ E[f(Y)] for any convex f . Thanks to Lemma 2.3 of [4], we
have that for p ∈ [0, 1]:

Ber(p) ≤cx Poi(p)

S. Barman, O. Fawzi, and P. Fermé 9:7

Since this order is preserved through convolution (Theorem 3.A.12 of [20]), and the fact that∑m
i=1 Poi(pi) ∼ Poi

(∑m
i=1 pi

)
, we have:

m∑
i=1

Ber(pi) ≤cx Poi
(m∑

i=1
pi

)
Applying this result to −φ, which is convex, concludes the proof. ◀

We will also use the following property on αφ(x):

▶ Proposition 2.4 ([3]). For all x ∈ R+, we have αφ(x) ≥ min{αφ(⌊x⌋), αφ(⌈x⌉)}; here,
αφ(0) := lim

x→0
αφ(x) = 1.

Proof of Theorem 2. By linearity of expectation and the fact that the weights wa are
positive, it is sufficient to show that for all a ∈ [n]:

E[Cφ
a (X)] ≥

(
min

j∈[m]
αφ(j)

)
ca ,

where Cφ
a (S) := φ(|S|a). Note that |X|a =

∑
i∈[m]:a∈Ti

Xi, and thus:

E[Cφ
a (X)] = E

[
φ

(∑
i∈[m]:a∈Ti

Xi

)]
= E

[
φ

(∑
i∈[m]:a∈Ti

Ber(xi)
)]

≥ E
[
φ

(
Poi

(∑
i∈[m]:a∈Ti

xi

))]
thanks to Lemma 2.3

= E[φ(Poi(|x|a))] ≥ min{αφ(⌊|x|a⌋), αφ(⌈|x|a⌉)}φ(|x|a) by Proposition 2.4

≥
(

min
j∈[m]

αφ(j)
)
φ(|x|a) ≥

(
min

j∈[m]
αφ(j)

)
ca .

(3)

◀

2.2 Generalization to Matroid Constraints
Instead of taking a cardinality constraint k on the size of the subset S, we look now at
general matroid constraints on S. Specifically, as input, instead of k, we take a matroid M
defined on [m] and given by a set of linear constraints describing its base polytope B(M).
The output is a set S ∈ M that maximizes Cφ(S). Note that the cardinality constraint
considered above is the special case where M is the uniform matroid of all subsets of size at
most k and the base polytope B(M) = {x ∈ [0, 1]m :

∑m
i=1 xi = k}.

We first note that in the order to establish Theorem 2, the cardinality constraint
∑m

i=1 xi =
k is not used. Thus, since the pipage rounding strategy applies to matroid constraints M
(see [23, Lemma 3.4]), the strategy and the analysis of its efficiency generalize immediately
when applied to the following linear program:

▶ Definition 2.5 (Relaxed program for matroid constraints).

maximize
∑

a∈[n]

waca

subject to ca ≤ φ(|x|a), ∀a ∈ [n]
0 ≤ xi ≤ 1, ∀i ∈ [m]
x ∈ B(M) the base polytope of M .

(4)

STACS 2021

9:8 Tight Approximation Guarantees for Concave Coverage Problems

▶ Theorem 3. Let x, c a feasible solution of the program from Definition 2.5 and X ∼ Ber(x).
Then:

EX∼Ber(x)[Cφ(X)] ≥
(

min
j∈[m]

αφ(j)
) ∑

a∈[n]

waca .

In particular, this implies that the described polynomial time algorithm has an approximation
ratio of αφ:

Cφ(xint) ≥ αφ

∑
a∈[n]

wac
∗
a ≥ αφ max

S∈M
Cφ(S) .

3 Hardness of Approximation for φ-MaxCoverage

In this section, we establish an inapproximability bound for the φ-MaxCoverage problem
with weights 1 under cardinality constraints. Throughout this section we use Γ to denote the
universe of elements and, hence, an instance of the φ-MaxCoverage problem consists of Γ,
along with a collection of subsets F = {Fi ⊆ Γ}m

i=1 and an integer k. Recall that the objective
of this problem is to find a size-k subset S ⊆ [m] that maximizes Cφ(S) =

∑
a∈Γ φ(|S|a).

We establish the following theorem in this section:

▶ Theorem 4. It is NP-hard to approximate the φ-MaxCoverage problem for φ(n) = o(n)
within a factor greater that αφ + ε for any ε > 0.

Our reduction is based on a problem called h-AryLabelCover, which is equivalent to
the more standard GapLabelCover problem.

▶ Definition 3.1 (h-AryLabelCover). An instance G = (V,E, [L], [R], {πe,v}e∈E,v∈e) of
h-AryLabelCover is characterized by an h-uniform regular hypergraph (V,E) and bijection
constraints πe,v : [L] → [R]. Here, each h-uniform hyperedge represents a h-ary constraint.
Additionally, for any labeling σ : V → [L], we have the following notions of strongly and
weakly satisfied constraints:

An edge e = (v1, . . . , vh) ∈ E is strongly satisfied by σ if:

∀x, y ∈ [h], πe,vx
(σ(vx)) = πe,vy

(σ(vy))

An edge e = (v1, . . . , vh) ∈ E is weakly satisfied by σ if:

∃x ̸= y ∈ [h], πe,vx(σ(vx)) = πe,vy (σ(vy))

▶ Proposition 3.2 (δ, h-AryGapLabelCover - [3]). For any fixed integer h ≥ 2 and
fixed δ > 0, there exists an R0 such that for any integer R ≥ R0, it is NP-hard for
instances G = (V,E, [L], [R], {πe,v}e∈E,v∈e) of h-AryLabelCover with right alphabet [R]
to distinguish between:

YES: There exists a labeling σ that strongly satisfies all the edges.
NO: No labeling weakly satisfies more than δ fraction of the edges.

3.1 Partitioning System
The key ingredient to prove Theorem 4 is a constant size combinatorial object called
partitioning system, generalizing the work of Feige [13] and [4]. For any set [n], Q ⊆ 2[n],
we overload the definition Cφ(Q) :=

∑
a∈[n] φ(|Q|a) with |Q|a := |{P ∈ Q : a ∈ P}| and

Cφ
a (Q) := φ(|Q|a). Let us take xφ ∈ argminx∈N∗αφ(x), thus αφ = αφ(xφ).

We say that Q is an x-cover of x ∈ N if every element of [n] is covered x times, so
Cφ(Q) = nφ(x).

S. Barman, O. Fawzi, and P. Fermé 9:9

▶ Definition 3.3. An ([n], h,R, φ, η)-partitioning system consists of R collections of subsets
of [n], P1, . . . ,PR ⊆ 2[n], that satisfy xφn

h ∈ N, xφ ≥ h and:
1. For every i ∈ [R],Pi is a collection of h subsets Pi,1, . . . , Pi,h ⊆ [n] each of size xφn

h which
is an xφ-cover.

2. For any T ⊆ [R] and Q = {Pi,j(i) : i ∈ T} for some function j : T → [h], we have∣∣∣Cφ(Q) − ψφ
|T |,hn

∣∣∣ ≤ ηn where:

ψφ
k,h := E

[
φ

(
Bin

(
k,
xφ

h

))]
. (5)

▶ Remark. In particular, for any Q = {Q1, . . . , Qk} with Qi of size xφn
h , we have that

Cφ(Q) ≤ nφ(k xφ

h). Indeed Cφ(Q) =
∑

a∈[n] φ(|Q|a) with
∑

a∈[n] |Q|a =
∑

i∈[k] |Qi| =
k · xφn

h . By concavity of φ and Jensen’s inequality, this function is maximized when all |Q|a
are equals, where we get nφ(k xφ

h).

▶ Proposition 3.4 ([3]). For R, h ∈ N with h ≥ xφ, η ∈ (0, 1), n ≥ η−2Rφ(R)2 log(20(h+ 1))
such that xφn

h ∈ N, there exists an ([n], h,R, φ, η)-partitioning system, which can be found
in time exp(Rn log(n))·poly(h).

3.2 The Reduction
Proof of Theorem 4. Let ε > 0. Without loss of generality, we can assume that ε < 1.
We show that it is NP-hard to reach an approximation greater than αφ + ε for the φ-
MaxCoverage problem, via a reduction from δ, h-AryGapLabelCover. Define:

η = φ(xφ)
4xφ

ε, so 0 < η ≤ ε < 1,

h ≥ xφ such that
∣∣∣ψφ

h,h − αφφ(xφ)
∣∣∣ ≤ η (see (5) for the definition of ψφ); one can show

that such a choice exists by bounding the total variation between Bernouilli and Poisson
laws, together with the fact that φ(x) = o(x) (see full version [3]),
θ such that for all x ≥ θ, φ(x)

x ≤ η, which exists since φ(x) = o(x),
ξ = xφ

θ ,
δ = η

2
ξ3

h2 ,
R ≥ h large enough for Proposition 3.2 to hold.

Given an instance G = (V,E, [L], [R],Σ, {πe,v}e∈E,v∈e) of δ, h-AryGapLabelCover, we
construct an instance (Γ,F , k) of the φ-MaxCoverage problem with:

n a large enough integer to have an ([n], h,R, φ, η)-partitioning system (Proposition 3.4),
Γ = [n] × E,
k = |V |,
Consider a ([n], h,R, φ, η)-partitioning system, and call P = {P1, . . . ,PR} the correspond-
ing set of collections. Define sets T e,vj

β = Pπe,vj
(β),j × {e} for e = (v1, . . . , vh) ∈ E, j ∈

[h], β ∈ [L]. Then, choose as cover sets F v
β :=

⊔
e∈E:v∈e T

e,v
β and take F := {F v

β , v ∈
V, β ∈ [L]}.

We will now prove that if we are in a YES instance, we have that there exists T of size
k such that Cφ(T) ≥ φ(xφ)|Γ| (completeness). Moreover, if we are in a NO instance, then
we have that for all T of size k = |V |, Cφ(T) ≤ (αφ + ε)φ(xφ)|Γ| (soundness). Establishing
these two properties will conclude the proof.

In order to achieve this, let us define Cφ,e :=
∑

a∈[n]×{e} C
φ
a . In particular, Cφ =∑

a∈Γ C
φ
a =

∑
e∈E C

φ,e. For T ⊆ F , we define the relevant part of T on e by:

Te := {T e,v
β : v ∈ e, β ∈ [L], F v

β ∈ T } = {F v
β ∩ ([n] × {e}), F v

β ∈ T }.

Note that Cφ,e(T) = Cφ,e(Te), and in particular Cφ(T) =
∑

e∈E C
φ,e(Te).

STACS 2021

9:10 Tight Approximation Guarantees for Concave Coverage Problems

3.3 Completeness
Suppose the given h-AryLabelCover instance G is a YES instance. Then, there exists a
labeling σ : V 7→ [L] which strongly satisfies all edges. Consider the collection of |V | subsets
T := {F v

σ(v) : v ∈ V }. Fix e = (v1, . . . , vh) ∈ E. Since e is strongly satisfied by σ, there exists
r ∈ [R] such that πe,vi

(σ(vi)) = r for all i ∈ [h]. Thus, Te = {T e,vi

σ(vi)}i∈[h] = {Pr,i × {e}}i∈[h]
is an xφ-cover of [n] × {e}, and so Cφ,e(Te) = nφ(xφ). Thus Cφ(T) =

∑
e∈E C

φ,e(Te) =
|E|φ(xφ)n = φ(xφ)|Γ|.

3.4 Soundness
Suppose the given h-AryLabelCover instance G is a NO instance. Let us prove the
contrapositive of the soundness: we suppose that there exists T of size k = |V | such that
Cφ(T) > (αφ + ε)φ(xφ)|Γ|. Let us show that there exists a labelling σ that weakly satisfies
a strictly larger fraction of the edges than δ.

For every vertex v ∈ V , we define L(v) := {β ∈ [L] : F v
β ∈ T } to be the candidate set

of labels that can be associated with the vertex v. We extend this definition to hyperedges
e = (v1, . . . , vh) where we define L(e) :=

⋃
i∈[h] L(vi) to be the multiset of all labels associated

with the edge. Note that |Te| = |L(e)|.
We say that e = (v1, . . . , vh) ∈ E is consistent if and only if ∃x ̸= y ∈ [h], πe,vx

(L(vx)) ∩
πe,vy (L(vy)) ̸= ∅. We then decompose E in three parts:

B is the set of edges e ∈ E with |L(e)| ≥ h
ξ .

N is the set of consistent edges e ∈ E with |L(e)| < h
ξ .

I = E − (B ∪N) is the set of inconsistent edges e ∈ E with |L(e)| < h
ξ .

We want to show that the contribution of N is not too small, which we will use to
construct a labelling weakly satisfying enough edges. This comes from the following lemmas:

▶ Lemma 3.5.
∑

e∈E |L(e)| = |E|h

Proof. Recall that our h-uniform hypergraph is regular; call d its regular degree. In particular,
we have that d|V | = |E|h. Note also that

∑
v∈V |L(v)| = |T | = |V |. Thus:∑

e∈E

|L(e)| =
∑
e∈E

∑
v∈V :v∈e

|L(v)| =
∑
v∈V

∑
e∈E:v∈e

|L(v)| = d
∑
v∈V

|L(v)| = d|V | = |E|h . (6)

◀

Next, we bound the contribution of B:

▶ Lemma 3.6.
∑

e∈B C
φ,e(Te) ≤ ε

4φ(xφ)|Γ|.

Proof. We have:∑
e∈B

Cφ,e(Te) ≤
∑
e∈B

nφ
(

|L(e)|xφ

h

)
by the remark on Definition 3.3 and |Te| = |L(e)|

≤ |B| · nφ
(∑

e∈B |L(e)|
|B|

xφ

h

)
by Jensen’s inequality on concave φ

≤ |B| · nφ
(|E|h

|B|
xφ

h

)
since φ nondecreasing and

∑
e∈B

|L(e)| ≤ |E|h

=
φ

(|E|xφ

|B|
)

|E|xφ

|B|

xφ|Γ| .

S. Barman, O. Fawzi, and P. Fermé 9:11

(7)

We have seen that
∑

e∈B |L(e)| ≤ |E|h, but
∑

e∈B |L(e)| ≥ |B| h
ξ by definition of B, so we

have that |B|
|E| ≤ ξ. Thus |E|xφ

|B| ≥ xφ

ξ = θ. By definition of θ, we get that
∑

e∈B C
φ,e(Te) ≤

ηxφ|Γ| = ε
4φ(xφ)|Γ|. ◀

In order to bound the contribution of I, we will prove a property on inconsistent edges:

▶ Proposition 3.7. Let e = (v1, . . . , vh) ∈ E be an inconsistent hyperedge with respect to T .
Then we have that

∣∣∣Cφ,e(Te) − ψφ
|L(e)|,hn

∣∣∣ ≤ ηn.

Proof. Since e is inconsistent, ∀x ≠ y ∈ [h], πe,vx
(L(vx)) ∩ πe,vy

(L(vy)) = ∅. Therefore, for
every i ∈ [R], there is at most one v ∈ e such that i ∈ πe,v(L(v)), i.e., Te intersects with
Pi × {e} in at most one subset. This gives us a subset T ⊆ [R] and a function j : T → [h]
such that Te = {Pi,j(i) × {e} : i ∈ T}. As a consequence, |T | = |Te| = |L(e)| and by the
second condition of the partitioning system, we get the expected result. ◀

Now, we can bound the contribution of I:

▶ Lemma 3.8.
∑

e∈I C
φ,e(Te) ≤ (αφ + ε

2)φ(xφ)|Γ|.

Proof. Thanks to Proposition 3.7, we have:∑
e∈I

Cφ,e(Te) ≤
∑
e∈I

(ψφ
|L(e)|,h + η)n ≤

∑
e∈E

(ψφ
|L(e)|,h + η)n , (8)

since I ⊆ E and ψφ
|L(e)|,h ≥ 0. But

∑
e∈E |L(e)| = |E|h by Lemma 3.5, and one can show

that x 7→ ψφ
x,h is concave (see full version [3]), so we can use Jensen’s inequality to get∑

e∈E ψ
φ
|L(e)|,h ≤ |E|ψφ∑

e∈E
|L(e)|

|E| ,h

= |E|ψφ
h,h and thus:

∑
e∈I

Cφ,e(Te) ≤ (ψφ
h,h + η)n|E| ≤ (αφφ(xφ) + 2η)|Γ| , (9)

by definition of h. This implies that the total contribution of inconsistent edges I is at most∑
e∈I C

φ,e(Te) ≤ (αφφ(xφ) + 2η)|Γ| ≤ (αφ + ε
2)φ(xφ)|Γ| by definition of η. ◀

▶ Lemma 3.9.
∑

e∈N Cφ,e(Te) > ε
4φ(xφ)|Γ| and thus |N |

|E| ≥ ξη.

Proof. Since we have supposed that
∑

e∈E C
φ,e(Te) = Cφ(T) > (αφ + ε)φ(xφ)|Γ|, and with

the help of Lemmas 3.6 and 3.8, we have that the contribution of N is:∑
e∈N

Cφ,e(Te) > ε

4φ(xφ)|Γ| .

However, we have that for e ∈ N that Cφ,e(Te) ≤ nφ
(

|Te| xφ

h

)
= nφ

(
|L(e)| xφ

h

)
≤

nφ
(

xφ

ξ

)
≤ nxφ

ξ thanks to the remark on Definition 3.3 and the bound |L(e)| < h
ξ . This

implies that:

|N |
|E|

≥ ξ

xφ

εφ(xφ)
4 = ξη . ◀

STACS 2021

9:12 Tight Approximation Guarantees for Concave Coverage Problems

From this, we construct a randomized labeling σ : V 7→ [L] as follows: for v ∈ V , if
L(v) ̸= ∅, set σ(v) uniformly from L(v), otherwise set it arbitrarily. We claim that in
expectation, this labeling must weakly satisfy δ fraction of the hyperedges.

To see this, fix any e = (v1, . . . , vh) ∈ N . Thus ∃x ̸= y ∈ [h], πe,vx(L(vx))∩πe,vy (L(vy)) ̸=
∅. Furthermore |L(vx)|, |L(vy)| ≤ h

ξ . Thus, we have that πe,vx
(L(vx)) = πe,vy

(L(vy)) with

probability at least 1
|L(vx)||L(vy)| ≥

(
ξ
h

)2
.

Therefore:

EσEe∼E [σ weakly satisfies e]
≥ ξηEσEe∼E [σ weakly satisfies e|e ∈ N] by Lemma 3.9

>
η

2
ξ3

h2 = δ .

(10)

In particular there exists some labeling σ such that Ee∼E [σ weakly satisfies e] > δ, and
thus the soundness is also proved. ◀

4 Applications

This section show that instantiations of φ-MaxCoverage encapsulate and generalize
multiple problems from fields such as computational social choice [5] and algorithmic game
theory [18].

4.1 Multiwinner Elections
As mentioned previously, multiwinner elections (with a utilitarian model for the voters)
entail selection of k (out of m) candidates that maximize the utility across n voters. Here,
the utility of each voter a ∈ [n] increases with the number of approved (by a) selections.
The work of Dudycz et al. [11] study the computational complexity of such elections and,
in particular, address classic voting rules in which – for a specified sequence of nonnegative
weights (w1, w2, . . .) – voter a’s utility is equal to

∑j
i=1 wi, when she approves of j candidates

among the selected ones. One can view this election exercise as a coverage problem by
considering subset Ti ⊆ [n] as the set of voters that approve of candidate i ∈ [m] and
φ(j) =

∑j
i=1 wi. Indeed, for a subset of candidates S ⊆ [m], the utility of a voter a ∈ [n] is

equal to φ(|S|a), with |S|a = |{i ∈ S : a ∈ Ti}|.
Dudycz et al. [11] show that if the weights satisfy w1 ≥ w2 ≥ . . . (i.e., bear a diminishing

returns property) along with geometric dominance (wi · wi+2 ≥ w2
i+1 for all i ∈ N∗) and

limi→∞ wi = 0, then a tight approximation guarantee can be obtained for the election
problem at hand. Note that the diminishing returns property implies that φ(j) =

∑j
i=1 wi is

concave and limi→∞ wi = 0 ensures that φ is sublinear. Furthermore, one can show that:

▶ Proposition 4.1 ([3]). If wi := φ(i)−φ(i−1) is geometrically dominant, ie. ∀i ∈ N∗, wi

wi+1
≥

wi+1
wi+2

, then αφ = αφ(1).

Hence, Theorem 1, together with Proposition 4.1, can be invoked to recover the result in
[11] where we get αφ = αφ(1). In fact, Theorem 1 does not require geometric dominance
among the weights and, hence, applies to a broader class of voting rules. For instance, the
geometric dominance property does not hold if one considers the voting weights induced
by ℓ-MultiCoverage, i.e., wi = 1, for 1 ≤ i ≤ ℓ, and wj = 0 for j > ℓ. However, using
Theorem 1, we get that for this voting rule we can approximate the optimal utility within
a factor of αφ = 1 − ℓℓe−ℓ

ℓ! . Another example of such a separation arises if one truncates

S. Barman, O. Fawzi, and P. Fermé 9:13

the proportional approval voting. The standard proportional approval voting corresponds
to wi = 1

i , for all i ∈ N (equivalently, φ(j) =
∑j

i=1
1
i) and falls within the purview of [11].

While the truncated version with φ(j) =
∑min{j,ℓ}

i=1
1
i , for a given threshold ℓ, does not satisfy

geometric dominance, Theorem 1 continues to hold and provide a tight approximation ratio
that can be computed numerically (see Table 1 for examples):

▶ Proposition 4.2 ([3]). If ∀x ≥ ℓ, φ(x) = φ(ℓ) > 0, then αφ(x) is nondecreasing from ℓ to

+∞ and αφ(x) = φ(ℓ)−e−x
∑ℓ−1

k=0
(φ(ℓ)−φ(k)) xk

k!
φ(x) . In particular, αφ = minx∈[ℓ] αφ(x), and the

argmin can be computed numerically.

4.2 Resource Allocation in Multiagent Systems
A significant body of prior work in algorithmic game theory has addressed game-theoretic
aspects of maximizing welfare among multiple (strategic) agents; see, e.g., [19]. Comple-
menting such results, this section shows that the optimization problem underlying multiple
welfare-maximization games can be expressed in terms of φ-MaxCoverage.

Specifically, consider a setting with n resources, k agents, and a (counting) function φ :
N 7→ R+. Every agent i is endowed with a collection of resource subsets Ai = {T i

1, . . . , T
i
mi

} ⊆
2[n] (i.e., each T i

j ⊆ [n]). The objective is to select a subset Ai ∈ Ai, for all i ∈ [k], so as to
maximize Wφ(A1, A2, . . . , Ak) :=

∑
a∈[n] wa φ(|A|a). Here, wa ∈ R+ is a weight associated

with a ∈ [n] and |A|a := |{i ∈ [k] : a ∈ Ai}|. We will refer to this problem as the φ-Resource
Allocation problem.

While φ-Resource Allocation does not directly reduce to φ-MaxCoverage, the next
theorem shows that it corresponds to maximizing φ-coverage functions subject to a matroid
constraint. Hence, invoking our result from Section 2.2, we obtain a tight αφ-approximation
for φ-Resource Allocation:

▶ Theorem 5 ([3]). For any normalized nondecreasing concave function φ, there exists a
polynomial-time αφ-approximation algorithm for φ-Resource Allocation. Furthermore,
for φ(n) = o(n), it is NP-hard to approximate φ-Resource Allocation within a factor
better than αφ + ε, for any constant ε > 0.

4.3 Vehicle-Target Assignment
Vehicle-Target Assignment [17, 19] is another problem which highlights the applicability
of coverage problems, with a concave φ. In particular, Vehicle-Target Assignment
can be directly expressed as φ-Resource Allocation: the [n] resources correspond to
targets, the agents correspond to vehicles i ∈ [k], each with a collection of covering choices
Ai ⊆ 2[n], and φp(j) = 1−(1−p)j

p , for a given parameter p ∈ (0, 1). As limit cases, we define
φ0(j) := limp→0 φ

p(j) = j and φ1(j) := 1. Since φp(j) is concave, by a simple calculation
and Theorem 5, we obtain a novel tight approximation ratio of αφp = 1−e−p

p for this
problem. Also, one can look at the capped version of this problem, φp

ℓ (j) := φp(min{j, ℓ}).
In particular, we recover the ℓ-MultiCoverage function when p = 0. In Figure 1, we have
plotted several cases of the tight approximations αφp

ℓ
in function of ℓ for several values of ℓ:

Paccagnan and Marden [19] study the game-theoretic aspects of Vehicle-target
assignment. A key goal in [19] is to bound the welfare loss incurred due to strategic
selection by the k vehicles, i.e., the selection of each Ai ∈ Ai by a self-interested vehicle/agent
i ∈ [k]. The loss is quantified in terms of the Price of Anarchy (PoA). Formally, this
performance metric is defined as ratio between the welfare of the worst-possible equilibria and

STACS 2021

9:14 Tight Approximation Guarantees for Concave Coverage Problems

0 0.2 0.4 0.6 0.8 10.5

0.6

0.7

0.8

0.9

1

p

αφp
∞

αφp
1

αφp
2

αφp
3

αφp
4

αφp
5

Figure 1 Tight approximation ratios αφ
p
ℓ
, where ℓ is the rank of the capped version of the

p-Vehicle-Target Assignment problem. When p = 0, we recover the ℓ-coverage problem.

the optimal welfare. Paccagnan and Marden [19] show that, for computationally tractable
equilibrium concepts (in particular, for coarse correlated equilibria), tight price of anarchy
bounds can be obtained via linear programs.

Note that our hardness result (Theorem 1) provides upper bounds on PoA of tractable
equilibrium concepts–this follows from the observation that computing an equilibrium provides
a specific method for finding a coverage solution. In [8] and in the particular case of the
ℓ-MultiCoverage problem, it is shown that this in fact an equality, i.e., PoA = αφ if
φ(j) = min{j, ℓ} for all values of ℓ. However, numerically comparing the approximation ratio
for Vehicle-Target Assignment, αφp = 1−e−p

p , with the optimal PoA bound, we note
that αφp can in fact be strictly greater than the PoA guarantee; see Figure 2.

0 0.2 0.4 0.6 0.8 10.5

0.6

0.7

0.8

0.9

1

p

αφp = 1−e−p

p

PoA20

Curv = 1 − c
e

Figure 2 Comparison between the PoA and αφ for the Vehicle-Target Assignment problem.
Using the linear program found in [19], we were able to compute the blue curve PoA20, the Price
of Anarchy of this problem for m = 20 players. Since the PoA only decreases when the number of
players grows, this means that PoA < αφ in that case. As a comparison, the red curve Curv depicts
the general approximation ratio (see [22]) obtained for submodular function with curvature c, with
c = 1 − φp(m) + φp(m − 1) here.

4.4 Welfare Maximization for φ-Coverage
Maximizing (social) welfare by partitioning items among agents is a key problem in algorithmic
game theory; see, e.g., the extensive work on combinatorial auctions [18]. The goal here is to
partition t items among a set of k agents such that the sum of values achieved by the agents
– referred to as the social welfare – is maximized. That is, one needs to partition [t] into k
pairwise disjoint subsets A1, A2, . . . , Ak with the objective of maximizing

∑k
i=1 vi(Ai). Here,

vi(S) denotes the valuation that agent i has for a subset of items S ⊆ [t].

S. Barman, O. Fawzi, and P. Fermé 9:15

When each agent’s valuation vi is submodular, a tight (1 − e−1)-approximation ratio is
known for social welfare maximization [23]. This section shows that improved approximation
guarantees can be achieved if, in particular, the agents’ valuations are φ-coverage functions.
Towards a stylized application of such valuations, consider a setting in which each “item”
b ∈ [t] represents a bundle (subset) of goods Tb ⊆ [n] and the value of an agent increases with
the number of copies of any good a ∈ [n] that get accumulated. Indeed, if each agent’s value
for j copies of a good is φ(j), then we have a φ-coverage function and the overall optimization
problem is find a k-partition, A1, A2, . . . , Ak, of [t] that maximizes

∑k
i=1

(∑
a∈[n] φ (|Ai|a)

)
,

where |Ai|a := {b ∈ Ai : a ∈ Tb}.
In the current setup, one can obtain an αφ approximation ratio for social-welfare maxim-

ization by reducing this problem to φ-coverage with a matroid constraint, and applying the
result from Section 2.2. Specifically, we can consider a partition matroid over the universe
[t] × [k]: for a bundle/item b ∈ [t] and an agent i ∈ [k], the element (b, i) in the universe
represents that bundle b is assigned to agent i, i.e., b ∈ Ai. The partition-matroid constraint
is imposed to ensure that each bundle b is assigned to at most one agent. Furthermore, we
can create k copies of the underlying set of goods [n] and set T(b,i) := {(a, i) : a ∈ Tb} to
map the φ-coverage over the universe to the social-welfare objective. This, overall, gives us
the desired αφ approximation guarantee.

Conclusion

We have introduced the φ-MaxCoverage problem where having c copies of element a
gives a value φ(c). We have shown that when φ is normalized, nondecreasing and concave,
we can obtain an approximation guarantee given by the Poisson concavity ratio αφ :=
minx∈N∗

E[φ(Poi(x))]
φ(E[Poi(x)]) and we showed it is tight for sublinear functions φ. The Poisson concavity

ratio strictly beats the bound one gets when using the notion of curvature submodular
functions, except in very special cases such as MaxCoverage where the two bounds are
equal.

An interesting open question is whether there exists combinatorial algorithms that achieve
this approximation ratio. As mentioned in [4], for the ℓ-MultiCoverage with ℓ ≥ 2, which
is the special case where φ(x) = min{x, ℓ}, the simple greedy algorithm only gives a 1 − e−1

approximation ratio, which is strictly less than the ratio αφ = 1− ℓℓe−ℓ

ℓ! in that case. Also, for
any geometrically dominant vector w = (φ(i+ 1) − φ(i))i∈N which is not p-geometric, such
as Proportional Approval Voting, the greedy algorithm achieves an approximation
ratio which is strictly less than αφ (see Theorem 18 of [11]).

Another open question is whether the hardness result remains true even when φ(n) ̸= o(n).
A good example is given by φ(0) = 0 and φ(1 + t) = 1 + (1 − c)t with c ∈ (0, 1). We know
that the problem is hard for c = 1 but easy for c = 0. One can show that the approximation
ratio achieved by our algorithm is αφ = 1 − c

e in that case (which is the same approximation
ratio obtained from the curvature in [22]), but the tightness of this approximation ratio
remains open.

References
1 Alexander A. Ageev and Maxim Sviridenko. Pipage rounding: A new method of constructing

algorithms with proven performance guarantee. J. Comb. Optim., 8(3):307–328, 2004. doi:
10.1023/B:JOCO.0000038913.96607.c2.

2 Siddharth Barman and Omar Fawzi. Algorithmic aspects of optimal channel coding. IEEE
Trans. Inf. Theory, 64(2):1038–1045, 2018. doi:10.1109/TIT.2017.2696963.

STACS 2021

https://doi.org/10.1023/B:JOCO.0000038913.96607.c2
https://doi.org/10.1023/B:JOCO.0000038913.96607.c2
https://doi.org/10.1109/TIT.2017.2696963

9:16 Tight Approximation Guarantees for Concave Coverage Problems

3 Siddharth Barman, Omar Fawzi, and Paul Fermé. Tight approximation guarantees for concave
coverage problems. CoRR, abs/2010.00970, 2020. arXiv:2010.00970.

4 Siddharth Barman, Omar Fawzi, Suprovat Ghoshal, and Emirhan Gürpinar. Tight approxima-
tion bounds for maximum multi-coverage. In Daniel Bienstock and Giacomo Zambelli, editors,
Integer Programming and Combinatorial Optimization - 21st International Conference, IPCO
2020, London, UK, June 8-10, 2020, Proceedings, volume 12125 of Lecture Notes in Computer
Science, pages 66–77. Springer, 2020. doi:10.1007/978-3-030-45771-6_6.

5 Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia, editors.
Handbook of Computational Social Choice. Cambridge University Press, 2016. doi:10.1017/
CBO9781107446984.

6 Markus Brill, Jean-François Laslier, and Piotr Skowron. Multiwinner approval rules as
apportionment methods. In Satinder P. Singh and Shaul Markovitch, editors, Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA, pages 414–420. AAAI Press, 2017. doi:10.1177/0951629818775518.

7 Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766,
2011. doi:10.1137/080733991.

8 Rahul Chandan, Dario Paccagnan, and Jason R. Marden. Optimal mechanisms for distributed
resource-allocation. CoRR, abs/1911.07823, 2019. arXiv:1911.07823.

9 Michele Conforti and Gérard Cornuéjols. Submodular set functions, matroids and the greedy
algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem.
Discret. Appl. Math., 7(3):251–274, 1984. doi:10.1016/0166-218X(84)90003-9.

10 Gérard Cornuéjols, Marshall L Fisher, and George L Nemhauser. Exceptional paper—location
of bank accounts to optimize float: An analytic study of exact and approximate algorithms.
Management science, 23(8):789–810, 1977. doi:10.1287/mnsc.23.8.789.

11 Szymon Dudycz, Pasin Manurangsi, Jan Marcinkowski, and Krzysztof Sornat. Tight approx-
imation for proportional approval voting. In Christian Bessiere, editor, Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages
276–282. ijcai.org, 2020. doi:10.24963/ijcai.2020/39.

12 Shaddin Dughmi and Jan Vondrák. Limitations of randomized mechanisms for combinatorial
auctions. Games Econ. Behav., 92:370–400, 2015. doi:10.1016/j.geb.2014.01.007.

13 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
doi:10.1145/285055.285059.

14 Vitaly Feldman and Pravesh Kothari. Learning coverage functions and private release of
marginals. In Maria-Florina Balcan, Vitaly Feldman, and Csaba Szepesvári, editors, Proceedings
of The 27th Conference on Learning Theory, COLT 2014, Barcelona, Spain, June 13-15, 2014,
volume 35 of JMLR Workshop and Conference Proceedings, pages 679–702. JMLR.org, 2014.
URL: http://proceedings.mlr.press/v35/feldman14a.html.

15 Dorit S. Hochbaum. Approximation algorithms for NP-hard problems. SIGACT News,
28(2):40–52, 1997. doi:10.1145/261342.571216.

16 Jason R. Marden and Adam Wierman. Distributed welfare games with applications to
sensor coverage. In Proceedings of the 47th IEEE Conference on Decision and Control,
CDC 2008, December 9-11, 2008, Cancún, Mexico, pages 1708–1713. IEEE, 2008. doi:
10.1109/CDC.2008.4738800.

17 Robert A Murphey. Target-based weapon target assignment problems. In Nonlinear assignment
problems, pages 39–53. Springer, 2000. doi:10.1007/978-1-4757-3155-2_3.

18 Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani, editors. Algorithmic
Game Theory. Cambridge University Press, 2007. doi:10.1017/CBO9780511800481.

19 Dario Paccagnan and Jason R Marden. Utility design for distributed resource allocation–part
II: Applications to submodular, covering, and supermodular problems. CoRR, abs/1807.01343,
2018. arXiv:1807.01343.

http://arxiv.org/abs/2010.00970
https://doi.org/10.1007/978-3-030-45771-6_6
https://doi.org/10.1017/CBO9781107446984
https://doi.org/10.1017/CBO9781107446984
https://doi.org/10.1177/0951629818775518
https://doi.org/10.1137/080733991
http://arxiv.org/abs/1911.07823
https://doi.org/10.1016/0166-218X(84)90003-9
https://doi.org/10.1287/mnsc.23.8.789
https://doi.org/10.24963/ijcai.2020/39
https://doi.org/10.1016/j.geb.2014.01.007
https://doi.org/10.1145/285055.285059
http://proceedings.mlr.press/v35/feldman14a.html
https://doi.org/10.1145/261342.571216
https://doi.org/10.1109/CDC.2008.4738800
https://doi.org/10.1109/CDC.2008.4738800
https://doi.org/10.1007/978-1-4757-3155-2_3
https://doi.org/10.1017/CBO9780511800481
http://arxiv.org/abs/1807.01343

S. Barman, O. Fawzi, and P. Fermé 9:17

20 Moshe Shaked and J George Shanthikumar. Stochastic orders. Springer Science & Business
Media, 2007. doi:10.1007/978-0-387-34675-5.

21 Piotr Skowron, Piotr Faliszewski, and Jérôme Lang. Finding a collective set of items: From
proportional multirepresentation to group recommendation. Artif. Intell., 241:191–216, 2016.
doi:10.1016/j.artint.2016.09.003.

22 Maxim Sviridenko, Jan Vondrák, and Justin Ward. Optimal approximation for submodular
and supermodular optimization with bounded curvature. Math. Oper. Res., 42(4):1197–1218,
2017. doi:10.1287/moor.2016.0842.

23 Jan Vondrák. Submodularity in Combinatorial Optimization. Univerzita Karlova, Matematicko-
Fyzikální Fakulta, 2007. URL: https://dspace.cuni.cz/bitstream/handle/20.500.11956/
13738/140038775.pdf.

STACS 2021

https://doi.org/10.1007/978-0-387-34675-5
https://doi.org/10.1016/j.artint.2016.09.003
https://doi.org/10.1287/moor.2016.0842
https://dspace.cuni.cz/bitstream/handle/20.500.11956/13738/140038775.pdf
https://dspace.cuni.cz/bitstream/handle/20.500.11956/13738/140038775.pdf

Symmetric Promise Constraint Satisfaction
Problems: Beyond the Boolean Case
Libor Barto !

Department of Algebra, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

Diego Battistelli !

Department of Algebra, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

Kevin M. Berg !

Department of Algebra, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

Abstract
The Promise Constraint Satisfaction Problem (PCSP) is a recently introduced vast generalization
of the Constraint Satisfaction Problem (CSP). We investigate the computational complexity of a
class of PCSPs beyond the most studied cases – approximation variants of satisfiability and graph
coloring problems. We give an almost complete classification for the class of PCSPs of the form:
given a 3-uniform hypergraph that has an admissible 2-coloring, find an admissible 3-coloring, where
admissibility is given by a ternary symmetric relation. The only PCSP of this sort whose complexity
is left open in this work is a natural hypergraph coloring problem, where admissibility is given by
the relation “if two colors are equal, then the remaining one is higher.”

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases constraint satisfaction problems, promise constraint satisfaction, Boolean
PCSP, polymorphism

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.10

Funding All three authors have received funding from the European Research Council (ERC) under
the European Unions Horizon 2020 research and innovation programme (grant agreement No 771005).

1 Introduction

The Constraint Satisfaction Problem (CSP) over a finite relational structure A (also called
a template), denoted CSP(A), can be defined as a homomorphism problem with a fixed
target structure. In the decision version of the problem, an instance is a finite relational
structure X (of the same signature as A) and the problem is to decide whether there exists
a homomorphism (i.e., a relation-preserving map) from X to A. In the search version
of the problem, we are required to find such a homomorphism whenever it exists. Many
computational problems, including various versions of logical satisfiability, graph coloring,
and systems of equations can be represented in this form, see the survey [4]. For example,
the CSP over K3 (the clique on 3 vertices) is the 3-coloring problem, the CSP over the
two-element structure with all the ternary relations is the 3-SAT problem, the CSP over the
two-element structure 1in3 with a single ternary relation {(0, 0, 1), (0, 1, 0), (1, 0, 0)} is the
positive 1-in-3-SAT, and the CSP over the two-element structure NAE with a single ternary
relation {0, 1}3 \ {(0, 0, 0), (1, 1, 1)} is the positive not-all-equal-3-SAT.

An early general complexity classification result was Schaeffer’s dichotomy theorem
for Boolean (i.e., two-element) templates [19]: each such CSP is in P or is NP-complete.
Another influential result was a dichotomy theorem by Hell and Nešetřil [15] for CSPs over
(undirected) graphs. Motivated in part by these two theorems, Feder and Vardi formulated

© Libor Barto, Diego Battistelli, and Kevin M. Berg;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 10; pp. 10:1–10:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:libor.barto@gmail.com
https://orcid.org/0000-0002-8481-6458
mailto:diego_ew@yahoo.it
mailto:berg.kevinm@gmail.com
https://orcid.org/0000-0002-1555-4239
https://doi.org/10.4230/LIPIcs.STACS.2021.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case

their dichotomy conjecture stating that the P versus NP-complete dichotomy remains true for
CSPs over arbitrary finite structures. This conjecture inspired a very active research program
in the last 20 years, culminating in a celebrated positive resolution independently obtained by
Bulatov [11] and Zhuk [21]. Their proofs rely heavily on a general theory of CSPs developed
in [16, 10] (the so-called algebraic approach) whose central concept is a polymorphism, a
multivariate function preserving the relations in the template. An NP-hardness criterion in
terms of polymorphisms has been isolated in [10] and was conjectured to be the only source
of hardness – all the templates that do not satisfy this criterion should be in P. This is what
Bulatov and Zhuk confirmed in their work.

This paper studies a recently introduced [1, 6] vast generalization of the fixed-template
CSP, the Promise CSP (PCSP). A promise template is a pair (A, B) of finite relational
structures such that A → B, i.e., there exists a homomorphism from A to B. The PCSP over
(A, B) is then (in the search version) the following problem: given a relational structure X
such that X → A (this is the promise), find a homomorphism X → B (which is guaranteed
to exist since A → B). This framework generalizes that of CSP (where A = B) and also
includes many important problems in approximation, e.g., if A = Kk and B = Kl, k ≤ l,
then PCSP(A, B) is the problem of finding an l-coloring of a k-colorable graph, a problem
whose complexity is open after more than 40 years of research. On the other hand, the basics
of the algebraic approach to CSPs from [5] can be generalized to PCSPs [12, 3], and this
discovery gives us hope that a full complexity classification might be possible.

Motivated by this ambitious goal, a line of research focuses on studying restricted classes of
templates, the two main directions being graph templates and Boolean templates, mimicking
the two “base cases” in the CSP. For the graph templates, a complexity conjecture has
been formulated by Brakensiek and Guruswami in [6] stating that all templates that are
not in P for simple reasons (A or B has a loop or is bipartite) are NP-hard. Boolean
templates form a rich source of examples and are the context where the PCSP framework
was introduced [1, 6]. Boolean PCSPs are interesting both from the NP-hardness perspective
and, unlike the graph templates, from the algorithmic perspective: a generalization of [3] in
[9] brought the strongest NP-hardness criterion we currently have, which we will also employ
in this paper, and the most general polynomial algorithm [7, 8] also came from investigating
Boolean PCSPs. The strongest classification result obtained so far in this direction is the
dichotomy theorem over Boolean symmetric templates, i.e., templates whose relations are all
invariant under permutations of coordinates [6, 14].

Note that both undirected graphs and symmetric Boolean templates use symmetric
relations – undirected graphs consist of a single binary relation over a domain of an arbitrary
size, symmetric Boolean templates consist of arbitrarily many symmetric relations of arbitrary
arities over a two-element domain. The focus of this paper is somewhere in between these
two extremes: we study templates (A, B) where A consists of a single symmetric ternary
relation over a two-element set. Our motivation was that the classification of more concrete
templates of PCSPs is needed for improving the general theory, such as finding hardness and
tractability criteria. The class we study is amenable for case analysis and, on the other hand,
already includes important problems both from a hardness and an algorithmic perspective
(e.g., k-coloring a 2-colorable 3-uniform hypergraph or finding a positive not-all-equal solution
to a satisfiable positive 1-in-3-sat instance).

Let (A, B) be a PCSP template such that A has domain {0, 1} and a single symmetric
ternary relation R ⊆ {0, 1}3, and let B consist of a single relation R ⊆ B3 on a domain B.
By taking into account the main result of [13] and ruling out some trivial cases (see Section 4
for details), we are left with the case where A = 1in3 and R is also symmetric.

L. Barto, D. Battistelli, and K. M. Berg 10:3

Figure 1 The Ordering of Homomorphism Classes of Symmetric Structures.

Note that in this situation PCSP(A, B) has a hypergraph coloring interpretation: given
a 3-uniform hypergraph that is 1in3-colorable (that is, each vertex can be assigned a color
from {0,1} so that there is exactly one 1 appearing in each hyperedge), find a B-coloring
(that is, a coloring by B such that the three colors appearing in each hyperedge are from R).1

1.1 Three-element domain
The first non-Boolean domain size, |B| = 3, already turns out to be interesting. Figure 1
shows all the templates B ordered by the relation B ≤ B′ if B → B′ (if B ≤ B′ ≤ B,
only one representative is drawn; we also remark that lines are drawn solid or dashed only
to improve clarity in the picture). As B ≤ B′ implies that PCSP(1in3, B′) reduces to
PCSP(1in3, B), the higher the template is, the “easier” the corresponding PCSP is. This
fact and the notation of the templates are detailed in Sections 2 and 4.

We were able to classify all but one case:

▶ Theorem 1. Let (1in3, B) be a PCSP template, where B has domain-size three.
If NAE → B or T2 → B, then PCSP(1in3, B) is in P.
If B → T1 or B → D+

1 or B → D+
2 , then PCSP(1in3, B) is NP-hard.

Even though |B| = 3 is a small domain size, many interesting phenomena already show
up, and we believe that the collection of templates is a valuable source of examples for further
exploration. We now emphasize some of the phenomena and open questions.

1 We commit a slight imprecision here, since the relation of the instance can contain entries with
repeated coordinates, and thus not all instances correspond to 3-uniform hypergraphs. The difference is
insignificant for our results.

STACS 2021

10:4 Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case

Tractability of NAE and T2 can be obtained by using the sufficient condition from [7, 8]
– the existence of block-symmetric polymorphisms of arbitarily large block-sizes. However,
T2 is “simpler” in that one can use a finite-template CSP to solve it in polynomial-time,
while for NAE no such finite template exists [2]. Among the templates in Figure 1, where is
the borderline for such a “finite tractability”?

Two features of our NP-hardness results are worth noting. First, they are obtained by
applying the currently strongest NP-hardness condition from [9]. It seems (but we do not
prove it here) that weaker conditions, which were sufficient for NP-hardness of symmetric
Boolean CSPs [6, 14] and NP-hardness of approximate hypergraph coloring [13] (cf. [3]),
are not sufficient here, namely for D+

2 . The only other such templates we are aware of are
those from [9]. Second, NP-hardness of D+

1 has, similarly to [13], topological sources since it
employs the high chromatic number of Kneser’s graphs [18] – a result of Lovász that started
topological combinatorics. However, the application of Kneser’s graphs is more direct in our
situation, and this may help in further improving the topological methods in PCSPs. In
particular, it would be desirable to find a common generalization of the proof in [13] and in
the paper [17], which employs algebraic topology in a seemingly different way.

The unresolved case, T+
1 , in fact corresponds to a natural hypergraph coloring problem

that appears to be new: given a 1in3-colorable 3-uniform hypergraph, find a 3-coloring such
that, in each hyperedge, if two colors are equal, then the third one is higher (as opposed to
“different” for the standard hypergraph coloring). We conjecture that this problem, as well
as the natural generalization to larger domains, is NP-complete. If true, there is a unique
source of hardness for our templates.

1.2 Larger domains
For a 4-element B, the preceding conjecture would resolve all the cases with the exception
of the interval between Č and Č+, where Č is given by the relation containing the tuples
(0, 0, 1), (1, 1, 2), (2, 2, 3), (3, 3, 0) and their permutations, and Č+ is given by the same
relation with all the “rainbow” tuples (i, j, k) such that |{i, j, k}| = 3.2

We are able to show that the bottom of the interval corresponds to an NP-hard PCSP,
and the top one gives a template that does not satisfy the sufficient condition for tractability
from [7, 8].

▶ Theorem 2. PCSP(1in3, Č) is NP-hard. The template (1in3, Č+) does not have a block
symmetric polymorphism with two blocks of sizes 23 and 24.

The theorem suggests that even for |B| = 4, essentially the only tractable cases are NAE
and T2. Is this the case on arbitrary domains?

2 Basic definitions

Throughout this paper, we adopt the convention that [n] = {1, 2, . . . , n}.
A relational structure (of a finite signature) is a tuple A = (A; R1, . . . , Rn), where A

is a set called the domain of A, and each Ri is a relation of arity ari ≥ 1, that is, a
nonempty subset of Aari . A relational structure is symmetric if each relation in it is invariant
under any permutation of coordinates. Two relational structures A = (A; R1, . . . , Rn) and
B = (B; R′

1, . . . , R′
n′) have the same signature if n = n′ and each Ri has the same arity as R′

i.

2 The notation is derived from the Czech word for a square – čtverec.

L. Barto, D. Battistelli, and K. M. Berg 10:5

In this situation, a mapping f : A → B is a homomorphism from A to B, written f : A → B,
if it preserves the relations, that is, for each i and each tuple a ∈ Ri, we have f(a) ∈ R′

i,
where f is applied to a component-wise. The fact that there exists a homomorphism from A
to B is denoted by A → B.

▶ Definition 3. A PCSP template is a pair of finite relational structures with the same
signature, A, B such that A → B. We denote the PCSP template of A and B by (A, B).

For a given PCSP template, it is possible to define both a decision problem and a search
problem variant of the PCSP.

▶ Definition 4. Let (A, B) be a PCSP template. The decision version of PCSP(A, B) is,
given an input structure I with the same signature as A and B, to output yes if I → A and
no if I ̸→ B.

The search version of PCSP(A, B) is, given an input structure I with the same signature
as A and B mapping homomorphically to A, to find a homomorphism h : I → B.

It is not hard to see that the decision version of PCSP(A, B) can be reduced to its search
version. The tractability results in this paper apply to the search version (and hence also to
the decision version), while NP-hardness results apply to the decision version (and hence
also to the search version).

The following concept captures the situation when one PCSP can be reduced to another
one by the trivial reduction, that is, the reduction that does not change the instance.

▶ Definition 5. Let (A, B) and (A′, B′) be PCSP templates of the same signature. We say
that (A′, B′) is a homomorphic relaxation of (A, B) if A′ → A and B → B′.

Observe that, indeed, the trivial reduction from PCSP(A′, B′) to PCSP(A, B) is correct
if and only if (A′, B′) is a homomorphic relaxation of (A, B).

A crucial notion for the algebraic approach to PCSP is a polymorphism. A polymorphism
of a template is simply a homomorphism from a Cartesian power of the first structure to the
second one. This can be spelled out as follows.

▶ Definition 6. Let (A, B) be a PCSP template. A mapping f : An → B (where n is a
positive integer) is a polymorphism of arity n if, for each pair of corresponding relations Ri

and R′
i in the signatures of A and B, respectively, and any (r1,1, r2,1, . . . , rn,1), . . . , (r1,ari

,

r2,ari , . . . , rn,ari) with (rj,1, rj,2, . . . , rj,ari) ∈ Ri for all j ∈ [n], we have (f(r1,1, r2,1, . . . ,

rn,1), . . . , f(r1,ari
, r2,ari

, . . ., rn,ari
)) ∈ R′

i.

Another core concept in the algebraic approach is a minor.

▶ Definition 7. Let f : An → B, α : [n] → [m] be mappings. A minor of f given by α is the
mapping fα : Am → B defined by

fα(a1, . . . , am) = f(aα(1), . . . , aα(n))

for every a1, . . . , am ∈ A. A function g : Am → B is a minor of f if g = fα for some α.

The significance of polymorphisms stems from the fact that the computational complexity
of PCSP(A, B) depends only on the set of all polymorphisms of the template (A, B) [6, 12, 3].
This set is a minion, i.e., it is closed under taking minors.

STACS 2021

10:6 Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case

Table 1 Diagrams of Symmetric Structures.

Diagram

Structure B 1in3 NAE D1 D2 T1 T2

Diagram

Structure B Q1 Q2 Q3 C S

3 Templates

In this section we introduce the notation for the templates considered in the paper, and
provide several easy observations about these templates.

We consider symmetric relational structures with a single ternary relation. To each such
structure B = (B; R) we associate its digraph by taking B as the vertex set and including
the arc b → b′ if and only if (b, b, b′) ∈ R. By B+ we denote the structure obtained from B
by adding to R all the tuples (b, b′, b′′) with |{b, b′, b′′}| = 3. Note that this is the “largest”
structure with the same associated digraph as B. Also observe that over a three-element
domain, i.e., |B| = 3, there are exactly two structures with the same associated digraph. The
notational convention for 3-element structures in Figure 1 is given in Table 1.3 The names in
the table refer to the smaller of the two structures with the same digraph, e.g., the relation
of D2 consists of all permutations of the triples (0, 0, 1), (1, 1, 2), while D+

2 also contains
(0, 1, 2) and its permutations. Of course, the structure depends on the concrete choice of
vertices, but the choice is irrelevant for our purposes.

It is a simple exercise to verify that the ordering in Figure 1 is correct, and we do not
give the details here. Let us just observe that T+

1 is the only case not covered by Theorem 1.
Indeed, the digraph associated to a three-element B either contains a directed cycle, or is
acyclic. In the former case, depending on the length of the cycle we have NAE → B (length
1 or 2) or T2 → B (length 1 or 3). In the latter case, the digraph can be extended to a linear
order, so B → T+

1 . If B ̸= T+
1 , then B has a homomorphism to a symmetric substructure of

T+
1 with one of the four triples, (0, 0, 1), (0, 0, 2), (1, 1, 2), (0, 1, 2), missing. By omitting the

second, the third, or the fourth tuple we get the structures D+
2 , D+

1 , T1 from the second
item of Theorem 1, respectively. By omitting the first tuple, we get a structure B such that
B → 1in3 → B, and so this structure sits at the bottom of Figure 1.

The unresolved case structure T+
1 has a simple description. A tuple (b1, b2, b3) is in its

relation if and only if the following condition is satisfied: if two of b1, b2, b3 are equal to
b, then the remaining one must be strictly greater than b in the linear order 0 < 1 < 2.
We denote the structure obtained by the same definition on a k-element domain ordered
0 < 1 < 2 < · · · < k − 1 by LOk, e.g., LO2 = 1in3 and LO3 = T+

1 .
For the case |B| = 4, a similar case analysis shows that the only structures B with

NAE, T2 ̸→ B and B ̸→ LO4 are the structures whose associated digraph is the directed
cycle of length 4 – the structures in the interval between Č and Č+ alluded to in the
introduction.

3 The notation is derived from the number of edges of the associated digraph in Italian.

L. Barto, D. Battistelli, and K. M. Berg 10:7

Finally, we denote by NAEk the structure with a k-element domain and the ternary
non-all-equal relation, e.g., NAE2 = NAE.

4 Tractability and hardness

In this section we deal with the simple cases, as well as the cases that are resolved by
known results. We also provide the hardness criterion that we will employ for the more
complex cases. Throughout this section we consider a PCSP template (A, B) such that A is
a relational structure with the two-element domain {0, 1} and a single symmetric ternary
relation, and B = (B; R), where B = {0, 1, . . . } and R ⊆ B3.

4.1 Symmetrization
First, observe that R can be assumed symmetric without loss of generality. We first note that
there is a trivial reduction from PCSP(A, B) to PCSP(A, Bsym), where Bsym = (B, Rsym) is
the lower symmetrization of B, i.e., Rsym consists of all the tuples whose every permutation
is in R – in particular, Rsym is symmetric. In the other direction, given an instance X of
PCSP(A, Bsym) such that X → A, we also have Xsym → A, where Xsym = (X, Ssym) is the
symmetrization of X = (X, S), i.e., Ssym contains all the permutations of the tuples in S.
On the other hand, Xsym → B implies X → Bsym, and it follows that X → Xsym is a correct
reduction from PCSP(A, Bsym) to PCSP(A, B). These PCSPs are therefore equivalent.

For the remainder of this section we assume that B is a symmetric structure.

4.2 Tractability
If R (the relation in B) or the relation in A contains a constant tuple, (A, B) is a homomorphic
relaxation of the “trivial” template whose two structures have a one-element domain. In
particular, PCSP(A, B) is in P.

If A = 1in3 and NAE → B, then (A, B) is a homomorphic relaxation of (1in3, NAE).
The PCSP over the latter template is in P by [6], and therefore so is the PCSP over the
former.

The remaining tractable case in Theorem 1 is A = 1in3 and T2 → B. These templates
are homomorphic relaxations of (T2, T2). But the PCSP over (T2, T2), i.e., the CSP over
T2, is in P because the relation of T2 can be described as {(x, y, z) ∈ {0, 1, 2}3 : x + y + z = 1
(mod 3)}, and so CSP(T2) can be efficiently solved by solving a system of linear equations
over the three-element field.

These tractability results can be also derived from a recent theorem that we now state.
We require a definition. A mapping f : An → B is block-symmetric of width k if there exists
a partition of the coordinates of f into blocks X1 ∪ · · · ∪ Xl = [n] of size at least k such that
f is permutation-invariant within each coordinate block Xi.

▶ Theorem 8 ([7, 8]). The following are equivalent for every PCSP template (A, B).
(A, B) has block-symmetric polymorphisms of arbitrarily high width.
For every k ∈ N, (A, B) has a block-symmetric polymorphism of arity 2k + 1 with two
blocks of size k and k + 1.

If these equivalent conditions are satisfied, then PCSP(A, B) is in P.

In fact, this theorem is strong enough to prove the tractability of all the currently known
tractable Boolean PCSPs. In Appendix B we use this fact to provide evidence for the NP-
hardness of PCSP(1in3, Č+): we prove that the template does not have a block-symmetric
polymorphism with two blocks of sizes 23 and 24, as claimed in the second part of Theorem 2.

STACS 2021

10:8 Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case

4.3 Hardness
If R does not contain a constant tuple and A = NAE, then (NAE, NAE|B|) is a
homomorphic relaxation of (A, B), and PCSP(A, B) is therefore NP-hard by the following
theorem.

▶ Theorem 9 ([13]). PCSP(NAEk, NAEl) is NP-hard for every 2 ≤ k ≤ l.

The hard cases in Theorems 1, 2 – that is, A = 1in3, and B = D+
1 , D+

2 , T1, or Č –
are dealt with in Sections 5, 6, and 7, and Appendix A, respectively. All of these results
employ an NP-hardness criterion that we now state. We will require an additional piece
of notation. A chain of minors is a sequence of the form (f0, α0,1, f1, α1,2, . . . , αl−1,l, fl)
where f0, . . . , fl : Ani → B, αi−1,i : [ni−1] → [ni], and f

αi−1,i

i−1 = fi for every i ∈ [l]. We will
then write αi,j : [ni] → [nj] for the composition of αi,i+1, αi+1,i+2, . . . , αj−1,j . Note that
f

αi,j

i = fj .

▶ Theorem 10 (Corollary 4.2. in [9]). Let (A, B) be a PCSP template. Suppose there are
constants k, l ∈ N and an assignment of a set of at most k coordinates sel(f) ⊆ [ar(f)] to
every polymorphism f of (A, B) such that for every chain of minors (f0, α0,1, . . . , fl) with
each fi a polymorphism of (A, B), there are 0 ≤ i < j ≤ l such that αi,j(sel(fi)) ∩ sel(fj) ̸= ∅
(or, equivalently, sel(fi) ∩ α−1

i,j (sel(fj)) ̸= ∅). Then PCSP(A, B) is NP-hard.

The special case l = 1 of this theorem is sufficient to prove the NP-hardness of all NP-hard
symmetric Boolean PCSPs. For Theorem 9, l = 1 is not sufficient; however, it can be derived
using a still weaker version of Theorem 10.4 Theorem 10 in its full power was first used in [9]
to prove the NP-hardness of certain symmetric non-Boolean PCSPs.

4.4 0-sets, 1-sets, . . .
We conclude this section by introducing the notion of an i-set, which will be used extensively
throughout the rest of the paper.

Given a mapping f : {0, 1}n → B (usually an n-ary polymorphism of (1in3, B)) and a
subset of coordinates X ⊆ [n], we write f(X) for the value f(a1, . . . , an) where ai = 1 if
i ∈ X and ai = 0 else. We say that X is a 0-set if f(X) = 0. 1-sets, 2-sets, etc. are defined
similarly. The function f will be always clear from the context.

Observe that f : {0, 1}n → B is a polymorphism of (1in3, B) if and only if, for
every partition of the coordinates of f into three blocks X ∪ Y ∪ Z = [n], we have
(f(X), f(Y), f(Z)) ∈ R. The forward implication of this observation will be applied many
times in the proofs, and we simply say, e.g., “by compatibility of f(X), f(Y) and f(Z),” “by
compatibility applied to X and Y , . . . ,” or “by compatibility, . . . ” in such situations.

For example, it is common in our templates for the relation R to have no tuple of the
form (2, 2, ∗). Therefore, if X and Y are both known to be 2-sets, we would argue that, by
compatibility, it must be the case that X and Y are not disjoint. In such cases, we would
say, e.g., “there are no disjoint 2-sets of f .”

One useful feature of i-sets is that they are closed under preimages within a chain of
minors – that is, if (f0, α0,1, f1, α1,2, . . . , αl−1,l, fl) is a chain of minors for (1in3, B) and
X is an i-set for some polymorphism fj1 in the chain with 0 ≤ j1 ≤ l, then for any j2 with
0 ≤ j2 < j1, α−1

j2,j1
(X) is an i-set of fj2 .

4 In fact, the proof in [3] (Theorem 5.23) is based on [13] and applies a version which uses a super-constant
k (it is enough that, e.g., k is bounded by a polynomial in the logarithm of the arity of f). Wrochna [20]
has shown that this is not necessary. We also remark that Theorem 10 can also be strengthened to
super-constant values of k.

L. Barto, D. Battistelli, and K. M. Berg 10:9

5 D+
1

In this section we prove the NP-hardness of PCSP(1in3, D+
1), where D+

1 = ({0, 1, 2}, R) and
R consists of all the permutations of the tuples (0, 0, 1), (0, 0, 2), and (0, 1, 2).

Before applying Theorem 10, we first derive several properties of polymorphisms of the
template. Let us fix any polymorphism f : {0, 1}n → {0, 1, 2} of (1in3, D+

1)

▶ Lemma 11. There are no two disjoint 1-sets nor 2-sets.

Proof. If X and Y are i-sets for the same i ∈ {1, 2}, then (f(X), f(Y), f([n] \ (X ∪ Y)) ∈ R

by compatibility. But R does not contain any tuple of the form (1, 1, ∗) or (2, 2, ∗), a
contradiction. ◀

The next lemma uses the high chromatic number of Kneser graphs. Recall that the Kneser
graph with parameters n, m, denoted KGn,m, is the graph whose vertices are the m-element
subsets of [n], and where two vertices are adjacent if and only if the two corresponding sets
are disjoint.

▶ Theorem 12 (Lovász [18]). For n ≥ 2m, there is no coloring of KGn,m by strictly less
than n − 2m + 2 colors.

▶ Lemma 13. f has a 1-set or a 2-set of size at most 3.

Proof. We first assume that n ≥ 2 and set m = ⌊(n − 2)/2⌋. Since n − 2m + 2 ≥ 4,
Theorem 12 implies that the mapping X 7→ f(X) cannot be a valid coloring of KGn,m.
Therefore, there are two disjoint sets X and Y of size m such that f(X) = f(Y). By
compatibility applied to X and Y , the set Z = [n] \ (X ∪ Y) is a 1-set or 2-set. Its size is at
most n − 2m ≤ 3.

In the case n = 1, {1} is itself a 1-set or a 2-set by compatibility applied to ∅ and ∅. ◀

We are ready to prove the NP-hardness of our template.

▶ Theorem 14. PCSP(1in3, D+
1) is NP-hard

Proof. We apply Theorem 10 with k = 3 and l = 2. For a polymorphism f of the template,
we define sel(f) as a 1-set or a 2-set of size at most 3 – such a set exists by Lemma 13 (if
both a small 1-set and a small 2-set exist, we select arbitrarily).

Let (f0, α0,1, f1, α1,2, f2) be a chain of minors consisting of polymorphisms. By the
pigeonhole principle, there exists 0 ≤ i < j ≤ 2 such that sel(fi) and sel(fj) is an m-set for
the same m ∈ {1, 2}. Then α−1

i,j (sel(fj)) is an m-set as well and then sel(fi)∩α−1
i,j (sel(fj)) ̸= ∅

by Lemma 11, as required. ◀

6 D+
2

In this section we prove the NP-hardness of PCSP(1in3, D+
2), where D+

2 = ({0, 1, 2}, R) and
R consists of all the permutations of the tuples (0, 0, 1), (1, 1, 2), and (0, 1, 2).

Let f : {0, 1}n → {0, 1, 2} be a polymorphism of (1in3, D+
2). We start with a lemma

that concerns unions of i-sets.

▶ Lemma 15. Let X and Y be disjoint subsets of [n].
(a) If f(∅) = 0, f(X) = 0, and f(Y) ∈ {0, 2}, then f(X ∪ Y) ∈ {0, 2}.
(b) If f(∅) = 0, f(X) = 1, and f(Y) ∈ {0, 1}, then f(X ∪ Y) = 1.
(c) If f(∅) = 1, f(X) = f(Y) = 1, then f(X ∪ Y) ∈ {0, 1}.
(d) If f(∅) = 1, f(X) = f(Y) = 0, then f(X ∪ Y) = 2.

STACS 2021

10:10 Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case

Proof. For the first item, by compatibility applied to X and Y , the complement Z =
[n] \ (X ∪ Y) is a 1-set. Therefore, by compatibility applied to ∅ and Z, X ∪ Y is a 0-set or
a 2-set. The proof for the remaining items is similar. ◀

The following lemma will be useful in the case that ∅ is a 0-set. Note that in this case [n]
is a 1-set by compatibility applied to ∅ and ∅.

▶ Lemma 16. Assume f(∅) = 0 and that f has no singleton 2-set. Then f has a singleton
1-set and does not have any two disjoint 1-sets.

Proof. If every singleton is a 0-set, then by adding to ∅ singletons, one by one, and using
item (a) of Lemma 15, we get that [n] is a 0-set or a 2-set. But by the preceding observation,
[n] is a 1-set. This contradiction shows that there exists a singleton 1-set.

For the second part of the claim, suppose X and Y are disjoint 1-sets. By adding to Y

singletons and using item (b) of Lemma 15, we obtain that [n] \ X is a 1-set, a contradiction
to compatibility applied to ∅ and X. ◀

We now consider the case that ∅ is a 1-set. Observe that [n] is a 2-set in this case.

▶ Lemma 17. Assume f(∅) = 1 and that, for some j ≥ 2, all at most j-element subsets of
[n] are 1-sets. Then j < n and all (j + 1)-element subsets of [n] are 1-sets.

Proof. Clearly j < n as [n] is a 2-set. Assume, for a contradiction, that for some j-element
X and y ̸∈ X, the set Y := X ∪ {y} is not a 1-set. Since X and {y} are 1-sets, then Y is a
0-set by item (c) of Lemma 15.

We prove by induction on i that every set Z of size i disjoint with Y is a 1-set. The base
case of the induction may be, e.g., i = 0 (or i = j). For the induction step, consider an
(i + 1)-element Z disjoint from Y and write Z = Z ′ ∪ {z} where |Z ′| = i. By the induction
hypothesis Z ′ is a 1-set. The set {y, z} is a 1-set as well by assumption (note that j ≥ 2).
Therefore Z ′ ∪ {y, z} = Z ∪ {y} is a 0-set or 1-set by item (c) of Lemma 15. By compatibility
applied to X and Z ∪ {y}, the complement W = [n] \ (X ∪ Z ∪ {y}) = [n] \ (Y ∪ Z) is a 0-set
or 2-set. But then, by compatibility applied to Y (a 0-set) and W , Z is a 1-set, as required.

We have proved that [n] \ Y is a 1-set, a contradiction to compatibility applied to ∅
and Y . ◀

▶ Lemma 18. If f(∅) = 1, then there exists a 0-set or a 2-set of size at most 2.

Proof. In the opposite case, every set of coordinates of size at most 2 is a 1-set. It would
then follow from Lemma 17 that [n] is a 1-set, a contradiction. ◀

Equipped with these lemmata, we can now proceed to our main argument for this section.

▶ Theorem 19. PCSP(1in3, D+
2) is NP-hard.

Proof. We apply Theorem 10 with k = 2 and l = 5. We assign to a polymorphism its type
and define sel(f) as follows.

Type 1: f has a 2-set X of size at most 2. In this case we set sel(f) = X.
Type 2: f has no 2-set of size at most 2, f(∅) = 0, and {x} is a 1-set for some x ∈ [n].
We set sel(f) = {x}.
Type 3: f has no 2-set of size at most 2, f(∅) = 1, and f has a 0-set X of size at most 2.
We set sel(f) = X.

L. Barto, D. Battistelli, and K. M. Berg 10:11

Note that ∅ cannot be a 2-set. The first part of Lemma 16 and Lemma 18 then guarantee
that every polymorphism is of one of the three types.

Let (f0, α0,1, . . . , fl) be a chain of minors consisting of polymorphisms. Note that fi(∅)
does not depend on i, therefore types 2 and 3 do not simultaneously occur in the chain. If,
for some i < j, both fi and fj have type 1, then sel(fi) and α−1

i,j (sel(fj)) are both 2-sets, so
they have a nonempty intersection. Similarly, if two polymorphisms in this chain have type
2, then we obtain a nonempty intersection by the second part of Lemma 16.

Otherwise, since l = 5, the chain contains four polymorphisms fi1 , fi2 , fi3 , fi4 of type 3
(where i1 < i2 < i3 < i4). Let X1 = sel(fi1) and Xj = α−1

i1,ij
(sel(fij

)) for j = 2, 3, 4. These
four sets are 0-sets (as preimages of 0-sets). If they are pairwise disjoint, then X1 ∪ X2
and X3 ∪ X4 are disjoint sets, which are 2-sets by item (d) in Lemma 15, a contradiction.
Therefore, two of these sets, say Xj and Xj′ , have a nonempty intersection. But then
Y := sel(fij

) and Z := α−1
ij ,ij′ (sel(fi′

j
)) also have a nonempty intersection as Xj = α−1

i1,ij
(Y)

and Xj′ = α−1
i1,ij

(Z). 5 ◀

7 T1

In this section we prove the NP-hardness of PCSP(1in3, T1), where T1 = ({0, 1, 2}, R) and
R consists of all the permutations of the tuples (0, 0, 1), (0, 0, 2), and (1, 1, 2).

Let f : {0, 1}n → {0, 1, 2} be a polymorphism of (1in3, T1). Note that, as in the previous
cases, f cannot have two disjoint 2-sets. In particular, ∅ is a 0-set or a 1-set. The following
simple lemma will be useful in both cases.

▶ Lemma 20. If Z ⊆ X ∪ Y , and X and Y are 1-sets, then Z is not a 2-set.

Proof. By compatibility applied to X and Y , the complement [n] \ (X ∪ Y) is a 2-set. Since
it is disjoint with Z, Z cannot be a 2-set. ◀

For the case f(∅) = 0 we introduce some notation. We define r : {0, 1, 2} → {0, 1} by
0 7→ 0 and 1, 2 7→ 1, and set

E(f) = {x ∈ [n] : r(f({x})) = 1}, and I(f) = {x ∈ [n] : r(f({x})) = 0} = [n] \ E(f).

▶ Lemma 21. The size of E(f) is odd and, for any set of coordinates X ⊆ [n], we have
r(f(X)) = |X ∩ E(f)| mod 2.

Proof. By the “union argument” as in the proof of Lemma 15, we get that for any two
disjoint Y and Z, r(f(Y ∪ Z)) = r(f(Y)) + r(f(Z)), where the addition is modulo 2. It then
follows (by adding to ∅ singletons from X) that r(f(X)) =

∑
x∈X r(f({x})) = |X ∩ E(f)|

mod 2.
In particular, r(f([n])) = |E(f)| mod 2. But [n] cannot be a 0-set (by compatibility

applied to ∅ and ∅), so |E(f)| is odd. ◀

▶ Lemma 22. Suppose that f(∅) = 0 and f does not have any 2-sets of size 2. If X is a
1-set such that E(f) \ X is nonempty, then X ∪ I(f) is a 1-set.

5 The last part of the argument applies Theorem 10 in a similar way as in [9], see their “smug sets”
Corollary 4.2.

STACS 2021

10:12 Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case

Proof. It is enough to show that X ∪ {y} is a 1-set for any y ∈ I(f), as the claim then
follows by induction. By Lemma 21, X ∪ {y} is a 1-set or 2-set, so it is enough to exclude
the latter option. Take z ∈ E(f) \ X. By Lemma 21, {y, z} is a 1-set or a 2-set, therefore it
is a 1-set by the assumption. But then X ∪ {y} is not a 2-set by Lemma 20. ◀

▶ Lemma 23. Assume that f(∅) = 0 and f does not have any singleton 2-set. If X ⊆ E(f)
is a 1-set, then, for any Y ⊆ E(f) with |Y | = |X|, Y is a 1-set.

Proof. We will show that Z := (X \ {x}) ∪ {y} is a 1-set for any x ∈ X and y ∈ E(f). The
claim will then follow by induction since any set Y can be obtained from X by a sequence of
such “swaps”.

By Lemma 21 and the non-existence of singleton 2-sets, |X| is odd, Z is a 1-set or 2-set,
and {y} is a 1-set (it cannot be a 2-set by the assumption of the lemma). Since Z ⊆ X ∪ {y},
then Z is a 1-set by Lemma 20. ◀

▶ Lemma 24. If f(∅) = 0 and f does not have any 2-sets of size at most 2, then |E(f)| ≤ 5.

Proof. We first observe that any X ⊆ E(f) of odd size |X| ≤ |E(f)|/2 is a 1-set. Indeed,
otherwise we can find Y disjoint from X of the same size. By Lemma 21 and Lemma 23,
both X and X ′ are 2-sets, a contradiction.

By Lemma 21, the size i := |E(f)| is odd. If i > 5, then E(f) can be written as a disjoint
union E(f) = X ∪ Y ∪ Z of sets that have odd sizes smaller than |E(f)|/2. By the previous
paragraph, all of these sets are 1-sets. But then, by Lemma 22, Z ∪ I(f) = [n] \ (X ∪ Y) is a
1-set as well, a contradiction to compatibility applied to X and Y . ◀

We now consider the case that ∅ is a 1-set. Observe that [n] is a 2-set in this case.

▶ Lemma 25. If f(∅) = 1, then f has a 2-set of size at most 2.

Proof. Assume, for a contradiction, that there are no 2-sets of size at most 2.
Union arguments in the case f(∅) = 1 give us r(f(Y ∪ Z)) = r(f(X)) + r(f(Y)) + 1

(mod 2) and, as in Lemma 21, we obtain that X = {x ∈ [n] : f({x}) = 0} has an odd size
and that, using additionally the “no two-element 2-sets” assumption, every two-element
subset of X is a 1-set.

Note that if Y and Z are disjoint 1-sets, then the union argument gives us a sharper result
– Y ∪ Z is a 1-set. It follows that X \ {x}, where x ∈ X is an arbitrary element, is a 1-set
(as it is a disjoint union of 2-element subsets of X) and [n] \ X is a 1-set (as it is a disjoint
union of singletons outside X, which are 1-sets by the “no singleton 2-set” assumption). Now
compatibility applied to X \ {x} and [n] \ X gives us that {x} is a 2-set, a contradiction. ◀

▶ Theorem 26. PCSP(1in3, T1) is NP-hard.

Proof. We apply Theorem 10 with k = 5 and l = 2. We assign to a polymorphism its type
and define sel(f) as follows.

Type 1: f has a 2-set X of size at most 2. In this case we set sel(f) = X.
Type 2: f has no 2-set of size at most 2. In this case we set sel(f) = E(f).

Note that sel(f) in type 1 is nonempty. Type 2 only occurs in the case that f(∅) = 0 (by
Lemma 25), and then E(f) has size at most 5 by Lemma 24.

Let (f0, α0,1, f1, α0,2, f2) be a chain of minors consisting of polymorphisms. If both fi

and fj (where i < j) have type 1, then sel(fi) and α−1
i,j (sel(fj)) are both 2-sets, so they

have a nonempty intersection. Otherwise, since l = 2, the chain contains 2 polymorphisms

L. Barto, D. Battistelli, and K. M. Berg 10:13

fi, fj of type 2 (where i < j). We have fi(∅) = fj(∅) = 0 and α−1
i,j (sel(fj)) is a 1-set of fi.

By Lemma 21, this 1-set has an odd-sized intersection with E(fi) = sel(fi), in particular
sel(fi) ∩ α−1

i,j (sel(fj)) ̸= ∅. ◀

8 Conclusion

The investigation of PCSPs over the templates (A, B), with A a Boolean structure consisting
of a single ternary symmetric relation, boils down to PCSP(LO2, B) where B is symmetric.
We have classified the computational complexity for all such three-element structures B with
the exception of B = LO3. The remaining case, and its generalization to larger domains,
is a natural computational problem – recall the interpretation as a version of hypergraph
coloring from the introduction. We conjecture that all of them are NP-hard.

▶ Conjecture 27. For every 2 ≤ k < l, PCSP(LOk, LOl) is NP-hard.

A possible intermediate step to resolving the smallest unknown case, PCSP(LO2, LO3),
is to replace LO2 by a 3-element structure in the interval between 1in3 and LO3.

For four-element structures, the remaining cases additionally include the structures in the
interval between Č and Č+. We proved NP-hardness for Č and provided evidence suggesting
that Č+ also gives rise to an NP-hard PCSP:

▶ Conjecture 28. PCSP(1in3, Č+) is NP-hard.

Negative resolution of this conjecture would also be valuable – it would require a
polynomial-time algorithm that has not yet been used for PCSPs.

Observe that a homomorphism from a 3-uniform hypergraph to Č+ also has a nice
interpretation, as a coloring by 4-colors such that if two vertices of an hyperedge receive the
same color, the last vertex must receive a color which is one higher (mod 4). Other templates
admit a natural interpretation and generalizations as well, e.g., B = D2.

Finally, it seems possible that (1in3, NAE) and (1in3, T2) are essentially the only
tractable templates for arbitrary domain sizes. We do not feel that we have enough evidence
supporting such a conjecture, so we refrain from phrasing it.

References
1 Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2 + ϵ)-Sat is NP-hard. SIAM J.

Comput., 46(5):1554–1573, 2017. doi:10.1137/15M1006507.
2 L. Barto. Promises make finite (constraint satisfaction) problems infinitary. In 2019 34th

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–8, 2019.
3 Libor Barto, Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach to promise

constraint satisfaction, 2019. arXiv:1811.00970.
4 Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and how to use them. In

Andrei Krokhin and Stanislav Živný, editors, The Constraint Satisfaction Problem: Complexity
and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.15301.1.

5 Libor Barto, Jakub Opršal, and Michael Pinsker. The wonderland of reflections. Israel Journal
of Mathematics, 223(1):363–398, February 2018. doi:10.1007/s11856-017-1621-9.

6 Joshua Brakensiek and Venkatesan Guruswami. Promise constraint satisfaction: Structure
theory and a symmetric boolean dichotomy. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA’18, pages 1782–1801, Philadelphia,
PA, USA, 2018. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/
citation.cfm?id=3174304.3175422.

STACS 2021

https://doi.org/10.1137/15M1006507
http://arxiv.org/abs/1811.00970
https://doi.org/10.4230/DFU.Vol7.15301.1
https://doi.org/10.1007/s11856-017-1621-9
http://dl.acm.org/citation.cfm?id=3174304.3175422
http://dl.acm.org/citation.cfm?id=3174304.3175422

10:14 Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case

7 Joshua Brakensiek and Venkatesan Guruswami. Symmetric polymorphisms and efficient
decidability of promise CSPs. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’20, page 297–304, USA, 2020. Society for Industrial and Applied
Mathematics.

8 Joshua Brakensiek, Venkatesan Guruswami, Marcin Wrochna, and Stanislav Živný. The
power of the combined basic linear programming and affine relaxation for promise constraint
satisfaction problems. SIAM Journal on Computing, 49(6):1232–1248, 2020. doi:10.1137/
20M1312745.

9 Alex Brandts, Marcin Wrochna, and Stanislav Živný. The Complexity of Promise SAT on
Non-Boolean Domains. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th
International Colloquium on Automata, Languages, and Programming (ICALP 2020), volume
168 of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1–17:13, Dagstuhl,
Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
ICALP.2020.17.

10 Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM J. Comput., 34(3):720–742, March 2005. doi:
10.1137/S0097539700376676.

11 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 319–330, October 2017.
doi:10.1109/FOCS.2017.37.

12 Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach to promise constraint
satisfaction. In Proceedings of the 51st Annual ACM SIGACT Symposium on the Theory of
Computing (STOC ’19), New York, NY, USA, 2019. ACM. doi:10.1145/3313276.3316300.

13 Irit Dinur, Oded Regev, and Clifford Smyth. The hardness of 3-uniform hypergraph coloring.
Combinatorica, 25(5):519–535, September 2005. doi:10.1007/s00493-005-0032-4.

14 Miron Ficak, Marcin Kozik, Miroslav Olsák, and Szymon Stankiewicz. Dichotomy for
Symmetric Boolean PCSPs. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini,
and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 57:1–57:12, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.ICALP.2019.57.

15 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Combin. Theory Ser. B,
48(1):92–110, 1990.

16 Peter Jeavons. On the algebraic structure of combinatorial problems. Theor. Comput. Sci.,
200(1-2):185–204, 1998.

17 A. Krokhin and J. Opršal. The complexity of 3-colouring H-colourable graphs. In 2019 IEEE
60th Annual Symposium on Foundations of Computer Science (FOCS), pages 1227–1239, 2019.
doi:10.1109/FOCS.2019.00076.

18 Lászlo Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory
Ser. A, 25(3):319–324, 1978. doi:10.1016/0097-3165(78)90022-5.

19 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing, STOC ’78, pages 216–226, New York, NY,
USA, 1978. ACM. doi:10.1145/800133.804350.

20 Marcin Wrochna. personal communication.
21 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5), August 2020.

doi:10.1145/3402029.

A Č

In this appendix we begin the proof of Theorem 2 by verifying the first statement: the NP-
hardness of PCSP(1in3, Č), where Č = ({0, 1, 2, 3}, R) and R consists of all the permutations
of the tuples (0, 0, 1), (1, 1, 2), (2, 2, 3), and (0, 3, 3).

https://doi.org/10.1137/20M1312745
https://doi.org/10.1137/20M1312745
https://doi.org/10.4230/LIPIcs.ICALP.2020.17
https://doi.org/10.4230/LIPIcs.ICALP.2020.17
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1145/3313276.3316300
https://doi.org/10.1007/s00493-005-0032-4
https://doi.org/10.4230/LIPIcs.ICALP.2019.57
https://doi.org/10.1109/FOCS.2019.00076
https://doi.org/10.1016/0097-3165(78)90022-5
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/3402029

L. Barto, D. Battistelli, and K. M. Berg 10:15

Before applying Theorem 10, we begin by deriving several properties of polymorphisms
of the template. Let f : {0, 1}n → {0, 1, 2, 3} be a polymorphism of (1in3, Č).

▶ Lemma 29. Suppose f(∅) = i.
(a) f has no (i + 2 mod 4)-sets.
(b) f has no two disjoint (i + 1 mod 4)-sets.

Proof. Suppose f(∅) = 0. If X ⊆ [n] were a 2-set, then by compatibility with ∅ it would be
the case that [n] \ X is compatible with a 0-set and a 2-set. There are no such sets, proving
item (a) for this value. Furthermore, if X ⊆ [n] and Y ⊆ [n] are both disjoint 1-sets, then by
compatibility with X and Y , [n] \ (X ∪ Y) is a 2-set, but there are no such sets, proving
item (b) for this value.

The proof for the remaining values of i is similar. ◀

Union arguments (see the proof of Lemma 15) give us the following properties.

▶ Lemma 30. Let X and Y be disjoint subsets of [n].
(a) If f(∅) = f(X) = f(Y) = i, then f(X ∪ Y) = i.
(b) If f(∅) = i and f(X) = f(Y) = i + 3 mod 4, then f(X ∪ Y) = i + 1 mod 4.

Finally, we prove a lemma about small i-sets which will facilitate our main argument for
this appendix.

▶ Lemma 31. If f(∅) = i, and f has no (i + 3 mod 4)-set with size at most 2, then there
exists a singleton (i + 1 mod 4)-set.

Proof. We will consider the case where f(∅) = 0, as proofs for other values of i will be
similar. Observe that in this case, [n] is a 1-set by compatibility applied to ∅ and ∅. Suppose
by way of contradiction that no such y ∈ [n] exists. It must then be the case that every
singleton is a 0-set. However, by adding to ∅ singletons, one by one, and using item (a) of
Lemma 30, we get that [n] is a 0-set, a contradiction. ◀

Equipped with these lemmata, we can now proceed to our main argument for this
appendix.

▶ Theorem 32. PCSP(1in3, Č) is NP-hard.

Proof. We apply Theorem 10 with k = 2 and l = 5. We assign to a polymorphism with
f(∅) = i its type and define sel(f) as follows.

Type 1: f has a (i + 3 mod 4)-set X of size at most 2. In this case we set sel(f) = X.
Type 2: f does not have a (i + 3 mod 4)-set of size at most 2 and f has a singleton (i + 1
mod 4)-set {x}. We set sel(f) = {x}.

Lemma 31 guarantees that every polymorphism is of one of the two types.
Let (f0, α0,1, . . . , fl) be a chain of minors consisting of polymorphisms and note that the

value at ∅ is constant throughout the chain. For simplicity, let this value be 0. If, for some
i < j, both fi and fj have type 2, then sel(fi) and α−1

i,j (sel(fj)) are both 1-sets, so they have
a nonempty intersection by item (b) of Lemma 29.

Otherwise, since l = 5, the chain contains four polymorphisms fi1 , fi2 , fi3 , fi4 of type 1
(where i1 < i2 < i3 < i4). Let X1 = sel(fi1) and Xj = α−1

i1,ij
(sel(fij

)) for j = 2, 3, 4.
These four sets are 3-sets (as preimages of 3-sets). If they are pairwise disjoint, then

X1 ∪ X2 and X3 ∪ X4 are disjoint sets, which are 1-sets by item (b) in Lemma 30, a
contradiction with item (b) of Lemma 29.

STACS 2021

10:16 Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case

Therefore, two of these sets, say Xj and Xj′ , have a nonempty intersection. But then
Y := sel(fij

) and Z := α−1
ij ,ij′ (sel(fi′

j
)) also have a nonempty intersection as Xj = α−1

i1,ij
(Y)

and Xj′ = α−1
i1,ij

(Z). ◀

B Č+

Recall that Č+ = ({0, 1, 2, 3}, R), where R consists of all the permutations of the tuples
(0, 0, 1), (1, 1, 2), (2, 2, 3), and (0, 3, 3), as well as all the “rainbow” tuples (i, j, k) such that
|{i, j, k}| = 3. In this appendix we show that there is no block symmetric polymorphism of
(1in3, Č+) with two blocks of sizes 23 and 24.

▶ Lemma 33. If g : {0, 1}47 → {0, 1, 2, 3} is a block symmetric polymorphism of (1in3, Č+)
with two blocks of sizes 23 and 24, then there exists a symmetric polymorphism f : {0, 1}23 →
{0, 1, 2, 3} of (1in3, Č+).

Proof. We will define f : {0, 1}23 → {0, 1, 2, 3} based on the symmetric blocks of g, which we
name X23 and X24 in accordance with their sizes. For any X ⊆ [23], we set f(X) = g(Y ∪Z),
where Y ⊆ X23 with |Y | = |X| and Z ⊆ X24 with |Z| = 8. By construction, then, f is a
symmetric polymorphism of (1in3, Č+). ◀

▶ Theorem 34. There is no block symmetric polymorphism of (1in3, Č+) with two blocks of
sizes 23 and 24.

Proof. Suppose by way of contradiction that there is such a polymorphism, say g : {0, 1}47 →
{0, 1, 2, 3}. Let f : {0, 1}23 → {0, 1, 2, 3} be a symmetric polymorphism of (1in3, Č+),
guaranteed by the previous lemma.

Since f is symmetric, we adopt the convention that f(m) is the value of f(X) for any
X ⊆ [n] with |X| = m. Assume now that f(8) = 0 – our argument will be constructed
such that other choices for the value of f(8) can be carried forward to likewise achieve a
contradiction. By compatibility with f(8) and f(8), we have then that f(7) = 1, and similarly
by compatibility with f(7) and f(7) it must be the case that f(9) = 2. Since f(9) = 2, by
compatibility with f(9) and f(9) it follows that f(5) = 3. In turn, by compatibility with
f(5) and f(5), we get that f(13) = 0. Since f(8) = f(13) = 0, it must then be the case
by compatibility that f(2) = 1. Therefore, since f(14) is compatible with f(7) = 1 and
f(2) = 1, we get that f(14) = 2. Since f(9) = f(14) = 2, it follows in turn by compatibility
that f(0) = 3.

Consider now the possible values of f(6). If f(6) = 0, then f(9) = 1 by compatibility
with f(6) and f(8), but it has already been shown that f(9) = 2, a contradiction. If f(6) = 2,
then f(8) = 3 by compatibility with f(6) and f(9), but by our initial assumption, f(8) = 0,
a contradiction. If f(6) = 1, then f(11) = 2 by compatibility with f(6) and f(6), and
f(10) = 2 by compatibility with f(6) and f(7) = 1. However, it must then be the case
by compatibility with f(10) and f(11) that f(2) = 3, but it has already been shown that
f(2) = 1, a contradiction. Finally, if f(6) = 3, then f(11) = 0 by compatibility with f(6) and
f(6). Similarly, by compatibility with f(5) and f(6), we get that f(12) = 0. But f(0) = 3
and is compatible with f(11) = f(12) = 0, which is a contradiction since no permutation of
(0, 0, 3) is in R. Therefore, no value of f(6) is possible, and thus no such g exists. ◀

This theorem, together with Theorem 32, completes the proof of Theorem 2.

A Characterization of Wreath Products Where
Knapsack Is Decidable
Pascal Bergsträßer
Fachbereich Informatik, Technische Universität Kaiserslautern, Germany

Moses Ganardi
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Georg Zetzsche
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Abstract
The knapsack problem for groups was introduced by Miasnikov, Nikolaev, and Ushakov. It is defined
for each finitely generated group G and takes as input group elements g1, . . . , gn, g ∈ G and asks
whether there are x1, . . . , xn ≥ 0 with gx1

1 · · · gxn
n = g. We study the knapsack problem for wreath

products G ≀ H of groups G and H.
Our main result is a characterization of those wreath products G ≀ H for which the knapsack

problem is decidable. The characterization is in terms of decidability properties of the indiviual
factors G and H. To this end, we introduce two decision problems, the intersection knapsack problem
and its restriction, the positive intersection knapsack problem.

Moreover, we apply our main result to H3(Z), the discrete Heisenberg group, and to Baumslag-
Solitar groups BS(1, q) for q ≥ 1. First, we show that the knapsack problem is undecidable for
G ≀ H3(Z) for any G ̸= 1. This implies that for G ≠ 1 and for infinite and virtually nilpotent groups
H, the knapsack problem for G ≀ H is decidable if and only if H is virtually abelian and solvability
of systems of exponent equations is decidable for G. Second, we show that the knapsack problem
is decidable for G ≀ BS(1, q) if and only if solvability of systems of exponent equations is decidable
for G.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Theory and algorithms for application domains

Keywords and phrases knapsack, wreath products, decision problems in group theory, decidability,
discrete Heisenberg group, Baumslag-Solitar groups

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.11

Related Version This paper is based on the following technical report:
Full Version: https://arxiv.org/abs/2101.06132 [5]

1 Introduction

The knapsack problem. The knapsack problem is a decision problem for groups that was
introduced by Myasnikov, Nikolaev, and Ushakov [27]. If G is a finitely generated group, then
the knapsack problem for G, denoted KP(G), takes group elements g1, . . . , gn, g ∈ G as input
(as words over the generators) and it asks whether there are natural numbers x1, . . . , xn ≥ 0
such that gx1

1 · · · gxn
n = g. Since its introduction, a significant amount of attention has been

devoted to understanding for which groups the problem is decidable and what the resulting
complexity is [17, 20, 10, 26, 16, 9, 21, 7]. For matrix semigroups, the knapsack problem has
been studied implicitly by Bell, Halava, Harju, Karhumäki, and Potapov [3], Bell, Potapov,
and Semukhin [4], and for commuting matrices by Babai, Beals, Cai, Ivanyos, and Luks [1].

There are many groups for which knapsack has been shown decidable. For example,
knapsack is decidable for virtually special groups [20, Theorem 3.1], co-context-free groups [16,
Theorem 8.1], hyperbolic groups [27, Theorem 6.1], the discrete Heisenberg group [16,

© Pascal Bergsträßer, Moses Ganardi, and Georg Zetzsche;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 11; pp. 11:1–11:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4681-2149
https://orcid.org/0000-0002-0775-7781
https://orcid.org/0000-0002-6421-4388
https://doi.org/10.4230/LIPIcs.STACS.2021.11
https://arxiv.org/abs/2101.06132
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 A Characterization of Wreath Products Where Knapsack Is Decidable

Theorem 6.8], and Baumslag-Solitar groups BS(p, q) for co-prime p, q > 1 [6, Theorem 2] and
for p = 1 [21, Theorem 4.1]. Moreover, the class of groups where knapsack is decidable is
closed under free products with amalgamation [19, Theorem 14] and HNN extensions [19,
Theorem 13] over finite identified subgroups. On the other hand, there are nilpotent groups
for which knapsack is undecidable [16, Theorem 6.5].

Wreath products. A prominent construction in group theory and semigroup theory is the
wreath product G ≀H of two groups G and H . Wreath products are important algorithmically,
because the Magnus embedding theorem [22, Lemma] states that for any free group F of rank
r and a normal subgroup N of F , one can find F/[N, N] as a subgroup of Zr ≀ (F/N), where
[N, N] is the commutator subgroup of N . This has been used by several authors to obtain
algorithms for groups of the form F/[N, N], and in particular free solvable groups. Examples
include the word problem (folklore, see [13]), the conjugacy problem [24, 28, 13, 25], the
power problem [13], and the knapsack problem [7, 10].

For groups G and H , their wreath product G ≀ H can be roughly described as follows. An
element of G ≀ H consists of (i) a labeling, which maps each element of H to an element of G

and (ii) an element of H , called the cursor. Here, the labeling has finite support, meaning all
but finitely many elements of H are mapped to the identity of G. Moreover, each element of
G ≀ H can be written as a product of elements from G and from H. Multiplying an element
g ∈ G will multiply g to the label of the current cursor position. Multiplying an element
h ∈ H will move the cursor by multiplying h.

Understanding the knapsack problem for wreath products is challenging for two reasons.
First, the path that the expression gx1

1 · · · gxn
n g−1 takes through the group H can have

complicated interactions with itself: The product can place elements of G at (an a priori
unbounded number of) positions h ∈ H that are later revisited. At the end of the path, each
position of H must carry the identity of G so as to obtain gx1

1 · · · gxk

k g−1 = 1. The second
reason is that the groups G and H play rather different roles: A priori, for each group G the
class of all H with decidable KP(G ≀ H) could be different, resulting in a plethora of cases.

Decidability of the knapsack problem for wreath products has been studied by Ganardi,
König, Lohrey, and Zetzsche [10]. They focus on the case that H is knapsack-semilinear, which
means that the solution sets of equations gx1

1 · · · gxn
n = g are (effectively) semilinear. A set

S ⊆ Nn is semilinear if it is a finite union of linear sets {u0+λ1u1+· · ·+λkuk | λ1, . . . , λk ∈ N}
for some vectors u0, . . . , uk ∈ Nn. Under this assumption, they show that KP(G ≀ H) is
decidable if and only if solvability of systems of exponent equations is decidable for G [10,
Theorem 5.3]. Here, an exponent equation is one of the form gx1

1 · · · gxn
n = g, where variables

xi are allowed to repeat. The problem of solvability of systems of exponent equations is
denoted ExpEq(G). Moreover, it is shown there that for some number ℓ ∈ N, knapsack is
undecidable for G ≀ (H3(Z) × Zℓ), where H3(Z) denotes the discrete Heisenberg group and
G is any non-trivial group [10, Theorem 5.2]. Since KP(H3(Z) × Zℓ) is decidable for any
ℓ ≥ 0 [16, Theorem 6.8], this implies that wreath products do not preserve decidability of
knapsack in general. However, apart from the latter undecidability result, little is known
about wreath products G ≀ H where H is not knapsack-semilinear. As notable examples of
this, knapsack is decidable for solvable Baumslag-Solitar groups BS(1, q) [21, Theorem 4.1]
and for the discrete Heisenberg group H3(Z) [16, Theorem 6.8], but it is not known for which
G the knapsack problem is decidable for G ≀ H3(Z) or for G ≀ BS(1, q).

The only other paper which studies the knapsack problem over wreath products is [7]. It
is concerned with complexity results (for knapsack-semilinear groups) whereas in this paper
we are concerned with decidability results.

P. Bergsträßer, M. Ganardi, and G. Zetzsche 11:3

Contribution. Our main result is a characterization of the groups G and H for which
KP(G ≀ H) is decidable. Specifically, we introduce two problems, intersection knapsack
KP±(H) and the variant positive intersection knapsack KP+(H) and show the following. Let
G and H be finitely generated, with G non-trivial and H infinite. Then knapsack for G ≀ H

is decidable if and only if ExpEq(G) is decidable and either (i) G is abelian and KP+(H) is
decidable or (ii) G is not abelian and KP±(H) is decidable. Note that the case of finite H is
not interesting: For |H| = m, KP(G ≀ H) is equivalent to KP(Gm) (see Section 3).

Thus, our result relieves us from considering every pair (G, H) of groups and allows us to
study the factors separately. It is not hard to see that decidability of ExpEq(G) is necessary
for decidability of KP(G ≀ H) if H is infinite. It is surprising that the only other property of
G that is relevant for decidability of KP(G ≀ H) is whether G is abelian or not. This is in
contrast to the effect of other structural properties of G on the complexity of KP(G ≀ Z): If
G ̸= 1 is a finite nilpotent group, then KP(G ≀ Z) is NP-complete [7, Theorem 2], whereas for
finite and non-solvable G, the problem KP(G ≀ Z) is Σp

2-complete [7, Corollary 25].

Applications. We also obtain two applications. First, we deduce that KP(G ≀ H3(Z)) is
undecidable for every G ̸= 1. This implies that if G ̸= 1 and H is virtually nilpotent and
infinite, then KP(G ≀ H) is decidable if and only if H is virtually abelian and ExpEq(G) is
decidable. Moreover, we show that KP(G ≀ BS(1, q)) is decidable if and only if ExpEq(G) is.

Ingredients. For the “if” direction of our main result, we reduce KP(G ≀H) to ExpEq(G) and
KP±(H) (respectively KP+(H)) using extensions of techniques used by Figelius, Ganardi,
Lohrey, and Zetzsche [7]. Roughly speaking, the problem KP±(H) takes as input an
expression h0gx1

1 h1 · · · gxn
n hn and looks for numbers x1, . . . , xn ≥ 0 such that the walk defined

by the product h0gx1
1 h1 · · · gxn

n hn meets specified constraints about self-intersections. Such a
constraint can be either (i) a loop constraint, meaning the walk visits the same point after two
specified factors or (ii) a disjointness constraint saying that the (xi + 1)-many points visited
when multiplying gxi

i do not intersect the (xj + 1)-many points visited while multiplying g
xj

j .
The “only if” reductions in our main result involve substantially new ideas. The challenge

is to guarantee that the constructed instances of KP(G ≀ H) will leave an element ̸= 1
somewhere, as soon as any constraint is violated. In particular, the loop constraints have to
be checked independently of the disjointness constraints. Moreover, if several constraints
are violated, the resulting elements ̸= 1 should not cancel each other. Furthermore, this has
to be achieved despite almost no information on the structure of G and H. This requires
an intricate construction that uses various patterns in the Cayley graph of H for which we
show that only very specific arrangements permit cancellation. To this end, we introduce the
notion of periodic complexity, which measures how many periodic sequences are needed to
cancel out a sequence of elements of a group. Roughly speaking, for the loop constraints
we use patterns of high periodic complexity, whereas for the disjointness constraints we use
patterns with low periodic complexity but many large gaps. This ensures that the disjointness
patterns cannot cancel the loop patterns or vice versa.

2 Preliminaries

Knapsack problems. For a group G and a subset S ⊆ G we write S∗ for the submonoid
generated by S, i.e. the set of products of elements from S. Let G be a group with a finite
(monoid) generating set Σ ⊆ G, i.e. G = Σ∗. Such groups are called finitely generated. An
exponent expression over G is an expression E = e1 . . . en consisting of atoms ei where each

STACS 2021

11:4 A Characterization of Wreath Products Where Knapsack Is Decidable

atom ei is either a constant ei = gi ∈ G or a power ei = gxi
i for some gi ∈ G and variable xi.

Here the group elements gi are given as words over Σ. We write γ(ei) = gi for the constant
or the base of the power. Furthermore let PE ⊆ [1, n] be the set of indices of the powers in E

and QE = [1, n] \ PE be the set of indices of the constants in E. If ν ∈ NX is a valuation of
the variables X that occur in E, then for each i ∈ [1, n], we define ν(ei) = γ(ei)ν(xi) if i ∈ PE ;
and ν(ei) = ei if i ∈ QE . Moreover, ν(E) := ν(e1) · · · ν(en) and the set of G-solutions of E

as solG(E) := {ν ∈ NX | ν(E) = 1}.
For a group G, the problem of solvability of exponent equations ExpEq(G) is defined as:

Given a finite list of exponent expression E1, . . . , Ek over G.
Question Is

⋂k
i=1 solG(Ei) non-empty?

An exponent expression is called a knapsack expression if all variables occur at most once.
The knapsack problem KP(G) over G is defined as follows:
Given a knapsack expression E over G.
Question Is there a valuation ν such that ν(E) = 1?
The definition from [27] asks whether gx1

1 · · · gxn
n = g has a solution for given g1, . . . , gn, g ∈ G.

The two versions are inter-reducible in polynomial time [16, Proposition 7.1].

Wreath products. Let G and H be groups. Consider the direct sum K =
⊕

h∈H Gh,
where Gh is a copy of G. We view K as the set G(H) of all mappings f : H → G such that
supp(f) := {h ∈ H | f(h) ̸= 1} is finite, together with pointwise multiplication as the group
operation. The set supp(f) ⊆ H is called the support of f . The group H has a natural left
action on G(H) given by fh (a) = f(h−1a), where f ∈ G(H) and h, a ∈ H . The corresponding
semidirect product G(H) ⋊ H is the (restricted) wreath product G ≀ H. In other words:

Elements of G ≀ H are pairs (f, h), where h ∈ H and f ∈ G(H).
The multiplication in G ≀ H is defined as follows: Let (f1, h1), (f2, h2) ∈ G ≀ H. Then
(f1, h1)(f2, h2) = (f, h1h2), where f(a) = f1(a)f2(h−1

1 a).
There are canonical mappings σ : G ≀ H → H with σ(f, h) = h and τ : G ≀ H → G(H) with
τ(f, h) = f for f ∈ G(H), h ∈ H. In other words: g = (τ(g), σ(g)) for g ∈ G ≀ H. Note that
σ is a homomorphism whereas τ is in general not a homomorphism. Throughout this paper,
the letters σ and τ will have the above meaning (the groups G, H will be always clear from
the context). We also define supp(g) = supp(τ(g)) for all g ∈ G ≀ H.

The following intuition might be helpful: An element (f, h) ∈ G ≀ H can be thought of
as a finite multiset of elements of G \ {1G} that are sitting at certain elements of H (the
mapping f) together with the distinguished element h ∈ H, which can be thought of as a
cursor moving in H. We can compute the product (f1, h1)(f2, h2) as follows: First, we shift
the finite collection of G-elements that corresponds to the mapping f2 by h1: If the element
g ∈ G \ {1G} is sitting at a ∈ H (i.e., f2(a) = g), then we remove g from a and put it to the
new location h1a ∈ H. This new collection corresponds to the mapping f ′

2 : a 7→ f2(h−1
1 a).

After this shift, we multiply the two collections of G-elements pointwise: If g1 ∈ G and
g2 ∈ G are sitting at a ∈ H (i.e., f1(a) = g1 and f ′

2(a) = g2), then we put g1g2 into the
location a. The new distinguished H-element (the new cursor position) becomes h1h2.

Clearly, H is a subgroup of G ≀ H . We also regard G as a subgroup of G ≀ H by identifying
G with the set of all f ∈ G(H) with supp(f) ⊆ {1}. This copy of G together with H generates
G ≀ H . In particular, if G = ⟨Σ⟩ and H = ⟨Γ⟩ with Σ ∩ Γ = ∅ then G ≀ H is generated by Σ ∪ Γ.
With these embeddings, GH is the set of (f, h) ∈ G ≀ H with supp(f) ⊆ {1} and h ∈ H.

P. Bergsträßer, M. Ganardi, and G. Zetzsche 11:5

Groups. Our applications will involve two well-known types of groups: the discrete Heisen-
berg group H3(Z), which consists of the matrices

(1 a c
0 1 b
0 0 1

)
with a, b, c ∈ Z, and the Baumslag-

Solitar groups [2] BS(p, q) for p, q ∈ N, where BS(p, q) = ⟨a, t | tapt−1 = aq⟩.
A subgroup H of G is called finite-index if there are finitely many cosets gH. If ab = ba

for every a, b ∈ G, then G is abelian. A group has a property virtually if it has a finite-index
subgroup H with that property. For example, a group is virtually abelian if it has a finite-
index abelian subgroup. For two elements a, b ∈ G, we write [a, b] = aba−1b−1 and call this
the commutator of a, b. If A, B are subgroups of G, then [A, B] is the subgroup generated by
all [a, b] with a ∈ A and b ∈ B. For g, h ∈ G, we write gh = hgh−1. In particular, if g ∈ G

and h ∈ H, then gh is the element (f, 1) ∈ G ≀ H with f(h) = g and f(h′) = 1 for h′ ̸= h.

3 Main results

We first introduce the new (positive) intersection knapsack problem. A solution to a knapsack
expression E describes a walk in the Cayley graph that starts and ends in the group identity.
Whereas the ordinary knapsack problem only asks for the expression to yield the identity,
our extended version can impose constraints on how this walk intersects itself.

A walk over G is a nonempty sequence π = (g1, . . . , gn) over G. Its support is supp(π) =
{g1, . . . , gn}. It is a loop if g1 = gn. Two walks are disjoint if their supports are disjoint.
We define a partial concatenation on walks: If π = (g1, . . . , gn) and ρ = (h1, . . . , hm) with
gn = h1 then πρ = (g1, . . . , gn, h2, . . . , hm). A progression with period h ∈ G over G is a
walk of the form π = (g, gh, gh2, . . . , ghℓ) for some g ∈ G and ℓ ≥ 0. We also call the set
supp(π) a progression, whose period may not be unique. If h ̸= 1 we also call π a ray.

A factorized walk is a walk π equipped with a factorization (π1, . . . , πn), i.e. π = π1 . . . πn.
One also defines the concatenation of factorized walks in the straightforward fashion. If
E = e1 . . . en is an exponent expression and ν is a valuation over E we define the factorized
walk πν,E = π1 . . . πn induced by ν on E where

πi =
{

(ν(e1 . . . ei−1) gk
i)0≤k≤ν(xi), if ei = gxi

i

(ν(e1 . . . ei−1), ν(e1 . . . ei−1) gi), if ei = gi.

The intersection knapsack problem KP±(G) over G is defined as follows:
Given a knapsack expression E over G, a set L ⊆ [0, n]2 of loop constraints, and a set

D ⊆ [1, n]2 of disjointness constraints.
Question Is there a valuation ν such that ν(E) = 1 and the factorized walk πν,E = π1 . . . πn

induced by ν on E satisfies the following conditions:
πi+1 . . . πj is a loop for every (i, j) ∈ L

πi and πj are disjoint for every (i, j) ∈ D.
The positive intersection knapsack problem KP+(G) over G is the restriction of KP±(G)
to instances where D = ∅. We denote the set of solutions of a KP±(G)-instance (resp.
KP+(G)-instance) (E, I, D) (resp. (E, I)) as solG(E, I, D) (resp. solG(E, I)). Figure 1 shows
an example for the intersection knapsack problem over Z2.

The following is our main result.

▶ Theorem 3.1. Let G and H be f.g. groups such that G is non-trivial and H is infinite.
Then KP(G ≀ H) is decidable if and only if ExpEq(G) is decidable and either
1. G is abelian and KP+(H) is decidable or
2. G is not abelian and KP±(H) is decidable.

STACS 2021

11:6 A Characterization of Wreath Products Where Knapsack Is Decidable

Figure 1 Consider the knapsack equation gx1
1 gx2

2 gx3
3 gx4

4 = 1 over Z2 written multiplicatively,
where g1 = (0, 2), g2 = (1, 0), g3 = (−2, −2) and g4 = (1, 0) and the disjointness condition
D = {(1, 3)}. The solid dot represents the origin (0, 0). The knapsack equation is satisfied by
(x1, x2, x3, x4) = (2, 2, 2, 2) but it violates D, as illustrated on the left. On the right the solution
(x1, x2, x3, x4) = (2, 1, 2, 3) is depicted, which satisfies D.

Here, we assume H to be infinite, because the case of finite H is not interesting: If |H| = m,
then G ≀ H has Gm as a finite-index subgroup [18, Proposition 1], meaning KP(G ≀ H) is
decidable if and only if KP(Gm) is [16, Theorem 7.3].

If H is knapsack-semilinear, it is easy to see that both KP+(H) and KP±(H) are decidable
via an encoding in Presburger arithmetic. Hence, the main decidability result of [10], saying
that for knapsack-semilinear H, KP(G ≀ H) is decidable if and only if ExpEq(G) is decidable,
is generalized by Theorem 3.1.

Logical version of KP+ and KP±. For our applications of Theorem 3.1, it is often convenient
to use a formulation of KP+(G) and KP±(G) in terms of logics over an extended Cayley
graph of G. The Cayley graph of G is the logical structure C(G) = (G, (g−→)g∈G), with domain
G and with the relation g−→ for each1 g ∈ G, where g1

g−→ g2 if and only if g1g = g2. We define
the extension C+(G) = (G, (g−→)g∈G, (g−→∗)g∈G) where g−→∗ is the reflexive transitive closure
of g−→. Finally, we define a further extension C±(G) = (G, (g−→)g∈G, (g−→∗)g∈G, (⊥g,h)g,h∈G)
with disjointness relations ⊥g,h, which are binary relations on pairs G2: For any g, h ∈ G

and (g1, g2), (h1, h2) ∈ G2 we have that (g1, g2)⊥g,h(h1, h2) if and only if for some k, ℓ ∈ N,
we have g1gk = g2, h1hℓ = h2, and the walks (g1, g1g, . . . , g1gk) and (h1, h1h, . . . , h1hℓ) are
disjoint. We denote by F± the set of positive existential first-order formulas over C±(G), i.e.
formulas ∃y1 . . . ∃ymφ(y1, . . . , ym) where φ(y1, . . . , ym) is a positive Boolean combination of
atomic formulas. Then SAT±(G) is the decision problem that asks if a closed formula in F±

holds in C±(G). The fragment F+ and the problem SAT+(G) are defined similarly. Clearly,
KP±(G) (resp. KP+(G)) reduces to SAT±(G) (resp. SAT+(G)). In the full version [5], we
show:

▶ Theorem 3.2. For any finitely generated group G, the problem SAT±(G) (resp. SAT+(G))
is decidable if and only if KP±(G) (resp. KP+(G)) is decidable.

Virtually nilpotent groups. It was shown by Ganardi, König, Lohrey, and Zetzsche that for
some number ℓ ∈ N and all groups G ̸= 1, KP(G ≀ (H3(Z) ×Zℓ)) is undecidable [10, Theorem
5.2], but essentially nothing is known so far about the groups G for which the problem
KP(G ≀ H3(Z)) is decidable. Using Theorem 3.1, this can be settled.

▶ Theorem 3.3. For every non-trivial G, the problem KP(G ≀ H3(Z)) is undecidable.

1 Customarily, one only includes the edge relations (s−→)s∈S for some finite generating set S of G. We
choose S = G to make the presentation in the following cleaner.

P. Bergsträßer, M. Ganardi, and G. Zetzsche 11:7

This is in contrast to decidability of KP(H3(Z)) [16, Theorem 6.8]. We show Theorem 3.3 by
proving in Section 6 that SAT+(H3(Z)) (and thus KP+(H3(Z))) is undecidable.

The interest in the Heisenberg group stems from its special role inside the class of virtually
nilpotent groups. This class, in turn, consists exactly of the finite extensions of groups
of unitriangular integer matrices (see, for example, [14, Theorem 17.2.5]). Furthermore, a
celebrated result of Gromov [12] states that the f.g. virtually nilpotent groups are precisely
the f.g. groups with polynomial growth. In some sense, the discrete Heisenberg group is the
smallest f.g. virtually nilpotent group that is not virtually abelian. Therefore, Theorem 3.3
implies the following characterization of all wreath products G ≀ H with decidable KP(G ≀ H)
where H is infinite and virtually nilpotent. See the full version [5] for details.

▶ Corollary 3.4. Let G, H be f.g. non-trivial groups. If H is virtually nilpotent and infinite,
then KP(G ≀ H) is decidable if and only if H is virtually abelian and ExpEq(G) is decidable.

By undecidability of ExpEq(H3(Z)), this implies: If G ̸= 1 and H are f.g. virtually nilpotent
and H is infinite, then KP(G ≀ H) is decidable if and only if G and H are virtually abelian.

Solvable Baumslag-Solitar groups. Our second application of Theorem 3.1 concerns wreath
products G ≀ BS(1, q). It is known that knapsack is decidable for BS(1, q) [21, Theorem 4.1],
but again, essentially nothing is known about KP(G ≀ BS(1, q)) for any G.

▶ Theorem 3.5. For any f.g. group G and q ≥ 1, the problem KP(G ≀ BS(1, q)) is decidable
if and only if ExpEq(G) is decidable.

Extending methods from Lohrey and Zetzsche [21], we show that KP±(BS(1, q)) is decidable
for any q ≥ 1 and thus obtain Theorem 3.5 in Section 6.

Magnus embedding. Another corollary concerns groups of the form F/[N, N], where F is
a f.g. free group and N is a normal subgroup. Recall that any f.g. group can be written as
F/N , where F is an f.g. free group and N is a normal subgroup of F . Dividing by [N, N]
instead of N yields F/[N, N], which is subject to the Magnus embedding [22, Lemma] of
F/[N, N] into Zr ≀ (F/N), where r is the rank of F . We show in the full version [5]:

▶ Corollary 3.6. Let F be a finitely generated free group and N be a normal subgroup of F .
If KP+(F/N) is decidable, then so is KP(F/[N, N]).

Knapsack vs. intersection knapsack. Introducing the problems KP+ and KP± raises
the question of whether they are substantially different from the similar problems KP and
ExpEq: Is KP+(G) or KP±(G) perhaps inter-reducible with KP(G) or ExpEq(G)? Our
applications show that this is not the case. Since KP(H3(Z)) is decidable [16, Theorem 6.8],
but KP+(H3(Z)) is not, neither KP+(G) nor KP±(G) can be inter-reducible with KP(G)
in general. Moreover, one can show2 that ExpEq(BS(1, 2)) is undecidable [11], whereas
KP±(BS(1, q)) is decidable for any q ≥ 1. Hence, neither KP+(G) nor KP±(G) can be
inter-reducible with ExpEq(G) in general. However, we leave open whether there is a f.g.
group G for which KP+(G) is decidable, but KP±(G) is undecidable (see Section 7).

2 Since there is no published proof available, we include a proof in the full version [5], with kind permission
of Moses Ganardi and Markus Lohrey.

STACS 2021

11:8 A Characterization of Wreath Products Where Knapsack Is Decidable

4 From wreath products to intersection knapsack

In this section, we prove the “if” direction of Theorem 3.1 by deciding KP(G ≀ H) using
ExpEq(G) and either KP±(H) or KP+(H) (depending on whether G is abelian).

Normalization. We fix a wreath product G ≀ H with G and H finitely generated groups.
Note that we may assume that KP(H) is decidable. In our reduction, we will augment the
KP(G ≀ H)-instance with positive intersection constraints regarding the cursor in H. This
results in instances of the hybrid intersection knapsack problem HKP±(G ≀ H) over G ≀ H:
It is defined as KP±(G ≀ H) but the loop and disjointness constraints consider the σ-image
of elements. Let us make this more precise. If E = α1 · · · αn is a knapsack expression over
G ≀ H, then we define for all i ∈ [1, n] and ν ∈ NX the set

suppν
E(i) := {σ(ν(α1 · · · αi−1)γ(αi)k) | 0 ≤ k ≤ ν(xi) − 1}

if i ∈ PE and

suppν
E(i) := {σ(ν(α1 · · · αi−1))}

if i ∈ QE . For a walk w = (w1, . . . , wk) over G ≀ H we write σ(w) := (σ(w1), . . . , σ(wk)).
Then the hybrid intersection knapsack problem HKP±(G ≀ H) over G ≀ H is defined as follows:
Given a knapsack expression E over G, a set L ⊆ [0, n]2 of loop constraints, and a set

D ⊆ [1, n]2 of disjointness constraints.
Question Is there a valuation ν ∈ NX with factorized walk πν,E = π1 . . . πn induced by ν on

E such that the following conditions are fulfilled:
ν(E) = 1
σ(πi+1 . . . πj) is a loop for all (i, j) ∈ L

suppν
E(i) ∩ suppν

E(j) = ∅ for all (i, j) ∈ D.
Its positive version HKP+(G ≀ H) is again defined by having no disjointness constraints. The
set solG≀H is defined accordingly. Note that to simplify the constructions in the proofs, the
disjointness constraints in an HKP±(G ≀ H)-instance disregard the last point of walks.

In the following, when we write a knapsack expression as E = α1 · · · αnαn+1, we assume
w.l.o.g. that αn+1 is a constant. Two elements g, h ∈ H are called commensurable if gx = hy

for some x, y ∈ Z\{0}. It is known that if g1, g2 have infinite order and are not commensurable,
then there is at most one solution (x1, x2) ∈ Z2 for the equations gx1

1 gx2
2 = g [7, Lemma 9].

Let E = α1 · · · αnαn+1 be a knapsack expression and write gi = γ(αi) for i ∈ [1, n + 1].
The expression (resp. the corresponding HKP±(G ≀ H)-instance) is c-simplified if for any
i, j ∈ PE with gi /∈ H and gj /∈ H , we have that commensurability of σ(gi) and σ(gj) implies
σ(gi) = σ(gj). We call the expression (resp. the corresponding HKP±(G ≀ H)-instance)
normalized if it is c-simplified and each atom αi with i ∈ [1, n] is of one of the following types:
We either have (a) i ∈ QE and gi ∈ H or (b) i ∈ PE and σ(gi) = 1 or (c) i ∈ PE , gi ∈ GH

and σ(gi) has infinite order. Using generalizations of ideas from [10] and [7], we show:

▶ Theorem 4.1. Given an instance of KP(G ≀ H), one can effectively construct an equivalent
finite set of normalized HKP+(G ≀ H)-instances.

Here, a problem instance I is equivalent to a set I of problem instances if I has a solution if
and only if at least one of the instances in I has a solution.

P. Bergsträßer, M. Ganardi, and G. Zetzsche 11:9

Non-abelian case. Note that in a normalized knapsack expression, atoms of type (b) and
(c) and the last atom αn+1 may place non-trivial elements of G. Our next step is to transform
the input instance further so that only the atoms of type (c) can place non-trivial elements
of G, which leads to the notion of stacking-freeness.

Let E = α1 · · · αnαn+1 be a knapsack expression over G ≀ H and let gi := γ(αi) for all
i ∈ [1, n + 1]. We call an index i ∈ [1, n + 1] stacking if either i ∈ PE and σ(gi) = 1, or
i = n + 1 and gn+1 /∈ H . We say that E is stacking-free if it has no stacking indices. Thus, a
normalized expression E is stacking-free if each atom is either of type (c) or a constant in H .

▶ Lemma 4.2. Given a normalized HKP±(G ≀ H)-instance, one can effectively construct an
equivalent finite set of stacking-free, normalized HKP±(G ≀ H)-instances.

Let us sketch the proof of Lemma 4.2. We use the notion of an address from [10]. An address
of E is a pair (i, h) with i ∈ [1, n + 1] and h ∈ H such that h ∈ supp(γ(αi)). The set of
addresses AE of E is finite and can be computed. Intuitively, an address represents a position
in a knapsack expression where a point in H can be visited.

Intuitively, instead of placing elements of G by atoms of type (b) and by αn+1, we
introduce loop and disjointness constraints guaranteeing that in points visited by these atoms,
a solution would have placed elements that multiply to 1 ∈ G. To this end, we pick an
address (i, h) ∈ A of a stacking index i and then guess a set C ⊆ A of addresses such that the
point h′ ∈ H visited at (i, h) is visited by exactly the addresses in C. The latter condition
is formulated using loop and disjointness constraints in an HKP±(G ≀ H)-instance IC . In
IC , we do not place elements at C anymore; instead, we construct a set SC of exponent
equations over G that express that indeed the point h′ carries 1 ∈ G in the end. Note that
this eliminates one address with stacking index. We repeat this until we are left with a set of
stacking-free instances of HKP±(G ≀ H), each together with an accumulated set of exponent
equations over G. We then take the subset I of HKP±(G ≀ H)-instances whose associated
ExpEq(G)-instance has a solution. This will be our set for Lemma 4.2.

The last step of the non-abelian case is to construct KP±(H)-instances.

▶ Lemma 4.3. Given a stacking-free, normalized HKP±(G ≀ H)-instance, one can effectively
construct an equivalent finite set of KP±(H)-instances.

We are given an instance (E, L, D) with E = α1 · · · αn and write gi = γ(αi) for i ∈ [1, n].
As (E, L, D) is normalized and stacking-free, only atoms of type (c) with gi /∈ H can place
non-trivial elements of G. Moreover, if αi and αj are such atoms, then the elements σ(gi)
and σ(gj) are either non-commensurable or equal. In the first case, the two rays produced
by αi and αj can intersect in at most one point; in the second case, they intersect along
subrays corresponding to intervals Ii ⊆ [0, ν(xi)] and Ij ⊆ [0, ν(xj)].

Thus, the idea is to split up each ray wherever the intersection with another ray starts
or ends: We guess for each ray as above the number m ≤ 2 · |AE | − 1 of subrays it will be
split into and replace gxi

i with gy1
i · · · gym

i . After the splitting, subrays are either equal or
disjoint. We guess an equivalence relation on the subrays; using loop constraints, we ensure
that subrays in the same class are equal; using disjointness constraints, we ensure disjointness
of subrays in distinct classes. Finally, we have to check that for each equivalence class C, the
element of G produced by the rays in C does indeed multiply to 1 ∈ G. This can be checked
because ExpEq(G) (and thus the word problem for G) is decidable.

Abelian case. We now come to the case of abelian G: We show that KP(G ≀ H) is decidable,
but only using instances of KP+(H) instead of KP±(H). Here, the key insight is that we can
use the same reduction, except that we just do not impose the disjointness constraints. In

STACS 2021

11:10 A Characterization of Wreath Products Where Knapsack Is Decidable

the above reduction, we use disjointness constraints to control exactly which positions in our
walk visit the same point in H. Then we can check that in the end, each point in H carries
1 ∈ G. However, if G is abelian, it suffices to make sure that the set of positions in our walk
decomposes into subsets, each of which produces 1 ∈ G: If several of these subsets do visit
the same point in H, the end result will still be 1 ∈ G.

We illustrate this in a slightly simpler setting. Suppose we have a product g = ah1
1 · · · ahn

n

with h1, . . . , hn ∈ H and a1, . . . , an ∈ G. Then g is obtained by placing a1 at h1 ∈ H, then
a2 at h2 ∈ H, etc. For a subset S = {s1, . . . , sk} ⊆ [1, n] with s1 < · · · < sk, we define
gS = a

hs1
s1 · · · a

hsk
sk . Hence, we only multiply those factors from S. An equivalence relation

≡ on [1, n] is called cancelling if gC = 1 for every class C of ≡. Moreover, ≡ is called
equilocal if i ≡ j if and only if hi = hj . It is called weakly equilocal if i ≡ j implies hi = hj .
Now observe that for any G, we have g = 1 if and only if there is an equilocal cancelling
equivalence on [1, n]. However, if G is abelian, then g = 1 if and only if there is a weakly
equilocal equivalence on [1, n]. Since weak equilocality can be expressed using only equalities
(and no disequalities), it suffices to impose loop conditions in our instances.

Comparison to previous approach in [7]. The reduction from KP(G ≀ H) to ExpEq(G) and
KP±(H) (KP+(H) respectively) uses similar ideas as the proof of [7, Theorem 4], where it is
shown ExpEq(K) is in NP if K is an iterated wreath product of Zr for some r ∈ N.

Let us compare our reduction with the proof of [7, Theorem 4]. In [7], one solves ExpEq(K)
by writing K = G ≀H where G is abelian and H is orderable and knapsack-semilinear. In both
proofs, solvability of an instance (of ExpEq(G ≀ H) in [7] and KP(G ≀ H) here) is translated
into a set of conditions by using similar decomposition arguments. Then, the two proofs
differ in how satisfiability of these conditions is checked.

In [7], this set of conditions is expressed in Presburger arithmetic, which is possible
due to knapsack-semilinearity of H. In our reduction, we have to translate the conditions
in ExpEq(G) and KP+(H) (KP±(H)) instances. Here, we use loop constraints where in
Presburger arithmetic, once can compare variables directly. Moreover, our reduction uses
disjointness constraints to express solvability in the case that G is non-abelian. This case
does not occur in [7, Theorem 4]. Finally, we have to check whether the elements from G

written at the same point of H multiply to 1. The reduction of [7] can express this directly
in Presburger arithmetic since G is abelian. Here, we use instances of ExpEq(G).

5 From intersection knapsack to wreath products

In this section, we prove the “only if” direction of Theorem 3.1. Since it is known that for
infinite H, decidability of KP(G ≀ H) implies decidability of ExpEq(G) [10, Proposition. 3.1,
Proposition 5.1], it remains to reduce (i) KP+(H) to KP(G ≀ H) for any group G ̸= 1, and
(ii) KP±(H) to KP(G ≀ H) for any non-abelian group G. In the following, let G be a
non-trivial group and H be any group and suppose KP(G ≀ H) is decidable.

First let us illustrate how to reduce KP+(H) to KP(G ≀ H). Suppose we want to verify
whether a product h1 . . . hm = 1 over H satisfies a set of loop constraints L ⊆ [0, m]2, i.e.
hi+1 . . . hj = 1 for all (i, j) ∈ L. To do so we insert into the product for each (i, j) ∈ L a
function f ∈ G(H) after the element hi and its inverse f−1 after the element hj . We call
these functions loop words since their supports are contained in a cyclic subgroup ⟨t⟩ of H.
We can choose the loop words such that this modified product evaluates to 1 if and only
if the loop constraints are satisfied. For the reduction from KP±(H) we need to make the
construction more robust since we simultaneously need to simulate disjointness constraints.

P. Bergsträßer, M. Ganardi, and G. Zetzsche 11:11

If H is a torsion group then KP+(H) and KP±(H) are decidable if the word problem of
H is decidable: For each exponent, we only have to check finitely many candidates. Since
KP(G ≀ H) is decidable, we know that KP(H) is decidable and hence also the word problem.
Thus, we assume H not to be a torsion group and may fix an element t ∈ H of infinite order.

Periodic complexity. Let K be a group. The following definitions will be employed with
K = Z or K = H. For any subset D ⊆ K, let G(D) be the group of all functions u : K → G

whose support supp(u) = {h ∈ K | u(h) ̸= 1} is finite and contained in D. A function
f ∈ G(K) is basic periodic if there exists a progression D in K and c ∈ G such that f(h) = c

for all h ∈ D and f(h) = 1 otherwise. The value of such a function f is the element c; a
period of f is a period of its support. We will identify a word u = c1 . . . cn ∈ G∗ with the
function u ∈ G(Z) where u(i) = ci for i ∈ [1, n] and u(i) = 1 otherwise. Recall that for
u ∈ G(Z) and s ∈ Z, we have us (n) = u(n − s). We extend this to s ∈ Z∞ := Z ∪ {∞} by
setting u∞ (n) = 1 for all n ∈ Z. The periodic complexity of u ∈ G(Z) is the minimal number
pc(u) = k of basic periodic functions u1, . . . , uk such that u =

∏k
i=1 ui. Given a progression

D = {p + qn | n ∈ [0, ℓ]} in Z and a function u ∈ G(Z) we define πD(u)(n) = u(p + qn) for
all n ∈ Z and say that πD(u) is a periodic subsequence of u. Note that periodic subsequences
of basic periodic functions are again basic periodic. Furthermore, since πD : G(Z) → G(Z) is
a homomorphism, taking periodic subsequences does not increase the periodic complexity.

▶ Lemma 5.1. Given n, k ∈ N and a ∈ G \ {1}, one can compute u1, . . . , un ∈ ⟨a⟩(N) such
that

∏n
i=1 upi

i uqi −1
i has periodic complexity ≥ k for all (p1, . . . , pn) ̸= (q1, . . . , qn) ∈ Zn

∞.

Here is a proof sketch for Lemma 5.1. First we construct a word with large periodic
complexity: In the full version [5] we prove that (a)22k

(1)22k

. . . (a)22k

(1)22k

, consisting of 4k

many blocks, has periodic complexity at least k, where (b)n is the sequence consisting of n

many b’s. The case n = 1 can be shown by taking such a sequence v = a1 . . . am ∈ ⟨a⟩(N)

with large periodic complexity and defining u1 = a1(1)m−1a2(1)m−1 . . . am(1)m−1a1 . . . am.
If p, q ∈ Z∞ are distinct then up

1 uq −1
1 always contains v or v−1 as a periodic subsequence

and thus has large periodic complexity. For n > 1 we define ui (i > 1) to be stretched
versions of u1 such that the supports of any two functions up

i, uq
j where i ̸= j intersect in at

most one point. This allows to argue that
∏n

i=1 upi

i uqi −1
i still has large periodic complexity

as soon as pi ̸= qi for some i.

Expressing loop constraints. We now show how to use Lemma 5.1 to encode loop constraints
over a product h1 . . . hm over H in an instance of KP(G ≀ H).

Recall that a loop constraint (i, j) stipulates that σ(gi+1 . . . gj) = 1. If we only want to
reduce KP+(H), it is not hard to see that it would suffice to guarantee

∏n
i=1 upi

i uqi −1
i ̸= 1

in Lemma 5.1. In that case, we could essentially use the functions ui as loop words. However,
in order to express disjointness constraints in KP±(H), we will construct expressions over
G ≀ H that place additional “disjointness patterns” in the Cayley graph of H . We shall make
sure that the disjointness patterns are tame: Roughly speaking, this means they are basic
periodic and either (i) place elements from a fixed subgroup ⟨a⟩ or (ii) can intersect a loop
word at most once. Here, the high periodic complexity of

∏n
i=1 upi

i uqi −1
i will allow us to

conclude that tame patterns cannot make up for a violated loop constraint.
Let us make this precise. Recall that two elements g, h ∈ H are called commensurable

if gx = hy for some x, y ∈ Z \ {0}. Let a ∈ G \ {1}. Let Pa,t(G ≀ H) be the set of elements
g ∈ G ≀ H such that τ(g) is basic periodic and either, (i) its value belongs to ⟨a⟩, or (ii) its
period is not commensurable to t. In particular, a power (ch)k (where c ∈ G, h ∈ H, k ∈ N)

STACS 2021

11:12 A Characterization of Wreath Products Where Knapsack Is Decidable

belongs to Pa,t(G ≀ H) if c ∈ ⟨a⟩ or h is not commensurable to t. Note that since loop words
are always placed along the direction t, this guarantees tameness: In case (ii), the period of
τ(g) being non-commensurable to t implies that the support of any h′g, h′ ∈ H , can intersect
the support of a loop word in ⟨a⟩(⟨t⟩) at most once. Using Lemma 5.1, we show the following.

▶ Lemma 5.2. Given a ∈ G\{1}, m ∈ N and L ⊆ [0, m]2 we can compute f0, . . . , fm ∈ ⟨a⟩(t∗)

such that:
1. Let h1, . . . , hm ∈ H. Then h1 . . . hm = 1 and hi+1 . . . hj = 1 for all (i, j) ∈ L if and only

if f0h1f1 . . . hmfm = 1.
2. Let g1, . . . , gm ∈ Pa,t(G ≀ H) such that σ(gi+1 . . . gj) ̸= 1 for some (i, j) ∈ L. Then

f0g1f1 . . . gmfm ̸= 1.
Observe that the first constraint says that if we only use the loop words fi, then they allow
us to express loop constraints. The second constraint tells us that a violated loop constraint
cannot be compensated even with perturbations g1, . . . , gm, provided that they are tame.

The abelian case. Lemma 5.2 provides a simple reduction from KP+(H) to KP(G ≀ H).
Given an instance (E = e1 . . . en, L) of KP+(H) we compute f0, . . . , fm ∈ ⟨a⟩(t∗) using
Lemma 5.2. Then ν : X → N satisfies ν(E) = 1 and ν(ei+1 . . . ej) for all (i, j) ∈ L if and only
if ν(f0e1f1 . . . enfn) = 1. Hence (E, L) has a solution if and only if ν(f0e1f1 . . . enfn) = 1
does.

The non-abelian case. Now let G be a non-abelian group. In the following we will reduce
KP±(H) to KP(G≀H). The first step is to construct from an KP±(H)-instance I an equivalent
HKP+(G ≀ H)-instance Î using a nontrivial commutator [a, b] ̸= 1 in G. In a second step
we apply the “loop words”-construction from Lemma 5.2 (point 2) to Î, going to a (pure)
knapsack instance. It guarantees that, if a loop constraint is violated, then the knapsack
instance does not evaluate to 1. Furthermore, if a disjointness constraint is violated then
there exists a large number of pairwise distant points in the Cayley graph of H which are
labeled by a nontrivial element. These points cannot be canceled by the functions fi from
Lemma 5.2. Finally, if all loop and disjointness constraints are satisfied then the induced walk
in the Cayley graph provides enough “empty space” such that the loop words can be shifted
to be disjoint from the original walk induced by Î (encoding the disjointness constraints).

Normalization. Let I = (E = e1 . . . en, L, D) be a KP±(H)-instance where ei is either a
constant ei = hi or a power ei = hxi

i . We will start by establishing the following useful
properties. We call I torsion-free if hi has infinite order for all i ∈ PE . Call I orthogonalized
for all (i, j) ∈ D ∩ P 2

E such that we have ⟨hi⟩ ∩ ⟨hj⟩ = {1}. If I is torsion-free and
orthogonalized then it is called normalized. The orthogonality will be crucial for the tameness
of the disjointness patterns since at most one of the elements hi, hj for (i, j) ∈ D ∩ P 2

E is
commensurable to t. Furthermore, it guarantees that there is at most one intersection point
for any pair (i, j) ∈ D.

▶ Lemma 5.3. One can compute a finite set I of normalized instances of KP±(H) such that
I has a solution if and only if there exists I ′ ∈ I which has a solution.

Here, torsion-freeness is easily achieved: If hi has finite order, then hxi
i can only assume

finitely many values, so we replace hxi
i by one of finitely many constants. Orthogonality

requires an observation: If ⟨hi⟩ ∩ ⟨hj⟩ ̸= {1}, then any two intersecting progressions πi, πj

P. Bergsträßer, M. Ganardi, and G. Zetzsche 11:13

with periods hi and hj , respectively, must intersect periodically, meaning there exists an
intersection point that is close to an endpoint of πi or πj . This means, in lieu of (i, j) ∈ D,
we can require disjointness of one power with a constant.

Expressing disjointness constraints. Hence we can assume that I is normalized. To
express disjointness constraints, we must assume that G is non-abelian. Let a, b ∈ G with
aba−1b−1 = [a, b] ̸= 1. Our starting point is the following idea. To express that two
progressions πi and πj , induced by a valuation of E, are disjoint, we construct an expression
over G ≀ H that first places a at each point in πi, then b at each point in πj , then again a−1 at
each point in πi, and finally b−1 at each point in πj , see (2). Here we need loop constraints
that express that the start and endpoints of the two traversals of πi (and πj) coincide. Then,
if πi and πj are disjoint, the effect will be neutral; otherwise any intersection point will carry
aba−1b−1 ̸= 1.

However, this leads to two problems. First, there might be more than one disjointness
constraint: If k disjointness constraints are violated by the same point h′′ ∈ H, then h′′

would carry [a, b]k, which can be the identity (for example, G may be finite). Second, when
we also place loop words (which multiply elements from ⟨a⟩), those could also interfere with
the commutator (for example, instead of aba−1b−1, we might get aba−1(a)b−1(a−1) = 1).

Instead, we do the following. Let t ∈ H be the element of infinite order used for the loop
words. Moreover, let D = {(i1, j1), . . . , (id, jd)}. For each (ik, jk) ∈ D, instead of performing
the above “commutator construction” once, we perform it n + d times, each time shifted by
tNk ∈ H for some large Nk. The numbers N0 < N1 < · · · are chosen so large that for at least
one commutator, there will be no interference from other commutators or from loop words.

Let us make this precise. Since I is orthogonalized, we may assume that for each
(i, j) ∈ D ∩ P 2

E , the elements hj and t are not commensurable; otherwise we swap i and
j. The resulting HKP+(G ≀ H)-instance Î will have length m = n + 4d(n + d)(n + 2). In
preparation, we can compute a number N such that the functions f0, . . . , fm from Lemma 5.2
for any L ⊆ [0, m]2 satisfy supp(fi) ⊆ {tj | j ∈ [0, N − 1]}. For each i ∈ [1, n], c ∈ G, s ∈ N,
we define the knapsack expression Ei,c,s over G ≀ H as

Ei,c,s =
{

e1 . . . ei−1 (ts) (c t−shit
s)xi(ct−s) ei+1 . . . en, if ei = hxi

i ,

e1 . . . ei−1 (ts) (c t−shit
s) (ct−s) ei+1 . . . en, if ei = hi.

(1)

The parentheses indicate the atoms. We define

Ê = E ·
d∏

k=1

∏
s∈Sk

(
Eik,a,s · Ejk,b,s · Eik,a−1,s · Ejk,b−1,s

)
(2)

where Sk = {j(n + d)2kN | j ∈ [1, n + d]} for all k ∈ [1, d], and all occurrences of expressions
of the form Ei,c,s use fresh variables. Note that Eik,a,s · Ejk,b,s · Eik,a−1,s · Ejk,b−1,s performs
the commutator construction for (ik, jk), shifted by ts. Let Ê = ê1 . . . êm be the resulting
expression. Notice that its length is indeed m = n + 4d(n + d)(n + 2) as claimed above.

Finally, in our HKP+(G ≀ H) instance, we also add a set J ⊆ [0, m]2 of loop constraints
stating that for each k ∈ [1, d] and s ∈ Sk, the ik-th atom in Eik,a,s arrives at the same place
in H as the ik-th atom in E (and analogously for Ejk,b,s, Eik,a−1,s, Ejk,b−1,s). See [5] for
details.

Let f0, . . . , fm ∈ ⟨a⟩(t∗) be the loop words from Lemma 5.2 for the set J ⊆ [0, m]2. It is
now straightforward to verify that the elements êi are all tame as explained above. In other
words, for every valuation ν and i ∈ [1, m], we have ν(êi) ∈ Pa,t (see [5] for a proof).

STACS 2021

11:14 A Characterization of Wreath Products Where Knapsack Is Decidable

Shifting loop words. By construction, we now know that if the instance f0ê1f1 · · · êmfm

of KP(G ≀ H) has a solution, then so does our normalized instance I of KP±(H). However,
there is one last obstacle: Even if all loop and disjointness constraints can be met for I, we
cannot guarantee that f0ê1f1 · · · êmfm has a solution: It is possible that some loop words
interfere with some commutator constructions so as to yield an element ̸= 1.

The idea is to shift all the loop words f0, . . . , fm in direction t by replacing fi by
trfit

−r = ftr

i for some r ∈ N. We shall argue that for some r in some bounded interval, this
must result in an interference free expression; even though the elements êi may modify an
unbounded number of points in H. To this end, we use again that the êi are tame: Each of
them either (i) places elements from ⟨a⟩, or (ii) has a period non-commensurable to t. In
the case (i), there can be no interference because the fi also place elements in ⟨a⟩, which is
an abelian subgroup. In the case (ii), êi can intersect the support of each fj at most once.
Hence, there are at most m points each fj has to avoid after shifting. The following simple
lemma states that one can always shift finite sets Fi in parallel to avoid finite sets Ai, by a
bounded shift. Notice that the bound does not depend on the size of the elements in the sets
Fi and Ai.

▶ Lemma 5.4. Let F1, . . . , Fm ⊆ Z with |Fi| ≤ N and A1, . . . , Am ⊆ Z with |Ai| ≤ ℓ. There
exists a shift r ∈ [0, Nmℓ] such that (r + Fi) ∩ Ai = ∅ for each i ∈ [1, m].

Proof. For every a ∈ Z there exist at most |Fi| ≤ N many shifts r ∈ N where a ∈ r + Fi.
Therefore there must be a shift r ∈ [0, Nmℓ] such that (r+Fi)∩Ai = ∅ for each i ∈ [1, m]. ◀

We can thus prove the following lemma, which clearly completes the reduction from
KP±(H) to KP(G ≀ H).

▶ Lemma 5.5. I = (E, L, D) has a solution if and only if ftr

0ê1 ftr

1 . . . êm ftr

m has a solution
for some r ∈ [0, Nm2].

6 Applications

The discrete Heisenberg group. Here, we prove that SAT+(H3(Z)) is undecidable. Together
with Theorem 3.1 and Theorem 3.2, this directly implies Theorem 3.3. Define the matrices
A =

(
1 1 0
0 1 0
0 0 1

)
, B =

(
1 0 0
0 1 1
0 0 1

)
, and C =

(
1 0 1
0 1 0
0 0 1

)
. The group H3(Z) is generated by A and B

and we have AC = CA and BC = CB. It is well-known that (I) AiCj = Ai′
Cj′ iff i = i′

and j = j′; and (II) BiCj = Bi′
Cj′ iff i = i′ and j = j′; and (III) AiBjA−i′

B−j′ = Ck if
and only if i = i′, j = j′, and k = ij. For proofs, see the full version [5].

We show undecidability of SAT+(H3(Z)) by reducing from solvability of Diophantine
equations over natural numbers. Hence, we are given a finite system

∧m
j=1 Ej of equations of

the form x = a, z = x + y, and z = xy. It is well-known that solvability of such equation
systems is undecidable [23]. Given such an equation system over a set of variables X we define
a C+(H3(Z))-formula containing the variables {gx | x ∈ X} ∪ {g0} with the interpretation
that gx = g0Cx. First we state that g0

C−→∗ gx for all x ∈ X. Expressing x = a is done
simply with g0

Ca

−−→ gx. For z = x + y, we use

CxA∗ ∩ Ax′
C∗ ∩ (AC)∗ ̸= ∅ ∧ Ax′

C∗ ∩ CzA∗ ∩ Cy(AC)∗ ̸= ∅.

This can be expressed in C+(H3(Z)) with a fresh variable fx′ for g0Ax′ : For example, the
first conjunct holds iff there exists h ∈ H3(Z) such that g0

A−→∗ fx′ , gx
A−→∗ h, fx′

C−→∗ h,
g0

AC−−→∗ h. By (I) and AC = CA, the first conjunct holds iff x = x′. Similarly, the second
conjunct holds iff z = x′ + y, hence z = x + y. For z = xy, we use:

P. Bergsträßer, M. Ganardi, and G. Zetzsche 11:15

CxA∗ ∩Ax′
C∗ ∩(AC)∗ ̸= ∅ ∧ By′

C∗ ∩CyB∗ ∩(BC)∗ ̸= ∅ ∧ Ax′
B∗(A−1)∗ ∩By′

C∗ ∩CzB∗ ̸= ∅.

Like above, the first and second conjunct express x′ = x and y′ = y. The third says that
Ax′

Br(A−1)s = By′
Cz for some r, s ≥ 0, so by (III), it states z = x′y′, hence z = xy.

Solvable Baumslag-Solitar groups. We show that SAT±(BS(1, q)) is decidable for every
q ≥ 1. By Theorem 3.1 and Theorem 3.2, this proves Theorem 3.5. Our proof is based on
the following observation, which is shown in the full version [5].

▶ Proposition 6.1. The first-order theory of C+(BS(1, q)) is decidable.

For Proposition 6.1, we show that given any finite subset F ⊆ BS(1, q), the structure
(BS(1, q), (g−→)g∈F , (g−→∗)g∈F) is effectively an automatic structure, which implies that its
first-order theory is decidable [15, Corollary 4.2]. This uses a straightforward extension of the
methods in [21]. In [21, proof of Theorem 4.1], it is shown that KP(BS(1, q)) can be reduced
to the existential fragment of the structure (Z, +, Vq), where Vq(n) is the largest power of q

that divides n. The structure (Z, +, Vq) is called Büchi arithmetic and is well-known to be
automatic. Here, we show that (BS(1, q), (g−→)g∈F , (g−→∗)g∈F) can be interpreted in a slight
extension of Büchi arithmetic that is still automatic. From Proposition 6.1, we can derive a
stronger statement, which clearly implies decidability of SAT±(BS(1, q)):

▶ Theorem 6.2. The first-order theory of C±(BS(1, q)) is decidable.

Indeed, since BS(1, q) is torsion-free, we can express the predicate ⊥g,h using universal
quantification: We have (g1, g2)⊥g,h(h1, h2) if and only if g1

g−→∗ g2 and h1
h−→∗ h2 and

∀f, f ′ ∈ BS(1, q) :
(

g1
g−→∗ f ∧ f

g−→∗ g2 ∧ h1
h−→∗ f ′ ∧ f ′ h−→∗ h2

)
→ f ̸= f ′.

7 Conclusion

We have shown that for non-trivial groups G and infinite groups H, the problem KP(G ≀ H)
is decidable if and only if ExpEq(G) is decidable and either (i) G is abelian and KP+(H)
is decidable or (ii) G is non-abelian and KP±(H) is decidable. This reduces the study of
decidablity of KP(G ≀ H) to decidability questions about the factors G and H.

Intersection knapsack (KP±) vs positive intersection knapsack (KP+). However, we leave
open whether there is a group H where KP+(H) is decidable, but KP±(H) is undecidable.
It is clear that both are decidable for all groups in the class of knapsack-semilinear groups.
This class contains a large part of the groups for which knapsack has been studied. For
example, it contains graph groups [20, Theorem 3.11] and hyperbolic groups [17, Theorem 8.1].
Moreover, knapsack-semilinearity is preserved by a variety of constructions: This includes
wreath products [10, Theorem 5.4], graph products [8], free products with amalgamation and
HNN-extensions over finite identified subgroups [8], and taking finite-index overgroups [8].
Moreover, the groups H3(Z) and BS(1, q) for q ≥ 2 are also unable to distinguish KP+ and
KP±: We have shown here that KP+ is undecidable in H3(Z) and KP± is decidable in
BS(1, q). To the best of the authors’ knowledge, among the groups for which knapsack is
currently known to be decidable, this only leaves BS(p, q) for p, q coprime, and G ≀ BS(1, q)
(with decidable ExpEq(G)) as candidates to distinguish KP+ and KP±.

STACS 2021

11:16 A Characterization of Wreath Products Where Knapsack Is Decidable

Complexity. Another aspect that our work does not settle is the complexity of KP(G ≀ H)
for each G and H. We refer to [7] for a current overview on this.

The reductions presented here have high complexity. For example, our reduction from
KP(G ≀ H) involves several transformations of instances of KP(G ≀ H), HKP(G ≀ H), KP±(H),
KP(H), or ExpEq(G). In multiple of these transformations, as an auxiliary step, we take
an instance I, extract from it a set of knapsack equations axby = c with a, b, c ∈ H, find
minimal solutions, and use them to compute a new instance I ′. Thus, the complexity of our
reduction depends on the size of minimal solutions to (two-variable) knapsack equations in H .
Moreover, even if one assumes a polynomial bound on such solution sizes (which is known
to hold, for example, in graph groups defined by transitive forests [20, Theorem 4.10] and
in hyperbolic groups [27] (see also [17, Theorem 8.1])), our reduction still involves multiple
steps that incur an exponential blow-up.

Furthermore, our reduction from KP±(H) (or KP+(H)) to KP(G ≀ H) produces double-
exponentially many instances of KP(G ≀ H), each of which is doubly exponential in size.

References
1 L. Babai, R. Beals, J. Cai, G. Ivanyos, and E. M. Luks. Multiplicative equations over

commuting matrices. In Proceedings of SODA 1996, pages 498–507. ACM/SIAM, 1996.
2 G. Baumslag and D. Solitar. Some two-generator one-relator non-Hopfian groups.

Bulletin of the American Mathematical Society, 68(3):199–201, 1962. doi:10.1090/
S0002-9904-1962-10745-9.

3 P. Bell, V. Halava, T. Harju, J. Karhumäki, and I. Potapov. Matrix equations and hilbert’s
tenth problem. International Journal of Algebra and Computation, 18(8):1231–1241, 2008.
doi:10.1142/S0218196708004925.

4 P. Bell, I. Potapov, and P. Semukhin. On the mortality problem: From multiplicative matrix
equations to linear recurrence sequences and beyond. In Proceedings of MFCS 2019, pages
83:1–83:15, 2019. doi:10.4230/LIPIcs.MFCS.2019.83.

5 P. Bergsträßer, M. Ganardi, and G. Zetzsche. A characterization of wreath products where
knapsack is decidable, 2021. arXiv:2101.06132.

6 F. A. Dudkin and A. V. Treyer. Knapsack problem for baumslag–solitar groups. Siberian
Journal of Pure and Applied Mathematics, 18(4):43–55, 2018.

7 M. Figelius, M. Ganardi, M. Lohrey, and G. Zetzsche. The complexity of knapsack problems
in wreath products. In Proceedings of ICALP 2020, pages 126:1–126:18, 2020. doi:10.4230/
LIPIcs.ICALP.2020.126.

8 M. Figelius, M. Lohrey, and G. Zetzsche. Closure properties of knapsack semilinear groups,
2019. arXiv:1911.12857.

9 E. Frenkel, A. Nikolaev, and A. Ushakov. Knapsack problems in products of groups. Journal
of Symbolic Computation, 74:96–108, 2016. doi:10.1016/j.jsc.2015.05.006.

10 M. Ganardi, D. König, M. Lohrey, and G. Zetzsche. Knapsack problems for wreath products.
In Proceedings of STACS 2018, volume 96 of LIPIcs, pages 32:1–32:13. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.32.

11 M. Ganardi and M. Lohrey, 2020. Personal communication.
12 M. Gromov. Groups of polynomial growth and expanding maps. Publications Mathématiques

de l’Institut des Hautes Études Scientifiques, 53(1):53–78, 1981.
13 F. Gul, M. Sohrabi, and A. Ushakov. Magnus embedding and algorithmic properties of groups

f/n(d). Transactions of the American Mathematical Society, 369(9):6189–6206, 2017.
14 M. I. Kargapolov and J. I. Merzljakov. Fundamentals of the Theory of Groups. Springer-Verlag,

New York, 1979. Translated from the second Russian edition.
15 B. Khoussainov and A. Nerode. Automatic presentations of structures. In International

Workshop on Logic and Computational Complexity, pages 367–392. Springer, 1994.

https://doi.org/10.1090/S0002-9904-1962-10745-9
https://doi.org/10.1090/S0002-9904-1962-10745-9
https://doi.org/10.1142/S0218196708004925
https://doi.org/10.4230/LIPIcs.MFCS.2019.83
http://arxiv.org/abs/2101.06132
https://doi.org/10.4230/LIPIcs.ICALP.2020.126
https://doi.org/10.4230/LIPIcs.ICALP.2020.126
http://arxiv.org/abs/1911.12857
https://doi.org/10.1016/j.jsc.2015.05.006
https://doi.org/10.4230/LIPIcs.STACS.2018.32

P. Bergsträßer, M. Ganardi, and G. Zetzsche 11:17

16 D. König, M. Lohrey, and G. Zetzsche. Knapsack and subset sum problems in nilpotent,
polycyclic, and co-context-free groups. In Algebra and Computer Science, volume 677 of
Contemporary Mathematics, pages 138–153. American Mathematical Society, 2016. doi:
10.1090/conm/677.

17 M. Lohrey. Knapsack in hyperbolic groups. Journal of Algebra, 545:390–415, 2020. doi:
10.1016/j.jalgebra.2019.04.008.

18 M. Lohrey, B. Steinberg, and G. Zetzsche. Rational subsets and submonoids of wreath products.
Information and Computation, 243:191–204, 2015. doi:10.1016/j.ic.2014.12.014.

19 M. Lohrey and G. Zetzsche. Knapsack in graph groups, HNN-extensions and amalgamated
products. In Proceedings of STACS 2016, volume 47 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 50:1–50:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.STACS.2016.50.

20 M. Lohrey and G. Zetzsche. Knapsack in graph groups. Theory of Computing Systems,
62(1):192–246, 2018. doi:10.1007/s00224-017-9808-3.

21 M. Lohrey and G. Zetzsche. Knapsack and the power word problem in solvable baumslag-solitar
groups. In Proceedings of MFCS 2020, pages 67:1–67:15, 2020. doi:10.4230/LIPIcs.MFCS.
2020.67.

22 W. Magnus. On a theorem of Marshall Hall. Annals of Mathematics. Second Series, 40:764–768,
1939.

23 Y. V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, Massachusetts, 1993.
24 J. Matthews. The conjugacy problem in wreath products and free metabelian groups. Trans-

actions of the American Mathematical Society, 121(2):329–339, 1966.
25 A. Miasnikov, S. Vassileva, and A. Weiß. The conjugacy problem in free solvable groups and

wreath products of abelian groups is in TC0. Theory of Computing Systems, 63(4):809–832,
2019.

26 A. Mishchenko and A. Treier. Knapsack problem for nilpotent groups. Groups Complexity
Cryptology, 9(1):87–98, 2017.

27 A. Myasnikov, A. Nikolaev, and A. Ushakov. Knapsack problems in groups. Mathematics of
Computation, 84:987–1016, 2015. doi:10.1090/S0025-5718-2014-02880-9.

28 V. Remeslennikov and V. Sokolov. Some properties of a magnus embedding. Algebra and
Logic, 9(5):342–349, 1970.

STACS 2021

https://doi.org/10.1090/conm/677
https://doi.org/10.1090/conm/677
https://doi.org/10.1016/j.jalgebra.2019.04.008
https://doi.org/10.1016/j.jalgebra.2019.04.008
https://doi.org/10.1016/j.ic.2014.12.014
https://doi.org/10.4230/LIPIcs.STACS.2016.50
https://doi.org/10.1007/s00224-017-9808-3
https://doi.org/10.4230/LIPIcs.MFCS.2020.67
https://doi.org/10.4230/LIPIcs.MFCS.2020.67
https://doi.org/10.1090/S0025-5718-2014-02880-9

Synchronizing Strongly Connected Partial DFAs
Mikhail V. Berlinkov !

Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia

Robert Ferens !

Institute of Computer Science, University of Wrocław, Poland

Andrew Ryzhikov !

Université Gustave Eiffel, LIGM, Marne-la-Vallée, France

Marek Szykuła !

Institute of Computer Science, University of Wrocław, Poland

Abstract
We study synchronizing partial DFAs, which extend the classical concept of synchronizing com-
plete DFAs and are a special case of synchronizing unambiguous NFAs. A partial DFA is called
synchronizing if it has a word (called a reset word) whose action brings a non-empty subset of states
to a unique state and is undefined for all other states. While in the general case the problem of
checking whether a partial DFA is synchronizing is PSPACE-complete, we show that in the strongly
connected case this problem can be efficiently reduced to the same problem for a complete DFA.
Using combinatorial, algebraic, and formal languages methods, we develop techniques that relate
main synchronization problems for strongly connected partial DFAs with the same problems for
complete DFAs. In particular, this includes the Černý and the rank conjectures, the problem of
finding a reset word, and upper bounds on the length of the shortest reset words of literal automata
of finite prefix codes. We conclude that solving fundamental synchronization problems is equally hard
in both models, as an essential improvement of the results for one model implies an improvement for
the other.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Mathematics of computing → Combinatorics

Keywords and phrases Černý conjecture, literal automaton, partial automaton, prefix code, rank
conjecture, reset threshold, reset word, synchronizing automaton, synchronizing word

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.12

Related Version Full Version: https://arxiv.org/abs/2101.05057

Funding Robert Ferens: Supported in part by the National Science Centre, Poland under project
number 2017/25/B/ST6/01920.
Marek Szykuła: Supported in part by the National Science Centre, Poland under project number
2017/25/B/ST6/01920.

Acknowledgements We are grateful to the anonymous reviewers for useful comments and recent
literature references.

1 Introduction

Synchronization is a concept in various domains of computer science which consists in
regaining control over a system by applying (or observing) a specific set of input instructions.
These instructions are usually required to lead the system to a fixed state no matter in which
state it was at the beginning. This idea has been studied for automata (deterministic [8, 36],
non-deterministic [17], unambiguous [2], weighted and timed [10], partially observable [22],
register [1], nested word [9]), parts orienting in manufacturing [13, 23], testing of reactive
systems [30], variable length codes [5], and Markov Decision Processes [11, 12].

© Mikhail V. Berlinkov, Robert Ferens, Andrew Ryzhikov, and Marek Szykuła;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 12; pp. 12:1–12:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.berlinkov@gmail.com
mailto:robert.ferens@cs.uni.wroc.pl
mailto:ryzhikov.andrew@gmail.com
mailto:msz@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.STACS.2021.12
https://arxiv.org/abs/2101.05057
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Synchronizing Strongly Connected Partial DFAs

In this paper, we study the synchronization of partial DFAs, which are a generalization of
complete DFAs and a special case of unambiguous NFAs. We are motivated by applications
of this model and its connections with others, as well as the need for new techniques applied
to partial DFAs. The problems for strongly connected partial DFAs are a motivation for
further development and generalization of the methods applied for complete DFAs, since, as
we show, these models are closely related. We also hope that our methods will serve as a
step toward studying a wider class of strongly connected unambiguous NFAs.

1.1 Observing a reactive system
Consider a finite-state reactive system modeled by a partial DFA (by partial we mean that for
some states there can be no outgoing transitions corresponding to some letters). The observer
knows the structure of the DFA but does not know its current state. At every step, the DFA
reads a letter (also known to the observer) and transits to another state. The observer wants
to eventually learn the actual state of the DFA. Since the DFA is deterministic, once a state
is known, it will be known forever.

In this setting, the actual state is known if and only if the system reads a reset word –
a word which transits a non-empty set of states to a single state and is undefined for all
other states. The presence of undefined transitions indicates that certain actions cannot be
performed from certain states, which can be essential for synchronization.

For several identical systems running in parallel and receiving the same input (but possibly
starting from different states), the presence of a reset word guarantees that all systems end
up in the same state. This idea can be used in robotics, where a sequence of passive obstacles
is used for orienting a large number of arbitrarily rotated parts arriving simultaneously on a
conveyor belt ([13, 23], see also [36] for an illustrative example).

Reactive systems (such as Web servers, communication protocols, operating systems and
processors) are systems developed to run without termination and interact through visible
events, so it is natural to assume that the system can return to any state from any other state
(NFAs with this property are called strongly connected). The probabilistic version of the
described problem for strongly connected partial DFAs has been considered in the context of
ε-machines [34]. In particular, the observer knows the state of an ε-machine precisely if and
only if a reset word for the underlying partial DFA was applied. Some experimental results
on finding shortest reset words for partial DFAs were recently presented in [31].

1.2 Synchronizing automata
There exist several definitions that generalize the notion of a synchronizing complete DFA to
larger classes of NFAs. In this subsection, we describe the notion which preserves most of
the properties of the complete DFAs case, and in 1.5 we briefly describe alternative notions.

An NFA is called unambiguous if for every two states p, q and every word w, there is at
most one path from p to q labeled by w [2]. In the strongly connected case, this is equivalent
to a more classical definition of an unambiguous automaton with chosen initial and final
states, if there is a unique initial state and a unique final state. An unambiguous NFA is
called synchronizing if there exist two non-empty subsets C, R of its states and a word w

(called a reset word) such that its action maps every state in C exactly to the whole set R,
and is undefined for all states outside C [2]. For partial DFAs, the set R has size one [5],
and, for complete DFAs, the set C is also the whole set of states [36].

Partial DFAs are a natural intermediate class between unambiguous NFAs and complete
DFAs. The bounds on the length of shortest reset words in strongly connected partial
DFAs have not been studied before. The famous Černý conjecture, which is one of the most

M. V. Berlinkov, R. Ferens, A. Ryzhikov, and M. Szykuła 12:3

longstanding open problems in automata theory, states that for an n-state complete DFA
we can always find a reset word of length at most (n − 1)2, unless there are no reset words.
The best known upper bound is cubic in n [32, 33], and the problem of deciding whether a
complete DFA is synchronizing is solvable in time quadratic in n [36]. For an n-state strongly
connected unambiguous NFA the best known upper bound on the length of a shortest reset
word is n5, and the existence of a reset word is verifiable in time O(n5) [28]. The same upper
bound holds for the length of the shortest mortal words in strongly connected unambiguous
NFAs [21], whereas partial DFAs admit a tight quadratic bound [26].

1.3 Synchronizing codes
A variable length code X (which we call a code) is a set of finite words over a finite alphabet
Σ, such that no word over Σ can be written as a concatenation of codewords of X in two
different ways. Such codes (especially Huffman codes [16]) are widely used for lossless data
compression. Since the lengths of codewords can be different, one transmission error can
spoil the whole decoding process, causing a major data loss. Also, in general, decoding a
part of a message (e.g., a segment of a compressed video stream) is not possible without
decoding the whole message.

These issues can be addressed by using synchronizing codes. A code X is called syn-
chronizing if there exists a synchronizing word w ∈ X∗ such that for every uwv ∈ X∗ we
have uw, wv ∈ X∗. The occurrence of the word ww thus stops error propagation and allows
parallel decoding of the two parts of the message. More generally, each appearance of the
word ww in a coded message allows running decoding independently from the position after
the first w.

A code is called prefix if none of its codewords is a prefix of another codeword. Such codes
allow obtaining the correct partition of a message into codewords one by one by going from
left to right. Even if a code is synchronizing, there are no guarantees that a synchronizing
word will appear in a message. Codes where every long enough concatenation of codewords
is synchronizing are called uniformly synchronizing [5, 7]. A prefix code is called maximal if
it is not a subset of another prefix code. All non-trivial uniformly synchronizing finite prefix
codes are non-maximal [5].

1.4 Automata for X∗

A code recognized by an NFA as a language is called recognizable. In particular, every finite
code is recognizable. To argue about synchronization properties of a recognizable code X,
special NFAs recognizing X∗ are studied. These NFAs have a unique initial and final state
r such that the set of words labeling paths from r to itself coincides with X∗, thus they
are also strongly connected. Provided a recognizable code X, an NFA with the described
properties can be chosen to be unambiguous [5]. Moreover, this NFA can be chosen to be a
partial (respectively, a complete) DFA if and only if X is a recognizable prefix (respectively,
recognizable maximal prefix) code [5].

For such an unambiguous NFA with the properties as above, X is synchronizing if and
only if the NFA is synchronizing, and the length of a shortest synchronizing word for X is
at most the length of a shortest reset word of the NFA plus twice its number of states [5,
Chapter 4].

Finite prefix codes admit a direct construction of partial DFAs with the described
properties, called literal automata. Let X be a finite prefix code over an alphabet Σ. The
literal automaton AX = (Q, Σ, δ) is constructed as follows. The set of states Q is the set of all
proper prefixes of the words in X, the transition function is defined as follows: δ(q, x) = qx

STACS 2021

12:4 Synchronizing Strongly Connected Partial DFAs

if qx /∈ X and qx is a proper prefix of a word in X, δ(q, x) = ε if qx ∈ X, and δ(q, x) = ⊥
otherwise. The state corresponding to the empty prefix ε is called the root state. The height
of a literal automaton is the length of a longest path of its transitions without repetition of
states; equivalently, this is the length of the longest word in X minus one. Note that the
number of states of AX is at most the total length of all codewords of X, which allows to
directly transfer upper bounds from literal automata to finite prefix codes. An example of a
literal automaton is shown in Fig. 1(right). The literal automaton of a prefix code can be
used as a decoder for this code by adding output labels to the transitions [5].

1.5 Carefully synchronizing DFAs
For general NFAs, synchronizability can be generalized to Di-directability for i = 1, 2, 3 [17].
As discussed in [38, Section 6.3], for partial DFAs the notions of D1- and D3-directing words
both coincide with carefully synchronizing words. These are words sending every state of a
partial DFA to the same state, not using any undefined transitions at all. A D2-directing
word for a partial DFA is either carefully synchronizing or mortal (undefined for every state).
The definitions of carefully synchronizing and D2-directing words are different from our
definition of synchronizing words.

A carefully synchronizing word can be applied to a partial DFA at any moment without
the risk of using an undefined transition. This comes at a high cost: even for strongly
connected partial DFAs, the shortest carefully synchronizing words can have exponential
length [38, Proposition 9], and the problem of checking the existence of such a word is
PSPACE-complete [38, Theorem 12], in contrast with the case of complete DFAs. On the
contrary, the notion of a synchronizing partial DFA preserves most of the properties of
a synchronizing complete DFA, at least in the strongly connected case. Note that every
carefully synchronizing word is synchronizing, but the converse is not true.

While for complete DFAs the property of being strongly connected is not essential for
many synchronization properties [36], the situation changes dramatically for partial DFAs.
Partial DFAs, which are not strongly connected, can have exponentially long shortest reset
words, and the problem of checking the existence of a reset word is PSPACE-complete [3].
Thus, strong connectivity is indeed necessary to obtain good bounds and algorithms. As
explained above, for reactive systems and prefix codes this requirement comes naturally.

1.6 Our contribution and organization of the paper
We prove a number of results for strongly connected partial DFAs connected with the Černý
conjecture and its generalizations. Where possible, we look up for methods that allow relating
the partial case with the complete case, instead of directly reproving known results in this
more general setting. In this way, we do not have to go into the existing proofs, and future
findings concerning the complete case should be often immediately transferable to the partial
case.

We start from basic properties and introduce more advanced techniques along with their
applications. First, we investigate the rank conjecture, which is a generalization of the Černý
conjecture from the case of synchronizing automata to the case of all automata. We show that
the rank conjecture for complete DFAs implies it also for partial DFAs (Theorem 10). For
this, we introduce our first basic tool called fixing automaton, which is a complete automaton
obtained from a partial one and sharing some properties. Our result shows a general way
for transferring upper bounds from the case of complete DFAs to partial DFAs, e.g., we
immediately get that the rank conjecture holds for partial Eulerian automata (Corollary 11).

M. V. Berlinkov, R. Ferens, A. Ryzhikov, and M. Szykuła 12:5

To connect the Černý conjecture for the cases of complete and partial DFAs, we need
more involved techniques, since the construction developed for the rank conjecture does not
preserve the property of being synchronizing. We introduce a collecting automaton, which
extends the concept of the fixing automaton. We use it to show that all upper bounds on the
length of the shortest reset words, up to a subquadratic additive component, are equivalent
for partial and complete DFAs (Theorem 17). We also use it to prove that the problems of
determining synchronizability and finding a reset word of a strongly connected partial DFA
can be effectively reduced to the same problem for a complete DFA (Section 3.5). This also
means that possible improvements of the complexity of the best-known algorithms for these
problems for complete DFAs should directly apply to partial DFAs.

As discussed in 1.3 and 1.4, one of the main motivations for studying synchronization
of strongly connected partial DFAs is a direct correspondence with synchronization of
recognizable prefix codes. An important special case is when the prefix code is finite. We
investigate it by studying literal automata of finite prefix codes and obtain stronger upper
bounds than those for the general case of strongly connected partial (or complete) DFAs.
We show that the length of the shortest reset words for literal automata of finite prefix codes
is at most O(n log3 n), where n is the number of states of the automaton (Corollary 23).
This upper bound is the same as the best known for maximal prefix codes (which becomes
now a special case), but it is not transferred directly, as key statements do not hold in the
same way for non-maximal prefix codes. To prove it, we first show that literal automata
of finite prefix codes admit a word of linear length whose action sends all the states to a
non-empty subset of small size (Theorem 22). It establishes a natural combinatorial property
of finite prefix codes and constitutes the most involved proof in this paper. Once we show the
existence of such a word, we use one more construction called the induced automaton, which
is a generalization of linear algebraic techniques to the case of partial DFAs (Section 3.7).
This particular construction extends the existing techniques originally developed for complete
DFAs but simultaneously comes with a new simpler and more general proof.

Finally, we show that the lower bounds for strongly connected partial DFAs are asymp-
totically the same even if we ensure the existence of undefined transitions (Section 4). In
other words, undefined transitions do not help in general, as we cannot significantly improve
upper bounds for such automata without doing that for the complete case.

2 Preliminaries

A partial deterministic finite automaton A (which we call partial automaton throughout the
paper) is a triple (Q, Σ, δ), where Q is a set of states, Σ is an input alphabet, and δ is partial
function Q × Σ → Q called the transition function. Note that the automata we consider do
not have any initial or final states. We extend δ to a partial function Q × Σ∗ → Q as usual:
we set δ(q, wa) = δ(δ(q, w), a) for w ∈ Σ∗ and a ∈ Σ. For a state q ∈ Q and a word w ∈ Σ∗,
if the action δ(q, w) is undefined, then we write δ(q, w) = ⊥. Note that if δ(q, w) = ⊥ for a
word w ∈ Σ∗, then δ(q, wu) = ⊥ for every word u ∈ Σ∗. An automaton is complete if all its
transitions are defined, and it is incomplete otherwise. An automaton is strongly connected if
for every two states p, q ∈ Q there is a word w ∈ Σ∗ such that δ(p, w) = q.

By Σi we denote the set of all words over Σ of length exactly i and by Σ≤i the set of
all words over Σ of length at most i. For two sets of words W1, W2 ∈ Σ∗, by W1W2 we
denote their product {w1w2 ∈ Σ∗ | w1 ∈ W1, w2 ∈ W2}. The empty word is denoted by ε.
Throughout the paper, by n we always denote the number of states |Q|.

Given S ⊆ Q, the image of S under the action of w is δ(S, w) = {δ(q, w) | q ∈ S, δ(q, w) ̸=
⊥}. The preimage of S under the action of w is δ−1(S, w) = {q ∈ Q | δ(q, w) ∈ S}. Since

STACS 2021

12:6 Synchronizing Strongly Connected Partial DFAs

A is deterministic, for disjoint subsets S, T ⊆ Q, their preimages under the action of every
word w ∈ Σ∗ are also disjoint.

The rank of a word w is the size of the image of Q under the action of this word, i.e.,
|δ(Q, w)|. In contrast with complete automata, partial automata may admit words of rank
zero; these words are called mortal. Words of non-zero rank are called non-mortal. A word
of rank 1 is called reset, and if the automaton admits such a word then it is synchronizing.
The reset threshold rt(A) is the length of the shortest reset words of A .

We say that a word w compresses a subset S ⊆ Q, if |δ(S, w)| < |S| but δ(S, w) ̸= ∅.
A subset that admits a compressing word is called compressible. There are two ways to
compress a subset S ⊆ Q with |S| ≥ 2. One possibility is the pair compression, which is the
same as in the case of a complete automaton, i.e., mapping at least two states p, q ∈ S to
the same state (but not to ⊥). The other possibility is to map at least one state from S to
⊥, but not all states from S to ⊥. Sometimes, a subset can be compressed in both ways
simultaneously.

q1 q2 q3

q4q5q6

a a

a

aa

a

b b

b

b

q1

q2

q3

q4 q5

a6

a

b

a b

a

b

a, b

a

Figure 1 Left: a strongly connected partial 6-state binary automaton; right: the literal automaton
of the prefix code {abaaa, abaab, abab, abba}.

An example of a strongly connected partial automaton is shown in Fig. 1 (left). We
have two undefined transitions: δ(q3, b) = δ(q6, b) = ⊥. The unique shortest reset word is
bab: δ(Q, b) = {q1, q2, q5}, δ(Q, ba) = {q2, q3, q6}, and δ(Q, bab) = {q2}. However, in contrast
with the case of a complete automaton, the preimage δ−1({q2}, bab) = {q1, q4} is not Q.

3 Upper Bounds

3.1 Inseparability Equivalence
Let A = (Q, Σ, δ) be a partial automaton. We define the inseparability relation ≡ on Q.
Two states are separable if they can be separated by mapping exactly one of them to ⊥,
leaving the other one.

▶ Definition 1. The inseparability equivalence ≡ on Q is defined as follows:

p ≡ q if and only if ∀u∈Σ∗ (δ(p, u) ∈ Q ⇔ δ(q, u) ∈ Q) .

The same relation is considered in [5, Section 1.4] if all states of the partial automaton are
final. Also, if we replace ⊥ with a unique final state, then ≡ is the well-known Myhill-Nerode
congruence on words in a complete automaton. Under a different terminology, it also appears
in the context of ε-machines, where non-equivalent states are called topologically distinct [34].

M. V. Berlinkov, R. Ferens, A. Ryzhikov, and M. Szykuła 12:7

For a subset S ⊆ Q, let κ(S) be the number of equivalence classes that have a non-empty
intersection with S. In the automaton from Fig. 1(left) we have three equivalence classes,
where q1 ≡ q4, q2 ≡ q5, and q3 ≡ q6.

Our first auxiliary lemma states that a subset S ⊆ Q that intersects at least two
equivalence classes can be compressed and the number of intersected classes can be decreased
with a short word. This is done by mapping to ⊥ all the states of S from at least one
equivalence class, but not the whole set S. A linear upper bound can be inferred from a
standard analysis of the corresponding Myhill-Nerode congruence (e.g., [35]), but we will
need a more precise bound in terms of κ(S).

▶ Lemma 2. Let A = (Q, Σ, δ) be a partial automaton, and let S ⊆ Q be a subset such that
κ(S) ≥ 2. Then there is a word w ∈ Σ∗ of length at most κ(Q) − κ(S) + 1 ≤ n − |S| + 1 and
such that 1 ≤ κ(δ(S, w)) < κ(S).

By an iterative application of Lemma 2, we can easily compress any subset of states to a
subset of a single equivalence class.

▶ Corollary 3. Let A = (Q, Σ, δ) be a partial automaton, and let S ⊆ Q be a non-empty
subset. There is a word w of length at most (κ(S) − 1)(κ(Q) − κ(S)/2) such that δ(S, w) is
non-empty and is contained in one inseparability class.

3.2 Fixing Automaton
The other possibility of compressing a subset in a partial automaton is the classical pair
compression. This is the only way for compressing a subset with all states in one equivalence
class, which is always the case in a complete automaton.

Our next tool to deal with this way of compression is the fixing automaton. This is a
complete automaton obtained from a partial one, defined as follows.

▶ Definition 4 (Fixing automaton). For a partial automaton A (Q, Σ, δ), the fixing automaton
is the complete automaton A F = (Q, Σ, δF) such that the states are fixed instead of having
an undefined transition: for every q ∈ Q and a ∈ Σ, we have δF(q, a) = q if δ(q, a) = ⊥, and
δF(q, a) = δ(q, a) otherwise.

We list some useful properties of the fixing automaton.

▶ Lemma 5. Let A = (Q, Σ, δ) be a partial automaton, let S ⊆ Q, and let w ∈ Σ∗. We
have δ(S, w) ⊆ δF(S, w). Moreover, if for every state q ∈ S we have δ(q, w) ̸= ⊥, then
δ(S, w) = δF(S, w).

▶ Lemma 6. Let A = (Q, Σ, δ) be a partial automaton and let S ⊆ Q be a non-empty
subset. For every word w ∈ Σ∗, there exists a word w′ ∈ Σ∗ of length |w′| ≤ |w| such that
∅ ≠ δ(S, w′) ⊆ δF(S, w). In particular, if w has rank r in A F, then w′ has rank 1 ≤ r′ ≤ r

in A .

▶ Corollary 7. The minimal non-zero rank of a partial automaton A is at most the minimal
rank of A F.

In the general case of a partial automaton, it can happen that we cannot compress some
subset S even if there exists a word of non-zero rank smaller than |S|. This is the reason
why the shortest words of the minimal non-zero rank can be exponentially long and why
deciding if there is a word of a given rank is PSPACE-complete [3].

STACS 2021

12:8 Synchronizing Strongly Connected Partial DFAs

However, in the case of a strongly connected partial automaton, as well as for a complete
automaton, every non-mortal word can be extended to a word of the minimal non-zero rank.
This is a fundamental difference that allows constructing compressing words iteratively. Note
that the fixing automaton of a strongly connected partial one is also strongly connected.

▶ Lemma 8. Let A = (Q, Σ, δ) be a strongly connected partial automaton, and let r be the
minimal non-zero rank over all words. For every non-empty subset S ⊆ Q, there exists a
non-mortal word w such that |δ(S, w)| ≤ r.

3.3 Rank Conjecture

The rank conjecture (sometimes called Černý-Pin conjecture) is a well-known generalization
of the Černý conjecture to non-synchronizing automata (e.g., [25]). The rank conjecture is
a weaker version of the conjecture originally stated by Pin that was not restricted to the
minimal rank and turned out to be false [18]. Some further results on the rank conjecture
for strongly connected complete automata are provided in [20].

▶ Conjecture 9 (The rank conjecture). For an n-state complete automaton where r is the
minimal rank over all words, there exists a word of rank r and of length at most (n − r)2.

For partial automata, the rank conjecture is analogous with the exception that r is the
minimal non-zero rank.

▶ Theorem 10. Let A = (Q, Σ, δ) be a strongly connected partial automaton. If the rank
conjecture holds for the fixing automaton A F, then it also holds for A .

Proof. Let r be the minimal rank in A F over all words. From the conjecture and by Lemma 6,
there exists a word w′ of length at most (n − r)2 and such that ∅ ̸= δ(Q, w′) ⊆ δF(Q, w).

Let r′ ≤ r be the minimal rank of A . For every s = r, r − 1, . . . , r′ + 1, we inductively
construct a word of non-zero rank less than s, of length at most (n − (s − 1))2, and such
that w′ is its prefix. Let w′v be a word of rank at most s and of length at most (n − s)2,
and let S = δ(Q, w′v). Suppose that κ(S) = 1. Since s is not the minimal rank of A ,
by Lemma 8, S must be compressible. Since its states are inseparable, there must be
two distinct states p, q ∈ S and a word u such that δ(q, u) = δ(p, u) ̸= ⊥. But (from
Lemma 5) {p, q} ⊆ δ(Q, w′v) ⊆ δF(Q, w′v) ⊆ δF(Q, wv), thus δF(Q, wv) is compressible
in A F, which contradicts that w has the minimal rank in A F. Hence κ(S) ≥ 2, and by
Lemma 2, δ(Q, w′v) can be compressed with a word u of length at most n − s + 1. We have
|w′vu| ≤ (n − s)2 + n − s + 1 ≤ (n − (s − 1))2, which proves the induction step. ◀

The theorem implies that, in the strongly connected case, the rank conjecture is true for
complete automata if and only if it is true for partial automata. For instance, we immediately
get the result for the class of Eulerian automata. A partial automaton is Eulerian if it is
strongly connected and the numbers of outgoing and incoming transitions are the same at every
state, i.e., for every q ∈ Q, we have |{a ∈ Σ | δ(q, a) ∈ Q}| = |{(p, a) ∈ Q × Σ | δ(p, a) = q}|.
The following corollary follows from the facts that the rank conjecture holds for complete
Eulerian automata [20] and that the fixing automaton of a partial Eulerian automaton is
also Eulerian.

▶ Corollary 11. The rank conjecture is true for partial Eulerian automata.

M. V. Berlinkov, R. Ferens, A. Ryzhikov, and M. Szykuła 12:9

3.4 Collecting Automaton
The fixing automaton allows relating the behavior of words in a partial and a complete
automaton, but its main disadvantage is that it is not necessarily synchronizing. Therefore,
we will need one more tool, called collecting automaton. It is an extension of the fixing
automaton by an additional letter that allows a quick synchronization into one inseparability
class, while it does not affect the length of a shortest synchronizing word for any particular
inseparability class.

By A /≡ = (QA /≡ , Σ, δA /≡), we denote the quotient automaton by the inseparability
relation. A /≡ is also a partial automaton, and if A is strongly connected, then so is A /≡.
By [p] ∈ QA /≡ , we denote the class of a state p ∈ Q of the original automaton A .

A collecting tree of A is a tree T with the set of vertices QA /≡ and directed edges
labeled by letters from Σ in the following way: (a) Edges are labeled by letters from Σ and
correspond to transitions in A /≡: each edge ([p], [p′], a) is such that δA /≡([p], a) = [p′]. (b)
There is a root [r] such that the tree is directed toward it. See Fig. 2 in Appendix for an
example. Equivalently, it can be seen as a specific partial automaton being a subautomaton
of A /≡ whose underlying digraph is a tree directed toward one state. An automaton can
have many collecting trees, even for the same [r], and every strongly connected automaton
has a collecting tree for every class [r].

{q1, q4} {q2, q5} {q3, q6}
a a

q1 q2 q3

q4q5q6

a, γ a, γ

a

a, γa, γ

a

b b b, γ

b

bb, γ

Figure 2 Left: a collecting tree with root [q3] = {q3, q6}; right: the corresponding collecting
automaton of the example from Fig. 1(left).

▶ Definition 12 (Collecting automaton). Let A = (Q, Σ, δ) be a strongly connected partial
automaton and let T be one of its collecting trees with a root [r]. The collecting automaton
A C(T) = (Q, Σ ∪ {γ}, δC(T)) is defined as follows:

The transition function δC(T) on Σ is defined as in the fixing automaton A F.
γ /∈ Σ is a fresh letter. Its action is defined according to the edges in T : Let q1 ∈ Q\ [r] be
a state. Since T is a tree directed toward [r], there is exactly one edge outgoing from [q1],
say ([q1], [q2], a) ∈ T for some [q2] ∈ QA /≡ and a ∈ Σ. We set δC(T)(q1, γ) = δ(q1, a).
Finally, the transition of γ on each state in [r] is the identity.

A collecting automaton is always strongly connected, as it contains all transitions of the
fixing automaton. We prove several properties connecting partial automata and their collect-
ing complete automata. They are preliminary steps toward relating the Černý conjecture for
strongly connected partial and complete automata.

▶ Lemma 13. Let A = (Q, Σ, δ) be a strongly connected partial automaton, and let T be
one of its collecting trees with a root [r]. If there is a word over Σ ∪ {γ} synchronizing [r] in
A C(T) = (Q, Σ ∪ {γ}, δC(T)), then there is such a word over Σ that is not longer.

STACS 2021

12:10 Synchronizing Strongly Connected Partial DFAs

▶ Lemma 14. Let A = (Q, Σ, δ) be a strongly connected partial automaton and let T be
one of its collecting trees. Then A is synchronizing if and only if the collecting automaton
A C(T) = (Q, Σ ∪ {γ}, δC(T)) is synchronizing.

This also means that the choice of T does not matter: A = (Q, Σ, δ) is synchronizing if and
only if all A C(T) are synchronizing.

3.5 Algorithmic Issues
Checking if a strongly connected partial automaton is synchronizing and finding a minimum-
rank word can be done similarly as for a complete automaton, by a suitable generalization
of the well-known Eppstein algorithm [13, Algorithm 1]. The same algorithm for checking
synchronizability, under different terminology, was described in the context of ε-machines [34].

▶ Proposition 15. Checking if a given strongly connected partial automaton with n states
over an alphabet Σ is synchronizing can be done in O(|Σ|n2) time and O(n2 + |Σ|n) space.
Finding a word of the minimum rank can be done in O(|Σ|n3) time and O(n2 + |Σ|n) space.

Furthermore, the problem of checking the synchronizability of a strongly connected partial
automaton can be reduced in smaller time to the case of a complete automaton.

▶ Theorem 16. Given a strongly connected partial automaton, in O(|Σ|n log n) time, we
can construct a complete automaton that is synchronizing if and only if the given partial
automaton is synchronizing.

Proof. We can compute all inseparability classes in O(|Σ|n log n) time. This is done by the
Hopcroft minimization algorithm [15], if we interpret the partial DFA as a language-accepting
DFA with an arbitrary initial state and the sink state ⊥ that is its only final state.

Having computed the classes, we can construct a collecting automaton for an arbitrary
collecting tree. Note that it can be done in O(|Σ|n) time by a breadth-first search from a
class [r]. The desired property follows from Lemma 14. ◀

3.6 Černý Conjecture
The famous Černý conjecture is the rank conjecture for r = 1. Let C(n) be the maximum
length of the shortest reset words of all n-state synchronizing complete automata. It is well
known that C(n) ≥ (n − 1)2 [8]. The Černý conjecture states that C(n) = (n − 1)2, but the
best proved upper bound is cubic [32, 33].

Let CP(n) be the maximal length of the shortest reset words of all n-state synchronizing
strongly connected partial automata. We show that if the Černý conjecture is true (or
another upper bound holds), then a slightly weaker upper bound holds for synchronizing
strongly connected partial automata.

To prove the following theorem, we combine several techniques, in particular, the insepar-
ability equivalence, the collecting automaton, and an algebraic upper bound on the reset
threshold of a complete automaton with a word of small rank [4].

▶ Theorem 17.

CP(n) ≤ C(n) + O(n4/3).

M. V. Berlinkov, R. Ferens, A. Ryzhikov, and M. Szykuła 12:11

Proof. Let A = (Q, Σ, δ) be a synchronizing partial automaton with n states. Let T be a
collecting tree of A with a root class [r] containing the smallest number of states. We consider
the collecting automaton A C(T) = (Q, Σ∪{γ}, δC(T)). By Lemma 14, A C(T) is synchronizing.
We have two cases, depending on the number κ(Q) of inseparability classes of A .

First, suppose that κ(Q) ≤ n2/3. Then, by Corollary 3 (for S = Q), there is a word v of
length at most (κ(Q) − 1)κ(Q)/2 < n4/3 such that δ(Q, v) is non-empty and is contained in
one equivalence class, say [p]. Since A is strongly connected, there is a word up→r of length
at most n − 1 whose action maps [p] into [r]. Let w′ be a reset word for A C(T) of length at
most C(n). In particular, w′ synchronizes [r], so by Lemma 13, we get a word w of length
at most C(n) that synchronizes [r] in A . Then, vup→rw is a reset word for A of length at
most n4/3 + n − 1 + C(n).

In the second case, we have κ(Q) > n2/3. Then the size of [r], which has been chosen
to have the smallest size, has at most n1/3 states. Note that γn−1 is a word of rank at
most n1/3. Then we can apply Corollary 20 (cf. [4, Theorem 2]) for A C(T) with this word,
obtaining that the reset threshold of A C(T) is upper bounded by (n − 1) + 2(n − 1)C(n1/3).
Using the well-known general cubic upper bound n3/6 on the reset threshold of a complete
automaton (e.g., [25]), we get that there is a reset word w′ for A C(T) of length at most
(n − 1) + 2(n − 1)n/6. Now, we return to A . By Corollary 3 (for S = Q), we get a word v of
length at most (n − 1)n/2 such that δ(Q, u) is non-empty and is contained in one equivalence
class [p]. As in the first case, there is a word up→r of length at most n − 1 whose action
maps [p] into [r]. By Lemma 13, from w′ we obtain a word w that synchronizes [r] and is no
longer than (n − 1) + 2(n − 1)n/6. Finally, vup→rw is a reset word for A of length at most
(n − 1)n/2 + (n − 1) + (n − 1) + 2(n − 1)n/6 ≤ (n − 1)2 for n ≥ 18.

From both cases, we conclude that rt(A) ≤ C(n) + O(n4/3). ◀

From Theorem 17, it follows that all upper bounds on the reset threshold of a complete
automaton transfer to upper bounds for partial automata, up to a subquadratic component.
Thus CP(n) ≤ 0.1654n3+O(n2) [32]. It can be also seen from the proof that if we have a better
general upper bound on C(n), we get a smaller additional term, e.g., if C(n) ∈ O(n2), then
CP(n) = C(n) + O(n), so the additional term is at most linear. The additional component
is likely not needed, but it is difficult to completely get rid of it in general, as for that
we could not lengthen by any means the reset word assumed for a complete automaton.
However, it is easy to omit it when reproving particular bounds for complete automata, both
combinatorial [25] and based on avoiding words [32, 33]. We conjecture that CP(n) = C(n)
for all n.

3.7 Induced Automaton
We develop an algebraic technique applied to partial automata. It will allow us deriving
upper bounds on reset thresholds, in particular, in the cases when there exists a short word
of a small rank, which is the case of the literal automaton of a prefix code. We base on the
results from [4] for complete automata and generalize them to be applied to partial automata.
The existing linear algebraic proofs for complete automata do not work for partial ones,
because the matrices of transitions may not have a constant sum of the entries in each row.

We need to introduce a few definitions from linear algebra for automata (see, e.g., [4, 19,
24, 33]). Let A = (Q, Σ, δ) be a partial DFA. Without loss of generality we assume that
Q = {1, . . . , n}. By Rn, we denote the real n-dimensional linear space of row vectors. For
a vector v ∈ Rn and an i ∈ Q, we denote the vector’s value at the i-th position by v(i).
Similarly, for a matrix M , we denote its value in an i-th row and a j-th column by M(i, j).

STACS 2021

12:12 Synchronizing Strongly Connected Partial DFAs

A vector g is non-negative if g(i) ≥ 0 for all i, and it is non-zero if g(i) ̸= 0 for some i.
For a word w ∈ Σ∗, by M(w) we denote the n × n matrix of the transformation of w in δ:
M(w)(p, q) = 1 if δ(p, w) = q, and M(w)(p, q) = 0 otherwise. Note that if δ(p, w) = ⊥, then
we have M(w)(p, q) = 0 for all q ∈ Q. The usual scalar product of two vectors u, v is denoted
by u ⊙ v. The linear subspace spanned by a set of vectors V is denoted by span(V).

Given a transition function δ (which defines matrices M(w)), call a set of words W ⊆ Σ∗

complete for a subspace V ⊆ Rn with respect to a vector g ∈ V , if V ⊆ span({gM(w) | w ∈
W}). A set of words W ⊆ Σ∗ is complete for a subspace V ⊆ Rn if for every non-negative non-
zero vector g ∈ V , W is complete for V with respect to g. Let χ(p) denote the characteristic
(unitary) vector of {p}. For a subset S ⊆ Q, we define V(S) = span({χ(p) | p ∈ S}) ⊆ Rn.

For example, consider the automaton from Fig. 1(left). Let V = V({q1, q2, q5}) and let
W = {ab, aab}a≤5. Let g ∈ V be a non-negative non-zero vector, and let i be such that
g(i) ̸= 0. If i = 1 then let u = ab, and otherwise let u = aab; then gM(u) has exactly one
non-zero entry. Then, for each j ∈ {1, 2, 5}, the vector gM(uaj′) for some j′ has the unique
non-zero entry at qj . These vectors generate V , thus W is complete for V with respect to g.

The induced automaton of a partial one is another partial automaton acting on a subset
of states R ⊆ Q. It is built from two sets of words. Let W1 be a set of words such that
R =

⋃
w∈W1

δ(Q, w). For each state in R, there is some state mapped to it by a word from W1.
The second set W2 is any non-empty set of words that enriches its transitions. The induced
automaton is A restricted to R with alphabet W2W1. Note that its transition function is
well defined, which is ensured by the fact that every word of the form w2w1 ∈ W2W1 has the
action mapping every state q ∈ Q into R or to ⊥.

▶ Definition 18 (Induced automaton). Let W1, W2 ⊆ Σ∗ be non-empty and R = {δ(q, w) |
q ∈ Q, w ∈ W1, δ(q, w) ̸= ⊥}. If R is non-empty, we define the induced automaton
A I(W1,W2) = (R, W2W1, δA I(W1,W2)), where the transition function is defined in compliance
with the actions of words in A , i.e., δA I(W1,W2)(q, w) = δ(q, w) for all q ∈ R and w ∈ W2W1.

We can analyze an induced automaton as a separate one, and synchronize the whole
automaton using it, which is particularly profitable when R is small. Following our previous
example, for Fig. 1(left) with W1 = {b} and W2 = {ab, aab}a≤5 we obtain the induced
automaton on R = {q1, q2, q5}. Furthermore, it is synchronizing already by a letter from
W2W1 (e.g., abb), and each its reset word corresponds to a reset word of the original A .

The following lemma states that the completeness of a set of words together with the
synchronizability and strong connectivity of the whole automaton transfer to the induced
automaton. It generalizes [4, Theorem 2] to partial automata, and the proof uses a recursion
instead of an augmenting argument.

▶ Lemma 19. Let A = (Q, Σ, δ) be a strongly connected synchronizing partial auto-
maton and let W1 and W2 be two non-empty sets of words over Σ. Let A I(W1,W2) =
(R, W2W1, δA I(W1,W2)) be the induced automaton. If W2 is complete for V(Q) = Rn, then
W2W1 is complete for V(R), and A I(W1,W2) is synchronizing and strongly connected.

▶ Corollary 20. Let A = (Q, Σ, δ) be a strongly connected synchronizing partial automaton
with n states, and let w ∈ Σ∗ be a word such that R = δ(Q, w) ̸= ∅. Let W1 = {w},
W2 = Σ≤n−1, and A I(W1,W2) = (R, Σ≤n−1{w}, δA I(W1,W2)) be the induced automaton. Then
rt(A) ≤ |w| + (|w| + n − 1) · rt(A I(W1,W2)).

The corollary directly follows from Lemma 19, since Σ≤n−1 is always complete for V(Q)
in the case of a strongly connected synchronizing partial automaton. It is useful for deriving
upper bounds for automata with a word of small rank. Having such a word w, we can further
synchronize R through the induced automaton instead of trying to do this directly. Although

M. V. Berlinkov, R. Ferens, A. Ryzhikov, and M. Szykuła 12:13

every letter of A I(W1,W2) corresponds to a word of length |w| + n − 1 in the original A , if
R is small enough, this yields a better upper bound. We show its application in the next
subsection.

3.8 The Literal Automaton of a Finite Prefix Code
We use the obtained results about induced automata to get better bounds for partial literal
automata of finite prefix codes. To do so, we first need to prove that such automata admit
short enough words of small rank. It is known that every complete literal automaton
over an alphabet Σ has a word of rank and length at most ⌈log|Σ| n⌉ ([4, Lemma 16], cf.
[6, Lemma 14]). However, this is no longer true for non-mortal words in partial literal
automata [29] and no similar statement was known for any wider class than complete literal
automata. We prove that there exist O(log n)-rank non-mortal words of length O(n) in such
automata, excluding the case of a code with only one word. Then we use this result to
provide an O(n log3 n) upper bound on the reset threshold of n-state synchronizing partial
literal automata, matching the known upper bound for complete literal automata [4].

We start with a special case of one-word codes. A non-empty word w is called primitive
if it is not a power of another word, i.e., w ̸= uk for every word u and k ≥ 2. The upper
bound on rt(AX) follows from a result of Weinbaum ([14, 39]).

▶ Proposition 21. Let X = {x} be a one-word prefix code, and suppose that x = yk, where
y is a non-empty primitive word and k ≥ 1. Then AX has rank k. If AX is synchronizing,
then rt(AX) ≤ |x|

2 , and this bound is tight.

In the remaining cases, there always exists a word of linear length and logarithmic rank.

▶ Theorem 22. Let X be a prefix code with at least two words. Let AX = (Q, Σ, δ) be its
partial literal automaton with n states and height h. Then there exists a word of length at
most 2h and of rank at most ⌈log2 hn⌉ + ⌈log2 h⌉ for AX . Moreover, such a word can be
found in polynomial time in n = |Q|.

Proof idea. The general idea is as follows. We construct a word from the theorem in two
phases. First, we define an auxiliary filtering algorithm computing some function α : Σ∗ → Σ∗.
We consider the results of the algorithm for a lot of short (logarithmic) input words w and
show that at least one of them satisfies that α(w) is non-mortal, has length at most h, and
every state from Q is either sent to ⊥ or goes through the root by its action. Then, we use
specific properties of the image δ(Q, α(w)) to divide it into two disjoint sets: one that has
up to h states, but on a single specific path, and the other one with a small (logarithmic)
number of states. In the second phase, we construct a word v of length also bounded by h,
such that its action map all the states from the mentioned specific path to a subset of at
most logarithmic size. The concatenation of both words α(w)v is a word of length at most
2h satisfying the theorem. ◀

▶ Corollary 23. Let AX be a partial literal automaton with n states. If it is synchronizing, its
reset threshold is at most O(n log3 n). If the Cerny conjecture holds, then it is O(n log2 n).

Proof. If |X| = 1 then the bound follows from Proposition 21. If |X| ≥ 2, from Theorem 22,
we get a word w of length O(n) and rank O(log n). Then we use Corollary 20 with w, which
yields the upper bound O(n) + O(n) · rt(B), where B is an induced automaton with O(log n)
states. Then we use upper bounds on the reset threshold of a complete DFA ([32, 33])
transferred to strongly connected partial DFAs by Theorem 17. ◀

STACS 2021

12:14 Synchronizing Strongly Connected Partial DFAs

4 Lower Bounds for Properly Incomplete Automata

We conclude with observations for transferring lower bounds from the complete case to the
partial case. Of course, in general, this is trivial, since a complete automaton is a special
case of a partial one. On the other hand, letters with all transitions undefined cannot be
used for synchronization. Hence we need to add a restriction to exclude these cases and see
the effect of usable incomplete transitions. A partial automaton is properly incomplete if
there is at least one letter whose transition is defined for some state and is undefined for
some other state.

For an automaton A , let the length of the shortest words of rank r be called the rank
threshold rt(A , r). We show that bounding the rank/reset threshold of a strongly connected
properly incomplete automaton is related to bounding the corresponding threshold of a
complete automaton. A general construction for this is the following.

▶ Definition 24 (Duplicating automaton). For a complete automaton A = (Q, Σ, δA), we
construct the duplicating automaton A D = (Q ∪ Q′, Σ ∪ {γ}, δA D) as follows. Assume that
Q = {q1, . . . , qn}. Then Q′ = {q′

1, . . . , q′
n} is a set of fresh states disjoint with Q and γ /∈ Σ

is a fresh letter. For all 1 ≤ i ≤ n and a ∈ Σ, we define: δA D(qi, a) = qi, δA D(qi, γ) = q′
i,

δA D(q′
i, a) = δA (qi, a), and δA D(q′

i, γ) = ⊥.

The duplicating automaton turns out to be a partial DFA counterpart to the recent
Volkov’s construction of a complete DFA [37]. The duplicating automaton A D has twice the
number of states of A and is properly incomplete. Also, it is strongly connected if A is.

▶ Proposition 25. Let A = (Q, Σ, δA) be a strongly connected complete automaton. For all
1 ≤ r < n, we have rt(A D, r) = 2 rt(A , r).

From Proposition 25, it follows that we cannot expect a better upper bound on the reset
threshold of a properly incomplete strongly connected automaton than 0.04135n3 + O(n2),
unless we can improve the best general upper bound on the reset threshold of a complete
automaton, which currently is roughly 0.1654n3 + O(n2) [32, 33]. We can also show a lower
bound on the largest possible reset threshold, using the Rystsov’s construction of automata
with long shortest mortal words [27].

▶ Proposition 26. For every n, there exists a strongly connected properly incomplete n-state
automaton with the reset threshold n2−n

2 .

References
1 P. Babari, K. Quaas, and M. Shirmohammadi. Synchronizing data words for register automata.

In MFCS, pages 15:1–15:15, 2016.
2 M.-P. Béal, E. Czeizler, J. Kari, and D. Perrin. Unambiguous automata. Mathematics in

Computer Science, 1(4):625–638, 2008.
3 M. Berlinkov. On Two Algorithmic Problems about Synchronizing Automata. In Developments

in Language Theory, LNCS, pages 61–67. Springer, 2014.
4 M. Berlinkov and M. Szykuła. Algebraic synchronization criterion and computing reset words.

Information Sciences, 369:718–730, 2016.
5 J. Berstel, D. Perrin, and C. Reutenauer. Codes and Automata. Encyclopedia of Mathematics

and its Applications. Cambridge University Press, 2009.
6 M. T. Biskup and W. Plandowski. Shortest synchronizing strings for Huffman codes. Theoretical

Computer Science, 410(38-40):3925–3941, 2009.
7 V. Bruyère. On maximal codes with bounded synchronization delay. Theoretical Computer

Science, 204(1):11–28, 1998.

M. V. Berlinkov, R. Ferens, A. Ryzhikov, and M. Szykuła 12:15

8 J. Černý. Poznámka k homogénnym eksperimentom s konečnými automatami. Matematicko-
fyzikálny Časopis Slovenskej Akadémie Vied, 14(3):208–216, 1964. In Slovak.

9 D. Chistikov, P. Martyugin, and M. Shirmohammadi. Synchronizing automata over nested
words. Journal of Automata, Languages and Combinatorics, 24(2-4):219–251, 2019.

10 L. Doyen, L. Juhl, K. G. Larsen, N. Markey, and M. Shirmohammadi. Synchronizing words
for weighted and timed automata. In FSTTCS, pages 121–132, 2014.

11 L. Doyen, T. Massart, and M. Shirmohammadi. Robust Synchronization in Markov Decision
Processes. In CONCUR, pages 234–248, 2014.

12 L. Doyen, T. Massart, and M. Shirmohammadi. The complexity of synchronizing Markov
decision processes. J. Comput. Syst. Sci., 100:96–129, 2019.

13 D. Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing, 19:500–
510, 1990.

14 T. Harju and D. Nowotka. On unique factorizations of primitive words. Theor. Comput. Sci.,
356(1-2):186–189, 2006.

15 J. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In Zvi Kohavi
and Azaria Paz, editors, Theory of Machines and Computations, pages 189–196. Academic
Press, 1971.

16 D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of
the IRE, 40(9):1098–1101, 1952.

17 B. Imreh and M. Steinby. Directable nondeterministic automata. Acta Cybern., 14(1):105–115,
1999.

18 J. Kari. A counter example to a conjecture concerning synchronizing word in finite. EATCS
Bulletin, 73:146–147, 2001.

19 J. Kari. Synchronizing finite automata on Eulerian digraphs. Theoretical Computer Science,
295(1-3):223–232, 2003.

20 J. Kari, A. Ryzhikov, and A. Varonka. Words of minimum rank in deterministic finite automata.
In Developments in Language Theory - 23rd International Conference, DLT 2019, Warsaw,
Poland, August 5-9, 2019, Proceedings, pages 74–87, 2019.

21 S. Kiefer and C. Mascle. On Finite Monoids over Nonnegative Integer Matrices and Short
Killing Words. In STACS, LIPIcs, 2019.

22 K. G. Larsen, S. Laursen, and J. Srba. Synchronizing strategies under partial observability. In
International Conference on Concurrency Theory, pages 188–202. Springer, 2014.

23 B. K. Natarajan. An algorithmic approach to the automated design of parts orienters. In
Foundations of Computer Science, 27th Annual Symposium on, pages 132–142, 1986.

24 J.-E. Pin. Utilisation de l’algèbre linéaire en théorie des automates. In Actes du 1er Colloque
AFCET-SMF de Mathématiques Appliquées II, AFCET, pages 85–92, 1978. In French.

25 J.-E. Pin. On two combinatorial problems arising from automata theory. In Proceedings of the
International Colloquium on Graph Theory and Combinatorics, volume 75 of North-Holland
Mathematics Studies, pages 535–548, 1983.

26 I. K. Rystsov. Polynomial complete problems in automata theory. Information Processing
Letters, 16(3):147–151, 1983.

27 I. K. Rystsov. Reset words for commutative and solvable automata. Theoretical Computer
Science, 172(1-2):273–279, 1997.

28 A. Ryzhikov. Mortality and synchronization of unambiguous finite automata. In Combinatorics
on Words - 12th International Conference, WORDS 2019, Loughborough, UK, September 9-13,
2019, Proceedings, pages 299–311, 2019.

29 A. Ryzhikov and M. Szykuła. Finding Short Synchronizing Words for Prefix Codes. In Igor
Potapov, Paul Spirakis, and James Worrell, editors, MFCS 2018, volume 117 of LIPIcs, pages
21:1–21:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

30 S. Sandberg. Homing and synchronizing sequences. In Model-Based Testing of Reactive
Systems, volume 3472 of LNCS, pages 5–33. Springer, 2005.

STACS 2021

12:16 Synchronizing Strongly Connected Partial DFAs

31 H. Shabana. Exact synchronization in partial deterministic automata. Journal of Physics:
Conference Series, 1352:012047, 2019.

32 Y. Shitov. An Improvement to a Recent Upper Bound for Synchronizing Words of Finite
Automata. Journal of Automata, Languages and Combinatorics, 24(2–4):367–373, 2019.

33 M. Szykuła. Improving the Upper Bound on the Length of the Shortest Reset Word. In
STACS 2018, LIPIcs, pages 56:1–56:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2018.

34 N. F. Travers and J. P. Crutchfield. Exact Synchronization for Finite-State Sources. Journal
of Statistical Physics, 145(5):1181–1201, 2011.

35 L. Trevisan. Notes on state minimization. https://people.eecs.berkeley.edu/~luca/
cs172-07/notemindfa.pdf, 2007.

36 M. V. Volkov. Synchronizing automata and the C̆erný conjecture. In Language and Automata
Theory and Applications, volume 5196 of LNCS, pages 11–27. Springer, 2008.

37 M. V. Volkov. Slowly synchronizing automata with idempotent letters of low rank. Journal of
Automata, Languages and Combinatorics, 24(2–4):375–386, 2019.

38 V. Vorel. Subset synchronization and careful synchronization of binary finite automata. Int.
J. Found. Comput. Sci., 27(5):557–578, 2016.

39 C. M. Weinbaum. Unique subwords in nonperiodic words. Proceedings of the American
Mathematical Society, 109(3):615–619, 1990.

https://people.eecs.berkeley.edu/~luca/cs172-07/notemindfa.pdf
https://people.eecs.berkeley.edu/~luca/cs172-07/notemindfa.pdf

On Euclidean Steiner (1 + ε)-Spanners
Sujoy Bhore !

Université Libre de Bruxelles, Brussels, Belgium

Csaba D. Tóth !

California State University Northridge, Los Angeles, CA, USA
Tufts University, Medford, MA, USA

Abstract
Lightness and sparsity are two natural parameters for Euclidean (1 + ε)-spanners. Classical results
show that, when the dimension d ∈ N and ε > 0 are constant, every set S of n points in d-space
admits an (1 + ε)-spanners with O(n) edges and weight proportional to that of the Euclidean MST of
S. Tight bounds on the dependence on ε > 0 for constant d ∈ N have been established only recently.
Le and Solomon (FOCS 2019) showed that Steiner points can substantially improve the lightness and
sparsity of a (1 + ε)-spanner. They gave upper bounds of Õ(ε−(d+1)/2) for the minimum lightness
in dimensions d ≥ 3, and Õ(ε−(d−1))/2) for the minimum sparsity in d-space for all d ≥ 1. They
obtained lower bounds only in the plane (d = 2). Le and Solomon (ESA 2020) also constructed
Steiner (1 + ε)-spanners of lightness O(ε−1 log ∆) in the plane, where ∆ ∈ Ω(log n) is the spread of
S, defined as the ratio between the maximum and minimum distance between a pair of points.

In this work, we improve several bounds on the lightness and sparsity of Euclidean Steiner
(1 + ε)-spanners. Using a new geometric analysis, we establish lower bounds of Ω(ε−d/2) for the
lightness and Ω(ε−(d−1)/2) for the sparsity of such spanners in Euclidean d-space for all d ≥ 2. We
use the geometric insight from our lower bound analysis to construct Steiner (1 + ε)-spanners of
lightness O(ε−1 log n) for n points in Euclidean plane.

2012 ACM Subject Classification Mathematics of computing → Approximation algorithms; Mathe-
matics of computing → Paths and connectivity problems; Theory of computation → Computational
geometry

Keywords and phrases Geometric spanner, (1 + ε)-spanner, lightness, sparsity, minimum weight

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.13

Related Version Previous Version: https://arxiv.org/abs/2010.02908

Funding Sujoy Bhore: Research on this paper was supported by the Fonds de la Recherche
Scientifique-FNRS under Grant no MISU F 6001.
Csaba D. Tóth: Research on this paper was partially supported by the NSF award DMS-1800734.

1 Introduction

For an edge-weighted graph G, a subgraph H of G is a t-spanner if δH(u, v) ≤ t · δG(u, v),
where δG(u, v) denotes the shortest path distance between vertices u and v. A subgraph H

of G is a t-spanner, for some t ≥ 1, if for every pq ∈
(

V (G)
2
)
, we have dG(p, q) ≤ t · w(pq).

The parameter t is called the stretch factor of the spanner. Spanners are fundamental graph
structures with many applications in the area of distributed systems and communication,
distributed queuing protocol, compact routing schemes, etc.; see [16, 24, 34, 35]. Two
important parameters of a spanner H are lightness and sparsity. The lightness of H is the
ratio w(H)/w(MST) between the total weight of H and the weight of a minimum spanning
tree (MST). The sparsity of H is the ratio |E(H)|/|E(MST)| ≈ |E(H)|/|V (G)| between the
number of edges of H and an MST. As H is connected, the trivial lower bound for both the
lightness and the sparsity of a spanner is 1. When the vertices of G are points in a metric

© Sujoy Bhore and Csaba D. Tóth;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sujoy.bhore@gmail.com
https://orcid.org/0000-0003-0104-1659
mailto:csaba.toth@csun.edu
https://orcid.org/0000-0002-8769-3190
https://doi.org/10.4230/LIPIcs.STACS.2021.13
https://arxiv.org/abs/2010.02908
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 On Euclidean Steiner (1 + ε)-Spanners

space, the edge weights obey the triangle inequality. The most important examples include
Euclidean d-space and, in general, metric spaces with constant doubling dimensions (the
doubling dimension of Rd is d).

In a geometric spanner, the underlying graph G = (S,
(

S
2
)
) is the complete graph on a

finite point set S in Rd, and the edge weights are the Euclidean distances between vertices.
Euclidean spanners are one of the fundamental geometric structures that find application
across domains, such as, topology control in wireless networks [38], efficient regression in
metric spaces [21], approximate distance oracles [23], and others. Rao and Smith [36] showed
the relevance of Euclidean spanners in the context of other geometric NP-hard problems, e.g.,
Euclidean traveling salesman problem and Euclidean minimum Steiner tree problem, and
introduced the so called banyans1, which is a generalization of graph spanners. Apart from
lightness and sparsity, various other optimization criteria have been considered, e.g., bounded-
degree spanners [6] and α-diamond spanners [13]. Several distinct construction approaches
have been developed for Euclidean spanners, that each found further applications in geometric
optimization, such as well-separated pair decomposition (WSPD) based spanners [7, 22],
skip-list spanners [2], path-greedy and gap-greedy spanners [1, 3], and more. For an excellent
survey of results and techniques on Euclidean spanners up to 2007, we refer to the book by
Narasimhan and Smid [33].

Sparsity. A large body of research on spanners has been devoted to sparse spanners where
the objective is to obtain a spanner with small number edges, preferably O(|S|), with 1 + ε

stretch factor, for any given ε > 0. Chew [9] was the first to show that there exists a Euclidean
spanner with a linear number of edges and stretch factor

√
10. The stretch factor was later

improved to 2 [10]. Clarkson [11] designed the first Euclidean (1 + ε)-spanner, for arbitrary
small ε > 0; an alternative algorithm was presented by Keil [25]. Later, Keil and Gutwin [26]
showed that the Delaunay triangulation of the point set S is a 2.42-spanner. Moreover, these
papers introduced the fixed-angle Θ-graph2 as a potential new tool for designing spanners in
R2, which was later generalized to higher dimension by Ruppert and Seidel [37]. One can
construct an (1 + ε)-spanner with O(nε−d+1) edges by taking the angle Θ to be proportional
to ε in any constant dimension d ≥ 1. A fundamental question in this area is whether the
trade-off between the stretch factor 1 + ε and the sparsity O(nε−d+1) is tight.

Lightness. For a set of points S in a metric space, the lightness is the ratio of the spanner
weight (i.e., the sum of all edge weights) to the weight of the minimum spanning tree
MST(S). Das et al. [12] showed that greedy-spanner ([1]) has constant lightness in R3. This
was generalized later to Rd, for all d ∈ N, by Das et al. [14]. However the dependencies
on ε and d has not been addressed. Rao and Smith showed that the greedy spanner has
lightness ε−O(d) in Rd for every constant d, and asked what is the best possible constant in
the exponent. A complete proof for (1 + ε)-spanner with lightness O(ε−2d) is in the book on
geometric spanners [33]. Recently, Borradaile et al. [5] showed that the greedy (1+ε)-spanner
of a finite metric space of doubling dimension d has lightness ε−O(d).

1 A (1 + ε)-banyan for a set of points A is a set of points A′ and line segments S with endpoints in A ∪ A′

such that a 1 + ε optimal Steiner Minimum Tree for any subset of A is contained in S
2 The Θ-graph is a type of geometric spanner similar to Yao graph [42], where the space around each

point p ∈ P is partitioned into cones of angle Θ, and S will be connected to a point q ∈ P whose
orthogonal projection to some fixed ray contained in the cone is closest to S.

S. Bhore and C. D. Tóth 13:3

Dependence on ε > 0 for constant dimension d. The dependence of the lightness and
sparsity on ε > 0 for constant d ∈ N has been studied only recently. Le and Solomon [27]
constructed, for every ε > 0 and constant d ∈ N, a set S of n points in Rd for which any
(1+ε)-spanner must have lightness Ω(ε−d) and sparsity Ω(ε−d+1), whenever ε = Ω(n−1/(d−1)).
Moreover, they showed that the greedy (1 + ε)-spanner in Rd has lightness O(ε−d log ε−1).

Steiner points are additional vertices in a network (via points) that are not part of the
input, and a t-spanner must achieve stretch factor t only between pairs of the input points
in S. A classical problem on Steiner points arises in the context of minimum spanning trees.
The Steiner ratio is the supremum ratio between the weight of a minimum Steiner tree and
a minimum spanning tree of a finite point set, and it is at least 1

2 in any metric space due to
triangle inequality.

Le and Solomon [27] noticed that Steiner points can substantially improve the bound
on the lightness and sparsity of an (1 + ε)-spanner. Previously, Elkin and Solomon [19]
and Solomon [39] showed that Steiner points can improve the weight of the network in the
single-source setting. In particular, the so-called shallow-light trees (SLT) is a single-source
spanning tree that concurrently approximates a shortest-path tree (between the source and
all other points) and a minimum spanning tree (for the total weight). They proved that
Steiner points help to obtain exponential improvement on the lightness SLTs in a general
metric space [19], and quadratic improvement on the lightness in Euclidean spaces [39].

Le and Solomon, used Steiner points to improve the bounds for lightness and sparsity
of Euclidean spanners. For minimum sparsity, they gave an upper bound of O(ε(1−d)/2) for
d-space and a lower bound of Ω(ε−1/2/ log ε−1) in the plane (d = 2) [27]. For minimum
lightness, Le and Solomon [28] gave an upper bound of O(ε−1 log ∆) in the plane and
O(ε−(d+1)/2 log ∆) in dimension d ≥ 3, where ∆ is the spread of the point set, defined as
the ratio between the maximum and minimum distance between a pair of points. Note that
in any space with doubling dimension d (including Rd), we have ∆ ≥ Ω(logd n), but the
spread ∆ is in fact unbounded. Very recently, Le and Solomon [30] constructed Steiner
(1 + ε)-spanners with lightness Õ(ε−(d+1)/2) in dimensions d ≥ 3.

Our Contributions. In this work, we improve the bounds on the lightness and sparsity of
Euclidean Steiner (1 + ϵ)-spanners. First, in Section 3, we prove the following lower bounds.

▶ Theorem 1. Let a positive integers d and real ε > 0 be given such that ε ≤ 1/d. Then
there exists a set S of n points in Rd such that any Euclidean Steiner (1 + ε)-spanner for S

has lightness Ω(ε−d/2) and sparsity Ω(ε(1−d)/2).

For lightness in dimension d = 2, this improves the earlier bound of Ω(ε−1 log−1(ε−1))
by Le and Solomon [27] by a logarithmic factor; and it is the first lower bound in dimensions
d ≥ 3. The point set S in Theorem 1 is fairly simple, it consists of two square grids in two
parallel hyperplanes in Rd. However, our lower-bound analysis is significantly simpler than
that of [27]. In particular, our analysis does not depend on planarity, and it generalizes
to higher dimensions. The key new insight pertains to a geometric property of Steiner
(1+ε)-spanners: If the length of an ab-path S between points a, b ∈ Rd is at most (1+ε)∥ab∥,
then “most” of the edges of S are almost parallel to ab. We expand on this idea in Section 2.

Then, in Section 4 we prove the following theorem on light spanners.

▶ Theorem 2. For every set S of n points in Euclidean plane, there exists a Steiner
(1 + ε)-spanner of lightness O(ε−1 log n).

This result improves on an earlier bound of O(ε−1 log ∆) by Le and Solomon [28], where
∆ is the spread of the point set, defined as the ratio between the maximum and minimum
distance between a pair of points. Note that ∆ ≥ Ω(log n) in every metric space of constant

STACS 2021

13:4 On Euclidean Steiner (1 + ε)-Spanners

doubling dimension. Recently, Le and Solomon [29] noted in the revised version of their
paper that the log ∆ factor can be reduced to a log n factor by a general discretization
technique (see, e.g., Chan et al. [8]). Very recently, Bhore and Tóth [4] achieved the optimal
dependence on ε and showed that, for every finite points set S ⊂ R2 and ε > 0, there exists
a Euclidean Steiner (1 + ε)-spanner of weight O(1

ε ∥MST(S)∥). The spanner construction
in [4] is a far-reaching generalization of the methods we develop in the proof of Theorem 2.
In particular, both papers use directional spanners, introduced in Section 4 of this paper, as
a key ingredient and construct a Euclidean Steiner (1 + ε)-spanner as a union of O(ε−1/2)
directional spanners.

2 Preliminaries

Let d ≥ 2 be an integer, and S a set of n points in Rd. For a, b ∈ Rd, the Euclidean distance
between a and b is denoted by ∥ab∥. For a set E of line segments in Rd, let ∥E∥ =

∑
e∈E ∥e∥

be the total weight of all segments in E. For a geometric graph G = (S, E), where S ⊂ Rd,
we also use the notation ∥G∥ = ∥E∥, which is the Euclidean weight of graph G.

We briefly review a few geometric primitives in d-space. For a, b ∈ Rd, the locus of
points c ∈ Rd with ∥ac∥ + ∥cb∥ ≤ (1 + ε)∥ab∥ is an ellipsoid Eab with foci a and b, and
major axis of length (1 + ε)∥ab∥; see Fig. 1(a). Note that all d − 1 minor axes of Eab are√

(1 + ε)2 − 1∥ab∥ =
√

2ε + ε2∥ab∥ <
√

3ε∥ab∥ when ε < 1. In particular, the aspect ratio
of the minimum bounding box of Eab is roughly

√
ε. By the triangle inequality, Eab contains

every ab-path of weight at most (1 + ε)∥ab∥.
The unit vectors in Rd are on the (d − 1)-sphere Sd−1; the direction vectors of a line

in Rd can be represented by vectors of a hemisphere. The angle between two unit vectors,
−→u 1 and −→u 2 is ∠(−→u 1, −→u 2) = arccos(−→u 1 · −→u 2) ∈ (−π, π). Between two (undirected) edges
e1 and e2 with unit direction vectors ±−→u 1 and ±−→u 2, we define the angle as ∠(e1, e2) =
arccos |−→u 1 · −→u 2| ∈ [0, π). Let projab(e) denote the orthogonal projection of an edge e to the
supporting line of ab, see Fig. 1(b); and note that ∥projab(e)∥ = ∥e∥ cos(ab, e).

(1 + ε)‖ab‖

√
2
ε
+

ε2
‖a

b‖ c

ba

(a) (b)

a b

Eab

Pab

Figure 1 (a) An ellipse Eab with foci a and b, and major axis (1 + ε)∥ab∥. (b) A monotone
ab-path Pab, and the projections of its edges to ab.

Characterization for Short ab-Paths. Let a, b ∈ Rd, and let Pab be a polygonal ab-path of
weight at most (1 + ε)∥ab∥. We show that “most” edges along Pab must be “nearly” parallel
to ab. Specifically, for an angle α ∈ [0, π/2), we distinguish between two types of edges in
Pab. Denote by E(α) the set of edges e in Pab with ∠(ab, e) ≤ α; and let F (α) be the set of
all other edges of Pab. Clearly, we have ∥Pab∥ = ∥E(α)∥ + ∥F (α)∥ for all α.

▶ Lemma 3. Let a, b ∈ Rd and let Pab be an ab-path of weight ∥Pab∥ ≤ (1 + ε)∥ab∥. Then
for every i ∈ {1, . . . , ⌊1/

√
ε⌋}, we have ∥E(i ·

√
ε)∥ ≥ (1 − 2/i2) ∥ab∥.

S. Bhore and C. D. Tóth 13:5

Proof. Suppose, to the contrary, that ∥E(i·
√

ε)∥ < (1−2/i2) ∥ab∥ for an i ∈ {1, . . . , ⌊1/
√

ε⌋}.
We have ∑

e∈E(i
√

ε)∪F (i
√

ε)

∥projab(e)∥ ≥ ∥ab∥, (1)

which implies∑
e∈F (i

√
ε)

∥projab(e)∥ ≥ ∥ab∥ −
∑

e∈E(i
√

ε)

∥projab(e)∥ (2)

≥ ∥ab∥ −
∑

e∈E(i
√

ε)

∥e∥

= ∥ab∥ − ∥E(i
√

ε)∥.

Recall that for every edge e ∈ F (i
√

ε), we have ∠(e, ab) ≥ i ·
√

ε. Using the Taylor estimate
1

cos(x) ≥ 1 + x2

2 , for every e ∈ F (i
√

ε), we obtain

|e∥ ≥ ∥projab(e)∥
cos(i ·

√
ε)

≥ ∥projab(e)∥
(

1 + (i
√

ε)2

2

)
= ∥projab(e)∥

(
1 + i2 ε

2

)
,

Combined with (2), this yields

∥Pab∥ =
∑

e∈E(i
√

ε)

∥e∥ +
∑

e∈F (i
√

ε)

∥e∥

≥
∑

e∈E(i
√

ε)

∥e∥ +
∑

e∈F (i
√

ε)

∥projab(e)∥
(

1 + i2 ε

2

)

≥ ∥E(i
√

ε)∥ +
(
∥ab∥ − ∥E(i

√
ε)∥
)(

1 + i2 ε

2

)
=
(

1 + i2 ε

2

)
∥ab∥ − i2 ε

2 ∥E(i
√

ε)∥

>

(
1 + i2 ε

2

)
∥ab∥ − i2 ε

2

(
1 − 2

i2

)
∥ab∥

≥
(

1 + i2 ε

2

)
∥ab∥ −

(
i2

2 − 1
)

ε ∥ab∥

= (1 + ε)∥ab∥,

which is a contradiction. ◀

We use Lemma 3 in the analysis of our lower bound construction in Section 1. We
can also derive a converse of Lemma 3 for monotone ab-paths. An ab-path is monotone
if ∠(

−→
ab, −→e) > 0 for every directed edge −→e of Pab, where the path is directed from a to b.

Equivalently, an ab-path is monotone if it crosses every hyperplane orthogonal to ab at most
once. We show that if the angle ∠(

−→
ab,

−→
d) is sufficiently small for “most” of the edges of Pab,

then ∥Pab∥ ≤ (1 + ε)∥ab∥.

▶ Lemma 4. For every δ > 0, there is a κ > 0 with the following property. For a, b ∈ Rd

and a monotone an ab-path Pab, if ∥F (i
√

εκ)∥ ≤ ∥Pab∥/i2+δ for all i ∈ {1, . . . , ⌈π/
√

εκ⌉},
then ∥Pab∥ ≤ (1 + ε)∥ab∥.

STACS 2021

13:6 On Euclidean Steiner (1 + ε)-Spanners

Proof. Let Pab be an ab-path with edge set E. Note that, by definition, F (0) = E. For
angles 0 ≤ α < β ≤ π/2, let E(α, β) denote the set of edges e ∈ E with α ≤ ∠(ab, e) < β.
For convenience, we put m = ⌈π/

√
εκ⌉. Using the Taylor estimate cos x ≥ 1 − x2/2, we can

bound the excess weight of Pab as follows.

∥Pab∥ − ∥ab∥ =
∑
e∈E

∥e∥ −
∑
e∈E

∥projabe∥

=
∑
e∈E

∥e∥(1 − cos∠(ab, e))

≤
m∑

i=1
∥E((i − 1)

√
εκ, i

√
εκ)∥(1 − cos(i

√
εκ))

≤
m∑

i=1
∥E((i − 1)

√
εκ, i

√
εκ)∥ · i2 εκ

2

≤
m∑

i=1

(
∥F ((i − 1)

√
εκ)∥ − ∥F (i

√
εκ)∥

)
· i2 εκ

2

= F (0) · 12εκ

2 +
m∑

i=1
∥F (i

√
εκ)∥

(
(i + 1)2 εκ

2 − i2 εκ

2

)

≤ ∥Pab∥ · εκ

2 +
m∑

i=1

∥Pab∥
i2+δ

· (2i + 1)εκ

2

≤ εκ

2 · ∥Pab∥

(
1 +

∞∑
i=1

2i + 1
i2+δ

)

For κ = 2(1 +
∑∞

i=1(2i + 1)/22+δ)−1, we obtain

∥Pab∥ − ∥ab∥ ≤ ε

2 ∥Pab∥,

which readily implies ∥Pab∥ ≤ (1 − ε/2)−1∥ab∥ < (1 + ε)∥ab∥, as required. ◀

The criteria in Lemma 4 can certify that a geometric graph G is a Euclidean Steiner
(1 + ε)-spanner for a point set S. Intuitively, an (1 + ε)-spanner should contain, for all point
pairs a, b ∈ S, an ab-path in which the majority of edges e satisfy ∠(ab, e) ≤ O(

√
ε), with

exceptions quantified by Lemma 4. This property has already been used by Solomon [39] in
the single-source setting, for the design of shallow-light trees. We use shallow-light trees in
our upper bound (Section 4), instead of Lemma 4. However, the characterization of ab-paths
of weight at most (1 + ε)∥ab∥, presented in this section, may be of independent interest.

Shallow-light trees. Shallow-light trees (SLT) were introduced by Solomon [39]. Given a
source s and a point set S in Rd, an (α, β)-SLT is a Steiner tree rooted at s that contains
a path of weight at most α ∥ab∥ between the source s and any point t ∈ S, and has weight
β ∥MST(S)∥. For our upper bounds in Section 4, we use the following variant of shallow-light
trees, between a source s and a set S of collinear points in the plane; see Figure 2.

▶ Lemma 5 (Solomon [39, Section 2.1]). Let 0 < ε < 1, let S be a set of points in the [− 1
2 , 1

2]
interval of the x-axis, and let s = (0, ε−1/2) be a point on the y-axis. Then there exists a
geometric graph of weight O(ε−1/2) that contains, for every point t ∈ S, an st-path Pst with
∥Pst∥ ≤ (1 + ε) ∥st∥.

S. Bhore and C. D. Tóth 13:7

s

t2t1

Figure 2 An illustration of a shallow-light tree for a source s and a set S of collinear points. The
input points and the Steiner points are colored black and red, respectively.

3 Lower Bounds

In this section we prove the following lower bound on the lightness of Euclidean Steiner
spanners in Rd. Our lower bound construction is a direct generalization of the 2-dimensional
lower bound construction by Le and Solomon [27]. However, our analysis is significantly
simpler than that of [27] and it does not depend on planarity. As a result, it easily extends
to higher dimensions.

▶ Theorem 1. Let a positive integers d and real ε > 0 be given such that ε ≤ 1/d. Then
there exists a set S of n points in Rd such that any Euclidean Steiner (1 + ε)-spanner for S

has lightness Ω(ε−d/2) and sparsity Ω(ε(1−d)/2).

Proof. First we establish the result for a point set of size Θd(ε(1−d)/2) and then generalize to
arbitrary n. Let Q = [0, 1]d be a unit cube in Rd; see Fig. 3. The point set S will consist of two
square grids in two opposite faces of Q, with d/

√
ε spacing. Specifically, consider the lattice

L = (d/
√

ε) ·Zd. Let Q0 and Q1, respectively, be the two faces of Q orthogonal to the xd-axis.
Now let S0 = L ∩ Q0 and S1 = L ∩ Q1. We have |S0| = |S1| = ⌊1/(d

√
ε)⌋d−1 = Θd(ε(1−d)/2),

hence |S| = Θd(ε(1−d)/2).

3/
√
ε

1

1

1
3/
√
ε

Q

S

Figure 3 A schematic image of S in R3.

Let N be a Euclidean Steiner (1 + ε)-spanner for S. For a point pair (a, b) ∈ S0 × S1, we
have 1 ≤ ∥ab∥ ≤ diam(Q) =

√
d. The spanner N contains an ab-path Pab of weight at most

(1 + ε)∥ab∥, which lies in the ellipsoid Eab with foci at a and b, and major axis (1 + ε)∥ab∥.

STACS 2021

13:8 On Euclidean Steiner (1 + ε)-Spanners

The ellipsoid Eab is, in turn, contained in an infinite cylinder Cab with axis ab and radius√
(1+ε)2−12

2 ∥ab∥ <
√

ε∥ab∥ ≤
√

εd. The intersection of the cylinder Cab with hyperplanes
containing Q0 and Q1, resp., is an ellipsoid of half-diameter at most

√
d − 1 ·

√
εd <

√
ε d,

and their centers are a and b, respectively. In particular, all point in S, other than a and b,
are in the exterior of Cab.

We distinguish between two types of edges in the ab-path Pab. An edge e of Pab is near-
parallel to ab if ∠(ab, e) < 2 ·

√
ε. Let E(ab) be the set of edges of Pab that are near-parallel

to ab, and F (ab) the set of all other edges of Pab. Lemma 3 with i = 2 yields

∥E(ab)∥ ≥ 1
2∥ab∥ ≥ 1

2 . (3)

Notice that for two pairs (a1, b1), (a2, b2) ∈ S0 × S1, if {a1, b1} ≠ {a2, b2}, then E(a1b1) ∩
E(a2b2) = ∅. If ∠(a1b1, a2b2) ≥ 4

√
ε, this follows from the fact that the directions near-

parallel to a1b1 and a2b2, resp., are disjoint. If ∠(a1b1, a2b2) < 4
√

ε, then a1b1 and a2b2
are parallel, consequently the cylinders Ca1b1 and Ca2b2 have disjoint interiors, and so
E(a1b1) ∩ E(a2b2) = ∅. Combined with (3), this yields

∥N∥ ≥
∑

(a,b)∈S0×S1

∥E(ab)∥ ≥ |S0| · |S1| · 1
2 ≥ Θd(ε1−d). (4)

Similarly to [27, Claim 5.3], we may assume that N ⊆ Q (indeed, we can replace every
vertex of N outside of Q by the closest point in the boundary of Q; such replacements do not
increase the weight of N). In follows that the weight of every edge is at most diam(Q) =

√
d.

Consequently,

|E(N)| ≥ ∥N∥
maxe∈E(N) ∥e∥

= Ωd(ε1−d)√
d

= Ωd(ε1−d).

The sparsity of N is |E(N)|/|S| = Ωd(ε1−d/ε(1−d)/2) = Ωd(ε(1−d)/2), as required.
The MST for the point set S contains one unit-weight edge between S0 and S1, and the

remaining |S|−2 edges each have weight d
√

ε, which is the minimum distance between lattice
points in L (see [40] for the asymptotic behavior of the MST of a section of the lattice).
Therefore ∥MST(S)∥ = 1 + (|S| − 2)d

√
ε = Θd(ε1−d/2). It follows that the lightness of N

is ∥N∥/∥MST(S)∥ = Ωd(ε1−d/ε1−d/2) = Ωd(ε−d/2), as claimed. This completes the proof
when n = Θd(ε(1−d)/2).

General Case. Finally, if n ≥ |S| = Θd(ε(1−d)/2), we can generalize the above construction
by duplication. Assume that n = k |S| for some integer k ≥ 1. Let Q1, . . . , Qk, be disjoint
axis-aligned unit hypercubes, such that they each have an edge along the x1-axis, and two
consecutive cubes are at distance 3 apart. Let S′ be the union of k translates of the point set
S, on the boundaries of Q1, . . . , Qk. Let N ′ be a Euclidean Steiner (1 + ε)-spanner for S′.

Since the ellipses induced by point pairs in different copies of S are disjoint, we have
∥N ′∥ ≥ k ∥N∥ = Ωd(kε1−d) and |E(N ′)| ≥ k |E(N)|. This immediately implies that the
sparsity of N ′ is |E(N ′)|/n = |E(N)|/|S| ≥ Ωd(ε(1−d)/2).

The MST of S′ consists of k translated copies of MST(S) and k − 1 edges of weight 3
between consecutive copies. That is, ∥MST(S′)∥ = k ∥MST(S)∥ + 3(k − 1) = Θd(kε1−d/2).
It follows that the lightness of N ′ is Ωd(ε−d/2), as claimed. ◀

S. Bhore and C. D. Tóth 13:9

4 Upper Bound

In this section, we prove Theorem 2 and construct, for every ε > 0 and every set of n points
in R2, a Euclidean Steiner (1 + ε)-spanner of lightness O(ε−1 log n). This matches the lower
bound of Theorem 1 up to a O(log n) factor, and improves upon the previous bound of
O(ε−1 log ∆) by Le and Solomon [28, Theorem 1.2].

Directional (1 + ε)-spanners. Let S be a set of n points in the plane. Assume, without
loss of generality, that diam(S) ≥ 1/2 and S ⊂ [0, 1]2. Then the weight of the Euclidean
spanning tree of S is bounded by ∥MST(S)∥ ≥ diam(S) ≥ 1/2, and ∥MST(S)∥ ≤ O(n1/2) by
a classical result by Few [20]. Both bounds are tight in the worst case. Note that the weight
of the MST is in a rather broad range, which makes it challenging to bound the weight of
the Steiner (1 + ε)-spanner by O(∥MST(S)∥ · ε−1).

The direction of a line L in the plane is given by the counterclockwise angle θ ∈ [0, π)
between the positive x-axis and L. A line segment pq inherits its direction from its supporting
line. The distance between directions θ1, θ2 ∈ [0, π), of lines L1 and L2, resp., is

∠(L1, L2) = min{|θ1 − θ2|, π − |θ1 − θ2|}.

For an interval D ⊂ [0, π) of directions, we construct a Euclidean Steiner (1 + ε)-spanner
restricted to points pairs whose directions are in D. We define a spanner in this restricted
sense as follows.

▶ Definition 6. Let S be a finite point set in R2, and let D ⊂ [0, π) be an set of directions.
A geometric graph G is a directional (1 + ε)-spanner for S and D if for every a, b ∈ S, where
the direction of ab is in D, graph G contains an ab-path of weight at most (1 + ε)∥ab∥.

Our main lemma is the following.

▶ Lemma 7. For a set S of n points in the plane, and for the interval D = [π−
√

ε
8 , π+

√
ε

8] of
directions, there exists a directional (1 + ε)-spanner G of weight O(∥MST(S)∥ε−1/2 log n).

We prove Lemma 7 in Section 4.2 below. Here we show that Lemma 7 implies Theorem 2.

▶ Theorem 2. For every set S of n points in Euclidean plane, there exists a Steiner
(1 + ε)-spanner of lightness O(ε−1 log n).

Proof of Theorem 2. Let S be a set of n points in the plane. Let ε > 0 be given, and let
k = Θ(ε−1/2) be an integer. We partition the space of directions into k intervals as

[0, π) =
k⋃

i=1
Di, where Di =

[
(i − 1) π

k
,

i π

k

)
for i ∈ {1, . . . , k}.

By Lemma 7, for i = 1, . . . , k, there exists a geometric graph Ni of weight O(∥MST∥ log(n) ·
ε−1/2) such that for every point pair a, b ∈ S, if the direction of ab is in Di, then Ni contains
an ab-path of weight at most (1 + ε)∥ab∥.

Let N =
⋃k

i=1 Ni be the union of the networks Ni for i ∈ {1, . . . , k}; see Figure 4 for
an illustration. Since [0, π) =

⋃k
i=1 Di, the graph N contains a path of weight at most

(1 + ε)∥ab∥ for all point pairs a, b ∈ S, and so N is a Euclidean Steiner (1 + ε)-spanner for S.
The weight of N is

∥N∥ =
k∑

i=1
∥Ni∥ ≤ k · O

(
∥MST(S)∥ log n√

ε

)
≤ O

(
∥MST(S)∥ log n

ε

)
,

as required. ◀

STACS 2021

13:10 On Euclidean Steiner (1 + ε)-Spanners

(a) (b) (c) (d)

Figure 4 (a)–(c) Schematic figures for directional spanners N1, N2, and N3 for three disjoint
intervals of directions, for a set of 6 points in the plane. (d) The union N1 ∪ N2 ∪ N3 of the networks.

The second component of our approach is a subdivision of the bounding box of S into
regions that are long and skinny in one particular direction. We start with discussing the
special cases of a single rectangle.

4.1 Rectangles
We illustrate our general strategy with a simple special case, where the points in S lie on
the boundary of an axis-aligned rectangle. We first assume that R is narrow and tall, and
we construct an directional (1 + ε)-spanner for an interval of near-vertical directions. For
further reference, we define the aspect ratio of an axis-parallel rectangle R by

aratio(R) = width(R)
height(R) .

▶ Lemma 8. Let R be an axis-aligned rectangle with 1
8

√
ε ≤ aratio(R) ≤ 1

4
√

ε. Then for a
finite point set S on the boundary of R, and for the interval D = [π−

√
ε

8 , π+
√

ε
8] of directions,

there exists a directional (1 + ε)-spanner G with ∥G∥ ≤ O(height(R)).

Proof. We construct a graph G as a union of the boundary of R and a finite number of
shallow-light trees. If both a and b are in the same side of R, then the boundary of R contains
an ab-path of weight ∥ab∥. We next consider cases in which a and b are in different sides of
R. Since 1

8
√

ε ≤ aratio(R), if a and b are in the interior of the left and right side of R, resp.,
then the direction of the segment ab falls outside of D.

Let c be the center of the left edge of R; refer to Fig. 5(a). Take two shallow-light trees
between c and each horizontal side of R with parameter ε′ = ε/4. By Lemma 5, the weight
of the two trees is O(height(R)). If a and b are on the top and bottom sides of R, resp., then
∥ab∥ ≥ height(R). The union of the two shallow-light trees rooted at c contains an ab-path
of length

(1 + ε′)(∥as∥ + ∥sb∥) ≤ (1 + ε′) · 2 ·

√(
height(R)

2

)2
+
(

width(R)
2

)2

<
(

1 + ε

4

)(
1 + ε

2

)
height(R)

< (1 + ε) height(R)
≤ (1 + ε)∥ab∥.

S. Bhore and C. D. Tóth 13:11

It remains to construct ab-paths for point pairs on adjacent sides of R. We describe the
construction for a left and bottom sides of R; the constructions for all other pairs of adjacent
sides is analogous, and we can take the union of all constructions. Without loss of generality,
assume that the lower-left corner of R is the origin o; see Fig. 5(b). For every positive integer
i ∈ N+, let pi = (0, height(R)/2i), and qi = (width(R)/2i−1). Note that pi is on the left
side of R, and qi is on the bottom side of R for all i ∈ N+. By Lemma 5, there exists a
shallow-light tree Ti with parameter ε′ = ε/4 of weight O(height(R)/2i) from the root pi

to the line segment oqi. Between any point a ∈ pi−1pi and b ∈ qiqi+1, we can combine a
vertical segment api with a path in the tree Ti from pi to b to obtain a path of weight at
most (1 + ε′)∥ab∥.

The weight of the union of the trees Ti, for all i ∈ N+, is O(
∑∞

i=1 height(R)/2i) =
O(height(R)). In fact, we do not need infinitely many trees, since S is finite, hence it contains
a finite number of point in the interior of the left side of R. It suffices to construct the trees
Ti, i = 1, . . . , m, such that all points in S in the left side of R are at or above pm. ◀

(a) (b) (c)

c

a

p1

o

p2

p3

q1q2
q4

p4
p5p5

q3q5

a

bb a

b = p3

a = p1

p2

a

b = p6

p3

p4

p5

p2

(d)

p1

Figure 5 (a) A rectangle R with 1
8

√
ε ≤ aratio(R) ≤ 1

4
√

ε, and two shallow-light trees rooted at
the midpoint c of the left side of R. (b) A sequence of shallow-light trees rooted at p1, . . . , pm on
the left side of R. (c) A subdivision of a rectangle R. (d) A rectangulation of the bounding box of S

into rectangels R with aratio(R) ≤ 1
4

√
ε < aratio(R).

We can generalize Lemma 8 to axis-aligned rectangles of arbitrary aspect ratio.

▶ Lemma 9. Let R be an axis-aligned rectangle. Then for a finite point set S on the
boundary of R, and for the interval D = [π−

√
ε

8 , π+
√

ε
8] of directions, there exists a directional

(1 + ε)-spanner G of weight O(height(R) + width(R)/
√

ε).

Proof. If 1
8

√
ε ≤ aratio(R) ≤ 1

4
√

ε, then Lemma 8 completes the proof. Otherwise, we
greedily subdivide R by parallel lines as follows. First assume that 1

4
√

ε < aratio(R); refer
to Fig. 5(c). For a vertical line L, denote by L− and L+, resp., the halfplanes on the left
and right of L. Let L be the leftmost vertical line such that aratio(R ∩ L−) = 1

8
√

ε. Then
subdivide R into R ∩ L− and R ∩ L+ by a vertical segment of weight height(R), and recurse
on R ∩ L+. All subdivision edges are vertical, of weight height(R), and their total weight is

height(R) ·
⌊

width(R)/height(R)
1
8

√
ε

⌋
≤ O

(
width(R)√

ε

)
. (5)

Similarly, if aratio(R) < 1
8

√
ε, we can greedily subdivide R by horizontal lines into

axis-parallel rectangles. For a horizontal line L, denote by L↑ and L↓, resp., the halfplanes

STACS 2021

13:12 On Euclidean Steiner (1 + ε)-Spanners

above and below L. Let L be the highest horizontal line such that aratio(R ∩ L↑) = 1
4

√
ε.

Then subdivide R into R ∩ L↑ and R ∩ L↓ by a horizontal segment of weight width(R), and
recurse on R ∩ L↓. In this case, all subdivision edges are horizontal, they all are of weight
width(R), and their total weight is

width(R) ·
⌊ 1

4
√

ε

width(R)/height(R)

⌋
≤ O

(√
ε · height(R)

)
. (6)

Assume that R has been subdivided into rectangles R1, . . . , Rk, such that 1
8

√
ε ≤

aratio(Ri) ≤ 1
4

√
ε. For every i ∈ {1, . . . , k}, let Si be the set of intersection points between

the boundary of Ri and the line segments spanned by S. For the point set Si and the
directions D, Lemma 8 yields a directional (1 + ε)-spanner Gi of weight ∥Gi∥ = height(Ri).

Let G =
⋃k

i=1 Gi. From (5) and (6), we get ∥G∥ =
∑k

i=1 ∥Gi∥ = O(
∑k

i=1 height(Ri)) =
O(height(R) + width(R)/

√
ε), as required. It remains to show that G is a directional (1 + ε)-

spanner. Let a, b ∈ S with direction in D; see Fig. 5(c). The vertical edges of R1, . . . , Rk

subdivide ab into a path of collinear line segments a = p0, . . . , pℓ = b. Each segment pi−1pi

lies in some rectangle Rj between points pi−1, pi ∈ Sj , and so Gj contains a pi−1pi-path of
weight at most (1 + ε)∥pi−1pi∥. The concatenation of these paths is an ab-path of weight at
most

∑ℓ
i=1(1 + ε)∥pi−1pi∥ = (1 + ε)∥ab∥. ◀

4.2 Rectangulations
Let per(P) denote the perimeter of P . A polygon P is rectilinear if every edge is horizontal
or vertical. A rectangulation of polygon P is a subdivision of P into axis-parallel rectangles.
De Berg and van Kreveld [15] proved that for a rectilinear simple polygon P with n vertices,
one can efficiently compute a rectangulation of weight O(per(P) log n), and this bound is
the best possible (already for stair-case polygons).

For an arbitrary set S of n points in the plane, we can construct a rectangulation
of the axis-aligned bounding box of S with weight O(∥MST∥ log n). Combining such a
rectangulation with Lemma 9, we are now ready to prove Lemma 7.

▶ Lemma 7. For a set S of n points in the plane, and for the interval D = [π−
√

ε
8 , π+

√
ε

8] of
directions, there exists a directional (1 + ε)-spanner G of weight O(∥MST(S)∥ε−1/2 log n).

Proof. Let T be the rectilinear MST of S, that is, a spanning tree of minimum weight w.r.t.
L1-norm, realized in the plane such that every edge is an L-shape (the union of a horizontal
and a vertical segment). It is well known that ∥T∥ ≤

√
2 ∥MST(S)∥. Let R be the minimum

axis-aligned bounding box of T . By the minimality of R, the boundary of R contains at least
two vertices of T . Consequently, T ∪ ∂R is connected, and it subdivides the interior of R into
rectilinear simple polygons (faces) of total weight at most 2(∥T∥ + per(R)) = O(∥MST(S)∥).

By the result of de Berg and van Kreveld [15], we can rectangulate each face of T ∪ ∂R.
Let R denote the resulting rectangulation. Since every face has O(n) vertices, and every
edge is on the boundary of at most two faces, the total perimeter of the rectangles in R is∑

R∈R per(R) = O((∥T∥ + per(R)) log n) = O(∥MST(S)∥ log n).
For every R ∈ R, let S(R) be the set of intersection points between the boundary of

R and the line segment induced by S. By Lemma 9, there exists a directional Euclidean
Steiner (1 + ε)-spanner G(R) for S(R) of weight O(per(R) · ε−1/2). Let G =

⋃
R∈R G(R).

Its total weight ∥G∥ =
∑

R∈R O(per(R) · ε−1/2) = O(∥MST(S)∥ ε−1/2 log n). We can verify
that G is a directional (1 + ε)-spanner for S, similarly to the proof of Lemma 9. Let a, b ∈ S

such that the directions of ab is in D; see Fig. 5(d). The rectangulation subdivides ab into a

S. Bhore and C. D. Tóth 13:13

path of collinear segments a = p0, . . . , pℓ = b. Each segment pi−1pi lies in some rectangle
R ∈ R between points pi−1, pi ∈ S(R), and so G(R) contains a pi−1pi-path of weight at
most (1 + ε)∥pi−1pi∥. The concatenation of these paths is an ab-path of weight at most∑ℓ

i=1(1 + ε)∥pi−1pi∥ = (1 + ε)∥ab∥, as required. ◀

▶ Remark 10. The log(n)-factor in Theorem 2 is due to the rectangulations of rectilinear
polygons with O(n) vertices. Instead of rectangulations, one could use a minimum-weight
Steiner subdivision into convex faces (assuming that Lemmas 8–9 generalize to convex
polygons). However, this approach would not yield more than a log log(n)-factor improvement.
Dumitrescu and Tóth [17] probed that every simple polygon P with n vertices admits a
convex subdivision of weight O(per(P) log n/ log log n), and this bound is the best possible.

▶ Remark 11. Instead of a rectangulation, one could also use a subdivision into histograms. A
histogram is a rectilinear simple polygon bounded by three axis-parallel line segments and one
x- or y-monotone path. A classical window partition [32, 41] subdivides a simple rectilinear
polygon P into histograms such that every axis-parallel line segment in P intersects (stabs)
at most three histograms [18, 31]. Due to the stabbing property, the total perimeter of
the resulting histograms is O(per(P)). For a point set S, this approach yields a histogram
subdivision of the bounding box of S with weight O(∥MST(S)∥). Very recently, Bhore and
Tóth [4] improved the upper bound O(ε−1 log n) of Theorem 2 to O(ε−1) by combining
directional spanners with a modified window partition.

5 Conclusions

In this paper, we have studied Euclidean Steiner (1 + ϵ)-spanners under two optimization
criteria, lightness and sparsity, and provided improved lower and upper bounds. Our upper
bound of O(ε−1 log n) on the minimum lightness of Steiner (1 + ε)-spanners in the Euclidean
plane has recently been improved to the bound O(ε−1) in [4], matching the lower bound of
Ω(ε−1) of Theorem 1. However, for lightness in dimensions d ≥ 3, an Θ̃(ε1/2)-factor gap
remains between the current upper bound Õ(ε−(d+1)/2) [30, Theorem 1.6] and the lower
bound Ω(ε−d/2) of Theorem 1.

In Euclidean d-space, the same point sets (grids in two parallel hyperplanes) establish the
lower bounds Ω(ε−d/2) for lightness and Ω(ε(1−d)/2) for sparsity for Steiner (1 + ε)-spanners
(cf. Theorem 1). Le and Solomon constructed spanners with sparsity Õ(ε(1−d)/2) [27,
Theorem 1.3], matching the lower bound in every dimension d ∈ N, but the lightness of these
spanners is significantly higher. In dimensions d ≥ 3, they construct spanners with lightness
Õ(ε−(d+1)/2) [30, Theorem 1.6], but these spanners have significantly higher sparsity.

We conjecture that a Euclidean Steiner (1 + ε)-spanner cannot simultaneously attain
both lower bounds (lightness and sparsity) of Theorem 1. Therefore, exploring trade-offs
between lightness and sparsity in Euclidean d-space remains an open problem.

A critical aspect of graphs is their embeddibility in low-genus surfaces. A geometric graph
in R2 is a plane graph if no two edges cross each other. Note that every Steiner spanner
G = (V, E) for a point set S can be turned into a plane graph (with the same stretch factor
ratio and the same weight) by introducing Steiner points at every edge crossing. However,
the number of new Steiner points would be proportional to O(|E|2), which is prohibitive.
It remains an open problem to bound the sparsity of a plane Steiner (1 + ε)-spanner for n

points in Euclidean plane, as a function of n and ε.

STACS 2021

13:14 On Euclidean Steiner (1 + ε)-Spanners

Angles and directions play a crucial role in our lower bound analysis (Section 3) and
upper bound construction (Section 4). While angles are invariant under rotations only in
Euclidean spaces, they can be defined in any inner product space, such as Rd under Lp norm,
for p ≥ 2. We leave it as an open problem to derive upper and lower bounds on the lightness
and sparsity of Steiner (1 + ε)-spanners in other inner product spaces.

References
1 Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse

spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81–100, 1993. doi:
10.1007/BF02189308.

2 Sunil Arya, David M. Mount, and Michiel Smid. Randomized and deterministic algorithms
for geometric spanners of small diameter. In Proc. 35th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 703–712, 1994. doi:10.1109/SFCS.1994.365722.

3 Sunil Arya and Michiel Smid. Efficient construction of a bounded-degree spanner with low
weight. Algorithmica, 17(1):33–54, 1997. doi:10.1007/BF02523237.

4 Sujoy Bhore and Csaba D. Tóth. Light Euclidean Steiner spanners in the plane. Preprint,
2020. arXiv:2012.02216.

5 Glencora Borradaile, Hung Le, and Christian Wulff-Nilsen. Greedy spanners are optimal in
doubling metrics. In Proc. 13th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2371–2379, 2019. doi:10.1137/1.9781611975482.145.

6 Prosenjit Bose, Joachim Gudmundsson, and Michiel Smid. Constructing plane spanners
of bounded degree and low weight. Algorithmica, 42(3-4):249–264, 2005. doi:10.1007/
s00453-005-1168-8.

7 Paul B. Callahan. Optimal parallel all-nearest-neighbors using the well-separated pair decom-
position. In Proc. 34th IEEE Symposium on Foundations of Computer Science (FOCS), pages
332–340, 1993. doi:10.1109/SFCS.1993.366854.

8 T.-H. Hubert Chan, Mingfei Li, Li Ning, and Shay Solomon. New doubling spanners: Better
and simpler. SIAM J. Comput., 44(1):37–53, 2015. doi:10.1137/130930984.

9 L. Paul Chew. There is a planar graph almost as good as the complete graph. In Proc. 2nd
Symposium on Computational Geometry, pages 169–177. ACM Press, 1986. doi:10.1145/
10515.10534.

10 L. Paul Chew. There are planar graphs almost as good as the complete graph. J. Comput.
Syst. Sci., 39(2):205–219, 1989. doi:10.1016/0022-0000(89)90044-5.

11 Kenneth L. Clarkson. Approximation algorithms for shortest path motion planning. In
Proc. 19th ACM Symposium on Theory of Computing (STOC), pages 56–65, 1987. doi:
10.1145/28395.28402.

12 Gautam Das, Paul Heffernan, and Giri Narasimhan. Optimally sparse spanners in 3-dimensional
Euclidean space. In Proc. 9th Symposium on Computational Geometry (SoCG), pages 53–62.
ACM Press, 1993. doi:10.1145/160985.160998.

13 Gautam Das and Deborah Joseph. Which triangulations approximate the complete graph?
In Proc. International Symposium on Optimal Algorithms, pages 168–192. Springer, 1989.
doi:10.1007/3-540-51859-2_15.

14 Gautam Das, Giri Narasimhan, and Jeffrey S. Salowe. A new way to weigh malnourished
Euclidean graphs. In Proc. 6th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
215–222, 1995. URL: https://dl.acm.org/doi/10.5555/313651.313697.

15 Mark de Berg and Marc J. van Kreveld. Rectilinear decompositions with low stabbing number.
Information Processing Letters, 52(4):215–221, 1994. doi:10.1016/0020-0190(94)90129-5.

16 Michael J. Demmer and Maurice P. Herlihy. The arrow distributed directory protocol. In Proc.
12th Symposium on Distributed Computing (DISC), volume 1499 of LNCS, pages 119–133.
Springer, 1998. doi:10.1007/BFb0056478.

17 Adrian Dumitrescu and Csaba D. Tóth. Minimum weight convex Steiner partitions. Algorith-
mica, 60(3):627–652, 2011. doi:10.1007/s00453-009-9329-9.

https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/BF02189308
https://doi.org/10.1109/SFCS.1994.365722
https://doi.org/10.1007/BF02523237
http://arxiv.org/abs/2012.02216
https://doi.org/10.1137/1.9781611975482.145
https://doi.org/10.1007/s00453-005-1168-8
https://doi.org/10.1007/s00453-005-1168-8
https://doi.org/10.1109/SFCS.1993.366854
https://doi.org/10.1137/130930984
https://doi.org/10.1145/10515.10534
https://doi.org/10.1145/10515.10534
https://doi.org/10.1016/0022-0000(89)90044-5
https://doi.org/10.1145/28395.28402
https://doi.org/10.1145/28395.28402
https://doi.org/10.1145/160985.160998
https://doi.org/10.1007/3-540-51859-2_15
https://dl.acm.org/doi/10.5555/313651.313697
https://doi.org/10.1016/0020-0190(94)90129-5
https://doi.org/10.1007/BFb0056478
https://doi.org/10.1007/s00453-009-9329-9

S. Bhore and C. D. Tóth 13:15

18 Herbert Edelsbrunner, Joseph O’Rourke, and Emmerich Welzl. Stationing guards in rectilinear
art galleries. Computer Vision, Graphics, and Image Processing, 27(2):167–176, 1984. doi:
10.1016/S0734-189X(84)80041-9.

19 Michael Elkin and Shay Solomon. Steiner shallow-light trees are exponentially lighter than
spanning ones. SIAM J. Comput., 44(4):996–1025, 2015. doi:10.1137/13094791X.

20 L. Few. The shortest path and the shortest road through n points. Mathematika, 2(2):141–144,
1955. doi:10.1112/S0025579300000784.

21 Lee-Ad Gottlieb, Aryeh Kontorovich, and Robert Krauthgamer. Efficient regression in metric
spaces via approximate Lipschitz extension. IEEE Transactions on Information Theory,
63(8):4838–4849, 2017. doi:10.1109/TIT.2017.2713820.

22 Joachim Gudmundsson, Christos Levcopoulos, and Giri Narasimhan. Fast greedy algorithms
for constructing sparse geometric spanners. SIAM J. Comput., 31(5):1479–1500, 2002. doi:
10.1137/S0097539700382947.

23 Joachim Gudmundsson, Christos Levcopoulos, Giri Narasimhan, and Michiel Smid. Approx-
imate distance oracles for geometric spanners. ACM Transactions on Algorithms (TALG),
4(1):1–34, 2008. doi:10.1145/1328911.1328921.

24 Maurice Herlihy, Srikanta Tirthapura, and Rogert Wattenhofer. Competitive concurrent
distributed queuing. In Proc. 20th ACM Symposium on Principles of Distributed Computing
(PODC), pages 127–133, 2001. doi:10.1145/383962.384001.

25 J. Mark Keil. Approximating the complete Euclidean graph. In Proc. 1st Scandinavian
Workshop on Algorithm Theory (SWAT), volume 318 of LNCS, pages 208–213. Springer, 1988.
doi:10.1007/3-540-19487-8_23.

26 J. Mark Keil and Carl A. Gutwin. Classes of graphs which approximate the complete Euclidean
graph. Discrete & Computational Geometry, 7:13–28, 1992. doi:10.1007/BF02187821.

27 Hung Le and Shay Solomon. Truly optimal Euclidean spanners. In Proc. 60th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 1078–1100, 2019. doi:10.1109/FOCS.
2019.00069.

28 Hung Le and Shay Solomon. Light Euclidean spanners with Steiner points. In Proc. 28th
European Symposium on Algorithms (ESA), volume 173 of LIPIcs, pages 67:1–67:22. Schloss
Dagstuhl, 2020. doi:10.4230/LIPIcs.ESA.2020.67.

29 Hung Le and Shay Solomon. Light Euclidean spanners with Steiner points. Preprint, 2020.
Version 2. arXiv:2007.11636.

30 Hung Le and Shay Solomon. A unified and fine-grained approach for light spanners. Preprint,
2020. arXiv:2008.10582.

31 Christos Levcopoulos. Heuristics for Minimum Decompositions of Polygons. PhD thesis,
Linköping, 1987. No. 74 of Linköping Studies in Science and Technology.

32 Anil Maheshwari, Jörg-Rüdiger Sack, and Hristo N. Djidjev. Link distance problems. In Jörg-
Rüdiger Sacks and Jorge Urutia, editors, Handbook of Computational Geometry, chapter 12,
pages 519–558. North-Holland, 2000. doi:10.1016/B978-044482537-7/50013-9.

33 Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge University
Press, 2007. doi:10.1017/CBO9780511546884.

34 David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube. SIAM J.
Comput., 18(4):740–747, 1989. doi:10.1137/0218050.

35 David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables. Journal
of the ACM (JACM), 36(3):510–530, 1989. doi:10.1145/65950.65953.

36 Satish B. Rao and Warren D. Smith. Approximating geometrical graphs via “spanners” and
“banyans”. In Proc. 13th ACM Symposium on Theory of Computing (STOC), pages 540–550,
1998. doi:10.1145/276698.276868.

37 Jim Ruppert and Raimund Seidel. Approximating the d-dimensional complete Euclidean graph.
In Proc. 3rd Canadian Conference on Computational Geometry (CCCG), pages 207–210, 1991.

STACS 2021

https://doi.org/10.1016/S0734-189X(84)80041-9
https://doi.org/10.1016/S0734-189X(84)80041-9
https://doi.org/10.1137/13094791X
https://doi.org/10.1112/S0025579300000784
https://doi.org/10.1109/TIT.2017.2713820
https://doi.org/10.1137/S0097539700382947
https://doi.org/10.1137/S0097539700382947
https://doi.org/10.1145/1328911.1328921
https://doi.org/10.1145/383962.384001
https://doi.org/10.1007/3-540-19487-8_23
https://doi.org/10.1007/BF02187821
https://doi.org/10.1109/FOCS.2019.00069
https://doi.org/10.1109/FOCS.2019.00069
https://doi.org/10.4230/LIPIcs.ESA.2020.67
http://arxiv.org/abs/2007.11636
http://arxiv.org/abs/2008.10582
https://doi.org/10.1016/B978-044482537-7/50013-9
https://doi.org/10.1017/CBO9780511546884
https://doi.org/10.1137/0218050
https://doi.org/10.1145/65950.65953
https://doi.org/10.1145/276698.276868

13:16 On Euclidean Steiner (1 + ε)-Spanners

38 Christian Schindelhauer, Klaus Volbert, and Martin Ziegler. Geometric spanners with
applications in wireless networks. Computational Geometry, 36(3):197–214, 2007. doi:
10.1016/j.comgeo.2006.02.001.

39 Shay Solomon. Euclidean Steiner shallow-light trees. J. Comput. Geom., 6(2):113–139, 2015.
doi:10.20382/jocg.v6i2a7.

40 J. Michael Steele and Timothy Law Snyder. Worst-case growth rates of some classical problems
of combinatorial optimization. SIAM J. Comput., 18(2):278–287, 1989. doi:10.1137/0218019.

41 Subhash Suri. On some link distance problems in a simple polygon. IEEE Trans. Robotics
Autom., 6(1):108–113, 1990. doi:10.1109/70.88124.

42 Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-dimensional spaces and
related problems. SIAM J. Comput., 11(4):721–736, 1982. doi:10.1137/0211059.

https://doi.org/10.1016/j.comgeo.2006.02.001
https://doi.org/10.1016/j.comgeo.2006.02.001
https://doi.org/10.20382/jocg.v6i2a7
https://doi.org/10.1137/0218019
https://doi.org/10.1109/70.88124
https://doi.org/10.1137/0211059

A Nearly Optimal Deterministic Online Algorithm
for Non-Metric Facility Location
Marcin Bienkowski !

Institute of Computer Science, University of Wrocław, Poland

Björn Feldkord !

Heinz Nixdorf Institut & Department of Computer Science, Universität Paderborn, Germany

Paweł Schmidt !

Institute of Computer Science, University of Wrocław, Poland

Abstract
In the online non-metric variant of the facility location problem, there is a given graph consisting of
a set F of facilities (each with a certain opening cost), a set C of potential clients, and weighted
connections between them. The online part of the input is a sequence of clients from C, and in
response to any requested client, an online algorithm may open an additional subset of facilities and
must connect the given client to an open facility.

We give an online, polynomial-time deterministic algorithm for this problem, with a competitive
ratio of O(log |F | · (log |C| + log log |F |)). The result is optimal up to loglog factors. Our algorithm
improves over the O((log |C| + log |F |) · (log |C| + log log |F |))-competitive construction that first
reduces the facility location instance to a set cover one and then later solves such instance using the
deterministic algorithm by Alon et al. [TALG 2006]. This is an asymptotic improvement in a typical
scenario where |F | ≪ |C|.

We achieve this by a more direct approach: we design an algorithm for a fractional relaxation
of the non-metric facility location problem with clustered facilities. To handle the constraints of
such non-covering LP, we combine the dual fitting and multiplicative weight updates approach. By
maintaining certain additional monotonicity properties of the created fractional solution, we can
handle the dependencies between facilities and connections in a rounding routine.

Our result, combined with the algorithm by Naor et al. [FOCS 2011] yields the first deterministic
algorithm for the online node-weighted Steiner tree problem. The resulting competitive ratio is
O(log k · log2 ℓ) on graphs of ℓ nodes and k terminals.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of computa-
tion → Routing and network design problems

Keywords and phrases Online algorithms, deterministic rounding, linear programming, facility
location, set cover

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.14

Funding Supported by Polish National Science Centre grant 2016/22/E/ST6/00499 and by German
Research Foundation (DFG) within the Collaborative Research Centre “On-The-Fly Computing”
under the project number 160364472 – SFB 901/3.

Acknowledgements We thank Marek Adamczyk and Christine Markarian for helpful discussions.
We thank anonymous reviewers of an earlier draft for pointing us to the reduction of Kolen and
Tamir [20].

1 Introduction

The facility location (FL) problem [1] is one of the best-known examples of network design
problems, extensively studied both in operations research and in computer science. Its simple
definition, NP-hardness, and rich combinatorial structure have led to developments of tools
and solutions in key areas of approximation algorithms, combinatorial optimization, and
linear programming.

© Marcin Bienkowski, Björn Feldkord, and Paweł Schmidt;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 14; pp. 14:1–14:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marcin.bienkowski@cs.uni.wroc.pl
https://orcid.org/0000-0002-2453-7772
mailto:bjoernf@hni.upb.de
https://orcid.org/0000-0001-6591-2420
mailto:pawel.schmidt@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.STACS.2021.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 A Nearly Optimal Deterministic Online Algorithm for Non-Metric Facility Location

An instance of the FL problem consists of a set F of facilities, each with a certain opening
cost, and a set C of clients. F and C can be seen as two sides of a bipartite graph. The
undirected edges between them have lengths that can either satisfy the triangle inequality
(metric FL) or be arbitrary (non-metric FL). The goal is to open a subset of facilities and
connect each client to an open facility. The total cost (the sum of opening and connection
costs) is subject to minimization. In the metric scenario, by taking a metric closure, one can
assume that each facility is reachable by each client, but it is not the case for the non-metric
variant.

Instances and Objectives. In this paper, we focus on an online variant of the non-metric
FL problem. We first formalize the offline variant in a way that makes a connection to the
online variant more apparent.

A facility-client graph G = (F, C, E, cost) is a bipartite graph, whose one side is the
set F of facilities and another side is the set of clients C. Set E ⊆ F × C contains available
facility-client connections (edges). We use function cost to denote both costs of opening
facilities and connection costs (edge lengths). All costs are non-negative.

An instance of the non-metric FL problem is a pair (G, A), where G = (F, C, E, cost) is
a facility-client graph and A ⊆ C is a subset of active clients. A feasible solution to such
instance is a set of open (purchased) facilities F ′ ⊆ F and a subset of purchased edges E′ ⊆ E,
such that any active client c ∈ A is connected by a purchased edge to an open facility. The
cost of such solution is equal to

∑
f∈F ′ cost(f) +

∑
e∈E′ cost(e).

For any facility-client graph G, we define its aspect ratio ∆G as the ratio of the largest to
smallest positive cost in G. These costs include both facilities and connection costs.1 Note
that the aspect ratio is a property of G and is independent of the set of active clients A.

Online Scenario. In an online variant of the FL problem, the facility-client graph G is
known in advance, but neither elements of A nor its cardinality are known up-front by
an online algorithm Alg. The clients from A appear one by one. Upon seeing a new active
client, Alg may purchase additional facilities and edges, with the requirement that facilities
and edges purchased so far must constitute a feasible solution to all presented active clients.
The total cost of Alg is denoted by Alg(G, A). (We sometimes use Alg(G, A) to also denote
the solution computed by Alg.) Purchase decisions are final and cannot be revoked later.
The goal is to minimize the competitive ratio, defined as sup(G,A){Alg(G, A)/Opt(G, A)},
where Opt is the optimal (offline) algorithm.

1.1 Related Work
Most of the prior work has been devoted to the offline scenario. While the metric variant
of the FL problem admits O(1)-approximation algorithms [9, 10, 11, 18, 19, 22, 23, 24, 29],
the best approximation ratio for the non-metric one is O(log |A|) [17], and it cannot be
asymptotically improved unless NP ⊆ DTIME[nO(log log n)] [12]. For a more comprehensive
treatment of the offline scenario, including a multitude of variants, we refer the reader to the
entry in the Encyclopedia of Algorithms [1] or the survey by Shmoys [28].

For the online metric FL, the problem was resolved over ten years ago by Meyerson [25] and
Fotakis [14]: the lower and upper bounds on the competitive ratio are Θ(log |A|/ log log |A|),
both for deterministic and randomized algorithms. Simpler deterministic algorithms attaining

1 In the standard definition of the aspect ratio, only distances are taken into account.

M. Bienkowski, B. Feldkord, and P. Schmidt 14:3

slightly worse competitive ratio of O(log |A|) were given by Anagnostopoulos et al. [4] and
Fotakis [13]. Note that the optimal competitive ratio in the metric case is independent of
the set C of potential clients.

1.2 Previous Work on Online Non-Metric Facility Location
For the non-metric FL, the first and currently best online algorithm was a randomized
algorithm by Alon et al. [2]. It achieves the competitive ratio of O(log |F | · log |A|). It is
based on solving a natural fractional relaxation of the problem: there is a fractional opening
variable yf for each facility f and a connection variable xc,f for a client c and a covering
facility f (facility to which c could be connected). Once a client c arrives, for each covering
facility f independently, their algorithm increases either yf or xc,f , whichever is smaller,
using multiplicative update method (see, e.g., [5]). The client c is considered fractionally
served once the sum of terms min{xc,f , yf} over all covering facilities is at least 1. The
resulting competitive ratio is O(log |F |).

The computed fractional solution can be then rounded using a random threshold θf

common for an opening variable yf and all connection variables involving facility f . Once
any variable exceeds its threshold, it is rounded up to 1 and the corresponding object (facility
or connection) is purchased. Dynamically adjusting θf to have expectation Θ(1/ log |A|)
guarantees that the resulting integral solution is feasible with high probability and the
rounding part incurs a factor of O(log |A|) in the competitive ratio.

To the best of our knowledge, no non-trivial deterministic algorithm was published so far.
In particular, the online network design problems (including the non-metric FL problem)
have been listed as unresolved challenges by Buchbinder and Naor [8, Section 1.1]. That
said, the non-metric facility location can be reduced to a set cover. A usable reduction (not
inducing an exponential blow-up of the input size) was given by Kolen and Tamir [20]: it
preserves the solution costs up to constant factors and creates a set cover instance consisting
of m = Θ(|F |+ |C| · log ∆G) sets and n = Θ(|C| · log ∆G) elements. Using doubling techniques
described in Section 4, one could assume that ∆G = O(|F | · |C|). Applying the deterministic
algorithm for the online set cover problem by Alon et al. [3] yields a solution whose competitive
ratio is O(log m · log n) = O((log |C|+ log |F |) · (log |C|+ log log |F |)).

1.3 Our Result
In our paper, we improve the bound above, replacing the first factor of O(log |C|+ log |F |)
by O(log |F |). This is an asymptotic improvement in a typical scenario where |F | ≪ |C|.

▶ Theorem 1. There exists a deterministic polynomial-time O(log |F | · (log |C|+log log |F |))-
competitive algorithm for the online non-metric facility location problem on set F of facilities
and set C of clients.

Our algorithm attains a nearly optimal competitive ratio, as no deterministic algorithm
can have a ratio smaller than Ω(log |F | · log |C|/(log log |F |+log log |C|)). This follows by the
lower bound for the online set cover problem [2, 3] and holds even for uniform facility costs.
If we restrict our attention to the polynomial-time deterministic solution, then a stricter
lower bound of Ω(log |F | · log |C|) holds (assuming BPP ̸= NP) [21].

Challenges. The description of the randomized algorithm by Alon et al. [2] given above
seems deceptively simple, but it hides an important and subtle property, implicitly exploited
by the authors. Namely, the threshold θf is common for facility f and all connections to it.

STACS 2021

14:4 A Nearly Optimal Deterministic Online Algorithm for Non-Metric Facility Location

This ensures the necessary dependency: once min{xc,f , yf} ≥ θf , the rounding purchases
both facility f and a connection from c to f . (Note that the left-hand side of this inequality
is the amount that their fractional solution controls.)

It is unclear how to directly extend this property to deterministic rounding. A straightfor-
ward attempt would be to focus on facilities only and round them in a deterministic fashion
ensuring the necessary coverage of each client. However, neglecting the connection costs in
the rounding process easily leads to a situation, where the facilities are rounded “correctly”,
but the cost of connecting a client to the closest open facility in the integral solution is
incomparably larger than the corresponding fractional cost.

We note that all known deterministic schemes that round fractional solutions generated
by the multiplicative updates operate in rather limited scenarios, where elements have to be
covered or packed and all important interactions between elements are handled at the time
of constructing the fractional solution. This is the case for the deterministic rounding for the
set cover problem [3, 7] and the throughput-competitive virtual circuit routing problem [6, 8].
These methods are based on derandomizing the method of pessimistic estimators [27] in
an online manner, by transforming a pessimistic estimator into a potential function [30] that
can be controlled by the deterministic rounding process.

Our Techniques. In our solution, we create a new linear relaxation of the problem. We
first round the graph distances to powers of 2. For any client, we cluster facilities that have
the same distance to this client. (Note that such clusters are client-dependent.) To solve
the fractional variant, we run two schemes in parallel: we increase connection variables xc,t

corresponding to clusters at distance t, and increase facility variables yf for all facilities in
“reachable” clusters (where the corresponding connection variables are 1). The increases in
these variables use two different frameworks: dual fitting for linear increases of connection
variables and a primal-dual scheme involving multiplicative updates for facility variables.
Ensuring an appropriate balance between these two different types of updates is one of the
technical difficulties that we tackle in this paper.

We stop increasing variables once there exists a collection of clusters that are both
“fractionally open” (sum of variables yf within these clusters is Ω(1)) and “reachable” by
the considered client. To argue about the existence of such a collection, we use both LP
inequalities and structural properties of our fractional algorithm.

Finally, we construct a deterministic rounding routine. We focus on facilities only,
neglecting whether particular clients are active or not and how far they are from a given
facility. However, we strengthen rounding properties, ensuring, for (some) collections of
clusters, that if the sum of opening variables in these collections is Ω(1), then the integral
solution contains an open facility in one of these clusters. This ensures that, for a considered
client c, the integral solution contains a facility whose distance from c is asymptotically not
larger than the cost invested for connecting c in the fractional solution. Ultimately, this
yields the desired dependency between facilities and connections.

Note about Up-Front Knowledge of the Facility-Client Graph. Unlike for the randomized
variant, obtaining sub-linear guarantees for a deterministic solution requires knowing a priori
the set of potential client-facility connections. To see this, consider a graph of |F | facilities
with unit opening costs and the set of |C| = |F | clients. The graph edges are constructed
dynamically as clients are activated and all revealed possible connections are of cost 0. The
first active client can be connected to all facilities. Each subsequent client can be connected
to all facilities but the ones already open by an algorithm. This way an online algorithm

M. Bienkowski, B. Feldkord, and P. Schmidt 14:5

needs to eventually open all facilities, for a total cost of |F |. On the other hand, the offline
optimal algorithm can open the last facility opened by an online algorithm and connect
all clients to this facility paying just 1. Thus, under the unknown-graph assumption, the
competitive ratio of any deterministic algorithm would be at least |F |.

1.4 Preliminaries and Paper Organization

Let TG contain all powers of two between the largest and the smallest positive distance
(inclusively) and also number 0. In particular, TG contains all distances in G and |TG| ≤
2 + log ∆G. Whenever G is clear from the context, we drop the G subscript.

We may assume that F contains at least two facilities and C contains at least two clients,
as otherwise the problem becomes trivial. For a facility f ∈ F , let set(f) be the set of clients
that may be connected to f . For any client c ∈ C and distance t ∈ T , cluster Fc,t contains
all facilities that are incident to c using edges of cost t. Note that for a fixed c, clusters Fc,t

are disjoint (no client has two connections of different costs to the same facility).

Powers-of-Two Assumption. In the whole paper, we assume that all facilities and connection
costs are either equal to 0 or are powers of 2 and are at least 1. This can be easily achieved
by initial scaling of positive costs and distances, so that they are at least 1 and rounding
positive ones up to the nearest power of two. This transformation changes the competitive
ratio at most by a factor of 2.

Paper Overview. Our core approach is to solve a carefully crafted fractional relaxation of
the problem (Section 2), and then round it in a deterministic fashion (Section 3). This way,
we obtain a deterministic online algorithm Int that on any input (G = (F, C, E, cost), A)
computes a feasible solution of cost

Int(G, A) ≤ O(log |F | · (log |C|+ log log ∆G)) ·Opt(G, A) + 2 ·max
f∈F

cost(f).

Moreover Int runs in time poly(|G|, |A|, maxe∈E cost(e), maxf∈F cost(f)). In Section 4, we
apply doubling and edge pruning techniques, to get rid of dependencies on costs in the
running time and on ∆G in the competitive ratio, achieving guarantees of Theorem 1.

Application to Node-Weighted Steiner Tree. Our result has an immediate application
to the online node-weighted Steiner tree (NWST) problem. Namely, when we combine
Theorem 1 with the randomized solution for NWST by Naor et al. [26], we obtain the first
deterministic algorithm with polylogarithmic competitive ratio (see Section 5).

2 Fractional Solution

We fix an instance (G = (F, C, E, cost), A) of the online non-metric facility problem. For
each facility f , we introduce an opening variable yf ≥ 0 (fractional opening of f) and for
each client c and each distance t ∈ T a connection variable xc,t ≥ 0. Intuitively, xc,t denotes
how much, fractionally, client c invests into connections to facilities from cluster Fc,t. For
any set F ′ of facilities we use y(F ′) as a shorthand for

∑
f∈F ′ yf .

STACS 2021

14:6 A Nearly Optimal Deterministic Online Algorithm for Non-Metric Facility Location

Primal Program. After k clients from A arrive (we denote their set by Ak), we consider
the following linear program Pk.

minimize
∑
f∈F

cost(f) · yf +
∑

c∈Ak

∑
t∈T

t · xc,t

subject to xc,t ≥ zc,t for all c ∈ Ak, t ∈ T ,

y(Fc,t) ≥ zc,t for all c ∈ Ak, t ∈ T,∑
t∈T

zc,t ≥ 1 for all c ∈ Ak,

and non-negativity of all variables.

Serving Constraints. The LP constraints combined are equivalent to the set of the following
(non-linear) requirements∑

t∈T

min {xc,t, y(Fc,t)} ≥ 1 for all c ∈ Ak. (1)

We call (1) for client c the serving constraint for client c. In our description, we omit
variables zc,t and the original constraints, ensuring only that the serving constraints hold
and implicitly setting zc,t = min{xc,t, y(Fc,t)}.

The LP above is indeed a valid relaxation of the FL problem. To see this, take any
feasible integral solution. For any facility f opened in the integral solution, set variable yf

to 1. For each client c connected to facility f , set variable xc,τ to 1, where τ = cost(f, c).
This guarantees that min{xc,τ , y(Fc,τ)} = 1, and thus the serving constraint (1) is satisfied
for each client c.

Dual Program. The program Dk dual to Pk is

maximize
∑

c∈Ak

γc

subject to γc ≤ αc,t + βc,t for all c ∈ Ak, t ∈ T ,

αc,t ≤ t for all c ∈ Ak, t ∈ T ,∑
c∈set(f) ∩ Ak

βc, cost(f,c) ≤ cost(f) for all f ∈ F ,

and non-negativity of all variables.

2.1 Overview
Our algorithm Frac creates a solution to Pk, ensuring that the serving constraint (1) holds
for all clients c ∈ Ak. As outlined in the introduction, the computed solution guarantees
some additional properties that are useful for the rounding part later.

Whenever a client c arrives, Frac increases connection variables xc,t one by one starting
from the smallest t, at the pace proportional to 1/t. We ensure that xc,t ∈ [0, 1], i.e., once
any of these variables reaches 1, Frac stops increasing them. A distance t, for which xc,t = 1,
is called saturated.

In parallel to manipulating variables xc,t, Frac increases all variables yf for facilities
reachable from client c using saturated distances. The variables yf are increased using the
multiplicative update rule [5] (scaled appropriately to take costs of facilities into account).

M. Bienkowski, B. Feldkord, and P. Schmidt 14:7

Together with the solution to Pk, Frac also constructs an almost-feasible solution to Dk.
That is, its solution to Dk is feasible when all dual variables are scaled down by a factor of
O(log |F |). By the weak duality, the scaled-down value of this solution serves as a lower-bound
for the optimum. Thus, as typical for the primal-dual type of analysis, the dual variables
can be thought of as budgets whose increase balances the increase of primal variables.

2.2 Algorithm FRAC
At the very beginning, before any client arrives, Frac sets all variables yf to 0 for all
positive-cost facilities and to 1 for zero-cost ones. There are no other variables as the set A0
of active clients is empty. Note that the dual program already contains the last type of
constraints, but the sums on their left-hand sides range over empty sets of β variables, and
hence these constraints are trivially satisfied.

Whenever a new client c arrives in step k, Frac updates the primal (dual) programs
from Pk−1 (Dk−1) to Pk (Dk), and then computes a feasible solution to Pk (based on the
already created solution to Pk−1) and a nearly-feasible solution to Dk.

New variables in primal and dual programs: Frac sets xc,t ← 0 for all t ∈ T \{0} and sets
xc,0 ← 1. In the dual solution, it sets γc ← 0, αc,t ← 0 and βc,t ← 0 for all t ∈ T .

Update primal program: A new serving constraint
∑

t∈T min{xc,t, y(Fc,t)} ≥ 1 appears in
the primal program (and is violated unless y(Fc,0) ≥ 1). As we never decrease primal
variables, the serving constraints (1) that existed already in Pk−1 are satisfied and will
not become violated.

Update dual program: New constraints appear in the dual program and new variables βc,t

appear on the left-hand side of the already existing inequalities. Since the new variables
are initialized to 0, the validity of all dual constraints is unaffected.

Update primal and dual solutions: Let T 1
c = {t ∈ T : xc,t ≥ 1} be the set of saturated

distances, i.e., initially Frac sets T 1
c ← {0}. While the serving constraint for c is violated,

Frac executes the update operation consisting of the following steps:
1. Set γc ← γc + 1.
2. For each t ∈ T , independently, adjust one dual variable: if t ∈ T 1

c , then set βc,t ← βc,t+1
and otherwise set αc,t ← αc,t + 1.

3. If T 1
c ⊊ T , choose active distance t∗ ← min(T \ T 1

c) to be the smallest non-saturated
distance, and then set xc,t∗ ← xc,t∗ + 1/t∗. (Note that 0 ∈ T 1

c , and thus t∗ > 0.)
4. For any facility f ∈

⊎
t∈T 1

c
Fc,t, independently, perform augmentation of yf , setting

yf ←
(

1 + 1
cost(f)

)
· yf + 1

|F | · cost(f) .

5. Update the set of saturated distances, setting T 1
c ← {t ∈ T : xc,t ≥ 1}.

We now argue that if variable yf is augmented in Step 4, then cost(f) > 0 (i.e., Step 4 is
well defined). Let τ = cost(c, f). As yf is augmented, the distance τ is saturated (xc,τ = 1).
If cost(f) = 0, then yf would have been initialized to 1, and then y(Fc,τ) ≥ 1, in which case
the serving constraint for c would be already satisfied.

Sidenote about T. For the sake of coherence and more streamlined analysis, Frac increases
also connection variables xc,t to empty sets Fc,t, i.e., invests into distances to non-existing
facilities. Fixing this overspending would not lead to asymptotic improvement of the
performance.

STACS 2021

14:8 A Nearly Optimal Deterministic Online Algorithm for Non-Metric Facility Location

2.3 Structural Properties
We focus on a single client c processed by Frac. We start with a property of connection
variables xc,t. The distances from T that are neither saturated nor active are called inactive.
The following claim follows by an immediate induction on update operations performed by
Frac.

▶ Lemma 2. At all times when a client c is considered, xc,t ∈ [0, 1] for any t ∈ T . In
particular, xc,t = 1 for any saturated distance t ∈ T 1

c . Furthermore,
1. either all distances are saturated,
2. or there exists an active distance t∗ > 0, such that (i) all smaller distances are saturated,

and (ii) all larger distances are inactive and the corresponding variables xc,t are equal to
zero.

Augmentation is performed on variables yf corresponding to facilities whose distance from c

is saturated.

▶ Lemma 3. On any input (G = (F, C, E, cost), A), Frac returns a feasible solution and
runs in time poly(|G|, |A|, maxe∈E cost(e), maxf∈F cost(f)).

Proof. Fix any client c ∈ A. By the definition of Frac, it takes t update operations to
increase value xc,t from 0 to 1. Hence, after

∑
t∈T t < 2·maxe∈E cost(e) update operations, all

connection variables are equal to 1. From that point on, all variables yf for f ∈
⊎

t∈T Fc,t are
augmented in each update operation. Each variable yf can be augmented at most |F | ·cost(f)
times till it reaches or exceeds 1. That is, after at most 2·maxe∈E cost(e)+|F |·maxf∈F cost(f)
update operations, the serving constraint is satisfied, i.e., the generated solution is feasible. ◀

The following lemma shows the crucial property of Frac. Namely for any client c,
there exist a “good” distance τ , such that the collection of clusters Fc,t at distance t ≤ τ is
together fractionally half-open and that Frac invested Ω(τ) into connecting client c. For
any client c and distance t ∈ T , we define a set Sc,t to be a collection of clusters alluded to
in the introduction.

Sc,t =
⊎

t′∈T : t′≤t

Fc,t′

▶ Lemma 4. Once Frac finishes serving client c, there exists a distance τ ∈ T , such that
y(Sc,τ) ≥ 1/2 and

∑
t∈T t · xc,t ≥ τ/2.

Proof. We consider the state of variables once Frac finishes serving client c. Let t∗ > 0
be the largest distance from T for which xc,t∗ > 0. As the serving constraint for client c is
satisfied, we have

1 ≤
∑
t∈T

min {xc,t, y(Fc,t)} = min {xc,t∗ , y(Fc,t∗)}+
∑

t∈T : t<t∗

min {xc,t, y(Fc,t)} . (2)

We pick τ depending on the value of the last term of (2).
If min{xc,t∗ , y(Fc,t∗)} ≥ 1/2, we set τ = t∗. Then, y(Sc,τ) ≥ y(Fc,τ) ≥ min{xc,τ , y(Fc,τ)}

≥ 1/2, and the first condition of the lemma follows. Furthermore,
∑

t∈T t·xc,t ≥ τ ·xc,τ ≥ τ/2.
Otherwise, min {xc,t∗ , y(Fc,t∗)} < 1/2, and then, by (2),

∑
t∈T : t<t∗ min{xc,t, y(Fc,t)} ≥

1/2. In such case, we choose τ as the largest distance from T smaller than t∗. Then

y(Sc,τ) =
∑

t∈T : t≤τ

y(Fc,t) ≥
∑

t∈T : t≤τ

min{xc,t, y(Fc,t)} ≥ 1/2,

M. Bienkowski, B. Feldkord, and P. Schmidt 14:9

i.e., the first condition of the lemma holds. By Lemma 2, either t∗ is active at the end of
processing c or all distances become saturated and t∗ is the largest distance from T . In either
case, xc,t = 1 for any distance t < t∗, and thus in particular xc,τ = 1. Hence, the second part
of the lemma holds as

∑
t∈T t · xc,t ≥ τ · xc,τ = τ . ◀

2.4 Dual Solution is Almost Feasible
Using primal-dual analysis, we may show that the generated dual solution violates each
constraint at most by a factor of O(log |F |).

▶ Lemma 5. For any facility f , Frac augments yf at most O(log |F |) · cost(f) times.

Proof. First, we observe that variable yf can be augmented only if prior to augmentation it
is smaller than 1. To show that, observe that the augmentation of yf occurs only when Frac
processes an active client c ∈ set(f). Let τ = cost(f, c), i.e., f ∈ Fc,τ . As Frac augments yf ,
the distance τ must be saturated, i.e., xc,τ = 1. On the other hand, the serving constraint (1)
is not satisfied when yf is augmented, and thus min{xc,τ , y(Fc,τ)} < 1 which implies that
yf must be strictly smaller than 1.

In particular, if cost(f) = 0, then yf is set to 1 immediately at the beginning, and hence
no augmentation of yf is ever performed, and the lemma follows trivially. As all non-zero
costs are at least 1, below we assume cost(f) ≥ 1.

During the first cost(f) augmentations, the value of yf increases from 0 to at least 1/|F |
(due to additive increases). Next, during the subsequent ⌈log1+1/cost(f) |F |⌉ augmentations,
the value of yf reaches at least 1 (due to multiplicative increases), and hence it will not be
augmented further. In total, the number of augmentations is upper-bounded by cost(f) +
⌈log1+1/cost(f) |F |⌉ = O(log |F |) · cost(f). In the last relation, we used cost(f) ≥ 1. ◀

▶ Lemma 6. Frac violates each dual constraint at most by a factor of O(log |F |).

Proof. We show the claim for all types of constraints in the dual program.
1. Each dual constraint γc ≤ αc,t + βc,t always holds with equality as together with γc, for

each t ∈ T , Frac increments either αc,t or βc,t.
2. Consider a constraint αc,t ≤ t. Initially αc,t = 0 when client c appears, and it is

incremented in an update operation only if distance t is not saturated. Distances are
processed from the smallest to the largest, and it takes exactly t′ update operations
for a distance t′ ∈ T to become saturated. Therefore, αc,t can be incremented at most∑

t′∈T :t′≤t t′ times. If t = 0, then αc,t = 0 trivially. Otherwise, we use the fact that
T \ {0} contains only powers of 2, and hence αc,t ≤

∑
t′∈T :t′≤t t′ < 2 · t.

3. Finally, fix any facility f∗ ∈ F and consider the constraint
∑

c∈set(f∗) ∩ Ak
βc, cost(f∗,c) ≤

cost(f∗). We want to show that this constraint is violated at most by a factor of O(log |F |),
i.e., that∑

c∈set(f∗) ∩ Ak

βc, cost(f∗,c) ≤ O(log |F |) · cost(f∗). (3)

The left-hand side of (3) is initially 0 and it is incremented only when Frac processes
some active client c∗ ∈ set(f∗). In a single update operation, Frac may increment
multiple β variables, but only one of them, namely βc∗, cost(f∗,c∗), contributes to the
growth of the left-hand side of (3). If variable βc∗, cost(f∗,c∗) is incremented, it means that
the distance τ = cost(f∗, c∗) is already saturated, i.e., τ ∈ T 1

c∗ . Thus, in the same update
operation, Frac augments all variables yf for f ∈

⊎
t∈T 1

c∗
Fc∗,t. This set of facilities

includes cluster Fc∗,τ and thus also facility f∗. By Lemma 5, the augmentation of yf∗

may happen at most O(log |F |) · cost(f∗) times, which implies our claim. ◀

STACS 2021

14:10 A Nearly Optimal Deterministic Online Algorithm for Non-Metric Facility Location

2.5 Competitive Ratio of FRAC

Finally, we show that in each update operation the growth of the primal cost is at most
constant times the growth of the dual cost. This will imply the competitive ratio of Frac.

▶ Lemma 7. For any step k, the value of the solution to Pk computed by Frac is at most 3
times the value of its solution to Dk.

Proof. As the values of both solutions are initially zero, it suffices to analyze the growth of
the primal and dual objectives for a single update operation. The value of the dual solution
grows by 1 as γc is incremented only for the requested client c. Thus, it is sufficient to show
that the primal solution increases at most by 3.

By yf , xc,t and T 1
c , we understand the values of these variables before an update operation.

Let F1 =
⊎

t∈T 1
c

Fc,t. As the serving constraint for client c is not satisfied at that point,

1 >
∑
t∈T

min {xc,t, y(Fc,t)} ≥
∑
t∈T 1

c

min {xc,t, y(Fc,t)} ≥
∑
t∈T 1

c

y(Fc,t) = y(F1). (4)

In the last inequality we used that (by Lemma 2), T 1
c = {t ∈ T : xc,t = 1}. The last equality

follows as sets Fc,t are disjoint for different t.
Within a single update operation, let ∆xc,t and ∆yf be the increases of variables xc,t

and yf , respectively. By Lemma 2, Frac increases one connection variable xc,t∗ for an act-
ive distance t∗ (and no connection variable if there is no active distance) and performs
augmentations of yf for all f ∈ F1. The increase of the primal value is then

∆P =
∑
t∈T

t ·∆xc,t +
∑

f∈F1

cost(f) ·∆yf ≤ 1 +
∑

f∈F1

cost(f) ·
(

yf

cost(f) + 1
|F | · cost(f)

)

= 1 + y(F1) + |F1|
|F |

< 3,

where the last inequality follows by (4). ◀

▶ Lemma 8. For any input (G = (F, C, E, cost), A), it holds that Frac(G, A) ≤ O(log |F |) ·
Opt(G, A).

Proof. Let k be the total number of active clients in A, and let val(Pk) and val(Dk) be the
values of the final primal and dual solutions generated by Frac. Then,

Frac(G, A) = val(Pk) ≤ 3 · val(Dk) (by Lemma 7)
≤ O(log |F |) ·Opt(G, A) (by Lemma 6 and weak duality). ◀

3 Deterministic Rounding

Now we define our deterministic algorithm Int, which rounds the fractional solution computed
by Frac. For a client c ∈ A, Int observes the actions of Frac while processing c and on this
basis makes its own decisions. First, Int processes augmentations of variables yf performed
by Frac, and purchases some facilities. Once Frac finishes handling client c, Int connects c

to the closest open facility. (We show below that such facility exists.)

M. Bienkowski, B. Feldkord, and P. Schmidt 14:11

3.1 Purchasing Facilities: Properties of INTFAC
Purchasing facilities by Int is based solely on graph G and on updates of variables yf

produced by Frac. In particular, it neglects whether a given client is active or not. We use
integral variables ŷf ∈ {0, 1} to denote whether Int opened facility f . Furthermore, for any
set F ′ we use ŷ(F ′) as a shorthand for

∑
f∈F ′ ŷf .

The following lemma is an adaptation of the deterministic rounding routine for the set
cover problem by Alon et al. [3] and its proof is postponed to Subsection 3.3.

▶ Lemma 9. Fix any input (G = (F, C, E, cost), A). Initially, ŷf = yf = 0 for any
f ∈ F . There exists a deterministic polynomial-time online algorithm IntFac that transforms
increments of fractional variables yf to increments of integral variables ŷf ∈ {0, 1}, so that

condition y(Sc,t) ≥ 1/2 implies ŷ(Sc,t) ≥ 1 for any client c ∈ C (active or inactive) and
any t ∈ T ,∑

f∈F cost(f) · ŷf ≤ O(log |C × T |) ·
∑

f∈F cost(f) · yf + 2 ·maxf∈F cost(f).

3.2 Connecting Clients
Once Int purchases facilities using deterministic routine IntFac (cf. Lemma 9), it connects
client c to the closest open facility. Now we show that such a facility indeed exists and we
bound the competitive ratio of Int.

▶ Lemma 10. On any input (G, A), the solution generated by Int is feasible and the total
cost of connecting clients by Int is at most 2 · Frac(G, A).

Proof. Fix any client c ∈ A. By Lemma 4, there exists a distance τ ∈ T such that
y(Sc,τ) ≥ 1/2 and

∑
t∈T t · xc,t ≥ τ/2. By Lemma 9, once Int purchases facilities, it holds

that ŷ(Sc,τ) ≥ 1. It means that at least one facility is opened in set Sc,τ , i.e., at distance at
most τ from c.

Therefore, Int is feasible and by connecting client c to the closest open facility, it ensures
that the connection cost is at most τ ≤ 2 ·

∑
t∈T t · xc,t. The proof is concluded by observing

that
∑

t∈T t·xc,t is the connection cost of Frac that can be attributed solely to the connection
of client c. ◀

▶ Lemma 11. For any input (G = (F, C, E, cost), A), it holds that Int(G, A) ≤ q · log |F | ·
(log |C|+ log log ∆G) ·Opt(G, A) + 2 ·maxf∈F cost(f), where q is a universal constant not
depending on G or A. Furthermore, Int runs in time polynomial in |G|, |A|, maxe∈E cost(e),
and maxf∈F cost(f).

Proof. Let ρ = maxf∈F cost(f). Then,

Int(G, A) ≤
∑
f∈F

cost(f) · ŷf + 2 · Frac(G, A) (by Lemma 10)

≤ O(log |C × T |) · Frac(G, A) + 2 · ρ (by Lemma 9)
= O((log |C|+ log |T |) · log |F |) ·Opt(G, A) + 2 · ρ (by Lemma 8).

The bound on the cost of Int is concluded by using |T | ≤ 2 + log ∆G.
By Lemma 3, Frac running time is poly(|G|, |A|, maxe∈E cost(e), maxf∈F cost(f)). On

top of that, Int adds its own computations (in particular the rounding scheme of IntFac),
whose runtime is polynomial in |G| and |A|. This implies the second part of the lemma (the
running time of Int). ◀

STACS 2021

14:12 A Nearly Optimal Deterministic Online Algorithm for Non-Metric Facility Location

3.3 Purchasing Facilities: Algorithm INTFAC
We start with a technical claim and later we define our rounding procedure IntFac.

▶ Lemma 12. Fix any q ∈ [0, 1/2] and any r ≥ 0. Let X be a binary variable being 0 with
probability p > 0. Then, E[exp(q ·X)] ≤ exp(−(3/2) · q · ln p).

Proof. Using the definition of X, we have

E[exp(q ·X)] = p · e0 + (1− p) · eq = exp(ln p) + (1− exp(ln p)) · eq

≤ 1 + ln p− eq · ln p = 1− ln p · (eq − 1)
≤ 1− (3/2) · q · ln p

≤ exp(−(3/2) · q · ln p).

In the first inequality, we used that ex · 1 + (1− ex) · z ≤ (1 + x) · 1 + (−x) · z for any x ≤ 0
and z ≥ 1 and in the second one, we used that ex − 1 ≤ 3x/2 for any x ∈ [0, 1/2]. ◀

Algorithm Description. As we mentioned earlier, our routine IntFac for rounding facilities
is an adaptation of the deterministic rounding procedure for the set cover problem by Alon
et al. [3]. On the basis of the facility-client graph G, we define the set C × T of elements.
Intuitively, our solution Frac “covers” an element (c, t) ∈ C × T by fractionally opening
facilities from Sc,t. The routine IntFac deterministically rounds these covering choices.

Let ℓ = |C × T |, ρ = maxf∈F cost(F) and b = 6 · ln ℓ = O(log |C × T |). We consider the
potential function Φ = Φ1 + Φ2, where

Φ1 =
∑

(c,t) : ŷ(Sc,t)=0

ℓ 4·y(Sc,t) and Φ2 = ℓ · exp

∑
f∈F

cost(f)
2ρ

· (ŷf − b · yf)

 .

Assume that Frac augmented variable yf . Then our algorithm IntFac chooses whether
to set ŷf to 1 or not (purchase f or not), so that the potential Φ does not increase. (We
again emphasize that this choice neglects the current set of active clients.)

Correctness and Performance. In the lemma below, we show that IntFac is well defined,
i.e., it is possible to fix variable ŷf , so that the potential Φ does not increase. This implies
that both Φ1 and Φ2 remain upper-bounded, which can be in turn used to show properties
of Lemma 9.

▶ Lemma 13. Assume yf∗ is increased by δ. If ŷf∗ = 1, then Φ does not increase. Otherwise,
there is a choice to either set ŷf∗ to 1 or not, so that Φ does not increase.

Proof. By yf and ŷf , we mean the values of these variables before an update operation of
Frac.

First, we assume ŷf∗ = 1. Increasing variable yf∗ affects values of y(Sc,t) for f∗ ∈ Sc,t:
all such y(Sc,t) increase by δ. However, for any element (c, t), such that f∗ ∈ Sc,t, it holds
that ŷ(Sc,t) ≥ ŷf∗ = 1, i.e., element (c, t) is not counted in the sum occurring in Φ1. Thus,
increasing variable yf∗ does not affect Φ1. Furthermore, increasing yf∗ and keeping ŷf∗

unchanged can only decrease Φ2. Thus, Φ = Φ1 + Φ2 does not increase when ŷf∗ = 1.
Second, we consider the case ŷf∗ = 0. To show that either setting ŷf∗ to 1 or leaving it

at 0 does not increase the potential, we use the probabilistic method and show that if we
pick such action randomly (setting ŷf∗ = 1 with probability 1− ℓ−4·δ), then, in expectation,
neither Φ1 nor Φ2 increases.

M. Bienkowski, B. Feldkord, and P. Schmidt 14:13

As observed above, only elements (c, t) for which Sc,t contain f∗ are affected by the
increase of yf∗ and possible change of ŷf∗ . Let Q = {(c, t) : f∗ ∈ Sc,t and ŷ(Sc,t) = 0}
be the set of such elements contributing to Φ1.
Fix any element (c, t) ∈ Q. Its initial contribution towards Φ1 is ℓ 4·y(Sc,t) and when yf∗

increases, the contribution grows to ℓ 4·(y(Sc,t)+δ). However, with probability 1− ℓ−4·δ,
variable ŷf∗ is set to 1, thus ŷ(Sc,t) grows from 0 to 1, and in effect element (c, t) stops
contributing to Φ1. Hence, the expected final contribution of element (c, t) towards Φ1
is ℓ 4·(y(Sc,t)+δ) · ℓ−4·δ + 0 · (1− ℓ−4·δ) = ℓ 4·y(Sc,t), i.e., is equal to its initial contribution.
Therefore, in expectation, the value of Φ1 is unchanged.
It remains to bound the expected value of Φ2. Let Ŷ be the random variable equal to
the value of ŷf∗ after the random choice (i.e., Ŷ = 1 with probability 1− ℓ−4·δ) and Φ′

2
denote the value of Φ2 after increasing yf∗ and after the random choice. Using yf∗ = 0,
we obtain

Φ′
2 = ℓ · exp

∑
f∈F

cost(f)
2ρ

· (ŷf − b · yf) + cost(f∗)
2ρ

· Ŷ − b · cost(f∗)
2ρ

· δ

= Φ2 · exp

(
cost(f∗)

2ρ
· Ŷ

)
· exp

(
−b · cost(f∗)

2ρ
· δ

)
.

To estimate E[Φ′
2], we upper-bound the expected value of expression exp(Ŷ ·cost(f∗)/(2ρ)),

using Lemma 12 with q = cost(f∗)/(2ρ) ≤ 1/2 and p = ℓ−4·δ, obtaining that

E
[
exp

(
cost(f∗)

2ρ
· Ŷ

)]
≤ exp

(
− (3/2) · cost(f∗)

2ρ
· ln p

)
= exp

(
6 · ln ℓ · cost(f∗)

2ρ
· δ

)
.

Therefore, E[Φ′
2] ≤ Φ2 and the lemma follows. ◀

Proof of Lemma 9. Initially, all variables yf and ŷf are zero, and thus Φ =
∑

(c,t)∈C×T ℓ0 +
ℓ · exp(0) = 2 · ℓ. By Lemma 13, the potential never increases. Since Φ2 is non-negative,
any summand of Φ1 is always at most 2 · ℓ ≤ ℓ2. Therefore, 4 · y(Sc,t) ≥ 2 always implies
ŷ(Sc,t) > 0, i.e., the first part of the lemma follows.

To show the second part, we again use that Φ = Φ1 + Φ2 ≤ 2 · ℓ at any time. As Φ1 is
non-negative, Φ2 ≤ 2 · ℓ. Substituting the definition of Φ2, dividing by ℓ, and taking natural
logarithm of both sides yields

1
2ρ
·

∑
f∈F

(ŷf · cost(f)− b · yf · cost(f)) ≤ ln(2) < 1.

Therefore,
∑

f∈F ŷf · cost(f) ≤ 2ρ + b ·
∑

f∈F yf · cost(f). ◀

4 Handling Large Aspect Ratios

The guarantee of Lemma 11 has two deficiencies: (i) the bound on the competitive ratio of
Int depends on the aspect ratio of G and on the cost of the most expensive facility, (ii) the
running time of Int depends on the maximal cost in graph G (which can be exponentially
large in the input description). We show how to use cost doubling and edge pruning to handle
these issues, creating our final deterministic solution Det and proving the main theorem
(restated below).

▶ Theorem 1. There exists a deterministic polynomial-time O(log |F | · (log |C|+log log |F |))-
competitive algorithm for the online non-metric facility location problem on set F of facilities
and set C of clients.

STACS 2021

14:14 A Nearly Optimal Deterministic Online Algorithm for Non-Metric Facility Location

Proof. Fix facility-client graph G = (F, C, E, cost) for the non-metric facility location
problem. Recall that we assumed that all non-zero costs and distances in G are powers of 2
and are at least 1. Let R = log |F | · (log |C|+ log log(|F | · |C|)).

We now construct a deterministic algorithm Det which is O(R)-competitive on an in-
put (G, A). Let q be the constant from Lemma 11. Det operates in phases, numbered from 0.
In phase j, it executes the following operations.

1. Det pre-purchases all facilities and edges of G whose cost is smaller than 2j/(|F | · |C|).
2. Det creates an auxiliary facility-client graph G̃j applying the following modifications

to G.
First, Det creates graph Gj containing only edges and facilities from G whose individual
cost is at most 2j . It also removes connections to facilities that have been removed in
this process.
Second, the costs of all facilities and edges that have been pre-purchased by Det are
set to zero in Gj . In a result, Gj is a sub-graph of G with adjusted distances and
costs of facilities, has the same set of clients, its set of facilities is a subset of F , and
∆Gj

≤ |F | · |C|.
Third, G̃j is the modified version of Gj , where all costs have been scaled down, so that
the smallest positive cost is equal to 1. We denote the scaling factor by hj ≤ 1.

3. Det simulates algorithm Int on input (G̃j , A). That is, for a client c ∈ A, Det verifies
whether the overall cost of Int (including serving c) remains at most hj · (q ·R + 2) · 2j .
In such case, Det outputs the choices of Int for client c as its own. We emphasize that
Int is run also on clients that have been already served in the previous phases; in effect,
Det may purchase the same facilities or connections multiple times.

4. Eventually, either the sequence A of active clients ends and the total cost of Int on
(G̃j , A) is at most hj ·(q ·R+2) ·2j (in which case Det terminates as well) or the purchases
made by Int, while handling a client c ∈ A, caused its cost to exceed hj · (q ·R + 2) · 2j .
(This includes the special case where c is disconnected from all facilities in G̃j , because all
edges incident to c in G were either more expensive than 2j or were leading to facilities
more expensive than 2j .) In the case of exceeded cost, Det disregards the decisions of
Int for client c, terminates Int, and starts phase j + 1, processing also all clients that
were already served in phase j.

We now analyze the performance of Det. Let k = ⌈log(Opt(G, A))⌉ ≥ 0. We show
that Det terminates latest in phase k. Assume that Det has not finished within phases
0, 1, . . . , k−1. In phase k, Det creates auxiliary graphs Gk and G̃k, and runs Int on graph G̃k.
Graph Gk contains all edges of G of cost at most 2k; their cost in Gk is the same or reset to zero.
As Opt(G, A) ≤ 2k, Opt(G, A) purchases only edges that are in Gk, and thus Opt(G, A) is
also a feasible solution to instance (Gk, A). Thus, Opt(Gk, A) ≤ Opt(G, A) ≤ 2k. As G̃k is
the scaled-down copy of Gk, Opt(G̃k, A) = hk ·Opt(Gk, A) ≤ hk · 2k.

Let F̃k be the set of facilities of graph G̃k and ˜costk(f) is the cost of opening facility f in
graph G̃k. Clearly, |F̃k| ≤ |F | and ˜costk(f) ≤ hk · cost(f) for any f ∈ F . By our construction,
∆G̃k

= ∆Gk
≤ |F | · |C|. Hence, Lemma 11 implies that

Int(G̃k, A) ≤ q · log |Fk| ·
(
log |C|+ log log ∆G̃k

)
·Opt(G̃k, A) + 2 · max

f∈F̃k

˜costk(f)

≤ hk · q · log |F | · (log |C|+ log log(|F | · |C|)) · 2k + 2 · hk · 2k

= hk · (q ·R + 2) · 2k.

M. Bienkowski, B. Feldkord, and P. Schmidt 14:15

Therefore, Int is not terminated prematurely within phase k because of high cost and it
finishes the entire sequence A. This implies the feasibility of Int: it serves all clients latest
in phase k.

To bound the total cost of Det, recall that at the beginning of phase j, Det purchases at
most |F |·|C| edges and at most |F | facilities, each of cost at most 2j/(|F |·|C|). The associated
overall cost is at most 2·2j . The cost of the subsequent execution of algorithm Int on G̃j is, by
our termination rule, at most hj · (q ·R + 2) ·2j , and thus the cost incurred by repeating Int’s
actions on G is at most (q·R+2)·2j . The overall cost is then Det(G, A) ≤

∑k
j=0(q·R+4)·2j =

O(R) · 2k = O(R) ·Opt(G, A) = O(log |F | · (log |C|+ log log |F |)) ·Opt(G, A).
For the running time of Det, we note that in phase j, Int is run on a graph G̃j whose

smallest cost is 1, and hence the largest cost is at most ∆G̃j
= ∆Gj ≤ |F | · |C|. Thus, by

Lemma 11, the running time of Int in a single phase is polynomial in |G| and |A|, and
the number of phases is logarithmic in the maximum cost occurring in G, and thus also
polynomial in |G|. ◀

5 Application to Online Node-Weighted Steiner Tree

Our result for the non-metric FL problem has an immediate application for the online node-
weighted Steiner tree (NWST) problem, where the graph consists of ℓ nodes and an online
algorithm is given k terminals to be connected. Namely, the randomized solution for the
online NWST problem by Naor et al. [26] is in fact a deterministic polynomial-time “wrapper”
around randomized routine solving the non-metric FL problem. To solve an instance of
the NWST problem, their algorithm constructs a sub-instance of non-metric FL with O(ℓ)
facilities, O(ℓ) potential clients, and O(k) active clients. Such instance can be solved by the
randomized algorithm of Alon et al. [2] with the competitive ratio of O(log k · log ℓ). The
wrapper adds another O(log k) factor in the ratio, resulting in an O(log2 k · log ℓ)-competitive
algorithm.

Our deterministic algorithm, when applied to this setting would be O(log2 ℓ)-competitive
on the constructed non-metric FL sub-instance. Therefore, by replacing the randomized
algorithm by Alon et al. [2] with our deterministic one, we immediately obtain the first online
deterministic solution for online NWST.

▶ Corollary 14. There exists a polynomial-time deterministic online algorithm for the node-
weighted Steiner tree problem, which is O(log k · log2 ℓ)-competitive on graphs with ℓ nodes
and k terminals.

We note that the currently best solution for the node-weighted Steiner tree is randomized
and achieves the ratio of O(log2 ℓ) [16, 15] and the best known lower bound for deterministic
algorithms is Ω(log ℓ · log k/(log log ℓ + log log k)) [26, 3].

6 Final Remarks

We presented a deterministic solution to the non-metric facility location problem, whose
performance nearly matches that of the best randomized one. By clustering facilities,
we encoded dependencies between facilities and clients, which allowed us later to apply
the rounding scheme to facilities only, neglecting the actual active clients. It would be
however interesting and useful to have an online deterministic rounding routine able to
handle such dependencies internally (e.g., by creating a pessimistic estimator that can be
computed and handled in an online manner), as it is the case for the set cover problem or
throughput-competitive virtual circuit routing [8].

STACS 2021

14:16 A Nearly Optimal Deterministic Online Algorithm for Non-Metric Facility Location

That said, we believe that our distance clustering techniques can be extended to other
network design problems for which only randomized algorithms existed so far, e.g., online
multicast problems on trees [2], online group Steiner problem on trees [2], or variants of the
facility location problem that are used as building blocks for solutions to other node-weighted
Steiner problems [15, 16]. (For these problems there are no known direct reductions to the
set cover problem). Finally, another open problem is whether these techniques could be also
applied more directly for the node-weighted Steiner tree, resulting in a better deterministic
competitive ratio.

References

1 Karen Aardal, Jaroslaw Byrka, and Mohammad Mahdian. Facility location. In Encyclopedia
of Algorithms, pages 717–724. Springer, 2016. doi:10.1007/978-1-4939-2864-4_139.

2 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. A general
approach to online network optimization problems. ACM Transactions on Algorithms, 2(4):640–
660, 2006. doi:10.1145/1198513.1198522.

3 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The online set
cover problem. SIAM Journal on Computing, 39(2):361–370, 2009. doi:10.1137/060661946.

4 Aris Anagnostopoulos, Russell Bent, Eli Upfal, and Pascal Van Hentenryck. A simple and
deterministic competitive algorithm for online facility location. Information and Computation,
194(2):175–202, 2004. doi:10.1016/j.ic.2004.06.002.

5 Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing Systems, 8(1):121–164, 2012. doi:
10.4086/toc.2012.v008a006.

6 Baruch Awerbuch, Yossi Azar, and Serge A. Plotkin. Throughput-competitive on-line routing.
In Proc. 34th IEEE Symp. on Foundations of Computer Science (FOCS), pages 32–40, 1993.
doi:10.1109/SFCS.1993.366884.

7 Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via a primal-
dual approach. Foundations and Trends in Theoretical Computer Science, 3(2–3):93–263, 2009.
doi:10.1561/0400000024.

8 Niv Buchbinder and Joseph Naor. Online primal-dual algorithms for covering and packing.
Mathematics of Operations Research, 34(2):270–286, 2009. doi:10.1287/moor.1080.0363.

9 Jaroslaw Byrka and Karen Aardal. An optimal bifactor approximation algorithm for the
metric uncapacitated facility location problem. SIAM Journal on Computing, 39(6):2212–2231,
2010. doi:10.1137/070708901.

10 Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for facility location prob-
lems. SIAM Journal on Computing, 34(4):803–824, 2005. doi:10.1137/S0097539701398594.

11 Fabián A. Chudak and David B. Shmoys. Improved approximation algorithms for the
uncapacitated facility location problem. SIAM Journal on Computing, 33(1):1–25, 2003.
doi:10.1137/S0097539703405754.

12 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634–652,
1998. doi:10.1145/285055.285059.

13 Dimitris Fotakis. A primal-dual algorithm for online non-uniform facility location. Journal of
Discrete Algorithms, 5(1):141–148, 2007. doi:10.1016/j.jda.2006.03.001.

14 Dimitris Fotakis. On the competitive ratio for online facility location. Algorithmica, 50(1):1–57,
2008. doi:10.1007/s00453-007-9049-y.

15 MohammadTaghi Hajiaghayi, Vahid Liaghat, and Debmalya Panigrahi. Near-optimal online
algorithms for prize-collecting steiner problems. In Proc. 41st Int. Colloq. on Automata, Lan-
guages and Programming (ICALP), pages 576–587, 2014. doi:10.1007/978-3-662-43948-7_
48.

https://doi.org/10.1007/978-1-4939-2864-4_139
https://doi.org/10.1145/1198513.1198522
https://doi.org/10.1137/060661946
https://doi.org/10.1016/j.ic.2004.06.002
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.1109/SFCS.1993.366884
https://doi.org/10.1561/0400000024
https://doi.org/10.1287/moor.1080.0363
https://doi.org/10.1137/070708901
https://doi.org/10.1137/S0097539701398594
https://doi.org/10.1137/S0097539703405754
https://doi.org/10.1145/285055.285059
https://doi.org/10.1016/j.jda.2006.03.001
https://doi.org/10.1007/s00453-007-9049-y
https://doi.org/10.1007/978-3-662-43948-7_48
https://doi.org/10.1007/978-3-662-43948-7_48

M. Bienkowski, B. Feldkord, and P. Schmidt 14:17

16 MohammadTaghi Hajiaghayi, Vahid Liaghat, and Debmalya Panigrahi. Online node-weighted
steiner forest and extensions via disk paintings. SIAM Journal on Computing, 46(3):911–935,
2017. doi:10.1137/14098692X.

17 Dorit S. Hochbaum. Heuristics for the fixed cost median problem. Mathematical Programming,
22(1):148–162, 1982. doi:10.1007/BF01581035.

18 Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V. Vazirani.
Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. Journal
of the ACM, 50(6):795–824, 2003. doi:10.1145/950620.950621.

19 Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In Proc. 34th ACM Symp. on Theory of Computing (STOC), pages 731–740,
2002. doi:10.1145/509907.510012.

20 Antoon Kolen and Arie Tamir. Covering problems. In P.B. Mirchandani and R.L. Francis,
editors, Discrete Location Theory, Wiley Series in Discrete Mathematics and Optimization.
Wiley, 1990.

21 Simon Korman. On the use of randomization in the online set cover problem. Master’s thesis,
The Weizmann Institute of Science, 2004.

22 Madhukar R. Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman. Analysis of a local
search heuristic for facility location problems. Journal of Algorithms, 37(1):146–188, 2000.
doi:10.1006/jagm.2000.1100.

23 Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem.
Information and Computation, 222:45–58, 2013. doi:10.1016/j.ic.2012.01.007.

24 Mohammad Mahdian, Yinyu Ye, and Jiawei Zhang. Approximation algorithms for metric
facility location problems. SIAM Journal on Computing, 36(2):411–432, 2006. doi:10.1137/
S0097539703435716.

25 Adam Meyerson. Online facility location. In Proc. 42nd IEEE Symp. on Foundations of
Computer Science (FOCS), pages 426–431, 2001. doi:10.1109/SFCS.2001.959917.

26 Joseph Naor, Debmalya Panigrahi, and Mohit Singh. Online node-weighted steiner tree and
related problems. In Proc. 52nd IEEE Symp. on Foundations of Computer Science (FOCS),
pages 210–219, 2011. doi:10.1109/FOCS.2011.65.

27 Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: Approximating
packing integer programs. Journal of Computer and System Sciences, 37(2):130–143, 1988.
doi:10.1016/0022-0000(88)90003-7.

28 David B. Shmoys. Approximation algorithms for facility location problems. In Proc. 3rd
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM), pages 27–33, 2000. doi:10.1007/3-540-44436-X_4.

29 David B. Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for facility
location problems (extended abstract). In Proc. 29th ACM Symp. on Theory of Computing
(STOC), pages 265–274, 1997. doi:10.1145/258533.258600.

30 Neal E. Young. Randomized rounding without solving the linear program. In Proc. 6th
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 170–178, 1995.

STACS 2021

https://doi.org/10.1137/14098692X
https://doi.org/10.1007/BF01581035
https://doi.org/10.1145/950620.950621
https://doi.org/10.1145/509907.510012
https://doi.org/10.1006/jagm.2000.1100
https://doi.org/10.1016/j.ic.2012.01.007
https://doi.org/10.1137/S0097539703435716
https://doi.org/10.1137/S0097539703435716
https://doi.org/10.1109/SFCS.2001.959917
https://doi.org/10.1109/FOCS.2011.65
https://doi.org/10.1016/0022-0000(88)90003-7
https://doi.org/10.1007/3-540-44436-X_4
https://doi.org/10.1145/258533.258600

An Asymptotically Fast Polynomial Space
Algorithm for Hamiltonicity Detection in Sparse
Directed Graphs
Andreas Björklund
Private, Lund, Sweden 1

Abstract
We present a polynomial space Monte Carlo algorithm that given a directed graph on n vertices and
average outdegree δ, detects if the graph has a Hamiltonian cycle in 2n−Ω(n

δ
) time. This asymptotic

scaling of the savings in the running time matches the fastest known exponential space algorithm
by Björklund and Williams ICALP 2019. By comparison, the previously best polynomial space
algorithm by Kowalik and Majewski IPEC 2020 guarantees a 2n−Ω(n

2δ
) time bound.

Our algorithm combines for the first time the idea of obtaining a fingerprint of the presence of
a Hamiltonian cycle through an inclusion–exclusion summation over the Laplacian of the graph
from Björklund, Kaski, and Koutis ICALP 2017, with the idea of sieving for the non-zero terms in
an inclusion–exclusion summation by listing solutions to systems of linear equations over Z2 from
Björklund and Husfeldt FOCS 2013.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Hamiltonian cycle, directed graph, worst case analysis algorithm

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.15

Related Version Previous Version: https://arxiv.org/abs/2009.11780

Acknowledgements We are very grateful to an anonymous reviewer who pointed out a serious flaw
in an earlier proof attempt of Lemma 6. We also thank Łukasz Kowalik for comments on an earlier
version of the paper.

1 Introduction

Given a directed graph G = (V, A) on n = |V | vertices, we consider the problem of detecting
if G has a Hamiltonian cycle, a directed cycle through G using a subset of the arcs A, visiting
each vertex of V exactly once. We call this the Hamiltonicity problem. Deciding Hamiltonicity
in a directed graph is one of Karp’s original NP-complete problems [15]. For a very long time,
the best worst case algorithm known for this problem was based on Bellman’s [3] and Held
and Karp’s [13] dynamic programming across all vertex subsets from the early 1960’s running
in 2n poly(n) time. Much of recent research has focused on when one can improve over O∗(2n)
time, confer the related work section below. A recent result by Björklund and Williams [11],
building on Björklund, Kaski, and Koutis [9], describes a deterministic, exponential space,
2n−Ω(n

δ) time algorithm that counts the number of Hamiltonian cycles where δ = |A|
n is the

average outdegree. A natural follow-up question is whether this speedup intrinsically comes
at the cost of exponential space usage. In this paper, we give a partial negative answer to
that question. We show that this requirement of an exponentially sized space resource can
be reduced to a polynomially sized one, when we are only interested in detecting if the graph
has a Hamiltonian cycle, and are content with a randomised algorithm. We prove

▶ Theorem 1. There is a polynomial space Monte Carlo algorithm that given an n-vertex
directed graph of average outdegree δ, detects w.h.p. if the graph has a Hamiltonian cycle in
2n−Ω(n

δ) time, without any false positives.

1 This work was done while being employed by Ericsson Research.
© Andreas Björklund;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 15; pp. 15:1–15:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.STACS.2021.15
https://arxiv.org/abs/2009.11780
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 A Fast Polynomial Space Algorithm for Hamiltonicity Detection in Sparse Graphs

Our algorithm builds on the algorithms by Björklund, Kaski, and Koutis [9] and its
successor by Björklund and Williams [11]. At the core of the algorithms in [9] and [11], are
efficient methods to list contributing terms to a sum evaluating to the number of Hamiltonian
cycles. They use split, tabulate, and list procedures that seem to require exponential space.
In more detail, in [11], they reduce the problem to listing pairs of dissimilar vectors from two
exponential size sets of short vectors, where dissimilar means different in each coordinate.
They further present two efficient algorithms to solve this latter problem that build on
tabulation, one explicitly on one of the two sets, and the other indirectly as subresults
of a large fast matrix multiplication. Our overall algorithm use a similar idea of listing
contributing terms to a sum, but we use a different approach of obtaining the terms. In
particular, we do not directly reduce to the problem of listing dissimilar vectors. Our main
insight is that another technique previously used to compute the parity of the number of
Hamiltonian cycles by Björklund and Husfeldt [7], by a careful design, can replace the
tabulation for enumeration of solutions to a linear equation system over Z2. This latter task
is well-known to be possible to do in polynomial space. Our way of combining the above two
techniques is our main technical novelty.

Polynomial space algorithms improving over O∗(2n) time in sparse graphs were known
before. We note that for the easier case of everywhere sparse graphs, i.e., graphs in which
the sum of the in- and outdegree at every vertex is bounded by d, Björklund et al. [8]
implicitly showed that you can decide Hamiltonicity in 2n−Ω(dn

2d) time using polynomial space.
Their paper considered TSP in undirected graphs, but it is not difficult to see that their
proof of Theorem 1.3 could also be used for directed Hamiltonicity. Very recently, Kowalik
and Majewski [18] presented a polynomial space, 2n−Ω(n

2δ) time algorithm for directed
Hamiltonicity on n-vertex graphs of average outdegree δ. It builds on the algorithm by
Björklund [5] which is a (2 − 21−δ)n/2 poly(n) time polynomial space algorithm in undirected
bipartite graphs of average degree δ using techniques similar in spirit to our algorithm design
here. Note though that in our design, the speedup is exponential in n/δ, whereas the speedup
in Kowalik and Majewski [18] is exponential in n/2δ.

It should be noted in passing, that for many hard combinatorial problems the best
known worst case algorithms use exponential space. In fact, in some cases the only known
algorithms that improve over a straight-forward brute-force algorithm testing all possibilities
use exponential space, are deterministic, and are also able to count the solutions. To give
just one example that is also on Karp’s list [15], this holds presently for MaxCut: compute
a bipartition of the vertices that maximises the number of edges between the two parts.
It has a O∗(1.731n) time counting algorithm where n is the number of vertices [21], but
no polynomial space algorithm improving substantially over the brute-force O∗(2n) time
algorithm is known, even if we only consider detection and use randomisation.

One reason to get rid of exponential space usage from a practical point of view, is to offer
better implementability on parallel computing devices. This seems to be the case also with
the present algorithm compared to the exponential space algorithms in [11]. In particular, the
computationally heavy steps in our algorithm can easily be scheduled to compute different
parts of the sum that may run obliviously of each other on different processors, only adding
up their final partial sums in the end.

1.1 Related work

The fastest known (exponential space) algorithm for directed Hamiltonicity as far as we
know is the 2n−Ω(

√
n/ log log n) time algorithm by Björklund, Kaski, and Williams [10]. The

A. Björklund 15:3

fastest known polynomial space algorithm is the 2n poly(n) time one based on counting
closed walks via adjacency matrix powering and inclusion–exclusion, discovered at least four
times [17, 16, 2, 1], the oldest by Kohn, Gottlieb, and Kohn [17] dates back to 1977. Much
faster algorithms exist for special cases, also apart from the 2n−Ω(n

δ) time exponential space
algorithm in average outdegree δ directed graphs by Björklund and Williams [11]. In bipartite
directed graphs, there is a O∗(1.732n) time, polynomial space, algorithm by Björklund, Kaski,
and Koutis [9]. There is also an earlier O∗(1.888n) time, exponential space, algorithm by
Cygan, Kratsch, and Nederlof [12] based on a different technique. Björklund and Husfeldt [7]
show a O∗(1.619n) time, polynomial space, algorithm that computes the parity of the number
of Hamiltonian cycles in a directed graph. Somewhat perplexingly, this algorithm does not
seem to be useful for the detection problem in general. However, counting modulo powers of
small primes can be used for detection when the number of Hamiltonian cycles are less than
cn for some constant c: Björklund, Kaski, and Koutis [9], improving over a partial result in
Björklund, Dell, and Husfeldt [6], show how to find a Hamiltonian cycle in O((2 − ϵc)n) time,
with ϵc > 0 being another constant depending only on c. In undirected graphs, there is a
O∗(1.657n) time, polynomial space, algorithm, and in bipartite undirected graphs, there is a
O∗(1.415n) time algorithm, both by Björklund [4]. Despite the partial positive results above,
it is a major open question in the area of exact exponential time algorithms, whether or
not a O(cn) time algorithm for any c < 2 exists for detecting Hamiltonian cycles in general
directed graphs.

1.2 Methodology

Our algorithm is based on algebraic fingerprinting for Hamiltonian cycles, following a long
line of works [4, 7, 6, 9, 5, 11]. The idea is to define a multivariate polynomial P over a ring,
along with an efficient algorithm for its evaluation, with the property that P is non-zero
only if the graph has a Hamiltonian cycle. That polynomial can then be used to detect
Hamiltonicity, by testing if P is identically zero by evaluating P at a random point using
the efficient algorithm (Polynomial identity testing, PIT). The choice of ring is important
and a somewhat delicate matter. The basic observation is that using a larger ring increases
the chance of making P non-zero on many points, whereas a smaller ring typically makes
it easier to come up with an efficient evaluation algorithm. We will use a large ring for
the polynomial, but our sample space will only take values from a small subring on a large
subset of the variables. Our algorithm for evaluating P follows a construction by [9] based
on an exponential sum of weighted Laplacians of the graph, that in itself already describes a
2n poly(n) time algorithm. To get a running time below that, we take measures in designing
our sample space so that many summands will be zero for a trivial reason, and we can
find out which are not by solving a linear equation system over Z2. This is inspired by the
algorithm in [7] that lists solutions to a quadratic equation system over Z2 to sieve for the
contributing terms. We list the solutions to a linear equation system by generating one
solution from a Gaussian elimination followed by taking linear combinations of that solution
with the null space (also found by the Gaussian elimination). This way we can list a superset
of the summands that are non-zero and compute the sum to obtain the value of P at our
random point.

STACS 2021

15:4 A Fast Polynomial Space Algorithm for Hamiltonicity Detection in Sparse Graphs

2 The Algorithm

2.1 The Hamiltonicity Polynomial
We begin by describing the polynomial P we will be using. Following [11], we will work on a
slightly modified version G = (V, A) of the n-vertex input graph Gin = (Vin, Ain). We pick
an arbitrary vertex u ∈ Vin, and replace u with two new vertices s and t, where s retains all
outgoing arcs from u, and t retains all incoming arcs to u. Note that the Hamiltonian paths
from s to t in this modified G are in one-to-one correspondence with the Hamiltonian cycles
in the original graph Gin, and that the average degree is not increased. In the following,
we consider the problem of detecting a s-t Hamiltonian path in the modified n + 1 vertex
graph G.

Fix a (commutative) ring R, and introduce a variable zuv ∈ R for each arc uv ∈ A. Let
H(G) be the set of Hamiltonian s-t paths in G, and consider the Hamiltonicity polynomial
PG as

PG(z) =
∑

H∈H(G)

∏
uv∈H

zuv. (1)

Our algorithm is based on an efficient way of evaluating PG(z) in a carefully chosen
random point z over a particular ring. Note that we will write zuv in formulas to refer both
to the formal variable and its value in R according to a specific assignment z : A → R. In
our analysis we will sometimes think of PG(z) as a formal polynomial in z with coefficients
from R, but in the algorithm itself, we always mean PG(z) to be an evaluation over R of the
polynomial PG in a specific point z.

For now, note that an evaluation of PG(z) in a random point z can potentially be used
as a fingerprint of existence of a Hamiltonian cycle in the original input graph: On one hand,
the polynomial always evaluates to zero if the input graph has no Hamiltonian cycles (thus
there are no false positives). On the other hand, by evaluating it in a random point, we will
obtain a non-zero result if there is a Hamiltonian cycle in the input graph Gin, unless we are
unlucky and the monomials happen to cancel each other. As mentioned above, there are two
conflicting aspects to consider for a successful fingerprint design:
1. We want the ring and the sample space to be large enough so we can argue that the

result is non-zero w.h.p. if the graph Gin is Hamiltonian.
2. We want the ring and the sample space to have some structure that we can use to derive

an efficient evaluation algorithm.
The rest of our paper describes one way of balancing these aspects without having to resort
to exponential size tabulation to enable a fast evaluation algorithm, by combining the graph
Laplacian machinery in Björklund, Kaski, and Koutis [9] with the linear equation system
modulo two listing idea from Björklund and Husfeldt [7]. In Section 2.3 we will address the
first aspect of balancing the fingerprint which is the major novel part. In Sections 2.4 and 2.5
we describe the basis of the algorithm in [9] (and subsequently in [11]) that we will use, and
in 2.6 and 2.7 we will address the second aspect of balancing the fingerprint by describing a
linear algebra enumeration algorithm inspired by the algorithm in [7]. Finally, in Section 2.8
we put the parts together into an algorithm for Theorem 1. We begin by defining the ring.

2.2 The Choice of Ring
We will work over the polynomial ring R = Z2k [x]/(xm), i.e., polynomials in one variable
truncated at degree m with integer coefficients counted modulo 2k. With foresight, both
k = kR and m = mR will be poly(n), and hence an element in R is described by poly(n)
bits, and the arithmetic operations of addition and multiplication can both be done in

A. Björklund 15:5

poly(n) time. To compute a determinant of a matrix in Rn×n, as we will need later, we may
use Kaltofen’s division-free algorithm [14], that uses O(n3.5 log n log log n) ring operations.
Altogether, the computation of the determinant of an n × n matrix over the ring R is a
poly(n) time task.

2.3 The Sample Space
In this section, we describe the sample space over which we choose our point z for polynomial
identity testing. We will also argue that a randomly chosen point from the sample space
has PG(z) ̸= 0 with non-zero constant probability when the graph G has a Hamiltonian s-t
path. As we primarily are interested in the asymptotic form of the running time scaling,
we will set the parameters somewhat arbitrarily for ease of calculations. The sample space
is parameterised by two positive integers τ and ℓ to be defined later in our analysis. The
process to choose the point z is given below:

Procedure 1 SamplePoint (Returns a set T and an assignment z to be used for PIT of PG).

1. Sample a subset T ⊆ V \ {s} of size τ uniformly at random.
2. For every arc uv, v ∈ T , set zuv = 1.
3. For every arc uv, v ̸∈ T , set zuv = xw(uv), where w(uv) ∈ {1, · · · , ℓ} is a uniformly and

independently randomly chosen integer.

We next turn to proving that the choice of z is good for PIT of PG. We will first look at
the Hamiltonicity polynomial after assigning zuv = 1 for all v ∈ T , but for now still treat all
other z-variables unassigned (left as formal variables). We call these remaining variables z̃

with z̃uv = zuv and consider the associated T -truncated polynomial PG,T (z̃) obtained from
PG after the variable substitution. Define HT (G) as the arc subsets of Hamiltonian s-t paths
in H(G) after the removal of any arc ending in T , i.e.,

HT (G) = {∪uv∈H,v ̸∈T uv : H ∈ H(G)}.

We call these the T -truncated Hamiltonian paths. We can write

PG,T (z̃) =
∑

H′∈HT (G)

eH′ ·
∏

uv∈H′

z̃uv,

where eH′ counts the number of Hamiltonian cycles in G with T -truncation H ′.
We first need to prove that PG,T (z̃) is not the zero-polynomial with high enough probability,

when Gin has a Hamiltonian cycle. Note that it may equal the zero-polynomial even in the
presence of Hamiltonian cycles in Gin, when eH′ is a multiple of 2k for all H ′ ∈ HT (G), as
this would result in an annihilation in our ring R, where k = kR is the ring parameter in
Section 2.2. We will first argue that this doesn’t happen with too large a probability.

To prove this will not happen with some non-zero constant probability, let H be any
fixed Hamiltonian s-t path in G. In particular, our arbitrary choice of H is independent of T .
Let HT ∈ HT (G) be the T -truncation of H. We will upper bound the expectation of eHT ,
the number of Hamiltonian s-t paths in G whose T -truncation matches HT . For every T ,
define S = S(T, H) ⊆ V to be the set of in-neighbors of T along H, i.e.,

S = {u : v ∈ T, uv ∈ H}. (2)

Note that S and T are not necessarily disjoint, but of the same size τ . We consider the
following bipartite graph BH obtained from an induced subgraph of G as follows. BH has
two parts, one representing the vertices in S, and one representing the vertices in T . Every

STACS 2021

15:6 A Fast Polynomial Space Algorithm for Hamiltonicity Detection in Sparse Graphs

arc in BH connects a vertex in the first part representing S to a vertex in the second part
representing T . There is an arc from a vertex u in the first part to a vertex v in the second
part, iff uv is an arc in the induced subgraph G[S ∪ T]. The following lemma tells us that
the graph BH in expectation is not too dense.

▶ Lemma 2. The expected number of arcs in BH is not larger than

|S|
(

1 + |T | δ

n

)
.

Proof. Let dv denote the outdegree of vertex v ∈ V . Consider a vertex u ∈ S. The arc from
u to the next vertex on H is always present in BH . The number of other arcs though, is in
expectation (du − 1) |T |−1

n since the other vertices on T apart from u’s out-neighbor on H

are uniformly distributed. Hence, by the linearity of expectation, using that each vertex in
V \ {t} is included in S with probability |S|/n, the expected number of arcs in BH is∑

u∈V \{t}

|S|
n

(
1 + (du − 1) |T | − 1

n

)
≤ |S|

(
1 + |T | δ

n

)
. ◀

This means that if we choose the fixed size τ = |T | = |S| = n
cδ , for some c > 1 to be set

later, we get expected average outdegree from the vertices in the part representing S in BH

bounded by 1 + c−1. By Markov’s inequality for a non-negative random variable X,

Pr[X ≥ λE[X]] ≤ 1
λ

,

we can bound the probability that the average degree is not much larger:

▶ Corollary 3. The probability that the average outdegree of a vertex in S in BH is at most(
1 + 1

49

)(
1 + 1

c

)
,

is at least 1/50.

We next observe that all Hamiltonian s-t paths whose T -truncation is HT defines the
same set S. This also means that every Hamiltonian s-t path in G whose T -truncation
is HT must use some arc for each vertex in S in BH . The product of the outdegrees of
vertices in S is an upper bound on their number eHT . Hence, by the above corollary with
probability at least 1/50 there will be at most ((1+1/49)(1+c−1))τ of them by the arithmetic
mean-geometric mean inequality. By setting kR in Section 2.2 large enough so that

2kR >

((
1 + 1

49

)(
1 + 1

c

))τ

,

we will get a monomial with non-zero coefficient in PG,T (z̃) with probability at least 1/50.
We note that it suffices to set

kR > τ log2

((
1 + 1

49

)(
1 + 1

c

))
= n

cδ
log2

((
1 + 1

49

)(
1 + 1

c

))
.

We will need kR to be much smaller than τ in the evaluation algorithm described in the next
sections in order to evaluate PG(z) fast. We will use this in Section 2.6 to prove Lemma 8.

Setting c = 20, say, we can thus use kR = τ
10 and conclude that eHT < 2kR with large

enough probability, and hence that PG,T (z̃) has at least one monomial. To summarise, we
have that

A. Björklund 15:7

▶ Lemma 4. With τ = n
20δ and kR = n

200δ (i.e., the parameters set as above), SamplePoint
returns T so that the formal polynomial

PG,T (z̃) ̸= 0,

when the input graph has a Hamiltonian cycle, with probability at least 1/50.

We next turn to arguing that PG(z) ̸= 0 (over the ring R) with high enough probability
for the assignment z returned by SamplePoint. The next famous lemma by Mulmuley,
Vazirani, and Vazirani [19] shows that with ℓ large enough, we will be able to isolate a
T -truncated Hamiltonian path in HT (G) that is represented by a monomial in PG,T (z̃).

▶ Lemma 5 (Isolation Lemma, Mulmuley, Vazirani, and Vazirani [19]). Let m < M be two
positive integers and let F be a nonempty family of subsets of {1, · · · , m}. Suppose each
element x ∈ {1, · · · , m} receives a weight w(x) ∈ {1, · · · , M} independently and uniformly at
random. Define the weight of a set S in F as w(S) =

∑
x∈S w(x). Then, with probability at

least 1 − m
M , there is a unique set in F of minimum weight.

We apply the above lemma, on the family F equal to HT (G) further restricted to those
T -truncated Hamiltonian paths that are represented by a monomial in PG,T (z̃), i.e., those
H ′ that have 2kR ∤ eH′ . We use the weights w(uv) set as in step 3 of SamplePoint above
to obtain z, with ℓ = 100|A|, where A is the set of arcs in G. We have with probability at
least 1 − 1/100 that a monomial exists with some unique weight µ. In particular, with high
enough probability, there is a Hamiltonian s-t path whose T -truncation H ′ is in F that will
be isolated and contribute the value eH′xµ to PG(z).

By setting the ring parameter mR > nℓ in Section 2.2, we observe that this monomial in
the polynomial ring is possible to detect.

▶ Lemma 6. With τ = n
20δ ,kR = n

200δ , mR > nℓ, and ℓ = 100|A| (i.e., all the parameters
set as above), SamplePoint returns z so that the polynomial

PG(z) ̸= 0,

when the input graph has a Hamiltonian cycle, with probability at least 1/100.

The probability bound comes from the probability of T being a good choice in Lemma 4 to
guarantee that there exists a H ′ with eH′ < 2kR (1/50) after subtracting the probability that
the Isolation Lemma was not successful in its isolation (1/100).

2.4 The Laplacian
Björklund, Kaski, and Koutis [9] observed that the number of Hamiltonian cycles in a
directed graph can be evaluated as an inclusion–exclusion summation over a determinant of
a polynomial matrix representing the graph. We will use their construction, not over the
integers, but over the particular ring R defined in Section 2.2. This means we will lose the
ability to count the Hamiltonian cycles, but it will also enable a faster evaluation of the
inclusion–exclusion formula as we will demonstrate. We reiterate their construction here for
the sake of completeness and easy reference.

The weighted Laplacian of the graph G, is a (n + 1) × (n + 1) polynomial matrix
L = LG(y, z) with rows and columns indexed by the vertices V , in the variables yv for
v ∈ V \ {t}, and variables zuv for uv ∈ A:

Lu,v =

∑

wv∈A zwvyw if u = v

−zuvyu if uv ∈ A

0 otherwise.

(3)

STACS 2021

15:8 A Fast Polynomial Space Algorithm for Hamiltonicity Detection in Sparse Graphs

The Laplacian punctured at the start vertex s, is the matrix Ls obtained by removing row
and column s from L. In [9](their Theorem 5), it was observed that Tutte’s directed version
of the Matrix-Tree theorem of Kirchhoff [20], where det(Ls) is a polynomial in which each
term corresponds to a directed spanning out-branching rooted at s, could be used to compute
the Hamiltonicity polynomial. By the principle of inclusion–exclusion, letting |y| denote the
number of vertices v for which yv = 1, we have

▶ Lemma 7 (Paraphrasing Equation (7) in Björklund, Kaski, and Koutis [9]).

PG(z) =
∑

y:(V \{t})→{0,1}

(−1)n−|y| det (Ls(y, z)) . (4)

The summation is over all 2n assignments y : V \ {t} → {0, 1}. Hence, with the formula in
Lemma (7), we now have a way to evaluate PG(z) in a particular point z in 2n poly(n) time.
We will next see how we can speed-up the evaluation for a z from our sample space.

2.5 Random perturbations at T

Following [9] and [11], we perturb the Laplacian matrices, without affecting the determinant,
so that in expectation many summands in the above formula Eq. 4 are zeroed-out. We
introduce new random variables qv ∈ {0, 1} for v ∈ T , sampled uniformly and independently,
where T is the sampled set from SamplePoint and define the q-perturbed Laplacian of G as

Lq
u,v =

∑

wv∈A zwvyw if u = v, v ̸∈ T∑
wv∈A zwvyw − qv if u = v, v ∈ T

−zuvyu if uv ∈ A

0 otherwise.

(5)

Comparing this to Eq. 3, we have only added a term on some of the diagonal entries in the
rows indexed by our sampled set T . Note that these extra qv variables do not affect the final
inclusion–exclusion sum, as only the monomials representing Hamiltonian paths from s to t

are counted, in particular only monomials with all n yu-variables for u ∈ V \ {t}, confer [9]
for a proof. Hence, irrespective of q, we can still compute the Hamiltonicity polynomial as:

PG(z) =
∑

y:(V \{t})→{0,1}

(−1)n−|y| det (Lq
s(y, z)) . (6)

What we have gained by doing this, is that the probability that a row indexed by u ∈ T has
its diagonal entry divisible by two, is 1/2, independently of other rows. We will next see how
we can use this.

2.6 Efficient Evaluation of PG(z) given T

The basic idea is the same underlying the speed-ups in [7, 9, 11]. We make sure that in
expectation, many summands in Eq. (6) will be trivially zero. Then, to evaluate the formula
it suffices to list only the summands that are not trivially zero, so-called contributing terms,
and sum up their contributions. Here, with “trivially zero”, we will mean matrices that have
at least k = kR rows of the matrix among the rows indexed by a vertex in the sampled set T

from SamplePoint with all elements having all coefficients even. To see that such a term is
zero, we merely have to recall Leibniz’s determinant expansion of a matrix M = {mi,j}:

det(M) =
∑

σ∈Sn

sgn(σ)
n∏

i=1
mi,σ(i),

A. Björklund 15:9

where Sn is the set of all permutations on n elements. Note in particular that in every term
there is one element from each row. Hence, if the matrix has k rows in which every monomial
axb in a ring element has a even, the product (over Z) must be divisible by 2k and hence
cancel in the ring R.

Our algorithm to compute PG(z) will list the terms in Eq. 6 that have at least one odd
coefficient in some ring element in at least τ − k + 1 of the rows of Ls representing vertices in
T . This is what is required to be a contributing terms. The algorithm outline is postponed
to the next section.

We begin by arguing that, in expectation over the random q values, there are not too
many contributing terms. Recalling Eq. 3, and inspecting any such row in the matrix Ls(y)
for a vertex u ∈ T , we see that

1. Off-diagonal entries are zero if yu = 0 or u = t,
2. The diagonal entry is divisible by two if∑

wu∈A

yw = qu(mod 2),

remembering that zwu = 1 for all wu ∈ A with u ∈ T .

Fix an assignment y : V \ {t} → {0, 1}, and let Zy ⊆ T be the vertices u for which the
assignment sets yu = 0, along with t if t ∈ T . From the above, the probability over the
random q values, of the event εy that a fixed assignment y does not result in a trivially zero
term in Eq. 6, is

Pr
q

[εy] =
(

1
2

)|Zy| k−1∑
i=0

(
|Zy|

i

)
. (7)

Here we use that the diagonal entry of a row indexed by a vertex in Zy is even with
probability 1/2 independently of other rows as argued in Section 2.5. Let Y be the random
variable equal to the number of assignments that are contributing. Then, in expectation

E[Y] =
∑

y∈V \{t}→{0,1}n

Pr
q

[εy]. (8)

We can bound the expectation as

▶ Lemma 8.

E[Y] ∈ 2n−Ω(n
δ).

Proof. From Eq. 7 and Eq. 8 we have

E[Y] ≤
∑

y∈V \{t}→{0,1}n

|Zy|< τ
3

1 +
∑

y∈V \{t}→{0,1}n

|Zy|≥ τ
3

(
1
2

)|Zy| k−1∑
i=0

(
|Zy|

i

)
. (9)

The left term in Eq. 9 is

2n−τ

τ/3−1∑
i=0

(
τ

i

) ∈ 2n−Ω(τ),

STACS 2021

15:10 A Fast Polynomial Space Algorithm for Hamiltonicity Detection in Sparse Graphs

and the right term in Eq. 9 is less than

2n

(
1

2τ/3

k−1∑
i=0

(
τ/3

i

))
∈ 2n−Ω(τ),

after remembering k < τ/10 and τ = n
20δ , and noting that

1
2γ

k−1∑
i=0

(
γ

i

)
,

for γ ∈ {τ/3, · · · τ} is maximised for γ = τ/3. The stated bound in the lemma follows. ◀

2.7 Listing Contributing Terms
We finally describe how to list the contributing term assignments y : V \ {t} → {0, 1} needed
to compute PG(z) via Eq. 6 for a fixed q. The idea is to test for each partial assignment
y∗ : T \ {t} → {0, 1} with the interpretation that yv = y∗

v for v ∈ T \ {t}, and each way
of assigning parities p : Zy∗ → {0, 1} to the diagonal entries of the vertices in Zy that is
consistent with a not trivially zero assignment, i.e., p takes the value 0 on at most k − 1 rows.
We then notice that these diagonal entries in Zy describe a linear equation system over the
variables in y outside of T . The equation system E(y∗, p) consists of the equations (modulo
two)∑

wv∈A

yw + qv = pv,

for each v ∈ Zy, where we replace each variable yw with w ∈ T for its value y∗
w. We can list

all solutions to this equation system by Gaussian elimination. We first solve for one solution
and a null space basis. We next can enumerate all solutions by taking all linear combinations
of the null space basis vectors with the solution. In summary our streaming procedure that
generates all contributing terms’ assignments is (we will think of it as a background process
generating the solutions one-by-one):

Procedure 2 ListingTerms (outputs contributing assignments y : V \ {t} → {0, 1} needed for
Eq. 6).

1. For each y∗ : T \ {t} → {0, 1},
2. For each p : Zy∗ → {0, 1} with |p| > |Zy∗ | − k,
3. Report every solution y to E(y∗, p).

Note that this lists every contributing term’s assignment once since each y has precisely
one restriction y∗ on T and matches one of the tested p’s. To bound the running time,
we know from Lemma 8 that the output number of y assignments are at most 2n−Ω(n

δ)

in expectation. This dominates the running time, since the number of equation systems
considered, each of which can be solved in polynomial time in the sense of providing a
parameterisation of the solution space as one solution vector along with the null space, is at
most 3τ ∈ 2O(n/δ).

2.8 High-Level Algorithm
Putting the parts of the previous sections together, we are ready to give the high-level
description of our algorithm in Theorem 1 as

A. Björklund 15:11

Algorithm 3 DecideHamiltonicity (answers whether input Gin has a Hamiltonian cycle).

1. Repeat for 100 log n times:
2. Call SamplePoint to obtain point z and subset T .
3. Pick a q uniformly at random.
4. While there are still contributing terms:
5. Get next y from background process ListingTerms.
6. If the number of generated terms is too big, continue to next outer repetition.
7. Add y’s contribution to PG(z).
8. If PG(z) ̸= 0 break and output “Yes”.
9. Output “No”.

In particular, there is no need to store the list of y assignments explicitly, but rather we
use them one by one as they are generated to update the sum in Eq. 6. From Lemma 6
we know that a false negative happens with probability 1 − 1/100. Since we pick 100 log n

sample points z, independently of each other, we will be unsuccessful in all of them with
probability (1 − 1/100)100 log n < n−1. From Section 2.7 we know the number of contributing
term assignments and the running time of ListingTerms is 2n−Ω(n

δ) in expectation. If
the number of generated terms are more than n times the expected value, we abort this
z, T, q-value repetition at step 6 of the algorithm. This also happens only with probability
n−1 by Markov’s inequality. Altogether, the probability of a false negative is at most 2

n .
This concludes the proof of Theorem 1.

References
1 Alexander I. Barvinok. Two algorithmic results for the traveling salesman problem. Math.

Oper. Res., 21(1):65–84, 1996. doi:10.1287/moor.21.1.65.
2 Eric T. Bax. Inclusion and exclusion algorithm for the Hamiltonian path problem. Inf. Process.

Lett., 47(4):203–207, 1993.
3 Richard Bellman. Dynamic programming treatment of the travelling salesman problem. J.

ACM, 9(1):61–63, January 1962. doi:10.1145/321105.321111.
4 Andreas Björklund. Determinant sums for undirected Hamiltonicity. SIAM J. Comput.,

43(1):280–299, 2014.
5 Andreas Björklund. Exploiting sparsity for bipartite Hamiltonicity. In Wen-Lian Hsu, Der-

Tsai Lee, and Chung-Shou Liao, editors, 29th International Symposium on Algorithms and
Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan, volume 123 of
LIPIcs, pages 3:1–3:11. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/LIPIcs.ISAAC.2018.3.

6 Andreas Björklund, Holger Dell, and Thore Husfeldt. The parity of set systems under random
restrictions with applications to exponential time problems. In Magnús M. Halldórsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages,
and Programming – 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,
2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages 231–242.
Springer, 2015. doi:10.1007/978-3-662-47672-7_19.

7 Andreas Björklund and Thore Husfeldt. The parity of directed Hamiltonian cycles. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 727–735, 2013.

8 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. The traveling
salesman problem in bounded degree graphs. ACM Trans. Algorithms, 8(2):18:1–18:13, 2012.
doi:10.1145/2151171.2151181.

STACS 2021

https://doi.org/10.1287/moor.21.1.65
https://doi.org/10.1145/321105.321111
https://doi.org/10.4230/LIPIcs.ISAAC.2018.3
https://doi.org/10.4230/LIPIcs.ISAAC.2018.3
https://doi.org/10.1007/978-3-662-47672-7_19
https://doi.org/10.1145/2151171.2151181

15:12 A Fast Polynomial Space Algorithm for Hamiltonicity Detection in Sparse Graphs

9 Andreas Björklund, Petteri Kaski, and Ioannis Koutis. Directed Hamiltonicity and out-
branchings via generalized Laplacians. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn,
and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages
91:1–91:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
ICALP.2017.91.

10 Andreas Björklund, Petteri Kaski, and Ryan Williams. Generalized Kakeya sets for polynomial
evaluation and faster computation of fermionants. Algorithmica, 81(10):4010–4028, 2019.
doi:10.1007/s00453-018-0513-7.

11 Andreas Björklund and Ryan Williams. Computing permanents and counting Hamiltonian
cycles by listing dissimilar vectors. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini,
and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages
25:1–25:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ICALP.2019.25.

12 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast Hamiltonicity checking via bases of
perfect matchings. J. ACM, 65(3):12:1–12:46, 2018. doi:10.1145/3148227.

13 Michael Held and Richard M. Karp. A dynamic programming approach to sequencing problems.
Journal for the Society for Industrial and Applied Mathematics, pages 1–10, 1962.

14 Erich Kaltofen. On computing determinants of matrices without divisions. In Paul S.
Wang, editor, Proceedings of the 1992 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’92, Berkeley, CA, USA, July 27-29, 1992, pages 342–349. ACM, 1992.

15 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

16 Richard M. Karp. Dynamic programming meets the principle of inclusion and exclusion.
Operations Research Letters, 1(2):49–51, 1982.

17 Samuel Kohn, Allan Gottlieb, and Meryle Kohn. A generating function approach to the
traveling salesman problem. In Proceedings of the 1977 Annual Conference, ACM ’77, page
294–300. Association for Computing Machinery, 1977.

18 Łukasz Kowalik and Konrad Majewski. The asymmetric travelling salesman problem in
sparse digraphs. In 15th International Symposium on Parameterized and Exact Computation
(IPEC 2020), volume 180 of Leibniz International Proceedings in Informatics (LIPIcs), pages
23:1–23:18, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.IPEC.2020.23.

19 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105–113, 1987. doi:10.1007/BF02579206.

20 W. T. Tutte. The dissection of equilateral triangles into equilateral triangles. Mathematical
Proceedings of the Cambridge Philosophical Society, 44(4):463–482, 1948.

21 Ryan Williams. A new algorithm for optimal constraint satisfaction and its implications.
In Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors, Automata,
Languages and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland,
July 12-16, 2004. Proceedings, volume 3142 of Lecture Notes in Computer Science, pages
1227–1237. Springer, 2004. doi:10.1007/978-3-540-27836-8_101.

https://doi.org/10.4230/LIPIcs.ICALP.2017.91
https://doi.org/10.4230/LIPIcs.ICALP.2017.91
https://doi.org/10.1007/s00453-018-0513-7
https://doi.org/10.4230/LIPIcs.ICALP.2019.25
https://doi.org/10.4230/LIPIcs.ICALP.2019.25
https://doi.org/10.1145/3148227
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.4230/LIPIcs.IPEC.2020.23
https://doi.org/10.1007/BF02579206
https://doi.org/10.1007/978-3-540-27836-8_101

Online Simple Knapsack with Reservation Costs
Hans-Joachim Böckenhauer !

Department of Computer Science, ETH Zürich, Switzerland

Elisabet Burjons !

Department of Computer Science, RWTH Aachen, Germany

Juraj Hromkovič !

Department of Computer Science, ETH Zürich, Switzerland

Henri Lotze !

Department of Computer Science, RWTH Aachen, Germany

Peter Rossmanith !

Department of Computer Science, RWTH Aachen, Germany

Abstract
In the Online Simple Knapsack Problem we are given a knapsack of unit size 1. Items of size
smaller or equal to 1 are presented in an iterative fashion and an algorithm has to decide whether to
permanently reject or include each item into the knapsack without any knowledge about the rest of
the instance. The goal is then to pack the knapsack as full as possible. In this work, we introduce a
third option additional to those of packing and rejecting an item, namely that of reserving an item
for the cost of a fixed fraction α of its size. An algorithm may pay this fraction in order to postpone
its decision on whether to include or reject the item until after the last item of the instance was
presented.

While the classical Online Simple Knapsack Problem does not admit any constantly bounded
competitive ratio in the deterministic setting, we find that adding the possibility of reservation
makes the problem constantly competitive, with varying competitive ratios depending on the value
of α. We give upper and lower bounds for the whole range of reservation costs, with tight bounds
for costs up to 1/6 – an area that is strictly 2-competitive – , for costs between

√
2 − 1 and 1 – an

area that is strictly (2 + α)-competitive up to ϕ − 1, and strictly 1/(1 − α)-competitive above ϕ − 1,
where ϕ is the golden ratio.

With our analysis, we find a counterintuitive characteristic of the problem: Intuitively, one would
expect that the possibility of rejecting items becomes more and more helpful for an online algorithm
with growing reservation costs. However, for higher reservation costs above

√
2 − 1, an algorithm

that is unable to reject any items tightly matches the lower bound and is thus the best possible. On
the other hand, for any positive reservation cost smaller than 1/6, any algorithm that is unable to
reject any items performs considerably worse than one that is able to reject.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online problem, Simple knapsack, Reservation costs

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.16

Related Version Full Version: https://arxiv.org/abs/2009.14043

Acknowledgements We want to thank the anonymous reviewers for pointing out imprecise formula-
tions and helping to improve the overall quality of this work.

1 Introduction

Online algorithms can be characterized by receiving their input in an iterative fashion and
having to act in an irrevocable way on each piece of the input, e. g., by deciding whether
to include an element into the solution set or not. This has to be done with no additional
knowledge about the contents or even the length of the rest of the instance that is still

© Hans-Joachim Böckenhauer, Elisabet Burjons, Juraj Hromkovič, Henri Lotze, and Peter Rossmanith;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 16; pp. 16:1–16:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hjb@inf.ethz.ch
https://orcid.org/0000-0001-9164-3674
mailto:burjons@cs.rwth-aachen.de
https://orcid.org/0000-0001-6161-7440
mailto:juraj.hromkovic@inf.ethz.ch
mailto:lotze@cs.rwth-aachen.de
https://orcid.org/0000-0001-5013-8831
mailto:rossmani@informatik.rwth-aachen.de
https://orcid.org/0000-0003-0177-8028
https://doi.org/10.4230/LIPIcs.STACS.2021.16
https://arxiv.org/abs/2009.14043
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Online Simple Knapsack with Reservation Costs

to be revealed. The goal, as with regular offline algorithms, is to optimize some objective
function. In order to measure the performance of an online algorithm, it is compared to
that of an optimal offline algorithm on the same instance. The worst-case ratio between the
performances of these algorithms over all instances is then called the strict competitive ratio
of an online algorithm, which was introduced by Sleator and Tarjan [22].

One of the arguably most basic and famous problems of online computation is called
the ski rental problem [19]. In this problem, someone is going on a skiing holiday of not yet
fixed duration without owning the necessary equipment. On each day, she decides, based
solely on that day’s short-term weather report, whether skiing is possible on that day or
not. On each day with suitable weather, she can either buy the equipment or rent it for that
day for a fixed percentage of the cost of buying a pair of ski. Arguably, the only interesting
instances are those in which a selected number of days are suitable for skiing, followed by
the rest of the days at which she is unable to go skiing anymore. This is simply due to the
fact that, as long as she has not decided to buy a pair of ski yet, a day at which no skiing is
possible requires no buy-or-rent decision. Thus, the problem can be simplified as follows:
The input is a string of some markers that represent days suitable for skiing, and as soon as
the instance ends, skiing is no longer possible.

This notion of delaying a decision for a fixed percentage of the cost is the model that we
want to study in this work. Note that, while the ski-rental problem in its above-mentioned
form only models a single buy-or-rent decision (buying or renting a single commodity),
iterated versions of it have been discussed in the literature, with important applications, e. g.,
to energy-efficient computing [15, 1, 4]. In the following, we investigate the power of delaying
decisions for another more involved problem, namely the online knapsack problem.

The knapsack problem is defined as follows. Given a set of items I, a size function
w : I → R and a gain function g : I → R, find a subset S ⊆ I such that the sum of sizes of S

is lower or equal to the so-called knapsack capacity (which we assume to be normalized to 1
in this paper) and the sum of the gains is maximized. The online variant of this problem
reveals the items of I piece by piece, with an algorithm having to immediately decide whether
to pack a revealed item or to discard it.

The knapsack problem is a classical hard optimization problem, with the decision variant
being shown to be NP-complete as one of Karp’s 21 NP-complete problems [18]. The offline
variant of this problem was studied extensively in the past, showing for example that it
admits a fully polynomial time approximation scheme [14].

A variant of this problem in which the gains of all items coincide with their respective
sizes is called the simple knapsack problem. Both variants do not admit a constantly bounded
competitive ratio [20]. In this paper, we focus on the online version of the latter variant,
which we simply refer to as the online knapsack problem, short OnlineKP, if not explicitly
stated otherwise.

We propose a rather natural generalization of the online knapsack problem. Classically,
whenever an item of the instance is presented, an online algorithm has to irrevocably decide
whether to include it into its solution (i. e., pack it into the knapsack) or to discard it. In
our model, the algorithm is given a third option, which is to reserve an item for the cost of a
fixed percentage 0 ≤ α ≤ 1 of its value. The algorithm may reserve an arbitrary number of
items of the instance and decide to pack or discard them at any later point. Philosophically
speaking, the algorithm may pay a prize in order to (partially) “go offline.” It is easy to
see that, for α = 0, the complete instance can be learned before making a decision without
any disadvantages, essentially making the problem an offline problem, while, for α = 1,
reserving an item is not better than discarding it because packing a reserved item does not
add anything to the gain.

H.-J. Böckenhauer, E. Burjons, J. Hromkovič, H. Lotze, and P. Rossmanith 16:3

One of the key properties of our reservation model applied to the simple knapsack problem
is its unintuitive behavior with respect to rejecting items. It shows some sharp thresholds for
the competitive ratio at seemingly arbitrary points: For some interval of low reservation fees,
the competitive ratio is not affected by the charge at all, on the next interval, it depends
linearly on the charge, and on the last interval, the competitive ratio grows even faster. This
behavior is further discussed in the following subsection.

Moreover, this extension to the knapsack problem is arguably quite natural: Consider
somebody trying to book a flight with several intermediate stops. Since flight prices are
subject to quick price changes, it might be necessary to invest some reservation costs even
for some flights not ending up in the final journey. The knapsack problem with reservations
might also be seen as a simple model for investing in a volatile stock market, where a specific
type of deviates is available (at some cost) that allows the investor to fix the price of some
stock for a limited period of time.

The OnlineKP has been extensively studied under many other variations, including
buffers of constant size in which items may be stored before deciding whether to pack them,
studied by Han et al. [12]. Here, the authors allow for a buffer of size at least the knapsack
capacity into which the items that are presented may or may not be packed and from which a
subset is then packed into the actual knapsack in the last step. They extensively study the case
in which items may be irrevocably removed from the buffer. Our model can be understood
as having an optional buffer of infinite size, with the caveat that each buffered item induces
a cost. A variant without an additional buffer, but with the option to remove items from
the knapsack at a later point was studied by Iwama et al. [16]. The same model with costs
for each removal that are proportional to a fraction f of each item from the knapsack was
researched by Han et al. [11], which is closer to our model. Their model allows an algorithm
to remove items that were already packed into the knapsack, for a proportion of the value of
these items. However, we do not know of any simple reduction from one model to the other,
which is supported by the considerably different behavior of the competitive ratio relative
to the reservation cost. For OnlineKP, Han et al. show that the problem is 2-competitive
for a removal cost factor f ≤ 0.5 and becomes (1 + f +

√
f2 + 2f + 5)/2-competitive for

f > 0.5.
Other models of the (simple) online knapsack problem have been studied as well, such as

the behavior of the resource-augmentation model, where the knapsack of the online algorithm
is slightly larger than the one of the offline algorithm on the same instances, studied by
Iwama et al. [17]. When randomization is allowed, the OnlineKP becomes 2-competitive
using only a single random bit and does not increase its competitive ratio with any additional
bits of randomization [6]. A relatively young measure of the informational complexity of a
problem is that of advice complexity, introduced by Dobrev, Královič, and Pardubská [9],
revised by Hromkovič et al. [13] and refined by Böckenhauer et al. [5]. In the standard
model, an online algorithm is given an advice tape of bits that an oracle may use to convey
some bits of information to an online algorithm about the instance in order to improve its
performance. Not surprisingly, a single advice bit also improves the competitive ratio to 2,
but interestingly, any advice in the size of o(log n) advice bits does not improve this ratio [6].

1.1 Our Contributions
We study the behavior of the knapsack problem with reservation costs for a reservation
factor 0 < α < 1. We analyze several subintervals for α separately with borders at 1/6,
α0 = 1 −

√
2

2 ≈ 0.293, α1 ≈ 0.318, α2 ≈ 0.365, α3 =
√

2 − 1 ≈ 0.414, and ϕ − 1 ≈ 0.618,

STACS 2021

16:4 Online Simple Knapsack with Reservation Costs

Table 1 Competitive ratios proven in this work.

α Lower bound Upper bound
0 < α ≤ 1

6 2 Thm 3 2 Thm 1
1
6 < α ≤ 1 −

√
2

2 2 Thm 3 2 + α Thm 5
1 −

√
2

2 < α ≤ ≈ 0.318 1
(1−α)2 Thm 4 2 + α Thm 5

≈ 0.318 < α ≤ ≈ 0.365 ≈ 2.15 Thm 4 2 + α Thm 5
≈ 0.365 < α ≤

√
2 − 1 1+α

1−α
Thm 4 2 + α Thm 5√

2 − 1 < α < ϕ − 1 2 + α Thm 12 2 + α Thm 5, 6
ϕ − 1 ≤ α < 1 1

1−α
Thm 15 1

1−α
Thm 14

0 0.2 0.4 0.6 0.81

2

3

4

5

α

C
om

p e
tit

iv
e

R
at

io

Figure 1 A schematic plot of the results proven in this paper. The full lines represent lower
bounds while the dashed lines represent upper bounds.

where ϕ is the golden ratio. The bounds that we are providing, which are also illustrated in
Figure 1, can be found in Table 1. We prove tight competitive ratios for α ≤ 1

6 as well as for
α ≥

√
2 − 1.

We also take a look at a subclass of algorithms for this problem that never discard
presented items up to a point where they stop processing the rest of the input, with arguably
paradox results: One would expect that, for very small reservation costs, reserving items
instead of rejecting them right away is more helpful than for large reservation costs and that
rejecting becomes more and more helpful with increasing reservation costs. But we prove
that, while, for small values of α, every algorithm that is unable to reject an item is strictly
dominated by algorithms that are able to reject items, for larger values of α this does not
appear to be the case, with our algorithms used for α ≥

√
2 − 1 being nonrejecting and

matching their lower bounds.
We cannot give a definitive answer on why this behavior can be observed. Our intuition

is that for higher reservation costs, the behavior is more similar to the model without
reservations. In this classical model, any errors that occur by ultimately not packing an item
are punished severely, so while reserving everything is costly, it is not worse than rejecting
any items.

The remainder of this paper is structured as follows: In Section 2, we present tight
upper and lower bounds for small values of α as well as almost tight lower bounds for
1
6 < α <

√
2 − 1. In Section 3, we look at values of α up to ϕ − 1, providing tight bounds for

the complete interval. We conclude the competitive analysis with lower and upper bounds

H.-J. Böckenhauer, E. Burjons, J. Hromkovič, H. Lotze, and P. Rossmanith 16:5

for larger values of α in Section 4. Section 5 is devoted to a discussion of algorithms that are
unable to reject items. We conclude the paper in Section 6. A full version that contains all
the proofs is available via arXiv [3].

1.2 Preliminaries
Our model can be defined as follows. Consider a knapsack of size 1 and a reservation factor
α, with 0 ≤ α ≤ 1. A request sequence I is a list of item sizes x1, x2, . . . , xn with xi ≤ 1 for
1 ≤ i ≤ n, which arrive sequentially. At time step i, the knapsack is filled up to some size
ti ≤ 1 and the reserved items add up to size ri. When an item with size xi arrives, an online
algorithm may pack this item into the knapsack if xi + ti ≤ 1, it may also reject the item, or
reserve the item at cost α · xi.

At step n + 1, no new items arrive and the knapsack contains all items that were taken
with total size tn and the reserved items have size rn = R. An algorithm can additionally
pack any of the reserved items which still fit into the knapsack, up to some size t ≤ 1. The
gain of an algorithm A solving ReserveKP with a reservation factor α on an instance I is
gainA(I) = t − α · R.

The strict competitive ratio of an algorithm A on an instance I is, given a solution with
optimal gain gainOPT(I) on this instance, ρA(I) = gainOPT(I)/gainA(I). The general strict
competitive ratio of an algorithm A is taken as the worst case over all possible instances,
ρA = maxI{ρA(I)}.

The strict competitive ratio as defined above is a special case of the well-known competitive
ratio which relaxes the above definition by allowing for a constant additive term in the
definition. Note that this generalized definition only makes sense for online problems in
which the optimal solution has unbounded gain. Since the gain of an optimal solution for
ReserveKP is bounded by the knapsack capacity, we only work with strict competitive
ratios in this paper and will simply call it competitive ratio from now on. For a thorough
introduction to competitive analysis of online algorithms, see the textbooks by Borodin and
El-Yaniv [7] and by Komm [19].

2 Small Reservation Costs

In this section, we analyze the case of reservation costs below 1
6 . Additionally, we provide

lower bounds for values of α up to
√

2 − 1. The upper bounds left out in this section are a
byproduct of the upper bounds of the next section for medium reservation costs and can be
found there.

2.1 Upper Bound for 0 < α ≤ 1
6

▶ Theorem 1. ReserveKP has a competitive ratio of at most 2 if 0 < α ≤ 1
6 .

To prove Theorem 1, we need to start with some technical considerations. First, we
define a threshold µ that will be used prominently in our online algorithm in the proof of
Theorem 1. We choose µ exactly so large, that packing items of size µ yields a competitive
ratio of at most 2, even if we have to pay reservation costs for all those items. We define
µ = 1/(2(1 − α)).

▶ Lemma 2. Let α ≤ 1
2 . If an algorithm has reserved items of total size R ≤ µ, then filling

the knapsack up to µ is sufficient to achieve a competitive ratio of at most 2.

STACS 2021

16:6 Online Simple Knapsack with Reservation Costs

Algorithm 1 The case 0 < α ≤ 1
6 .

1: R := 0;
2: for k = 1, . . . , n do
3: if xk ≥ µ then pack xk and stop
4: else if µ ≤ xk + R ≤ 1 then pack xk and all reserved items and stop
5: else if R ≤ 1 − µ then
6: if xk ≥ 1

2 then pack xk and all reserved items and stop
7: else reserve xk and let R := R + xk

8: else if xk + R < µ then reserve xk and let R := R + xk

9: else
10: if xk ≥ 1

2 then
11: if gainOPT(xk, R) ≥ µ then pack optimally and stop
12: else reject xk

13: else pack xk and reserved objects optimally and stop
14: pack the reserved items optimally

For small reservation costs, we design Algorithm 1, which unfortunately has a lot of
case distinctions, most of which serve “easy” cases. The analysis of Algorithm 1 will prove
Theorem 1. Let us look at some easy examples how the algorithm proceeds. If we feed a
stream of small items of identical size ε ≪ α into the algorithm, it will reserve all of them
until their total size reaches µ, when all items are put into the knapsack and the algorithm
stops in line 4. The gain of the algorithm is then at least µ − αµ, which yields a competitive
ratio of at least 1

2 .
In the next example, the reservation is still small, smaller than 1 − µ, and a request comes

for an item that is larger than 1
2 . If the item is larger than µ, it will be packed in line 3, and

achieve the desired competitive ratio due to Lemma 2. Otherwise, if it is smaller than µ, but
it reaches µ together with the reservation, it will be packed in line 4, and will still achieve
the desired competitive ratio, due to the same lemma, otherwise, it will be packed in line 6.
Because the reservation is smaller than 1 − µ, the item fits in with the reserved items, the
only concern is that it does not reach up to µ and we cannot apply the lemma, however, the
desired competitive ratio is still achieved as the item is packed without being reserved first,
making the total gainA(I) larger than 1

2 as a result.
As a last example, we consider what happens when a large item (larger than 1

2) arrives
after the reservation size is already larger than 1 − µ, in this case, the only possibility that
the item gets rejected is if the condition in line 11 is not satisfied. But literally this condition
only requires that the optimal packing of the reserved items and the new item achieves the
desired competitive ratio. Thus, we will have to make sure that the algorithm does not
perform too badly by rejecting objects if the end of the request sequence is achieved and the
algorithm is forced to pack in line 14.

Proof of Theorem 1. There are six ways how the algorithm might terminate. We have to
prove for all six cases that the competitive ratio is at most 2, when the algorithm terminates
at this point. These six possibilities correspond to lines 3, 4, 6, 11, 13, and 14.

Given a request xk larger than µ, we know by Lemma 2 that we achieve the desired
competitive ratio by packing xk alone, which is done in line 3. If our request is smaller than
µ, but µ ≤ xk + R ≤ 1, we again achieve the desired competitive ratio by packing all of
the reserved objects together with xk, thus satisfying the conditions for Lemma 2, which
is carried out in line 4. Observe, for these two cases, that we do not reserve anything that
would make R larger than µ.

H.-J. Böckenhauer, E. Burjons, J. Hromkovič, H. Lotze, and P. Rossmanith 16:7

Now, in line 5, if R ≤ 1 − µ and xk ≥ 1
2 , we know, since line 3 did not trigger the packing,

that xk < µ and all reserved items fit in the knapsack together with xk. We only need to
ensure that they achieve the desired competitive ratio, when the algorithm stops in line 6:

1
xk + (1 − α)R ≤ 1

1/2 + (1 − α)R ≤ 2 .

If line 9 of the algorithm is reached, i. e., xk + R > 1 and R > 1 − µ, we can have the
case that xk ≥ 1

2 . In this case, line 11 will ensure that the algorithm only stops and packs
when the desired competitive ratio is achieved.

On the other hand, if xk + R > 1, R > 1 − µ, and xk < 1
2 , i. e., if the algorithm has

reached line 13, we know, by inspecting the algorithm, that every object in R is smaller than
1
2 , so each of them fits into the knapsack together with xk. Indeed, otherwise one of the
items x1, . . . , xk−1 would have triggered the packing in line 4 or 6. If we were not able to
fill the knapsack up to µ with xk and the reserved objects, it would mean that there is a
reserved object xi > 1 − µ that does not fit in the end. However, this object fits into the
knapsack together with xk. We distinguish two cases. If xk ≥ 1 − µ, we put these two objects
into the knapsack and achieve a gain of xk + xi ≥ 1 − µ + 1 − µ = 2 − 2µ, and we know that
2 − 2µ ≥ µ for every α ≤ 1

4 , so we achieve a competitive ratio of 2 by Lemma 2 when the
algorithm terminates in line 13. Otherwise, if xk < 1 − µ, and packing xi and xk into the
knapsack, together with some other available reserved items still does not fill the knapsack
up to µ, there must be yet another object xj in the reservation xj > 1 − µ, and by the same
analysis xi + xj > µ for α ≤ 1

4 , achieving yet again the desired competitive ratio.
Now we are left with only one case to analyze: The algorithm reaches the end of the

request sequence I without having stopped. Then it packs an optimal subset of the reserved
items and ends in line 14. If there is an optimal solution that does not contain any items
that were rejected by the algorithm, then our algorithm can pack the same items as in the
optimal solution and the gain is (1 − α)gainOPT(I), which leads to a competitive ratio of

gainOPT(I)
(1 − α)gainOPT(I) = 1

1 − α
≤ 2 for α ≤ 1

2 .

The optimal solution might include one of the rejected items, but only one, as all rejected
items are larger than 1

2 . In this case, we know that the optimal solution contains the rejected
item xrej and some other items smaller than 1

2 that will necessarily be reserved, that is,
the size of an optimal solution is xrej + R′ where R′ ⊆ R. However, we also know that the
rejected item did not fit with all reserved items when it appeared. This means that there is
one reserved object xi, of size 1 − µ < xi < 1

2 , and this object is not in R′, as it does not fit
with xrej : otherwise it would have been taken by the algorithm, which then would stop, as
two objects greater than 1 − µ that fit into the knapsack are enough to achieve a competitive
ratio of 2 for α ≤ 1

4 as we just saw in the previous case. Hence, the algorithm can pack at
least xi + R′, as xi < 1

2 and xi /∈ R′. Thus, the competitive ratio in this case is

ρA ≤ xrej + R′

xi + R′ − αR
≤ µ + R′

1 − µ + R′ − αµ
,

where the last inequality follows since xrej < µ (otherwise, the algorithm would have
terminated in line 3) and R < µ (otherwise, the algorithm would have stopped in line 4).
We know that 0 ≤ R′ ≤ 1 − µ, but for the larger values of R′ we know that, if at some point
xi + R′ ≥ µ, the algorithm would have terminated sooner and not reached the end of the
sequence. Therefore R′ ≤ µ − xi ≤ µ − (1 − µ) ≤ 2µ − 1 and 0 ≤ R′ ≤ 2µ − 1. Then,

µ + R′

1 − µ + R′ − αµ
≤ µ

1 − µ − αµ
≤ 2 ,

for 0 ≤ α ≤ 1
6 , as can be shown with standard methods from calculus. ◀

STACS 2021

16:8 Online Simple Knapsack with Reservation Costs

x1 = 1
2 + δ

x2 = 1, end
ρA > 2 − ε

end
ρA > 2 x2 = 1

2 + δ2

x3 = 1, end
ρA > 2

x3 = 1
2 − δ2, end

ρA = 1
(1−α)(1

2 +δ) > 2 x3 = 1
2 + δ3

. . .

reject take reserve

reject take reserve

Figure 2 Sketch of the adversarial strategy that is used in the proof of Theorem 3.

2.2 Lower Bound for 0 < α ≤
√

2 − 1
First we present an adversarial strategy that works for all values of α. Then we proceed to
analyze the case where only three objects are presented as a generic adversarial strategy and
find improved lower bounds for some values of α.

▶ Theorem 3. For α > 0 there exists no algorithm for reservation knapsack achieving a
competitive ratio better than 2.

Proof. Consider the following set of adversarial instances depicted in Figure 2. Given any
ε > 0, the adversary presents first an object of size 1

2 + δ with 0 < δ ≪ ε. If an algorithm
takes this object, an object of size 1 will follow, making its competitive ratio 1/(1

2 +δ) > 2−ε.
If an algorithm rejects this object, no more objects will follow and it will not be competitive.
If an algorithm reserves this object, then an object of size 1

2 + δ2 will be presented. Observe,
that these two objects do not fit together into the knapsack. If an algorithm takes this object,
an object of size 1 will be presented, and again the algorithm will achieve a competitive ratio
worse than 2 − ε. If an algorithm rejects this object, then an object of size 1

2 − δ2 will be
presented. This object does not fit in the knapsack with the first one, thus the algorithm can
only pack the first object, obtaining a competitive ratio worse than 2 − ε. If an algorithm
reserves it instead, an object of size 1

2 + δ3 will be presented. The adversary can follow this
procedure on and on, and in each step the competitive ratios for algorithms that accept or
reject the offered item only get worse due to the additional reservation costs.

The adversary can stop offering items as soon as the reservation costs are such that filling
the knapsack will only result in a competitive ratio worse than 2. This shows that, for every
ε > 0, the competitive ratio is at least 2 − ε, so the best competitive ratio is at least 2. ◀

The adversarial strategy depicted in Figure 2 works for every positive value of α. Observe
that if an algorithm continues to reserve items, the cumulated reservation cost will eventually
exceed any remaining gain.

This strategy provides us with a lower bound that does not match the upper bound for
α > 1

6 . We improve the lower bound for larger α by designing a generic adversarial strategy
with three items shown in Figure 3, which shows the competitive ratios for all possible
outcomes. It is therefore bounded by

ρA ≥ min
{1

s
,

1
t − αs

,
t

(1 − α)t − αs
,

t

s − αs

}
. (1)

H.-J. Böckenhauer, E. Burjons, J. Hromkovič, H. Lotze, and P. Rossmanith 16:9

x1 = s

x2 = 1, end
ρA = 1

s

end
ρA = ∞ x2 = t

x3 = 1, end
ρA = 1

t−αs

end
ρA = t

(1−α)s

end
ρA = t

(1−α)t−αs

reject take reserve

reject take
reserve

Figure 3 Diagram of a generic adversarial strategy with 3 items.

To prove a lower bound for every 0 < α < 1, we can choose s and t in order to make (1) as
large as possible. Standard calculus leads to the bounds in the following theorem.

▶ Theorem 4. The competitive ratio of ReserveKP is at least
(a) 1/(1 − α)2 ≈ 2 . . . 2.15, for 0.293 ≤ α < 0.318;
(b) (2 − α1)/(1 − α1 + α2

1) ≈ 2.15, for 0.318 ≤ α < 0.365 (recall that α1 ≈ 0.318);
(c) (1 + α)/(1 − α) ≈ 2.15 . . . 2.41, for 0.365 ≤ α < 0.414; and
(d) 2 + α ≈ 2.41 . . . 3, for 0.414 ≤ α ≤ 1.

3 Medium Reservation Costs

We now consider the case of medium reservation costs, i. e.,
√

2 − 1 ≤ α < ϕ − 1 =
√

5
2 − 1

2 .
We will provide an upper bound of 2 + α for α < ϕ − 1 in Theorems 5 and 6. We complement
these upper bounds by a tight lower bound of 2 + α for the whole range of medium-size
reservation cost.

3.1 Upper Bound for 1
6 < α < ϕ − 1

We prove now a general upper bound for α < ϕ−1, but with a competitive ratio that depends
on the parameter α. We split the proof, into two pieces: Theorem 5 handles the case for
values of α up to 1

2 , . Theorem 6 contains an induction over the number of large elements in
an instance, which proves the upper bound for the rest of the interval up to ϕ − 1.

▶ Theorem 5. ReserveKP has a competitive ratio of at most 2 + α if 0 < α ≤ 1
2 .

▶ Theorem 6. ReserveKP has a competitive ratio of at most 2 + α if 1
2 < α < ϕ − 1.

We consider Algorithm 2, which, unlike Algorithm 1, does not reject any offered item
until it stops processing the rest of the input. In Section 5, we further discuss this class of
algorithms and when they are optimal. We need the following technical lemmas.

▶ Lemma 7. The size of R in Algorithm 2 is never larger than 1/(2 + α)(1 − α).

Note, that for every considered value of α the upper bound on R is positive, that is,
(2 + α)(1 − α) ≥ 0 if α is smaller than 1. With Lemma 7 we can prove the following claim.

▶ Lemma 8. If Algorithm 2 packs at least 1/(2 + α)(1 − α) into the knapsack, then its
competitive ratio is at most 2 + α.

STACS 2021

16:10 Online Simple Knapsack with Reservation Costs

Algorithm 2 Competitive ratio 2 + α for 0 < α ≤ ϕ − 1.
R := 0;
for k = 1, . . . , n do

if xk + (1 − α)R ≥ 1/(2 + α) then
pack x1, . . . , xk optimally;
stop

else
reserve xk;
R := R + xk

pack x1, . . . , xn optimally

The next lemma allows us to restrict our attention to ordered sequences of items. It
proves that, if an instance violated the upper bound for Algorithm 2, we could rearrange the
first k − 1 items in decreasing order and get another counterexample.

▶ Lemma 9. If x1, . . . , xn is an instance for Algorithm 2, whose packing is triggered by xk,
with a competitive ratio larger than 2+α, then there is another instance xi1 , xi2 , xi3 , . . . , xik−1 ,

xk, . . . , xn where (i1, i2, . . . , ik−1) is a permutation of (1, . . . , k − 1) and xi1 ≥ xi2 ≥ . . . ≥
xik−1 , that also has a competitive ratio larger than 2 + α.

From Lemma 8, we know that, if Algorithm 2 packs at least 1/(2 + α)(1 − α), this
guarantees a competitive ratio of at most 2 + α. Thus, if we have enough elements that are
smaller than the gap of size 1 − 1/(2 + α)(1 − α), those elements can be packed greedily and
always achieve the desired competitive ratio. Let us call small items those of size smaller than

1 − 1
(2 + α)(1 − α) = (2 + α)(1 − α) − 1

(2 + α)(1 − α) = 1 − α − α2

(2 + α)(1 − α) (2)

This definition is only valid when (2) is positive, that is, when 1 − α − α2 ≥ 0, which is
the case if 0 < α ≤ ϕ − 1, including our desired range. We call large items those of larger
size. Let α4 be the unique positive real root of the polynomial 1 − 2α − α2 + α3, i. e.,

α4 = 1
3 + 2

√
7

3 cos
(

1
3 arccos

(
− 1

2
√

7

)
− 2π

3

)
≈ 0.445 .

▶ Lemma 10. Given any request sequence x1 ≥ x2 ≥ . . . ≥ xk−1, xk, . . . , xn, where xk

triggers the packing in Algorithm 2, there is at most one large item if 0 < α ≤ α4 and there
are at most two large items if α4 < α ≤ 0.5.

Proof. Assume by contradiction that there exists a request sequence where x1 ≥ x2 ≥ . . . ≥
xi ≥ 1−α−α2

(2+α)(1−α) , with k > i. Any item xj with j ≤ i satisfies

xj ≤ 1
2 + α

− (1 − α)(x1 + x2 + . . . + xj−1) ,

in particular,

xi ≤ 1
2 + α

− (1 − α)(x1 + x2 + . . . + xi−1) . (3)

All of the contributions of previous requests are negative, so in order to obtain a maximal
value for xi, we need that x1, . . . , xi−1 are minimal, but by construction, still greater or equal
than xi. Thus, the maximal value is obtained when x1 = x2 = . . . = xi. In this case, we

H.-J. Böckenhauer, E. Burjons, J. Hromkovič, H. Lotze, and P. Rossmanith 16:11

obtain from (3) the following upper bound on the value of xi, xi ≤ 1
2+α − (1 − α)(i − 1)xi

which we solve for xi and obtain

xi ≤ 1
(2 + α)(i(1 − α) + α) . (4)

We also know that xi is a large item, thus we can also state the following lower bound on xi

xi ≥ 1 − α − α2

(2 + α)(1 − α) . (5)

If we take into account both (4) and (5) we get 1
(2+α)(i(1−α)+α) ≥ 1−α−α2

(2+α)(1−α) which we solve
for i to obtain

i ≤ 1 + α2

(1 − α)(1 − α − α2) .

In particular, for i = 2 we get 2(1 − α)(1 − α − α2) ≤ (1 − α)(1 − α − α2) + α2 which is
equivalent to (1 − α)(1 − α − α2) ≤ α2 and thus to 1 − 2α − α2 + α3 ≤ 0, which means that
the number of large items is strictly smaller than 2 for α ≤ α4.

For i = 3, we get 3(1 − α)(1 − α − α2) ≤ (1 − α)(1 − α − α2) + α2 or equivalently
2(1 − 2α + α3) ≤ α2. Hence, 2 − 4α − α2 + 2α3 ≤ 0, which means that the number of large
items is strictly smaller than 3 for α ≤ 0.5, since 0.5 is the unique positive real root of the
left-hand-side polynomial. ◀

Now we are ready to prove the claimed competitive ratio of Algorithm 2.

Proof sketch of Theorem 5. Let us consider first the case where α ≤ α4, which means that
only one large element can appear in the request sequence without triggering the packing.

We assume that there is a shortest contradictory sequence containing at least two elements,
which at some point, namely with request xk, triggers Algorithm 2 to pack. If there is no
such sequence, it is rather easy to see that the claimed competitive ratio can be achieved. We
consider several cases according to the sizes of the items which leads to the desired result.

In the case where α ≤ 0.5, we can use similar arguments to prove the claim. ◀

We continue with proving an upper bound for the rest of the interval, which is an induction
over the number of large elements. Before we start our proof, we provide a lemma that allows
us to ignore possible small elements during the proof of Theorem 6.

▶ Lemma 11. Given a request sequence without small elements for which Algorithm 2 does
not achieve a competitive ratio of 2 + α, adding small elements to it will only improve its
competitive ratio.

Proof. Let us consider a request sequence containing only large elements x1 ≥ . . . ≥
xk−1, xk, . . . , xn, where xk is the element triggering the packing for Algorithm 2, and the
achieved competitive ratio is larger than 2 + α. This means, by Lemma 8, that the packed
knapsack size is smaller than 1/(2 + α)(1 − α). By definition, if we add enough small
elements to the request sequence before xk, the small elements can be packed greedily until
the knapsack is filled up to 1/(2 + α)(1 − α), achieving the desired competitive ratio. If
not enough of them are added before xk, the small elements requested before xk will be
reserved but will still be able to be packed, so they will never contribute negatively to the
total packing gain. ◀

STACS 2021

16:12 Online Simple Knapsack with Reservation Costs

Proof of Theorem 6. We prove by induction that, for any finite number of large elements
before the packing, Algorithm 2 achieves the desired competitive ratio for α < ϕ − 1. The
base case for zero large elements is trivial, as we can greedily reserve and later pack all small
elements to get the desired competitive ratio. Let us assume that Algorithm 2 achieves the
desired competitive ratio for any request sequence with less than k − 1 large elements before
the algorithm packs and stops.

If a request sequence has k − 1 large elements we can assume by Lemma 9, that the
smallest of those is xk−1, and we can also assume that xk triggers the packing by Lemma 11.
We distinguish two cases.
1. When the packing is triggered, xk−1 is not part of an optimal packing.

In this case,
∑

j is packed xj + xk−1 > 1. Then the following bounds hold.

xk−1 + (1 − α)

 ∑
j<k−1

xj

 <
1

2 + α
,

xk−1 ≤ x1 < 1/(2 + α), and α
1−α < 1 − α for α < ϕ − 1.

Thus, the gain that Algorithm 2 achieves is∑
j is packed

xj − αR

≥ 1 − xk−1 − α

 ∑
j≤k−1

xj

= 1 − (1 + α)xk−1 − α

 ∑
j<k−1

xj

= 1 − 2αxk−1 − (1 − α)

xk−1 + α

1 − α

 ∑
j<k−1

xj

≥ 1 − 2αxk−1 − (1 − α)

xk−1 + (1 − α)

 ∑
j<k−1

xj

≥ 1 − 2αxk−1 − (1 − α)

(
1

2 + α

)
≥ 1 − 2α

2 + α
− 1 − α

2 + α

≥ 1
2 + α

,

as we wanted.
2. When the packing is triggered, xk−1 is part of an optimal packing. We consider two

subcases.
a. Taking xk−1 out of the request sequence still triggers the packing.

This means that xk + (1 − α)(R − xk−1) ≥ 1
2+α holds. We can thus consider the

sequence x1, . . . , xk−2, xk. This sequence has k − 2 large elements, and xk−1 cannot be
part of its optimal solution, thus its competitive ratio is at most 2 + α by the induction
hypothesis, and the competitive ratio after adding xk−1 can only get better.

b. Taking xk−1 out of the request sequence does not trigger the packing.

H.-J. Böckenhauer, E. Burjons, J. Hromkovič, H. Lotze, and P. Rossmanith 16:13

This means that xk + (1 − α)(R − xk−1) < 1
2+α , but also

xk + (1 − α)R ≥ 1
2 + α

,

and if we let xj be the smallest element that does not get packed, xj ≥ xk−1 holds.
Also, because of the optimality of the packing xk ≥ xj , (otherwise one can take all of
the reserved elements as the packing and obtain a better bound) and∑

t is packed
xt − xk−1 + xj > 1

holds. Moreover, we can bound xj by xj ≤ x1 ≤ 1
2+α . With these bounds, the gain

incurred by the algorithm is at least∑
t is packed

xt − αR

≥ 1 − xj + xk−1 − αR

≥ 1 − xj + xk

1 − α
+ R − 1

(1 − α)(2 + α) − αR

= 1 − xj + xk

1 − α
+ (1 − α)R − 1

(1 − α)(2 + α)

≥ 1 − xj + αxk

1 − α
+ 1

2 + α
− 1

(1 − α)(2 + α)

= 1
2 + α

+ 1 − α − α2

(1 − α)(2 + α) − xj + αxk

1 − α

≥ 1
2 + α

+ 1 − α − α2

(1 − α)(2 + α) + α − (1 − α)
1 − α

xk

≥ 1
2 + α

+ 1 − α − α2

(1 − α)(2 + α) + 2α − 1
1 − α

xk

≥ 1
2 + α

,

where the last step is trivially true for any α ≥ 1/2. Thus we get the desired competitive
ratio in all of the considered range for α.

This proves the induction step, and thus the desired upper bound on the competitive ratio. ◀

3.2 Lower Bound for
√

2 − 1 ≤ α ≤ ϕ − 1
We now prove that, for the whole interval of medium reservation costs, no algorithm can
achieve a better competitive ratio than 2 + α.

▶ Theorem 12. Given an ε > 0 and an α such that
√

2−1 ≤ α < 1, there exists no algorithm
for reservation knapsack achieving a competitive ratio of 2 + α − ε.

Proof. Consider the following set of adversarial instances. First, the adversary presents an
item of size 1

2+α . If an algorithm takes this item, the adversary presents an item of size 1,
and the algorithm has a competitive ratio of 2 + α as claimed. If an algorithm rejects this
item, the adversary will present no further items; thus, the algorithm will not be competitive
at all. If the item is reserved, the adversary presents a second item of size 1 − 1

2+α + δ, where
δ < ε

(2+α)(2+α−ε) . Note that the second item is larger than the first item for all α > 0 and

STACS 2021

16:14 Online Simple Knapsack with Reservation Costs

that they do not fit together into the knapsack. If the item is taken, again the adversary
presents an item of size 1 and ends the sequence. Thus, any algorithm reserving the first
item and taking the second item has a competitive ratio of no better than

1
1 − 1

2+α + δ − α
2+α

= 1
1

2+α + δ
> 2 + α − ε ,

where the last inequality follows from the choice of δ. If the second item is rejected, the
adversary will present no further items and thus any algorithm following this strategy will
have a competitive ratio of

1 − 1
2+α + δ

1
2+α − α

2+α

=
1+α
2+α + δ

1−α
2+α

>
1 + α

1 − α
> 2 + α

where the last inequality follows from the fact that 1+α
1−α > 2 + α, for all values of α ≥

√
2 − 1.

If the second item is reserved, no further items will be presented by the adversary. Thus,
any algorithm following this strategy will have a competitive ratio of

1 − 1
2+α + δ

1 − 1
2+α + δ − α

2+α − α + α
2+α − αδ

=
1+α
2+α + δ

1−α−α2

2+α + δ(1 − α)

>
1+α
2+α

1−α−α2

2+α + δ
>

1 − α
1−α−α2

2+α + δ
,

where the last inequality again follows from the fact that 1+α
1−α > 2 + α, for all values of

α ≥
√

2 − 1. We claim that

1 − α
1−α−α2

2+α + δ
> 2 + α .

Since 1 − α − α2 is positive for all α < ϕ − 1, this is equivalent to 1−α
2+α > 1−α−α2

2+α + δ or
equivalently α2 > (2 + α)δ which is true for all reasonable choices of δ. ◀

4 High Reservation Costs

In this section, we analyze the competitive ratio in the remaining interval of reservation costs
between ϕ − 1 and 1. We prove a tight bound of 1

1−α on the competitive ratio.

4.1 Upper Bound for ϕ − 1 ≤ α < 1
For proving an upper bound, we consider Algorithm 3 and first bound its reservation costs.

▶ Lemma 13. For Algorithm 3, the reservation cost R is never larger than 1.

We are now ready to prove the desired competitive ratio for Algorithm 3.

▶ Theorem 14. Algorithm 3 is an online algorithm for ReserveKP achieving a competitive
ratio of at most 1

1−α , for all ϕ − 1 ≤ α < 1.

Proof sketch. The full proof of this theorem is structurally very similar to that of Theorem 6.
Let us first assume that we run Algorithm 3 on an instance x1, . . . , xn, and no element
triggers the packing. This means that all elements are reserved. But we know by Lemma 13

H.-J. Böckenhauer, E. Burjons, J. Hromkovič, H. Lotze, and P. Rossmanith 16:15

Algorithm 3 Algorithm for ϕ − 1 ≤ α < 1.
R := 0;
for k = 1, . . . , n do

if xk + (1 − α)R ≥ 1 − α then
pack x1, . . . , xk optimally;
stop

else
reserve xk;
R := R + xk

pack x1, . . . , xn optimally

that the reservation never exceeds the capacity of the knapsack. This means that the optimal
solution packs all offered elements. Thus, the algorithm achieves a competitive ratio of∑n

i=1 xk−1

(
∑n

i=1 xk−1) − α
∑n

i=1 xk−1
= 1

1 − α
.

Now, it remains to analyze the case where an instance x1, . . . , xn triggers the packing,
for some xk. We do an induction on the value of k. If k = 1, the first item offered triggers
the packing, thus it holds that x1 ≥ 1 − α and the gain of the algorithm is at least 1 − α as
we expected. Now, we assume that Algorithm 3 has a gain of at least 1 − α on any request
sequence triggering the algorithm to pack and stop before k elements are offered.

We proceed similarly to the proof of Theorem 6, making a case distinction over whether
xk−1 is part of an optimal packing. ◀

4.2 Lower Bound for ϕ − 1 ≤ α < 1
Now we present a lower bound of 1

1−α for ϕ − 1 ≤ α < 1. Observe that this lower bound
works for all α. However, for smaller values of α, we see that 2 + α > 1

1−α , so Theorem 12
already gives a better lower bound for that range.

▶ Theorem 15. For any ε > 0 and any α such that ϕ − 1 ≤ α < 1, no online algorithm for
ReserveKP can achieve a competitive ratio of 1

1−α − ε.

Proof sketch. The proof of this theorem is structurally similar to that of Theorem 12. ◀

5 Nonrejecting Algorithms

We call an algorithm nonrejecting if it only chooses from one of the options pack, reserve
or stop and pack for each item that it is given. Such an algorithm is thus unable to reject
any items until the point where it discards the remaining elements of an instance.

A valid intuition for ReserveKP might be the following: If the cost of reservation is very
small, rejecting an item should not be necessary, as even when an item cannot be packed,
the cost of reserving it is negligible. On the other hand, when the reservation cost is rising,
aggressively reserving items may seem like a very bad strategy, as the risk of not being able
to utilize reserved items may come to mind. Interestingly, both of these intuitions turn out
to be wrong, which we will show by first giving a lower bound for nonrejecting algorithms
that exceeds the upper bound of a rejecting algorithm for small α and that tightly matches
the upper bound of a nonrejecting algorithm for bigger α.

We first provide a lower bound on the competitive ratio for nonrejecting algorithms.

STACS 2021

16:16 Online Simple Knapsack with Reservation Costs

x1 = 1
2+α

x2 = 1, end
ρA = 2 + α

x2 = 1+α
2+α + ε

x3 = 1, end
ρA = 2 + α

x3 = 1+α
2+α + ε

ρA > 2 + α

. . .

take reserve

take reserve

Figure 4 Sketch of the adversarial strategy that is used in the proof of Theorem 16. Upon
continued reservation, a new item of the same size is repeatedly presented.

▶ Theorem 16. There exists no deterministic online algorithm for ReserveKP that does
not reject any elements with a competitive ratio better than 2 + α for any 0 < α < 1.

Proof sketch. The proof of this theorem is structurally similar to the proofs of Theorems 12
and 15. A sketch of the adversarial strategy can be found in Figure 4. ◀

Combined with the upper bound given in Lemma 2 we see that an algorithm that is
unable to reject items performs quite a bit worse than one that is able to reject items, such
as Algorithm 1. Thus, an algorithm needs to be able to reject items to become 2-competitive
for small values of α. On the other hand, the lower bound provided in Theorem 16 matches
the upper bound of Theorem 5, which is based on the nonrejecting Algorithm 2. Thus, there
are nonrejecting algorithms for every α ≥

√
2 − 1 that are at least as good as any other

algorithms that are able to reject items.

6 Further Work

In this work, we give first bounds on this new model, but left a gap between the upper and
lower bounds for 1

6 < α <
√

2 − 1. It would be of interest to us how the complete picture of
all tight bounds looks like. We left the case open where the item costs are not proportional
to their sizes, which seems also constantly competitive depending on α. We also leave the
randomized and advice complexity of ReserveKP open.

Furthermore, one could consider a variant where reservation costs are refunded if the item
is used or where one pays a fee proportional to the size of all reserved items in each step.

The concept of reservation may be applied to other online problems such as online call
admission problems in networks [2, 7, 19] or problems of embedding guest graphs into a
host graph. In the online path packing problem, one packs paths in a edge-disjoint way
(sometimes node-disjointly) into a graph, which is a generalization of ReserveKP, thus
inheriting all lower bounds. The offline version was studied on many types of graphs, with
an incomplete selection being [10, 21, 23, 8].

References

1 Susanne Albers. Energy-efficient algorithms. Commun. ACM, 53(5):86–96, 2010. doi:
10.1145/1735223.1735245.

2 Baruch Awerbuch, Yossi Azar, and Serge A. Plotkin. Throughput-competitive on-line routing.
In 34th Annual Symposium on Foundations of Computer Science, Palo Alto, California, USA,
3-5 November 1993, pages 32–40. IEEE Computer Society, 1993. doi:10.1109/SFCS.1993.
366884.

https://doi.org/10.1145/1735223.1735245
https://doi.org/10.1145/1735223.1735245
https://doi.org/10.1109/SFCS.1993.366884
https://doi.org/10.1109/SFCS.1993.366884

H.-J. Böckenhauer, E. Burjons, J. Hromkovič, H. Lotze, and P. Rossmanith 16:17

3 Hans-Joachim Böckenhauer, Elisabet Burjons, Juraj Hromkovič, Henri Lotze, and Peter
Rossmanith. Online simple knapsack with reservation costs. CoRR, abs/2009.14043, 2020.
arXiv:2009.14043.

4 Hans-Joachim Böckenhauer, Richard Dobson, Sacha Krug, and Kathleen Steinhöfel. On
energy-efficient computations with advice. In Dachuan Xu, Donglei Du, and Ding-Zhu Du,
editors, Computing and Combinatorics - 21st International Conference, COCOON 2015,
Beijing, China, August 4-6, 2015, Proceedings, volume 9198 of Lecture Notes in Computer
Science, pages 747–758. Springer, 2015. doi:10.1007/978-3-319-21398-9_58.

5 Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, Richard Královič, and Tobias
Mömke. Online algorithms with advice: The tape model. Inf. Comput., 254:59–83, 2017.
doi:10.1016/j.ic.2017.03.001.

6 Hans-Joachim Böckenhauer, Dennis Komm, Richard Královič, and Peter Rossmanith. The
online knapsack problem: Advice and randomization. Theor. Comput. Sci., 527:61–72, 2014.
doi:10.1016/j.tcs.2014.01.027.

7 Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

8 Darryn E. Bryant. Packing paths in complete graphs. J. Comb. Theory, Ser. B, 100(2):206–215,
2010. doi:10.1016/j.jctb.2009.08.004.

9 Stefan Dobrev, Rastislav Královič, and Dana Pardubská. Measuring the problem-relevant
information in input. ITA, 43(3):585–613, 2009. doi:10.1051/ita/2009012.

10 András Frank. Packing paths in planar graphs. Combinatorica, 10(4):325–331, 1990. doi:
10.1007/BF02128668.

11 Xin Han, Yasushi Kawase, and Kazuhisa Makino. Online unweighted knapsack problem with
removal cost. Algorithmica, 70(1):76–91, 2014. doi:10.1007/s00453-013-9822-z.

12 Xin Han, Yasushi Kawase, Kazuhisa Makino, and Haruki Yokomaku. Online knapsack problems
with a resource buffer. In Pinyan Lu and Guochuan Zhang, editors, 30th International
Symposium on Algorithms and Computation, ISAAC 2019, December 8-11, 2019, Shanghai
University of Finance and Economics, Shanghai, China, volume 149 of LIPIcs, pages 28:1–28:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ISAAC.2019.
28.

13 Juraj Hromkovič, Rastislav Královič, and Richard Královič. Information complexity of
online problems. In Petr Hliněný and Antonín Kučera, editors, Mathematical Foundations of
Computer Science 2010, 35th International Symposium, MFCS 2010, Brno, Czech Republic,
August 23-27, 2010. Proceedings, volume 6281 of Lecture Notes in Computer Science, pages
24–36. Springer, 2010. doi:10.1007/978-3-642-15155-2_3.

14 Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM, 22(4):463–468, 1975. doi:10.1145/321906.321909.

15 Sandy Irani, Sandeep K. Shukla, and Rajesh Gupta. Algorithms for power savings. ACM
Trans. Algorithms, 3(4):41, 2007. doi:10.1145/1290672.1290678.

16 Kazuo Iwama and Shiro Taketomi. Removable online knapsack problems. In Peter Widmayer,
Francisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan J. Eidenbenz,
and Ricardo Conejo, editors, Automata, Languages and Programming, 29th International
Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings, volume 2380 of Lecture
Notes in Computer Science, pages 293–305. Springer, 2002. doi:10.1007/3-540-45465-9_26.

17 Kazuo Iwama and Guochuan Zhang. Online knapsack with resource augmentation. Inf.
Process. Lett., 110(22):1016–1020, 2010. doi:10.1016/j.ipl.2010.08.013.

18 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

STACS 2021

http://arxiv.org/abs/2009.14043
https://doi.org/10.1007/978-3-319-21398-9_58
https://doi.org/10.1016/j.ic.2017.03.001
https://doi.org/10.1016/j.tcs.2014.01.027
https://doi.org/10.1016/j.jctb.2009.08.004
https://doi.org/10.1051/ita/2009012
https://doi.org/10.1007/BF02128668
https://doi.org/10.1007/BF02128668
https://doi.org/10.1007/s00453-013-9822-z
https://doi.org/10.4230/LIPIcs.ISAAC.2019.28
https://doi.org/10.4230/LIPIcs.ISAAC.2019.28
https://doi.org/10.1007/978-3-642-15155-2_3
https://doi.org/10.1145/321906.321909
https://doi.org/10.1145/1290672.1290678
https://doi.org/10.1007/3-540-45465-9_26
https://doi.org/10.1016/j.ipl.2010.08.013
https://doi.org/10.1007/978-1-4684-2001-2_9

16:18 Online Simple Knapsack with Reservation Costs

19 Dennis Komm. An Introduction to Online Computation - Determinism, Randomization,
Advice. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2016. doi:
10.1007/978-3-319-42749-2.

20 Alberto Marchetti-Spaccamela and Carlo Vercellis. Stochastic on-line knapsack problems.
Math. Program., 68:73–104, 1995. doi:10.1007/BF01585758.

21 Alexander Schrijver and Paul D. Seymour. Packing odd paths. J. Comb. Theory, Ser. B,
62(2):280–288, 1994. doi:10.1006/jctb.1994.1070.

22 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and
paging rules. Commun. ACM, 28(2):202–208, 1985. doi:10.1145/2786.2793.

23 Natalia Vanetik. Path packing and a related optimization problem. J. Comb. Optim.,
17(2):192–205, 2009. doi:10.1007/s10878-007-9107-z.

https://doi.org/10.1007/978-3-319-42749-2
https://doi.org/10.1007/978-3-319-42749-2
https://doi.org/10.1007/BF01585758
https://doi.org/10.1006/jctb.1994.1070
https://doi.org/10.1145/2786.2793
https://doi.org/10.1007/s10878-007-9107-z

Inapproximability of Diameter in Super-Linear
Time: Beyond the 5/3 Ratio
Édouard Bonnet
Univ. Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Abstract
We show, assuming the Strong Exponential Time Hypothesis, that for every ε > 0, approximating
directed Diameter on m-arc graphs within ratio 7/4 − ε requires m4/3−o(1) time. Our construction
uses non-negative edge weights but even holds for sparse digraphs, i.e., for which the number of
vertices n and the number of arcs m satisfy m = Õ(n). This is the first result that conditionally
rules out a near-linear time 5/3-approximation for a variant of Diameter.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Diameter, inapproximability, SETH lower bounds, k-Orthogonal Vectors

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.17

Related Version Full Version: https://arxiv.org/abs/2008.11315

Funding This work was supported by the grant from French National Agency under PRC program
(project Digraphs, ANR-19-CE48-0013-01).

1 Introduction

The diameter of a graph is the largest length of a shortest path between two of its vertices.
We denote by Diameter the algorithmic task of computing the diameter of an input graph.
We will sometimes prefix Diameter by the adjectives undirected/directed specifying if edges
can be oriented (i.e., if they can be arcs), and unweighted/weighted specifying if non-negative
edge weights can be used. By default, we will assume that both edge orientations and
edge weights are allowed. To be clear, the diameter in a digraph (or directed graph) is the
maximum taken over all ordered pairs of vertices (u, v) of the distance from u to v. Note
that it is very possible that the pair (u, v) realizes the distance of the diameter, while there
is a much shorter path from v to u (perhaps just an arc).

There is an active line of work aiming to determine the best running time for an algorithm
approximating (variants of) Diameter within a given ratio (see for instance the survey of
Rubinstein and Vassilevska Williams [12]). We focus here on sparse graphs, for which the
number of edges m and the number of vertices n verify m = Õ(n), where Õ suppresses the
polylogarithmic factors.1 There is an exact algorithm running in time Õ(n2) by computing n

shortest-path trees from every vertex of the graph. There is also a folklore 2-approximation
running in time Õ(n) by computing a shortest-path tree from an arbitrary vertex and
outputting the largest distance found. There are an Õ(n3/2) time 3/2-approximation for
weighted directed Diameter [1, 11, 6], and for every non-negative integer k, an Õ(n1+ 1

k+1)
time (2− 2−k)-approximation for weighted undirected Diameter [4]. In dense graphs these
four algorithms take time Õ(mn), Õ(m), Õ(m3/2) and Õ(mn

1
k+1), respectively.

1 Throughout the paper we adopt the convention that n denotes the number of vertices and m, the
number of edges of a given graph.

© Édouard Bonnet;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 17; pp. 17:1–17:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1653-5822
https://doi.org/10.4230/LIPIcs.STACS.2021.17
https://arxiv.org/abs/2008.11315
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Inapproximability of Diameter in Super-Linear Time: Beyond the 5/3 Ratio

There are two competing criteria: minimizing the approximation factor, which is in that
case between 1 and 2, and minimizing the exponent of the running time, also a real number
between 1 and 2. We now know that the points (1, 2), (3

2 , 3
2), and (2, 1) are feasible for

the more general variant of Diameter. The question is whether these algorithms can be
improved or if conditional lower bounds can be provided instead. The paper is about the
latter, so we will now briefly present the relevant framework of fine-grained complexity, as
well as its known consequences for Diameter.

Fine-grained complexity

The program of fine-grained complexity aims to match fine-grained algorithms (where the
precise running time matters more than the membership to some robust complexity class)
with tight conditional lower bounds under well-established assumptions. These assumptions
are said problem-centric. They rely on the fact that we have been collectively unable to
“meaningfully” improve over the brute-force or textbook algorithms for some important
problems. Then perhaps such improvements are impossible, or at least they are currently
out of reach. A fine-grained reduction from one of these central problems to our problem of
interest Π tells us that improving on Π would result in a major breakthrough.

The three main hypotheses are based on SAT, 3-SUM, and All-Pairs Shortest-Paths.
One might think that All-Pairs Shortest-Paths is a better starting point for a reduction
to Diameter. Surprisingly it happens that SAT is. We will now focus on conditional
lower bounds for Diameter, so we will only define the hypothesis based on SAT. For
more on fine-grained complexity, we refer the interested reader to the survey of Vassilevska
Williams [14].

The Strong Exponential Time Hypothesis (SETH, for short) asserts that for every
ε > 0, there is an integer k such that k-SAT cannot be solved in time (2− ε)n on n-variable
instances [8]. The first SETH-based lower bound for a polynomial-time solvable graph problem
was precisely on unweighted undirected Diameter [11]. The authors show that, unless
the SETH fails, any (3/2− δ)-approximation for sparse unweighted undirected Diameter,
with δ > 0, requires time n2−o(1). Backurs et al. [2] show under the same assumption that,
for every k ⩾ 3, any ((5k − 7)/(3k − 4)− δ)-approximation for sparse unweighted directed
Diameter, with δ > 0, requires time n1+ 1

k−1 −o(1), and that any (5/3− δ)-approximation
for sparse weighted undirected Diameter requires time n3/2−o(1). Li [9] improves on these
results showing that, unless the SETH fails, any (5/3 − δ)-approximation for unweighted
undirected Diameter requires time n3/2−o(1).

Since a 5/3-approximation of Diameter running in near-linear time was consistent
with the current knowledge, even in weighted directed graphs, Rubinstein and Vassilevska
Williams [12] and Li [9] ask for such an algorithm or some lower bounds with a ratio closer
to 2. We give an evidence that, at least for weighted directed graphs, no such algorithm is
possible. More precisely, our contribution is the following.

▶ Theorem 1. Unless the SETH fails, for any ε > 0, (7/4− ε)-approximating Diameter
on directed n-vertex Õ(n)-edge graphs where all the edge weights are non-negative integers
requires n4/3−o(1) time.

Figure 1 summarizes what was known for directed Diameter and where Theorem 1 fits.

É. Bonnet 17:3

1

4/3

3/2

2

1 3
2

5
3

7
4 2approximation factor

ru
nt

im
e

ex
po

ne
nt

[11, RV13]

[9, Li20]

[2,B
R

SV
W

18]

T
heorem

1

[11, RV13]

[6, CLRSTV14]

Figure 1 Approximability of sparse directed Diameter. The blue region is feasible, as witnessed
by algorithms at the bottom-left corners (blue dots). The three algorithms support non-negative
edge weights. The red regions would refute the SETH, as witnessed by reductions at top-right corners
(red dots). The lower bounds in [11, 9] even hold for the sparse unweighted undirected Diameter,
and the one in [2], for sparse weighted undirected Diameter, while Theorem 1 uses edge weights
and orientations.

Techniques

Like all the Diameter lower bounds (see also [14, 12]), we reduce from k-Orthogonal
Vectors. In this problem, given a set of N 0, 1-vectors of dimension ℓ, one looks for k vectors
such that at every index, at least one of these k vectors has a 0 entry. Unless the SETH fails,
k-Orthogonal Vectors requires time Nk−o(1) [13], even when ℓ is polylogarithmic in N .

Here we will more precisely reduce from 4-Orthogonal Vectors (4-OV, for short).
We want to build a digraph on Õ(N3) vertices and arcs, with diameter 7 if there is an
orthogonal quadruple (that is, a solution to the 4-OV instance), and diameter 4 otherwise.
Following a reduction to ST -Diameter2 by Backurs et al. [2] (arguably also following [11])
all the reductions feature layers L0, L1, . . . , Lk−1, Lk, with only (forward) edges between
two consecutive Li. The vertices within the same layer share the same number of “vector
attributes” and “index attributes”. The interplay between vector and index attributes in
defining the vertices and edges is adjusted so that if there are no k orthogonal vectors, then
there are paths of “optimal” length k between every pair in L0 × Lk, while if there is set X

of k orthogonal vectors, a pair (x, y) in L0 × Lk jointly encoding X is far apart (usually and
ideally at distance 2k − 1).

We do not deviate too much from this strategy. Our construction is inspired from and
pushes one step forward the elegant reduction of Li [9]. Here we rename L0, L1, L2, L3, L4 by
ABC, AB, ADY , DC, DCB, respectively. Some pairs of vertices are too far apart on 4-OV

2 where one seeks the length of a longest shortest path from a vertex of S to a vertex of T

STACS 2021

17:4 Inapproximability of Diameter in Super-Linear Time: Beyond the 5/3 Ratio

NO-instances. We thus add two “gates” u and v and link them with weighted arcs to the rest
of the graph. This puts many pairs of vertices at distance at most 4 regardless on whether
the 4-OV instance is positive or negative.

Of course, we cannot do so for all the pairs outside L0 × Lk. For instance, we do not
want the distance from every vertex in ABC to every vertex in ADY to be always at most 4.
Indeed, that would make the longest path from ABC to DCB of length at most 6. Our main
novel contribution is to add a vertex set ADX (L′

2) only linked to ADY (L2) in a way that
gives enough flexibility to make the remaining pairs sufficiently close for 4-OV NO-instances,
while not decreasing the distance from x to y.

Recent developments

While the paper was under review, some exciting developments happened. Independently,
Wein and Dalirrooyfard [7] and Li [10] showed that, under the SETH, for every integer k ⩾ 2
and real δ > 0, any (2k−1

k − δ)-approximation for sparse unweigthed directed Diameter
requires time n1+ 1

k−1 −o(1).

1

k+1
k

6/5
5/4

4/3

3/2

2

1 3
2

5
3

7
4

2k+1
k+1 2

2k−1
k

approximation factor

ru
nt

im
e

ex
po

ne
nt

[11, RV13]

[9, Li20]

[10, Li20]
[7, DW20]

[11, RV13]

[6, CLRSTV14]

[10, Li20]

Figure 2 The new results for sparse unweigthed directed Diameter. The blue region is feasible,
as witnessed by an algorithm at the bottom-left corner (blue dot). The red regions would refute the
SETH, as witnessed by reductions at top-right corners (red dots). A red dot in the interior of the
dotted cyan region would refute the NSETH. The lower bounds in [11, 9] even hold for the sparse
unweighted undirected Diameter.

In the same paper, Li gives a piece of evidence that this could be as far as the hardness
of unweigthed directed Diameter goes. This evidence is based on the NSETH (for Non-
deterministic SETH), a strengthening of SETH introduced by Carmosino et al. [5]. NSETH
asserts that for every ε > 0, there is an integer k such that the k-Taut problem cannot

É. Bonnet 17:5

be solved in non-deterministic time (2− ε)n, where k-Taut asks, given a k-DNF formula
whether every truth assignment satisfies it. Li shows, for all four variants of Diameter
but the weighted directed one that improving on any of these (deterministic) SETH lower
bounds would refute the NSETH (see dotted cyan region in Figure 2).

The construction of Dalirrooyfard and Wein [7] works for k ⩾ 5. It makes a more intricate
use of “parallel layers” (such as ADX). For k = 2 and 3, the authors cite the existing lower
bounds for unweighted undirected Diameter, and for k = 4 they tune the construction
presented in this paper, in order to remove the edge weights. Namely, there is a simpler and
weight-free way of connecting the “gates” u, v to the rest of the graph. The construction of
Li [10] effectively combines index-changing “back” edges (which re-implements and extends
the skew edges of this paper) with the usual vector-changing “forward” edges.

These generalizations crucially rely on edge orientations, while in the particular case of
k = 4, our construction seems to only accidentally require arcs. In a subsequent work [3], we
show how to obtain the lower bound for k = 4 in the most constrained case of unweigthed
undirected Diameter. This makes a non-trivial use of additional sets of vertices without
“vector fields”.

Preliminaries

We use the standard graph-theoretic notations. If G is a graph, V (G) denotes its vertex set.
If S ⊆ V (G), G[S] denotes the subgraph of G induced by S, and G− S is a short-hand for
G[V (G) \ S]. For u, v ∈ V (G), dG(u, v) denotes the distance from u to v in G, that is the
length of a shortest path from u to v, or equivalently, the minimum sum of weights on the
edges on a path from u to v. Note that, in a directed graph, dG(u, v) and dG(v, u) may well
be different values. We drop the subscript, if the graph G is clear from the context. We
denote by diam(G) the diameter of G, that is, maxu,v∈V (G) dG(u, v). Note that both the
pairs (u, v) and (v, u) are considered in this maximum. If ℓ is positive integer, [ℓ] denotes
the set {1, 2, . . . , ℓ}.

2 Reduction from 4-Orthogonal Vectors to 4 vs 7 Diameter

For every fixed positive integer k, the k-Orthogonal Vectors (k-OV for short) problem is
as follows. It asks, given a set S of 0,1-vectors in {0, 1}ℓ, if there are k vectors v1, . . . , vk ∈ S

such that for every i ∈ [ℓ], Πh∈[k]vh[i] = 0 or equivalently that v1[i] = v2[i] = · · · = vk[i] = 1
does not hold. Williams [13] showed that, assuming the SETH, k-OV requires Nk−o(1) time
with N := |S|. Here we will leverage this lower bound for k = 4. This is a usual opening
step: for example, Roditty and Vassilevska Williams [11] uses this lower bound for k = 2,
and Li [9] uses it for k = 3.

From any set S of N vectors in {0, 1}ℓ, we build a directed weighted graph G := ρ(S)
(without negatively-weighted arcs) with O(N3 + N2ℓ3) vertices and O(N3ℓ3 + N2ℓ6) arcs
such that if S admits an orthogonal quadruple then the diameter of G is (at least) 7, whereas
if S has no orthogonal quadruple then the diameter of G is (at most) 4. There is a large
enough constant c such that 4-OV requires N4−o(1) time, unless the SETH fails, even when
ℓ = c⌈log N⌉ [13]. In that case, the graph G has O(N3) vertices and Õ(N3) edges. Hence
any algorithm approximating sparse, weighted, directed Diameter within ratio better than
7/4 in time n4/3−δ, with δ > 0, would refute the SETH.

STACS 2021

17:6 Inapproximability of Diameter in Super-Linear Time: Beyond the 5/3 Ratio

ABC

AB ADX

ADY

DC

DCB

u v
4

0 4

0

0 03 3

2

1 1

2 2

2 2

Figure 3 The part of the reduction not depending on the 4-OV instance. The edges represented
without arrow are double-arcs with the indicated weight. The black arc between, say, ABC and u,
symbolizes that every vertex of ABC is linked by an arc of weight 4 to vertex u. Thick red edges
represent some double-arcs of weight 1. Not every double-arc (or edge) is present between two sets
linked by a red edge. This will be specified in the rest of the construction.

2.1 Constant part
We start by describing the part of the construction which does not depend on the 4-OV
instance. Its purpose is to make many pairs of vertices at distance at most 4 regardless on
whether the 4-OV instance is positive or negative. The vertex set of the eventually-built
graph G consists of two special vertices u and v, and six (disjoint) sets ABC, AB, ADX ,
ADY , DC, and DCB. Vertices u and v are unconditionally linked to these sets (and to each
other) by weighted arcs as specified in Figure 3. As we wrote in the introduction, there is a
simpler way, that does not require edge weights, of realizing the constant part (see [7, Section
6]). We keep our construction for the sake of consistency but invite the reader to have a look
at [7, Figure 9].

In this figure, a black arc between a vertex x ∈ {u, v} and a set Z ∈
{ABC, AB, ADX , ADY , DC, DCB} (or vice versa) indicates that x is linked to every vertex
of Z by such an arc. Note that edges represented without arrow are double-arcs. Double-
arcs will sometimes simply be called edges. The only arcs not incident to {u, v} are edges
(double-arcs) of weight 1. These edges are only present between ABC and AB, AB and ADY ,
ADX and ADY , ADY and DC, and finally DC and DCB. We will describe them later. At
this point, one just needs to know that every vertex in ABC (resp. DCB) has at least one
neighbor in AB (resp. DC), and that these edges have weight 1.

We check that many pairs of vertices are at distance at most 4 (even without the knowledge
of the edges symbolized in red). For the sake of conciseness, when we write, say, “u↔ DCB”,
we intend to provide paths from u to every vertex in DCB, and from every vertex in DCB
to u. Similarly, the paragraph “DCB → ABC” gives a path (of length 2) from every vertex
of DCB to every vertex of ABC.

u↔ v. There is an edge of weight 2 between u and v.

u↔ Z ∈ {ABC, AB, ADX , ADY , DC}. There are double-arcs with weight at most 4
between these pairs.

u↔ DCB. There is a path of double-arcs of total weight 3: From a vertex of DCB, take
any (weight-1) edge to DC, followed by the weight-2 edge to u. Recall that every vertex in
DCB will have at least one neighbor in DC (via a weight-1 edge).

É. Bonnet 17:7

The next two cases are symmetric.

v↔ Z ∈ {AB, ADX , ADY , DC, DCB}. There are double-arcs with weight at most 4
between these pairs.

v↔ ABC. There is a path of double-arcs of total weight 3: From a vertex of ABC, take
any (weight-1) edge to AB, followed by the weight-2 edge to v. Recall that every vertex in
ABC will have at least one neighbor in AB (via a weight-1 edge).

So far, we have seen that for each x ∈ {u, v} and y ∈ V (G), d(x, y) ⩽ 4 and d(y, x) ⩽ 4.

For each Z ∈ {ABC, AB, ADX, ADY, DC, DCB}, Z↔ Z. Each of these six sets Z has a
double-arc to u or to v (or both) whose sum of weights is at most 4.

ADX → Z ∈ {ABC, AB, ADY , DC}. These pairs are at distance at most 3. There is an
edge of weight 1 from every vertex of ADX to u, and an arc of weight at most 2 from u to
every vertex of Z ∈ {ABC, AB, ADY , DC}.

ADX → DCB. There is a path of length 4, via u and DC. Again recall that every vertex
of DCB has at least one neighbor in DC (via a double-arc of weight 1).

The next two cases are symmetric.

ADX ← Z ∈ {AB, ADY , DC, DCB}. These pairs are at distance at most 3. There is an
arc of weight at most 2 from every vertex of Z ∈ {AB, ADY , DC, DCB} to v, and an edge of
weight 1 from v to every vertex of ADX .

ADX ← ABC. There is path of length 4, via AB and v.

We have now established that for every x ∈ ADX and y ∈ V (G), d(x, y) ⩽ 4 and
d(y, x) ⩽ 4.

ADY ↔ AB. There is a path of two double-arcs of weight 2, via v.

ADY ↔ DC. There is a path of two double-arcs of weight 2, via u.

ADY → ABC. There is a path of length 2 via u.

ADY ← DCB. There is a path of length 2 via v.

ABC↔ AB. Via u, there is a path of length 4 from every vertex of ABC to every vertex
of AB, and a path of length 3 from every vertex of AB to every vertex of ABC.

DCB↔ DC. Via v, there is a path of length 3 from every vertex of DCB to every vertex
of DC, and a path of length 4 from every vertex of DC to every vertex of DCB.

DCB → ABC. There is a path of length 2 via v and u.

DCB → AB. There is a path of length 2 via v.

DC → Z ∈ {ABC, AB}. There is a path of length 2 via u.

To summarize, we have obtained that for every pair x, y ∈ V (G), d(x, y) > 4 implies that
(x, y) ∈ P for some P ∈ {ABC×ADY , ABC×DC, ABC×DCB, AB×DC, AB×DCB, ADY ×
DCB}.

2.2 Variable part
We think of the vector set S as having four copies A, B, C, D with S = A = B = C = D.
Equivalently, one looks for a ∈ A, b ∈ B, c ∈ C, and d ∈ D such that a, b, c, d are orthogonal.

STACS 2021

17:8 Inapproximability of Diameter in Super-Linear Time: Beyond the 5/3 Ratio

Vertex set

We first describe the vertex set V (G) \ {u, v}.
For every (a, b, c) ∈ A×B × C, we add vertex (a, b, c)ABC to ABC.
Similarly for every (d, c, b) ∈ D × C ×B, we add vertex (d, c, b)DCB to DCB.
For every (a, b) ∈ A×B and every triple i, j, k ∈ [ℓ] such that a[i] = a[j] = a[k] = 1 and
b takes value 1 on at least two indices of {i, j, k}, we add vertex (a, b, i, j, k)AB to AB.
The set of vertices DC is defined analogously with D and C playing the roles of A and B

(recall that actually A = B = C = D).
For every (a, d) ∈ A ×D and every triple of indices i, j, k ∈ [ℓ] such that a[i] = a[j] =
a[k] = 1 and d[i] = d[j] = d[k] = 1, we add vertex (a, d, i, j, k)ADY

to ADY .
For every (a, d) ∈ A×D and every i, j, k ∈ [ℓ] such that at most one of a[i], a[j], a[k], d[i],
d[j], d[k] is equal to 0, we add vertex (a, d, i, j, k)ADX

to ADX .

As observed in [7], the definition of ADX could be simpler. We keep it as is, again for
the sake of consistency.

Edge Set

We now describe the edge set on V (G) \ {u, v}. All these edges are double-arcs (we do not
need to orient them) of weight 1 (we do not need to put weights).

We add an edge (double-arc) of weight 1 between every pair (a, b, c)ABC and (a, b, i, j, k)AB
if c takes value 1 on at least one index of {i, j, k} where b also takes value 1. In our
construction, the existence of an edge is implicitly conditional to the existence of both of
its endpoints. The edge exists only if (a, b, i, j, k)AB is indeed a vertex of AB. The edges
between DCB and DC are defined similarly.
We add every edge between (a, b, i, j, k)AB and (a, b, i′, j′, k′)AB, with a ∈ A, b ∈ B,
and i, j, k, i′, j′, k′ ∈ [ℓ]. Similarly we add every edge between (d, c, i, j, k)DC and
(d, c, i′, j′, k′)DC, with d ∈ D, c ∈ C, and i, j, k, i′, j′, k′ ∈ [ℓ]. We call these edges index-
switching. AB and DC are the only two sets among {ABC, AB, ADX , ADY , DC, DCB}
which are not independent sets.
We link every pair (a, b, i, j, k)AB and (a, d, i, j, k)ADY

by an edge, as well as every pair
(a, d, i, j, k)ADY

and (d, c, i, j, k)DC.
We add an edge between every pair (a, d, i, j, k)ADX

and (a, d′, i, j, k)ADY
(such that

a ∈ A, d ̸= d′ ∈ D, and i, j, k ∈ [ℓ]), and (a, d, i, j, k)ADX
and (a′, d, i, j, k)ADY

(such that
a ̸= a′ ∈ A, d ∈ D, and i, j, k ∈ [ℓ]).
Finally we add an edge between every pair (a, d, i, j, k)ADX

and (a, d, i′, j′, k′)ADY
with

a ∈ A, d ∈ D, and i, j, k, i′, j′, k′ ∈ [ℓ]. We call this type of edge skew. Skew edges are
the only way to change the indices while also moving from one set to another (it is not
internal to AB or to DC).

All the edges defined in this section that are not index-switching or skew are called regular.
This ends the construction of G = ρ(S). See Figure 4 for an illustration.

Simplified vertex notations, vector fields, and index fields

Henceforth we will drop the indices in the vertex labels. The set a vertex belongs to will be
implicit by the choice of the variable labels. For instance (a, b′, i, j, k) is in AB, and (d′, c, b′)
is in DCB. This does not allow us to distinguish vertices of ADX and ADY . We will denote

É. Bonnet 17:9

(a, b, c)

(a, b, i, j, k)
(a, b, i′, j′, k′) (a′, d, i, j, k)X

(a, d, i, j, k)Y (a′, d, i′′, j′′, k′′)Y

(d, c, i, j, k)
(d, c, i′′′, j′′′, k′′′)

(d, c, b)

a[i] = a[j] = a[k] = 1

maj(b[i], b[j], b[k]) = 1

d[i] = d[j] = d[k] = 1

maj(c[i], c[j], c[k]) = 1

∃h ∈ {i, j, k}, c[h] = b[h] = 1 ∃h ∈ {i, j, k}, b[h] = c[h] = 1

d[i] = d[j] = d[k] = 1
a[i] = a[j] = a[k] = 1

⩾ 5 of a′[i], a′[j], a′[k],
d[i], d[j], d[k] are 1

ABC DCB

AB DCADX

ADY

Figure 4 The rules for the existence of vertices and edges in G − {u, v}. We removed the
subscripts in the vertex labels as discussed in the second-to-last paragraph of Section 2.2. Conditions
to the existence of a vertex appear in bold next to the vertex. Conditions to the existence of an
edge appear in bold along the edge. All edges (double-arcs) have weight 1, so we omit their weight.
Regular edges are represented in black. Index-switching edges are represented in blue (they are
only present in AB and DC). Skew edges are represented in green (they are only present between
ADX and ADY . Note that the regular edge (a, d, i, j, k)Y (a′, d, i, j, k)X could also be of the form
(a, d, i, j, k)Y (a, d′, i, j, k)X .

by (a, d, i, j, k)Y = (a, d, i, j, k)ADY
a vertex in ADY and by (a, d, i, j, k)X the “same” vertex

in ADX . Note that it is possible that (a, d, i, j, k)X exists but not (a, d, i, j, k)Y , if exactly
five of a[i], a[j], a[k], d[i], d[j], d[k] are equal to 1.

We call vector fields the first three coordinates of every vertex in ABC ∪ DCB, and
the first two coordinates of every vertex in AB ∪ ADX ∪ ADY ∪ DC. We call index fields
the last three coordinates of every vertex in AB ∪ ADX ∪ ADY ∪ DC. We can assume
that the 4-OV instance does not have an orthogonal triple (this can be checked in time
Õ(N3)). Thus every vertex (a, b, c) ∈ ABC (resp. (d, c, b) ∈ DCB) indeed has at least one
neighbor in AB (resp. DC), namely (a, b, i, i, i) (resp. (d, c, i, i, i)) where i ∈ [ℓ] is such that
a[i] = b[i] = c[i] = 1 (resp. d[i] = c[i] = b[i] = 1).

Vertex and edge count

Before tackling the correctness of the reduction, we check that G has O(N3) vertices and
Õ(N3) arcs. The number of vertices of G is bounded by 2 + 2 ·N3 + 4 ·N2ℓ3 = O(N3) since
ℓ = O(log N). The number of arcs of G is bounded by 4·O(N3)+4·N2ℓ6+10·N3ℓ3+2·N2ℓ6 =
Õ(N3), where the first term accounts for the arcs incident with {u, v}, the second for the
index-switching arcs, the third for the regular arcs, and the fourth for the skew arcs.

2.3 No orthogonal quadruple implies diameter at most 4
We exhibit in this section short paths (of length at most 4) between every pair of vertices
of G. For that we extensively use that, as there is no orthogonal quadruple in S, for every
u, v, w, x ∈ S, ind(u, v, w, x) := min{i ∈ [ℓ] | u[i] = v[i] = w[i] = x[i] = 1} is a well-defined
index in [ℓ]. We only take the minimum index to have a deterministic notation. There will

STACS 2021

17:10 Inapproximability of Diameter in Super-Linear Time: Beyond the 5/3 Ratio

not be anything particular with the minimum, and any index of the non-empty {i ∈ [ℓ] |
u[i] = v[i] = w[i] = x[i] = 1} would work as well. We will also use ind(u, v, w) as a short-hand
for ind(u, v, w, w).

In Section 2.1, we have reduced the task of showing that diam(G) ⩽ 4 to considering only
six pairs of sets.

ABC → ADY. Let (a, b, c) and (a′, d, i′, j′, k′)Y be two vertices in ABC and ADY respect-
ively. We define the indices i := ind(a, b, c, d), j := ind(a, a′, b, d), and k := ind(a, a′, d).
Then, (a, b, c)→ (a, b, i, j, k)→ (a, d, i, j, k)Y → (a′, d, i, j, k)X → (a′, d, i′, j′, k′)Y is a path
of length 4 in G.

We first justify the existence of the inner vertices of this path (i.e., all but the endpoints).
Indeed the endpoints exist by assumption. Vertex (a, b, i, j, k) ∈ AB is present in G since
a[i] = a[j] = a[k] = 1, and b[i] = b[j] = 1. Vertex (a, d, i, j, k)Y ∈ ADY exists since
a[i] = a[j] = a[k] = 1 = d[i] = d[j] = d[k]. Finally (a′, d, i, j, k)X ∈ ADX is indeed a vertex
of G since a′[j] = a′[k] = 1 and d[i] = d[j] = d[k] = 1. Recall that in ADX (contrary to
ADY) it is fine if at most one of the six values obtained by evaluating one of the two vectors
at one of the three indices is 0.

We now justify the existence of the edges. The arc (a, b, c) → (a, b, i, j, k) exists since
c[i] = b[i] = 1 (and both its endpoints exist). The arcs (a, b, i, j, k) → (a, d, i, j, k)Y and
(a, d, i, j, k)Y → (a′, d, i, j, k)X are regular edges of G: one vector field and the three index
fields remain unchanged. Finally the arc (a′, d, i, j, k)X → (a′, d, i′, j′, k′)Y is a skew edge
of G: it is between ADX and ADY , and both vector fields remain the same (while the indices
are allowed to change).

ABC → DC. Let (a, b, c) and (d, c′, i′, j′, k′) be two vertices in ABC and DC respectively.
We define the indices i := ind(a, b, c, d), j := ind(a, b, c′, d), and k := ind(a, c′, d). Then,
(a, b, c)→ (a, b, i, j, k)→ (a, d, i, j, k)Y → (d, c′, i, j, k)→ (d, c′, i′, j′, k′) is a path of length 4
in G.

As in the previous case, the existence of vertices (a, b, i, j, k) ∈ AB, (a, d, i, j, k)Y ∈ ADY ,
(d, c′, i, j, k) ∈ DC is ensured by the fact that a[i] = a[j] = a[k] = 1 = d[i] = d[j] = d[k] and
b[i] = b[j] = 1 = c′[j] = c′[k]. The arc (a, b, c)→ (a, b, i, j, k) exists since c[i] = b[i] = 1, and
the arcs (a, b, i, j, k)→ (a, d, i, j, k)Y → (d, c′, i, j, k) are two (existing) regular arcs. Finally
(d, c′, i, j, k) → (d, c′, i′, j′, k′) is an index-switching arc internal to DC (note that the two
vector fields remain the same, as they should).

ABC → DCB. Let (a, b, c) and (d, c′, b′) be two vertices in ABC and DCB respectively.
We define the indices i := ind(a, b, c, d), j := ind(a, b, c′, d), and k := ind(a, b′, c′, d). Then,
(a, b, c)→ (a, b, i, j, k)→ (a, d, i, j, k)Y → (d, c′, i, j, k)→ (d, c′, b′) is a path of length 4 in G.

The vertices (a, b, i, j, k) ∈ AB, (a, d, i, j, k)Y ∈ ADY , (d, c′, i, j, k) ∈ DC exist since a[i] =
a[j] = a[k] = 1 = d[i] = d[j] = d[k] and b[i] = b[j] = 1 = c′[j] = c′[k]. The arc (a, b, c) →
(a, b, i, j, k) is in G since c[i] = b[i] = 1. The arcs (a, b, i, j, k)→ (a, d, i, j, k)Y → (d, c′, i, j, k)
are two regular arcs in G. The arc (d, c′, i, j, k)→ (d, c′, b′) exists since b′[k] = c′[k] = 1.

AB → DC. Let (a, b, i′, j′, k′) and (d, c, i′′, j′′, k′′) be two vertices in AB and DC respectively.
We define the index i := ind(a, b, c, d). Then, (a, b, i′, j′, k′)→ (a, b, i, i, i)→ (a, d, i, i, i)Y →
(d, c, i, i, i)→ (d, c, i′′, j′′, k′′) is a path of length 4 in G.

Vertices (a, b, i, i, i) ∈ AB, (a, d, i, i, i)Y ∈ ADY , (d, c, i, i, i) ∈ DC exist since a[i] = b[i] =
c[i] = d[i] = 1. The arc (a, b, i′, j′, k′)→ (a, b, i, i, i) is a legal index-switching arc, internal
to AB. The arcs (a, b, i, i, i)→ (a, d, i, i, i)Y → (d, c, i, i, i) are two regular arcs in G. Finally
the arc (d, c, i, i, i)→ (d, c, i′′, j′′, k′′) is an index-switching arc, internal to DC.

É. Bonnet 17:11

The next two cases are symmetric to ABC → DC and ABC → ADY, respectively. We
spell them out since it is not much longer that making the symmetry explicit.

AB → DCB. Let (a, b, i′, j′, k′) and (d, c, b′) be two vertices in AB and DCB respectively.
We define the indices i := ind(a, b, c, d), j := ind(a, b, d), and k := ind(a, b′, c, d). Then,
(a, b, i′, j′, k′)→ (a, b, i, j, k)→ (a, d, i, j, k)Y → (d, c, i, j, k)→ (d, c, b′) is a path of length 4
in G.

Vertices (a, b, i, j, k) ∈ AB, (a, d, i, j, k)Y ∈ ADY , (d, c, i, j, k) ∈ DC exist since a[i] =
a[j] = a[k] = 1 = d[i] = d[j] = d[k] and b[i] = b[j] = 1 = c[i] = c[k]. The arc (a, b, i′, j′, k′)→
(a, b, i, j, k) is index-switching in AB. The arcs (a, b, i, j, k) → (a, d, i, j, k)Y → (d, c, i, j, k)
are two regular arcs present in G. Finally the arc (d, c, i, j, k) → (d, c, b′) exists since
b′[k] = c[k] = 1.

ADY → DCB. Let (a, d, i′, j′, k′)Y and (d′, c, b) be two vertices in ADY and DCB respect-
ively. We define the indices i := ind(a, b, c, d′), j := ind(a, c, d, d′), and k := ind(a, d, d′).
Then, (a, d, i′, j′, k′)Y → (a, d, i, j, k)X → (a, d′, i, j, k)Y → (d′, c, i, j, k)→ (d′, c, b) is a path
of length 4 in G.

The vertices (a, d, i, j, k)X ∈ ADX , (a, d′, i, j, k)Y ∈ ADY , (d′, c, i, j, k) ∈ DC are present
in G since a[i] = a[j] = a[k] = 1 = d′[i] = d′[j] = d′[k] and d[j] = d[k] = 1 = c[i] = c[j].
Recall that a[i] = a[j] = a[k] = 1 = d[j] = d[k] suffices for the existence of (a, d, i, j, k)X

(but not for the one of (a, d, i, j, k)Y). The arc (a, d, i′, j′, k′)Y → (a, d, i, j, k)X is a skew
arc: it is between ADY and ADX , and the two vector fields remain unchanged. The arcs
(a, d, i, j, k)X → (a, d′, i, j, k)Y → (d′, c, i, j, k) are two regular arcs of G. Finally the arc
(d′, c, i, j, k)→ (d′, c, b) exists since b[i] = c[i] = 1.

We have proved that there is a path of length at most 4 between every (ordered) pair of
vertices in G, when there is no orthogonal quadruple. Thus the diameter of G is then (at
most) 4.

2.4 An orthogonal quadruple implies two vertices at distance at least 7
We now suppose that S admits at least one orthogonal quadruple, say, a, b, c, d. We show
that G has diameter at least 7, by arguing that there is no path of length at most 6 from
(a, b, c) ∈ ABC to (d, c, b) ∈ DCB.

The first observation is that there is no path of length at most 6 from (a, b, c) to (d, c, b)
intersecting {u, v}. Indeed one can check that d((a, b, c), u) = 4 and d(u, (d, c, b)) = 3, and
that d((a, b, c), v) = 3 and d(v, (d, c, b)) = 4. We can now rule out the existence of a path P

of length 6 from (a, b, c) and (d, c, b) in G− {u, v}.
We distinguish two cases:
(a) P does not intersect ADX , or
(b) P intersects ADX .

Case (a). We further distinguish two cases: either (a1) P contains no index-switching arc,
or (a2) P contains at least one index-switching arc. In case (a1), the three index fields cannot
change at all in P (recall that the skew edges are between ADX and ADY). Thus the first and
penultimate vertices of P are (a, b, i, j, k) ∈ AB and (d, c, i, j, k) ∈ DC for some i, j, k ∈ [ℓ].
The existence of these vertices imply that a[i] = a[j] = a[k] = 1 = d[i] = d[j] = d[k], and
vectors b and c both take value 1 on at least two indices among {i, j, k}. Therefore there
exists an index h ∈ {i, j, k} such that a[h] = b[h] = c[h] = d[h] = 1. This contradicts the fact
that a, b, c, d are orthogonal.

STACS 2021

17:12 Inapproximability of Diameter in Super-Linear Time: Beyond the 5/3 Ratio

We now tackle case (a2). Since the removal of ADY separates ABC∪AB from DCB∪DC
in G − {u, v}, G[ADY] is an independent set, and there are no edges between ADY and
ABC ∪ DCB, such a path P has to contain a subpath x → y → z with x ∈ AB, y ∈ ADY ,
and z ∈ DC. As P contains at least one index-switching arc, it cannot also contains a
back-and-forth along AB → ABC → AB, ADY → AB → ADY , DC → ADY → DC, or
DCB → DC → DCB. Indeed that would amount to at least three additional arcs (at
least one index-switching plus two for the back-and-forth) to the mandatory four arcs
ABC→ AB→ ADY → DC→ DCB, hence a path of length at least 7. Therefore, there are
three indices i, j, k ∈ [ℓ] such that x = (a, b, i, j, k), y = (a, d, i, j, k)Y , and z = (d, c, i, j, k).
Indeed every path in G[ABC ∪AB] and every path in G[DCB ∪DC] preserve the first two
vector fields. Again the existence of (a, b, i, j, k) (in AB) and (d, c, i, j, k) (in DC) contradicts
that a, b, c, d are orthogonal.

Case (b). We can now assume that P intersects ADX . Thus P has length exactly 6 and
is of the form (a, b, c) ∈ ABC→ AB→ ADY → ADX → ADY → DC→ DCB ∋ (d, c, b). In
particular, P cannot contain an index-switching edge. If P contains no skew edge too, the
index fields cannot change. So the second and sixth vertices of P are some (a, b, i, j, k) ∈ AB
and (d, c, i, j, k) ∈ DC, and we can conclude as in case (a).

Thus P has to contain at least one skew edge. Let us show that P has to contain exactly
one skew edge. We recall that the skew edges are only present between ADX and ADY .

We first argue that the third vertex of P is (a, d′, i, j, k)Y for some d′ ̸= d ∈ D and
i, j, k ∈ [ℓ]. The first vector field cannot change in a path of the form ABC→ AB→ ADY ,
so we only have to show that d′ cannot be equal to d. Indeed, otherwise a[i] = a[j] = a[k] =
1 = d[i] = d[j] = d[k] by the existence of (a, d, i, j, k)Y . Furthermore, the existence of the
arc (a, b, c)→ (a, b, i, j, k) (which has to be the first arc of P) implies that there is an index
h ∈ {i, j, k} such that b[h] = c[h] = 1. This index thus contradicts the orthogonality of
a, b, c, d.

As the third vertex of P is (a, d′, i, j, k)Y with d′ ≠ d, two skew edges ADY → ADX →
ADY would lead to a vertex (a, d′, i′, j′, k′)Y . This latter vertex is linked in DC to vertices
of the form (d′, c′, i′, j′, k′) (where c′ can be c). This cannot lead to (d, c, b) since the first
vector field does not change in an arc from DC to DCB.

We have established that from vertex (a, d′, i, j, k)Y , P takes exactly one skew edge, either
from ADY to ADX , or from ADX to ADY . In both cases, by the previous remark, the
second vector field of the fifth vertex of P should be d. This implies that the fifth vertex
of P is of the form (a, d, i′, j′, k′)Y for some indices i′, j′, k′ ∈ [ℓ]. Indeed the skew edge of
P in ADY → ADX → ADY preserves both vector fields, whereas the regular edge of P in
ADY → ADX → ADY can only change one vector field, and has to change d′ (̸= d) to d.

The end of P is thus (a, d, i′, j′, k′)Y → (d, c, i′, j′, k′)→ (d, c, b), since the first two vector
fields cannot be changed by an arc from DC to DCB. The existence of vertex (a, d, i′, j′, k′)Y

implies that a[i′] = a[j′] = a[k′] = 1 = d[i′] = d[j′] = d[k′]. The existence of the arc
(d, c, i′, j′, k′)→ (d, c, b) implies that there is an index h ∈ {i′, j′, k′} such that c[h] = b[h] = 1.
This yields a[h] = b[h] = c[h] = d[h] = 1, contradicting the orthogonality of a, b, c, d.

We have ruled out the existence of a path in G of length at most 6 between (a, b, c) and
(d, c, b), when a, b, c, d are orthogonal. Hence the diameter of G is at least 7 when there is an
orthogonal quadruple.

É. Bonnet 17:13

References
1 Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast Estimation of

Diameter and Shortest Paths (Without Matrix Multiplication). SIAM J. Comput., 28(4):1167–
1181, 1999. doi:10.1137/S0097539796303421.

2 Arturs Backurs, Liam Roditty, Gilad Segal, Virginia Vassilevska Williams, and Nicole Wein.
Towards tight approximation bounds for graph diameter and eccentricities. In Ilias Diakonikolas,
David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 267–280. ACM, 2018. doi:10.1145/3188745.3188950.

3 Édouard Bonnet. 4 vs 7 sparse undirected unweighted Diameter is SETH-hard at time n4/3,
2021. arXiv:2101.02312.

4 Massimo Cairo, Roberto Grossi, and Romeo Rizzi. New Bounds for Approximating Extremal
Distances in Undirected Graphs. In Robert Krauthgamer, editor, Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, pages 363–376. SIAM, 2016. doi:10.1137/1.9781611974331.ch27.

5 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi,
and Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis
and consequences for non-reducibility. In Madhu Sudan, editor, Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science, Cambridge, MA, USA, January
14-16, 2016, pages 261–270. ACM, 2016. doi:10.1145/2840728.2840746.

6 Shiri Chechik, Daniel H. Larkin, Liam Roditty, Grant Schoenebeck, Robert Endre Tarjan, and
Virginia Vassilevska Williams. Better Approximation Algorithms for the Graph Diameter. In
Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1041–1052.
SIAM, 2014. doi:10.1137/1.9781611973402.78.

7 Mina Dalirrooyfard and Nicole Wein. Tight Conditional Lower Bounds for Approximating
Diameter in Directed Graphs. CoRR, abs/2011.03892, 2020. arXiv:2011.03892.

8 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly
Exponential Complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

9 Ray Li. Improved SETH-hardness of unweighted Diameter. CoRR, abs/2008.05106, 2020.
arXiv:2008.05106.

10 Ray Li. Settling SETH vs. Approximate Sparse Directed Unweighted Diameter (up to
(NU)NSETH). CoRR, abs/2008.05106, 2020. arXiv:2008.05106.

11 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 515–524. ACM, 2013. doi:10.1145/2488608.2488673.

12 Aviad Rubinstein and Virginia Vassilevska Williams. SETH vs Approximation. SIGACT
News, 50(4):57–76, 2019. doi:10.1145/3374857.3374870.

13 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

14 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.
In Proceedings of the ICM, volume 3, pages 3431–3472. World Scientific, 2018.

STACS 2021

https://doi.org/10.1137/S0097539796303421
https://doi.org/10.1145/3188745.3188950
http://arxiv.org/abs/2101.02312
https://doi.org/10.1137/1.9781611974331.ch27
https://doi.org/10.1145/2840728.2840746
https://doi.org/10.1137/1.9781611973402.78
http://arxiv.org/abs/2011.03892
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
http://arxiv.org/abs/2008.05106
http://arxiv.org/abs/2008.05106
https://doi.org/10.1145/2488608.2488673
https://doi.org/10.1145/3374857.3374870
https://doi.org/10.1016/j.tcs.2005.09.023

The Approximation Ratio of the 2-Opt Heuristic
for the Euclidean Traveling Salesman Problem
Ulrich A. Brodowsky
Pontsheide 20, 52076 Aachen, Germany

Stefan Hougardy1 ! Ï

Research Institute for Discrete Mathematics, Universität Bonn, Germany

Abstract
The 2-Opt heuristic is a simple improvement heuristic for the Traveling Salesman Problem. It starts
with an arbitrary tour and then repeatedly replaces two edges of the tour by two other edges, as
long as this yields a shorter tour. We will prove that for Euclidean Traveling Salesman Problems
with n cities the approximation ratio of the 2-Opt heuristic is Θ(log n/ log log n). This improves the
upper bound of O(log n) given by Chandra, Karloff, and Tovey [3] in 1999.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases traveling salesman problem, metric TSP, Euclidean TSP, 2-Opt, approxima-
tion algorithm

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.18

Funding Stefan Hougardy: funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC-2047/1 – 390685813.

Acknowledgements We thank the anonymous referees for several useful comments.

1 Introduction

The Traveling Salesman Problem (TSP) is one of the best studied problems in combinatorial
optimization. Given n cities and their pairwise distances, the task is to find a shortest
tour that visits each city exactly once. This problem is NP-hard [7] and it is even hard to
approximate to a factor that is polynomial in n [13].

In the Euclidean TSP, the cities are points in R2 and the distance function is the
Euclidean distance between the points. The Euclidean TSP is also NP-hard [12] but it allows
a polynomial time approximation scheme [1, 11]. Euclidean Traveling Salesman Problems
often appear in practice and they are usually solved using some heuristics. One of the
simplest of these heuristics is the 2-Opt heuristic. It starts with an arbitrary tour and then
repeatedly replaces two edges of the tour by two other edges, as long as this yields a shorter
tour. The 2-Opt heuristic stops when no further improvement can be made this way. A tour
that the 2-Opt heuristic cannot improve is called 2-optimal.

On real-world instances the 2-Opt heuristic achieves surprisingly good results (see e.g.
Bentley [2]). Despite its simplicity the exact approximation ratio of the 2-Opt heuristic for
Euclidean TSP is not known. In 1999, Chandra, Karloff, and Tovey [3] proved a lower bound
of c · log n

log log n for some constant c > 0 and an upper bound of O(log n) on the approximation
ratio of the 2-Opt heuristic for Euclidean TSP. This leaves a gap of factor O(log log n)
between the best known upper and lower bound for the approximation ratio of the 2-Opt
heuristic for Euclidean TSP. Our main result closes this gap up to a constant factor:

1 corresponding author

© Ulrich A. Brodowsky and Stefan Hougardy;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hougardy@or.uni-bonn.de
https://www.or.uni-bonn.de/~hougardy/
https://orcid.org/0000-0001-8656-3418
https://doi.org/10.4230/LIPIcs.STACS.2021.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 The Approximation Ratio of the 2-Opt Heuristic for the Euclidean TSP

▶ Theorem 1. The approximation ratio of the 2-Opt heuristic for Euclidean TSP instances
with n points is Θ(log n/ log log n).

Related Results. On real-world Euclidean TSP instances it has been observed that the
2-Opt heuristic needs a sub-quadratic number of iterations until it reaches a local optimum [2].
However, there exist worst-case Euclidean TSP instances for which the 2-Opt heuristic may
need an exponential number of iterations [5].

For n points embedded into the d-dimensional Euclidean space Rd for some constant
d > 2 the approximation ratio of the 2-Opt heuristic is bounded by O(log n) from above [3]
and by Ω(log n/ log log n) from below [15].

The Euclidean TSP is a special case of the metric TSP, i.e., the Traveling Salesman
Problem where the distance function satisfies the triangle inequality. The well-known
algorithm of Christofides [4] and Serdjukov [14] achieves an approximation ratio of 3/2 for
the metric TSP. If one allows randomization then the recent algorithm of Karlin, Klein, and
Oveis Gharan [9] slightly improves on this. For the metric TSP the 2-Opt heuristic has
approximation ratio exactly

√
n/2 [8]. A very special case of the metric TSP is the 1-2-TSP.

In this version all edge lengths have to be 1 or 2. For the 1-2-TSP the approximation ratio
of the 2-Opt heuristic is 3/2 [10].

For a constant k > 2 the 2-Opt heuristic naturally extends to the so called k-Opt heuristic
where in each iteration k edges of a tour are replaced by k other edges. For Euclidean TSP
Zhong [15] has shown that Ω(log n/ log log n) is a lower bound for the k-Opt heuristic if k is
constant. Therefore, Theorem 1 immediately implies:

▶ Corollary 2. For constant k the approximation ratio of the k-Opt heuristic for Euclidean
TSP instances with n points is Θ(log n/ log log n).

Organization of the paper. The result of Chandra, Karloff, and Tovey [3, Theorem 4.4]
mentioned above shows that Ω(log n/ log log n) is a lower bound for the 2-Opt heuristic for
Euclidean TSP. To prove Theorem 1 it remains to prove the upper bound O(log n/ log log n).
We proceed as follows. First we will present in Section 2 some properties of Euclidean
2-optimal tours. In Section 2.1 we will prove Theorem 1 by reducing it to the special case
where no intersections between the edges of an optimal tour and the edges of a 2-optimal
tour exist. In this special case we will show that we can partition the edge set of a 2-optimal
tour into five sets that are each in some sense orientation-preserving with respect to an
optimal tour. The main step then is to prove that for each of these five sets we can bound
the total edge length by O(log n/ log log n) times the length of an optimal tour. To achieve
this we will relate optimal tours and subsets of the edge set of a 2-optimal tour to some
weighted arborescences. This relation is studied in Section 3. For weighted arborescences we
will provide in Section 4 some bounds for the edge weights. These results then will allow us
in Section 5 to finish the proof of Theorem 1.

2 Euclidean TSP and 2-Optimal Tours

An instance of the Euclidean TSP is a finite subset V ⊂ R2. The task is to find a polygon
of shortest total edge length that contains all points of V . Note that by our definition a
Euclidean TSP instance cannot contain the same point multiple times. In the following we
will denote the cardinality of V by n.

For our purpose it is often more convenient to state the Euclidean Traveling Salesman
Problem as a problem on graphs. For a given point set V of a Euclidean TSP instance we
take a complete graph on the vertex set V , i.e., the graph G = (V, E) where E is the set of

U. A. Brodowsky and S. Hougardy 18:3

b

y

x

a
b

y

x

a

Figure 1 An oriented TSP tour (left) and the tour obtained after replacing the edges (a, b) and
(x, y) with the edges (a, x) and (b, y) (right). The orientation of the tour segment between the
vertices b and x has been reversed in the new tour.

all 1
2 n(n − 1) possible edges on V . We assign the Euclidean distance between the vertices

in G by a function c : E(G) → R>0. A tour in G is a cycle that contains all the vertices
of G. The length of a tour T in G is defined as c(T) :=

∑
e∈E(T) c(e). An optimal tour is

a tour of minimum length among the tours in G. Thus we can restate the Euclidean TSP
as a problem in graphs: Given a complete graph G = (V, E) on a point set V ⊂ R2 and a
Euclidean distance function c : E(G) → R>0, find an optimal tour in G. Throughout this
paper we will use the geometric definition of the Euclidean TSP and the graph-theoretic
version of the Euclidean TSP simultaneously. Thus, a tour for a Euclidean TSP instance
V ⊆ R2 can be viewed as a polygon in R2 as well as a cycle in a complete graph on the
vertex set V with Euclidean distance function.

Let c : E(G) → R>0 be a weight function for the edges of some graph G = (V, E). To
simplify notation, we will denote the weight of an edge {x, y} ∈ E(G) simply by c(x, y)
instead of the more cumbersome notation c({x, y}). For subsets F ⊆ E(G) we define c(F) :=∑

e∈F c(e). We extend this definition to subgraphs H of G by setting c(H) := c(E(H)).
The distance function c of a Euclidean TSP instance G = (V, E) satisfies the triangle

inequality. Therefore we have for any set of three vertices x, y, z ∈ V (G):

c(x, y) + c(y, z) ≥ c(x, z). (1)

The 2-Opt heuristic repeatedly replaces two edges from the tour by two other edges such
that the resulting tour is shorter. Given a tour T and two edges {a, b} and {x, y} in T , there
are two possibilities to replace these two edges by two other edges. Either we can choose the
pair {a, x} and {b, y} or we can choose the pair {a, y} and {b, x}. Exactly one of these two
pairs will result in a tour again. Without knowing the other edges of T , we cannot decide
which of the two possibilities is the correct one. Therefore, we will assume in the following
that the tour T is an oriented cycle, i.e., the edges of T have an orientation such that each
vertex has exactly one incoming and one outgoing edge. Using this convention, there is only
one possibility to exchange a pair of edges such that the new edge set is a tour again: two
directed edges (a, b) and (x, y) have to be replaced by the edges (a, x) and (b, y). Note that
to obtain an oriented cycle again, one has to reverse the direction of the segment between b

and x, see Figure 1.
A TSP tour T is called 2-optimal if for any two edges (a, b) and (x, y) of T we have

c(a, x) + c(b, y) ≥ c(a, b) + c(x, y). (2)

We call inequality (2) the 2-optimality condition.
If (a, b) and (x, y) are two edges in a tour T that violate the 2-optimality condition, i.e.,

they satisfy the inequality c(a, x) + c(b, y) < c(a, b) + c(x, y), then we can replace the edges
(a, b) and (x, y) in T by the edges (a, x) and (b, y) and get a strictly shorter tour. We call
this operation of replacing the edges (a, b) and (x, y) in T by the edges (a, x) and (b, y) an
improving 2-move. Thus, the 2-Opt heuristic can be formulated as follows:

STACS 2021

18:4 The Approximation Ratio of the 2-Opt Heuristic for the Euclidean TSP

2-Opt Heuristic (V ⊆ R2).

1 start with an arbitrary tour T for V

2 while there exists an improving 2-move in T

3 perform an improving 2-move
4 output T

We call a Euclidean TSP instance V ⊂ R2 degenerate if there exists a line in R2 that
contains all points of V . Otherwise we call the instance non-degenerate.

It is easily seen that in a degenerate Euclidean TSP instance a 2-optimal tour is also an
optimal tour:

▶ Proposition 3. In a degenerate Euclidean TSP instance a 2-optimal tour is an optimal
tour.

Proof. Let V ⊆ R2 be a degenerate Euclidean TSP instance. Let c : V × V → R be the
Euclidean distance between two points in V . Then there exist two points a, b ∈ V such that
the straight line segment S from a to b contains all points of V . The length of an optimal
TSP tour for V is 2 · c(a, b). Assume there exists a 2-optimal TSP tour T that is not optimal.
Orient the tour T . Then there must exist a point in S \ V that is contained in at least three
edges of the tour T and therefore there must exist a point in S \ V that is contained in two
edges (v, w) and (x, y) of T that are oriented in the same direction. This contradicts the
2-optimality of T as c(u, x) + c(w, y) < c(v, w) + c(x, y). ◀

Because of Proposition 3 we may assume in the following that we have a non-degenerate
Euclidean TSP instance.

Let T be a tour in a Euclidean TSP instance. Each edge of T corresponds to a closed
line segment in R2. A tour in a Euclidean TSP instance is called simple if no two edges of
the tour intersect in a point that lies in the interior of at least one of the two corresponding
line segments. For 2-optimal tours in Euclidean TSP instances we have the following simple
but very important result.

▶ Lemma 4 (Flood [6]). In a non-degenerate Euclidean TSP instance a 2-optimal tour is
simple.

2.1 Crossing-Free Pairs of Tours
Let T be an optimal tour and T ′ be a 2-optimal tour in a non-degenerate Euclidean TSP
instance. By Lemma 4 we know that both tours are simple. In the following we want to
justify a much stronger assumption. Two edges e ∈ E(T) and f ∈ E(T ′) cross if e and f

intersect in exactly one point in R2 and this point is in the interior of both line segments.
We say that two tours T and T ′ are crossing-free if there does not exist a pair of crossing
edges. See Figure 2 for an example of an optimal tour and a 2-optimal tour that have three
crossing pairs of edges.

To prove Theorem 1 it will be enough to prove it for the special case of crossing-free
tours:

▶ Theorem 5. Let V ⊆ R2 with |V | = n be a non-degenerate Euclidean TSP instance, T

an optimal tour for V and S a 2-optimal tour for V . If T and S are crossing-free then the
length of S is bounded by O(log n/ log log n) times the length of T .

U. A. Brodowsky and S. Hougardy 18:5

Figure 2 A Euclidean TSP instance with an optimal tour (red edges) and a 2-optimal tour
(dashed green edges). Both tours shown in the left picture are simple but there are three pairs of
crossing edges. The tours can be made crossing-free by adding three vertices (blue points in the
right picture) to the instance.

The proof of Theorem 5 will be presented in Section 5. Here we show how Theorem 5
allows to prove Theorem 1. For this we describe a method to transform a pair of tours into a
crossing-free pair of tours.

Let V ⊆ R2 be a Euclidean TSP instance and T be a tour for V . We say that V ′ ⊆ R2 is
a subdivision for (V, T) if V ⊂ V ′ and V ′ is a subset of the polygon T . The set V ′ induces
a new tour T ′ which results from the tour T by subdividing the edges by points in V ′ \ V .
Note that T and T ′ constitute the same polygon. Therefore we have:

▶ Proposition 6. Let V ⊆ R2 be a Euclidean TSP instance and T be an optimal tour. If V ′

is a subdivision for (V, T) then the tour T ′ induced by V ′ is an optimal tour for V ′.

Subdividing a tour not only preserves the optimality but it also preserves the 2-optimality:

▶ Lemma 7. Let V ⊆ R2 be a Euclidean TSP instance and T be a 2-optimal tour. If V ′ is
a subdivision for (V, T) then the tour T ′ induced by V ′ is a 2-optimal tour for V ′.

Proof. Let us assume that the tour T ′ is oriented and that (x′, y′) and (a′, b′) are two edges
of T ′. We have to prove that these two edges satisfy the 2-optimality condition (2). As T ′ is
a subdivision of the 2-optimal tour T we know that there exist edges (x, y) and (a, b) in T

such that the line segment a′b′ is contained in the line segment ab and the line segment x′y′

is contained in the line segment xy. The 2-optimality of T implies

c(a, b) + c(x, y) ≤ c(a, x) + c(b, y).

Using this inequality and the triangle inequality we get:

c(a′, b′) + c(x′, y′) = c(a, b) − c(a, a′) − c(b, b′) + c(x, y) − c(x, x′) − c(y, y′)
≤ c(a, x) − c(a, a′) − c(x, x′) + c(b, y) − c(b, b′) − c(y, y′)
≤ c(a′, x′) + c(b′, y′). ◀

Now we are able to reduce Theorem 1 to Theorem 5:

STACS 2021

18:6 The Approximation Ratio of the 2-Opt Heuristic for the Euclidean TSP

Figure 3 A Euclidean TSP instance with an optimal tour T (red edges) and a 2-optimal tour
(blue edges) that are crossing-free. The edges of the 2-optimal tour are partitioned into the edges
lying in the interior of T (solid blue lines), the edges that lie in the exterior of T (dotted blue lines),
and the edges that are part of T (dashed blue edges).

Proof of Theorem 1. Let V ⊆ R2 be a Euclidean TSP instance with |V | = n, T be an
optimal tour for V and S be a 2-optimal tour for V . By Proposition 3 we may assume that
V is non-degenerate. Let V ′ ⊆ R2 be the set of points obtained by adding to V all crossings
between pairs of edges in T and S. Denote the cardinality of V ′ by n′. Let T ′ and S′ be the
tours induced by V ′ for T and S. Then by Proposition 6 and by Lemma 7 we know that T ′ has
the same length as T and is an optimal tour for V ′ and S′ has the same length as S and is a 2-
optimal tour for V ′. Now Theorem 5 implies that the length of S is at most O(log n′/ log log n′)
times the length of T . It remains to observe that there can be at most O(n2) crossings
between edges in T and S and therefore O(log n′/ log log n′) = O(log n/ log log n). ◀

2.2 Partitioning the Edge Set of a 2-Optimal Tour
Let V ⊆ R2 be a non-degenerate Euclidean TSP instance, T be an optimal tour and S be a
2-optimal tour such that S and T are crossing-free. As S and T are simple polygons and S

and T are crossing-free we can partition the edge set of S into three sets S1, S2, and S3 such
that all edges of S1 lie in the interior of T , all edges of S2 lie in the exterior of T and all
edges of S3 are contained in T (see Figure 3). More precisely, an edge {a, b} ∈ S belongs
to S1 resp. S2 if the corresponding open line segment ab completely lies in the interior resp.
exterior of the polygon T . The set S3 contains all the edges of S that are subsets of the
polygon T .

By definition and because of Proposition 3 and Lemma 4 we know that the edges in S3
are at most as long as the edges in T . To bound the total length of all edges in S1 in terms
of the length of T we proceed as follows: Fix some orientation of the tour S. We may assume
that S1 contains at least two edges as otherwise by the triangle inequality the length of T is
an upper bound for the length of the edges in S1. Choose an edge e0 = (x0, y0) from S1 such
that one of the two x0-y0-paths in T does not contain in its interior the endpoints of any
other edge in S1 (see Figure 4).

Let T[x0,y0] be the x0-y0-path in T that contains the endpoints of all other edges in S1.
The path T[x0,y0] is unique if we assume |S1| ≥ 2. Then we define the set S′

1 to contain all
edges from S1 that are “compatible” with T[x0,y0] in the following sense:

S′
1 := {(a, b) ∈ S1 : the x0-b-path in T[x0,y0] contains a}.

In Figure 4 for the chosen edge e0 = (x0, y0) the edges in S′
1 are marked green.

U. A. Brodowsky and S. Hougardy 18:7

x0

y0

e0

Figure 4 The edge e0 = (x0, y0) of the 2-optimal tour (blue edges) defines the set S′
1 of all green

marked edges in the interior of the optimal tour T (red edges).

All edges in S1 that are oriented in the “wrong” way with respect to T[x0,y0] define the
set S′′

1 , i.e., we have S′′
1 := S1 \ S′

1. Similarly we can define sets S′
2 and S′′

2 with respect to
some edge f ∈ S that lies in the exterior of T . We want to prove that for each of the four
sets S′

1, S′′
1 , S′

2, S′′
2 we can bound the total length of all edges by O(log n/ log log n) times

the length of T . To achieve this we will reduce the problem to a problem in weighted
arborescences.

3 Arborescences and Pairs of Tours

In this section we will explain why bounding the length of a 2-optimal tour reduces to some
problem in weighted arborescences. We start by giving an informal description of the idea.

Let T be an optimal tour for a non-degenerate Euclidean TSP instance V ⊆ R2 and let
S be a 2-optimal tour such that S and T are crossing-free. Then T together with the edge
set S′

1 as defined in Section 2.2 is a plane graph. Each region of this plane graph is bounded
by edges in E(T) ∪ S′

1. The boundary of each region is a cycle. Because of the triangle
inequality we can bound the length of each edge in a cycle by the sum of the lengths of all
other edges in this cycle. This way we get a bound for the length of each edge in S′

1 which
we call the combined triangle inequality as it arises by applying the triangle inequality to
edges from both tours T and S.

From the boundaries of the regions of the plane graph we can derive another type of
inequalities. Suppose some boundary B contains at least two edges from S′

1. Then there will
be two distinct edges e, f ∈ B ∩ S′

1 such that e and f are oriented in opposite direction along
the boundary B. (Here we see the reason why we partitioned the edge set S1 into the two
subsets S′

1 and S′′
1 . In the plane graph arising from T together with the whole edge set S1 it

may happen, that the boundary of a region contains at least two edges from S1 and these
edges are all oriented in the same direction along the boundary.) If we remove e and f from
B we get two paths (one of which may be empty) connecting the heads and tails of e and
f . Now by applying the triangle inequality to these two paths and using the 2-optimality
condition (2) for the edges e and f we get another inequality for the edges in S′

1. We call
this inequality the combined 2-optimality condition as it arises by applying the 2-optimality
condition in combination with the triangle inequality to edges from both tours T and S.

In the following we want to apply the combined triangle inequality and the combined
2-optimality condition to neighboring regions of the plane graph formed by the edge set
T ∪ S′

1. This part of the proof is independent of the embedding induced by the point

STACS 2021

18:8 The Approximation Ratio of the 2-Opt Heuristic for the Euclidean TSP

x0

y0

e0

Figure 5 The arborescence (green edges) in the dual of the plane graph formed by the edges
of an optimal tour (red edges) and the edges in the set S′

1 (blue edges) with respect to the edge
e0 = (x0, y0).

coordinates in R2. In particular this part of the proof can also be applied to point sets in
higher dimension by choosing an arbitrary planar embedding of the tour T . We therefore
reduce in the following the problem of bounding the total length of all edges in S′

1 to a purely
combinatorial problem in weighted arborescences.

We now give a formal description of the reduction. Consider the plane graph obtained
from T together with the edge set S′

1. Let H be the graph that is obtained from the geometric
dual of this plane graph by removing the vertex corresponding to the outer region. Then
each edge in H is a dual of an edge in S′

1. As each edge in S′
1 is a chord in the polygon T we

know that each edge in H is a cut edge and thus H is a tree. See Figure 5 for an example.
We now want to orient the edges of H to get an arborescence. An arborescence A = (V, E)

is a connected directed acyclic graph that satisfies |δ−(x)| ≤ 1 for all x ∈ V (A). Each
arborescence has exactly one root r which is the unique vertex r ∈ V (A) with δ−(r) = ∅. For
an arborescence A with root r we say that A is rooted at r.

The set S′
1 has been defined with respect to some edge e0 = (x0, y0). The tree H contains

a vertex that corresponds to the region of the plane graph that is bounded by the edge e0
and the edges in E(T) \ T[x0,y0]. By choosing this vertex as the root and orienting all edges
in H from the root to the leaves, we get an arborescence A from the tree H (see Figure 5).

We want to define two weight functions on the edge set E(A) of the arborescence A to
capture the weights of the edges in T and the edges in S′

1. First we define the function
c : E(A) → R>0 to be the weight of the corresponding dual edge in S′

1. Secondly, we define a
weight function w : E(A) → R>0 as follows. Let e = (x, y) be a directed edge in E(A). Let
Y be the region corresponding to the vertex y in the plane graph formed by E(T) ∪ S′

1. Then
we define w(e) to be the weight of all the edges in E(T) that belong to the boundary of Y .

For the arborescence A and the two weight functions c and w we can now state the above
mentioned combined triangle inequality and the combined 2-optimality condition as follows:

▶ Lemma 8. Let V ⊆ R2 be a Euclidean TSP instance with distance function c : V × V → R
and let T be an optimal tour. Let S be a 2-optimal tour such that S and T are crossing-free.
Let S′

1 be defined as in Section 2.2 with respect to some edge e0 = (x0, y0). Let A be the
arborescence derived from the geometric dual of the plane graph T ∪ S′

1 with weight functions
w : E(A) → R>0 and c : E(A) → R>0 as defined above. Then we have

c(e) ≤ w(e) +
∑

f∈δ+(y)

c(f) for all e = (x, y) ∈ E(A) (3)

U. A. Brodowsky and S. Hougardy 18:9

and

c(x, y) + c(y, z) ≤ w(x, y) +
∑

f∈δ+(y)\{(y,z)}

c(f) for all (x, y), (y, z) ∈ E(A). (4)

Proof. Let f = (a, b) be an edge in S′
1 and f ′ = (a′, b′) its corresponding dual edge in A.

By definition we have c(f ′) = c(f). The vertex b′ corresponds to a region R in the plane
graph on V with edges E(T) ∪ S′

1. By the triangle inequality the length c(f) of the edge
f is bounded by the length of all other edges in the boundary of the region R. Using the
definitions of the functions c and w we therefore get:

c(f ′) = c(f) ≤
∑

g∈R∩E(T)

c(g) +
∑

g∈(R∩S′
1)\{f}

c(g) = w(f ′) +
∑

g∈δ+(b′)

c(g).

This proves condition (3).
We now prove property (4). Let f ∈ S′

1. By definition of the set S′
1 we know that S′

1 is
defined with respect to an edge e0 = (x0, y0) ∈ S1 and the x0-y0-path T[x0,y0] contains the
endpoints of all other edges in S1. Let ϕ : V (T[x0,y0]) → N such that ϕ(z) for z ∈ V (T[x0,y0])
denotes the distance (in terms of the number of edges) between x0 and z in T[x0,y0]. The
definition of the set S′

1 implies that ϕ(a) < ϕ(b) for each edge (a, b) ∈ S′
1. Each edge in S′

1
can be seen as a shortcut for the path T[x0,y0]. For an edge f = (a, b) ∈ S′

1 with dual edge
f ′ = (a′, b′) ∈ E(A) we denote by (δ+(b′))′ all edges dual to the edges in δ+(b′). The edge
f = (a, b) and the edges in (δ+(b′))′ belong to the border of a region of the graph on V with
edge set E(T) ∪ S′

1. Along this border the edge f = (a, b) is directed opposite to all edges in
(δ+(b′))′. Therefore, the triangle inequality together with the 2-optimality condition (2) for
the set S′

1 imply for each edge (u, v) ∈ (δ+(b′))′:

c(a, b) + c(u, v) ≤ w(a′, b′) +
∑

g∈(δ+(b′))′\{(u,v)}

c(g).

We have c(a, b) = c(a′, b′) and c(u, v) = c(b′, x′) for the vertex x′ ∈ V (A) such that (u, v) ∈ S1
is the dual edge to (b′, x′) ∈ E(A). Therefore we get:

c(a′, b′) + c(b′, x′) ≤ w(a′, b′) +
∑

g∈δ+(b′)\{(b′,x′)}

c(g). ◀

We call condition (3) the combined triangle inequality and condition (4) the combined
2-optimality condition. Note that these two conditions can be formulated for any ar-
borescence A with weight functions c and w. In the next section we will show that if
these two conditions are satisfied for an arborescence A then we can bound c(A)/w(A) by
O(log(|E(A)|)/ log log(|E(A)|)).

4 The Arborescence Lemmas

Let A be an arborescence with weight functions w : E(A) → R>0 and c : E(A) → R>0.
We will first show that the combined triangle inequality (3) and the combined 2-optimality
condition (4) imply two additional properties. For this we need the following definition.
For an arborescence A = (V, E) and an edge e = (x, y) ∈ E(A) we denote by Ae the
sub-arborescence rooted at x that contains the edge e and all descendants of y, see Figure 6
for an example.

STACS 2021

18:10 The Approximation Ratio of the 2-Opt Heuristic for the Euclidean TSP

r

e

Figure 6 An arborescence A with root r. Shown in red is the sub-arborescence Ae defined by
the edge e.

▶ Lemma 9. Let A be an arborescence with weight functions w : E(A) → R>0 and c :
E(A) → R>0 that satisfies the combined triangle inequality (3). Then we have

c(e) ≤ w(Ae) for all e ∈ E(A). (5)

Proof. This follows by induction on the height of the sub-arborescence Ae. If e = (x, y)
is an edge in E(A) such that y is a leaf then the combined triangle inequality (3) implies
c(e) ≤ w(e) = w(Ae). For an arbitrary edge e = (x, y) ∈ E(A) we get by induction:

c(e) ≤ w(e) +
∑

f∈δ+(y)

c(f) ≤ w(e) +
∑

f∈δ+(y)

w(Af) = w(Ae). ◀

In the following lemma we have a statement about the maximum weight of a possibly
empty edge set. As usual we assume max ∅ = −∞.

▶ Lemma 10. Let A be an arborescence with weight functions w : E(A) → R>0 and
c : E(A) → R>0 that satisfies the combined 2-optimality condition (4). Then we have:

2 · max
f∈δ+(y)

c(f) ≤ w(x, y) − c(x, y) +
∑

g∈δ+(y)

c(g) for each edge (x, y) ∈ E(A). (6)

Proof. From the combined 2-optimality condition (4) we get

2 · c(y, z) ≤ w(x, y) − c(x, y) +
∑

f∈δ+(y)

c(f) for all (x, y), (y, z) ∈ E(A).

As the right hand side of this inequality is independent of the edge (y, z) we can therefore
replace c(y, z) by the term maxf∈δ+(y) c(f) on the left hand side. ◀

Our next goal is to bound c(A) in terms of w(A) for arborescences A satisfying (3) and (4).
The following two lemmas prove such a statement for certain subsets of E(A).

▶ Lemma 11. Let A = (V, E) be an arborescence with weight functions w : E(A) → R>0
and c : E(A) → R>0 that satisfies the combined 2-optimality condition (4). For some fixed
number k ∈ R>0 define E′ := {(x, y) ∈ E(A) : maxf∈δ+(y) c(f) > 1

k · c(x, y)}. Then we have:

c(E′) ≤ k

2 · w(A).

U. A. Brodowsky and S. Hougardy 18:11

Proof. By definition of E′ and using Lemma 10 we have for each edge (x, y) ∈ E′:

2
k

· c(x, y) < 2 · max
f∈δ+(y)

c(f) ≤ w(x, y) − c(x, y) +
∑

g∈δ+(y)

c(g).

Adding this inequality for all (x, y) ∈ E′ and using that the left hand side and therefore also
the right hand side of inequality (6) is non-negative we get:

2
k

·
∑

(x,y)∈E′

c(x, y) <
∑

(x,y)∈E′

w(x, y) − c(x, y) +
∑

g∈δ+(y)

c(g)

≤

∑
(x,y)∈E(A)

w(x, y) − c(x, y) +
∑

g∈δ+(y)

c(g)

≤ w(A). ◀

For a fixed number k ∈ R>0 and a number r ∈ R≥0 we define the edge set Er ⊆ E(A) as
follows:

Er :=
{

e = (x, y) ∈ E(A) : r < c(e) ≤ k

4 · r and c(f) ≤ 1
k

· c(e) ∀f ∈ δ+(y)
}

. (7)

▶ Lemma 12. Let A = (V, E) be an arborescence with weight functions w : E(A) → R>0
and c : E(A) → R>0 that satisfies the combined triangle inequality (3) and the combined
2-optimality condition (4). Let Er be defined as in (7). Then we have:

c(Er) ≤ 2 · w(A).

Proof. Let e = (x, y) ∈ Er. We first prove by induction on the cardinality of E(Ae) ∩ Er:

w(Ae) ≥ c(e) +
∑

f∈(E(Ae)∩Er)\{e}

(
c(f) − r

4

)
. (8)

If |E(Ae) ∩ Er| = 1 then E(Ae) ∩ Er = {e} and therefore (E(Ae) ∩ Er) \ {e} = ∅.
Inequality (8) then states w(Ae) ≥ c(e) which holds because of Lemma 9.

Now assume that |E(Ae) ∩ Er| > 1 and that inequality (8) holds for all edges f ∈ Er

with |E(Af) ∩ Er| < |E(Ae) ∩ Er|. From the definition of the set Er we get for each edge
f ∈ δ+(y):

c(f) ≤ 1
k

· c(e) ≤ 1
k

· k

4 · r = r

4 . (9)

We define the following two sets of edges:

X := {f ∈ δ+(y) : E(Af) ∩ Er = ∅}

and

F := {f ∈ (Er ∩ E(Ae)) \ {e} : no edge h ∈ Er lies on a path from f to e in A}.

For each edge f ∈ δ+(y) we either have E(Af) ∩ Er = ∅ or E(Af) ∩ Er ̸= ∅. In the first case
the edge f belongs to the set X. In the second case at least one edge from Af belongs to F .
Thus we have

|F | + |X| ≥ |δ+(y)| ⇒ |δ+(y) \ X| ≤ |F |. (10)

STACS 2021

18:12 The Approximation Ratio of the 2-Opt Heuristic for the Euclidean TSP

By the induction hypothesis, inequality (8) holds for each edge f ∈ F and we can now
prove inequality (8) for the edge e:

w(Ae) ≥
∑
f∈F

w(Af) +
∑
f∈X

w(Af) + w(e)

(5)
≥

∑
f∈F

w(Af) +
∑
f∈X

c(f) + w(e)

(3)
≥

∑
f∈F

w(Af) + c(e) −
∑

f∈δ+(y)\X

c(f)

(9)
≥

∑
f∈F

w(Af) + c(e) −
∑

f∈δ+(y)\X

r

4

(10)
≥

∑
f∈F

(
w(Af) − r

4

)
+ c(e)

(8)
≥

∑
f∈F

c(f) +
∑

g∈(E(Af)∩Er)\{f}

(
c(g) − r

4

)
− r

4

 + c(e)

= c(e) +
∑

f∈(E(Ae)∩Er)\{e}

(
c(f) − r

4

)
.

The last equality holds because each edge in (E(Ae) ∩ Er) \ {e} appears exactly once in the
sets (E(Af) ∩ Er) for f ∈ F .

By definition of the set Er we have for each edge f ∈ Er:

c(f) ≥ r ⇒ 1
2 · c(f) ≥ r

4 ⇒ c(f) − r

4 ≥ 1
2 · c(f). (11)

Inequality (8) therefore implies

w(Ae) ≥ c(e) +
∑

f∈(E(Ae)∩Er)\{e}

(
c(f) − r

4

)
≥

∑
f∈E(Ae)∩Er

(
c(f) − r

4

)
(11)
≥

∑
f∈E(Ae)∩Er

(
1
2 · c(f)

)
= 1

2 · c(E(Ae) ∩ Er).

Now choose a minimal set of edges e1, e2, . . . ∈ Er such that Er ⊆
⋃

i E(Aei
). Then

w(A) ≥ w(
⋃

i

E(Aei
)) =

∑
i

w(E(Aei
)) ≥ 1

2 ·
∑

i

c(E(Aei
) ∩ Er) = 1

2 · c(Er). ◀

▶ Lemma 13. Let A = (V, E) be an arborescence with weight functions w : E(A) → R>0
and c : E(A) → R>0 that satisfies the combined triangle inequality (3) and the combined
2-optimality condition (4). Moreover we assume that c(A) ≥ 18 · w(A). Then we have:

c(A) ≤ 12 · log(|E(A)|)
log log(|E(A)|) · w(A).

U. A. Brodowsky and S. Hougardy 18:13

Proof. We define k := c(A)/w(A). By assumption we have k ≥ 18. For i = 1, 2, . . . , ⌊k/6⌋
we define ri :=

(4
k

)i · w(A) and for these numbers we define sets Eri
as in (7). By Lemma 9

we have c(e) ≤ w(A) = k
4 ·

(4
k

)1 · w(A) = k
4 · r1 and therefore we have:

⌊k/6⌋⋃
i=1

Eri
=

{
e = (x, y) ∈ E(A) :

(
4
k

)⌊k/6⌋

· w(A) < c(e) and c(f) ≤ 1
k

· c(e) ∀f ∈ δ+(y)
}

.

Define

E′ := {(x, y) ∈ E(A) : max
f∈δ+(y)

c(f) >
1
k

· c(x, y)}

and

E∗ := {e ∈ E(A) : c(e) ≤
(

4
k

)⌊k/6⌋

· w(A)}.

Then we have

E(A) = E′ ∪ E∗ ∪
⌊k/6⌋⋃
i=1

Eri
.

Using Lemma 11 and Lemma 12 we get:

k · w(A) = c(A) ≤
⌊k/6⌋∑
i=1

c(Eri
) + c(E′) + c(E∗)

≤ ⌊k/6⌋ · 2 · w(A) + k

2 · w(A) +
(

4
k

)⌊k/6⌋

· w(A) · |E∗|

≤ 5
6 · k · w(A) +

(
4
k

)⌊k/6⌋

· w(A) · |E∗|.

This implies

|E(A)| ≥ |E∗| ≥ k

6 ·
(

k

4

)⌊k/6⌋

≥
(

k

6

)k/6
. (12)

The function log x
log log x is monotone increasing for x > 18. Therefore we get from inequal-

ity (12):

2 · log(|E(A)|)
log log(|E(A)|) · w(A) ≥ 2 ·

log
((

k
6
)k/6)

log log
((

k
6
)k/6) · w(A)

= 2 ·
k
6 · log

(
k
6
)

log
(

k
6
)

+ log log
(

k
6
) · w(A)

≥ k

6 · w(A)

= 1
6 · c(A). ◀

STACS 2021

18:14 The Approximation Ratio of the 2-Opt Heuristic for the Euclidean TSP

5 Proof of Theorem 5

Lemma 8 in combination with Lemma 13 shows that we can bound the length of all edges in
S′

1 by O(log n/ log log n) times the length of an optimal tour T . The statement of Lemma 8
also holds for the set S′′

1 : We can define an arborescence almost the same way as we did for
the set S′

1 by taking the dual of the graph on V formed by the edges of T and S′′
1 without

the vertex for the outer region. The only minor difference is the choice of the root vertex.
For S′

1 we have chosen as root the vertex that corresponds to the region R bounded by the
edge e0 = (x0, y0) and the edges in E(T) \ T[x0,y0]. For the arborescence for S′′

1 we choose as
a root the region that contains R. The proof of Lemma 8 then without any changes shows
that the statement of Lemma 8 also holds for the set S′′

1 . Similarly, by exchanging the role
of the outer and the inner region of T , Lemma 8 also holds for the sets S′

2 and S′′
2 . We are

now able to prove our main result:

Proof of Theorem 5. Let V ⊆ R2 with |V | = n be a non-degenerate Euclidean TSP instance,
T an optimal tour for V and S a 2-optimal tour for V such that T and S are crossing-free.
We partition the tour S into the five (possibly empty) sets S′

1, S′′
1 , S′

2, S′′
2 , and S3 as defined

in Section 2.2. Then c(S3) ≤ c(T). We claim that c(S′
1) = O(log n/ log log n) · c(T). If

c(S′
1) < 18 · c(T) this is certainly the case. Otherwise by Lemma 8 and Lemma 13 we get

c(S′
1) ≤ 12 · log(n)

log log(n) · c(T)

which again proves the claim. As observed above, Lemma 8 also holds for the sets S′′
1 , S′

2,
and S′′

2 . Therefore, we can apply the same argument to the sets S′′
1 , S′

2, and S′′
2 and get

c(S) = c(S′
1) + c(S′′

1) + c(S′
2) + c(S′′

2) + c(S3) = O(log n/ log log n) · c(T). ◀

References
1 Sanjeev Arora. Polynomial time approximation schemes for Euclidean Traveling Salesman

and other geometric problems. Journal of the ACM, 45(5):753–782, September 1998.
2 Jon Jouis Bentley. Fast algorithms for geometric Traveling Salesman Problems. ORSA Journal

on Computing, 4(4):387–411, 1992.
3 Barun Chandra, Howard Karloff, and Craig Tovey. New results on the old k-opt algorithm for

the Traveling Salesman Problem. SIAM J. Comput, 28(6):1998–2029, 1999.
4 Nicos Christofides. Worst-case analysis of a new heuristic for the Travelling Salesman Problem.

Technical Report 388, Carnegie-Mellon University, 1976.
5 Matthias Englert, Heiko Röglin, and Berthold Vöcking. Worst case and probabilistic analysis

of the 2-opt algorithm for the TSP. Algorithmica, 68:190–264, 2014.
6 Merrill M. Flood. The traveling-salesman problem. Operations Research, 4(1):61–75, 1956.
7 Michael R. Garey and David S. Johnson. Computers and Intractability. A Guide to the Theory

of NP-Completeness. W. H. Freeman and Company, 1979.
8 Stefan Hougardy, Fabian Zaiser, and Xianghui Zhong. The approximation ratio of the 2-

Opt Heuristic for the metric Traveling Salesman Problem. Operations Research Letters,
48:401–404, 2020.

9 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation
algorithm for metric TSP. arXiv:2007.01409v1 [cs.DS], July 2020. arXiv:2007.01409v1.

10 Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh Vazirani. On syntactic versus
computational views of approximability. SIAM J. Comput., 28:164–191, 1998.

11 Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM J. Comput., 28(4):1298–1309, 1999.

http://arxiv.org/abs/2007.01409v1

U. A. Brodowsky and S. Hougardy 18:15

12 Christos H. Papadimitriou. The Euclidean Traveling Salesman Problem is NP-complete.
Theoretical Computer Science, 4(3):237–244, June 1977.

13 Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. Journal of the ACM,
23(3):555–565, July 1976.

14 A.I. Serdyukov. O nekotorykh ekstremal’nykh obkhodakh v grafakh. Upravlyaemye sistemy,
17:76–79, 1978.

15 Xianghui Zhong. Approximation Algorithms for the Traveling Salesman Problem. PhD thesis,
Research Institute for Discrete Mathematics, University of Bonn, 2020.

STACS 2021

A Framework of Quantum Strong
Exponential-Time Hypotheses
Harry Buhrman !

QuSoft, CWI, Amsterdam, The Netherlands
University of Amsterdam, The Netherlands

Subhasree Patro !

QuSoft, CWI, Amsterdam, The Netherlands
University of Amsterdam, The Netherlands

Florian Speelman !

QuSoft, CWI, Amsterdam, The Netherlands
University of Amsterdam, The Netherlands

Abstract
The strong exponential-time hypothesis (SETH) is a commonly used conjecture in the field of
complexity theory. It essentially states that determining whether a CNF formula is satisfiable can
not be done faster than exhaustive search over all possible assignments. This hypothesis and its
variants gave rise to a fruitful field of research, fine-grained complexity, obtaining (mostly tight) lower
bounds for many problems in P whose unconditional lower bounds are very likely beyond current
techniques. In this work, we introduce an extensive framework of Quantum Strong Exponential-Time
Hypotheses, as quantum analogues to what SETH is for classical computation.

Using the QSETH framework, we are able to translate quantum query lower bounds on black-box
problems to conditional quantum time lower bounds for many problems in P. As an example, we
provide a conditional quantum time lower bound of Ω(n1.5) for the Longest Common Subsequence
and Edit Distance problems. We also show that the n2 SETH-based lower bound for a recent scheme
for Proofs of Useful Work carries over to the quantum setting using our framework, maintaining a
quadratic gap between verifier and prover.

Lastly, we show that the assumptions in our framework can not be simplified further with
relativizing proof techniques, as they are false in relativized worlds.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Quantum complexity theory

Keywords and phrases complexity theory, fine-grained complexity, longest common subsequence,
edit distance, quantum query complexity, strong exponential-time hypothesis

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.19

Related Version Full Version: https://arxiv.org/abs/1911.05686

Funding SP is supported by the Robert Bosch Stiftung. HB, SP, and FS are additionally supported
by NWO Gravitation grants NETWORKS and QSC, and EU grant QuantAlgo.

Acknowledgements We would like to thank Andris Ambainis, Gilles Brassard, Frédéric Magniez,
Miklos Santha, Mario Szegedy, and Ronald de Wolf for helpful discussions.

1 Introduction

There is a rich diversity of computational problems that are solvable in polynomial time;
some that have surprisingly fast algorithms, such as the computation of Fourier transforms
or solving linear programs, and some for which the worst-case run time has not improved
much for many decades. The problem is that we have no techniques for proving superlinear
lower bounds. Of the latter category Edit Distance is a good example: this is a problem

© Harry Buhrman, Subhasree Patro, and Florian Speelman;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 19; pp. 19:1–19:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:harry.buhrman@cwi.nl
mailto:subhasree.patro@cwi.nl
mailto:f.speelman@uva.nl
https://doi.org/10.4230/LIPIcs.STACS.2021.19
https://arxiv.org/abs/1911.05686
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 A Framework of Quantum Strong Exponential-Time Hypotheses

with high practical relevance, and an O(n2) algorithm using dynamic programming has
been known for many decades. Even after considerable effort, no algorithm has been found
that can solve this problem essentially faster than n2. The best known algorithms runs in
O(n2/ log2 n) time [34], still a nearly quadratic run time.

Traditionally, the field of (structural) complexity theory has studied the time complexity
of problems in a relatively coarse manner – the class P, of problems solvable in polynomial
time, is one of the central objects of study in complexity theory.

Consider CNF-SAT, the problem of whether a formula, input in conjunctive normal
form, has a satisfying assignment. What can complexity theory tell us about how hard it is to
solve this problem? For CNF-SAT, the notion of NP-completeness gives a convincing reason
why it is hard to find a polynomial-time algorithm for this problem: if such an algorithm is
found, all problems in the complexity class NP are also solvable in polynomial time, showing
P = NP.

Not only is no polynomial-time algorithm known, but (if the clause-length is arbitrarily
large) no significant speed-up over the brute-force method of trying all 2n assignments is
known. Impagliazzo, Paturi, and, Zane [31, 32] studied two ways in which this can be
conjectured to be optimal. The first of which is called the Exponential-Time Hypothesis
(ETH).

▶ Conjecture 1 (Exponential-Time Hypothesis). There exists a constant α > 0 such that
CNF-SAT on n variables and m clauses can not be solved in time O(m2αn) by a (classical)
Turing machine.

This conjecture can be directly used to give lower bounds for many natural NP-complete
problems, showing that if ETH holds then these problems also require exponential time
to solve. The second conjecture, most importantly for the current work, is the Strong
Exponential-Time Hypothesis (SETH).

▶ Conjecture 2 (Strong Exponential-Time Hypothesis). There does not exist δ > 0 such that
CNF-SAT on n variables and m clauses can be solved in O(m2n(1−δ)) time by a (classical)
Turing machine.

The strong exponential-time hypothesis also directly implies many interesting exponential
lower bounds within NP, giving structure to problems within the complexity class. A wide
range of problems (even outside of just NP-complete problems) can be shown to require
strong exponential time assuming SETH: for instance, recent work shows that, conditioned on
SETH, classical computers require exponential time for strong simulation of several models
of quantum computation [29, 35].

Surprisingly, SETH is not only a very productive tool for studying the hardness of
problems that likely require exponential time, but can also be used to study the difficulty of
solving problems within P, forming a foundation for the field of fine-grained complexity. The
first of such a SETH-based lower bound was given in [40], via a reduction from CNF-SAT
to the Orthogonal Vectors problem, showing that a truly subquadratic algorithm that
can find a pair of orthogonal vectors among two lists would render SETH false.

The Orthogonal Vectors problem became one of the central starting points for
proving SETH-based lower bounds, and conditional lower bounds for problems such as
computing the Frechet distance between two curves [20], sequence comparison problems such
as the string alignment problem [6] and Dynamic Time Warping [4], can all obtained via
a reduction from Orthogonal Vectors. Both the Longest Common Subsequence
(LCS) and the Edit Distance problems [11] can also be shown to require quadratic time

H. Buhrman, S. Patro, and F. Speelman 19:3

conditional on SETH, implying that any super-logarithmic improvements over the classic
simple dynamic programming algorithm would also imply better algorithms for satisfiability
– a barrier which helps explain why it has been hard to find any new algorithms for these
problems.

Besides CNF-SAT, the conjectured hardness of other key problems like 3SUM and
APSP is also commonly used to prove conditional lower bounds for problems in P. See the
recent surveys [38, 39] for an overview of the many time lower bounds that can be obtained
when assuming only the hardness of these key problems.

All these results give evidence for the hardness of problems relative to classical computa-
tion, but interestingly SETH does not hold relative to quantum computation. Using Grover’s
algorithm [28, 17], quantum computers are able to solve CNF-SAT (and more general circuit
satisfiability problems) in time 2n/2, a quadratic speedup relative to the limit that SETH
conjectures for classical computation.

Even though this is in violation of the SETH bound, it is not in contradiction to the
concept behind the strong exponential-time hypothesis: the input formula is still being
treated as a black box, and the quantum speedup comes “merely” from the general quadratic
improvement in unstructured search1.

It could therefore be natural to formulate the quantum exponential time hypothesis as
identical to its classical equivalent, but with an included quadratic speedup, as a “basic
QSETH”. For some problems, such as Orthogonal Vectors, this conjecture would already
give tight results, since these problems are themselves amenable to a speedup using Grover’s
algorithm. See for instance the Master’s thesis [37] for an overview of some of the SETH-based
lower bounds that are violated in the quantum setting.

On the other hand, since the conditional lower bound for all problems are a quadratic
factor lower than before, such a “basic QSETH” lower bound for LCS or Edit Distance
would be merely linear. The best currently-known quantum algorithm that computes edit
distance takes quadratic time, so we would lose some of the explanatory usefulness of SETH
in this translation to the quantum case.

In this work, we present a way around this limit. Realize that while finding a single
marked element is quadratically faster for a quantum algorithm, there is no quantum speedup
for many other similar problems. For instance, computing whether the number of marked
elements is odd or even can not be done faster when allowing quantum queries to the input,
relative to allowing only classical queries [15, 27].

Taking the LCS problem again as an illustrative example, after careful inspection of the
reductions from CNF-SAT to LCS [3], we show that the result of such a reduction encodes
more than merely the existence of an a satisfying assignment. Instead, the result of these
reductions also encodes whether many satisfying assignments exist (in a certain pattern), a
problem that could be harder for quantum computers than unstructured search. The “basic
QSETH” is not able to account for this distinction, and therefore does not directly help with
explaining why a linear-time quantum algorithm for LCS has not been found.

We present a framework of conjectures, that together form an analogue of the strong
exponential-time hypothesis: QSETH. In this framework, we account for the complexity
of computing various properties on the set of satisfying assignments, giving conjectured
quantum time lower bounds for variants of the satisfiability problem that range from 2n/2

up to 2n.

1 For unstructured search this bound is tight [16, 19]. Bennett, Bernstein, Brassard, and Vazirani
additionally show that with probability 1 relative to a random oracle all of NP cannot be solved by a
bounded-error quantum algorithm in time o(2n/2).)

STACS 2021

19:4 A Framework of Quantum Strong Exponential-Time Hypotheses

Summary of results

We define the QSETH framework, connecting quantum query complexity to the proving
of fine-grained (conditional) lower bounds of quantum algorithms. The framework
encompasses both different properties of the set of satisfying assignments, and is also able
to handle different input circuit classes – giving a hierarchy of assumptions that encode
satisfiability on CNF formulas, general formulas, branching programs, and so on.

To be able to handle more-complicated properties of the satisfying assignments, we
require such a property to be compression oblivious – a notion we define to capture
the cases where query complexity is a lower bound for the time complexity, even for
inputs that are “compressible” as a truth table of a small formula.2 We give various
results to initiate the study of the set of compression-oblivious languages.

Some SETH-based Ω(T) lower bounds carry over to Ω(
√

T) QSETH lower bounds, from
which we immediately gain structural insight to the complexity class BQP.
We show that, assuming QSETH, the Proofs of Useful Work of Ball, Rosen, Sabin and
Vasudevan [13] require time Õ(n2) to solve on a quantum computer, matching the classical
complexity of these proofs of work.
We prove that the Longest Common Subsequence (and the Edit Distance) prob-
lem requires Ω(n1.5) time to solve on a quantum computer, conditioned on QSETH. We
do this by showing that LCS (similarly, edit distance) can be used to compute a harder
property of the set of satisfying assignments than merely deciding whether one satisfying
assignment exists.
Following [5], we are able to show this for a version of QSETH where the input formulas
are branching programs instead, giving a stronger result than assuming the hardness for
only CNF inputs.
As a corollary to the proof of the conditional LCS lower bound, we can show that the
query complexity of the restricted Dyck language is linear for any k = ω(log n), partially
answering an open question posed by Aaronson, Grier, and Schaeffer [2].3

Related work

Independently from this work, Aaronson, Chia, Lin, Wang, and Zhang [1] recently also
defined a basic quantum version of the strong exponential-time hypothesis, which assumes
that a quadratic speed-up over the classical SETH is optimal. They present conditional
quantum lower bounds for OV, the closest pair problem, and the bichromatic closest pair
problem, by giving fine-grained quantum reductions to CNF-SAT. All such lower bounds
have a quadratic gap with the corresponding classical SETH lower bound.

Despite the overlap in topic, these results turn out to be complementary to the current
work: In the current work we focus on defining a more extensive framework for QSETH
that generalizes in various ways the basic version. Our more general framework can exhibit
a quantum-classical gap that is less than quadratic, which allows us to give conditional
lower bounds for LCS and edit distance (Ω(n1.5)) and useful proofs of work (a quadratic
gap between prover and verifier). For our presented applications, the requirements of the
fine-grained reductions are lower, e.g., when presenting a lower bound of n1.5 for LCS or

2 This notion is conceptually related to the Black-Box Hypothesis introduced by [14] and studied by [30].
3 Lower bounds for the restricted Dyck language were recently independently proven by Ambainis, Balodis,

Iraids, Khadiev, Klevickis, Prūsis, Shen, Smotrovs and Vihrovs [9].

H. Buhrman, S. Patro, and F. Speelman 19:5

edit distance it is no problem if the reduction itself takes time Õ(n).4 Conversely, we do
not give the reductions that are given by [1]; those results are distinct new consequences
of QSETH (both of the QSETH that is presented in that work, and of our more extensive
QSETH framework).

Structure of the paper

In Section 2 we motivate and state the QSETH framework. Following that, in Section 3
we present the direct consequences of QSETH, including the maintaining of some current
bounds (with a quadratic loss), and the Useful Proof of Work lower bound. In Section 4
we present the conditional lower bounds for LCS and the Edit Distance problem, of which
the proofs can be found in the full version of the paper [22]. Additionally, the proof lower
bounding the query complexity of the restricted Dyck language can be found in the full
version. Finally, we conclude and present several open questions in Section 5.

2 Defining the Quantum Strong Exponential-Time Hypothesis

Almost all known lower bounds for quantum algorithms are defined in terms of query
complexity, which measures the number of times any quantum algorithm must access the
input to solve an instance of a given problem. For example the polynomial method [15]
and the adversary method [8] are two of the main techniques that can be applied in many
situations.

Despite the success of quantum query complexity and the fact that we know tight
query lower bounds for many problems, the query model does not take into account the
computational efforts required after querying the input. In particular, it is not possible to use
query complexity to prove any lower bound greater than linear, since any problem is solvable
in the query-complexity model after all bits are queried. In general we expect the time
needed to solve most problems to be much larger than the number of queries required for the
computation, but it still seems rather difficult to formalize methods to provide unconditional
quantum time lower bounds for explicit problems. We overcome these difficulties by providing
a framework of conjectures that can assist in obtaining conditional quantum time lower
bounds for many problems in BQP. We refer to this framework as the QSETH framework.

Variants of the classical SETH

The Strong Exponential-Time Hypothesis (SETH) was first studied in [31, 32], who showed
that the lack of a O(2n(1−δ)) for a δ > 0 algorithm to solve CNF-SAT is deeply connected to
other open problems in complexity theory. Despite it being one the most extensively studied
problems in the field of (classical) complexity theory, the best known classical algorithms for
solving k-SAT run in 2n−n/O(k)mO(1) time [36], while the best algorithm for the more-general
CNF-SAT is 2n−n/O(log ∆)mO(1) [23], where m denotes the number of clauses and ∆ = m/n

denotes the clause to variable ratio.
Even though no refutation of SETH has been found yet, it is plausible that the CNF

structure of the input formulas does allow for a speed-up. Therefore, if possible, it is preferable
to base lower bounds on the hardness of more general kinds of (satisfiability) problems, where

4 We use Õ to denote asymptotic behavior up to polylogarithmic factors.

STACS 2021

19:6 A Framework of Quantum Strong Exponential-Time Hypotheses

the input consists of wider classes of circuits. For example, lower bounds based on NC-SETH,
satisfiability with NC-circuits as input,5 have been proven for LCS, Edit Distance and
other problems [5], in particular all the problems that fit the framework presented in [21].

Additionally, a different direction in which the exponential-time hypothesis can be
weakened, and thereby made more plausible, is requiring the computation of different
properties of a formula than whether at least one satisfying assignment exists. For example,
hardness of counting the number of satisfying assignments is captured by #ETH [26].
Computing existence is equivalent to computing the OR of the set of satisfying assignments,
but it could also conceivably be harder to output, e.g., whether the number of satisfying
assignments is odd or even, or whether the number of satisfying assignments is larger than
some threshold. In the quantum case, generalizing the properties to be computed is not only
a way to make the hypothesis more plausible: for many of such tasks it is likely that the
quadratic quantum speedup, as given by Grover’s algorithm, no longer exist.

2.1 The basic QSETH

To build towards our framework, first consider what would be a natural generalization of the
classical SETH.

▶ Conjecture (Basic QSETH). There is no bounded error quantum algorithm that solves
CNF-SAT on n variables, m clauses in O(2 n

2 (1−δ)mO(1)) time, for any δ > 0.

This conjecture is already a possible useful tool in proving conditional quantum lower
bounds, as we present an example of this in Section 3.1.6

We first extend this conjecture with the option to consider wider classes of circuits.
Let γ denote a class of representations of computational models. Such a representation can
for example be polynomial-size CNF formulas, polylog-depth circuits NC, polynomial-size
branching programs BP, or the set of all polynomial-size circuits. The complexity of the
latter problem is also often studied in the classical case, capturing the hardness of CircuitSAT.

▶ Conjecture (Basic γ-QSETH). A quantum algorithm cannot, given an input C from the
set γ, decide in time O(2 n

2 (1−δ)) whether there exists an input x ∈ {0, 1}n such that C(x) = 1
for any δ > 0.

We also define AC0
2 to be the set of all depth-2 circuits consisting of unbounded fan-in,

consisting only of AND and OR gates. This definition is later convenient when considering
wider classes of properties, and it can be easily seen that “basic AC0

2-QSETH” is precisely
the “basic QSETH” as defined above.

Since both these basic QSETH variants already contain a quadratic speedup relative to
the classical SETH, conditional quantum lower bounds obtained via these assumptions will
usually also be quadratically worse than any corresponding classical lower bounds for the
same problems. For some problems, lower bounds obtained using the basic QSETH, or using
γ-QSETH for a wider class of computation, will be tight. However, for other problems no
quadratic quantum speedup is known.

5 NC circuits are of polynomial size and polylogarithmic depth consisting of fan-in 2 gates.
6 Additional examples of implications from such a version of QSETH can be found in the recent independent

work of [1].

H. Buhrman, S. Patro, and F. Speelman 19:7

2.2 Extending QSETH to general properties

We now extend the “basic γ-QSETH” as defined in the previous section, to also include
computing different properties of the set of satisfying assignments. By extending QSETH in
this way, we can potentially circumvent the quadratic gap between quantum and classical
lower bounds for some problems.

Consider a problem in which one is given some circuit representation of a boolean function
f : {0, 1}n → {0, 1} and asked whether a property P : {0, 1}2n → {0, 1} on the truth table of
this function evaluates to 1, that is, given a circuit C the problem is to decide if P(tt(C)) = 1,
where tt(C) denotes the truth table of the boolean function computed by the circuit C. If one
can only access C as a black box then it is clear that the amount of time taken to compute
P(tt(C)) is lower bounded by the number of queries made to the string tt(C). However, if
provided with the description of C, which we denote by desc(C), then one can analyze C to
compute P(tt(C)) possibly much faster.

For example, take the representation to be polynomial-sized CNF formulas and the
property to be OR. Then for polynomial-sized CNF formulas this is precisely the CNF-SAT
problem. Conjecturing quantum hardness of this property would make us retrieve the “basic
QSETH” of the previous section. Do note that we cannot simply conjecture that any property
is hard to compute on CNF formulas: Even though the query complexity of AND on a
string of length 2n is Ω(2n) classically and Ω(2n/2) in the quantum case, this property can
be easily computed in polynomial time both classically and quantumly when provided with
the description of the nO(1) sized CNF formula.

To get around this problem, we can increase the complexity of the input representation:
If we consider inputs from AC0

2, the set of all depth-2 circuits consisting of unbounded fan-in
AND and OR gates, we now have a class that is closed under complementation. For this class,
it is a reasonable conjecture that both AND, the question whether the input is a tautology
and all assignments are satisfying, and OR, the normal SAT problem, are hard to compute.

After this step we can look at further properties than AND and OR. For instance, consider
the problem of computing whether there exists an even or an odd number of satisfying
assignments. This task is equivalent to computing the PARITY of the truth table of the
input formula. How much time do we expect a quantum algorithm to need for such a task?

The quadratic speedup for computing satisfiability, i.e., the OR of the truth table of
the input formula, is already captured by the model where the quantum computation only
tries possible assignments and then performs Grover’s algorithm in a black box manner. If
PARITY is also computed in such a way, then we know from query complexity [15] that
there is no speedup possible, and the algorithm will have to use Ω(2n) steps. Our QSETH
framework will be able to consider more-complicated properties, like PARITY.

Finally, observe that such a correspondence, i.e., between the query complexity of a
property and the time complexity of computing this property on the set of satisfying
assignments, cannot hold for all properties, even when we consider more complicated input
classes besides CNF formulas. For instance, consider a property which is 0 on exactly the
strings that are truth tables of polynomial-sized circuits, and is PARITY of its input on the
other strings. Such a property has high quantum query complexity, but is trivial to compute
when given a polynomial-sized circuit as input. We introduce the notion of compression
oblivious below to handle this problem.

STACS 2021

19:8 A Framework of Quantum Strong Exponential-Time Hypotheses

White box and black box computation of a property

We formalize the above intuitions in the following way. Let the variable γ denote a class of
representation at least as complex as the set AC0

2, where AC0
2 denotes the set of poly sized

depth-2 circuits consisting of only OR, AND gates of unbounded fan-in and NOT gates. For
every n, let P : {0, 1}2n → {0, 1} be some function family which defines a property. We
define a meta-language LP such that LP = {desc(C) | C is an element from the set γ and
P(tt(C)) = 1}. We now define the following terms:

▶ Definition 3 (White-box algorithms). An algorithm A decides the property P in white-box
if A decides the corresponding meta-language LP. That is, given an input string desc(C), A
accepts if and only if P(tt(C)) = 1. We use qTimeWBϵ(P) to denote the time taken by a
quantum computer to decide the language LP with error probability ϵ.

▶ Definition 4 (Black-box algorithms). An algorithm A decides the property P in black-box if
the algorithm Af (1n, 1m) accepts if and only if P(tt(f)) = 1. Here, f is the boolean function
computed by the circuit C and m is the upper bound on | desc(C)| which is the size of the
representation7 that describes f , and Af denotes that the algorithm A has oracle access to the
boolean function f . We use qTimeBBϵ(P) to denote the time taken by a quantum computer
to compute the property P in the black-box setting with error probability ϵ.

Compression oblivious properties

We define the set of compression oblivious properties corresponding to γ as the set of
properties where the time taken to compute this property in the black-box setting is lower
bounded by the quantum query complexity of this property on all strings. Formally,

CO(γ) = {properties P such that qTimeBBϵ(P |Sγ
) ≥ Ω(Qϵ(P))},

where Qϵ(P) denotes the quantum query complexity of the property P in a ϵ-bounded error
query model and Sγ = {tt(C) | C is an element of the set γ}.

Defining QSETH

For each class of representation γ we now define the corresponding γ-QSETH∗, which states
that computing any compression-oblivious property P in the white-box setting is at least as
hard as computing P in the black-box setting. More formally, for every class of representation
γ, such as the class of depth-2 circuits AC0

2 or poly-sized circuits of a more complex class, we
hypothesize the following:

▶ Conjecture 5 (γ-QSETH∗). For all properties P ∈ CO(γ), we have qTimeWBϵ(P |γ) ≥
Ω(Qϵ(P)).

2.3 Observations on the set of compression oblivious properties
As the class γ gets more complex, the corresponding γ-QSETH∗ becomes more credible.
The set of compression oblivious properties is an interesting object of study by itself. First
consider some representative examples of whether various natural properties are compression
oblivious. Note here that the example property that is not compression oblivious has to be

7 For instance a CNF/DNF formula, an NC circuit, or a general circuit.

H. Buhrman, S. Patro, and F. Speelman 19:9

carefully constructed for this to be the case – it is natural to conjecture that for most natural
properties the knowledge that the input can be written as the truth table of a small circuit
does not help in speeding up the computation.8

▶ Example 6. The properties AND and OR are in CO(AC0
2): The adversarial set that gives

the tight query bound for the property AND (OR) are truth tables of functions that can be
represented by nO(1) sized DNF (CNF) formulas. Namely, these are given by the formulas
that reject (accept) a single possible input, which can be constructed by using n clauses
that each contain a single variable or its negation. Because Qϵ(AND|SAC0

2
) = Qϵ(AND) and

qTimeBBϵ(AND|SAC0
2
) ≥ Qϵ(AND|SAC0

2
), we have AND ∈ CO(AC0

2). The same holds for the
property OR as well.

▶ Example 7. Consider the following property, defined on some string z ∈ {0, 1}2n , which
we view as the truth table of a formula or circuit:

Plarge-c(z) = PARITY2n (z) ∧ [there exists no circuit C of size less than 2n/100 s.t. z = tt(C).]

Because most strings are not a truth table of a small circuit, the query complexity of this
property is close to the query complexity of PARITY, i.e., Qϵ(Plarge-c) = Ω(N). Nevertheless,
the property is always 0 when restricted to truth tables of small circuits, and therefore trivial
to compute. Therefore Plarge-c is not compression oblivious for polynomial-sized circuits (or
any smaller class of representations).

▶ Example 8. Whether PARITY is compression oblivious is unknown: the quantum query
complexity of PARITY is Ω(N). Restricted to inputs which are truth tables of small
formulas/circuits, the query complexity is O(

√
N), this is the maximum query complexity

for any property when restricted to truth tables of a small circuit class [10, 33]. Conjecturing
that PARITY is compression oblivious is natural, and incomparable to (but not necessarily
less likely than) the main QSETH statement.

Given an explicit property P and a class of input representations γ, it would be desirable
to unconditionally prove that the property P is γ-compression oblivious9. This is possible
for some simple properties that have query complexity Θ(

√
N) like OR, corresponding

to ordinary satisfiability, and AND. Unfortunately, for more complicated properties, like
computing the parity of the number of satisfying assignments, it turns out to be hard to
find an unconditional proof that such a property is compression oblivious. The following
theorem shows a barrier to finding such an unconditional proof: proving that such a property
is compression oblivious implies separating P from PSPACE.

▶ Theorem 9. If there exists a property P such that Qϵ(P) = ω̃(
√

N) and P is γ-compression
oblivious, and P ∈ polyL(N), then P ̸= PSPACE. Here N = 2n and γ represents the set of
poly-sized circuits on n input variables.

Here polyL(N) is same as SPACE(poly log N), i.e., class of properties computable in
poly log N amount of space. Note that SETH is already a much stronger assumption than
P ̸= PSPACE, therefore this observation leaves open the interesting possibility of proving

8 In classical complexity theory, a closely related notion is the Black-Box Hypothesis introduced by [14]
and studied by [30].

9 We call a property P a γ-compression oblivious property if P ∈ CO(γ).

STACS 2021

19:10 A Framework of Quantum Strong Exponential-Time Hypotheses

that properties are compression oblivious assuming that the (Q)SETH holds for simpler
properties. (For instance, these simpler properties could include OR and AND, for which it
is possible to unconditionally prove that they are compression oblivious.)

Unfortunately, merely making such an assumption alone will likely not be enough to
enable an easy proof that simple properties with high query complexity are compression
oblivious: We show that there exists an oracle such that, if all computations and input
models10 have access to this oracle, QSETH is true but PARITY (for example) is not
compression oblivious. This does give a relativization barrier to this question, showing that
a non-relativizing proof will be necessary to prove that properties are compression oblivious.

▶ Theorem 10. There exists an oracle relative to which the basic QSETH holds, but any
property P ∈ polyL(N) for which Qϵ(P) = ω̃(

√
N) is not γ-compression oblivious. Here γ

consists of all polynomial-sized circuits (with oracle access).

See Appendix A for the proofs of Theorems 9 and 10.

3 QSETH lower bounds for Orthogonal Vectors and Proofs of Useful
Work

Recall that AC0
2 denotes the set of polynomial-sized depth-2 circuits consisting of only OR and

AND gates of unbounded fan-in. Because of the simple input structure, the AC0
2-QSETH∗

conjecture is therefore closest to the classical SETH, and implies the “basic QSETH” as
introduced in Section 2.1:

▶ Corollary 11. If AC0
2-QSETH∗ is true then there is no bounded error quantum algorithm

that solves CNF-SAT on n variables, m clauses in O(2(1−δ)n/2mO(1)) time, for any δ > 0.

Proof. Consider the property OR: {0, 1}2n → {0, 1}. Using the fact that OR ∈ CO(AC0
2), as

shown in the previous section, we get qTimeWBϵ(OR|AC0
2
) ≥ Ω(Qϵ(OR)) = Ω(2n/2). Due to

the structure of the DNF formulas one can compute the property OR on DNF formulas on n

variables, m clauses in nO(1)mO(1) time. This implies that the hard cases in the set AC0
2 for

the OR property are the CNF formulas. Therefore, qTimeWBϵ(OR|CNF) ≥ Ω(2n/2) where
the set CNF denotes all the polynomial sized CNF formulas. ◀

In this section we present several immediate consequences of the AC0
2-QSETH∗ conjecture:

1. For some problems, classical SETH-based Ω(T) time lower bounds carry over to the
quantum case, with AC0

2-QSETH∗-based Ω(
√

T) quantum time lower bounds using
(almost) the same reduction.

2. The Proofs of Useful Work of Ball, Rosen, Sabin and Vasudevan [13] require time Õ(n2)
to solve on a quantum computer, equal to their classical complexity, under AC0

2-QSETH∗.

3.1 Quantum time lower bounds based on AC0
2-QSETH∗

The statement of AC0
2-QSETH∗ along with Corollary 11 can give quantum time lower bounds

for some problems for which we know classical lower bounds under SETH (Conjecture 2).

10 For example, consider circuit SAT for circuits that have access to an oracle.

H. Buhrman, S. Patro, and F. Speelman 19:11

▶ Corollary 12. Let P be a problem with an Ω(T) time lower bound modulo SETH. Then, P
has an Ω̃(

√
T) quantum time lower bound conditioned under AC0

2-QSETH∗ if there exists a
classical reduction from CNF-SAT to the problem P taking O(2 n

2 (1−α)) (for α > 0) time or if
there exists an efficient reduction that can access a single bit of the reduction output.11

In Appendix B we explain how we can preserve the following two classical SETH lower
bounds, with a quadratic gap:

▶ Example 13. The OV problem is defined as follows. Given two sets U and V of N vectors,
each over {0, 1}d where d = ω(log N), determine whether there exists a u ∈ U and a v ∈ V

such that Σl∈[d]ulvl = 0. The reduction of Williams [40], shows a classical lower bound
of Ω(N2) for this problem, and it can be modified to efficiently return single bits of the
reduction. Therefore, assuming AC0

2-QSETH∗, any quantum algorithm requires time Θ̃(N)
to solve OV for instances of size N .

▶ Example 14. The LCS problem is defined as follows. Given two strings a and b over
an alphabet set Σ, the LCS(a, b) is the length of the longest subsequence common to both
strings a and b. Modifying the reduction of [3], it can be shown that LCS requires time
Ω̃(N), assuming AC0

2-QSETH∗. This same bound can also be shown unconditionally, using
query complexity and the observation that the majority function can be embedded in LCS.

See the recent results by Aaronson, Chia, Lin, Wang, and Zhang [1] for more examples of
reductions from (a variant of) QSETH, that also hold for the basic QSETH of our framework.
Additionally, there the authors define the notion of Quantum Fine-grained Reductions more
generally, and present a study of OV that also includes the case of constant dimension.

We witness that with the AC0
2-QSETH∗ conjecture, the SETH-based fine-grained lower

bounds at best transfer to a square root lower complexity in the quantum case. This
is definitely interesting on its own, but we are aiming for larger quantum lower bounds,
in situations where the gap between the classical and quantum complexities is less than
quadratic, which is why we focus on our more general framework.

3.2 Quantum Proofs of Useful Work
Other applications of AC0

2-QSETH∗ include providing problems for which Proofs of Useful
Work (uPoW) can be presented in the quantum setting. Ball et al. [13] propose uPoW
protocols that are based on delegating the evaluation of low-degree polynomials to the
prover. They present a classical uPoW protocol for the Orthogonal Vectors problem
(OV) whose security proof is based on the assumption that OV needs Ω(n2−o(1)) classical
time in the worst case setting, implying that the evaluation of a polynomial that encodes the
instance of OV has average-case hardness. At the end of this protocol, the verifier is able to
compute the number of orthogonal vectors in a given instance.

Therefore, the same protocol also works to verify the solutions to ⊕OV, where ⊕OV
denotes the parity version of OV, i.e., given two sets U , V of n vectors from {0, 1}d each,
output the parity of number of pairs (u, v) such that u ∈ U , v ∈ V and Σl∈[d]ulvl = 0,

11 Note that we use a version of QSETH that relates to CNF-SAT as opposed to bounded clause-size
k-SAT problems. One could also define a quantum hardness conjecture for k-CNF or k-DNF, for an
arbitrary constant k, in the same way as the original SETH. This variant is required for reductions that
use the fact that k is constant, which can occur through usage of the sparsification lemma [31]. For
examples where this is necessary within fine-grained complexity, see the Matching Triangles problem
mentioned in [7] or reductions like in [25].

STACS 2021

19:12 A Framework of Quantum Strong Exponential-Time Hypotheses

where d is taken to be ω(log n). Assuming AC0
2-QSETH∗ and assuming PARITY ∈ CO(AC0

2)
we get that ⊕CNF-SAT takes Ω(2n) quantum time. Due to the classical reduction12 given
by [40], this protocol then implies a conditional quantum time lower bound of Ω(n2) for the
⊕OV problem. Therefore, the uPoW protocol by [13] also requires quantum provers to take
time Ω̃(n2).

4 Lower bounds for string problems using NC-QSETH∗

In this section we discuss two consequences of the NC-QSETH∗ conjecture: Quantum
time lower bounds for the LCS and Edit Distance problems. For length n input strings,
the well-known Wagner–Fischer algorithm (based on dynamic programming) classically
computes the edit distance in O(n2) time. A similar algorithm computes LCS in O(n2)
time. Unfortunately, all the best known classical (and quantum) algorithms to compute
these problems are also nearly quadratic. As mentioned above, results by [3, 11] prove that
these near-quadratic time bounds might be tight: a sub-quadratic classical algorithm for
computing LCS or edit distance would imply that SETH (Conjecture 2) is false.

SETH also implies quadratic lower bounds for many other string comparison problems,
like Dynamic Time Warping and Frechet Distance, that also have (close to) optimal
algorithms that are based on dynamic programming [21]. Bouroujeni et al. [18] give a
sub-quadratic quantum algorithm for approximating edit distance within a constant factor
which was followed by a better classical algorithm by Chakraborty et al. [24] However, no
quantum improvements over the classical algorithms in the exact case are known to the best
of our knowledge. Investigating why this is the case is an interesting open problem: is it
possible to prove better (conditional) lower bounds, or can a better algorithm be found? We
formulate the following questions for the example of LCS and the Edit Distance problem.

1. Is there a bounded-error quantum algorithm for LCS or Edit Distance that runs in a
sub-quadratic amount of time?

2. Is it possible to obtain a superlinear lower bound for LCS or Edit Distance using the
“basic QSETH”?

3. Can we use a different reduction to raise the linear lower bound for LCS or
Edit Distance that we achieve under “basic-QSETH”?

We don’t attempt to find a better algorithm for these string problems in this work,
and it remains possible that no sub-quadratic quantum algorithm for these problems exists.
Considering the second question: Using the basic QSETH loses a quadratic factor relative
to the classical reduction, so it is clear that it will not be possible to directly translate a
classical reduction to the quantum setting – since the quadratic classical SETH bound is tight.
Therefore, to prove a “basic QSETH” lower bound for a problem where the gap between
the best quantum and classical algorithms is less than quadratic, a fundamentally different
(inherently quantum) reduction strategy would have to be found.

While the first two questions still remain open, we address the last question in this section.
Using (a promise version of) the NC-QSETH∗ conjecture we prove conditional quantum time
lower bounds of Ω(n1.5) for the LCS and Edit Distance problems13.

12 Note that here one can use the classical reduction from CNF-SAT to Orthogonal Vectors that runs
in time Õ(2n/2).

13 Note that, independently from our results, Ambainis et al. [9] recently presented a quantum query lower
bound of Ω(n1.5−o(1)) for the Edit Distance problem, for algorithms that use the natural dynamic-

H. Buhrman, S. Patro, and F. Speelman 19:13

As global strategy, we will analyze earlier reductions [5] from branching program satis-
fiability to string problems, and show that solving the string problems (such as LCS) on the
result of these (slightly modified) reductions can be used to compute a more complicated
property of the branching program, which we call PPlcs. The first step then is to give
a reduction from BP-PPlcs, which can be viewed as showing whether or not PPlcs on a
branching program is satisfied or not, to LCS. This step is formalized as the following
theorem.

▶ Theorem (Informal statement of reduction). There is a reduction from BP-PPlcs on non-
deterministic branching programs of size 2poly log n (length Z, width W) to an instance of the
LCS problem on two sequences of length M = 2n/2(cW)O(log Z) for some constant c, and the
reduction runs in O(M) time.

Our next step is to prove a quantum query complexity lower bound for this property,
which, together with the assumption that the property is compression oblivious14, implies
a time lower bound for the LCS problem of Ω̃(n1.5). The lower bound strategy for the
Edit Distance problem is very similar to that of the LCS problem: the “gadgets” involved
have to be constructed in a different way, but these gadgets can then be combined using a
very similar method. Therefore, the reduction can be utilized to compute a property of the
set of satisfying assignments that is closely related to BP-PPlcs.

The full proofs of these reductions (together with the definition of PPlcs) are presented
in the full version of the paper [22].

5 Conclusion and Future Directions

We presented a quantum version of the strong exponential-time hypothesis, as QSETH, and
demonstrated several consequences from QSETH. These included the transfer of previous
Orthogonal-Vector based lower bounds to the quantum case, with a quadratically lower time
bound than the equivalent classical lower bounds. We also showed two situations where the
new QSETH does not lose this quadratic factor: a lower bound showing that computing edit
distance or LCS takes time n1.5 for a quantum algorithm, and an n2 quantum lower bound
for Proofs of Useful Work [13], both conditioned on QSETH.

Possible future applications for the QSETH framework are numerous. Most importantly,
the QSETH can potentially be a powerful tool to prove conditional lower bounds for
additional problems in BQP. The most natural candidates are other string problems, such as
Dynamic Time Warping for example, but there are many other problems for which the
“basic QSETH” does not immediately give tight bounds.

Additionally, the notion of compression oblivious properties are potentially interesting
as an independent object of study. We expect most natural properties to be compression
oblivious, but leave as an open question what complexity-theoretic assumptions are needed
to show that, e.g., the parity function is compression oblivious.

Future directions also include a careful study of quantum time complexity of the other core
problems in fine-grained complexity, such as 3SUM and APSP. Just like with satisfiability,
the basic versions of these problems are amenable to a Grover-based quadratic speedup. It

programming approach of first reducing Edit Distance to connectivity on a 2D grid. However, that
doesn’t rule out the possibility of other Õ(n1.5−α) quantum algorithms for the Edit Distance problem,
for α > 0.

14 As discussed in Section 2.3, such an assumption is natural, implicit when considering more-complicated
QSETH variants, and hard to prove unconditionally.

STACS 2021

19:14 A Framework of Quantum Strong Exponential-Time Hypotheses

is possible that extensions of those key problems can be used to prove stronger conditional
lower bounds, in a similar way to the reduction that was used for LCS or Edit Distance
in the current work.

References
1 Scott Aaronson, Nai-Hui Chia, Han-Hsuan Lin, Chunhao Wang, and Ruizhe Zhang. On

the quantum complexity of closest pair and related problems. arXiv preprint, 2019. arXiv:
1911.01973.

2 Scott Aaronson, Daniel Grier, and Luke Schaeffer. A Quantum Query Complexity Trichotomy
for Regular Languages. Electronic Colloquium on Computational Complexity (ECCC), 26:61,
2019. URL: https://eccc.weizmann.ac.il/report/2019/061.

3 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Quadratic-time hardness of
LCS and other sequence similarity measures. CoRR, abs/1501.07053, 2015. arXiv:1501.07053.

4 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for
LCS and other sequence similarity measures. In Proceedings of the 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science (FOCS), FOCS ’15, pages 59–78, Washington,
DC, USA, 2015. IEEE Computer Society. doi:10.1109/FOCS.2015.14.

5 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating Branching Programs with Edit Distance and Friends Or: a Polylog Shaved is
a Lower Bound Made. In Proceedings of the Forty-eighth Annual ACM Symposium on
Theory of Computing, STOC ’16, pages 375–388, New York, NY, USA, 2016. ACM. doi:
10.1145/2897518.2897653.

6 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster
alignment of sequences. In ICALP, 2014.

7 Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and
basing hardness on an extremely popular conjecture. In Proceedings of the Forty-seventh
Annual ACM Symposium on Theory of Computing, STOC ’15, pages 41–50, New York, NY,
USA, 2015. ACM. doi:10.1145/2746539.2746594.

8 Andris Ambainis. Quantum lower bounds by quantum arguments. In Proceedings of the
Thirty-second Annual ACM Symposium on Theory of Computing, STOC ’00, pages 636–643,
New York, NY, USA, 2000. ACM. doi:10.1145/335305.335394.

9 Andris Ambainis, Kaspars Balodis, Janis Iraids, Kamil Khadiev, Vladislavs Klevickis, Krisjanis
Prusis, Yixin Shen, Juris Smotrovs, and Jevgenijs Vihrovs. Quantum lower and upper bounds
for 2d-grid and dyck language. In Javier Esparza and Daniel Král’, editors, 45th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2020, August 24-28,
2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 8:1–8:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.8.

10 Andris Ambainis, Kazuo Iwama, Akinori Kawachi, Hiroyuki Masuda, Raymond H. Putra,
and Shigeru Yamashita. Quantum identification of boolean oracles. In Volker Diekert and
Michel Habib, editors, STACS 2004, pages 105–116, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg.

11 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). STOC, 2015.

12 Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P=?NP question.
SIAM Journal on computing, 4(4):431–442, 1975.

13 Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Proofs of useful
work. Cryptology ePrint Archive, Report 2017/203, 2017. URL: https://eprint.iacr.org/
2017/203.

14 Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan,
and Ke Yang. On the (im) possibility of obfuscating programs. Journal of the ACM (JACM),
59(2):1–48, 2012.

http://arxiv.org/abs/1911.01973
http://arxiv.org/abs/1911.01973
https://eccc.weizmann.ac.il/report/2019/061
http://arxiv.org/abs/1501.07053
https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1145/2897518.2897653
https://doi.org/10.1145/2897518.2897653
https://doi.org/10.1145/2746539.2746594
https://doi.org/10.1145/335305.335394
https://doi.org/10.4230/LIPIcs.MFCS.2020.8
https://eprint.iacr.org/2017/203
https://eprint.iacr.org/2017/203

H. Buhrman, S. Patro, and F. Speelman 19:15

15 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. J. ACM, 48(4):778–797, July 2001. doi:10.1145/502090.
502097.

16 Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths
and weaknesses of quantum computing. SIAM J. Comput., 26(5):1510–1523, October 1997.
doi:10.1137/S0097539796300933.

17 E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on Computing,
26(5):1411–1473, 1997. doi:10.1137/S0097539796300921.

18 Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, Mohammad Taghi Hajiaghayi, and
Saeed Seddighin. Approximating edit distance in truly subquadratic time: Quantum and
mapreduce. CoRR, abs/1804.04178, 2018. arXiv:1804.04178.

19 Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quantum
searching. Fortschritte der Physik: Progress of Physics, 46(4-5):493–505, 1998.

20 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly subquad-
ratic algorithms unless seth fails. In Proceedings of the 2014 IEEE 55th Annual Symposium
on Foundations of Computer Science, FOCS ’14, pages 661–670, Washington, DC, USA, 2014.
IEEE Computer Society. doi:10.1109/FOCS.2014.76.

21 Karl Bringmann and Marvin Kunnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proceedings of the 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science (FOCS), FOCS ’15, pages 79–97, Washington, DC, USA,
2015. IEEE Computer Society. doi:10.1109/FOCS.2015.15.

22 Harry Buhrman, Subhasree Patro, and Florian Speelman. A framework of quantum strong
exponential-time hypotheses, 2019. arXiv:1911.05686.

23 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause
width and clause density for SAT. In Proceedings of the 21st Annual IEEE Conference on
Computational Complexity, CCC ’06, pages 252–260, Washington, DC, USA, 2006. IEEE
Computer Society. doi:10.1109/CCC.2006.6.

24 Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký, and Michael E.
Saks. Approximating edit distance within constant factor in truly sub-quadratic time. CoRR,
abs/1810.03664, 2018. arXiv:1810.03664.

25 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as
CNF-SAT. ACM Trans. Algorithms, 12(3):41:1–41:24, May 2016. doi:10.1145/2925416.

26 Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlén. Exponential
time complexity of the permanent and the tutte polynomial. ACM Transactions on Algorithms
(TALG), 10(4):21, 2014.

27 Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Limit on the speed of
quantum computation in determining parity. Phys. Rev. Lett., 81:5442–5444, December 1998.
doi:10.1103/PhysRevLett.81.5442.

28 Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pages
212–219, New York, NY, USA, 1996. ACM. doi:10.1145/237814.237866.

29 Cupjin Huang, Michael Newman, and Mario Szegedy. Explicit lower bounds on strong quantum
simulation. arXiv preprint, 2018. arXiv:1804.10368.

30 Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova, Pierre McKenzie, and Shadab
Romani. Does looking inside a circuit help? In 42nd International Symposium on Mathematical
Foundations of Computer Science (MFCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

31 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

STACS 2021

https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/502090.502097
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1137/S0097539796300921
http://arxiv.org/abs/1804.04178
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1109/FOCS.2015.15
http://arxiv.org/abs/1911.05686
https://doi.org/10.1109/CCC.2006.6
http://arxiv.org/abs/1810.03664
https://doi.org/10.1145/2925416
https://doi.org/10.1103/PhysRevLett.81.5442
https://doi.org/10.1145/237814.237866
http://arxiv.org/abs/1804.10368
https://doi.org/10.1006/jcss.2000.1727

19:16 A Framework of Quantum Strong Exponential-Time Hypotheses

32 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

33 Robin Kothari. An optimal quantum algorithm for the oracle identification problem. In
Ernst W. Mayr and Natacha Portier, editors, 31st International Symposium on Theoretical
Aspects of Computer Science (STACS 2014), volume 25 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 482–493, Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.STACS.2014.482.

34 William J. Masek and Michael S. Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System Sciences, 20(1):18–31, 1980. doi:10.1016/0022-0000(80)
90002-1.

35 Tomoyuki Morimae and Suguru Tamaki. Fine-grained quantum computational suprem-
acy. Quantum Information & Computation, 19(13&14):1089–1115, 2019. URL: http:
//www.rintonpress.com/xxqic19/qic-19-1314/1089-1115.pdf.

36 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-SAT. J. ACM, 52(3):337–364, May 2005. doi:10.1145/
1066100.1066101.

37 Jorg Van Renterghem. The implications of breaking the strong exponential time hypothesis
on a quantum computer. Master’s thesis, Ghent University, 2019. URL: https://lib.ugent.
be/fulltxt/RUG01/002/787/416/RUG01-002787416_2019_0001_AC.pdf.

38 Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular
conjectures such as the strong exponential time hypothesis. IPEC, 2015.

39 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.
In Proceedings of the ICM, 2018. To appear.

40 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2):357–365, December 2005. doi:10.1016/j.tcs.2005.09.023.

A Observations on Compression Oblivious properties

Here we present an extra observation of the set of compression oblivious properties, and
missing proofs of the statements in Section 2.3.

First, we show the following fact about how sets of compression-oblivious properties
relate, relative to different computational models.

▶ Fact 15. Given two classes of representations ζ and λ, if ζ ⊆ λ then for every property P,
we have P ∈ CO(λ) whenever P ∈ CO(ζ).

Proof. If ζ ⊆ λ then also for the corresponding sets of truth tables it holds that Sζ ⊆ Sλ. If
a property P ∈ CO(ζ), then qTimeBBϵ(P |Sζ

) ≥ Ω(Qϵ)(P) also implies qTimeBBϵ(P |Sλ
) ≥

qTimeBBϵ(P |Sζ
) as Sλ is a superset of Sζ . Therefore, P ∈ CO(λ). ◀

▶ Theorem 9. If there exists a property P such that Qϵ(P) = ω̃(
√

N) and P is γ-compression
oblivious, and P ∈ polyL(N), then P ̸= PSPACE. Here N = 2n and γ represents the set of
poly-sized circuits on n input variables.

Proof. By way of contradiction, assume P = PSPACE. We are given a promise that the
circuit C to which we have black-box access15 to is in the set γ, where γ is the set of poly-sized
circuits on n input variables. Note that if we would have direct access to the input, instead
of black-box access, we can easily solve the problem in polynomial time using the assumption
P = PSPACE.

15 By black-box access we mean that for any input x ∈ {0, 1}n we can compute C(x).

https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.4230/LIPIcs.STACS.2014.482
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1016/0022-0000(80)90002-1
http://www.rintonpress.com/xxqic19/qic-19-1314/1089-1115.pdf
http://www.rintonpress.com/xxqic19/qic-19-1314/1089-1115.pdf
https://doi.org/10.1145/1066100.1066101
https://doi.org/10.1145/1066100.1066101
https://lib.ugent.be/fulltxt/RUG01/002/787/416/RUG01-002787416_2019_0001_AC.pdf
https://lib.ugent.be/fulltxt/RUG01/002/787/416/RUG01-002787416_2019_0001_AC.pdf
https://doi.org/10.1016/j.tcs.2005.09.023

H. Buhrman, S. Patro, and F. Speelman 19:17

Using a simplified version of the algorithm for the oracle identification problem [10, 33]
we can extract a compressed form of the entire input, effectively going from black-box access
back to white-box access, from the set γ using only Õ(

√
N) queries. The initial query-efficient

algorithm is as follows:
1. Define an N = 2n bit majority string m = m1m2...mN where mi = 1 if the majority of

circuits in γ have 1 in their ith bit of their truth table, else mi = 0.
2. Check whether there exists an index j such that the truth table of circuit C disagrees with

m at j. Using Grover’s algorithm on the implied string tt(C) ⊕ m this can be achieved
using O(

√
N) quantum queries to tt(C).

If there is no disagreement, then the string m is the truth table of circuit C and without
having to further query C, one can go through all the circuits in γ and compute their
respective truth tables to identify C. Using the P = PSPACE assumption, this can be
done in poly(n) (classical) time.

3. In the case of a disagreement, remove from γ all the circuits that disagreed with tt(C)
at index j, which, by definition of m, means at least half of the elements from γ are
removed.

Repeat these steps until there is no disagreement or until |γ| = 1. Given that γ initially
contained all the poly-sized circuits on n input variables. This whole algorithm requires
O(

√
N log |γ|) = Õ(

√
N) quantum queries. Using the P = PSPACE assumption, we can

implement the same algorithm in Õ(
√

N) quantum time as follows.
At any point of the algorithm we have to be able to query the index i ∈ [N] of tt(C) and

the ith bit of the majority string m at that stage, where the majority string keeps changing
every time we update the set γ. Querying any index of tt(C) is straight forward. On the
other hand, the string m is too long to efficiently write down, but will have to be defined
implicitly. To enable query access to m, the algorithm will maintain a list of tuples recording
previous found positions where the truth table of C differed from the most common values:
{(i, ai) | i ∈ [N] is the index where there was a disagreement and ai is the value of the ith

bit of tt(C)}. Now, given such a list, it takes poly(n) space to compute the current value
mi of the majority string at point i: simply iterate over all elements in the original circuit
class up to poly(n) size, check whether the current circuit D is consistent with the list of
previous queries, and then keep tally of D(i). Now we can use the P = PSPACE assumption
to translate this to a hypothetical algorithm which takes poly(n) time.

Since O(
√

N) queries suffice to find a single disagreement between tt(C) and the majority
string m at any stage, that means a disagreement (if any) can be found in Õ(

√
N) quantum

time. Given that there are only poly(n) such stages, that means we have found the compressed
form of circuit C from the set of poly-sized circuits in Õ(

√
N) time.

We now have the access to the compressed input of length nO(1). As the property P ∈
polyL(N), we can directly compute P in O((log N)O(1)) = O(nO(1)) amount of space, which
again translates to O((log N)O(1)) time under the P = PSPACE assumption. Therefore, the
total number of (quantum) steps taken is Õ(

√
N) + O((log N)O(1)), which is in contradiction

to the assumption that P is γ-compression oblivious. ◀

▶ Theorem 10. There exists an oracle relative to which the basic QSETH holds, but any
property P ∈ polyL(N) for which Qϵ(P) = ω̃(

√
N) is not γ-compression oblivious. Here γ

consists of all polynomial-sized circuits (with oracle access).

Proof. We construct the oracle in two steps. We first start with the Quantified Boolean
Formula (QBF) problem as oracle, call this oracle A. Since QBF is complete for PSPACE,
and since a call to A can itself be simulated in polynomial space, note that PA = BQPA =
PSPACEA.

STACS 2021

19:18 A Framework of Quantum Strong Exponential-Time Hypotheses

Recall the classic oracle from Baker, Gill, and Solovay [12], relative to which P ̸= NP.
This construction occasionally hides a single string of a certain length in the oracle, for a
very sparse set of lengths, and shows that it is hard for a Turing machine to find the string
in time less than 2n.

This same construction also works or quantum computation: We will construct the oracle
B in steps. Take the i-th oracle quantum Turing machine, with access to oracle A, and
consider that it makes at most o(2ni/2) queries when given input 1ni , where ni = 2ni−1 . We
aim to construct B such that the language

LB = {1n | The oracle B contains a string of length n}

can not be decided by such a machine. Via lower bounds for unstructured search [16, 19, 8, 15],
there has to exist a single-string setting of the oracle at B that makes the i-th machine fail.
I.e., either B has a single string of length ni, or the oracle is empty at ni. Via the query
lower bound of unstructured search, this language requires 2n/2 quantum time.

The final oracle C is just the direct sum of the oracle A and B:

C = {(i, x) | (i = 0 ∧ x ∈ A) ∨ (i = 1 ∧ x ∈ B)} .

Relative to C, both SETH, as in Conjecture 2, and the basic QSETH are true (where we
consider a relativized “basic QSETH” that takes as input circuits which can make oracle
queries to C). In particular, satisfiability of the circuit which queries its input to C and
outputs the result takes time 2n/2 to compute for a quantum Turing machine which has
oracle access to C (since any hypothetical machine which solves this language faster, would
be able to decide the hard language LB).

Now consider the hardness of computing some property P of a string, for which we only
get black box access to this string, and such that it’s known that the string is a truth table
of a polynomial-sized circuit which has access to oracle C. A quantum computer can first
search the part of C that corresponds with B for the hidden string, using Grover’s algorithm
for unstructured search, taking time 2n/2. Now, after finding the hidden string, part B of
the oracle is no longer relevant since any call to it can be efficiently simulated by a short
computation, and therefore the oracle is effectively only a QBF oracle, meaning that after
finding the string we effectively have P = PSPACE relative to the oracle. The quantum
algorithm can next use the A part, using the construction in Theorem 9, to compute the
property P in total time O∗(2n/2) = Õ(

√
N). Since we assumed that P has query complexity

at least ω̃(
√

N), it follows that P is not compression oblivious relative to the oracle. ◀

B Example lower bounds following from the basic QSETH assumption

As examples we will considered the Orthogonal Vectors (OV) and the LCS problem.
The OV problem is defined as follows. Given two sets U and V of N vectors, each over
{0, 1}d where d = ω(log N), determine whether there exists a u ∈ U and a v ∈ V such
that Σl∈[d]ulvl = 0. In [40], Williams showed that SETH implies the non-existence of a
sub-quadratic classical algorithm for the OV problem. In the quantum case the best-known
query lower bound is Ω(n2/3), which can be achieved by reducing the 2-to-1 Collision
problem to the Orthogonal Vectors problem; however, the known quantum time upper
bound is Õ(n) [37]. First note that we cannot use Williams’ classical reduction directly, since
a hypothetical quantum algorithm for OV expects quantum access to the input, and writing
down the entire reduction already takes time 2n/2. Instead, observe that the reduction
produces a separate vector for each partial assignment: let t(n) be the time needed to

H. Buhrman, S. Patro, and F. Speelman 19:19

compute a single element of the output of the reduction, then t(n) = poly(n), which is
logarithmic in the size of the total reduction. Let N = O∗(2n/2) be the size of the output of
the reduction of [40], for some CNF formula with n variables. Any quantum algorithm that
solves OV in time Nα, can solve CNF-SAT in time t(n)O∗(2αn/2) = O∗(2αn/2).16 Assuming
AC0

2-QSETH∗, this implies that a quantum algorithm requires time Θ̃(N) to solve OV for
instances of size N .

The next example we consider is the LCS problem. The LCS problem is defined as
follows. Given two strings a and b over an alphabet set Σ, the LCS(a, b) is the length of
the longest subsequence common to both strings a and b. A reduction by [3] shows that
if LCS of two strings of length O(n) can be computed in time O(n2−δ) for some constant
δ > 0, then satisfiability on CNF formulas with n variables and m clauses can be computed
in O(mO(1) · 2(1− δ

2)n) which would imply that SETH (Conjecture 2) is false. Just like in
the Orthogonal Vectors case, we observe that the classical reduction from CNF-SAT
to LCS is local, in the sense that accessing a single bit of the exponentially-long reduction
output can be done in polynomial time: Every segment of the strings that are an output of
the reduction, depend only on a single partial satisfying assignment, out of the 2n/2 possible
partial assignments.

This observation directly lets us use the reduction of [3] to give a quantum time lower
bound of Ω̃(N) for the LCS problem, where N here is the length of the inputs to LCS,
conditioned on AC0

2-QSETH∗. However, an unconditional quantum query lower bound of
Ω(N) can also be easily achieved by embedding of a problem with high query complexity,
such as the majority problem, in an LCS instance.

16 We use O∗ to denote asymptotic complexity ignoring polynomial factors.

STACS 2021

The Complexity of the Distributed Constraint
Satisfaction Problem
Silvia Butti ! Ï

Department of Information and Communication Technologies, Universitat Pompeu Fabra,
Barcelona, Spain

Victor Dalmau ! Ï

Department of Information and Communication Technologies, Universitat Pompeu Fabra,
Barcelona, Spain

Abstract
We study the complexity of the Distributed Constraint Satisfaction Problem (DCSP) on a synchron-
ous, anonymous network from a theoretical standpoint. In this setting, variables and constraints
are controlled by agents which communicate with each other by sending messages through fixed
communication channels. Our results endorse the well-known fact from classical CSPs that the
complexity of fixed-template computational problems depends on the template’s invariance under
certain operations. Specifically, we show that DCSP(Γ) is polynomial-time tractable if and only if Γ
is invariant under symmetric polymorphisms of all arities. Otherwise, there are no algorithms that
solve DCSP(Γ) in finite time. We also show that the same condition holds for the search variant of
DCSP.

Collaterally, our results unveil a feature of the processes’ neighbourhood in a distributed network,
its iterated degree, which plays a major role in the analysis. We explore this notion establishing a
tight connection with the basic linear programming relaxation of a CSP.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Constraint Satisfaction Problems, Distributed Algorithms, Polymorphisms

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.20

Related Version Full Version: https://arxiv.org/abs/2007.13594

Funding Silvia Butti: The project that gave rise to these results received the support of a fellowship
from “la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/DI18/11660056. This
project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No. 713673.
Victor Dalmau: Victor Dalmau was supported by MICCIN grants TIN2016-76573-C2-1P and
PID2019-109137GB-C22.

Acknowledgements We would like to thank Gergely Neu for useful discussions on the weighted
majority algorithm.

1 Introduction

The Constraint Satisfaction Problem (CSP) consists of a collection of variables and a collection
of constraints where each constraint specifies the valid combinations of values that can be
taken simultaneously by the variables in its scope. The goal is to decide if there exists an
assignment of the elements of a domain to the variables which satisfies all constraints. The
CSP is a very rich mathematical framework that is widely used both as a fruitful paradigm
for theoretical research, and as a powerful tool for applications in AI, such as scheduling and
planning [21, 17].

© Silvia Butti and Victor Dalmau;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 20; pp. 20:1–20:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:silvia.butti@upf.edu
https://sites.google.com/view/silviabutti/
https://orcid.org/0000-0002-0171-2021
mailto:victor.dalmau@upf.edu
https://www.upf.edu/web/victor-dalmau
https://orcid.org/0000-0002-9365-7372
https://doi.org/10.4230/LIPIcs.STACS.2021.20
https://arxiv.org/abs/2007.13594
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 The Complexity of the Distributed Constraint Satisfaction Problem

While, in its full generality, the finite-domain CSP is known to be NP-complete, applying
specific restrictions on the instances can yield tractable subclasses of the problem. One
of the most studied approaches consists in requiring that, in each constraint, the set of
allowed combinations for its values be drawn from a prescribed set Γ, usually called the
constraint language or the template. Thanks to the proof of the CSP dichotomy conjecture
obtained separately in [9] and [28], which culminated a decades-long research program, it is
possible to determine the complexity (P or NP-complete) of each family of CSPs, CSP(Γ),
which is obtained by fixing Γ. This proof confirmed that the complexity of the constraint
satisfaction problem is deeply tied to certain algebraic properties of the constraint language.
Specifically, it depends on whether or not the constraint language is invariant under certain
operations known as its polymorphisms. The polymorphisms of a constraint language enforce
a symmetry on the space of solutions of a CSP instance that can possibly be exploited by an
algorithm. This connection with algebra is also present in our work.

We study the computational complexity of the distributed counterpart of CSP, which is
known as DCSP. This was introduced by Yokoo et al. [25] as a formal framework for the
study of cooperative distributed problem solving. In particular, we consider a deterministic,
synchronous, anonymous network of agents controlling variables and constraints, and we
study the complexity of message passing algorithms on this network. A number of practical
applications can be encoded in the DCSP model, for instance resource allocation tasks in
wireless networks, routing, networking, and mobile technologies (see for instance [10, 6]).

We notice that this framework is general enough to encompass some simple Graph Neural
Network architectures (see for example [20, 14]). In particular, when training a GNN to
classify graphs, it is customary that the GNN network ignores the node label when updating
its feature vector. This is, in fact, essential as otherwise there would be no way to apply the
network trained on a given graph to another one. However, whereas in all variants of GNNs
the computation is limited to a reduced number of operations over feature vectors, in the
DCSP model the computation at each node is governed by an arbitrary algorithm. GNNs
have a wide range of applications including molecule classification or image classification
(see [5] for example). Recently, GNNs have been deployed to solve CSPs [22].

While there are a variety of well-performing distributed algorithms for constraint satisfac-
tion and optimisation (see for instance [27, 19, 11]), the theoretical aspects of distributed
complexity are to date not well understood. In this paper we initiate the study of the
complexity of DCSP parametrized by the constraint language, obtaining a complete charac-
terization of its tractable classes. More specifically, building on the connection between the
CSP and algebra, we show that for any finite constraint language Γ, the decision problem for
DCSP(Γ) is tractable whenever Γ is invariant under symmetric polymorphisms of all arities,
where an operation is symmetric if its result does not depend on the order of its arguments.
Otherwise, there are no message passing algorithms that solve DCSP(Γ). Collaterally, we
show that the same holds for the search problem for DCSP.

Our work begins with the identification of a feature of the nodes in a distributed network,
its iterated degree, which plays a major role in how messages are transmitted in the network.
The iterated degree is an extension of the similar concept introduced in the study of the
isomorphism problem which turns out to have a variety of alternative characterizations in
terms of fractional isomorphisms, the Weisfeiler-Leman test, and definability with counting
logics (see [14]). It turns out that, due to the network anonymity, in every distributed
algorithm all equivalent agents (with respect to iterated degree) must necessarily behave
identically at each round. A similar phenomenon has been observed independently in the
context of GNNs in [20, 23] leading to further study in [3].

S. Butti and V. Dalmau 20:3

We use this fact to show that, under the absence of symmetric polymorphisms of any
arity in Γ, it is always possible to construct two instances of DCSP(Γ), one satisfiable and
the other unsatisfiable, that cannot be distinguished by any message passing algorithm in an
anonymous network.

On the other hand, invariance under symmetric polymorphisms is connected with the
basic linear programming relaxation of a CSP instance. More precisely, if Γ has symmetric
polymorphisms of all arities then one can decide the satisfiability of every instance of CSP(Γ)
by checking whether its basic linear programming relaxation is feasible (see for instance
[4]). Whereas it is not clear how to directly use this fact to obtain a distributed algorithm
for DCSP(Γ), it can be applied to establish a structure theorem that unveils a simple yet
surprising structure in the solution space of every satisfiable instance in DCSP(Γ): it must
contain a solution that assigns the same value to all variables that have the same iterated
degree. The proof of the structure theorem uses the weighted majority algorithm, a weight
update method that is widely used in optimisation and machine learning applications (see
[2]). The structure theorem is key in the proof of the positive results as it allows to run an
adapted variant of the jpq-consistency algorithm [16] that overcomes the absence of unique
identifiers for the variables, by using instead their iterated degree.

This paper is organised as follows. In Section 2 we introduce some definitions and
technical concepts about the DCSP model. In Section 3 we present the basic LP relaxation
for CSPs and we show its connection to the symmetry on the solution space, culminating in
the statement of the structure theorem. Section 4 is dedicated to the proof of the dichotomy
theorem for the complexity of DCSP, with the hardness results in Section 4.1, the details
of the distributed algorithm for tractable languages in Section 4.2, and its extension to the
search problem in Section 4.3. Finally, in the Conclusion we discuss some directions into
which our work could be extended.

2 Preliminaries

Constraint Satisfaction Problems

An instance I of the finite-domain Constraint Satisfaction Problem (CSP) is a triple (X, D, C)
where X is a set of variables, D is a finite set called the domain, and C is a set of constraints
where a constraint c ∈ C is a pair (s, R) where R ⊆ Dk for k a positive integer, R is a relation
over D of arity k, and s is a tuple of k variables, known as the scope of c. We use arity(·)
to denote the arity of a relation, tuple, or constraint and we write x ∈ c for any variable x

in the scope of c. An assignment ν : X → D is said to be satisfying if for all constraints
c = (s, R) ∈ C we have ν(s) ∈ R, where ν is applied to s coordinate-wise. Usually we denote
the number of variables by n and the number of constraints by m.

Let Γ be a set of relations over some finite domain D, and let CSP(Γ) denote the set of
CSP instances with all constraint relations lying in Γ. In this context, Γ is known as the
constraint language. Throughout this paper, we will assume that Γ is always finite. Then,
the decision problem for CSP(Γ) is the problem of deciding whether a satisfying assignment
exists for an instance I ∈ CSP(Γ). The search problem for CSP(Γ) is the problem of deciding
whether a satisfying assignment exists and, if it does, to find one such assignment.

The Distributed Model

We consider the DCSP model of [25] with some small modifications. The basic idea is to
assign the task of solving a constraint satisfaction problem to a multi-agent system. In the
original model, which assumes that all constraints are binary [26, 27], the assumption is that

STACS 2021

20:4 The Complexity of the Distributed Constraint Satisfaction Problem

each variable is controlled by an agent, and two agents can communicate with one another if
and only if they share a constraint. Here we deviate slightly from the original model to allow
for non-binary constraints and we assume that both variables and constraints are controlled
by distributed agents in the network. An instance of the Distributed Constraint Satisfaction
Problem (DCSP) is a tuple (A, X, D, C, α), where X, D, and C are as in the classical CSP,
A is a finite set of agents, and α : X ∪ C → A is a surjective function which assigns the
control of each variable x ∈ X and each constraint c ∈ C to an agent α(x), α(c) respectively.
For the purpose of this paper, we assume that there are exactly n + m agents, and therefore
each agent controls exactly one variable or one constraint. This can be done without loss
of generality since any agent controlling multiple nodes can simulate multiple agents, each
controlling a node. Under this assumption, there is a one-to-one correspondence between
instances of CSP and DCSP, and thus we shall switch freely between them.

Distributed Networks and Message Passing

We now present some fundamental concepts relating to the message-passing paradigm for
distributed networks. For a general introduction to distributed algorithms, we refer the
reader to [12]. A distributed system consists of a finite set of nodes or processes, which are
connected through communication channels to form a network. Any process in the network
can perform events of three kinds: send, receive and internal. Send and receive events are
self-explanatory, as they denote the sending or receiving of a message over a communication
channel. Any kind of local computation performed at the process level, as well as state
changes and decisions, are classified as internal events.

We assume a fully synchronous communication model, meaning that the send event
at a process a and the corresponding receive event at a process a′ can be considered de
facto as a unique event, with no time delay. As a whole, a synchronous system proceeds in
rounds, where at each round a process can perform some internal computation and then
send messages to and receive messages from its neighbours. A round needs to terminate
at every process before the next round begins. Note that while for simplicity we assume a
synchronous network, all our algorithms can be adapted to asynchronous systems by applying
a simple synchronizer. Nonetheless, we point out that our negative results rely on the network
operating in synchronous rounds.

We make the fundamental assumption that the network is anonymous, meaning that
variables, constraints and agents do not have IDs. For practical purposes, we still refer to
variables and constraints with names (such as xi, ci), however these cannot be communicated
through the channels. The assumption of anonymity can have various practical justifications:
the processes may actually lack the hardware to have an ID, or they may be unable to reveal
their ID due to security or privacy concerns. For instance, the basic architecture of GNNs
is anonymous. This is a very desirable property as it allows to deploy GNNs in different
networks than those in which they were trained.

We assume that all the processes run locally the same deterministic algorithm, therefore
IDs cannot be created and deadlocks cannot be broken by for instance flipping a random coin.
Hence, the lack of IDs makes the processes essentially indistinguishable from one another -
except, as we will see later, for the structure of their neighbourhood in the network.

Leader election is a procedure by which the processes in a network select a single process
to be the leader in a distributed way. If a leader is elected, then she can assign unique
identifiers to every process. Moreover, all the information about the instance can be gathered
to the leader, who can then solve the CSP locally. It is a well-known result that there does
not exist a terminating deterministic algorithm for electing a leader in an anonymous ring [1].

S. Butti and V. Dalmau 20:5

Therefore, the assumptions of anonymity and determinism ensure that the DCSP model
is intrinsically different from the (centralised) CSP framework, and open up the way for
establishing novel, non-trivial complexity results. We remark that while considerable effort
has been put into characterizing under what conditions an anonymous network is able to elect
a leader [7, 24] or compute relations [8], our work focuses on characterizing the complexity
of the DCSP as parametrised by the constraint language. Therefore, all of our algorithms
work regardless of the topology of the network, and hence regardless of whether or not a
leader can be elected.

The encoding of a DCSP instance into the message passing framework is straightforward.
The processes correspond to the agents of the network, and there is a labelled communication
channel between a variable agent α(x) and a constraint agent α(c) if and only if x ∈ c. More
formally, the Factor Graph [11] GI of an instance I = (X, D, C) of CSP is the undirected
bipartite graph with vertex set X ∪ C and edge set {{x, c} | x ∈ c}. Each edge in GI that
is incident to a variable x and a constraint c where c = (s, R) has a label ℓx,c = (S, R) for
S = {i | s[i] = x}, where for a tuple t, t[i] denotes the ith entry of t.1 Then, the message
passing network corresponds to the factor graph where every node (variable or constraint)
is replaced by their associated agent and every edge by a communication channel of the
same label. Note that between any two nodes there is at most one channel. If privacy is a
concern, we point out that labeling channels does not reveal any more information about
the processes than what is strictly necessary for the problem instance to be well defined.
Unless explicitly stated we only consider instances whose factor graph consists of a unique
connected component. It is easy to prove (see the full version for details) that in the case
that all relations are binary, the original model where only variables are controlled by agents
is equivalent to our model.

At the start of an algorithm, a process only has access to very limited information. All
processes know the total number n of variables in the CSP instance, the total number m

of constraints, the labels of the communication channels that they are incident to in the
network, and naturally whether they are controlling a variable or a constraint. During a run
of the algorithm a process can acquire further knowledge from the messages that it receives
from its neighbours. We assume that at any time each process is in one of a set of states,
a subset of which are terminating states. When it enters a terminating state, a process
performs no more send or internal events, and all receive events are disregarded. The local
algorithm is then a deterministic function which determines the process’ next state, and the
messages it will send to its neighbours. The output of such function only depends on the
process’ current knowledge, on its state, and on the global time. We allow processes to send
different messages through different channels. However, since processes can only distinguish
the channels based on their labels, identical messages must be sent through channels with
identical labels. Note that the power of the model would not decrease if only one message
was allowed to be passed through all the channels, since a process can simulate sending a
separate message through each channel by tagging each message with the label of the desired
channel and concatenating them in a unique string. This, however, comes at the cost of
increased message size. Moreover, if a process needs to broadcast multiple messages, these
can be concatenated into one. We say that an algorithm terminates when all processes are
in a terminating state.

1 For mathematical clarity, we label edges with the relation itself. However, in algorithmic applications,
every relation can be substituted with a corresponding symbol.

STACS 2021

20:6 The Complexity of the Distributed Constraint Satisfaction Problem

Figure 1 Both graphs depicted above are 3-regular and hence they have the same iterated degree
sequence. However, they are clearly not isomorphic, since the left graph is bipartite while the right
one is not.

We say that a distributed algorithm solves an instance I of DCSP if the algorithm
terminates and the terminating state of every process correctly states that I is satisfiable
if it is, and that it is not satisfiable otherwise. Moreover, we consider the search version of
DCSP, denoted DCSP-Search. In the search version, if the input instance I is satisfiable, the
terminating state of every variable process α(x) must additionally specify a value ν(x) ∈ D

such that ν : X → D is a satisfying assignment. For every constraint language Γ, we denote
by DCSP(Γ) and DCSP-Search(Γ) the restrictions of DCSP and DCSP-Search, respectively,
to instances containing only constraint relations from Γ.

In terms of algorithmic complexity, there are a number of measures that can be of interest.
Time complexity, which is our primary concern, corresponds to the total amount of time
required for the algorithm to terminate, including the time needed for internal events. This
is closely related to the number of rounds of the algorithm, which is another measure that
we are concerned with. Message complexity and bit complexity measure the total number of
messages and bits exchanged respectively. These can be bounded easily from the maximum
size of a message.

Iterated Degree and Degree Sequence

We present a number of concepts from graph theory that carry over to CSPs. Their adaptation
to DCSPs is straightforward in all cases. In an undirected graph G, the degree of a vertex v

is the number of edges incident at v. The zeroth iterated degree of v is equal to its degree.
For k ≥ 1, the kth iterated degree of v is the multiset of (k − 1)th degrees of v’s neighbours
in G. The kth iterated degree sequence of a graph is the multiset of kth iterated degrees of
its vertices.

▶ Example 2.1. In the context of graph theory the colour refinement algorithm, which
calculates the iterated degree sequence of a graph, is often used as a simple heuristic for the
graph isomorphism problem. If two graphs are isomorphic then they must have the same
iterated degree sequence, but the opposite is not true (see for example Figure 1). ⌟

We extend the notion of iterated degree to CSPs as follows. Consider the labelled factor
graph GI of an instance I described in the previous paragraph. In what follows it will be
convenient to allow instances I with a disconnected factor graph GI . Let v be a node of GI

and denote its neighbourhood in the factor graph by N(v). The (zeroth) degree, denoted
δ0(v), of a node in the factor graph is simply a symbol that distinguishes variables from
constraints: we set δ0(x) = “ ” for all x ∈ X and δ0(c) = “▲” for all c ∈ C. The kth iterated

S. Butti and V. Dalmau 20:7

degree2 (k ≥ 1) of a node v is defined as δk(v) = {(ℓv,w, δk−1(w)) | w ∈ N(v)}. We write
v ∼k

δ v′ if δk(v) = δk(v′), and simply v ∼δ v′ if v ∼k
δ v′ for all k ≥ 0. In this case, we say

that v and v′ are iterated degree equivalent. It can be shown (see the full version) that as k

increases, the partition induced by ∼k
δ gets more refined, and indeed it reaches a fixed point

for some k ≤ 2n where n = |X|. The notion of iterated degree is strikingly relevant in our
work as it captures what it means for two processes in a network to be indistinguishable.
This implies that no distributed algorithm can differentiate between two iterated degree
equivalent nodes, as we illustrate in the following result.

▶ Proposition 2.2. Let I = (A, X, D, C, α) be an instance of DCSP(Γ) whose factor graph
is not necessarily connected and consider two variables v, v′ ∈ GI . Then, v ∼δ v′ if and only
if any terminating decision algorithm over I outputs the same decision at α(v) and α(v′).
Furthermore, if v, v′ ∈ X and I is satisfiable, then any terminating search algorithm outputs
the same values ν(v) = ν(v′) at α(v) and α(v′).

The following is a direct consequence of Proposition 2.2. We say that two instances I

and I ′ have the same iterated degree sequence if there exists a bijection γ between the nodes
of GI and the nodes of GI′ such that for every k ≥ 0 and every node v of GI , the kth degree
of v in I is equal to the kth degree of γ(v) in I ′. We note that in this case, if we construct
the (disconnected) instance I ∪ I ′ containing all the variables and constraints in I and I ′,
then v ∼δ γ(v) for every node v ∈ GI . Hence the result below follows.

▶ Corollary 2.3. Let I, I ′ ∈ DCSP(Γ) have the same iterated degree sequence. Then with
both inputs any terminating decision algorithm will report the same decision.

Polymorphisms

Let R be a k-ary relation over a finite domain D. An ℓ-ary polymorphism of R is an
operation f : Dℓ → D such that the coordinate-wise application of f to any set of ℓ

tuples from R gives a tuple in R. More precisely, for any t1, . . . , tℓ ∈ R, we have that
(f(t1[1], . . . , tℓ[1]), . . . , f(t1[k], . . . , tℓ[k])) ∈ R. We say that a function f is a polymorphism
of a constraint language Γ if f is a polymorphism of all relations R ∈ Γ. Equivalently, we
say that Γ is invariant under f . The set of polymorphisms of a constraint language Γ will be
denoted by Pol(Γ). There is a particular construction of a CSP instance that is closely related
to the clone of polymorphisms of the corresponding constraint language. Let Γ be a constraint
language over a finite domain D. For any positive integer r, the indicator problem of order
r for Γ is the instance I = (X, D, C) ∈ CSP(Γ) where X = Dr and C contains for every
relation R ∈ Γ and for every t1, . . . , tr ∈ R, the constraint (s, R) where s[i] = (t1[i], . . . , tr[i])
for every i ∈ {1, . . . , arity(R)}. It follows easily that for every ν : Dr → D, ν satisfies I if
and only if ν is a polymorphism of Γ.

An ℓ-ary operation f is said to be symmetric if for all x1, . . . , xℓ and for all permutations
σ of {1, . . . , ℓ} we have that f(x1, . . . , xℓ) = f(xσ(1), . . . , xσ(ℓ)).

▶ Example 2.4. Consider the Boolean relation R = {(0, 1), (1, 0)}. It is easy to see that the
ternary minority operation f given by f(x, y, z) = x ⊕ y ⊕ z is a polymorphism of R. On
the other hand, one can show that R does not have symmetric polymorphisms of arity 2. In
particular, let t1 = (0, 1) and t2 = (1, 0). Since a symmetric binary operation f needs to
satisfy f(0, 1) = f(1, 0), the coordinate-wise application of f to t1, t2 would yield a reflexive
tuple, which cannot possibly belong to R. ⌟

2 We remark that the notions of degree and iterated degree are well-defined concepts in graph theory. We
borrow this terminology to refer to the analogous concepts in CSPs.

STACS 2021

20:8 The Complexity of the Distributed Constraint Satisfaction Problem

Our work unveils a novel structure in the space of solutions of a CSP instance that is deeply
connected to the symmetry of its polymorphisms. In particular, Pol(Γ) containing symmetric
polymorphisms of all arities is equivalent to the existence of a satisfying assignment to every
satisfiable instance of CSP(Γ) that preserves the partition induced by ∼δ. This is the main
result of the next section.

3 Basic Linear Programming relaxation

For any CSP instance I = (X, D, C) there is a LP relaxation (usually called basic LP
relaxation, see for example [18]) denoted BLP(I), which is defined as follows. It has a variable
v(x, d) for each x ∈ X and d ∈ D, and a variable v(c, t) for each c ∈ C and t ∈ R where R is
the constraint relation of c. All variables must take values in the range [0, 1]. The value of
v(x, d) is interpreted as the probability that v is assigned to d. Similarly, the value of v(c, t)
is interpreted as the probability that the scope of c is assigned component-wise to the tuple t.
In this paper we only deal with a feasibility problem (that is, there is no objective function).
The variables are restricted by the following equations:∑

d∈D

v(x, d) = 1 for all x ∈ X (1)∑
t∈Rc

t[i]=d

v(c, t) − v(sc[i], d) = 0 for all c ∈ C, all i ∈ {1, . . . , arity(c)}, and all d ∈ D (2)

where we denote the relation and scope of a constraint c by Rc and sc respectively. We say
that BLP decides CSP(Γ) if for every instance I ∈ CSP(Γ), I is satisfiable whenever BLP(I)
is feasible. We will use the following well-known result.

▶ Theorem 3.1 (see [18]). If Γ has symmetric polymorphisms of all arities, then BLP decides
CSP(Γ). Moreover, if I ∈ CSP(Γ) is satisfiable then it has a solution ν such that for all x, x′

with v(x, d) = v(x′, d) for all d ∈ D, we have ν(x) = ν(x′).

The following theorem reveals a useful structure inside the solutions of the BLP.

▶ Theorem 3.2. Let I = (X, D, C) be an instance of CSP(Γ) such that BLP(I) is feasible.
Then, BLP(I) has a feasible solution such that for every x, x′ ∈ X with x ∼δ x′ and every
d ∈ D, v(x, d) = v(x′, d).

Proof (Sketch). We start by rewriting the program in the form

∃?v ∈ [0, 1]V Bv ≥ b (3)

by replacing every equality a = b by the inequalities a ≥ b and −a ≥ −b.
Let us use W and V to denote the rows and columns of B respectively. The main idea

of the proof is to apply the Multiplicative Weight Update (MWU) algorithm, a well-known
technique that is widely used in optimisation and machine learning. MWU was discovered
independently by researchers of different communities; for a survey of its different variants we
refer the reader to [2]. The version that is relevant to our paper is described in Algorithm 1.
Assuming that a feasible solution to (3) does exist, the algorithm only requires the existence
of an oracle which, given a probability W -vector p (i.e, a non-negative vector p such that
the sum of all its entries is 1), outputs a vector v which is a solution to the weaker problem

∃?v ∈ [0, 1]V pT Bv ≥ pT b (4)

if one exists, or correctly states that no such vectors exist otherwise.

S. Butti and V. Dalmau 20:9

Algorithm 1 Multiplicative Weight Update.

Initialisation: Fix η ≤ 1
2 , let ρ = max[0,1]V maxw∈W |Bwv − b[w]|, and let w(1) be

a W -vector, whose entries, called weights, are initially set to 1.
for t = 1, . . . , T do

Compute the probability vector p(t) = 1
Φ(t) w(t), where Φ(t) =

∑|W |
j=1 w(t)[j]

Let v(t) be a solution satisfying (p(t))T Bv(t) ≥ (p(t))T b given by oracle O
Compute the losses ℓℓℓ(t) = 1

ρ (Bv(t) − b)
Compute the new weights w(t+1) = w(t)(1 − ηℓℓℓ(t))

end
return v := 1

T

∑T
t=1 v(t)

Under some technical conditions that provide an upper bound on the number of rounds T

necessary to achieve a given approximation (see full version for details) it follows that when
T → ∞ MWU converges to a solution of BLP(I). Now consider an oracle O that, given a
W -vector p, returns the V -vector v where for every v ∈ V , v[v] = 1 if pT B[v] is positive
and v[v] = 0 otherwise. Since v maximizes pT Bv under the restriction v ∈ [0, 1]V it follows
that v satisfies (4).

We note that ∼δ induces an equivalence relation on the variables of BLP(I) (namely,
v(x, d) is equivalent to v(x′, d′) whenever x ∼δ x′ and d = d′) which can be extended to an
equivalence relation ∼V on the set V of columns in B. Similarly, ∼δ induces an equivalence
relation ∼W on the rows W of B in a natural way. Then our goal is to show that the
positions of ∼V -equivalent entries in the output v := 1

T

∑T
t=1 v(t) are identical. This is done

by showing by induction the more general fact that at each iteration t of the algorithm, the
positions of all ∼V -equivalent entries in v(t) are identical, and that for each of the W -vectors
(w(t), p(t), and ℓℓℓ(t)) the positions of all ∼W -equivalent entries are identical as well. ◀

We finalize the section by presenting the theorem on the structure of the solution space of
CSP instances.

▶ Theorem 3.3. Let Γ be a finite constraint language. The following are equivalent:
1. Γ has symmetric polymorphisms of all arities.
2. For all satisfiable instances I = (X, D, C) ∈ CSP(Γ) there exists a satisfying assignment

ν : X → D such that for all pairs of variables x, x′ ∈ X, if x ∼δ x′ then ν(x) = ν(x′).

Proof. (1) ⇒ (2). Let I be a satisfiable instance of CSP(Γ), where Γ has symmetric
polymorphisms of all arities. Consider the solution of BLP(I) given by Theorem 3.2 and
note that it satisfies v(x, d) = v(x′, d) for all x ∼δ x′ and all d ∈ D. Then, by Theorem 3.1,
I has a solution ν which satisfies ν(x) = ν(x′) for all x ∼δ x′.

(2) ⇒ (1). Let Γ satisfy (2) and let r ≥ 1. We shall prove that Γ has a symmetric
polymorphism of arity r. Let I = (X, D, C) be the indicator problem of order r. Recall that
every solution to I corresponds to an r-ary polymorphism of Γ, and hence the indicator
problem is always satisfiable since for instance the projection to the first coordinate is a
polymorphism of Γ. Let ν be a solution of the indicator problem which satisfies condition (2).
It is easy to show by induction that for every tuple (t1. . . . , tr) ∈ Dr, every permutation σ of
{1, . . . , r} and every k ≥ 0, (t1, . . . , tr) ∼k

σ (tσ(1), . . . , tσ(r)) which implies that ν(t1, . . . , tr) =
ν(tσ(1), . . . , tσ(r)). We conclude that ν is symmetric as required. ◀

STACS 2021

20:10 The Complexity of the Distributed Constraint Satisfaction Problem

4 The Complexity of DCSP

The primary goal of this section is to prove the main theorem of this paper, namely, the
dichotomy theorem for tractability of DCSP(Γ), which we now state.

▶ Theorem 4.1. DCSP(Γ) is solvable in polynomial time if and only if Pol(Γ) contains
symmetric polymorphisms of all arities. Otherwise, DCSP(Γ) cannot be solved in finite time.

We show hardness of constraint languages that do not have symmetric polymorphisms
of all arities in Section 4.1 and tractability of the remaining languages in Section 4.2. In
addition, in Section 4.3 we extend the decision algorithm so that, additionally, it also provides
a solution to the search problem. Hence we have:

▶ Theorem 4.2. DCSP-Search(Γ) is solvable in polynomial time if and only if Pol(Γ) contains
symmetric polymorphisms of all arities. Otherwise, DCSP-Search(Γ) cannot be solved in
finite time.

4.1 Intractable Languages
In this section we focus on intractable languages, that is, the hardness part of Theorem 4.1.

▶ Theorem 4.3. Let Γ be a constraint language on a finite domain D. If Pol(Γ) does not
contain symmetric operations of all arities, then there is no algorithm that solves DCSP(Γ)
in finite time.

Schematically, the proof goes as follows. Assume that Γ does not have symmetric
polymorphisms of some arity r. Consider the relation U defined by the set of solutions of
the indicator problem of order r. It can be shown that if DCSP(Γ) is solvable in polynomial
(or finite) time then so is DCSP({U}). Then, we show that there always exist two instances
of DCSP({U}), one which is satisfiable and the other one which is not, that have the same
iterated degree sequence. Therefore, any algorithm will return the same output on both
instances, meaning that one of these outputs is wrong. Before embarking on the proof we
state the following useful combinatorial lemma.

▶ Lemma 4.4. Let 0 < k < d be positive integers. If n is a large enough multiple of k, then
there exists a collection S of nk k-element subsets of {0, 1, . . . , kn−1} satisfying the following
properties:
(a) S contains every k-element subset of {0, . . . , d − 1}
(b) Every element of {0, 1, . . . , kn − 1} appears in the same number of sets of S.

Proof of Theorem 4.3. Assume that Pol(Γ) does not contain symmetric polymorphisms of
arity r. Fix any arbitrary order t1, . . . , t|D|r on the tuples of Dr and consider the relation U

defined as

{(f(t1), . . . , f(t|D|r)) | f is a polymorphism of Γ of arity r}

This is, U is the set of solutions of the indicator problem of order r. It follows easily (see
full version) that if DCSP({U}) is not solvable in finite time then neither is DCSP(Γ). In
particular, this follows from an adaptation of standard complexity reductions, given that U

is pp-definable from Γ without using equality.
Partition Dr into equivalence classes where two tuples t, t′ ∈ Dr are related, denoted

t ≡ t′, if there exists some permutation σ on {1, . . . , r} such that t′[i] = t[σ(i)] for every
i ∈ {1, . . . , r}. We shall use Dr

≡ to refer to the collection of classes and [t]≡ to refer to the

S. Butti and V. Dalmau 20:11

class of tuple t. For every t ∈ Dr, define k[t]≡ to be the number of tuples in [t]≡. Then we
can choose an integer n large enough such that for every t ∈ Dr, n is a multiple of k[t]≡ , and
n satisfies Lemma 4.4 for k = k[t]≡ and d = k[t]≡ · |D|.

We are now ready to construct two instances I1 and I2 of DCSP({U}), which are
indistinguishable with respect to their iterated degree sequence, but differ with regards to
satisfiability. The two instances have the same set of variables, defined to be

⋃
[t]≡∈Dr

≡
V[t]≡

where V[t]≡ = {vi
[t]≡

| 0 ≤ i < k[t]≡n} is a set of k[t]≡n distinct variables.
We start by constructing the constraints of the unsatisfiable instance I1, which we will do

in two stages. First, for every class [t]≡, let S[t]≡ be the collection of nk[t]≡ sets of cardinality
k[t]≡ given by Lemma 4.4, as before with d = k[t]≡ · |D| and k = k[t]≡ . Note that each set in
S[t]≡ defines naturally a subset of V[t]≡ so we shall abuse notation and assume that S[t]≡ is a
collection of subsets of V[t]≡ .

To simplify notation it will be convenient to use S as a shorthand for the indexed family
{S[t]≡ | [t]≡ ∈ Dr

≡}. Now let S be {S[t]≡ | [t]≡ ∈ Dr
≡} satisfying S[t]≡ ∈ S[t]≡ for every

[t]≡ ∈ Dr
≡. We associate to S the constraint (s, U) where the scope s is constructed as

follows. Before defining s we need some preparation. Recall that every coordinate of U , and
hence of s, is associated to a tuple t ∈ Dr, so we can talk of the class [t]≡ to which each
coordinate belongs. In particular, there are k[t]≡ coordinates in s of class [t]≡. Hence, by
fixing some arbitrary ordering we can use si

[t]≡
, i = 1, . . . , k[t]≡ to refer to the coordinates in

s of class [t]≡. Then, informally, S[t]≡ describes which variables from v0
[t]≡

, . . . , v
k[t]≡ n−1
[t]≡

to
use in order to fill coordinates si

[t]≡
, i = 1, . . . , k[t]≡ . Formally, for every [t]≡ ∈ Dr

≡ and each
i = 1, . . . , k[t]≡ , si

[t]≡
is assigned to the ith element in S[t]≡ in increasing order.

We add such a constraint for each of the Π[t]≡∈Dr
≡

nk[t]≡ = n(|D|r) possible choices for S.
Therefore, after the first stage we have exactly n(|D|r) constraints.

In the second stage we add more constraints which will yield the particular symmetry of
I1. Note that every permutation σ on {1, . . . , r} induces a permutation σ′ on the coordinates
of U in a natural way. Specifically, if coordinate i of U is associated to tuple ti, then σ′(i) = j

where tj = (ti[σ(1)], . . . , ti[σ(r)]). Then, in the second stage, for each permutation σ on
{1, . . . , r} and for every constraint (s, U) added in the first stage we add the constraint (s′, U)
where for every 1 ≤ i ≤ |D|r, s′[i] = s[σ′(i)]. Therefore, after the second stage we have a
total of m = r! · n(|D|r) constraints as needed.

We now turn to I2. The constraints are constructed in a similar way, but instead of using
the family S in the first stage, we use a different family S′. In particular, for each class [t]≡,
S′

[t]≡ is obtained by partitioning V[t]≡ in k[t]≡ blocks of consecutive elements, so that each
block has exactly n elements. Then, S′

[t]≡ contains the nk[t]≡ sets that can be obtained by
selecting one element from each block. The second stage is done exactly as in I1.

▷ Claim 4.5. I1 and I2 have the same iterated degree sequence.

Proof. Let [t]≡ ∈ Dr
≡. First, we observe that in both instances after the first stage, every

variable of V[t]≡ appears in the same number of constraints. More specifically, every variable
in V[t]≡ appears in an n-fraction of the constraints added in stage 1. In the case of instance
I1 this is due to the fact that S[t]≡ satisfies condition (b) in Lemma 4.4 and in instance I2
this follows from the fact that S′

[t]≡
contains all possible sets obtained by choosing an element

within each one of the blocks of size n. After the second stage (in both I1 and I2 since the
second stage is common) every variable in V[t]≡ still participates in an n-fraction of the total
number of constraints. In addition, it follows easily that the positions of the scope in which
a variable in V[t]≡ participates distribute evenly among the k[t]≡ positions associated to t.
That is, in both instances, we have that for every [t]≡ ∈ Dr

≡, every variable x ∈ V[t]≡ , and

STACS 2021

20:12 The Complexity of the Distributed Constraint Satisfaction Problem

every position i associated to [t]≡ there are exactly m
nk[t]≡

constraints in which x appears at
position i of the scope, where m = r! · n|D|r . Using this fact it is very easy to prove that
I1 and I2 have the same iterated degree sequence. Formally, one could show by induction
on k that for every [t]≡ ∈ Dr

≡ and x1, x2 ∈ V[t]≡ , δI1
k (x1) = δI2

k (x2) and that for any two
constraints c1, c2 in I1 and I2 respectively δI1

k (c1) = δI2
k (c2). Here we are using δI1

k (·) and
δI2

k (·) to denote the kth degree of a node in the factor graphs of I1 and I2 respectively. ◁

▷ Claim 4.6. Instance I1 is unsatisfiable while instance I2 is satisfiable.
Proof. We start by showing that I1 is not satisfiable. Assume by contradiction that I1 has
a satisfying assignment ν. For each class [t]≡, consider the values given by ν to the first d

variables v0, . . . , vd−1 in V[t]≡ . Since d = k[t]≡ · |D|, it follows by the pigeon-hole principle
that at least k[t]≡ of these variables are assigned by ν to the same value of D. Let S[t]≡ be
a subset of V[t]≡ containing k[t]≡ of these variables (we know that this subset belongs to
S[t]≡ by condition (a) of Lemma 4.4). Now consider the constraint (s, U) in I1 associated to
S := {S[t]≡ | [t]≡ ∈ Dr

≡}, which belongs to I1. If ν is a solution to I1, then the restriction of
ν to s corresponds to an r-ary polymorphism of Γ. But ν assigns the same value to any two
related tuples t ≡ t′, which implies that ν is symmetric, a contradiction.

We now turn our focus to I2. Let f be any r-ary polymorphism of Γ (for example the
ith (1 ≤ i ≤ r) projection operation defined as f(x1, . . . , xr) = xi). We shall construct a
solution ν of I2 in the following way. Recall that in the definition of I2 we have partitioned
the tuples of V[t]≡ in k[t]≡ consecutive blocks. In the first stage, all the elements in each
block are placed in the same coordinate of U . So, if t1, . . . , t|D|r are the tuples associated to
coordinates 1, . . . , |D|r and hence block 1, . . . , |D|r respectively, then we only need that all
variables in the ith block are assigned to f(ti) to satisfy all constraints added in the first
stage. This assignment also satisfies the constraints added in the second stage, because if f

is an r-ary polymorphism of Γ, then for every permutation σ on {1, . . . , r}, the operation
g(x1, . . . , xr) defined as f(xσ(1), . . . , xσ(r)) is also a polymorphism of Γ. ◁

To sum up, we constructed two instances I1 and I2, the latter of which is satisfiable while
the former is not, which have the same iterated degree sequence. It follows from Corollary 2.3
that any distributed algorithm will give the same output on both instances, meaning that
no algorithm can solve DCSP({U}). As anticipated at the beginning of the proof then it
follows that there are also no algorithms that solve DCSP(Γ). ◀

4.2 Tractable Languages
In this section we turn our attention to the tractable case. In particular we shall show the
following:
▶ Theorem 4.7. Let Γ be a constraint language that is invariant under symmetric polymorph-
isms of all arities. Then there is an algorithm Alg that solves DCSP(Γ). The total running
time, number of rounds, and maximum message size of Alg are, respectively, O(n3m log n),
O(n2), and O(m log n) where n and m are the number of variables and constraints, respect-
ively, of the input instance.

Note that this implies the “if” part of Theorem 4.1. Alg is composed of two phases. In
the first phase, a distributed version of the colour refinement algorithm allows every process
to calculate its iterated degree. Then, thanks to Theorem 3.3 we can use the degree of a
variable as its ID for the second phase, implying that a distributed adapted version of the
jpq-consistency algorithm [16] where messages are tagged with a process’ iterated degree
solves the decision problem for Γ.

S. Butti and V. Dalmau 20:13

Distributed Colour Refinement

Let I = (A, X, D, C, α) be an instance of DCSP(Γ) and let n = |X| and m = |C|. There
is a very natural way to calculate an agent’s iterated degree in a distributed way, both for
variables and for constraints. This is a mere adaptation of the 1-dimensional Weisfeiler-Leman
algorithm, also known as colour refinement, an algorithm that partitions the vertices of a
graph into classes by iteratively distinguishing them on the basis of their degree (see for
example [15, 14]). The algorithm proceeds in rounds. At round k = 0, each agent α(v) for
v ∈ X ∪ C computes δ0(v) and broadcasts it to all its neighbours. At round k > 0, each
agent α(v) knows the (k − 1)th degrees of its neighbours which it had received in the previous
round, uses them to compute δk(v), and broadcasts it to its neighbours. If k = 2n then for
every x, x′ ∈ X satisfying x ∼k

δ x′ we have that x ∼δ x′, which implies that we can essentially
regard the kth iterated degree as the unique common ID for all variables that are iterated
degree equivalent. Then in 2n rounds each agent α(v) can compute δ∞(v), where we use δ∞
as a shorthand for δ2n. As we described it, the distributed colour refinement algorithm is
not particularly efficient in terms of message complexity. Although this is not necessary to
achieve polynomial time, we can reduce the space required to encode δ∞(v).

▶ Lemma 4.8. Let smax denote the size of the encoding of δ∞(v). A modified version of the
distributed colour refinement algorithm that runs over O(n2) rounds achieves smax = O(log n).
The time at each round and the maximum size of a message are both bounded above by
O(msmax).

As we will see, the price of an increase in the number of rounds (from n to n2) is
compensated by the effect of smax on both time complexity and the size of the messages.

The Distributed Consistency Algorithm

It is well known that if a constraint language Γ has symmetric operations of all arities then
it satisfies the so-called bounded width property (see [4]). We avoid introducing the definition
of bounded width as it is not needed in our results and refer the reader to [4] for reference.
Then, it has been shown in [16] that if Γ has bounded width and I ∈ CSP(Γ) satisfies a
combinatorial condition called jpq-consistency, then I has a solution. Instead of stating
literally the result in [16] we shall state a weaker version that uses a different notion of
consistency, more suitable to the model of distributed computation introduced in the paper.

A set system S is a subset of X ×D. We shall use Sx to denote the set {d ∈ D | (x, d) ∈ S}.
A walk of length ℓ (in instance I) is any sequence x0c0 . . . cℓ−1xℓ where x0, . . . , xℓ are variables,
c0, . . . , cℓ−1 are constraints, and xi, xi+1 ∈ ci for every 0 ≤ i < ℓ. Note that walks are precisely
the walks in the factor graph GI (in the standard graph-theoretic sense) starting and finishing
in X.

Let S be a set system, p be a walk, and B ⊆ Sx where x is the starting node of p. The
propagation of B via p under S, denoted B +S p, is the subset of D defined inductively on
the length ℓ of p as follows. If ℓ = 0 then B +S p = B. Otherwise, p = p′cℓ−1xℓ where p′ is a
path of length ℓ − 1 ending at xℓ−1. Let cℓ−1 = (s, R). Then we define B +S p to contain all
e ∈ D such that there exists d ∈ B +S p′ and t ∈ R such that for every 1 ≤ i ≤ arity(R),
t[i] satisfies the following conditions:
1. t[i] ∈ Ss[i],
2. if s[i] = xℓ−1 then t[i] = d, and
3. if s[i] = xℓ then t[i] = e.

We are now ready to state the result from [16] that we shall use.

STACS 2021

20:14 The Complexity of the Distributed Constraint Satisfaction Problem

▶ Theorem 4.9 (follows from [16]). Let I be an instance of CSP(Γ) where Γ has bounded
width and let S be a set system such that Sx ̸= ∅ for every x ∈ X and such that for every
walk p starting and finishing at the same node x and for every d ∈ Sx, d belongs to {d} +S p.
Then I is satisfiable.

Our goal is to design a distributed algorithm that either correctly determines that an
instance I is unsatisfiable, or produces a set system S verifying the conditions of Theorem
4.9. This is not possible in general due to the fact that agents are anonymous and hence a
hypothetical algorithm that would generate a walk in a distributed way would be unable to
determine if the initial and end nodes are the same. However, thanks to the structure estab-
lished by Theorem 3.3, this difficulty can be overcome when Γ has symmetric polymorphisms
of all arities because, essentially, the iterated degree of a node can act as its unique identifier.
To make this intuition precise we will need to introduce a few more definitions.

We say that a pair (x, d) ∈ S is S-supported if for every walk p starting at x and finishing
at a node y with x ∼δ y, we have that {d} +S p contains d.
▶ Remark 4.10. We note that if (x, d) ∈ S is not S-supported and p = x0c0 . . . xℓ is a walk
of minimal length among all walks witnessing that (x, d) is not S-supported then ℓ ≤ n2|D|.
Indeed if we let Bi = {d} + x0c0 . . . xi, i = 0, . . . , ℓ then we have that (xi, Bi) ̸= (xj , Bj) for
every 0 ≤ i < j ≤ ℓ, since otherwise the shorter walk x0c0, . . . , xi, cj , . . . , xℓ would contradict
the minimality of p. Since there are n choices for each xi and 2|D| choices for Bi, the bound
follows. ⌟

We say that a set system S is safe if for every solution ν ∈ I we have

ν(x) = ν(y) for all x, y ∈ X with x ∼δ y =⇒ ν(x) ∈ Sx for all x ∈ X.

Then, we have

▶ Lemma 4.11. Let S be a safe set system and let (x, d) ∈ S be a pair that is not S-supported.
Then S \ {(x, d)} is safe.

Our distributed consistency algorithm (that is, the second phase of Alg) works as follows.
Every variable agent α(x) maintains a set Sx ⊆ D in such a way that the set system S is
guaranteed to be safe at all times. As a result of an iterative process S is modified. We shall
use Si to denote the content of S at the ith iteration, where an iteration is, in turn, a loop
of T = 2n(2|D| + 1) = O(n) consecutive rounds. The rationale behind this exact value will
be made clear later. Initially, S0

x is set to D for every x ∈ X. At iteration i for i ≥ 1, Si

is obtained by removing all the elements in Si−1 that are not Si−1-supported. Then, in at
most n|D| = O(n) iterations we shall obtain a fixed point S∞.

The key observation is that when Γ has symmetric polymorphisms of all arities, the
satisfiability of I can be determined from S∞. Indeed, if S∞

x = ∅ for some x ∈ X then we can
conclude from the fact that S∞ is safe and Theorem 3.3 that I has no solution. Otherwise,
S∞ satisfies the conditions of Theorem 4.9 and, hence, I is satisfiable.

It remains to see how to compute Si+1 from Si. In an initial preparation step for every
iteration, every variable agent α(x) sends Si

x to all its neighbours. To compute Si+1 the
algorithm proceeds in rounds. All the messages sent are sets containing triplets of the form
(δ∞, d, B) where d ∈ D, B ⊆ D, and δ∞ is the iterated degree of some variable x ∈ X. It
follows from the fact that there are at most n possibilities for the degree of a variable that
the size of each message is O(nsmax).

The agents controlling variables and constraints alternate. That is, variables perform
internal and send events at even rounds and receive messages at odd rounds, while constraints
perform internal and send events at odd rounds and receive messages at even rounds. More

S. Butti and V. Dalmau 20:15

specifically, in round j = 0 of iteration i, every variable agent α(x) sends to its neighbours
the message M containing all triplets of the form (δ∞(x), d, {d}) with d ∈ Si

x. At round 2j

for j > 0, α(x) computes M = M1 ∪ · · · ∪ Mr where M1, . . . , Mr are the messages it received
at the end of round 2j − 1. Subsequently, for every triplet (δ∞, d, B) ∈ M with δ∞ = δ∞(x)
and d ̸∈ B, α(x) marks d as “not Si-supported”. Finally, it sends message M to all its
neighbours. This computation can be done in time O(rnsmax) = O(mnsmax) provided that
each message is stored as an ordered array.

In round 2j + 1, every constraint agent α(c) computes from the messages Mx (received
from each neighbour α(x) in the previous round) the set M ′

x, which contains for every variable
y ∈ c and every (δ∞, d, B) in My, the triplet (δ∞, d, B +Si p) where p = y, c, x. Finally, it
sends to each neighbour α(x) the corresponding message M ′

x. Note that while α(c) doesn’t
know the address of α(x) specifically, knowing the label of the channel that connects them is
sufficient to calculate M ′

x correctly and send the message accordingly. Moreover, for given y

and x, α(c) can compute B +Si p in O(1) time as α(c) knows both Si
y and Si

x. Hence, since
the arity of the relations is fixed (as Γ is fixed) the total running time at iteration 2j + 1 of a
constraint agent α(c) is O(nsmax).

Now it is immediate to show by induction that for every j ≥ 0, every x ∈ X and c ∈ C

with x ∈ c the message sent by α(x) to α(c) at the end of round 2j is precisely

{(δ∞(y), d, {d} + p) | y ∈ X, d ∈ Si
y, p is a walk of length j of the form p = y, . . . , x}

and the message sent by α(c) to α(x) at the end of round 2j + 1 is precisely

{(δ∞(y), d, {d}+p) | y ∈ X, d ∈ Si
y, p is a walk of length j + 1 of the form p = y, . . . , c, x}.

By Remark 4.10 only 2n2|D| = T − 2n iterations are needed to identify all elements in
Si that are not Si-supported. Hence, after exactly T − 2n rounds every variable agent α(x)
computes Si+1

x by removing all the elements in Si that are marked as “not Si-supported”. If
Si+1

x = ∅, then α(x) initiates a wave, which is propagated by all its neighbours, broadcasting
that an inconsistency was detected. In this case, in at most 2n additional rounds all agents
can correctly declare that I is unsatisfiable. Otherwise, a new iteration begins.

To sum up, the distributed consistency algorithm consists of O(n) iterations consisting,
each, of O(n) rounds where the total running time for internal events at a given round is
O(mnsmax) and the maximum size of each message transmitted is O(nsmax). Together with
the bounds given by Lemma 4.8 for the distributed colour refinement phase, this completes
the proof of Theorem 4.7.

4.3 The Search Algorithm
We conclude by presenting the proof of Theorem 4.2. The hardness part follows immediately
from Theorem 4.1 as the search problem is as difficult as the decision problem. For the
positive result we shall present an adaptation of the algorithm solving the decision version.
Let I be an instance of DCSP-Search(Γ) where Γ contains symmetric polymorphisms of
all arities. In what follows we shall use intensively the fact that Pol(Γ) is closed under
composition. Let J ⊆ D be minimal with the property that f(D) = J for some unary
polymorphism f in Pol(Γ). It is fairly standard to show that for every r ≥ 0 there is a
r-ary symmetric operation g such that g(x, . . . , x) = x for every x ∈ J . Indeed, let f satisfy
f(D) = J and let g be any r-ary symmetric polymorphism in Pol(Γ). Then the unary
operation h defined by h(x) = f ◦ g(x, . . . , x) is a unary polymorphism of Γ. By the choice
of f we have h(D) ⊆ J . We note that h(J) = J since otherwise h2 would contradict the

STACS 2021

20:16 The Complexity of the Distributed Constraint Satisfaction Problem

minimality of f . Consequently, h−1 belongs to Pol(Γ) and, hence, the r-ary operation defined
as h−1 ◦ f ◦ g satisfies the claim. This implies that if we enlarge the constraint language by
adding all singletons {d}, d ∈ J , the resulting constraint language, which we shall denote by
Γ′, still has symmetric polymorphisms of all arities. For convenience we also include D in Γ′.

The algorithm has two phases. In the first phase it runs the decision algorithm to
determine whether the instance is satisfiable. As a byproduct, every variable agent α(x) has
computed its iterated degree δ∞(x) and knows as well its rank in a prescribed ordering of all
variable degrees δ1

∞, . . . , δr
∞, r ≤ n. This (partial) order will be used to coordinate between

the agents. An i-agent, 1 ≤ i ≤ r is any agent α(x) with δ∞(x) = δi
∞. We also assume a

fixed ordering on the elements in D. If the instance is unsatisfiable nothing else remains to
be done so from now on we shall assume that the instance is satisfiable.

In the second phase the algorithm searches for a solution. Every variable agent α(x)
maintains a set Fx ⊆ D with the property that there is a solution ν that falls within F , i.e,
such that ν(x) ∈ Fx for every x ∈ X. Initially every agent α(x) sets Fx = D so it is only
necessary to make sure that this condition is preserved during the execution of the algorithm.
The second phase contains two nested loops. The outer loop has r iterations and the inner
loop consists of at most |D| iterations so that we shall use iteration (i, d) to indicate the run
of the algorithm at the i = 1, . . . , r iteration of the outer loop and at the iteration d of the
inner loop.

At the beginning of iteration (i, d) every variable agent α(x) defines Sx ⊆ D to be
Sx = {d} whenever α(x) is an i-agent and Sx = Fx elsewhere. Then it runs the distributed
consistency algorithm starting at S obtaining a fixed point S∞. We note that since all initial
sets Sx belong to Γ′ and Γ′ contains symmetric polymorphisms of all arities then the obtained
fixed point S∞ correctly determines whether there exists a solution ν that falls within S.
Then every i-agent α(x) checks whether S∞

x = ∅. In case of positive answer nothing else is
done and round (i, d) finishes. Otherwise, α(x) sets Fx to {d} and starts a wave to indicate
to all processes that the ith iteration of the outer loop is finished and that the next iteration
of the outer loop can start. When the r iterations of the outer loop have been completed the
set system F contains only singletons. The assignment that sets every variable x ∈ X to the
only element in Fx is necessarily a solution. This concludes the proof of Theorem 4.2.

5 Conclusion

We analysed the complexity of the distributed constraint satisfaction problem on a syn-
chronous, anonymous network parametrised by the constraint language. We showed that,
depending on the polymorphisms of Γ, DCSP(Γ) is either solvable in polynomial time, or not
solvable altogether. A number of natural open questions arise in this context. For instance, it
is not clear whether asynchronous networks are strictly more powerful than their synchronous
counterpart. Moreover, it would be interesting to explore the role of allowing agents to make
random choices - provided this is not used to create and share unique IDs.

In the spirit of [13], one could consider characterizing the structural restrictions on
tractable distributed CSPs, or in other words, determining which classes of networks are
tractable in the DCSP framework, regardless of the constraint language. The starting point
for this analysis could be the work on fibrations by Boldi et al. (see for example [7, 8]).
In particular, we propose the question of establishing a connection between the universal
fibration of a graph and its iterated degree sequence.

S. Butti and V. Dalmau 20:17

References

1 Dana Angluin. Local and global properties in networks of processors (extended abstract). In
Raymond E. Miller, Seymour Ginsburg, Walter A. Burkhard, and Richard J. Lipton, editors,
Proceedings of the 12th Annual ACM Symposium on Theory of Computing, April 28-30, 1980,
Los Angeles, California, USA, pages 82–93. ACM, 1980. doi:10.1145/800141.804655.

2 Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory Comput., 8(1):121–164, 2012. doi:10.4086/toc.
2012.v008a006.

3 Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo
Silva. The logical expressiveness of graph neural networks. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL: https://openreview.net/forum?id=r1lZ7AEKvB.

4 Libor Barto, Andrei A. Krokhin, and Ross Willard. Polymorphisms, and how to use them.
In Andrei A. Krokhin and Stanislav Zivný, editors, The Constraint Satisfaction Problem:
Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017. doi:10.4230/DFU.Vol7.15301.1.

5 Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinícius Flores
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, Çaglar Gülçehre, H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E.
Dahl, Ashish Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas
Heess, Daan Wierstra, Pushmeet Kohli, Matthew Botvinick, Oriol Vinyals, Yujia Li, and
Razvan Pascanu. Relational inductive biases, deep learning, and graph networks. CoRR,
abs/1806.01261, 2018. arXiv:1806.01261.

6 Ramon Bejar, Bhaskar Krishnamachari, Carla Gomes, and Bart Selman. Distributed constraint
satisfaction in a wireless sensor tracking system. In Workshop on Distributed Constraint
Reasoning, International Joint Conference on Artificial Intelligence, volume 4, 2001.

7 Paolo Boldi, Shella Shammah, Sebastiano Vigna, Bruno Codenotti, Peter Gemmell, and Janos
Simon. Symmetry breaking in anonymous networks: Characterizations. In Fourth Israel
Symposium on Theory of Computing and Systems, ISTCS 1996, Jerusalem, Israel, June 10-12,
1996, Proceedings, pages 16–26. IEEE Computer Society, 1996.

8 Paolo Boldi and Sebastiano Vigna. An effective characterization of computability in anonymous
networks. In Jennifer L. Welch, editor, Distributed Computing, 15th International Conference,
DISC 2001, Lisbon, Portugal, October 3-5, 2001, Proceedings, volume 2180 of Lecture Notes
in Computer Science, pages 33–47. Springer, 2001. doi:10.1007/3-540-45414-4_3.

9 Andrei A. Bulatov. A dichotomy theorem for nonuniform csps. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017, pages 319–330. IEEE Computer Society, 2017. doi:10.1109/FOCS.
2017.37.

10 Ken R. Duffy, Charles Bordenave, and Douglas J. Leith. Decentralized constraint satisfaction.
IEEE/ACM Trans. Netw., 21(4):1298–1308, 2013. doi:10.1109/TNET.2012.2222923.

11 Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. Distributed constraint optimization
problems and applications: A survey. J. Artif. Intell. Res., 61:623–698, 2018. doi:10.1613/
jair.5565.

12 Wan Fokkink. Distributed algorithms: an intuitive approach. MIT Press, 2013.
13 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen

from the other side. J. ACM, 54(1):1:1–1:24, 2007. doi:10.1145/1206035.1206036.
14 Martin Grohe. word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings

of structured data. In Dan Suciu, Yufei Tao, and Zhewei Wei, editors, Proceedings of the
39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2020, Portland, OR, USA, June 14-19, 2020, pages 1–16. ACM, 2020. doi:10.1145/3375395.
3387641.

STACS 2021

https://doi.org/10.1145/800141.804655
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.4086/toc.2012.v008a006
https://openreview.net/forum?id=r1lZ7AEKvB
https://doi.org/10.4230/DFU.Vol7.15301.1
http://arxiv.org/abs/1806.01261
https://doi.org/10.1007/3-540-45414-4_3
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/TNET.2012.2222923
https://doi.org/10.1613/jair.5565
https://doi.org/10.1613/jair.5565
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1145/3375395.3387641
https://doi.org/10.1145/3375395.3387641

20:18 The Complexity of the Distributed Constraint Satisfaction Problem

15 Martin Grohe, Kristian Kersting, Martin Mladenov, and Pascal Schweitzer. Color refinement
and its applications. Van den Broeck, G.; Kersting, K.; Natarajan, S, 2017.

16 Marcin Kozik. Solving CSPs using weak local consistency. SIAM Journal on Computing,
to appear, 2020. URL: https://marcinkozik.staff.tcs.uj.edu.pl/Solving.CSPs.using.
weak.local.consistency.pdf.

17 Andrei A. Krokhin and Stanislav Živný, editors. The Constraint Satisfaction Problem:
Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017. URL: http://www.dagstuhl.de/dagpub/978-3-95977-003-3.

18 Gábor Kun, Ryan O’Donnell, Suguru Tamaki, Yuichi Yoshida, and Yuan Zhou. Linear
programming, width-1 csps, and robust satisfaction. In Shafi Goldwasser, editor, Innovations
in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages
484–495. ACM, 2012. doi:10.1145/2090236.2090274.

19 Amnon Meisels. Distributed Search by Constrained Agents - Algorithms, Performance,
Communication. Advanced Information and Knowledge Processing. Springer, 2008. doi:
10.1007/978-1-84800-040-7.

20 Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph
neural networks. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 4602–4609. AAAI Press,
2019. doi:10.1609/aaai.v33i01.33014602.

21 Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006. URL:
http://www.sciencedirect.com/science/bookseries/15746526/2.

22 Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. RUN-CSP: unsupervised
learning of message passing networks for binary constraint satisfaction problems. CoRR,
abs/1909.08387, 2019. arXiv:1909.08387.

23 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL: https://openreview.net/
forum?id=ryGs6iA5Km.

24 Masafumi Yamashita and Tiko Kameda. Computing on an anonymous network. In Danny
Dolev, editor, Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed
Computing, Toronto, Ontario, Canada, August 15-17, 1988, pages 117–130. ACM, 1988.
doi:10.1145/62546.62568.

25 Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. Distributed
constraint satisfaction for formalizing distributed problem solving. In Proceedings of the 12th
International Conference on Distributed Computing Systems, Yokohama, Japan, June 9-12,
1992, pages 614–621. IEEE Computer Society, 1992. doi:10.1109/ICDCS.1992.235101.

26 Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. The distributed
constraint satisfaction problem: Formalization and algorithms. IEEE Trans. Knowl. Data
Eng., 10(5):673–685, 1998. doi:10.1109/69.729707.

27 Makoto Yokoo and Katsutoshi Hirayama. Algorithms for distributed constraint satisfaction: A
review. Auton. Agents Multi Agent Syst., 3(2):185–207, 2000. doi:10.1023/A:1010078712316.

28 Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In Chris Umans, editor, 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 331–342. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.38.

https://marcinkozik.staff.tcs.uj.edu.pl/Solving.CSPs.using.weak.local.consistency.pdf
https://marcinkozik.staff.tcs.uj.edu.pl/Solving.CSPs.using.weak.local.consistency.pdf
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
https://doi.org/10.1145/2090236.2090274
https://doi.org/10.1007/978-1-84800-040-7
https://doi.org/10.1007/978-1-84800-040-7
https://doi.org/10.1609/aaai.v33i01.33014602
http://www.sciencedirect.com/science/bookseries/15746526/2
http://arxiv.org/abs/1909.08387
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1145/62546.62568
https://doi.org/10.1109/ICDCS.1992.235101
https://doi.org/10.1109/69.729707
https://doi.org/10.1023/A:1010078712316
https://doi.org/10.1109/FOCS.2017.38

Distance Computations in the Hybrid Network
Model via Oracle Simulations
Keren Censor-Hillel !

Technion – Israel Institute of Technology, Haifa, Israel

Dean Leitersdorf !

Technion – Israel Institute of Technology, Haifa, Israel

Volodymyr Polosukhin !

Technion – Israel Institute of Technology, Haifa, Israel

Abstract
The Hybrid network model was introduced in [Augustine et al., SODA ’20] for laying down a
theoretical foundation for networks which combine two possible modes of communication: One mode
allows high-bandwidth communication with neighboring nodes, and the other allows low-bandwidth
communication over few long-range connections at a time. This fundamentally abstracts networks
such as hybrid data centers, and class-based software-defined networks.

Our technical contribution is a density-aware approach that allows us to simulate a set of oracles
for an overlay skeleton graph over a Hybrid network.

As applications of our oracle simulations, with additional machinery that we provide, we derive
fast algorithms for fundamental distance-related tasks. One of our core contributions is an algorithm
in the Hybrid model for computing exact weighted shortest paths from Õ(n1/3) sources which
completes in Õ(n1/3) rounds w.h.p. This improves, in both the runtime and the number of sources,
upon the algorithm of [Kuhn and Schneider, PODC ’20], which computes shortest paths from a
single source in Õ(n2/5) rounds w.h.p.

We additionally show a 2-approximation for weighted diameter and a (1 + ϵ)-approximation
for unweighted diameter, both in Õ(n1/3) rounds w.h.p., which is comparable to the Ω̃(n1/3) lower
bound of [Kuhn and Schneider, PODC ’20] for a (2 − ϵ)-approximation for weighted diameter and
an exact unweighted diameter. We also provide fast distance approximations from multiple sources
and fast approximations for eccentricities.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed graph algorithms, Hybrid network model, Distance computations

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.21

Related Version Full Version: https://arxiv.org/abs/2010.13831

Funding This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement no. 755839-ERC-BANDWIDTH.

Acknowledgements The authors would like to thank Michal Dory and Yuval Efron for various
helpful conversations. We also thank Fabian Kuhn for sharing a preprint of [30] with us.

1 Introduction

The Hybrid model of computation was recently introduced by Augustine et al. [9], for
abstracting networks which can utilize both high-bandwidth local communication links,
as well as very few low-bandwidth global communication channels. This model abstracts
fundamental systems, such as a combination of device-to-device communication with cellular
networks (e.g. 5G) [7], wired data centers with wireless links (hybrid DCNs) [17,26,29,41],
and Class-Based Hybrid software-defined networks (SDNs) [40].

© Keren Censor-Hillel, Dean Leitersdorf, and Volodymyr Polosukhin;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 21; pp. 21:1–21:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ckeren@cs.technion.ac.il
https://orcid.org/0000-0003-4395-5205
mailto:dean.leitersdorf@gmail.com
mailto:po@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.STACS.2021.21
https://arxiv.org/abs/2010.13831
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Distance Computations in the Hybrid Network Model via Oracle Simulations

The pioneering works of [9, 20, 30] provide fast algorithms for various distance-related
tasks in the Hybrid model. At the heart of many of these algorithms lies a framework for
using skeleton overlay graphs for computation and approximation of distances, as well as for
fast communication.

In this paper, we define and show how to efficiently simulate oracles over skeleton graphs
in the Hybrid model. Using additional machinery that we provide, the implications of our
simulations are faster algorithms for distance computations in the Hybrid model. Our oracle
models could also be of independent interest, presenting a generic approach which can
potentially be applied elsewhere.

1.1 Our Contributions
The Hybrid model, which we consider in this paper, abstracts a synchronous network of nodes,
where in each round, every node can send and receive arbitrarily many messages of O(log n)
bits to/from each of its neighbors (over local edges) and an additional O(log n) messages,
in total, to/from any other nodes in the network (over global edges). The high bandwidth
permissible over the local edges is aligned with previous research in the Hybrid model as well
as with the extensively studied LOCAL distributed model.

The main idea which our results hinge upon is exploiting an inherent asymmetry in the
Hybrid model which we observe. This asymmetry allows nodes with dense neighborhoods to
effectively receive significantly more information. To see this, note that every node can use
the global edges of the Hybrid model to send and receive a limited number of messages every
round. However, since in the next round a node can communicate with its neighborhood
in the graph using local edges and share with them the information which it received, this
implies that a node is able to learn much more information from the entire graph if it is in
a more dense neighborhood. Thus, density-aware algorithms are inherently useful in the
Hybrid model.

We use this asymmetry to simulate Oracle and Tiered Oracles models. To capture what
an oracle can do, we introduce the Oracle and Tiered Oracles models. Roughly speaking, in
the Oracle model there is a node ℓ, the oracle, which can receive deg(v) messages from each
node v, within a single round. In particular, this implies that the oracle can learn the entire
communication graph.

We cannot afford to directly simulate the Oracle model as it requires too much commu-
nication in the Hybrid model. Instead, we simulate the Oracle model over a skeleton graph.
Roughly speaking, given an input graph G, a skeleton graph is a subset of the nodes of G,
connected by virtual edges which represent paths in G. Skeleton graphs are a common tool
for distance computations in various models [9,30,33,37,39], and it has been shown in [9,30]
that some distances on the skeleton graph can be efficiently extended to distances on the
entire graph in the Hybrid model.

As a warm-up, we show that a single round of the Oracle model over certain skeleton
graphs can be simulated in Õ(n1/3) rounds, w.h.p.1, in the Hybrid model. Combining this
with a simple, constant-round algorithm for exact weighted single source shortest paths
(SSSP) which we show in the Oracle model, gives the following theorem.

▶ Theorem 1 (Exact SSSP). Given a weighted graph G = (V, E), there is an algorithm in
the Hybrid model that computes an exact weighted SSSP in Õ(n1/3) rounds w.h.p.

1 As common, w.h.p. indicates a probability that is at least 1 − n−c, for some constant c > 1.

K. Censor-Hillel, D. Leitersdorf, and V. Polosukhin 21:3

This result should be compared with the previous state-of-the-art algorithms for exact
weighted SSSP in Õ(n2/5) rounds [30], and in Õ(

√
SPD) rounds [9], where SPD is the length

of the shortest path diameter. Further, it improves upon the Õ(n1/3/ϵ6) round algorithm for
a (1 + ϵ)-approximation of weighted SSSP [9], in both the runtime and in being exact. We
stress that this is a warm up, and later on we extend this result to shortest path distances
from O(n1/3) sources, instead of a single source, in the same round complexity of Õ(n1/3).

It is well known that one can approximate the diameter using a solution to SSSP, and so
as a byproduct we get the following result.

▶ Corollary 2 (2-Approx. Weighted Diameter). There is an algorithm in the Hybrid model
that computes a 2-approximation of weighted diameter in Õ(n1/3) rounds w.h.p.

Notably, Ω̃(n1/3) rounds are necessary for a (2− ϵ)-approximation for weighted diame-
ter [30]. Our algorithm in Corollary 2 thus raises the interesting open question of whether
one can go below this complexity for a 2-approximation.

While efficiently simulating an oracle is powerful, it still does not exploit the full capacity
of the Hybrid model. This observation brings us to enhance the Oracle model and introduce
the Tiered Oracles model, which consists of multiple oracles with varying abilities. In a
nutshell, in the Tiered Oracles model, in each round every node v can send (the same) deg(v)
messages to all nodes u with deg(u) ≥ deg(v)/2. This basically means that nodes are
bucketed according to degrees and each node is an oracle for all nodes in buckets below it.
One can notice that the node with the highest degree in the graph is equivalent to the oracle
in the Oracle model, but here, the other nodes in the graph also have some partial oracle
capabilities.

We show how to simulate the Tiered Oracles model over skeleton graphs in the Hybrid
model within Õ(n1/3) rounds. Subsequently, we present an algorithm which solves all pairs
shortest paths (APSP) using one round of the Tiered Oracles model and O(log n) rounds
of the Congested Clique model2. We then utilize our Tiered Oracles model simulation, along
with a previously known simulation of the Congested Clique model from [30], to simulate
the APSP algorithm over skeleton graphs in the Hybrid model. Our efficient computation
of APSP over a skeleton graph in the Hybrid model then leads to computing multi-source
shortest paths from random sources in the Hybrid model.

Shortest paths from random sources is a crucial stepping stone for our later results. We
show that computing shortest path distances from random sources to the entire graph, allows
us to subsequently obtain fast algorithms for other distance problems. We call the problem
of computing distances from sources sampled with probability nx−1 i.i.d nx-RSSP.

▶ Theorem 3 (nx-RSSP). Given a graph G = (V, E), 0 < x < 1, and a set of nodes M

sampled independently with probability nx−1, there is an algorithm in the Hybrid model that
ensures that every v ∈ V knows the exact, weighted distance from itself to every node in M

within Õ(n1/3 + n2x−1) rounds w.h.p.

We complement Theorem 3 with a lower bound, following the lines of [9, 30], for approxi-
mating distances from many random sources, to any reasonable approximation factor, which
tightly matches the upper bound when x = 2/3.

▶ Theorem 4 (Lower Bound Exact Shortest Paths, Sources Sampled i.i.d.). Let p = Ω (log n/n)
and α <

√
n/p · log(n)/2. Any α-approximate unweighted algorithm from random sources

sampled independently with probability p in the Hybrid network model takes Ω
(√

p · n/ log n
)

rounds w.h.p.

2 The Congested Clique is a synchronous distributed model where every two nodes in the graph can
exchange messages of O(log n) bits in every round.

STACS 2021

21:4 Distance Computations in the Hybrid Network Model via Oracle Simulations

We leverage our near-optimal (tight up to polylogarithmic factors) algorithm for shortest
paths from a set M of Õ(n2/3) random sources in order to obtain exact weighted shortest
paths from any given set U of O(n1/3) sources. We achieve this by adapting the behavior of
the given fixed source nodes to the density of their neighborhoods, as follows. A source node
s ∈ U in a sparse neighborhood broadcasts the distances to all the random source nodes
from M it sees in its neighborhood. A source node s ∈ U in a dense neighborhood takes
control of one of the random sources in M in its neighborhood and uses it as a proxy in
order to communicate enough information to all the other nodes in the graph so that they
could determine their distances from s. We remark that this proxy approach is a key insight
which we later encapsulate as a general tool in the Hybrid model and may potentially be of
independent interest. Our approach gives the following theorem.

▶ Theorem 5 (Exact n1/3 Sources Shortest Paths). Given a weighted graph G = (V, E), and
a set of sources U , such that |U | = O(n1/3), there exists an algorithm, at the end of which
each v ∈ V knows its distance from every s ∈ U , which runs in Õ(n1/3) rounds w.h.p.

Theorem 5 raises an interesting open question of whether the complexity of SSSP in the
Hybrid model is below that of computing shortest paths from Õ(n1/3) sources.

We also exploit our aforementioned solution for computing APSP on the skeleton graph
to obtain approximate distances from a larger set of given sources (nx-SSP), as follows.

▶ Theorem 6 (Approximate Multiple Source Shortest Paths). Given a graph G = (V, E), a set
of sources U , where |U | = Θ̃(ny) for some constant 0 < y < 1, and a value 0 < ϵ, there is an
algorithm in the Hybrid model which ensures that every node v ∈ V knows an approximation
to its distance from every s ∈ U , where the approximation factor is (1 + ϵ) if G is unweighted
and 3 if G is weighted. The complexity of the algorithm is Õ(n1/3/ϵ + ny/2) rounds, w.h.p.

This result improves both in round complexity and approximation factors upon the
previous results in [30]. The reason for this is that we compute APSP over skeleton graphs
using the efficient, exact algorithm from the Tiered Oracles oracle model, while [30] simulate
the slower, approximate algorithms of [12,14] in the Congested Clique model. Particularly,
this result is tight up to polylogarithmic factors for y ≥ 2/3 due to a lower bound of [30].

We can also approximate unweighted eccentricities by a combination of computing shortest
path distances from n2/3 random sources and performing local explorations using the local
edges of the model. For approximating weighted eccentricities, this is insufficient, and here
our approach is to additionally broadcast required information from each random source
node regarding its Õ(n1/3)-hop neighborhood in the graph. We obtain the following result.

▶ Theorem 7 (Approx. Eccentricities). Given a graph G = (V, E), there is an algorithm in
the Hybrid model that computes a (1 + ϵ)-approximation of unweighted and 3-approximation
of weighted eccentricities in Õ(n1/3/ϵ) rounds, w.h.p.

Finally, the unweighted eccentricities approximation directly implies a (1 + ϵ) approxima-
tion for unweighted diameter. This should be compared with the lower bound of Ω̃(n1/3)
rounds for exact unweighted diameter due to [30].

▶ Corollary 8 ((1 + ϵ)-Approx. Unweighted Diameter). Let G = (V, E) be an unweighted
graph, and let ϵ > 0. There exists an algorithm in the Hybrid model which computes a
(1 + ϵ)-approximation of the diameter in Õ(n1/3/ϵ) rounds, w.h.p.

We refer the reader to Table 1, for a visual summary of our end results with comparison
to related work.

K. Censor-Hillel, D. Leitersdorf, and V. Polosukhin 21:5

Roadmap. The remainder of the current section is dedicated towards surveying related
work. In Section 2, we provide all formal definitions. Next, in Section 3 we formally define
the Oracle and Tiered Oracles models, and show how to simulate them over skeleton graphs
in the Hybrid model. Finally, Section 4, gives our algorithms for distance problems in the
oracle models and, using our simulations, also in the Hybrid model. Some additional results
are deferred to the the full version of the paper [15]. There we show the approximation for
shortest path from nx given sources, eccentricities, diameter and lower bound for shortest
paths from sources sampled i.i.d.

Table 1 Comparison of our results. SP D is the length of the shortest path diameter. The results
for nx-RSSP, and weighed diameter approximation upper bounds from previous works are implicit
in [9, 30]. Our upper bound for n2/3-RSSP is tight up to poly-logarithmic factors due to our lower
bound. Our approximations for nx-SSP are also tight up to poly-logarithmic factors for x ≥ 2/3,
due to [30].

Problem Variant Approximation This work Previous works

SSSP
weighted exact Õ(n1/3) Õ(n2/5) [30], Õ(

√
SP D) [9]

weighted 1 + ϵ Õ(n1/3 · ϵ−6) [9]
weighted (1/ϵ)O(1/ϵ) nϵ [9]

nx-RSSP
unweighted Õ(n1−x/2) Ω̃(nx/2)
weighted exact Õ(n1/3 + n2x−1)
weighted 2 + ϵ Õ(n1/3 + n2x−1) [30]

n1/3-SSP
unweighted 1 + ϵ Õ(n1/3/ϵ) [30]
weighted exact Õ(n1/3)
weighted 3 + ϵ Õ(n1/3/ϵ) [30]

nx-SSP

unweighted Õ(n1−x/2) Ω̃(nx/2) [30]
unweighted 1 + ϵ Õ(n1/3/ϵ + nx/2)
unweighted 2 + ϵ Õ(n1/3/ϵ + nx/2) [30]
weighted 3 Õ(n1/3 + nx/2)
weighted 3 + ϵ Õ(n0.397 + nx/2) [30]
weighted 7 + ϵ Õ(n1/3/ϵ + nx/2) [30]

eccentricities
unweighted 1 + ϵ Õ(n1/3/ϵ)
weighted 3 Õ(n1/3)

diameter

unweighted exact Ω̃(n1/3) [30]
unweighted 1 + ϵ Õ(n1/3/ϵ) Õ(n0.397/ϵ) [30]
unweighted 3/2 + ϵ Õ(n1/3/ϵ) [30]
weighted 2 − ϵ Ω̃(n1/3) [30]
weighted 2 Õ(n1/3) Õ(n2/5) [30]
weighted 2 + ϵ Õ(n1/3 · ϵ−6) [9]
weighted 2 · (1/ϵ)O(1/ϵ) nϵ [9]

1.2 Related Work
Hybrid Models. The Hybrid network model was studied in [9, 20, 30]. In [20], distance
results are obtained in one of the harsher variants of the model, where the local edges are
restricted to have log n bandwidth. However, these apply only to extremely sparse graphs of
at most n + O(n1/3) edges and cactus graphs. In [2, 25], slightly different models of hybrid
nature are studied.

STACS 2021

21:6 Distance Computations in the Hybrid Network Model via Oracle Simulations

Augustine et al. [8] proposed the Node-Capacitated Clique model, which is similar to the
Congested Clique model, but each node has log n bandwidth. This model is also a special
case of the generalised Hybrid model [9] without local edges. This allows one to use the
results from the Node-Capacitated Clique model in the Hybrid model without modifications.

Distributed Distance Computations. Distance related problems have been extensively
studied in many distributed models. For example, in the CONGEST model, there is a long
line of research on APSP [3–5,11,19,32,34,36] which culminated in tight, up to polyloga-
rithmic factors, Õ(n) round exact weighted APSP randomized algorithm of Bernstein and
Nanongkai [11] and a Õ(n4/3) round deterministic algorithm of Agarwal and Ramachan-
dran [4]. [34,36] develop an Õ(n) round algorithm, optimal up to polylogarithmic factors, for
unweighted APSP. The study of approximate SSSP algorithms was the focus of many recent
paper [10, 27, 38] and lately Becker et al. [10] showed the solution which is close to the lower
bound of Das Sarma et al. [38]. In case of exact SSSP, after recent works [19,21,24], there
still is a gap between upper and lower bounds. The diameter and eccentricities problems are
studied in the CONGEST model in [1, 6, 22,36].

In the Congested Clique model, k-SSP, APSP and diameter are extensively studied
in [14, 16, 23, 35] and approximate versions of the k-SSP and APSP problem are solved
in polylogarithmic [13] and even polyloglogaritmic [18] time. In the more restricted
Broadcast Congested Clique model, in which each message a node sends in a round is the
same for all recipients, distance computations are researched by [10,28].

2 Preliminaries

We provide here some definitions and claims that are critical for reading the main part of
the paper. Full version of the paper [15] contains additional definitions and basic claims. We
use the following variant of the Hybrid model, introduced in [9].

▶ Definition 9 (Hybrid Model). In the Hybrid model, a synchronous network of n nodes with
identifiers in [n], is given by a graph G = (V, E). In each round, every node can send and
receive λ messages of O(log n) bits to/from each of its neighbors (over local edges) and an
additional γ messages in total to/from any other nodes in the network (over global edges).
If in some round more than γ messages are sent via global edges to/from a node, only γ

messages selected adversarially are delivered.

We follow the previous work of [9, 30] and consider λ =∞, γ = O(log n). Notice that the
Hybrid model can also capture the classic LOCAL3 model, with λ = ∞, γ = 0, the classic
CONGEST model, with λ = O(1), γ = 0, the Congested Clique model, with λ = O(1), γ = 0
and G being a clique, the Congested Clique + Lenzen’s Routing with λ = 0, γ = n and the
Node-Capacitated Clique model [8], with λ = 0, γ = O(log(n)).

Many of our results hold for weighted graphs G = (V, E, w). We assume an edge weight is
given by a function w : E 7→ { 1, 2, . . . , W } for a W which is polynomial in n. When we send
an edge as part of a message in any algorithm, we assume it is sent along with its weight.

3 The LOCAL and CONGEST models are synchronous distributed models where every two neighbors in
the graph can exchange messages of unlimited size or of O(log n) bits, respectively, in each round.

K. Censor-Hillel, D. Leitersdorf, and V. Polosukhin 21:7

2.1 Notations and Problem Definitions
We use the following definitions related to graphs. Given a graph G = (V, E) and a pair
of nodes u, v ∈ V , we denote by hop(u, v) the hop distance between u and v, by Nh

G(v) the
h-hop neighborhood of v, by dh

G(u, v) the weight of the lightest path between u and v of at
most h-hops, and if there is no path of at most h-hops then dh

G(u, v) = ∞. In the special
case of h = 1, we denote by NG(v) the neighbors of v and in the special case of h = ∞,
we denote by dG(u, v) the weight of the lightest path between u and v. We also denote by
degG (v) the degree of v in G. Whenever it is clear from the context we drop the subscript
of G and just write N , Nh, d, dh or deg(v).

We define the following problems in the Hybrid model.

▶ Definition 10 (k-Source Shortest Paths (k-SSP)). Given a graph G = (V, E), and a set
S ⊆ V of k sources. Every u ∈ V is required to learn the distance dG(u, s) for each s ∈ S.
The case where k = 1, is called the single source shortest paths problem (SSSP).

▶ Definition 11 (nx-Random Sources Shortest Path (nx-RSSP)). Given a graph G = (V, E),
and a set M ⊆ V of sources, such that each v ∈ V is sampled independently with probability
nx−1 to be in M . Every u ∈ V is required to learn the distance dG(u, s) for each s ∈M .

In the approximate versions of these problems, each u ∈ V is required to learn an (α, β)-
approximate distance d̃(u, v) which satisfies d(u, v) ≤ d̃(u, v) ≤ α · d(u, v) + β, and in case
β = 0, d̃(u, v) is called an α-approximate distance.

▶ Definition 12 (Eccentricity and diameter). Given a graph G = (V, E) and node v ∈ V , the
eccentricity of v is the farthest shortest path distance from v, i.e., ecc(v) = maxu∈V d(v, u)
and the diameter D = maxv∈V { ecc(v) } is the maximum eccentricity. An α-approximation
of all eccentricities is a function ẽcc(v) which satisfies ecc(v)/α ≤ ẽcc(v) ≤ ecc(v) for all
nodes v. An α-approximation of the diameter is a value D̃ which satisfies D/α ≤ D̃ ≤ D.

2.2 Skeleton Graphs
In a nutshell, given a graph G = (V, E), a skeleton graph Sx = (M, ES), for some constant
0 < x < 1, is generated by letting every node in V independently join M with probability
nx−1. Two nodes in M have an edge in ES if there exists a path between them in G of
at most h = Õ(n1−x) hops. This graph w.h.p. satisfies many useful properties in terms of
distance computation, which for simplicity of presentation we add to its definition, provided
below. A crucial property is that for any two nodes, if the shortest path between them in G

has more than h hops, then there exists a shortest path between them in G on which every
roughly h nodes there is a node from M (all such skeleton properties hold w.h.p.).

▶ Definition 13 (Skeleton Graph, Combined Definition of [9, 30]). Given a graph G = (V, E)
and a value 0 < x < 1, a graph Sx = (M, ES) is called a skeleton graph in G, if all of the
following hold.
1. Each v ∈ V is included to M independently with probability nx−1.
2. {v, u} ∈ ES if and only if there is a path of at most h = Θ̃(n1−x) edges between v, u in G.
3. Every node v ∈M knows all its incident edges in ES.
4. Sx is connected.
5. For any two nodes v, v′ ∈M , dS(v, v′) = dG(v, v′).
6. For any two nodes u, v ∈ V with hop(u, v) ≥ h, there is at least one shortest path P from

u to v in G, such that any sub-path Q of P with at least h nodes contains a node w ∈M .
7. |M | = Õ(nx).

STACS 2021

21:8 Distance Computations in the Hybrid Network Model via Oracle Simulations

The following claim summarizes what is proven in [9] regarding the construction of a skeleton
graph from a set of random marked nodes, w.h.p.
▷ Claim 14 (Skeleton from Random Nodes). Given a graph G = (V, E), a value 0 < x < 1,
and a set of nodes M marked independently with probability nx−1, there is an algorithm in
the Hybrid model which constructs a skeleton graph Sx = (M, ES) in Õ(n1−x) rounds w.h.p.
If also given a single node s ∈ V , it is possible to construct Sx = (M ∪ { s } , ES), without
damaging the properties of Sx.

We extract the following basic claim, used in the proof of [9, Theorem 2.7] for a (1 + ϵ)-
approximation for SSSP, and slightly extend it to use for multiple source problem and arbitrary
approximation factors. It states that given a skeleton graph and a set of sources, if every
skeleton node knows any approximation to its distance from every source, then it is possible
to efficiently reach a state where every node in the graph knows the approximation for its
own distance from any of the sources. The idea is that each node locally explores its Õ(n1−x)
neighborhood and identifies for each source the best skeleton node in its neighborhood to go
through.
▷ Claim 15 (Extend Distances). [9, Theorem 2.7] Let G = (V, E), let Sx = (M, ES) be
a skeleton graph, and let V ′ ⊆ V be the set of source nodes. If for each source node
s ∈ V ′, each skeleton node v ∈M knows the (α, β)-approximate distance d̃ (v, s) such that
d(v, s) ≤ d̃(v, s) ≤ αd(v, s) + β, then each node u ∈ V can compute for all source nodes
s ∈ V ′, a value d̃(u, s) such that d(u, s) ≤ d̃(u, s) ≤ αd(u, s) + β in Õ(n1−x) rounds.

3 Oracles in the Hybrid model

This section is split into three parts. Initially, as preliminaries, we show simulations of the
LOCAL and Congested Clique models in the Hybrid model, citing [30] for the Congested Clique
simulation. Then, we devote a section to each of the two new oracle models in order to
introduce them and present their simulations in the Hybrid model.

3.1 Model Simulation Preliminaries
We will use simulations of the LOCAL and Congested Clique models as follows.
▶ Lemma 16 (LOCAL Simulation). Given a graph G = (V, E), and a skeleton graph Sx =
(M, ES), it is possible to simulate one round of the LOCAL model over Sx within Õ(n1−x)
rounds in G in the Hybrid model. That is, within Õ(n1−x) rounds in G in the Hybrid model,
any two adjacent nodes in Sx can communicate any amount of data between each other.

The proof follows trivially due to the definition of the Hybrid model and Property 2 in the
definition of a skeleton graph Sx, since in Sx two skeleton nodes are connected if they are
within Θ̃(n1−x) hops in the original graph G. Thus, one round of the LOCAL model over Sx

is obtained in the Hybrid network in Õ(n1−x) rounds, by having neighboring skeleton nodes
communicate through the local edges.
▶ Lemma 17 (Congested Clique Simulation). [30, Corollary 4.1.] Given a graph G = (V, E),
and a skeleton graph Sx = (M, ES), for some constant 0 < x < 1, it is possible to simulate
one round of the Congested Clique model over Sx in Õ(n2x−1 + n

x
2) rounds of the Hybrid

model on G, w.h.p. That is, within Õ(n2x−1 + n
x
2) rounds of the Hybrid model on G, w.h.p.,

every node v ∈M can, for each node u ∈M , each send a unique O(log n) bit message to u.

K. Censor-Hillel, D. Leitersdorf, and V. Polosukhin 21:9

3.2 Simulating the Oracle Model
Here, we define the Oracle model and then show how to efficiently simulate it over a skeleton
graph in the Hybrid model.

▶ Definition 18 (Oracle Model). In the Oracle model over a network G, there exists one
oracle node ℓ, which in every round can send to and receive from every node v a number of
O (log n)-bit messages that is equal to the degree of v in G.

▶ Theorem 19 (Oracle Simulation). Given a graph G = (V, E), for every constant 0 < x < 1,
there is an algorithm which simulates one round of the Oracle model, on a skeleton graph
Sx = (M, ES), in Õ(n1−x + n2x−1) rounds of the Hybrid model on G, w.h.p.

Proof. We prove the claim by showing how to simulate a round of the Oracle model in O(1)
rounds of the Congested Clique model and 1 round of the LOCAL model. Then, invoking the
simulations of Lemmas 16 and 17, gives the desired round complexity in the Hybrid model.

We show how to send messages to the oracle, and the receiving part is symmetric. The
pseudocode is given by Algorithm 1. First, each v ∈M broadcasts its degree in Sx using one
round of the Congested Clique model (Line 1) and selects as an oracle ℓ the node with largest
degree in Sx, breaking ties by identifier (Line 2). Then, the identifiers of the neighbors of ℓ

are broadcast using one round of the Congested Clique model (Line 3). The actual messages
are sent to these neighbors instead of to ℓ itself (Line 4) and ℓ learns all these messages in 1
round of the LOCAL model in Line 5.

Clearly, all the nodes select the same oracle ℓ (Line 2). Due to the definition of the Oracle
model, each node v ∈ M has degSx

(v) messages to send, and since degSx
(ℓ) ≥ degSx

(v),
there are enough neighbors of ℓ to receive one message from v per neighbor, which is why
Line 4 can work. ◀

Algorithm 1 Simulating the Oracle model in the Congested Clique with LOCAL.

1 Congested Clique model: v ∈M broadcasts degSx
(v)

2 Select an oracle ℓ← arg maxv∈M {
(
degSx

(v), v
)
}

3 Congested Clique model: v ∈M broadcasts if it is a neighbor of ℓ

4 Congested Clique model: v ∈M sends i-th message to i-th neighbor of ℓ for each i

5 LOCAL model: ℓ collects the messages from its neighbors

3.3 Simulating the Tiered Oracles Model
We further enhance our Oracle model and define the Tiered Oracles model, where, roughly
speaking, all nodes in parallel can learn all the edges adjacent to nodes with degrees in
lower degree buckets. To simulate the stronger Tiered Oracles model over a skeleton graph in
the Hybrid model, we need additional insights. Here, we use the fact that when we scatter
messages independently at random, denser neighborhoods are more likely to receive a given
message than sparse neighborhoods. In other words, while for simulating the Oracle model
we used the LOCAL round only to concentrate information in a single node ℓ, here we exploit
the information that each node can gather from its neighborhood.

▶ Definition 20 (Tiered Oracles Model). In the Tiered Oracles model over a network G, in
every round, suppose each node v has a set of O (log n)-bit messages Mv of size |Mv| = deg(v),
then each node u can receive all messages in Mv for every v such that deg(u) ≥ deg(v)/2.

STACS 2021

21:10 Distance Computations in the Hybrid Network Model via Oracle Simulations

To simulate the Tiered Oracles model, we first prove the following model-independent
tool.

▶ Lemma 21 (Sampled neighbors). Given is a graph G = (V, E). For a value c ≤ n, there is
a value x = Õ(n/c) such that the following holds w.h.p.: Let V ′ ⊆ V be a subset of |V ′| = x

nodes sampled uniformly at random from M . Then each node u ∈ V with deg (u) ≥ c has a
neighbor in V ′.

Proof. For some node u ∈ V , the probability of not having a neighbor sampled to the set V ′

is (1− deg (u)/n)x ≤ e−x·det (u)/n ≤ ex·c/n. Thus, there exists x = Õ(n/c) such that node u

has a neighbor in the set V ′, w.h.p. ◀

Finally, we show how to simulate the Tiered Oracles model over the skeleton graph in the
Hybrid model.

▶ Theorem 22 (Tiered Oracles Simulation). Given a graph G = (V, E), for every constant
0 < x < 1, there is an algorithm which simulates one round of the Tiered Oracles model, on
a skeleton graph Sx = (M, ES), in Õ(n1−x + n2x−1) rounds of the Hybrid model on G, w.h.p.

Proof. We prove the claim by reducing one round of the Tiered Oracles model to Õ(1) rounds
of the Congested Clique model followed by a round of the LOCAL model on the skeleton graph
Sx. By Lemmas 16 and 17, we obtain that the resulting round complexity is Õ(n1−x +n2x−1).

For each v ∈ M , let Mv be the set of messages, of size |Mv| = degSx
(v), which v

desires to broadcast. For each message in Mv node v ∈ M samples uniformly at random
x = Õ(2 · n/ degSx

(v)) nodes of M and sends the message to those nodes. As each node
sends and receives Õ(|M |) messages this can be done using with the well known routing
theorem of Lenzen [31, Theorem 3.7] by simulating Õ(1) rounds of the Congested Clique
model. Alternatively, this can be done in the same round complexity by applying the
algorithm for token routing [30, Theorem 2.2]. Afterwards, we simulate one round of the
LOCAL model over Sx for each node to learn tokens received by its neighbors in S. Due to
Lemma 21 (Sampled neighbors), each node u ∈ V learns messages from each v such that
degSx

(u) ≥ degSx
(v)/2 w.h.p. ◀

4 Shortest Paths Algorithms

4.1 Warm-Up: Exact SSSP
As a warm-up, we show how to compute exact SSSP in the Oracle model, and then we
simulate this on a skeleton graph in the Hybrid model in order to get exact SSSP in the
Hybrid model within Õ(n1/3) rounds. We note that later, in Section 4.3, we obtain this
complexity for exact distances from a much larger set, of O(n1/3) sources.

▶ Lemma 23 (Exact SSSP in the Oracle Model). There is a deterministic algorithm in the
Oracle model that given a weighted graph G = (V, E) and source s ∈ V solves exact SSSP in
O (1) rounds.

Proof. Let s ∈ V be the source node. We solve the problem in two communication rounds.
In the first round, oracle ℓ learns all of E by receiving from each node v its adjacent edges.
Afterwards, oracle ℓ, given all the edges in the graph G, locally computes the distance from
s to every other node. In the second round, oracle ℓ sends for each v ∈ V the value d(s, v).
It is clear that the algorithm computes SSSP from s ∈ V , and that it takes two rounds in
the Oracle model. ◀

K. Censor-Hillel, D. Leitersdorf, and V. Polosukhin 21:11

▶ Theorem 1 (Exact SSSP). Given a weighted graph G = (V, E), there is an algorithm in
the Hybrid model that computes an exact weighted SSSP in Õ(n1/3) rounds w.h.p.

Proof. Let s be the source node, and let x = 2/3. We start by constructing a skeleton
graph Sx = (M, ES), by sampling nodes with probability n−1/3 and using Claim 14 (Skeleton
from Random Nodes). Then, we simulate the algorithm given in Lemma 23 in the Oracle
model, which computes the distance dS(s, v) from s to each node v ∈M . By Property 5 of
the skeleton graph, for every v ∈ M , it holds that dS(s, v) = dG(s, v). To extend this and
compute the distance from s for each node v ∈ V , we apply Claim 15 (Extend Distances).

Constructing the skeleton graph takes O (h) = Õ(n1/3) rounds w.h.p., by Claim 14
(Skeleton from Random Nodes). Simulating the algorithm from Lemma 23 completes in
Õ(n1/3) rounds w.h.p. by Theorem 19 (Oracle Simulation). Applying Claim 15 (Extend
Distances) takes Õ(n1/3) rounds. Therefore, overall, the execution of the algorithm completes
in Õ(n1/3) rounds w.h.p. ◀

4.2 Exact nx-RSSP
Recall that in Definition 11 (nx-Random Sources Shortest Path (nx-RSSP)), we are given set
of roughly nx sources sampled independently with probability nx−1, and we need for each
node to compute its distance to each source. We do so by constructing a skeleton graph Sx

from the random sources. We show that using one round of the Tiered Oracles model, and
O(log n) rounds of the Congested Clique model, one can solve APSP over Sx. To do so, we
split the nodes of the graph into ⌈log n⌉ tiers by degree and compute APSP by proceeding
tier after tier and computing distances from current tier to all the tiers below.

▶ Lemma 24 (APSP in Congested Clique with Tiered Oracles). There is a deterministic
algorithm which, given a weighted graph G = (V, E), solves exact APSP on G using O (log |V |)
rounds of the Congested Clique model and one round of the Tiered Oracles model.

Proof. The pseudocode for the algorithm appears in Algorithm 2. We partition the nodes V

by their degrees into ⌈log |V |⌉ tiers, Tj =
{

v ∈ V : 2j ≤ deg(v) < 2j+1 }
for 0 ≤ j < ⌈log |V |⌉.

Denote by T>i =
⋃

k>i Tk the nodes in all tiers k > i and by T≤i =
⋃

k≤i Tk the nodes in all
tiers k ≤ i. Similarly, define T≥i and T<i. Denote by d≤i(u, v) the weight of the shortest
path between u and v that uses only edges adjacent to at least one node in T≤i.

Algorithm 2 Exact-APSP: Computes exact APSP using the Congested Clique and
Tiered Oracles models.

1 Tiered Oracles model: each v ∈ Ti broadcasts to u ∈ T≥i its incident edges
2 for i = ⌈log |V |⌉ − 1 downto 0 do
3 For each node u ∈ T≤i, each node v ∈ Ti computes

d̃(v, u)← min { d≤i(v, u), minw∈T>i
{ d̃(v, w) + d≤i(w, u) } }

4 Congested Clique model: v ∈ Ti sends to u ∈ T≤i, the value d̃(v, u)

The outline of our algorithm is as follows. We start by having each node v ∈ Ti broadcast
its incident edges to all the nodes in tiers greater than or equal to its own, that is, to all
u ∈ T≥i, using one round of the Tiered Oracles model (Line 1). Afterwards, in the loop
in Line 2, we compute the solution tier by tier, starting from the topmost tier, which contains
nodes knowing all the edges in the graph. While processing the i-th tier, every node v ∈ Ti

already knows its distance to every node in T>i, and so computes its distances to every node

STACS 2021

21:12 Distance Computations in the Hybrid Network Model via Oracle Simulations

u ∈ T≤i. A shortest path between such v and u can either pass through edges which are
all known to v, or be broken into a subpath from v to some node w ∈ T>i and then a path
from w to u which is known to v. Thus, we compute the distance from v ∈ Ti to the nodes
T≤i (Line 3). On Line 4, node v ∈ Ti, which knows for each node u ∈ T≤i the distance to u,
sends it to u.

For each u, v ∈ V , Algorithm 2 outputs a value d̃(u, v). We show that it is the correct
distance in G, that is d̃(u, v) = d(u, v).

One round of the Tiered Oracles model suffices for ensuring that for each tier, Ti, every
node v ∈ Ti knows all the edges incident to all the nodes u ∈ T≤i. Let v ∈ Ti, and u ∈ Tj

such that i ≥ j, observe that it holds that deg(v) ≥ 2i ≥ 1
22j = 1

2 deg(u), and therefore
after Line 1 node v knows the edges incident to u. Thus, each node v ∈ Ti knows enough
information to compute the function d≤i, which is the distance function in G limited to edges
incident to nodes in T≤i.

By induction on tier index i, we show that after iteration i of the loop in Line 2 all the
nodes in V know the exact distances to all nodes in tiers T≥i.

Base case: In iteration i = ⌈log |V |⌉ − 1, node v ∈ T⌈log |V |⌉−1 (if exists) in the topmost
tier knows about all the edges in E since it knows about all edges incident to nodes
T≤⌈log |V |⌉−1 = V . Thus, v can compute the solution to the entire APSP on G, since
d≤⌈log |V |⌉−1 = d. Since the set

{ d(v, w) + d≤⌈log |V |⌉−1(w, u) }
w∈T>⌈log |V |⌉−1

is empty, we get that d̃(v, u) = d≤⌈log |V |⌉−1(v, u) = d(v, u). That is, node v ∈ T⌈log |V |⌉−1
computes for each other node u ∈ V its weighted distance d(v, u) and sends it to u on Line 4.

Induction Step: In iteration i < ⌈log |V |⌉ − 1, consider v ∈ Ti and u ∈ T≤i, and
let P be a shortest path between them. Recall that node v can locally compute d≤i,
and thus knows the value d≤i(v, u) and for each w ∈ T>i, it knows the value d≤i(w, u).
Further, for each w ∈ T>i, the value d̃(v, w) = d(v, w) is known to v from one of the
previous iterations of the loop in Line 2, by the induction assumption. All values in the
set { d̃(v, w) + d≤i(w, u) }w∈T>i

∪ { d≤i(v, u) } are either infinite or correspond to some (not
necessary simple) path from v to u, thus d̃(v, u) ≥ d(v, u). To show that d̃(v, u) ≤ d(v, u),
we consider two cases. If P does not contain nodes from T>i, then d≤i(v, u) = d(v, u)
is the length of P . Otherwise, let w′ ∈ T>i be the last node on P (closest to u) which
belongs to T>i. By the induction hypothesis, v knows d̃(v, w′) = d(v, w′). Moreover, the
subpath from w′ to u only contains edges with at least one endpoint incident to node in
T≤i, thus d≤i(w′, u) = d(w′, u). For this node w′ the value { d̃(v, w′) + d≤i(w′, u) } belongs
to { d̃(v, w) + d≤i(w, u) }w∈T>i

. Thus, in both cases the computed d̃(v, u) is at most the
weighted length of P . Hence, d̃(v, u) = d(v, u). On Line 4, node v informs u about the
correct d(v, u), which completes the induction proof.

Lines 1 and 4 each take a single round of the Tiered Oracles model and the Congested Clique
model, respectively, and thus the execution of the entire algorithm takes O (log |V |) rounds
of the Congested Clique model and one round of the Tiered Oracles model. ◀

By simulating the algorithm given in Lemma 24 (APSP in Congested Clique
with Tiered Oracles) using Theorem 22 (Tiered Oracles Simulation) and Lemma 17
(Congested Clique Simulation), we get exact APSP over the skeleton graph, as follows.

▶ Corollary 25 (Exact APSP on Skeleton Graph). For any constant 0 < x < 1, there is an
algorithm in the Hybrid model that computes an exact weighted APSP on a skeleton graph
Sx = (M, ES), in Õ(n1−x + n2x−1) rounds w.h.p.

K. Censor-Hillel, D. Leitersdorf, and V. Polosukhin 21:13

Finally, we extend the result to nx-RSSP on G, by having each node in the graph learn
the information stored in the skeletons in its Õ(n1−x) neighborhood.

▶ Theorem 3 (nx-RSSP). Given a graph G = (V, E), 0 < x < 1, and a set of nodes M

sampled independently with probability nx−1, there is an algorithm in the Hybrid model that
ensures that every v ∈ V knows the exact, weighted distance from itself to every node in M

within Õ(n1/3 + n2x−1) rounds w.h.p.

Proof. Primarily, assume that x ≥ 2
3 . Otherwise, we add each node outside of M with

probability (n−1/3 − nx−1)/(1 − nx−1) into the set M . Thus, each node has probability
exactly (nx−1 · 1) + (1− nx−1) · (n−1/3 − nx−1)/(1− nx−1) = n−1/3 to be sampled into M ,
ensuring x = 2/3. We use Claim 14 (Skeleton from Random Nodes) to build a skeleton graph
Sx = (M, ES) in Õ(n1/3) rounds w.h.p. Then, we compute exact APSP on the skeleton graph
using Corollary 25 (Exact APSP on Skeleton Graph) in Õ(n1/3 + n2x−1) rounds w.h.p. By
Property 5 of the skeleton graph, for each v, u ∈M it holds that dS(v, u) = d(v, u), where
dS(v, u) is the distance in the skeleton graph. So, we apply Claim 15 (Extend Distances)
with α = 1, β = 0 and set of sources V ′ = M , to compute an exact weighted shortest paths
distances, from M to all of V , in additional Õ(n1/3) rounds w.h.p. ◀

Instantiating Theorem 3 with x = 2/3 gives n2/3-RSSP in Θ̃(n1/3) rounds w.h.p., which
is tight due to our lower bound given in Theorem 4 (Lower Bound Exact Shortest Paths,
Sources Sampled i.i.d). We extensively use our n2/3-RSSP algorithm for our following results.

4.3 Exact n1/3-SSP
We now present an improvement over the warm-up exact SSSP algorithm which we showed
previously, by providing an algorithm for exact shortest paths from a given set of n1/3 nodes
(n1/3-SSP) in Õ(n1/3) rounds. To do so, we create a skeleton graph and use our algorithm
for n2/3-RSSP algorithm to compute exact distances from the skeleton nodes to the entire
graph. Then, we adapt the behavior of the source nodes depending on the number of skeleton
nodes in their neighborhood (which is proportional to the density of the neighborhoods).
That is, nodes in sparse neighborhoods can broadcast the distances from themselves to all
the skeleton nodes which they see surrounding them, while a node in dense neighborhoods
can take over a skeleton node surrounding it and use it as a proxy to communicate efficiently
with the other skeleton nodes in the graph. We formalize this in this section, as well as
refer to Lemma 26 (Reassign Skeletons) which is a generic tool which performs this action of
taking over skeleton nodes as proxies.

We show the following fundamental algorithm, which allows assigning skeletons to help
other skeletons. That is, given a set of nodes A where each node in A sees many skeleton
nodes in its neighborhood, it is possible to assign skeleton nodes to service the nodes of A.
We use this to increase sending and receiving capacity of the nodes of A. This is a key tool
which we use in the proof of Theorem 5 (Exact n1/3 Sources Shortest Paths) and we believe
it may be useful for additional tasks.

▶ Lemma 26 (Reassign Skeletons). Given graph G = (V, E), a skeleton graph Sx = (M, ES),
a value k which is known to all the nodes, and nodes A ⊆ V such that each u ∈ A has at least
Θ̃(k · |A|) nodes Mu ⊆ M in its Θ̃(n1−x) neighborhood, there is an algorithm that assigns
Ku ⊆Mu nodes to u, where |Ku| = Ω̃(k), such that each node in M is assigned to at most
Õ(1) nodes in A. With respect to the set A, it is only required that every node in G must
know whether or not it itself is in A – that is, the entire contents of A do not have to be
globally known. The algorithm runs in Õ(n1−x) rounds in the Hybrid model, w.h.p.

STACS 2021

21:14 Distance Computations in the Hybrid Network Model via Oracle Simulations

Proof. The pseudocode is provided by Algorithm 3.

Algorithm 3 Reassign-Skeletons(A, k).

1 Compute |A| by running Aggregate-And-Broadcast
2 Skeleton node v ∈M learns its Õ(n1−x)-hop neighborhood
3 Skeleton node v ∈M samples each u ∈ A ∩N

Θ̃(n1−x)
G (v) with probability 1

|A|
4 Skeleton node v ∈M informs each sampled node u about v ∈ Ku

First, each node w learns the size of the set A by invoking using aggregate and broadcast
routine [8, Theorem 2.2] with value 1 if w ∈ A and 0 otherwise, and the summation function
(Line 1). Then, each skeleton node v ∈M , learns its Θ̃(n1−x)-hop neighborhood (Line 2),
and in particular it learns the nodes Av = A ∩N

Θ̃(n1−x)
G (v). Then, v samples each u ∈ Av

independently with probability 1
|A| (Line 3). Afterwards, v informs each node u it sampled

on the previous stage that v ∈ Ku (Line 4).
For every v ∈M , since |Av| ≤ |A|, and since v samples nodes from there Av independently

with probability 1
|A| , by Chernoff Bounds each v assigns itself to at most Õ(1) nodes a ∈ Av

w.h.p. Hence, by a union bound over all skeleton nodes, each skeleton node is assigned to
Õ(1) nodes w.h.p.

For every u ∈ A, since it is sampled by at least Ω̃(k · |A|) skeleton nodes independently
with probability 1

|A| , by Chernoff Bounds it is sampled by |Ku| = Ω̃(1) skeleton nodes w.h.p.
Thus, by union bound over all skeleton nodes, each u ∈ A has |Ku| = Ω̃(1) assigned nodes
w.h.p.

By [8, Theorem 2.2], Line 1 takes Õ(1) rounds w.h.p., and Lines 2 and 4 take Õ(n1−x)
rounds, and thus the entire execution completes in Õ(n1−x) rounds w.h.p. ◀

Now we apply Token Dissemination [9, Theorem 2.1] or Lemma 26 (Reassign Skeletons)
depending on density of each source’s neighborhood and show how to compute exact n1/3-SSP
in Õ(n1/3) rounds. For sources in “sparse” neighborhoods, in which there is a small number
of skeleton nodes, we use Token Dissemination to inform all nodes about their distances to
those skeletons. For source v with “dense” neighborhood, in which there are many skeleton
nodes, we use Lemma 26 (Reassign Skeletons) to get at least one skeleton node u which
participates in the round of the Congested Clique model on behalf of that source and sends
each other skeleton node v′ the distance d(v, v′).

▶ Theorem 5 (Exact n1/3 Sources Shortest Paths). Given a weighted graph G = (V, E), and
a set of sources U , such that |U | = O(n1/3), there exists an algorithm, at the end of which
each v ∈ V knows its distance from every s ∈ U , which runs in Õ(n1/3) rounds w.h.p.

Proof. The pseudocode for the algorithm appears in Algorithm 4.
Without loss of generality the set of nodes U is globally known (it can be disseminated

in Õ(n1/6) rounds w.h.p. using Token Dissemination from [9, Theorem 2.1]). We build
M ⊆ V by marking nodes independently with probability n−1/3 (Line 1). Then we run
the algorithm from Theorem 3 (nx-RSSP) with x = 2/3 to obtain w.h.p. n2/3-RSSP from
the set of nodes M (Line 2), such that w.h.p. every u ∈ V knows its distance to every
node in M . Afterwards, we apply Claim 14 (Skeleton from Random Nodes) to construct a
skeleton graph S2/3 = (M, ES) w.h.p. Then, each source learns the information in its h-hop
neighborhood (Line 4), for h ∈ Θ̃(n1/3). In particular, it counts the skeleton nodes in its
h-hop neighborhood.

K. Censor-Hillel, D. Leitersdorf, and V. Polosukhin 21:15

Algorithm 4 Exact-n1/3-SSP: Computes an exact weighted n1/3-SSP. Routine for
node u ∈ V .

1 Join M independently with probability n−1/3

2 Compute n2/3-RSSP from M

3 Construct skeleton graph S2/3 = (M, ES)
4 Learn h = Θ̃(n1/3)-hop neighborhood
5 if u ∈ U then
6 if

∣∣Nh
G(u) ∩M

∣∣ = Õ(n1/3) then
7 Participate in Token-Dissemination with a token ⟨u, v′, d(v′, u)⟩ for each

v′ ∈M ∩Nh
G(s)

8 else
9 Ku ←Reassign-Skeletons

({
u :

∣∣Nh
G(u) ∩M

∣∣ = Ω̃(n1/3)
}

, Õ(1)
)

10 Send each v ∈ Ku the values d(u, v′) for each v′ ∈M

11 if u ∈M then
12 In the Congested Clique model: for each v′ ∈M and each v ∈ U such that u ∈ Kv

send d(v, v′) to v′

13 For each s ∈ U , compute d̃(u, s) by Equation (1) and output it
14 Apply Claim 15, which given distances from skeleton to sources d̃ : M × U 7→ N

extends it to distances from each nodes to sources d̃ : V × U 7→ N

If a source finds that the number of skeleton nodes in its h-hop neighborhood is Õ(n1/3),
then it participates in a token dissemination protocol ([9, Theorem 2.1]) and w.h.p. informs
all the graph about its distance to these skeleton nodes.

Otherwise, each source u ∈ U which finds that there are at least Ω̃(n1/3) skeleton nodes
in its h-hop neighborhood, applies Lemma 26 (Reassign Skeletons) with k = Õ(1) and
A = {u :

∣∣Nh
G(u) ∩M

∣∣ = Ω̃(n1/3) } and receives Ku ⊆ Nh
G(u) ∩M , a set of Ω̃(1) skeletons.

Such a source u ∈ U sends by local edges to v ∈ Ku the distance d(u, v′) to each v′ ∈ M

(Line 10). Each skeleton node u ∈M sends the distances d(s, v′) to each v′ ∈M , for each
source node s ∈ U that it is assigned to, by simulating the Congested Clique model. If
skeleton node u ∈ M for source s ∈ U did not receive the distance from s, it computes it
using Equation (1) (Line 13) based on the information it received in Line 7.

d̃(u, s) = min { dh(u, s), min
v′∈M

{ d(u, v′) + dh(v′, s) } } 4 (1)

After each skeleton knows the distance to each source, we apply Claim 15 to compute
distances from sources to all the nodes.

▶ Lemma 27. After Line 13, each u ∈M knows d(v, s) for each s ∈ U w.h.p.

By Lemma 27, whose proof appears in the full version of the paper [15], each node in M

knows the distance to each node in U , thus by Claim 15 (Extend Distances) with α = 1, β = 0
there is an algorithm to compute shortest paths distance from U .

By Theorem 3 (nx-RSSP) with x = 2
3 , Line 2 completes in Õ(n1/3) rounds w.h.p. For

Line 3, by Claim 14 (Skeleton from Random Nodes), the round complexity, w.h.p., is Õ(n1/3)
as well. Line 4 completes in Õ(n1/3) rounds. Since there are at most ℓ = Õ(n1/3) tokens per
source and k = Ω

(
n2/3)

tokens overall, Line 7 takes Õ(n1/3) rounds w.h.p. by [9, Theorem
2.1]. By Lemma 26 (Reassign Skeletons), Line 9 takes Õ(n1/3) rounds w.h.p. All skeleton
nodes are assigned to some helpers in their Õ(n1/3)-hop neighborhood by Line 9, so Line 4

STACS 2021

21:16 Distance Computations in the Hybrid Network Model via Oracle Simulations

takes Õ(n1/3) rounds. Since each skeleton selects Õ(1) sources w.h.p. in Line 9 by Lemma 26
(Reassign Skeletons), Line 12 simulates Õ(1) rounds of the Congested Clique model and takes
Õ(n1/3) rounds by Lemma 17 (Congested Clique Simulation) w.h.p. Finally by Claim 15
(Extend Distances), Line 14 for x = 2

3 takes Õ(n1/3) rounds as well. Thus, the overall
execution of the algorithm takes Õ(n1/3) rounds. ◀

References
1 Amir Abboud, Keren Censor-Hillel, and Seri Khoury. Near-linear lower bounds for distributed

distance computations, even in sparse networks. In Cyril Gavoille and David Ilcinkas, editors,
Distributed Computing - 30th International Symposium, DISC 2016, Paris, France, September
27-29, 2016. Proceedings, volume 9888 of Lecture Notes in Computer Science, pages 29–42.
Springer, 2016. doi:10.1007/978-3-662-53426-7_3.

2 Yehuda Afek, Gad M. Landau, Baruch Schieber, and Moti Yung. The power of multimedia:
Combining point-to-point and multiaccess networks. Inf. Comput., 84(1):97–118, 1990. doi:
10.1016/0890-5401(90)90035-G.

3 Udit Agarwal and Vijaya Ramachandran. Distributed weighted all pairs shortest paths through
pipelining. In 2019 IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2019, Rio de Janeiro, Brazil, May 20-24, 2019, pages 23–32. IEEE, 2019. doi:
10.1109/IPDPS.2019.00014.

4 Udit Agarwal and Vijaya Ramachandran. Faster deterministic all pairs shortest paths in
congest model. In Christian Scheideler and Michael Spear, editors, SPAA ’20: 32nd ACM
Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, July 15-17,
2020, pages 11–21. ACM, 2020. doi:10.1145/3350755.3400256.

5 Udit Agarwal, Vijaya Ramachandran, Valerie King, and Matteo Pontecorvi. A deterministic
distributed algorithm for exact weighted all-pairs shortest paths in õ(n 3/2) rounds. In Calvin
Newport and Idit Keidar, editors, Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing, PODC 2018, Egham, United Kingdom, July 23-27, 2018, pages
199–205. ACM, 2018. doi:10.1145/3212734.3212773.

6 Bertie Ancona, Keren Censor-Hillel, Mina Dalirrooyfard, Yuval Efron, and Virginia Vassilevska
Williams. Distributed distance approximation. CoRR, abs/2011.05066, 2020. arXiv:2011.
05066.

7 Arash Asadi, Vincenzo Mancuso, and Rohit Gupta. An sdr-based experimental study of
outband D2D communications. In 35th Annual IEEE International Conference on Computer
Communications, INFOCOM 2016, San Francisco, CA, USA, April 10-14, 2016, pages 1–9.
IEEE, 2016. doi:10.1109/INFOCOM.2016.7524372.

8 John Augustine, Mohsen Ghaffari, Robert Gmyr, Kristian Hinnenthal, Christian Scheideler,
Fabian Kuhn, and Jason Li. Distributed computation in node-capacitated networks. In Chris-
tian Scheideler and Petra Berenbrink, editors, The 31st ACM on Symposium on Parallelism
in Algorithms and Architectures, SPAA 2019, Phoenix, AZ, USA, June 22-24, 2019, pages
69–79. ACM, 2019. doi:10.1145/3323165.3323195.

9 John Augustine, Kristian Hinnenthal, Fabian Kuhn, Christian Scheideler, and Philipp Schnei-
der. Shortest paths in a hybrid network model. In Shuchi Chawla, editor, Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 1280–1299. SIAM, 2020. doi:10.1137/1.9781611975994.78.

10 Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-
optimal approximate shortest paths and transshipment in distributed and streaming models.
In Andréa W. Richa, editor, 31st International Symposium on Distributed Computing, DISC
2017, October 16-20, 2017, Vienna, Austria, volume 91 of LIPIcs, pages 7:1–7:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.DISC.2017.7.

11 Aaron Bernstein and Danupon Nanongkai. Distributed exact weighted all-pairs shortest paths
in near-linear time. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA,
June 23-26, 2019, pages 334–342. ACM, 2019. doi:10.1145/3313276.3316326.

https://doi.org/10.1007/978-3-662-53426-7_3
https://doi.org/10.1016/0890-5401(90)90035-G
https://doi.org/10.1016/0890-5401(90)90035-G
https://doi.org/10.1109/IPDPS.2019.00014
https://doi.org/10.1109/IPDPS.2019.00014
https://doi.org/10.1145/3350755.3400256
https://doi.org/10.1145/3212734.3212773
http://arxiv.org/abs/2011.05066
http://arxiv.org/abs/2011.05066
https://doi.org/10.1109/INFOCOM.2016.7524372
https://doi.org/10.1145/3323165.3323195
https://doi.org/10.1137/1.9781611975994.78
https://doi.org/10.4230/LIPIcs.DISC.2017.7
https://doi.org/10.1145/3313276.3316326

K. Censor-Hillel, D. Leitersdorf, and V. Polosukhin 21:17

12 Keren Censor-Hillel, Michal Dory, Janne H. Korhonen, and Dean Leitersdorf. Fast approximate
shortest paths in the congested clique. In Peter Robinson and Faith Ellen, editors, Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto,
ON, Canada, July 29 - August 2, 2019, pages 74–83. ACM, 2019.

13 Keren Censor-Hillel, Michal Dory, Janne H. Korhonen, and Dean Leitersdorf. Fast approximate
shortest paths in the congested clique. In Peter Robinson and Faith Ellen, editors, Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto,
ON, Canada, July 29 - August 2, 2019, pages 74–83. ACM, 2019.

14 Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami Paz, and Jukka
Suomela. Algebraic methods in the congested clique. Distributed Comput., 32(6):461–478,
2019. doi:10.1007/s00446-016-0270-2.

15 Keren Censor-Hillel, Dean Leitersdorf, and Volodymyr Polosukhin. Distance computations
in the hybrid network model via oracle simulations. CoRR, abs/2010.13831, 2020. arXiv:
2010.13831.

16 Keren Censor-Hillel, Dean Leitersdorf, and Elia Turner. Sparse matrix multiplication and
triangle listing in the congested clique model. Theor. Comput. Sci., 809:45–60, 2020. doi:
10.1016/j.tcs.2019.11.006.

17 Yong Cui, Hongyi Wang, and Xiuzhen Cheng. Channel allocation in wireless data center
networks. In INFOCOM 2011. 30th IEEE International Conference on Computer Communi-
cations, Joint Conference of the IEEE Computer and Communications Societies, 10-15 April
2011, Shanghai, China, pages 1395–1403. IEEE, 2011. doi:10.1109/INFCOM.2011.5934925.

18 Michal Dory and Merav Parter. Exponentially faster shortest paths in the congested clique.
In Yuval Emek and Christian Cachin, editors, PODC ’20: ACM Symposium on Principles
of Distributed Computing, Virtual Event, Italy, August 3-7, 2020, pages 59–68. ACM, 2020.
doi:10.1145/3382734.3405711.

19 Michael Elkin. Distributed exact shortest paths in sublinear time. J. ACM, 67(3):15:1–15:36,
2020. doi:10.1145/3387161.

20 Michael Feldmann, Kristian Hinnenthal, and Christian Scheideler. Fast hybrid network
algorithms for shortest paths in sparse graphs. CoRR, abs/2007.01191, 2020. arXiv:2007.
01191.

21 Sebastian Forster and Danupon Nanongkai. A faster distributed single-source shortest paths
algorithm. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 686–697. IEEE
Computer Society, 2018. doi:10.1109/FOCS.2018.00071.

22 Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks cannot compute their
diameter in sublinear time. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, pages 1150–1162. SIAM, 2012. doi:10.1137/1.9781611973099.91.

23 François Le Gall. Further algebraic algorithms in the congested clique model and applications
to graph-theoretic problems. In Cyril Gavoille and David Ilcinkas, editors, Distributed
Computing - 30th International Symposium, DISC 2016, Paris, France, September 27-29, 2016.
Proceedings, volume 9888 of Lecture Notes in Computer Science, pages 57–70. Springer, 2016.
doi:10.1007/978-3-662-53426-7_5.

24 Mohsen Ghaffari and Jason Li. Improved distributed algorithms for exact shortest paths. In
Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA,
USA, June 25-29, 2018, pages 431–444. ACM, 2018. doi:10.1145/3188745.3188948.

25 Robert Gmyr, Kristian Hinnenthal, Christian Scheideler, and Christian Sohler. Distributed
monitoring of network properties: The power of hybrid networks. In Ioannis Chatzigiannakis,
Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
volume 80 of LIPIcs, pages 137:1–137:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.ICALP.2017.137.

STACS 2021

https://doi.org/10.1007/s00446-016-0270-2
http://arxiv.org/abs/2010.13831
http://arxiv.org/abs/2010.13831
https://doi.org/10.1016/j.tcs.2019.11.006
https://doi.org/10.1016/j.tcs.2019.11.006
https://doi.org/10.1109/INFCOM.2011.5934925
https://doi.org/10.1145/3382734.3405711
https://doi.org/10.1145/3387161
http://arxiv.org/abs/2007.01191
http://arxiv.org/abs/2007.01191
https://doi.org/10.1109/FOCS.2018.00071
https://doi.org/10.1137/1.9781611973099.91
https://doi.org/10.1007/978-3-662-53426-7_5
https://doi.org/10.1145/3188745.3188948
https://doi.org/10.4230/LIPIcs.ICALP.2017.137

21:18 Distance Computations in the Hybrid Network Model via Oracle Simulations

26 Kai Han, Zhiming Hu, Jun Luo, and Liu Xiang. RUSH: routing and scheduling for hybrid
data center networks. In 2015 IEEE Conference on Computer Communications, INFOCOM
2015, Kowloon, Hong Kong, April 26 - May 1, 2015, pages 415–423. IEEE, 2015. doi:
10.1109/INFOCOM.2015.7218407.

27 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic almost-
tight distributed algorithm for approximating single-source shortest paths. In Daniel Wichs
and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 489–498.
ACM, 2016. doi:10.1145/2897518.2897638.

28 Stephan Holzer and Nathan Pinsker. Approximation of distances and shortest paths in the
broadcast congest clique. In Emmanuelle Anceaume, Christian Cachin, and Maria Gradinariu
Potop-Butucaru, editors, 19th International Conference on Principles of Distributed Systems,
OPODIS 2015, December 14-17, 2015, Rennes, France, volume 46 of LIPIcs, pages 6:1–6:16.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik,2015. doi:10.4230/LIPIcs.OPODIS.2015.6.

29 He Huang, Xiangke Liao, Shanshan Li, Shaoliang Peng, Xiaodong Liu, and Bin Lin. The
architecture and traffic management of wireless collaborated hybrid data center network. In
Dah Ming Chiu, Jia Wang, Paul Barford, and Srinivasan Seshan, editors, ACM SIGCOMM
2013 Conference, SIGCOMM’13, Hong Kong, China, August 12-16, 2013, pages 511–512.
ACM, 2013. doi:10.1145/2486001.2491724.

30 Fabian Kuhn and Philipp Schneider. Computing shortest paths and diameter in the hybrid
network model. In Yuval Emek and Christian Cachin, editors, PODC ’20: ACM Symposium
on Principles of Distributed Computing, Virtual Event, Italy, August 3-7, 2020, pages 109–118.
ACM, 2020. doi:10.1145/3382734.3405719.

31 Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In
Panagiota Fatourou and Gadi Taubenfeld, editors, ACM Symposium on Principles of Dis-
tributed Computing, PODC ’13, Montreal, QC, Canada, July 22-24, 2013, pages 42–50. ACM,
2013. doi:10.1145/2484239.2501983.

32 Christoph Lenzen and Boaz Patt-Shamir. Fast partial distance estimation and applications.
In Chryssis Georgiou and Paul G. Spirakis, editors, Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21
- 23, 2015, pages 153–162. ACM, 2015. doi:10.1145/2767386.2767398.

33 Christoph Lenzen, Boaz Patt-Shamir, and David Peleg. Distributed distance computation
and routing with small messages. Distributed Comput., 32(2):133–157, 2019. doi:10.1007/
s00446-018-0326-6.

34 Christoph Lenzen and David Peleg. Efficient distributed source detection with limited
bandwidth. In Panagiota Fatourou and Gadi Taubenfeld, editors, ACM Symposium on
Principles of Distributed Computing, PODC ’13, Montreal, QC, Canada, July 22-24, 2013,
pages 375–382. ACM, 2013. doi:10.1145/2484239.2484262.

35 Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths. In
David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pages 565–573. ACM, 2014. doi:10.1145/2591796.2591850.

36 David Peleg, Liam Roditty, and Elad Tal. Distributed algorithms for network diameter
and girth. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer,
editors, Automata, Languages, and Programming - 39th International Colloquium, ICALP
2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II, volume 7392 of Lecture Notes in
Computer Science, pages 660–672. Springer, 2012. doi:10.1007/978-3-642-31585-5_58.

37 Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61(2):389–
401, 2011. doi:10.1007/s00453-010-9401-5.

38 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. SIAM J. Comput., 41(5):1235–1265, 2012. doi:10.1137/
11085178X.

https://doi.org/10.1109/INFOCOM.2015.7218407
https://doi.org/10.1109/INFOCOM.2015.7218407
https://doi.org/10.1145/2897518.2897638
https://doi.org/10.4230/LIPIcs.OPODIS.2015.6
https://doi.org/10.1145/2486001.2491724
https://doi.org/10.1145/3382734.3405719
https://doi.org/10.1145/2484239.2501983
https://doi.org/10.1145/2767386.2767398
https://doi.org/10.1007/s00446-018-0326-6
https://doi.org/10.1007/s00446-018-0326-6
https://doi.org/10.1145/2484239.2484262
https://doi.org/10.1145/2591796.2591850
https://doi.org/10.1007/978-3-642-31585-5_58
https://doi.org/10.1007/s00453-010-9401-5
https://doi.org/10.1137/11085178X
https://doi.org/10.1137/11085178X

K. Censor-Hillel, D. Leitersdorf, and V. Polosukhin 21:19

39 Jeffrey D. Ullman and Mihalis Yannakakis. High-probability parallel transitive-closure algo-
rithms. SIAM J. Comput., 20(1):100–125, 1991. doi:10.1137/0220006.

40 Stefano Vissicchio, Laurent Vanbever, and Olivier Bonaventure. Opportunities and research
challenges of hybrid software defined networks. Comput. Commun. Rev., 44(2):70–75, 2014.
doi:10.1145/2602204.2602216.

41 Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papagiannaki, T. S. Eugene
Ng, Michael Kozuch, and Michael P. Ryan. c-through: part-time optics in data centers. In
Shivkumar Kalyanaraman, Venkata N. Padmanabhan, K. K. Ramakrishnan, Rajeev Shorey,
and Geoffrey M. Voelker, editors, Proceedings of the ACM SIGCOMM 2010 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communications, New
Delhi, India, August 30 -September 3, 2010, pages 327–338. ACM, 2010. doi:10.1145/1851182.
1851222.

STACS 2021

https://doi.org/10.1137/0220006
https://doi.org/10.1145/2602204.2602216
https://doi.org/10.1145/1851182.1851222
https://doi.org/10.1145/1851182.1851222

Simple Multi-Pass Streaming Algorithms for
Skyline Points and Extreme Points
Timothy M. Chan !

Dept. of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Saladi Rahul !

Dept. of Computer Science and Automation, Indian Institute of Science Bangalore, India

Abstract
In this paper, we present simple randomized multi-pass streaming algorithms for fundamental
computational geometry problems of finding the skyline (maximal) points and the extreme points of
the convex hull. For the skyline problem, one of our algorithm occupies O(h) space and performs
O(log n) passes, where h is the number of skyline points. This improves the space bound of the
currently best known result by Das Sarma, Lall, Nanongkai, and Xu [VLDB’09] by a logarithmic
factor. For the extreme points problem, we present the first non-trivial result for any constant
dimension greater than two: an O(h logO(1) n) space and O(logd n) pass algorithm, where h is
the number of extreme points. Finally, we argue why randomization seems unavoidable for these
problems, by proving lower bounds on the performance of deterministic algorithms for a related
problem of finding maximal elements in a poset.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases multi-pass streaming algorithms, skyline, convex hull, extreme points,
randomized algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.22

Funding Timothy M. Chan: Work supported in part by NSF Grant CCF-1814026.
Saladi Rahul: Work supported by IISc start-up research grant.

1 Introduction

1.1 Multi-pass streaming model
The streaming model has emerged as a popular model to handle massive data. Unfortunately,
streaming algorithms for geometric problems that make a single pass over the input and work
with a small amount of space are typically unable to give exact solutions. This motivates the
multi-pass streaming model, where the algorithm is allowed to make multiple passes over the
input. The input sequence remains unchanged in each pass. The goal is to minimize the
amount of working space (or memory) and the number of passes. The data is assumed to be
explicitly stored either in a disk or in a cloud, which facilitates multiple passes over it, but
since each pass is costly it is essential to minimize the passes.

Summarization queries are the most widely studied class of problems in the streaming
model. The focus of this paper is geometric summarization queries in the multi-pass streaming
model. Specifically, we study two fundamental geometric summarization problems: the skyline
problem, asking for the “dominating” points in the data, and the extreme points problem,
asking for the vertices of the convex hull, which succinctly represents the shape of the point
cloud. The goal is to design algorithms which are output-sensitive in space (i.e., near O(h)
space when there are h skyline/extreme points) and perform few passes. Note that O(h)
space1 is indeed the best possible if we want to store the skyline/extreme points in memory,
rather than write to an output stream.

1 Throughout the paper, all space bounds are measured in words, not bits. A word may store one input
point, or an O(log n)-bit number.

© Timothy M. Chan and Saladi Rahul;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 22; pp. 22:1–22:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tmc@illinois.edu
mailto:saladi@iisc.ac.in
https://doi.org/10.4230/LIPIcs.STACS.2021.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Simple Multi-Pass Streaming Algorithms for Skyline Points and Extreme Points

We will focus on algorithms which are optimized to work efficiently even for the worst-case
input. For the problems of interest in this paper (such as the skyline problem), one could
argue that an incremental algorithm which updates the skyline as each new element is
inserted will work well for randomly generated inputs (for example, for points uniformly
distributed in a square, any prefix of the input has an expected O(log n) number of skyline
points, and so it is not difficult to obtain a solution using O(log n) expected space, with just
one pass). However, point sets encountered in practice may not be randomly distributed.

1.2 Skyline points
Let P be a set of n points lying in Rd for a constant d. A point p = (p1, . . . , pd) dominates
another point q = (q1, . . . , qd) if pi > qi for all i ∈ {1, . . . , d}. In the skyline (also called
maxima) problem, the goal is to find all points p ∈ P such that p is not dominated by any other
point in P . The problem has been extensively studied by the computational geometry [20]
and the database community (e.g., see [22] and the references therein). Currently, the best
known result in the word-RAM model is an O(n logd−3 n)-time algorithm by Chan, Larsen
and Pǎtraşcu [6] (also see [1] and [14] for the best-known output-sensitive algorithms in the
word-RAM model and the I/O model, respectively, and [2] for instance-optimal algorithms
in R2 and R3).

The formal study of the skyline problem in the multi-pass streaming model was initiated by
Das Sarma, Lall, Nanongkai, and Xu [11]. The naive O(nh)-time output-sensitive algorithm
(e.g., see [8]) can be implemented in the multi-pass setting with O(h) space but requires
O(h) passes, where h is the number of skyline points of P . Das Sarma et al. proposed a new
randomized algorithm using significantly fewer number of passes: it requires O(h log n) space
and just O(log n) passes, with high probability,2 for any constant dimension d.

Alternatively, it is not difficult to obtain a deterministic algorithm with O(h log n)
space and O(logd−1 n) passes, by adapting Kirkpatrick and Seidel’s output-sensitive skyline
algorithm [16] in the multi-pass setting, similar to Chan and Chen’s multi-pass adaptation [5]
of Kirkpatrick and Seidel’s output-sensitive 2-d convex hull algorithm [17]; see the appendix.
However, with this approach, the number of logarithmic factors grows as the dimension
increases.

New randomized algorithms. Our first result is a variant of Das Sarma et al.’s algorithm
that solves the d-dimensional skyline problem using O(log n) passes and O(h) space – this
improves space by a logarithmic factor. Our bounds also hold with high probability. Although
the improvement is not big, the highlight here is the simplicity of our analysis compared to
the longer and more complicated analysis by Das Sarma et al. [11]. (The simpler analysis is
well-suited for teaching purposes.) Also, unlike their analysis, which is specialized to the
skyline problem, our analysis naturally extends to the extreme points problem, as we will
discuss later.

Our algorithm can also achieve a trade-off: by increasing the space bound to O(bh) for a
parameter b, the number of passes can be lowered to O(logb n). For example, setting b = nδ

gives O(hnδ) space and O(1/δ) passes, for any δ ∈ (0, 1]. Setting b = logδ n for an arbitrarily
small constant δ > 0 gives O(h logδ n) space and O

(
log n

log log n

)
passes.

In the O(h)-space regime, we also describe a refinement of the algorithm that further
reduces the number of passes from O(log n) to O

(
log h + log n

log log n

)
, which is slightly sublog-

arithmic, assuming that h is not too big. These bounds hold in expectation.

2 Throughout this paper, “with high probability” will imply “with probability at least 1 − 1
nc ”, where c is

a sufficiently large constant.

T. M. Chan and S. Rahul 22:3

Our randomized algorithms for skyline points, like previous work [11], extends (with the
same bounds) to the general setting of a partially ordered set, or poset. A poset is a pair
(P,≻), where P is the set of n elements and ≻ is an irreflexive, transitive binary relation
on the elements of P . The problem here is to find all the maximal elements in a poset, i.e.,
elements a ∈ P such that there is no element b ∈ P with b ≻ a. We only assume an oracle
that can test whether a ≻ b for any two given elements a and b.

Is randomization essential? A natural question is whether randomization is essential for
the algorithms proposed in this paper. At least for the poset problem we can answer this
question. We show that any deterministic algorithm which uses O(h) space to find all
maximal points in a poset has to perform Ω(h) passes. In other words, among the class of
deterministic algorithms to compute maximal elements in a poset, the naive idea of finding
one maximal element per pass is the best possible algorithm. Therefore, randomization is
not just necessary, but in fact leads to dramatically improved results. Our lower bound proof
is based on a new, interesting adversarial argument.

1.3 Extreme points
Given a set P of n points lying in Rd, a point p ∈ P is an extreme point if conv(P) ̸=
conv(P \ {p}), where conv(P) denotes the convex hull of P . In the multi-pass setting, this
problem was first studied in R2 by Chan and Chen [5], who obtained an algorithm with
O(h log2 n) space and O(log2 n) passes, and then recently by Farach-Colton, Li, and Tsai [12],
who improved the bounds to O(h log2 n) space and O(log n) passes. These solutions are based
on the output-sensitive divide-and-conquer algorithms of Kirkpatrick and Seidel [17] and
Chan, Snoeyink, and Yap [7], and hence, they inherently work only in R2 (and possibly in
R3) – in dimension greater than three, these divide-and-conquer algorithms have complexity
at least the number of hull facets, which can be much larger than the number of hull vertices.

In this work, we present the first non-trivial result for any constant dimension greater
than two: an O(h logO(1) n)-space, O(logd n)-pass algorithm. Our solution requires extending
our skyline algorithm in a nontrivial fashion.

M

p

fp

In the non-streaming setting, O(nh)-time output-sensitive algorithms for the extreme
points problem were reported independently by Clarkson [8], Chan [3], Ottmann et al. [19],
and Dula and Helagason [15]. These algorithms are all similar and work by incrementally
building a subset M ⊆ P of the extreme points of the upper hull. For each input point p ∈ P ,
we first check if p lies below or above the current upper hull of M – this step reduces to a
linear program with O(h) constraints. If p lies below, then it can be removed. Otherwise, p

may not necessarily be extreme in P , but we can shoot an upward ray from p to hit a facet
fp ∈ conv(P) – this step reduces to a linear program with n constraints.3 The d + 1 vertices
defining fp are extreme in P and can be added to M . The whole algorithm requires solving

3 A version of the algorithm by Clarkson [8] and Dula and Helagason [15] avoids linear programming in
this step and instead finds a point extreme in the direction orthogonal to fp, and adds to M . If p is
still above the current upper hull of M , we repeat.

STACS 2021

22:4 Simple Multi-Pass Streaming Algorithms for Skyline Points and Extreme Points

O(n) linear programs with O(h) constraints and O(h) linear programs with n constraints,
and thus takes O(nh) time by known linear-time linear programming algorithms in constant
dimensions [4, 9, 21].4 Because it finds a constant number of extreme points per iteration,
the algorithm is inherently sequential and requires Ω(h) passes.

In our solution, we use randomization instead to find more extreme points at each iteration,
by generating O(h) linear programs with n constraints that can be solved in parallel, for
each of logarithmically many rounds.

The rest of the paper is organized as follows. In Sections 2 and 3, we present our
algorithms for computing skyline points and extreme points, respectively. In Section 4 we
prove a lower bound on the performance of any deterministic algorithm for finding the
maximal elements in a poset.

2 Randomized algorithms for skyline points in Rd

2.1 Main algorithm
In this section we will prove the following result.

▶ Theorem 1. Let P be a set of n points in Rd, and h be the number of skyline points.
Then, with high probability, there is an O(bh)-space, O(logb n)-pass algorithm to compute the
skyline points, where b is a parameter in the range [2, n/h].

Our algorithm is a refinement of Das Sarma et al.’s algorithm [11]. The general idea is to
use random sampling to somehow prune a fraction of the input points in each round. The
right sample size requires knowledge of h, which we guess by repeated doubling.

Let P be a set of n points in Rd. The algorithm consists of two stages. In Stage I, the
goal is to handle the case when h ≤ logb n. Here, we can just run a known naive algorithm
(e.g., see [8]) which finds one skyline point per pass and thus requires h ≤ logb n passes. For
example, having found skyline points p1, . . . , pi−1 in the first i− 1 passes, we can find the
point, pi ∈ P , with the largest x-coordinate value among the points of P not dominated by
p1, . . . , pi−1, in the next pass. If some skyline points have not been found after logb n passes,
we proceed to Stage II. Let c be a sufficiently large constant.

The set M maintains the current list of skyline points found by the algorithm. In Stage-II,
an iteration will consist of two passes. Let Pi denote the set of unclassified points at the
beginning of the i-th iteration (where i ≥ 1), i.e., the points of Pi which have not yet
been labeled as skyline or non-skyline. In the first pass of the i-th iteration (step 3a), we
independently sample each point of Pi with probability cri

|Pi| , where c is a sufficiently large
constant. Let Ri ⊆ Pi be the sampled set of points. In the second pass of the i-th iteration
(step 3b), the goal is to find a set of skyline points R+

i which dominate all the points in
Ri (i.e., every point in Ri is dominated by some point in R+

i). This is achieved as follows:
initially, set R+

i ← Ri. Then for each point p ∈ Pi, if p does not dominate any point in
R+

i , then we do nothing. Otherwise, we add p to R+
i and remove the points of R+

i which
are dominated by p. Note that this step will not increase the size of R+

i , although it could
potentially decrease the size of R+

i . At the end of the second pass, the claim is that the
points in R+

i are all skyline points (see Lemma 2). The algorithm terminates when all the
points have been classified.

4 With range searching data structures, the overall running time can be lowered to O(n logO(1) h +
(nh)1−1/(⌊d/2⌋+1) logO(1) n) [3]. We will ignore bounds of this flavor, since they do not improve upon
O(nh) by much as d increases.

T. M. Chan and S. Rahul 22:5

Algorithm 1 Finding Skyline Points.
0. M ← ∅.
//Stage I to handle h ≤ logb n.
1. For the first logb n passes, run the naive algorithm of finding one skyline point per pass.

//Stage II to handle h > logb n.
2. P1 ← P , r1 ← c logb n, and i← 1.
3. Repeat till |Pi| < ri:
3a. Find a sample Ri ⊆ Pi of size ri. Set R+

i ← Ri.
3b. For each point p ∈ Pi: //Finding new skyline points.
- Add p to R+

i if p dominates at least one point in R+
i .

- Remove the points in R+
i which are dominated by p.

3c. M ←M ∪R+
i .

3d. Pi+1 ← Pi \ (R+
i ∪ {points of Pi dominated by R+

i }).
3e(i). If |Pi+1| ≥ |Pi|/b, then ri+1 ← bri. // Ineffective iteration.
3e(ii). Otherwise, ri+1 ← ri.
3f. i← i + 1.

4. Compute the skyline points of the O(ri) points in Pi and add them to M .

▶ Remark. Since the size of the sets Pi can be significantly larger than h, we cannot afford to
store them explicitly. To overcome this issue, we will instead use M to implicitly maintain Pi:
observe that whenever a point p in the stream arrives, if none of the points in M dominate
p, then p ∈ Pi.

Analysis. Stage I of the algorithm requires O(logb n) space and O(logb n) passes. From now
on we will focus on Stage II and assume h > logb n. The i-th iteration is labeled effective if
|Pi+1| < |Pi|/b. We start by proving a simple fact.

▶ Lemma 2. At the end of the i-th iteration, all the points in R+
i are skyline points.

Proof. For the sake of contradiction, assume that a point p ∈ R+
i is not a skyline point and

let q ∈ Pi be a point dominating it. If p appears before q in the stream, then it is easy to
observe that p will not survive in R+

i . On the other hand, if q arrives before p in the stream,
then there are two cases:

p ∈ R+
i at the end of the first pass. In that case, we know that in the second pass there

is a point which will come before p and remove p from R+
i . Once that happens, then p

cannot be added back to R+
i in the second pass.

p ̸∈ R+
i in the first pass, but p ∈ R+

i at the end of the second pass. This implies that
there is a point p′ ∈ R+

i at the end of the first pass and p′ is dominated by p; but p′

would have been dominated by q as well, and hence p cannot be part of R+
i at the end of

the second pass. ◀

The following lemma is the crux of our argument.

▶ Lemma 3. When ri ≥ cb2h for a sufficiently large constant c, then all further iterations
will be effective with high probability.

Proof. Let M∗ be the skyline points of P . Consider any i-th iteration in which ri ≥ cb2h.
Given a sample Ri, in step 3b we have constructed a set R+

i ⊆M∗ which dominates all the
points in Ri. The main question is this:

STACS 2021

22:6 Simple Multi-Pass Streaming Algorithms for Skyline Points and Extreme Points

What is the probability that the number of points of Pi \R+
i not dominated by R+

i is
more than |Pi|/b?

This probability seems hard to bound directly. We turn the question around:

Fix a subset A ⊆M∗, where the number of points of Pi \A not dominated by A is
more than |Pi|/b. What is the probability that R+

i = A?

Observe that if any point p ∈ Pi \A not dominated by A is chosen to be in Ri, then p would
be dominated by some point in R+

i , making it impossible for R+
i = A. Using this observation,

we get the following upper bound:

Pr[R+
i = A] ≤ Pr[every point of Pi \A not dominated by A is not in Ri]

≤
(

1− ri

|Pi|

)|Pi|/b

≤ e−ri/b.

A trivial upper bound on the number of candidates for A is 2h, since A ⊆M∗. It turns
out that this trivial bound is sufficient for our purposes. By the union bound,

Pr[the number of points of Pi \R+
i not dominated by R+

i is more than |Pi|/b]

≤ 2h · e−ri/b

< 2−Ω(cbh) since ri ≥ cb2h

= n−Ω(c) since h > logb n.

It follows that an iteration is effective with high probability. ◀

Readers familiar with ε-nets or standard geometric Clarkson–Shor-style sampling ana-
lysis [10, 18] may find the preceding analysis similar to known arguments, but there is one
interesting, key difference: the set system we are dealing with does not have constant VC
dimension, but rather has dimension Θ(h). We use the 2h upper bound on the number of
possible sets A, instead of a more usual polynomial bound. (In dimension 2 and 3, one could
decompose the region not dominated by O(h) points into O(h) cells of constant complexity,
and could therefore use a more standard Clarkson-Shor–style argument, but the size of such
decomposition blows up in dimension beyond 3.)

▶ Lemma 4. The number of passes performed by the algorithm is O(logb n) and the space
occupied by the algorithm is O(bh). Both bounds hold with high probability.

Proof. The number of effective iterations is O(logb n), since in each effective iteration the
number of unclassified points go down by a factor of at least b. Now we will bound the
number of iterations which are ineffective. By Lemma 3, with high probability, an ineffective
iteration can only happen when ri < cb2h. Since the value of r is increased by a factor of
b after each ineffective iteration, the total number of ineffective iterations will be bounded
by O(logb(b2h)). Therefore, with high probability the number of passes performed by the
algorithm is O(logb n + logb(b2h)) = O(logb n).

Since an ineffective iteration can only happen when ri < cb2h, with high probability, the
space occupied will be O(b2h). By choosing b′ =

√
b, the space becomes O(b′h) and the

number of passes becomes O(logb′ n). ◀

T. M. Chan and S. Rahul 22:7

Comparison. Compared to Das Sarma et al.’s algorithm [11], our use of a different algorithm
in Stage I ensures that Stage II is only invoked to handle the case where h is sufficiently
large, and as a result, we could afford a sample size smaller by a logarithmic factor than the
sample size used by [11] and still obtain high probability bounds.

Compared to our analysis, Das Sarma et al.’s analysis [11] is longer and more complicated.
It starts by constructing a graph consisting of h components (one per skyline point). To
argue that in each pass a constant fraction of the points gets classified, the h components
are categorized into heavy and light, and then a separate analysis is performed on the heavy
and the light components. Also, their analysis is specialized to the skyline problem, whereas
our analysis will extend to the extreme points problem as well.

Running time. Naively, each pass in Stage II can be implemented in O(b2nh) time, yielding
a total running time of O(b2nh logb n), with high probability. In constant dimensions, we can
use orthogonal range searching data structures to implement step 3b, and the total running
time can be reduced to O(n logO(1) h logb n).

Posets. The algorithm for skyline points naturally extends to the problem of finding
maximal points in a poset by suitably adapting the definition of domination. The only
modification needed is in Stage I: we used geometry (the x-coordinate values) to find one
skyline point per pass. For poset, replace it with another naive algorithm which finds one
maximal point per pass.

2.2 Further refinement
In this subsection, we present an interesting variant of the algorithm which slightly reduces
the expected number of passes to sublogarithmic, if h is not too big, while using only O(h)
expected space.

▶ Theorem 5. Let P be a set of n points in Rd, and h be the number of skyline points. Then,
there is an O(h)-space, O

(
log h + log n

log log n

)
-pass algorithm to compute the skyline points.

Both bounds hold in expectation.

The new algorithm is similar to our algorithm in Section 2.1, but with one key difference.
An iteration will now be considered ineffective if the sample does not prune away a large
number of points (this is as before), nor does it discover a large number of new skyline
points (this is new). Another minor difference is that in case of an ineffective iteration, we
will double the sample size (instead of lying by b). More precisely, the only change in the
pseudocode is to replace step 3e(i) with the following:

3e(i). If |Pi+1| ≥ |Pi|/b and |R+
i | < h/b2, then ri+1 ← 2ri // Ineffective iteration.

We will fix the parameter b so that logb n = b2 (and thus b = Θ
(√

log n
log log n

)
).

The following lemma shows that an ineffective iteration is not very likely to happen when
the sample size is sufficiently large.

▶ Lemma 6. Pr[iteration i is ineffective | ri ≥ h] ≤ e−Ω(b).

Proof. We modify the proof of Lemma 3.

STACS 2021

22:8 Simple Multi-Pass Streaming Algorithms for Skyline Points and Extreme Points

We have already shown that Pr[R+
i = A] ≤ e−ri/b. Before, we trivially bound the number

of candidates for A by 2h. This time, we will give a sharper upper bound. An ineffective
iteration guarantees that |A| < h/b2, and hence, the number of candidates for A is at most

h/b2∑
k=1

(
h

k

)
≤ h

b2 ·
(

h

h/b2

)
≤ h

b2 ·
(

eh

h/b2

)h/b2

= bO(h/b2).

By the union bound,

Pr
[
the number of points of Pi \R+

i not dominated by R+
i is more than |Pi|/b

]
≤ bO(h/b2) · e−ri/b

≤ e−Ω(h
b) since ri ≥ h

≤ e−Ω(b) since h ≥ b2. ◀

▶ Lemma 7. The expected number of passes performed by the algorithm is O
(

log h + log n
log log n

)
.

Proof. An effective iteration with |R+
i | ≥ h/b2 can happen at most b2 times. An effective

iteration with |Pi+1| < |Pi|/b can happen only O(logb n) times. Therefore, effective iterations
happen O(logb n + b2) = O

(
log n

log log n

)
times.

Let us classify the ineffective iterations into two categories: (a) when ri < h, and (b)
when ri ≥ h.

The number of ineffective iterations of category (a) is O(log h), since ri doubles during
each ineffective iteration.

By Lemma 6, in expectation, between two consecutive effective iterations, there can be
only O(1) ineffective iterations of category (b). Therefore, the expected number of ineffective
iterations of category (b) is O

(
log n

log log n

)
. This finishes the proof. ◀

▶ Lemma 8. The expected space used by the algorithm is O(h).

Proof. Let Y be the number of ineffective iterations in which ri ≥ h. The space used is
bounded by r∗ = maxi ri, which is at most h ·2Y . It thus remains to show that E[2Y] = O(1).

To this end, we consider the following probability exercise:

Let t be an integer and ρ ≤ 1/(8t). Consider a sequence of independent tosses of a
biased coin, where the probability of heads is ρ. Stop the process when we encounter
t tails. Let H be the number of heads encountered. Show that E[2H] = O(1).

It is straightforward to see that Pr[H = j] ≤
(

t+j
j

)
ρj . If j < t, this probability is

at most (2t)jρj ≤ 1/4j . If j ≥ t, the probability is at most (2j)tρj ≤ 1/4j , since the
function f(x) = (2x)tρx · 4x is decreasing for x ≥ t and has value at most 1 at x = t. Thus,
E[2H] ≤

∑
j 2j · 1/4j = O(1).

The result now follows, by associating heads with ineffective iterations and tails with
effective iterations, where t = O(logb n + b2) = O

(
log n

log log n

)
(from the proof of Lemma 7)

and ρ = e−Ω(b) (by Lemma 6). ◀

3 Extreme points in Rd

In this section we build on the ideas used for the skyline algorithm to solve the extreme
points problem. The following result is obtained.

T. M. Chan and S. Rahul 22:9

▶ Theorem 9. Let P be a set of n points in Rd, and h be the number of extreme points.
Then, with high probability, there is an O(h logO(1) n) space and O(logd n) pass algorithm to
compute the extreme points.

It suffices to focus on computing the extreme points on the upper hull of P (finding the
extreme points on the lower hull is symmetric). Our algorithm for the extreme points problem
will also work in two stages. In Stage I, we will use the expensive O(nh)-time algorithm
mentioned in the Introduction and let it run for O(log n) passes. If h < log n, then O(log n)
passes will be enough to find all the extreme points. Otherwise, we go to Stage II.

Algorithm 2 Finding Extreme Points.
0. M ← ∅.
//Stage I to handle h ≤ log n.
1. For the first O(log n) passes, run the expensive O(nh)-time algorithm.

//Stage II to handle h > log n.
2. P1 ← P , r ← c log n and i← 1.
3. Repeat till |Pi| < r:
3a. Find a sample Ri ⊆ Pi of size r. Set R+

i ← ∅.
3b. For each point p ∈ Ri: //Finding new extreme points.
- Shoot a vertical ray upwards from p to hit a facet fp ∈ conv(P).
- Add the d + 1 vertices defining fp into R+

i .
3c. M ←M ∪R+

i .
3d. Pi+1 ← Pi \ {points of Pi that are strictly below the upper hull of R+

i }.
3e. If |Pi+1| ≥ |Pi|/2, then r ← 2r. // Ineffective iteration.
3f. i← i + 1.

4. Output the extreme points of the O(r) points in Pi.

p

fp

Unlike the skyline algorithm, there is no notion of domination for the extreme points
problem. Therefore, step 3b of the skyline algorithm cannot be used here. Instead, we
perform the following operation: from each point p ∈ Ri, shoot a vertical ray upwards to hit
a facet fp ∈ conv(P), where conv(P) is the convex hull of P . This operation reduces to linear
programming on the dual halfspaces of P . There is a known multi-pass streaming algorithm
of Chan and Chen [5] which can solve a linear program in any constant dimension d using
O(logO(1) n) space and O(logd−1 n) passes. We can execute all the r linear programming
queries simultaneously. This will not hurt the number of passes, but instead increase the
space to O(r logO(1) n). At the end of step 3b, we ensure that the upper hull of R+

i “covers”
the points in Ri.

Analysis. The analysis follows the same steps as in our analysis of the skyline algorithm.
The space used is O(h logO(1) n), and since O(log n) iterations are performed, the total
number of passes required are O(logd n).

STACS 2021

22:10 Simple Multi-Pass Streaming Algorithms for Skyline Points and Extreme Points

To prove an equivalent statement as Lemma 3, let M∗ be the extreme points on the
upper hull of P and let b← 2. Fix a subset A ⊆M∗, where the number of points of Pi above
the upper hull of A is more than |Pi|/2. If any point p ∈ Pi \A above the upper hull of A

is chosen to be in Ri, then p will be “covered” by the upper hull of R+
i , making R+

i = A

impossible. So, the same argument as before shows Pr[R+
i = A] ≤ e−Ω(ch). Thus, as before,

the probability that the number of points of Pi above the upper hull of R+
i is more than

|Pi|/2 is at most n−Ω(c).

Running time and trade-offs. Each pass in Stage II can be implemented in O(nh logO(1) n)
time, since with Chan and Chen’s algorithm [5], the r linear programs take O(nr logO(1) n)
time. Recall that Pi is represented implicitly; in each pass, we can test whether a point p

is in Pi by testing whether p is covered by the upper hull of M , which reduces to solving a
linear program on O(h) points. The extra cost is O(nh) per pass. The total time is thus
O(nh logO(1) n). (In the traditional non-streaming setting, the total running time is actually
O(nh), as it can be bounded by a geometric series.)

As before, it is possible to adapt the algorithm to achieve a trade-off, with
O(bO(1)h logO(1) n) space and O((logb n)O(1)) passes for a parameter b, since Chan and
Chen’s multi-pass linear programming algorithm [5] supports a trade-off. For example,
setting b = nΘ(δ) gives O(hnδ) space and O((1/δ)O(1)) passes.

4 Why randomized algorithms?

We finish by proving that there does not exist any efficient deterministic algorithm for the
problem of finding maximal elements of a poset. This justifies the use of randomization in
the paper (at least for the poset problem). Our lower bound proof is based on a new and
self-contained adversarial argument.

▶ Theorem 10. Let h = Ω(1) and p · h≪ n, where p is the number of passes made by an
algorithm. Assume that the only operations on the input elements are pairwise comparisons.
Then any deterministic algorithm which uses O(h) space has to perform p ≥ h

3 + 1 passes to
decide whether the number of maximal elements in a poset is h + 1, or h + 2, . . . , or h + 6.

Let P be the elements in our partially ordered set (poset). The queries asked by the
algorithm will be of the form q(a, b), where a ∈ P is currently stored in the memory and
b ∈ P is the current element in the stream. The response of the adversary will either be
a ≻ b which implies a dominates b, or b ≻ a which implies b dominates a, or a ̸∼ b which
implies a and b are incomparable. The responses of the adversary has be consistent, i.e., once
it responds to a query q(a, b), then the answer to it cannot change later. Before the algorithm
begins, the adversary will maintain that all the elements are incomparable. Each time, after
seeing n/3 elements in the stream, the adversary will create dominance relationship between
some pairs of elements by revealing a two-level tree (examples of two-level trees shown in

T. M. Chan and S. Rahul 22:11

the figure on the right), where the root element dominates its child elements. Therefore, the
root of each tree is a maximal element, and hence, the number of maximal points in P will
be equal to the number of trees constructed by the adversary.

If an element belongs to a tree revealed till now by the adversary, then it will be labelled
locked; otherwise, it will be labelled unlocked. We will show that if the number of passes
performed by the algorithm is less than or equal to h/3, then the adversary can arrange the
unlocked elements in at least two consistent ways, each having different number of maximal
elements. This implies that the execution of the algorithm is exactly the same for two
different inputs, which is a contradiction. Now we will present the technical details.

Adversary’s strategy. We will need a couple of definitions to set up adversary’s strategy. A
time-unit corresponds to processing a single element in the stream. Each pass is divided into
three phases, with each phase lasting n/3 time-units. For a p-pass algorithm, this naturally
leads to a labelling of the phases as 1, 2, 3, . . . , 3p−2, 3p−1, 3p. At the end of the i-th phase,
a tree Ti is created by the adversary.

The elements are partitioned into three equal-sized slabs: slab 0 consists of the first n/3
elements in the stream, slab 1 consists of the middle n/3 elements in the stream, and slab 2
consists of the last n/3 elements in the stream. Before the algorithm begins, all the elements
are called short-lived, and if at any point an element remains in memory continuously for
n/3 time-units, then we start calling it long-lived.

Now we are ready to describe the construction of a tree Ti. The dominated elements
in Ti will be those elements in slab (i− 2) mod 3 which were short-lived till the end of the
(i − 1)-th phase, but became long-lived at the end of the i-th phase. Next, we describe
the strategy for picking the maximal element of Ti. The adversary will arbitrarily pick one
among all the elements which satisfy the following conditions. The element should
1. belong to slab (i mod 3),
2. not belong to any of the trees already constructed, and
3. not be present in the memory at the end of the previous phases.
The reason for imposing these conditions will become clear in the proof of Lemma 12.

▶ Lemma 11. There always exists an element which satisfies the above conditions. In fact,
at least n/6 elements in a slab satisfy the above conditions.

Proof. We claim that the number of long-lived elements are O(ph). The key observation is
that for an element to become long-lived, it has to be stored in memory at the end of at
least one phase. Since the number of phases are O(p), there can be at most O(ph) long-lived
elements. Therefore, the number of elements of slab i mod 3 which belong to the trees already
constructed are O(ph) + O(h)≪ n/12. Also, the number of elements in slab i mod 3 which
are present in the memory at the end of any phase is O(ph) ≪ n/12. Since slab i mod 3
consists of n/3 elements, there will be at least n/3−n/6 = n/6 elements satisfying the above
conditions. ◀

When the algorithm asks a query q(a, b), the adversary reports a ≻ b or b ≻ a if that
relation holds in any of the trees constructed till now; otherwise it reports a ̸∼ b. Next, we
argue that the responses of the adversary to the queries are consistent.

▶ Lemma 12. If the adversary places a relation a ≻ b in the poset, then the algorithm
must not have asked the query q(a, b) or q(b, a) till then. This ensures that responses of the
adversary are consistent.

STACS 2021

22:12 Simple Multi-Pass Streaming Algorithms for Skyline Points and Extreme Points

Proof. Without loss of generality, assume that the element b is in slab 0 and the element
a in slab 2 (the other cases can be handled symmetrically). Note that this satisfies the
condition that an element from slab (i − 2) mod 3 is dominated only by an element from
slab i mod 3. For a query q(a, b) to be asked during the j-th pass, a should be stored in
memory at the beginning of the j-th pass. This implies that a is stored in memory at the
end of the 3(j − 1)-th phase, which violates condition 3 for picking the maximal element.

Now we prove that the query q(b, a) was not asked. In a given pass, at the end of which
phase does b newly become long-lived? It turns out to be the end of the second phase. Then,
let j be the smallest index such that at the end of the second phase in the j-th pass, b was
still in memory. This is when a ≻ b will be created by the adversary, since b has newly
become long-lived. Now, if q(b, a) was asked (say, in the i-th pass) before a ≻ b was placed,
then b should be in memory at the end of the second phase of the i-th pass and in fact, it
should be in memory in the third phase of the i-th pass till a is processed. This implies that
b becomes long-lived in the i-th pass, which contradicts that j is the smallest index. ◀

Handling unlocked elements. Since each tree corresponds to revealing only one maximal
element, this strategy of the adversary will ensure that the algorithm is forced to perform
h/3 passes at which point h maximal elements will be revealed. If further passes are not
performed, then the algorithm will have the same outcome for more than two inputs. The
details follow next.

Let b, b′ be any two unlocked elements in slab 2 which satisfy the three conditions stated
above for being a maximal element (by Lemma 11 we know at least two such elements in
slab 2 still exist). Also, observe that all the unlocked elements in slab 0 are short-lived and
by using an argument similar to Lemma 12, it can be shown that queries of the form q(b, a)
or q(a, b) or q(b′, a) or q(a, b′) were not asked by the algorithm, where a is a short-lived
unlocked element in slab 0. As a result, the adversary will be consistent if it declares that
the unlocked elements in slab 0 are dominated by either b or b′. Now the adversary has two
choices: (i) either make only b or b′ the root of a tree and all the unlocked elements in slab 0
the leaves of that tree, or (ii) make two trees with b and b′ as the root of those trees, and the
unlocked elements in slab 0 are partitioned to be the leaves of the two trees.

A similar argument holds when maximal elements are chosen from slab 0 and slab 1.
Therefore, the number of maximal elements can be anywhere in the range (h, h + 6], if the
number of passes performed are at most h/3.

▶ Remark. The assumption that p · h ≪ n is needed, since for large h, there is a trivial
deterministic algorithm with O(h) space and O(n/h) passes (we can divide the input sequence
into O(n/h) blocks of h elements, and in the i-th iteration, load the i-th block in memory
and test which of the h elements in the block are maximal).

References
1 Peyman Afshani. Fast computation of output-sensitive maxima in a word RAM. In Proceedings

of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1414–1423,
2014.

2 Peyman Afshani, Jérémy Barbay, and Timothy M. Chan. Instance-optimal geometric al-
gorithms. Journal of the ACM, 64(1):3:1–3:38, 2017.

3 Timothy M. Chan. Output-sensitive results on convex hulls, extreme points, and related
problems. Discrete & Computational Geometry, 16(4):369–387, 1996.

4 Timothy M. Chan. Improved deterministic algorithms for linear programming in low dimensions.
ACM Trans. Algorithms, 14(3):30:1–30:10, 2018. doi:10.1145/3155312.

https://doi.org/10.1145/3155312

T. M. Chan and S. Rahul 22:13

5 Timothy M. Chan and Eric Y. Chen. Multi-pass geometric algorithms. Discrete & Computa-
tional Geometry, 37(1):79–102, 2007. doi:10.1007/s00454-006-1275-6.

6 Timothy M. Chan, Kasper Green Larsen, and Mihai Pǎtraşcu. Orthogonal range searching on
the RAM, revisited. In Proceedings of Symposium on Computational Geometry (SoCG), pages
1–10, 2011.

7 Timothy M. Chan, Jack Snoeyink, and Chee-Keng Yap. Primal dividing and dual pruning:
Output-sensitive construction of four-dimensional polytopes and three-dimensional Voronoi
diagrams. Discrete & Computational Geometry, 18(4):433–454, 1997.

8 Kenneth L. Clarkson. More output-sensitive geometric algorithms. In Proceedings of Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 695–702, 1994.

9 Kenneth L. Clarkson. Las Vegas algorithms for linear and integer programming when the
dimension is small. Journal of the ACM, 42(2):488–499, 1995. doi:10.1145/201019.201036.

10 Kenneth L. Clarkson and Peter W. Shor. Application of random sampling in computational
geometry, II. Discret. Comput. Geom., 4:387–421, 1989. doi:10.1007/BF02187740.

11 Atish Das Sarma, Ashwin Lall, Danupon Nanongkai, and Jun (Jim) Xu. Randomized multi-pass
streaming skyline algorithms. PVLDB, 2(1):85–96, 2009. doi:10.14778/1687627.1687638.

12 Martin Farach-Colton, Meng Li, and Meng-Tsung Tsai. Streaming algorithms for planar
convex hulls. In International Symposium on Algorithms and Computation (ISAAC), pages
47:1–47:13, 2018. doi:10.4230/LIPIcs.ISAAC.2018.47.

13 Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile
summaries. In Proceedings of ACM Management of Data (SIGMOD), pages 58–66, 2001.

14 Xiaocheng Hu, Cheng Sheng, Yufei Tao, Yi Yang, and Shuigeng Zhou. Output-sensitive skyline
algorithms in external memory. In Proceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 887–900, 2013.

15 J.H. Dula J and R.V. Helgason. A new procedure for identifying the frame of the convex hull
of a finite collection of points in multidimensional space. European Journal of Operational
Research, 92(2):352–367, 1996.

16 David G. Kirkpatrick and Raimund Seidel. Output-size sensitive algorithms for finding
maximal vectors. In Proceedings of Symposium on Computational Geometry (SoCG), pages
89–96, 1985. doi:10.1145/323233.323246.

17 David G. Kirkpatrick and Raimund Seidel. The ultimate planar convex hull algorithm? SIAM
Journal of Computing, 15(1):287–299, 1986. doi:10.1137/0215021.

18 Ketan Mulmuley. Computational Geometry: An Introduction through Randomized Algorithms.
Prentice Hall, 1994.

19 Thomas Ottmann, Sven Schuierer, and Subbiah Soundaralakshmi. Enumerating extreme
points in higher dimensions. Nordic Journal of Computing, 8(2):179–192, 2001.

20 F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer–Verlag,
1985.

21 Raimund Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete
& Computational Geometry, 6:423–434, 1991. doi:10.1007/BF02574699.

22 Cheng Sheng and Yufei Tao. On finding skylines in external memory. In Proceedings of
ACM Symposium on Principles of Database Systems (PODS), pages 107–116, 2011. doi:
10.1145/1989284.1989298.

A A deterministic algorithm for skyline points in Rd

In this appendix, we briefly describe a deterministic algorithm to compute skyline points
in Rd using O(h log n) space and O(logd−1 n) passes (as we have mentioned in the intro-
duction). Though we are not aware of an explicit reference of this result, it follows from a
straightforward adaptation of Kirkpatrick and Seidel’s output-sensitive divide-and-conquer
algorithm [16], but reimplemented in the multi-pass setting (analogous to Chan and Chen’s
multi-pass reimplementation [5] of Kirkpatrick and Seidel’s output-sensitive 2-d convex hull
algorithm [17]).

STACS 2021

https://doi.org/10.1007/s00454-006-1275-6
https://doi.org/10.1145/201019.201036
https://doi.org/10.1007/BF02187740
https://doi.org/10.14778/1687627.1687638
https://doi.org/10.4230/LIPIcs.ISAAC.2018.47
https://doi.org/10.1145/323233.323246
https://doi.org/10.1137/0215021
https://doi.org/10.1007/BF02574699
https://doi.org/10.1145/1989284.1989298
https://doi.org/10.1145/1989284.1989298

22:14 Simple Multi-Pass Streaming Algorithms for Skyline Points and Extreme Points

Given point sets P and M in Rd, let P ⊖M denote the “filtered” subset of all points
p ∈ P that are not dominated by any points in M . Let p↓ denote the projection of p onto
the first d− 1 coordinates, and let P ↓= {p↓ : p ∈ P}.

Below is a variant or reinterpretation of Kirkpatrick and Seidel’s algorithm for computing
the skyline of P ⊖M (initially, we set M = ∅):

Algorithm 3 Skylined(P, M).
1. If |P ⊖M | ≤ 1, then return P ⊖M .
2. Partition P into the left and the right halves Pℓ and Pr using an approximate median
d-th coordinate.
3. Compute Mr = Skylined−1((Pr ⊖M)↓ , ∅). Add {p : p↓∈Mr} to M .
4. Return Skylined(Pℓ, M) ∪ Skylined(Pr, M) ∪ {p : p↓∈Mr}.

(In the original algorithm, points dominated by Mr are pruned from Pℓ before recursion.
With the filtering operation ⊖, explicit pruning is avoided.)

In the multi-pass setting, we will execute the recursion level by level. The recursion tree
for Skylined has O(log n) levels. We maintain one global set M and do filtering with respect
to this global set M (this does not affect correctness); the size of the set is O(h). Consider
the next level of the tree. There are at most O(h) nodes in the level. Each subset P can
be encoded by an interval in the d-th coordinate. As we make a pass over the input and
encounter a point p, we can identify the subset P containing p, and test whether it is in
P ⊖M by checking whether it is dominated by any point in M (in O(h) time naively, or in
polylogarithmic time by storing M in an orthogonal range searching data structure). The
approximate median computation in step 2 can be done by a known one-pass, O(log n)-space
algorithm of Greenwald and Khanna [13]. All O(h) invocations to this approximate median
algorithm are done simultaneously, and so the total space used is O(h log n). Step 3 invokes
a (d− 1)-dimensional skyline algorithm. Again, these invocations are done simultaneously;
the total output size in these calls is O(h).

Let Pd(n) be the number of passes in our d-dimensional skyline algorithm, and let sd(n)
be the space used per output point (i.e., the total space is h · sd(n)). Then

Pd(n) = O(log n) · (Pd−1(n) + O(1)) and sd(n) = sd−1(n) + O(log n).

With the base case P1(n) = 1 and s1(n) = O(1), we get Pd(n) = O(logd−1 n) and sd(n) =
O(log n) as desired.

One-Tape Turing Machine and Branching Program
Lower Bounds for MCSP
Mahdi Cheraghchi ! Ï

Department of EECS, University of Michigan, Ann Arbor, MI, USA

Shuichi Hirahara ! Ï

National Institute of Informatics, Tokyo, Japan

Dimitrios Myrisiotis ! Ï

Department of Computing, Imperial College London, London, UK

Yuichi Yoshida ! Ï

National Institute of Informatics, Tokyo, Japan

Abstract
For a size parameter s : N → N, the Minimum Circuit Size Problem (denoted by MCSP[s(n)]) is
the problem of deciding whether the minimum circuit size of a given function f : {0, 1}n → {0, 1}
(represented by a string of length N := 2n) is at most a threshold s(n). A recent line of work
exhibited “hardness magnification” phenomena for MCSP: A very weak lower bound for MCSP
implies a breakthrough result in complexity theory. For example, McKay, Murray, and Williams
(STOC 2019) implicitly showed that, for some constant µ1 > 0, if MCSP[2µ1·n] cannot be computed
by a one-tape Turing machine (with an additional one-way read-only input tape) running in time
N1.01, then P ̸= NP.

In this paper, we present the following new lower bounds against one-tape Turing machines and
branching programs:
1. A randomized two-sided error one-tape Turing machine (with an additional one-way read-only

input tape) cannot compute MCSP[2µ2·n] in time N1.99, for some constant µ2 > µ1.
2. A non-deterministic (or parity) branching program of size o(N1.5/ log N) cannot compute MKTP,

which is a time-bounded Kolmogorov complexity analogue of MCSP. This is shown by directly
applying the Nečiporuk method to MKTP, which previously appeared to be difficult.

3. The size of any non-deterministic, co-non-deterministic, or parity branching program computing
MCSP is at least N1.5−o(1).

These results are the first non-trivial lower bounds for MCSP and MKTP against one-tape Turing
machines and non-deterministic branching programs, and essentially match the best-known lower
bounds for any explicit functions against these computational models.

The first result is based on recent constructions of pseudorandom generators for read-once
oblivious branching programs (ROBPs) and combinatorial rectangles (Forbes and Kelley, FOCS
2018; Viola 2019). En route, we obtain several related results:
1. There exists a (local) hitting set generator with seed length Õ(

√
N) secure against read-once

polynomial-size non-deterministic branching programs on N -bit inputs.
2. Any read-once co-non-deterministic branching program computing MCSP must have size at least

2Ω̃(N).

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-
tation → Pseudorandomness and derandomization

Keywords and phrases Minimum Circuit Size Problem, Kolmogorov Complexity, One-Tape Turing
Machines, Branching Programs, Lower Bounds, Pseudorandom Generators, Hitting Set Generators

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.23

Related Version Full Version: https://eccc.weizmann.ac.il/report/2020/103/

Funding Mahdi Cheraghchi: M. Cheraghchi’s research is supported in part by the NSF award
CCF-2006455.

© Mahdi Cheraghchi, Shuichi Hirahara, Dimitrios Myrisiotis, and Yuichi Yoshida;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mahdich@umich.edu
http://mahdi.cheraghchi.info/
mailto:s_hirahara@nii.ac.jp
https://researchmap.jp/shuichi.hirahara/
mailto:d.myrisiotis17@imperial.ac.uk
https://dimyrisiotis.github.io/
mailto:yyoshida@nii.ac.jp
http://research.nii.ac.jp/~yyoshida/
https://doi.org/10.4230/LIPIcs.STACS.2021.23
https://eccc.weizmann.ac.il/report/2020/103/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 One-Tape Turing Machine and Branching Program Lower Bounds for MCSP

Acknowledgements We would like to express our gratitude to Emanuele Viola and Osamu Watanabe
for bringing to our attention the works by Kalyanasundaram and Schnitger [26] and Watanabe [39],
respectively, and for helpful discussions. In particular, we thank Emanuele Viola for explaining to
us his works [15, 38]. We thank Rahul Santhanam for pointing out that Nečiporuk’s method can
be applied to not only MKtP but also MKTP. We thank Chin Ho Lee for answering our questions
regarding his work [27]. We thank Paul Beame for bringing his work [6] to our attention. We thank
Valentine Kabanets, Zhenjian Lu, Igor C. Oliveira, and Ninad Rajgopal for illuminating discussions.
Finally, we would like to thank the anonymous reviewers for their constructive feedback.

1 Introduction

The Minimum Circuit Size Problem (MCSP) asks whether a given Boolean function
f : {0, 1}n → {0, 1} can be computed by some Boolean circuit of size at most a given
threshold s. Here the function f is represented by the truth table of f , i.e., the string of
length N := 2n that is obtained by concatenating all the outputs of f . For a size parameter
s : N → N, its parameterized version is denoted by MCSP[s]: That is, MCSP[s] asks if the
minimum circuit size of a function f : {0, 1}n → {0, 1} is at most s(n).

MCSP is one of the most fundamental problems in complexity theory, because of its
connection to various research areas, such as circuit complexity [35, 25, 22, 31, 21, 2], learning
theory [8], and cryptography [35, 16, 18]. It is easy to see that MCSP ∈ NP because, given a
circuit C of size s as an NP certificate, one can check whether C computes the given function
f in time NO(1). On the other hand, its NP-completeness is a long-standing open question,
which dates back to the introduction of the theory of NP-completeness (cf. [4]), and it has
an application to the equivalence between the worst-case and average-case complexity of NP
(cf. [18]).

Recently, a line of work exhibited surprising connections between very weak lower
bounds of MCSP and important open questions of complexity theory, informally termed as
“hardness magnification” phenomena. Oliveira and Santhanam [34] (later with Pich [33])
showed that, if an approximation version of MCSP cannot be computed by a circuit of
size N1.01, then NP ̸⊆ P/poly (in particular, P ̸= NP follows). Similarly, McKay, Murray,
and Williams [30] showed that, if MCSP[s(n)] cannot be computed by a 1-pass streaming
algorithm of poly (s(n)) space and poly (s(n)) update time, then P ̸= NP. Therefore, in order
to obtain a breakthrough result, it is sufficient to obtain a very weak lower bound for MCSP.

Are hardness magnification phenomena plausible approaches for resolving the P versus
NP question? We do not know the answer yet. However, it should be noted that, as argued
in [3, 34], hardness magnification phenomena appear to bypass the natural proof barrier
of Razborov and Rudich [35], which is one of the major barriers of complexity theory for
resolving the P versus NP question. Most of lower bound proof techniques of complexity
theory are “natural” in the following sense: Given a lower bound proof for a circuit class
C, one can interpret it as an efficient average-case algorithm for solving C-MCSP (i.e., one
can efficiently decide whether a given Boolean function f can be computed by a small
C-circuit when the input f is chosen uniformly at random; cf. Hirahara and Santhanam [20]).
Razborov and Rudich [35] showed that such a “natural proof” technique is unlikely to
resolve NP ̸⊆ P/poly; thus we need to develop fundamentally new proof techniques. There
seems to be no simple argument that naturalizes proof techniques of hardness magnification
phenomena; hence, investigating hardness magnification phenomena could lead us to a new
non-natural proof technique.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 23:3

1.1 Our results
1.1.1 Lower bounds against one-tape Turing machines
Motivated by hardness magnification phenomena, we study the time required to compute
MCSP by using a one-tape Turing machine. We first observe that the hardness magnification
phenomena of [30] imply that a barely superlinear time lower bound for a one-tape Turing
machine is sufficient for resolving the P versus NP question.

▶ Theorem 1 (A corollary of McKay, Murray, and Williams [30]; see the full version). There
exists a small constant µ > 0 such that if MCSP[2µ·n] ̸∈ DTIME1

[
N1.01]

, then P ̸= NP.

Here, we denote by DTIME1[t(N)] the class of languages that can be computed by a
Turing machine equipped with a one-way read-only input tape and a two-way read/write
work tape running in time O(t(N)) on inputs of length N . We note that it is rather counter-
intuitive that there is a universal constant µ > 0; it is instructive to state Theorem 1 in the
following logically equivalent way: If MCSP[2µ·n] ̸∈ DTIME1

[
N1.01]

for all constants µ > 0,
then P ̸= NP.1

One of our main results is a nearly quadratic lower bound on the time complexity of a
randomized one-tape Turing machine (with one additional read-only one-way input tape)
computing MCSP.

▶ Theorem 2. There exists some constant 0 < µ < 1 such that MCSP[2µ·n] is not in
BPTIME1

[
N1.99]

.

Here, BPTIME1[t(N)] denotes the class of languages that can be computed by a two-
sided-error randomized Turing machine equipped with a one-way read-only input tape and
a two-way read/write work tape running in time t(N) on inputs of length N ; we say that
a two-sided-error randomized algorithm computes a problem if it outputs a correct answer
with high probability (say, with probability at least 2/3) over the internal randomness of the
algorithm.

Previously, no non-trivial lower bound on the time complexity required for computing
MCSP by a Turing machine was known. Moreover, Theorem 2 essentially matches the
best-known lower bound for this computational model; namely, the lower bound due to
Kalyanasundaram and Schnitger [26], who showed that Element Distinctness is not in
BPTIME1

[
o
(
N2/ log N

)]
.

Our lower bound against BPTIME1
[
N1.99]

is much stronger than the required lower
bound (i.e, DTIME1

[
N1.01]

) of the hardness magnification phenomenon of Theorem 1.
However, Theorem 2 falls short of the hypothesis of the hardness magnification phenomenon
of Theorem 1 because of the choice of the size parameter. In the hardness magnification
phenomenon, we need to choose the size parameter to be 2µ·n for some small constant µ > 0,
whereas, in our lower bound, we will choose µ to be some constant close to 1. That is, what
is missing for proving P ̸= NP is to decrease the size parameter from 2(1−o(1))·n to 2o(n) in
Theorem 2, or to increase the size parameter from 2o(n) to 2(1−o(1))·n in Theorem 1.

Next, we investigate the question of whether hardness magnification phenomena on
MCSP[s(n)] such as Theorem 1 can be proved when the size parameter s(n) is large, as
posed by Chen, Jin, and Williams [10]. As observed in [9], most existing proof techniques
on hardness magnification phenomena are shown by constructing an oracle algorithm which
makes short queries to some oracle. For example, behind the hardness magnification

1 Observe that ∃µ, (P (µ) ⇒ Q) is logically equivalent to ∃µ, (¬P (µ) ∨ Q), which is equivalent to
¬(∀µ, P (µ)) ∨ Q.

STACS 2021

23:4 One-Tape Turing Machine and Branching Program Lower Bounds for MCSP

phenomena of Theorem 1 is a nearly-linear-time oracle algorithm that solves MCSP[2o(n)] by
making queries of length 2o(n) to some PH oracle (see Corollary 18 for a formal statement).
Chen, Hirahara, Oliveira, Pich, Rajgopal, and Santhanam [9] showed that most lower bound
proof techniques can be generalized to such an oracle algorithm, thereby explaining the
difficulty of combining hardness magnification phenomena with lower bound proof techniques.
Following [9], we observe that our lower bound (Theorem 3) can be generalized to a lower
bound against an oracle algorithm which makes short queries.

▶ Theorem 3. Let O ⊆ {0, 1}∗ be any oracle. Then, for every constant 1/2 < µ < 1,
MCSP[2µ·n] on truth tables of size N := 2n is not in BPTIMEO

1

[
N1+µ′

]
for some constant

µ′ > 0, where all of the strings queried to O are of length No(1).

Theorem 3 can be seen as a partial answer to the question posed by [10]: It is impossible
to extend the hardness magnification phenomena of Theorem 1 to MCSP[2µn] for µ > 1/2
by using similar techniques used in [30]. Recall that the proof techniques behind [30] are
to construct a nearly-linear-time oracle algorithm that solves MCSP[2µn] by making short
queries to some oracle; the existence of such an oracle algorithm is ruled out by Theorem 3
when µ > 1/2. Therefore, in order to obtain a hardness magnification phenomenon for
MCSP[20.51n], one needs to develop a completely different proof technique that does not rely
on constructing an oracle algorithm that makes short queries.

1.1.2 Lower bounds against branching programs
Another main result of this work is a lower bound against non-deterministic branching
programs. We make use of Nečiporuk’s method, which is a standard proof technique for
proving a lower bound against branching programs. However, it appeared previously that
Nečiporuk’s method is not directly applicable to the problems such as MCSP [20]. In this
paper, we develop a new proof technique for applying Nečiporuk’s method to a variant of
MCSP, called MKTP. MKTP is the problem of deciding whether KT(x) ≤ s given (x, s) as
input. Here KT(x) is defined as the minimum, over all programs M and integers t, of |M | + t

such that, for every i, M outputs the i-th bit of x in time t given an index i as input [1]. We
prove lower bounds against general branching programs and non-deterministic branching
programs by using Nečiporuk’s method.

▶ Theorem 4. The size of a branching program computing MKTP is at least Ω(N2/ log2 N).
The size of a non-deterministic branching program or a parity branching program computing
MKTP is at least Ω(N1.5/ log N).

Theorem 4 gives the first non-trivial lower bounds against non-deterministic and parity
branching programs for MKTP and, in addition, these are the best lower bounds which
can be obtained by using Nečiporuk’s method (cf. [6]). Previously, by using a pseudoran-
dom generator for branching programs constructed by [23], it was shown in [33, 11] that
(deterministic) branching programs requires N2−o(1) size to compute MCSP and MKTP.2
However, it is not known whether there is a pseudorandom generator for non-deterministic
or parity branching programs. As a consequence, no non-trivial lower bound for MKTP
(nor its exponential-time version denoted by MKtP) against these models was known before.
Surprisingly, Theorem 4 is proved without using a pseudorandom generator nor a weaker

2 It is worthy of note that Theorem 4 mildly improves the lower bounds of [33, 11] to Ω(N2/ log2 N) by
directly applying Nečiporuk’s method, which matches the state-of-the-art lower bound for any explicit
function up to a constant factor.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 23:5

object called a hitting set generator. We emphasize that it is surprising that a lower bound
for MKtP can be obtained without using a hitting set generator; indeed, the complexity of
MKtP is closely related to a hitting set generator, and in many settings (especially when
the computational model is capable of computing XOR), a lower bound for MKtP and the
existence of a hitting set generator are equivalent [18, 19].

The proof technique of Theorem 4 is applicable to problems of computing various
resource-bounded Kolmogorov complexity measures, such as MKtP. However, we fail to
apply Nečiporuk’s method to MCSP, despite that circuit complexity can also be regarded
as a version of resource-bounded Kolmogorov complexity. The KT-complexity of the truth
table of a function f and the minimum circuit size of f are polynomially related to each
other [1]; unfortunately, the relationship between circuit complexity and KT-complexity is
not tight enough for our argument to work. Nevertheless, we were able to use a different
approach to present the first non-trivial lower bound for MCSP against non-deterministic
branching programs.

▶ Theorem 5. The size of any non-deterministic, co-non-deterministic, or parity branching
program computing MCSP is at least N1.5−o(1).

The proof of Theorem 5 is based on a pseudorandom generator construction of Impagliazzo,
Meka, and Zuckerman [23]. We show that their construction actually provides a pseudorandom
generator of seed length s2/3+o(1) that fools non-deterministic, co-non-deterministic, and
parity branching programs of size s.

Along the way, we obtain several new results regarding a lower bound for MCSP and a
hitting set generator. A hitting set generator (HSG) H : {0, 1}λ(N) → {0, 1}N for a circuit
class C is a function such that, for any circuit C from C that accepts at least (1/2) ·2N strings
of length N , there exists some seed z ∈ {0, 1}λ(N) such that C accepts H(z). We present a
hitting set generator secure against read-once non-deterministic branching programs, based
on a pseudorandom generator constructed by Forbes and Kelley [13].

▶ Theorem 6. There exists an explicit construction of a (local) hitting set generator
H : {0, 1}Õ

(√
N ·log s

)
→ {0, 1}N for read-once non-deterministic branching programs of

size s.

Previously, Andreev, Baskakov, Clementi, and Rolim [5] constructed a hitting set generator
with non-trivial seed length for read-k-times non-deterministic branching programs, but their
seed length is as large as N − o(N). Theorem 6 improves the seed length to Õ(

√
N · log s).

As an immediate corollary, we obtain a lower bound for MCSP against read-once non-
deterministic branching programs.

▶ Corollary 7. Any read-once co-non-deterministic branching program that computes MCSP
must have size at least 2Ω̃(N).

1.2 Our techniques
1.2.1 Local HSGs for MCSP lower bounds
For a circuit class C, a general approach for obtaining a C-lower bound for MCSP is by
constructing a “local” hitting set generator (or a pseudorandom generator (PRG), which is a
stronger notion) secure against C. Here, we say that a function G : {0, 1}s → {0, 1}N is local
if, for every z, the ith bit of G(z) is “easy to compute” from the index i; more precisely, for
every seed z, there exists some circuit C of size at most s such that C outputs the ith bit of
G(z) on input i ∈ [N]. Note here that G(z) is a YES instance of MCSP[s], whereas a string w

STACS 2021

23:6 One-Tape Turing Machine and Branching Program Lower Bounds for MCSP

chosen uniformly at random is a NO instance of MCSP[s] with high probability. This means
that any C-algorithm that computes MCSP[s] distinguishes the pseudorandom distribution
G(z) from the uniform distribution w, and hence the existence of C-algorithm for MCSP[s]
implies that there exists no local hitting set generator secure against C. This approach has
been used in several previous works, e.g., [35, 1, 20, 11]. In fact, it is worthy of note that, in
some sense, this is the only approach – at least for a general polynomial-size circuit class
C = P/poly, because Hirahara [18] showed that a lower bound for an approximation version
of MCSP is equivalent to the existence of a local HSG.

At the core of our results is the recent breakthrough result of Forbes and Kelley [13],
who constructed the first pseudorandom generator with polylog(n) seed length that fools
unknown-order read-once oblivious branching programs. Viola [38] used their construction to
obtain a pseudorandom generator that fools deterministic Turing machines (DTMs). Herein,
we generalize his result to the case of randomized Turing machine (RTMs), and the case of
two-sided-error randomized Turing machine (BPTIME1[t(N)]).3 At a high level, our crucial
idea is that Viola’s proof does not exploit the uniformity of Turing machines, and hence a
good coin flip sequence of a randomized oracle algorithm and all of its [small enough] oracle
queries and corresponding answers can be fixed as non-uniformity (Lemma 22). In addition,
by a careful examination of the Forbes-Kelley PRG, we show that their PRG is local; this
gives rise to a local PRG that fools BPTIME1[t(N)], which will complete a proof of our main
result (Theorem 3).

We note that the proof above implicitly shows an exponential-size lower bound for MCSP
against read-once oblivious branching programs, which was previously not known. Corollary 7
generalizes this lower bound to the case of co-non-deterministic read-once (not necessarily
oblivious) branching program. In order to prove this, we make use of PRGs that fool
combinatorial rectangles (e.g., [13, 27]). We present a general transformation from a PRG
for combinatorial rectangles into a HSG for non-deterministic read-once branching program,
by using the proof technique of Borodin, Razborov, and Smolensky [7]; see Theorem 6.

1.2.2 Nečiporuk’s method for MKTP lower bounds
In order to apply Nečiporuk’s method to MKTP, we need to give a lower bound on the
number of distinct subfunctions that can be obtained by fixing all but O(log n) bits.

The idea of counting distinct subfunctions of MKTP is to show that a random restriction
which leaves O(log n) variables free induces different subfunctions with high probability.
Specifically, partition the input variables [n] into m := n/O(log n) blocks, pick m − 1
strings ρ := ρ2 · · · ρm ∈ ({0, 1}O(log n))m−1 randomly, and consider the restricted function
f↾ρ(ρ1) := MKTP(ρ1ρ2 · · · ρm, θ) for some threshold function θ to be chosen later. Then, the
string ρiρ2 · · · ρm is compressible when i ∈ {2, · · · , m} whereas the string ρ1ρ2 · · · ρm is not
compressible when ρ1 is chosen randomly. This holds as, in the former case, there exists a
k ∈ {2, . . . , m} such that ρi = ρk and this yields a description for the string ρiρ2 · · · ρm that
is shorter than most of its descriptions in the latter case. Let now θ be an upper bound on
the KT complexity of ρiρ2 · · · ρm in the case where i ∈ {2, · · · , m}. Therefore, f↾ρ(ρi) = 1
for any ρ and i ∈ {2, · · · , m}, and f↾ρ(ρ1) = 0 with high probability over random ρ and ρ1.
This implies that, with high probability over the random restrictions ρ and ρ′, it is the case
that f↾ρ ̸≡ f↾ρ′ . This is so as, for every i ∈ {2, . . . , m}, the probability over the random

3 We emphasize that the notion of PRGs secure against these three computational models is different.
See Definition 11, Definition 13, and Lemma 15.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 23:7

restrictions ρ and ρ′ that the string ρi is such that f↾ρ′(ρi) = f↾ρ(ρi) is small, by the fact
that f↾ρ(ρi) = 1 for any ρ and the fact that f↾ρ′(ρi) = 0 with high probability over random
ρi and ρ′ [and therefore with high probability over random ρ and ρ′ as well].

Unfortunately, the probability that f↾ρ ≡ f↾ρ′ holds may not be exponentially small. As
a consequence, a lower bound on the number of distinct subfunctions that can be directly
obtained from this fact may not be exponential. In contrast, we need to prove an exponential
lower bound on the number of distinct subfunctions in order to obtain the state-of-the-art
lower bound via Nečiporuk’s method.

In order to make the argument work, we exploit symmetry of information for (resource-
unbounded) Kolmogorov complexity and Kolmogorov-randomness. Instead of picking ρ and
ρ′ randomly, we keep a set P which contains restrictions ρ that induce distinct subfunctions.
Starting from P := ∅, we add one Kolmogorov-random restriction ρ to P so that the property
of P is preserved. By using symmetry of information for Kolmogorov complexity, we can
argue that one can add a restriction to P until P becomes as large as 2Ω(n), which proves
that the number of distinct subfunctions of MKTP is exponentially large. Details can be
found in Section 4.

1.3 Related work
Chen, Jin, and Williams [10] generalized hardness magnification phenomena to arbitrary
sparse languages in NP. Note that MCSP[2µn] is a sparse language in the sense that the
number of YES instances of MCSP[2µn] is at most 2Õ(2µn), which is much smaller than the
number 22n of all the instances of length 2n. Hirahara [19] proved that a super-linear-size
lower bound on co-non-deterministic branching programs for computing an approximation
and space-bounded variant of MKtP implies the existence of a hitting set generator secure
against read-once branching programs (and, in particular, RL = L).

Regarding unconditional lower bounds for MCSP, Razborov and Rudich [35] showed that
there exists no AC0-natural property useful against AC0[⊕], which in particular implies that
MCSP ̸∈ AC0; otherwise, the complement of MCSP would yield an AC0-natural property
useful against P/poly ⊇ AC0[⊕]. Hirahara and Santhanam [20] proved that MCSP essentially
requires quadratic-size de Morgan formulas. Cheraghchi, Kabanets, Lu, and Myrisiotis [11]
proved that MCSP essentially requires cubic-size de Morgan formulas as well as quadratic-size
(general, unconstrained) branching programs. Golovnev, Ilango, Impagliazzo, Kabanets,
Kolokolova, and Tal [14] proved that, for any prime p, MCSP requires constant-depth circuits,
that are augmented with MODp gates, of weakly-exponential size.

The state-of-the-art time lower bound against DTMs on inputs of size n is Ω
(
n2)

, proved
by Maass [28], for the Polydromes function (which is a generalization of Palindromes).
Regarding the case when the considered DTMs have a two-way read-only input tape, Maass
and Schorr [29] proved that there is some problem in Σ2TIME[n] that requires Ω

(
n3/2/ log6 n

)
time to compute on such machines. As mentioned earlier, in Section 1.1, the state-of-the-art
time lower bound against RTMs is due to Kalyanasundaram and Schnitger [26], who showed
that Element Distinctness is not in BPTIME1

[
o
(
N2/ log N

)]
.

Viola [38] gave a PRG that fools RTMs that run in time n1+Ω(1); this also yields a n1+Ω(1)

time lower bound against such machines. To do this, Viola extended prior work [29, 37] on
simulating any RTM by a sum of ROBPs [see Lemma 20] and then employed the PRG by
Haramaty, Lee, and Viola [15] that fools ROBPs;4 it is a straightforward observation [38],

4 It should be noted that before Haramaty, Lee, and Viola [15] and Viola [38], the problem of designing
PRGs of polynomial stretch that fool RTMs was wide open despite intense research efforts.

STACS 2021

23:8 One-Tape Turing Machine and Branching Program Lower Bounds for MCSP

then, that the Forbes-Kelley PRG [13] [which appeared afterwards and was inspired by the
PRG by Haramaty, Lee, and Viola] yields a PRG of nearly quadratic stretch that fools RTMs
and, therefore, a nearly quadratic lower bound against the same model as well. Moreover,
Viola [38] showed that there exists some problem in Σ3TIME[n] that requires n1+Ω(1) time
to compute on any RTM that has the extra feature of a two-way read-only input tape; one
of the ingredients of this result, is again the PRG by Haramaty, Lee, and Viola [15].

For the case of one-tape TMs with no extra tapes, Hennie [17] proved in 1965 that
the Palindromes function requires Ω

(
n2)

time to compute. Van Melkebeek and Raz [37]
observed fixed-polynomial time lower bounds for SAT against non-deterministic TMs with
a d-dimensional read/write two-way work tape and a random access read-only input tape;
these lower bounds depend on d.

1.4 Organization
In Section 2, we give the necessary background. We prove Theorem 3 in Section 3, and
Theorem 4 in Section 4. The proofs of the rest of our results appear in the full version.

2 Preliminaries

2.1 Circuit complexity
Let f : {0, 1}n → {0, 1}. We define the circuit complexity of f , denoted by CC(f), to be
equal to the size (i.e., the number of gates) of the smallest bounded fan-in unbounded fan-out
Boolean circuit, over the {AND, OR, NOT} = {∧, ∨, ¬} basis, that, on input x, outputs
f(x). For a string y ∈ {0, 1}2n

, we denote by CC(y) the circuit complexity of the function
fy : {0, 1}n → {0, 1} encoded by y; i.e., fy(x) = yx, for any x ∈ {0, 1}n.

A standard counting argument shows that a random function attains nearly maximum
circuit complexity with high probability.

▶ Proposition 8 ([36]). For any function s : N → N with s(n) = o(2n/n), it holds that

Pr
x∼{0,1}2n

[CC(x) ≤ s(n)] = o(1),

for all large n ∈ N.

▶ Definition 9 (Minimum Circuit Size Problem [25]). We define MCSP as

MCSP :=
{

(x, θ) ∈ {0, 1}2n

× {0, 1}n | CC(x) ≤ θ
}

n∈N
,

and its parameterized version as

MCSP[s(n)] :=
{

x ∈ {0, 1}2n

| CC(x) ≤ s(n)
}

n∈N
,

for a size parameter s : N → N.

2.2 Turing machines
Throughout this paper, we consider a Turing machine that has one work tape and a one-way
input tape. In this context, “one-way” means that the tape-head may move only from left to
right.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 23:9

A deterministic Turing machine (DTM) is a Turing machine with two tapes: A two-way
read/write work tape and a one-way read-only input tape. Let x ∈ {0, 1}∗ and M be a DTM;
we write M(x) to denote the output of M when its input tape is initialized with x and its
work tape is empty. Let t : N → N be time-constructible. The class of languages L ⊆ {0, 1}∗

decided by some O(1)-state time-t DTM is denoted by DTIME1[t].
We also consider a randomized variant of DTMs. A randomized Turing machine (RTM)

is a Turing machine with three tapes: A two-way read/write work tape, a one-way read-only
input tape, and a one-way read-only random tape. Let x, r ∈ {0, 1}∗ and M be a RTM;
we write M(x, r) to denote the output of M when its input tape contains x, its work tape
is empty, and its random tape contains r. Let t : N → N be time-constructible. For a
language L ⊆ {0, 1}∗ and a RTM M , we say that M decides L with two-sided error if
Prr[M(x, r) = 1] ≥ 2

3 for every input x ∈ L and Prr[M(x, r) = 0] ≥ 2
3 for every input x ̸∈ L.

The class of languages L ⊆ {0, 1}∗ decided by some O(1)-state time-t RTM with two-sided
error is denoted by BPTIME1[t].

A randomized oracle Turing machine (oracle RTM) is a Turing machine with four tapes:
A two-way read/write work tape, a one-way read-only input tape, a one-way read-only
random tape, and an oracle tape. This model is identical to the randomized Turing machine
model apart from the oracle tape, which is a standard oracle tape. The class of languages
L ⊆ {0, 1}∗ decided by some O(1)-state time-t oracle RTM, with access to some oracle
O ⊆ {0, 1}∗, with two-sided error is denoted by BPTIMEO

1 [t].

2.3 Streaming algorithms
A space-s(n) streaming algorithm with update time u(n) on an input x ∈ {0, 1}n has a
working storage of s(n) bits. At any point the algorithm can either choose to perform one
operation on O(1) bits in storage or it can choose to read the next bit from the input. The
total time between two next-bit reads is at most u(n) and the final outcome is reported in
O(u(n)) time.

▶ Lemma 10. Any one-pass streaming algorithm with t(N) update time, on inputs of length
N , can be simulated by a one-tape Turing machine with a one-way read-only input tape
running in time O(N · poly(t(N))).

Proof. Recall that a streaming algorithm reads one bit of its input from left to right, and
each consecutive read operation occurs within t(N) time steps. Thus, it takes N · poly(t(N))
time-steps in total to finish the computation on inputs of length N in the standard multi-tape
Turing machine model, as the size of the input is N and poly(t(N)) time-steps suffice for
some multi-tape Turing machine to perform an update [12]. For any time constructible
function T : N → N, a one-tape Turing machine can simulate a T (n)-time multi-tape Turing
machine within O(T (n)2) steps. Thus, a streaming algorithm can be simulated in time
N · (poly(t(N)))2 = N · poly(t(N)) by a one-tape Turing machine. ◀

2.4 Branching programs
A branching program (BP) is a directed acyclic graph with three special vertices: a start
vertex s (the source) and two finish vertices, namely an accepting vertex h1 and a rejecting
vertex h0 (the sinks).

On input x ∈ {0, 1}n, the computation starts at s and follows a directed path from s

to some hb, with b ∈ {0, 1}. On this occasion, the output of the computation is b. In each
step, the computation queries some input xi, for i ∈ [n], and then visits some other node,
depending on the value of the variable just queried, namely 0 or 1, through an edge with
label “xi = 0” or “xi = 1,” respectively.

STACS 2021

23:10 One-Tape Turing Machine and Branching Program Lower Bounds for MCSP

A branching program P decides a language L ⊆ {0, 1}∗ in the natural way, i.e., x ∈ L if
and only if, on input x, the computation path that P follows starts at s and finishes at h1. If
the branching program is layered and the variable queried within each layer is the same, then
the branching program is called oblivious. If the branching program queries each variable at
most once, then the branching program is called a read-once branching program (ROBP). If
the branching program is oblivious and always queries the variables in some known order,
where it is known beforehand which variable is queried at each layer, then the branching
program is called known-order, else it is called unknown-order.

A branching program is called non-deterministic if some of its vertices have an arbitrary
number of outgoing edges (i.e., if this number is not 2) or if some of its vertices have edges
that do not refer to the same input variable. Non-deterministic branching programs may also
have unlabelled edges, as well. Due to the nature of a non-deterministic branching program,
it is possible that a computation never reaches either h0 or h1 as there can be some node
with edges that their labels are all false according to the input at hand; in this case, we
assume that the computation halts in a rejecting state.

A non-deterministic branching program computes a function f : {0, 1}n → {0, 1} if, for
every x ∈ {0, 1}n such that f(x) = 1, there is some s-h1 path and for every x ∈ {0, 1}n such
that f(x) = 0, all computations end in a rejecting state.

A co-non-deterministic branching program computes a function f : {0, 1}n → {0, 1} if, for
every x ∈ {0, 1}n such that f(x) = 1, all source-to-sink paths are s-h1 paths and for every
x ∈ {0, 1}n such that f(x) = 0, there exists some rejecting computation.

A parity branching program is a branching program that has counting semantics. That is,
a parity branching program computes a function f : {0, 1}n → {0, 1} if, for every x ∈ {0, 1}n

such that f(x) = 1, there is an odd number of s-h1 paths and for every x ∈ {0, 1}n such that
f(x) = 0, there is an even number of s-h1 paths.

We define the size of a branching program to be the number of its labelled edges.

2.5 Pseudorandom generators and hitting set generators

We recall the standard notions of pseudorandom generators and hitting set generators.

▶ Definition 11. Let s : N → N be a function, C be a circuit class, and 0 < ε < 1. A
pseudorandom generator (PRG) that ε-fools C is a function G : {0, 1}s(n) → {0, 1}n such
that∣∣∣∣∣ Exp

x∼{0,1}n
[f(x)] − Exp

y∼{0,1}s(n)
[f(G(y))]

∣∣∣∣∣ ≤ ε,

for any circuit C ∈ C. The value s(n) is referred to as the seed length of G.

▶ Definition 12. Let s : N → N be a function, C be a circuit class, and 0 < ε < 1. A hitting
set generator (HSG) ε-secure against C is a function G : {0, 1}s(n) → {0, 1}n such that

Pr
x∼{0,1}n

[C(x) = 1] ≥ ε =⇒ C(H(y)) = 1 for some y ∈ {0, 1}s(n)
,

for any circuit C ∈ C. By default, we choose ε := 1/2.

For our purpose, it is useful to extend the notion of PRG to a pseudorandom generator
that fools randomized algorithms.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 23:11

▶ Definition 13. For a function s : N → N and a parameter 0 < ε < 1, a function
G : {0, 1}s(n) → {0, 1}n is said to be a pseudorandom generator that ε-fools q-state time-t
RTMs if∣∣∣∣∣∣∣∣ Exp

x∼{0,1}n,

r∼{0,1}t

[M(x, r)] − Exp
y∼{0,1}s(n),

r∼{0,1}t

[M(G(y) , r)]

∣∣∣∣∣∣∣∣ ≤ ε,

for any q-state time-t RTM M .

2.6 MCSP lower bounds from local HSGs
For a function G : {0, 1}s → {0, 1}n, we say that G is local [11] if CC(G(z)) ≤ s for every
string z ∈ {0, 1}s. We make use of the following standard fact.

▶ Lemma 14. Let s : N → N be a function such that s(n) = o(2n/n), and N := 2n. Suppose
that there exists a local hitting set generator H : {0, 1}s(n) → {0, 1}N for a circuit class C.
Then, MCSP[s(n)] ̸∈ coC.

Proof. We prove the contrapositive. Let C ∈ coC be a circuit that computes MCSP[s(n)].
Since CC(H(z)) ≤ s(n), we have H(z) ∈ MCSP[s(n)]; thus C(H(z)) = 1, for every z ∈
{0, 1}s(n). For a random w ∼ {0, 1}N , it follows from Proposition 8 that w ̸∈ MCSP[s(n)]
with probability 1 − o(1); hence C(w) = 0 for most w. Therefore, ¬C ∈ C accepts at least a
half of {0, 1}N but rejects every string in the range of H, which contradicts the security of
the hitting set generator H. ◀

We observe that a local pseudorandom generator for time-t RTMs also “fools”
BPTIME1[t(N)] in the following sense.

▶ Lemma 15. Let s, t : N → N be functions, such that s(n) = o(2n/n), and N := 2n. Suppose
that there is a family of local pseudorandom generators G = {Gn : {0, 1}s(n) → {0, 1}N }n∈N
such that, for every n ∈ N, Gn (1/6)-fools time-t(N) RTMs. Then, MCSP[s(n)] is not in
BPTIME1[t(N)].

Proof. We prove the contrapositive. Let M be a time-t RTM that decides MCSP[s(n)]. Fix
any n ∈ N. For any seed z ∈ {0, 1}s(n), we have Gn(z) ∈ MCSP[s(n)] since Gn is local. Thus,
Prr[M(Gn(z), r) = 1] ≥ 2/3. On the other hand, pick a string w ∈ {0, 1}N chosen uniformly
at random. By the counting argument of Proposition 8, we get Prw[w ̸∈ MCSP[s(n)]] ≥
1 − o(1). Thus, we have Prw,r[M(w, r) = 1] ≤ o(1) + 1/3 < 1/2. Therefore,

Pr
z,r

[M(Gn(z), r) = 1] − Pr
w,r

[M(w, r) = 1] >
2
3 − 1

2 = 1
6 ,

which means that Gn does not fool RTMs. ◀

3 MCSP lower bounds against one-tape oracle RTMs

In this section, we present a proof of our main result.

▶ Theorem 16 (Theorem 3, restated). Let O ⊆ {0, 1}∗ be any language. Then, for
every constant 1/2 < µ < 1, MCSP[2µ·n] on truth tables of size N := 2n is not in
BPTIMEO

1

[
N2·(µ′−o(1))

]
for all 1/2 < µ′ < µ, where all of the strings queried to O are

of length No(1).

STACS 2021

23:12 One-Tape Turing Machine and Branching Program Lower Bounds for MCSP

3.1 Connections to hardness magnification

As discussed in Section 1.1.1, Theorem 16 implies that establishing hardness magnification
phenomena for MCSP, when the circuit size threshold parameter is 20.51n, would require
the development of new techniques; see Remark 19. To explain why this is true, we shall
first require the following result by McKay, Murray, and Williams [30] that gives an oracle
streaming algorithm for MCSP.

▶ Lemma 17 ([30, Theorem 1.2]). Let s : N → N be a size function, with s(n) ≥ n for all
n, and N := 2n. Then, there is a one-pass streaming algorithm for MCSP[s(n)] on N -bit
inputs running in N · Õ(s(n)) time with Õ

(
s(n)2

)
update time and Õ(s(n)) space, using an

oracle for Σ3SAT with queries of length Õ(s(n)).

A corollary of Lemma 17 and Lemma 10 is the following.

▶ Corollary 18 (Consequences of hardness magnification from currently known techniques).
Let s : N → N be a size function. Then, MCSP[s(n)] on truth tables of length N := 2n is
in DTIMEO

1 [N · poly(s(n))], for some O ∈ ΣP
3 , where all of the strings queried to O are of

length at most poly(s(n)).

The following remark summarizes the main idea of this subsection.

▶ Remark 19. By Corollary 18, we see that if s(n) = 2µ·n, for µ = o(1), then MCSP[s(n)] is
in DTIMEO

1
[
N1+o(1)], where all of the strings queried to O are of length No(1). In light of

this observation, Theorem 16 is important for the following reason. As DTIMEO
1

[
N1+o(1)]

is a subset of BPTIMEO
1

[
N2·(µ′−o(1))

]
for all 1/2 < µ′ < 1 and all languages O ⊆ {0, 1}∗,

Theorem 16 shows that establishing hardness magnification phenomena for MCSP[s(n)] like
that of Theorem 1, when s(n) = 2µ·n for any constant 1/2 < µ < 1, would require the
development of techniques that do not rely on designing oracle algorithms that make short
oracle queries.

3.1.1 Comparison with the locality barrier

Chen, Hirahara, Oliveira, Pich, Rajgopal, and Santhanam [9] introduced the “locality barrier”
to explain why it will be difficult to acquire a major complexity breakthrough through the
lens of hardness magnification. Their reasoning goes as follows:

Existing magnification theorems unconditionally show that problems, against which
some circuit lower bound implies a complexity-theoretic breakthrough, admit highly
efficient small fan-in oracle circuits, while lower bound techniques against weak circuit
models quite often easily extend to circuits containing such oracles.

Our Remark 19, therefore, is close in spirit to the results of Chen et al. [9]: We make use
of a lower bound (Theorem 16) to motivate the development of new techniques for proving
hardness magnification phenomena while Chen et al. make use of hardness magnification
phenomena to motivate the development of new techniques for acquiring lower bounds; a
notable difference is that we consider one-tape Turing machines while they consider Boolean
circuits.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 23:13

3.2 Proof of Theorem 16
In order to prove Theorem 16, our goal is to construct a local pseudorandom generator
that fools oracle RTMs and then apply Lemma 15. Viola [38] constructed a pseudorandom
generator that fools the one-tape Turing machine model (DTM).5 We will show that, in fact,
the same construction fools oracle RTMs as well. In order to do so, we recall the idea of
Viola [38]. The idea is that, in order to fool DTMs, it is sufficient to use a PRG that ε-fools
ROBPs for an exponentially small ε. This is because time-t DTMs can be written as the
sum of an exponential number of ROBPs.

▶ Lemma 20 (Viola [38]). Let n ∈ N and M be a q-state time-t DTM. Then, there is a family
{Pα}α∈A of n-input ROBPs of width exp

(
O

(√
t · log(tq)

))
such that, for any x ∈ {0, 1}n,

M(x) =
∑
α∈A

Pα(x),

where |A| ≤ (tq)O(√
t).

By a simple calculation, any pseudorandom generator that ε/|A|-fools ROBPs also ε-fools
DTMs. Viola [38] then used the pseudorandom generator of Forbes and Kelley [13] that
fools ROBPs. By a careful examination, we will show that the Forbes-Kelley pseudorandom
generator is local; see the full version.

▶ Theorem 21 (Forbes-Kelley PRG is local). There exists a local pseudorandom generator
with seed length Õ

(
(
√

t + log(1/ε)) · log q
)

that ε-fools q-state time-t n-input DTMs for any
t ≥ n.

Our main idea for obtaining an oracle randomized Turing machine lower bound is that
Viola’s reduction can be applied to non-uniform computational models, i.e., q-state Turing
machines where q can become large as the input length becomes large. More specifically, it
is possible to incorporate all possible oracle queries [along with their answers] and any good
coin flip sequence r into the internal states of DTMs.

▶ Lemma 22. For an input length n ∈ N, for any q-state time-t oracle RTM M , that only
queries strings of length at most ℓ to its oracle O, and a coin flip sequence r ∈ {0, 1}t, there
exists some

(
q · 2ℓ · t

)
-state time-t DTM M ′ such that M ′(x) = MO(x, r) for every input

x ∈ {0, 1}n.

Proof. Let QM denote the set of the states of M . We define the set of the states of M ′ as

QM ′ :=
{

(q, s, b, i) ∈ QM × {0, 1}ℓ × {0, 1} × [t] | O(s) = b
}

.

The transition from the state (q, s, b, i) ∈ QM ′ can be defined in a natural way, by using the
i-th bit of r, namely ri, the state q, and the fact that O(s) = b. ◀

▶ Corollary 23. There exists a local pseudorandom generator with seed length σ(t, q, ε) =
Õ

(
(
√

t + log(1/ε)) · log(q · 2ℓ · t)
)

that ε-fools q-state time-t n-input oracle RTMs that may
only query strings of length at most ℓ to their oracle, for any t ≥ n.

5 We note that our definition of PRG is different from that of [38] in that a random tape is not regarded
as an input tape.

STACS 2021

23:14 One-Tape Turing Machine and Branching Program Lower Bounds for MCSP

Proof. We hard-code the oracle queries and their answers in the internal states and, moreover,
we use an averaging argument to fix one good coin flip sequence r. Let M be any q-state
time-t oracle RTM that may query to its oracle O strings of length at most ℓ. Let G be a
PRG from Theorem 21. We have that∣∣∣∣∣ Exp

r∼{0,1}t

[
Exp

x∼{0,1}n

[
MO(x, r)

]]
− Exp

r∼{0,1}t

[
Exp

y∼{0,1}σ(t,q,ε)

[
MO(G(y), r)

]]∣∣∣∣∣
=

∣∣∣∣Exp
r

[
Exp

x

[
MO(x, r)

]
− Exp

y

[
MO(G(y), r)

]]∣∣∣∣
≤ Exp

r

[∣∣∣∣Exp
x

[
MO(x, r)

]
− Exp

y

[
MO(G(y), r)

]∣∣∣∣]
≤

∣∣∣∣Exp
x

[
MO(x, r∗)

]
− Exp

y

[
MO(G(y), r∗)

]∣∣∣∣ ,

for some r∗ ∈ {0, 1}t, by an averaging argument. By applying Lemma 22, for MO, O, and
r∗, we obtain an equivalent

(
q · 2ℓ · t

)
-state time-t DTM M ′. The result now follows from

Theorem 21. Specifically,∣∣∣∣Exp
x

[
MO(x, r∗)

]
− Exp

y

[
MO(G(y), r∗)

]∣∣∣∣ =
∣∣∣∣Exp

x
[M ′(x)] − Exp

y
[M ′(G(y))]

∣∣∣∣ ≤ ε. ◀

Proof of Theorem 16. Take the local pseudorandom generator G of Corollary 23 with
parameter ε := 1/6. Let 1/2 < µ′ < µ < 1 be arbitrary constants. Let t, s, ℓ : N → N be
functions such that t(N) = N2·(µ′−o(1)), s(n) = 2µ·n, and ℓ(n) = 2o(n). Then, the seed
length of G is at most

Õ
(√

t(N) · (log q + ℓ(n))
)

≤ Õ(Nµ′−o(1)+o(1)) ≤ s(n),

where N = 2n. Since s(n) = o(2n/n), by Lemma 15, we obtain that MCSP[s(n)] ̸∈
BPTIMEO

1 [t(N)], where all of the strings queried to O are of length No(1). ◀

4 MKTP lower bounds against branching programs

In this section, we develop a proof technique for applying Nečiporuk’s method to MKTP
and prove Theorem 4. The KT-complexity is formally defined as follows.

▶ Definition 24. Let U be an efficient universal Turing machine. For a string x ∈ {0, 1}∗,
the KT-complexity of x is defined as follows.

KT(x) := min{|d| + t | Ud(i) outputs xi in time t for every i ∈ [|x| + 1]}.

Here we define xi as the ith bit of x if i ≤ |x| and ⊥ otherwise.

For a threshold θ : N → N, we denote by MKTP[θ] the problem of deciding whether
KT(x) ≤ θ(|x|) given a string x ∈ {0, 1}∗ as input.

Let f : {0, 1}n → {0, 1} be a Boolean function and ρ ∈ {0, 1, ∗}n a restriction. The
ρ-restricted version of f is a function, denoted by f↾ρ, such that for any x ∈ {0, 1}n it is the
case that f↾ρ(x) := f(y) where y ∈ {0, 1}n and, for all 1 ≤ i ≤ n, yi := ρ(i) if ρ(i) ∈ {0, 1},
else yi := xi.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 23:15

For a function f : {0, 1}n → {0, 1}, we partition the input variables [n] into disjoint blocks
V1, · · · , Vm, where |Vi| = v for each i ∈ [m] and n = vm. (v = O(log n) will be chosen later.)
The idea of the Nečiporuk’s method is to lower-bound the number of subfunctions. For each
i ∈ [m], we define ci(f) to be the number of distinct functions f↾ρ such that ρ : [n] → {0, 1, ∗}
is a restriction with ρ−1(∗) = Vi.

The Nečiporuk method can be then summarized as follows.

▶ Theorem 25 (Nečiporuk [32]; cf. [24, Theorem 15.1]). The size of a branching program com-
puting f is at least Ω (

∑m
i=1 log ci(f)/ log log ci(f)). The size of a non-deterministic branching

program or a parity branching program computing f is at least Ω
(∑m

i=1
√

log ci(f)
)

.

Our main technical result of this section is the following.

▶ Theorem 26. Let f : {0, 1}n → {0, 1} be MKTP[θ] on n-bit inputs for θ := n−3c log n−4,
where c > 0 is a universal constant. Then, for every i ∈ [m], it holds that ci(f) = 2Ω(n).

The lower bounds for branching programs (Theorem 4) immediately follow from The-
orem 26 and Theorem 25.

In our proof of Theorem 26, we only need the following two properties of KT-complexity.
1. The resource-unbounded Kolmogorov complexity6 provides a lower bound on the KT-

complexity. That is, K(x) ≤ KT(x) for any x ∈ {0, 1}∗.
2. For any strings ρ1, · · · , ρm ∈ {0, 1}v such that there exist distinct indices i ≠ j ∈ [m]

such that ρi = ρj , we have KT(ρ1 · · · ρm) ≤ (m − 1) · v + O(log n). This is because each
bit of the string ρ1 · · · ρm can be described by the strings {ρ1, · · · , ρm} \ {ρj} and the
index j ∈ [m] in time O(log n).7

For simplicity, we focus on the case when i = 1; the other case can be proved similarly.
The idea of the proof is the following. Imagine that we pick ρ ∈ {∗}V1 × {0, 1}V2∪···∪Vm

uniformly at random. (Here we identify a restriction with a string in {0, 1, ∗}[n].) We denote
by ρ2 ∈ {0, 1}V2 , · · · , ρm ∈ {0, 1}Vm the random bits such that ρ = ∗V1ρ2 · · · ρm. We will
sometimes identify ρ2 · · · ρm with ρ.

Consider the function f↾ρ : {0, 1}V1 → {0, 1} obtained by restricting f by ρ. Then, we
expect that f↾ρ(ρi) = 1 for any i ∈ {2, · · · , m} since KT(ρiρ2 · · · ρm) is small, whereas
f↾ρ(U) = 0 for a random U ∼ {0, 1}V1 with high probability. Thus, the function f↾ρ is likely
to be distinct for a randomly chosen ρ.

In order to make the argument formal, we proceed as follows. Pick ρ randomly. Then we
add it to a set P while keeping the promise that the map ρ ∈ P 7→ f↾ρ is injective. We will
show that one can keep adding ρ until the size of P becomes exponentially large.

We will make use of symmetry of information of (resource-unbounded) Kolmogorov
complexity.

▶ Lemma 27. There exists a constant c > 0 such that, for any strings x, y ∈ {0, 1}∗,

K(xy) ≥ K(x) + K(y | x) − c log K(xy) .

6 Let U be an efficient universal Turing machine. For a string x ∈ {0, 1}∗, the resource-unbounded
Kolmogorov complexity of x is defined as K(x) := min{|d| | Ud(i) outputs xi for every i ∈ [|x| + 1]}.

7 Here we assume that the universal Turing machine is efficient. If the universal Turing machine is slower
and the time is polylog(n), we obtain a branching program size lower bound of n2/polylog(n).

STACS 2021

23:16 One-Tape Turing Machine and Branching Program Lower Bounds for MCSP

We focus on restrictions ρ such that ρ is Kolmogorov-random. To this end, define

R := {ρ ∈ {0, 1}V2∪···∪Vm | K(ρ) ≥ |ρ| − 1}

as the set of Kolmogorov-random restrictions ρ. By the standard counting argument, we have

Pr
ρ

[ρ ̸∈ R] ≤
|ρ|−2∑
i=1

2i/2|ρ| ≤ 1
2 .

The following lemma is the key for counting the number of distinct subfunctions.

▶ Lemma 28. Let ρ′ ∈ R be an arbitrary restriction and define θ := n − v + c log n. If
f↾ρ ≡ f↾ρ′ , then K(ρi | ρ′) ≤ 2c log n + 1 for any i ∈ {2, · · · , m}.

Proof. For each i ∈ [m] \ {1},

KT(ρiρ2 · · · ρm) ≤ |ρ2| + · · · + |ρm| + O(log n) ≤ (m − 1) · v + c log n ≤ θ.

This means that ρiρ2 · · · ρm is a YES instance of MKTP[θ]. Therefore, we have 1 = f↾ρ(ρi) =
f↾ρ′(ρi), which implies that KT(ρiρ

′
2 · · · ρ′

m) ≤ θ. By the symmetry of information,

θ ≥ KT(ρiρ
′
2 · · · ρ′

m) ≥ K(ρiρ
′
2 · · · ρ′

m) ≥ K(ρ′
2 · · · ρ′

m) + K(ρi | ρ′
2 · · · ρ′

m) − c log n.

Since ρ′ ∈ R, we have K(ρ′
2 · · · ρ′

m) ≥ v(m − 1) − 1 = n − v − 1. Therefore,

K(ρi | ρ′
2 · · · ρ′

m) ≤ θ + c log n − (n − v − 1) = 2c log n + 1. ◀

Now we set v := 4c log n + 4. Then, for any ρ′ ∈ R,

Pr
ρ

[f↾ρ ≡ f↾ρ′] ≤ Pr[∀i ∈ [m] \ {1}, K(ρi | ρ′) ≤ v/2 − 1]

≤ (2v/2/2v)m−1

= 2−n/2+v/2

≤ 2−n/3.

In particular, for any P ⊆ R, by the union bound, we obtain

Pr
ρ

[∃ρ′ ∈ P, f↾ρ ≡ f↾ρ′] ≤ |P | · 2−n/3.

Therefore,

Pr
ρ

[ρ ̸∈ R or ∃ρ′ ∈ P, f↾ρ ≡ f↾ρ′] ≤ 1/2 + |P | · 2−n/3,

which is strictly less than 1 if |P | < 2n/3−1. To summarize, we established the following
property.

▶ Corollary 29. For any P ⊆ R such that |P | < 2n/3−1, there exists a restriction ρ such that
ρ ∈ R and f↾ρ ̸≡ f↾ρ′ for any ρ′ ∈ P .

In light of this, we can construct a large set P such that the map ρ ∈ P 7→ f↾ρ is injective
as follows: Starting from P := ∅, add a restriction ρ ∈ R such that f↾ρ ̸≡ f↾ρ′ for any ρ′ ∈ P ,
whose existence is guaranteed by Corollary 29 if |P | < 2n/3−1. In this way, we obtain a
set P such that |P | ≥ 2n/3−1 and each f↾ρ is distinct for any ρ ∈ P . We conclude that
c1(f) ≥ |P | ≥ 2n/3−1. This completes the proof of Theorem 26.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 23:17

References
1 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneburger.

Power from random strings. SIAM J. Comput., 35(6):1467–1493, 2006.
2 Eric Allender and Shuichi Hirahara. New insights on the (non-)hardness of circuit minimization

and related problems. In Proceedings of the 42nd International Symposium on Mathematical
Foundations of Computer Science (MFCS), pages 54:1–54:14, 2017.

3 Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility. J.
ACM, 57(3):14:1–14:36, 2010.

4 Eric Allender, Michal Koucký, Detlef Ronneburger, and Sambuddha Roy. The pervasive reach
of resource-bounded Kolmogorov complexity in computational complexity theory. J. Comput.
Syst. Sci., 77(1):14–40, 2011.

5 Alexander E. Andreev, Juri L. Baskakov, Andrea E. F. Clementi, and José D. P. Rolim.
Small pseudo-random sets yield hard functions: New tight explicit lower bounds for branching
programs. In Proceedings of the 26th International Colloquium on Automata, Languages and
Programming (ICALP), pages 179–189, 1999.

6 Paul Beame, Nathan Grosshans, Pierre McKenzie, and Luc Segoufin. Nondeterminism and
an abstract formulation of Nečiporuk’s lower bound method. ACM Trans. Comput. Theory,
9(1):5:1–5:34, 2016.

7 Allan Borodin, Alexander A. Razborov, and Roman Smolensky. On lower bounds for read-k-
times branching programs. Computational Complexity, 3:1–18, 1993.

8 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning algorithms from natural proofs. In Proceedings of the 31st Conference on Computa-
tional Complexity (CCC), pages 10:1–10:24, 2016.

9 Lijie Chen, Shuichi Hirahara, Igor Carboni Oliveira, Ján Pich, Ninad Rajgopal, and Rahul
Santhanam. Beyond natural proofs: Hardness magnification and locality. In 11th Innovations
in Theoretical Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle,
Washington, USA, pages 70:1–70:48, 2020.

10 Lijie Chen, Ce Jin, and R. Ryan Williams. Hardness magnification for all sparse NP languages.
In 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019, pages 1240–1255, 2019.

11 Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, and Dimitrios Myrisiotis. Circuit
lower bounds for MCSP from local pseudorandom generators. In Christel Baier, Ioannis
Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium
on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece,
volume 132 of LIPIcs, pages 39:1–39:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

12 Stephen A. Cook and Robert A. Reckhow. Time-bounded random access machines. In
Patrick C. Fischer, H. Paul Zeiger, Jeffrey D. Ullman, and Arnold L. Rosenberg, editors,
Proceedings of the 4th Annual ACM Symposium on Theory of Computing, May 1-3, 1972,
Denver, Colorado, USA, pages 73–80. ACM, 1972.

13 Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once branching
programs, in any order. In Proceedings of the 59th IEEE Annual Symposium on Foundations
of Computer Science (FOCS), pages 946–955, 2018.

14 Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina Koloko-
lova, and Avishay Tal. AC0[p] lower bounds against MCSP via the coin problem. In Christel
Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019,
Patras, Greece, volume 132 of LIPIcs, pages 66:1–66:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

15 Elad Haramaty, Chin Ho Lee, and Emanuele Viola. Bounded independence plus noise fools
products. SIAM J. Comput., 47(2):493–523, 2018.

STACS 2021

23:18 One-Tape Turing Machine and Branching Program Lower Bounds for MCSP

16 Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

17 F. C. Hennie. One-tape, off-line turing machine computations. Inf. Control., 8(6):553–578,
1965.

18 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In Pro-
ceedings of the Symposium on Foundations of Computer Science (FOCS), pages 247–258,
2018.

19 Shuichi Hirahara. Non-Disjoint Promise Problems from Meta-Computational View of Pseu-
dorandom Generator Constructions, 2020. Manuscript.

20 Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of MCSP and its
variants. In Proceedings of the 32nd Computational Complexity Conference (CCC), pages
7:1–7:20, 2017.

21 Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem as oracle. In
Proceedings of the 31st Conference on Computational Complexity (CCC), pages 18:1–18:20,
2016.

22 John M. Hitchcock and Aduri Pavan. On the NP-completeness of the minimum circuit size
problem. In Proceedings of the 35th IARCS Annual Conference on Foundation of Software
Technology and Theoretical Computer Science (FSTTCS), pages 236–245, 2015.

23 Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from Shrinkage.
J. ACM, 66(2):11:1–11:16, 2019.

24 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms
and combinatorics. Springer, 2012.

25 Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Proceedings of the 32nd
Annual ACM Symposium on Theory of Computing (STOC), pages 73–79, 2000.

26 Bala Kalyanasundaram and Georg Schnitger. Communication complexity and lower bounds
for sequential computation. In Informatik, Festschrift zum 60. Geburtstag von Günter Hotz,
pages 253–268. Teubner / Springer, 1992.

27 Chin Ho Lee. Fourier bounds and pseudorandom generators for product tests. In Proceedings
of the 34th Computational Complexity Conference (CCC), pages 7:1–7:25, 2019.

28 Wolfgang Maass. Quadratic lower bounds for deterministic and nondeterministic one-tape
Turing machines (extended abstract). In Proceedings of the 16th Annual ACM Symposium on
Theory of Computing (STOC), pages 401–408, 1984.

29 Wolfgang Maass and Amir Schorr. Speed-up of Turing machines with one work tape and a
two-way input tape. SIAM J. Comput., 16(1):195–202, 1987.

30 Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak lower bounds on resource-
bounded compression imply strong separations of complexity classes. In Proceedings of the
Symposium on Theory of Computing (STOC), pages 1215–1225, 2019.

31 Cody D. Murray and Richard Ryan Williams. On the (non) NP-hardness of computing circuit
complexity. In Proceedings of the 30th Conference on Computational Complexity (CCC), pages
365–380, 2015.

32 E.I. Nečiporuk. On a Boolean function. Doklady Akademii Nauk SSSR, 169(4):765–766, 1966.
English translation in Soviet Mathematics Doklady.

33 Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near state-
of-the-art lower bounds. In Proceedings of the 34th Computational Complexity Conference
(CCC), pages 27:1–27:29, 2019.

34 Igor Carboni Oliveira and Rahul Santhanam. Hardness magnification for natural problems.
In Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 65–76,
2018.

35 Alexander A. Razborov and Steven Rudich. Natural proofs. In Proceedings of the 26th Annual
ACM Symposium on Theory of Computing (STOC), pages 204–213, 1994.

36 Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell Systems Technical
Journal, 28:59–98, 1949.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 23:19

37 Dieter van Melkebeek and Ran Raz. A time lower bound for satisfiability. In Josep Díaz,
Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors, Automata, Languages and
Programming: 31st International Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004.
Proceedings, volume 3142 of Lecture Notes in Computer Science, pages 971–982. Springer,
2004.

38 Emanuele Viola. Pseudorandom bits and lower bounds for randomized Turing machines.
Electronic Colloquium on Computational Complexity (ECCC), 26:51, 2019.

39 Osamu Watanabe. The time-precision tradeoff problem on on-line probabilistic Turing
machines. Theor. Comput. Sci., 24:105–117, 1983.

STACS 2021

Inference and Mutual Information on Random
Factor Graphs
Amin Coja-Oghlan !

Mathematics Institute, Goethe Universität Frankfurt am Main, Germany

Max Hahn-Klimroth !

Mathematics Institute, Goethe Universität Frankfurt am Main, Germany

Philipp Loick !

Mathematics Institute, Goethe Universität Frankfurt am Main, Germany

Noela Müller !

Mathematics Institute, University of Munich, Germany

Konstantinos Panagiotou !

Mathematics Institute, University of Munich, Germany

Matija Pasch !

Mathematics Institute, University of Munich, Germany

Abstract

Random factor graphs provide a powerful framework for the study of inference problems such as
decoding problems or the stochastic block model. Information-theoretically the key quantity of
interest is the mutual information between the observed factor graph and the underlying ground
truth around which the factor graph was created; in the stochastic block model, this would be the
planted partition. The mutual information gauges whether and how well the ground truth can be
inferred from the observable data. For a very general model of random factor graphs we verify a
formula for the mutual information predicted by physics techniques. As an application we prove
a conjecture about low-density generator matrix codes from [Montanari: IEEE Transactions on
Information Theory 2005]. Further applications include phase transitions of the stochastic block
model and the mixed k-spin model from physics.

2012 ACM Subject Classification Mathematics of computing → Probabilistic inference problems

Keywords and phrases Information theory, random factor graphs, inference problems, phase transi-
tions

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.24

Related Version Full Version: https://arxiv.org/abs/2007.07494

Funding Amin Coja-Oghlan: Supported by DFG CO 646/3.
Max Hahn-Klimroth: Supported by Stiftung Polytechnische Gesellschaft and DFG FOR 2975.
Philipp Loick: Supported by DFG CO 646/3.
Noela Müller : Supported by the European Research Council, ERC Grant Agreement
772606–PTRCSP.
Konstantinos Panagiotou: Supported by the European Research Council, ERC Grant Agreement
772606–PTRCSP.
Matija Pasch: Supported by the European Research Council, ERC Grant Agreement
772606–PTRCSP.

© Amin Coja-Oghlan, Max Hahn-Klimroth, Philipp Loick, Noela Müller, Konstantinos Panagiotou, and
Matija Pasch;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 24; pp. 24:1–24:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:coja-oghlan@math.uni-frankfurt.de
mailto:hahnklim@math.uni-frankfurt.de
mailto:loick@math.uni-frankfurt.de
mailto:nmueller@math.lmu.de
mailto:kpanagio@math.lmu.de
mailto:pasch@math.lmu.de
https://doi.org/10.4230/LIPIcs.STACS.2021.24
https://arxiv.org/abs/2007.07494
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Inference and Mutual Information on Random Factor Graphs

1 Introduction

1.1 Background and motivation

Since the 1990s there has been an immense interest in inference and learning problems on
random graphs. One motivation has been to seize upon random graphs as benchmarks
for inference algorithms of all creeds and denominations. An excellent example of this is
the stochastic block model; the impressive literature on this model alone is surveyed in [1].
A second, no less salient motivation has been the use of random graphs in probabilistic
constructions. Concrete examples include powerful error correcting codes such as low density
generator matrix or low density parity check codes, which have since found their way into
modern communications standards [20, 31]. Further prominent recent applications include
compressed sensing and group testing [2, 14, 15]. It appears hardly a stretch to claim that in
terms of real world impact these constructions occupy top ranks among applications of the
probabilistic method and, indeed, modern combinatorics generally.

Yet many applications of the probabilistic method to inference problems still lack a
satisfactory rigorous justification. Some are supported primarily by empirical evidence, i.e.,
not much more than a bunch of computer experiments. Quite a few others have been inspired
by a versatile but non-rigorous approach from physics known as the “cavity method”. But
while there has been progress in recent years, vast gaps between the physics predictions and
their rigorous vindications remain. One important reason for this is that the random graph
models used in practical inference tend to be significantly more intricate than, say, a classical
binomial random graph. For instance, a highly popular breed of low-density parity check
codes use delicately tailored degree distributions for both the variable nodes and the check
nodes of the Tanner graph [31].

In this paper we significantly advance the rigorous state of the art by corroborating
important cavity method predictions wholesale for a rich class of inference problems that
accommodates the very general choices of degree distributions of interest in high-dimensional
Bayesian inference problems and coding theory. Generally, the objective in such inference
problems is to recover the ground truth from the observable data. Think, for instance, of
retrieving the hidden communities in the stochastic block model or of reconstructing the
original message from a noisy codeword. For this broad class of models we rigorously establish
the formulas that the cavity method predicts for the mutual information, which is the key
information-theoretic potential that gauges precisely how much it is possible in principle to
learn about the ground truth. Technically we build upon and extend the methods developed
in [11] for random graph models of Erdős-Rényi type. While we follow a similar general proof
strategy, the greater generality of the present results necessitates significant upgrades to
virtually all of the moving parts. For example, due to the more rigid combinatorial structure
of graphs with given degrees many of the manoeuvres that are straightforward for binomial
random graphs now require delicate coupling arguments.

We proceed to highlight applications of our main results to three specific problems that
have each received a great deal of attention in their own right: low-density generator matrix
codes, the stochastic block model and the mixed k-spin model, which hails from mathematical
physics. Then in Section 2 we state the main results concerning the general class of random
factor graph models. Section 3 contains an overview of the proof strategy and a detailed
comparison with prior work.

A. Coja-Oghlan et al. 24:3

1.2 Low-density generator matrix codes
A powerful and instructive class of error-correcting codes, low-density generator matrix
(“ldgm”) codes are based on random bipartite graphs with given degree distributions. Spe-
cifically, let d,k ≥ 0 be bounded integer-valued random variables, let n be an integer and let
m ∼ Po(nE[d]/E[k]) be a Poisson variable. One vertex class V = {x1, . . . , xn} of the graph
represents the bits of the original message. The other class F = {a1, . . . , am} represents the
rows of the code’s generator matrix. To obtain the random graph G create for each variable
node xi an independent copy di of d. Similarly, create an independent copy ki of k for each
check node ai. Then given the event

{∑n
i=1 di =

∑m
i=1 ki

}
that the total degrees on both

sides match let G be a random bipartite graph where every xi has degree di and every ai
has degree ki. We tacitly restrict to n such that this event has positive probability.

The generator matrix of the ldgm code is now precisely the m× n biadjacency matrix
A(G) of G, viewed as a matrix over F2. Thus, the rows of A(G) correspond to the check
nodes a1, . . . , am, the columns correspond to x1, . . . , xn and the (i, j)-entry equals one iff
ai and xj are adjacent. For a given message x ∈ Fn2 the corresponding codeword reads
y = A(G)x ∈ Fm

2 . The receiver on the other end of a noisy channel observes a scrambled
version y∗ of y. Specifically, y∗ is obtained from y by flipping every bit with probability
η ∈ (0, 1/2) independently. To gauge the potential of the code, the key question is how much
information about the original x the receiver can possibly extract from y∗. Naturally, the
receiver also knows G. Hence, we aim to work out the conditional mutual information

I(x,y∗ | G) =
∑

x∈Fn
2 ,y∈Fm2

P [x = x,y∗ = y | G] log P [x = x,y∗ = y | G]
2nP [y∗ = y | G] .

A precise prediction as to its asymptotical value was put forward on the basis of the
physicists’ cavity method. As most such predictions, the formula comes as a variational
problem that asks to optimise a functional called the Bethe free entropy over a space of
probability measures. Specifically, let P∗([−1, 1]) be the space of all probability measures
ρ on the interval [−1, 1] with mean zero. Let (θi,j,ρ)i,j≥1 ⊆ [−1, 1] be a family of samples
from ρ. Further, let (J i)i≥1 be Rademacher variables, i.e., P [J i = 1] = P [J i = −1] = 1/2.
In addition, let (k̂i)i≥1 be random variables with distribution

P
[
k̂i = ℓ

]
= ℓP [k = ℓ]

E[k] (ℓ ≥ 0). (1)

All of these are independent. Finally, let Λ(z) = z log(z). Then the Bethe free entropy reads

Bldgm(ρ, η) = E

1
2Λ

 ∑
σ∈{0,1}

d∏
i=1

1 + (−1)σJ i(1 − 2η)
k̂i−1∏
j=1

θi,j,ρ

− E[d]

E[k]E

(k − 1)Λ

1 + J1(1 − 2η)
k∏
j=1

θ1,j,ρ

 .
▶ Theorem 1. For any d,k and for all η ∈ (0, 1) we have

lim
n→∞

1
n
I(x,y∗ | G) =

(
1 + E[d]

E[k]

)
log(2) + E[d]

E[k] (η log(η) + (1 − η) log(1 − η))

− sup
ρ∈P∗[−1,1]

Bldgm(ρ, η) in probability.

STACS 2021

24:4 Inference and Mutual Information on Random Factor Graphs

Theorem 1 completely solves a well known conjecture [25, Conjecture 1] and significantly
extends the results from [32, 11], which required the restrictive assumption that the check
degree k be constant.

A possible objection to a result such as Theorem 1 might be that the resulting formula
appears exceedingly complicated as it leaves us with a potentially difficult variational problem.
Yet two points are to be made in defense. First, by vindicating the precise formula predicted
by the cavity method, the theorem and its proof show that this technique and the ideas
behind it do indeed get to the bottom of the problem. Second, since the formula involves a
supremum, any ρ ∈ P∗[−1, 1] yields an upper bound on the mutual information. Hence, the
heuristic population dynamics algorithm deemed to produce good candidate maximisers and
beloved of physicists, can be harnessed to get rigorous bounds in one direction. Finally, in
some cases it is possible to precisely identify the maximiser analytically [6, 9].

1.3 The stochastic block model
An instructive model of graph clustering, the stochastic block model presumes that a random
graph is created in two steps. First each of the n vertices {x1, . . . , xn} receives one of
q ≥ 2 possible colours σ∗

xi
∈ [q] uniformly and independently. Then a sparse random graph

is created where vertices with the same colour are either more likely to be connected by
an edge (assortative case), or less likely (disassortative). Different versions of this model
have been proposed. While in the simplest one edges are inserted independently, here we
consider a model from [27] that produces a d-regular graph. Hence, let d ≥ 3 be an integer
and let G = G(n, d) be a random d-regular graph. Further, given a parameter β > 0 let
G∗ = G∗(n, d,σ∗) be a random graph drawn from the distribution

P [G∗ = G | σ∗] ∝ exp

−β
∑

vw∈E(G)

1 {σ∗
v = σ∗

w}

 , (2)

with the ∝-symbol hiding the normalisation required to obtain a probability distribution.
Thus, the parameter β tunes the penalty that we impose on monochromatic edges by
comparison to the null model G. At β = 0 there is no such penalty and G∗ and G are
identical. But even for positive β the random graphs G,G∗ may still be indistinguishable and
in effect recovering σ∗ may be impossible. Hence, a fundamental question is for what q, d, β
it is possible to discriminate between G,G∗. Formally, we recall that the Kullback-Leibler
divergence of G∗,G is defined as DKL (G∗∥G) =

∑
G P [G∗ = G] log P[G∗=G]

P[G=G] . The Kullback-
Leibler divergence is an information-theoretic potential that gauges the similarity of two
random graph models. In particular, if DKL (G∗∥G) = Ω(n), then G,G∗ can be told apart
because natural observables will take vastly different values on the two models. Whether
DKL (G∗∥G) = Ω(n) depends on the value of the Bethe free entropy for the stochastic block
model. To be precise, let P([q]) be the set of all probability distributions (µ(1), . . . , µ(q))
on [q]. We identify P([q]) with the standard simplex in Rq. Further, let P∗([q]) be the set
of all probability measures π on P([q]) such that

∫
µ(σ)dπ(µ) = 1/q for every σ ∈ [q]. In

other words, the mean of π is the barycenter of the simplex. Let (µi,π)i≥1 be a family of
independent samples from π and let

Bsbm(π, β) = E

Λ
(∑q

σ=1
∏d
i=1 1 − (1 − e−β)µi,π(σ)

)
q (1 − (1 − e−β)/q)d

− E

[
dΛ
(
1 − (1 − e−β)

∑q
σ=1 µ1,π(σ)µ2,π(σ)

)
2 (1 − (1 − e−β)/q)

]
.

A. Coja-Oghlan et al. 24:5

▶ Theorem 2. Let

β∗ = inf
{
β > 0 : sup

π∈P∗([q])
Bsbm(π, β) > log(q) + d

2 log
(
1 − (1 − e−β)/q

)}
.

(i) If β < β∗, then limn→∞
1
nDKL (G∗∥G) = 0.

(ii) If β > β∗, then limn→∞
1
nDKL (G∗∥G) > 0.

Theorem 2 easily implies that for β > β∗ it is information-theoretically possible to recover
a non-trivial approximation to σ∗ from G∗. In other words, there exists an exponential
time algorithm that likely outputs a colouring τ of the vertices that has a significantly
greater overlap with the ground truth σ∗ than a random guess. An open question is whether
for β > β∗ this problem can even be solved by a polynomial time algorithm. The going
conjecture is that in general the answer is “no” and that efficient recoverability kicks in only
at a second threshold β∗∗ > β∗ for many interesting choices of q, d [12].

1.4 The mixed k-spin model

Not only do the main results of this paper facilitate rigorous proofs of physics predictions
for problems in computer science, but also, conversely, do we obtain new theorems on
problems of keen interest in statistical physics. For example, the mixed k-spin model is
an important spin glass model [28]; its purpose is to describe the magnetic interactions
in metallic alloys. To define the model let k ≥ 2 be an integer-valued random variable
such that E[k2+ε] < ∞ for some ε > 0 and P [k = 2] > 0. Let (ki)i≥1 be a sequence of
independent copies of k. Moreover, let d > 0 and let H = Hk(n,m) be a (non-uniform)
random hypergraph on Vn = {x1, . . . , xn} with m = Po(dn/E[k]) independent hyperedges
a1, . . . , am such that ai comprises ki vertices, drawn uniformly without replacement. Thus,
in the special case that k is constant we obtain the classical binomial random hypergraph.
To turn this random hypergraph into a spin glass model we draw for each of its edges ai an
independent standard Gaussian J i. Additionally, let β > 0 be a parameter, commonly coined
the inverse temperature. Then the Boltzmann distribution of the model is the probability
distribution on {±1}Vn defined by

µH,J,β(σ) =
exp

(
β
∑m
i=1 J i

∏
x∈ai

σx
)

Z(H,J , β) (σ ∈ {±1}Vn),

where Z(H,J , β) =
∑
τ∈{±1}Vn exp

(
β
∑m
i=1 J i

∏
x∈ai

τx
)
. The normalising term Z(H,J , β)

is known as the partition function.
A key question is whether for given d, β,k there occur long-range correlations between

the magnetic “spins” observed at x1, . . . , xn. Formally, let σ ∈ {±1}Vn signify a sample from
the Boltzmann distribution. Then we say that long-range correlations are absent if

lim
n→∞

1
n2

∑
x,y∈Vn

E |µH,J,β({σx = σy = 1}) − µH,J,β({σx = 1})µH,J,β({σy = 1})| = 0.

In words, the equation expresses that for most pairs x, y of vertices the spins σx,σy are
essentially independent. If this is violated, we say that long-range correlations are present.

STACS 2021

24:6 Inference and Mutual Information on Random Factor Graphs

According to physics predictions for a given β > 0 long-range correlations emerge at a
critical value dβ,k that can be determined in terms of the Bethe free entropy [19, 24]. The
methods developed in this paper enable us to corroborate this formula rigorously. Specifically,
let P∗([−1, 1]) be the space of all probability measures on [−1, 1] with mean zero. Given
π ∈ P∗([−1, 1]) let (µi,j,π)i,j≥1 be a family of independent samples from π. Additionally, let
(k̂i)i≥1 be a family of independent random variables with point masses (1) and let d = Po(d).
Then the Bethe free entropy Bk−spin(π) of the k-spin model is given by the expression

1
2E

Λ

 ∑
σ1∈{±1}

d∏
i=1

1 +
∑

σ2,...,σk̂i
∈{±1}

tanh

βJ j ∏
j∈[k̂i]

σj

 k̂i∏
j=2

1 + σjµi,j,π
2

− d

E[k]E

(k − 1)Λ

1 +
∑

σ∈{±1}k
tanh

(
βJ1

k∏
i=1

σj

)
k∏
i=1

1 + σiµ1,i,π

2

 .

▶ Theorem 3. Let dβ,k = inf
{
d > 0 : supπ∈P∗([−1,1]) Bk−spin(π) > log 2

}
.

(i) Long-range correlations are absent for d < dβ,k.
(ii) For any ε > 0 there exists dβ,k < d < dβ,k +ε where long-range correlations are present.

Thus, the point dβ,k, characterised by the Bethe variational principle, marks the onset of
complex magnetic interactions in the mixed k-spin model. This critical value is known as
the replica symmetry breaking phase transition in physics jargon. As a further application of
the main results we can pinpoint the so-called condensation phase transition of the Potts
antiferromagnet on random d-regular graphs, another problem of interest in mathematical
physics. More details can be found in Section 16 of the full version.

2 The mutual information of random factor graphs

The theorems quoted in Section 1 are easy consequences of results on general random factor
graph models. These more general theorems, one of which we present next, constitute the
main results of the paper.

2.1 Random factor graph models
Remarkably many classical problems from combinatorics, statistics and physics can be
expressed conveniently in the language of factor graph models [24, 29, 34]. A factor graph G
is a bipartite graph whose vertex classes are variable nodes V (G) and factor nodes F (G).
The former represent the variables of the combinatorial problem in question, such as the
individual bits of a codeword. Generally we assume that these variables range over a domain
Ω of size q = |Ω| ≥ 2. Moreover, the factor nodes encode the interactions between the
variables, such as the linear relations imposed by the check matrix of a code. Each factor
node a ∈ F (G) comes with a function ψa : Ω∂a → (0,∞) that assigns a positive weight to
value combinations of the adjacent variables ∂a. The factor graph gives rise to a probability
distribution

µG(σ) = ψG(σ)
ZG

, where ψG(σ) =
∏

a∈F (G)

ψa(σ∂a) and ZG =
∑

τ∈ΩV (G)

ψG(τ) (σ ∈ ΩV (G)).

(3)

A. Coja-Oghlan et al. 24:7

To describe problems such as the ones from Section 1 we introduce models where the
factor graph itself is random. Specifically, let d,k ≥ 0 be integer-valued random variables
and let (di)i≥1, (ki)i≥1 be independent copies of d,k. Further, for each k in the support
of k let Ψk be a finite set of k-ary functions ψ : Ωk → (0,∞). Let Pk be a probability
distribution on Ψk and let us write ψk for a sample from Pk. Further, let ψ be a random
variable distributed as ψk, let P be the distribution of ψk and let kψ denote the arity of ψ.

Now, to construct a factor graph let Vn = {x1, . . . , xn} be a set of variable nodes and let
Fm = {a1, . . . , am} be a set of m ∼ Po(nE[d]/E[k]) factor nodes. We obtain the random
factor graph G as follows.
G1 given the event

∑n
i=1 di =

∑m
i=1 ki, choose a bipartite graph on variable and factor

nodes such that every xi has degree di and every aj has degree kj uniformly at random.
G2 choose for every factor node ai a weight function ψai

from the distribution ψki
.

In the language of inference problems the random factor graph G is going to provide a null
model because the weight functions in G2 are independent of the graph structure from G1.
For instance, in the context of the stochastic block model from Section 1.3, this model plays
the role of the purely random graph without a particular underlying colouring.

2.2 The teacher-student scheme
The teacher-student scheme organically turns the null model into an inference problem. A
helpful metaphor might be to imagine a teacher who attempts to convey a ground truth
σ∗ to a student by presenting examples. The ground truth itself is a random vector chosen
uniformly from the space ΩVn . The set of examples corresponds to a factor graph G∗.

To be precise, let D be the σ-algebra generated by the degrees and the total number of
factor nodes of the null model G. Then the factor graph G∗ is chosen from the distribution

P [G∗ = G | D,σ∗] = P [G = G | D]ψG(σ∗)
E[ψG(σ∗) | D,σ∗] . (4)

Hence, we reweigh the null model G1–G2 according to the ground truth σ∗, rewarding
graphs under which σ∗ receives a higher weight. In the case of the stochastic block model,
G∗ matches the reweighing (2) that prefers bichromatic edges. The obvious question is
how much of an imprint σ∗ leaves on the resulting factor graph G∗? Before we answer this
question in general let us illustrate how the examples from Section 1 fit into the general
framework.

▶ Example 4 (ldgm codes). Let Ω = {+1,−1} with +1 = (−1)0 representing 0 ∈ F2 and
−1 representing 1 ∈ F2. For every degree k ≥ 1 there are two k-ary weight functions ψη,k,±1
defined by ψη,k,J (σ) = 1 − (1 − 2η)J

∏k
i=1 σi for σ ∈ Ωk.

The probability distribution Pk is defined by P (ψη,k,J) = 1/2. With this setup the
bipartite graph structure of the null model G coincides with the bipartite graph introduced
in Section 1.2. Moreover, the ±1-labels of the weight functions (i.e., value of J such that
ψai = ψη,ki,J) represent the entries of the vector y∗. Thus, while in the null model G these
vector entries are purely random, in the reweighted model G∗ the labels are distributed
precisely as the entries of the vector y∗ from the ldgm model.

▶ Example 5 (stochastic block model). Let Ω = [q] be a set of q colours. We introduce
a single binary weight function ψβ,q(σ1, σ2) = exp(−β1{σ1 = σ2}) and we let d be the
constant random variable d. With this weight function the construction (4) coincides with
the definition (2) of the stochastic block model.

STACS 2021

24:8 Inference and Mutual Information on Random Factor Graphs

The main theorem is going to provide a formula for the mutual information of G∗ and
the ground truth σ∗, provided that the distribution P on weight functions satisfies a number
of easy-to-check conditions. To state these conditions let us denote by P(Ω) the set of
all probability distributions on Ω, endowed with the topology inherited from Euclidean
space. Moreover, let P∗(Ω) signify the space of all probability measures π on P(Ω) such
that

∫
P(Ω) µ(ω)dπ(µ) = 1/q for all ω ∈ Ω. Finally, for a given π ∈ P∗(Ω) let (µi,π)i≥1 be

independent samples from π and recall Λ(x) = x log x. The assumptions read as follows.
DEG there exists ε > 0 such that E[d2+ε],E[k2+ε] < ∞.
SYM there exist reals ε, ξ > 0 such that for all k ∈ suppk, ψ ∈ Ψk, j ∈ [k], ω ∈ Ω we have∑

σ∈Ωk

1 {σj = ω}ψ(σ) = qk−1ξ, ε < ψ(σ) < 1/ε (σ ∈ Ωk).

BAL for every k ∈ suppk the function µ ∈ P(Ω) 7→
∑
σ∈Ωk E [ψk(σ)]

∏k
i=1 µ(σi) is concave

and attains its maximum at the uniform distribution on Ω.
POS for any two probability distributions π, π′ ∈ P∗(Ω) and any k ∈ suppk we have

E

Λ

∑
τ∈Ωk

ψk(τ)
k∏
i=1
µi,π(τi)

+ (k − 1)E

Λ

∑
τ∈Ωk

ψk(τ)
k∏
i=1
µi,π′(τi)

≥

k∑
j=1

E

Λ

∑
τ∈Ωk

ψk(τ)µj,π(τj)
∏
i̸=j
µi,π′(τi)

 .
The first assumption DEG ensures that the factor graphs are “sparse” or, formally,

locally finite. Yet DEG allows for very general degree distributions, including Poisson and
power law distributions. Moreover, conditions SYM and BAL are symmetry conditions.
Roughly speaking, they provide that all the values ω ∈ Ω are on the same footing, i.e.,
there is no semantic preference for any value. Finally condition POS can be viewed as a
convexity requirement. This assumption is needed for the technical reason of facilitating the
interpolation method, a proof technique that we borrow from mathematical physics. The
conditions are easily seen to be satisfied in many models of interest including, of course, the
stochastic block model and ldgm codes. Crucially, the assumptions can be checked solely in
terms of the weight functions; no random graphs considerations are required. 1

2.3 The mutual information

The main result of the paper vindicates the physicists’ hunch that the mutual information
between the teacher’s ground truth σ∗ and the dataG∗ presented to the student is determined
by the Bethe free entropy. To state the result we introduce the following generic version
of the Bethe functional. Let (ψk,i)k,i be a family of independent random weight functions
such that ψk,i is distributed as ψk. Further, let (hk,i)i with hk,i ∈ [k] be a family of
independent uniformly distributed indices. Given π ∈ P∗(Ω) let (µi,j,π)i,j≥1 be a family of
independent samples from π. Recalling that (k̂i)i≥1 are independent random variables with
point masses (1), we define

1 We point out that POS fails to hold in the case of the assortative stochastic block model.

A. Coja-Oghlan et al. 24:9

B(π) = 1
q
E

ξ−dΛ

∑
σ∈Ω

d∏
i=1

∑
τ∈Ωk̂i

1
{
τhk̂i,i

= σ
}
ψk̂i,i

(τ)
∏

j∈[k̂i]\{hk̂i,i}

µi,j,π(τj)

 (5)

− E[d]
ξE[k]E

(k − 1)Λ

∑
τ∈Ωk

ψk(τ)
k∏
j=1

µ1,j,π(τj)

 .
The following theorem expresses the mutual information of G∗ and σ∗ given the degrees
and the total number of factor nodes as the variational problem of maximising the Bethe
functional.

▶ Theorem 6. For any random factor graph model that satisfies the conditions DEG, SYM,
BAL and POS,

lim
n→∞

1
n
I(σ∗,G∗ | D) = log q + E[d]

ξE[k]E

q−kψ
∑

τ∈Ωkψ

Λ(ψ(τ))

− sup
π∈P∗(Ω)

B(π) (6)

in probability.

The formula (6) is in line with predictions from [33]. Moreover, the results quoted in Section 1
are immediate consequences of Theorem 6.

3 Proof strategy

In this section we survey the proof of Theorem 6. Subsequently we discuss how the strategy
compares to prior work, particularly [11]. Throughout we tacitly assume that DEG, SYM,
BAL and POS are satisfied.

3.1 The partition function
The starting point for computing the mutual information is to observe that this quantity is
closely connected to the partition function of G∗.

▶ Proposition 7. W.h.p. we have

I(σ∗,G∗ | D)/n = log q + E[d]
ξE[k]E

q−kψ
∑

τ∈Ωkψ

Λ(ψ(τ))

− E[logZ(G∗)]/n+ o(1).

Hence, Proposition 7 reduces our task to computing E[logZ(G∗)]. This is still a formidable
challenge because the logarithm sits inside the expectation; hence, routine techniques such as
moment calculations do not bite. Instead we will combine two separate techniques. The first
is a coupling argument known as the Aizenman-Sims-Starr scheme. This argument will show
that E[logZ(G∗)] is upper bounded by supπ B(π). The second component, the interpolation
method, will supply the matching lower bound.

What these techniques have in common is that they both boil down to “local” calculations.
That is, we need to assess the impact on the partition function Z(G∗) of a small number
of local changes such as addition of a few factor or variable nodes to G∗. We will perform
these computations by way of a probabilistic argument, namely by tracing how they affect
the average weight of a sample from the Boltzmann distribution of G∗. The key is a simple
but powerful fact that trades as the Nishimori identity.

STACS 2021

24:10 Inference and Mutual Information on Random Factor Graphs

3.2 The Nishimori identity
To formulate this identity we need to introduce a slightly modified version of the random
factor graph model G∗. Recall from (4) that G∗ was obtained by first drawing σ∗ uniformly
at random and then reweighting the null model G according to the weight of σ∗. If we
combine these two steps the net effect should be, at least roughly, that a specific G comes up
with probability proportional to Z(G), as every σ ∈ ΩVn provides G with a ψG(σ) chance of
being sampled. Thus, G∗ should be roughly equivalent to the random factor graph model
Ĝ defined by P

[
Ĝ = G | D

]
∝ ZGP [G = G | D] . Indeed, this equivalence turns out to be

exact if we make one minimal change. Namely, instead of drawing the ground truth σ∗

uniformly at random, we draw a sample from the distribution P [σ̂ = σ | D] ∝ E [ψG(σ) | D]
for σ ∈ ΩVn . The following is an extension of [11, Proposition 3.10] to the present, more
general class of factor graph models with given degrees.

▶ Proposition 8. We have

P
[
Ĝ = G | D

]
µG(σ) = P [σ̂ = σ | D]P [G∗ = G | D,σ∗ = σ] . (7)

Furthermore, σ̂ and σ∗ as well as G∗, Ĝ are mutually contiguous and E[logZG∗] =
E[logZĜ] + o(n).

The proof of Proposition 8 relies on Bayes’ formula combined with a somewhat subtle
application of local limit theorems and other probabilistic tools. The details can be found in
Section 4 of the full version.

3.3 Degree pruning
A further preparation is degree pruning. Specifically, while in the random factor graph
models G∗ and Ĝ may possess degrees as large as n1/2−ε, the following proposition shows
that it suffices to prove the main result (6) for bounded degree sequences.

▶ Proposition 9. Assume that for any integer L > 0 and for any d,k such that d,k ≤ L

the statement (6) is true. Then (6) holds for all d,k that satisfy DEG and for which
E [d] ,E [k] > 0.

The proof of Proposition 9 is based on concentration inequalities and coupling arguments for
bipartite graphs with given degree sequences. Hence, we may assume from here on that d,k
are bounded.

3.4 Cavities and couplings
Two of the main steps towards the proof of Theorem 6, the Aizenman-Sims-Starr scheme and
the interpolation method, hinge on comparing random factor graphs with slightly different
parameters. For example, we will need to compare a random factor graph G∗ with n

variable and Po(E[d]n/E[k]) factor nodes and a factor graph with n + 1 variable and the
commensurate number of Po(E[d](n+ 1)/E[k]) factor nodes. In the classical case of binomial
factor graphs as treated in [11] where factor nodes are drawn independently this coupling
would be relatively straightforward. Indeed, we could just add a variable node and a few
extra factor nodes to the graph with n variables. However, in the present setting of given
degrees matters are much more delicate. For instance, how would you set up such a coupling
for the d-regular stochastic block model from Section 1.3? Due to the given degrees the
graph structure is too rigid to accommodate the necessary local changes.

A. Coja-Oghlan et al. 24:11

To cope with this issue we first create a bit of wiggling room for ourselves by slightly
reducing the number of factor nodes. This idea has been used in prior work on factor graphs
with rigid degree distributions such as [9]. However, matters turn out to be rather more
delicate here because we do not just work with purely random factor graphs, but with
graphs drawn from the teacher-student model. Thus, we need to take care to meticulously
implement the weight shifts in accordance with (4). Hence, for a small but fixed ε > 0 let
mε = Po((1 − ε)E[d]n/E[k]) be a Poisson variable with a slightly smaller mean than m.
Because we assume that all degrees are bounded, with probability 1 − exp(−Ω(n)) we have∑n
i=1 di ≥

∑mε

i=1 ki. In fact, w.h.p. the total variable degree exceeds the total degree of the
first mε factor nodes by Ω(n). Let G(n,mε) be a random factor graph with variable nodes
x1, . . . , xn and factor nodes a1, . . . , amε of degrees k1, . . . ,kmε drawn uniformly at random
subject to the condition that the degree of each xi remains bounded by di. Thus, some of
the variable nodes will likely have a degree strictly smaller than their “target degree” di. We
refer to these variable degrees as cavities. Further, given σ ∈ ΩVn let G∗(n,mε, σ) be the
random factor graph obtained as in (4), i.e., with Dε denoting the σ-algebra generated by
the degrees and the total number of factors nodes of G(n,mε) we let

P [G∗(n,mε, σ) = G | Dε] ∝ P [G(n,mε) = G | Dε]ψG(σ).

The following proposition establishes that we can indeed think of G∗(n,mε + 1, σ) as being
obtained from G∗(n,mε, σ) by adding one extra factor node amε+1. Further, for two factor
graphs G,G′ on the same set of nodes let G△G′ be the symmetric difference of their edge
sets.

▶ Proposition 10. Assume that |σ−1(ω)| = n/q + O(
√
n log n) for all ω ∈ Ω. Then there

exists a coupling of G∗(n,mε, σ) and G∗(n,mε + 1, σ) such that

P [G∗(n,mε, σ) = G∗(n,mε + 1, σ) − amε+1 | Dε] = 1 − Õ(1/n),

P
[
|G∗(n,mε, σ)△G∗(n,mε + 1, σ) − amε+1| > n2/3 | Dε

]
= 1 − Õ(1/n2).

There is a similar coupling that accommodates the addition of an extra variable node.

▶ Proposition 11. Assume that |σ−1(ω)| = n/q + O(
√
n log n) for all ω ∈ Ω. Given the

degree γ of xn+1 in G∗(n+ 1,mε + γ, σ) then there exists a coupling of G∗(n,mε, σ) and
G∗(n+ 1,mε + γ, σ) such that

P [G∗(n,mε, σ) = G∗(n+ 1,mε + γ, σ) − xn+1 − ∂xn+1 | Dε] = 1 − Õ(1/n),

P
[
|G∗(n,mε, σ) = G∗(n+ 1,mε + γ, σ) − xn+1 − ∂xn+1| > n2/3 | Dε

]
= 1 − Õ(1/n2).

The orders Õ(1/n), Õ(1/n2) of the error terms in Propositions 10 and 11 are vital to facilitate
the computation of the partition function. On a technical level, the tools that we develop for
proving these propositions, and particularly for dealing with the fragile combinatorics of the
factor graph models with given degrees, constitute the main novelty of the paper. This is
where we most visibly add to and improve over the machinery developed in prior work. The
details can be found in Section 4.3 of the full version.

3.5 Aizenman-Sims-Starr and interpolation
Propositions 10 and 11 in combination with a trick known as the Aizenman-Sims-Starr
scheme yield the desired upper bound on the partition function.

STACS 2021

24:12 Inference and Mutual Information on Random Factor Graphs

t = 1t = 0

Figure 1 Illustration of the interpolation method at “times” t = 0 and t = 1.

▶ Proposition 12. We have E[logZ(G∗)] ≤ n supπ∈P∗(Ω) B(π) + o(n).

To prove Proposition 12 it suffices to establish the corresponding upper bound for
G∗(n,mε,σ

∗). This is because similar but simpler arguments as in the proof of Proposition 10
show that E[logZ(G∗)] = E[logZ(G∗(n,mε,σ

∗)] +O(εn). Its proof can be found in Section
13 of the full version. Now, the Aizenman-Sims-Starr scheme for calculating the latter
quantity is to write a telescoping sum

E[logZ(G∗(n,mε,σ
∗))]

=
n−1∑
N=0

E[logZ(G∗(N + 1,mε(N + 1),σ∗
N+1))] − E[logZ(G∗(N,mε(N),σ∗

N))].

Hence, it suffices to bound the individual summands on the r.h.s., i.e., the differences

E[logZ(G∗(n+ 1,mε(n+ 1),σ∗
n+1))] − E[logZ(G∗(n,mε(n),σ∗

n))]. (8)

To this end we couple these two random factor graphs. This is where Propositions 10 and 11
enter the fray. Specifically, we think of both these factor graphs as being obtained from a
smaller factor graph G∗

0 that with variables nodes x1, . . . , xn and slightly fewer factor nodes
than either of the two target factor graphs. Then we obtain G∗(n,mε(n),σ∗

n) by adding
a few random factors to G∗

0. Similarly, we obtain G∗(n+ 1,mε(n+ 1),σ∗
n+1) from G∗

0 by
adding a few new random factor nodes as well as a new variable node xn+1 along with a
number of adjacent factor nodes. Crucially, Propositions 10 and 11 provide the necessary
accuracy to trace the impact of these manipulations on the partition function, and the Bethe
functional emerges organically as an upper bound on (8).

To obtain the matching lower bound we seize upon the interpolation method. The basic
idea is to set up a family of random factor graph models parametrised by time t ∈ [0, 1] such
that the model at time t = 1 coincides with G∗(n,mε,σ

∗) while the model at time t = 0 is
so simple that its partition function can be read off easily. In fact, the partition function of
the t = 0 model turns out to be the Bethe free entropy. To derive the desired lower bound we
prove that the derivative of the log-partition function remains non-negative as we increase t.
As in the Aizenman-Sims-Starr scheme, the computation of the derivative can be reduced to
tracing the impact of local changes. Hence, once more we bring Proposition 10 to bear, this
time in combination with the convexity assumption POS, to prove the following.

▶ Proposition 13. We have E[logZ(G∗)] ≥ n supπ∈P∗(Ω) B(π) + o(n).

Finally, combining Proposition 7–13, we obtain Theorem 6.

A. Coja-Oghlan et al. 24:13

3.6 Discussion

There has been a great deal of interest in inference problems on random factor graphs
recently. The substantial literature on the stochastic block model alone, much of it devoted to
corroborating the predictions from [12], is surveyed in [1, 26]. The literature on applications
to modern coding theory until about 2008 is surveyed in [31]; important newer contributions
include [20, 21]. Further recent applications include compressed sensing [14, 15], group
testing [2, 10], code-division multiple access [17, 30] and the patient zero problem [3]. Apart
and beyond this rigorous literature, there is a vast body of work based on either physics
techniques such as the cavity method or computer experiments.

The great variety of concrete problems studied individually underscores the potential of
generic proof techniques or, even better, general theorems that rigorise these predictions
wholesale. A first contribution has been made by Coja-Oghlan, Krzalaka, Perkins and
Zdeborová [11], who studied the teacher-student model on binomial random factor graph
models. While the general proof strategy that we pursue here is guided by that paper, the
present factor graph models are more general by allowing prescribed degree sequences for
both the variable and factor nodes. From an application viewpoint this generality is highly
desirable because, for example, the quality of an error correcting code or a group testing
scheme can be boosted by optimising the degree distribution [31]. However, from a technical
viewpoint this generality comes at the cost of losing (conditional) independence among the
factor nodes. This issue is well known in random graph theory, where random graphs with
given degrees require far more intricate proofs than, e.g., the Erdős–Rényi model [18]. Here,
these difficulties are exacerbated by the fact that we study not just the plain random graph,
which serves as a our null model, but the reweighted random graph distribution induced by
the teacher-student scheme. In effect, many of the steps that were straightforwards in [11]
become rather delicate due to stochastic dependencies. The key tool that allows us to cope
with these dependencies is Proposition 10. Thus, while we follow the strategy from [11] of
combining the Aizenman-Sims-Starr scheme with the interpolation method and although
we adopt some of the technical ingredients from that work such as the “pinning lemma”,
the greater generality of the model leads us to crystallise and improve over the previous
approach.

What are alternatives to the present strategy of combining the Aizenman-Sims-Starr
scheme with the interpolation method? A classical approach to inference problems on
random graphs is the second moment method [5]. Unfortunately, this approach does not
generally allow for tight information-theoretic results. The reason is that the precise formula
for the mutual information or the information-theoretic threshold in, e.g., the stochastic
block model comes in terms of the optimiser of the Bethe free entropy functional. The
distribution π where the maximum is obtained mirrors the outcome of a complicated
message passing process. Intuitively, π is an idealised version of the empirical distribution
of Belief Propagation messages that whiz around the factor graph upon convergence when
launched from either a uniform initialisation or from the completely polarised initialisation
corresponding to the ground truth. In some examples this fixed point can be characterised
precisely and, unsurprisingly, turns out to be anything but trivial [6]. But we cannot expect
the expressiveness required for such a complicated object from a plain second moment
computation. A second conceptually elementary approach is to actually compute the message
passing fixed point by hand, e.g., via the contraction method. But due to the intricacy of
the calculations this method has been pushed through in only a few special cases [27].

Further powerful techniques include spatial coupling [16] and the adaptive interpolation
method [7]. Both potentially allow for precise results. The basic idea behind spatial coupling
is to convert the given model into a factor graph model with a superimposed geometric

STACS 2021

24:14 Inference and Mutual Information on Random Factor Graphs

structure. A plus of spatial coupling is that it sometimes allows for better inference algorithms.
A disadvantage is that the construction has to be carried out case-by-case. By comparison,
the adaptive interpolation method has the advantage of being technically relatively clean.
However, at least on sparse models its combinatorial nuts and bolts appear to be roughly
equivalent to the combination of Aizenman-Sims-Starr and the interpolation argument used
here. Furthermore, the latter approach has the merit of being closer in spirit to the physicists’
cavity calculation. In addition, at this time the adaptive interpolation method has not been
extended to models with given general degree sequences.

Further, there has been quite some work on dense random factor graph models where each
variable appears in a constant fraction of factor nodes. Examples are spiked matrix/tensor
models [8] or models of neural networks such as the Hopfield model [4, 23]. These methods
are closer in nature to the classical Sherrington-Kirkpatrick model [28]. It seems fair to
say that more is known about dense models than sparse ones because certain central limit
theorem-like simplifications arise. In some cases, the Bethe variational principle reduces to a
finite-dimensional or even scalar optimisation problem [13, 22].

To conclude we note that the study of inference problems typically comes in two instal-
ments: an information-theoretic view that asks for thresholds beyond which in principle
sufficient information is available to form a non-trivial estimate of the ground truth and an
algorithmic view interested in polynomial-time algorithms. While the two perspectives might
appear disparate at first glance, information-theoretic results on inference problems like in
this paper in combination with tools such as spatial coupling have in the past led to efficient
algorithms capable of attaining the information-theoretic thresholds [10, 15]. We view this
as an exciting avenue for future research.

References
1 E. Abbe and A. Montanari. Conditional random fields, planted constraint satisfaction and

entropy concentration. Theory of Computing, 11:413–443, 2015.
2 M. Aldridge, O. Johnson, and J. Scarlett. Group testing: an information theory perspective.

Foundations and Trends in Communications and Information Theory, 2019.
3 F. Altarelli, A. Braunstein, L. Dall’Asta, A. Lage-Castellanos, and R. Zecchina. Bayesian

inference of epidemics on networks via belief propagation. Physical review letters, 112:118701,
2014.

4 D. Amit, H. Gutfreund, and H. Sompolinsky. Storing infinite numbers of patterns in a
spin-glass model of neural networks. Physical Review Letters, 55:1530, 1985.

5 J. Banks, C. Moore, J. Neeman, and P. Netrapalli. Information-theoretic thresholds for
community detection in sparse networks. Proc. 29th COLT, pages 383–416, 2016.

6 V. Bapst, A. Coja-Oghlan, S. Hetterich, F. Rassmann, and D. Vilenchik. The condensation
phase transition in random graph coloring. Communications in Mathematical Physics, 341:543–
606, 2016.

7 J. Barbier, C. Chan, and N. Macris. Mutual information for the stochastic block model by the
adaptive interpolation method. Proc. IEEE International Symposium on Information Theory,
pages 405–409, 2019.

8 J. Barbier and N. Macris. The adaptive interpolation method for proving replica formulas.
applications to the Curie–Weiss and Wigner spike models. Journal of Physics A: Mathematical
and Theoretical, 52:294002, 2019.

9 A. Coja-Oghlan, A. Ergür, P. Gao, S. Hetterich, and M. Rolvien. The rank of sparse random
matrices. Proc. 31st SODA, pages 579–591, 2020.

10 A. Coja-Oghlan, O. Gebhard, M. Hahn-Klimroth, and P. Loick. Optimal group testing.
Proceedings of Machine Learning Research (COLT), 2020.

A. Coja-Oghlan et al. 24:15

11 A. Coja-Oghlan, F. Krzakala, W. Perkins, and L. Zdeborová. Information-theoretic thresholds
from the cavity method. Advances in Mathematics, 333:694–795, 2018.

12 A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová. Asymptotic analysis of the stochastic
block model for modular networks and its algorithmic applications. Phys. Rev. E, 84:066106,
2011.

13 M. Dia, N. Macris, F. Krzakala, T. Lesieur, and L. Zdeborová. Mutual information for
symmetric rank-one matrix estimation: A proof of the replica formula. Advances in Neural
Information Processing Systems, pages 424–432, 2016.

14 D. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52:1289–1306,
2006.

15 D. Donoho, A. Javanmard, and A. Montanari. Information-theoretically optimal compressed
sensing via spatial coupling and approximate message passing. IEEE Transactions on Inform-
ation Theory, 59:7434–7464, 2013.

16 A. Giurgiu, N. Macris, and R. Urbanke. Spatial coupling as a proof technique and three
applications. IEEE Transactions on Information Theory, 62:5281–5295, 2016.

17 D. Guo and C. Wang. Multiuser detection of sparsely spread cdma. IEEE journal on selected
areas in communications, 26:421–431, 2008.

18 S. Janson, T. Łuczak, and A. Rucinski. Random graphs. John Wiley & Sons, 45, 2011.
19 F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, and L. Zdeborova. Gibbs states

and the set of solutions of random constraint satisfaction problems. Proc. National Academy
of Sciences, 104:10318–10323, 2007.

20 S. Kudekar, T. Richardson, and R. Urbanke. Spatially coupled ensembles universally achieve
capacity under belief propagation. IEEE Transactions on Information Theory, 59:7761–7813,
2013.

21 S. Kumar, A. Young, N. Macris, and H. Pfister. Threshold saturation for spatially coupled ldpc
and ldgm codes on bms channels. IEEE Transactions on Information Theory, 60:7389–7415,
2014.

22 M. Lelarge and L. Miolane. Fundamental limits of symmetric low-rank matrix estimation.
Conference on Learning Theory (COLT), pages 1297–1301, 2017.

23 M. Mézard. Mean-field message-passing equations in the Hopfield model and its generalizations.
Physical Review E, 95:022117, 2017.

24 M. Mézard and A. Montanari. Information, physics and computation. Oxford University Press,
2009.

25 A. Montanari. Tight bounds for ldpc and ldgm codes under map decoding. IEEE Transactions
on Information Theory, 51:3221–3246, 2005.

26 C. Moore. The computer science and physics of community detection: landscapes, phase
transitions, and hardness. Bull. EATCS, 121, 2017.

27 E. Mossel, J. Neeman, and A. Sly. Reconstruction and estimation in the planted partition
model. Probability Theory and Related Fields, 162:431–461, 2015.

28 D. Panchenko. The Sherrington-Kirkpatrick model. Springer, 2013.
29 J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Elsevier,

2014.
30 J. Raymond and D. Saad. Sparsely spread cdma – a statistical mechanics-based analysis.

Journal of physics A: mathematical and theoretical, 40:12315, 2007.
31 T. Richardson and R. Urbanke. Modern coding theory. Cambridge University Press, 2012.
32 J. van den Brand and N. Jaafari. The mutual information of ldgm codes. arXiv, 2017.

arXiv:1707.04413.
33 L. Zdeborová and F. Krzakala. Phase transition in the coloring of random graphs. Phys. Rev.

E, 76:031131, 2007.
34 L. Zdeborová and F. Krzakala. Statistical physics of inference: thresholds and algorithms.

Advances in Physics, 65:453–552, 2016.

STACS 2021

http://arxiv.org/abs/1707.04413

The Edit Distance to k-Subsequence Universality
Joel D. Day !

Loughborough University, UK

Pamela Fleischmann !

Computer Science Department, Universität Kiel, Germany

Maria Kosche !

Computer Science Department, Universität Göttingen, Germany

Tore Koß !

Computer Science Department, Universität Göttingen, Germany

Florin Manea !

Computer Science Department, Universität Göttingen, Germany
Campus-Institut Data Science, Göttingen, Germany

Stefan Siemer !

Computer Science Department, Universität Göttingen, Germany

Abstract
A word u is a subsequence of another word w if u can be obtained from w by deleting some of its
letters. In the early 1970s, Imre Simon defined the relation ∼k (called now Simon-Congruence) as
follows: two words having exactly the same set of subsequences of length at most k are ∼k-congruent.
This relation was central in defining and analysing piecewise testable languages, but has found
many applications in areas such as algorithmic learning theory, databases theory, or computational
linguistics. Recently, it was shown that testing whether two words are ∼k-congruent can be done
in optimal linear time. Thus, it is a natural next step to ask, for two words w and u which are
not ∼k-equivalent, what is the minimal number of edit operations that we need to perform on w in
order to obtain a word which is ∼k-equivalent to u.

In this paper, we consider this problem in a setting which seems interesting: when u is a
k-subsequence universal word. A word u with alph(u) = Σ is called k-subsequence universal if the
set of subsequences of length k of u contains all possible words of length k over Σ. As such, our
results are a series of efficient algorithms computing the edit distance from w to the language of
k-subsequence universal words.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Design and analysis of algorithms

Keywords and phrases Subsequence, Scattered factor, Subword, Universality, k-subsequence univer-
sality, Edit distance, Efficient algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.25

Related Version Full Version: https://arxiv.org/abs/2007.09192

Funding The work of the four authors from Göttingen was supported by the DFG-grant 389613931.

1 Introduction

A word v is a subsequence (also called scattered factor or subword) of a word w if there
exist (possibly empty) words x1, . . . , xℓ+1 and v1, . . . , vℓ such that v = v1 . . . vℓ and w =
x1v1 . . . xℓvℓxℓ+1. That is, v is obtained from w by removing some of its letters.

The study of the relationship between words and their subsequences is a central topic in
combinatorics on words and string algorithms, as well as in language and automata theory (see,
e.g., the chapter Subwords by J. Sakarovitch and I. Simon in [55, Chapter 6] for an overview

© Joel D. Day, Pamela Fleischmann, Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 25; pp. 25:1–25:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:J.Day@lboro.ac.uk
https://orcid.org/0000-0003-0738-9816
mailto:fpa@informatik.uni-kiel.de
https://orcid.org/0000-0002-1531-7970
mailto:maria.kosche@cs.uni-goettingen.de
https://orcid.org/0000-0002-2165-2695
mailto:tore.koss@cs.uni-goettingen.de
https://orcid.org/0000-0001-6002-1581
mailto:florin.manea@cs.informatik.uni-goettingen.de
https://orcid.org/0000-0001-6094-3324
mailto:stefan.siemer@cs.uni-goettingen.de
https://orcid.org/0000-0001-7509-8135
https://doi.org/10.4230/LIPIcs.STACS.2021.25
https://arxiv.org/abs/2007.09192
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 The Edit Distance to k-Subsequence Universality

of the fundamental aspects of this topic). The concept of subsequences and its generalisations
play an important role in various areas of theoretical computer science. For instance, in logic
of automata theory, subsequences are used in the context of piecewise testability [60, 61], in
particular to the height of piecewise testable languages [39, 40, 41], subword order [31, 44, 43],
or downward closures [66]. In combinatorics on words, many concepts were developed
around the idea of counting the occurrences of particular subsequences of a word, such as
the k-binomial equivalence [54, 25, 46, 45], subword histories [59], and Parikh matrices
[49, 56]. In the area of algorithms, subsequences appear, e.g., in classical problems such as
the longest common subsequence [5, 10, 12], the shortest common supersequence [47], or the
string-to-string correction [65]. From a practical point of view, subsequences are useful in
scenarios related to bioinformatics, as well as in other areas where they model corrupted or
lossy representations of an original string, see [57].

A major area of research related to subsequences is the study of the set of all subsequences
of bounded length of a word, initiated by Simon in his PhD thesis [60]. In particular, Simon
defined and studied (see [61, 55]) the relation ∼k (now called the Simon-Congruence) between
words having exactly the same set of subsequences of length at most k, and used it in the
study of piecewise testable languages, a class of regular languages with applications in learning
theory, databases theory, or linguistics (see, e.g., [41] and the references therein). The surveys
[51, 52] overview some of the extensions of Simon’s seminal work from 1972 in various areas
related to automata theory. Moreover, ∼k is a well-studied relation in the area of string
algorithms, too. The problems of deciding whether two given words are ∼k-equivalent, for a
given k, and to find the largest k such that two given words are ∼k-equivalent (and their
applications) were heavily investigated in the literature, see, e.g., [34, 27, 62, 63, 18, 24] and
the references therein. This year, optimal solutions were given for both these problems [6, 28].
In [6] it was shown how to compute the shortlex normal form of a given word in linear time,
i.e., the minimum representative of a ∼k-equivalence class w.r.t. shortlex ordering. This
can be directly applied to test whether two words are ∼k-equivalent: they need to have
the same shortlex normal form. In [28], a data structure, called the Simon-Tree, was used
to represent the equivalence classes induced by ∼k on the set of suffixes of a word, for all
possible values of k, and then, given two words, a correspondence between their Simon-Trees
was constructed to compute in linear time the largest k for which they are ∼k-equivalent.

Motivation. As described above, asymptotically optimal algorithms are known for deciding
whether two words w and u are ∼k-equivalent. Thus, similarly to the case of other relations on
strings (e.g., [4, 9]), it is natural to ask, for two words w and u, which are not ∼k-equivalent,
what is the minimal number of edit operations (edits, for short) that we need to perform
on them in order to obtain two ∼k-equivalent words. The edits we consider are the usual
letter-insertion, -deletion, -substitution, and the scenario we assume is the following: we edit
one word only (say w) and attempt to reach, with a minimal number of edits, an intermediate
word which has the same subsequences of length k as the second input word (namely u).

This formulation is essentially an instance of a word-to-language edit distance problem,
in which we wish to compute the distance between w and the language Lu,k of words which
are ∼k-equivalent to u. It is well documented that word-to-language edit distance problems,
alongside the classical word-to-word and also the language-to-language variants, are well
motivated and have consequently been well studied (see, e.g., [64, 50, 33, 11, 38, 15, 16]).
For instance, the authors of [13] write: “the edit distance provides a quantitative measure of
“how far apart” are two words, or a word from a language, or two languages, and it forms
the basis for quantitatively comparing sequences, a problem that arises in many different

J. D. Day, P. Fleischmann, M. Kosche, T. Koß, F. Manea, and S. Siemer 25:3

areas, such as error-correcting codes, natural language processing, and computational biology;
similarly, the edit distance between languages forms the foundations of a quantitative approach
to verification”.

In our case, the languages Lu,k are regular. In particular, for a given subsequence v of
length k of u, we can easily construct a DFA recognising the language of all words containing
v as a subsequence. Consequently, a finite automaton accepting Lu,k can be obtained as a
boolean combination of these DFAs. In fact, for a positive integer k, the set of all languages
which can be written as the union of several languages Lu,k, where u are words of a finite
set, is the class of k-piecewise testable languages [60, 61, 55], an important class of regular
languages, with deep connections to logic and semigroup theory. Therefore, if we take as
input the word w and the language Lu,k given as an automaton Au,k with q states, we can
solve our distance problem in time O(|w|q2) [64, 3]. However, this is not necessarily efficient,
since even when Au,k is a minimal NFAs accepting Lu,k, the number q of states can be
exponential in the size of the alphabet (and hence in the length of u; see [19]). Consequently,
if we consider the input to be (w, u, k) rather than (w, Au,k), the exact complexity remains
unclear. We can, however, guarantee inclusion in NP as we can trivially rewrite w into the
shortest word u ∈ Lu,k using at most |w| + |u| edits.

It is also worth pointing out that the order of w and u in the input matters: the number
of edits necessarily applied to w order to reach a word w′ such that w′ ∼k u holds, is not
generally equal to the number of edits needed to apply on u in order to reach a word u′ such
that u′ ∼k w. Consider, for example, the words w = aba, u = aaabbbaaa, and k = 2. We need
one insertion to transform w into abab, which is ∼2-equivalent to u, but we need two deletions
to transform u into aaabaaa, which is ∼2-equivalent to w. An intuitive explanation for this
is that w is closer w.r.t. the edit distance to the set Lu,k of words which are ∼k-equivalent to
u than u is to the set Lw,k of words which are ∼k-equivalent to w, and we only need to edit
each of our words until it reaches the word which is closest to them from the respective sets.

Essentially, we are considering the word-to-language edit distance problem for regular
languages (in fact, piecewise testable languages) which admit a particularly succinct repres-
entation: a single word u. One way to generalise this is to consider the edit distance from
a word to the closure of a given language under ∼k. The problem remains decidable when
considering the closures of regular or context-free languages (the regular case can be solved
in nondeterministic polynomial time when k is a constant, see [19]). On the other hand,
we have already mentioned how taking the closure under ∼k can result in an exponential
blow-up in the size of the representation of the language. Going in the other direction, one
of the most natural restrictions is to consider only words u over an alphabet Σ for which
all length-k subsequences over Σ occur, called k-subsequence universal words (called, for
short, k-universal words) w.r.t. the alphabet Σ. This case is also among the ones for which
the corresponding automata for Lu,k may be exponentially large (see [19]), remaining thus
non-trivial. This restriction forms the focus of our paper.

The focus of our paper. In some cases, the edit distance problem we introduced above
admits an input-specification where the target language is defined in a way which is both
easier-to-use and more succinct. One of these cases is the already mentioned language of
k-subsequence universal words w.r.t. an alphabet Σ = {1, . . . , σ}. While this language can
be defined by a word (1 · 2 · · · σ)k of length kσ or by an NFA with Θ(2σ) states, it can also be
simply specified by the number k and the alphabet Σ (or even only the size of this alphabet).

The main contribution of our paper, described below, is the study of the following problem:
given a word w and a number k, compute the minimum number of edits we need to apply
to w in order to obtain a k-universal word w.r.t. alph(w) (see [19] for a discussion on why

STACS 2021

25:4 The Edit Distance to k-Subsequence Universality

the alphabet Σ used in the definition of universality is chosen here to be the set alph(w) of
letters occurring in the input word w). As such, we are interested in the edit distance from
the input word w to the set of k-universal words w.r.t. alph(w). We give a series of efficient
algorithms showing how to solve this problem.

This investigation seems interesting to us as, on the one hand, the language of k-universal
words plays an interesting role in the picture described in the Motivation section above. On
the other hand, the class of languages of k-universal words occurs prominently in the study
of the combinatorial and language theoretic properties of subsequences and piecewise testable
languages. Indeed, in [39, 40, 41] the authors define and use the notion of k-rich words in
relation to the study of the height of piecewise testable languages. The class of k-rich words
coincides with that of k-subsequence universal words, which were further investigated, from a
combinatorial point of view, in [20, 6]. Moreover, the idea of universality is quite important
in formal languages and automata theory. The classical universality problem (see, e.g., [36])
is whether a given language L (over an alphabet Σ, specified by an automaton or grammar)
is equal to Σ∗. The works [53, 42, 29] and the references therein discuss many variants of and
results on the universality problem for various language generating and accepting formalisms.
The universality problem was considered for words [48, 21] and partial words [14, 30] w.r.t.
their factors. More precisely, one is interested in finding, for a given ℓ, a word w over an
alphabet Σ, such that each word of length ℓ over Σ occurs exactly once as a contiguous factor
of w. De Bruijn sequences [21] fulfil this property and have many applications in computer
science or combinatorics, see [14, 30] and the references therein. It is worth noting that
in the case of factor-universality it makes sense to ask for words where each factor occurs
exactly once, but in the case of subsequence universality this is a trivial restriction, as in
each long-enough word there will be subsequences occurring more than once [6].

As such, investigating k-subsequence universality from an algorithmic perspective is
motivated by, fits in, and even enriches this well-developed and classical line of research.

Our results. The maximum k for which a word w is k-universal is called the universality
index of w, and denoted ι(w). Firstly, we note that when we want to increase the universality
index of a word by edits, it is enough to use only insertions. Similarly, when we want to
decrease the universality index of a word, it is enough to consider deletions. So, to measure
the edit distance to the class of k-subsequence universal words, for a given k, it is enough
to consider either insertions or deletions. However, changing the universality of a word by
substitutions (both increasing and decreasing it) is interesting in itself as one can see the
minimal number of substitutions needed to transform a word w into a k-universal word as
the Hamming distance [32] between w and the set of k-universal words. Thus, we consider
all these operations independently and propose efficient algorithms computing the minimal
number of insertions, deletions, and substitutions, respectively, needed to apply to a given
word w in order to reach the class of k-universal words (w.r.t. the alphabet of w), for a
given k. The time needed to compute these numbers is O(nk) in the case of deletions and
substitutions, as well as in the case of insertions when k ≤ n (for larger values of k it is
just the time complexity of computing kσ − n, which is the value of the distance in that
case). These algorithms are presented in the Section 4, and work in optimal linear time for
constant k.

These algorithms are based, like most edit distance algorithms, on a dynamic programming
approach. However, implementing such an approach within the time complexities stated
above does not seem to follow directly from the known results on the word-to-word or
word-to-language edit distance. In particular, we do not explicitly construct any k-universal

J. D. Day, P. Fleischmann, M. Kosche, T. Koß, F. Manea, and S. Siemer 25:5

word nor any representation (e.g., automaton or grammar) of the set of k-universal words,
when computing the distance from the input word w to this set. Rather, we obtain the
k-universal word which is closest w.r.t. edit distance to w as a byproduct of our algorithms.
In our approach, we first develop (Section 3) several efficient data structures (most notably
Lemma 3.5). Then (Section 4), for each of the considered operations, we make several
combinatorial observations, allowing us to restrict the search space of our algorithms, and
creating a framework where our data structures can be used efficiently.

Finally (in Section 5), we give algorithms running in (n logO(1) σ)-time computing the
minimum number of insertions (respectively, substitutions) we need to apply to w in order
to obtain a k-universal word, with k > ι(w). These algorithms rely heavily on the fact that
computing the edit distance to k-universality can be reformulated, in this case, as computing
the path of length k of minimum weight in a weighted DAG with the Monge property. In
particular, these algorithms provide optimal linear-time solutions for our problem in the case
of increasing the universality-index of words over constant-size alphabets.

For space reasons, some proofs, examples, and pseudocode for the algorithms are given in
the full version of this paper [19]. A discussion on lower bounds is also given in [19].

2 Preliminaries

Let N be the set of natural numbers and N0 = N ∪ {0}. Define for i, j ∈ N0 with i < j the
interval [i : j] as {i, i + 1, . . . , j − 1, j}. An alphabet Σ is a nonempty finite set of symbols
called letters. A word is a finite sequence of letters from Σ, thus an element of the free
monoid Σ∗. Let Σ+ = Σ∗\{ε}, where ε is the empty word. The length of a word w ∈ Σ∗ is
denoted by |w|. Let Σk be the set of all words from Σ∗ of length exactly k. A word u ∈ Σ∗

is a factor of w ∈ Σ∗ if w = xuy for some x, y ∈ Σ∗. If x = ε (resp. y = ε), u is called a
prefix (resp. suffix) of w. The ith letter of w ∈ Σ∗ is denoted by w[i] for i ∈ [1 : |w|]. Set
w[i : j] = w[i]w[i + 1] · · · w[j] for 1 ≤ i ≤ j ≤ |w|, |w|a = |{i ∈ [1 : |w|]| w[i] = a}|, and
alph(w) = {a ∈ Σ||w|a > 0} for w ∈ Σ∗. We can now introduce the notion of subsequence.

▶ Definition 2.1. A word v = v1 · · · vℓ ∈ Σ∗ is a subsequence of w ∈ Σ∗ if there exist
x1, . . . , xℓ+1 ∈ Σ∗ with w = x1v1 · · · xℓvℓxℓ+1. Let Subseq(w) be the set of all subsequences
of w and define Subseqk(w) = Subseq(w) ∩ Σk, the set of subsequences of w of length k ∈ N.

For k ∈ N0, Subseqk(w) is called the k-spectrum of w. Simon [61] defined the congruence
∼k in which u, v ∈ Σ∗ are congruent if they have the same k-spectrum. As introduced in [6]
the notion of k-universality of a word over Σ denotes its property of having Σk as k-spectrum.

▶ Definition 2.2. A word w ∈ Σ∗ is called k-subsequence universal (w.r.t. Σ, for short
k-universal), for k ∈ N, if Subseqk(w) = Σk. We abbreviate 1-universal by universal. The
universality-index ι(w) of w ∈ Σ∗ is the largest k such that w is k-universal.

If ι(w) = k then w is ℓ-universal for all ℓ ≤ k. Notice that k-universality is always w.r.t.
a given alphabet Σ: the word abcba is universal for Σ = {a, b, c} but it is not universal
for Σ ∪ {d}. In each algorithm presented in this paper, whenever we discuss about the
universality index of some word (factor of the input word, or obtained from the input word
via edit operations), we compute it with respect to the alphabet of the input word w.

The notion of ℓ-universality coincides to that of ℓ-richness introduced in [40, 41]. We use
the name ℓ-universality rather than ℓ-richness, as richness of words is also used with other
meanings, see, e.g., [23, 22]. We recall the arch factorisation, introduced by Hebrard [34].

STACS 2021

25:6 The Edit Distance to k-Subsequence Universality

▶ Definition 2.3 ([34]). For w ∈ Σ∗ the arch factorisation of w is w = arw(1) · · · arw(k)r(w)
for some k ∈ N0 where arw(i) is universal, the last letter of arw(i), namely arw(i)[| arw(i)|],
does not occur in arw(i)[1 : | arw(i)| − 1] for all i ∈ [1 : k], and alph(r(w)) ⊂ Σ. The words
arw(i) are called arches of w, r(w) is called the rest.

If the arch factorisation of w contains k ∈ N0 arches, then ι(w) = k. The following
immediate theorem based on the work of Simon [61] completely characterises the set of
k-subsequence universal words, based on Hebrard’s arch factorisation.

▶ Theorem 2.4. The word w ∈ Σ∗ is k-universal if and only if there exist the words vi, with
i ∈ [1 : k], such that v1 · · · vk = w and alph(vi) = Σ for all i ∈ [1 : k].

General algorithmic framework. The further preliminaries regard algorithms. The com-
putational model we use is the standard unit-cost RAM with logarithmic word size: for an
input of size n, each memory-word can hold log n bits. In all the problems, we assume that
we are given a word w, with |w| = n, over an alphabet Σ = {1, 2, . . . , σ}, with |Σ| = σ ≤ n.
This is a common assumption in string algorithms: the input alphabet is said to be an
integer alphabet. For a more detailed general discussion on this model see, e.g., [17] or the
full version of our paper [19]. We also assume that our input words contain at least two
distinct letters, otherwise all the problems we consider become trivial.

The following theorem was proven in [6] and shows that the universality index and the
arches can be obtained in linear time w.r.t. the word length.

▶ Theorem 2.5. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. We
can compute in linear time O(n) the arch factorisation of w, and, as such, ι(w).

More precisely, one can compute greedily, in linear time, the following decomposition of
w into arches w = u1 · · · uk as follows:

u1 is the shortest prefix of w with alph(u1) = Σ, or u1 = w if there is no such prefix;
if u1 · · · ui = w[1 : t], for some i ∈ [1 : k] and t ∈ [1 : n], we compute ui+1 as the shortest
prefix of w[t + 1 : n] with alph(ui+1) = Σ, or ui+1 = w[t + 1 : n] if there is no such prefix.

In our results, we will use two well-known efficient data structures.
First, the interval union-find data structure [26, 37].

▶ Definition 2.6 (Interval union-find). Let V = [1 : n] and S a set with S ⊆ V . The elements
of S = {s1, . . . , sp} are called borders and are ordered 0 = s0 < s1 < . . . < sp < sp+1 = n + 1
where s0 and sp+1 are generic borders. For each border si, we define V (si) = [si−1 + 1 : si]
as an induced interval. Now, P (S) := {V (si) | si ∈ S} gives an ordered partition of the set
V . The interval union-find structure maintains the partition P (S) under the operations:

For u ∈ V , find(u) returns si ∈ S ∪ {n + 1} such that u ∈ V (si).
For u ∈ S, union(u) updates the partition P (S) to P (S \ {u}). That is, if u = si, then
we replace the intervals V (si) and V (si+1) by the single interval [si−1 + 1 : si+1] and
update the partition so that further find and union operations can be performed.

When using the data structure from Definition 2.6, we employ a less technical language: we
describe the intervals stored initially in the structure, and then the unions are made between
adjacent intervals. We can enhance the data structures so that the find operation returns
both borders of the interval containing the searched value, as well as some other satellite
data we decide to associate to that interval. The following lemma was shown in [26, 37].

J. D. Day, P. Fleischmann, M. Kosche, T. Koß, F. Manea, and S. Siemer 25:7

▶ Lemma 2.7. One can implement the interval union-find data structure, such that, the
initialisation of the structures followed by a sequence of m ∈ O(n) union and find operations
can be executed in O(n) time and space.

Finally, we recall the Range Minimum Query problem, and the main result on it [8].

▶ Definition 2.8 (RMQ). Let A be an array with n elements from a well-ordered set. We define
range minimum queries RMQA for the array of A: RMQA(i, j) = arg min{A[t] | t ∈ [i : j]},
for i, j ∈ [1 : n]. That is, RMQA(i, j) is the position of the smallest element in the subarray
A[i : j]; if there are multiple positions containing this smallest element, RMQA(i, j) is the
leftmost of them. (When it is clear from the context, we drop the subscript A).

▶ Lemma 2.9. Let A be an array with n integer elements. One can preprocess A in O(n)
time and produce data structures allowing to answer in constant time range minimum queries
RMQA(i, j), for any i, j ∈ [1 : n].

3 Toolbox

In this section we present data structures which will be decisive in obtaining efficient solutions
for the approached problems. Our running example will be the word w = bananaban, on
which we illustrate some of the notions we define here. Full details are given in [19].

For a word w over an alphabet Σ, a position j of w, and a letter a ∈ Σ which occurs
in w[1 : j], let lastj [a] = max{i ≤ j | w[i] = a}, the last position where a occurs before j;
if a does not occur in w[1 : j] or for j = 0, then, by convention, lastj [a] = |w| + 1. Let
Sj = {lastj [a] | a ∈ alph(w[1 : j])}. If i, j are two positions of w, let ∆(i, j) be the number of
distinct letters occurring in w[i : j], i.e., ∆(i, j) = |alph(w[i : j])|; if i > j, then ∆(i, j) = 0.
For a position i of w, and a letter a ∈ Σ, let di[a] = ∆(lasti[a], i).

▶ Lemma 3.1. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. We can
compute in O(n) the values ∆(1, ℓ), for all ℓ ∈ [1 : n].

▶ Lemma 3.2. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. We can
compute in O(n) the values ∆(i − σ + 1, i), for all i ∈ [σ : n].

▶ Lemma 3.3. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}.
We can compute in O(n) time lastjσ+1[a] and djσ+1[a], for all a ∈ Σ and all integers
1 ≤ j ≤ (n − 1)/σ.

For w = bananaban, we have |w| = 9 and σ = 3. In Lemma 3.1 we compute ∆(1, 1) = 1,
∆(1, 2) = 2, and ∆(1, ℓ) = 3 for ℓ ∈ [3 : 9]. In Lemma 3.2 we compute ∆(1, 3) = 3,
∆(2, 4) = ∆(3, 5) = ∆(4, 6) = 2, ∆(5, 7) = 3, ∆(6, 8) = 2, and ∆(7, 9) = 3. In Lemma 3.3 we
compute the arrays last4[·] and last7[·]. We get: last4[a] = 4, last4[b] = 1, last4[n] = 3, and
last7[a] = 6, last7[b] = 7, last7[n] = 5. Therefore, S4 = {1, 3, 4}, S7 = {5, 6, 7}, and d4[a] = 1,
d4[b] = 3, d4[n] = 2, d7[a] = 2, d7[b] = 1, d7[n] = 3.

For a word w and a position i of w, let univ[i] = max{j | w[j : i] is universal}. That is,
for the position i we compute the shortest universal word ending on that position. If there is
no universal word ending on position i we set univ[i] = 0.

Further, if n = |w|, let Vw = {univ[i] | 1 ≤ i ≤ n}. In Vw we collect the starting positions
of the shortest universal words ending at each position of the word w. Now, for j ∈ Vw, let
Lj = {i | univ[i] = j}; in other words, we group together the positions i of w for which the
shortest universal word ending on i starts on some position j. Note that L0 = {i | w[1 : i] is
not universal}, i.e., the positions of w where no universal word ends.

STACS 2021

25:8 The Edit Distance to k-Subsequence Universality

Several observations are immediate: for i ∈ Lj , i′ ∈ Lj′ , we have i ≤ i′ if and only
if j ≤ j′. As each position i of w belongs to a set Lj , for some j ∈ Vw, we get that
{Lj | j ∈ Vw} is a partition of [1 : n] into intervals. Furthermore, w[i] ̸= w[j] for all i ∈ Lj

and j ̸= 0: if w[i] would be the same as w[j] then w[j + 1 : i] would also be a universal word,
so i would not be in Lj . Also, if i = max(Lj) for some j > 0 then w[i + 1] = w[j]. Indeed,
there exists j′ ∈ [j + 1 : i] such that w[j′ : i + 1] is universal. But w[j] does not occur in
w[j′ : i], so w[j] = w[i + 1] must hold.

Further, we define for all positions i of w the value freq[i] = |w[1 : i]|w[i], the number of
occurrences of w[i] in w[1 : i]. Also, let T [i] = min{|w[i + 1 : n]|a | a ∈ Σ}, for i ∈ [0, n − 1],
be the least number of occurrences of a letter in w[i + 1 : n]; set T [n] = 0.

▶ Lemma 3.4. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. We
can compute in O(n) time the following data structures: 1. the array univ[·]; 2. the set Vw

and the lists Lj, for all j ∈ Vw \ {0}; 3. the array freq[·]; 4. the array T [·]; 5. the values
lastj−1[w[i]], for all j ∈ Vw and all i ∈ Lj; 6. the values lasti−1[w[i]], for all i ∈ [2 : n].

Consider again w = bananaban. In Lemma 3.4 we compute the following values. Firstly,
univ[1] = univ[2] = 0, univ[ℓ] = 1 for ℓ ∈ [3 : 6], univ[7] = univ[8] = 5, univ[9] = 7. Thus,
Vw = {0, 1, 5, 7} and L0 = [1 : 2], L1 = [3 : 6], L5 = [7 : 8], L7 = [9 : 9]. Secondly, freq[1] = 1,
freq[2] = freq[3] = 1, freq[4] = freq[5] = 2, freq[6] = 3, freq[7] = 2, freq[8] = 4, freq[9] = 3.
Moreover, T [0] = 2, T [ℓ] = 1 for ℓ ∈ [1 : 6], and T [ℓ] = 0 for ℓ ∈ [7 : 9]. Then, for j = 1,
we have last0[a] = 0, for a ∈ {a, b, n}; for j = 5, we have last4[b] = 1 and last4[a] = 4; for
j = 7, we have last6[n] = 5. Finally, last0[b] = 10, last1[a] = 10, last2[n] = 10, last3[a] = 2,
last4[n] = 3, last5[a] = 4, last6[b] = 1, last7[a] = 6, last8[n] = 5.

The main idea behind proving Lemmas 3.1, 3.3, and 3.4 is to traverse the word w left to
right (or, respectively, right to left) and maintain the number of occurrences, as well as the
last occurrence, of each letter in the prefix (respectively, suffix) of w that we have visited so
far. For Lemma 3.2, we only consider a sliding window of size σ which traverses the word
left-to-right, while maintaining similar data as before, but only for the content of the window.
In all cases, this requires linear time and enables us to construct the desired data structures.

Together with the string-processing data structures we defined above, we need the following
general technical data structures lemma. This lemma (combined with some combinatorial
observations) will be used to speed up some of our dynamic programming algorithms.

In this lemma we process a list A which initially has σ elements, and in which we insert, in
successive steps, σ new elements, by appending them always at the same end. For simplicity,
we can assume that the list A is a sequence with 2σ elements (denoted A[i], with i ∈ [1 : 2σ]),
out of which the last σ are initially undefined. The ith insertion would, consequently, mean
setting A[σ + i] to the actual value that we want to insert in the list A. In our lemma we
will also repeatedly perform an operation which decrements the values of some elements of
the list A. However, we will not require to be able to explicitly access, after every operation,
all the elements of the list (so we will not need to retrieve the values A[i]). Consequently, we
will not maintain explicitly the value of all the elements of A (that is, we will not update
the elements affected by decrements). We are only interested in being able to retrieve (by
value and position), at each moment, the smallest element and the last element of A. Thus,
throughout the computation, we only maintain a subset of important elements of A, including
the aforementioned two. We can now state our result, whose proof is based on Lemma 2.7.

▶ Lemma 3.5. Let A be a list with σ elements (natural numbers) and let m = σ. We can
execute (in order) the sequence of σ operations o1, . . . , oσ on A in overall O(σ) time, where
oi consists of the following three steps, for i ∈ [1 : m]:

J. D. Day, P. Fleischmann, M. Kosche, T. Koß, F. Manea, and S. Siemer 25:9

1. Return e = arg min{A[i] | i ∈ [1 : m]} and A[e].
2. For some ji ∈ [1 : m], decrement all elements A[ji], A[ji + 1], . . . , A[m] by 1.
3. For some natural number xi, append the element xi to A (i.e., set A[m + 1] to xi), and

increment m by 1 (i.e., set m to m + 1).

Proof. Firstly, we will run a preprocessing of A.
We begin by defining recursively a finite sequence of positions as follows:
a1 is the rightmost position of A on which min{A[i] | i ∈ [1 : σ]} occurs;
for i ≥ 2, if ai−1 < σ, then ai is the rightmost position on which min{A[i] | i ∈ [ai−1 + 1 :
σ]} occurs;
for i ≥ 2, if ai−1 = σ, then we can stop, our sequence will have i − 1 elements.

Let p be the number of elements in the sequence defined above, i.e., our sequence is
a1, . . . , ap. For convenience, let a0 = 0. Then the sequence a1, . . . , ap fulfils the following
properties:

ap = σ and ai > ai−1, for all i ∈ [1 : p];
A[ai] > A[ai−1] for all i ∈ [2 : p];
for all i ∈ [1 : p], we have A[ai] < A[t], for all t ∈ [ai + 1 : σ];
for all i ∈ [1 : p], we have A[ai] ≤ A[t], for all t ∈ [ai−1 + 1 : ai].

By definition, for i ∈ [1 : p] we have A[ai] = min{A[t] | t ∈ [ai−1 + 1 : σ]}, A[ai] < min{A[t] |
t ∈ [ai + 1 : σ]}, and a1 = min{A[i] | i ∈ [1 : σ]}. Clearly, we have ap = σ.

The positions a1, . . . , ap can be computed in linear time O(σ), in reversed order. As we
do not know from the beginning the value of p, we will compute a sequence b1, b2, . . . of
positions as follows. We start with b1 = σ, t = σ − 1, and i = 2. Then, while t ≥ 1 we do the
following case analysis. If A[t] < bi−1, then set bi = t, increment i by 1, and decrement t

by 1. Otherwise, if A[t] ≥ bi−1, just decrement t by 1. It is straightforward that this process
takes O(σ) time, and, when we have finished it, the number i is exactly the number p, and
ai = bp−i+1.

Another observation is that, for a0 = 0, the intervals [ai−1 + 1, ai], for i ∈ [1, p], define a
partition of the interval [1 : σ] into p intervals. Therefore, we can define a partition of the
interval [1 : 2σ] into the intervals [ai−1 + 1 : ai], for i ∈ [1, p], and [t : t], for t ∈ [σ + 1 : 2σ].
Thus, we construct in linear time, according to Lemma 2.6, an interval union-find data
structure for the interval [1 : 2σ], as induced by the intervals [1 : a1], [a1 + 1 : a2], . . .

[ap−1, ap], [σ + 1 : σ + 1], [σ + 2 : σ + 2], . . . [2σ : 2σ].
Let us now take m = σ (and assume the convention A[0] = 0). We associate as satellite

data to each interval [x : y] with y ≤ m from our interval union-find data structure the value
A[y] − A[x − 1].

This entire preprocessing takes clearly O(σ) time.
In order to explain how the operations are implemented, we assume as invariant that the

following properties are fulfilled before oi is executed, for i ∈ [1 : σ]:
A contains m elements;
all intervals [x : y] with y > m from our interval union-find data structure are singletons
(i.e., x = y);
for each interval [x : y] with y ≤ m, we have the associated satellite data A[y] − A[x − 1];
for each interval [x : y] with y ≤ m, we have that A[y] ≤ A[t] for t ∈ [x : m] and
A[y] < A[t] for t ∈ [y + 1 : m];
we have stored in a variable ℓ the value A[m].

STACS 2021

25:10 The Edit Distance to k-Subsequence Universality

This clearly holds after the preprocessing step, so before executing o1.
Let us now explain how the operation oi is executed.
The first step of oi is to return e = min{A[i] | i ∈ [1 : m]} and ie the rightmost position of

the list A such that A[ie] = e. We execute find(1) to return the first interval [1 : ie] stored
in our interval union-find data structure; A[ie] is the satellite data associated to this interval
(by convention, A[ie] − A[1 − 1] = A[ie] − A[0] = A[ie]). The fact that the invariant property
holds shows that ie is correctly computed.

The second step of oi is to decrement all elements A[ji], A[ji + 1], . . . , A[m] by 1, for some
ji ∈ [1 : m]. We will make no actual change to the elements of the list A, as this would be
too inefficient, but we might have to change the state of the union-find data structure, as
well as the satellite data associated to some intervals of this structure.

So, let [x : y] be the interval containing ji, returned by find(ji), and also assume first
that x ̸= 1.

According to the invariant, A[ji] ≥ A[y] and A[y] > A[x − 1]. After decrementing the
elements A[ji], A[ji + 1], . . . , A[m] by 1, the difference A[t] − A[t′] is exactly the same as
before, for all t, t′ ∈ [ji : m]. In consequence, the relative order between the elements of the
suffix A[ji : m] of the list A is preserved. Also, for all t ∈ [x : ji − 1], we have now A[t] > A[y]
(before decrementing A[y] we had only A[t] ≥ A[y]). However, the difference A[y] − A[x − 1]
is now decreased by 1. If it stays strictly positive, we just update the satellite data of the
respective interval (by decrementing it accordingly by 1). If A[y] − A[x − 1] = 0, then we
make the union of the interval [z : x − 1] (returned by find(x − 1)) and [x : y] to obtain the
new interval [z : y]. Its satellite data is A[y] − A[z − 1] = A[x − 1] − A[z − 1], so the same as
the satellite data that was before associated to [z : x − 1]. The invariant is clearly preserved,
as, even after decrementing it, A[y] (which is now equal to A[x − 1]) is strictly greater than
A[z − 1], strictly smaller than A[t], for t ∈ [y + 1 : m], and smaller than or equal to A[t], for
t ∈ [z : y].

If the interval containing ji is [1 : y], then we just update the satellite data of the
respective interval by decrementing it by 1.

The third step of oi is to append the element xi to A (i.e., set A[m + 1] = xi), for some
natural number xi, and increment m by 1.

We implement this as follows. Let t = m and q = A[m] (this value is stored and
maintained using the variable ℓ). While t ≥ 1 do the following. Let [z, t] be the interval
returned by find(t); we have q = A[t]. If q ≥ xi, make the union of [z : t] and [t + 1 : m + 1];
update q = q − (A[t] − A[z − 1]) = A[z − 1] (using the satellite data A[t] − A[z − 1] associated
to [z, t]), update t = z − 1, and reiterate the loop. If q < xi, exit the loop. After this, we set
m to m + 1 and ℓ = xi.

It is not hard to see that after running this third step, so before executing operation oi+1,
the invariant is preserved.

Performing operation oi takes an amount of time proportional to the sum of the number
of union and the number of find operations executed during its three steps. By Lemma 2.7,
this means that executing all operations o1, . . . , oσ takes in total at most O(σ) time. ◀

4 Edit Distance

We are interested in computing the minimal number of edits we need to apply to a word
w, with |w| = n, alph(w) = Σ, with universality index ι(w), so that it is transformed into
a word with universality index k, w.r.t. the same alphabet Σ. The edits considered are
insertion, deletion, substitution, and the number we want to compute can be seen as the edit
distance between w and the set of k-universal words over Σ.

J. D. Day, P. Fleischmann, M. Kosche, T. Koß, F. Manea, and S. Siemer 25:11

However, if we want to obtain a k-universal word with k > ι(w), then it is enough to
consider only insertions. Indeed, deleting a letter of a word can only restrict the set of
subsequences of the respective word, while in this case we are interested in enriching it.
Substituting a letter might make sense, but it can be simulated by an insertion: assume one
wants to substitute the letter a on position i of a word w by a b. It is enough to insert a
b next to position i, and the set of subsequences of w is enriched with all the words that
could have appeared as subsequences of the word where a was actually replaced by b. We
might have some extra words in the set of subsequences, which would have been eliminated
through the substitution, but it does not affect our goal of reaching k-universality.

If we want to obtain a word with universality index k, for k < ι(w), then it is enough
to consider only deletions. Assume that we have a sequence of edits that transforms the
word w into a word w′ with universality index k. Now, remove all the insertions of letters
from that sequence. The word w′′ we obtain by executing this new sequence of operations
clearly fulfils ι(w′′) ≤ ι(w′). Further, in the new sequence, replace all substitutions with
deletions. We obtain a word w′′′ with a set of subsequences strictly included in the one of
w′′, so with ι(w′′′) ≤ ι(w′′). As each deletion changes the universality index by at most 1, it
is clear that (a prefix of) this new sequence of deletions witnesses a shorter sequence of edits
which transforms w into a word of universality index k.

So, to increase the universality index of a word it is enough to use insertions and to
decrease the universality index of a word it is enough to use deletions. Nevertheless, one might
be interested in what happens if we only use substitutions. In this way, we can both decrease
and increase the universality index of a word. Moreover, one can see the minimal number
of substitutions needed to transform w into a k-universal word as the Hamming distance
between w and the set of k-universal words. We will discuss each of these cases separately.

4.1 Insertions
▶ Theorem 4.1. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. Let
k ≥ ι(w) be an integer. We can compute the minimal number of insertions needed to apply to
w in order to obtain a k-universal word (w.r.t. Σ) in O(nk) time if k ≤ n and O(T (n, σ, k))
time otherwise, where T (n, σ, k) is the time needed to compute kσ − n.

Proof.
Case 1. Let us assume first that k ≤ n. We structured our proof in such a way that the
idea of the solution, as well as the actual computation steps, and the arguments supporting
their correctness are clearly marked. Pseudocode for this algorithm is given in the full version
of the paper [19].

§ General approach. We want to transform the word w into a k-universal word with a minimal
number of insertions. Assume that the word we obtain this way is w′, and |w′| = m. Thus,
w′ has a prefix w′[1 : m′] which is k-universal, but w′[1 : m′ − 1] is not k-universal. Moreover,
w′[1 : m′] is obtained from a prefix w[1 : ℓ] of w, and w′[m′ +1 : m] = w[ℓ+1 : n]. Indeed, any
insertion done to obtain w′[m′ + 1 : m] can be simply omitted and still obtain a k-universal
word from w, with a lower number of insertions.

Consequently, it is natural to compute the minimal number of insertions needed to
transform w[1 : ℓ] into a t-universal word, for all ℓ ≤ n and t ≤ k. Let M [ℓ][t] denote this
number. By the same reasoning as above, transforming (with insertions) w[1 : ℓ] into a
t-universal word means that there exists a prefix w[1 : ℓ′] of w[1 : ℓ] which is transformed into
a (t − 1)-universal word and w[ℓ′ + 1 : ℓ] is transformed into a 1-universal word. Clearly, the
number of insertions needed to transform w[ℓ′ +1 : ℓ] into a 1-universal word is σ−∆(ℓ′ +1, ℓ),

STACS 2021

25:12 The Edit Distance to k-Subsequence Universality

i.e., the number of distinct letters not occurring in w[ℓ′ + 1 : ℓ]. As we are interested in the
minimal number of insertions needed to transform w[1 : ℓ] into a t-universal word, we need
to find a position ℓ′ such that the total number of insertions needed to transform w[1 : ℓ′]
into a (t − 1)-universal word and w[ℓ′ + 1 : ℓ] into a 1-universal word is minimal.

§ Algorithm – initial idea. So, for ℓ ∈ [1 : n] and t ∈ [1 : k], M [ℓ][t] is the minimal number
of insertions needed to make w[1 : ℓ] t-universal. By the explanations above, we get the
following recurrence M [ℓ][t] = min{M [ℓ′][t − 1] + (σ − ∆(ℓ′ + 1, ℓ)) | ℓ′ ≤ ℓ}. Clearly,
M [ℓ][1] = σ − ∆(1, ℓ). Also, it is immediate to note that M [ℓ][t] ≥ M [ℓ′′][t] for all ℓ ≤ ℓ′′.
Indeed, transforming a word into a t-universal word can always be done with at most as
many insertions as those used in transforming any of its prefixes into a t-universal word.

w 1 . . . ℓ′ ℓ′ + 1 . . . ℓ . . .

(t − 1)-universal ⇒ M [ℓ′, t − 1] universal ⇒ σ − ∆(ℓ′ + 1, ℓ)

Figure 1 Illustration of the formula developed for the computation of M [ℓ][t].

We now want to compute the elements of matrix M . Before this, we produce the data
structures of Lemma 3.3 (and we use the notations from its framework). That is, we compute
in O(n) time lastjσ+1[a] and djσ+1[a] = ∆(lastjσ+1[a], jσ +1), for all a ∈ Σ and all j ≤ (n−1)

σ .
By Lemma 3.1, we can compute the values M [ℓ][1], for all ℓ ∈ [1 : n] in O(n) time.

However, a direct computation of the values M [ℓ][t], for t > 1, according to the recurrence
above is not efficient. Implemented directly, it requires O(n2k) time; using an efficient
structure (e.g., interval trees) for computing the various minima leads to an O(nk log n)-time
solution; exploiting the algebraic properties of M (related to the Monge property [1]) leads
to an O(nk log σ/ log log σ)-time solution. We will describe a more efficient solution.

§ A useful observation. Assume that to transform w[1 : ℓ] into a t-universal word we transform
w[1 : ℓ′] into a (t − 1)-universal word and w[ℓ′ + 1 : ℓ] into a 1-universal word. The number
of insertions needed to do this is M [ℓ′][t − 1] + (σ − ∆(ℓ′ + 1, ℓ)). If w[ℓ′ + 1] occurs twice
in w[ℓ′ + 1 : ℓ], then M [ℓ′][t − 1] + (σ − ∆(ℓ′ + 1, ℓ)) ≥ M [ℓ′ + 1][t − 1] + (σ − ∆(ℓ′ + 2, ℓ)).
Thus, we can rewrite our recurrence in the following way, using the framework of Lemma 3.3:
M [ℓ][t] = min{M [ℓ′][t − 1] + (σ − ∆(ℓ′ + 1, ℓ)) | ℓ′ + 1 ∈ Sℓ ∪ {ℓ + 1}} (recall the definition of
Sℓ = {lastℓ[a] | a ∈ alph(w[1 : ℓ])} from Section 3).

w ℓ + 1 . . .

Sl ∪ {ℓ + 1}

Figure 2 Only the positions ℓ′ + 1 ∈ {lastℓ[a] | a ∈ alph(w[1 : ℓ])} ∪ {ℓ + 1} = Sℓ ∪ {ℓ + 1} are
needed to compute M [ℓ][t] by dynamic programming. These positions are depicted here in grey.

Once more, a brief analysis can be done. Using directly this observation leads to an
O(nkσ)-time algorithm for our problem; an implementation based on, e.g., interval trees
runs in O(nk log σ)-time. In the following we see that a faster solution exists.

In fact, in the efficient version of our algorithm we will use a slightly weaker formula,
where the minimum is computed for all elements ℓ′ +1 from a set S′

ℓ ∪{ℓ+1}, instead of the set
Sℓ ∪{ℓ+1}, where S′

ℓ is a superset of size at most 2σ of Sℓ defined as follows. If ℓ = jσ + i, for

some j ≤ (n−1)/σ and i ∈ [1 : σ], then S′
ℓ =

{
Sℓ if i = 1,

Sjσ+1 ∪ {jσ + 2, . . . , jσ + i} if i ∈ [2 : σ].

J. D. Day, P. Fleischmann, M. Kosche, T. Koß, F. Manea, and S. Siemer 25:13

§ Algorithm – the efficient variant. Using the observation above, together with Lemma 3.5, we
can compute the elements of the matrix M efficiently using dynamic programming.

So, let us consider a value t ≥ 2. Assume that we have computed the values M [ℓ][t − 1],
for all ℓ ∈ [1 : n]. We now want to compute the values M [ℓ][t], for all ℓ ∈ [1 : n]. The main
idea in doing this efficiently is to split the computation of the elements on column M [·][t] of
the matrix M in phases. In phase j we compute the values M [jσ + 1][t], M [jσ + 2][t], . . . ,

M [(j + 1)σ][t], for j ≤ (n − 1)/σ.
We now consider some j, with 0 ≤ j ≤ (n − 1)/σ. We want to apply Lemma 3.5, so we

need to define the list A of size σ. This is done as follows.
We will maintain an auxiliary array pos[·] with σ elements. Moreover, the element A[i],

for each i, is accompanied by two satellite information: a position of w and the letter found
on that position. For a from 1 to σ, if djσ+1[a] = σ − i for some i < σ then we set
A[i + 1] = M [lastjσ+1[a] − 1][t − 1] + i and pos[a] = i + 1; the satellite data of A[i + 1] is the
pair (lastjσ+1[a], a). If, for some letter a, lastjσ+1[a] = n + 1 and djσ+1[a] = 0 (i.e., a does
not occur in w[1 : jσ + 1]) we set pos[a] = 0.

Intuitively, one can see the elements of A as triples: (A[e], lastjσ+1[a], a) where A[e] =
M [lastjσ+1[a]−1][t−1]+e−1, with e ∈ [1 : σ] and a ∈ Σ. More precisely, let ad, ad−1, . . . , a1
be the letters of Σ that occur in w[1 : jσ + 1], ordered such that lastjσ+1[ae] < lastjσ+1[af]
if and only if e > f . At this point, we have defined only the last d elements of A and, for
i ∈ [1 : d], the element on position σ − i+1 is A[σ − i+1] = M [lastjσ+1[ai]−1][t−1]+(σ − i)
and has the satellite data (lastjσ+1[ai], ai). Also, pos[ai] = σ − i + 1. The first σ − d elements
of A are set to ∞; as convention, applying arithmetic operations to ∞ leaves it unchanged.

We set m to σ and define (and apply) a sequence of operations o1, . . . , oσ as in Lemma 3.5.
An invariant: We want to ensure that the list A fulfils the following invariant properties

before the execution of each operation oi.
For e ∈ [1 : d], the triple on position σ − e + 1 of A is:
(M [lastjσ+1[ae] − 1][t − 1] + (σ − ∆(lastjσ+1[ae], jσ + i)), lastjσ+1[ae], ae). That is, A[σ −
e + 1] = M [lastjσ+1[ae] − 1][t − 1] + (σ − ∆(lastjσ+1[ae], jσ + i)).
For g ∈ [1 : i − 1], the triple on position σ + g of A is:
(M [jσ + g][t − 1] + (σ − ∆(jσ + g + 1, jσ + i)), jσ + g + 1, w[jσ + g + 1]). That is
A[σ + g] = M [jσ + g][t − 1] + (σ − ∆(jσ + g + 1, jσ + i)).
pos[a] is the position of the rightmost position i storing a triple (A[i], ℓ, a).

That is, the list A contains all the values M [ℓ][t − 1] + (σ − ∆(ℓ + 1, jσ + i)), for ℓ + 1 ∈
Sjσ+1 ∪ {jσ + 2, . . . , jσ + i}, and pos[a] indicates the rightmost position of the list A where
we store a value M [ℓ][t − 1] + (σ − ∆(ℓ + 1, jσ + i)) with w[ℓ + 1] = a. A consequence of this
is that A[pos[a]] = M [lastjσ+i[a] − 1][t − 1] + (σ − ∆(lastjσ+i[a], jσ + i)).

The invariant clearly holds for i = 1.
§ Algorithm – application of Lemma 3.5. In oi, we extract the minimum q of A. Then set
M [jσ + i][t] = min{q, M [jσ + i][t − 1] + σ}. We decrement by 1 all elements of A on the
positions pos[a] + 1, pos[a] + 2, . . . , m, where a = w[jσ + i + 1]. Then, we append to A the
element M [jσ + i][t − 1] + (σ − 1), with the satellite data (jσ + i + 1, a), which implicitly
increments m by 1, and set pos[a] = m.

▷ Claim 4.2. The invariant holds after operation oi.

Proof of Claim 4.2. We now need to show that the invariant is preserved after this step. If
a = w[jσ+i+1] then the number of distinct letters occurring after each position g > lastjσ+i[a]
in w[1 : jσ + i] is exactly one smaller than the number of distinct letters occurring after g in
w[1 : jσ + i + 1]. This means that M [g − 1][t − 1] + (σ − ∆(g, jσ + i + 1)) is one smaller than

STACS 2021

25:14 The Edit Distance to k-Subsequence Universality

M [g − 1][t − 1] + (σ − ∆(g, jσ + i)). Consequently, all values occurring on positions greater
than pos[a] in the list A, which stored some values M [g −1][t−1]+(σ −∆(g, jσ + i+1)) with
g > lastjσ+i[a], should be decremented by 1. Also, the number of distinct letters occurring
after each position g ≤ lastjσ+i[a] in w[1 : jσ + i] is exactly the same as number of distinct
letters occurring after g in w[1 : jσ + i + 1]. Thus, all values occurring on positions smaller or
equal to pos[a] in the list A, which stored some values M [g − 1][t − 1] + (σ − ∆(g, jσ + i + 1))
with g ≤ lastjσ+i[a], should stay the same. So, the invariant holds for the first σ + i − 1
positions of A. After appending M [jσ + i][t − 1] + (σ − 1) to A and incrementing m, then
the invariant holds for the position σ + i (which is also the last position) of A too, so the
invariant still holds for all positions of A.

Furthermore, the only position of the pos array that needs to be updated after operation
oi is pos[a], and it needs to be set to the new value of m. This is exactly what we do. ◁

▷ Claim 4.3. M [jσ + i][t] is correctly computed, for all i ∈ [1 : σ].

Proof of Claim 4.3. According to the invariant, before executing operation oi, A contains the
values M [ℓ][t − 1] + (σ − ∆(ℓ + 1, jσ + i)), for ℓ + 1 ∈ Sjσ+1, and M [jσ + g][t − 1] + (σ −
∆(jσ + g + 1, jσ + i)), for g ∈ [1 : i − 1]. As S′

jσ+i = Sjσ+1 ∪ {jσ + g + 1 | g ∈ [1 : i − 1]} is
a superset of size at most 2σ of Sjσ+i, we obtain that M [jσ + i][t] is correctly computed as
the minimum between the smallest value in A and M [jσ + i][t − 1] + σ. ◁

§ Algorithm – the result of applying Lemma 3.5. After executing the σ operations o1, . . . , oσ,
we have computed the values M [jσ + 1][t], M [jσ + 2][t], . . . , M [(j + 1)σ][t] correctly. We
can move on to phase j + 1 and repeat this process.

§ The result and complexity. The minimal number of insertions needed to make w k-universal
is, according to the observations we made, correctly computed as M [n][k].

By Lemma 3.5, computing M [jσ + 1][t], M [jσ + 2][t], . . . , M [(j + 1)σ][t] takes O(σ) for
each j. Overall, computing the entire column M [·][t] takes O(n) time. We do this for all
t ≤ k, so we use O(nk) time in total to compute all elements of M . This concludes Case 1.

Case 2. If k > n, we return kσ − n. We need, in all cases, kσ − n insertions to obtain a
word of length kσ from w. This is also sufficient: we first use n(σ − 1) insertions to transform
w into (1 · · · σ)n; then, by (k − n)σ insertions, we further transform it into (1 · · · σ)k. So the
time needed to solve our problem, in this case, is the time needed to compute kσ − n. ◀

Note that, if k is in O(cn) for constant c, then T (n, σ, k) ∈ O(n log σ). Hence, in that case,
our algorithm runs in O(n log σ) time. If k ∈ O(1) our algorithm runs in optimal O(n) time.

4.2 Deletions
▶ Theorem 4.4. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. Let k

be an integer with k ≤ ι(w) ≤ n/σ. We can compute in O(nk) time the minimal number of
deletions needed to obtain a word of universality index k (w.r.t. Σ) from w.

The idea of this proof is the following. Assume that w′ is a word of universality index k

obtained via the sequence of deletions of minimal length from w. Clearly, w′ is a subsequence
of w, and, by the decomposition defined in Theorem 2.5, there exist w′

1, . . . , w′
k, all of

universality index exactly 1, and w′
k+1, of universality index 0, such that w′ = w′

1 · · · w′
kw′

k+1.
It follows that each of the words w′

i is a subsequence of w too. So we will try to identify each
subsequence w′

1 · · · w′
p for p ≤ k and the shortest factor w[1 : i] from which it is obtained.

To this end, we define the matrix N , where N [i][p] is the minimal number of deletions we
need to apply to w[1 : i], without deleting w[i], to obtain a word v from it, with ι(v) = p

J. D. Day, P. Fleischmann, M. Kosche, T. Koß, F. Manea, and S. Siemer 25:15

and ι(v[1 : |v| − 1]) = p − 1 (for i ∈ [1 : n] and p ∈ [1 : k]). If ι(w[1 : i]) ≥ 1, then
N [i][1] = |w[1 : i]|w[i] − 1, as we have to delete all occurrences of w[i] from w[1 : i], except
the one on position i. Then, N [i][p] = min{N [j][p − 1] + |w[j + 1 : i]|w[i] − 1 | j < i such that
ι(w[j + 1 : i]) ≥ 1}. This gives a dynamic programming algorithm for computing N . Using
additional data structures extending the standard Range Minimum Queries structures (see
Lemma 2.9), we can compute the elements of N in O(nk) time. To show the statement, we
return min{N [i, k] + T [i] | 1 ≤ i ≤ n}, using the array T of Lemma 3.4.

4.3 Substitutions
▶ Theorem 4.5. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. Let k

be an integer 0 ≤ k ≤ ⌊ n
σ ⌋. We can compute the minimal number of substitutions needed to

apply to w in order to obtain a k-universal word (w.r.t. Σ) in O(nk) time.

The case k > ι(w) is treated similarly to the case of changing the universality of a word
by insertions, described in Theorem 4.1. We define a matrix M , with M [ℓ][t] being the
minimal number of substitutions one needs to apply to w[1 : ℓ] in order to make it t-universal,
for all ℓ ∈ [1 : n] and all t ∈ [1 : k]. Then, we derive the following recurrence: M [ℓ][t] =
min{M [ℓ′][t−1]+(σ−∆(ℓ′+1, ℓ)) | ℓ′+1 ∈ Sℓ}, where Sℓ = (Sℓ∩[(t−1)σ : ℓ−σ])∪{ℓ−σ+1}
(Sℓ is defined in Section 3). The fact that at most σ elements of M [·][t − 1] are used to
compute each of the elements M [ℓ][t] allows us to apply Lemma 3.5 in almost the same way
as we did in the algorithm of Theorem 4.1, and compute all the elements of M in O(nk)
time. The number we want to compute is M [n][k].

For the case k < ι(w), we show that when decreasing the universality index of a word, it
makes no difference whether we use substitutions or deletions. So, it is enough to use the
algorithm of Theorem 4.4 and return the computed result as the answer to our current problem.

Note that, while substitutions and deletions can be used similarly to decrease the
universality index of a word, we always need at least as many substitutions as insertions to
increase it. To see that this inequality can also be strict, note that one insertion is enough to
make aabb 2-universal, but we need two substitutions to achieve the same result.

5 Extensions

In this paper, we presented a series of algorithms computing the minimal number of edits
one needs to apply to a word w in order to reach k-subsequence universality. In fact (see
the proofs in the full version of this paper [19]), one can extend our algorithms and, using
additional O(k|alph(w)|) time, we can effectively construct a k-universal word which is closest
to w, with respect to the edit distance. All our algorithms can be implemented in linear
space (see [19]) using a technique called Hirschberg’s trick [35].

The algorithms we presented work in a general setting: the processed words are over an
integer alphabet. It seems natural to ask whether faster solutions for inputs over an alphabet
of constant size (e.g., binary alphabets) exist. To this end, we state the following result.

▶ Theorem 5.1. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. Let k be
an integer ι(w) < k. We can compute the minimal number of insertions (resp., substitutions)
needed to apply to w in order to obtain a k-universal word (w.r.t. Σ) in (n logO(1) σ)-time.

We describe here the idea used in the case of insertions (as it works with small modifications
for substitutions, too). Full details are given in [19]. We define a weighted directed acyclic
graph G with the nodes 0, 1, . . . , n and directed edges (i, j) with i < j. Let ω(i, j) =
σ − ∆(i + 1, j) (i.e., the number of letter of Σ which do not appear in w[i + 1 : j]) be

STACS 2021

25:16 The Edit Distance to k-Subsequence Universality

the weight of the edge (i, j). It is not hard to show that the number of edits needed to
transform w into a k-universal word equals the weight of a minimum weight k-link path in
G (see [7, 2, 58]). The graph G will not be explicitly constructed, but we can construct in
(n logO(1) σ)-time an oracle data structure allowing us to retrieve in O(log σ/ log log σ) the
weight of any edge (i, j) of the graph. Further, as G fulfills the concave Monge property
(i.e., ω(i, j) + ω(i + 1, j + 1) < ω(i + 1, j) + ω(i, j + 1) holds for all 0 < i + 1 < j < n),
then the minimum weight k-link path in G can be computed in (n logO(1) σ)-time, using the
algorithms of [7, 2]. If σ ∈ O(1), then the algorithms of Theorem 5.1 run in optimal linear
time O(n).

It is open whether a similar result holds for the case of decreasing the universality index
of a word. However, the main open questions remaining from this work go back to our initial
motivation. Namely, we would be very interested in settling the complexity of the following
problem: Given a word w and a k-piecewise testable language L, succinctly specified, compute
efficiently the edit distance from w to L. In particular, the case when L is defined as the
language of words ∼k-equivalent to a target-word u seems very interesting to us.

References
1 Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and Robert E. Wilber.

Geometric applications of a matrix-searching algorithm. Algorithmica, 2:195–208, 1987.
2 Alok Aggarwal, Baruch Schieber, and Takeshi Tokuyama. Finding a minimum-weight k-link

path graphs with the concae monge property and applications. Discret. Comput. Geom.,
12:263–280, 1994.

3 Cyril Allauzen and Mehryar Mohri. Linear-space computation of the edit-distance between a
string and a finite automaton. CoRR, abs/0904.4686, 2009. arXiv:0904.4686.

4 Lorraine A. K. Ayad, Carl Barton, and Solon P. Pissis. A faster and more accurate heuristic
for cyclic edit distance computation. Pattern Recognit. Lett., 88:81–87, 2017.

5 Ricardo A. Baeza-Yates. Searching subsequences. Theor. Comput. Sci., 78(2):363–376, 1991.
6 Laura Barker, Pamela Fleischmann, Katharina Harwardt, Florin Manea, and Dirk Nowotka.

Scattered factor-universality of words. In Natasa Jonoska and Dmytro Savchuk, editors, Proc.
DLT 2020, volume 12086 of Lecture Notes in Computer Science, pages 14–28, 2020.

7 Wolfgang W. Bein, Lawrence L. Larmore, and James K. Park. The d-edge shortest-path
problem for a monge graph. Technical Report, SAND–92-1724C:1–10, 1992.

8 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Proc. LATIN
2000, volume 1776 of Lecture Notes in Computer Science, pages 88–94, 2000.

9 Giulia Bernardini, Huiping Chen, Grigorios Loukides, Nadia Pisanti, Solon P. Pissis, Leen
Stougie, and Michelle Sweering. String sanitization under edit distance. In Inge Li Gørtz
and Oren Weimann, editors, Proc. CPM 2020, volume 161 of LIPIcs, pages 7:1–7:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

10 Karl Bringmann and Bhaskar Ray Chaudhury. Sketching, streaming, and fine-grained com-
plexity of (weighted) LCS. In Proc. FSTTCS 2018, volume 122 of LIPIcs, pages 40:1–40:16,
2018.

11 Karl Bringmann, Fabrizio Grandoni, Barna Saha, and Virginia Vassilevska Williams. Truly
sub-cubic algorithms for language edit distance and RNA-folding via fast bounded-difference
min-plus product. In Proc. FOCS 2016, pages 375–384, 2016.

12 Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest
common subsequence. In Proc. SODA 2018, pages 1216–1235, 2018.

13 Krishnendu Chatterjee, Thomas A. Henzinger, Rasmus Ibsen-Jensen, and Jan Otop. Edit
distance for pushdown automata. In Proc. ICALP 2015, volume 9135 of Lecture Notes in
Computer Science, pages 121–133. Springer, 2015.

http://arxiv.org/abs/0904.4686

J. D. Day, P. Fleischmann, M. Kosche, T. Koß, F. Manea, and S. Siemer 25:17

14 Herman Z. Q. Chen, Sergey Kitaev, Torsten Mütze, and Brian Y. Sun. On universal partial
words. Electronic Notes in Discrete Mathematics, 61:231–237, 2017.

15 Hyunjoon Cheon and Yo-Sub Han. Computing the shortest string and the edit-distance for
parsing expression languages. In Proc. DLT 2020, volume 12086 of Lecture Notes in Computer
Science, pages 43–54, 2020.

16 Hyunjoon Cheon, Yo-Sub Han, Sang-Ki Ko, and Kai Salomaa. The relative edit-distance
between two input-driven languages. In Proc. DLT 2019, volume 11647 of Lecture Notes in
Computer Science, pages 127–139, 2019.

17 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings. Cam-
bridge University Press, 2007.

18 Maxime Crochemore, Borivoj Melichar, and Zdenek Tronícek. Directed acyclic subsequence
graph - overview. J. Discrete Algorithms, 1(3-4):255–280, 2003.

19 Joel D. Day, Pamela Fleischmann, Maria Kosche, Tore Koß, Florin Manea, and Stefan
Siemer. The edit distance to k-subsequence universality. CoRR, abs/2007.09192, 2020.
arXiv:2007.09192.

20 Joel D. Day, Pamela Fleischmann, Florin Manea, and Dirk Nowotka. k-spectra of weakly-c-
balanced words. In Proc. DLT 2019, volume 11647 of Lecture Notes in Computer Science,
pages 265–277, 2019.

21 Nicolaas G. de Bruijn. A combinatorial problem. Koninklijke Nederlandse Akademie v.
Wetenschappen, 49:758–764, 1946.

22 Aldo de Luca, Amy Glen, and Luca Q. Zamboni. Rich, sturmian, and trapezoidal words.
Theor. Comput. Sci., 407(1-3):569–573, 2008.

23 Xavier Droubay, Jacques Justin, and Giuseppe Pirillo. Episturmian words and some construc-
tions of de Luca and Rauzy. Theor. Comput. Sci., 255(1-2):539–553, 2001.

24 Lukas Fleischer and Manfred Kufleitner. Testing Simon’s congruence. In Proc. MFCS 2018,
volume 117 of LIPIcs, pages 62:1–62:13, 2018.

25 Dominik D. Freydenberger, Pawel Gawrychowski, Juhani Karhumäki, Florin Manea, and
Wojciech Rytter. Testing k-binomial equivalence. In Multidisciplinary Creativity, a collection
of papers dedicated to G. Păun 65th birthday, pages 239–248, 2015. available in CoRR
abs/1509.00622.

26 Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of
disjoint set union. In Proc. 15th STOC, pages 246–251, 1983.

27 Emmanuelle Garel. Minimal separators of two words. In Proc. CPM 1993, volume 684 of
Lecture Notes in Computer Science, pages 35–53, 1993.

28 Pawel Gawrychowski, Maria Kosche, Tore Koss, Florin Manea, and Stefan Siemer. Efficiently
testing Simon’s congruence. CoRR, abs/2005.01112, 2020. arXiv:2005.01112.

29 Pawel Gawrychowski, Martin Lange, Narad Rampersad, Jeffrey O. Shallit, and Marek Szykula.
Existential length universality. In Proc. STACS 2020, volume 154 of LIPIcs, pages 16:1–16:14,
2020.

30 Bennet Goeckner, Corbin Groothuis, Cyrus Hettle, Brian Kell, Pamela Kirkpatrick, Rachel
Kirsch, and Ryan W. Solava. Universal partial words over non-binary alphabets. Theor.
Comput. Sci, 713:56–65, 2018.

31 Simon Halfon, Philippe Schnoebelen, and Georg Zetzsche. Decidability, complexity, and
expressiveness of first-order logic over the subword ordering. In Proc. LICS 2017, pages 1–12,
2017.

32 R. W. Hamming. Error detecting and error correcting codes. Bell Syst. Tech. J., 29(2):147–160,
1950.

33 Yo-Sub Han, Sang-Ki Ko, and Kai Salomaa. The edit-distance between a regular language
and a context-free language. Int. J. Found. Comput. Sci., 24(7):1067–1082, 2013.

34 Jean-Jacques Hebrard. An algorithm for distinguishing efficiently bit-strings by their sub-
sequences. Theor. Comput. Sci., 82(1):35–49, 22 May 1991.

STACS 2021

http://arxiv.org/abs/2007.09192
http://arxiv.org/abs/2005.01112

25:18 The Edit Distance to k-Subsequence Universality

35 Daniel S. Hirschberg. A linear space algorithm for computing maximal common subsequences.
Commun. ACM, 18(6):341–343, 1975.

36 Markus Holzer and Martin Kutrib. Descriptional and computational complexity of finite
automata - A survey. Inf. Comput., 209(3):456–470, 2011.

37 Hiroshi Imai and Takao Asano. Dynamic segment intersection search with applications. In
Proc. FOCS 1984, pages 393–402, 1984.

38 Rajesh Jayaram and Barna Saha. Approximating language edit distance beyond fast matrix
multiplication: Ultralinear grammars are where parsing becomes hard! In Proc. ICALP 2017,
volume 80 of LIPIcs, pages 19:1–19:15, 2017.

39 Prateek Karandikar, Manfred Kufleitner, and Philippe Schnoebelen. On the index of Simon’s
congruence for piecewise testability. Inf. Process. Lett., 115(4):515–519, 2015.

40 Prateek Karandikar and Philippe Schnoebelen. The height of piecewise-testable languages with
applications in logical complexity. In Proc. CSL 2016, volume 62 of LIPIcs, pages 37:1–37:22,
2016.

41 Prateek Karandikar and Philippe Schnoebelen. The height of piecewise-testable languages
and the complexity of the logic of subwords. Log. Methods Comput. Sci., 15(2), 2019.

42 Markus Krötzsch, Tomás Masopust, and Michaël Thomazo. Complexity of universality and
related problems for partially ordered NFAs. Inf. Comput., 255:177–192, 2017.

43 Dietrich Kuske. The subtrace order and counting first-order logic. In Proc. CSR 2020, volume
12159 of Lecture Notes in Computer Science, pages 289–302, 2020.

44 Dietrich Kuske and Georg Zetzsche. Languages ordered by the subword order. In Proc.
FOSSACS 2019, volume 11425 of Lecture Notes in Computer Science, pages 348–364, 2019.

45 Marie Lejeune, Julien Leroy, and Michel Rigo. Computing the k-binomial complexity of the
Thue-Morse word. In Proc. DLT 2019, volume 11647 of Lecture Notes in Computer Science,
pages 278–291, 2019.

46 Julien Leroy, Michel Rigo, and Manon Stipulanti. Generalized Pascal triangle for binomial
coefficients of words. Electron. J. Combin., 24(1.44):36 pp., 2017.

47 David Maier. The complexity of some problems on subsequences and supersequences. J. ACM,
25(2):322–336, April 1978.

48 Monroe H. Martin. A problem in arrangements. Bull. Amer. Math. Soc., 40(12):859–864,
December 1934.

49 Alexandru Mateescu, Arto Salomaa, and Sheng Yu. Subword histories and Parikh matrices. J.
Comput. Syst. Sci., 68(1):1–21, 2004.

50 Giovanni Pighizzini. How hard is computing the edit distance? Inf. Comput., 165(1):1–13,
2001.

51 Jean-Eric Pin. The consequences of Imre Simon’s work in the theory of automata, languages,
and semigroups. In Proc. LATIN 2004, volume 2976 of Lecture Notes in Computer Science,
page 5, 2004.

52 Jean-Eric Pin. The influence of Imre Simon’s work in the theory of automata, languages and
semigroups. Semigroup Forum, 98:1–8, 2019.

53 Narad Rampersad, Jeffrey Shallit, and Zhi Xu. The computational complexity of universality
problems for prefixes, suffixes, factors, and subwords of regular languages. Fundam. Inf.,
116(1-4):223–236, January 2012.

54 Michel Rigo and Pavel Salimov. Another generalization of abelian equivalence: Binomial
complexity of infinite words. Theor. Comput. Sci., 601:47–57, 2015.

55 Jacques Sakarovitch and Imre Simon. Subwords. In M. Lothaire, editor, Combinatorics on
Words, chapter 6, pages 105–142. Cambridge University Press, 1997.

56 Arto Salomaa. Connections between subwords and certain matrix mappings. Theoret. Comput.
Sci., 340(2):188–203, 2005.

57 David Sankoff and Joseph Kruskal. Time Warps, String Edits, and Macromolecules The
Theory and Practice of Sequence Comparison. Cambridge University Press, 2000 (reprinted).
originally published in 1983.

J. D. Day, P. Fleischmann, M. Kosche, T. Koß, F. Manea, and S. Siemer 25:19

58 Baruch Schieber. Computing a minimum-weight k-link path in graphs with the concave monge
property. In Proc. SODA 1995, pages 405–411. ACM/SIAM, 1995.

59 Shinnosuke Seki. Absoluteness of subword inequality is undecidable. Theor. Comput. Sci.,
418:116–120, 2012. doi:10.1016/j.tcs.2011.10.017.

60 Imre Simon. Hierarchies of events with dot-depth one - Ph.D. thesis. University of Waterloo,
1972.

61 Imre Simon. Piecewise testable events. In Autom. Theor. Form. Lang., 2nd GI Conf., volume 33
of LNCS, pages 214–222, 1975.

62 Imre Simon. Words distinguished by their subwords (extended abstract). In Proc. WORDS
2003, volume 27 of TUCS General Publication, pages 6–13, 2003.

63 Zdenek Tronícek. Common subsequence automaton. In Proc. CIAA 2002 (Revised Papers),
volume 2608 of Lecture Notes in Computer Science, pages 270–275, 2002.

64 Robert A. Wagner. Order-n correction for regular languages. Commun. ACM, 17(5):265–268,
1974.

65 Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J. ACM,
21(1):168–173, January 1974.

66 Georg Zetzsche. The complexity of downward closure comparisons. In Proc. ICALP 2016,
volume 55 of LIPIcs, pages 123:1–123:14, 2016.

STACS 2021

https://doi.org/10.1016/j.tcs.2011.10.017

Barrington Plays Cards: The Complexity of
Card-Based Protocols
Pavel Dvořák !

Charles University, Prague, Czech Republic

Michal Koucký !

Charles University, Prague, Czech Republic

Abstract
In this paper we study the computational complexity of functions that have efficient card-based
protocols. A study of card-based protocols was initiated by den Boer [6] as a means for secure
two-party computation. Our contribution is two-fold: We classify a large class of protocols with
respect to the computational complexity of functions they compute, and we propose other encodings
of inputs which require fewer cards than the usual 2-card representation.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases Efficient card-based protocol, Branching program, Turing machine

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.26

Related Version Previous Version: https://arxiv.org/abs/2010.08445 [7]

Funding The authors were supported by Czech Science Foundation GAČR grant #19-27871X.

Acknowledgements We thank Václav Blažej for suggesting how to use face-up cards to emulate red
and blue card backs.

1 Introduction

A study of card-based protocols as a means for secure two-party computation was initiated
by den Boer [6]. In this scenario, we have two players – Alice and Bob – who hold inputs x

and y respectively. Their goal is to securely compute a given function f on those inputs. By
secure computation, we mean that the players learn nothing from observing the computation
except for what is implied by the output f(x, y). Den Boer introduced a model where the
inputs x and y are encoded by a sequence of playing cards and the players operate on the
cards to compute the function. They can use additional cards for computation. In particular,
den Boer showed how to securely compute AND of two bits using five cards in total.

Crépeau and Kilian [5] improved this results. They represent each input bit by two
face-down cards: 1 is represented as ♡♣, and 0 as ♣♡. They provided a secure protocol
for AND which takes two bits b1 and b2 represented by two face-down cards and outputs
b1 ∧ b2 represented again by two face-down cards. Since NOT can be obtained by swapping
the two cards representing a given bit this allows to use their technique to compute any
function. This allow us to evaluate any Boolean circuit on the inputs by a protocol of length
proportional to the size of the circuit and using a number of auxiliary cards that corresponds
to the width of the circuit.

Nishida et al. [19] reduced the number of auxiliary cards to 6 for any Boolean function.
For most functions, the protocol will be of exponential length as it essentially evaluates the
DNF of f . Several other works studied the number of cards necessary for computing various
elementary functions such as AND and XOR [8, 12, 10, 9, 19, 21, 17, 14, 16, 12, 1, 10].

© Pavel Dvořák and Michal Koucký;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 26; pp. 26:1–26:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:koblich@iuuk.mff.cuni.cz
mailto:koucky@iuuk.mff.cuni.cz
https://doi.org/10.4230/LIPIcs.STACS.2021.26
https://arxiv.org/abs/2010.08445
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Barrington Plays Cards

Motivated by the question what can be efficiently computed by such protocols and how
many cards one needs to compute various functions, in this work, we investigate secure
efficient protocols that are protocols of polynomial length. Our contribution is two-fold: We
classify a large class of protocols with respect to the computational complexity of functions
they compute, and we propose other encodings of inputs which require fewer cards than the
2-card representation. We summarize our results next:

1. We show that oblivious protocols of polynomial length that do not modify their input
(they are read-only) and use only a constant number of auxiliary cards compute precisely
the functions in NC1, the class of functions computed by Boolean circuits of logarithmic
depth. (Alternatively, NC1 is the class of functions computed by Boolean formulas of
polynomial size.) By oblivious protocol we mean a protocol whose actions depend only
on the current visible state.

2. Oblivious read-only protocols of polynomial length with a logarithmic number of auxiliary
cards correspond to the class of functions computable by polynomial-size branching
programs. (This class is also known as L/poly, the non-uniform version of deterministic
log-space.)

3. We also investigate protocols that use a constant number of auxiliary cards but are
allowed to use the cards representing the input for their computation provided that
they guarantee that by the end of the computation the input will be restored to its
original value. We show that such protocols can compute functions that are believed to
be outside of NC1. For example, they can compute languages that are complete for NL,
the non-deterministic log-space. Hence, read-only protocols are presumably weaker than
protocols that may modify their input.

4. We study alternative encodings of inputs that are more efficient that the 2-card encoding.
We look at 1-card encoding where 1 is represented by ♡ and 0 by ♣. In this encoding, Alice
and Bob need only one card per bit to commit the bit. We show similar complexity results
for this encoding as for the 2-card encoding: read-only protocols with a constant number
of auxiliary cards are NC1, with a logarithmic number of cards it is the non-uniform
log-space, and if we allow using the input cards for computation we get potentially more
powerful protocols.

A disadvantage of the 1-card protocol is that it still needs a supply of n cards ♡ and n

cards ♣ to represent any n-bit input. Although, if one restricted his attention to inputs
that contain the same number of 1’s and 0’s, it would suffice to have n/2 cards ♡ and n/2
cards ♣. Such inputs form a substantial fraction of all n-bit inputs, they are Θ(2n/

√
n)

many.

5. We propose a new 1/2-card encoding which requires only n/2 cards ♡ and n/2 cards ♣ to
represent any n-bit input. The 1/2-card encoding is obtained from the 2-card encoding by
removing from each pair of cards one card, in total one half of the ♡-cards and one half of
the ♣-cards. There is an empty space left instead of each removed card. There is a way
for each player to encode his input so that the other player learns no information about
the opponent’s input. We show that using this encoding we can simulate any read-only
protocol that uses 2-card encoding. Hence, any NC1 function on n bits can be securely
computed using only n + O(1) cards, counting also the input cards. We do not know how
to securely perform protocols for 1/2-card encoding that would modify their input.

P. Dvořák and M. Koucký 26:3

1.1 Previous Work
As mentioned above, a study of card-based protocols was initiated by den Boer [6] who
introduced a secure 5-card protocol for computing AND. However, this protocol does not
produce output in a face-down 2-card format, thus it can not be used for designing protocols
for arbitrary function. Since then a lot of work was done in improving AND protocols and
other primitive functions. Crépeau and Kilian [5] provided a 1-party card-based protocol
where the player can pick a random permutation π with no fixed point and the player has
no information about π. They introduced an AND protocol, which takes two bits b1, b2
represented in the 2-card format as input and outputs two cards which represent b1 ∧ b2 in
face-down 2-card format. They also introduced a protocol for copying a bit in the 2-card
format, which is used during simulation of circuits. Their protocols with a protocol for NOT
(which is trivial) can be used for computing any Boolean function f and the number of used
cards is at most linear in the size of a circuit (using AND and NOT gates) computing f .
However, during the computation they use helping cards of other suits then ♣ and ♡. Niemi
and Renvall [18] improved it and they designed a protocol computing arbitrary function f

which uses only cards of suits ♣ and ♡. They also introduced a protocol to copy a single card
with almost perfect security – the card suit is revealed only with a small probability. Such
protocol cannot exist with perfect security as was proved by Mizuki and Shizuya [15]. The
copying and AND protocols were further improved and simplified in [21, 17, 14, 16, 12, 1, 10].

Nishida et al. [19] proved that any Boolean function f : {0, 1}n × {0, 1}n → {0, 1} can
be computed with 4n cards encoding the input and 6 additional helping cards. Mizuki [13]
proved that at most 2n + 2 is needed to compute AND of n bits. Francis et al. [8] provided
protocols and tight lower bounds on the number of cards needed for computing any two-bit
input two-bit output function. Other lower bounds for AND of 2 bits and of n bits in various
regimes were provided by Koch et al. [12, 10] and by Kastner et al. [9].

The security of card-based protocols is provided by shuffling the cards – one player shuffles
the cards (applies some random permutation to them) in a way so that the other player has
no information about the new order of shuffled cards. Koch et al. [12] provided a 4-card AND
protocol. However, they used a non-uniform distribution for picking a random permutation,
which is difficult to perform by humans. Nishimura et al. [20] suggested an “easy-for-human”
procedure how to apply a shuffling permutation picked from a non-uniform distribution using
envelopes.

Koch and Walzer [10] studied private function evaluation. In this setting, Alice has an
encoding of some program P which computes a function f . They studied various models,
thus the program P can be a Turing machine, RAM, a circuit, or a branching program. Bob
has an encoding of a string x and their goal is to compute securely f(x). (Again, after the
computation they know only f(x) and they have no other information about each other
input, i.e., Alice has no other information about x and Bob has no other information about
f .) They proved that such universal computation exists for those models. They did not
study the complexity of such simulations. Whereas, we study complexity of computing a
function f when the input to f is divided between Alice and Bob.

One can distinguish two types of attack.
1. Passive: honest-but-curious player – she follows the protocol but she wants to retrieve as

much information as possible about the other player input.
2. Active: malicious player – she can deviate from the protocol.
Koch and Walzer [11] proved that if a passive-secure protocol Π uses only uniform closed
shuffles (each shuffling permutation is picked uniformly from some permutation group) then
the protocol Π can be transformed into an active-secure protocol.

STACS 2021

26:4 Barrington Plays Cards

2 Preliminaries

2.1 Card-based Protocols
In this section we define card-based protocols which securely compute some Boolean function
on a joint input of Alice and Bob. Alice gets an input x ∈ {0, 1}n and Bob gets an input y ∈
{0, 1}n, and their goal is to compute f(x, y) for some function f : {0, 1}n × {0, 1}n → {0, 1},
while not revealing anything about their input to the other player. The protocol proceeds
first by Alice and Bob committing their input into a sequence of cards, and then operating
on the cards together with some auxiliary cards. At the end of the protocol, the players
learn the output f(x, y).

In this section we consider the usual 2-card encoding of the input, where each input is
represented as a sequence of cards, two cards per bit: value 1 is represented by ♡♣ and
value 0 is represented by ♣♡ where the cards are put face-down on the table. Hence each
player needs 2n cards to commit his input. All the cards have the same back, say blue. In
the beginning, face-down cards representing the player inputs are in front of the players.
Between them, there is a deck of s prescribed auxiliary cards of ♡ and ♣. There is available
some empty space on the table to operate with the cards. We assume that the cards are
placed on the table in some specific positions (locations), numbered 1, . . . , m, where:

1, . . . , 2n are positions of Alice’s input cards,
2n + 1, . . . , 4n are positions of Bob’s cards,
4n + 1, . . . , 4n + s are the initial positions of the helping cards in the deck,
4n + s + 1, . . . , m are initially empty positions.

We call the positions 1, . . . , 4n as the input positions and the remaining positions as the
work space. We say a position is occupied if there is a card on it, otherwise, it is empty. We
denote an empty position by ×. Let q = m− 4n denote the amount of the work space. We
assume q = O(s). Thus, there are 4n + s cards on the table and 4n + q = m positions.

The players can move their input cards and cards from the deck to the work space and
back. Formally, the basic actions which can be executed by the players are:
Move(p, i, j): The player p moves a card from the position i to position j.
Shuffle(p, T, Γ): The player p applies a random permutation from Γ to the cards on the

table on positions T ⊆ {4n + 1, . . . , m}.
Turn(p, i): The player p turns the i-th card on the table face-up if it is face-down, and vice

versa.

The protocol specifies which action to take next based on the sequences of visible states
seen on the table so far. The current visible state of the table is what an external viewer
could observe, that is which positions are currently occupied and what is the top of each
card laying on the table. If there are c distinct cards then there are at most (c + 2)m distinct
visible states. Hence, based on the sequence of visible states from the beginning of the
game the protocol specifies which action to take next or whether to end. In the end, the
protocol specifies which cards represent the output of the run of the protocol. (They might
be face-down.) We say the protocol Π computes a function f : {0, 1}n × {0, 1}n → {0, 1} if
for all inputs x, y ∈ {0, 1}n, on the inputs x and y the protocol outputs f(x, y). The length
of the protocol is the maximum number of actions executed by the protocol over all inputs
(x, y) ∈ {0, 1}n × {0, 1}n and all possible outcomes of shuffling. We say that a protocol is
oblivious if the action executed next depends only on the current visible state and the number
of actions taken so far.

The shuffling operation provides randomness for the execution of the protocol. Hence,
the sequence of visible states the protocol passes through is a random variable. We will say
that a protocol is secure if for any pair of inputs (x, y) and (x′, y′) to Alice and Bob, where

P. Dvořák and M. Koucký 26:5

f(x, y) = f(x′, y′), the distribution of the sequence of visible states of the protocol on inputs
(x, y) and (x′, y′) is the same. Notice, that this implies that neither of the players learns
anything about the input of the other player except for what is implied by f(x, y).

Often we will be interested in protocols that provide their output encoded in face-down
cards. In such a scenario we will require for the security of the protocol that the distributions
of visible states during the protocol will be identical for all input pairs (x, y).

We say the protocol is robust if a cheating player, that is a player who deviates from the
protocol, is either caught by reaching an invalid visible state (where cards have unexpected
values or positions) or the distribution of visible states does not leak any information about
the other player input except for what would be leaked by honest players. In particular, if
say Bob is cheating and Alice is honest, for a robust protocol we require that for any two
inputs x, x′ of Alice and any input y of Bob, where f(x, y) = f(x′, y), the distribution of the
sequence of visible states during the game on inputs (x, y) and (x′, y) is the same. We will
be designing only robust oblivious protocols.

We say the protocol is read-only if the value of cards placed on the input positions
1, . . . , 4n is always the same whenever a position is occupied.

Let s-SP be the class of function families {fn : {0, 1}n × {0, 1}n → {0, 1}}n≥0 for which
we have a sequence of secure read-only oblivious protocols, one for each n, which are of
length polynomial in n, with deck size s and work space size 2s. (At the beginning the first
s work space positions are occupied by the deck of cards, and the remaining s positions are
empty). We might allow s to be a function of n. We define a class of secure polynomial-length
protocols SP =

⋃
s≥1 s-SP. That is a function belongs to SP if it has polynomial length

protocols which use a constant number of auxiliary cards and constant size work space.

2.2 Branching Programs
A branching program B is a directed acyclic graph G such that each vertex has out-degree
either 2 or 0. The set of edges E of the graph G is split into two sets, zero-edges E0 and
one-edges E1, in such a way that every vertex v of out-degree 2 is incident to exactly one
outgoing zero-edge and exactly one outgoing one-edge. Each vertex of out-degree 2 is labeled
by an index ℓ ∈ [n], by [n] we mean a set {1, . . . , n}.

A branching program B is layered if the vertices are partitioned into layers L1, . . . , Ld.
The edges go only from a layer Li to a layer Li+1 (for all i < d). Vertices of out-degree 0 are
exactly vertices in the layer Ld. The number of layers d is the length of B and the width w

of B is the maximum size of its layers, i.e., w = maxi |Li|.
A layered branching program is oblivious if vertices in the same layer have the same label.

A branching program is a permutation branching program if each layer has exactly w vertices
and for every two consecutive layers Lj and Lj+1 zero-edges and one-edges form matching
M0

j and M1
j , respectively. We can view the matchings M0

j and M1
j as two permutations

π0
j , π1

j : [w]→ [w]. Note that we can rearrange all layers such that all permutations π0
j are

identities.
One vertex of in-degree 0 is an initial vertex v̄. Some vertices of out-degree 0 are

denoted as accepting vertices. The computation of a branching program B on an input string
x ∈ {0, 1}n proceeds as follows. It starts in the initial vertex v̄ which is the first active vertex.
Suppose v is an active vertex and ℓ ∈ [n] is the label of v. If the out-degree of v is 2, then the
next active vertex is determined by the zero- or one-edge according to the value of xℓ. More
formally, let e = {v, v′} be the edge in Exℓ

. Then, the vertex v′ is the new active vertex.
We repeat this procedure until a vertex u of out-degree 0 is reached. An input x ∈ {0, 1}n

is accepted if and only if u is an accepting vertex. The branching program B computes a
function f : {0, 1}n → {0, 1} if it accepts exactly those x ∈ {0, 1}n such that f(x) = 1.

STACS 2021

26:6 Barrington Plays Cards

The class of functions PB contains all the functions computable by layered branching
programs of constant width and polynomial length. A permutation branching program
is restricted if it has exactly one accepting vertex vacc and exactly one rejecting vertex
vrej in the last layer Ld. The computation of a restricted permutation branching program
ends always in the vertices vacc or vrej and it accepts an input if it ends in the accepting
vertex vacc. A class w-PBP contains Boolean functions which are computable by restricted
permutation branching programs of width w and polynomial length. We use the famous
Barrington’s theorem [2], which says that constant-width (permutation) branching programs
are as powerful as NC1-circuits.

▶ Theorem 1 (Barrington [2]). PB ⊆ NC1 ⊆ 5-PBP.

3 Simulating Branching Programs

In this section, we prove one of our main theorems that read-only oblivious protocols of
polynomial length that use constant work space compute the same functions as polynomial-
size constant-width branching programs.

▶ Theorem 2. SP = NC1.

To simulate a branching program by SP-protocol we need an oblivious implementation of
copying a bit in the committed 2-card format. We use a procedure by Crépeau and Kilian [5].
It is straightforward to implement the procedure to be oblivious. We state the proof of the
following theorem for the sake of completeness.

▶ Theorem 3. There is a secure oblivious protocol that takes a bit b in 2-card representation
placed in the work space and produces two 2-card copies of the bit in the work space. The
protocol needs an auxiliary deck with three cards ♡ and three ♣ with the same back as the
input bit.

Proof.
1. Alice arranges the cards from the auxiliary deck face-up to create the following configura-

tion.

? ?︸︷︷︸
b

♡♣♡♣♡♣

2. She turns the last six cards. Both, Alice and Bob, apply a random cyclic shift (denoted
by ⟨, ⟩) to them.

? ?︸︷︷︸
b

⟨ ? ?︸︷︷︸
b′

? ?︸︷︷︸
b′

? ?︸︷︷︸
b′

⟩

3. They apply a random cyclic shift to the first four cards.

⟨ ? ? ? ? ⟩ ? ?︸︷︷︸
b′

? ?︸︷︷︸
b′

4. She turns the first four cards face-up.
a. If the sequence is alternating (i.e., ♡♣♡♣ or its shift) then b = b′. Thus, the last 4

cards represent two copies of b.

♡♣♡♣ ? ?︸︷︷︸
b

? ?︸︷︷︸
b

P. Dvořák and M. Koucký 26:7

b. Otherwise (i.e., ♡♣♣♡ or its shift) then b = 1− b′. Thus, the last 4 cards represent
two copies of negation of b. In that case, she switches the fifth with the sixth card and
the seventh with the eighth card to represent two copies of b as well.

♡♣♣♡ ? ?︸︷︷︸
1−b

? ?︸︷︷︸
1−b

Alice and Bob might want to turn over and shuffle the first four left-over auxiliary cards
after step 4. The last four cards represent two copies of b face-down in the 2-card format.
To make the protocol oblivious we must implement both 4.a) and 4.b) by the same
number of actions. To do so we include additional actions in 4.a) which have no effect
such as shuffling a single card.

It is clear the described protocol is secure. The only step where they can gain some
information about b is Step 4, when Alice turns some cards. However, the cyclic shifts
in Steps 2 and 3 were done by both players. Thus, Alice reveals the alternating sequence
(♡♣♡♣) in Step 4 with the probability exactly 1

2 (independently on the value of b) even if
one of the players would be cheating. Thus, the protocol is secure. ◀

To prove NC1 ⊆ SP we use as the first step Barrington’s theorem [2]. By Barrington’s
theorem, each function f : {0, 1}n × {0, 1}n → {0, 1} from NC1 can be computed by a
polynomial length width-5 restricted permutation branching program. We will build a
protocol that simulates the actions of the branching program layer by layer. We will keep
track of the image of the initial vertex of the branching program. For that, we will use five
cards ♡♣♣♣♣, where the position of ♡ corresponds to the image of the initial vertex (the
active vertex), and we will apply the permutations prescribed by the branching program on
those five cards. If the input variable assigned to a particular level of the branching program
is set to 1 we are expected to perform the permutation otherwise we are supposed to do
nothing, i.e., apply the identity permutation. Any permutation can be decomposed into a
sequence of simple transpositions (swaps) so we will use swaps conditioned by the input
variable to either permute the five cards or leave them the way they are. We will implement
the following primitive: Alice and Bob want to conditionally swap two cards α, β according
to the value of bit b represented in the face-down 2-card form in the work space without
revealing the value of b. They also want to make sure that if b = 1 the swap occurs and if
b = 0 the swap does not occur.

▶ Theorem 4. Let α̃, β̃ be two sequences of face-down cards of the same length in the work
space, and let γ δ be a face-down 2-card representation of b in the work space. There is a
secure oblivious protocol such that during the protocol players swap the sequences α and β if
and only if b = 1. The protocol uses two auxiliary cards ♣.

Proof. The swapping protocol works as follows.
1. Alice rearranges the input cards together with two auxiliary face-up cards ♣ as follows:

♣γ α̃ ♣δ β̃

Thus, if b = 0 we have ♣♣α̃♣♡β̃ and if b = 1 we have ♣♡α̃♣♣β̃. The players do not
know which situation are they in.

2. Both, Alice and Bob, apply a random cyclic shift to the cards, e.g.:

α̃ ♣δ β̃ ♣γ

STACS 2021

26:8 Barrington Plays Cards

3. Alice turns the cards γ and δ representing b face-up. She knows what cards to turn,
as the cards γ and δ are preceded by ♣ face-up. At the end she reorders the sequence
(keeping the cyclic order) so that ♣♣ are the first cards, e.g.:

α̃♣♡β̃♣♣ → ♣♣α̃♣♡β̃

If b = 0 then γδ = ♣♡ and the sequences α̃β̃ are not swapped. On the other hand if
b = 1 then γδ = ♡♣ and the sequences are swapped.

Note that the cards in α̃ and β̃ are face-down during the whole protocol. It is also clear that
this is a secure and robust protocol, and it can be implemented obliviously. In Step 3 the
cards δ and γ representing the bit b are revealed. However, because of random cyclic shifts
in Step 2 (again done by both players), these cards are in the order ♡♣ with probability 1

2 ,
independently of the value of b. Thus the swapping protocol is secure. ◀

▶ Remark 5. We point out that there is a more efficient swap protocol that does not use any
auxiliary card. In step 2 Alice and Bob could perform random bisection cut introduced by
Mizuki and Sone [17]. During the random bisection cut, they split the deck into two halves
of the same number of cards and then they swap them or not (at random). Thus, in step
3 of the swap protocol, they would know which cards they should turn, even without the
face-up ♣ cards. Mizuki and Sone [17] also introduced a more more efficient copy protocol (it
uses 6 cards instead of 8) but it also uses the random bisection cut. We prefer the standard
random cut as it is easier to cheat during the random bisection cut.

Now we prove the first inclusion of Theorem 2.

▶ Theorem 6. 5-PBP ⊆ SP.

Proof. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function in 5-PBP. Then, the function f can
be computed by a branching program P with the following properties:
1. Each layer has exactly 5 vertices. The input vertex is the first vertex in the first layer.

The computation ends either in the accepting vertex vacc or in the rejecting vertex vrej.
2. The permutation from each layer i to the layer i + 1 corresponding to 0 is the identity.
Alice and Bob represent the first layer as ♡♣♣♣♣, each card represents one vertex in the
layer. The card ♡ represents the active vertex in the layer (the initial vertex in the first
layer). We call these 5 cards the program cards. Alice and Bob put the program cards at the
work space and turn them face-down. Alice and Bob simulate the program P layer by layer.
They apply permutations determined by P to the program cards according to the player’s
input bits. Suppose we have a representation of the active vertex in the i-th layer and we
want to calculate the active vertex at the (i + 1)-th layer. Without loss of generality the
label of the i-th layer is Alice’s bit xℓ (otherwise the roles of Alice and Bob are reversed).
Thus, we want to apply some permutation ρi ∈ S5 to the program cards if xℓ = 1 and keep
the order of the program cards if xℓ = 0.

We decompose the permutation ρi into transpositions τ1 ◦ · · · ◦ τr. For j = 1, . . . , r, Alice
will apply the transposition τj to the program cards. She runs the protocol Γ1 of Theorem 3
to get cards γ, δ representing her bit xℓ in the work space. More formally, after the execution
of Γ1, there are two pairs of cards such that each pair represent the bit xℓ in the 2-card
format. She puts one pair back to the input positions, i.e., the protocol Π is indeed read-only.
We denote the cards of the second pair as γ and δ. Alice will use them for a conditional
swap. She runs the protocol Γ2 given by Theorem 4 (applied to the cards γ, δ and to the
two program cards which should be affected by the transposition τj). That is, Alice swaps

P. Dvořák and M. Koucký 26:9

the two cards that τj is acting on if and only if xℓ = 1. After applying this procedure for all
transpositions τ1, . . . , τr, the permutation ρi got applied to the program cards if and only if
xℓ = 1 (otherwise the order of the program cards does not change).

Alice and Bob repeat this procedure for each layer of the branching program. Let α be
the card representing the accepting vertex vacc and β be the card representing the rejecting
vertex vrej at the end of the simulation. The cards α, β represent the output of the program.
If the input is accepted, then the accepting vertex vacc is active at the end of the simulation
and thus the card α has suit ♡ and the card β has suit ♣. Thus, the cards α, β represent 1.
On the other hand, if the input is rejected, then the rejecting vertex vrej is active. Thus, the
cards α, β have suits ♣ and ♡, respectively, and they represent 0.

The protocol Π is clearly SP-protocol as the players only sequentially apply the copying
protocol Γ1 and the swapping protocol Γ2 to the program cards. We claim the simulation
protocol Π is secure. Both protocols Γ1 and Γ2 are secure. The other helping cards which
are not used only during a single run of Γ1 or Γ2 are exactly the program cards. They are
placed face-up from the deck and then turned face-down for the rest of the protocol. Thus,
the program cards could only reveal the output f(x, y) at the end of the protocol (if they
are turned face-up) and no other information. Therefore, we conclude that protocol Π is
secure. ◀

Now we prove the opposite inclusion of Theorem 2.

▶ Theorem 7. SP ⊆ PB.

Proof. Consider a family of functions {fn : {0, 1}n × {0, 1}n → {0, 1}}n≥0 for which we
have a sequence of secure read-only oblivious protocols, one for each n, which are of length
polynomial in n, with deck size s and work space size 2s. Let c be the number of different
cards used by the protocol. At any moment, the work space can be in at most (2c + 1)2s

different states which we call the internal states of the protocol. For any n ≥ 1 we will build
a width-(2c + 1)2s branching program of the same length Tn as the protocol for fn. Each
layer of the branching program consists of vertices where each vertex corresponds to one
internal state of the protocol. We need to define edges between the layers of the branching
program.

Let v be a vertex at layer t ∈ {0, . . . , Tn− 1}. It corresponds to some internal state which
in turn determines a visible state that together with t determines the action taken by the
protocol at such a state. We define the edges based on the type of that action. If the action
is a move of a card from some input position into the work space then node v queries the
value of the corresponding input variable and the outgoing edges lead to nodes corresponding
to internal states that reflect a move of the card into the work space. If the action is a shuffle
operation then node v queries variable x1 and irrespective of its value both outgoing edges
go to the node in the next layer corresponding to the internal state obtained by applying one
of the allowed permutations. (The particular choice of the permutation does not matter.)
Similarly, for a turn of a card or a move of a card within the work space or out from the
work space, the edges will go into a node that reflects the internal state after the move. Note
that during an execution of a secure read-only protocol, the players never turn any card
at an input position. Thus, the suit of a turned card is always determined by the current
internal state. Therefore, we can add edges for a turn action without querying any specific
input bit. In the last layer, we designate vertices that correspond to accepting states of the
protocol as accepting all other nodes will be rejecting.

It should be clear from the construction that the resulting branching program computes
fn and has the required properties. ◀

Theorem 2 is a corollary of Theorems 6 and 7 and Barrington’s theorem (Theorem 1).

STACS 2021

26:10 Barrington Plays Cards

4 Simulating Turing Machines

In this section, we will look at computation that obliviously and securely computes on
committed inputs in 2-card representation. The exact split of the input between Alice and
Bob is irrelevant in this section so we assume that the total length of the input is n bits.
The protocols are expected to preserve the committed inputs: Although they may be allowed
to modify the committed input during the computation, by the end of the computation
the committed input must be restored to its original form. The protocols do not leak any
information about the committed inputs except for what can be derived from the output
cards if they are inspected. The protocols can be carried out by either player. To guarantee
robustness and security shuffle operations should be always done by both players. (We use
only uniformly random shuffle and random cyclic shift so performing them twice does not
change their output distribution.)

▶ Theorem 8. Let s(n) ≥ log n be a non-decreasing function. Let f be a function computable
by a Turing machine in space s(n). Then f is in O(s(n))-SP.

Let SEL : {0, 1}3 → {0, 1} be the selection function that SEL(c, b, a) = a if c = 0 and
SEL(c, b, a) = b otherwise.

Proof. We describe the algorithm for the protocol in high-level form and leave details of
the construction to the interested reader. Let f be computable by a Turing machine M .
Without loss of generality, we assume M uses a binary alphabet, on inputs of length n it uses
work space exactly s(n) bits and computes for t(n) steps. The output of M is determined by
the first bit of its work tape. We will simulate the computation of M step by step.

The protocol will use 8s(n) + 4 log n + O(1) auxiliary cards. Two blocks w and w′ will
represent 2s(n) bits, each, and two blocks p and j will represent log n bits each. In addition
to that there is a block q of O(1) bits, and some additional auxiliary bits. We need a constant
number of positions to be empty. All the bits are encoded in 2-card representation. The
block w represents the content of the work tape of M , 2 bits per tape cell, where the second
bit indicates the presence of the work tape head on that particular tape cell. The block p

encodes in binary the current position of the input head of M . The block q encodes the
internal state of M .

The protocol simulates one step of M as follows: first, it determines the value b of the
bit scanned by the input head, then it calculates into w′ the content of the work tape of M

after this step. Then it updates the internal state, the input head position p, and switches
w′ and w.

To determine b the protocol looks at each input bit xi one by one and records the one
that has an index corresponding to p. Set b to 0. For i = 1, . . . , n, the protocol copies xi into
some work space b′, it sets j to represent i, obliviously compares p and j while recording the
result into c. (Comparing bit strings can be done by an NC1 circuit so there is an oblivious
protocol for that of poly-logarithmic length.) From c, b and b′ we can calculate the new
value of b by evaluating SEL(c, b, b′). This can be done obliviously. After processing all the
input bits, b has the value of the currently scanned input bit.

Now, we can determine w′, the content of the work tape of M after this step of the
computation. We compute w′ cell by cell. The value of each cell is a function of the input
bit b, M ’s state q, and the previous content of the cell in w together with the content of
adjacent cells. Hence, the value of each bit of w′ is a function of constantly many bits and
can be computed obliviously.

P. Dvořák and M. Koucký 26:11

After computing w′, we can also calculate d, the direction in which the input head of M

should move, and the new state q′ of M . This can be done by scanning w for the work tape
position, and recording the relevant information for q′ and d when we pass over the current
work cell similarly to determining the value of the input bit b.

From p and d, we obliviously calculate the next position of the input head into j. (Each
bit of j can be computed by an NC1 circuit from p and d.) Finally, we switch the contents of
w and w′, p and j, and q and q′.

We repeat this procedure t(n) times. In the end, the first bit of w indicates the output
of M .

As each step of the computation can be implemented securely, obliviously, and robustly,
we obtain a secure, oblivious, and robust protocol for f that uses O(s(n)) work space and
O(s(n)) auxiliary cards. ◀

As the card-based protocols allow for non-uniformity by protocols using O(log n) work
space we can simulate not only log-space Turing machines but also polynomial-size branching
programs (the non-uniform log-space). The above proof can be extended to Turing machines
taking advice: the protocol can provide the advice bit by bit during the phase when the
input is scanned bit by bit to determine b. (We assume that the advice is provided to the
Turing machine on bit positions with index > n. For those positions instead of copying the
non-existent input bits, the protocol hardwires the appropriate bit into b′. As the advice is
the same for each input, this can be done publicly.)

By essentially the same proof as Theorem 7 we can obtain a simulation of oblivious, read-
only secure protocols that use a logarithmic amount of work space by branching programs of
polynomial size. Let O(log n)-SP =

⋃
k(k + k log n)-SP. We get:

▶ Theorem 9. The class of functions computable by polynomial-size branching programs
equals to O(log n)-SP.

4.1 Read-write Protocols
So far we have looked only at read-only protocols. If we remove the condition to be read-only
we get a potentially larger class of functions computable by such protocols. When the
protocol is not read-only, we still require the protocol to restore its input into the original
state by the end of the computation. We also require the protocol to be secure so not to leak
any information about the input except for what is implied by the protocol output cards.

We give examples of functions that can be computed by protocols modifying their input
which we conjecture are outside of the read-only protocol class with similar bound on the
work space. Proving this conjecture would amount to separating NC1 from log-space, a major
open problem in complexity theory.

Let s(n) be a non-decreasing function such that log n ≤ s(n) ≤ n/2 log∗ n. Let g :
{0, 1}n → {0, 1} be in NC1, and h : {0, 1}n−s(n) log∗ n → {0, 1} be a function computable by a
Turing machine in space O(s(n)) and polynomial time. Define f : {0, 1}n → {0, 1} as follows:

f(x) =
{

g(x) if xn+1−s(n) log∗ n · · ·xn ̸= 0 · · · 0,

h(x1 · · ·xn−s(n) log∗ n) otherwise.

▶ Theorem 10. The function f defined above is computable by secure robust oblivious
protocols of polynomial length that use a constant amount of work space.

Proof. The protocol for f proceeds as follows. It first computes the OR of the input bits
xn+1−s(n) log∗ n · · ·xn using a protocol for NC1 functions where the output c of the protocol
is encoded in 2-card representation in its work space. Then it computes the value g of g(x)

STACS 2021

26:12 Barrington Plays Cards

encoded in 2-card representation in the work space. Finally, it uses the cards representing
input bits xn+1−s(n) log∗ n · · ·xn to simulate the computation of a Turing machine for h as
in the proof of Theorem 8. The simulation is done so that if c = 1 then nothing is done
to the input (the simulation is vacuous) and if c = 0 the simulation is really happening.
The simulation uses the input bits xn+1−s(n) log∗ n · · ·xn to store w, w′, p and j (from the
simulation), everything else is done in the actual work space of constant size. Whenever the
simulation wants to write some value a into an input position used for the simulation, it copies
the value into the work space, it copies there the current value d of the destination position,
computes SEL(c, a, d) and replaces cards in the destination by the output of SEL(c, a, d).
(Hence, if c = 0 nothing has happened.) Reading a value can be done by copying the
particular bit into the work space and then working with the copied cards. This way the
input is undisturbed if c = 1 and it is overwritten if c = 0. At the end of simulation, the
protocol copies the output bit h, which is the first bit of w into the actual work space, and
writes value 0 to all input bits xn+1−s(n) log∗ n · · ·xn conditionally on c = 0. (Bit values read
from the storage, taking part in the vacuous computation, will be the same throughout
the computation. So the simulations of the NC1 circuits implementing various steps of the
computation will be secure.)

Finally, the protocol computes SEL(c, h, g) which is the output of the protocol. All parts
of the protocol can be done securely and obliviously. (This is true also when c = 0 and the
simulation of the Turing machine is bogus.) The protocol restores its committed input by
the end of the computation. ◀

One can also use the technique of catalytic computation to construct protocols for
functions not know to be in NC1. Buhrman et al. [3, 4] show how to use memory which
contains some information for computation while restoring the memory to its original content
by the end of the computation. For example, they can solve the connectivity on directed
graphs this way, the problem CONN(G): Given an n×n adjacency matrix of a directed graph
G decide whether there is a path from vertex 1 to vertex n. They present a polynomial-size
program for CONN(G), which uses 3n2 +1 work registers and n2 input registers, each holding
one bit of information. The program consists of instruction of the form

ri ← ri ⊕ u · v,

where u and v are arbitrary registers different from ri or constants 0 and 1. The program
is oblivious, so it is a straight line program consisting of such instructions. The program
has the property that all registers are guaranteed to have the initial value by the end of the
computation except for one specified work register which contains the output value. It is
straightforward to implement each such an instruction by secure and robust protocol since
the instructions are computable in NC1.

This allows to design an oblivious, secure protocol of polynomial length with constant
work space for a function f ′ : {0, 1}4n2 → {0, 1} that is defined as: f ′(G1, G2, G3, G4) = 1 if
and only if from the vertex 1 we can reach the vertex n in each of the graphs represented by
adjacency matrices G1, G2, G3 and G4. Such a function is unlikely to be contained in NC1,
as CONN(G) is known to be complete for nondeterministic log-space computation. Hence,
it is unlikely that protocols that are allowed to modify their input could be simulated by
read-only protocols using similar resources.

P. Dvořák and M. Koucký 26:13

5 More Efficient Input Encodings

5.1 1-Card Encoding
In this section, we consider other ways how Alice and Bob can commit their input which use
fewer cards. The first natural encoding is to represent each bit 1 by face-down card ♡ and
bit 0 by ♣. These cards would be stored in front of the players in input positions 1, . . . , 2n.
Whenever the players want to operate with the committed bit they need to extend it to
2-card representation.

There are two ways we know how to do it. Niemi and Renvall [18] gave a protocol that is
able to extend the bit without knowing its value. However, there is a small probability of
leaking the value of the bit being extended. The probability is inversely proportional to the
number of cards used for the protocol. Hence, one would need a large number of helping
cards in order to make sure that the probability of leaking information is negligible. That
would erase any savings from the 1-card representation.

The other way which we use here is to allow the player who owns the particular input
bit to extend it using a designated deck of two face-down cards ♣ and ♡. Once the bit is
extended it can be copied by the protocol from Theorem 3, the first card of the first copy can
be put back in the input position, the second card can be put back into the auxiliary deck,
and the second copy can be used for further computation. The auxiliary deck containing the
same cards as earlier should be shuffled by both players at the end of this procedure. The
protocol is robust since a player cheating by extending the input bit by a wrong card will be
caught in Step 4 of the copying protocol.

For this procedure, we need to augment our set of actions by the action of extending
a bit by a complementary card from a designated deck. This action can be performed by
shuffling the auxiliary deck, then peeking at the value of the card we are extending, and
selecting the complementary card by peeking at each card in the deck.

With this operation in mind, we need to extend the definition of protocol security. We
say a protocol is secure from Alice if for any pair of inputs (x, y) and (x, y′) to Alice and Bob,
the distribution of the sequence of visible states of the protocol together with the sequence
of cards seen by Alice while peeking at them during the extension action on inputs (x, y)
and (x, y′) is the same. Similarly, the protocol is secure from Bob if for any pair of inputs
(x, y) and (x′, y) to Alice and Bob, the distribution of visible states and cards peeked at by
Bob will be the same on both inputs (x, y) and (x′, y). The protocol is secure if it is secure
from both Alice and Bob.

Using the extension action we can perform all read-only protocols that used the 2-card
bit commitment of inputs even for inputs committed in 1-card representation. They will be
secure as long as the player performing each extension is the owner of the input bit as seeing
his/her input bits does not affect the security definition. Hence, the power of the model stays
essentially the same with this modification.

Security becomes more of an issue for protocols that are allowed to modify their inputs.
Yet, we can prove a result similar to Theorem 10 for slightly modified function f ′. Let
g : {0, 1}n → {0, 1} be in NC1, and h : {0, 1}n−s(n) log∗ n → {0, 1} be a function computable
by a Turing machine in space O(s(n)) and polynomial time, where log n ≤ s(n) ≤ n/2 log∗ n..
Define f ′ : {0, 1}n → {0, 1} as follows:

f ′(x) =
{

g(x) if xn+1−s(n) log∗ n · · ·xn ̸= 0101 · · · 01,

h(x1 · · ·xn−s(n) log∗ n) otherwise.

We assume s(n) log∗ n is even, and the first half of xn+1−s(n) log∗ n · · ·xn is held by Alice
and the other half by Bob. The other bits can be split between the players arbitrarily.

STACS 2021

26:14 Barrington Plays Cards

▶ Theorem 11. The function f ′ defined above is computable by secure robust oblivious
protocols of polynomial length that use a constant amount of work space and 1-card encoding
of input bits.

Proof. The protocol for f ′ proceeds similarly to the one in Theorem 10. It first verifies
whether the input bits xn+1−s(n) log∗ n · · ·xn differ from 0101 · · · 01 (assuming their number is
even) using protocol for NC1 functions. The output c of the verification is encoded in 2-card
representation in the work space. Then the protocol computes the value g of g(x) encoded in
2-card representation in the work space. Up until this point, we use the protocol described
above to extend input bits into 2-card representations by the player who owns the input bit.

Now we want to use the cards representing input bits xn+1−s(n) log∗ n · · ·xn to simulate
computation of a Turing machine M for computing h = h(x1, . . . , xn−s(n) log∗ n) as in the
previous proofs. We will use these input cards for storage when c = 0 and when c = 1 we will
keep them intact. In the former case, we will eventually reset the input bits/cards to the initial
state. Let I be positions of cards which represent bits x1 · · ·xn−s(n) log∗ n at the beginning of
the protocol. Thus, the cards on the positions I represent (in the 1-card encoding) the input
for M . These cards will be in a read-only regime during the whole computation. Let J be
the positions of cards representing xn+1−s(n) log∗ n · · ·xn. The cards on J will represent in
2-card encoding the content of tapes of M during the computation. Thus, |J | = s(n) log∗ n

but the cards on J will represent 1
2 s(n) log∗ n bits. As xn+1−s(n) log∗ n · · ·xn = 0101 · · · 01 (if

c = 0), the cards on J represent 1
2 s(n) log∗ n zeros at the beginning of the protocol.

The simulation proceeds in a similar way as the simulation in proof of Theorem 10. For
reading bits from I that encode the input bits to M we use the same 1-card extension
protocol as above to copy them into work-space. Now, we need procedures that will read and
write bits in 2-card representations from positions J . However, if c = 1 some two consecutive
positions would not represent a bit correctly (the two cards on them would have the same
suit). The read/write procedures need to work and be secure even in this case. The players
cannot simply inspect the cards on positions J because they may represent some intermediate
results of the computation.

First, we describe how to read a bit b encoded in J . We want to create a 2-card
representation of bit b in work space if c = 0 or a valid 2-card representation of some bit if
c = 1. The bit b is represented by 2 cards α, β on positions in J . Note that α and β can be
of the same suit if c = 1. Suppose Alice owns the positions in J representing the bit b, the
case of Bob’s positions is symmetric. First, Alice will add complementary cards to α and β

as follows. Alice prepares the sequence: ♣♣α♣♡β, then she turns the second and fifth card
face-down to get a sequence

♣?α♣?β.

Bob shuffles the six cards cyclically at random. Now, Alice extends the card preceding each
♣ that is face-up (cards α and β) by a complementary card to the right taken from an
auxiliary deck. Alice sees the suit of the cards α and β during this action but she does not
know their actual order. Bob shuffles the cards cyclically again and turns face-up the cards
following the two ♣ that are face-up. Now, by a cyclic shift, they rearrange the cards so that
they look like

♣♣αα♣♡ββ,

where α and β are cards complementary to α and β, respectively. They can copy each of the
card pairs α, α and β, β to verify that Alice used complementary cards and the pairs α, α

and β, β indeed represent two bits in 2-card encodings.

P. Dvořák and M. Koucký 26:15

By following this protocol, Alice learns whether the two cards α, β have the same suit or
are distinct. If the suits are the same she also learns the suit. However, in that situation
c = 1 and she already knew all this information. In the later case, she knows that the bits
at those input positions are distinct, but she knew that already. She does not learn their
relative order because of the shuffle by Bob. Thus, she does not know whether they were
altered since the beginning of the protocol or not.

To finish the read procedure, Alice copies the pair α, α (by the protocol of Theorem 3)
to get two copies represented by cards α′, α′, α′′, α′′. She returns the cards α′′ and β back
to the positions in J from which she moved the cards α and β at the beginning. The cards
α′ and α′ are used further in the computation. Other cards (α′′, β) are moved back to the
auxiliary deck. If the cards α and β have different suits then the cards α′, α′ represent the
bit b, as the card α and α′ have the same suit. If the cards α and β have the same suit then
the cards α′, α′ are a valid representation of some bit b′. However, in that case c = 1 and
the value of b′ is irrelevant for the computation. Bit values read from the storage, taking
part in the bogus computation, will be consistent throughout the computation. Thus, the
simulations of the NC1 circuits implementing various steps of the computation are secure.

Now, we describe how to store a bit in 2-card encodings on to some positions in J . Again,
suppose we want to store a bit b on to positions owned by Alice and occupied by cards
γ1 and γ2. Let α and β be cards representing b. We want a procedure that will do the
following. If c = 0 then the cards γ1 and γ2 are replaced by cards of the same suits as α

and β, respectively. Otherwise, if c = 1 then the new cards need to have the same suits
as γ1 and γ2. First, Alice will add complementary cards to γ1 and γ2 to get a sequence
γ1, γ1, γ2, γ2 (she proceeds in the same was as in the read procedure above). Let d1 and d2
be bits represented by γ1, γ1 and γ2, γ2, respectively. She creates two copies of b, negates the
second one, and computes a1 = SEL(c, b, d1) and a2 = SEL(c, 1− b, d2). Let δ1, δ1 and δ2, δ2
be cards representing a1 and a2 respectively. If c = 0 then the cards δ1, δ2 represent the bit
b. If c = 1 then the cards δ1 and δ2 have the same suits as the cards γ1 and γ2, respectively.
Thus, Alice moves the cards δ1 and δ2 into the positions of the cards γ1 and γ2 and moves
the rest of the cards to the deck.

To avoid leakage of information from the way Alice picks the cards from the auxiliary
deck when picking a card of a particular suit, she proceeds as follows. She knows how many
cards of that suit are in the deck. Thus, she shuffles the cards at random and then proceeds
left to right to pick one of the cards of that suit uniformly at random. To achieve that she
picks each card of the desired suit with probability 1/(k + 1), where k is the number of
unseen cards of the desired suit still in the deck. This process guarantees that Alice will pick
a card from a completely random position.

In this way the protocol can use xn+1−s(n) log∗ n · · ·xn to compute h = h(x). After
obtaining value h it outputs SEL(c, h, g). ◀

Hence, also in the case of the 1-card representation of the input one can take advantage
of the input cards to compute functions that seem unattainable with read-only protocols.

5.2 1/2-Card Encoding
In the 1/2-card encoding we represent value 1 by either ♡× or ×♣, and value 0 by either
♣× or ×♡. Here × represents an empty bit position. To commit her input Alice picks n/2
of her input bits, and for those input bits, she leaves the empty spot × in the position of ♡,
for the remaining bits she leaves the empty spot in place of ♣ (in the 2-card encoding of the
bit). This way, she uses exactly n/2 cards ♣ and ♡ to commit her input. It is easy to verify

STACS 2021

26:16 Barrington Plays Cards

that for each bit there is exactly 1/2 probability that the missing card will be on the left.
Hence, the positions of the missing cards do not leak any information about her input. Bob
proceeds in the same way to commit his input.

After committing their inputs they can run any read-only protocol similar to the case of
1-card encoding. Whenever an input bit is needed it is copied into a 2-card representation
by essentially the same protocol as in the case of 1-card encoding.

This means that we need only n + O(1) cards to compute any NC1 function on n-bit
inputs.

We do not know how to implement protocols which could modify their inputs. Modifying
an input bit would require either picking the empty spot in the representation at random
(which could lead to using substantially more cards of each type) or reusing the cards that
are there. In the latter case we do not know how to do it without leaking information.

References
1 Yuta Abe, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. Five-card and protocol in

committed format using only practical shuffles. In Proceedings of the 5th ACM on ASIA Public-
Key Cryptography Workshop, APKC ’18, page 3–8, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3197507.3197510.

2 David Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in nc1. Journal of Computer and System Sciences, 38:150–164, February 1989.
doi:10.1016/0022-0000(89)90037-8.

3 Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman. Computing
with a full memory: Catalytic space. In Proceedings of the Forty-Sixth Annual ACM Symposium
on Theory of Computing, STOC ’14, page 857–866, New York, NY, USA, 2014. Association
for Computing Machinery. doi:10.1145/2591796.2591874.

4 R. E. Cleve. Methodologies for Designing Block Ciphers and Cryptographic Protocols. PhD
thesis, University of Toronto, CAN, 1989.

5 Claude Crépeau and Joe Kilian. Discreet solitary games. In Douglas R. Stinson, editor,
Advances in Cryptology — CRYPTO’ 93, pages 319–330, Berlin, Heidelberg, 1994. Springer
Berlin Heidelberg.

6 Bert den Boer. More efficient match-making and satisfiability the five card trick. In Jean-
Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryptology — EUROCRYPT
’89, pages 208–217, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg.

7 Pavel Dvořák and Michal Koucký. Barrington plays cards: The complexity of card-based
protocols, 2020. arXiv:2010.08445.

8 Danny Francis, Syarifah Ruqayyah Aljunid, Takuya Nishida, Yu-ichi Hayashi, Takaaki Mizuki,
and Hideaki Sone. Necessary and sufficient numbers of cards for securely computing two-bit
output functions. In Raphaël C.-W. Phan and Moti Yung, editors, Paradigms in Cryptology –
Mycrypt 2016. Malicious and Exploratory Cryptology, pages 193–211, Cham, 2017. Springer
International Publishing.

9 Julia Kastner, Alexander Koch, Stefan Walzer, Daiki Miyahara, Yu-ichi Hayashi, Takaaki
Mizuki, and Hideaki Sone. The minimum number of cards in practical card-based protocols.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017,
pages 126–155, Cham, 2017. Springer International Publishing.

10 Alexander Koch. The landscape of optimal card-based protocols. Cryptology ePrint Archive,
Report 2018/951, 2018. urlhttps://eprint.iacr.org/2018/951.

11 Alexander Koch and Stefan Walzer. Foundations for actively secure card-based cryptography.
In Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara, editors, 10th International
Conference on Fun with Algorithms, FUN 2021, May 30 to June 1, 2021, Favignana Island,
Sicily, Italy, volume 157 of LIPIcs, pages 17:1–17:23. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.FUN.2021.17.

https://doi.org/10.1145/3197507.3197510
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1145/2591796.2591874
http://arxiv.org/abs/2010.08445
https://doi.org/10.4230/LIPIcs.FUN.2021.17

P. Dvořák and M. Koucký 26:17

12 Alexander Koch, Stefan Walzer, and Kevin Härtel. Card-based cryptographic protocols using a
minimal number of cards. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology
– ASIACRYPT 2015, pages 783–807, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

13 Takaaki Mizuki. Card-based protocols for securely computing the conjunction of multiple
variables. Theor. Comput. Sci., 622(C):34–44, April 2016. doi:10.1016/j.tcs.2016.01.039.

14 Takaaki Mizuki, Michihito Kumamoto, and Hideaki Sone. The five-card trick can be done with
four cards. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology – ASIACRYPT
2012, pages 598–606, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

15 Takaaki Mizuki and Hiroki Shizuya. A formalization of card-based cryptographic proto-
cols via abstract machine. Int. J. Inf. Secur., 13(1):15–23, February 2014. doi:10.1007/
s10207-013-0219-4.

16 Takaaki Mizuki and Hiroki Shizuya. Practical card-based cryptography. In Alfredo Ferro,
Fabrizio Luccio, and Peter Widmayer, editors, Fun with Algorithms, pages 313–324, Cham,
2014. Springer International Publishing.

17 Takaaki Mizuki and Hideaki Sone. Six-card secure and and four-card secure xor. In Xiaotie
Deng, John E. Hopcroft, and Jinyun Xue, editors, Frontiers in Algorithmics, pages 358–369,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

18 Valtteri Niemi and Ari Renvall. Secure multiparty computations without computers. Technical
report, Turku Centre for Computer Science, 1997.

19 Takuya Nishida, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. Card-based protocols
for any boolean function. In Rahul Jain, Sanjay Jain, and Frank Stephan, editors, Theory and
Applications of Models of Computation, pages 110–121, Cham, 2015. Springer International
Publishing.

20 Akihiro Nishimura, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. An implementation
of non-uniform shuffle for secure multi-party computation. In Proceedings of the 3rd ACM
International Workshop on ASIA Public-Key Cryptography, AsiaPKC ’16, page 49–55, New
York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2898420.2898425.

21 Anton Stiglic. Computations with a deck of cards. Theor. Comput. Sci., 259(1):671–678, May
2001.

STACS 2021

https://doi.org/10.1016/j.tcs.2016.01.039
https://doi.org/10.1007/s10207-013-0219-4
https://doi.org/10.1007/s10207-013-0219-4
https://doi.org/10.1145/2898420.2898425

Round-Competitive Algorithms for Uncertainty
Problems with Parallel Queries
Thomas Erlebach ! Ï

School of Informatics, University of Leicester, UK

Michael Hoffmann !

School of Informatics, University of Leicester, UK

Murilo Santos de Lima1 ! Ï

School of Informatics, University of Leicester, UK

Abstract
The area of computing with uncertainty considers problems where some information about the input
elements is uncertain, but can be obtained using queries. For example, instead of the weight of an
element, we may be given an interval that is guaranteed to contain the weight, and a query can
be performed to reveal the weight. While previous work has considered models where queries are
asked either sequentially (adaptive model) or all at once (non-adaptive model), and the goal is to
minimize the number of queries that are needed to solve the given problem, we propose and study
a new model where k queries can be made in parallel in each round, and the goal is to minimize
the number of query rounds. We use competitive analysis and present upper and lower bounds on
the number of query rounds required by any algorithm in comparison with the optimal number of
query rounds. Given a set of uncertain elements and a family of m subsets of that set, we present
an algorithm for determining the value of the minimum of each of the subsets that requires at most
(2 + ε) · optk + O

(
1
ε

· lg m
)

rounds for every 0 < ε < 1, where optk is the optimal number of rounds,
as well as nearly matching lower bounds. For the problem of determining the i-th smallest value and
identifying all elements with that value in a set of uncertain elements, we give a 2-round-competitive
algorithm. We also show that the problem of sorting a family of sets of uncertain elements admits a
2-round-competitive algorithm and this is the best possible.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms; Math-
ematics of computing → Discrete mathematics; Theory of computation → Theory and algorithms
for application domains

Keywords and phrases online algorithms, competitive analysis, explorable uncertainty, parallel
algorithms, minimum problem, selection problem

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.27

Related Version Full Version: https://arxiv.org/abs/2101.05032

Funding This research was supported by EPSRC grant EP/S033483/1.

Acknowledgements We would like to thank Markus Jablonka for helpful discussions.

1 Introduction

Motivated by real-world applications where only rough information about the input data
is initially available but precise information can be obtained at a cost, researchers have
considered a range of uncertainty problems with queries [7, 13, 14, 15, 16, 19, 26].
This research area has also been referred to as queryable uncertainty [12] or explorable
uncertainty [17]. For example, in the input to a sorting problem, we may be given for each

1 Corresponding author

© Thomas Erlebach, Michael Hoffmann, and Murilo Santos de Lima;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 27; pp. 27:1–27:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:te17@leicester.ac.uk
https://www.cs.le.ac.uk/people/te17/
https://orcid.org/0000-0002-4470-5868
mailto:mh55@leicester.ac.uk
mailto:mslima@ic.unicamp.br
https://www.ime.usp.br/~mslima/
https://orcid.org/0000-0002-2297-811X
https://doi.org/10.4230/LIPIcs.STACS.2021.27
https://arxiv.org/abs/2101.05032
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries

input element, instead of its precise value, only an interval containing that point. Querying
an element reveals its precise value. The goal is to make as few queries as possible until
enough information has been obtained to solve the sorting problem, i.e., to determine a
linear order of the input elements that is consistent with the linear order of the precise
values. Motivation for explorable uncertainty comes from many different areas (see [12] and
the references given there for further examples): The uncertain input elements may, e.g.,
be locations of mobile nodes or approximate statistics derived from a distributed database
cache [29]. Exact information can be obtained at a cost, e.g., by requesting GPS coordinates
from a mobile node, by querying the master database or by a distributed consensus algorithm.

The main model that has been studied in the explorable uncertainty setting is the
adaptive query model: The algorithm makes queries one by one, and the results of
previous queries can be taken into account when determining the next query. The number of
queries made by the algorithm is then compared with the best possible number of queries for
the given input (i.e., the minimum number of queries sufficient to solve the problem) using
competitive analysis [5]. An algorithm is ρ-query-competitive (or simply ρ-competitive)
if it makes at most ρ times as many queries as an optimal query set. A very successful
algorithm design paradigm in this area is based on the concept of witness sets [7, 14]. A
witness set is a set of input elements for which it is guaranteed that every query set that
solves the problem contains at least one query in that set. If a problem admits witness sets of
size at most ρ, one obtains a ρ-query-competitive algorithm by repeatedly finding a witness
set and querying all its elements.

Some work has also considered the non-adaptive query model (see, e.g., [15, 28, 29]),
where all queries are made simultaneously and the set of queries must be chosen in such a way
that they certainly reveal sufficient information to solve the problem. In the non-adaptive
query model, one is interested in complexity results and approximation algorithms.

In settings where the execution of a query takes a non-negligible amount of time and there
are sufficient resources to execute a bounded number of queries simultaneously, the query
process can be completed faster if queries are not executed one at a time, but in rounds
with k simultaneous queries. Such scenarios include e.g. IoT environments (such as drones
measuring geographic data), or teams of interviewers doing market research. Apart from
being well motivated from an application point of view, this variation of the model is also
theoretically interesting because it poses new challenges in selecting a useful set of k queries
to be made simultaneously. Somewhat surprisingly, however, this has not been studied yet.
In this paper, we address this gap and analyze for the first time a model where the algorithm
can make up to k queries per round, for a given value k. The query results from previous
rounds can be taken into account when determining the queries to be made in the next
round. Instead of minimizing the total number of queries, we are interested in minimizing
the number of query rounds, and we say that an algorithm is ρ-round-competitive if, for
any input, it requires at most ρ times as many rounds as the optimal query set.

A main challenge in the setting with k queries per round is that the witness set paradigm
alone is no longer sufficient for obtaining a good algorithm. For example, if a problem
admits witness sets with at most 2 elements, this immediately implies a 2-query-competitive
algorithm for the adaptive model, but only a k-round-competitive algorithm for the model
with k queries per round. (The algorithm is obtained by simply querying one witness set in
each round, and not making use of the other k − 2 available queries.) The issue is that, even
if one can find a witness set of size at most ρ, the identity of subsequent witness sets may
depend on the outcome of the queries for the first witness set, and hence we may not know
how to compute a number of different witness sets that can fill a query round if k ≫ ρ.

T. Erlebach, M. Hoffmann, and M. S. de Lima 27:3

Our contribution. Apart from introducing the model of explorable uncertainty with k

queries per round, we study several problems in this model: Minimum, Selection and
Sorting. For Minimum (or Sorting), we assume that the input can be a family S of
subsets of a given ground set I of uncertain elements, and that we want to determine the
value of the minimum of (or sort) all those subsets. For Selection, we are given a set I of n

uncertain elements and an index i ∈ {1, . . . , n}, and we want to determine the i-th smallest
value of the n precise values, and all the elements of I whose value is equal to that value.

Our main contribution lies in our results for the Minimum problem. We present an
algorithm that requires at most (2 + ε) · optk + O

(1
ε · lg m

)
rounds, for every 0 < ε < 1,

where optk is the optimal number of rounds and m = |S|. (The execution of the algorithm
does not depend on ε, so the upper bound holds in particular for the best choice of 0 < ε < 1
for given optk and m.) Interestingly, our algorithm follows a non-obvious approach that is
reminiscent of primal-dual algorithms, but no linear programming formulation features in
the analysis. For the case that the sets in S are disjoint, we obtain some improved bounds
using a more straightforward algorithm. We also give lower bounds that apply even to the
case of disjoint sets, and show that our upper bounds are close to best possible. Note that
the Minimum problem is equivalent to the problem of determining the maximum element
of each of the sets in S, e.g., by simply negating all the numbers involved. A motivation
for studying the Minimum problem thus arises from the minimum spanning tree problem
with uncertain edge weights [11, 14, 17, 26]: Determining the maximum-weight edge of each
cycle of a given graph allows one to determine a minimum spanning tree. Therefore, there is
a connection between the problem of determining the maximum of each set in a family of
possibly overlapping sets (which could be the edge sets of the cycles of a given graph) and
the minimum spanning tree problem. The minimum spanning tree problem with uncertain
edge weights has not been studied yet for the model with k queries per round, and seems
to be difficult for that setting. In particular, it is not clear in advance for which cycles of
the graph a maximum-weight edge actually needs to be determined, and this makes it very
difficult to determine a set of k queries that are useful to be asked in parallel. We hope that
our results for Minimum provide a first step towards solving the minimum spanning tree
problem.

Another motivation for solving multiple possibly overlapping sets comes from distributed
database caches [29], where one wants to answer database queries using cached local data
and a minimum number of queries to the master database. Values in the local database cache
may be uncertain, and exact values can be obtained by communicating with the central
master database. Different database queries might ask for the record with minimum value
in the field with uncertain information among a set of database records satisfying certain
criteria, or for a list of such database records sorted by the field with uncertain information.
Answering such database queries while making a minimum number of queries for exact values
to the master database corresponds to the Minimum and Sorting problems we consider.

For the Selection problem, we obtain a 2-round-competitive algorithm. For Sorting,
we show that there is a 2-round-competitive algorithm, by adapting ideas from a recent
algorithm for sorting in the standard adaptive model [21], and that this is best possible.

We also discuss the relationship between our model and another model of parallel queries
proposed by Meißner [27], and we give general reductions between both settings.

Literature overview. The seminal paper on minimizing the number of queries to solve a
problem on uncertainty intervals is by Kahan [22]. Given n elements in uncertainty intervals,
he presented optimal deterministic adaptive algorithms for finding the maximum, the median,

STACS 2021

27:4 Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries

the closest pair, and for sorting. Olston and Widom [29] proposed a distributed database
system which exploits uncertainty intervals to improve performance. They gave non-adaptive
algorithms for finding the maximum, the sum, the average and for counting problems. They
also considered the case in which errors are allowed within a given bound, so a trade-off
between performance and accuracy can be achieved. Khanna and Tan [23] extended this
previous work by investigating adaptive algorithms for the situation in which bounded errors
are allowed. They also considered the case in which query costs may be non-uniform, and
presented results for the selection, sum and average problems, and for compositions of such
functions. Feder et al. [16] studied the generalized median/selection problem, presenting
optimal adaptive and non-adaptive algorithms. They proved that those are the best possible
adaptive and non-adaptive algorithms, respectively, instead of evaluating them from a
competitive analysis perspective. They also investigated the price of obliviousness, which
is the ratio between the non-adaptive and adaptive strategies.

After this initial foundation, many classic discrete problems were studied in this framework,
including geometric problems [7, 9], shortest paths [15], network verification [4], minimum
spanning tree [11, 14, 17, 26], cheapest set and minimum matroid base [13, 28], linear
programming [25, 30], traveling salesman [32], knapsack [19], and scheduling [2, 3, 10]. The
concept of witness sets was proposed by Bruce et al. [7], and identified as a pattern in many
algorithms by Erlebach and Hoffmann [12]. Gupta et al. [20] extended this framework to the
setting where a query may return a refined interval, instead of the exact value of the element.

The problem of sorting uncertainty data has received some attention recently. Halldórsson
and de Lima [21] presented better query-competitive algorithms, by using randomization or
assumptions on the underlying graph structure. Other related work on sorting has considered
sorting with noisy information [1, 6] or preprocessing the uncertain intervals so that the
actual numbers can be sorted efficiently once their precise value are revealed [31].

The idea of performing multiple queries in parallel was also investigated by Meißner [27].
Her model is different, however. Each round/batch can query an unlimited number of
intervals, but at most a fixed number of rounds can be performed. The goal is to minimize
the total number of queries. Meißner gave results for selection, sorting and minimum spanning
tree problems. We discuss this model in Section 6. A similar model was also studied by
Canonne and Gur for property testing [8].

Organization of the paper. We present some definitions and preliminary results in Section 2.
Sections 3, 4 and 5 are devoted to the sorting, minimum and selection problems, respectively.
In Section 6, we discuss the relationship between the model we study and the model of
Meißner for parallel queries [27]. We conclude in Section 7.

2 Preliminaries and Definitions

For the problems we consider, the input consists of a set of n continuous uncertainty intervals
I = {I1, . . . , In} in the real line. The precise value of each data item is vi ∈ Ii, which can be
learnt by performing a query; formally, a query on Ii replaces this interval with {vi}. We
wish to solve the given problem by performing the minimum number of queries (or query
rounds). We say that a closed interval Ii = [ℓi, ui] is trivial if ℓi = ui; clearly Ii = {vi}, so
trivial intervals never need to be queried. Some problems require that intervals are either
open or trivial; we will discuss this in further detail when addressing each problem. For a
given realization v1, . . . , vn of the precise values, a set Q ⊆ I of intervals is a feasible query
set if querying Q is enough to solve the given problem (i.e., to output a solution that can

T. Erlebach, M. Hoffmann, and M. S. de Lima 27:5

be proved correct based only on the given intervals and the answers to the queries in Q),
and an optimal query set is a feasible query set of minimum size. Since the precise values
are initially unknown to the algorithm and can be defined adversarially, we have an online
exploration problem [5]. We fix an optimal query set OPT1, and we write opt1 := |OPT1|.
An algorithm which performs up to ρ · opt1 queries is said to be ρ-query-competitive.
Throughout this paper, we only consider deterministic algorithms.

In previous work on the adaptive model, it is assumed that queries are made sequentially,
and the algorithm can take the results of all previous queries into account when deciding the
next query. We consider a model where queries are made in rounds and we can perform up
to k queries in parallel in each round. The algorithm can take into account the results from all
queries made in previous rounds when deciding which queries to make in the next round. The
adaptive model with sequential queries is the special case of our model with k = 1. We denote
by optk the optimal number of rounds to solve the given instance. Note that optk = ⌈opt1/k⌉
as OPT1 only depends on the input intervals and their precise values and can be distributed
into rounds of k queries arbitrarily. For an algorithm ALG we denote by ALG1 the number
of queries it makes, and by ALGk the number of rounds it uses. An algorithm which solves
the problem in up to ρ ·optk rounds is said to be ρ-round-competitive. A query performed
by an algorithm that is not in OPT1 is called a wasted query, and we say that the algorithm
wastes that query; a query performed by an algorithm that is not wasted is useful.

▶ Proposition 2.1. If an algorithm makes all queries in OPT1, wastes w queries in total
over all rounds excluding the final round, always makes k queries per round except possibly
in the final round, and stops as soon as the queries made so far suffice to solve the problem,
then its number of rounds will be ⌈(opt1 + w)/k⌉ ≤ optk + ⌈w/k⌉.

The problems we consider are Minimum, Sorting and Selection. For Minimum and
Sorting, we assume that we are given a set I of n intervals and a family S of m subsets
of I. For Sorting, the task is to output, for each set S ∈ S, an ordering of the elements
in S that is consistent with the order of their precise values. For Minimum, the task is
to output, for each S ∈ S, an element whose precise value is the minimum of the precise
values of all elements in S, along with the value of that element.2 Regarding the family S,
we can distinguish the cases where S contains a single set, where all sets in S are pairwise
disjoint, and the case where the sets in S may overlap, i.e., may have common elements. For
Selection, we are given a set I of n intervals and an index i ∈ {1, . . . , n}. The task is to
output the i-th smallest value v∗ (i.e., the value in position i in a sorted list of the precise
values of the n intervals), as well as the set of intervals whose precise value equals v∗. We
also discuss briefly a variant of Minimum in which we seek all elements whose precise value
is the minimum and a variant of Selection in which we only seek the value v∗.

For a better understanding of the problems, we give a simple example for Sorting
with k = 1. We have a single set with two intersecting intervals. There are four different
configurations of the realizations of the precise values, which are shown in Figure 1. In
Figure 1a, it is enough to query I1 to learn that v1 < v2; however, if an algorithm first
queries I2, it cannot decide the order, so it must query I1 as well. In Figure 1b we have a
symmetric situation. In Figure 1c, both intervals must be queried (i.e., the only feasible query
set is {I1, I2}), otherwise it is not possible to decide the order. Finally, in Figure 1d it is

2 In some of the literature, it is only required to identify the element with minimum value. Returning the
precise minimum value, however, is also an important problem, as discussed in [26, Section 7] for the
minimum spanning tree problem.

STACS 2021

27:6 Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries

I1

I2

(a)

I1

I2

(b)

I1

I2

(c)

I1

I2

(d)

Figure 1 Example of Sorting for two intervals and the possible realizations of the precise values.
We have that opt1 = 1 in (a), (b) and (d), and opt1 = 2 in (c).

enough to query either I1 or I2; hence, both {I1} and {I2} are feasible query sets. Since those
realizations are initially identical to the algorithm, this example shows that no deterministic
algorithm can be better than 2-query-competitive, and this example can be generalized by
taking multiple copies of the given structure. For Minimum, however, an optimum solution
can always be obtained by first querying I1 (and then I2 only if necessary): Since we need
the precise value of the minimum element, in Figure 1b it is not enough to just query I2.

3 Sorting

In this section we discuss the Sorting problem. We allow open, half-open, closed, and
trivial intervals in the input, i.e., Ii can be of the form [ℓi, ui] with ℓi ≤ ui, or (ℓi, ui], [ℓi, ui)
or (ℓi, ui) with ℓi < ui.

First, we consider the case where S consists of a single set S, which we can assume
to contain all n of the given intervals. We wish to find a permutation π : [n] → [n] such
that vi ≤ vj if π(i) < π(j), by performing the minimum number of queries possible. This
problem was addressed for k = 1 in [21, 22, 27]; it admits 2-query-competitive deterministic
algorithms and has a deterministic lower bound of 2.

For Sorting, if two intervals Ii = [ℓi, ui] and Ij = [ℓj , uj] are such that Ii ∩ Ij = {ui} =
{ℓj}, then we can put them in a valid order without any further queries, because clearly
vi ≤ vj . Therefore, we say that two intervals Ii and Ij intersect (or are dependent) if
either their intersection contains more than one point, or if Ii is trivial and vi ∈ (ℓj , uj) (or
vice versa). This is equivalent to saying that Ii and Ij are dependent if and only if ui > ℓj

and uj > ℓi. Two simple facts are important to notice, which are proven in [21]:
For any pair of intersecting intervals, at least one of them must be queried in order to
decide their relative order; i.e., any intersecting pair is a witness set.
The dependency graph that represents this relation, with a vertex for each interval
and an edge between intersecting intervals, is an interval graph [24].

We adapt the 2-query-competitive algorithm for Sorting by Halldórsson and de Lima [21]
for k = 1 to the case of arbitrary k. Their algorithm first queries all non-trivial intervals in a
minimum vertex cover in the dependency graph. By the duality between vertex covers and
independent sets, the unqueried intervals form an independent set, so no query is necessary
to decide the order between them. However, the algorithm still must query intervals in
the independent set that intersect a trivial interval or the value of a queried interval. To
adapt the algorithm to the case of arbitrary k, we first compute a minimum vertex cover
and fill as many rounds as necessary with the given queries. After the answers to the queries
are returned, we use as many rounds as necessary to query the intervals of the remaining
independent set that contain a trivial point.

▶ Theorem 3.1. The algorithm of Halldórsson and de Lima [21] yields a 2-round-competitive
algorithm for Sorting that runs in polynomial time.

T. Erlebach, M. Hoffmann, and M. S. de Lima 27:7

Proof. Any feasible query set is a vertex cover in the dependency graph, due to the fact that
at least one interval in each intersecting pair must be queried. Therefore a minimum vertex
cover is at most the size of an optimal query set, so the first phase of the algorithm spends at
most optk rounds. Since all intervals queried in the second phase are in any solution, again
we spend at most another optk rounds. As the minimum vertex cover problem for interval
graphs can be solved in polynomial time [18], the overall algorithm is polynomial as well. ◀

The problem has a lower bound of 2 on the round-competitive factor. This can be
shown by having kc copies of a structure consisting of two dependent intervals, for some
c ≥ 1. OPT1 may query only one interval in each pair, while we can force any deterministic
algorithm to query both of them (cf. the configurations shown in Figures 1a and 1b). We
have that optk = c while any deterministic algorithm will spend at least 2c rounds.

We remark that the 2-query-competitive algorithm for Sorting with k = 1 due to
Meißner [27], when adapted to the setting with arbitrary k in the obvious way, only gives a
bound of 2 · optk + 1 rounds. Her algorithm first greedily computes a maximal matching in
the dependency graph and queries all non-trivial matched vertices, and then all remaining
intervals that contain a trivial point.

Now we study the case of solving a number of problems on different subsets of the same
ground set of uncertain elements. In such a setting, it may be better to perform queries that
can be reused by different problems, even if the optimum solution for one problem may not
query that interval. We can reuse ideas from the algorithms for single problems that rely on
the dependency graph. We define a new dependency relation (and dependency graph) in
such a way that two intervals are dependent if and only if they intersect and belong to a
common set. Note that the resulting graph may not be an interval graph, so some algorithms
for single problems may not run in polynomial time for this generalization.

If we perform one query at a time (k = 1), then there are 2-competitive algorithms. One
such is the algorithm by Meißner [27] described above; since a maximal matching can be
computed greedily in polynomial time for arbitrary graphs, this algorithm runs in polynomial
time for non-disjoint problems. If we can make k ≥ 2 queries in parallel, then this algorithm
performs at most 2 ·optk +1 rounds, and the analysis is tight since we may have an incomplete
round in between the two phases of the algorithm. If we relax the requirement that the
algorithm runs in polynomial time, then we can obtain an algorithm that needs at most
2 · optk rounds, by first querying non-trivial intervals in a minimum vertex cover of the
dependency graph (in as many rounds as necessary) and then the intervals that contain a
trivial interval or the value of a queried interval (again, in as many rounds as necessary).

4 The Minimum Problem

For the Minimum problem, we assume without loss of generality that the intervals are
sorted by non-decreasing left endpoints; intervals with the same left endpoint can be ordered
arbitrarily. The leftmost interval among a subset of I is the one that comes earliest in this
ordering. We also assume that all intervals are open or trivial; otherwise the problem has a
trivial lower bound of n on the query-competitive ratio [20].

First, consider the case S = {I}, i.e., we have a single set. It is easy to see that the
optimal query set consists of all intervals whose left endpoint is strictly smaller than the
precise value of the minimum: If Ii with precise value vi is a minimum element, then all
other intervals with left endpoint strictly smaller than vi must be queried to rule out that
their value is smaller than vi, and Ii must be queried (unless it is a trivial interval) to

STACS 2021

27:8 Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries

determine the value of the minimum. The optimal set of queries is hence a prefix of the
sorted list of uncertain intervals (sorted by non-decreasing left endpoint). This shows that
there is a 1-query-competitive algorithm when k = 1, and a 1-round-competitive algorithm
for arbitrary k: In each round we simply query the next k uncertain intervals in the order
of non-decreasing left endpoint, until the problem is solved. For k = 1, the same method
yields a 1-query-competitive algorithm for the case with several sets: The algorithm can
always query an interval with smallest left endpoint for any of the sets that have not yet
been solved.3

In the remainder of this section, we consider the case of multiple sets and k > 1. We
first present a more general result for potentially overlapping sets, then we give better upper
bounds for disjoint sets. At the end of the section, we also present lower bounds.

Let W (x) = x lg x; the inverse W −1 of W will show up in our analysis. Note that
W −1(x) = Θ(x/ lg x); this can be proved via implicit differentiation.

Throughout this section, we assume w.l.o.g. that the optimum must make at least one
query in each set (or we consider only sets that require some query). We also assume that
any algorithm always discards from each set all elements that are certainly not the minimum
of that set, i.e., all elements for which it is already clear based on the available information
that their value must be larger than the minimum value of the set (this is where the right
endpoints of intervals also need to be considered). We adopt the following terminology. A
set in S is solved if we can determine the value of its minimum element. A set is active at
the start of a round if the queries made in previous rounds have not solved the set yet. An
active set survives a round if it is still active at the start of the next round. An active set
that does not survive the current round is said to be solved in the current round.

To illustrate these concepts, let us discuss a first simple strategy to build a query set Q for
a round. Let P be the set of intervals queried in previous rounds. The prefix length of an
active set S is the length of the maximum prefix of elements from Q in the list of non-trivial
intervals in S \ P ordered by non-decreasing left endpoints. The algorithm proceeds by
repeatedly adding to Q the leftmost non-trivial element not in Q ∪ P from an arbitrary
active set with minimum prefix length. We call this the balanced algorithm, and denote
it by BAL. We give an example of its execution in Figure 2, with m = 3 disjoint sets and
k = 5. The optimum solution queries the first three elements in S1 and S2, and all elements
in S3. Since the algorithm picks an arbitrary active set with minimum prefix length, it may
give preference to S1 and S2 over S3, thus wasting one query in S1 and one in S2 in round 2.
All sets are active at the beginning of round 2; S1 and S2 are solved in round 2, while S3
survives round 2. Since S1 and S2 are solved in round 2, they are no longer active in round 3,
so the algorithm no longer queries any of their elements.

4.1 The Minimum Problem with Arbitrary Sets
We are given a set I of n intervals and a family S of m possibly overlapping subsets of I,
and a number k ≥ 2 of queries that can be performed in each round.

Unfortunately, it is possible to construct an instance in which BAL uses as many as
k · optk rounds. In particular, it does not take into consideration that some elements are
shared between different sets. The challenge is how to balance queries between sets in a
better way.

3 If we want to determine all elements whose value equals the minimum, it is not hard to see that the
optimal set of queries for each set is again a prefix. As all our algorithms require only this property, we
obtain corresponding results for that problem variant, even for inputs with arbitrary closed, open and
half-open intervals.

T. Erlebach, M. Hoffmann, and M. S. de Lima 27:9

S1

S2

S3

round 1 round 2 round 3

Figure 2 Possible execution of BAL for m = 3 disjoint sets and k = 5. Each interval is represented
by a box, and the optimum solution is a prefix of each set. The solid boxes are useful queries, the
two hatched boxes are wasted queries, and the white boxes are not queried by the algorithm.

Algorithm 1 Computing a query round for possibly non-disjoint sets.

Data: family S = {S1, . . . , Sm} of active subsets of the ground set I
Result: set Q ⊆ I of at most k queries to make

1 begin
2 Q← set of leftmost unqueried elements of all sets in S;
3 if |Q| ≥ k then
4 Q← arbitrary subset of Q with size k;
5 else
6 bi ← 0 for all Si ∈ S;
7 while |Q| < k and there are unqueried elements in I \Q do
8 foreach e ∈ I \Q do
9 Fe ← {i | e is the leftmost unqueried element from I \Q in Si};

10 increase all bi simultaneously at the same rate until there is an unqueried
element e ∈ I \Q that satisfies

∑
i∈Fe

bi = 1;
11 Q← Q ∪ {e};
12 bi ← 0 for all i ∈ Fe;

13 return Q;

We give an algorithm that requires at most (2 + ε) · optk + O
(1

ε · lg m
)

rounds, for every
0 < ε < 1. (The execution of the algorithm does not depend on ε, so the upper bound
holds in particular for the best choice of 0 < ε < 1 for given optk and m.) It is inspired by
how some primal-dual algorithms work. The pseudocode for determining the queries to be
made in a round is shown in Algorithm 1. First, we try to include the leftmost element of
each set in the set of queries Q. If those are not enough to fill a round, then we maintain a
variable bi for each set Si, which can be interpreted as a budget for each set. The variables
are increased simultaneously at the same rate, until the sets that share a current leftmost
unqueried element not in Q have enough budget to buy it. More precisely, at a given point
of the execution, for each element e ∈ I \Q, let Fe contain the indices of the sets that have e

as their leftmost unqueried element not in Q. We include e in Q when
∑

i∈Fe
bi = 1, and

then we set bi to zero for all i ∈ Fe. We repeat this process until |Q| = k or there are no
unqueried elements in I \Q.

When a query e is added to Q, we say that it is charged to the sets Si with i ∈ Fe.
The amount of charge for set Si is equal to the value of bi just before bi is reset to 0 after
adding e to Q. We also say that the set Si pays this amount for e.

STACS 2021

27:10 Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries

▶ Definition 4.1. Let ε > 0. A round is ε-good if at least k/2 of the queries made by
Algorithm 1 are also in OPT1 (i.e., are useful queries), or if at least a/r active sets are
solved in that round, where a is the number of active sets at the start of the round and
r = (2(1 + ε) +

√
2ε2 + 4ε + 4)/ε. A round that is not ε-good is called ε-bad.

Note that r > 2 for any ε > 0.

▶ Lemma 4.2. If a round is ε-bad, then Algorithm 1 will make at least 2k/(2 + ε) useful
queries in the following round.

Proof. Let a denote the number of active sets at the start of an ε-bad round. Let s be the
number of sets that are solved in the current round; note that s < a/r because the current
round is ε-bad. Let T be the total amount by which each value bi has increased during
the execution of Algorithm 1. If the simultaneous increase of all bi is interpreted as time
passing, then T corresponds to the point in time when the computation of the set Q has
been completed. For example, if some set Si did not pay for any element during the whole
execution, then T is equal to the value of bi at the end of the execution of Algorithm 1.

Let Q be the set of queries that Algorithm 1 makes in the current round. We claim that
every wasted query in Q is charged only to sets that are solved in this round. Consider a
wasted query e that is in some set Sj not solved in this round. At the time e was selected,
j cannot have been in Fe because otherwise e would be a useful query. Therefore, we do not
charge e to Sj .

The total number of wasted queries is therefore bounded by Ts, as these queries are paid
for by the s sets solved in this round. As the number of wasted queries in a bad round is larger
than k/2, we therefore have Ts > k/2. As s < a/r, we get k/2 < Ta/r, so T > (r/2) · (k/a).

Call a surviving set Si rich if bi > k/a when the computation of Q is completed. A set
that is not rich is called poor. Note that a poor set must have spent at least an amount
of (r/2− 1) · (k/a) > 0, as its total budget would be at least T > (r/2) · (k/a) if it had not
paid for any queries. As the poor sets have paid for fewer than k/2 elements in total (as
there are fewer than k/2 useful queries in the current round), the number of poor sets is
bounded by k/2

(r/2−1)·(k/a) = a/(r − 2) > 0. As there are more than (1 − 1/r) · a surviving
sets and at most a/(r − 2) of them are poor, there are at least (1− 1/r) · a− a/(r − 2) =
((r − 2)(r − 1)− r)/(r(r − 2)) · a = 2a/(2 + ε) > 0 surviving sets that are rich.

Let e be any element that is the leftmost unqueried element (at the end of the current
round) of a rich surviving set. If e was the leftmost unqueried element of more than a/k rich
surviving sets, those sets would have been able to pay for e (because their total remaining
budget would be greater than k/a ·a/k = 1) before the end of the execution of Algorithm 1, a
contradiction to e not being included in Q. Hence, the number of distinct leftmost unqueried
elements of the at least 2a/(2+ε) rich surviving sets is at least (2a/(2+ε))/(a/k) = 2k/(2+ε).
So the following round will query at least 2k/(2 + ε) elements that are the leftmost unqueried
element of an active set, and all those are useful queries that are made in the next round. ◀

▶ Theorem 4.3. Let optk denote the optimal number of rounds and Ak the number of
rounds made if the queries are determined using Algorithm 1. Then, for every 0 < ε < 1,
Ak ≤ (2 + ε) · optk + O

(1
ε · lg m

)
.

T. Erlebach, M. Hoffmann, and M. S. de Lima 27:11

Proof. In every round, one of the following must hold:
The algorithm makes at least k/2 useful queries.
The algorithm solves at least a fraction of 1/r of the active sets.
If none of the above hold, the algorithm makes at least 2k/(2 + ε) useful queries in the
following round (by Lemma 4.2).

The number of rounds in which the algorithm solves at least a fraction of 1/r of the active
sets is bounded by ⌈logr/(r−1) m⌉ = O

(1
ε · lg m

)
, since 1/

(
lg r

r−1

)
< 5/ε for 0 < ε < 1. In

every round where the algorithm does not solve at least a fraction of 1/r of the active sets,
the algorithm makes at least k/(2 + ε) useful queries on average (if in any such round it
makes fewer than k/2 useful queries, it makes 2k/(2 + ε) useful queries in the following
round). The number of such rounds is therefore bounded by (2 + ε) · optk. ◀

We do not know if this analysis is tight, so it would be worth investigating this question.

4.2 The Minimum Problem with Disjoint Sets
We now consider the case where k ≥ 2 and the m sets in the given family S are pairwise
disjoint. For this case, it turns out that the balanced algorithm achieves good upper bounds.

▶ Theorem 4.4. BALk ≤ optk + O(lg min{k, m}).

Proof. First we prove the bound for m ≤ k. Index the sets in such a way that Si is the
i-th set that is solved by BAL, for 1 ≤ i ≤ m. Sets that are solved in the same round
are ordered by non-decreasing number of queries made in them in that round by BAL. In
the round when Si is solved, there are at least m − (i − 1) active sets, so the number of
wasted queries in Si is at most k

m−(i−1) . (BAL makes at most
⌈

k
m−(i−1)

⌉
queries in Si, and

at least one of these is not wasted.) The total number of wasted queries is then at most∑m
i=1

k
m−(i−1) =

∑m
i=1 k/i = k ·H(m), where H(m) denotes the m-th Harmonic number. By

Proposition 2.1, BALk ≤ optk + O(lg m).
If m > k, observe that the algorithm does not waste any queries until the number of active

sets is at most k. From that point on, it wastes at most k·H(k) queries following the arguments
in the previous paragraph, so the number of rounds is bounded by optk + O(log k). ◀

We now give a more refined analysis that provides a better bound for optk = 1, as well
as a better multiplicative bound than what would follow from Theorem 4.4.

▶ Lemma 4.5. If optk = 1, then BALk ≤ O(lg m/ lg lg m).

Proof. Consider an arbitrary instance of the problem with optk = 1. Let R + 1 be the
number of rounds needed by the algorithm. For each of the first R rounds, we consider the
fraction bi of active sets that are not solved in that round. More formally, for the i-th round,
for 1 ≤ i ≤ R, if ai denotes the number of active sets at the start of round i and ai+1 the
number of active sets at the end of round i, then we define bi = ai+1/ai.

Consider round i, 1 ≤ i ≤ R. A set that is active at the start of round i and is still active
at the start of the round i + 1 is called a surviving set. A set that is active at the start
of round i and gets solved by the queries made in round i is called a solved set. For each
surviving set, all queries made in that set in round i are useful. For each solved set, at least
one query made in that set is useful. We claim that this implies the algorithm makes at
least kbi useful queries in round i. To see this, observe that if the algorithm makes ⌊k/ai⌋
queries in a surviving set and ⌈k/ai⌉ queries in a solved set, we can conceptually move one
useful query from the solved set to the surviving set. After this, the ai+1 surviving sets
contain at least k/ai useful queries on average, and hence ai+1 · k/ai = bik useful queries in
total.

STACS 2021

27:12 Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries

As OPT1 must make all useful queries and makes at most k queries in total, we have that∑R
i=1 kbi ≤ opt1 ≤ k, so

∑R
i=1 bi ≤ 1. Furthermore, as there are m active sets initially and

there is still at least one active set after round R, we have that
∏R

i=1 bi = aR+1/a1 ≥ 1/m.
To get an upper bound on R, we need to determine the largest possible value of R for which
there exist values bi > 0 for 1 ≤ i ≤ R satisfying

∑R
i=1 bi ≤ 1 and

∏R
i=1 bi ≥ 1/m. We gain

nothing from choosing bi with
∑R

i=1 bi < 1, so we can assume
∑R

i=1 bi = 1. In that case,
the value of

∏R
i=1 bi is maximized if we set all bi equal, namely bi = 1/R. So we need to

determine the largest value of R that satisfies
∏R

i=1 1/R ≥ 1/m, or equivalently RR ≤ m, or
R lg R ≤ lg m. This shows that R ≤W −1(lg m) = O(lg m/ lg lg m). ◀

▶ Corollary 4.6. If optk = 1, then BALk ≤ O(lg k/ lg lg k).

Proof. If k ≥ m, then the corollary follows from Lemma 4.5. If k < m, there can be at
most k active sets, because the optimum performs at most k queries since optk = 1. Hence,
we only need to consider these k sets and can apply Lemma 4.5 with m = k. ◀

Now we wish to extend these bounds to arbitrary optk. It turns out that we can reduce
the analysis for an instance with arbitrary optk to the analysis for an instance with optk = 1,
assuming that BAL is implemented in a round-robin fashion. A formal description of such
an implementation is as follows: fix an arbitrary order of the m sets of the original problem
instance as S1, S2, . . . , Sm, and consider it as a cyclic order where the set after Sm is S1. In
each round, BAL distributes the k queries to the active sets as follows. Let i be the index of
the set to which the last query was distributed in the previous round (or let i = m if we are
in the first round). Then initialize Q = ∅ and repeat the following step k times. Let j be
the first index after i such that Sj is active and has unqueried non-trivial elements that are
not in Q; pick the leftmost unqueried non-trivial element in Sj \Q, insert it into Q, and set
i = j. The resulting set Q is then queried. The proof of the following theorem is omitted.

▶ Theorem 4.7. BAL is O(lg min{k, m}/ lg lg min{k, m})-round-competitive.

4.3 Lower Bounds
In this section we present lower bounds for Minimum that hold even for the more restricted
case where the family S consists of disjoint sets.

▶ Theorem 4.8. For arbitrarily large m and any deterministic algorithm ALG, there exists an
instance with m sets and k > m queries per round, such that optk = 1, ALGk ≥W −1(lg m)
and ALGk = Ω(W −1(lg k)). Hence, there is no o(lg min{k, m}/ lg lg min{k, m})-round-
competitive deterministic algorithm.

Proof. Fix an arbitrarily large positive integer M . Consider an instance with m = MM

sets, and let k = MM+1. Each set contains Mk elements, with the i-th element having
uncertainty interval (1 + iε, 100 + iε) for ε = 1/m. The adversary will pick for each set an
index j and set the j-th element to be the minimum, by letting it have value 1 + (j + 0.5)ε,
while the i-th element for i ̸= j is given value 100 + (i− 0.5)ε. The optimal query set for the
set is thus its first j elements. We assume that an algorithm queries the elements of each set
in order of increasing lower interval endpoints. (Otherwise, the lower bound only becomes
larger.)

Consider the start of a round when a ≤ m sets are still active; initially a = m. The
adversary observes how the algorithm distributes its k queries among the active sets and
repeatedly adds the active set with largest number of queries (from the current round) to

T. Erlebach, M. Hoffmann, and M. S. de Lima 27:13

a set L, until the total number of queries from the current round in sets of L is at least
(M − 1)k/M . Let S ′ denote the remaining active sets. Note that |S ′| ≥ a/M . For the sets
in L, the adversary chooses the minimum in such a way that a single query in the current
round would have been sufficient to find it, while the sets in S ′ remain active (and so the
optimum must make the same queries in them that the algorithm has made in the current
round, and these are at most k/M queries). We continue for M rounds. In the M -th round,
the adversary picks the minimum in all remaining sets in such way that a single query in
that round would have been sufficient to solve the set. The optimal number of queries is
then at most (M − 1)k/M + MM = (M − 1)k/M + k/M = k, and hence optk = 1. On the
other hand, we have ALGk = M .

We can now express this lower bound in terms of k or m as follows: As m = MM , we have
lg m = M lg M and hence M = W −1(lg m). As k = MM+1, we have lg k = (M + 1) lg M

and hence M = Ω(W −1(lg k)). Thus, the theorem follows. ◀

▶ Theorem 4.9. No deterministic algorithm ALG attains ALGk ≤ optk + o(lg min{k, m}).

Proof. Let k = m be an arbitrarily large integer. The intervals of the m sets are chosen
as in the proof of Theorem 4.8, for a sufficiently large value of M . Let a be the number
of active sets at the start of a round; initially a = m. After each round, the adversary
considers the set Sj in which the algorithm has made the largest number of queries, which
must be at least k/a. The adversary picks the minimum element in Sj in such a way that
a single query in the current round would have been enough to solve it, and keeps all
other sets active. This continues for m rounds. The number of wasted queries is at least
k/m + k/(m− 1) + · · ·+ k/2 + k −m = k · (H(m)− 1) = k ·Ω(lg k). As the algorithm must
also make all queries in OPT1, the theorem follows from Proposition 2.1. ◀

We conclude thus that the balanced algorithm attains matching upper bounds for disjoint
sets. For non-disjoint sets, a small gap remains between our lower and upper bounds.

5 Selection

An instance of the Selection problem is given by a set I of n intervals and an integer i,
1 ≤ i ≤ n. Throughout this section we denote the i-th smallest value in the set of n precise
values by v∗.

If we only want to find the value v∗, then we can adapt the analysis in [20] to obtain an
algorithm that performs at most opt1 + i− 1 queries provided all input intervals are open
or trivial, simply by querying the intervals in the order of their left endpoints. This is the
best possible and can easily be parallelized in optk +

⌈
i−1

k

⌉
rounds (we omit a proof). Thus

we focus here on the task of finding v∗ as well as identifying all intervals in I whose precise
value equals v∗.

For ease of presentation, we assume that all the intervals in I are closed. The result
can be generalized to arbitrary intervals without any significant new ideas, but the proofs
become longer and require more cases, so we defer them to an extended version of the paper.

Let us begin by observing that the optimal query set is easy to characterize (proof
omitted).

▶ Lemma 5.1. Every feasible query set contains all non-trivial intervals that contain v∗.
The optimal query set OPT1 contains all non-trivial intervals that contain v∗ and no other
intervals.

STACS 2021

27:14 Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries

Let Ij1 be the interval with the i-th smallest left endpoint, and let Ij2 be the interval with
the i-th smallest right endpoint. Then it is clear that v∗ must lie in the interval [ℓj1 , uj2],
which we call the target area. The following lemma was essentially shown by Kahan [22].

▶ Lemma 5.2 (Kahan, 1991). Assume that the current instance of Selection is not yet
solved. Then there is at least one non-trivial interval Ij in I that contains the target area,
i.e., satisfies ℓj ≤ ℓj1 and uj ≥ uj2 .

For k = 1, there is therefore an online algorithm that makes opt1 queries: In each
round, it determines the target area of the current instance and queries a non-trivial interval
that contains the target area. (This algorithm was essentially proposed by Kahan [22] for
determining all elements with value equal to v∗, without necessarily determining v∗.) For
larger k, the difficulty is how to select additional intervals to query if there are fewer than k

intervals that contain the target area.
The intervals that intersect the target area can be classified into four categories:

(1) a non-trivial intervals [ℓj , uj] with ℓj ≤ ℓj1 and uj ≥ uj2 ; they contain the target area;
(2) b intervals [ℓj , uj] with ℓj > ℓj1 and uj < uj2 ; they are strictly contained in the target

area and contain neither endpoint of the target area;
(3) c intervals [ℓj , uj] with ℓj ≤ ℓj1 and uj < uj2 ; they intersect the target area on the left;
(4) d intervals [ℓj , uj] with ℓj > ℓj1 and uj ≥ uj2 ; they intersect the target area on the right.
We propose the following algorithm for rounds with k queries: Each round is filled with
as many non-trivial intervals as possible, using the following order: first all intervals of
category (1); then intervals of category (2); then picking intervals alternatingly from categor-
ies (3) and (4), starting with category (3). If one of the two categories (3) and (4) is exhausted,
the rest of the k queries is chosen from the other category. Intervals of categories (3) and (4)
are picked in order of non-increasing length of overlap with the target area, i.e., intervals of
category (3) are chosen in non-increasing order of right endpoint, and intervals of category (4)
in non-decreasing order of left endpoint. When a round is filled, it is queried, and the
algorithm restarts, with a new target area and the intervals redistributed into the categories.

▶ Proposition 5.3. At the start of any round, a ≥ 1 and b ≤ a− 1.

Proof. Lemma 5.2 shows a ≥ 1. If the target area is trivial, we have b = 0 and hence
b ≤ a− 1. From now on assume that the target area is non-trivial.

Let L be the set of intervals in I that lie to the left of the target area, i.e., intervals Ij

with uj < ℓj1 . Similarly, let R be the set of intervals that lie to the right of the target area.
Observe that a + b + c + d + |L|+ |R| = n.

The intervals in L and the intervals of type (1) and (3) include all intervals with left
endpoint at most ℓj1 . As ℓj1 is the i-th smallest left endpoint, we have |L|+ a + c ≥ i.

Similarly, the intervals in R and the intervals of type (1) and (4) include all intervals
with right endpoint at least uj2 . As uj2 is the i-th smallest right endpoint, or equivalently
the (n− i + 1)-th largest right endpoint, we have |R|+ a + d ≥ n− i + 1.

Adding the two inequalities derived in the previous two paragraphs, we get 2a + c + d +
|L|+ |R| ≥ n + 1. Combined with a + b + c + d + |L|+ |R| = n, this yields b ≤ a− 1. ◀

We omit the proof of the following lemma.

▶ Lemma 5.4. If the current round of the algorithm is not the last one, then the following
holds: If the algorithm queries at least one interval of categories (3) or (4), then the algorithm
does not query all intervals of category (3) that contain v∗, or it does not query all intervals
of category (4) that contain v∗.

T. Erlebach, M. Hoffmann, and M. S. de Lima 27:15

▶ Theorem 5.5. There is a 2-round-competitive algorithm for Selection.

Proof. Consider any round of the algorithm that is not the last one. Let A, B, C and D

be the sets of intervals of categories (1), (2), (3) and (4) that are queried in this round,
respectively. Let A∗, B∗, C∗ and D∗ be the subsets of A, B, C and D that are in OPT1,
respectively. By Lemmas 5.1 and 5.2, |A| = |A∗| ≥ 1. Since the algorithm prioritizes
category (1), by Proposition 5.3 we have |B| ≤ |A| − 1, and thus |A ∪ B| ≤ 2 · |A| − 1 =
2 · |A∗| − 1 ≤ 2(|A∗|+ |B∗|)− 1.

For bounding the size of C ∪D, first note that the order in which the algorithm selects
the elements of categories (3) and (4) ensures that, within each category, the intervals that
contain v∗ are selected first. By Lemma 5.4, there exists a category in which the algorithm
does not query all intervals that contain v∗ in the current round. If that category is (3), we
have |C| = |C∗| and, by the alternating choice of intervals from (3) and (4) starting with (3),
|D| ≤ |C| and hence |C ∪D| ≤ 2 · |C∗| ≤ 2(|C∗| + |D∗|). If that category is (4), we have
|D| = |D∗| and |C| ≤ |D|+ 1, giving |C ∪D| ≤ 2 · |D∗|+ 1 ≤ 2(|C∗|+ |D∗|) + 1. In both
cases, we thus have |C ∪D| ≤ 2(|C∗|+ |D∗|) + 1.

Combining the bounds obtained in the two previous paragraphs, we get |A∪B∪C ∪D| ≤
2(|A∗|+ |B∗|+ |C∗|+ |D∗|). This shows that, among the queries made in the round, at most
half are wasted. The total number of wasted queries in all rounds except the last one is
hence bounded by opt1. Since the algorithm fills each round except possibly the last one and
also queries all intervals in OPT1, the theorem follows by Proposition 2.1. ◀

We also have the following lower bound, which proves that our algorithm has the best
possible multiplicative factor. We remark that it uses instances with optk = 1, and we do
not know how to scale it to larger values of optk. In its present form, it does not exclude the
possibility of an algorithm using at most optk + 1 rounds.

▶ Lemma 5.6. There is a family of instances of Selection with k = i ≥ 2 with opt1 ≤ i

(and hence optk = 1) such that any algorithm that makes k queries in the first round needs
at least two rounds and performs at least opt1 + ⌈(i− 1)/2⌉ queries.

6 Relationship with the Parallel Model by Meißner

In [27, Section 4.5], Meißner describes a slightly different model for parallelization of queries.
There, one is given a maximum number r of batches that can be performed, and there is
no constraint on the number of queries that can be performed in a given batch. The goal
is to minimize the total number of queries performed, and the algorithm is compared to
an optimal query set. The number of uncertain elements in the input is denoted by n. In
this section, we discuss the relationship between this model and the one we described in the
previous sections.

Meißner argues that the sorting problem admits a 2-query-competitive algorithm for
r ≥ 2 batches. For the minimum problem with one set, she gives an algorithm which
is ⌈n1/r⌉-query-competitive, with a matching lower bound. She also gives results for the
selection and the minimum spanning tree problems.

▶ Theorem 6.1. If there is an α-query-competitive algorithm that performs at most r batches,
then there is an algorithm that performs at most α·optk+r−1 rounds of k queries. Conversely,
if a problem has a lower bound of β · optk + t on the number of rounds of k queries, then any
algorithm running at most t + 1 batches has query-competitive ratio at least β.

STACS 2021

27:16 Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries

Proof. Given an α-query-competitive algorithm A on r batches, we construct an algorithm B

for rounds of k queries in the following way. For each batch in A, algorithm B simply performs
all queries in as many rounds as necessary. In between batches, we may have an incomplete
round, but there are only r − 1 such rounds. ◀

In view of Meißner’s lower bound for the minimum problem with one set mentioned above,
the following result is close to being asymptotically optimal for that problem (using α = 1).
The proof of the following theorem is omitted due to space constraints.

▶ Theorem 6.2. If there is an α-round-competitive algorithm for rounds of k queries, with α

independent of k, then there is an algorithm that performs at most r batches with query-
competitive ratio O(α · n⌊α⌋/(r−1)), with r ≥ ⌊α⌋ · x + 1 for an arbitrary natural number x.
In particular, for r ≥ ⌊α⌋ · lg n + 1, the query-competitive factor is O(α).

Therefore, an algorithm that uses a constant number of batches implies an algorithm
with the same asymptotic round-competitive ratio for rounds of k queries. On the other
hand, some problems have worse query-competitive ratio if we require few batches, even if
we have round-competitive algorithms for rounds of k queries, but the ratio is preserved by a
constant if the number of batches is sufficiently large.

7 Final Remarks

We propose a model with parallel queries and the goal of minimizing the number of query
rounds when solving uncertainty problems. Our results show that, even though the techniques
developed for the sequential setting can be utilized in the new framework, they are not
enough, and some problems are harder (have a higher lower bound on the competitive ratio).

One interesting open question is how to extend our algorithms for Minimum to the
variant where it is not necessary to return the precise minimum value, but just to identify
the minimum element. Another problem one could attack is the following generalization
of Selection: Given multiple sets S1, . . . , Sm ⊆ I and indices i1, . . . , im, identify the
ij-smallest precise value and all elements with that value in Sj , for j = 1, . . . , m. It would
be interesting to see if the techniques we developed for Minimum with multiple sets can be
adapted to Selection with multiple sets.

It would be nice to close the gaps in the round-competitive ratio, to understand if the
analysis of Algorithm 1 is tight, and to study whether randomization can help to obtain
better upper bounds. One could also study other problems in the parallel model, such as the
minimum spanning tree problem.

References
1 M. Ajtai, V. Feldman, A. Hassidim, and J. Nelson. Sorting and selection with imprecise

comparisons. ACM Transactions on Algorithms, 12(2):19:1–19:19, 2016. doi:10.1145/2701427.
2 S. Albers and A. Eckl. Explorable uncertainty in scheduling with non-uniform testing times. In

WAOA 2020: 18th International Workshop on Approximation and Online Algorithms, Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2021. To appear. Also: arXiv preprint,
arXiv:2009.13316, 2020.

3 L. Arantes, E. Bampis, A. V. Kononov, M. Letsios, G. Lucarelli, and P. Sens. Scheduling under
uncertainty: A query-based approach. In IJCAI 2018: 27th International Joint Conference on
Artificial Intelligence, pages 4646–4652, 2018. doi:10.24963/ijcai.2018/646.

https://doi.org/10.1145/2701427
https://arxiv.org/abs/2009.13316
https://doi.org/10.24963/ijcai.2018/646

T. Erlebach, M. Hoffmann, and M. S. de Lima 27:17

4 Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal’ák, and L. S. Ram.
Network discovery and verification. IEEE Journal on Selected Areas in Communications,
24(12):2168–2181, 2006. doi:10.1109/JSAC.2006.884015.

5 A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

6 M. Braverman and E. Mossel. Sorting from noisy information. arXiv preprint, 2009. arXiv:
0910.1191.

7 R. Bruce, M. Hoffmann, D. Krizanc, and R. Raman. Efficient update strategies for geometric
computing with uncertainty. Theory of Computing Systems, 38(4):411–423, 2005. doi:
10.1007/s00224-004-1180-4.

8 C. L. Canonne and T. Gur. An adaptivity hierarchy theorem for property testing. computational
complexity, 27:671–716, 2018. doi:10.1007/s00037-018-0168-4.

9 G. Charalambous and M. Hoffmann. Verification problem of maximal points under uncertainty.
In T. Lecroq and L. Mouchard, editors, IWOCA 2013: 24th International Workshop on
Combinatorial Algorithms, volume 8288 of Lecture Notes in Computer Science, pages 94–105.
Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-642-45278-9_9.

10 C. Dürr, T. Erlebach, N. Megow, and J. Meißner. An adversarial model for scheduling with
testing. Algorithmica, 2020. doi:10.1007/s00453-020-00742-2.

11 T. Erlebach and M. Hoffmann. Minimum spanning tree verification under uncertainty. In
D. Kratsch and I. Todinca, editors, WG 2014: International Workshop on Graph-Theoretic
Concepts in Computer Science, volume 8747 of Lecture Notes in Computer Science, pages
164–175. Springer Berlin Heidelberg, 2014. doi:10.1007/978-3-319-12340-0_14.

12 T. Erlebach and M. Hoffmann. Query-competitive algorithms for computing with uncertainty.
Bulletin of the EATCS, 116:22–39, 2015. URL: http://bulletin.eatcs.org/index.php/
beatcs/article/view/335.

13 T. Erlebach, M. Hoffmann, and F. Kammer. Query-competitive algorithms for cheapest set
problems under uncertainty. Theoretical Computer Science, 613:51–64, 2016. doi:10.1016/j.
tcs.2015.11.025.

14 T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihal’ák, and R. Raman. Computing minimum
spanning trees with uncertainty. In S. Albers and P. Weil, editors, STACS’08: 25th International
Symposium on Theoretical Aspects of Computer Science, volume 1 of Leibniz International
Proceedings in Informatics, pages 277–288. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2008. doi:10.4230/LIPIcs.STACS.2008.1358.

15 T. Feder, R. Motwani, L. O’Callaghan, C. Olston, and R. Panigrahy. Computing shortest
paths with uncertainty. Journal of Algorithms, 62(1):1–18, 2007. doi:10.1016/j.jalgor.
2004.07.005.

16 T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. Computing the me-
dian with uncertainty. SIAM Journal on Computing, 32(2):538–547, 2003. doi:10.1137/
S0097539701395668.

17 J. Focke, N. Megow, and J. Meißner. Minimum spanning tree under explorable uncertainty in
theory and experiments. In C. S. Iliopoulos, S. P. Pissis, S. J. Puglisi, and R. Raman, editors,
SEA 2017: 16th International Symposium on Experimental Algorithms, volume 75 of Leibniz
International Proceedings in Informatics, pages 22:1–22:14. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.SEA.2017.22.

18 F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques,
and maximum independent set of a chordal graph. SIAM Journal on Computing, 1(2):180–187,
1972. doi:10.1137/0201013.

19 M. Goerigk, M. Gupta, J. Ide, A. Schöbel, and S. Sen. The robust knapsack problem with
queries. Computers & Operations Research, 55:12–22, 2015. doi:10.1016/j.cor.2014.09.010.

20 M. Gupta, Y. Sabharwal, and S. Sen. The update complexity of selection and related problems.
Theory of Computing Systems, 59(1):112–132, 2016. doi:10.1007/s00224-015-9664-y.

STACS 2021

https://doi.org/10.1109/JSAC.2006.884015
http://arxiv.org/abs/0910.1191
http://arxiv.org/abs/0910.1191
https://doi.org/10.1007/s00224-004-1180-4
https://doi.org/10.1007/s00224-004-1180-4
https://doi.org/10.1007/s00037-018-0168-4
https://doi.org/10.1007/978-3-642-45278-9_9
https://doi.org/10.1007/s00453-020-00742-2
https://doi.org/10.1007/978-3-319-12340-0_14
http://bulletin.eatcs.org/index.php/beatcs/article/view/335
http://bulletin.eatcs.org/index.php/beatcs/article/view/335
https://doi.org/10.1016/j.tcs.2015.11.025
https://doi.org/10.1016/j.tcs.2015.11.025
https://doi.org/10.4230/LIPIcs.STACS.2008.1358
https://doi.org/10.1016/j.jalgor.2004.07.005
https://doi.org/10.1016/j.jalgor.2004.07.005
https://doi.org/10.1137/S0097539701395668
https://doi.org/10.1137/S0097539701395668
https://doi.org/10.4230/LIPIcs.SEA.2017.22
https://doi.org/10.1137/0201013
https://doi.org/10.1016/j.cor.2014.09.010
https://doi.org/10.1007/s00224-015-9664-y

27:18 Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries

21 M. M. Halldórsson and M. S. de Lima. Query-competitive sorting with uncertainty. In
P. Rossmanith, P. Heggernes, and J.-P. Katoen, editors, MFCS 2019: 44th International
Symposium on Mathematical Foundations of Computer Science, volume 138 of Leibniz Inter-
national Proceedings in Informatics, pages 7:1–7:15. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.MFCS.2019.7.

22 S. Kahan. A model for data in motion. In STOC’91: 23rd Annual ACM Symposium on Theory
of Computing, pages 265–277, 1991. doi:10.1145/103418.103449.

23 S. Khanna and W.-C. Tan. On computing functions with uncertainty. In PODS’01: 20th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 171–182,
2001. doi:10.1145/375551.375577.

24 C. Lekkerkerker and J. Boland. Representation of a finite graph by a set of intervals on the real
line. Fundamenta Mathematicae, 51(1):45–64, 1962. URL: https://eudml.org/doc/213681.

25 T. Maehara and Y. Yamaguchi. Stochastic packing integer programs with few queries.
Mathematical Programming, 182:141–174, 2020. doi:10.1007/s10107-019-01388-x.

26 N. Megow, J. Meißner, and M. Skutella. Randomization helps computing a minimum spanning
tree under uncertainty. SIAM Journal on Computing, 46(4):1217–1240, 2017. doi:10.1137/
16M1088375.

27 J. Meißner. Uncertainty Exploration: Algorithms, Competitive Analysis, and Computational Ex-
periments. PhD thesis, Technische Universität Berlin, 2018. doi:10.14279/depositonce-7327.

28 A. I. Merino and J. A. Soto. The minimum cost query problem on matroids with uncertainty
areas. In C. Baier, I. Chatzigiannakis, P. Flocchini, and S. Leonardi, editors, ICALP 2019: 46th
International Colloquium on Automata, Languages, and Programming, volume 132 of Leibniz
International Proceedings in Informatics, pages 83:1–83:14. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.83.

29 C. Olston and J. Widom. Offering a precision-performance tradeoff for aggregation queries
over replicated data. In VLDB 2000: 26th International Conference on Very Large Data Bases,
pages 144–155, 2000. URL: http://ilpubs.stanford.edu:8090/437/.

30 I. O. Ryzhov and W. B. Powell. Information collection for linear programs with uncertain
objective coefficients. SIAM Journal on Optimization, 22(4):1344–1368, 2012. doi:10.1137/
12086279X.

31 I. van der Hoog, I. Kostitsyna, M. Löffler, and B. Speckmann. Preprocessing ambiguous
imprecise points. In G. Barequet and Y. Wang, editors, SoCG 2019: 35th International
Symposium on Computational Geometry, volume 129 of Leibniz International Proceedings
in Informatics, pages 42:1–42:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.SoCG.2019.42.

32 W. A. Welz. Robot Tour Planning with High Determination Costs. PhD thesis, Technische
Universität Berlin, 2014. URL: https://www.depositonce.tu-berlin.de/handle/11303/
4597.

https://doi.org/10.4230/LIPIcs.MFCS.2019.7
https://doi.org/10.1145/103418.103449
https://doi.org/10.1145/375551.375577
https://eudml.org/doc/213681
https://doi.org/10.1007/s10107-019-01388-x
https://doi.org/10.1137/16M1088375
https://doi.org/10.1137/16M1088375
https://doi.org/10.14279/depositonce-7327
https://doi.org/10.4230/LIPIcs.ICALP.2019.83
http://ilpubs.stanford.edu:8090/437/
https://doi.org/10.1137/12086279X
https://doi.org/10.1137/12086279X
https://doi.org/10.4230/LIPIcs.SoCG.2019.42
https://www.depositonce.tu-berlin.de/handle/11303/4597
https://www.depositonce.tu-berlin.de/handle/11303/4597

Church Synthesis on Register Automata over
Linearly Ordered Data Domains
Léo Exibard
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
Université libre de Bruxelles, Brussels, Belgium

Emmanuel Filiot
Université libre de Bruxelles, Brussels, Belgium

Ayrat Khalimov
Université libre de Bruxelles, Brussels, Belgium

Abstract
Register automata are finite automata equipped with a finite set of registers in which they can
store data, i.e. elements from an unbounded or infinite alphabet. They provide a simple formalism
to specify the behaviour of reactive systems operating over data ω-words. We study the synthesis
problem for specifications given as register automata over a linearly ordered data domain (e.g.
(N, ≤) or (Q, ≤)), which allow for comparison of data with regards to the linear order. To that end,
we extend the classical Church synthesis game to infinite alphabets: two players, Adam and Eve,
alternately play some data, and Eve wins whenever their interaction complies with the specification,
which is a language of ω-words over ordered data. Such games are however undecidable, even
when the specification is recognised by a deterministic register automaton. This is in contrast
with the equality case, where the problem is only undecidable for nondeterministic and universal
specifications.

Thus, we study one-sided Church games, where Eve instead operates over a finite alphabet, while
Adam still manipulates data. We show they are determined, and deciding the existence of a winning
strategy is in ExpTime, both for Q and N. This follows from a study of constraint sequences, which
abstract the behaviour of register automata, and allow us to reduce Church games to ω-regular
games. Lastly, we apply these results to the transducer synthesis problem for input-driven register
automata, where each output data is restricted to be the content of some register, and show that if
there exists an implementation, then there exists one which is a register transducer.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Automata over infinite objects; Theory of computation → Transducers

Keywords and phrases Synthesis, Church Game, Register Automata, Transducers, Ordered Data
Words

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.28

Related Version Full Version: https://arxiv.org/abs/2004.12141

Funding This work was supported by the Fonds de la Recherche Scientifique - FNRS under Grant
n°F.4510.9. Emmanuel Filiot is research associate of the Fonds de la Recherche Scientifique - FNRS.

1 Introduction

Synthesis is the problem of automatically constructing a system from a behavioral specification.
It was first proposed by Church as a game problem: two players, Adam in the role of the
environment and Eve in the role of the system, alternately pick the values from alphabets I

and O. Adam starts with i0 ∈ I, Eve responds with o0 ∈ O, ad infinitum. Their interaction
results in the infinite outcome i0o0i1o1... ∈ (I · O)ω. The winner is decided by a winning
condition, represented as a language S ⊆ (I · O)ω called specification: if the outcome of
Adam and Eve’s interaction belongs to S, the play is won by Eve, otherwise by Adam. Eve

© Léo Exibard, Emmanuel Filiot, and Ayrat Khalimov;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 28; pp. 28:1–28:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.STACS.2021.28
https://arxiv.org/abs/2004.12141
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Church Synthesis on Register Automata over Linearly Ordered Data Domains

wins the game if she has a strategy λE : I+ → O to pick values, depending on what has been
played so far, allowing her to win against any Adam strategy. Similarly, Adam wins the game
if he has a strategy λA : O∗ → I to win against any Eve strategy. In the original Church
problem, the alphabets I and O are finite, and specifications are ω-regular languages. The
seminal papers [12, 33] connected Church games to zero-sum games on finite graphs. They
also showed that Church games enjoy the property of determinacy: every game is either won
by Eve or otherwise by Adam, and finite-memoriness: if Eve wins the game then she can
win using a finite-memory strategy which can be executed by e.g. Mealy machines.

The synthesis and Church games were extensively studied in many settings, for example,
quantitative, distributed, non-competitive, yet Adam and Eve usually interact via finite
alphabets. But real-life systems often operate values from a large to infinite data domain.
Examples include data-independent programs [39, 25, 32], software with integer parame-
ters [10], communication protocols with message parameters [15], and more [9, 37, 14]. To
address this challenge, recent works looked at synthesis where infinite-alphabet specifications
are described by register automata and systems (corresponding to Eve strategies in Church
games) by register transducers [16, 27, 28, 17].

Register automata extend finite-state automata to infinite alphabets D by introducing a
finite number of registers [26]. In each step, the automaton reads a data from D, compares
it with the values held in its registers, depending on this comparison it decides to store the
data into some of the registers, and then moves to a successor state. This way it builds a
sequence of configurations (pairs of state and register values) representing its run on reading
a word from Dω: it is accepted if the visited states satisfy a certain condition, e.g. parity.
Transducers are similar except that in each step they also output the content of one register.

Previous synthesis works [16, 27, 28, 17] focused on register automata and transducers
operating in the domain (D, =) equipped with equality tests only. Related works [22, 31]
on synthesis of data systems and which do not rely on register automata are also limited to
equality tests or do not allow for data comparison. Thus, we cannot synthesise systems that
output the largest value seen so far, grant a resource to a process with the lowest id, or raise
an alert when a heart sensor reads values forming a dangerous curve. These tasks require ≤.

We study Church games where Adam and Eve have infinite alphabet (D, ≤), namely the
dense domain (Q, ≤) or the nondense domain (N, ≤), and specifications are given as register
automata. Already in the case of infinite alphabets (D, =), finding a winner is undecidable
when specifications are given as nondeterministic or universal register automata [16, 17],
so the works either restricted Eve strategies to register transducers with an a-priori fixed
number of registers or considered specifications given as deterministic automata. The case
of (N, ≤) is even harder. Here, Church games are undecidable already for specifications
given as deterministic register automata, because they can simulate two-counter machines
(Theorem 10). For example, to simulate an increment of a counter, whose value is currently
kept in a register c, the automaton asks Adam to provide a data d above the value ν(c) of
the counter, saves it into a register cnew, and asks Eve to provide the value between ν(c)
and ν(cnew). If Eve can do this, then Adam cheated and Eve wins, otherwise the game
continues. Adam wins if eventually the halting state is reached. However, this proof breaks
in the asymmetric setting, where Adam provides data but Eve picks labels from a finite
alphabet only. We now give an example to better illustrate the one-sided setting.

▶ Example. Figure 1 illustrates a game arena where Adam’s states are squares and Eve’s
states are circles. Eve’s objective is to reach the top, while Adam tries to avoid it. There are
two registers, rM and rl, and Eve’s finite alphabet is {a, b}. The test ⊤ (true) means that the
comparison of the input data with the register values is not important, the test rl < ∗ < rM

L. Exibard, E. Filiot, and A. Khalimov 28:3

1 2 3 4 5 6

Eve
wins

⊤/↓rM a, b rl <∗< rM /↓rl

a b

rl <∗< rM

elseelse a, b

Figure 1 Eve wins this game in N but loses in Q.

means that the data should be between the values of registers rl and rM , and the test “else”
means the opposite. The writing ↓ r means that the data is stored into the register r. At
first, Adam provides some data dM , serving as an upper bound stored in rM . Register rl,
initially 0, holds the last data dl played by Adam. Consider state 3: if Adam provides a data
outside of the interval]dl, dM [, he loses; if it is strictly between dl and dM , it is stored into
register rl and the game proceeds to state 4. There, Eve can either respond with label b and
move to state 5, or with a to state 3. In state 5, Adam wins if he can provide a data strictly
between dl and dM , otherwise he loses. Eve wins this game in N: for example, she could
always respond with label a, looping in states 3–4. After a finite number of steps, Adam is
forced to provide a data ≥ dM , losing the game. An alternative Eve winning strategy, that
does depend on Adam data, is to loop in 3–4 until dM − dl = 1 (hence she has to memorise
the first Adam value dM), then move to state 5, where Adam will lose. In the dense domain
Q, however, the game is won by Adam, because he can always provide a value within]dl, dM [
for any dl < dM , so the game either loops in 3–4 forever or reaches state 6. ⌟

Despite being asymmetric, one-sided Church games are quite expressive. For example,
they enable synthesis of runtime data monitors that monitor the input data stream and raise
a Boolean flag when a critical trend happens, like oscillations above a certain amplitude.
Another example: they allow for synthesis of register transducers which can output data
present in one of the registers of the specification automaton (also studied in [17]). Register-
transducer synthesis serves as our main motivation for studying Church games.

The key idea used to solve problems about register automata is to forget the precise values
of input data and registers, and track instead the constraints (also called types) describing
the relations between them. In our example, all registers start in 0 so the initial constraint is
r1

l = r1
M , where ri abstracts the value of register r at step i. Then, if Adam provides a data

above the value of rl, the constraint becomes r2
l < r2

M in state 2. Otherwise, if Adam had
provided a data equal to the value in rl, the constraint would be r2

l = r2
M . In this way the

constraints evolve during the play, forming an infinite sequence. Looping in states 3–4 induces
the constraint sequence

(
ri

l< ri+1
l < ri

M = ri+1
M

)
i>2. It forms an infinite chain r3

l < r4
l < ...

bounded by constant r3
M = r4

M = ... from above. In N, as it is a well-founded order, it is
not possible to assign values to the registers at every step to satisfy all constraints, so the
sequence is not satisfiable. Before elaborating on how this information can be used to solve
Church games, we describe our results on satisfiability of constraint sequences. This topic
was inspired by the work [35] which studies, among others, the nonemptiness problem of
constraint automata, whose states and transitions are described by constraints. In particular,
they show [35, Appendix C] that satisfiability of constraint sequences can be checked by
nondeterministic ωB-automata [4]. Nondeterminism however poses a challenge in synthesis,
and it is not known whether games with winning objectives as nondeterministic ωB-automata
are decidable. In contrast, we describe a deterministic max-automaton [7] characterising the
satisfiable constraint sequences in N. As a consequence of [8], games over such automata
are decidable. Then we study two kinds of constraint sequences inspired by Church games
with register automata. First, we show that the satisfiable lasso-shaped (regular) constraint

STACS 2021

28:4 Church Synthesis on Register Automata over Linearly Ordered Data Domains

sequences, of the form uvω, are recognisable by deterministic parity automata. Second, we
show how to assign values to registers on-the-fly in order to satisfy a constraint sequence
induced by a play in the Church game.

To solve one-sided Church games with a specification given as a register automaton S

for (N, ≤) and (Q, ≤), we reduce them to certain finite-arena zero-sum games, which we
call feasibility games. The states and transitions of the game are those of the specification
automaton S. The winning condition requires Eve to satisfy the original objective of S only
on feasible plays, i.e. those that induce satisfiable constraint sequences. In our example, the
play 1 2 (3 4)ω does not satisfy the parity condition, yet it is won by Eve in the feasibility
game since it is not satisfiable in N, and therefore there is no corresponding play in the
Church game. We show that if Eve wins the feasibility game, then she wins the Church
game, using a strategy that simulates the register automaton S and simply picks one of its
transitions. It is also sufficient: if Adam wins the feasibility game then he wins the Church
game. To prove this, we construct, from an Adam strategy winning in the feasibility game,
an Adam data strategy winning in the Church game. This step uses the previously mentioned
results on satisfiability of constraint sequences of two special kinds. Overall, our results on
one-sided Church games in (N, ≤) and (Q, ≤) are:

they are decidable in time exponential in the number of registers of the specification,
they are determined: every game is either won by Eve or by Adam, and
if Eve wins, then she has a winning strategy that can be described by a register transducer
with a finite number of states and which picks transitions in the specification automaton.

Finally, these results allow us to solve the register-transducer synthesis problem from input-
driven output specifications [17] over ordered data.

Related works. [19] studies synthesis from variable automata with arithmetics (we only
have ≤) which are incomparable with register automata; they only consider the dense domain.
The paper [20] studies strategy synthesis but, again, mainly in the dense domain. A similar
one-sided setting was studied in [21] for Church games with a winning condition given by
logical formulas, but only for (D, =). The work on automata with atoms [30] implies our
decidability result for (Q, ≤), even in the two-sided setting, but not the complexity result,
and it does not apply to (N, ≤). Our setting in N is loosely related to monotonic games [2]:
they both forbid infinite descending behaviours, but the direct conversion is unclear. Games
on infinite arenas induced by pushdown automata [38, 11, 1] or one-counter systems [36, 23]
are orthogonal to our games.

Outline. We start with Section 2 on satisfiability of constraint sequences, which is the main
technical tool, then describe our results on Church games in Section 3 and synthesis in Sect.4.

2 Satisfiability of Constraint Sequences

In this paper, N = {0, 1, . . . }. A data domain D is an infinite countable set of elements
called data, linearly ordered by some order denoted <. We consider two data domains, N
and Q, with their usual order. We also distinguish a special element 0 of D: in Q its choice
is not important, in N it is the expected zero (the minimal element).

Registers and their valuations. Let R be a finite set of elements called registers, intended
to contain data values, i.e. values in D. A register valuation is a mapping ν : R → D (also
written ν ∈ DR). We write 0R to denote the constant valuation ν0(r) = 0 for all r ∈ R.

L. Exibard, E. Filiot, and A. Khalimov 28:5

order

time0 1 2 3 4 5 6

r4
r3
r2
r1

Figure 2 Visualisation of a constraint sequence. Individual register values are depicted by black
dots, and dots are connected by black lines when they talk about the same register. Blue/red/-
green/yellow paths depict chains.

Constraint sequences, consistency and satisfiability. Fix a set of registers R (which can
also be thought of as variables), and let R′ = {r′ | r ∈ R} be the set of their primed versions.
Fix a data domain D. In what follows, the symbol ▷◁ denotes one of >, <, or =. A constraint
is a maximal consistent set of atoms of the form t1 ▷◁ t2 where t1, t2 ∈ R ∪ R′. It describes
how register values change in one step: their relative order at the beginning (when t1, t2 ∈ R),
at the end (when t1, t2 ∈ R′), and between each other (with t1 ∈ R and t2 ∈ R′). E.g.,
C = {r1 < r2, r1 < r′

1, r2 > r′
2, r′

1 < r′
2} is a constraint over R = {r1, r2}, which is satisfied,

for instance, by the two successive valuations νa : {r1 7→ 1, r2 7→ 4} and νb : {r1 7→ 2, r2 7→ 3}.
However, the set {r1 < r2, r1 > r′

1, r2 < r′
2, r′

1 > r′
2} is not consistent.

Given a constraint C, the writing C|R denotes the subset of its atoms r ▷◁ s for r, s ∈ R,
and C|R′ – the subset of atoms over primed registers. Given a set S of atoms r′ ▷◁ s′ over
r′, s′ ∈ R′, let unprime(S) be the set of atoms derived by replacing every r′ ∈ R′ by r.

A constraint sequence is an infinite sequence of constraints C0C1 . . . (when we use finite
sequences, we explicitly state it). It is consistent if for every i: unprime(Ci|R′) = Ci+1|R,
i.e. the register order at the end of step i equals the register order at the beginning of step
i + 1. Given a valuation ν ∈ DR, define ν′ ∈ DR′ to be the valuation that maps ν′(r′) = ν(r)
for every r ∈ R. A valuation w ∈ DR∪R′ satisfies a constraint C, written w |= C, if every
atom holds when we replace every r ∈ R ∪ R′ by w(r). A constraint sequence is satisfiable if
there exists a sequence of valuations ν0ν1... ∈ (DR)ω such that νi ∪ ν′

i+1 |= Ci for all i ≥ 0.
If, additionally, ν0 = 0R, then it is 0-satisfiable. Notice that satisfiability implies consistency.

▶ Examples. Let R = {r1, r2, r3, r4}. Let a consistent constraint sequence C0C1 . . . start
with{

r1 <r2 <r3 <r4, r4 =r′
3, r3 =r′

4, r1 =r′
1, r1 >r′

2
}{

r2 <r1 <r4 <r3, r4 =r′
3, r3 =r′

4, r1 =r′
1, r2 >r′

1
}

Note that we omit some atoms in C0 and C1 for readability: although they are not maximal
(e.g. C0 does not contain r′

2 < r′
1 < r′

4 < r′
3), they can be uniquely completed to maximal

sets. Figure 2 (ignore the colored paths for now) visualises C0C1 plus a bit more constraints.
The black lines represent the evolution of the same register. The constraint C0 describes
the transition from moment 0 to 1, and C1—from 1 to 2. This finite constraint sequence is
satisfiable in Q and in N. For example, the valuations can start with ν0 = {r4 7→ 6, r3 7→
5, r2 7→ 4, r1 7→ 3}. But no valuations starting with ν0(r3) < 5 can satisfy the sequence in
N. Also, the constraint C0 requires all registers in R to differ, hence the sequence is not
0-satisfiable in Q nor in N. Another example is given by the sequence ({r > r′})ω with
R = {r}: it is satisfiable in Q but not in N. ⌟

Satisfiability of constraint sequences in Q. The following result is glimpsed in several
places (e.g. in [35, Appendix C]): a constraint sequence is satisfiable in Q iff it is consistent.
This is a consequence of the following property which holds because Q dense: for every

STACS 2021

28:6 Church Synthesis on Register Automata over Linearly Ordered Data Domains

constraint C and ν ∈ QR such that ν |= C|R, there exists ν′∈ QR′ such that ν ∪ν′ |= C.
Consistency can be checked by comparing every two consecutive constraints of the sequence.
Thus it is not hard to show that consistent, hence satisfiable, constraint sequences in Q are
recognizable by deterministic parity automata (see [18]).

▶ Theorem 1. There is a deterministic parity automaton of size exponential in |R| that
accepts exactly all constraint sequences satisfiable in Q. The same holds for 0-satisfiability.

Satisfiability of constraint sequences in N. Fix R and a constraint sequence C0C1 . . . over
R. A (decreasing) two-way chain is a finite or infinite sequence (r0, m0) ▷0 (r1, m1) ▷1 ... ∈(
(R × N) · {=, >}

)∗,ω satisfying the following (note that m0 can differ from 0).
mi+1 =mi, or mi+1 =mi +1 (time flows forward), or mi+1 = mi−1 (time goes backwards).
If mi+1 = mi then (ri ▷i ri+1) ∈ Cmi

.
If mi+1 = mi + 1 then (ri ▷i r′

i+1) ∈ Cmi .
If mi+1 = mi − 1 then (ri+1 ▷i r′

i) ∈ Cmi−1.
The depth of a chain is the number of >; when it is infinity, the chain is infinitely decreasing.
Figure 2 shows four two-way chains: e.g., the green-colored chain (r4, 2) > (r3, 3) > (r2, 2) >

(r1, 3) > (r2, 3) has depth 4. Similarly, we define one-way chains except that (a) they are
either increasing (then ▷ ∈ {<, =}) or decreasing (▷ ∈ {>, =}), and (b) time flows forward
(mi+1 = mi + 1) or stays (mi+1 = mi). In Figure 2, the blue chain is one-way decreasing,
the red chain is one-way increasing.

A stable chain is an infinite chain (r0, m) ▷0 (r1, m + 1) ▷1 (r2, m + 2) ▷2 ... with all ▷i being
the equality =; it can also be written as (m, r0r1r2...). Given a stable chain χr = (m, r0r1...)
and a chain χs = (s0, n0) ▷◁0 (s1, n1) ▷◁1 ..., such that ni ≥ m for all plausible i, the chain χr

is non-strictly above χs if for all ni the constraint Cni
contains rni−m > sni

or rni−m = sni
.

A stable chain (m, r0r1...) is maximal if it is non-strictly above all other stable chains starting
after m. In Figure 2, the yellow chain (0, (r4r3)ω) is stable, non-strictly above all other
chains, and maximal. A trespassing chain is a chain that is below a maximal stable chain.

▶ Lemma 2. A consistent constraint sequence is satisfiable in N iff
(A′) it has no infinite-depth two-way chains; and
(B′) ∃b ∈ N: all trespassing two-way chains have depth ≤ b (i.e. they have bounded depth).

Proof idea. The left-to-right direction is trivial: if A′ is not satisfied, then one needs infinitely
many values below the maximal initial value of a register to satisfy the sequence, which is
impossible in N. Likewise, if B′ is not satisfied, then one also needs infinitely many values
below the value of a maximal stable chain, which is impossible. For the other direction,
we show that if A and B hold, then one can construct a sequence of valuations ν0ν1 . . .

satisfying the constraint sequence, such that for all r ∈ R, νi(r) is the largest depth of a
(decreasing) two-way chain starting in r at moment i. The full proof is in [18]. ◀

The previous lemma characterises satisfiability in terms of two-way chains, but our final
goal is recognise it with an automaton. It is hard to design a one-way automaton tracing
two-way chains, so we use a Ramsey argument to lift the previous lemma to one-way chains.

▶ Lemma 3. A consistent constraint sequence is satisfiable in N iff
(A) it has no infinitely decreasing one-way chains and
(B) the trespassing one-way chains have a bounded depth.

Proof idea. We show that A ∧ B implies A′ ∧ B′ (the other direction is simple). Consider
¬A′ ⇒ ¬A. From an infinite (decreasing) two-way chain, we can always extract an infinite
decreasing one-way chain, since two-way chains are infinite to the right and not to the left.

L. Exibard, E. Filiot, and A. Khalimov 28:7

Hence, for all moment i, there always exists a moment j > i such that one register of the
chain is smaller at step j than a register of the chain at step i. We also prove that ¬B′ ⇒ ¬B.
Given a sequence of trespassing two-way chains of unbounded depth, we are able to construct
a sequence of one-way chains of unbounded depth. This construction is more difficult than
in the case ¬A′ ⇒ ¬A. Indeed, even though there are by hypothesis deeper and deeper
trespassing two-way chains, they may start at later and later moments in the constraint
sequence and go to the left, and so one cannot just take an arbitrarily deep two-way chain
and extract from it an arbitrarily deep one-way chain. However, we show, using a Ramsey
argument, that it is still possible to extract arbitrarily deep one-way chains as the two-way
chains are not completely independent. The full proof is in [18]. ◀

The next lemma proved in [18] refines the characterisation to 0-satisfiability.

▶ Lemma 4. A consistent constraint sequence is 0-satisfiable in N iff it satisfies conditions
A ∧ B from Lemma 3, starts in C0 s.t. C0|R = {r = s | r, s ∈ R}, and has no decreasing
one-way chains of depth ≥1 from (r, 0) for any r.

We now state the main result about recognisability of satisfiable constraint sequences
by max-automata [7]. These automata extend standard finite-alphabet automata with a
finite set of counters c1, . . . , cn which can be incremented, reset to 0, or updated by taking
the maximal value of two counters, but they cannot be tested. The acceptance condition is
given as a Boolean combination of conditions “counter ci is bounded along the run”. Such a
condition is satisfied by a run if there exists a bound b ∈ N such that counter xi has value at
most b along the run. By using negation, conditions such as “xi is unbounded along the
run” can also be expressed. Deterministic max-automata are more expressive than ω-regular
automata. For instance, they can express the non-ω-regular set of words w = an1ban2b . . .

such that ni ≤ b for all i ≥ 0, for some b ∈ N that can vary from word to word.

▶ Theorem 5. For every R, there is a deterministic max-automaton accepting exactly all
constraint sequences satisfiable in N. The number of states is exponential in |R|, and the
number of counters is O(|R|2). The same holds for 0-satisfiability in N.

Proof idea. We design a deterministic max-automaton that checks conditions A and B
of Lemma 3. Condition A, namely the absence of infinitely decreasing one-way chains, is
checked as follows. We construct a nondeterministic Büchi automaton that guesses a chain
and verifies that it is infinitely decreasing (“sees > infinitely often”). Determinising and
complementing gives the sought deterministic parity automaton. Checking condition B (the
absence of trespassing one-way chains of unbounded depth) is more involved. We design
a master automaton that tracks every chain χ that currently exhibits a stable behaviour.
To every such chain χ, the master automaton assigns a tracer automaton whose task is to
ensure the absence of unbounded-depth trespassing chains below χ. For that, it uses 2|R|
counters and requires them to be bounded. The overall acceptance condition ensures that
if the chain χ is stable, then there are no trespassing chains below χ of unbounded depth.
Since the master automaton tracks every such potential chain, we are done. Finally, we take
a product of all these automata, which preserves determinism. (See [18].) ◀

▶ Remark. [35, Appendix C] shows that satisfiable constraint sequences in N are characterised
by nondeterministic ωB-automata [4], which are strictly more expressive than max-automata.

The next results will come handy for game-related problems.

STACS 2021

28:8 Church Synthesis on Register Automata over Linearly Ordered Data Domains

Lasso-shaped sequences (ω-regularity). An infinite sequence is lasso-shaped (or regular)
if it is of the form w = uvω. Notice that the number of constraints over a finite number of
registers R is finite. Thus, using the standard pumping argument, one can show that in
regular sequences an unbounded chain eventually loops (the proof is in [18]):

▶ Lemma 6. For every lasso-shaped consistent constraint sequence, it has trespassing one-way
chains of unbounded depth iff it has trespassing one-way chains of infinite depth.

The above lemma together with Lemma 4 yields the following result:

▶ Lemma 7. A lasso-shaped consistent constraint sequence is 0-satisfiable iff it has
no infinite-depth decreasing one-way chains,
no trespassing infinite-depth increasing one-way chains,
no decreasing one-way chains of depth ≥ 1 from moment 0, and starts with C0 s.t.
C0|R = {r = s | r, s ∈ R}.

The conditions of this lemma can be checked by an ω-regular automaton:

▶ Theorem 8. For every R, there is a deterministic parity automaton that accepts a lasso-
shaped constraint sequence iff it is 0-satisfiable in N; its number of states is exp. in |R|.

Bounded sequences (data-assignment function). Fix a constraint sequence. Given a
moment i and a register x, a right two-way chain starting in (x, i) (r2w) is a two-way chain
(x, i) ▷ (r1, m1) ▷ (r2, m2) ▷ . . . such that mj ≥ i for all plausible j. Note that r2w chains are
two-way, meaning in particular that they can start and end in the same time moment i.

We design a data-assignment function that maps satisfiable constraint sequence prefixes
to register valuations satisfying it. The function assumes that the r2w chains in the prefixes
are bounded. It also assumes every constraint Ci in the sequence satisfies the following: for
all ν ∈ DR, ν′ ∈ DR′ s.t. ν ∪ ν′ |= Ci:

∣∣{r′ ∈ R′ | ∀s ∈ R. ν′(r′) ̸= ν(s)}
∣∣ ≤ 1 (assumption

†). Intuitively: at most one new value can appear (but many disappear) during the step
of the constraint (see also [18]). This assumption is used to simplify the proofs, yet it
is satisfied by all constraint sequences induced by plays in Church games studied in the
next section. A constraint sequence is meaningful if it is consistent, starts in C0 with
C0|R = {r = s | r, s ∈ R}, and has no decreasing chains of depth ≥ 1 starting at moment 0.

▶ Lemma 9 (data-assignment function). For every b ≥ 0, there exists a data-assignment
function f : (C|R ∪ C+) → NR such that for every finite or infinite meaningful constraint
sequence C0C1C2... satisfying assumption † and whose r2w chains are depth-bounded by b,
the register valuations f(C0|R)f(C0)f(C0C1)... satisfy the constraint sequence.

Proof idea. We define a special kind of xy(m)-chains that help to estimate how many
insertions between the values of x and y at moment m we can expect in future. As it turns
out, without knowing the future, the distance between x and y has to be exponential in the
maximal depth of xy(m)-chains. We describe a data-assignment function that maintains such
exponential distances (the proof is by induction). The function is surprisingly simple: if the
constraint inserts a register x between two registers r and s with already assigned values dr

and ds, then set dx = ⌊ dr+ds

2 ⌋; and if the constraint puts a register x above all other registers,
then set dx = dM + 2b where dM the largest value currently held in the registers and b is the
given bound on the depth of r2w chains. Full proof is in [18]. ◀

L. Exibard, E. Filiot, and A. Khalimov 28:9

3 Church Synthesis Games

A Church synthesis game is a tuple G = (I, O, S), where I is an input alphabet, O is an output
alphabet, and S ⊆ (I · O)ω is a specification. Two players, Adam (the environment, who
provides inputs) and Eve (the system, who controls outputs), interact. Their strategies are
respectively represented as mappings λA : O∗ → I and λE : I+ → O. Given λA and λE , the
outcome λA∥λE is the infinite sequence i0o0i1o1... such that for all j ≥ 0: ij = λA(o0...oj−1)
and oj = λE(i0...ij). If λA∥λE ∈ S, the outcome is won by Eve, otherwise by Adam. Eve wins
the game if she has a strategy λE such that for every Adam strategy λA, the outcome λA∥λE

is won by Eve. Solving a synthesis game amounts to finding whether Eve has a winning
strategy. Synthesis games are parameterised by classes of alphabets and specifications. A
game class is determined if every game in the class is either won by Eve or by Adam.

The class of synthesis games where I and O are finite and where S is an ω-regular
language is known as Church games; they are decidable and determined. They also enjoy
the finite-memoriness property: if Eve wins a game then there is an Eve winning strategy
that can be represented as a finite-state machine.

We study synthesis games where the alphabets I and O are infinite and equipped with a
linear order, and the specifications are described by deterministic register automata.

Register automata. Fix a set of registers R. A test is a maximally consistent set of atoms
of the form ∗ ▷◁ r for r ∈ R and ▷◁ ∈ {=, <, >}. We may represent tests as conjunctions
of atoms instead of sets. The symbol “∗” is used as a placeholder for incoming data. For
example, for R = {r1, r2}, the expression r1 < ∗ is not a test because it is not maximal,
but (r1 < ∗) ∧ (∗ < r2) is a test. We denote TstR the set of all tests and just Tst if R is
clear from the context. A register valuation ν ∈ DR and data d ∈ D satisfy a test tst ∈ Tst,
written (ν, d) |= tst, if all atoms of tst get satisfied when we replace the placeholder ∗ by d

and every register r ∈ R by ν(r). An assignment is a subset asgn ⊆ R. Given an assignment
asgn, a data d ∈ D, and a valuation ν, we define update(ν, d, asgn) to be the valuation ν′ s.t.
∀r ∈ asgn : ν′(r) = d and ∀r ̸∈ asgn : ν′(r) = ν(r).

A deterministic register automaton is a tuple S = (Q, q0, R, δ, α) where Q = QA ⊎ QE

is a set of states partitioned into Adam and Eve states, the state q0 ∈ QA is initial,
R is a set of registers, δ = δA ⊎ δE is a (total and deterministic) transition function
δP : (QP ×Tst → Asgn×QP ′) for P ∈ {A, E} and the other player P ′, and α : Q → {1, ..., c}
is a priority function where c is the priority index.

A configuration of A is a pair (q, ν) ∈ Q × DR, describing the state and register content;
the initial configuration is (q0, 0R). A run of S on a word w = d0d1... ∈ Dω is a sequence
of configurations ρ = (q0, ν0)(q1, ν1)... starting in the initial configuration and such that for
every i ≥ 0: by letting tsti be a unique test for which (νi, di) |= tsti, we have δ(qi, tsti) =
(asgni, qi+1) for some asgni and νi+1 = update(νi, di, asgni). Because the transition function
δ is deterministic and total, every word induces a unique run in S. The run ρ is accepting if
the maximal priority visited infinitely often is even. A word is accepted by S if it induces an
accepting run. The language L(S) of S is the set of all words it accepts.

Church games on register automata. If the data domain is (N, ≤), Church games are
undecidable. Indeed, if the two players pick data values, it is easy to simulate a two-counter
machine, where one player provides the values of the counters and the other verifies that no
cheating happens on the increments and decrements, using the fact that c′ = c + 1 whenever
there does not exist d such that c < d < c′ (the formal proof can be found in [18]).

STACS 2021

28:10 Church Synthesis on Register Automata over Linearly Ordered Data Domains

▶ Theorem 10. Deciding the existence of a winning strategy for Eve in a Church game
whose specification is a deterministic register automaton over (N, ≤) is undecidable.

Church games on one-sided register automata. In light of this undecidability result,
we consider one-sided synthesis games, where Adam provides data but Eve reacts with
labels from a finite alphabet (a similar restriction was studied in [21] for domain (D, =)).
Specifications are now given as a language S ⊆ (D ·Σ)ω. Such games are still quite expressive,
as they enable the synthesis of “relaying” register transducers, which can only output data
that is present in the specification automaton; we elaborate on this in Section 4.

A one-sided register automaton S = (Σ, Q, q0, R, δ, α) is a register automaton that
additionally has a finite alphabet Σ of Eve labels, and its transition function δ = δA ⊎ δE now
has δE : QE × Σ → QA while δA : QA × Tst → Asgn × QE stays as before. Runs on words
in (D · Σ)ω are defined as before except that register valuations are updated only in Adam
states. We omit the formal definitions. Figure 1 shows an example of a one-sided automaton.
For instance, it rejects the words 3a1b2(ΣD)ω and accepts the words 3a1a2b(DΣ)ω.

▶ Theorem 11. For every Church game G on a one-sided automaton S over N or Q:
1. Deciding if Eve wins G is doable in time polynomial in |Q| and exponential in c and |R|.
2. The game is either won by Eve or otherwise by Adam.

The proof of the theorem relies on the notion of action words. An action word is a
sequence (tst0, asgn0)(tst1, asgn1)... from (Tst × Asgn)∗,ω. An action word is D-feasible if
there exists a sequence ν0d0ν1d1 . . . of register valuations νi and data di over D such that
ν0 = 0R and for all plausible i: νi+1 = update(νi, di, asgni) and (νi, di) |= tsti. We first
outline the proof structure and then provide the details.

Proof structure. We reduce the Church game G to a finite-arena game Gf called feasibility
game. The states and transitions in Gf are those of S, and a play is winning if it either
satisfies the parity condition of S or if the corresponding action word is not feasible.

In Q, feasibility of action words can be checked by a deterministic parity automaton
(Theorem 1). We then show that Eve wins the Church game G iff she wins the finite-arena
game Gf . The direction ⇐ is easy, because Eve winning strategy λf

E in Gf , which picks finite
labels in Σ depending on the history of transitions of S, can be used to construct Eve winning
strategy λE : Q+ → Σ in G by simulating the automaton S. To prove the other direction,
we assume that Adam has a winning strategy λf

A in Gf , which picks tests depending on
the history of transitions of S, then construct an Adam data strategy λA : Σ∗ → Q that
concretises these tests into data values. This data instantiation is easy because Q is dense.

The case of N is treated similarly. However, checking feasibility of action words now
requires a deterministic max-automaton (see page 7). From [8], we can deduce that games
with a winning objective given as deterministic max-automata are decidable, yet the algorithm
is involved, its complexity is high and does not yield finite-memory strategies that rely on
picking transitions in S. Moreover, their determinacy is unknown. (For the same reasons we
cannot rely on [6].) Therefore, we define quasi-feasible words, an ω-regular subset of feasible
words sufficient for our purpose, and correspondingly define an ω-regular game Greg

f by
strengthening the winning condition of Gf . We then show that the Church game G and the
finite-arena game Greg

f are equi-realisable. The hard direction is again to prove that if Eve
wins in G, then she wins in Greg

f . As for Q, assuming that Adam wins in Greg
f with strategy

λf
A, we construct Adam data strategy λA : Σ∗ → N, relying on the finite-memoriness of the

strategy λf
A and on the data-assignment function for constraint sequences from Lemma 9. ◀

L. Exibard, E. Filiot, and A. Khalimov 28:11

▶ Remark 12. From the reduction of Church games to (quasi-)feasibility games, we get that
if Eve wins a Church game G, then she has a winning strategy that simulates the run of the
automaton S and simply picks its transitions. In this sense, Eve’s strategy is “finite-memory”
as it can be expressed by a register automaton with outputs with a finite number of states.

Games on finite arenas. A two-player zero-sum finite-arena game (or just finite-arena
game) is a tuple G = (V∀, V∃, v0, E, W) where V∀ and V∃ are disjoint finite sets of vertices
controlled by Adam and Eve, v0 ∈ V∀ is initial, E ⊆ (V∀ × V∃) ∪ (V∃ × V∀) is a turn-based
transition relation, and W ⊆ (V∀ ∪ V∃)ω is a winning objective. An Eve strategy is a mapping
λ : (V∀ · V∃)+ → V∀ such that (v∃, λ(v0...v∃)) ∈ E for all paths v0...v∃ of G starting in v0 and
ending in v∃ ∈ V∃. Adam strategies are defined similarly, by inverting the roles of ∃ and ∀.
A play is a sequence of vertices starting in v0 and satisfying the edge relation E. It is won
by Eve if it belongs to W (otherwise it is won by Adam). An infinite play π = v0v1 . . . is
compatible with an Eve strategy λ when for all i ≥ 0 s.t. vi ∈ V∃: vi+1 = λ(v0 . . . vi). An Eve
strategy is winning if all infinite plays compatible with it are winning.

It is well-known that parity games can be solved in nc [24] (see also [13]), with n the size
of the game and c the priority index.

Feasibility games. For the rest of this section, fix a one-sided register automaton S =
(Σ, Q, q0, R, δ, α). With its Church game, we associate the following feasibility game, which
is a finite-arena game Gf = (V∀, V∃, v0, E, Wf). Essentially, it memorises the transitions
taken by the automaton S during the play of Adam and Eve. It has V∀ = {q0} ∪ (Σ × QA),
V∃ = Tst × Asgn × QE , v0 = q0, E = E0 ∪ E∀ ∪ E∃ where:

E0 =
{(

v0, (tst, asgn, u0)
)

| δ(v0, tst) = (asgn, u0)
}

,
E∀ =

{(
(σ, v), (tst, asgn, u)

)
| δ(v, tst) = (asgn, u)

}
, and

E∃ =
{(

(tst, asgn, u), (σ, v)
)

| δ(u, σ) = v
}

.

Let FeasibleD(R) denote the set of action words over R feasible in D. We let:

Wf =
{

v0(tst0, asgn0, u0)(σ0, v1) . . . | (tst0asgn0) . . . ∈ FeasibleD(R) ⇒ v0u0v1u1 . . . |= α
}

Later we will show that Eve wins the Church game G iff she wins the feasibility game Gf .

Action words and constraint sequences. A constraint C (cf Section 2) relates the values of
the registers between the current moment and the next moment. A state constraint relates
registers in the current moment only: it contains atoms over non-primed registers, so it has
no atoms over primed registers. Note that both C|R and unprime(C|R′) are state constraints.

Every action word naturally induces a unique constraint sequence. For instance, for
registers R = {r, s}, an action word starting with ({r < ∗, s < ∗}, {s}) (test whether the
current data d is above the values of r and s, store it in s) induces a constraint sequence
starting with {r = s, r = r′, s < s′, r′ < s′} (the atom r = s is due to all registers being
equal initially). This is formalised in the next lemma, which is notation-heavy but says a
simple thing: given an action word, we can construct, on the fly, a constraint sequence that
is 0-satisfiable iff the action word is feasible. For technical reasons, we need a new register rd

to remember the last Adam data. The proof is direct and can be found in [18].

▶ Lemma 13. Let R be a set of registers, Rd = R ⊎ {rd}, and D ∈ {N,Q}. There exists a
mapping constr : Π × Tst × Asgn → C from state constraints Π over Rd and tests-assignments
over R to constraints C over Rd, such that for all action words a0a1a2... ∈ (Tst × Asgn)ω,
a0a1a2... is feasible iff C0C1C2... is 0-satisfiable, where ∀i ≥ 0: Ci = constr(πi, ai), πi+1 =
unprime(Ci|R′

d
), π0 = {r=s | r, s ∈ Rd}.

STACS 2021

28:12 Church Synthesis on Register Automata over Linearly Ordered Data Domains

Expressing the winning condition of Gf by deterministic automata. By converting an
action word to a constraint sequence and then testing its satisfiability, we can test whether the
action word is feasible. This allows us to express the winning condition Wf as a deterministic
parity automaton for D = Q and as a deterministic max-automaton for D = N. As a
consequence of Theorem 1 (resp. 5), we get (see full proof in [18]):

▶ Lemma 14. Wf is definable by a deterministic parity automaton if D = Q and a
deterministic max-automaton if D = N. Moreover, these automata are polynomial in |Q| and
exponential in |R|, and for D = Q, the index of the priority function is linear in c.

Solving synthesis games on (Q, ≤)

We outline the proof of Theorem 11 for (Q, ≤); the full proof can be found in [18].
The main goal is to show that Eve wins G iff she wins Gf . The direction ⇐ is easy: Eve

has less information in Gf , as she only has access to the tests satisfied by the input data,
so she is stronger in G. Conversely, assume by contraposition that Eve does not win Gf .
As ω-regular games are determined, Adam has a winning strategy λf

A in Gf . It induces a
strategy λA for Adam in G: when the test is an equality, pick the corresponding data, and
when it is of the form r < ∗ < r′, take some rational number strictly in the interval. Then,
each play consistent with this strategy in G corresponds to a unique run in S, which is also a
play in Gf . As λf

A is winning, such run is accepting, so λA is winning: Eve does not win G.
Since the feasibility game Gf is of size polynomial in |Q| and exponential in |R|, and has

a number of priorities linear in c, we obtain item 1 of the theorem. Item 2 (determinacy) and
Remark 12 are then a consequence of the finite-memory determinacy of ω-regular games.

Solving synthesis games on (N, ≤)

We now outline the proof of Theorem 11 for (N, ≤); the full proof is in [18].

Using ω-regular game Greg
f instead of Gf . Wf is not ω-regular, and the known results

over deterministic max-automata do not suffice to obtain determinacy nor finite-memoriness,
which will both prove useful for the transducer synthesis problem (cf Section 4).

We thus define an ω-regular subset W reg
f ⊆ Wf which is equi-realisable to Wf . Let

QFeasibleN(R) be the set of quasi-feasible action words over R, defined as the set of words a

such that its induced constraint sequence (through the mapping constr of Lemma 13) starts
with C0, has no infinite-depth decreasing one-way chain nor trespassing increasing one-way
chain, and no decreasing one-way chain of depth ≥ 1 from moment 0; by Lemma 7, this
entails 0-satisfiability of lasso-shaped constraint sequences. We then let:

W reg
f =

{
v0(tst0, asgn0, u0)(σ0, v1) . . . | (tst0, asgn0) . . . ∈ QFeasibleN(R) ⇒ v0u0v1u1 . . . |= α

}
From Lemma 8, we can build a deterministic parity automaton with a number of states

exponential in |R| and polynomial in |Q| and a priority index linear in c recognising W reg
f .

Let Greg
f be the finite-arena game with the same arena as Gf , with winning condition W reg

f .
We now show that the Church game G reduces to Greg

f (full proof in [18]).

▶ Proposition 15. Eve has a winning strategy in G iff she has a winning strategy in Greg
f .

Proof idea. If Eve has a winning strategy in Greg
f , then, since FeasibleN(R) ⊆ QFeasibleN(R),

we have that W reg
f ⊆ Wf , so it is also winning in Gf . Now, the argument for Q applies again

for N: as Eve has more information in G, if she wins in Gf , she wins in G.

L. Exibard, E. Filiot, and A. Khalimov 28:13

The converse implication is harder; we show it by contraposition. Assume Eve does
not have a winning strategy in Greg

f . As ω-regular games are finite-memory determined,
Adam has a finite-memory winning strategy λf

A in Greg
f . It is not clear a priori that such

strategy can be instantiated to a winning data strategy in G. However, we show that for
finite-memory strategies, the depth of so-called right two-way chains is uniformly bounded,
which by Lemma 9 allows us to instantiate the tests with concrete data:

▶ Lemma 16. There is a number b ≥ 0 that bounds the depths of all r2w chains coming
from λf

A: for all constraint sequences resulting from playing with λf
A, for all x ∈ R, for all

i ≥ 0, we have that for all r2wch from (x, i), depth(r2wch) ≤ b.

Proof idea of the lemma. Fix a moment i and a register x. After the moment i, only a
bounded number of values can be inserted below the value of register x at moment i. Similarly,
if we fix two registers at moment i, there can only be a bounded number of insertions between
the values of x and y at moment i. Indeed, by finite-memoriness of Adam strategy, once the
number of such insertions is larger than the memory of Adam, Eve can repeat her actions
to force an infinite number of such insertions, leading to a play with an unfeasible action
sequence and hence won by Eve. This intuition is captured by r2w chains defined in Section 2.

We prove the lemma by contradiction, by constructing a play consistent with λf
A which

induces an unsatisfiable constraint sequence and therefore is losing for Adam. Assume that
the constraint sequences induced by the plays with λf

A have unbounded-depth 2w chains.
By Ramsey argument from Lemma 2, the constraint sequences have unbounded-depth 1w
chains. Along those chains, as λf

A is finite-memory, there is a repeating configuration with
same constraints and states, and where the chain decrements or increments at least once
and goes through the same registers. Thus, we can define a strategy λf

E of Eve which loops
there forever. This induces an infinite chain. If it is decreasing, the corresponding play is not
feasible, and is thus losing for Adam. If it is increasing, recall that this chain is actually a
part of a r2w chain. By gluing them together, we get a r2w chain of infinite depth, which is
not feasible either (recall that r2w chains start and end at the same point of time), so it is
again losing for Adam. In both cases, this contradicts the assumption that λf

A is winning. ◀

Now, thanks to this uniform bound b and Lemma 9, we can construct λN
A from λf

A by trans-
lating the currently played action-word prefix (tst0, asgn0)...(tstm, asgnm) into a constraint-
sequence prefix and applying the data-assignment function to it. By construction, for each
play in G consistent with λN

A, the corresponding run in S is a play consistent with λf
A in

Greg
f . As λf

A is winning, such run is not accepting, i.e. the play is winning for Adam in G.
Therefore, λN

A is a winning Adam’s strategy in G, meaning that Eve loses G. ◀

Since Greg
f is of size polynomial in |Q| and exponential in |R|, Theorem 11 follows.

4 Application to Transducer Synthesis

We now apply the above results to the transducer synthesis problem for specifications defined
by input-driven register automata [17], i.e. two-sided automata where the output data is
restricted to be the content of some register. Formal definitions of input-driven register
automata and of register transducers are omitted as they are straightforward generalisations
to the ordered case. Given a register automaton specification S, the transducer synthesis
problem asks whether there exists a register transducer T such that L(T) ⊆ L(S). A
priori, T and S can have different sets of registers, but we show that it suffices to consider
implementations that are subautomata of S, a result reminiscent of [17, Proposition 5].
Definitions and full proof of the theorem can be found in [18].

STACS 2021

28:14 Church Synthesis on Register Automata over Linearly Ordered Data Domains

▶ Theorem 17. For specifications defined by deterministic input-driven output register
automata over data domains Q and N, the register transducer synthesis problem can be solved
in time polynomial in |Q| and exponential in c and |R|.

Proof idea. The transducer synthesis problem reduces to solving a one-sided Church game
G. Indeed, output registers can be treated as finite labels, up to remembering equality
constraints between registers in the states (this is exponential in |R|, but the exponentials do
not stack). Moreover, we know by Proposition 15 that G itself reduces to Greg

f . If Eve wins
Greg

f , she has a finite-memory winning strategy, which corresponds to a register transducer
implementation of S which behaves like a subautomaton of S. ◀

5 Conclusion

In this paper, our main result states that 1-sided Church games for specifications given as
deterministic register automata over (N, ≤) are decidable, in ExpTime. Moreover, we show
that those games are determined. 1-sided Church games are motivated by register transducer
synthesis, and the above result provides an ExpTime algorithm for this problem. As a future
direction, it seems important to consider more expressive specification languages. Indeed,
deterministic register automata are known to be strictly less expressive than nondeterministic
or universal register automata. Such extensions are known to yield undecidability when used
as specification formalisms in 1-sided Church games, already in the case of data equality
only [17]. In [17, 29], a parameterized version of 1-sided Church games is shown to be
decidable for universal register automata specifications. The parameter is a positive integer
k and the goal is to decide whether there exists a strategy which can be implemented as a
transducer with k registers. We plan to extend this result to linear orders. Universal register
automata, thanks to their universal transitions, are better suited to specify properties of
reactive systems. As an example, they can easily model properties such as “every request of
client i is eventually granted”, for every client id i ∈ N. Such properties are not expressible
by deterministic nor nondeterministic register automata. On the data part, while equality
tests are sufficient for such properties, having a linear order could allow us to express more
complex but natural properties, e.g. involving priorities between clients.

An important future direction is to consider logical formalisms instead of automata to
describe specifications in a more declarative and high-level manner. Data-word first-order
logics [5, 34] have been studied with respect to the satisfiability problem but when used
as specification languages for synthesis, only few results are known. For slightly different
contexts, see for example [3] for parameterized synthesis and [21] for games with temporal
specifications and data.

References
1 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Piotr Hofman, Richard Mayr, K. Narayan

Kumar, and Patrick Totzke. Infinite-state energy games. In Joint Meeting of the Twenty-
Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna,
Austria, July 14 - 18, 2014, pages 7:1–7:10, 2014.

2 Parosh Aziz Abdulla, Ahmed Bouajjani, and Julien d’Orso. Deciding monotonic games. In
International Workshop on Computer Science Logic, pages 1–14. Springer, 2003.

3 Béatrice Bérard, Benedikt Bollig, Mathieu Lehaut, and Nathalie Sznajder. Parameterized
synthesis for fragments of first-order logic over data words. In FOSSACS, volume 12077 of
Lecture Notes in Computer Science, pages 97–118. Springer, 2020.

L. Exibard, E. Filiot, and A. Khalimov 28:15

4 M. Bojańczyk and T. Colcombet. Bounds in ω-regularity. In Proc. 21st IEEE Symp. on Logic
in Computer Science, pages 285–296, 2006.

5 M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-variable logic on
words with data. In Proc. 21st IEEE Symp. on Logic in Computer Science, pages 7–16, 2006.

6 Mikołaj Bojańczyk. A bounding quantifier. In Jerzy Marcinkowski and Andrzej Tarlecki,
editors, Computer Science Logic, pages 41–55, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg.

7 Mikołaj Bojańczyk. Weak MSO with the unbounding quantifier. Theory of Computing Systems,
48(3):554–576, 2011.

8 Mikołaj Bojańczyk. Weak MSO+U with path quantifiers over infinite trees. In Automata,
Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8-11, 2014, Proceedings, Part II, pages 38–49, 2014.

9 A. Bouajjani, P. Habermehl, Y. Jurski, and M. Sighireanu. Rewriting systems with data. In
FCT, pages 1–22, 2007.

10 A. Bouajjani, P. Habermehl, and R R. Mayr. Automatic verification of recursive procedures
with one integer parameter. Theoretical Computer Science, 295:85–106, 2003.

11 A.-J. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with unboundedness and
regular conditions. In Proc. 23rd Conf. on Foundations of Software Technology and Theoretical
Computer Science, volume 2914 of Lecture Notes in Computer Science, pages 88–99. Springer,
2003.

12 J.R. Büchi and L.H. Landweber. Solving sequential conditions by finite-state strategies. Trans.
AMS, 138:295–311, 1969.

13 C.S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity games in
quasipolynomial time. In Proc. 49th ACM Symp. on Theory of Computing, pages 252–263,
2017.

14 S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. Designing Data-
Intensive Web Applications. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2002.

15 G. Delzanno, A. Sangnier, and R. Traverso. Parameterized verification of broadcast networks
of register automata. In P. A. Abdulla and I. Potapov, editors, Reachability Problems, pages
109–121, Berlin, Heidelberg, 2013. Springer.

16 R. Ehlers, S. Seshia, and H. Kress-Gazit. Synthesis with identifiers. In Proc. 15th Int. Conf.
on Verification, Model Checking, and Abstract Interpretation, volume 8318 of Lecture Notes in
Computer Science, pages 415–433. Springer, 2014.

17 L. Exibard, E. Filiot, and P-A. Reynier. Synthesis of data word transducers. In Proc. 30th
Int. Conf. on Concurrency Theory, 2019.

18 Léo Exibard, Emmanuel Filiot, and Ayrat Khalimov. Church synthesis on register automata
over infinite ordered alphabets, 2020. arXiv:2004.12141.

19 Rachel Faran and Orna Kupferman. On synthesis of specifications with arithmetic. In
Alexander Chatzigeorgiou, Riccardo Dondi, Herodotos Herodotou, Christos Kapoutsis, Yannis
Manolopoulos, George A. Papadopoulos, and Florian Sikora, editors, SOFSEM 2020: The-
ory and Practice of Computer Science, pages 161–173, Cham, 2020. Springer International
Publishing.

20 Azadeh Farzan and Zachary Kincaid. Strategy synthesis for linear arithmetic games. Proceedings
of the ACM on Programming Languages, 2(POPL):1–30, 2017.

21 Diego Figueira, Anirban Majumdar, and M. Praveen. Playing with repetitions in data
words using energy games. Log. Methods Comput. Sci., 16(3), 2020. URL: https://lmcs.
episciences.org/6614.

22 B. Finkbeiner, F. Klein, R. Piskac, and M. Santolucito. Temporal stream logic: Synthesis
beyond the bools. In Proc. 31st Int. Conf. on Computer Aided Verification, 2019.

23 Stefan Göller, Richard Mayr, and Anthony Widjaja To. On the computational complexity of
verifying one-counter processes. In Proceedings of the 24th Annual IEEE Symposium on Logic
in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA, pages 235–244,
2009.

STACS 2021

http://arxiv.org/abs/2004.12141
https://lmcs.episciences.org/6614
https://lmcs.episciences.org/6614

28:16 Church Synthesis on Register Automata over Linearly Ordered Data Domains

24 E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games: A Guide to
Current Research, volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

25 R. Hojati, D.L. Dill, and R.K. Brayton. Verifying linear temporal properties of data insen-
sitive controllers using finite instantiations. In Hardware Description Languages and their
Applications, pages 60–73. Springer, 1997.

26 M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer Science,
134(2):329–363, 1994.

27 A. Khalimov, B. Maderbacher, and R. Bloem. Bounded synthesis of register transducers.
In 16th Int. Symp. on Automated Technology for Verification and Analysis, volume 11138 of
Lecture Notes in Computer Science, pages 494–510. Springer, 2018.

28 Ayrat Khalimov and Orna Kupferman. Register-bounded synthesis. In 30th International
Conference on Concurrency Theory (CONCUR 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

29 Ayrat Khalimov and Orna Kupferman. Register-bounded synthesis. In Wan Fokkink and Rob
van Glabbeek, editors, 30th International Conference on Concurrency Theory, CONCUR 2019,
August 27-30, 2019, Amsterdam, the Netherlands, volume 140 of LIPIcs, pages 25:1–25:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CONCUR.2019.
25.

30 Bartek Klin and Mateusz Łełyk. Scalar and Vectorial mu-calculus with Atoms. Logical Methods
in Computer Science, Volume 15, Issue 4, October 2019. doi:10.23638/LMCS-15(4:5)2019.

31 Paul Krogmeier, Umang Mathur, Adithya Murali, P. Madhusudan, and Mahesh Viswanathan.
Decidable synthesis of programs with uninterpreted functions. In Shuvendu K. Lahiri and
Chao Wang, editors, Computer Aided Verification, pages 634–657, Cham, 2020. Springer
International Publishing.

32 R. Lazić and D. Nowak. A unifying approach to data-independence. In Proc. 11th Int. Conf.
on Concurrency Theory, pages 581–596. Springer Berlin Heidelberg, 2000.

33 M.O. Rabin. Automata on infinite objects and Church’s problem. Amer. Mathematical Society,
1972.

34 Thomas Schwentick and Thomas Zeume. Two-variable logic with two order relations. Log.
Methods Comput. Sci., 8(1), 2012.

35 Luc Segoufin and Szymon Torunczyk. Automata-based verification over linearly ordered
data domains. In 28th International Symposium on Theoretical Aspects of Computer Science
(STACS 2011). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2011.

36 Olivier Serre. Parity games played on transition graphs of one-counter processes. In Foundations
of Software Science and Computation Structures, 9th International Conference, FOSSACS
2006, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 25-31, 2006, Proceedings, pages 337–351, 2006.

37 V. Vianu. Automatic verification of database-driven systems: a new frontier. In ICDT ’09,
pages 1–13, 2009.

38 I. Walukiewicz. Model checking CTL properties of pushdown systems. In Proc. 20th Conf.
on Foundations of Software Technology and Theoretical Computer Science, volume 1974 of
Lecture Notes in Computer Science, pages 127–138. Springer, 2000.

39 P. Wolper. Expressing interesting properties of programs in propositional temporal logic. In
Proc. 13th ACM Symp. on Principles of Programming Languages, pages 184–192, 1986.

https://doi.org/10.4230/LIPIcs.CONCUR.2019.25
https://doi.org/10.4230/LIPIcs.CONCUR.2019.25
https://doi.org/10.23638/LMCS-15(4:5)2019

A Faster Algorithm for Finding Tarski Fixed Points
John Fearnley !

Department of Computer Science, University of Liverpool, UK

Rahul Savani !

Department of Computer Science, University of Liverpool, UK

Abstract
Dang et al. have given an algorithm that can find a Tarski fixed point in a k-dimensional lattice
of width n using O(logk n) queries [2]. Multiple authors have conjectured that this algorithm is
optimal [2, 7], and indeed this has been proven for two-dimensional instances [7]. We show that
these conjectures are false in dimension three or higher by giving an O(log2 n) query algorithm for
the three-dimensional Tarski problem, which generalises to give an O(logk−1 n) query algorithm for
the k-dimensional problem when k ≥ 3.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases query complexity, Tarski fixed points, total function problem

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.29

Related Version Full Version: https://arxiv.org/abs/2010.02618

Acknowledgements We would like to thank Kousha Etessami, Thomas Webster, and an anonymous
reviewer for pointing out that the proof of Lemma 12 could be drastically simplified from its original
version.

1 Introduction

Tarski’s fixed point theorem states that every order preserving function on a complete lattice
has a greatest and least fixed point [11], and therefore in particular, every such function
has at least one fixed point. Recently, there has been interest in the complexity of finding
such a fixed point. This is due to its applications, including computing Nash equilibria of
supermodular games and finding the solution of a simple stochastic game [7].

Prior work has focused on the complete lattice L defined by a k-dimensional grid of
width n. Dang, Qi, and Ye [2] give an algorithm that finds a fixed point of a function
f : L → L using O(logk n) queries to f . This algorithm uses recursive binary search, where
a k-dimensional problem is solved by making log n recursive calls on (k − 1)-dimensional
sub-instances. They conjectured that this algorithm is optimal.

Later work of Etessami, Papadimitriou, Rubinstein, and Yannakakis took the first step
towards proving this [7]. They showed that finding a Tarski fixed point in a two-dimensional
lattice requires Ω(log2 n) queries, meaning that the Dang et al. algorithm is indeed optimal
in the two-dimensional case. Etessami et al. conjectured that the Dang et al. algorithm is
optimal for constant k, and they leave as an explicit open problem the question of whether
their lower bound can be extended to dimension three or beyond.

Our contribution. In this paper we show that, surprisingly, the Dang et al. algorithm is not
optimal in dimension three, or any higher dimension, and so we falsify the prior conjectures.
We do this by giving an algorithm that can find a Tarski fixed point in three dimensions
using O(log2 n) queries, thereby beating the O(log3 n) query algorithm of Dang et al. Our
new algorithm can be used as a new base case for the Dang et al. algorithm, and this leads
to a O(logk−1 n) query algorithm for k-dimensional instances when k ≥ 3, which saves a
log n factor over the O(logk n) queries used by the Dang et al. algorithm.

© John Fearnley and Rahul Savani;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 29; pp. 29:1–29:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:john.fearnley@liverpool.ac.uk
mailto:rahul.savani@liverpool.ac.uk
https://orcid.org/0000-0003-1262-7831
https://doi.org/10.4230/LIPIcs.STACS.2021.29
https://arxiv.org/abs/2010.02618
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 A Faster Algorithm for Finding Tarski Fixed Points

The Dang et al. algorithm solves a three-dimensional instance by making recursive calls
to find a fixed point of log n distinct two-dimensional sub-instances. Our key innovation is
to point out that one does not need to find a fixed point of the two-dimensional sub-instance
to make progress. Instead, we define the concept of an inner algorithm (Definition 3) that,
given a two-dimensional sub-instance, is permitted to return any point that lies in the up or
down set of the three-dimensional instance (defined formally later). This is a much larger set
of points, so whereas finding a fixed point of a two-dimensional instance requires Ω(log2 n)
queries [7], we give a O(log n) query inner algorithm for two-dimensional instances. This
inner algorithm is quite involved, and is the main technical contribution of the paper.

We show that, given an inner algorithm for dimension k − 1, a reasonably straightforward
outer algorithm can find a Tarski fixed point by making O(k ·log n) calls to the inner algorithm.
Thus we obtain a O(log2 n) query algorithm for the case where k = 3. We leave as an open
problem the question of whether efficient inner algorithms exist in higher dimensions.

Though we state our results in terms of query complexity for the sake of simplicity, it
should be pointed out that both our outer and inner algorithms run in polynomial time.
Specifically, our algorithms will run in O(poly(log n, k) · logk−1 n) time when the function is
presented as a Boolean circuit of size poly(log n, k).

Related work. Etessami et al. also studied the computational complexity of the Tarski
problem [7], showing that the problem lies in PPAD and PLS. However, the exact complexity
of the problem remains open. It is not clear whether the problem is PPAD ∩ PLS-complete [8],
or contained in some other lower class such as EOPL or UEOPL [9].

Tarski’s fixed point theorem has been applied in a wide range of settings within Econom-
ics [12, 10, 13], and in particular to settings that can be captured by supermodular games,
which are in fact equivalent to the Tarski problem [7]. In terms of algorithms, Echenique [6]
studied the problem of computing all pure equilibria of a supermodular game, which is at
least as hard as finding the greatest or least fixed point of the Tarski problem, which is itself
NP-hard [7]. There have also been several papers that study properties of Tarski fixed points,
such as the complexity of deciding whether a fixed point is unique [2, 4, 3, 5]. The Tarski
problem has also been studied in the setting where the partial order is given by an oracle [1].

2 Preliminaries

Lattices. We work with a complete lattice defined over a k-dimensional grid of points.
We define Lat(n1, n2, . . . , nk) to be the k-dimensional lattice with side-lengths given by
n1, . . . , nk. That is, Lat(n1, n2, . . . , nk) contains every x ∈ Nk such that 1 ≤ xi ≤ ni for
all i = 1, . . . , k. Throughout, we use k to denote the dimensionality of the lattice, and
n = maxk

i=1 ni to be the width of the widest dimension. We use ⪯ to denote the natural
partial order over this lattice with x ⪯ y if and only if x, y ∈ L and xi ≤ yi for all i ≤ k.

The Tarski fixed point problem. Given a lattice L, a function f : L → L is order preserving
if f(x) ⪯ f(y) whenever x ⪯ y. A point x ∈ L is fixed point of f if f(x) = x. A weak version
of Tarski’s theorem can be stated as follows.

▶ Theorem 1 ([11]). Every order preserving function on a complete lattice has a fixed point.

Thus, we can define a total search problem for Tarski’s fixed point theorem.

▶ Definition 2 (Tarski). Given a lattice L, and a function f : L → L, find one of:
(T1) A point x ∈ L such that f(x) = x.
(T2) Two points x, y ∈ L such that x ⪯ y and f(x) ̸⪯ f(y).

J. Fearnley and R. Savani 29:3

x

y

x

Figure 1 Left: a Tarski instance. Right: our diagramming notation for the same instance.

Solutions of type 1 are fixed points of f , whereas solutions of type 2 witness that f is not an
order preserving function. By Tarski’s theorem, if a function f has no solutions of type 2,
then it must have a solution of type 1, and so Tarski is a total problem.

The left-hand picture in Figure 1 gives an example of a two-dimensional Tarski instance.
The blue point is a fixed point, and so is a 1 solution, while the highlighted green arrows
give an example of an order preservation violation, and so (x, y) is a 2 solution.

Throughout the paper we will use a diagramming notation, shown on the right in Figure 1,
that decomposes the dimensions of the instance. The red arrows correspond to dimension 1,
where an arrow pointing to the left indicates that f(x)1 ≤ x1, while an arrow to the right1

indicates that x1 ≤ f(x)1. Blue arrows do the same thing for dimension 2, and we will use
green arrows for dimension 3 in the cases where this is relevant.

The up and down sets. Given a function f over a lattice L, we define Up(f) = {x ∈ L :
x ⪯ f(x)}, and Down(f) = {x ∈ L : f(x) ⪯ x}. We call Up(f), the up set, which contains
all points in which f goes up according to the ordering ⪯, and likewise we call Down(f) the
down set. Note that the set of fixed points of f is exactly Up(f) ∩ Down(f).

Slices. A slice of the lattice L is defined by a tuple s = (s1, s2, . . . , sk), where each
si ∈ N ∪ {∗}. The idea is that, if si ̸= ∗, then we fix dimension i of L to be si, and if
si = ∗, then we allow dimension i of L to be free. Formally, we define the sliced lattice
Ls = {x ∈ L : xi = si whenever si ̸= ∗}. We say that a slice is a principle slice if it
fixes exactly one dimension and leaves the others free. For example (1, ∗, ∗), (∗, 33, ∗), and
(∗, ∗, 261) are all principle slices of a three-dimensional lattice.

Given a slice s, and a function f : L → L, we define fs : Ls → Ls to be the restriction of f

to Ls. Specifically, for each x ∈ Ls, we define (fs(x))i = f(x)i if si = ∗, and (fs(x))i = si

otherwise. This definition projects the function f down onto the slice s.
A fact that we will use repeatedly in the paper is that an order preservation violation

in a slice s is also an order preservation violation for the whole instance. More formally, if
x, y ∈ Ls satisfy x ⪯ y and fs(x) ̸⪯ fs(y), then we also have f(x) ̸⪯ f(y), since there exists
a dimension i such that f(x)i = fs(x)i > fs(y)i = f(y)i.

Sub-instances. A sub-instance of a lattice L is defined by two points x, y ∈ L that satisfy
x ⪯ y. Informally, the sub-instance defined by x and y is the lattice containing all points
between x and y. Formally, we define Lx,y = {a ∈ L : x ⪯ a ⪯ y}.

1 If x1 = f(x)1 we could use either arrow, but will clarify in the text whenever this ambiguity matters.

STACS 2021

29:4 A Faster Algorithm for Finding Tarski Fixed Points

x

y

p

Figure 2 One iteration of the outer algorithm. The dashed lines show the principle slice chosen by
the algorithm, and the point p is the point returned by the inner algorithm. In this case p ∈ Down(f),
and so the algorithm focuses on the sub-instance Lx,p.

3 The Outer Algorithm

The task of the outer algorithm is to find a solution to the Tarski instance by making
O(k · log n) calls to the inner algorithm. We state our results for dimension k, even though we
only apply the outer algorithm with k = 3, since, in the future, an efficient inner algorithm
in higher dimensions may be found. Formally, an inner algorithm is defined as follows.

▶ Definition 3 (Inner algorithm). An inner algorithm for a Tarski instance takes as input a
sub-instance La,b with a ∈ Up(f) and b ∈ Down(f), and a principle slice s of that sub-instance.
It outputs one of the following.

A point x ∈ La,b ∩ Ls such that x ∈ Up(f) or x ∈ Down(f).
Two points x, y ∈ La,b that witness a violation of the order preservation of f .

It is important to understand that here we are looking for points that lie in the up or down
set of the three-dimensional instance, a point that lies in Up(fs) but for which f goes down
in the third dimension would not satisfy this criterion.

The algorithm. Throughout the outer algorithm, we will maintain two points x, y ∈ L with
the invariant that x ⪯ y and x ∈ Up(f) and y ∈ Down(f). The following lemma implies that
if x and y satisfy the invariant, then Lx,y must contain a solution to the Tarski problem.
This will allow us to focus on smaller and smaller instances that are guaranteed to contain a
solution.

▶ Lemma 4. Let L be a lattice and f : L → L be a Tarski instance. If there are two points
a, b ∈ L satisfying a ⪯ b, a ∈ Up(f), and b ∈ Down(f), then one of the following exists.

A point x ∈ La,b satisfying f(x) = x.
Two points x, y ∈ La,b satisfying x ⪯ y and f(x) ̸⪯ f(y).

Moreover, there is an algorithm that finds one of the above using O(
∑k

i=1(ai − bi)) queries.

Initially we set x = (1, 1, . . . , 1), which is the least element, and y = (n1, n2, . . . , nk),
which is the greatest element. Note that x ⪯ f(x) holds because x is the least element, and
likewise f(y) ⪯ y holds because y is the greatest element, so the invariant holds for these
two points.

Each iteration of the outer algorithm will reduce the number of points in Lx,y by a factor
of two. To do this, the algorithm selects a largest dimension of that sub-instance, which is
a dimension i that maximizes yi − xi. It then makes a call to the inner algorithm for the
principle slice s defined so that si = ⌊(yi − xi)/2⌋ and sj = ∗ for all j ̸= i.

J. Fearnley and R. Savani 29:5

a

b

a u

b
d

a

u

b
d

a

b

d

Figure 3 Four example sub-instances that satisfy the inner algorithm invariant.

1. If the inner algorithm returns a violation of order preservation in the slice, then this is also
an order preservation violation in L, and so the algorithm returns this and terminates.

2. If the inner algorithm returns a point p in the slice such that p ∈ Up(f), then the
algorithm sets x := p and moves to the next iteration.

3. If the inner algorithm returns a point p such that p ∈ Down(f), then the algorithm sets
y := p and moves to the next iteration.

Figure 2 gives an example of this procedure.
The algorithm can continue as long as there exists a dimension i such that yi − xi ≥ 2,

since this ensures that there will exist a principle slice strictly between x and y in dimension i

that cuts the sub-instance in half. Note that there can be at most k · log n iterations of the
algorithm before we arrive at the final sub-instance Lx,y with yi − xi < 2 for all i. Lemma 4
gives us an efficient algorithm to find a solution in this final instance, which uses at most
O(

∑k
i=1(yi − xi)) = O(k) queries. So we have proved the following theorem.

▶ Theorem 5. Suppose that there exists an inner algorithm that makes at most q queries.
Then a solution to the Tarski problem can be found by making O(q · k · log n + k) queries.

4 The Inner Algorithm

We now describe an inner algorithm for three dimensions that makes O(log n) queries.
Throughout this section we assume that the inner algorithm has been invoked on a sub-
instance Lu,d and principle slice s, and without loss of generality we assume that s = (∗, ∗, s3).

Down set witnesses. Like the outer algorithm, the inner algorithm will also focus on smaller
and smaller sub-instances that are guaranteed to contain a solution by an invariant, but now
the invariant is more complex. To define the invariant, we first introduce the concept of a
down set witness and an up set witness. The points d and b in the second example in Figure 3
give an example of a down set witness. Note that the following properties are satisfied.

f weakly increases at d and b in dimension 3.
d and b have the same coordinate in dimension 2.
d weakly increases in dimension 1 while b weakly decreases in dimension 1.

We also allow down set witnesses like those given by d and b in the fourth example of
Figure 3 that satisfy the same properties with dimensions 1 and 2 swapped. Thus, the formal
definition of a down set witness abstracts over dimensions 1 and 2.

▶ Definition 6 (Down set witness). A down set witness is a pair of points (d, b) with d, b ∈ Ls

such that both of the following are satisfied.
d3 ≤ f(d)3 and b3 ≤ f(b)3.
∃ i, j ∈ {1, 2} with i ̸= j s.t. di = bi and dj ≤ bj, while dj ≤ f(d)j and f(b)j ≤ bj.

If (d, b) is a down set witness and d2 = b2, then we call (d, b) a top-boundary witness, while
if d1 = b1, then we call (d, b) a right-boundary witness.

STACS 2021

29:6 A Faster Algorithm for Finding Tarski Fixed Points

The following lemma states that if we have a down set witness (d, b), then between d

and b we can find either a solution that can be returned by the inner algorithm (cases 1
and 2 of the lemma), or a point that is in the down set of the slice s (case 3 of the lemma).

Informally, the proof for a top-boundary witness (d, b) uses the fact that d and b point
towards each other in dimension 1 to argue that there must be a fixed point p (or an order
preservation violation) of the one-dimensional slice between d and b. Then, it is shown that
either this point is in Up(f), and so is a solution for the inner algorithm, or it is in Down(fs),
or that p violates order preservation with d or b.

▶ Lemma 7. If (d, b) is a down set witness, then one of the following exists.
1. A point c satisfying d ⪯ c ⪯ b such that c ∈ Up(f).
2. Two points x, y satisfying d ⪯ x ⪯ y ⪯ b that witness order preservation violation of f .
3. A point c satisfying d ⪯ c ⪯ b such that c ∈ Down(fs).

Up set witnesses. An up set witness is simply a down set witness in which all inequalities
have been flipped. The second and third diagrams in Figure 3 show the two possible
configurations of an up set witness (a, u). Note that for up set witnesses, dimension 3 is now
required to weakly decrease.

▶ Definition 8 (Up set witness). An up set witness is a pair of points (a, u) with a, u ∈ Ls

such that both of the following are satisfied.
a3 ≥ f(a)3 and u3 ≥ f(u)3.
∃ i, j ∈ {1, 2} with i ̸= j s.t. ai = ui and uj ≥ aj, while uj ≥ f(u)j and f(a)j ≥ aj.

We say that an up set witness (a, b) is a left-boundary witness if a1 = b1, while we call it a
bottom-boundary witness if a2 = b2.

The following lemma is the analogue of Lemma 7 for up set witnesses. The proof simply
flips all inequalities in the proof of Lemma 7.

▶ Lemma 9. If (a, u) is an up set witness, then one of the following exists.
1. A point c satisfying a ⪯ c ⪯ u such that c ∈ Down(f).
2. Two points x, y satisfying a ⪯ x ⪯ y ⪯ u that witness order preservation violation of f .
3. A point c satisfying a ⪯ c ⪯ u such that c ∈ Up(fs).

The invariant. At each step of the inner algorithm, we will have a sub-instance La,b that
satisfies the following invariant.

▶ Definition 10 (Inner algorithm invariant). The instance La,b satisfies the invariant if
Either a ∈ Up(fs) or there is a known up set witness (a, u) with u ⪯ b.
Either b ∈ Down(fs) or there is a known down set witness (d, b) with a ⪯ d.

If we have both an up set witness and a down set witness then we also require that u ⪯ d.

Figure 3 gives four example instances that satisfy the invariant. Note that there are
actually nine possible configurations, since the first point of the invariant can be satisfied
either by a point in the up set, a left-boundary up set witness, or a bottom-boundary up set
witness, and the second point of the invariant likewise has three possible configurations.

The following lemma shows that, if the invariant is satisfied, then the sub-instance La,b

contains a solution that can be returned by the inner algorithm. The proof invokes Lemmas 7
and 9 to either immediately find a solution for the inner algorithm, or find two points x ⪯ y

in the sub instance where x is in the up set and y is in the down set. The latter case allows
us to invoke Lemma 4 to argue that the sub-instance contains a fixed point p of the slice s.
If p weakly increases in the third dimension, then p ∈ Up(f), while if p decreases in the third
dimension then p ∈ Down(f).

J. Fearnley and R. Savani 29:7

▶ Lemma 11. If La,b satisfies the invariant then one of the following exists.
A point x ∈ La,b such that x ∈ Up(f) or x ∈ Down(f).
Two points x, y ∈ La,b that witness a violation of the order preservation of f .

A special case. There is a special case that we will encounter in the inner algorithm that
requires more effort to deal with. One example of this case is shown in Case 3.a.ii of Figure 6.
Here we have a point p on the right-hand boundary of the instance that satisfies p1 < f(p)1,
meaning that f moves p outside of the instance. If b ∈ Down(f), or if there is a top-boundary
down set witness, then it is straightforward to show that p and b violate order preservation.

However, if we have a right-boundary down set witness (d, b) with p ⪯ d then we need to
do further work2. Note that the properties of a down set witness ensure that d2 ≤ f(d)2 and
d3 ≤ f(d)3. But there are two possibilities for dimension 1. If d1 ≤ f(d)1 then d ∈ Up(f)
and it can be returned by the inner algorithm. On the other hand, if d1 > f(d)1, then we can
show that p and d violate order preservation. We prove this formally in the following lemma.

▶ Lemma 12. Let La,b be a sub-instance that satisfies the invariant, and let p be a point
satisfying a ⪯ p ⪯ b that also satisfies one of the following conditions.
1. p1 = b1 and p1 < f(p)1.
2. p2 = b2 and p2 < f(p)2.
3. p1 = a1 and p1 > f(p)1.
4. p2 = a2 and p2 > f(p)2.
Suppose further that, if there exists a down-set witness (d, b) then p ⪯ d, and if there exists
an up-set witness (a, u) then u ⪯ p. Then there exists a solution for the inner algorithm that
can be found using constantly many queries.

Initialization. The input to the algorithm is a sub-instance Lx,y, and recall that we have
fixed the principle slice s = (∗, ∗, s3). The initial values for a and b are determined as follows.
For each dimension i we have ai = s3 if i = 3, and ai = xi otherwise, and we have bi = s3 if
i = 3, and bi = yi otherwise. That is, a and b are the projections of x and y onto s.

The following lemma states that either a and b satisfy the invariant, or that we can easily
find a violation of order preservation.

▶ Lemma 13. Either La,b satisfies the invariant, or there is violation of order preservation
between a and x, or between b and y.

The algorithm. Now suppose that we have an instance La,b that satisfies the invariant. We
will describe how to execute one iteration of the algorithm, which will either find a violation
of order preservation, or find a new instance whose size is at most half the size of the La,b.

We begin by defining some important points. We define mid = ⌊(a + b)/2⌋ to be the
midpoint of the instance, and we define the following points, which are shown in Figure 4:

bot = (⌊(a1 + b1)/2⌋, a2), left = (a1, ⌊(a2 + b2)/2⌋),
top = (⌊(a1 + b1)/2⌋, b2), right = (b1, ⌊(a2 + b2)/2⌋).

2 The case where p ≻ d will never occur in our algorithm, so we can ignore it.

STACS 2021

29:8 A Faster Algorithm for Finding Tarski Fixed Points

a

b

mid

top

bot

left right

Figure 4 The five points used by the inner algorithm.

Step 1: Fixing the up and down set witnesses. Suppose that La,b satisfies the invariant
with a top-boundary down set witness (d, b), We would like to ensure that top ⪯ d, since
otherwise if we cut the instance in half in a later step, the witness may no longer be within
the sub-instance. For the same reason, we would like to ensure that (d, b) satisfies right ⪯ d

for a right-boundary down set witness, that (a, u) satisfies u ⪯ left for a left-boundary up set
witness, and that (a, u) satisfies u ⪯ bot for a bottom-boundary up set witness. By the end
of Step 1 we will have either found a violation of order preservation, moved into the next
iteration with a sub-instance of half the size, or all inequalities above will hold.

Step 1 consists of the following procedure. The procedure should be read alongside
Figure 5, which gives a diagram for every case presented below.

1. If (d, b) is a top-boundary down set witness and top ⪯ d then there is no need to do
anything. On the other hand, if d ≺ top we use the following procedure.
a. We first check if top3 > f(top)3. If this is the case, then since the invariant ensures

that d3 ≤ f(d)3 we have f(d)3 ≥ d3 = top3 > f(top)3 so d ⪯ top but f(d) ̸⪯ f(top),
and an order preservation violation has been found and the inner algorithm terminates.

b. We next check the whether top1 > f(top)1. In this case, we can use (d, top) as a
down set witness for the sub-instance La,top, where we observe that top satisfies the
requirements since top3 ≤ f(top)3 and top1 > f(top)1. Hence, La,top satisfies the
invariant (if La,b also has an up set witness (a, u) then note that u ⪯ d continues to
hold), and so the algorithm moves into the next iteration with the sub-instance La,top.

c. In this final case we have top3 ≤ f(top)3 and top1 ≤ f(top)1. Therefore (top, b) is a
valid down set witness for La,b (if La,b also has an up set witness (a, u) then note that
u ⪯ d ≺ top). So we can replace (d, b) with (top, b) and continue, noting that our down
set witness now satisfies the required inequality.

2. If (d, b) is a right-boundary down set witness and right ⪯ d then there is no need to do
anything. On the other hand, if d ≺ right then we use the same procedure as case 1,
where dimensions 1 and 2 are exchanged and the point top is replaced by the point right.

3. If (a, u) is a bottom-boundary up set witness and u ⪯ bot then there is no need to do
anything. On the other hand, if bot ≺ u then we use the following procedure, which is
the same as the procedure from case 1, where all inequalities have been flipped.
a. We first check if bot3 < f(bot)3. If this is the case, then since the invariant ensures

that u3 ≥ f(u)3 we have f(u)3 ≤ u3 = bot3 < f(bot)3 so u ⪰ bot but f(u) ̸⪰ f(bot),
and an order preservation violation has been found and the inner algorithm terminates.

b. We next check the whether bot1 < f(bot)1. In this case, we can use (bot, u) as an
up set witness for the sub-instance Lbot,b, where we observe that bot satisfies the
requirements since bot3 ≥ f(bot)3 and bot1 < f(bot)1. Hence, Lbot,b satisfies the
invariant (if La,b also has a down set witness (d, b) then note that u ⪯ d continues to
hold), and so the algorithm moves into the next iteration with the sub-instance Lbot,b.

J. Fearnley and R. Savani 29:9

c. In this final case we have bot3 ≥ f(bot)3 and bot1 ≥ f(bot)1. Therefore (a, bot) is a
valid up set witness for La,b (if La,b also has a down set witness (d, b) then we note that
bot ⪯ u ⪯ d). So we can replace (a, u) with (a, bot), noting that our up set witness
now satisfies the required inequality.

4. If (a, u) is a left-boundary up set witness and u ⪯ left then there is no need to do anything.
On the other hand, if u ≻ left then we use the same procedure as case 3, where dimensions
1 and 2 are exchanged and the point left is replaced by the point bot.

Step 2: Find a smaller sub-instance. If Step 1 of the algorithm did not already move
us into the next iteration of the algorithm with a smaller instance, we apply Step 2. This
step performs a case analysis on the point mid. The following procedure should be read in
conjunction with Figure 6, which provides a diagram for every case.

1. Check if mid1 ≤ f(mid)1 and mid2 ≤ f(mid)2. If this is the case then mid ∈ Up(fs), and
so we can move to the next iteration of the algorithm with the sub-instance Lmid,b. Note
that if La,b has a down-set witness (d, b), then Step 1 of the algorithm has ensured that
mid ⪯ d, and so (d, b) is also a valid down-set witness for Lmid,b.

2. Check if mid1 ≥ f(mid)1 and mid2 ≥ f(mid)2. If this is the case then mid ∈ Down(fs),
and so we can move to the next iteration of the algorithm with the sub-instance La,mid.
Note that if La,b has an up-set witness (a, u), then Step 1 of the algorithm has ensured
that u ⪯ mid, and so (a, u) is also a valid down-set witness for La,mid.

3. Check if mid1 ≤ f(mid)1 and mid2 > f(mid)2. If so, we use the following procedure.
a. Check if mid3 ≤ f(mid)3. If so, do the following.

i. Check if right3 > f(right)3. If this holds then we have f(mid)3 ≥ mid3 = right3 >

f(right)3, meaning that mid ⪯ right but f(mid) ̸⪯ f(right). Thus we have found a
violation of order preservation and the algorithm terminates.

ii. Check if right1 < f(right)1. If this holds then we use Lemma 12 (with p := right) to
find a solution that can be returned by the inner algorithm.

iii. If we reach this case then we have mid3 ≤ f(mid)3 and right3 ≤ f(right)3, while we
also have mid1 ≤ f(mid)1 and right1 ≥ f(right)1. Thus (mid, right) is a valid down
set witness for the instance La,right. Note that if La,b has an up set witness (a, u),
then Step 1 ensures that u ⪯ mid, and so La,right satisfies the invariant. So the
algorithm moves to the next iteration with sub-instance La,right.

b. In this case we have mid3 > f(mid)3. The following three steps are symmetric to
those used in Case 3.a, but with all inequalities flipped, dimension 1 substituted for
dimension 2, the point bot substituted for right, and the point a substituted for b.

i. Check if bot3 > f(bot)3. If this holds then we have f(mid)3 ≤ mid3 = bot3 <

f(bot)3, meaning that mid ⪰ bot but f(mid) ̸⪰ f(bot). Thus we have found a
violation of order preservation and the algorithm terminates.

ii. Check if bot2 > f(bot)2. If this holds then we can use Lemma 12 (with p := bot) to
find a solution that can be returned by the inner algorithm.

iii. If we reach this case then we have mid3 ≥ f(mid)3 and bot3 ≥ f(bot)3, while we
also have mid2 ≥ f(mid)2 and bot2 ≤ f(bot)2. Thus (bot, mid) is a valid up set
witness for the instance Lbot,b. Note that if La,b has a down set witness (d, b), then
Step 1 of the algorithm ensures that d ⪰ mid, and so Lbot,b satisfies the invariant.
The algorithm will therefore move to the next iteration with the sub-instance Lbot,b.

STACS 2021

29:10 A Faster Algorithm for Finding Tarski Fixed Points

d top

a

b

Case 1.a:
d and top VOP

topd

a

b

Case 1.b:
(d, top) is a DSW

topd

a

b

Case 1.c:
(top, b) is a DSW

d

right

a

b

Case 2.a:
d and right VOP

right

d
a

b

Case 2.b:
(d, right) is a DSW

right

d
a

b

Case 2.c:
(right, b) is a DSW

ubota

b

Case 3.a:
u and bot VOP

ubota

b

Case 3.b:
(u, bot) is a USW

bot ua

b

Case 3.c:
(bot, a) is a USW

left

u

a

b

Case 4.a:
u and left VOP

left

u

a

b

Case 4.b:
(u, left) is a USW

left

u

a

b

Case 4.c:
(left, a) is a USW

Figure 5 All cases used in Step 1 of the algorithm. In the labels, VOP is short for “violate order
preservation”, DSW is short for “down set witness”, and USW is short for “up set witness”.

J. Fearnley and R. Savani 29:11

mid

a

b

Case 1:
mid ∈ Up(fs)

mid

a

b

Case 2:
mid ∈ Down(fs)

mid
right

a

b

Case 3.a.i:
VOP: mid, right

mid right

a

b

Case 3.a.ii:
apply Lemma 12

mid right

a

b

Case 3.a.iii:
DWS: (mid, right)

mid

bota

b

Case 3.b.i:
VOP: mid, bot

mid

bota

b

Case 3.b.ii:
apply Lemma 12

mid

bota

b

Case 3.b.iii:
USW: (bot, mid)

mid

top

a

b

Case 4.a.i:
VOP: mid, top

mid

top

a

b

Case 4.a.ii:
apply Lemma 12

mid

top

a

b

Case 4.a.iii:
DSW: (mid, top)

mid
left

a

b

Case 4.b.i:
VOP: mid, left

midleft

a

b

Case 4.b.ii:
apply Lemma 12

midleft

a

b

Case 4.b.iii:
USW: (left, mid)

Figure 6 All cases used in Step 2 of the algorithm. In the labels, VOP is short for “violate order
preservation”, DSW is short for “down set witness”, and USW is short for “up set witness”.

4. In this final case we have mid1 > f(mid)1 and mid2 ≤ f(mid)2. Here we follow the same
procedure as Case 3, but with dimensions 1 and 2 exchanged, every instance of the point
right replaced with top, and every instance of bot replaced with left.

The terminal phase of the algorithm. The algorithm can continue so long as b1 ≥ a1 + 2
and b2 ≥ a2 + 2, since this ensures that all cases will cut the width of one of the dimensions
in half. The algorithm terminates once we have both b1 ≤ a1 + 1 and b2 ≤ a2 + 1. However,
once there exists only one dimension i for which bi ≤ ai + 1, we must be careful, since now
the midpoint lies on the boundary of the instance, and some of the cases of the algorithm
may not rule out anything. We deal with this scenario separately.

There are two distinct cases that we must deal with. The first case is a width-one instance,
in which bi = ai + 1 for some index i ∈ {1, 2}, and bj > aj + 1 for the index j ∈ {1, 2} with
j ̸= i, meaning that the width of the shortest dimension is exactly one. These instances are
problematic because the midpoint mid will now lie on the boundary of the instance, and due
to this, it is possible that the algorithm may be unable to proceed.

We must also deal with width-zero instances, in which bi = ai for some index i ∈ {1, 2},
and bj > aj + 1 for the index j ∈ {1, 2} with j ̸= i. These are one-dimensional subinstances,
and once again it is possible for the algorithm to be unable to proceed.

We will use special procedures for width-one and width-zero instances, which we outline
below.

Width-one instances. In the presentation below we will assume that the index i = 1,
meaning that b1 = a1 + 1 (and hence the left-right width of the instance is one). The case
for i = 2 is symmetric.

STACS 2021

29:12 A Faster Algorithm for Finding Tarski Fixed Points

a u

Case 1:
bottom-boundary USW

d b

Case 2:
top-boundary DSW

Figure 7 The two cases that trigger the preprocessing step for width-one instances.

When the algorithm is presented with a width-one instance, it first performs some
preprocessing to ensure that there is no bottom-boundary up set witnesses, or top-boundary
down set witness. The preprocessing considers the following two cases, which are shown in
Figure 7.
1. If the instance has a bottom-boundary up set witness (a, u), then note that a and u are

directly adjacent in dimension 1, and so Lemma 9 implies that we can either return a or
u as a solution for the inner algorithm, or that a ∈ Up(fs), or u ∈ Up(fs).
a. If a ∈ Up(fs), then the instance La,b continues to satisfy the invariant if we delete the

up set witness.
b. If u ∈ Up(fs), then the width-zero instance Lu,b satisfies the invariant, where we note

that if La,b has a down set witness (d, b), then since u ⪯ d, we have that (d, b) is also
a valid down set witness for Lu,b.

2. If the instance has a top-boundary down set witness (d, b), then note that d and b are
directly adjacent in dimension 1, and so Lemma 7 implies that we can either return d or
b as a solution for the inner algorithm, or that d ∈ Down(fs), or b ∈ Down(fs).
a. If b ∈ Down(fs), then the instance La,b continues to satisfy the invariant if we delete

the down set witness.
b. If d ∈ Down(fs), then the width-zero instance La,d satisfies the invariant, where we

note that if La,b has an up set witness (a, u), then since u ⪯ d, we have that (a, u) is
also a valid up set witness for La,d.

With the preprocessing completed, the algorithm uses two separate runs of Steps 1 and 2,
which each use a different midpoint. In the first run we use midone = ⌊(a + b)/2⌋ as normal,
while in the second run we use midtwo = ⌈(a + b)/2⌉ as the midpoint, and we also change the
definitions of bot, top, left, and right to round up instead of down. If either of the two runs
decrease the size of the instance, then we move to the next iteration on the smaller instance,
where the reasoning given in Steps 1 and 2 ensures that the instance continues to satisfy the
invariant.

However, it could be the case that both runs do not decrease the size of the instance. Due
to the preprocessing, if Step 1 attempts to recurse on a smaller sub-instance then it must
succeed, since the only problematic cases are Case 1.b and Case 3.b, which both depend on
the existence of a top or bottom-boundary witness, and the preprocessing ensures that these
cannot exist.

On the other hand, Step 2 can fail to make progress in both runs. For the case where
i = 1, this can only occur if Case 3.b.iii of Step 2 triggered for the run with midone and Case
4.a.iii triggered for the run with midtwo. But we can argue that in this case a solution to the
inner algorithm is easy to find.

J. Fearnley and R. Savani 29:13

midone
midtwo

Case 1:
VOP: (midone, midtwo)

midone
midtwo

Case 2:
midone ∈ Down(f)

Figure 8 The two cases that are considered for width-one instances, when both runs of the
algorithm fail to make progress. In the left instance, f(midone) strictly increases in dimension 1; in
the right instance, f(midone) does not move in dimension one, which we indicate with the self loop.

Note that Case 3.b.iii can only trigger for midone when midone1 ≤ f(midone)1, while
Case 4.a.iii can only trigger for midtwo when f(midtwo)1 < midtwo. Both of the following
cases are shown in Figure 8.
1. If midone1 < f(midone)1 then we have

f(midtwo)1 ≤ midtwo1 − 1 = midone1 < f(midone)1,

so we have midone ⪯ midtwo but f(midone) ̸⪯ f(midtwo), meaning that midone and
midtwo witness a violation of order preservation.

2. If midone1 = f(midone)1, then note that Case 3.b.iii ensures that midone2 ≥ f(midone)2
and midone3 ≥ f(midone)3. Therefore midone is in Down(f), so can be returned by the
inner algorithm.

So in both cases a solution to the inner algorithm has been found.

Width-zero instances. We again describe the procedure for the case where i = 1, meaning
that the instance has width zero in the left-right dimension. The case where i = 2 is
symmetric.

The algorithm begins by performing a preprocessing step that removes any top-boundary
down set witnesses or bottom-boundary up set witnesses. If there is a bottom-boundary up
set witness (a, u) then note that a = u, and therefore Lemma 9 implies that either a is a
solution that can be returned by the inner algorithm, or that a ∈ Up(fs). Likewise, if there
is a top-boundary down set witness (d, b), then d = b, and Lemma 7 implies that either d can
be returned by the inner algorithm, or d ∈ Down(fs). Thus, the preprocessing step can either
find a solution for the inner algorithm, or produce an instance that satisfies the invariant
that has no top-boundary down set witness and no bottom-boundary up set witness.

Once the preprocessing has taken place, the algorithm proceeds through Step 1 and Step 2
as normal. If those steps make progress, then we continue on the smaller width-zero instance.
If they do not make progress, then we will show that the inner algorithm can terminate after
making at most O(log n) further queries.

We first observe that the only cases of Step 1 that would fail to make progress are Case
1.b and Case 3.b, but neither of those cases can trigger because the preprocessing step ensures
that there is no bottom-boundary up set witness or top-boundary down set witness.

On the other hand, Case 3.b.iii and Case 4.a.iii of Step 2 can fail to make progress. We
show how, in each of these cases, a solution for the inner algorithm can be found by making
at most O(log n) extra queries. All of the following cases are depicted in Figure 9.

STACS 2021

29:14 A Faster Algorithm for Finding Tarski Fixed Points

mid

Case 1.a:
mid ∈ Down(f)

b

mid

Case 1.b.i:
VOP: (mid, b)

mid

d
x
b

Case 1.b.ii:
see caption

mid

a

Case 2.a:
VOP: (a, mid)

a

u

mid

x

Case 2.b:
see caption

Figure 9 The five cases that can be encountered if the algorithm fails to make progress for a
width-zero instance. In Cases 1.b.ii and 2.b we spend O(log n) queries to find the point x, which
then allows us to terminate.

1. If Case 3.b.iii is triggered, then note that mid1 ≤ f(mid)1. There are two cases to consider.
a. If mid1 = f(mid)1, then since mid2 ≥ f(mid)2 and mid3 ≥ f(mid3), we have that

mid ∈ Down(f), meaning that mid can be returned by the inner algorithm.
b. If mid1 < f(mid)1 then we argue that an order preservation violation can be found

using at most O(log n) queries.
i. If b ∈ Down(fs), then we have

f(b)1 ≤ b1 = mid1 < f(mid)1,

meaning that mid ⪯ b, but f(mid) ̸⪯ f(b), and so mid and b violate order preserva-
tion.

ii. If instead there is a down set witness (d, b), then note that due to the preprocessing,
it must be a right-boundary down set witness, and due to Step 1, we must have
mid ⪯ d. By Lemma 7 there exists a point x satisfying d ⪯ x ⪯ b that can either
be returned by the inner algorithm, or that satisfies x ∈ Down(fs). Furthermore,
using we can find this point in O(log n) queries using binary search. Thus we can
spend O(log n) queries and either immediatly terminate, or in the case where we
find a point x ∈ Down(fs), we can repeat the argument above to show that mid
and x violate order preservation.

2. If Case 4.a.iii is triggered, then note that mid1 > f(mid)1, and we argue that an order
preservation violation can be found using at most O(log n) queries.
a. If a ∈ Up(fs), then we have

f(mid)1 < mid1 = a1 ≤ f(mid)1,

meaning that a ⪯ mid, but f(a) ̸⪯ f(mid), and so a and mid violate order preservation.
b. If instead there is an up set witness (a, u), then note that due to the preprocessing,

it must be a left-boundary up set witness, and due to Step 1, we must have u ⪯ mid.
By Lemma 9 there exists a point x satisfying a ⪯ x ⪯ u that can either be returned
by the inner algorithm, or that satisfies x ∈ Up(fs). Furthermore, we can find this
point in O(log n) queries using binary search. Thus we can spend O(log n) queries and
either immediatly terminate, or in the case where we find a point x ∈ Up(fs), we can
repeat the argument above to show that mid and x violate order preservation.

J. Fearnley and R. Savani 29:15

Termination. If the algorithm does not hit any of the cases that return a solution immedi-
ately, then it will continue until it finds an instance La,b with b1 ≤ a1 +1 and b2 ≤ a2 +1 that
satisfies the invariant. Lemma 11 implies that any sub-instance that satisfies the invariant
contains a solution that can be returned by the inner algorithm. Since then La,b contains at
most four points, we can check all of them and then return the solution that must exist.

Query complexity. Observe that each iteration of the algorithm either finds a violation of
order preservation, finds a solution after spending O(log n) further queries, or reduces the
size of one of the dimensions by a factor of two. Moreover, each non-terminating iteration of
the algorithm queries at most five points. Hence, if the algorithm is run on a sub-instance
La,b with n1 = b1 − a1 and n2 = b2 − a2, then the algorithm will terminate after making at
most O(log n1 + log n2 + log n) queries. So the overall query complexity of the algorithm is
O(log n), and we have shown the following theorem.

▶ Theorem 14. There is an O(log n)-query inner algorithm for 3-dimensional Tarski.

Theorems 5 and 14 imply that 3-dimensional Tarski can be solved using O(log2 n) queries,
and this can be combined with the Ω(log2 n) lower bound for two-dimensional Tarski [7], to
give the following theorem.

▶ Theorem 15. The deterministic query complexity of three-dimensional Tarski is Θ(log2 n).

5 Extension to higher dimensions

We now extend our results to show that k-dimensional Tarski can be solved using O(logk−1 n)
queries. The algorithm of Dang et al. [2] solves a k-dimensional Tarski instance by making
O(log n) recursive calls to an algorithm for solving (k − 1)-dimensional Tarski instances.
Our algorithm can be plugged into this recursion as a new base case for k = 3.

The following lemma is a consequence of the work of Dang et al. [2]. However, their
algorithm deals with the promise version of Tarski in which it is assumed that the input
function is order preserving. For this reason, we provide our own proof of the lemma in which
we give a variation of the algorithm that either finds a fixed point or explicitly provides a
violation of order preservation.

▶ Lemma 16. If (k−1)-dimensional Tarski can be solved using q queries, then k-dimensional
Tarski can be solved using (q + 2) · (log n + 2) queries.

The direct consequence of Lemma 16 and our O(log2 n) query algorithm for three-
dimensional Tarski is the following theorem.

▶ Theorem 17. k-dimensional Tarski can be solved using O(logk−1 n) queries for k ≥ 3,

Time complexity. To obtain time complexity results, note that writing down a point in
the lattice L already requires k · log n time. We assume that f is implemented by a Boolean
circuit of size that is polynomial in k and log n. With this assumption, our time complexity
result can be stated as follows.

▶ Theorem 18. If f is presented as a Boolean circuit of size poly(log n, k), then for k ≥ 3
there is an algorithm for Tarski that runs in time O(poly(log n, k) · log(n)k−1).

STACS 2021

29:16 A Faster Algorithm for Finding Tarski Fixed Points

6 Conclusion

Our O(logk−1 n) query algorithm for k-dimensional Tarski falsifies prior conjectures that
the problem required Ω(logk n) queries [2, 7]. This, of course, raises the question of what
is the query complexity of finding a Tarski fixed point? While our upper bound is tight in
three dimensions, it seems less likely to be the correct answer in higher dimensions. Indeed,
there seems to be a fairly wide range of possibilities. Is it possible to show a logΩ(k) n query
lower bound for the problem? Or perhaps there exists a fixed parameter tractable algorithm
that uses O(f(k) · log2 n) queries? Both of those would be consistent with the known upper
and lower bounds, and so further research will be needed to close the gap.

References
1 Ching-Lueh Chang, Yuh-Dauh Lyuu, and Yen-Wu Ti. The complexity of Tarski’s fixed point

theorem. Theor. Comput. Sci., 401(1-3):228–235, 2008.
2 Chuangyin Dang, Qi Qi, and Yinyu Ye. Computations and complexities of Tarski’s fixed

points and supermodular games. CoRR, abs/2005.09836, 2020. Stanford tech report version
appeared in 2012. arXiv:2005.09836.

3 Chuangyin Dang and Yinyu Ye. On the complexity of a class of discrete fixed point problems
under the lexicographic ordering. Technical report, City University of Hong Kong, 2018.
CY2018-3, 17 pages.

4 Chuangyin Dang and Yinyu Ye. On the complexity of an expanded tarski’s fixed point problem
under the componentwise ordering. Theor. Comput. Sci., 732:26–45, 2018.

5 Chuangyin Dang and Yinyu Ye. Erratum/correction to “on the complexity of an expanded
tarski’s fixed point problem under the componentwise ordering” [Theor. Comput. Sci. 732
(2018) 26-45]. Theor. Comput. Sci., 817:80, 2020.

6 Federico Echenique. Finding all equilibria in games of strategic complements. J. Econ. Theory,
135(1):514–532, 2007.

7 Kousha Etessami, Christos H. Papadimitriou, Aviad Rubinstein, and Mihalis Yannakakis.
Tarski’s theorem, supermodular games, and the complexity of equilibria. In Proc. of ITCS,
volume 151, pages 18:1–18:19, 2020.

8 John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani. The complexity
of gradient descent: CLS = PPAD ∩ PLS. CoRR, abs/2011.01929, 2020. To appear in the
Proccedings of the 53nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2021. arXiv:2011.01929.

9 John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique end of potential line.
J. Comput. Syst. Sci., 114:1–35, 2020.

10 Paul Milgrom and John Roberts. Rationalizability, learning, and equilibrium in games with
strategic complementarities. Econometrica, 58(6):1255–1277, 1990.

11 Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5(2):285–309, 1955.

12 Donald M. Topkis. Equilibrium points in nonzero-sum n-person submodular games. SIAM J.
Control Optim, 17:773–787, 1979.

13 Donald M. Topkis. Supermodularity and Complementarity. Princeton University Press, 1998.

http://arxiv.org/abs/2005.09836
http://arxiv.org/abs/2011.01929

Solving One Variable Word Equations in the Free
Group in Cubic Time
Robert Ferens !

Institute of Computer Science, University of Wrocław, Poland

Artur Jeż ! Ï

Institute of Computer Science, University of Wrocław, Poland

Abstract
A word equation with one variable in a free group is given as U = V , where both U and V are words
over the alphabet of generators of the free group and X, X−1, for a fixed variable X. An element
of the free group is a solution when substituting it for X yields a true equality (interpreted in the
free group) of left- and right-hand sides. It is known that the set of all solutions of a given word
equation with one variable is a finite union of sets of the form {αwiβ : i ∈ Z}, where α, w, β are
reduced words over the alphabet of generators, and a polynomial-time algorithm (of a high degree)
computing this set is known. We provide a cubic time algorithm for this problem, which also shows
that the set of solutions consists of at most a quadratic number of the above-mentioned sets. The
algorithm uses only simple tools of word combinatorics and group theory and is simple to state. Its
analysis is involved and focuses on the combinatorics of occurrences of powers of a word within a
larger word.

2012 ACM Subject Classification Mathematics of computing → Combinatorics on words; Theory of
computation → Formalisms; Computing methodologies → Equation and inequality solving algorithms

Keywords and phrases Word equations, free group, one-variable equations

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.30

Related Version Full Version: http://arxiv.org/abs/2101.06201

Funding This work was supported under National Science Centre (NCN), Poland project number
2017/26/E/ST6/00191.

1 Introduction

Word equations in the free group. A word equation is a formal equation U = V in which
both U, V contain letters from a fixed set (called alphabet) Σ and variables; a solution is
a substitution of variables by words over Σ such that this formal equation is turned into
an equality. We consider such equations in a free group, so the aforementioned equality is
interpreted as the equality in the free group generated by Σ; naturally, we allow the usage
of inverses of variables and generators in the equations. The satisfiability problem (of
word equation over the free group) is to decide, whether the input equation has a solution.
By solving the equation we mean to return an (explicit or effective) representation of all
solutions.

The first algorithm for the satisfiability problem was given by Makanin [27] and it is
an involved generalization of Makanin’s algorithm for the satisfiability of word equation
in the free monoid [26]; Razborov generalized the algorithm so that it solves word equations
in the free group [32]; the description is infinite and is known as Makanin-Razborov diagrams.
Makanin’s algorithm is very involved and known to be not primitively recursive [21], the
same applies to Razborov’s generalisation, which was the first step of solving Tarski’s
conjectures (on elementary equivalence and decidability of the theory of free groups) [20, 33].
A different approach based on Plandowski’s algorithm for the free monoid case [31] was later

© Robert Ferens and Artur Jeż;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 30; pp. 30:1–30:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:robert.ferens@cs.uni.wroc.pl
https://orcid.org/0000-0002-0079-1936
mailto:aje@cs.uni.wroc.pl
https://ii.uni.wroc.pl/~aje/
https://orcid.org/0000-0003-4321-3105
https://doi.org/10.4230/LIPIcs.STACS.2021.30
http://arxiv.org/abs/2101.06201
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Solving One Variable Word Equations in the Free Group in Cubic Time

proposed [8], and an even simpler approach, which gives also a finite description of the solution
set, was given by Diekert, Plandowski and Jeż [9], it extends Jeż’s algorithm for the free
monoid case [16].

The problem of word equations in the free group was first investigated by Lyndon [25],
who considered the restricted variant of one-variable equations. He showed that the solution
set is a finite union of sets of the form

{w0w
i1
1 w2w

i2
3 · · ·wik2k−1w2k : i1, . . . , ik ∈ Z} , (1)

where w0, . . . , w2k are words over the generators of the free group, we call such sets k-
parametric. In fact, it was first shown using combinatorial arguments that a superset of
all solutions is of this form, and using algebraic methods the superset of all solutions is
transformed into the actual set of all solutions. As a result, k depends on the equation and
is a by-product of the algorithm rather than an explicitly given number. By using a more
refined, though purely combinatorial, argument Appel [1] showed that there exists a superset
of solutions that is a finite union of 1-parametric sets and that one can test for which values
such words are indeed solutions. In principle, the proof can be readily used as an algorithm,
but no reasonable bounds can be derived from it. Unfortunately, Appel’s proof contains an
error (see [5] for a discussion). A similar characterization was announced by Lorentz [23],
but the proof was not supplied. Chiswell and Remeslennikov [5] used a different approach,
based on geometric group theory, to show that the solution is a finite union of 1-parametric
sets. However, their argument does not give any algorithm for solving an equation. Gilman
and Myasnikov [12] gave a proof that the solution set is 4-parametric; their proof is based on
formal language theory and is considerably simpler and shorter than the other known ones,
however, it yields no algorithm.

A polynomial-time algorithm solving the one-variable word equations (in the free group)
was given by Bormotov, Gilman and Myasnikov [3]. In principle, their argument is similar to
Appel, though simpler (and without errors), and extra care is taken to guarantee that testing
takes polynomial time. The running time is high, though little effort was made to lower
the exponent, we believe that simple improvements and better analysis should yield O(n5)
running time of their algorithm.

It is known that already two-variable word equations (in the free group) do not always have
a parametrizable solution set [2], here a parametrizable set is a generalization of parametric
sets (1) in which the exponents using integer parameters can be nested and one exponent
may depend on different parameters. Moreover, no polynomial-time algorithm for two-
variable equations is known. Other restricted cases were also investigated, say the famous
Lyndon-Schützenberger Theorem was originally shown for the free group [24] and satisfiability
of quadratic word equations is known to be NP-complete [19] in the case of free group.

Our results and proof outline. We present an O(n2m) algorithm for solving equations
with one variable in a free group, where n is the length of the equation and m the number
of occurrences of the variable in it.

▶ Theorem 1. Given a word equation with one variable in a free group, with length n and
m occurrences of the variable, we can compute the set of all its solutions in time O(n2m).
The set of solutions is a union of O(n2) sets of the form {αwkβ : k ∈ Z}, where α,w, β are
words over the generators of the given free group.

R. Ferens and A. Jeż 30:3

The running time is achieved in the RAM model, more specifically we require that operations
on log n-bits long integers (and byte-arrays) can be performed in O(1) time. If this is not
the case, then the running time increases by a multiplicative O(log n) factor. Note that
in Theorem 1 we allow w = ε, i.e. the set {αwkβ : k ∈ Z} from Theorem 1 may consist
of a single string.

The O(n2m) running time seems hard to improve: all known characterization of solution
set include Ω(n2) individual words that should be tested as solutions and natural testing
of a single solution is done in Θ(m) time, note that this does not take into account the
1-parametric sets that do depend on the parameter, which seem to be harder to be tested.

We use a previous characterization of the solution superset [3], from which it follows
that the main task is to compute, given words α, u, v, β, for which i, j ∈ Z the word αuivjβ

is a solution. Roughly speaking, the previous approaches [1, 3] argued that if αuivjβ is a
solution for a “large enough” i then αui

′
vjβ is a solution for each i′ ∈ Z; thus one has to

check some “small” is and one “large enough”; for each fixed i we substitute its value and
similarly argue that if j is “large enough” then each j′ yields a solution (the actual argument
is more subtle and symmetric in terms of i and j). We refine this approach: previously the
tested values of i and j did not depend on the actual equation, but only on its length. We
identify a small set of candidate pairs (i, j) based on the actual equation. To this end, we
substitute αuIvJβ to the equation, where I, J are integer variables, and intend to verify, for
which values (i, j) of variables (I, J) it is a solution. Such parametric candidates cannot be
tested as solutions (in particular because it could be that only for some values of I and J they
indeed are solutions), however, some operations can be performed on uI (or vJ), regardless
of the actual value substituted for I: say uIuIu−1u−I is equal to uI−1 (in a free group).
After performing all such possible operations we obtain a word with “parametric powers” of
u, v, i.e. powers, whose exponents depend on parameters I, J , note that the parameters are
the same for all powers in the parametric word, but the actual exponents in different powers
may be different. If there are only powers of u (or only powers of v) then using known tools
one can show that one of those exponents is (almost) 0. This yields a linear set of possible
is that should be tested. Ideally, we would like to say that a similar claim holds also when
parametric powers of both u and v are present. However, those powers can interact and
such an approach does not work directly. Instead, if I = i, J = j yields a solution, then
substituting I = i (as a mental experiment) either reduces the whole word to ε, in which
case each J = j yields a solution, or leaves only powers of v, in which case we can reiterate
the same approach, this time for powers of v. The former case gives a set of candidates for I,
the latter for J , technically those depend on the substituted i, but this dependency can be
removed by further analysis. A similar analysis can be made for substitution J = j, together
yielding a superset of all possible solutions, which are then individually tested.

Additional analysis is needed to bound the number of candidates that is obtained in
this way. To this end, we analyze the set of possible exponents of powers of u and v. In
particular, we show that initially all such exponents are of the form ±I+ c and ±J + c, which
allows for much better estimations: for the candidate solution to be different, the constants
in those expressions need to be different and to have a factor uI+c some c|u| letters from the
equation are “consumed” and easy calculations show that there are only O(

√
n) different

possible constants, which leads to O(
√
n) different candidates. One has to take special care

of α, β, as their introduction can yield a quadratic-size equation. To avoid this, we analyze
how powers of u in concatenations of words can be obtained.

In most cases, we reduce the problem in the free group to the problem in the free
monoid (with involution) and use standard tools of word combinatorics. However, this
requires some additional properties of words α, u, v, β. Those cannot be inferred from known
characterizations, and so known proofs are reproved and the additional claims are shown.

STACS 2021

30:4 Solving One Variable Word Equations in the Free Group in Cubic Time

Connection to word equation in the free monoid. The connection between word equations
in the free group and free monoid is not perfectly clear. On one hand, the satisfiability of
the former can be reduced to the satisfiability of word equations over the free monoid (with
involution), this was implicitly done by Makanin [27] and explicitly by Diekert et al. [8] and
so generalizations of algorithms for the monoid case are used for the group case. However,
there is an intuition that the additional group structure should make the equations somehow
easier. This manifests for instance for quadratic equations (so the case when each variable
is used at most twice), for which an NP algorithm was given for the free-group case [19]
and no such result is known for the free monoid case. Furthermore, the whole first-order
theory of equations over the free group is decidable [20], while already one alternation of the
quantifiers make a similar theory for monoid undecidable (see [6] for an in-depth discussion
of undecidable and decidable fragments).

On the other hand, such general reductions increase the number of variables and so are
not suitable in the bounded number of variables case. In particular, a polynomial time
algorithm for the satisfiability of two-variable equations for the free monoid is known [10],
in contrast to the case of the free group (the set of solutions is still not parametrisable [13],
as in the case of the free group.).

Word equations in free monoid with restricted number of variables. Word equations
in the free monoid with restricted number variables were also considered. For one variable
a cubic-time algorithm is trivial and can be easily improved to quadratic-running time [7].
Eyono Obono, Goralcik and Maksimenko gave a first non-trivial algorithm running in time
O(n log n) [30]. This was improved by Dąbrowski and Plandowski [11] to O(n + m log n),
where m is the number of occurrences of the variable in the equation, and to O(n) by Jeż [15];
the last two algorithms work in the RAM model, i.e. they assume that operations on the
log n-bits long numbers can be performed in constant time. The properties of the solution
set were also investigated: all above algorithms essentially use the fact that the solution set
consists of at most one 1-parametric set and O(log n) other solutions [30]. Plandowski and
Laine showed that the solution set is either exactly a 1-parametric set or of size O(logm) [22]
and conjectured that in the latter case there are at most 3 solutions. This conjecture was
recently proved by Saarela and Nowotka [29] using novel techniques.

Word equations in the free monoid with two variables were also investigated. it was shown
by Hmelevskĭı [13] that there are equations whose solution set is not parametrizable. The first
polynomial-time algorithm (of a rather high degree) for satisfiability of such equations was
given by Charatonik and Pacholski [4], this was improved to O(n6) by Ille and Plandowski [14]
and later to O(n5) by Dąbrowski and Plandowski [10], the latter algorithm also returns
a description of all solutions. The computational complexity of word equations with three
variables is unknown, similarly, the computational complexity of satisfiability in the general
case of word equations in the free monoid remains unknown (it is NP-hard and in PSPACE).

2 Definitions and preliminaries

2.1 Notions
Monoids, monoids with involution. By Σ we denote an alphabet, which is endowed with
involution · : Σ → Σ, i.e. a function such that a ̸= a = a. The free monoid Σ∗ with
involution consists of all finite words over Σ and the involution uniquely extended from Σ
to Σ∗ by requiring that (uv) = v u, i.e. we think of it as of inverse in a group. We denote
the empty word by ε. Given a word uvw: u is its prefix, w suffix and v its subword; for a

R. Ferens and A. Jeż 30:5

word w often w′ and w′′ will denote the prefix and suffix of w, this will be always written
explicitly. A word w = a1 · · · ak, where a1, . . . , ak ∈ Σ, has length |w| = k and w[i . . j]
denotes a subword ai · · · aj . For k ≥ 0 a word uk is a k-th power of u (or simply u-power),
by convention u−k denotes uk. A u-power prefix (suffix) of v is the longest u-power that
is prefix (suffix, respectively) of v, note that this may b a positive or negative power, or
ε. A single-step reduction replaces waav with wv, a reduction is a sequence of single-step
reductions. A word in a free monoid Σ∗ with involution is reduced if no reduction can be
performed on it. It is folklore knowledge that for w there exists exactly one reduced v such
that w reduces to v; we call such a v the normal form of w and denote it by nf(w); we write
w ≈ v when nf(w) = nf(v). We write u ∼ v to denote that u = u′v′ and v = v′u′ or v = v′u′

for some u′, v′. A reduced word w is cyclically reduced if it is not of the form w = ava for any
a ∈ Σ and w is primitive if there is no word v, such that w = vk for some natural number
k > 1.

Free group. Formally, the free group (over generators Σ) consists of all reduced words over
Σ with the operation w · v = nf(wv). We use all elements of Σ∗ to denote elements of the free
group, with w simply denoting nf(w). Note that in such a setting ≈ corresponds to equality
in free group. Note that the inverse w−1 of w is w and we will use this notation, as most
of the arguments are given for the monoid and not the free group.

Any equation in the free group is equivalent to an equation in which the right-hand side
is ε, as u ≈ v is equivalent to uv−1 ≈ ε, thus in the following we consider only equations
in such a form. Moreover, uv ≈ ε is equivalent to vu ≈ ε, which can be seen by multiplying
by v from the left and v−1 from the right; hence we can assume that the equation begins
with a variable. Let us fix the equation

Xp1u1X
p2u2 · · ·um−1X

pmum ≈ ε (2)

for the rest of the paper, each ui is a reduced word in Σ∗, every pi is 1 or −1 and there are no
expressions XεX nor XεX in the equation. Clearly, m is the number of occurrences of the
variable X in the equation, let n = m+

∑m
i=1 |ui| be the length of the equation. A reduced

word x ∈ Σ∗ is a solution when xp1u1x
p2 · · ·um−1x

pmum ≈ ε.

Integer expressions, parametric words. Let us fix two integer variables I, J for the remainder
of the paper. An integer expression is of the form nII + nJJ + nc, where nI , nJ , nc ∈ Z
are integers; an expression is constant when nI = nJ = 0 and non-constant otherwise. We
denote integer expressions with letters ϕ, ψ, note that all expressions that we consider are
in the same two variables I, J . A value ϕ(i, j) is defined in a natural way; we also use this
notation for substitutions of variables, say ϕ(I, k − I), which is defined in a natural way.
The integer expression ϕ depends on the variable I (J) if nI ≠ 0 (nJ ≠ 0) and it depends on
I + J if nI = nJ ̸= 0. If ϕ depends on exactly one variable then we write ϕ(i) to denote its
value.

An s-parametric power is of the form sϕ, where ϕ is an integer expression and s a word;
then s(i, j) denotes sϕ(i,j), this can be interpreted both as an element in the monoid and
in the free group. Unless explicitly stated, we consider only non-constant expressions ϕ
as exponents in parametric powers, this should remove the ambiguity that an s-power is
also an s-parametric power. A parametric word is of the form w = t0s

ϕ1
1 t1 · · · tk−1s

ϕk

k tk
(all arithmetic expressions ϕ1, . . . , ϕk are in the same two variables I, J) and w(i, j) denotes
t0s

ϕ1(i,j)
1 t1 · · · tk−1s

ϕk(i,j)
k tk. In most cases, we consider very simple parametric words, where

STACS 2021

30:6 Solving One Variable Word Equations in the Free Group in Cubic Time

k ≤ 2 and both expressions depend on one variable only. We sometimes talk about equality
of parametric words (in a free group), formally w ≈ w′ if for each (i, j) ∈ Z2 it holds that
w(i, j) ≈ w′(i, j). We will use those only in very simple cases, say uI+1u−I+1 ≈ u2.

As we process sets of integer expressions (as well as parametric powers), we will often
represent them as sorted lists (with duplicates removed): we can use any linear order, say for
integer expressions the lexicographic order on triples (nI , nJ , nc) and for parametric powers
the lexicographic order on tuples (s, nI , nJ , nc), where tuple (s, nI , nJ , nc) corresponds to
a parametric power unII+nJJ+nc .

2.2 Data structure
Words appearing naturally in our proofs and algorithms are concatenations of a constant
number of subwords (or their involutions) of the input equation. We say that a word w is
k-represented, if w is given as w = (UU)[b1 . . e1] · · · (UU)[bk . . ek], where U = u1 · · ·um is the
concatenation of all words from the equation (2). A parametric word s0t

ϕ1
1 s1 · · · sℓ−1t

ϕℓ

ℓ sℓ is
k-represented, when s0, t1, s1, . . . , tℓ, sℓ are k0, . . . , k2ℓ represented and k =

∑2ℓ
i=0 ki.

We use standard data structures, like suffix arrays [17] and structures for answering
longest common prefix queries on them [18]. As a result, we can answer all basic queries (like
normal form, longest common prefix, power prefix, etc.) about words in the equation in O(1)
time; note that this is the place in which we essentially use that we can perform operations
on O(log n)-size numbers in O(1) time. As an example of usage, we can test whether a word
is a solution in O(m) time:

▶ Lemma 2. Given a word αuivjβ, where α, β, u, v are O(1)-represented, α, β are reduced
and u, v are cyclically reduced and primitive and i, j are a pair of integer numbers, we can
test whether αuivjβ is a solution of (2) in O(m) time.

2.3 Superset of solutions
The previous characterization [3] essentially showed that a solution is either a O(1)-represented
word or of the form uiu′v′′vj for some i, j ∈ Z and u′ is a prefix of u and v′′ is a suffix of v
for some well defined u, v. As we intend to analyze those solutions using word combinatorics,
it is useful to assume that u, v are cyclically reduced and primitive. Unfortunately, this cannot
be extracted directly from the previous characterization, so we repeat the previous arguments
taking some extra care.

▶ Lemma 3 (cf. [12, Lemma 15]). For a given equation (2), in O(n2) time one can compute
a superset of solutions of the form

S ∪
⋃

(αuIvJβ)∈W

⋃
i,j∈Z

{αuI(i)vJ(j)β}

where S is a set of O(1)-represented words with |S| = O(n2) and for each 0 ≤ i ≤ m − 1
there are numbers ℓi, ℓ′

i ≤ |ui| + |ui+1| such that W contains exactly ℓi · ℓ′
i parametric words

satisfying
α, β, are O(1)-represented, reduced and |α|, |β| ≤ |ui| + |ui+1|;
u, v are 2-represented, cyclically reduced, primitive and |u| = ℓi and |v| = ℓ′

i.

2.4 Maximal powers
We say that a word sp is a maximal power in a word t, if it is a subword of t and there is
no s nor s to its left and right in t; note that t need not to be reduced. For instance a3, a2

and (ab)2 are maximal powers in aaababaa. To streamline the analysis, we assume that s0

(called the trivial power) is a maximal power in any word t, even the empty one.

R. Ferens and A. Jeż 30:7

If sp is a maximal power in a normal form of concatenation of several words nf(w1 · · ·wℓ),
then clearly sp can be partitioned into ℓ subwords such that the i-th of them comes from wi.
However, we show more: we can identify such a maximal power in each wi, that sp is (almost)
the normal form of concatenation of those maximal powers. This is beneficial: the number
of different maximal powers in a word is much smaller than the number of different powers
that are subwords.

▶ Lemma 4. Let w1, w2, . . . , wℓ be reduced and s be cyclically reduced. If sk is a maximal
power in nf(w1 · · ·wℓ) then for each 1 ≤ h ≤ ℓ there exists such a maximal power skh in
wh that |

∑ℓ
h=1 kh − k| < ℓ. Moreover, if sk is the s-power prefix (suffix) of nf(w1 · · ·wℓ)

then we can choose sk1 as the s-power prefix of w1 or a trivial power (skℓ as the s-power
suffix of wℓ or a trivial power, respectively); if sk = nf(w1 · · ·wℓ) then both conditions hold
simultaneously.

The proof of Lemma 4 in case of ℓ ≤ 2 is a simple case distinction. For larger ℓ, we
let w1,2 = nf(w1w2) and apply the induction assumption to w1,2w3, . . . , wℓ, the proof again
follows by simple combinatorics on words.

There cannot be too many different maximal powers of the same word s in a given word w:
different maximal powers sk1 , . . . , skp use together |s|k1 + · · · + |s|kp letters in w and when
k1, . . . , kp are pairwise different then this sum is Ω(p2|s|) and so p = O(

√
|w|/|s|); this can

be naturally generalized to a set of words W instead of a single word w.

▶ Lemma 5. Let s be cyclically reduced word. Let W be a set of words and k =
∑
w∈W |w|.

Suppose that sk1 , . . . , skp are pairwise disjoint subwords of words in W and that k1, . . . , kp
are pairwise different integers. Then p ≤

√
4k/|s| + 1 and if additionally k ≥ |s| then

p ≤
√

5k/|s|.

3 Restricting the superset of solutions

By Lemma 3, we know the form of possible solutions, and by Lemma 2 we can test a single
candidate solution in O(m) time. In particular, all solutions from the set S in Lemma 3
can be tested in O(n2m) time, as desired. The other solutions are instances of parametric
words the form αuIvJβ for well-defined α, u, v, β. The next step is to bound, for fixed
α, u, v, β, the set of values (i, j) such that αuIvJβ(i, j) could be a solution; this is the main
result of the paper.

Idea. Suppose we want to find out which words of the form ui are a solution of (2).
We substitute uI to the equation and treat its left-hand side as a parametric word w

depending on I. If substituting I = i leads to a trivial word, then it is known that some
u-power cancels within the neighboring u-powers (actually, a variant of this fact was used to
characterize the superset of solutions [25, 1, 3], and it is attributed already to Nielsen [28]),
more formally:

▶ Lemma 6 (cf. [3, Lemma 3]). Let ε ≈ s0u1s1u2 · · · sk−1uksk. Then there is ui which
reduces within ui−1si−1uisiui+1.

We want to use Lemma 6 to claim that some u-parametric powers need to reduce, however,
as there can be powers of u as constants, this makes the analysis problematic: as an example,
consider an equation auIuℓa ≈ ε, if I = i is a solution and we set s0 = a, u1 = ui, s1 = uℓa

(so that u1 corresponds to uI) then Lemma 6 guarantees that ui cancels within uℓ, i.e.
0 ≥ i ≥ −ℓ, even though I = −ℓ is the only solution. This is caused by u-powers next to

STACS 2021

30:8 Solving One Variable Word Equations in the Free Group in Cubic Time

u-parametric power, which makes our application of the Lemma 6 nearly useless. To fix this,
in auiuℓa we set s0 = a, u1 = ui+ℓ, s1 = a, and then Lemma 6 yields i = −ℓ. On the level
of the parametric word this corresponds to considering auI+ℓa ≈ auIuℓa, i.e. we include
u-powers into the u-parametric power next to them.

This is formalized as follows: A parametric word w is u-reduced when u is cyclically
reduced, primitive and w does not have a subword of the form:

uϕ for a constant integer expression ϕ;

aa for some letter a (so w is reduced);

uϕuψ for some (non-constant) integer expressions ϕ, ψ;

uuϕ, uuϕ, uϕu, uϕu for some (non-constant) integer expression ϕ.
Note that we do not forbid subwords that are powers of u, we forbid parametric subwords
that are in fact subwords, i.e. have constant exponents.

Given a parametric word w we can u-reduce it to obtain a parametric word that is equal
(in the free group) and u-reduced by a simple greedy procedure, i.e. replacing a parametric
power with a constant integer expression as exponent with a power or reduction or joining
two u-powers into one (the running time for specific applications is analyzed separately
at appropriate places). When we replace, say uuϕ with uϕ+1, then we say that letters in u

were u-reduced to uϕ+1. Note that there are different u-reduced equivalent parametric words,
so the output of u-reduction is not unique, this has no effect on the algorithm, though.

If a parametric word w (with all exponents depending on one variable) is u-reduced then
from Lemma 6 we infer that w(i) ≈ ε implies |ϕ(i)| ≤ 3 for some parametric power uϕ in w:

▶ Lemma 7. Let w = w0u
ϕ1w1 · · ·uϕkwk be a u-reduced parametric word, where w0, . . . , wk

are words and ϕ1, . . . , ϕk are integer expressions, all depending on exactly one and same
variable. If w(i) ≈ ε then there is ϕℓ such that |ϕℓ(i)| ≤ 3. In particular, w(i) ≈ ε for each i
if and only if w = ε.

As ϕℓ in Lemma 7 is a non-constant integer expression then there are at most 7 values
of i such that |ϕℓ(i)| ≤ 3. Hence it is enough to find appropriate i values. Clearly, there
are at most m integer expressions in w (as this is the number of variables). We can give
better estimations, though: if the expression is not of the form kI then it “used” at least
|u| letters from the equation. So there are n/|u| different expressions and the ones of the
form kI; as |ki| ≤ 3 implies |i| ≤ 3, there are 7(1 + n/|u|) candidates for i in total. Lastly,
when the solution depends on two variables, it can be shown that all obtained parametric
powers have coefficient ±1, which allow even better estimations: a parametric power I + c

uses at least c|u| letters from the equation and so it can be shown that at most O(
√
n/|u|)

different integer expressions can be formed in such a case.
The actual solution is of the form αuIvJβ. Firstly, the presence of α, β make estimations

harder, as their letters can also be used in the u- and v-reductions. Secondly, there are two
parameters, which makes a simple usage of Lemma 7 impossible. However, if w(i, j) ≈ ε then
w(I, j) ≈ ε depends on one variable, so Lemma 7 is applicable to it. The analysis yields that
we can restrict the possible value of i or j or (i, j); note that this is non-obvious, as there are
infinitely many w(I, j)s. A similar analysis can be made for w(i, J), and combining those
two yields a set of pairs to be tested as well as O(1) individual is and js that should be
tested separately. But for a fixed i (j) we can substitute it to the equation and use Lemma 7
for J (I, respectively).

R. Ferens and A. Jeż 30:9

3.1 Restricting the set of (i, j)
Fix some 0 ≤ i0 ≤ m − 1 and the corresponding ui0 , ui0+1 in the equation (2). Using
Lemma 3 we construct a parametric word αuIvJβ, with α, u, v, β depending on ui0 , ui0+1
as well as exponents pi0 , pi0+1, pi0+2. We substitute X = αuIvJβ to the equation (2),
obtaining a parametric word on the left-hand side. We are to find values (i, j) ∈ Z2 for
which the value of the obtained parametric word is equivalent to ε, thus we call such an (i, j)
a solution. We want to find a suitable set of pairs (i, j) and test each one individually, using
Lemma 2.

The analysis depends on the relation between u and v: i.e. whether u ∈ {v, v}, u ̸∼ v

or u ∼ v. We analyze particulate cases in Sections 3.1.1–3.1.3. The idea is the same in each
case, but technical details differ.

3.1.1 u ̸∼ v

Due to symmetry, we consider the case when |v| ≥ |u|, note that it could be that |u| = |v|.
We rotate the left-hand side of the equation so that it begins and ends with a parametric power:
we rotate αuIvJβw = ε to vJβwαuI = ε or βvJuIαw = ε to uIαwβvJ = ε, depending on the
form of the equation. The equation after the rotation is equisatisfiable to the previous one.

We call each parametric word beginning with vJ or uI and ending with uI or vJ and no
parametric power inside a fragment. The parametric word after the rotation is a concatenation
of m fragments. We use the name h-th fragment to refer to the one corresponding to uh
(so h-th from the left); let fh denote the word that is left from h-th fragment after removing
the leading and ending parametric power; note that fh is of one of the forms βuhα, βuhβ,
αuhα, αuhβ. For uI we call the preceding α the associated word, the same name is used
to β succeeding vJ , α succeeding uI and β preceding vJ . To simplify, we will call it a word
associated with the parametric power.

We now preprocess the equation, by replacing the left-hand side with an equivalent
parametric word (i.e. equal according to ≈). As a first step, we replace each fh with nf(fh).
Next, observe that if w is the power of u then uIwuI ≈ w and similarly vJw′vJ ≈ w′ for w′

being a power of v. In the second step we check each fragment separately, and if possible,
replace it as described above. For fragments that remained unchanged in the second step,
we use previous names, i.e. if h-th fragment vJ nf(fh)uI was not replaced then we still write
it as vJ nf(fh)uI and call it h-th fragment. A trivial fragment is a maximal subword obtained
as concatenations of words obtained due to replacements in the second step.

We now perform the u-reduction (note that the vJ is not touched) and afterwards
the v-reduction. Let the obtained equation be of the form

W ≈ ε , (3)

where W is a parametric word.

▶ Lemma 8. For u ̸∼ v we can perform the u-reduction and v-reduction after the preprocessing
in O(m) time; the obtained parametric word is u-reduced. No two parametric powers are
replaced by one during the u-reduction and v-reduction, in particular, for a given parametric
power uϕ (vψ) in (3) the ϕ (ψ) has a coefficient of the variable equal to ±1 and the only
letters that are u-reduced (v-reduced) to this power come either from the associated fragment
of uI or uI (vJ or vJ) and the letters from the adjacent trivial fragment (assuming that there
is an adjacent trivial fragment).

STACS 2021

30:10 Solving One Variable Word Equations in the Free Group in Cubic Time

Note that the claim that no two parametric powers are replaced by one is not obvious –
in principle, it could be that after the preprocessing a trivial fragment is a power of u (or
v) and then it is wholly u-reduced, which can lead to two adjacent parametric powers of u,
which are then replaced with one. However, this cannot happen, as such a trivial fragment
is of the form uk1vk2 · · · for some 0 < |k1|, |k2|, . . . and such a word cannot be a power of u
nor v when u ̸∼ v, as the subgroup generated by u, v is a free group.

We now estimate, how many different u-parametric expressions are there after the
reductions. When we want to distinguish between occurrences of parametric powers with
the same exponent (say, two occurrences of uI+1 counted separately) then we write about
parametric powers and when we want to treat it as one, then we talk about exponents.
We provide two estimations, one focuses on parametric powers and the other on exponents.

▶ Lemma 9. There is a set S of O(1) size of integer expressions such that there are O(n/|u|)
occurrences of u-parametric powers in W from (3) whose exponents are not in S and O(n/|v|)
occurrences of v-parametric powers whose exponents are not in S. The set S can be computed
and the parametric powers identified in O(m+ n/|u|) time.

The Lemma considers, whether the parametric power used some letters from the trivial
fragment or its associated fragment had uh of length at least |u|. If so, then it is in the
O(n/|u|) parametric powers, as one such power uses at least |u| letters of the input equation
(this requires some argument for the trivial fragments) and otherwise is can be shown that
there are only O(1) possible exponents: say, when we consider the longest suffix of nf(βuhα)
that is a u-power, where |uh| < |u|, then there is a constant number of possibilities how this
suffix is formed (fully within α, within nf(uhα), uses some letters of β) and in each case the
fact that |uh| < |u| means that there are only O(1) different uhs that can be used; note that
we need the primitivity of u here. Concerning the algorithm, note that we can distinguish
between these two cases during the preprocessing and mark the appropriate powers.

The next lemma provides a better estimation for the number of different exponents,
it essentially uses the fact that all exponents have coefficients at variables ±1: as there
are only two possible coefficients, we can focus on the constants. Now, to have a constant
|c|, we have to use a power uc from W and to have k different constants one has to use k
different powers and so from Lemma 5 we conclude that k = O(|W |/|u|). In general, W can
be of quadratic length, as we introduce m copies of α and β into it; the resulting bound
is too weak for our purposes. To improve the bound, we employ Lemma 4: consider that
when the u-power suffix of, say, βuhα, is uk then by Lemma 4 there are kα, ku, kβ such that
|k − kα − ku − kβ | ≤ 2 and uku , ukβ are maximal u-powers in uh, β and ukα is the u-power
suffix of α. Using Lemma 5, this yields that there are O(

√
n/|u|) different possible values

of ku (over all uh), O(
√

|β|/|u|) = O(
√

|ui0ui0+1|/|u|) of kβ and kα is fixed, so there are
at most O(

√
n/|u| ·

√
|ui0ui0+1|/|u|) = O(

√
n|ui0ui0+1|/|u|) possible values of k.

The actual argument is more involved, as it is also possible that the u-parametric power
includes letters from the trivial fragments, which requires some extra arguments, nevertheless
the general approach is similar.

▶ Lemma 10. After the u-reduction and v-reduction there are O(
√
n|ui0ui0+1|/|u|) different

integer expressions as exponents in parametric powers of u and O(
√
n|ui0ui0+1|/|v|) of v

in the equation. The (sorted) lists of such expressions can be computed in O(m + n/|u|)
and O(m+ n/|v|) time, respectively.

Concerning the algorithm and its running time, it is enough to list all exponents, remove
duplicates, and sort them.

R. Ferens and A. Jeż 30:11

We can use Lemma 6 together with bounds on the number of different exponents in
parametric powers from Lemma 10 to limit the possible candidates (i, j) for a solution.
However, these bounds are either on i or on j. And as soon as we fix, say, J = j and
substitute it to W , the obtained parametric word W (I, j) (or W (i, J)) is more complex than
W , in particular, we do not have the bounds of Lemma 10 for it, so the set of possible
candidates for i for a given W (I, j) is linear, which is too much for the desired running time.

Instead, we analyze (as a mental experiment) W (I, j): Fix j ∈ Z such that W (i, j) ≈ ε for
some i. Compute W (I, j), u-reduce it, call the resulting parametric word WJ=j . If WJ=j = ε,
then clearly for each i the (i, j) is a solution of (3) (and vice-versa, see Lemma 7). It can
be shown that in this case for some vψ in WJ=j it holds that |ψ(j)| < 6: at least some
two u-parametric powers in W should be merged in WJ=j , in W they are separated by
a v-parametric power, say vψ. All letters of vψ(j) are u-reduced, then standard arguments
using periodicity show that |ψ(j)| < 6 so we can compute all candidates for such js and test
for each one whether indeed WJ=j = ε, this is formally stated in Lemma 12.

If WJ=j depends on I then from Lemma 7 for some of the (new) u-parametric powers uϕ
it holds that |ϕ(i)| < 6. Consider, how this ϕ was created. It could be that it is (almost)
unaffected by the second u-reduction and so it is (almost) one of the u-parametric powers
in W , see Lemma 13 for precise formulation and sketch of proof, in which case we can
use Lemma 10. Intuitively, uϕ is affected if the whole two parametric powers in W were
used to create uϕ. Then it can be shown that some v-parametric power vψ from W turned
into v-power vψ(j) satisfies |ψ(j)| < 6 and is u-reduced to uϕ, the argument is as before,
when WJ=j ≈ ε. Moreover, this occurrence of vψ also determines uϕ; hence the choice of ψ
determines O(1) candidates for j, uniquely identifies ϕ and i satisfies |ϕ(i)| < 6, i.e. there are
O(1) candidates for (i, j). Then Lemma 9 is applied to this vψ: if it is one of n/|v| occurrences
of v-parametric powers then we get O(1) candidates for (i, j) (for this ψ), so O(n/|v|) in
total, over all choices of such ψ. Otherwise, ψ it is one of O(1) integer expressions (Lemma 9)
and so j is from O(1)-size set and we can compute and consider WJ=j for each one of them
separately.

A similar analysis applies also to i ∈ Z substituted for I. The results are formalized
in the Lemma 11 below, its proof is spread across a couple of Lemmata.

▶ Lemma 11. Given equation (3) we can compute in O(mn/|u|) time sets SI , SJ , SZ,J ⊆ Z
and SI,J ⊆ Z2, where |SI | = O(

√
n|ui0ui0+1|/|u|), |SJ | = O(1), |SZ,J |, |SI,J | = O(n/|u|),

such that: if (i, j) is a solution of (3) then at least one of the following holds:
i ∈ SI or
j ∈ SJ or
j ∈ SZ,J and for each i′ the (i′, j) is a solution or
(i, j) ∈ SI,J .

Similarly, given equation (3) we can compute in O(mn/|v|) time sets S′
I , S

′
J , S

′
I,Z ⊆ Z and

S′
I,J ⊆ Z2, where |S′

I | = O(1), |S′
J | = O(

√
n|ui0ui0+1|/|v|) |S′

I,Z|, |S′
I,J | = O(n/|v|) such

that at if (i, j) is a solution of (3) then least one of the following holds:
i ∈ S′

I or;
i ∈ S′

I,Z and for each j′ ∈ Z the (i, j′) is a solution or;
j ∈ S′

J or;
(i, j) ∈ S′

I,J .

As noted above, the main distinction is whether the uϕ in WJ=j was “affected” or not
during the second u-reduction. Let us formalize this. Given an occurrence of a parametric
power uϕ in WJ=j consider the largest subword w of W such that each letter in w(I, j) is

STACS 2021

30:12 Solving One Variable Word Equations in the Free Group in Cubic Time

either reduced or u-reduced to this uϕ; note that this may depend on the order of reductions,
we fix an arbitrary order. We say that parametric powers in w are merged to uϕ. We extend
this notion also to the case when WJ=j = ε, in which case W = w and every parametric power
is merged to the same parametric power u0. A similar notion is defined also for parametric
powers of v. Note that a parametric power is not merged to two different parametric powers
uϕ and uϕ

′ .
We say that a u-parametric power uϕ in WJ=j was affected by substitution J = j if
more than one parametric power was merged to uϕ or
for the unique u-parametric power uϕ′ merged to uϕ there is a v-parametric power vψ′

such that |ψ′(j)| < 6 and there is no u-parametric power between uϕ
′ and vψ

′ .
The intuition behind the first condition is that when we merge two u-powers then we create
a completely new parametric power, for the second condition, when |ψ′(j)| < 6 then vψ

′(j)

no longer behaves like vψ′ and can either be wholly merged to a u-power or be canceled
by a trivial fragment, which can also lead to a large modification of the neighbouring u-
parametric power. Note that the second condition could be made more restrictive, but the
current formulation is good enough for our purposes.

We first investigate the case, when the parametric power was affected by a substitution.

▶ Lemma 12. In O(mn/|v|) time we can compute and sort sets SJ , SE,J , where |SJ | = O(1)
and |SE,J | = O(n/|v|), such that for each occurrence of a u-parametric power uϕ in WJ=j
affected by the substitution J = j either j ∈ SJ or (ϕ, j) ∈ SE,J .

Similarly, in time O(mn/|u|) we can compute and sort sets S′
I , SI,E, where |S′

I | = O(1)
and |SI,E | = O(n/|u|), such that for each occurrence of a v-parametric power vψ in WI=i
affected by the substitution I = i either i ∈ S′

I or (i, ψ) ∈ SI,E.

The sketch of the argument was given above Lemma 11. Concerning the running time,
the appropriate exponents are identified during the u-reduction and v-reduction, which are
performed in given times using the data structure.

We now consider the case when uϕ was not affected. Essentially, we claim that uϕ is
almost the same as some uϕ

′ in W . The difference is that it can u-reduce letters from
v-parametric powers that become v-powers. However, as such v-power is not wholly merged
(as it is not affected), only its proper suffix or prefix can be u-reduced and by primitivity
and by case assumption u ̸∼ v and |v| ≥ |u|, this suffix is of length at most |v| + |u|.
Thus, while in principle there are infinitely many possibilities for vψ(j) when j ∈ Z, it
is enough to consider a constant number of different candidates (roughly: v2, v, ε, v, v2)
and we can procure all of them so that an analysis similar to the one in Lemma 10 can
be carried out: essentially we replace a fragment vJfhuI with 5 “fragments” vcfhu

I for
c ∈ {−2,−1, 0, 1, 2}. In this argument, we used the assumption that |v| ≥ |u| (the u-reduction
is of length at most |v| + |u| ≤ 2|v|), but it turns out that in the case v-parametric powers the
argument is even simpler: the v-reduced prefix of u-parametric power is of length at most 2|v|,
so the v-parametric power is modified by an additive O(1) summand.

▶ Lemma 13. We can compute and sort in O(m+ n/|u|) time a set of O(
√
n|ui0ui0+1|/|u|)

integer expressions E such that for every j if uϕ is a parametric power in WJ=j not affected
by substitution J = j then ϕ ∈ E.

A similar set of O(
√
n|ui0ui0+1|/|v|) integer expressions can be computed for the not

affected v-parametric powers after the second v-reduction in O(m+ n/|v|) time.

The algorithm works by simple grouping of the parametric powers after the u- and v-reductions,
the running times are obtained by appropriate usage of the data structure.

R. Ferens and A. Jeż 30:13

Lemmata 9, 10, 12 and 13 are enough to prove Lemma 11, by a simple case distinction,
as described in text preceding Lemma 9.

What is left to show is how to compute candidate solutions, when one of I, J , say J , is
already fixed, as in the claim of Lemma 11. The analysis is similar as in the case of two
parameters, however, we cannot guarantee that after the u-reduction the coefficient at the
u-parametric powers are ±1. On the positive side, as there is only one integer variable, we
can apply Lemma 7 directly. The additional logarithmic in the running time is due to sorting,
which now cannot be done using counting sort, as the involved numbers may be large.

▶ Lemma 14. For any given j in O(m) time we can decide, whether for each i ∈ Z the αuivjβ
is a solution of (2) and if not then in O(m+ n logm/|u|) time compute a superset (of size
O(n/|u|)) of is such that αuivjβ is a solution.

A similar claim holds for any fixed i (with superset size O(n/|v|) and running time
O(m+ n logm/|v|)).

3.1.2 u ∈ {v, v}
When u ∈ {v, v} then uIvJ ≈ uI+J or uIvJ ≈ uI−J and we can replace the parameter
I + J (or I − J) with a single I. This case is subsumed by the case when we fix one of the
parameters (i.e. I or J), see Lemma 14.

3.1.3 u ∼ v

In this case either u = u′u′′ and v = u′′u′ or v = u′ u′′, for some u′, u′′. By substituting
v = v we reduce the latter case to the former. We consider the parametric solution αuIvJβ,
note that v ≈ u′′uu′′ and so αuIvJβ ≈ αuIu′′uJu′′β. From now on the approach is similar
as when u ̸∼ v. Most of the arguments are simpler, however, the extra technicality is that
after the u-reduction we can have u-parametric power of the form u±(I+J)+c. As a result,
we consider not only substitutions I = i and J = j, but also I + J = k, i.e. we substitute ϕ
with ϕ(I, k − I), which depends only on I. This requires some additional cases to consider
and makes some formulations longer, but everything follows in a similar way.

Overall, the main characterization is

▶ Lemma 15 (cf. Lemma 11). Given the equation (3) we can compute in O(mn/|u|) time sets
SI , SJ , SI+J , SI+J,Z ⊆ Z and SI,J ⊆ Z2, where |SI |, |SJ | = O(

√
n|ui0ui0+1|/|u|), |SI+J | =

O(1), |SI+J,Z|, |SI,J | = O(n/|u|) such that if (i, j) is a solution of (3) then at least one of
the following holds:

i ∈ SI or
j ∈ SJ or
i+ j ∈ SI+J or
i+ j ∈ SI+J,Z and for each i′ the (i′, (i+ j) − i′) is a solution or
(i, j) ∈ SI,J .

Similar sets corresponding to substitutions I = i and J = j can be computed in the same
time bounds.

The fourth possibility in Lemma 15 means that W (I, k − I) ≈ ε, which would yield an
infinite family of solutions {αuivk−iβ : i ∈ Z}. Additional combinatorial analysis yields that
this cannot happen (and we know this from the earlier characterisation of the solution set).

▶ Lemma 16. Consider a parametric word αuIvJβ for u ∼ v and the corresponding W ̸= ε

obtained after the substitution of X = αuIvJβ, as in (3). Then for every k it holds that
W (I, k − I) ̸≈ ε.

STACS 2021

30:14 Solving One Variable Word Equations in the Free Group in Cubic Time

3.2 Algorithm and running time
By Lemma 2 one solution of the form αuivjβ, for fixed α, u, i, v, j, β which are O(1)-
represented, can be tested in O(m) time. So it is enough to show that there are at most
O(n2) different candidates tested (we estimate other computation times as well). Lemma 3
yields that there are O(n2) candidate solutions (from the set S). Other solutions are obtained
in the following way: for two consecutive words ui0 , ui0+1 from the equation we have a family
of ℓi0 · ℓ′

i0
candidates of the form αuIvJβ, see Lemma 3, where ℓi0 = |u|, ℓ′

i0
= |v| and

ℓi0 , ℓ
′
i0

≤ |ui0 | + |ui0+1|; by Lemma 3 the total time, over all i0, spent on computing words
α, β, u, v is O(n2) time. We will often use the estimation (a similar one hold for ℓ′

i0
):

m∑
i0=1

ℓi0 ≤
m∑
i0=1

|ui0 | + |ui0+1| ≤ 2n . (4)

Suppose first that u ̸∼ v, then by Lemma 11 we can compute in time O(mn/ℓi0) sets SI ,
SJ , SJ,Z, SI,J , where |SI | = O

(√
n|ui0ui0+1|/li0

)
, |SJ | = O(1), |SZ,J |, |SI,J | = O(n/ℓi0),

such that for each solution (i, j) at least one of the following holds:
i1. i ∈ SI or
i2. j ∈ SJ or
i3. j ∈ SZ,J and (i′, j) is a solution for each i′ or
i4. (i, j) ∈ SI,J .
and in time O(mn/ℓ′

i0
) sets S′

J , S′
I , S′

I,Z, S′
I,J , where |S′

I | = O(1), |S′
J | = O(

√
n|ui0ui0+1|/ℓ′

i0
)

|S′
I,Z|, |S′

I,J | = O(n/ℓ′
i0

), such that for each solution (i, j) at least one of the following holds:
j1. j ∈ S′

J or
j2. i ∈ S′

I or
j3. i ∈ SI,Z and (i, j′) is a solution for each j′ or
j4. (i, j) ∈ S′

I,J .
As both of those characterization hold, we should describe how do we treat each of the 16
cases. Fortunately, for most of the cases the further action and analysis depends on one of
the cases alone.

If we are in the case i4 or j4 then we test each pair (i, j) ∈ SI,J ∪ S′
I,J separately. There

are (over all 0 ≤ i0 ≤ m− 1) at most (note that some of those solutions have u ∼ v, we will
estimate their running time separately, so now we overestimate the running time)

m−1∑
i0=0

ℓi0ℓ
′
i0

(
n

ℓi0
+ n

ℓ′
i0

)
= n

m−1∑
i0=0

ℓ′
i0 + ℓi0 ≤ 4n2 by (4) (5)

such solutions.
Concerning the time of establishing those sets, the largest is from Lemma 12 and it is

O(mn/ℓi0) (for SI,J) or O(mn/ℓ′
i0

) (for S′
I,J). So up to a constant it is:

m−1∑
i0=0

ℓi0ℓ
′
i0

(
mn

ℓi0
+ mn

ℓ′
i0

)
= mn

m−1∑
i0=0

(ℓi0 + ℓ′
i0) ≤ 2mn2 by (4) .

If we are in the case i3 then for each j ∈ SJ,Z we substitute J = j and test, whether
W (I, j) ≈ ε; by Lemma 7 this is equivalent to (i′, j) being a solution for each i′ ∈ Z. Each
such j yields a family of solutions of the required form { α︸︷︷︸

fixed

ui vjβ︸︷︷︸
fixed

: i ∈ Z} and there are

at most |SJ,Z| = O(n/ℓi0) such families. Over all 0 ≤ i0 ≤ m− 1 this yields at most (up to
a constant)

m−1∑
i0=0

ℓi0ℓ
′
i0

n

ℓ′
i0

= n
m−1∑
i0=0

ℓi0 ≤ 2n2 by (4) .

R. Ferens and A. Jeż 30:15

Concerning the running time, note that testing whether W (I, j) ≈ ε takes O(m) time, see
Lemma 14, so it is enough to show that we test O(n2) such js. As |SZ,J | = O(n/ℓi0), the
calculations are as in (5). A similar analysis applies to SI,Z, i.e. case j3.

If we are in case i2 then for each j ∈ SJ we can compute, by Lemma 14, in time O(m)
whether each (i′, j) is a solution, note that the set is of the required form, as in the case
of j ∈ SZ,J , moreover the estimation on the number of such solution sets is not larger
than in the case of j ∈ SZ,J , as |SJ | = O(1) and |SZ,J | = O(n/ℓi0). Otherwise, again by
Lemma 14, we compute in time O(m + n/ℓi0 logm)) a set S of size |S| = O(n/ℓi0) such
that if (i, j) is a solution then i ∈ S. This yields |SJ | × |S| = O(n/ℓi0) candidate pairs,
which are individually tested, so the running time is O(mn/ℓi), note that this dominates
O(m + n logm/ℓi0) from Lemma 14. The estimation in (5) yields that there are at most
O(n2) such candidate pairs and the whole running time is O(mn2). A similar analysis applies
to i ∈ S′

I .
The only remaining option is that we are simultaneously in case i1 and j1, i.e. i ∈ SI and

j ∈ S′
J . As |SI | = O

(√
n|ui0ui0+1|/ℓi

)
and |S′

J | = O
(√

n|ui0ui0+1|/ℓ′
i

)
there are (over all

i0 and up to a constant) at most

m∑
i0=1

ℓi0ℓ
′
i0

√
n|ui0ui0+1|

ℓi0
·

√
n|ui0ui0+1|

ℓ′
i0

=
m∑
i0=1

n|ui0ui0+1| ≤ 2n2

such solutions tested.
The cases of u = v or u = v are done using Lemma 14, the bounds are the same as in

case of u ̸∼ v.
The case of u ∼ v is a bit more involved, let ℓi0 = |u|. By Lemma 15 we can compute in

time O(mn/|u|) sets SI , SJ , SI+J , SI+J,Z, SI,J and such that for each solution (i, j) either
1. i ∈ SI or
2. j ∈ SJ or
3. i+ j ∈ SI+J or
4. i+ j ∈ SI+J,Z and for each i′ the (i′, (i+ j) − i′) is a solution or
5. (i, j) ∈ SI,J .
The third case is dealt with as previously (for each i+ j we make a substitution I +J = i+ j,
check, whether the obtained equation is trivial and solve the corresponding equation), similarly
fourth (for each i+ j we substitute I + J = i+ j and check whether the obtained word is
ε; note that it can be shown that this never holds, see Lemma 16) and fifth (we substitute
I = i, J = j and test). So we are left only with the first two cases. Moreover, Lemma 15
also gives us a similar characterization resulting from a substitution I = i, again there are 5
cases and the last three of them are dealt with similarly, the first two give that there are sets
S′
J , S

′
I+J such that

1. j ∈ S′
J or

2. i+ j ∈ S′
I+J

and applied to substitution J = j again gives 5 cases, the last three of which are dealt with
and the first two yield that there are sets S′′

I , S
′′
I+J such that

1. i ∈ S′′
I or

2. i+ j ∈ S′′
I+J .

There are in total 8 cases (we choose one of two options for three substitutions), in each such a
case from the three choices some two (though not each two) allow to give O

(
n|ui0ui0+1|/ℓ2

i0

)
candidates for (i, j) : say if i ∈ SI , j ∈ S′

J and i+ j ∈ S′′
I+J then any two determine (i, j)

and when j ∈ SJ , j ∈ S′
J and i+ j ∈ S′′

I+J then j ∈ SJ ∩ S′
J and i+ j ∈ S′′

I+J . The rest of
the calculations is the same as in the case of u ̸∼ v.

STACS 2021

30:16 Solving One Variable Word Equations in the Free Group in Cubic Time

References
1 Kenneth I. Appel. One-variable equations in free groups. Proceedings of the American

Mathematical Society, 19:912–918, 1968.
2 Kenneth I. Appel. On two variable equations in free groups. Proceedings of the American

Mathematical Society, 21:179–184, 1969.
3 Dimitri Bormotov, Robert Gilman, and Alexei Myasnikov. Solving one-variable equations in

free groups. Journal of Group Theory, 12:317–330, 2009. doi:10.1515/JGT.2008.080.
4 Witold Charatonik and Leszek Pacholski. Word equations with two variables. In IWWERT,

pages 43–56, 1991. doi:10.1007/3-540-56730-5_30.
5 Ian M. Chiswell and Vladimir N. Remeslennikov. Equations in free groups with one variable.

I. Journal of Group Theory, 3(4), 2000. doi:10.1515/jgth.2000.035.
6 Joel D. Day, Vijay Ganesh, Paul He, Florin Manea, and Dirk Nowotka. The satisfiability

of word equations: Decidable and undecidable theories. In Igor Potapov and Pierre-Alain
Reynier, editors, Reachability Problems - 12th International Conference, RP 2018, Marseille,
France, September 24-26, 2018, Proceedings, volume 11123 of Lecture Notes in Computer
Science, pages 15–29. Springer, 2018. doi:10.1007/978-3-030-00250-3_2.

7 Volker Diekert. Makanin’s algorithm. In M. Lothaire, editor, Algebraic Combinatorics on
Words, chapter 12, pages 342–390. Cambridge University Press, 2002.

8 Volker Diekert, Claudio Gutiérrez, and Christian Hagenah. The existential theory of equations
with rational constraints in free groups is PSPACE-complete. Inf. Comput., 202(2):105–140,
2005. doi:10.1016/j.ic.2005.04.002.

9 Volker Diekert, Artur Jeż, and Wojciech Plandowski. Finding all solutions of equations in free
groups and monoids with involution. Inf. Comput., 251:263–286, 2016. doi:10.1016/j.ic.
2016.09.009.

10 Robert Dąbrowski and Wojciech Plandowski. Solving two-variable word equations. In ICALP,
pages 408–419, 2004. doi:10.1007/978-3-540-27836-8_36.

11 Robert Dąbrowski and Wojciech Plandowski. On word equations in one variable. Algorithmica,
60(4):819–828, 2011. doi:10.1007/s00453-009-9375-3.

12 Robert H. Gilman and Alexei G. Myasnikov. One variable equations in free groups via context
free languages. Contemporary Mathematics, 349:83–88, 2004.

13 Yu. I. Hmelevskĭı. Equations in Free Semigroups. Number 107 in Proceedings Steklov Institute
of Mathematics. American Mathematical Society, 1976. Translated from the Russian original:
Trudy Mat. Inst. Steklov. 107, 1971.

14 Lucian Ilie and Wojciech Plandowski. Two-variable word equations. RAIRO Theor. Informatics
Appl., 34(6):467–501, 2000. doi:10.1051/ita:2000126.

15 Artur Jeż. One-variable word equations in linear time. Algorithmica, 74:1–48, 2016. doi:
10.1007/s00453-014-9931-3.

16 Artur Jeż. Recompression: a simple and powerful technique for word equations. J. ACM,
63(1):4:1–4:51, March 2016. doi:10.1145/2743014.

17 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
J. ACM, 53(6):918–936, 2006. doi:10.1145/1217856.1217858.

18 Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time
longest-common-prefix computation in suffix arrays and its applications. In CPM, pages
181–192, 2001. doi:10.1007/3-540-48194-X_17.

19 Olga Kharlampovich, Igor G. Lysënok, Alexei G. Myasnikov, and Nicholas W. M. Touikan.
The solvability problem for quadratic equations over free groups is NP-complete. Theory of
Computing Systems, 47(1):250–258, 2010. doi:10.1007/s00224-008-9153-7.

20 Olga Kharlampovich and Alexei Myasnikov. Elementary theory of free non-abelian groups.
Journal of Algebra, 302:451–552, 2006.

21 Antoni Kościelski and Leszek Pacholski. Makanin’s algorithm is not primitive recursive. Theor.
Comput. Sci., 191(1-2):145–156, 1998. doi:10.1016/S0304-3975(96)00321-0.

https://doi.org/10.1515/JGT.2008.080
https://doi.org/10.1007/3-540-56730-5_30
https://doi.org/10.1515/jgth.2000.035
https://doi.org/10.1007/978-3-030-00250-3_2
https://doi.org/10.1016/j.ic.2005.04.002
https://doi.org/10.1016/j.ic.2016.09.009
https://doi.org/10.1016/j.ic.2016.09.009
https://doi.org/10.1007/978-3-540-27836-8_36
https://doi.org/10.1007/s00453-009-9375-3
https://doi.org/10.1051/ita:2000126
https://doi.org/10.1007/s00453-014-9931-3
https://doi.org/10.1007/s00453-014-9931-3
https://doi.org/10.1145/2743014
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1007/s00224-008-9153-7
https://doi.org/10.1016/S0304-3975(96)00321-0

R. Ferens and A. Jeż 30:17

22 Markku Laine and Wojciech Plandowski. Word equations with one unknown. Int. J. Found.
Comput. Sci., 22(2):345–375, 2011. doi:10.1142/S0129054111008088.

23 A. A. Lorents. Representations of sets of solutions of systems of equations with one unknown
in a free group. Dokl. Akad. Nauk. SSSR, 178:290–292, 1968.

24 Roger C. Lyndon and Marcel-Paul Schützenberger. The equation aM = bN cP in a free group.
Michigan Mathematical Journal, 9(4):289–298, 1962.

25 Roger Conant Lyndon. Equations in free groups. Transansaction of American Mathematical
Society, 96:445–457, 1960. doi:10.1090/S0002-9947-1960-0151503-8.

26 Gennadií Makanin. The problem of solvability of equations in a free semigroup. Matematicheskii
Sbornik, 2(103):147–236, 1977. (in Russian).

27 Gennadií Makanin. Equations in a free group. Izv. Akad. Nauk SSR, Ser. Math. 46:1199–1273,
1983. English transl. in Math. USSR Izv. 21 (1983).

28 Jakob Nielsen. Über die Isomorphismen unendlicher Gruppen ohne Relation. Mathematische
Annalen, 79:269–272, 1918.

29 Dirk Nowotka and Aleksi Saarela. An optimal bound on the solution sets of one-variable
word equations and its consequences. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 136:1–136:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ICALP.2018.136.

30 Seraphin D. Eyono Obono, Pavel Goralčik, and Marianne Maksimenko. Efficient solving of the
word equations in one variable. In MFCS, pages 336–341, 1994. doi:10.1007/3-540-58338-6_
80.

31 Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE. J. ACM,
51(3):483–496, 2004. doi:10.1145/990308.990312.

32 Alexander A. Razborov. On Systems of Equations in Free Groups. PhD thesis, Steklov
Institute of Mathematics, 1987. In Russian.

33 Zlil Sela. Diophantine geometry over groups VI: the elementary theory of a free group.
Geometric & Functional Analysis, 16:707–730, 2006. doi:10.1007/s00039-006-0565-8.

STACS 2021

https://doi.org/10.1142/S0129054111008088
https://doi.org/10.1090/S0002-9947-1960-0151503-8
https://doi.org/10.4230/LIPIcs.ICALP.2018.136
https://doi.org/10.1007/3-540-58338-6_80
https://doi.org/10.1007/3-540-58338-6_80
https://doi.org/10.1145/990308.990312
https://doi.org/10.1007/s00039-006-0565-8

Diverse Collections in Matroids and Graphs
Fedor V. Fomin ! Ï

University of Bergen, Norway

Petr A. Golovach ! Ï

University of Bergen, Norway

Fahad Panolan ! Ï

Department of Computer Science and Engineering, IIT Hyderabad, India

Geevarghese Philip ! Ï

Chennai Mathematical Institute, India
UMI ReLaX, Chennai, India

Saket Saurabh ! Ï

Institute of Mathematical Sciences, Chennai, India
University of Bergen, Norway

Abstract
We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental
combinatorial problems, two from the theory of matroids and the third from graph theory. The
input to the Weighted Diverse Bases problem consists of a matroid M , a weight function
ω : E(M) → N, and integers k ≥ 1, d ≥ 0. The task is to decide if there is a collection of k bases
B1, . . . , Bk of M such that the weight of the symmetric difference of any pair of these bases is at
least d. This is a diverse variant of the classical matroid base packing problem. The input to the
Weighted Diverse Common Independent Sets problem consists of two matroids M1, M2 defined
on the same ground set E, a weight function ω : E → N, and integers k ≥ 1, d ≥ 0. The task is to
decide if there is a collection of k common independent sets I1, . . . , Ik of M1 and M2 such that the
weight of the symmetric difference of any pair of these sets is at least d. This is motivated by the
classical weighted matroid intersection problem. The input to the Diverse Perfect Matchings
problem consists of a graph G and integers k ≥ 1, d ≥ 0. The task is to decide if G contains k perfect
matchings M1, . . . , Mk such that the symmetric difference of any two of these matchings is at least d.

The underlying problem of finding one solution (basis, common independent set, or perfect
matching) is known to be doable in polynomial time for each of these problems, and Diverse
Perfect Matchings is known to be NP-hard for k = 2. We show that Weighted Diverse Bases
and Weighted Diverse Common Independent Sets are both NP-hard. We show also that
Diverse Perfect Matchings cannot be solved in polynomial time (unless P = NP) even for the
case d = 1. We derive fixed-parameter tractable (FPT) algorithms for all three problems with (k, d)
as the parameter.

The above results on matroids are derived under the assumption that the input matroids are given
as independence oracles. For Weighted Diverse Bases we present a polynomial-time algorithm
that takes a representation of the input matroid over a finite field and computes a poly(k, d)-sized
kernel for the problem.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Matroids, Diverse solutions, Fixed-parameter tractable algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.31

Related Version Full Version: https://arxiv.org/abs/2101.04633

Funding Fedor V. Fomin: Supported by the Research Council of Norway via the project “MULTIVAL”
(grant no. 263317).
Petr A. Golovach: Supported by the Research Council of Norway via the project “MULTIVAL”
(grant no. 263317).

© Fedor V. Fomin, Petr A. Golovach, Fahad Panolan, Geevarghese Philip, and Saket Saurabh;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 31; pp. 31:1–31:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fomin@ii.uib.no
http://www.ii.uib.no/~fomin/
https://orcid.org/0000-0003-1955-4612
mailto:Petr.Golovach@uib.no
https://folk.uib.no/pgo041/
https://orcid.org/0000-0002-2619-2990
mailto:fahad@cse.iith.ac.in
https://iith.ac.in/~fahad/
https://orcid.org/0000-0001-6213-8687
mailto:gphilip@cmi.ac.in
https://www.cmi.ac.in/~gphilip
https://orcid.org/0000-0003-0717-7303
mailto:saket@imsc.res.in
https://www.imsc.res.in/~saket
https://doi.org/10.4230/LIPIcs.STACS.2021.31
https://arxiv.org/abs/2101.04633
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Diverse Collections in Matroids and Graphs

Fahad Panolan: Seed grant, IIT Hyderabad (SG/IITH/F224/2020-21/SG-79).
Saket Saurabh: European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant no. 819416), and Swarnajayanti Fellowship grant
DST/SJF/MSA-01/2017-18.

1 Introduction

In this work we study the parameterized complexity of finding diverse collections of solutions
to three basic algorithmic problems. Two of these problems arise in the theory of matroids.
The third problem belongs to the domain of graph theory, and its restriction to bipartite
graphs can be rephrased as a question about matroids. Each of these is a fundamental
algorithmic problem in its respective domain.

Diverse FPT Algorithms

Nearly every existing approach to solving algorithmic problems focuses on finding one solution
of good quality for a given input. For algorithmic problems which are – eventually – motivated
by problems from the real world, finding “one good solution” may not be of much use for
practitioners of the real-world discipline from which the problem was originally drawn. This
is primarily because the process of abstracting out a “nice” algorithmic problem from a
“messy” real-world problem invariably involves throwing out a lot of “side information” which
is very relevant to the real-world problem, but is inconvenient, difficult, or even impossible
to model mathematically.

The other extreme of enumerating all (or even all minimal or maximal) solutions to an
input instance is also usually not a viable solution. A third approach is to look for a few
solutions of good quality which are “far away” from one another according to an appropriate
notion of distance. The intuition is that given such a collection of “diverse” solutions, an
end-user can choose one of the solutions by factoring in the “side information” which is
absent from the algorithmic model.

These and other considerations led Fellows to propose the Diverse X Paradigm [9]. Here
“X” is a placeholder for an optimization problem, and the goal is to study the fixed-parameter
tractability of finding a diverse collection of good-quality solutions for X. Recall that the
Hamming distance of two sets is the size of their symmetric difference. A natural measure of
diversity for problems whose solutions are subsets of some kind is the minimum Hamming
distance of any pair of solutions. In this work we study the parameterized complexity of
finding diverse collections of solutions for three fundamental problems with this diversity
measure and its weighted variant.

Our problems

Let M be a matroid on ground set E(M) and with rank function r(). The departure point
of our work is the classical theorem of Edmonds from 1965 [6] about matroid partition. This
theorem states that a matroid M has k pairwise disjoint bases if and only if, for every subset
X of E(M),

k · r(X) + |E(M) − X| ≥ k · r(M).

An important algorithmic consequence of this result is that given access to an independence
oracle for a matroid M , one can find a maximum number of pairwise disjoint bases of M

in polynomial time (See, e.g., [18, Theorem 42.5]). This in turn implies, for instance, that
the maximum number of pairwise edge-disjoint spanning trees of a connected graph can be
found in polynomial time.

F. V. Fomin, P. A. Golovach, F. Panolan, G. Philip, and S. Saurabh 31:3

We take a fresh look at this fundamental result of Edmonds: what happens if we don’t
insist that the bases be pairwise disjoint, and instead allow them to have some pairwise
intersection? We work in the weighted setting where each element e of the ground set E(M)
has a positive integral weight ω(e) associated with it, and the weight of a subset X of E(M)
is the sum of the weights of the elements in X. The relaxed version of the pairwise disjoint
bases problem is then: Given an independence oracle for a matroid M and integers k, d as
input, find if M has k bases B1, . . . , Bk such that for every pair of bases Bi, Bj ; i ̸= j the
weight ω(Bi △ Bj) of their symmetric difference is at least d. We call this the Weighted
Diverse Bases problem:

Input: A matroid M , a weight function ω : E(M) → N, and integers k ≥ 1 and
d ≥ 0.

Task: Decide whether there are bases B1, . . . , Bk of M such that ω(Bi △ Bj) ≥ d

holds for all distinct i, j ∈ {1, . . . , k}.

Weighted Diverse Bases

Due to the expressive power of matroids Weighted Diverse Bases captures many interest-
ing computational problems. We list a few examples; in each case the weight function assigns
positive integral weights, k ≥ 1 and d ≥ 0 are integers, and we say that a collection of objects
is diverse if the weight of the symmetric difference of each pair of objects in the collection is
at least d. When M is a graphic matroid Weighted Diverse Bases corresponds to finding
diverse spanning trees in an edge-weighted graph. When M is a vector matroid then this
is the problem of finding diverse column (or row) bases of a matrix with column (or row)
weights. And when M is a transversal matroid on a weighted ground set then this problem
corresponds to finding diverse systems of distinct representatives.

Another celebrated result of Edmonds is the Matroid Intersection Theorem [7] which
states that if M1, M2 are matroids on a common ground set E and with rank functions r1, r2,
respectively, then the size of a largest subset of E which is independent in both M1 and M2
(a common independent set) is given by

min
T ⊆E

(r1(T) + r2(E − T)).

Edmonds showed that given access to independence oracles for M1 and M2, a maximum-
size common independent set of M1 and M2 can be found in polynomial time [7]. This is
called the Matroid Intersection problem. Frank [12] found a polynomial-time algorithm
for the more general Weighted Matroid Intersection problem where the input has
an additional weight function ω : E → N and the goal is to find a common independent set
of the maximum weight. The second problem that we address in this work is a “diverse”
take on Weighted Matroid Intersection where we replace the maximality requirement
on individual sets with a lower bound on the weight of their symmetric difference. Given
M1, M2, ω as above and integers k, d, we ask if there are k common independent sets whose
pairwise symmetric differences have weight at least d each; this is the Weighted Diverse
Common Independent Sets problem.

Input: Matroids M1 and M2 with a common ground set E, a weight function
ω : E → N, and integers k ≥ 1 and d ≥ 0.

Task: Decide whether there are sets I1, . . . , Ik ⊆ E such that Ii is independent in
both M1 and M2 for every i ∈ {1, . . . , k} and ω(Ii △ Ij) ≥ d for all distinct
i, j ∈ {1, . . . , k}.

Weighted Diverse Common Independent Sets

STACS 2021

31:4 Diverse Collections in Matroids and Graphs

Weighted Diverse Common Independent Sets also captures many interesting
algorithmic problems. We give a few examples (cf. [18, Section 41.1a]). We use “diverse”
here in the sense defined above. Given a bipartite graph G with edge weights, Weighted
Diverse Common Independent Sets can be used to ask if there is a diverse collection of k

matchings in G. A partial orientation of an undirected graph G is a directed graph obtained
by (i) assigning directions to some subset of edges of G and (ii) deleting the remaining edges.
Given an undirected graph G = (V, E) with edge weights and a function ι : V → N, we say
that a partial orientation O of G respects ι if the in-degree of every vertex v in O is at most
ι(v). We can use Weighted Diverse Common Independent Sets to ask if there is a
diverse collection of k partial orientations of G, all of which respect ι. For a third example,
let G = (V, E) be an undirected graph with edge weights, in which each edge is assigned a –
not necessarily distinct – color. A colorful forest in G is any subgraph of G which is a forest
in which no two edges have the same color. We can use Weighted Diverse Common
Independent Sets to ask if there is a diverse collection of k colorful forests in G.

Finding whether a bipartite graph has a perfect matching or not is a well-known application
of Matroid Intersection ([18, Section 41.1a]). The third problem that we study in this
work is a diverse version of the former problem, extended to general graphs. Note that
there is no known interpretation of the problem of finding perfect matchings in (general)
undirected graphs in terms of Matroid Intersection.

Input: An undirected graph G on n vertices, and integers k ≥ 1 and d ≥ 0.
Task: Decide whether there are perfect matchings M1, . . . , Mk of G such that

|Mi △ Mj | ≥ d for all distinct i, j ∈ {1, . . . , k}.

Diverse Perfect Matchings

Our results

We assume throughout that matroids in the input are given in terms of an independence
oracle. Recall that with this assumption, we can find one basis of the largest weight and one
common independent set (of two matroids) of the largest weight, both in polynomial time.
In contrast, we show that the diverse versions Weighted Diverse Bases and Weighted
Diverse Common Independent Sets are both NP-hard, even when the weights are
expressed in unary1.

▶ Theorem 1. Both Weighted Diverse Bases and Weighted Diverse Common
Independent Sets are strongly NP-complete, even on the uniform matroids U3

n.

Given this hardness, we analyze the parameterized complexity of these problems with d, k

as the parameters. Our first result is that Weighted Diverse Bases is fixed-parameter
tractable (FPT) under this parameterization:

▶ Theorem 2. Weighted Diverse Bases can be solved in 2O(dk2(log k+log d)) · |E(M)|O(1)

time.

We have a stronger result if the input matroid is given as a representation over a finite field
(and not just as a “black box” independence oracle): in this case we show that Weighted
Diverse Bases admits a polynomial kernel with this parameterization.

1 See Theorem 7 for an alternative hardness result for Weighted Diverse Bases.

F. V. Fomin, P. A. Golovach, F. Panolan, G. Philip, and S. Saurabh 31:5

▶ Theorem 3. Given a representation of the matroid M over a finite field GF(q) as input,
we can compute a kernel of Weighted Diverse Bases of size O(k6d4 log q).

We then show that our second matroid-related diverse problem is also FPT under the
same parameterization.

▶ Theorem 4. Weighted Diverse Common Independent Sets can be solved in time
2O(k3d2 log(kd)) · |E|O(1).

We now turn to the problem of finding diverse perfect matchings. Diverse Perfect
Matchings is known to be NP-hard already when k = 2 and G is a 3-regular graph [16, 10].
Since all perfect matchings of a graph have the same size the symmetric difference of two
distinct perfect matchings is at least 2. Setting d = 1 in Diverse Perfect Matchings
is thus equivalent to asking whether G has at least k distinct perfect matchings. Since a
bipartite graph on n vertices has at most n

2 ! perfect matchings and since log(n
2 !) = O(n log n)

we get – using binary search – that there is a polynomial-time Turing reduction from the
problem of counting the number of perfect matchings in a bipartite graph to Diverse
Perfect Matchings instances with d = 1. Since the former problem is #P-complete [19]
we get

▶ Theorem 5. Diverse Perfect Matchings with d = 1 cannot be solved in time
polynomial in n = |V (G)| even when graph G is bipartite, unless P = NP.

Thus we get that Diverse Perfect Matchings is unlikely to have a polynomial-time
algorithm even if one of the two numbers k, d is a small constant. We show that the problem
does have a (randomized) polynomial-time algorithm when both these parameters are bounded;
Diverse Perfect Matchings is (randomized) FPT with k and d as parameters:

▶ Theorem 6. There is an algorithm that given an instance of Diverse Perfect Match-
ings, runs in time 22O(kd)

nO(1) and outputs the following: If the input is a No-instance then
the algorithm outputs No. Otherwise the algorithm outputs Yes with probability at least
1 − 1

e .

Note that Theorem 6 implies, in particular, that Diverse Perfect Matchings can be
solved in (randomized) polynomial time when kd ≤ c1 + log log n

c2
holds for some constants

c1, c2 which depend on the constant hidden by the O() notation.

Our methods

We prove the NP-hardness results (Theorem 1) by reduction from the 3-Partition problem.
To show that Weighted Diverse Bases is FPT (Theorem 2) we observe first that if the
input matroid M contains a set of size Ω(kd) which is both independent and co-independent
in M then the input is a Yes instance of Weighted Diverse Bases (Lemma 14). We can
check for the existence of such a set in time polynomial in |E(M)|, so we assume without
loss of generality that no such set exists. We then show that starting with an arbitrary
basis of M and repeatedly applying the greedy algorithm (Proposition 9) poly(k, d)-many
times we can find, in time polynomial in (|E(M)| + k + d), (i) a subset S∗ ⊆ E(M) of size
poly(k, d) and (ii) a matroid M̃ on the ground set S∗ such that (M̃, ω, k, d) is equivalent to
the input instance (M, ω, k, d) (Lemma 15). We also show how to compute a useful partition
of E(M̃) = S∗ which speeds up the subsequent FPT-time search for a diverse set of bases in
M̃ . The kernelization result for Weighted Diverse Bases (Theorem 3) follows directly
from Lemma 15. This “compression lemma” is thus the main technical component of our
algorithms for Weighted Diverse Bases.

STACS 2021

31:6 Diverse Collections in Matroids and Graphs

To show that Weighted Diverse Common Independent Sets is FPT (Theorem 4)
we observe first that if the two input matroids M1, M2 have a common independent set of
size Ω(kd) then the input is a Yes instance of Weighted Diverse Common Independent
Sets (Lemma 16). So we assume that this is not the case, and then show (Lemma 17) that
we can construct, in f(k, d) time, a collection F of common independent sets of M1 and
M2 of size g(k, d) such that if the input is a Yes-instance then it has a solution I1, . . . , Ik

with Ii ∈ F for i ∈ {1, . . . , k}. The FPT algorithm for Weighted Diverse Common
Independent Sets follows by a simple search in the collection F .

Our algorithm for Diverse Perfect Matchings is based on two procedures.
P1 Given an undirected graph G on n vertices, perfect matchings M1, . . . , Mr of G, and a

non-negative integer s as input, this procedure (Lemma 18) runs in time 2O(rs)nO(1) and
outputs a perfect matching M of G such that |M △ Mi| ≥ 2s holds for all i ∈ {1, . . . , r}
(if such a matching exists), with probability at least 2

3 e−rs.
P2 Given an undirected graph G on n vertices, a perfect matching M of G, and non-negative

integers r, d, s, this procedure(Lemma 19) runs in time 2O(r2s)nO(1), and outputs r perfect
matchings M⋆

1 , . . . , M⋆
r of G such that |M △ M⋆

i | ≤ s holds for all i ∈ {1, . . . , r} and
|M⋆

i △ M⋆
j | ≥ d holds for all distinct i, j ∈ [r] (if such matchings exist), with probability

at least e−rs. If no such perfect matchings exist, then the algorithm outputs No.

Let (G, k, d) be the input instance of Diverse Perfect Matchings. We use procedure
P1 to greedily compute a collection of matchings which are “far apart”: We start with
an arbitrary perfect matching M1. In step i, we have a collection of perfect matchings
M1, . . . , Mi−1 such that |Mj △ Mj′ | ≥ 2k−id holds for any two distinct j, j′ ∈ {1, . . . , i − 1}.
We now run procedure P1 with r = i − 1 and s = 2k−id to find – if it exists – a matching
Mi such that |Mi △ Mj | ≥ 2k−i+1d holds for all j ∈ {1, . . . , i}. By exhaustively applying P1
we get a collection of perfect matchings M1, . . . , Mq such that

(a) for any two distinct integers i, j ∈ {1, . . . , q}, |Mi △ Mj | ≥ 2k−q+1d, and
(b) for any other perfect matching M /∈ {M1, . . . , Mq}, |M △ Mj | ≤ 2k−qd.

Thus, if k ≤ q, then clearly {M1, . . . , Mk} is a solution. Otherwise, let M =
{M⋆

1 , . . . , M⋆
k } be a hypothetical solution. Then for each M⋆

i there is a unique matching Mj

in {M1, . . . , Mq} such that |Mj △ M⋆
i | < 2(k−q)d holds (Claim 20). For each i ∈ {1, . . . , q}

we guess the number ri of perfect matchings from M that are close to Mi, and use procedure
P2 to compute a set of ri diverse perfect matchings that are close to Mi. The union of all
the matchings computed for all i ∈ {1, . . . , q} form a solution.

We use algebraic methods and color coding to design procedure P1. The Tutte matrix A
of an undirected graph G over the field F2[X] is defined as follows, where F2 is the Galois
field on {0, 1} and X = {xe : e ∈ E(G)}. The rows and columns of A are labeled with
V (G) and for each e = {u, v} ∈ E(G), A[u, v] = A[v, u] = xe. All other entries in A are
zeros. There is a bijective correspondence between the set of monomials of det(A) and the
set of perfect matchings of G. Procedure P1 extracts the required matching from det(A)
using color coding. Procedure P2 is realized using color coding and dynamic programming.

Related work

Recall that all bases of a matroid have the same size, and that the number of bases of a
matroid on ground set E is at most 2|E|. So using the same argument as for Theorem 5
we get that Weighted Diverse Bases generalizes – via Turing reductions – the problem
of counting the number of bases of a matroid. Each of these reduced Weighted Diverse

F. V. Fomin, P. A. Golovach, F. Panolan, G. Philip, and S. Saurabh 31:7

Bases instances will have d = 1, and a weight function which assigns the weight 1 to each
element in the ground set. Counting the number of bases of a matroid is known to be
#P-complete even for restricted classes of matroids such as transversal [3], bircircular [14],
and binary matroids [20]. Hence we have the following alternative2 hardness result for
Weighted Diverse Bases

▶ Theorem 7. Weighted Diverse Bases cannot be solved in time polynomial in |E(M)|
unless P = NP, even when d = 1 and every element of the ground set E(M) has weight 1.

The study of the parameterized complexity of finding diverse sets of solutions is a very
recent development, and only a handful of results are currently known. In the work which
introduced this notion Baste et al. [1] showed that diverse variants of a large class of graph
problems which are FPT when parameterized by the treewidth of the input graph, are also
FPT when parameterized by the treewidth and the number of solutions in the collection.
In a second article [2] the authors show that for each fixed positive integer d, two diverse
variants – one with the minimum Hamming distance of any pair of solutions, and the other
with the sum of all pairwise Hamming distances of solutions – of the d-Hitting Set problem
are FPT when parameterized by the size of the hitting set and the number of solutions. In
a recent manuscript on diverse FPT algorithms [10] the authors show that the problem of
finding two maximum-sized matchings in an undirected graph such that their symmetric
difference is at least d, is FPT when parameterized by d. Note that our result on Diverse
Perfect Matchings generalizes this to k ≥ 2 matchings, provided the input graph has a
perfect matching.

In a very recent manuscript Hanaka et al. [15] propose a number of results about finding
diverse solutions. We briefly summarize their results which are germane to our work. For a
collection of sets X1, . . . , Xk let dsum(X1, . . . , Xk) denote the sum of all pairwise Hamming
distances of these sets and let dmin(X1, . . . , Xk) denote the smallest Hamming distance of
any pair of sets in the collection. Hanaka et al. show that there is an algorithm which takes
an independence oracle for a matroid M and an integer k as input, runs in time polynomial
in (|E(M)| + k), and finds a collection B1, B2, . . . , Bk of k bases of M which maximizes
dsum(B1, B2, . . . , Bk). This result differs from our work on Weighted Diverse Bases in
two key aspects. They deal with the unweighted (counting) case, and their diversity measure
is the sum of the pairwise symmetric differences, whereas we look at the minimum (weight
of the) symmetric difference. These two measures are, in general, not comparable.

Hanaka et al. also look at the complexity of finding k matchings M1, . . . , Mk in a graph
G where each Mi is of size t. They show that such collections of matchings maximizing
dmin(M1, . . . , Mk) and dsum(M1, . . . , Mk) can be found in time 2O(kt log(kt)) · |V (G)|O(1). The
key difference with our work is that their algorithm looks for matchings of a specified size
t whereas ours looks for perfect matchings, of size t = |V (G)|

2 ; note that this t does not
appear in the exponential part of the running time of our algorithm (Theorem 6). The
manuscript [15] has a variety of other interesting results on diverse FPT algorithms as well.

Organization of the rest of the paper

In the next section we collect together some preliminary results. In Section 3 we prove
that Weighted Diverse Bases and Weighted Diverse Common Independent Sets
are strongly NP-hard. In Section 4 we derive our FPT and kernelization algorithms for

2 Compare with Theorem 1.

STACS 2021

31:8 Diverse Collections in Matroids and Graphs

Weighted Diverse Bases, and in Section 5 we show that Weighted Diverse Common
Independent Sets is FPT. We derive our results for Diverse Perfect Matchings in
Section 6. We conclude in Section 7.

All the proofs omitted in this Extended Abstract can be found in the full version on
arXiv at https://arxiv.org/abs/2101.04633.

2 Preliminaries

We use X △ Y to denote the symmetric difference (X \ Y) ∪ (Y \ X) of sets X and Y . We
use N to denote the set of positive integers.

A parameterized problem Π is a subset of Σ∗ × N, where Σ is a finite alphabet. We say
that a parameterized problem Π is fixed parameter tractable (FPT), if there is an algorithm
that given an instance (x, k) of Π as input, solves in time f(k)|x|O(1), where f is an arbitrary
function and |x| is the length of x. A kernelization algorithm for a parameterized problem
Π is a polynomial time algorithm (computable function) A : Σ∗ × N → Σ∗ × N such that
(x, k) ∈ Π if and only if (x′, k′) = A((x, k)) ∈ Π and |x′| + k′ ≤ g(k) for some computable
function g. When g is a polynomial function, we say that Π admits a polynomial kernel. For
a detailed overview about parameterized complexity we refer to the monographs [5, 4, 11]

A pair M = (E, I), where E is a finite ground set and I is a family of subsets of the
ground set, called independent sets of E, is a matroid if it satisfies the following conditions,
called independence axioms: (I1) ∅ ∈ I; (I2) If A ⊆ B ⊆ E(M) and B ∈ I then A ∈ I,
and (I3) If A, B ∈ I and |A| < |B|, then there is e ∈ B \ A such that A ∪ {e} ∈ I. We use
E(M) and I(M) to denote the ground set and the set of independent sets, respectively. As
is standard for matroid problems, we assume that each matroid M that appears in the input
is given by an independence oracle, that is, an oracle that in constant (or polynomial) time
replies whether a given A ⊆ E(M) is independent in M or not. An inclusion-wise maximal
independent set B is called a basis of M . All the bases of M have the same size that is
called the rank of M , denoted rank(M). The rank of a subset A ⊆ E(M), denoted rank(A),
is the maximum size of an independent set X ⊆ A; the function rank : 2E(M) → Z is the rank
function of M .

The dual of a matroid M = (E, I), denoted M∗, is the matroid whose ground set is E

and whose set of bases is B∗ = {B | B ∈ B(M)}. That is, the bases of M∗ are exactly the
complements of the bases of M . A basis (independent set, rank, respectively) of M∗ is a
cobasis (coindependent set, corank, respectively) of M . Given an independence oracle for M

we can construct – with an overhead which is polynomial in |E| – a rank oracle for M , and
thence corank and coindependence oracles for M .

Let M be a matroid and let F be a field. An n × m-matrix A over F is a representation
of M over F if there is one-to-one correspondence f between E(M) and the set of columns
of A such that for any X ⊆ E(M), X ∈ I(M) if and only if the columns f(X) are linearly
independent (as vectors of Fn); if M has such a representation, then it is said that M has a
representation over F. In other words, A is a representation of M if M is isomorphic to the
linear matroid of A, i.e., the matroid whose ground set is the set of columns of A and a set
of columns is independent if and only if these columns are linearly independent.

Let 1 ≤ r ≤ n be integers. We use Ur
n to denote the uniform matroid, that is, the matroid

with the ground set of size n such that the bases are all r-element subsets of the ground set.
We use the classical results of Edmonds [7] and Frank [12] about the Weighed Matroid

Intersection problem. The task of this problem is, given two matroids M1 and M2 with
the same ground set E and a weight function ω : E → N, find a set X of maximum weight

https://arxiv.org/abs/2101.04633

F. V. Fomin, P. A. Golovach, F. Panolan, G. Philip, and S. Saurabh 31:9

such that X is independent in both matroids. Edmonds [7] proved that the problem can
be solved in polynomial time for the unweighted case (that is, the task is to find a common
independent set of maximum size; we refer to this variant as Matroid Intersection) and
the result was generalized for the variant with the weights by Frank in [12].

▶ Proposition 8 ([7, 12]). Weighted Matroid Intersection can be solved in polynomial
time.

We also need another classical result of Edmonds [8] that a basis of maximum weight can
be found by the greedy algorithm. Recall that, given a matroid M with a weight function
ω : E(M) → N, the greedy algorithm finds a basis B of maximum weight as follows. Initially,
B := ∅. Then at each iteration, the algorithm finds an element of x ∈ E(M) \ B of maximum
weight such that B ∪ {x} is independent and sets B := B ∪ {x}. The algorithms stops when
there is no element that can be added to B.

▶ Proposition 9 ([8]). The greedy algorithm finds a basis of maximum weight of a weighted
matroid in polynomial time.

We need the following observation(See [17, Lemma 2.1.10]).

▶ Observation 10. Let X and Y be disjoint sets such that X is independent and Y is
coindependent in a matroid M . Then there is a basis B of M such that X ⊆ B and
Y ∩ B = ∅.

Observe that for any sets X and Y that are subsets of the same universe, X △Y = X △Y .
This implies the following.

▶ Observation 11. For every matroid M , every weight function ω : E(M) → N, and all
integers k ≥ 1 and d ≥ 0, the instances (M, ω, k, d) and (M∗, ω, k, d) of Weighted Diverse
Bases are equivalent.

We need the following simple observations about the symmetric differences of perfect
matchings.

▶ Observation 12. The cardinality of symmetric differences of perfect matchings in a graph
obeys the triangle inequality. That is, for a graph G and perfect matchings M1, M2, M3 in G,
|M1 △ M2| + |M2 △ M3| ≥ |M1 △ M3|.

▶ Observation 13. Let G be a graph and M1 and M2 be two perfect matchings in G. Then
|M1 △ M2| = 2 · |M1 \ M2| = 2 · |M2 \ M1|.

3 Hardness of Weighted Diverse Bases and Weighted Diverse
Common Independent Sets

Both Weighted Diverse Bases and Weighted Diverse Common Independent Sets
are NP-complete in the strong sense even for uniform matroids. Both reductions are from
the 3-Partition problem which is known to be NP-complete in the strong sense, i.e., it is
NP-complete even if the various integers in the input are encoded in unary [13, SP15].

▶ Theorem 1. Both Weighted Diverse Bases and Weighted Diverse Common
Independent Sets are strongly NP-complete, even on the uniform matroids U3

n.

STACS 2021

31:10 Diverse Collections in Matroids and Graphs

4 An FPT algorithm and kernelization for Weighted Diverse Bases

In this section we show that Weighted Diverse Bases is FPT when parameterized by k

and d. Moreover, if the input matroid is representable over a finite field and is given by such
a representation, then Weighted Diverse Bases admits a polynomial kernel. We start
with the observation that if the input matroid has a sufficiently big set that is simultaneously
independent and coindependent, then diverse bases always exist.

▶ Lemma 14. Let M be a matroid, and let k ≥ 1 and d ≥ 0 be integers. If there is X ⊆ E(M)
of size at least k⌈ d

2 ⌉ such that X is simultaneously independent and coindependent, then
(M, ω, k, d) is a yes-instance of Weighted Diverse Bases for any weight function ω.

Proof. Let X ⊆ E(M) be a set of size at least k⌈ d
2 ⌉ such that X is simultaneously independent

and coindependent. Then there is a partition X1, . . . , Xk of X such that |Xi| ≥ ⌈ d
2 ⌉ for every

i ∈ {1, . . . , k}. Let i ∈ {1, . . . , k}. Since X is independent, Xi is independent, and since X is
coindependent, then X \ Xi is coindependent. Then by Observation 10, there is a basis Bi of
M such that Xi ⊆ Bi and Bi ∩ (X \ Xi) = ∅. The latter property means that Bi ∩ Xj = ∅
for every j ∈ {1, . . . , k} such that j ̸= i. We consider the bases Bi defined in this manner for
all i ∈ {1, . . . , k}. Then for every distinct i, j ∈ {1, . . . , k}, Xi ∪ Xj ⊆ Bi △ Bj . Therefore,
ω(Bi △ Bj) ≥ ω(Xi ∪ Xj) ≥ |Xi ∪ Xj | = |Xi| + |Xj | ≥ 2⌈ d

2 ⌉ ≥ d for any ω : E(M) → N.
Hence, (M, ω, k, d) is a yes-instance of Weighted Diverse Bases. ◀

Using Proposition 8 we can check, in polynomial time, whether the conditions of Lemma 14
are satisfied. If they are, then we correctly return Yes. We show that if there is no such
large set X as in Lemma 14 then there is a way to repeatedly apply the greedy algorithm
of Proposition 9 to obtain an equivalent small instance of the problem, as stated in the
following “compression” lemma.

▶ Lemma 15. There is an algorithm that, given an instance (M, ω, k, d) of Weighted
Diverse Bases, runs in time polynomial in (|E(M)| + k + d) and either correctly decides
that (M, ω, k, d) is a yes-instance or outputs an equivalent instance (M̃, ω, k, d) of Weighted
Diverse Bases such that E(M̃) ⊆ E(M) and |E(M̃)| ≤ 2⌈ d

2 ⌉2k3. In the latter case, the
algorithm also computes a partition (L, L∗) of E(M̃) with the property that for every basis
B of M̃ , |B ∩ L| ≤ ⌈ d

2 ⌉k and |L∗ \ B| ≤ ⌈ d
2 ⌉k, and the algorithm outputs an independence

oracle for M̃ that answers queries for M̃ in time polynomial in |E(M)|. Moreover, if M is
representable over a finite field F and is given by such a representation, then the algorithm
outputs a representation of M̃ over F.

Given Lemma 15 it is easy to show that Weighted Diverse Bases is FPT when
parameterized by k and d.

▶ Theorem 2. Weighted Diverse Bases can be solved in 2O(dk2(log k+log d)) · |E(M)|O(1)

time.

Proof. Let (M, ω, k, d) be an instance of Weighted Diverse Bases. We run the algorithm
from Lemma 15. If the algorithm solves the problem, then we are done. Otherwise, the
algorithm outputs an equivalent instance (M̃, ω, k, d) of Weighted Diverse Bases such
that E(M̃) ⊆ E(M) and |E(M̃)| ≤ 2⌈ d

2 ⌉2k3. Moreover, the algorithm computes the partition
(L, L∗) of E(M̃) with the property that for every basis B of M̃ , |B ∩ L| ≤ ⌈ d

2 ⌉k and
|L∗ \ B| ≤ ⌈ d

2 ⌉k. Then we check all possible k-tuples of bases by brute force and verify
whether there are k bases forming a solution. By the properties of L and L∗, M̃ has

F. V. Fomin, P. A. Golovach, F. Panolan, G. Philip, and S. Saurabh 31:11

(d2k3)O(dk) distinct bases. Therefore, we check at most (d2k3)O(dk2) k-tuples of bases. We
conclude that this checking can be done in 2O(dk2(log k+log d)) · |E(M)|O(1) time, and the claim
follows. ◀

If the input matroid is given by a representation over a finite field, then Weighted
Diverse Bases also admits a polynomial kernel when parameterized by k and d.

▶ Theorem 3. Given a representation of the matroid M over a finite field GF(q) as input,
we can compute a kernel of Weighted Diverse Bases of size O(k6d4 log q).

Proof. Let (M, ω, k, d) be an instance of Weighted Diverse Bases. Let also A be its
representation over GF(q). We run the algorithm from Lemma 15. If the algorithm solves
the problem and reports that (M, ω, k, d) is a yes-instance, we return a trivial yes-instance
of the problem. Otherwise, the algorithm outputs an equivalent instance (M̃, ω, k, d) of
Weighted Diverse Bases such that E(M̃) ⊆ E(M) and |E(M̃)| ≤ 2⌈ d

2 ⌉2k3. Moreover,
the algorithm computes a representation Ã of M̃ over GF(q). Clearly, it can be assumed
that the number of rows of the matrix Ã equals rank(M̃). Since rank(M̃) ≤ |E(M̃)|, the
matrix Ã has O(k6d4) elements. Because Ã is a matrix over GF(q), it can be encoded by
O(k6d4 log q) bits. Finally, note that the weights of the elements can be truncated by d, that
is, we can set ω(e) := min{ω(e), d} for every e ∈ E(M̃). Then the weights can be encoded
using O(d2k3 log d) bits. This concludes the construction of our kernel. ◀

5 An FPT algorithm for Weighted Diverse Common Independent Sets

In this section we show that Weighted Diverse Common Independent Sets is FPT
when parameterized by k and d. We use a similar win-win approach as for Weighted
Diverse Bases and observe that if the two matroids from an instance of Weighted
Diverse Common Independent Sets have a sufficiently big common independent set,
then we have a yes-instance of Weighted Diverse Common Independent Sets.

▶ Lemma 16. Let M1 and M2 be matroids with a common ground set E, and let k ≥ 1
and d ≥ 0 be integers. If there is an X ⊆ E of size at least k⌈ d

2 ⌉ such that X is a
common independent set of M1 and M2, then (M1, M2, ω, k, d) is a yes-instance of Weighted
Diverse Common Independent Sets for any weight function ω : E → N.

Lemma 16 implies that we can assume that the maximum size of a common independent
set of the input matroids is bounded. We use this to prove the following crucial lemma.

▶ Lemma 17. Let (M1, M2, ω, k, d) be an instance of Weighted Diverse Common In-
dependent Sets such that the maximum size of a common independent set of M1 and
M2 is at most s. Then there is a set F of common independent sets of M1 and M2, of size
|F| = 2O(s2 log(ks)) · d, such that if (M1, M2, ω, k, d) is a yes-instance of Weighted Diverse
Common Independent Sets then the instance has a solution I1, . . . , Ik with Ii ∈ F for
i ∈ {1, . . . , k}. Moreover, F can be constructed in 2O(s2 log(ks)) · d · |E|O(1) time where E is
the (common) ground set of M1 and M2.

Combining Lemma 16 and Lemma 17, we obtain the main result of this section.

▶ Theorem 4. Weighted Diverse Common Independent Sets can be solved in time
2O(k3d2 log(kd)) · |E|O(1).

STACS 2021

31:12 Diverse Collections in Matroids and Graphs

Proof. Let (M1, M2, ω, k, d) be an instance of Weighted Diverse Common Independent
Sets. First, we use Proposition 8 to solve Matroid Intersection for M1 and M2 and
find a common independent set X of maximum size. If |X| ≥ k⌈ d

2 ⌉, then by Lemma 16, we
conclude that (M1, M2, ω, k, d) is a yes-instance. Assume that this is not the case. Then
the maximum size of a common independent set of M1 and M2 is s < k⌈ d

2 ⌉. We apply
Lemma 17 and construct the set F of size 2O((kd)2 log(kd)) in 2O((kd)2 log(kd)) · |E|O(1) time.
By this lemma, if (M1, M2, ω, k, d) is a yes-instance, it has a solution I1, . . . , Ik such that
Ii ∈ F for i ∈ {1, . . . , k}. Hence, to solve the problem we go over all k-tuples of the elements
of F , and for each k-tuple, we verify whether these common independent sets of M1 and M2
give a solution. Clearly, we have to consider 2O(k3d2 log(kd)) tuples. Hence, the total running
time is 2O(k3d2 log(kd)) · |E|O(1). ◀

6 Perfect Matchings

In this section we prove that Diverse Perfect Matchings is fixed parameter tractable
when parameterized by k and d. There are two main ingredients to our algorithm. The first
ingredient is an algorithm that helps us greedily compute a collection of matchings which
are “far apart”.

▶ Lemma 18. There is an algorithm that given an undirected graph G, perfect matchings
M1, . . . , Mr, and a non-negative integer s, runs in time 2O(rs)nO(1), and outputs a perfect
matching M such that |M \ Mi| ≥ s for all i ∈ {1, . . . , r} (if such a matching exists) with
probability at least 2

3 e−rs.

The second ingredient is an algorithm which lets us compute matchings which are “close”
to each matching in the “spread-out” collection computed using Lemma 18.

▶ Lemma 19. There is an algorithm that given an undirected graph G, a perfect matching M ,
and non-negative integers r, d, s, runs in time 2O(r2s)nO(1), and outputs r perfect matchings
M⋆

1 , . . . , M⋆
r such that |M △ M⋆

i | ≤ s for all i ∈ {1, . . . , r} and |M⋆
i △ M⋆

j | ≥ d for all
distinct i, j ∈ [r] (if such matchings exist) with probability at least e−rs. If no such perfect
matchings exist, then the algorithm outputs No

Putting these two ingredients together we get

▶ Theorem 6. There is an algorithm that given an instance of Diverse Perfect Match-
ings, runs in time 22O(kd)

nO(1) and outputs the following: If the input is a No-instance then
the algorithm outputs No. Otherwise the algorithm outputs Yes with probability at least
1 − 1

e .

Proof. Let (G, k, d) be the input instance. Our algorithm A has two steps. In the first
step of A we compute a collection of matchings greedily such that they are far apart using
Lemma 18. Towards that first we run an algorithm to compute a maximum matching in G

and let M1 be the output. If M1 is not a perfect matching we output No and stop. Next
we iteratively apply Lemma 18 to compute a collection of perfect matchings that are far
apart. Formally, at the beginning of step i, where ≤ 1 ≤ i < k, we have perfect matchings
M1, . . . , Mi such that |Mj \ Mj′ | ≥ 2k−id for any two distinct j, j′ ∈ {1, . . . , i}. Now, we
apply Lemma 18 with r = i and s = 2k−i−1d and it will either output a matching Mi+1 such
that |Mi+1 \ Mj | ≥ 2k−i−1d for all j ∈ {1, . . . , i}, or not. If no such matching exists, then
the first step of the algorithm A is complete. So at the end of the first step of the algorithm
A, we have perfect matchings M1, . . . , Mq, where q ∈ {1, . . . , k} such that

F. V. Fomin, P. A. Golovach, F. Panolan, G. Philip, and S. Saurabh 31:13

(i) for any two distinct integers i, j ∈ {1, . . . , q}, |Mi \ Mj | ≥ 2k−qd, and
(ii) if q ̸= k, then for any other perfect matching M /∈ {M1, . . . , Mq}, |M \ Mj | ≤ 2k−q−1d.

If q = k, then {M1, . . . , Mk} is a solution to the instance (G, k, d), and hence our algorithm
A outputs Yes. Now on, we assume that q ∈ {1, . . . , k − 1}. Statements (i) and (ii), and
Observation 13 imply that

(iii) for any two distinct integers i, j ∈ {1, . . . , q}, |Mi △ Mj | ≥ 2k−q+1d, and
(iv) for any perfect matching M /∈ {M1, . . . , Mq}, |M △ Mj | < 2k−qd.

Statements (ii) and (iv), and Observation 12 imply the following claim.

▷ Claim 20. For any perfect matching M , there exists a unique i ∈ {1, . . . , q} such that
|M △ Mi| < 2k−qd.

Let M = {M⋆
1 , . . . , M⋆

k } is a solution to the instance (G, k, d). Then, by Claim 20, there
is a partition of M into M1 ⊎ . . . ⊎ Mq (with some blocks possibly being empty) such that
for each i ∈ {1, . . . , q}, and each M ∈ Mi, |M △ Mi| ≤ 2k−qd. Thus, in the second step
of our algorithm A, we guess r1 = |M1|, . . . , rq = |Mq| and apply Lemma 19. That is,
for each i ∈ {1, . . . , q} such that ri ̸= 0, we apply Lemma 19 with M = Mi, r = ri, and
s = 2k−qd. Then for each i ∈ 1, . . . , q, let the output of Lemma 19 be Ni,1, . . . , Nri

. Clearly
|Ni,j △ Ni,j′ | ≥ d for any two distinct j, j′ ∈ {1, . . . , ri}. Observation 12 and statement (iii)
implies that for any two distinct i, j ∈ {1, . . . , q}, the cardinality of the symmetric difference
between a matching in {Ni,1, . . . , Ni,ri} and a matching in {Nj,1,...,Nj,rj

} is at least d.
If algorithm A computes a solution in any of the guesses for r1, . . . , rd, then we output

Yes. Otherwise we output No. As the number of choices for r1, . . . rk is upper bounded
by kO(k), from Lemmas 18 and 19 we get that the running time of A is 22O(kd)

nO(1) and
the success probability is at least 2−2ckd for some constant c. To get success probability
1 − 1/e, we do 22ckd many executions of A and output Yes if we succeed in at least one
of the iterations and output No otherwise. Thus, running time of the overall algorithm is
22O(kd)

nO(1). ◀

7 Conclusion

We took up weighted diverse variants of two classical matroid problems and the unweighted
diverse variant of a classical graph problem. We showed that the two diverse matroid
problems are NP-hard, and that the diverse graph problem cannot be solved in polynomial
time even for the smallest sensible measure of diversity. We then showed that all three
problems are FPT with the combined parameter (k, d) where k is the number of solutions
and d is the diversity measure.

We conclude with a list of open questions:
We showed that the unweighted, counting variant of Weighted Diverse Bases does
not have a polynomial-time algorithm unless P = NP (Theorem 7). This is the case when
all the weights are 1 and d = 1 or d = 2. Both the weighted and unweighted variants can
be solved in polynomial time when k = 1 (the greedy algorithm) and k = 2 ((weighted)
matroid intersection). What happens for larger, constant values of d and/or k? Till what
values of d, k does the problem remain solvable in polynomial time? These questions are
interesting also for special types of matroids. For instance, is there a polynomial-time
algorithm that checks if an input graph has three spanning trees whose edge sets have
pairwise symmetric difference at least d, or is this already NP-hard?

STACS 2021

31:14 Diverse Collections in Matroids and Graphs

A potentially easier question along the same vein would be: we know from Theorem 7
that Weighted Diverse Bases is unlikely to have an FPT algorithm parameterized by
d alone. Is Weighted Diverse Bases FPT parameterized by k alone?
Unlike for the other two problems, we don’t have hardness results for Weighted Diverse
Common Independent Sets for small values of k or d. Is Weighted Diverse Common
Independent Sets FPT when parameterized by either d or k? Is this problem in P
when all the weights are 1?

References
1 Julien Baste, Michael R. Fellows, Lars Jaffke, Tomáš Masařík, Mateus de Oliveira Oliveira,

Geevarghese Philip, and Frances A. Rosamond. Diversity of solutions: An exploration
through the lens of fixed-parameter tractability theory, 2019. To appear at IJCAI 2020,
arXiv:1903.07410.

2 Julien Baste, Lars Jaffke, Tomáš Masařík, Geevarghese Philip, and Günter Rote. FPT
algorithms for diverse collections of hitting sets. Algorithms, 12(12):254, 2019.

3 Charles J. Colbourn, J. Scott Provan, and Dirk Vertigan. The complexity of computing the
Tutte polynomial on transversal matroids. Combinatorica, 15(1):1–10, 1995. doi:10.1007/
BF01294456.

4 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer Publishing
Company, Incorporated, 1st edition, 2015.

5 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

6 Jack Edmonds. Lehman’s switching game and a theorem of tutte and nash-williams. J. Res.
Nat. Bur. Standards Sect. B, 69:73–77, 1965.

7 Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial
Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), pages
69–87. Gordon and Breach, New York, 1970.

8 Jack Edmonds. Matroids and the greedy algorithm. Math. Program., 1(1):127–136, 1971.
doi:10.1007/BF01584082.

9 Michael Ralph Fellows. The diverse X paradigm. Manuscript, November 2018.
10 Fedor V. Fomin, Petr A. Golovach, Lars Jaffke, Geevarghese Philip, and Danil Sagunov.

Diverse pairs of matchings. CoRR, abs/2009.04567, 2020. arXiv:2009.04567.
11 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization:

Theory of Parameterized Preprocessing. Cambridge University Press, 2019. doi:10.1017/
9781107415157.

12 András Frank. A weighted matroid intersection algorithm. J. Algorithms, 2(4):328–336, 1981.
doi:10.1016/0196-6774(81)90032-8.

13 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

14 Omer Giménez and Marc Noy. On the complexity of computing the Tutte polynomial
of bicircular matroids. Combin. Probab. Comput., 15(3):385–395, 2006. doi:10.1017/
S0963548305007327.

15 Tesshu Hanaka, Yasuaki Kobayashi, Kazuhiro Kurita, and Yota Otachi. Finding diverse trees,
paths, and more, 2020. arXiv preprint. arXiv:2009.03687.

16 Ian Holyer. The NP-completeness of edge-coloring. SIAM Journal on computing, 10(4):718–720,
1981.

17 James G. Oxley. Matroid theory. Oxford University Press, 1992.
18 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer

Science & Business Media, 2003.
19 Leslie G Valiant. The complexity of computing the permanent. Theoretical computer science,

8(2):189–201, 1979.
20 Dirk Vertigan. Bicycle dimension and special points of the Tutte polynomial. J. Combin.

Theory Ser. B, 74(2):378–396, 1998. doi:10.1006/jctb.1998.1860.

https://arxiv.org/abs/1903.07410
https://doi.org/10.1007/BF01294456
https://doi.org/10.1007/BF01294456
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/BF01584082
http://arxiv.org/abs/2009.04567
https://doi.org/10.1017/9781107415157
https://doi.org/10.1017/9781107415157
https://doi.org/10.1016/0196-6774(81)90032-8
https://doi.org/10.1017/S0963548305007327
https://doi.org/10.1017/S0963548305007327
http://arxiv.org/abs/2009.03687
https://doi.org/10.1006/jctb.1998.1860

Rice-Like Theorems for Automata Networks
Guilhem Gamard
Aix-Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France

Pierre Guillon
Aix-Marseille Université, CNRS, I2M, Marseille, France

Kevin Perrot
Aix-Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France

Guillaume Theyssier
Aix-Marseille Université, CNRS, I2M, Marseille, France

Abstract
We prove general complexity lower bounds on automata networks, in the style of Rice’s theorem,
but in the computable world. Our main result is that testing any fixed first-order property on the
dynamics of an automata network is either trivial, or NP-hard, or coNP-hard. Moreover, there
exist such properties that are arbitrarily high in the polynomial-time hierarchy. We also prove
that testing a first-order property given as input on an automata network (also part of the input)
is PSPACE-hard. Besides, we show that, under a natural effectiveness condition, any nontrivial
property of the limit set of a nondeterministic network is PSPACE-hard. We also show that it
is PSPACE-hard to separate deterministic networks with a very high and a very low number of
limit configurations; however, the problem of deciding whether the number of limit configurations is
maximal up to a polynomial quantity belongs to the polynomial-time hierarchy.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Complexity classes

Keywords and phrases Automata networks, Rice theorem, complexity classes, polynomial hierarchy,
hardness

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.32

Funding This work has been partially supported by the French ANR project FANs ANR-18-CE40-
0002.

Acknowledgements We would like to thank the colleagues that were involved in some discussions
on the topic at the early stages of this work and somehow convinced us to pursue and finally settle
the main result.

1 Introduction

An automata network is a digraph where each node holds a state (among a finite set) that
evolves in function of the states of its inbound neighbors. All the nodes evolve at the same
time, in parallel. In other terms, the main difference between an automata network and a
cellular automaton is that the “grid” may be an arbitrary finite digraph, and that different
cells (nodes) may have different local functions. Since this definition is very general, any
finite dynamical system may be encoded into an automata network in a reasonable fashion.

Initially, Boolean automata networks, where the set of states is required to be {0, 1}
for all nodes, were introduced in the 1940’s as a formal model of neural networks [16].
Subsequently, linear automata networks, where the evolution function of each node is a linear
combination of its inputs, were investigated [3, 6, 9, 15], still motivated by neural networks.
General automata networks were then introduced in theoretical biology, in order to study the

© Guilhem Gamard, Pierre Guillon, Kevin Perrot, and Guillaume Theyssier;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 32; pp. 32:1–32:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.STACS.2021.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Rice-Like Theorems for Automata Networks

dynamics of gene expression and inhibition [14, 24]. They have since been further considered,
mostly from the standpoint of applications [7, 13, 17, 23], although theoretical results also
appeared [1, 4, 8, 19, 20].

In the literature, many questions about automata networks deal with the dynamics of the
system, i.e., the global function that it computes. For instance: does a given network have a
fixed point (i.e. a stable configuration)? How many of them does it have? Does it have a
cycle of exactly two configurations evolving one to the other? Does it have a configuration
with at least three predecessors? As one may suspect, such questions are computationally
hard to solve in general. The reason why one may have this intuition is that automata
networks can be viewed as a model of computation, so they probably are subject to some
kind of theorem in the flavor of Rice’s [18]:

▶ Theorem 1.1. Any nontrivial property of the function computed by a Turing machine is
undecidable.

One may object that automata networks are strictly less powerful than Turing machines,
for they lack unbounded memory. Any question about the function computed by an automata
network may be answered by exhaustive search, i.e., by enumerating all possible configurations
of the network (among finitely many), and testing each of them for the desired property.
That objection stands but the brute-force approach is not practical, for the number of
configurations is exponential in the size of network. On the other hand, most applications of
automata networks amount to answering questions about the functions that they compute.
We therefore endeavor to prove results along the lines of [2]:

▶ Metatheorem 1.2. Any nontrivial property of the function computed by an automata
network has high computational complexity.

Typically, “high computational complexity” means something like “NP-hard”, “co-NP-hard”
or even “PSPACE-hard”. As a consequence, there is probably no approach significantly
faster than brute-force for those questions, which makes them out of reach for our current
computational power. Thus, our results show that any application of automata networks
requiring fast testing of some dynamical property will have to rely on specific aspects of the
practical situation under consideration.

In order to make the statement of the metatheorem precise, we need to specify the
concepts of “property” and “nontriviality”. We obtained several different results that fit the
pattern of Metatheorem 1.2, with various tradeoffs on “property” and “nontriviality”, as
explained in the contributions and organization of the paper paragraph below.

Let F denote an automata network and X its set of configurations. The dynamics of F
may refer to two equivalent objects: either the function f : X → X given by the action of F ;
or the transition digraph (X,E) where E is the set {(x, f(x)) | x ∈ X}.

Specifying an automata network – say, by giving a Boolean circuit for the local function
of each node – is a way to specify its transition digraph in a concise way. Thus, some of our
results may be interpreted as statements about succinct graphs. However, in this paper we
mostly consider deterministic automata networks, i.e., networks whose transition digraph has
out-degree one. This restriction is not common in graph theory nor in finite model theory.
Still, some generalizations of our results might be of interest for those communities.

As usual with dynamical systems, the long-term behavior of an automata network is
of special interest. For pumping reasons, a deterministic automata network is always
ultimately periodic. Many practical questions can be asked about both the transient and
the periodic regimes of the system; therefore, it is interesting to know that such questions

G. Gamard, P. Guillon, K. Perrot, and G. Theyssier 32:3

are computationally hard. The periodic regime of an automata network is called its limit
dynamics. It is the dynamics spanned by the configurations that are always visited infinitely
many times whenever they are visited once. We have two kinds of results: some are about
the limit dynamics of a given automata network, and some are about the full dynamics.

Contributions and organization of the paper

In Section 2, we set up the formalism: definitions, first remarks, etc.
In Section 3, we prove that a large class of properties over the set of limit configurations
of networks are PSPACE-complete. This echoes a result from [12] on cellular automata.
In Section 4, we show that it is PSPACE-complete to distinguish automata networks with
a very small and a very high number of limit configurations. However, we show that the
problem of deciding whether this number is maximal up to a polynomial quantity (in the
number of states and the number of nodes) belongs to the arithmetical hierarchy.
In Section 5, we prove that if a property on the dynamics of automata networks is
expressible by a first-order formula over a simple signature, then its complexity is either
bounded, NP-hard, or co-NP-hard. In this setting, the formula is considered fixed, not
part of the input. We also observe that this result still holds when restricted to bijective
automata networks, or to limit dynamics instead of full dynamics.
In Section 6, we show that if the first-order formula is considered as part of the input,
then the previous problem becomes PSPACE-complete.

2 Definitions and terminology

Let {Ai}i∈I denote a finite family of finite sets and A =
∏

i∈I Ai. An automata network
(AN) is a function f from A to itself. We think of it as a system of finite automata linked to
each other, where the input of one automaton is the current state of the other automata
(thus there is no external input word). More precisely, Ai is the set of states of the ith

automaton (or node); an element of A is a configuration of the system (it assigns one state
to each automaton); and f : A → A gives the evolution of the system after one step of time.

We can split f into a family of local functions {fi}i∈I , where fi goes from A to Ai and
returns the state of the ith automaton at the next step. In other terms, if I = {1, . . . , n}
and a = (a1, . . . , an) is an element of A, then we have f(a) = (f1(a), f2(a), . . . , fn(a)). For a
given i, it might happen that fi(a) does not depend on all the components of a. For instance,
fi(a) might depend only on ai and ai−1 (where a0 stands for an). The interaction digraph
Gf of f is the graph (I, I) where I is the set of pairs (i, j) such that, for some a, b with
ak = bk for every k ̸= i, we have fj(a) ̸= fj(b). A configuration of an automata network may
be viewed as a labeling of the interaction digraph. The label of each node evolves under f ,
but the new label depends only on the labels of the inbound neighbours of the node.

The dynamics, or transition digraph, of a network f , denoted by Gf , is the graph of the
function f : it is given by (A,F), where F is the set of pairs (a, f(a)), for a ranging over A.
The limit set of an automata network f is denoted Ωf and defined as Ωf =

⋂
n∈N f

n(A). Its
elements are the limit configurations, which are those that are met infinitely often in at least
one execution of the system. The limit dynamics or the limit digraph of f is denoted Gω

f and
is the subgraph of Gf induced by Ωf . Figure 1 illustrates the definitions so far.

When all the Ai’s are equal, we say that f is an automata network with uniform alphabet,
or ANU for short.

All these definitions generalize immediately if f is a relation instead of a function; the
fi’s are then local relations. Such an object is called a nondeterministic automata network.
Unless explicitly mentioned, automata networks are supposed to be deterministic.

STACS 2021

32:4 Rice-Like Theorems for Automata Networks

f1(x) =
{
x1 + 1 if x1 ̸= 2
x1 − 1 otherwise

f2(x) =
{
x2 + 1 if x1 ̸= 2
x2 − 1 otherwise

1

2

00 10 20

01 11 21

02 12 22

Figure 1 Example of automata network f for A1 = A2 = {0, 1, 2} (left), its interaction digraph
Gf (middle), and its transition digraph Gf (right). Ωf = {10, 11, 12, 20, 21, 22}.

When we need to give an automata network as input for an algorithm, we provide the
interaction digraph and one Boolean circuit for each local function (or relation). Circuit sizes
are assumed to be at most |Ai||A| (or 2|Ai|·|A|), because those are the sizes of the corresponding
truth tables. The nodes of the interaction digraph are assumed to be numbered 1, . . . , n
and each Ai is assumed to be of the form {0, . . . , |Ai| − 1}.

If P is a property that automata networks may or may not satisfy, and f is an automata
network, then we write f |= P if f satisfies P , and f ̸|= P otherwise. This is an abuse of
notation, and its precise meaning depends on the exact nature of P .

Unless otherwise stated, our reductions are polynomial-time many-one, and ≤p
tt denotes

polynomial-time truth-table reduction. For every integer k, the symbol Σp
k denotes the level

Σk of the polynomial hierarchy. For a decision problem P where an ANU is given as input, it
is natural to consider the Q-variant where the inputs are restricted to ANU having alphabet
Q. In the following, we will say that P is hard with fixed alphabet if there exists some Q such
that the Q-variant of the problem is hard. It will be the case of most of our hardness results
on ANU.

3 Abstract properties of limit sets

In this section, we focus on properties of the limit set and establish a Rice-like theorem
similar to the well-known result for limit sets of cellular automata [12].

A property P is a limit set property if, whenever two AN f and g have the same limit
sets (Ωf = Ωg), the following holds: f |= P ⇐⇒ g |= P . The simplest possible limit set is a
singleton, and the following lemma already shows that separating between singleton limit
sets and exponentially large ones can depend on arbitrary linear space Turing computations.

▶ Lemma 3.1. For any Turing machine M , any k ∈ N, any n ∈ N and any input u for M
of size at most n, there is an alphabet Q depending only on M and k and a deterministic
ANU fM,k,n,u : Qn → Qn and q0 ∈ Q such that:

if M accepts input u in at most kn −1 steps, using space at most n, then ΩfM,k,n,u
= {qn

0 };
otherwise, there is a configuration c ∈ ΩfM,k,n,u

belonging to a cyclic orbit of length kn

where state q0 never appears: ∀t ∈ N, ∀i ∈ {1, . . . , n} : f t
M,k,n,u(c)i ̸= q0.

Moreover, circuits for the local functions of fM,k,n,u can be computed in time poly(M,k, n, u).

Proof. Let Σ be the alphabet, S the state set of M , and ⊥, q0 fresh symbols. Define
H = S ⊔ {⊥} and Q = (Σ ×H × {0, . . . , k − 1}) ⊔ {q0}. Any configuration c ∈ Qn not
containing state q0 (i.e. ci ̸= q0 for all i) can be seen as a triple (cΣ, cH , ck) of configurations
in Σn, Hn and {1, . . . , k}n respectively. We say that configuration c is valid if it does not
contain state q0 and there is exactly one position i such that cH

i ∈ S. If c is valid, cΣ encodes
the content of the tape (limited to n cells), cH encodes the position and the state of the

G. Gamard, P. Guillon, K. Perrot, and G. Theyssier 32:5

Turing head, and ck encodes a counter between 0 and kn − 1 in base k. We call c0 the
valid configuration where cΣ represents the tape containing input u starting on the leftmost
position of the (finite) tape, cH represents the head in the initial state on the leftmost
position of the tape, and ck represents the number 0. The behavior of fM,k,n,u is as follows:
1. send any invalid configuration to qn

0 ;
2. send any valid configuration c such that ck represents value kn − 1 to configuration c0;
3. send any valid c such that cH represents a head in an accepting state to qn

0 ;
4. for any valid configuration c from which one step of M does not make the head move

outside the n-cell tape, fM,k,n,u performs this step and increments the value in ck;
5. for any other valid configuration c, leave cΣ and cH unchanged but increment ck.
It should be clear enough from the above description that circuits computing local maps of
fM,k,n,u can be produced in polynomial time given M , k, n and u.

Suppose first that M halts on input u in at most kn − 1 steps and using space at most n
and suppose for the sake of contradiction that there is a configuration c ∈ ΩfM,k,n,u

which is
not qn

0 . Then qn
0 cannot be in the orbit of c, so only cases 2, 4 and 5 are used in the orbit of

c. The counter is always incremented, until reaching kn − 1, so that c0 must appear in the
(periodic) orbit of c, and therefore c is in the orbit of c0. We get a contradiction because M
halts on input u in at most kn − 1 steps and using space at most n, so that case 3 must be
triggered at the corresponding step in the orbit of c0.

Suppose now that M does not halt within time kn − 1 and space n starting from input u.
We claim that c0 belongs to a cyclic orbit of length kn and that state q0 cannot appear in
this orbit. Indeed, validity of configurations is preserved under iteration of fM,k,n,u except in
case 3, which is discarded by hypothesis, and after kn − 1 applications of case 4 or 5, during
which the counter component ck is constantly incremented, we reach case 2 and the orbits
cycles back to c0. ◀

▶ Corollary 3.2. The following problem is PSPACE-complete, even with fixed alphabet:

Nilpotency
Input: a deterministic ANU f : {0, . . . , q − 1}n → {0, . . . , q − 1}n.
Question: does

∣∣Ωf

∣∣ = 1?

Proof. First, the problem is in PSPACE because checking that an AN on {q}n has a singleton
limit set can be done by checking that fqn(x) is the same configuration for all x ∈ {q}n.
Second, we can make a reduction from quantified Boolean satisfiability (QBF) problem [22]
as follows: let M be any Turing machine that solves the QBF problem in linear space by a
brute force algorithm and let k be large enough so that M works in less than kn time steps
on instances of QBF of size at most n. By Lemma 3.1, given an instance u of size at most n
of QBF to be solved by M , the AN fM,k,n,u can be produced in polynomial time and has a
singleton limit set if and only if u is true. The alphabet of fM,k,n,u only depends on machine
M , so we have a reduction working with fixed alphabet ANU. ◀

Next, we present another theorem, whose proof is inspired by [12]. Intuitively, the firing
squad from [12] is replaced by nondeterminism, and the nilpotency problem is replaced by the
problem of having an orbit completely avoiding a given state (whose hardness is established
by Lemma 3.1).

Given a collection of AN (deterministic or not, ANU or not, etc), we say that a property
is effectively nontrivial in the collection if there is a polynomial-time algorithm that, given
n in unary, produces two AN with n nodes belonging in this collection, one that satisfies

STACS 2021

32:6 Rice-Like Theorems for Automata Networks

the property and another one that does not. This condition of effectiveness is natural since,
if one wants to make some reduction to prove that a property is hard, then the reduction
usually induces an algorithm to produce models and counter-models of the property.

▶ Theorem 3.3. Effectively nontrivial limit set properties of nondeterministic AN are the
same as effectively nontrivial limit set properties of nondeterministic ANU. If P is an
effectively nontrivial limit set property of nondeterministic ANU, then the following problem
is PSPACE-hard for the ≤p

tt reduction:

P-limit-set
Input: a nondeterministic ANU f : {0, . . . , q − 1}n → {0, . . . , q − 1}n.
Question: does f |= P?

Proof. Every effectively nontrivial limit set property for nondeterministic ANU is also
effectively nontrivial for nondeterministic AN. Conversely, if P is effectively nontrivial for
nondeterministic AN, then there is a polynomial-time algorithm which, given n, produces a
model f1 and a counter-model f2 of P that may have nonuniform alphabets, but we can extend
them to larger alphabets while preserving the limit set by sending (deterministically) any
extra configuration to a fixed one that uses only the original alphabet. This transformation
is effective (a description by circuits of the new rule can be computed in polynomial time
from the description of the original rule). This proves the first claim of the theorem and
allows us to focus on ANU.

Given two (possibly nondeterministic) ANU f1 and f2 both acting on Qn
f , and a determin-

istic one h on Qn
h with some distinguished state q0 ∈ Qh, we define two nondeterministic ANU

g1 and g2 both acting on (Qf ∪ (Qf ×Qh))n as follows. We fix some q ∈ Qf . Intuitively, gi

mimics fi on Qn
f , and either mimics h on (Qf ×Qh)n or projects onto the Qf component

provided state q0 is not present in the Qh component of states. In any other case, the behavior
is go to configuration qn deterministically. To simplify notation we see any configuration
x ∈ (Qf ×Qh)n as a pair x = (xf , xh) ∈ Qn

f ×Qn
h. Then gi is defined as follows:

gi(x)v =

fi(x)v if x ∈ Qn

f ,

{(xf
v , h(xh)v), xf

v} if x = (xf , xh) ∈ Qn
f ×Qn

h and xh
j ̸= q0 for all j ∈ [n],

q otherwise,

for v ∈ {n} and i = 1, 2. It is straightforward to check that if state q0 appears in all orbits of
h, then Ωgi

= Ωfi
because, in this case, any orbit of gi must end up in Qn

f . In particular,
in this case, Ωg1 ̸= Ωg2 because f1 and f2 are respectively a model and a counter-model of
the limit-set property P . On the other hand, if h has some orbit that completely avoids
state q0, then for any x ∈ Qn

f we have x ∈ Ωgi because x can be reached arbitrarily late
from (x, y) in the dynamics of gi where y is any configuration of the considered orbit of
h. Moreover in this case Ωg1 = Ωg2 holds because, by definition, for any y ̸∈ Qn

f we have
y ∈ Ωg1 ⇔ y ∈ Ωg2 . Thus we have a ≤p

tt reduction from the problem of deciding whether h
has an orbit completely avoiding state q0 to the property P : the former can be decided by
checking whether Ωg1 = Ωg2 .

To conclude the proof, it is sufficient to invoke Lemma 3.1 and use an argument similar
to the proof of Corollary 3.2, in order to show that deciding whether a given AN h has an
orbit completely avoiding state q0 is PSPACE-hard. ◀

G. Gamard, P. Guillon, K. Perrot, and G. Theyssier 32:7

4 Size of limit sets

In this section, we are interested in problems about the size of limit sets. First, if we take
the settings of nondeterministic AN as in the previous section, Theorem 3.3 already tells us
that any effectively nontrivial problem about the size of the limit set will be PSPACE-hard,
as a particular limit set property. We now focus on deterministic ANU, and the following
canonical problems on the size of limit sets.

Given a map λ : N × N → N such that λ(q, n) ≤ qn, we define the problem Pλ as follows:

Problem Pλ

Input: a deterministic ANU f : {0, . . . , q − 1}n → {0, . . . , q − 1}n.
Question: does

∣∣Ωf

∣∣ ≥ λ(q, n)?

The goal of this section is to show that problem Pλ jumps from PSPACE-hardness down
to the polynomial-time hierarchy depending on λ. First, when λ stays far enough from the
total number of configurations, we already have the tools to conclude PSPACE-hardness.

Using Lemma 3.1 as in the proof of Corollary 3.2 we obtain the following theorem.

▶ Theorem 4.1. Let λ : N × N → N be a map such that for some k > 1 and for any n ∈ N
it holds 2 ≤ λ(q, n) ≤ kn. Then the problem Pλ is PSPACE-hard, even with fixed alphabet.

However, the problem whether the size of the limit set is maximal up to a polynomial
quantity belongs in the polynomial-time hierarchy. The intuition is that if the limit set is
close to maximal, then it is reached quickly under iterations of the AN.

▶ Proposition 4.2. Let δ : N×N → N be a polynomial map, and define λ(n, q) = qn − δ(n, q).
Then problem Pλ is Σp

3 and co-NP-hard, even with fixed alphabet.

Proof. Let us denote [q] = {0, . . . , q − 1}. Consider any deterministic ANU f : [q]n → [q]n.
We claim that if

∣∣Ωf

∣∣ ≥ λ(q, n) then Ωf = fδ(q,n)([q]n) = fδ(q,n)+1([q]n). Indeed, by induc-
tion, we have that fk([q]n) = fk+1([q]n) for some k implies that fk([q]n) = Ωf . Therefore
Ωf ⊊ fδ(q,n)([q]n) would imply

∣∣Ωf

∣∣ < qn − δ(q, n). The claim follows. Conversely, the same
argument shows that fδ(q,n)([q]n) ̸= fδ(q,n)+1([q]n) implies

∣∣Ωf

∣∣ < λ(q, n).
We deduce that the problem Pλ is equivalent to: “fδ(q,n)([q]n) = fδ(q,n)+1([q]n) and∣∣[q]n \ fδ(q,n)([q]n)

∣∣ ≤ δ(q, n).” This can be rephrased as the conjunction:
∀x ∈ [q]n, ∃y ∈ [q]n such that fδ(q,n)(x) = fδ(q,n)+1(y), and
there is a set L ⊆ [q]n of δ(q, n) distinct configurations such that ∀x ∈ [q]n, fδ(q,n)(x) ̸∈ L

and ∀x ∈ [q]n, x ̸∈ L ⇒ ∃y ∈ [q]n, fδ(q,n)(y) = x

This shows that the problem Pλ is Σp
3.

To show co-NP-hardness of problem Pλ we make a reduction from UNSAT. First note
that δ(4, n) < 2n − 1 for large enough n because δ(4, n) is a polynomial in n. Then, given
any instance ϕ of UNSAT with n variables, build the ANU f : [4]n → [4]n as follows:

f(x) =
{

0n if π(x) represents a statisfying assignment of variables for ϕ,
x otherwise.

where π(x1, . . . , xn) = (t1, . . . , tn) with ti true if and only if xi = 0 mod 2. It is clear that
for any assignment of variables (t1, . . . , tn) there are 2n possible choices of x such that
π(x) = (t1, . . . , tn). Moreover, if x ̸= 0n, then x ̸∈ Ωf when π(x) is a satisfying assignment
for ϕ. Therefore if ϕ is satisfiable then

∣∣Ωf

∣∣ ≤ 4n − 2n + 1 < λ(4, n). On the contrary, if ϕ is
not satisfiable, then f(x) = x for all x ∈ [4]n so we have

∣∣Ωf

∣∣ ≥ λ(4, n). co-NP-hardness of
problem Pλ follows. ◀

STACS 2021

32:8 Rice-Like Theorems for Automata Networks

5 First-order properties of transition digraphs are hard

In this section, a graph is the transition digraph of some deterministic automata network,
i.e., a simple digraph where all vertices have out-degree 1 and where self-loops are allowed. A
formula means a closed first-order logic formula over the signature {=,→} (binary relations).
Formulas will be evaluated in graphs, so “∀x” is understood as “for all vertex x” and “x → y”
is understood as “there is an edge from x to y”. For all formula ψ, define:

ψ-Dynamics
Input: an automata network f .
Question: does Gf |= ψ?

Note that the formula ψ is not part of the input, but rather a parameter of the problem.

▶ Definition 5.1. A formula ψ is ω-nontrivial if there are infinitely many models and
infinitely many countermodels.

▶ Theorem 5.2. If ψ is ω-nontrivial, then ψ-Dynamics is either NP- or co-NP-hard.

The condition of ω-nontriviality is optimal: indeed, if ψ is ω-trivial, then solving ψ-
Dynamics amounts to testing whether the given AN belongs to a finite fixed list of objects,
which can be done in time O(1). (Recall from Section 2 that the circuits sizes are bounded
by |Ai||A|.) Whether the problem is NP- or co-NP-hard varies with ψ. The proof consists of
the next three subsections.

5.1 Encoding SAT instances into the dynamics of AN
The results in this subsection provide a general tool to deduce hardness from pumping
constructions. We recommend that first-time readers skip the definitions of ⊔2 and ⊔3 and
fix z = 1 everywhere, because the cases z = 2, 3 will not be needed until much later in the
paper. In the next definition, “pointed” nodes are simply distinguished vertices in a graph.

▶ Definition 5.1.1. Let G, G′ denote graphs; we define three operators ⊔1,⊔2,⊔3.

The graph G ⊔1 G
′ (or G ⊔G′) is the disjoint union of a copy of G and a copy of G′.

If G has a pointed node v and G′ has any number of pointed nodes (possibly zero), then
the graph G ⊔2 G

′ is G ⊔1 G
′ except that each edge going out of a pointed node of G′

points to v instead. The result has one pointed node, v.
If G has a pair of pointed nodes (u, v) and G′ has a pair of pointed nodes (u′, v′), then
G ⊔3 G

′ is G ⊔1 G
′ except that: the edge going out of v points to u′; and the edge going

out of v′ points to u. Besides, G ⊔3 G
′ has pointed nodes (u′, v).

If G is a graph, k is an integer, and z is in {1, 2, 3}, then
⊔k

z G denotes G ⊔z · · · ⊔z G,
with k copies of G. Now let n be an integer, Γ = (G1, . . . , Gn) a n-tuple of graphs, and w a
word over alphabet {1, . . . , n}. Define UG,Γ

z (w) by induction as follows: UG,Γ
z (ε) = G, and

UG,Γ
z (w1 . . . wk) = UG,Γ

z (w1 . . . wk−1) ⊔z Gwk
(where ε is the empty word). See Figure 2.

▶ Proposition 5.1.2. Let ψ be a formula and z be an element of {1, 2, 3}. If there exist
nonempty graphs G, J , D such that for all integers k and k′, we have G ⊔z (

⊔k
z J) ̸|= ψ and

G ⊔z (
⊔k

z J) ⊔z (
⊔k′

z D) |= ψ, then ψ-Dynamics is NP-hard.

G. Gamard, P. Guillon, K. Perrot, and G. Theyssier 32:9

UG,Γ
1 (w) = . . .

G Gw1 Gw2 Gw3 Gwk

UG,Γ
2 (w) = . . .

G Gw1 Gw2 Gw3 Gwk

UG,Γ
3 (w) = . . .

G Gw1 Gw2 Gwk G
u u1 u2 ukv1 v2 vk v

Figure 2 Illustration of UG,Γ
z (w). In the illustration of UG,Γ

3 (w), G is not connected.

▶ Definition 5.1.3. Let S denote an instance of SAT with s variables. Then S is the word of
length 2s over alphabet {1, 2} whose ith letter is 1 if S(i) is false, and 2 if it is true (viewing
the binary expansion of i as an assignment for S).

▶ Lemma 5.1.4. Let S be an instance of SAT, z ∈ {1, 2, 3} and G, J,D be graphs such that 1 <
|G| < |J | = |D|. There are an AN f and an integer k such that Gf = UG,(J,D)

z (S) ⊔z (
⊔k

z J).
Moreover, f is computable in polynomial time from S if G, J , D are constant.

Proof. Let δ = gcd(|G|, |J |), and write |G| = g · δ and |J | = j · δ for some coprime integers
g, j. Call s the number of variables in S. First, find an integer t such that g ≤ 2t and
gcd(s+ t, φ(j)) = 1, where φ denotes Euler’s totient. To do so, let t′ = s/ gcd(s, φ(j)), so
that t′ and φ(j) have no common prime factors. Then let t′′ denote a power of t′ that exceeds
s+ ⌈log2 g⌉ (compute it by successive squarings). Finally, take t = t′′ − s. Since gcd(g, j) = 1,
we can use Algorithm 17.1 of [21] to find an integer x ≥ 1 such that xs+t ≡ g mod j. For
the rest of the proof, assume that x ≥ 2: indeed, if x = 1, then g ≡ 1 mod j, so we can
choose x = gφ(j) instead by Euler’s formula. Since Algorithm 17.1 runs in polynomial time
and g, j are constants, we can find x and t in polynomial time.

Assume that V (G) = {0, . . . , |G| − 1} and V (J) = V (D) = {0, . . . , |J | − 1} (recall that
|J | = |D|). For all relevant integer n, write G(n) (resp. J(n), D(n)) the unique successor of
n in G (resp. J , D). The automata network f has 1 + s+ t nodes: one node with alphabet
{0, . . . , δ− 1} and s+ t nodes with alphabet {0, . . . , x− 1}. It reads its current configuration
as an integer N (with 0 ≤ N ≤ δ · xs+t − 1) and transitions as follows:

If N < |G|, then f(N) = G(N).
If 0 ≤ N − |G| < 2s · |J |, then by Euclidean division let q, r be the integers such that
N − |G| = |J | · q + r and 0 ≤ r < |J |. View q in binary as a valuation for S.
If S(q) is true, then f(N) = |J | · q +D(r). If S(q) is false, then f(N) = |J | · q + J(r).
If 2s · |J | ≤ N − |G|, then let q, r be as in the previous case, and f(N) = |J | · q + J(r).

If z = 1, the description of f is complete. If z = 2, the pointed nodes of each copy of J and
D transition to the pointed node of G instead. If z = 3, order all the graphs (G, J ’s, and
D’s) according to the configuration number N that encodes their first vertex. Encode the
pointed nodes of each graph in their vertices 0 and 1. Make the first pointed node of each
graph transition to the second pointed node of the next graph, looping around δ · xs+t.

Since 2 ≤ x, we have g ≤ 2t ≤ xt, so one copy of G and at least 2s copies of J or D fit
in the dynamics of f . Besides, since xs+t ≡ g mod j, there are no leftover configurations.
The circuits encoding f can be produced in polynomial time: the only part depending on S

merely requires to evaluate S. ◀

STACS 2021

32:10 Rice-Like Theorems for Automata Networks

Proof of Proposition 5.1.2. Let J̃ =
⊔|D|

z J and D̃ =
⊔|J|

z D, so that |J̃ | = |D̃|. The
statement follows from Lemma 5.1.4, as the graphs G, J̃ and D̃ can be padded with copies
of J̃ to meet the other size constraints. ◀

5.2 From transition digraphs to disjoint unions of labeled cycles
Recall that all our graphs have out-degree 1, so each connected component of a graph is a
cycle, in which each vertex is the root of an upward tree (a rooted tree where arcs point
towards the root). Define T as the set of finite, nonempty upward trees. Any graph may be
seen as a multiset of cyclic words over alphabet T .

If G and G′ are graphs, we write G ≡m G′ if and only if they satisfy the same formulas
of quantifier rank m. Let Em denote the set of equivalence classes of ≡m over T .

▶ Lemma 5.2.1. For all m, the set Em is finite.

Proof. Without loss of generality, all formulas are in prenex form (quantifiers are at the
beginning). Thus, a formula ϕ is of the form Q1x1 . . . Qmxm ϕ′(x1, . . . , xm), where Qi

belongs to {∃, ∀} for all i and ϕ′ is a quantifier-free formula. There are 2m ways to assign
quantifiers to the Qi’s. A quantifier-free formula ϕ′(x0, . . . , xm−1) is a Boolean formula over
2m2 variables: “xi → xj” and “xi = xj”, for 0 ≤ i, j < m. Two Boolean formulas are
equivalent if and only if they have the same truth table. There are 22m2 possible assignments
for the “variables”, thus 222m2

possible truth tables. Consequently, there are at most 2m+22m2

nonequivalent formulas of quantifier rank m. Any structure satisfying (resp. falsifying) a
formula has to satisfy (resp. falsify) all formulas equivalent to it. Therefore, there are finitely
many possible sets of formulas of quantifier rank m that a given structure may satisfy. ◀

For all T in T , let Em(T) denote the equivalence class of T for ≡m. We extend the
map Em to finite words, cyclic or not: if w = w1w2 . . . wk is a word over T , then Em(w)
is the word Em(w1)Em(w2) . . . Em(wk). We further extend Em to sets and multisets of
words: if Y = {y1, . . . , yn} is a (multi)set of finite words over T , then Em(Y) denotes
{Em(y1), . . . , Em(yn)}. Since any graph may be viewed as a multiset of cyclic words over T ,
it makes sense to write Em(G) for all graph G.

▶ Definition 5.2.2. A DULC is a finite digraph that is a vertex-Disjoint Union of Labeled
Cycles, where the labels are in Em.

All graphs of the form Em(G) are DULC. Now define a new signature, with two binary
relation synbols = and → as before, and one unary relation symbol per element of Em.
Formulas ϕ with this signature talk about graphs where vertices are Em-labeled (possibly
with some multiply-labeled vertices, but this does not matter), such as DULC.

▶ Theorem 5.2.3. For all m and all graphs G, G′, if Em(G) ≡m Em(G′) then G ≡m G′.

Proof. By Lemma 5.2.1, the set Em is finite. Assume that Em(G) ≡m Em(G′); we show
that G ≡m G′ with the Ehrenfeucht-Fraïssé method (see for instance [5, Theorem 2.2.8]
or [11, Theorem 6.10]), by giving a winning strategy for Duplicator. Suppose that Spoiler
plays somewhere in a tree t of G (the case of G′ is symmetric). Let u be the node of Em(G)
corresponding to t. Imagine a game in Em(G)/Em(G′) where Spoiler just picked u in Em(G)
and let u′ be the node picked by Duplicator in Em(G′) as a response (since Em(G) ≡m Em(G′),
Duplicator has a winning strategy there). Let t′ denote the tree of G′ corresponding to u′

G. Gamard, P. Guillon, K. Perrot, and G. Theyssier 32:11

in Em(G′). Since u and u′ have the same label (otherwise Duplicator would not win in the
Em(G)/Em(G′) game), by definition of Em we have t ≡m t′, so Duplicator has a winning
strategy in the game t/t′. Therefore, in order to choose which node of t′ to pick, Duplicator
applies her t/t′ winning strategy. The next turns go on similarly: Duplicator maintains a
virtual game in Em(G)/Em(G′), and one more virtual game for each tree touched in the main
game. In that manner, she can always retort to Spoiler in a way that maintains a local
isomorphism. ◀

▶ Theorem 5.2.4. For all integer m and all formula ψ of rank m, there is a formula E(ψ)
such that for all graph G, we have G |= ψ if and only if Em(G) |= E(ψ).

Theorem 5.2.4 does not imply the converse of Theorem 5.2.3 because the rank of E(ψ)
may be higher than m. We do not know whether the converse of Theorem 5.2.3 is true. To
prove Theorem 5.2.4, we first rephrase Hanf’s lemma for DULC.

▶ Definition 5.2.5. An r-ball in a graph, where r is an integer, is a subgraph induced by
vertices linked to a given vertex by a path of length at most r. An r-ball type occuring in a
graph is the graph-isomorphism class for a ball (for isomorphisms preserving the center).

▶ Remark 5.2.6. The possible 3m-ball types in DULC are the pointed cycles of length at
most 2 · 3m + 1 and the path of length exactly 2 · 3m + 1, pointed in its center.

▶ Definition 5.2.7. Let m be an integer, e = 2 · 3m + 1 the maximum number of vertices in
a 3m-ball of a DULC, and Bm the (finite) set of possible 3m-balls types in DULC. Given
a DULC H, its profile is the function πH,m : Bm → {0, . . . ,m · e} ⊔ {ω} defined as follows:
πH,m(b) is the number of balls in H that are isomorphic to b in the case that it does not
exceed m · e, and ω otherwise.

We extend the usual order ≤ to {0, . . . ,m · e} ⊔ {ω} by making ω a global maximum.
This yields a partial order over profiles: π ≤ π′ if for all b, we have π(b) ≤ π′(b).

▶ Lemma 5.2.8 (Hanf’s lemma [10, Lemma 2.3] along with Remark 5.2.6). Let m be an integer,
and H and H ′ be DULC. If πH,m = πH′,m, then H ≡m H ′.

We call a profile ϕ-positive if its graphs are models of ϕ, and ϕ-negative otherwise (or
simply positive and negative when no confusion ensues). We might write πH for πH,m when
m is clear from the context.

Proof of Theorem 5.2.4. Fix an integer m, and a formula ψ of quantifier rank m. Since
there are finitely many possible DULC m-profiles, we can denote {π0, . . . , πk−1}, for some
integer k, the set of profiles of Em(G), where G ranges over graphs satisfying ψ. Now let
Em(ψ) be the formula expressing “this graph has profile either π0, or π1, . . . , or πk−1.”

The property “having profile π” is indeed expressible by a first-order formula: for all ball
b, if π(b) ̸= ω (respectively, π(b) = ω), make a formula saying “there exist exactly π(b) nodes
(respectively, at least m · e+ 1 nodes) that are the center of a ball of type b.” For a given
ball type b, “being the center of a copy of b” is expressible as well: require that there exist
|b| distinct nodes, forming a cycle or a path (depending on b), with the right labels.

Now, if G |= ψ, by definition, {π0, . . . , πk−1} contains the profile of Em(G); thus Em(G) |=
E(ψ). Conversely, if Em(G) |= E(ψ), then the profile of Em(G) is the profile of some Em(G′),
where G′ |= ψ. By Lemma 5.2.8, Em(G) ≡m Em(G′), and by Theorem 5.2.3, G ≡m G′, so
that G |= ψ. ◀

▶ Proposition 5.2.9. If ϕ is an ω-nontrivial formula over DULC, then there is a nonempty
DULC H and nonempty labeled cycles J ′ and D′ such that either:

STACS 2021

32:12 Rice-Like Theorems for Automata Networks

(i) for all k ≥ 0 and k′ ≥ 1, we have H ⊔ (
⊔k

J ′) |= ϕ and H ⊔ (
⊔k

J ′) ⊔ (
⊔k′

D′) ̸|= ϕ; or
(ii) for all k ≥ 0 and k′ ≥ 1, we have H ⊔ (

⊔k
J ′) ̸|= ϕ and H ⊔ (

⊔k
J ′) ⊔ (

⊔k′
D′) |= ϕ.

Proof. Let m be the quantifier rank of ϕ. Since the profile of the disjoint union of two
DULC is greater than either profile, there is a maximal DULC m-profile ρ. Assume that ρ is
ϕ-negative (otherwise replace ϕ by ¬ϕ). Since there are finitely many possible profiles and
ϕ is ω-nontrivial, there is a positive profile having infinitely many models. Let π denote a
maximal profile for this property.

If there is a cycle J ′ whose number of occurrences is unbounded among the models with
profile π, then there is such a model H such that πG′(J ′) = ω, and H ⊔k J ′ has the same
profile as H for all k. If not, then the models with profile π have unbounded cycle lengths;
so there is a model H and a word u over alphabet Em of length |Em|e + 1 such that u, as a
path, occurs more than m · e times in H . For counting reasons, there is a word v of length e
that occurs at least twice in u. So there is a cycle J ′ of length at least e+ 1 whose label (as
a word) is a factor of u. The graph H ⊔k J ′ has the same profile as H for all k.

Observe that there is no profile greater than π = πH with finitely many models, so by
construction, any profile greater than π is negative. Let D′′ be a ball such that π(D′′) < ρ(D′′)
and D′ any cycle containing D′′. For all k > 0, we have πH < πH⊔kD′ , so the DULC H ⊔kD′

is a countermodel of ϕ. Since πH⊔kJ′ = πH , we have πH⊔kJ′⊔k′ D′ = πH⊔k′ D′ for all k, k′. ◀

5.3 Proof of Theorem 5.2
We proceed to a case disjunction. In a graph G, a hanging trees is a connected component
of the graph obtained from G by removing all the edges in cycles. A subtree of a tree T is
always complete, i.e., spanned by the set of nodes coaccessible from a given node (the root of
the subtree). An immediate subtree is a tree whose root has depth 1 in the ambient tree.

Unbounded cycles

▶ Proposition 5.3.1. Let ψ denote a formula such that ψ and ¬ψ both have models with
unbounded cycles. Then ψ-Dynamics is either NP-hard or co-NP-hard.

Proof. Since both ψ and ¬ψ have models with unbounded cycles, the projection ϕ = E(ψ)
is ω-nontrivial. Apply Proposition 5.2.9 to get a nonempty DULC H and nonempty cycles
D′ and J ′ with either the property (i) or (ii) from the proposition. Let m be the quantifier
rank of ϕ, and G, D, J be nonempty graphs such that Em(G) = H, that Em(D) = D′ and
that Em(J) = J ′. By Theorem 5.2.4, G, J , D satisfy the corresponding property (i) or (ii)
(with G, J , D, ψ instead of H, J ′, D′, ϕ), because Em behaves correctly with respect to ⊔:
Em(G) ⊔Em(G′) = Em(G⊔G′). The statement follows from Proposition 5.1.2 with z = 1. ◀

Unbounded degrees

By Lemma 5.2.1, the set Em of equivalence classes of ≡m for trees is finite. If T is a tree and
α ∈ Em, write |T |α for the number of immediate subtrees of T of type α.

▶ Lemma 5.3.2. Let T and T ′ be trees such that, for each α ∈ Em, we have either |T |α = |T ′|α
or |T |α, |T ′|α ≥ m. Then T ≡m T ′.

Proof. We give a winning strategy for Duplicator. If Spoiler plays in a subtree t of T that
was never touched before (the case of T ′ is symmetric), then Duplicator chooses a subtree
t′ of T ′ such that t ≡m t′. By the Ehrenfeucht-Fraïssé theorem, Duplicator has a winning

G. Gamard, P. Guillon, K. Perrot, and G. Theyssier 32:13

strategy for the game t/t′, so she uses it to play her turn. If Spoiler plays subsequent turns
in t or t′, then Duplicator continues the game in t/t′ with her winning strategy. Since the
global game lasts m turns, by the condition on T and T ′, it is always possible for Duplicator
to find a t′ such that t ≡m t′ as needed. Thus this is indeed a winning strategy. ◀

▶ Proposition 5.3.3. Let ψ denote a formula whose models have bounded cycles but unbounded
degrees. Then ψ-Dynamics is NP-hard.

Proof. Let ψ be a formula of quantifier rank m, whose models have unbounded degrees and
bounded cycles, say of length at most ℓ.

By assumption, ψ admits a model with a hanging tree having a node v of degree at least
m · |Em|. Hence, the node v has at least m equivalent immediate subtrees J1 ≡m · · · ≡m Jm.
Lemma 5.3.2 implies that, if we add more copies of J1 as immediate subtrees of v in G,
resulting in a graph G′, then G ≡m G′. So, in particular, G′ also satisfies ψ. Let J denote⊔ℓ+1

J1, with the pointed nodes of J being the roots of the copies of J1. Let D be a cycle
of length |J |, without pointed nodes. We have |D| = |J | > ℓ. For all k, k′, with v the
pointed node of G, the graph G⊔2 (

⊔k
2 J) is a model of ψ, while G⊔2 (

⊔k
2 J) ⊔2 (

⊔k′

2 D) is a
countermodel by assumption on l. The statement follows from Proposition 5.1.2, with G, J ,
D as defined above and z = 2. ◀

Unbounded subtree depths

▶ Lemma 5.3.4. Let ψ denote a formula whose models have bounded cycles, degrees, but
unbounded hanging tree depths. Then there are a model G of ψ and two subtrees T, T ′ of a
hanging tree of G such that T ′ ⊂ T and T ≡m T ′.

Proof. Suppose that the models have bounded cycles. By Lemma 5.2.1, Em is finite. For
any graph G, call Em(G) the Em-labeled copy of G where each node v is labeled by the
equivalence class of the subtree rooted in v – the ambient trees being the hanging ones. By
assumption, the graphs Em(G), for G |= ψ, contain arbitrarily deep subtrees, whilst the
number of colors in Em is fixed and finite. By the pigeonhole principle, one of those subtrees
in one of those models admits two nodes with the same label, the first one being an ancestor
of the other one. The lemma then follows from the definition of the labels. ◀

▶ Lemma 5.3.5. Let T be a tree, t a subtree of T and t′ a tree such that t ≡m t′. If T ′ is
the tree T where the occurences of t have been replaced with t′, then T ≡m T ′.

The proof goes by induction on the depth of the root of t in T , and Lemma 5.3.2.

▶ Proposition 5.3.6. Let ψ denote a formula whose models have bounded degrees, but
unbounded hanging tree depths. Then ψ-Dynamics is NP-hard.

Proof. Let ψ be a formula of quantifier rank m, whose models have unbounded hanging tree
depths, and bounded degrees, say by d.

By Lemma 5.3.4, there is a model G̃ of ψ that contains a tree T (i.e. a subtree of a
hanging tree), which in turn has a subtree T ′, such that T ′ ≡m T , and such that the only
vertices of T and T ′ linked to the rest of the graph are their roots. Call T ′′ the tree T \ T ′.
Let G denote (G̃ \ T ′) ⊔ T ′: it is a disconnected graph. We equip it with two pointed nodes,
u and v, like in Definition 5.1.1 (case ⊔3). The pointed node u of G is the leaf of T that
should have been the parent of the root of T ′. The pointed node v of G is the root of the
disconnected copy of T ′. See Figure 3 for an illustration.

STACS 2021

32:14 Rice-Like Theorems for Automata Networks

Now let T ′′
0 = T ′′, and T ′′

n+1 denote the tree T where T ′ have been replaced by a copy
of T ′′

n . For all n, equip the graph T ′′
n with two pointed nodes: the node u is the leaf where

another copy of T ′′ would be inserted to build T ′′
n+1; the node v is the root. See again

Figure 3 for an illustration.
Let J be the graph T ′′

d+2, so that |J | > d+1. By Lemma 5.3.5, we have G⊔3 (
⊔k

3 J) ≡m G̃

for all integer k. Let D be a tree of depth 1 having |J | nodes, i.e., it consists only of a root
and its direct children; its pointed node u is any leaf, and its pointed node v is the root. The
tree D has degree at least d+ 1. Therefore, for all k, k′, the graph G ⊔3 (

⊔k
3 J) is a model

of ψ, while the graph G ⊔3 (
⊔k

3 J) ⊔3 (
⊔k′

3 D) is a countermodel. The statement follows by
Proposition 5.1.2 with z = 3. ◀

•

T ′′

•
T ′

T

G̃
•

•u
T ′′

•v
T ′

G

•v

T ′′

T ′′

...

T ′′

•u

T ′′
n

Figure 3 Illustration of the construction in the proof of Proposition 5.3.6. The node v of each
graph transitions to the node u of another one.

Unbounded number of occurrences of each connected component

Here, connected means strongly connected. The number of occurrences of a connected
component C in a graph G is the number of connected components of G isomorphic to C.

▶ Lemma 5.3.7. Let G and J be graphs and m an integer. For all integers k, k′ ≥ m, we
have G ⊔ (

⊔k
J) ≡m G ⊔ (

⊔k′
J).

Proof of Lemma 5.3.7. We give a winning strategy for Duplicator. If Spoiler plays in either
copy of G, then Duplicator picks the same node in the other copy of G. If Spoiler plays in a
copy of J that was never touched before, then Duplicator chooses a fresh copy of J in the
other graph and picks the same node there. If Spoiler plays in a copy of J that was already
touched before, then Duplicator chooses the same copy of J as in the previous moves and
picks the same node there. Since there are at least m copies of J on both graphs and only m
turns in the game, this is indeed a winning strategy. ◀

▶ Proposition 5.3.8. Let ψ is a formula whose models have bounded cycles, but unbounded
number of occurrences of each connected component. Then ψ-Dynamics is NP-hard.

Proof. Let ψ be a formula of quantifier rank m, whose models have unbounded number of
occurrences of each connected component, and bounded cycles, say of length at most ℓ. By
our assumptions on ψ, there are graphs G and J ′ such that G ⊔ (

⊔m
J ′) is a model. Let J

G. Gamard, P. Guillon, K. Perrot, and G. Theyssier 32:15

denote
⊔max(ℓ+1,m)

J ′, and D a cycle of length |J |. For all k, k′, by Lemma 5.3.7, the graph
G ⊔ (

⊔k
J) = G ⊔ (

⊔k·max(ℓ+1,m)
J ′) is a model of ψ. On the other hand, by assumption on

ℓ < |J |, the graph G ⊔ (
⊔k

J) ⊔ (
⊔k′

D) is a countermodel.
The statement follows from Proposition 5.1.2 with G, J , D defined above and z = 1. ◀

Combining the cases

▶ Lemma 5.3.9. Every formula with infinitely many models has models with either unbounded
cycles, unbounded degrees, unbounded hanging tree depths, or an unbounded number of
occurrences of each connected component.

Proof. The number of nonisomorphic connected graphs with a cycle of length at most ℓ,
degree at most d and hanging tree depth at most h is bounded by ł · dh+1. Thus there
are only finitely many graphs with bounded cycles, degrees, subtree depths and number of
occurrences of connected components. ◀

Lemma 5.3.9 concludes the proof of Theorem 5.2: if the formula and its negation
both have unbounded cycles, then Proposition 5.3.1 applies; otherwise one among Proposi-
tions 5.3.3, 5.3.6 and 5.3.8 applies to either the formula or its negation.

▶ Remark 5.3.10. The machinery developed to prove Theorem 5.2 is rather flexible.
In particular, it remains true if restricted to deterministic automata networks, and also

to the limit subgraphs (Gω
f) instead of transition digraphs (Gf). However, the meaning of “ω-

nontrivial” changes: it respectively means “having infinitely many bijective (counter)models”
and “having infinitely many networks whose limit graph is a (counter)model.”

Both transition digraphs of bijective networks and limit graphs are merely disjoint unions
of unlabeled cycles. Thus, Proposition 5.2.9 and Proposition 5.1.2 may be reused and the
proof is similar.

6 First-order dynamical properties are arbitrarily high in PH

The previous section gave a lower bound for the ψ-Dynamics problem. Here, we give tighter
bounds. As a consequence of those bounds, the AN-Dynamics problem, which is similar to
ψ-Dynamics except that ψ is part of the input, is hard.

▶ Theorem 6.1. For all even integer N , there is a formula ψN such that ψN -Dynamics
ΣN+1-complete.

▶ Theorem 6.2. The following problem is PSPACE-complete:

AN-Dynamics
Input: an automata network f and a first-order formula ψ.
Question: does Gf |= ψ?

The proofs rely on the following constructions. Let N ≥ 1, and S be a QBF formula of
the form ∃b1, ∀b2, . . . , ∃bN+1R(b1, . . . , bN+1). Call C the set {⊤,⊥} ⊔

⊔N+1
i=1 {0, 1}i, where

⊤,⊥ are fresh symbols. Observe that |C| = 2N+2 and define fS the ANU with N + 2 nodes
over alphabet {0, 1} that realizes the function fS : C → C defined as follows. For arbitrary
bits b1, . . . , bN+1, set fS(⊥) = ⊥, fS(⊤) = ⊤, fS((b1)) = ⊤, and:

fS((b1, . . . , bi))=(b1, . . . , bi−1) fS((b1, . . . , bN+1))=
{

(b1, . . . , bN) if R(b1, . . . , bN+1)
⊥ otherwise.

STACS 2021

32:16 Rice-Like Theorems for Automata Networks

Intuitively, the dynamics of fS consists of two upward trees: one rooted in ⊤, of depth N + 1,
whose leaves are the Boolean tuples (b1, . . . , bN+1) that satisfy R; and one rooted in ⊥, of
depth 1, whose leaves are the Boolean tuples (b1, . . . , bN+1) that falsify R. The only part
of fS that depend on S merely evaluates R, so circuits encoding fS can be produced in
polynomial time given S.

Now define the formula ψN as follows (observe that ψN depends only on N):

ψN =∃x0, x1, x
′
2 : x0 ̸= x1 ∧ x′

2 → x1 → x0 → x0

∧ ∀x2 → x1 : ∃x3 → x2 : . . . ∀xN → xN−1 : ∃xN+1 → xN : true,

where “∃x → y : ϕ” and “∀x → y : ϕ” stand for “∃x : (x → y)∧ϕ”and “∀x : (x → y) =⇒ ϕ”;
and where “x → y → z” stands for “x → y ∧ y → z”. Observe that ψN is a ΣN+1-formula.
Besides, when evaluating ψN in GfS

, the first line ensures that x0 is a fixed point with
an ingoing path of length 2, so it has to be ⊤. The rest of the formula straightforwardly
implements S, by linking Booleans into a configuration (b1, . . . , bN+1) where the “xN+1 → xN ”
part ensures that R(b1, . . . , bN+1), by definition of fS . Hence we have the following lemma,
that implies both Theorem 6.1 and 6.2.

▶ Lemma 6.3. (a) The network fS satisfies Gf |= ψN if and only if S is a true QBF.
(b) Given a QBF(ΣN+1) formula S, the network fS can be produced in polynomial time.

7 Conclusion

Our goal was to obtain broad complexity lower bounds for dynamical properties of automata
networks. However, as explained in the introduction, there is a large degree of freedom in
the formalization of Metatheorem 1.2. We do not claim that the results above are the only
Rice-like theorems on automata networks worth investigating.

It would be interesting to know how various restrictions on the AN may lessen the
complexity of those problems. For instance, if we restrict ourselves to AN whose interaction
graph has bounded degree, then the question “does this AN compute a constant function?”
becomes testable in polynomial time, while it is first-order expressible and nontrivial.

Another restriction pertains to the set of states of the nodes. If we restrict ourselves to
ANU, i.e., automata networks where all nodes have the same alphabet Q = {0, . . . , q − 1}
for some positive integer q, then the concept of “ω-nontriviality” changes. Indeed, some
first-order formulas have infinitely many models and countermodels, but no model with
uniform alphabet. The proof of Lemma 5.1.4 does not seem to generalize easily to that case,
because finding x and δ becomes an open challenge.

References
1 J. Aracena. Maximum number of fixed points in regulatory Boolean networks. Bull. Math.

Biol., 70:1398–1409, 2008.
2 B. Borchert and F. Stephan. Looking for an analogue of Rice’s theorem in circuit complexity

theory. Mathematical Logic Quarterly, 46(4):489–504, 2000. doi:10.1002/1521-3870(200010)
46:4<489::AID-MALQ489>3.0.CO;2-F.

3 P. Cull. Linear analysis of switching nets. Biol. Cybernet., 8:31–39, 1971.
4 J. Demongeot, M. Noual, and S. Sené. Combinatorics of Boolean automata circuits dynamics.

Discr. Appl. Math., 160:398–415, 2012.
5 H.-D. Ebbinghaus and J. Flüm. Finite Model Theory. Springer-Verlag, 2nd edition, 1995.

doi:10.1007/3-540-28788-4.

https://doi.org/10.1002/1521-3870(200010)46:4<489::AID-MALQ489>3.0.CO;2-F
https://doi.org/10.1002/1521-3870(200010)46:4<489::AID-MALQ489>3.0.CO;2-F
https://doi.org/10.1007/3-540-28788-4

G. Gamard, P. Guillon, K. Perrot, and G. Theyssier 32:17

6 B. Elspas. The theory of autonomous linear sequential networks. IRE Trans. Circ. Theory,
6:45–60, 1959.

7 C. Espinosa-Soto, P. Padilla-Longoria, and E. R. Alvarez-Buylla. A gene regulatory network
model for cell-fate determination during Arabidopsis thaliana flower development that is robust
and recovers experimental gene expression profiles. The Plant Cell, 16:2923–2939, 2004.

8 E. Goles and S. Martinez. Neural and Automata Networks: Dynamical Behavior and Applica-
tions. Kluwer Academic Publishers, 1990.

9 S. W. Golomb. Shift Register Sequences. Holden-Day Inc., 1967.
10 W. Hanf. Model-theoretic methods in the study of elementary logic. In J.W. Addison,

L. Henkin, and A. Tarski, editors, The Theory of Models, pages 132–145. North-Holland, 1963.
doi:10.1016/B978-0-7204-2233-7.50020-4.

11 N. Immerman. Descriptive Complexity. Springer-Verlag, 1999. doi:10.1007/
978-1-4612-0539-5.

12 J. Kari. Rice’s theorem for the limit sets of cellular automata. Theoretical Computer Science,
127:229–254, 1994.

13 G. Karlebach and R. Shamir. Modelling and analysis of gene regulatory networks. Nature
Rev. Mol. Cell Biol., 9:770–780, 2008.

14 S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets.
Journal of Theoretical Biology, 22:437–467, 1969. doi:10.1016/0022-5193(69)90015-0.

15 S. C. Kleene. Automata Studies, chapter Representation of events in nerve nets and finite
automata, pages 3–41. Princeton University Press, 1956.

16 W. S. McCulloch and W. H. Pitts. A logical calculus of the ideas immanent in nervous activity.
Bull. Math. Biophys., 5:115–133, 1943.

17 L. Mendoza and E. R. Alvarez-Buylla. Dynamics of the genetic regulatory network for
Arabidopsis thaliana flower morphogenesis. J. Theoret. Biol., 193:307–319, 1998.

18 H. G. Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74:358–366, 1953. doi:10.1090/
S0002-9947-1953-0053041-6.

19 A. Richard. Local negative circuits and fixed points in non-expansive Boolean networks. Discr.
Appl. Math., 159:1085–1093, 2011.

20 F. Robert. Discrete Iterations: A Metric Study. Springer Verlag, 1986.
21 J. H. Silverman. A friendly introduction to number theory. Pearson Education, 4th edition,

2012.
22 L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time(preliminary

report). In Proceedings of the Fifth Annual ACM Symposium on Theory of Computing, STOC
’73, pages 1–9, New York, NY, USA, 1973. ACM. doi:10.1145/800125.804029.

23 D. Thieffry and R. Thomas. Dynamical behaviour of biological regulatory networks – II.
Immunity control in bacteriophage lambda. Bull. Math. Biol., 57:277–297, 1995.

24 R. Thomas. Boolean formalization of genetic control circuits. Journal of Theoretical Biology,
42:563–585, 1973. doi:10.1016/0022-5193(73)90247-6.

STACS 2021

https://doi.org/10.1016/B978-0-7204-2233-7.50020-4
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1090/S0002-9947-1953-0053041-6
https://doi.org/10.1090/S0002-9947-1953-0053041-6
https://doi.org/10.1145/800125.804029
https://doi.org/10.1016/0022-5193(73)90247-6

Auction Algorithms for Market Equilibrium with
Weak Gross Substitute Demands and Their
Applications
Jugal Garg !

University of Illinois at Urbana-Champaign, IL, USA

Edin Husić !

Department of Mathematics, The London School of Economics and Political Science, UK

László A. Végh !

Department of Mathematics, The London School of Economics and Political Science, UK

Abstract
We consider the Arrow–Debreu exchange market model where agents’ demands satisfy the weak
gross substitutes (WGS) property. This is a well-studied property, in particular, it gives a sufficient
condition for the convergence of the classical tâtonnement dynamics. In this paper, we present a
simple auction algorithm that obtains an approximate market equilibrium for WGS demands. Such
auction algorithms have been previously known for restricted classes of WGS demands only. As
an application of our technique, we obtain an efficient algorithm to find an approximate spending-
restricted market equilibrium for WGS demands, a model that has been recently introduced as a
continuous relaxation of the Nash social welfare (NSW) problem. This leads to a polynomial-time
constant factor approximation algorithm for NSW with budget separable piecewise linear utility
functions; only a pseudopolynomial approximation algorithm was known for this setting previously.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Algorithmic game theory and mechanism design

Keywords and phrases auction algorithm, weak gross substitutes, Fisher equilibrium, Gale equilib-
rium, Nash social welfare

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.33

Related Version Full Version: https://arxiv.org/abs/1908.07948

Funding Jugal Garg was supported by the NSF CAREER Award 1942321. Edin Husić and László
A. Végh were supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement ScaleOpt–757481).

Acknowledgements We would like to thank anonymous referees for their comments and suggestions
that have helped to improve the presentation of the paper.

1 Introduction

Market equilibrium is a fundamental and well-established notion to analyze and predict the
outcomes of strategic interaction in large markets. In the classic Arrow-Debreu exchange
model, a set of agents arrive at the market with initial endowments of divisible goods. A
market equilibrium comprises a set of prices and allocations of goods to the agents such
that each agent spends their income from selling their initial endowment on a bundle that
maximizes their utility, and the market clears: demand of each good meets its supply.
This model was first studied by Walras in 1874 [61], who also introduced a natural market
dynamics, called the tâtonnement process. A continuous version of the process was shown
to converge to an equilibrium if the utility functions satisfy the weak gross substitutability
(WGS) property, namely, that if the prices of some goods increase and the others remain

© Jugal Garg, Edin Husić, and László A. Végh;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 33; pp. 33:1–33:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jugal@illinois.edu
https://orcid.org/0000-0001-6439-7308
mailto:e.husic@lse.ac.uk
https://orcid.org/0000-0002-6708-5112
mailto:l.vegh@lse.ac.uk
https://orcid.org/0000-0003-1152-200X
https://doi.org/10.4230/LIPIcs.STACS.2021.33
https://arxiv.org/abs/1908.07948
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Auction Algorithms with WGS Demands

unchanged, then the demand for the latter goods may not decrease (see Arrow, Block, and
Hurwitz [3], Arrow and Hurwitz [6], and references therein). However, Scarf [59] showed,
using an example of Leontief utilities, that tâtonnement may not always converge to an
equilibrium. We refer the reader to [54, Chapter 17] on the stability of the tâtonnement
process.

The polynomial-time computability of market equilibrium for WGS utilities was first
established by Codenotti, Pemmaraju, and Varadarajan [25]. Later, a simple ascending-price
algorithm using global demand queries was given by Bei, Garg, and Hoefer [9]. Further,
Codenotti, McCune, and Varadarajan [23] have shown that a simple discrete variant of the
tâtonnement algorithm converges to an approximate equilibrium (see also [57, Section 6.3]).
This was followed by a number of papers providing tâtonnement algorithms for various classes
of utility functions and restricted models, some of them substantially weakening the need for
central coordination among agents, see e.g., [7, 19, 20, 27, 37].

However, most of these algorithms still rely on global demand queries, and hence they are
less realistic. In a sense, they require a central authority (responsible for updating prices) to
have some general information about the demands of all agents in the market.

Auction algorithms. In this paper, we focus on an even simpler subclass of tâtonnement-
type algorithms, called auction algorithms. Whereas prices in tâtonnement may increase as
well as decrease, in auctions prices may only go up. Auction algorithms are appealing due to
their simplicity and distributed nature: under simple “ground rules” the agents outbid each
other and in the process converge to an approximate market equilibrium. Unlike the above
mentioned works, these algorithms do not require a central authority and need only minimal
coordination between the agents. Further, these algorithmic frameworks are quite robust
and easily allow for various extensions and generalizations. For exchange market models, the
first such algorithm was established for linear utilities by Garg and Kapoor [44] (see also [57,
Section 5.12]). The algorithm was later improved [45] and generalized to separable concave
gross substitute utility functions [47], to a subclass of non-separable gross-substitutes called
uniformly separable [46], and to a production model with linear production constraints and
linear utilities [50].

There is a long history of auction algorithms both in the optimization and in the economics
literature. Bertsekas [11, 12] introduced auction algorithms for assignment and transportation
problems. Closely related algorithms were introduced for markets with indivisible goods, by
Kelso and Crawford [52], and Demange, Gale, and Sotomayor [30]. We discuss markets with
indivisible goods later in this section.

Our contributions. Our first main contribution is an auction algorithm that computes
an approximate market equilibrium for arbitrary WGS utilities, given via demand oracles,
settling an open question from [46]. This result shows that for WGS utilities, this restricted
class of tâtonnement algorithms already suffices to obtain an equilibrium. The result affirms
the natural intuition that the WGS property is geared for auction algorithms. A main
invariant in auction algorithms is that at every price increase, the agents will still hold on to
the goods they have purchased previously at the lower prices. This property is almost identical
to the definition of the WGS property; nevertheless, making an auction algorithm work
for general WGS utilities requires some careful technical ideas. The previously mentioned
auction algorithms operate with two prices for each good, a lower price pj and a higher price
(1 + ϵ)pj . For linear utilities, [44] maintains that all purchases are maximum bang-per-buck
goods with respect to the lower or higher price. This idea can be extended to separable [45]

J. Garg, E. Husić, and L. A. Végh 33:3

and to uniformly separable utilities [47], but does not work if the utilities are genuinely
non-separable. For this general case, our main technical idea is to maintain subsets of optimal
bundles for each agent with respect to some individual prices. These individual prices can be
different for each agent but fall between the higher and lower prices p and (1 + ϵ)p.

This results in the first “agent-driven” algorithm for the entire range of WGS utilities
that avoids the need of a central authority, where each agent uses only their own black-box
oracle FindNewPrices (Section 3), which depends only on their own preference to outbid
another agent on a particular good. The process of outbidding another agent can also be
implemented in an uncoordinated manner. Overall, this lessens the level of coordination
needed in the market, making it more plausible mechanism in a decentralized environment.

We also study auction algorithms for multiple models of Fisher markets. These are a
special case of exchange markets where every agent arrives with a fixed budget instead
of an endowment of goods. A particular motivation comes from recent study of the Nash
social welfare (NSW) problem: allocating indivisible goods to agents so that the geometric
mean of their utilities is maximized. This problem is NP-hard already for simple classes of
utilities, and there has been a considerable recent literature on approximation algorithms
for the problem and its extensions. Cole and Gkatzelis [28] gave the first constant-factor
approximation for linear utilities, followed by further work with stronger guarantees as well
as extensions for other utility classes [1, 2, 8, 17, 26, 28, 38, 40, 41].

The algorithm in [28] and many others start by studying a continuous relaxation corres-
ponding to a specific market equilibrium problem with spending restrictions: namely, if the
price pi of good i is above 1, then the amount of good i sold is decreased to 1/pi from the
initial total amount of 1. Whereas a market equilibrium with spending restrictions can be
obtained via a convex program for linear utilities [26], it becomes challenging to find for more
general utilities: currently known cases are budget-additive valuations [38] and separable
piecewise-linear concave (SPLC) utility functions [2]. The set of equilibria in the former case
turned out to be not even convex.

In this paper, we show that auction algorithms are particularly well-suited for spending
restricted equilibrium computation: once the price of a good goes above one, we can naturally
decrease the total available amount of these goods within the auction framework. This
enables us to find simple approximation algorithms for spending restricted equilibria for
a broad class of utility functions, including the models above as well as their common
generalization: budget-SPLC. A surprising feature here is that we do not even have to make
the standard non-satiation assumption. Moreover, our algorithm can be used to obtain a
constant-factor approximation for maximizing NSW in polynomial-time when agents have
budget-SPLC utilities and goods come in multiple copies. The previous algorithm for this
setting in [17] runs in pseudopolynomial time. We expect that our algorithm for finding
approximate spending restricted equilibria will find more applications for the NSW and other
related problems.

Markets with indivisible goods. Auction algorithms have been widely studied in the
context of markets with indivisible goods. Equilibria may not always exists in markets with
indivisible goods. The class of (discrete) gross substitute utilities was introduced by Kelso
and Crawford [52]. For this class, an equilibrium is guaranteed to exist, and an approximate
equilibrium can be efficiently found via a simple auction algorithm, extending [29]. It turned
out that the discrete gross substitutes property is essentially a necessary and sufficient
condition for the auction algorithm to work. We refer the reader to the survey by Paes
Leme [53] on the role of gross substitute utilities in markets with indivisible goods, and their
connections to discrete convex analysis.

STACS 2021

33:4 Auction Algorithms with WGS Demands

Whereas the definitions of discrete gross substitutes and continuous WGS utilities are
very similar, there does not appear to be a direct connection between these notions. The
main difference is in the utility concepts: for indivisible markets, the standard model is to
maximize the valuation minus the price of the set at given prices, whereas the standard
divisible market models operate with fiat money: the prices appear via the budget constraints
but not in the utility value. Still, our result can be interpreted as the continuous analogue of
the strong link between auction algorithms and the gross substitutes property for markets
with indivisible goods: we show that auction algorithms are applicable for the entire class of
WGS utilities for markets with divisible goods. We suspect that the converse should also be
true, namely, that the applicability of auction algorithms should be limited to WGS utilities.
In contrast, tâtonnement algorithms have been successfully applied beyond the WGS class,
see e.g. [19, 20, 37].

Let us also comment on the oracle model we use. Typically, (continuous) WGS utilities in
the literature are given in an explicit form such as CES or Cobb-Douglas utilities. This is in
contrast with the discrete WGS setting, where the common model is via a value or demand
oracle [53], since direct preference elicitation, that is, the explicit description of the valuation
function would be exponential. The class of continuous WGS functions also appears to be
very rich and expressive, and hence an oracle approach seems more appropriate to devise
algorithms for this class. In our model, the agent preferences are represented via a demand
oracle (Definition 3).

The auction algorithm relies on the more powerful FindNewPrices subroutine, which
can be seen as a strengthening of the demand oracle, incorporating a mechanism for price
increments. There are various ways to implement such a subroutine: we use a simple iterative
application of the demand oracle for the case of bounded price elasticities; we use a convex
programming approach for Gale demand systems; and we devise a combinatorial algorithm
for budget-additive SPLC utilities.

Further related work. The existence of a market equilibrium is always guaranteed under
some mild assumptions, as shown by Arrow and Debreu [4], using Kakutani’s fixed point
theorem. The computational aspects of finding a market equilibrium have been extensively
studied in the theoretical computer science community over the last two decades, establishing
hardness results as well as polynomial-time algorithms for certain cases. We refer the reader
to [14, 18, 24, 31, 34, 42, 49, 60, 63, 43] for an overview of the literature.

The other famous dynamics to study market equilibrium is proportional response where
in each round agents bid on goods in proportional to the utility they receive from them in
the previous round. The goods are then allocated in proportion of the agents’ bids. It has
been shown that proportional response converges to market equilibrium in a variety of Fisher
markets [13, 21, 22, 64], and some special cases of exchange markets [15, 16, 62].

The rest of the paper is structured as follows. Section 2 defines the exchange market model
and provides examples of WGS demand systems. Section 3 presents the auction algorithm
for exchange markets. Section 4 discusses the applicability of the algorithm to the Fisher
market model, spending restricted equilibrium, Gale demand systems, and the NSW problem.
Several proofs and some significant arguments are deferred to the Appendices, as indicated
at the respective parts. For missing proofs and other details, we refer the reader to the full
version [39].

J. Garg, E. Husić, and L. A. Végh 33:5

2 Models and concepts

Notation [k] denotes {1, 2, . . . , k}, and 1k denotes the k dimensional vector with all entries 1.
We use 1 if the dimension is clear from the context. We consider an exchange market with a
set of agents A = [n] and divisible goods G = [m]. Each agent i ∈ [n] arrives at the market
with an initial endowment of goods e(i) ∈ Rm

+ . Thus, the total amount of good j ∈ [m] is ej

where e =
∑n

i=1 e(i); w.l.o.g. ej > 0. Given a non-negative price vector p ∈ Rm
+ , the budget of

agent i at prices p is defined as bi = bi(p) = p⊤e(i). It follows that p⊤e =
∑

i p⊤e(i) =
∑

i bi.
We now define the market equilibrium using demand systems. A bundle x is a non-negative

vector x ∈ Rm
+ . A demand system is a function D : Rm+1

+ → 2Rm
+ ; D(p, b) denotes the set

of preferred bundles of an agent at prices p and budget b. Bundles in D(p, b) are called
the optimal or demand bundles at prices p and budget b. This corresponds to the standard
concept of a demand function, except that we do not assume the uniqueness of a preferred
bundle. For example, in case of a linear utility function u(x) =

∑
j∈G vjxj , D(p, b) includes

all fractional assignment of goods maximizing vj/pj with a total price b. If |D(p, b)| = 1
for all (p, b) ∈ Rm+1 we say that D is simple, and use D(p, b) to denote the unique bundle.
We include the budget b in the definition of the demand system, even though for exchange
markets the budget of agent i is uniquely defined by the prices as p⊤e(i). This formalism will
be useful for our algorithm where the budgets are defined according to a slightly different set
of prices.

▶ Definition 1 (Market equilibrium). Let Di denote the demand system of agent i ∈ A.
We say that the prices p ∈ Rm

+ and bundles x(i) ∈ Rm
+ form a market equilibrium if (i)

x(i) ∈ Di(p, p⊤e(i)), and (ii)
∑n

i=1 x
(i)
j ≤ ej, with equality whenever pj > 0, for all j ∈ G.

That is, p and optimal bundles x(i) form an equilibrium if no good is overdemanded and
goods at a positive price are fully sold. Note that this implies that every agent fully spends
their budget.

▶ Definition 2. Let (p, b) ∈ Rm+1
+ and x ∈ D(p, b). If for any p′ ≥ p and b′ ≥ b there exists

y ∈ D(p′, b′) such that yj ≥ xj whenever p′
j = pj , we say that the demand system D satisfies

the weak gross substitutes (WGS) property.

We will also say that D(p, b) is a WGS demand system. In the context of the tâtonnement
process, the weak gross substitutes property is usually defined with respect to the aggregate
excess demand function of all agents. We use the stronger requirement of having a WGS
demand system for each individual agent. The previous auction algorithms [46, 47] have also
used WGS on the level of agents as this seems to be the necessary condition that allows
agents to update their bundles individually, as opposed to tâtonnement, where the prices
adjustments react to the aggregate demands.

▶ Definition 3 (Demand oracle). For a WGS demand system D(p, b), a demand oracle
requires two vectors (p, b), (p′, b′) ∈ Rm+1

+ such that (p′, b′) ≥ (p, b), and a vector x ∈ D(p, b).
The output is a vector y ∈ D(p′, b′) such that that yj ≥ xj whenever p′

j = pj.

In other words, the oracle provides the allocations guaranteed by the definitions of WGS
systems. The complex form of the definition is due to the possible non-uniqueness of demand
bundles. For simple demand systems, the input to the oracle is simply a vector (p′, b′) ∈ Rm+1

+ ,
and the output is the unique vector y ∈ D(p′, b′).

For exchange markets, we will make the following assumptions:

▶ Assumption 4 (Scale invariance). For every agent i, Di(p, bi) = Di(αp, αbi) for all α > 0.

STACS 2021

33:6 Auction Algorithms with WGS Demands

▶ Assumption 5 (Non-satiation). For all demand systems, and for every (p, b) ∈ Rm+1
+ , and

every x ∈ D(p, b), we have p⊤x = b.

In scale invariance, we require that the demand is homogeneous of degree 0; informally, the
demand does not depend on the currency. This is a standard assumption in microeconomics
and exchange markets, see e.g. [5, 33, 35, 55].

Non-satiation states that in every optimal bundle the agents must fully spend their
budgets. This is a standard assumption for exchange markets as it is necessary for the
fundamental theorems of welfare economics (see e.g. [54, Chapter 16]). However, we note
that we do not require this assumption for spending restricted Fisher markets.

Approximate equilibria. We define the concept of an ϵ-equilibrium in exchange markets
that our algorithm finds. We require that each agent gets an approximate optimal bundle
and market clears approximately.

▶ Definition 6 (Approximate equilibrium). For an ϵ > 0, the prices p ∈ Rm and bundles
x(i) ∈ Rm

+ form an ϵ-approximate market equilibrium if
(i) x(i) ≤ z(i) for some z(i) ∈ Di(p(i), p⊤e(i)), where p ≤ p(i) ≤ (1 + ϵ)p,
(ii)

∑n
i=1 x

(i)
j ≤ ej, and

(iii)
∑m

j=1 pj

(
ej −

∑n
i=1 x

(i)
j

)
≤ ϵp⊤e.

That is, every agent owns a subset of their optimal bundle at prices that are within a
factor (1 + ϵ) from p, and all goods are nearly sold: the value of the unsold goods is at most
an ϵ fraction of the total value of the goods. The total value of the goods “taken away” from
the near-optimal bundles of the agents is

∑n
i=1 p⊤(z(i) − x(i)). Parts (i) and (iii), together

with the fact that p(i)⊤
z(i) ≤ p⊤e(i) for all i, imply that this amount is ≤ 2ϵp⊤e.

The definition (i) can be seen as a natural extension of the corresponding approximate
optimality conditions in [44, 46, 47]. For linear utilities, [44] requires the approximate
maximum bang-per-buck condition vij/pj ≤ (1 + ϵ)vik/pk for any agent i, goods j and k

such that xik > 0. Thus, one can set approximate prices p ≤ p(i) ≤ (1 + ϵ)p for each agent
for which they purchase maximum bang-per-buck goods.

Condition (iii) corresponds to the definition of approximate equilibrium in [32] and [48].
This notion is weaker than the ones used in [44, 46, 47]. The most important difference is
that the latter papers guarantee that each agent recovers approximately their optimal utility.
Such a property could be achieved by strengthening the bound in (iii) from ϵp⊤e to ϵpminemin,
where pmin is the minimum price and emin is the smallest total fractional amount in the
initial endowment of any agent. However, this would come at the expense of substantially
worse running time guarantees in our algorithmic framework.

2.1 Examples of WGS demand systems
A standard way to implement a demand oracle is via an explicitly given utility function.
Assume the agent is equipped with a concave utility function u : Rm

+ → R+. The set of
demand bundles at prices p and budget b it given as the set of optimal solutions of

max u(x) s.t. p⊤x ≤ b; x ≥ 0 . (1)

Then, D(p, b) := Du(p, b) = arg maxx∈Rm
+
{u(x) : p⊤x ≤ b}. We say that a utility function is

WGS if the corresponding demand system is WGS. Most models studied in the literature
assume strictly concave utilities and thus have a unique optimal solution; a notable exception

J. Garg, E. Husić, and L. A. Végh 33:7

is the case of linear utility functions. If the solution is not unique, we can implement the
demand oracle for inputs (p, b), (p′, b′) and x ∈ D(p, b) by imposing the constraints that
u(y) equals the optimal utility in D(p′, b′), and yi ≥ xi for every i with p′

i = pi. Thus, the
optimal demand system can also be implemented via convex programming (we now ignore
the question of numerical precision).

We now present some classical examples of WGS utilities studied in the literature:
For v ∈ Rm

+ the linear (additive) utility is given by u(x) = v⊤x. Then, Du(p, b) =
arg max{v⊤x : p⊤x ≤ b}.
The constant elasticity of substitution (CES) utility is defined by u(x) =(∑

j β
1
σ
j x

σ−1
σ

j

) σ
σ−1

, where
∑

j βj = 1. Then, D(b, p) = {x} for the unique optimal

bundle x given by xj =
βjp−σ

j b∑
k βkp1−σ

k

. It is well-known that CES demand system satisfies

the WGS property iff σ > 1.
The Cobb-Douglas utility function is given by u(x) =

∏
j x

αj

j where
∑

j αj = 1, α ≥ 0. The
unique optimal bundle is therefore xj = bαj/pj and Du(p, b) = {x}. The Cobb-Douglas
utility function satisfies the WGS property for any parameter choices.
The nested CES utility function is defined recursively (see [49]). Any CES function
is a nested CES function. If g, h1, . . . , ht are nested CES functions, then f(x) =
max g(h1(x1), . . . , ht(xt)) over all x1, . . . , xt such that

∑t
k=1 xk = x, is a nested CES

function. In a well-studied special case (see e.g., [51]), each good j can only be used in at
most one of the hi’s.

Conic combinations of demand systems. Given two WGS utility functions u and u′, the
demand system corresponding to their sum u + u′ may not be WGS. On the other hand,
consider two simple WGS demand systems D and D′ and nonnegative coefficients λ, λ′. Then
it is easy to see that λD + λ′D′ is also a simple WGS demand system. This enables the
construction of some interesting demand systems. For example, [55] has studied hybrids of
CES and Cobb-Douglas demands, where the demand system is given as a conic combination
of the two. 1

xj = b

pj

[
ϵαj + (1 − ϵ)

βjp1−σ
j∑

k
βkp1−σ

k

]
, for some 0 ≤ ϵ ≤ 1 and σ > 1 .

Note that if D = Du and D′ = Du′ for some concave utility functions u and u′, the demand
system λD + λ′D′ in general does not correspond to the utility function λu + λ′u′. In fact, it
is unclear if one can find explicitly utility functions corresponding to such conic combinations.
Our model does not require the demand system to be given in the form D = Du for some
function u.

Price elasticity of demands. One possible implementation of the key subroutine FindNew-
Prices (Section 3) relies on the (price) elasticity of the demands.2 The standard definition
of the elasticity for good j with respect to the price of good k is ej,k = ∂ log xj(p, b)/∂ log pk,
where xj(p, b) is the (unique) demand for good j at prices p and budget b. The WGS

1 We note that this demand function does not seem to correspond to a nested CES utility function.
2 No finite lower bound exists on the elasticity of linear demand systems. If we are buying a positive

amount of good j, then j maximizes vk/pk. If there is another good ℓ with vj/pj = vℓ/pℓ, then if we
increase pj but leave the other prices unchanged, then x′

j = 0 for every optimal bundle x′ w.r.t. the
new prices. Consequently, for this case, we have another way to implement FindNewPrices.

STACS 2021

33:8 Auction Algorithms with WGS Demands

property guarantees that ej,k ≥ 0 if j ̸= k, and consequently, ek,k ≤ 0. The definition below
corresponds to ek,k ≥ −f for all k ∈ [m], for the more general model of non-simple demand
systems.

▶ Definition 7. Consider a WGS demand system D(p, b). For some f > 0, we say that the
elasticity of D(p, b) is at least −f , if for any µ ≥ 0, j ∈ [m], (p, b) ∈ Rm+1

+ and x ∈ D(p, b),
if we define p′ as p′

j = pj(1 + µ) and p′
k = pk for k ∈ [m] \ {j}, then there exists a bundle

x′ ∈ D(p′, b) such that x′
j ≥ 1

(1+µ)f xj.

In can be shown that the CES demand system with parameter σ > 1 has elasticity at
least −σ, and the Cobb-Douglas demand system has elasticity at least −1.

Separable and uniformly separable WGS utility functions. The auction algorithm in [44]
was later extended in [47] to separable WGS utility functions, that is, u =

∑
j∈G uj where

each uj is a WGS utility function depending only on good j. This model was further
generalized in [46] to uniformly separable WGS utility functions, that is, ∂u(x)

∂xj
= fj(xj)g(x),

where each fj is a strictly decreasing function. This class already includes CES and Cobb-
Douglas utilities; however, it does not appear to extend to demand systems obtained as their
conic combinations, where even the explicit form of the utility function is unclear. Further,
the running time bound stated in [46] is unbounded for the CES and Cobb-Douglas cases;
see the full version of the paper for further discussion.

3 Auction algorithm for exchange markets

The algorithm (shown in Algorithm 1) uses the accuracy parameter 0 < ϵ < 0.25, and returns
a 4ϵ-approximate equilibrium. We initialize all prices pj = 1 and the prices will only increase
during the algorithm, in increments by a factor (1 + ϵ). This initialization is enabled by
Assumption 4 that guarantees the existence of market clearing prices where all positive prices
are ≥ 1.3

We maintain a price vector p called the market prices; the budget of agent i ∈ [n] is
bi = p⊤e(i) at the current prices. Further, every agent i ∈ [n] maintains individual prices p(i)

such that p ≤ p(i) ≤ (1 + ϵ)p. At any point of the algorithm, agent i owns a bundle c(i) of
the goods such that c(i) ≤ x(i) for some x(i) ∈ Di(p(i), bi). Some amount of good j is sold at
the lower price pj , and some at the higher price (1 + ϵ)pj . The price agent i has to pay for
good j is the higher price (1 + ϵ)pj if p

(i)
j = (1 + ϵ)pj and the lower price pj otherwise. (Note

that this is in contrast with [44] and the other previous auction algorithms where i may pay
pj for some amount of good j and (1 + ϵ)pj for another amount.)

We consider the agents one-by-one. If an agent i has surplus money, they use the
subroutine FindNewPrices to update their prices p(i) and bundle x(i), by maintaining
x

(i)
j ≥ c

(i)
j – this latter requirement turns out to be the main challenge. They will then try

to purchase x
(i)
j − c

(i)
j amount of good j in the Outbid procedure. They start by purchasing

any unsold amount of good at price pj . If they still need more, then they will outbid other
agents who have been paying the lower price pj for this good, by offering the higher price
(1 + ϵ)pj . Once good j is sold only at the higher price (1 + ϵ)pj , we increase the price of the
good. If no price is increased, we move to the next agent. Otherwise, we announce the new
prices p and repeat. The algorithm terminates once the total surplus of the agents drops
below 3ϵp⊤e. At this point, we can conclude that the current prices and allocations form a
4ϵ-approximate equilibrium.

3 Even though there might be goods priced at 0 in an equilibrium, we can always find an ϵ-approximate
equilibrium where all prices are positive.

J. Garg, E. Husić, and L. A. Végh 33:9

We express the running time of the algorithm in terms of the running time TF of the
subroutine FindNewPrices, as well as the upper bound on the ratio pmax/pmin of the largest
and smallest nonzero prices at any ϵ-equilibrium. Such an upper bound may be obtained for
the specific demand systems. Alternatively, one can follow the approach of the papers [23, 25]
by adding a dummy agent with a Cobb-Douglas demand system and an initial endowment of
a small fraction of all goods. In the presence of such an agent, we can obtain a strong bound
on pmax/pmin, at the expense of obtaining a slightly worse approximation guarantee (see the
full version of the paper).

Note that for (approximate-)equilibrium prices p, αp also gives (approximate-)equilibrium
prices with the same allocation, for any α > 0. In our algorithm, the minimum price will
remain at most 1 + ϵ throughout, see Lemma 10.

▶ Theorem 8. Let TF be an upper bound on the running time of the subroutine
FindNewPrices. Algorithm 1 finds a 4ϵ-approximate market equilibrium in time
O

(
nmTF

ϵ2 · log
(

pmax
pmin

))
.

There are various options for implementing FindNewPrices. A simple price can be imple-
mented increment procedure for the case of bounded elasticities; recall the elasticity bound
f from Definition 7. Using this subroutine and Lemma 13, we obtain the following overall
bound.

▶ Theorem 9. If all agents have elasticity at least −f for some f > 0, then an ϵ-approximate
equilibrium can be computed in time O

(
nm2f ·TD

ϵ2 · log
(

pmax
pmin

))
, where TD is the time needed

for one call to the demand oracle.

As noted earlier, there are demand systems (such as linear) where the flexibility parameter
cannot be bounded. However, in case the demand system is given in the form (1) via a
utility function that is homogeneous of degree one, we can obtain an implementation of
FindNewPrices by solving a convex program. This is in particular applicable for Cobb-
Douglas and CES utilities with σ > 1. One could find further possible ways for implementing
FindNewPrices for particular demand systems; e.g., we give a simple direct procedure for
linear utilities, and for budget-SPLC utilities. For details, see the full version of the paper.

The full version also contains an overview of the running times of previous auction
algorithms.

Invariants. Let us now summarize the invariant properties maintained throughout the
algorithm. We say that a bundle y dominates the bundle x if x ≤ y.
(a) Each good is partitioned into three parts according to the price it is being sold at:

amount wj is the unsold part of the good,
amount lj is sold at the lower price pj , and
amount hj is sold at the higher price (1 + ϵ)pj .

Moreover, wj + lj > 0, i.e., there is always a part of the good that is unsold or owned by
an agent at the lower price.

(b) The unsold amount wj of each good is non-increasing. If wj > 0 then pj = 1.
(c) The budget of agent i is bi = p⊤e(i). Each agent i maintains prices p(i) such that

p ≤ p(i) ≤ (1+ϵ)p, and owns a bundle c(i) that is dominated by a bundle x(i) ∈ Di(p(i), bi).
(d) For the amount c

(i)
j of good j, agent i pays

price pj for goods in Li := {j ∈ [m] : p
(i)
j < (1 + ϵ)pj}, and

the price (1 + ϵ)pj for goods in Hi := {j ∈ [m] : p
(i)
j = (1 + ϵ)pj} = [m] \ Li.

STACS 2021

33:10 Auction Algorithms with WGS Demands

Algorithm 1 Auction algorithm for exchange markets.

Input: Demand systems Di, and the endowment vectors e(i), and ϵ ∈ (0, 0.25).
Output: A 4ϵ-approximate market equilibrium.

1 Initialization: ∀i, j set pj ← 1, p
(i)
j ← 1, c

(i)
j ← 0, wj = ej =

∑
i e

(i)
j , and lj = 0;

NewIt for i ∈ [n] do // recompute the budgets and surpluses
3 bi ← p⊤e(i); si ← bi −

∑
j∈Li

c
(i)
j pj −

∑
j∈Hi

c
(i)
j (1 + ϵ)pj

4 if
∑n

i=1 si ≤ 3ϵp⊤e then return p, {p(i)}i∈[n] and {c(i)}i∈[n];
NewStp for i ∈ [n] with si > 0 do // step for agent i

7 (p̃, y)← FindNewPrices(i, p(i), p, ϵ, c(i), bi);
8 for j = 1 to m do
9 if p

(i)
j < (1 + ϵ)pj and p̃j = (1 + ϵ)pj then // Case 1

10 si ← si − c
(i)
j · ϵpj ; lj ← lj − c

(i)
j ; // i pays (1 + ϵ)pj instead of pj

11 Outbid(i, j, yj − c
(i)
j);

12 else if p
(i)
j = (1 + ϵ)pj and p̃j = (1 + ϵ)pj then // Case 2

13 Outbid(i, j, yj − c
(i)
j);

// Skip the goods with p
(i)
j < (1 + ϵ)pj and p̃j < (1 + ϵ)pj. Case 3

14 p(i) ← p̃; flag ← 0;
15 for j ∈ [m] with wj + lj = 0 do
16 pj ← (1 + ϵ)pj ; lj = ej ; // price increase

17 foreach k ∈ [n] do p
(k)
j ← (1 + ϵ)pj ;

18 flag ← 1;
19 if flag = 1 then go to NewIt;

Procedure Outbid(i, j, t).

// t is the amount of good j agent i wants to outbid.
1 if wj > 0 then // a part of j is unsold
2 τ = min{wj , t};
3 wj ← wj − τ ; c

(i)
j ← c

(i)
j + τ ; t← t− τ ;

4 si ← si − τ · (1 + ϵ)pj ; // here pj = 1 always
5 while t > 0 and lj > 0 do
6 Let k ∈ [n] be such that c

(k)
j > 0 and p

(k)
j = pj . Set τ = min{c(k)

j , t};
7 c

(k)
j ← c

(k)
j − τ ; c

(i)
j ← c

(i)
j + τ ; // i outbids k

8 sk ← sk + τ · pj ; si ← si − τ · (1 + ϵ)pj ; lj ← lj − τ ; t← t− τ ;

In accordance with (d), the surplus of agent i is si := bi −
∑
j∈Li

c
(i)
j pj −

∑
j∈Hi

c
(i)
j (1 + ϵ)pj .

The Outbid subroutine. An important subroutine, described in Procedure Outbid, controls
how the ownership of goods may change. If agent k has paid price pj on a certain amount of
good j, then agent i may take over some of this amount by offering a higher price (1 + ϵ)pj .
Possibly i = k, in which case the agent outbids herself. We also incorporate into the procedure
the case when a certain amount of a good is being purchased for the first time. Note that
pj = 1 at this point due to invariant (b).

J. Garg, E. Husić, and L. A. Végh 33:11

Main iterations. The algorithm is partitioned into iterations. Each iteration finishes when
the price of a good increases from pj to (1 + ϵ)pj . At every such event, the budgets bi of
the agents also increase. Therefore, at the start of an iteration each agent i recomputes
their budget at line NewIt. An iteration is further partitioned into steps, which are single
executions of the main for loop in Algorithm 1. The algorithm terminates as soon as the
total surplus drops below 3ϵp⊤e.

Steps. Suppose we are considering agent i. By invariant (c), the agent is buying a bundle
c(i) ≤ x(i) for some x(i) ∈ Di(p(i), bi). The subroutine FindNewPrices(i, p(i), p, ϵ, c(i), bi)
delivers new prices p̃ and a bundle y such that
(A) y ≥ c(i) for y ∈ Di(p̃, bi), and
(B) p(i) ≤ p̃ ≤ (1 + ϵ)p, and p̃j = (1 + ϵ)pj whenever yj > (1 + ϵ) c

(i)
j .

Condition (A) says that agent i still wants whatever they own even at the increased prices
p̃. Condition (B) is the crucial one for the outbid. It guarantees that p̃ ≥ p(i), and whenever
an agent wants to buy more of some good than they already own at least by a factor 1 + ϵ,
then they are willing to pay the higher price (1 + ϵ)pj for it. (They might already be paying
the increased price to start with if p

(i)
j = (1 + ϵ)pj . In this case p̃j = (1 + ϵ)pj = p

(i)
j .)

The description of this subroutine is given in the full version of the paper. Observe that
FindNewPrices will make progress whenever c(i) is far from x(i) for some agent i. When they
are very close for each agent i, then we have already reached an approximate equilibrium.

The above properties suggest the following update rules for each good j ∈ [m].
Case 1. p

(i)
j < (1 + ϵ)pj and p̃j = (1 + ϵ)pj . The good j was in Li and needs to be moved to

Hi, i.e., agent i used to pay pj but now is willing to pay the higher price for j. Agent i first
outbids themselves for the amount c

(i)
j they already own and starts paying pj(1 + ϵ) for this

amount. Additionally, agent i outbids on good j up to the amount they want and that is
available from the other agents.
Case 2. p

(i)
j = (1 + ϵ)pj and p̃j = (1 + ϵ)pj . The good j was in Hi and stays in Hi, i.e., agent

i continues to pay the higher price. The agent i still keeps the amount c
(i)
j of good j that

they already had and outbids for as much as they can from the other agents.
Case 3. p

(i)
j < (1 + ϵ)pj and p̃j < (1 + ϵ)pj . The good j remains in Li, i.e., agent i continues

to pay the lower price. By (B), we must have c
(i)
j ≤ yj ≤ (1 + ϵ)c(i)

j ; the agent will not seek
to buy more of these goods.

The cases above have covered all possibilities since p
(i)
j ≤ p̃j . Note that in the first two

cases the agent will own min(yj , lj +wj) amount of good j, whereas they will own c
(i)
j amount

in the third case. Once all of the goods have been considered we set p(i) = p̃, x(i) = y, and
update c(i) as the current allocation. If wj + lj = 0 for some j then hj = ej , i.e., the whole j

is sold at the higher price pj(1 + ϵ). For each such good j we increase the market price pj

to (1 + ϵ)pj , and for all agents k we set p
(k)
j = pj for the new increased pj ; finally, we set

lj = ej and hj = 0. The step ends.

3.1 Analysis

The missing proofs are presented in the full version. Here, we analyze the running time.

▶ Lemma 10. The smallest price minj∈G{pj} remains at most (1 + ϵ) throughout the
algorithm.

STACS 2021

33:12 Auction Algorithms with WGS Demands

Next, we give a bound on the number of iterations, using the same basic idea of organizing
the steps into rounds as in [44]. A round consists of going over all agents exactly once in the
main “for” loop and doing a step for each agent; i.e, a round comprises at most n steps.

▶ Lemma 11. The number of rounds in an iteration is at most 2/ϵ.

Proof. Let us fix an iteration and denote with p the market prices at the start of the iteration.
Consider a step of an agent i within the iteration. If from a good j, i buys everything that
is available at the cheaper price pj , then the market price of j increases and the iteration
finishes. So for the rest of the proof we assume that the market price increase does not
happen; consequently, the budget of each agent is unchanged and agent i gets the amount of
each good it desires.

Let φ denote the total amount of money spent at a certain point of this iteration that is

spent by the agents on higher price goods. That is, φ = (1 + ϵ)
n∑

i=1

∑
j∈Hi

c
(i)
j pj .

▷ Claim 12. Let si denote the surplus of agent i at the beginning of their step. Then the
value of φ increases at least by si − 2.25ϵbi in the step of agent i.

Proof. Recall Cases 1-3 in the description of the step. Let Tk be the set of goods that fall
into case k, that is, T1 ∪ T2 ∪ T3 = [m].

If j ∈ T1, then (1 + ϵ)pjyj amount will be added to φ in the Outbid subroutine: In this
case, the agent also outbids itself, moving the good from Li to Hi.
If j ∈ T2, then (1 + ϵ)pj(yj − c

(i)
j) amount will be added to φ in the Outbid subroutine.

If j ∈ T3, then we do not increase φ. Nevertheless, (B) guarantees that p̃j(yj − c
(i)
j) ≤

ϵp̃jc
(i)
j . Consequently,∑

j∈T3

p̃j(yj − c
(i)
j) ≤ ϵp̃⊤c(i). (2)

Also note that p̃j = (1 + ϵ)pj if j ∈ T1 ∪ T2. Assumption 5 on non-satiation guarantees that
p̃⊤y = bi. Let ∆φ denote the increment in φ; this can be lower bounded as

∆φ =
∑
j∈T1

p̃jyj +
∑
j∈T2

p̃j(yj − c
(i)
j) = p̃⊤y −

∑
j∈T3

p̃jyj −
∑
j∈T2

p̃jc
(i)
j

≥ bi −
∑
j∈T3

p̃j(yj − c
(i)
j)− p̃⊤c(i) ≥ bi − (1 + ϵ)p̃⊤c(i) ,

using (2). The money spent by the agent at the beginning of the step is bi − si. Good
j is purchased at price at least pj according to (d), and p̃j ≤ (1 + ϵ)pj . Consequently,
p̃⊤c(i) ≤ (1 + ϵ)(bi − si). With the above inequality and using that ϵ < 0.25, we obtain
∆φ ≥ bi − (1 + ϵ)2(bi − si) ≥ si − 2.25ϵbi . ◁

As long as
∑n

i=1 si > 3ϵp⊤e, the claim guarantees that φ increases in every round by at least
3ϵp⊤e− 2.25ϵ

∑n
i=1 bi > 0.5ϵp⊤e. Since φ ≤ p⊤e, the number of rounds is at most 2/ϵ. ◀

Proof of Theorem 8. In their steps, agents use their surpluses to outbid for the goods. We
bound the number of repeats in the “while” cycles (lines 5–8) in all calls to Outbid in a given
iteration. When Outbid(i, j, t) is called, the “while” loop is repeated until t = 0 or good j is
sold only at the higher price. Moreover, Outbid(i, j, t) possibility sets some c

(k)
j to zero. The

total number of such events within a single iteration is bounded by nm – each agent loses a
good through the outbid at most once before the prices increases and iteration finishes.

J. Garg, E. Husić, and L. A. Végh 33:13

Hence, the number of “while” calls is at most nm plus the total number of calls to Outbid.
This is at most m in each step, and thus nm in each round. According to Lemma 11, the
number of repeats “while” calls in every iteration is 2nm/ϵ; each repeat takes O(1) time.
The same bound holds for the ’if’ calls in lines 1–4 in Outbid.

Every step calls the procedure FindNewPrices exactly once. Therefore, the time taken
by FindNewPrices in an iteration is O(nTF /ϵ). According to Lemma 10, the minimum
price remains at most 1 + ϵ throughout. Hence, the number of iterations is bounded by
O(m log1+ϵ(pmax/pmin)) = O(m

ϵ log(pmax/pmin)). The claimed running time bound follows,
using also TF = Ω(m) since the output needs to return an m-dimensional vector of goods.

It is left to show that the prices p and bundles c(i) form a 4ϵ-approximate market
equilibrium. The first two properties in the definition are clear: c(i) is dominated by an
optimal bundle with respect to the prices p(i), and no good is oversold. At termination,
the total surplus of the agents is bounded by 3ϵp⊤e. However, this surplus is computed
assuming that some goods are sold at price pj and others at price (1 + ϵ)pj . Decreasing the
price of the latter goods to pj releases an additional excess of at most ϵp⊤e. Consequently,∑m

j=1 pj(e−
∑n

i=1 c
(i)
j) ≤ 4ϵp⊤e. ◀

3.2 Implementing FindNewPrices
We now describe the subroutine FindNewPrices(i, p(i), p, ϵ, c(i), bi). Recall that the outputs
are new prices p̃ ≥ p(i) and a bundle y with
(A) y ≥ c(i) for y ∈ Di(p̃, bi), and
(B) p(i) ≤ p̃ ≤ (1 + ϵ)p, and p̃j = (1 + ϵ)pj whenever yj > (1 + ϵ) c

(i)
j .

Let us assume that the demand system Di has elasticity at least −f for some f > 0.
Our Algorithm 2 for this case is a simple price increment procedure. First, we obtain
y ∈ Di(p(i), bi) from the demand oracle with y ≥ c(i). This is possible due to invariant (c),
which guarantees that c(i) ≤ x(i) for some x(i) ≤ Di(p(i), bi). Then, the demand oracle is
able to return a bundle y such that y ≥ x(i) ≥ c(i). Then, we iterate the following step. As
long as (B) is violated for a good j, we increase its price by a factor (1 + ϵ)1/f until it reaches
the upper bound (1 + ϵ)pj .

Algorithm 2 Finding new prices.

Input: i, p(i), p, ϵ, c(i), f, bi.
Output: Prices p̃ and bundle y.

1 Initialization: p̃← p(i) ;
2 Obtain y ∈ Di(p̃, bi) from the demand oracle with y ≥ c(i) ;
3 while ∃j : p̃j < (1 + ϵ)pj and yj > (1 + ϵ)c(i)

j do
4 p̃j ← min{(1 + ϵ)1/f p̃j , (1 + ϵ)pj} ;
5 Obtain y′ ∈ Di(p̃, bi) from the demand oracle such that y′

k ≥ yk for k ̸= j ;
6 y ← y′ ;
7 return (p̃, y) ;

▶ Lemma 13. Assume the demand system Di has elasticity at least −f for some f > 0.
Algorithm 2 terminates with p̃ and y satisfying (A) and (B) in time O(mf · TD), where TD

is the time for a call to the demand oracle.

We will assume that TD = Ω(m), since the demand oracle needs to output an m-dimensional
vector.

STACS 2021

33:14 Auction Algorithms with WGS Demands

Proof. The bound on the number of iterations is clear: since we have p ≤ p̃ ≤ (1 + ϵ)p
throughout, the price of every good can increase at most f times. Condition (A) is satisfied
due to the WGS property and the bound on the demand elasticity. When increasing p̃j , the
demand yk for k ̸= j is non-decreasing as guaranteed by the demand oracle. Further, yj may
decrease only by a factor (1 + ϵ), and since we had yj > (1 + ϵ)c(i)

j before the price update,
we still have yj > c

(i)
j after the price update. Condition (B) is satisfied at termination since

the while loop keeps running as long as it is violated. Checking the while condition each
time requires O(m) time; however, this will be dominated by the time TD according to the
comment on TD ≥ m above. ◀

As explained in Section 3, this is only one of the possible ways of implementing FindNew-
Prices. A convex programming approach for utilities that are homogeneous of degree 1 can
be developed. For example, for CES with parameter σ > 1, the running time of Algorithm 2
depends linearly on σ, whereas the running time of the convex programming is independent
on this parameter. Nevertheless, for small values of σ the simple price increment procedure
may be preferable to solving a convex program.

Further, more direct approaches for implementing FindNewPrices may be possible for
particular demand systems. For Cobb-Douglas demands with parameter vector α(i), it is
easy to devise an O(m) time algorithm implementing the procedure. The algorithm relies on
the fact that the optimal bundle is the bundle that allocates α

(i)
j bi money for good j. Hence,

each price can be set independently of the others. Similarly, there is O(m) procedure for
implementing FindNewPrices for linear utilities; recall from Section 2.1 that the elasticity is
unbounded in this case.

4 Fisher markets and the Nash social welfare problem

Fisher markets are a well-studied special case of exchange markets, where the initial en-
dowment of agent i is δie for δi > 0 and therefore the relative budgets of the agents are
independent of the prices. With appropriate normalization of the prices, we can assume that
agent i arrives with a fixed budget bi and that there is exactly one unit of each good. At
an equilibrium, the agents spend these budgets on their most preferred goods at the given
prices. Let us now assume that the demand systems are given via utility functions as in (1).
Eisenberg and Gale [36] gave a convex programming formulation of the market equilibrium
problem for linear utilities. Eisenberg [35] showed that the optimal solutions to the following
convex program are in one-to-one correspondence with the market equilibria assuming that
the utility functions are homogeneous of degree one, that is, ui(αx) = αui(x) for any α > 0.

max
n∑

i=1
bi log ui(x(i)) subject to

n∑
i=1

x
(i)
j ≤ 1, ∀j = 1, . . . , m. (3)

We note that the equilibrium prices are given by the optimal Lagrange multipliers.

The Nash social welfare problem. In the Nash social welfare (NSW) problem, we need
to allocate m indivisible items to n agents (m ≥ n), with agent i equipped with a utility
function on the subsets of goods. The goal is to find a partition S1 ∪ S2 ∪ . . . Sn = [m] of
the goods in order to maximize the geometric mean of the utilities, (

∏n
i=1 ui(Si))

1/n. This
problem is NP-hard already for additive utilities, that is, if ui(S) =

∑
j∈S vij .

The first constant factor approximation for this problem was given by Cole and Gkatzelis
[28]. Their approach was to first solve a continuous relaxation that corresponds to a divisible
market problem, and round the fractional optimal solution. The natural relaxation is exactly

J. Garg, E. Husić, and L. A. Végh 33:15

the program (3) above with all bi = 1. For linear utilities, we can use the natural continuous
extension ui(x) =

∑
j∈S vijxij of the additive utility function. However, it is easy to see that

this relaxation has an unbounded integrality gap. Cole and Gkatzelis [28] introduced the
notion of spending restricted equilibrium that we now define in a slightly more general form.

▶ Definition 14. Suppose there are n agents with demand systems Di(p, bi) and fixed
budgets b ∈ Rn

+. Further, let us be given bounds t ∈ (0,∞)m. The prices p ∈ Rm and
allocations x(i) ∈ Di(p, bi) form a Spending Restricted (SR) equilibrium with respect to t, if∑

i x
(i)
j = min{1, tj/pj}, ∀j ∈ [m].

Note that the set of equilibria can be non-convex already for budget-additive utilities as
shown in [38].

At given prices p, we let aj(p) = aj = min{1, tj/pj} denote the available amount of good
j. That is, the amount of money spent on good j is bounded by tj . By setting tj =∞ for
all j, the above reduces to the standard definition of Fisher market equilibrium.

The algorithm in [28] first computes a spending restricted equilibrium for linear Fisher
markets with bounds tj = 1, and show that this can be rounded to an integer solution of cost
at most 2e1/e times the optimal NSW solution. Note that the spending restrictions cannot
be directly added to the formulation (3) since they involve the Lagrange multipliers p. An
SR-equilibrium in [28] was found via an extension of algorithms by Devanur et al. [31] and
Orlin [58] for linear Fisher markets.

Subsequent work by Cole et al. [26] showed that a spending restricted equilibrium for
the linear markets can be obtained as an optimal solution of a convex program (extending a
convex formulation of linear Fisher market equilibrium that is different from (3)), and also
improved the approximation guarantee to 2 (the current best factor is 1.45 [8]). However,
this convex formulation is only known to work for linear utility functions.

Further work has studied the NSW problem for more general utility functions, following
the same strategy of first solving a spending-restricted market equilibrium problem then
rounding. Anari et al. [2] studied NSW with separable, piecewise-linear concave (SPLC)
utilities. The paper [38] studied budget-additive valuations, that correspond to the utility
function ui(x) = min(ci,

∑
j uijxj). Both papers find (exact or approximate) solutions

to the corresponding spending-restricted market equilibrium problem via fairly complex
combinatorial algorithms.

The Gale demand systems. The demand systems of the market models in [2, 38] do
not exactly correspond to (1). In [38] one needs additional conditions on the agents being
“thrifty”; in [2] a “utility market model” is used. In both cases, the total spending of the
agents can be below their budgets. A natural unified way of capturing these equilibrium
concepts is via Gale demand systems, defined as

Gu(p, b) = arg max
x∈Rm

+

b log u(x)− p⊤x . (4)

We call b log u(x)− p⊤x the Gale objective function. It is easy to verify using Lagrangian
duality that if all ui’s are concave functions, and the utility functions correspond to the
Gale demand systems Di(p, b) = Gui(p, b), then the program (3) always finds a market
equilibrium; see [56] for details. Moreover, if the utilities are homogeneous of degree one, then
this equilibrium coincides with the equilibrium for the “standard” demand systems given
by (1). For general concave utility functions, the optimal bundles stay within the budget b

(that is, p⊤x ≤ b), but may not exhaust it. Finding a spending-restricted equilibrium for

STACS 2021

33:16 Auction Algorithms with WGS Demands

Gale demand systems appears to be the right setting for NSW; in fact, the concepts used
by [2] and [38] correspond to the Gale equilibrium in these settings, and moreover, these
Gale demand systems admit the WGS property. On contrary, the demand systems arising
from the previously mentioned utility functions do not satisfy the WGS property in the usual
setting (1).

We refer the reader to the paper by Nesterov and Shikhman [56] on Gale demand systems
as well as the more general concept of Fisher-Gale equilibrium; they also give a tâtonnement
type algorithm for finding such an equilibrium.

Approximate spending-restricted equilibrium. We use an extension of Definition 6 as our
approximate SR-equilibrium notion. The main difference is that we require all goods to be
fully consumed.

▶ Definition 15 (Approximate SR-equilibrium). Let t ∈ [1,∞]m. For an ϵ > 0, the prices
p ∈ Rm and bundles x(i) ∈ Rm

+ form an ϵ-approximate SR-equilibrium w.r.t. t if
(i) x(i) ≤ z(i) for some z(i) ∈ Di(p(i), bi), where p ≤ p(i) ≤ (1 + ϵ)p,
(ii)

∑n
i=1 x

(i)
j = aj := min{1, tj/pj} for all j, and

(iii)
∑m

j=1 pj

(∑n
i=1 z

(i)
j − aj

)
≤ ϵ

∑n
i=1 bi.

We note that whereas an equilibrium will always exist for WGS utilities, the existence
of an SR-equilibrium is a nontrivial question. For example, suppose an agent i has budget
bi and Cobb-Douglas utility function

∏m
j=1(x(i)

j)βj , where
∑

j βj = 1, such that βk > 1
bi

for
some k with tk = 1. Then the agent i would like to spend at least βkbi > 1 on good j for any
prices p, but the total money that can be spent on this good is capped at 1. Hence, there
doesn’t exist any SR-equilibrium in this case.

While we do not have general necessary and sufficient conditions on the existence of an
SR-equilibrium, we show that the objectives previously studied in the context of NSW admit
an SR-equilibrium. In the case of budget-additive utilities, we have all tj = 1, and all bi = 1.
An ϵ/n-approximate SR-equilibrium satisfies the required accuracy in [38]. Whereas [2]
computes an exact SR-equilibrium, an approximate SR-equilibrium is sufficient to obtain a
(slightly worse) approximation guarantee.

We show that our algorithmic framework is applicable to compute an ϵ-equilibrium for
budget-SPLC, the common generalization of the models in [2] and [38]. Using a similar
rounding as in [38], we obtain a constant-factor approximation algorithm for maximizing
NSW in polynomial-time when agents have budget-SPLC utilities and goods come in multiple
copies. The previous algorithm for this setting in [17] runs in pseudopolynomial time. For
the special case of additive utilities, [10] gives such an algorithm.

References
1 Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. Nash social welfare, matrix

permanent, and stable polynomials. In Proceedings of the 8th Innovations in Theoretical
Computer Science Conference (ITCS), volume 67, page 36. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2017.

2 Nima Anari, Tung Mai, Shayan Oveis Gharan, and Vijay V Vazirani. Nash social welfare for
indivisible items under separable, piecewise-linear concave utilities. In Proceedings of the 29th
annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2274–2290. SIAM,
2018.

3 Kenneth J Arrow, Henry D Block, and Leonid Hurwicz. On the stability of the competitive
equilibrium, II. Econometrica: Journal of the Econometric Society, pages 82–109, 1959.

J. Garg, E. Husić, and L. A. Végh 33:17

4 Kenneth J Arrow and Gerard Debreu. Existence of an equilibrium for a competitive economy.
Econometrica: Journal of the Econometric Society, pages 265–290, 1954.

5 Kenneth J Arrow and Leonid Hurwicz. On the stability of the competitive equilibrium, I.
Econometrica: Journal of the Econometric Society, pages 522–552, 1958.

6 Kenneth J Arrow and Leonid Hurwicz. Competitive stability under weak gross substitutability:
The “Euclidean distance” approach. International Economic Review, 1(1):38–49, 1960.

7 Noa Avigdor-Elgrabli, Yuval Rabani, and Gala Yadgar. Convergence of tâtonnement in Fisher
markets. arXiv preprint, 2014. arXiv:1401.6637.

8 Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient
allocations. In Proceedings of the 2018 ACM Conference on Economics and Computation
(EC), pages 557–574. ACM, 2018.

9 Xiaohui Bei, Jugal Garg, and Martin Hoefer. Ascending-price algorithms for unknown markets.
ACM Transactions on Algorithms (TALG), 15(3):37:1–37:33, 2019.

10 Xiaohui Bei, Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. Earning and utility limits in
Fisher markets. ACM Trans. Economics and Comput., 7(2):10:1–10:35, 2019.

11 Dimitri P Bertsekas. A new algorithm for the assignment problem. Mathematical Programming,
21(1):152–171, 1981.

12 Dimitri P Bertsekas. The auction algorithm for assignment and other network flow problems:
A tutorial. Interfaces, 20(4):133–149, 1990.

13 Benjamin Birnbaum, Nikhil Devanur, and Lin Xiao. Distributed algorithms via gradient
descent for Fisher markets. In Proceedings of the 12th Conf. Electronic Commerce (EC), pages
127–136, 2011.

14 William C Brainard and Herbert E Scarf. How to compute equilibrium prices in 1891. American
Journal of Economics and Sociology, 64(1):57–83, 2005.

15 Simina Brânzei, Nikhil R. Devanur, and Yuval Rabani. Proportional dynamics in exchange
economies. CoRR, abs/1907.05037, 2019. arXiv:1907.05037.

16 Simina Brânzei, Ruta Mehta, and Noam Nisan. Universal growth in production economies.
In Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada,
page 1975, 2018.

17 Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, and
Kurt Mehlhorn. On fair division for indivisible items. In Proceedings of the 38th IARCS
annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), pages 25:1–25:17. Springer, 2018.

18 Xi Chen, Decheng Dai, Ye Du, and Shang-Hua Teng. Settling the complexity of Arrow-Debreu
equilibria in markets with additively separable utilities. In Proceedings of the 50th Symposium
Foundations of Computer Science (FOCS), pages 273–282. IEEE, 2009.

19 Yun Kuen Cheung, Richard Cole, and Nikhil R Devanur. Tâtonnement beyond gross substi-
tutes? Gradient descent to the rescue. Games and Economic Behavior, 2019.

20 Yun Kuen Cheung, Richard Cole, and Ashish Rastogi. Tatonnement in ongoing markets of
complementary goods. In Proceedings of the 2012 ACM Conference on Electronic Commerce
(EC), 2012.

21 Yun Kuen Cheung, Richard Cole, and Yixin Tao. Dynamics of distributed updating in Fisher
markets. In Proceedings of the 2018 ACM Conference on Economics and Computation, Ithaca,
NY, USA, June 18-22, 2018, pages 351–368, 2018.

22 Yun Kuen Cheung, Martin Hoefer, and Paresh Nakhe. Tracing equilibrium in dynamic markets
via distributed adaptation. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019, pages
1225–1233, 2019.

23 Bruno Codenotti, Benton McCune, and Kasturi Varadarajan. Market equilibrium via the
excess demand function. In Proceedings of the 37th ACM symposium on Theory of Computing
(STOC), pages 74–83. ACM, 2005.

STACS 2021

http://arxiv.org/abs/1401.6637
http://arxiv.org/abs/1907.05037

33:18 Auction Algorithms with WGS Demands

24 Bruno Codenotti, Sriram Pemmaraju, and Kasturi Varadarajan. The computation of market
equilibria. Acm Sigact News, 35(4):23–37, 2004.

25 Bruno Codenotti, Sriram Pemmaraju, and Kasturi Varadarajan. On the polynomial time
computation of equilibria for certain exchange economies. In Proceedings of the 16th annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 72–81. SIAM, 2005.

26 Richard Cole, Nikhil Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V Vazirani,
and Sadra Yazdanbod. Convex program duality, Fisher markets, and Nash social welfare.
In Proceedings of the 2017 ACM Conference on Economics and Computation (EC), pages
459–460. ACM, 2017.

27 Richard Cole and Lisa Fleischer. Fast-converging tatonnement algorithms for one-time and
ongoing market problems. In Proceedings of the 40th ACM symposium on Theory of Computing
(STOC), pages 315–324. ACM, 2008.

28 Richard Cole and Vasilis Gkatzelis. Approximating the Nash social welfare with indivisible
items. SIAM J. Comput., 47(3):1211–1236, 2018.

29 Vincent P Crawford and Elsie Marie Knoer. Job matching with heterogeneous firms and
workers. Econometrica: Journal of the Econometric Society, pages 437–450, 1981.

30 Gabrielle Demange, David Gale, and Marilda Sotomayor. Multi-item auctions. Journal of
Political Economy, 94(4):863–872, 1986.

31 Nikhil Devanur, Christos Papadimitriou, Amin Saberi, and Vijay Vazirani. Market equilibrium
via a primal–dual algorithm for a convex program. Jounal of the ACM, 55(5), 2008.

32 Nikhil R Devanur and Vijay V Vazirani. An improved approximation scheme for computing
Arrow–Debreu prices for the linear case. In Proceedings of the 23rd IARCS annual Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages
149–155. Springer, 2003.

33 Nikhil R Devanur and Vijay V Vazirani. The spending constraint model for market equilibrium:
Algorithmic, existence and uniqueness results. In Proceedings of the 36th ACM Symposium on
Theory of Computing (STOC), volume 36, pages 519–528. ACM, 2004.

34 Ran Duan and Kurt Mehlhorn. A combinatorial polynomial algorithm for the linear Arrow-
Debreu market. Information and Computation, 243:112–132, 2015.

35 Edmund Eisenberg. Aggregation of utility functions. Management Science, 7(4):337–350, 1961.
36 Edmund Eisenberg and David Gale. Consensus of subjective probabilities: The pari-mutuel

method. The Annals of Mathematical Statistics, 30(1):165–168, 1959.
37 Lisa Fleischer, Rahul Garg, Sanjiv Kapoor, Rohit Khandekar, and Amin Saberi. A fast and

simple algorithm for computing market equilibria. In Proceedings of the 4th International
Workshop on Internet and Network Economics (WINE), pages 19–30. Springer, 2008.

38 Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. Approximating the Nash social welfare with
budget-additive valuations. In Proceedings of the 29th annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2326–2340. SIAM, 2018.

39 Jugal Garg, Edin Husic, and László A. Végh. Auction algorithms for market equilibrium with
weak gross substitute demands. CoRR, abs/1908.07948, 2019. arXiv:1908.07948.

40 Jugal Garg, Edin Husić, and László A. Végh. Approximating Nash social welfare under Rado
valuations, 2020. arXiv:2009.14793.

41 Jugal Garg and Peter McGlaughlin. Improving Nash social welfare approximations. In
Proceedings of the 28th International Joint Conferences on Artificial Intelligence (IJCAI),
2019.

42 Jugal Garg, Ruta Mehta, Vijay V Vazirani, and Sadra Yazdanbod. Settling the complexity of
Leontief and PLC exchange markets under exact and approximate equilibria. In Proceedings
of the 49th ACM Symposium on Theory of Computing (STOC), pages 890–901. ACM, 2017.

43 Jugal Garg and László A Végh. A strongly polynomial algorithm for linear exchange markets.
In Proceedings of the 51st Symp. Theory of Computing (STOC), 2019.

44 Rahul Garg and Sanjiv Kapoor. Auction algorithms for market equilibrium. Mathematics of
Operations Research, 31(4):714–729, 2006.

http://arxiv.org/abs/1908.07948
http://arxiv.org/abs/2009.14793

J. Garg, E. Husić, and L. A. Végh 33:19

45 Rahul Garg and Sanjiv Kapoor. Price roll-backs and path auctions: An approximation scheme
for computing the market equilibrium. In Proceedings of the 2nd International Workshop on
Internet and Network Economics (WINE), pages 225–238. Springer, 2006.

46 Rahul Garg and Sanjiv Kapoor. Market equilibrium using auctions for a class of gross-
substitute utilities. In Proceedings of the 3rd International Workshop on Web and Internet
Economics (WINE), pages 356–361. Springer, 2007.

47 Rahul Garg, Sanjiv Kapoor, and Vijay Vazirani. An auction-based market equilibrium
algorithm for the separable gross substitutability case. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 128–138. Springer, 2004.

48 Mehdi Ghiyasvand and James B Orlin. A simple approximation algorithm for computing
Arrow–Debreu prices. Operations Research, 60(5):1245–1248, 2012.

49 K. Jain and K. Varadarajan. Equilibria for economies with production: Constant-returns
technologies and production planning constraints. In Proceedings of the 17th annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 688–697. SIAM, 2006.

50 Sanjiv Kapoor, Aranyak Mehta, and Vijay Vazirani. An auction-based market equilibrium
algorithm for a production model. Theoretical Computer Science, 378(2):153–164, 2007.

51 Wouter J. Keller. A nested CES-type utility function and its demand and price-index functions.
European Economic Review, 7:175–186, 1976.

52 Alexander S Kelso Jr and Vincent P Crawford. Job matching, coalition formation, and gross
substitutes. Econometrica: Journal of the Econometric Society, pages 1483–1504, 1982.

53 Renato Paes Leme. Gross substitutability: An algorithmic survey. Games and Economic
Behavior, 106:294–316, 2017.

54 Andreu Mas-Colell, Michael Dennis Whinston, Jerry R Green, et al. Microeconomic theory,
volume 1. Oxford university press New York, 1995.

55 Kiminori Matsuyama and Philip Ushchev. Beyond CES: Three alternative cases of flexible
homothetic demand systems. Buffett Institute Global Poverty Research Lab Working Paper
No. 17-109, 2017.

56 Yurii Nesterov and Vladimir Shikhman. Computation of Fisher–Gale equilibrium by auction.
Journal of the Operations Research Society of China, 6(3):349–389, 2018.

57 Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algorithmic game theory.
Cambridge University Press, 2007.

58 James B Orlin. Improved algorithms for computing Fisher’s market clearing prices: Computing
Fisher’s market clearing prices. In Proceedings of the 42nd ACM Symposium on Theory of
Computing (STOC), pages 291–300. ACM, 2010.

59 Herbert Scarf. Some examples of global instability of the competitive equilibrium. International
Economic Review, 1(3):157–172, 1960.

60 Vijay Vazirani and Mihalis Yannakakis. Market equilibrium under separable, piecewise-linear,
concave utilities. Jounal of the ACM, 58(3):10, 2011.

61 Léon Walras. Éléments d’économie politique pure, ou, Théorie de la richesse sociale. F. Rouge,
1896.

62 Fang Wu and Li Zhang. Proportional response dynamics leads to market equilibrium. In
Proceedings of the 39th Symp. Theory of Computing (STOC), pages 354–363, 2007.

63 Yinyu Ye. A path to the Arrow-Debreu competitive market equilibrium. Mathematical
Programming, 111(1-2):315–348, 2008.

64 Li Zhang. Proportional response dynamics in the Fisher market. Theoretical Computer Science,
412(24):2691–2698, 2011.

STACS 2021

Efficiently Testing Simon’s Congruence
Paweł Gawrychowski !

Faculty of Mathematics and Computer Science, University of Wrocław, Poland

Maria Kosche !

Computer Science Department, Universität Göttingen, Germany

Tore Koß !

Computer Science Department, Universität Göttingen, Germany

Florin Manea !

Computer Science Department, Universität Göttingen, Germany
Campus-Institut Data Science, Göttingen, Germany

Stefan Siemer !

Computer Science Department, Universität Göttingen, Germany

Abstract
Simon’s congruence ∼k is a relation on words defined by Imre Simon in the 1970s and intensely
studied since then. This congruence was initially used in connection to piecewise testable languages,
but also found many applications in, e.g., learning theory, databases theory, or linguistics. The ∼k-
relation is defined as follows: two words are ∼k-congruent if they have the same set of subsequences
of length at most k. A long standing open problem, stated already by Simon in his initial works on
this topic, was to design an algorithm which computes, given two words s and t, the largest k for
which s ∼k t. We propose the first algorithm solving this problem in linear time O(|s| + |t|) when
the input words are over the integer alphabet {1, . . . , |s| + |t|} (or other alphabets which can be
sorted in linear time). Our approach can be extended to an optimal algorithm in the case of general
alphabets as well.

To achieve these results, we introduce a novel data-structure, called Simon-Tree, which allows us
to construct a natural representation of the equivalence classes induced by ∼k on the set of suffixes
of a word, for all k ≥ 1. We show that such a tree can be constructed for an input word in linear
time. Then, when working with two words s and t, we compute their respective Simon-Trees and
efficiently build a correspondence between the nodes of these trees. This correspondence, which can
also be constructed in linear time O(|s| + |t|), allows us to retrieve the largest k for which s ∼k t.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Design and analysis of algorithms

Keywords and phrases Simon’s congruence, Subsequence, Scattered factor, Efficient algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.34

Related Version Full Version: https://arxiv.org/abs/2005.01112

Funding The work of the four authors from Göttingen was supported by the DFG-grant 389613931
Kombinatorik der Wortmorphismen.

1 Introduction

A subsequence of a word w (also called scattered factor or subword, especially in automata
and language theory) is a word u such that there exist (possibly empty) words v1, . . . , vℓ+1,

u1, . . . , uℓ with u = u1 . . . un and w = v1u1v2u2 . . . vℓuℓvℓ+1. Intuitively, the subsequences
of a word w are exactly those words obtained by deleting some of the letters of w, so, in a
sense, they can be seen as lossy-representations of the word w. Accordingly, subsequences
may be a natural mathematical model for situations where one has to deal with input
strings with missing or erroneous symbols sequencing, such as processing DNA data or

© Paweł Gawrychowski, Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 34; pp. 34:1–34:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gawry@cs.uni.wroc.pl
https://orcid.org/0000-0002-6993-5440
mailto:maria.kosche@cs.uni-goettingen.de
https://orcid.org/0000-0002-2165-2695
mailto:tore.koss@cs.uni-goettingen.de
https://orcid.org/0000-0001-6002-1581
mailto:florin.manea@cs.uni-goettingen.de
https://orcid.org/0000-0001-6094-3324
mailto:stefan.siemer@cs.uni-goettingen.de
https://orcid.org/0000-0001-7509-8135
https://doi.org/10.4230/LIPIcs.STACS.2021.34
https://arxiv.org/abs/2005.01112
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Efficiently Testing Simon’s Congruence

digital signals [27]. Due to this very simple and intuitive definition as well as the apparently
large potential for applications, there is a high interest in understanding the fundamental
properties that can be derived in connection to the sets of subsequences of words. This is
reflected in the consistent literature developed around this topic. J. Sakarovitch and I. Simon
in [21, Chapter 6] overview some of the most important combinatorial and language theoretic
properties of sets of subsequences. The theory of subsequences was further developed in
various directions, such as combinatorics on words, automata theory, formal verification, or
string algorithms. For instance, subword histories and Parikh matrices (see, e.g., [23, 26, 28])
are algebraic structures in which the number of specific subsequences occurring in a word are
stored and used to define combinatorial properties of words. Strongly related, the binomial
complexity of words is a measure of the multiset of subsequences that occur in a word,
where each occurrence of such a factor is considered as an element of the respective multiset;
combinatorial and algorithmic results related to this topic are obtained in, e.g., [25, 9, 20, 19],
and the references therein. Further, in [35, 12, 18] various logic-theories were developed,
starting from the subsequence-relation, and analysed mostly with automata theory and
formal verification tools. Last, but not least, many classical problems in the area of string
algorithms are related to subsequences: the longest common subsequence and the shortest
common supersequence problems [22, 1, 3, 4], or the string-to-string correction problem [34].
Several algorithmic problems connected to subsequence-combinatorics are approached and
(partially) solved in [7].

One particularly interesting notion related to subsequences was introduced by Simon
in [30]. He defined the relation ∼k (called now Simon’s congruence) as follows. Two words
are ∼k-congruent if they have the same set of subsequences of length at most k. In [30], as
well as in [21, Chapter 6], many fundamental properties (mainly of combinatorial nature)
of ∼k are discussed; this line of research was continued in, e.g., [15, 16, 17, 6, 2] where the
focus was on the properties of some special classes of this equivalence. From an algorithmic
point of view, a natural decision problem and its optimisation variant stand out:

▶ Problem 1. SimK: Given two words s and t over an alphabet Σ, with |s| = n and |t| = n′,
with n ≥ n′, and a natural number k, decide whether s ∼k t.

▶ Problem 2. MaxSimK: Given two words s and t over an alphabet Σ, with |s| = n and
|t| = n′, with n ≥ n′, find the maximum k for which s ∼k t.

The problems above were usually considered assuming (although not always explicitly) the
Word RAM model with words of logarithmic size. This is a standard computational model
in algorithm design in which, for an input of size n, the memory consists of memory-words
consisting of Θ(log n) bits. Basic operations (including arithmetic and bitwise Boolean
operations) on memory-words take constant time, and any memory-word can be accessed in
constant time. In this model, the two input words are just sequences of integers, each integer
stored in a single memory-word. Without losing generality, we can assume the alphabet to
be simply {1, . . . , n + n′} by sorting and renaming the letters occurring in the input in linear
time. For a detailed discussion on the computational model, see the full version of this paper,
available on arXiv [24].

Due to the central role played by the ∼k-congruence in the study of piecewise testable
languages, as well as in the many other areas mentioned above, both problems SimK and
MaxSimK were considered highly interesting and studied thoroughly in the literature.

In particular, Hebrard [13] presents MaxSimK as computing a similarity measure between
strings and mentions a solution of Simon [29] for MaxSimK which runs in O(|Σ|nn′) (the
same solution is mentioned in [11]). He goes on and improves this (see [13]) in the case when

P. Gawrychowski, M. Kosche, T. Koß, F. Manea, and S. Siemer 34:3

Σ is a binary alphabet: given two bitstrings s and t, one can find the maximum k for which
s ∼k t in linear time. The problem of finding optimal algorithms for MaxSimK, or even
SimK, for general alphabets was left open in [29, 13] as the methods used in the latter paper
for binary strings did not seem to scale up. In [11], Garel considers MaxSimK and presents
an algorithm based on finite automata, running in O(|Σ|n), which computes all distinguishing
words u of minimum length, i.e., words which are factors of only one of the words s and t

from the problem’s statement. Several further improvements on the aforementioned results
were reported in [5, 32]. Finally, in an extended abstract from 2003 [31], Simon presented
another algorithm based on finite automata solving MaxSimK which runs in O(|Σ|n), and
he conjectures that it can be implemented in O(|Σ|+ n). Unfortunately, the last claim is
only vaguely and insufficiently substantiated, and obtaining an algorithm with the claimed
complexity seems to be non-trivial. Although Simon announced that a detailed description
of this algorithm will follow shortly, we were not able to find it in the literature.

In [8], a new approach to efficiently solving SimK was introduced. This idea was to
compute, for the two given words s and t and the given number k, their shortlex forms: the
words which have the same set of subsequences of length at most k as s and t, respectively,
and are also lexicographically smallest among all words with the respective property. Clearly,
s ∼k t if and only if the shortlex forms of s and t for k coincide. The shortlex form of a word
s of length n over Σ was computed in O(|Σ|n) time, so SimK was also solved in O(|Σ|n). A
more efficient implementation of the ideas introduced in [8] was presented in [2]: the shortlex
form of a word of length n over Σ can be computed in linear time O(n), so SimK can be
solved in optimal linear time. By binary searching for the smallest k, this gives an O(n log n)
time solution for MaxSimK. This brings up the challenge of designing an optimal linear-time
algorithm for non-binary alphabets.

Our results. In this paper we confirm Simon’s claim from 2003 [31]. We present a complete
algorithm solving MaxSimK in linear time on Word RAM with words of size Θ(log n). This
closes the problem of finding an optimal algorithm for MaxSimK. Our approach is not based
on finite automata (as the one suggested by Simon), nor on the ideas from [8, 2]. Instead,
it works as follows. Firstly, looking at a single word, we partition the respective word into
k-blocks: contiguous intervals of positions inside the word, such that all suffixes of the word
inside the same block have exactly the same subsequences of length at most k (i.e., they are
∼k-equivalent). Since the partition in (k + 1)-blocks refines the partition in k-blocks, one
can introduce the Simon-Tree associated to a word: its nodes are the k-blocks (for k from 1
to at most n), and each node on level k has as children exactly the (k + 1)-blocks in which it
is partitioned. We first show how to compute efficiently the Simon-Tree of a word. Then,
to solve MaxSimK, we show that one can maintain in linear time a connection between
the nodes on the same levels of the Simon-Trees associated to the two input words. More
precisely, for all ℓ, we connect two nodes on level ℓ of the two trees if the suffixes starting
in those blocks, in their respective words, have exactly the same subsequences of length at
most ℓ. It follows that the value k required in MaxSimK is the lowest level of the trees on
which the blocks containing the first position of the respective input words are connected.
Using the Simon-Trees of the two words and the connection between their nodes, we can
also compute in linear time a distinguishing word of minimal length for s and t. Achieving
the desired complexities is based on a series of combinatorial properties of the Simon-Trees,
as well as on a rather involved data structures toolbox.

Our paper is structured as follows: we firstly introduce the basic combinatorial and data
structures notions, then we show how Simon-Trees are constructed efficiently, and, finally, we
show how MaxSimK is solved by connecting the Simon-Trees of the two input words. We

STACS 2021

34:4 Efficiently Testing Simon’s Congruence

end this paper with a series of concluding remarks, extensions, and further research questions.
The formal proofs of our results are given in the full version of this paper [24], due to space
constraints; most statements are, however, accompanied by explanations substantiating our
claims. Similarly, for space reasons, a discussion on how our results can be extended to an
optimal algorithm for MaxSimK in the case of input words over general alphabets is also
given in the paper’s full version [24].

2 Preliminaries

Let N be the set of natural numbers, including 0. An alphabet Σ is a nonempty finite set of
symbols called letters. A word is a finite sequence of letters from Σ, thus an element of the
free monoid Σ∗. Let Σ+ = Σ∗\{ε}, where ε is the empty word. The length of a word w ∈ Σ∗

is denoted by |w|. The ith letter of w ∈ Σ∗ is denoted by w[i], for i ∈ [1 : |w|]. For m, n ∈ N,
we let [m : n] = {m, m + 1, . . . , n} and w[m : n] = w[m]w[m + 1] . . . w[n].

A word u ∈ Σ∗ is a factor of w ∈ Σ∗ if w = xuy for some x, y ∈ Σ∗. If x = ε

(resp. y = ε), u is called a prefix (resp. suffix of w). For some x ∈ Σ and w ∈ Σ∗, let
|w|x = |{i ∈ [1 : |w|] | w[i] = x}| and alph(w) = {x ∈ Σ | |w|x > 0} for w ∈ Σ∗; in other
words, alph(w) denotes the smallest subset S ⊂ Σ such that w ∈ S∗.

▶ Definition 1. We call u a subsequence of length k of w, where |w| = n, if there exist
positions 1 ≤ i1 < i2 < . . . < ik ≤ n, such that u = w[i1]w[i2] · · ·w[ik]. Let Subseq≤k(i, w)
denote the set of subsequences of length at most k of w[i : n]. Accordingly, the set of
subsequences of length at most k of the entire word w will be denoted by Subseq≤k(1, w).

Equivalently, u = u1 . . . uℓ is a subsequence of w if there exist v1, . . . , vℓ+1 ∈ Σ∗ such that
w = v1u1 . . . vℓuℓvℓ+1. For k ∈ N, Subseq≤k(1, w) is called the full k-spectrum of w.

▶ Definition 2 (Simon’s Congruence).
(i) Let w, w′ ∈ Σ∗. We say that w and w′ are equivalent under Simon’s congruence
∼k (or, alternatively, that w and w′ are k-equivalent) if the set of subsequences of
length at most k of w equals the set of subsequences of length at most k of w′, i.e.,
Subseq≤k(1, w) = Subseq≤k(1, w′).

(ii) Let i, j ∈ [1 : |w|]. We define i ∼k j (w.r.t. w) if w[i : n] ∼k w[j : n], and we say that
the positions i and j are k-equivalent.

(iii) A word u of length k distinguishes w and w′ w.r.t. ∼k if u occurs in exactly one of the
sets Subseq≤k(1, w) and Subseq≤k(1, w′).

Following the discussion from the introduction, for our algorithmic results we assume the
Word RAM model with words of size Θ(log n).

We start by recalling two data structures which play an important role in our results.
These are the interval split-find and interval union-find data structures. Their formal
definition is given in the full version of this paper [24]. Rather informally, in the union-
find (respectively, split-find) structure we maintain a partition of an interval (also called
universe) V = [1 : n] in sub-intervals, under two operations: union of adjacent intervals
(respectively, split an interval in two sub-intervals around an element of the interval), and
find the representative of the interval containing a given value. In our algorithms, when
using these structures, we usually describe the intervals stored initially in the structure, and
then the unions (respectively, the splits) which are made, as well as the find operations,
without going into the formalism behind these operations. In usual implementations of these
structures the representative of each interval, which is returned by find, is its maximum; we
can easily enhance the data structures so that the find operation returns both borders of
the interval containing the searched value. The following lemma was shown in [10, 14].

P. Gawrychowski, M. Kosche, T. Koß, F. Manea, and S. Siemer 34:5

▶ Lemma 3. One can implement the interval split-find (respectively, union-find) data
structures, such that, the initialisation of the structures followed by a sequence of m ∈ O(n)
split (respectively, union) and find operations can be executed in O(n) time and space.

3 Constructing the Simon-Tree of a word

In this section, we introduce a new data structure, which is fundamental to our approach –
the Simon-Tree. The Simon-Tree is used as a representation for the equivalence classes in
a word, which are explained in Section 3.1. The definition of Simon-Trees is then given in
Section 3.2, and the construction is described in Section 3.3.

3.1 Equivalence classes of a Word
In this section, we develop a method to efficiently partition the positions of a given word w,
of length n, into equivalence classes w.r.t. ∼k, such that all suffixes starting with positions
of the same class have the same set of subsequences of length at most k. As in this section
we only deal with one input word w of length n, we will sometimes omit the reference to
this word in our notation: e.g. Subseqk(i) = Subseqk(i, w); in the case of such omissions,
the reader may safely assume that we are referring to the aforementioned input word.

Firstly, we will examine the equivalence classes that each congruence relation ∼k induces
on the set of suffixes of w for all k. Let 1 ≤ i < j ≤ n, then w[j : n] is a suffix of w[i : n], hence
Subseqk(i) ⊇ Subseqk(j) holds for all k ∈ N. For any l ∈ [i : j] we obtain Subseqk(i) ⊇
Subseqk(l) ⊇ Subseqk(j). If we additionally let i ∼k j, then the sets of subsequences
corresponding to i and j respectively are equal, so Subseqk(i) = Subseqk(l) = Subseqk(j)
and i ∼k l ∼k j. Hence, the equivalence classes of the set of suffixes of w w.r.t. ∼k correspond
to sets of consecutive indices (i.e., intervals) in [1 : |w|], namely the starting positions of the
suffixes in each class. We call these classes k-blocks.

A k-block consisting only of a single position (i.e., it is a singleton-k-block), remains an
ℓ-block for all ℓ > k. For a k-block b = [mb : nb], mb is its starting position and nb its ending
position. For the ending position of a k−block we also use the following definition.

▶ Definition 4. For some k > 0, if i ∼k−1 i + 1 and i ≁k i + 1, then we will say that i splits
its (k − 1)-block or that i is a k-splitting position.

If a = [ma : na] is a k-block and b = [mb : nb] is a (k + 1)-block with ma ≤ mb ≤ nb ≤ na,
then we say that b is a (k + 1)−block in a (alternatively, of a).

Since, for 1 ≤ i, j ≤ n, i ∼k j holds if i ∼k+1 j, the relation ∼k+1 is a refinement of ∼k.
In our setting, this means that the (k + 1)−blocks of w are obtained by partitioning the
k-blocks of w into subintervals. To obtain a partition of the positions of w into equivalence
classes and the corresponding blocks, we can use this refinement property. We get the
following inductive procedure.

0-blocks. For any i, with 1 ≤ i ≤ n, we have Subseq0(i) = {ε}. Thus, we refer to [1 : n] as
the 0-block of w. Note, however, that position n cannot be referred to as a 0-splitting
position.

(k + 1)-blocks. For k ≥ 0 and a k-block a = [ma : na] in w with |a| ≥ 2, we can find the
(k + 1)-splitting positions inside of a. Except for the case when a is a 0-block, position na

marks a k-splitting position. So, if k > 0, we slice off position na and obtain a truncated
block a†; if k = 0, then a† = a. Going from right to left through a†, the position of
every character we encounter for the first time (so, which we have not seen before in this

STACS 2021

34:6 Efficiently Testing Simon’s Congruence

k = 0

k = 1

k = 2

[10]
a

[9]
d

[8]
a

[8 : 9]
ad

[7]
b

[6]
a

[5]
a

[5 : 6]
aa

k = 3

[4]
b

[4 : 7]
baab

[3]
c

[2]
ab

[1]

[1 : 3]
bac

[1 : 10]
bacbaabada

Figure 1 Simon-Tree of the word bacbaabada. Above each block [i : j] we wrote the word w[i : j].

traversal of a†) is a splitting position of a†. Consequently, those splitting positions and
na (only if k > 0) will split a into (k + 1)-blocks. The correctness of this approach follows
from Lemma 5.

▶ Lemma 5. Let a = [ma, na] be a k-block with 1 ≤ ma < na ≤ n. Let a† = a for k = 0 and
a† = [ma : na − 1] for k > 0. Then the following holds for all i, j ∈ a†:

(i) if k > 0 then i ≁k+1 na;
(ii) i ∼k+1 j if and only if Subseq1(i, a†) = Subseq1(j, a†).

3.2 Simon-Tree definition
Before introducing the Simon-Tree, we recall some basic notions. An ordered rooted tree is a
rooted tree which has a specified order for the subtrees of a node. We say that the depth of
a node is the length of the unique simple path from the root to that node. Generally, the
nodes with smaller depth are said to be higher (the root is the highest node with depth 0),
while the nodes with greater depth are lower in the tree.

We can now define a new data structure called Simon-Tree. The Simon-Tree of a word w

gives us a hierarchical representation of the equivalence classes inside of w. While an example
of a Simon-Tree can be seen in Figure 1, the formal definition of a Simon-Tree is as follows.

▶ Definition 6. The Simon-Tree Tw associated to the word w, with |w| = n, is an ordered
rooted tree. The nodes of depth k represent k−blocks of w, for 0 ≤ k ≤ n, and are defined
recursively.

The root corresponds to the 0-block of the word w, i.e., the interval [1 : n].
For k > 1 and for a node a of depth k − 1, which represents a (k − 1)-block [i : j] with
i < j, the children of a are exactly the blocks of the partition of [i : j] in k-blocks, ordered
decreasingly (right-to-left) by their starting position.
For k > 1, each node of depth k − 1 which represents a singleton-(k − 1)-block is a leaf.

The nodes of depth k in a tree Tw are called explicit k-nodes (or simply k-nodes); by
abuse of notation, we identify each k-node by the k-block it represents.

With respect to their starting positions in the word, we number the children nodes (which
are blocks) of a node b from right to left. That is, the ith child of b is the ith block of the
partition of a, counted from right to left. The singleton-j-blocks, for j < k, are also k-blocks,
but they do not appear explicitly as nodes of depth k in the tree Tw. We will say that they
are implicit k-nodes. In other words, an explicit singleton-j-node is an implicit k-node, for

P. Gawrychowski, M. Kosche, T. Koß, F. Manea, and S. Siemer 34:7

all k > j, and the only child of a k-node [i : i] is the implicit (k + 1)-node [i : i]. The nodes
of depth k in the Simon-Tree Tw do not necessarily comprise all the k-blocks of w, but they
contain explicitly exactly those k-blocks of w that were obtained by non-trivially splitting a
(k − 1)-block of w which was not a singleton.

3.3 Simon-Tree construction
We are interested in constructing the Simon-Tree Tw associated to a word w, with |w| = n,
in linear time. In this section we give a description of the construction algorithm and its
analysis. The corresponding pseudocode can be seen in Algorithms 1–3.

For the algorithms, we use the array X of size n which holds, for a given position i, the
next position of w[i] in the word w[i + 1 : n]. We formally define this with X[i] = min{j |
w[j] = w[i], j > i}, while we assume X[i] = ∞ if w[i] /∈ alph(w[i + 1 : n]). The array can
be calculated in O(n) time and space as stated in the full version of this paper [24]. As an
example consider now the word w = bacbaabada. The array X is then depicted as follows.

i 1 2 3 4 5 6 7 8 9 10 11
w[i] b a c b a a b a d a $
X[i] 4 5 ∞ 7 6 8 ∞ 10 ∞ ∞ ∞

When applying our algorithm to w, we get the tree shown in Figure 1, where we represent
each node with the block [i : j] it represents accompanied by the word w[i : j].

Algorithm 1 Building the Simon-Tree Tw for a word w.

Input: Word w with |w| = n

Result: Simon-Tree Tw

1 w′ ← w$;
2 Let T be the tree with the root associated to the block [? : n + 1] of w′;
3 Let p be a pointer to the root of T ;
4 Compute the array X[i];

5 for i=n to 1 do
6 a← findNode(i,T ,p);
7 (T, p)← splitNode(i,T ,a);
8 end
9 Set starting position for all blocks from leftmost branch including the root to 1;

10 Remove $-letter from tree: Remove the node associated to [n + 1 : n + 1] from T and
set all right ends r of blocks on the rightmost branch to n;

11 return T ;

Algorithm description. In general, we consider the individual letters of the word w from
right to left. After considering w[i], the tree we constructed so far corresponds to the
Simon-Tree of the suffix w[i : n]. By traversing the word from right to left, we also construct
the Simon-Tree in a right-to-left manner. Accordingly, it holds that at each time step only
the nodes on the leftmost branch of the tree are possible to be enhanced. This is because
for the tree of the word w[i + 1 : n], prepending a new letter to the word w[i + 1 : n] can
only affect the leftmost node/block on each level of the tree, as the nodes of level k store the

STACS 2021

34:8 Efficiently Testing Simon’s Congruence

Algorithm 2 findNode.

Input: Position i in w, Simon-Tree Tw[i+1:n]$, Pointer to leftmost leaf a of Tw[i+1:n]$
Result: Pointer to node on leftmost branch of Tw[i+1:n]$

1 while a is not the root of Tw[i+1:n]$ do
2 r ← ending position of the block represented by a;
3 rp ← ending position of block represented by parent(a);

4 if X[i] ≥ r and X[i] < rp then
5 return a;
6 else
7 Close the block represented by a: Set its starting position to i + 1;
8 a← parent(a);
9 end

10 end
11 return a;

Algorithm 3 splitNode.

Input: Position i, Simon-Tree Tw[i+1:n]$, Pointer to node a on leftmost branch of
Tw[i+1:n]$

Result: Simon-Tree Tw[i:n]$, Pointer to leftmost leaf of Tw[i:n]$
1 T ← Tw[i+1:n]$;
2 if a is the leftmost leaf of T then

// node a represents the open block [? : i + 1]
3 Add a child to a associated to the now completed block [i + 1 : i + 1];
4 Add a leftmost child b to a associated to the open block [? : i];
5 else
6 Add a leftmost child b to a associated to the open block [? : i];
7 end
8 return (T , pointer to b)

k-blocks, and, accordingly, build a (possibly intermittent, if we only consider the explicit
nodes) partition of the word w into non-overlapping intervals, for all k, while the nodes of
one level are ordered with regard to their position in the word.

This means that a newly considered position of our word can be only added to a node
on the leftmost branch of the tree that was constructed so far during the application of the
algorithm. Therefore, we call the nodes on the leftmost branch open blocks. These open
blocks are not complete and have a yet unknown starting position. We use [? : i] to denote
the open block with unknown starting position and ending position i. For the nodes on the
leftmost branch, we only store the ending position (or splitting position) of their represented
block. For all nodes that are not on the leftmost branch in the tree, we store both starting
and ending position of their represented block.

In the beginning of the construction algorithm, we append the letter $ at the end of w to
ensure that all the positions of w are treated in a uniform way. More precisely, the usage of
the $-letter allows us to uniformly find the splitting points in a block according to case (ii)
of Lemma 5 only. That is, by adding the letter $ at the end, we avoid position n as being

P. Gawrychowski, M. Kosche, T. Koß, F. Manea, and S. Siemer 34:9

falsely recognized as a 0-splitting position since it is the ending position of the 0-block [1 : n]
of w. As seen in Algorithm 1, we define w′ = w$ and start the algorithm with the tree that
only has one node, the root, representing the open block [? : n + 1].

When considering a new position i of the word, and, essentially, inserting it into the
current tree, we want to find the correct tree level where position i would mark the splitting
of a new block or a new node, respectively. According to Algorithm 2, by starting at the
leftmost leaf (which is the node associated to the open block [? : i + 1]) and going up the
leftmost branch of the current tree, we look for the first node where the character w[i] occurs
on a non-ending position. Let this be node A of depth k, representing an open k-block. Node
A cannot be a leaf since leafs only represent singleton-blocks, consist therefore only of one
position, and w[i] could not occur on a non-ending position. Let the leftmost child of A be
the node a of depth k + 1. By utilizing Lemma 5, we get the information that position i is
a (k + 2)-splitting position in a, and consequently, our new block with ending position i is
mapped to level (k + 2) of the Simon-Tree. Following Algorithm 3, we then insert the new
block [? : i] in the respective level of the Simon-Tree as a leftmost child of node a.

All nodes we traversed from leftmost leaf up to node a represent l-blocks with l ≥ (k + 2).
These blocks are closed during the process of finding the correct position as seen in Algorithm 2.
Since i is a (k + 2)-splitting position we set the starting position for all open l-blocks, with
l ≥ k + 2, to i + 1.

It remains only to mention the special case, where we do not find an occurrence of w[i]
on our traversal from leftmost leaf to the root. In this case, the letter did not appear yet in
the word. It therefore marks a 1-splitting position and as per Algorithm 2, we return the
tree root, to which the block [? : i] is then added as a leftmost child as per Algorithm 3.

Algorithm analysis. The pseudocode for our algorithm is shown in Algorithms 1–3. The-
orem 7 states the main result of this section. While the correctness of the algorithm follows
mainly from the explanations above, its linear running time requires an amortized analysis.
We observe that for each position i in w we traverse t nodes (representing open blocks) while
going up on the leftmost branch, then insert one leaf on the leftmost branch while closing
the t traversed nodes and moving them all to the right of the inserted leaf (so out from the
leftmost branch). As the total number of nodes in the Simon-Tree Tw is linear in |w|, and
each node is inserted once and traversed once, the conclusion follows. For the interested
reader we point out that our analysis resembles to a certain extent the one of the algorithm
constructing the Carthesian-Tree for a set of numbers [33].

▶ Theorem 7. Given a word w, with |w| = n, we can construct its Simon-Tree in O(n) time.

4 Connecting two Simon-Trees

In this section, we propose a linear-time algorithm for the MaxSimK problem. The general
idea of this algorithm is to analyse simultaneously the Simon-Trees of the two input words s

and t of length n and n′, respectively, and establish a connection between their nodes.

4.1 The S-Connection

In our solution of MaxSimK, we construct a relation called S-Connection (abbreviation for
Simon-Connection) between the nodes of the Simon-Trees Ts and Tt constructed from the
two input words s and t.

STACS 2021

34:10 Efficiently Testing Simon’s Congruence

▶ Definition 8. The (explicit or implicit) k-node a of Ts and the (explicit or implicit)
k-node b of Tt are S-connected (i.e., the pair (a, b) is in the S-Connection) if and only if
s[i : n] ∼k t[j : n′] for all positions i in block a and positions j in block b.

If two k-nodes a and b are S-connected, we say that b is a’s S-Connection (and vice versa).
Additionally, if two nodes are S-connected, then the corresponding blocks are said to be
S-connected too.

Adapted from the equivalence classes within a word, each explicit or implicit k-node of
Ts can be S-connected to at most one k-node of Tt (since they are then representing blocks
which on their part represent the same equivalence class of the set of suffixes of w w.r.t. ∼k).
▶ Remark 9. The S-Connection is non-crossing. This means that if the k-block a = [ma : na]
of Ts is S-connected to the k-block b = [mb : nb] of Tt, the k′-block c = [mc : nc] of Ts is
S-connected to the k′-block d = [md : nd] of Tt, and ma < mc, then mb < md. Similarly, if
na < nc then nb < nd.

4.2 The P-Connection
For constructing the S-Connection efficiently, we define a coarser relation called P-Connection
(abbreviation for potential-connection) that covers the S-Connection. The P-Connection
defines, for each node of Ts, a unique node of Tt to which it may be S-connected. Later,
we will attempt to determine and split, for each level k from 1 to maximally n, all pairs
of (explicit and implicit) k-nodes which were P-connected but are not S-connected. In a
sense, this splitting allows us to gradually refine the P-Connection until we get exactly the
S-Connection. The P-Connection for the words s and t is defined as follows.

▶ Definition 10. The 0-nodes of Ts and Tt are P-connected. For all levels k of Ts, if the
explicit or implicit k-nodes a and b (from Ts and Tt, respectively) are P-connected, then the
ith child of a is P-connected to the ith child of b, for all i. No other nodes are P-connected.

If k-nodes a and b are P-connected, we say that b is a’s P-Connection (and vice versa).
According to its definition, the P-Connection can be computed efficiently in a straight-

forward manner. This definition is essentially based on the following Lemma 11. However,
because Lemma 11 is not both necessary and sufficient (unlike, e.g., Lemma 5), it can
only be used to define a relation coarser than the S-Connection and cannot be used to
characterise (and, consequently, compute in a simple way) the S-Connection itself. Recall
that in Simon-Trees the children of a node are numbered right to left.

▶ Lemma 11. Let k ≥ 1. Let a = [ma : na] be a k-block in s and b = [mb : nb] a k-block in t

with a ∼k b. Then the ith child of the node a of Ts can only be S-connected (but it is not
necessarily connected) to the ith child of the node b of Tt, for all i ≥ 1.

It is not hard to see that, in the spirit of Remark 9, the P-Connection is non-crossing.
Moreover, by Lemma 11, if the k-blocks a and b are S-connected, they are also P-connected.
It is very important to note that a pair of nodes whose parent-nodes are not S-connected is
also not S-connected. So, as our approach is to refine the P-Connection till the S-Connection
is reached, we can immediately decide that a pair of nodes (a, b) is not in the S-Connection
when the pair consisting of their respective parent-nodes is not in the S-Connection.

4.3 From P- to S-Connection
Preliminary transformation. As mentioned, our algorithm solving MaxSimK uses the
Simon-Trees of s and t. To make the exposure simpler, we make the following simple
transformation of the trees. If a is a k-node such that a is a singleton, we add as a child of

P. Gawrychowski, M. Kosche, T. Koß, F. Manea, and S. Siemer 34:11

this node a (k + 1)-node representing the same block a (this was an implicit node before, now
made explicit); the newly added node on level k + 1 does not have any children (i.e., this
procedure is not applied recursively). Before, by Lemma 5, all blocks [i : i] of w appeared
explicitly exactly once in Tw. Therefore, each singleton-block [i : i] of s (respectively, t)
appears now exactly twice in Ts (respectively, Tt).

In general, these now explicit nodes are used to guarantee the existence of a P-connected
node (implicit or explicit) for every explicit singleton node on some level k + 1 that was on
a splitting position on level k, so we can determine singleton nodes that are ∼k- but not
∼k+1-congruent to the corresponding nodes in the other tree. The transformation has the
following direct consequence that we will use: each singleton-block a appears now on two
consecutive levels. While the node corresponding to a on the higher level may be S-connected
to a node corresponding to a non-singleton-block, the node corresponding to a on the lower
level may be S-connected only to a singleton-node.

As a second consequence, it is worth noting that explicit nodes might be connected to
implicit nodes, too. However, this is only true for explicit nodes which were added during
the transformation described above, i.e., singleton explicit nodes. Explicit nodes which are
not singletons cannot be connected to implicit nodes.

Refining the P-Connection. The main step of our approach is, while considering the levels
of the trees Ts and Tt in increasing order, to identify the pairs of P-connected nodes from
the respective levels which are not S-connected and consequently split them. At the same
time, we identify the pairs of singleton-blocks occurring explicitly on higher levels (and only
implicitly on the current levels) which are not S-connected on this level, and also split them
on the current level. For simplicity of exposure, when we split two k-blocks, we say that we
k-split them. In order to implement this idea, we use the following Lemma 12 to define a
splitting criterium.

We introduce first some notations. For w ∈ {s, t}, a position j ≤ |w|, and a letter
x, we define nextw(j, x) as the leftmost position where x occurs in w[j : |w|], or as ∞ if
x /∈ alph(w[j : |w|]). For a block a = [ma : na] of the word w and a letter x, we define
nextw(a, x) = nextw(na, x). We generally omit the subscript w when it is clear from the
context. Furthermore, we define alph(a) for a block a = [ma : na] as alph(w[ma : na]).

▶ Lemma 12. Let k ≥ 1. Let a = [ma : na] be a k-block in the word s and b = [mb : nb]
a k-block in the word t with a ∼k b. Let a′ = [ma′ : na′] be a (k + 1)-block in a and
b′ = [mb′ : nb′] be a (k + 1)-block in b. Then a′ ≁k+1 b′ if and only if there exists a letter x

such that s[next(a′, x) + 1 : n] ≁k t[next(b′, x) + 1 : n′].

The main idea of this lemma (illustrated in Figure 2) is that two (k + 1)-blocks a′ and b′

are not S-connected, although their parents were S-connected, if and only if we can find a
letter x such that s[next(a′, x) + 1 : n] and t[next(b′, x) + 1 : n′] are not k-equivalent but
(k − 1)-equivalent. That is, next(a′, x) + 1 and next(b′, x) + 1 should occur, respectively, in
two k-blocks which were split, but whose parents were S-connected. A word distinguishing
the suffixes starting in a′ from those starting in b′ has the first letter x, and is continued by
the word of length k which distinguishes s[next(a′, x) + 1 : n] and t[next(b′, x) + 1 : n′].

Identifying P-connected pairs to be split. When going through the trees level by level, the
1-blocks (all occuring explicitly on level 1 of Ts and respectively Tt) which are S-connected
can be easily and efficiently identified: the ith node a = [ma : na] on level 1 of Ts is connected
to the ith node b = [mb : nb] of Tt if and only if alph(s[na : n]) = alph(t[nb : n′]). All the
other P-connected pairs of 1-blocks are not S-connected, so they are 1-split.

STACS 2021

34:12 Efficiently Testing Simon’s Congruence

s . . . a′ . . . x

i

. . . t . . . b′ . . . x

j

. . .

a′ b′

a. level − k b.

≁k

≁k+1

∼k

Figure 2 Illustration of Lemma 12.

The identification of the pairs of (k + 1)-blocks and pairs of singletons which need to
be (k + 1)-split is based on Lemma 12. The idea is the following. A pair of P-connected
(k + 1)-blocks a′ = [ma′ : na′] of Ts and b′ = [mb′ : nb′] of Tt is not S-connected if and
only if there exists a letter x such that s[next(a′, x) + 1 : n] ≁k t[next(b′, x) + 1 : n′]. So,
in order to be able to (k + 1)-split two nodes (whose parents are S-connected), we need
to identify two positions i and j (and a corresponding letter x), with i = next(a′, x) + 1
and j = next(b′, x) + 1 which were k-split but not (k − 1)-split. We search for position i

inside the k-blocks of Ts, and try to see where position j may occur in the blocks of Tt such
that these two positions are not in S-connected k-blocks. To find the position i (and the
corresponding j) we analyse two cases.

The first case (A) is when i occurs inside an implicit k-node, which is the singleton-k-block
[i : i]. On the lowest level where this block appeared as an explicit node, it was S-
connected to a node [j : j] representing a singleton too, according to Section 4.1 and
Lemma 5. Thus, position i can only be k-split from the position j of t to which it was
S-connected (it was already disconnected from all other positions on level ℓ). If i and
j are both directly preceded by the same symbol (say x), then the pair (i, j) gives us
exactly the positions we were searching for.

The second case (B) is when i occurs inside an explicit k-node in Ts. Let A = [mA : nA]
and B = [mB : nB] be two (k − 1) blocks from Ts and Tt, respectively, such that
A ∼k−1 B, and a = [ma : na] and b = [mb : nb] be the ℓth child of A and B, respectively.
Clearly, b might be explicit, implicit, or even empty. If b is non-empty, the following holds.
All positions of a are k-split from the positions [mB : mb − 1] and from the positions
[nb + 1 : nB], because a is not P-connected to the blocks covering those positions. Also, if
a and b are not S-connected then all positions of a are also k-split from the positions of b.

An example. Let s = acab and t = acabba be two words. Their respective Simon-Trees Ts

and Tt are depicted in Figure 3 along with their P- and S-Connection. Note that for the
sake of not crossing edges and simplifying the presentation, the Simon-Trees in Figure 3 are
rotated by 90 degrees to the right and to the left, respectively. Thus, the roots of the trees are
on the outer left and right side of the figure. Additionally, the tree Tt on the right is mirrored,
so that nodes from a P-connected pair are vis-à-vis. Also, the trees already contain the
singleton nodes that were originally implicit but are now made explicit by our aforementioned

P. Gawrychowski, M. Kosche, T. Koß, F. Manea, and S. Siemer 34:13

[1 : 2]

[1 : 4]

[3]

[4]

[1]

[2]

[1 : 2]

[1 : 6]

[3 : 5]

[1]

[2]

[3]

[4]

[1]

[2]

[3]

[4]

[5]

[6]

acab acabba

ac

a

b

a

c

a

b

a

c

ac

abb

a

b

b

a

a

c

[1]

[2]

[3]

[4]

[5]

a

b

b

a

c

[6]
a

Ts Tt

Figure 3 Two transformed Simon-Trees with their P- and S-Connection.

transformation. From the figures it becomes also clear that this transformation is needed in
the case of the singleton-node [5 : 5] from the 2nd level of Tt which is P-connected to the
singleton-node [3 : 3] from the 2nd level of Ts.

In the beginning we are considering all possibly connected blocks by determining all
P-connected pairs. While the dashed and dotted lines connect, respectively, the nodes of
all the pairs from the P-Connection, the S-Connection is obtained by splitting step by step
P-connected pairs that cannot be equivalent with regard to their respective level. The dotted
edges symbolize exactly these split pairs, and in the end, the S-Connection consists only of
the pairs connected with a dashed edge.

Following Theorems 16 and 17 stated at the very end of this paper, we get the largest
k for which the two words s and t are k-equivalent by finding the largest k for which the
k-blocks containing position 1 of both words are S-connected. In our example, the blocks
s[1 : 4] and t[1 : 6] representing the complete words are naturally 0-equivalent. Furthermore,
as seen in Figure 3, the blocks s[1 : 2] and t[1 : 2] on level 1 are S-connected, but the blocks
s[1 : 1] and t[1 : 1] are not S-connected on level 2. Thus, the largest k for which s ∼k t holds
is 1.

Path to efficiency. Taking (i, j) to be each position of block a paired with each of the
positions from which it is k-split, according to the above, might not be efficient. However,
the combinatorial Lemma 12 allows us to switch slightly the point of view and ultimately
obtain an efficient method. We will traverse the kth level of a Simon-Tree Ts from right to
left and when considering a node a on this level, our approach is to determine which nodes
should be k + 1-split due to any pair (i, j), where i is some position occurring in the block a.

STACS 2021

34:14 Efficiently Testing Simon’s Congruence

The mechanism allowing us to do this is stated in Lemma 13, and this essentially explains
how to determine all the k + 1-splits determined by positions of a (and their corresponding
pairing from b). We show how to proceed in both cases (A) and (B). Clearly, a symmetrical
approach would also work (so looking at nodes in Tt and positions in t).

Firstly, we need a few more notations. For a block a = [ma : na] of s or t and a letter x, let
prev(a, x) be the rightmost occurrence of x in s[1 : ma−2] (or 0 if x /∈ alph(s[1 : ma−2])), and
let right(a, x) be the rightmost occurrence of x in s[1 : na−1] (or 0 if x /∈ alph(s[1 : na−1])).

The setting in which Lemma 13 is stated is the following. We have two P-connected
k-blocks a = [ma : na] and b = [mb : nb] from Ts and Tt, respectively, whose parent-nodes
(explicit or implicit) are S-connected. The lemma defines a necessary and sufficient condition
for a pair of (explicit or implicit) (k +1)-nodes (a′, b′) to be (k +1)-split because there exists a
letter x and a pair of positions (i, j), with i = next(a′, x)+1, i ∈ [ma : na], j = next(b′, x)+1,
and s[i : n] ≁k t[j : n′]. Such a pair (a′, b′) is called (a, k + 1)-split (that is, a causes the
respective split on level k + 1). Note that a′ and b′ are the (explicit or implicit) children
of either a and b or of two k-blocks which are left of a and b. In any way, their parents are
S-connected; otherwise a′ and b′ would have already been split on a higher level.

This setting is also illustrated in Figure 4.

▶ Lemma 13. For k ≥ 1, let a = [ma : na] be a k-block in s and b = [mb : nb] its P-Connection
(which is a k-block in t). Then a pair of P-connected (k + 1)-blocks a′ = [ma′ : na′]
in s and b′ = [mb′ : nb′] in t is (a, k + 1)-split if and only if there exists a letter x in
alph(s[ma − 1 : na − 1]) such that at least one of the following holds:
1. a′ ends strictly between prev(a, x) and ma (i.e., prev(a, x) < na′ < ma), and b′ ends to

the left of prev(b, x) + 1 (i.e., nb′ ≤ prev(b, x)).
2. a′ ends between prev(a, x) and right(a, x) (i.e., prev(a, x) < na′ ≤ right(a, x)), and

b′ ends between right(b, x) and nb (i.e., right(b, x) < nb′ ≤ nb).
3. a ≁k b, a′ ends between prev(a, x) and right(a, x) (i.e., prev(a, x) < na′ ≤ right(a, x)),

and b′ ends between prev(b, x) and right(b, x) (i.e., prev(b, x) < nb′ ≤ right(b, x)).

In Lemma 13, because k ≥ 1 and the blocks a′ and b′ are the (explicit or implicit) children
of two S-connected k-blocks, it follows that alph(s[na′ : n]) = alph(t[nb′ : n′]). This means,
in particular, that next(a′, x) ̸=∞ for some letter x if and only if next(b′, x) ̸=∞.

Now, we can explain how to algorithmically apply Lemma 13 and find the pairs of
(k + 1)-blocks which should be split. For this, we can define, and compute in the step where
the k-split pairs were obtained, a list Lk of pairs of singleton-k-blocks which were k-split and
a list Hk of all the explicit k-nodes of Ts and their P -connections.

We first consider each explicit k-node a of Ts and its P-Connection, the node b of Tt

(in both cases: when a and b were k-split or when they were not). For x ∈ alph(s[ma − 1 :
na− 1])∪{s[ma− 1]} (note that the symbols x ∈ alph(s[ma− 1 : na− 1]) can be identified as
the first symbols of the (k + 1)-blocks into which a = s[ma : na] is split, except the rightmost
one; these are the children of node a except the rightmost one) we do the following:
1. identify each (k + 1)-block a′ = [ma′ : na′] with prev(a, x) < na′ < ma and its pair

b′ = [mb′ : nb′]. Then (a′, b′) is not in the S-Connection if nb′ ≤ prev(b, x) (i.e., a′ and b′

are (a, k + 1)-split).
2. identify each (k + 1)-block a′ = [ma′ : na′] with prev(a, x) < na′ ≤ right(a, x) and its

pair b′ = [mb′ : nb′]. Then (a′, b′) is not in the S-Connection if right(b, x) < nb′ ≤ nb.
3. if a ≁k b, identify each (k + 1)-block a′ with prev(a, x) < na′ ≤ right(a, x) and its pair

b′ = [mb′ : nb′]. Then (a′, b′) is not in the S-Connection if prev(b, x) < nb′ ≤ right(b, x).

P. Gawrychowski, M. Kosche, T. Koß, F. Manea, and S. Siemer 34:15

t . . . x . . . x . . .0

k

k + 1

s . . . x . . . x . . .0

k

k + 1

prev(a, x)

prev(b, x)

right(a, x)

right(b, x)

a

b

P − Connection

a′

b′

(a, k + 1)-split

t . . . x . . . x . . .

s . . . x . . . x . . .
prev(a, x)

prev(b, x)

right(a, x)

right(b, x)

a

b

S − Connection
a′

b′
(a, k + 1)-split

t . . . x . . . x . . .0

k

k + 1

s . . . x . . . x . . .0

k

k + 1

prev(a, x)

prev(b, x)

right(a, x)

right(b, x)

a

b

k-split
a′

b′

(a, k + 1)-split

Figure 4 Illustration of the three cases of Lemma 13.

For every pair (a, b) of singleton-k-blocks which were k-split (from the list Lk), we only
perform step 3 from above.

For each k-block a we considered (explicit or implicit node of Ts), we collect the singleton-
(k + 1)-blocks that were (a, k + 1)-split, to be used when computing the (k + 2)-splits.

The next step is to implement this idea, i.e., to describe data structures allowing us to
identify efficiently the (k + 1)-blocks a′ and b′ from above. We say that a pair of blocks/
nodes (a′, b′) meets an interval-pair ([p : q], [p′ : q′]) if a′ ends in [p : q], and b′ ends in [p′ : q′].

Our approach is the following. We process the blocks on level k and, for each of them,
get (at most) three lists of interval-pairs (one component is an interval of positions in s, the
other an interval in t). On level k + 1, we split each pair of P-connected blocks (a′, b′) which
meets one interval-pair from our list. A crucial property here is that, for each interval-pair,
the (k + 1)-blocks of s which meet it, and are accordingly split from their P-Connections,
are consecutive (explicit and implicit) (k + 1)-nodes in Ts. Thus, in order to make use of
Lemma 13, we draw on the technical results given by Lemmas 14 and 15.

▶ Lemma 14. Let a = [ma : na] and b = [mb : nb] be P-connected blocks of Ts and Tt,
respectively, and sa = s[ma − 1 : na − 1]. We can compute in overall O(|alph(a)|) time the
three lists, associated to the pair (a, b), containing:
1. the interval-pairs ([prev(a, x) + 1 : ma − 1], [0 : prev(b, x)]), for all x ∈ alph(sa);
2. the interval-pairs ([prev(a, x)+1 : right(a, x)], [right(b, x)+1 : nb]), for all x ∈ alph(sa);
3. the interval-pairs ([prev(a, x) + 1 : right(a, x)], [prev(b, x) + 1 : right(b, x)]), for all

x ∈ alph(sa).

▶ Lemma 15. Given two words s and t, with |s| = n and |t| = n′, n ≥ n′, and their
Simon-Trees Ts and Tt, we can check in O(n) overall time for all pairs of P-connected
1-blocks (a, b), with a = [ma : na] and b = [mb : nb], whether alph(s[na : n]) = alph(t[nb : n′]).

STACS 2021

34:16 Efficiently Testing Simon’s Congruence

Efficiently constructing the S-Connection and solving MaxSimK. Based on the previous
lemmas, we can now show our main technical theorem. We use Lemma 15 to see which
1-nodes are not S-connected. This is done in O(n) time. Then consider the k-nodes, for each
k ≥ 2 in increasing order. For each pair (a, b) of (k− 1)-nodes which were split (i.e., removed
from the S-Connection) in the previous step, we split the pairs of k-nodes meeting one of the
interval-pairs of the three lists of (a, b), as computed in Lemma 14. To do this efficiently, we
maintain an interval union-find and an interval split-find structure for each word. While the
concrete algorithm can be found in the full version of this paper [24], we can now state our
main result in Theorem 16.

▶ Theorem 16. Given two words s and t, with |s| = n and |t| = n′, n ≥ n′, we can compute
in O(n) time the following:

the S-Connection between the nodes of the two trees Ts and Tt;
for each i ∈ [1 : n], the highest level k on which the (implicit or explicit) node [i : i] is
k-split from its P-Connection.
Finally, in order to solve MaxSimK, we need to compute the largest k for which the

k-block a = [1 : na] of s is S-connected to the k-block b = [1 : nb] of t. Thus, we execute the
algorithm of Section 4.3 and the aforementioned level k can be easily found by checking,
level by level, the blocks that contain position 1 of s on each level of Ts and the block to
which they are S-connected in Tt. As a consequence of Theorem 16, we can now show our
main result.

▶ Theorem 17. Given two words s and t, with |s| = n and |t| = n′, n ≥ n′, we can solve
MaxSimK and compute a distinguishing word of minimum length for s and t in O(n) time.

5 Conclusions and future work

In this paper, we presented the first algorithm solving MaxSimK in optimal time. This
algorithm is based on the definition and efficient construction of a novel data-structure:
the Simon-Tree associated to a word. Our algorithm constructs the respective Simon-Trees
for the two input words of MaxSimK, and then establishes a connection between their
nodes. While the Simon-Tree is a representation of the classes induced, for all k ≥ 1, by the
∼k-congruences on the set of suffixes of a word, this connection allows us to put together the
classes induced by the respective congruences on the set of suffixes of both input word, and
to obtain, as a byproduct, the answer to MaxSimK.

The work presented in this paper can be continued naturally in several directions. For
instance, it seems interesting to us to compute efficiently, for two words s and t, what is
the largest k such that Subseq≤k(s) ⊆ Subseq(t). Similarly, one could consider the following
pattern-matching problem: given two words s and t, and a number k, compute efficiently all
factors t[i : j] of t such that t[i : j] ∼k s. Finally, SimK could be extended to the following
setting: given a word s and regular (or a context-free) language L, and a number k, decide
efficiently whether there exists a word t ∈ L such that s ∼k t. A variant of MaxSimK can
be also considered in this setting: given a word s and regular (or a context-free) language L,
find the maximal k for which there exists a word t ∈ L such that s ∼k t.

References
1 Ricardo A. Baeza-Yates. Searching subsequences. Theor. Comput. Sci., 78(2):363–376, 1991.
2 Laura Barker, Pamela Fleischmann, Katharina Harwardt, Florin Manea, and Dirk Nowotka.

Scattered factor-universality of words. In Proc. DLT 2020, volume 12086 of Lecture Notes in
Computer Science, pages 14–28. Springer, 2020.

P. Gawrychowski, M. Kosche, T. Koß, F. Manea, and S. Siemer 34:17

3 Karl Bringmann and Bhaskar Ray Chaudhury. Sketching, streaming, and fine-grained com-
plexity of (weighted) LCS. In Proc. FSTTCS 2018, volume 122 of LIPIcs, pages 40:1–40:16.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

4 Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest
common subsequence. In Proc. SODA 2018, pages 1216–1235. SIAM, 2018.

5 Maxime Crochemore, Borivoj Melichar, and Zdenek Tronícek. Directed acyclic subsequence
graph - overview. J. Discrete Algorithms, 1(3-4):255–280, 2003.

6 Joel D. Day, Pamela Fleischmann, Florin Manea, and Dirk Nowotka. k-spectra of weakly-
c-balanced words. In Proc. DLT 2019, volume 11647 of Lecture Notes in Computer Science,
pages 265–277. Springer, 2019.

7 Cees H. Elzinga, Sven Rahmann, and Hui Wang. Algorithms for subsequence combinatorics.
Theor. Comput. Sci., 409(3):394–404, 2008.

8 Lukas Fleischer and Manfred Kufleitner. Testing Simon’s congruence. In Proc. MFCS 2018,
volume 117 of LIPIcs, pages 62:1–62:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2018.

9 Dominik D. Freydenberger, Pawel Gawrychowski, Juhani Karhumäki, Florin Manea, and
Wojciech Rytter. Testing k-binomial equivalence. In Multidisciplinary Creativity, a collection
of papers dedicated to G. Păun 65th birthday, pages 239–248, 2015. available in CoRR:
arXiv:1509.00622.

10 Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of
disjoint set union. J. Comput. Syst. Sci., 30(2):209–221, 1985.

11 Emmanuelle Garel. Minimal separators of two words. In Proc. CPM 1993, volume 684 of
Lecture Notes in Computer Science, pages 35–53. Springer, 1993.

12 Simon Halfon, Philippe Schnoebelen, and Georg Zetzsche. Decidability, complexity, and
expressiveness of first-order logic over the subword ordering. In Proc. LICS 2017, pages 1–12,
2017.

13 Jean-Jacques Hebrard. An algorithm for distinguishing efficiently bit-strings by their sub-
sequences. Theoretical Computer Science, 82(1):35–49, 22 May 1991.

14 Hiroshi Imai and Takao Asano. Dynamic segment intersection search with applications. In
Proc. 25th FOCS, 1984, pages 393–402, 1984.

15 Prateek Karandikar, Manfred Kufleitner, and Philippe Schnoebelen. On the index of Simon’s
congruence for piecewise testability. Inf. Process. Lett., 115(4):515–519, 2015.

16 Prateek Karandikar and Philippe Schnoebelen. The height of piecewise-testable languages with
applications in logical complexity. In Proc. CSL 2016, volume 62 of LIPIcs, pages 37:1–37:22,
2016.

17 Prateek Karandikar and Philippe Schnoebelen. The height of piecewise-testable languages and
the complexity of the logic of subwords. Logical Methods in Computer Science, 15(2), 2019.

18 Dietrich Kuske and Georg Zetzsche. Languages ordered by the subword order. In Proc.
FOSSACS 2019, volume 11425 of Lecture Notes in Computer Science, pages 348–364. Springer,
2019.

19 Marie Lejeune, Julien Leroy, and Michel Rigo. Computing the k-binomial complexity of the
Thue-Morse word. In Proc. DLT 2019, volume 11647 of Lecture Notes in Computer Science,
pages 278–291, 2019.

20 Julien Leroy, Michel Rigo, and Manon Stipulanti. Generalized Pascal triangle for binomial
coefficients of words. Electron. J. Combin., 24(1.44):36 pp., 2017.

21 M. Lothaire. Combinatorics on Words. Cambridge University Press, 1997.
22 David Maier. The complexity of some problems on subsequences and supersequences. J. ACM,

25(2):322–336, April 1978.
23 Alexandru Mateescu, Arto Salomaa, and Sheng Yu. Subword histories and Parikh matrices. J.

of Comput. Syst. Sci., 68(1):1–21, 2004.
24 Paweł Gawrychowski, Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer. Efficiently

testing Simon’s congruence. preprint, CoRR, 2020. arXiv:2005.01112.

STACS 2021

https://arxiv.org/abs/1509.00622
http://arxiv.org/abs/2005.01112

34:18 Efficiently Testing Simon’s Congruence

25 Michel Rigo and Pavel Salimov. Another generalization of abelian equivalence: Binomial
complexity of infinite words. Theor. Comput. Sci., 601:47–57, 2015.

26 Arto Salomaa. Connections between subwords and certain matrix mappings. Theor. Comput.
Sci., 340(2):188–203, 2005.

27 David Sankoff and Joseph Kruskal. Time Warps, String Edits, and Macromolecules The
Theory and Practice of Sequence Comparison. Cambridge University Press, 2000 (reprinted).
originally published in 1983.

28 Shinnosuke Seki. Absoluteness of subword inequality is undecidable. Theor. Comput. Sci.,
418:116–120, 2012.

29 Imre Simon. An algorithm to distinguish words efficiently by their subwords.
30 Imre Simon. Piecewise testable events. In Proc. Autom. Theor. Form. Lang., 2nd GI Conf.,

volume 33 of LNCS, pages 214–222. Springer, 1975.
31 Imre Simon. Words distinguished by their subwords (extended abstract). In Proc. WORDS

2003, volume 27 of TUCS General Publication, pages 6–13, 2003.
32 Zdenek Tronícek. Common subsequence automaton. In Proc. CIAA 2002 (Revised Papers),

volume 2608 of Lecture Notes in Computer Science, pages 270–275, 2002.
33 Jean Vuillemin. A unifying look at data structures. Commun. ACM, 23(4):229–239, 1980.
34 Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J. ACM,

21(1):168–173, January 1974.
35 Georg Zetzsche. The complexity of downward closure comparisons. In Proc. ICALP 2016,

volume 55 of LIPIcs, pages 123:1–123:14, 2016.

Finding an Optimal Alphabet Ordering for Lyndon
Factorization Is Hard
Daniel Gibney ! Ï

Department of Computer Science, University of Central Florida, Orlando, FL, USA

Sharma V. Thankachan ! Ï

Department of Computer Science, University of Central Florida, Orlando, FL, USA

Abstract
This work establishes several strong hardness results on the problem of finding an ordering on a
string’s alphabet that either minimizes or maximizes the number of factors in that string’s Lyndon
factorization. In doing so, we demonstrate that these ordering problems are sufficiently complex
to model a wide variety of ordering constraint satisfaction problems (OCSPs). Based on this, we
prove that (i) the decision versions of both the minimization and maximization problems are NP-
complete, (ii) for both the minimization and maximization problems there does not exist a constant
approximation algorithm running in polynomial time under the Unique Game Conjecture and (iii)
there does not exist an algorithm to solve the minimization problem in time poly(|T |) · 2o(σ log σ) for
a string T over an alphabet of size σ under the Exponential Time Hypothesis (essentially the brute
force approach of trying every alphabet order is hard to improve significantly).

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases Lyndon Factorization, String Algorithms, Burrows-Wheeler Transform

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.35

Funding Supported in part by the U.S. National Science Foundation (NSF) under CCF-1703489.

1 Introduction

A Lyndon word is a string that is lexicographically strictly smallest among all of its cyclic shifts.
Letting ◦ denote concatenation, the Lyndon factorization of a string T is the factorization
of T into Lyndon words T1, T2, . . ., Tf that are lexicographically non-increasing and T =
T1 ◦ T2 ◦ . . . ◦ Tf . For example, the Lyndon factorization of 0, 1, 0, 0, 2, 1, 1, 0, 0, 1, 0, 1, 1, 2 is
(0, 1), (0, 0, 2, 1, 1), (0, 0, 1, 0, 1, 1, 2), assuming the usual ordering, 0 < 1 < 2.

Lyndon words and Lyndon factorization are well-studied, and play an important role
in string algorithms [1, 2, 10, 24, 28, 30], algebra and combinatorics [7, 17, 25], and data
compression [12, 18, 20, 34, 35]. As an example, it was shown in [29] that local suffixes inside
each Lyndon factor can be sorted independently and then merged to construct a string’s
suffix array. As another example, Lyndon factorization is used in both the construction
of a string’s bijective Burrows-Wheeler transform (BBWT) [13] and in performing pattern
matching on indexes built from the string’s BBWT [3], where the number of steps used
to locate occurrences of a pattern P depends on the number of Lyndon factors within a
particular suffix of P . Because of such applications, it would be beneficial to be able to control
the number of factors in the Lyndon factorization of a string. Unfortunately, the Lyndon
factorization of a string is unique under a fixed ordering of its alphabet [26]. However, it
can vary under different alphabet orderings. For instance, if we change the alphabet ordering
to 2 < 0 < 1 in our example above, we obtain the Lyndon factorization (0, 1), (0), (0),
(2, 1, 1, 0, 0, 1, 0, 1, 1), (2). This leads to the following problems:

© Daniel Gibney and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 35; pp. 35:1–35:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniel.gibney@ucf.edu
https://www.cs.ucf.edu/~dgibney/
https://orcid.org/0000-0003-1493-5432
mailto:sharma.thankachan@ucf.edu
http://www.cs.ucf.edu/~sharma/
https://doi.org/10.4230/LIPIcs.STACS.2021.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Finding an Optimal Alphabet Ordering for Lyndon Factorization Is Hard

▶ Problem 1 (Lyndon Factor Minimization – Decision Version). Given an integer A and text
T over alphabet Σ, does there exist an ordering on Σ such that the number of Lyndon factors
of T is at most A?

▶ Problem 2 (Lyndon Factor Maximization – Decision Version). Given an integer A and text
T over alphabet Σ, does there exist an ordering on Σ such that the number of Lyndon factors
of T is at least A?

We will also consider the optimization variants of these problems. The objective cost
of a solution is the number of factors in its Lyndon factorization. In particular, for the
minimization problem, a λ-approximation for λ > 1, is a polynomial-time algorithm that
outputs an alphabet ordering where the number of factors is at most λ times the minimum
possible number of factors over all possible alphabet orderings. Similarly, for the maximization
problem, a λ-approximation for λ < 1, is a polynomial-time algorithm that outputs an
alphabet ordering where the number of factors is at least λ times the maximum number of
possible factors over all possible alphabet orderings.

These problems were first considered by Clare and Daykin, who proposed a polynomial-
time greedy algorithm that can be adjusted to provide either a small number of factors or
a large number of factors [8]. Through experiments, the authors showed that the number
of factors can be significantly affected by their algorithm. Another approach that uses
evolutionary algorithms to find alphabet orderings to optimize the number of Lyndon factors
was considered in [9] and in [27]. Again, it was shown that there is often a significant effect on
the number of factors, which can be controlled by the use of different fitness functions within
the evolutionary algorithms. These techniques, although appearing to have a significant
impact on the number of factors, do not provide any approximation guarantee.

Hardness results for the problem of ordering the alphabet of a string to minimize the
number of maximal unary substrings occurring in its Burrows-Wheeler Transform (BWT)
appeared in [4]. Although the Lyndon factors of a string and the structure of its BBWT are
closely related, we see no clear relation between the number of Lyndon factors of a string and
the number of maximal unary substrings occurring in its BWT. Moreover, the techniques
applied here seem quite different from those used in [4]. We present the following results.

▶ Theorem 3. The decision version of Lyndon Factor Minimization is NP-complete.

▶ Theorem 4. Under the Exponential Time Hypothesis, the optimization version of Lyndon
Factor Minimization cannot be solved in time poly(|T |) · 2o(|Σ| log |Σ|).

▶ Theorem 5. Under the Unique Games Conjecture, the optimization version of Lyndon
Factor Minimization does not admit a λ-approximation for any constant λ > 1.

▶ Theorem 6. The decision version of Lyndon Factor Maximization is NP-complete.

▶ Theorem 7. Under the Unique Games Conjecture, the optimization version of Lyndon
Factor Maximization does not admit a λ-approximation for any constant λ < 1.

We will prove these theorems in Section 3.1, Section 3.2, Section 3.3, Section 4.1, and
Section 4.2, respectively. We leave open whether it is possible to have a result similar to
Theorem 4 for Lyndon Factor Maximization.

Our main line of attack is to model ordering constraint satisfaction problems (OCSPs), a
subject of extensive research in its own right [5, 6, 15, 16, 31, 33]. In these problems, the
task is to find a linear ordering on a set of variables subject to some additional constraints.
Our work shows that a solver for these Lyndon factorization problems would be powerful
enough to solve difficult OCSP instances. Our results make use of strings that allow us to
model different constraint satisfaction problems and thus prove our hardness results.

D. Gibney and S. V. Thankachan 35:3

2 Preliminaries

We denote the concatenation of the strings u and v using the “◦” symbol, writing their
concatenation as u ◦ v. However, we omit “◦” where the concatenation is clear from context.
Throughout this paper, we will use “<” and “>” to refer to alphabet order between symbols,
the lexicographic order between strings, and the usual ordering between real numbers. Again,
context will make it clear which type of order is meant. A suffix of a string T is a string v

such that T = u ◦ v for some string u. The suffix array of a string T [1, n] is a length n array
where the ith element is equal to the starting index of the ith lexicographically smallest suffix
of T . The inverse suffix array is defined as the length n array such that ith element is the
position of T [i, n] in the suffix array, i.e., the lexicographic rank of T [i, n].

The Lyndon factorization (defined in Section 1) of a string can be computed in linear
time. This can be done using the well known Duval’s algorithm [11], or by using the inverse
suffix array, which can be constructed in linear time [22]. Lemma 8 makes it clear why the
latter technique works.

▶ Lemma 8 (Theorem 2.2 [29]). The starting index, i, of a suffix in T that is lexicographically
smaller than any suffix starting at index j < i is an index where a Lyndon factor begins.

In other words, as we scan the inverse suffix array from left-to-right, an index i where the
inverse suffix array value is smaller than any seen thus far marks the start of a Lyndon
factor. Moreover, if a Lyndon factor starts at index i in T , the next Lyndon word must be
this factor. We aim to use this to construct strings where the number of Lyndon factors
tells us something about the number of constraints satisfied within an ordering constraint
satisfaction problem (OCSP). The definition of an OCSP used here is less general than the
one given in [14], but still sufficient for our purposes.

▶ Definition 9. An OCSP of arity k is specified by a set Λ ⊆ Sk where Sk is the set of
permutations of {1, 2, ..., k}. An instance of such an OCSP consists of a set of variables,
V = {x1, . . . , xn}, and m constraints, C1, . . ., Cm, each of which is an ordered k-tuple of
V . The objective is to find a global ordering σ of V that maximizes

∑m
i=1 χΛ(σ|Ci

), where
σ|Ci

∈ Sk is the ordering of the k elements of Ci induced by the global ordering σ, and
χΛ(σ|Ci

) = 1 if σ|Ci
∈ Λ and 0 otherwise. If χΛ(σ|Ci

) = 1, we say that Ci is satisfied.

Note that m ≤ n!/(n − k)! ≤ nk. Additionally, we will only consider OCSP instances
where each variable appears in at least two constraints. Under this last assumption, we can
relate the number of variables, n, to the number of clauses, m.

▶ Lemma 10. For OCSPs with arity k constraints, n variables, and m constraints, where
every variable appears in at least two clauses, n ≤ k

2 m.

Proof. Since every variable appears in at least two constraints,

2n ≤
n∑

i=1
(the number of times variable xi appears in total) = km. ◀

One of the simplest OCSPs is the Maximum Acyclic Subgraph Problem (MAS), where
k = 2, making constraints of the form (xi, xj), and where Λ = {(1 2

1 2)} (using two-line
permutation notation). That is, Λ contains only the identity permutation that orders xi < xj .
For example, an instance of MAS could be V = {x1, x2, x3, x4, x5} and C1 = (x1, x3),
C2 = (x5, x2), C3 = (x3, x4), C4 = (x2, x1). An ordering σ that puts the variables in the order
x4 < x5 < x3 < x2 < x1 would yield χΛ(σ|C1) = χΛ ((1 2

2 1)) = 0, χΛ(σ|C2) = χΛ ((1 2
1 2)) = 1,

χΛ(σ|C3) = χΛ ((1 2
2 1)) = 0, χΛ(σ|C4) = χΛ ((1 2

1 2)) = 1, making its objective value 2.

STACS 2021

35:4 Finding an Optimal Alphabet Ordering for Lyndon Factorization Is Hard

The dual minimization problem of MAS is known as Feedback Arc Set (FAS). In this
problem, the aim is to minimize the objective value of a solution, which is defined as the
number of constraints being violated, i.e., m −

∑m
i=1 χΛ(σ|Ci

). The problem is otherwise
identical. The following hardness result for FAS is used when proving Theorem 5.

▶ Lemma 11 ([14]). Conditioned on the Unique Games Conjecture, for every constant C > 1,
it is NP-hard to find a C-approximation for FAS.

The Unique Games Conjecture is described in [21]. We will use the term Unique-Games-hard
to refer to problems that, conditioned on the Unique Games conjecture, are NP-hard.

We can always assume that at least half of the constraints in an instance of MAS can
be satisfied. To see this, take an arbitrary ordering of the variables. Either this ordering
or its reversal must satisfy at least m/2 constraints. This is just a specific instance of a
more general result. We can always assume our optimal solution satisfies at least |Λ|m/k!
constraints. Since the expected number of constraints satisfied by a random ordering on the
variables is |Λ|m/k!, we know the maximum number of constraints satisfied by any ordering
is bounded below by this quantity. It turns out, however, that finding a solution that does
better than this expected value is computationally difficult. We give a simplified statement
of the main result in [14], maintaining only the pertinent details for our problem.

▶ Theorem 12 ([14]). For an OCSP with arity k, for every constant ε > 0, it is Unique-
Games-hard to find an ordering for the variables that achieves a ratio of satisfied constraints
over total constraints that is at least |Λ|/k! + ε.

Our results also make use of the OCSP known as the Betweenness Problem. In this
problem k = 3 and Λ = {(1 2 3

1 2 3) , (1 2 3
3 2 1)}. For a constraint (xi, xj , xk) to be satisfied either

xi < xj < xk or xk < xj < xi. For example, the ordering x4 < x5 < x3 < x2 < x1 satisfies
the constraint (x1, x2, x5), but not the constraint (x4, x2, x5). By applying Theorem 12 to
the Betweenness problem, we obtain that it is Unique-Games-hard to achieve a ratio of
satisfied constraints to total constraints better than 2/3! = 1/3.

For hardness under the Exponential Time Hypothesis (ETH) [19], we will use a result
by Kim and Gonçalves appearing in [23]. An Arity k Permutation CSP as defined in [23]
is a OCSP where Λ consists of the identity permutations, Λ = {(1

1) , (1 2
1 2) , . . . ,

(
1 2 ... k
1 2 ... k

)
},

and constraints up to arity k are allowed. This is different from our definition of OCSPs,
where all constraints are of exactly arity k. The differences between these two definitions are
accommodated for whenever Lemma 13 is used. In [23] the authors prove the following.

▶ Lemma 13 ([23]). Assuming ETH, there is no 2o(n log n)-algorithm for Arity 4 Permutation
CSP (and thus for Arity k Permutation CSP, k ≥ 4).

3 Hardness of Lyndon Factor Minimization

The first reduction is from the Betweenness problem to the Lyndon Factor Minimization
Problem. It is used to demonstrate NP-completeness. An alternative proof can be done with
a reduction from MAS. Our reasoning for choosing one over the other is we believe that the
Betweenness problem provides a good initial illustration of the power of a hypothetical solver
to these Lyndon factorization problems. It also provides a warm-up for the techniques used
in Section 3.2. Moreover, we will use a reduction from MAS as a short proof to illustrate
NP-completeness for the maximization problem, before introducing a more involved reduction
to prove an inapproximability result.

D. Gibney and S. V. Thankachan 35:5

3.1 NP-Completeness of Lyndon Factor Minimization
We are given as input an instance ϕ of the Betweenness problem consisting of n variables
x1, x2, . . ., xn and m constraints C1, C2, . . ., Cm. Let F (T) denote the number of Lyndon
factors of a string T under the alphabet ordering currently under consideration. We will use
FT (T1) to denote the number of Lyndon factors of T starting within the first occurrence
of the substring T1 of T . The subscript T is to remind us that the factors starting in T1
are sensitive to the other symbols in T . By a run of a symbol, we mean a maximal unary
substring containing that symbol.

▶ Lemma 14. Let T be any string of the form T = T1 ◦ (x0)α ◦ (xγ
1 xγ

2 . . . xγ
n)β where T1

is over the alphabet {x0, . . . , xn}, α is greater than the length of any run of x0 in T1, γ is
greater than the length of any run of any symbol other than x0 in T1, and β > 1. If x0 is the
smallest symbol in the ordering, then F (T) ≤ FT (T1) + 1.

Proof. If T1 does not end with an x0, then the first x0 in the (x0)α marks the start of a new
Lyndon factor in T since (x0)α is lexicographically smaller than any preceding suffix. Then
this factor includes the remaining suffix of T . In this case F (T) = FT (T1) + 1. If T1 contains
a suffix consisting of only x0’s, then a new Lyndon factor must start at the first of these x0’s,
and again this factor contains the remaining suffix of T . In this case, F (T) = FT (T1). ◀

▶ Lemma 15. Let T be defined as in Lemma 14. If x0 is not the smallest symbol in the
ordering, F (T) ≥ β − 1.

Proof. In this case, the smallest symbol must be one of x1, . . . , xn. Suppose the smallest is xi.
Then the first symbol in the first xγ

i marks the beginning of a Lyndon factor. This factor is of
the form xγ

i xγ
i+1 . . . xγ

n xγ
1 . . . xγ

i−1 and is repeated at least β − 1 times. In particular, the
suffix xγ

i+1 . . . xγ
n is preceded by β − 1 factors of the form xγ

i xγ
i+1 . . . xγ

n xγ
1 . . . xγ

i−1. ◀

Lemmas 14 and 15 will be useful in proving that x0 must be smallest in an optimal
ordering. We now introduce our constraint gadgets.

▶ Lemma 16. Let x0 be the smallest symbol in T . For i, j, k > 0, consider the first instance
of a substring S of T where

S = xη
0 xj xη

0 xi xη
0 xj xη

0 xi xη
0 xk xη

0 xi xη
0 xi xη

0 xj xη
0 xj xη

0 xj

and η is larger than the length of any run of x0 preceding S in T , and S is immediately followed
by the run xη+1

0 . The symbols in this first instance of S make up three complete Lyndon
factors if xj is ordered between xi and xk, and four complete Lyndon factors otherwise.

Proof. Since the number of times x0 is repeated is more than the length of any previous
run, it must be the case that a new factor begins at the start of S. The six possible cases
and their corresponding factorizations are:

x0 < xi < xj < xk : (xη
0 xj), (xη

0 xi xη
0 xj xη

0 xi xη
0 xk), (xη

0 xi xη
0 xi xη

0 xj xη
0 xj xη

0 xj)
x0 < xi < xk < xj : (xη

0 xj), (xη
0 xi xη

0 xj), (xη
0 xi xη

0 xk), (xη
0 xi xη

0 xi xη
0 xj xη

0 xj xη
0 xj)

x0 < xj < xi < xk : (xη
0 xj xη

0 xi xη
0 xj xη

0 xi xη
0 xk xη

0 xi xη
0 xi), (xη

0 xj), (xη
0 xj), (xη

0 xj)
x0 < xk < xi < xj : (xη

0 xj), (xη
0 xi xη

0 xj), (xη
0 xi), (xη

0 xk xη
0 xi xη

0 xi xη
0 xj xη

0 xj xη
0 xj)

x0 < xj < xk < xi : (xη
0 xj xη

0 xi xη
0 xj xη

0 xi xη
0 xk xη

0 xi xη
0 xi), (xη

0 xj), (xη
0 xj), (xη

0 xj)
x0 < xk < xj < xi : (xη

0 xj xη
0 xi), (xη

0 xj xη
0 xi), (xη

0 xk xη
0 xi xη

0 xi xη
0 xj xη

0 xj xη
0 xj)

Notice that only in the first and last orderings where the constraint is satisfied are there
three factors. The other cases have four. ◀

STACS 2021

35:6 Finding an Optimal Alphabet Ordering for Lyndon Factorization Is Hard

For each constraint Ct = (xi, xj , xk) in the instance ϕ of the Betweenness problem, where
1 ≤ t ≤ m, we construct the gadget from Lemma 16,

S(Ct) := xt
0 xj xt

0 xi xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xi xt

0 xj xt
0 xj xt

0 xj .

We next define S(ϕ) := S(C1) ◦ S(C2) ◦ . . . ◦ S(Cm) ◦ (x0)m+1 ◦ (x2
1 x2

2 . . . x2
n)β where

β = 3m + 3.

▶ Lemma 17. The string S(ϕ) has an alphabet ordering yielding at most 3m + 1 Lyndon
factors iff there exists a variable ordering satisfying all constraints in ϕ.

Proof. Assuming there exists a constraint satisfying variable ordering for ϕ, make x0 the
smallest symbol and order the remaining symbols x1, . . . , xn according to the variable ordering.
By Lemma 16, each of the substrings S(Ct) for 1 ≤ t ≤ m contributes three factors, and by
the analysis in Lemma 14 the remaining suffix contributes one additional factor. This creates
3m + 1 factors in total.

Conversely, assume that no variable ordering exists that satisfies the constraints. If x0 is
the smallest symbol, then at least one S(Ct) gadget contributes four factors while the others
contribute at least three. The remaining suffix contributes one factor making the number of
factors at least 4 + 3(m − 1) + 1 = 3m + 2. If x0 is not the smallest symbol, then by Lemma
15, the number of factors is at least β − 1 = (3m + 3) − 1 = 3m + 2. ◀

Since determining if there exists a variable ordering satisfying all constraints in an instance
of the Betweenness problem is NP-hard [32], determining whether there exists an alphabet
order where there are at most 3m + 1 Lyndon factors is NP-hard as well. With a symbol
ordering as a polynomial sized certificate, the problem is clearly in NP, proving Theorem 3.

3.2 ETH Hardness of Lyndon Factor Minimization
Here we reduce Arity 4 Permutation CSP to Lyndon Factor Minimization. Assume for the
moment that x0 is the smallest symbol, and that each substring S(Ct) (yet to be defined) is
followed by a run of x0 longer than any run of x0 that precedes it.

For an arity 2 constraint Ct = (xi, xj), we construct a string using the symbols x0,
xi, and xj that has either 3 or 4 factors depending on the ordering on the variables. We
will demonstrate which orderings create which factorizations. The string we construct is
S(Ct) = xt

0 xi xt
0 xi xt

0 xi xt
0 xj xt

0 xi xt
0 xi, which has the factorizations for different

orderings,

Ordering Factorization # factors
xi < xj : (xt

0 xi xt
0 xi xt

0 xi xt
0 xj)(xt

0 xi)(xt
0 xi) 3

xj < xi : (xt
0 xi)(xt

0 xi)(xt
0 xi)(xt

0 xj xt
0 xi xt

0 xi) 4

Slightly more involved are the strings to model arity 3 constraints Ct = (xi, xj , xk),
S(Ct) = xt

0 xi xt
0 xi xt

0 xj xt
0 xi xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi xt
0 xi., where

Ordering Factorization # factors
xi < xj < xk : (xt

0 xi xt
0 xi xt

0 xj xt
0 xi xt

0 xi xt
0 xk xt

0 xi xt
0 xj)(xt

0 xi)(xt
0 xi) 3

xi < xk < xj : (xt
0 xi xt

0 xi xt
0 xj)(xt

0 xi xt
0 xi xt

0 xk xt
0 xi xt

0 xj)(xt
0 xi)(xt

0 xi) 4
xj < xi < xk : (xt

0 xi)(xt
0 xi)(xt

0 xj xt
0 xi xt

0 xi xt
0 xk xt

0 xi)(xt
0 xj xt

0 xi xt
0 xi) 4

xk < xi < xj : (xt
0 xi xt

0 xi xt
0 xj)(xt

0 xi)(xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xi) 4
xj < xk < xi : (xt

0 xi)(xt
0 xi)(xt

0 xj xt
0 xi xt

0 xi xt
0 xk xt

0 xi)(xt
0 xj xt

0 xi xt
0 xi) 4

xk < xj < xi : (xt
0 xi)(xt

0 xi)(xt
0 xj xt

0 xi xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xi) 4

D. Gibney and S. V. Thankachan 35:7

The most involved is the gadget for an arity 4 constraint Ct = (xi, xj , xk, xh),
S(Ct) = xt

0 xi xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi xt
0 xh xt

0 xj xt
0 xi xt

0 xk xt
0 xi xt

0 xj xt
0 xi

which has the following factorizations depending on the ordering given to its symbols,

Ordering (‘<’ omitted) Factorization #
xi, xj , xk, xh : (xt

0 xi xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi xt
0 xh xt

0 xj xt
0 xi xt

0 xk)(xt
0 xi xt

0 xj)(xt
0 xi) 3

xi, xj , xh, xk : (xt
0 xi xt

0 xj xt
0 xi xt

0 xk)(xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi xt
0 xk)(xt

0 xi xt
0 xj)(xt

0 xi) 4

xi, xk, xj , xh : (xt
0 xi xt

0 xj)(xt
0 xi xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj)(xt

0 xi xt
0 xk xt

0 xi xt
0 xj)(xt

0 xi) 4

xi, xh, xj , xk : (xt
0 xi xt

0 xj xt
0 xi xt

0 xk)(xt
0 xi xt

0 xj)(xt
0 xi xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj)(xt

0 xi) 4

xi, xk, xh, xj : (xt
0 xi xt

0 xj)(xt
0 xi xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj)(xt

0 xi xt
0 xk xt

0 xi xt
0 xj)(xt

0 xi) 4

xi, xh, xk, xj : (xt
0 xi xt

0 xj)(xt
0 xi xt

0 xk xt
0 xi xt

0 xj)(xt
0 xi xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj)(xt

0 xi) 4

xj , xi, xk, xh : (xt
0 xi)(xt

0 xj xt
0 xi xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh)(xt
0 xj xt

0 xi xt
0 xk xt

0 xi)(xt
0 xj xt

0 xi) 4

xj , xi, xh, xk : (xt
0 xi)(xt

0 xj xt
0 xi xt

0 xk xt
0 xi)(xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi)(xt
0 xj xt

0 xi) 4

xk, xi, xj , xh : (xt
0 xi xt

0 xj)(xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi)(xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xh, xi, xj , xk : (xt
0 xi xt

0 xj xt
0 xi xt

0 xk)(xt
0 xi xt

0 xj)(xt
0 xi)(xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xk, xi, xh, xj : (xt
0 xi xt

0 xj)(xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi)(xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xh, xi, xk, xj : (xt
0 xi xt

0 xj)(xt
0 xi xt

0 xk xt
0 xi xt

0 xj)(xt
0 xi)(xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xj , xk, xi, xh : (xt
0 xi)(xt

0 xj xt
0 xi xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh)(xt
0 xj xt

0 xi xt
0 xk xt

0 xi)(xt
0 xj xt

0 xi) 4

xj , xh, xi, xk : (xt
0 xi)(xt

0 xj xt
0 xi xt

0 xk xt
0 xi)(xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi)(xt
0 xj xt

0 xi) 4

xk, xj , xi, xh : (xt
0 xi)(xt

0 xj xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi)(xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xh, xj , xi, xk : (xt
0 xi)(xt

0 xj xt
0 xi xt

0 xk xt
0 xi)(xt

0 xj xt
0 xi)(xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xk, xh, xi, xj : (xt
0 xi xt

0 xj)(xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi)(xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xh, xk, xi, xj : (xt
0 xi xt

0 xj)(xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi)(xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xj , xk, xh, xi : (xt
0 xi)(xt

0 xj xt
0 xi xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh)(xt
0 xj xt

0 xi xt
0 xk xt

0 xi)(xt
0 xj xt

0 xi) 4

xj , xh, xk, xi : (xt
0 xi)(xt

0 xj xt
0 xi xt

0 xk xt
0 xi)(xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi)(xt
0 xj xt

0 xi) 4

xk, xj , xh, xi : (xt
0 xi)(xt

0 xj xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi)(xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xh, xj , xk, xi : (xt
0 xi)(xt

0 xj xt
0 xi xt

0 xk xt
0 xi)(xt

0 xj xt
0 xi)(xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xk, xh, xj , xi : (xt
0 xi)(xt

0 xj xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi)(xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xh, xk, xj , xi : (xt
0 xi)(xt

0 xj xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi)(xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

The string construction for the overall reduction is almost identical to the one for ϕ in
Section 3.1. We only need to select β to be slightly different. We let β = 4m + 3. This
is enough to ensure that in an optimal solution x0 must be the smallest symbol. If x0 is
smallest, in the worst-case, when all constraints are not satisfied, there are at most 4m + 1
Lyndon factors. If x0 is not smallest, as shown in Lemma 15, the number of factors is at
least β − 1 = 4m + 2. Then, with x0 as the minimum, each ordering on x1, . . ., xn gives us
3s + 4(m − s) + 1 = 4m + 1 − s factors, where s is the number of satisfied constraints when
using the corresponding variable ordering in ϕ. Therefore, an optimal ordering for the n

variables of ϕ is obtained by an order on the (n + 1) symbols which minimizes the number of
Lyndon factors in the string. This combined with Lemma 13 proves Theorem 4.

3.3 Inapproximability of Lyndon Factor Minimization
We will perform an approximation preserving reduction from FAS to Lyndon Factor Minim-
ization. Recall that for FAS the arity k of the constraints is 2, so that constraints are of the
form (xi, xj) and Λ consists of the identity permutation. In other words, the constraint is

STACS 2021

35:8 Finding an Optimal Alphabet Ordering for Lyndon Factorization Is Hard

only satisfied if xi < xj . The cost of the solution will be the number of violated constraints,
which we wish to minimize. Our gadget for constraint Ct = (xi, xj) will be

S(Ct) = (xt
0 xi) ◦ (xt

0 xj)α−1

where α > 1 will be chosen later. The whole string for our reduction will be

T = S(ϕ) = S(C1) ◦ S(C2) ◦ . . . ◦ S(Cm) ◦ (x0)m+1 ◦ (x2
1 x2

2 . . . x2
n)β

where β = αm + 3. By Lemma 15, if x0 is not smallest, then F (T) ≥ β − 1. We consider
next what happens in our constraint gadgets when x0 is smallest.

▶ Lemma 18. If x0 is smallest and xi < xj then FT (S(Ct)) = 1.

Proof. Since xt
0 is the longest run of x0 seen so far, the start of S(Ct) marks the smallest

suffix seen so far when traversing T from left to right. Then, since xj > xi, the start of all
substrings of the form xt

0 xj do not mark the start of the smallest suffix seen so far. ◀

▶ Lemma 19. If x0 is smallest and xj < xi then FT (S(Ct)) = α.

Proof. Again, since xt
0 is the longest run of x0 seen so far, the start of S(Ct) marks the

smallest suffix seen so far when traversing T from left to right. However, now the start of
each substring of the form xt

0 xj marks the start of the smallest suffix seen so far (recall after
the last xt

0 xj there will be a longer run of x0 than has been seen before). Hence, there are
α − 1 additional factors created. ◀

▶ Lemma 20. Any alphabet ordering where x0 is smallest has fewer factors than an alphabet
ordering where x0 is not the smallest.

Proof. If x0 is smallest, F (T) = s+α(m−s)+1 where s is the number of satisfied constraints
and the +1 arises from the last factor, (x0)m+1 ◦ (x2

1 x2
2 . . . x2

n)β . Because α > 1, this is
upper bounded by the case when s = 0 so that F (T) ≤ αm + 1. On the other hand, if x0 is
not smallest F (T) ≥ β − 1 = αm + 2. ◀

Henceforth, we only need to worry about the case when x0 is the smallest. Our aim is to
show that a constant approximation algorithm for Lyndon Factor Minimization allows us to
construct a constant approximation algorithm for FAS. If our hypothetical approximation
algorithm for Lyndon Factor Minimization ever returned a solution where x0 is not smallest,
we add the additional step of replacing that solution with any solution where x0 is smallest,
obtaining a solution that performs even better. Then our modified algorithm maintains being
an approximation algorithm for Lyndon Factor Minimization (perhaps with an even smaller
approximation factor).

Let s∗
F denote the number of constraints satisfied in an optimal solution of ϕ for FAS and

let s∗
L denote the number of constraints in ϕ satisfied by the variable ordering obtained from

our optimal, factor minimizing, alphabet order for the corresponding instance of Lyndon
Factor Minimization. Also, let s denote the actual number of constraints satisfied by the
variable ordering obtained from our approximate factor minimizing alphabet order for the
corresponding instance of Lyndon Factor Minimization. A λ-approximation for Lyndon
Factor Minimization with λ > 1 gives the following set of inequalities:

s∗
L + α(m − s∗

L) + 1 ≤ s + α(m − s) + 1 ≤ λ(s∗
L + α(m − s∗

L) + 1).

D. Gibney and S. V. Thankachan 35:9

Which can be equivalently written as

(m − s∗
L) + s∗

L + 1
α

≤ (m − s) + s + 1
α

≤ λ(m − s∗
L) + λ

s∗
L + 1

α
. (1)

We will show that by taking α large enough we can ensure s∗
L = s∗

F .

▶ Lemma 21. With α = 2(m + 1) + 1, we have that s∗
L = s∗

F .

Proof. The cost of an optimal solution of ϕ is m − s∗
F . The solution for ϕ we get from

mapping our solution for Lyndon factorization back to ϕ must have at least as many violated
constraints as the optimal solution for ϕ, i.e., m − s∗

L ≥ m − s∗
F , and so s∗

F ≥ s∗
L. Let us

suppose for the sake of contradiction that s∗
F ≥ s∗

L + 1. This implies m − s∗
L − (m − s∗

F) ≥ 1.
Then, using in addition that s∗

F +1
α ≤ m+1

α ≤ 1
2 , we obtain

s∗
F + 1

α
− s∗

L + 1
α

≤ 1
2 < 1 ≤ m − s∗

L − (m − s∗
F),

which implies that

m − s∗
F + s∗

F + 1
α

< m − s∗
L + s∗

L + 1
α

.

Or, written more naturally as the cost of a Lyndon Factor Minimization Problem’s solution,

s∗
F + α(m − s∗

F) + 1 < s∗
L + α(m − s∗

L) + 1.

But then this implies that the ordering on x1, . . . , xn that is used to obtain the optimal
solution for ϕ creates fewer Lyndon factors than our supposedly optimal solution for Lyndon
Factor Minimization, a contradiction. ◀

Let us now upper bound m − s (our approximate solution cost when the solution is
mapped back to FAS) in terms of λ(m − s∗

F). Combining the inequalities in (1) with Lemma
21, and the fact that s∗

F = s∗
L ≤ m when α = 2(m + 1) + 1, we get that

m − s ≤ m − s + s + 1
α

≤ λ(m − s∗
L) + λ

s∗
L + 1

α
≤ λ

(
m − s∗

F + 1
2

)
.

The case where m = s∗
F can easily be solved in polynomial time, so we can consider that

check added to our hypothetical solution as well. Hence, we assume m − s∗
F ≥ 1 > 1/2 and,

m − s∗
F ≤ m − s ≤ λ

(
m − s∗

F + 1
2

)
< λ(m − s∗

F + m − s∗
F) = 2λ(m − s∗

F).

We have shown that a λ approximation for Lyndon Factor Minimization allows us to obtain,
at worst, a 2λ approximation for FAS. Moreover, the α value we need to do this is polynomial
in m so that the whole reduction is done in polynomial time. This polynomial time constant
approximation algorithm is better then what is allowed by Lemma 11 under the Unique
Games Conjecture. This completes the proof of Theorem 5.

4 Hardness of Lyndon Factor Maximization

Our approach will be similar to the one taken for minimization. First, we introduce
some gadgetry for the NP-completeness proof that is later expanded upon to create an
inapproximability result. As of now, the authors have not yet found gadgets to establish the
same ETH hardness for the maximization problem.

STACS 2021

35:10 Finding an Optimal Alphabet Ordering for Lyndon Factorization Is Hard

4.1 NP-Completeness of Lyndon Factor Maximization
We perform a reduction from the dual of FAS, the Maximum Acyclic Subgraph Problem
(MAS). Recall MAS is identical to FAS except for the cost of a solution now being the number
of constraints satisfied, which we wish to maximize. For constraint Ct = (xi, xj), we define
our constraint gadget as S(Ct) = xt+1

0 xj xt+1
0 xi (note the reversal of i and j). The entire

string formed by our instance ϕ of FAS is

T = S(ϕ) = (x0 x1 x2 . . . xn) ◦ S(C1) ◦ S(C2) ◦ . . . ◦ S(Cm) ◦ (x0)m.

▶ Lemma 22. If x0 is not the smallest symbol in the ordering, then F (T) ≤ n + m.

Proof. Suppose xi ̸= x0 is the smallest symbol. Then the first Lyndon factor starting with
xi occurs in the prefix (x0 x1 . . . xn). Subsequent Lyndon factors must begin with xi. The
prefix contributes at most n factors and there are at most m remaining occurrences of xi. ◀

▶ Lemma 23. In an ordering where x0 is smallest, F (T) = 2s + (m − s) + 1 + m, where s

is the number of constraints satisfied in MAS by the ordering given to x1, . . ., xn.

Proof. For a substring S(Ct), if Ct = (xi, xj) is not satisfied (i.e., xi > xj) then FT (S(Ct)) =
1. If it is satisfied (i.e., xi < xj) then FT (S(Ct)) = 2. The prefix x0 x1 x2 . . . xn contributes
exactly one additional factor. The suffix (x0)m contributes m factors. ◀

▶ Lemma 24. Any ordering where x0 is the smallest has more factors than an ordering
where x0 is not the smallest.

Proof. By Lemma 10, we can assume that n ≤ m. Then by Lemma 22, we have that if
x0 is not smallest, F (T) ≤ n + m ≤ 2m. By Lemma 23, if x0 is smallest then F (T) =
2s + (m − s) + 1 + m = s + 2m + 1 > 2m. ◀

The value F (T) is maximized by an alphabet order which has the largest possible number
of satisfied constraints, say s∗. This gives (s∗ + 2m + 1) Lyndon factors. Clearly, this solution
also provides an ordering satisfying the maximum number of constraints in our MAS instance.
Since MAS is NP-hard, we have shown Lyndon Factor Maximization is NP-hard as well. The
decision problem is in NP using the ordering on x1 . . . xn as a polynomial sized certificate,
and this remains NP-hard as it could be used to solve the optimization problem. This
completes the proof of Theorem 6.

4.2 Inapproximability of Lyndon Factor Maximization
First, let us describe the OCSP from which we are reducing. Let k > 1 be the arity of the
constraints, which we will specify later. Each constraint will be satisfied iff the variables
in that constraint have one of the (k − 1)! orderings where the last variable is ordered
first, i.e., for constraint (xi1 , xi2 , . . . , xik−1 , xik

), the ordering over those variables will have
xik

< xij
for j ∈ [1, k − 1]. More formally, Λ = {

(
1 2 ... k−1 k
z1 z2 ... zk−1 1

)
| ∪k−1

i=1 {zi} = {2, . . . , k}}.
According to Theorem 12, it is Unique-Games-Hard to find an approximation which beats
|Λ|m/k! = (k − 1)!m/k! = m/k constraints being satisfied.

Our constraint gadget is of the form

S(Ct) = (xt+1
0 xi1) ◦ (xt+1

0 xi2) ◦ . . . ◦ (xt+1
0 xik−1) ◦ (xt+1

0 xik
)α

and our overall string constructed from our instance ϕ of OCSP is

T := S(ϕ) = (x0 x1 x2 . . . xn) ◦ S(C1) ◦ S(C2) ◦ . . . ◦ S(Cm) ◦ (x0), where α = mn.

D. Gibney and S. V. Thankachan 35:11

▶ Lemma 25. If x0 is not smallest then F (T) ≤ n + m.

Proof. Let xi ̸= x0 be the smallest symbol instead. Then the prefix (x0 x1 x2 . . . xn)
contributes at most n factors, and each remaining factor must begin with xi. We will show
that there is at most 1 factor starting in each constraint gadget. For a given constraint
containing xi, if xi ̸= xik

this is immediate. On the other hand, if xi = xik
then only its

first occurrence can form a smaller suffix of T than those preceding it. In more detail, since
x0 > xi = xik

, we have xik
(xt

0 xik
)α−1x0 < xik

(xt
0 xik

)α−2x0 < xik
(xt

0 xik
)α−3x0 <

Note that this is the reason for the final x0 appended to T . ◀

▶ Lemma 26. If x0 is smallest, and in constraint Ct = (xi1 , . . . , xik
) the symbol xik

is
smallest among xi1 . . . xik

, then FT (S(Ct)) ≥ α.

Proof. Since xt+1
0 xik

< xt+1
0 xij

for j ∈ [1, k − 1], and the substring following S(Ct) is either
xt+2

0 (or the final x0 of T), the start of each run of x0 in the substring (xt+1
0 xik

)α marks
the start of a suffix smaller than any of those preceding it. ◀

▶ Lemma 27. If x0 is the smallest in the ordering, then F (T) ≥ αs + 1 where s is the
number of clauses in ϕ satisfied by the ordering given to x1, . . ., xn. This is larger than the
number of factors from any ordering where x0 is not the smallest.

Proof. By Lemma 26, when x0 is the smallest each of the satisfied constraint gadgets
contributes at least α factors. In addition, the lone x0 symbol at the end of T forms its own
factor. For the second statement, we can always assume our approximate solution satisfies at
least 1 constraint, hence s ≥ 1 and αs + 1 ≥ mn + 1 > m + n, which by Lemma 25 is an
upper bound on the number of factors when x0 is not smallest. ◀

From here we only need to consider when x0 is smallest, for the same reasoning as given
in Section 3.3. Now, suppose we have a λ-approximation with λ < 1 for Lyndon Factor
Maximization. Let s∗

L be the number of constraint gadgets satisfied from our optimal solution
of Lyndon factor maximization, and s the number from the approximate solution. Then,

λ(αs∗
L + 1 + y∗

L) ≤ αs + 1 + y ≤ αs∗
L + 1 + y∗

L

where y∗
L represents the number of additional factors contributed beyond αs∗

L + 1 and y

represents the number of factors beyond αs + 1 for our approximate solution. We can
equivalently write the above expression as

λs∗
L

(
1 + 1

αs∗
L

+ y∗
L

αs∗
L

)
≤ s

(
1 + 1

αs
+ y

αs

)
≤ s∗

L

(
1 + 1

αs∗
L

+ y∗
L

αs∗
L

)
. (2)

▶ Lemma 28. For all s ∈ [1, m], and for the corresponding y value as described above,

1 ≤
(

1 + 1
αs

+ y

αs

)
≤ 3.

Proof. We first bound y from above. Any factor in a constraint gadget begins at the start of
a run x0. In a satisfied constraint gadget, there are k − 1 such runs outside of the (xt+1

0 xik
)α

substring. Hence, each satisfied constraint gadget contributes at most k − 1 additional factors
beyond α. A constraint gadget that is not satisfied, i.e., has xij

< xik
for some j ̸= k, has

the gadget’s last factor beginning at the start of the substring (xt+1
0 xij). This implies the

STACS 2021

35:12 Finding an Optimal Alphabet Ordering for Lyndon Factorization Is Hard

substring (xt+1
0 xik

)α does not split into different factors. Therefore, an unsatisfied constraint
gadget again contributes at most k − 1 factors. Because of this, the m constraint gadgets
contribute at most k − 1 additional factors in total and y ≤ m(k − 1). Finally, α = mn, hence

y

αs
≤ y

α
≤ m(k − 1)

α
≤ mn

α
= 1 and 1

αs
≤ 1

α
= 1

nm
≤ 1. ◀

Let s∗
C be the number of constraints satisfied in an optimal solution to ϕ. Like in

Section 3.3, we know that s ≤ s∗
C and s∗

L ≤ s∗
C , Using Lemma 28 we can easily make them

differ by at most a constant factor.

▶ Lemma 29. Using the definitions above, it holds that s∗
C ≤ 3s∗

L.

Proof. For the sake of contradiction, assume instead that s∗
C > 3s∗

L. Applying the ordering
given by the optimal solution of ϕ to the symbols x1, . . . , xn, and letting y∗

C be defined as
above but for s∗

C , we have

s∗
C

(
1 + 1

αs∗
C

+ y∗
C

αs∗
C

)
> s∗

C > 3s∗
L ≥ s∗

L

(
1 + 1

αs∗
L

+ y∗
L

αs∗
L

)
.

However, this implies αs∗
C + 1 + y∗

C > αs∗
L + 1 + y∗

L. Thus, s∗
L couldn’t have been the number

of constraints satisfied in an optimal solution to our Lyndon Factor Maximization instance,
since using whichever ordering was used for the solution to ϕ would have given us more
factors, a contradiction. ◀

By Lemma 29, we have 1
3 s∗

C ≤ s∗
L. Multiplying both sides by λ/3, we obtain λ

9 s∗
C ≤ λ

3 s∗
L.

By Lemma 28 and our starting inequality in (2) we also have that

λs∗
L ≤ λs∗

L

(
1 + 1

αs∗
L

+ y∗
L

αs∗
L

)
≤ s

(
1 + 1

αs
+ y

αs

)
≤ 3s.

From which we obtain λ
3 s∗

L ≤ s. Combining these inequalities with the fact that s ≤ s∗
C , we

get λ
9 s∗

C ≤ s ≤ s∗
C . That is, a λ-approximation algorithm for Lyndon Factor Maximization

provides at least a λ/9 -approximation algorithm for this set of OCSP problems.
To finish the proof of Theorem 7, suppose for the sake of contradiction there exists

a λ-approximation algorithm for Lyndon factor maximization for some constant λ < 1.
Consider the set of OCSPs problems described in beginning of Section 4.2 with arity k such
that 1/k < λ/9. With our reduction, we obtain a polynomial-time algorithm that can find
a solution with approximation ratio better than |Λ|/k! = 1/k, proving the Unique Games
Conjecture false by Theorem 12.

5 Open Problems

We leave open the problem of establishing similar ETH hardness results for the maximization
problem. We also leave open the problem of finding a (non-constant factor) approximation
algorithm for either the minimization or maximization problem.

References
1 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and

Kazuya Tsuruta. The “runs” theorem. SIAM J. Comput., 46(5):1501–1514, 2017. doi:
10.1137/15M1011032.

2 Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, and Marcin Piatkowski. Constructing the
bijective BWT. CoRR, abs/1911.06985, 2019. arXiv:1911.06985.

https://doi.org/10.1137/15M1011032
https://doi.org/10.1137/15M1011032
http://arxiv.org/abs/1911.06985

D. Gibney and S. V. Thankachan 35:13

3 Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, and Marcin Piatkowski. Indexing the
bijective BWT. In 30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019,
June 18-20, 2019, Pisa, Italy, pages 17:1–17:14, 2019. doi:10.4230/LIPIcs.CPM.2019.17.

4 Jason W. Bentley, Daniel Gibney, and Sharma V. Thankachan. On the complexity of bwt-runs
minimization via alphabet reordering. In 28th Annual European Symposium on Algorithms,
ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), pages 15:1–15:13, 2020.
doi:10.4230/LIPIcs.ESA.2020.15.

5 Moses Charikar, Venkatesan Guruswami, and Rajsekar Manokaran. Every permutation CSP
of arity 3 is approximation resistant. In Proceedings of the 24th Annual IEEE Conference on
Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 62–73, 2009.
doi:10.1109/CCC.2009.29.

6 Moses Charikar, Konstantin Makarychev, and Yury Makarychev. On the advantage over
random for maximum acyclic subgraph. In 48th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings,
pages 625–633, 2007. doi:10.1109/FOCS.2007.47.

7 Kuo Tsai Chen, Ralph H Fox, and Roger C Lyndon. Free differential calculus, iv. the quotient
groups of the lower central series. Annals of Mathematics, pages 81–95, 1958.

8 Amanda Clare and Jacqueline W. Daykin. Enhanced string factoring from alphabet orderings.
Inf. Process. Lett., 143:4–7, 2019. doi:10.1016/j.ipl.2018.10.011.

9 Amanda Clare, Jacqueline W. Daykin, Thomas Mills, and Christine Zarges. Evolutionary
search techniques for the lyndon factorization of biosequences. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion, GECCO 2019, Prague, Czech Republic,
July 13-17, 2019, pages 1543–1550, 2019. doi:10.1145/3319619.3326872.

10 Maxime Crochemore and Dominique Perrin. Two-way string matching. J. ACM, 38(3):651–675,
1991. doi:10.1145/116825.116845.

11 Jean-Pierre Duval. Génération d’une section des classes de conjugaison et arbre des mots de lyn-
don de longueur bornée. Theor. Comput. Sci., 60:255–283, 1988. doi:10.1016/0304-3975(88)
90113-2.

12 Isamu Furuya, Yuto Nakashima, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki
Takeda. Lyndon factorization of grammar compressed texts revisited. In Gonzalo Navarro,
David Sankoff, and Binhai Zhu, editors, Annual Symposium on Combinatorial Pattern Match-
ing, CPM 2018, July 2-4, 2018 - Qingdao, China, volume 105 of LIPIcs, pages 24:1–24:10.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CPM.2018.24.

13 Joseph Yossi Gil and David Allen Scott. A bijective string sorting transform. CoRR,
abs/1201.3077, 2012. arXiv:1201.3077.

14 Venkatesan Guruswami, Johan Håstad, Rajsekar Manokaran, Prasad Raghavendra, and Moses
Charikar. Beating the random ordering is hard: Every ordering CSP is approximation resistant.
SIAM J. Comput., 40(3):878–914, 2011. doi:10.1137/090756144.

15 Venkatesan Guruswami and Yuan Zhou. Approximating bounded occurrence ordering csps. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
- 15th International Workshop, APPROX 2012, and 16th International Workshop, RANDOM
2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings, pages 158–169, 2012. doi:
10.1007/978-3-642-32512-0_14.

16 Johan Håstad. Some optimal inapproximability results. In Proceedings of the Twenty-Ninth
Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997,
pages 1–10, 1997. doi:10.1145/258533.258536.

17 Christophe Hohlweg and Christophe Reutenauer. Lyndon words, permutations and trees.
Theor. Comput. Sci., 307(1):173–178, 2003. doi:10.1016/S0304-3975(03)00099-9.

18 Tomohiro I, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Faster
lyndon factorization algorithms for SLP and LZ78 compressed text. Theor. Comput. Sci.,
656:215–224, 2016. doi:10.1016/j.tcs.2016.03.005.

STACS 2021

https://doi.org/10.4230/LIPIcs.CPM.2019.17
https://doi.org/10.4230/LIPIcs.ESA.2020.15
https://doi.org/10.1109/CCC.2009.29
https://doi.org/10.1109/FOCS.2007.47
https://doi.org/10.1016/j.ipl.2018.10.011
https://doi.org/10.1145/3319619.3326872
https://doi.org/10.1145/116825.116845
https://doi.org/10.1016/0304-3975(88)90113-2
https://doi.org/10.1016/0304-3975(88)90113-2
https://doi.org/10.4230/LIPIcs.CPM.2018.24
http://arxiv.org/abs/1201.3077
https://doi.org/10.1137/090756144
https://doi.org/10.1007/978-3-642-32512-0_14
https://doi.org/10.1007/978-3-642-32512-0_14
https://doi.org/10.1145/258533.258536
https://doi.org/10.1016/S0304-3975(03)00099-9
https://doi.org/10.1016/j.tcs.2016.03.005

35:14 Finding an Optimal Alphabet Ordering for Lyndon Factorization Is Hard

19 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

20 Juha Kärkkäinen, Dominik Kempa, Yuto Nakashima, Simon J. Puglisi, and Arseny M. Shur.
On the size of lempel-ziv and lyndon factorizations. In Heribert Vollmer and Brigitte Vallée,
editors, 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, March
8-11, 2017, Hannover, Germany, volume 66 of LIPIcs, pages 45:1–45:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.45.

21 Subhash Khot. On the unique games conjecture. In 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA,
Proceedings, page 3, 2005. doi:10.1109/SFCS.2005.61.

22 Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear-time construction
of suffix arrays. In Combinatorial Pattern Matching, 14th Annual Symposium, CPM 2003,
Morelia, Michocán, Mexico, June 25-27, 2003, Proceedings, pages 186–199, 2003. doi:10.
1007/3-540-44888-8_14.

23 Eun Jung Kim and Daniel Gonçalves. On exact algorithms for the permutation CSP. Theor.
Comput. Sci., 511:109–116, 2013. doi:10.1016/j.tcs.2012.10.035.

24 Manfred Kufleitner. On bijective variants of the burrows-wheeler transform. In Proceedings of
the Prague Stringology Conference 2009, Prague, Czech Republic, August 31 - September 2,
2009, pages 65–79, 2009. URL: http://www.stringology.org/event/2009/p07.html.

25 Pierre Lalonde and Arun Ram. Standard lyndon bases of lie algebras and enveloping algebras.
Transactions of the American Mathematical Society, 347(5):1821–1830, 1995.

26 M. Lothaire. Combinatorics on words, volume 17. Cambridge university press, 1997.
27 Lily Major, Amanda Clare, Jacqueline W. Daykin, Benjamin Mora, Leonel Jose Peña Gamboa,

and Christine Zarges. Evaluation of a permutation-based evolutionary framework for lyndon
factorizations. In Parallel Problem Solving from Nature - PPSN XVI - 16th International
Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I,
pages 390–403, 2020. doi:10.1007/978-3-030-58112-1_27.

28 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. Sorting suffixes
of a text via its lyndon factorization. In Jan Holub and Jan Zdárek, editors, Proceedings of
the Prague Stringology Conference 2013, Prague, Czech Republic, September 2-4, 2013, pages
119–127. Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, 2013. URL: http://www.stringology.org/event/
2013/p11.html.

29 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. Suffix array
and lyndon factorization of a text. J. Discrete Algorithms, 28:2–8, 2014. doi:10.1016/j.jda.
2014.06.001.

30 Marcin Mucha. Lyndon words and short superstrings. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana,
USA, January 6-8, 2013, pages 958–972, 2013. doi:10.1137/1.9781611973105.69.

31 Alantha Newman. Cuts and orderings: On semidefinite relaxations for the linear ordering
problem. In Approximation, Randomization, and Combinatorial Optimization, Algorithms
and Techniques, 7th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, APPROX 2004, and 8th International Workshop on Randomization
and Computation, RANDOM 2004, Cambridge, MA, USA, August 22-24, 2004, Proceedings,
pages 195–206, 2004. doi:10.1007/978-3-540-27821-4_18.

32 Jaroslav Opatrny. Total ordering problem. SIAM J. Comput., 8(1):111–114, 1979. doi:
10.1137/0208008.

33 Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp? In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 245–254, 2008. doi:10.1145/1374376.1374414.

https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.4230/LIPIcs.STACS.2017.45
https://doi.org/10.1109/SFCS.2005.61
https://doi.org/10.1007/3-540-44888-8_14
https://doi.org/10.1007/3-540-44888-8_14
https://doi.org/10.1016/j.tcs.2012.10.035
http://www.stringology.org/event/2009/p07.html
https://doi.org/10.1007/978-3-030-58112-1_27
http://www.stringology.org/event/2013/p11.html
http://www.stringology.org/event/2013/p11.html
https://doi.org/10.1016/j.jda.2014.06.001
https://doi.org/10.1016/j.jda.2014.06.001
https://doi.org/10.1137/1.9781611973105.69
https://doi.org/10.1007/978-3-540-27821-4_18
https://doi.org/10.1137/0208008
https://doi.org/10.1137/0208008
https://doi.org/10.1145/1374376.1374414

D. Gibney and S. V. Thankachan 35:15

34 Kazuya Tsuruta, Dominik Köppl, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. Grammar-compressed self-index with lyndon words. CoRR, abs/2004.05309,
2020. arXiv:2004.05309.

35 Yuki Urabe, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. On the
size of overlapping lempel-ziv and lyndon factorizations. In Nadia Pisanti and Solon P. Pissis,
editors, 30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019, June 18-20,
2019, Pisa, Italy, volume 128 of LIPIcs, pages 29:1–29:11. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.CPM.2019.29.

STACS 2021

http://arxiv.org/abs/2004.05309
https://doi.org/10.4230/LIPIcs.CPM.2019.29

Reachability in Two-Parametric Timed Automata
with One Parameter Is EXPSPACE-Complete
Stefan Göller !

School of Electrical Engineering and Computer Science, Universität Kassel, Germany

Mathieu Hilaire !

Université Paris-Saclay, ENS Paris-Saclay, Laboratoire Spécification et Vérification (LSV), CNRS,
Gif-sur-Yvette, France

Abstract

Parametric timed automata (PTA) have been introduced by Alur, Henzinger, and Vardi as an
extension of timed automata in which clocks can be compared against parameters. The reachability
problem asks for the existence of an assignment of the parameters to the non-negative integers such
that reachability holds in the underlying timed automaton. The reachability problem for PTA is
long known to be undecidable, already over three parametric clocks.

A few years ago, Bundala and Ouaknine proved that for PTA over two parametric clocks and one
parameter the reachability problem is decidable and also showed a lower bound for the complexity
class PSPACENEXP. Our main result is that the reachability problem for parametric timed automata
over two parametric clocks and one parameter is EXPSPACE-complete.

For the EXPSPACE lower bound we make use of deep results from complexity theory, namely
a serializability characterization of EXPSPACE (in turn based on Barrington’s Theorem) and a
logspace translation of numbers in Chinese Remainder Representation to binary representation due
to Chiu, Davida, and Litow. It is shown that with small PTA over two parametric clocks and one
parameter one can simulate serializability computations.

For the EXPSPACE upper bound, we first give a careful exponential time reduction from PTA
over two parametric clocks and one parameter to a (slight subclass of) parametric one-counter
automata over one parameter based on a minor adjustment of a construction due to Bundala and
Ouaknine. For solving the reachability problem for parametric one-counter automata with one
parameter, we provide a series of techniques to partition a fictitious run into several carefully chosen
subruns that allow us to prove that it is sufficient to consider a parameter value of exponential
magnitude only. This allows us to show a doubly-exponential upper bound on the value of the only
parameter of a PTA over two parametric clocks and one parameter. We hope that extensions of our
techniques lead to finally establishing decidability of the long-standing open problem of reachability
in parametric timed automata with two parametric clocks (and arbitrarily many parameters) and, if
decidability holds, determining its precise computational complexity.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models; Theory of
computation → Automata extensions

Keywords and phrases Parametric Timed Automata, Computational Complexity, Reachability

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.36

Related Version Full Version: https://arxiv.org/abs/2011.07091

Funding Stefan Göller : The author was supported by the Agence Nationale de la Recherche grant
no. ANR-17-CE40-0010.

Acknowledgements We thank Benedikt Bollig and Karin Quaas for discussions and feedback.

© Stefan Göller and Mathieu Hilaire;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 36; pp. 36:1–36:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stefan.goeller@uni-kassel.de
mailto:hilaire@lsv.fr
https://doi.org/10.4230/LIPIcs.STACS.2021.36
https://arxiv.org/abs/2011.07091
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 (2,1)-PTA-Reachability Is EXPSPACE-Complete

1 Introduction

Background. In the 1990’s timed automata have been introduced by Alur and Dill [2].
They extend finite automata by clocks that can be compared against integer constants and
provide a popular formalism to reason about the behavior of real-time systems with desirable
algorithmic properties; for instance the reachability/emptiness problem is decidable and in
fact PSPACE-complete [1].

For a more general means to specify the behavior of under-specified systems, such
as embedded systems, Alur, Henzinger and Vardi [3] have introduced parametric timed
automata (PTA) only a few years later. Here, the clocks can additionally be compared
against parameters that can take unspecified non-negative integer values. Towards the
verification of safety properties, or loosely speaking ruling out the existence of an execution to
a bad state, the reachability problem for PTA in turn asks for the existence of an assignment
of the parameters to the non-negative integers such that reachability holds in the resulting
timed automaton.

A clock of a PTA that is being compared to at least one parameter is called parametric.
On the negative side, it has been shown in [3] that already for PTA that contain three
parametric clocks reachability is undecidable – even in the presence of one parameter [8]. On
the positive side however, Alur, Henzinger and Vardi have shown in [3] that reachability
is decidable for PTA that contain only one parametric clock, yet by an algorithm whose
running time is non-elementary.

Reachability in PTA with two or less parametric clocks has not attracted much attention
for many years, up until recently.

For PTA over one parametric clock, Bundala and Ouaknine have shown a first elementary
complexity upper bound for the reachability problem; it is shown to be NEXP-hard and in
2NEXP [10]. The matching NEXP upper bound has been proven by Beneš et al. in [8] (also
in the continuous time setting), we refer to [9] for an alternative proof by Bollig, Quaas and
Sangnier using alternating two-way automata.

Bundala and Ouaknine [10] have recently advanced the decidability and complexity status
of the reachability problem for PTA over two parametric clocks [10]: it is shown that in
presence of one parameter the reachability problem is decidable and hard for the complexity
class PSPACENEXP. To the best of our knowledge, this is in fact the largest subclass of
PTA for which reachability is known to be decidable. For showing the above-mentioned
decidability result [10] provides a reduction from PTA over two parametric clocks to a
suitable formalism of parametric one-counter automata. Such an approach via parametric
one-counter automata has already successfully been applied to model checking freeze-LTL as
shown by Demri and Sangnier [12] and Lechner et al. [21], yet notably over a weaker model of
parametric one-counter automata than the one introduced in [10]. On this note, it is worth
mentioning that inter-reductions between the reachability problem of (non-parametric) timed
automata involving two clocks and one-counter automata have already been established by
Haase et al. [16, 17].

Decidability of reachability in PTA over two parametric clocks (without parameter
restrictions) is still considered to be a challenging open problem to the best of our knowledge.
For instance, as already remarked in [3], there is an easy reduction from the existential
fragment of Presburger Arithmetic with divisibility to reachability in PTA over two parametric
clocks.

S. Göller and M. Hilaire 36:3

Our contribution. Our main result (Theorem 4) states that reachability in parametric
timed automata over two parametric clocks and one parameter is EXPSPACE-complete. Our
contribution is two-fold.

Inspired by [13, 15], for the EXPSPACE lower bound we make use of deep results from
complexity theory, namely a serializability characterization of EXPSPACE (in turn originally
based on Barrington’s Theorem [7]) and a logspace translation of numbers in Chinese
Remainder Representation to binary representation due to Chiu, Davida, and Litow [11].
It is shown that with small PTA over two parametric clocks and one parameter one can
simulate serializability computations.

For the EXPSPACE upper bound, we first give a careful exponential time reduction from
PTA over two parametric clocks and one parameter to a (slight subclass of) parametric
one-counter automata over one parameter based on a minor adjustment of a construction due
to Bundala and Ouaknine [10]. In solving the reachability problem for parametric one-counter
automata with one parameter, we provide a series of techniques to partition a fictitious run
into several carefully chosen subruns that allow us to prove that it is sufficient to consider
a parameter value of exponential magnitude. This allows us to show a doubly-exponential
upper bound on the value of the only parameter of PTA with two parametric clocks and one
parameter. We hope that extensions of our techniques lead to finally establishing decidability
of the long-standing open problem of reachability in parametric timed automata with two
parametric clocks (and arbitrarily many parameters) and, if decidability holds, determining
its precise computational complexity.

As the results in [2], our results hold for PTA over discrete time. Indeed, for PTA with
closed (i.e., non-strict) clock constraints and parameters ranging over integers, techniques [19,
22] exist that allow to reduce the reachability problem over continuous time to discrete time.
There is a plethora of variants of PTA that have recently been studied, we refer to [4] for an
extensive overview by André.

Overview of this paper. In Section 2 we introduce general notation, in particular PTA.
Our EXPSPACE lower bound can be found in Section 3. Section 4 introduces parametric
one-counter automata and states an exponential time reduction from PTA to this model. In
Section 5 we introduce semiruns of parametric one-counter automata, a central notion of
runs we make modifications on. Our upper bounds are the subject of Section 6. The full
version of this paper is available on arXiv [14].

2 Preliminaries

By N = {0, 1, . . .} we denote the non-negative integers. For every finite alphabet A we
denote by A∗ the set of finite words over A and the empty word by ε. For all a ∈ A and
all w ∈ A∗ let |w|a denote the number of occurrences of the letter a in w. For every finite
set M ⊂ N \ {0} let LCM(M) = min{n ≥ 1 | ∀m ∈ M \ {0} : m|n} denote the least common
multiple of the elements in M . For any j ∈ N let LCM(j) = LCM([1, j]) denote the least
common multiple of the numbers {1, . . . , j}.

A guard over a finite set of clocks Ω and a finite set of parameters P is a comparison of
the form g = ω ▷◁ e, where ω ∈ Ω, e ∈ P ∪ N, and ▷◁∈ {<,≤,=,≥, >}; in case e ∈ P we call
g parametric and non-parametric otherwise. We denote by G(Ω, P) the set of guards over
the set of clocks Ω and the set of parameters P . The size |g| of a guard g = ω ▷◁ e is defined
as log(e) if e ∈ N and 1 otherwise. A clock valuation is a function from Ω to N; we write 0⃗ to
denote the clock valuation ω 7→ 0. For each clock valuation v and each t ∈ N we denote by

STACS 2021

36:4 (2,1)-PTA-Reachability Is EXPSPACE-Complete

v + t the clock valuation ω 7→ v(ω) + t. A parameter valuation is a function µ from P to
N. For every guard g = ω ▷◁ p with p ∈ P (resp. g = ω ▷◁ k with k ∈ N) we write v |=µ g if
v(ω) ▷◁ µ(p) (resp. v(ω) ▷◁ k).

Figure 1 An example of a PTA. The automaton consists of three states, the set of clocks is {x, y},
the set of parameters is {p}. The edges are represented by arrows labeled with the corresponding
guard and the set of clocks U to be reset. A parameter valuation µ witnesses that reachability holds
for this PTA if, and only, if µ(p) ∈ 3Z.

A parametric timed automaton as introduced in [3] is a finite automaton extended with
a finite set of parameters P and a finite set of clocks Ω that all progress at the same rate
and that can be individually reset to zero. Moreover, every transition is labeled by a guard
over Ω and P and by a set of clocks to be reset. Formally, a parametric timed automaton
(PTA for short) is a tuple A = (Q,Ω, P,R, qinit, F), where

Q is a non-empty finite set of control states,
Ω is a non-empty finite set of clocks,
P is a finite set of parameters,
R ⊆ Q× G(Ω, P) × P(Ω) ×Q is a finite set of rules,
qinit ∈ Q is an initial control state, and
F ⊆ Q is a set of final control states.

A clock ω ∈ Ω is called parametric if there exists some (q, g, U, q′) ∈ R such that the guard
g is parametric. We also refer to A as an (m,n)-PTA if m = |{ω ∈ Ω | ω is parametric}| is
the number of parametric clocks and n = |P | is the number of parameters of A – sometimes
we also just write (m, ∗)-PTA (resp. (∗, n)-PTA) when n (resp. m) is a priori not fixed.

The size of A is defined as |A| = |Q| + |Ω| + |P | + |R| +
∑

(q,g,U,q′)∈R |g|. Let Consts(A)
denote the set of constants that appear in the guards of the rules of A. By Conf(A) = Q×NΩ

we denote the set of configurations of A. We prefer however to denote a configuration by
q(v) instead of (q, v).

For each parameter valuation µ : P → N and each (δ, t) ∈ R × N with δ = (q, g, U, q′),
let δ,t,µ−−−→ denote the binary relation on Conf(A), where q(v) δ,t,µ−−−→ q′(v′) if v + t |=µ g,
v′(ω) = 0 for all ω ∈ U and v′(ω) = v(ω) + t for all ω ∈ Ω \ U . A µ-run from q0(v0) to
qn(vn) is a sequence q0(v0) δ1,t1,µ−−−−→ q1(v1) · · · δn,tn,µ−−−−−→ qn(vn). In case P = {p} is a singleton
and µ(p) = N we prefer to say N -run instead of µ-run and write q(v) N−→ q′(v′) to denote
q(v) µ−→ q′(v′). We say reachability holds for A if there is a µ-run from qinit(⃗0) to some
configuration q(v) for some q ∈ F , some v ∈ NΩ, and some µ ∈ NP . We refer to Figure 1 for
an instance of a PTA for which reachability holds.

It is worth mentioning that there are further modes of time valuations and guards which
exist in the literature, we refer to [5] for a recent overview.

We are interested in the following decision problem.
(m,n)-PTA-Reachability
INPUT: A (m,n)-PTA A.
QUESTION: Does reachability hold for A?

S. Göller and M. Hilaire 36:5

Alur et al. have already shown in their seminal paper that PTA-Reachability is in
general undecidable, already in the presence of only three parametric clocks [3], Beneš et al.
strengthened this when only one parameter is present [8].

▶ Theorem 1 ([8]). (3, 1)-PTA-Reachability is undecidable.

To the contrary, (1, ∗)-PTA-Reachability has recently been shown to be complete for
NEXP, where a non-elementary upper bound was initially given by Alur et al. [3].

▶ Theorem 2 ([10, 8, 9]). (1, ∗)-PTA-Reachability is NEXP-complete.

On the other end, decidability of (2, ∗)-PTA-Reachability is still open to the best of
our knowledge. In presence of precisely one parameter the following is known.

▶ Theorem 3 ([10]). (2, 1)-PTA-Reachability is decidable and PSPACENEXP-hard.

The following theorem states our main result.

▶ Theorem 4. (2, 1)-PTA-Reachability is EXPSPACE-complete.

3 An EXPSPACE lower bound via serializability

In this section we show an EXPSPACE lower bound for (2, 1)-PTA-Reachability. We
show that on small PTA with two parametric clocks x and y and one parameter p one can
perform both (i) PSPACE computations and (ii) compute x− y mod p modulo numbers that
are dynamically given in binary. Building upon these auxiliary gadgets we show how to
implement bottleneck computations in a leaf language characterization of EXPSPACE [13].
We assume the reader is familiar with Turing machines and standard complexity classes
such as LOGSPACE, PSPACE and EXPSPACE. We refer to [23, 6] for further details on
complexity. We also assume the reader is familiar with (deterministic) finite automata and
regular languages, we refer to [18] for more details on this.

For each a, b ∈ Z we define [a, b] = {k ∈ Z | a ≤ k ≤ b}. For each i, n ∈ N let Biti(n)
denote the i-th least significant bit of the binary presentation of n, i.e. n =

∑
i∈N 2i · Biti(n).

For each m ≥ 1, by Binm(n) = Bit0(n) · · · Bitm−1(n) we denote the sequence of the first m
least significant bits of the binary presentation of n, i.e. the least significant bit is on the
left. Conversely, given a binary string w = w0 · · ·wn−1 ∈ {0, 1}n of length n we denote by
Val(w) =

∑n−1
i=0 2i · wi ∈ [0, 2n − 1] the value of w interpreted as a non-negative integer.

Let A be a parametric timed automaton over a set of clocks Ω with two parametric
clocks x and y. We say a valuation v : Ω → N is bit-compatible if v(ω) ∈ {0, 1} for all
non-parametric clocks ω ∈ Ω. Assume moreover that Ω contains non-parametric clocks
Θ+ ∪ Θ−, where Θ is some set and Θ+ = {ϑ+ | ϑ ∈ Θ} and Θ− = {ϑ− | ϑ ∈ Θ} are two
disjoint corresponding copies of Θ; in this case, for any valuation v : Ω → N we define the
mapping v̂ : Θ → {0, 1} as v̂(ϑ) = 0 if v(ϑ+) = v(ϑ−) and v̂(ϑ) = 1 otherwise. In the
following we call such non-parametric clocks {ϑ+, ϑ− | ϑ ∈ Θ}, appearing as implicit pairs,
bit clocks since they are used to encode bits.

▶ Definition 5. A (2, 1)-PTA A = (Q,Ω, {p}, R, qinit, {qfin}) whose parametric clocks are x
and y and whose one parameter is p computes a function f : N × {0, 1}n → {0, 1}m if its set
of clocks Ω contains two disjoint sets of

non-parametric “input” bit clocks {in0
+, in0

−, . . . , in+
n−1, in

−
n−1} and

non-parametric “output” bit clocks {out0+, out0
−, . . . , outm−1

+, outm−1
−}

such that for all N ∈ N and all bit-compatible v0 : Ω → [0, N − 1] we have

STACS 2021

36:6 (2,1)-PTA-Reachability Is EXPSPACE-Complete

1. qinit(v0) N−→
∗
qfin(v′) for some bit-compatible v′ : Ω → [0, N − 1] and

2. for all v′ : Ω → N for which qinit(v0) N−→
∗
qfin(v′) we have

v′ ∈ [0, N − 1]Ω is bit-compatible,
v̂′(ini) = v̂0(ini) for all i ∈ [0, n− 1],
v′(x) − v′(y) ≡ v0(x) − v0(y) mod N , and∏m−1
j=0 v̂′(outj) = f(v0(x) − v0(y) mod N,

∏n−1
i=0 v̂0(ini)), where

∏
denotes concatena-

tion.

The following lemma essentially has its roots in the PSPACE-hardness proof for the
emptiness problem for timed automata (without parameters) introduced by Alur and Dill [2],
however constructed to satisfy the carefully chosen interface given by Definition 5.

▶ Lemma 6. For every PSPACE-computable function g : {0, 1}n → {0, 1}m one can compute
in polynomial time in n+m a (2, 1)-PTA computing the function f : N × {0, 1}n → {0, 1}m,
where f(k,w) = g(w) for all (k,w) ∈ N × {0, 1}n.

The following lemma shows that PTA with two parametric clocks and one parameter can
compute modulo dynamically given numbers in binary.

▶ Lemma 7. One can compute in polynomial time in n+m a (2, 1)-PTA with two parametric
clocks and one parameter that computes the function f : N × {0, 1}n → {0, 1}m, where
f(k,w) = Binm(k mod Val(w)).

We are now ready to state the main result of this section.

▶ Theorem 8. (2, 1)-PTA-Reachability is EXPSPACE-hard.

For each language L ⊆ A∗ let χL : A∗ → {0, 1} denote the characteristic function of L.
By ⪯n we denote the lexicographic order on n-bit strings, thus w ⪯n v if Val(w) ≤ Val(v),
e.g. 0101 ⪯4 0011.

Our EXPSPACE lower bound proof makes use of the following characterization of
EXPSPACE, which is a slight padded adjustment of the leaf-language characterization of
PSPACE from [20], which in turn has its roots in Barrington’s Theorem [7].

▶ Theorem 9 (Theorem 2 in [13]). For every language L ⊆ {0, 1}∗ in EXPSPACE there exists
a polynomial s : N → N, a regular language R ⊆ {0, 1}∗, and a language U ∈ LOGSPACE
such that for all w ∈ {0, 1}n we have

w ∈ L ⇐⇒
22s(n)−1∏
m=0

χU (w · Bin2s(n)(m)) ∈ R, (1)

where · and
∏

denote string concatenation.

Let us fix any language L in EXPSPACE and assume L ⊆ {0, 1}∗ without loss of generality.
Applying Theorem 9, let us fix the regular language R ⊆ {0, 1}∗ along with some fixed

deterministic finite automaton (DFA for short) D = (QD, {0, 1}, q0, δD, FD) with L(D) = R,
the fixed polynomial s and the fixed language U ∈ LOGSPACE.

Let us moreover fix an input w ∈ {0, 1}n of length n for L. Figure 2 rephrases the
characterization (1) in Theorem 9 in terms of an execution of a program that returns 1 if,
and only if, w ∈ L.

The following lemma gives us a helpful initial gadget PTA that allows us to enforce that
the parameter p can only be evaluated to numbers that are larger than 22s(n) , thus being
helpful for storing variables up to the value 22n .

S. Göller and M. Hilaire 36:7

(1) var q ∈ QD
(2) var b ∈ {0, 1}
(3) var B ∈ N
(4) q := q0;
(5) B := 0;
(6) while B < 22n loop
(7) b := χU (w · Bin2s(n)(B))
(8) q := δD(q, b)
(9) B := B + 1
(10) end loop
(11) return q ∈ F

Figure 2 A program returning 1 if, and only if, w ∈ L (using the charactization in Theorem 9),
where D = (QD, {0, 1}, q0, δD, FD) is some deterministic finite automaton such that L(D) = R.

▶ Lemma 10. One can compute in polynomial time in n some parametric timed automaton
Abig = (Qbig,Ωbig, {p}, Rbig, qbig,init, {qbig,fin}) with two parametric clocks x, y ∈ Ωbig and
one parameter p such that

1. qbig,init(⃗0) N−→ qbig,fin(v′) for some v′ : Ωbig → N for some N ∈ N, and

2. for all N ∈ N and all v′ : Ωbig → N we have qbig,init(⃗0) N−→
∗
qbig,fin(v′) implies N > 22s(n) .

Using the above gadgets one can show that the program in Figure 2 can indeed be
simulated by small (2, 1)-PTA, whose proof we sketch below.

▶ Lemma 11. One can compute in polynomial time in n a (2, 1)-PTA A for which reachability
holds, if and only if, the execution of the program depicted in Figure 2 returns 1.

Proof (sketch). The initial part of A will consist of the gadget PTA Abig from Lemma 10
and allow us to enforce an assignment of A’s only parameter p to some value N > 22s(n) .
We store the variable B of the program in Figure 2 as the difference between A’s two
parametric clocks x and y modulo N . We only sketch the most crucial program line (7),
namely computing the bit χU (w · Bin2s(n)(B)), where we recall that U is in LOGSPACE.

For simulating a suitable logspace Turing machine on this exponentially large input our
PTA A will use O(log(n+ 2s(n))) = poly(n) auxiliary bit clocks, say J , to store in binary
the position of the input head and further O(log(n+ 2s(n))) = poly(n) auxiliary bit clocks
for storing the working tape. Reading and writing on the working tape as well as updating
the position of the input head can be done quite straightforwardly using polynomially many
bit clocks. The main challenge is to access the cell content Bitj(w · Bin2s(n)(B)), where the
address j can directly (in binary) be stored using the above-mentioned bit clocks J .

To compute Bitj(w · Bin2s(n)(B)) we access B on the fly via its Chinese Remainder
Representation CRR(B) that we define next: Let pi denote the i-th prime number and assume∏m
i=1 pi > B for some m ∈ N, then CRRm(B) denotes the bit tuple (bi,r)i∈[1,m],r∈[0,pi−1],

where bi,r = 1 if B mod pi = r and bi,r = 0 otherwise. The individual input bits to CRR(B)
can be sub-computed via our modulo gadget from Lemma 7. The individual input bits to
Bin2s(n)(B) can be obtained by a composition of the latter access to CRR(B) and simulating
a logspace Turing machine that computes Bin2s(n)(B) from CRR(B) by a result by Chiu,
Davida, and Litow [11]. ◀

STACS 2021

36:8 (2,1)-PTA-Reachability Is EXPSPACE-Complete

4 From two-parametric timed automata with one parameter to
parametric one-counter automata

Being introduced by Bundala and Ouaknine in [10], we define parametric one-counter
automata. These are automata that can manipulate a counter that can be incremented or
decremented, parametrically or not, compared against constants or parameters, and with
divisibility tests modulo constants. It is worth mentioning that the notion of parametric one-
counter automata from [10] is slightly more expressive than ours, allowing more operations.

After introducing parametric one-counter automata we mention Theorem 13, proven
essentially already in [10] – again, however for a slightly more expressive model of parametric
one-counter automata – that states that (2, 1)-PTA-Reachability can be reduced in
exponential time to the reachability problem of parametric one-counter automata over one
parameter.

Given a set of parameters P we denote by Op(P) the set of operations, namely Op(P) =
Op± ∪ Op±P ∪ OpmodN ∪ Op▷◁N ∪ Op▷◁P , where

Op± = {−1, 0,+1}, Op±P = {+p,−p | p ∈ P},
OpmodN = {mod c | c ∈ N},
Op▷◁N = {▷◁ c |▷◁∈ {<,≤,=,≥, >}, c ∈ N}, and Op▷◁P = {▷◁ p |▷◁∈ {<,≤,=,≥, >}, p ∈
P}.

The size |op| of an operation op is defined as |op| = log(c) if op = mod c or op =▷◁
c with c ∈ N and |op| = 1 otherwise. We denote by updates those operations that lie in
Op± ∪ Op±P and by tests those operations that lie in OpmodN ∪ Op▷◁N ∪ Op▷◁P .

A parametric one-counter automaton (POCA for short) is a tuple C = (Q,P,R, qinit, F),
where Q is a non-empty finite set of control states, P is a non-empty finite set of parameters
that can take non-negative integer values, R ⊆ Q× Op(P) ×Q is a finite set of rules, qinit is
an initial control state, and F ⊆ Q is a set of final control states. The size of C is defined as
|C| = |Q| + |P | + |R| +

∑
(q,op,q′)∈R |op|. Let Consts(C) denote the constants that appear in

the operations op ∈ OpmodN ∪ Op▷◁N for some rule (q, op, q′) in R. By Conf(C) = Q× Z we
denote the set of configurations of C. We prefer however to denote a configuration of Conf(C)
by q(z) instead of (q, z).

Being slightly non-standard we define configurations to take counter values over Z rather
than over N for notational convenience. This does not cause any loss of generality as we
allow guards that enable us to test if the value of the counter is greater or equal to zero.

▶ Definition 12 (transition). For every op ∈ Op(P), for every parameter valuation µ : P → N,
for every POCA C, and for every two configurations q(z) and q′(z′) in Conf(C) we define the
transition q(z) op,µ−−−→ q′(z′) if there exists some (q, op, q′) ∈ R such that either of the following
holds
(1) op = c ∈ Op± and z′ = z + c,
(2) op ∈ Op±P , and either op = +p and z′ = z + µ(p), or op = −p and z′ = z − µ(p).
(3) op = mod c ∈ OpmodN, z = z′ and z′ ≡ 0 mod c,
(4) op =▷◁ c ∈ Op▷◁N, z = z′ and z′ ▷◁ c, or
(5) op =▷◁ p ∈ Op▷◁P , z = z′ and z′ ▷◁ µ(p).

Let µ : P → N be a parameter valuation. We just write q(z) µ−→ q′(z′) if q(z) op,µ−−−→ q′(z′)
for some operation op. A µ-run (or just run) in C (from q0(z0) to qn(zn)) is a sequence,
possibly empty (i.e. n = 0), of the form π = q0(z0) op0,µ−−−→ q1(z1) · · · opn−1,µ−−−−−→ qn(zn).

We say π is accepting if q0 = qinit, z0 = 0, and qn ∈ F . We say reachability holds (for the
POCA C) if there exists an accepting µ-run for some µ ∈ NP . We refer to Figure 3 for an

S. Göller and M. Hilaire 36:9

Figure 3 An example of a POCA. The automaton consists of five states and the set of parameters
is {p}. The edges are represented by arrows labeled with the corresponding operations. A parameter
valuation µ : {p} → N witnesses that reachability holds for the above POCA if, and only, if
µ(p) ≡ 1 mod 6.

instance of a POCA for which reachability holds. For any two c, d ∈ [0, n] we define the subrun
π[c, d] from qc(zc) to qd(zd) of π as the µ-run qc(zc)

πc,µ−−−→ qc+1(zc+1) · · · πd−1,µ−−−−→ qd(zd).
As expected, a prefix (resp. suffix) of π is an µ-run of the form π[0, d] (resp. π[d, n]). In

the particular case where P = {p} is a singleton for some parameter p and µ(p) = N , we
write q(z) op,N−−−→ q′(z′) to denote q(z) op,µ−−−→ q′(z′) and prefer to call a µ-run an N -run.

We define ∆(π) = zn − z0 as the counter effect of the run π and for each i ∈ [0, n− 1]
we define ∆(π, i) = ∆(π[i, i+ 1]) to denote the counter effect of the i-th transition of π. Its
length is defined as |π| = n. As expected, let Values(π) = {zi | i ∈ [0, n]} denote the set
of counter values of the configurations of the run π. The run π’s maximum is defined as
max(π) = max(Values(π)) and its minimum as min(π) = min(Values(π)).

The next theorem states an exponential time reduction from (2, 1)-PTA-Reachability
to the reachability problem of POCA over one parameter whose counter values are bound
by a linear function in the parameter value and its size. It has already been proven in the
more general setting over an arbitrary number of parameters in [10], however using a POCA
model allowing more operations.

▶ Theorem 13. The following is computable in exponential time:
INPUT: A (2, 1)-PTA A.
OUTPUT: A POCA C over one parameter p such that

1. for all N ∈ N all accepting N -runs π in C satisfy Values(π) ⊆ [0, 4 · max(N, |C|)], and
2. reachability holds for A if, and only if, reachability holds for C.

5 Semiruns, their bracket projection, and embeddings

In this section we motivate and introduce the notion of semiruns by loosening the conditions
on runs, and define basic operations on them. These basic operations possibly change their
counter values, length, or counter effect. We finally introduce the notion of embeddings,
which provide a formal means to express when a semirun can structurally be found as a
subsequence of another.

▶ Definition 14 (semitransition). Let C = (Q,P,R, qinit, F) be a POCA. For every operation
op ∈ Op(P) and every N ∈ N and for every two configurations q(z) and q′(z′) in Conf(C)
we define the semitransition q(z) op,µ===⇒ q′(z′) if there exists some (q, op, q′) ∈ R such that
conditions (1),(2), and (3) hold and where conditions (4) and (5) are loosened by
(4’) op =▷◁ c ∈ Op▷◁N and z = z′, and
(5’) op =▷◁ p ∈ Op▷◁P , and z = z′.

Thus, in a nutshell, when writing q(z) op,µ===⇒ q′(z′) we do not require that the comparison
tests against parameters or against constants hold; however the updates and the modulo
tests against constants must be respected.

STACS 2021

36:10 (2,1)-PTA-Reachability Is EXPSPACE-Complete

This naturally gives rise to the definition of a µ-semirun, which is defined as expected.
Note that in particular every µ-run is a µ-semirun. The notion of an N -semirun, the relation
q(z) op,N===⇒ q′(z′), the counter effect ∆, Values, min, max, subsemirun, prefix, suffix are
defined as for runs.

Importantly, note also that semitransitions involving comparison tests are still syntactically
present in semiruns. By a careful analysis, one can therefore possibly perform operations on
N -semiruns in order to show that they are in fact N -runs.

Let Γ be any integer that is divisible by all constants in Consts(C) in some POCA C. We define
the shifting of an N -semirun π by Γ as π + Γ = q0(z0 + Γ) π0,N===⇒ q1(z1 + Γ) · · · πn−1,N=====⇒
qn(zn + Γ). Since there are no effective comparison tests and Γ is an integer that is divisible
by all constants appearing in modulo tests in C, it is clear that π + Γ is again an N -semirun.

For two configurations qi(zi) and qj(zj) with 0 ≤ i < j ≤ n, qi = qj , and zj − zi = Γ we
define the gluing of the configurations as

π − [i, j] = q0(z0) · · · πi−1,N=====⇒ qi(zi)
πj ,N===⇒ qj+1(zj+1 − Γ) · · · πn−1,N=====⇒ qn(zn − Γ).

When gluing the leftmost and rightmost configurations of pairwise non-intersecting
intervals I1 = [a1, b1], . . . , Ik = [ak, bk] ⊆ [0, n], assuming bi < ai+1 for all 1 ≤ i < k, and
qai = qbi and zbi − zai is divisible by all constants in LCM(Consts(C)) for all 1 ≤ i ≤ k,
we will use π − I1 − I2 · · · − Ik to denote the result corresponding to gluing each interval
successively while shifting the others accordingly, formally π(k), where π(1) = π− [a1, b1] and
inductively, π(s) = π(s−1) − [as − Σ1≤j<s(|Ij | − 1), bs − Σ1≤j<s(|Ij | − 1)] for all s ∈ [2, k].

We define the projection ϕ of a semitransition τ = q(z) op,N===⇒ q′(z′) to a word over the
binary alphabet {[,]}, where transitions with op = +p are mapped to [, transitions with
op = −p are mapped to], and all other transitions are mapped to the empty word ε. The
mapping ϕ is naturally extended to a morphism on semiruns.

We are particularly interested in N -semiruns whose projection by ϕ contains as many
opening as closing brackets and only a few pending (when read from left to right) opening or
closing brackets. To make this formal, for all k ∈ N we define regular language

Λk =
{
w ∈ {[,]}∗ : |w|[= |w|], ∀u, v ∈ {[,]}∗. uv = w =⇒ |u|[− |u|] ∈ [−k, k]

}
.

We will often prefer to view N -runs as N -semiruns. Indeed, in case N is sufficiently large
we first view any N -run as an N -semirun, apply certain of the above-mentioned operations on
them to obtain some (N − Γ)-semirun, where Γ is divisible by all constants appearing in the
underlying POCA. However, we would then like to claim that the resulting (N − Γ)-semirun
is in fact an (N − Γ)-run as desired, in particular the comparison tests need to hold. To do
so, we introduce a notion when an N -semirun can be embedded into an M -semirun (possibly
N ̸= M) in the sense that operations are being preserved, source and target control states
are being preserved and that with respect to some line ℓ ∈ Z the counter value of each
configuration of the embedding has the same orientation with respect to ℓ as the counter
value of the configuration it corresponds to.

▶ Definition 15 (ℓ-embedding). Let ℓ ∈ Z. An N -semirun σ = s0(y0) · · · σn−1,N=====⇒ sn(yn)

is an ℓ-embedding of an M-semirun π = q0(z0) · · · πm−1,M======⇒ qm(zm) if s0 = q0, sn = qm

and there exists an order-preserving injective mapping ψ : [0, n] → [0,m] such that
σi = πψ(i) for all i ∈ [0, n− 1], and
ℓ ▷◁ yi if, and only if, ℓ ▷◁ zψ(i) for all ▷◁∈ {<,=, >} and all i ∈ [0, n].

Moreover we say σ is max-falling, resp. min-rising, w.r.t. π if max(σ) ≤ max(π), resp. if
min(σ) ≥ min(π).

S. Göller and M. Hilaire 36:11

Figure 4 Example of a semirun σ that could possibly be a 7-embedding of the semirun π and a
semirun τ that cannot.

Consider the semiruns π, σ and τ in Figure 4, where neither concrete counter values nor
the control states of σ nor τ are mentioned. The semirun σ can possibly be an 7-embedding
of π (if its source control control is q0 and its target control state is q6). However, τ cannot
be a 7-embedding of π. Indeed, for every possible injection ψ such that τ2 = +p = πψ(2), the
counter value of τ at position 2 is strictly larger than 7, whereas the counter value of π at
position ψ(2) is strictly below 7.

It is immediate that an ℓ-embedding of an ℓ-embedding is again an ℓ-embedding. Moreover,
if the target configuration of σ equals the source configuration of τ and σ and τ are ℓ-
embeddings of σ′ and τ ′ respectively, and σ′τ ′ is a semirun, then so is their concatenation
στ an ℓ-embedding of σ′τ ′. Such basic properties will be used extensively in our proofs.

6 Upper bounds

In this section we state the Small Parameter Theorem which states that every POCA over
one parameter and every sufficiently large parameter value N , accepting N -runs with counter
values all in [0, 4N] can be turned into accepting N ′-runs for some smaller N ′. After having
stated the theorem one can show that together with Theorem 13 it implies an EXPSPACE
upper bound for (2, 1)-PTA-Reachability.

For each POCA C = (Q,P,R, qinit, F) we define the following constants:

ZC = LCM(Consts(C)) ΓC = LCM(17 · |Q|) · ZC

ΥC = 17 · |Q| · LCM(17 · |Q|) · (17 · |Q| · ZC + 2) MC = 30 · (ΥC + ΓC + 1)

Since for every non-empty finite set U ⊆ N \ {0} we have LCM(U) ≤ max(U)|U |, all of the
above constants are asymptotically bounded by 2poly(|C|).

The main result of this section is the following theorem.

▶ Theorem 16 (Small Parameter Theorem). Let C = (Q, {p}, R, qinit, F) be a POCA with one
parameter. If there exists an accepting N -run in C with values in [0, 4N] for some N > MC,
then there exists an accepting (N − ΓC)-run in C.

The Small Parameter Theorem has the following consequence for (2, 1)-PTA-
Reachability.

▶ Corollary 17. (2, 1)-PTA-Reachability is in EXPSPACE.

STACS 2021

36:12 (2,1)-PTA-Reachability Is EXPSPACE-Complete

Overview of the proof of the Small Parameter Theorem
The Small Parameter Theorem (Theorem 16) states that, in case N is sufficiently large,
accepting N -runs whose configurations have counter values all inside [0, 4N] can be turned
into accepting (N − ΓC)-runs. For its proof we proceed as follows. As mentioned already in
Section 5 we prefer to view N -runs as N -semiruns.

Manipulating only N -semiruns, the following Depumping Lemma can turn N -semiruns
whose ∆ is either sufficiently large (resp. sufficiently small) again into N -semiruns whose
∆ is less large (resp. small). It requires however an N -run whose ϕ-projection has a nice
bracketing property, namely a ϕ-projection that lies in the regular language Λ8.

▶ Lemma 18 (Depumping Lemma). For all N -semiruns π satisfying ϕ(π) ∈ Λ8 and |∆(π)| >
ΥC there exists an N -semirun π′ such that either

∆(π) > ΥC and ∆(π′) = ∆(π) − ΓC, or
∆(π) < −ΥC and ∆(π′) = ∆(π) + ΓC.

Moreover, π′ = π − I1 − I2 · · · − Ik for pairwise disjoint intervals I1, . . . , Ik ⊆ [0, |π|] such
that we have ϕ(π[Ii]) ∈ Λ16 for all i ∈ [1, k], and either ∆(π[Ii]) > 0 for all i ∈ [1, k] or
∆(π[Ii]) < 0 for all i ∈ [1, k].

Proof. Let π = q0(z0) π0,N===⇒ q1(z1) π1,N===⇒ · · · πn−1,N=====⇒ qn(zn) be an N -semirun such
that ϕ(π) ∈ Λ8. We will assume without loss of generality that ∆(π) > ΥC . The dual case
when ∆(π) < −ΥC can be proven analogously.
For every position i ∈ [0, n] let us define

λ(i) = |ϕ(π[0, i])|[− |ϕ(π[0, i])|] and pot(i) = zi − z0 − λ(i) ·N .

Note that since ϕ(π) ∈ Λ8 by assumption we have for all i ∈ [0, n],

λ(i) ∈ [−8, 8], (2)

and moreover

ϕ(π[0, i]) ∈ Λ8 ⇐⇒ λ(i) = 0. (3)

We note the following important properties of pot,
1. |pot(i− 1) − pot(i)| ≤ 1 for all i ∈ [1, n],
2. pot(0) = 0,
3. for all 0 ≤ i < j ≤ n, if λ(i) = λ(j), then pot(j) − pot(i) = zj − zi, and
4. pot(n) = zn − z0 = ∆(π) since λ(0) = λ(n) = 0.

The following claim states that if in a subsemirun pot increases sufficiently, one can find
a subsemirun therein that can potentially be glued.

▷ Claim 19. For each subsemirun π[a, b] that satisfies pot(b) − pot(a) > 17 · |Q| · ZC there
exist positions a ≤ s < t ≤ b, such that

qs = qt,
λ(s) = λ(t), and
zt − zs = dZC for some d ∈ [1, 17 · |Q|].

Proof of the Claim. Since by assumption pot(b) − pot(a) > 17 · |Q| · ZC , by the pigeonhole
principle and Point 1 above, there exist two indices a ≤ s < t ≤ b such that qs = qt,
λ(s) ∈ [−8, 8] and λ(t) ∈ [−8, 8] are equal, and pot(t) − pot(s) = dZC for some d ∈ [1, 17 · |Q|].
By Point 3 above, from λ(t) = λ(s), it follows zt − zs = pot(t) − pot(s) = dZC . ◁

S. Göller and M. Hilaire 36:13

Since pot(i) − pot(i− 1) ≤ 1 for all i ∈ [1, n] by Point 1 above and

pot(n) − pot(0) = zn − z0

= ∆(π)
> ΥC

page 11= 17 · |Q| · LCM(17 · |Q|) · (17 · |Q| · ZC + 2) ,

by the pigeonhole principle, there exist at least

17 · |Q| · LCM(17 · |Q|)

pairwise disjoint subsemiruns π[a, b] satisfying pot(b) − pot(a) > 17 · |Q| · ZC . Let

L = LCM(17 · |Q|),

and let π[a1, b1], . . . , π[a17·|Q|·L, b17·|Q|·L] be an enumeration of these latter subsemiruns. We
apply the above Claim to all of these π[ai, bi]: there exist positions ai ≤ si ≤ ti ≤ bi such that
λ(si) = λ(ti), qsi

= qti , and zti = zsi
+ diZC for some di ∈ [1, 17 · |Q|]. From λ(si) = λ(ti)

and (2) it follows ϕ(π[si, ti]) ∈ Λ16. Recall that ΓC = LCM(17 · |Q|) ·ZC = L ·ZC by definition
on page 11. By the pigeonhole principle, among these 17 · |Q| ·L pairwise disjoint subsemiruns
π[ai, bi], there exists some d ∈ [1, 17 · |Q|] such that there are L/d many different π[ai, bi]
all satisfying di = d. Let π[ai1 , bi1], . . . , π[aiL/d

, biL/d
] be an enumeration of these latter

π[ai, bi]. Note that for all of these π[ai, bi] we have ∆(π[sij , tij]) = d · ZC . Since moreover
qsij

= qtij
we know that, for all j ∈ [1, L/d], the gluing π − [sij , tij] is an N -semirun with

∆(π − [sij , tij]) = ∆(π) − dZC . Thus,

π′ = π − [si1 , ti1] − . . .− [siL/d
, tiL/d

]

is an N -semirun satisfying ∆(π′) = ∆(π) − d · (L/d) · ZC = ∆(π) − ΓC as required. ◀

Assuming N to be sufficiently large the Bracket Lemma shows that for every (N − ΓC)-
semirun whose ∆ is again sufficiently large (resp. sufficiently small) and whose ϕ-projection
satisfies a majority condition, the existence of a subsemirun whose ∆ is again sufficiently
large (resp. sufficiently small) but which has a ϕ-projection that lies in the regular language
Λ8. Since the resulting subsemiruns have a desirable ϕ-projection, the Depumping Lemma
can be applied to these. Combining these remarks allows us to construct a new semirun
whose ∆ is slightly smaller (resp. bigger) than the ∆ of the original semirun the Bracket
Lemma was applied to.

▶ Lemma 20 (Bracket Lemma). For all N > MC and for all (N − ΓC)-semiruns π satisfying
Values(π) ⊆ [0, 4N], ∆(π) < −ΥC (resp. ∆(π) > ΥC) and where ϕ(π) contains at least as
many occurrences of [as occurrences of] (resp. at least as many occurrences of] as occurrences
of [) there exists a subsemirun π[c, d] satisfying ϕ(π[c, d]) ∈ Λ8 and ∆(π[c, d]) < −ΥC (resp.
∆(π[c, d]) > ΥC).

Note that trivially, every N -semirun ρ with ϕ(ρ) = ε is already an (N − ΓC)-semirun.
Let us exemplify an interplay between the Bracket Lemma and the Depumping Lemma. For
instance, assume we are to turn the following N -semirun into an (N − ΓC)-semirun with
the same source and target configuration, namely an N -semirun of the form τρ, where τ is
a +p-transition (thus a length one N -semirun), ϕ(ρ) = ε, and ∆(ρ) < −ΥC : indeed, firstly
one can explicitly turn the +p-transition τ into the +p-transition τ̂ with ∆(τ̂) = N − ΓC
(thus a length one (N − ΓC)-semirun) and secondly apply (by observing that ρ is already

STACS 2021

36:14 (2,1)-PTA-Reachability Is EXPSPACE-Complete

Figure 5 Illustration of the dependencies between the lemmas. The presence of an arrow going
from a lemma to another means that the lemma in question is used inside the proof of the lemma
the arrow points to.

an (N − ΓC)-semirun) the Bracket Lemma to ρ. Using the interplay between the Bracket
Lemma and the Depumping Lemma one can obtain an (N − ΓC)-semirun ρ̂ (obtained by
gluing and shifting) such that τ̂ ρ̂ is an (N − ΓC)-semirun with the same source and target
configuration as τρ.

The following notion of hills and valleys provides a more general class of semiruns to
which the above-mentioned reasoning in the previous paragraph can be applied. B-hills
are semiruns that start and end in configurations with low counter values but where all
intermediate configurations have counter values above these source and target configurations,
and where moreover +p-transitions (resp. −p-transitions) are followed (resp. preceded)
by semiruns with counter effect strictly smaller than −ΥC (resp. strictly larger than ΥC).
B-valleys are defined dually.

Formally let q0(z0) π0,N===⇒ q1(z1) · · · πn−1,N=====⇒ qn(zn) be an N -semirun. It is a B-hill if
z0, zn < B, zi ≥ B for all i ∈ [1, n− 1], πi = −p implies zi > z0 + ΥC for all i ∈ [0, n− 1], and
πi = +p implies zi+1 > zn + ΥC for all i ∈ [0, n− 1]. Dually, it is a B-valley if z0, zn > B,
zi ≤ B for all i ∈ [1, n− 1], πi = −p implies zi+1 < zn − ΥC for all i ∈ [0, n− 1], and πi = +p
implies zi < z0 − ΥC for all i ∈ [0, n− 1].

The Hill and Valley Lemma (Lemma 21) allows us to transform N -semiruns that are B-
hills (resp. B-valleys) into (N − ΓC)-semiruns with the same source and target configurations.

▶ Lemma 21 (Hill and Valley Lemma). For all N,B ∈ N and all N -semiruns π from q0(z0)
to qn(zn) with N > MC and Values(π) ⊆ [0, 4N] such that moreover π is either a B-hill or
a B-valley, there exists an (N − ΓC)-semirun from q0(z0) to qn(zn) that is both a min-rising
and max-falling (B−ΥC −ΓC −1)-embedding of π (in case π is a B-hill), or both a min-rising
and max-falling (B + ΥC + ΓC + 1)-embedding of π (in case π is a B-valley).

By carefully factorizing N -semiruns with a ∆ smaller than 5/6 ·N into suitably chosen
hills and valleys, one can turn them into (N − ΓC)-semiruns that are moreover ℓ-embeddings
for every ℓ that is not far away from the counter values of both the source and target
configuration. The following lemma makes this more formal.

▶ Lemma 22 (5/6-Lemma). For all N > MC and all ℓ ∈ Z and all N -semiruns π from q0(z0)
to qn(zn) with Values(π) ⊆ [0, 4N] satisfying max(z0, zn, ℓ) − min(z0, zn, ℓ) ≤ 5/6 ·N there
exists an (N − ΓC)-semirun π′ from q0(z0) to qn(zn) that is an ℓ-embedding of π such that
Values(π′) ⊆ [min(π) − ΓC ,max(π) + ΓC].

Figure 5 provides an overview of the dependencies of the above-mentioned lemmas.

S. Göller and M. Hilaire 36:15

Figure 6 Application of the 5/6-Lemma to the subrun σ[a, b + 1].

Let us exemplify how the 5/6-Lemma is used in proving the Small Parameter Theorem.
For this let us fix some POCA C over a parameter p, some N > MC and an accepting N -run π
with Values(π) ⊆ [0, 4N], where π is of the form π = r0(x0) π0,N−−−→ r1(x1) · · · πn−1,N−−−−−→ rn(xn)
and where rn ∈ F . We need to show the existence of an accepting (N − ΓC)-run. We may
assume xn = 0 w.l.o.g. (by simply requiring a final zero test in a new PTA).

Since N
3 < N − ΓC , by definition of the constants on page 11, every subrun ρ of π with

Values(ρ) ⊆ [0, N3 [is already an (N − ΓC)-run. One can therefore uniquely factorize π as
π = ρ(0)σ(1)ρ(1) · · ·σ(m)ρ(m), where each ρ(j) satisfies Values(ρ(j)) ⊆ [0, N3 [and each σ(j)

is some subrun π[c, d] with xc <
N
3 , xd < N

3 and xe ≥ N
3 for all e ∈ [c + 1, d − 1], where

moreover [c+ 1, d− 1] ̸= ∅.
Thus, it suffices to show that for every N -run σ = q0(z0) · · · σm−1,N−−−−−→ qm(zm) satisfying

Values(σ) ⊆ [0, 4N], z0, zm < N
3 and zi ≥ N

3 for all i ∈ [1,m− 1], there exists an (N − ΓC)-
run from q0(z0) to qm(zm). Let us assume max(σ) ≥ N (the case max(σ) < N is even easier)
and let a ∈ [0,m] be minimal such that za < N and za+1 ≥ N and let b ∈ [0,m] be maximal
such that zb ≥ N and zb+1 < N . That is, one can factorize σ as σ = ασ[a, a+1]βσ[b, b+1]γ,
where α = σ[0, a], β = σ[a+ 1, b] and γ = σ[b+ 1,m]. The situation is depicted in Figure 6.

For i ∈ [1, 5] let Ii =
{
z ∈ [0, 4N] | iN3 ≤ z < (i+1)N

3

}
. Our proof involves a careful case

distinction on which of the Ii the counter values za, za+1, zb and zb+1 lie in, respectively. Let
us here only treat the case za+1, zb ∈ I5; thus σa (resp. σb) is a +p-transition (resp. −p-
transition) and therefore za, zb+1 ∈ I2. We apply the 5/6-Lemma to the subrun σ[a, b+ 1] for
ℓ = N , hereby obtaining an (N−ΓC)-semirun ̂σ[a, b+ 1] that is an N -embedding of σ[a, b+1]
also from qa(za) to qb+1(zb+1). It follows from Values(̂σ[a, b+ 1]) ⊆ [min(σ[a, b + 1]) −
ΓC ,max(σ[a, b+ 1]) + ΓC] that ̂σ[a, b+ 1] − ΓC is in fact an (N − ΓC)-run from qa(za − ΓC) to
qb+1(zb+1 −ΓC). By definition of a and b it follows that ϕ(α) = ϕ(γ) = ε. Thus, by exploiting
that za, zb+1 ∈ I2 one can, by suitably applying the Depumping Lemma (possibly several
times), obtain an (N − ΓC)-run α̂ from q0(z0) to qa(za − ΓC), and dually an (N − ΓC)-run
γ̂ from qb+1(zb+1 − ΓC) to qm(zm). The concatenation of α̂, ̂σ[a, b+ 1] − ΓC and γ̂ is the
desired (N − ΓC)-run from q0(z0) to qm(zm).

7 Conclusion

In this paper we have shown that the reachability problem for parameteric timed automata
with two parametric clocks and one parameter is complete for exponential space.

For the lower bound proof, inspired by [13, 15], we made use of two results from complexity
theory. First, we made use of a serializability characterization of EXPSPACE from [13] which
is a padded version of the serializability characterization of PSPACE from [20], which in turn

STACS 2021

36:16 (2,1)-PTA-Reachability Is EXPSPACE-Complete

has its roots in Barrington’s Theorem [7]. Second, we made use of a result of Chiu, Davida,
Litow that states that numbers in Chinese Remainder Representation can be translated into
binary representation in NC1 (and thus in logarithmic space). We are convinced that it is
worthwhile to develop a suitable programming language that serves as a unifying framework
in that it provides an interface for proving lower bounds for various problems involving
automata. In a sense, we have developed the corresponding interface “by hand” when defining
how parametric timed automata can compute functions (Definition 5).

For the EXPSPACE upper bound we first followed the approach of Bundala and Ou-
aknine [10] by providing an exponential time translation from reachability in parametric
timed automata with two parametric clocks and one parameter (i.e. (2, 1)-PTA) to reach-
ability in parametric one-counter automata (POCA) over one parameter, yet on a slightly
less expressive POCA model as introduced in [10]. We then studied the reachability in
POCA with one parameter p. A repeated application of our Small Parameter Theorem
(Theorem 16) allows to conclude that such a POCA has an accepting N -run all of whose
counter values lie in [0, 4N] if, and only if, there exists such an accepting N -run for some N
that is at most exponential in the size of the POCA. Since the translation from (2, 1)-PTA
to POCA is computable in exponential time, this gives a doubly exponential upper bound
on the parameter value of the original (2, 1)-PTA and hence an EXPSPACE upper bound for
(2, 1)-PTA-Reachability (Corollary 17).

In proving the Small Parameter Theorem we introduced the notion of semiruns and gave
several techniques for manipulating them. The Depumping Lemma (Lemma 18) allowed us
to construct from semiruns with large absolute counter effect new semiruns with a smaller
absolute counter effect. The Bracket Lemma (Lemma 20) allowed us to find in semiruns
having a sufficiently large absolute counter effect and satisfying some majority condition on
the number of occurrences of +p-transitions and −p-transitions some subsemirun that has
again a large absolute counter effect and moreover some bracketing properties. Our Hill and
Valley Lemma (Lemma 21) allowed to turn, for sufficiently large N , any N -semirun that is
either a hill or a valley into an N ′-semirun for some N ′ < N . Our 5/6-Lemma (Lemma 22)
allowed to turn for sufficiently large N any N -semirun with an absolute counter effect of at
most 5/6 ·N into an N ′-semirun for some N ′ < N .

We hope that extensions of our techniques provide a line of attack for finally showing
decidability (and the precise complexity) of (2, ∗)-PTA-Reachability. For these however, it
seems that the reduction to POCA indeed requires the presence of so-called +[0, p]-transitions.
When analyzing runs in the corresponding more general POCA model that in turn also
involves an arbitrary number of parameters, it will become necessary to “de-scale” semiruns
in the following sense. Already in the presence of two parameters one can see that it becomes
necessary to decrease the value of both parameters simultaneously proportionally: for instance
one can build a (2, 2)-PTA for which reachability holds only if the first parameter is a multiple
of the second parameter. How our techniques can be extended to handle such obstacles
remains yet to be explored.

References
1 Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking for real-time systems.

In Proceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS ’90),
Philadelphia, Pennsylvania, USA, June 4-7, 1990, pages 414–425. IEEE Computer Society,
1990. doi:10.1109/LICS.1990.113766.

2 Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer science,
126(2):183–235, 1994.

https://doi.org/10.1109/LICS.1990.113766

S. Göller and M. Hilaire 36:17

3 Rajeev Alur, Thomas A Henzinger, and Moshe Y Vardi. Parametric real-time reasoning. In
Proc. STOC’93, pages 592–601. ACM, 1993.

4 Étienne André. What’s decidable about parametric timed automata? International Journal
on Software Tools for Technology Transfer, 21(2):203–219, 2019.

5 Étienne André. What’s decidable about parametric timed automata? Int. J. Softw. Tools
Technol. Transf., 21(2):203–219, 2019.

6 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambrdige
University Press, 2009.

7 D. A. M. Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in NC1. Journal of Computer and System Sciences, 38:150–164, 1989.

8 Nikola Benes, Peter Bezdek, Kim Guldstrand Larsen, and Jirí Srba. Language emptiness of
continuous-time parametric timed automata. In Magnús M. Halldórsson, Kazuo Iwama, Naoki
Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd
International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II,
volume 9135 of Lecture Notes in Computer Science, pages 69–81. Springer, 2015.

9 Benedikt Bollig, Karin Quaas, and Arnaud Sangnier. The complexity of flat freeze ltl. Logical
Methods in Computer Science, 15(3):32:1–32:26, 2019. arXiv:1609.06124.

10 Daniel Bundala and Joel Ouaknine. On parametric timed automata and one-counter machines.
Information and Computation, 253:272–303, 2017.

11 Andrew Chiu, George Davida, and Bruce Litow. Division in logspace-uniform NC1. Theoretical
Informatics and Applications. Informatique Théorique et Applications, 35(3):259–275, 2001.

12 Stéphane Demri and Arnaud Sangnier. When model-checking freeze LTL over counter
machines becomes decidable. In C.-H. Luke Ong, editor, Foundations of Software Science and
Computational Structures, 13th International Conference, FOSSACS 2010, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos,
Cyprus, March 20-28, 2010. Proceedings, volume 6014 of Lecture Notes in Computer Science,
pages 176–190. Springer, 2010.

13 Stefan Göller, Christoph Haase, Joël Ouaknine, and James Worrell. Model Checking Succinct
and Parametric One-Counter Automata. In Samson Abramsky, Cyril Gavoille, Claude Kirchner,
Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, Automata, Languages and
Programming, 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10,
2010, Proceedings, Part II, volume 6199 of Lecture Notes in Computer Science, pages 575–586.
Springer, 2010.

14 Stefan Göller and Mathieu Hilaire. Reachability in two-parametric timed automata with one
parameter is EXPSPACE-complete. CoRR, abs/2011.07091, 2020. arXiv:2011.07091.

15 Stefan Göller and Markus Lohrey. Branching-time model checking of one-counter processes
and timed automata. SIAM J. Comput., 42(3):884–923, 2013.

16 Christoph Haase. On the complexity of model checking counter automata. PhD thesis, Oxford
University, 2012.

17 Christoph Haase, Joël Ouaknine, and James Worrell. Relating reachability problems in timed
and counter automata. Fundam. Informaticae, 143(3-4):317–338, 2016.

18 Michael A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.
19 Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are digital clocks? In

Werner Kuich, editor, Automata, Languages and Programming, 19th International Colloquium,
ICALP92, Vienna, Austria, July 13-17, 1992, Proceedings, volume 623 of Lecture Notes in
Computer Science, pages 545–558. Springer, 1992.

20 Ulrich Hertrampf, Clemens Lautemann, Thomas Schwentick, Heribert Vollmer, and Klaus W.
Wagner. On the power of polynomial time bit-reductions. In Proceedings of the Eighth Annual
Structure in Complexity Theory Conference, pages 200–207. IEEE Computer Society Press,
1993.

21 Antonia Lechner, Richard Mayr, Joël Ouaknine, Amaury Pouly, and James Worrell. Model
checking flat freeze LTL on one-counter automata. Log. Methods Comput. Sci., 14(4), 2018.

STACS 2021

http://arxiv.org/abs/1609.06124
http://arxiv.org/abs/2011.07091

36:18 (2,1)-PTA-Reachability Is EXPSPACE-Complete

22 Joël Ouaknine and James Worrell. Universality and Language Inclusion for Open and Closed
Timed Automata. In Oded Maler and Amir Pnueli, editors, Hybrid Systems: Computation and
Control, 6th International Workshop, HSCC 2003 Prague, Czech Republic, April 3-5, 2003,
Proceedings, volume 2623 of Lecture Notes in Computer Science, pages 375–388. Springer,
2003. doi:10.1007/3-540-36580-X_28.

23 C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

https://doi.org/10.1007/3-540-36580-X_28

Refined Notions of
Parameterized Enumeration Kernels with
Applications to Matching Cut Enumeration
Petr A. Golovach !

Department of Informatics, University of Bergen, Norway

Christian Komusiewicz !

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Germany

Dieter Kratsch
LGIMP, Université de Lorraine, Metz, France

Van Bang Le !

Institut für Informatik, Universität Rostock, Germany

Abstract
An enumeration kernel as defined by Creignou et al. [Theory Comput. Syst. 2017] for a parameterized
enumeration problem consists of an algorithm that transforms each instance into one whose size is
bounded by the parameter plus a solution-lifting algorithm that efficiently enumerates all solutions
from the set of the solutions of the kernel. We propose to consider two new versions of enumeration
kernels by asking that the solutions of the original instance can be enumerated in polynomial time
or with polynomial delay from the kernel solutions. Using the NP-hard Matching Cut problem
parameterized by structural parameters such as the vertex cover number or the cyclomatic number of
the input graph, we show that the new enumeration kernels present a useful notion of data reduction
for enumeration problems which allows to compactly represent the set of feasible solutions.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases enumeration problems, polynomial delay, output-sensitive algorithms, kernel-
ization, structural parameterizations, matching cuts

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.37

Related Version Full Version: https://arxiv.org/abs/2101.03800

Funding Petr A. Golovach: Supported by the Research Council of Norway via the project “MULTI-
VAL” (grant no. 263317).

Acknowledgements We dedicate this paper to the memory of our coauthor and friend Dieter Kratsch
who recently passed away. Without Dieter, this paper would have never been written.

1 Introduction

The enumeration of all feasible solutions of a computational problem is a fundamental task in
computer science. For the majority of enumeration problems, the number of feasible solutions
can be exponential in the input size in the worst-case. The running time of enumeration
algorithms is thus measured not only in terms of the input size n but also in terms of the
output size. The two most-widely used definitions of efficient algorithms are polynomial
output-sensitive algorithms where the running time is polynomial in terms of input and output
size and polynomial-delay algorithms, where the algorithm spends only a polynomial running
time between the output of consecutive solutions. Since in some enumeration problems, even
the problem of deciding the existence of one solution is not solvable in polynomial time, it

© Petr A. Golovach, Christian Komusiewicz, Dieter Kratsch, and Van Bang Le;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 37; pp. 37:1–37:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:petr.golovach@ii.uib.no
https://orcid.org/0000-0002-2619-2990
mailto:komusiewicz@informatik.uni-marburg.de
https://orcid.org/0000-0003-0829-7032
mailto:van-bang.le@uni-rostock.de
https://orcid.org/0000-0002-3303-8326
https://doi.org/10.4230/LIPIcs.STACS.2021.37
https://arxiv.org/abs/2101.03800
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Parameterized Enumeration Kernels and Matching Cuts

was proposed to allow FPT algorithms that have running time or delay f(k) · nO(1) for some
problem-specific parameter k [9, 11, 12, 14, 31]. Naturally, FPT-enumeration algorithms are
based on extensions of standard techniques in FPT algorithms such as bounded-depth search
trees [11, 12, 14] or color coding [31].

An important technique for obtaining FPT algorithms for decision problems is kernel-
ization [10, 15, 28], where the idea is to shrink the input instance in polynomial time to an
equivalent instance whose size depends only on the parameter k. In fact, a parameterized
problem admits an FPT algorithm if and only if it admits a kernelization. It seems particularly
intriguing to use kernelization for enumeration problems as a small kernel can be seen as
a compact representation of the set of feasible solutions. The first notion of kernelization
in the context of enumeration problems were the full kernels defined by Damaschke [11].
Informally, a full kernel for an instance of an enumeration problem is a subinstance that
contains all minimal solutions of size at most k. This definition is somewhat restrictive since
it is tied to subset minimization problems parameterized by the solution size parameter k.
Nevertheless, full kernels have been obtained for some problems [12, 16, 26, 35].

To overcome the restrictions of full kernels, Creignou et al. [9] proposed enumeration
kernels. Informally, an enumeration kernel for a parameterized enumeration problem is an
algorithm that replaces the input instance by one whose size is bounded by the parameter
and which has the property that the solutions of the original instance can be computed by
listing the solutions of the kernel and using an efficient solution-lifting algorithm that outputs
for each solution of the kernel a set of solutions of the original instance. In the definition of
Creignou et al. [9], the solution-lifting algorithm may be an FPT-delay algorithm, that is, an
algorithm with f(k) · nO(1) delay where n is the overall input size. We find that this time
bound is too weak, because it essentially implies that every enumeration problem that can
be solved with FPT-delay admits an enumeration kernel of constant size. Essentially, this
means that the solution-lifting algorithm is so powerful that it can enumerate all solutions
while ignoring the kernel. Motivated by this observation and the view of kernels as compact
representations of the solution set, we modify the original definition of enumeration kernels [9].

Our results. We present two new notions of efficient enumeration kernels by replacing the
demand for FPT-delay algorithms by a demand for polynomial-time enumeration algorithms
or polynomial-delay algorithms, respectively. We call the two resulting notions of enumeration
kernelization fully-polynomial enumeration kernels and polynomial-delay enumeration kernels.
Our paper aims at showing that these two new definitions present a sweet spot between the
notion of full kernels, which is too strict for some applications, and enumeration kernels,
which are too lenient in some sense. We first show that the two new definitions capture the
class of efficiently enumerable problems in the sense that a problem has a fully-polynomial
(a polynomial-delay) enumeration kernel if and only if it has an FPT-enumeration algorithm
(an FPT-delay enumeration algorithm). Moreover, the kernels have constant size if and only
if the problems have polynomial-time (polynomial-delay) enumeration algorithms. Thus, the
new definitions correspond to the case of problem kernels for decision problems, which are in
FPT if and only if they have kernels and which can be solved in polynomial time if and only
if they have kernels of constant size (see, e.g. [10, Chapter 2] or [15, Chapter 1]).

We then apply both types of kernelizations to the enumeration of matching cuts. A
matching cut of a graph G is the set of edges M = E(A, B) for a partition {A, B} of V (G)
forming a matching. We investigate the problems of enumerating all minimal, all maximal,
or all matching cuts of a graph. We refer to these problems as Enum Minimal MC, Enum
Maximal MC, and Enum MC, respectively. These matching cut problems constitute a

P. A. Golovach, C. Komusiewicz, D. Kratsch, and V. B. Le 37:3

very suitable study case for enumeration kernels, since it is NP-hard to decide whether a
graph has a matching cut [7] and therefore, they do not admit polynomial output-sensitive
algorithms. We consider all three problems with respect to structural parameterizations such
as the vertex cover number, the modular width, or the cyclomatic number of the input graph.
The choice of these parameters is motivated by the fact that neither problem admits an
enumeration kernel of polynomial size for the more general structural parameterizations by
the treewidth or cliquewidth up to some natural complexity assumptions (see Proposition 5).
Table 1 summarizes the results. Due to space constraints some results and proofs are either
omitted or just sketched. We refer to the full version [20] for the details.

Table 1 An overview of our results. Herein, “kernel” means fully-polynomial enumeration kernel,
“del-kernel” means polynomial-delay enumeration kernel and “bi” means bijective enumeration kernel
(a slight generalization of full kernels), a (⋆) means that the lower bound assumes NP ⊈ coNP/ poly,
“?” means open status. We use (∗) for statements whose proofs are omitted in this extended abstract
(see [20] for the proofs). The cyclomatic number is also known as the feedback edge number.

Parameter k Enum MC Enum Minimal MC Enum Maximal MC
treewidth & No poly-size del- No poly-size del- No poly-size del-
cliquewidth kernel (⋆) (Prop. 5) kernel (⋆) (Prop. 5) kernel (⋆) (Prop. 5)
vertex cover & size-O(k2) del-kernel size-O(k2) kernel size-O(k2) del-kernel
twin-cover (Theorems 11 & 12) (Theorems 11 & 12) (Theorems 11 & 12)
number No kernel No kernel
neighborhood size-O(k) del-kernel (∗) size-O(k) kernel (∗) size-O(k) del-kernel (∗)
diversity No kernel (∗) No kernel (∗)
modular width ? O(k)-kernel (∗) ?
cyclomatic size-O(k) del-kernel size-O(k) del-kernel
number (Theorem 13) (Theorem 13) ?

No kernel
clique partition size-O(k3) bi kernel (∗) size-O(k3) bi kernel (∗) size-O(k3) bi kernel (∗)
number

To discuss some of our results and their implication for enumeration kernels in general
more precisely, consider Enum MC, Enum Minimal MC, and Enum Maximal MC
parameterized by the vertex cover number. We show that Enum Minimal MC admits a
fully-polynomial enumeration kernel of polynomial size. As it can be seen that the problem
has no full kernel, we obtain that there are natural enumeration problems with a fully-
polynomial enumeration kernel that have no full kernel (not even one of super-polynomial
size). Then, we show that Enum MC and Enum Maximal MC admit polynomial-delay
enumeration kernels but have no fully-polynomial enumeration kernels. Thus, there are
natural enumeration problems with polynomial-delay enumeration kernels that do not admit
fully-polynomial enumeration kernels (not even one of super-polynomial size).

We also prove a tight upper bound F (n + 1) − 1 for the maximum number of matching
cuts of an n-vertex graph, where F (n) is the n-th Fibonacci number and show that all
matching cuts can be enumerated in O∗(F (n)) = O∗(1.6181n) time (Theorem 6).

Related work. The current-best exact decision algorithm for Matching Cut, the problem
of deciding whether a given graph G has a matching cut, has a running time of O(1.328n)
where n is the number of vertices in G [25]. Faster exact algorithms can be obtained for the
case when the minimum degree is large [23]. Matching Cut has FPT-algorithms for the
maximum cut size k [21], the vertex cover number of G [27], and weaker parameters such as
the twin-cover number [1] or the cluster vertex deletion number [25].

STACS 2021

37:4 Parameterized Enumeration Kernels and Matching Cuts

For an overview of enumeration algorithms, refer to the survey of Wasa [37]. A broader
discussion of parameterized enumeration is given by Meier [32]. A different extension of
enumeration kernels are advice enumeration kernels [2]. In these kernels, the solution-lifting
algorithm does not need the whole input but only a possibly smaller advice. A further
loosely connected extension of standard kernelization are lossy kernels which are used for
optimization problems [29]; the common thread is that both definitions use a solution-lifting
algorithm for recovering solutions of the original instance.

Graph notation. All graphs considered in this paper are finite undirected graphs without
loops or multiple edges. We follow the standard graph-theoretic notation and terminology
and refer to the book of Diestel [13] for basic definitions. For each of the graph problems
considered in this paper, we let n = |V (G)| and m = |E(G)| denote the number of vertices
and edges, respectively, of the input graph G if it does not create confusion. For a graph G

and a subset X ⊆ V (G) of vertices, we write G[X] to denote the subgraph of G induced
by X. For a set of vertices X, G − X denotes the graph obtained by deleting the vertices
of X, that is, G − X = G[V (G) \ X]; for a vertex v, we write G − v instead of G − {v}.
Similarly, for a set of edges A (an edge e, respectively), G − A (G − e, respectively) denotes
the graph obtained by the deletion of the edges of A (the edge e, respectively). For a vertex
v, we denote by NG(v) the (open) neighborhood of v, i.e., the set of vertices that are adjacent
to v in G. We use NG[v] to denote the closed neighborhood NG(v) ∪ {v} of v. For X ⊆ V (G),
NG[X] =

⋃
v∈X NG[v] and NG(X) = NG[X] \ X. For disjoint sets of vertices A and B of a

graph G, EG(A, B) = {uv | u ∈ A, v ∈ B}. We may omit subscripts in the above notation if
it does not create confusion. We use Pn, Cn, and Kn to denote the n-vertex path, cycle, and
complete graph, respectively. We write G + H to denote the disjoint union of G and H , and
we use kG to denote the disjoint union of k copies of G.

In a graph G, a cut is a partition {A, B} of V (G), and we say that EG(A, B) is an edge
cut. A matching is an edge set in which no two of the edges have a common end-vertex;
note that we allow empty matchings. A matching cut is a (possibly empty) edge set being
an edge cut and a matching. We underline that by our definition, a matching cut is a set
of edges, as sometimes in the literature (see, e.g., [7, 22]) a matching cut is defined as a
partition {A, B} of the vertex set such that E(A, B) is a matching. While the two variants of
the definitions are equivalent, say when the decision variant of the matching cut problem is
considered, this is not the case in enumeration and counting when we deal with disconnected
graphs. For example, the empty graph on n vertices has 2n−1 − 1 partitions {A, B} which
all correspond to exactly one matching cut in the sense of our definition, namely M = ∅. A
matching cut M of G is (inclusion) minimal (maximal, respectively) if G has no matching
cut M ′ ⊂ M (M ′ ⊃ M , respectively). Notice that a disconnected graph has exactly one
minimal matching cut which is the empty set.

2 Parameterized Enumeration and Enumeration Kernels

We use the framework for parameterized enumeration proposed by Creignou et al. [9]. An
enumeration problem (over a finite alphabet Σ) is a tuple Π = (L, Sol) such that
(i) L ⊆ Σ∗ is a decidable language,
(ii) Sol : Σ∗ → P(Σ∗) is a computable function such that for every x ∈ Σ∗, Sol(x) is a finite

set and Sol(x) ̸= ∅ if and only if x ∈ L.
Here, P(A) is used to denote the powerset of a set A. A string x ∈ Σ∗ is an instance, and
Sol(x) is the set of solutions to instance x. A parameterized enumeration problem is defined
as a triple Π = (L, Sol, κ) such that (L, Sol) satisfy (i) and (ii) of the above definition, and
(iii) κ : Σ∗ → N is a parameterization.

P. A. Golovach, C. Komusiewicz, D. Kratsch, and V. B. Le 37:5

We say that k = κ(x) is a parameter. We define the parameterization as a function of an
instance but it is standard to assume that the value of κ(x) is either simply given in x or can
be computed in polynomial time from x. We follow this convention throughout the paper.

An enumeration algorithm A for a parameterized enumeration problem Π is a deterministic
algorithm that for every instance x, outputs exactly the elements of Sol(x) without duplicates,
and terminates after a finite number of steps on every instance. The algorithm A is an
FPT enumeration algorithm if it outputs all solutions in at most f(κ(x))p(|x|) steps for a
computable function f(·) that depends only on the parameter and a polynomial p(·).

We also consider output-sensitive enumerations, and for this, we define delays. Let A
be an enumeration algorithm for Π. For x ∈ L and 1 ≤ i ≤ |Sol(x)|, the i-th delay of A is
the time between outputting the i-th and (i + 1)-th solutions in Sol(x). The 0-th delay is
the precalculation time which is the time from the start of the computation until the output
of the fist solution, and the |Sol(x)|-th delay is the postcalculation time which is the time
after the last output and the termination of A (if Sol(x) = ∅, then the precalculation and
postcalculation times are the same). It is said that A is a polynomial-delay algorithm, if all the
delays are upper-bounded by p(|x|) for a polynomial p(·). For a parameterized enumeration
problem Π, A is an FPT-delay algorithm, if the delays are at most f(κ(x))p(|x|), where
f(·) is a computable function and p(·) is a polynomial. Notice that every FPT enumeration
algorithm A is also an FPT delay algorithm.

The key definition for us is the generalization of the standard notion of a kernel in
Parameterized Complexity (see, e.g, [15]) for enumeration problems.

▶ Definition 1. Let Π = (L, Sol, κ) be a parameterized enumeration problem. A fully-
polynomial enumeration kernel(ization) for Π is a pair of algorithms A and A′ with the
following properties:

(i) For every instance x of Π, A computes in time polynomial in |x| + κ(x) an instance y

of Π such that |y| + κ(y) ≤ f(κ(x)) for a computable function f(·).
(ii) For every s ∈ Sol(y), A′ computes in time polynomial in |x| + |y| + κ(x) + κ(y) a

nonempty set of solutions Ss ⊆ Sol(x) such that {Ss | s ∈ Sol(y)} is a partition of
Sol(x).

Notice that by (ii), x ∈ L if and only if y ∈ L.
We say that A is a kernelization algorithm and A′ is a solution-lifting algorithm. In-

formally, a solution-lifting algorithm takes as its input a solution for a “small” instance
constructed by the kernelization algorithm and, having an access to the original input in-
stance, outputs polynomially many solutions for the original instance, and by going over
all the solutions to the small instance, we can generate all the solutions of the original
instance without repetitions. We say that an enumeration kernel is bijective if A′ produces
a unique solution to x, that is, it establishes a bijection between Sol(y) and Sol(x), that
is, the compressed instance essentially has the same solutions as the input instance. In
particular, full kernels [11] are the special case of bijective kernels where A′ is the identity.
As it is standard, f(·) is the size of a kernel, and the kernel has polynomial size if f(·) is a
polynomial.

We define polynomial-delay enumeration kernel(ization) in a similar way. The only
difference is that (ii) is replaced by the condition
(ii∗) For every s ∈ Sol(y), A′ computes with delay polynomial in |x| + |y| + κ(x) + κ(y) a

set of solutions Ss ⊆ Sol(x) such that {Ss | s ∈ Sol(y)} is a partition of Sol(x).
It is straightforward to make the following observation.

▶ Observation 2. Every bijective enumeration kernel is a fully-polynomial enumeration
kernel; every fully-polynomial enumeration kernel is a polynomial-delay enumeration kernel.

STACS 2021

37:6 Parameterized Enumeration Kernels and Matching Cuts

Notice also that our definition of polynomial-delay enumeration kernel is different from
the definition given by Creignou et al. [9]. In their definition, Creignou et al. [9] require
that the solution-lifting algorithm A′ should list all the solutions in Ss with FPT delay
for the parameter κ(x). We believe that this condition is too weak. In particular, with
this requirement, every parameterized enumeration problem, that has an FPT enumeration
algorithm A∗ and such that the existence of at least one solution can be verified in polynomial
time, has a trivial kernel of constant size. The kernelization algorithm can output any instance
satisfying (i) and then we can use A∗ as a solution-lifting algorithm that essentially ignores
the output of the kernelization algorithm. Note that for enumeration problems, we typically
face the situation where the existence of at least one solution is not an issue. We argue that
our definitions are natural by showing the following theorem.

▶ Theorem 3. A parameterized enumeration problem Π has an FPT enumeration algorithm
(an FPT delay algorithm) if and only if Π admits a fully-polynomial enumeration kernel
(polynomial-delay enumeration kernel). Moreover, Π can be solved in polynomial time (with
polynomial delay) if and only if Π admits a fully-polynomial enumeration kernel (a polynomial-
delay enumeration kernel) of constant size.

Proof. The proof of the first claim is similar to the standard arguments for showing the
equivalence between fixed-parameter tractability and the existence of a kernel (see, e.g. [10,
Chapter 2] or [15, Chapter 1]). However dealing with enumeration problems requires some
specific arguments. Let Π = (L, Sol, κ) be a parameterized enumeration problem.

In the forward direction, the claim is trivial. Recall that L is decidable and Sol(·) is a
computable function by the definition. If Π admits a fully-polynomial enumeration kernel (a
polynomial-delay enumeration kernel respectively), then we apply an arbitrary enumeration
algorithm, which is known to exist since Sol(·) is computable, to the instance y produced by
the kernelization algorithm. Then, for each s ∈ Sol(y), use the solution-lifting algorithm to
list the solutions to the input instance.

For the opposite direction, assume that Π can be solved in f(κ(x)) · |x|c time (with
f(κ(x)) · |x|c delay, respectively) for an instance x, where f(·) is a computable function and
c is a positive constant. Since f(·) is computable, we assume that we have an algorithm F
computing f(k) in g(k) time. We define h(k) = max{f(k), g(k)}.

We say that an instance x of Π is a trivial no-instance if x is an instance of minimum size
with Sol(x) = ∅. We call x a minimum yes-instance if x is an instance of minimum size that
has a solution. Notice that if Π has instances without solutions, then the size of a trivial
no-instance is a constant that depends on Π only and such an instance can be computed
in constant time. Similarly, if the problem has instances with solutions, then the size of a
minimum yes-instance is constant and such an instance can be computed in constant time.
We say that x is a trivial yes-instance if x is an instance with minimum size of Sol(x) that,
subject to the first condition, has minimum size. Clearly, the size of a trivial yes-instance
is a constant that depends only on Π. However, we may be unable to compute a trivial
yes-instance.

Let x be an instance of Π and k = κ(x). We run the algorithm F to compute f(k) for
at most n = |x| steps. If the algorithm failed to compute f(k) in n steps, we conclude that
g(k) ≥ n. In this case, the kernelization algorithm outputs x. Then the solution-lifting
algorithm just trivially outputs its input solutions. Notice that |x| ≤ g(k) ≤ h(k) in this
case. Assume from now that F computed f(k) in at most n steps.

If |x| ≤ f(k), then the kernelization algorithm outputs the original instance x, and the
solution-lifting algorithm trivially outputs its input solutions. Note that |x| ≤ f(k) ≤ h(k).

P. A. Golovach, C. Komusiewicz, D. Kratsch, and V. B. Le 37:7

Finally, we suppose that f(k) < |x|. Observe that the enumeration algorithm runs in |x|c+1

time (with |x|c+1 delay, respectively) in this case, that is, the running time is polynomial.
We use the enumeration algorithm to verify whether x has a solution. For this, notice that a
polynomial-delay algorithm can be used to solve the decision problem; we just run it until it
outputs a first solution (or reports that there are no solutions). If x has no solution, then
Π has a trivial no-instance and the kernelization algorithm computes and outputs it. If
x has a solution, then the kernelization algorithm computes a minimum yes-instance y in
constant time. We use the enumeration algorithm to check whether |Sol(y)| ≤ |Sol(x)|. If
this holds, then we set z = y. Otherwise, if |Sol(x)| < |Sol(y)|, we find an instance z of
minimum size such that |Sol(z)| ≤ |Sol(x)|. Notice that this can be done in constant time,
because the size of z is upper-bounded by the size of a trivial yes-instance. Then we list the
solutions of z in constant time and order them. For the i-th solution of z, the solution-lifting
algorithm outputs the i-th solution of x produced by the enumeration algorithm, and for
the last solution of z, the solution-lifting algorithm further runs the enumeration algorithm
to output the remaining solutions. Since |Sol(z)| ≤ |Sol(x)|, the solution-lifting algorithm
outputs a nonempty set of solutions for x for every solution of z.

It is easy to see that we obtain a fully-polynomial enumeration kernel of size O(h(κ(x))
(a polynomial-delay enumeration kernel, respectively).

For the second claim, the arguments are the same. If a problem admits a fully-polynomial
(a polynomial-delay) enumeration kernel of constant size, then the solutions of the original
instance can be listed in polynomial time (or with polynomial delay, respectively) by the
solution-lifting algorithm called for the constant number of the solutions of the kernel. Con-
versely, if a problem can be solved in polynomial time (with polynomial delay, respectively),
we can apply the above arguments assuming that f(k) (and, therefore, g(k)) is a constant. ◀

In our paper, we consider structural parameterizations of Enum Minimal MC, Enum
Maximal MC, and Enum MC by several graph parameters, and the majority of these
parameterizations are stronger than the parameterization either by the treewidth or the
cliquewidth of the input graph. Defining the treewidth (denoted by tw(G)) and cliquewidth
(denoted by cw(G)) goes beyond of the scope of the current paper and we refer to [8] (see
also, e.g., [10]). By the celebrated result of Bodlaender [3] (see also [10]), it is FPT in t to
decide whether tw(G) ≤ t and to construct the corresponding tree-decomposition. No such
algorithm is known for cliquewidth. However, for algorithmic purposes, it is usually sufficient
to use the approximation algorithm of Oum and Seymour [34] (see also [33, 10]). Observe that
the property that a set of edges M of a graph G is a matching cut of G can be expressed in
monadic second-order logic (MSOL); we refer to [8, 10] for the definition of MSOL on graphs.
Then the matching cuts (the minimal or maximal matching cuts) of a graph of treewidth at
most t can be enumerated with FPT delay with respect to the parameter t by the celebrated
meta theorem of Courcelle [8]. The same holds for the weaker parameterization by the
cliquewidth of the input graph, because we can use MSOL formulas without quantifications
over (sets of) edges: For a graph G, we pick a vertex in each connected component of G and
label it. Let R be the set of labeled vertices. Then the enumeration of nonempty matching
cuts is equivalent to the enumeration of all partitions {A, B} of V (G) such that (i) R ⊆ A

and (ii) E(A, B) is a matching. Notice that condition (ii) can be written as follows: for
every u1, u2 ∈ A and v1, v2 ∈ B, if u1 is adjacent to v1 and u2 is adjacent to v2, then either
u1 = u2 and v1 = v2 or u1 ̸= u2 and v1 ̸= v2. Since the empty matching cut can be listed
separately if it exists, we obtain that we can use MSOL formulations of the enumeration
problems, where only quantifications over vertices and sets of vertices are used. Then the
result of Courcelle [8] implies that Enum Minimal MC, Enum Maximal MC, and Enum
MC can be solved with FPT delay when parameterized by the cliquewidth of the input graph.

STACS 2021

37:8 Parameterized Enumeration Kernels and Matching Cuts

We summarize these observations in the following proposition.

▶ Proposition 4. Enum MC, Enum Minimal MC, and Enum Maximal MC on graphs
of treewidth (cliquewidth) at most t can be solved with FPT delay when parameterized by t.

This proposition implies that Enum MC, Enum Minimal MC and Enum Maximal MC
can be solved with FPT delay for all structural parameters whose values can be bounded
from below by an increasing function of treewidth or cliquewidth. However, we are mainly
interested in fully-polynomial or polynomial-delay enumeration kernelization. We conclude
this section by pointing out that it is unlikely that Enum Minimal MC, Enum Maximal
MC, and Enum MC admit polynomial-delay enumeration kernels of polynomial size for the
treewidth or cliquewidth parameterizations. It was pointed out by Komusiewicz, Kratsch,
and Le [25] that the decision version of the matching cut problem (that is, the problem
asking whether a given graph G has a matching cut) does not admit a polynomial kernel
when parameterized by the treewidth of the input graph unless NP ⊆ coNP/ poly. By the
definition of a polynomial-delay enumeration kernel, this gives the following statement.

▶ Proposition 5. Enum Minimal MC, Enum Maximal MC and Enum MC do not admit
polynomial-delay enumeration kernels of polynomial size when parameterized by the treewidth
(cliquewidth, respectively) of the input graph unless NP ⊆ coNP/ poly.

3 A Tight Upper Bound for the Maximum Number of Matching Cuts

In this section we provide a tight upper bound for the maximum number of matching cuts of
an n-vertex graph. We complement this result by giving an exact enumeration algorithm for
(minimal, maximal) matching cuts. Finally, we give some lower bounds for the maximum
number of minimal and maximal matching cuts, respectively. Throughout this section, we
use #mc(G) to denote the number of matching cuts of a graph G.

To give the upper bound, we use the classical Fibonacci numbers. For a positive integer n,
we denote by F (n) the n-th Fibonacci number. Recall that F (1) = F (2) = 1, and for n ≥ 3,
the Fibonacci numbers satisfy the recurrence F (n) = F (n − 1) + F (n − 2). Recall also that
the n-th Fibonacci number can be expressed by the following closed formula:

F (n) = 1√
5

((1 +
√

5
2

)n

+
(1 −

√
5

2

)n)
for every n ≥ 1. In particular, F (n) = O(1.6181n).

▶ Theorem 6 (∗). 1 An n-vertex graph has at most F (n+1)−1 matching cuts. The bound is
tight and is achieved for paths. Moreover, if n ≥ 5, then an n-vertex graph G has F (n+ 1) −1
matching cuts if and only if G is a path. Furthermore, the matching cuts can be enumerated
in O∗(F (n)) time.

Let us remark that if n ≤ 4, then besides paths Pn, the graphs Kp + Kq for 1 ≤ p, q ≤ 2 such
that n = p + q have F (n + 1) − 1 matching cuts.

Clearly, the upper bound for the maximum number of matching cuts given in Theorem 6 is
an upper bound for the maximum number of minimal and maximal matching cuts. However,
the number of minimal or maximal matching cuts may be significantly less than the number
of all matching cuts. We conclude this section by stating the best lower bounds we know for
the maximum number of maximal matching cuts and minimal matching cuts, respectively.

1 The proofs of the statements labeled (∗) are omitted in this extended abstract.

P. A. Golovach, C. Komusiewicz, D. Kratsch, and V. B. Le 37:9

▶ Proposition 7 (∗). The graph G = kC7 with n = 7k vertices has 14k = 14n/7 ≥ 1.4579n

maximal matching cuts.

To achieve a lower bound for the maximum number of minimal matching cuts, we consider
the graphs Hk constructed as follows for a positive integer k.

For every i ∈ {1, . . . , k}, construct two vertices ui and vi and a (ui, vi)-path of length 4.
Make the vertices u1, . . . , uk pairwise adjacent, and do the same for v1, . . . , vk.

▶ Proposition 8 (∗). The number of minimal matching cuts of Hk with n = 5k vertices is
at least 4k = 4n/5 ≥ 1.3195n.

4 Enumeration Kernels for the Vertex Cover Number Parameterization

In this section, we consider the parameterization of the matching cut problems by the vertex
cover number of the input graph. Notice that this parameterization is one of the most
thoroughly investigated with respect to classical kernelization (see, e.g., the recent paper of
Bougeret, Jansen, and Sau [6] for the currently most general results of this type). However,
we are interested in enumeration kernels.

Recall that a set of vertices X ⊆ V (G) is a vertex cover of G if for every edge uv ∈ E(G),
at least one of its end-vertices is in X, that is, V (G) \ X is an independent set. The
vertex cover number of G, denoted by τ(G), is the minimum size of a vertex cover of G.
Computing τ(G) is NP-hard but one can find a 2-approximation by taking the end-vertices
of a maximal matching of G [19] (see also [24] for a better approximation) and this suffices
for our purposes. Throughout this section, we assume that the parameter k = τ(G) is given
together with the input graph. Note that for every graph G, tw(G) ≤ τ(G). Therefore,
Enum MC, Enum Minimal MC, and Enum Maximal MC can be solved with FPT delay
when parameterized by the vertex cover number by Proposition 4.

First, we describe the basic kernelization algorithm that is exploited for all the kernels in
this subsection. Let G be a graph that has a vertex cover of size k. The case when G has no
edges is trivial and will be considered separately. Assume from now that G has at least one
edge and k ≥ 1.

We use the above-mentioned 2-approximation algorithm to find a vertex cover X of size
at most 2k. Let I = V (G) \ X. Recall that I is an independent set. Denote by I0, I1,
and I≥2 the subsets of vertices of I of degree 0, 1, and at least 2, respectively. We use the
following marking procedure to label some vertices of I.

(i) Mark an arbitrary vertex of I0 (if it exists).
(ii) For every x ∈ X, mark an arbitrary vertex of NG(x) ∩ I1 (if it exists).
(iii) For every two distinct vertices x, y ∈ X, select an arbitrary set of min{3, |(NG(x) ∩

NG(y)) ∩ I≥2|} vertices in I≥2 that are adjacent to both x and y, and mark them for
the pair {x, y}.

Note that a vertex of I≥2 can be marked for distinct pairs of vertices of X. Denote by Z the
set of marked vertices of I. Clearly, |Z| ≤ 1 + |X| + 3

(|X|
2

)
. We define H = G[X ∪ Z]. Notice

that |V (H)| ≤ |X| + |Z| ≤ 1 + 2|X| + 3
(|X|

2
)

≤ 6k2 + k + 1. This completes the description
of the basic kernelization algorithm that returns H. It is straightforward to see that H can
be constructed in polynomial time.

It is easy to see that H does not keep the information about all matching cuts in G due
to the deleted vertices. However, the crucial property is that H keeps all matching cuts of
G′ = G − (I0 ∪ I1). Formally, we define H ′ = H − (I0 ∪ I1) and show the following lemma.

STACS 2021

37:10 Parameterized Enumeration Kernels and Matching Cuts

▶ Lemma 9 (∗). A set of edges M ⊆ E(G′) is a matching cut of G′ if and only if M ⊆ E(H ′)
and M is a matching cut of H ′.

To see the relations between matching cuts of G and H, we define a special equivalence
relation for the subsets of edges of G. For a vertex x ∈ X, let Lx = {xy ∈ E(G) | y ∈ I1},
that is, Lx is the set of pendant edges of G with exactly one end-vertex in the vertex cover.
Observe that if Lx ̸= ∅, then there is ℓx ∈ Lx such that ℓx ∈ E(H), because for every x ∈ X,
a neighbor in I1 is marked if it exists. We define L =

⋃
x∈X Lx. Notice that each matching

cut of G contains at most one edge of every Lx. We say that two sets of edges M1 and
M2 are equivalent if M1 \ L = M2 \ L and for every x ∈ X, |M1 ∩ Lx| = |M2 ∩ Lx|. It is
straightforward to verify that the introduced relation is indeed an equivalence relation. It is
also easy to see that if M is a matching cut of G, then every M ′ ⊆ E(G) equivalent to M is
a matching cut. We show the following lemma.

▶ Lemma 10 (∗). A set of edges M ⊆ E(G) is a matching cut (minimal or maximal matching
cut, respectively) of G if and only if H has a matching cut (minimal or maximal matching
cut, respectively) M ′ equivalent to M .

We use Lemma 10 to obtain our kernelization results. For Enum Minimal MC, we show
that the problem admits a fully-polynomial enumeration kernel, and we prove that Enum
Maximal MC and Enum MC have polynomial-delay enumeration kernels.

▶ Theorem 11. Enum Minimal MC admits a fully-polynomial enumeration kernel and
Enum MC and Enum Maximal MC admit polynomial-delay enumeration kernels with
O(k2) vertices when parameterized by the vertex cover number k of the input graph.

Proof. Let G be a graph with τ(G) = k. If G = K1, then the kernelization algorithm returns
H = G1 and the solution-lifting algorithm is trivial as G has no matching cuts. Assume
that G has at least 2 vertices. If G has no edges, then the empty set is the unique matching
cut of G. Then the kernelization algorithm returns H = 2K1, and the solution-lifting
algorithm outputs the empty set for the empty matching cut of H. Thus, we can assume
without loss of generality that G has at least one edge and k ≥ 1.

We use the same basic kernelization algorithm that constructs H as described above and
output H for all the problems. Recall that |V (H)| ≤ 6k2 +k+1. The kernels differ only in the
solution-lifting algorithms. These algorithms exploit Lemma 10 and for every matching cut
(minimal or maximal matching cut, respectively) M of H, they list the equivalent matching
cuts of G. Lemma 10 guarantees that the families of matching cuts (minimal or maximal
matching cuts, respectively) constructed for every matching cut of H compose the partition
of the sets of matching cuts (minimal or maximal matching cuts, respectively) of G. This is
exactly the property that is required by the definition of a fully-polynomial (polynomial-delay)
enumeration kernel. To describe the algorithm, we use the notation defined in this section.

First, we consider Enum Minimal MC. Let M be a minimal matching cut of H. If
M ∩ L = ∅, then M is the unique matching cut of G that is equivalent to M , and our
algorithm outputs M . Suppose that M ∩ L ̸= ∅. Then by the minimality of M , M = {ℓx}
for some x ∈ X, because every edge of L is a matching cut. Then the sets {e} for every
e ∈ Lx are exactly the matching cuts equivalent to M . Clearly, we have at most n such
matching cuts and they can be listed in linear time. This implies that condition (ii) of the
definition of a fully-polynomial enumeration kernel is fulfilled. Thus, Enum Minimal MC
has a fully-polynomial enumeration kernel with at most 6k2 + k + 1 vertices.

Next, we consider Enum Maximal MC and Enum MC. The solution-lifting algorithms
for these problems are the same. Let M be a (maximal) matching cut of H. Let also
M1 = M ∩ L and M2 = M \ M1. If M1 = ∅, then M is the unique matching cut of G that is

P. A. Golovach, C. Komusiewicz, D. Kratsch, and V. B. Le 37:11

equivalent to M , and our algorithm outputs M . Assume from now that M1 ̸= ∅. Then there
is Y ⊆ X such that M1 = {ℓx | x ∈ Y }. We use the recursive algorithm Enum Equivalent
(see Algorithm 1) that takes as an input a matching S of G and W ⊆ Y and outputs the
equivalent matching cuts M ′ of G such that (i) S ⊆ M ′, (ii) M ′ is equivalent to M , and (iii)
the constructed matchings M ′ differ only by some edges of the sets Lx for x ∈ W . Initially,
S = M2 and W = Y .

Algorithm 1 Enum Equivalent(S, W).

1 if W = ∅ then
2 output S

3 end
4 else if S ̸= ∅ then
5 select arbitrary x ∈ W ;
6 foreach e ∈ Lx do
7 Enum Equivalent(S ∪ {e}, W \ {x})
8 end
9 end

To enumerate the matching cuts equivalent to M , we call Enum Equivalent(M2, Y).
We claim that Enum Equivalent(M2, Y) enumerates the matching cuts of G that are
equivalent to M with O(n) delay.

By the definition of the equivalence and Lemma 10, every matching cut M ′ of G that is
equivalent to M can be written as M ′ = M2 ∪ {ex | x ∈ Y }, where ex is an edge of Lx for
x ∈ Y . Then to see the correctness of Enum Equivalent, observe the following. If W ̸= ∅,
then the algorithm picks a vertex x ∈ W . Then for every edge e ∈ Lx, it enumerates the
matching cuts containing S and e. This means that our algorithm is, in fact, a standard
backtracking enumeration algorithm (see [30]) and immediately implies that the algorithm
lists all the required matching cuts exactly once. Since the depth of the recursion is at most n

and the algorithm always outputs a matching cut for each leaf of the search tree, the delay
is O(n). This completes the proof of the polynomial-delay enumeration kernel for Enum
Maximal MC and Enum MC.

To conclude the proof of the theorem, let us remark that, formally, the solution-lifting
algorithms described in the proof require X. However, in fact, we use only sets Lx that can
be computed in polynomial time for given G and H. ◀

Notice that Theorem 11 is tight in the sense that Enum Maximal MC and Enum MC
do not admit fully-polynomial enumeration kernels for the parameterization by the vertex
cover number. To see this, let k be a positive integer and consider the n-vertex graph G,
where n > k is divisible by k, that is the union of k stars K1,p for p = n/k − 1. Clearly,
τ(G) = k. We observe that G has pk = (n/k − 1)k maximal matching cut that are formed
by picking one edge from each of the k stars. Similarly, G has (p + 1)k = (n/k)k matching
cuts obtained by picking at most one edge from each star. In both cases, this means that the
(maximal) matching cuts cannot be enumerated by an FPT algorithm. By Theorem 3, this
rules out the existence of a fully-polynomial enumeration kernel.

We conclude this section by showing that Theorem 11 can be generalized to the weaker
parameterization by the twin-cover number, introduced by Ganian [17, 18] as a generalization
of a vertex cover. Recall that two vertices u and v of a graph G are true twins if N [u] = N [v].
A set of vertices X of a graph G is said to be a twin-cover of G if for every edge uv of G,

STACS 2021

37:12 Parameterized Enumeration Kernels and Matching Cuts

at least one of the following holds: (i) u ∈ X or v ∈ X or (ii) u and v are true twins. The
twin-cover number, denoted by tc(G), is the minimum size of a twin-cover. Notice that
tc(G) ≤ τ(G) and tc(G) ≥ cw(G) + 2 for every G [17, 18]. Let X = {X1, . . . , Xr} be the
partition of V (G) into the classes of true twins. Note that X can be computed in linear time
using an algorithm for computing a modular decomposition [36]. Then we can define the
true-twin quotient graph G with respect to X , that is, the graph with the node set X such
that two classes of true twins Xi and Xj are adjacent in G if and only if the vertices of Xi

are adjacent to the vertices of Xj in G. Then it can be seen that tc(G) ≥ τ(G). We prove
the following.

▶ Theorem 12 (∗). Enum Minimal MC admits a fully-polynomial enumeration kernel
and Enum MC and Enum Maximal MC admit polynomial-delay enumeration kernels with
O(k2) vertices when parameterized by the vertex cover number of the true-twin quotient graph
of the input graph.

5 Enumeration Kernels for the Parameterization by the Feedback
Edge Number

A set of edges X of a graph G is said to be a feedback edge set if G − S has no cycle, that is,
G − S is a forest. The minimum size of a feedback edge set is called the feedback edge number
or the cyclomatic number. We use fn(G) to denote the feedback edge number of a graph G.
It is well-known (see, e.g., [13]) that if G is a graph with n vertices, m edges and r connected
components, then fn(G) = m − n + r and a feedback edge set of minimum size can be found
in linear time. Throughout this section, we assume that the input graph in an instance of
Enum Minimal MC or Enum MC is given together with a feedback edge set. Equivalently,
we may assume that kernelization and solution-lifting algorithms are supplied by the same
algorithm computing a minimum feedback edge set. Then this algorithm computes exactly
the same set for the given input graph.

In contrast to vertex cover number and neighborhood diversity, Enum Minimal MC
does not admit a fully-polynomial enumeration kernel in case of the feedback edge number:
let ℓ and k be positive integers and consider the graph Hk,ℓ that is constructed as follows.

For every i ∈ {1, . . . , k}, construct two vertices ui and vi and a (ui, vi)-path of length ℓ.
Add edges to make each of u1, · · · , uk and v1, · · · , vk a path of length k − 1.

Observe that Hk,ℓ has at least ℓk minimal matching cuts composed by taking one edge
from every (ui, vi)-path. Since Hk,ℓ has n = k(ℓ + 1) vertices and fn(Hk,ℓ) = k − 1, the
number of minimal matching cuts is at least

(
n

fn(Hk,ℓ)−1 −1
)fn(Hk,ℓ). This immediately implies

that the minimal matching cuts cannot be enumerated in FPT time. In particular, Enum
Minimal MC cannot have a fully-polynomial enumeration kernel by Theorem 3. However,
this problem and Enum MC admit polynomial-delay enumeration kernels.

▶ Theorem 13. Enum Minimal MC and Enum MC admit a polynomial-delay enumeration
kernel with O(k) vertices when parameterized by the feedback edge number k of the input
graph.

The kernels for Enum Minimal MC and Enum MC are similar but the kernel for Enum
MC requires some technical details that do not appear in the kernel for Enum Minimal
MC. For Enum MC, we need the following observation that follows from the results of
Courcelle [8] in the same way as Proposition 4 using a Counting MSOL formulation of the
enumeration problem.

P. A. Golovach, C. Komusiewicz, D. Kratsch, and V. B. Le 37:13

▶ Observation 14. Let F be a forest and let A, B, C ⊆ E(F) be disjoint edge sets. Then
all matchings M of F such that A ⊆ M , B ∩ M = ∅, and either C ⊆ M or C ∩ M = ∅
can be enumerated with polynomial delay. Moreover, if u, v are distinct vertices of the same
connected component of F and h ∈ {0, 1}, then all such (nonempty) matchings with the
additional property that |E(P) ∩ A| mod 2 = h, where P is the (u, v)-path of F , also can be
enumerated with polynomial delay.

Proof of Theorem 13. We sketch the proof for Enum MC. Let G be a graph with fn(G) = k

and a feedback edge set S of size k. The case where G is a forest can be settled by using
Observation 14 (or Proposition 4). We assume from now that G is not a forest. In particular,
S ̸= ∅. If G has one or more connected component that are trees, we select an arbitrary
vertex v∗ of these components. If G has a connected component that contains a vertex of
degree one and is not a tree, then arbitrary select such a vertex u∗ of degree one and denote
by e∗ be the edge incident to u∗. Then we iteratively delete vertices of degree at most one
distinct from u∗ and v∗. Denote by G′ the obtained graph. Notice that G′ has at most one
isolated vertex (the vertex v∗) and at most one vertex of degree one (the vertex u∗). Observe
also that S is a minimum feedback edge set of G′. Let T = G′ − S. Notice that T is a forest
and has at most 2|S| + 2 ≤ 2k + 2 vertices of degree at most one. It can be shown that T has
at most 2k vertices of degree at least three. Denote by X the set of vertices of T that either
are end-vertices of the edges of S, or have degree one, or have degree at least three. Then
|X| ≤ 4k + 2, and every vertex v of G′ of degree two is an inner vertex of an (x, y)-path
P such that x, y ∈ X and the inner vertices of P are outside X. Moreover, for every two
distinct x, y ∈ X, G′ has at most one (x, y)-path Pxy with all its inner vertices outside X.
We denote by P the set of all such paths. We say that an edge of Pxy is the x-edge if it is
incident to x and is the y-edge if it is incident to y. We say that an edge e of Pxy is a second
x-edge (a second y-edge, respectively) if e has a common end-vertex with the x-edge (with
the y-edge, respectively). The edges that are distinct from the x-edge, the second x-edge,
the y-edge and the second y-edge are called middle edges. We say that Pxy is long if Pxy has
length at least six; otherwise, Pxy is short. Let F = G − E(G′). Since S ⊆ E(G′), F is a
forest. Moreover, each connected component T of F has at most one vertex in V (G′).

We exhaustively apply the following reduction rule.

▶ Reduction Rule. If there is a long path Pxy ∈ P for some x, y ∈ X, then contract an
arbitrary middle edge of Pxy.

Let H be the graph obtained from G′ by the exhaustive application of the reduction rule.
We also denote by P ′ the set of paths obtained from the paths of P; we use P ′

xy to denote
the path obtained from Pxy ∈ P . Our kernelization algorithm returns H together with S. It
can be seen that |V (H)| ≤ 20k + 1.

For the construction of the solution-lifting algorithm, recall that by our assumption the
input graph is given together with S and S ⊆ E(H). Then we can identify v∗, u∗ and e∗ in
G and H, and then we can recompute the set X. Next, we can compute the sets of paths P
and P ′ of G and H, respectively, in polynomial time. This allows us to assume that the
solution-lifting algorithm has access to these sets.

To construct the solution-lifting algorithm, denote by M and M′ the sets of matching
cuts of G and H, respectively. Define M1 = {M ∈ M | M ∩ E(G′) = ∅} and M2 = {M ∈
M | M ∩ E(G′) ̸= ∅}. Notice that M ∈ M1 is nonempty if and only if M is a nonempty
matching of F = G − E(G′). First, we deal with the matching cuts of M1. Observe that G

is connected if and only if H is connected. This means that the empty set is a matching cut
of G if and only if the empty set is a matching cut of H.

STACS 2021

37:14 Parameterized Enumeration Kernels and Matching Cuts

Suppose that H has the empty matching cut. Then the solution-lifting algorithm, given
this matching cut of H, outputs the matching cuts of M1. Notice that M1 ̸= ∅, because
M1 contains the empty matching cut. The solution-lifting algorithm outputs the empty
matching cut and all nonempty matchings of F using Observation 14.

Assume now that H is connected. Then G is connected as well and M1 ̸= ∅ if and only
if F ̸= ∅. By the construction of G′, if F is not empty, then G has a vertex of degree one.
In particular, the kernelization algorithm selects u∗ and e∗ in this case. Notice that e∗ is a
bridge of G, and it holds that {e∗} is a matching cut of both G and H. Observe also that
{e∗} ∈ M2. This matching cut is generated by the solution-lifting algorithm for the cut
{e∗} of H : when the algorithm finishes listing the matching cuts of M2 for {e∗}, it switches
to the listing of all nonempty matchings of F . This can be done with polynomial delay by
Observation 14.

Next, we analyze the matching cuts of M2. By definition, a matching cut M of G is
in M2 if M ∩ E(G′) ̸= ∅. This means that M ∩ E(G′) is a matching cut of G′, and for a
nonempty matching M of G, M ∈ M2 if and only if M ∩ E(G′) is a nonempty matching cut
of G′. We exploit this property and the solution-lifting algorithm lists nonempty matching
cuts of G′ and then for each matching cut of G′, it outputs all its possible extensions by
matchings of F . For this, we define the following relation between matching cuts of H and G′.
Let M be a nonempty matching cut of H and let M ′ be a nonempty matching of G′ (note
that we do not require M ′ to be a matching cut). We say that M ′ is equivalent to M if the
following holds:

(i) M ∩ E(H[X]) = M ′ ∩ E(G[X]) (note that H[X] = G[X]).
(ii) For every Pxy ∈ P such that Pxy is short, M ∩ E(P ′

xy) = M ′ ∩ E(Pxy) (note that
Pxy = P ′

xy in this case).
(iii) For every long Pxy ∈ P ,

(a) M ∩ E(P ′
xy) ̸= ∅ if and only if M ′ ∩ E(Pxy) ̸= ∅,

(b) |M ∩ E(P ′
xy)| mod 2 = |M ′ ∩ E(Pxy)| mod 2,

(c) the x-edge (y-edge, respectively) of P ′
xy is in M ′ if and only if the x-edge (y-edge,

respectively) of Pxy is in M ,
(d) if for the second x-edge ex, the second y-edge ey and the middle edge e of P ′

xy,
|M ∩ {ex, ey, e}| = 1, then

ex ∈ M (ey ∈ M , respectively) if and only if ex ∈ M ′ and ey /∈ M ′ (ex /∈ M ′

and ey ∈ M ′, respectively),
e ∈ M if and only if either ex, ey ∈ M ′ or ex, ey /∈ M ′.

(note that ex, ey are the second x-edge and y-edge of Pxy, because P ′
xy is constructed

by contracting of some middle edges of Pxy).
We use the properties of the relation summarized in the following claim.

▷ Claim 15.
(i) For every nonempty matching cut M of H, there is a nonempty matching M ′ of G′

that is equivalent to M .
(ii) For every nonempty matching cut M of H and every nonempty matching M ′ of G′

equivalent to M , M ′ is a matching cut of G′.
(iii) Every nonempty matching cut M ′ of G′ is equivalent to at most one matching cut of H .
(iv) For every nonempty matching cut M ′ of G′, there is a nonempty matching cut of M

such that M ′ is equivalent to M .

P. A. Golovach, C. Komusiewicz, D. Kratsch, and V. B. Le 37:15

Claim 15 allows us to construct the solution-lifting algorithm for nonempty matching
cuts of H that outputs nonempty matching cuts from M2. For each nonempty matching
cut M of H, the algorithm lists the matching cuts M ′ of G′ such that M ′ is equivalent
to M . Then for each M ′, we extend M ′ to matching cuts of G by adding matchings of
F = G − E(G′). For this, we consider the algorithm EnumPath(Px,y, A, B, C, h) that given
a path Pxy ∈ P , disjoint sets A, B, C ⊆ E(Pxy), and an integer h ∈ {0, 1}, enumerates with
polynomial delay all nonempty matchings M of Pxy such that A ⊆ M , B ∩ M = ∅, either
C ⊆ M or C ∩ M = ∅, and |M | mod 2 = h. Such an algorithm exists by Observation 14.
We also use the algorithm EnumMatchF(M) that, given a matching cut M of G′, lists all
matching cuts of G of the form M ∪ M ′, where M ′ is a matching of F . EnumMatchF(M)
is constructed as follows. Let A be the set of edges of F incident to the end-vertices of F

(recall that each connected component of F contains at most one vertex of V (G′)). Then we
enumerate the matchings M ′ of F such that M ′ ∩ A = ∅. This can be done with polynomial
delay by Observation 14.

Algorithm 2 EnumEquivalent(L, R).

1 if R = ∅ then
2 call EnumMatchF(M);
3 return every matching cut M ′ generated by the algorithm and quit
4 end
5 else if R ̸= ∅ then
6 select arbitrary Pxy ∈ R;
7 set A := ∅; B := ∅; C := ∅; h := |M ∩ E(P ′

xy)| mod 2;
8 if ex ∈ M then set A := A ∪ {ex};
9 if ey ∈ M then set A := A ∪ {ey};

10 if e′
x ∈ M and e, e′

y /∈ M then set A := A ∪ {e′
x} and B := B ∪ {e′

y};
11 if e′

y ∈ M and e, e′
x /∈ M then set A := A ∪ {e′

y} and B := B ∪ {e′
x};

12 if e ∈ M and e′
x, e′

y /∈ M then set C := C ∪ {e′
x, e′

y};
13 call EnumPath(Px,y, A, B, C, h);
14 foreach nonempty matching Z generated by EnumPath(Px,y, A, B, C, h) do
15 EnumEquivalent(L ∪ Z, R \ {Pxy})
16 end
17 end

We use EnumPath and EnumMatchF as subroutines of the recursive branching algo-
rithm EnumEquivalent (see Algorithm 2) that, given a matching M of H , takes as an input
a matching L of G and R ⊆ P and outputs the matching cuts M ′ of G such that (i) L ⊆ M ′,
(ii) M ′ is equivalent to M , and (iii) the constructed matchings M ′ differ only by some edges
of the paths Pxy ∈ R. To initiate the computations, we construct the initial matching L′ of
G and the initial set of paths R′ ⊆ P as follows. We define R′ ⊆ P to be the set of long
paths Pxy ⊆ P such that P ′

xy ∩ M ̸= ∅. Then L′ ⊆ M is the set of edges of M that are not in
the paths of R′. Recall that as an intermediate step, we enumerate nonempty matching cuts
of G′ that are equivalent to M . Then it can be noted that to do this, we have to enumerate
all possible extensions of M to M ′ satisfying condition (iii) of the equivalence definition.
Therefore, we call EnumEquivalent(L′, R′) to solve the enumeration problem. It can
be seen that EnumEquivalent(L′, R′) enumerates with polynomial delay all nonempty
matching cuts M ∈ M2 such that M ′ ∩ E(G′) is a nonempty matching cut of G′ equivalent
to M .

STACS 2021

37:16 Parameterized Enumeration Kernels and Matching Cuts

To summarize, recall that if H is connected and has a vertex of degree one, we used the
matching cut {e∗} to list the matching cuts formed by the edges of F = G − E(G′). Clearly,
{e∗} is generated by EnumEquivalent(L′, R′) for L′ and R′ constructed for M = {e∗}.
Therefore, we conclude that the solution-lifting algorithm satisfies condition (ii∗) of the
definition of a polynomial-delay enumeration kernel. ◀

6 Conclusion

We initiated the systematic study of enumeration kernelization for several variants of the
matching cut problem. We obtained fully-polynomial (polynomial-delay) enumeration kernels
for the parameterizations by the vertex cover number, twin-cover number, neighborhood
diversity, modular width, and feedback edge number. Since the solution-lifting algorithms are
simple branching algorithms, these kernels give a condensed view of the solution sets which
may be interesting in applications where one may want to inspect all solutions manually.
Restricting to polynomial-time and polynomial-delay solution-lifting algorithms seems helpful
in the sense that they will usually be easier to understand.

There are many topics for further research in enumeration kernelization. For Matching
Cut, it would be interesting to investigate other structural parameters, like the feedback
vertex number (see [10] for the definition). More generally, the area of enumeration kernel-
ization seems still somewhat unexplored. It would be interesting to see applications of the
various kernel types to other enumeration problems. For this, it seems to be important to
develop general tools for enumeration kernelizations. For example, is it possible to establish
a framework for enumeration kernelization lower bounds similar to the techniques used for
classical kernels [4, 5] (see also [10, 15])?

Concerning the counting and enumeration of matching cuts, we also proved the upper
bound F (n + 1) − 1 for the maximum number of matching cuts of an n-vertex graph and
showed that the bound is tight. What can be said about the maximum number of minimal
and maximal matching cuts? It is not clear whether our lower bounds given in Propositions 7
and 8 are tight. Finally, it seems promising to study enumeration kernels for d-Cut [21], a
generalization of Matching Cut that has recently received some attention.

References
1 N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare. On structural

parameterizations of the matching cut problem. In Xiaofeng Gao, Hongwei Du, and Meng
Han, editors, Combinatorial Optimization and Applications - 11th International Conference,
COCOA 2017, Shanghai, China, December 16-18, 2017, Proceedings, Part II, volume 10628 of
Lecture Notes in Computer Science, pages 475–482, 2017.

2 Matthias Bentert, Till Fluschnik, André Nichterlein, and Rolf Niedermeier. Parameterized
aspects of triangle enumeration. J. Comput. Syst. Sci., 103:61–77, 2019. doi:10.1016/j.jcss.
2019.02.004.

3 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

4 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009. doi:
10.1016/j.jcss.2009.04.001.

5 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by
cross-composition. SIAM J. Discret. Math., 28(1):277–305, 2014. doi:10.1137/120880240.

https://doi.org/10.1016/j.jcss.2019.02.004
https://doi.org/10.1016/j.jcss.2019.02.004
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1137/120880240

P. A. Golovach, C. Komusiewicz, D. Kratsch, and V. B. Le 37:17

6 Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau. Bridge-depth characterizes which
structural parameterizations of vertex cover admit a polynomial kernel. In 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 16:1–16:19, 2020.
doi:10.4230/LIPIcs.ICALP.2020.16.

7 Vasek Chvátal. Recognizing decomposable graphs. Journal of Graph Theory, 8(1):51–53, 1984.
doi:10.1002/jgt.3190080106.

8 Bruno Courcelle. Linear delay enumeration and monadic second-order logic. Discret. Appl.
Math., 157(12):2675–2700, 2009. doi:10.1016/j.dam.2008.08.021.

9 Nadia Creignou, Arne Meier, Julian-Steffen Müller, Johannes Schmidt, and Heribert Vollmer.
Paradigms for parameterized enumeration. Theory Comput. Syst., 60(4):737–758, 2017.
doi:10.1007/s00224-016-9702-4.

10 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

11 Peter Damaschke. Parameterized enumeration, transversals, and imperfect phylogeny recon-
struction. Theor. Comput. Sci., 351(3):337–350, 2006. doi:10.1016/j.tcs.2005.10.004.

12 Peter Damaschke. Fixed-parameter enumerability of cluster editing and related problems.
Theory Comput. Syst., 46(2):261–283, 2010.

13 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

14 Henning Fernau. On parameterized enumeration. In Computing and Combinatorics, 8th
Annual International Conference, COCOON 2002, Singapore, August 15-17, 2002, Proceedings,
volume 2387 of Lecture Notes in Computer Science, pages 564–573. Springer, 2002. doi:
10.1007/3-540-45655-4_60.

15 Fedor V. Fomin, Daniel Lokshtanove, Saket Saurabh, and Meirav Zehavi. Kernelization.
Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge, 2019. doi:
10.1017/9781107415157.

16 Fedor V. Fomin, Saket Saurabh, and Yngve Villanger. A polynomial kernel for proper interval
vertex deletion. SIAM J. Discret. Math., 27(4):1964–1976, 2013. doi:10.1137/12089051X.

17 Robert Ganian. Twin-cover: Beyond vertex cover in parameterized algorithmics. In Dániel Marx
and Peter Rossmanith, editors, Parameterized and Exact Computation - 6th International
Symposium, IPEC 2011, Saarbrücken, Germany, September 6-8, 2011. Revised Selected
Papers, volume 7112 of Lecture Notes in Computer Science, pages 259–271. Springer, 2011.
doi:10.1007/978-3-642-28050-4_21.

18 Robert Ganian. Improving vertex cover as a graph parameter. Discret. Math. Theor. Comput.
Sci., 17(2):77–100, 2015. URL: http://dmtcs.episciences.org/2136.

19 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

20 Petr Golovach, Christian Komusiewicz, Dieter Kratsch, and Van Bang Le. Refined notions of
parameterized enumeration kernels with applications to matching cut enumerations. CoRR,
abs2101.03800, 2021. arXiv:2101.03800.

21 Guilherme C. M. Gomes and Ignasi Sau. Finding cuts of bounded degree: Complexity, FPT
and exact algorithms, and kernelization. In Bart M. P. Jansen and Jan Arne Telle, editors, 14th
International Symposium on Parameterized and Exact Computation, IPEC 2019, September
11-13, 2019, Munich, Germany, volume 148 of LIPIcs, pages 19:1–19:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.IPEC.2019.19.

22 R. L. Graham. On primitive graphs and optimal vertex assignments. Ann. New York Acad.
Sci., 175:170–186, 1970.

23 Sun-Yuan Hsieh, Hoàng-Oanh Le, Van Bang Le, and Sheng-Lung Peng. Matching cut in
graphs with large minimum degree. In Ding-Zhu Du, Zhenhua Duan, and Cong Tian, editors,
Computing and Combinatorics - 25th International Conference, COCOON 2019, Xi’an, China,
July 29-31, 2019, Proceedings, volume 11653 of Lecture Notes in Computer Science, pages
301–312. Springer, 2019. doi:10.1007/978-3-030-26176-4_25.

STACS 2021

https://doi.org/10.4230/LIPIcs.ICALP.2020.16
https://doi.org/10.1002/jgt.3190080106
https://doi.org/10.1016/j.dam.2008.08.021
https://doi.org/10.1007/s00224-016-9702-4
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.tcs.2005.10.004
https://doi.org/10.1007/3-540-45655-4_60
https://doi.org/10.1007/3-540-45655-4_60
https://doi.org/10.1017/9781107415157
https://doi.org/10.1017/9781107415157
https://doi.org/10.1137/12089051X
https://doi.org/10.1007/978-3-642-28050-4_21
http://dmtcs.episciences.org/2136
http://arxiv.org/abs/2101.03800
https://doi.org/10.4230/LIPIcs.IPEC.2019.19
https://doi.org/10.1007/978-3-030-26176-4_25

37:18 Parameterized Enumeration Kernels and Matching Cuts

24 George Karakostas. A better approximation ratio for the vertex cover problem. ACM Trans.
Algorithms, 5(4):41:1–41:8, 2009. doi:10.1145/1597036.1597045.

25 Christian Komusiewicz, Dieter Kratsch, and Van Bang Le. Matching cut: Kernelization,
single-exponential time fpt, and exact exponential algorithms. Discret. Appl. Math., 283:44–58,
2020. doi:10.1016/j.dam.2019.12.010.

26 Christian Komusiewicz and Johannes Uhlmann. A cubic-vertex kernel for flip consensus tree.
Algorithmica, 68(1):81–108, 2014.

27 Dieter Kratsch and Van Bang Le. Algorithms solving the matching cut problem. Theor.
Comput. Sci., 609:328–335, 2016. doi:10.1016/j.tcs.2015.10.016.

28 Stefan Kratsch. Recent developments in kernelization: A survey. Bull. EATCS, 113, 2014.
29 Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization.

In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, pages 224–237. ACM, 2017. doi:10.1145/3055399.3055456.

30 Andrea Marino. Analysis and enumeration, volume 6 of Atlantis Studies in Computing. Atlantis
Press, Paris, 2015. Algorithms for biological graphs, With forewords by Tiziana Calamoneri
and Pierluigi Crescenzi.

31 Kitty Meeks. Randomised enumeration of small witnesses using a decision oracle. Algorithmica,
81(2):519–540, 2019.

32 Arne Meier. Parametrised enumeration. Habilitation thesis, Leibniz Universit́’at Hannover,
2020. doi:10.15488/9427.

33 Sang-il Oum. Approximating rank-width and clique-width quickly. ACM Trans. Algorithms,
5(1):10:1–10:20, 2008. doi:10.1145/1435375.1435385.

34 Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. J. Comb.
Theory, Ser. B, 96(4):514–528, 2006. doi:10.1016/j.jctb.2005.10.006.

35 Marko Samer and Stefan Szeider. Backdoor trees. In Dieter Fox and Carla P. Gomes,
editors, Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI
2008, Chicago, Illinois, USA, July 13-17, 2008, pages 363–368. AAAI Press, 2008. URL:
http://www.aaai.org/Library/AAAI/2008/aaai08-057.php.

36 Marc Tedder, Derek G. Corneil, Michel Habib, and Christophe Paul. Simpler linear-time
modular decomposition via recursive factorizing permutations. In Automata, Languages
and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July
7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games,
volume 5125 of Lecture Notes in Computer Science, pages 634–645. Springer, 2008. doi:
10.1007/978-3-540-70575-8_52.

37 Kunihiro Wasa. Enumeration of enumeration algorithms. CoRR, abs/1605.05102, 2016.
arXiv:1605.05102.

https://doi.org/10.1145/1597036.1597045
https://doi.org/10.1016/j.dam.2019.12.010
https://doi.org/10.1016/j.tcs.2015.10.016
https://doi.org/10.1145/3055399.3055456
https://doi.org/10.15488/9427
https://doi.org/10.1145/1435375.1435385
https://doi.org/10.1016/j.jctb.2005.10.006
http://www.aaai.org/Library/AAAI/2008/aaai08-057.php
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1007/978-3-540-70575-8_52
http://arxiv.org/abs/1605.05102

Average-Case Algorithms for Testing Isomorphism
of Polynomials, Algebras, and Multilinear Forms
Joshua A. Grochow !

Departments of Computer Science and Mathematics, University of Colorado Boulder,
Boulder, CO, USA

Youming Qiao !

Center for Quantum Software and Information, University of Technology Sydney,
Ultimo, NSW 2007, Australia

Gang Tang !

Center for Quantum Software and Information, University of Technology Sydney,
Ultimo, NSW 2007, Australia

Abstract
We study the problems of testing isomorphism of polynomials, algebras, and multilinear forms.
Our first main results are average-case algorithms for these problems. For example, we develop
an algorithm that takes two cubic forms f, g ∈ Fq[x1, . . . , xn], and decides whether f and g are
isomorphic in time qO(n) for most f . This average-case setting has direct practical implications,
having been studied in multivariate cryptography since the 1990s. Our second result concerns the
complexity of testing equivalence of alternating trilinear forms. This problem is of interest in both
mathematics and cryptography. We show that this problem is polynomial-time equivalent to testing
equivalence of symmetric trilinear forms, by showing that they are both Tensor Isomorphism-
complete (Grochow & Qiao, ITCS 2021), therefore is equivalent to testing isomorphism of cubic
forms over most fields.

2012 ACM Subject Classification Computing methodologies → Algebraic algorithms; Computing
methodologies → Combinatorial algorithms

Keywords and phrases polynomial isomorphism, trilinear form equivalence, algebra isomorphism,
average-case algorithms, tensor isomorphism complete, symmetric and alternating bilinear maps

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.38

Related Version Full Version: https://arxiv.org/abs/2012.01085

Funding Joshua A. Grochow: Partially supported by NSF grants DMS-1750319 and DMS-1622390.
Youming Qiao: Partially supported by the Australian Research Council DP200100950.
Gang Tang: Partially supported by the Australian Research Council DP160101652.

Acknowledgements We thank the anonymous reviewers for their careful reading and helpful sugges-
tions.

1 Introduction

In this paper, we study isomorphism testing problems for polynomials, algebras, and multi-
linear forms. Our first set of results is algorithmic, namely average-case algorithms for these
problems (Section 1.1). Our second result is complexity-theoretic, concerning the problems
of testing equivalence of symmetric and alternating trilinear forms (Section 1.2).

1.1 Average-case algorithms for polynomial isomorphism and more
The polynomial isomorphism problem. Let F be a field, and let X = {x1, . . . , xn} be a set
of variables. Let GL(n,F) be the general linear group consisting of n× n invertible matrices
over F. A natural group action of A = (ai,j) ∈ GL(n,F) on the polynomial ring F[X] sends
f(x1, . . . , xn) to f ◦ A := f(

∑n
j=1 a1,jxj , . . . ,

∑n
j=1 an,jxj). The polynomial isomorphism

© Joshua A. Grochow, Youming Qiao, and Gang Tang;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 38; pp. 38:1–38:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jgrochow@colorado.edu
https://orcid.org/0000-0002-6466-0476
mailto:Youming.Qiao@uts.edu.au
https://orcid.org/0000-0003-4334-1449
mailto:Gang.Tang-1@student.uts.edu.au
https://doi.org/10.4230/LIPIcs.STACS.2021.38
https://arxiv.org/abs/2012.01085
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Isomorphism Testing of Some Algebraic Structures

problem (PI) asks, given f, g ∈ F[X], whether there exists A ∈ GL(n,F) such that f = g ◦A.
In the literature, this problem was also called the polynomial equivalence problem [1].

An important subcase of PI is when the input polynomials are required to be homogeneous
of degree d. In this case, this problem is referred to as the homogeneous polynomial
isomorphism problem, denoted as d-HPI. Homogeneous degree-3 (resp. degree-2) polynomials
are also known as cubic (resp. quadratic) forms.

In this article, we assume that a polynomial is represented in algorithms by its list of
coefficients of the monomials, though other representations like algebraic circuits are also
possible in this context [13]. Furthermore, we shall mostly restrict our attention to the case
when the polynomial degrees are constant.

Motivations to study polynomial isomorphism. The polynomial isomorphism problem
has been studied in both multivariate cryptography and computational complexity. In
1996, inspired by the celebrated zero-knowledge protocol for graph isomorphism [9], Patarin
proposed to use PI as the security basis of authentication and signature protocols [17]. This
lead to a series of works on practical algorithms for PI; see [3,4,12] and references therein. In
the early 2000s, Agrawal, Kayal and Saxena studied PI from the computational complexity
perspective. They related PI with graph isomorphism and algebra isomorphism [1,2], and
studied some special instances of PI [13] as well as several related algorithmic tasks [18].

Despite these works, little progress has been made on algorithms with rigorous analysis for
the general PI. More specifically, Kayal’s algorithm [13] runs in randomized polynomial time,
works for the degree d ≥ 4, and doesn’t require the field to be finite. However, it only works
in the multilinear setting, namely when f and g are isomorphic to a common multilinear
polynomial h. The algorithms from multivariate cryptography [4] either are heuristic, or need
unproven assumptions. While these works contain several nice ideas and insights, and their
implementations show practical improvements, they are nonetheless heuristic in nature, and
rigorously analyzing them seems difficult. Indeed, if any of these algorithms had worst-case
analysis matching their heuristic performance, it would lead to significant progress on the
long-open Group Isomorphism problem (see, e.g., [11, 15]).

Our result on polynomial isomorphism. Our first result is an average-case algorithm with
rigorous analysis for PI over a finite field Fq. As far as we know, this is the first non-trivial
algorithm with rigorous analysis for PI over finite fields. (The natural brute-force algorithm,
namely enumerating all invertible matrices, runs in time qn2 · poly(n, log q).) Furthermore,
the average-case setting is quite natural, as it is precisely the one studied multivariate
cryptography. We elaborate on this further after stating our result.

To state the result, let us define what a random polynomial means in this setting. Since
we represent polynomials by their lists of coefficients, a random polynomial of degree d

is naturally the one whose coefficients of the monomials of degree ≤ d are independently
randomly drawn from Fq. We also consider the homogeneous setting where only monomials
of degree = d are of interest.

▶ Theorem 1. Let d ≥ 3 be a constant. Let f, g ∈ Fq[x1, . . . , xn] be (resp. homogeneous)
polynomials of degree ≤ d (resp. = d). There exists an qO(n)-time algorithm that decides
whether f and g are isomorphic, for all but at most 1

qΩ(n) fraction of f .
Furthermore, if f and g are isomorphic, then this algorithm also computes an invertible

matrix A which sends f to g.

J. A. Grochow, Y. Qiao, and G. Tang 38:3

Let us briefly indicate the use of this average-case setting in multivariate cryptography.
In the authentication scheme described in [17], the public key consists of two polynomials
f, g ∈ Fq[x1, . . . , xn], where f is a random polynomial, and g is obtained by applying a
random invertible matrix to f . Then f and g are public keys, and any isomorphism from
f to g can serve as the private key. Therefore, the algorithm in Theorem 1 can be used to
recover a private key for most f .

Adapting the algorithm strategy to more isomorphism problems. In [1,2], the algebra
isomorphism problem (AI) was studied and shown to be polynomial-time equivalent to
PI over most fields. In [11], many more problems are demonstrated to be polynomial-
time equivalent to PI, including the trilinear form equivalence problem (TFE). In these
reductions, due to the blow-up of the parameters, the qO(n)-time algorithm in Theorem 1 does
not translate to moderately exponential-time, average-case algorithms for these problems.
The algorithm design idea, however, does translate to give moderately exponential-time,
average-case algorithms for AI and TFE. This will be shown in Section 3.2.

1.2 Complexity of symmetric and alternating trilinear form equivalence
From cubic forms to symmetric and alternating trilinear forms. In the context of polyno-
mial isomorphism, cubic forms are of particular interest. In complexity theory, it was shown
that d-HPI reduces to cubic form isomorphism over fields with dth roots of unity [1,2], or over
fields of characteristic 0 or > d [11]. In multivariate cryptography, cubic form isomorphism
also received special attention, since using higher degree forms results in less efficiency in the
cryptographic protocols.

Just as quadratic forms are closely related with symmetric bilinear forms, cubic forms
are closely related with symmetric trilinear forms. Let F be a field of characteristic not 2 or
3, and let f =

∑
1≤i≤j≤k≤n ai,j,kxixjxk ∈ F[x1, . . . , xn] be a cubic form. For any i, j, k ∈ [n],

let 1 ≤ i′ ≤ j′ ≤ k′ ≤ n be the result of sorting i, j, k in the increasing order, and set
ai,j,k = ai′,j′,k′ . Then we can define a symmetric1 trilinear form ϕf : Fn × Fn × Fn → F by

ϕf (u, v, w) =
∑
i∈[n]

ai,i,iuiviwi + 1
3 ·

∑
i,j,k∈[n]

|{i,j,k}|=2

ai,j,kuivjwk + 1
6 ·

∑
i,j,k∈[n]

i,j,k all different

ai,j,kuivjwk.

It can be seen easily that for any v = (v1, . . . , vn)t ∈ Fn, f(v1, . . . , vn) = ϕf (v, v, v).
In the theory of bilinear forms, symmetric and skew-symmetric bilinear forms are two

important special subclasses. For example, they are critical in the classifications of classical
groups [19] and finite simple groups [21]. For trilinear forms, we also have skew-symmetric
trilinear forms. In fact, to avoid some complications over fields of characteristics 2 or 3, we
shall consider alternating trilinear forms which are closely related to skew-symmetric ones.
For trilinear forms, the exceptional groups of type E6 can be constructed as the stabilizer of
certain symmetric trilinear forms, and those of type G2 can be constructed as the stabilizer
of certain alternating trilinear forms.

We say that a trilinear form ϕ : Fn × Fn × Fn → F is alternating, if whenever two
arguments of ϕ are equal, ϕ evaluates to zero. Note that this implies skew-symmetry, namely
for any u1, u2, u3 ∈ Fn and any σ ∈ S3, ϕ(u1, u2, u3) = sgn(σ) · ϕ(uσ(1), uσ(2), uσ(3)). Over
fields of characteristic zero or > 3, this is equivalent to skew-symmetry.

1 That is, for any permutation σ ∈ S3, ϕ(u1, u2, u3) = ϕ(uσ(1), uσ(2), uσ(3)).

STACS 2021

38:4 Isomorphism Testing of Some Algebraic Structures

The trilinear form equivalence problem. Given a trilinear form ϕ : Fn × Fn × Fn → F,
A ∈ GL(n,F) naturally acts on ϕ by sending it to ϕ ◦A := ϕ(A−1(u), A−1(v), A−1(w)). The
trilinear form equivalence problem then asks, given two trilinear forms ϕ, ψ : Fn×Fn×Fn → F,
whether there exists A ∈ GL(n,F), such that ϕ = ψ ◦A. Over fields of characteristic not 2 or
3, two cubic forms f and g are isomorphic if and only if ϕf and ϕg are equivalent, so cubic
form isomorphism is polynomial-time equivalent to symmetric trilinear form equivalence over
such fields. Note that for clarity, we reserve the term “isomorphism” for polynomials (and
cubic forms), and use “equivalence” for multilinear forms.

Motivations to study alternating trilinear form equivalence. Our main interest is to study
the complexity of alternating trilinear form equivalence, with the following motivations.

The first motivation comes from cryptography. To store a symmetric trilinear form on
Fn

q ,
(

n+2
3

)
field elements are required. To store an alternating trilinear form on Fn

q ,
(

n
3
)

field
elements are needed. The difference between

(
n+2

3
)

and
(

n
3
)

could be significant for practical
purposes. For example, when n = 9,

(
n+2

3
)

=
(11

3
)

= 165, while
(

n
3
)

=
(9

3
)

= 84. This means
that in the authentication protocol of Patarin [17], using alternating trilinear forms instead
of cubic forms for n = 9,2 one saves almost one half in the public key size, which is an
important saving in practice.

The second motivation originates from comparing symmetric and alternating bilinear
forms. It is well-known that, in the bilinear case, the structure of alternating forms is simpler
than that for symmetric ones [14]. Indeed, up to equivalence, an alternating bilinear form
is completely determined by its rank over any field, while the classification of symmetric
bilinear forms depends crucially on the underlying field. For example, recall that over R, a
symmetric form is determined by its “signature”, so just the rank is not enough.

A third motivation is implied by the representation theory of the general linear groups;
namely that alternating trilinear forms are the “last” natural case for d = 3. If we consider
the action of GL(n,C) acting on d-tensors in Cn⊗Cn⊗· · ·⊗Cn diagonally (that is, the same
matrix acts on each tensor factor), it is a classical result [19] that the invariant subspaces
of (Cn)⊗d under this action are completely determined by the irreducible representations
of GL(n,C). When d = 3, there are only three such representations, which correspond
precisely to: symmetric trilinear forms, Lie algebras, and alternating trilinear forms. From
the complexity point of view, it was previously shown that isomorphism of symmetric trilinear
forms [1, 2] and Lie algebras [11] are equivalent to algebra isomorphism. Here we show that
the last case, isomorphism of alternating trilinear forms, is also equivalent to the others.

The complexity of alternating trilinear form equivalence. Given the above discussion on
the comparison between symmetric and alternating bilinear forms, one may wonder whether
alternating trilinear form equivalence was easier than symmetric trilinear form equivalence.
Interestingly, we show that this is not the case; rather, they are polynomial-time equivalent.

▶ Theorem 2. The alternating trilinear form equivalence problem is polynomial-time equi-
valent to the symmetric trilinear form equivalence problem.

2 The parameters of the cryptosystem are q and n. When q = 2, n = 9 is not secure as it can be solved in
practice [5]. So q needs to be large for n = 9 to be secure. Interestingly, according to [4, pp. 227], the
parameters q = 16 and n = 8 seemed difficult for practical attacks via Gröbner basis.

J. A. Grochow, Y. Qiao, and G. Tang 38:5

Note here that the reduction from alternating to symmetric trilinear form equivalence
requires us to go through the tensor isomorphism problem, which causes polynomial blow-ups
in the dimensions of the underlying vector spaces. Therefore, though these two problems
are polynomial-time equivalent, these problems may result in cryptosystems with different
efficiencies for a given security level.

1.3 Previous works

The relation between P I and AI. As mentioned in Section 1.1, the degree-d homogeneous
polynomial isomorphism problem (d-HPI) was shown to be almost equivalent to the algebra
isomorphism problem (AI) in [1, 2]. (See Section 3.2 for the formal definition of algebra
isomorphism problem.) Here, almost refers to that for the reduction from d-HPI to AI
in [1, 2], the underlying fields are required to contain a dth root of unity. When d = 3, this
means that the characteristic of the underlying field p satisfies that p = 2 mod 3 or p = 0,
which amounts to half of the primes. In [11], another reduction from 3-HPI to AI was
presented, which works for fields of characteristics not 2 or 3. The reduction from AI to
3-HPI in [2] works over any field.

The tensor isomorphism complete class. In [8, 11], polynomial-time equivalences are
proved between isomorphism testing of many more mathematical structures, including
tensors, matrix spaces, polynomial maps, and so on. These problems arise from many areas:
besides multivariate cryptography and computational complexity, they appear in quantum
information, machine learning, and computational group theory. This motivates the authors
of [11] to define the tensor isomorphism complete class TI, which we recall here.

▶ Definition 3 (The d-Tensor Isomorphism problem, and the complexity class TI). d-
Tensor Isomorphism over a field F is the problem: given two d-way arrays A = (ai1,...,id

)
and B = (bi1,...,id

), where ik ∈ [nk] for k ∈ [d], and ai1,...,id
, bi1,...,id

∈ F, decide whether there
are Pk ∈ GL(nk,F) for k ∈ [d], such that for all i1, . . . , id,

ai1,...,id
=

∑
j1,...,jd

bj1,...,jd
(P1)i1,j1(P2)i2,j2 · · · (Pd)id,jd

. (1)

For any field F, TIF denotes the class of problems that are polynomial-time Turing (Cook)
reducible to d-Tensor Isomorphism over F, for some d. A problem is TIF-complete, if it is
in TIF, and d-Tensor Isomorphism over F for any d reduces to this problem.

When a problem is naturally defined and is TIF-complete over any F, then we can simply
write that it is TI-complete.

Average-case algorithms for matrix space isometry. In [6, 15], motivated by testing
isomorphism of p-groups (widely believed to be the hardest cases of Group Isomorphism, see
e.g. [10]), the algorithmic problem alternating matrix space isometry was studied. (In the
literature [20], this problem was also known as the alternating bilinear map pseudo-isometry
problem.) That problem asks the following: given two linear spaces of alternating matrices
A,B ≤ Λ(n, q), decide whether there exists T ∈ GL(n, q), such that A = T tBT = {T tBT :
B ∈ B}. (See Section 2 for the definition of alternating matrices.) The main result of [6],
improving upon the one in [15], is an average-case algorithm for this problem in time qO(n+m),
where m = dim(A).

STACS 2021

38:6 Isomorphism Testing of Some Algebraic Structures

1.4 Remarks on the technical side
Techniques for proving Theorem 1. The algorithm for PI in Theorem 1 is based on the
algorithmic idea from [6,15]. However, to adapt that idea to the PI setting, there are several
interesting conceptual and technical difficulties.

One conceptual difficulty is that for alternating matrix space isometry, there are actually
two GL actions, one is by GL(n, q) as explicitly described above, and the other is by GL(m, q)
performing the basis change of matrix spaces. The algorithm in [6] crucially uses that
the GL(m, q) action is “independent” of the GL(n, q) action. For PI, there is only one
GL(n, q)-action acting on all the variables. Fortunately, as we show in Section 3.1, there is
still a natural way of applying the the basic idea from [6,15].

One technical difficulty is that the analysis in [6] relies on properties of random alternating
matrices, while for 3-HPI, the analysis relies on properties of random symmetric matrices.
To adapt the proof strategy in [6] (based on [15]) to the symmetric setting is not difficult,
but suggests some interesting differences between symmetric and alternating matrices (see
Appendix A in the full version of this paper).

Techniques for proving Theorem 2. By [8], the trilinear form equivalence problem is in
TI, and so are the special cases symmetric and alternating trilinear form equivalence. The
proof of Theorem 2 goes by showing that both symmetric and alternating trilinear form
equivalence are TI-hard.

Technically, the basic proof strategy is to adapt a gadget construction, which originates
from [8] and then is further used in [11]. To use that gadget in the trilinear form setting does
require several non-trivial ideas. First, we identify the right TI-complete problem to start
with, namely the alternating (resp. symmetric) matrix space isometry problem. Second,
we need to arrange a 3-way array A, representing a linear basis of an alternating (resp.
symmetric) matrix spaces, into one representing an alternating trilinear form. This requires
3 copies of A, assembled in an appropriate manner. Third, we need to add the gadget in three
directions (instead of just two as in previous results). All these features were not present
in [8,11]. The correctness proof also requires certain tricky twists compared with those in [8]
and [11].

2 Preliminaries

Notations. We collect the notations here, though some of them have appeared in Section 1.
Let F be a field. Vectors in Fn are column vectors. Let ei denote the ith standard
basis vector of Fn. Let M(ℓ × n,F) be the linear space of ℓ × n matrices over F, and set
M(n,F) := M(n× n,F). Let In denote the identity matrix of size n. For A ∈ M(n,F), A is
symmetric if At = A, and alternating if for every v ∈ Fn, vtAv = 0. When the characteristic
of F is not 2, A is alternating if and only if A is skew-symmetric. Let S(n,F) be the linear
space of n× n symmetric matrices over F, and let Λ(n,F) be the linear space of alternating
matrices over F. When F = Fq, we may write M(n,Fq) as M(n, q). We use ⟨·⟩ to denote the
linear span.

3-way arrays. A 3-way array over a field F is an array with three indices whose elements
are from F. We use M(n1 × n2 × n3,F) to denote the linear space of 3-way arrays of side
lengths n1 × n2 × n3 over F.

Let A ∈ M(ℓ × n × m,F). For k ∈ [m], the kth frontal slice of A is (ai,j,k)i∈[ℓ],j∈[n] ∈
M(ℓ × n,F). For j ∈ [n], the jth vertical slice of A is (ai,j,k)i∈[ℓ],k∈[m] ∈ M(ℓ ×m,F). For
i ∈ [ℓ], the ith horizontal slice of A is (ai,j,k)j∈[n],k∈[m] ∈ M(n×m,F). We shall often think
of A as a matrix tuple in M(ℓ× n,F)m consisting of its frontal slices.

J. A. Grochow, Y. Qiao, and G. Tang 38:7

A natural action of (P,Q,R) ∈ GL(ℓ,F)×GL(n,F)×GL(m,F) sends a 3-way array A ∈
M(ℓ×n×m,F) to P tARQ, defined as follows. First represent A as an m-tuple of ℓ×n matrices
A = (A1, . . . , Am) ∈ M(ℓ×n,F)m. Then P and Q send A to P tAQ = (P tA1Q, . . . , P

tAmQ),
and R = (ri,j) sends A to (A′

1, . . . , A
′
m) where A′

i =
∑

j∈[m] ri,jAj . Clearly, the actions of
P , Q, and R commute. The resulting m-tuple of ℓ × n matrices obtained by applying P ,
Q, and R to A is then P tARQ. Note that up to possibly relabelling indices, the entries of
P tARQ are explicitly defined as in Equation 1.

Useful results. Let A = (A1, . . . , Am),B = (B1, . . . , Bm) ∈ M(n,F)m. Given T ∈ GL(n,F),
let T tAT = (T tA1T, . . . , T

tAmT). We say that A and B are isometric, if there exists
T ∈ GL(n,F) such that T tAT = B. Let Iso(A,B) = {T ∈ GL(n,F) : A = T tBT}, and set
Aut(A) := Iso(A,A). Clearly, Aut(A) is a subgroup of GL(n, q), and Iso(A,B) is a coset of
Aut(A).

▶ Theorem 4 ([7, 12]). Let A,B ∈ S(n, q)m (resp. Λ(n, q)m) for some odd q. There exists
a poly(n,m, q)-time deterministic algorithm which takes A and B as inputs and outputs
Iso(A,B), specified by (if nonempty) a generating set of Aut(A) (by the algorithm in [7])
and a coset representative T ∈ Iso(A,B) (by the algorithm in [12]).

3 Average-case algorithms for polynomial isomorphism and more

We shall present the algorithm for the cubic form isomorphism problem in detail in Section 3.1.
We will state our results for problems like algebra isomorphism in Section 3.2.

3.1 Cubic form isomorphism over fields of odd order
We present the algorithm for cubic form isomorphism over fields of odd characteristic, as
this algorithm already captures the essence of the idea, and cubic forms are most interesting
from the PI perspective as mentioned in Section 1.2. A full proof of Theorem 1, which is a
relatively minor extension of Theorem 5, can be found in the full version of this paper.

▶ Theorem 5. Let Fq be a finite field of odd order, and X = {x1, . . . , xn} be a set of
commuting variables. Let f, g ∈ Fq[X] be two cubic forms. There exists a deterministic
algorithm that decides whether f and g are isomorphic in time qO(n), for all but at most

1
qΩ(n) fraction of f .

Proof. Let r be a constant to be determined later on, and suppose n is sufficiently larger than
r. (Indeed, by Lemma 6, the constant r can be taken as 8.) Our goal is to find T ∈ GL(n, q),
such that f = g ◦ T .

The algorithm consists of two main steps. Let us first give an overview of the two steps.
In the first step, we show that there exists a set of at most qO(rn)-many T1 ∈ GL(n, q),

such that every T ∈ GL(n, q) can be written as T1T2, where T2 is of the form[
Ir 0
0 R

]
. (2)

Furthermore, such T1 can be enumerated in time qO(rn). We then set g1 = g ◦ T1.
In the second step, we focus on searching for T2 such that f = g1◦T2. The key observation

is that those T2 as in Equation 2 leave xi, i ∈ [r], invariant, and send xj , j ∈ [r + 1, n],
to a linear combination of xk, k ∈ [r + 1, n]. It follows that for any fixed i ∈ [r], T2 sends∑

r+1≤j≤k≤n ai,j,kxixjxk to a linear combination of xixjxk, r + 1 ≤ j ≤ k ≤ n. We will

STACS 2021

38:8 Isomorphism Testing of Some Algebraic Structures

use this observation to show that for a random f , the number of T2 satisfying f = g1 ◦ T2
is upper bounded by qn with high probability. Furthermore, such T2, if they exist, can be
enumerated efficiently. This allows us to go over all possible T2 and test if f = g1 ◦ T2.

The first step. We show that there exist at most qO(rn)-many T1 ∈ GL(n, q), such that any
T ∈ GL(n, q) can be written as T1T2 where T2 is of the form as in Equation 2.

Recall that ei is the ith standard basis vector. Let Er = ⟨e1, . . . , er⟩, and let Fr =
⟨er+1, . . . , en⟩. Suppose for i ∈ [r], T (ei) = ui, and T (Fr) = V ≤ Fn

q . Let T1 be any matrix
that satisfies T1(ei) = ui, and T1(Fr) = V . Let T2 = T−1

1 T . Then T2 satisfies that for i ∈ [r],
T2(ei) = ei, and T2(Fr) = Fr. In other words, T2 is of the form in Equation 2.

We then need to show that these T1 can be enumerated in time qO(rn).
Recall that T1 is determined by the images of ei, i ∈ [r], and Fr ≤ Fn

q . So we first
enumerate matrices of the form

[
u1 . . . ur er+1 . . . en

]
, where ui ∈ Fn

q are linearly
independent. We then need to enumerate the possible images of Fr. Let U = ⟨u1, . . . , ur⟩.
Then the image of Fr is a complement subspace of U . It is well-known that the number of
complement subspaces of a dimension-r space is ∼ qr(n−r). To enumerate all complement
subspaces of U , first compute one complement subspace V = ⟨v1, . . . , vn−r⟩. Then it is easy
to verify that, when going over A = (ai,j)i∈[r],j∈[n−r] ∈ M(r× (n− r), q), ⟨vj +

∑
i∈[r] ai,jui :

j ∈ [n−r]⟩ go over all complement subspaces of U . It follows that we can enumerate matrices
T1 of the form

[
u1 . . . ur v1 +

∑
i∈[r] ai,1ui . . . vn−r +

∑
i∈[r] ai,n−rui

]
.

The second step. In Step 1, we computed a set of invertible matrices {T1} ⊆ GL(n, q)

such that every T ∈ GL(n, q) can be written as T = T1T2 where T2 =
[
Ir 0
0 R

]
. So we set

h := g ◦ T1 and focus on finding T2 of the above form such that f = h ◦ T2.
Suppose f =

∑
1≤i≤j≤k≤n αi,j,kxixjxk, and h =

∑
1≤i≤j≤k≤n βi,j,kxixjxk. For i ∈ [r],

define fi =
∑

r+1≤j≤k≤n αi,j,kxixjxk. Similarly define hi.
The key observation is that, due to the form of T2, we have that fi = hi ◦ T2. This is

because for i ∈ [r], T2 sends xi to xi, and for j ∈ [r+1, n], T2 sends xj to a linear combination
of xk, k ∈ [r + 1, n].

Let ℓ = n − r. We then rename the variable xr+i, i ∈ [ℓ] as yi. Let Y = {y1, . . . , yℓ}.
Then from f , we define r quadratic forms in Y ,

∀i ∈ [r], ci =
∑

1≤j≤k≤ℓ

α′
i,j,kyjyk, where α′

i,j,k = αi,r+j,r+k. (3)

Correspondingly, we define r quadratic forms di =
∑

1≤j≤k≤ℓ β
′
i,j,kyjyk, i ∈ [r], from g1.

Our task now is to search for the R ∈ GL(ℓ, q) such that for every i ∈ [r], ci = di ◦R.
To do that, we adopt the classical representation of quadratic forms as symmetric

matrices. Here we use the assumption that q is odd. Using the classical correspondence
between quadratic forms and symmetric matrices, from ci we construct

Ci =

α′

i,1,1
1
2α

′
i,1,2 . . . 1

2α
′
i,1,ℓ

1
2α

′
i,1,2 α′

i,2,2 . . . 1
2α

′
i,2,ℓ

...
...

. . .
...

1
2α

′
i,1,ℓ

1
2α

′
i,2,ℓ . . . α′

i,ℓ,ℓ

 ∈ S(ℓ, q). (4)

Similarly define Di from di. It is classical that ci = di ◦R if and only if Ci = RtDiR.

J. A. Grochow, Y. Qiao, and G. Tang 38:9

Let C = (C1, . . . , Cr) ∈ S(ℓ, q)r, and D = (D1, . . . , Dr) ∈ S(ℓ, q)r. Recall that Aut(C) =
{R ∈ GL(ℓ,F) : RtCR = C}, and Iso(C,D) = {R ∈ GL(ℓ,F) : C = RtDR}. Clearly,
Iso(C,D) is a (possibly empty) coset of Aut(C). When Iso(C,D) is non-empty, |Iso(C,D)| =
|Aut(C)|. Our main technical lemma is the following, obtained by adapting certain results
in [6, 15] to the symmetric matrix setting. Its proof can be found in the full version of this
paper.

▶ Lemma 6. Let C = (C1, . . . , C8) ∈ S(ℓ, q)8 be a random symmetric matrix tuple. Then we
have |Aut(C)| ≤ qℓ for all but at most 1

qΩ(ℓ) fraction of such C.

Given this lemma, we can use Theorem 4 to decide whether C and D are isometric,
and if so, compute Iso(C,D) represented as a coset in GL(ℓ, q). By Lemma 6, for all but
at most 1

qΩ(ℓ) fraction of C, |Iso(C,D)| ≤ qℓ ≤ qn. With Iso(C,D) as a coset at hand, we
can enumerate all elements in Aut(C) by the standard recursive closure algorithm [16] and
therefore all elements in Iso(C,D). We then either conclude that |Iso(C,D)| > qn, or have
all Iso(C,D) at hand. In the former case we conclude that C does not satisfy the required
generic condition. In the latter case, we enumerate R ∈ Iso(C,D), and check whether

T2 =
[
Ir 0
0 R

]
is an isomorphism from f to g1.

The algorithm outline. We now summarise the above steps in the following algorithm
outline. In the following we assume that n ≫ 8; otherwise we can use the brute-force
algorithm.
Input Cubic forms f, g ∈ Fq[x1, . . . , xn].
Output One of the following: (1) “f does not satisfy the generic condition”; (2) “f and g

are not isomorphic”; (3) an isomorphism T ∈ GL(n, q) sending g to f .
Algorithm outline 1. Set r = 8, and ℓ = n− r.

2. Compute W = {T1} ⊆ GL(n, q) using the procedure described in Step 1.
// Every T ∈ GL(n, q) can be written as T1T2 where T2 is of the form in
Equation 2.

3. For every T1 ∈W , do the following:
a. h :← g ◦ T1.
b. For i ∈ [ℓ], yi ← xr+i.
c. For i ∈ [r], let Ci ∈ S(ℓ, q) be defined in Equation 4. Let Di ∈ S(ℓ, q) be defined

from h in the same way. Let C = (C1, . . . , Cr), and D = (D1, . . . , Dr).
d. Use Theorem 4 to decide whether C and D are isometric. If not, break from the

loop. If so, compute one isometry R.
e. Use Theorem 4 to compute a generating set of Aut(C). Use the recursive closure

algorithm to enumerate Aut(C). During the enumertion, if |Aut(C)| > qℓ, report
“f does not satisfy the generic condition.” Otherwise, we have the whole Aut(C) at
hand, which is of size ≤ qℓ.

f. Given R from Line 3d and Aut(C) from Line 3e, the whole set Iso(C,D) can be

computed. For every R ∈ Iso(C,D), check whether T2 =
[
Ir 0
0 R

]
sends h to f . If

so, return T = T1T2 as an isomorphism sending g to f .
4. Return that “f and g are not isomorphic”.

STACS 2021

38:10 Isomorphism Testing of Some Algebraic Structures

Correctness and timing analyses. The correctness of the algorithm relies on the simple fact
that if f satisfies the genericity condition, and f and g are isomorphic via some T ∈ GL(n, q),
then this T can be decomposed as T1T2 for some T1 ∈W from Line 2. Then by the analysis

in Step 2, T2 =
[
Ir 0
0 R

]
where R ∈ Iso(C,D). When f satisfies the genericity condition,

Iso(C,D) will be enumerated, so this R will surely be encountered.
To estimate the time complexity of the algorithm, note that |W | ≤ qO(rn), and |Iso(C,D)| ≤

qℓ = qn−r. As other steps are performed in time poly(n,m, q), enumerating over W and
Iso(C,D) dominates the time complexity. Recall that r = 8. So the total time complexity is
upper bounded by qO(n). ◀

3.2 Trilinear form equivalence and algebra isomorphism
We describe our results on trilinear form equivalence and algebra isomorphism, and leave the
modifications required to achieve these results in the full version of this paper.

Trilinear form equivalence. The trilinear form equivalence problem was stated in Section 1.2.
In algorithms, a trilinear form f is naturally represented as a 3-way array A = (ai,j,k) where
ai,j,k = f(ei, ej , ek). A random trilinear form over Fq denotes the setting when αi,j,k are
independently sampled from Fq uniformly at random.

▶ Theorem 7. Let f : Fn
q×Fn

q×Fn
q → Fq be a random trilinear form, and let g : Fn

q×Fn
q×Fn

q →
Fq be an arbitrary trilinear form. There exists a deterministic algorithm that decides whether
f and g are equivalent in time qO(n), for all but at most 1

qΩ(n) fraction of f .

Algebra isomorphism. Let V be a vector space. An algebra is a bilinear map ∗ : V ×V → V .
This bilinear map ∗ is considered as the product. Algebras most studied are those with
certain conditions on the product, including unital (∃v ∈ V such that ∀u ∈ V , v ∗ u = u),
associative ((u ∗ v) ∗ w = u ∗ (v ∗ w)), and commutative (u ∗ v = v ∗ u). The authors
of [1, 2] study algebras satisfying these conditions. Here we consider algebras without such
restrictions. Two algebras ∗, · : V × V → V are isomorphic, if there exists T ∈ GL(V),
such that ∀u, v ∈ V , T (u) ∗ T (v) = T (u · v). As customary in computational algebra, an
algebra is represented by its structure constants, i.e. suppose V ∼= Fn, and fix a basis
{e1, . . . , en}. Then ei ∗ ej =

∑
k∈[n] αi,j,kek, and this 3-way array A = (αi,j,k) records the

structure constants of the algebra with product ∗. A random algebra over Fq denotes the
setting when αi,j,k are independently sampled from Fq uniformly at random.

▶ Theorem 8. Let f : Fn
q × Fn

q → Fn
q be a random algebra, and let g : Fn

q × Fn
q → Fn

q be an
arbitrary algebra. There exists a deterministic algorithm that decides whether f and g are
isomorphic in time qO(n), for all but at most 1

qΩ(n) fraction of f .

4 Complexity of symmetric and alternating trilinear form equivalence

As mentioned in Section 1.4, the proof of Theorem 2 follows by showing that symmetric
and alternating trilinear form equivalence are TI-hard (recall Definition 3). In the following
we focus on the alternating case. The symmetric case can be tackled in a straightforward
way, by starting from the TI-complete problem of symmetric matrix tuple pseudo-isometry,
from [11, Theorem B], and modifying the alternating gadget to a symmetric one.

▶ Proposition 9. The alternating trilinear form equivalence problem is TI-hard.

J. A. Grochow, Y. Qiao, and G. Tang 38:11

Proof. The starting TI-complete problem. We use the following TI-complete problem
from [11]. Let A = (A1, . . . , Am),B = (B1, . . . , Bm) ∈ Λ(n,F)m be two tuples of alternating
matrices. We say that A and B are pseudo-isometric, if there exist C ∈ GL(n,F) and
D = (di,j) ∈ GL(m,F), such that for any i ∈ [m], Ct(

∑
j∈[m] di,jAj)C = Bi. By [11,

Theorem B], the alternating matrix tuple pseudo-isometry problem is TI-complete. Without
loss of generality, we assume that dim(⟨Ai⟩) = dim(⟨Bi⟩), as if not, then they cannot be
pseudo-isometric, and this dimension condition is easily checked.

An alternating trilinear form ϕ : Fn × Fn × Fn → F naturally corresponds to a 3-way
array A = (ai,j,k) ∈ M(n× n× n,F), where ai,j,k = ϕ(ei, ej , ek). Then A is also alternating,
i.e. ai,j,k = 0 if i = j or i = k or j = k, and ai,j,k = sgn(σ)aσ(i),σ(j),σ(k) for any σ ∈ S3. So
in the following, we present a construction of an alternating 3-way array from an alternating
matrix tuple, in such a way that two alternating matrix tuples are pseudo-isometric if and
only if the corresponding alternating trilinear forms are equivalent.

Constructing alternating 3-way arrays from alternating matrix tuples. Given A =
(A1, . . . , Am) ∈ Λ(n,F)m, we first build the n× n×m tensor A which has A1, . . . , Am as its
frontal slices. Then we will use essentially the following construction twice in succession. We
will give two viewpoints on this construction: one algebraic, in terms of trilinear forms, and
another “matricial”, in terms of 3-way arrays. Different readers may prefer one viewpoint
over the other; our opinion is that the algebraic view makes it easier to verify the alternating
property while the matricial view makes it easier to verify the reduction. We thank an
anonymous review for the suggestion of the algebraic viewpoint. The construction is, in some
sense, the 3-tensor analogue of taking an ordinary matrix A and building the alternating

matrix
[

0 A

−At 0

]
.

Notation: Just as the transpose acts on matrices by (At)i,j = Aj,i, for a 3-tensor A, we
have six possible “transposes” corresponding to the six permutations of the three coordinates.
Given σ ∈ S3, we write Aσ for the 3-tensor defined by (Aσ)i1,i2,i3 = Aiσ(1),iσ(2),iσ(3) . Similarly,
given a trilinear form A(x, y, z) =

∑
i,j,k ai,j,kxiyjzk, we have Aσ(x, y, z) = A((x, y, z)σ).

Given a 3-way array A ∈ M(n×m× d,F), we will make use of A(23) and A(13):
A(23) is n × d ×m and has A(23)

i,j,k = Ai,k,j . Equivalently, the k-th frontal slice of A(23) is
the k-th vertical slice of A.
A(13) is d ×m × n and has A(13)

i,j,k = Ak,j,i. Equivalently, the k-th frontal slice of A(13) is
the transpose of the k-th horizontal slice of A.

▶ Example 10 (Running example). Let us examine a simple example as follows. Let A =

(A) ∈ Λ(2,F)1, where A =
[

0 a

−a 0

]
. Then A = (A); A(23) = (A′

1, A
′
2) ∈ M(2 × 1 × 2,F),

where A′
1 =

[
0
−a

]
, and A′

2 =
[
a

0

]
; A(13) = (A′′

1 , A
′′
2) ∈ M(1 × 2× 2,F), where A′′

1 =
[
0 a

]
,

and A′′
2 =

[
−a 0

]
.

From the above A, A(23), and A(13), we construct Ã ∈ M((n+m)× (n+m)× (n+m),F)
as follows. We divide Ã into the following eight blocks. Set Ã = (Ã1, Ã2) (two block frontal

slices) where Ã1 =
[
0n×n×n A(23)

A(13) 0

]
, and Ã2 =

[
−A 0
0 0m×m×m

]
, where 0n×n×n indicates the

n× n× n zero tensor, and analogously for 0m×m×m (the remaining sizes can be determined
from these and the fact that A is n× n×m).

STACS 2021

38:12 Isomorphism Testing of Some Algebraic Structures

The corresponding construction on trilinear forms is as follows. The original trilinear
form is A(x, y, z) =

∑
i,j∈[n],k∈[m] ai,j,kxiyjzk, where x = (x1, . . . , xn), y = (y1, . . . , yn), and

z = (z1, . . . , zm), and we have A(x, y, z) = −A(y, x, z). The new trilinear form will be
Ã(x′, y′, z′), where

x′ = (x(1), x(2)) = (x(1)
1 , . . . , x(1)

n , x
(2)
1 , . . . , x(2)

m)
y′ = (y(1), y(2)) = (y(1)

1 , . . . , y(1)
n , y

(2)
1 , . . . , y(2)

m)
z′ = (z(1), z(2)) = (z(1)

1 , . . . , z(1)
n , z

(2)
1 , . . . , z(2)

m).

This new form will satisfy Ã(x′, y′, z′) =
∑

i,j,k∈[n+m] ãi,j,kx
′
iy

′
jz

′
k. Let us unravel what this

looks like from the above description of Ã. We have

Ã(x′, y′, z′) =
∑

i∈[n],j∈[m],k∈[n]

(Ã1)i,n+j,kx
′
iy

′
n+jz

′
k +

∑
i∈[m],j,k∈[n]

(Ã1)n+i,j,kx
′
n+iy

′
jz

′
k

+
∑

i,j∈[n],k∈[m]

(Ã2)i,j,kx
′
iy

′
jz

′
n+k

=
∑

i∈[n],j∈[m],k∈[n]

A(23)
i,j,kx

′
iy

′
n+jz

′
k +

∑
i∈[m],j,k∈[n]

A(13)
i,j,kx

′
n+iy

′
jz

′
k

−
∑

i,j∈[n],k∈[m]

Ai,j,kx
′
iy

′
jz

′
n+k

=
∑

i∈[n],j∈[m],k∈[n]

Ai,k,jx
′
iy

′
n+jz

′
k +

∑
i∈[m],j,k∈[n]

Ak,j,ix
′
n+iy

′
jz

′
k

−
∑

i,j∈[n],k∈[m]

Ai,j,kx
′
iy

′
jz

′
n+k

= A(x(1), z(1), y(2)) +A(z(1), y(1), x(2))−A(x(1), y(1), z(2)).

From this formula, and the fact that A(x, y, z) = −A(y, x, z), we can now more easily verify
that Ã is alternating in all three arguments. Since the permutations (13) and (23) generate
S3, it suffices to verify it for these two. We have

Ã(13)(x′, y′, z′) = Ã(z′, y′, x′)
= A(z(1), x(1), y(2)) +A(x(1), y(1), z(2))−A(z(1), y(1), x(2))
= −A(x(1), z(1), y(2)) +A(x(1), y(1), z(2))−A(z(1), y(1), x(2))
= −Ã(x′, y′, z′).

Similarly, we have:

Ã(23)(x′, y′, z′) = Ã(x′, z′, y′)
= A(x(1), y(1), z(2)) +A(y(1), z(1), x(2))−A(x(1), z(1), y(2))
= A(x(1), y(1), z(2))−A(z(1), y(1), x(2))−A(x(1), z(1), y(2))
= −Ã(x′, y′, z′),

as claimed.

▶ Example 11 (Running example, continued from Example 10). We can write out Ã in this
case explicitly. The first block frontal slice Ã1 is 3× 3× 2, consisting of the two frontal slices 0 0 0

0 0 −a
0 a 0

 and

 0 0 a

0 0 0
−a 0 0

J. A. Grochow, Y. Qiao, and G. Tang 38:13

while the second block frontal slice Ã2 is the 3× 3× 1 matrix 0 −a 0
a 0 0
0 0 0

It can be verified easily that Ã = (ai,j,k) is alternating: the nonzero entries are a2,3,1 = −a,
a3,2,1 = a, a1,3,2 = a, a3,1,2 = −a, a1,2,3 = −a, and a2,1,3 = a, which are consistent with the
signs of the permutations.

The gadget construction. We now describe the gadget construction. The gadget can be
described as a block 3-way array as follows. Construct a 3-way array G of size (n+ 1)2 ×
(n+ 1)2 × (n+m) over F as follows. For i ∈ [n], the ith frontal slice of G is

0 0 . . . 0 In+1 0 . . . 0
0 0 . . . 0 0 0 . . . 0
...

... . . .
...

...
... . . .

...
0 0 . . . 0 0 0 . . . 0

−In+1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0
...

... . . .
...

...
... . . .

...
0 0 . . . 0 0 0 . . . 0

,

where 0 here denotes the (n+ 1)× (n+ 1) all-zero matrix, In+1 is at the (1, i+ 1)th block
position, and −In+1 is at the (i+1, 1)th block position. For n+1 ≤ i ≤ n+m, the ith frontal
slice of G is the all-zero matrix. We also need the following 3-way arrays derived from G. We
will use G(13) and G(23). Note that G(13) is of size (n+m)× (n+ 1)2 × (n+ 1)2, and its ith
horizontal slice is the ith frontal slice of G. Similarly, G(23) is of size (n+1)2×(n+m)×(n+1)2,
and its jth vertical slice is the jth frontal slice of G.

Finally, construct a 3-tensor Â as follows. It consists of the two block frontal slices[
Ã 0
0 −G

]
and

[
0 G(13)

G(23) 0

]
.

To see how this all fits together, let G1 be the (n+ 1)2 × (n+ 1)2 × n tensor consisting of
the first n frontal slices of G (these are the only nonzero frontal slices of G). Then we may
view Â as having three block frontal slices, namely:0n×n×n A(23) 0

A(13) 0m×m×n 0
0 0 −G1

 ,
−A 0 0

0 0m×m×m 0
0 0 0(n+1)2×(n+1)2×m

 ,
and0n×n×(n+1)2 0 G(13)

1
0 0m×m×(n+1)2 0

G(23)
1 0 0

 .
We claim that Â is alternating. To verify this is straightforward but somewhat tedious.

So we use the following example from which a complete proof can be extracted easily.

STACS 2021

38:14 Isomorphism Testing of Some Algebraic Structures

▶ Example 12 (Running example, continued from Example 11). Let A be the 2× 2× 1 tensor

with alternating frontal slice A =
[

0 a

−a 0

]
. In particular, n = 2,m = 1, so G will have size

(n+ 1)2 × (n+ 1)2 × (n+m) = 9× 9× 3, and A will have size n+m+ (n+ 1)2 = 12 in all
three directions. We will write out the first n+m = 3 frontal slices explicitly, as those are
the only ones involving A, and leave the last 9 (involving only transposes of G1) unwritten.

0 0 0
0 0 −a
0 a 0

03 I3 0
−I3 03 0

0 0 03

,

0 0 a

0 0 0
−a 0 0

03 0 I3
0 03 0
−I3 0 03

,

and

0 a 0
−a 0 0
0 0 0

03 0 0
0 03 0
0 0 03

and the remaining 9 frontal slices look like

0 0 0
0 0 0 G(13)

1
0 0 0 01×9×9

03×3×9 0 0
G(23)

1 09×1×9 0 03×3×9 0
0 0 03×3×9

Since the a’s only appear in positions with the same indices as they did in Ã (see Example 11),
that portion is still alternating. For the G parts, note that the identity matrices in the first
three frontal slices, when having their indices transposed, end up either in the G(13)

1 portion
or the G(23)

1 portion, with appropriate signs.

Proof of correctness. Let A,B ∈ Λ(n,F)m. Let Â =
([

Ã 0
0 −G

]
,

[
0 G(13)

G(23) 0

])
, B̂ =([

B̃ 0
0 −G

]
,

[
0 G(13)

G(23) 0

])
∈ M((n+m+(n+1)2)×(n+m+(n+1)2)×(n+m+(n+1)2),F)

be constructed from A and B using the procedure above, respectively.
We claim that A and B are pseudo-isometric if and only if Â and B̂ are equivalent as

trilinear forms.

The only if direction. Suppose P tAP = BQ for some P ∈ GL(n,F) and Q ∈ GL(m,F).

We will construct a trilinear form equivalence from Â to B̂ of the form S =

P 0 0
0 Q−1 0
0 0 R

 ∈
GL(n+m+ (n+ 1)2,F), where R ∈ GL((n+ 1)2,F) is to be determined later on.

J. A. Grochow, Y. Qiao, and G. Tang 38:15

Recall that Â = (
[
Ã 0
0 −G

]
,

[
0 G(13)

G(23) 0

]
), B̂ = (

[
B̃ 0
0 −G

]
,

[
0 G(13)

G(23) 0

]
). It can be

verified that the action of S sends Ã to B̃. It remains to show that, by choosing an appropriate
R, the action of S also sends G to G.

Let G1 be the first n frontal slices of G, and G2 the last m frontal slices from G. Then the
action of S sends G1 to RtGP

1 R, and G2 to RtGQ−1

2 R. Since G2 is all-zero, the action of S on
G2 results in an all-zero tensor, so we have RtGQ−1

2 R = G2.
We then turn to G1. For i ∈ [n+ 1], consider the ith horizontal slice of G1, which is of the

form Hi =
[
0 B1,i B2,i . . . Bn,i

]
, where 0 denotes the n× (n+ 1) all-zero matrix, and

Bj,i is the n× (n+ 1) elementary matrix with the (j, i)th entry being 1, and other entries
being 0. Note that those non-zero entries of Hi are in the (k(n + 1) + i)th columns, for
k ∈ [n]. Let P t =

[
p1 . . . pn

]
, where pi is the ith column of P t. Then P acts on Hi from

the left, which yields P tHi =
[
0 P1,i . . . Pn,i

]
, where Pj,i denotes the n× (n+ 1) matrix

with the ith column being pj , and the other columns being 0.

Let us first set R =
[
In+1 0

0 R̂

]
, where R̂ is to be determined later on. Then the left

action of R on G1 preserves Hi through In+1. The right action of R on G1 translates to the
right action of R̂ on Hi. To send P tHi back to Hi, R̂ needs to act on those (k(n+ 1) + i)th
columns of Hi, i ∈ [n + 1], as P−1. Note that for Hi and Hj , i ̸= j, those columns with
non-zero entries are disjoint. This gives R̂ the freedom to handle different Hi’s separately.
In other words, R̂ can be set as P−1 ⊗ In+1. This ensures that for every Hi, P tHiR̂ = Hi.
To summarize, we have RtGP

1 R = G1, and this concludes the proof for the only if direction.

The if direction. Suppose Â and B̂ are isomorphic as trilinear forms via P ∈ GL(n+m+

(n+ 1)2,F). Set P =

P1,1 P1,2 P1,3
P2,1 P2,2 P2,3
P3,1 P3,2 P3,3

, where P1,1 is of size n× n, P2,2 is of size m×m,

and P3,3 is of size (n+ 1)2 × (n+ 1)2. Consider the ranks of the frontal slices of Â.
The ranks of the first n frontal slices are in [2(n+ 1), 4n]. This is because a frontal slice in
this range consists of two copies of vertical slices of A (whose ranks are between [0, n− 1]
due to the alternating condition), and one frontal slice of G (whose ranks are of 2(n+ 1)).
The ranks of the n+ 1 to n+m frontal slices are in [0, n]. This is because a frontal slice
in this range consists of only just one frontal slice of A.
The ranks of the last n(n+ 1) vertical slices are in [0, 2n]. This is because a frontal slice
in this range consists of two copies of horizontal slices of G (whose ranks are either n or 1;
see e.g. the form of Hi in the proof of the only if direction).

By the discussions above, we claim that that P must be of the form

P1,1 0 0
P2,1 P2,2 P2,3
P3,1 P3,2 P3,3

.

To see this, for the sake of contradiction, suppose there are non-zero entries in P1,2 or P1,3.
Then a non-trivial linear combination of the first n frontal slices is added to one of the last
(m+ (n+ 1)2) frontal slices. This implies that for this slice, the lower-right (n+ 1)2× (n+ 1)2

submatrix is of the form

0 a1In+1 a2In+1 . . . anIn+1

−a1In+1 0 0 . . . 0
−a2In+1 0 0 . . . 0

...
...

...
. . .

...
−anIn+1 0 0 . . . 0

, where one of ai ∈ F

is non-zero. Then this slice is of rank ≥ 2(n+ 1), which is unchanged by left (resp. right)
multiplying P t (resp. P), so it cannot be equal to the corresponding slice of B̂ which is of
rank ≤ 2n. We then arrived at the desired contradiction.

STACS 2021

38:16 Isomorphism Testing of Some Algebraic Structures

Now consider the action of such P on the n+ 1 to n+m frontal slices. Note that these

slices are of the form

Ai 0 0
0 0 0
0 0 0

. (Recall that the last m slices of G are all-zero matrices.)

Then we have

P t
1,1 P t

2,1 P t
3,1

0 P t
2,2 P t

3,2
0 P t

2,3 P t
3,3

 Ai 0 0
0 0 0
0 0 0

 P1,1 0 0
P2,1 P2,2 P2,3
P3,1 P3,2 P3,3

 =

P t
1,1AiP1,1 0 0

0 0 0
0 0 0

 .
Since P tÂPP = B̂, we have P tÂP = B̂P −1 . Observe that for the upper-left n× n submatrices
of the frontal slices of B̂, P−1 simply performs a linear combination of Bi’s. It follows that
every P t

1,1AiP1,1 is in the linear span of Bi. Since we assumed dim(⟨Ai⟩) = dim(⟨Bi⟩), we
have that A and B are pseudo-isometric. This concludes the proof of Proposition 9. ◀

References
1 Manindra Agrawal and Nitin Saxena. Automorphisms of finite rings and applications to

complexity of problems. In STACS 2005, 22nd Annual Symposium on Theoretical Aspects of
Computer Science, Proceedings, pages 1–17, 2005. doi:10.1007/978-3-540-31856-9_1.

2 Manindra Agrawal and Nitin Saxena. Equivalence of F-algebras and cubic forms. In STACS
2006, 23rd Annual Symposium on Theoretical Aspects of Computer Science, Proceedings, pages
115–126, 2006. doi:10.1007/11672142_8.

3 Jérémy Berthomieu, Jean-Charles Faugère, and Ludovic Perret. Polynomial-time algorithms
for quadratic isomorphism of polynomials: The regular case. J. Complexity, 31(4):590–616,
2015. doi:10.1016/j.jco.2015.04.001.

4 Charles Bouillaguet. Etudes d’hypothèses algorithmiques et attaques de primitives crypto-
graphiques. PhD thesis, PhD thesis, Université Paris-Diderot–École Normale Supérieure,
2011.

5 Charles Bouillaguet, Jean-Charles Faugère, Pierre-Alain Fouque, and Ludovic Perret. Practical
cryptanalysis of the identification scheme based on the isomorphism of polynomial with
one secret problem. In International Workshop on Public Key Cryptography, pages 473–493.
Springer, 2011. doi:10.1007/978-3-642-19379-8_29.

6 Peter A. Brooksbank, Yinan Li, Youming Qiao, and James B. Wilson. Improved algorithms for
alternating matrix space isometry: From theory to practice. In Fabrizio Grandoni, Grzegorz
Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA
2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages
26:1–26:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ESA.2020.26.

7 Peter A. Brooksbank and James B. Wilson. Computing isometry groups of Hermitian maps.
Trans. Amer. Math. Soc., 364:1975–1996, 2012. doi:10.1090/S0002-9947-2011-05388-2.

8 Vyacheslav Futorny, Joshua A. Grochow, and Vladimir V. Sergeichuk. Wildness for tensors.
Lin. Alg. Appl., 566:212–244, 2019. doi:10.1016/j.laa.2018.12.022.

9 Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
for all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.
doi:10.1145/116825.116852.

10 Joshua A. Grochow and Youming Qiao. Algorithms for group isomorphism via group extensions
and cohomology. SIAM J. Comput., 46(4):1153–1216, 2017. Preliminary version in IEEE
Conference on Computational Complexity (CCC) 2014 (DOI:10.1109/CCC.2014.19). Also
available as arXiv:1309.1776 [cs.DS] and ECCC Technical Report TR13-123. doi:10.1137/
15M1009767.

11 Joshua A. Grochow and Youming Qiao. On the complexity of isomorphism problems for tensors,
groups, and polynomials I: Tensor Isomorphism-completeness. In ITCS, Leibniz International
Proceedings in Informatics (LIPIcs), pages 31:1–31:19. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.ITCS.2021.31.

https://doi.org/10.1007/978-3-540-31856-9_1
https://doi.org/10.1007/11672142_8
https://doi.org/10.1016/j.jco.2015.04.001
https://doi.org/10.1007/978-3-642-19379-8_29
https://doi.org/10.4230/LIPIcs.ESA.2020.26
https://doi.org/10.4230/LIPIcs.ESA.2020.26
https://doi.org/10.1090/S0002-9947-2011-05388-2
https://doi.org/10.1016/j.laa.2018.12.022
https://doi.org/10.1145/116825.116852
https://arxiv.org/abs/1309.1776
https://doi.org/10.1137/15M1009767
https://doi.org/10.1137/15M1009767
https://doi.org/10.4230/LIPIcs.ITCS.2021.31

J. A. Grochow, Y. Qiao, and G. Tang 38:17

12 Gábor Ivanyos and Youming Qiao. Algorithms based on *-algebras, and their applications
to isomorphism of polynomials with one secret, group isomorphism, and polynomial identity
testing. SIAM J. Comput., 48(3):926–963, 2019. doi:10.1137/18M1165682.

13 Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equivalence problem.
In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 1409–1421, 2011.
doi:10.1137/1.9781611973082.108.

14 Serge Lang. Algebra. Number 211 in Graduate Texts in Mathematics. Springer-Verlag, New
York, third enlarged edition, 2002.

15 Yinan Li and Youming Qiao. Linear algebraic analogues of the graph isomorphism problem
and the Erdős–Rényi model. In Chris Umans, editor, 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, pages 463–474. IEEE Computer Society, 2017.
arXiv:1708.04501, version 2. doi:10.1109/FOCS.2017.49.

16 Eugene M. Luks. Permutation groups and polynomial-time computation. In Groups and
computation (New Brunswick, NJ, 1991), volume 11 of DIMACS Ser. Discrete Math. Theoret.
Comput. Sci., pages 139–175. Amer. Math. Soc., Providence, RI, 1993.

17 Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two
new families of asymmetric algorithms. In Advances in Cryptology - EUROCRYPT ’96, Inter-
national Conference on the Theory and Application of Cryptographic Techniques, Saragossa,
Spain, May 12-16, 1996, Proceeding, pages 33–48, 1996. doi:10.1007/3-540-68339-9_4.

18 Nitin Saxena. Morphisms of rings and applications to complexity. PhD thesis, Indian Institute of
Technology, Kanpur, May 2006. URL: https://www.cse.iitk.ac.in/users/nitin/papers/
thesis.pdf.

19 H. Weyl. The classical groups: their invariants and representations, volume 1. Princeton
University Press, 1997.

20 James B. Wilson. Decomposing p-groups via Jordan algebras. J. Algebra, 322:2642–2679, 2009.
doi:10.1016/j.jalgebra.2009.07.029.

21 R. Wilson. The Finite Simple Groups, volume 251 of Graduate Texts in Mathematics. Springer
London, 2009.

STACS 2021

https://doi.org/10.1137/18M1165682
https://doi.org/10.1137/1.9781611973082.108
https://doi.org/10.1109/FOCS.2017.49
https://doi.org/10.1007/3-540-68339-9_4
https://www.cse.iitk.ac.in/users/nitin/papers/thesis.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/thesis.pdf
https://doi.org/10.1016/j.jalgebra.2009.07.029

Geometric Cover with Outliers Removal
Zhengyang Guo !

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

Yi Li !

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

Abstract
We study the problem of partial geometric cover, which asks to find the minimum number of
geometric objects (unit squares and unit disks in this work) that cover at least (n − t) of n given
planar points, where 0 ≤ t ≤ n/2. When t = 0, the problem is the classical geometric cover problem,
for which many existing works adopt a general framework called the shifting strategy. The shifting
strategy is a divide and conquer paradigm which partitions the plane into equal-width strips, applies
a local algorithm on each strip and then merges the local solutions with only a small loss on the
overall approximation ratio. A challenge to extend the shifting strategy to the case of outliers is to
determine the number of outliers in each strip. We develop a shifting strategy incorporating the
outlier distribution, which runs in O(tn log n) time. We also develop local algorithms on strips for
the outliers case, improving the running time over previous algorithms, and consequently obtain
approximation algorithms to the partial geometric cover.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Geometric Cover, Unit Square Cover, Unit Disk Cover, Shifting Strategy,
Outliers Detection, Computational Geometry

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.39

1 Introduction

The geometric cover with outlier is a generalization of the classic geometric cover problems to
the case where there are outliers. As the real-world data usually contain outliers, which can
dramatically affect the output of a general geometric cover algorithm, we hope to exclude the
outliers along with finding an optimal covering. Given n points in the plane and an integer
0 ≤ t ≤ n/2, the geometric cover with outliers asks to find the minimum number of geometric
objects of a given type that cover at least (n− t) points. The uncovered points are referred
to as outliers. The geometric objects we consider in this work are the most two common
ones, namely, unit squares (side length 1) and unit disks (radius 1). Correspondingly, we
call the two problems partial square cover and partial disk cover, denoted by PSC and PDC,
respectively. The problems are formally defined as follows.

▶ Problem 1 (Partial Geometric Covers). Given a planar point set X of size n and an integer
0 ≤ t ≤ n/2, we define three problems as follows.

Partial Unit Square Cover (PSC) find a minimum number of unit squares that cover at
least (n− t) points of X.
Partial Unit Disk Cover (PDC): find a minimum number of unit disks that cover at least
(n− t) points of X.
Restricted Partial Unit Disk Cover (RPDC): find a minimum subset of X such that the
unit disks centered in the subset cover at least (n− t) points of X.

The special case of PSC and PDC when t = 0 are the classical square cover and disk cover
problems, which were motivated by the applications in image processing [25] and wireless
networking [23]. Both of them are known to be strongly NP-hard and hence no FPTAS

© Zhengyang Guo and Yi Li;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 39; pp. 39:1–39:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guoz0015@e.ntu.edu.sg
https://orcid.org/0000-0002-8188-0665
mailto:yili@ntu.edu.sg
https://orcid.org/0000-0002-6420-653X
https://doi.org/10.4230/LIPIcs.STACS.2021.39
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Geometric Cover with Outliers Removal

exists [18]. Even when the square or disk positions are restricted to the given point set, the
problem (which becomes RPDC in the disk case) remains NP-hard [7]. Therefore the research
has been considering developing polynomial-time algorithms with a small approximation
ratio and time complexity.

For PSC, Gonzalez gives a 2-approximation with time complexity O(n log n) and a (1 + ϵ)-
approximation algorithm with time complexity O(ϵ−1n1/ϵ) in [14]. The techniques can be
adapted to PDC, producing a (2 + ϵ)-approximation solution in O(ϵ−2n7) time [14, 3] and
also a (1+ ϵ)-approximation in O(ϵ−2n6⌈

√
2/ϵ⌉−1) time [20]. They suffice for a PTAS but for a

constant-factor approximation it could incur a high runtime. Furthermore, an O(n log n)-time
4-approximation algorithm was given in [3] and there also exists a 2.8334-approximation with
runtime O(n(log n log log n)2) in [10].

These algorithms are all for the case of no outliers. To the best of out knowledge, we
only found three papers studying the outlier case of the covering problems as listed in
Problem 1. In [11], Gandhi et al. gave a (1 + ϵ)2-approximation algorithm for PDC which
runs in runtime O(ϵ−1n2⌈

√
2/ϵ⌉2+1). Later in [12], Ghasemalizadeh and Razzazi gave a (1+ ϵ)-

approximation to PSC with outliers in runtime O(ϵ−1n4/ϵ+2) and a (1 + ϵ)-approximation
to PDC with outliers in time1 O(ϵ−1n6⌈

√
2/ϵ⌉+2). Note that their runtimes do not depend

on t, the number of outliers, as their algorithms actually compute the solutions for all
t = 0, . . . , n/2. Additionally for PDC, Inamdar studies the local search methods in [19] and
gives for 0 < ϵ ≤ 1/2 an (1 + 4ϵ)-approximation algorithm that runs in time at least nO(1/ϵ2)

time. The best existing results for both the outlier and the non-outlier cases are summarized
in Table 1, where ℓ = 1/ϵ is the approximation parameter.

Although there are only limited works studying the partial geometric over, detect-
ing outliers along with shape fitting tasks is of special significance in computational geo-
metry and has thus become an enduringly popular research topic. Examples include k-
means/medians/centers clustering with outliers [15], subsets of size (n− t) with the minimum
diameter [6], rectangles of the minimum area that covers at least (n− t) points [24], convex
hulls with outliers [2] and projective clustering with outliers [21].

A particularly important variant of the unit disk cover problem is when the given points
lie within a vertical strip and we define the strip variants of Problem 1 as follows.

▶ Problem 2 (Within-Strip Partial Geometric Covers). Given a planar point set X contained
in a vertical strip of width W and an integer 0 ≤ t ≤ n/2 where n = |X|. We define three
problems as follows.

Within-strip Partial Unit Square Cover (StripPSC) find a minimum number of unit
squares that cover at least (n− t) points of X.
Within-strip Partial Unit Disk Cover (StripPDC): find a minimum number of unit disks
that cover at least (n− t) points of X.
Within-strip Restricted Partial Unit Disk Cover (StripRPDC): find a minimum subset of
X such that the unit disks centered in the subset cover at least (n− t) points of X.

1 We note an omission in the time complexity for PDC claimed in [12] and corrected it in our claim. In
the last paragraph in Section 3 of [12, p553–554], which discusses the adaptation of the strip partial
covering algorithm [12, p551] to disks. It divides the plane into strips of width 1 and group ℓ consecutive
strips. However, when ℓ = 1, the claim that “there can be no disk in the set OPT that covers points in
two adjacent strips in more than one shift partition” at the bottom of [18, p132] would not hold and the
approximation ratio of the original shifting strategy would not continue to hold. To apply the standard
shifting strategy [18] when ℓ = 1, the plane should be divided into strips of width 2 instead of 1. This
leads to a runtime of O(ϵ−1n6⌈

√
2/ϵ⌉+2) instead of the claimed O(ϵ−1n4

√
2/ϵ+2).

Z. Guo and Y. Li 39:3

Table 1 Summary of the best existing results (including the non-outlier case) and our main
results. The runtime column suppresses the O(·) notation. The approximation parameter ℓ is always
a positive integer. Some of our results are (α, 1 + δ)-bicriteria approximations, i.e., they achieve an
α-approximation by removing at most (1 + δ)t outliers, where δ > 0 is arbitrary.

Paper Problem Approximation Runtime
Ratio

Unit
Square
Cover

[14] PSC, t = 0 2 n log n

PSC, t = 0 1 + 1
ℓ

ℓ2n4ℓ−1

[12] PSC 1 + 1
ℓ

ℓn4ℓ+2

This work PSC (2, 1 + δ) δ−1nt log n

Unit
Disk

Cover

[14] StripPDC, t = 0, W = 2ℓ 1 n4⌈
√

2ℓ⌉+1

[9] StripPDC, t = 0, W ≤ 4/5 1 n13

StripRPDC, t = 0, W ≤ 4/5 1 n7

[10] PDC, t = 0 2.8334 n(log n log log n)2

[3] PDC, t = 0 4 n log n

[5] PDC, t = 0 7 n

[11] PDC (1 + 1
ℓ
)2 ℓn2⌈

√
2ℓ⌉2+1

[12] PDC 1 + 1
ℓ

ℓn6⌈
√

2ℓ⌉+2

This work

PDC (7
2 , 1 + δ) n7t + δ−1nt log n

StripPDC, W ≤ 4/5 1 n7t

RPDC (1 + 6√
5 + 1

ℓ
, 1 + δ) ℓn4t + δ−1ℓnt log n

StripRPDC, W ≤
√

5/3 1 n4t

The strip variants are motivated with the hope to obtain an algorithm of a better
approximation ratio when some restriction is imposed on the input set, which is possible
since the VC dimension might be smaller [16]. Once a local algorithm for the strip version is
obtained, a natural idea for solving the full problem is to first partition the plane into strips
and then merge the local within-strip solutions by the shifting strategy introduced in [18].

A challenge is that we need to determine the number of outliers on each strip in order to
run the local algorithm. In Section 3, we introduce a new shifting strategy to overcome such
challenge. We also prove in Theorem 1 that merging the local solutions will only incur a
small multiplicative loss on the approximation ratio.

For notational convenience, we denote a solution to PSC, PDC, RPDC, StripPSC, Strip-
PDC and StripRPDC by solS(X, t), solD(X, t), solR(X, t), solS(X, W, t), solD(X, W, t) and
solR(X, W, t), respectively, and the optimal solution by optS(X, t), optD(X, t), optR(X, t),
optS(X, W, t), optD(X, W, t) and optR(X, W, t), respectively.

Our Results. We summarize the existing results and our main results in Table 1.
We develop a shifting strategy that approximates the optimal number of outliers on

each strip in Section 3. With the new shifting strategy, we give an O(δ−1nt log n)-time
bicriteria approximation algorithm to PSC, which outputs at most 2 · opt(X, t) unit squares
covering at least n− (1 + δ)t of the given points. This can be viewed as an extension of the
2-approximation O(n log n)-time result in [14] to the outlier case without compromising the
time complexity for small t and constant δ.

For the strip variants of the disk cover, we give an O(n7t)-time exact algorithm for
StripPDC when W ≤ 4/5, improving on the best known non-outlier result of O(n13) time,
and an O(n4t)-time exact algorithm for StripRPDC when W ≤

√
5/3, also improving on the

best known runtime of O(n7). These improvements are close to quadratic for small t.

STACS 2021

39:4 Geometric Cover with Outliers Removal

w
W = ℓ · w

· · · −4 −3 −2 −1 0 1 2 3 4 · · ·

Figure 1 The plane is divided into vertical strips of width w, indexed by integers, and ℓ strips
are grouped into a wider one of width W . The figure shows an example of ℓ = 5.

For the original problem of PDC, based on our new results for the strip variant and the
new shifting strategy, we show a 3.5-approximation algorithm with runtime O(n7t). This is
a new trade-off between the approximation ratio and the running time, and is so far the best
running time for an approximation ratio less than 4 for PDC. In the same spirit, we show a
(1 + 6/

√
5 + ϵ)-approximation algorithm for RPDC with a runtime of O(n4t/ϵ), where the

polynomial dependence on n has a constant exponent, independent of ϵ.
We also extend the previous 4-approximation algorithm [3] for the unit disc cover problem

to the outlier case with the same O(n log n) running time. See Appendix C.

2 Organization of the Paper

The high-level approach to solve PSC, PDC and RPDC follows a divide-and-conquer paradigm
known as the shifting strategy [18]. We divide the plane into strips of equal width, run a
local algorithm to solve the subproblem on every strip and then merge the local solutions.
The main challenge is to determine the number of outliers within each strip. Inspired by [15],
we develop a new shifting strategy in the presence of outliers that can in O(tn log n) time
approximate the number of outliers on each strip. We present this new shifting strategy in
Section 3 and then derive a 2-approximation to PSC in Section 4. The disk cover problems
are discussed in Section 5. We state several new geometric observations in Section 5.1, upon
which we design polynomial-time local algorithms that output exact solutions to StripPDC
and StripRPDC in Section 5.2. Finally in Section 5.3, with the local algorithms and the new
shifting strategy, we obtain one bicriteria algorithm for PDC and one for RPDC.

3 A Shifting Strategy Compatible with Outliers

The shifting strategy introduced by Hochbaum and Maass in [18] has been widely employed
in the problem of geometric cover [14, 4, 8, 22, 1, 10, 20, 13]. The strategy requires a partition
of the plane and a local algorithm for each single part of the partition. It runs the local
algorithm for each part and merges the local solutions with only a small loss on the final
approximation ratio. However, in the presence of outliers, we have to determine the number
of outliers distributed to each part. Therefore, in this section, we develop a new shifting
strategy that can approximate the number of outliers on each strip with provable guarantees.

We now illustrate the shifting strategy for PSC, PDC and RPDC with t outliers. Sup-
pose that the plane is divided into (infinitely many) vertical strips of width w (w ≤ 1),
indexed by integers, say, . . . ,−2,−1, 0, 1, 2, . . . from left to right. There are in total ℓ ways
G1, G2, . . . , Gℓ to group ℓ consecutive strips, where Gi = {[k · ℓ + i, k · ℓ + ℓ + i− 1] | k ∈ Z},
i ∈ {0, 1, 2, . . . , ℓ− 1}, resulting in the plane’s being divided into wider strips of width ℓ · w.
See Figure 1 for an illustration. To determine the number of outliers in each wider strip, we
combine the shifting strategy [18] and the idea from [15]. We use i for the grouping index
and j for the index for non-empty strip from left to right in a grouping Gi.

Z. Guo and Y. Li 39:5

▶ Theorem 1. With a local algorithm A to a strip of width ℓ · w ≤ 1, we can find a solution
1. solS(X, ⌊(1 + δ)t⌋) ≤ τ ·

(
1 + ⌈1/w⌉

ℓ

)
· optS(X, t) for PSC;

2. solD(X, ⌊(1 + δ)t⌋) ≤ τ ·
(

1 + ⌈2/w⌉
ℓ

)
· optD(X, t) for PDC;

3. solR(X, ⌊(1 + δ)t⌋) ≤ τ ·
(

1 + ⌈2/w⌉
ℓ

)
· optR(X, t) for RPDC;

where τ denotes the approximation ratio of A and δ > 0 is arbitrary.

Proof. Let si (si ≤ n, i = 1, 2, . . . , ℓ) denote the number of non-empty strips of width ℓ · w
in Gi. These strips in Gi are denoted as Si,j , j = 1, 2, . . . , si from left to right. Define
Xi,j = X ∩ Si,j . We apply the local algorithm A to obtain a solution sol(Xi,j , q) for each
q ∈ I where I = {⌊(1 + δ)r⌋|r = 0, 1, 2, . . . , ⌊log1+δ t⌋} ∪ {0, ⌊(1 + δ)t⌋}. We also define
a function fi,j on {0, 1, 2, . . . , ⌊(1 + δ)t⌋}, where fi,j(q) (q ∈ {0, 1, 2, . . . , ⌊(1 + δ)t⌋}) is
defined to be the value of the lower convex hull of {(q, sol(Xi,j , q)) |q ∈ I}. The summation
Fi(qi,1, qi,2, . . . , qi,si

) =
∑si

j=1 fi,j(qi,j),
∑si

j=1 qi,j ≤ ⌊(1 + δ)t⌋ is a convex function.
The minimum point of Fi can be found by going down along the edges of the convex

polygonal surface whose vertices are (qi,1, qi,2, . . . , qi,si
, Fi(qi,1, qi,2, . . . , qi,si

)),
∑si

j=1 qi,j ≤
⌊(1 + δ)t⌋. The details are presented in Algorithm 1. We denote the minimum point by
(ti,1, ti,2, . . . , ti,si). We also let t∗

i,j denote the number of outliers in Xi,j for the optimal
solution opt(X, t), and t′

i,j be the power of 1 + δ between t∗
i,j and

⌊
(1 + δ)t∗

i,j

⌋
. The solutions

on each strip are put together to get

soli(X, ⌊(1 + δ)t⌋) :=
si∑

j=1
sol(Xi,j , ti,j).

As
∑si

j=1 t′
i,j ≤

∑si

j=1⌊(1 + δ)t∗
i,j⌋ ≤ ⌊(1 + δ)t⌋, we then have

si∑
j=1

sol(Xi,j , ti,j) = Fi(ti,1, ti,2, . . . , ti,s) ≤ Fi(t′
i,1, t′

i,2, . . . , t′
i,si

) ≤
si∑

j=1
sol(Xi,j , t′

i,j).

Moreover opt(Xi,j , t′
i,j) ≤ opt(Xi,j , t∗

i,j) as opt(Xi,j , q) is a decreasing function on q. We thus
have

soli(X, ⌊(1 + δ)t⌋) ≤
si∑

j=1
sol(Xi,j , t′

i,j) ≤ τ ·
si∑

j=1
opt(Xi,j , t′

i,j) ≤ τ ·
si∑

j=1
opt(Xi,j , t∗

i,j).

We claim that a unit square can cross at most ⌈1/w⌉+ ℓ strips of width ℓ ·w in G1 ∪ · · · ∪Gℓ.
The proof is deferred to Lemma 5. This indicates that for unit square

ℓ∑
i=1

soli(X, ⌊(1 + δ)t⌋) ≤ τ ·
ℓ∑

i=1

si∑
j=1

opt(Xi,j , t∗
i,j) ≤ τ · (⌈1/w⌉+ ℓ) · opt(X, t).

We finally get a solution

sol(X, ⌊(1 + δ)t⌋) = min
i=1,...,ℓ

soli(X, (1 + δ)t) ≤ τ ·
(

1 + ⌈1/w⌉
ℓ

)
· opt(X, t).

For unit disks, we shall prove in Lemma 5 that a unit disk can cross at most ⌈2/w⌉+ ℓ strips
in G1 ∪ · · · ∪Gℓ and a similar argument as above yields a solution with an approximation
factor of τ ·

(
1 + ⌈2/w⌉

ℓ

)
. ◀

STACS 2021

39:6 Geometric Cover with Outliers Removal

Algorithm 1 Local algorithm for every non-empty strip in a grouping.

procedure Shifting(X, t, A, Gi) ▷ X a set of n points, 0 ≤ t < n, Gi a grouping
s← number of nonempty strips in Gi ▷ s ≤ n

I ← {⌊(1 + δ)r⌋ | r = 0, 1, 2, . . . , ⌊log1+δ t⌋} ∪ {0, ⌊(1 + δ)t⌋}
for j = 1, 2, . . . , s do

Xj ← points of X that are on the j-th nonempty strip
Compute the lower convex hull of {(q,A(Xj , q))|q ∈ I} ▷ A is the local algorithm
for tj = 0, 1, . . . , ⌊(1 + δ)t⌋ do

fj(tj)← the value of the lower convex hull at tj , as defined in text
q1 ← 0, q2 ← 0, . . . , qs ← 0
T ← [(fj(tj)− fj(tj − 1), j, tj) |1 ≤ j ≤ s, 1 ≤ tj ≤ ⌊(1 + δ)t⌋]
Sort T according to the partial ordering ≼
for k = 1, 2, . . . , ⌊(1 + δ)t⌋ do

j ← the index such that T [k] = (fj(tj)− fj(tj − 1), j, tj)
qj ← qj + 1

return (q1, q2, . . . , qs)

An algorithm to find the minimum point of Fi(qi,1, qi,2, . . . , qi,si) subject to
∑si

j=1 qi,j ≤
⌊(1 + δ)t⌋ is given in [15], which we reproduce in Algorithm 1. In the remaining of this
subsection, we focus on explaining the algorithm that outputs the minimum of Fi in one
grouping and thus omit the grouping index i in all the subscripts. For example, Fi becomes
F and fi,j becomes fj . Also for convenience, we have the following definition.

▶ Definition 2. Suppose gj(q) := fj(q)− fj(q − 1), then we define a partial ordering such
that gj1(q1) ≼ gj2(q2) if one of the following conditions is satisfied
1. fj1(q1)− fj1(q1 − 1) < fj2(q2)− fj2(q2 − 1)
2. j1 < j2 and fj1(q1)− fj1(q1 − 1) = fj2(q2)− fj2(q2 − 1)
3. j1 = j2 and q1 < q2 and fj1(q1)− fj1(q1 − 1) = fj2(q2)− fj2(q2 − 1)

With the partial ordering on {gj(q)|1 ≤ j ≤ s, 1 ≤ q ≤ (1 + δ)t}, we restate the algorithm
in [15] below. The algorithm can be regarded as a discrete version of gradient descent, at
each step of which we go down along the steepest direction in which the function value
decreases the most. The correctness of Algorithm 1 is ensured by the following two lemmata.

▶ Lemma 3. At the beginning of the k-th iteration in Algorithm 1, we have qj = tj − 1 where
(fj(tj)− fj(tj − 1), j, tj) = T [k].

Proof. For any t′
j < tj , we have fj(t′

j)−fj(t′
j−1) < fj(tj)−fj(tj−1) by the convexity of fj .

Therefore fj(t′
j)− fj(t′

j − 1) must be ahead of fj(tj)− fj(tj − 1) under the partial ordering
≼. This indicates that the update qj ← qj + 1 has been executed (tj − 1) times before. As
the initial value of qj is 0, then at the k-th iteration (fj(tj)− fj(tj − 1), j, tj) = T [k], it must
be true that qj = tj − 1. ◀

We defer the proof of the following lemma to Appendix A for completeness.

▶ Lemma 4 (Lemma 3.3 [15]). Algorithm 1 outputs min f(q1, . . . , qs) subject to
∑s

j=1 qj ≤
⌊(1 + δ)t⌋.

We simply select the minimum among all soli(X, ⌊(1 + δ)t⌋), 1 ≤ i ≤ ℓ as our final
solution. To prove its approximation ratio, we need the following lemma.

Z. Guo and Y. Li 39:7

▶ Lemma 5. Suppose that ℓ · w ≤ 1. If the strip boundary lines in the plane partition do
not cross any point of X, then a unit square can cover points of X distributed in at most
⌈1/w⌉+ ℓ different strips of width ℓ · w in G1 ∪ · · · ∪Gℓ, and a unit disk at most ⌈2/w⌉+ ℓ.

Proof. Let S denote the leftmost and S′ the rightmost strip of width ℓ · w that intersects
a unit square. Also let i1 and i2 denote the indices of the left boundary line of S and S′

respectively. Then the index of the right boundary line of S is i1 + ℓ. Note that the distance
between the right boundary line of S and the left boundary line of S′ is (i2 − i1 − ℓ) · w and
must be smaller than 1. Therefore, we have i2 − i1 < ℓ + 1/w. Since i1, i2 are integers, this
implies that i2 − i1 ≤ ℓ + ⌈1/w − 1⌉. We then conclude a unit square can intersect at most
ℓ + ⌈1/w − 1⌉ + 1 = ℓ + ⌈1/w⌉ strips of width ℓ · w in G1 ∪ · · · ∪ Gℓ. A similar argument
works for unit disks. ◀

The algorithm to partition the plane into vertical strips of width w is presented in
Appendix D. It guarantees that no boundary line crosses a point in X. It remains to develop
local algorithms for the StripPSC, StripPDC and StripRPDC on strip of width W = ℓ · w.

4 Square Cover

In this section, we illustrate the application of Theorem 1 to the partial square cover problem.
We first consider the local problem StripPSC with W = 1. For convenience, we define the
notion of anchored squares as follows. Note that our definition is different from that in [18].

▶ Definition 6 (Anchored Square). For a strip of width W = 1 and a point set X within the
strip, a square is anchored if its left and right sides coincide with the left and right boundary
lines of the strip, respectively, and its upper side crosses a point of X.

As a unit square L can be translated to an anchored one L′ so that L ∩ X ⊆ L′ ∩ X,
we therefore only consider the anchored squares in StripPSC when W = 1. There are n of
them. Without loss of generality, we can assume that no two points in X have the same
y-coordinates, otherwise we simply rotate the plane. We sort X in the increasing order of
the y-coordinates, say, X1, . . . , Xn. Let Li denote the anchored square with Xi on its upper
side and Bji (j < i) denote the number of points above the upper side of Lj and below the
lower side of Li. Let N [i][k] denote the minimum size of a set of squares that covers Xi

(1 ≤ i ≤ n) and at least (i− k) (0 ≤ k ≤ t) points from X1 to Xi, then we have the following
recursive formula for N [i][k].

N [i][k] = min
j<i

N [j][k −Bji] + 1. (1)

Note that we require Xi to be covered in an optimal cover of N [i][k]. Therefore it is only
necessary to consider in (1) those j’s such that Xj is not covered by Li and Bji ≤ k. Let hi

denote the index of the highest point below the lower side of Li, then only those j ∈ [hi−k, hi]
would be considered. As k ≤ t, there are at most t such candidate j’s. Computing all hi

takes O(n) time and we can store these values. We also note that Bji = hi − j for those
j ∈ [hi − k, hi]. Therefore the recursive formula (1) can be rewritten as

N [i][k] = min
hi−k≤j≤hi

N [j][k − hi + j] + 1.

This is the base of our local algorithm that outputs an exact solution to StripPSC when
W = 1, which we present in Algorithm 2.

STACS 2021

39:8 Geometric Cover with Outliers Removal

Algorithm 2 The algorithm that outputs an optimal solution to StripPSC.

1: procedure SquareLocal(X, t) ▷ 0 ≤ t ≤ n/2
2: X ← set of planar points
3: n← |X|
4: sort X so that the y-coordinates of the points are increasing
5: Li ← the anchored square with Xi on its upper side
6: hi ← the index of the highest point of X below Li

7: Initialize array N [j][k]←∞ for 1 ≤ j ≤ n and 0 ≤ k ≤ t

8: for i = 1, 2, . . . , n do
9: for k = 0, 1, . . . , t do

10: N [i][k]← minj∈[hi−k,hi] N [j][k − hi + j] + 1
11: return mink∈[0,t] N [n− k][t− k]

▶ Lemma 7. There exists an exact algorithm to StripPSC in time O(nt log n) when W = 1.

Proof. It takes O(n) time to compute all hi and O(nt) time to compute all Bij for j ∈
[hi − t, hi]. For each k = 0, . . . , t, we maintain a data structure of the dynamic range
minimum query (RMQ) for the one-dimensional array N [1][k], . . . , N [n][k]. The dynamic
RMQ structure in [17] supports both update and query in O(log n) time. For each i = 1, . . . , n

and k = 0, . . . , t, we update the data structure once and query the data structure once.
Therefore, filling the N [i][k] array takes time O(nt log n) in total and the overall runtime is
thus O(nt log n). ◀

▶ Theorem 8. For PSC, there exists an O(δ−1nt log n)-time algorithm which outputs 2 ·
opt(X, t) unit squares that cover at least n− (1 + δ)t of the given points.

Proof. Note that in Algorithm 2, we have computed all N [i][k] for 1 ≤ i ≤ n and 1 ≤ k ≤ t,
that is, we know the optimal solution to StripPSC that cover n − k points of X for all
k = 0, . . . , t when W = 1. With Algorithm 2 as the local algorithm A and ℓ = 1, we
can run Algorithm 1 in O(nt log1+δ n) = O(δ−1nt log n) time and obtain a solution of size
τ ·

(
1 + ⌈1/w⌉

ℓ

)
· opt(X, t) = 2 · opt(X, t) that covers at least n − (1 + δ)t points of X. In

total, the time complexity is O(δ−1nt log n). ◀

5 Disk Cover

In this section, we study the disk cover problems PDC and RPDC. We first introduce the
notions and definitions in Section 5.1. We also prove a few lemmata which are critical for
developing the local algorithms to StripPDC and StripRPDC. In Section 5.2 we describe the
local algorithm in details. And finally in Section 5.3, we solve PDC and RPDC by the local
algorithm in Section 5.2 and the shifting strategy we develop in Section 3 together.

5.1 Geometric Observations
When the disk centers are unrestricted, it is equivalent to considering only the unit disks
whose boundary cross two points of X. Such unit disks are defined as the anchored disks
in [11, 12]. In this work, we extend this notion to include the unit disks with a point in X as
its highest or lowest point and give the formal definition below. We shall only consider the
anchored disks for PDC and StripPDC in the rest of the paper.

Z. Guo and Y. Li 39:9

▶ Definition 9 (Anchored Unit Disks). Given a point set X in the plane, a unit disk is
anchored if either there are two points of X on its boundary, or the highest, or the lowest
point of the unit disk is in X.

▶ Lemma 10. It is sufficient to consider only the anchored unit disks in PDC and StripPDC.
There are at most n2 + n anchored disks.

Proof. For any unit disk D, let D′ be the lowest disk such that D′ ∩X ⊇ D ∩X. We can
prove by contradiction that there are two points of X on the boundary of D′ or the highest
point of D′ is in X. If there is no point of X on the boundary of D′, then we can translate
D′ downwards by a small value such that the translated disk still covers D′ ∩X ⊇ D ∩X.
If there is only one point of X on the boundary of D′ and the point is not at the highest
position of D′, we can rotate D′ around this point by a small angle so that the y-coordinate
of the disk center decreases and the rotated disk still covers D′ ∩X ⊇ D ∩X. Either of two
cases would result in a contradiction. There are at most (n−1)n

2 · 2 + n = n2 of such disks. We
also include the disks whose lowest point is in X and it total there are n2 + n of them. ◀

Before presenting the observations related to strip geometric cover, we introduce some
basic notions and lemmata which are helpful for the readers to understand the results.
Definition 11 is inspired by the mutually spanning set in [9], in which one unit disk is
supposed to cover a nonempty subset of X both above and below any other unit disk.
However, the definition of mutually spanning set is too strong and unnecessary. We therefore
revise it into the top spanning set.

▶ Definition 11 (Top Spanning Set). Suppose the points in X lie in a vertical strip of width
w < 1. A set of unit disks is top spanning if the set is either a singleton, or each unit disk
other than the highest one covers a nonempty subset of X above the highest disk.

▶ Definition 12 (Inscribed Rectangles [9]). A unit disk centered in a strip of width W < 1
covers a strip segment of height at least 2

√
1−W 2. The strip segment is referred to as the

inscribed rectangle of the unit disk.

An illustration of the inscribed rectangle is shown in Figure 2.

▶ Definition 13 (Vertical Span). Given a strip and a set of unit disks {D1, . . . , Dm}, the
vertical span is defined to be the height difference between the highest and lowest points of the
strip covered by

⋃m
i=1 Di.

The following lemma was proved for the mutually spanning set in [9] and it is still true
for the top spanning set. We reproduce a proof in Appendix B.

▶ Lemma 14 ([9]). Consider unit disks D1, D2 whose centers o1, o2 are in a vertical strip
of width W < 1. If y(o1) ≥ y(o2) and D2 covers some point above D1, then we conclude that
y(o1)−y(o2) ≤ 1−

√
1−W 2. Further, the span of a top spanning set is at most 3−

√
1−W 2.

We are now ready for proving a few geometric observations. In [9], the authors studied
the within strip unit disk cover where the points are within a given strip, and the unit disks
can only be selected from a finite set D where the disk centers are also witihn the strip. Let
X ′ consist of points in X that are covered by the inscribed rectangles of the disks in D. In [9,
Lemma 5], it is proved that among all C ⊆ D that covers X ′, there exists one covering of
the minimum size and the covering does not contain any mutually spanning set of more than
3 disks. In a similar approach, we can prove the following two lemmata.

STACS 2021

39:10 Geometric Cover with Outliers Removal

p

h1 h2

√
1− h2

1
√

1− h2
2

W

Figure 2 The figure illustrates the inscribed rectangle. The two vertical lines are the left and
right boundary lines of a strip of width W . The center point p of the unit disk is inside the strip.
The distance from p to the left boundary line is denoted by h1, and the distance to the right
boundary line is denoted by h2. The shadowed area is the inscribed rectangle whose height is
2 min{

√
1 − h2

1,
√

1 − h2
2} ≥ 2

√
1 − W 2.

▶ Lemma 15. When W ≤ 4
5 , there exists an optimal solution on StripPDC that contains no

top spanning set of more than 2 disks.

Proof. Assume that opt is an optimal solution and contains a top spanning set of 3 disks,
say, D1, D2 and D3, from bottom to top. Let p1 be the lowest point of X covered by
D1 ∪D2 ∪D3 and p2 the highest. By Lemma 14, we know the vertical span of D1 ∪D2 ∪D3
is at most 3 −

√
1−W 2. Let D′

1 be the unit disk with p1 as its lowest point and D′
2 be

the unit disk with p2 as its highest point. Then D′
1 covers a segment of length at least

2
√

1−W 2 above p1, and D′
2 covers a segment of length at least 2

√
1−W 2 below p2. Since

2 × 2
√

1−W 2 ≥ 3 −
√

1−W 2 when W ≤ 4
5 , we can replace {D1, D2, D3} with {D′

1, D′
2}

and obtain a smaller solution, contradicting the optimality of opt. Therefore opt does not
contain any top spanning set of 3 unit disks. ◀

▶ Lemma 16. When W ≤
√

5
3 , there is an optimal solution on StripRPDC that contains no

top spanning set of more than 2 disks.

Proof. Assume opt is an optimal cover and contains a top spanning set of 3 unit disks.
Let D1, D2, D3, p1 and p2 be as in the proof of Lemma 15. Besides, by o1, o2 and
o3 we denote the centers of D1, D2 and D3, respectively. From Lemma 14 we know
y(o3) − y(p1) ≤ y(o3) − y(o1) + 1 ≤ 2 −

√
1−W 2. Let p denote the highest point not

covered by D3 and we have y(o3)− y(p) ≥
√

1−W 2. The unit disk D centered at p covers
a strip segment of length

√
1−W 2 below p, and hence D ∪ D3 covers a strip segment

of length 2
√

1−W 2 below o3. When W ≤
√

5
3 , we have 2

√
1−W 2 ≥ 2 −

√
1−W 2 and

(D1 ∪D2 ∪D3) ∩X ⊆ (D ∪D3) ∩X. Replacing D1 ∪D2 ∪D3 with D ∪D3 would give us a
smaller cover, which contradicts the optimality of opt. ◀

5.2 Exact Algorithms to StripPDC and StripRPDC
In this subsection, we develop an exact algorithm for StripPDC from Lemma 15. The detailed
description is in Algorithm 3. In the same way, we can develop an exact algorithm for
StripRPDC from Lemma 16. Let D denote the set of unit disks which are candidates in an
optimal covering. For StripPDC they are the anchored disks as defined in Definition 9 and
for StripRPDC they are the unit disks centered in the point set X. We first state our main
theorem below.

Z. Guo and Y. Li 39:11

Algorithm 3 The algorithm that outputs an optimal solution to StripPDC.

1: procedure DiskLocal(X, t)
2: U [i][k]← ∅ for i = 0, 1, . . . , n and k = 0, 1, 2, . . . , n− t

3: G[i][k]← ∅ for i = 1, 2, . . . , n and k = 0, 1, 2, . . . , n− t

4: for i = 1, 2, . . . , n do
5: for k = max(i− t, 0), max(i− t, 0) + 1, . . . , min(i− 1, n− t) do
6: for T ∈ U [i− 1][k] do
7: if the disks in T cover Xi then
8: G[i][k + 1]← G[i][k + 1] ∪ {T}
9: else

10: G[i][k]← G[i][k] ∪ {T}
11: for D ∈ D do
12: if D covers Xi then
13: G[i][k + 1]← G[i][k + 1] ∪ {T ∪ {D}}
14: for k = max(i− t, 0), max(i− t, 0) + 1, . . . , min(i, n− t) do
15: for T ∈ G[i][k] do
16: if |T | ≤ 2 then
17: U [i][k]← U [i][k] ∪ {T}
18: for T1 ∈ U [i][k] do
19: for T2 ∈ U [i][k] do
20: if sig(T1) = sig(T2) and |T1| ≤ |T2| then
21: U [i][k]← U [i][k]− {T2}
22: return any T ∈ U [n][n− t]

▶ Theorem 17. Algorithm 3 computes an exact solution to StripPDC in O(n7t) time when
W ≤ 4/5. If the set of anchored disks is replaced by the set of unit disks centered in X,
Algorithm 3 would output an exact solution to StripRPDC in O(n4t) time.

We follow the dynamic programming introduced in [12, Section 3] to develop a local
algorithm. We assume no two points of X have the same y-coordinates, otherwise we can
rotate X. We also sort X in an increasing order of their y-coordinates. Let X1, X2, . . . ,
Xn denote the sorted points from bottom to top. A subcover is denoted by (k, i, T) where
T is the set of the disks that cover at least k points between X1 and Xi. The signature of
(k, i, T), denoted by sig(k, i, T), consists the highest disk D of T and those in T which cover
at least one point of X above D.

Now we state the idea of the dynamic programming. Let U [i][k] store all the subcovers
that cover at least k points at the i-th step in the algorithm. We iterate over all T ∈ U [i][k].
If T already covers Xi+1, we simply add T into U [i + 1][k + 1]. Otherwise, we add T to
U [i + 1][k] and all possible T ∪ {D} to U [i + 1][k + 1], where D ∈ D is a unit disk that
covers Xi+1. At the end of the i-th iteration, for two subcovers T1 and T2 in U [i + 1][k], if
sig(T1) = sig(T2) and |T1| ≤ |T2|, we remove T2 from U [i + 1][k]. By Lemma 15, there is an
optimal solution to StripPDC that contains no top spanning set of more than 2 disks. It is
obvious that the signature is a top spanning set by Definition 11, we therefore remove T if
|sig(T)| > 2.

Proof of Theorem 17. The correctness of Algorithm 3 is guaranteed by Lemmata 1 and 2
in [12]. For any T ∈ U [i][k], we have |sig(T)| ≤ 2 and therefore there are O(n4) different
signatures. There are no two subcovers with the same signature in U [i][k], so |U [i][k]| = O(n4).

STACS 2021

39:12 Geometric Cover with Outliers Removal

Observe that U [i][k] is nonempty for at most t values of k, it holds that
∑

k |U [i][k]| = O(n4t).
Furthermore, since the number of disks that cover Xi is O(n2), we have |G[i][k]| = O(n6)
and further

∑
k |G[i][k]| = O(n6t). After we construct G[i][k], we only select some of them

into U [i][k]. The would cost O(n · n6t) time. Besides, we also remove the larger covering
of the sane signature in U [i][k]. The process can be done in linear time with respect to
|U [i][k]|, as shown in [12] with the techniques from [14]. The overall time complexity is then
O(n · t · n4 · n2 + n · t · n6) = O(n7t).

The same algorithm can be applied to StripRPDC and the only difference is that we
use the unit disks centered in X instead as the candidates in a covering. There are n such
disks and by Lemma 16 there are O(n2) different signatures of size at most 2. Also we have
U [i][k] = O(n2) and G[i][k] = O(n3) for StripRPDC. The overall time complexity would be
O(n · t · n2 · n + n · t · n3) = O(n4t). ◀

5.3 Approximation Algorithms to PDC and RPDC
We apply Algorithm 3 as the local algorithm A for PDC and RPDC. Combining with
Theorem 1, we obtain a global algorithm to PDC with approximation ratio 1·

(
1 + ⌈2/w⌉

ℓ

)
= 3.5

for w = 0.4 and ℓ = 2, and a global algorithm to RPDC whose approximation factor is
1 ·

(
1 + ⌈2/w⌉

ℓ

)
≤ 1 + 2

ℓ·w + 1
ℓ = 1 + 6√

5 + 1
ℓ ≈ 3.68 + 1

ℓ .

▶ Theorem 18. There exist a (3.5, 1 + δ)-bicriteria algorithm for PDC which runs in time
O(n7t + δ−1nt log n), and a (1 + 6√

5 + 1
ℓ , 1 + δ)-bicriteria algorithm for RPDC which runs in

time O(ℓn4t + δ−1ℓnt log n).

Proof. Let nj = |Xj |, the number of points in the j-th nonempty strip of the grouping Gi.
For PDC, we apply Algorithm 3 as the local algorithm A in Algorithm 1. Note that in

Algorithm 3, all U [n][n − k] (0 ≤ k ≤ t) are computed. Therefore it takes O(n7
j t) time to

output sol(Xj , tj) for all tj ∈ {⌊(1 + δ)r⌋ | r = 0, 1, 2, . . . , ⌊log1+δ t⌋} ∪ {0, ⌊(1 + δ)t⌋}. On
all the si strips, this would cost O

(
n7

1t + · · ·+ n7
si

t
)

= O(n7t) time. Sorting all the values
fi(ti)− fi(ti − 1) in Algorithm 1 takes O

(
nt log1+δ nt

)
= O

(
δ−1nt log n

)
time. As there are

ℓ groupings, the total complexity is O(ℓn7t + δ−1ℓnt log n). Letting ℓ = 2 and w = 2/5 yields
a 3.5-approximation with time complexity O(n7t + δ−1nt log n).

For RPDC, we prove in the same way that the overall time complexity is O(ℓn4t +
δ−1ℓnt log n). ◀

References
1 Christoph Ambühl, Thomas Erlebach, Matúš Mihalák, and Marc Nunkesser. Constant-factor

approximation for minimum-weight (connected) dominating sets in unit disk graphs. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 3–14. Springer, 2006.

2 Rossen Atanassov, Prosenjit Bose, Mathieu Couture, Anil Maheshwari, Pat Morin, Michel
Paquette, Michiel Smid, and Stefanie Wuhrer. Algorithms for optimal outlier removal. Journal
of discrete algorithms, 7(2):239–248, 2009.

3 Ahmad Biniaz, Paul Liu, Anil Maheshwari, and Michiel Smid. Approximation algorithms for
the unit disk cover problem in 2D and 3D. Computational Geometry, 60:8–18, 2017.

4 Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering
and dynamic information retrieval. SIAM Journal on Computing, 33(6):1417–1440, 2004.

5 Adrian Dumitrescu, Anirban Ghosh, and Csaba D Tóth. Online unit covering in euclidean
space. Theoretical Computer Science, 809:218–230, 2020.

Z. Guo and Y. Li 39:13

6 David Eppstein and Jeff Erickson. Iterated nearest neighbors and finding minimal polytopes.
Discrete & Computational Geometry, 11(3):321–350, 1994.

7 Robert J Fowler, Michael S Paterson, and Steven L Tanimoto. Optimal packing and covering
in the plane are NP-complete. Information processing letters, 12(3):133–137, 1981.

8 Massimo Franceschetti, Matthew Cook, and Jehoshua Bruck. A geometric theorem for
approximate disk covering algorithms. Technical Report ETR035, California Institute of
Technology, 2001.

9 Robert Fraser and Alejandro López-Ortiz. The within-strip discrete unit disk cover problem.
Theoretical Computer Science, 674:99–115, 2017.

10 Bin Fu, Zhixiang Chen, and Mahdi Abdelguerfi. An almost linear time 2.8334-approximation al-
gorithm for the disc covering problem. In International Conference on Algorithmic Applications
in Management, pages 317–326. Springer, 2007.

11 Rajiv Gandhi, Samir Khuller, and Aravind Srinivasan. Approximation algorithms for partial
covering problems. Journal of Algorithms, 53(1):55–84, 2004.

12 Hossein Ghasemalizadeh and Mohammadreza Razzazi. An improved approximation algorithm
for the most points covering problem. Theory of Computing Systems, 50(3):545–558, 2012.

13 Anirban Ghosh, Brian Hicks, and Ronald Shevchenko. Unit disk cover for massive point sets.
In International Symposium on Experimental Algorithms, pages 142–157. Springer, 2019.

14 Teofilo F Gonzalez. Covering a set of points in multidimensional space. Information processing
letters, 40(4):181–188, 1991.

15 Sudipto Guha, Yi Li, and Qin Zhang. Distributed partial clustering. ACM Transactions on
Parallel Computing (TOPC), 6(3):1–20, 2019.

16 Sariel Har-Peled. On complexity, sampling, and ε-nets and ε-samples. Approximation Algorithm
in Geometry, 2010.

17 Alice Héliou, Martine Léonard, Laurent Mouchard, and Mikael Salson. Efficient dynamic
range minimum query. Theoretical Computer Science, 656:108–117, 2016.

18 Dorit S Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM (JACM), 32(1):130–136, 1985.

19 Tanmay Inamdar. Local search for geometric partial covering problems. In Proceedings of the
31st Canadian Conference on Computational Geometry, pages 242–249, 2019.

20 Paul Liu and Daniel Lu. A fast 25/6-approximation for the minimum unit disk cover problem,
2014. arXiv:1406.3838.

21 Nina Mishra, Rajeev Motwani, and Sergei Vassilvitskii. Sublinear projective clustering with
outliers. In 15th Annual Fall Workshop on Computational Geometry and Visualization, page 45.
Citeseer, 2005.

22 Sada Narayanappa and Petr Vojtechovskỳ. An improved approximation factor for the unit
disk covering problem. In Proceedings of the 18th Canadian Conference on Computational
Geometry, pages 15–18, 2006.

23 Kaveh Pahlavan and Allen H Levesque. Wireless data communications. Proceedings of the
IEEE, 82(9):1398–1430, 1994.

24 Michael Segal and Klara Kedem. Enclosing k points in the smallest axis parallel rectangle.
Information Processing Letters, 65(2):95–99, 1998.

25 Steven L Tanimoto and Robert J Fowler. Covering image subsets with patches. In Proceedings
of the fifty-first International Conference on Pattern Recognition, pages 835–839, 1980.

A Proof of Lemma 4

Proof. Let (t∗
1, . . . , t∗

s) denote a minimum point of f and it is obvious that
∑s

j=1 t∗
j = ⌊(1+ϵ)t⌋.

We also let (q1, . . . , qs) denote the output of Algorithm 1 and
∑s

j=1 qj = ⌊(1 + ϵ)t⌋. If
(q1, . . . , qs) ̸= (t∗

1, . . . , t∗
s), then there must be some qj1 < t∗

j1
and qj2 > t∗

j2
. As qj1 is the final

output value of Algorithm 1, fj1(t∗
j1

)−fj1(t∗
j1
−1) cannot be in the first ⌊(1+ ϵ)t⌋ elements of

S. Besides, we have fj2(t∗
j2

+ 1)−fj2(t∗
j2

) ≤ fj2(qj2)−fj2(qj2 −1) by the convexity of fj2 and

STACS 2021

http://arxiv.org/abs/1406.3838

39:14 Geometric Cover with Outliers Removal

fj2(t∗
j2

+1)−fj2(t∗
j2

) must in the first ⌊(1+ϵ)t⌋ elements of S. Therefore fj2(t∗
j2

+1)−fj2(t∗
j2

) ≤
fj1(t∗

j1
) − fj1(t∗

j1
− 1). This indicates that (. . . , t∗

j1
− 1, . . . , t∗

j2
+ 1, . . .) is also a minimum

point of f and its L1 distance to (q1, . . . , qs) is less than that of (t∗
1, . . . , t∗

s). Repeat this
process, we can finally prove that the output of Algorithm 1 is a global minimum. ◀

B Proof of Lemma 14

Proof. Let D1 and D2 denote the two disks. Without loss of generality, we assume the
center of D1 is higher than that of D2. The vertical distance between their centers can
not exceed

(
1−
√

1−W 2
)
. Otherwise, D2 would be disjoint from the upper edge of the

inscribed rectangle of D1, and thus cannot cover any point above D1. The total span of
D1 ∪D2 is therefore at most 1−

√
1−W 2 + 1 + 1 = 3−

√
1−W 2. ◀

C 4-Approximation to PDC

In this section, we present a simple 4-approximation to PDC by generalizing the maximal
independent set to the outlier case. The definition of partial maximal independent set is
presented below.

▶ Definition 19 (Partial Maximal Independent Set). Given a point set X of size n and an
integer 0 ≤ t < n, a subset S ⊆ X is called a partial maximal independent set if for any
distinct points p, q ∈ S, it holds that d(p, q) > 2 and

∣∣ ⋃
p∈S B(p, 2) ∩X

∣∣ ≥ n− t.

The greedy algorithm with time complexity O(n log n) in [3] can be slightly modified to
a 4-approximation algorithm for PDC, which we present in Algorithm 4.

Algorithm 4 Greedy algorithm which outputs a 4-approximation to PDC.

Require: A set X of n planar points and an integer 0 ≤ t < n.
Y ← X, S ← ∅
Sort Y by x-coordinate
while |Y | > t do

Find the leftmost uncovered point p and S ← S ∪ {p}
Place a right semicircle of radius 2 at p

Remove the points covered by the semicircle from Y

return S

▶ Lemma 20. Algorithm 4 returns a 4-approximation solution to PDC in time O(n log n).

Proof. It is easy to verify that S is a partial maximal independent set. Furthermore, for
any p, q ∈ S, p ̸= q, since d(p, q) > 2, there is no unit disk that can cover both p and
q. Therefore a distinct unit disk is needed to cover each point in S, which implies that
|S| ≤ opt(X, t). Note that four unit disks are sufficient to cover a semicircle with radius 2.
Together with |

⋃
p∈S B(p, 2) ∩X| ≥ n− t, we can obtain 4|S| unit disks that cover at least

(n− t) points of X. Note that 4|S| ≤ 4 · opt(X, t), we see that 4|S| unit disks make up to a
4-approximation. ◀

Although the algorithm is simple, there is a fatal drawback when applying the algorithm
from left to right, it can only detect outliers Xi where i ≥ n− t and cannot detect the others.
The bad case is that some outliers are far away from the other points, and at the same time,

Z. Guo and Y. Li 39:15

their x coordinates are around the median of {X1, X2, . . . , Xn}. A unit disk covering such
an outlier usually covers few or no other points, and not removing such isolated outliers
could greatly increase the number of disks in the solution.

D Partitioning the Plane

Algorithm 5 Partitioning the plane into strips such that their boundary lines do not intersect X.

procedure Partition(X) ▷ X is a finite set of planar points
S ← ∅
R← ∅
for p ∈ X do

S ← S ∪ {⌊x(p)/w⌋}
R← R ∪ {x(p)/w − ⌊x(p)/w⌋}

if 0 ∈ R then
S ← ∅
τ ← 1

2 min{r ∈ R : r > 0}
for p ∈ X do

S ← S ∪ {⌊x(p)/w − τ⌋}
return S

STACS 2021

Parameterised Counting in Logspace
Anselm Haak !

Institut für Theoretische Informatik, Leibniz Universität Hannover, Germany

Arne Meier !

Institut für Theoretische Informatik, Leibniz Universität Hannover, Germany

Om Prakash !

Department of Computer Science and Engineering, IIT Madras, Chennai, India

Raghavendra Rao B. V. !

Department of Computer Science and Engineering, IIT Madras, Chennai, India

Abstract
Logarithmic space bounded complexity classes such as L and NL play a central role in space
bounded computation. The study of counting versions of these complexity classes have lead to
several interesting insights into the structure of computational problems such as computing the
determinant and counting paths in directed acyclic graphs. Though parameterised complexity
theory was initiated roughly three decades ago by Downey and Fellows, a satisfactory study of
parameterised logarithmic space bounded computation was developed only in the last decade by
Elberfeld, Stockhusen and Tantau (IPEC 2013, Algorithmica 2015).

In this paper, we introduce a new framework for parameterised counting in logspace, inspired by
the parameterised space bounded models developed by Elberfeld, Stockhusen and Tantau (IPEC
2013, Algorithmica 2015). They defined the operators paraW and paraβ for parameterised space
complexity classes by allowing bounded nondeterminism with multiple-read and read-once access,
respectively. Using these operators, they characterised the parameterised complexity of natural
problems on graphs. In the spirit of the operators paraW and paraβ by Stockhusen and Tantau,
we introduce variants based on tail-nondeterminism, paraW[1] and paraβtail. Then, we consider
counting versions of all four operators applied to logspace and obtain several natural complete
problems for the resulting classes: counting of paths in digraphs, counting first-order models for
formulas, and counting graph homomorphisms. Furthermore, we show that the complexity of a
parameterised variant of the determinant function for (0, 1)-matrices is #paraβtailL-hard and can
be written as the difference of two functions in #paraβtailL. These problems exhibit the richness of
the introduced counting classes. Our results further indicate interesting structural characteristics of
these classes. For example, we show that the closure of #paraβtailL under parameterised logspace
parsimonious reductions coincides with #paraβL, that is, modulo parameterised reductions, tail-
nondeterminism with read-once access is the same as read-once nondeterminism.

Initiating the study of closure properties of these parameterised logspace counting classes, we
show that all introduced classes are closed under addition and multiplication, and those without
tail-nondeterminism are closed under parameterised logspace parsimonious reductions.

Also, we show that the counting classes defined can naturally be characterised by parameterised
variants of classes based on branching programs in analogy to the classical counting classes.

Finally, we underline the significance of this topic by providing a promising outlook showing
several open problems and options for further directions of research.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Parameterized complexity and exact algorithms

Keywords and phrases Parameterized Complexity, Counting Complexity, Logspace

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.40

Related Version Technical report at arXiv.: https://arxiv.org/abs/1904.12156 [36]

Funding Indo-German co-operation grant: DAAD (57388253), DST (INT/FRG/DAAD/P-19/2018).
Arne Meier : Funded by the German Research Foundation (DFG), project ME4279/1-2.

Acknowledgements The authors thank the anonymous referees for their valuable feedback.

© Anselm Haak, Arne Meier, Om Prakash, and Raghavendra Rao B. V.;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 40; pp. 40:1–40:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:haak@thi.uni-hannover.de
https://orcid.org/0000-0003-1031-5922
mailto:meier@thi.uni-hannover.de
https://orcid.org/0000-0002-8061-5376
mailto:op708543@gmail.com
mailto:bvrr@cse.iitm.ac.in
https://doi.org/10.4230/LIPIcs.STACS.2021.40
https://arxiv.org/abs/1904.12156
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Parameterised Counting in Logspace

1 Introduction

Parameterised complexity theory, introduced by Downey and Fellows [25], takes a two-
dimensional view on the computational complexity of problems and has revolutionised
the algorithmic world. Two-dimensional here refers to the fact that the complexity of a
parameterised problem is analysed with respect to the input size n and a parameter k

associated with the given input as two independent quantities. The notion of fixed-parameter
tractability is the proposed notion of efficient computation. A problem with parameter k is
fixed-parameter tractable (fpt, or in the class FPT) if there is a deterministic f(k) · nO(1)

time algorithm for deciding it, where f is a computable function. The primary notion of
intractability is captured by the W-hierarchy in this setting.

Since its inception, the focus of parameterised complexity theory has been to identify
parameterisations of NP-hard problems that allow for efficient parameterised algorithms,
and to address structural aspects of the classes in the W-hierarchy and related complexity
classes [33]. This led to the development of machine-based and logical characterisations of
parameterised complexity classes (see the book by Flum and Grohe [33] for more details).
While the structure of classes in hierarchies such as the W- and A-hierarchy is well understood,
a parameterised view of parallel and space-bounded computation lacked attention.

In 2013, Elberfeld et al. [43, 28] focused on parameterised space complexity classes and
initiated the study of parameterised circuit complexity classes. In fact, they introduced para-
meterised analogues of deterministic and nondeterministic logarithmic space-bounded classes.
The machine-based characterisation of W[P] (the class of problems that are fpt-reducible
to a weighted circuit satisfiability question), and the type of access to nondeterministic
choices (multi-read or read-once) led to two different variants of parameterised logspace
(para-logspace), namely, paraWL and paraβL. Elberfeld et al. [28] obtained several natural
complete problems for these classes, such as parameterised variants of reachability in graphs.

Bannach, Stockhusen and Tantau [6] further studied parameterised parallel algorithms.
They used colour coding techniques [4] to obtain efficient parameterised parallel algorithms
for several natural problems. A year later, Chen and Flum [15, 16] proved parameterised
lower bounds for AC0 by adapting circuit lower bound techniques.

Apart from decision problems, counting problems have found a prominent place in
complexity theory. Valiant [46] introduced the notion of counting complexity classes that
capture natural counting problems such as counting the number of perfect matchings in a
graph, or counting the number of satisfying assignments of a CNF formula. Informally, #P
(resp., #L) consists of all functions F : {0, 1}∗ → N such that there exists an nondeterministic
Turing machine (NTM) running in polynomial time (resp., logarithmic space) in the input
length whose number of accepting paths on every input x ∈ {0, 1}∗ is equal to F (x). Valiant’s
theory of #P-completeness led to several structural insights into complexity classes around
NP and interactive proof systems, as well as to the seminal result of Toda [45].

While counting problems in #P stayed in the focus of research for long, the study of the
determinant by Damm [23], Vinay [47], and Toda [44] established that the complexity of
computing the determinant of an integer matrix characterises the class #L up to a closure
under subtraction. Allender and Ogihara [3] analysed the structure of complexity classes
based on #L. The importance of counting classes based on logspace-bounded Turing machines
(TMs) was further established by Allender, Beals and Ogihara [2]. They characterised the
complexity of testing feasibility of linear equations by a class which is based on #L. Beigel
and Fu [7] then showed that small depth circuits built with oracle access to #L functions
lead to a hierarchy of languages which can be seen as the logspace version of the counting

A. Haak, A. Meier, O. Prakash, and R. Rao B. V. 40:3

hierarchy. In a remarkable result, Ogihara [40] showed that this hierarchy collapses to the
first level. Further down the complexity hierarchy, Caussinus et al. [12] introduced counting
versions of NC1 based on various characterisations of NC1. The counting and probabilistic
analogues of NC1 exhibit properties similar to their logspace counterparts [24]. Moreover,
counting and gap variants of the class AC0 were defined by Agrawal et al. [1].

The theory of parameterised counting classes was pioneered by Flum and Grohe [32] as
well as McCartin [39]. The class #W[1] consists of all parameterised counting problems
that reduce to the problem of counting k-cliques in a graph. Flum and Grohe [32] proved
that counting cycles of length k is complete for #W[1]. Curticapean [18] further showed
that counting matchings with k edges in a graph is also complete for #W[1]. These results
led to several remarkable completeness results and new techniques (see, e.g., the works of
Curticapean [19, 20], Curticapean, Dell and Marx [21], Jerrum and Meeks [37], Brand and
Roth [10]).

Motivation. Given the rich structure of logspace-bounded counting complexity classes, the
study of parameterised variants of these classes is vital to obtain a finer classification of
counting problems.

A theory on para-logspace counting did not exist before. We wanted to overcome this
defect to further understand the landscape of counting problems with decision versions in
para-logspace-based classes. Our new framework allows us to classify many of these problems
more precisely. In this article, we define counting variants inspired by the parameterised
space complexity classes introduced by Elberfeld et al. [43, 28].

In the realm of space-bounded computation, different manners in which nondeterministic
bits are accessed lead to different complexity classes. For example, the standard definition of
NL implicitly gives the corresponding NTMs only read-once access to their nondeterministic
bits [5]: nondeterminism is given only in the form of choices between different transitions.
This means that nondeterministic bits are not re-accessible by the machine later in the
computation. When instead using an auxiliary read-only tape for these bits and allowing
for multiple passes on it, one obtains the class NP. This is due to the fact that SAT is
NP-complete with respect to logspace many-one reductions [5], and that one can evaluate a
CNF formula in deterministic logspace even when the assignment is given on a read-only tape.
However, polynomial time bounded NTMs still characterise NP even when the machine
is allowed to do only one pass on the nondeterministic bits as they can simply store all
nondeterministic bits on the work-tape. So, it is very natural to investigate whether the
differentiation from above leads to new insights in our setting.

With parameterisation as a means for a finer classification, Stockhusen and Tantau [43]
defined nondeterministic logarithmic space-bounded computation based on how (unrestric-
ted or read-once) the nondeterministic bits are accessed. Based on this distinction, they
defined two operators: paraW (unrestricted) and paraβ (read-once). Their study led to
many compelling natural problems that are complete for logspace-bounded nondeterministic
computations with suitable parameters. Thereby, a rich structure of computational power
based on the restrictions on the number of reads of the nondeterministic bits was exhibited.
In this article, we additionally differentiate based on when (unrestricted or tail access) the
nondeterministic bits are accessed. The classes W[1] and W[P] are the two most prominent
nondeterministic classes in the parameterised world which is why we wanted to see the
effect of such a restriction on the rather small classes in our setting. This leads to the
new operators paraW[1] and paraβtail. The concept of tail-nondeterminism allowed to
capture the parameterised complexity class W[1] – via tail-nondeterministic, k-bounded

STACS 2021

40:4 Parameterised Counting in Logspace

machines – and thereby relates to many interesting problems such as searching for cliques,
independent sets, or homomorphism, and evaluating conjunctive queries [33]. Intuitively,
tail-nondeterminism means that all nondeterministic bits are read at the end of the compu-
tation, and k-boundedness limits the number of these nondeterministic bits to f(k) · log |x|
for all inputs (x, k).

Studying counting complexity often improves the understanding of related classical
problems and classes (e.g., Toda’s theorem [45]). With regard to space-bounded complexity,
there are several characterisations of logspace-bounded counting classes in terms of natural
problems. For example, counting paths in directed graphs is complete for #L, and checking
if an integer matrix is singular or not is complete for the class C=L (see Allender et al. [2]).
Furthermore, testing if a system of linear equations is feasible or not can be done in L with
queries to any complete language for C=L. Moreover, two hierarchies built over counting
classes for logarithmic space collapse either to the first level [40] or to the second level [2].
Apart from this, the separation of various counting classes over logarithmic space remains
widely open. For example, it is not known if the class C=L is closed under complementation.

We consider different parameterised variants of the logspace-bounded counting class #L
to give a new perspective on its fine structure.

Results. We introduce the counting variants of parameterised space-bounded computation
and show that each of the parameterised logspace complexity classes, defined by Stock-
husen and Tantau [43], has a natural counting counterpart. Moreover, by considering
also tail-nondeterminism with respect to their classes, we obtain four different variants of
parameterised logspace counting classes, namely, #paraWL, #paraβL, #paraW[1]L, and
#paraβtailL. We show that #paraWL and #paraβL are closed under para-logspace
parsimonious reductions and that all of our new classes are closed under addition and
multiplication.

Furthermore, we develop a complexity theory by obtaining natural complete problems
for these new classes. We introduce variants of the problem of counting walks of parameter-
bounded length that are complete for the classes #paraβL (Theorems 14, 15 and 18),
#paraβtailL (Theorem 16) and #paraWL (Theorem 19). Since the same problem is shown
to be complete for both, #paraβL and #paraβtailL, we get the somewhat surprising result
that the closure of #paraβtailL under para-logspace parsimonious reductions coincides with
#paraβL (Corollary 17). Also, we show that a parameterised version of the problem of
counting homomorphisms from coloured path structures to arbitrary structures is complete
for #paraβL with respect to para-logspace parsimonious reductions (Theorem 28).

Afterwards, we study variants of the problem of counting assignments to free first-order
variables in a quantifier-free FO formula. We identify complete problems for the classes
#paraβL and #paraW[1]L in this context. More specifically, counting assignments to free
first-order variables in a quantifier-free formula with relation symbols of bounded arity and
the syntactical locality of the variables in the formula being restricted (p-#MC(Σr-local

0)a)
is shown to be complete for the classes #paraβtailL and #paraβL with respect to para-
logspace parsimonious reductions (Theorem 22). When there is no restriction on the arity
of relational symbols or on the locality of the variables, counting the number of satisfying
assignments to free first-order variables in a quantifier-free formula in a given structure
(p-#MC(Σ0)) is complete for #paraW[1]L with respect to para-logspace parsimonious
reductions (Theorem 23).

A. Haak, A. Meier, O. Prakash, and R. Rao B. V. 40:5

r
X C means F is C-complete with respect to r-reductions (shown in result X)F

p-#CC2-CNF
p-#LOGREACH2-CNF

p-#Hom(P∗)
p-#REACH

p-#LOGREACHb

p-#LOGWALKb

plog-pars
Thm. 20
plog-pars
Thm. 19

plog-pars
Thm. 28
plog-pars
Thm. 15

plog-pars
Thm. 14
plog-T
Thm. 18

#paraβL =
[#paraβtailL]≤

plog
pars =

[p-#MC(Σr-local
0)a]≤

plog
pars

bounded
arity but

no locality

locality but
unbounded

arity

[p-#MC(Σ0)]≤
plog
pars = [#paraW[1]L]≤

plog
pars

#paraWL

Figure 1 Diagram assuming pair-wise difference of studied classes with list of complete problems.

Finally, we consider a parameterised variant of the determinant function (p-det) introduced
by Chauhan and Rao [13]. By adapting the arguments of Mahajan and Vinay [38], we show
that p-det on (0, 1)-matrices can be expressed as the difference of two functions in #paraβL,
and is #paraβtailL-hard with respect to para-logspace many-one reductions (Theorem 33).

Figure 1 shows a class diagram with complete problems.

Main Techniques. Our primary contribution is laying foundations for the study of para-
meterised logspace-bounded counting complexity classes. The completeness results in The-
orems 15 and 23 required a quantised normal form for k-bounded nondeterministic Turing
Machines (NTMs) (Lemma 8). This normal form quantises the nondeterministic steps of a
k-bounded NTM into chunks of log n-many steps such that the total number of accepting
paths remains the same. We believe that the normal form given in Lemma 8 will be useful in
the structural study of parameterised counting classes. The study of p-det involved definitions
of so-called parameterised clow sequences generalising the classical notion [38]. Besides, a
careful assignment of signs to clow sequences was necessary for our complexity analysis of
p-det.

Related Results. Chen and Müller [14] studied the parameterised complexity of counting
homomorphisms and divided the problems into four equivalence classes. However, their
equivalence is only based on reductions among variants of counting homomorphisms but
not in terms of concrete complexity classes. In this context, Dalmau and Johnson [22]
investigated the complexity of counting homomorphisms as well, and provided generalisations
of results by Grohe [34] to the counting setting. A similar classification regarding our classes
can give new insights into the complexity of the homomorphism problem (Open Problem 29).
The behaviour of our classes with respect to reductions is similar to the one observed for
W[1] by Bottesch [8, 9].

Outline. In Section 2, we introduce the considered machine model, as well as needed
foundations of parameterised complexity theory, and logic. Section 3 presents structural
results regarding our introduced notions in the parameterised counting context. Afterwards,
in Section 4, our main results on counting walks, FO-assignments, homomorphisms as well
as regarding the determinant are shown. Finally, we conclude in Section 5.
Due to space limitations, all proof details can be found in the technical report [36].

STACS 2021

40:6 Parameterised Counting in Logspace

2 Preliminaries

In this section, we describe the computational models and complexity classes that are
relevant for parameterised complexity theory. We use standard notions and notations from
parameterised complexity theory [25, 33]. Without loss of generality, we restrict the input
alphabet to be {0, 1}.

Turing Machines (TMs) with Random Access to the Input. We consider an intermediate
model between TMs and Random Access Machines (RAMs) on words. Particularly, we make
use of TMs that have random access to the input tape and can query relations in input
structures in constant time. This can be achieved with two additional tapes of logarithmic
size (in the input length), called the random access tape and the relation query tape. On
the former, the machine can write the index of an input position to get the value of the
respective bit of the input. On the relation query tape, the machine can write a tuple t of
the input structure together with a relation identifier R to get the bit stating whether t is
in the relation specified by R. Note that our model achieves linear speed-up for accessing
the input compared to the standard TM model. (This is further justified by Remark 6.)
For convenience, in the following, whenever we speak about TMs we mean the TM model
with random access to the input. Denote by SPACETIME(s, t) (NSPACETIME(s, t))
with s, t : N → N the class of languages that are accepted by (nondeterministic) TMs with
space-bound O(s(n)) and time-bound O(t(n)). A C-machine for C = SPACETIME(s, t)
(C = NSPACETIME(s, t)) is a (nondeterministic) TM that is O(s(n)) space-bounded and
O(t(n)) time-bounded.

NTMs are a generalisation of TMs where multiple transitions from a given configuration
are allowed. This can be formalised by allowing the transition to be a relation rather than a
function. Sometimes, it is helpful to view NTMs as deterministic TMs with an additional
tape, called the (nondeterministic) choice tape which is read-only. Let M be a deterministic
TM with a choice tape. A nondeterministic step in the computation of M is a step where
M moves the head on the choice tape to a cell that was not visited before. The language
accepted by M , L(M) is defined as

{ x ∈ {0, 1}∗ | ∃y ∈ {0, 1}∗ s.t. M accepts x when the choice tape is initialised with y }.

Notice that in this framework the machine M has two-way access to the choice tape.
Furthermore, resource bounds are with respect to the input only (the content of the choice
tape is not part of the input) and the choice tape is not counted for space bounds. In this
paper, we regard nondeterministic TMs as deterministic ones with a choice tape.

Before we proceed to the definition of parameterised complexity classes, a clarification
on the choice of the model is due. Note that RAMs and NRAMs are often appropriate in
the parameterised setting as exhibited by several authors (see, e.g., the textbook of Flum
and Grohe [33]). They allow to define bounded nondeterminism quite naturally. On the
other hand, in the classical setting, branching programs (BPs) are one of the fundamental
models that represent space bounded computation, in particular logarithmic space. Since
BPs inherently use bit access, this relationship suggests the use of a bit access model.
Consequently, we consider a hybrid computational model: Turing machines with random
access to the input. While the computational power of this model is the same as that of
Turing machines and RAMs, it seems to be a natural choice to guarantee a certain robustness,
allowing for desirable characterisations of our classes.

A. Haak, A. Meier, O. Prakash, and R. Rao B. V. 40:7

Parameterised Complexity Classes. Let FPT denote the set of parameterised problems
that can be decided by a deterministic TM running in time f(k) · p(|x|) for any input (x, k)
where f is a computable function and p is a polynomial. Two central classes in parameterised
complexity theory are W[1] and W[P] which were originally defined via special types of
circuit satisfiability [33]. Flum, Chen and Grohe [17] obtained a characterisation of these
two classes using the following notion of k-bounded NTMs.

▶ Definition 1 (k-bounded TMs). An NTM M , working on inputs of the form (x, k) with
x ∈ {0, 1}∗, k ∈ N, is said to be k-bounded if for all inputs (x, k) it reads at most f(k) · log |x|
bits from the choice tape on input (x, k), where f is a computable function.

Here, we will work with the following characterisation of W[P]. The characterisation for
W[1] needs another concept that will be defined on the next page.

▶ Proposition 2 ([17, 33]). W[P] is the set of all parameterised problems that can be accepted
by k-bounded FPT-machines with a choice tape.

Now, we recall three complexity theoretic operators that define parameterised complex-
ity classes from an arbitrary classical complexity class, namely para, paraW and paraβ ,
following the notation of Stockhusen [42].

▶ Definition 3 ([31]). Let C be any complexity class. Then paraC is the class of all
parameterised problems P ⊆ {0, 1}∗ × N for which there is a computable function π : N →
{0, 1}∗ and a language L ∈ C with L ⊆ {0, 1}∗ × {0, 1}∗ such that for all x ∈ {0, 1}∗, k ∈ N:
(x, k) ∈ P ⇔ (x, π(k)) ∈ L.

Notice that paraP = FPT is the standard precomputation characterisation of FPT [31]. A
paraC-machine for C = SPACETIME(s, t) (C = NSPACETIME(s, t)) is a (nondetermin-
istic) TM, working on inputs of the form (x, k), that is O(s(|x| + f(k))) space-bounded and
O(t(|x| + f(k))) time-bounded where f is a computable function.

The class XP (problems accepted in time |x|f(k) for a computable function f) and the W-
hierarchy [33] capture intractability of parameterised problems. Though the W-hierarchy was
defined using the weighted satisfiability of formulas with bounded weft, which is the number
of alternations between gates of high fan-in, Flum and Grohe [31] characterised central classes
in this context using bounded nondeterminism. Stockhusen and Tantau [43, 42] considered
space-bounded and circuit-based parallel complexity classes with bounded nondeterminism.

The following definition is a more formal version of the one given by Stockhusen and
Tantau [43, Def. 2.1]. They use para∃↔

f logC instead of paraWC for a complexity class C.

▶ Definition 4. Let C = SPACETIME(s, t) for some s, t : N → N. Then, paraWC is the
class of all parameterised problems Q that can be accepted by a k-bounded paraC-machine
with a choice tape.

For example, paraWL denotes the parameterised version of NL with k-bounded non-
determinism. One can also restrict this model by only giving one-way access to the non-
deterministic tape. The following definition is a more formal version of the one of Stockhusen
and Tantau [43, Def. 2.1] who use the symbol para∃→

f log instead.

▶ Definition 5. Let C = SPACETIME(s, t) for some s, t : N → N. Then paraβC denotes
the class of all parameterised problems Q that can be accepted by a k-bounded paraC-machine
with a choice tape with one-way read access to the choice tape.

STACS 2021

40:8 Parameterised Counting in Logspace

As there is only read-once access to the nondeterministic bits, paraβC can be equivalently
defined via nondeterministic transitions and without using a choice tape.

Another notion studied in parameterised complexity is tail-nondeterminism. A k-bounded
machine M is tail-nondeterministic if there exists a computable function g such that on all
inputs (x, k), M makes at most g(k) · log n further steps in the computation, after its first
nondeterministic step. The value of this concept is evidenced by the machine characterisation
of W[1] (Chen et al. [17]). We hope to get new insights by transferring this concept to
space-bounded computation. In consequence, we introduce the tail-nondeterministic versions
of paraWC and paraβC which are denoted by paraW[1]C and paraβtailC.

▶ Remark 6. Note that it is important to have random access to the input tape in the case
of tail-nondeterminism. Without random access to input bits and input relations, a TM
cannot even make reasonable queries to the input in time g(k) · log(n).

Logic. We assume basic familiarity with first-order logic (FO). A vocabulary is a finite
ordered set of relation symbols and constants. Each relation symbol R has an associated
arity arity(R) ∈ N. Let τ be a vocabulary. A τ -structure A consists of a nonempty finite
set dom(A) (its universe), and an interpretation RA ⊆ dom(A)arity(R) for every relation
symbol R ∈ τ . Syntax and semantics are defined as usual (see, e.g., the textbook of
Ebbinghaus et al. [27]). Let A be a structure with universe A. We denote by |A| the size
of a binary encoding of A, i.e., the number of bits required to represent the universe and
relations as lists of tuples. For example, if R is a relation of arity 3, then RA is represented
as a subset of A3, i.e., a set of triples over A. This requires O(|RA| · arity(R)) · log |A|) bits to
represent the relation RA, assuming log |A| bits to represent an element in A. As analysed by
Flum et al. [30, Sect. 2.3], this means that |A| ∈ Θ((|A|+ |τ |+

∑
R∈τ |RA| ·arity(R)) · log |A|).

Also recall that the fragment Σi (for i ∈ N) refers to the class of FO-formulas with i quantifier
blocks alternating between existential and universal quantifiers and the outermost quantifier
being existential.

3 Parameterised Counting in Logarithmic Space

Now, we define the counting counterparts based on the parameterised classes defined using
bounded nondeterminism. The definitions of the decision classes based on tail-nondeterminism
can be found in the technical report [36]. A parameterised function is a function F : {0, 1}∗ ×
N → N. For an input (x, k) of F with x ∈ {0, 1}∗, k ∈ N, we call k the parameter of that
input. If C is a complexity class and a parameterised function F belongs to C, we say that F

is C-computable. Let M be a TM. We denote by accM (x) the number of accepting paths of
M on input x, and similarly, accM (x, k), for parameterised inputs of the form (x, k).

▶ Definition 7. Let C = SPACETIME(s, t) for some s, t : N → N. Then a parameterised
function F is in #paraWC if there is a k-bounded nondeterministic paraC-machine M such
that for all inputs (x, k), we have that accM (x, k) = F (x, k). Furthermore, F is in

#paraβC if there is such an M with read-once access to its nondeterministic bits,
#paraW[1]C if there is such an M that is tail-nondeterministic, and
#paraβtailC if there is such an M with read-once access to its nondeterministic bits that
is tail-nondeterministic.

By definition, we get #paraβtailL ⊆ C ⊆ #paraWL for C ∈ {#paraβL, #paraW[1]L}.
Note that the restriction of the above classes to k-boundedness is crucial. If we drop this
restriction, the machines are able to access 2f(k)+log|x|, so fpt-many, nondeterministic bits.

A. Haak, A. Meier, O. Prakash, and R. Rao B. V. 40:9

Regarding multiple-read access, this allows for solving SAT (with constant parameterisation).
So this class then would contain a paraNP-complete problem. For read-once access, we
expect a similar result for paraNL. When adding tail-nondeterminism, we implicitly get
k-boundedness again, so this does not lead to new classes.

The following lemma shows that paraL-machines can be normalised in a specific way.
This normalisation will play a major role in Section 4.

▶ Lemma 8. For any k-bounded nondeterministic paraL-machine M there exists a k-bounded
nondeterministic paraL-machine M ′ with #accM (x, k) = #accM ′(x, k) for all inputs (x, k)
such that M ′ has the following properties:
(1) M ′ has a unique accepting configuration,
(2) on any input (x, k), every computation path of M ′ accesses exactly g(k) · log |x| non-

deterministic bits (for some computable function g), and M ′ counts on an extra tape
(tape S) the number of nondeterministic steps, and

(3) M ′ has an extra tape (tape C) on which it remembers previous nondeterministic bits,
resetting the tape after every log |x|-many nondeterministic steps.

Additionally, if M has read-once access to its nondeterministic bits, or is tail-nondeterministic,
or both, then M ′ also has these properties.

The following result follows from a simple simulation of nondeterministic machines by
deterministic ones. Let FFPT be the class of functions computable by FPT-machines with
output.

▶ Theorem 9. #paraβL ⊆ FFPT.

Using the notion of oracle machines (see, e.g., [41]), we define Turing, metric, and
parsimonious reductions computable in paraL. For our purposes, the oracle tape is always
exempted from space restrictions which is often the case in the context of logspace Turing
reductions [11]. A study on the effect of changing this assumption might be interesting.

▶ Definition 10 (Reducibilities). Let F, F ′ : {0, 1}∗ × N → N be two functions. Then, F is
para-logspace Turing reducible to F ′, F ≤plog

T F ′, if there is a paraL oracle TM M that
computes F with oracle F ′ and the parameter of any oracle query of M is bounded by a
computable function in the parameter. If there is such an M that uses only one oracle query,
then F is para-logspace metrically reducible to F ′, F ≤plog

met F ′. If there is such an M that
returns the answer of the first oracle query, then F is para-logspace parsimoniously reducible
to F ′, F ≤plog

pars F ′.

Note that the definition of parsimonious reductions ensures that the size of the witness set
is preserved by the fact that M immediately returns the answer of its only oracle query
(without further computations). For any reducibility relation ≼ and any complexity class C,
[C]≼ := { A | ∃C ∈ C such that A ≼ C } is the ≼-closure of C.

Next, we show that both new classes without tail-nondeterminism are closed under ≤plog
pars.

▶ Lemma 11. The classes #paraWL and #paraβL are closed under ≤plog
pars.

For the tail-classes, such a closure property is not obvious. Corollary 16 will show that closing
the class with read-once access and tail-nondeterminism under these reductions gives the full
power of the class without tail-nondeterminism. Open Problem 24 on page 12 asks what class
is obtained when closing the class without read-once access and with tail-nondeterminism.

Another important question is whether classes are closed under certain arithmetic opera-
tions. We show that all newly introduced classes are closed under addition and multiplication.

STACS 2021

40:10 Parameterised Counting in Logspace

▶ Theorem 12. For any o ∈ {W, W[1], β, β-tail}, the class #parao-L is closed under
addition and multiplication.

▶ Open Problem 13. Which of the classes are closed under monus, that is, max{F − G, 0}?

4 Complete Problems

This section studies complete problems for the previously defined classes: counting problems
in the context of walks in directed graphs, model-checking problems for FO formulas, and
homomorphisms between FO-structures as well as a parameterised version of the determinant.

4.1 Counting Walks
We start with parameterised variants of counting walks in directed graphs which will be
shown to be complete for the introduced classes.

Problem: p-#LOGREACHb

Input: directed graph G = (V, E) with out-degree b, s, t ∈ V and a, k ∈ N.
Parameter: k.
Output: number of s-t-walks of length a if a ≤ k · log |V |, 0 otherwise.

▶ Theorem 14. For every b ≥ 2, p-#LOGREACHb is #paraβL-complete with respect to
≤plog

pars-reductions.

Proof Idea. For the upper bound, guess a path of length exactly a. The number of non-
deterministic bits is bounded by O(k · log |V |) since successors can be referenced by a number
in {0, . . . , b − 1}.

For the lower bound, using Lemma 8, construct the configuration graph G restricted to
nondeterministic configurations and the unique accepting configuration Cacc, where the edge
relation expresses whether a configuration is reachable with exactly one nondeterministic,
but an arbitrary number of deterministic steps. Accepting computations of the machine
correspond to paths from the first nondeterministic configuration to Cacc of length f(k)·log |G|
in G. ◀

Now consider the problem p-#REACH, defined as follows.

Problem: p-#REACH

Input: directed graph G = (V, E), s, t ∈ V , k ∈ N.
Parameter: k.
Output: number of s-t-walks of length exactly k.

The difference to the previous problem is the unbounded out-degree of nodes and the length
of counted walks being k instead of a ≤ k · log |x|. Note that the analogue problem for
counting paths is #W[1]-complete [32]. However, we will see now that the problem for walks
is #paraβL-complete.

▶ Theorem 15. p-#REACH is #paraβL-complete with respect to ≤plog
pars.

As the length of paths that are counted in p-#REACH is k, the runtime of the whole
algorithm used to prove membership in the previous theorem is actually bounded by k · log |x|
on input (x, k). This means that the computation is tail-nondeterministic.

A. Haak, A. Meier, O. Prakash, and R. Rao B. V. 40:11

▶ Theorem 16. p-#REACH is #paraβtailL-complete with respect to ≤plog
pars.

The previous results together with the fact that #paraβL is closed under ≤plog
pars yield the

following surprising collapse (a similar behaviour was observed by Bottesch [8, 9]).

▶ Corollary 17. [#paraβtailL]≤
plog
pars = #paraβL.

We continue with another variant of p-#LOGREACHb, namely p-#LOGWALKb. Here,
all walks of length a are counted, if a ≤ k · log |x| (and s, t are not part of the input).

▶ Theorem 18. p-#LOGWALKb is #paraβL-complete with respect to ≤plog
T .

Now, consider a problem that combines a reachability problem with model-checking for
propositional logic, that is, it only counts walks that are models of a propositional formula
(see Haak et al. [35]). Let G = (V, E) be a DAG, (e1, . . . , en) be a walk in G with ei ∈ E for
1 ≤ i ≤ n, and P = {e1, . . . , en}. Define the function cP : E → {0, 1} to be the characteristic
function of P with respect to E: cP (e) = 1 iff e ∈ P .

Problem: p-#LOGREACH2-CNF

Input: directed graph G = (V, E) of out-degree 2, s, t ∈ V , CNF formula φ with
Vars(φ) ⊆ E, a, k ∈ N.

Parameter: k.
Output: Number of s-t-walks (s = e1, . . . , ea = t) such that cP |= φ, where P =

{e1, . . . , ea}, if a ≤ k · log(|V | + |φ|), 0 otherwise.

▶ Theorem 19. p-#LOGREACH2-CNF is #paraW L-complete with respect to ≤plog
pars.

Proof Idea. Regarding membership, we can first use the algorithm outlined in the proof
idea of Theorem 14 to nondeterministically guess a path, and then use the standard logspace
model-checking algorithm for propositional formulas. Since edges in the graph are associated
with variables of the formula, whenever we need the value of an edge variable e, we run the
original algorithm re-using nondeterministic bits to determine it.

For the lower bound, we use the same graph as in Theorem 14, and the formula is used
to express consistency of the re-used nondeterministic bits in the configuration graph. ◀

Similarly, define the problem p-#CC2-CNF: Given a graph G = (V, E) of bounded
out-degree 2, a CNF-formula φ with Vars(φ) ⊆ E and a, k ∈ N, with k as the parameter
and a ≤ log(|G| + |φ|), output the number of cycle covers D ⊆ E in which the number of
non-selfloop-cycles is ≤ k, exactly k · a vertices are covered non-trivially and Vars(D) |= φ.

▶ Theorem 20. p-#CC2-CNF is #paraW L-complete with respect to ≤plog
pars.

4.2 Counting FO-Assignments
Let F be a class of well-formed formulas. The problem of counting satisfying assignments to
free FO-variables in F -formulas, p-#MC(F), is defined as follows.

Problem: p-#MC(F)

Input: formula φ ∈ F , structure A, k ∈ N.
Parameter: |φ|.
Output: |φ(A)| if k = |φ|, 0 otherwise.

STACS 2021

40:12 Parameterised Counting in Logspace

Here, φ(A) is the set of satisfying assignments of φ in A:

φ(A) = { (a1, . . . , an) | (a1, . . . , an) ∈ dom(A)n, A |= φ(a1, . . . , an) }.

Denote by p-#MC(F)a the variant where for all relations the arity is at most a ∈ N. We
investigate parameterisations that yield complete problems for some of the new classes in
this setting.

In particular, we consider a fragment of FO obtained by restricting the occurrence of
variables in the syntactic tree of a formula in a purely syntactic manner. Formally, the syntax
tree of a quantifier-free FO-formula φ is a tree with edge-ordering whose leaves are labelled
by atoms of φ and whose inner vertices are labelled by Boolean connectives.

▶ Definition 21. Let r ∈ N and φ be a quantifier-free FO-formula. Let θ1, . . . , θm be the
atoms of φ in the order of their occurrence in the order-respecting depth-first run through the
syntax tree of φ. We say that φ is r-local if for any θi, θj that involve the same variable, we
have |i − j| ≤ r. We define Σr-local

0 := { φ ∈ Σ0 | φ is r-local }.

Using this syntactic notion, we obtain a complete problem for our classes with read-once
access to nondeterministic bits in the setting of first-order model-checking.

▶ Theorem 22. For a ≥ 2, r ≥ 1, p-#MC(Σr-local
0)a is #paraβL-complete and #paraβtailL-

complete with respect to ≤plog
pars.

Proof Idea. Regarding membership, we evaluate the given φ in A top to bottom using the
locality of φ by storing assignments to variables until we encountered r more atoms. As a
result, at most a · r assignments to variables are simultaneously stored and each one needs
log |A| space. Moreover, the runtime of the whole procedure is bounded by f(|φ|) · log |A|
for some computable function f and thereby the procedure is tail-nondeterministic.

Regarding the lower bound, we reduce from p-#REACH and use the formula

φk(x1, . . . , xk) := (x1 = s) ∧ E(x1, x2) ∧ E(x2, x3) ∧ . . . ∧ E(xk−1, xk) ∧ xk = t

expressing that a tuple of vertices (v1, . . . , vk) is an sA-tA-walk in an (E, s, t)-structure A. ◀

Note that the decision version of p-#MC(Σ0) is equivalent to parameterised model-
checking for Σ1-sentences, as we count assignments to free variables. This problem charac-
terises tail-nondeterministic para-logspace with read-once access to nondeterministic bits.

▶ Theorem 23. p-#MC(Σ0) is #paraW[1]L-complete with respect to ≤plog
pars.

The complexity status of counting assignments to free first-order variables in a Σ0 formula
with unbounded arity or without the local restrictions is not known. In particular, it is not
clear if the restriction on the arity or the locality property of the formula can be removed
while preserving completeness. Finally, we close this section with three open questions.

▶ Open Problem 24. What is the complexity of [p-#MC(Σ0)a]≤
plog
pars for fixed a ∈ N? What

is the complexity of [p-#MC(Σr-local
0)]≤

plog
pars for fixed r ∈ N?

▶ Open Problem 25. Is the class [#paraW[1]L]≤
plog
pars equivalent to some known class?

A. Haak, A. Meier, O. Prakash, and R. Rao B. V. 40:13

4.3 Counting Homomorphisms
This subsection is devoted to the study of the problem of counting homomorphisms between
two structures in the parameterised setting. Typically, the size of the universe of the first
structure is considered as the parameter. The complexity of counting homomorphisms has
been intensively investigated for almost two decades [26, 34, 22, 14].

▶ Definition 26 (Homomorphism). Let A and B be structures over some vocabulary τ with
universes A and B, respectively. A function h : A → B is a homomorphism from A to B if for
all R ∈ τ and for all tuples (a1, . . . , aarity(R)) ∈ RA, we have (h(a1), . . . , h(aarity(R))) ∈ RB.

A bijective homomorphism h between two structures A, B such that the inverse of h is
also a homomorphism is called an isomorphism. If there is an isomorphism between A and
B, then A is said to be isomorphic to B.

▶ Definition 27. Let A be a structure with universe A. Then denote by A∗ the extension
of A by a fresh unary relation symbol Ca interpreted as CA

a = {a} for each a ∈ dom(A).
Analogously, denote by A∗ for a class of structures A the class { A∗ | A ∈ A }.

Define p-#Hom(A) as the following problem. Given a pair of structures (A, B) where
A ∈ A, and parameter k, output the number of homomorphisms from A to B, if |dom(A)| ≤ k,
and 0 otherwise.

Problem: p-#Hom(A)

Input: A pair of structures (A, B) where A ∈ A.
Parameter: |A|, k ∈ N.
Output: the number of homomorphisms from A to B if |dom(A)| ≤ k, 0 otherwise.

Notice that B can be any structure. For n ≥ 2, let Pn be the canonical undirected path of
length n, that is, the (E)-structure with universe {1, . . . , n} and EPn = { (i, i + 1), (i + 1, i) |
1 ≤ i < n }. Let P be the class of structures isomorphic to some Pn. For the next
theorem, reduce to p-#REACH for membership, and from a normalised, coloured variant of
p-#REACH for hardness.

▶ Theorem 28. p-#Hom(P∗) is #paraβL-complete with respect to ≤plog
pars.

▶ Open Problem 29. Is there a natural class of structures A such that p-#Hom(A) is
#paraW[1]L-complete with respect to ≤plog

pars?

4.4 The Parameterised Complexity of the Determinant
In this section, we consider a parameterised variant of the determinant function introduced by
Chauhan and Rao [13]. For n > 0 let Sn denote the set of all permutations of {1, . . . , n}. For
k ≤ n, let Sn,k denote the following subset of Sn: Sn,k = { π | π ∈ Sn, |{ i : π(i) ̸= i }| = k }.

We define the parameterised determinant function of an n × n square matrix A =
(ai,j)1≤i,j≤n as p-det(A, k) =

∑
π∈Sn,k

sign(π)
∏

i:π(i)̸=i ai,π(i).
Using an interpolation argument, it can be shown that p-det is in FP when k is part of

the input and thereby in FFPT [13], the functional counterpart of FPT. In fact, the same
interpolation argument can be used to show that p-det is in GapL (the class of functions
f(x) such that for some NL-machine, f(x) is the number of accepting minus the number
of rejecting paths). However, this does not give a space efficient algorithm for p-det in
the sense of parameterised classes. The GapL algorithm may require a large number of

STACS 2021

40:14 Parameterised Counting in Logspace

nondeterministic steps and accordingly is not k-bounded. We show that the space efficient
algorithm for the determinant given by Mahajan and Vinay [38] can be adapted to the
parameterised setting, proving that p-det can be written as a difference of two #paraβL
functions. Recall the notion of a clow sequence introduced by Mahajan and Vinay [38].

▶ Definition 30 (Clow). Let G = (V, E) be a directed graph with V = {1, . . . , n} for some
n ∈ N. A clow in G is a walk C = (w1, . . . , wr−1, wr = w1) where w1 is the minimal vertex
among w1, . . . , wr−1 with respect to the natural ordering of V and w1 ̸= wj for all 1 < j < r.
Node w1 is called the head of C, denoted by head(C).

▶ Definition 31 (Clow sequence). A clow sequence of a graph G = ({1, . . . , n}, E) is a
sequence W = (C1, . . . , Ck) such that Ci is a clow of G for 1 ≤ i ≤ k and

the heads of the sequence are in ascending order head(C1) < · · · < head(Ck), and
the total number of edges that appear in some Ci (including multiplicities) is exactly n.

For a clow sequence W of some graph G = ({1, . . . , n}, E) with r clows the sign of W ,
sign(W), is defined as (−1)n+r. Note that, if the clow sequence is a cycle cover σ, then (−1)n+r

is equal to the sign of the permutation represented by σ (that is, (−1)# inversions in σ). Mahajan
and Vinay came up with this sign-function to derive their formula for the determinant.

For an (n × n)-matrix A, GA is the weighted directed graph with vertex set {1, . . . , n}
and weighted adjacency matrix A. For a clow (sequence) W , weight(W) is the product of
weights of the edges (clows) in w. For any G as above, WG is the set of all clow sequences of
G. Mahajan and Vinay [38] proved that det(A) =

∑
W ∈WGA

sign(W) · weight(W).
We adapt these notions to the parameterised setting. First observe that for a permutation

σ ∈ Sn,k, we have that sign(σ) = (−1)n+r, where r is the number of cycles in the permutation.
However, the number of cycles in σ is n − k + r′, where r′ is the number of cycles of length
at least two in σ. Accordingly, we have sign(σ) = (−1)2n−k+r′ . Adapting the definition of
a clow sequence, for k ≥ 0, define a k-clow sequence to be a clow sequence where the total
number of edges (including multiplicity) in the sequence is exactly k, every clow has at least
two edges, and no self loop edge of the form (i, i) occurs in any of the clows. For any graph
G with vertex set {1, . . . , n} for n ∈ N, WG,k is the set of all k-clow sequences of G. For
a k-clow sequence W ∈ WG,k, sign(W) is (−1)2n−k+r′ , where r′ is the number of clows in
W . Mahajan and Vinay [38, Theorem 1] showed that the signed sum of the weights of all
clow sequences is equal to the determinant. At the outset, this is a bit surprising, since
the determinant is equal to the signed sum of weights of cycle covers, whereas there are
clow sequences that are not cycle covers. Mahajan and Vinay [38] observed that every clow
sequence that is not a cycle cover can be associated with a unique clow sequence of opposite
sign, and thereby all clow sequences cancel out. We observe a parameterised version of the
above result [38, Theorem 1].

▶ Lemma 32. p-det(A, k) =
∑

W ∈WGA,k
sign(W) · weight(W), for {0, 1}-matrix A, k ∈ N.

Using this characterisation, the upper bound in the following theorem can be obtained.
For hardness a reduction from p-#REACH suffices.

▶ Theorem 33. The problem p-det for (0, 1)-matrices can be written as a difference of two
functions in #paraβtailL, and is #paraβtailL-hard with respect to ≤plog

met .

A. Haak, A. Meier, O. Prakash, and R. Rao B. V. 40:15

5 Conclusions and Outlook

We developed foundations for the study of parameterised space complexity of counting
problems. Our results show interesting characterisations for classes defined in terms of
k-bounded para-logspace NTMs. We believe that our results will lead to further research
of parameterised logspace counting complexity. Notice, that the studied walk problems in
Section 4.1 can be considered restricted to DAGs yielding the same completeness results.

Branching programs are immanent for the study of space-bounded and parallel complex-
ity classes. Languages accepted by polynomial-size logspace-uniform branching programs
characterise NL. In fact, this result carries forward to the counting versions. Motivated
by this, one can consider parameterised counting classes based on deterministic branching
programs (DBPs) and nondeterministic branching programs (BPs). It can be shown that for
any o ∈ {W, W[1], β, β-tail}, #parao-L and #parao-NL, can be characterised in terms of
an adequate parameterised counting version of DBPs and BPs, respectively (see the technical
report [36]).

Comparing our newly introduced classes with the W-hierarchy (which is defined in
terms of weighted satisfiability problems for circuits of a so-called bounded weft), one might
ponder whether there is an alternative definition of our classes with such circuit problems.
Though in this article we did not explore the weighted satisfiability, the closely related
problem p-MC(Σ0) sheds some light on this. Theorem 23 shows that p-MC(Σ0) is complete
for paraW[1]L (in fact, we show this for their counting versions) under ≤plog

m -reductions.
However, if we take FPT-reductions, p-MC(Σ0) is complete for W[1]. Though we could
not prove it so far, we believe this is a general phenomenon: Any W[1]-complete problem is
complete for paraW[1]L under ≤plog

m -reductions. More generally, there is a possibility that
the FPT-closure of paraW L-classes is equal to the corresponding class in the W-hierarchy.

One might also ask the question if paraW L is contained in FFPT. This is unlikely based
on the view expressed above. For example, p-MC(Σ0) is complete for both paraW[1]L and
W[1] but under two different reductions. As a result, paraW L ⊆ FFPT would imply that
p-MC(Σ0) ∈ FPT and, accordingly, FPT = W[1] as FPT is closed under FPT-reductions.
We close with interesting tasks for further research:

Study further closure properties of the new classes (e.g., Open Problem 13).
Improve the understanding of the influence of syntactic locality, resp., bounded arity in
the setting of p-#MC(Σ0) (Open Problem 24).
Find a characterisation of the ≤plog

pars-closure of #paraW[1]L (Open Problem 25).
Identify a natural class of structures for which the homomorphism problem is #paraWL-
complete (Open Problem 29).
Establish a broader spectrum of complete problems for the classes paraβL and paraW L,
e.g., in the realm of satisfiability questions.
Identify further characterisations of the introduced classes, e.g., in the vein of descriptive
complexity, which could highlight their robustness.
Study gap classes [29] based on our classes. This might help improve Theorem 33.

References

1 Manindra Agrawal, Eric Allender, and Samir Datta. On TC0, AC0, and arithmetic circuits. J.
Comput. Syst. Sci., 60(2):395–421, 2000.

2 Eric Allender, Robert Beals, and Mitsunori Ogihara. The complexity of matrix rank and
feasible systems of linear equations. Computational Complexity, 8(2):99–126, 1999.

STACS 2021

40:16 Parameterised Counting in Logspace

3 Eric Allender and Mitsunori Ogihara. Relationships among PL, #L, and the determinant.
ITA, 30(1):1–21, 1996.

4 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
5 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge

University Press, 2009.
6 Max Bannach, Christoph Stockhusen, and Till Tantau. Fast parallel fixed-parameter algorithms

via color coding. In IPEC, volume 43 of LIPIcs, pages 224–235. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik, 2015.

7 Richard Beigel and Bin Fu. Circuits over PP and PL. J. Comput. Syst. Sci., 60(2):422–441,
2000.

8 Ralph Bottesch. Relativization and interactive proof systems in parameterized complexity
theory. In IPEC, volume 89 of LIPIcs, pages 9:1–9:12. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2017.

9 Ralph Christian Bottesch. On W[1]-hardness as evidence for intractability. In MFCS, volume
117 of LIPIcs, pages 73:1–73:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

10 Cornelius Brand and Marc Roth. Parameterized counting of trees, forests and matroid bases.
In CSR, volume 10304 of Lecture Notes in Computer Science, pages 85–98. Springer, 2017.

11 Jonathan F. Buss. Relativized alternation and space-bounded computation. J. Comput. Syst.
Sci., 36(3):351–378, 1988.

12 Hervé Caussinus, Pierre McKenzie, Denis Thérien, and Heribert Vollmer. Nondeterministic
NC1 computation. J. Comput. Syst. Sci., 57(2):200–212, 1998.

13 Ankit Chauhan and B. V. Raghavendra Rao. Parameterized analogues of probabilistic
computation. In CALDAM, volume 8959 of Lecture Notes in Computer Science, pages 181–192.
Springer, 2015.

14 Hubie Chen and Moritz Müller. The fine classification of conjunctive queries and parameterized
logarithmic space. TOCT, 7(2):7:1–7:27, 2015.

15 Yijia Chen and Jörg Flum. Some lower bounds in parameterized AC0. In MFCS, volume 58
of LIPIcs, pages 27:1–27:14. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016.

16 Yijia Chen and Jörg Flum. Some lower bounds in parameterized AC0. CoRR, abs/1606.08014,
2016. arXiv:1606.08014.

17 Yijia Chen, Jörg Flum, and Martin Grohe. Bounded nondeterminism and alternation in
parameterized complexity theory. In Computational Complexity Conference, pages 13–29.
IEEE Computer Society, 2003.

18 Radu Curticapean. Counting matchings of size k is W[1]-hard. In ICALP (1), volume 7965 of
Lecture Notes in Computer Science, pages 352–363. Springer, 2013.

19 Radu Curticapean. The simple, little and slow things count: on parameterized counting
complexity. PhD thesis, Saarland University, 2015.

20 Radu Curticapean. Block interpolation: A framework for tight exponential-time counting
complexity. Inf. Comput., 261(Part):265–280, 2018.

21 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In STOC, pages 210–223. ACM, 2017.

22 Víctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms seen from the
other side. Theor. Comput. Sci., 329(1-3):315–323, 2004.

23 Carsten Damm. DET = L#L? Technical report, Informatik-Preprint 8, Fachbereich Informatik
der Humboldt-Universitlt zu Berlin, 1991.

24 Samir Datta, Meena Mahajan, B. V. Raghavendra Rao, Michael Thomas, and Heribert Vollmer.
Counting classes and the fine structure between NC1 and L. Theor. Comput. Sci., 417:36–49,
2012.

25 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999.

26 Martin E. Dyer and Catherine S. Greenhill. The complexity of counting graph homomorphisms.
Random Struct. Algorithms, 17(3-4):260–289, 2000.

http://arxiv.org/abs/1606.08014

A. Haak, A. Meier, O. Prakash, and R. Rao B. V. 40:17

27 Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Mathematical logic (2. ed.).
Undergraduate texts in mathematics. Springer, 1994.

28 Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space and circuit complexity
of parameterized problems: Classes and completeness. Algorithmica, 71(3):661–701, 2015.

29 Stephen A. Fenner, Lance Fortnow, and Stuart A. Kurtz. Gap-definable counting classes. J.
Comput. Syst. Sci., 48(1):116–148, 1994.

30 Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-decompositions. J.
ACM, 49(6):716–752, 2002.

31 Jörg Flum and Martin Grohe. Describing parameterized complexity classes. Inf. Comput.,
187(2):291–319, 2003.

32 Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM J.
Comput., 33(4):892–922, 2004.

33 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

34 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. J. ACM, 54(1):1:1–1:24, 2007.

35 Anselm Haak, Juha Kontinen, Fabian Müller, Heribert Vollmer, and Fan Yang. Counting of
teams in first-order team logics. In MFCS, volume 138 of LIPIcs, pages 19:1–19:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

36 Anselm Haak, Arne Meier, Om Prakash, and B. V. Raghavendra Rao. Parameterised counting
in logspace. CoRR, abs/1904.12156, 2019. arXiv:1904.12156.

37 Mark Jerrum and Kitty Meeks. The parameterised complexity of counting even and odd
induced subgraphs. Combinatorica, 37(5):965–990, 2017.

38 Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and complexity.
Chicago J. Theor. Comput. Sci., 1997, 1997.

39 Catherine McCartin. Parameterized counting problems. In MFCS, volume 2420 of Lecture
Notes in Computer Science, pages 556–567. Springer, 2002.

40 Mitsunori Ogihara. The PL hierarchy collapses. SIAM J. Comput., 27(5):1430–1437, 1998.
41 Michael Sipser. Introduction to the theory of computation. PWS Publishing Company, 1997.
42 Christoph Stockhusen. On the space and circuit complexity of parameterized problems. PhD

thesis, University of Lübeck, Germany, 2017. URL: http://www.zhb.uni-luebeck.de/epubs/
ediss1780.pdf.

43 Christoph Stockhusen and Till Tantau. Completeness results for parameterized space classes.
In IPEC, volume 8246 of Lecture Notes in Computer Science, pages 335–347. Springer, 2013.

44 Seinosuke Toda. Counting problems computationally equivalent to the determinant. Technical
Report CSIM 91-07, Dept. Comp. Sci. and Inf. Math., Univ. of Electro-Communications,
Tokyo, 1991. URL: http://perso.ens-lyon.fr/natacha.portier/papers/toda91.pdf.

45 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991.

46 Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189–201,
1979.

47 V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In
Proceedings of 6th Structure in Complexity Theory Conference, pages 270–284, 1991.

STACS 2021

http://arxiv.org/abs/1904.12156
http://www.zhb.uni-luebeck.de/epubs/ediss1780.pdf
http://www.zhb.uni-luebeck.de/epubs/ediss1780.pdf
http://perso.ens-lyon.fr/natacha.portier/papers/toda91.pdf

Digraph Coloring and Distance to Acyclicity
Ararat Harutyunyan !

Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243, LAMSADE, Paris, France

Michael Lampis !

Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243, LAMSADE, Paris, France

Nikolaos Melissinos !

Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243, LAMSADE, Paris, France

Abstract
In k-Digraph Coloring we are given a digraph and are asked to partition its vertices into at
most k sets, so that each set induces a DAG. This well-known problem is NP-hard, as it generalizes
(undirected) k-Coloring, but becomes trivial if the input digraph is acyclic. This poses the natural
parameterized complexity question of what happens when the input is “almost” acyclic. In this
paper we study this question using parameters that measure the input’s distance to acyclicity in
either the directed or the undirected sense.

In the directed sense perhaps the most natural notion of distance to acyclicity is directed feedback
vertex set (DFVS). It is already known that, for all k ≥ 2, k-Digraph Coloring is NP-hard on
digraphs of DFVS at most k + 4. We strengthen this result to show that, for all k ≥ 2, k-Digraph
Coloring is already NP-hard for DFVS exactly k. This immediately provides a dichotomy, as
k-Digraph Coloring is trivial if DFVS is at most k − 1. Refining our reduction we obtain two
further consequences: (i) for all k ≥ 2, k-Digraph Coloring is NP-hard for graphs of feedback arc
set (FAS) at most k2; interestingly, this leads to a second dichotomy, as we show that the problem
is FPT by k if FAS is at most k2 − 1; (ii) k-Digraph Coloring is NP-hard for graphs of DFVS
k, even if the maximum degree ∆ is at most 4k − 1; we show that this is also almost tight, as the
problem becomes FPT for DFVS k and ∆ ≤ 4k − 3.

Since these results imply that the problem is also NP-hard on graphs of bounded directed
treewidth, we then consider parameters that measure the distance from acyclicity of the underlying
graph. On the positive side, we show that k-Digraph Coloring admits an FPT algorithm
parameterized by treewidth, whose parameter dependence is (tw!)ktw. Since this is considerably
worse than the ktw dependence of (undirected) k-Coloring, we pose the question of whether the
tw! factor can be eliminated. Our main contribution in this part is to settle this question in the
negative and show that our algorithm is essentially optimal, even for the much more restricted
parameter treedepth and for k = 2. Specifically, we show that an FPT algorithm solving 2-Digraph
Coloring with dependence tdo(td) would contradict the ETH.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Digraph Coloring, Dichromatic number, NP-completeness, Parameterized
complexity, Feedback vertex and arc sets

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.41

Related Version Full Version: https://arxiv.org/abs/2010.06317

Funding Michael Lampis was partially supported by a grant from the French National Research
Agency under the JCJC program (ASSK: ANR-18-CE40-0025-01).

1 Introduction

In Digraph Coloring, we are given a digraph D and are asked to calculate the smallest k

such that the vertices of D can be partitioned into k acyclic sets. In other words, the objective
of this problem is to color the vertices with the minimum number of colors so that no directed

© Ararat Harutyunyan, Michael Lampis, and Nikolaos Melissinos;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 41; pp. 41:1–41:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ararat.harutyunyan@dauphine.fr
mailto:michail.lampis@dauphine.fr
https://orcid.org/0000-0002-5791-0887
mailto:nikolaos.melissinos@dauphine.eu
https://doi.org/10.4230/LIPIcs.STACS.2021.41
https://arxiv.org/abs/2010.06317
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Digraph Coloring and Distance to Acyclicity

cycle is monochromatic. The notion of dichromatic number was introduced by V. Neumann-
Lara [37]. More recently, digraph coloring has received much attention, in part because it turns
out that many results about the chromatic number of undirected graphs quite naturally carry
over to the dichromatic number of digraphs [1, 2, 4, 7, 11, 20, 21, 22, 23, 24, 32, 34, 35, 38].
We note that Digraph Coloring generalizes Coloring (if we simply replace all edges of a
graph by pairs of anti-parallel arcs) and is therefore NP-complete.

In this paper we are interested in the computational complexity of Digraph Coloring
from the point of view of structural parameterized complexity1. Our main motivation
for studying this is that (undirected) Coloring is a problem of central importance in
this area whose complexity is well-understood, and it is natural to hope that some of the
known tractability results may carry over to digraphs – especially because, as we mentioned,
Digraph Coloring seems to behave as a very close counterpart to Coloring in many
respects. In particular, for undirected graphs, the complexity of Coloring for “almost-
acyclic” graphs is very precisely known: for all k ≥ 3 there is a O∗(ktw) algorithm, where
tw is the input graph’s treewidth, and this is optimal (under the SETH) even if we replace
treewidth by much more restrictive parameters [27, 33]. Can we achieve the same amount of
precision for Digraph Coloring?

Our results. The main question motivating this paper is therefore the following: Does
Digraph Coloring also become tractable for “almost-acyclic” inputs? We attack this
question from two directions.

First, we consider the notion of acyclicity in the digraph sense and study cases where the
input digraph is close to being a DAG. Possibly the most natural such measure is directed
feedback vertex set (DFVS), which is the minimum number of vertices whose removal destroys
all directed cycles. The problem is paraNP-hard for this parameter, as for all fixed k ≥ 2,
k-Digraph Coloring is already known to be NP-hard, for inputs of DFVS at most k + 4
[34]. Our first contribution is to tighten this result by showing that actually k-Digraph
Coloring is already NP-hard for DFVS of size exactly k. This closes the gap left by the
reduction of [34] and provides a complete dichotomy, as the problem is trivially FPT by k

when the DFVS has size strictly smaller than k (the only non-trivial part of the problem in
this case is to find the DFVS [10]).

This negative result motivates us to either consider a more restricted notion of near-
acyclicity, or to impose further restrictions, such as bounding the maximum degree of the
graph. Unfortunately, we show that neither of these suffices to make the problem tractable.
In particular, by refining our reduction we obtain the following: First, we show that for all
k ≥ 2, k-Digraph Coloring is NP-hard for digraphs of feedback arc set (FAS) k2, that
is, digraphs where there exists a set of k2 arcs whose removal destroys all cycles (feedback
arc set is of course a more restrictive parameter than feedback vertex set). Interestingly,
this also leads us to a complete dichotomy, this time for the parameter FAS: we show that
k-coloring becomes FPT (by k) on graphs of FAS at most k2 − 1, by an argument that
reduces this problem to coloring a subdigraph with at most O(k2) vertices, and hence the
correct complexity threshold for this parameter is k2. Second, we show that k-coloring a
digraph with DFVS k remains NP-hard even if the maximum degree is at most 4k − 1. This
further strengthens the reduction of [34], which showed that the problem is NP-hard for
bounded degeneracy (rather than degree). Almost completing the picture, we show that
k-coloring a digraph with DFVS k and maximum degree at most 4k − 3 is FPT by k, leaving
open only the case where the DFVS is exactly k and the maximum degree exactly 4k − 2.

1 In the remainder, we assume the reader is familiar with the basics of parameterized complexity theory,
such as the class FPT, as given in standard textbooks [12].

A. Harutyunyan, M. Lampis, and N. Melissinos 41:3

The results we obtain for DFVS and FAS are mostly negative, but one could argue
that this is because directed acyclicity allows a much richer class of inputs than undirected
acyclicity and hence it is unreasonable to expect Digraph Coloring with these parameters
to be as tractable as Coloring for treewidth. Therefore, in the second part of the paper
we make a more “fair” comparison and parameterize the problem by the treewidth of the
underlying graph. It turns out that, finally, this suffices to lead to an FPT algorithm, obtained
with standard DP techniques. However, our algorithm has a somewhat disappointing running
time of (tw!)ktwnO(1), which is significantly worse than the ktwnO(1) complexity which is
known to be optimal for undirected Coloring, especially for small values of k. This raises
the question of whether the extra (tw!) factor can be removed. Our main contribution in
this part is to show that this is likely impossible, even for a more restricted case. Specifically,
we show that if the ETH is true, no algorithm can solve 2-Digraph Coloring in time
tdo(td)nO(1), where td is the input graph’s treedepth, a parameter more restrictive than
treewidth (and pathwidth). As a result, this paper makes a counterpoint to the line of
research that seeks to find ways in which dichromatic number replicates the behavior of
chromatic number in the realm of digraphs by pinpointing one important aspect where the
two notions are quite different, namely their complexity with respect to treewidth.

Other related work. Structural parameterizations of Digraph Coloring have been
studied in [38], who showed that the problem is FPT by modular width generalizing the
algorithms of [18, 29]; and [20] who showed that the problem is in XP by clique-width (note
that hardness results for Coloring rule out an FPT algorithm in this case [16, 17, 30]).
Our results on the hardness of the problem for bounded DFVS and FAS build upon the work
of [34]. The fact that the problem is hard for bounded DFVS implies that it is also hard
for most versions of directed treewidth, including DAG-width, Kelly-width, and directed
pathwidth [6, 19, 25, 28, 31]. Indeed, hardness for FAS implies also hardness for bounded
elimination width, a more recently introduced restriction of directed treewidth [15]. For
undirected treewidth, a problem with similar behavior is DFVS: (undirected) FVS is solvable
in O∗(3tw) [13] but DFVS cannot be solved in time two(tw)nO(1), and this is tight under the
ETH [8]. For other natural problems whose complexity by treewidth is twΘ(tw) see [3, 5, 9]

With respect to maximum degree, it is not hard to see that k-Digraph Coloring is
NP-hard for graphs of maximum degree 2k + 2, because k-Coloring is NP-hard for graphs
of maximum degree k + 1, for all k ≥ 3 2. On the converse side, using a generalization of
Brooks’ theorem due to Mohar [36] one can see that k-Digraph Coloring digraphs of
maximum degree 2k is in P. This leaves as the only open case digraphs of degree 2k + 1,
which in a sense mirrors our results for digraphs of DFVS k and degree 4k − 2. We note
that the NP-hardness of 2-Digraph Coloring for bounded degree graphs is known even
for graphs of large girth, but the degree bound follows the imposed bound on the girth [14].

2 Definitions and Notation

We use standard graph-theoretic notation. All digraphs are loopless and have no parallel
arcs; two oppositely oriented arcs between the same pair of vertices, however, are allowed
and are called a digon. The in-degree (respectively, out-degree) of a vertex is the number of

2 Note that this argument does not prove that 2-Digraph Coloring is NP-hard for maximum degree 6,
but this is not too hard to show. We give a proof in the full version of the paper for the sake of
completeness.

STACS 2021

41:4 Digraph Coloring and Distance to Acyclicity

arcs coming into (respectively going out of) a vertex. The degree of a vertex is the sum of its
in-degree and out-degree. For a set of arcs F , V (F) denotes the set of their endpoints. For a
set of vertices S of a digraph D, D[S] denotes the digraph induced by S and N [S] denotes
the closed neighborhood of S, that is, S and all vertices that have an arc to or from S.

The chromatic number of a graph G is the minimum number of colors k needed to color
the vertices of G such that each color class is an independent set. We say that a digraph
D = (V, E) is k-colorable if we can color the vertices of D with k colors such that each
color class induces an acyclic subdigraph (such a coloring is called a proper k-coloring). The
dichromatic number, denoted by χ⃗(D), is the minimum number k for which D is k-colorable.

A subset of vertices S ⊂ V of D is called a feedback vertex set if D − S is acyclic. A
subset of arcs A ⊂ E of D is called a feedback arc set if D − A is acyclic. For the definition of
treewidth and nice tree decompositions we refer the reader to [12]. A graph G has treedepth
at most k if one of the following holds: (i) G has at most k vertices (ii) G is disconnected
and all its components have treedepth at most k (iii) there exists u ∈ V (G) such that G − u

has treedepth at most k − 1. We use tw(G), td(G) to denote the treewidth and treedepth of
a graph. It is known that tw(G) ≤ td(G) for all graphs G.

The Exponential Time Hypothesis (ETH) [26] states that there is a constant c > 1 such
that no algorithm which decides if 3-SAT formulas with n variables and m clauses are
satisfiable can run in time cn+m. In this paper we will use the simpler (and slightly weaker)
version of the ETH which simply states that 3-SAT cannot be solved in time 2o(n+m).

Throughout the paper, when n is a positive integer we use [n] to denote the set {1, . . . , n}.
For a set V an ordering of V is an injective function σ : V → [|V |]. It is a well-known fact
that a digraph D is acyclic if and only if there exists an ordering σ of V (D) such that for all
arcs uv we have σ(u) < σ(v). This is called a topological ordering of D.

3 Bounded Feedback Vertex Set

In this section we study the complexity of the problem parameterized by the size of the
feedback vertex set of a digraph. Throughout we will assume that a feedback vertex set is
given to us; if not we can use known FPT algorithms to find the smallest such set [10].

Our main result in this section is that k-Digraph Coloring is NP-hard for graphs of
DFVS k. We begin with an easy observation showing that this result will be best possible.
▶ Remark 1. Every digraph D = (V, E) with feedback vertex set of size at most k − 1 is
k-colorable.

The remark holds because we can use distinct colors for the vertices of the feedback
vertex set and the remaining color for the rest of the graph. Building on this we can make a
further easy remark.
▶ Remark 2. Let D = (V, E) be a digraph with feedback vertex set F of size |F | = k. If F

does not induce a bi-directed clique, then D is k-colorable.
Indeed, if u, v ∈ F are not connected by a digon we can use one color for {u, v}, k − 2

distinct colors for the rest of F , and the remaining color for the rest of the graph. Remark 2
will also be useful later in designing an algorithm, but at this point it is interesting because
it tells us that, since the graphs we construct in our reduction have DFVS k and must in
some cases have χ⃗(D) > k, our reduction needs to construct a bi-directed clique of size k.

Before we go on to our reduction let us also mention that we will reduce from a restricted
version of 3-SAT with the following properties: (i) all clauses must have either only positive
literals or only negative literals (ii) all variables appear at most 2 times positive and 1 time
negative. We call this Restricted-3-SAT.

A. Harutyunyan, M. Lampis, and N. Melissinos 41:5

▶ Lemma 3. Restricted-3-SAT is NP-hard and cannot be solved in 2o(n+m) time unless
the ETH is false.

The proof for the Lemma 3 is deferred to the full version of the paper.

▶ Theorem 4. For all k ≥ 2, it is NP -hard to decide if a digraph D = (V, E) is k-colorable
even when the size of its feedback vertex set is k. Furthermore, this problem cannot be solved
in time 2o(n) unless the ETH is false.

Proof. We will prove the theorem for k = 2. To obtain the proof for larger values one can
add to the construction k − 2 vertices which are connected to everything with digons: this
increases both the dichromatic number and the feedback vertex set by k − 2. Note that this
does indeed construct a “palette” clique of size k, as indicated by Remark 2.

We make a reduction from Restricted-3-SAT, which is NP-hard by Lemma 3. Our
reduction will produce an instance of size linear in the input formula, which leads to the
ETH-based lower bound. Let ϕ be the given formula with variables x1, . . . , xn, and suppose
that clauses c1, . . . , cℓ contain only positive literals, while clauses cℓ+1, . . . , cm contain only
negative literals. We will assume without loss of generality that all variables appear in ϕ

both positive and negative (otherwise ϕ can be simplified).
We begin by constructing two “palette” vertices v1, v2 which are connected by a digon.

Then, for each clause ci, i ∈ [m] we do the following: if the clause has size three we construct
a directed path with vertices li,1, wi,1, li,2, wi,2, li,3, where the vertices li,1, li,2, li,3 represent
the literals of the clause; if the clause has size two we similarly construct a directed path
with vertices li,1, wi,1, li,2, where again li,1, li,2 represent the literals of the clause.

For each variable xj , j ∈ [n] we do the following: for each clause ci1 where xj appears
positive and clause ci2 where xj appears negative we construct a vertex w′

j,i1,i2
and add an

incoming arc from the vertex that represents the literal xj in the directed path of ci1 to
w′

j,i1,i2
; and an outgoing arc from w′

j,i1,i2
to the vertex that represents the literal ¬xj in the

directed path of ci2 .
Finally, to complete the construction we connect the palette vertices to the rest of the

graph as follows: v1 is connected with a digon to all existing vertices wi,j , i ∈ [m], j ∈ [2]; v2
is connected with a digon to all existing vertices w′

j,i1,i2
; v2 has an outgoing arc to the first

vertex of each directed path representing a clause and an incoming arc from the last vertex
of each such path; v1 has an outgoing arc to all vertices that represent positive literals and
an incoming arc from all vertices representing negative literals. (See Figure 1)

(α)

v1 v2

li,1 wi,1 li,2 wi,2 li,3

v1 v2

l′ = xj w′
j,i1,i2 l = ¬xj

(β) (γ)

x1 w1,1 x2 w1,2 x3

¬x1 w2,1 ¬x2

w′
1,1,2 w′

2,1,2

Figure 1 (α): The cycles created by {v1, v2} and clauses with three literals. (β): The cycles
created by {v1, v2} and each pair {x, ¬x}. (γ): An example digraph for the formula ϕ = (x1 ∨ x2 ∨
x3) ∧ (¬x1 ∨ ¬x2), without showing v1, v2.

Let us now prove that this reduction implies the theorem. First, we claim that in the
digraph we constructed {v1, v2} is a feedback vertex set. Indeed, suppose we remove these
two vertices. Now every arc in the remaining graph either connects vertices that represent

STACS 2021

41:6 Digraph Coloring and Distance to Acyclicity

the same clause, or is incident on a vertex w′
j,i1,i2

. Observe that these vertices have only
one incoming and one outgoing arc and because of the ordering of the clauses i1 < i2 (since
clauses that contain negative literals come later in the numbering). We conclude that every
directed path must either stay inside the path representing the same clause or lead to a path
the represents a later clause. Hence, the digraph is acyclic.

Let us now argue that if ϕ is satisfiable then the digraph is 2-colorable. We give color 1
to v1 and 2 to v2. We give color 2 to each wi,j and color 1 to each w′

j,i1,i2
. Fix a satisfying

assignment for ϕ. We give color 1 to all vertices li,j that represent literals set to True by
the assignment and color 2 to all remaining vertices. Let us see why this coloring is acyclic.
First, consider a vertex w′

j,i1,i2
. This vertex has color 1 and one incoming and one outgoing

arc corresponding to opposite literals. Because the literals are opposite, one of them has
color 2, hence w′

j,i1,i2
cannot be in any monochromatic cycle and can be removed. Now,

suppose there is a monochromatic cycle of color 1. As {v1, v2} is a feedback vertex set, this
cycle must include v1. Since v2 and all wi,j have color 2 the vertex after v1 in the cycle must
be some li,j representing a positive literal which was set to True by our assignment. The
only outgoing arc leaving from li,j and going to a vertex of color 1 must lead it to a vertex
w′

j′,i,i′ , which as we said cannot be part of any cycle. Hence, no monochromatic cycle of
color 1 exists. Consider then a monochromatic cycle of color 2, which must begin from v2.
The next vertex on this cycle must be a li,1 and since we have eliminated vertices w′

j,i1,i2
the

cycle must continue in the directed path of clause i. But, since we started with a satisfying
assignment, at least one of the literal vertices of this path has color 1, meaning the cycle
cannot be monochromatic.

Finally, let us argue that if the digraph is 2-colorable, then ϕ is satisfiable. Consider a
2-coloring which, without loss of generality, assigns 1 to v1 and 2 to v2. The coloring must give
color 2 to all wi,j and color 1 to all wj,i1,i2 , because of the digons connecting these vertices to
the palette. Now, we obtain an assignment for ϕ as follows: for each xj , we find the vertex in
our graph that represents the literal ¬xj (this is unique since each variable appears exactly
once negatively): we assign xj to True if and only if this vertex has color 2. Let us argue
that this assignment satisfies all clauses. First, consider a clause with all negative literals. If
this clause is not satisfied, then all the vertices representing its literals have color 2. Because
vertices wi,j also all have color 2, this creates a monochromatic cycle with v2, contradiction.
Hence, all such clauses are satisfied. Second, consider a clause ci with all positive literals. In
the directed path representing ci at least one literal vertex must have color 1, otherwise we
would get a monochromatic cycle with v2. Suppose this vertex represents the literal xj and
has an out-neighbor w′

j,i,i2
, which is colored 1. If the out-neighbor of w′

j,i1,i2
is also colored

1, we get a monochromatic cycle with v1. Therefore, that vertex, which represents the literal
¬xj has color 2. But then, according to our assignment xj is True and ci is satisfied. ◀

4 Bounded Feedback Arc Set and Bounded Degree

In this section we first present two algorithmic results: we show that k-Digraph Coloring
becomes FPT (by k) if either the input graph has feedback vertex set k and maximum
degree at most 4k − 3; or if it has feedback arc set at most k2 − 1 (and unbounded degree).
Interestingly, the latter of these results is exactly tight and the former is almost tight: in
the second part we refine the reduction of the previous section to show that k-Digraph
Coloring is NP-hard for digraphs which have simlutaneously a FAS of size k2, a feedback
vertex set of size k and maximum degree ∆ = 4k − 1.

A. Harutyunyan, M. Lampis, and N. Melissinos 41:7

4.1 Algorithmic Results
Our first result shows that for k-Digraph Coloring, if we are promised a feedback vertex
set of size k (which is the smallest value for which the problem is non-trivial), then the
problem remains tractable for degree up to 4k − 3. Observe that in the case of general
digraphs (where we do not bound the feedback vertex set) the problem is already hard
for maximum degree 2k + 2 (see Other Related Work section), so this seems encouraging.
However, we show in Theorem 8 that this tractability cannot be extended much further.

▶ Theorem 5. Let D = (V, E) be a digraph with feedback vertex set F of size |F | = k and
maximum degree ∆ ≤ 4k − 3. Then, D is k-colorable if and only if D[N [F]] is k-colorable.
Furthermore, a k-coloring of D[N [F]] can be extended to a k-coloring of D in polynomial
time.

Proof. Let D = (V, E) be such a digraph. If D[N [F]] is not k-colorable, then D is not
k-colorable, so we need to prove that if D[N [F]] is k-colorable then D is k-colorable and we
can extend this coloring to D. Assume that D[N [F]] is k-colorable. By Remark 2 we can
assume that D[F] is a bi-directed clique. Let c : N [F] → [k] be the assumed k-coloring and
without loss of generality say that F = {v1, . . . , vk} and c(vi) = i for all i ∈ [k].

Before we continue let us define the following sets of vertices: we will call Vi,in the set of
vertices v ∈ N [F] \ F such that c(v) = i and there exists an arc vvi ∈ E. Similarly we will
call Vi,out the set of vertices v ∈ N [F] \ F where c(v) = i and there exists an arc viv ∈ E.
The sets Vi,in and Vi,out are disjoint in any proper coloring (otherwise we would have a
monochromatic digon). Furthermore, Vi,in ∪ Vi,out is disjoint from Vj,in ∪ Vj,out for j ̸= i

(because their vertices have different colors), so all these 2k sets are pair-wise disjoint. We
first show that if one of these 2k sets is empty, then we can color D.

▷ Claim 6. If for some i ∈ [k] one of the sets Vi,in, Vi,out is empty then we can extend c to
a k-coloring of D in polynomial time.

Proof. We keep c unchanged and color all of V (D) \ N [F] with color i. This is a proper
k-coloring. Indeed, this cannot create a monochromatic cycle with color j ̸= i. Furthermore,
if a monochromatic cycle of color i exists, since this cycle must intersect F , we conclude that
it must contain vi. However, in the current k-coloring vi either has no incoming neighbor or
no outgoing neighbor colored i, so no monochromatic cycle can go through it. ◁

In the remainder we assume that all sets Vi,in, Vi,out are non-empty. Our strategy will be
to edit the k-coloring of D[N [F]] so that we retain a proper k-coloring, but one of these 2k

sets becomes empty. We will then invoke Claim 6 to complete the proof.
We now define, for each pair i, j ∈ [k] with i < j the set Ei,j which contains all arcs with

one endpoint in {vi, vj} and the other in Vi,in ∪ Vi,out ∪ Vj,in ∪ Vj,out and whose endpoints
have distinct colors. We call Ei,j the set of cross arcs for the pair (i, j). We will now argue
that for some pair (i, j) we must have |Ei,j | ≤ 3. For the sake of contradiction, assume that
|Ei,j | ≥ 4 for all pairs. Then, by summing up the degrees of vertices of F we have:∑

i∈[k]

d(vi) ≥ 2k + k(2k − 2) +
∑

i,j∈[k],i<j

|Ei,j | ≥ 2k2 + 4
(

k

2

)
= 4k2 − 2k

In the first inequality we used the fact that each vi ∈ F has at least two arcs connecting
it to Vi,in ∪ Vi,out (since these sets are non-empty); 2k − 2 arcs connecting it to other vertices
of F (since F is a clique); and each cross arc of a set Ei,j contributes one to the degree of one
vertex of F . From this calculation we infer that the average degree of F is at least 4k − 2,
which is a contradiction, since we assumed that the digraph has maximum degre 4k − 3.

STACS 2021

41:8 Digraph Coloring and Distance to Acyclicity

Fix now i, j such that |Ei,j | ≤ 3. We will recolor Vi,in ∪ Vi,out ∪ Vj,in ∪ Vj,out in a way
that allows us to invoke Claim 6. Since we do not change any other color, we will only
need to prove that our recoloring does not create monochromatic cycles of colors i or j in
D[N [F]]. We can assume that |Ei,j | = 3, since if |Ei,j | < 3 we can add an arbitrary missing
cross arc and this can only make the recoloring process harder. Furthermore, without loss of
generality, we assume that vi has strictly more cross arcs of Ei,j incident to it than vj .

We now have to make a case analysis. First, suppose all three arcs of Ei,j are incident
on vi. Then, there exists a set among Vj,in, Vj,out that has at most one arc connecting it to
vi. We color this set i, and leave the other set colored j. We also color Vi,in ∪ Vi,out with j.
This creates no monochromatic cycle because: (i) vi now has at most one neighbor colored i

in Vi,in ∪ Vi,out ∪ Vj,in ∪ Vj,out, so no monochromatic cycle goes through vi; (ii) vj has either
no out-neighbors or no in-neighbors colored j in Vi,in ∪ Vi,out ∪ Vj,in ∪ Vj,out. With the new
coloring we can invoke Claim 6. In the remainder we therefore assume that two arcs of Ei,j

are incident on vi and one is incident on vj .
Second, suppose that one of Vj,in, Vj,out has no arcs connecting it to vi. We color this set i

and leave the other set colored j. Observe that one of Vi,in, Vi,out has no arc connecting it to
vj . We color that set j and leave the other set colored i. In the new coloring both vi, vj either
have no out-neighbor or no in-neighbor with the same color in Vi,in ∪ Vi,out ∪ Vj,in ∪ Vj,out,
so the coloring is proper and we can invoke Claim 6. In the remainder we assume that vi has
one arc connecting it to each of Vj,in, Vj,out.

Third, suppose that both arcs of Ei,j incident on vi have the same direction (into or out
of vi). We then color Vi,in ∪ Vi,out with j and Vj,in ∪ Vj,out with i. In the new coloring vj

has at most one neighbor with the same color and vi has either only in-neighbors or only
out-neighbors with color i, so the coloring is acyclic and we again invoke Claim 6.

Finally, we have the case where two arcs of Ei,j are incident on vi, they have different
directions, one has its other endpoint in Vj,in and the other in Vj,out. Observe that one of
Vi,in, Vi,out has no arc connecting it to vj and suppose without loss of generality that it is
Vi,in (the other case is symmetric). We color Vi,in with j and leave Vi,out with color i. One
of Vj,in, Vj,out has an incoming arc from vi; we color this set i and leave the other colored j.
Now, vi only has out-neighbors with color i, while vj has either only in-neighbors or only
out-neighbors colored j, so we are done in this final case. ◀

Our second result concerns a parameter more restricted than feedback vertex set, namely
feedback arc set. Note that, in a sense, the class of graphs of bounded feedback arc set
contains the class of graphs that have bounded feedback vertex set and bounded degree
(selecting all incoming or outgoing arcs of each vertex of a feedback vertex set produces a
feedback arc set), so the following theorem may seem more general. However, a closer look
reveals that the following result is incomparable to Theorem 5, because graphs of feedback
vertex set k and maximum degree 4k − 3 could have feedback arc set of size up to almost
2k2 (consider for example a bi-direction of the complete graph Kk,2k−2), while the following
theorem is able to handle graphs of unbounded degree but feedback arc set up to (only)
k2 − 1. As we show in Theorem 8, this is tight.

▶ Theorem 7. Let D be a digraph with a feedback arc set F of size at most k2 − 1. Then D

is k-colorable if and only if D[V (F)] is k-colorable, and such a coloring can be extended to D

in polynomial time.

Proof. It is obvious that if D[V (F)] is not k-colorable then D is not k-colorable. We will
prove the converse by induction. For k = 1 it is trivial to see that if |F | = 0 then D is acyclic
so is 1-colorable. Assume then that any digraph D with a feedback arc set F of size at most
(k − 1)2 − 1 is (k − 1)-colorable, if and only if D[V (F)] is (k − 1)-colorable.

A. Harutyunyan, M. Lampis, and N. Melissinos 41:9

Suppose now that we have D with a feedback arc set F with |F | ≤ k2 − 1 and we find
that D[V (F)] is k-colorable (this can be tested in 2O(k2) time). Let c : V (F) → [k] be a
coloring of V (F). We distinguish two cases:

Case 1. There exists a color class (say Vk) such that at least 2k − 1 arcs of F are incident
on Vk. Then D −Vk has a feedback arc set of size at most |F |− (2k −1) ≤ k2 −1− (2k −1) ≤
(k − 1)2 − 1 and V1, . . . , Vk−1 remains a valid coloring of the remainder of V (F). So by
inductive hypothesis D − Vk has a (k − 1)-coloring. By using the color k on Vk we have a
k-coloring for D.

Case 2. Each color class is incident on at most 2k − 2 arcs of F. We then claim that
there is a way to color V (F) so that all arcs of F have distinct colors on their endpoints. If
we achieve this, we can trivially extend the coloring to the rest of the graph, as arcs of F

become irrelevant. Now, let us call v ∈ V (F) as type one if v is incident on at least k arcs
of F . We will show that there is at most one type one vertex in each color class. Indeed, if
u, v ∈ Vi are both type one, then they are incident on at least 2k − 1 arcs of F (there is no
digon between u and v because they share a color), which we assumed is not the case, as Vi

is incident on at most 2k − 2 arcs of F . Therefore, we can use k distinct colors to color all
the type one vertices of V (F). Each remaining vertex of V (F) is incident on at most k − 1
arcs of F . We consider these vertices in some arbitrary order, and give each a color that does
not already appear on the other endpoints of its incident arcs from F . Such a color always
exists, and proceeding this way we color all arcs of F with distinct colors. This completes
the proof. ◀

4.2 Hardness

In this section we improve upon our previous reduction by producing a graph which has
bounded degree and bounded feedback arc set. Our goal is to do this efficiently enough to
(almost) match the algorithmic bounds given in the previous section.

▶ Theorem 8. For all k ≥ 2, it is NP -hard to decide if a digraph D = (V, E) is k-colorable,
even if D has a feedback vertex set of size k, a feedback arc set of size k2, and maximum
degree ∆ = 4k − 1.

Proof. Recall that in the proof of Theorem 4 for k ≥ 2 we construct a graph that is made up
of two parts: the palette part, which is a bi-directed clique that contains v1, v2 and the k − 2
vertices we have possibly added to increase the chromatic number (call them v3, . . . , vk); and
the part that represents the formula. We perform the same reduction except that we will
now edit the graph to reduce its degree and its feedback arc set. In particular, we delete the
palette vertices and replace them with a gadget that we describe below.

We construct a new palette that will be a bi-directed clique of size k, whose vertices
are now labeled vi, i ∈ [k]. Let M be the number of vertices of the graph we constructed
for Theorem 4. We construct M “rows” of 2k vertices each. More precisely, for each
ℓ ∈ [M], i ∈ [k] we construct the two vertices vi

ℓ,in, vi
ℓ,out. In the remainder, when we refer

to row ℓ, we mean the set {vi
ℓ,in, vi

ℓ,out | i ∈ [k]}. For all i, j ∈ [k], i < j we connect the
vertices of row 1 to the vertices of the clique as shown in Figure 2. For all i, j ∈ [k], i < j

and ℓ ∈ [M − 1] we connect the vertices of rows ℓ, ℓ + 1 as shown in Figure 3.
In more detail we have:

1. For each i ∈ [k] the vertex vi has an arc to all vj
1,out for j ≥ i, an arc to vj

1,in for all j ̸= i,
and an arc from vj

1,in for all j ≤ i.

STACS 2021

41:10 Digraph Coloring and Distance to Acyclicity

2. For each ℓ ∈ [M], for all i < j we have the following four arcs: vj
ℓ,outv

i
ℓ,out, vi

ℓ,outv
j
ℓ,in,

vj
ℓ,invi

ℓ,in, and vj
ℓ,outv

i
ℓ,in. As a result, inside a row arcs are oriented from out to in vertices;

and between vertices of the same type from larger to smaller indices i.
3. For each ℓ ∈ [M − 1], for all i ∈ [k] we have the arcs vi

ℓ,outv
i
ℓ+1,out and vi

ℓ+1,invi
ℓ,in. As a

result, the vi
ℓ,out vertices form a directed path going out of vi and the vi

ℓ,in vertices form
a directed path going into vi.

4. For each ℓ ∈ [M−1], for all i, j ∈ [k] with i < j we have the arcs vi
ℓ,outv

j
ℓ+1,in, vi

ℓ,outv
j
ℓ+1,out,

vi
ℓ+1,invj

ℓ,in, vj
ℓ,outv

i
ℓ+1,in. Again, arcs incident on an out and an in vertex are oriented

towards the in vertex.

row 1

FVSvi vj

vi
1,in

vj
1,in

vi
1,out

vj
1,out

Figure 2 Graph showing the connections between two vertices of the clique palette (vi, vj , where
i < j) and the corresponding vertices of row 1.

row ℓ
(for ℓ ≥ 1)

row ℓ + 1

vi
ℓ,in

vj
ℓ,in

vi
ℓ,out

vj
ℓ,out

vj
ℓ+1,out

vj
ℓ+1,in

vi
ℓ+1,in

vi
ℓ+1,out

Figure 3 Here we present the way we are connecting the vertices of the rows i and i + 1.

Let P be the gadget we have constructed so far, consisting of the clique of size k and the
M rows of 2k vertices each. We will establish the following properties.

1. Deleting all vertices vi, i ∈ [k] makes P acyclic and eliminates all directed paths from any
vertex vi

ℓ,in to any vertex vj
ℓ′,out, for all i, j ∈ [k], ℓ, ℓ′ ∈ [M].

2. The maximum degree of any vertex of P is 4k − 2.
3. There is a k-coloring of P that gives all vertices of {vi

ℓ,in, vi
ℓ,out | ℓ ∈ [M]} color i, for all

i ∈ [k].
4. In any k-coloring of P , for all i, all vertices of {vi

ℓ,in, vi
ℓ,out | ℓ ∈ [M]} receive the same

color as vi.

Before we go on to prove these four properties of P , let us explain why they imply the
theorem. To complete the construction, we insert P in our graph in the place of the palette
clique we were previously using. To each vertex of the original graph, we associate a distinct
row of P (there are sufficiently many rows to do this). Now, if vertex u of the original graph,
which is associated to row ℓ, had an arc from (respectively to) the vertex vi in the palette,
we add an arc from vi

ℓ,out (respectively to vi
ℓ,in).

A. Harutyunyan, M. Lampis, and N. Melissinos 41:11

Let us first establish that the new graph has the properties promised in the theorem.
The maximum degree of any vertex in the main (non-palette) part remains unchanged and is
2k + 2 ≤ 4k − 1 while the maximum degree of any vertex of P is now at most 4k − 1, as we
added at most one arc to each vertex. Deleting {vi | i ∈ [k]} eliminates all cycles in P , but
also all cycles going through P , because such a cycle would need to use a path from a vertex
vi

ℓ,in (since these are the only vertices with incoming arcs from outside P) to a vertex vj
ℓ′,out.

Deleting all of P leaves the graph acyclic (recall that the palette clique was a feedback vertex
set in our previous construction), so there is a feedback vertex set of size k.

For the feedback arc set we remove the arcs {vjvi | j > i, i, j ∈ [k]} ∪ {vi
1,invj | j >

i, i, j ∈ [k]} ∪ {vi
1,invi | i ∈ [k]}. Note that these are indeed k2 arcs. To see that this is a

feedback arc set, suppose that the graph contains a directed cycle after its removal. This
cycle must contain some vertex vi, because we argued that {vi | i ∈ [k]} is a feedback vertex
set. Among these vertices, select the vi with minimum i. We now examine the arc of the
cycle going into vi. Its tail cannot be vj for j > i, as we have removed such arcs, nor vj for
j < i, as this contradicts the minimality of i. It cannot be vi

1,in as we have also removed
these arcs. And it cannot be vj

1,in for j < i, as these arcs are also removed. But no other
in-neighbor of vi remains, contradiction.

Let us also argue that using the gadget P instead of the palette clique does not affect the k-
colorability of the graph. This is not hard to see because, following Properties 3 and 4 we can
assume that any k-coloring of P will give color i to all vertices of {vi}∪{vi

ℓ,in, vi
ℓ,out | ℓ ∈ [M]}.

The important observation is now that, for all ℓ ∈ [M] there will always exist a monochromatic
path from vi to vi

ℓ,out and from vi
ℓ,in to vi. We now note that, if we fix a coloring of the

non-palette part of the graph, this coloring contains a monochromatic cycle involving vertex
vi of the original palette if and only if the same coloring gives a monochromatic cycle in the
new graph going through vi.

Finally, we need to prove the four properties. Their proofs are given in the appendix. ◀

5 Treewidth

In this section we consider the complexity of Digraph Coloring with respect to parameters
measuring the acyclicity of the underlying graph, namely, treewidth and treedepth. Before we
proceed let us recall that in all graphs G we have χ(G) ≤ tw(G) + 1 ≤ td(G) + 1. This means
that if our goal is simply to obtain an FPT algorithm then parameterizing by treewidth
implies that the graph’s chromatic number (and therefore also the digraph’s dichromatic
number) is bounded. We first present an algorithm with complexity ktw(tw!) which, using
the above argument, proves that Digraph Coloring is FPT parameterized by treewidth.

▶ Theorem 9. There is an algorithm which, given a digraph D on n vertices and a tree decom-
position of its underlying graph of width tw decides if D is k-colorable in time ktw(tw!)nO(1).

The proof for the Theorem 9 is deferred to the full version of the paper.
As we explained, even though Theorem 9 implies that Digraph Coloring is FPT

parameterized by treewidth, the complexity it gives is significantly worse than the complexity
of Coloring, which is essentially ktw. Our main result in this section is to show that this is
likely to be inevitable, even if we focus on the more restricted case of treedepth and 2 colors.

▶ Theorem 10. If there exists an algorithm which decides if a given digraph on n vertices
and (undirected) treedepth td is 2-colorable in time tdo(td)nO(1), then the ETH is false.

STACS 2021

41:12 Digraph Coloring and Distance to Acyclicity

Proof. Suppose we are given a 3-SAT formula ϕ with n variables and m clauses. We will
produce a digraph G such that |V (G)| = 2O(n/ log n)m and td(G) = O(n/ log n) and G is
2-colorable if and only if ϕ is satisfiable. Before we proceed, observe that if we can construct
such a graph the theorem follows, as an algorithm with running time O∗(tdo(td)) for 2-coloring
G would decide the satisfiability of ϕ in time 2o(n).

To simplify presentation we assume without loss of generality that n is a power of 2
(otherwise adding dummy variables to ϕ can achieve this while increasing n be a factor of at
most 2). We begin the construction of G by creating log n independent sets V1, . . . , Vlog n,
each of size ⌈ 2en

log2 n
⌉. We add a vertex u and connect it with arcs in both directions to all

vertices of ∪i∈[log n]Vi. We also partition the variables of ϕ into log n sets X1, . . . , Xlog n of
size at most ⌈ n

log n ⌉.
The main idea of our construction is that the vertices of Vi will represent an assignment

to the variables of Xi. Observe that all vertices of Vi are forced to obtain the same color
(as all are forced to have a distinct color from u), therefore the way these vertices represent
an assignment is via their topological ordering in the DAG they induce together with other
vertices of the graph which obtain the same color.

To continue our construction, for each i ∈ [log n] we do the following: we enumerate all
the possible truth assignments of the variables of Xi and for each such truth assignment
σ : Xi → {0, 1}|Xi| we define (in an arbitrary way) a distinct ordering ρ(σ) of the vertices of
Vi. We will say that the ordering ρ(σ) is the translation of assignment σ. Note that there
are |Vi|! ≥ (2en

log2 n
)! ≥ (2n

log2 n
)

2en
log2 n = 2

2en
log2 n

(1+log n−2 log log n)
> 2⌈ n

log n ⌉ for n sufficiently large,
so it is possible to translate truth assignments to Xi to orderings of Vi injectively. Note that
enumerating all assignments for each group takes time 2O(n/ log n) = 2o(n).

Consider now a clause cj of ϕ and suppose some variable of the group Xi appears in cj .
For each truth assignment σ to Xi which satisfies cj we construct an independent set Sj,i,σ

of size |Xi| − 1, label its vertices sℓ
j,i,σ, for ℓ ∈ [|Xi| − 1]. For each ℓ we add an arc from

ρ(σ)−1(ℓ) to sℓ
j,i,σ and an arc from sℓ

j,i,σ to ρ(σ)−1(ℓ + 1). In other words, the ℓ-th vertex of
Sj,i,σ has an incoming arc from the vertex of Vi which is ℓ-th according to the ordering ρ(σ)
which is the translation of assignment σ and an outgoing arc to the vertex of Vi which is
in position (ℓ + 1) in the same ordering. Observe that this implies that if all vertices of Vi

and of Sj,i,σ are given the same color, then the topological ordering of the induced DAG will
agree with ρ(σ) on the vertices of Vi.

To complete the construction, for each clause cj we do the following: take all independent
sets Sj,i,σ which we have constructed for cj and order them in a cycle in some arbitrary way.
For two sets Sj,i,σ, Sj,i′,σ′ which are consecutive in this cycle add a new “connector” vertex
pj,i,σ,i′,σ′ , all arcs from Sj,i,σ to this vertex, and all arcs from this vertex to Sj,i′,σ′ . Finally,
we connect each connector vertex pj,i,σ,i′,σ′ we have constructed to an arbitrary vertex of V1
with a digon. This completes the construction.

Let us argue that if ϕ is satisfiable, then G is 2-colorable. We color u with color 2, all
the vertices in Vi for i ∈ [log n] with 1 and all connector vertices pi,j,σ,i′,σ′ with 2. For
each clause cj there exists a group Xi that contains a variable of cj such that the supposed
satisfying assignment of ϕ, when restricted to Xi gives an assignment σ : Xi → {0, 1}|Xi|

which satisfies cj . Therefore, there exists a corresponding set Sj,i,σ. Color all vertices of this
set with 1. After doing this for all clauses, we color all other vertices with 2. We claim this
is a valid 2-coloring. Indeed, the graph induced by color 2 is acyclic, as it contains u (but
none of its neighbors) and for each cj , all but one of the sets Sj,i,σ and the vertices pj,i,σ,i′,σ′ .
Since these sets have been connected in a directed cycle throught connector vertices, and for
each cj we have colored one of these sets with 1, the remaining sets induce a DAG. For the

A. Harutyunyan, M. Lampis, and N. Melissinos 41:13

graph induced by color 1 consider for each Vi the ordering ρ(σ), where σ is the satisfying
assignment restricted to Vi. Every vertex outside Vi which received color 1 and has arcs to
Vi, has exactly one incoming and one outgoing arc to Vi. Furthermore, the directions of
these arcs agree with the ordering ρ(σ). Hence, since ∪i∈[log n]Vi touches all arcs with both
endpoints having color 1 and all such arcs respect the orderings of Vi, the graph induced by
color 1 is acyclic.

For the converse direction, suppose we have a 2-coloring of G. Without loss of generality,
u has color 2 and ∪i∈[log n]Vi has color 1. Furthermore, all connectors pj,i,σ,i′,σ′ also have
color 2. Consider now a clause cj . We claim that there must be a group Sj,i,σ such that Sj,i,σ

does not use color 2. Indeed, if all such groups use color 2, since they are linked in a directed
cycle with all possible arcs between consecutive groups and connectors, color 2 would not
induce a DAG. So, for each cj we find a group Sj,i,σ that is fully colored 1 and infer from this
the truth assignment σ for the group Xi. Doing this for all clauses gives us an assignment
that satisfies every clause. However, we need to argue that the assignment we extract is
consistent, that is, there do not exist Sj,i,σ and Sj′,i,σ′ which are fully colored 1 with σ ̸= σ′.
For the sake of contradiction, suppose that two such sets exist, and recall that ρ(σ) ̸= ρ(σ′).
We now observe that if Sj,i,σ ∪ Vi only uses color 1, then any topological ordering of Vi in
the graph induced by color 1 must agree with ρ(σ), which is a total ordering of Vi. In a
similar way, the ordering of Vi must agree with ρ(σ′), so if σ ̸= σ′ we get a contradiction.

Finally, let us argue about the parameters of G. For each clause cj of ϕ we construct an
independent set of size O(n/ log2 n) for each satisfying assignment of a group Xi containing
a variable of cj . There are at most 3 such groups, and each group has at most 2n/ log n

satisfying assignments for cj , so |V (G)| = 2O(n/ log n)m.
For the treedepth, recall that deleting a vertex decreases treedepth by at most 1. We

delete u and all of ∪i∈[log n]Vi which are O(n/ log n) vertices in total. It now suffices to
prove that in the remainder all components have treedepth O(n/ log n). In the remainder
every component is made up of the directed cycle formed by sets Sj,i,σ and connectors
pj,i,σ,i′,σ′ . We first delete a vertex pj,i,σ,i′,σ′ to turn the cycle into a directed “path” of length
L = 2O(n/ log n). We now use the standard argument which proves that paths of length L

have treedepth log L, namely, we delete the pj,i,σ,i′,σ′ vertex that is closest to the middle of
the path and then recursively do the same in each component. This shows that the remaining
graph has treedepth logarithmic in the length of the path, therefore at most O(n/ log n). ◀

6 Conclusions

In this paper we have strengthened known results about the complexity of Digraph Color-
ing on digraphs which are close to being DAGs, precisely mapping the threshold of tractability
for DFVS and FAS; and we precisely bounded the complexity of the problem parameterized
by treewidth, uncovering an important discrepancy with its undirected counterpart. One
question for further study is to settle the degree bound for which k-Digraph Coloring
is NP-hard for DFVS k, and more generally to map out how the tractability threshold for
the degree evolves for larger values of the DFVS from 4k − Θ(1) to 2k + Θ(1), which is
the correct threshold when the DFVS is unbounded. With regards to undirected structural
parameters, it would be interesting to investigate whether a vco(vc) algorithm exists for
2-Digraph Coloring, where vc is the input graph’s vertex cover, as it seems challenging
to extend our hardness result to this more restricted case.

STACS 2021

41:14 Digraph Coloring and Distance to Acyclicity

References

1 Pierre Aboulker, Nathann Cohen, Frédéric Havet, William Lochet, Phablo F. S. Moura, and
Stéphan Thomassé. Subdivisions in digraphs of large out-degree or large dichromatic number.
Electron. J. Comb., 26(3):P3.19, 2019.

2 Stephan Dominique Andres and Winfried Hochstättler. Perfect digraphs. Journal of Graph
Theory, 79(1):21–29, 2015.

3 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting
connected minors on bounded treewidth graphs: the chair and the banner draw the boundary. In
Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 951–970. SIAM, 2020.
doi:10.1137/1.9781611975994.57.

4 Julien Bensmail, Ararat Harutyunyan, and Ngoc-Khang Le. List coloring digraphs. Journal
of Graph Theory, 87(4):492–508, 2018.

5 Benjamin Bergougnoux, Édouard Bonnet, Nick Brettell, and O-joung Kwon. Close relatives of
feedback vertex set without single-exponential algorithms parameterized by treewidth. CoRR,
abs/2007.14179, 2020. arXiv:2007.14179.

6 Dietmar Berwanger, Anuj Dawar, Paul Hunter, Stephan Kreutzer, and Jan Obdrzálek. The
dag-width of directed graphs. J. Comb. Theory, Ser. B, 102(4):900–923, 2012.

7 Drago Bokal, Gasper Fijavz, Martin Juvan, P. Mark Kayll, and Bojan Mohar. The circular
chromatic number of a digraph. Journal of Graph Theory, 46(3):227–240, 2004. doi:10.1002/
jgt.20003.

8 Marthe Bonamy, Lukasz Kowalik, Jesper Nederlof, Michal Pilipczuk, Arkadiusz Socala,
and Marcin Wrochna. On directed feedback vertex set parameterized by treewidth. In
Andreas Brandstädt, Ekkehard Köhler, and Klaus Meer, editors, Graph-Theoretic Concepts in
Computer Science - 44th International Workshop, WG 2018, Cottbus, Germany, June 27-29,
2018, Proceedings, volume 11159 of Lecture Notes in Computer Science, pages 65–78. Springer,
2018. doi:10.1007/978-3-030-00256-5_6.

9 Édouard Bonnet, Nick Brettell, O-joung Kwon, and Dániel Marx. Generalized feedback vertex
set problems on bounded-treewidth graphs: Chordality is the key to single-exponential parame-
terized algorithms. Algorithmica, 81(10):3890–3935, 2019. doi:10.1007/s00453-019-00579-4.

10 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. J. ACM, 55(5):21:1–21:19, 2008.

11 Xujin Chen, Xiaodong Hu, and Wenan Zang. A min-max theorem on tournaments. SIAM J.
Comput., 37(3):923–937, 2007. doi:10.1137/060649987.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

13 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 150–159. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.23.

14 Tomás Feder, Pavol Hell, and Carlos S. Subi. Complexity of acyclic colorings of graphs and
digraphs with degree and girth constraints. CoRR, abs/1907.00061, 2019. arXiv:1907.00061.

15 Henning Fernau and Daniel Meister. Digraphs of bounded elimination width. Discret. Appl.
Math., 168:78–87, 2014.

16 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Intractability of
clique-width parameterizations. SIAM J. Comput., 39(5):1941–1956, 2010.

17 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.
Clique-width III: hamiltonian cycle and the odd case of graph coloring. ACM Trans. Algorithms,
15(1):9:1–9:27, 2019.

https://doi.org/10.1137/1.9781611975994.57
http://arxiv.org/abs/2007.14179
https://doi.org/10.1002/jgt.20003
https://doi.org/10.1002/jgt.20003
https://doi.org/10.1007/978-3-030-00256-5_6
https://doi.org/10.1007/s00453-019-00579-4
https://doi.org/10.1137/060649987
https://doi.org/10.1109/FOCS.2011.23
http://arxiv.org/abs/1907.00061

A. Harutyunyan, M. Lampis, and N. Melissinos 41:15

18 Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for
modular-width. In IPEC, volume 8246 of Lecture Notes in Computer Science, pages 163–176.
Springer, 2013.

19 Robert Ganian, Petr Hlinený, Joachim Kneis, Daniel Meister, Jan Obdrzálek, Peter Rossmanith,
and Somnath Sikdar. Are there any good digraph width measures? J. Comb. Theory, Ser. B,
116:250–286, 2016.

20 Frank Gurski, Dominique Komander, and Carolin Rehs. Acyclic coloring of special digraphs.
CoRR, abs/2006.13911, 2020. arXiv:2006.13911.

21 Ararat Harutyunyan. Brooks-type results for coloring of digraphs. PhD Thesis, Simon Fraser
University, 2011.

22 Ararat Harutyunyan, Mark Kayll, Bojan Mohar, and Liam Rafferty. Uniquely d-colorable
digraphs with large girth. Canad. J. Math., 64(6):1310–1328, 2012.

23 Ararat Harutyunyan, Tien-Nam Le, Stéphan Thomassé, and Hehui Wu. Coloring tournaments:
From local to global. J. Comb. Theory, Ser. B, 138:166–171, 2019.

24 Winfried Hochstättler, Felix Schröder, and Raphael Steiner. On the complexity of digraph
colourings and vertex arboricity. Discret. Math. Theor. Comput. Sci., 22(1), 2020.

25 Paul Hunter and Stephan Kreutzer. Digraph measures: Kelly decompositions, games, and
orderings. Theor. Comput. Sci., 399(3):206–219, 2008.

26 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

27 Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis of graph
coloring problems. In CIAC, volume 10236 of Lecture Notes in Computer Science, pages
345–356, 2017.

28 Thor Johnson, Neil Robertson, Paul D. Seymour, and Robin Thomas. Directed tree-width. J.
Comb. Theory, Ser. B, 82(1):138–154, 2001.

29 Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
64(1):19–37, 2012. doi:10.1007/s00453-011-9554-x.

30 Michael Lampis. Finer tight bounds for coloring on clique-width. In ICALP, volume 107 of
LIPIcs, pages 86:1–86:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

31 Michael Lampis, Georgia Kaouri, and Valia Mitsou. On the algorithmic effectiveness of digraph
decompositions and complexity measures. Discret. Optim., 8(1):129–138, 2011.

32 Zhentao Li and Bojan Mohar. Planar digraphs of digirth four are 2-colorable. SIAM J. Discret.
Math., 31(3):2201–2205, 2017.

33 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of bounded
treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018.

34 Marcelo Garlet Millani, Raphael Steiner, and Sebastian Wiederrecht. Colouring non-even
digraphs. CoRR, abs/1903.02872, 2019. arXiv:1903.02872.

35 Bojan Mohar. Circular colorings of edge-weighted graphs. Journal of Graph Theory, 43(2):107–
116, 2003.

36 Bojan Mohar. Eigenvalues and colorings of digraphs. Linear Algebra and its Applications,
432(9):2273–2277, 2010. Special Issue devoted to Selected Papers presented at the Workshop on
Spectral Graph Theory with Applications on Computer Science, Combinatorial Optimization
and Chemistry (Rio de Janeiro, 2008). doi:10.1016/j.laa.2009.05.027.

37 Victor Neumann-Lara. The dichromatic number of a digraph. J. Comb. Theory, Ser. B,
33(3):265–270, 1982.

38 Raphael Steiner and Sebastian Wiederrecht. Parameterized algorithms for directed modular
width. In CALDAM, volume 12016 of Lecture Notes in Computer Science, pages 415–426.
Springer, 2020.

STACS 2021

http://arxiv.org/abs/2006.13911
https://doi.org/10.1007/s00453-011-9554-x
http://arxiv.org/abs/1903.02872
https://doi.org/10.1016/j.laa.2009.05.027

Good r-Divisions Imply Optimal Amortized
Decremental Biconnectivity
Jacob Holm !

University of Copenhagen, Denmark

Eva Rotenberg !

Technical University of Denmark, Lyngby, Denmark
Abstract

We present a data structure that, given a graph G of n vertices and m edges, and a suitable pair of
nested r-divisions of G, preprocesses G in O(m + n) time and handles any series of edge-deletions
in O(m) total time while answering queries to pairwise biconnectivity in worst-case O(1) time. In
case the vertices are not biconnected, the data structure can return a cutvertex separating them in
worst-case O(1) time.

As an immediate consequence, this gives optimal amortized decremental biconnectivity, 2-edge
connectivity, and connectivity for large classes of graphs, including planar graphs and other minor
free graphs.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases Dynamic graphs, 2-connectivity, graph minors, r-divisions, graph separators

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.42

Related Version Preliminary Full Version: https://arxiv.org/abs/1808.02568 [26]

Funding Jacob Holm: Partially supported by the VILLUM Foundation grant 16582, “BARC”.
Eva Rotenberg: Partially supported by Independent Research Fund Denmark grants 2020-2023
(9131-00044B) “Dynamic Network Analysis” and 2018-2021 (8021-00249B), “AlgoGraph”, and the
VILLUM Foundation grant 37507 “Efficient Recomputations for Changeful Problems”.

Acknowledgements We are thankful to Adam Karczmarz and Jakub Łącki for their encouragement
and interest in this work.

1 Introduction

Dynamic graph problems concern maintaining information about a graph, as it undergoes
changes. In this paper, the changes we allow are deletions of edges or vertices by an adaptive
adversary. The information we maintain is a representation that reflects biconnectivity of
vertices, that is, whether they are connected after the removal of any vertex of the graph.

A static (non-changing) graph may in O(n + m) time be pre-processed to answer bicon-
nectivity queries in worst-case O(1) time. This is done by finding the blocks, i.e. the
biconnected components. We show, for a large class of graphs including minor free graphs,
that in the same asymptotic total time, we can handle any sequence of edge- and ver-
tex deletions, while still answering biconnectivity queries, 2-edge connectivity queries, and
connectivity queries, in worst-case O(1) time.

If a pair of vertices are not biconnected, then there exists a certificate for this in form of
a cutvertex separating them. A natural question, if a pair of vertices are not biconnected, is
thus to ask for such a certificate. There may be many cutvertices separating a pair of vertices,
so an even more advanced and desired functionality is the ability to point to the cutvertex
furthest towards either one of them. Again, for a large class of graphs, our running time for
a decremental graph matches the state of the art for non-changing graphs, by revealing the
nearest cutvertex in O(1) worst-case time, while spending only O(n + m) total time for both
preprocessing the graph and handling any sequence of deletions.

© Jacob Holm and Eva Rotenberg;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 42; pp. 42:1–42:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jaho@di.ku.dk
https://orcid.org/0000-0001-6997-9251
mailto:eva@rotenberg.dk
https://orcid.org/0000-0001-5853-7909
https://doi.org/10.4230/LIPIcs.STACS.2021.42
https://arxiv.org/abs/1808.02568
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

When edges and vertices are both deleted and inserted, there are non-trivial lower
bounds [36] saying that no data structure for connectivity has both update- and query-time
in o(log n). This is in stark contrast to the incremental situation, where only edge-insertions
are allowed, in which the α-time algorithm for union-find is tight [39, 11]. When restricted
to deletions, however, even for general graphs, there are no known lower bounds beyond the
trivial O(|G|). The research in this paper is inspired by the fundamental open question of
whether decremental (deletion-only) connectivity [41], 2-edge connectivity, biconnectivity,
or even minimum cut for general graphs can be solved in amortized constant time per
edge-deletion, or whether non-trivial lower bounds do exist.

The following table shows how we improve state-of-the-art for planar graphs and minor-
free graphs. Here, we present maximum amortized time per operation, that is, we do not
require O(1) query time. When restricted to constant query time, the best biconnectivity
algorithms for non-planar sparse graphs were fully dynamic and had an update time of
Õ(
√

n) [18].

Table 1 Our improvements (now) in relation to previous results (previous). The table shows
amortized time per operation. The table compares with state-of-the-art amortized deterministic
algorithms. Allowing randomization, the previous best decremental connectivity algorithm runs in
time Õ(log n) [42].

planar bnd. genus minor-free graphs
previous previous previous now

connectivity O(1) [34] O(log n) [4] O(log2 n
log log n

) [44] O(1)

2-edge-connectivity O(1) [25] Õ(log2 n) [27] O(1)

biconnectivity O(log n) [25] Õ(log3 n) [27] O(1)

Dynamic graph connectivity has been studied for decades. Most general is fully
dynamic connectivity for general graphs [8, 21, 20, 23, 42, 29, 28, 44, 30, 35], where edges
are allowed to be both inserted and deleted. Similarly, fully dynamic two-edge connectivity
and biconnectivity have been studied [10, 18, 5, 19, 23, 42, 27] and have algorithms with
polylogarithmic update- and query time. For special graph classes, such as planar graphs,
graphs of bounded genus, and minor-free graphs, there has been a bulk of work on connectivity
and higher connectivity, e.g. [7, 22, 13, 15, 6, 33, 34, 25, 24].

An r-division is, intuitively, a family of O(n/r) subgraphs called the regions, with
O(r) vertices each, such that the regions partition the edges, and each region shares O(

√
r)

boundary vertices with the rest of the graph. The concept of r-divisions was introduced in [9]
as a tool for finding shortest paths in planar graphs. It naturally generalizes the notion of a
separator: a small set of vertices that cause the graph to fall apart into two regions, each
containing a constant fraction of the original graph [32].

Later, Henzinger et al. [17] generalized this to the concept of a strict (r, s)-division, which
is a family of O(n/r) subgraphs called the regions, each with at most r vertices, that partition
the edges, and where each region has at most s boundary vertices. An r-division is thus a
strict (O(r), O(s))-division. For the rest of our paper, we will use the term r-division to mean
any strict (r, O(r1−ϵ))-division for some suitable r, ε. There are algorithms [2, 3, 14, 31] for
computing r-divisions of planar graphs in linear time.

J. Holm and E. Rotenberg 42:3

Our results. We give a data structure for maintaining biconnectivity for a large class of
graphs. In order to state our theorem in its fullest generality, we need to define what it
means for a pair of r-divisions to be a suitable pair.

Given a graph G with n vertices, we call a pair (A,R) where A is a strict (r1, s1)-division
and R is a strict (r2, s2)-division a t-suitable pair of r-divisions if:

there exists an algorithm for fully dynamic biconnectivity in general graphs with amortized
time t(n) per operation1, such that:
each boundary vertex of A is also a boundary vertex of R (∂A ⊆ ∂R); and
for each region A ∈ A, R contains a partition of A into O(r1

r2
) regions of size at most r2,

each having at most s2 boundary vertices2; and
r1, s1 ∈ O(poly(log n)) and r1

s1
∈ Ω(t(n) log n); and

r2, s2 ∈ O(poly(log log n)) and r2
s2
∈ Ω(t(r1) log r1).

When t is understood, we will refer to them as simply suitable.
Our data structure answers queries to biconnectivity, i.e, a pair of vertices are biconnected

if they are connected and not separated by any bridge or cutvertex. If the vertices u and
v are connected but not biconnected, we can output a cutvertex separating them, in fact,
we can output that of the possibly many cutvertices that is nearest to u – we call this the
nearest cutvertex – or detect the special case where uv is a bridge.

▶ Theorem 1. There exists a data structure that given a graph G with n vertices and m edges,
and given a suitable pair of r-divisions, preprocesses G in O(m + n) time and handles any
series of edge-deletions in O(m) total time while answering queries to pairwise biconnectivity
and queries to nearest cutvertex in O(1) time.

This can immediately be combined with any algorithm for finding suitable r-divisions in
linear time, to obtain optimal decremental biconnectivity data structures for graphs that are
planar, bounded genus, or minor free.

The data structure is easily extended to maintain information about connectivity, so as
to answer queries to pairwise connectivity in O(1) time, and our techniques can easily be
used to obtain a decremental data structure for 2-edge connectivity with the same update-
and query times.

For completeness, the full version of this paper presents linear time algorithms for finding
r-divisions in minor-free graphs using techniques from [37, 40, 43]3

▶ Lemma 2. Given a graph G that does not have a Kℓ-minor, for any r ∈ Ω(log n) we can
compute a strict (r, O(r 2

3 log
1
3 n))-division in linear time4.

Thus, we have the following consequence as a corollary to Theorem 1:

▶ Corollary 3. There exists a data structure that given a minor-free graph G with n vertices,
preprocesses G in O(n) time and handles any series of edge- and vertex deletions in O(n)
total time while answering queries to pairwise connectivity, 2-edge connectivity, biconnectivity,
nearest separating bridge in O(1), and nearest separating cutvertex, in O(1) time.

1 e.g. t(n) = O(log5 n) using [23], and t(n) = O(log3 n · log2 log n) using [27]
2 This is slightly weaker than requiring R to contain a strict (r2, s2)-division of A.
3 This result was first claimed by Henzinger et al. [17], but their solution only works for planar graphs,

and h-minor-free graphs of bounded degree.
4 We failed to find a reference in the literature for this fact, but we would not be surprised if it is common

knowledge.

STACS 2021

42:4 Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

Even for graphs where no linear-time algorithms for finding r-divisions are known, our
results may still be of interest: as soon as the r-divisions have been computed once, they
may be used for several different edge-deletion sequences on the same graph.

Our paper can be seen as a generalization of and improvement upon [34], who showed
optimal amortized decremental connectivity for planar graphs, that is, amortized constant
update time, and worst-case constant query time.

Note that we generalise [34] in two important ways: We generalise from planar graphs to
r-divisible graphs, and we generalise from plain connectivity to handle 2-edge-connectivity and
biconnectivity. Our generalisation works by getting rid of some unneccesarily planar-specific
techniques and replacing them with a more general framework.

We expect this general framework to be of future interest for deriving optimal decremental
algorithms from other dynamic algorithms that have polylog update time: as long as a
compact representation of each region can be maintained efficiently, with respect to the the
graph property of interest, this can be used in our framework for speeding up decremental
algorithms.

1.1 Techniques
Since the property of being an r-division is not violated as edges are deleted, it is natural
to use r-divisions to get better decremental data structures for graphs. The idea is to have
a top-level graph with size only proportional to the number of boundary vertices, and to
handle the regions efficiently simply because they are smaller.

With biconnectivity, the first challenge is to design the top-level graph: a vertex may be
not biconnected to any boundary vertex in its region, but yet be biconnected with some other
vertex in another region via two separate boundary vertices (see Figure 1). Even vertices
from the same region may be biconnected in G although they are not biconnected, or even
connected, within the region.

a a′

b
b

c

c′

d

d′

e

e′

f

f′
g

h

j k l

n

n′
o′

p′
pq

r

s
t

u
v w

x
yy

x

y

z

a a′

b
b

c

c′

f

f′ h

l

n

p

s
t

x
yy

x

y

z

Figure 1 Left: A region R with 10 boundary vertices (green). There is a vertex separating x from
the boundary, so x is never biconnected with anything in G \ R. Vertices y and z however, are not
even connected in R, but may be biconnected in G. Right: The structure may be compressed in the
sense depicted: x is not represented at all, while y and z are represented in pseudo-blocks (dashed).

We thus need to store an efficient representation of the biconnectivity of the region as
seen from the perspective of the boundary vertices. We call this efficient representation the
compressed BC-forest (see Section 4). It is obtained from the forest of BC-trees (also known
as the block-cutpoint trees, see Section 2) by first marking certain blocks and cutvertices as
critical, and then, basically, contracting the paths that connect them. The critical blocks and
cutvertices are spartanly chosen, such that the total size of all the compressed BC-forests is
only proportional to the boundary itself. We stitch the compressed BC-forests together by
the boundary vertices they share, and obtain the patchwork graph (see Figure 2), in which
all vertices that are biconnected to anything outside their region are represented, and we

J. Holm and E. Rotenberg 42:5

use the representatives of vertices to reveal when they are biconnected by paths that go via
boundary vertices. A construction very similar to our compressed BC-forests appears in [12],
where it is used in a separator tree for a planar graph, but the rules for what to contract are
subtly different.

Figure 2 An r-division and its corresponding patchwork graph. The graph is bipartite between,
on one hand, round boundary vertices and cutvertices, and, on the other hand, square blocks and
contracted (pseudo) blocks.

If decremental changes to a region only gave rise to decremental changes to its forest of
BC-trees, we would be close to done. However, and this is the second challenge, the deletion
of an edge can cause a block to fall apart into a chain of blocks. Luckily, the damage to
the compressed BC-forest is containable: only O(n/ polylog n) vertices can be present in the
compressed BC-forest, and the changes can be modeled by only three operations: edge- or
path deletions, certain forms of vertex splits, and contractions of paths. These operations, we
show, are of a form that can be handled in polylogarithmic time by one of the fully-dynamic
biconnectivity data structures (see Section 4).

While using r-divisions once would obtain an improvement from polylog to polyloglog,
which might, in practice, be useful already, it is tempting to form r-divisions of the regions
themselves and use recursion in order to obtain an even faster speedup (see Figure 3). This
would mean that each region should again contain a patchwork made from the compressed
BC-forests of its subregions (and, luckily, these patchwork operations compose beautifully).
Thus, via recursion, one can obtain a purely combinatorial data structure with O(log∗ n)
update- and query time. But in fact, with standard RAM-tricks, if the subregions are of
only polyloglog size, one can handle any operation in constant time – simply by using a
look-up table. Thus, in the practical RAM-model (i.e. the RAM-model with standard AC0

operations such as addition, subtraction, bitwise and/or/xor), we can make do with only 3
levels (top, middle and bottom), and obtain O(1) update- and query-time.

Here, as our third challenge, we face that one does not simply recurse into optimality – we
need to assure ourselves that when a deletion of an edge causes changes in the compressed BC-
trees of the subregion, the changes to the patchwork graph on the level above are manageable.
Here, we show that our carefully chosen forms of vertex splits and path contractions do
indeed only give rise to the same variant of splits and contractions on the parent level.

Finally, when a pair of vertices u, v are connected but not biconnected, we can in
constant time find the nearest cutvertex on any path from u to v – this is called the nearest
cutvertex problem (see Figure 4). While outputting some cutvertex separating u and v is

STACS 2021

42:6 Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

BC(GA)

GA

BC(GR, ∂A)

BC(GR)

GR

BC(G, ∂R)

BC(G)

G

Figure 3 We use nested r-divisions and obtain a levelled structure. Each level maintains a graph,
its BC-tree, and, for the non-top levels, the compressed BC-tree with relation to the boundary.

easy, augmenting the BC-tree with enough information to facilitate nearest cutvertex queries
is technically more demanding. We show that the nearest cutvertex can be determined by
at most one nearest cutvertex and one biconnected query in the patchwork graph, and at
most one nearest cutvertex and one biconnected query in the region. We also show how
to augment an explicit representation of the BC-tree subject to certain splits, contractions,
and deletions such that we can still access the nearest cutvertex - a problem that reduces to
first-on-path on a dynamic tree subject to certain vertex splits, and certain edge contractions
and deletions. Specifically, we exploit an intricate flavour of monotonicity: Although blocks
can be split arbitrarily, once an element of the structure has participated in a contraction, it
will not be subject to further splitting. We solve this by solving a seemingly harder problem
on such trees, namely that of answering an extended form of the nearest common ancestor
query, known as the characteristic ancestor query. This may be of independent interest.

a

b

c

x

. .
. r

y

a

b
b′′

d

b′

c
c′

x

. .
. r

y

Figure 4 An edge-deletion (red) in the graph can lead to a split of a block which changes the
nearest cutvertex from y towards x.

Related techniques. The idea of using recursive separators stems from the sparsification
techniques from [5, 6], where it secured O(

√
n) update algorithms for a series of problems, and

the idea of using two levels of regions of size O(polylog n) and O(poly log log n), respectively,
was introduced in [34] where the idea, together with a union-find structure in the dual graphs,
was used to obtain amortized O(1) decremental connectivity for planar graphs.

Paper outline. Section 2 is dedicated to preliminaries and terminology. Then, in Section 3,
we introduce the notion of capacitated biconnectivity, which is a tool for overcoming the
third challenge of making the recursion work. Section 4 is dedicated to an understanding
of the patchwork graph in a static setting: how it is defined, how it reflects biconnectivity,
and how it behaves when there is not one but two or more nested r-divisions of the same

J. Holm and E. Rotenberg 42:7

graph. Finally, in Section 5, we show how to maintain the patchwork graph decrementally,
thus enabling us solve decremental biconnectivity. The extention to handle nearest cutvertex
queries is deferred to Section 6. The extension uses our characteristic ancestors structure,
which is deferred to the full version (preliminary version available as [26]). Also deferred to
the full version is the reductions that handle 2-edge-connectivity and connectivity and the
linear time construction of r-divisions for minor-free graph classes.

2 Preliminaries

Given a graph with vertices u and v, we say they are connected if there is a path connecting
them. A pair of connected vertices are 2-edge connected unless there is an edge whose removal
would disconnect them. Such an edge is called a bridge. A pair of 2-edge connected vertices
u and v are (locally) biconnected unless there exists a vertex (other than u and v) whose
removal would disconnect them. Such a vertex is called a cutvertex. For an ordered pair
(u, v) of connected but not biconnected vertices, the nearest cutvertex separating them is
uniquely defined as the first cutvertex on a path – any path – from u to v. In the special
case where u and v are separated by the bridge uv, we say that the nearest cutvertex is nil.

The blocks of a graph are the maximal biconnected subgraphs. Each block is either a
bridge or a maximal set of biconnected vertices. For each connected component of a graph,
the block-cutpoint tree [16, p. 36], or BC-tree for short, reflects the biconnectivity among
the vertices. This tree has all the vertices of the graph and, furthermore, a vertex for each
block. Its edges are those that connect each vertex to the block or blocks it belongs to. If the
graph G is not necessarily connected, its BC-forest BC(G) has a BC-tree for each connected
component of the graph. The BC-forest of a graph can be found in linear time [38].

If each BC-tree in the BC-forest is rooted at an arbitrary block, each non-root block has
one unique cutvertex separating it from its parent. Then, a pair of vertices are biconnected
if and only if they either have the same non-bridge block as parent, or one is the parent of
the non-bridge block that is parent of the other.

A dynamic data structure for biconnectivity in general graphs is developed in [23, 42, 27];
it maintains an n-vertex graph and handles deletions and insertions of edges in t(n) =
O(log3 n · log2 log n) amortized time, and answers queries in O(log2 n · log2 log n) worst-case
time. The data structure is easily modified to give the first cutvertex separating a pair of
vertices in O(log2 n · log2 log n) time, but even without this modification, one can find the first
cutvertex via a binary search along a spanning tree in O(log n) queries in O(log3 n · log2 log n)
worst case time. Note however that for our purposes, the original [23] data structure with
O(log5 n) amortized update- and query time is sufficient. For the rest of this paper, we will
just use t(n) to denote the amortized time per operation (queries included) of a fully dynamic
biconnectivity structure for general graphs.

For (not necessarily distinct) vertices v, u, w in a tree, we use v ←→ u to denote the
tree-path connecting v and u, and we use meet(u, v, w) to denote the unique common vertex
of all three tree-paths connecting them.

A strict (r, s)-division is a set of O(n/r) subgraphs R = {R1, R2, . . .} called regions, that
partition the edges. Each region R ∈ R has at most r vertices, and a set ∂R of at most s

boundary vertices, such that only boundary vertices appear in more than one region. We
denote by ∂R the set of all boundary vertices

⋃
R∈R ∂R. Note that with these definitions,∑

R∈R|∂R| ≤ O(n/r) ·O(s) = O(n · s
r).

An r-division usually means a strict (r, s)-division with s = O(
√

r), but we will be using
it more broadly to include any strict (r, s)-division, where s = O(r1−ε) for some ε > 0.

STACS 2021

42:8 Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

We say that a pair (A,R) consisting of an r1-division and an r2-division are nested, if
∂A ⊆ ∂R, and R contains an r2-division of each region of A. With a slight abuse of notation,
for any A ∈ A we will let R∩A denote this r2-division.

3 Bicapacitated biconnectivity

Consider the BC-forest of a graph. It may be viewed as a bicapacitated graph, where non-
bridge blocks have capacity 2 and bridge blocks and vertices have capacity 1; then, vertices
u and v in G are biconnected exactly when there exists a flow of value 2 from u to v in the
BC-forest of G. (Disregarding the capacity of the source and sink vertices.) We denote by
bicapacitated biconnectivity the query to the existence of such a flow.

Recall that we want to be able to use the framework recursively: we want to build and
maintain BC-trees for small graphs and stitch them, or rather, compressed versions of them
together, thus obtaining a patchwork graph. So, we need to extend our definitions so that
they can handle a bicapacitated input graph corresponding to the BC-trees of an underlying
region. The resulting patchwork graphs are always bipartite, with vertices on one side all
having capacity 1, and vertices on the other side having capacity either 1 or 2. We will
restrict our definition of bicapacitated graph to mean such graphs.

Now, we can introduce the problem of fully dynamic bicapacitated biconnectivity, as that
of facilitating bicapacitated biconnectivity queries between vertices in a bicapacitated graph
as it undergoes insertions and deletions of edges. Note that (fully) dynamic bicapacitated
biconnectivity has an easy reduction to (fully) dynamic biconnectivity:

▶ Lemma 4. Given a fully dynamic data structure for biconnectivity in general graphs using
amortized tu(n) time per link or cut and (amortized/worst case) tq(n) per pairwise bicon-
nectivity or nearest cutvertex query, there is a fully dynamic data structure for bicapacitated
graphs that uses O(tu(2n)) amortized time per edge insert/delete, and answers pairwise
biconnectivity and nearest-cutvertex queries in (amortized/worst case) O(tq(2n)) time.

4 The patchwork graph

We are given an r-division R = {R1, . . . , Rk} of G, and we want to define a graph GR
of size O(|∂R|) that somehow captures all the biconnectivity relations that cross multiple
regions. We call the resulting GR a patchwork graph, because it is built by stitching together
a suitable patch graph for each region.

Our patch graph for each region is in turn based on the BC-forest for the region. We
compress the BC-forest of the region similarly to [12] as follows:

▶ Definition 5. Given a bicapacitated graph G = (V, E), its BC-forest F = BC(G), and a
subset of vertices S ⊆ V , define a node5 x ∈ T , where the tree T is a component of F , to be

S-critical if x = meetT (s1, s2, s3) for some s1, s2, s3 ∈ S,
S-disposable if x ̸∈ s1 ←→T s2 for all s1, s2 ∈ S, and
S-contractible otherwise.

▶ Definition 6. The compressed BC-forest BC(G, S) is the forest obtained from its forest of
BC-trees by deleting all S-disposable nodes, and replacing each maximal path of S-contractible
nodes that start and end in distinct blocks, with a single so-called pseudoblock node with
capacity 1.

5 Throughout the text we consistently denote vertices of G by vertices, and vertices of BC-trees and
SPQR-trees as nodes.

J. Holm and E. Rotenberg 42:9

▶ Definition 7. Given an r-division R = {R1, . . . , Rk} of a graph G, define the patchwork
graph GR =

⋃
R∈R BC(R, ∂R) to be the bicapacitated graph obtained by taking the (non-

disjoint) union of compressed BC-forests BC(R, ∂R) for each region R ∈ R.

Any vertex of G corresponds to a BC-vertex in BC(R) for some R. Some of these BC-
vertices are either present or represented in GR. We thus want to define the representation
of a vertex as the vertex in GR representing its BC-node, when it exists:

▶ Definition 8. Given a patchwork graph GR and a vertex v of G, we define the representative
B(v) of v as follows:

If v is a vertex of GR, then B(v) = v; else
Let R ∈ R be the unique region containing v. If v is incident to a block in BC(R) that is
not S-disposable, then v is represented either by that block or the pseudoblock representing
it.
Otherwise, v is not represented.

Overloading notation slightly, say that a vertex of the graph is critical, disposable, or con-
tractible, if the BC-node representing it is.

▶ Observation 9. There is a linear time algorithm for building the compressed BC-forest of
a graph with respect to a given subset of vertices, and for finding the representatives of the
vertices.

▶ Lemma 10. Distinct vertices u, v are biconnected in G if and only if either
1. At least one of u, v is not a boundary vertex, and u, v are biconnected in the at most one

region R containing both; or
2. B(u) = B(v) is a pseudo-block whose unique neighbours are biconnected in GR; or
3. B(u) and B(v) are different and are biconnected in GR.

Proof. We will show that u and v are not biconnected if and only if all three conditions are
false. Assume u and v are not biconnected. Then they can clearly not be biconnected within
some region R, so condition 1 is false. If B(u) = B(v), then this is a pseudo-block contracted
from a chain containing the neighbors of u, v in BC(R), and a cutpoint c that separates
them within R. Consider the neighbors u′ and v′ to this pseudoblock in GR. If they were
biconnected in GR there would be a u, v path in G \ {c} contradicting our choice of u, v.
Thus u′ and v′ are not biconnected in GR and condition 2 is false. Finally, if B(u) and B(v)
are different, then any cutvertex c separating u and v in G will either be a cutvertex in
GR, or will be in a pseudoblock B(c) with neighbors u′ and v′. Since c is a cutvertex in G,
(u′, B(c)) and (B(c), v′) are bridges in GR, and B(u) and B(v) will be separated by at least
one of them and are therefore not biconnected in GR and condition 3 is false.

If, on the other hand, none of the three conditions are true, then, if B(u) = B(v) is a
pseudoblock whose neighbours in GR are not biconnected, then any cutvertex separating
u from v in their region also separates them in G. If B(u) ̸= B(v) are separable by some
cutvertex c in GR, then c is also a cutvertex separating u from v in G, and hence they are
not biconnected. If B(u) ̸= B(v) are the endpoints of a bridge in GR then one of them must
be a pseudoblock containing a cutvertex or a bridge in G separating them. ◀

Lemma 10 above almost enables us to transform a biconnectivity-query in G into a
biconnectivity-query in GR and a biconnectivity inside a region R. However, item 1 is only
directly useful when neither of the vertices belong to the boundary; when one is a boundary
vertex we do not know which vertex in the region it corresponds to. Fortunately, when the
non-boundary vertex is represented, we may query biconnectivity in GR to obtain the answer.
To handle disposable vertices, we introduce the notion of the nearest represented vertex :

STACS 2021

42:10 Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

▶ Definition 11. When an S-disposable vertex v is connected to at least one boundary vertex
b, it knows its nearest represented vertex nr(v) which is the first non-disposable node in the
BC-tree of the region on the path from b to v (note that this node is one unique cutvertex).
When an S-disposable vertex v is not connected to the boundary, it has nr(v) = nil.

Note also that item 3 requires the pseudo-block to know its exactly two neighbours.

▶ Lemma 12. Vertices u and v are biconnected if and only if either
u and v are non-boundary vertices of the same region and are biconnected in the region,
u is a non-boundary vertex that is biconnected in its region R with nr(u) and nr(u) = v,
B(u) = B(v) is a pseudo-block and its neighbours are biconnected in GR, or
B(u) ̸= B(v) are biconnected in GR

Proof. Follows from Lemma 10 by expanding item 1 into the two cases of whether both or
only one vertex is non-boundary. ◀

Note that patchwork graphs are well-behaved and respect sub-divisions of r-divisions in
the following sense:

▶ Lemma 13. If S ⊆ ∂R, then BC(G, S) = BC(GR, S)

Proof. There is a correspondence between the critical, disposable, and contractible BC-nodes.
Consider an S-critical BC-node x of G. It may overlap with several regions. However, in

each region, each vertex of x lies on some r1 ←→ r2 path for r1, r2 ∈ ∂R, so they are never
disposable. But then, since S ⊆ ∂R, x is also ∂R-critical, and thus, present in GR. Clearly,
once the block is present in GR, it is also S-critical in GR.

If a BC-node of G is S-disposable, we only need to observe that its ∂R-contractible
and ∂R-critical parts, for each path r1 ←→ r2 they lie on, at most one endpoint is not
S-disposable.

Finally, if a BC-node x of G is S-contractible, then it lies on some path s1 ←→ s2, which
∂R cuts up into subpaths r1 ←→ r2 ←→ r3 ←→ . . . in (not necessarily different) regions
R1, R2, R3, But then, all parts of x are preserved as either ∂R-critical or ∂R-contractible
BC(Ri)-vertices, and thus, survive in BC(GR, S). On the other hand, if a vertex in Ri does
not belong in x, then it does not lie on any of the paths rj ←→ rj+1, and can thus not be
represented by a vertex or a pseudo-block on that path. ◀

The same lines of thought can be used to make the following observation about how
nested r-divisions behave with respect to patchwork graphs:

▶ Observation 14. If ∂R1 ⊆ ∂R2, then GR1 = (GR2)R1 .

5 Decremental Biconnectivity in Patchwork Graphs

Given the BC-forest for (the patchwork graph associated with) each region of G in an
r-division R, we want to explicitly maintain GR and BC(GR).

Let R′ be a bicapacitated graph associated with region R, and suppose that BC(R′, ∂R) =
BC(R, ∂R). We will arrange things so either R′ = R (with all vertices having capacity 1), or
R′ = RR′ for some r-division R′ of R with ∂R ⊆ ∂R′, so the equality follows from Lemma 13.

We will maintain a fully dynamic biconnectivity structure for R′ with amortized time
t(n) ∈ O(poly(log n)) per operation, e.g. using [23]6. We use this structure to explicitly
maintain BC(R′) under the following operations:

6 A faster algorithm here would just make more pairs of r-divisions suitable.

J. Holm and E. Rotenberg 42:11

path deletion – given a path between two vertices of capacity 1, whose internal vertices all
have degree 2, deletes all edges and internal vertices on the path.

block split – given a vertex u of capacity 2, and an adjacent vertex v of capacity 1, split u

into two vertices u1, u2 of capacity 2 connected by a path with 2 edges via v, with u1, u2
partitioning the remaining neighbors of u.

pseudoblock contraction – given a path of 3 vertices, all having degree 2 and the middle
having capacity 1, contract the path to a single vertex with capacity 1.

The point is that if one of these operations is applied to R′, then the change to BC(R′) and
BC(R′, ∂R) can also be described by a sequence of these operations.7

▶ Lemma 15. There is a data structure that explicitly maintains BC(R′) that can be
initialized, and support any sequence of O(|R′|) path deletions, block splits, and pseudoblock
contractions, in O(|R′|t(n′) log n′) total time, where n′ is the number of vertices in R′.

Proof. Use the data structure from Lemma 4 as a subroutine. Start by inserting all the
edges. Each pseudoblock contraction can be simulated using a constant number of edge
insertions or deletions. The total number of edges participating in path deletions is upper
bounded by O(n′). Each block split either takes only a constant number of edge insertions or
deletions, or makes a non-trivial partition of the adjacent edges. In the latter case, we still
do a constant number of edge insertions and deletions, followed by one edge move (deletion
and insertion) for each edge that ends up in a non-largest set in the partition. Each edge is
moved in this way O(log n′) times, so the total number of update operations done on the
fully dynamic structure is O(|R′| log n′). Once an update to R′ has been simulated in the
fully dynamic structure, we can use queries in that structure to find any new cutvertices that
we need to update BC(R′). If the update in R′ was a path deletion, then the corresponding
update to BC(R′) is either a path deletion, or a sequence of block splits. Each of these
block splits can be found using the cutvertices given by the fully dynamic structure: Do
a parallel search from both endpoints, and use the nearest cutvertex-query from Lemma 4
to guide the search and to know when a whole block has been found. If the update in R′

was a block split, this will either do nothing in BC(R′) or cause a single block split. If the
update in R′ is a pseudoblock contraction, the corresponding update to BC(R′) is at most
one edge deletion (because the leaf corresponding to the cutvertex disappears), at most one
pseudoblock contraction (corresponding to the same pseudoblock contraction), or nothing
happens (because the pseudoblocks were disposable). ◀

The point is that we will be using this with |R′| = O
(
n/

(
t(n) log n

))
, where n is the

number of vertices in R, which means the total time used on R is O(n) ⊆ O(|R|).

▶ Lemma 16. The data structure of Lemma 15 can be extended to also report the explicit
changes needed to BC(R′, ∂R) in the same asymptotic initialisation and update time. Any
sequence of O(|R′|) updates to R′ cause O(|∂R|) updates in BC(R′, ∂R).

Proof. For each change to BC(R′), we can update BC(R′, ∂R) accordingly. This essentially
consists of replaying the same change as in BC(R′), followed by at most two pseudoblock
contractions; at most one in each end of the path it possibly unfolds to. Note however, that
some operations will end up having no effect on the structure of BC(R′, ∂R). For example a
trivial block split followed by a pseudoblock contraction will change only which cutvertex

7 By explicit maintenance is meant that each rooted BC-tree is maintained such that finding the parent
of a vertex or block takes constant time.

STACS 2021

42:12 Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

separates the pseudoblock from the block. In this case, rather than doing a split and a
contract, we simply update the identity of the cutvertex. With this optimization, the total
number of block splits is upper bounded by O(|∂R|), and so is the number of edges and
hence the number of possible path deletions and pseudoblock contractions. ◀

It immediately follows that we are able to efficiently maintain the patchwork graph, by com-
bining the lemma above with the definition of the patchwork graph, GR =

⋃
R∈R BC(R, ∂R).

▶ Lemma 17. Given a graph G, and a strict (r, s)-division R of G, if we can explicitly
maintain BC(R, ∂R) for each R ∈ R in amortized constant time per update after O(|R|)
preprocessing, then we can explicitly maintain GR in amortized constant time per update
after O(|G|) preprocessing. Furthermore, any sequence of O(|G|) updates in G cause O(|GR|)
updates in GR.

Proof. Let G have n vertices and m edges. The first part follows trivially from
∑

R∈R|R| ∈
O(n/r)O(r) + m = O(n + m). Each block split in GR either reduces the degree of some
block, or adds a pseudoblock. Since we do not add another pseudoblock when there already
is one in a given direction, the maximum total number of splits an initial block vertex v can
cause is O(d(v)). Thus the maximum number of splits is

∑
v∈GR

O(d(v)) = O(|GR|), and
so is the maximum number of edges and hence the number of possible path deletions and
pseudoblock contractions. ◀

In order to use Lemma 12 to answer biconnected queries, we need to store some auxiliary
information: for each pseudoblock, store its neighbours, and for each disposable vertex, store
its nearest represented vertex. Thus, these need to be updated as the graph undergoes
dynamic updates.

path deletion When a path from x to y is deleted, all vertices represented by internal nodes
on the path become disposable. For each such vertex v, its nearest represented vertex
becomes either x or y. Furthermore, each vertex u who had v as its nearest represented
vertex, now changes its nearest represented vertex to nr(u) = nr(v). Thus, the set of
vertices having x (or y) as a representative, is now the union of: vertices on the path,
vertices represented by blocks or pseudo-blocks on the path, and the sets that these
vertices used to represent. These sets of vertices that have the same representative can be
maintained via union find in O(n log n) total merge-time and O(1) worst-case find-time,
using the weighted quick-find algorithm [1]. The endpoints x and y may change status
from being represented by themselves to being represented by a block or pseudoblock.

block split A block is never the neighbour of a pseudoblock, nor is it the nearest represented
vertex, so block splits do not give cause to changes in neighbours and representatives.

pseudoblock contraction does not give rise to changes in the nearest represented vertex -
the vertices that were previously represented by a node that is involved in the contraction,
are still represented, but now they are represented by the resulting pseudoblock. The set
of vertices represented by the resulting pseudoblock is the union of vertices represented by
nodes along the contracted path, again, this is done via union-find. Finally, the resulting
pseudoblock is updated to remember its two neighbours.

We are now ready to prove:

▶ Theorem 18 (first part of Theorem 1). There exists a data structure that given a graph
G with n vertices and m edges, and given a suitable pair of r-divisions, preprocesses G in
O(m + n) time and handles any series of edge-deletions in O(m) total time while answering
queries to pairwise biconnectivity in O(1) time.

J. Holm and E. Rotenberg 42:13

Proof. Given a fine r-division R of G, build the BC-forest and compressed BC-forest for
each region, and build the patchwork graph GR. Given the coarse division A, and given the
patchwork graph for R, build the BC-forest and the compressed BC-forest for each region of
the patchwork graph, and build the patchwork graph GA. Finally, build the BC-forest for
GA. The construction time is linear, due to [38] and Observation 9.

Deletions are handled bottom up: updating the regions of R, then those of GR induced
by A, and then GA. The total time for deletions is linear, due to Lemmata 15, 16, and 17.

In detail: Since r2 = O(poly(log log n)), we can afford to precompute and store a table
of all simple graphs on r2 vertices with s2 boundary vertices, and how their BC-trees and
compressed BC-trees change under any possible edge deletion. Using such a table, the region
R in R containing the deleted edge can be updated in constant time.

The updates to BC(R, ∂R) may cause some updates to the patchwork graph AR∩A for
the region A ∈ A containing the deleted edge. By Lemma 17, we can find these in amortized
constant time per edge deletion in A, and there are at most |AR∩A| of them. Since

|AR∩A| ≤
∑

R∈R∩A

|∂R| ≤ s2 ·O
(

r1

r2

)
∈ O

(
r1

s2

r2

)
and r2

s2
= Ω(t(r1) log r1)

we have |AR∩A| ∈ O(r1
t(r1) log r1

). By Lemma 15 and 16 we can therefore explicitly maintain
BC(AR∩A) and BC(AR∩A, ∂A) in amortized constant time per edge deletion in A.

The updates to BC(AR∩A, ∂A) again trigger some number of updates to GR. By
Lemma 17, we can find these in amortized constant time per edge deletion in G, and there
are at most |GR| of them. Since

|GR| ≤
∑
A∈A
|∂A| ≤ s1 ·O

(
n

r1

)
∈ O

(
n

s1

r1

)
and r1

s1
= Ω(t(n) log n)

we have |GR| ∈ O(n
t(n) log n). By Lemma 15 we can therefore explicitly maintain BC(GR) in

amortized constant time per edge deletion in G.
To handle biconnected-queries, perform the O(1) queries indicated by Lemma 12. ◀

6 Nearest cutvertex in O(1) worst-case time

We have now shown how we handle queries to biconnectivity in a decremental graph subject
to deletions. To answer nearest cutvertex queries, we need more structure. We need to
augment our explicit representation of the dynamic BC-tree subject to block-splits so that it
answers nearest cutvertex queries (subsection 6.1), and we need to show that we need only
a constant number of queries in the patchwork graph together with a constant number of
queries in regions, to answer nearest-cutvertex in the graph.

6.1 Navigating a dynamic BC-tree
If the vertices u and v are connected but not biconnected, and we have a BC-tree over the
component containing them, the nearest cutvertex to u will be the second internal node on
the unique BC-tree-path from u to v. So, in order to answer nearest cutvertex queries, it is
enough to answer first-on-path queries on a tree (since second-on-path can be found using
two first-on-path queries).

▶ Lemma 19. There is a data structure for representing a dynamic BC-forest that can be
initialized on a forest with n nodes and support any sequence of O(n) path-deletions, block-
splits, and pseudoblock-contractions, in O(n log n) total time, while answering connected and
first-on-path queries in worst case constant time.

STACS 2021

42:14 Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

Proof. We use the characteristic ancestor and tree connectivity data structures defined in
the full version as a base (preliminary version available as [26]). These both work on rooted
trees with black and white nodes, where a white node can be split into two white nodes of
lower degree, and we can contract the endpoints of any edge regardless of color to form a
new black node.

First, observe that we can combine these into a single structure, supporting both split,
contract, and delete operations and both first-on-path and connected queries. This is because
first-on-path(u, v) is only valid when u and v are connected, and the results of valid queries
are therefore not affected by edge deletions. So we can maintain the two structures in parallel,
and simply ignore deletions in the first-on-path structure, and let each structure answer the
query it is designed for.

Second, observe that:
Each path-deletion can be simulated using contractions and an edge deletion.
Each block-split can be implemented as two node splits and an edge contraction.
Each pseudoblock-contraction can be implemented as two edge contractions.

And note that if we color each vertex black and each block white (with pseudoblocks being
either black or white depending on their history), then these operations respect the color
requirements for our data structures.

Since we do only O(n) operations, and we start with n black nodes, the total time for all
updates is O(n log n). ◀

It follows as a corollary that we can answer nearest cutvertex queries given an explicit
representation of the BC-forest:

▶ Corollary 20. Given a dynamic BC-tree over a connected n-vertex graph, we can answer
biconnected and nearest cutvertex queries in O(1) time, spending an additional O(n log n)
time on any sequence of updates.

Proof. Given a pair of connected and different vertices u, v, let w be the second-on-path
vertex found by querying first-on-path(first-on-path(u, v), v). If w = v, the vertices are
biconnected. Otherwise, w is the nearest cutvertex separating u from v. ◀

6.2 The patchwork graph
In the following, recall that each disposable vertex v knows its nearest represented vertex
nr(v), and each pseudoblock knows its two neighbours.

▶ Lemma 21. If u, v are connected and not biconnected, then the nearest cutvertex separating
u from v can be determined by at most one nearest cutvertex-query and at most one biconnected
query in GR followed by at most one nearest cutvertex-query and at most one biconnected
query within a region.

Proof. If u and v are not both non-boundary vertices, and they are connected within the
region R containing both, then the nearest cutvertex within R is the nearest cutvertex in G.

Otherwise, if u is disposable, then it knows its nearest represented vertex nr(u). If u

and nr(u) are biconnected, then nr(u) is the nearest cutvertex separating u from v in G.
Otherwise, the nearest cutvertex separating u from nr(u) in their region R is also the nearest
cutvertex separating u from v in G.

If u is represented but v is not represented, then v knows its closest represented vertex
nr(v) within its region. If B(nr(v)) is biconnected with B(u), then nr(v) is the answer,
otherwise, nr(v) is used in place of v in the following.

J. Holm and E. Rotenberg 42:15

For the remaining cases, u and v are both represented, and their representatives are
different. If the nearest cutvertex query between B(u) and B(v) in GR returns a neighbour
b of the pseudo-block that either is B(u) or is a neighbour of B(u), then querying nearest
cutvertex between u and b in the region of the pseudo-block will return the nearest cutvertex
between u and v in G. Note here, that a pseudo-block is only present in one region, and
even if u is a boundary vertex that appears in several regions, the pseudo-block knows the
identity of both its endpoints within the region.

Finally, in all other cases, the nearest cutvertex separating B(u) and B(v) in GR is the
nearest cutvertex separating u and v in G. ◀

▶ Theorem 22 (Second part of Theorem 1). The data structure in Theorem 18 can be
augmented to support queries to nearest cutvertex in O(1) worst-case time, while handling
any series of edge-deletions in O(n + m) total time.

Proof. For the patchwork graph of G and for the patchwork graphs of each region, maintain
their dynamic BC-forest as indicated in Lemma 19. For the regions of the fine r-division, that
is, those of polylog log-size, maintain an explicit table over the answer to nearest cutvertex
queries.

Due to Corollary 20, the maintenance of explicit forests of BC-trees over the patchwork
graph of G is done in O(n′ log n′) total time for n′ = O(n/ log n), thus, O(n) total time,
while handling intermixed nearest cutvertex-queries in O(1) worst-case time. Same goes for
the explicit maintenance of BC-forests of the patchwork graphs in the regions of the coarse
r-division.

Finally, to handle nearest-cutvertex(u, v)-queries, perform the O(1) queries indicated by
Lemma 21: each of the O(1) queries in the regions of the coarse r-division give rise to O(1)
look-ups in the regions of the fine r-division. Thus, the total query-time is constant. ◀

7 Conclusion and implications

We have given a somewhat technical theorem stating that if a graph has suitable r-divisions,
there is an efficient data structure for decremental biconnectivity. For minor free graphs,
we promised not only that they admit suitable r-divisions, but that such r-divisions can be
computed in linear time in the size of the graph (regarding the size of the excluded minor as
a constant). In the full version, we prove the following consequence to Theorem 1:

▶ Corollary 23. There exists a data structure that, given a graph G with n vertices and m

edges, and given a suitable pair of r-divisions, preprocesses G in O(m + n) time and handles
any series of edge-deletions in O(m) total time while answering connectivity queries, 2-edge
connectivity queries, and biconnectivity queries in O(1) time.

Using [37, Lemma 2] and [40, Lemma 3.4], we also show Lemma 2 which is used in the
proof of the following theorem, which in combination with Theorem 1 gives Corollary 3.

▶ Theorem 24. Given a graph G with n vertices that does not have a Kℓ-minor, and any
t(n) ∈ O(poly(log n)) we can compute a t-suitable pair of r-divisions in O(n) time.

Finally, since the total number of edges in a minor-free graph is O(n), the data structure
above has the optimal amortized update time for edge deletions and vertex deletions, both.
The question of whether our data structure generally admits vertex deletions in O(n) total
time remains open.

STACS 2021

42:16 Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

References
1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1974.

2 Lyudmil Aleksandrov and Hristo Djidjev. Linear algorithms for partitioning embedded graphs
of boundedgenus. Siam Journal on Discrete Mathematics - SIAMDM, 9:129–150, February
1996. doi:10.1137/S0895480194272183.

3 Lars Arge, Freek van Walderveen, and Norbert Zeh. Multiway simple cycle separators and
i/o-efficient algorithms for planar graphs. In Proceedings of the Twenty-fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’13, pages 901–918, Philadelphia, PA, USA,
2013. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.
cfm?id=2627817.2627882.

4 David Eppstein. Dynamic generators of topologically embedded graphs. In Proceedings of
the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’03, pages
599–608, Philadelphia, PA, USA, 2003. Society for Industrial and Applied Mathematics. URL:
http://dl.acm.org/citation.cfm?id=644108.644208.

5 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification - a
technique for speeding up dynamic graph algorithms. Journal of the ACM, 44(5):669–696,
September 1997. doi:10.1145/265910.265914.

6 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator-based
sparsification ii: Edge and vertex connectivity. SIAM Journal on Computing, 28(1):341–381,
February 1999. doi:10.1137/S0097539794269072.

7 David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert E. Tarjan, Jeffery R.
Westbrook, and Moti Yung. Maintenance of a minimum spanning forest in a dynamic
planar graph. Journal of Algorithms, 13(1):33–54, March 1992. Special issue for 1st SODA.

8 Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees, with
applications. SIAM Journal on Computing, 14(4):781–798, 1985. doi:10.1137/0214055.

9 Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM Journal on Computing, 16(6):1004–1022, December 1987. doi:10.1137/0216064.

10 Greg N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k
smallest spanning trees. SIAM Journal on Computing, 26(2):484–538, 1997. doi:10.1137/
S0097539792226825.

11 Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic data structures.
In Proceedings of the Twenty-first Annual ACM Symposium on Theory of Computing, STOC
’89, pages 345–354, New York, NY, USA, 1989. ACM. doi:10.1145/73007.73040.

12 Zvi Galil, Giuseppe F. Italiano, and Neil Sarnak. Fully dynamic planarity testing with
applications. Journal of the ACM, 46(1):28–91, January 1999. doi:10.1145/300515.300517.

13 Dora Giammarresi and Giuseppe F. Italiano. Decremental 2- and 3-connectivity on planar
graphs. Algorithmica, 16(3):263–287, 1996. doi:10.1007/BF01955676.

14 Michael T. Goodrich. Planar separators and parallel polygon triangulation. Journal of
Computer and System Sciences, 51(3):374–389, 1995. doi:10.1006/jcss.1995.1076.

15 Jens Gustedt. Efficient union-find for planar graphs and other sparse graph classes. Theoretical
Computer Science, 203(1):123–141, 1998. doi:10.1016/S0304-3975(97)00291-0.

16 Frank Harary. Graph Theory. Addison-Wesley Series in Mathematics. Addison Wesley, 1969.
17 Monika R Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian. Faster shortest-path

algorithms for planar graphs. Journal of Computer and System Sciences, 55(1):3–23, 1997.
doi:10.1006/jcss.1997.1493.

18 Monika R. Henzinger and Han La Poutré. Certificates and fast algorithms for biconnectivity
in fully-dynamic graphs. In Paul Spirakis, editor, Algorithms — ESA ’95, pages 171–184,
Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

19 Monika Rauch Henzinger and Valerie King. Fully dynamic 2-edge connectivity algorithm in
polylogarithmic time per operation, 1997.

https://doi.org/10.1137/S0895480194272183
http://dl.acm.org/citation.cfm?id=2627817.2627882
http://dl.acm.org/citation.cfm?id=2627817.2627882
http://dl.acm.org/citation.cfm?id=644108.644208
https://doi.org/10.1145/265910.265914
https://doi.org/10.1137/S0097539794269072
https://doi.org/10.1137/0214055
https://doi.org/10.1137/0216064
https://doi.org/10.1137/S0097539792226825
https://doi.org/10.1137/S0097539792226825
https://doi.org/10.1145/73007.73040
https://doi.org/10.1145/300515.300517
https://doi.org/10.1007/BF01955676
https://doi.org/10.1006/jcss.1995.1076
https://doi.org/10.1016/S0304-3975(97)00291-0
https://doi.org/10.1006/jcss.1997.1493

J. Holm and E. Rotenberg 42:17

20 Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms with
polylogarithmic time per operation. Journal of the ACM, 46(4):502–516, 1999. Announced at
STOC ’95. doi:10.1145/320211.320215.

21 Monika Rauch Henzinger and Mikkel Thorup. Sampling to provide or to bound: With
applications to fully dynamic graph algorithms. Random Struct. Algorithms, 11(4):369–379,
1997. doi:10.1002/(SICI)1098-2418(199712)11:4<369::AID-RSA5>3.0.CO;2-X.

22 John Hershberger, Monika Rauch, and Subhash Suri. Data structures for two-edge con-
nectivity in planar graphs. Theoretical Computer Science, 130(1):139–161, 1994. doi:
10.1016/0304-3975(94)90156-2.

23 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
Journal of the ACM, 48(4):723–760, July 2001. doi:10.1145/502090.502095.

24 Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Lacki, and Eva Rotenberg.
Decremental SPQR-trees for Planar Graphs. In Yossi Azar, Hannah Bast, and Grzegorz
Herman, editors, 26th Annual European Symposium on Algorithms (ESA 2018), volume 112
of Leibniz International Proceedings in Informatics (LIPIcs), pages 46:1–46:16, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
ESA.2018.46.

25 Jacob Holm, Giuseppe F Italiano, Adam Karczmarz, Jakub Lacki, Eva Rotenberg, and Piotr
Sankowski. Contracting a planar graph efficiently. In LIPIcs-Leibniz International Proceedings
in Informatics, volume 87. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

26 Jacob Holm and Eva Rotenberg. Good r-divisions imply optimal amortised decremental
biconnectivity. CoRR, abs/1808.02568, 2018. arXiv:1808.02568.

27 Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Dynamic bridge-finding in Õ(log2 n)
amortized time. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 35–52,
2018. doi:10.1137/1.9781611975031.3.

28 Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie. Fully dynamic connectivity
in O(log n(log log n)2) amortized expected time. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 510–520, 2017. doi:10.1137/1.9781611974782.32.

29 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogar-
ithmic worst case time. In Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’13, pages 1131–1142, Philadelphia, PA, USA, 2013. Society for
Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=2627817.
2627898.

30 Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup. Faster Worst
Case Deterministic Dynamic Connectivity. In Piotr Sankowski and Christos Zaroliagis,
editors, 24th Annual European Symposium on Algorithms (ESA 2016), volume 57 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 53:1–53:15, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ESA.2016.53.

31 Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive separator decom-
positions for planar graphs in linear time. In Proceedings of the Forty-fifth Annual ACM
Symposium on Theory of Computing, STOC ’13, pages 505–514, New York, NY, USA, 2013.
ACM. doi:10.1145/2488608.2488672.

32 Richard J. Lipton and Robert E. Tarjan. A Separator Theorem for Planar Graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

33 Jakub Łącki and Piotr Sankowski. Min-cuts and shortest cycles in planar graphs in O(n log log n)
time. In Algorithms - ESA 2011 - 19th Annual European Symposium, Saarbrücken, Germany,
September 5-9, 2011. Proceedings, pages 155–166, 2011. doi:10.1007/978-3-642-23719-5_14.

STACS 2021

https://doi.org/10.1145/320211.320215
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4<369::AID-RSA5>3.0.CO;2-X
https://doi.org/10.1016/0304-3975(94)90156-2
https://doi.org/10.1016/0304-3975(94)90156-2
https://doi.org/10.1145/502090.502095
https://doi.org/10.4230/LIPIcs.ESA.2018.46
https://doi.org/10.4230/LIPIcs.ESA.2018.46
http://arxiv.org/abs/1808.02568
https://doi.org/10.1137/1.9781611975031.3
https://doi.org/10.1137/1.9781611974782.32
http://dl.acm.org/citation.cfm?id=2627817.2627898
http://dl.acm.org/citation.cfm?id=2627817.2627898
https://doi.org/10.4230/LIPIcs.ESA.2016.53
https://doi.org/10.1145/2488608.2488672
https://doi.org/10.1007/978-3-642-23719-5_14

42:18 Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

34 Jakub Łącki and Piotr Sankowski. Optimal decremental connectivity in planar graphs. In 32nd
International Symposium on Theoretical Aspects of Computer Science, STACS 2015, March
4-7, 2015, Garching, Germany, pages 608–621, 2015. doi:10.4230/LIPIcs.STACS.2015.608.

35 Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum
spanning forest with subpolynomial worst-case update time. In Proceedings of the 58th Annual
Symposium on Foundations of Computer Science, FOCS 2017, 2017.

36 Mihai Pǎtraşcu and Erik D Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM Journal on Computing, 35(4):932–963, 2006.

37 Bruce Reed and David R. Wood. Fast separation in a graph with an excluded minor. In
Stefan Felsner, editor, 2005 European Conference on Combinatorics, Graph Theory and
Applications (EuroComb ’05), volume DMTCS Proceedings vol. AE, European Conference
on Combinatorics, Graph Theory and Applications (EuroComb ’05) of DMTCS Proceedings,
pages 45–50, Berlin, Germany, 2005. Discrete Mathematics and Theoretical Computer Science.
URL: https://hal.inria.fr/hal-01184376.

38 Robert E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972. doi:10.1137/0201010.

39 Robert E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the
ACM, 22(2):215–225, April 1975. doi:10.1145/321879.321884.

40 Siamak Tazari and Matthias Müller-Hannemann. Shortest paths in linear time on minor-closed
graph classes, with an application to steiner tree approximation. Discrete Applied Mathematics,
157(4):673–684, 2009. doi:10.1016/j.dam.2008.08.002.

41 Mikkel Thorup. Decremental dynamic connectivity. In SODA ’97, pages 305–313. SIAM, 1997.
42 Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of the Thirty-

second Annual ACM Symposium on Theory of Computing, STOC ’00, pages 343–350, New
York, NY, USA, 2000. ACM. doi:10.1145/335305.335345.

43 Christian Wulff-Nilsen. Separator theorems for minor-free and shallow minor-free graphs with
applications. In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS
2011, Palm Springs, CA, USA, October 22-25, 2011, pages 37–46, 2011. doi:10.1109/FOCS.
2011.15.

44 Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Encyclopedia
of Algorithms, pages 738–741. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

https://doi.org/10.4230/LIPIcs.STACS.2015.608
https://hal.inria.fr/hal-01184376
https://doi.org/10.1137/0201010
https://doi.org/10.1145/321879.321884
https://doi.org/10.1016/j.dam.2008.08.002
https://doi.org/10.1145/335305.335345
https://doi.org/10.1109/FOCS.2011.15
https://doi.org/10.1109/FOCS.2011.15

b-Coloring Parameterized by Clique-Width
Lars Jaffke !

University of Bergen, Norway

Paloma T. Lima !

University of Bergen, Norway

Daniel Lokshtanov !

University of California Santa Barbara, CA, USA

Abstract
We provide a polynomial-time algorithm for b-Coloring on graphs of constant clique-width. This
unifies and extends nearly all previously known polynomial-time results on graph classes, and answers
open questions posed by Campos and Silva [Algorithmica, 2018] and Bonomo et al. [Graphs Combin.,
2009]. This constitutes the first result concerning structural parameterizations of this problem. We
show that the problem is FPT when parameterized by the vertex cover number on general graphs,
and on chordal graphs when parameterized by the number of colors. Additionally, we observe that
our algorithm for graphs of bounded clique-width can be adapted to solve the Fall Coloring
problem within the same runtime bound. The running times of the clique-width based algorithms
for b-Coloring and Fall Coloring are tight under the Exponential Time Hypothesis.

2012 ACM Subject Classification Mathematics of computing → Graph coloring

Keywords and phrases b-Coloring, clique-width, vertex cover, structural parameterization

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.43

Related Version Full Version: https://arxiv.org/abs/2003.04254

1 Introduction

This paper settles open questions regarding the complexity of the b-Coloring problem
on graph classes and initiates the study of its structural parameterizations. A b-coloring
of a graph G with k colors is a partition of the vertices of G into k independent sets such
that each of them contains a vertex that has a neighbor in all of the remaining ones. The
b-chromatic number of G, denoted by χb(G), is the maximum integer k such that G admits a
b-coloring with k colors. This notion was introduced by Irving and Manlove [29] to describe
the behavior of the following color-suppressing heuristic for the Graph Coloring problem.
We start with some proper coloring of the input graph G and try to iteratively suppress one
of its colors. That is, for a given color c, we consider each vertex v of color c, and check
if there is another color c′ ̸= c available that does not appear in its neighborhood. If so,
we assign vertex v the color c′, observing that the coloring remains proper, and repeat this
process for the remaining vertices of color c. If successful, we remove the color c from all
vertices of G and decrease the number of colors by one. Once no color can be supressed by
this procedure, the coloring at hand is a b-coloring of G, and in the worst case, this heuristic
produces a coloring with χb(G) many colors.

Since then, the b-Coloring and b-Chromatic Number problems which given a graph
G and an integer k ask whether G has a b-coloring with k colors and whether χb(G) ≥
k, respectively, have received considerable attention in the algorithms and complexity
communities.1 While these problems have been shown to be NP-complete in the general

1 We would like to remark that the b-Coloring and b-Chromatic Number problems are not as closely
related as the Graph Coloring and Chromatic Number problems: If a graph G has a b-coloring
with k colors, then χb(G) ≥ k, but χb(G) ≥ k does not imply the existence of a b-coloring with k colors.

© Lars Jaffke, Paloma T. Lima, and Daniel Lokshtanov;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 43; pp. 43:1–43:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lars.jaffke@uib.no
mailto:paloma.lima@uib.no
mailto:daniello@ucsb.edu
https://doi.org/10.4230/LIPIcs.STACS.2021.43
https://arxiv.org/abs/2003.04254
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 b-Coloring Parameterized by Clique-Width

case [29], as well as on bipartite graphs [32], co-bipartite graphs [6], chordal graphs [24], and
line graphs [7], a lot of effort has been put into devising polynomial-time algorithms for
these problems in various other classes of graphs. These include trees [29], claw-free block
graphs [10], tree-cographs [6], and graphs with few P4s, such as cographs and P4-sparse
graphs [5], P4-tidy graphs [45], and (q, q − 4)-graphs for constant q [9]. A common property
shared by these graph classes is that they all have bounded clique-width.2

The main contribution of this work is an algorithm that solves b-Coloring (and b-
Chromatic Number) in polynomial time on graphs of constant clique-width. Besides
unifying the above mentioned polynomial-time cases, this extends the tractability landscape
of these problems to larger graph classes, and answers two open problems stated in the
literature.

Over a decade ago, Bonomo et al. [5] asked whether their polynomial-time result for
P4-sparse graphs can be extended to distance-hereditary graphs. Havet et al. [24] answered
the question negatively by providing an NP-completeness proof for chordal distance-hereditary
graphs. We observe, however, that their proof has a flaw and while it does prove the claimed
statement for chordal graphs, it unfortunately fails to do so for distance-hereditary graphs.
Our polynomial-time algorithm for graphs of bounded clique-width in fact provides a positive
answer to Bonomo et al.’s question, as distance-hereditary graphs have clique-width at
most 3 [23]. In recent years, even subclasses of distance-hereditary graphs have received
significant attention, for instance in the work of Campos and Silva [10]: they provide a
polynomial-time algorithm for claw-free block graphs, and ask whether this result can be
generalized to block graphs. Our algorithm provides a positive answer to this question as
well. Moreover, it extends the known algorithm for (q, q − 4)-graphs [9] (for constant q) to
all (q, t)-graphs for constants q and t with q ≥ 4, t ≥ 0, and either q ≤ 6 and t ≤ q − 4, or
q ≥ 7 and t ≤ q − 3, by a theorem to due Makowsky and Rotics [36].

Our algorithm runs in time n2O(w) , where n denotes the number of vertices of the input
graph which is given together with a clique-width w-expression. As consequences of results
due to Fomin et al. [20] and Fomin et al. [21], we observe that b-Coloring parameterized
by clique-width is W[1]-hard, and that the exponential dependence on w in the degree of
the polynomial cannot be avoided unless the Exponential Time Hypothesis (ETH) fails.
Concretely, an algorithm running in time n2o(w) would refute ETH.

From the point of view of parameterized complexity, Panolan et al. [38] showed that
b-Chromatic Number parameterized by the number of colors is W[1]-hard. However, this
problem may even be harder, since so far no XP-algorithm is known. Recently, Aboulker et
al. [1] showed that the more restrictive b-Chromatic Core problem parameterized by the
number of colors (which has a brute-force XP-algorithm, see e.g. [18]) remains W[1]-hard.

It is therefore natural to ask which additional restrictions can be imposed to obtain
parameterized tractability results. For instance, an open problem posed by Sampaio [41]
(see also [43]) asks whether b-Coloring parameterized by the number of colors is FPT on
chordal graphs. We answer this question in the affirmative, via Courcelle’s Theorem [11] for
bounded treewidth graphs. Other restricted cases that have been considered in the literature
target specific numbers of colors that depend on the input graph. The Dual b-Coloring
problem, which asks if an input n-vertex graph has a b-coloring with n − k colors, is FPT
parameterized by k [25]. Moreover, deciding if a graph G has a b-coloring with k = ∆(G) + 1

2 To the best of our knowledge, the only polynomial-time result for graphs of unbounded clique-width so
far concerns graphs of large girth. In particular, Campos et al. [8] showed that b-Chromatic Number
is polyomial-time solvable on graphs of girth at least 7.

L. Jaffke, P. T. Lima, and D. Lokshtanov 43:3

colors, which is an upper bound on χb(G), is FPT parameterized by k [38, 41], while the
case k = ∆(G) is XP and for every fixed p ≥ 1, the case k = ∆(G) − p is NP-complete for
k = 3 [30].

Another novelty aspect of our XP-algorithm parameterized by clique-width is that it is
the first result about structural parameterizations of the b-Coloring and b-Chromatic
Number problems. In all previously known polynomial-time cases the algorithms only work
if the input graph has some prescribed structure. Our algorithm works on all graphs, albeit
with a prohibitively slow runtime on graphs of large clique-width. In this vein, we round off
our work with an FPT-result for another lead player among structural parameterizations,
the vertex cover number of a graph; a parameter often referred to as the Drosophila of
parameterized complexity.

Fall Coloring. A fall coloring is a special type of b-coloring where every vertex needs to
have at least one neighbor in all color classes except its own. In other words, it is a partition
of the vertex set of a graph into independent dominating sets. As a standalone notion, fall
coloring has been introduced by Dunbar et al. [17]. However, since the corresponding Fall
Coloring problem falls in the category of locally checkable vertex partitioning problems, it
has been shown in earlier work of Telle and Proskurowski [44] to be FPT parameterized by
the treewidth of the input graph, and by Heggernes and Telle [26] to be NP-complete for fixed
number of colors. Fall Coloring remains hard further restricted to bipartite [33, 34, 42],
chordal [42], or planar [34] graphs. On the other hand, even with unbounded number of
colors, it is known to be solvable in polynomial time on strongly chordal graphs [35, 22],
threshold graphs and split graphs [37]. In all of these cases, one simply checks whether the
chromatic number of the input graph is equal to its minimum degree plus one. To the best of
our knowledge, these are the only known polynomial-time cases. We adapt our algorithm for
b-Coloring on graphs of bounded clique-width to solve Fall Coloring, and therefore show
that the latter problem is as well solvable in time n2O(w) , where w denotes the clique-width
of a given decomposition of the input graph. By a simple reduction, we show that Fall
Coloring is also W[1]-hard in this parameterization and that an n2o(w) -time algorithm for
it would refute ETH.

Vertex Coloring Problems Parameterized by Clique-Width. We briefly touch on differences
in the complexities of vertex coloring problems of graphs when parameterized by clique-width.
While the standard Graph Coloring problem, asking for a proper coloring of the input
graph, is XP-time solvable parameterized by clique-width [19, 46], some of its generalizations
are NP-complete on graphs of constant clique-width. In the List Coloring problem we
are given a graph G and for each of its vertices v a list L(v) of colors, and the question
is whether G has a proper coloring such that each vertex is assigned a color from its list.
This problem is NP-complete on the (not disjoint) union of two complete graphs [31], and
such graphs clearly have constant clique-width. In the related Precoloring Extension
problem, we are given a graph, some of whose vertices already received a color, and the
question is whether this coloring can be extended to a proper coloring of the entire graph.
The following standard reduction from List Coloring, starting with a graph that is the
union of two complete graphs, shows that this variant is NP-complete on graphs of constant
clique-width as well. Take the graph G together with the lists L(·), and construct a graph H

by adding to G, for each vertex v ∈ V (G) and each color c /∈ L(v), a new vertex xc
v which is

adjacent only to v and assigned color c. It is not difficult to see that this precoloring of H

can be extended to the remainder of its vertices if and only if G has a list coloring using the
lists L(·). Moreover, adding pendant vertices to a graph does not increase its clique-width.

STACS 2021

43:4 b-Coloring Parameterized by Clique-Width

Belmonte et al. [3] recently showed that the Grundy Coloring problem, which asks
for a linear order of the vertices that maximizes the number of colors used by the greedy
coloring heuristic, is NP-complete on graphs of constant clique-width. This nicely contrasts
our XP-algorithm for b-Coloring, since both the b-Coloring and the Grundy Coloring
problems are rooted in the theoretical analysis of graph coloring heuristics.

Sketch of the algorithm. Let us discuss how we obtain our XP-algorithm parameterized by
clique-width. First, we consider a branch decomposition of the input graph G of bounded
module-width w which is equivalent to clique-width and has the following property. At each
node t of the branch decomposition we have a subgraph Gt of G whose vertex set can be
partitioned into at most w equivalence classes with respect to their neighborhood outside of
Gt. For the purpose of our dynamic programming algorithm, it suffices to describe colorings
by the way each of their color classes interacts with these equivalence classes. In the Graph
Coloring problem, it is enough to describe a color class according to its intersection with
the equivalence classes of Gt alone [19, 46] (see also [21]). For the b-Coloring problem,
we additionally have to ensure that eventually, each color class indeed has a b-vertex. The
challenge is to do so without explicitly remembering which color classes a vertex has already
seen in its neighborhood – this would result in prohibitively large tables. We overcome this
difficulty by a symmetry breaking trick that instead stores, for each color class, a demand to
the future neighbors of the equivalence classes which – if fulfilled – guarantees that the other
color classes can have b-vertices in the end.

Due to space restrictions, proofs of statements marked “♣” as well as several discussions
are deferred to the full version.

2 Preliminaries

We use standard terminology and assume the reader to be familiar with basic notions in graph
theory and parameterized complexity and refer to the books [4, 15] and [14, 16], respectively,
for introductions; or to the attached full version. To avoid confusion, we clarify some notation.
All graphs considered here are simple and finite. For a graph G we denote by V (G) and
E(G) the vertex set and edge set of G, respectively. For a set of vertices S ⊆ V (G), the
subgraph of G induced by S is G[S]. A graph is called subcubic if all its vertices have degree
at most three. A graph G is connected if for all 2-partitions (X, Y) of V (G) with X ̸= ∅
and Y ̸= ∅, there is a pair x ∈ X, y ∈ Y such that xy ∈ E(G). A connected component of a
graph is a maximal connected subgraph. In a tree T , the vertices of degree one are called
the leaves of T , denoted by L(T), and the vertices in V (T) \ L(T) are the internal vertices of
T . The length of a path is the number of its edges. For a graph G and a pair of vertices
u, v ∈ V (G), we denote by distG(u, v) the length of the shortest path between u and v in G.
A graph G is called distance-hereditary if for each connected induced subgraph H of G, and
each pair of vertices u, v ∈ V (H), distH(u, v) = distG(u, v). A tree T is called a caterpillar if
it contains a path P ⊆ T such that all vertices in V (T) \ V (P) are adjacent to a vertex in P .

Let Ω be a set and ∼ an equivalence relation over Ω. For an element x ∈ Ω the equivalence
class of x, denoted by [x], is the set {y ∈ Ω | x ∼ y}. We denote the set of all equivalence
classes of ∼ by Ω/∼.

The Exponential Time Hypothesis (ETH) is the following conjecture about the 3-SAT
problem, which given a boolean formula ϕ in conjunctive normal form with clauses of size at
most three asks whether there is a truth assignment to its variables that lets ϕ evaluate to
true.

L. Jaffke, P. T. Lima, and D. Lokshtanov 43:5

▶ Conjecture (ETH [27, 28]). There is no algorithm that solves each instance of 3-SAT on
n variables in time 2o(n).

Clique-Width, branch decompositions, and module-width. We first define clique-width,
introduced by Courcelle, Engelfriet, and Rozenberg [12], and then the equivalent measure of
module-width that we will use in our algorithm. The reason why we choose module-width
over clique-width is that at each node of the decomposition it captures information that is
very useful for coloring problems:

We keep the definition of clique-width slightly informal and refer to [12, 13] for more
details. Let G be a graph. The clique-width of G, denoted by cw(G), is the minimum number
of labels {1, . . . , k} needed to obtain G using the following four operations: (1) Create a
new graph consisting of a single vertex labeled i. (2) Take the disjoint union of two labeled
graphs G1 and G2. (3) Add all edges between pairs of vertices of label i and label j. (4)
Relabel every vertex labeled i to label j.

▶ Definition 1 (Branch decomposition). Let G be a graph. A branch decomposition of G

is a pair (T, L) of a subcubic tree T and a bijection L : V (G) → L(T). If T is a caterpillar,
then (T, L) is called linear branch decomposition. If T is rooted, then we call (T, L) a rooted
branch decomposition. In this case, for t ∈ V (T), we denote by Tt the subtree of T rooted at
t, and we define Vt

..= {v ∈ V (G) | L(v) ∈ L(Tt)}, Vt
..= V (G) \ Vt, and Gt

..= G[Vt].

▶ Definition 2 (Module-width, [39, 40]). Let G be a graph, and (T, L) be a rooted branch
decomposition of G. For each t ∈ V (T), let ∼t be the equivalence relation on Vt defined
as: ∀u, v ∈ Vt : u ∼t v ⇔ NG(u) ∩ Vt = NG(v) ∩ Vt. The module-width of (T, L) is
mw(T, L) ..= maxt∈V (T)|Vt/∼t|. The module-width of G, denoted by mw(G), is the minimum
module width over all rooted branch decompositions of G.

Let (T, L) be a rooted branch decomposition of a graph G and let t ∈ V (T) be a node
with children r and s. We now describe an operator associated with t that tells us how the
graph Gt is formed from its subgraphs Gr and Gs, and how the equivalence classes of ∼t

are formed from the equivalence classes of ∼r and ∼s. Concretely, we associate with t a
bipartite graph Ht on bipartition (Vr/∼r, Vs/∼s) such that:
1. E(Gt) = E(Gr) ∪ E(Gs) ∪ F , where F = {uv | u ∈ Vr, v ∈ Vs, {[u], [v]} ∈ E(Ht)}, and
2. there is a partition P = {P1, . . . , Ph} of V (Ht) such that Vt/∼t = {Q1, . . . , Qh}, where

for 1 ≤ i ≤ h, Qi =
⋃

Q∈Pi
Q. For each 1 ≤ i ≤ h, we call Pi the bubble of the resulting

equivalence class
⋃

Q∈Pi
Q of ∼t.

As auxiliary structures, for p ∈ {r, s}, we let ηp : Vp/∼p → Vt/∼t be the map such that
for all Qp ∈ Vp/∼p, Qp ⊆ ηp(Qp), i.e. ηp(Qp) is the equivalence class of ∼t whose bubble
contains Qp. We call (Ht, ηr, ηs) the operator of t.

▶ Theorem 3 (Rao, Thm. 6.6 in [39]). For any graph G, mw(G) ≤ cw(G) ≤ 2 · mw(G), and
given a decomposition of bounded clique-width, a decomposition of bounded module-width,
and vice versa, can be constructed in time O(n2), where n = |V (G)|.

Colorings. Let G be a graph. An ordered partition C = (C1, . . . , Ck) of V (G) is called
a coloring of G (with k colors). (Observe that for i ∈ {1, . . . , k}, Ci may be empty.) For
i ∈ {1, . . . , k}, we call Ci the color class i, and say that the vertices in Ci have color i.
C is called proper if each Ci is an independent set in G. The restriction of a coloring
C = (C1, . . . , Ck) to a vertex set S ⊆ V (G), is C|S ..= (C1 ∩ S, . . . , Ck ∩ S). In this case we

STACS 2021

43:6 b-Coloring Parameterized by Clique-Width

x y

z

x y

z eyzexz

Figure 1 A gem created following the reduction in [24].

say conversely that C extends C|S . A proper coloring (C1, . . . , Ck) is called a b-coloring, if
for all i ∈ {1, . . . , k}, there is a vertex vi ∈ Ci, called b-vertex of color i, such that for all
j ∈ {1, . . . , k} \ {i}, NG(vi) ∩ Cj ̸= ∅.

Input: Graph G, integer k

Question: Does G have a b-coloring with k colors?

b-Coloring

Distance-hereditary graphs and chordal graphs. In their work on P4-sparse graphs, Bonomo
et al. [5] asked whether b-Coloring is polynomial-time solvable on the class of distance-
hereditary graphs. Havet et al. [24] claimed to answer this question in the negative way,
showing that b-Coloring is NP-complete on chordal distance-hereditary graphs. Their
proof, however, contains a flaw and the graph constructed in their reduction, even though
indeed chordal, fails to be distance-hereditary. In what follows, we briefly describe their
reduction and argue that the graph constructed is not distance-hereditary. The reduction
presented in [24] is from 3-Edge Coloring restricted to the class of 3-regular graphs. Given
an instance G for 3-Edge Coloring with V (G) = {v1, . . . , vn}, they construct a graph H

as follows. The vertex set of H contains a copy of V (G) plus one vertex associated with
each edge of G. We denote by exy the vertex corresponding to the edge xy. The vertices
of V (G) form a clique in H, the vertices corresponding to edges form an independent set,
and for each edge xy ∈ E(G), the vertex exy is adjacent to the copy of x and y in H. The
connected component of H induced by these vertices is therefore a split graph. Finally, they
add three disjoint copies of K1,n+2 to H. It is thus easy to see that H is a chordal graph.
However, let xz and yz be two edges of G sharing one endpoint. Then the subgraph of H

induced by {x, y, z, exz, eyz} is isomorphic to a gem (see Figure 1). As shown by Bandelt
and Mulder [2], distance-hereditary graphs are gem-free graphs. This shows that the graph
H is not a distance-hereditary graph.

Via monadic second order logic and Courcelle’s Theorem [11], we can show the following
result for chordal graphs.

▶ Proposition 4 (♣). b-Coloring parameterized by k is FPT on chordal graphs.

3 Parameterized by Clique-Width

In this section, we consider the b-coloring problem parameterized by the clique-width of the
input graph. We will work with decompositions of bounded module-width, which is equivalent
for our purposes, see Theorem 3.

The main contribution of this section is an algorithm that given a graph G on n vertices
and one of its rooted branch decompositions of module-width w, and an integer k, decides
whether G has a b-coloring with k colors in time n2O(w) . Before we proceed, we observe that
b-Coloring is W[1]-hard in this parameterization, and that the exponential dependence on
w of the degree of the polynomial in the runtime is probably difficult to avoid.

L. Jaffke, P. T. Lima, and D. Lokshtanov 43:7

▶ Proposition 5 (♣). The b-Coloring problem on graphs on n vertices parameterized by
their module-width w is W[1]-hard and cannot be solved in time n2o(w) , unless ETH fails.
Moreover, the hardness holds even when a linear branch decomposition of width w is provided.

3.1 Outline of the Algorithm
Throughout the following, we are given a graph G and one of its rooted branch decompositions
(T, L) of module-width w = mw(T, L) and we want to find a b-coloring of G with k colors, if
it exists. In particular, our algorithm will find a b-coloring C together with a set of witness
b-vertices, containing precisely one b-vertex for each color class of C, if it exists. This will be
done via dynamic programming along T , and for each node t ∈ V (T), the partial solutions
associated with t are partial b-colorings of Gt.

▶ Definition 6 (Partial b-Coloring). Let G be a graph and k ∈ N. For an induced subgraph H

of G, a partial b-coloring of H is a pair (C, B) of a proper coloring C = (C1, . . . , Ck) of H

and a subset B ⊆ V (H) such that for all i ∈ [k], |Ci ∩ B| ≤ 1. We call the vertices in B the
partial b-vertices.

To obtain an efficient algorithm, we require a compact representation of the partial
b-colorings of each subgraph Gt associated with a node t ∈ V (T). To that end, we introduce
the notion of a t-signature of a partial b-coloring. Two partial b-colorings with the same
t-signature will be interchangeable for the sake of our algorithm, therefore the number of
table entries at each node t will be bounded by the number of t-signatures.

Let (C, B) be a partial b-coloring of Gt. For (C, B) to be extended to a b-coloring (C′, B′)
of the entire graph G, we have to ensure that two things happen for each color class C ∈ C:

(I) The extension of C in C′ is an independent set in G.
(II) There is a witness b-vertex in B′ for the extension of C in C′.

The t-signature has to represent a partial b-coloring faithfully enough so that we can keep
track of all the ways in which the above two conditions can be satisfied for each of its color
classes ‘in the future’. At the same time, its definition has to enable us to significantly
compress the information about partial b-colorings of Gt. This happens in the following
way. We categorize color classes of partial b-colorings of Gt according to t-types. If two
color classes C1, C2 of a partial b-coloring (C, B) have the same t-type, then the above two
conditions can be satisfied for C1 and C2 by extensions of (C, B) in the exact same ways.
This allows us to forget about the “names” of the color classes in a partial b-coloring, but
instead to only remember for each t-type how many color classes with that type there are.
This is precisely the information that is stored in a t-signature.

Now, if we can bound the number of t-types by some function of the module-width w,
say f(w), then the number of t-signatures is upper bounded by kf(w) ≤ nf(w). (There are at
most k colors, so in particular there are at most k colors with a given t-type.) This translates
directly to an upper bound on the number of table entries in the dynamic programming
algorithm, which, up to some constants in the degree of the polynomial, bounds the runtime
of the resulting algorithm.

Let us discuss the information that goes into the definition of a t-type. Let C be a color
class in a partial b-coloring (C, B) of Gt. To keep track of which vertices from Vt can be
added to C without introducing a coloring conflict, it suffices to store which equivalence
classes of ∼t have vertices in C,3 since all vertices in a given equivalence class have the same
neighbors in Vt. This way we can ensure that condition (I) is satisfied.

3 This is similar to the algorithm of Wanke for Graph Coloring on graphs of bounded NLC-width [46].

STACS 2021

43:8 b-Coloring Parameterized by Clique-Width

To verify if condition (II) is satisfied we have to store some information about the partial
b-vertices. Naturally, we record whether or not B contains a partial b-vertex of C, but we
need to store more information. Suppose that B contains the partial b-vertex v of C. In
a straightforward approach, we would simply keep track of the color classes that already
appear in the neighborhood of v. This way we could easily decide at which point during the
execution of the algorithm, a partial b-vertex turns into a b-vertex. However, this results in
prohibitively large table entries, since there are 2k−1 subsets of colors that we would have to
consider, which for our purpose is no better than 2n.

We overcome this issue with the following symmetry breaking trick: We do not record
which color classes the partial b-vertex of C already sees/still needs to see. Instead, we record
for which equivalence classes Q ∈ Vt/∼t we need to add a future neighbor of Q, i.e. a vertex
from N(Q) ∩ Vt, to C, such that the partial b-vertex from some other color C ′ sees color C in
its neighborhood. More concretely, suppose that some equivalence class Q ∈ Vt/∼t contains
the partial b-vertex w ∈ B of another color class C ′ ≠ C, such that w has no neighbor of
color C in Vt. For w to become a b-vertex of its color, color class C must be extended with a
neighbor of w in the future, i.e. in Vt. The neighborhood of w in Vt is precisely NG(Q) ∩ Vt,
therefore we can concisely model this situation as color class C requiring to contain a vertex
among the future neighbors of Q. In this situation, we say that

color class C has demand to the future neighbors of Q.

The t-type records for each equivalence class Q of ∼t, if a color class contains vertices
of Q, or if it has demand to the future of Q, or none of the two. Note that if a color class
both contains a vertex from Q and has demand to the future of Q, we already know that
we can disregard the corresponding partial b-coloring: In the corresponding color class, we
cannot add any future neighbors of Q without creating a coloring conflict, and if we do not
add a future neighbor of Q, then there is some color class whose partial b-vertex will never
become a b-vertex. Now, if we have a partial b-coloring in which every color class has a
partial b-vertex, and all demands have been fulfilled, meaning that there is no color class that
has demand to the future of some equivalence class of ∼t, then we know that we actually
have a b-coloring. Moreover, the number of t-types is 2O(w), so the resulting algorithm runs
in time n2O(w) .

3.2 t-Types and t-Signatures

In this section we introduce the basic concepts that we alluded to in the above description,
namely the notion of a t-type and of a t-signature, where t is some node in the given branch
decomposition. A t-type is meant to capture the necessary information of a color class in a
partial b-coloring of Gt. However, we cannot give the definition of a t-type as a property of
a vertex set alone: a color class C may have demand to the future of an equivalence class,
which is because there is a partial b-vertex of another color C ′ ̸= C that has no neighbor of
color C yet. Therefore, we first give the definition of a t-type abstractly, i.e. absent of any
partial b-coloring or color class, and then define what it means for a color class to be of a
certain t-type within a partial b-coloring. This is illustrated in Figure 2.

The t-type is a pair of a bit that is meant to tell us whether or not a coloring contains a
partial b-vertex of that color, and a map that tells us for each equivalence class, whether
there is a vertex of the color in the equivalence class (via the value cont), or if the color has
demand to the future neighbors of the equivalence class (via the value dem), or none of the
two (via the value none).

L. Jaffke, P. T. Lima, and D. Lokshtanov 43:9

Q1 Q2 Q3 Q4

(b)
(y)

(r)

(r)

(r)

Figure 2 Illustration of the definition of a color class being of a certain t-type inside a partial
b-coloring of Gt. The large square vertices are partial b-vertices for their color. The type of the red
(r) color in the coloring is as follows. Since it has a b-vertex (the one in Q2), we have that ξ = 1.
Since Q2 and Q4 have red vertices, ϕ(Q2) = ϕ(Q4) = cont. Q1 and Q3 do not have red vertices.
Q1 contains the b-vertex of color yellow (y), but this vertex already has a red neighbor. Therefore,
ϕ(Q1) = none. Finally, Q3 has the b-vertex of color blue (b), and this vertex does not have a red
neighbor yet. Therefore, there has to be a red vertex among the future neighbors of Q3. Hence,
ϕ(Q3) = dem.

▶ Definition 7 (t-Type). Let G be a graph with rooted branch decomposition (T, L) and
let t ∈ V (T). A t-type is a pair (ϕ, ξ) of a map ϕ : Qt/∼t → {none, cont, dem} and a bit
ξ ∈ {0, 1}. We denote the set of all t-types by typest.

▶ Observation 8. Let (T, L) be a rooted branch decomposition of module-width w = mw(T, L).
For each t ∈ V (T), |typest| = 2 · 3|Vt/∼t| ≤ 2 · 3w.

▶ Definition 9. Let G be a graph with rooted branch decomposition (T, L) and let t ∈ V (T).
Let (C, B) be a partial b-coloring of Gt, let C ∈ C be a color class, and let τ = (ϕ, ξ) ∈ typest

be a t-type. We say that C has t-type τ in (C, B) if
(i) ξ = |C ∩ B| and
(ii) for each Q ∈ Vt/∼t,

(a) if Q ∩ C ̸= ∅, and ∄v ∈ (B \ C) ∩ Q such that N(v) ∩ C = ∅, then ϕ(Q) = cont;
(b) if Q ∩ C = ∅ and ∃v ∈ (B \ C) ∩ Q such that N(v) ∩ C = ∅, then ϕ(Q) = dem; and
(c) if Q ∩ C = ∅, and ∄v ∈ (B \ C) ∩ Q such that N(v) ∩ C = ∅, then ϕ(Q) = none.

The reader may have observed that (ii) does not cover all the possibilities. The situation
that is not covered is when Q∩C ≠ ∅ and there is some v ∈ (B\C)∩Q such that N(v)∩C = ∅.
A priori, we can of course not exclude this as a possibility, but there is a simple reason that
partial b-colorings that contain a color class in which this situation arises can be disregarded:
For the vertex v to become a b-vertex for its color, we have to add a future neighbor of Q

to C; but since Q already contains a vertex from C this means that the resulting set is not
independent anymore.

▶ Definition 10 (t-Signature). Let G be a graph with rooted branch decomposition (T, L), and
let t ∈ V (T). A t-signature is a map sigt : typest → {0, 1, . . . , k} with

∑
τ∈typest

sigt(τ) = k.

The following bound on the number of t-signatures immediately follows from Observation 8:
for each t-type, the function takes one of k + 1 ≤ n + 1 values.

▶ Observation 11. Let G be a graph on n vertices and (T, L) be one of its branch decompos-
itions of module-width w = mw(T, L). For each t ∈ V (T), there are at most n2O(w) many
t-signatures.

STACS 2021

43:10 b-Coloring Parameterized by Clique-Width

dem

none

cont

cont

none

dem

none

none

cont

none

Figure 3 Illustration of Definition 13. The shaded area shows a bubble and the labels on the
equivalence classes correspond to type labelings. For the left hand side, note that between a pair
of classes that are both labeled “cont”, there can be no edge in the operator. Moreover, since the
bubble contains a class labeled cont and one labeled dem, the demand of the latter has to be fulfilled
at this node, i.e. there has to be an edge from this class to a “cont”-class. The right side shows the
situation when the “cont”-class in the bubble is changed to “none”, in which case the dotted edges
may or may not be present in the operator.

▶ Definition 12. Let G be a graph with rooted branch decomposition (T, L), and let t ∈ V (T).
Let furthermore sigt be a t-signature and (C, B) a partial b-coloring in Gt. We say that sigt

represents (C, B) if for each t-type τ ∈ typest, there are precisely sigt(τ) color classes in
(C, B) that have t-type τ in (C, B). We call a partial b-coloring (C, B) of Gt representable if
and only if there is a t-signature that represents it.

3.3 Compatibility
Let t ∈ V (T) \ L(T) be an internal node of the given rooted branch decomposition, let r

and s be its children, and let (Ht, ηr, ηs) be the operator of t. In our algorithm, we want
to combine information about partial b-colorings of Gr and Gs to obtain information about
partial b-colorings of Gt. We will try to obtain a color class of a partial b-coloring of Gt by
taking the union of a color class Cr of a partial b-coloring of Gr and a color class Cs of a
partial b-coloring of Gs.

However, in some cases this is not possible. For instance, when Cr contains vertices from
some equivalence class Qr ∈ Vr/∼r and Cs contains vertices from some equivalence class
Qs ∈ Vs/∼s, and in the graph Ht of the operator of t, we have that QrQs ∈ E(Ht). Then,
in Gt all edges between the set Qr and Qs are present which means that Cr ∪ Cs is not
an independent set in Gt. Another condition is necessary to ensure that several demands
that have to be met at node t are indeed met. Let Ct = Cr ∪ Cs and suppose there is an
equivalence class Qt ∈ Vt/∼t that contains a vertex of Ct. Suppose furthermore that there
is another equivalence class Qr ∈ Vr/∼r contained in the bubble of Qt such that Cr has
demand to the future neighbors of Qr. Then, this demand must be fulfilled by a neighbor
of Qr in Cs for otherwise, the equivalence class Qt both contains vertices of Ct and Ct

has demand to the future neighbors of Qt. The resulting partial b-coloring would not be
representable. We illustrate the notion of compatibility in Figure 3.

▶ Definition 13 (Compatible types). Let G be a graph with rooted branch decomposition
(T, L). Let furthermore t ∈ V (T) \ L(T) with children r and s, and let (Ht, ηr, ηs) be the
operator of t. Let (ϕr, ξr) ∈ typesr and (ϕs, ξs) ∈ typess. We say that (ϕr, ξr) and (ϕs, ξs)
are compatible if the following conditions hold.

(i) ξr + ξs ≤ 1.
(ii) There is no pair Qr ∈ Vr/∼r, Qs ∈ Vs/∼s such that QrQs ∈ E(Ht) and ϕr(Qr) =

ϕs(Qs) = cont.
(iii) For each Q ∈ Vt/∼t such that there exists a p ∈ {r, s} and a Qp ∈ η−1

p (Q) with
ϕp(Qp) = cont, the following holds.

L. Jaffke, P. T. Lima, and D. Lokshtanov 43:11

(a) For all Qr ∈ η−1
r (Q) with ϕr(Qr) = dem, there is a Qs ∈ Vs/∼s with ϕs(Qs) = cont

and QrQs ∈ E(Ht).
(b) Similarly, for all Qs ∈ η−1

s (Q) with ϕs(Qs) = dem, there is a Qr ∈ Vr/∼r with
ϕr(Qr) = cont and QsQr ∈ E(Ht).

Given a pair of a color class Cr of a partial b-coloring of Gr and a color class Cs of a
partial b-coloring of Gs whose types in the respective colorings are compatible, Cr ∪ Cs,
considered as a color class in a partial b-coloring of Gt, has a fixed type, which can formally
be constructed as follows.

▶ Definition 14 (Merge Type). Let G be a graph with rooted branch decomposition (T, L).
Let furthermore t ∈ V (T) \ L(T) with children r and s, and let (Ht, ηr, ηs) be the operator
of t. Let ρ = (ϕr, ξr) ∈ typesr and σ = (ϕs, ξs) ∈ typess be a pair of compatible types. The
merge type of ρ and σ, denoted by µ(ρ, σ), is the following t-type (ϕt, ξt).

(i) ξt = ξr + ξs.
(ii) For each Q ∈ Vt/∼t:

(a) If for some p ∈ {r, s}, ∃Qp ∈ η−1
p (Q) with ϕp(Qp) = cont, then ϕt(Q) = cont.

(b) If (iia) does not apply and for some p ∈ {r, s}, ∃Qp ∈ η−1(Q) with ϕp(Qp) = dem
and for all QpQo ∈ E(Ht) we have that ϕo(Qo) ̸= cont, then ϕt(Q) = dem.

(c) If neither (iia) nor (iib) applies, then ϕt(Q) = none.

Towards a notion of compatibility of signatures, we first define a structure we call merge
skeleton. Given a node t ∈ V (T) with children r and s, the merge skeleton is an edge-labeled
bipartite graph whose vertices are the r-types and the s-types, with the merge type of a
compatible pair of types ρ ∈ typesr, σ ∈ typess written on the edge ρσ. Such an edge is
meant to represent the fact that taking the union of a color class Cr that has r-type ρ in a
partial b-coloring of Gr with a color class Cs that has s-type σ in a partial b-coloring of Gs

results in a color class of t-type µ(ρ, σ) in a partial b-coloring of Gt.

▶ Definition 15 (Merge skeleton). Let G be a graph and (T, L) one of its rooted branch
decompositions. Let t ∈ V (T) \ L(T) with children r and s. The merge skeleton of r and s is
an edge-labeled bipartite graph (J,m) where

V (J) = typesr ∪ typess,
for all ρ ∈ typesr, σ ∈ typess, ρσ ∈ E(J) if and only if ρ and σ are compatible, and
m : E(J) → typest is such that for all ρσ ∈ E(J), m(ρσ) is the merge type of ρ and σ.

Now, any pair of an r-signature sigr and an s-signature sigs can “flesh out” the merge
skeleton (J,m) of r and s, in the following sense. We can consider the union of sigr and
sigs as a map labeling the vertices of J. Then, an edge-labeling n of J with integers from
{0, 1, . . . , k}, such that for each vertex of J, the sum over its incident edges e of n(e) is equal
to its vertex label, produces a t-signature sigt. We can read off how many color classes of
each type there are from the edge labeling n.

▶ Definition 16 (Compatible signatures). Let (T, L) be a rooted branch decomposition. Let
furthermore t ∈ V (T) \ L(T) with children r and s. Let sigt be a t-signature, let sigr be an
r-signature and sigs be a s-signature. We say that (sigt, sigr, sigs) is compatible if there is a
triple (J,m, n) such that (J,m) is the merge skeleton of r and s, and n : E(J) → {0, 1, . . . , k}
is a map with the following properties.

(i) For all p ∈ {r, s} and all π ∈ typesp,
∑

e∈E(J) : π∈e n(e) = sigp(π).
(ii) For all τ ∈ typest,

∑
e∈E(J) : m(e)=τ n(e) = sigt(τ).

STACS 2021

43:12 b-Coloring Parameterized by Clique-Width

▶ Lemma 17 (♣). Let G be a graph on n vertices and let (T, L) be one of its rooted branch
decomposition of module-width w = mw(T, L). Let t ∈ V (T) \ L(T) with children r and s.
Let sigt be a t-signature, sigr be an r-signature, and sigs be an s-signature. One can decide
in time n2O(w) whether or not (sigt, sigr, sigs) is compatible.

3.4 Merging and Splitting Partial b-Colorings
In this section we state the lemmas that show that the notions introduced above work as
desired, and the technical lemmas we prove here will be the cornerstone of the correctness
proof of the resulting algorithm.

▶ Lemma 18 (♣). Let G be a graph with rooted branch decomposition (T, L) and let
t ∈ V (T) \ L(T) be an internal node with children r and s. Let sigr be an r-signature, sigs be
an s-signature, and sigt be a t-signature such that:

For all p ∈ {r, s}, there is a partial b-coloring (Cp, Bp) in Gp represented by sigp, and
(sigt, sigr, sigs) is compatible.

Then, there is a partial b-coloring (Ct, Bt) of Gt that is represented by sigt.

▶ Lemma 19 (♣). Let G be a graph with rooted branch decomposition (T, L) and let
t ∈ V (T) \ L(T) be an internal node with children r and s. Let sigt be a t-signature, and
suppose there is a partial b-coloring (Ct, Bt) of Gt which is represented by sigt. Then, there
exists an r-signature sigr and an s-signature sigs such that

for all p ∈ {r, s} there is a partial b-coloring (Cp, Bp) represented by sigp, and
(sigt, sigr, sigs) is compatible.

3.5 The Algorithm
▶ Definition of the table entries. For a node t ∈ V (T) and a t-signature sigt, we let
tab[t, sigt] = 1 if and only if there exists a partial b-coloring of Gt that is represented by sigt.

We now show that if all table entries have been computed correctly, then the solution can
be read off the table entries stored at the root r of the given rooted branch decomposition.
Observe that since Vr = V (G) and therefore Vt = ∅, the equivalence relation ∼r has one
equivalence class, namely V (G).

▶ Lemma 20 (♣). Let G be a graph with rooted branch decomposition (T, L) and let r ∈ V (T)
be the root of T . Let ρ be the r-type (ϕr, ξr) with ξr = 1 and ϕr(V (G)) = cont. Let sigr be
the r-signature letting sigr(ρ) = k. Then, G has a b-coloring with k colors if and only if
tab[r, sigr] = 1.

The table entries at the leaves are computed by brute force, and we defer the details to
the full version. We compute the table entries at the internal nodes as follows.

▶ Internal nodes of T . Now let t ∈ V (T) \ L(T) with children r and s. For each t-signature
sigt, we let tab[t, sigt] = 1 if and only if there exists a pair (sigr, sigs) of an r-signature sigr

and an s-signature sigs such that
(J1) tab[r, sigr] = 1 and tab[s, sigs] = 1, and
(J2) (sigt, sigr, sigs) is compatible.

▶ Lemma 21 (♣). For each t ∈ V (T) and t-signature sigt, the above algorithm computes the
table entry tab[t, sigt] correctly.

L. Jaffke, P. T. Lima, and D. Lokshtanov 43:13

We wrap up. By Lemma 21, the algorithm computes all table entries correctly, and by
Lemma 20, the solution to the instance can be determined upon inspecting the table entries
associated with the root of the given branch decomposition. Correctness of the algorithm
follows. The runtime follows essentially from Observation 11 and Lemma 17. We give the
details in the full version.

▶ Theorem 22. There is an algorithm that solves b-Coloring in time n2O(w) , where n

denotes the number of vertices of the input graph, and w denotes the module-width of a given
rooted branch decomposition of the input graph.

3.6 Fall Coloring
Recall that a fall coloring is a special type of b-coloring where every vertex is a b-vertex for
its color. We adapt our algorithm for b-Coloring on graphs of bounded clique-width to
solve Fall Coloring, and therefore obtain the following theorem.

▶ Theorem 23 (♣). There is an algorithm that solves Fall Coloring in time n2O(w) , where
n denotes the number of vertices of the input graph, and w denotes the module-width of a
given rooted branch decomposition of the input graph.

▶ Proposition 24 (♣). The Fall Coloring problem on graphs on n vertices parameterized
by the module-width w of the input graph is W[1]-hard and cannot be solved in time n2o(w) ,
unless ETH fails. Moreover, the hardness holds even when a linear branch decomposition of
width w is provided.

4 Parameterized by Vertex Cover

We conclude by stating that b-Coloring parameterized by the size of a vertex cover of the
input graph is FPT.

▶ Theorem 25 (♣). There is an algorithm that solves b-Coloring in time 2O(ℓ2 log ℓ) · nO(1),
where ℓ denotes the vertex cover number of the input graph.

References

1 Pierre Aboulker, Édouard Bonnet, Eun Jung Kim, and Florian Sikora. Grundy coloring &
friends, half-graphs, bicliques. In STACS 2020, volume 154 of LIPIcs, pages 58:1–58:18, 2020.

2 Hans-Jürgen Bandelt and Henry Martin Mulder. Distance-hereditary graphs. Journal of
Combinatorial Theory Series B, 41:182–208, 1986.

3 Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi. Grundy
distinguishes treewidth from pathwidth. In ESA 2020, volume 173 of LIPIcs, pages 14:1–14:19,
2020.

4 J. Adrian Bondy and Uppaluri S. R. Murty. Graph Theory, volume 244 of Graduate Texts in
Mathematics. Springer, 2008.

5 Flavia Bonomo, Guillermo Durán, Frederic Maffray, Javier Marenco, and Mario Valencia-
Pabon. On the b-coloring of cographs and P4-sparse graphs. Graphs and Combinatorics,
25(2):153–167, 2009.

6 Flavia Bonomo, Oliver Schaudt, Maya Stein, and Mario Valencia-Pabon. b-Coloring is NP-hard
on co-bipartite graphs and polytime solvable on tree-cographs. Algorithmica, 73(2):289–305,
2015.

7 Victor A. Campos, Carlos V. Lima, Nicolas A. Martins, Leonardo Sampaio, Marcio C. Santos,
and Ana Silva. The b-chromatic index of graphs. Discrete Mathematics, 338(11):2072–2079,
2015.

STACS 2021

43:14 b-Coloring Parameterized by Clique-Width

8 Victor A. Campos, Carlos Vinicius G. C. Lima, and Ana Silva. Graphs of girth at least 7 have
high b-chromatic number. European Journal of Combinatorics, 48:154–164, 2015.

9 Victor A. Campos, Cláudia Linhares-Sales, Rudini Sampaio, and Ana Karolinna Maia. Maxim-
ization coloring problems on graphs with few P4. Discrete Applied Mathematics, 164:539–546,
2014.

10 Victor A. Campos and Ana Silva. Edge-b-coloring trees. Algorithmica, 80(1):104–115, 2018.
11 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite

graphs. Information and Computation, 85(1):12–75, 1990.
12 Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting hypergraph

grammars. Journal of Computer and System Sciences, 46(2):218–270, 1993.
13 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete

Applied Mathematics, 101(1-3):77–114, 2000.
14 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin

Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
15 Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer,

Heidelberg, fifth edition, 2016.
16 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.

Springer, 2013.
17 Jean E. Dunbar, Sandra M. Hedetniemi, S.T. Hedetniemi, David P. Jacobs, J. Knisely, R.C.

Laskar, and Douglas F. Rall. Fall colorings of graphs. Journal of Combinatorial Mathematics
and Combinatorial Computing, 33:257–274, 2000.

18 Brice Effantin, Nicolas Gastineau, and Olivier Togni. A characterization of b-chromatic and
partial grundy numbers by induced subgraphs. Discrete Mathematics, 339(8):2157–2167, 2016.

19 Wolfgang Espelage, Frank Gurski, and Egon Wanke. How to solve NP-hard graph problems
on clique-width bounded graphs in polynomial time. In WG 2001, pages 117–128, 2001.

20 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Intractability of
clique-width parameterizations. SIAM Journal on Computing, 39(5):1941–1956, 2010.

21 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.
Clique-width III: Hamiltonian cycle and the odd case of graph coloring. ACM Transactions
on Algorithms, 15(1):9:1–9:27, 2019.

22 Wayne Goddard and Michael A. Henning. Independent domination in graphs: A survey and
recent results. Discrete Mathematics, 313(7):839–854, 2013.

23 Martin Charles Golumbic and Udi Rotics. On the clique-width of some perfect graph classes.
International Journal of Foundations of Computer Science, 11(03):423–443, 2000.

24 Frédéric Havet, Claudia Linhares Sales, and Leonardo Sampaio. b-coloring of tight graphs.
Discrete Applied Mathematics, 160(18):2709–2715, 2012.

25 Frédéric Havet and Leonardo Sampaio. On the Grundy and b-chromatic numbers of a graph.
Algorithmica, 65:885–899, 2013.

26 Pinar Heggernes and Jan Arne Telle. Partitioning graphs into generalized dominating sets.
Nordic Journal on Computing, 5(2):128–142, 1998.

27 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

28 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

29 Robert W. Irving and David F. Manlove. The b-chromatic number of a graph. Discrete
Applied Mathematics, 91(1-3):127–141, 1999.

30 Lars Jaffke and Paloma T. Lima. A complexity dichotomy for critical values of the b-chromatic
number of graphs. Theoretical Computer Science, 815:182–196, 2020.

31 Klaus Jansen. Complexity results for the optimum cost chromatic partition problem, 1997.
32 Jan Kratochvíl, Zsolt Tuza, and Margit Voigt. On the b-chromatic number of graphs. In WG

2002, pages 310–320, 2002.

L. Jaffke, P. T. Lima, and D. Lokshtanov 43:15

33 Renu Laskar and Jeremy Lyle. Fall colouring of bipartite graphs and cartesian products of
graphs. Discrete Applied Mathematics, 157(2):330–338, 2009.

34 Juho Lauri and Christodoulos Mitillos. Complexity of fall coloring for restricted graph classes.
In 30th IWOCA, pages 352–364. Springer, 2019.

35 Jeremy Lyle, Nate Drake, and Renu Laskar. Independent domatic partitioning or fall coloring
of strongly chordal graphs. Congressus Numerantium, 172:149–159, 2005.

36 Johann A. Makowsky and Udi Rotics. On the clique-width of graphs with few P4’s. International
Journal of Foundations of Computer Science, 10(03):329–348, 1999.

37 Christodoulos Mitillos. Topics in Graph Fall-Coloring. PhD thesis, Illinois Institute of
Technology, 2016.

38 Fahad Panolan, Geevarghese Philip, and Saket Saurabh. On the parameterized complexity of
b-chromatic number. Journal of Computer and System Sciences, 84:120–131, 2017.

39 Michaël Rao. Décompositions de graphes et algorithmes efficaces. PhD thesis, University of
Metz, 2006.

40 Michaël Rao. Clique-width of graphs defined by one-vertex extensions. Discrete Mathematics,
308(24):6157–6165, 2008.

41 Leonardo Sampaio. Algorithmic aspects of graph colourings heuristics. PhD thesis, Université
Nice Sophia Antipolis, 2012.

42 Ana Silva. Graphs with small fall-spectrum. Discrete Applied Mathematics, 254:183–188, 2019.
43 Ana Shirley Ferreira da Silva. The b-chromatic number of some tree-like graphs. PhD thesis,

Université Joseph-Fourier - Grenoble I, 2010.
44 Jan Arne Telle and Andrzej Proskurowski. Algorithms for vertex partitioning problems on

partial k-trees. SIAM Journal on Discrete Mathematics, 10(4):529–550, 1997.
45 Clara Inés Betancur Velasquez, Flavia Bonomo, and Ivo Koch. On the b-coloring of P4-tidy

graphs. Discrete Applied Mathematics, 159(1):60–68, 2011.
46 Egon Wanke. k-NLC graphs and polynomial algorithms. Discrete Applied Mathematics,

54:251–266, 1994.

STACS 2021

A Ramsey Theorem for Finite Monoids
Ismaël Jecker !

Institute of Science and Technology, Klosterneuburg, Austria

Abstract
Repeated idempotent elements are commonly used to characterise iterable behaviours in abstract
models of computation. Therefore, given a monoid M , it is natural to ask how long a sequence of
elements of M needs to be to ensure the presence of consecutive idempotent factors. This question
is formalised through the notion of the Ramsey function RM associated to M , obtained by mapping
every k ∈ N to the minimal integer RM (k) such that every word u ∈ M∗ of length RM (k) contains k

consecutive non-empty factors that correspond to the same idempotent element of M .
In this work, we study the behaviour of the Ramsey function RM by investigating the regular

D-length of M , defined as the largest size L(M) of a submonoid of M isomorphic to the set of
natural numbers {1, 2, . . . , L(M)} equipped with the max operation. We show that the regular
D-length of M determines the degree of RM , by proving that kL(M) ≤ RM (k) ≤ (k|M |4)L(M).

To allow applications of this result, we provide the value of the regular D-length of diverse
monoids. In particular, we prove that the full monoid of n × n Boolean matrices, which is used to
express transition monoids of non-deterministic automata, has a regular D-length of n2+n+2

2 .

2012 ACM Subject Classification Theory of computation → Algebraic language theory

Keywords and phrases Semigroup, monoid, idempotent, automaton

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.44

Related Version Full Version: https://arxiv.org/abs/2101.05895

Funding This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411.

Acknowledgements I wish to thank Michaël Cadilhac, Emmanuel Filiot and Charles Paperman for
their valuable insights concerning Green’s relations.

1 Introduction

The algebraic approach to language theory was initiated by Schützenberger with the definition
of the syntactic monoid associated to a formal language [14]. This led to several parallels
being drawn between classes of languages and varieties of monoids, the most famous being
that rational languages are characterised by finite syntactic monoids [12], and that star-free
languages are characterised by finite aperiodic syntactic monoids [15]. These characterisations
motivate the study of finite monoids as a way to gain some insight about automata. In this
work, we focus on the following problem:
Given a finite monoid M and k ∈ N, what is the minimal integer RM (k) such that every
word u ∈ M∗ of length RM (k) contains k consecutive factors corresponding to the same
idempotent element of M?
The interest of this problem lies in the fact that when we model the behaviours of an
abstract machine as elements of a monoid, repeated idempotent factors often characterise
the behaviours that have good properties with respect to iteration. This can be used, for
instance, to obtain pumping lemmas, as seen in [8] for weighted automata.

A partial answer to this problem is obtained by using Ramsey’s Theorem [13] or Simon’s
Factorisation Forest Theorem [16] (these techniques are detailed in the full version), as both
approaches provide upper bounds for RM (k). However, neither approximation is precise:

© Ismaël Jecker;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 44; pp. 44:1–44:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ismael.jecker@ist.ac.at
https://doi.org/10.4230/LIPIcs.STACS.2021.44
https://arxiv.org/abs/2101.05895
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 A Ramsey Theorem for Finite Monoids

Ramsey’s theorem disregards the monoid structure, and the Factorisation Forest Theorem
guarantees much more than what is required here. We prove a version of Ramsey’s Theorem
adapted to monoids, or, equivalently, a weaker version of the Forest Factorisation Theorem,
that yields an improved bound relying on a parameter of monoids called the regular D-length.
We now present some examples, followed with an overview of the main concepts studied in
this paper: the Ramsey function associated to a monoid and the regular D-length.

1.1 Examples
We describe three families of monoids, along with the corresponding idempotent elements.

Max monoid. The max monoid Hn is the set {1, 2, . . . , n}, equipped with the max operation.
In this monoid, every element i is idempotent since max(i, i) = i.

Transformation monoid. The (full) transformation monoid Tn is the set of all (partial)
functions from a set of n elements into itself, equipped with the composition. See [3] for a
detailed definition of Tn and its properties. Transformation monoids contain a wide range of
idempotent elements. For instance, the identity function, mapping each element to itself, or
the constant function fi, mapping all elements to one fixed element i, are idempotent. In
general, a function f is idempotent if and only if each element i of its range satisfies f(i) = i.
Transformations are commonly used to express transition monoids of deterministic finite
state automata, as in this setting each input letter acts as a function over the set of states.

Relation monoid. For non-deterministic automata, transition monoids are more complex:
functions fail to model the behaviour of the input letters since a single state can transition
towards several distinct states. We use the (full) relation monoid Bn of all n × n Boolean
matrices (matrices with values in {0, 1}), equipped with the usual matrix composition
(considering that 1 + 1 = 1). There are plenty of idempotent matrices, for instance every
diagonal matrix, or the full upper triangular matrix. Idempotent Boolean matrices are
characterised in [9], they correspond to specific orders over the subsets of {1, 2, . . . , n}.

1.2 Ramsey function
Given a finite monoid M , the Ramsey function RM associated to M maps each k ∈ N to the
minimal integer RM (k) such that every sequence of elements of M of length RM (k) contains
k non-empty consecutive factors that all correspond to the same idempotent element of M .

Related work. There are several known methods to approximate the Ramsey function RM

of a monoid M . Ramsey’s Theorem and Simon’s Factorisation Forest Theorem are commonly
used, however, as stated before, these approaches are too general to obtain a precise bound.
The value of RM (k) is studied in [4] in the particular case k = 1. The authors prove that for
a monoid M that contains N non-idempotent elements, RM (1) ≤ 2N − 1. No general related
lower bound is proved, but they show that for every N ∈ N, there exists a monoid MN with
N non-idempotent elements that actually reaches the upper bound: RMN

(1) = 2N − 1.

Our contributions. We prove new bounds for RM by following a different approach: instead
of focusing on the non-idempotent elements of M , we study its idempotent elements, and
the way in which they interact. In Section 3, we start by considering two specific cases
where the exact value of the Ramsey function is easily obtained. First, for a group G, the

I. Jecker 44:3

Ramsey function is polynomial with respect to the size: RG(k) = k|G|. Second, we call max
monoid Hn the set {1, 2, . . . , n} equipped with the max operation, and we show that here
the Ramsey function is exponential with respect to the size: RHn

(k) = kn. The later result
implies that kn is a lower bound for the Ramsey function of every monoid M that has Hn as
a submonoid. We prove a related upper bound: We define the regular D-length L(M) of M

as the size of the largest max monoid HL(M) embedded in M , and show the following:

▶ Theorem 1. Every monoid M of regular D-length L satisfies kL ≤ RM (k) ≤ (k|M |4)L.

Stated differently: every word u ∈ M∗ of length (k|M |4)L contains k consecutive non-empty
factors corresponding to the same idempotent element of M , and, conversely, there exists
a word uM ∈ M∗ of length kL − 1 that does not contain k consecutive non-empty factors
corresponding to the same idempotent element. Note that while the gap between the lower
and upper bound is still wide, this shows that the degree of the Ramsey function RM is
determined by the regular D-length of M .

1.3 Regular D-length
Theorem 1 states that the degree of the Ramsey function of a monoid M is determined by
the regular D-length of M , which is the size of the largest max monoid embedded in M . We
now show that for transformation monoids and relation monoids, the regular D-length is
exponentially shorter than the size. Let us begin by mentioning an equivalent definition of
the regular D-length in terms of Green’s relations. While this alternative definition is not
used in the proofs presented in this paper, it allows us to immediately obtain the regular
D-length of monoids whose Green’s relations are known.

Alternative definition. The regular D-length of a monoid M is the size of its largest chain
of regular D-classes. A D-class of M is an equivalence class of the preorder ≤D defined by
m ≤D m′ if m = s · m′ · t for some s, t ∈ M , and it is called regular if it contains at least one
idempotent element (see [11] for more details). The equivalence between both definitions is
proved in the full version.

Computing the regular D-length. The following table compares the size and the regular
D-length of the monoids mentioned earlier. The entries corresponding to the sizes are
considered to be general knowledge. We detail below the row listing the regular D-lengths.

Monoid G Hn Tn Bn

Size |G| n (n + 1)n 2(n2)

Regular D-length 1 n n + 1 n2+n+2
2

First, every group G contains a single idempotent element (the neutral element), hence its
regular D-length is 1. Then, using the definition of the regular D-length in terms of embedded
max monoid, we immediately obtain that L(Hn) is equal to n. We get the next entry using
the definition of the regular D-length in terms of chain of D-classes: The transformation
monoid Tn is composed of a single chain of n + 1 D-classes that are all regular [3], hence its
regular D-length is n + 1.

Finally, for the relation monoid Bn, the situation is not as clear: the D-classes do not form
a single chain, and some of them are not regular. Determining the exact size of the largest
chain of D-classes (note the absence of “regular”) is still an open question, yet it is known

STACS 2021

44:4 A Ramsey Theorem for Finite Monoids

to grow exponentially with respect to n: a chain of D-classes whose size is the Fibonacci
number Fn+3 − 1 is constructed in [2], and, conversely, the upper bound 2n−1 + n − 1 is
proved in [6] (and slightly improved in [7, 17, 5]). Our second main result is that, as long as
we only consider chains of regular D-classes, we can obtain the precise value of the maximal
length, and, somewhat surprisingly, it is only quadratic in n:

▶ Theorem 2. The regular D-length of the monoid of n × n Boolean matrices is n2+n+2
2 .

Therefore, the regular D-length of a transformation monoid is exponentially smaller than
its size, and the regular D-length of a relation monoid is even exponentially smaller than
its largest chain of D-classes. For such kind of monoids, Theorem 1 performs considerably
better than previously known methods to find idempotent factors. For instance, it was used
in [10] to close the complexity gap left in [1] for the problem of deciding whether the function
defined by a given two-way word transducer is definable by a one-way transducer.

2 Definitions and notations

We define in this section the notions that are used throughout the paper. We denote by N
the set {0, 1, 2, . . .}, and for all i ≤ j ∈ N we denote by [i, j] the interval {i, i + 1, . . . , j}.

Monoids. A (finite) semigroup (S, ·) is a finite set S equipped with a binary operation
· : S×S → S that is associative: (s1 ·s2)·s3 = s1 ·(s2 ·s3) for every s1, s2, s3 ∈ S. A monoid is
a semigroup (M, ·) that contains a neutral element 1M : m · 1M = m = 1M · m for all m ∈ M.

A group is a monoid (G, ·) in which every element g ∈ G has an inverse element g−1 ∈ G:
g · g−1 = 1G = g−1 · g. We always denote the semigroup operation with the symbol ·. As a
consequence, we identify a semigroup (S, ·) with its set of elements S.

An element e of a semigroup S is called idempotent if it satisfies e · e = e. Note that
whereas a finite semigroup does not necessarily contain a neutral element, it always contains
at least one idempotent element: iterating any element s ∈ S eventually yields an idempotent
element, called the idempotent power of s, and denoted s# ∈ S.

A homomorphism between two monoids M and M ′ is a function φ : M → M ′ preserving
the monoid structure: φ(m1·m2) = φ(m1)·φ(m2) for all m1, m2 ∈ M and φ(1M) = φ(1M ′). A
monomorphism is an injective homomorphism, an isomorphism is a bijective homomorphism.

Ramsey decomposition. Let M be a monoid. A word over M is a finite sequence u =
m1m2 . . . mn ∈ M∗ of elements of M . The length of u is its number of symbols |u| = n ∈ N.
We enumerate the positions between the letters of u starting from 0 before the first letter,
until |u| after the last letter. A factor of u is a subsequence of u composed of the letters
between two such positions i and j: u[i, j] = mi+1mi+2 . . . mj ∈ M∗ for some 0 ≤ i ≤ j ≤ |u|
(where u[i, j] = ε if i = j). We denote by π(u) the element 1M · m1 · m2 · . . . · mn ∈ M ,
and we say that u reduces to π(u). For every integer k ∈ N, a k-decomposition of u is a
decomposition of u in k + 2 factors such that the k middle ones are non-empty:

u = xy1y2 . . . ykz, where x, z ∈ M∗, and yi ∈ M+ for every 1 ≤ i ≤ k.

A k-decomposition is called Ramsey if all the middle factors y1, y2, . . . , yk reduce to the same
idempotent element e ∈ M . For instance, a word has a Ramsey 1-decomposition if and
only if it contains a factor that reduces to an idempotent element. The Ramsey function
RM : N → N associated to M is the function mapping each k ∈ N to the minimal RM (k) ∈ N
such that every word u ∈ M∗ of length RM (k) has a Ramsey k-decomposition.

I. Jecker 44:5

3 Ramsey decompositions

In this section, we bound the Ramsey function RM associated to a monoid M . As a first step
we consider two basic cases for which the exact value of the Ramsey function is obtained: in
Subsection 3.1 we show that every group G satisfies RG(k) = k|G|, and in Subsection 3.2 we
show that every max monoid Hn (obtained by equipping the first n positive integers with
the max operation) satisfies RHn(k) = kn. Finally, in Subsection 3.3, we prove bounds in the
general case by studying the submonoids of M isomorphic to a max monoid.

3.1 Group: prefix sequence algorithm
We show that in a group, the Ramsey function is polynomial with respect to the size.

▶ Proposition 3. For every group G, RG(k) = k|G| for all k ∈ N.

We fix for this subsection a group G and k ∈ N. We begin by proving an auxiliary lemma,
which we then apply to prove matching bounds for RG(k): First, we define an algorithm that
extracts a Ramsey k-decomposition out of every word of length k|G|. Then, we present the
construction of a witness uG ∈ G∗ of length k|G| − 1 that has no Ramsey k-decompositions.

Key lemma. In a group, the presence of inverse elements allows us to establish a corres-
pondence between the factors of a word u ∈ G∗ that reduce to the neutral element, and the
pairs of prefixes of u that both reduce to the same element.

▶ Lemma 4. Two prefixes u[0, i] and u[0, j] of a word u ∈ G∗ reduce to the same element if
and only if u[i, j] reduces to the neutral element of G.

Proof. Let u ∈ G∗ be a word. The statement is a direct consequence of the fact that for
every 0 ≤ i ≤ j ≤ |u|, π(u[0, i]) · π(u[i, j]) = π(u[0, j]): If π(u[0, i]) = π(u[0, j]), then

π(u[i, j]) = π(u[0, i])−1 · π(u[0, j]) = π(u[0, i])−1 · π(u[0, i]) = 1G .

Conversely, if π(u[i, j]) = 1G , then

π(u[0, i]) = π(u[0, i]) · 1G = π(u[0, i]) · π(u[i, j]) = π(u[0, j]). ◀

Algorithm. We define an algorithm constructing Ramsey k-decompositions.

Alg1: Start with u ∈ G∗ of length k|G|;
a. Compute the k|G| + 1 prefixes π(u[0, 0]), π(u[0, 1]), . . . , π(u[0, |u|]) of u;
b. Find k + 1 indices i0, i1, . . . , ik such that all the π(u[0, ij]) are equal;
c. Return the Ramsey k-decomposition u = u[i0, i1]u[i1, i2] . . . u[ik−1, ik].

Since Lemma 4 ensures that every pair of elements ij , ij+1 identified at step 2 satisfies
π(u[ij , ij+1]) = 1G , we are guaranteed that the returned k-decomposition is Ramsey.

Witness. We build a word uG ∈ G∗ of length k|G| − 1 that has no Ramsey k-decompositions.
Let v = a1a2 . . . ak|G| ∈ G∗ be a word of length k|G|, starting with the letter 1G , and containing
exactly k times each element of G. For instance, given an enumeration g1, g2, . . . , g|G|
of the elements of G starting with g1 = 1G , we can simply pick v = gk

1 gk
2 . . . gk

|G|. Now
let uG = b1b2 . . . bk|G|−1 be the word whose sequence of reduced prefixes is v: for every
1 ≤ i ≤ k|G| − 1, the letter bi is equal to a−1

i · ai+1. Then for every k-decomposition of uG , at
least one of the factors do not reduce to the neutral element of G, since otherwise Lemma 4
would imply the existence of k + 1 identical letters in v, which is not possible by construction.
As a consequence, uG has no Ramsey k-decompositions.

STACS 2021

44:6 A Ramsey Theorem for Finite Monoids

3.2 Max monoid: divide and conquer algorithm
Given an integer n ∈ N, the max monoid, denoted Hn, is the monoid over the set {1, 2, . . . , n}
with the associative operation i · j = max(i, j). Whereas in a group only the neutral element
is idempotent, each element i of the max monoid Hn is idempotent since max(i, i) = i. As a
result of this abundance of idempotent elements, an exponential bound is required to ensure
the presence of consecutive factors reducing to the same idempotent element.
▶ Proposition 5. For every max monoid Hn, RHn(k) = kn for all k ∈ N.
The proof is done in two steps: we first define an algorithm that extracts a Ramsey k-
decomposition out of every word of length kn, and then we present the construction of a
witness un of length kn − 1 that has no Ramsey k-decompositions.

Algorithm. We define an algorithm that extracts a Ramsey k-decompositions out of each
word u ∈ H∗

n of length kn. It is a basic divide and conquer algorithm: we divide the
initial word u into k equal parts. If each of the k parts reduces to n, they form a Ramsey
k-decomposition since n is an idempotent element. Otherwise, one part does not contain the
maximal element n ∈ Hn, and we start over with it. Formally,

Alg2: Start with u ∈ H∗
n of length kn, initialize j to n. While j > 0, repeat the following:

a. Split u into k factors u1, u2, . . . , uk of length kj−1;
b. If every ui contains the letter j, return the Ramsey k-decomposition u = u1u2 . . . uk;
c. If ui does not contain j for some 1 ≤ i ≤ j, decrement j by 1 and set u := ui ∈ H∗

j−1.

The algorithm is guaranteed to eventually return a Ramsey k-decomposition: if the nth cycle
of the algorithm is reached, it starts with a word of length k whose letters are in the monoid
H1, which only contains the letter 1, hence the algorithm will go to step b.

Witness. We construct an infinite sequence of words u1, u2, . . . ∈ N∗ such that for all n ∈ N,
(a) un ∈ Hn satisfies |un| = kn − 1 and
(b) un has no Ramsey k-decompositions.
Let

u1 = 1k−1 ∈ H∗
1 ,

un = (un−1n)k−1un−1 ∈ H∗
n for every n > 1.

For every n > 1, the word un is defined as k copies of un−1 separated by the letter n.
We prove by induction that the two conditions are satisfied by each word of the sequence.
The base case is immediate: the word u1 has length k − 1, and as a consequence has no
decomposition into k nonempty factors. Now suppose that n > 1, and that un−1 satisfies
the two properties. Then un has the required length:

|un| = (k − 1)(|un−1| + 1) + |un−1| = (k − 1)kn−1 + kn−1 − 1 = kn − 1.

To conclude, we show that every k-decomposition

un = xy1y2 . . . ykz, with yi ∈ H+
n for all 1 ≤ i ≤ k (1)

is not Ramsey. Let y be the factor y1y2 . . . yk of un, and consider the two following cases:
If π(y) ̸= n, none of the yi contains the letter n, hence y is factor of one of the factors
un−1 of un. Therefore, by the induction hypothesis, Decomposition (1) is not Ramsey.
If π(y) = n, since un contains only k − 1 copies of the letter n, one of the factors yi does
not contain n for 1 ≤ i ≤ k. Then π(y) ̸= π(yi), hence Decomposition (1) is not Ramsey.

▶ Example 6. Here are the first three words of the sequence in the cases k = 2 and k = 3:
k = 2 : u1 = 1 u2 = 121 u3 = 1213121,

k = 3 : u1 = 11 u2 = 11211211 u3 = 11211211311211211311211211.

I. Jecker 44:7

3.3 General setting
We saw in the previous subsection that for the max monoid Hn, words of length exponential
with respect to n are required to guarantee the presence of Ramsey decompositions (Proposi-
tion 5). Note that the same lower bound applies to every monoid M that contains a copy
of Hn as submonoid. We now show that we can also obtain an upper bound for RM (k) by
studying the submonoids of M isomorphic to a max monoid. We formalise this idea through
the notion of regular D-length of a monoid.

Regular D-length. The regular D-length of a monoid M , denoted L(M), is the size of the
largest max monoid embedded in M . Formally, it is the largest ℓ ∈ N such that there exists
a monomorphism (i.e. injective monoid homomorphism) φ : Hℓ → M . We now present the
main theorem of this section, which states that for every monoid M , the degree of RM (k) is
determined by the regular D-length of M .

▶ Theorem 1. Every monoid M of regular D-length L satisfies kL ≤ RM (k) ≤ (k|M |4)L.

Let us fix for the whole subsection a monoid M of regular D-length L(M) and an integer
k ∈ N. The lower bound is a corollary of Proposition 5: the max monoid HL(M) has a
witness uL(M) of length kL(M) − 1 that has no Ramsey k-decompositions (its construction
is presented in the previous subsection). Then, by definition of the regular D-length, there
exists a monomorphism φ : HL(M) → M , and applying φ to uL(M) letter by letter yields a
witness u′

L(M) ∈ M∗ of length kL(M) − 1 that has no Ramsey k-decompositions.
The rest of the subsection is devoted to the proof of the upper bound. We begin by

defining an auxiliary algorithm that extracts from each long enough word a decomposition
where the prefix and suffix absorb the middle factors. Then, we define our main algorithm
which, on input u ∈ M∗ of length (k|M |4)n for some n ∈ N, either returns a Ramsey
k-decomposition of u, or a copy of the max monoid Hn+1 embedded in M . In particular,
if n is equal to the regular D-length L(M) of M , we are guaranteed to obtain a Ramsey
k-decomposition.

Auxiliary algorithm. We define an algorithm which, on input u ∈ M∗ of length k|M |2,
returns a k-decomposition

u = xy1y2 . . . ykz, where x, z ∈ M∗, and yi ∈ S+ for every 1 ≤ i ≤ k

such that for every 1 ≤ i ≤ k, both x and z are able to absorb the factor yi: π(xyi) = π(x)
and π(yiz) = π(z). This is done as follows: since u is a word of length k|M |2, it can be split
into k|M |2 + 1 distinct prefix-suffix pairs. Then k + 1 of these pairs reduce to the same pair
of elements of M , which immediately yields the desired decomposition. Formally,

Alg3: Start with u ∈ M∗ of length k|M |2;

1. a. Compute the k|M |2 + 1 prefixes π(u[0, 0]), π(u[0, 1]), . . . , π(u[0, |u|]) ∈ M of u,
b. Compute the k|M |2 + 1 suffixes π(u[0, |u|]), π(u[1, |u|]), . . . , π(u[|u|, |u|]) ∈ M of u,
c. Identify k + 1 indices s0, s1, . . . , sk such that

(1) all the π(u[0, si]) are equal,
(2) all the π(u[si, |u|]) are equal;

2. Set x = u[0, s0], z = u[sk, |u|], and yi = u[si−1, si] for every 1 ≤ i ≤ k;

3. Return the k-decomposition xy1y2 . . . ykz of u.

STACS 2021

44:8 A Ramsey Theorem for Finite Monoids

Main algorithm. We define an algorithm extracting Ramsey k-decompositions. Over an
input u ∈ M∗ of length (k|M |4)n for n ∈ N, the algorithm works by defining gradually
shorter words un, un−1, . . . ∈ M∗, where each uj has length (k|M |4)j , along with a sequence
of idempotent elements en+1, en, . . . ∈ M . Starting with un = u, we define en+1 as the
idempotent power of some well chosen factors of un. We then consider k consecutive factors
of un. If all of them reduce to en+1, they form a Ramsey k-decomposition, and we are done.
Otherwise, we pick a factor un−1 that does not reduce to en+1, and we start over. This
continues until either a Ramsey k-decomposition is found, or n cycles are completed. In
the later case, we show that the function φ : Hn+1 → M mapping i to ei is a monomorphism.

Alg4: Start with u ∈ M∗ of length (k|M |4)n. Initialize un to u and j to n.

While j > 0, repeat the following:
1. a. Call Alg3 to get an m-decomposition uj = xy1y2 . . . ymz, where m = kj |M |4j−2;

b. Set v := π(y1)π(y2) . . . π(ym) ∈ M∗;
2. a. Call Alg3 to get an m′-decomposition v = x′y′

1y′
2 . . . y′

m′z′, where m′ = kj |M |4j−4;
b. Set w := π(y′

1)π(y′
2) . . . π(y′

m′) ∈ M∗, and set ej+1 := (π(z′x′))#;
3. a. Split w into k factors y′′

1 , y′′
2 , . . . , y′′

k of length (k|M |4)j−1;
b. If every y′′

i satisfies π(yi) = ej+1, then w = y′′
1 y′′

2 . . . y′′
k is a Ramsey decomposition.

Return the corresponding Ramsey k-decomposition of u;
c. If π(y′′

i) ̸= ej+1 for some 1 ≤ i ≤ n, set uj−1 := y′′
i , and decrement j by 1.

Set e1 = 1M , and return the idempotent elements e1, e2, . . . , en+1 ∈ M .

Step 1. We use the auxiliary algorithm to obtain a decomposition uj = xy1y2 . . . ymz, and
we build v by concatenating the reductions of the yi. Since both x and z absorb each yi,
and in step 2b we define ej+1 as the idempotent power of reduced factors of v:

The word uj , its prefix x and its suffix z satisfy π(uj) = π(xz) = π(x) ·ej+1 ·π(z). (1)

Step 2. We use the auxiliary algorithm to get a decomposition u′ = x′y′
1y′

2 . . . y′
m′z′, we

build w by concatenating the reductions of the y′
i, and we set ej+1 as the idempotent

power of π(z′x′). As both x′ and z′ absorb each y′
i, and in step 3c we define uj−1 as a

factor of w:

For every factor y of uj−1, ej+1 · π(y) = ej+1 = π(y) · ej+1. (2)

Step 3. We divide w into k factors of equal length. If each of them reduces to ej+1, they
form a Ramsey k-decomposition of w. As w is obtained form u by iteratively reducing
factors and dropping prefixes and suffixes, this decomposition can be transferred back to
a Ramsey k-decomposition of u = un. If one factor does not reduce to ej+1, we assign its
value to uj−1. Therefore:

The word uj−1 does not reduce to ej+1. (3)

Proof of correctness. To prove that the algorithm behaves as intended, we show that
if it completes n cycles without returning a Ramsey k-decomposition, then the function
φ : Hn+1 → M defined by φ(j) = ej is a monomorphism. Since ej is the idempotent power of
reduced factors of uj−1 for all 1 ≤ j ≤ n, Equation (2) yield that ej+1 · ej = ej+1 = ej · ej+1.

I. Jecker 44:9

Therefore φ is a homomorphism. We conclude by showing that it is injective. Suppose,
towards building a contradiction, that φ(j) = ej = ei = φ(i) for some 1 ≤ j < i ≤ n. Since
φ is a homomorphism, all the intermediate elements collapse: in particular ej = ej+1. Then

π(uj−1) =
(1)

π(x) · ej · π(z) = π(x) · ej+1 · π(z) =
(2)

ej+1,

which cannot hold by Equation (3).

4 Regular D-length of the monoid of Boolean matrices

A Boolean matrix is a matrix A whose components are Boolean elements: Aij ∈ {0, 1}. The
(full) Boolean matrix monoid Bn is the set of all n × n Boolean matrices, equipped with the
matrix composition defined as follows: (A · B)ik = 1 if and only if there exists j ∈ [1, n]
satisfying Aij = Bjk = 1. This fits the standard matrix multiplication if we consider that
1 + 1 = 1: addition of Boolean elements is the OR operation, and multiplication is the AND
operation. The main contribution of this section is the following theorem.

▶ Theorem 2. The regular D-length of the monoid of n × n Boolean matrices is n2+n+2
2 .

The proof is split in two parts. We prove the upper bound by studying the structure of the
idempotent elements of Bn (Subsection 4.1). Then, we prove the lower bound by constructing
a monomorphism from the max monoid of size n2+n+2

2 into Bn (Subsection 4.2). We begin
by introducing definitions tailored to help us in the following demonstrations.

Stable matrix. A Boolean matrix A ∈ Bn is called stable if for each component Aik equal
to 1, there exists j ∈ [1, n] satisfying Aij = Ajj = Ajk = 1. Idempotent matrices are stable
(see the full version).

Positive set. A (maximal) positive set of an idempotent matrix A ∈ Bn is a maximal set
I ⊆ [1, n] such that all the corresponding components of A are 1: Aij = 1 for all i, j ∈ I, and
for every k ∈ [1, n] \ I, there exists i ∈ I such that Aik = 0 or Aki = 0. The positive sets of
an idempotent matrix are disjoint (see the full version), hence A has at most n positive sets.

Free pair. For each idempotent matrix A ∈ Bn we define the relation �A on [1, n] as follows:
given i, j ∈ [1, n], we have i �A j if for all i2, j2 ∈ [1, n], Ai2i = 1 = Ajj2 implies Ai2j2 = 1.
A free pair of A is a set of two distinct elements i, j ∈ [1, n] incomparable by �A: i ̸�A j and
j ̸�A i. Note that A has at most n(n−1)

2 free pairs (all sets of two distinct elements in [1, n]).
Let us state some observations concerning �A that follow immediately from the definition
(see the full version for the proofs). First, as A is idempotent, �A is reflexive. However, it
might not be transitive. Moreover, for every component Aij of A equal to 1, we have that
i �A j. The converse implication is not true, as shown by the following example. Finally, for
every i ∈ [1, n], if the ith row contains no 1, i.e., Aik = 0 for all k ∈ [1, n], then i �A j for
every j ∈ [1, n]. Conversely, if the ith column contains no 1, then j �A i for every j ∈ [1, n].

▶ Example 7. We depict below a submonoid of B4 generated by two matrices A and B. The
six elements of this submonoid, including the identity matrix D ∈ Bn, are all idempotent.
Under each matrix, we list its positive sets. We then compute the corresponding free pairs.

STACS 2021

44:10 A Ramsey Theorem for Finite Monoids

D

{1}, {2}, {3}, {4}
A

{1, 3}, {2, 4}
B

{1}, {4}
A · B

{1, 3}, {4}
B · A

{1}, {2, 4}
A · B · A

{1, 3}, {2, 4}

Every pair is free in D since the relation �D is the identity: given two distinct elements
i, j ∈ [1, n], we have Dii = 1 = Djj , yet Dij = 0, hence i ̸�D j. On the contrary, the four
matrices B, A · B, B · A and A · B · A has no free pairs: the relation �B only lacks (4, 1),
�A·B only lacks (4, 1) and (4, 3), �B·A only lacks (2, 1) and (4, 1), �A·B·A only lacks (2, 1),
(4, 1) and (4, 3). Finally, for A, the relation �A is the union of the identity and the four pairs
{(1, 3), (3, 1), (2, 4), (4, 2)}, which yields the free pairs {1, 2}, {1, 4}, {2, 3} and {3, 4}.

4.1 Upper bound
To prove the upper bound of Theorem 2, we show that every monomorphism φ : Hm → Bn

satisfies m ≤ n2+n+2
2 . To this end, we study the sequence of matrices sφ = A1, A2, . . . , Am

obtained by listing the elements φ(i) = Ai of the image of φ. Note that all the elements of
sφ are distinct as φ is injective, and Ai · Ai+1 = Ai+1 = Ai+1 · Ai for all 1 ≤ i < m as φ is
a homomorphism. We introduce three lemmas that imply interesting properties of every
pair Ai, Ai+1 of successive matrices of sφ. First, Lemma 8 shows that every positive set of
Ai+1 contains a positive set of Ai. Therefore, since positive sets are disjoint, the number of
positive sets can never increase along sφ. Second, Lemma 9 shows that every free pair of
Ai+1 is also a free pair of Ai. As a consequence, the number of free pairs can never increase
along sφ. Finally, Lemma 10 shows that either the number of positive sets or free pairs
differs between Ai and Ai+1, as otherwise these two matrices would be equal.

Combining the three lemmas yields that between each pair of successive matrices of sφ,
neither the number of positive sets nor the number of free pairs increases, and at least one
decreases. This immediately implies the desired upper bound: as the number of positive sets
of matrices of Bn ranges from 0 to n and the number of free pairs ranges from 0 to n(n−1)

2 ,
sφ contains at most n + n(n−1)

2 + 1 = n2+n+2
2 matrices. To conclude, we now proceed with

the formal statements and the proofs of the three lemmas.

▶ Lemma 8. Let A and B be two idempotent matrices of Bn satisfying A · B = B = B · A.
Then every positive set of B contains a positive set of A.

Proof. Let us pick two idempotent matrices A, B ∈ Bn satisfying A · B = B = B · A. If B

has no positive sets, the statement is trivially satisfied. Now let us suppose that B has at
least one positive set I ⊆ [1, n]. We show the existence of a positive set J ⊆ I of A.

Since I is not empty by definition, it contains an element i, and Bii = 1. Then, as
B = B · A, there exists k ∈ [1, n] satisfying Bik = Aki = 1. Moreover, as A is stable, there
exists j ∈ [1, n] satisfying Akj = Ajj = Aji = 1. In particular, Ajj = 1, hence A has a
positive set J containing j. Then, for every i2 ∈ I and every j2, j3 ∈ J , we obtain

Bj2i2 = (A · A · B)j2i2 = 1 since Aj2j = Aji = Bii2 = 1,

Bi2j3 = (B · B · A · A)i2j3 = 1 since Bi2i = Bik = Akj = Ajj3 = 1,

Bj2j3 = (B · B)j2j3 = 1 since Bj2i2 = Bi2j3 = 1.

As a consequence, J is a subset of I since positive sets are maximal by definition. ◀

▶ Lemma 9. Let A and B be two idempotent matrices of Bn satisfying A · B = B = B · A.
Then every free pair of B is a free pair of A.

I. Jecker 44:11

Proof. Let us pick two idempotent matrices A, B ∈ Bn satisfying A · B = B = B · A. We
prove the lemma by contraposition: we show that for every pair of elements i, j ∈ [1, n],
i �A j implies i �B j (hence if i and j are incomparable by �B , so are they by �A).

Let us pick i, j ∈ [1, n] satisfying i �A j, and i2, j2 ∈ [1, n] satisfying Bi2i = 1 = Bjj2 . To
conclude, we show that Bi2j2 = 1. To this end, we introduce two new elements i1, j1 ∈ [1, n]:
First, as (B · A)i2i = Bi2i = 1, there exists i1 ∈ [1, n] such that Bi2i1 = 1 and Ai1i = 1;
Second, as (A · B)jj2 = Bjj2 = 1, there exists j1 ∈ [1, n] such that Ajj1 = 1 and Bj1j2 = 1.
Then, as i �A j by supposition, we get that Ai1j1 = 1, which implies

Bi2j2 = (B · A · B)i2j2 = 1, since Bi2i1 = Ai1j1 = Bj1j2 = 1.

Since this holds for every i2, j2 ∈ [1, n] satisfying Bi2i = 1 = Bjj2 , we obtain that i �B j. ◀

▶ Lemma 10. Let A and B be two idempotent matrices of Bn satisfying A · B = B = B · A.
If A and B have the same number of positive sets and free pairs, then they are equal.

Proof. Let us pick two idempotent elements A, B ∈ Bn such that A ·B = B = B ·A. Suppose
that A and B have the same number of positive sets. By Lemma 8, each positive set of B

contains at least one positive set of A. Since the positive sets of B are disjoint, the pigeonhole
principle yields the two following claims.

▷ Claim 1. Each positive set of A is contained in a positive set of B.

▷ Claim 2. Each positive set of B contains exactly one positive set of A.

Moreover, suppose that A and B have the same number of free pairs. By Lemma 9 every
free pair of B is a free pair of A. This yields the following claim.

▷ Claim 3. The free pairs of A and B are identical.

We now prove that A = B. First, we show that for every component Aik equal to 1, the
corresponding component Bik is also equal to 1. Since A is stable, there exists j ∈ [1, n]
satisfying Aij = Ajj = Ajk = 1. Then j is contained in a positive set of A, which is itself
contained in a positive set of B by Claim 1. Therefore we obtain that Bjj = 1, which yields

Bik = (A · B · A)ik = 1, since Aij = Bjj = Ajk = 1.

To conclude, we show that for every component Bij equal to 1, the corresponding
component Aij is also equal to 1. To this end, we introduce four new elements i1, i2, j1, j2 in
[1, n]: First, as (A · B · A)ij = Bij = 1, there exist i2, j2 ∈ [1, n] such that Aii2 = Bi2j2 =
Aj2j = 1. Second, as A is stable, there exist i1, j1 ∈ [1, n] such that Aii1 = Ai1i1 = Ai1i2 = 1
and Aj2j1 = Aj1j1 = Aj1j = 1. These definitions ensure that

Bi1j1 = (A · B · A)i1j1 = 1, since Ai1i2 = Bi2j2 = Aj2j1 = 1.

Note that, as observed after the definition of the relation induced by an idempotent matrix,
this implies that i1 �B j1. We derive from this that either i1 �A j1 or j1 �A i1: if i1 = j1
this follows from the fact that �A is reflexive, and if i1 ̸= j1 this follows from Claim 3. We
show that both possibilities lead to Aij = 1.

If i1 �A j1, then we obtain Ai1j1 = 1 as Ai1i1 = 1 = Aj1j1 . Therefore,

Aij = (A · A · A)ij = 1 since Aii1 = Ai1j1 = Aj1j = 1.

STACS 2021

44:12 A Ramsey Theorem for Finite Monoids

If j1 �A i1, then we obtain Aj1i1 = 1 as Aj1j1 = 1 = Ai1i1 . Therefore,

Bj1i1 = (A · B · A)j1i1 = 1 since Aj1i1 = Bi1j1 = Aj1i1 = 1.

As a consequence, i1 and j1 are in the same positive set of B. Moreover, as Ai1i1 =
Aj1j1 = 1, both i1 and j1 are elements of positive sets of A. Combining these two
statements with Claim 2 yields that i1 and j1 are in the same positive set of A. Therefore
Ai1j1 = 1, which implies that i1 �A j1, and we can conclude as in the previous point.

Since we successfully showed that every 1 of A corresponds to a 1 of B, and reciprocally, we
obtain that A = B, which proves the statement. ◀

4.2 Lower bound
We construct a monomorphism φ between the max monoid Hf(n), where f(n) = n2+n+2

2 ,
and the monoid of Boolean matrices Bn. The construction is split in two steps. First, we
define φ over the domain [1, g(n)+1], where g(n) = n(n−1)

2 is the number of pairs of elements
i < j in [1, n]. Then, we complete the definition over the domain [g(n) + 1, f(n)].

Diagonal to triangular. Let us define φ over [1, g(n) + 1]. We map the neutral element 1 ∈
Hf(n) to the neutral element Dn ∈ Bn: the identity matrix. Then, we map g(n) + 1 ∈ Hf(n)
to the full upper triangular matrix Un ∈ Bn. Note that Un contains g(n) more 1’s than Dn

does. We define the images of the elements between 1 and g(n)+1 by gradually adding to Dn

the 1’s of Un it lacks. Formally, we order the indices corresponding to the components above
the diagonal p1 < p2 < . . . < pg(n) ∈ [1, n] × [1, n] according to the lexicographic order: (i, j)
comes before (i′, j′) if either i < i′, or i = i′ and j < j′. Then, for every m ∈ [1, g(n) + 1],
we construct the image φ(m) ∈ Bn as follows:

Every component (φ(m))ii of the diagonal is 1;
Every component (φ(m))ij below the diagonal is 0;
Every component (φ(m))ij above the diagonal is 1 if (i, j) < pm, and 0 otherwise.

Triangular to empty. Let us define φ over [g(n) + 1, f(n)]. To fit the first part of the
definition, we map g(n) + 1 ∈ Hf(n) to the upper diagonal matrix Un ∈ Bn. Then, we map
the absorbing element f(n) = g(n) + 1 + n ∈ Hf(n) to the absorbing element 0n ∈ Bn: the
null matrix. Finally, for m ∈ [0, n], we construct φ(g(n) + 1 + m) by replacing the last m

rows of Un with 0’s. Formally, we have:
Every component (φ(g(n) + 1 + m))ij is 1 if i ≤ j and i ≤ n − m, and 0 otherwise.

Proof of correctness. We prove that the function φ just defined is a monomorphism.
We show that φ is a homomorphism: φ(m)·φ(m′) = φ(m′) = φ(m′)·φ(m) for all 1 ≤ m ≤

m′ ≤ f(n). First, note that if (φ(m′))ij = 1, then (φ(m) · φ(m′))ij = (φ(m′) · φ(m))ij = 1:
if m ≤ g(n) + 1, this follows from the fact that the diagonal of φ(m) is filled with 1’s, and if
m > g(n)+1, since m ≤ m′ we obtain that (φ(m))ii = (φ(m′))ij = 1 = (φ(m′))ii = (φ(m))ij .
It remains to show that if (φ(m) · φ(m′))ik = 1 or (φ(m′) · φ(m))ik = 1, then (φ(m′))ik = 1.
If m′ ≤ g(n) + 1, this holds since for every triple i ≤ j ≤ k ∈ [1, n], the pair (i, k) is
lexicographically smaller than or equal to (j, k). If m′ > g(n) + 1, this holds since for every
triple i ≤ j ≤ k ∈ [1, n], trivially i is smaller than or equal to both i and j.

We conclude by showing that φ is injective: between φ(1) and φ(g(n) + 1) a new 1 is
added at each step, and between φ(g(n) + 1) and φ(f(n)) we remove at each step a 1 of the
diagonal that was present in all the previous images.

I. Jecker 44:13

▶ Example 11. We depict the monomorphism φ : Hf(n) → Bn in the case n = 4 by listing
the f(4) = 11 elements of its image in B4. Under each element, we state its number of
positive sets followed by its number of free pairs.

(4, 6) (4, 5) (4, 4) (4, 3) (4, 2) (4, 1) (4, 0) (3, 0) (2, 0) (1, 0) (0, 0)

Starting with the identity matrix D4, we gradually add 1’s, reaching the triangular matrix
U4 in g(4) = 6 steps. Then, we erase line after line, reaching the null matrix 04 in 4 steps.

References
1 Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis. One-way definability

of two-way word transducers. Logical Methods in Computer Science, 14, 2018. doi:10.23638/
LMCS-14(4:22)2018.

2 Michael Breen. A maximal chain of principal ideals in the semigroup of binary relations on a
finite set. In Semigroup Forum, volume 43, pages 63–76. Springer, 1991.

3 Olexandr Ganyushkin and Volodymyr Mazorchuk. Classical finite transformation semigroups:
an introduction, volume 9. Springer Science & Business Media, 2008.

4 T. E. Hall and Mark V. Sapir. Idempotents, regular elements and sequences from finite
semigroups. Discrete Mathematics, 161:151–160, 1996. doi:10.1016/0012-365X(95)00223-J.

5 Shaofang Hong. Distribution of cardinalities of row spaces of boolean matrices of order n.
Southeast Asian Bulletin of Mathematics, 24:51–64, 2000.

6 Janusz Konieczny. On cardinalities of row spaces of boolean matrices. In Semigroup Forum,
volume 44, pages 393–402. Springer, 1992.

7 Wen Li and Mou-Cheng Zhang. On konieczny’s conjecture of boolean matrices. In Semigroup
Forum, volume 50, pages 37–58. Springer, 1995.

8 Filip Mazowiecki and Cristian Riveros. Pumping lemmas for weighted automata. In Rolf
Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Computer
Science, STACS 2018, volume 96 of LIPIcs, pages 50:1–50:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.50.

9 A. Mukherjea and R. Chaudhuri. Idempotent boolean matrices. Semigroup forum, 21:273–282,
1980. URL: http://eudml.org/doc/134452.

10 Anca Muscholl and Gabriele Puppis. The many facets of string transducers (invited talk). In
Rolf Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical
Aspects of Computer Science, STACS 2019, volume 126 of LIPIcs, pages 2:1–2:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.STACS.2019.2.

11 Jean-Éric Pin. Mathematical foundations of automata theory. Lecture notes LIAFA, Université
Paris, 7, 2010.

12 Michael O. Rabin and Dana S. Scott. Finite automata and their decision problems. IBM
Journal of Research and Development, 3:114–125, 1959. doi:10.1147/rd.32.0114.

13 F. P. Ramsey. On a problem of formal logic. Proceedings of the London Mathematical Society,
s2-30(1):264–286, 1930. doi:10.1112/plms/s2-30.1.264.

14 Marcel-Paul Schützenberger. Une théorie algébrique du codage. Séminaire Dubreil. Algebre et
théorie des nombres, 9:1–24, 1955.

15 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information
and Control, 8:190–194, 1965. doi:10.1016/S0019-9958(65)90108-7.

16 Imre Simon. Factorization forests of finite height. Theor. Comput. Sci., 72:65–94, 1990.
doi:10.1016/0304-3975(90)90047-L.

17 M-C Zhang, S-F Hong, and H-B Kan. On the cardinalities of the row spaces of non-full rank
boolean matrices. In Semigroup Forum, volume 59, pages 152–154. Springer, 1999.

STACS 2021

https://doi.org/10.23638/LMCS-14(4:22)2018
https://doi.org/10.23638/LMCS-14(4:22)2018
https://doi.org/10.1016/0012-365X(95)00223-J
https://doi.org/10.4230/LIPIcs.STACS.2018.50
http://eudml.org/doc/134452
https://doi.org/10.4230/LIPIcs.STACS.2019.2
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1112/plms/s2-30.1.264
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1016/0304-3975(90)90047-L

An Improved Sketching Algorithm for Edit Distance
Ce Jin ! Ï

MIT, Cambridge, MA, USA

Jelani Nelson ! Ï

University of California at Berkeley, CA, USA

Kewen Wu ! Ï

University of California at Berkeley, CA, USA

Abstract
We provide improved upper bounds for the simultaneous sketching complexity of edit distance.
Consider two parties, Alice with input x ∈ Σn and Bob with input y ∈ Σn, that share public
randomness and are given a promise that the edit distance ed(x, y) between their two strings is at
most some given value k. Alice must send a message sx and Bob must send sy to a third party
Charlie, who does not know the inputs but shares the same public randomness and also knows k.
Charlie must output ed(x, y) precisely as well as a sequence of ed(x, y) edits required to transform x

into y. The goal is to minimize the lengths |sx|, |sy| of the messages sent.
The protocol of Belazzougui and Zhang (FOCS 2016), building upon the random walk method

of Chakraborty, Goldenberg, and Koucký (STOC 2016), achieves a maximum message length of
Õ(k8) bits, where Õ(·) hides poly(log n) factors. In this work we build upon Belazzougui and
Zhang’s protocol and provide an improved analysis demonstrating that a slight modification of their
construction achieves a bound of Õ(k3).

2012 ACM Subject Classification Theory of computation → Sketching and sampling

Keywords and phrases edit distance, sketching

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.45

Related Version Full Version: https://arxiv.org/abs/2010.13170

Funding Ce Jin: Supported by Akamai Presidential Fellowship.
Jelani Nelson: Supported by NSF award CCF-1951384, ONR grant N00014-18-1-2562, ONR
DORECG award N00014-17-1-2127, an Alfred P. Sloan Research Fellowship, and a Google Faculty
Research Award.

Acknowledgements We thank Qin Zhang for answering several questions about [7]. C. J. thanks
Virginia Vassilevska Williams for several helpful discussions. We thank anonymous reviewers for
their helpful comments.

1 Introduction

The edit distance ed(x, y) between two strings is defined to be the minimum number of
character insertions, deletions, or substitutions required to transform x into y. It is one
of the most well-studied distance measures on strings, with applications in information
retrieval, natural language processing, and bioinformatics. If x, y are each at most length
n, the textbook Wagner-Fischer algorithm computes ed(x, y) exactly in O(n2) time, with
the only improvement since being by a log n factor due to Masek and Paterson [23]. It
has since been shown that an O(n2−ϵ) time algorithm does not exist for any constant
ϵ > 0 unless the Strong Exponential Time Hypothesis fails [5]. Since the work of [23],
several subsequent works have considered setups beyond offline exact algorithms for edit
distance, such as faster approximation algorithms [4, 2, 12, 11, 21, 3], metric embeddings
[26, 14, 19, 22], smoothed complexity [1, 9], quantum algorithms [8], sublinear time algorithms

© Ce Jin, Jelani Nelson, and Kewen Wu;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 45; pp. 45:1–45:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cejin@mit.edu
https://ce-jin.github.io/
https://orcid.org/0000-0001-5264-1772
mailto:minilek@berkeley.edu
http://people.eecs.berkeley.edu/~minilek
https://orcid.org/0000-0001-7370-3733
mailto:shlw_kevin@hotmail.com
https://shlw.github.io/
https://orcid.org/0000-0002-5894-822X
https://doi.org/10.4230/LIPIcs.STACS.2021.45
https://arxiv.org/abs/2010.13170
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 An Improved Sketching Algorithm for Edit Distance

for gap versions [6, 17, 10, 20], and communication complexity and sketching/streaming
[13, 7, 15, 18, 16]. In this work we focus on communication complexity, and specifically
simultaneous communication complexity.

In the communication model, Alice has input string x and Bob has y. They, or a third
party, would like to compute ed(x, y) as well as a minimum length sequence of edits for
transforming x into y. We consider the setting of shared public randomness amongst all
parties. The one-way setting in which Alice sends a single message to Bob, who must then
output ed(x, y), is known as the document exchange problem and has a long history. In
the promise version of the problem for which we are promised ed(x, y) ≤ k, Orlitsky [25]
gave a deterministic protocol in which Alice only sends O(k log(n/k)) bits in the case of
binary strings, which is optimal, with the downside that Bob’s running time to process her
message is exponential. Haeupler recently used public randomness to improve Bob’s running
time to polynomial with the same asymptotic message length, and it is now known that
a polynomial-time recovery algorithm is achievable deterministically if one increases the
message length to O(k log2(n/k)) [15, 18]. Belazzougui and Zhang [7] studied the harder
simultaneous communication model in which Alice and Bob each send messages to a third
party Charlie, who knows neither string but shares knowledge of the public randomness,
and Charlie must output ed(x, y) as well as the edits required to transform x into y. In this
model they gave a protocol in which each player sends O(k8 log5 n) = Õ(k8) bits.1

▶ Definition 1 (Problem Qn,k,δ). Alice and Bob and a referee share public randomness.
Alice (resp., Bob) gets a length-n input string x (resp., y) over alphabet Σ, and then sends
a “sketch” sx ∈ {0, 1}∗ (resp., sy) to the referee. We say the size of the sketch is maximum
length of strings sx and sy. After receiving the sketches sx and sy,

if ed(x, y) ≤ k, the referee needs to compute ed(x, y) as well as an optimal edit sequence
from x to y, with success probability at least 1− δ;
if ed(x, y) > k, the referee needs to report “error”, with success probability at least 1− δ.

Main contribution

We build upon and improve techniques developed in [7] to show that a very slight modification
of their protocol needs a sketch size of only Õ(k3) bits to solve problem Qn,k,δ. More precisely,
the bound is O(k3 log2(n/δ) log n) bits.2

1.1 Proof Overview
We provide a high-level description of the previous results [13, 7] that we build on, and then
briefly describe our new ideas.

CGK random walk

The previous sketching result [7] uses a random walk technique developed in [13]. Given
two input strings x, y of length n, we append them with infinitely many zeros and initialize
two pointers i = 1, j = 1. In each step t, we first append x[i] to Alice’s output tape (and
append y[j] to Bob’s output tape), and then increment i by rt(x[i]) ∈ {0, 1}, and increment
j by rt(y[j]) ∈ {0, 1}, where rt : Σ→ {0, 1} is a random function. The process continues for

1 We use Õ(f) throughout this paper to denote f · polylog(n).
2 We remark that both the algorithm of [7] and our improved algorithm are time-efficient, and work in

the more restrictive setting where Alice and Bob have only poly(k log(n/δ)) memory and receive the
input strings in a streaming fashion.

C. Jin, J. Nelson, and K. Wu 45:3

3n steps and we consider the evolution of i− j, i.e., the distance between the two pointers
during this random process. Observe that when x[i] ̸= y[j], the change of i− j is a mean-zero
random variable in {−1, 0, +1} (and we call this a progress step); while when x[i] = y[j], the
difference i− j will not change.

The main result of [13] shows that the number of progress steps in this random process
is at least ed(x, y)/2, and at most O(ed(x, y)2) with constant probability. This property
was used to design a sketching protocol (with public randomness for generating rt) for
estimating ed(x, y) up to a quadratic factor error by applying an approximate Hamming
distance sketching protocol to the two strings generated by the random walk (where a progress
step corresponds to a Hamming mismatch between Alice’s and Bob’s output strings).

Previous algorithm

The key idea of [7] is the following. A CGK random walk naturally induces a non-intersecting
matching between the input strings: we view x and y as a bipartite graph, where if (i, j) is
an edge then x[i] = y[j] and i, j are the pointers in some step of the walk. In particular, this
matching can be viewed as an edit sequence where a character is unchanged if it is matched.

Using an exact Hamming sketch protocol (with sketch size near-linear in the number
of Hamming errors), the referee can recover this matching, as well as all the unmatched
characters. Although this matching may not correspond to an edit sequence of optimal
length, [7] shows that if we obtain multiple matchings by running i.i.d. CGK random walks,
then
(a) if the intersection of their matched edges is contained in an optimal matching, then one

can extract enough information from the matchings and unmatched characters to recover
an optimal edit sequence using dynamic programming;

(b) if we generate poly(ed(x, y), log n) many i.i.d. CGK random walks, then the precondition
of Item (a) is satisfied with constant probability.

Our improvements

We obtain our result by improving the dependence on ed(x, y) in Item (b) described above.
In particular, we reduce the number of required random walks. Our improvements come
from two parts.

To obtain the first improvement, we observe that the algorithm of [7] relies on the
following two events happening. The first is that, for every edge that does appear in a (fixed)
optimal matching, there should be one of the sampled CGK random walks that misses this
edge. The second is that the CGK random walks should have few progress steps. In [7], they
pay a union bound over the two events to make sure all CGK random walks are good for
the decoder. This introduces a large dependence on ed(x, y), mainly due to the fact that
the number of Hamming errors in a CGK random walk has a heavy-tailed distribution. We
manage to avoid this by arguing that these two events happen simultaneously (see Lemma 15)
with decent probability, and then modifying the decoding algorithm to only consider those
good CGK random walks.

The second improvement comes from improved analysis for Item (b), which depends
on the following property of the CGK random walk [7, Lemma 16] (see Subsection 3.3
for how this property can be used): informally, if a string X[1..L] has a certain kind of
self-similarity (for example, it is periodic), then with some nontrivial probability, a CGK
random walk on X itself starting with two pointers i = 2, j = 1 will not pass through the state
(i = L, j = L). To be more precise, if there is a non-intersecting matching between X[1..L]

STACS 2021

45:4 An Improved Sketching Algorithm for Edit Distance

and itself, where every matched edge (I, J) satisfies I > J , and the number of singletons
(unmatched characters) is at most K, then the CGK random walk will miss (i = L, j = L)
with Ω(1/K2) probability.3

We use a more technical analysis to improve the bound to Ω(1/K) (see Proposition 18).
Now we informally describe our main idea. Starting from the state (i = 2, j = 1), with
at least Ω(1/K) probability it will first reach a state (i, j) with i− j > d0 = Θ(K) before
reaching i − j = 0 (note that i − j can never become negative). Then we will show that
with good probability i− j will remain in the range [d0/2, 3d0/2]. To do this, we show an
O(d2

0) upper bound on the expected total number of progress steps, and use the fact that
the expected deviation produced by a P -step one-dimensional random walk is O(

√
P).

To bound the expected total number of progress steps, we divide the evolution of the
state (i, j) into several phases, where in each phase the pointers move from a stable state
(i, j) to another stable state (i′, j′), satisfying j′ ≥ i and i′ ≥ 2j − i. Here, a stable state (i, j)
informally means that we have a good upper bound of ed(X[j..i − 1], X[i..2i − j − 1]) in
terms of the number of singletons in the range [j..2i− j− 1] (for example, if X is “close” to a
string with period p, and i− j is approximately a multiple of p, then (i, j) is a stable state).
We will bound the expected number of progress steps in one phase by O

(
(i− j) · S + S2),

where S denotes the number of singletons in the range [j..i′ − 1]. We can see the sum of S

over all phases is at most 2K since each singleton is counted at most twice. Hence, summing
up over all phases would give the desired O(K2) upper bound, if we assume i− j = Θ(d0).
Although this assumption may lead to circular reasoning, we can get around this issue by a
more careful argument.

Organization

We give several needed definitions in Section 2. In Section 3 we state and analyze our
sketching algorithm, which as mentioned, is mostly similar to [7] but with small modifications.
Section 4 is devoted to our main technical lemma. In comparison with the proof overview,
Section 3 is for the first improvement and Section 4 is for the second improvement. Then we
discuss limits on our approach and further problems in Section 5. The lower bounds and
missing proofs can be found in full version.

2 Preliminaries

In this section we introduce formal definitions.

2.1 Notations
Let [n] denote {1, 2, . . . , n}, and let [l..r] denote {l, l + 1, . . . , r}. Let ◦ denote string
concatenation. Let N denote the set of natural numbers {0, 1, . . .}. We consider sketching
protocols for strings in Σn in this work, where Σ denotes the alphabet. We assume |Σ| ≤
poly(n) and 0 ∈ Σ.4

3 There is a subtle gap in the proof of [7, Lemma 16]. On page 18 of their full version, they bounded the
number of progress steps in two cases: (1) at least one of the pointers is not in any cluster, and (2) both
of the two pointers are in the same cluster. (Their terminology cluster refers to a contiguous sequence
of matched edges with no singletons in-between.) However, they did not analyze the case where the two
pointers are separated in different clusters, and it was not clear to us how to repair that gap using the
techniques developed in [7].

4 For larger alphabet the algorithm still works but some log n terms in the bounds become log |Σ|. For
example, the sketch size will be O

(
k3 log(n|Σ|/δ) log(n/δ) log n

)
. Alternatively, the parties can hash Σ

into a new alphabet of size O(n2/γ) and have no hash collisions on the characters appearing in x, y
with probability at least 1 − γ.

C. Jin, J. Nelson, and K. Wu 45:5

For a string s ∈ Σn and index 1 ≤ i ≤ n, s[i] (or sometimes si) denotes the i-th character
of s. For 1 ≤ i ≤ j ≤ n, s[i..j] denotes the substring s[i] ◦ s[i + 1] ◦ · · · ◦ s[j]. If i > j then
s[i..j] is the empty string.

2.2 Edit Distance
▶ Definition 2 (Edit distance ed(·, ·)). The edit distance between two strings x and y, denoted
by ed(x, y), is the minimum number of edits (insertions, deletions, and substitutions5) required
to transform x to y.

▶ Definition 3 (Matching induced by edit sequence M(S)). Given strings x, y and an edit
sequence S, we can construct a bipartite graph between x and y, where every character in x

that is not substituted nor deleted is connected by an edge to its counterpart in y. These edges
form a non-intersecting matching, which we denote by M(S). Moreover, when S achieves
optimal edit distance, we say M(S) is an optimal matching.

Though there may be multiple optimal matchings, the following definition specifies a
canonical one.

▶ Definition 4 (Greedy optimal matching M, [7]). Let x, y be two strings. For each edit
sequence S achieving optimal edit distance, let M(S) be the matching induced by S. Then
the greedy optimal matching M is defined to be the smallest M(S) in lexicographical
order. Specifically, we represent M(S) as a sequence of (i, j) pairs then sort the sequence
lexicographically, and the greedy optimal matching is such that this sorted sequence is as
lexicographically small as possible.

2.3 The CGK Random Walk
We review a useful random process called the CGK random walk, which was first introduced
by Chakraborty, Goldenberg, and Koucký [13], and played a central role in the sketching
algorithm of [7].

▶ Definition 5 (CGK random walk λr(s), [13]). Given a string s ∈ Σn, an integer m ≥ 0, and
a sequence of m · |Σ| random coins interpreted as a random function r : [m]×Σ→ {0, 1}, the
m-step CGK random walk is a length-m string λr(s) ∈ Σm defined by the following process:

Append s with infinitely many zeros.
Initialize the pointer p← 1 and the output string s′ ← ∅.
For each step i = 1, . . . , m:

Append s[p] to s′.
Update p← p + r(i, s[p]).

Output s′ =: λr(s).

For a contiguous segment of the output string λr(s), the pre-image of this segment refers
to the corresponding substring in the original input string s (which may also include the
appended trailing zeros if the walk extends beyond s).

5 There is another definition of edit distance, denoted by ed′(x, y), where only insertions and deletions
are allowed. We have ed(x, y) ≤ ed′(x, y) ≤ 2 · ed(x, y), and ed′(x, y) = |x| + |y| − LCS(x, y), where LCS
stands for longest common subsequence. The algorithm in [7], as well as our modification of it, can be
easily adapted to work for this variant of edit distance as well.

STACS 2021

45:6 An Improved Sketching Algorithm for Edit Distance

Due to its usefulness in the two-party setting with public randomness, we also frequently
use the term CGK random walk to refer to a pair of random walks (as defined in Definition 5)
performed on two input strings x, y using the shared random string r.

Consider a CGK random walk λ on two input strings x, y. We use pi (resp., qi) to denote
the pointer on string x (resp., y) at the beginning of step i. We refer to the pair (pi, qi) as
the state of λ at the i-th step, and we write (p, q) ∈ λ if λ passes through the state (p, q), i.e.,
there exists some i for which pi = p and qi = q. We say the i-th step of λ is a progress step if
the i-th characters of the output strings λr(x) and λr(y) differ, or equivalently, x[pi] ̸= y[qi].6
We say λ walks through x, y, if in the end the two pointers satisfy pm ≥ |x| and qm ≥ |y|.

The following theorem establishes the connection between CGK random walks and edit
distance. Informally, when ed(x, y) is small, with good probability the number of progress
steps in λ is also small (or equivalently, the Hamming distance between the output strings
λr(x), λr(y) is small). We provide a simpler proof for its Item (3) in full version.

▶ Theorem 6 ([13, Theorem 4.1]). Let λ be an m-step CGK random walk on x, y. Then
(1) if m ≥ 3 ·max {|x|, |y|}, then λ walks through x, y with probability at least 1− eΩ(m);
(2) given λr(x) and r, we can reconstruct the pre-image of λr(x) ;
(3) Pr

[
#progress steps in λ ≥ (T · ed(x, y))2

]
≤ O(1/T).

2.4 Random Walks

We frequently relate the CGK random walk to the following one-dimensional random walk.

▶ Definition 7 (One-dimensional unbiased and self-looped random walk). A stochastic process
X = (Xt)t∈N on integers is a one-dimensional unbiased and self-looped random walk if its
transition satisfies

Xi =

Xi−1 − 1 w.p., 1/4,

Xi−1 w.p., 1/2,

Xi−1 + 1 w.p., 1/4.

▶ Remark 8. Let λ be a CGK random walk on two strings and (p, q) be its state. Define
∆ = p− q. Then ∆ can be viewed as a one-dimensional unbiased and self-looped random
walk, which makes a transition when and only when λ makes a progress step.

By Remark 8 and the martingale property, we have the following lemma, the proof of
which can be found in full version.

▶ Lemma 9. Consider an ∞-step CGK random walk λ on x, y, where p, q are the pointers on
x, y respectively. Let u be an index and let U, V ≥ u− 1 be any integers. Then the following
holds.
(1) Let T0 be the first time that pT0 ≥ u. Then we have E [|pT0 − qT0 |] ≤ 4·ed(x[1..U], y[1..V]).
(2) Let T1 be the first time that (pT1 ≥ u) ∧ (qT1 ≥ u). Then we have E [|pT1 − qT1 |] ≤

4 · ed(x[1..U], y[1..V]).

6 Our definition of “progress step” is different from that of [7], which additionally requires at least one of
the two pointers moves forward in that step.

C. Jin, J. Nelson, and K. Wu 45:7

3 Sketches for Edit Distance

For the rest of the paper, we use the following notational conventions:
n is the length of the input strings; m := 3n is the number of steps in a CGK random
walk.
x, y are the input strings of length n, which is appended with infinitely many zeros; we
are promised ed(x, y) ≤ k.7
when we use (·, ·) to denote a CGK state or an edge between x, y, the first coordinate is
a pointer on x and the second is on y.
M is the greedy optimal matching of x, y.

Our goal is to prove the following theorem.

▶ Theorem 10. There is a sketching algorithm for Qn,k,δ of sketch size O
(
k3 log2(n/δ) log n

)
bits. Moreover, the algorithm has the following properties.

The encoding algorithm used by Alice (resp., Bob) only assumes one-pass streaming access
to the input string x (resp., y). The time complexity per character is poly(k log(n/δ)),
and the space complexity is O

(
k3 log2(n/δ) log n

)
bits. 8

The decoding algorithm used by the referee has time complexity poly(k log(n/δ)).

In Subsection 3.1, we review the general framework of [7]’s sketching protocol, and
highlight our key improvement in Lemma 15. We will prove this key lemma in Subsection 3.2
and Subsection 3.3.

3.1 General Framework
We adopt the definition of effective alignments from [7]. Intuitively, an effective alignment
between two strings x, y contains the information of an edit sequence from x to y, but does
not contain the information of unchanged characters.

▶ Definition 11 (Effective alignment A, [7]). For two strings x, y ∈ Σn, an effective alignment
A between x and y is a triplet (G, gx, gy), where

G = (Vx, Vy, E) is a bipartite matching where nodes Vx = [n], Vy = [n] correspond to
indices of characters in x and y respectively, and every matched edge (i, j) ∈ E satisfies
x[i] = y[j]. Moreover, the matched edges are non-intersecting, i.e., for every pair of
distinct edges (i, j), (i′, j′) ∈ E, we have i < i′ iff j < j′.
gx (resp., gy) is a partial function defined on the set of unmatched nodes Ux ⊆ Vx (resp.,
Uy ⊆ Vy). For each i ∈ Ux (resp., j ∈ Uy), define gx(i) = x[i] (resp., gy(j) = y[j]).

▶ Definition 12 (Effective alignments consistent with a CGK random walk, [7]). Let λ be a
CGK random walk on x, y, where p, q are the pointers on x and y respectively. If λ walks
through x, y, then we say an effective alignment A = (G, gx, gy) is consistent with λ if for
every matched edge (p, q) ∈ G, we have (p, q) ∈ λ.

As mentioned in Subsection 1.1, Alice and Bob use public randomness to instantiate
τ = O(k log(n/δ)) independent CGK random walks λ1, . . . , λτ on x, y. Then, for each CGK
random walk λi, Alice constructs a sketch sxi based on her part of the random walk λi(x),

7 We also analyze the behaviour of our algorithms when ed(x, y) > k in full version.
8 The algorithm may use a large number of shared random bits, which can be reduced using Nisan’s

generator [24]. The main cost, as we can see from the proof, comes from the CGK random walk. We
refer readers to [13] for more details on reducing randomness for the CGK random walk.

STACS 2021

45:8 An Improved Sketching Algorithm for Edit Distance

and Bob similarly constructs syi based on his part of the random walk λi(y). The referee
receives sxi, syi, and tries to extract an effective alignment Ai from the sketches. Each sxi

(and syi) has length O(k2 log(n/δ) log n). The properties of this protocol are summarized as
follows.

▶ Construction 13 (Sketch for each random walk, adapting [7]). Let C ≥ 1 be some large
constant and η ∈ (0, 1). There exists an efficient sketching algorithm such that the following
holds. Let λ be an m-step CGK random walk on x (and y). Then,

the sketch size and encoding space are O
(
k2 log(n/η) log n

)
bits;

the encoding time per character and decoding time are both poly(k log(n/η));
for fixed λ, x, y the following hold with success probability at least 1− η:

the decoder either (a) reports “error”, or (b) outputs an effective alignment A consistent
with λ;
when λ walks through x, y and contains at most C · k2 progress steps, (b) occurs.

The formal proof of Construction 13 can be found in full version.
The final sketches are simply sx = sx1 ◦ · · · ◦sxτ and sy = sy1 ◦ · · · ◦syτ . The referee tries

to obtain an effective alignment from every (sxi, syi), and then uses the following lemma to
compute ed(x, y) and recover an optimal edit sequence.

▶ Lemma 14 ([7, Lemma 14 and Lemma 19]). There exists a deterministic algorithm taking
(sx, sy) as input such that the following holds.

The running time of the algorithm is poly(|sx|+ |sy|) = poly(k log(n/δ)).
Let Ai1 , . . . ,Aiw

be the effective alignments9 decoded from (sx1, sy1), . . . , (sxτ , syτ).
If w ≥ 1 and each Aij

is consistent with λij
, then the algorithm outputs a valid edit

sequence. If, additionally, M goes through all edges that are common to Ai1 , . . . ,Aiw
,

then the edit sequence is optimal.

Now we state our key lemma.

▶ Lemma 15 (Key Lemma). There exist some large constants C1, C2 ≥ 1 such that the
following holds. Let λ be an ∞-step CGK random walk on x, y. Then for any fixed (u, v) /∈
M, x[u] = y[v], we have

Pr
[
(u, v) /∈ λ

∧
#progress steps in λ ≤ C1 · k2

]
≥ 1

C2 · k
.

Here we reiterate that Lemma 15 summarizes our improvement over the previous work of
[7] in two aspects (as mentioned in Subsection 1.1): (1) The previous work only gave a
lower bound on Pr[(u, v) /∈ λ], while we bound the probability of two events happening
simultaneously; (2) The previous work only gave a bound of Ω(1/k2), while we give an
Ω(1/k) bound. The proof of this Lemma 15 is divided into two parts in Subsection 3.2 and
Subsection 3.3, in which a technical proposition that leads to the improvement in Item (2)
will be proved in Section 4.

Assuming Lemma 15, we can prove Theorem 10.

9 Although we can check if Aij is an effective alignment, we cannot verify (without knowing λij) if Aij is
an effective alignment consistent with λij . This subtle difference comes from that in Construction 13 we
do not give any guarantee outside the 1 − η success probability, where the decoder might provide some
effective alignment that is not consistent with λij .

C. Jin, J. Nelson, and K. Wu 45:9

Proof of Theorem 10. Let C3 be a large constant.
For the encoding part, we instantiate τ = C2k ·C3 log(n/δ) = O(k · log(n/δ)) independent

m-step CGK random walks λi, i ∈ [τ]; and construct each sxi, syi using Construction 13
with parameter C = C1, η = δ/(2τ).

For the decoding part, we run the decoding procedure in Construction 13 to obtain
Ai1 , . . . ,Aiw for Lemma 14. If w = 0 or the edit sequence from Lemma 14 has more
than k edits, we report “error”; otherwise we output the edit sequence together with the
corresponding edit distance.

Bounds on the parameters. By constructing each sxi (and syi) in parallel, the final sketch
size and encoding space are τ · O

(
k2 log(n/η) log n

)
= O

(
k3 log2(n/δ) log n

)
(we omit the

space for storing auxiliary information (e.g., pointers) in the calculation, since these are
minor terms). The encoding time per character is τ · poly (k log(n/η)) = poly(k log(n/δ)).
The decoding time follows immediately from Lemma 14.

Analysis of the algorithm when ed(x, y) ≤ k. Let S =
{

(u, v) ∈ [n]2 | (u, v) /∈M, x[u] =
y[v]} and define events
Ei: λi walks through x, y.
E ′

i(u, v) for (u, v) ∈ S: (u, v) /∈ λi

∧
#progress steps in λi ≤ C1 · k2.

Then

Pr [∀(u, v) ∈ S, ∃i ∈ [τ], Ei ∧ E ′
i(u, v)]

≥ 1−
∑

(u,v)∈S

(1−Pr [¬E1]−Pr [¬E ′
1(u, v)])τ

≥ 1− n2 ·
(

1− eΩ(n) − 1
C2 · k

)τ

(due to Theorem 6 and Lemma 15)

≥ 1− δ

2 . (1)

Let λi1 , . . . , λiw
be the random walks walking through x, y and containing at most C1 · k2

progress steps. Since η = δ/(2τ) in Construction 13 and by union bound, the decoder, with
probability at least 1− δ/2, for each (sxi, syi) either reports “error”, or outputs an effective
alignment Ai consistent with λi. Conditioning on this, Construction 13 must at least obtain
effective alignments Aij

, . . . ,Aiw
that are consistent with the corresponding random walks.

Combined with (1), with probability at least 1− δ, for any (u, v) ∈ S there exists some λij

missing it. Then the edit sequence from Lemma 14 is optimal. ◀

3.2 Proof of Lemma 15: Case |u − v| > 100 · k

Proof of Lemma 15: Case |u− v| > 100 · k. Assume without loss of generality u > v. We
stop λ when it meets u. Then by Item (1) in Lemma 9, at this time the state (p, q) satisfies
E[|p− q|] ≤ 4 · k. Hence by Markov’s inequality,

Pr [(u, v) /∈ λ] ≥ Pr [p− q ≤ 100 · k] = 1−Pr [p− q > 100 · k] ≥ 1− 4 · k
100 · k = 0.96. (2)

On the other hand, by setting C1 large enough we know from Theorem 6

Pr
[
#progress steps in λ ≤ C1 · k2] ≥ 0.99.

Hence, by setting C2 large enough, we have

Pr
[
(u, v) /∈ λ

∧
#progress steps in λ ≤ C1 · k2

]
≥ 0.96 + 0.99− 1 ≥ 1

C2 · k
. ◀

STACS 2021

45:10 An Improved Sketching Algorithm for Edit Distance

3.3 Proof of Lemma 15: Case |u − v| ≤ 100 · k

First we need the following definition.

▶ Definition 16 (Stable zone Z, [7]). The stable zone Z of (u, v) consists of substrings
x[u′..u], y[v′..v] of equal length L = u − u′ + 1 = v − v′ + 1, where L ≤ min{u, v} is the
maximum possible length satisfying x[u′..u] = y[v′..v]. In particular, u − v = u′ − v′; and
(u′, v′) ̸= (1, 1) as (u, v) /∈M.

Moreover, we say a state (p, q) enters Z if p ≥ u′ and q ≥ v′.

We will find Claim 17 useful. For completeness we include its proof in full version.

▷ Claim 17 ([7, Claim 21]). Consider an ∞-step CGK random walk λ on x, y, where
p, q are the pointers on x, y respectively. Let T be the first time that λ enters Z, i.e.,
(pT ≥ u′) ∧ (qT ≥ v′). Then Pr [pT − qT ̸= u− v] = Pr [pT − qT ̸= u′ − v′] ≥ 2/3.

We will also rely on the following technical result, the proof of which is in Section 4.

▶ Proposition 18. There exists a universal constant C4 ≥ 1 such that the following holds.
Assume X, Y are two identical length-L strings over alphabet Σ. Assume there exists a size-M
matching (i1, j1), . . . , (iM , jM) ∈ [L]2 such that

it > jt and X[it] = Y [jt] hold for all t ∈ [M];
i1 < i2 < · · · < iM and j1 < j2 < · · · < jM .

Let ρ = C4 · (L−M) and (Î , Ĵ) be any state satisfying Î − Ĵ ≥ ρ. Then a CGK random walk
on X, Y starting from (Î , Ĵ) will miss (L, L) with probability at least 0.5.

By symmetry, we derive the following corollary.

▶ Corollary 19. Let C4 ≥ 1 be the same constant in Proposition 18. Assume X, Y are
two identical length-L strings over alphabet Σ. Assume there exists a size-d matching
(i1, j1), . . . , (iM , jM) ∈ [L]2 such that

it > jt holds for all t ∈ [M], or it < jt holds for all t ∈ [M];
X[it] = Y [jt] holds for all t ∈ [M];
i1 < i2 < · · · < iM and j1 < j2 < · · · < jM .

Let ρ = C4 · (L−M) and (Î , Ĵ) be any state satisfying |Î − Ĵ | ≥ ρ. Then a CGK random
walk on X, Y starting from (Î , Ĵ) will miss (L, L) with probability at least 0.5.

Proof of Lemma 15: Case|u − v| ≤ 100 · k. Let C5 ≥ 1 be a large constant. We will
apply Proposition 18 with parameter M ≥ L − 103 · k; and let ρ = C4 · 103k be the
corresponding bound in it.

We expect λ to have the following three phases:
E1: λ enters Z in a state (p1, q1) within C5 · k2 progress steps, where 0 < |(p1 − q1) −
(u− v)| ≤ 200 · k.
E2: Starting from (p1, q1) and within 2 · ρ2 progress steps, λ reaches a state (p2, q2) where
either (p2, q2) > (n, n) or |(p2 − q2)− (u− v)| ≥ ρ. Also, during the walk from (p1, q1) to
(p2, q2), λ never reaches some state (p, q) satisfying (p− q)− (u− v) = 0.
E3: (u, v) /∈ λ and #progress steps in λ ≤ 2 · ρ2 + C5 ·

(
k2 + (ρ + 301 · k)2).

In fact we have the following claim, the proof of which can be found in full version.

▷ Claim 20. Pr [E1] ≥ 0.5, Pr [E2 | E1] ≥ 1/(2 · ρ), and Pr [E3 | E1 ∧ E2] ≥ 1/4.

Assuming Claim 20, we have the following desired bound

Pr
[
(u, v) /∈ λ

∧
#progress steps in λ ≤ C1 · k2

]
≥ Pr [E3] ≥ Pr [E1 ∧ E2 ∧ E3] ≥ 1

C2 · k

by setting C1 = 2 · (103 · C4)2 + C5 ·
(
1 + (301 + 103 · C4)2) and C2 = 16. ◀

C. Jin, J. Nelson, and K. Wu 45:11

4 CGK Random Walks on Self-similar Strings

This section is devoted for Proposition 18. It characterizes CGK random walks on strings of
certain self-similarity, which may be interesting on its own.

▶ Proposition (Proposition 18 restated). There exists a universal constant C4 ≥ 1 such that
the following holds. Assume X, Y are two identical length-L strings over alphabet Σ. Assume
there exists a size-M matching (i1, j1), . . . , (iM , jM) ∈ [L]2 such that

it > jt and X[it] = Y [jt] hold for all t ∈ [M];
i1 < i2 < · · · < iM and j1 < j2 < · · · < jM .

Let ρ = C4 · (L−M) and (Î , Ĵ) be any state satisfying Î − Ĵ ≥ ρ. Then a CGK random walk
on X, Y starting from (Î , Ĵ) will miss (L, L) with probability at least 0.5.

We will first provide necessary definitions and state basic properties in Subsection 4.1.
Then present the proof in Subsection 4.2. All missing proofs can be found in full version.

4.1 Stable States
We fix the matching in Proposition 18, so when we say (i, j) is a matched edge it means (i, j)
is an edge in the matching. We extend X, Y to X[−∞..∞], Y [−∞..∞] by adding dummy
characters X[i] = Y [i] = X[L] for all i > L, and X[i] = Y [i] = X[1] for all i < 1. We also
add matched edges (i, i− 1) for all i > L as well as i ≤ 1. Note that all the edges are still
non-intersecting. Though the added characters may not be consistent with the original input
strings x, y, it does not change the probability of the walk missing (L, L). Since X = Y and
the initial state satisfies Î ≥ Ĵ + ρ ≥ Ĵ , any future state (I, J) must still satisfy I ≥ J .

We introduce the notion of stable segment.

▶ Definition 21 (Stable segment). We say [l..r] is a stable segment, if for every matched
edge (I, J) (where we must have I > J), exactly one of the following two conditions hold:

J < l and I ≤ r.
J ≥ l and I > r.

index 0 1 2 3 4 5 6 7 8 9 10

a a c a b c a b a b b

X

.

Y

Figure 1 A stable partition for X[1..L] = Y [1..L] = acabcabab (L = 9).

For example in Figure 1, every segment separated by blue dashed lines is a stable segment.

▶ Remark 22. To gain a better intuition of the definition, consider the special case where
the string X[1..L] has period p and every matched edge (I, J) inside segment [1..L] satisfies
I − J = p. In this periodic case, a segment contained in [2..L− 1] is stable if and only if its
length is p.

Our motivation is that, when there are few unmatched characters, using our more
generalized definition we can approximately preserve the nice properties of periodic strings.
For example, when X has period p, the strings X[i..i + tp − 1] and X[i + tp..i + 2tp − 1]

STACS 2021

45:12 An Improved Sketching Algorithm for Edit Distance

must be identical. In a non-periodic case, we can similarly prove that X[i..j − 1] and
X[j..j + (j − i)− 1] have small edit distance if [i..j − 1] can be divided into several stable
segments. In the remaining part of the section, readers are encouraged to use the periodic
case for a more intuitive understanding.

▶ Definition 23 (Stable partition P and stable states). Consider a partition P = (Pi)i of
the integers into segments, where Pi = [pi..pi+1 − 1] and pi < pi+1. We say P is a stable
partition if every Pi is a stable segment. Then we say

state (I, J) is a (P, b)-stable state, if there exists some i such that J = pi and I = pi+b;
state (I, J) is a b-stable state, if there exists a stable partition P such that (I, J) is a
(P, b)-stable state;
state (I, J) is a stable state, if there exists some b ≥ 0 such that (I, J) is a b-stable state.
In particular, when I ≥ J > L, (I, J) is always a stable state.

Given a stable partition P, we can define a predecessor function for P as follows.

▶ Lemma 24 (Stable predecessor for a stable partition). Let P = (Pi)i be a stable partition
where Pi = [pi..pi+1 − 1] and pi < pi+1. Then there exists a non-decreasing function
predP : Z→ Z such that the following holds:

For every i, predP(pi+1) = pi.
For every I, we have predP(I) ≤ I − 1, and [predP(I)..I − 1] is a stable segment.

Now we extend the definition to b-stable predecessor.

▶ Definition 25 (b-stable predecessors pred(b)
P (·)). Let P be a stable partition. Define

pred(b)
P (I) =

{
I b = 0,

predP(pred(b−1)
P (I)) b ≥ 1.

As an example, in Figure 1 pred(3)
P (8) = 1.

We will bound the edit distance between stable states using the number of singletons.

▶ Definition 26 (Singleton). Every unmatched X[i] or Y [j] is called a singleton.
Let singX [l, r) (resp., singY [l, r)) denote the number of singletons in X[l..r − 1] (resp.,

Y [l..r − 1]). Let sing[l, r) := singX [l, r) + singY [l, r).

▶ Lemma 27. Let P be a stable partition. For I < I ′, let J = predP(I), J ′ = predP(I ′).
Then
(a) ed(X[I..I ′ − 1], Y [J..J ′ − 1]) ≤ singX [I, I ′) + singY [J, J ′) ≤ sing[J, I ′);
(b) |(I ′ − J ′)− (I − J)| = |(I ′ − I)− (J ′ − J)| ≤ singX [I, I ′) + singY [J, J ′) ≤ sing[J, I ′).

4.2 Proof of Proposition 18
Before proving Proposition 18, we need the following lemma, which shows a CGK random
walk goes from a stable state to a distant stable state with low cost.

▶ Lemma 28 (From stable to stable). Consider a CGK random walk starting from a stable
state (I0, J0), I0 > J0. Let D be a distance bound satisfying D ≥ I0 − J0.

Consider the first time T > 0 that either IT − JT > D, or the following three conditions
hold simultaneously: JT ≥ I0, and IT ≥ 2I0 − J0, and (IT , JT) is a stable state. Let P be
the number of progress steps before time T and let S = sing[J0, IT). Then

E
[
P − 2000 ·

(
S ·D + S2)] ≤ 0.

C. Jin, J. Nelson, and K. Wu 45:13

The process of Lemma 28 consists of a “catch-up phase” (i.e., from a stable state to a
distant non-stable state) and then a “stabilization phase” (i.e., from a non-stable state to a
nearby stable state). We describe the latter one as Lemma 29.

▶ Lemma 29 (From non-stable to stable). Consider a CGK random walk starting from a non-
stable state (Ĩ0, J̃0), Ĩ0 > J̃0. Let P be a stable partition and let b′ be such that L̃0 < J̃0 < R̃0

where L̃0 = pred(b′)
P (Ĩ0), R̃0 = pred(b′−1)

P (Ĩ0). Let D be a distance bound satisfying D ≥ Ĩ0−J̃0.
Consider the first time T ′ that either (ĨT ′ , J̃T ′) is a stable state or ĨT ′ − J̃T ′ > D. Let P ′ be
the number of progress steps before time T ′ and let S′ = sing[L̃0, ĨT ′). Then

E
[
P ′ − 50 ·

(
(R̃0 − J̃0)(J̃0 − L̃0) + S′ ·D + S′2

)]
≤ 0.

Given previous lemmas to control progress steps, we are now ready to prove Proposition 18.

Proof of Proposition 18. Since X[1] and Y [L] are matched to dummy characters after we
extend X, Y , there are K := sing[−∞, +∞) = 2 · (L −M − 1) singletons in total. Let
d := Î − Ĵ be the initial distance between the two pointers and let D := 2 · d. For a state
(I, J), I ≥ J ,

if I = J ≤ L or I − J > D, then we say it is a failure state;
if it is not a failure state and I > L, then we say it is a success state.

We stop the CGK random walk when it reaches a success state or a failure state. The
former case implies that the random walk misses (L, L). So it suffices to prove that we stop
at a success state with probability at least 0.5.

Phases in the CGK random walk. Let I0 = Î , J0 = Ĵ and t0 = 0. Let t1 ≥ 0 be the first
time that either (It1 , Jt1) is a stable state or It1 − Jt1 > D.

For every i ≥ 2, if (Iti−1 , Jti−1) is neither a success state nor a failure state, we know
Jti−1 < Iti−1 ≤ L and Iti−1 − Jti−1 ≤ D. Then we recursively define ti > ti−1 to be the
first time that either Iti − Jti > D, or the following three conditions hold simultaneously:
Iti
≥ 2Iti−1 − Jti−1 , and Jti

≥ Iti−1 , and (Iti
, Jti

) is a stable state.
Assume we stop at (Itm , Jtm), which is either a success state or a failure state. Let Pi be

the number of progress steps made during the time interval [ti, ti+1). Then P :=
∑m−1

i=0 Pi is
the total number of progress steps before we stop.

Bounds on E [P0]. Let P be an arbitrary stable partition and let b be such that pred(b)
P (I0) ≤

J0 < pred(b−1)
P (I0). Let L0 = pred(b)

P (I0), R0 = pred(b−1)
P (I0). Since X[1] is matched to Y [0],

we know predP(1) = 0. Hence applying Lemma 27 with I ′ = R0, I = 1, we have

(R0 − L0)− (1− 0) ≤ sing[0, R0) ≤ sing[0, I0).

Therefore, let S0 = sing[0, It1) and we have

(J0 − L0)(R0 − J0) ≤
⌊

R0 − L0

2

⌋
·
⌈

R0 − L0

2

⌉
≤ (sing[0, I0))2 ≤ S2

0 .

Thus by Lemma 29, we have E
[
P0 − 50 ·

(
2 · S2

0 + S0 ·D
)]
≤ 0.

Bounds on E [Pi] , 1 ≤ i ≤ m − 1. Let Si := sing[Jti , Iti+1). By Lemma 28, we have
E
[
Pi − 2000 ·

(
Si ·D + S2

i

)]
≤ 0.

STACS 2021

45:14 An Improved Sketching Algorithm for Edit Distance

Final bounds. Note that
∑

0≤i<m Si ≤ 2 · sing[0, Itm) ≤ 2 ·K. This is because Jti+1 ≥ Iti

for all i ≥ 1, implying each singleton is counted at most twice. Hence

E[P] = E

[
m−1∑
i=0

Pi

]
≤ E

[
2000

m−1∑
i=0

(SiD + S2
i)
]
≤ 2000 · E

D
m−1∑
i=0

Si +
(

m−1∑
i=0

Si

)2
≤ 8000 · (K · d + K2).

For 1 ≤ j < +∞, let rj be the deviation brought by the j-th progress step.10 Then rj

are i.i.d. random variables with Pr[rj = 0] = 1/2, Pr[rj = +1] = Pr[rj = −1] = 1/4. Hence
by Cauchy-Schwarz inequality, we have

E

∣∣∣∣∣∣
P∑

j=1
rj

∣∣∣∣∣∣
 = E

∣∣∣∣∣∣
+∞∑
j=1

rj · 1{j≤P }

∣∣∣∣∣∣
 ≤

√√√√√√E

+∞∑

j=1
rj · 1{j≤P }

2
 =

√
E
[

P

2

]

≤
√

4000 · (K · d + K2).

Observe that in the end we have Itm
− Jtm

= d +
∑P

j=1 rj . By setting ρ = C4 · (L−M)
for some large enough constant C4, we have d ≥ ρ ≥ C4 ·K/2 and

d ≥ 4 ·
√

4000 · (K · d + K2) ≥ 4 · E

∣∣∣∣∣∣
P∑

j=1
rj

∣∣∣∣∣∣
 .

Then by Markov’s inequality, with probability at least 0.5 we have |Itm − Jtm − d| ≤ d/2,
which indicates (Itm

, Jtm
) is not a failure state. Hence we stop at some success state with

probability at least 0.5. ◀

5 Discussion

Building upon [7], we present an improved sketching algorithm for edit distance with sketch
size Õ(k3). Although the algorithm itself is essentially the same as in [7], the analysis is
more involved. We conclude the paper with a few remarks on further problems.

Lower bounds. We conjecture the lower bound for this problem (i.e., Qn,k,δ) is Ω̃(k2),
since Θ(k2) is the distortion of the CGK random walk embedding [13]. However, to the
best of our knowledge, there is no lower bound beyond Ω̃(k). (Since we do not find any
paper formally stating the lower bounds, we present them in Appendix B of full version.)
Edit distance. It is natural to wonder if current framework can be pushed further. For
example, is it possible that we only run τ = O(1) rounds of CGK random walks and there
will be an optimal matching going through all edges that are common to these walks?
Unfortunately this is not true, and we can show τ = Ω(

√
k) with the following example:

x = Ac1c2 · · · ck−1Bc1c2 · · · ck−1 d · · · d︸ ︷︷ ︸
2k

Ac1c2 · · · ck−1,

y = Bc1c2 · · · ck−1 d · · · d︸ ︷︷ ︸
2k

Ac1c2 · · · ck−1Bc1c2 · · · ck−1.

10 Though we will only use r1, . . . , rP , we define it in this way to make the next Cauchy-Schwarz inequality
easier to understand.

C. Jin, J. Nelson, and K. Wu 45:15

Then with probability 1−Θ(1/
√

k), a CGK random walk walks through (k, k). Note that
ed(x, y) ≤ 2 · k by deleting x[1..k] and inserting y[4k + 1..5k]. However any edit sequence
leaving (k, k) matched will have at least (2 · k + 1) edits, where the one more edit comes
from substituting x[1] with y[1]. Moreover, this example may generalize to the binary
alphabet by replacing each symbol with a short random binary string.
Ulam distance. The Ulam distance is the edit distance on two permutations, i.e.,
x ∈ [n]n (resp., y ∈ [n]n) and xi ̸= xj (resp., yi ̸= yj) for distinct i, j. Our algorithm (as
well as the algorithm in [7]) works for Ulam distance with an improved bound Õ(k2.5).
This comes from the following observation: there is no matched edge in the stable zone,
hence the length of stable zone is at most k, which means we can set ρ = O(

√
L) in

Proposition 18. It would be interesting to improve the algorithm for Ulam distance.
Only the distance. Though our algorithm computes edit distance as well as an optimal
edit sequence, it is reasonable to relax the problem by simply asking for the distance or
even a constant approximation of the distance. However, we are not aware of any result
achieving better sketch size in this setting.

References
1 Alexandr Andoni and Robert Krauthgamer. The smoothed complexity of edit distance. ACM

Trans. Algorithms, 8(4):44:1–44:25, 2012. doi:10.1145/2344422.2344434.
2 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approximation

for edit distance and the asymmetric query complexity. In Proceedings of the 51st Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 377–386, 2010. doi:
10.1109/FOCS.2010.43.

3 Alexandr Andoni and Negev Shekel Nosatzki. Edit distance in near-linear time: it’s a constant
factor. CoRR, abs/2005.07678, 2020. To appear in FOCS 2020. arXiv:2005.07678.

4 Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear time. SIAM
J. Comput., 41(6):1635–1648, 2012. doi:10.1137/090767182.

5 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). SIAM J. Comput., 47(3):1087–1097, 2018. doi:10.1137/15M105
3128.

6 Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Approximating edit
distance efficiently. In Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 550–559, 2004. doi:10.1109/FOCS.2004.14.

7 Djamal Belazzougui and Qin Zhang. Edit distance: Sketching, streaming, and document
exchange. In Proceedings of the 57th IEEE Annual Symposium on Foundations of Computer
Science (FOCS), pages 51–60. IEEE Computer Society, 2016. Full version at arXiv:1607.04200.
doi:10.1109/FOCS.2016.15.

8 Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, Mohammad Taghi Hajiaghayi, and
Saeed Seddighin. Approximating edit distance in truly subquadratic time: Quantum and
MapReduce. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1170–1189, 2018. doi:10.1137/1.9781611975031.76.

9 Mahdi Boroujeni, Masoud Seddighin, and Saeed Seddighin. Improved algorithms for edit
distance and LCS: beyond worst case. In Proceedings of the 31st ACM-SIAM Symposium on
Discrete Algorithms, (SODA), pages 1601–1620. SIAM, 2020. doi:10.1137/1.978161197599
4.99.

10 Joshua Brakensiek, Moses Charikar, and Aviad Rubinstein. A simple sublinear algorithm for
gap edit distance. CoRR, abs/2007.14368, 2020. arXiv:2007.14368.

11 Joshua Brakensiek and Aviad Rubinstein. Constant-factor approximation of near-linear edit
distance in near-linear time. In Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 685–698, 2020. doi:10.1145/3357713.3384282.

STACS 2021

https://doi.org/10.1145/2344422.2344434
https://doi.org/10.1109/FOCS.2010.43
https://doi.org/10.1109/FOCS.2010.43
http://arxiv.org/abs/2005.07678
https://doi.org/10.1137/090767182
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15M1053128
https://doi.org/10.1109/FOCS.2004.14
https://arxiv.org/abs/1607.04200
https://doi.org/10.1109/FOCS.2016.15
https://doi.org/10.1137/1.9781611975031.76
https://doi.org/10.1137/1.9781611975994.99
https://doi.org/10.1137/1.9781611975994.99
http://arxiv.org/abs/2007.14368
https://doi.org/10.1145/3357713.3384282

45:16 An Improved Sketching Algorithm for Edit Distance

12 Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký, and Michael E. Saks.
Approximating edit distance within constant factor in truly sub-quadratic time. In Proceedings
of the 59th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages
979–990. IEEE Computer Society, 2018. doi:10.1109/FOCS.2018.00096.

13 Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký. Streaming algorithms for
embedding and computing edit distance in the low distance regime. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 712–725. ACM,
2016. doi:10.1145/2897518.2897577.

14 Moses Charikar and Robert Krauthgamer. Embedding the ulam metric into ℓ1. Theory
Comput., 2(11):207–224, 2006. doi:10.4086/toc.2006.v002a011.

15 Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Deterministic document exchange
protocols, and almost optimal binary codes for edit errors. In Proceedings of the 59th IEEE
Annual Symposium on Foundations of Computer Science (FOCS), pages 200–211, 2018.
doi:10.1109/FOCS.2018.00028.

16 Kuan Cheng and Xin Li. Efficient document exchange and error correcting codes with
asymmetric information. CoRR, abs/2007.00870, 2020. To appear in SODA 2021. arXiv:
2007.00870.

17 Elazar Goldenberg, Robert Krauthgamer, and Barna Saha. Sublinear algorithms for gap edit
distance. In Proceedings of the 60th IEEE Annual Symposium on Foundations of Computer
Science (FOCS), pages 1101–1120, 2019. doi:10.1109/FOCS.2019.00070.

18 Bernhard Haeupler. Optimal document exchange and new codes for insertions and deletions.
In Proceedings of the 60th IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 334–347, 2019. doi:10.1109/FOCS.2019.00029.

19 Subhash Khot and Assaf Naor. Nonembeddability theorems via Fourier analysis. Mathematische
Annalen, 334:821–852, 2006.

20 Tomasz Kociumaka and Barna Saha. Sublinear-time algorithms for computing & embedding
gap edit distance. In Proceedings of the 61st IEEE Annual Symposium on Foundations of
Computer Science (FOCS), 2020.

21 Michal Koucký and Michael E. Saks. Constant factor approximations to edit distance on far
input pairs in nearly linear time. In Proccedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing (STOC), pages 699–712. ACM, 2020. doi:10.1145/3357713.3384307.

22 Robert Krauthgamer and Yuval Rabani. Improved lower bounds for embeddings into l1. SIAM
J. Comput., 38(6):2487–2498, 2009. doi:10.1137/060660126.

23 William J. Masek and Mike Paterson. A faster algorithm computing string edit distances. J.
Comput. Syst. Sci., 20(1):18–31, 1980. doi:10.1016/0022-0000(80)90002-1.

24 Noam Nisan. Pseudorandom generators for space-bounded computation. Comb., 12(4):449–461,
1992. doi:10.1007/BF01305237.

25 Alon Orlitsky. Interactive communication: Balanced distributions, correlated files, and average-
case complexity. In Proceedings of the 32nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 228–238, 1991. doi:10.1109/SFCS.1991.185373.

26 Rafail Ostrovsky and Yuval Rabani. Low distortion embeddings for edit distance. J. ACM,
54(5):23, 2007. doi:10.1145/1284320.1284322.

https://doi.org/10.1109/FOCS.2018.00096
https://doi.org/10.1145/2897518.2897577
https://doi.org/10.4086/toc.2006.v002a011
https://doi.org/10.1109/FOCS.2018.00028
http://arxiv.org/abs/2007.00870
http://arxiv.org/abs/2007.00870
https://doi.org/10.1109/FOCS.2019.00070
https://doi.org/10.1109/FOCS.2019.00029
https://doi.org/10.1145/3357713.3384307
https://doi.org/10.1137/060660126
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1007/BF01305237
https://doi.org/10.1109/SFCS.1991.185373
https://doi.org/10.1145/1284320.1284322

Locality Sensitive Hashing for Efficient Similar
Polygon Retrieval
Haim Kaplan !

School of Computer Science, Tel Aviv University, Israel

Jay Tenenbaum !

School of Computer Science, Tel Aviv University, Israel

Abstract
Locality Sensitive Hashing (LSH) is an effective method of indexing a set of items to support efficient
nearest neighbors queries in high-dimensional spaces. The basic idea of LSH is that similar items
should produce hash collisions with higher probability than dissimilar items.

We study LSH for (not necessarily convex) polygons, and use it to give efficient data structures
for similar shape retrieval. Arkin et al. [2] represent polygons by their “turning function” - a function
which follows the angle between the polygon’s tangent and the x-axis while traversing the perimeter
of the polygon. They define the distance between polygons to be variations of the Lp (for p = 1, 2)
distance between their turning functions. This metric is invariant under translation, rotation and
scaling (and the selection of the initial point on the perimeter) and therefore models well the intuitive
notion of shape resemblance.

We develop and analyze LSH near neighbor data structures for several variations of the Lp

distance for functions (for p = 1, 2). By applying our schemes to the turning functions of a collection
of polygons we obtain efficient near neighbor LSH-based structures for polygons. To tune our
structures to turning functions of polygons, we prove some new properties of these turning functions
that may be of independent interest.

As part of our analysis, we address the following problem which is of independent interest. Find
the vertical translation of a function f that is closest in L1 distance to a function g. We prove tight
bounds on the approximation guarantee obtained by the translation which is equal to the difference
between the averages of g and f .

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Theory of computation → Computational geometry; Information systems → Information retrieval

Keywords and phrases Locality sensitive hashing, polygons, turning function, Lp distance, nearest
neighbors, similarity search

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.46

Related Version Full Version: https://arxiv.org/abs/2101.04339

Funding This work was supported by ISF grant no. 1595/19, GIF grant no. 1367/2017 and the
Blavatnik Foundation.

1 Introduction

This paper focuses on similarity search between polygons, where we aim to efficiently retrieve
polygons with a shape resembling the query polygon.

Large image databases are used in many multimedia applications in fields such as computer
vision, pattern matching, content-based image retrieval, medical diagnosis and geographical
information systems. Retrieving images by their content in an efficient and effective manner
has therefore become an important task, which is of rising interest in recent years.

When designing content-based image retrieval systems for large databases, the following
properties are typically desired:

© Haim Kaplan and Jay Tenenbaum;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 46; pp. 46:1–46:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:haimk@tau.ac.il
mailto:jayktenenbaum@gmail.com
https://doi.org/10.4230/LIPIcs.STACS.2021.46
https://arxiv.org/abs/2101.04339
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Locality Sensitive Hashing for Efficient Similar Polygon Retrieval

Efficiency: Since the database is very large, iterating over all objects is not feasible, so
an efficient indexing data structure is necessary.
Human perception: The retrieved objects should be perceptually similar to the query.
Invariance to transformations: The retrieval probability of an object should be
invariant to translating, scaling, and rotating the object. Moreover, since shapes are
typically defined by a time signal describing their boundary, we desire invariance also to
the initial point of the boundary parametrization.

There are two general methods to define how much two images are similar (or distant):
intensity-based (color and texture) and geometry-based (shape). The latter method is
arguably more intuitive [17] but more difficult since capturing the shape is a more complex
task than representing color and texture features. Shape matching has been approached in
several other ways, including tree pruning [18], the generalized Hough transform [5], geometric
hashing [16] and Fourier descriptors [20]. For an extensive survey on shape matching metrics
see Veltkamp and Hagedoorn [19].

A noteworthy distance function between shapes is that of Arkin et al. [2], which represents
a curve using a cumulative angle function. Applied to polygons, the turning function (as used
by Arkin et al. [2]) tP of a polygon P returns the cumulative angle between the polygon’s
counterclockwise tangent at the point and the x-axis, as a function of the fraction x of the
perimeter (scaled to be of length 1) that we have traversed in a counterclockwise fashion.
The turning function is a step function that changes at the vertices of the polygon, and either
increases with left turns, or decreases with right turns (see Figure 2). Clearly, this function
is invariant under translation and scale of the polygon.

To find similar polygons based on their turning functions, we define the distance Lp(P, Q)
between polygons P and Q to be the Lp distance between their turning functions tP (x) and
tQ(x). That is

Lp(P, Q) =
(∫ 1

0
|tP (x) − tQ(x)|p

)1/p

.

The turning function tP (x) depends on the rotation of P , and the (starting) point of
P where we start accumulating the angle. If the polygon is rotated by an angle α, then
the turning function tP (x) becomes tP (x) + α. Therefore, we define the (rotation invariant)
distance D

↕
p(P, Q) between polygons P and Q to be the D

↕
p distance between their turning

functions tP and tQ, which is defined as follows

D↕
p(P, Q) def= D↕

p(tP , tQ) def= min
α∈R

Lp(tP + α, tQ) = min
α∈R

p

√∫ 1

0
|tP (x) + α − tQ(x)|p dx.

If the starting point of P is clockwise shifted along the boundary by t, the turning function
tP (x) becomes tP (x + t). Thus, we define the distance Dp(P, Q) between polygons P and Q

to be the Dp distance between their turning functions tP and tQ which is defined as follows

Dp(P, Q) def= Dp(tP , tQ) def= min
α∈R,t∈[0,1]

(∫ 1

0
|tP (x + t) + α − tQ(x)|p

)1/p

.

The distance Dp(f, g) between two functions f and g extends f to the domain [0, 2] by
defining tP (x + 1) = tP (x) + 2π. The distance metric Dp is invariant under translation,
rotation, scaling and the selection of the starting point. A comprehensive presentation of
these distances, as well as a proof that they indeed satisfy the metric axioms appears in [2].

H. Kaplan and J. Tenenbaum 46:3

We develop efficient nearest neighbor data structures for functions under these distances
and then specialize them to functions which are turning functions of polygons.

Since a major application of polygon similarity is content-based image retrieval from large
databases (see Arkin et al. [2]), the efficiency of the retrieval is a critical metric. Traditionally,
efficient retrieval schemes used tree-based indexing mechanisms, which are known to work well
for prevalent distances (such as the Euclidean distance) and in low dimensions. Unfortunately
such methods do not scale well to higher dimensions and do not support more general and
computationally intensive metrics. To cope with this phenomenon (known as the “curse of
dimensionality”), Indyk and Motwani [15, 14] introduced Locality Sensitive Hashing (LSH),
a framework based on hash functions for which the probability of hash collision is higher for
near points than for far points.

Using such hash functions, one can determine near neighbors by hashing the query point
and retrieving the data points stored in its bucket. Typically, we concatenate hash functions
to reduce false positives, and use several hash functions to reduce false negatives. This
gives rise to a data structure which satisfies the following property: for any query point
q, if there exists a neighbor of distance at most r to q in the database, it retrieves (with
constant probability) a neighbor of distance at most cr to q for some constant c > 1. This
data structure is parameterized by the parameter ρ = log(p1)

log(p2) < 1, where p1 is the minimal
collision probability for any two points of distance at most r, and p2 is the maximal collision
probability for any two points of distance at least cr. The data structure can be built in
time and space O(n1+ρ), and its query time is O(nρ log1/p2(n)) where n is the size of the
data set.1

The trivial retrieval algorithm based on the turning function distance of Arkin et al. [2],
is to directly compute the distance D2(P, Q) (or D1(P, Q)) between the query Q and all the
polygons P in the database. This solution is invariant to transformations but not efficient
(i.e., linear in the size of the database).

In this paper, we rely on the turning function distance of Arkin et al. [2] for p = 1, 2, and
create the first retrieval algorithm with respect to the turning function distance which is
sub-linear in the size of the dataset. To do so, we design and analyze LSH retrieval structures
for function distance, and feed the turning functions of the polygons to them. Our results give
rise to a shape-based content retrieval (a near neighbor polygon) scheme which is efficient,
invariant to transformations, and returns perceptually similar results.

Our contribution

We develop simple but powerful (r, cr)-LSH near neighbor data structures for efficient similar
polygon retrieval, and give a theoretical analysis of their performance. We give the first
structure (to the best of our knowledge) for approximate similar polygon retrieval which is
provably invariant to shape rotation, translation and scale, and with a query time which is
sub-linear in the number of data polygons. In contrast to many other structures for similar
shape retrieval which often use heuristics, all our results are backed with theoretical proofs,
using properties of the turning function distance and the theory of LSH.

1 To ease on the reader, in this paper we suppress the term 1/p1 in the structure efficiency, and the time
it takes to compute a hash and distances between two polygons/functions. For example for polygons
with at most m vertices (which we call m-gons), all our hash computations take O(m) time, and using
Arkin et al. [2] we may compute distances in O(m2 log(m)) time.

STACS 2021

46:4 Locality Sensitive Hashing for Efficient Similar Polygon Retrieval

Figure 1 Our structures: each box is an (r, cr)-LSH near neighbor data structure, and the arrow
A → B with label t signifies that we use the method t over the structure A to get a structure for B.

To give our (r, cr)-LSH near neighbor data structures for polygons, we build such structures
for step functions with distances which are derived from the Lp distance for p = 1, 2, and
apply them to turning functions of polygons.2 Here r > 0 and c > 1 are the LSH parameters
as defined above, and n is the number of objects in the data structure. The (r, cr)-LSH
data structures which we present exist for any r > 0 and c > 1 (except when c is explicitly
constrained). For an interval I, we say that a function f : I → R is a k-step function, if I

can be divided into k sub-intervals, such that over each sub-interval f is constant. All the
following results for functions are for k-step functions with ranges bounded in [a, b] for some
a < b where for simplicity of presentation, we fix a = 0 and b = 1.3,4 The results we present
below are slightly simplified versions than those that appear in the body of the paper. For
an overview of our structures see Figure 1.

Near neighbors data structures for functions

1. For the L1 distance over functions, we design a simple but powerful LSH hash family.
This hash selects a uniform point p from the rectangle [0, 1] × [0, 1], and maps each function
to 1, 0 or −1 based on its vertical relation (above, on or below) with p. This yields an
(r, cr)-LSH structure for L1 which requires sub-quadratic preprocessing time and space of
O(n1+ρ), and sub-linear query time of O(nρ log n), where ρ = log(1 − r)

/
log(1 − cr) ≤ 1

c .
For the L2 distance over functions, we observe that sampling each function at evenly spaced
points reduces the L2 distance to Euclidean distance. We use the data structure of Andoni
and Razenshteyn [1] for the Euclidean distance to give an (r, cr)-LSH for the L2 distance,
which requires sub-quadratic preprocessing time of O(n1+ρ + nr,c · n), sub-quadratic space of
O(nr,c · n1+ρ) and sub-linear query time of O(nr,c · nρ), where ρ = 1

2c−1 and nr,c = 2k
(
√

c−1)r2

is the dimension of the sampled vectors. We also give an alternative asymmetric LSH hash
family for the L2 distance inspired by our hash family for the L1 distance, and create an
LSH structure based on it.

2. For the D
↕
2 distance, we leverage a result of Arkin et al. [2], to show that the mean-reduce

transformation, defined to be ϕ̂(x) = ϕ(x) −
∫ 1

0 ϕ(s)ds, reduces D
↕
2 distances to L2 distances

with no approximation loss. That is, for every f and g, D
↕
2(f, g) = L2(f̂ , ĝ), so we get an

2 Our structures for step functions can be extended to support also functions which are concatenations of
at most k ∈ N functions which are M -Lipschitz for some M > 0. Also, we can give similar structures for
variations of the function D1 and D2 distances where we extend the functions from the domain [0, 1] to
the domain [0, 2], not by f(x) = f(x − 1) + 2π, but by f(x) = f(x − 1) + q for any constant q ∈ R.

3 For general values of these parameters, the dependency of the data structure’s run-time and memory is
roughly linear or squared in b − a.

4 Since a = 0 and b = 1, the distance between any two functions is at most 1, so we focus on r < 1.

H. Kaplan and J. Tenenbaum 46:5

(r, cr)-LSH structure for the D
↕
2 distance which uses our previous L2 structure, and with

identical performance. For the D
↕
1 distance, we approximately reduce D

↕
1 distances to L1

distances using the same mean-reduction. We give a simple proof that this reduction gives
a 2-approximation, and improve it to a tight approximation bound showing that for any
two step functions f, g : [0, 1] → [0, 1], L1(f̂ , ĝ) ≤

(
2 − D

↕
1(f, g)

)
· D

↕
1(f, g). This proof

(see full version), which is of independent interest, characterizes the approximation ratio by
considering the function f − g, dividing its domain into 3 parts and averaging over each
part, thereby considering a single function with 3 step heights. This approximation scheme
yields an (r, cr)-LSH structure for any c > 2 − r, which is substantially smaller than 2
(approaching 1) for large values of r.

We also give an alternative structure step-shift-LSH that supports any c > 1, but has a
slightly diminished performance. This structure leans on the observation of Arkin et al. [2],
that the optimal vertical shift aligns a step of f with a step of g. It therefore replaces each
data step function by a set of vertical shifts of it, each aligning a different step value to y = 0,
and constructs an L1 data structure containing all these shifted functions. It then replaces a
query with its set of shifts as above, and performs a query in the internal L1 structure with
each of these shifts.

3. For the D1 and D2 distances, we leverage another result of Arkin et al. [2], that the
optimal horizontal shift horizontally aligns a discontinuity point of f with a discontinuity
point of g. Similarly to step-shift-LSH, we give a structure for D1 (or D2) by keeping an
internal structure for D

↕
1 (or D

↕
2) which holds a set of horizontal shifts of each data functions,

each aligns a different discontinuity point in to x = 0. It then replaces a query with its set of
shifts as above, and performs a query in the internal structure with each of these shifts.

Near neighbors data structures for polygons

We design LSH structures for the polygonal D1 and D2 distances, by applying the D1 and
D2 structures to the turning functions of the polygons. We assume that all the data and
query polygons have at most m vertices (are m-gons), where m is a constant known at
preprocessing time. It is clear that the turning functions are (m + 1)-step functions, but the
range of the turning functions is not immediate (note that performance inversely relates to
the range size).

First, we show that turning functions of m-gons are bounded in the interval I =
[−(⌊m/2⌋ − 1)π, (⌊m/2⌋ + 3)π] of size λm := (2 · ⌊m/2⌋ + 2)π. We show that this bound is
tight in the sense that there are m-gons whose turning functions get arbitrarily close to these
upper and lower bounds.

Second, we define the span of a function ξ : [0, 1] → R to be span(ξ) = maxx∈[0,1](ξ(x))−
minx∈[0,1](ξ(x)), and show that for m-gons, the span is at most λm/2 = (⌊m/2⌋ + 1)π, and
that this bound is tight - there are m-gons whose turning functions have arbitrarily close
spans to λm/2. Since the D1 and D2 distances are invariant to vertical shifts, we perform
an a priori vertical shift to each turning function such that its minimal value becomes 0,
effectively morphing the range to [0, λm/2], which is half the original range size. This yields
the following structures:

For the D1 distance, for any c > 2 we give an (r, cr)-LSH structure storing n polygons
with at most m vertices which requires O((nm)1+ρ) preprocessing time and space which are
sub-quadratic in n, and O(m1+ρnρ log(nm)) query time which is sub-linear in n, where ρ

is roughly 2/c. Also for D1, for any c > 1 we get an (r, cr)-LSH structure which requires
sub-quadratic preprocessing time and space of O((nm2)1+ρ), and sub-linear query time of
O(m2+2ρnρ log(nm)), where ρ is roughly 1/c.

STACS 2021

46:6 Locality Sensitive Hashing for Efficient Similar Polygon Retrieval

For the D2 distance, we give an (r, cr)-LSH structure which requires sub-quadratic
preprocessing time of Õ(n1+ρ), sub-quadratic space of Õ(n1+ρ), and sub-linear query time
of Õ(nρ), where ρ = 1

2
√

c−1 .5

Other similar works

Babenko et al. [4] suggest a practical method for similar image retrieval, by embedding
images to a Euclidean space using Convolutional Neural Networks (CNNs), and retrieving
similar images to a given query based on their embedding’s euclidean distance to the query
embedding. This approach has been the most effective practical approach for similar image
retrieval in recent years.

Gudmundsson and Pagh [13] consider a metric in which there is a constant grid of
points, and shapes are represented by the subset of grid points which are contained in
them. The distance between polygons is then defined to be the Jaccard distance between the
corresponding subsets of grid points. Their solution lacks invariance to scale, translation and
rotation, however our work is invariant to those, and enables retrieving polygons which have
a similar shape, rather than only spatially similar ones.

Other metrics over shapes have been considered. Cakmakov et al. [7] defined a metric
based on snake-like moving of the curves. Bartolini et al. [6] proposed a new distance function
between shapes, which is based on the Discrete Fourier Transform and the Dynamic Time
Warping distance. Chavez et al. [9] give an efficient polygon retrieval technique based on
Fourier descriptors. Their distance works for exact matches, but is a weak proxy for visual
similarity, since it relates to the distances between corresponding vertices of the polygons.

There has been a particular effort to develop efficient structures for the discrete Fréchet
distance and the dynamic time warping distance for polygonal curves in Rd. Such works
include Driemel et al. [10] who gave LSH structures for these metrics via snapping the curve
points to a grid, Ceccarello et al. [8] who gave a practical and efficient algorithm for the
r-range search for the discrete Fréchet distance, Filtser et al. [11] who built a deterministic
approximate near neighbor data structure for these metrics using a subsample of the data, and
Astefanoaei et al. [3] who created a suite of efficient sketches for trajectory data. Grauman
and Darrell [12] performed efficient contour-based shape retrieval (which is sensitive (not
invariant) to translations, rotations and scaling) using an embedding of Earth Mover’s
Distance into L1 space and LSH.

2 Preliminaries

We first formally define LSH, then discuss the turning function representation of Arkin et
al. [2], and then define the distance functions between polygons and functions which rise
from this representation.

2.1 Locality sensitive hashing

We use the following standard definition of a Locality Sensitive Hash Family (LSH) with
respect to a given distance function d : Z × Z → R≥0.

5 The Õ notation hides multiplicative constants which are small powers (e.g., 5) of m, 1
r and 1

4√c−1 .

H. Kaplan and J. Tenenbaum 46:7

▶ Definition 1 (Locality Sensitive Hashing (LSH)). Let r > 0, c > 1 and p1 > p2. A family
H of functions h : Z → Γ is an (r, cr, p1, p2)-LSH for a distance function d : Z × Z → R≥0
if for any x, y ∈ Z,
1. If d(x, y) ≤ r then Prh∈H [h(x) = h(y)] ≥ p1, and
2. If d(x, y) ≥ cr then Prh∈H [h(x) = h(y)] ≤ p2.
Note that in the definition above, and in all the following definitions, the hash family H is
always sampled uniformly.

We say that a hash family is an (r, cr)-LSH for a distance function d if there exist p1 > p2
such that it is an (r, cr, p1, p2)-LSH. A hash family is a universal LSH for a distance function
d if for all r > 0 and c > 1 it is an (r, cr)-LSH.

From an (r, cr, p1, p2)-LSH family, we can derive, via the general theory developed in
[15, 14], an (r, cr)-LSH data structure, for finding approximate near neighbors with respect
to r. That is a data structure that finds (with constant probability) a neighbor of distance
at most cr to a query q if there is a neighbor of distance at most r to q. This data structure
uses O(n1+ρ) space (in addition to the data points), and O(nρ log1/p2(n)) hash computations
per query, where ρ = log(1/p1)

log(1/p2) = log(p1)
log(p2) .

2.2 Representation of polygons

Figure 2 Left: a polygon P with 6 vertices. Right: the turning function tP of P , with 7 steps.

Let P be a simple polygon scaled such that its perimeter is one. Following the work of
Arkin et al. [2], we represent P via a turning function tP (s) : [0, 1] → R, that specifies the
angle of the counterclockwise tangent to P with the x-axis, for each point q on the boundary
of P . A point q on the boundary of P is identified by its counterclockwise distance (along
the boundary which is of length 1 by our scaling) from some fixed reference point O. It
follows that tP (0) is the angle α that the tangent at O creates with the x-axis, and tP (s)
follows the cumulative turning, and increases with left turns and decreases with right turns.
Although tP may become large or small, since P is a simple closed polygon we must have
that tP (1) = tP (0) + 2π if O is not a vertex of P , and tP (1) − tP (0) ∈ [π, 3π] otherwise.
Figure 2 illustrates the polygon turning function.

Note that since the angle of an edge with the x-axis is constant and angles change at the
vertices of P , then the function is constant over the edges of P and has discontinuity points
over the vertices. Thus, the turning function is in fact a step function.

In this paper, we often use the term m-gon – a polygon with at most m vertices.

STACS 2021

46:8 Locality Sensitive Hashing for Efficient Similar Polygon Retrieval

2.3 Distance functions

Consider two polygons P and Q, and their associated turning functions tP (s) and tQ(s)
accordingly. Define the aligned Lp distance (often abbreviated to Lp distance) between
P and Q denoted by Lp(P, Q), to be the Lp distance between tP (s) and tQ(s) in [0, 1]:
Lp(P, Q) =

p
√∫ 1

0 |tP (x) − tQ(x)|p dx.
Note that even though the Lp distance between polygons is invariant under scale and

translation of the polygon, it depends on the rotation of the polygon and the choice of the
reference points on the boundaries of P and Q.

Since rotation of the polygon results in a vertical shift of the function tP , we define the
vertical shift-invariant Lp distance between two functions f and g to be
D

↕
p(f, g) = minα∈R Lp(f +α, g) = minα∈R

p
√∫ 1

0 |f(x) + α − g(x)|p dx. Accordingly, we define
the rotation-invariant Lp distance between two polygons P and Q to be the vertical shift-
invariant Lp distance between the turning functions tP and tQ of P and Q respectively:
D

↕
p(P, Q) = D

↕
p(tP , tQ) = minα∈R

p
√∫ 1

0 |tP (x) + α − tQ(x)|p dx.

To tweak the distance D
↕
p such that it will be invariant to changes of the reference points,

we need the following definition. We define the 2π-extension f2π : [0, 2] → R of a function

f : [0, 1] → R to the domain [0, 2], to be f2π =
{

f(x), for x ∈ [0, 1]
f(x − 1) + 2π, for x ∈ (1, 2]

.

A turning function tP is naturally 2π-extended to the domain [0, 2] by circling around
P one more time. We define the u-slide of a function g : [0, 2] → R, slide↔

u (g) : [0, 1] → R,
for a value u ∈ [0, 1] to be (slide↔

u (g))(x) = g(x + u). These definitions are illustrated in
Figure 3. Note that shifting the reference point by a counterclockwise distance of u around
the perimeter of a polygon P changes the turning function from tP to slide↔

u (t2π
P).

Figure 3 Left: The turning function tP of the square with reference point p. Center: the
2π-extension t2π

P of tP . Right: The turning function of the square with the reference point q in red
(this is in fact the function t2π

P cropped to between the black vertical lines, i.e., to [0.375, 1.375]).

We therefore define the (vertical and horizontal) shift-invariant Lp distance between
two functions f, g : [0, 1] → R to be: Dp(f, g) = minu∈[0,1] D

↕
p(slide↔

u (f2π), g) =

minα∈R, u∈[0,1]
p
√∫ 1

0 |f2π(x + u) + α − g(x)|p dx, and define the (rotation and reference point
invariant) Lp distance between two polygons P and Q to be Dp(P, Q) = Dp(tP , tQ). Arkin
et al. [2] proved that Dp(f, g) is a metric for any p > 0.

3 L1-based distances

In this section, we give LSH structures for the L1 distance, the D
↕
1 distance and then the

D1 distance. Note that the D1 distance reduces to the D
↕
1 distance, which by using the

mean-reduction transformation presented in Section 3.2, reduces to the L1 distance.

H. Kaplan and J. Tenenbaum 46:9

3.1 Structure for L1

In this section we present random-point-LSH, a simple hash family for functions f :
[0, 1] → [a, b] with respect to the L1 distance. Random-point-LSH is the hash family
H1(a, b) =

{
h(x,y) | (x, y) ∈ [0, 1] × [a, b]

}
, where the points (x, y) are uniformly selected

from the rectangle [0, 1] × [a, b]. Each h(x,y) receives a function f : [0, 1] → [a, b], and returns
1 if f is vertically above the point (x, y), returns −1 if f is vertically below (x, y), and 0
otherwise.

Figure 4 Illustration of the hash of two functions f and g w.r.t. h(x,y) for a = 0 and b = 1.5.
For (x, y) in the green area h(x,y)(f) = −1 ̸= 1 = h(x,y)(g), in the blue area h(x,y)(f) = 1 ̸= −1 =
h(x,y)(g), in the red area h(x,y)(f) = h(x,y)(g) = −1, and in the orange area h(x,y)(f) = h(x,y)(g) = 1.

The intuition behind random-point-LSH is that any two functions f, g : [0, 1] → [a, b]
collide precisely over hash functions h(x,y) for which the point (x, y) is outside the area
bounded between the graphs of f and g. This fact is illustrated in the following Figure 4.
Thus, this hash incurs a collision probability of 1− L1(f,g)

b−a = 1− L1(f,g)
b−a , which is a decreasing

function with respect to L1(f, g). This intuition leads to the following results.

▶ Theorem 2. For any two functions f, g : [0, 1] → [a, b], we have that Ph∼H1(a,b)(h(f) =
h(g)) = 1 − L1(f,g)

b−a .

Proof. Fix x ∈ [0, 1], and denote by U(S) the uniform distribution over a set S. We have
that

Py∼U([a,b])(h(x,y)(f) = h(x,y)(g)) = 1 − Py∼U([a,b])(h(x,y)(f) ̸= h(x,y)(g))

= 1 − |f(x) − g(x)|
b − a

,

where the last equality follows since h(x,y)(f) ̸= h(x,y)(g) precisely for the y values between
f(x) and g(x). Therefore, by the law of total probability,

Ph∼H1(a,b)(h(f) = h(g)) = P(x,y)∼U([0,1]×[a,b])(h(x,y)(f) = h(x,y)(g))

=
∫ 1

0
Py∼U([a,b])(h(x,y)(f) = h(x,y)(g))dx

=
∫ 1

0

(
1 − |f(x) − g(x)|

b − a

)
dx = 1 − L1(f, g)

b − a
. ◀

STACS 2021

46:10 Locality Sensitive Hashing for Efficient Similar Polygon Retrieval

▶ Corollary 3. For any r > 0 and c > 1, one can construct an (r, cr)−LSH structure for the
L1 distance for n functions with ranges bounded in [a, b]. This structure requires O(n1+ρ)
space and preprocessing time, and has O(nρ log(n)) query time, where ρ = log(1− r

b−a)
log(1− cr

b−a) ≈ 1
c

for r ≪ b − a.

Proof. Fix r > 0 and c > 1. By the general result of Indyk and Motwani [15], it suffices to
show that H1(a, b) is an (r, cr, 1 − r

b−a , 1 − cr
b−a)-LSH for the L1 distance.

Indeed, by Theorem 2, Ph∼H1(a,b)(h(f) = h(g)) = 1 − L1(f,g)
b−a , so we get that

If L1(f, g) ≤ r, then Ph∼H1(a,b)(h(f) = h(g)) = 1 − L1(f,g)
b−a ≥ 1 − r

b−a .

If L1(f, g) ≥ cr, then Ph∼H1(a,b)(h(f) = h(g)) = 1 − L1(f,g)
b−a ≤ 1 − cr

b−a . ◀

3.2 Structure for D
↕
1

In this section we present mean-reduce-LSH, an LSH family for the vertical translation-
invariant L1 distance, D

↕
1 . Observe that finding an LSH family for D

↕
1 is inherently more

difficult than for L1, since even evaluating D
↕
1(f, g) for a query function g and an input

function f requires minimizing L1(f + α, g) over the variable α, and the optimal value of α

depends on both f and g.
Our structure requires the following definitions. We define ϕ̄ =

∫ 1
0 ϕ(x)dx to be the

mean of a function ϕ over the domain [0, 1], and define the mean-reduction of ϕ, denoted
by ϕ̂ : [0, 1] → [a − b, b − a], to be the vertical shift of ϕ with zero integral over [0, 1],
i.e., ϕ̂(x) = ϕ(x) − ϕ̄(x). These definitions are illustrated in Figure 5. Our solution relies
on the crucial observation that for the pair of functions f, g : [0, 1] → [a, b], the value of
α which minimizes L1(f + α, g) is “well approximated” by ḡ − f̄ . That is the distance
L1(f + (ḡ − f̄), g) = L1(f − f̄ , g − ḡ) = L1(f̂ , ĝ) approximates D

↕
1(f, g). This suggests that if

we replace any data or query function f with f̂ , then the D
↕
1 distances are approximately the

L1 distances of the shifted versions f̂ , for which we can use the hash H1 from Section 3.1.

Figure 5 A function f (black), its mean f̄(blue), and its mean-reduction f̂ (below). Notice that
the red and green areas are equal.

Indeed, we use the hash family H1 from Section 3.1, and define mean-reduce-LSH for
functions with images contained in [a, b] to be the family H

↕
1 (a, b) = {f → h ◦ f̂ | h ∈

H1(a − b, b − a)}. Each hash of H
↕
1 (a, b) is defined by a function h ∈ H1(a − b, b − a), and

given a function f , it applies h on its mean-reduction f̂ .

H. Kaplan and J. Tenenbaum 46:11

The following theorem gives a tight bound for the L1 distance between mean-reduced
functions in terms of their original vertical translation-invariant L1 distance D

↕
1 . The proof

of this tight bound as well as a simpler 2-approximation appear in the full version of the
paper. Our elegant but more complicated proof of the tight bound characterizes and bounds
the approximation ratio using properties of f − g, and demonstrates its tightness by giving
the pair of step functions f, g which meet the bound.

We conclude this result in the following theorem.

▶ Theorem 4. Let f, g : [0, 1] → [a, b] be step functions and let r ∈ (0, b − a] be their vertical
shift-invariant L1 distance r = D

↕
1(f, g). Then r ≤ L1(f̂ , ĝ) ≤

(
2 − r

b−a

)
· r. This bound is

tight, i.e, there exist two functions f0, g0 as above for which L1(f̂0, ĝ0) =
(

2 − r
b−a

)
· r.

We use Theorem 4 to prove that mean-reduce-LSH is an LSH family (Theorem 5). We
then use Theorem 5 and the general result of Indyk and Motwani [15] to get Corollary 6.

▶ Theorem 5. For any r ∈ (0, b − a) and c > 2 − r
b−a , H

↕
1 (a, b) is an(

r, cr, 1 −
(

2 − r
b−a

)
· r

2(b−a) , 1 − c · r
2(b−a)

)
-LSH family for the D

↕
1 distance.

▶ Corollary 6. For any r > 0 and c > 2− r
b−a , one can construct an (r, cr)−LSH structure for

the D
↕
1 distance for n functions with ranges bounded in [a, b]. This structure requires O(n1+ρ)

extra space and preprocessing time, and O(nρ log(n)) query time, where r̃ = r/(2(b − a)) and
ρ = log (1 − (2 − 2r̃) · r̃) / log (1 − cr̃) for small r̃.

Step-shift-LSH

We present step-shift-LSH, a structure for the D
↕
1 distance which works for any c > 1 (unlike

mean-reduce-LSH), but has a slightly worse performance, which depends on an upper bound
k on the number of steps in of the data and query functions. This structure uses an internal
structure for the L1 distance, and leverages the observation of Arkin et al. [2] that the optimal
vertical shift α to align two step functions f and g, is such that f + α has a step which
partially overlaps a step of g, i.e., there is some segment S ⊆ [0, 1] over which f + α = g.

Therefore, we overcome the uncertainty of the optimal α by a priori cloning each function
by the number of steps it has, and vertically shifting each clone differently to align each step
to be at y = 0.6 For a query function g, we clone it similarly to align each step to y = 0,
and use each clone as a separate query for the L1 structure. This process effectively gives a
chance to align each step of the query g with each step of each data step function f .

▶ Corollary 7. For any a < b, r > 0 and c > 1, there exists an (r, cr)-LSH structure for the
D

↕
1 distance for n functions, each of which is a k-step function with range bounded in [a, b].

This structure requires O((nk)1+ρ) extra space and preprocessing time, and O(k1+ρnρ log(nk))
query time, where ρ = log

(
1 − r

2(b−a)

)
/ log

(
1 − cr

2(b−a)

)
≈ 1

c for r ≪ b − a.

3.3 Structure for D1

In this section, we present slide-clone-LSH, a data structure for the distance function D1
defined over step functions f : [0, 1] → [a, b]. To do so, we use an (r′, c′r′)-LSH data structure
(for appropriate values of r′ and c′) for the distance function D

↕
1 which will hold slided

functions with ranges contained in [a, b + 2π].

6 This idea of cloning appears once again (but in a horizontal version), and in more detail, in Section 3.3
for the D1 distance.

STACS 2021

46:12 Locality Sensitive Hashing for Efficient Similar Polygon Retrieval

Recall that the D1 distance between a data function f and a query function g is defined
to be the minimal D

↕
1 distance between a function in the set

{
slide↔

u (f2π) | u ∈ [0, 1]
}

and
the function g, and we obviously do not know u a priori and cannot build a structure for each
possible u ∈ [0, 1]. Fortunately, in the proof of Theorem 6 from Arkin et al. [2], they show
that for any pair of step functions f and g, the optimal slide u is such that a discontinuity of
f is aligned with a discontinuity of g. They show that this is true also for the D2 distance.

Therefore, we can overcome the uncertainty of the optimal u by a priori cloning each
function by the number of discontinuity points it has, and sliding each clone differently to
align its discontinuity point to be at x = 0. For a query function g, we clone it similarly
to align each discontinuity point to x = 0, use each clone as a separate query. The above
process effectively gives a chance to align each discontinuity point of the query function g

with each discontinuity point of each data step function f .
Slide-clone-LSH works as follows.

Preprocessing phase

We are given the parameters r > 0, c > 1, a < b and a set of step functions F , where each
function is defined over the domain [0, 1] and has a range bounded in [a, b]. Additionally,
we are given an upper bound k on the number of steps a data or query step function may
have. First, we replace each function f ∈ F with the set of (at most k + 1) u slides of it’s
2π-extension for each discontinuity point u, i.e., slide↔

u (f2π) for each discontinuity point
u ∈ [0, 1]. For each such clone we remember its original unslided function. Next, we store the
at most (k + 1) · |F | resulted functions in an (r′, c′r′)-LSH data structure for the D

↕
1 distance

for functions with ranges bounded in [a, b + 2π], tuned with the parameters r′ = r and c′ = c.

Query phase

Let g be a query function. We query the D
↕
1 structure constructed in the preprocessing phase

with each of the slided queries slide↔
u (g2π) for each discontinuity point u ∈ [0, 1]. If one of

the queries returns a data function f , we return its original unslided function, and otherwise
return nothing.

In Theorem 8, we prove that slide-clone-LSH is an (r, cr)-data structure for D1.

▶ Theorem 8. Slide-clone-LSH is an (r, cr)-LSH structure for the D1 distance.

▶ Corollary 9. For any a < b, r > 0, ω = b + 2π − a and c > 2 − r
ω , there ex-

ists an (r, cr)-LSH structure for the D1 distance for n functions, each of which is a
k-step function with range bounded in [a, b]. This structure requires O((nk)1+ρ) extra
space and preprocessing time, and O(k1+ρnρ log(nk)) query time, where r̃ = r/(2ω) and
ρ = log (1 − (2 − 2r̃) · r̃) / log (1 − cr̃) ≈ 2

c for small r̃.7

▶ Corollary 10. For any a < b, r > 0 and c > 1, there exists an (r, cr)-LSH struc-
ture for the D1 distance for n functions, each of which is a k-step function with range
bounded in [a, b]. This structure requires O((nk2)1+ρ) extra space and preprocessing time, and
O(k2+2ρnρ log(nk)) query time, where ρ = log

(
1 − r

2(b+2π−a)

)
/ log

(
1 − cr

2(b+2π−a)

)
≈ 1

c for
r ≪ 2(b + 2π − a).

7 Given a bound s on the span of the functions, we can a priori vertically shift all the functions such
that their minimum is 0, effectively making the range size smaller (within [0, s]) and improving the
performance of the structure (see the full version).

H. Kaplan and J. Tenenbaum 46:13

4 L2-based distances

This section, which appears in detail in the full version of the paper, gives LSH structures
for the L2 distance, the D

↕
2 distance and then the D2 distance.

First, we present discrete-sample-LSH, a simple LSH structure for functions f : [0, 1] →
[a, b] with respect to the L2 distance. The intuition behind discrete-sample-LSH is that the
L2 distance between the step functions f, g : [0, 1] → [a, b] can be approximated via a sample
of f and g at the evenly spaced set of points {i/n}n

i=0. Specifically, by replacing each function
f by the vector vecn(f) =

(
1√
n

f
(0

n

)
, 1√

n
f

(1
n

)
, . . . , 1√

n
f

(
n−1

n

))
, one can show that for

a large enough value of n ∈ N, L2(f, g) can be approximated by L2 (vecn(f) − vecn(g)).
We prove that for any two k-step functions f, g : [0, 1] → [a, b], and for any r > 0 and
c > 1: (1) if L2(f, g) ≤ r then L2

(
vecnr,c

(f), vecnr,c
(g)

)
≤ c1/4r, and (2) if L2(f, g) > cr

then L2
(
vecnr,c

(f), vecnr,c
(g)

)
> c3/4r for a sufficiently large nr,c (see full version for the

exact value). Note that the bounds A = c1/4r and B = c3/4r are selected for simplicity,
and other trade-offs are possible. The proof of this claim relies on the observation that
(f − g)2 is also a step function, and that L2

(
vecnr,c(f), vecnr,c(g)

)2 is actually the left
Riemann sum of (f − g)2, so as n → ∞, it must approach

∫ 1
0 (f(x) − g(x))2dx = (L2(f, g))2.

Discrete-sample-LSH replaces data and query functions f with the vector samples vecnr,c
(f),

and holds an (c1/4r, c3/4r)-LSH structure for the nr,c-dimensional Euclidean distance (e.g.,
the Spherical-LSH based structure of Andoni and Razenshteyn [1]). The resulting structure
has the parameter ρ = 1

2c−1 .
In the full version of the paper, we present an alternative structure tailored for the L2

distance for general (not necessarily k-step) integrable functions f : [0, 1] → [a, b], based on
a simple and efficiently computable asymmetric hash family which uses random-point-LSH
as a building block. We note that this structure’s ρ values are larger than those of
discrete-sample-LSH for small values of r.

Next, we give vertical-alignment-LSH– a structure for D
↕
2 . Recall that the mean-reduction

(Section 3.2) of a function f is defined to be f̂(x) = f(x)−
∫ 1

0 f(t)dt. We show that the mean-
reduction has no approximation loss when used for reducing D

↕
2 distances to L2 distances,

i.e., it holds that D
↕
2(f, g) = L2

(
f̂ , ĝ

)
for any f, g. Thus, to give an (r, cr)-LSH structure

for D
↕
2 , vertical-alignment-LSH simply holds a (r, cr)-LSH structure for L2, and translates

data and query functions f for D
↕
2 to data and query functions f̂ for L2.

Finally, we employ the same cloning and sliding method as in Section 3.3, to obtain an
(r, cr)-LSH structure for D2 using a structure for D

↕
2 .

5 Polygon distance

In this section (which appears in detail in the full version of the paper) we consider polygons,
and give efficient structures to find similar polygons to an input polygon. All the results
of this section depend on a fixed value m ∈ N, which is an upper bound on the number of
vertices in all the polygons which the structure supports (both data and query polygons).
Recall that the distance functions between two polygons P and Q which we consider, are
defined to be variations of the Lp distance between the turning functions tP and tQ of the
polygons, for p = 1, 2. To construct efficient structures for similar polygon retrieval, we apply
the structures from previous sections to the turning functions of the polygons.
To apply these structures and analyze their performance, it is necessary to bound the range
of the turning functions, and represent them as k-step functions. Since the turning functions
are (m + 1)-step functions, it therefore remains to compute bounds for the range of the
turning function tP .

STACS 2021

46:14 Locality Sensitive Hashing for Efficient Similar Polygon Retrieval

A coarse bound of [−(m + 1)π, (m + 3)π] can be derived by noticing that the initial value
of the turning function is in [0, 2π], that any two consecutive steps in the turning function
differ by an angle less than π, and that the turning function has at most m + 1 steps.
We give an improved and tight bound for the range of the turning function, which relies
on the fact that turning functions may wind up and accumulate large angles, but they
must almost completely unwind towards the end of the polygon traversal, such that tP (1) ∈
[tP (0) + π, tP (0) + 3π]. Our result is as follows.

▶ Theorem 11 (Simplified). Let P be a polygon with m vertices. Then for the turning
function tP , ∀x ∈ [0, 1], − (⌊m/2⌋ − 1) π ≤ tP (x) ≤ (⌊m/2⌋ + 3) π, and this bound is tight.

We denote the lower and upper bounds on the range by am = − (⌊m/2⌋ − 1) π and bm =
(⌊m/2⌋ + 3) π respectively, and define λm to be the size of this range, λm = (2 · ⌊m/2⌋ + 2)π.
Having the results above, we get LSH structures for the different corresponding polygonal
distances which support polygons with at most m vertices, by simply replacing each data
and query polygon by its turning function.

Regarding the distances D
↕
1 and D1, we can improve the bound above using the crucial

observation that even though the range of the turning function may be of size near mπ, its
span can actually only be of size approximately m

2 ·π (Theorem 12), where we define the span
of a function ϕ over the domain [0, 1], to be span(ϕ) = maxx∈[0,1](ϕ(x)) − minx∈[0,1](ϕ(x)).

A simplified version of this result is as follows.

▶ Theorem 12 (Simplified). Let Q be a polygon with m vertices. Then for the turning
function tQ, it holds that span(tQ) ≤ (⌊m/2⌋ + 1) π = λm/2. Moreover, for any ε > 0 there
exists such a polygon with span at least (⌊m/2⌋ + 1) π − ε.

Since the D
↕
1 distance is invariant to vertical shifts, we can improve the overall performance

of our D
↕
1 LSH structure by simply mapping each data and query polygon P ∈ S to its

vertically shifted turning function x → tP (x) − minz∈[0,1] tP (z) (such that its minimal value
becomes 0). This shift morphs the ranges of the set of functions F to be contained in
[0, maxf∈F (span(f))]. By Theorem 12, we can therefore use the adjusted bounds of a = 0
and b = λm/2 (each function f ∈ S0 is obviously non-negative, but also bounded above by
λm/2 by Theorem 12), and effectively halve the size of the range from λm = bm − am to
λm/2.

To summarize our results for polygons, we use the Õ notation to hide multiplicative
constants which are small powers (e.g., 5) of m, 1

r , and 1√
c−1 :

For the D1 distance, for any c > 2 we give an (r, cr)-LSH structure which for r ≪ 2λm

c

roughly requires Õ(n1+ρ) preprocessing time and space, and Õ(n1+ρ log n) query time, where
ρ is roughly 2

c . Also for D1, for any c > 1 we get an (r, cr)-LSH structure which for r ≪ λm

roughly requires O((nm2)1+ρ) preprocessing time and space, and O(m2+2ρnρ log(nm)) query
time, where ρ is roughly 1/c.

For the D2 distance, we give an (r, cr)-LSH structure which requires Õ(n1+ρ) preprocessing
time, Õ(n1+ρ) space, and Õ(nρ) query time, where ρ = 1

2
√

c−1 .

6 Conclusions and directions for future work

We present several novel LSH structures for searching nearest neighbors of functions with
respect to the L1 and the L2 distances, and variations of these distances which are invariant
to horizontal and vertical shifts. This enables us to devise efficient similar polygon retrieval
structures, by applying our nearest neighbor data structures for functions, to the turning
functions of the polygons. For efficiently doing this, we establish interesting bounds on the
range and span of the turning functions of m-gons.

H. Kaplan and J. Tenenbaum 46:15

As part of our analysis, we proved that for any two functions f, g : [0, 1] → [a, b] such that
D

↕
1(f, g) = r, it holds that L1(f̂ , ĝ) ≤

(
2 − r

b−a

)
· r. This tight approximation guarantee may

be of independent interest. An interesting line for further research is to find near neighbor
structures with tighter guarantees for simple and frequently occurring families of polygons
such as rectangles, etc.

All the reductions we describe have some performance loss, which is reflected in the
required space, preprocessing and query time. Finding optimal reduction parameters (e.g., an
optimal value of ξ in Section 3.3 for polygons) and finding more efficient reductions is another
interesting line for further research. Finding an approximation scheme for the horizontal
distance (similarly to the

(
2 − r

b−a

)
-approximation for the D

↕
1 distance which appears in

Section 3.2) is another intriguing open question.

References
1 Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate

near neighbors. In STOC, pages 793–801. ACM, 2015.
2 Esther M Arkin, L Paul Chew, Daniel P Huttenlocher, Klara Kedem, and Joseph S Mitchell.

An efficiently computable metric for comparing polygonal shapes. Technical report, Cornell
University, 1991.

3 Maria Astefanoaei, Paul Cesaretti, Panagiota Katsikouli, Mayank Goswami, and Rik Sarkar.
Multi-resolution sketches and locality sensitive hashing for fast trajectory processing. In
SIGSPATIAL, pages 279–288. ACM, 2018.

4 Artem Babenko, Anton Slesarev, Alexandr Chigorin, and Victor Lempitsky. Neural codes for
image retrieval. In ECCV, pages 584–599. Springer, 2014.

5 Dana H Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern
Recognition, 13(2):111–122, 1981.

6 Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. Using the time warping distance for
fourier-based shape retrieval. Technical report, IEIIT-BO-03-02, 2002.

7 Dusan Cakmakov and Emilija Celakoska. Estimation of curve similarity using turning functions.
International Journal of Applied Mathematics, 15:403–416, 2004.

8 Matteo Ceccarello, Anne Driemel, and Francesco Silvestri. Fresh: Fréchet similarity with
hashing. In WADS, pages 254–268. Springer, 2019.

9 Edgar Chávez, Ana C Chávez Cáliz, and Jorge L López-López. Affine invariants of generalized
polygons and matching under affine transformations. Computational Geometry, 58:60–69,
2016.

10 Anne Driemel and Francesco Silvestri. Locality-sensitive hashing of curves. In SOCG, pages
37:1–37:16, 2017.

11 Arnold Filtser, Omrit Filtser, and Matthew J Katz. Approximate nearest neighbor for
curves—simple, efficient, and deterministic. arXiv preprint, 2019. arXiv:1902.07562.

12 Kristen Grauman and Trevor Darrell. Fast contour matching using approximate earth mover’s
distance. In CVPR, pages I–220. IEEE, 2004.

13 Joachim Gudmundsson and Rasmus Pagh. Range-efficient consistent sampling and locality-
sensitive hashing for polygons. In ISAAC, 2017.

14 Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: Towards
removing the curse of dimensionality. Theory of computing, 8(1):321–350, 2012.

15 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In STOC, pages 604–613. ACM, 1998.

16 Yehezkel Lamdan and Haim J Wolfson. Geometric hashing: A general and efficient model-based
recognition scheme. In ICCV, page 238–249, 1988.

17 Lambert Schomaker, Edward de Leau, and Louis Vuurpijl. Using pen-based outlines for
object-based annotation and image-based queries. In AVI, pages 585–592. Springer, 1999.

STACS 2021

http://arxiv.org/abs/1902.07562

46:16 Locality Sensitive Hashing for Efficient Similar Polygon Retrieval

18 Shinji Umeyama. Parameterized point pattern matching and its application to recognition of
object families. TPAMI, 15(2):136–144, 1993.

19 Remco C Veltkamp and Michiel Hagedoorn. State of the art in shape matching. In Principles
of visual information retrieval, pages 87–119. Springer, 2001.

20 Charles T Zahn and Ralph Z Roskies. Fourier descriptors for plane closed curves. TOC,
100(3):269–281, 1972.

Binary Matrix Completion Under Diameter
Constraints
Tomohiro Koana !

Algorithmics and Computational Complexity, Faculty IV, Technische Universität Berlin, Germany

Vincent Froese !

Algorithmics and Computational Complexity, Faculty IV, Technische Universität Berlin, Germany

Rolf Niedermeier !

Algorithmics and Computational Complexity, Faculty IV, Technische Universität Berlin, Germany

Abstract
We thoroughly study a novel but basic combinatorial matrix completion problem: Given a binary
incomplete matrix, fill in the missing entries so that the resulting matrix has a specified maximum
diameter (that is, upper-bounding the maximum Hamming distance between any two rows of the
completed matrix) as well as a specified minimum Hamming distance between any two of the matrix
rows. This scenario is closely related to consensus string problems as well as to recently studied
clustering problems on incomplete data.

We obtain an almost complete picture concerning the complexity landscape (P vs NP) regarding
the diameter constraints and regarding the number of missing entries per row of the incomplete
matrix. We develop polynomial-time algorithms for maximum diameter three, which are based on
Deza’s theorem [Discret. Math. 1973, J. Comb. Theory, Ser. B 1974] from extremal set theory. In
this way, we also provide one of the rare links between sunflower techniques and stringology. On the
negative side, we prove NP-hardness for diameter at least four. For the number of missing entries
per row, we show polynomial-time solvability when there is only one missing entry and NP-hardness
when there can be at least two missing entries. In general, our algorithms heavily rely on Deza’s
theorem and the correspondingly identified sunflower structures pave the way towards solutions
based on computing graph factors and solving 2-SAT instances.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Mathematics of computing → Discrete mathematics

Keywords and phrases sunflowers, binary matrices, Hamming distance, stringology, consensus
problems, complexity dichotomy, combinatorial algorithms, graph factors, 2-Sat, Hamming radius

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.47

Related Version Full Version: https://arxiv.org/abs/2002.05068

Funding Tomohiro Koana: Partially supported by the DFG project FPTinP (NI 369/16).

Acknowledgements We are grateful to Christian Komusiewicz for helpful feedback on an earlier
version of this work and to Stefan Szeider for pointing us to the work on clustering incomplete
data [9]. We also thank Curtis Bright for mentioning the connection to the Hadamard matrix
completion problem.

1 Introduction

In combinatorial matrix completion problems, given an incomplete matrix over a fixed
alphabet with some missing entries, the goal is to fill in the missing entries such that the
resulting “completed matrix” (over the same alphabet) fulfills a desired property. Performing
a parameterized complexity analysis, Ganian et al. [14, 13] and Eiben et al. [9] recently
contributed to this growing field by studying various desirable properties. More specifically,
Ganian et al. [14] studied the two properties of minimizing the rank or of minimizing the

© Tomohiro Koana, Vincent Froese, and Rolf Niedermeier;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 47; pp. 47:1–47:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tomohiro.koana@tu-berlin.de
https://orcid.org/0000-0002-8684-0611
mailto:vincent.froese@tu-berlin.de
https://orcid.org/0000-0002-8499-0130
mailto:rolf.niedermeier@tu-berlin.de
https://orcid.org/0000-0003-1703-1236
https://doi.org/10.4230/LIPIcs.STACS.2021.47
https://arxiv.org/abs/2002.05068
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Binary Matrix Completion Under Diameter Constraints

0

1 0

1

1

1

0

0

1

0

1

1

0

1

0

0

1

0

1

0

1

0

0

1

1

1

0

0

1

0

1

1

0

1

0

0

1

0

1

0

0

0

0

1

1

1

0

0

1

0

1

1

0

1

0

0

1

0 0 0 0 0

Figure 1 An illustration of matrix completion problems with the input matrix (left). Missing
entries (and their completions) are framed by thick lines. The middle matrix is a completion of
diameter four and the right matrix is a completion of radius three with the center vector below. Note
that missing entries in the same column might be filled with different values to meet the diameter
constraint, whereas this is never necessary for the radius constraint.

number of distinct rows of the completed matrix. Ganian et al. [13] analyzed the complexity of
completing an incomplete matrix so that it fulfills certain constraints and can be partitioned
into subspaces of small rank. Eiben et al. [9] investigated clustering problems where one wants
to partition the rows of the completed matrix into a given number of clusters of small radius
or of small diameter. Finally, Koana et al. [20] studied two cases of completing the matrix into
one which has small (local) radius. The latter two papers [9, 20] rely on Hamming distance as
a distance measure; in general, all considered matrix completion problems are NP-hard and
thus the above papers [9, 14, 13, 20] mostly focused on parameterized complexity studies. In
this work, we focus on a desirable property closely related to small radius, namely diameter
bounds. Doing so, we further focus on the case of binary alphabet. For a matrix T ∈ {0, 1}n×ℓ,
let γ(T) := mini̸=i′∈[n] d(T[i], T[i′]) and δ(T) := maxi̸=i′∈[n] d(T[i], T[i′]), where d denotes
the Hamming distance and T[i] denotes the i-th row of T. We use the special symbol □ to
represent a missing entry. Specifically, we study the following problem.

Diameter Matrix Completion (DMC)
Input: An incomplete matrix S ∈ {0, 1,□}n×ℓ and α ≤ β ∈ N.
Question: Is there a completion T ∈ {0, 1}n×ℓ of S with α ≤ γ(T) and δ(T) ≤ β?

Before motivating the study of DMC, we refer to the example in Figure 1 that also
illustrates significant differences between radius minimization [20] and diameter minimization
(the latter referring to δ(T) ≤ β above).

Compare DMC with Constraint Radius Matrix Completion as studied by Koana
et al. [20]:

Constraint Radius Matrix Completion (ConRMC)
Input: An incomplete matrix S ∈ {0, 1,□}n×ℓ and r ∈ Nn.
Question: Is there a completion T ∈ {0, 1}n×ℓ of S and a row vector v ∈ {0, 1}ℓ such

that d(v, T[i]) ≤ r[i] for all i ∈ [n]?

An important difference between DMC and ConRMC is that in DMC we basically have
to compare all rows against each other, but in ConRMC we have to compare one “center row”
against all others. Indeed, this makes these two similarly defined problems quite different in
many computational complexity aspects.

Now, let us consider potential application scenarios where DMC may be relevant. It is a
natural combinatorial matrix problems which may appear in the following contexts:

T. Koana, V. Froese, and R. Niedermeier 47:3

In coding theory, one may want to “design” (by filling in the missing entries) codewords
that are pairwise neither too close (parameter α in DMC) nor too far (parameter β

in DMC) from each other. One prime example is the completion into a Hadamard
matrix [18]. This is a special case of DMC with n = ℓ and α = β = n/2.
In computational biology, one may want to minimize the maximum distance of sequences
in order to determine their degree of relatedness (thus minimizing β); missing entries
refer to missing data points.1
In data science, each row may represent an entity with its attributes, and solving the
DMC problem may fulfill some constraints with respect to the pairwise (dis)similarity of
the completed entities.
In stringology, DMC seems to constitute a new and natural problem, closely related to
several intensively studied consensus problems (many of which are NP-hard for binary
alphabets) [1, 4, 5, 6, 16, 17, 21, 23].

Somewhat surprisingly, although simple to define and well-motivated, in the literature
there seems to be no systematic study of DMC and its computational complexity. The two
closest studies are the work of Eiben et al. [9] and Koana et al. [20]. Eiben et al. [9] focus
on clustering while we focus on only finding one cluster (that is, the whole resulting matrix
with small diameter). Another crucial difference from the work of Eiben et al. [9] is that
we also model the aspect of achieving a minimum pairwise distance (not only a maximum
diameter); actually, one may say that we essentially combine their “dispersion” and diameter
clustering problems (for the special case of a single cluster). In this sense the problems are
incomparable.

We perform a more fine-grained complexity study in terms of diameter bounds α, β and
the maximum number k of missing entries in any row. Note that in bioinformatics applications
matrix rows may represent sequences with few corrupted data points, thus resulting in small
values for k. In fact, computational complexity with respect to this kind of parameters has
been studied in the context of computational biology [1, 5, 17]. We identify polynomial-time
cases as well as NP-hard cases, taking significant steps towards a computational complexity
dichotomy (polynomial-time solvable versus NP-hard), leaving fairly few cases open. While
the focus of the previous works [9, 20] is on parameterized complexity studies, in this
work we settle more basic algorithmic questions on the DMC problem, relying on several
combinatorial insights, including results from (extremal) combinatorics (most prominently,
Deza’s theorem [8]). Indeed, we believe that exploiting sunflowers based on Deza’s theorem
in combination with corresponding use of algorithms for 2-SAT and graph factors is our
most interesting technical contribution. In this context, we also observe the phenomenon
that the running time bounds that we can prove for odd values of α (the “lower bound for
dissimilarity”) are significantly better than the ones for even values of α – indeed, for even
values of α the running time exponentially depends on α while it is independent of α for odd
values of α. We survey our results in Figure 2 which also depicts remaining open cases.

2 Preliminaries

For m ≤ n ∈ N, let [m, n] := {m, . . . , n} and let [n] := [1, n].
For a matrix T ∈ {0, 1}n×ℓ, we denote by T[i, j] the entry in the i-th row and j-th

column (i ∈ [n] and j ∈ [ℓ]) of T. We use T[i, :] (or T[i] in short) to denote the row vector
(T[i, 1], . . . , T[i, ℓ]) and T[:, j] to denote the column vector (T[1, j], . . . , T[n, j])T . For subsets

1 Here, it would be particularly natural to also study the case of non-binary alphabets; however, most of
our positive results probably only hold for binary alphabet.

STACS 2021

47:4 Binary Matrix Completion Under Diameter Constraints

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

α

β

(a) Complexity of DMC with respect to combi-
nations of constant values for α and β.

k

β − α

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

(b) Complexity of DMC with respect to com-
binations of the maximum number k of missing
entries in any row and β − α.

Figure 2 Overview of our results. Green denotes polynomial-time solvability and red denotes
NP-hardness. White cells indicate open cases.

I ⊆ [n] and J ⊆ [ℓ], we write T[I, J] to denote the submatrix containing only the rows in
I and the columns in J . We abbreviate T[I, [ℓ]] and T[[n], J] as T[I, :] (or T[I] for short)
and T[:, J], respectively. We use the special character □ for a missing entry. A matrix
S ∈ {0, 1,□}n×ℓ is called incomplete if it contains a missing entry, and it is called complete
otherwise. We say that T ∈ {0, 1}n×ℓ is a completion of S ∈ {0, 1,□}n×ℓ if either S[i, j] = □
or S[i, j] = T[i, j] holds for all i ∈ [n] and j ∈ [ℓ].

Let u, w ∈ {0, 1,□}ℓ be row vectors. Let D(u, w) := {j ∈ [ℓ] | u[j] ̸= w[j] ∧ u[j] ̸=
□ ∧ w[j] ̸= □} be the set of column indices where u and v disagree (not considering
positions with missing entries). The Hamming distance between u and w is d(u, w) :=
|D(u, w)|. Note that the Hamming distance obeys the triangle inequality d(u, w) ≤ d(u, v) +
d(v, w) for a complete vector v ∈ {0, 1}ℓ. For a subset J ⊆ [ℓ], we also define dJ(u, w) :=
d(u[J], w[J]). Let u′, v′, w′ ∈ {0, 1}ℓ be complete row vectors. Then, it holds that d(u′, w′) =
|D(u′, v′)△D(v′, w′)| = |D(u′, v′)|+|D(v′, w′)|−2|D(u′, v′)∩D(v′, w′)|. The binary operation
u ⊕ v replaces the missing entries of u with the corresponding entries in v for v ∈ {0, 1}ℓ.
We sometimes use string notation to represent row vectors, such as 001 for (0, 0, 1).

3 Constant Diameter Bounds α and β

In this section we consider the special case (α, β)-DMC of DMC, where α ≤ β are some
fixed constants. We prove the results depicted in Figure 2a. To start with, we show the
following simple linear-time special case which will subsequently be used several times.

▶ Lemma 1. DMC can be solved in linear time for a constant number ℓ of columns.

Proof. If α > 0 and n > 2ℓ, then there is no completion T of S with γ(T) ≥ α > 0. Thus,
we can assume that the input matrix comprises of at most nℓ ≤ 2ℓ · ℓ (that is, constantly
many) entries for the case α > 0. Suppose that α = 0. Consider a set V ⊆ {0, 1}ℓ in which
the pairwise Hamming distances are at most β. We simply check whether each row vector in
the input matrix can be completed to some row vector in V in O(n · 2ℓ) = O(n) time. Since
there are at most 22ℓ choices for V, this procedure can be done in linear time. ◀

T. Koana, V. Froese, and R. Niedermeier 47:5

3.1 Polynomial time for α = 0 and β ≤ 3
As an entry point, we show that (0, 1)-DMC is easily solvable. To this end, we call a column
vector dirty if it contains both 0 and 1. Clearly, for α = 0, we can ignore columns that are
not dirty since they can always be completed without increasing the Hamming distances
between rows. Hence, throughout this subsection, we assume that the input matrix contains
only dirty columns. Now, any (0, 1)-DMC instance is a Yes-instance if and only if there is
at most one dirty column in the input matrix:

▶ Lemma 2. A matrix S ∈ {0, 1,□}n×ℓ admits a completion T ∈ {0, 1}n×ℓ with δ(T) ≤ 1 if
and only if S contains at most one dirty column.

Proof. Suppose that S contains two dirty columns S[:, j0] and S[:, j1] for j0 ̸= j1 ∈ [ℓ]. We
claim that δ(T) ≥ 2 holds for any completion T of S. Let i ∈ [n]. Then, there exist i0, i1 ∈ [n]
with T[i, j0] ̸= T[i0, j0] and T[i, j1] ̸= T[i1, j1]. If δ(T) ≤ 1, then we obtain T[i0, j1] = T[i, j1]
and T[i1, j0] = T[i, j0]. Now we have d(T[i0], T[i1]) ≥ 2 because T[i0, j0] ̸= T[i1, j0] and
T[i0, j1] ̸= T[i1, j1]. The reverse direction follows easily. ◀

Lemma 2 implies that one can solve (0, 1)-DMC in linear time. In the following, we extend
this to a linear-time algorithm for (0, 2)-DMC (Theorem 12) and a polynomial-time algorithm
for (0, 3)-DMC (Theorem 13).

For these algorithms, we make use of a concept from extremal set theory, known as
∆-systems [19]. We therefore consider matrices as certain set systems.

▶ Definition 3. For a matrix T ∈ {0, 1}n×ℓ, let T denote the set system {D(T[i], T[n]) |
i ∈ [n − 1]}. Moreover, for x ∈ N, let Tx denote the set system {D(T[i], T[n]) | i ∈
[n − 1], d(T[i], T[n]) = x}.

The set system T contains the subsets (without duplicates) of column indices corresponding
to the columns where the row vectors T[1], . . . , T[n − 1] differ from T[n]. For given T[n], all
the rows of T can be determined from T , as we have binary alphabet.

The concept of ∆-systems has previously been used to obtain efficient algorithms [9, 10, 11].
They are defined as follows:

▶ Definition 4 (Weak ∆-system). A set family F = {S1, . . . , Sm} is a weak ∆-system if
there exists an integer λ ∈ N such that |Si ∩ Sj | = λ for any pair of distinct sets Si, Sj ∈ F .
The integer λ is called the intersection size of F .

▶ Definition 5 (Strong ∆-system, Sunflower). A set family F = {S1, . . . , Sm} is a strong
∆-system (or sunflower) if there exists a subset C ⊆ S1 ∪ · · · ∪ Sm such that Si ∩ Sj = C for
any pair of distinct sets Si, Sj ∈ F . We call the set C the core and the sets Pi = Si \ C the
petals of F .

Clearly, every strong ∆-system is a weak ∆-system.
Our algorithms employ the combinatorial property that under certain conditions the set

system T of a matrix T with bounded diameter forms a strong ∆-system (which can be
algorithmically exploited). We say that a family F of sets is h-uniform if |S| = h holds for
each S ∈ F . Deza [8] showed that an h-uniform weak ∆-system is a strong ∆-system if its
cardinality is sufficiently large (more precisely, if |F| ≥ h2 − h + 2). Moreover, Deza [7] also
proved a stronger lower bound for uniform weak ∆-systems in which the intersection size is
exactly half of the cardinality of each set.

▶ Lemma 6 ([7, Théorème 1.1]). Let F be a (2µ)-uniform weak ∆-system with intersection
size µ. If |F| ≥ µ2 + µ + 2, then F is a strong ∆-system.

STACS 2021

47:6 Binary Matrix Completion Under Diameter Constraints

We extend this result to the case in which the set size is odd in the full version.

▶ Lemma 7. Let F be a (2µ + 1)-uniform weak ∆-system.
(i) If the intersection size of F is µ + 1 and |F| ≥ µ2 + µ + 3, then F is a strong ∆-system.
(ii) If the intersection size of F is µ and |F| ≥ (µ+1)2 +µ+3, then F is a strong ∆-system.

In order to obtain a linear-time algorithm for (0, 2)-DMC, we will prove that for T ∈
{0, 1}n×ℓ with δ(T) ≤ 2 and sufficiently large ℓ, the set system T is a sunflower. This yields
a linear-time algorithm via a reduction to a linear-time solvable special case of ConRMC.
We start with a simple observation on matrices of diameter two, which will be helpful in the
subsequent proofs.

▶ Observation 8. Let T ∈ {0, 1}n×ℓ be a matrix with δ(T) ≤ 2. For each T1 ∈ T1 and
T2, T ′

2 ∈ T2, it holds that T1 ⊆ T2 and that |T2 ∩ T ′
2| ≥ 1 (otherwise there exists a pair of

rows with Hamming distance three).

The next lemma states that |T2| restricts the number of columns.

▶ Lemma 9. Let T ∈ {0, 1}n×ℓ be a matrix consisting of only dirty columns with δ(T) ≤ 2.
If T2 ̸= ∅, then ℓ ≤ |T2| + 1.

Proof. First, observe that ℓ = |
⋃

T1∈T1
T1 ∪

⋃
T2∈T2

T2| because each column of T is dirty.
Thus, it follows from Observation 8 that ℓ = |

⋃
T2∈T2

T2|. We prove the lemma by induction
on |T2|. Clearly, we have at most two columns if |T2| = 1. Suppose that |T2| ≥ 2. For T2 ∈ T2,
we claim that

ℓ =

∣∣∣∣∣ ⋃
T ′

2∈T2

T ′
2

∣∣∣∣∣ =

∣∣∣∣∣ ⋃
T ′

2∈T2\{T2}

T ′
2

∣∣∣∣∣ +

∣∣∣∣∣ T2

∖ ⋃
T ′

2∈T2\{T2}

T ′
2

∣∣∣∣∣ ≤ |T2| + 1.

The induction hypothesis gives us that |
⋃

T ′
2∈T2\{T2} T ′

2| ≤ |T2|. For the other term, observe
that |T2 \

⋃
T ′

2∈T2\{T2} T ′
2| ≤ |T2 \ T ′′

2 | = |T2| − |T2 ∩ T ′′
2 | for T ′′

2 ∈ T2 \ {T2}. Hence, it follows
from Observation 8 that the second term is at most 1. ◀

Next, we show that a matrix with diameter at most two has radius at most one as long
as it has at least five columns. Thus, we can solve DMC by solving ConRMC with radius
one, which can be done in linear time via a reduction to 2-SAT [20]. We use the following
lemma concerning certain intersections of a set with elements of a sunflower.

▶ Lemma 10 ([11, Lemma 8]). Let λ ∈ N, let F be a sunflower with core C, and let X be a
set such that |X ∩ S| ≥ λ for all S ∈ F . If |F| > |X|, then λ ≤ |C| and |X ∩ C| ≥ λ.

▶ Lemma 11. Let T ∈ {0, 1}n×ℓ be a matrix with δ(T) ≤ 2. If ℓ ≥ 5, then there exists a
vector v ∈ {0, 1}ℓ such that d(v, T[i]) ≤ 1 for all i ∈ [n].

Proof. If T2 = ∅, then we are immediately done by definition, because d(T[n], T[i]) ≤ 1 for
all i ∈ [n] (see Figure 3a for an illustration). Since ℓ ≥ 5, Lemma 9 implies |T2| ≥ 4.

It follows from Observation 8 that T2 is a 2-uniform weak ∆-system with intersection
size one (see Figure 3b). Thus, T2 is a sunflower by Lemma 6. Let {jcore} denote the core
of T2. Note that |T1 ∩ T2| ≥ 1 holds for each T1 ∈ T1 and T2 ∈ T2 by Observation 8. Now
we can infer from Lemma 10 (let X = T1, λ = 1, and F = T2) that T ⊆ {T1}, where
T1 = {jcore}.

Hence, it holds that d(v, T[i]) ≤ 1 for all i ∈ [n], where v ∈ {0, 1}ℓ is a row vector such
that v[jcore] = 1 − T[n, jcore] and v[j] = T[n, j] for each j ∈ [ℓ] \ {jcore}. ◀

T. Koana, V. Froese, and R. Niedermeier 47:7

(a) The case T2 = ∅. (b) The case |T2| ≥ 4.

Figure 3 Illustration of Lemma 11 with n = 6. A black cell denotes a value different from
row T[6]. In (b) the set system T2 forms a sunflower with core {2}. In both cases the radius is one.

▶ Theorem 12. (0, 2)-DMC can be solved in O(nℓ) time.

Proof. Let S ∈ {0, 1,□}n×ℓ be an input matrix of (0, 2)-DMC. If ℓ ≤ 4, then we use the
linear-time algorithm of Lemma 1. Henceforth, we assume that ℓ ≥ 5.

We claim that S is a Yes-instance if and only if the ConRMC instance I = (S, 1n) is a
Yes-instance.

(⇒) Let T be a completion of S with δ(T) ≤ 2. Since ℓ ≥ 5, there exists a vector v such
that d(v, T[i]) ≤ 1 for all i ∈ [n] by Lemma 11. It follows that I is a Yes-instance.

(⇐) Let v be a solution of I. Let T be the matrix such that for each i ∈ [n], T[i] = S[i]⊕v

(recall that u ⊕ v denotes the vector obtained from u by replacing all missing entries of u

with the entries of v in the corresponding positions). Then, we have d(v, T[i]) ≤ 1 for each
i ∈ [n]. By the triangle inequality, we obtain d(T[i], T[i′]) ≤ d(v, T[i]) + d(v, T[i′]) ≤ 2 for
each i, i′ ∈ [n].

Since ConRMC can be solved in linear time when maxi∈[n] r[i] = 1 [20, Theorem 1], it
follows that (0, 2)-DMC can be solved in linear time. ◀

In the full version, we show polynomial-time solvability of (0, 3)-DMC. The overall idea is,
albeit technically more involved, similar to (0, 2)-DMC. We first show that the set family T
of a matrix T with δ(T) = 3 contains a sunflower by Lemma 7. We then show that such a
matrix has a certain structure which again allows us to reduce the problem to the linear-time
solvable special case of ConRMC with radius one.

▶ Theorem 13. (0, 3)-DMC can be solved in O(nℓ4) time.

Our algorithms work via reductions to ConRMC. Although ConRMC imposes an upper
bound on the diameter implicitly by the triangle inequality, it is seemingly difficult to enforce
any lower bounds (that is, α > 0). In the next subsection, we will see polynomial-time
algorithms for α > 0, based on reductions to the graph factorization problem.

3.2 Polynomial time for β = α + 1

We now give polynomial-time algorithms for (α, β)-DMC with constant α > 0 given that
β ≤ α + 1. As in Section 3.1, our algorithms exploit combinatorial structures revealed by
Deza’s theorem (Lemmas 6 and 7). Recall that T denotes a set system obtained from a
complete matrix T (Definition 3). We show that T essentially is a sunflower when γ(T) ≥ α

and δ(T) ≤ α + 1. For the completion into such a sunflower, it suffices to solve the following
matrix completion problem, which we call Sunflower Matrix Completion.

STACS 2021

47:8 Binary Matrix Completion Under Diameter Constraints

Sunflower Matrix Completion (SMC)
Input: An incomplete matrix S ∈ {0, 1,□}n×ℓ and s, m ∈ N.
Question: Is there a completion T ∈ {0, 1}n×ℓ of S such that

D(T[1], T[n]), . . . , D(T[n − 1], T[n]) are pairwise disjoint sets each
of size at most s and

∑
i∈[n−1] |D(T[i], T[n])| ≥ m.

Intuitively speaking, the problem asks for a completion into a sunflower with empty core
and bounded petal sizes. All algorithms presented in this subsection are via reductions to
SMC. First, we show that SMC is indeed polynomial-time solvable. We prove this using a
well-known polynomial-time algorithm for the graph problem (g, f)-Factor [12].

(g, f)-Factor
Input: A graph G = (V, E), functions f, g : V → N, and m′ ∈ N.
Question: Does G contain a subgraph G′ = (V, E′) such that |E′| ≥ m′ and g(v) ≤

degG′(v) ≤ f(v) for all v ∈ V ?

▶ Lemma 14. For constant s > 0, SMC can be solved in O(nℓ
√

n + ℓ) time.

Proof. Let (S, s, m) be an SMC instance. Let ax
j be the number of occurrences of x ∈ {0, 1}

in S[:, j] for each j ∈ [ℓ]. We can assume that a0
j ≥ a1

j for each j ∈ [ℓ] (otherwise swap the
occurrences of 0’s and 1’s in the column). If a0

j ≥ 2 and S[n, j] = 1 for some j ∈ [ℓ], then we
can return No since there will be two intersecting sets. Also, if a1

j ≥ 2, then we return No.
We construct an instance of (g, f)-Factor as follows. We introduce a vertex ui for

each i ∈ [n − 1] and a vertex vj for each j ∈ [ℓ]. The resulting graph G will be a bipartite
graph with one vertex subset {u1, . . . , un−1} representing rows and the other {v1, . . . , vℓ}
representing columns. Essentially, we add an edge between ui and vj if the column S[:, j] can
be completed such that the i-th entry differs from all other entries on S[:, j] (see Figure 4 for
an illustration). Intuitively, such an edge encodes the information that column index j can
be contained in a petal of the sought sunflower. Formally, there is an edge {ui, vj} if and
only if there is a completion tj ∈ {0, 1}n of S[:, j] in which tj [i] = 1 − tj [n] and tj [h] = tj [n]
for all h ∈ [n − 1] \ {i}. We set g(ui) := 0 and f(ui) := s for each i ∈ [n − 1], g(vj) := a1

j

and f(vj) := 1 for each j ∈ [ℓ], and m′ := m. This construction can be done in O(nℓ) time.
To see this, note that the existence of an edge {ui, vj} only depends on a0

j , a1
j , and S[i, j].

If a0
j ≤ 1 and a1

j = 0, then add the edge {ui, vj}. The corresponding completion tj can
be seen as follows:

If S[h, j] = □ for all h ∈ [n − 1], then let tj [i] := 1 and let tj [h] := 0 for all h ∈ [n] \ {i}.
If S′[h, j] = 0 for some h ∈ [n − 1], then S′[h′, j] = □ for all h′ ∈ [n] \ {h}. If h ≠ i,
then let tj [i] := 1 and let tj [h] := 0 for all h ∈ [n] \ {i}. Otherwise, let tj [h] := 1 for all
h ∈ [n] \ {i}.

If a0
j = 1 and a1

j = 1, then add the edge {ui, vj} if S[i, j] ̸= □.
If a0

j ≥ 2 and a1
j = 0, then add the edge {ui, vj} if S[i, j] = □.

If a0
j ≥ 2 and a1

j = 1, then add the edge {ui, vj} if S[i, j] = 1 (because S[n, j] must be
completed with 0).

The correctness of the reduction easily follows from the definition of an edge: If T is a
solution for (S, s, m), then the corresponding subgraph of G contains the edge {ui, vj} for
each i ∈ [n − 1] and each j ∈ D(T[i], T[n]). Conversely, a completion of S is obtained from a
subgraph G′ by taking for each edge {ui, vj} the corresponding completion tj as the j-th
column. Note that no vertex vj can have two incident edges since f(vj) = 1. Moreover, if vj

has no incident edges, then this implies that g(vj) = a1
j = 0. Hence, we can complete all

missing entries in column j by 0.

T. Koana, V. Froese, and R. Niedermeier 47:9

0

0
0 0

1

0
1 0

0

1

1
1
1

1

0

0
1

0
0

0

0
0
0

0

0

u1

u2

u3

u4

v1 v2 v3 v4 v5
u1 u2 u3 u4

v1 v2 v3 v4 v5

Figure 4 A completion of a 5 × 5 incomplete matrix (left). The known entries are highlighted in
gray. A bipartite graph as constructed in the reduction (right). Note that the entries framed by
thick lines (which differ from all others in the same column) correspond to the subgraph represented
by the thick lines.

Regarding the running time, note that the constructed graph G has at most nℓ edges
and

∑
i∈[n−1] f(ui) ∈ O(n) and

∑
j∈[ℓ] f(vj) ∈ O(ℓ). Since (g, f)-Factor can be solved

in O(|E|
√

f(V)) time [12] for f(V) =
∑

v∈V f(v), SMC can be solved in O(nℓ
√

n + ℓ)
time. ◀

Using Lemma 14, we first show that (α, α)-DMC can be solved in polynomial time.

▶ Theorem 15. (α, α)-DMC can be solved in O(nℓ
√

n + ℓ) time.

Proof. We first show that (α, α)-DMC can easily be solved if α is odd. Consider row vectors
u, v, w ∈ {0, 1}ℓ and let U := D(u, v) and W := D(v, w). Then, d(u, v) + d(v, w) + d(w, u) =
|U |+|W |+(|U |+|W |−2|U ∩W |) = 2(|U |+|W |−|U ∩W |) and hence d(u, v)+d(v, w)+d(w, u)
is even. Thus, we can immediately answer No if n ≥ 3. It is also easy to see that DMC can
be solved in linear time if n ≤ 2.

We henceforth assume that α is even. Eiben et al. [9, Theorem 34] provided a linear-time
algorithm for (0, α)-DMC with constant n (and arbitrary α) using reductions to integer
linear programming (ILP). It is straightforward to adapt their ILP formulation to show
that (α, α)-DMC can also be solved in linear time for constant n (basically, we just need
the additional constraint that each pairwise distance is at least α). So we can assume that
n ≥ (α/2)2 + (α/2) + 3 (otherwise (α, α)-DMC can be solved in linear time). We claim
that there is a completion T of S with γ(T) = δ(T) = α if and only if the SMC instance
(S′, α/2, αn/2) is a Yes-instance for the matrix S′ ∈ {0, 1,□}(n+1)×ℓ obtained from S with
an additional row vector □ℓ.

(⇒) Let T be a completion of S with γ(T) = δ(T) = α. Then, T is a weak ∆-system
with intersection size α/2. Since |T | ≥ (α/2)2 + (α/2) + 2, Lemma 6 tells us that T is a
sunflower. Let C be the core of T . Consider the completion T′ of S′ such that

T′[[n], :] = T,
T′[n + 1, j] = 1 − T[n, j] for each j ∈ C, and
T′[n + 1, j] = T[n, j] for each j ∈ [ℓ] \ C.

Note that D(T′[i], T′[n + 1]) = D(T′[i], T′[n]) \ C for each i ∈ [n − 1]. Note also that
D(T′[n], T′[n + 1]) = C. Hence, D(T′[1], T′[n + 1]), . . . , D(T′[n], T′[n + 1]) are pairwise
disjoint sets of size α/2.

(⇐) Let T′ be a completion of S′ such that D(T′[1], T′[n + 1]), . . . , D(T′[n], T′[n + 1])
are pairwise disjoint sets of size α/2. For the completion T = T′[[n], :] of S, it holds
that d(T[i], T[i′]) = |D(T′[i], T′[n + 1])△D(T′[i′], T′[n + 1])| = |D(T′[i], T′[n + 1])| +
|D(T′[i′], T′[n + 1])| = α for each i, i′ ∈ [n]. ◀

STACS 2021

47:10 Binary Matrix Completion Under Diameter Constraints

Now we proceed to develop polynomial-time algorithms for the case α + 1 = β. We will
make use of the following observation made by Froese et al. [11, Proof of Theorem 9].

▶ Observation 16. Let T ∈ {0, 1}n×ℓ with γ(T) ≥ α and δ(T) ≤ β = α + 1. For
Tα ̸= T ′

α ∈ Tα and Tβ ≠ T ′
β ∈ Tβ, it holds that |Tα ∩T ′

α| = ⌊α/2⌋, |Tα ∩Tβ | = ⌈α/2⌉ = ⌊β/2⌋,
and |Tβ ∩ T ′

β | = ⌈β/2⌉.

Surprisingly, odd α seems to allow for significantly more efficient algorithms than even α.

▶ Theorem 17. (α, β)-DMC with β = α + 1 can be solved in
(i) O(nℓ

√
n + ℓ) time for odd α, and

(ii) (nℓ)O(α3) time for even α.

Proof. (i) We can assume that n ≥ β2/2 + β + 7 holds since otherwise the problem is linear-
time solvable via a reduction to ILP as in the proof of Theorem 15. Suppose that S admits a
completion T with γ(T) ≥ α and δ(T) ≤ β. Since T = Tα ∪ Tβ and |T | ≥ β2/2 + β + 6, it
follows that max{|Tα|, |Tβ |} ≥ c := (β/2)2 + (β/2) + 3. We consider two cases depending on
the size of Tα and Tβ .
1. Suppose that |Tα| ≥ c. Since Tα is a weak ∆-system with intersection size (α−1)/2, Tα is a

sunflower with a core of size (α−1)/2 and petals of size (α+1)/2 by Lemma 7 (ii). We claim
that Tβ = ∅. Suppose not and let Tβ ∈ Tβ . Consequently, we obtain |Tα ∩ Tβ | = (α + 1)/2
for all Tα ∈ Tα by Observation 16, which contradicts Lemma 10.

2. Suppose that |Tβ | ≥ c. Again, Tβ is a sunflower whose core C has size β/2 by Lemma 6.
By Observation 16 and Lemma 10, Tα ⊇ C holds for each Tα ∈ Tα. Now suppose that
there exist Tα ̸= T ′

α ∈ Tα. Since C ⊆ Tα and C ⊆ T ′
α, it follows that |Tα ∩ T ′

α| ≥ β/2,
thereby contradicting Observation 16. Hence, we have |Tα| ≤ 1.

We construct an instance I of SMC covering both cases above, as in Theorem 15. We use
the matrix S′ obtained from S by appending a row vector □ℓ, and we set s := β/2 and
m := ns − 1. Basically, we allow at most one “petal” to have size s − 1. We return Yes if
and only if I is a Yes-instance. The correctness can be shown analogously to the proof of
Theorem 15.

(ii) Suppose that there is a completion T of S with γ(T) ≥ α and δ(T) ≤ β. Again, we
can assume that n > 2c for c := (β/2)2 + (β/2) + 4, and consider a case distinction regarding
the size of Tα and Tβ .
1. Suppose that |Tα| ≥ c and |Tβ | ≥ c. It follows from Observation 16 and Lemmas 6 and 7

that Tα and Tβ are sunflowers. Let Cα and Cβ be the cores of Tα and Tβ , respectively.
Note that |Cα| = α/2 and |Cβ | = α/2 + 1, and hence Cα ⊊ Cβ holds by Observation 16
and Lemma 10. Let j ∈ [ℓ] be such that Cα ∪ {j} = Cβ and let T′ := T[:, [ℓ] \ {j}]. Then,
the set family T ′ is a sunflower with a core of size α/2 and petals of size α/2. Hence,
there exists j ∈ [ℓ] such that the (α, α)-DMC instance S[:, [ℓ] \ {j}] is a Yes-instance.
On the other hand, if there is a completion T′ of S[:, [ℓ] \ {j}] with γ(T′) = δ(T′) = α,
then γ(T) ≥ α and δ(T) ≤ α + 1 hold for any completion T of S with T[:, [ℓ] \ {j}] = T′.

2. Suppose that |Tα| ≥ c and |Tβ | < c. The same argument as above shows that Tα ∩Tβ = C

holds for each Tα ∈ Tα and Tβ ∈ Tβ , where C is the size-α/2 core of sunflower Tα. Let
Iβ = {i ∈ [n − 1] | d(T[i], T[n]) = β} be the row indices that induce the sets in Tβ and
let Jβ =

⋃
Tβ∈Tβ

Tβ . Consider T′ = S[[n] \ Iβ , [ℓ] \ (C ∪ Jβ)] and note that the family T ′

consists of pairwise disjoint sets, each of size α/2. We use this observation to obtain a
reduction to SMC. The idea is to test all possible choices for T′, that is, we simply try
out all possibilities to choose the following sets:

C ⊆ [ℓ] of size exactly α/2.

T. Koana, V. Froese, and R. Niedermeier 47:11

Iβ ⊆ [n − 1] of size at most c.
Jβ ⊆ [ℓ] \ C of size at most β · c such that d[ℓ]\(C∪Jβ)(S[iβ], S[n]) = 0 for all iβ ∈ Iβ .

For each possible choice, we check whether it allows for a valid completion. Formally, it
is necessary that the following exist:

A completion tC of S[n, C] such that S[i, j] ̸= tC [j] for all i ∈ [n − 1] and j ∈ C.
A completion tJβ

of S[n, Jβ] such that d(tJβ
, S[i, Jβ]) = 0 for all i ∈ [n − 1] \ Iβ .

A completion tiβ
of S[iβ , Jβ] for each iβ ∈ Iβ such that d(tiβ

, tJβ
) = α/2 + 1 for each

iβ ∈ Iβ and d(tiβ
, ti′

β
) = α for each iβ ̸= i′

β ∈ Iβ .
The existence of the above completions can be checked in O(n) time. We then construct
an SMC instance (S′, α/2, (n − |Iβ | − 1) · α/2), where S′ is an incomplete matrix with
n′ = n − |Iβ | rows and ℓ − |C| − |Jβ | columns defined as follows:

S′[[n′ − 1]] = S[[n − 1] \ Iβ , [ℓ] \ (C ∪ Jβ)].
S′[n′, j] = □ for each j ∈ [ℓ] \ (C ∪ Jβ) such that S[iβ , j] = □ for all iβ ∈ Iβ ∪ {n}.
S′[n′, j] = S[iβ , j] for each j ∈ [ℓ]\(C∪Jβ) such that S[iβ , j] ̸= □ for some iβ ∈ Iβ ∪{n}.

Overall, we solve at most (nℓ)O(α3) SMC instances and hence it requires (nℓ)O(α3) time.
3. Suppose that |Tα| < c and |Tβ | ≥ c. Let i ∈ [n − 1] be such that d(T[i], T[n]) = β. Then,

d(T[i], T[i′]) = α holds for each i′ ∈ [n − 1] \ {i} with d(T[i′], T[n]) = β. Since there are
at least c − 1 = (β/2)2 + (β/2) + 3 such row indices, it follows that this case is essentially
equivalent to the previous case (by considering row i as the last row). ◀

A natural question is whether one can extend our approach above to the case β = α + 2
(particularly α = 1 and β = 3). The problem is that the petals of the sunflowers T2 and T3
may have nonempty intersections. Thus, reducing to SMC to obtain a polynomial-time
algorithm is probably hopeless.

3.3 NP-hardness
Hermelin and Rozenberg [17, Theorem 5] proved that ConRMC (under the name Closest
String with Wildcards) is NP-hard even if r[i] = 2 for all i ∈ [n]. Using this result, we
prove the following (the proof is in the full version).

▶ Theorem 18. (α, β)-DMC is NP-hard if β ≥ 2⌈α/2⌉ + 4.

It remains open whether NP-hardness also holds for (α, α + 3)-DMC with α ≥ 1 (recall
that (0, 3)-DMC is polynomial-time solvable). In Section 4, however, we show NP-hardness
for β = α + 3 when α and β are part of the input.

4 Bounded number k of missing entries per row

In this section, we consider DMC with α and β being part of the input, hence not necessarily
being constants. We consider the maximum number k of missing entries in any row as a
parameter (DMC is clearly trivial for k = 0). We obtain two polynomial-time algorithms
and two NP-hardness results. Our polynomial-time algorithms are based on reductions to
2-SAT (see the full version for the proof).

▶ Theorem 19. DMC can be solved in O(n2ℓ) time
(i) for k = 1, and
(ii) for k = 2 and α = β.

STACS 2021

47:12 Binary Matrix Completion Under Diameter Constraints

T =

001 111 001 000000000
111 111 001 000000000
111 111 010 111111111
111 010 111 111111111

Figure 5 An illustration of the reduction from Orthogonal Vectors, where U = {010, 110}

and V = {110, 101}.

To complement this result, we show that the quadratic dependence on n in the running
time of Theorem 19 is inevitable under Orthogonal Vectors Conjecture (OVC),
which states that Orthogonal Vectors cannot be solved in O(n2−ϵ · ℓc) time for any
ϵ, c > 0 (it is known that Strong Exponential Time Hypothesis implies OVC [24]).

Orthogonal Vectors
Input: Sets U , V of row vectors in {0, 1}ℓ with |U| = |V| = n.
Question: Are there row vectors u ∈ U and v ∈ V such that u[j] · v[j] = 0 holds for

all j ∈ [ℓ]?

▶ Theorem 20. DMC cannot be solved in O(n2−ϵ · ℓc) time for any c, ϵ > 0, unless OVC
breaks.

Proof. We reduce from Orthogonal Vectors. Let u1, . . . , un, v1, . . . , vn ∈ {0, 1}ℓ be row
vectors. Consider the matrix T ∈ {0, 1}2n×6ℓ where

T[i, [3j − 2, 3j]] =
{

001 if ui[j] = 0,

111 if ui[j] = 1,
T[i, [3ℓ + 3j − 2, 3ℓ + 3j]] = 000,

T[n + i, [3j − 2, 3j]] =
{

010 if vi[j] = 0,

111 if vi[j] = 1,
T[n + i, [3ℓ + 3j − 2, 3ℓ + 3j]] = 111,

for each i ∈ [n] and j ∈ [ℓ] (see Figure 5 for an illustration). We show that δ(T) = 5ℓ if and
only if there are i, i′ ∈ [n] such that ui and vi′ are orthogonal. By construction, we have

d(T[i, [3j − 2, 3j]], T[n + i′, [3j − 2, 3j]]) =
{

2 if ui[j] = 0 or vi[j] = 0,

0 otherwise.

for any i, i′ ∈ [n] and j ∈ [ℓ]. Thus, it holds for any orthogonal vectors ui and v′
i that

d(T[i], T[n + i′]) = 5ℓ. Conversely, suppose that there exist i < i′ ∈ [2n] such that
d(T[i], T[i′]) = 5ℓ. It is easy to see that i ∈ [n], i′ ∈ [n + 1, 2n] (otherwise d(T[i], T[i′]) ≤ 3ℓ).
Then, the vectors ui and vi′−n are orthogonal. ◀

Finally, we prove the following two NP-hardness results (the proofs are in the full version).

▶ Theorem 21. DMC is NP-hard
(i) for k = 2 and α + 3 ≤ β, and
(ii) for k = 3 and α = β.

The proof for Theorem 21 is based on rather technical reductions from (3, B2)-SAT [2]
and Cubic Monotone 1-in-3 SAT [22]. The challenge here is to ensure the bounds on the
Hamming distances between all row pairs. To overcome this challenge, we adjust pairwise
row distances by making heavy use of the matrix, in which one pair of rows has distance
exactly two greater than any other:

T. Koana, V. Froese, and R. Niedermeier 47:13

▶ Lemma 22. For each n ≥ 3 and i < i′ ∈ [n], one can construct in nO(1) time, a matrix
Bn

i,i′ ∈ {0, 1}n×ℓ with n rows and ℓ := (
(

n
2
)

−1)(2n−1) columns such that for all h ̸= h′ ∈ [n],

d(Bn
i,i′ [h], Bn

i,i′ [h′]) =
{

γ(Bn
i,i′) + 2 if (h, h′) = (i, i′),

γ(Bn
i,i′) otherwise.

The problem of deciding whether an incomplete matrix S ∈ {1, −1,□}n×n can be
completed into a Hadamard matrix as seen in Johnson [18], is equivalent to DMC with
n = ℓ and α = β = n/2. We conjecture that one can adapt the proof of Theorem 21 (ii) to
show the NP-hardness of this problem. We also conjecture that DMC with k = 3 is actually
NP-hard for every value of β − α. Similar reductions might work here as well. By contrast,
we believe the case k = 2 and β − α = 1 to be polynomial-time solvable, again by reducing
to 2-SAT.

5 Conclusion

Together with the recent work of Eiben et al. [9], we are seemingly among the first in the
context of stringology that make extensive use of Deza’s theorem and sunflowers. While
Eiben et al. [9] achieved classification results in terms of parameterized (in)tractability,
we conducted a detailed complexity analysis in terms of polynomial-time solvable versus
NP-hard cases. Figure 2 provides a visual overview on our results for Diameter Matrix
Completion (DMC), also spotting concrete open questions.

Going beyond open questions directly arising from Figure 2, we remark that it is known
that the clustering variant of DMC can be solved in polynomial time when the number
of clusters is two and the matrix is complete [15]. Hence, it is natural to ask whether our
tractability results can be extended to this matrix completion clustering problem as well.
Furthermore, we proved that there are polynomial-time algorithms solving DMC when β ≤ 3
and α = 0 (Theorems 12 and 13). This leads to the question whether these algorithms
can be extended to matrices with arbitrary alphabet size. Next, we are curious whether
the phenomenon we observed in Theorem 17 concerning the exponential dependence of the
running time for (α, α + 1)-DMC when α is even but independence of α when it is odd
can be further substantiated or whether one can get rid of the “α-dependence” in the even
case. In terms of standard parameterized complexity analysis, we wonder whether DMC is
fixed-parameter tractable with respect to β + k (in our NP-hardness proof for the case β = 4
(Theorem 18) we have k ∈ θ(ℓ)). Finally, performing a multivariate fine-grained complexity
analysis in the same spirit as in recent work for Longest Common Subsequence [3] would
be another natural next step.

References
1 Vineet Bafna, Sorin Istrail, Giuseppe Lancia, and Romeo Rizzi. Polynomial and APX-hard

cases of the individual haplotyping problem. Theoretical Computer Science, 335(1):109–125,
2005.

2 Piotr Berman, Marek Karpinski, and Alex D. Scott. Approximation hardness of short
symmetric instances of MAX-3SAT. Electronic Colloquium on Computational Complexity
(ECCC), 049, 2003.

3 Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest
common subsequence. In 29th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA
’18), pages 1216–1235, 2018.

STACS 2021

47:14 Binary Matrix Completion Under Diameter Constraints

4 Laurent Bulteau, Vincent Froese, and Rolf Niedermeier. Tight hardness results for consen-
sus problems on circular strings and time series. SIAM Journal on Discrete Mathematics,
34(3):1854–1883, 2020.

5 Laurent Bulteau, Falk Hüffner, Christian Komusiewicz, and Rolf Niedermeier. Multivariate
algorithmics for NP-hard string problems. Bulletin of the EATCS, 114, 2014.

6 Laurent Bulteau and Markus L. Schmid. Consensus strings with small maximum distance and
small distance sum. Algorithmica, 82(5):1378–1409, 2020.

7 Michel Deza. Une propriété extrémale des plans projectifs finis dans une classe de codes
équidistants. Discrete Mathematics, 6(4):343–352, 1973.

8 Michel Deza. Solution d’un problème de Erdős-Lovász. Journal of Combinatorial Theory,
Series B, 16(4):166–167, 1974.

9 Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. On
clustering incomplete data. CoRR, abs/1911.01465, 2019. arXiv:1911.01465.

10 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

11 Vincent Froese, René van Bevern, Rolf Niedermeier, and Manuel Sorge. Exploiting hidden
structure in selecting dimensions that distinguish vectors. Journal of Computer and System
Sciences, 82(3):521–535, 2016.

12 Harold N. Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In 15th Annual ACM Symposium on Theory of Computing,
(STOC ’83), pages 448–456, 1983.

13 Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. On the parameterized
complexity of clustering incomplete data into subspaces of small rank. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, (AAAI ’20), pages 3906–3913, 2020.

14 Robert Ganian, Iyad A. Kanj, Sebastian Ordyniak, and Stefan Szeider. Parameterized
algorithms for the matrix completion problem. In 35th International Conference on Machine
Learning, (ICML ’18), volume 80 of Proceedings of Machine Learning Research, pages 1642–
1651. PMLR, 2018.

15 Leszek Ga̧sieniec, Jesper Jansson, and Andrzej Lingas. Approximation algorithms for Hamming
clustering problems. Journal of Discrete Algorithms, 2(2):289–301, 2004.

16 Jens Gramm, Rolf Niedermeier, and Peter Rossmanith. Fixed-parameter algorithms for
Closest String and related problems. Algorithmica, 37(1):25–42, 2003.

17 Danny Hermelin and Liat Rozenberg. Parameterized complexity analysis for the closest string
with wildcards problem. Theoretical Computer Science, 600:11–18, 2015.

18 Charles R Johnson. Matrix completion problems: a survey. In Matrix Theory and Applications,
volume 40 of Proceedings of Symposia in Applied Mathematics, pages 171–198. American
Mathematical Society, 1990.

19 Stasys Jukna. Extremal Combinatorics: With Applications in Computer Science. Springer
Science & Business Media, 2011.

20 Tomohiro Koana, Vincent Froese, and Rolf Niedermeier. Parameterized algorithms for matrix
completion with radius constraints. In 31st Annual Symposium on Combinatorial Pattern
Matching, (CPM ’20), pages 20:1–20:14, 2020.

21 Ross Lippert, Russell Schwartz, Giuseppe Lancia, and Sorin Istrail. Algorithmic strategies for
the single nucleotide polymorphism haplotype assembly problem. Briefings in Bioinformatics,
3(1):23–31, 2002.

22 Cristopher Moore and J. M. Robson. Hard tiling problems with simple tiles. Discrete &
Computational Geometry, 26(4):573–590, 2001.

23 Markus L. Schmid. Finding consensus strings with small length difference between input and
solution strings. ACM Transactions on Computation Theory, 9(3):13:1–13:18, 2017.

24 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2-3):357–365, 2005.

http://arxiv.org/abs/1911.01465

Absorbing Patterns in BST -Like Expression-Trees
Florent Koechlin !

Laboratoire d’Informatique Gaspard-Monge, Université Gustave Eiffel, Marne-la-Vallée, France

Pablo Rotondo !

Laboratoire d’Informatique Gaspard-Monge, Université Gustave Eiffel, Marne-la-Vallée, France

Abstract
In this article we study the effect of simple semantic reductions on random BST-like expression-trees.
Such random unary-binary expression-trees are often used in benchmarks for model-checking tools.
We consider the reduction induced by an absorbing pattern for some given operator ⊛, which we
apply bottom-up, producing an equivalent (and smaller) tree-expression. Our main result concerns
the expected size of a random tree, of given input size n → ∞, after reduction. We show that there
are two different thresholds, leading to a total of five regimes, ranging from no significant reduction
at all, to almost complete reduction. These regimes are completely characterized according to the
probability of the absorbing operator. Our results prove that random BST-like trees have to be
considered with care, and that they offer a richer range of behaviours than uniform random trees.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics

Keywords and phrases BST trees, absorbing pattern, reduction, analytic combinatorics

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.48

Funding Pablo Rotondo: partially supported by the Projet RIN Alenor (Regional Project from
French Normandy).

Acknowledgements The authors would like to thank Arnaud Carayol and Cyril Nicaud for their
very useful advice and remarks in the writing of this paper.

1 Introduction

There are two main ways to evaluate the performances of an algorithm or of its implementation:
a theoretical one studying its complexity, and a more practical one, using benchmarks. On
the theoretical side, it is classical to study the worst-case performances, which only gives a
partial view of the practical usability of an algorithm. For instance, bubblesort and quicksort
have the same worst-case complexity but perform very differently in practice to the extent
that quicksort is actually implemented in some standard libraries. Average complexity tries
to remedy this problem by considering a more appropriate probabilistic model on the inputs.
The problem with this approach is that one must find a distribution simple enough to be
mathematically tractable whilst being complex enough to model accurately the real life
distribution. In the literature, this latter aspect is often relegated to a second place by
theorists, as even simple algorithms may be hard to analyze for the uniform distribution.

Practical approaches consist in executing the tools and measuring directly their perform-
ances. These benchmarks are performed on real-world test cases, when possible. These are
often complemented with randomly generated ones, which is an easy way of generating test
cases of arbitrary sizes. Note that in this setting one is free to choose more mathematically
complex distributions for the inputs, provided that they are fast to generate, and reasonably
close to real-life examples.

In this paper we concentrate on algorithms manipulating tree-like expressions. Tree-like
expressions are ubiquitous in computer science, for describing regular languages, boolean
formulas, LTL formulas, . . . In Figure 1 we give several examples of such expression trees.

© Florent Koechlin and Pablo Rotondo;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 48; pp. 48:1–48:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:florent.koechlin@u-pem.fr
mailto:pablo.rotondo@u-pem.fr
https://doi.org/10.4230/LIPIcs.STACS.2021.48
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Absorbing Patterns in BST -Like Expression-Trees

Note that this representation is purely syntactical and might be redundant; several trees can
have the same semantics, i.e., represent the same object. For example, the logical formula in
Figure 1 is equivalent to x2.

·

·

⋆ a

a

+

b ε

a∗ · a · (b + ε)

∧

∨ x2

x1 ¬

x1

(x1 ∨ ¬x1) ∧ x2

→

□X

U¬

rqp

X(¬p) → □(qUr)

Figure 1 Three examples of expression trees. From left to right: a regular expression, a logical
formula and an LTL formula.

In the absence of information on the real-life distribution for the algorithms, the uniform
distribution is commonly considered: it appears a natural choice as in some sense it maximizes
the coverage of possible inputs. Recently it was shown in [11, 12] that the uniform distribution
is not relevant in benchmarks for tools manipulating tree-expressions. The authors proved
that even if this distribution offers a good coverage of the tree-expressions, their coverage is
poor when it comes to the objects represented by these tree-expressions, in the presence of
simple simplifications. More precisely, the authors consider tree expressions with an operator
⊛ which admits a particular fixed tree P, called the absorbing pattern, such that P ⊛ t,
t ⊛ P and P represent the same object. This situation occurs in most natural examples.
For instance, False is absorbing for ∧, (a + b)⋆ is absorbing for + in regular expressions, 0
is absorbing for × in arithmetic expressions, etc. In the presence of an absorbing pattern,
one can reduce a tree-expression in a bottom-fashion in order to remove all occurrences of
a tree-expression of the form P ⊛ t or t ⊛ P. This reduction can be performed in linear
time and preserves the object represented by the tree-expression. Surprisingly, the authors
proved that if we draw uniformly at random a tree-expression of size n the expected size of
its reduced tree-expression is bounded by a constant. Hence using the uniform distribution
in a benchmark might only be testing the ability of the tool to perform simple reductions on
expressions.
Looking at the random generators used in most benchmarks for model-checking tools dealing
with tree-expressions, we see that the distribution produced is not the uniform one. In
the case of random LTL formulas, Algorithm 1 presents the algorithm used by the tool
LTL-to-Büchi translator testbench (lbtt) of TCS [17] (see also [4] and Spot [6] for other
examples). They are all based on well-known distributions in combinatorics called BST-like
distributions [7] as they are strongly related to random binary search trees.

The procedure used to generate such random expression trees of size n, where n is the
number of nodes, is the following one:
(0) assign a probability distribution for the operators, and another one for the leaves;
(1) if n = 1 then draw a random leaf;
(2) if n = 2, then draw an operator of arity 1 following their probabilities, and a random

leaf;
(3) if n is greater than 2, draw a random operator for the root. If the operator is unary,

proceed to build a subtree of size n − 1. If the operator is binary, draw first uniformly the
sizes for the left and right subtrees (so that they add to n − 1), and recursively generate
these subtrees.

F. Koechlin and P. Rotondo 48:3

Algorithm 1 The pseudo-code used in lbtt [17, p.46] to draw a random LTL formula.

function RandomFormula(n):
if n = 1 then

p := random symbol in AP ∪ {⊤, ⊥};
return p;

else if n = 2 then
op := random operator in {¬, X,□,♢};
f := RandomFormula(1);
return op f ;

else
op := random operator in {¬, X,□,♢, ∧, ∨, →, ↔, U, R};
if op in {¬, X,□,♢} then

f := RandomFormula(n − 1);
return op f ;

else
x := uniform integer in [1, n − 2];
f1 := RandomFormula(x);
f2 := RandomFormula(n − x − 1);
return (f1 op f2);

*

.

* .

*

+

* +

+

. *

. +

* .

*

.

+ *

+ .

+ +

* b

a

* +

e * .

.

b b

* e

a

. .

+ e

* *

e *

a

a b

.

a .

a *

*

*

+

* e

b

. +

* *

b *

*

+

. *

* +

+

e *

e

* .

e * *

*

b

b

.

. b

e e

* b

+

. *

. .

e a a *

a

b

+ .

. *

* b

*

*

e

.

+ +

+ +

e +

* e

a

* b

a

* +

*

.

. b

a a

* .

a . +

+ +

e +

+ a

* e

a

b a

e e

* *

b b

+

* +

+

. b

* +

.

* *

e *

*

*

*

*

*

*

*

.

* +

*

+

* b

a

+ +

+ +

b +

* e

b

* .

+

* *

b e

* *

e b

. .

a e * *

a e

+ *

e *

e

b

. +

+ *

+ +

* *

.

. *

a e +

b .

* a

b

e

* *

a *

a

+

* *

b *

*

*

e

. *

* .

*

*

+

. *

e *

e

e

a a

.

* *

e b

* *

*

+

. .

* +

+

. .

a .

* *

e .

* b

e

. .

+ +

a +

* *

b a

b *

e

. +

. b

e b

. .

. e

a *

*

b

+ e

a e

e *

+

* *

e *

a

+ +

. +

b e * .

a * +

.

* .

b . +

* *

a *

b

. *

b a e

e +

a e

* *

e b

.

+ .

. .

+ *

* .

a e *

*

e

a

b *

a

+ +

+ *

. .

* .

+

. .

* e

*

*

+

a b

* b

b

* *

*

+

a *

+

* .

.

a +

* *

b *

a

* *

*

b

a

+

b *

*

*

*

a

* .

.

* +

+

. *

. *

* *

*

*

.

* +

*

+

. e

e e

* a

b

*

*

.

. +

b b * *

a e

b

*

b

. .

e .

* a

b

b +

* e

b

. *

+ b

b .

a .

e b

*

*

*

*

.

+ *

e b e

+

* *

*

*

+

* *

+

. *

. .

b .

e a

+ b

a b

.

b .

+ .

a e * *

*

+

b *

e

b

+

* *

*

b

*

.

e a

.

* .

+

+ .

* +

b a *

+

a b

+ *

+ *

. *

a *

a

.

a .

* b

e

+

+ *

e a e

b

e *

*

*

*

+

+ *

+ a

a a

a

+ +

* *

+

. .

. +

. .

e *

e

* +

+

* .

b e .

b b

. *

a *

e

a

+ +

+ .

* .

.

* *

.

+ e

a .

b b

*

.

+ .

a .

e e

+ +

b e a *

e

e *

*

a

* +

+

* *

*

*

*

a

*

e

a *

e

+ +

* *

e +

* b

.

b b

* a

a

b +

. a

e *

b

*

+

b .

* +

b * +

b a b

* +

*

*

*

+

. .

e a . *

. +

* *

.

+ e

. b

a e

*

*

*

.

. +

b e b a

* *

e *

+

* a

a

+

+ +

* .

a + a

* e

e

. .

* e

a

* e

e

. .

* *

+

e +

b b

b

a *

.

e *

e

. +

. .

* .

e * *

.

+ .

a .

a *

e

+ +

a a e a

e

+ *

* *

e +

+ .

. b

. .

* *

*

.

* +

e + *

* *

b b

b

*

b

a +

. *

b a b

* *

a a

*

*

.

+ *

b *

e

*

.

b +

* *

*

a

e

+ +

. +

* .

*

*

+

a *

*

+

+ .

e .

b *

b

* +

.

e e

b b

* *

+

* *

+

* e

+

* *

.

a +

a e

a

b

e

* +

*

.

. +

e .

+ *

* +

+

e b

* *

+

+ e

a e

*

a

b

+ *

b *

.

* *

e *

b

e

+ .

* .

e b b

* .

+

. .

. *

a e e

a a

+ *

a +

a *

b

*

a

* .

.

a a

* .

+

* +

.

b *

*

*

b

* .

a * .

a b e

e e

(a) A BST-like tree

.

b *

.

+ .

* *

.

a b

a

+ .

e +

* e

.

+ +

a +

* +

+

+ +

* .

b * +

.

a e

* +

a + *

b +

a +

* +

+

* a

e

e b

a

. *

. .

b b . .

* b

.

* b

.

e *

a

a *

+

. +

+ b

* .

*

b

b *

.

+ .

+ .

e e a e

e a

a *

a

a

. e

+ .

+ +

* .

+

e *

.

e +

* .

b e +

b *

e

. b

. .

. *

* *

b e

*

*

e

e +

e *

+

* a

a

* *

b +

a .

. *

b b e

. e

+ a

a +

. .

. a

. *

e .

a *

e

*

a

* +

e + .

+ b

e +

* *

*

.

. .

. .

* .

+

a .

b .

* b

+

+ e

. +

* *

.

e a

a

+ a

a +

. .

b e + b

. *

+ *

* *

*

+

+ .

+ a

. +

a .

. e

b e

. +

+ .

e e * *

b b

. e

b +

b .

e a

. +

e *

e

* b

*

.

* b

+

+ a

* *

*

*

.

. +

* +

+

+ e

+ +

+ .

. e

. e

b b

b *

.

. +

a +

* +

.

+ e

. +

. *

a +

* +

.

a .

* .

.

+ e

+ .

+ +

. e

e a

b e

* +

*

b

. a

. a

a b

b a

* .

b . b

+ *

+ a

b e

+

. *

* a

b

a

+

a +

. e

. a

. b

. .

+ +

e *

.

. e

e b

. .

* a

b

+ +

a .

e a

e +

. b

b .

. a

+ +

b a * b

+

b .

a *

.

b .

e e

e .

. .

* b

*

e

a .

e a

+ .

+ b

e *

+

b .

e a

* +

a . a

. e

+ *

. .

. .

a a b b

* a

*

+

a +

e +

* b

*

+

b .

+ +

* .

*

e

e a

+ e

e +

* b

.

+ *

* b

*

+

a +

b +

. a

e .

. +

* b

*

+

+ +

. *

. e

+ +

* *

.

* .

e e +

b *

.

* a

a

a

e +

b *

+

+ +

+ e

a a

* a

*

e

*

+

e +

* +

*

*

.

+ .

b b . e

. *

e .

b *

e

.

+ *

. e

* b

a

.

* b

*

*

b

. +

a +

* e

b

* *

b *

+

a a

e .

a *

a

e .

e b

e

a

* .

a e a

+ e

. .

. e

e e

. b

b e

* b

.

b e

a e

. +

e +

a b

a a

e

*

e

e

a

* *

.

e +

. +

* +

*

.

+ b

e +

. +

e .

. *

* .

.

b e

e +

b *

.

* +

+

e b

. +

+ .

a .

* a

.

. e

e .

b +

+ .

a a * e

*

.

* .

+

+ .

a a e *

b

. .

+ +

. b

* a

e

b .

e .

. +

e a . +

. .

+ b

+ b

a .

* a

*

*

+

* .

e a +

b *

+

+ a

a .

+ b

+ +

. e

+ e

b +

. *

. +

b a * a

+

a e

*

b

+ +

. *

b .

+ *

* b

.

b e

b

+

+ .

. e

b *

*

+

. b

. b

e b

. +

. a

b *

.

a b

. a

* *

a .

b +

b b

a b

+ e

. *

e .

+ b

e e

*

a

b a

e a

+ +

. b

a a

b .

e b

+ *

b *

.

. a

+ b

+ b

. a

b .

a b

e

+

e *

e

+ *

e b b

a +

e *

*

b

* e

+

. a

+ .

b *

a

* e

*

+

+ *

. b

* .

.

b e

b *

b

a

.

+ +

a a a +

a *

+

. a

a +

a .

e b

+ b

b .

a .

e e

e +

b *

b

*

*

*

+

* b

+

* +

e . .

* a

+

* a

a

a +

+ e

. +

b +

+ a

. a

* .

a e .

+ b

e e

e b

+ b

. .

+ a

b a

* b

e

b e

a e

(b) A uniform tree

Figure 2 The expected height of a random BST tree (on the left) of size n is Θ(log(n)) whereas
for a uniform tree (on the right) of size n, it is Θ(

√
n).

The resulting distribution over the trees with n nodes is not uniform. In fact, the shape of
a typical tree drawn from the BST-like distribution differs greatly from that of a tree drawn
from the uniform distribution [5, 8]. It can be seen by comparing Figure 2a and Figure 2b.
This difference is also apparent when it comes to the average behaviour of algorithms. It was
shown in [14] that the Glushkov automaton (a.k.a., the position automaton) of a regular
expression under a BST-like distribution has an average of Θ(n2) transitions, in stark contrast
to the case of the uniform distribution, where it was previously showed [13] that the average
is Θ(n). Observe that for the uniform distribution, if we reduce the expression (according to
the absorbing pattern (a + b)∗ for +) first, the expected size of the Glushkov automaton is
in fact bounded by a constant, as a consequence of [11, 12].

STACS 2021

48:4 Absorbing Patterns in BST -Like Expression-Trees

It seems likely that the choice of the BST-like distributions in benchmark is motivated
by its greater flexibility to model real-word distributions (i.e. by playing with the operator
probabilities) and also because of its very efficient generation procedure.

Seeing the flaw of the uniform distribution for tree-expressions discovered in [11, 12], it is
natural to wonder if the BST-like distributions suffer from the same short-comings. This
question is the starting point of the work present in this paper. We assume the existence of an
absorbing pattern P for some operator ⊛ and study the expected size of the tree-expression
after reduction1.

Our main result paints a complete picture of the possible asymptotic behaviour of the
expected size after reduction as the original size n tends to infinity. We show that there are
two different thresholds, leading to a total of five regimes, depending on the probability p⊛
of the absorbing operator and the probability of drawing a unary operator pI. The main
regimes are shown experimentally in Figure 3.

▶ Theorem. Consider a family of expression trees defined from unary and binary operators.
Suppose there is a tree pattern P, of size at least2 3, that is absorbing for a distinguished
operator ⊛. We consider the simplification algorithm that consists in inductively changing
a ⊛-node by P whenever one of its children can be simplified into P. Then the expected
size of a random BST-like tree after simplification has an asymptotic behaviour given by the
following cases, depending on the probability p⊛ of the absorbing operator:

0 1
p⊛

Θ(n)

almost no reduction

Θ(n
(log n)γ)

1
2

Θ(nθ)

significant
reduction

3−pI
4

Θ(log n)
Θ(1)

degenerate
case

There are two critical points p⊛ = 1/2 and p⊛ = (3 − pI)/4, the latter depending on the
probability pI of drawing a unary operator. This gives a total of five regimes spanning the
spectrum from almost no reduction Θ(n) to complete reduction Θ(1). The exponents γ and θ

are given by γ = 2
1−pI

and θ = 1 − 4p⊛−2
1−pI

respectively.

0 0.2 0.4 0.6 0.8 1 ·1070

0.2

0.4

0.6

0.8

1

·107

size of the regular expression

si
ze

of
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

0 0.2 0.4 0.6 0.8 1 ·1080

2

4

6

·106

size of the regular expression

si
ze

o
f
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

0 0.2 0.4 0.6 0.8 1 ·1090

2,000

4,000

6,000

8,000

size of the regular expression

si
ze

of
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

Figure 3 The three main regimes observed experimentally on regular expressions on two letters,
with 10 000 samples for each size: (from left to right) linear (p+ = p⋆ = p· = 1/3), sublinear
(p+ = 19/29, p⋆ = p· = 5/29) and constant (p+ = 8/10, p⋆ = p· = 1/10).

1 Particular cases where these and many more reductions are available have been studied in the literature
[2, 3, 10]. However, these consider a very particular example, namely the ∧/∨-trees with p∧ = p∨ = 1

2 .
2 This restriction is not a real constraint. For |P| ≤ 2 it is easy to build from P a larger absorbing pattern

and our result then applies. See the discussion at the end of Section 2.2.

F. Koechlin and P. Rotondo 48:5

Methods. To obtain our results we employ techniques from the framework of Analytic
Combinatorics [9]. The recursive procedure used to produce a random BST-like tree naturally
leads in turn to a recurrence for the probabilities of interest. We encode the probabilities
into ordinary generating functions, and the recurrences lead formally to differential equations
(of Riccati type) for the expected value of the size after reduction. This first part is purely
symbolic. At this point, as is usual in Analytic Combinatorics, we see our generating functions
as power series on the complex plane to take advantage of the powerful theory of holomorphic
functions. The singularities, i.e., the points where these functions cease to be smooth, are
related to the asymptotics of the coefficients. In particular, those that are closer to the
origin (i.e., dominant singularities) give the leading terms. This link is formally given by the
Transfer Theorem [9, Ch VI.3], which translates asymptotic equivalents for the generating
functions near the singularities to asymptotics for their coefficients.

Plan of the article. In Section 2 we give precise definitions for our settings, namely random
BST-like expression trees, absorbing patterns and the ensuing simplification. Section 3 gives
a general overview of the techniques and gives an outline of the proof of our main Theorem.
It explains in particular why we need to consider the probability of fully reducible trees first
(those reducing to P), in order to prove our main result. Section 4 then is devoted to these
fully reducible trees, and as a side product we prove (see Thm 10) that the probability of
being fully reducible tends to 0 for p⊛ ≤ 1/2 and to a positive constant otherwise. This first
threshold is intimately linked with that of the main result. Finally, Section 5 completes the
sketched proof of the main theorem.

Most proofs are either sketched or omitted in this extended abstract.

2 Model, definitions and probability of complete reduction

2.1 The BST-like model
Consider three non-empty sets of labels A0, A1, and A2, corresponding respectively to the
sets of possible leaves, unary operators and binary operators. For example, to describe the
set of regular expressions on the alphabet {a, b}: A0 = {ε, a, b}, A1 = {⋆} and A2 = {·, +}.

We define the family of trees on A = (A0, A1, A2) in Definition 1 below. It is important
to emphasize that when we say trees we actually mean planar trees throughout the article:
the order of the branches does matter, hence

op
/\

T1 T2
and

op
/\

T2 T1
are not the same tree.

▶ Definition 1 (Expression trees). The family E(A) of expression trees over A = (A0, A1, A2)
is defined inductively:

any leaf a0 ∈ A0 is an expression tree;
if T is an expression tree and op1 ∈ A1 is a unary operator, then

op1
|
T

∈ E(A);

if T1, T2 are expression trees and op2 ∈ A2 is a binary operator, then
op2
/\

T1 T2
∈ E(A).

The size |T | of an expression tree T is its number of nodes (operators and leaves).

Now that we have defined the family of expression trees, we introduce the BST-like
distribution over them. For n ∈ N, let En denote the set of expression trees of size n.

First we endow the set of leaves A0 and the set of operators Aops = A1 ∪ A2 with
probabilities, (pa)A0 and (pop)Aops . Remark then that

∑
a∈A0

pa = 1 and
∑

op∈Aops
pop = 1.

We denote by pI the probability of picking a unary operator, i.e., pI =
∑

op1∈A1
pop1 .

STACS 2021

48:6 Absorbing Patterns in BST -Like Expression-Trees

(i)

+

⋆ b

⋆

a

(ii)

⋆

+

b⋆

a

Figure 4 Example of two trees of size n = 5, for regular expressions, having different probabilities
for any choice of distribution. The probability of the trees in (i) and (ii) are 1

3 p+p⋆papb and
1
2 p+p⋆papb respectively.

▶ Definition 2 (Random BST-like expression tree). A random BST-like expression tree of size
n ∈ N≥1 is built recursively as follows:

If n = 1, we draw a leaf from A0 according to the probability distribution (pa)a∈A0 .
If n = 2, we draw a unary operator op1 according to the normalized probabilities(

1
pI

pop1

)
op1∈A1

, then we draw independently a tree a0 ∈ A0 of size 1 and return
op1

|
a0

.
If n ≥ 3, we pick an operator ⊕ ∈ Aops according to the distribution (pop)op∈Aops . (⋆) If
we obtain a unary operator ⊕ ∈ A1, we produce recursively and independently a tree T of
size n − 1 and return

⊕
|
T

. (⋆⋆) If otherwise we obtain a binary operator ⊕ ∈ A2, we pick
the size k of the left subtree uniformly from {1, . . . , n − 2} and produce independently two
trees TL and TR of sizes k and n − 1 − k respectively. Then we return

⊕
/\

TL TR

.

For Definition 2 to make sense, we assume that pI > 0. Note that otherwise (if pI = 0)
we would produce no trees of size 2, or any even size. This assumption is not really a
constraining one, as otherwise we would obtain similar results, but just over the odd sizes.

The procedure of Definition 2 defines a probability distribution over expression trees: the
probability Prn(T) of a given expression tree T of size n is the probability of the algorithm in
Definition 2 returning T with input n. This distribution is not uniform, as shown in Figure 4.

2.2 Absorbing pattern and reduction
We now define what we mean by an absorbing pattern for the family of expression trees E(A).
Fix a binary operator ⊛ ∈ A2 and an expression tree P ∈ E(A). Informally, the associated
simplification σ = σP,⊛ is defined by applying bottom up the substitution

⊛

T1 T2

⇝ P , whenever Ti = P for some i ∈ {1, . . . , 2}.

More precisely, we define recursively the simplification σ = σP,⊛ : E(A) → E(A) with
absorbing pattern P for the operator ⊛ as follows: if e ∈ A0 we set σ(e) = e while,

σ
(op1

|
T

)
=

op1
|

σ(T)
for op1 ∈ A1,

σ
(op2

/\
T1 T2

)
=

op2
/\

σ(T1) σ(T2)
for op2 ∈ A2 with op2 ̸= ⊛,

σ

(
⊛
/\

T1 T2

)
= P if σ(Ti) = P for i = 1 or i = 2, and σ

(
⊛
/\

T1 T2

)
=

⊛
/\

σ(T1) σ(T2)
otherwise.

An expression tree T ∈ E(A) is said to be fully reducible when σ(T) = P.
Henceforth we assume that our family of expression trees E(A) admits an absorbing P

of size s := |P| for a fixed binary operation ⊛ ∈ A2. For technical reasons, we will suppose
that s ≥ 3. This might seem in contradiction to the fact that some leaf can be absorbing
(for instance False with ∨). However this is not much of a restriction since you can always

F. Koechlin and P. Rotondo 48:7

build, from an absorbing pattern P of size less than 3, a new one of size more than 3 by
considering P ′ :=

⊛
/\

P a
for a leaf a. This new pattern leads to less reductions in comparison

to the former one, so that our results give upperbounds for the expected size after reduction
by an absorbing pattern of size less than 3, instead of exact equivalents.

3 Outline of the proof

For our proof we employ methods from the framework of Analytic Combinatorics [9]: we will
represent a sequence (an)n≥0 of coefficients by its ordinary generating function (OGF for
short) F (z) =

∑
anzn. At first, we treat F (z) as a formal object, and our goal is to obtain

an equation characterizing it. Typically, in Analytic Combinatorics, this first step is done by
building the studied combinatorial class from set operations, and using a toolbox to translate
them into operations between generating functions. In our case it does not apply and we have
to extract the equations for the generating functions from the recurrence relations satisfied
by the related sequences. This approach is common when the distribution of the studied
combinatorial class is not uniform (see for instance [9, 15]). Hence we begin the proof by
deriving a recurrence relation satisfied by the expected size (en). This relation comes from
the recursive nature of the algorithm for constructing a random BST-like tree-expression.

3.1 Recurrence relations
Recurrence for the expected value

We are interested in the probabilities pn,k := Prn{T : |σ(T)| = k} for a tree of size n to have
a reduced size k. More precisely we want to obtain an equation for en :=

∑
k k · pn,k which is

the expected size after reduction for a random tree of fixed size n, according to the BST-like
distribution3. The following proposition gives the recurrence satisfied by the sequence (en)n.
It involves the probability that a tree T of size n is fully reducible:

γn = Pr
n

{σ(T) = P} .

We also write pII := 1 − pI − p⊛, the probability of drawing a binary operator that is not ⊛.

▶ Proposition 3. The sequence (en) of expected sizes after reduction satisfies, for all n > 1:

en+1 = 1 + (s − 1)γn+11n+1 ̸=s + pIen + 2pII

n − 1

n−1∑
j=1

ej + 2p⊛
n − 1

n−1∑
j=1

(ej − sγj)(1 − γn−j) .

Proof sketch. We introduce the auxiliary polynomials Fn(u) =
∑n

k=0 Prn{T : |σ(T)| = k}uk.
These satisfy the recurrence

Fn+1(u) = γn+11n+1̸=sus + pIuFn(u) + u
pII

n − 1

n−1∑
j=1

Fj(u)Fn−j(u)

+u
p⊛

n − 1

n−1∑
j=1

(Fj(u) − γjus) (Fn−j(u) − γn−jus) .

3 From now on, when we write random, we implicitly mean for the BST-like distribution.

STACS 2021

48:8 Absorbing Patterns in BST -Like Expression-Trees

Indeed, a tree T of size n + 1 is either fully reducible (with probability γn+1) or not.
When we pick ⊛, the new tree does not reduce to P only when the subtrees are not fully
reducible.

Then en is expressed as en = F ′
n(1). Differentiating the formula and setting u = 1 we

obtain the recurrence for en, using the fact that Fk(1) = 1 for all k. ◀

Recurrence for the probability of full reduction

The recurrence for the expected values (en) in Proposition 3 depends strongly on the auxiliary
sequence of probabilities (γn)n≥1. Clearly, any tree starting by the absorbing operator ⊛
and having a fully-reducible child is also fully reducible. Reciprocally, if a tree of size strictly
bigger than s is fully reducible, then it has ⊛ as a root and at least one fully reducible child.
Hence the sequence (γn) satisfies a recurrence, which is not linear:

γn+1 = p⊛ · 1
n − 1

n−1∑
k=1

(γk + γn−k − γkγn−k) , for all n ≥ s. (1)

Indeed, suppose that k is the size of the left subtree4, which happens with probability 1
n−1 .

Then the probability that one of the children is fully reducible is, by inclusion-exclusion,
γk + γn−k − γkγn−k.

In our study of the sequence (γn)n≥1 we will show that it actually converges (Thm. 10).
For the time being, we will just remark that if (γn)n converges, only certain values are
possible for L = lim γn. For this, let us recall this classical result:

▶ Lemma 4 (Cèsaro-means). Consider a sequence (an)n≥1 converging to a real number L.
Then we have limn

1
n

∑n
k=1 ak = L, and limn

1
n

∑n
k=1 ak an+1−k = L2.

From Eq. (1) we see that L = p⊛ · (2L − L2). Thus the limit, if it exists, can only be 0 or
γ∞ := 2 − 1/p⊛. For p⊛ < 1/2, we have γ∞ < 0 and so L = 0. For p⊛ > 1/2, Theorem 10
will show that L = γ∞. These limits hint at the possibility of a threshold for en at p⊛ = 1

2 .

3.2 Main steps
In order to study the sequence of expected sizes (en)n≥1 it will be necessary to study first the
sequence of probabilities (γn)n≥1. As announced, we introduce their generating functions:

A(z) :=
∞∑

n=0
γnzn , E(z) :=

∞∑
n=0

enzn .

The proof, as is usual in Analytic Combinatorics, proceeds in two steps: a symbolic step
and an analytic step. In the symbolic step we obtain appropriate equations for our generating
functions, seen as purely formal power series. In our case it will be differential equations,
coming from the recurrences. Then in the analytic step, the generating functions are seen
as analytic functions of a complex variable. We apply the celebrated Transfer theorem
(see [9, Ch VI.3]) to obtain the asymptotic equivalents of the sequences. The Transfer
Theorem states that, under analytic conditions, an equivalent E(z) ∼z→1 λ(1 − z)−α with
α /∈ {0, −1, −2, . . .}, implies en ∼ λnα−1/Γ(α), where Γ is Euler’s Gamma-function, the
generalized factorial.

4 We have supposed that there are trees of every possible size, which is equivalent to pI > 0.

F. Koechlin and P. Rotondo 48:9

Symbolic step

The recurrence (1) for γn, as well as the recurrence of en in Proposition 3, lead naturally to
ordinary differential equations for A(z) and for E(z). As the formal derivative of a series
F (z) =

∑
anzn is given by F ′(z) =

∑
(n + 1)anzn, multiplying Eq. (1) by (n − 1)zn and

summing will introduce derivatives. Thus we obtain a differential equation for A(z), under
the form of a Riccati equation, and a linear one for E(z), which involves the generating
function A(z) as a known quantity:

A′(z) = (s − 2)γszs−1 +
(

2
z

+ 2p⊛
z

1 − z

)
A(z) − p⊛ · (A(z))2 , (2)

and, for a certain function F (x, y), which can be made explicit

E′(z) = F (z, A(z)) + 1
1−pIz

(
2
z − pI + 2 (1 − pI)

z

1 − z
− 2p⊛A(z)

)
· E(z) .

These differential equations constitute our symbolic specifications for the generating
functions A(z) and E(z). At this point we switch to their analytic study.

Analytic step

The equation for E(z) is a first order linear ODE, as such it can be solved by the method
of variation of constants5 [1, Th. 6.1] to obtain an explicit solution that involves A(z) as a
known quantity. Thus we need first to study A(z) as a complex function, and in particular
its domain of analyticity. Since the coefficients of A(z) are probabilities γn ∈ [0, 1], the series
A(z) defines an analytic function on the unit disk |z| < 1. However, for technical reasons we
need further information regarding its domain of analyticity in order to apply the Transfer
Theorem. Thus in Section 4 we are going into more detail, showing that z = 1 is a dominant
singularity and that A(z) can be extended analytically to the domain Ω = C \ [1, ∞). We
remark that then the same holds for E(z).

The last hypothesis in order to apply the Transfer Theorem for E(z) is its asymptotic
equivalent as z → 1, its dominant singularity. The solution of the ODE for E(z) yields a
fundamental approximation

E(z) ≈ C

(1 − z)2 exp
(

−2p⊛

∫ z

0

A(w)
1 − pIw

dw

)
×

(
2 +

∫ z

0
G(z) exp

(
2p⊛

∫ ζ

0

A(w)
1 − pIw

dw

)
dζ

)
as z → 1, for a certain constant C > 0 and a bounded function G(z).

This means that to study the asymptotic behaviour for E(z) we require quite precise
asymptotics regarding A(z) near z = 1. In particular, we need to be able to integrate the
approximation, and obtain a good approximation after taking the exponential. Thus we
need not only an asymptotic equivalent for A(z) as z → 1, but also a remainder term. The
integration involving A(z) is dealt with by the Singular Integration Theorem [9, Thm VI.9].

Analysis of A(z) around its dominant singularity. First we turn the Riccati equation (2)
into a linear second order ODE that is homogeneous by a classical change of the unknown
function p⊛A(z) = v′(z)/v(z). We analyze the new function v(z) by the Frobenius method
[1, pp.181-182] to obtain a local form of v(z) around the singularity z = 1. The conclusion

5 We adapt it for our case. In fact 2
z is not defined at z = 0, where we give our initial condition precisely.

STACS 2021

48:10 Absorbing Patterns in BST -Like Expression-Trees

can be found in Proposition 9, which shows that we have 3 regimes for A(z) depending
on whether p⊛ is less, equal, or greater than 1/2. As a by-product, the Transfer Theorem
implies (see Theorem 10) that γn tends to 0 for p⊛ ≤ 1/2 and to the constant γ∞ > 0 when
p⊛ > 1/2. The detailed analysis is explained in Section 4.

Analysis of E(z) around its dominant singularity. We follow the cases of Proposition 9,
which already gives the threshold 1/2. Then there is an extra threshold coming from the
term

2 +
∫ z

0
G(z) exp

(
2p⊛

∫ ζ

0

A(w)
1 − pIw

dw

)
dζ

in the estimate for E(z). This new threshold corresponds exactly to the point where the
integral goes from being convergent to divergent as z → 1.

For example, when p⊛ < 1/2, Proposition 9 yields that the integral
∫ z

0
A(w)

1−pIw dw converges
as z → 1. From our approximation for E(z) we see that actually E(z) ∼ λ(1 − z)−2 for a
certain constant λ > 0. By the Transfer Theorem this implies that en ∼ λ · n as n → ∞.

4 Fully reducible trees

In this section, we study the probability of being fully reducible γn = Prn{σ(T) = P}. This
is motivated by the fact that γn intervenes in the recurrence for the expected value en of the
size of a random BST-like tree after reduction, see Section 3. We recall that we have the
following recurrence for (γn)n≥1: γn+1 = p⊛ · 1

n−1
∑n−1

k=1 (γk + γn−k − γkγn−k) for all n ≥ s.

4.1 Generating function and its Riccati equation
As announced, we study γn by looking at its generating function A(z) =

∑∞
n=0 γnzn. Note

that its radius of convergence is at least 1 because the coefficients γn belong to [0, 1]. The
following proposition shows that it is exactly 1.

▶ Proposition 5. The radius of convergence of A(z) is exactly 1.

Proof. We work by contradiction. Suppose
∑

k γk was convergent. The inequality γk +
γn−k −γkγn−k ≥ γk, valid for all k, implies γn ≥ p⊛

n−1
∑n−1

k=1 γk = Ω(1/n) from the recurrence
in Eq (1). This is absurd because of the divergence of the Harmonic sums. ◀

We recall the Riccati differential equation (2) satisfied by A(z):

A′(z) = (s − 2)γszs−1 +
(

2
z

+ 2p⊛
z

1 − z

)
A(z) − p⊛ · (A(z))2.

Consider now the function6 v(z) = exp
(
p⊛

∫ z

0 A(w)dw
)
, which satisfies A(z) = 1/p⊛ ·

v′(z)/v(z). This is a classical transformation to turn any Riccati equation into a linear ODE
of order two. For our case we obtain

v′′(z) = p⊛ · (s − 2)γszs−1v(z) +
(

2
z

+ 2p⊛
z

1 − z

)
v′(z) . (3)

The function v(z) is analytic on the disk |z| < 1 as A(z) is analytic there.

6 Here
∫ z

0 means that we integrate on the segment from 0 to z on the complex plane.

F. Koechlin and P. Rotondo 48:11

The domain of analyticity and the local behaviour of solutions of linear ODE are well
understood [1, 16, 18]. We exploit this now to show in Proposition 6 that A(z) is actually
analytic on the larger domain Ω = C \ [1, ∞). Later on (see Prop. 9) we will also use the
local form of v(z) to obtain asymptotic equivalents for A(z) around its singularity z = 1,
which are needed to apply the Transfer Theorem.

▶ Proposition 6. The power series A(z), seen as an analytic function, can be extended
analytically to every point of the domain Ω = C \ [1, ∞). In particular, z = 1 is the only
singularity on the circle |z| = 1.

Proof sketch. We already know that v(z) is analytic on the disk |z| < 1. Then we use [18,
Theorem 2.2, p.3] repeatedly and conclude with the uniqueness of analytic continuation. ◀

4.2 Asymptotics for the fully reducible trees
We can now derive the asymptotic behaviour of v(z), where we recall that v(z) satisfies
v′′(x) −

(
2
x + 2p⊛

x
1−x

)
v′(x) − p⊛ · (s − 2)γsxs−1v(x) = 0, a linear equation of order 2, with

non-constant coefficients. We analyze the asymptotics of the solutions close to the singularity
by using the Frobenius method (see [1, pp.181-182]). For this we introduce some related
notation.

▶ Definition 7. Consider the homogeneous linear ODE of order two y′′(x) + d1(x)y′(x) +
d2(x)y(x) = 0, where d1(x) and d2(x) are meromorphic on a star-shaped domain Ω̃.

A point ζ ∈ Ω̃ is said to be a regular singularity for the ODE, if it is a singularity of
either d1(x) or d2(x), or maybe both, and the limits δj := limz→ζ(z − ζ)jdj(z), exist and are
finite for j = 1 and 2. In this case, we define the indicial polynomial I(θ) at the regular
singularity z = ζ by I(θ) = θ(θ − 1) + δ1θ + δ2 .

The following theorem explains how the indicial polynomial leads to the asymptotics of the
solutions7:

▶ Theorem 8 ([1, Thm 6.14–15]). Consider the homogeneous linear ODE of order two
y′′(x) + d1(x)y′(x) + d2(x)y(x) = 0, where d1(x) and d2(x) are meromorphic on a star-shaped
domain Ω̃, and ζ a regular singularity for the given ODE.

If the two roots θ1 and θ2 of the indicial polynomial associated to ζ do not differ by an
integer (including 0 for double roots), then, in a slit neighbourhood of ζ inside Ω̃, every
solution y(x) is of the form c1(ζ − z)θ1H1(ζ − z) + c2(ζ − z)θ2H2(ζ − z), where c1, c2 ∈ C,
and H1(z), H2(z) are analytic at z = 0 and H1(0) ̸= 0, H2(0) ̸= 0.
If the indicial polynomial has a double root θ0, then in a slit neighbourhood of ζ inside Ω̃,
every solution y(x) is of the form (z − ζ)θ0(c1H1(z − ζ) + c2 log(z − ζ)H2(z − ζ)), where
c1, c2 ∈ C, and H1(z), H2(z) are analytic at z = 0 and H1(0) ̸= 0, H2(0) ̸= 0.

Using this theorem, we directly derive the local behaviour of v(z) and v′(z) around
z = 1. Now we are ready to obtain the local expansion for A(z) = 1

p⊛
v′(z)/v(z), around the

singularity z = 1, and we prove the following proposition:

▶ Proposition 9. The ordinary generating function A(z) for (γn)n≥1 satisfies the following
asymptotic expansions as z → 1 over Ω

7 The reference uses |ζ − z| to avoid restricting the domain; here we can use (ζ − z) because we chose a
determination of log(1 − z).

STACS 2021

48:12 Absorbing Patterns in BST -Like Expression-Trees

For p⊛ > 1
2 , A(z) = γ∞

1−z + O((1 − z)2p⊛−2),

For p⊛ = 1
2 , A(z) = 2

1−z

(
log

(
1

1−z

))−1
+ O

(
1

1−z

(
log

(
1

1−z

))−2
)

For p⊛ < 1
2 , A(z) ∼ D

(1−z)2p⊛
,

where we recall that γ∞ := (2p⊛ − 1)/p⊛ and D > 0 is a constant depending on p⊛ and s.

As a side product of this proposition, we can apply the Transfer Theorem and show that
γn indeed converges:

▶ Theorem 10. The probability γn of being fully reducible tends to the constant γ∞ :=
(2p⊛ − 1)/p⊛ for p⊛ > 1

2 and to zero otherwise. More precisely, for p⊛ = 1
2 we have

γn ∼ 2
log n , while for p⊛ < 1

2 , γn ∼ D · n2p⊛−1/Γ(2p⊛), where D is the constant from Prop. 9.

▶ Remark 11. A different approach for the case p⊛ < 1/2 yields the value of the constant
for the asymptotics, D = e−2p⊛ ·

(
(s − 2)γs

∫ 1
0 ts−3(1 − t)2p⊛e2p⊛tdt − p⊛

∫ 1
0 (A(t))2(1 − t)2p⊛e2p⊛tdt

)
.

Furthermore, the first term in the parenthesis yields a simple upper-bound.

5 Main result: expected values

This section is devoted to the sketch of the proof of the main theorem:

▶ Theorem 12. If the probability pI of unary operators is not zero, then the expected size
en of a random BST-like tree-expression of size n after the bottom-up reduction using an
absorbing pattern for the binary operator ⊛ satisfies, for some positive constants c1, . . . , c4:

if p⊛ < 1/2, then en ∼ c4 n;
if p⊛ = 1/2, then en ∼ c3 n log(n)−2/(1−pI);
if p⊛ > 1

2 and 4p⊛ < 3 − pI, then en ∼ c2 n
1−

4p⊛−2
1−pI ;

if 4p⊛ = 3 − pI, then en ∼ c1 log(n);
if 4p⊛ > 3 − pI, then en → e∞ , where e∞ is some positive constant.

Thus we perform a precise study of the generating function E(z) of the expected size en.
Solving the differential equation satisfied by E(z), we obtain the following as z → 1

E(z) ∼ 1 + (1 − pI)2/pI−1K(z)−1
(

2 +
∫ z

0
G(w)K(w)dw

)
× (1 − z)−2 ,

where G(z) → G(1) > 0 as z → 1 and K(z) := exp
(

2p⊛
∫ z

0
A(w)

1−pIw dw
)

.
Then, to obtain the asymptotic estimates we need for applying the Transfer Theorem

to E(z), we have to study K(z) and the integral
∫ z

0 G(w)K(w)dw. We remark that the
behaviour of the latter is determined roughly by the behaviour of

∫ z

0 K(w)dw. Indeed, if one
integral converges, so does the other, and similarly for the divergence. Moreover, when the
integral diverges as z → 1 we also have

∫ z

0 G(w)K(w)dw ∼ G(1)
∫ z

0 K(w)dw.
The asymptotics for K(z) are obtained by the singular integration (see [9, Theorem VI.9])

of the asymptotics of A(z).

▶ Example 13. Consider the case p⊛ > 1
2 . Proposition 9 tells us that A(z) = γ∞

1−z + O((1 −
z)2p⊛−2). Thus we also have A(w)

1−pIw = γ∞/(1−pI)
1−w + O((1 − w)2p⊛−2) as w → 1. Singular

integration gives 2p⊛
∫ z

0
A(w)

1−pIw dw = 2p⊛γ∞
1−pI

log
(

1
1−z

)
+ c0 + O((1 − z)2p⊛−1) for a certain

constant c0. As the remainder O-term tends to 0, we conclude K(z) ∼ CK ×(1 − z)−2p⊛
γ∞

1−pI .
We remark that 2p⊛γ∞

1−pI
= 4p⊛−2

1−pI
.

F. Koechlin and P. Rotondo 48:13

Singular integration yields the following estimates for J(z) :=
∫ z

0 G(w)K(w)dw:

▶ Lemma 14. The function J(z) satisfies the following asymptotics as z → 1 on Ω:

if 4p⊛ > 3 − pI, then J(z) ∼ CJ × (1 − z)1−
4p⊛−2

1−pI , with CJ > 0
if 4p⊛ = 3 − pI then J(z) ∼ CJ × log

(1
1−z

)
, with CJ > 0

if 4p⊛ < 3 − pI then J(z) ∼ CJ , with 2 + CJ > 0
where CJ is a constant depending on pI, p⊛, s.

The proof of this lemma proceeds by discussing whether the integral J(z) is convergent or
divergent. Notice for example that

∫ z

0 K(w)dw diverges for 4p⊛ − 2 ≥ 1 − pI due to the
estimate given at the end of Example 13. This gives the second threshold p⊛ = (3 − pI)/4.

This new threshold p⊛ = (3 − pI)/4, along with the previous p⊛ = 1
2 for the behaviour of

A(z), determine the 5 cases in the discussion in Theorem 12.

6 Conclusion

In this article we have seen that random BST-like tree-expressions have a rich range of
behaviors with respect to the simple reduction linked to an absorbing pattern. This situation
contrasts with the case of uniform random tree-expressions [11, 12] where it was previously
shown that the expected value of the size after reduction is O(1).

From a theoretical point of view, the existence of two thresholds is interesting in itself,
this leads to a variety of different regimes for the simplifications using a simple rule. There
are natural extensions of this paper to widen the result:

Refine the result for small patterns: this will only improve the multiplicative constants of
Theorem 12, not change the order of magnitude of the size of the reduced tree.
Allow for operators of arity more than 2, as BST-like distribution can naturally be
extended to handle such operators. This introduces technical difficulties, but our first
attempts at addressing this extension indicate similar results (with different thresholds).
Allow for more involved specifications, using grammar-like rules. This can be used, for
instance, to prevent two consecutive stars in a regular expression. Such specifications were
studied for the uniform distribution [12], and require dealing with system of equations
instead of just one equation.

However, going back to our initial motivation of analyzing the soundness of random
benchmarking, the main continuation of this work would be to mix several simplification
procedures. The first step would be to allow several absorbing patterns for different operators
together (this was done for a very specific distribution on ∧/∨-formulas in [3]). Going even
further, we could focus on the simplification procedure of an existing tool and extensively
study it using the techniques we developed in this article, for instance, tools like Spot for
random LTL-formulas (see Algorithm 1).

To conclude, the message of this paper is that, contrarily to the uniform distribution, a
BST-like distribution might be a relevant way to sample interesting random expressions in a
practical framework. However, one should be very careful when tuning the parameters, i.e.
the probability of the operators, as it may quickly lead to a degenerated case.

STACS 2021

48:14 Absorbing Patterns in BST -Like Expression-Trees

References

1 T.M. Apostol. Calculus. Vol. II: Multi-variable Calculus and Linear Algebra, with Applications
to Differential Equations and Probability. Blaisdell international textbook series. Xerox College
Publ., 1969.

2 Nicolas Broutin and Cécile Mailler. And/or trees: A local limit point of view. Random Struct.
Algorithms, 53(1):15–58, 2018. doi:10.1002/rsa.20758.

3 Brigitte Chauvin, Danièle Gardy, and Cécile Mailler. The growing tree distribution on boolean
functions. In 2011 Proceedings of the Workshop on Analytic Algorithmics and Combinatorics
(ANALCO), pages 45–56, 2011. doi:10.1137/1.9781611973013.5.

4 Marco Daniele, Fausto Giunchiglia, and Moshe Y. Vardi. Improved automata generation
for linear temporal logic. In Nicolas Halbwachs and Doron Peled, editors, Computer Aided
Verification, pages 249–260, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

5 Luc Devroye. A note on the height of binary search trees. J. ACM, 33(3):489–498, May 1986.
doi:10.1145/5925.5930.

6 Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne
Renault, and Laurent Xu. Spot 2.0 – a framework for LTL and ω-automata manipulation. In
Proceedings of the 14th International Symposium on Automated Technology for Verification
and Analysis (ATVA’16), volume 9938 of Lecture Notes in Computer Science, pages 122–129.
Springer, October 2016. doi:10.1007/978-3-319-46520-3_8.

7 Philippe Flajolet, Xavier Gourdon, and Conrado Martinez. Patterns in random bin-
ary search trees. Random Struct. Algorithms, 11(3):223–244, 1997. doi:10.1002/(SICI)
1098-2418(199710)11:3<223::AID-RSA2>3.0.CO;2-2.

8 Philippe Flajolet and Andrew M. Odlyzko. The average height of binary trees and other simple
trees. J. Comput. Syst. Sci., 25(2):171–213, 1982. doi:10.1016/0022-0000(82)90004-6.

9 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
2009.

10 Antoine Genitrini, Bernhard Gittenberger, Veronika Kraus, and Cécile Mailler. Associative
and commutative tree representations for boolean functions. Theoretical Computer Science,
570:70–101, 2015. doi:10.1016/j.tcs.2014.12.025.

11 Florent Koechlin, Cyril Nicaud, and Pablo Rotondo. Uniform random expressions lack
expressivity. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2019,
August 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 51:1–51:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

12 Florent Koechlin, Cyril Nicaud, and Pablo Rotondo. On the degeneracy of random expressions
specified by systems of combinatorial equations. In Natasa Jonoska and Dmytro Savchuk,
editors, Developments in Language Theory - 24th International Conference, DLT 2020, Tampa,
FL, USA, May 11-15, 2020, Proceedings, volume 12086 of Lecture Notes in Computer Science,
pages 164–177. Springer, 2020.

13 Cyril Nicaud. On the Average Size of Glushkov’s Automata. In Adrian-Horia Dediu, Armand-
Mihai Ionescu, and Carlos Martín-Vide, editors, Language and Automata Theory and Ap-
plications, Third International Conference, LATA 2009, Tarragona, Spain, April 2-8, 2009.
Proceedings, volume 5457 of Lecture Notes in Computer Science, pages 626–637. Springer,
2009.

14 Cyril Nicaud, Carine Pivoteau, and Benoît Razet. Average Analysis of Glushkov Automata
under a BST-Like Model. In Kamal Lodaya and Meena Mahajan, editors, IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2010), volume 8 of Leibniz International Proceedings in Informatics (LIPIcs), pages 388–
399, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.FSTTCS.2010.388.

https://doi.org/10.1002/rsa.20758
https://doi.org/10.1137/1.9781611973013.5
https://doi.org/10.1145/5925.5930
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1002/(SICI)1098-2418(199710)11:3<223::AID-RSA2>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1098-2418(199710)11:3<223::AID-RSA2>3.0.CO;2-2
https://doi.org/10.1016/0022-0000(82)90004-6
https://doi.org/10.1016/j.tcs.2014.12.025
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.388
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.388

F. Koechlin and P. Rotondo 48:15

15 Carine Pivoteau, Bruno Salvy, and Michèle Soria. Algorithms for combinatorial structures:
Well-founded systems and newton iterations. J. Comb. Theory, Ser. A, 119(8):1711–1773,
2012. doi:10.1016/j.jcta.2012.05.007.

16 Richard P. Stanley. Differentiably finite power series. Eur. J. Comb., 1(2):175–188, 1980.
doi:10.1016/S0195-6698(80)80051-5.

17 Heikki Tauriainen. Automated testing of Büchi automata translators for linear temporal logic.
Research Report A66, Helsinki University of Technology, Laboratory for Theoretical Computer
Science, Espoo, Finland, December 2000.

18 W. Wasow. Asymptotic Expansions for Ordinary Differential Equations. Dover Books
on Mathematics. Dover Publications, 2018. URL: https://books.google.fr/books?id=
NQNKDwAAQBAJ.

STACS 2021

https://doi.org/10.1016/j.jcta.2012.05.007
https://doi.org/10.1016/S0195-6698(80)80051-5
https://books.google.fr/books?id=NQNKDwAAQBAJ
https://books.google.fr/books?id=NQNKDwAAQBAJ

Cluster Editing Parameterized Above
Modification-Disjoint P3-Packings
Shaohua Li !

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland

Marcin Pilipczuk !

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland

Manuel Sorge !

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland
Institute of Logic and Computation, TU Wien, Austria

Abstract
Given a graph G = (V, E) and an integer k, the Cluster Editing problem asks whether we can
transform G into a union of vertex-disjoint cliques by at most k modifications (edge deletions or
insertions). In this paper, we study the following variant of Cluster Editing. We are given a
graph G = (V, E), a packing H of modification-disjoint induced P3s (no pair of P3s in H share an
edge or non-edge) and an integer ℓ. The task is to decide whether G can be transformed into a
union of vertex-disjoint cliques by at most ℓ + |H| modifications (edge deletions or insertions). We
show that this problem is NP-hard even when ℓ = 0 (in which case the problem asks to turn G into
a disjoint union of cliques by performing exactly one edge deletion or insertion per element of H)
and when each vertex is in at most 23 P3s of the packing. This answers negatively a question of van
Bevern, Froese, and Komusiewicz (CSR 2016, ToCS 2018), repeated by C. Komusiewicz at Shonan
meeting no. 144 in March 2019. We then initiate the study to find the largest integer c such that
the problem remains tractable when restricting to packings such that each vertex is in at most c

packed P3s. Van Bevern et al. showed that the case c = 1 is fixed-parameter tractable with respect
to ℓ and we show that the case c = 2 is solvable in |V |2ℓ+O(1) time.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Graph algorithms, fixed-parameter tractability, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.49

Related Version Full Version: https://arxiv.org/abs/1910.08517 [37]

Funding This research is part a project that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant
agreement 714704.

1 Introduction

Correlation Clustering is a well-known problem motivated by research in computational
biology [6] and machine learning [5]. In this problem we aim to partition data points into
groups or clusters according to their pairwise similarity and this has been intensively studied
in the literature, see [1, 3, 4, 5, 6, 15], for example.

In this paper, we study Correlation Clustering from a graph-based point of view,
resulting in the following problem formulation. A graph H is called a cluster graph if H is a
union of vertex-disjoint cliques; we also call these cliques clusters. Given a graph G = (V, E),
in the optimization version of Cluster Editing we ask for a minimum-size cluster-editing
set S, that is, a set S ⊆

(
V
2
)

of vertex pairs such that G△S := (V, E△S) is a cluster graph.
Here E△S is the symmetric difference of E and S, that is, E△S = (E \S)∪ (S \E). We also
sometimes refer to vertex pairs as edits. Cluster Editing is NP-hard [43]. Constant-ratio

© Shaohua Li, Marcin Pilipczuk, and Manuel Sorge;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 49; pp. 49:1–49:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Shaohua.Li@mimuw.edu.pl
mailto:malcin@mimuw.edu.pl
mailto:manuel.sorge@ac.tuwien.ac.at
https://doi.org/10.4230/LIPIcs.STACS.2021.49
https://arxiv.org/abs/1910.08517
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Cluster Editing Parameterized Above Modification-Disjoint P3-Packings

approximation algorithms have been found for the optimization variant [1, 5, 15] but it is
also APX-hard [15]. We focus here on exact algorithms and the decision version of Cluster
Editing.

Given a natural number k and a graph G = (V, E), the decision version of Cluster
Editing asks whether there exists a cluster-editing set S such that |S| ≤ k. Exact param-
eterized algorithms for Cluster Editing and some of its variants have been extensively
studied [28, 7, 42, 19, 12, 31, 10, 11, 21, 30, 8, 35, 24, 40, 13]. Cluster Editing is but
one of a large group of edge modification problems that have been studied, see Crespelle et
al. [17] for a recent survey. Perhaps it is one of the most important such problems because
of the practical motivation. Barring few exceptions [19, 35, 24, 44], Cluster Editing
has mainly been studied with respect to the solution-size parameter k. It is not hard to
observe that Cluster Editing is fixed-parameter tractable with respect to k and a series
of papers [28, 27, 7, 11, 8] continually improved the base in the exponential part of the
running time, culminating in the current fastest fixed-parameter algorithm with running
time O(1.62k + n + m) [8], where n is the number of vertices of the input graph and m its
number of edges. Similarly, a series of papers [28, 20, 22, 29, 42, 14, 16] gave more and more
effective problem kernels1 until a problem kernel with 2k vertices was achieved [14, 16].

As mentioned, the interest in Cluster Editing is not merely theoretical. Indeed,
parameterized techniques are implemented in standard clustering tools [41, 45]. Although
practitioners report that in particular the parameterized data-reduction techniques are
effective [10, 9], the parameter k is not very small in several real-world data sets [7, 10, 44].
For instance, Böcker et al. [7, Table 2] considered 26 graphs derived from biological data
with 91 to 100 vertices on which the average number of needed edits is 315, despite noting
that the Cluster Editing model outperformed other clustering models.

A technique to deal with such large parameters is parameterization above lower bounds.
Herein, the parameter is of the form ℓ = k − h where h is a lower bound on the solution size,
usually computable in polynomial time, and ℓ is the excess of the solution size above the lower
bound. Research into parameterizations above lower bounds has been active and fruitful
for several parameterized problems, not only on the theory-side (see [39, 18, 26, 38, 36], for
example) but also in practice, as algorithms based on that approach yielded quite efficient
implementations for Vertex Cover [2] and among the most efficient ones for Feedback
Vertex Set [32, 34]. For Cluster Editing we are aware of only one research work
considering parameterizations above lower bounds: Van Bevern, Froese, and Komusiewicz [44]
studied edge-modification problems parameterized above the lower bound from packings
of forbidden induced subgraphs and showed that Cluster Editing parameterized by the
excess above the size of a given packing of vertex-disjoint P3s is fixed-parameter tractable.
Observe that a graph is a cluster graph if and only if it does not contain any P3, a path on
three vertices, as an induced subgraph. Consequently, one needs to perform at least one edge
deletion or insertion per element of the packing.

As the P3s in the above packing are vertex-disjoint, the value by which the packing
can decrease the parameter is limited. In the previous example with 315 edits, subtracting
the resulting lower bound would reduce the parameter by at most 33. In their conclusion,
van Bevern et al. [44] asked whether Cluster Editing is fixed-parameter tractable when
parameterized above a stronger lower bound, the size of a modification-disjoint packing

1 A problem kernel is a formalization of provably effective and efficient data reduction. It is a polynomial-
time self-reduction that produces instances of size bounded by some function of the parameter.

S. Li, M. Pilipczuk, and M. Sorge 49:3

of P3s. Here, a packing H of induced P3s in G is modification-disjoint if every two P3s in H
do not share edges or non-edges, that is, they share at most one vertex. The formal problem
definition is as follows.

Cluster Editing above modification-disjoint P3 packing (CEaMP)
Input: A graph G = (V, E), a modification-disjoint packing H of induced P3s of G,
and a non-negative integer ℓ.
Question: Is there a cluster editing set, i.e. a set of vertex pairs S ⊆

(
V
2
)

so that
G△S is a union of disjoint cliques, with |S| − |H| ≤ ℓ?

We also say that a set S as above is a solution.

Our results. At Shonan Meeting no. 144 [33] Christian Komusiewicz re-iterated the question
of van Bevern et al. [44] and it was also asked in Vincent Froese’s dissertation [25]. In this
paper, we answer this question negatively by showing the following.

▶ Theorem 1. Cluster Editing above modification-disjoint P3 packing is NP-hard
even for ℓ = 0 and when each vertex in the input graph is incident with at most 23 P3s of H.

In other words, given a graph G and a packing H of modification-disjoint P3s in G, it is
NP-hard to decide if one can delete or insert exactly one edge per element of H to obtain a
cluster graph. Proving Theorem 1 was surprisingly nontrivial. A straightforward approach
would be to amend the known reductions [35, 23] that show NP-hardness for constant
maximum vertex degree by specifying a suitable packing of P3s. However, an argument based
on the linear-programming relaxation of packing modification-disjoint P3s shows that the
graphs produced by these reductions do not admit tight P3 packing bounds. We did not find
a way around this issue and thus developed a novel reduction based on new gadgets.

The verdict spelt by Theorem 1 is unfortunately quite damning. It indicates that even
just reaching the lower bound given by a modification-disjoint P3 packing already captures
the algorithmic hardness of the problem. However, there may be a way out of this conundrum:
Call a modification-disjoint P3 packing 1/c-integral if each vertex is in at most c packed P3s
(and say integral in place of 1-integral and half-integral in place of 1/2-integral). As the case
c = 1 is just the case of vertex-disjoint packings, van Bevern et al. [44] showed that Cluster
Editing parameterized by the excess over integral P3 packings is fixed-parameter tractable.
Thus it becomes an intriguing question to find the largest c < 23 such that CEaMP remains
tractable with respect to the excess over 1/c-integral packings. We provide progress towards
answering this question here. The problem Cluster Editing above half-integral P3
packing (CEaHMP) is defined in the same way as CEaMP except that the input packing H
is half-integral. It turns out that the complexity of the problem indeed drops when making
the packing half-integral:

▶ Theorem 2. Cluster Editing above half-integral P3 packing parameterized by
the number ℓ of excess edits is in XP. It can be solved in O(n2ℓ+O(1)) time, where n is the
number of vertices in the input graph.

A straightforward idea to prove Theorem 2 would be to adapt the fixed-parameter algorithm
for vertex-disjoint packings given by van Bevern et al. [44]. Their main idea is to show that if
a packed P3 P of the input graph G admits a solution that is optimal for P and that respects
certain conditions on the neighborhood of V (P) in G then this solution can be used in an
optimal cluster-editing set for G. Afterwards, each packed P3 P either needs an excess edit

STACS 2021

49:4 Cluster Editing Parameterized Above Modification-Disjoint P3-Packings

in V (P) or an edit incident with V (P) in G. Since the P3s in the packing are vertex-disjoint
an edit incident with V (P) will be in excess over the packing lower bound as well. It then
follows that the overall number of edits is bounded by a function of the excess edits.

Unfortunately, the above idea fails for modification-disjoint packings for two reasons.
First, the property that packed P3s have an edit incident with them is not helpful anymore,
because these edits may be part of other packed P3s and hence not be in excess. Second, if we
would like to preserve that these edits are excess, we need to check the special neighborhood
properties of van Bevern et al. [44] for arbitrarily large connected components of packed
P3s efficiently. We did not see a way around these issues and instead designed an algorithm
from scratch: A straightforward guessing of the excess edits reduces the problem to the case
where we need to check for zero excess edits. This case is then solved by an extensive set
of reduction rules that exploit the structure given by the half-integral packing. Essentially,
we successively reduce the maximum size of clusters in the final cluster graph. This then
allows us to reduce the problem to Cluster Deletion. Together with the properties of
the packing, this problem allows a formulation as a 2SAT formula which we then solve in
polynomial time.

Organization. After brief preliminaries in Section 2, we give an outline of the reduction
used to show Theorem 1 in Section 3. Section 4 then contains an outline of the proof of
Theorem 2. Due to space constraints, parts of the constructions and algorithms are deferred
to a full version of the paper [37].

2 Preliminaries

In this paper, we denote an undirected graph by G = (V, E), where V = V (G) is the set of
vertices, E = E(G) is the set of edges, and

(
V
2
)
\E is the set of non-edges. An undirected edge

between two vertices u and v will be denoted by uv where we put uv = vu. An undirected
non-edge between two vertices x and y will be denoted by xy, where we put xy = yx, and
we will explicitly mention that xy is a non-edge in case of confusion with the notation of an
edge. If uv is an edge in the graph, we say u and v are adjacent. We denote a bipartite graph
by B = (U, W, E), where U, W are the two parts of the vertex set of B and E is the set of
edges of B. We say that a bipartite graph is complete if for every pair of vertices u ∈ U

and w ∈ W , uw ∈ E. For a non-empty subset of vertices X ⊆ V , we denote the subgraph
induced by X by G[X]. A clique Q in a graph G is a subgraph of G in which any two distinct
vertices are adjacent. A cluster graph is a graph in which every connected component is a
clique. A connected component in a cluster graph is called a cluster.

Let G′ be a cluster graph and let S be a cluster editing set S such that G△S = G′. We
say that two cliques Q1 and Q2 of G are merged (in G′) if they belong to the same cluster
in G′. We say that Q1 and Q2 are separated (in G′) if they belong to two different clusters
in G′. When mentioning the edges or non-edges between the vertices of the clique Q1 and
the vertices of the clique Q2, we refer to the edges or non-edges between the clique Q1 and
the clique Q2 for short. Let ℓ, r ∈ N. We denote a path with ℓ vertices by Pℓ and a cycle
with r vertices by Cr.

Let x, y, z be vertices in a graph G. We say that xyz is an induced P3 of G if xy, yz ∈ E(G)
and xz /∈ E(G). Vertex y is called the center of xyz. We say that vertices x, y, z belong to
xyz or x, y, z are incident with xyz. We also say that xyz is incident with the vertices x, y

and z. In this paper, all P3s we mention are induced P3s; we sometimes skip the qualifier
“induced” for convenience.

S. Li, M. Pilipczuk, and M. Sorge 49:5

Kc
4π(c,d)+2

Kc
4π(c,d)+1

Kc
4π(c,d)

Q1
d Q4

d

Q2
d Q3

d

T a
d

T c
d

T b
d

Ka
4π(a,d)

Ka
4π(a,d)+1

Ka
4π(a,d)+2

Ka
4π(a,d)+3

F

T

F

T

F
TF

T

F

T

F
T

Kb
4π(b,d)+1 Kb

4π(b,d)+2

Kb
4π(b,d)

T
F

T

F

Figure 1 Basic structure of graph constructed from a 3-CNF formula. Depicted is a clause gadget
for a clause xa ∨ ¬xb ∨ ¬xc and the variable gadgets for xa, xb, and xc.

Given an instance (G,H, ℓ) of CEaMP, if xyz is a P3 in G and xyz ∈ H, we say that
xyz is packed, and we say that the edges xy, yz are covered by xyz and the non-edge xz is
covered by xyz. If an edge xy is covered by some P3 of H, we say that xy is a packed edge.
Otherwise we say that xy is a non-packed edge. If a non-edge uv is covered by some P3 of H,
we say that uv is a packed non-edge. Otherwise we say that uv is a non-packed non-edge. If
xyz is a P3 in G and Q1, Q2, and Q3 are pair-wise non-intersecting vertex sets of G, we say
that xyz connects Q1 and Q3 via Q2 if the center y of xyz belongs to Q2 and x, z belong to
Q1 and Q3, respectively.

We sometimes need finite fields of prime order. Let p be some prime. By Fp we denote
the finite field with the p elements 0, . . . , p− 1 with addition and multiplication modulo p.

3 NP-hardness for tight modification-disjoint packings

Overview. In this section, we outline the proof of Theorem 1 that shows a reduction from
the NP-hard problem of deciding satisfiability of 3-CNF formulas. Given a 3-CNF formula Φ
with variables x0, . . . , xn−1 and clauses Γ0, . . . , Γm−1 we construct a graph G = (V, E) with
a modification-disjoint packing H of induced P3s such that Φ has a satisfying assignment if
and only if G has a cluster editing set S which consists of exactly one edit in each P3 in H.

Let us start with Figure 1 which depicts the basic structure of the graph G. The
fundamental building blocks of G and H are what we call proto-clusters, indicated by white
circles. A proto-cluster is an induced subgraph H of G whose vertex set is maximal with
respect to the property that H contains a spanning tree that consists entirely of non-packed
edges. Note that the set of proto-clusters partitions the vertex set of G. As we cannot edit
non-packed edges, the clusters in each solution that we may obtain induce a partition that is
coarser than the partition given by the proto-clusters.

Our first concern is to interconnect the proto-clusters in such a way that a grouping into
solution clusters implies a satisfying assignment of Φ – the construction is sound. To this
end, a straightforward idea of modeling the truth-value of a variable comes to mind: Use

STACS 2021

49:6 Cluster Editing Parameterized Above Modification-Disjoint P3-Packings

an even-length cycle of proto-clusters and add P3s to the packing H such that either the
odd pairs or the even pairs of proto-clusters on the cycle need to be merged into clusters.
The variable gadgets are represented by the three gray cycles in Figure 1. A clause gadget is
slightly less obvious, because we need a three-way choice and straightforward constructions
yield only two-way choices. A solution is shown in Figure 1: There are four proto-clusters,
Q1

d through Q4
d such that there is a non-packed nonedge between Q1

d and Q4
d and a path

in G from Q1
d over Q2

d and Q3
d to Q4

d. Because of the non-packed nonedge, the proto-clusters
Q1

d and Q4
d are in different solution clusters. Hence, we need to separate a pair of Qi

d and
Qi+1

d for some i ∈ [3]. This models the choice of the variable that shall satisfy the clause.
This choice is then transferred to the variable gadgets by suitable packed P3s and further
proto-clusters. A nontrivial issue in this transfer of choices is how to connect variable gadgets
to the rest of the construction. On the one hand, we need to pack P3s that are partly in the
variable gadgets and partly outside so as to transfer the choice and on the other hand, we
need a packing of P3s inside the variable gadgets in order to allow both the merging of odd
pairs and even pairs of proto-clusters in the gadget.

The most involved part of the construction is indeed how to ensure the completeness,
that is, the property that a satisfying assignment for Φ gives a cluster-editing set with zero
excess edits for G. This issue makes the construction that we obtain somewhat special: We
need to pack P3s into the above “skeleton” construction so as to allow for the merging and
cutting of pairs of proto-cluster according to the satisfying assignment. We accomplish this
by a careful implementation of the above gadgets such that the edges and non-edges that are
covered by the packed P3s of the skeleton construction have a special structure. We then use
an algebraic construction that allows us to prove that the needed covering of the remaining
edges and non-edges by modification-disjoint P3s exists.

We now proceed to describing the variable and clause gadgets more formally and then
show how we have resolved the above two issues.

Variable gadgets. As mentioned, a variable will be represented by a cycle of proto-clusters
such that any solution needs to merge either each odd or each even pair of consecutive
proto-clusters. These two options represent the truth value assigned to the variable. In order
to enable both associated solutions with zero edits above the packing lower bound, we build
an associated packing of P3s such that all vertex pairs between consecutive proto-clusters are
covered by a P3 in the packing. Since we later on need to connect the variable gadgets to
the clause gadgets, each proto-cluster will contain five vertices, giving us enough attachment
points for later.

Let mi denote the number of clauses that contain the variable xi, i = 0, 1, . . . , n− 1. For
each variable xi, i = 0, 1, . . . , n− 1, we create 4mi vertex-disjoint cliques with 5 vertices each,
namely Ki

0, . . . , Ki
4mi−1. In each Ki

j , j = 0, 1, . . . , 4mi − 1, the vertices are vi
j,0, . . . , vi

j,4. For
each j = 0, 2, . . . , 4mi − 2, we create P3s connecting Ki

j , Ki
j+1, and Ki

j+2 as follows (here we
identify Ki

0 as Ki
4mi

).
We add pairwise modification-disjoint P3s to cover all edges between the cliques Ki

j we
have just introduced. Recall that F5 is the finite field of the integers modulo 5. We take
three consecutive cliques and add P3s with one vertex in each of the three cliques. To do
this without overlapping two P3s, we think about the cliques’ vertices as elements of F5 and
add a P3 for each possible arithmetic progression. That is, in each added P3 the difference of
the first two elements of the P3 is equal to the difference of the second two elements. In this
way, each vertex pair is contained in a single P3 since the third element is uniquely defined.

S. Li, M. Pilipczuk, and M. Sorge 49:7

Formally, for every triple of elements p, q, r ∈ F5 satisfying the equality q − p = r − q

over F5, we add to the graph the edges vi
j,pvi

j+1,q and vi
j+1,qvi

j+2,r and to the packing H
the P3 given by vi

j,pvi
j+1,qvi

j+2,r. Note that in this manner the clique Ki
j+1 becomes fully

adjacent to Ki
j and to Ki

j+2 while Ki
j+1 stays anti-adjacent to all other cliques Ki

j′ .
Observe that the P3s given by vi

j,pvi
j+1,qvi

j+2,r for j = 0, 2, . . . , 4mi − 2 such that q − p =
r − q are pairwise modification-disjoint: For each j = 0, 2, . . . , 4mi − 2, an arbitrary edge
just introduced between Ki

j and Ki
j+1 has the form {vi

j,p, vi
j+1,q} for some p, q ∈ F5. It

belongs to the unique P3 given by vi
j,pvi

j+1,qvi
j+2,r, where r = 2q − p. Similarly, an arbitrary

edge {vi
j+1,q, vi

j+2,r} for q, r ∈ F5 belongs to the unique P3 given by vi
j,2q−rvi

j+1,qvi
j+2,r

and an arbitrary non-edge {vi
j,p, vi

j+2,r} for p, r ∈ F5 belongs to the unique P3 given by
vi

j,pvi
j+1,(p+r)·2−1vi

j+2,r, where 2−1 is the multiplicative inverse of 2 over F5, that is, 2−1 = 3.
After this construction, we set the P3 packing of the variable gadgets to

Hvar = {vi
j,pvi

j+1,qvi
j+2,r | i = 0, . . . , n − 1; j = 0, 2, . . . , 4mi − 2; p, q, r ∈ F5; and q − p = r − q}.

This finishes the first stage of the construction. The truth values of the variable are
represented as follows. For every variable xi, i = 0, . . . , n− 1, if Ki

j and Ki
j+1 are merged for

j = 0, . . . , 4mi − 2, then this represents assigning false to the variable xi. If Ki
j+1 and Ki

j+2
are merged for j = 0, . . . , 4mi − 2, then this represents variable xi being true. We will make
minor modifications to the variable gadgets and Hvar below so as to transmit the choice of
truth value to the clause gadgets.

Skeleton of the clause gadget. In order to introduce the construction of the clause gadget,
we first give a description of the skeleton of the clause gadget. The skeleton, depicted in
Figure 1, is a subgraph of the final construction that allows us to prove the soundness. The
construction is finalized later.

For each variable xi, i = 0, 1, . . . , n− 1, of Φ we fix an arbitrary ordering of the clauses
that contain xi. If a clause Γj contains xi, let π(i, j) ∈ {0, . . . , mi− 1} denote the position of
the clause Γj in this ordering. Let initially Htra = ∅. For each clause Γd (d = 0, . . . , m− 1)
proceed as follows. We first introduce four cliques Q1

d, Q2
d, Q3

d and Q4
d. Let Γd contain the

variables xa, xb and xc. We introduce the cliques T a
d , T b

d and T c
d , called transferring cliques.

All of the cliques introduced are pairwise vertex disjoint and can be of different sizes. The
concrete size will be determined later. Next, we introduce the following P3s into G and Htra
(see the center of Figure 1):

P 1
d and P 2

d that both connect T a
d and Q2

d via Q1
d and that share a vertex in Q1

d.
P 3

d and P 4
d that both connect T b

d and Q2
d via Q3

d and that share a vertex in Q3
d.

P 5
d and P 6

d that both connect T c
d and Q3

d via Q4
d and that share a vertex in Q4

d.
All the P3s above are pairwise vertex-disjoint except for the shared vertices explicitly
mentioned in the definition. We call the P3s of Htra transferring P3s.

Connection to the variable gadgets. Next we connect the transferring cliques T a
d , T b

d , and
T c

d to the variable gadgets of xa, xb, and xc, respectively. To avoid additional notation, we
only explain the procedure for T a

d and xa, the other pairs are connected analogously. We
connect T a

d to the variable gadget of xa by a set of four modification-disjoint P3s as shown
in Figure 2 and explained formally below. The centers of these P3s are in Ka

4π(a,d)+1. For
each of these four P3s, exactly one endpoint is an arbitrary distinct vertex in T a

d which is
different from the endpoints of the P3s connecting T a

d to Q1
d; we denote these endpoints as

w1, w2, w3, w4. The other endpoint is in Ka
4π(a,d)+2 if xa appears positively in Γd and the

other endpoint is in Ka
4π(a,d) otherwise. The precise centers and endpoints in the cliques

STACS 2021

49:8 Cluster Editing Parameterized Above Modification-Disjoint P3-Packings

v5

v1

v6

v2

v3v4

v7v8 w1

w2

w3

w4

Ka
4π(a,d)

Kp
4π(p,d)+1

Ka
4π(a,d)+2

T a
d

Figure 2 Connection of a clause gadget with a variable gadget for a variable xa which appears
positively in the clause. White ellipses represent cliques. The vertices in the cliques in the variable
gadget are ordered from right to left according to the elements of F5 which they represent. For
example, the rightmost vertex in Ka

4π(a,d) is va
4π(a,d),0 (corresponding to 0 ∈ F5) and the leftmost

is va
4π(a,d),4 (corresponding to 4 ∈ F5). The gray lines adjacent to cliques in the variable gadget

represent some of the P3s that were introduced into the variable gadgets in the beginning. In colors
red, black, green, and blue we show the P3s that connect the transferring clique T a

d with the variable
gadget of variable xa. Herein, dotted lines are non-edges and solid lines are edges. Note that these
connecting P3s supplant some of the edges of previously present P3s in the variable gadget – the
previously present P3s are then removed. For example the green P3 replaces the edge v2v3 of the P3

given by v6v2v3 that was previously present. To maintain that each vertex pair between consecutive
cliques in the variable gadget is covered by some P3 in the packing, we add the brown P3s.

Ka
4π(a,d)+2 or Ka

4π(a,d) are specified below. Since these newly introduced P3s use edges that
belong to some P3s in Hvar that were introduced while constructing the variable gadgets,
we will remove such P3s in the variable gadget from Hvar, remove their corresponding edges
from the graph, and add some new P3s to Hvar as described below. As a result, the clique
Ka

4π(a,d)+1 may no longer be fully adjacent to Ka
4π(a,d) or Ka

4π(a,d)+2. We will however
maintain the invariant that each vertex pair between Ka

4π(a,d)+1 and Ka
4π(a,d) or Ka

4π(a,d)+2 is
covered by a P3 in the packing and that all the P3s of Hvar are pairwise modification-disjoint.

Formally, if xa appears positively in Γd, we denote:

v1 = va
4π(a,d)+1,0 v2 = va

4π(a,d)+1,1 v3 = va
4π(a,d)+2,1 v4 = va

4π(a,d)+2,2

v5 = va
4π(a,d),0 v6 = va

4π(a,d),1 v7 = va
4π(a,d),3 v8 = va

4π(a,d),4.

If xa appears negatively in Γd, we swap the roles of Ka
4π(a,d) and Ka

4π(a,d)+2, that is:

v1 = va
4π(a,d)+1,0 v2 = va

4π(a,d)+1,1 v3 = va
4π(a,d),1 v4 = va

4π(a,d),2

v5 = va
4π(a,d)+2,0 v6 = va

4π(a,d)+2,1 v7 = va
4π(a,d)+2,3 v8 = va

4π(a,d)+2,4.

As shown in Figure 2, we remove the P3s given by v8v1v3, v7v1v4, v6v2v3, and v5v2v4 from
Hvar and we remove their corresponding edges from the graph. Then we add the P3s given
by v5v6v2 and v1v7v8 to the graph and to Hvar. Finally, we connect T a

d via Ka
4π(a,d)+1 by

adding the P3s given by w1v1v3, w2v2v4, w3v2v3, and w4v1v4 to the graph and to Htra. Note
that, indeed, each vertex pair between Ka

4π(a,d)+1 and Ka
4π(a,d) and between Ka

4π(a,d)+1 and
Ka

4π(a,d)+2 remains covered by a P3 in the packing after replacing all P3s. This finishes the
construction of the skeleton of the clause gadgets.

Intuitively, the skeleton ensures the soundness as follows. Recall from above that we need
to delete at least one of three sets of edges in the solution, namely the edges between Q1

d

and Q2
d, the edges between Q2

d and Q3
d, or the edges between Q3

d and Q4
d. Assume that the

S. Li, M. Pilipczuk, and M. Sorge 49:9

edges between Q1
d and Q2

d are deleted and the variable xa appears positively in the clause Γd

as in Figure 1. Because of the constraints imposed by the P3s P 1
d and P 2

d , cliques T a
d and

Q1
d have to be merged in the final cluster graph. Since Ka

4π(a,d)+1 cannot be merged with Q1
d

(there are no edges between Q1
d and Ka

4π(a,d)+1, and no P3s connecting Q1
d and Ka

4π(a,d)+1),
we have to separate T a

d from Ka
4π(a,d)+1. Then, the P3s connecting T a

d with Ka
4π(a,d)+2 force

Ka
4π(a,d)+1 and Ka

4π(a,d)+2 to merge. This means xa is true and it satisfies the clause Γd.

Merging model and P3 padding. Above we have defined all proto-clusters of the final
constructed graph. What remains is to ensure that the proto-clusters indeed can be merged
as required to construct a solution from a satisfying assignment to Φ in the completeness
proof. Intuitively, in this construction we have pairs of proto-clusters A and B which we
would like to be able to either merge or separate without incurring excess edits. To achieve
this, we add P3s that have both an edge and a nonedge between A and B. If we are able to
cover all vertex pairs between A and B with such P3s, then merging or separating A and B

will indeed not incur excess edits. The pairs of proto clusters that we want to be able to
merge are captured in the merging model, a graph H that contains as vertices the cliques in
the gadgets that we have introduced and the following edges:
{{Ki

j , Ki
j+1} | i = 0, 1, . . . , n− 1 and j = 0, 1, . . . , 4mi − 1}; these pairs are needed to be

able to set the variable gadgets according to their truth values.
{{T i

d, Ki
4π(i,d)}, {T

i
d, Ki

4π(i,d)+1}, {T
i
d, Ki

4π(i,d)+2} | variable xi occurs in clause Γd}; these
edges are needed to merge a transferring clique to its corresponding variable gadget if
the variable does not satisfy the clause associated with the transferring clique.
{{Q1

d, Q2
d}, {Q1

d, Q3
d}, {Q2

d, Q3
d}, {Q2

d, Q4
d}, {Q3

d, Q4
d} | d = 0, 1, . . . , m− 1}; in order to be

able to merge proto-clusters in a clause gadget if they do not correspond to a variable
that was chosen to satisfy the clause.
{{T i

d, Qk
d} | if variable xi occurs in Γd and T i

d is adjacent in G to Qk
d with k ∈ {1, 4}};

in order to be able to merge a transferring clique to a proto-cluster in a clause gadget if
the corresponding variable was chosen to satisfy the clause.
{{T i

d, Q3
d}, {T i

d, Q4
d} | if variable xi occurs in Γd and T i

d is adjacent in G to Q3
d}; ditto

(the construction is asymmetric).
The aim is now to define a vertex partition of the merging model into levels and to pad
P3s between levels. The levels are as follows: L0 contains all cliques in variable gadgets; L1
contains Q1

d and Q4
d for each d = 0, . . . , m− 1; L2 contains Q3

d for each d = 0, . . . , m− 1; L3
contains Q2

d for each d = 0, . . . , m− 1; and L4 contains all transferring cliques. Observe that
apart from edges in L0, all edges of H are between different levels. Moreover, orienting the
edges in H from higher to lower level gives an acyclic orientation when ignoring the edges
in level L0 and each vertex in H on some level Li is adjacent to only a constant number
of vertices on a lower level Lj , j < i. Hence, we now go through the cliques in V (H) in
increasing order of levels and, for each clique Q, we pad P3s between Q and its constant
number of neighbors on lower levels. The padding is done so as to cover all vertex pairs
between Q and the lower neighbors that are not covered by the skeleton yet. To show that
such a covering exists, we need to analyze the structure of the vertex pairs that are already
covered. We can show that these pairs form either P3s (e.g. between T a

d and Q1
d in Figure 1)

or cycles of length eight (e.g. between T a
d and the two cliques Kp

4π(p,d)+1 and Kp
4π(p,d)+2 in

Figure 2). Using this property, we can show that the desired padding of P3s exists by proving
the following result.2 Note that the statement is about triangle packings; the triangles
correspond to the vertex pairs covered by P3s.

2 To obtain the desired bound on the number of P3s containing a fixed vertex we need a slightly more
general result. See the details in the full version.

STACS 2021

49:10 Cluster Editing Parameterized Above Modification-Disjoint P3-Packings

▶ Lemma 3. Let p be a prime number with p ≥ 2. Let B = (V, W, E) be a complete bipartite
graph such that |V | = p and |W | = 2p. Let F ⊆ E be a set of edges such that each connected
component of (V ∪W, F) is a either a P3 with a center in V or a C8. Then there exists an
edge-disjoint triangle packing τ in (V ∪W, E \ F ∪

(
W
2

)
) which covers E \ F such that every

triangle in τ contains exactly one vertex of V , the graph (W,
(

W
2

)
\E(

⋃
τ)) is connected, and

each vertex is in at most p triangles of τ .

We apply Lemma 3 as follows: W is the clique for which we want to pad P3s and V is the
union of the cliques that are neighbors of W in H on lower layers. The set F contains the
vertex pairs already covered by the skeleton. The packing τ corresponds to our desired P3
packing. Finally, the connectedness property on (W,

(
W
2

)
\ E(

⋃
τ)) ensures that W remains

a proto-cluster. Using the padding we can ensure the soundness, concluding the proof of
Theorem 1.

The proof of Lemma 3 works roughly as follows. We partition W into two parts W1, W2,
each of size p. The triangles in the packing contain one vertex of each of W1, W2, and V ;
they are defined by interpreting W1, W2, and V each as the field Fp and taking three vertices
i ∈ W1, j ∈ W2, k ∈ V such that j − i = k − j. This defines a covering of all vertex pairs
between V and W . The vertex pairs in F are avoided by covering them with specific triangles,
which are then removed from the final packing.

4 XP-algorithm for half-integral packings

In this section, we study CEaMP in the special setting where every vertex is incident with
at most two P3s of the packing H. We define this problem as Cluster Editing above
half-integral P3 packing (CEaHMP). We prove the following.

▶ Theorem 2 (Restated). Cluster Editing above half-integral P3 packing parame-
terized by the number ℓ of excess edits is in XP. It can be solved in O(n2ℓ+O(1)) time, where
n is the number of vertices in the input graph.

The main tool in proving Theorem 2 is a polynomial-time algorithm for the case where ℓ = 0:

▶ Theorem 4. Cluster Editing above half-integral P3 packing can be solved in
polynomial time when ℓ = 0, that is, when no excess edits are allowed.

The proof of Theorem 4 will be given in the final part of this section. Using this we can
prove Theorem 2 as follows: Essentially, the XP algorithm for Cluster Editing above
half-integral P3 packing guesses (by trying all possibilities) the number, ℓa, of excess
edits that are not contained in any P3 in H and guesses the concrete edits to be made. Then
it guesses the P3s in H that harbor the remaining excess edits and it guesses how these P3s
are resolved. Then it checks whether the remaining instance has a cluster-editing set without
excess edits over the remaining P3 packing H′ using the algorithm from Theorem 4. The full
proof for Theorem 2 is contained in the full version [37].

We outline the polynomial-time algorithm for CEaHMP when ℓ = 0. It is based on
a series of reduction rules that perform successive modifications to the input graph and
P3 packing to get an equivalent new instance. Whenever we state a reduction rule in the
following, we assume that all the reduction rules before it have been applied exhaustively.
We will omit the correctness proofs for most reduction rules and lemmas here – they are
contained in the full version [37]. We first aim to decrease the maximum size of clusters in a
solution cluster graph, then reduce to Cluster Deletion and then to 2SAT.

S. Li, M. Pilipczuk, and M. Sorge 49:11

We again use the notion of proto-clusters as in the previous sections. We say a proto-
cluster C is isolated from a proto-cluster D if there are no edges between C and D. We
classify the P3s of H into four types. For an induced P3 xyz ∈ H, if x, y belong to one
proto-cluster and z belongs to another proto-cluster, or symmetrically y, z belong to one
proto-cluster and x belongs to another proto-cluster, then xyz is a type-α P3; if x, z belong
to one proto-cluster and y belongs to another proto-cluster, then xyz is a type-β P3; if
x, y, z belong to three distinct proto-clusters, then xyz is a type-γ P3; if x, y, z belong to one
proto-cluster then xyz is a type-δ P3.

The first five reduction rules are simple and their correctness follows almost immediately:

▶ Reduction Rule 1. For any proto-cluster C, if there are two vertices u, v ∈ V (C) such
that uv is a non-packed non-edge, i.e., uv is not covered by any P3 of H, then return NO.

▶ Reduction Rule 2. If there is a type-β or type-δ P3 xyz ∈ H, insert the edge xz into G

and remove xyz from H.

▶ Reduction Rule 3. For any two proto-clusters A and B, if there is a non-packed non-edge
uv such that u ∈ V (A) and v ∈ V (B), and there is a packed edge xy such that x ∈ V (A) and
y ∈ V (B), then delete xy and remove the corresponding packed P3 from H.

▶ Reduction Rule 4. If there is a connected component C in the graph of size at most 6, then
do brute force on C to check if there is a cluster-editing set F for C such that |F | is equal to
the number of packed P3s incident with a vertex of C. If there is such a cluster-editing set F ,
then perform the operations of F to C and remove the corresponding packed P3s from H.
Otherwise, if there is no such cluster-editing set F , return NO.

▶ Reduction Rule 5. If there is a proto-cluster C which is an isolated clique, then remove C

from the graph.

Already, the above simple rules effectively remove proto-clusters of size at least four:

▶ Lemma 5. After applying Reduction Rules 1 - 5 exhaustively, if the algorithm did not
return NO, then there is no proto-cluster of size at least 4.

Proof. It is not hard to check that there are no isolated proto-clusters of size at least 4 after
the previous reduction rules. Assume that there is a proto-cluster A of size at least 5 and
a vertex v ∈ V (G) \ V (A) such that v is adjacent to a vertex of A. There are at least five
vertex pairs between v and V (A) which are covered by packed P3s because Reduction Rule 3
is not applicable. But v is incident with at most four packed edges or packed non-edges
because of half-integrality, a contradiction. Next, assume that there is a proto-cluster B of
size exactly 4 and a vertex u ∈ V (G) \ V (B) such that u is adjacent to a vertex of B. There
are four vertex pairs between u and V (B) and, moreover, these are covered by two type-α
P3 since there is no type-β P3 after Reduction Rule 2. We claim that V (B) ∪ {u} induces a
connected component C in the graph. Suppose for contradiction that there is another vertex
x adjacent to one vertex of V (B). Then either Reduction Rule 3 can be applied if the vertex
pairs between x and V (B) are not all packed or otherwise B is not a proto-cluster: It would
have to contain four packed edges and hence could not contain a spanning tree of non-packed
edges. Thus Reduction Rule 4 applies to C, again a contradiction. ◀

Next, only proto clusters of size at most three remain, but those of size exactly three have a
very restricted structure. The following rule takes care of them.

STACS 2021

49:12 Cluster Editing Parameterized Above Modification-Disjoint P3-Packings

▶ Reduction Rule 6. After applying Reduction Rules 1 - 5 exhaustively, if there is a proto-
cluster C of size 3, a proto-cluster B of size 1 and a proto-cluster A of size 1 such that C is
not isolated from B, and a type-γ P3 connects A and C via B, then delete the packed edge
between A and B, insert an edge to the packed non-edge between C and B, and remove the
corresponding P3s from H.

▶ Lemma 6. After applying Reduction Rules 1 - 6 exhaustively, there are no isolated cliques
in the instance and every proto-cluster of the instance is of size at most 2. Moreover, every
packed P3 is a type-γ P3.

After applying Reduction Rules 1 - 6 exhaustively, suppose that the resulting instance
(G,H, ℓ = 0) of CEaHMP has a solution S. We now focus on the sizes of the clusters
in G△S. We can see that the maximum size of a cluster in G△S is six by some simple
observation. The next lemma shows that clusters of size exactly six can be removed by
Reduction Rule 4.

▶ Lemma 7. Let (G,H, ℓ = 0) be an instance of CEaHMP such that the size of every
proto-cluster in G is at most 2 and let S be a solution to (G,H, ℓ = 0). Suppose that A is
a clique of size 6 in G△S. Then the vertices of V (A) belong to three proto-clusters C1, C2,
and C3 of size two in G. In addition, every vertex pair between C1 and C2, between C1 and
C3, between C2 and C3 is covered by some P3 of H. Furthermore, V (C1) ∪ V (C2) ∪ V (C3)
forms a connected component C in G.

C1

C3C2

C1

C4

C2 C3

C1

C4

C2 C3

C1

C4

C2 C3

C1

C4

C2 C3

Figure 3 The first picture is an example of forming a clique of size 6 in G△S as in Lemma 7, the
other pictures are potential examples of forming a clique of size 5 in G△S as in Lemma 8.

Clusters of size four and five also have restricted structures as shown by following lemmas.

▶ Lemma 8. After applying Reduction Rules 1 – 3 exhaustively, let (G,H, ℓ = 0) be an
instance of CEaHMP such that the size of every proto-cluster in G is at most 2 and S

is a solution to (G,H, ℓ = 0). Suppose that A is a clique of size 5 in G△S. Then the
vertices of V (A) belong to three proto-clusters C1, C2 and C3 (or C2, C3 and C4) in G

such that |C1| = |C4| = 1 and |C2| = |C3| = 2. Every vertex pair between Ci and Cj

(i, j ∈ {1, 2, 3, 4}, i ≠ j) is covered by a packed P3 except that the vertex pair between C1
and C4 is a non-packed non-edge. In addition, V (C1) ∪ V (C2) ∪ V (C3) ∪ V (C4) forms a
connected component C in G.

▶ Lemma 9. After applying Reduction Rules 1 – 6 exhaustively, let (G,H, ℓ = 0) be an
instance of CEaHMP such that the size of every proto-cluster in G is at most 2 and S

is a solution to (G,H, ℓ = 0). Suppose that A is a clique of size 4 in G△S and V (A) =
{x, y, z1, z2}. Then three vertices of V (A), say x, y, z2 belong to one packed P3 in G, and one
vertex of x, y, z2, say z2, with z1 forms a proto-cluster C1 of size two in G while x and y form
a proto-cluster C2 of size one and a proto-cluster C3 of size one in G respectively. Moreover,
there are two vertices u and v such that x, u, z1 belong to a packed P3 in G, y, v, z1 belong to
another packed P3 in G. u and v form a proto-cluster C4 of size one and a proto-cluster C5
of size one in G respectively.

S. Li, M. Pilipczuk, and M. Sorge 49:13

z1

z2

y xv u

z1

z2

x

y uv w

z1

z2

x

y uv w

z1

z2

x

y uv w

z1

z2

x

y uv w v a b c w

Figure 4 Subgraphs that may form clusters of size 4 and how to reduce them (bottom right).

Based on the previous lemmas, we design some reduction rules that handle all potential cases
in which there are cliques of size at least 4 in G△S. Due to space constraints they appear
only in the full version [37]. We show some examples of these cases in Figures 3 and 4.

▶ Lemma 10. After applying all reduction rules exhaustively, let (G,H, ℓ = 0) be an instance
of CEaHMP which has a solution S. Then there is no clique of size at least 4 in G△S.

Next, we introduce a new problem called Cluster Deletion above modification-
disjoint P3 packing (CDaMP), defined as follows: Given a graph G = (V, E), a
modification-disjoint packing H of induced P3s of G, and a non-negative integer ℓ, decide
whether there is a cluster-deletion set, that is, a set of edges S ⊆ E so that G′ = (V, E \ S)
is a union of disjoint cliques, with |S| − |H| ≤ ℓ.

▶ Lemma 11. Let (G,H, ℓ = 0) be an instance of CEaHMP. After applying all reduction
rules exhaustively, we get an instance (G′,H′, ℓ = 0) of CEaHMP. Then (G,H, ℓ = 0) is a
YES-instance of CEaHMP if and only if (G′,H′, ℓ = 0) is a YES-instance of CDaMP.

Let (G′,H′, ℓ = 0) be the resulting instance of CDaMP. Let Ec ⊆ E(G′) be the set
of edges covered by some P3 of H′ and let λ = 2|H′|. We fix an arbitrary ordering of
the edges of Ec and label these edges by e0, e1, ..., eλ−1 according to this ordering. We
construct an instance of 2-SAT with λ variables x0, x1, ..., xλ−1 as follows. First, initialize
the 2-SAT formula Φ = true. For each induced P3 xyz ∈ H′, let ei = xy, ej = yz and update
Φ← Φ∧ (xi ∨xj)∧ (¬xi ∨¬xj). For each induced P3 uvw in G′ such that uv and vw belong
to two distinct P3s of H′ respectively, if uv = ep and vw = eq, then update Φ← Φ∧ (xp∨xq).
This completes the construction of the 2-SAT instance.

▶ Lemma 12. Let (G′,H′, ℓ = 0) be an instance of CDaMPand construct a 2-SAT formula
Φ as described above. Then (G,H, ℓ = 0) is a YES-instance if and only if Φ is satisfiable.

As a result we can reduce the problem to 2-SAT and solve it in polynomial time.

5 Conclusion

Unfortunately the lower bound that we have obtained is a major roadblock in designing fixed-
parameter algorithms for Cluster Editing parameterized above modification-disjoint P3s.
On the positive side, Cluster Editing above half-integral P3 packing (CEaHMP)
admits an XP-algorithm with respect to the number of excess edits. We have left open
whether CEaHMP is fixed-parameter tractable. Towards this, on the one hand the half-
integral P3 packings provide quite strong structure that can be exploited to design several
branching rules. On the other hand, when attacking this question from several angles we
discovered large grid-like structures that seemed difficult to overcome in fixed-parameter
time, and a corresponding W[1]-hardness result would also not be surprising.

STACS 2021

49:14 Cluster Editing Parameterized Above Modification-Disjoint P3-Packings

A different future research direction is to deconstruct our hardness reduction by exam-
ining which substructures it contains that are seldom in practical data. Forbidding such
substructures may destroy the already somewhat fragile hardness construction, perhaps
paving the way for fixed-parameter algorithms.

Finally, it would be interesting to see how modification-disjoint P3 packings look in
practice. If it is true that only few vertices are in a large number of packed P3s and most of
them are in a small constant number, then a strategy that settles the clustering around the
vertices with large number of P3s and then applies reduction rules from Section 4 could be
efficient.

References

1 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
Ranking and clustering. J. ACM, 55(5):23:1–23:27, 2008. doi:10.1145/1411509.1411513.

2 Takuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/FPT algorithms in practice:
A case study of vertex cover. Theoretical Computer Science, 609:211–225, 2016. doi:10.1016/
j.tcs.2015.09.023.

3 Noga Alon, Konstantin Makarychev, Yury Makarychev, and Assaf Naor. Quadratic forms
on graphs. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual
ACM Symposium on Theory of Computing (STOC 2005), pages 486–493. ACM, 2005. doi:
10.1145/1060590.1060664.

4 Sanjeev Arora, Eli Berger, Elad Hazan, Guy Kindler, and Muli Safra. On non-approximability
for quadratic programs. Electronic Colloquium on Computational Complexity (ECCC), 058,
2005. URL: http://eccc.hpi-web.de/eccc-reports/2005/TR05-058/index.html.

5 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,
56(1-3):89–113, 2004. doi:10.1023/B:MACH.0000033116.57574.95.

6 Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression patterns. Journal
of Computational Biology, 6(3/4):281–297, 1999. doi:10.1089/106652799318274.

7 S. Böcker, S. Briesemeister, Q.B.A. Bui, and A. Truss. Going weighted: Parameterized
algorithms for cluster editing. Theoretical Computer Science, 410(52):5467–5480, 2009. doi:
10.1016/j.tcs.2009.05.006.

8 Sebastian Böcker. A golden ratio parameterized algorithm for cluster editing. Journal of
Discrete Algorithms, 16:79–89, 2012. doi:10.1016/j.jda.2012.04.005.

9 Sebastian Böcker and Jan Baumbach. Cluster editing. In Paola Bonizzoni, Vasco Brattka,
and Benedikt Löwe, editors, Proceedings of the 9th Conference on Computability in Europe
(CiE 2013), volume 7921 of Lecture Notes in Computer Science, pages 33–44. Springer, 2013.
doi:10.1007/978-3-642-39053-1_5.

10 Sebastian Böcker, Sebastian Briesemeister, and Gunnar W. Klau. Exact algorithms for cluster
editing: Evaluation and experiments. Algorithmica, 60(2):316–334, 2011. doi:10.1007/
s00453-009-9339-7.

11 Sebastian Böcker and Peter Damaschke. Even faster parameterized cluster deletion and cluster
editing. Information Processing Letters, 111(14):717–721, 2011. doi:10.1016/j.ipl.2011.05.
003.

12 Hans L. Bodlaender, Michael R. Fellows, Pinar Heggernes, Federico Mancini, Charis Pa-
padopoulos, and Frances A. Rosamond. Clustering with partial information. Theoretical
Computer Science, 411(7-9):1202–1211, 2010. doi:10.1016/j.tcs.2009.12.016.

13 Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. SIAM Journal
on Computing, 47(1):166–207, 2018. doi:10.1137/140961808.

14 Yixin Cao and Jianer Chen. Cluster editing: Kernelization based on edge cuts. Algorithmica,
64(1):152–169, 2012. doi:10.1007/s00453-011-9595-1.

https://doi.org/10.1145/1411509.1411513
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1145/1060590.1060664
https://doi.org/10.1145/1060590.1060664
http://eccc.hpi-web.de/eccc-reports/2005/TR05-058/index.html
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1089/106652799318274
https://doi.org/10.1016/j.tcs.2009.05.006
https://doi.org/10.1016/j.tcs.2009.05.006
https://doi.org/10.1016/j.jda.2012.04.005
https://doi.org/10.1007/978-3-642-39053-1_5
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1016/j.ipl.2011.05.003
https://doi.org/10.1016/j.ipl.2011.05.003
https://doi.org/10.1016/j.tcs.2009.12.016
https://doi.org/10.1137/140961808
https://doi.org/10.1007/s00453-011-9595-1

S. Li, M. Pilipczuk, and M. Sorge 49:15

15 Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. Journal of Computer and System Sciences, 71(3):360–383, 2005. doi:10.1016/j.
jcss.2004.10.012.

16 Jianer Chen and Jie Meng. A 2k kernel for the cluster editing problem. Journal of Computer
and System Sciences, 78(1):211–220, 2012. doi:10.1016/j.jcss.2011.04.001.

17 Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr A. Golovach. A survey
of parameterized algorithms and the complexity of edge modification. arXiv:2001.06867 [cs],
2020. arXiv:2001.06867.

18 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. On
multiway cut parameterized above lower bounds. ACM Transactions on Computation Theory,
5(1):3:1–3:11, 2013. doi:10.1145/2462896.2462899.

19 Peter Damaschke. Fixed-parameter enumerability of cluster editing and related problems.
Theory of Computing Systems, 46(2):261–283, 2010. doi:10.1007/s00224-008-9130-1.

20 Michael R. Fellows. The lost continent of polynomial time: Preprocessing and kernelization. In
Hans L. Bodlaender and Michael A. Langston, editors, Proceedings of the Second International
Workshop on Parameterized and Exact Computation (IWPEC 2006), volume 4169 of Lecture
Notes in Computer Science, pages 276–277. Springer, 2006. doi:10.1007/11847250_25.

21 Michael R. Fellows, Jiong Guo, Christian Komusiewicz, Rolf Niedermeier, and Johannes
Uhlmann. Graph-based data clustering with overlaps. Discrete Optimization, 8(1):2–17, 2011.
doi:10.1016/j.disopt.2010.09.006.

22 Michael R. Fellows, Michael A. Langston, Frances A. Rosamond, and Peter Shaw. Efficient
parameterized preprocessing for cluster editing. In Erzsébet Csuhaj-Varjú and Zoltán Ésik,
editors, Proceedings of the 16th International Symposium on Fundamentals of Computation
Theory (FCT 2007), volume 4639 of Lecture Notes in Computer Science, pages 312–321.
Springer, 2007. doi:10.1007/978-3-540-74240-1_27.

23 Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Yngve Villanger.
Subexponential fixed-parameter tractability of cluster editing. arXiv:1112.4419 [cs], 2013.
arXiv:1112.4419.

24 Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Yngve Villanger.
Tight bounds for parameterized complexity of cluster editing with a small number of clusters.
Journal of Computer and System Sciences, 80(7):1430–1447, 2014. doi:10.1016/j.jcss.2014.
04.015.

25 Vincent Froese. Fine-Grained Complexity Analysis of Some Combinatorial Data Science
Problems. PhD thesis, Technische Universität Berlin, 2018. doi:10.14279/depositonce-7123.

26 Shivam Garg and Geevarghese Philip. Raising the bar for vertex cover: Fixed-parameter
tractability above A higher guarantee. In Robert Krauthgamer, editor, Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pages
1152–1166. SIAM, 2016. doi:10.1137/1.9781611974331.ch80.

27 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Automated generation of
search tree algorithms for hard graphmodification problems. Algorithmica, 39(4):321–347,
2004. doi:10.1007/s00453-004-1090-5.

28 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-modeled data clustering:
Exact algorithms for clique generation. Theory of Computing Systems, 38(4):373–392, 2005.
doi:10.1007/s00224-004-1178-y.

29 Jiong Guo. A more effective linear kernelization for cluster editing. Theoretical Computer
Science, 410(8):718–726, 2009. doi:10.1016/j.tcs.2008.10.021.

30 Jiong Guo, Iyad A. Kanj, Christian Komusiewicz, and Johannes Uhlmann. Editing graphs
into disjoint unions of dense clusters. Algorithmica, 61(4):949–970, 2011. doi:10.1007/
s00453-011-9487-4.

31 Jiong Guo, Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. A more relaxed
model for graph-based data clustering: s-plex cluster editing. SIAM Journal on Discrete
Mathematics, 24(4):1662–1683, 2010. doi:10.1137/090767285.

STACS 2021

https://doi.org/10.1016/j.jcss.2004.10.012
https://doi.org/10.1016/j.jcss.2004.10.012
https://doi.org/10.1016/j.jcss.2011.04.001
http://arxiv.org/abs/2001.06867
https://doi.org/10.1145/2462896.2462899
https://doi.org/10.1007/s00224-008-9130-1
https://doi.org/10.1007/11847250_25
https://doi.org/10.1016/j.disopt.2010.09.006
https://doi.org/10.1007/978-3-540-74240-1_27
http://arxiv.org/abs/1112.4419
https://doi.org/10.1016/j.jcss.2014.04.015
https://doi.org/10.1016/j.jcss.2014.04.015
https://doi.org/10.14279/depositonce-7123
https://doi.org/10.1137/1.9781611974331.ch80
https://doi.org/10.1007/s00453-004-1090-5
https://doi.org/10.1007/s00224-004-1178-y
https://doi.org/10.1016/j.tcs.2008.10.021
https://doi.org/10.1007/s00453-011-9487-4
https://doi.org/10.1007/s00453-011-9487-4
https://doi.org/10.1137/090767285

49:16 Cluster Editing Parameterized Above Modification-Disjoint P3-Packings

32 Yoichi Iwata. Linear-time kernelization for feedback vertex set. In Ioannis Chatzigiannakis,
Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, Proceedings of the 44th International
Colloquium on Automata, Languages, and Programming (ICALP 2017), volume 80 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 68:1–68:14. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.68.

33 Bart M.P. Jansen, Christian Schulz, and Hisao Tamaki. NII shonan meeting report no. 144
parameterized graph algorithms and data reduction, 2019. URL: https://shonan.nii.ac.
jp/docs/No.144.pdf.

34 Krzysztof Kiljan and Marcin Pilipczuk. Experimental evaluation of parameterized algorithms
for feedback vertex set. In Gianlorenzo D’Angelo, editor, Proceedings of the 17th International
Symposium on Experimental Algorithms (SEA 2018), volume 103 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 12:1–12:12, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.SEA.2018.12.

35 Christian Komusiewicz and Johannes Uhlmann. Cluster editing with locally bounded modifi-
cations. Discrete Applied Mathematics, 160(15):2259–2270, 2012. doi:10.1016/j.dam.2012.
05.019.

36 Stefan Kratsch. A randomized polynomial kernelization for vertex cover with a smaller
parameter. SIAM Journal on Discrete Mathematics, 32(3):1806–1839, 2018. doi:10.1137/
16M1104585.

37 Shaohua Li, Marcin Pilipczuk, and Manuel Sorge. Cluster editing parameterized above
modification-disjoint P3-packings. arXiv:1910.08517 [cs], 2019. arXiv:1910.08517.

38 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Transactions on
Algorithms, 11(2):15:1–15:31, 2014. doi:10.1145/2566616.

39 Meena Mahajan and Venkatesh Raman. Parameterizing above guaranteed values: Maxsat
and maxcut. Journal of Algorithms, 31(2):335–354, 1999. doi:10.1006/jagm.1998.0996.

40 Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the
size of the cutset. SIAM Journal on Computing, 43(2):355–388, 2014. doi:10.1137/110855247.

41 John H. Morris, Leonard Apeltsin, Aaron M. Newman, Jan Baumbach, Tobias Wittkop, Gang
Su, Gary D. Bader, and Thomas E. Ferrin. clusterMaker: a multi-algorithm clustering plugin
for Cytoscape. BMC Bioinformatics, 12(1):436, 2011. doi:10.1186/1471-2105-12-436.

42 Fábio Protti, Maise Dantas da Silva, and Jayme Luiz Szwarcfiter. Applying modular decompo-
sition to parameterized cluster editing problems. Theory of Computing Systems, 44(1):91–104,
2009. doi:10.1007/s00224-007-9032-7.

43 Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discrete
Applied Mathematics, 144(1-2):173–182, 2004. doi:10.1016/j.dam.2004.01.007.

44 René van Bevern, Vincent Froese, and Christian Komusiewicz. Parameterizing edge modi-
fication problems above lower bounds. Theory of Computing Systems, 62(3):739–770, 2018.
doi:10.1007/s00224-016-9746-5.

45 Tobias Wittkop, Dorothea Emig, Sita Lange, Sven Rahmann, Mario Albrecht, John H. Morris,
Sebastian Böcker, Jens Stoye, and Jan Baumbach. Partitioning biological data with transitivity
clustering. Nature Methods, 7(6):419–420, 2010. doi:10.1038/nmeth0610-419.

https://doi.org/10.4230/LIPIcs.ICALP.2017.68
https://shonan.nii.ac.jp/docs/No.144.pdf
https://shonan.nii.ac.jp/docs/No.144.pdf
https://doi.org/10.4230/LIPIcs.SEA.2018.12
https://doi.org/10.1016/j.dam.2012.05.019
https://doi.org/10.1016/j.dam.2012.05.019
https://doi.org/10.1137/16M1104585
https://doi.org/10.1137/16M1104585
http://arxiv.org/abs/1910.08517
https://doi.org/10.1145/2566616
https://doi.org/10.1006/jagm.1998.0996
https://doi.org/10.1137/110855247
https://doi.org/10.1186/1471-2105-12-436
https://doi.org/10.1007/s00224-007-9032-7
https://doi.org/10.1016/j.dam.2004.01.007
https://doi.org/10.1007/s00224-016-9746-5
https://doi.org/10.1038/nmeth0610-419

Exploiting Dense Structures in Parameterized
Complexity
William Lochet !

Department of Informatics, University of Bergen, Norway

Daniel Lokshtanov !

University of California Santa Barbara, CA, USA

Saket Saurabh !

Institute of Mathematical Sciences, Chennai, India
Department of Informatics, University of Bergen, Norway

Meirav Zehavi !

Ben Gurion University of the Negev, Beer Sheva, Israel

Abstract
Over the past few decades, the study of dense structures from the perspective of approximation
algorithms has become a wide area of research. However, from the viewpoint of parameterized
algorithm, this area is largely unexplored. In particular, properties of random samples have been
successfully deployed to design approximation schemes for a number of fundamental problems on
dense structures [Arora et al. FOCS 1995, Goldreich et al. FOCS 1996, Giotis and Guruswami
SODA 2006, Karpinksi and Schudy STOC 2009]. In this paper, we fill this gap, and harness the
power of random samples as well as structure theory to design kernelization as well as parameterized
algorithms on dense structures. In particular, we obtain linear vertex kernels for Edge-Disjoint
Paths, Edge Odd Cycle Transversal, Minimum Bisection, d-Way Cut, Multiway Cut
and Multicut on everywhere dense graphs. In fact, these kernels are obtained by designing a
polynomial-time algorithm when the corresponding parameter is at most Ω(n). Additionally, we
obtain a cubic kernel for Vertex-Disjoint Paths on everywhere dense graphs. In addition to
kernelization results, we obtain randomized subexponential-time parameterized algorithms for Edge
Odd Cycle Transversal, Minimum Bisection, and d-Way Cut. Finally, we show how all of our
results (as well as EPASes for these problems) can be de-randomized.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Dense graphs, disjoint paths, odd cycle transversal, kernels

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.50

Funding Lochet and Saurabh were supported by European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant no. 819416).
Daniel Lokshtanov: Lokshtanov is supported by BSF grant no. 2018302. and NSF award CCF-
2008838.
Saket Saurabh: Saurabh also acknowledges Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-
18.
Meirav Zehavi: Zehavi was supported by Israel Science Foundation (ISF) grant no. 1176/18, and
United States – Israel Binational Science Foundation grant no. 2018302.

Acknowledgements We thank one of the referee of a different version of this paper for sketching a
proof based on the random walk on expanders for Lemma 10.

1 Introduction

While several interesting optimization problems remain NP-complete even when restricted
to sparse graphs or dense graphs, the restriction of a problem to these families of graphs
is usually considerably more tractable algorithmically than the problem on general graphs.

© William Lochet, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 50; pp. 50:1–50:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:william.lochet@uib.no
mailto:daniello@ucsb.edu
mailto:saket@imsc.res.in
mailto:meiravze@bgu.ac.il
https://doi.org/10.4230/LIPIcs.STACS.2021.50
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 Exploiting Dense Structures in Parameterized Complexity

With respect to graph classes, sparseness usually refers to families of planar graphs, graphs
of bounded genus, graphs excluding some fixed graph H as a minor, graphs of bounded
expansion and no-where dense graphs. Here, denseness usually refers to families of graphs
with Ω(n2) edges. Additionally, sparseness and denseness can be defined for structures
beyond graphs – for example, dense 3-SAT instances are those for which the formula has
Ω(n3) clauses.

In this paper, we focus on designing deterministic kernelization algorithms and fixed-
parameter tractable (FPT) algorithms for NP-hard problems on dense structures.

We start by defining some basic definitions from Parameterized Complexity, that we
make use of. Formally, a parameterization of a problem is assigning an integer k to each
input instance and we say that a parameterized problem is fixed-parameter tractable (FPT)
if there is an algorithm that solves the problem in time f(k) · |I|O(1), where |I| is the size of
the input and f is an arbitrary computable function depending on the parameter k only. We
will also be studying polynomial time preprocessing or kernelization.

A parameterized problem Π is said to admit a kernel if there is a polynomial-time
algorithm, called a kernelization algorithm, that reduces the input instance of Π down to an
equivalent instance of Π whose size is bounded by a function f(k) of k. (Here, two instances
are equivalent if both of them are either Yes-instances or No-instances.) Such an algorithm is
called an f(k)-kernel for Π. If f(k) is a polynomial function of k, we say that the kernel is a
polynomial kernel. For more background on Parameterized Complexity and Kernelization,
we refer to the following books [21, 15, 23, 46, 25].

1.1 Context of Our Results and Overarching Goals
The algorithmic study of NP-hard problems on dense structures is two decade old and has
a rich history. We start by giving definitions of (E)PTAS and denseness that will ease our
discussion. A PTAS is an algorithm that takes an instance I of an optimization problem and
a parameter ϵ > 0, runs in time nO(f(1/ϵ)), and produces a solution that is within a factor
1 + ϵ of being optimal. A PTAS with running time f(1/ϵ) · nO(1) is called an efficient PTAS
(EPTAS).

▶ Definition 1 ([7, 33]). A graph on n vertices is δ-dense if it has δn2/2 edges. It is
everywhere-δ-dense if the minimum degree is δn. We abbreviate Ω(1)-dense as dense and
everywhere-Ω(1)-dense as everywhere-dense.

Arora, Karger and Karpinski [7] initiated the study of NP-hard problems on dense
structures and designed PTASes for several NP-hard optimization problems. Among many
other results, they showed that Bisection, k-Way Cut, and Separator admit PTASes on
everywhere-dense instances and Max-Cut, Max-d-SAT, and Max-Hypercut(d) admit
PTASes on dense instances. The main ingredients of these results are exhaustive sampling
and its use in approximation of polynomial integer programs. These results lead to a flurry
of new ideas and results in this area. Arora, Frieze, and Kaplan [6] used the exhaustive
sampling idea to design additive approximation schemes for problems in which feasible
solutions are permutations (such as the 0-1 Quadratic Assignment Problem). Frieze
and Kannan [27] and, independently, Goldreich, Goldwasser, and Ron [29] showed that
exhaustive sampling techniques apply because of certain regularity properties in dense graphs
and used this observation to design linear time additive approximation schemes for most of
the problems that were considered in [7]. In particular, [27, 29] made PTASes of [7] into
EPTASes. Frieze and Kannan [27] also pointed out connections to constructive versions of
Szemeredi’s Regularity Lemma and Goldreich, Goldwasser, and Ron [29] found its connection
in property testing and learning theory based on an idea of degree estimator.

W. Lochet, D. Lokshtanov, S. Saurabh, and M. Zehavi 50:3

This idea of degree estimator has been extremely useful in further developments in the
area. In particular, Giotis and Guruswami [28] used this idea to design a PTAS for correlation
clustering in general graphs, when the number of clusters is fixed. That is, they designed a
PTAS for d-Correlation Clustering (given an undirected graph G, edit (delete or add)
minimum number of edges so that the resulting graph becomes a disjoint union of d cliques)
running in time nO(9d/ϵ2) log n. It is also important to note here that before the paper
of Giotis and Guruswami [28], most of the earlier works largely focused on maximization
problems. In 2009, Karpinski and Schudy [33] further used the idea of degree estimator and
designed linear time EPTASes for several problems, such as d-Correlation Clustering
and Fragile Min-d-CSP on everywhere-dense instances. Several other randomized PTASes
and EPTAses based on different sets of ideas can be found in [43, 19, 32, 8, 2, 1, 5].

As we established above the algorithmic study of NP-hard problems on dense structures
has been extremely rewarding from the perspective of Approximation Algorithms. Could
this success be repeated in other algorithmic paradigms meant to cope up with NP-hard
problems? In particular, in the field of Parameterized Complexity. This leads to the following
question.

Could we exploit the denseness of structures in designing significantly faster FPT
algorithms and polynomial time kernelization algorithm for some of the fundamental
problems in the field, the way it has been utilized in the field of approximation
algorithms?

Our study shows that the answer is an assertive YES! In particular, we obtain linear kernels for
Edge-Disjoint Paths, Edge Odd Cycle Transversal, Minimum Bisection, d-Way
Cut, Multiway Cut and Multicut on everywhere dense graphs. In fact, these kernels
are obtained by designing a polynomial-time algorithm when the corresponding parameter is
Ω(n). Additionally, we obtain a cubic kernel for Vertex-Disjoint Paths on everywhere
dense graphs. In addition to kernelization results, we obtain randomized subexponential-time
parameterized algorithms for Edge Odd Cycle Transversal, Minimum Bisection, and
d-Way Cut. Finally, we show how all of our results (as well as EPASes for these problems)
can be de-randomized.

1.2 Our Results and Methods
In this section we give a brief overview of the problems we address and the results we obtain
for these problems. This is complemented with a short discussion on techniques that we
apply to design our algorithms.

For maximization problems such as Max Cut on dense graphs, a solution would have
size k = Ω(n2), which trivially yields solvability in subexponential-time (i.e. 2o(k) ·nO(1)-time)
with respect to k. This is true about several maximization problems. However, this is not
the case for well-studied minimization problems such as Edge Odd Cycle Transversal,
Minimum Bisection, d-Way Cut, Multiway Cut and Multicut. Thus, a natural class
of problems to consider are so called cut-problems. The other family of problems for which
we do not immediately get an algorithm are linkage problems, namely, the Edge-Disjoint
Paths and Vertex-Disjoint Paths problems.

We remark that the study of subexponential-time parameterized algorithms of vertex
(rather than edge) modification problem on everywhere-dense graphs does not make sense
for natural problems such as Vertex Cover as such problems become as hard as they are

STACS 2021

50:4 Exploiting Dense Structures in Parameterized Complexity

on general graphs (and hence do not admit such algorithms under the ETH). For example,
given an instance G of Vertex Cover, create an instance G′ of Vertex Cover on
everywhere-dense graphs by adding an n-vertex clique whose vertices are all but one adjacent
to every vertex of G. Then, the existence of an 2o(k)nO(1)-time algorithm for Vertex Cover
on everywhere-dense graphs where k is the solution size would imply the existence of a
subexponential-time algorithm for Vertex Cover on general graphs with respect to n.

1.2.1 Linkage Problems

The first two problems we address are extremely fundamental in the field of Parameterized
Complexity. They are Edge-Disjoint Paths and Vertex-Disjoint Paths. In the Edge-
Disjoint Paths problem, we are given a graph G, a set of request pairs (s1, t1), . . . , (sk, tk),
and the objective is to check whether there exist paths P1, . . . , Pk, between si and ti, such
that they are pairwise edge disjoint. In the Vertex-Disjoint Paths problem, the input
is same as the Edge-Disjoint Paths problem, but the paths P1, . . . , Pk are suppose to
be pairwise vertex disjoint. Both, Edge-Disjoint Paths and Vertex-Disjoint Paths
are famously FPT by the graph minor machinery of Robertson and Seymour [48]. However,
the f(k) in the running time in the algorithm of Robertson and Seymour [48] and its later
improvement is at least triply exponential [36]. Only recently an algorithm with f(k) = 2kO(1)

are designed when the input is restricted to planar graphs [39]. Further, Vertex-Disjoint
Paths is not known not to admit a polynomial kernel on general graphs [10]. In this paper we
show that both Edge-Disjoint Paths and Vertex-Disjoint Paths admit a polynomial
kernel on α-dense graphs. In particular we get the following result about Edge-Disjoint
Paths.

▶ Theorem 2. Edge-Disjoint Paths admits an O(k) vertex kernel on everywhere α-dense
graphs.

Proof of Theorem 2 is obtained by designing a polynomial time algorithm for the Edge-
Disjoint Paths problem in α-dense graphs, when the number of demands is small (but still
linear) compared to αn. Once this result is proved we know that k ≥ Ω(n), resulting in a
linear vertex kernel for the problem.

To design the desired polynomial time algorithm, we use the following strategy. We start
by showing that highly edge-connected (linear in n) parts will always contain a solution to an
Edge-Disjoint Paths instance. Towards this we first show that if a graph G on n vertices
with minimum degree at least cn, then for any pair of vertices x, y of G, if there exists a path
between x and y, then there exists a path of length at most 4/c. We use this result together
with high connectivity of G to get the following: Let G be a graph with minimum degree
αn, and cn edge-connected for some constant c ≤ α/2, then any instance of Edge-Disjoint
Paths with k ≤ αn

8 has a solution. Moreover, this solution can be found in polynomial time.
Next, we give a lemma that partitions the input graph into small number of parts such that
each part has minimum degree and edge-connectivity linear in n.

▶ Lemma 3. For any real α between 0 and 1, there exists a constant c ≤ α/2 such that, if
G is a graph on n vertices and minimum degree αn, then there exists a partition P of the
vertices V (G) into g ≤ 2

α subsets V1, · · · , Vg such that for all i ∈ [g]:
G[Vi] is cn edge-connected.
G[Vi] has minimum degree αn

2 .
Moreover, such a partition can be found in polynomial time.

W. Lochet, D. Lokshtanov, S. Saurabh, and M. Zehavi 50:5

This decomposition is then utilized to complete the proof of Theorem 2.
Our kernelization algorithm for Vertex-Disjoint Paths is more involved, though follows

the template outlined for Edge-Disjoint Paths. In particular we obtain the following
result.

▶ Theorem 4 (⋆).1 Vertex-Disjoint Paths admits a vertex kernel of size O(k3) on
everywhere α-dense graphs.

One of the main technical difficulty in proving Theorem 4 is in adapting the proof of
Lemma 3 for Vertex-Disjoint Paths. The main reason being that for Vertex-Disjoint
Paths we need to simulate Lemma 3 for vertex connectivity. That is, we need to find
cut-vertices instead of edges. However, these vertices could have neighbors in many different
parts and we cannot say that their relative degree inside a part increases, which is a critical
component in the proof of Lemma 3. To mitigate this situation we introduce a vertex
set V0 in the partitioning, that contains all the cut vertices. The whole difficulty lies in
carrying this V0 throughout the process of obtaining the desired partition. However, unlike
Edge-Disjoint Paths, getting the desired decomposition in itself does not result in the
desired kernel. We need to put in significant technical work to reduce the graph. To achieve
this we prove several structural properties of Vertex-Disjoint Paths and its interplay
with the parts of P in order to get the desired kernel.

1.2.2 Cut-Problems
Arguably, a few of the most well-studied cut problems in the realm of Parameterized
Complexity are Edge Odd Cycle Transversal, Minimum Bisection, d-Way Cut,
Multiway Cut, and Multicut. Input to all these problems are an undirected graph G

and an integer k, and the goal is following.
Edge Odd Cycle Transversal: Does there exist a set of at most k edges such that its

deletion results in a bipartite graph?
Minimum Bisection: Does there exist a vertex partition (V1, V2), such that ||V1|−|V2|| ≤ 1,

and there are at most k edges with one end-point in V1 and the other in V2?
d-Way Cut: Does there exist a set of at most k edges such that its deletion results in at

least d connected components?
Multiway Cut: Here, we are also given a vertex subset T ⊆ V (G) (called terminals) and

the objective is to test if there exists a set of at most k edges such that after its deletion
no two terminals belong to the same connected component.

Multicut: Here, we are also given a set of request (s1, t1), . . . , (sℓ, tℓ) and the objective
is to test if there exists a set of at most k edges such that after its deletion no request
belong to the same connected component.

All the aforementioned problems are extremely well studied [18, 16, 14, 47, 41, 42, 12,
13, 35, 11] and are known to be FPT. However, for most of these problems we know that
there can not exist an algorithm with running time 2o(k)nO(1) on general graphs assuming
ETH. Further, Edge Odd Cycle Transversal admits a randomized polynomial kernel on
general graphs [37, 38]; on the other hand Minimum Bisection and Multicut are known
not to admit a polynomial kernel [17, 49]. The kernelization complexity of Multiway Cut is
still open. In this paper we obtain the following results about these problems on everywhere
dense graphs.

1 Results marked with (⋆) could be found in the extended version.

STACS 2021

50:6 Exploiting Dense Structures in Parameterized Complexity

▶ Theorem 5 (⋆). Edge Odd Cycle Transversal, Minimum Bisection, d-Way Cut,
Multiway Cut, and Multicut admit O(k) vertex kernel on everywhere α-dense graphs.

▶ Theorem 6 (⋆). Edge Odd Cycle Transversal, and Minimum Bisection admit an
algorithm with running time 2O(

√
k)nO(1) on everywhere α-dense graphs. Further, d-Way

Cut admits an algorithm with running time 2O(
√

k log k)nO(1).

These are the first subexponential time parameterized algorithms for Edge Odd Cycle
Transversal, Minimum Bisection, and d-Way Cut on everywhere α-dense graphs. The
proof of Theorem 5 is obtained by designing a polynomial time algorithm when the solution
size for these problems is smaller than α · n (for some α). This is similar to our kernelization
strategy for the Edge-Disjoint Paths problem. For example, if the solution for Edge
Odd Cycle Transversal is of size k ≤ α · n (for some α), then the problem can be solved
in polynomial time, and otherwise n < k/α and hence we already have a kernel at hand.

The proof of these results (Theorems 5 and 6) are similar to each other. Thus, to illustrate
our methods we focus on giving intuition for the proof of d-Way Cut. A more formal
presentation is left to the extended version. The main ingredient of Theorems 5 and 6 is the
following sampling primitive, a simple consequence of Chebyshev’s inequality which has been
extensively used in designing PTASes and EPTASes in everywhere α-dense graphs.

▶ Lemma 7 (Degree Estimator Lemma). For any constants ϵ1 and ϵ2, if U is a universe on
n elements, K is a set of subsets of U and S is a multi-set obtained by doing t(ϵ1, ϵ2) = 1

ϵ2
1ϵ2

independent and uniform random draws in U , then with probability at least 1/2, the number
of sets X ∈ K such that

∣∣∣ |S∩X|n
t − |X|

∣∣∣ ≥ ϵ1n is smaller than ϵ2|K|.

We next show how we use Degree Estimator Lemma for our purpose. Suppose that G is a
graph on n vertices and A is a set of linear size Ω(n). We use Lemma 7 in order to guess the
degree of the vertices of V (G) in A without knowing the set. That is, to estimate the number
of neighbors of a vertex that belong to the set A. Indeed, let us fix some constants ϵ1 and ϵ2
and pick uniformly at random a set S of t = t(ϵ1, ϵ2) = 1

ϵ2
1ϵ2

vertices from V (G). Since A

is of linear size, with constant probability, all the elements of S belong to A. If this event
is satisfied, then by applying Lemma 7 with U = A and K being the set of neighborhood
inside A, we have that with probability at least 1/2, the number of vertices x such that∣∣∣ |S∩N(x)||A|

t − dA(x)
∣∣∣ ≥ ϵ1n is smaller than ϵ2n. In other words, without knowing A, the

value |S∩N(x)||A|
t provides a good estimation of the degree in A for a large fraction of the

vertices in V (G).
Let us now see how we use the aforementioned argument for d-Way Cut. Let (G, k)

be an instance of d-Way Cut, where G is a everywhere α-dense graph. Further assume
that we are looking for a solution, S, where k is small, say k ≤ αn

200 . Let (A1, . . . , Ad) be the
connected components after removing the edges in S. Since, k ≤ αn

200 and every vertex has
degree at least αn, this implies that every vertex x ∈ Ai has degree at least αn − αn

200 ≥ αn
2

in Ai, and degree less than αn
200 in the other Aj , for j ≠ i. It means that |Ai| ≥ αn

2 for every
i, and thus d ≤ 2

α .
The idea now is to estimate the degree of every vertex inside each Ai in two rounds. For the

first round we sample d sets M1, . . . , Md of t = t(α/200, α2/400) vertices each. By applying
Lemma 7, with constant probability (because each Ai is linear), each Mi will be a subset of
Ai such that the set Xi of vertices x for which

∣∣∣ |Mi∩N(x)||Ai|
t − dAi

(x)
∣∣∣ ≥ nα/200 is smaller

than nα2/400. Assume that this is the case for every i, and let us denote X = ∪i∈[d]Xi.
Since d ≤ 2/α, we have that |X| ≤ αn/200. This means that apart from this small set X, all

W. Lochet, D. Lokshtanov, S. Saurabh, and M. Zehavi 50:7

the other vertices x of G are such that |Mi∩N(x)||Ai|
t is a good estimate of its degree inside

Ai
2. Let us make our first guess of Ai: for every i ∈ [d], let A′

i be the set x of vertices of G

such that |Mi∩N(x)||Ai|
t ≥ d(x) − αn

25 . We can then show the following.

▷ Claim 8. For every i ∈ [d], (Ai \ X) ⊆ A′
i.

Indeed, for every x ∈ (Ai \ X), we have that |Mi∩N(x)||Ai|
t ≥ dAi

(x) − nα/200 ≥
(d(x)−k)−nα/200 ≥ d(x)−α/n because x ̸∈ Xi. Moreover, for every j ̸= i, |Mj∩N(x)||Aj |

t ≤
dAj

(x) + nα/200 ≤ nα/50 because x ∈ Ai and x ̸∈ Xj .
For our second round, we use dA′

i
(x) as an estimate for dAi(x). Indeed, if x ∈ Ai, then

Claim 8 implies that dA′
i
(x) ≥ dAi

(x) − |X|, even if x belongs to X. However, since dAi
(x) ≥

d(x)−αn/100, we have that dA′
i
(x) ≥ d(x)−αn/50. Similarly, dA′

j
(x) ≤ dAj (x)+|X| ≤ αn/50.

Because d(x) ≥ αn for every x ∈ G, we have the following claim.

▷ Claim 9. For every i, Ai is exactly the set of vertices x of G such that dA′
i
(x) ≥ d(x)−αn/50.

This ends the proof of a polynomial algorithm in the case k ≤ αn/100, which implies the proof
of a linear kernel. The proofs for Edge Odd Cycle Transversal, Minimum Bisection,
Multiway Cut, and Multicut are almost identical.

When k ≥ αn/100, we have to be more careful with respect to vertices that are incident
to many edges of the solution, say more than αn/200. Let us note that all of these problems
admit an exact algorithm, by doing a dynamic programming algorithm over subset and
applying fast subset-convolution, running in time 2nnO(1) [9]. Thus, if k ≥ (αn/200)2, then
2n = 2O(

√
k) and this algorithm is a subexponential time algorithm. If k ≤ (αn/200)2, then

we can show that the set L of vertices of G that are adjacent to more than αn/200 edge
of the solution is such that |L| ≤

√
k. Now by doing essentially the same argument as in

the case k ≤ αn/100 we will be able to recover the position of every vertex x, except for a
set R ⊆ L. To conclude, the algorithm then tries all the partitions of R. This part takes
|L||L| = 2O(

√
k log k), resulting in the desired algorithm.

1.2.3 Derandomization
We first abstract out the main properties of Degree Estimator Lemma 7 that have been used
in several applications in [7, 27, 29, 28, 33] and several other articles.

Let U be a universe of size n and t be a constant. A random sample S of t elements
of U has the following properties:
Property A. For every subset A of the universe of Ω(n) elements, the probability that

the sample S is a subset of A is constant;
Property B. Conditioned on the sample S being a subset of A, we have that for every

subset B of A of size Ω(n), |S∩B||A|
t is a good estimator of |B| with probability

close to 1.

These two properties of random samples have been successfully deployed to design
randomized approximation schemes for a number of fundamental problems on dense struc-
tures [7, 27, 29, 28, 33]. Typically, algorithms based on this approach can be de-randomized
by going over all possible subsets S of size t, and observing that at least one of them has the

2 We assume here that |Ai| is known. In fact, an approximation to the size will be enough for our purpose.

STACS 2021

50:8 Exploiting Dense Structures in Parameterized Complexity

desired property. Unfortunately, this leads to an overhead of roughly nt in the running time
(which typically yields deterministic PTASes in place of randomized EPTASes). We present
an efficient way to derandomize most of the algorithms based on the procedure. Our main
derandomization tool is the following lemma.

▶ Lemma 10 (⋆). For any constants ϵ1, ϵ2 and ϵ3 smaller than 1, and U a universe on n

elements, there exists a set T of O(2100/(ϵ2
1ϵ2)n) subsets of U , such that if A is a subset of at

least ϵ3n elements of U and K a collection of subsets of A, then there exists a set T ∈ T such
that the number of sets X of K such that ||T ∩ X| − |T ||X|

|A| | ≥ ϵ1|T | is smaller than ϵ2|K|.
Moreover, the set T can be computed deterministically in nO(1) time.

Therefore, in all the proof using Lemma 7, we can replace the random sampling by trying
all the elements of the family T provided by the Lemma 10. The proof involves using the
known construction of pairwise (2-wise) independent permutations (see [4] for more details).
The proof can also be done via expander random walk method (see Section 3.2 of [30]).

1.3 Related Works
Over the last two decade, the design of parameterized subexponential-time algorithms for
problems on sparse graphs has been extremely fruitful. However, the same could not be said
about research on dense graphs. The first problem on dense graphs shown to admit a paramet-
erized subexponential-time algorithm is the Feedback Arc Set on Tournaments (FAST)
problem [3]. The design of this algorithm exhibited a new method to develop parameterized
algorithms called chromatic coding, which is now textbook material [15]. Subsequently,
there appeared several other works on the design of parameterized subexponential-time
algorithms for problems on tournaments, see e.g. [26, 22, 34]. Afterwards, dense classes of
digraphs that are not tournaments have also been considered in the same context [45, 40].
Also, d-Correlation Clustering is known to admit a subexponential-time parameterized
algorithm [24]. When d is not fixed, the problem is known not to admit a parameterized
subexponential-time algorithm under the Exponential Time Hypothesis (ETH) [24].

2 Preliminaries

A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a fixed, finite alphabet. Let
L be a parameterized problem. For an instance (x, k) of L, k is called the parameter. A
polynomial kernel on L is an algorithm which, for any given instance (x, k) of L outputs, in
polynomial time in the size of (x, k), an instance (x′, k′) of L with the following properties:

(x′, k′) is a yes-instance ⇐⇒ (x, k) is a yes-instance.
|x′|, k′ ≤ h(k), where h is a polynomial function.

For further notions related to parameterized algorithm, we refer the reader to [15].
We follow the standard graph theory notations from [20]. Let G = (V (G), E(G)) be a

graph and x ∈ V (G). Then, N(x) denotes the neighborhood of x, and d(x) = |N(x)| its
degree. If A is a subset of V (G), then dA(x) = |N(x) ∩ A| denotes the degree of x inside A.
If A and B are two subsets of vertices in V (G), then E(A, B) denotes the set of edges with
exactly one endpoint in A and one endpoint in B. A set of edges S is said to be a d-cut if
G − S has exactly d connected components.

A graph G is said to be k-edge connected (resp. k-vertex connected) if for any pair of
vertices x and y in G, there exists k edge-disjoint (resp. vertex-disjoint) paths between x

and y. For a graph G and two vertices x and y, a set of edges A is said to be an (x, y)-edge

W. Lochet, D. Lokshtanov, S. Saurabh, and M. Zehavi 50:9

cut if G − A does not contain any path between x and y. Likewise, a set of vertices S is said
to be a (x, y)-vertex cut if G − S does not contain any path between x and y. Let us cite
the celebrated Menger’s Theorem [44].

▶ Theorem 11. Let G be a graph and x, y two vertices of G. The maximum number of
vertex-disjoint (resp. edge-disjoint) paths between x and y is equal to the minimum size of a
(x, y)-vertex cut (resp. (x, y)-edge cut).

Let G be a graph and X a set of vertices, the graph obtained by contracting X and
keeping multiedges, is the graph G′ obtained from G by removing X, adding a new vertex x,
and for every v ∈ G such that v is adjacent to k vertices in X adding k multi-edges between
x and v. Let U be a universe. Then, 2U denotes all subsets of U and

(
U
t

)
denotes all the

subsets of size t of U . For an integer k, [k] denotes the set {1, . . . , k}. For any real numbers
a, b and c we write a = b ± c if b − c ≤ a ≤ b + c. The following easy observation will be used
throughout the paper.

▶ Observation 12. If c is a real in [0, 1/2] and x = 1 ± c, then 1
x = (1 ± 2c).

To construct estimators deterministically, we rely on the well known notion of k-wise
independence, in the particular setting of permutations.

▶ Definition 13. Let n, k ∈ N. A family S of permutations of Sn is k-wise independent if,
for any k-tuple of distinct elements (x1, . . . , xk), the distribution (f(x1), f(x2), . . . , f(xk))
where f ∈ S is chosen uniformly at random and the distribution (f ′(x1), f ′(x2), . . . , f ′(xk))
where f ′ ∈ Sn is chosen uniformly at random, are such that∑

(a1,...,ak)∈[n]k

|P r(f(x1), . . . , f(xk) = (a1, . . . , ak)) − P r(f ′(x1), . . . , f ′(xk) = (a1, . . . , ak))| = 0.

Efficient construction of a k-wise independent family of permutations are known for k = 2
and k = 3 but open for k > 4 (see [4] for more details). In particular, there exists for every
n, a family S(n) of O(n) pairwise (2-wise) independent permutations. This family will be
sufficient for our derandomization purposes.

Throughout this paper, we will make an extensive use of Chebyshev’s inequality:

▶ Proposition 14. Let X be a random variable with expected value µ and variance σ2. Then
for any real number k > 0, Pr[|X − µ| ≥ kσ] ≤ 1

k2 .

3 Edge-disjoint paths in everywhere dense graphs

In this section we design a linear vertex kernel for Edge-Disjoint Paths on everywhere
α-dense graphs. We first present a polynomial time algorithm for the Edge-Disjoint Paths
problem in α-dense graphs, when the number of demands is small (but still linear) compared
to αn. Towards this, we start-by showing that highly edge-connected parts will always
contain a solution to an Edge-Disjoint Paths instance.

▶ Lemma 15. Let c be a constant between 0 and 1, and G be a graph on n vertices with
minimum degree at least cn. For any pair of vertices x, y of G, if there exists a path between
x and y, then there exists a path of length at most 4/c.

Proof. Let P be a shortest path between x and y. If there exists a vertex u ∈ G such that
u is adjacent to 4 vertices of P , then two of these vertices will be at distance at least 3 in
the path. Denoting x1 and x2 these vertices, replacing the subpath of P between x1 and x2

STACS 2021

50:10 Exploiting Dense Structures in Parameterized Complexity

by the path x1ux2 gives a path between x and y shorter than P , which is a contradiction.
Therefore, the sum of the degree of the vertices of P is smaller than 4n and thus |P |cn ≤ 4n

which implies |P | ≤ 4
c . ◀

▶ Lemma 16. Let G be a graph with minimum degree αn, and cn edge-connected for some
constant c ≤ α/2. Any instance of Edge-Disjoint Paths with k ≤ αcn

8 has a solution.
Moreover, this solution can be found in polynomial time.

Proof. Let (G, (s1, t1), · · · , (sk, tk)) be an instance of the Edge-Disjoint Paths problem.
For every pair (si, ti), since G is cn-edge connected, there exists cn edge-disjoint paths
P1, . . . , Pcn between si and ti. Moreover, we can assume that all these paths are shorter than
8
α . Indeed, removing the edges of all but one path Pj leaves G with minimum degree at least
αn − cn ≥ αn

2 and Lemma 15 implies that Pj can actually be taken shorter than 8
α . This

means that we can select a solution for the Edge-Disjoint Paths problem greedily using
these paths. Indeed, each path is of length smaller than 8

α , so the path selected between si

and ti intersects at most 8
α of the paths between sj and tj . Since k ≤ αcn

8 , there is always
one path available between si and ti. ◀

For the proof of Lemma 16, we could have used a previously known result [31]. However,
we still give the proof here, as it is simple on dense graphs, and helps in a complete
understanding of the algorithm. The next lemma is an essential part of the proof. The goal
is to find a partition of the vertices of V (G) into a bounded number of parts, such that each
part induces a graph with large edge-connectivity.

▶ Lemma 3. For any real α between 0 and 1, there exists a constant c ≤ α/2 such that, if
G is a graph on n vertices and minimum degree αn, then there exists a partition P of the
vertices V (G) into g ≤ 2

α subsets V1, · · · , Vg such that for all i ∈ [g]:
G[Vi] is cn edge-connected.
G[Vi] has minimum degree αn

2 .
Moreover, such a partition can be found in polynomial time.

Proof. Let t be an integer such that α
(1−α/3)t > 2/3, and c be a sufficiently small constant

such that tc < α/6, α/2 ≥ c and for all i < t:

cn <
α2n

(1 − α/3)i−1

(
1

1 − α/2 − 1
1 − α/3

)
We inductively build a sequence of partitions of V (G): P1, . . . , Pt. Each Pi+1 is obtained

from Pi by applying a set of operations. Further, either a part of Pi remains a part in Pi+1
or breaks into several parts in Pi+1. In particular, Pi+1 is a finer partition than Pi. Let each
Pi consists of V i

1 , · · · , V i
li

as its parts. Throughout the proof these parts satisfy the following
invariants. That is, for all j ∈ [li]:
Invariant 1: G[V i

j] has minimum degree (α − ci)n.
Invariant 2: Either G[V i

j] is cn edge-connected; or every vertex of v ∈ V i
j has more than

α
(1−α/3)i−1 |V i

j | neighbours in G[V i
j] (note that, α

(1−α/3)i−1 ≥ α and thus, G[V i
j] is denser

than G).

Note that, as we chose t such that α
(1−α/3)t > 2/3, and c such that tc < α/2, if the

previous properties are satisfied, then Pt is the partition that we are looking for. Indeed, the
second condition tells us that, if G[V t

j] is not cn-edge connected, then every vertex of V t
j

has more than 2/3|V t
j | neighbors in G[V t

j]. Since |V t
j | ≥ (α − ct)n ≥ αn/2, it means that

W. Lochet, D. Lokshtanov, S. Saurabh, and M. Zehavi 50:11

any pair of vertices in V t
j have more than αn/6 common neighbors in V t

j , which implies that
G[V t

j] cn-edge connected. Moreover, since |V t
j | ≥ αn/2, this partition has less than 2

α parts.
What remains to show is that indeed there exists a sequence of partitions of V (G):

P1, . . . , Pt. We show the existence of the partition Pi by induction on i, setting P1 = V (G)
which trivially satisfies all the properties. Suppose now that we have constructed the partition
Pi = V 1

1 , · · · , V i
li

for some i < t. For each j ∈ li, we define a partition of V i
j into H1

j , . . . , H
xj

j

for some xj < (2/α) as follows: If G[V i
j] is cn-edge connected, then xj = 1 and H1

j = V i
j . If

not, let H1
j , . . . , H

xj

j be the connected components of G[V i
j] after removing the edges of a

cut of size smaller than cn. Note that every vertex has degree at least (α − ci)n − cn ≥ αn
2

after removing the cut edges, which implies Invariant 1. This means that the size of each
component is at least αn

2 . This means in particular that the number of components is smaller
than (2/α). Moreover, let w be a vertex in one of the connected components, Hr

j , we know
that the degree of w in G[V i

j] is greater than α
(1−α/3)i−1 |V i

j |. Since the cut is of size cn, it
means that the degree of w in G[Hr

j] is greater than α
(1−α/3)i−1 |V i

j | − cn. Since, there is at
least one other component, we have that |Hr

j | < |V i
j | − αn

2 < (1 − α
2)|V i

j |. This means that
the degree of w in G[Hr

j] is greater than α
(1−α/3)i−1 (1

1−α/2 |Hr
j |) − cn, which by the choice of

c is greater than α
(1−α/3)i |Hr

j |. Finally, we take Pi+1 as the union of all the Hr
j for all j ∈ [li]

and r ∈ [xj]. That is, Pi+1 consists of either a part from Pi, or connected components of
a part that has a cut of size smaller than cn. By the above description, it follows that Pi

satisfies both the invariants. This completes the proof. ◀

▶ Lemma 17. The Edge-Disjoint Paths problem can be solved in time kρnO(1) on
everywhere α-dense graphs, when k ≤ αcn

16 . Here, c is the constant defined in Lemma 3 and
ρ = 2 2

α
2
α !.

Proof. Let (G, (s1, t1), . . . , (sk, tk)) be an instance of the Edge-Disjoint Paths problem
in an everywhere α-dense graph G of size n, where k ≤ αcn

8 . Let P = V1, . . . , Vg, g ≤ 2
α , be

the partition of V (G) obtained by applying Lemma 3.

▷ Claim 18. If (G, (s1, t1), . . . , (sk, tk)) is a yes-instance of Edge-Disjoint Paths, then
there exists a path system P̃1, . . . , P̃k, connecting si to ti such that the intersection of any
path P̃j with any Vi for i ∈ [g] is a subpath (possibly empty) of P̃j .

Proof. Let (P1, . . . , Pk) be a solution. For every j ∈ [g], we say that (P1, . . . , Pk) satisfies
the property Hj if Pi ∩ Vj is a subpath of Pi for every i ∈ [k].

Suppose that the solution (P1, . . . , Pk) does not satisfy property Hj . For every i ∈ [k]
denote by hi and li, the first and the last vertex of Pi in Vj , respectively. If Pi does not
intersect Vj , then we assign hi and li to ∅. Furthermore, hi could be equal to li. Observe
that (G[Vj], (h1, l1), . . . , (hk, lk)) is an instance of Edge-Disjoint Paths with k ≤ αcn

16 . By
Lemma 16, there is a solution (P ′

1, . . . , P ′
k) to this problem in G[Vj]. Let (P 1

1 , . . . , P 1
k) denote

the solution obtained from (P1, . . . , Pk) by replacing each subpath of Pi from hi to li by P ′
i .

Clearly the solution (P 1
1 , . . . , P 1

k) satisfies property Hj . Moreover, let us show that if
(P1, . . . , Pk) satisfies property Hj′ for some j′ ∈ [g] j ̸= j′, then so does (P 1

1 , . . . , P 1
k). This

would conclude our proof of the lemma, as it means we can apply the previous procedure for
every j ∈ [g], iteratively.

Let i be an index of [k] and suppose that Pi ∩ Vj′ is a subpath of Pi. We want to show
that P 1

i ∩ Vj′ is also a subpath of P 1
i . If Pi ∩ Vj′ is empty, then so is P 1

i ∩ Vj′ as the vertices
of P 1

i \ Pi belong to Vj and j ̸= j′. Suppose now that P 1
i ∩ Vj′ is a subpath and denote by

ai and bi the first and the last vertex of this path. Remember that hi and li denote the first
and the last vertex of Pi ∩ Vj . If Pi ∩ Vj is empty, then P 1

i = Pi and there is nothing to prove,
so let us assume it is not. Since the subpath of Pi between ai and bi is in Vj′ it means that
hi and li do not belong to this subpath. Therefore we are in one of the following three cases.

STACS 2021

50:12 Exploiting Dense Structures in Parameterized Complexity

hi and li appear before ai on Pi

hi and li appear after bi on Pi

hi appears before ai on Pi and li after bi

In the first two cases, P 1
i ∩ Vj′ = Pi ∩ Vj′ , which is still a subpath of P 1

i . In the last case,
P 1

i ∩ Vj′ becomes empty. This concludes the proof. ◁

Consider the graph G′ obtained from G by contracting every part Vj of the partition P
into one vertex vj (keeping multi-edges). That is, although the number of vertices in G′ is
g, the number of parallel edges between vi and vj is same as the number of edges between
Vi and Vj . Thus, there is a one-to-one correspondence between edges in G′ and the edges
between a pair of vertices w1 ∈ Vi and w2 ∈ Vj such that i ≠ j. For every i ∈ [k], let s′

i (resp.
t′
i) denote the vertex of G′ corresponding to the part containing si (resp. ti) in G. Notice

that same pair of vi and vj could be assigned to several pairs of si and ti. In fact, if both si

and ti belong to the same part, say Vj , then s′
i = vj and t′

i = vj . In this case it just means
that the path must be completely contained inside the graph G[Vj].

▷ Claim 19. (G, (s1, t1), . . . , (sk, tk)) is a yes-instance of Edge-Disjoint Paths if and only
if (G′, (s′

1, t′
1), . . . , (s′

k, t′
k)) is a yes-instance of Edge-Disjoint Paths.

Proof. Forward direction follows from Claim 18. Indeed, as explained before, if there is a
solution in G, then we can assume that this solution is such that the intersection of any path
with any part Vj is a subpath. Therefore, contracting the Vi along these paths create paths
in G′ and these paths are a solution to the problem in G′. Suppose now that we have a
solution P ′

1, . . . , P ′
k to the Edge-Disjoint Paths problem in G′. For every i, let ui

1, . . . , ui
ri

denote the sequence of edge in P ′
i . Note that each of these edge corresponds to a specific

edge in G. For every j ∈ [r1] such that vj is an inner vertex of P ′
i , let us define ai

j ∈ V (G)
and bi

j ∈ V (G) as the extremities of the two edges among ui
1, . . . , ui

ri
which are incident

to vj . For the first vertex vs of P ′
i , we define similarly ai

s as si and bi
s is the extremity of

the only edge of P ′
i adjacent to vj . Likewise, we can define ai

t ∈ V (G) and bi
t ∈ V (G) for

the last vertex vt of the path. Overall, replacing each vj by a path from ai
j to bi

j gives a
path from si to ti in G. However, for every j ∈ [g], (G[Vj], (ai

1, bi
1), . . . , (ai

k, bi
k)) defines an

instance of Edge-Disjoint Paths. Since G[Vj] satisfies the properties of Lemma 16, in
polynomial time we can find a solution to our instance. For every i ∈ [k] and j ∈ [g], let Qi

j

denote the path from ai
j to bi

j in this solution. Finally, for each i ∈ [k], let Pi denote the
path obtained from P ′

1 by replacing each vj by Qi
j . Thus, P1, . . . , Pk forms a solution to the

instance (G, (s1, t1), . . . , (sk, tk)), which in particular implies that such a solution exists. ◁

Claim 19 shows that it is enough to solve our problem on the instance (G′, (s′
1, t′

1), . . . , (s′
k, t′

k)).
Let us now explain how to solve this problem in G′. Recall that G′ is a graph on a finite (at
most 2

α) number of vertices. In particular it means that there is at most 2 2
α

2
α ! different paths

in G′, where a path may appear multiple times3. (First, choose the subset of vertices that
appear in the path and then guess the permutation of the chosen vertices). Thus, the number
of paths is upper bounded by ρ = 2 2

α
2
α !. Therefore, a solution to this problem consists of

assigning to each of these paths an integer of value at most k, which denotes the number
of requests that will be resolved using this path. It means that the number of possible
“distributions” of the requests among these paths is upper bounded by kρ. Moreover, once
we have chosen the distribution of the requests among these paths, then testing whether this

3 Here we see a path as a sequence of vertices.

W. Lochet, D. Lokshtanov, S. Saurabh, and M. Zehavi 50:13

distribution is indeed a solution requires only to count the number of times each multi-edge
is used. So in total, to find a solution to the problem in G′, we only need to check the O(kρ)
possible distributions. Since, we can test each distribution in nO(1) time, the running time
of the algorithm follows. ◀

Lemma 17 implies the following result.

▶ Theorem 2. Edge-Disjoint Paths admits an O(k) vertex kernel on everywhere α-dense
graphs.

Proof. Let (G, (s1, t1), . . . , (sk, tk)) be an instance of Edge-Disjoint Paths. Further, let c

be the constant defined in Lemma 3. If k ≤ αcn
16 , then we apply Lemma 17 and solve the

problem in time kO(2
α !)nO(1). Based on the answer of Lemma 17, we either return a solution

or a trivial no-instance of the problem. However, now we have that k ≥ αcn
16 , and hence

n ≤ 16k
αc = O(k). This concludes the proof. ◀

4 Conclusion

Inspired by the success of designing of PTASes and EPTASes for computationally intractable
problems on everywhere dense graphs (every vertex has minimum degree at least αn, for some
fixed constant α > 0), in this paper we undertook a study for computationally intractable
problems on dense graphs in the realm of Parameterized Complexity on dense graphs. We
obtained linear kernels for Edge-Disjoint Paths, Edge Odd Cycle Transversal, Min-
imum Bisection, d-Way Cut, Multiway Cut and Multicut on everywhere dense graphs.
Additionally, we obtained a cubic kernel for Vertex-Disjoint Paths on everywhere dense
graphs. In addition to kernelization results, we obtained subexponential-time parameterized
algorithms for Edge Odd Cycle Transversal, Minimum Bisection, and d-Way Cut.
Finally, we showed how all of our results (as well as EPASes for these problems) can be
de-randomized. Studying other NP-hard problems on dense graphs is an interesting research
avenue. We conclude our paper with some concrete open problems.

1. Does Vertex-Disjoint Paths admit a linear vertex kernel on everywhere α-dense
graphs?

2. Does Edge-Disjoint Paths and Vertex-Disjoint Paths admit an algorithm with
running time 2O(k)nO(1) on everywhere α-dense graphs?

References
1 Noga Alon, Wenceslas Fernandez de la Vega, Ravi Kannan, and Marek Karpinski. Random

sampling and approximation of max-csps. J. Comput. Syst. Sci., 67(2):212–243, 2003. doi:
10.1016/S0022-0000(03)00008-4.

2 Noga Alon, Alan M. Frieze, and Dominic Welsh. Polynomial time randomized approximation
schemes for tutte-gröthendieck invariants: The dense case. Random Struct. Algorithms,
6(4):459–478, 1995. doi:10.1002/rsa.3240060409.

3 Noga Alon, Daniel Lokshtanov, and Saket Saurabh. Fast FAST. In Automata, Languages and
Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009,
Proceedings, Part I, pages 49–58, 2009.

4 Noga Alon and Shachar Lovett. Almost k-wise vs. k-wise independent permutations, and
uniformity for general group actions. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 350–361, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

STACS 2021

https://doi.org/10.1016/S0022-0000(03)00008-4
https://doi.org/10.1016/S0022-0000(03)00008-4
https://doi.org/10.1002/rsa.3240060409

50:14 Exploiting Dense Structures in Parameterized Complexity

5 Gunnar Andersson and Lars Engebretsen. Property testers for dense constraint satisfaction
programs on finite domains. Random Struct. Algorithms, 21(1):14–32, 2002. doi:10.1002/
rsa.10041.

6 Sanjeev Arora, Alan M. Frieze, and Haim Kaplan. A new rounding procedure for the assignment
problem with applications to dense graph arrangement problems. Math. Program., 92(1):1–36,
2002. doi:10.1007/s101070100271.

7 Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time approximation
schemes for dense instances of np-hard problems. J. Comput. Syst. Sci., 58(1):193–210, 1999.
doi:10.1006/jcss.1998.1605.

8 Cristina Bazgan, Wenceslas Fernandez de la Vega, and Marek Karpinski. Polynomial time
approximation schemes for dense instances of minimum constraint satisfaction. Random Struct.
Algorithms, 23(1):73–91, 2003. doi:10.1002/rsa.10072.

9 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-
exclusion. SIAM J. Comput., 39(2):546–563, 2009.

10 Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles
and disjoint paths. Theor. Comput. Sci., 412(35):4570–4578, 2011.

11 Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. SIAM J. Comput.,
47(1):166–207, 2018.

12 Yixin Cao, Jianer Chen, and Jia-Hao Fan. An O(1.84k) parameterized algorithm for the
multiterminal cut problem. Inf. Process. Lett., 114(4):167–173, 2014.

13 Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm for the
minimum node multiway cut problem. Algorithmica, 55(1):1–13, 2009.

14 Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal
Pilipczuk. Designing FPT algorithms for cut problems using randomized contractions. SIAM
J. Comput., 45(4):1171–1229, 2016.

15 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

16 Marek Cygan, Pawel Komosa, Daniel Lokshtanov, Michal Pilipczuk, Marcin Pilipczuk, and
Saket Saurabh. Randomized contractions meet lean decompositions. CoRR, abs/1810.06864,
2018. arXiv:1810.06864.

17 Marek Cygan, Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Magnus Wahlström.
Clique cover and graph separation: New incompressibility results. ACM Trans. Comput.
Theory, 6(2):6:1–6:19, 2014.

18 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.
Minimum bisection is fixed-parameter tractable. SIAM J. Comput., 48(2):417–450, 2019.

19 Wenceslas Fernandez de la Vega and Marek Karpinski. Polynomial time approximation of
dense weighted instances of MAX-CUT. Random Struct. Algorithms, 16(4):314–332, 2000.

20 Reinhard Diestel. Graph theory. Springer Publishing Company, Incorporated, 2018.
21 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.

Texts in Computer Science. Springer, 2013.
22 Uriel Feige. Faster fast(feedback arc set in tournaments). CoRR, abs/0911.5094, 2009.

arXiv:0911.5094.
23 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical

Computer Science. An EATCS Series. Springer, 2006.
24 Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Yngve Villanger.

Tight bounds for parameterized complexity of cluster editing with a small number of clusters.
J. Comput. Syst. Sci., 80(7):1430–1447, 2014. doi:10.1016/j.jcss.2014.04.015.

25 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization. Theory
of parameterized preprocessing. Cambridge University Press, Cambridge, 2019.

26 Fedor V. Fomin and Michal Pilipczuk. Subexponential parameterized algorithm for computing
the cutwidth of a semi-complete digraph. In Algorithms - ESA 2013 - 21st Annual European
Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings, pages 505–516, 2013.

https://doi.org/10.1002/rsa.10041
https://doi.org/10.1002/rsa.10041
https://doi.org/10.1007/s101070100271
https://doi.org/10.1006/jcss.1998.1605
https://doi.org/10.1002/rsa.10072
http://arxiv.org/abs/1810.06864
http://arxiv.org/abs/0911.5094
https://doi.org/10.1016/j.jcss.2014.04.015

W. Lochet, D. Lokshtanov, S. Saurabh, and M. Zehavi 50:15

27 Alan M. Frieze and Ravi Kannan. The regularity lemma and approximation schemes for
dense problems. In 37th Annual Symposium on Foundations of Computer Science, FOCS ’96,
Burlington, Vermont, USA, 14-16 October, 1996, pages 12–20. IEEE Computer Society, 1996.
doi:10.1109/SFCS.1996.548459.

28 Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of
clusters. Theory of Computing, 2(13):249–266, 2006. doi:10.4086/toc.2006.v002a013.

29 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998. doi:10.1145/285055.285060.

30 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

31 Andreas Huck. A sufficient condition for graphs to be weaklyk-linked. Graphs and Combinat-
orics, 7(4):323–351, 1991.

32 Marek Karpinski. Polynomial time approximation schemes for some dense instances of np-hard
optimization problems. Algorithmica, 30(3):386–397, 2001. doi:10.1007/s00453-001-0012-z.

33 Marek Karpinski and Warren Schudy. Linear time approximation schemes for the gale-
berlekamp game and related minimization problems. In Proceedings of the 41st Annual ACM
Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2,
2009, pages 313–322. ACM, 2009. doi:10.1145/1536414.1536458.

34 Marek Karpinski and Warren Schudy. Faster algorithms for feedback arc set tournament,
kemeny rank aggregation and betweenness tournament. In Algorithms and Computation - 21st
International Symposium, ISAAC2010, Jeju Island, Korea, December 15-17, 2010, Proceedings,
Part I, pages 3–14, 2010.

35 Ken-ichi Kawarabayashi and Mikkel Thorup. The minimum k-way cut of bounded size is
fixed-parameter tractable. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 160–169. IEEE Computer Society, 2011.

36 Ken-ichi Kawarabayashi and Paul Wollan. A shorter proof of the graph minor algorithm:
the unique linkage theorem. In Leonard J. Schulman, editor, Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June
2010, pages 687–694. ACM, 2010.

37 Stefan Kratsch and Magnus Wahlström. Compression via matroids: A randomized polynomial
kernel for odd cycle transversal. ACM Trans. Algorithms, 10(4):20:1–20:15, 2014.

38 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. J. ACM, 67(3):16:1–16:50, 2020.

39 Daniel Lokshtanov, Pranabendu Misra, Michal Pilipczuk, Saket Saurabh, and Meirav Ze-
havi. An exponential time parameterized algorithm for planar disjoint paths. In Konstantin
Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy,
editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1307–1316. ACM, 2020.

40 Jayakrishnan Madathil, Roohani Sharma, and Meirav Zehavi. A sub-exponential fpt algorithm
and a polynomial kernel for minimum directed bisection on semicomplete digraphs. In 44th
International Symposium on Mathematical Foundations of Computer Science MFCS 2009,
Aachen, Germany, August 26-30, 2019, 2019.

41 Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–406,
2006.

42 Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the
size of the cutset. SIAM J. Comput., 43(2):355–388, 2014.

43 Claire Mathieu and Warren Schudy. Yet another algorithm for dense max cut: go greedy. In
Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2008, San Francisco, California, USA, January 20-22, 2008, pages 176–182. SIAM, 2008.
URL: http://dl.acm.org/citation.cfm?id=1347082.1347102.

44 Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96–115, 1927.

STACS 2021

https://doi.org/10.1109/SFCS.1996.548459
https://doi.org/10.4086/toc.2006.v002a013
https://doi.org/10.1145/285055.285060
https://doi.org/10.1007/s00453-001-0012-z
https://doi.org/10.1145/1536414.1536458
http://dl.acm.org/citation.cfm?id=1347082.1347102

50:16 Exploiting Dense Structures in Parameterized Complexity

45 Pranabendu Misra, Saket Saurabh, Roohani Sharma, and Meirav Zehavi. Sub-exponential time
parameterized algorithms for graph layout problems on digraphs with bounded independence
number. In 38th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad, India, pages
35:1–35:19, 2018.

46 Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
47 Marcin Pilipczuk, Michal Pilipczuk, and Marcin Wrochna. Edge bipartization faster than 2k.

Algorithmica, 81(3):917–966, 2019.
48 Neil Robertson and Paul D. Seymour. Graph minors XIII. the disjoint paths problem. J.

Comb. Theory, Ser. B, 63(1):65–110, 1995.
49 René van Bevern, Andreas Emil Feldmann, Manuel Sorge, and Ondrej Suchý. On the

parameterized complexity of computing graph bisections. In Andreas Brandstädt, Klaus
Jansen, and Rüdiger Reischuk, editors, Graph-Theoretic Concepts in Computer Science - 39th
International Workshop, WG 2013, Lübeck, Germany, June 19-21, 2013, Revised Papers,
volume 8165 of Lecture Notes in Computer Science, pages 76–87. Springer, 2013.

A Definition of the studied problems

We now define all the problems mentioned in the paper.

Edge-Disjoint Paths Parameter: k

Input: A graph G and a set of request pairs (s1, t1), . . . , (sk, tk).
Question: Does there exist a set of paths P1, . . . , Pk, between si and ti, such that
they are pairwise edge disjoint?

Vertex-Disjoint Paths Parameter: k

Input: A graph G and a set of request pairs (s1, t1), . . . , (sk, tk).
Question: Does there exist a set of paths P1, . . . , Pk, between si and ti, such that
they are pairwise vertex disjoint?

Edge Odd Cycle Transversal Parameter: k

Input: A graph G and an integer k.
Question: Does there exists S ⊆ E(G) of size at most k such that G − S is bipartite?

Minimum Bisection Parameter: k
Input: A graph G and an integer k.
Question: Does there exists a partition (A, B) of V (G) such that ||A| − |B|| ≤ 1 and
E(A, B) ≤ k?

Multiway Cut Parameter: k

Input: A graph G, a set T ⊆ V (G) and an integer k.
Question: Does there exists a set S ⊆ E(G) of size at most k such that every vertex
of T lies in a different connected component of G − S?

W. Lochet, D. Lokshtanov, S. Saurabh, and M. Zehavi 50:17

Multicut Parameter: k

Input: A graph G, a set of pairs (si, ti)ℓ
i=1 and an integer k.

Question: Does there exists S ⊆ E(G) of size at most k such that for every i ∈ [ℓ],
vertices si and ti lie in different connected components of G − S?

d-Way Cut Parameter: k

Input: A graph G and an integer k.
Question: Does there exists a set S ⊆ E(G) of size at most k such that G − S has
at least d connected components?

STACS 2021

Subgroup Membership in GL(2,Z)
Markus Lohrey !

Universität Siegen, Germany

Abstract
It is shown that the subgroup membership problem for a virtually free group can be decided in
polynomial time where all group elements are represented by so-called power words, i.e., words of
the form pz1

1 pz2
2 · · · p

zk
k . Here the pi are explicit words over the generating set of the group and all zi

are binary encoded integers. As a corollary, it follows that the subgroup membership problem for
the matrix group GL(2,Z) can be decided in polynomial time when all matrix entries are given in
binary notation.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases free groups, virtually free groups, subgroup membership, matrix groups

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.51

Funding Markus Lohrey: Funded by DFG project LO 748/12-1.

1 Introduction

The subgroup membership problem (aka generalized word problem) for a group G asks
whether for given group elements g0, g1, . . . , gk ∈ G, g0 belongs to the subgroup ⟨g1, . . . , gk⟩
generated by g1, . . . , gk. To make this a well-defined computational problem, one has to fix
an input representation of group elements. Here, a popular choice is to restrict to finitely
generated (f.g. for short) groups. In this case, group elements can be encoded by finite words
over a finite set of generators. The subgroup membership problem is one of the best studied
problems in computational group theory. Let us survey some important results on subgroup
membership problems.

For symmetric groups Sn, Sims [33] has developed a polynomial time algorithm for the
uniform variant of the subgroup membership problem, where n is part of the input. In this
paper, we always consider non-uniform subgroup membership problems, where we consider
a fixed infinite f.g. group G. For a f.g. free group, the subgroup membership problem can
be solved using Nielsen reduction (see e.g. [23]); a polynomial time algorithm was found by
Avenhaus and Madlener [1]. In fact, in [1] it is shown that the subgroup membership problem
for a f.g. free group is P-complete. Another polynomial time algorithm uses Stallings’s folding
procedure [34]; an almost linear time implementation can be found in [35]. An extension
of Stallings’s folding for fundamental groups of certain graphs of groups was developed in
[15]. The folding procedure from [15] can be used to show that subgroup membership is
decidable for right-angled Artin groups with a chordal independence graph. Moreover, Friedl
and Wilton [10] used the results of [15] in combination with deep results from 3-dimensional
topology in order to decide the subgroup membership problem for 3-manifold groups. Other
extensions of Stallings’s folding and applications to subgroup membership problems can be
found in [16, 25, 31]. Using completely different (more algebraic) techniques, the subgroup
membership problem has been shown to be decidable for polycyclic groups [2, 24] and
f.g. metabelian groups [29, 30].

On the undecidability side, Mihăılova [26] has shown that the subgroup membership
problem is undecidable for the direct product F2 ×F2 (where F2 is the free group of rank two).
This implies undecidability of the subgroup membership problem for many other groups,

© Markus Lohrey;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 51; pp. 51:1–51:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lohrey@eti.uni-siegen.de
https://orcid.org/0000-0002-4680-7198
https://doi.org/10.4230/LIPIcs.STACS.2021.51
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 Subgroup Membership in GL(2,Z)

e.g., SL(4,Z) (the group of 4 × 4 integer matrices with determinant one) or the 5-strand
braid group B5. Rips [28] constructed hyperbolic groups with an undecidable subgroup
membership problem.

Apart from the above mentioned result of Avenhaus and Madlener [1] for free groups,
the authors are not aware of other precise complexity results for subgroup membership
problems in infinite groups. The P-completeness result for free groups from [1] assumes that
group elements are represented by finite words over the generators of the free group. In
recent years, group theoretic decision problems have been also studied with respect to more
succinct representations of group elements. For instance, the so-called compressed word
problem, where the input group element is represented by a so-called straight-line program
(a context-free grammar that produces exactly one string) has received a lot of attention;
see [3, 20] for a survey. For the subgroup membership problem in free groups, Gurevich
and Schupp studied in [12] a succinct variant, where input group elements are of the form
az1

1 az2
2 · · · azk

k . Here, the ai are from a fixed free basis of the free group and the zi are binary
encoded integers. Based on an adaptation of Stallings’s folding, they show that this succinct
membership problem can be solved in polynomial time. Then, Gurevich and Schupp proceed
in [12] by showing that their succinct folding algorithm for free groups can be adapted so
that it works for the free product Z/2Z ∗ Z/3Z. The particular interest in this group comes
from the fact that it is isomorphic to the modular group PSL(2,Z), which is the quotient
of SL(2,Z) by ⟨−Id2⟩ ∼= Z/2Z (Id2 is the 2 × 2 identity matrix). As an application of the
succinct folding algorithm for Z/2Z ∗ Z/3Z, Gurevich and Schupp show that the subgroup
membership problem for PSL(2,Z) is decidable in polynomial time when all matrix entries
are encoded in binary notation.

The polynomial time algorithm for the succinct membership problem for Z/2Z ∗ Z/3Z
from [12] is tailored towards this group, and it is not clear how to adapt the algorithm to
related groups. The latter is the goal of this paper. For this it turnes out to be useful
to consider a more succinct representation of input elements for free groups. Recall that
Gurevich and Schupp use words of the form az1

1 az2
2 · · · azk

k , where the integers zi are given
in binary notation and the ai are generators from a free basis. Here, we represent group
elements by so-called power words which were studied in [21] in the context of group theory.
A power word has the form pz1

1 pz2
2 · · · pzk

k , where as above the integers zi are given in binary
notation but the pi are arbitrary words over the group generators. In [21] it was shown that
the so-called power word problem (does a given power word represent the group identity?)
for a f.g. free group F is AC0-reducible to the ordinary word problem for F (and hence in
logspace). In this paper, we prove that the power-compressed subgroup membership problem
(i.e., the subgroup membership problem with all group elements represented by power words)
for a free group can be solved in polynomial time by using a folding procedure à la Stallings
(Theorem 12). This generalizes the above mentioned result of Gurevich and Schupp. At first
sight, the step from power words of the form az1

1 az2
2 · · · azk

k (with the ai generators) to general
power words as defined above looks not very spectacular. But apart from the quite technical
details, the power-compressed subgroup membership problem has a major advantage over
the restricted version of Gurevich and Schupp: we show that if G is a f.g. group and H

is a finite index subgroup of G then the power-compressed subgroup membership problem
for G is polynomial time reducible to the power-compressed subgroup membership problem
for H (Lemma 13). Hence, the power-compressed subgroup membership problem for every
f.g. virtually free group (a finite extension of a f.g. free group) can be solved in polynomial
time. This result opens up new applications to matrix group algorithms. It is well-known
that the group GL(2,Z) (the group of all 2 × 2 integer matrices with determinant ±1) is

M. Lohrey 51:3

f.g. virtually free. Moreover, given a matrix A ∈ GL(2,Z) with binary encoded entries one
can compute a power word (over a fixed finite generating set of GL(2,Z)) that represents A.
Hence, the subgroup membership problem for GL(2,Z) with binary encoded matrix entries
can be decided in polynomial time.

Related work. Related to the subgroup membership problem is the more general rational
subset membership problem. A rational subset in a group G is given by a finite automaton,
where transitions are labelled with elements of G; such an automaton accepts a subset of
G in the natural way. In the rational subset membership problem for G the input consists
of a rational subset L ⊆ G and an element g ∈ G and the question is, whether g ∈ L. This
problem was shown to be decidable for free groups by Benois [5] via an automata saturation
procedure that moreover can be implemented in cubic time [6]. Stallings’s folding can be
viewed as a special case of Benois’s construction.

Rational subset membership problems (and special cases) for matrix groups are a very
active research field. Some recent results can be found in [4, 7, 9, 18, 27]. Closest to our
work is [4], where it is shown that the identity problem for SL(2,Z) (does the identity matrix
belong to a finitely generated subsemigroup of SL(2,Z)?) and the rational subset membership
problem for PSL(2,Z) are NP-complete (when matrix entries are given in binary notation).
For this, the authors of [4] use the ideas of Gurevich and Schupp [12]. In [7, 9], first steps
towards GL(2,Q) are taken: in [9] the authors prove decidability of membership in so-called
flat rational subsets of GL(2,Q), whereas [7] establishes the decidability of the full rational
subset membership problem for the Baumslag-Solitar groups BS(1, q) < GL(2,Q) with q ≥ 2.

2 Preliminaries

General notations. For an integer z ∈ Z we define its signum as usual: sign(0) = 0, and for
z > 0, sign(z) = 1 and sign(−z) = −1. As usual, Σ∗ denotes the set of all finite words over
an alphabet Σ, ε denotes the empty word, and Σ+ = Σ∗ \ {ε} is the set of all non-empty
words. The length of a word w is denoted by |w|. The word u ∈ Σ∗ is a factor of the word
w ∈ Σ∗ if w = sut for some s, t ∈ Σ∗.

Groups. For a group G and a subset A ⊆ G, we denote with ⟨A⟩ the subgroup of G

generated by A. It is the set of all products of elements from A ∪ A−1. We only consider
finitely generated (f.g.) groups G, for which there is a finite set A ⊆ G such that G = ⟨A⟩;
such a set A is called a finite generating set for G. If A = A−1 then we say that A is a
finite symmetric generating set for G. Clearly, G is f.g. if and only if there exists a finite
alphabet Γ and a surjective monoid homomorphism π : Γ∗ → G. We also say that the word
w ∈ Γ∗ represents the group element π(w). For words u, v ∈ Γ∗ we say that u = v in G

if π(u) = π(v). Sometimes, we also identify a word w ∈ Γ∗ with the corresponding group
element π(w).

Fix a finite set Σ of symbols and let Σ−1 = {a−1 | a ∈ Σ} be a set of formal inverses
of the symbols in Σ with Σ ∩ Σ−1 = ∅. Let Γ = Σ ∪ Σ−1. We define an involution on Γ∗

by setting (a−1)−1 = a for a ∈ Σ and (a1a2 · · · ak)−1 = a−1
k · · · a−1

2 a−1
1 for a1, . . . , ak ∈ Γ. A

word w ∈ Γ∗ is called freely reduced or irreducible if it neither contains a factor aa−1 nor
a−1a for a ∈ Σ. With red(Γ∗) we denote the set of all irreducible words. For every word
w ∈ Γ∗ one obtains a unique irreducible word that is obtained from w by deleting factors
aa−1 and a−1a (a ∈ Σ) as long as possible. We denote this word with red(w).

STACS 2021

51:4 Subgroup Membership in GL(2,Z)

The free group generated by Σ, F (Σ) for short, can identified with the set red(Γ∗) together
with the multiplication defined by u · v = red(uv) for u, v ∈ red(Γ∗). A group G that has a
free subgroup of finite index in G is called virtually free.

3 Stallings’s folding for power-compressed words

In this section we present our succinct version of Stallings’s folding. We start with the
definition of power words and power-compressed graphs. These graphs are basically finite
automata where the transitions are labelled with power words. We prefer to use the the
term “graph” instead of “automaton”, since the former is more common in the literature on
Stallings’s folding.

A power word over an alphabet Σ is a sequence (p1, n1)(p2, n2) · · · (pk, nk) of pairs where
p1, . . . , pn ∈ Σ+ and n1, . . . , nk ∈ N \ {0}. Such a power word represents the ordinary word
pn1

1 pn2
2 · · · pnk

k and we usually identify a power word with the word it represents. In the case
of an alphabet Γ = Σ ∪ Σ−1 we may also allow negative exponents in a power word. Of
course, p−n stands for (p−1)n. When a power word is part of the input for a computational
problem, we always assume that the exponents ni are given in binary notation, whereas
the words pi (also called the periods of the power word) are written down explicitly by
listing all symbols in the words. Therefore, we define the input length ∥w∥ of the power
word w = (p1, n1)(p2, n2) · · · (pk, nk) as

∑k
i=1 |pi| + log ni. A power word should be seen as

a succinct representation of the word it represents.
Consider a f.g. group G with the finite generating set Σ. The power-compressed subgroup

membership problem for G is the following problem:

input: Power words w0, w1, . . . , wn over the alphabet Σ ∪ Σ−1.
question: Does g0 belong to the subgroup ⟨g1, . . . , gn⟩ ≤ G, where gi is the group element
represented by wi?

The concrete choice of the finite generating set Σ has no influence on the complexity of the
power-compressed subgroup membership problem: If Θ is another finite generating set, then
every generator a ∈ Σ ∪ Σ−1 can be expressed as word wa ∈ (Θ ∪ Θ−1)∗. Hence, from a
power word w over Σ ∪ Σ−1 one can compute a power word w′ over Θ ∪ Θ−1 such that w and
w′ represent the same group element. For this, one only has to apply the homomorphism
a 7→ wa to all periods p of the power word w, which can be done in TC0 [19].

The goal of this section is to show that the power-compressed subgroup membership
problem can be decided in polynomial time for a f.g. free group. In Section 4 we will extend
this result to f.g. virtually free groups.

Our main tool for solving the power-compressed subgroup membership problem for
f.g. free groups is an extension of Stallings’s folding procedure for power-compressed words.
First we need some combinatorial results for words. Fix a finite alphabet Σ with the inverse
alphabet Σ−1 for the rest of Section 3 and let Γ = Σ ∪ Σ−1.

3.1 Combinatorics on words
We fix an arbitrary linear order < on Γ. In order to simplify notation later, it is convenient
to require that a < a−1 for every a ∈ Σ. With ⪯ we denote the lexicographic order with
respect to <. Let Ω ⊆ red(Γ∗) denote the set of all irreducible words w such that

w is non-empty,
w is cyclically reduced (i.e, w cannot be written as aua−1 for a ∈ Γ),
w is primitive (i.e, w cannot be written as un for some n ≥ 2),
w is lexicographically minimal among all cyclic permutations of w and w−1 (i.e., w ⪯ uv

for all u, v ∈ Γ∗ with vu = w or vu = w−1).

M. Lohrey 51:5

Note that Σ ⊆ Ω and Σ−1 ∩ Ω = ∅ (since a < a−1 for a ∈ Σ). Since w ∈ Ω is irreducible and
cyclically reduced, also every power wn is irreducible. The following lemma can be found in
[21, Lemma 11].
▶ Lemma 1. Let p, q ∈ Ω, x, y ∈ Z and let u be a factor of px and v a factor of qy. If uv = 1
in F (Σ) and |u| = |v| ≥ |p| + |q| − 1, then p = q.
We also need the following statement:
▶ Lemma 2. If p ∈ Ω, u, v ∈ Γ∗, x ∈ {−1, 1} and upxv = pp then x = 1 and u = ε or v = ε.
Proof. First assume that upv = pp such that u ≠ ε and v ̸= ε. We obtain a factorization
p = qr such that q ̸= ε, r ̸= ε and p = rq = qr. Hence, q, r ∈ s∗ for some string s ∈ Γ+ (see
e.g. [22, Proposition 1.3.2]), which implies that p is not primitive, a contradiction.

Now assume that up−1v = pp. If u = ε or v = ε then p = p−1 which implies p /∈ red(R).
If u ≠ ε and v ̸= ε then we obtain a factorization p = qr such that q ̸= ε, r ̸= ε and
p−1 = rq. Hence, qr = p = q−1r−1, which implies q = q−1 and r = r−1. But the latter
implies q, r /∈ red(R) and hence p /∈ red(R), a contradiction. ◀

3.2 Power-compressed graphs
A power-compressed graph is a tuple G = (V, E, ι, τ, λ, v0), where V is the set of vertices, E is
the set of edges (V ∩E = ∅), ι : E → V maps an edge to its source vertex, τ : E → V maps an
edge to its target vertex, λ : E → Γ+ × (Z \ {0}) assigns to every edge its label, and v0 is the
so-called base point. Moreover, for every edge e such that ι(e) = u, τ(e) = v, and λ(e) = (p, z)
there is an inverse edge e−1 ̸= e such that ι(e−1) = v, τ(e−1) = u, λ(e−1) = (p, −z), and
(e−1)−1 = e. When we describe a power-compressed graph we often specify for a pair of
edges e, e−1 only one of them and implicitly assume the existence of its inverse edge. An
edge e is called short if λ(e) ∈ Γ × {−1, 1}, otherwise it is called long. If G only contains
short edges, then G is called an uncompressed graph, or just graph. We define the input
length of G as |G| =

∑
e∈E ∥λ(e)∥ (here, we view λ(e) = (p, z) as a power word consisting of

a single power).
A path in G is a sequence ρ = [v1, e1, v2, e2, . . . , vk, ek, vk+1] where e1, . . . , ek ∈ E, ι(ei) =

vi and τ(ei) = vi+1 for 1 ≤ i ≤ k. If vi ̸= vj for all i, j with 1 ≤ i < j ≤ k + 1 then ρ is
called a simple path. If v1 = vk+1 then ρ is a cycle. If vi ≠ vj for all i, j with 1 ≤ i < j ≤ k

and v1 = vk+1 then ρ is a simple cycle. Let ι(ρ) = v1 and τ(ρ) = vk+1. If λ(ei) = (pi, zi)
then we define λ(ρ) as the power word (p1, z1)(p2, z2) · · · (pk, zk). The path ρ is oriented
if sign(zi) = sign(zj) for all i, j. The path ρ is without backtracking if ei+1 ̸= e−1

i for all
1 ≤ i ≤ k − 1.

In the following, we identify a pair (p, z) ∈ Γ+ × (Z\{0}) with the power pz. In particular,
in an uncompressed graph every edge is labelled with a symbol from Γ. With a power-
compressed graph G we can associate an uncompressed graph decompress(G) that is obtained
by replacing in G every pz-labelled edge e by a path ρ of short edges from ι(e) to τ(e) and
such that λ(ρ) = pz. Moreover, if ι(e) ̸= τ(e) then ρ is a simple path and if ι(e) = τ(e) then
ρ is a simple cycle.

A power-compressed graph G = (V, E, ι, τ, λ, v0) should be viewed as an automaton over
the alphabet Γ, where transition labels are succinct words of the form pz with z given in
binary notation: V is the set of states, an edge e corresponds to a transition from ι(e) to
τ(e) with label λ(e) and v0 is the unique initial and final state. We denote with L(G) the set
of all words w ∈ Γ∗ accepted by the automaton G. With F (G) we denote the image of L(G)
in the free group F (Σ). Since every edge of G has an inverse edge, it is easy to see that F (G)
is a subgroup of F (Σ).

STACS 2021

51:6 Subgroup Membership in GL(2,Z)

3.3 Folding uncompressed graphs

Before we continue with power-compressed graphs let us first explain Stallings’s folding
procedure [34] for uncompressed graphs, which is one of the most powerful techniques for
subgroups of free groups. Let G and H be two uncompressed graphs as defined in Section 3.2.
We say that G can be folded into H if there exist two edges e ̸= e′ in G such that ι(e) = ι(e′)
and λ(e) = λ(e′) and H is obtained from G by merging the two vertices τ(e) and τ(e′) (note
that we may have already τ(e) = τ(e′) in G) into a single vertex and removing the edges e

and e−1 (this is an arbitrary choice; we could also keep e and e−1 and remove e′ and e′−1)
from the graph. One can easily show that F (G) = F (H) holds in this situation. Every vertex
of G is mapped to a vertex of H in the natural way (τ(e) and τ(e′) are mapped to the same
vertex of H). If a graph G cannot be folded further then we say that G is folded. In this case,
G is a deterministic automaton and w ∈ L(G) implies red(w) ∈ L(G).

To a given finite set of words A = {w1, . . . , wn} ⊆ Γ+ we can associate a so-called
bouquet graph B(A) such that F (B(A)) = ⟨g1 . . . , gn⟩ ≤ F (Σ), where gi = red(wi) ∈ F (Σ)
is the free group element represented by wi): to a non-empty word w = a1a2 · · · ak, where
ai ∈ Γ, we associate the cycle graph C(w) = ({v0, . . . , vk−1}, {e±1

i : 1 ≤ i ≤ k}, ι, τ, v0), where
ι(ei) = vi−1, λ(ei) = ai, and τ(ei) = vi mod k for 1 ≤ i ≤ k. Then we define the bouquet
graph B(A) by merging in the disjoint union of the cycle graphs C(wi) the base points.

Let S(A) be the graph obtained by folding B(A) as long as possible (the outcome of this
procedure is in fact unique up to graph isomorphism). The graph S(A) is sometimes called
the Stallings’s graph for A. Note that as an automaton, S(A) is deterministic. The above
discussion leads to the following crucial fact (see also [14] for a more detailed discussion):

▶ Lemma 3. Let g ∈ red(Γ∗) be an irreducible word and hence an element of F (Σ). Then g

is accepted by S(A) if and only if g ∈ ⟨g1 . . . , gn⟩ ≤ F (Σ).

3.4 Folding power-compressed graphs

Fix a power-compressed graph G = (V, E, ι, τ, λ, v0) for the rest of this section and let P be
the set of all words p such that λ(e) = pz for some e ∈ E and z ∈ Z \ {0}. Let us define the
following numbers:

α := max{|p| : p ∈ P} ≥ 1,
β := 2α − 1 ≥ 1,
γ := 2(α + β) ≥ 4.

We say that G is normalized if
P ⊆ Ω (where Ω is defined in Section 3.1), and
for every e ∈ E, if e is long and λ(e) = pz then |z| ≥ γ.

Let Eℓ be the set of long edges of G.

▶ Lemma 4. From a given power-compressed graph G we can compute in polynomial time a
normalized power-compressed graph G′ such that F (G) = F (G′).

Proof. We first modify G such that for every edge label λ(e) = pz we have p ∈ Ω. This
can be done in polynomial time by [21, Lemma 12] which states that a given power word
w over the alphabet Γ can be transformed in polynomial time (in fact, even in logspace)
into a power word w′ over the alphabet Γ such that (i) all periods of w′ belong to Ω and (ii)
w = w′ in F (Σ). We finally replace every long edge e with λ(e) = pz and |z| < γ by a simple
path (or simple cycle) ρ of short edges such that λ(ρ) = pz. ◀

M. Lohrey 51:7

We say that G is weakly folded if none of the following two conditions A and B holds:

Condition A: There exist two (long or short) edges e1 ̸= e2 such that ι(e1) = ι(e2), λ(e1) = pz1

and λ(e2) = pz2 for some p ∈ Ω and z1, z2 ∈ Z \ {0} with sign(z1) = sign(z2).

Condition B: There exist a long edge e with λ(e) = pz and a path ρ consisting of short edges
such that ι(e) = ι(ρ), λ(ρ) = px, x ∈ {−1, 1}, and sign(x) = sign(z).

We say that G is strongly folded if the graph decompress(G) is folded in the sense of Section 3.3.
Clearly, if G is strongly folded then G is also weakly folded.

▶ Lemma 5. A given normalized power-compressed graph G = (V, E, ι, τ, λ, v0) can be folded
in polynomial time into a normalized and weakly folded power-compressed graph G′. We have
F (G) = F (G′).

Proof. In order to estimate the complexity of our algorithm, we use two termination
parameters: the number |Eℓ| of long edges and the total number of edges |E|. The algorithm
performs a sequence of folding steps that are explained below. In each step, the value |Eℓ|
will not increase. If |Eℓ| does not change then |E| will not increase, but if |Eℓ| decreases then
|E| may increase by at most γ − 1. The situation becomes difficult because it may happen
that in a folding step neither |Eℓ| nor |E| changes. We distinguish the following three types
of folding steps, where G = (V, E, ι, τ, λ, v0) is the power-compressed graph before the folding
step and G′ = (V ′, E′, ι′, τ ′, λ′, v′

0) is the power-compressed graph after the folding step.

decreasing (p-edge) fold: If condition A holds with z1 = z2 then we can merge τ(e1) and
τ(e2) into a single vertex (let us call it v) and replace the two edges e1 and e2 by a single
edge from ι(e1) = ι(e2) to v with label pz1 .
More formally: If we define ≡V to be the smallest (with respect to inclusion) equivalence
relation on V with τ(e1) ≡V τ(e2) and ≡E to be the smallest equivalence relation on
E with e1 ≡E e2 then we can identify V ′ (respectively, E′) with the set of equivalence
classes {[v]≡V

: v ∈ V } (respectively, {[e]≡E
: e ∈ V }). Moreover ι′([e]≡E

) = [ι(e)]≡V
,

τ ′([e]≡E
) = [τ(e)]≡V

, λ′([e]≡E
) = λ(e) (all these mappings are well-defined). The

surjective mapping µ with µ(v) = [v]≡V
is called the merging function associated with

the merging step. Note that some of (or all) the vertices ι(e1), τ(e1), τ(e2) can be equal.
nondecreasing (p-edge) fold: If condition A holds with (w.l.o.g.) |z1| < |z2| then we can

fold the two edges e1 and e2 by first setting V ′ = V , E′ = E, τ ′ = τ , ι′(e2) = τ(e1) and
λ′(e2) = pz2−z1 . On all other arguments, ι′ (respectively, λ′) coincides with ι (respectively,
λ). The resulting graph G′ may be not normalized, namely if e2 is long (in G′) and
|z2 − z1| < γ. In this case we replace e2 by a simple path (or cycle, in case ι′(e2) = τ ′(e2))
of fresh short edges from ι′(e2) to τ ′(e2) spelling the word pz−x. Note that after this
modification we have V ⊆ V ′ and E ⊆ E′. We define the merging function µ : V → V ′

as the canonical inclusion mapping.
nondecreasing (p-path) fold: If the situation in condition B occurs, then we first set V ′ = V ,

E′ = E, τ ′ = τ , ι′(e) = τ(ρ) and λ′(e) = pz−x. On all other arguments, ι′ (respectively,
λ′) coincides with ι (respectively, λ). If in the resulting graph G′, e is long and |z − x| < γ

then we replace the edge e by a simple path (or cycle) of short fresh edges spelling the
word pz−x. Again we define the merging function µ : V → V ′ as the canonical inclusion
mapping.

Note that each of the above folding steps simulates several folding steps in the corresponding
uncompressed graph. Figure 1 shows some folding steps.

Assume we make a sequence of k folding steps, where G is the initial graph, G′ is the
final graph and µi (1 ≤ i ≤ k) is the merging function for the i-th folding step. Then we can
define the composition µ = µ1 ◦ µ2 ◦ · · · ◦ µk (where µ1 is applied first); it maps every vertex

STACS 2021

51:8 Subgroup Membership in GL(2,Z)

p5

p4

b

a

q5

q6

p4

p4

a
b

q5

q6

p4

a
b

q5
q6

p4

a
b

q5

a

c

p4

a
b

q4

a

c

p4 b

q4

a

c

(a) (b) (c)

(d) (e) (f)

Figure 1 Some folding steps, where p = ab ∈ Ω and q = ac ∈ Ω. We assume that γ = 4 and
that all inverse edges are implicitly present. The edges involved in the folding steps are red; dotted
arrows only indicate the direction of foldings and are not part of the graph.

(a) to (b): nondecreasing p-path fold
(b) to (c): decreasing p-edge fold
(c) to (d): nondecreasing q-edge folds (the q6-labelled edge coils once around the q5-labelled
loop and the remaining q-labelled edge is replaced by the two short edges labelled with a and c).
(d) to (e): nondecreasing q-path fold
(e) to (f): decreasing a-edge fold

The finally graph is weakly folded.

v of G to a vertex µ(v) of G′. We then say that vertex v is mapped to vertex µ(v) during the
folding. For two vertices u, v of G with µ(u) = µ(v) we say that u and v are merged during
the folding.

Note that every folding step preserve the property of being normalized. Clearly, a
decreasing fold does not increase |Eℓ| but decreases |E| (and possibly |Eℓ| in case e1 and
e2 are long edges). Therefore, we can always perform decreasing folds if possible. A
nondecreasing fold can reduce the number of long edges in which case the number of short
edges increases by at most α · (γ − 1). If a nondecreasing fold does not reduce the number
of long edges then both |E| and |Eℓ| stay the same. Hence, the total number of decreasing
folds is bounded by |E| + α · γ · |Eℓ|. Bounding the number of nondecreasing folds is not
so easy. If we just iteratively fold then we may obtain an exponential running time. In
order to ensure termination in polynomial time, we arrange the folding steps as follows:
Assume that P = {p1, p2, . . . , pn}. We say that the current graph if folded with respect to
pj if neither condition A nor condition B holds with p = pj . For the following algorithm it
is useful to consider the graph Gp where the edge set of Gp contains all long edges from E

that are labelled with a power of p. In addition, Gp contains a p1-labelled edge from u to v

if G contains a path ρ of short edges from u to v and such that λ(ρ) = p (note that Gp is
in general not normalized). Such an edge should be only viewed as an abbreviation of the
corresponding path ρ (which is unique if no decreasing folds are possible in G).

M. Lohrey 51:9

Algorithm 1 (The main folding algorithm).

Data: normalized power-compressed graph G
1 i := 1
2 while true do
3 fold G with respect to pi /* this is explained in the main text */
4 if G is weakly folded then
5 return G
6 else
7 i := smallest j such that G is not folded with respect to pj

8 end
9 end

The main structure of the folding algorithm is shown in Algorithm 1. In the following,
we always perform decreasing folds when possible without mentioning this explicitly.

We now explain how to fold the current graph G with respect to some p = pi (line 3 of
Algorithm 1). We consider each connected component of the graph Gp separately. For the
following consideration, we can assume that Gp is connected. We claim that Gp can be folded
either into a simple oriented path or a simple oriented cycle. Moreover, if Gp is a tree then it
is folded into a simple oriented path. The case that Gp consists of a single edge is clear. If
Gp has more than one edge then we consider the following cases.

Case 1. Gp is a tree: Choose an edge e with ι(e) = u and τ(e) = v where v is a leaf. Let
G′ be the connected graph obtained from Gp by removing e, e−1 and v. By induction,
G′ can be folded into a simple oriented path ρ = [v1, e1, v2, e2, . . . , vk, ek, vk+1], where
w.l.o.g. λ(ei) = pai with ai > 0 for all i. Let vi be the vertex to which u = ι(e) is mapped
during the folding. Assume that λ(e) = pb with b > 0 (the case b < 0 is analogous). If
there exists j ≥ i such that b = ai + · · · + aj then nothing has to be done (the vertex
v is mapped to vj+1 during the folding). If there is no such j then we have to add a
vertex to the path: if there is j ≥ i such that ai + · · · + aj−1 < b < ai + · · · + aj then
we replace the edge ej by an edge from vj to a fresh vertex v′ and an edge from v′ to
vj+1. The label of the first edge is pb−(ai+···+aj−1) and the label of the second edge is
pai+···+aj−b. If ai + · · · + ak < b then we add an edge from vk+1 to the new vertex v′

with label pb−(ai+···+ak). In both cases the vertex v = τ(e) is mapped to the new vertex
v′ during the folding.

Case 2. Gp is not a tree. Then we choose an edge e such that G′ := Gp \e (the graph obtained
from Gp by removing the edges e and e−1) is still connected.

Case 2.1. G′ is folded into a simple oriented path ρ = [v1, e1, v2, e2, . . . , vk, ek, vk+1], where
w.l.o.g. λ(ei) = pai with ai > 0 for all i. Let vi (respectively, vl) be the vertex to which
ι(e) (respectively, τ(e)) is mapped during the folding. We proceed as in case 1. In case
there exists j ≥ i with b = ai + · · · + aj then we additionally merge vj+1 and vl (we may
have already vj+1 = vl in which case we end up with a simple oriented path). If there is
no such j then we add a new vertex v′ to the path as in case 1 and merge v′ with vl. In
both cases we get a simple oriented path to which a simple oriented cycle is attached.
We then fold the two ends of the simple path onto the cycle (by coiling them around the
cycle) and obtain a simple oriented cycle.

Case 2.2. G′ is folded into a simple oriented cycle C. We proceed analogously to case 2.1. We
either obtain a single simple oriented cycle or two simple oriented cycles ρ1 and ρ2 that
are glued together in a single vertex v (to see this, one can first remove an arbitrary edge

STACS 2021

51:10 Subgroup Membership in GL(2,Z)

from the cycle C, which yields a simple oriented path, then carries out the construction
from case 2.1 and finally adds the removed edge again). Such a pair of cycles can be
replaced by a single cycle as follows: Let λ(ρ1) = pz1 and λ(ρ2) = pz2 with z1, z2 > 0.
Then one can replace the two cycles by a single cycle ρ with λ(ρ) = z := gcd(z1, z2)
(folding the cycles into a single cycle actually corresponds to Euclid’s algorithm). Of
course, we also have to map the vertices of ρ1 and ρ2 into the cycle ρ. For this we start
with a pz-labelled loop at vertex v. If v′ ≠ v is a vertex belonging to say ρ1 and the
simple path from v to v′ on the cycle ρ1 is labelled with py, y > 0, then we compute
r := y mod z and subdivide the loop into an edge from v to v′ with label pr and an edge
from v′ back to v with label pz−r. We continue in this way with the other vertices on ρ1
and ρ2.

Let Hp be the outcome of the above procedure. It is a disjoint union of simple oriented
paths and simple oriented cycles and hence folded with respect to p. The running time of the
computations in case 1 and 2 is polynomial in ∥Gp∥ and due to the recursion this running
time has to be charged for every edge of Gp. Recall that edges labelled with p1 in Hp actually
correspond to paths of short edges in the original graph G. This concludes the description of
line 3 in Algorithm 1.

It remains to argue that we make only polynomially many iterations of the while-loop in
Algorithm 1. For this assume that the current graph (call it G′) is folded with respect to pi

and that we fold the graph with respect to some pj with j > i. Let us denote the sequence
of folding steps with respect to pj with Fj and let G′′ be the graph after the execution of Fj .
Moreover, assume that G′′ is no longer folded with respect to pi. We argue that this implies
that during the execution of Fj we made progress in the sense that |E| or |Eℓ| decreases.
Since G′ is folded with respect to pi but G′′ is not, we must have G′

pi
̸= G′′

pi
. But this implies

that either |E| or |Eℓ| must decrease during Fj . Otherwise we only make non-decreasing
pj-edge and pj-path folds that do not eliminate long edges. Such folds only change the source
and target vertices of pz

j -labelled long edges, which does not modify the graph G′
pi

.
Since we have already bounded the number of decreasing folds by |E| + α · γ · |Eℓ| and

the number of long edges never increases, the index i in Algorithm 1 can only decrease a
polynomial number of times (more precisely: |E| + (α · γ + 1) · |Eℓ| times). ◀

It remains to convert a weakly folded power-compressed graph in polynomial time into a
strongly folded power-compressed graph. For this, we need several lemmas.

▶ Lemma 6. Let G be an uncompressed graph and assume that G is folded into G′ by a
sequence of folding steps. If thereby two vertices u and v of G are merged to a single vertex
of G′, then there must exist a path ρ without backtracking in G from u to v such that λ(ρ) = 1
in F (Σ).

Proof. The lemma can be shown by a straightforward induction over the number of folding
steps from G to G′. Note that if two different vertices v1 and v2 of an uncompressed graph
are merged in a single folding step, then there exist two different edges e1 ≠ e2 such that
ι(e1) = ι(e2), τ(e1) = v1, τ(e2) = v2, and λ(e1) = λ(e2) = a for some a ∈ Γ. Hence, the path
ρ = [v1, e−1

1 , ι(e1), e2, v2] is without backtracking and satisfies λ(ρ) = a−1a = 1 in F (Σ). ◀

▶ Lemma 7. Consider a word pywqz ∈ Γ∗ such that the following hold, where a = sign(y)
and b = sign(z):

p, q ∈ P ,
w ∈ red(Γ∗),
|y| = |z| = α + β = γ/2 ≥ 2,

M. Lohrey 51:11

if w = ε, then p ̸= q or a = b,
p−a is not a prefix of w and q−b is not a suffix of w.

Then red(pywqz) starts with a non-empty prefix of pa and ends with a non-empty suffix of qb.

Proof. Since py, w and qz are irreducible, reductions can only occur at the two borders
between py, w and qz. Let us start to reduce the word pywqz. Since p−a is not a prefix
of w and q−b is not a suffix of w, the reductions at the two borders can only consume
|p| − 1 < α symbols from the prefix of w and |q| − 1 < α symbols from the suffix of w. If w

is not completely cancelled during the reduction, we obtain an irreducible word of the form
py−arstqz−b, where r is a prefix of pa, t is a suffix of qb and s is a non-empty factor of w.
The conclusion of the lemma clearly holds in this case.

Let us now assume that w is completely cancelled during the reduction. Since w is
irreducible, we obtain factorizations w = u−1v−1, pa = ru, and qb = vs. Moreover, pywqz is
reduced to py−arsqz−b. We distinguish several cases:

p ̸= q: then the reduction of py−arsqz−b can proceed for at most |p| + |q| − 2 < β steps
(otherwise we obtain a contradiction to Lemma 1).
p = q and |r| ̸= |s|: then the reduction of py−arsqz−b can proceed for at most |p| − 1 < α

steps (otherwise we obtain a contradiction to Lemma 2).
p = q, |r| = |s|, and a = b: then the reduction of py−arsqz−b can proceed for at most
|r| ≤ α steps (otherwise p would be not cyclically reduced).
p = q, |r| = |s|, and a = −b: w.l.o.g. assume that y > 0 and z < 0. We obtain p = ru

and p−1 = vs, i.e., ru = s−1v−1. Since |r| = |s| = |s−1| we have r = s−1 and u = v−1.
Therefore w = u−1v−1 = u−1u. Since w ∈ red(Γ∗), we must have w = ε. But we have
excluded this case in the assumptions of the lemma.

In total, the reduction of pywqz consumes strictly less than α + β = γ/2 symbols from py

as well as from qz. Hence, red(pywqz) starts with a non-empty prefix of pa and ends with a
non-empty suffix of qb. ◀

▶ Lemma 8. Let w = spz1
1 w1pz2

2 w2 · · · p
zk−1
k−1 wk−1pzk

k t be a word with k ≥ 2 and let ai =
sign(zi). Assume that the following conditions hold:

p1, . . . , pk ∈ P ,
z1, . . . , zk ∈ Z,
|z1|, |zk| ≥ α + β = γ/2,
|z2|, . . . , |zk−1| ≥ γ,
w1, . . . , wk−1 ∈ red(Γ∗),
s is a suffix of pa1

1 , t is a prefix of pak

k ,
if wi = ε, then pi ̸= pi+1 or ai ̸= −ai+1 (1 ≤ i ≤ k − 1),
p−ai

i is not a prefix of wi and p
−ai+1
i+1 is not a suffix of wi (1 ≤ i ≤ k − 1).

Then w ̸= 1 in F (Σ), i.e., red(w) ̸= ε.

Proof. For 1 ≤ i ≤ k let ci be such that |ci| = γ/2 and sign(ci) = ai. Let ui = pci
i wip

ci+1
i+1 for

1 ≤ i ≤ k − 1. We can reduce w = spz1−c1
1 u1pz2−2c2

2 u2 · · · p
zk−1−2ck−1
k−1 uk−1pzk−ck

k t to

w′ := spz1−c1
1 red(u1) pz2−2c2

2 red(u2) · · · p
zk−1−2ck−1
k−1 red(uk−1) pzk−ck

k t.

By Lemma 7, red(ui) starts with a non-empty prefix of pai
i and ends with a non-empty suffix

of p
ai+1
i+1 . This implies that w′ is irreducible and non-empty, which shows w ̸= 1 in F (Σ). ◀

We also need the following variant of Lemma 8.

STACS 2021

51:12 Subgroup Membership in GL(2,Z)

▶ Lemma 9. Let w = spz1
1 w1pz2

2 w2 · · · pzk

k wk be a word with k ≥ 1 and let ai = sign(zi).
Assume that the following conditions hold:

p1, . . . , pk ∈ P ,
z1, . . . , zk ∈ Z,
|z1| ≥ α + β = γ/2,
|z2|, . . . , |zk| ≥ γ,
w1, . . . , wk ∈ red(Γ∗),
s is a suffix of pa1

1 ,
if wi = ε, then pi ̸= pi+1 or ai ̸= −ai+1 (1 ≤ i ≤ k − 1),
p−ai

i is not a prefix of wi (1 ≤ i ≤ k) and p
−ai+1
i+1 is not a suffix of wi (1 ≤ i ≤ k − 1).

Then w ̸= 1 in F (Σ), i.e., red(w) ̸= ε.

Proof. The proof is almost the same as for Lemma 8. For 1 ≤ i ≤ k let ci be such that
|ci| = γ/2 and sign(ci) = ai. Let ui = pci

i wip
ci+1
i+1 for 1 ≤ i ≤ k − 1 and uk = pak

k wk. We can
reduce w = spz1−c1

1 u1pz2−2c2
2 u2 · · · p

zk−1−2ck−1
k−1 uk−1pzk−ck−1

k uk to

w′ := spz1−c1
1 red(u1) pz2−2c2

2 red(u2) · · · p
zk−1−2ck−1
k−1 red(uk−1) pzk−ck−1

k red(uk).

By Lemma 7, every red(ui) with 1 ≤ i ≤ k − 1 starts with a non-empty prefix of pai
i and

ends with a non-empty suffix of p
ai+1
i+1 . Moreover, red(uk) starts with a non-empty prefix of

pak

k (since p−ak

k is not a prefix of wk). This implies that w′ is irreducible and non-empty,
which shows w ̸= 1 in F (Σ). ◀

▶ Lemma 10. A given normalized and weakly folded power-compressed graph G can be folded
in polynomial time into a strongly folded power-compressed graph G′. We have F (G) = F (G′).

Proof. We first construct a power-compressed graph H by partially decompressing G. Con-
sider a long edge e in G. Let ι(e) = u, τ(e) = v and λ(e) = pz. W.l.o.g. assume that z > 0.
Since G is normalized, we have z ≥ γ. We then replace e by

a simple path ρ1 of new short edges going from u to a new vertex u′ and such that
λ(ρ1) = pγ/2 = pα+β ,
a new edge from u′ to another new vertex v′ with label pz−γ (if z = γ then u′ = v′ and
the new edge is not present), and
a simple path ρ2 of new short edges going from v′ to v and such that λ(ρ2) = pγ/2 = pα+β .

We then fold H as long as possible. By Lemmas 6, 8 and 9 we can thereby only fold short
edges. In other words: if H′ = decompress(H) (which is the same as decompress(G)) then a
vertex of H′ that arises from decompressing a long edge of H cannot be merged with another
vertex during the folding. To see this, assume the contrary: let u be a vertex of H′ that
arises from decompressing a long edge of H and that is merged with a vertex v ̸= u during
the folding. By Lemma 6 there must exist a path ρ in H′ from u to v without backtracking
such that λ(ρ) = 1 in F (Σ). But since G is weakly folded the word λ(ρ) must be a word w

as considered in Lemma 8 (if also v arises from decompressing a long edge of H) or Lemma 9
(if v is already a vertex in H). The wi in Lemma 8 (resp., Lemma 9) correspond to the
maximal subpaths of ρ consisting of short edges and the pzi

i correspond to the long edges on
the path). Hence, λ(ρ) ̸= 1 in F (Σ) which is a contradiction.

By the above consideration, if we fold short edges in H as long as possible we obtain a
strongly folded graph G′ which proves the lemma. ◀

Lemmas 4, 5 and 10 finally yield the main technical result of Section 3.4:

▶ Corollary 11. A given power-compressed graph G can be folded in polynomial time into a
strongly folded power-compressed graph G′. We have F (G) = F (G′).

M. Lohrey 51:13

3.5 Power-compressed subgroup membership problem for free groups
We can now show the main result of Section 3:

▶ Theorem 12. The power-compressed subgroup membership problem for a f.g. free group
can be solved in polynomial time.

Proof. Let w0, w1, . . . , wn be the input power words. We construct from w1, . . . , wn a power-
compressed bouquet graph in the same way as in Section 3.3 for uncompressed graphs: to a
non-empty power word w = pz1

1 pz2
2 · · · pzk

k we associate the power-compressed cycle graph
C(w) = ({v0, . . . , vk−1}, {e±1

i : 1 ≤ i ≤ k}, ι, τ, v0), where ι(ei) = vi−1, λ(ei) = pzi
i , and

τ(ei) = vi mod k. We then construct the power-compressed bouquet graph B by taking the
disjoint union of C(w1), . . . , C(wn) and then merging their base points. Using Corollary 11
we can fold B in polynomial time into a strongly folded power-compressed graph G. Let v0
be its base point. As explained at the end of Section 3.2 we can view G as a finite automaton,
where transitions are labelled with succinct words of the form pz with z given in binary
notation. By Lemma 3, G accepts an irreducible word g ∈ red(Γ∗) if and only if g represents
an element from ⟨g1, . . . , gn⟩ ≤ F (Σ) (where wi represents the group element gi). Since G is
strongly folded, it is a deterministic automaton in the sense that the labels of two outgoing
transitions of a state do not have a non-empty common prefix.

For the rest of the proof it is convenient to switch from power words to straight-line
programs. A straight-line program is a context-free grammar A that produces exactly one
word that is denoted with val(A). By repeated squaring, our given power word w0 can be
easily transformed in polynomial time into an equivalent straight-line program. Moreover,
from a given straight-line program A over the alphabet Γ = Σ ∪ Σ−1 one can compute in
polynomial time a new straight-line program A′ such that val(A′) = red(val(A)); see [20,
Theorem 4.11]. Hence, we can compute in polynomial time a straight-line program A′ for
red(w0). The transition labels of the automaton G can be also transformed into equivalent
straight-line programs; such automata with straight-line compressed transition labels were
investigated in [13]. It remains to check in polynomial time whether the deterministic
automaton G accepts val(A′). This is possible in polynomial time by [13, Theorem 1]. ◀

4 Power-compressed subgroup membership for virtually free groups

A main advantage of the power-compressed subgroup membership is that its complexity is
preserved under finite index group extensions. The proof of the following lemma follows [11],
where it is shown that the complexity of the (ordinary) subgroup membership problem is
preserved under finite index group extensions. In order to extend this result to the power-
compressed setting, we make us of the conjugate collection process for power words from [21,
Theorem 6].

▶ Lemma 13. Let G be a fixed f.g. group and H a fixed subgroup of finite index in G (thus,
H must be f.g. as well). The power-compressed subgroup membership problem for G is
polynomial time reducible to the power-compressed subgroup membership problem for H.

Proof. Using the following standard trick we can assume that H is a normal subgroup
of finite index in G: Let N be the intersection of all conjugate subgroups g−1Hg. Then
N ≤ H and N has still finite index in G (the later is a well-known fact). Since N ≤ H, the
power-compressed subgroup membership problem for N is polynomial time reducible to the
power-compressed subgroup membership problem for H. Hence, it suffices to show that the
power-compressed subgroup membership problem for G is polynomial time reducible to the
power-compressed subgroup membership problem for N .

STACS 2021

51:14 Subgroup Membership in GL(2,Z)

By the above consideration, we can assume that H is a normal subgroup of finite index
in G. Let us fix a symmetric generating Θ for H and let R ⊆ G be a (finite) set of coset
representatives for H with 1 ∈ R. Then Σ := Θ ∪ (R \ {1}) generates G. On R we can
define the structure of the quotient group G/H by defining r · r′ ∈ R and r ∈ R for r, r′ ∈ R

such that rr′ ∈ H(r · r′) and r ∈ Hr−1. Recall that G and H are fixed groups, hence r · r′

and r can be computed in constant time. In [21, Theorem 6] it is shown that the power
word problem for G can be reduced in polynomial time (in fact, in NC1) to the power word
problem for H. The proof shows the following fact:

Fact 1. Given a power word w over the alphabet Σ we can compute in polynomial time a
power word w′ over the alphabet Θ and r ∈ R such that w = w′r in G.

Let now take finite list of power words w0, w1, . . . , wn over the alphabet Σ and let gi ∈ G be
the group element represented by wi. We want to check whether g0 ∈ A := ⟨g1, . . . , gn⟩. In
the following we will not distinguish between gi and wi.

First we use Fact 1 and rewrite in polynomial time each power word wi as w′
iri with

w′
i ∈ Θ∗ a power word and ri ∈ R. Let w′

i represent g′
i ∈ H. By computing the closure

of {r1, r1, . . . , rn, rn} with respect to the multiplication · on R we obtain the set of all
representatives r ∈ R such that Hr ∩ A ̸= ∅. Let us denote this closure with V . Clearly,
1 ∈ V . If r0 /∈ V then we have w0 = w′

0r0 /∈ A.
Let us now assume that r0 ∈ V . First assume that r0 = 1, i.e., w0 = w′

0 ∈ H. Hence,
w0 ∈ A if and only if w0 ∈ H ∩ A. We now compute a finite list of generators for H ∩ A

written as power words over Θ. For this we follow [11]: we compute a power-compressed
graph G = (V, E, ι, τ, λ, 1) (in the sense of Section 3.2) by taking V as the set of vertices. We
draw an edge from r ∈ V to r′ ∈ V labelled with the power word wi (respectively, w−1

i) iff
r · ri = r′ (respectively, r · ri = r′). Note that every edge has an inverse edge. The label of a
path from 1 ∈ V back to 1 ∈ V in the graph G is a word over {w1, w−1

1 , . . . , wn, w−1
n } and

hence can be viewed as a power word over the alphabet Σ. As such, it represents an element
of the group H ∩ A.

Let T be a spanning tree of G and let E \ T be the set of edges that do not belong
to T . We then obtain a set of generators for H ∩ A by taking for every edge e ∈ E \ T

the circuit in G obtained by following the unique simple path in T from 1 to ι(e), followed
by the edge e, followed by the unique simple path in T from τ(e) back to 1. Let xe ∈
{w1, w−1

1 , . . . , wn, w−1
n }∗ be the label of this circuit. Every xe represents an element of H ∩A

and the set of all these elements (for e ∈ E \ T) is a generating set of H ∩ A; see [11] for
details. Moreover, every xe can be written as power word over the alphabet Σ of polynomial
length. Using Fact 1 we can rewrite this power word in polynomial time into x′

ere where x′
e

is a power word over the alphabet Θ and re ∈ R. But since xe represents an element of H,
we must have re = 1. This concludes the case that r0 = 1.

Finally, the case that r0 ∈ V but r0 ̸= 1 can be easily reduced to the case r0 = 1:
we use the same graph G defined above. Since r0 ∈ V , there is a path from 1 to r0. Let
x ∈ {w1, w−1

1 , . . . , wn, w−1
n }∗ be the label of this path. It is a power word over Σ and by

Fact 1 x can be rewritten into the form yr for a power word y over Θ and r ∈ R. Clearly, we
must have r = r0. In the group G we have w0x−1 = w′

0r0r−1
0 y−1 = w′

0y−1, where the latter
can be written as a power word over Θ. Since the word x represents an element of A we have
w0 ∈ A if and only if w0x−1 ∈ A if and only if w′

0y−1 ∈ A. This concludes the proof. ◀

From Theorem 12 and Lemma 13 we immediately obtain the following corollary:

▶ Corollary 14. The power-compressed subgroup membership problem for a fixed f.g. virtually
free group can be solved in polynomial time.

M. Lohrey 51:15

The group GL(2,Z) consists of all (2 × 2)-matrices over the integers with determinant −1 or
1. It is a well-known example of a f.g. virtually free group [32].

▶ Lemma 15. From a given matrix A ∈ GL(2,Z) with binary encoded entries one can
compute in polynomial time a power word over a fixed finite generating set of GL(2,Z), which
evaluates to the matrix A.

Proof. For the group SL(2,Z) of all (2 × 2)-matrices over the integers with determinant 1
the result is shown in [12], see also [8, Proposition 15.4]. Now, SL(2,Z) is a normal subgroup
of index two in GL(2,Z). Fix a matrix B ∈ GL(2,Z) with determinant −1. Given a matrix
A ∈ GL(2,Z) with binary encoded entries and determinant −1 we first compute the matrix
AB−1 ∈ SL(2,Z). Using [12] we can compute in polynomial time a power word w for AB−1.
Hence, wB (where B is taken as an additional generator) is a power word for A. ◀

▶ Corollary 16. The subgroup membership problem for GL(2,Z) can be solved in polynomial
time when matrix entries are given in binary encoding.

Proof. Since GL(2,Z) is f.g. virtually free, the power-compressed subgroup membership
problem for GL(2,Z) can be solved in polynomial time by Corollary 14. By Lemma 15 this
shows the corollary. ◀

5 Future work

There is not much hope to generalize Corollary 16 to higher dimensions. For SL(4,Z) the
subgroup membership problem is undecidable and decidability of the subgroup membership
problem for SL(3,Z) is a long standing open problem [17].

A more feasible problem concerns the rational subset membership problem for free groups
when transitions are labelled with power words. It is easy to see that this problem is NP-hard
(reduction from subset sum) and we conjecture that there exists an NP algorithm. As a
consequence this would show that the rational subset membership problem for GL(2,Z)
is NP-complete when the transitions of the automaton are labelled with binary encoded
matrices. The corresponding statement for PSL(2,Z) was shown in [4].

Another interesting problem is whether the subgroup membership problem for a free group
can be solved in polynomial time, when all group elements are represented by straight-line
programs (which can be more succinct than power words). One might try to show this
using an adaptation of Stallings’s folding, but controlling the size of the graph during the
folding seems to be more difficult when the transition labels are represented by straight-line
programs instead of power words.

References
1 Jürgen Avenhaus and Klaus Madlener. The Nielsen reduction and P-complete problems in

free groups. Theoretical Computer Science, 32(1-2):61–76, 1984.
2 Jürgen Avenhaus and Dieter Wißmann. Using rewriting techniques to solve the generalized

word problem in polycyclic groups. In Proceedings of the ACM-SIGSAM 1989 International
Symposium on Symbolic and Algebraic Computation, ISSAC 1989, pages 322–337. ACM Press,
1989.

3 Frédérique Bassino, Ilya Kapovich, Markus Lohrey, Alexei Miasnikov, Cyril Nicaud, Andrey
Nikolaev, Igor Rivin, Vladimir Shpilrain, Alexander Ushakov, and Pascal Weil. Compression
techniques in group theory. In Complexity and Randomness in Group Theory, chapter 4. De
Gruyter, 2020.

STACS 2021

51:16 Subgroup Membership in GL(2,Z)

4 Paul C. Bell, Mika Hirvensalo, and Igor Potapov. The identity problem for matrix semigroups
in SL2(Z) is NP-complete. In Proceedings of the 28th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, pages 187–206. SIAM, 2017.

5 Michèle Benois. Parties rationnelles du groupe libre. Comptes rendus hebdomadaires des
séances de l’Académie des sciences, Séries A, 269:1188–1190, 1969.

6 Michèle Benois and Jacques Sakarovitch. On the complexity of some extended word problems
defined by cancellation rules. Information Processing Letters, 23(6):281–287, 1986.

7 Michaël Cadilhac, Dmitry Chistikov, and Georg Zetzsche. Rational subsets of Baumslag-Solitar
groups. In Proceedings of the 47th International Colloquium on Automata, Languages, and
Programming, ICALP 2020, volume 168 of LIPIcs, pages 116:1–116:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020.

8 Volker Diekert and Murray Elder. Solutions of twisted word equations, EDT0L languages,
and context-free groups. CoRR, abs/1701.03297, 2017. arXiv:1701.03297.

9 Volker Diekert, Igor Potapov, and Pavel Semukhin. Decidability of membership problems for
flat rational subsets of GL(2, Q) and singular matrices. In Proceedings of the 45th International
Symposium on Symbolic and Algebraic Computation, ISSAC 2020, pages 122–129. ACM, 2020.

10 Stefan Friedl and Henry Wilton. The membership problem for 3-manifold groups is solvable.
Algebraic & Geometric Topology, 16(4):1827–1850, 2016.

11 Zeph Grunschlag. Algorithms in Geometric Group Theory. PhD thesis, University of California
at Berkley, 1999.

12 Yuri Gurevich and Paul E. Schupp. Membership problem for the modular group. SIAM
Journal on Computing, 37(2):425–459, 2007.

13 Artur Jeż. The complexity of compressed membership problems for finite automata. Theory
of Computing Systems, 55(4):685–718, 2014.

14 Ilya Kapovich and Alexei Myasnikov. Stallings foldings and subgroups of free groups. Journal
of Algebra, 248(2):608–668, 2002.

15 Ilya Kapovich, Richard Weidmann, and Alexei Myasnikov. Foldings, graphs of groups and the
membership problem. International Journal of Algebra and Computation, 15(1):95–128, 2005.

16 Olga G. Kharlampovich, Alexei G. Myasnikov, Vladimir N. Remeslennikov, and Denis E.
Serbin. Subgroups of fully residually free groups: algorithmic problems. In Group theory,
statistics, and cryptography, volume 360 of Contemporary Mathematics, pages 63–101. AMS,
Providence, RI, 2004.

17 Evgeny I. Khukhro and Victor D. Mazurov. Unsolved problems in group theory. the Kourovka
notebook. CoRR, arXiv:1401.0300v19, 2020. Problem 12.50. arXiv:1401.0300v19.

18 Sang-Ki Ko, Reino Niskanen, and Igor Potapov. On the identity problem for the special
linear group and the Heisenberg group. In Proceedings of the 45th International Colloquium
on Automata, Languages, and Programming, ICALP 2018, volume 107 of LIPIcs, pages
132:1–132:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

19 Klaus-Jörn Lange and Pierre McKenzie. On the complexity of free monoid morphisms. In
Proceedings of the 9th International Symposium on Algorithms and Computation, ISAAC 1998,
number 1533 in Lecture Notes in Computer Science, pages 247–256. Springer, 1998.

20 Markus Lohrey. The Compressed Word Problem for Groups. SpringerBriefs in Mathematics.
Springer, 2014.

21 Markus Lohrey and Armin Weiß. The power word problem. In Proceedings of the 44th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2019,
volume 138 of LIPIcs, pages 43:1–43:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2019.

22 M. Lothaire. Combinatorics on Words. Cambridge University Press, 1997.
23 Roger C. Lyndon and Paul E. Schupp. Combinatorial Group Theory. Springer, 1977.
24 Anatolij I. Mal’cev. On homomorphisms onto finite groups. American Mathematical Society

Translations, Series 2, 119:67–79, 1983. Translation from Ivanov. Gos. Ped. Inst. Ucen. Zap.
18 (1958) 49–60.

http://arxiv.org/abs/1701.03297
http://arxiv.org/abs/1401.0300v19

M. Lohrey 51:17

25 Luda Markus-Epstein. Stallings foldings and subgroups of amalgams of finite groups. Interna-
tional Journal of Algebra and Compution, 17(8):1493–1535, 2007.

26 K. A. Mihăılova. The occurrence problem for direct products of groups. Math. USSR Sbornik,
70:241–251, 1966. English translation.

27 Igor Potapov and Pavel Semukhin. Decidability of the membership problem for 2 × 2 integer
matrices. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, pages 170–186. SIAM, 2017.

28 Eliyahu Rips. Subgroups of small cancellation groups. Bulletin of the London Mathematical
Society, 14:45–47, 1982.

29 Nikolai S. Romanovskĭı. Some algorithmic problems for solvable groups. Algebra i Logika,
13(1):26–34, 1974.

30 Nikolai S. Romanovskĭı. The occurrence problem for extensions of abelian groups by nilpotent
groups. Sibirskii Matematicheskii Zhurnal, 21:170–174, 1980.

31 Paul E. Schupp. Coxeter groups, 2-completion, perimeter reduction and subgroup separability.
Geometriae Dedicata, 96:179–198, 2003.

32 Jean-Pierre Serre. Trees. Springer, 1980.
33 Charles C. Sims. Computation with permutation groups. In Proceedings of SYMSAC 1971,

pages 23–28. Association for Computing Machinery, 1971.
34 John R. Stallings. Topology of finite graphs. Inventiones Mathematicae, 71(3):551–565, 1983.
35 Nicholas W. M. Touikan. A fast algorithm for Stallings’ folding process. International Journal

of Algebra and Computation, 16(6):1031–1045, 2006.

STACS 2021

Lower Bounds for Graph-Walking Automata
Olga Martynova !

Department of Mathematics and Computer Science, St. Petersburg State University, Russia

Alexander Okhotin !

Department of Mathematics and Computer Science, St. Petersburg State University, Russia

Abstract
Graph-walking automata (GWA) traverse graphs by moving between the nodes following the edges,
using a finite-state control to decide where to go next. It is known that every GWA can be
transformed to a GWA that halts on every input, to a GWA returning to the initial node in order
to accept, as well as to a reversible GWA. This paper establishes lower bounds on the state blow-up
of these transformations: it is shown that making an n-state GWA traversing k-ary graphs return
to the initial node requires at least 2(n − 1)(k − 3) states in the worst case; the same lower bound
holds for the transformation to halting automata. Automata satisfying both properties at once must
have at least 4(n − 1)(k − 3) states. A reversible automaton must have at least 4(n − 1)(k − 3) − 1
states. These bounds are asymptotically tight to the upper bounds proved using the methods from
the literature.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Models of computation

Keywords and phrases Finite automata, graph-walking automata, halting, reversibility

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.52

Funding Research supported by the Russian Science Foundation, project 18-11-00100.

1 Introduction

Graph-walking automata (GWA) are finite automata that traverse labelled undirected graphs.
On the one hand, this is a model of a robot with limited memory navigating a discrete

environment. There is an early result by Budach [2] that for every automaton there is a
graph that it cannot fully explore; a short proof of this fact was later given by Fraigniaud et
al. [5]. This work has influenced the current research on algorithms for graph traversal using
various small-memory models, equipped with a limited number of pebbles, etc. [3, 4].

On the other hand, GWA naturally generalize such important models as tree-walking
automata [1] (TWA) and two-way finite automata (2DFA). More generally, a GWA can
represent various models of computation, if a graph is regarded as the space of memory
configurations, and every edge accordingly represents an operation on the memory. This way,
quite a few models in automata theory and in complexity theory, such as multi-head and
multi-tape automata and space-bounded complexity classes, can be regarded as GWA, Then,
some results on GWA apply to all these models.

Among such results, there are transformations of GWA to several important subclasses:
to automata that halt on every input graph; to automata that return to the initial node in
order to accept; to reversible automata. Such transformations have earlier been established
for various automaton models, using a general method discovered by Sipser [15], who
constructed a halting 2DFA that traverses the tree of computations of a given 2DFA leading
to an accepting configuration, in search of an initial configuration. Later, Kondacs and
Watrous [7] ensured the reversibility and optimized this construction for the number of states,
motivated by the study of quantum automata. Sipser’s idea has been adapted to proving that
reversible space equals deterministic space [11], to making tree-walking automata halt [13],

© Olga Martynova and Alexander Okhotin;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 52; pp. 52:1–52:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:olga22mart@gmail.com
https://orcid.org/0000-0002-1249-5173
mailto:alexander.okhotin@spbu.ru
https://orcid.org/0000-0002-1615-2725
https://doi.org/10.4230/LIPIcs.STACS.2021.52
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Lower Bounds for Graph-Walking Automata

to complementing 2DFA [6], to making multi-head automata reversible [12], etc. Each
transformation leads to a certain blow-up in the number of states, usually between linear
and quadratic. No lower bounds on the transformation to halting have been established yet.
For the transformation to reversible, a lower bound exists for the case of 2DFA [8], but it is
quite far from the known upper bound.

For the general case of GWA, constructions of halting, returning and reversible automata
were given by Kunc and Okhotin [9], who showed that an n-state GWA operating on graphs
with k edge labels can be transformed to a returning GWA with 3nk states and to a reversible
GWA with 6nk + 1 states, which is always halting. Applied to special cases of GWA, such
as TWA or multi-head automata, these generic constructions produce fewer states than the
earlier specialized constructions.

The goal of this paper is to obtain lower bounds on the complexity of these transformations.
To begin with, the constructions by Kunc and Okhotin [9] are revisited in Section 3, and it
turns out that the elements they are built of can be recombined more efficiently, resulting in
improved upper bounds based on the existing methods. This way, the transformation to a
returning GWA is improved to use 2nk + n states, the transformation to halting can use
2nk + 1 states, and constructing a reversible GWA (which is both returning and halting)
requires at most 4nk+1 states. The main result of the paper is that, with these improvements,
each of these constructions is asymptotically optimal.

The lower bounds are proved according to the following plan. For each n and k, one
should construct an n-state automaton operating on graphs with k direction labels, so that
any returning, halting or reversible automaton recognizing the same language would require
many states. The n-state automaton follows a particular path in an input graph in search for
a special node. The node is always on that path, so that the automaton naturally encounters
it if it exists. On the other hand, the graph is constructed, so that getting back is more
challenging.

The graph is made of elements called diodes, which are easy to traverse in one direction
and hard to traverse backwards. Diodes are defined in Section 4, where it is shown that a
GWA needs to employ extra states to traverse a diode backwards.

The graph used in all lower bound arguments, constructed in Section 5, has a main path
made of diodes leading to a special node, which makes returning more complicated, so that a
returning automaton needs at least 2(n − 1)(k − 3) states. A variant of this graph containing
a cycle made of diodes, presented in Section 6, poses a challenge to a halting automaton,
which needs at least 2(n−1)(k −3) states. Section 7 combines the two arguments to establish
a lower bound of 4(n − 1)(k − 3) on the number of states of an automaton that is returning
and halting at the same time. This bound is adapted to reversible automata in Section 8: at
least 4(n − 1)(k − 3) − 1 states are required.

Overall, each transformation requires ca. C · nk states in the worst case, for a constant C.
Each transformation has its own constant C, and these constants are determined precisely.

2 Graph-walking automata and their subclasses

This section provides a succinct introduction to graph-walking automata and to their halting
and reversible subclasses. For more details, an interested reader is directed to the paper
by Kunc and Okhotin [9], whereas some general explanations can be found in a recent
survey [14].

The definition of graph-walking automata (GWA) is an intuitive extension of two-way
finite automata (2DFA) and tree-walking automata (TWA). However, formalizing it requires
extensive notation. First, there is a notion of a signature, which is a generalization of an
alphabet to the case of graphs.

O. Martynova and A. Okhotin 52:3

▶ Definition 1 (Kunc and Okhotin [9]). A signature S consists of
A finite set D of directions, that is, labels attached to edge end-points;
A bijection − : D → D providing an opposite direction, with −(−d) = d for all d ∈ D;
A finite set Σ of node labels;
A non-empty subset Σ0 ⊆ Σ of possible labels of the initial node;
A set of directions Da ⊆ D for every label a ∈ Σ. Every node labelled with a must be of
degree |Da|, with the incident edges corresponding to the elements of Da.

Graphs are defined over a signature, like strings over an alphabet.

▶ Definition 2. A graph over a signature S = (D, −, Σ, Σ0, (Da)a∈Σ) is a quadruple
(V, v0, +, λ), where

V is a finite set of nodes;
v0 ∈ V is the initial node;
+: V × D → V is a partial function, such that if v + d is defined, then (v + d) + (−d) is
defined and equals v;
a total mapping λ : V → Σ, such that v + d is defined if and only if d ∈ Dλ(v), and
λ(v) ∈ Σ0 if and only if v = v0.

Once graphs are formally defined, a graph-walking automaton is defined similarly to a
2DFA.

▶ Definition 3. A (deterministic) graph-walking automaton (GWA) over a signature S =
(D, −, Σ, Σ0, (Da)a∈Σ) is a quadruple A = (Q, q0, F, δ), where

Q is a finite set of states;
q0 ∈ Q is the initial state;
F ⊆ Q × Σ is a set of acceptance conditions;
δ : (Q × Σ) \ F → Q × D is a partial transition function, with δ(q, a) ∈ Q × Da for all a

and q where δ is defined.
A computation of a GWA on a graph (V, v0, +, λ) is a uniquely defined sequence of
configurations (q, v), with q ∈ Q and v ∈ V . It begins with (q0, v0) and proceeds from
(q, v) to (q′, v + d), where δ(q, λ(v)) = (q′, d). The automaton accepts by reaching (q, v) with
(q, λ(v)) ∈ F .

On each input graph, a GWA can accept, reject or loop. There is a natural subclass of
GWA that never loop.

▶ Definition 4. A graph-walking automaton is said to be halting, if its computation on every
input graph is finite.

Another property is getting back to the initial node before acceptance: if a GWA is
regarded as a robot, it returns to its hangar, and for a generic model of computation, this
property means cleaning up the memory.

▶ Definition 5. A graph-walking automaton A = (Q, q0, F, δ) over a signature S =
(D, −, Σ, Σ0, (Da)a∈Σ) is called returning, if F ⊆ Q × Σ0, which means that it can accept
only in the initial node.

A returning automaton is free to reject in any node, and it may also loop, that is, it need
not be halting.

The next, more sophisticated property is reversibility, meaning that, for every
configuration, the configuration at the previous step can be uniquely reconstructed. This
property is essential in quantum computing, whereas irreversibility in classical computers
causes energy dissipation, which is known as Landauer’s principle [10].

STACS 2021

52:4 Lower Bounds for Graph-Walking Automata

The definition of reversibility begins with the property that every state is reachable from
only one direction.

▶ Definition 6. A graph-walking automaton A = (Q, q0, F, δ) over a signature S =
(D, −, Σ, Σ0, (Da)a∈Σ) is called direction-determinate, if there is a function d : Q → D,
such that, for all p ∈ Q and a ∈ Σ, if δ(p, a) is defined, then δ(p, a) = (q, d(q)) for some
q ∈ Q.

▶ Definition 7. A graph-walking automaton A = (Q, q0, F, δ) over a signature S =
(D, −, Σ, Σ0, (Da)a∈Σ) is called reversible, if

A is direction-determinate;
for all a ∈ Σ and q ∈ Q, there is at most one state p, such that δ(p, a) = (q, d(q)); in
other words, knowing a state and a previous label, one can determine the previous state;
The automaton is returning, and for each a0 ∈ Σ0 there exists at most one such state q,
that (q, a0) ∈ F .

In theory, a reversible automaton may loop, but only through the initial configuration.
In this case, it can be made halting by introducing an extra initial state.

Every GWA can be transformed to each of the above subclasses [9]. In the next section,
the known transformations will be explained and slightly improved.

3 Upper bounds revisited

Before establishing the lower bounds on all transformations, the existing constructions of
Kunc and Okhotin [9] will be somewhat improved by using fewer states. This is achieved by
recombining the elements of the original construction, and, with these improvements, the
constructions shall be proved asymptotically optimal.

All transformations are based on the following lemma.

▶ Lemma 8 (Kunc and Okhotin [9, Lemma 4]). For every direction-determinate GWA A,
one can construct a reversible GWA B with twice as many states, so that for every accepting
configuration (q, v) of A on a graph G, if B starts on G in (q, v − d(q)), then B reversibly
traverses the tree of all computations of A that lead to the configuration (q, v). If B ever
finds the initial configuration, it accepts, and otherwise it rejects in a copy of the accepting
configuration of A.

Note that the computation of A starting from the initial configuration can reach at most
one accepting configuration (q, v), whereas for any other accepting configuration (q, v), the
automaton B will not find the initial configuration and will reject as stated in the lemma.

To transform a given n-state GWA Â over a signature with k directions to a returning
automaton, Kunc and Okhotin [9] first transform it to a direction-determinate automaton
A with nk states; let B be the 2nk-state automaton obtained from A by Lemma 8. Then
they construct an automaton that first operates as A, and then, after reaching an accepting
configuration, works as B to return to the initial node. This results in a returning direction-
determinate automaton with 3nk states.

If the goal is just to return, and remembering the direction is not necessary, then 2nk + n

states are actually enough.

▶ Theorem 9. For every n-state GWA over a signature with k directions, there exists a
returning automaton with 2nk + n states recognizing the same set of graphs.

O. Martynova and A. Okhotin 52:5

Indeed, the original automaton Â can be first simulated as it is, and once it reaches an
accepting configuration, one can use the same automaton B as in the original construction
to return to the initial node. There is a small complication in the transition from Â to B,
because in the accepting configuration, the direction last used is unknown. This is handled
by cycling through all possible previous configurations of A at this last step, and executing B

from each of them. If the direction is guessed correctly, then B finds the initial configuration
and accepts. Otherwise, if the direction is wrongly chosen, B returns back, and then, instead
of rejecting, it is executed again starting from the next direction. One of these directions
leads it back to the initial node.

Kunc and Okhotin [9] did not consider halting automata separately. Instead, they first
transform an n-state GWA to a 3nk-state returning direction-determinate automaton, then
use Lemma 8 to obtain a 6nk-state reversible automaton, and add an extra initial state to
start it. The resulting (6nk + 1)-state automaton is always halting.

If only the halting property is needed, then the number of states can be reduced.

▶ Theorem 10. For every n-state direction-determinate automaton, there exists a (2n + 1)-
state halting and direction-determinate automaton that recognizes the same set of graphs.

First, an n-state automaton Â is transformed to a direction-determinate nk-state
automaton A, and Lemma 8 is used to construct a 2nk-state automaton B. Then, the
automaton B is reversed by the method of Kunc and Okhotin [9], resulting in an automaton
BR with 2nk + 1 states that carries out the computation of B backwards. The automaton
BR is a halting automaton that recognizes the same set of graphs as Â: it starts in the initial
configuration, and if B accepts from an accepting configuration of A, then BR finds this
configuration and accepts; otherwise, BR halts and rejects.

The construction of a reversible automaton with 6nk +1 states can be improved to 4nk +1
by merging the automata B and BR. The new automaton first works as BR to find the
accepting configuration of A. If it finds it, then it continues as B to return to the initial
node. In addition, this automaton halts on every input.

▶ Theorem 11. For every n-state direction-determinate automaton there exists a (4n + 1)-
state reversible and halting automaton recognizing the same set of graphs.

With the upper bounds improved, it is time to establish asymptotically matching lower
bounds.

4 Construction of a “diode”

Lower bounds on the size of GWA obtained in this paper rely on quite involved constructions
of graphs that are easy to traverse from the initial node to the moment of acceptance, whereas
traversing the same path backwards is hard. An essential element of this construction is a
subgraph called a diode; graphs in the lower bound proofs are made of such elements.

A diode is designed to replace an (a, −a)-edge. An automaton can traverse it in the
direction a without changing its state. However, traversing it in the direction −a requires at
least 2(|D| − 3) states, where D is the set of directions in the diode’s signature.

If an automaton never moves in the direction −a, then it can be transformed to an
automaton with the same number of states, operating on graphs in which every (a, −a)-edge
is replaced with a diode.

Lower bound proofs for automata with n states over a signature with k directions use a
diode designed for these particular values of n and k. This diode is denoted by ∆n,k.

STACS 2021

52:6 Lower Bounds for Graph-Walking Automata

±bi

±bi±bi

±bi

±bi

±bi

–a
a

–a
a

a

–a
a

–a

–a

–a
a

–a

a
–a

a

mi
uin

u4M
–aa a–bibi

u'1
u'M–1

±bi
±bi

u'0

bi

bi

–bi

a

–a
a

a
–a

–a

±bi

±bi

–a
a

–a

a

–a
a

mame
b1 a –a–b1

uoutu0

a –a a –a a –a

 ±bi ±bi

–a a –a a –a a

±bi ±bi

–a a –a a –a a

±bi ±bi

a –a a –a a –a

 ±bi ±bi

uMu3M

u5M u6M u7M

u2M

bi–bi

bi –bi

bi

–bi

–bibi
–bi

bi
–bibi

–a a

uM–1

u8M–1

u1

u7M+1

–bi

Ei

Figure 1 Element Ei. Filled circles are nodes labelled with m, each with r − 1 loops in directions
±bs, with s ̸= i.

For n ⩾ 2 and k ⩾ 4, let M = (4nk)!, and let r = ⌊ k−2
2 ⌋. A diode ∆n,k is defined over a

signature Sk that does not depend on n.

▶ Definition 12. A signature Sk = (D, −, Σ, Σ0, (Da)a∈Σ) consists of:
the set of directions D = {a, −a} ∪ {b1, b−1, . . . , br, b−r};
opposite directions −(a) = (−a), −bi = b−i, for 1 ⩽ i ⩽ r;
the set of node labels Σ = {m1, . . . , mr} ∪ {m−1, . . . , m−r} ∪ {m, me, ma}, with no initial
labels defined (Σ0 = ∅) since the diode is inserted into graphs;
sets of directions allowed at labels: Dm = D, Dmi

= Dm−i
= {−a, bi, −bi}, for i =

1, . . . , r, Dme = {b1, a, −a}, Dma = {−b1, a}.

A diode is comprised of 2r elements Ei, E−i, for i ∈ {1, . . . , r}. Each element Ei and E−i

is a graph over the signature Sk, with two external edges, one with label a, the other with
−a. By these edges, the elements are connected in a chain.

The form of an element Ei is illustrated in Figure 1. Its main part is a cycle of length
8M in directions a, −a; these are nodes u0, . . . , u8M−1, where the arithmetic in the node
numbers is modulo 8M , e.g., u−1 = u8M−1. The node numbers are incremented in direction
a. Besides the main cycle, there are two extra nodes: the entry point uin and the exit uout,
as well as a small circle of length M in directions a, −a with the nodes u′

0, . . . , u′
M−1. All

nodes are labelled with m, except three: uin with label mi matching the index of the element,
uout with label ma, and u0 has label me.

An element Ei has specially defined edges in directions bi and −bi. Each node uj with
j ̸≡ 0 (mod M) has a (bi, −bi)-loop. The nodes uj with j ∈ {M, 2M, 3M, 5M, 6M, 7M} are
interconnected with edges, as shown in Figure 1; these edges serve as traps for an automaton
traversing the element backwards. The node u4M has a different kind of trap in the form of
a cycle u′

0, . . . , u′
M−1. For all s ̸= i, each node labelled with m has a (bs, −bs)-loop.

The element E−i is the same as Ei, with the directions bi and −bi swapped.
The diode ∆n,k is a chain of such elements, as illustrated in Figure 2. Each element can

be traversed from the entrance to the exit without changing the state: at first, the automaton
sees the label mi, and accordingly moves in the direction bi; then, on labels m, it proceeds in
the direction a until it reaches u0, labelled with me. Then the automaton leaves the element
by following directions b1 and a.

O. Martynova and A. Okhotin 52:7

a–a

E+1

±b1
±b1a a–a

E–1

∓b1
∓b1 a–a

E–r

∓br
∓br. . . –a

Figure 2 Diode ∆n,k: a chain of elements E1, E−1, E2, E−2, . . . , Er, E−r.

The diode is hard to traverse backwards, because the node u4M is not specifically labelled,
and in order to locate it, the automaton needs to move in directions ±bi from many nodes,
and is accordingly prone to falling into traps.

The diode is used as a subgraph connecting two nodes of a graph as if an (a, −a)-edge. For
a graph G over some signature S̃, let G′ be a graph obtained by replacing every (a, −a)-edge
in G with the diode ∆n,k. Denote this graph operation by hn,k : G 7→ G′.

The following lemma states that if an automaton never traverses an (a, −a)-edge
backwards, then its computations can be replicated on graphs with these edges substituted
by diodes, with no extra states needed.

▶ Lemma 13. Let S̃ be any signature containing directions a, −a, which has no node labels
from the signature Sk. Let A = (Q, q0, F, δ) be a GWA over the signature S̃, which never
moves in the direction −a.

Then, there exists a GWA A′ = (Q′, q′
0, F ′, δ′) over a joint signature S̃ ∪ Sk, with

|Q′| = |Q|, so that A accepts a graph G if and only if A′ accepts the graph G′ = hn,k(G).

Lemma 13 shows that, under some conditions, a substitution of diodes can be implemented
on GWA without increasing the number of states. The next lemma presents an inverse
substitution of diodes: the set of pre-images under hn,k of graphs accepted by a GWA can be
recognized by another GWA with the same number of states.

▶ Lemma 14. Let k ⩾ 4 and n ⩾ 2, denote h(G) = hn,k(G) for brevity. Let S̃ be a signature
containing the directions a, −a and no node labels from the diode’s signature Sk. Let B be a
GWA over the signature S̃ ∪ Sk. Then there exists an automaton C over the signature S̃,
using the same set of states, with the following properties.

For every graph G over S̃, the automaton C accepts G if and only if B accepts h(G).
If C can enter a state q by a transition in direction −a, then B can enter the state q

after traversing the diode backwards.
If B is returning, then so is C.
If B is halting, then C is halting as well.

The automaton C is constructed by simulating B on small graphs, and using the outcomes
of these computations to define the transition function and the set of acceptance conditions
of C. Note that the signatures S̃ and Sk may contain any further common directions besides
a, −a: this does not cause any problems with the proof, because the node labels are disjoint,
and thus B always knows whether it is inside or outside a diode.

▶ Lemma 15. Let A = (Q, q0, F, δ) be a GWA over a signature that includes the diode’s
signature Sk, with |Q| ⩽ 4nk. Assume that A, after traversing the diode ∆n,k backwards, can
leave the diode in any of h distinct states. Then A has at least 2h(k − 3) states.

Sketch of a proof. While moving through an element Ei backwards, the automaton sees
labels m most of the time, and soon begins repeating a periodic sequence of states. Without
loss of generality, assume that this periodic sequence contains more transitions in the direction

STACS 2021

52:8 Lower Bounds for Graph-Walking Automata

a than in −a. Then the automaton reaches the node uM , and at this point it may teleport
between uM and u−M several times. Let w ∈ {bi, −bi}∗ be the sequence of these teleportation
moves, and let x be the corresponding sequence of states. Depending on the sequence w,
the automaton may eventually exit the cycle to the node uin, or fall into one of the traps
and get back to u0. It is proved that for the automaton to reach uin, the string w must be
non-empty and of even length; furthermore, if |w| = 2, then w = (−bi)bi.

Now consider the h backward traversals of the diode ending in some states p1, . . . , ph.
When the traversal ending in pj proceeds through the element Ei, the strings wi,j ∈ {bi, −bi}∗

and xi,j are defined as above. Then, as the last step of the argument, it is proved that
whenever |wi,j | = 2, the states in xi,j cannot occur in any other string xi′,j′ . For wi,j of
length 4 or more, the states in xi,j can repeat in other strings xi′,j′ , but only once. It follows
that there are at least 2h(k − 3) distinct states in these strings. ◀

5 Lower bound on the size of returning automata

By the construction of Kunc and Okhotin [9], as improved in Section 3, an n-state GWA
over a signature with k directions can be transformed to a returning GWA with 2nk + n

states. A closely matching lower bound will now be proved by constructing an automaton
with n states over a signature with k directions, such that every returning automaton that
recognizes the same set of graphs must have at least 2(n − 1)(k − 3) states.

The first step is a construction of a simple automaton over a signature S̃ with four
directions a, −a, b, −b and two graphs over this signature, so that the automaton accepts one
of them and rejects the other. The automaton will have n states, it will never move in the
direction −a, and every returning automaton recognizing the same set of graphs can enter
n − 1 distinct states after transitions in the direction −a. Then, Lemma 15 shall assert that
every returning automaton recognizing the same graphs with diodes substituted must have
the claimed number of states.

▶ Definition 16. The signature S̃ = (D, −, Σ, Σ0, (Da)a∈Σ) uses the set of directions
D = {a, −a, b, −b}, with −(a) = (−a), −(b) = (−b). The set of node labels is
Σ = {c0, c, cl, cr, cacc}, with initial labels Σ0 = {c0}. The allowed directions are Dc = D,
Dc0 = Dcl

= {a}, and Dcr
= Dcacc

= {−a}.

For n ⩾ 2 and k ⩾ 4, let M = (4nk)! be as in the definition of the diode ∆n,k. Let
Gaccept

n,k and Greject
n,k be two graphs over the signature S̃, defined as follows. The graph Gaccept

n,k

is illustrated in Figure 3; the other graph Greject
n,k is almost identical, but the node that

determines acceptance is differently labelled.
Both graphs consist of two horizontal chains of nodes, connected by bridges at two

places. Nodes are pairs (x, y), where y ∈ {−1, 1} is the number of the chain, and x is the
horizontal coordinate, with −(n − 1) ⩽ x ⩽ M + 8nk for the lower chain (y = −1) and
−8nk ⩽ x ⩽ M + 8nk for the upper chain (y = 1).

All nodes except the ends of chains have labels c. The node (−(n − 1), −1) is the initial
node, with label c0. The other left end (−8nk, 1) is labelled with cl. The node (M + 8nk, −1)
has label cr. The node (M + 8nk, 1) is labelled with cacc in Gaccept

n,k and with cr in Greject
n,k ;

this is the only difference between the two graphs.
The horizontal chains are formed of (a, −a)-edges, with a incrementing x and −a

decrementing it. Edges with labels (b, −b) are loops at all nodes except for (0, 1), (0, −1),
(M, 1) and (M, −1). The latter four nodes form two pairs connected with bridges in directions
(b, −b).

O. Martynova and A. Okhotin 52:9

n–1

(–8nk,1)

(–(n–1),–1) (0,–1) (M,–1)

(0,1) (M,1)

c0 –aa –aaa –a –aa

–aa –аaa –a –аа

–ааа –а

–ааа –а cacc

–аа–a –аа

–аа–а –аа

a

а

(M+8nk,–1)

(M+8nk,1)

v0

8nk(4nk)!

–b

b –b

b–b

b –b

b

8nk

–b

b –b

b

cr

cl

Figure 3 The graph Gaccept
n,k .

An n-state automaton A, that accepts the graph Gaccept
n,k , does not accept any graphs

without labels cacc and never moves in the direction −a, is defined as follows. In the beginning,
it moves in the direction a in the same state q0, then makes n−2 further steps in the direction
a, incrementing the number of state. Next, it crosses the bridge in the direction b and enters
the last, n-th state, in which it moves in the direction a until it sees the label cacc.

▶ Lemma 17. Every returning automaton that accepts the same set of graphs as A, and has
at most 4nk states, may enter at least n − 1 distinct states after transitions in the direction
−a.

Sketch of a proof. On the graph Gaccept
n,k , a returning automaton, after seeing the node

(M + 8nk, 1), must find its way back to the initial node. At some point, it leaves one of the
ends of the upper chain, (−8nk, 1) or (M + 8nk, 1), and then arrives at one of the ends of
the lower chain, (−(n − 1), −1) = v0 or (M + 8nk, −1). On the way, it passes through nodes
labelled with c, and eventually starts behaving periodically. It is claimed that its periodic
sequence of directions contains at least n − 1 moves in the direction −a.

First assume that the automaton leaves the node (M + 8nk, 1). Let s be the difference
between the number of −a and a in the periodic sequence. Then s > 0, and each period
the automaton shifts by s edges to the left. As the automaton passes through the nodes
(M, ±1), it may move to the lower chain without noticing that; but if it does so, then later
at the nodes (0, ±1), the sequence of transitions will move it back to the upper chain. If it
stays on the same chain at (M, ±1), then it will stay on it at the second time as well. If
there are too few directions −a, then, on the way through (0, ±1), it would not reach the
node (−(n − 1), −1) = v0, and will end up at the node (−8nk, 1). This contradicts that
assumption that the automaton has left both ends of the upper chain for good.

If the automaton leaves the node (−8nk, 1), the argument is similar. The number s is
defined, and now it must be negative. As the automaton passes through (0, ±1), if it has
too few directions −a, then it cannot reach v0, and it eventually proceeds to (M + 8nk, 1),
which is again a contradiction. ◀

It remains to combine this lemma with the properties of the diode to obtain the desired
theorem.

▶ Theorem 18. For every k ⩾ 4, there exists a signature with k directions, such that,
for every n ⩾ 2, there is an n-state graph-walking automaton, such that every returning
automaton recognizing the same set of graphs must have at least 2(n − 1)(k − 3) states.

STACS 2021

52:10 Lower Bounds for Graph-Walking Automata

Proof. The proof uses the automaton A defined above. By Lemma 13, the n-state automaton
A over the signature S̃, is transformed to n-state automaton A′ over the signature S̃ ∪ Sk.
The directions ±a are the same for S̃ and Sk, and ±b in S̃ are merged with ±b1 in Sk, so
there are k directions in total.

For every graph G, the automaton A′ accepts a graph hn,k(G) with (a, −a)-edges replaced
by diodes, if and only if A accepts G. The automaton A′ is the desired example: it is claimed
that every returning automaton B recognizing the same set of graphs as A′ has at least
2(n − 1)(k − 3) states.

Let B be any returning automaton with at most 4nk states recognizing these graphs. By
Lemma 14, there is an automaton C over the signature S̃ and with the same number of states,
which accepts a graph G if and only if B accepts h(G). This is equivalent to A accepting
G, and so C and A accept the same set of graphs. Since B is returning, by Lemma 14, C

is returning too. Then, Lemma 17 asserts that the automaton C may enter n − 1 distinct
states after moving in the direction −a.

Then, according to Lemma 14, the automaton B enters at least n − 1 distinct states after
traversing the diode backwards. Therefore, by Lemma 15, this automaton should have at
least 2(k − 3)(n − 1) states. ◀

6 Lower bound on the size of halting automata

Every n-state GWA with k directions can be transformed to a halting GWA with 2nk + 1
states, as shown in Section 3. In this section, the following lower bound for this construction
is established.

▶ Theorem 19. For every k ⩾ 4, there is a signature with k directions, such that for every
n ⩾ 2 there is an n-state GWA, such that every halting automaton accepting the same set of
graphs has at least 2(n − 1)(k − 3) states.

The argument shares some ideas with the earlier proof for the case of returning automata:
the signature S̃, the graphs Gaccept

n,k and Greject
n,k , and the automaton A are the same as

constructed in Section 5. The proof of Theorem 19 uses the following lemma, stated similarly
to Lemma 17 for returning automata.

▶ Lemma 20. Every halting automaton A′, accepting the same set of graphs as A and using
at most 4nk states, must be able to enter at least n − 1 distinct states after transitions in the
direction −a.

Sketch of a proof. Consider the computation of A′ on the graph G, defined by merging the
nodes (M + 8nk, 1) and (−8nk, 1) in Greject

n,k , into a single node vjoint, with label c. The
automaton A′ must visit this node, because it is the only difference between G and Gaccept

n,k .
By the time the automaton reaches vjoint, it already behaves periodically, and in order to
stop, it needs to visit any label other than c, that is, return to one of the end-points of the
lower chain. As in Lemma 17, the automaton can reach either end-point only if the periodic
sequence contains at least n − 1 moves in the direction −a. ◀

The proof of Theorem 19 is completed via Lemmata 13, 14 and 15, in the same way as
for returning automata, only using Lemma 20 instead of Lemma 17.

O. Martynova and A. Okhotin 52:11

7 Lower bound on the size of returning and halting automata

An n-state GWA over a signature with k directions can be transformed to an automaton
that both halts on every input and accepts only in the initial node: a reversible automaton
with 4nk + 1 states, described in Section 3, will do.

This section establishes a close lower bound on this transformation. The witness n-state
automaton is the same as in Sections 5–6, for which Theorem 18 asserts that a returning
automaton needs at least 2(n − 1)(k − 3) states, whereas Theorem 19 proves that a halting
automaton needs at least 2(n − 1)(k − 3) states. The goal is to prove that these two sets of
states must be disjoint, leading to the following lower bound.

▶ Theorem 21. For every k ⩾ 4, there exists a signature with k directions, such that for
every n ⩾ 2, there is an n-state graph-walking automaton, such that every returning and
halting automaton recognizing the same set of graphs must have at least 4(n − 1)(k − 3) states.

As before, the automaton is obtained from A by Lemma 13. For the argument to proceed,
the following property needs to be established.

▶ Lemma 22 (cf. Lemma 17). Every returning and halting automaton that recognizes the
same set of graphs as A, and has at most 4nk states, enters at least 2(n − 1) distinct states
after transitions in the direction −a.

Sketch of a proof. Consider any such returning and halting automaton. Since it is returning,
as shown in Lemma 17, on the graph Gaccept

n,k , the automaton uses a periodic sequence of
states to return from (M + 8nk, 1) to v0. Since it is at the same time halting, Lemma 20
asserts that on the graph G it uses another periodic sequence of states to escape the cycle
after visiting vjoint. Each of these two sequences makes transitions in the direction −a in at
least n − 1 distinct states. It remains to prove that these sequences are disjoint.

Suppose the sequences have a common element, then they coincide up to a cyclic shift.
Then it is possible to modify G so that the computation coming to vjoint later continued as
the computation on Gaccept

n,k , and led to acceptance. ◀

The proof of the theorem is inferred from Lemmata 13, 14, 15 and 22, as in the earlier
arguments.

8 Lower bound on the size of reversible automata

For the transformation of a GWA with n states and k directions to a reversible automaton,
4nk + 1 states are sufficient. A close lower bound shall now be established.

▶ Theorem 23. For every k ⩾ 4, there exists a signature with k directions, such that for
every n ⩾ 2, there is an n-state GWA, such that every reversible GWA recognizing the same
set of graphs has at least 4(n − 1)(k − 3) − 1 states.

Proof. By Theorem 21, there is such an n-state automaton A′ that every returning and
halting automaton recognizing the same set of graphs has at least 4(n − 1)(k − 3) states.
Suppose that there is a reversible automaton with fewer than 4(n − 1)(k − 3) − 1 states
that accepts the same graphs as A′. Let m be the number of states in it. Then, by the
construction of reversing a reversible automaton given by Kunc and Okhotin [9], there is a
returning and halting automaton with m + 1 states, that is, with fewer than 4(n − 1)(k − 3)
states. This contradicts Theorem 21. ◀

STACS 2021

52:12 Lower Bounds for Graph-Walking Automata

9 Conclusion

The new bounds on the complexity of transforming graph-walking automata to automata with
returning, halting and reversibility properties are fairly tight. However, for their important
special cases, such as two-way finite automata (2DFA) and tree-walking automata (TWA),
the gaps between lower bounds and upper bounds are still substantial.

For an n-state 2DFA, the upper bound for making it halting is 4n + const states [6]. No
lower bound is known, and any lower bound would be interesting to obtain. A 2DFA can be
made reversible using 4n + 3 states [9], with a lower bound of 2n − 2 states [8]; it would be
interesting to improve these bounds.

The same question applies to tree-walking automata: they can be made halting [13], and,
for k-ary trees, it is sufficient to use 4kn + 2k + 1 states to obtain a reversible automaton [9].
No lower bounds are known, and this subject is suggested for further research.

Furthermore, it would be interesting to try to apply the lower bound methods for GWA
to limited memory algorithms for navigation in graphs.

References
1 Mikolaj Bojanczyk and Thomas Colcombet. Tree-walking automata cannot be determinized.

Theor. Comput. Sci., 350(2-3):164–173, 2006. doi:10.1016/j.tcs.2005.10.031.
2 Lothar Budach. Automata and labyrinths. Mathematische Nachrichten, 86(1):195–282, 1978.

doi:10.1002/mana.19780860120.
3 Yann Disser, Jan Hackfeld, and Max Klimm. Undirected graph exploration with ⊖(log log n)

pebbles. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 25–39. SIAM, 2016. doi:10.1137/1.9781611974331.ch3.

4 Amr Elmasry, Torben Hagerup, and Frank Kammer. Space-efficient basic graph algorithms.
In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International Symposium on Theoretical
Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30
of LIPIcs, pages 288–301. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:
10.4230/LIPIcs.STACS.2015.288.

5 Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, and David Peleg. Graph exploration
by a finite automaton. Theor. Comput. Sci., 345(2-3):331–344, 2005. doi:10.1016/j.tcs.
2005.07.014.

6 Viliam Geffert, Carlo Mereghetti, and Giovanni Pighizzini. Complementing two-way finite
automata. Inf. Comput., 205(8):1173–1187, 2007. doi:10.1016/j.ic.2007.01.008.

7 Attila Kondacs and John Watrous. On the power of quantum finite state automata. In 38th
Annual Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida,
USA, October 19-22, 1997, pages 66–75. IEEE Computer Society, 1997. doi:10.1109/SFCS.
1997.646094.

8 Michal Kunc and Alexander Okhotin. Reversible two-way finite automata over a unary
alphabet. Technical Report 1024, Turku Centre for Computer Science, 2011.

9 Michal Kunc and Alexander Okhotin. Reversibility of computations in graph-walking automata.
Inf. Comput., 275:104631, 2020. doi:10.1016/j.ic.2020.104631.

10 Rolf Landauer. Irreversibility and heat generation in the computing process. IBM J. Res.
Dev., 5(3):183–191, 1961. doi:10.1147/rd.53.0183.

11 Klaus-Jörn Lange, Pierre McKenzie, and Alain Tapp. Reversible space equals deterministic
space. J. Comput. Syst. Sci., 60(2):354–367, 2000. doi:10.1006/jcss.1999.1672.

12 Kenichi Morita. A deterministic two-way multi-head finite automaton can be converted into a
reversible one with the same number of heads. In Robert Glück and Tetsuo Yokoyama, editors,
Reversible Computation, 4th International Workshop, RC 2012, Copenhagen, Denmark, July
2-3, 2012. Revised Papers, volume 7581 of Lecture Notes in Computer Science, pages 29–43.
Springer, 2012. doi:10.1007/978-3-642-36315-3_3.

https://doi.org/10.1016/j.tcs.2005.10.031
https://doi.org/10.1002/mana.19780860120
https://doi.org/10.1137/1.9781611974331.ch3
https://doi.org/10.4230/LIPIcs.STACS.2015.288
https://doi.org/10.4230/LIPIcs.STACS.2015.288
https://doi.org/10.1016/j.tcs.2005.07.014
https://doi.org/10.1016/j.tcs.2005.07.014
https://doi.org/10.1016/j.ic.2007.01.008
https://doi.org/10.1109/SFCS.1997.646094
https://doi.org/10.1109/SFCS.1997.646094
https://doi.org/10.1016/j.ic.2020.104631
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1006/jcss.1999.1672
https://doi.org/10.1007/978-3-642-36315-3_3

O. Martynova and A. Okhotin 52:13

13 Anca Muscholl, Mathias Samuelides, and Luc Segoufin. Complementing deterministic tree-
walking automata. Inf. Process. Lett., 99(1):33–39, 2006. doi:10.1016/j.ipl.2005.09.017.

14 Alexander Okhotin. Graph-walking automata: From whence they come, and whither they are
bound. In Michal Hospodár and Galina Jirásková, editors, Implementation and Application of
Automata - 24th International Conference, CIAA 2019, Košice, Slovakia, July 22-25, 2019,
Proceedings, volume 11601 of Lecture Notes in Computer Science, pages 10–29. Springer, 2019.
doi:10.1007/978-3-030-23679-3_2.

15 Michael Sipser. Lower bounds on the size of sweeping automata. J. Comput. Syst. Sci.,
21(2):195–202, 1980. doi:10.1016/0022-0000(80)90034-3.

STACS 2021

https://doi.org/10.1016/j.ipl.2005.09.017
https://doi.org/10.1007/978-3-030-23679-3_2
https://doi.org/10.1016/0022-0000(80)90034-3

An Improved Approximation Algorithm for the
Maximum Weight Independent Set Problem in
d-Claw Free Graphs
Meike Neuwohner !

Research Institute for Discrete Mathematics, Universität Bonn, Germany

Abstract
In this paper, we consider the task of computing an independent set of maximum weight in a given
d-claw free graph G = (V, E) equipped with a positive weight function w : V → R+. Thereby, d ≥ 2
is considered a constant. The previously best known approximation algorithm for this problem is
the local improvement algorithm SquareImp proposed by Berman [2]. It achieves a performance
ratio of d

2 + ϵ in time O(|V (G)|d+1 · (|V (G)| + |E(G)|) · (d − 1)2 ·
(

d
2ϵ

+ 1
)2) for any ϵ > 0, which has

remained unimproved for the last twenty years. By considering a broader class of local improvements,
we obtain an approximation ratio of d

2 − 1
63,700,992 + ϵ for any ϵ > 0 at the cost of an additional

factor of O(|V (G)|(d−1)2
) in the running time. In particular, our result implies a polynomial time

d
2 -approximation algorithm. Furthermore, the well-known reduction from the weighted k-Set Packing
Problem to the Maximum Weight Independent Set Problem in k + 1-claw free graphs provides a
k+1

2 − 1
63,700,992 + ϵ-approximation algorithm for the weighted k-Set Packing Problem for any ϵ > 0.

This improves on the previously best known approximation guarantee of k+1
2 + ϵ originating from

the result of Berman [2].

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases d-Claw free Graphs, independent Set, local Improvement, k-Set Packing,
weighted

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.53

Related Version
Full Version: https://www.or.uni-bonn.de/home/neuwohner/set_packing_full_version.pdf

1 Introduction

For d ≥ 1, a d-claw C [2] is defined to be a star consisting of one center node and a set TC

of d additional vertices connected to it, which are called the talons of the claw (see Figure 1).
Moreover, similar to [2], we define a 0-claw to be a graph consisting only of a single vertex v,
which is regarded as the unique element of TC in this case. An undirected graph G = (V, E)
is said to be d-claw free if none of its induced subgraphs forms a d-claw. For example, 1-claw
free graphs do not possess any edges, while 2-claw free graphs are disjoint unions of cliques.
For natural numbers k ≥ 3, the Maximum Weight Independent Set Problem (MWIS) in
k + 1-claw free graphs is often studied as a generalization of the weighted k-Set Packing
Problem, which is defined as follows: Given a family S of sets each of size at most k together
with a positive weight function w : S → R+, the task is to find a disjoint sub-collection of S
of maximum weight. By considering the conflict graph GS associated with an instance of
the weighted k-Set Packing Problem, the vertices of which are given by the sets in S and
the edges of which represent non-empty set intersections, one obtains a weight preserving
one-to-one correspondence between feasible solutions to the k-Set Packing Problem and
independent sets in GS , which can be shown to be k + 1-claw free.

While as far as the weighted version of the k-Set Packing Problem is concerned, the
algorithm devised by Berman in 2000 [2] to deal with the MWIS in k + 1-claw free graphs
remains unchallenged so far, considerable progress has been made for the cardinality variant
during the last decade. The first improvement over the approximation guarantee of k achieved

© Meike Neuwohner;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 53; pp. 53:1–53:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:neuwohner@or.uni-bonn.de
https://orcid.org/0000-0002-3664-3687
https://doi.org/10.4230/LIPIcs.STACS.2021.53
https://www.or.uni-bonn.de/home/neuwohner/set_packing_full_version.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 An Improved Approximation Algorithm for the MWIS in d-Claw Free Graphs

v0

v1

v2

v3

center node
d talons
⇝ TC

Figure 1 a d-claw C for d = 3.

by a simple greedy approach was obtained by Hurkens and Schrijver in 1989 [9], who showed
that for any ϵ > 0, there exists a constant pϵ for which a local improvement algorithm that first
computes a maximal collection of disjoint sets and then repeatedly applies local improvements
of constant size at most pϵ, until no more exist, yields an approximation guarantee of k

2 + ϵ.
In this context, a disjoint collection X of sets contained in the complement of the current
solution A is considered a local improvement of size |X| if the sets in X intersect at most
|X| − 1 sets from A, which are then replaced by the sets in X, increasing the cardinality
of the found solution. Hurkens and Schrijver also proved that a performance guarantee of
k
2 is best possible for a local search algorithm only considering improvements of constant
size, while Hazan, Safra and Schwartz [8] established in 2006 that no o(k

log k)-approximation
algorithm is possible in general unless P = NP . At the cost of a quasi-polynomial runtime,
Halldórsson [7] could prove an approximation factor of k+2

3 by applying local improvements
of size logarithmic in the total number of sets. Cygan, Grandoni and Mastrolilli [5] managed
to get down to an approximation factor of k+1

3 + ϵ, still with a quasi-polynomial runtime.
The first polynomial time algorithm improving on the result by Hurkens and Schrijver was
obtained by Sviridenko and Ward [13] in 2013. By combining means of color coding with
the algorithm presented in [7], they achieved an approximation ratio of k+2

3 . This result
was further improved to k+1

3 + ϵ for any fixed ϵ > 0 by Cygan [4], obtaining a polynomial
runtime doubly exponential in 1

ϵ . The best approximation algorithm for the unweighted
k-Set Packing Problem in terms of performance ratio and running time is due to Fürer and
Yu from 2014 [6], who achieved the same approximation guarantee as Cygan, but a runtime
that is only singly exponential in 1

ϵ .
Concerning the unweighted version of the MWIS in d-claw free graphs, as remarked in [13],

both the result of Hurkens and Schrijver as well as the quasi-polynomial time algorithms
by Halldórsson and Cygan, Grandoni and Mastrolilli translate to this more general context,
yielding approximation guarantees of d−1

2 + ϵ, d+1
3 and d

3 + ϵ, respectively. However, it is not
clear how to extend the color coding approach relying on coloring the underlying universe to
the setting of d-claw free graphs [13].

When it comes to the weighted variant of the problem, even less is known. For d ≤ 3, it is
solvable in polynomial time (see [10] and [12] for the unweighted, [11] for the weighted variant),
while for d ≥ 4, again no o(d

log d)-approximation algorithm is possible unless P = NP [8].
Moreover, in contrast to the unit weight case, considering local improvements the size of
which is bounded by a constant can only slightly improve on the performance ratio of d− 1
obtained by the greedy algorithm since Arkin and Hassin have shown that such an approach
yields an approximation ratio no better than d− 2 in general [1]. Thereby, analogously to
the unweighted case, given an independent set A, an independent set X is called a local
improvement of A if it is disjoint from A and the total weight of the neighbors of X in
A is strictly smaller than the weight of X. Despite the negative result in [1], Chandra
and Halldórsson [3] have found that if one does not perform the local improvements in an
arbitrary order, but in each step augments the current solution A by an improvement X

that maximizes the ratio between the total weight of the vertices added to and removed

M. Neuwohner 53:3

1 2 3 4 5

{1, 3} {2, 3} {3} {4, 3} {5, 3}

(a) Example for a claw in the tight instance for d = 6. It does not improve A.
1

{1}

2 3 4 5

{1, 3} {2, 3} {3} {4, 3} {5, 3}

(b) {{1}, {1, 3}, {3}} constitutes a local improvement of constant size.

Figure 2 (Part of) the tight instance provided in [2].

from A (if exists), the resulting algorithm, which the authors call BestImp, approximates the
optimum solution within a factor of 2d

3 . By scaling and truncating the weight function to
ensure a polynomial number of iterations, they obtain a 2d

3 + ϵ-approximation algorithm for
the MWIS in d-claw free graphs for any ϵ > 0.

As already mentioned, the currently best known approximation guarantee for the MWIS
in d-claw free graphs is due to Berman [2], who suggested the algorithm SquareImp, which
iteratively applies local improvements of the squared weight function that arise as sets of talons
of claws in G, until no more exist. An induced subgraph C of G is thereby called a claw in G

if there is some t ≥ 0 such that C constitutes a t-claw. The algorithm SquareImp achieves an
approximation ratio of d

2 , leading to a polynomial time d
2 + ϵ-approximation algorithm for any

ϵ > 0. Its running time can be bounded by O(|V (G)|d+1 ·(|V (G)|+|E(G)|)·(d−1)2 ·
(

d
2ϵ + 1

)2).
Berman also provides an example for w ≡ 1 showing that his analysis is tight. It consists

of a bipartite graph G = (V, E) the vertex set of which splits into a maximal independent set
A = {1, . . . , d− 1} such that no claw improves |A|, and an optimum solution B =

(
A
1
)
∪
(

A
2
)
,

whereby the set of edges is given by E = {{a, b} : a ∈ A, b ∈ B, a ∈ b}. As the example uses
unit weights, he also concludes that applying the same type of local improvement algorithm
for a different power of the weight function does not provide further improvements.
However, as also implied by the result in [9], while no small improvements forming the set of
talons of a claw in the input graph exist in the tight example given by Berman, once this
additional condition is dropped, improvements of small constant size can be found quite
easily (see Figure 2). This in turn indicates that considering a less restricted class of local
improvements may result in a better approximation guarantee.

In this paper, we revisit the analysis of the algorithm SquareImp proposed by Berman
and show that whenever it is close to being tight, the instance actually bears a similar
structure to the tight example given in [2] in a certain sense. By further observing that if
this is the case, there must exist a local improvement (with respect to the squared weight
function) of size at most d−1+(d−1)2, we can conclude that a local improvement algorithm
looking for improvements of w2 obeying the aforementioned size bound achieves an improved
approximation ratio at the cost of an additional O(|V (G)|(d−1)2) factor in the running time.

The rest of this paper is organized as follows: In Section 2, we review the algorithm
SquareImp by Berman and give a short overview of the analysis pointing out the results
we reuse in the analysis of our algorithm. The latter is presented in Section 3, which also

STACS 2021

53:4 An Improved Approximation Algorithm for the MWIS in d-Claw Free Graphs

Algorithm 1 SquareImp [2].

Input: an undirected d-claw free graph G = (V, E) and a positive weight function
w : V → R+

Output: an independent set A ⊆ V

1 A← ∅
2 while there exists a claw C in G that improves w2(A) do
3 A← A\N(TC , A) ∪ TC

4 return A

provides a detailed analysis proving an approximation guarantee of d
2 −

1
63,700,992 + ϵ for any

ϵ > 0. Finally, Section 4 concludes the paper with some remarks on possibilities to improve
on the given result, but also difficulties that one might face along the way.

2 Preliminaries

In this section, we shortly recap the definitions and main results from [2] that we will employ
in the analysis of our local improvement algorithm. We first introduce some basic notation
that is needed for its formal description.

▶ Definition 1 (neighborhood [2]). Given an undirected graph G = (V, E) and subsets
U, W ⊆ V of vertices, we define the neighborhood N(U, W) of U in W as

N(U, W) := {w ∈W : ∃u ∈ U : {u, w} ∈ E ∨ u = w}.

In order to simplify notation, for u ∈ V and W ⊆ V , we write N(u, W) instead of N({u}, W).

▶ Notation 2. Given a weight function w : V → R and some U ⊆ V , we write
w2(U) :=

∑
u∈U w2(u). Observe that in general, w2(U) ̸= (w(U))2.

▶ Definition 3 ([2]). Given an undirected graph G = (V, E), a positive weight function
w : V → R+ and an independent set A ⊆ V , we say that a vertex set B ⊆ V improves w2(A)
if B is independent in G and w2(A\N(B, A) ∪ B) > w2(A) holds. For a claw C in G, we
say that C improves w2(A) if its set of talons TC does.

Observe that an independent set B improves A if and only if we have w2(B) > w2(N(B, A))
(see Proposition 12). Further note that we do not require B to be disjoint from A.
Using the notation introduced above, Berman’s algorithm SquareImp [2] can now be for-
mulated as in Algorithm 1. Observe that by positivity of the weight function, every v ̸∈ A

such that A ∪ {v} is independent constitutes the talon of a 0-claw improving w2(A), so the
algorithm returns a maximal independent set.

The main idea of the analysis of SquareImp presented in [2] is to charge the vertices in A

for preventing adjacent vertices in an optimum solution A∗ from being included into A. The
latter is done by spreading the weight of the vertices in A∗ among their neighbors in the
maximal independent set A in such a way that no vertex in A receives more than d

2 times its
own weight. The suggested distribution of weights thereby proceeds in two steps:

First, each vertex u ∈ A∗ invokes costs of w(v)
2 at each v ∈ N(u, A), leaving a remaining

weight of w(u)− w(N(u,A))
2 to be distributed. (Note that this term can be negative.)

In a second step, each vertex in u therefore sends an amount of w(u)− w(N(u,A))
2 to a heaviest

neighbor it possesses in A, which is captured by the following definition of charges:

M. Neuwohner 53:5

▶ Definition 4 (charges [2]). Let G = (V, E) be an undirected graph and let w : V → R+ be
a positive weight function. Further assume that an independent set A∗ ⊆ V and a maximal
independent set A ⊆ V are given. We define a map charge : A∗ ×A→ R as follows:

For each u ∈ A∗, pick a vertex v ∈ N(u, A) of maximum weight and call it n(u). Observe
that this is possible, because A is a maximal independent set in G, implying that N(u, A) ̸= ∅
since either u ∈ A itself or u possesses a neighbor in A.
Next, for u ∈ A∗ and v ∈ A, define

charge(u, v) :=
{

w(u)− 1
2 w(N(u, A)) , if v = n(u)

0 , otherwise
.

The definition of charges directly implies the subsequent statement:

▶ Corollary 5 ([2]). In the situation of Definition 4, we have

w(A∗) =
∑

u∈A∗

w(N(u, A))
2 +

∑
u∈A∗

charge(u, n(u))

≤
∑

u∈A∗

w(N(u, A))
2 +

∑
u∈A∗:charge(u,n(u))>0

charge(u, n(u)).

The analysis proposed by Berman now proceeds by bounding the total weight sent to
the vertices in A during the two steps of the cost distribution separately. Lemma 6 thereby
bounds the weight received in the first step, while Lemma 7 and Lemma 8 take care of the
total charges invoked. (Note that although we have slightly changed the formulation of the
subsequent results to suit our purposes, they either appear in [2] in an equivalent form or
are directly implied by the proofs presented there.)

▶ Lemma 6 ([2]). In the situation of Definition 4, if the graph G is d-claw free for some
d ≥ 2, then∑

u∈A∗

w(N(u, A))
2 ≤ d− 1

2 · w(A).

▶ Lemma 7 ([2]). In the situation of Definition 4, for u ∈ A∗ and v ∈ A with charge(u, v) > 0,
we have

w2(u)− w2(N(u, A)\{v}) ≥ 2 · charge(u, v) · w(v).

▶ Lemma 8 ([2]). Let G = (V, E) be d-claw free, d ≥ 2, and w : V → R+. Let further A∗ be
an independent set in G of maximum weight and let A be independent in G with the property
that no claw improves w2(A). Then for each v ∈ A, we have

∑
u∈A∗:charge(u,v)>0

charge(u, v) ≤ w(v)
2 .

STACS 2021

53:6 An Improved Approximation Algorithm for the MWIS in d-Claw Free Graphs

Algorithm 2 Local improvement algorithm.

Input: an undirected d-claw free graph G = (V, E) and a positive weight function
w : V → R+

Output: an independent set A ⊆ V

1 A← ∅
2 while there exists a local improvement X of w2(A) do
3 A← A\N(X, A) ∪X

4 return A

The proofs are omitted due to page limit.
By combining Corollary 5 with the previous lemmata, one obtains Theorem 9, stating an

approximation guarantee of d
2 :

▶ Theorem 9 ([2]). Let G = (V, E) be d-claw free, d ≥ 2, and w : V → R+. Let further
A∗ be an independent set in G of maximum weight and let A be independent in G with the
property that no claw improves w2(A). Then

w(A∗) ≤
∑

u∈A∗

w(N(u, A))
2 +

∑
u∈A∗:charge(u,n(u))>0

charge(u, n(u)) ≤ d

2 · w(A).

After having recapitulated the results from [2] that we will reemploy in our analysis, we
are now prepared to study our algorithm that takes into account a broader class of local
improvements.

3 Improving the Approximation Factor

3.1 The Local Improvement Algorithm
▶ Definition 10 (Local improvement). Given a d-claw free graph G = (V, E), a strictly positive
weight function w : V → R+ and an independent set A ⊆ V , we call an independent set X ⊆ V

a local improvement of w2(A) if |X| ≤ (d− 1)2 + (d− 1) and w2(A\N(X, A) ∪X) > w2(A).

▶ Proposition 11. Let G, w and A be as in Definition 10. If X is a local improvement of
w2(A), then A\N(X, A) ∪X is independent in G.

▶ Proposition 12. Let G, w and A be as in Definition 10. Then an independent set X of
size at most (d− 1)2 + (d− 1) constitutes a local improvement of A if and only if we have
w2(N(X, A)) < w2(X).

The remainder of Section 3 is now dedicated to the analysis of Algorithm 2 for the Maximum
Weight Independent Set Problem in d-claw free graphs for d ≥ 2. Thereby, the main result
of this paper is given by the following theorem:

▶ Theorem 13. If A∗ is an optimum solution to the MWIS in a d-claw free graph G for
some d ≥ 2 and A denotes the solution returned by Algorithm 2, then we have

w(A∗) ≤
(

d

2 −
1

63, 700, 992

)
· w(A).

M. Neuwohner 53:7

First, note that Algorithm 2 is correct in the sense that it returns an independent set. This
follows immediately from the fact that we maintain the property that A is independent
throughout the algorithm, because ∅ is independent and Proposition 11 tells us that none of
our update steps can harm this invariant.

Next, observe that Algorithm 2 is guaranteed to terminate since no set A can be attained
twice, given that w2(A) strictly increases in each iteration of the while-loop, and there are
only finitely many possibilities. Furthermore, each iteration runs in polynomial (considering
d a constant) time O(|V |(d−1)2+d−1 · (|V |+ |E|)), because there are only O(|V |(d−1)2+d−1)
many possible choices for X and we can check in linear time O(|V |+ |E|) whether a given
one constitutes a local improvement.

In order to achieve a polynomial number of iterations, we scale and truncate the weight
function as explained in [3] and [2]. Given a constant N > 1, we first compute a greedy
solution A′ and rescale the weight function w such that w(A′) = N · |V | holds. Then, we
delete vertices v of truncated weight ⌊w(v)⌋ = 0 and run Algorithm 2 with the integral weight
function ⌊w⌋. In doing so, we know that ⌊w⌋2(A) equals zero initially and must increase by
at least one in each iteration. On the other hand, at each point, we have

⌊w⌋2(A) ≤ w2(A) ≤ (w(A))2 ≤ (d− 1)2w2(A′) = (d− 1)2 ·N2 · |V |2,

which bounds the total number of iterations by the latter term. Finally, if r > 1 specifies the
approximation guarantee achieved by Algorithm 2, A denotes the solution it returns and A∗

is an independent set of maximum weight with respect to the original respectively the scaled,
but untruncated weight function w, we know that

r · w(A) ≥ r · ⌊w⌋(A) ≥ ⌊w⌋(A∗) ≥ w(A∗)− |A∗| ≥ w(A∗)− |V | ≥ N − 1
N

· w(A∗),

so the approximation ratio increases by a factor of at most N
N−1 .

3.2 Analysis of the Performance Ratio
We now move on to the analysis of the approximation guarantee. Denote some optimum
solution by A∗ and denote the solution found by Algorithm 2 by A. Observe that by positivity
of the weight function, A must be a maximal independent set, as adding a vertex would
certainly yield a local improvement of w2(A).

We first show that for d = 2, our algorithm is actually optimal, so that we can restrict
ourselves to the case d ≥ 3 for the main analysis. As already remarked earlier, 2-claw free
graphs are disjoint unions of cliques, so an optimum solution can be found by picking a
vertex of maximum weight from each clique. But this is precisely what Algorithm 2 does:

First, we know that it returns a maximal independent set A, which must hence contain
exactly one vertex per clique.

Second, if for some of the cliques, A contains a vertex v the weight of which is not
maximum among all vertices in the clique, and u ̸∈ A belongs to the same clique and has
maximum weight, then {u} constitutes a local improvement of w2 since we have N(u, A) = {v}
and w2(v) < w2(u). This contradicts the termination criterion of our algorithm. Hence,
Algorithm 2 is optimum for d = 2, and we can assume d ≥ 3 in the following.

For the analysis, we define two constants, δ and ϵ, which we choose to be δ := 1
6 and

ϵ := 1
5308416 . These choices satisfy a bunch of inequalities that are used throughout the

analysis and can be found in Appendix A.

STACS 2021

53:8 An Improved Approximation Algorithm for the MWIS in d-Claw Free Graphs

Our goal is to show that Algorithm 2 produces a d−ϵδ
2 -approximation. We use some

notation as well as most of the analysis of the algorithm SquareImp by Berman. In particular,
we employ the same definition of neighborhoods and charges. Observe that this is well-defined
as we have seen that the solution A returned by our algorithm must constitute a maximal
independent set in the given graph.

For the remainder of this section, fix d ≥ 3 and some instance of the MWIS in d-claw
free graphs given by a (d-claw free) graph G = (V, E) and a positive weight function
w : V → R+ and pick an optimum solution A∗ for the given instance. Let further A denote
the solution returned by Algorithm 2. We have to prove that w(A∗) ≤ d−ϵδ

2 ·w(A). In doing
so, the first step of the analysis is to ensure that for almost all vertices u ∈ A∗, the total
weight of their neighborhood in A is only by a small constant factor larger than the weight of
u. For this purpose, we consider the set P of “payback vertices“ u ∈ A∗ for which the total
weight of N(u, A) is at least three times as large as w(u). For these vertices, the first step of
the weight distribution employed in the analysis by Berman significantly overestimates their
weight in that they invoke total costs that are by a factor of 1.5 larger. As a consequence,
we can reduce the total weight sent to A by at least w(P)

2 , making each of the vertices in
P “pay back“ the unnecessary costs they have created, and still obtain an upper bound on
w(A∗). But this means that the analysis of Berman, applied to our algorithm, can actually
only be close to tight if the total weight of P is almost zero, which is the essential statement
of the following lemma. The proof is omitted due to page limit.

▶ Lemma 14. Let P := {u ∈ A∗ : w(N(u, A)) ≥ 3 · w(u)}. Then for all γ > 0, if
w(P) ≥ γ · w(A), we have w(A∗) ≤ d−γ

2 · w(A).

In order to prove an approximation factor of d−ϵδ
2 , we can hence restrict ourselves to the

case where w(P) < ϵδ · w(A) in the following.
Our next goal is to examine the structure of the neighborhoods N(v, A∗) of vertices v ∈ A

that receive a total amount of charges that is close to w(v)
2 , that is, for which the analysis of

SquareImp, applied to Algorithm 2, is almost tight. More precisely, we only consider those
neighbors of v sending positive charges to v and try to relate them to the vertices of the form
{i} respectively {i, j} for i ̸= j (which actually invoke zero charges in the given instance)
from the tight example. For this purpose, the following definitions are required:

▶ Definition 15 (Tv). For v ∈ A, we define Tv := {u ∈ A∗ : charge(u, v) > 0}.

▶ Definition 16 (single vertex). For v ∈ A, we call a vertex u ∈ Tv single if
(i) w(u)

w(v) ∈ [1−
√

ϵ, 1 +
√

ϵ] and
(ii) w(N(u, A)) ≤ (1 +

√
ϵ) · w(v).

▶ Definition 17 (double vertex). For v ∈ A, we call a vertex u ∈ Tv double if |N(u, A)| ≥ 2
and for v1 = v and v2 a vertex of maximum weight in N(u, A)\{v1}, the following properties
hold:

(i) w(u)
w(v1) ∈ [1−

√
ϵ, 1 +

√
ϵ]

(ii) w(v2)
w(v1) ∈ [1−

√
ϵ, 1] and

(iii) (2−
√

ϵ) · w(v1) ≤ w(N(u, A)) < 2 · w(u).

Note that for v1 and v2 as in the previous definition, we have w(v2) ≤ w(v1) since we know
that v1 = v = n(u) is an element of N(u, A) of maximum weight by definition of Tv and
charges. Further observe that no vertex can be both single and double since this would imply
(2−

√
ϵ) · w(v) ≤ w(N(u, A)) ≤ (1 +

√
ϵ) · w(v) and therefore 2−

√
ϵ ≤ 1 +

√
ϵ, as w(v) > 0,

leading to ϵ ≥ 1
4 contradicting (5).

M. Neuwohner 53:9

The single vertices can be thought of as the vertices of the form {i} from the tight
example, while the double vertices are in correspondence with those vertices given by sets
of size 2, although in the given example, these actually would not be considered double
themselves since they send zero charges.

▶ Lemma 18. For v ∈ A, we either have
∑

u∈Tv
charge(u, v) ≤ 1−ϵ

2 · w(v), or for each
u ∈ Tv, we have exactly one of the following:

(i) u is single or
(ii) u is double,

and moreover, there exists at most one u ∈ Tv that is single.

We would like to provide some motivation why we are actually interested in a statement of
this type. To this end, first note that if the total weight of those vertices v ∈ A satisfying∑

u∈Tv
charge(u, v) ≤ 1−ϵ

2 · w(v) constitutes some constant fraction of w(A), we get an
improved approximation factor since we gain an ϵ

2 -fraction of the weight of each such vertex
when bounding the weight of A∗. On the other hand, if there are only few such vertices
(in terms of weight), the vertices v ∈ A for which the analysis of SquareImp is almost tight
when it comes to charges, and for which all vertices in the set Tv can hence be classified as
being either single or double, possess a large total weight. The set comprising these vertices
v can be further split into the collection of those vertices that feature a neighbor that is
single, and the set of those who do not. In order to gain some intuitive understanding of
why Algorithm 2 achieves a better approximation guarantee than SquareImp, we have to see
how both types of vertices can be helpful for our analysis.

For this purpose, let us first consider those vertices v ∈ A all neighbors (in Tv) of which
are double. Observe that for a double vertex u0 ∈ A∗, its neighborhood N(u0, A) consists
of two vertices v1 = n(u0) and v2 of roughly the same weight as u0, plus maybe some
additional vertices the total weight of which is by a factor in the order of

√
ϵ smaller. For

simplicity, imagine that v1 and v2 have exactly the same weight and that there are no further
neighbors of u0 in A. In this situation, it is completely arbitrary whether v1 or v2 is chosen
as n(u0). In particular, we can bound both of the terms w2(u0)− w2(N(u0, A)\{v1}) and
w2(u0) − w2(N(u0, A)\{v2}) by 2 · charge(u0, n(u0)) · w(v1) = 2 · charge(u0, n(u0)) · w(v2)
from below. Moreover, the proof of Lemma 8 tells us that for each v ∈ A, we actually get
the stronger statement∑

u∈N(v,A∗)

max{0, w2(u)− w2(N(u, A)\{v})} ≤ w2(v).

When summing over all v ∈ A, while every vertex u ∈ A∗ adds at least 2 · charge(u, n(u)) by
Lemma 7, our “ideal“ double vertex u0 actually contributes twice as much since it adds an
amount of at least 2 · charge(u, n(u)) · w(v1/2) for both v1 and v2.

Although for general double vertices, the situation is more complicated, one can still
show that w2(u)− w2(N(u, A)\{v1}) amounts to almost 3 · charge(u, v1) · w(v1), or u adds
approximately charge(u, v1) ·w(v2) when it comes to v2. As a consequence, for those vertices
v ∈ A receiving a total amount of charges of at least 1−ϵ

2 · w(v) and all neighbors of which
are double, the total charges sent to v can be counted almost three instead of only two times,
resulting in an improved approximation factor provided the total weight of these vertices
constitutes a constant fraction of w(A).

We are therefore left with discussing the role of those v ∈ A that possess at least one
single neighbor. By Lemma 18, we further know that those v have exactly one single neighbor,
which we denote by t(v) in the following. Recall that by definition of single vertices, this

STACS 2021

53:10 An Improved Approximation Algorithm for the MWIS in d-Claw Free Graphs

neighbor bears roughly the same weight as v, and v makes up almost all of N(t(v), A) in
terms of weight. Imagine removing each such vertex v with a single neighbor from A and its
neighbor t(v) ∈ Tv from A∗. Then the sets of vertices removed from A and A∗, respectively,
have roughly the same weight. It further constitutes a large fraction of w(A), provided that
w(P), as well as the total weight of vertices for which the analysis of SquareImp is not
close to being tight and the total weight of vertices with only double neighbors are small.
(Remember that we obtain a better approximation guarantee if this is not the case.) But
now, given that the ratio between the weights of the sets of vertices we have removed from A

and A∗, respectively, is close to 1, we must get an improved approximation guarantee unless
the ratio between the weights of the sets of vertices A′∗ and A′ remaining from A∗ and A is
way larger than d

2 . But then, we know that we can find a local improvement X of w2(A′) in
the resulting instance, which can be extended to a local improvement in the original one by
adding vertices that were removed from A∗ to make up for the additional weight of neighbors
of X that were removed from A. The existence of this local improvement contradicts the
termination criterion of Algorithm 2.

We have therefore outlined the key ideas of the analysis of Algorithm 2 and in particular
convinced ourselves of the benefit of the lemma. Its proof can be found in the appendix.
After having seen that all neighbors of vertices v for which the analysis of SquareImp, applied
to our algorithm, is almost tight, are either double or single, we continue by establishing the
“usefulness“ of double vertices. As already outlined before, we show that the charges invoked
by these can be counted almost three instead of only two times, which is captured by the
next lemma.

▶ Lemma 19. Let u ∈ Tv be double, let v = v1 and let v2 be a vertex of maximum weight in
N(u, A)\{v1}. Then at least one of the following inequalities holds:

(i) w2(u)− w2(N(u, A)\{v1}) ≥ 149
50 · charge(u, v1) · w(v1) or

(ii) w2(u)− w2(N(u, A)\{v2}) ≥ 49
50 · charge(u, v1) · w(v2).

When motivating Lemma 18, we proposed to add charges invoked by vertices in A∗ to a
certain extent for vertices in A. This rather vague idea is clarified by the next definition as
well as the two propositions and the lemma it is followed by.

While Proposition 21 bounds the total amount the neighborhood of each v ∈ A can
contribute to v in a locally optimal solution, Proposition 22 and Lemma 23 give lower bounds
on the fraction of the invoked charges non-double and double vertices contribute in total.

▶ Definition 20 (contribution). Define a contribution map
contr : A∗ ×A→ R≥0 by setting

contr(u, v) :=

max
{

0, w2(u)−w2(N(u,A)\{v})
w(v)

}
, if v ∈ N(u, A)

0 , else
.

▶ Proposition 21. For each v ∈ A, we have
∑

u∈A∗ contr(u, v) ≤ w(v).

This is a straightforward consequence of the fact that no local improvement of w2(A) exists.

▶ Proposition 22. For each u ∈ A∗, we have∑
v∈A

contr(u, v) ≥ contr(u, n(u)) ≥ 2 · charge(u, n(u)).

The statement follows by nonnegativity of the contribution and Lemma 7. Combining
Lemma 7 and Lemma 19 yields the following result:

M. Neuwohner 53:11

▶ Lemma 23. For each double vertex u, we have
∑

v∈A contr(u, v) ≥ 149
50 · charge(u, n(u)).

▶ Definition 24 (C and D). Let C denote the set of all v ∈ A for which
(i)

∑
u∈Tv

charge(u, v) > 1−ϵ
2 · w(v) and

(ii) all vertices in Tv are double.
Let further D :=

⋃
v∈C Tv.

Note that all vertices in D are double by definition. The following proposition tells us that
the total charges invoked by vertices in D constitute a considerable fraction of the weight of
C. It is a direct consequence of the definitions of C and D.

▶ Proposition 25.
∑

u∈D charge(u, n(u)) ≥ 1−ϵ
2 · w(C).

As we have seen that double vertices contribute a factor of at least 149
50 times the charges they

send, we can finally conclude that we obtain an improved approximation factor unless the
weight of C is extremely small compared to w(A), which is the statement of the next lemma.
It follows by combining Corollary 5, Lemma 6, Proposition 21, Proposition 22, Lemma 23
and Proposition 25.

▶ Lemma 26. If w(C) ≥ 25
12 · ϵδ · w(A), then w(A∗) ≤ d−ϵδ

2 · w(A).

By the previous lemma, we know that we can assume w(C) < 25
12 · ϵδ · w(A) in the following.

As outlined before, we continue by proving that we get the desired approximation guarantee
if the set of vertices for which the analysis of SquareImp is not almost tight constitutes at
least a δ fraction of the weight of A. Let therefore

B̄ :=
{

v ∈ A :
∑

u∈Tv

charge(u, v) >
1− ϵ

2 · w(v)
}

denote the set of vertices for which the analysis of SquareImp is close to being tight. The
proof of the following lemma is omitted due to page limit.

▶ Lemma 27. If w(B̄) ≤ (1− δ) · w(A), then d−ϵδ
2 · w(A) ≥ w(A∗).

If we have w(B̄) ≤ (1 − δ) · w(A), we achieve the claimed approximation factor of d−ϵδ
2 ,

so assume w(B̄) > (1 − δ) · w(A) in the following. Let further B := B̄\C. Then we have
w(B) = w(B̄) − w(C) > (1 − δ − 25

12 · ϵδ) · w(A). By Lemma 18, each vertex v ∈ B has a
unique neighbor in Tv which is single. Call this neighbor t(v) and let B∗ := {t(v), v ∈ B}.
We proceed by stating two lemmata that will later help us to transform local improvements
in the instance arising by deleting the vertices in B, B∗ and P into local improvements in
the original one. Lemma 28 thereby tells us that for each v ∈ B, the total weight of the
neighbors of t(v) in A other than v is extremely small, while Lemma 29 establishes a relation
between the squared weights of v and t(v). The proofs are omitted due to page limit.

▶ Lemma 28. For v ∈ B, we have w(N(t(v), A)\{v}) ≤
√

ϵ · w(v).

▶ Lemma 29. For v ∈ B, we have w(v)2 ≤ w(t(v))2 + (4
√

ϵ + 4ϵ) · w2(v).

Consider the sets A′ := A\B and A′∗ := A∗\(B∗ ∪ P) that arise from deleting all vertices
in B and B∗ ∪ P . As outlined before, we would like to apply the analysis of SquareImp
to bound the weight of A′∗ in terms of the weight of A′. However, in order to employ the
definition of charges, we have to make sure that A′ constitutes a maximal independent set in
G[A′ ∪ A′∗]. Showing this property is the purpose of the following lemma. As its proof is
similar to the one of Lemma 32, we omit it due to page limit.

STACS 2021

53:12 An Improved Approximation Algorithm for the MWIS in d-Claw Free Graphs

▶ Lemma 30. If there exists a vertex u ∈ A′∗ such that N(u, A′) = ∅, then there exist a
local improvement of w2(A) in the original instance.

Due to the termination criterion of our algorithm, we know that there is no local improvement
in the original instance, so the previous lemma tells us that every vertex in A′∗ must possess a
neighbor in A′ (considering vertices as adjacent to themselves), showing that A′ is a maximal
independent set in G[A′ ∪A′∗]. We can hence apply the same strategy as in the analysis of
SquareImp to bound the weight of A′∗ by the weight of A′, letting each vertex send charges
to its heaviest neighbor in A′, which must exist by the previous arguments. More precisely,
we apply the definition of charges, Definition 4, to the sub-instance induced by A′ ∪A′∗, in
which A′∗ is independent and A′ is a maximal independent set. Call the resulting charge
map charge′ and recall that it is constructed as follows:

For each u ∈ A′∗, we pick a heaviest neighbor v ∈ N(u, A′) and call it n′(u). Then, for
u ∈ A′∗ and v ∈ A′, we define

charge′(u, v) :=
{

w(u)− w(N(u,A′))
2 if v = n′(u)

0 otherwise
.

For v ∈ A′, let T ′
v := {u ∈ A′∗ : charge′(u, v) > 0} denote the set of vertices in A′∗ that now

send positive charges to v.
We show that we obtain the desired approximation ratio, provided

∑
u∈T ′

v

charge′(u, v) ≤ d + 2
4 · w(v)

holds for all v ∈ A′, and that we can find a local improvement of w2(A) in the original
instance if this is not the case, contradicting the fact that our algorithm did terminate.

▶ Lemma 31. If
∑

u∈T ′
v

charge′(u, v) ≤ d+2
4 · w(v) holds for all v ∈ A′, then we have

w(A∗) ≤ d−ϵδ
2 · w(A).

We are left with proving the following lemma:

▶ Lemma 32. For all v ∈ A′, we have

∑
u∈T ′

v

charge′(u, v) ≤ d + 2
4 · w(v).

This concludes the proof that Algorithm 2 achieves approximation factor of at most

d− ϵδ

2 =
d− 1

31850496
2 = d

2 −
1

63700992 .

By scaling and truncating the weight function , we obtain a polynomial time d
2 −

1
63700992 + ϵ′-

approximation algorithm for any ϵ′ > 0, whereby the running time depends polynomially on
1
ϵ′ . In particular, setting ϵ′ := 1

63700992 , we get a polynomial time d
2 -approximation algorithm.

However, given the fact that the running time of (at least a straightforward implementation
of) Algorithm 2 is in Ω(|V |(d−1)2+(d−1)), this result remains of only theoretical interest for
the time being.

M. Neuwohner 53:13

4 Further Remarks

The proven result indicates that an approximation ratio of d
2 is not the end of the story of

local improvement algorithms for the Maximum Weight Independent Set Problem in d-claw
free graphs. This observation is inevitably followed by the question of how far one can still
get with this approach. Concerning algorithms that only consider local improvements of some
fixed constant size (possibly dependent on d), the result of Hurkens and Schrijver [9] implies
a lower bound of d−1

2 for d ≥ 4. This raises the question of whether and how the gap between
our result, providing an approximation guarantee of d

2 −
1

63700992 + ϵ′ for any ϵ′ > 0, and the
lower bound of d−1

2 can be closed. Although the choice of our constants ϵ and δ still permits
some room for optimization, as the rather rough estimates in the proof of the properties
(1) to (11) indicate, the more critical ones among them still seem to be “tight enough“ to
limit hope for an improvement in an entirely different order of magnitude. Therefore, we
also picked our constants in a way keeping the proof of (1)-(11) as short as possible. Some
further ideas might be required to get substantially closer to an approximation factor of d−1

2 .
Whether or not the latter is possible could be regarded as a worthwhile subject for further
research.

References

1 Esther M. Arkin and Refael Hassin. On local search for weighted k-set packing. Mathematics
of Operations Research, 23(3):640–648, 1998. doi:10.1287/moor.23.3.640.

2 Piotr Berman. A d/2 Approximation for Maximum Weight Independent Set in d-Claw Free
Graphs. In Scandinavian Workshop on Algorithm Theory, pages 214–219. Springer, 2000.
doi:10.1007/3-540-44985-X_19.

3 Barun Chandra and Magnús M. Halldórsson. Greedy Local Improvement and Weighted Set
Packing Approximation. Journal of Algorithms, 39(2):223–240, 2001. doi:10.1006/jagm.
2000.1155.

4 Marek Cygan. Improved Approximation for 3-Dimensional Matching via Bounded Pathwidth
Local Search. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 509–518. IEEE Computer Society, 2013.
doi:10.1109/FOCS.2013.61.

5 Marek Cygan, Fabrizio Grandoni, and Monaldo Mastrolilli. How to Sell Hyperedges: The Hy-
permatching Assignment Problem. In Proceedings of the 2013 Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 342–351. SIAM, 2013. doi:10.1137/1.9781611973105.25.

6 Martin Fürer and Huiwen Yu. Approximating the k-Set Packing Problem by Local Improve-
ments. In International Symposium on Combinatorial Optimization, pages 408–420. Springer,
2014. doi:10.1007/978-3-319-09174-7_35.

7 Magnús M. Halldórsson. Approximating Discrete Collections via Local Improvements. In
Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, page 160–169,
USA, 1995. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/
citation.cfm?id=313651.313687.

8 Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approximating k-Set
Packing. Computational Complexity, 15:20–39, 2006. doi:10.1007/s00037-006-0205-6.

9 Cor A. J. Hurkens and Alexander Schrijver. On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing problems.
SIAM Journal on Discrete Mathematics, 2(1):68–72, 1989. doi:10.1137/0402008.

10 George J. Minty. On Maximal Independent Sets of Vertices in Claw-Free Graphs. Journal of
Combinatorial Theory, Series B, 28(3):284–304, 1980. doi:10.1016/0095-8956(80)90074-X.

STACS 2021

https://doi.org/10.1287/moor.23.3.640
https://doi.org/10.1007/3-540-44985-X_19
https://doi.org/10.1006/jagm.2000.1155
https://doi.org/10.1006/jagm.2000.1155
https://doi.org/10.1109/FOCS.2013.61
https://doi.org/10.1137/1.9781611973105.25
https://doi.org/10.1007/978-3-319-09174-7_35
http://dl.acm.org/citation.cfm?id=313651.313687
http://dl.acm.org/citation.cfm?id=313651.313687
https://doi.org/10.1007/s00037-006-0205-6
https://doi.org/10.1137/0402008
https://doi.org/10.1016/0095-8956(80)90074-X

53:14 An Improved Approximation Algorithm for the MWIS in d-Claw Free Graphs

11 Daishin Nakamura and Akihisa Tamura. A revision of Minty’s algorithm for finding a maximum
weight stable set of a claw-free graph. Journal of the Operations Research Society of Japan,
44(2):194–204, 2001. doi:10.15807/jorsj.44.194.

12 Najiba Sbihi. Algorithme de recherche d’un stable de cardinalité maximum dans un graphe
sans étoile. Discrete Mathematics, 29(1):53–76, 1980. doi:10.1016/0012-365X(90)90287-R.

13 Maxim Sviridenko and Justin Ward. Large Neighborhood Local Search for the Maximum Set
Packing Problem. In International Colloquium on Automata, Languages, and Programming,
pages 792–803. Springer, 2013. doi:10.1007/978-3-642-39206-1_67.

A Inequalities Satisfied by Our Choice of ϵ and δ

4− 2 · 6−9
√

ϵ
4−10

√
ϵ
− 9
√

ϵ ≥ 49
50 (1)

9 · (4
√

ϵ + 5ϵ) < 1 (2)
(1 +

√
ϵ) ·
(
1− δ − 25

12 · ϵδ
)

+ 3d
4 ·
(
δ + 25

12 · ϵδ
)

+ ϵδ ≤ d−ϵδ
2 (3)

36
√

ϵ + 45ϵ ≤ 1
32 (4)

0 < ϵ < 16
100 < 1

4 (5)
1− 3

√
ϵ > 1

2 (6)
1 +
√

ϵ < 3d
4 (7)

4 ·
(
1− 3

2 ·
√

ϵ
)
· (1−

√
ϵ) ≥ 3 > 149

50 (8)
49·(1−ϵ)

100 ≥ 12
25 (9)

(2− 10
√

ϵ) · 6−9
√

ϵ
4−10

√
ϵ
≥ 149

50 (10)
min{2− 10

√
ϵ, 6− 9

√
ϵ, 4− 10

√
ϵ} = 2− 10

√
ϵ > 0 (11)

The proofs of these inequalities are omitted due to page limit.

B Some Propositions and Proofs Omitted in the Main Body

The following proposition is helpful to bound the sizes of candidate local improvements we
consider during the analysis. It is a direct consequence of d-claw freeness.

▶ Proposition 33. For any v ∈ A, we have |N(v, A∗)| ≤ d − 1 and for any u ∈ A∗,
|N(u, A)| ≤ d− 1.

Proof of Lemma 18. If
∑

u∈Tv
charge(u, v) ≤ 1−ϵ

2 ·w(v), we are done, so assume the contrary,
i.e. ∑

u∈Tv

charge(u, v) >
1− ϵ

2 · w(v). (12)

We have |Tv| ⊆ N(v, A∗) by definition, so |Tv| ≤ d− 1 by Proposition 33. As Algorithm 2
has terminated, Tv does not yield a local improvement of w2 and we know that∑

u∈Tv

w2(u) = w2(Tv) ≤ w2(N(Tv, A)) ≤ w2(v) +
∑

u∈Tv

w2(N(u, A)\{v}),

and the outer inequality is equivalent to∑
u∈Tv

w2(u)− w2(N(u, A)\{v}) ≤ w2(v). (13)

By Lemma 7, we know that if charge(u, v) > 0 (which is the case for all u ∈ Tv by definition),
we have

w2(u)− w2(N(u, A)\{v}) ≥ 2 · charge(u, v) · w(v). (14)

https://doi.org/10.15807/jorsj.44.194
https://doi.org/10.1016/0012-365X(90)90287-R
https://doi.org/10.1007/978-3-642-39206-1_67

M. Neuwohner 53:15

As w(v) > 0, for u ∈ Tv, let ϵu ≥ 0 such that

w2(u)− w2(N(u, A)\{v}) = 2 · charge(u, v) · w(v) + ϵu · w2(v). (15)

Then (12) and (13) imply

w2(v) ≥
∑

u∈Tv

w2(u)− w2(N(u, A)\{v})

=
∑

u∈Tv

2 · charge(u, v) · w(v) + ϵu · w(v)2

> 2 · 1− ϵ

2 · w2(v) +
∑

u∈Tv

ϵu · w2(v)

= w2(v) ·
(

1− ϵ +
∑

u∈Tv

ϵu

)
,

and w(v) > 0 yields∑
u∈Tv

ϵu ≤ ϵ. (16)

We now show that for each u ∈ Tv, one of the conditions listed in the lemma applies: Pick
u ∈ Tv. By definition of charges, we know that v = n(u) is a neighbor of u in A of maximum
weight, implying

w2(N(u, A)\{v}) =
∑

x∈N(u,A)\{v}

w2(x)

≤
∑

x∈N(u,A)\{v}

w(x) ·max{0, max
y∈N(u,A)\{v}

w(y)}

= (w(N(u, A))− w(v)) ·max{0, max
y∈N(u,A)\{v}

w(y)}, (17)

whereby max ∅ := −∞. By (15), we therefore obtain

w2(u)− w2(N(u, A)\{v}) = 2 · charge(u, v) · w(v) + ϵu · w2(v)
⇔ w2(u)− w2(N(u, A)\{v}) = (2 · w(u)− w(N(u, A))) · w(v)

+ ϵu · w2(v)
⇔ w2(u) + w2(v)− w2(N(u, A)\{v}) = (2 · w(u) + w(v)− w(N(u, A))) · w(v)

+ ϵu · w2(v),

which results in

(w(u)− w(v))2 − w2(N(u, A)\{v}) + (w(N(u, A))− w(v)) · w(v) = ϵu · w2(v).

Applying (17) yields

(w(u)−w(v))2 +(w(N(u, A))−w(v)) ·(w(v)−max{0, max
y∈N(u,A)\{v}

w(y)}) ≤ ϵu ·w2(v). (18)

As both summands in (18) are nonnegative since real squares are nonnegative, v ∈ N(u, A)
is of maximum weight and w > 0, (18) in particular implies that both

ϵu · w2(v) ≥ (w(u)− w(v))2 and (19)
ϵu · w2(v) ≥ (w(N(u, A))− w(v)) · (w(v)−max{0, max

y∈N(u,A)\{v}
w(y)}). (20)

STACS 2021

53:16 An Improved Approximation Algorithm for the MWIS in d-Claw Free Graphs

From (19), we can infer that |w(u)− w(v)| ≤ √ϵu · w(v), which in turn implies that

w(u) ≤ w(v) + |w(u)− w(v)| ≤ (1 +
√

ϵu) · w(v) as well as
w(v) ≤ w(u) + |w(v)− w(u)| ≤ w(u) +

√
ϵu · w(v),

which yields (1−√ϵu) · w(v) ≤ w(u). As a consequence, by (16), we obtain

w(u)
w(v) ∈ [1−

√
ϵu, 1 +

√
ϵu] ⊆ [1−

√
ϵ, 1 +

√
ϵ]. (21)

In addition to that, (20) tells us that at least one of the two inequalities
√

ϵu · w(v) ≥ w(v)−max{0, max
y∈N(u,A)\{v}

w(y)} or (22)
√

ϵu · w(v) ≥ w(N(u, A))− w(v) (23)

must hold. If (22) applies, the fact that ϵu ≤ ϵ < 1 by (5) and (16), together with w(v) > 0,
implies that N(u, A)\{v} ̸= ∅, so let v2 ∈ N(u, A)\{v} be of maximum weight. Then

w(v)− w(v2) ≤
√

ϵu · w(v) and hence
(1−

√
ϵ) · w(v) ≤ (1−

√
ϵu) · w(v) ≤ w(v2) ≤ w(v) (24)

by maximality of w(v) in N(u, A). From this, we also get

(2−
√

ϵ) · w(v) ≤ w(v) + w(v2) ≤ w(N(u, A)) < 2 · w(u),

whereby the last inequality follows from the fact that u sends positive charges to v. Hence,
together with (21) and (24), all conditions for u being double are fulfilled. In case (23) holds
true, we get

w(N(u, A)) ≤ (1 +
√

ϵu) · w(v) ≤ (1 +
√

ϵ) · w(v),

leaving us with a vertex that is single by (21).
In order to finally see that there can be at most one vertex u ∈ Tv which is single, observe
that for a single vertex u, we have

charge(u, v) = w(u)− w(N(u, A))
2 ≥ (1−

√
ϵ) · w(v)− 1 +

√
ϵ

2 · w(v)

= 1− 3
√

ϵ

2 · w(v).

Hence, the existence of at least two single vertices in Tv and (6) would imply

∑
u∈Tv

charge(u, v) ≥ (1− 3
√

ϵ) · w(v) >
w(v)

2

and (14), combined with the fact that w(v) > 0, would yield∑
u∈Tv

w2(u)− w2(N(u, A)\{v}) ≥
∑

u∈Tv

2 · charge(u, v) · w(v) > w2(v),

a contradiction to (13). ◀

M. Neuwohner 53:17

Proof of Lemma 19. We distinguish two cases, w(v1) ≥ w(u) and w(v1) < w(u). Due to
page limit, we only present the proof for the first, easier case.
Case 1: w(v1) ≥ w(u). Then we have

0 ≤ w(N(u, A))− w(v1) = 2 · (w(u)− charge(u, v1))− w(v1)
= w(u)− 2 · charge(u, v1) + w(u)− w(v1)
≤ w(u)− 2 · charge(u, v1)

and therefore

w2(u)− w2(N(u, A)\{v1}) ≥ w2(u)− (w(N(u, A))− w(v1))2

≥ w2(u)− (w(u)− 2 · charge(u, v1))2

= w2(u)− w2(u) + 4 · w(u) · charge(u, v1)
− 4 · charge(u, v1)2

= 4 · charge(u, v1) · (w(u)− charge(u, v1)). (25)

Given that for a double vertex, we have

charge(u, v1) = w(u)− w(N(u, A))
2 ≤ w(u)− 2−

√
ϵ

2 · w(v1)

≤ w(u)− 2−
√

ϵ

2(1 +
√

ϵ)
· w(u) ≤ w(u)− (2−

√
ϵ) · (1−

√
ϵ)

2 · w(u)

= w(u) · 2− (2− 3
√

ϵ + ϵ)
2 ≤ 3

2 ·
√

ϵ · w(u)

since 1
1+

√
ϵ

= 1−
√

ϵ
1+

√
ϵ
≥ 1−

√
ϵ, (25) implies

w2(u)− w2(N(u, A)\{v1}) ≥ 4 ·
(

1− 3
2 ·
√

ϵ

)
· w(u) · charge(u, v1).

Further knowing that w(u) ≥ (1−
√

ϵ) · w(v1), we finally obtain

w2(u)− w2(N(u, A)\{v1}) ≥ 4 ·
(

1− 3
2 ·
√

ϵ

)
· (1−

√
ϵ) · w(v1) · charge(u, v1)

≥ 149
50 · charge(u, v1) · w(v1)

by (8) as claimed. ◀

▶ Proposition 34. B → B∗, v 7→ t(v) is a bijection with inverse map n ↾ B∗.

Proof of Lemma 31. Observing that G[A′ ∪A′∗] is d-claw free as an induced subgraph of
G, Corollary 5 and Lemma 6 tell us that

w(A′∗) ≤
∑

u∈A′∗

w(N(u, A′))
2 +

∑
u∈A′∗:charge′(u,n′(u))>0

charge′(u, n′(u))

≤ d− 1
2 · w(A′) +

∑
v∈A′

∑
u∈T ′

v

charge′(u, v)

≤ d− 1
2 · w(A′) +

∑
v∈A′

d + 2
4 · w(v)

= d− 1
2 · w(A′) + d + 2

4 · w(A′)

= 3d

4 · w(A′).

STACS 2021

53:18 An Improved Approximation Algorithm for the MWIS in d-Claw Free Graphs

Moreover, by Lemma 18 and by definition of t(v) for v ∈ B, we have

w(B∗) = w({t(v) : v ∈ B}) ≤ (1 +
√

ϵ) · w(B).

By assumption, we further know that w(P) ≤ ϵδ ·w(A) as well as w(B) ≥ (1−δ− 25
12 ·ϵδ)·w(A)

and w(A′) = w(A)− w(B). Putting everything together, we obtain

w(A∗) = w(B∗) + w(A′∗) + w(P)

≤ (1 +
√

ϵ) · w(B) + 3d

4 · (w(A)− w(B)) + ϵδ · w(A)

=
(

3d

4 + ϵδ

)
· w(A)−

(
3d

4 − (1 +
√

ϵ)
)
· w(B) | (7)

≤
(

3d

4 + ϵδ

)
· w(A)−

(
3d

4 − (1 +
√

ϵ)
)
·
(

1− δ − 25
12 · ϵδ

)
· w(A)

=
(

(1 +
√

ϵ) ·
(

1− δ − 25
12 · ϵδ

)
+ 3d

4 ·
(

δ + 25
12 · ϵδ

)
+ ϵδ

)
· w(A) | (3)

≤ d− ϵδ

2 · w(A),

which concludes the proof. ◀

Proof of Lemma 32. Assume that the assertion does not hold and pick v0 ∈ A′ such that∑
u∈T ′

v0

charge′(u, v0) >
d + 2

4 · w(v0).

Let R := {t(v) : v ∈ N(T ′
v0

, B)}. We show that T ′
v0
∪R yields a local improvement of w2(A),

contradicting the termination criterion of our algorithm.
As T ′

v0
⊆ N(v0, A∗), Proposition 33 implies that |T ′

v0
| ≤ d−1. Given that for u ∈ T ′

v0
⊆ A∗,

N(u, B) ⊆ N(u, A) can contain at most d− 1 elements by Proposition 33, Proposition 34
implies that |R| = |N(T ′

v0
, B)| ≤ (d − 1)2. Hence, the total size of our improvement is at

most (d− 1)2 + (d− 1).
As charge′(u, v0) > 0 for all u ∈ T ′

v0
, Lemma 7 shows that

w2(u)− w2(N(u, A′)\{v0}) ≥ 2 · charge′(u, v0) · w(v0)

for all u ∈ T ′
v0

.
Additionally, for u ∈ T ′

v0
with w(u) ≥ 4 · w(v0), we get

2 · w(u)− w(N(u, A′)) = 2 · charge′(u, v0)

and therefore

w(N(u, A′)) = 2 · w(u)− 2 · charge′(u, v0).

As v0 is the heaviest neighbor of u in A′ by definition of charges, we further obtain

w2(N(u, A′)\{v0}) ≤ w2(N(u, A′)) ≤
∑

v∈N(u,A′)

w(v) · w(v0)

= w(N(u, A′)) · w(v0) = (2 · w(u)− 2 · charge′(u, v0)) · w(v0)

≤ 2 · w(u) · w(u)
4 − 2 · charge′(u, v0) · w(v0) = w(u)2

2 − 2 · charge′(u, v0) · w(v0).

M. Neuwohner 53:19

As a consequence,

w(u)2

2 − w2(N(u, A′\{v0})) ≥ 2 · charge′(u, v0) · w(v0).

Let S′
v0

:= {u ∈ T ′
v0

: w(u) ≥ 4 · w(v0)}. Then∑
u∈T ′

v0

charge′(u, v0) >
d + 2

4 · w(v0),

together with the previous considerations and w(v0) > 0, implies that∑
u∈T ′

v0

w2(u)− w2(N(u, A′)\{v0})

=
∑

u∈S′
v0

w2(u)
2 − w2(N(u, A′)\{v0}) +

∑
u∈T ′

v0 \S′
v0

w2(u)− w2(N(u, A′)\{v0})

+
∑

u∈S′
v0

w2(u)
2

≥
∑

u∈S′
v0

2 · charge′(u, v0) · w(v0) +
∑

u∈T ′
v0 \S′

v0

2 · charge′(u, v0) · w(v0)

+
∑

u∈S′
v0

w2(u)
2

=
∑

u∈T ′
v0

2 · charge′(u, v0) · w(v0) +
∑

u∈S′
v0

w2(u)
2

>

(
1 + d

2

)
· w2(v0) +

∑
u∈S′

v0

w2(u)
2 .

This implies∑
u∈T ′

v0

w2(u) > w2(v0) +
∑

u∈T ′
v0

w2(N(u, A′)\{v0}) +
∑

u∈S′
v0

w2(u)
2 + d

2 · w
2(v0)

and hence

w2(T ′
v0

) > w2(N(T ′
v0

, A′)) +
∑

u∈S′
v0

w2(u)
2 + d

2 · w
2(v0)

≥ w2(N(T ′
v0

, A′)) +
∑

u∈S′
v0

w2(u)
2 +

∑
u∈T ′

v0 \S′
v0

w2(u)
32

≥ w2(N(T ′
v0

, A′)) +
∑

u∈T ′
v0

w2(u)
32

= w2(N(T ′
v0

, A′)) + 1
32 · w

2(T ′
v0

) (26)

since |T ′
v0
| ≤ d − 1 and w(u) ≤ 4 · w(v0) for u ∈ T ′

v0
\S′

v0
. We know that we can split the

neighbors of T ′
v0
∪R in A into the neighbors N(T ′

v0
, A′) of T ′

v0
in A′, the neighbors N(T ′

v0
, B)

of T ′
v0

in B and the neighbors of R that we did not consider yet, i.e. N(R, A)\N(T ′
v0

, A).

STACS 2021

53:20 An Improved Approximation Algorithm for the MWIS in d-Claw Free Graphs

For u ∈ R and v := n(u) ∈ N(T ′
v0

, B) ⊆ N(T ′
v0

, A), we have u = t(v) by Proposition 34 and
w(N(u, A)\{v}) ≤

√
ϵ · w(v) by Lemma 28. This shows that

w2(N(R, A)\N(T ′
v0

, A)) ≤ ϵ · w2(N(T ′
v0

, B)).

As T ′
v0
⊆ A′∗ = A∗\(B∗ ∪ P), we have

w2(N(u, B)) ≤ w2(N(u, A)) ≤ 9 · w2(u)

for all u ∈ T ′
v0

, showing that

w2(N(T ′
v0

, B)) ≤ w2(N(T ′
v0

, A)) ≤
∑

u∈T ′
v0

w2(N(u, A)) ≤ 9
∑

u∈T ′
v0

w2(u) = 9 · w2(T ′
v0

)

and hence

w2(N(R, A)\N(T ′
v0

, A)) ≤ ϵ · w2(N(T ′
v0

, B)) ≤ 9ϵ · w2(T ′
v0

). (27)

Finally, Lemma 29 and Proposition 34 yield

w2(N(T ′
v0

, B)) ≤ w2(R) + (4
√

ϵ + 4ϵ) · w2(N(T ′
v0

, B))
≤ w2(R) + (4

√
ϵ + 4ϵ) · 9 · w2(T ′

v0
)

= w2(R) + (36
√

ϵ + 36ϵ) · w2(T ′
v0

). (28)

Combining (26), (27) and (28), we get

w2(N(T ′
v0
∪R, A)) = w2(N(T ′

v0
, A′)) + w2(N(T ′

v0
, B))

+ w2(N(R, A)\N(T ′
v0

, A))

< w2(T ′
v0

)− 1
32 · w

2(T ′
v0

) + w2(R)

+ (36
√

ϵ + 45ϵ) · w2(T ′
v0

)

≤ w2(T ′
v0

) + w2(R)−
(

1
32 − (36

√
ϵ + 45ϵ)

)
w2(T ′

v0
)

≤ w2(T ′
v0

) + w2(R)
= w2(T ′

v0
∪R)

by (4) and since T ′
v0
⊆ A′∗ and R ⊆ B∗ are disjoint. So we indeed get a local improvement

of w2(A), a contradiction.
◀

Complexity of the List Homomorphism Problem in
Hereditary Graph Classes
Karolina Okrasa !

Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland
Institute of Informatics, University of Warsaw, Poland

Paweł Rzążewski !

Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland
Institute of Informatics, University of Warsaw, Poland

Abstract
A homomorphism from a graph G to a graph H is an edge-preserving mapping from V (G) to V (H).
For a fixed graph H, in the list homomorphism problem, denoted by LHom(H), we are given a
graph G, whose every vertex v is equipped with a list L(v) ⊆ V (H). We ask if there exists a
homomorphism f from G to H, in which f(v) ∈ L(v) for every v ∈ V (G). Feder, Hell, and Huang
[JGT 2003] proved that LHom(H) is polynomial time-solvable if H is a so-called bi-arc-graph, and
NP-complete otherwise.

We are interested in the complexity of the LHom(H) problem in F -free graphs, i.e., graphs
excluding a copy of some fixed graph F as an induced subgraph. It is known that if F is connected
and is not a path nor a subdivided claw, then for every non-bi-arc graph the LHom(H) problem is
NP-complete and cannot be solved in subexponential time, unless the ETH fails. We consider the
remaining cases for connected graphs F .

If F is a path, we exhibit a full dichotomy. We define a class called predacious graphs and
show that if H is not predacious, then for every fixed t the LHom(H) problem can be solved in
quasi-polynomial time in Pt-free graphs. On the other hand, if H is predacious, then there exists t,
such that the existence of a subexponential-time algorithm for LHom(H) in Pt-free graphs would
violate the ETH.

If F is a subdivided claw, we show a full dichotomy in two important cases: for H being irreflexive
(i.e., with no loops), and for H being reflexive (i.e., where every vertex has a loop). Unless the
ETH fails, for irreflexive H the LHom(H) problem can be solved in subexponential time in graphs
excluding a fixed subdivided claw if and only if H is non-predacious and triangle-free. On the other
hand, if H is reflexive, then LHom(H) cannot be solved in subexponential time whenever H is not
a bi-arc graph.

2012 ACM Subject Classification Mathematics of computing → Graph coloring; Theory of com-
putation → Problems, reductions and completeness; Theory of computation → Graph algorithms
analysis

Keywords and phrases list homomorphism, fine-grained complexity, hereditary graph classes

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.54

Related Version Full Version: https://arxiv.org/abs/2010.03393 [30]

Funding Karolina Okrasa: Supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme Grant Agreement no. 714704.
Paweł Rzążewski: Supported by Polish National Science Centre grant no. 2018/31/D/ST6/00062.

1 Introduction

Many natural graph-theoretic problems, including Independent Set, k-Coloring, Max
Cut, Odd Cycle Transversal, etc., can be defined in a uniform way as the question
of the existence of certain graph homomorphisms. For two graphs G and H, a function

© Karolina Okrasa and Paweł Rzążewski;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 54; pp. 54:1–54:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:k.okrasa@mini.pw.edu.pl
https://orcid.org/0000-0003-1414-3507
mailto:p.rzazewski@mini.pw.edu.pl
https://orcid.org/0000-0001-7696-3848
https://doi.org/10.4230/LIPIcs.STACS.2021.54
https://arxiv.org/abs/2010.03393
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Complexity of the List Homomorphism Problem in Hereditary Graph Classes

f : V (G) → V (H) is a homomorphism from G to H if for every uv ∈ E(G) it holds that
f(u)f(v) ∈ E(H). If f is a homomorphism from G to H we denote it by f : G → H. As an
important special case, we observe that homomorphisms to Kk are precisely k-colorings of G.
This is why homomorphisms to H are often called H-colorings. We will refer to the graph
H as the target and to the vertices of H as colors. For fixed H, by Hom(H) we denote the
computational problem of deciding if an instance graph admits an H-coloring.

The complexity dichotomy for Hom(H) was shown by Hell and Nešetřil [21]: If H is
bipartite or has a vertex with a loop, then the problem is polynomial-time-solvable, and
otherwise it is NP-complete. The study of variants of graph homomorphisms has attracted
a significant attention [2, 26, 7, 8, 16, 15]. Arguably, the most natural generalization of
the problem is the list homomorphism problem. For fixed H, an instance of the LHom(H)
problem is a pair (G, L), where G is a graph and L is a function that to every vertex v ∈ V (G)
assigns its H-list (or list) L(v) ⊆ V (H). We ask if there exists a homomorphism f : G → H ,
such that for every v ∈ V (G) it holds that f(v) ∈ L(v). We write f : (G, L) → H if f is a
list homomorphism from G to H which respects the lists L, and we write (G, L) → H to
indicate that some such f exists.

The complexity classification for LHom(H) was proven in three steps. First, Feder and
Hell [11] considered reflexive target graphs H , i.e., where every vertex has a loop. In this case
LHom(H) is polynomial-time solvable if H is an interval graph and NP-complete otherwise.
Then, Feder et al. [12] showed the dichotomy in the case that H is irreflexive, i.e., has
no loops. This problem appears to be polynomial-time solvable if H is bipartite and its
complement is a circular-arc graph, and NP-complete otherwise. Finally, Feder et al. [13]
defined a new class of graphs with possible loops, called bi-arc graphs, and showed that if
H is a bi-arc graph, then LHom(H) can be solved in polynomial time, and otherwise the
problem is NP-complete. Reflexive bi-arc graphs coincide with interval graphs, and irreflexive
bi-arc graphs are precisely bipartite graphs whose complement is a circular-arc graph. Let
us point out that all mentioned hardness reductions for LHom(H) also exclude the existence
of a subexponential-time algorithm, unless the ETH fails.

An active line of research is to study the complexity of computational problems, when
the instance is assumed to belong some specific graph class. We usually assume that the
considered classes are hereditary, i.e., closed under vertex deletion. Each such a hereditary
class can be characterized by a (possibly infinite) set of forbidden induced subgraphs. For a
family F of graphs, a graph is F-free if it does not contain any member of F as an induced
subgraph. Most attention is put into considering classes with only one forbidden subgraph,
i.e., for F = {F}. In this case we write F -free, instead of {F}-free. We will always assume
that F is connected.

Let us define two important families of graphs. For an integer t ⩾ 1, by Pt we denote the
path with t vertices. For a, b, c ⩾ 0, by Sa,b,c we denote the graph obtained by taking three
disjoint paths Pa+1, Pb+1, and Pc+1 and merging one of the endvertices of each path into
one vertex. Note that if at least one of a, b, c is equal to 0, then Sa,b,c is an induced path.
The members of {Sa,b,c | a, b, c ⩾ 0} are called subdivided claws.

Let us briefly discuss the complexity of k-Coloring in F -free graphs. First, we observe
that if F is not a path, then for every fixed k ⩾ 3, the k-Coloring remains NP-complete
in F -free graphs. Indeed, Emden-Weinert et al. [10] proved that the problem is hard for
graphs with no cycles shorter than p, for any constant p. Setting p = |V (F)| + 1 yields the
hardness for F -free graphs whenever F contains a cycle. On the other hand, k-Coloring
is NP-complete in line graphs [23, 27], which are in particular S1,1,1-free. This implies the

K. Okrasa and P. Rzążewski 54:3

hardness for F -free graphs if F is a tree with maximum degree at least 3. Combining these,
we conclude that the only connected graphs F , for which we might hope for a polynomial-time
algorithm for k-Coloring in F -free graphs, are paths.

The complexity of k-Coloring in Pt-free graphs has been an active area of research in
the last two decades, see the survey by Golovach et al. [18]. The current state of art is as
follows. We know that for each fixed k, the problem is polynomial-time-solvable in P5-free
graphs [22]. On the other hand, for every k ⩾ 5, the problem is NP-complete in P6-free
graphs [24]. The complexity of 4-Coloring in Pt-free graphs is also fully understood: it
is polynomial-time solvable for t ⩽ 6 [34] and NP-complete for t ⩾ 7 [24]. Finally, we know
that 3-Coloring admits a polynomial time algorithm in P7-free graphs [1]. Interestingly,
we know no proof of NP-hardness of 3-Coloring in Pt-free graphs, for any value of t. The
problem is believed to be solvable in polynomial time for every t, and obtaining such an
algorithm is one of the main open questions in the area.

Let us point out that all mentioned hardness proofs rule out the existence of
subexponential-time algorithms, unless the ETH fails. Furthermore, all algorithmic results
hold even for List k-Coloring, except for the case (k, t) = (4, 6), which is NP-complete in
the list setting [19].

Even though our current toolbox seems to be insufficient to solve 3-Coloring in Pt-free
graphs in polynomial time for all t, we can still solve the problem significantly faster than for
general graphs. Groenland et al. [20] showed an algorithm with running time 2O(

√
n log n),

for all fixed t. Very recently, Pilipczuk et al. [33] observed that the breakthough algorithm
for Independent Set in Pt-free graphs by Gartland and Lokshtanov [17], could be adapted
to solve 3-Coloring in time nO(log3 n). They also presented an arguably simpler algorithm
with running time nO(log2 n).

The complexity of the Hom(H) and LHom(H) problems in F -free graphs received a
lot less attention [14, 25]. On the negative side, Piecyk and Rzążewski [32], showed that if
F is connected and is not a subdivided claw, then for every non-bi-arc H, the LHom(H)
problem remains NP-complete in F -free graphs and cannot be solved in subexponential time,
assuming the ETH.

There are several results about the complexity of LHom(H) in Pt-free graphs. First,
Chudnovsky et al. [3] showed that for k ∈ {5, 7, 9} ∪ [10; ∞), the LHom(Ck) problem can be
solved in polynomial time for P9-free graphs. Very recently, Chudnovsky et al. [4] studied
some further generalization of the homomorphism problem in subclasses of P6-free graphs.
Furthermore, the already mentioned 2O(

√
n log n)-time algorithm by Groenland et al. [20]

actually works for LHom(H) for a large family of graphs H: the requirement is that H does
not contain two vertices with two common neighbors. Even more generally, the algorithm
can solve a weighted homomorphism problem, where, in addition to lists, we allow vertex- and
edge-weights. Later, Okrasa and Rzążewski [31] proved that the weighted homomorphism
problem cannot be solved in Pt-free graphs in subexponential time, whenever the target
graph has two vertices with two common neighbors. However, for some of the hardness
reductions it was essential to exploit the existence of vertex- and edge-weights and thus they
cannot be translated to the arguably more natural LHom(H) problem.

Our results. In this paper we investigate the fine-grained complexity of LHom(H) in F -free
graphs, where F is a subdivided claw. Recall that these are the only connected forbidden
graphs for which we can hope for the existence of subexponential-time algorithms.

First, we define the family of predacious graphs, and show that they precisely correspond
to “hard” cases of LHom(H) in Pt-free graphs. More specifically, we prove the following
theorem.

STACS 2021

54:4 Complexity of the List Homomorphism Problem in Hereditary Graph Classes

▶ Theorem 1. Let H be a fixed graph.
a) If H is not predacious, then for every t, the LHom(H) problem can be solved in time

nO(log2 n) in n-vertex Pt-free graphs.
b) If H is predacious, then there exists t, such that the LHom(H) problem cannot be solved

in time 2o(n) in n-vertex Pt-free graphs, unless the ETH fails.

The definition of predacious graphs is based on the decomposition theorem by Okrasa et
al. [28] that is particularly useful for solving the LHom(H) problem. Using this theorem, each
graph H can be decomposed into a family of induced subgraphs, called factors. Now, a graph
H is predacious, if it has a factor that is simultaneously non-bi-arc and contains a predator :
two vertices a1, a2 with two common neighbors b1, b2, such that a1 and a2 have incomparable
neighborhoods and b1 and b2 have incomparable neighborhoods. Note that a predator is
a refinement of the essential structure in the dichotomy for the weighted homomophism
problem [20, 31].

The proof of Theorem 1 a) builds on the already mentioned decomposition of target graphs
by Okrasa et al. [28] and on the recent quasi-polynomial-time algorithm for 3-Coloring
Pt-free graphs [33]. The hardness counterpart is proven in two steps. First, we consider a
special case that H is bipartite and “undecomposable” (the exact meaning of this is given in
Section 2). Okrasa et al. [28] analyzed the structure of such graphs and showed that it is
rich enough to build a number of useful gadgets. We use them as building blocks of gadgets
required in our hardness reduction. Then, we lift this hardness result to general predacious
graphs H, using the idea of associated bipartite graphs [13].

Next, we turn our attention to the case that F is an arbitrary subdivided claw. We obtain
the dichotomy in two important special cases: that H is irreflexive, and that H is reflexive.
Recall that these cases correspond to the first two steps of the complexity dichotomy for
LHom(H) [11, 12].

As a warm-up, let us discuss the case that H is irreflexive and F is the simplest subdivided
claw, i.e., the claw S1,1,1. Recall that 3-Coloring is NP-complete in line graphs [23], which
are in particular claw-free. Since the reduction yields an ETH lower bound, we obtain that if
H contains a simple triangle, then LHom(H) cannot be solved in subexponential time in
claw-free graphs.

So let us consider the case that H is triangle-free. We note that there is no homomorphism
K3 → H , so if the instance graph contains a triangle, we can immediately report a no-instance.
On the other hand, {S1,1,1, K3}-free graphs are just collections of disjoint paths and cycles,
where the problem can be solved in polynomial time using dynamic programming. We
generalize this simple classification to the case if F is an arbitrary subdivided claw as follows.

▶ Theorem 2. Let H be a fixed irreflexive graph.
a) If H is non-predacious and triangle-free, then for every a, b, c, the LHom(H) problem can

be solved in time 2O(n8/9 log n) in n-vertex Sa,b,c-free graphs.
b) If H is predacious or contains a triangle, then there exist a, b, c, such that the LHom(H)

problem cannot be solved in time 2o(n) in n-vertex Sa,b,c-free graphs, unless the ETH fails.
The algorithm from Theorem 2 a) is based on the existence of the so-called extended strip
decomposition [6]. A similar approach was used by Chudnovsky et al. [5] to obtain a QPTAS
and a subexponential-time algorithm for the Max Independent Set problem in Sa,b,c-free
graphs. However, the decomposition itself is not structured enough to be useful for coloring
problems, such as LHom(H). We proceed as follows. First, similarly as before, we restrict
ourselves to instances that are {Sa,b,c, K3}-free. We analyze the structure of such graphs
G and show that they admit an extended strip decomposition with a very simple structure.

K. Okrasa and P. Rzążewski 54:5

Very roughly speaking, we can find a “small” set X ⊆ V (G), such that for each connected
component C of G − X, the vertices of C can be partitioned into “small” sets called atoms,
that can be arranged in a path-like or cycle-like manner. We exhaustively guess the coloring
of X (which is fine, as X is small). For each atom we solve the problem recursively. Finally,
we use the path-like or cycle-like arrangement of atoms to combine partial results using
dynamic programming, similarly as we did for {S1,1,1, K3}-free graphs.

Let us point out that the assumption that H is irreflexive and triangle-free is only used
to ensure that the instance is triangle-free. For such instances we can solve LHom(H) in
subexponential time for every non-predacious graph H.

The hardness counterpart of Theorem 2 is simple. If H is predacious, then we are done
by Theorem 1 b), as every Pt-free graph is also St,t,t-free. On the other hand, if H contains
a simple triangle, then the problem is hard even in claw-free graphs, as mentioned before.

Finally, we show that for reflexive H the only “easy” cases are bi-arc graphs.

▶ Theorem 3. For every fixed reflexive non-bi-arc graph H, there exist a, b, c, such that the
LHom(H) problem cannot be solved in time 2o(n) in n-vertex Sa,b,c-free graphs, unless the
ETH fails.

Unfortunately, we were not able to provide the full complexity dichotomy for Sa,b,c-free
graphs. We conjecture that the distinction between “easy” and “hard” cases is as follows.

▶ Conjecture 4. Assume the ETH. Let H be a non-bi-arc graph. Then for all a, b, c, the
LHom(H) problem can be solved in time 2o(n) in n-vertex Sa,b,c-free graphs if and only if
none of the following conditions is satisfied:
a) H is predacious,
b) H contains a simple triangle,
c) has a factor that is not bi-arc and contains two incomparable vertices with loops.

Full version of the paper. The proofs of some statements, marked with (♣), are omitted
or just sketched. Complete proofs can be found in the full version of the paper [30].

2 Notation and preliminaries

For a positive integer n, by [n] we denote the set {1, 2, . . . , n}. For a set X and integer k, by
2X we denote the family of all subsets of X and by

(
X
k

)
(resp.

(
X
⩽k

)
) we denote the family of

all subsets of X with exactly (resp. at most) k elements.
For two sets X, Y ⊆ V (G), we say that X is complete to Y if every vertex from X is

adjacent to every vertex from Y . For v ∈ V (G), by NG(v) we denote the set of neighbors of
v and by NG[v] we denote the set NG(v) ∪ {v}. Note that if v has a loop, then v ∈ NG(v),
so NG(v) = NG[v]. We omit the subscript and write N(v) and N [v], respectively, if G is
clear from the context.

We say that two vertices u, v of G are incomparable if N(u) ̸⊆ N(v) and N(v) ̸⊆ N(u).
We say that a set S of vertices is incomparable if its elements are pairwise incomparable.
Let H be a graph and suppose that there are two distinct vertices a, b of H, such that
NH(a) ⊆ NH(b). We observe that in any homomorphism to H, if some vertex is mapped to
a, we can safely remap it to b. Thus, if for some instance (G, L) of the LHom(H) problem
and for some v ∈ V (G) the list L(v) contains a and b as above, then we can safely remove a

from L(v). Thus, without loss of generality, we can always assume that in any instance of
LHom(H) each list is an incomparable set in H.

STACS 2021

54:6 Complexity of the List Homomorphism Problem in Hereditary Graph Classes

For a graph H, by H∗ we denote the bipartite graph with vertex set {a′, a′′ | a ∈ V (H)}
and edge set {a′b′′ | ab ∈ E(H)}. We observe that H∗ is connected if and only if H is
connected and non-bipartite. Moreover, for bipartite H , the graph H∗ consists of two disjoint
copies of H. Feder et al. [13] proved that H is a bi-arc graph if and only H∗ is a bi-arc
graph. As H∗ is bipartite, we can equivalently say that H is a bi-arc graph if and only if the
complement of H∗ is a circular-arc graph.

▶ Definition 5 (Predator). A predator is a tuple (a1, a2, b1, b2) of vertices, such that a1 ̸=
a2, b1 ̸= b2, and {a1, a2} and {b1, b2} are incomparable sets, complete to each other.

Figure 1 shows some examples of predators. Let us point out that the leftmost structure
in Figure 1 is the only predator, which can be bipartite. It will play a special role in our
hardness proofs; we call it an incomparable C4. Observe that (a1, a2, b1, b2) is a predator in
H, for some a1, a2, b1, b2 ∈ V (H), if and only if (a′

1, a′
2, b′′

1 , b′′
2) is an incomparable C4 in H∗.

This implies the following observation.

▶ Observation 6. A graph H contains a predator if and only if H∗ contains an incompara-
ble C4.

a1

b1

b2

a2

a1

b1

b2

a2

a1

b1

b2

a2

a1 = b2

b1

a2

a1 = b2 a2 = b1

Figure 1 Examples of predators (a1, a2, b1, b2) and their neighbors. Red dashed lines denote the
edges that cannot exist. The edges that are not drawn are possible, but not necessary.

We say that H is a strong split graph if V (H) can be partitioned into two sets, P and B,
such that H[P] is a reflexive clique and B is independent.

For a bipartite graph H with bipartition classes X, Y , a bipartite decomposition is a
partition of V (H) into an ordered triple of sets (D, N, R), such that (i) N is non-empty and
separates D and R, (ii) |D ∩ X| ⩾ 2 or |D ∩ Y | ⩾ 2, (iii) (D ∪ N) ∩ X is complete to N ∩ Y

and (D ∪ N) ∩ Y is complete to N ∩ X. We say that H is undecomposable if it admits no
bipartite decomposition.

▶ Theorem 7 (Okrasa et al. [28, 29]). Let H be a graph. In time |V (H)|O(1) we can construct
a family H of O(|V (H)|) connected graphs, called factors of H, such that:
(1) H is a bi-arc graph if and only if every H ′ ∈ H is a bi-arc graph,
(2) for each H ′ ∈ H, the graph H ′∗ is an induced subgraph of H∗ and:

a. H ′ is a bi-arc graph, or
b. H ′ a strong split graph and has an induced subgraph H ′′, which is not a bi-arc graph

and is an induced subgraph of H, or
c. (H ′)∗ is undecomposable,

(3) for every instance (G, L) of LHom(H), the following implication holds:
If there exists a non-decreasing, convex function f : N → R, such that for every H ′ ∈ H,
for every induced subgraph G′ of G, and for every H ′-lists L′ on G′, we can decide
whether (G′, L′) → H ′ in time f(|V (G′)|), then we can solve the instance (G, L) in time
O

(
|V (H)|f(n) + n2 · |V (H)|3

)
.

Now we are ready to define the class of predacious graphs.

K. Okrasa and P. Rzążewski 54:7

▶ Definition 8 (Predacious graphs). Let H be a graph and let H be the family of factors of H.
We say that H is predacious if there exists H ′ ∈ H that is not a bi-arc graph and contains a
predator.

3 Pt-free graphs

3.1 Quasi-polynomial-time algorithm
We observe that to obtain Theorem 1 a), it is sufficient to prove the following.

▶ Theorem 9. Let H be a fixed graph that does not contain a predator. Then for every t,
the LHom(H) problem can be solved in time nO(log2 n) in n-vertex Pt-free graphs.

Indeed, suppose we have proven Theorem 9 and consider a non-predacious graph H, let H be
the family of its factors given by Theorem 7. Since H is non-predacious, every H ′ ∈ H is either
a bi-arc graph, or does not contain a predator. Thus, for each H ′ we can solve the LHom(H ′)
problem in Pt-free graphs in polynomial time (in the first case) or in time nO(log2 n), using
Theorem 9 (in the second case). Now Theorem 1 a) follows from Theorem 7 (3).

Before we proceed to the proof of Theorem 9, let us show one crucial property of graphs H .

▶ Observation 10. Let H be a graph which does not contain a predator. For any incomparable
sets X, Y ⊆ V (H), each of size at least 2, there exist x ∈ X and y ∈ Y such that xy /∈ E(H).

Proof. For contradiction, suppose that there are two incomparable sets X, Y , each of size at
least 2, which are complete to each other. Let x1, x2 be distinct elements from X, and y1, y2
be distinct elements from Y . Then (x1, x2, y1, y2) is a predator. ◀

So let us now prove Theorem 9. The algorithm follows the algorithm for 3-Coloring by
Pilipczuk et al. [33], which is in turn inspired by the work of Gartland and Lokshtanov [17].

Sketch of proof of Theorem 9. Let (G, L) be an instance of LHom(H), such that graph
G is Pt-free. We start with a preprocessing phase, in which we exhaustively perform the
following steps. (1) If for some v ∈ V (G) it holds that L(v) = ∅, then we terminate and report
a no-instance. (2) If for some v ∈ V (G), the list L(v) contains two vertices x, y ∈ V (H),
such that NH(x) ⊆ NH(y), then we remove x from L(v). (3) If for some edge uv ∈ E(G),
and some x ∈ L(u), the vertex x is non-adjacent in H to every y ∈ L(v), then we remove x

from L(u). (4) If for some v ∈ V (G) we have |L(v)| = 1, we remove v from G. Note that by
the previous step the lists of neighbors of v contain only neighbors of the vertex in L(v). (5)
We enumerate all S ∈

(
V (G)
⩽t

)
and all possible H-colorings of (G[S], L). If for some v ∈ V (G)

and some x ∈ L(v), for some S ∈
(

V (G)
⩽t

)
such that v ∈ S there is no h : (G[S], L) → H such

that h(v) = x, we remove x from L(v).
We will continue calling the current instance (G, L), let n be its number of vertices of G.

The instance satisfies the following properties.
(P1) For every v ∈ V (G), the set L(v) is incomparable and has at least two elements.
(P2) For every v ∈ V (G), every S ∈

(
V (G)
⩽t

)
, such that v ∈ S, and every x ∈ L(v), there

exists h : (G[S], L) → H which maps v to x.
Now let us describe the algorithm. If n ⩽ 1, then we report a yes-instance; recall that by
property (P1) each list is non-empty. If the instance G is disconnected, we call the algorithm
for each connected component independently. If none of the above cases occurs, we perform
branching. We will carefully choose a branching pair (v, x), where v ∈ V (G) and x ∈ L(v),
and branch into two possibilities. In the first one, called the successful branch, we call the

STACS 2021

54:8 Complexity of the List Homomorphism Problem in Hereditary Graph Classes

algorithm recursively with the list of v set to {x}. In the second branch we call the algorithm
with x removed from L(v). We report a yes-instance if at least one of the branches reports a
yes-instance.

Now let us discuss how we select a branching pair. For each {u, u′} ∈
(

V (G)
2

)
we define

the bucket Bu,u′ . The elements of Bu,u′ are all possible pairs (P, h), where P is an induced
u-u′-path and h is a list homomorphism from (P, L) to H. We will refer to pairs (P, h) as
colored paths.

Note that since G is Pt-free, the total size of all buckets is O(nt) and they can be
enumerated in polynomial time. Furthermore, by property (P2), we know that Bu,u′ is
non-empty if and only if u and u′ are in the same connected component of G. Even more,
if w belongs to an induced u-u′-path P , and x ∈ L(w), then Bu,u′ contains a colored path
(P, h), such that h(w) = x.

Define

δ := 1
2|V (H)|+1 · t

and ε := 1
2|V (H)|+1 · |V (H)|t · t

= δ

|V (H)|t .

▷ Claim 11. If G is a connected Pt-free graph, then there is a pair (v, x), where v ∈ V (G)
and x ∈ L(v), with the following property. There is a set Q ⊆

(
V (G)

2
)

of size at least δ ·
(

n
2
)
,

such that for every {u, u′} ∈ Q there is a subset Pu,u′ ⊆ Bu,u′ of size at least ε · |Bu,u′ |, such
that for every (P, h) ∈ Pu,u′ , there is wP ∈ V (P) ∩ N [v], such that h(wP) /∈ NH(x).
Proof. For {u, u′} ∈

(
V (G)

2
)
, let θ(u, u′) denote the number of induced u-u′-paths in G. By

[33, Lemma 5], there is a vertex v ∈ V (G), such that for at least 1
2t

(
n
2
)

pairs {u, u′} ∈
(

V (G)
2

)
and for at least 1

2t θ(u, u′) induced u-u′-paths P , the set N [v] intersects V (P). Since the
number of distinct H-lists is at most 2|V (H)|, we observe that by the pigeonhole principle there
is a list L′ ⊆ V (H) and a subset Q ⊆

(
V (H)

2
)

of size at least 1
2|V (H)|+1·t

(
n
2
)

= δ ·
(

n
2
)
, such that

for every {u, u′} ∈ Q there exists a set Pu,u′ of at least δ · θ(u, u′) induced u-u′-paths, with
the property that for every P ∈ Pu,u′ there exists wP ∈ N [v] ∩ V (P), such that L(wP) = L′.

By property (P1) we know that each of L(v) and L′ is an incomparable set with at least
two elements. Thus by Observation 10 there are x ∈ L(v) and y ∈ L′, which are non-adjacent
in H.

Let us argue that the pair (v, x) satisfies the desired conditions. Fix some {u, u′} ∈ Q. As
every induced u-u′ path has at most t − 1 elements, we have that |Bu,u′ | ⩽ |V (H)|t · θ(u, u′).
On the other hand, by property (P2) for every P ∈ Pu,u′ there exists a homomorphism
h : (P, L) → H such that h(wP) = y /∈ NH(x). So, summing up, we obtain that the number
of such pairs (P, h) ∈ Bu,u′ is at least |Pu,u′ | ⩾ δ · θ(u, u′) ⩾ δ

|V (H)|t · |Bu,u′ | = ε · |Bu,u′ |. ◁

Consider the successful branch for the branching pair (v, x) given by Claim 11. For some
{u, u′} ∈ Q, let (P, h) be a colored path in Pu,u′ , and let wP be as in the claim. Consider
the preprocessing phase of the current call. If wP = v, then wP is removed from the graph,
so (P, h) will no longer appear in the bucket of {u, u′}. Similarly, if wP ̸= v, then we remove
h(wP) from L(wP), so (P, h) will not appear in the bucket of {u, u′}. Thus when we branch
using the pair (v, x), in the successful branch we remove an ε-fraction of elements in a
δ-fraction of buckets. This gives the quasi-polynomial running time, we refer to the full
version of the paper for a detailed complexity analysis (♣). ◀

3.2 Hardness results for Pt-free graphs
Let H be a predacious graph and let H be the family of factors of H . Since H is predacious,
there is some non-bi-arc factor H ′ ∈ H, which contains a predator. By Theorem 7 (2) there
are two possible cases:

K. Okrasa and P. Rzążewski 54:9

Case A. H ′ is a strong split graph as in Theorem 7 (2b) (every such graph H ′ contains a
predator, but we will not use it explicitly), and

Case B. (H ′)∗ is an undecomposable induced subgraph of H∗.

Case A: Strong split target graphs. We show that for strong split graphs H ′ the LHom(H ′)
problem remains hard even if the instance is a split graph, i.e., its vertex set can be partitioned
into a clique and an independent set. Equivalently, split graphs are {C4, C5, 2P2}-free graphs.

▶ Theorem 12. Let H ′ be a fixed non-bi-arc strong split graph. Then the LHom(H ′) problem
cannot be solved in time 2o(n) in n-vertex split graphs, unless the ETH fails.

Proof. Let P be the set of vertices in H ′ that have loops, and let B be the set of vertices of
H ′ without loops. Consider an instance (G, L) of LHom(H ′). Recall that without loss of
generality we can assume that each list L(v) is an incomparable set. As for every p ∈ P and
b ∈ B it holds that NH′(b) ⊆ NH′(p), no vertex in G has both a vertex from P and a vertex
from B in its list. Since every list is non-empty, we can partition the vertex set of V (G) into
two sets:

X := {v ∈ V (G) | L(v) ∩ P ̸= ∅} and Y := {v ∈ V (G) | L(v) ∩ B ̸= ∅}.

Furthermore, as B is independent, we can assume that Y is independent; otherwise (G, L)
is a no-instance. Let G′ be obtained from G by adding all edges with both endvertices
in X (except for loops). It is straightforward to verify that (G, L) → H ′ if and only if
(G′, L) → H ′. ◀

Now we can show the main result of this subsection.

Proof of Theorem 1 b) in Case A. Let H be as in Case A and let H ′, H ′′ be as in Theo-
rem 7 (2b). Since H ′′ is an induced subgraph of H ′, it is also a strong split graph, so by
Theorem 12 we know that LHom(H ′′) admits no subexponential-time algorithm in split
graphs. As H ′′ is an induced subgraph of H , every instance of LHom(H ′′) is also an instance
of LHom(H), and we are done. ◀

Case B: Target graphs with the associated bipartite graph undecomposable. First we
consider bipartite, undecomposable, non-bi-arc graphs H, which contain a predator. Recall
that the only bipartite predator is an incomparable C4. We will prove the following.

▶ Theorem 13. Let H be a fixed, bipartite, non-bi-arc, undecomposable graph, which contains
an incomparable C4. Then there exists t, such that LHom(H) cannot be solved in time 2o(n)

in n-vertex Pt-free graphs, unless the ETH fails.

Before we proceed to the proof of Theorem 13, we need to introduce some tools which
we will need. For a pair of vertices (a, b) of V (H), an OR3(a, b)-gadget is an instance (F, L)
of LHom(H) with interface vertices o1, o2, o3 ∈ V (F), such that L(o1) = L(o2) = L(o3) =
{a, b}, and

{f(o1)f(o2)f(o3) | f : (F, L) → H} = {aaa, aab, aba, baa, abb, bab, bba}.

For an incomparable set of vertices S, such that |S| ⩾ 2, a NEQ(S)-gadget is an instance
(F, L) of LHom(H) with interface vertices s1, s2 ∈ V (F), such that L(s1) = L(s2) = S, and

{f(s1)f(s2) | f : (F, L) → H} = {uv | u, v ∈ S, u ̸= v}.

The following structural result is proven by Okrasa et al. [29, Lemma 19 and Corollary 20].

STACS 2021

54:10 Complexity of the List Homomorphism Problem in Hereditary Graph Classes

▶ Lemma 14 (Okrasa et al. [29]). Let H be a connected, bipartite, non-bi-arc, undecomposable
graph with bipartition classes X and Y . Then there exist two incomparable sets of vertices
{α, β} ⊆ X and {α′, β′} ⊆ Y , such that αα′, ββ′ ∈ E(H), αβ′, βα′ /∈ E(H), and the
following conditions hold.
(1) For any incomparable two-element set {a, b} ⊆ V (H), and for any {γ, δ} ∈

{{α, β}, {α′, β′}}, such that {a, b, γ, δ} is contained in one bipartition class, there exist
a path D

γ/δ
a/b with endvertices x, y and H-lists L, such that L(x) = {a, b}, L(y) = {γ, δ},

and:
(D1) there is a list homomorphism ha : (Dγ/δ

a/b , L) → H, such that ha(x) = a and
ha(y) = γ,

(D2) there is a list homomorphism hb : (Dγ/δ
a/b , L) → H, such that hb(x) = b and

hb(y) = δ,
(D3) there is no list homomorphism h : (Dγ/δ

a/b , L) → H, such that h(x) = a and h(y) = δ.
(2) There exist an OR3(α, β)-gadget and an OR3(α′, β′)-gadget.

▶ Lemma 15 ([29]). Let H be a connected, bipartite, non-bi-arc, undecomposable graph, let
S ⊆ V (H) be an incomparable set contained in one bipartition class of H. Then there exists
a NEQ(S)-gadget.

We use Lemma 14 and Lemma 15 to construct the so-called occurrence gadget.

▶ Lemma 16. Let H be a connected, bipartite, non-bi-arc and undecomposable graph, and
let {a, b}, γ, δ be as in Lemma 14 (1). Then there is a Var(a, b)-gadget (G, L) with interface
vertices v, t, f , such that L(v) = {a, b}, L(t) = L(f) = {γ, δ}, and:
(1) for any homomorphism h : (G, L) → H, if h(v) = a, then h(t) = γ and h(f) = δ,
(2) for any homomorphism h : (G, L) → H, if h(v) = b, then h(t) = δ and h(f) = γ.

Proof. We use Lemma 14 to construct gadgets (Dγ/δ
a/b , L) and (Dγ/δ

b/a , L) with endvertices,
respectively, x1, y1 ∈ V (Dγ/δ

a/b) and x2, y2 ∈ V (Dγ/δ
b/a). We then use Lemma 15 for S = {γ, δ}

to construct a NEQ(S)-gadget (F, L) with interface vertices s1, s2 ∈ V (F).
We identify vertices x1 and x2 into a single vertex v. We identify vertices y1 and s1

into a single vertex t, and we identify vertices y2 and s2 into a single vertex f , see Figure 2
(top left). ◀

We proceed to the proof of Theorem 13.

Proof of Theorem 13. Let (a1, a2, b1, b2) be an incomparable C4 in H. Let X and Y be the
bipartition classes of H, so that a1, a2 ∈ X and b1, b2 ∈ Y .

We reduce from 3-Sat. Consider a formula Φ of 3-Sat with variables x1, . . . , xN and
clauses C1, . . . , CM . We can assume that each clause has exactly three literals. We construct
an instance (GΦ, L) of LHom(H) as follows. We introduce a biclique with partite sets
V := {v1, . . . , vN } and U := {u1, . . . , u3M }. Vertices in V correspond to the variables of Φ,
while vertices in U correspond to literals in Φ, i.e., the occurrences of the variables in clauses.
For a clause Ci, by Ui we denote the three-element subset of vertices of U corresponding to
the literals of Ci. For every j ∈ [N] we set L(vj) := {a1, a2} and for every i ∈ [3M] we set
L(ui) := {b1, b2}.

Mapping the vertex vj to a1 (a2, resp.) will correspond to making the variable vj true
(false, resp.). Similarly, we will interpret uj being mapped to b1 (b2, resp.) as setting the
corresponding literal true (false, resp.). So we need to ensure that (i) the coloring of vertices
in V is consistent with the coloring of vertices in U , and (ii) for each clause Ci, at least one
vertex in Ui is mapped to b1.

K. Okrasa and P. Rzążewski 54:11

v := x1 = x2

f := s2 = y2

t := s1 = y1

a
b

γ
δ

γ
δ

(F, L)

(D
γ/δ

a/b
, L)

(D γ/δ
b/a , L) u1

u2

u3

o1

o2

o3

b1
b2

b1
b2

b1
b2

α′
β′

α′
β′

α′
β′

Var(a1, a2) Var(b1, b2)

v1

f1

t1

a1
a2

α
β

α
β v2

f2

t2

b1
b2

α′
β′

α′
β′

Figure 2 A schematic view of a Var(a, b)-gadget (top left), an OR3(b1, b2)-gadget (top right) and
a positive occurrence gadget (bottom). On every picture, the blue lines indicate that there exists an
H-coloring of the respective part of the graph, which assigns chosen values to white vertices, and
the red ones indicate that there is no such H-coloring. The red area indicates an OR3(α′, β′)-gadget
with interface vertices o1, o2, o3.

To ensure property (i), we will introduce two types of occurrence gadgets. We use
Lemma 16 to construct two variable gadgets Var(a1, a2) and Var(b1, b2) and add an edge
between their t-vertices and another one between f -vertices. This way we obtain a positive
occurrence gadget, see Figure 2 (bottom). A negative occurrence gadget is obtained from
a positive occurrence gadget by adding a copy of a NEQ({b1, b2})-gadget, constructed by
Lemma 15, with interface vertices s1, s2, and identifying s1 with v2. The occurrence gadgets
have two special vertices: a variable vertex v1, and a literal vertex, which is v2 for the
positive occurrence gadget, and s2 for the negative occurrence gadget. Consider a vertex
ui ∈ U , which corresponds to an occurrence of a variable xj , and thus to the vertex vj . If ui

corresponds to a positive (resp., negative) literal, we introduce a positive (resp., negative)
occurrence gadget, and identify vj with its variable vertex and ui with its literal vertex. One
can readily verify that the constructed gadgets can indeed be used to ensure property (i).

Consider a set Ui = {u1, u2, u3}, corresponding to the literals of some clause Ci. We
observe that in order to ensure property (ii), we need to construct an OR3(b1, b2)-gadget,
whose interface vertices are precisely u1, u2, and u3. We call Lemma 14 to construct an
OR3(α′, β′)-gadget with interface vertices o1, o2, o3 and three copies of the graph D

β′/α′

b2/b1
.

For s ∈ {1, 2, 3}, we identify one endvertex of the s-th copy of D
β′/α′

b2/b1
(the one with the list

{b1, b2}) with us, and the other endvertex (the one with the list {α′, β′}) with os, see Figure 2
(top right). Again, it is straightforward to verify that the constructed subgraph is indeed an
OR3(b1, b2)-gadget with interface vertices u1, u2, u3.

The discussion above implies that (GΦ, L) → H if and only if Φ is satisfiable. Let t′

be the maximum of the numbers of vertices in the negative occurrence gadget and in the
OR3(b1, b2)-gadget and define t := t′ + 4. By a simple case analysis it can be verified that
GΦ is Pt-free (♣). ◀

Finally, we can prove Theorem 1 b) in Case B.

STACS 2021

54:12 Complexity of the List Homomorphism Problem in Hereditary Graph Classes

Proof of Theorem 1 b) in Case B. For contradiction, suppose that there exists a graph H ,
satisfying the assumptions, and for every t there is an algorithm At, which solves every
Pt-free instance of LHom(H) in subexponential time. Let H ′ be a factor of H as in the
assumptions of Case B and observe that H ′∗ satisfies the assumptions of Theorem 13. Let t

be given by Theorem 13 for H ′∗.
Let (G, L′) be an instance of LHom(H ′∗) constructed as in the proof of Theorem 13.

Since H ′∗ is an induced subgraph of H∗, (G, L′) is also an instance of LHom(H∗). Note
that G is bipartite and Pt-free, and no list intersects both bipartition classes of H∗. Define
L : V (G) → 2V (H) as follows: L(v) := {a | {a′, a′′} ∩ L(v) ̸= ∅}. It is straightforward to
verify that (G, L′) → H∗ if and only if (G, L) → H [29, Proposition 43]. Thus we can use
At to decide if (G, L) → H or, equivalently, if (G, L′) → H ′∗, in subexponential time. By
Theorem 13 this contradicts the ETH. ◀

4 Sa,b,c-free graphs

4.1 Subexponential-time algorithm for {Sa,b,c, K3}-free graphs
To describe the algorithm, we first need to introduce the notion of an extended strip de-
composition [6, 5]. For a graph G, by T (G) we denote the set of all triangles in G, i.e.,
three-element sets {x, y, z} of pairwise adjacent vertices. We will denote a triangle {x, y, z}
shortly by xyz.

Let G be a simple graph. An extended strip decomposition (D, η) of G consists of:
a simple graph D and a function η : V (D) ∪ E(D) ∪ T (D) → 2V (G),
for each xy ∈ E(D), subsets η(xy, x), η(xy, y) ⊆ η(xy),

which satisfy the following properties:
1. {η(o) | o ∈ V (D) ∪ E(D) ∪ T (D)} is a partition of V (G),
2. for every x ∈ V (D) and every distinct y, z ∈ ND(x), the set η(xy, x) is complete to

η(xz, x),
3. every uv ∈ E(G) is contained in one of the sets η(o) for o ∈ V (D) ∪ E(D) ∪ T (D) or:

u ∈ η(xy, x), v ∈ η(xz, x) for some x ∈ V (D) and y, z ∈ ND(x), or
u ∈ η(xy, x), v ∈ η(x) for some xy ∈ E(D), or
u ∈ η(xyz) and v ∈ η(xy, x) ∩ η(xy, y) for some xyz ∈ T (D).

We will sometimes refer to elements of V (D) ∪ E(D) ∪ T (D) as objects of D.
The following subsets of V (G) are called atoms of a decomposition (D, η): (1) for an

object o ∈ V (D)∪T (D), the set η(o), (2) for xy ∈ E(D), the set η(xy)−(η(xy, x) ∪ η(xy, y)),
the set η(x) ∪ η(xy) − η(xy, y), and the set η(x) ∪ η(y) ∪ η(xy) ∪

⋃
xyz∈T (D) η(xyz).

The following theorem is the main combinatorial tool used in our algorithm.

▶ Theorem 17 (♣). Let t ⩾ 4, σ ∈ (0, 1
100t), and let G be a connected (St,t,t, K3)-free

graph on n vertices with ∆(G) < σ8 · n. Then there exists X ⊆ V (G) and an extended strip
decomposition (D, η) of G − X with each atom of size at most α, such that:
(1) α ⩽ (1 − σ7)n and |X| ⩽ σ(n − α),
(2) η(xyz) = ∅ for every xyz ∈ T (D),
(3) D is a simple graph with maximum degree at most 2,
(4) if for some edge xy of D we have η(xy, x) = ∅, then x is of degree 1 in D.

Sketch of proof. By a result of Chudnovsky et al. [5, Lemma 6.5] there is X ⊆ V (G) and an
extended strip decomposition (D′, η′) of G − X, satisfying (1). We aim to modify (D′, η′) in
order to obtain a decomposition with the desired structure. We will still denote the extended
strip decomposition obtained after each step of modification as (D′, η′).

K. Okrasa and P. Rzążewski 54:13

To ensure properties (2), (3), and (4), we use the fact that G is triangle-free. Let us start
with (2) and consider a triangle xyz in D′. Define Axy := η(xy, x) ∩ η(xy, y). Sets Ayz and
Axz are defined in an analogous way. Recall that the neighborhood of η(xyz) is contained in
Axy ∪ Ayz ∪ Axz. However, these three sets are complete to each other, so at least one of
them must be empty. It turns out that we can “absorb” η(xyz) into η(o), where o is either a
vertex or an edge of xyz, without violating the properties of an extended strip decomposition
and increasing the maximum atom size.

Now let us discuss property (3). Suppose D′ has a vertex x with at least three neighbors,
say y, y′, y′′. As the sets η(xy, x), η(xy, x), η(xy′′, x) are pairwise complete to each other, at
least one of them, say η(xy, x), must be empty. We introduce a new vertex x′ to D′, add the
edge x′y with η(x′y) := η(xy) and η(x′y, y) := η(xy, y), and remove xy from D′. Observe
that the degree of x was reduced by 1. We repeat this step exhaustively. Property (4) is
ensured in a similar way. ◀

▶ Theorem 18 (♣). Let H be a connected graph with no predator. Then for every a, b, c ⩾ 0,
the LHom(H) problem can be solved in time 2O(n8/9 log n) in n-vertex {Sa,b,c, K3}-free graphs.

Sketch of proof. We assume that n is large, as otherwise we solve the problem exhaustively.
We will present a recursive algorithm. Let F (n) be the running time bound on instances
with n vertices.

Similarly as we did in Section 3.1, we can ensure that every list is an incomparable set of
size at least two and for every uv ∈ E(G) and every a ∈ L(v) there exists b ∈ L(u) such that
ab ∈ E(H).

First, suppose that exists a vertex v ∈ V (G) such that degG(v) ⩾ n1/9. This implies that
there exists a list L′ assigned to at least ℓ := n1/9/2|V (H)| neighbors of v. By Observation 10
there exist a ∈ L(v) and b ∈ L′ such that ab ̸∈ E(H). We branch on assigning a to v; either
we remove a from L(v) or color v with a and remove b from the lists of all neighbors of v.
Since in the second branch at least ℓ lists are shortened, we obtain that the complexity in
this case is F (n) = 2O(n8/9 log n).

Now suppose that the maximum degree of G is smaller than n1/9. Theorem 17 called for
t := max(a, b, c, 4) and σ := n1−/9 yields X ⊆ V (G) and an extended strip decomposition
(D, η) of G − X, satisfying the conditions stated in the statement. Let α be the maximum
size of an atom of (D, η). If x ∈ V (D) has two neighbors y and z, then, by Theorem 17 (4),
η(xy, x) ̸= ∅ and η(xz, x) ̸= ∅. As η(xy, x) is complete to η(xz, x) and the maximum degree
of G is at most n1/9, we observe that |η(xy, x)| < n1/9 and |η(xz, x)| < n1/9.

We proceed as follows. We exhaustively guess the H-coloring of vertices of X; there are
at most |V (H)||X| possibilities. In each branch we need to decide if the H-coloring of X

can be extended to all vertices of G. For an edge uv ∈ E(G), such that u ∈ X and v /∈ X,
we remove from L(v) every non-neighbor of the color of u. Now the problem is reduced
to solving the instance of LHom(H) on each component G′ of G − X independently. We
observe that V (G′) ⊆

⋃
o∈V (D′)∪E(D′)∪T (D′) η(o) for some connected component D′ of D.

Recall that D′ is a path or a cycle.

▷ Claim 19 (♣). We can solve the instance (G′, L) of LHom(H) in time |V (H)|4n1/9 · F (α) ·
nO(1).

Sketch of Proof. Suppose D′ is a path with consecutive vertices x1, . . . , xm. If m ⩽ 2,
then |V (G′)| ⩽ α and we solve the problem recursively in time F (α). Otherwise, for
every edge xixi+1, except for x1x2 and xm−1xm, we enumerate all pairs (f, g), such that
f : (G[η(xixi+1, xi)], L) → H and g : (G[η(xixi+1, xi+1)], L) → H. Now for each such pair

STACS 2021

54:14 Complexity of the List Homomorphism Problem in Hereditary Graph Classes

we verify if the partial H-coloring given by f and g can be extended to an H-coloring of
G([η(xixi+1)], L). We can do it in time F (α) by recursively solving an appropriate instance
of LHom(H). Similarly, for each vertex xi, except for x1, xm, we enumerate all list H-
colorings of η(xi−1xi, xi) and η(xixi+1, xi) and recursively check if they can be extended to
a homomorphism (G[η(xi)], L) → H. To deal with the extremities of D′, for each coloring
of η(x1x2, x2) (resp. η(xm−1xm, xm−1)) we test if it can be extended to an H-coloring of
(G[η(x1) ∪ η(x1x2)], L) (resp. (G[η(xm) ∪ η(xm−1xm)], L)); note that each of these instances
has at most α vertices. Then we use dynamic programming to decide if (G′, L) → H.

Suppose now that D′ is a cycle x1, x2, . . . , xm. We guess the coloring of η(x1x2, x1), adjust
the lists of its neighbors, and remove η(x1x2, x1) from G′. We modify D′ by introducing
a vertex x′

1 and the edge x′
1x2 to D′, and removing the edge x1x2. Sets η are modified as

in the proof of Claim 19. After the modification D′ is a path and we continue as in the
previous case. ◁

So let us now estimate the total running time in case that the maximum degree of G is at
most n1/9. Recall that we exhaustively guess the coloring of |X| and then, for every connected
component of G − X, we try to extend it, using Claim 19. Thus the overall complexity F (n)
in the considered case is described by F (n) ⩽ |V (H)||X| · |V (H)|4n1/9 · F (α) · nO(1). Applying
|X| ⩽ n−1/9(n − α) and 1 ⩽ α ⩽ n − n2/9, and the inductive assumption, we conclude that
F (n) = 2O(n8/9 log n). ◀

Combining Theorem 18 with Theorem 7, we immediately obtain the following corollary.

▶ Corollary 20. Let H be a non-predacious graph. Then for every a, b, c ⩾ 0, the LHom(H)
problem can be solved in time 2O(n8/9 log n) in n-vertex {Sa,b,c, K3}-free graphs.

Now Theorem 2 a) follows from Corollary 20. Since H is irreflexive and triangle-free, if
G is not triangle-free, we report a no-instance. In the other case, we use the algorithm from
Corollary 20.

4.2 Hardness results
▶ Theorem 3 b). Let H be a graph, which is predacious or contains a simple triangle. Then
there is t, such that LHom(H) cannot be solved in time 2o(n) in n-vertex St,t,t-free graphs,
unless the ETH fails.

Proof. The first case of the theorem follows directly from Theorem 1 b), as Pt-free graphs are
St,t,t-free. The second case follows from the hardness of 3-Coloring in line graphs [23]. ◀

▶ Theorem 21. Let H be a connected non-bi-arc graph such that H∗ is undecomposable
and there are three distinct vertices u1, u2, u3 of H with loops, such that S = {u1, u2, u3}
is incomparable. Then there is t, such that LHom(H) cannot be solved in time 2o(n) in
St,t,t-free graphs, unless the ETH fails.

Proof. Let G be an instance of 3-Coloring with V (G) = {v1, v2, . . . , vN }. We construct an
instance (G′, L) of LHom(H) such that G is 3-colorable if and only if (G′, L) → H. First,
for every i ∈ [N] we introduce to G′ a graph Ki, which is a complete graph with the vertex
set V (Ki) := {xij | vj ∈ NG(vi)}. Intuitively, the vertex xij represents the connection of vi

and vj from the point of view of vi. We set L(xij) := S for all relevant i, j. Now, for each
edge vivj of G, we introduce a copy of the NEQ(S)-gadget given by Lemma 15, and identify
its two interface vertices with xij and xji, respectively. Suppose for now that we can ensure
the following property.

K. Okrasa and P. Rzążewski 54:15

(⋆) For each i ∈ [N] and each f : (Ki, L) → H, all vertices of Ki are mapped to the same
element of S, and for each u ∈ S there is f : (Ki, L) → H that maps all vertices of Ki

to u.
With the property above at hand, we can interpret the mapping of vertices in Ki as coloring
vi with one of three possible colors. The properties of the NEQ(S)-gadget imply that G is
3-colorable if and only if the constructed graph admits a list homomorphism to H.

Now let us argue how to ensure property (⋆). For each i ∈ [N] we add an independent
set Qi and make it complete to Ki. The size of Qi and the lists of its vertices depend on the
structure of H.

For {ℓ, ℓ′, ℓ′′} = [3], a private neighbor of uℓ ∈ S ⊆ V (H) is a vertex wℓ ∈ N(uℓ)−(N(uℓ′)∪
N(uℓ′′)). Note that if uℓ does not have a private neighbor, then, since S is incomparable,
there exist wℓℓ′ ∈ N(uℓ) ∩ N(uℓ′) − N(uℓ′′) and wℓℓ′′ ∈ N(uℓ) ∩ N(uℓ′′) − N(uℓ′).

We consider three cases. If for each ℓ ∈ [3], the vertex uℓ has a private neighbor, then
Qi := {qi}, and L(qi) := {w1, w2, w3}. Otherwise, if there are exactly two vertices in S

which have private neighbors, say u2 and u3, we set Qi := {qi, ri}, L(qi) := {w12, w2, w3}
and L(ri) := {w13, w2, w3}. Last, if there is at most one vertex in S which has private
neighbors, say u3, we set Qi := {qi, ri, si} and L(qi) := {w12, w13}, L(ri) := {w12, w23},
and L(si) := {w13, w23}. It is straightforward to verify that in each of the above cases the
property (⋆) holds.

That completes the construction of (G′, L). By the reasoning above we observe that
(G′, L) → H if and only if G is 3-colorable. Let t ⩾ 2 be the number of vertices in the
NEQ(S)-gadget given by Lemma 15. A straightforward analysis of the structure of G′ implies
that G′ is St,t,t,-free (♣). ◀

With Theorem 21 at hand, we can prove Theorem 3.

Proof of Theorem 3. Let H ′ be a vertex-minimal induced non-bi-arc subgraph of H . Feder
and Hell [11] proved that H ′ (i) is an induced cycle with at least four vertices, or (ii) consists
of an independent set {x, y, z} and three paths, each joining two vertices from {x, y, z}
and avoiding the neighborhood of the third one. The minimality of H ′ implies that H ′∗ is
undecomposable (see e.g. [9]). Now observe that H ′ contains an incomparable set of size 3:
in case (i) we can take any three vertices of H ′, and in case (ii) this set is {x, y, z}. Thus the
claim follows from Theorem 21. ◀

5 Conclusion

Recall that while for Pt-free graphs, in Theorem 1 we were able to fully characterize the
“easy” and “hard” cases of LHom(H), for the case of Sa,b,c-free graphs we obtained a full
dichotomy only for irreflexive (Theorem 2) and for reflexive (Theorem 3) graphs H . In order
to complete the dichotomy, we need to consider graphs H that are neither irreflexive nor
reflexive. Some hardness results for such graphs follow already from Theorem 3 b) and
Theorem 21. We were also able to obtain a few more ad-hoc hardness results, which we do
not present here. All our results seem to support the following conjecture.

▶ Conjecture 4. Assume the ETH. Let H be a non-bi-arc graph. Then for all a, b, c, the
LHom(H) problem can be solved in time 2o(n) in n-vertex Sa,b,c-free graphs if and only if
none of the following conditions is satisfied:
a) H is predacious,
b) H contains a simple triangle,
c) has a factor that is not bi-arc and contains two incomparable vertices with loops.

STACS 2021

54:16 Complexity of the List Homomorphism Problem in Hereditary Graph Classes

References
1 Flavia Bonomo, Maria Chudnovsky, Peter Maceli, Oliver Schaudt, Maya Stein, and Mingxian

Zhong. Three-coloring and list three-coloring of graphs without induced paths on seven vertices.
Combinatorica, 38(4):779–801, 2018. doi:10.1007/s00493-017-3553-8.

2 Andrei A. Bulatov. H-Coloring dichotomy revisited. Theor. Comput. Sci., 349(1):31–39, 2005.
doi:10.1016/j.tcs.2005.09.028.

3 Maria Chudnovsky, Shenwei Huang, Pawel Rzążewski, Sophie Spirkl, and Mingxian Zhong.
Complexity of Ck-coloring in hereditary classes of graphs. In Michael A. Bender, Ola Svensson,
and Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms, ESA 2019,
September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages 31:1–31:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.31.

4 Maria Chudnovsky, Jason King, Michał Pilipczuk, Paweł Rzążewski, and Sophie Spirkl. Finding
large H-colorable subgraphs in hereditary graph classes. In Fabrizio Grandoni, Grzegorz
Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA
2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages
35:1–35:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ESA.2020.35.

5 Maria Chudnovsky, Marcin Pilipczuk, Michal Pilipczuk, and Stéphan Thomassé. Quasi-
polynomial time approximation schemes for the maximum weight independent set problem
in H -free graphs. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages
2260–2278. SIAM, 2020. doi:10.1137/1.9781611975994.139.

6 Maria Chudnovsky and Paul D. Seymour. The three-in-a-tree problem. Combinatorica,
30(4):387–417, 2010. doi:10.1007/s00493-010-2334-4.

7 Víctor Dalmau, László Egri, Pavol Hell, Benoit Larose, and Arash Rafiey. Descriptive
complexity of list H-coloring problems in logspace: A refined dichotomy. In 30th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10,
2015, pages 487–498. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.52.

8 László Egri, Pavol Hell, Benoit Larose, and Arash Rafiey. Space complexity of list H-colouring:
a dichotomy. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
pages 349–365. SIAM, 2014. doi:10.1137/1.9781611973402.26.

9 László Egri, Dániel Marx, and Paweł Rzążewski. Finding list homomorphisms from bounded-
treewidth graphs to reflexive graphs: a complete complexity characterization. In Rolf
Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Com-
puter Science, STACS 2018, February 28 to March 3, 2018, Caen, France, volume 96
of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2018.
doi:10.4230/LIPIcs.STACS.2018.27.

10 Thomas Emden-Weinert, Stefan Hougardy, and Bernd Kreuter. Uniquely colourable graphs
and the hardness of colouring graphs of large girth. Comb. Probab. Comput., 7(4):375–386,
1998. URL: http://journals.cambridge.org/action/displayAbstract?aid=46667.

11 Tomás Feder and Pavol Hell. List homomorphisms to reflexive graphs. Journal of Combinatorial
Theory, Series B, 72(2):236–250, 1998. doi:10.1006/jctb.1997.1812.

12 Tomás Feder, Pavol Hell, and Jing Huang. List homomorphisms and circular arc graphs.
Combinatorica, 19(4):487–505, 1999. doi:10.1007/s004939970003.

13 Tomás Feder, Pavol Hell, and Jing Huang. Bi-arc graphs and the complexity of list homomor-
phisms. Journal of Graph Theory, 42(1):61–80, 2003. doi:10.1002/jgt.10073.

14 Tomás Feder, Pavol Hell, and Jing Huang. List homomorphisms of graphs with bounded
degrees. Discrete Mathematics, 307(3-5):386–392, 2007. doi:10.1016/j.disc.2005.09.030.

15 Tomás Feder, Pavol Hell, Sulamita Klein, and Rajeev Motwani. List partitions. SIAM J.
Discrete Math., 16(3):449–478, 2003. URL: http://epubs.siam.org/sam-bin/dbq/article/
38405.

https://doi.org/10.1007/s00493-017-3553-8
https://doi.org/10.1016/j.tcs.2005.09.028
https://doi.org/10.4230/LIPIcs.ESA.2019.31
https://doi.org/10.4230/LIPIcs.ESA.2020.35
https://doi.org/10.4230/LIPIcs.ESA.2020.35
https://doi.org/10.1137/1.9781611975994.139
https://doi.org/10.1007/s00493-010-2334-4
https://doi.org/10.1109/LICS.2015.52
https://doi.org/10.1137/1.9781611973402.26
https://doi.org/10.4230/LIPIcs.STACS.2018.27
http://journals.cambridge.org/action/displayAbstract?aid=46667
https://doi.org/10.1006/jctb.1997.1812
https://doi.org/10.1007/s004939970003
https://doi.org/10.1002/jgt.10073
https://doi.org/10.1016/j.disc.2005.09.030
http://epubs.siam.org/sam-bin/dbq/article/38405
http://epubs.siam.org/sam-bin/dbq/article/38405

K. Okrasa and P. Rzążewski 54:17

16 Tomás Feder, Pavol Hell, David G. Schell, and Juraj Stacho. Dichotomy for tree-structured
trigraph list homomorphism problems. Discrete Applied Mathematics, 159(12):1217–1224,
2011. doi:10.1016/j.dam.2011.04.005.

17 Peter Gartland and Daniel Lokshtanov. Independent set on Pk-free graphs in quasi-polynomial
time. CoRR, abs/2005.00690, 2020. To appear in FOCS 2020 Proc. arXiv:2005.00690.

18 Petr A. Golovach, Matthew Johnson, Daniël Paulusma, and Jian Song. A survey on the
computational complexity of coloring graphs with forbidden subgraphs. Journal of Graph
Theory, 84(4):331–363, 2017. doi:10.1002/jgt.22028.

19 Petr A. Golovach, Daniël Paulusma, and Jian Song. Closing complexity gaps for coloring
problems on H-free graphs. Inf. Comput., 237:204–214, 2014. doi:10.1016/j.ic.2014.02.004.

20 Carla Groenland, Karolina Okrasa, Paweł Rzążewski, Alex Scott, Paul Seymour, and Sophie
Spirkl. H-colouring Pt-free graphs in subexponential time. Discrete Applied Mathematics,
267:184–189, 2019.

21 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Comb. Theory, Ser. B,
48(1):92–110, 1990. doi:10.1016/0095-8956(90)90132-J.

22 Chính T. Hoàng, Marcin Kaminski, Vadim V. Lozin, Joe Sawada, and Xiao Shu. Deciding
k-colorability of P5-free graphs in polynomial time. Algorithmica, 57(1):74–81, 2010. doi:
10.1007/s00453-008-9197-8.

23 Ian Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10(4):718–720, 1981.
doi:10.1137/0210055.

24 Shenwei Huang. Improved complexity results on k-coloring Pt-free graphs. Eur. J. Comb.,
51:336–346, 2016. doi:10.1016/j.ejc.2015.06.005.

25 Marcin Kamiński and Anna Pstrucha. Certifying coloring algorithms for graphs without long
induced paths. Discret. Appl. Math., 261:258–267, 2019. doi:10.1016/j.dam.2018.09.031.

26 Gábor Kun and Mario Szegedy. A new line of attack on the dichotomy conjecture. Eur. J.
Comb., 52:338–367, 2016. doi:10.1016/j.ejc.2015.07.011.

27 Daniel Leven and Zvi Galil. NP-completeness of finding the chromatic index of regular graphs.
J. Algorithms, 4(1):35–44, 1983. doi:10.1016/0196-6774(83)90032-9.

28 Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Full complexity classification of the
list homomorphism problem for bounded-treewidth graphs. In Fabrizio Grandoni, Grzegorz
Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA
2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages
74:1–74:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ESA.2020.74.

29 Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Full complexity classification of the
list homomorphism problem for bounded-treewidth graphs. CoRR, abs/2006.11155, 2020.
arXiv:2006.11155.

30 Karolina Okrasa and Paweł Rzążewski. Complexity of the list homomorphism problem in
hereditary graph classes. CoRR, abs/2010.03393, 2020. arXiv:2010.03393.

31 Karolina Okrasa and Paweł Rzążewski. Subexponential algorithms for variants of the
homomorphism problem in string graphs. J. Comput. Syst. Sci., 109:126–144, 2020.
doi:10.1016/j.jcss.2019.12.004.

32 Marta Piecyk and Paweł Rzążewski. Fine-grained complexity of the list homomorphism
problem: feedback vertex set and cutwidth. CoRR, abs/2009.11642, 2020. Extended abstract
available in STACS 2021 Proc. arXiv:2009.11642.

33 Michał Pilipczuk, Marcin Pilipczuk, and Paweł Rzążewski. Quasi-polynomial-time algorithm
for Independent Set in Pt-free graphs via shrinking the space of induced paths. In Valerie
King and Hung Viet Le, editors, Proceedings of the Fourth SIAM Symposium on Simplicity in
Algorithms (SOSA), Alexandria, Virginia, USA, January 11-12, 2021 (Virtual conference),
pages 204–209. SIAM, 2021. doi:10.1137/1.9781611976496.23.

34 Sophie Spirkl, Maria Chudnovsky, and Mingxian Zhong. Four-coloring P6-free graphs. In
Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
1239–1256. SIAM, 2019. doi:10.1137/1.9781611975482.76.

STACS 2021

https://doi.org/10.1016/j.dam.2011.04.005
http://arxiv.org/abs/2005.00690
https://doi.org/10.1002/jgt.22028
https://doi.org/10.1016/j.ic.2014.02.004
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1007/s00453-008-9197-8
https://doi.org/10.1007/s00453-008-9197-8
https://doi.org/10.1137/0210055
https://doi.org/10.1016/j.ejc.2015.06.005
https://doi.org/10.1016/j.dam.2018.09.031
https://doi.org/10.1016/j.ejc.2015.07.011
https://doi.org/10.1016/0196-6774(83)90032-9
https://doi.org/10.4230/LIPIcs.ESA.2020.74
https://doi.org/10.4230/LIPIcs.ESA.2020.74
http://arxiv.org/abs/2006.11155
http://arxiv.org/abs/2010.03393
https://doi.org/10.1016/j.jcss.2019.12.004
http://arxiv.org/abs/2009.11642
https://doi.org/10.1137/1.9781611976496.23
https://doi.org/10.1137/1.9781611975482.76

Spectrum Preserving Short Cycle Removal on
Regular Graphs
Pedro Paredes !

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
We describe a new method to remove short cycles on regular graphs while maintaining spectral
bounds (the nontrivial eigenvalues of the adjacency matrix), as long as the graphs have certain
combinatorial properties. These combinatorial properties are related to the number and distance
between short cycles and are known to happen with high probability in uniformly random regular
graphs.

Using this method we can show two results involving high girth spectral expander graphs. First,
we show that given d ⩾ 3 and n, there exists an explicit distribution of d-regular Θ(n)-vertex graphs
where with high probability its samples have girth Ω(logd−1 n) and are ϵ-near-Ramanujan; i.e., its
eigenvalues are bounded in magnitude by 2

√
d − 1 + ϵ (excluding the single trivial eigenvalue of d).

Then, for every constant d ⩾ 3 and ϵ > 0, we give a deterministic poly(n)-time algorithm that
outputs a d-regular graph on Θ(n)-vertices that is ϵ-near-Ramanujan and has girth Ω(

√
log n), based

on the work of [26].

2012 ACM Subject Classification Mathematics of computing → Spectra of graphs; Theory of
computation → Expander graphs and randomness extractors

Keywords and phrases Ramanujan Graphs, High Girth Regular Graphs

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.55

Related Version Full Version: https://arxiv.org/abs/2002.07211

Funding Pedro Paredes: Supported by NSF grant CCF-1717606. This material is based upon work
supported by the National Science Foundation under grant numbers listed above. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the author and
do not necessarily reflect the views of the National Science Foundation (NSF).

Acknowledgements I am very grateful to Ryan O’Donnell for numerous comments and suggestions,
as well as very thorough feedback on an earlier draft of this paper.

1 Introduction

Let’s consider d-regular graphs of n vertices. The study of short cycles and girth (defined as
the length of the shortest cycle of a graph) in such graphs dates back to at least the 1963
paper of Erdős and Sachs [10], who showed that there exists an infinite family with girth at
least (1 − on(1)) logd−1 n. On the converse side, a simple path counting argument known as
the “Moore bound” shows that this girth is upper bounded by (1 + on(1))2 logd−1 n. Though
simple, this is the best known upper bound. Given these bounds, it is common to call an
infinite family of d-regular n-vertex graphs high girth if their girth is Ω(logd−1 n).

The first explicit construction of high girth regular graphs is attributed to Margulis [23],
who gave a construction of graphs that achieve girth (1 − on(1)) 4

9 logd−1 n. A series of works
initiated by Lubotzky-Phillips-Sarnak [21] and then improved by several other people [24,
27, 19] culminated in the work of Dahan [9], who proves that for all large enough d there are
explicit d-regular n-vertex graphs of girth (1 − on(1)) 4

3 logd−1 n.

© Pedro Paredes;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 55; pp. 55:1–55:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:preisben@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.STACS.2021.55
https://arxiv.org/abs/2002.07211
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 Spectrum Preserving Short Cycle Removal on Regular Graphs

Another relevant problem consists of generating random distributions that produce regular
graphs with high girth. Results regarding the probabilistic aspects of certain structures
(like cycles) in graphs often give us tools to count the number of graphs that satisfy certain
conditions, like how many regular graphs have girth at least some value. The distribution
of short cycles in uniformly random regular graphs was first studied by Bollobás [7], who
proved, that for a fixed k the random variables representing the number of cycles of length
exactly k in a uniformly random d-regular graph are asymptotically independent Poisson
with mean (d − 1)k/2k. Subsequently, McKay-Wormald-Wysocka [25] gave a more precise
description of this by finding the asymptotic probability of a random d-regular graph having
a certain number of cycles of any length up to c logd−1 n, for c < 1/2. More recently, Linial
and Simkin [20] showed that a random greedy algorithm that is given d ⩾ 3, c ∈ (0, 1)
and an even n, produces a d-regular n-vertex graph with girth at least c logd−1 n with high
probability.

The literature of regular graphs with high girth is closely connected to the literature of
spectral expanders. Before defining this, let’s consider some notation.

▶ Definition 1. Let G be an n-vertex d-regular multigraph. We write λi = λi(G) for
the eigenvalues of its adjacency matrix AG, and we always assume they are ordered with
λ1 ⩾ λ2 ⩾ · · · ⩾ λn. A basic fact is that λ1 = d always; this is called the trivial eigenvalue
and corresponds to the all ones vector. We also write λ(G) = max{λ2, |λn|}.

Roughly, a graph with good spectral expansion properties is a graph that has small λ.
More formally, an infinite sequence (Gn) of d-regular graphs is called a family of expanders
if there is a constant δ > 0 such that λ(G) ⩽ (1 − δ)d for all n, or in other words, all
eigenvalues are strictly separated from the trivial eigenvalue. This terminology was first
introduced by [29] and later it was shown [1] that uniformly random d-regular graphs are
spectral expanders with high probability.

The celebrated Alon-Boppana bound shows that λ cannot be arbitrarily small:

▶ Theorem 2 ([1, 28, 11]). For any d-regular n-vertex graph G we have that λ2(G) ⩾
2
√

d − 1 − O(1/ log2 n).

Using some number-theoretic ideas, Lubotzky-Phillips-Sarnak [21], and independently
Margulis [24], proved this bound is essentially tight by showing the existence of infinite
families of d-regular graphs that meet the bound λ(G) ⩽ 2

√
d − 1, if d − 1 is an odd prime.

In light of this, Lubotzky-Phillips-Sarnak introduced the following definition:

▶ Definition 3 (Ramanujan graphs). A d-regular graph G is called Ramanujan whenever
λ(G) ⩽ 2

√
d − 1.

These results were improved by Morgenstern [27], who showed the same for all d where
d − 1 is a prime power.

It is still open whether there exist infinite families of Ramanujan graphs for all d. However,
if one relaxes this to only seek ϵ-near-Ramanujan graphs (graphs that satisfy λ ⩽ 2

√
d − 1+ϵ),

then the answer is positive. Friedman [12] proved that uniformly random d-regular n-vertex
graphs satisfy λ ⩽ 2

√
d − 1 + on(1) with high probability. This proof was recently simplified

by Bordenave [8].

▶ Theorem 4 ([12, 8]). Fix any d > 3 and ϵ > 0 and let G be a uniformly random d-regular
n-vertex graph. Then

Pr
[
λ(G) ⩽ 2

√
d − 1 + ϵ

]
⩾ 1 − on(1).

In fact [8], G achieves the subconstant ϵ = Õ(1/ log2 n) with probability at least 1−1/n.99.

P. Paredes 55:3

Recently, it was shown how to achieve a result like the above but deterministically [26].
We write a more precise statement of this below.

▶ Theorem 5 ([26]). Given any n, d ⩾ 3 and ϵ > 0, there is a deterministic polynomial-time
algorithm that constructs a d-regular N -vertex graph with the following properties:

N = n(1 + on(1));
λ(G) ⩽ 2

√
d − 1 + ϵ;

We refer the reader interested in a more thorough history of the literature of Ramanujan
graphs to the introduction of [26]. Also, for a comprehensive list of applications and
connections of Ramanujan graphs and expanders to computer science and mathematics,
see [14].

In this work we concern ourselves with bridging these two worlds, looking for families
of regular graphs that are both good spectral expanders and also have high girth. This
bridge can be seen in several of the aforementioned works. The explicit construction of high
girth regular graphs by Margulis [23] was a motivator to his work on Ramanujan graphs [24].
Additionally, the constructions of [21] and [27] produce graphs that are both Ramanujan
and have girth (1 − on(1)) 4

3 logd−1 n, according to the previously stated restrictions on d.
More recently, Alon-Ganguly-Srivastava [3] showed that for a given d such that d − 1 is

prime and α ∈ (0, 1/6), there is a construction of infinite families of graphs with girth at least
(1 − on(1))(2/3)α logd−1 n and λ at most (3/

√
2)

√
d − 1 with many eigenvalues localized on

small sets of size O(nα). Their motivation comes from the theory of quantum ergodicity in
graphs, which relates high-girth expanding graphs to delocalized eigenvectors. See [3] for
more on this. Our main result is based on some of the techniques of this work.

One other motivation to search for graphs with simultaneous good spectral expansion
and high girth is its application to the theory of error-correcting codes, particularly for Low
Density Parity Check or LDPC codes, originally introduced by Gallager [13]. The connection
with high girth regular graphs was first pointed out by Margulis in [23]. The property of
high-girth is desirable since the decoding of such codes relies on an iterative algorithm whose
performance is worse in the presence of short cycles. Additionally, using graphs with good
spectral properties to generate these codes heuristically seems to lead to good performance,
as pointed out by several works [30, 18, 22].

1.1 Our results
We can now state our results and put them in perspective. Let’s first introduce some useful
definitions and notation.

▶ Definition 6 (Bicycle-free at radius r). A multigraph is said to be bicycle-free at radius r if
the distance-r neighborhood of every vertex has at most one cycle.

▶ Definition 7 ((r, τ)-graph). Let r and τ be a positive integers. Then, we call a graph G a
(r, τ)-graph if it satisfies the following conditions:

G is bicycle-free at radius at least r;
The number of cycles of length at most r is at most τ .

Our main result is the following short cycle removal theorem:

▶ Theorem 8. There exists a deterministic polynomial-time algorithm fix that, given as
input a d-regular n-vertex (r, τ)-graph G satisfying r ⩽ (2/3) logd−1(n/τ) − 5 outputs a graph
fix(G) satisfying

STACS 2021

55:4 Spectrum Preserving Short Cycle Removal on Regular Graphs

fix(G) is a d-regular graph with n + O(τ · (d − 1)r/2+1) vertices;
λ(fix(G)) ⩽ max{λ(G), 2

√
d − 1} + Od(1/r);

fix(G) has girth at least r.
The key fact in our proof of this statement is a theorem proved by Kahale [15], originally

used to construct Ramanujan graphs with better expansion of sublinear sized subsets. See
also [3] and [2] for other applications of this technique. We will prove this theorem in
Section 2.

The preconditions of this theorem are not arbitrary. Even though random uniformly
n-vertex d-regular graphs have constant girth with high probability, they are bicycle-free at
radius Ω(logd−1 n) and the number of cycles of length at most c logd−1 n (for small enough
c) is o(n) with high probability. Recall that from Theorem 4 we also know that being
near-Ramanujan is also a property that occurs with high probability in random regular
graphs. So a statement like the above can be used to produce distributions over regular
graphs that have high girth and are near-Ramanujan with high probability. With this in
mind, we introduce the following definition:
▶ Definition 9 ((Λ, g)-good graphs). We call a graph G a (Λ, g)-good graph if λ(G) ⩽ Λ
and girth(G) ⩾ g.

Let µd(n) be a distribution over d-regular graphs with ∼ n vertices. We say µd(n) is (Λ,
g)-good if G ∼ µd(n) is (Λ, g)-good with probability at least 1 − on(1).

Additionally, we call the distribution explicit if sampling an element is doable in polynomial
time.

We shall prove the following using Theorem 8 in Appendix A:
▶ Theorem 10. Given d ⩾ 3 and n, let G be a uniformly random d-regular n-vertex graph.
For any c < 1/4 and ϵ > 0, fix(G) is a (2

√
d − 1 + ϵ, c logd−1 n)-good explicit distribution.

Recall that the upper bound on the girth of a regular graph is (1 + on(1))2 logd−1 n, so
this distribution has optimal girth up to a constant. Based on our proof of the above and
using some classic results about the number of d-regular n-vertex graphs, we can show a
lower bound on the number of (2

√
d − 1 + ϵ, c logd−1 n)-good graphs in some range.

▶ Corollary 11. Let d ⩾ 3, n be integers and ϵ > 0, c > 1/4 reals. The number of d-regular
graphs with number of vertices in [n, n + O(n3/8)], which are (2

√
d − 1 + ϵ, c logd−1 n)-good,

is at least

Ω
((

ddnd

ed(d!)2

)n/2)
.

We prove both of these results in Appendix A.
Finally, we show a slightly stronger version of result of [26] by plugging our short cycle

removal theorem into their construction.
▶ Theorem 12. Given any integer n and constants d ⩾ 3, ϵ > 0 and c, there is a deterministic
polynomial-time (in n) algorithm that constructs a d-regular N -vertex graph with the following
properties:

N = n(1 + on(1));
λ(G) ⩽ 2

√
d − 1 + ϵ;

G has girth at least c
√

log n.
Note that this only works for large enough n. Also, the running time from the theorem

above has an exponential dependency on d, ϵ and c. The proof of this statement as well as
the precise dependencies on these constants will be worked out in Appendix B.

P. Paredes 55:5

1.2 Models of random regular graphs
We will introduce some classic models of random regular graphs, which we will use throughout
the paper.

▶ Definition 13 (Gd(n)). Let Gd(n) denote the set of d-regular n-vertex graphs. We write
G ∼ Gd(n) to denote that G is sampled uniformly at random from Gd(n).

Sampling from Gd(n) is not easy a priori; the standard way to do so is using the
configuration model, which was originally defined by Bollobás [7].

▶ Definition 14 (Configuration model). Given integers n > d > 0 with nd even, the con-
figuration model produces a random n-vertex, d-regular undirected multigraph (with loops)
G. This multigraph is induced by a uniformly random matching on the set of “half-edges”,
[n] × [d] ∼= [nd] (where (v, i) ∈ [n] × [d] is thought of as half of the ith edge emanating
from vertex v). Given a matching, the multigraph G is formed by “attaching” the matched
half-edges.

This model corresponds exactly to the uniform distribution on not necessarily simple
d-regular n-vertex graphs. It also not hard to see that the conditional distribution of the
d-regular n-vertex configuration model when conditioned on it being a simple graph is exactly
the uniform distribution on Gd(n). The probability that the sampled graph is simple is Ωd(1).

The configuration model has the advantage that is easy to sample and to analyze. For
reference, the proof of Theorem 4 was done in terms of the configuration model and so the
theorem also applies to it.

2 Short cycles removal

In this section we prove Theorem 8. Recall that we are given a d-regular n-vertex (r, τ)-graph
G with the constraint specified in Theorem 8 and we wish to find some d-regular graph fix(G)
on ∼ n vertices such that λ(fix(G)) ⩽ λ(G) + or(1) and its girth is at least r.

Briefly, the algorithm that achieves this works by removing one edge per small cycle from
G, effectively breaking apart all such cycles, and then fixing the resulting off degree vertices
by adding d-ary trees in a certain way. We will now more carefully outline this method and
then proceed to fill in some details as well as show it works as desired.

Before starting, we introduce some notation which will be helpful.

▶ Definition 15 (Cycg(G)). Given a graph G, let Cycg(G) denote the collection of all cycles
in G of length at most g. Recall that if Cycg(G) is empty then G is said to have girth
exceeding g.

▶ Definition 16 (Bδ(S)). Given a set of vertices S in a graph G, let Bδ(S) denote the
collection of vertices in G within distance δ of S. We will occasionally abuse this notation
and write Bδ(v) instead of Bδ({v}) for a vertex v.

Let Ec be a set containing exactly one arbitrary edge per cycle in Cycr(G). Note that the
bicycle-freeness property implies Ec is a matching. Let Ht be a graph with the same vertex
set as G obtained by removing all edges in Ec from G. To prevent ambiguity, whenever we
pick something arbitrarily let’s suppose the algorithm fix uses the lexicographical order of
node labels as a tiebreaker. We also partition the endpoints of each edge as described in the
following definition:

STACS 2021

55:6 Spectrum Preserving Short Cycle Removal on Regular Graphs

▶ Definition 17 (Vi(E)). Given a matching E, we let V1(E) and V2(E) be two disjoint sets
of vertices constructed as follows: for all e = (u, v) ∈ E place u in V1(E) and v in V2(E) (so
each endpoint is in exactly one of the two sets).

Note that according to the above definition we have |V1(Ec)| = |V2(Ec)| = |Ec| ⩽ τ . For
ease of notation we also define:

▶ Definition 18 (ϕE(v)). Given a matching E and (u, v) ∈ E such that u ∈ V1(E) and
v ∈ V2(E), we denote by ϕE the function that maps endpoints to endpoints, so we have
ϕE(u) = v and ϕE(v) = u.

We will often abuse notation and drop the E from ϕE when it is clear from context.
Since we break apart each cycle in Cycr(G), we can conclude that Ht has girth greater

than r. However, note that in removing edges, Ht is no longer d-regular.
To fix this, consider the following object which we refer to as a d-regular tree of height h:

a finite rooted tree of height h where the root has d children but all other non-leaf vertices
have d − 1 children. This definition implies that every non-leaf vertex in a d-regular tree has
degree d.

We shall add two d-regular trees to Ht in order to fix the off degrees, while maintaining
the desired girth and bound on λ. The idea of using d-regular trees is based on the degree-
correction gadget used in [3] for their construction of high-girth near-Ramanujan graphs with
localized eigenvectors. As such, we will use some of the tools used in their proofs.

Let h be an integer parameter we shall fix later. Let T1 and T2 be two d-regular trees
of height h and let L1 and L2 be the sets of leaves of each one. Note that |L1| = |L2| =
d(d − 1)h−1 ≈ (d − 1)h. We shall add the two trees to Ht and then pair up elements of V1(Ec)
with elements of L1 (and analogously for V2(Ec) and L2) and merge the paired up vertices.
However, we have to deal with two potential issues:

|Li| ̸= |Vi(Ec)|, in which case we cannot get an exact pairing between these sets;
This procedure might result in the creation of small cycles (potentially even cycles of
length O(1)).

To expand on the latter point, we describe a potential problematic instance. Suppose we
can somehow pick h such that |Li| = |Vi(Ec)| and then arbitrarily pair up their elements.
Suppose there are two edges in EC corresponding to two cycles of constant length and denote
their endpoints by v1 ∈ V1(EC), v2 ∈ V2(EC) and u1 ∈ V1(EC), u2 ∈ V2(EC). If the distance
in T1 of v1 and u1 given by the pairing of V1(Ec) and L1 is small (constant, for example)
and the same applies to the distance in T2 of v2 and u2, then there is a cycle of small length
(constant, for example) in the graph resulting from adding the two trees to Ht.

To address this issue we remove some extra edges from G that are somehow “isolated”
and group them with edges from EC . The goal is to have the endpoints of any two edges in
EC be far apart in T1 and T2 distance, but close to some of the endpoints of the extra edges.
With this in mind, we set h = ⌈logd−1 τ⌉ + ⌈r/2⌉ + 1 so that |Li| ≈ τ · (d − 1)r/2+1, which is
close to the number of extra edges we want to remove. This choice will also be helpful later
when we analyze the spectral properties of the construction.

Formally, this leads us to the following proposition:

▶ Proposition 19. There is a set of edges Et of G such that the following is true for i ∈ {1, 2}:
|Vi(Et) ∪ Vi(Ec)| = d(d − 1)h−1;
for all distinct u, v ∈ Vi(Et) ∪ Vi(Ec), we have v /∈ Br(u) and u /∈ Br(v).

Additionally, we can find such a set in polynomial time.

P. Paredes 55:7

Proof. We will describe the efficient algorithm that does this.
We are going to incrementally grow our set Et, one edge at the time, until |Vi(Et) ∪

Vi(Ec)| = d(d−1)h−1, so suppose Et is initially an empty set. We start by, for all e = (u, v) ∈
Ec, marking all vertices in B1+r({v, u}). Note that we marked at most τ · (d(d − 1)r) ⩽
2τ(d − 1)r+1 vertices.

Notice that, since we marked all vertices at distance 1 + r from any vertex in Vi(Ec), we
can safely pick any unmarked vertex and an arbitrary neighbor and add that edge to Et.

We can now describe a procedure to add a single edge to Et:
Pick an unmarked vertex u and an arbitrary neighbor v of u;
Add (u, v) to Et;
Mark all vertices in B1+r({u, v}).

By the same reasoning as before, as long as we have an unmarked vertex, this procedure
works. If we repeat the above t times, we are left with at least n − 2τ(d − 1)r+1 − 2t(d − 1)r+1

unmarked vertices. We claim the procedure can be successfully repeated at least 2τ(d−1)r/2+2

times. In such a case, the number of unmarked vertices left is at least:

n − 2τ(d − 1)r+1 − 4τ(d − 1)r/2+2(d − 1)r+1 ⩾ n − 6τ(d − 1)3r/2+3,

which is always greater than 0 when r ⩽ 2
3 logd−1(n/τ) − 5. Hence, we always have at least

one unmarked vertex to pick throughout the procedure.
Note that the number of repetitions we require exactly matches the size of |Et| so we

need this to be exactly d(d − 1)h−1 − τ ⩽ 2τ(d − 1)r/2+2, which means our algorithm always
succeeds. ◀

We will state some simple properties of this construction that will be relevant later on.

▶ Fact 20. |Vi(Et)| ⩾ τ · (d − 1)⌈r/2⌉

Proof. We simply have: |Vi(Et)| = |Et| = d(d − 1)h−1 − τ ⩾ τ · (d − 1)⌈r/2⌉. ◀

▶ Fact 21. For all e ∈ Et, there is at most one cycle in Br(e) in G and if there is a cycle it
has length greater than r.

Proof. That there is at most one cycle in Br(e) is obvious since G is bicycle-free at radius r.
So, let’s suppose there is a cycle C in Br(e) with length less than or equal to r. Then, there
is at least one edge e′ ∈ C that is also in Ec, but in that case e′ ∈ Br(e), which contradicts
the definition of Et. ◀

We can now extend our definition of Ht. Let H be the graph obtained from G by removing
all edges in Ec and in Et.

Recall our plan to add T1 and T2, two d-regular trees of height h (recall h = ⌈logd−1 τ⌉ +
⌈r/2⌉ + 1), to H while pairing up elements of Li with endpoints of removed edges. We will
now describe a pairing process that achieves high girth (and later we will see how it also
achieves low λ).

First, consider a canonical ordering of L1 and L2 based on visit times from a breath-first
search, as illustrated in Figure 1 for d = 3. Given this ordering, the following is easy to see:

▶ Fact 22. The tree distance between two leaves with indices i and j is at least 2(1 +
logd−1((|i − j| + 1)/d)).

STACS 2021

55:8 Spectrum Preserving Short Cycle Removal on Regular Graphs

Proof. Let’s show that the lowest common ancestor of the two leaves is at least 1+logd−1((|i−
j| + 1)/d), this proves the claim since we need to travel this distance twice, from the ith
indexed leaf to the ancestor and then back to the jth indexed leaf. Let V0 be the set of
|i − j| + 1 leaves with indices between i and j. Let’s construct the smallest subtree that
includes V0 from bottom up and compute its height, which is an upper bound to the desired
lowest common ancestor. First, group elements of V0 in groups of at most d − 1 consecutive
indices and add one representative of each group to a set V1. Each group corresponds to
a node that parents all of its elements. There are at most |V0|/(d − 1) such groups, so
|V1| ⩽ |V0|/(d − 1). Repeat the same procedure until |Va| ⩽ 1, in which case a is an upper
bound to the height of the goal subtree, and by induction we have that |Vi+1| ⩽ |Vi|/(d − 1),
so a ⩾ logd−1 |V0|.

This is not quite right because if the last grouping corresponds to the root of the tree, we
need to group elements in d groups, because this is the degree of the root, so by accounting
for this we have a ⩾ 1 + logd−1(|V0|/d). ◀

Now, consider the following pairing of elements in L1 and V1(Et) ∪ V1(Ec): pick an
arbitrary element of V1(Ec) and pair it up with the first leaf of L1. Now pick (d − 1)⌈r/2⌉

distinct elements of V1(Et) and pair them up with the next leaves of L1. Repeat this
procedure, of pairing one element of V1(Ec) with (d − 1)⌈r/2⌉ elements of V1(Et) with a
contiguous block of leaves until we exhaust all elements of V1(Ec). Note that by Fact 20,
there always are enough elements in Et to perform this pairing. Pair up any remaining leaves
with the remaining elements of V1(Et) arbitrarily. Now repeat the same procedure but for
L2 and V2(Et) ∪ V2(Ec) with the same groupings (so the endpoints of an edge in either Et

or Ec are mapped to the same leaves of L1 and L2). This pairing procedure is pictured in
Figure 2 below.

1

2

3

4

5

6

Figure 1 Leaf ordering for d = 3.

...

...
...

...

Figure 2 Example pairing.

Let fix(G) be defined as the graph resulting from applying the method described in the
previous paragraph to fix the degrees of H . It is now obvious that fix(G) is a d-regular graph
and we only add |T1| + |T2| = O(τ · (d − 1)r/2+1) new vertices, so it has n + O(τ · (d − 1)r/2+1)
total vertices. We will now analyze the resulting girth and λ value and prove Theorem 8 in
the process.

2.1 Analyzing the girth of fix(G)

Here we prove that the girth of fix(G) is at least r. Let’s start by supposing, for the sake
of contradiction, that there is a cycle C of length less than r. We know that the girth of
H is more than r by definition, so C has to use an edge from T1 or T2. Without loss of
generality, let’s assume that C contains at least one edge from T1. Since T1 is a tree, C has

P. Paredes 55:9

to eventually exit T1 and use some edges from H , so in particular it uses some vertex v ∈ L1.
We will show that in this case C has length at least r, which is a contradiction. Thus, we
have to handle two cases: v ∈ V1(Ec) and v ∈ V1(Et).

Let us start with the v ∈ V1(Ec) case. Let’s follow C starting in v and show that to loop
back to v, C would require to traverse at least r edges. So, we start in v and go into T1 by
following the only edge in T1 that connects to v. Then, the cycle C has to use some edges
from T1 and finally exit through some other vertex in L1 before eventually looping back to v.
Suppose that u ∈ L1 is such a vertex. Due to our grouping of elements in Et with (d−1)⌈r/2⌉

elements in Ec, if u is in V1(Ec), we know that the tree indices of v and u differ by at least
(d − 1)⌈r/2⌉. Hence, plugging this into the bound from Fact 22, the tree distance between v

and u is at least r − 1, which would imply C has length at least r. So u has to be in V1(Et).
Continuing our traversal of C, we now exit T1 through u and need to loop back to v.

From our construction in Proposition 19 we know that the distance in H between v and u

is at least r, so any short path in fix(G) between these vertices has to go through T1 or T2.
Again, our Proposition 19 construction gives that the distance in H between v and any other
vertex in L1 is at least r, so such a short path will have to use some edges in T2.

Finally, we claim that the distance from u to any vertex w in L2 is at least r. If w ̸= ϕ(u),
we know from our Proposition 19 construction that the distance between u and w is at least
r. Otherwise, if there is a path P of length less than r from u to w, then the cycle P + uw

has length at most r and is in Br({u, w}), which contradicts Fact 21. In conclusion, it is not
possible to loop back to v using less than r steps, which concludes the proof of the v ∈ V1(Ec)
case.

The proof for the v ∈ V1(Et) case is already embedded in the previous proof, so we will
just sketch it. Using the same argument we start by following C into T1 and eventually
exiting through some vertex u ∈ V1(Et). As we saw before, the H distance between u and v

is at least r and the H distance between u and any other vertex in L1 or any vertex in L2 is
at least r, so we cannot loop back to v from u, which concludes the proof of this case.

2.2 Bounding λ(fix(G))
We finally analyze the spectrum of fix(G) by proving that λ(fix(G)) ⩽ λ(G) + Od(1/r). This
argument is similar to the proof in Section 4 of [3], but adapted to our construction.

First, observe that the adjacency matrix of fix(G), which we will denote by simply A, can
be written in the following way: A = AG −AEc

−AEt
+AT1 +AT2 , where AG is the adjacency

matrix of G defined on the vertex set of fix(G) (which is to say G with a few isolated vertices
from the added trees), AEc

is the adjacency matrix of the cycle edges removed, and so on.
Also, let VG be the set of vertices from G, V1 the set of vertices from T1 and V2 the set of
vertices from T2, so V = VG ∪ V1 ∪ V2. In this section we will prove λ(A) ⩽ λ(G) + Od(1/r).

Let g be any unit eigenvector of A orthogonal to the all ones vector, so
∑

v∈V g2
v = 1 and∑

v∈V gv = 0. We have that |
∑

v∈V1∪V2
gv| ⩽

√
2|Ti| by Cauchy-Schwarz (since this vector

is supported on only 2|Ti| entries), which in turn implies that |
∑

v∈VG
gv| ⩽

√
2|Ti|.

It suffices to show that |gT Ag| ⩽ λ(G) + Od(1/r). To do so, we shall analyze the
contributions of AG, AEc

, AEt
, AT1 and AT2 to |gT Ag|.

To bound the contribution of AT1 and AT2 , we use a lemma proved by Alon-Ganguly-
Srivastava:

▶ Lemma 23 ([3, Lemma. 4.1]). Let Wi be the set of non-leaf vertices of Ti. Then for any
vector f we have:

|fT ATi
f | ⩽ 2

√
d − 1

∑
w∈Wi

f2
w +

√
d − 1

∑
v∈Li

f2
v .

STACS 2021

55:10 Spectrum Preserving Short Cycle Removal on Regular Graphs

Recall that the edges in Et ∪ Ec define a perfect matching between L1 and L2, so we
have the following:

|gT (AEc
+ AEt

)g| =

∣∣∣∣∣ ∑
uv∈Et∪Ec

2gugv

∣∣∣∣∣ ⩽ ∑
v∈L1∪L2

g2
v .

Finally, let gG be the projection of g to the subspace spanned by VG. Observe that
|gT AGg| = |gT

GAGgG|. Now, let 1G be the all ones vector supported on the set VG and g⊥
be a vector orthogonal to 1G such that gG = a1G + g⊥, for some constant a. We have that
1T

GgG = a1T
G1G, which implies

|a| =
∣∣∣∣
∑

v∈VG
(gG)v

n

∣∣∣∣ ⩽
√

2|Ti|
n

.

Now observe:

|gT
GAGgG| ⩽ |gT

⊥AGg⊥| + |(a1G)T AG(a1G)| ⩽ λ(G)
∑

v∈VG

g2
v + 2|Ti|d

n
.

Note that
∑

v∈VG
g2

v ⩽ 1. We claim that the term 2|Ti|d
n is Od(1/r). We have |Ti| =

O(τ · (d − 1)r/2+1) and we know from the problem constraints that r ⩽ (2/3) logd−1(n/τ) − 5
which implies τ · (d − 1)r/2+1/n ⩽ O((d − 1)−r) = Od(1/r).

We can now plug everything together and apply Lemma 23 to obtain:

|gT Ag| ⩽ λ(G) + (
√

d − 1 + 1)
∑

v∈L1∪L2

g2
v + Od(1/r).

We will conclude our proof by showing that
∑

v∈L1∪L2
g2

v is O(1/r). It should be clear
from the symmetry of our construction that we only need to prove

∑
v∈L1

g2
v = O(1/r), since

the same is analogous for L2.
The following lemma can be proved using a known method by Kahale [15, Lemma 5.1].

This statement is similar to one found in [2, Lemma 3.2] and its proof is also very similar.
For completeness, we present a self-contained proof of that based on the one from [2].

▶ Lemma 24. Let v be some vertex of V . Let l be a positive integer such that Bl(v) forms a
tree. Let Xi be the set of all vertices at distance exactly i from v in fix(G), so X0 = {v}. Let
f be any non zero eigenvector with eigenvalue |µ| ⩾ 2

√
d − 1. Then, for 1 ⩽ i ⩽ l:∑

u∈Xi

f2(u) ⩾
∑

u∈Xi−1

f2(u)

Proof. We will proceed by induction on i. First of all, let’s establish the i = 1 case. Note
that we have

∑
u∈X1

f(u) = µf(v).
By Cauchy-Schwarz we get d ·

∑
u∈X1

f2(u) ⩾ µ2f2(v), and using the fact that |µ| ⩾
2
√

d − 1 we obtain the desired:∑
u∈X1

f2(u) ⩾ µ2

d
f2(v) ⩾ f2(v).

Let’s now assume that the statement is true for i − 1 and prove that this implies it is
true for i. Let u be some vertex in Xi−1. Recall that Bl(v) is a tree and let u′ be its parent
in Xi−2 and w1, . . . wd−1 be its children in Xi. We have f(u′) +

∑d−1
i=1 f(wi) = µf(u). Note

that f(u′) =
√

d − 1f(u′)/
√

d − 1 and apply Cauchy-Schwarz to obtain:(
f2(u′)
d − 1 +

d−1∑
i=1

f2(wi)
)

(2d − 2) ⩾ µ2f2(u),

P. Paredes 55:11

which implies

f2(u′)
d − 1 +

d−1∑
i=1

f2(wi) ⩾
µ2

2d − 2f2(u) ⩾ 2f2(u),

where the last inequality follows from the fact that |µ| ⩾ 2
√

d − 1.
We can finally sum the above for all u ∈ Xi−1, noting that from the fact that Bl(v) is a

tree we know that each element in Xi−2 appears d − 1 times (as the parent of d − 1 vertices)
and each element in Xi appears once:∑

u∈Xi−2

f2(u) +
∑

u∈Xi

f2(u) ⩾ 2
∑

u∈Xi−1

f2(u).

We now apply the induction hypothesis and obtain the result:∑
u∈Xi

f2(u) ⩾ 2
∑

u∈Xi−1

f2(u) −
∑

u∈Xi−2

f2(u) ⩾
∑

u∈Xi−1

f2(u). ◀

Our plan is to pick the parameters l and v from Lemma 24 and use it to show that∑
v∈L1

g2
v = O(1/r). Let µ be the eigenvalue associated with g and suppose that |µ| >

2
√

d − 1, otherwise |µ| ⩽ λ(G), which would imply the result. Set v to be the root of T1. We
will show that if we pick l = h + ⌊r/2⌋, where h = ⌈logd−1 τ⌉ + ⌈r/2⌉ + 1 is the height of T1
and T2, then Bl(v) forms a tree.

Note that Bh(v) is exactly T1, so it obviously forms a tree. To observe what happens in
Bl(v) \ Bh(v), we first prove the following proposition, whose proof uses some of the ideas of
Section 2.1:

▶ Proposition 25. Let u be a vertex in L1. Let P(u) be the set of non-empty paths that start
in u and whose first step does not go into T1. Then, the shortest path in P(u) that ends in
any vertex in L1 has length at least r.

Proof. As in the previous girth proof, we have two cases, u ∈ V1(Ec) and u ∈ V1(Et). The
latter case is obvious from the proof in Section 2.1, since if u ∈ V1(Et) then the H distance
to any node in L1 is at least r (from Proposition 19) and the H distance to any node in L2
is also at least r (from Fact 21). So, suppose u ∈ V1(Ec).

Let’s follow the same proof strategy as before, so let P ∈ P(u) be the shortest path and
let’s follow P starting in u. Again, from Proposition 19 the H distance of u to any node
in L1 is at least r. However, u might reach ϕ(u) in a short number of steps (namely, if the
cycle corresponding to (u, ϕ(u)) is short). So, let’s follow P to ϕ(u) and into T2. We are now
in the exact same situation as in the setup of the proof in Section 2.1 (but starting in T2), so
the result follows. ◀

Let u be some vertex in L1. Let’s say a vertex w is at P-distance δ from u if the shortest
path P ∈ P(u) that ends in w has length δ. Additionally, let Sδ(u) be the set of vertices that
are at a P-distance of at most δ from u. From Proposition 25, we know that for all distinct
u, w ∈ L1, the sets S⌊r/2⌋(u) and S⌊r/2⌋(w) are disjoint. Thus, we have that for u ∈ L1 the
vertices in S⌊r/2⌋(u) form disjoint trees rooted at u, which shows that Bl(v) forms a tree.

We can now apply Lemma 24 and conclude that for all 1 ⩽ i ⩽ l, we have
∑

u∈Xi
g2

u ⩾∑
u∈Xi−1

g2
u. So the sequence (

∑
u∈Xi

g2
u)i is an increasing sequence. Note that Xh = L1, so∑

u∈Xh
g2

u =
∑

u∈L1
g2

u. Additionally, we know that the total sum of (
∑

u∈Xi
g2

u)i is at most
one (since g is a unit vector and the Xi are disjoint), so we have that ⌊r/2⌋ ·

∑
u∈Xh

g2
u ⩽∑l

i=h

∑
u∈Xi

g2
u ⩽ 1 and finally

∑
u∈L1

g2
u =

∑
u∈Xh

g2
u ⩽ 1/⌊r/2⌋ = O(1/r).

This concludes the proof of Theorem 8.

STACS 2021

55:12 Spectrum Preserving Short Cycle Removal on Regular Graphs

3 Open problems

Can we improve Theorem 12 to obtain high girth?
Something like this could be proved by showing that when 2-lifting a graph with large
enough girth, with sufficiently high probability the girth of the resulting graph increases.
This would boost the girth of the graph generated by the first step of the construction of
[26] during the repeated 2-lift step. However, it is unclear if this can be done. Alternatively,
one could show that bicycle-freeness increases with good probability as we 2-lift, but this
is also unclear.
A different strategy would be to find a different way to derandomize Theorem 4 such
that the we can generate a starter graph of larger size. However, it is unclear if this
strategy could work since the tool used to derandomize this, namely (δ, k)-wise uniform
permutations (defined in Appendix C), cannot be improved to derandomize this to the
required extent.
Can we obtain Theorem 10 for higher values of c; for example, can we build a distribution
that is (2

√
d − 1 + ϵ, .99 logd−1 n)-good?

One promising strategy would be to show that the graphs produced by the distribution
described in [20], which were shown to have girth at least .99 logd−1 n with high probability,
are also near-Ramanujan with high probability. Numerical calculations seem to indicate
that the answer is positive, as pointed out in one of the open problems given in [20].

References
1 Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.
2 Noga Alon. Explicit expanders of every degree and size. arXiv preprint, 2020. arXiv:

2003.11673.
3 Noga Alon, Shirshendu Ganguly, and Nikhil Srivastava. High-girth near-ramanujan graphs

with localized eigenvectors. arXiv preprint, 2019. arXiv:1908.03694.
4 Noga Alon and Shachar Lovett. Almost k-wise vs. k-wise independent permutations, and

uniformity for general group actions. Theory of Computing, 9:559–577, 2013.
5 Edward A. Bender and E. Rodney Canfield. The asymptotic number of labeled graphs

with given degree sequences. J. Combinatorial Theory Ser. A, 24(3):296–307, 1978. doi:
10.1016/0097-3165(78)90059-6.

6 Yonatan Bilu and Nathan Linial. Lifts, discrepancy and nearly optimal spectral gap. Combin-
atorica, 26(5):495–519, 2006. doi:10.1007/s00493-006-0029-7.

7 Béla Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled regular
graphs. European J. Combin., 1(4):311–316, 1980. doi:10.1016/S0195-6698(80)80030-8.

8 Charles Bordenave. A new proof of Friedman’s second eigenvalue theorem and its extension to
random lifts. Technical Report 1502.04482v4, arXiv, 2019. To appear in Annales scientifiques
de l’École normale supérieure. arXiv:1502.04482v4.

9 Xavier Dahan. Regular graphs of large girth and arbitrary degree. Combinatorica, 34(4):407–
426, 2014. doi:10.1007/s00493-014-2897-6.

10 Paul Erdős and Horst Sachs. Reguläre graphen gegebener tailenweite mit minimaler knollenzahl.
Wiss. Z. Univ. Halle-Willenberg Math. Nat., 12:251–258, 1963.

11 Joel Friedman. Some geometric aspects of graphs and their eigenfunctions. Duke Mathematical
Journal, 69(3):487–525, 1993.

12 Joel Friedman. A proof of Alon’s second eigenvalue conjecture and related problems. Memoirs
of the American Mathematical Society, 195(910):viii+100, 2008.

13 R. G. Gallager. Low-density parity-check codes. IRE Trans., IT-8:21–28, 1962. doi:10.1109/
tit.1962.1057683.

http://arxiv.org/abs/2003.11673
http://arxiv.org/abs/2003.11673
http://arxiv.org/abs/1908.03694
https://doi.org/10.1016/0097-3165(78)90059-6
https://doi.org/10.1016/0097-3165(78)90059-6
https://doi.org/10.1007/s00493-006-0029-7
https://doi.org/10.1016/S0195-6698(80)80030-8
http://arxiv.org/abs/1502.04482v4
https://doi.org/10.1007/s00493-014-2897-6
https://doi.org/10.1109/tit.1962.1057683
https://doi.org/10.1109/tit.1962.1057683

P. Paredes 55:13

14 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
American Mathematical Society Bulletin, 43(4):439–561, 2006.

15 Nabil Kahale. Eigenvalues and expansion of regular graphs. Journal of the ACM (JACM),
42(5):1091–1106, 1995.

16 Eyal Kaplan, Moni Naor, and Omer Reingold. Derandomized constructions of k-wise (almost)
independent permutations. Algorithmica. An International Journal in Computer Science,
55(1):113–133, 2009.

17 Martin Kassabov. Symmetric groups and expander graphs. Inventiones Mathematicae,
170(2):327–354, 2007.

18 John Lafferty and Dan Rockmore. Codes and iterative decoding on algebraic expander graphs.
In the Proceedings of ISITA. Citeseer, 2000.

19 Felix Lazebnik and Vasiliy A. Ustimenko. Explicit construction of graphs with an arbitrary
large girth and of large size. Discrete Appl. Math., 60(1-3):275–284, 1995. ARIDAM VI and
VII (New Brunswick, NJ, 1991/1992). doi:10.1016/0166-218X(94)00058-L.

20 Nati Linial and Michael Simkin. A randomized construction of high girth regular graphs.
arXiv preprint, 2019. arXiv:1911.09640.

21 A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277,
1988. doi:10.1007/BF02126799.

22 Mohammad M Mansour and Naresh R Shanbhag. Construction of ldpc codes from ramanujan
graphs. In 36th Annu. Conf. on Information Sciences and Systems, 2002.

23 G. A. Margulis. Explicit constructions of graphs without short cycles and low density codes.
Combinatorica, 2(1):71–78, 1982. doi:10.1007/BF02579283.

24 G. A. Margulis. Explicit group-theoretic constructions of combinatorial schemes and their ap-
plications in the construction of expanders and concentrators. Problemy Peredachi Informatsii,
24(1):51–60, 1988.

25 Brendan D. McKay, Nicholas C. Wormald, and Beata Wysocka. Short cycles in random
regular graphs. Electron. J. Combin., 11(1):Research Paper 66, 12, 2004. URL: http:
//www.combinatorics.org/Volume_11/Abstracts/v11i1r66.html.

26 Sidhanth Mohanty, Ryan O’Donnell, and Pedro Paredes. Explicit near-ramanujan graphs of
every degree. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pages 510–523, 2020.

27 Moshe Morgenstern. Existence and explicit constructions of q + 1 regular Ramanujan graphs
for every prime power q. J. Combin. Theory Ser. B, 62(1):44–62, 1994. doi:10.1006/jctb.
1994.1054.

28 A. Nilli. On the second eigenvalue of a graph. Discrete Mathematics, 91(2):207–210, 1991.
29 Mark S Pinsker. On the complexity of a concentrator. In 7th International Telegraffic

Conference, volume 4, pages 1–318. Citeseer, 1973.
30 Joachim Rosenthal and Pascal O Vontobel. Constructions of ldpc codes using ramanujan graphs

and ideas from margulis. In in Proc. of the 38-th Allerton Conference on Communication,
Control, and Computing. Citeseer, 2000.

A A near-Ramanujan graph distribution of girth Ω(logd−1 N)

Recall Theorem 4, which says that uniformly random d-regular graphs are near-Ramanujan.
We will combine this result with our machinery of Section 2 to show Theorem 10, namely
that there exists a distribution over graphs that is (2

√
d − 1 + ϵ, c logd−1 n)-good for any

ϵ > 0 and c < 1/4, which we will show is the distribution resulting from applying algorithm
fix to a sample of Gd(n).

First, we note that Gd has nice bicycle-freeness. We quote the relevant result from [8],
which we restate below:

STACS 2021

https://doi.org/10.1016/0166-218X(94)00058-L
http://arxiv.org/abs/1911.09640
https://doi.org/10.1007/BF02126799
https://doi.org/10.1007/BF02579283
http://www.combinatorics.org/Volume_11/Abstracts/v11i1r66.html
http://www.combinatorics.org/Volume_11/Abstracts/v11i1r66.html
https://doi.org/10.1006/jctb.1994.1054
https://doi.org/10.1006/jctb.1994.1054

55:14 Spectrum Preserving Short Cycle Removal on Regular Graphs

▶ Lemma 26 ([8, Lemma 9]). Let d ⩾ 3 and r be positive integers. Then G ∼ Gd(n) is
bicycle-free at radius r with probability 1 − O((d − 1)4r/n).

An obvious corollary of this is that for any constant c < 1/4, we have that G ∼ Gd(n) is
bicycle free at radius c logd−1 n with high probability.

To bound the number of short cycles in Gd(n) we use a classic result that very accurately
estimates the number of short cycles in random regular graphs.

▶ Lemma 27 ([25, Section 2]). Let G ∼ Gd(n) and Xi be the random variable that denotes
the number of cycles of length i in G. Let Ri = max{(d − 1)i/i, log n}. Then

Pr
[
Xi ⩽ Ri, for all 3 ⩽ i ⩽ 1/4 logd−1 n

]
= 1 − on(1).

Given the above, we obtain the following bound, for all c < 1/4:
c logd−1 n∑

i=1
max{(d − 1)i/i, log n} = O(nc).

So we obtain the following proposition:

▶ Proposition 28. For any c < 1/4 and any ϵ > 0, G ∼ Gd(n) is a (c logd−1 n, O(nc))-graph
and satisfies λ(G) ⩽ 2

√
d − 1 + ϵ with probability 1 − on(1).

Finally, we want to apply Theorem 8, so first we need to verify its preconditions. For
all c < 1/4 we have that (2/3) logd−1(n/nc) = (2/3)(1 − c) logd−1 n ⩾ c logd−1 n. Also note
that nc(d − 1)c/2 logd−1 n+1 = n3c/2 = O(n3/8), so when applying Theorem 8 the resulting
graph has n + O(n3/8) = n(1 + on(1)) vertices. Thus, we obtain Theorem 10.
▶ Remark 29. Recall that Gd(n) is the same as the conditional distribution of the d-regular
n-vertex configuration model when conditioned on it being a simple graph. Indeed, a graph
drawn from the d-regular n-vertex configuration model is simple with probability Ωd(1). A
result very similar to Lemma 27 also holds for the configuration model and thus the results
of this section also hold for the configuration model.

A.1 Counting near-Ramanujan graphs with high girth
We will briefly prove Corollary 11 using the result we just proved. For simplicity, we are
going to work with the configuration model, using the observation of Remark 29.

Our proof will use a classic result on the number of not necessarily simple d-regular
n-vertex graphs, which is the same as the number of graphs in the n-vertex d-regular
configuration model. It is easy to show [5] that for nd even, the number of such graphs is

∼

((
ddnd

ed(d!)2

)n/2)
.

Hence, the core claim we need to prove, is the following:

▶ Proposition 30. Let G1 and G2 be distinct graphs that follow the preconditions of Theorem 8.
Then fix(G1) and fix(G2) are also distinct.

This proposition implies that given any two good d-regular n-vertex graphs, applying fix
produces two distinct graphs. From our proof of Theorem 10 we also know that the result of
applying fix adds at most O(n3/8) vertices. Finally, since a (1 − on(1)) fraction of the graphs
are good an thus when we apply fix they result in (2

√
d − 1 + ϵ, c logd−1 n)-good graphs, the

result follows. For briefness, we will not give a detailed proof but only a sketch of the proof.

P. Paredes 55:15

Proof sketch of Proposition 30. Recall the H graph from the description of fix and let H1
be such graph corresponding to G1 and define H2 analogously. If H1 and H2 are distinct,
then fix(G1) and fix(G2) are also distinct. This follows from the fact that the vertices of the
two added trees will have to be matched up in an isomorphism between fix(G1) and fix(G2).

We claim that if G1 and G2 are distinct, then H1 and H2 are distinct. Let Si be the
set of vertices that were endpoints of edges removed from cycles in G1 and G2, respectively.
Note that there are at least two such vertices in Si and also we cannot remove multiple
edges adjacent to one vertex since this would imply the existence of two cycles in a small
neighborhood, breaking the bicycle-freeness assumption. We can ignore the other removed
edges since the local neighborhoods of edges removed from cycles are necessarily distinct
from the local neighborhoods of the other removed edges. Now, the edges removed from Gi

form a perfect matching on Si that adds exactly |Si|/2 cycles to Hi. Also, there is exactly
one perfect matching that adds |Si|/2 cycles to Hi to recover Gi. That means that there is
only one Gi that could have generated Hi, which implies the claim. ◀

B Explicit near-Ramanujan graphs of girth Ω(
√

log n)

In this section we prove Theorem 12, building on the construction in the proof of Theorem 5.
We note that the original construction has no guarantees on the girth of the constructed
graph other than a constant girth. We will briefly recap the main tools and ideas from the
paper.

B.1 Review of constructing explicit near-Ramanujan graphs
Given a d-regular n-vertex graph G = (V, E), let w ∈ {±1}E be an edge-signing of G. The
2-lift of G given w is defined as the following d-regular 2n-vertex graph G2 = (V2, E2):

V2 = V × {±1} E2 = {{(u, σ), (v, σ · w(u, v))} : (u, v) ∈ E, σ ∈ {±1}} .

It was observed in [6] that the spectrum of G2 is given by the union of the spectra of
G and G̃w, where the latter refers to the eigenvalues of the adjacency matrix of G signed
according to w, where each nonzero entry is w(u, v) for {u, v} ∈ E.

This connection between the spectrum of an edge-signing of a graph and a 2-lift gave rise
to the following theorem, which was proved in [26]. Below we write ρ(G) = max{|λi| : i ∈ [n]}
for the spectral radius of G.

▶ Theorem 31 ([26, Theorem 3.1]). Let G = (V, E) be an arbitrary d-regular n-vertex graph
(d ⩾ 3). Assume G is bicycle-free at radius r ≫ (log log n)2. Then for a uniformly random
edge-signing w, except with probability at most n−100 we have:

ρ(G̃w) ⩽ 2
√

d − 1 ·
(

1 + (log log n)4

r2

)
.

Furthermore, this can be derandomized: given a constant C there is a generator h :
{0, 1}s → {±1}E computable in time poly(NC log d), with seed length s = O(log(2C) +
log log n + C · log(d) · log(n)), such that for u ∈ {0, 1}s chosen uniformly at random, with
probability at most n−100 we have:

ρ(G̃h(u)) ⩽ 2
√

d − 1 ·
(

1 + (log log n)4

r2

)
+

√
d

C2 .

STACS 2021

55:16 Spectrum Preserving Short Cycle Removal on Regular Graphs

This theorem is a powerful tool that, combined with the above observation, allows one to
double the number of vertices in a near-Ramanujan graph while keeping it near-Ramanujan,
as long as the bicycle-freeness is good enough. It is easy to show that if G is bicycle-free
at radius r, then any 2-lift of G is also bicycle-free at radius r. So, the strategy employed
by [26] is to start with a graph with a smaller number of vertices that is bicycle-free at a big
enough radius and 2-lift it enough times until the graph has the required number of vertices.

To generate this starting graph, the authors first showed how out to weakly derandomize [8].
Formally, the following is proved:

▶ Theorem 32 ([26, Theorem 4.8]). For a large enough universal constant α and any integer
n > 0, given d, ϵ and c such that:

3 ⩽ d ⩽ α−1
√

log n, α3 ·
(

log log n

logd−1 n

)2
⩽ ϵ ⩽ 1, c < 1/4.

Let G be chosen from the d-regular n-vertex uniform configuration model. Then, except
with probability at most n−.99, the following hold:

G is bicycle-free at radius c logd−1 n;
λ(G) ⩽ 2

√
d − 1 · (1 + ϵ);

Furthermore, this can be derandomized: there is a generator h : {0, 1}s → Gd(n), with
seed length s = O(log2(n)/

√
ϵ) computable in time poly(nlog(n)/

√
ϵ), such that for u ∈ {0, 1}s

chosen uniformly at random, with probability at most n−.99 we have that the above statements
remain true for G = h(u).

Using these two theorems we can setup the construction of [26]. So, first assume we are
given n, d ⩾ 3 and ϵ > 0 and we wish to construct a d-regular graph G with n vertices with
λ(G) ⩽ 2

√
d − 1 + ϵ. The construction is now the following:

1. Use Theorem 32 to construct a d-regular graph G0 with a small number of vertices
n0 = n0(n). If we pick n0 to be 2O(

√
log n) then the generator seed length is O(log(n)/

√
ϵ)

and is computable in time poly(n1/
√

ϵ), so we can enumerate over all possible seeds
and find at least one that produces a graph that is bicycle-free at radius Ω(log(n0)) =
Ω(

√
log n) ≫ (log log n)2 and has λ(G0) ⩽ 2

√
d − 1 · (1 + ϵ) in poly(n) time.

2. Next, we can repeatedly apply Theorem 31 to double the number of vertices of G0,
by choosing C to be ∼ d1/4/

√
ϵ. We then enumerate over all seeds until we find one

that produces a good graph, which only requires poly(n) time. On each application the
bicycle-freeness radius is maintained (so we can keep applying Theorem 31) and the
number of vertices of doubles. After roughly log(n/n0) applications, the resulting graph
has n(1 + on(1)) vertices and λ(G) ⩽ 2

√
d − 1 · (1 + ϵ).

B.2 Improving the girth of the construction
We are finally ready to prove Theorem 12. We are going to apply a similar strategy as the
one from Appendix A. Instead of derandomizing Lemma 27 we are going to obtain a simpler
bound, which is good enough to obtain the desired. We note however, that Lemma 27 can
be derandomized and for completeness we show how to in Appendix C.

We start by proving the following lemma:

▶ Lemma 33. Let G be a d-regular n-vertex graph with λ(G) ⩾ 2
√

d − 1 and such that G is
bicycle-free at radius α logd−1 n, for α ⩽ 2. Then we can apply fix to G and obtain a graph
such that:

P. Paredes 55:17

fix(G) is d-regular and has n(1 + on(1)) vertices;
λ(fix(G)) ⩽ λ(G) + on(1);
fix(G) has girth (α/3) logd−1 n.

Before proving this lemma, we prove a core proposition in a slightly more generic way.

▶ Proposition 34. Let G be a d-regular graph that is bicycle-free at radius 2r, then

|Cycr(G)| ⩽ n/(d − 1)r.

Proof. Pick one vertex per cycle in Cycr(G) and place it in a set S. We claim that for every
distinct u, v ∈ S, Br(u) ∩ Br(v) = ∅. Suppose this wasn’t the case and suppose there is some
w such that w ∈ Br(u) ∩ Br(v), for some pair u, v. Note that B2r(w) includes the two length
r cycles that correspond to u and v, which contradicts bicycle-freeness in G.

Given the above, we have that the sets Br(u) for u ∈ S are pairwise disjoint and also we
know that |Br(u)| = d(d − 1)r−1. Hence we have:

|Cycr(G)| · d(d − 1)r−1 ⩽ n,

which implies the desired result. ◀

And we can prove the above lemma.

Proof of Lemma 33. By plugging G into Proposition 34 we can conclude that G is a
(α logd−1 n, n1−α/2)-graph. We wish to apply Theorem 8 so first recall its preconditions.
By definition λ(G) ⩾ 2

√
d − 1. However, the precondition on the radius of bicycle-freeness

does not hold, since (2/3) logd−1(n/n1−α/2) = (α/3) logd−1 n which is less than α logd−1 n.
If we instead use the fact that G is also trivially a ((α/3) logd−1 n, n1−α/2)-graph, then the
precondition is satisfied.

Thus, we can apply Theorem 8 and we obtain that fix(G) satisfies all the required
conditions, which concludes the proof. ◀

Given this lemma, we will modify the first step of the construction of [26] to produce a
graph G0 with girth c

√
log n. Note that, similarly to bicycle-freeness, the girth of a graph

can only increase when applying any 2-lift, so this strategy guarantees that after step 2 of
the construction, the final graph has the desired girth, which would imply Theorem 12.

First, when enumerating over all seeds to generate G0 in step 1, we look for one that
guarantees that G0 is bicycle-free at radius (1/5) logd−1 n0 (recall that by Theorem 32 a
1 − on(1) fraction of the seeds satisfy this). Next, we apply Lemma 33 and obtain fix(G0)
with girth (1/15) logd−1 n0 and the desired value of λ(G0). Let κ = 15c/ logd−1 2. We can
set n0 to 2κ

√
log n, in which case G0 has girth c

√
log n.

Note that the above only works as long as κ ⩽
√

log n, otherwise n0 > n. Also, from
Theorem 31 and Theorem 32, we need d ⩽ (log n)1/8/C and ϵ ≫

√
d(log log n)4/(log n) (the

details on how to obtain these can be found on [26]).
Finally, we can precisely determine the running time of this algorithm. From The-

orem 32, constructing G0 takes time poly(nlog(n0)/
√

ϵ
0) = poly(nlog(c/ logd−1(2))/

√
ϵ) and using

Theorem 31 with the appropriate choice of C takes time poly(nd1/4 log(d)/
√

ϵ).

STACS 2021

55:18 Spectrum Preserving Short Cycle Removal on Regular Graphs

C Derandomizing the number of short cycles

To make the statement of this section more precise, we will first define a known derandomiz-
ation tool.

▶ Definition 35 ((δ, k)-wise uniform permutations). Let δ ∈ [0, 1] and k ∈ N+. Let [n]k denote
the set of all sequences of k distinct indices from [n]. A random permutation π ∈ Sn is
said to be (δ, k)-wise uniform if, for every sequence (i1, . . . , ik) ∈ [n]k, the distribution of
(π(i1), . . . , π(ik)) is δ-close in total variation distance from the uniform distribution on [n]k.
When δ = 0, we simply say that the permutation is (truly) k-wise uniform.

Kassabov [17] and Kaplan–Naor–Reingold [16] independently obtained a deterministic
construction of (δ, k)-wise uniform permutations with seed length O(k log n + log(1/δ)).

▶ Theorem 36 ([16, 17]). There is a deterministic algorithm that, given δ, k, and n, runs
in time poly(nk/δ) and outputs a multiset Π ⊆ Sn (closed under inverses) of cardinality
S = poly(nk/δ) (a power of 2) such that, for π ∼ Π chosen uniformly at random, π is a
(δ, k)-wise uniform permutation.

This theorem is required to obtain the generator mentioned in Theorem 32 and is the
reason why (δ, k)-wise uniform permutations are useful tools to apply here. We will also
need a convenient theorem of Alon and Lovett [4]:

▶ Theorem 37 ([4]). Let π ∈ Sn be a (δ, k)-wise uniform permutation. Then one can define
a (truly) k-wise uniform permutation π′ ∈ Sn such that the total variation distance between
π and π′ is O(δn4k).

We can now define a “derandomized” version of the configuration model, using this tool.

▶ Definition 38. Recall how the configuration model is defined by a perfect matching of a set
[nd] of “half-edges”.

Let’s denote this matching by M and define a way to generate it using random permuta-
tions. First a uniformly random permutation π ∈ Snd is chosen; then we set Mπ(j),π(j+1) =
Mπ(j+1),π(j) = 1 for each odd j ∈ [nd].

We can write the adjacency matrix A of G as the sum, over all i, i′ ∈ [d], of M(v,i),(v′,i′).
Hence

Av,v′ =
d∑

i,i′=1

∑
odd

j∈[nd]

(1[π(j) = (v, i)]·1[π(j+1) = (v′, i′)]+1[π(j) = (v′, i′)]·1[π(j+1) = (v, i)]).

The d-regular n-vertex (δ, k)-wise uniform configuration model is defined by using (δ, k)-
wise uniform permutations instead. Similarly, we define the d-regular n-vertex k-wise uniform
configuration model.

We can now describe the proposition we wish to prove.

▶ Proposition 39. Fix d ⩾ 3, n and k ⩾ c logd−1 n, where c < 1/4. Let G be drawn from the
d-regular n-vertex 4k-wise configuration model and Xi be the random variable that denotes
the number of cycles of length i in G. Let Ri = max{(d − 1)i/i, log n}. Then

Pr
[
Xi ⩽ Ri, for all 1 ⩽ i ⩽ 1/4 logd−1 n

]
= 1 − on(1).

By Theorem 37, these statements remain true in the (δ, 4k)-wise uniform versions of the
model, δ ⩽ 1/n16k+1.

P. Paredes 55:19

Proof. The proof follows almost directly from the proof of Lemma 27. First, note that Xi

can be written as a polynomial of degree at most i in the entries of G’s adjacency matrix,
by summing over the products of the edge indicators of all possible cycles of length i in G.
Thus, from our formula in Definition 38, it can be written as a polynomial of degree at most
2k in the permutation indicators 1[π(j) = (v, i)]. So we can compute E [Xi] assuming that
Xi is drawn from the fully uniform configuration model. Similarly, X2

i can be written as a
polynomial of degree at most 4k in the permutation indicators, so we can compute Var [Xi]
assuming that Xi is drawn from the fully uniform configuration model.

From [25] we have the following estimates, that only apply when (d − 1)2i−1 = o(n):

E [Xi] = (d − 1)i

2i
(1 + O(i(i + d)/n)) Var [Xi] = E [Xi] + O(i(i + d)/n)E [Xi]2 .

By applying Chebyshev’s inequality to each Xi, just like in [25], we get the desired
result. ◀

We can finally rewrite Theorem 32 in the language of the d-regular n-vertex (δ, k)-wise
uniform configuration model and tack on the result we just proved.

▶ Theorem 40. For a large enough universal constant α and any integer n > 0, fix
3 ⩽ d ⩽ α−1√

log n and c < 1/4, and let ε ⩽ 1 and k satisfy

ε ⩾ α3 ·
(

log log n

logd−1 n

)2
, k ⩾ α log(n)/

√
ε.

Let G be chosen from the d-regular n-vertex k-wise uniform configuration model. Then
except with probability at most 1/n.99, the following hold:

G is bicycle-free at radius c logd−1 n;
The total number of cycles of length at most c logd−1 n is O(nc);
λ(G) ⩽ 2

√
d − 1 · (1 + ε).

Finally, by Theorem 37, these statements remains true in the (δ, k)-wise uniform config-
uration model, δ ⩽ 1/n16k+1.

STACS 2021

Fine-Grained Complexity of the List
Homomorphism Problem: Feedback Vertex Set
and Cutwidth
Marta Piecyk !

Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland

Paweł Rzążewski !

Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland
Institute of Informatics, University of Warsaw, Poland

Abstract
For graphs G, H, a homomorphism from G to H is an edge-preserving mapping from V (G) to V (H).
In the list homomorphism problem, denoted by LHom(H), we are given a graph G, whose every
vertex v is equipped with a list L(v) ⊆ V (H), and we need to determine whether there exists a
homomorphism from G to H which additionally respects the lists L. List homomorphisms are a
natural generalization of (list) colorings.

Very recently Okrasa, Piecyk, and Rzążewski [ESA 2020] studied the fine-grained complexity
of the problem, parameterized by the treewidth of the instance graph G. They defined a new
invariant i∗(H), and proved that for every relevant graph H, i.e., such that LHom(H) is NP-hard,
this invariant is the correct base of the exponent in the running time of any algorithm solving the
LHom(H) problem.

In this paper we continue this direction and study the complexity of the problem under different
parameterizations. As the first result, we show that i∗(H) is also the right complexity base if the
parameter is the size of a minimum feedback vertex set of G, denoted by fvs(G). In particular, for
every relevant graph H, the LHom(H) problem

can be solved in time i∗(H)fvs(G) · |V (G)|O(1), if a minimum feedback vertex set of G is given,
cannot be solved in time (i∗(H) − ε)fvs(G) · |V (G)|O(1), for any ε > 0, unless the SETH fails.

Then we turn our attention to a parameterization by the cutwidth ctw(G) of G. Jansen and
Nederlof [TCS 2019] showed that List k-Coloring (i.e., LHom(Kk)) can be solved in time
cctw(G)·|V (G)|O(1) for an absolute constant c, i.e., the base of the exponential function does not depend
on the number of colors. Jansen asked whether this behavior extends to graph homomorphisms. As
the main result of the paper, we answer the question in the negative. We define a new graph invariant
mim∗(H), closely related to the size of a maximum induced matching in H, and prove that for all
relevant graphs H, the LHom(H) problem cannot be solved in time (mim∗(H)−ε)ctw(G) · |V (G)|O(1)

for any ε > 0, unless the SETH fails. In particular, this implies that, assuming the SETH, there is
no constant c, such that for every odd cycle the non-list version of the problem can be solved in
time cctw(G) · |V (G)|O(1).

2012 ACM Subject Classification Mathematics of computing → Graph coloring; Theory of com-
putation → Problems, reductions and completeness; Theory of computation → Graph algorithms
analysis; Theory of computation → Parameterized complexity and exact algorithms

Keywords and phrases list homomorphisms, fine-grained complexity, SETH, feedback vertex set,
cutwidth

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.56

Related Version Full Version: https://arxiv.org/abs/2009.11642 [35]

Funding Supported by Polish National Science Centre grant no. 2018/31/D/ST6/00062.

Acknowledgements We are grateful to Bart M. P. Jansen for introducing us to the problem and to
Karolina Okrasa for many fruitful discussions.

© Marta Piecyk and Paweł Rzążewski;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 56; pp. 56:1–56:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.piecyk@mini.pw.edu.pl
mailto:p.rzazewski@mini.pw.edu.pl
https://orcid.org/0000-0001-7696-3848
https://doi.org/10.4230/LIPIcs.STACS.2021.56
https://arxiv.org/abs/2009.11642
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Fine-Grained Complexity of the List Homomorphism Problem

1 Introduction

The k-Coloring problem, which asks whether an input graph G admits a proper coloring
with k colors, is arguably one of the best studied computational problems. The problem is
known to be notoriously hard: it is polynomial-time solvable (and, in fact, very simple) only
for k ⩽ 2, and NP-complete otherwise, even on very restricted classes of graphs [15, 19, 20, 26].

For such a hard problem, an interesting direction of research is to study their fine-grained
complexity depending on some parameters of input instances, in order to understand where
the boundary of easy and hard cases lies. Such investigations usually follow two paths in
parallel. On one hand, we extend our algorithmic toolbox in order to solve the problem
efficiently in various settings. On the other hand, we try to show hardness of the problem,
using appropriate reductions.

In order to obtain meaningful lower bounds, the basic assumption of the classical com-
plexity theory, i.e., P ̸= NP, is not strong enough. The usual assumptions used in this context
are the Exponential Time Hypothesis (ETH) and the Strong Exponential Time Hypothesis
(SETH), both formulated by Impagliazzo and Paturi [21, 22]. The ETH asserts that 3-Sat
with n variables cannot be solved in time 2o(n) · nO(1), while the SETH says that CNF-Sat
with n variables and m clauses cannot be solved in time (2 − ε)n · (n + m)O(1) for any ε > 0.

In case of k-Coloring, the most natural parameter is the number of vertices. While the
brute-force approach to solve the problem on an instance G takes time k|V (G)| · |V (G)|O(1), we
know better algorithms where the base of the exponential function does not depend on k. The
currently best algorithm is due to Björklund et al. [3] and has complexity 2|V (G)| · |V (G)|O(1).
On the other hand, the standard hardness reduction shows that the problem cannot be solved
in time 2o(|V (G)|) · |V (G)|O(1), unless the ETH fails [9].

Similarly, we can ask how the complexity depends on some parameters, describing the
structure of the instance. The most famous structural parameter is arguably the treewidth
of the graph, denoted by tw(G) [2, 5, 36]. Intuitively, treewidth measures how tree-like
the graph is. Thus, on graphs with bounded treewidth, we can mimick the bottom-up
dynamic programming algorithms that works very well on trees. In case of k-Coloring, the
complexity of such a straightforward approach is ktw(G) · |V (G)|O(1), provided that G is given
along with its tree decomposition of width tw(G). One might wonder whether this could be
improved, in particular, if one can design an algorithm with running time ctw(G) · |V (G)|O(1),
where c is a constant that does not depend on k, as it was possible in the case if the parameter
is |V (G)|. Lokshtanov, Marx, and Saurabh [30] proved that this is unlikely, and an algorithm
with running time (k − ε)tw(G) · |V (G)|O(1), for any ε > 0, would contradict the SETH. This
lower bounds holds even if we replace treewidth with pathwidth pw(G); the latter result is
stronger, as we always have tw(G) ⩽ pw(G).

Another way to measure how close a graph G is to a tree or a forest is to analyze the size
fvs(G) of a minimum feedback vertex set, i.e., the minimum number of vertices that need to
be removed from G to break all cycles. If G is given with a minimum feedback vertex set S,
we can solve k-Coloring by enumerating all possible colorings of S, and trying to extend
them on the forest G−S using dynamic programming. The running time of such a procedure
is kfvs(G) · |V (G)|O(1). This is complemented by a hardness result of Lokshtanov et al. [30],
who showed that the problem cannot be solved in time (k −ε)fvs(G) · |V (G)|O(1) for any ε > 0,
unless the SETH fails. Let us point that pw(G) and fvs(G) are incomparable parameters,
so this result is incomparable with the previously mentioned lower bound. These two lower
bounds were later unified by Jaffke and Jansen [23], who considered the parameterization by
the distance to a linear forest.

M. Piecyk and P. Rzążewski 56:3

The above examples show a behavior which is typical for many other parameters: the
running time of the algorithm depends on the number k of colors and this dependence is
necessary under standard complexity assumptions [16, 27, 23]. Thus, it was really surprising
that Jansen and Nederlof [25] showed that for any k, the k-Coloring problem can be solved
in time cctw(G) · |V (G)|O(1), where c is an absolute constant and ctw(G) is the cutwidth of G.
Intuitively, we can imagine ctw(G) as follows. We fix some ordering of the vertices of G and
place them on a horizontal line in this ordering. The edges of G are drawn as arcs above
the line; we do not care about intersections. Now, the width of this layout is the maximum
number of edges that can be cut by a vertical line. The cutwidth is the minimum width
over all linear layouts of vertices of G. The substantial difference between cutwidth and the
previously mentioned parameters is that cutwidth corresponds to a number of edges, not a
number of vertices. Also, it is known that pw(G) ⩽ ctw(G) [4].

Actually, Jansen and Nederlof [25] presented two algorithms for k-Coloring, parameter-
ized by the cutwidth. The first one is deterministic and has running time 2ω·ctw(G) ·|V (G)|O(1),
where ω < 2.373 is the matrix multiplication exponent [7, 39]. The second one is randomized
and works in time 2ctw(G) · |V (H)|O(1). Also, the authors show that the latter complexity is
optimal under the SETH.

Let us point out that all the algorithms mentioned above work also for the more general
List k-Coloring problem, where each vertex v of G is equipped with a list L(v) ⊆
{1, 2, . . . , k}, and we additionally require that the assigned color comes from this list. The
general direction of our work is to investigate how further the techniques developed for
k-Coloring can be generalized.

Graph homomorphisms. A homomorphism from a graph G to a graph H (called target)
is an edge-preserving mapping from V (G) to V (H). In the Hom(H) problem we ask if the
input graph G admits a homomorphism to H, which is usually treated as a fixed graph.
Observe that if H is Kk, i.e., a complete graph on k vertices, then Hom(H) is equivalent to
k-Coloring. The complexity classification of Hom(H) was provided by the seminal paper
by Hell and Nešetřil [18]: the problem is polynomial-time solvable if H is bipartite or has a
vertex with a loop, and NP-complete otherwise. This problem can also be considered in a
list setting, where every vertex v of G is equipped with an H-list L(v) ⊆ V (H), and we ask
for a homomorphism from G to H, which additionally respects lists L. The corresponding
computational problem is denoted by LHom(H).

The complexity dichotomy for LHom(H) was proven in three steps: first, for reflexive
graphs H (i.e., where every vertex has a loop) by Feder and Hell [11], then for irreflexive
graphs H (i.e., with no loops) by Feder, Hell, and Huang [12], and finally, for all graphs H,
again by Feder, Hell, and Huang [13]. The problem appears to be polynomial-time solvable
if H is a so-called bi-arc graph. We will now skip the definition of this class and just mention
a special case if H is irreflexive and bipartite: then the LHom(H) problem is in P if the
complement of H is a circular-arc graphs, and otherwise the problem is NP-complete. This
special case will play a prominent role in our paper.

Let us point out that despite the obvious similarity of Hom(H) and LHom(H), the
methods used to prove lower bounds are very different. For Hom(H), all hardness results
use some algebraic tools, which allow us to capture the structure of the whole graph H. On
the other hand, hardness proofs for LHom(H) are purely combinatorial and are based on
the analysis of some small subgraphs of H.

A brute-force approach to solving an instance G of Hom(H) (and LHom(H)) has
complexity |V (H)||V (G)| · |V (G)|O(1). This can be improved if H has some special structure:
several algorithms with running time O∗(f(H)|V (G)|) were obtained, where f is a function

STACS 2021

56:4 Fine-Grained Complexity of the List Homomorphism Problem

of some structural parameter of H [14, 38, 37]. A natural open question was whether one
can obtain a c|V (G)| · |V (G)|O(1) algorithm, where c is a constant that does not depend on
H [38]. This question was finally answered in the negative by Cygan et al. [8], who proved
that the brute force algorithm is essentially optimal under the ETH.

The fine-grained complexity of the Hom(H) problem, parameterized by the treewidth of
G, was studied recently by Okrasa and Rzążewski [34]. The analogous question for LHom(H)
was first investigated by Egri et al. [10] for reflexive graphs H , and then by Okrasa et al. [32]
for the general case. The authors defined a new graph invariant i∗(H), and proved the
following, tight bounds.

▶ Theorem 1 (Okrasa, Piecyk, Rzążewski [32]). Let H be a connected, non-bi-arc graph.
a) Every instance (G, L) of LHom(H) can be solved in time i∗(H)t · |V (G)|O(1), provided

that G is given along with a tree decomposition of width t.
b) There is no algorithm that solves every instance (G, L) of LHom(H) in time (i∗(H) −

ε)pw(G) · |V (G)|O(1) for any ε > 0, unless the SETH fails.
To the best of our knowledge, the complexity depending on other structural parameters of G

was not investigated. In this paper, we make some progress to fill this gap. In particular,
our main motivation is the following question by Jansen [24], repeated by Okrasa, Piecyk,
Rzążewski [32].

▶ Question 2 (Jansen [24]). Is there a universal constant c, such that for every H, every
instance G of the Hom(H) problem can be solved in time cctw(G) · |V (G)|O(1)?

Our results. As our first result, we complement the recent result of Okrasa et al. [32] and
show tight complexity bounds, parameterized by the size of a minimum feedback vertex set
of the instance.

▶ Theorem 3. Let H be a connected, non-bi-arc graph.
a) Every instance (G, L) of LHom(H) can be solved in time i∗(H)s · |V (G)|O(1), provided

that G is given along with a feedback vertex set of size s.
b) There is no algorithm that solves every instance (G, L) of LHom(H) in time (i∗(H) −

ε)fvs(G) · |V (G)|O(1) for any ε > 0, unless the SETH fails.
Let us point out that the algorithmic part of the theorem, i.e., the statement a), follows
directly from Theorem 1 a), as given a graph G and its feedback vertex set S, we can in
polynomial time construct a tree decomposition of G with width |S| + 1. The proof of
the lower bound follows the general direction of the hardness proof for k-Coloring by
Lokshtanov et al. [30]. However, as we are showing hardness for all non-bi-arc graphs H , the
gadgets are significantly more complicated. In their construction we use some machinery
developed by Okrasa et al. [32]. Unfortunately, most of the gadgets used by Okrasa et al. [32]
cannot be used as a black box, as they contain many vertex-disjoint cycles. However, we are
able to adjust the constructions so that they work in our setting.

Furthermore, similarly to the proof of Theorem 1 b), the proof of Theorem 3 b) is split
into two parts: first we prove hardness for the special case if H is bipartite, and then we
reduce the general case to the bipartite one.

Then we turn our attention to the setting, where the parameter is the cutwidth of the
instance graph. Recall that ctw(G) ⩾ pw(G) ⩾ tw(G). Furthermore, given a linear layout
of G with width w, we can in polynomial time construct a tree decomposition of G with
width at most w [4]. Thus by Theorem 1 a) we know that LHom(H) can be solved in
time (i∗(H))ctw(G) · |V (G)|O(1). On the other hand, we know that this algorithm cannot be
optimal for all H , as i∗(Kk) = k, while List k-Coloring, i.e., LHom(Kk), can be solved in
time 2ω·ctw(G) · |V (G)|O(1) [25].

M. Piecyk and P. Rzążewski 56:5

We introduce another parameter mim∗(H), closely related to the size of a maximum
induced matching in H, and show the following lower bound.

▶ Theorem 4. For every connected non-bi-arc graph H, there is no algorithm that solves
every instance (G, L) of LHom(H) in time (mim∗(H) − ε)ctw(G) · |V (G)|O(1) for any ε > 0,
unless the SETH fails.

As a sanity check, we point out that mim∗(Kk) = 2, so our lower bounds are consistent
with the results of Jansen and Nederlof [25].

Next, we focus on the non-list variant of the problem, i.e., Hom(H). Note that here
we only consider graphs H that are irreflexive and non-bipartite, as otherwise the problem
is polynomial-time solvable. Furthermore, we restrict our attention to graphs H that are
projective cores (see Section 6 for a characterization of these graphs). It is known that almost
all irreflexive graphs are non-bipartite, connected projective cores [1, 17, 31, 34]. For this
class of graphs H , we show the following lower bounds, answering Question 2 in the negative.

▶ Theorem 5. For every connected non-bipartite, irreflexive projective core H, there is no
algorithm that solves every instance G of Hom(H) in time (mim∗(H) − ε)ctw(G) · |V (G)|O(1)

for any ε > 0, unless the SETH fails.

In particular, odd cycles are projective cores [28]. Furthermore, for any odd cycle Ck it
holds that mim∗(Ck) = ⌊2k/3⌋. Thus, we obtain the following as a corollary from Theorem 5.

▶ Corollary 6. Assuming the SETH, there is no universal constant c, such that for every odd
cycle C, the Hom(C) problem can be solved in time cctw(G) · |V (G)|O(1) for every instance G.

We conclude the paper with pointing out some directions for future investigations.

Full version. Due to the page limit, the proofs of some statements, marked with (♠), are
omitted or just sketched. The complete proofs can be found in the full version that is
available on arXiv [35]. There we also discuss the consequences of our hardness results, if we
only assume the ETH. Finally, we generalize the algorithm for k-Coloring by Jansen and
Nederlof [25] so that it could be used to solve LHom(H) for every graph H, as well as some
other closely related problems.

2 Notation and preliminaries

For a positive integer n, we define [n] := {1, . . . , n}. For a set X, by 2X we denote the
set of all subsets of X. Unless explicitly stated otherwise, all logarithms are of base 2, i.e.,
log x := log2 x.

Let G be a graph. For a set S ⊊ V (G), by G−S we denote the graph induced by V (G)\S.
For a vertex v ∈ V (G), by NG(v) we denote the set of neighbors of v and by degG(v) its
degree, i.e., |NG(v)|. If the graph G is clear from the context, we write N(v) and deg(v)
instead of NG(v) and degG(v). Note that v ∈ N(v) if and only if v is a vertex with a loop.
We say that two vertices u, v ∈ V (G) are incomparable if N(u) ̸⊆ N(v) and N(v) ̸⊆ N(u). A
set S ⊆ V (G) is incomparable if all its vertices are pairwise incomparable. Equivalently, we
can say that for every distinct u, v ∈ S, there is a vertex u′ ∈ N(u) \ N(v). A set S ⊆ V (G)
is strongly incomparable if for every u ∈ S there exists its private neighbor u′ ∈ N(u), such
that u′ is non-adjacent to every vertex in S \ {u}. Clearly, a strongly incomparable set of
vertices is incomparable.

STACS 2021

56:6 Fine-Grained Complexity of the List Homomorphism Problem

For two graphs G and H, we write φ : G → H if φ is a homomorphism from G to
H. If G is given with H-lists L, we write φ : (G, L) → H if φ is a homomorphism from
G to H, respecting lists L. We also write G → H (resp., (G, L) → H) to indicate that
some homomorphism φ : G → H (resp., φ : (G, L) → H) exists. As graph homomorphisms
generalize graph colorings, we will often use the term coloring to refer to a homomorphism.
Moreover, we refer to the vertices of H as colors.

For a graph G, H-lists L, and a set S ⊆ V (G) we define L(S) :=
⋃

v∈S L(v). If it does
not lead to confusion, for a set V such that V (G) ⊆ V and H-lists L : V → 2V (H), we will
denote the instance (G, L|V (G)) by (G, L), in order to simplify the notation.

Let H be a graph. A walk P in H is a sequence p1, . . . , pℓ of vertices of H such that
pipi+1 ∈ E(H) for i ∈ [ℓ − 1]. We define the length of a walk P = p1, . . . , pℓ as ℓ − 1. We also
write P : p1 → pℓ to emphasize that P starts in p1 and ends in pℓ. For walks P = p1, . . . , pℓ

and Q = q1, . . . , qℓ of equal length we say P avoids Q if p1 ≠ q1 and for every i ∈ [ℓ − 1]
it holds that piqi+1 ̸∈ E(H). By P we denote walk P reversed, i.e., if P = p1, . . . , pℓ, then
P = pℓ, . . . , p1. It is straightforward to observe that if P avoids Q, then Q avoids P.

Graph parameters. By tw(G) and pw(G) we denote, respectively, the treewidth and the
pathwidth of a graph G. A set F ⊆ V (G), such that G − F does not contain any cycle, is
called a feedback vertex set of G. We denote the size of a minimum feedback vertex set in G

by fvs(G).
Let π = (v1, . . . , vn) be a linear ordering of vertices of G, we will call it a lin-

ear layout of G. A cut of π is a partition of V (G) into two subsets: {v1, . . . , vp} and
{vp+1, . . . , vn}, for some p ∈ [n − 1]. We say that an edge vivj , where i < j, crosses the
cut ({v1, . . . , vp}, {vp+1, . . . , vn}), if i ⩽ p and j > p. The width of the linear layout π is the
maximum number of edges that cross any cut of π. Finally, we define the cutwidth ctw(G)
of G as the minimum width over all linear layouts of G.

Given a linear layout of G with width k, we can in polynomial time construct a path
decomposition of G with width at most k, so in particular pw(G) ⩽ ctw(G) [4]. On the other
hand, for every graph G it holds that ctw(G) ⩽ pw(G) · ∆(G) [6]. As we also have that
ctw(G) ⩾ ∆(G)/2, we can intuitively think that ctw(G) is bounded if and only if both ∆(G)
and pw(G) are bounded.

Bipartite graphs H, for which LHom(H) is NP-hard. Recall that Feder et al. [12] proved
that in this case the LHom(H) problem is polynomial-time solvable if H is a complement of
a circular-arc graph and NP-complete otherwise. We will rely on the following structural
result.

▶ Lemma 7 (Okrasa et al. [32, 33]). Let H be a bipartite graph, whose complement is not a
circular-arc graph. Then in each bipartition class there exists a triple (α, β, γ) of vertices
such that:
(1) there exist α′, β′ ∈ V (H), such that the edges αα′, ββ′ induce a matching in H,
(2) vertices α, β, γ are pairwise incomparable,
(3) there exist walks X , X ′ : α → β and Y, Y ′ : β → α, such that X avoids Y and Y ′ avoids

X ′,
(4) at least one of the following holds:

a) H contains an induced C6 with consecutive vertices w1, . . . , w6 and α = w1, β =
w5, γ = w3,

b) H contains an induced C8 with consecutive vertices w1, . . . , w8 and α = w1, β =
w5, γ = w3,

M. Piecyk and P. Rzążewski 56:7

c) the set {α, β, γ} is strongly incomparable and for any a, b, c, such that {a, b, c} =
{α, β, γ}, there exist walks Xc : α → a and Yc : α → b, and Zc : β → c, such that
Xc, Yc avoid Zc and Zc avoids Xc, Yc.

Incomparable sets, decompositions, and main invariants. In this section we still consider
H to be a bipartite graph. First, let us define parameters i(H) and mim(H).

▶ Definition 8 (i(H) and mim(H)). Let H be a bipartite graph. By i(H) (resp. mim(H))
we denote the maximum size of an incomparable set (resp. strongly incomparable set) in H,
which is fully contained in one bipartition class.

Let S be a strongly incomparable set, contained in one bipartition class, and let S′ be the
set of private neighbors of vertices of S. We observe that the set S ∪ S′ induces a matching
in H of size |S|. On the other hand, if M is an induced matching, then the endpoints of
edges from M contained in one bipartition class form a strongly incomparable set of size |M |.
Thus mim(H) can be equivalently defined as the size of a maximum induced matching in H .

Okrasa et al. [32] studied a certain decomposition of bipartite graphs. Its exact definition
is not important for us, so we skip it in the conference version. The only thing we need to
know is that every bipartite graph, whose complement is not a circular-arc graph, contains
an induced subgraph, which is undecomposable (i.e., does not admit this decomposition)
and its complement is not a circular-arc graph, see e.g. [33, Theorem 46]. This leads to the
following definitions.

▶ Definition 9 (i∗(H) and mim∗(H) for bipartite H). Let H be a bipartite graph, whose
complement is not a circular-arc graph. Define

i∗(H) := max{i(H ′) : H ′ is an undecomposable, connected, induced
subgraph of H, whose complement is not a circular-arc graph},

mim∗(H) := max{mim(H ′) : H ′ is an undecomposable, connected, induced
subgraph of H, whose complement is not a circular-arc graph}.

Observe that if H is bipartite, connected, undecomposable, and the complement of H is
not a circular-arc graph, then i∗(H) = i(H) and mim∗(H) = mim(H).

3 Bipartite H, parameter: the size of a minimum feedback vertex set

In this section we prove Theorem 3 b) in the case that H is bipartite. Assume that the
complement of H is not a circular-arc graph, and let (α, β, γ) be the triple given by Lemma 7.

We will introduce two gadgets. The first one is a graph called an assignment gadget and
has two special vertices. Its main goal is to ensure that a certain coloring of one special
vertex forces a certain coloring of the other special vertex.

▶ Definition 10 (Assignment gadget). Let S be an incomparable set in H contained in the
same bipartition class as α, β, γ and let v ∈ S. An assignment gadget is a graph Av with
H-lists L and with special vertices x, y, such that:
(A1.) L(x) = S and L(y) = {α, β, γ},
(A2.) for every u ∈ S and for every a ∈ {α, β} there exists a list homomorphism φ :

(Av, L) → H such that φ(x) = u and φ(y) = a,
(A3.) there exists a list homomorphism φ : (Av, L) → H such that φ(x) = v and φ(y) = γ,
(A4.) for every list homomorphism φ : (Av, L) → H it holds that if φ(y) = γ, then φ(x) = v,

STACS 2021

56:8 Fine-Grained Complexity of the List Homomorphism Problem

(A5.) Av − {x} is a tree,
(A6.) deg(x) = (|S| − 1)2 and deg(y) = |S| − 1.

The second gadget is called a switching gadget. It is a path T with a special internal
vertex q, whose list is {α, β, γ}, and endvertices with the same list {α, β}. Coloring both
endvertices of T with the same color, i.e., coloring both with α or both with β, allows us to
color q with one of α, β, but “switching sides” from α to β forces coloring q with γ.

▶ Definition 11 (Switching gadget). A switching gadget is a path T of even length with
H-lists L, endvertices p, r, called respectively the input and the output vertex, and one special
internal vertex q, called a q-vertex, in the same bipartition class as p, r, such that:
(S1.) L(p) = L(r) = {α, β} and L(q) = {α, β, γ},
(S2.) for every a ∈ {α, β} there exists a list homomorphism φ : (T, L) → H, such that

φ(p) = φ(r) = a and φ(q) ̸= γ,
(S3.) there exists a list homomorphism φ : (T, L) → H, such that φ(p) = α, φ(r) = β, and

φ(q) = γ,
(S4.) for every list homomorphism φ : (T, L) → H, if φ(p) = α and φ(r) = β, then φ(q) = γ.
Note that in a switching gadget we do not care about homomorphisms that map p to β and
r to α.

Later, when discussing assignment and switching gadgets, we will use the notions of x-,
y-, p-, q-, and r-vertices to refer to the appropriate vertices introduced in the definitions of
the gadgets.

▶ Lemma 12 (♠). Let H be an undecomposable, connected, bipartite graph, whose complement
is not a circular-arc graph. Let (α, β, γ) be the triple from Lemma 7. Let S be an incomparable
set in H contained in the same bipartition class as α, β, γ, such that |S| ⩾ 2. Then for every
v ∈ S there exists an assignment gadget Av.

Sketch of proof. The construction of an assignment gadget Av is performed in three steps.
First, for every u ∈ S \ {v}, we construct a gadget F̃u with two special vertices xu, cu with
lists L(xu) = S and L(cu) = {α, β}, such that there are list homomorphisms φ : (F̃u, L) → H

that map cu to β and xu to any vertex from S, or map cu to α and xu to any vertex from
S \ {u}, but mapping cu to α and xu to u is forbidden. The gadget was first introduced
in [33, first step in Lemma 4], but our construction is slightly different as we additionally
ensure that F̃u − {xu} is a tree and deg(xu) = |S| − 1 and deg(cu) = 1. We point out that
using the original gadgets intruduces many vertex-disjoint cycles, which increases the size of
a smallest feedback vertex set in the constructed graph.

In the second step, for every u ∈ S \ {v} we construct a path Pu with endvertices c′
u and

yu with lists L(c′
u) = {α, β} and L(yu) = {α, β, γ}, such that it is possible to map the pair

(c′
u, yu) to any pair of {α, β}2, or to (α, γ), but the pair (β, γ) is forbidden.

The construction of Pu depends on the case in Lemma 7 (4). In case (4a),
Pu is the path with lists of consecutive vertices {w1, w5}, {w2, w6}, {w1, w3, w5}.
In case (4b), Pu is the path with lists of consecutive vertices
{w1, w5}, {w2, w6}, {w1, w3, w7}, {w2, w4, w6, w8}, {w1, w3, w5}.

Finally, in case (4c), we will use walks given by Lemma 7 (4c). We construct an
auxiliary path P ′

u, such that the list of its i-th vertex is the set of i-th vertices of the walks
Xα, Yα, Zα. Similarly we construct a path P ′′

u using walks Xγ , Yγ , Zγ and a path P ′′′
u using

walks Xγ , Yγ , Zγ . We obtain Pu by identifying the last vertex of P ′
u with the first vertex of

P ′′
u , and the last vertex of P ′′

u with the first vertex of P ′′′
u . We set c′

u to be the first vertex of
P ′

u and yu to be the last vertex of P ′′′
u .

M. Piecyk and P. Rzążewski 56:9

Next, we introduce a copy of F̃u and identify the vertex cu from F̃u with the vertex c′
u

from Pu. Now, if xu is mapped to some vertex from S \ {u}, then yu can be mapped to any
of α, β, γ. However, if xu is mapped to u, then yu can only be mapped to α or β. Let Fu be
the graph obtained in this step.

Finally, we obtain the assignment gadget Av by introducing the gadget Fu for every
u ∈ S \ {v}, and identifying all xu’s into one vertex x and all yu’s into one vertex y. ◀

▶ Lemma 13 (♠). Let H be an undecomposable, connected, bipartite graph, whose complement
is not a circular-arc graph. Let (α, β, γ) be the triple from Lemma 7. Then there exists a
switching gadget T .

Sketch of proof. Again, we consider cases of Lemma 7 (4). In cases (4a) and (4b) the path
T is the path with lists of consecutive vertices: {w1, w5}, {w2, w4}, {w1, w3, w5}, {w2, w4},
{w1, w5}. We set p, q, r to be, respectively, the first, the third, and the fifth vertex of T .

In case (4c) we construct T similarly as we constructed Pu in the proof of Lemma 12,
using walks given by Lemma 7 (3) and (4c). We construct a path T ′ using walks Xβ , Yβ , Zβ ,
a path T ′′ using walks X α, Yα, Zα, and a path T ′′′ using walks X ′, Y ′. We obtain T by
identifying the last vertex of T ′ with the first vertex of T ′′, and the last vertex of T ′′ with
the first vertex of T ′′′. The vertices p, q, r are, respectively, the first vertex of T , the last
vertex of T ′, and the last vertex of T . ◀

Reduction. Suppose that we can construct both, the assignment gadget and the switching
gadget. Let us show that this is sufficent to prove Theorem 3 b) in the case that H is bipartite.
The proof is an extension of the construction of Lokshtanov et al. for the List k-Coloring
problem [30].

▶ Theorem 14. For every connected bipartite graph H, whose complement is not a circular-
arc graph, there is no algorithm that solves every instance (G, L) of LHom(H) in time
(i∗(H) − ε)fvs(G) · |V (G)|O(1) for any ε > 0, unless the SETH fails.

Proof. Let us point out that it is sufficient to show the theorem if we additionally assume
that H is undecomposable. Indeed, assume the SETH and suppose the theorem holds
for every bipartite undecomposable graph H ′, and it does not hold for every bipartite
graph H. Then there exist a connected, bipartite graph H, whose complement is not a
circular-arc graph, and an algorithm that solves LHom(H) for every instance (G, L) in
time (i∗(H) − ε)fvs(G) · |V (G)|O(1) for some ε > 0. Let H ′ be an induced subgraph of H

such that H ′ is connected, undecomposable, is not a complement of a circular-arc graph,
and i(H ′) = i∗(H). Any instance (G, L) of LHom(H ′) can be seen as an instance of
LHom(H) such that only vertices of H ′ appear on lists L. Thus we can solve any instance
(G, L) of LHom(H ′) in time (i∗(H) − ε)fvs(G) · |V (G)|O(1) = (i(H ′) − ε)fvs(G) · |V (G)|O(1), a
contradiction.

So from now on we assume that H is undecomposable. In particular, i∗(H) = i(H). Let
ϕ be an instance of CNF-Sat with n variables and m clauses. Let ε > 0 and k := i(H). Let
S be a maximum incomparable set contained in one bipartition class of H, i.e., |S| = k. Let
α, β, γ be the vertices of H , in the same bipartition class as S, given by Lemma 7. Let α′, β′

be the vertices such that edges αα′, ββ′ induce a matching in H, they exist by Lemma 7.
Observe that k ⩾ 3, since vertices α, β, γ are pairwise incomparable. Moreover, we define
λ := logk(k − ε). Observe that λ < 1. We choose a positive integer p sufficiently large so
that λ p

p−1 < 1 and define t :=
⌈

n
⌊log kp⌋

⌉
=

⌈
n

⌊p·log k⌋

⌉
.

STACS 2021

56:10 Fine-Grained Complexity of the List Homomorphism Problem

xC yC

x1
1 x1

2 x1
p xi

1 xi
2 xi

p xt
1 xt

2 xt
p

T 1,f1
C T 1,f2

C T
i,fj

C
T t,fℓ

C

Af1(x1
1) Afj (xi

p) Afℓ(xt
1) Afℓ(xt

p)

Figure 1 The path PC for a clause C and vertices xi
s for i ∈ [t], s ∈ [p].

We will construct a graph G with H-lists L such that fvs(G) ⩽ t · p and (G, L) → H if
and only if ϕ is satisfiable. We partition the variables of ϕ into t sets F1, . . . , Ft called groups,
such that |Fi| ⩽ ⌊log kp⌋. For each i ∈ [t] we introduce p vertices xi

1, . . . , xi
p and for every

s ∈ [p] we set L(xi
s) := S. We will interpret a coloring of these vertices as a truth assignment

of variables in Fi. Note that there are at most 2⌊log kp⌋ ⩽ kp possible truth assigments of
variables in Fi and there are kp possible colorings of xi

1, . . . , xi
p, respecting lists L. Thus we

can define an injective mapping that assigns a distinct coloring of vertices xi
1, . . . , xi

p to each
truth assignment of the variables in Fi, note that some colorings may remain unassigned.

For every clause C of ϕ we introduce a path PC constructed as follows. Consider a group
Fi that contains at least one variable from C, and a truth assignment of Fi that satisfies C.
Recall that this assignment corresponds to a coloring f of vertices xi

1, . . . , xi
p. We introduce

a switching gadget T i,f
C , whose q-vertex is denoted by qi,f

C . We fix an arbitrary ordering of
all switching gadgets introduced for the clause C. For every switching gadget but the last
one, we identify its output vertex with the input vertex of the succesor. We add vertices xC

with L(xC) = {α′} and yC with L(yC) = {β′}. We add an edge between xC and the input
of the first switching gadget, and between yC and the output of the last switching gadget.
This completes the construction of PC .

Now consider a switching gadget T i,f
C introduced in the previous step. Recall that C

is a clause of ϕ, and f is a coloring of xi
1, . . . , xi

p corresponding to a truth assignment of
variables in Fi, which satisfies C. Let us define vs := f(xi

s) for s ∈ [p]. For every s ∈ [p],
we call Lemma 12 to construct the assignment gadget Avs

. We identify the x-vertex of Avs

with xi
s and the y-vertex with qi,f

C . This completes the construction of (G, L) (see Figure 1).
The properties of the gadgets ensure that ϕ is satisfiable if and only if (G, L) → H (♠).
Furthermore, |V (G)| = (n + m)O(1) and

⋃t
i=1{xi

1, . . . , xi
p} is a feedback vertex set in G, so

fvs(G) ⩽ t · p (♠).
Suppose that the instance (G, L) of LHom(H) can be solved in time (k − ε)fvs(G) ·

|V (G)|O(1) ⩽ (k − ε)t·p · |V (G)|O(1). Recall that ϕ is satisfiable if and only if (G, L) → H.
By a careful analysis of the exponent in the complexity bound (♠) we conclude that ϕ can
be solved in time (2 − δ)n · (n + m)O(1) for some δ > 0, which contradicts the SETH. ◀

Let us point out that the pathwidth of the graph constructed in the proof above is
bounded by t · p + f(H), for some function f of H (see also [30]).

4 Bipartite H, parameter: cutwidth

Similarly as in the previous section, let us first prove Theorem 4 in the case that H is
bipartite. We will modify the reduction from Theorem 14. To get an intuition about what
needs to be done, recall that in order to obtain a bound on the cutwidth, we need to bound

M. Piecyk and P. Rzążewski 56:11

the pathwidth and the maximum degree. Also, as we already observed, the pathwidth of the
instance constructed in Theorem 14 is upper-bounded by the correct value, so we need to
take care of vertices of large degree.

▶ Theorem 15. For every connected bipartite graph H, whose complement is not a circular-
arc graph, there is no algorithm that solves every instance (G, L) of LHom(H), given with a
linear layout of width at most w, in time (mim∗(H) − ε)w · |V (G)|O(1) for any ε > 0, unless
the SETH fails.

Proof. First, similarly to the proof of Theorem 14 in the case that H is bipartite, it is sufficient
to show the proof in case that H is undecomposable. In particular mim∗(H) = mim(H).

Let S be a strongly incomparable set in H of size k = mim(H), contained in one
bipartition class. Let S′ be a set such that S ∪ S′ induces a matching of size k in H, and
let (α, β, γ) be the triple given by Lemma 7, such that α, β, γ are in the same bipartition
class as S. Let ϕ be an instance of CNF-Sat with n variables and m clauses. Let ε > 0.
As in the proof of Theorem 14, we choose an integer p so that logk(k − ε) · p

p−1 < 1 and set

t :=
⌈

n
⌊p·log k⌋

⌉
. We will construct an instance (G̃, L̃) of LHom(H) with a linear layout of

width at most t · p + f(H), where f is some function of H , such that (G̃, L̃) → H if and only
if ϕ is satisfiable. We repeat the construction of the instance (G, L) of LHom(H), such that
(G, L) → H if and only if ϕ is satisfiable, from the proof of Theorem 14. This is possible
since S is in particular incomparable. Furthermore, in the construction of (G, L) we did not
use the fact that S was maximum, we only needed that |S| ⩾ 2, which is the case as {α, β} is
strongly incomparable. We are going to modify the instance (G, L) into the desired instance
(G̃, L̃).

Before we do that, let us fix an arbitrary ordering of clauses C1, . . . , Cm in ϕ, which
implies the ordering of paths PC in G. Then we can fix an ordering of all q-vertices in G, so
that a q-vertex q1 precedes a q-vertex q2, if:

q1 belongs to the path PCi
and q2 belongs to the path PCj

, such that i < j, or
q1 and q2 belong to the same path PC , and q1 precedes q2 on PC (the order of the vertices
of each path PC is such that xC is the first vertex and yC is the last vertex).

Finally, we fix an ordering of the assignment gadgets in G. Recall that every q-vertex qi,f
C is

a y-vertex of p assignment gadgets whose x-vertices are, respectively, xi
1, . . . , xi

p. We fix an
ordering of the assignment gadgets so that the assignment gadget A1 precedes the assignment
gadget A2 if:

the y-vertex of A1 precedes the y-vertex of A2 in the fixed order of the q-vertices, or
A1 and A2 have the same y-vertex qi,f

C and x-vertices of A1 and A2 are, respectively, xi
j

and xi
s, with j < s.

Now we are ready to modify the instance (G, L). It turns out that we only need to take care
of q-vertices and x-vertices, as their large degree forces large cutwidth. The construction of
(G̃, L̃) will be thus performed in two steps.

Step 1. Splitting q-vertices. Recall that every q-vertex of a switching gadget is a y-vertex
of p assignment gadgets and the degree of each y-vertex in the assignment gadget is k − 1.
For every q-vertex q, in order to reduce its degree, we will split q into p · (k − 1) vertices
q1, . . . , qp·(k−1). In this step, the construction depends on the structure of H . Let us consider
two cases.
Case I. The set {α, β, γ} is strongly incomparable. Let α, β, γ be vertices such that edges

αα, ββ, γγ induce a matching in H. We replace every q-vertex q from a path PC with
p · (k − 1) vertices q1, . . . , qp·(k−1), each for every neighbor of q inside assignment gadgets.

STACS 2021

56:12 Fine-Grained Complexity of the List Homomorphism Problem

qp r

xi
1 xi

p

Af(xi
1) Af(xi

p)

list S

list {α, β}
list {α, β, γ}
list {β, γ}

p rq1 qk−1 qp·(k−1)

xi
1 xi

p

Af(xi
1) Af(xi

p)

p rq

q1 qk−1 qp·(k−1)

Q

xi
1 xi

p

Af(xi
1) Af(xi

p)

Figure 2 The switching gadget T and the group of vertices xi
s for s ∈ [p] before the step of

splitting q-vertices (top), after the step in the case that {α, β, γ} is a strongly incomparable set
(bottom, left), and after introducing the path Q (marked by the bold curve) in the case that {α, β, γ}
is not strongly incomparable (bottom, right).

For every j ∈ [p · (k − 1) − 1] we introduce a path Qj of length 2 with lists of consecutive
vertices {α, β, γ}, {α, β, γ}, {α, β, γ}, and we identify its endvertices with qj and qj+1. In
the same way, we introduce paths Q0 and Qp·(k−1) and we identify endvertices of Q0
with q1 and the vertex preceding q on PC , and we identify endvertices of Qp·(k−1) with
qp·(k−1) and the vertex following q on PC (see Figure 2). Finally, let us fix an ordering
a1, a2, . . . , ap·(k−1) of neighbors of q in assignment gadgets such that for j ∈ [p−1] vertices
of the assignment gadget with the x-vertex xi

j precede vertices of the assignment gadget
with the x-vertex xi

j+1. The order of the neighbors from the same assignment gadget is
arbitrary. For every j ∈ [p · (k − 1)] we add an edge between qj and aj (see Figure 2).
This completes the step of splitting q-vertices in this case.

Case II: The set {α, β, γ} is not strongly incomparable. By Lemma 7 this means that H

contains an induced C6 or C8 with consecutive vertices w1, . . . , w6(, w7, w8) and α = w1,
β = w5, γ = w3. In this case we leave each q-vertex q in the graph, but we introduce a
path Q with H-lists L, with q as one of endvertices, special vertices qj for j ∈ [p · (k − 1)],
with list L(qj) = {β, γ} and such that:

for every list homomorphism φ : (Q, L) → H, if q is mapped to γ, then for every
j ∈ [p · (k − 1)] the vertex qj is mapped to γ.
there exists a list homomorphism φ : (Q, L) → H such that φ(q) = γ and φ(qj) = γ

for every j ∈ [p · (k − 1)].
for every c ∈ {α, β} there exists a list homomorphism φ : (Q, L) → H such that q is
mapped to c and for every j ∈ [p · (k − 1)] the vertex qj is mapped to β.

The path Q is constructed using the walks from Lemma 7, similarly as we did in Lemma 12
and Lemma 13 (♠). Again, for each neighbor aj of q (the neighbors of qi,f

C are ordered
as in the previous case) we add an edge qjaj and remove the edge qaj (see Figure 2).

This completes the Step 1. We will refer to the newly introduced vertices qj as q-vertices.

Step 2. Splitting x-vertices. The only vertices that might still have large degree are vertices
from {xi

j | i ∈ [t], j ∈ [p]}. More precisely, the degree of the x-vertex in an assignment
gadget is (k − 1)2, and thus the degree of an x-vertex x is d = d(x) · (k − 1)2, where d(x)

M. Piecyk and P. Rzążewski 56:13

is the number of the assignment gadgets, whose x-vertex is x. We replace the vertex x

with d vertices x1, . . . , xd, each with list S. For every s ∈ [d − 1] we introduce a path Xs of
length 2, lists of consecutive vertices S, S′, S, and we identify its endvertices with xs and
xs+1, respectively. We fix an ordering b1, . . . , bd of neighbors of x, such that if bi and bj

belong, respectively, to assignment gadgets Ai and Aj , and Ai precedes Aj in the fixed order
of the assignment gadgets, then bi precedes bj . The order of the neighbors from the same
assignment gadget is arbitrary. For every s ∈ [d] we add an edge bsxs. We will refer to the
new vertices xj introduced in this step also as x-vertices.

It can be verified that (G̃, L̃) → H if and only if ϕ is satisfiable (♠). Furthermore, we
can specify a linear layout π of G̃ with width at most w := t · p + f(H), for some function f ,
as follows (♠). We order the vertices of the original paths PC (those from graph G), such
that the vertices from PCj precede vertices of PCj+1 , and the vertices from one path PC are
ordered in a natural way (the vertex xC is the first one and the vertex yC is the last one).
Then, if Case 1. in Step 1. was applied, we replace each q-vertex q with vertices qj and
vertices of paths Qj in the following order: Q0, q1, Q1, . . . , qp·(k−1), Qp·(k−1). If Case 2. was
applied, we insert the vertices from the path Q just after q, in the natural order with q being
the first one.

Now we need to place the vertices of assignment gadgets and of paths Xs. We insert the
vertices of an assignment gadget Av, whose y-vertex was q, just after q-vertices adjacent to
Av, which were introduced for q in Step 1. We also insert there the vertices from those paths
Xs, whose endvertices are adjacent to Av.

To see that the width of π is at most t · p + f(H) observe that we placed vertices from
each assignment gadget close to each other and to the vertices adjacent to that gadget. The
number of the edges with at least one endpoint in a fixed assignment gadget is bounded by
some constant f(H). The only edges between vertices that are possibly “far” are edges from
paths X connecting x-vertices adjacent to different assignment gadgets and in each cut their
number is bounded by the number of original x-vertices, i.e., t · p.

Now suppose there is an algorithm that solves every instance (G, L) of LHom(H) in time
(k − ε)w · |V (G)|O(1). Then for an instance ϕ of CNF-Sat we can construct the instance
(G̃, L̃) as above and we can solve (G̃, L̃) in time (k−ε)t·p+f(H) ·|V (G)|O(1), which is equivalent
to solving the instance ϕ. As in the proof of Theorem 14, we conclude that this implies that
CNF-Sat with n variables and m clauses can be solved in time (2 − δ)n · (n + m)O(1) for
some δ > 0, which contradicts the SETH. ◀

5 Hardness for general target graphs

For a graph H, the associated bipartite graph H∗ is the graph with vertex set V (H∗) =
{v′, v′′ | v ∈ V (H)}, whose edge set contains those pairs u′v′′, for which uv ∈ E(H).

Recall that for general graphs H, Feder et al. [13] showed that the LHom(H) problem
is polynomial-time solvable if H is a bi-arc graph, and NP-complete otherwise. They also
observed that H is a bi-arc graph if and only if H∗ is the complement of a circular-arc graph.
Furthermore, an irreflexive graph is bi-arc if and only if it is bipartite and its complement
is a circular-arc graph. Thus “hard” cases of LHom(H) correspond to the “hard” cases of
LHom(H∗).

Observe that if H is bipartite, then H∗ consists of two disjoint copies of H. Thus for
bipartite H it holds that i∗(H∗) = i∗(H) and mim∗(H∗) = mim∗(H). On the other hand,
if H is non-bipartite and additionally connected, then H∗ is connected. This motivates the
following extension of the definition of i∗ and mim∗ to non-bipartite H.

STACS 2021

56:14 Fine-Grained Complexity of the List Homomorphism Problem

▶ Definition 16 (i∗(H) and mim∗(H)). Let H be a non-bi-arc graph. Define:

i∗(H) := i∗(H∗) and mim∗(H) := mim∗(H∗).

Observe that that the instances (G, L) constructed in the proofs of Theorem 14 or
Theorem 15 are bipartite. Indeed, the instance constructed in Theorem 14 consists of paths
PC and assignment gadgets, whose vertices were appropriately identified. More precisely,
we identify some q-vertices (from switching gadgets belonging to paths PC) with y-vertices
(from addignment gadgets), and x-vertices with another x-vertices (from assignment gadgets).
Recall that each assignment gadget is bipartite by property (A3.) of Definition 10. Moreover,
for each assignment gadget, the x-vertex is in the same bipartition class as the y-vertex.
Similarly, for each path PC , all q-vertices are in the same bipartition class. Therefore, the
instance (G, L) constructed in Theorem 14 is bipartite. The instance from Theorem 15 was
obtained from the instance (G, L) from Theorem 14 by splitting some vertices into a set of
vertices joined by paths of even lenght, so the instance remains bipartite.

Furthermore, if the bipartition classes of G are X and Y , then L(X) is contained in
one bipartition class of H, and L(Y) is contained in the other one. Finally, without loss of
generality we can assume that for each v ∈ V (G), the set L(v) is incomparable. Indeed, if
L(v) contains two distincts vertices x, y, such that NH(x) ⊆ NH(y), we can safely remove x

from L(v), obtaining an equivalent instance. Instances satisfying these three conditions are
called consistent.

▶ Proposition 17 ([32, 33]). Let H be a graph and let (G, L) be a consistent instance of
LHom(H∗). Define L′ as L′(x) := {u : {u′, u′′} ∩ L(x) ̸= ∅}. Then (G, L) → H∗ if and only
if (G, L′) → H.

Now we can prove Theorem 3 b) and Theorem 4 (♠).

Sketch of proof of Theorem 3 b) and Theorem 4. If H is bipartite, we are done by Theo-
rem 14 or Theorem 15. Otherwise H∗ is connected. Let (G, L) be an instance of LHom(H∗)
constructed in the proof of Theorem 14 or Theorem 15. Let (G, L′) be an equivalent instance
of LHom(H) given by Proposition 17. As the instance graph remains the same, the lower
bound holds. ◀

Note that the statement of Theorem 15 actually implies the following, slightly stronger
result.

▶ Corollary 18. For every connected non-bi-arc graph H, there is no algorithm that solves
every instance (G, L) of LHom(H), given with a linear layout of width at most w, in time
(mim∗(H) − ε)w · |V (G)|O(1) for any ε > 0, unless the SETH fails.

6 Hardness of Hom(H)

In this section we extend Theorem 4 to the non-list case, i.e., we prove Theorem 5. Let us
first discuss the graph class mentioned in the statement. Recall that Hom(H) is NP-hard
if H is non-bipartite and has no loops [18]. In particular, this implies that H has at least
three vertices. We say that a graph H is a core if every homomorphism φ : H → H is an
automorphism, i.e., is injective and surjective. We also need the following characterization of
projective graphs.

M. Piecyk and P. Rzążewski 56:15

▶ Theorem 19 (Larose, Tardif [29]). Let H be graph with at least three vertices. Then H is
projective if and only if for every L ⊆ V (H) there exist a tuple (x1, . . . , xℓ) of vertices in H

and a graph FL with a tuple of its vertices (y0, y1, . . . , yℓ) such that
L = {φ(y0) | φ : FL → H, such that φ(y1) = x1, . . . , φ(yℓ) = xℓ}.

Now we are ready to prove Theorem 5.

▶ Theorem 5. For every connected non-bipartite, irreflexive projective core H, there is no
algorithm that solves every instance G of Hom(H) in time (mim∗(H) − ε)ctw(G) · |V (G)|O(1)

for any ε > 0, unless the SETH fails.

Sketch of proof. Let H be as in the statement. As non-bipartite irreflexive graphs are not
bi-arc graphs [13], we can use Corollary 18. Let (G, L) be an instance of LHom(H), and
let π = (v1, . . . , v|V (G)|) be a linear layout of G of width w. Consider an instance G̃ of
Hom(H) constructed as follows. For every vi ∈ V (G) we call Theorem 19 to obtain the
tuple (x(i)

1 , . . . , x
(i)
ℓi

) of vertices in H and a graph FL(vi) with special vertices y
(i)
0 , . . . , y

(i)
ℓi

.
For every vi we introduce a copy H(i) of the graph H and identify vertices y

(i)
1 , . . . , y

(i)
ℓi

,
respectively with x

(i)
1 , . . . , x

(i)
ℓi

in the copy H(i). Moreover, we identify y
(i)
0 with vi. Finally,

for every i ∈ [|V (G)| − 1] we add edges between the copies H(i) and H(i+1) as follows. For
every vertex z(i) in H(i) and its corresponding copy z(i+1) in H(i+1) we add all edges between
z(i) and NH(i+1)(z(i+1)). This completes the construction of G̃.

Theorem 19 implies that (G, L) → H if and only if G̃ → H: every graph FL(v) together
with a copy of H forces that a vertex v can be colored only with vertices from L(v) and thus
it imitates the list of v (♠). Furthermore, ctw(G̃) ⩽ w + g(H) for some function g of H: the
copies of H are connected in the appropriate order and thus the linear layout π of G can
be easily modified to a linear layout π̃ of G̃ with width larger than w only by a constant
depending on H (♠).

Now suppose that Hom(H) can be solved for every instance G′ in time (mim∗(H) −
ε)ctw(G′) · |V (G′)|O(1) for some ε > 0. Then, for an instance (G, L) of LHom(H) with a linear
layout π of width w, we can construct in polynomial time the instance G̃ of Hom(H) as
above. We solve the instance G̃ in time (mim∗(H) − ε)ctw(G̃) · |V (G̃)|O(1), which is equivalent
to solving the instance (G, L) in time (mim∗(H) − ε)w · |V (G)|O(1). By Corollary 18, this
contradicts the SETH. ◀

7 Conclusion

A natural open question is to close the gap between lower and upper bounds for the complexity
of LHom(H), parameterized by the cutwidth. As a concrete problem, we believe that a good
starting point is to understand the complexity of LHom(Ck), where k ⩾ 5. Recall that we
have a lower bound mim∗(Ck)ctw(G) ·|V (G)|O(1) and an upper bound i∗(Ck)ctw(G) ·|V (G)|O(1).
The value of mim∗(Ck) is ⌊k/3⌋ if k is even, and ⌊2k/3⌋ if k is odd. On the other hand,
i∗(Ck) is k/2 if k is even, and k if k is odd. Where does the truth lie? To be even more
specific, what is the complexity of LHom(C6)?

Another research direction that we find exciting is to study the complexity of Hom(H)
and LHom(H), depending on different parameters of the instance graph. In particular,
Lampis [27] showed that k-Coloring on a graph G can be solved in time O∗((2k − 2)cw(G)),
where cw(G) is the clique-width of G. Furthermore, an algorithm with a running time
O∗((2k − 2 − ε)cw(G)), for any ε > 0, would contradict the SETH. We believe it is exciting
to investigate how these results generalize to non-complete target graphs H.

STACS 2021

56:16 Fine-Grained Complexity of the List Homomorphism Problem

References
1 Noga Alon and Joel H. Spencer. The Probabilistic Method, Third Edition. Wiley-Interscience

series in discrete mathematics and optimization. Wiley, 2008.
2 Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard prob-

lems restricted to partial k-trees. Discret. Appl. Math., 23(1):11–24, 1989. doi:10.1016/
0166-218X(89)90031-0.

3 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-
exclusion. SIAM J. Comput., 39(2):546–563, 2009. doi:10.1137/070683933.

4 H. L. Bodlaender. Classes of graphs with bounded tree-width. Bulletin of EATCS, pages
116–128, 1988.

5 Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization on graphs of
bounded treewidth. Comput. J., 51(3):255–269, May 2008. doi:10.1093/comjnl/bxm037.

6 Fan R. K. Chung and Paul D. Seymour. Graphs with small bandwidth and cutwidth. Discret.
Math., 75(1-3):113–119, 1989. doi:10.1016/0012-365X(89)90083-6.

7 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
J. Symb. Comput., 9(3):251–280, 1990. doi:10.1016/S0747-7171(08)80013-2.

8 Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin,
Jakub Pachocki, and Arkadiusz Socala. Tight lower bounds on graph embedding problems. J.
ACM, 64(3):18:1–18:22, 2017. doi:10.1145/3051094.

9 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 László Egri, Dániel Marx, and Paweł Rzążewski. Finding list homomorphisms from bounded-
treewidth graphs to reflexive graphs: a complete complexity characterization. In Rolf
Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Com-
puter Science, STACS 2018, February 28 to March 3, 2018, Caen, France, volume 96
of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.
doi:10.4230/LIPIcs.STACS.2018.27.

11 Tomás Feder and Pavol Hell. List homomorphisms to reflexive graphs. Journal of Combinatorial
Theory, Series B, 72(2):236–250, 1998. doi:10.1006/jctb.1997.1812.

12 Tomás Feder, Pavol Hell, and Jing Huang. List homomorphisms and circular arc graphs.
Combinatorica, 19(4):487–505, 1999. doi:10.1007/s004939970003.

13 Tomás Feder, Pavol Hell, and Jing Huang. Bi-arc graphs and the complexity of list homomor-
phisms. Journal of Graph Theory, 42(1):61–80, 2003. doi:10.1002/jgt.10073.

14 Fedor V. Fomin, Pinar Heggernes, and Dieter Kratsch. Exact algorithms for graph homomor-
phisms. Theory Comput. Syst., 41(2):381–393, 2007. doi:10.1007/s00224-007-2007-x.

15 M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems.
Theoretical Computer Science, 1(3):237–267, 1976. doi:10.1016/0304-3975(76)90059-1.

16 Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Cliquewidth III:
the odd case of graph coloring parameterized by cliquewidth. In Artur Czumaj, editor,
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 262–273. SIAM, 2018.
doi:10.1137/1.9781611975031.19.

17 Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms. Oxford University Press, 2004.
18 Pavol Hell and Jaroslav Nešetřil. On the complexity of H -coloring. J. Comb. Theory, Ser. B,

48(1):92–110, 1990. doi:10.1016/0095-8956(90)90132-J.
19 Ian Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10(4):718–720, 1981.

doi:10.1137/0210055.
20 Shenwei Huang. Improved complexity results on k-coloring Pt-free graphs. Eur. J. Comb.,

51:336–346, 2016. doi:10.1016/j.ejc.2015.06.005.
21 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of

Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

https://doi.org/10.1016/0166-218X(89)90031-0
https://doi.org/10.1016/0166-218X(89)90031-0
https://doi.org/10.1137/070683933
https://doi.org/10.1093/comjnl/bxm037
https://doi.org/10.1016/0012-365X(89)90083-6
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1145/3051094
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.4230/LIPIcs.STACS.2018.27
https://doi.org/10.1006/jctb.1997.1812
https://doi.org/10.1007/s004939970003
https://doi.org/10.1002/jgt.10073
https://doi.org/10.1007/s00224-007-2007-x
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1137/1.9781611975031.19
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1137/0210055
https://doi.org/10.1016/j.ejc.2015.06.005
https://doi.org/10.1006/jcss.2000.1727

M. Piecyk and P. Rzążewski 56:17

22 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

23 Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis of graph
coloring problems. In Dimitris Fotakis, Aris Pagourtzis, and Vangelis Th. Paschos, editors,
Algorithms and Complexity - 10th International Conference, CIAC 2017, Athens, Greece, May
24-26, 2017, Proceedings, volume 10236 of Lecture Notes in Computer Science, pages 345–356,
2017. doi:10.1007/978-3-319-57586-5_29.

24 Bart M. P. Jansen. Personal communication.
25 Bart M. P. Jansen and Jesper Nederlof. Computing the chromatic number using graph

decompositions via matrix rank. Theor. Comput. Sci., 795:520–539, 2019. doi:10.1016/j.
tcs.2019.08.006.

26 Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating the
chromatic number. Combinatorica, 20(3):393–415, 2000. doi:10.1007/s004930070013.

27 Michael Lampis. Finer tight bounds for coloring on clique-width. In Ioannis Chatzigiannakis,
Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International Collo-
quium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic, volume 107 of LIPIcs, pages 86:1–86:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.86.

28 Benoît Larose. Families of strongly projective graphs. Discuss. Math. Graph Theory, 22(2):271–
292, 2002. doi:10.7151/dmgt.1175.

29 Benoit Larose and Claude Tardif. Strongly rigid graphs and projectivity. Multiple-Valued
Logic, 7:339–361, 2001.

30 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018.
doi:10.1145/3170442.

31 Tomasz Łuczak and Jaroslav Nešetřil. Note on projective graphs. Journal of Graph Theory,
47(2):81–86, 2004.

32 Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Full complexity classification of the
list homomorphism problem for bounded-treewidth graphs. In Fabrizio Grandoni, Grzegorz
Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA
2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages
74:1–74:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ESA.2020.74.

33 Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Full complexity classification of the
list homomorphism problem for bounded-treewidth graphs. CoRR, abs/2006.11155, 2020.
arXiv:2006.11155.

34 Karolina Okrasa and Paweł Rzążewski. Fine-grained complexity of graph homomorphism
problem for bounded-treewidth graphs. In Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, pages 1578–1590, 2020. doi:10.1137/1.9781611975994.97.

35 Marta Piecyk and Paweł Rzążewski. Fine-grained complexity of the list homomorphism
problem: feedback vertex set and cutwidth. CoRR, abs/2009.11642, 2020. arXiv:2009.11642.

36 Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

37 Paweł Rzążewski. Exact algorithm for graph homomorphism and locally injective graph
homomorphism. Inf. Process. Lett., 114(7):387–391, 2014. doi:10.1016/j.ipl.2014.02.012.

38 Magnus Wahlström. New plain-exponential time classes for graph homomorphism. Theory
Comput. Syst., 49(2):273–282, 2011. doi:10.1007/s00224-010-9261-z.

39 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In
Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory
of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
887–898. ACM, 2012. doi:10.1145/2213977.2214056.

STACS 2021

https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/978-3-319-57586-5_29
https://doi.org/10.1016/j.tcs.2019.08.006
https://doi.org/10.1016/j.tcs.2019.08.006
https://doi.org/10.1007/s004930070013
https://doi.org/10.4230/LIPIcs.ICALP.2018.86
https://doi.org/10.7151/dmgt.1175
https://doi.org/10.1145/3170442
https://doi.org/10.4230/LIPIcs.ESA.2020.74
https://doi.org/10.4230/LIPIcs.ESA.2020.74
http://arxiv.org/abs/2006.11155
https://doi.org/10.1137/1.9781611975994.97
http://arxiv.org/abs/2009.11642
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/j.ipl.2014.02.012
https://doi.org/10.1007/s00224-010-9261-z
https://doi.org/10.1145/2213977.2214056

6-Uniform Maker-Breaker Game Is
PSPACE-Complete
Md Lutfar Rahman !

University of Memphis, TN, USA

Thomas Watson !

University of Memphis, TN, USA

Abstract
In a STOC 1976 paper, Schaefer proved that it is PSPACE-complete to determine the winner of
the so-called Maker-Breaker game on a given set system, even when every set has size at most
11. Since then, there has been no improvement on this result. We prove that the game remains
PSPACE-complete even when every set has size 6.

2012 ACM Subject Classification Theory of computation Ñ Problems, reductions and completeness

Keywords and phrases Game, Maker-Breaker, Complexity, Reduction, PSPACE-complete, NL-hard

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.57

Related Version Full Version: https://eccc.weizmann.ac.il/report/2020/097/

Funding This work was supported by NSF grants CCF-1657377 and CCF-1942742.

1 Introduction

The Maker-Breaker game is a perfect-information game played on a set system – a collection
of subsets of some finite universe. The two players, called Maker and Breaker, alternate
turns. In each turn, the current player claims a previously-unclaimed element of the universe
as his own. Maker wins if he claims every element in at least one subset. Breaker wins if he
claims at least one element in every subset. There are no draws, and for every set system,
one of the players has a strategy that guarantees that he wins. The popular game of Hex
can be viewed as a Maker-Breaker game.

Maker-Breaker games were introduced in the influential paper [9], which provided a
sufficient condition for Breaker to win (and is often considered the forerunner to the method
of conditional probabilities). There is a very substantial literature on determining which
player has a winning strategy, for various kinds of set systems (and for many generalizations
and variants of Maker-Breaker games). We refer to [14] for a survey. Some cornerstones of
this literature are:

When the universe is the set of edges of an undirected graph with distinguished nodes s
and t, and the subsets are s-t paths (this special case is called the “Shannon switching
game”), Lehman [16] characterized which player can win, in terms of combinatorial
properties of the graph.
When the universe is the set of edges of a sufficiently large complete undirected graph,
and the subsets are Hamiltonian cycles, Chvátal and Erdös [5] proved that Maker can
win.

Given the effort that has gone into determining the winner for various set systems, it is
natural to consider the possibility of automating this process. In other words, let us view
this as a computational problem and investigate how efficiently it can be solved.

What is the computational complexity of determining which player has a winning
strategy in the Maker-Breaker game on a given set system?

© Md Lutfar Rahman and Thomas Watson;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 57; pp. 57:1–57:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mrahman9@memphis.edu
mailto:Thomas.Watson@memphis.edu
https://doi.org/10.4230/LIPIcs.STACS.2021.57
https://eccc.weizmann.ac.il/report/2020/097/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Maker-Breaker Game

In a seminal paper, Schaefer [19, 20] proved that the problem is PSPACE-complete, even
when the set system has width 11, which means each subset in the system has size at most
11. (A simplified proof of PSPACE-completeness for unbounded width was given in [4].)
Reductions from this theorem have been used for many other PSPACE-completeness results
[1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 17, 21, 22, 24, 25].

Since Schaefer’s PSPACE-completeness result first appeared in 1976, there has been no
improvement on the width 11. We make the first progress in 44 years: Determining the
winner of the Maker-Breaker game remains PSPACE-complete even for set systems of width
6. As we note later, this also implies PSPACE-completeness of Maker-Breaker for set systems
that are 6-uniform, meaning that every subset has size exactly 6.

1.1 CNF games
In this section, we introduce “CNF games,” a broader sense of games that includes Maker-
Breaker as a special case.

In the ordered game, the input consists of a conjunctive normal form (CNF) formula
φ and an ordered list of variables tx2n, x2n´1, . . . , x2, x1u that contains all variables of
φ. Player 1 is called T because his goal is to make φ true, and player 2 is called F
because his goal is to make φ false. In the first round, T assigns a bit value for x2n,
then F assigns a bit value for x2n´1. In the next round, T assigns x2n´2, then F assigns
x2n´3, and so on for n rounds. The winner depends on whether φ is satisfied by the
resulting assignment. In other words, which player has a winning strategy is determined
by whether the following quantified boolean formula is true:

pDx2nqp@x2n´1q ¨ ¨ ¨ pDx2qp@x1q : φpx1, . . . , x2nq

The problem w-TQBF is to determine which player has a winning strategy, under the
restriction that φ has width w (every clause has at most w literals). It is known that
2-TQBF is NL-complete [2] and 3-TQBF is PSPACE-complete [23].
In the unordered game, the input consists of a CNF φ, a set X of variables that contains
all variables of φ (and possibly more), and an indication of which player (T or F) gets
the first move. Again, T and F alternate turns assigning bit values to variables, and the
winner depends on whether φ is satisfied by the resulting assignment. But now, each turn
consists of picking which remaining variable to assign, as well as which bit to assign it.
The unordered game more closely resembles real-world games in which the same moves
are available to both players. The problem Gw is to determine which player has a winning
strategy, under the restriction that φ has width w. The paper [17] originated the Gw

notation and showed that G2 is in L and G5 is PSPACE-complete.
The unordered positive game is just the unordered game under the restriction that φ
must be a positive (a.k.a. monotone) CNF – it only has unnegated literals. In this game,
it would never be advantageous for T to assign 0 to a variable, or for F to assign 1 to a
variable. Thus we can assume each move consists of T picking a remaining variable and
assigning it 1, or F picking a remaining variable and assigning it 0. If we view each clause
of φ as a subset of X (the set of variables), then the unordered positive game is equivalent
to the Maker-Breaker game on the set system corresponding to pφ,Xq, where F is Maker
(he wants to assign every variable in at least one clause) and T is Breaker (he wants to
assign at least one variable in every clause). The problem G`

w is the restriction of Gw to
positive w-CNFs, i.e., determining whether Maker or Breaker has a winning strategy on
a given set system of width w. Thus, Schaefer’s theorem [19, 20] can be stated as: G`

11 is
PSPACE-complete.

M. L. Rahman and T. Watson 57:3

Previously, [18] conjectured that G`
3 , and perhaps even G3, might actually be tractable.

These problems have been shown to be tractable – indeed, in L– under various restrictions
on the 3-CNF [15, 18]. The unordered CNF game seems qualitatively very different from
its ordered counterpart. Width 6 might not be optimal for PSPACE-completeness of Maker-
Breaker (though it appears to be a barrier for our proof technique), but it is unclear what
the optimal width ought to be.

In this paper, we prove the following three results:

▶ Theorem 1. G`
6 is PSPACE-complete.

▶ Theorem 2. G`
5 is NL-hard.

▶ Theorem 3. G4 is NL-hard.

In Table 1 we summarize the state-of-the-art for the ordered, unordered, and unordered
positive CNF games.

Table 1 Results.

w Ñ 2 3 4 5 6

w-TQBF
NL-complete PSPACE-complete

[2] [23]

Gw

L
NL-hard PSPACE-complete

under restrictions
[Theorem 3] [17]

L [18]

G`
w

[17] L
Unknown

NL-hard PSPACE-complete
under restrictions

[Theorem 2] [Theorem 1]
[15]

Each game has four different patterns for “who has the first move” and “who has the last
move.” For a, b P tT,Fu we use the subscript a ¨ ¨ ¨ b to indicate that player a goes first and
b goes last. For example, G`

6,T¨¨¨F is G`
6 restricted to instances where T has the first move

and F has the last move (which necessitates |X| being even). With no such subscript, an
instance of G`

6 must specify which player goes first (and then the parity of |X| determines
who goes last). We prove that G`

6 is PSPACE-complete for each of the four possible patterns,
and similarly for G`

5 being NL-hard, but we are only able to show NL-hardness of G4 for the
patterns T ¨ ¨ ¨F and F ¨ ¨ ¨F.

Our proof of Theorem 1 follows a similar high-level outline as the proof that G`
11 is

PSPACE-complete from [19, 20], using a reduction from 3-TQBF. The key is to trade size
for width – we develop a gadget for simulating a round of the ordered game, using more
variables and clauses but lower width than the gadget from [19, 20]. Our correctness analysis
also uses a new perspective on the case where T is supposed to win (which is much trickier
than the case where F is supposed to win, since T must satisfy every clause whereas F only
needs to falsify one clause). To frame T’s winning strategy in the event that F “misbehaves,”
we make use of ideas from the recent paper [18].

The proof of Theorem 1 also yields Theorem 2. Theorem 3 holds by an elementary but
new reduction from 2-SAT, which appears in the full version of this paper.

STACS 2021

57:4 Maker-Breaker Game

2 Proof of Theorem 1 (and Theorem 2)

We prove Theorem 1 in Subsection 2.1. In Subsection 2.2 we provide a streamlined proof of
a special case of a lemma from [18], which is needed for the proof of Theorem 1. Then we
prove a series of corollaries in Section 3, which cover all the patterns for both Theorem 1
and Theorem 2.

2.1 Proof of Theorem 1
We show 3-TQBF ď G`

6,T¨¨¨F. Suppose an instance of 3-TQBF is given by

pDx2nqp@x2n´1q ¨ ¨ ¨ pDx2qp@x1q : F1 ^ F2 ^ ¨ ¨ ¨ ^ Fm

where each Fk is a clause with width ď 3. We construct an instance of G`
6,T¨¨¨F as pφ`, Xq

where φ` is a positive 6-CNF and X is the set of variables in it, such that T has a winning
strategy in the 3-TQBF game iff T has a winning strategy in the G`

6,T¨¨¨F game on pφ`, Xq.
A 3-TQBF round pDxiqp@xi´1q, where i P t2, 4, 6, . . . , 2nu, will correspond to 16 variables

in X and 14 clauses in φ`. Four of the 16 variables are txi, xi, xi´1, xi´1u. Here, xi is the
name of an unnegated variable, distinct from the variable xi. The variables xi and xi do not
necessarily get assigned opposite values. Similarly for xi´1 and xi´1. The other 12 variables
associated with a 3-TQBF round pDxiqp@xi´1q are tu6i, u6i´1, . . . , u6i´11u. (This variable
naming scheme is borrowed from [19, 20].) In the G`

6,T¨¨¨F game, we define “legitimate”
gameplay corresponding to a 3-TQBF round pDxiqp@xi´1q as follows:
1. T plays one of xi, xi

2. F plays the remaining variable in the pair xi, xi

3. T plays u6i

4. F plays u6i´1
5. T plays u6i´2
6. F plays u6i´3
7. T plays u6i´4
8. F plays one of xi´1, xi´1
9. T plays the remaining variable in the pair xi´1, xi´1

10. F plays u6i´5
11. T plays u6i´6
12. F plays u6i´7
13. T plays u6i´8
14. F plays u6i´9
15. T plays u6i´10
16. F plays u6i´11

In the G`
6,T¨¨¨F game, T always assigns 1 and F always assigns 0 to variables. In a legitimate

gameplay, T choosing xi or xi to assign 1 is like T choosing to assign xi “ 1 or xi “ 0
(respectively) in the 3-TQBF game. Similarly, F choosing xi´1 or xi´1 to assign 0 is like F
choosing to assign xi´1 “ 0 or xi´1 “ 1 (respectively) in the 3-TQBF game.

We say the gameplay for the entire G`
6,T¨¨¨F game is legitimate when it consists of

legitimate gameplay for the pDx2nqp@x2n´1q round, followed by legitimate gameplay for the
pDx2n´2qp@x2n´3q round, followed by legitimate gameplay for the pDx2n´4qp@x2n´5q round,
and so on. Legitimate gameplay mimics the 3-TQBF gameplay in a natural way. We will
design the clauses so that any player who plays illegitimately either outright loses, or at least
gains no advantage by deviating from legitimate gameplay.

M. L. Rahman and T. Watson 57:5

The 14 clauses associated with the 3-TQBF round pDxiqp@xi´1q are:

Ai “ xi _ xi _ u6i`1 _ u6i`3 _ u6i`5

C6i “ u6i _ u6i`1 _ u6i`3 _ u6i`5 _ pxi ^ xiq

C6i´2 “ u6i´2 _ u6i´1 _ u6i`1 _ u6i`3 _ pxi ^ xiq

C6i´4 “ u6i´4 _ u6i´3 _ u6i´1 _ u6i`1 _ pxi ^ xiq

Bi “ xi´1 _ xi´1 _ u6i´3 _ u6i´1

C6i´6 “ u6i´6 _ u6i´5 _ u6i´3 _ u6i´1 _ pxi´1 ^ xi´1q

C6i´8 “ u6i´8 _ u6i´7 _ u6i´5 _ u6i´3 _ pxi´1 ^ xi´1q

C6i´10 “ u6i´10 _ u6i´9 _ u6i´7 _ u6i´5 _ pxi´1 ^ xi´1q

As we note later, each Cj is not really a clause, since it contains a conjunction, but it is
equivalent to a pair of clauses. Thus the six Cj ’s correspond to 12 clauses, but we often
refer to Cj as “a clause” anyway. Note that each Cj contains one even-index u variable
and the three previous odd-index u variables. For any clause that appears to contain some
uj variable where j ą 12n, that non-existent variable is actually not present in the clause.
Intuitively, the variables xi and xi in Ai, and xi´1 and xi´1 in Bi, and uj in Cj (which we
wrote first in the clauses) enable F to threaten T with defeat if T plays illegitimately, and
the other variables in the clauses enable T to threaten F with defeat if F plays illegitimately.

For each clause Fk in the 3-TQBF game we introduce a clause

Dk “ F 1
k _ u1 _ u3 _ u5

where F 1
k is the clause which results from replacing each negated variable ␣xi by the

unnegated variable xi throughout the clause Fk. For example, if Fk “ px1 _ ␣x2 _ ␣x3q

then F 1
k “ px1 _ x2 _ x3q, where x2, x2, x3, x3 are separate variables.

In summary, the formal construction is as follows:

X “ tx1, x1, x2, x2, . . . , x2n, x2nu Y tu1, u2, . . . , u12nu

“
ď

i“2,4,6,...,2n

txi, xi, xi´1, xi´1, u6i, u6i´1, . . . , u6i´11u

φ` “
ľ

i“2,4,6,...,2n

pAi ^Biq ^
ľ

j“2,4,6,...,12n

pCjq ^
ľ

k“1,2,3,...,m

pDkq

where

Ai “ xi _ xi _ u6i`1 _ u6i`3 _ u6i`5

Bi “ xi´1 _ xi´1 _ u6i´3 _ u6i´1

Cj “ uj _ uj`1 _ uj`3 _ uj`5 _ pxrj{6s ^ xrj{6sq

Dk “ F 1
k _ u1 _ u3 _ u5

Any occurrence of a non-existent variable uj (where j ą 12n) is omitted from the clauses.
For example, A2n is simply the clause x2n _ x2n. Now:

Cj “ puj _ uj`1 _ uj`3 _ uj`5 _ xrj{6sq ^ puj _ uj`1 _ uj`3 _ uj`5 _ xrj{6sq

So Cj contains two clauses with width ď 5, and Ai, Bi, and Dk are individual clauses
with widths ď 5, ď 4, and ď 6 respectively. Therefore, φ` is a positive 6-CNF with 16n
variables and 14n`m clauses. Though Cj contains two clauses we often treat Cj as a clause
in the proof. The construction is now complete. Furthermore, pφ`, Xq can be constructed in
logarithmic space.

STACS 2021

57:6 Maker-Breaker Game

Now we claim T has a winning strategy in the 3-TQBF game iff T has a winning strategy
in the G`

6,T¨¨¨F game pφ`, Xq.
First we prove in Lemma 4 that the claim holds if the gameplay is restricted to be

legitimate. Then we prove that the claim still holds even if the gameplay is not legitimate.
In Lemma 5 we show if T plays illegitimately then either the game will be restored to a
legitimate situation with no advantage to T, or F will win immediately. In Lemma 6 we
show if F plays illegitimately then either the game will be restored to a legitimate situation
with no advantage to F, or a chain reaction will be started that enables T to win eventually.

▶ Lemma 4. T has a winning strategy in the 3-TQBF game iff T has a winning strategy in
the G`

6,T¨¨¨F game pφ`, Xq when gameplay is restricted to be legitimate.

Proof. A legitimate gameplay satisfies all Ai, Bi, Cj since Ai is satisfied by one of xi or xi,
Bi is satisfied by one of xi´1 or xi´1, and Cj is satisfied by uj where j is even because they
have been played by T. Since F plays u1, u3, u5 we know that Dk gets satisfied iff F 1

k gets
satisfied. Furthermore, F 1

k gets satisfied iff Fk gets satisfied by the assignment to the xi

variables (ignoring the xi variables), because of the definition of F 1
k and the fact that xi and

xi get opposite values. In summary, a legitimate gameplay satisfies φ` iff F1^F2^ ¨ ¨ ¨ ^Fm

gets satisfied by the assignment to the xi variables.
Suppose F has a winning strategy in the 3-TQBF game. We describe F’s winning strategy

in pφ`, Xq. F can use the same strategy to pick one from xi´1, xi´1 where F picking xi´1 or
xi´1 is equivalent to assigning xi´1 “ 0 or xi´1 “ 1 respectively in the 3-TQBF game. F
wins since this strategy makes the assignment to all the xi variables match F’s strategy in
the 3-TQBF game, which ensures F1 ^ ¨ ¨ ¨ ^ Fm is unsatisfied and hence φ` is unsatisfied.

Suppose T has a winning strategy in the 3-TQBF game. We describe T’s winning strategy
in pφ`, Xq. T can use the same strategy to pick one from xi, xi where T picking xi or xi

is equivalent to assigning xi “ 1 or xi “ 0 in the 3-TQBF game respectively. T wins since
this strategy makes the assignment to all the xi variables match T’s strategy in the 3-TQBF
game, which ensures F1 ^ ¨ ¨ ¨ ^ Fm is satisfied and hence φ` is satisfied. ◀

▶ Lemma 5. If F has a winning strategy in the 3-TQBF game then F has a winning strategy
in the G`

6,T¨¨¨F game pφ`, Xq even if the gameplay does not progress legitimately.

Proof. Suppose F has a winning strategy in the 3-TQBF game. In the game pφ`, Xq, F
can follow his strategy from Lemma 4 until T plays illegitimately on move p (p is odd and
1 ď p ď 16) at round pDxiqp@xi´1q. We consider all the different cases of p:

p “ 1: F already played u6i`1, u6i`3, u6i`5 (or these variables do not exist if i “ 2n) due
to legitimate gameplay before this move. T was supposed to play xi or xi but T did not
do so. There are two possibilities:

If T also did not play u6i, then F plays u6i. Then whatever T plays, F plays one of xi,
xi. F wins since C6i is unsatisfied.
If T played u6i, then F plays one of xi or xi (it does not matter which one). Now it is
T’s move. If T plays the other from xi, xi then the game comes back to a legitimate
situation at move 4, where F has no disadvantage since T effectively let F make the
choice of xi or xi for him. If T does not play the other from xi, xi then F plays it and
wins since Ai is unsatisfied.

p “ 9: F already played u6i´3, u6i´1 and one of xi´1, xi´1 due to legitimate gameplay
before this move. T was supposed to play the other one from xi´1, xi´1 but T did not
do so. F plays it and wins since Bi is unsatisfied.

M. L. Rahman and T. Watson 57:7

Other p: T was supposed to play uj where j is even, but T did not do so. F already
played uj`1, uj`3, uj`5 and one of xrj{6s, xrj{6s due to legitimate gameplay before this
move. Then F plays uj and wins since Cj is unsatisfied. ◀

▶ Lemma 6. If T has a winning strategy in the 3-TQBF game then T has a winning strategy
in the G`

6,T¨¨¨F game pφ`, Xq even if the gameplay does not progress legitimately.

▶ Definition 7. We define an order on all the clauses: Ai, C6i, C6i´2, C6i´4, Bi,
C6i´6, C6i´8, C6i´10 for i “ 2n then the same for i “ 2n ´ 2, and so on. Finally all Dk

are at the end ordered by k increasing. To represent an interval of clauses from this
order, we use analogous mathematical notations “p”, “q”, “r”, “s”. For example, rA2n, Ctq

means all the clauses from A2n (inclusive) to Ct (exclusive). Let Vt be all the variables that
occur at least once in pCt, C2s along with tu1, u3, u5u. For example, V2 “ tu1, u3, u5u and
V4 “ tu1, u2, u3, u5, u7, x1, x1u.

▶ Lemma 8. If rA2n, Cts are already satisfied where t ď 12n´ 4 and F has already played at
most one variable in Vt, then T has a strategy to satisfy pCt, Dms even if it is F’s turn.

Before proving Lemma 8, we use it to prove Lemma 6.

Proof of Lemma 6. Suppose T has a winning strategy in the 3-TQBF game. In the game
pφ`, Xq, T can follow his strategy from Lemma 4 until F plays illegitimately on move p (p is
even and 1 ď p ď 16) at round pDxiqp@xi´1q. The outline of the argument is: The legitimate
gameplay so far will have satisfied an interval of clauses, from A2n through some clause
associated with round pDxiqp@xi´1q. After the illegitimate move by F, there might be another
opportunity for F to restore the gameplay to a legitimate situation with no disadvantage
to T. If that opportunity does not exist, or if F fails to get the gameplay “back on track,”
then T will have a move that satisfies the next few clauses. Then for some t (t stands for
“threshold”), rA2n, Cts will be satisfied, and it will be F’s turn and T will satisfy the rest of
the clauses (and hence win) by Lemma 8. The illegitimate move by F could have happened
in Vt or somewhere else, and none of the other prior moves happened in Vt.

We consider all the different cases of p:
p “ 2: rA2n,C6iq are already satisfied due to legitimate gameplay before this move. F was
supposed to play the other one from xi, xi but F did not do so. Then T plays that and
that satisfies rC6i,C6i´4s. Now it is F’s turn and T wins by Lemma 8 with t “ 6i´ 4.
p “ 8: rA2n,Biq are already satisfied due to legitimate gameplay before this move. F was
supposed to play one from xi´1, xi´1 but F did not do so. There are two possibilities:

If F played u6i´5, then T plays one of xi´1 or xi´1 (it does not matter which one).
Now it is F’s move. If F plays the other from xi´1, xi´1 then the game comes back
to a legitimate situation at move 11, where T has no disadvantage since F effectively
let T make the choice of xi´1 or xi´1 for him. If F does not play the other from xi´1,
xi´1 then T plays it and that satisfies rBi, C6i´10s, so now it is F’s turn and T wins
by Lemma 8 with t “ 6i´ 10.
If F did not play u6i´5, then T plays u6i´5 and that satisfies rC6i´6,C6i´10s. Let us
pretend, for a moment, that one of xi´1 or xi´1 has already been played by T and the
other has already been played by F (though in reality, neither has been played yet).
Then Bi and hence all of rA2n, C6i´10s are satisfied, and F’s illegitimate move was the
only variable that may have been played so far among V6i´10, and it is F’s turn, so
T would win by Lemma 8 with t “ 6i´ 10. In reality, T can use that strategy from
Lemma 8, and whenever F plays one of xi´1 or xi´1, T responds by playing the other,
then resumes the strategy from Lemma 8. (Or, if F never plays xi´1 or xi´1, then T

STACS 2021

57:8 Maker-Breaker Game

will play one of them after concluding his strategy from Lemma 8, and F will have to
play the other as the final move.) Then Bi gets satisfied along with pC6i´10, Dms, so
T wins.

p “ 16: rA2n,C6i´10s are already satisfied due to legitimate gameplay before this move.
F was supposed to play u6i´11 but F did not do so. Here i ą 2 since if i “ 2 then
u6i´11 “ u1, which will be the only leftover variable to play and F must play it. So
we only consider i ą 2. Then T plays u6i´11 (which is u6pi´2q`1) and that satisfies
rAi´2,C6pi´2q´4s. Now it is F’s turn and T wins by Lemma 8 with t “ 6pi´ 2q ´ 4.
Other p: F was supposed to play uj`1 (2nd variable in Cj and j is even) but F did not
do so. rA2n,Cjq are already satisfied due to legitimate gameplay before this move. Then
T plays uj`1. There are two possibilities of j:
j ď 4: T’s move uj`1 satisfies rCj,Dms since all Dk are satisfied by uj`1 (which is
either u3 or u5). Therefore T wins.
j ą 4: T’s move uj`1 satisfies rCj,Cj´4s. Now it is F’s turn and T wins by Lemma 8
with t “ j ´ 4. ◀

To prove Lemma 8, we need Lemma 10, which concerns “tree-like” positive 3-CNFs. Lemma 10
follows from [18], but for completeness we provide a streamlined, self-contained proof in
Subsection 2.2.

▶ Definition 9. A positive 3-CNF is a tree if each of the following holds:
(1) Each clause has width exactly 3, so the formula can be viewed as a 3-uniform hypergraph

where variables are nodes and clauses are hyperedges.
(2) Each clause has at least one “spare variable” that occurs in no other clauses.
(3) Any two clauses share at most one variable.
(4) If we delete a spare variable from every clause, the resulting graph (2-uniform hypergraph)

would be a tree (i.e., connected and no cycles).
When we say F can use pass moves, this means F has the option of forgoing any turn, thus
forcing T to play multiple variables in a row.

▶ Lemma 10. For every tree, T has a winning strategy even if F gets to play the first two
moves and F can use pass moves.

Proof of Lemma 8. Shrink the clauses pCt, Dms by removing some variables from them as
follows:

A1
i “ xi _ xi _ u6i`3

B1
i “ xi´1 _ xi´1 _ u6i´3

C 1
j “ uj _ uj`3 _ uj`5 (previously two clauses, now only one)

D1 “ u1 _ u3 _ u5 (all D1
k are the same, we call it just D1)

All these clauses form a positive 3-CNF ψ. The hypergraph for ψ has been illustrated in
Figure 1. We argue that ψ is a tree. We show it satisfies each of the four properties of a tree
as described in Definition 9.

Tree property p1q holds since each of A1
i, B1

i, C 1
j , D1 has exactly 3 variables. The variables

u6i`3 in A1
i, and uj`3 and uj`5 in C 1

j , are guaranteed to exist since t ď 12n´ 4.
Tree property p2q holds since xi, xi´1, uj , u1 only occur in A1

i, B1
i, C 1

j , D1 respectively.
Tree property p3q holds since:
C 1

j and A1
i share only u6i`3 if j “ 6i or j “ 6i´ 2.

C 1
j and B1

i share only u6i´3 if j “ 6i´ 6 or j “ 6i´ 8.
C 1

j and C 1
j´2 share only uj`3.

M. L. Rahman and T. Watson 57:9

u17 u15

u12

C 1
12

u13

u10

C 1
10

u11

u8

C 1
8

u9

u6

C 1
6

u7

u4

C 1
4

u5

u2

C 1
2

u3

u1

D1

...ut`1ut`3

ut´2

C 1
t´2

x2 x2

A1
2

x1 x1

B1
2

Figure 1 Hypergraph for ψ.

u17 u15 u13 u11 u9 u7 u5 u3...ut`1ut`3

x2 x1

Figure 2 Hypergraph after deleting a spare variable from each clause in ψ.

C 1
2 and D1 share only u5.

Other pairs do not share a variable.
Tree property p4q holds since deleting xi, xi´1, uj , u1 (which are spare variables) from
A1

i, B1
i, C 1

j , D1 respectively creates a 2-uniform hypergraph as shown in Figure 2 which is
clearly a tree.

Therefore ψ is a tree.
By Lemma 10, T has a winning strategy on the tree ψ even if F has the first two moves

(and subsequently T and F play alternately) and F can use pass moves. Now we claim that T
has a strategy to satisfy pCt, Dms in φ` assuming F has already played at most one variable
in Vt and it is F’s turn (and F cannot use pass moves). Because every variable in ψ is also in
Vt, we can say F has already played at most one variable of ψ. Because it is F’s turn in φ`,
that’s like allowing F to have the second move in ψ as well. After that, T’s strategy for φ`

is the same as T’s winning strategy for ψ, except that whenever F plays a variable of φ`

that’s not in ψ, T interprets it as a pass move by F and continues with his strategy for ψ.
Since this strategy ensures that ψ gets satisfied, it also ensures that pCt, Dms and hence all
of φ` gets satisfied. ◀

2.2 Trees
In order to prove Lemma 10, we need Lemma 12 and Lemma 13. First we outline some
definitions.

▶ Definition 11. We henceforth refer to a tree as a single tree. A married tree is a
formula consisting of two disjoint single trees (“spouses”) and a width-2 clause with one
endpoint in each spouse (and every width-3 clause has a spare variable even after the inclusion
of the width-2 clause). The endpoints of the width-2 clause in a married tree are considered
roots of the spouses. A win-forest is a formula where each connected component is either a
single tree or a married tree.

STACS 2021

57:10 Maker-Breaker Game

Before After F’s move After T’s move

x1

x1

Case 1:

Case 2:

Figure 3 F’s move and T’s move on x1 and its effect on formulas.

After any move by T or F, a formula changes to a residual formula where the variable that
got played is removed, and if T played then any clause containing the variable disappears
(since it is satisfied), and if F played then any clause containing the variable shrinks (since a
false literal might as well not be there).

▶ Lemma 12. Any move by F on a single tree results in a win-forest.

▶ Lemma 13. T can ensure that a win-forest remains a win-forest after an F-T round even
if F can use pass moves.

Before proving Lemma 12 and Lemma 13, we use them to prove Lemma 10.

Proof of Lemma 10. The tree ψ is a single tree. By Lemma 12, F’s first move on ψ results
in a win-forest. Then we prove T can win a G`

3,F¨¨¨ game on that win-forest even if F can use
pass moves. We prove this by induction on the number of variables.

Base case: The formula is a win-forest with one or two variables. In case of one variable
the only possibility is an isolated variable with no clauses. T has already won in this case.
In case of two variables there exists either two isolated variables where T has already won or
a width-2 clause which T can satisfy in one move.

Induction step: The formula is a win-forest with at least three variables. Whatever F
plays, T has a response to ensure the residual formula is again a win-forest by Lemma 13.
By the induction hypothesis, T can win the rest of the game. ◀

Any move by T or F can occur in two different ways as illustrated in Figure 3. Specifically,
Case 1 is a move on a non-spare variable, and Case 2 is a move on a spare variable.

Proof of Lemma 12. The formula is a single tree. If F’s move is a pass move then that
results in a win-forest with only one single tree. If F’s move is an actual move then it creates
some married trees in which one spouse is just a single variable (Case 1 with F) or only one
married tree (Case 2 with F). Then that results in a win-forest with only married trees. ◀

Proof of Lemma 13. The argument will show that whatever F plays, whether a pass move
or an actual move in a single tree or married tree, T has a response such that each component
of the residual formula is again either a single tree or a married tree; therefore the residual
formula is again a win-forest.

M. L. Rahman and T. Watson 57:11

Suppose F played a pass move. T can play any remaining variable in the win-forest. If
that variable is an isolated variable then it just removes the isolated variable. Otherwise
it satisfies some clauses in a component by Case 1 or Case 2 with T. Consequently the
component is broken down into some single trees and possibly one married tree (if the
component was a married tree). This preserves the win-forest property.

Suppose F played in a single tree. Then by Lemma 12 the residual formula is a win-forest.
Then T can pretend F just played a pass move on this win-forest, and T can respond as
explained in the previous paragraph. This preserves the win-forest property.

Suppose F played in a married tree. F’s move happened in one of the two single trees
that got married. T can play the root of the other spouse (where F has not played) and
satisfy the width-2 clause. This means the two single trees get separated by T’s move and
it also breaks T’s single tree at the root by Case 1 with T. Furthermore, F’s move in his
single tree also preserves the win-forest property by Lemma 12. This preserves the win-forest
property. ◀

3 Corollaries

In this section, we investigate corollaries for G`
6 in Subsection 3.1, G6 in Subsection 3.2, G`

5
in Subsection 3.3, and G5 in Subsection 3.4.

3.1 G`

6

Our proof of Theorem 1 in Subsection 2.1 showed that G`
6,T¨¨¨F is PSPACE-complete. Now

we show that G`
6,F¨¨¨F, G`

6,T¨¨¨T, and G`
6,F¨¨¨T are also PSPACE-complete.

▶ Corollary 14. G`
6,F¨¨¨F is PSPACE-complete.

Proof. The reduction is 3-TQBF ď G`
6,F¨¨¨F. The idea is similar to 3-TQBF ď G`

6,T¨¨¨F from
the proof of Theorem 1 in Subsection 2.1. We introduce one more variable z to X and add z
to the first four clauses of φ`: A2n, C12n, C12n´2, and C12n´4, increasing their widths by
one, from 2, 2, 3, 4 to 3, 3, 4, 5 respectively. So φ` is a 6-CNF.

Now the claim is that T has a winning strategy in the 3-TQBF game iff T has a winning
strategy in the G`

6,F¨¨¨F game pφ`, Xq.
Suppose F has a winning strategy in the 3-TQBF game. Then F can play z as the first

move. Then F wins by the same argument as in Subsection 2.1.
Suppose T has a winning strategy in the 3-TQBF game. If F plays z as the first move

then T wins by the same argument as in Subsection 2.1. If F does not play z as the first
move then T plays z and satisfies A2n, C12n, C12n´2, and C12n´4. Then T wins by Lemma 8
with t “ 12n´ 4. ◀

▶ Corollary 15. G`
6,T¨¨¨T is PSPACE-complete.

Proof. The reduction is G`
6,T¨¨¨F ď G`

6,T¨¨¨T. Suppose an instance of G`
6,T¨¨¨F is (φ`, X). We

simply introduce a dummy variable z that does not appear in φ` and use Y “ X Y tzu.
We claim that T has a winning strategy in the G`

6,T¨¨¨F game pφ`, Xq iff T has a winning
strategy in the G`

6,T¨¨¨T game pφ`, Y q. We repeat an argument from [17] that shows this.
Suppose T has a winning strategy on pφ`, Xq. We show T’s winning strategy on pφ`, Y q.

T can start by the same strategy as in pφ`, Xq and continue as long as F does not play z. If
F never plays z, then T plays z at the end and wins as in pφ`, Xq. If F plays z then T can
respond by playing any remaining variable xi “ 1, then T resumes his strategy from pφ`, Xq

until that strategy tells him to play xi. At this time, T again picks any other remaining
variable and assigns it 1. Then T again resumes his strategy from pφ`, Xq. The game goes

STACS 2021

57:12 Maker-Breaker Game

on like this in phases. At the end, T has played all the variables he would have played in the
pφ`, Xq game and possibly one more. Since φ` is positive, it must still be satisfied when
one of the variables is 1 instead of 0.

Suppose F has a winning strategy on pφ`, Xq. Then F’s winning strategy on pφ`, Y q is
analogous to T’s strategy in the previous paragraph. ◀

▶ Corollary 16. G`
6,F¨¨¨T is PSPACE-complete.

Proof. G`
6,F¨¨¨F is PSPACE-complete by Corollary 14. The reduction is G`

6,F¨¨¨F ď G`
6,F¨¨¨T.

The technique is identical to Corollary 15. ◀

Therefore we found PSPACE-completeness of all patterns of G`
6 games.

▶ Corollary 17. G`
6,T¨¨¨F,G

`
6,F¨¨¨F,G

`
6,T¨¨¨T,G

`
6,F¨¨¨T remain PSPACE-complete even when every

clause has exactly 6 variables.

Proof. For any pattern a ¨ ¨ ¨ b where a, b P tT,Fu, we reduce from G`
6,a¨¨¨b to the restricted

version where every clause has exactly 6 variables. We argue that any clause C with width
ă 6 can be resized to a set of width-6 clauses without changing the outcome. We introduce
two variables x, x1 and clause C is written as pC _ xq ^ pC _ x1q, thus increasing C’s width
by 1. Whichever player has a winning strategy in the original formula, they can follow the
same strategy in the modified formula until the other player plays x or x1 and then respond
by playing the other. (Or, if the other player never plays x or x1, then it does not matter
which one the winning player plays as the 2nd-to-last move in the game.) So it is possible
to increase any clause’s width without changing the outcome. We can repeatedly do this
process until all clauses have width exactly 6. This increases the size of the formula by at
most a constant factor. ◀

3.2 G6

We already know that G5,T¨¨¨F and G5,F¨¨¨F are PSPACE-complete [17]. But any completeness
result for G5,T¨¨¨T and G5,F¨¨¨T is unknown. Not only that, but also the complexities of
G6,T¨¨¨T and G6,F¨¨¨T were unknown. Due to Corollary 15 and Corollary 16 we now know
that G6,T¨¨¨T and G6,F¨¨¨T are also PSPACE-complete.

3.3 G`

5

Now we show that G`
5,T¨¨¨F, G`

5,F¨¨¨F, G`
5,T¨¨¨T, and G`

5,F¨¨¨T are all NL-hard. Each of these
results implies Theorem 2.

▶ Corollary 18. G`
5,T¨¨¨F is NL-hard.

Proof. It is well-known that 2-SAT is NL-complete, and trivially 2-SAT ď 2-TQBF. The
reduction is 2-TQBFďG`

5,T¨¨¨F. The technique is identical to 3-TQBFďG`
6,T¨¨¨F in Theorem 1

where the widths of Ai, Bi, Cj , Dk were 5, 4, 5, 6 respectively. Since each Fk is now a width-2
clause, Dk becomes a width-5 clause. Therefore φ` becomes a 5-CNF. ◀

▶ Corollary 19. G`
5,F¨¨¨F is NL-hard.

Proof. The reduction is 2-TQBF ď G`
5,F¨¨¨F. The technique is identical to Corollary 14. ◀

▶ Corollary 20. G`
5,T¨¨¨T is NL-hard.

Proof. G`
5,T¨¨¨F is NL-hard by Corollary 18. The reduction is G`

5,T¨¨¨F ď G`
5,T¨¨¨T. The

technique is identical to Corollary 15. ◀

M. L. Rahman and T. Watson 57:13

Table 2 G`
w results.

w Ñ 2 3 4 5 6

T ¨ ¨ ¨ F

L L
Unknown

NL-hard PSPACE-complete

[17] under restrictions

[Corollary 18] [Theorem 1]

F ¨ ¨ ¨ F

[15]

NL-hard PSPACE-complete

[Corollary 19] [Corollary 14]

T ¨ ¨ ¨ T
NL-hard PSPACE-complete

[Corollary 20] [Corollary 15]

F ¨ ¨ ¨ T
NL-hard PSPACE-complete

[Corollary 21] [Corollary 16]

▶ Corollary 21. G`
5,F¨¨¨T is NL-hard.

Proof. G`
5,F¨¨¨F is NL-hard by Corollary 19. The reduction is G`

5,F¨¨¨F ď G`
5,F¨¨¨T. The

technique is identical to Corollary 15. ◀

Therefore we found NL-hardness of all patterns of G`
5 games. But any completeness

result for any pattern still remains open.

▶ Corollary 22. G`
5,T¨¨¨F,G

`
5,F¨¨¨F,G

`
5,T¨¨¨T,G

`
5,F¨¨¨T remain NL-hard even when every clause

has exactly 5 variables.

Proof. The technique is identical to Corollary 17. ◀

3.4 G5

We already know that G5,T¨¨¨F and G5,F¨¨¨F are PSPACE-complete [17]. But nothing was
known for G5,T¨¨¨T and G5,F¨¨¨T. Due to Corollary 20 and Corollary 21 we now know that
G5,T¨¨¨T and G5,F¨¨¨T are also NL-hard. But any completeness result for G5,T¨¨¨T and G5,F¨¨¨T
still remains open.

4 Summary

In Table 2 we summarize the status of the complexity of G`
w for all widths w and all patterns.

We conjecture that G`
3 may be tractable, but the only known general upper bound is PSPACE.

For G`
5 , it would be interesting to improve the NL-hardness to P-hardness. For G`

4 , any
nontrivial result would be interesting (such as NL-hardness, or improving the PSPACE upper
bound even under restrictions on the formula).

In Table 3 we summarize the status of the complexity of Gw for all widths w and all
patterns. We conjecture that even G3 might be tractable, but again the only known general
upper bound is PSPACE. For G4,T¨¨¨F, G4,F¨¨¨F, G5,T¨¨¨T, and G5,F¨¨¨T, it would be interesting
to improve the NL-hardness to P-hardness. For G4,T¨¨¨T and G4,F¨¨¨T, any nontrivial result
would be interesting.

It would also be interesting to see if Theorem 1 can be used to improve any parameters
in some of the many PSPACE-completeness results that have been shown by reduction from
Schaefer’s theorem for width 11.

STACS 2021

57:14 Maker-Breaker Game

Table 3 Gw results.

w Ñ 2 3 4 5 6

T ¨ ¨ ¨ F

L L

NL-hard
PSPACE-complete

[17]

[17]
F ¨ ¨ ¨ F

NL-hard

T ¨ ¨ ¨ T
under restrictions

Unknown

NL-hard PSPACE-complete

[18] [Corollary 20] [Corollary 15]

F ¨ ¨ ¨ T
NL-hard PSPACE-complete

[Corollary 21] [Corollary 16]

References
1 Argimiro Arratia and Iain Stewart. A note on first-order projections and games. Theoretical

Computer Science, 290(3):2085–2093, 2003.
2 Bengt Aspvall, Michael Plass, and Robert Tarjan. A linear-time algorithm for testing the

truth of certain quantified boolean formulas. Information Processing Letters, 8(3):121–123,
1979.

3 Boštjan Brešar, Paul Dorbec, Sandi Klavžar, Gašper Košmrlj, and Gabriel Renault. Complexity
of the game domination problem. Theoretical Computer Science, 648:1–7, 2016.

4 Jesper Byskov. Maker-Maker and Maker-Breaker games are PSPACE-complete. Technical
Report RS-04-14, BRICS, Department of Computer Science, Aarhus University, 2004.

5 Vasek Chvátal and Paul Erdös. Biased positional games. Annals of Discrete Mathematics,
2:221–229, 1978.

6 Eurinardo Costa, Victor Lage Pessoa, Rudini Menezes Sampaio, and Ronan Soares. PSPACE-
hardness of two graph coloring games. In Proceedings of the 10th Latin and American
Algorithms, Graphs, and Optimization Symposium (LAGOS), pages 333–344. Elsevier, 2019.

7 Erik Demaine and Robert Hearn. Constraint logic: A uniform framework for modeling
computation as games. In Proceedings of the 23rd Conference on Computational Complexity
(CCC), pages 149–162. IEEE, 2008.

8 Eric Duchene, Valentin Gledel, Aline Parreau, and Gabriel Renault. Maker–breaker domination
game. Discrete Mathematics, 343(9):111955, 2020.

9 Paul Erdös and John Selfridge. On a combinatorial game. Journal of Combinatorial Theory,
Series A, 14(3), 1973.

10 Stephen Fenner, Daniel Grier, Jochen Messner, Luke Schaeffer, and Thomas Thierauf. Game
values and computational complexity: An analysis via black-white combinatorial games. In
Proceedings of the 26th International Symposium on Algorithms and Computation (ISAAC),
pages 689–699. Springer, 2015.

11 Aviezri Fraenkel and Elisheva Goldschmidt. PSPACE-hardness of some combinatorial games.
Journal of Combinatorial Theory, Series A, 46(1):21–38, 1987.

12 Valentin Gledel, Michael A Henning, Vesna Iršič, and Sandi Klavžar. Maker–breaker total
domination game. Discrete Applied Mathematics, 282:96–107, 2020.

13 Robert Hearn. Amazons, Konane, and Cross Purposes are PSPACE-complete. In Games of No
Chance 3, Mathematical Sciences Research Institute Publications, pages 287–306. Cambridge
University Press, 2009.

14 Dan Hefetz, Michael Krivelevich, Miloš Stojaković, and Tibor Szabó. Positional Games.
Birkhäuser Basel (Springer), 2014.

M. L. Rahman and T. Watson 57:15

15 Martin Kutz. Weak positional games on hypergraphs of rank three. In Proceedings of the 3rd
European Conference on Combinatorics, Graph Theory, and Applications (EuroComb), pages
31–36. Discrete Mathematics & Theoretical Computer Science, 2005.

16 Alfred Lehman. A solution of the Shannon switching game. Journal of the Society for Industrial
and Applied Mathematics, 12(4):687–725, 1964.

17 Md Lutfar Rahman and Thomas Watson. Complexity of unordered CNF games. ACM
Transactions on Computation Theory, 12(3):18:1–18:18, 2020.

18 Md Lutfar Rahman and Thomas Watson. Tractable unordered 3-CNF games. In Proceedings
of the 14th Latin American Theoretical Informatics Symposium (LATIN). Springer, 2020. To
appear.

19 Thomas Schaefer. Complexity of decision problems based on finite two-person perfect-
information games. In Proceedings of the 8th Symposium on Theory of Computing (STOC),
pages 41–49. ACM, 1976.

20 Thomas Schaefer. On the complexity of some two-person perfect-information games. Journal
of Computer and System Sciences, 16(2):185–225, 1978.

21 Wolfgang Slany. The complexity of graph Ramsey games. In Proceedings of the 2nd Interna-
tional Conference on Computers and Games (CG), pages 186–203. Springer, 2000.

22 Wolfgang Slany. Endgame problems of Sim-like graph Ramsey avoidance games are PSPACE-
complete. Theoretical Computer Science, 289(1):829–843, 2002.

23 Larry Stockmeyer and Albert Meyer. Word problems requiring exponential time. In Proceedings
of the 5th Symposium on Theory of Computing (STOC), pages 1–9. ACM, 1973.

24 Sachio Teramoto, Erik Demaine, and Ryuhei Uehara. The Voronoi game on graphs and its
complexity. Journal of Graph Algorithms and Applications, 15(4):485–501, 2011.

25 Jan van Rijn and Jonathan Vis. Complexity and retrograde analysis of the game Dou Shou
Qi. In Proceedings of the 25th Benelux Conference on Artificial Intelligence (BNAIC), 2013.

STACS 2021

Resolution with Symmetry Rule Applied to Linear
Equations
Pascal Schweitzer
TU Kaiserslautern, Germany

Constantin Seebach
TU Kaiserslautern, Germany

Abstract
This paper considers the length of resolution proofs when using Krishnamurthy’s classic symmetry
rules. We show that inconsistent linear equation systems of bounded width over a fixed finite field Fp

with p a prime have, in their standard encoding as CNFs, polynomial length resolutions when using
the local symmetry rule (SRC-II).

As a consequence it follows that the multipede instances for the graph isomorphism problem
encoded as CNF formula have polynomial length resolution proofs. This contrasts exponential lower
bounds for individualization-refinement algorithms on these graphs.

For the Cai-Fürer-Immerman graphs, for which Torán showed exponential lower bounds for
resolution proofs (SAT 2013), we also show that already the global symmetry rule (SRC-I) suffices
to allow for polynomial length proofs.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases Logical Resolution, Symmetry Rule, Linear Equation System

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.58

Related Version Full Version: https://arxiv.org/abs/2101.05142 [15]

Funding The research leading to these results has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(EngageS: grant agreement No. 820148).

1 Introduction

Refutation via logical resolution is one of the most basic and fundamental methods in theorem
proving used to argue the validity of statements in propositional logic. It is famously sound
and complete for proving that formulas in conjunctive normal form (CNF) are unsatisfiable. In
automated theorem proving, resolution is in particular used for various primitive backtracking
algorithms for the satisfiability problem (SAT) such as the DPLL algorithm.

However, resolution is primitive in that we know simple unsatisfiable CNF formulas
that admit only resolution refutations of superpolynomial length. This was first proven
by Haken [11] who showed that a canonical encoding of the pigeonhole principle into a
CNF formula provides formulas whose shortest refutations are superpolynomial in length.
Other examples and exponential bounds were given by Chvátal and Szemerédi [5] as well as
Urquhart who used formulas based on Tseitin tautologies [19]. Investigating the resolution
complexity of the graph non-isomorphism problem, Torán [17] constructed CNF formulas
from so-called CFI-graphs (see [4]) and showed the shortest resolution proofs of the arising
formulas have exponential length.

As observed by Krishnamurthy, many simple examples without short resolution refuta-
tions exhibit symmetries. This prompted the introduction of Krishnamurthy’s symmetry
rule [12] which intuitively allows the deduction of a clause symmetric to a previously deduced

© Pascal Schweitzer and Constantin Seebach;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 58; pp. 58:1–58:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.STACS.2021.58
https://arxiv.org/abs/2101.05142
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 Resolution with Symmetry Rule Applied to Linear Equations

clause in one step (formal definitions are given in Section 2). For various formulas, Krishna-
murthy argued polynomial bounds when the symmetry-rule is used, leading to exponential
improvements. Further examples with this effect, including another analysis for pigeonhole
principle formulas, were provided by Urquhart [20].

Krishnamurthy in fact introduced two rules, each of them arises from permutations of
the variables. The global rule allows only symmetries of the entire original formula, while
the local one allows us to use symmetries of a subset of the clauses. These rules led to
the proof systems SR-I (symmetric resolution) and SR-II (locally symmetric resolution),
respectively. Urquhart [20] introduced complementation symmetries in addition to the
variable permutations. This allows us to interchange literals with their negations and leads to
the proof systems SRC-I and SRC-II. In [20] Urquhart also showed that there are exponential-
to-polynomial improvements regarding proof length from the system SR-I to SRC-I. Arai
and Urquhart [1] showed exponential-to-polynomial improvements from SR-I to SR-II and
also provided exponential lower bounds for SRC-II.

Szeider [16], who actually focuses on homomorphisms, describes another strengthening of
the symmetry rule. In his extension we are allowed the use of symmetries within clauses that
have been resolved, rather than only allowing clauses of the original formula. This is called
resolution with dynamic symmetries and leads to the proof systems SR-III and SRC-III,
depending on whether complementation is allowed. However, to date it remains an open
problem to find superpolynomial lower bounds on proof length in SR-III and SRC-III.

1.1 Contribution
In this paper we are concerned with proof systems obtained by extending resolution with
additional symmetry rules. We prove that the CNF formulas arising from the CFI-graphs have
refutations polynomially bounded in length in the SR-I calculus. With Torán’s exponential
lower bounds [17] mentioned above, this gives an exponential-to-polynomial improvement
for the resolution complexity of non-isomorphism when introducing the symmetry rule. To
those familiar with the details of the CFI-construction this may not come as a surprise, since
the CFI-graphs exhibit many global symmetries. However, this is not the case for multipede
graphs, these arise from a construction related to the CFI-graphs [10]. Crucially these
graphs are asymmetric. That is, they have no symmetries at all. They provide exponential
lower bounds for all individualization-refinement algorithms for the graph isomorphism
problem. This includes all tools currently viable in practice, such as nauty/traces [13].
The initial intuition might therefore be that the CNF formulas arising from multipedes
provide exponential lower bounds for SRC-III. However, this turns out not to be the case. In
fact, maybe surprisingly, we show that even when using only local symmetries rather than
dynamic symmetries (i.e., in SCR-II rather than SCR-III) there are polynomial bounds on
the respective formulas. In some sense this shows that the multipedes have substructures
with symmetries that allow them to be distinguished concisely.

To prove this statement, we reduce the statement to one concerning linear equation
systems. It is known that isomorphism of CFI and multipede graphs are related to solvability
of linear equation systems. (This is also the case for Tseitin tautologies.) We show that this
relation can be exploited. Specifically, we show that there is a resolution transforming the
CNFs arising from the graph isomorphism instances to CNFs arising from linear equation
systems. We then show our main theorem which says that inconsistent linear equation
systems with equations of bounded width (i.e., the maximum number of non-zero coefficients
in an equation is bounded) have polynomial resolutions using the local symmetry rule.

P. Schweitzer and C. Seebach 58:3

none global local dynamic
without complementation classical resol.[5, 19] SR-I [20] SR-II [1] SR-III (open)

with complementation – SRC-I [20] SRC-II [1] SRC-III (open)

Figure 1 Resolution calculi with symmetries rules of varying degree of generality and references
with formulas proving exponential lower bounds on resolution length.

▶ Theorem 1. Inconsistent linear equation systems of bounded width over a fixed finite field Fp

with p a prime have, in their standard encoding as CNFs, polynomial length resolutions when
using the local symmetry rule (i.e., in SRC-II).

Structure of the paper. Section 3 shows that the CNF formulas arising from CFI-graph
pairs have polynomial length proofs in SR-I. Due to space restrictions, the proof of this
result (Theorem 18) was omitted from this version of the paper. It can be found in the full
version [15]. Section 4 shows that linear equation systems of bounded width have polynomial
length proofs in SRC-II. Section 5 shows that the formulas arising from (bounded degree)
multipede graphs can be transformed in the resolution calculus (without using symmetry) to
linear equation systems of bounded width.

1.2 Related Work
Figure 1 gives an overview of resolution calculi with symmetry and references to lower bound
constructions. A proof system p-simulates another proof system if shortest proofs in the latter
are polynomially bounded in the length of shortest proofs in the former. We should remark
that the extended resolution system introduced by Tseitin [18] can p-simulate proof systems
with symmetries [20]. See [2] for an implementation using Krishnamurthy’s symmetry rule.
Symmetry rules have of course also been introduced for other proof systems [3, 8]. See also [7]
for another way to incorporate symmetries into resolution.

Connection to the graph isomorphism problem. The results of our paper are connected
to the graph isomorphism problem in two conceptually very different ways. First, finding
valid literal permutations (with or without complementation) for the global symmetry rule
is equivalent to the graph isomorphism problem itself (e.g., [4]). Therefore isomorphism
solvers such as nauty/traces [13], which are highly efficient in practice, can be used to find
the symmetries (see [6]). Symmetry detection is one of the standard applications of graph
isomorphism solvers, for example there is a tool integrating nauty into Prolog [9] for this
purpose.

Second, our results relate to the proof complexity of the graph isomorphism problem
itself, which explains why we are interested in CNF formulas arising from non-isomorphism
instances. Torán [17] describes a canonical way to encode the isomorphism problem as a CNF
formula (see Subsection 2.2). The resolution complexity of graph non-isomorphism is related
to the complexity of the graph isomorphism problem. After all isomorphism solvers need to
prove, some way or another, that the inputs are non-isomorphic, if they are. A crucial feature
of isomorphism solvers is that they are able to exploit already detected symmetries (i.e.,
automorphisms) of the underlying instances during run-time [13]. Vaguely, this translates
into a symmetry rule that they apply already during the process of computing the symmetries
of the instance. Current tools basically only exploit local symmetries. Our new insights into

STACS 2021

58:4 Resolution with Symmetry Rule Applied to Linear Equations

the resolution complexity of multipedes thus shows a combinatorial possibility to solve their
isomorphism problem. It brings up the question how to exploit local symmetries in graph
isomorphism solvers.

It remains unknown whether graph non-isomorphism has polynomial resolution complexity
in any of the proof systems with symmetry rule we have discussed.

2 Preliminaries

2.1 Resolution and the Symmetry Rule

We are interested in unsatisfiability proofs of Boolean formulas. The basic resolution proof
system works with formulas in conjunctive normal form.

Let Γ be a finite set of variables. Lit(Γ) := Γ ∪ Γ is the set of literals, where Γ :=
{x | x ∈ Γ}. A clause is a disjunction of literals. We also represent clauses as sets of
literals. A Boolean formula is in conjunctive normal form (CNF) if it is a conjunction of
clauses. We may treat such a formula as a set of clauses. ⊥ is the empty clause, i.e. the
disjunction of the empty set, which is unsatisfiable. For sets of clauses C1 and C2 define
C1 ⊑ C2 : ⇐⇒ ∀c1 ∈ C1∃c2 ∈ C2 : c1 ⊇ c2. Since we will treat clauses as sets of literals, we
do not care for their order, i.e. we do not differentiate between x ∨ y and y ∨ x. The same
applies to CNF formulas, which we interpret as sets of clauses.

▶ Definition 2. Resolution is a proof system in propositional logic. It operates on CNF
formulas, employing a single inference rule:

x ∨A, x ∨B

A ∨B
.

The clause produced by the resolution rule is called resolvent.
Let A = {a1, . . . , am} and B be sets of clauses. We write A ⊢n B if there exists a sequence

of clauses a1, . . . , am, c1, . . . , cn such that every ci is a resolvent of two earlier clauses and
B ⊆ A ∪ {c1, . . . , cn}. Such a sequence is called derivation of B from A. When the length of
the sequence is irrelevant, we write A ⊢ B, meaning A ⊢n B for some n. Given a clause b,
we also write A ⊢n b for A ⊢n {b}.

For a CNF formula F with F ⊢n ⊥, we say F has a resolution refutation of size n.
We write A ⊢w

n B if there exists a set of clauses B′ such that B ⊑ B′ and A ⊢n B
′. This

is a weaker requirement than A ⊢n B.

Resolution is sound and complete, i.e. F ⊢n ⊥ if and only if F is unsatisfiable. We examine
the proof complexity of formulas in this proof system, i.e., the length of the shortest possible
resolution refutation of a given formula, in relation to the formula size. There exist classes of
formulas with exponential lower bounds on the resolution proof complexity [5, 17, 19].

In the following we define the symmetry rule, which is an extension to resolution, aiming
to reduce the proof complexity of some of these hard formulas.

▶ Definition 3. Let L be a finite set of literals. A bijection σ : L → L is called renaming if
for every ℓ ∈ L we have σ(ℓ) = σ(ℓ).

A renaming is essentially a permutation of the variables that may also negate some of them.
We can apply renamings to clauses (i.e., sets of literals) and CNF formulas (i.e., sets of
clauses). In either case we define σ(C) := {σ(x) | x ∈ C}.

P. Schweitzer and C. Seebach 58:5

▶ Definition 4 (The Symmetry Rule [1] [16]). Consider a derivation S from a formula F

and a subsequence S′ of S which derives a clause C from a subset F ′ ⊆ F . If there exists a
renaming σ with σ(F ′) ⊆ F , then the local symmetry rule allows derivation of σ(C).

With the restriction F = F ′, we obtain the global symmetry rule. Adding the global or
local symmetry rule to the resolution system yields the proof systems SRC-I and SRC-II,
respectively.

We write A ⊢SRC-II
n B to indicate that B can be derived from A using resolution and the

local symmetry rule, with a derivation of length at most n.
Note that in order to apply σ via the local symmetry rule to some clause C in a derivation,

we must look at the entire history of how C was derived, and find out which part F ′ ⊆ F of
the original formula was used. Then we need to check that σ(F ′) ⊆ F .

This means that in general we cannot chain derivations that use the symmetry rule
together, because such an operation changes the history for some of the clauses. Still, we
can combine SRC-II derivations in the following ways:

▶ Lemma 5. Let A,B,C and D be sets of clauses and n,m ∈ N.
(a) A ⊢SRC-II

n B and A ⊆ C implies C ⊢SRC-II
n B

(b) A ⊢SRC-II
n B and B ⊢m C implies A ⊢SRC-II

n+m C

(c) A ⊢SRC-II
n B and C ⊢SRC-II

m D implies A ∪ C ⊢SRC-II
n+m B ∪D

▶ Lemma 6. Let A and B be sets of clauses and d a clause.
(a) A ⊢ ⊥ and {c ∨ d | c ∈ A} ⊑ B implies B ⊢w d

2.2 Encoding Graph Isomorphism
Our interest in the graph isomorphism problem is twofold: First, finding valid literal
permutations for the symmetry rule is equivalent to finding certain graph isomorphisms.
Secondly, we examine the proof complexity of the problem by translating it into propositional
logic and applying resolution with symmetry rule.

A graph is a tuple (V,E) of a set of vertices V and edges E. Each edge is a two element
subset of V . A colored graph is a graph (V,E) together with a function f : V → C, called
coloring, assigning to every vertex a color from some set C. Let G = (V,E) be a graph and
v ∈ V . EG(v) := {e ∈ E | v ∈ e} are the edges incident with v. NG(v) := {u ∈ V | {u, v} ∈
E} is the neighborhood of v. degG(v) := |NG(v)| = |EG(v)| is the degree of v.

Given a colored graph G = (V,E) with coloring f and a vertex v ∈ V , we can individualize
v by creating a new coloring f ′ such that f ′(v) := (f(v), 1) and setting f ′(v′) := (f(v′), 0)
for all v′ ∈ V \ {v}. We write the individualized graph as Gv.

▶ Definition 7. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs.
A graph isomorphism from G1 to G2 is a bijection φ : V1 → V2 such that for all v, v′ ∈ V1
we have {v, v′} ∈ E1 if and only if {φ(v), φ(v′)} ∈ E2.
We say G1 and G2 are isomorphic, written G1 ∼= G2, if there exists a graph isomorphism
from G1 to G2.
An automorphism of a graph G is a graph isomorphism from G to itself.
Aut(G) is the automorphism group of G.

The automorphisms of a graph constitute its inherent combinatorial symmetries. We will
use the terms automorphism and symmetry synonymously.

Given two graphs G1 and G2, one can construct a Boolean formula that is satisfiable if
and only if there is an isomorphism between G1 and G2 [17]. This is commonly done by
constraining variables of the form xu,v such that each satisfying assignment corresponds to
an isomorphism: 1 is assigned to xu,v if and only if the isomorphism maps u to v.

STACS 2021

58:6 Resolution with Symmetry Rule Applied to Linear Equations

m∅ m{1,2} m{1,3} m{2,3}

a1 b1

a2 b2 a3 b3

Figure 2 The CFI-gadget X{1,2,3}.

▶ Definition 8. For a pair of graphs G1 = (V1, E1), G2 = (V2, E2) with |V1| = |V2|, define

F (G1, G2) := T1 ∧ T2 ∧ T3, where

T1 :=
∧

v1∈V1

∨
v2∈V2

xv1,v2 ,

T2 :=
∧

v2∈V2

∧
v1,v′

1∈V1
v1 ̸=v′

1

(
xv1,v2 ∨ xv′

1,v2

)
,

T3 :=
∧

{u1,v1}∈E1⊕{u2,v2}∈E2

(xu1,u2 ∨ xv1,v2) .

We refer to the clauses of this CNF formula as being “of Type i”, depending on which Ti

they come from. The clause types naturally encode the concept of a graph isomorphism in
propositional logic. Specifically, Type 1 and Type 2 clauses ensure that we have a bijection
from V1 to V2; Type 3 clauses make the function preserve edges.

If the graphs G1 and G2 are colored by some functions l1 and l2 respectively, then an
isomorphism between them should respect the colors. To represent this in the formula
F (G1, G2), we simply assign 0 to all variables xu,v for which l1(u) ̸= l2(v).

2.3 The CFI Graphs
In this section, we look at the graphs by Cai, Fürer and Immerman [4], which were constructed
to prove lower bounds for the Weisfeiler-Lehman method in isomorphism testing. These
graphs are also challenging when we use resolution to decide isomorphism. They are built
from gadget graphs which are defined as follows (see Figure 2).

▶ Definition 9 (CFI-gadget [4, 6]). Given a finite set N , define: XN := (V,E, γ), where V :=
A ∪ B ∪ M consists of A := {aw | w ∈ N}, B := {bw | w ∈ N} as well as M := {mS |
S ⊆ N, |S| even} and E := {{mS , aw} | w ∈ S} ∪ {{mS , bw} | w ∈ N \ S}. Also define the

coloring γ : V → C : v 7→ γ(v) :=
{
cw if v ∈ A ∪B with v = aw or v = bw,

m if v ∈ M.

The most important feature of the CFI-gadgets are their automorphisms:

▶ Lemma 10 ([4, 6.1]). There are 2|N |−1 automorphisms of XN . Each is uniquely determined
by interchanging the vertices aw and bw for all w in some subset S ⊆ N of even cardinality.

▶ Definition 11 (CFI graph). From a graph G = (V,E) construct X(G) by connecting the
CFI gadgets {Xv

EG(v) | v ∈ V } with edges E′ := {{au
e , a

v
e} | e = {u, v} ∈ E} ∪ {{bu

e , b
v
e} | e =

{u, v} ∈ E}.

P. Schweitzer and C. Seebach 58:7

▶ Definition 12. Given a graph G = (V,E) with E ̸= ∅, construct X̃(G) from X(G)
by choosing some edge e = {u, v} ∈ E and replacing the edges {au

e , a
v
e}, {bu

e , b
v
e} with the

edges {au
e , b

v
e}, {bu

e , a
v
e}. We say that the edges corresponding to e have been twisted.

Note that Definition 12 does not specify how to choose the edge which is to be twisted,
so there are in fact multiple graphs that we could call X̃(G). If G is connected however,
these graphs are isomorphic. On the other hand, for any graph G with at least one edge,
X̃(G) and X(G) are not isomorphic [[4, see Lemma 6.2]]. The CFI graphs have been used to
prove the following lower bound for resolution:

▶ Theorem 13 ([17, Corollary 5.2]). There exists a family of graphs G = (Gn)n∈N such that
for every n, Gn has n vertices and the resolution refutation of the formula F (X(Gn), X̃(Gn))
requires size exp(Ω(n)). The graphs X(Gn) and X̃(Gn) have color multiplicity at most 4.

This exponential lower bound motivates the use of a more efficient proof system to prove
non-isomorphism of CFI graphs. Because of the symmetric nature of the CFI-gadgets, the
symmetry rule is expected to reduce the proof length significantly. With symmetry rule,
short proofs exist, as we show in Section 3.

In order to obtain examples for which the symmetry rule is not able to produce short
proofs, it is a natural idea to consider asymmetric graphs instead.

2.4 Multipede Graphs
In [10], the so-called Multipedes were defined - a method to construct asymmetric structures.
Combining this construction with CFI-gadgets, one obtains a family of asymmetric graphs
which provide exponential lower bounds for individualization-refinement algorithms [14].

▶ Definition 14 (Multipede graph [14]). From a bipartite graph G = (V,W,E), we construct
the Multipede graph MP (G) as follows: For every w ∈ W create a pair of vertices aw, bw,
colored with cw. We call these pairs feet. Then for every v ∈ V take a CFI-gadget Xv

NG(v)
and identify the vertices av

w and bv
w with aw and bw respectively.

▶ Theorem 15 ([14]). There exists a family of bipartite graphs G = (Gn)n∈N such that for each
n the graph Gn has O(n) vertices, MP (Gn) is asymmetric and individualization-refinement
algorithms take exp(Ω(n)) steps to verify MP (Gn)aω

≇MP (Gn)bω
.

The Multipede graphs are of particular interest, because they are a generalization of the
CFI graphs, and thus also hard for resolution, and additionally they can be constructed to
be asymmetric. Hence the global symmetry rule is insufficient to get short proofs concerning
Multipedes. However, as we will prove, the local symmetry of the CFI-gadgets can be used
by the local symmetry rule.

The automorphism group of a Multipede graph is closely related to the solution set
of a linear equation system. As a consequence of Lemma 10, any automorphism φ of a
Multipede can be uniquely specified by the set of feet Y := {w ∈ W | φ(aw) = bw} for which
the a-b-pairs are swapped. The set Y represents a valid automorphism exactly if for every
CFI-gadget in the graph, an even number of incident feet is swapped.

Using linear algebra, we can encode a subset Y ⊆ W = {w1, . . . , wn} uniquely as a vector
y ∈ Fn

2 , by setting yi = 1 if and only if wi ∈ Y for all i. Then the evenness-condition, which
the CFI-gadgets require, can be expressed as a set of linear equations:

for all v ∈ V :
∑

wi∈NG(v)

yi = 0 .

STACS 2021

58:8 Resolution with Symmetry Rule Applied to Linear Equations

We can write the equations in matrix form: Let G = ({v1, . . . , vm}, {w1, . . . , wn}, E) be

a bipartite graph. Define M(G) ∈ Fm×n
2 as follows: M(G)i,j :=

{
1 if {vi, wj} ∈ E

0 otherwise.
The solutions of the linear equation system M(G)y = 0 correspond to the automorphisms

of MP (G). We will show how to apply resolution and the symmetry rule to linear equations,
and extend our results to Multipedes.

2.5 Encoding Linear Equations

Linear equations over finite fields have been used to show lower bounds in Proof Complexity.
For example, the Tseitin formulas are constructed from graphs, representing a system of
linear equations over F2, and are hard for resolution [19]. In the next section we will show
that by adding the symmetry rule to resolution, we get short proofs for linear equations.

To work with linear equations, some basic definitions and notations from linear algebra
are needed. Let K be a field and n,m ∈ N. We write Km×n for the set of all m by n matrices
over K. Symbols for matrices will be written in boldface. Given a matrix A ∈ Km×n and
numbers i ∈ [1,m] and j ∈ [1, n], we write Ai,j for the element at the i-th row and j-th
column of A. We write Kn for the set of all n-element vectors. For our purposes they can
be treated like single-column matrices, i.e., Kn = Kn×1.

We write 0 for a vector consisting of zeros, where its size is clear from context. Similarly
1 is a vector filled with ones.

Applying resolution to a linear equation system means providing a refutation certifying
that the system cannot be solved, if that is indeed the case. The following lemma is essential
in proving an equation system unsolvable:

▶ Lemma 16. Let A ∈ Fm×n
p and b ∈ Fm

p . If the equation system Ax = b does not have a
solution x ∈ Fn

p , then there exists some v ∈ Fm
p such that vA = 0 and v · b = 1.

Proof. Since the equation system does not have a solution, applying the Gaussian elimination
algorithm yields the equation 0 = 1. Writing the row operations used by the algorithm as a
vector, we get the sought-after v. ◀

We require some notation for standard operations from linear algebra.
Let r = (r1, . . . , rn) ∈ Kn and A ∈ Km×n. supp(r) := {i ∈ {1, . . . , n} | ri ̸= 0} is the

support of r. Ai,∗ := (Ai,1, . . . ,Ai,n) ∈ Kn is the i-th row of A. diag(r) ∈ Kn×n is the
diagonal matrix with diagonal entries equal to r. ΣA :=

∑m
i=1 Ai,∗ = 1 · A is the row sum

of A. Let v = (v1, . . . , vn) ∈ Kn. Then r|v ∈ Kn is the restriction of r to the support of v,

defined by (r|v)i :=
{
ri if vi ̸= 0
0 if vi = 0

for i ∈ {1, . . . , n}.

To encode linear equations as CNF formulas, we first introduce variables which correspond
to the solution vector of the linear equation system: Vars := {ξi,k | i ∈ [1, n] and k ∈ Fp}.
For a given vector x ∈ Fn

p , the corresponding assignment to the variables would set ξi,k to
true if and only if xi = k.

Our CNF formula has a clause for every x with Ax ̸= b, ensuring the forumla is false
under the assignment corresponding to x. For every row (a, b) of the equation system, we
consider all x with a · x ̸= b. We can restrict x to the components for which a is nonzero.

P (a, b) := {x ∈ Fn
p | a · x ̸= b and supp(x) ⊆ supp(a)}.

P. Schweitzer and C. Seebach 58:9

The formula for the row (a, b) is then defined as follows:

F (a, b) :=
∧

x∈P (a,b)

Ca(x), where Ca(x) :=
∨

i∈supp(a)

ξi,xi .

We extend this definition to whole systems of equations: F (A,b) :=
∧m

i=1 F (Ai,∗,bi). Notice
that assigning false to every variable satisfies F (A,b), but this assignment does not represent
a vector. For this reason, we additionally need the clauses V :=

∧n
i=1

∨
k∈Fp

ξi,k.

▶ Lemma 17. Let A ∈ Fm×n
p and b ∈ Fm

p . There exists an x ∈ Fn
p with Ax = b if and only

if F (A,b) ∧ V is satisfiable.

Proof. =⇒ : Assume Ax = b. Define an assignment φ : Vars → B such that φ(ξi,k) = 1 if
and only if xi = k. It is easy to see that φ(V) = 1. Let j ∈ [1,m] and x′ ∈ P (Aj,∗,bj). Then
Aj,∗ · x′ ̸= bj = Aj,∗ · x. Hence there exists i ∈ supp(Aj,∗) such that xi ̸= x′

i. Therefore
φ(ξi,x′

i
) = 0, so φ(CAj,∗(x′)) = 1. Then φ(F (Aj,∗,bj)) = 1 and thus F (A,b) is satisfied by

φ.
⇐= : Assume that we have an assignment φ with φ(F (A,b)) = 1 and φ(V) = 1.

For all i ∈ [1, n] there exists a k ∈ Fp such that φ(ξi,k) = 1. Define xi := k. Towards a
contradiction, assume there exists j ∈ [1,m] with bj ≠ Aj,∗ · x. Then x|Aj,∗ ∈ P (Aj,∗,bj)
and φ(CAj,∗(x)) = 1. Hence there must exist an i ∈ supp(Aj,∗) such that φ(ξi,xi

) = 0, which
contradicts our construction of x. Therefore Ax = b. ◀

3 Linear-sized Refutations for Non-Isomorphism of CFI graphs

Due to the symmetric nature of the CFI graphs, using the symmetry rule gives us linear-sized
resolution proofs of non-isomorphism for a pair of these graphs.

▶ Theorem 18. Let G be a graph with at least one edge. Then

F (X(G), X̃(G)) ⊢SRC-I
O(|F (X(G),X̃(G))|) ⊥.

For a full proof of Theorem 18, see [15]. Here we only sketch the main ideas of the proof.

Proof sketch. The resolution refutation is created recursively. We remove a special vertex or
edge from G to obtain a smaller graph G′, get a short proof for F (X(G′), X̃(G′)) ⊢SRC-I ⊥,
and then use this to build a short proof for F (X(G), X̃(G)) ⊢SRC-I ⊥.

One of the following cases surely holds for G: It has an edge e on a cycle, or it has a
vertex v of degree 1. In the latter case, there is only one way to map the CFI-gadgets of
X(G) and X̃(G) around v to each other. This can be proved using standard resolution in a
constant number of steps.

In the case of a cycle, we have a certain symmetry in X(G), which the symmetry rule
can exploit: Twisting every edge along the cycle is an automorphism. Hence, if X(G) and
X̃(G) are isomorphic, then also this twisted version of X(G) is isomorphic to X̃(G). To show
non-isomorphism, it is then sufficient to prove non-isomorphism for one of these versions,
and the rest follows by symmetry - a symmetry which can be written in SRC-I. Choosing
one of the versions is equivalent to having a fixed mapping of e.

In both cases, we fix the mapping of a vertex or an edge, which makes it possible to
build up the resolution refutation from recursively smaller proofs. Each time we only add a
constant number of steps, in sum yielding a proof of linear size. ◀

This result stands in contrast to the exponential lower bound of Theorem 13.

STACS 2021

58:10 Resolution with Symmetry Rule Applied to Linear Equations

x
y

x + y
ϑ(x,y)

Figure 3 A visualization of ϑ(x, y).

4 Polynomial-sized Refutations for Linear Equations

4.1 Linear Combinations
The usual approach to showing that a system of linear equations is inconsistent, is to build a
linear combination of the equations to derive the obvious contradiction 0 = 1. This method
is complete by Lemma 16. We recreate this process in the resolution proof system. However
we need to ensure that the support of equations we create along the way is not excessively
large. We will do so by using the the symmetry rule.

Note that the formula F (a, b) is invariant under linear scaling of the inputs: For any
k ∈ Fp\{0} we have supp(a) = supp(ka) and P (a, b) = P (ka, kb). Hence F (a, b) = F (ka, kb).

For the computation of linear combinations, we use the following definition. For θ ⊆ [1, n]
define Ω(θ) :=

{∨
i∈θ ξi,xi | x ∈ Fn

p with supp(x) ⊆ θ
}

. Together, the clauses in Ω(θ) forbid
all possible assignments to the components in range θ. In a sense, Ω(θ) is our basic building
block for contradictions.

▶ Lemma 19. Let θ ⊆ [1, n]. Then Ω(θ) ∧ V ⊢ p|θ|+1−p
p−1

⊥.

Proof. Induction over |θ|. If θ = ∅ then Ω(θ) = {
∨

∅} = {⊥}, so Ω(θ) ⊢0 ⊥.
Induction step: θ = θ′ ∪ {j}. It holds:

Ω(θ) =
{∨

i∈θ

ξi,xi
| x ∈ Fn

p with supp(x) ⊆ θ

}

=
{
ξj,xj

∨
∨
i∈θ′

ξi,xi
| x ∈ Fn

p with supp(x) ⊆ θ

}

=
{
ξj,k ∨

∨
i∈θ′

ξi,xi | x ∈ Fn
p with supp(x) ⊆ θ′ and k ∈ Fp

}
=

{
ξj,k ∨ c′ | c′ ∈ Ω(θ′), k ∈ Fp

}
For each c′ ∈ Ω(θ′), we can derive the clause c′ by resolving

∨
k∈Fp

ξj,k from V with the
clauses from Ω(θ). Doing this for all c′ ∈ Ω(θ′) takes p · |Ω(θ′)| = |Ω(θ)| = p|θ| resolution
steps. By induction, we can then derive ⊥ from Ω(θ′) and V in p|θ′|+1−p

p−1 = p|θ|−p
p−1 steps. The

total number of steps taken is p|θ|−p
p−1 + p|θ| = p|θ|+1−p

p−1 . ◀

When we sum two vectors x and y, some components may become zero which were
nonzero before. The following definition captures this phenomenon: ϑ(x,y) := (supp(x) ∪
supp(y))\ supp(x + y). If a coefficient vanishes in a sum, it has to appear in both summands:
ϑ(x,y) ⊆ supp(x) ∩ supp(y) (see Figure 3).

With these ingredients, we can finally explain the process of building sums using resolution.

▶ Theorem 20 (Sum Resolution). Let a ∈ F2×n
p and b ∈ F2

p. Define θ := ϑ(a1, a2), where ai

is the i-th row of a. For all c ∈ F (Σa,Σb) it holds: F (a1,b1) ∪ F (a2,b2) ∪ V ⊢w
2(p|θ|−1) c.

P. Schweitzer and C. Seebach 58:11

Proof. Let c ∈ F (Σa,Σb). By definition of F , there exists some x ∈ P (Σa,Σb) such
that c =

∨
i∈supp(Σa) ξi,xi

. The resolution derivation will have to get rid of all variables
corresponding to components in θ. For κ ∈ {1, 2} define Rκ :=

∨
i∈supp(aκ)\θ ξi,xi

. From
this we will build the desired clause c. It holds: (supp(a1) ∪ supp(a2)) \ θ = (supp(a1) ∪
supp(a2)) ∩ supp(Σa) = supp(Σa). Thus

R1 ∨R2 =
∨

i∈supp(a1)\θ

ξi,xi
∨

∨
i∈supp(a2)\θ

ξi,xi

=
∨

i∈(supp(a1)∪supp(a2))\θ

ξi,xi

=
∨

i∈supp(Σa)

ξi,xi
= c

Consider an arbitrary y ∈ Fn
p with supp(y) ⊆ θ. Since supp(y) ∩ supp(Σa) = ∅, we

have Σa · y = 0. There exists κ with aκ · (x + y) ̸= bκ, because otherwise we would have
Σb = b1 + b2 = a1 · (x + y) + a2 · (x + y) = (a1 + a2) · (x + y) = Σa · x + Σa · y = Σa · x,
which contradicts x ∈ P (Σa,Σb).

Hence (x + y)|aκ
∈ P (aκ,bκ) and we have a clause c′(y) :=

∨
i∈supp(aκ) ξi,(x+y)i

∈
F (aκ,bκ). It holds:

c′(y) =
∨

i∈supp(aκ)∩θ

ξi,(x+y)i
∨

∨
i∈supp(aκ)\θ

ξi,(x+y)i

=
∨

i∈supp(aκ)∩θ

ξi,yi
∨

∨
i∈supp(aκ)\θ

ξi,xi

=
∨
i∈θ

ξi,yi
∨ Rκ

Now, looking at the set C := {c′(y) | y ∈ Fn
p } ⊆ F (a1,b1) ∪ F (a2,b2), note that for

every clause d ∈ Ω(θ), we have d ∨R1 ∈ C or d ∨R2 ∈ C. By Lemma 19 and Lemma 6 we
can resolve the clauses in C together with V to obtain R1 ∨R2 = c or stronger. Since p ≥ 2,
this takes at most p|θ|+1−p

p−1 ≤ p|θ|+1−p
p/2 = 2(p|θ| − 1) resolution steps. ◀

By applying Theorem 20 iteratively, we can construct the formulas for linear combinations
with an arbitrary number of summands. This method, however, is inefficient since the
produced intermediate equations may accumulate more and more variables, leading to an
exponential growth of the number of required clauses.

We solve this problem by deriving only a single representative clause for intermediate
results, and using the local symmetry rule to derive more clauses as necessary.

4.2 Local Symmetry in Equations
We want to understand which symmetries the formulas corresponding to linear equations
have. For d ∈ Fn

p define ∆d : Vars → Vars : ξi,k 7→ ∆d(ξi,k) := ξi,k+di
. This bijective map is

a translation by d of the vector corresponding to the variables.

▶ Lemma 21. Let b ∈ Fp and a,d ∈ Fn
p . Then ∆d ∈ Sym(F (a, b)) if and only if a · d = 0.

Proof. ⇐= : Assume a · d = 0. Let c = Ca(x) =
∨

i∈supp(a) ξi,xi
∈ F (a, b) for some

x ∈ P (a, b). We have a · (x + d) = a · x ̸= b. Hence (x + d)|a ∈ P (a, b) and thus
∆d(c) =

∨
i∈supp(a) ξi,xi+di

= Ca(x + d) = Ca((x + d)|a) ∈ F (a, b).

STACS 2021

58:12 Resolution with Symmetry Rule Applied to Linear Equations

=⇒ : Assume a · d ̸= 0. Then a ̸= 0 and hence there exists a vector x ∈ P (a, b) with
a · x = b− a · d ̸= b. But then a · (x + d) = b and thus ∆d(Ca(x)) = Ca(x + d) /∈ F (a, b).
Hence ∆d /∈ Sym(F (a, b)). ◀

▶ Corollary 22. Let A ∈ Fm×n
p , b ∈ Fm

p and d ∈ Fn
p . If A · d = 0, then ∆d ∈ Sym(F (A,b)).

Note the following: If d,d′ ∈ Fn
p such that d|a = d′|a, then for all c ∈ F (a, b) it

holds: ∆d(c) = ∆d′(c). In particular, ∆d ∈ Sym(F (a, b)) implies ∆d′ ∈ Sym(F (a, b)).
The condition d|a = d′|a can equivalently be expressed using matrix algebra: diag(a)d =
diag(a)d′.

To make use of the symmetry rule, we want to apply the symmetries of F (A,b) to derive
clauses of F (ΣA,Σb). From the statements and Corollary 22, we conclude the following
relation between Sym(F (A,b)) and Sym(F (ΣA,Σb)).

▶ Lemma 23. Let A ∈ Fm×n
p , b ∈ Fm

p and d ∈ Fn
p with ∆d ∈ Sym(F (ΣA,Σb)) If there

exists d′ ∈ Fn
p such that Ad′ = 0 and diag(ΣA)d′ = diag(ΣA)d, then ∆d′ ∈ Sym(F (A,b))

and ∆d′(c) = ∆d(c) for all c ∈ F (ΣA,Σb).

Concerning V , the symmetries are simpler: For any d ∈ Fn
p we have ∆d ∈ Sym(V).

We will assume that the coefficient matrices A in the following have at most L nonzero
entries in each row. In other words, the width of A is at most L.

▶ Theorem 24. Let A ∈ Fm×n
p and b ∈ Fm

p . For any H ⊆ F (ΣA,Σb) it holds: F (A,b) ∧
V ⊢SRC-II

O(mΘ(p)pL+1)+|H| H.

Proof. Define λ := log(2)
log(p/(p−1)) and f(x) := CpL+1xλ for some constant C chosen later.

Regarding the relationship between λ and p we have λ ∼ log(2)p (i.e., limn→∞ λ/ log(2)p =
1)).

We prove the following by induction over the number of equations m: For any H ⊆
F (ΣA,Σb) it holds: F (A,b) ∧ V ⊢SRC-II

f(m)+|H| H.
Induction basis: m = 0. In this case, we have ΣA = 0 and Σb = 0. Then F (ΣA,Σb) = ∅;

hence H = ∅ and we have nothing to prove.
Induction step: m− 1 → m. Here we have two cases:

Case 1: Symmetric sum. For this case we assume that for all d with ∆d ∈ Sym(F (ΣA,Σb))
we have a d′ with d|ΣA = d′|ΣA and ∆d′ ∈ Sym(F (A,b)). Thanks to this property, all the
symmetries of F (ΣA,Σb) are already present in F (A,b) and can be used by the symmetry
rule. So we only need to derive a few clauses of F (ΣA,Σb) to obtain a set allowing us
to generate all clauses via symmetries. This which can be done by inductively applying
Theorem 20 as follows.

Define A′ and b′ to be the first m − 1 rows of A and b respectively. Define θ :=
ϑ(ΣA′,Am,∗). We have |θ| ≤ |supp(Am,∗)| ≤ L. If ΣA ̸= 0, then for each k ̸= Σb there
exists a vector zk with supp(zk) ⊆ supp(ΣA) such that ΣA ·zk = k. Define G := {CΣA(zk) |
k ∈ Fp \ {Σb}} ⊆ F (ΣA,Σb). Then |G| = p− 1.

Using Theorem 20, we get F (ΣA′,Σb′) ∧F (Am,∗,bm) ∧V ⊢w
|G|·O(pL) G. This derivation

only uses a subset H ′ ⊆ F (ΣA′,Σb′) of at most |H ′| ≤ O(pL+1) clauses. By induction, it
holds that F (A′,b′) ∧ V ⊢SRC-II

f(m−1)+|H′| H
′. We can combine these derivations by Lemma 5 to

obtain F (A,b) ∧ V ⊢SRC-II
f(m−1)+O(pL+1) G. Using λ ≥ 1, we take in total f(m− 1) + CpL+1 =

CpL+1(m− 1)λ + CpL+1 ≤ CpL+1mλ = f(m) steps, for some constant C.

P. Schweitzer and C. Seebach 58:13

Now we show that G is a generator for H: Let c ∈ F (ΣA,Σb). Then c = CΣA(x) for
some x ∈ P (ΣA,Σb). Define d := x−zΣA·x. Then ΣA · d = 0, so ∆d ∈ Sym(F (ΣA,Σb)).
Hence there exists a φ ∈ Sym(F (A,b)) such that φ(CΣA(zΣA·x)) = ∆d(CΣA(zΣA·x)) =
CΣA(x) = c. We can apply the local symmetry rule to derive c from G in a single step, using
the symmetries of F (A,b). Repeating this for every c ∈ H yields F (A,b) ∧ V ⊢SRC-II

f(m)+|H| H.
If ΣA = 0 and Σb ̸= 0 then F (ΣA,Σb) = {C0(0)} = {⊥} =: G, which can be derived

in at most CpL+1 steps, again using Theorem 20.
If ΣA = 0 and Σb = 0 then F (ΣA,Σb) = ∅. We treat this the same way as the case

m = 0.

Case 2: Composite. If Case 1 does not apply, the following must hold by Lemma 23: For
some d with ΣA · d = 0, the equations Ad′ = 0 and diag(ΣA)d′ = diag(ΣA)d have no
common solution d′.

Applying Lemma 16 to the combined inconsistent equations, we have v,w such that
vA + wdiag(ΣA) = 0 and wdiag(ΣA)d ̸= 0. We will use the vector v to decompose A into
two smaller matrices, each contributing independently to the derivation of H. First we show
that v has special properties which make this divide and conquer approach work. Then we
need to ensure that the sub-problems are not too large for our proof length bound f .

It holds: vA = −wdiag(ΣA); thus vAd = −wdiag(ΣA)d ̸= 0. For all i ∈ [1, n],
if (ΣA)i = 0, then (vA)i = (−wdiag(ΣA))i = −wi(ΣA)i = 0. Hence supp(vA) ⊆
supp(ΣA). We show that vA and ΣA are linearly independent: Let α1, α2 ∈ Fp such that
α1vA + α2ΣA = 0. Then 0 = α1vAd + α2ΣAd = α1vAd, which implies α1 = 0. Since
ΣA ̸= 0, we also have α2 = 0.

Let k1 ∈ arg max
k∈Fp

|{i | vi = k}| be the most common component of v. Let k2 ∈

arg max
k∈Fp, k ̸=k1

|{i | vi = k}| be the second most common component of v. Since vA is linearly

independent from ΣA, we have v ̸= k · 1 for all k ∈ Fp, so there are at least two different
components in v. Hence k1 and k2 exist. Define mi to be the number of times ki occurs in v.
We have mi ≥ 1 for i ∈ {1, 2}. Furthermore m1 ≥ m/p and m2 ≥ (m−m1)/(p− 1).

Define v1 := v − k11 and v2 := k21 − v. It holds: v1 + v2 = (k2 − k1)1. By subtracting
ki from every component, we get exactly mi zeros in vi, i.e. |supp(vi)| = m−mi.

Towards a contradiction, assume there is some j ∈ ϑ(v1A,v2A). Then 0 = (v1A +
v2A)j = ((k2 −k1)ΣA)j , so 0 = (ΣA)j . Thus 0 = −wj(ΣA)j = (vA)j = (v1A+k1ΣA)j =
(v1A)j + k1(ΣA)j = (v1A)j . This contradicts the assumption. Hence ϑ(v1A,v2A) = ∅. By
Theorem 20 we can derive the sum clauses of v1A + v2A in 0 steps, so they are already
implied by the summand clauses: F ((v1 + v2)A, (v1 + v2)b) ⊑ F (v1A,v1b) ∪ F (v2A,v2b).
It follows that

F (ΣA,Σb) = F ((k2 − k1)ΣA, (k2 − k1)Σb)
= F ((v1 + v2)A, (v1 + v2)b)
⊑ F (v1A,v1b) ∪ F (v2A,v2b).

Hence we can partition H ⊆ F (ΣA,Σb) into H1 and H2 such that Hi ⊑ F (viA,vib) for
i ∈ {1, 2}.

Note that F (viA,vib) = F (Σdiag(vi)A,Σdiag(vi)b). Since |supp(vi)| ≤ m − 1, we
have at least one zero row each in diag(v1)A and diag(v2)A. This makes it possible to apply
the induction hypothesis, yielding F (diag(vi)A, diag(vi)b) ∧ V ⊢SRC-II

f(|supp(vi)|)+|Hi| Hi.
Scaling the equations does not produce different clauses, so we have

F (diag(v1)A, diag(v1)b) ∪ F (diag(v2)A, diag(v2)b) ⊆ F (A,b). Then we can combine the
derivations of H1 and H2 to obtain F (A,b) ∧ V ⊢SRC-II

f(|supp(v1)|)+f(|supp(v2)|)+|H| H. It holds:

STACS 2021

58:14 Resolution with Symmetry Rule Applied to Linear Equations

f(|supp(v1)|)+f(|supp(v2)|) = f(m−m1)+f(m−m2) ≤ f(m−m1)+f(m−(m−m1)/(p−
1)) =: T (m1). By applying standard calculus techniques to the function T , we find that
T (m1) ≤ f(m) for all possible values of m1. ◀

▶ Corollary 25. Let A ∈ Fm×n
p and b ∈ Fm

p , such that there is no x ∈ Fn
p satisfying Ax = b.

Then there exists a resolution refutation of F (A,b) ∧ V using the local symmetry rule, with
its length bounded by O(mΘ(p)pL+1).

5 Linear-sized Refutations for Non-Isomorphism of Multipedes

We can use the result on linear equations to show that there are short resolution proofs for
the non-isomorphism of Multipede graphs.

▶ Theorem 26. Let G = (V,W,E) be a connected bipartite graph such that MP (G) is
asymmetric, and ω ∈ W . Then F (MP (G)aω

,MP (G)bω
) has a linear-sized resolution

refutation using the local symmetry rule.

Proof. Let G = ({v1, . . . , vm}, {w1, . . . , wn}, E) be a connected bipartite graph and ω := wk

for some k. Our goal is to apply the techniques of the previous section to the formula
F0 := F (MP (G)aω

,MP (G)bω
).

We first inspect the simpler formula F1 := F (MP (G),MP (G)). The solutions of this
formula correspond to the automorphisms of MP (G). By applying resolution to F1, we can
derive the formula F (M(G),0): Let i ∈ [1,m]. Then

F (M(G)i,∗, 0) =
∧

x∈P (M(G)i,∗,0)

∨
j∈supp(M(G)i,∗)

ξj,xj

=
∧

x∈P (M(G)i,∗,0)

∨
{vi,wj}∈E

ξj,xj

=
∧

B⊆NG(vi)
|B| odd

 ∨
wj∈B

ξj,1 ∨
∨

wj∈NG(vi)\B

ξj,0

Define N := NG(vi). We define Peven(N) to be the subsets of N with even cardinality.

For all B ⊆ N with odd |B| there exists a surjective function γ : Peven(N) → N such that
for all S ∈ Peven(N) : γ(S) ∈ S \B ∪B \S. We can make the following resolution derivation
from F1:

Type 1:
∨

S∈Peven(N)

zv
∅,S

∀S ∈ Peven(N) with w := γ(S) ∈ B \ S : Type 3: zv
∅,S ∨ yaw,bw

∀S ∈ Peven(N) with w := γ(S) ∈ S \B : Type 3: zv
∅,S ∨ yaw,aw

=⇒
∨

w∈B

yaw,bw
∨

∨
w∈N\B

yaw,aw
,

taking |Peven(N)| ≤ 2|N | steps. Repeating this process for every B and i takes∑
v∈V |Podd(NG(v))| · 2|NG(v)| = O(|F1|) resolution steps. Define a variable renaming r on

F (M(G),0) as follows:

r(ξj,κ) :=
{
yawj

,awj
if κ = 0

yawj
,bwj

if κ = 1

P. Schweitzer and C. Seebach 58:15

Then we have the derivation F1 ⊢O(|F1|) r(F (M(G),0)). As a consequence, |F (M(G),0)| =
O(|F1|). The clauses of r(V) are simply the Type 1 clauses of F1.

To apply Theorem 24, we need to translate the symmetries ∆d ∈ Sym(F (M(G),0)) into
symmetries of F1. Let d ∈ Fn

2 such that M(G)d = 0. Define D := {wi ∈ W | di = 1}.
Then the following map ψd is a symmetry of F1: for w ∈ W set ψd(yaw,aw

) to be yaw,bw

if w ∈ D and yaw,aw otherwise. Similarly ψd(yaw,bw) is yaw,aw if w ∈ D and yaw,bw . We
also set ψd(ybw,aw

) to be ybw,bw
if w ∈ D and ybw,aw

and we set ψd(ybw,bw
) to be ybw,aw

if w ∈ D and ybw,bw
. Finally for v ∈ V we define ψd(zv

S,T) := zv
S,T △D and have the property

ψd(r(c)) = r(∆d(c)) for all clauses c ∈ F (M(G),0).
Now, if the graph MP (G) is asymmetric, the only solution of M(G)y = 0 is y = 0.

Then we can deduce yk = 0 from the equation system by combining rows. Apply-
ing Theorem 24, we get F (M(G),0) ∧ V ⊢SRC-II

O(m2L+1) ξk,0. Renaming variables yields
r(F (M(G),0)) ∧ r(V) ⊢SRC-II

O(m2L+1) yaω,aω
. As we have seen, r(F (M(G),0)) and r(V) can be

derived from F1 and the symmetries are preserved; hence F1 ⊢SRC-II
O(m2L+1) yaω,aω .

Note that F0 is obtained from F1 simply by replacing yaω,aω and ybω,bω with 0. Hence,
F0 ⊢SRC-II

O(m2L+1) ⊥. ◀

References
1 Noriko H. Arai and Alasdair Urquhart. Local symmetries in propositional logic. In Roy Dyckhoff,

editor, Automated Reasoning with Analytic Tableaux and Related Methods, International
Conference, TABLEAUX 2000, St Andrews, Scotland, UK, July 3-7, 2000, Proceedings,
volume 1847 of Lecture Notes in Computer Science, pages 40–51. Springer, 2000. doi:
10.1007/10722086_3.

2 Belaid Benhamou and Lakhdar Sais. Tractability through symmetries in propositional calculus.
J. Autom. Reasoning, 12(1):89–102, 1994. doi:10.1007/BF00881844.

3 Joshua Blinkhorn and Olaf Beyersdorff. Proof complexity of QBF symmetry recomputation.
In Mikolás Janota and Inês Lynce, editors, Theory and Applications of Satisfiability Testing
– SAT 2019 – 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019,
Proceedings, volume 11628 of Lecture Notes in Computer Science, pages 36–52. Springer, 2019.
doi:10.1007/978-3-030-24258-9_3.

4 Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identifications. Combinatorica, 12(4):389–410, 1992. doi:10.1007/
BF01305232.

5 Vasek Chvátal and Endre Szemerédi. Many hard examples for resolution. J. ACM, 35(4):759–
768, 1988. doi:10.1145/48014.48016.

6 Thierry Boy de la Tour and Stéphane Demri. On the complexity of extending ground resolution
with symmetry rules. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995, pages 289–297.
Morgan Kaufmann, 1995. URL: http://ijcai.org/Proceedings/95-1/Papers/038.pdf.

7 Heidi E. Dixon, Matthew L. Ginsberg, David K. Hofer, Eugene M. Luks, and Andrew J.
Parkes. Implementing a generalized version of resolution. In Deborah L. McGuinness and
George Ferguson, editors, Proceedings of the Nineteenth National Conference on Artificial
Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intelligence, July
25-29, 2004, San Jose, California, USA, pages 55–60. AAAI Press / The MIT Press, 2004.
URL: http://www.aaai.org/Library/AAAI/2004/aaai04-009.php.

8 Uwe Egly. A first order resolution calculus with symmetries. In Andrei Voronkov, editor,
Logic Programming and Automated Reasoning,4th International Conference, LPAR’93, St.
Petersburg, Russia, July 13-20, 1993, Proceedings, volume 698 of Lecture Notes in Computer
Science, pages 110–121. Springer, 1993. doi:10.1007/3-540-56944-8_46.

STACS 2021

https://doi.org/10.1007/10722086_3
https://doi.org/10.1007/10722086_3
https://doi.org/10.1007/BF00881844
https://doi.org/10.1007/978-3-030-24258-9_3
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BF01305232
https://doi.org/10.1145/48014.48016
http://ijcai.org/Proceedings/95-1/Papers/038.pdf
http://www.aaai.org/Library/AAAI/2004/aaai04-009.php
https://doi.org/10.1007/3-540-56944-8_46

58:16 Resolution with Symmetry Rule Applied to Linear Equations

9 Michael Frank and Michael Codish. Logic programming with graph automorphism: Inte-
grating nauty with prolog (tool description). TPLP, 16(5-6):688–702, 2016. doi:10.1017/
S1471068416000223.

10 Yuri Gurevich and Saharon Shelah. On finite rigid structures. J. Symb. Log., 61(2):549–562,
1996. doi:10.2307/2275675.

11 Armin Haken. The intractability of resolution. Theor. Comput. Sci., 39:297–308, 1985.
doi:10.1016/0304-3975(85)90144-6.

12 Balakrishnan Krishnamurthy. Short proofs for tricky formulas. Acta Informatica, 22(3):253–275,
August 1985. doi:10.1007/BF00265682.

13 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb. Comput.,
60:94–112, 2014. doi:10.1016/j.jsc.2013.09.003.

14 Daniel Neuen and Pascal Schweitzer. An exponential lower bound for individualization-
refinement algorithms for graph isomorphism. In Ilias Diakonikolas, David Kempe, and
Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 138–150.
ACM, 2018. doi:10.1145/3188745.3188900.

15 Pascal Schweitzer and Constantin Seebach. Resolution with symmetry rule applied to linear
equations. CoRR, abs/2101.05142, 2021. (Full version of the paper). arXiv:2101.05142.

16 Stefan Szeider. The complexity of resolution with generalized symmetry rules. Theory Comput.
Syst., 38(2):171–188, 2005. doi:10.1007/s00224-004-1192-0.

17 Jacobo Torán. On the resolution complexity of graph non-isomorphism. In Matti Järvisalo
and Allen Van Gelder, editors, Theory and Applications of Satisfiability Testing - SAT 2013
- 16th International Conference, Helsinki, Finland, July 8-12, 2013. Proceedings, volume
7962 of Lecture Notes in Computer Science, pages 52–66. Springer, 2013. doi:10.1007/
978-3-642-39071-5_6.

18 G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus, pages 466–483.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1983. doi:10.1007/978-3-642-81955-1_28.

19 Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, January 1987.
doi:10.1145/7531.8928.

20 Alasdair Urquhart. The symmetry rule in propositional logic. Discrete Applied Mathematics,
96-97:177–193, 1999. doi:10.1016/S0166-218X(99)00039-6.

https://doi.org/10.1017/S1471068416000223
https://doi.org/10.1017/S1471068416000223
https://doi.org/10.2307/2275675
https://doi.org/10.1016/0304-3975(85)90144-6
https://doi.org/10.1007/BF00265682
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1145/3188745.3188900
http://arxiv.org/abs/2101.05142
https://doi.org/10.1007/s00224-004-1192-0
https://doi.org/10.1007/978-3-642-39071-5_6
https://doi.org/10.1007/978-3-642-39071-5_6
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1145/7531.8928
https://doi.org/10.1016/S0166-218X(99)00039-6

Quantum Approximate Counting with Nonadaptive
Grover Iterations
Ramgopal Venkateswaran1 !

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Ryan O’Donnell ! Ï

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Approximate Counting refers to the problem where we are given query access to a function f :
[N] → {0, 1}, and we wish to estimate K = #{x : f(x) = 1} to within a factor of 1 + ϵ (with
high probability), while minimizing the number of queries. In the quantum setting, Approximate
Counting can be done with O

(
min

(√
N/ϵ,

√
N/K

/
ϵ
))

queries. It has recently been shown that
this can be achieved by a simple algorithm that only uses “Grover iterations”; however the algorithm
performs these iterations adaptively. Motivated by concerns of computational simplicity, we consider
algorithms that use Grover iterations with limited adaptivity. We show that algorithms using only
nonadaptive Grover iterations can achieve O

(√
N/ϵ

)
query complexity, which is tight.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory

Keywords and phrases quantum approximate counting, Grover search

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.59

Related Version Previous Version: https://arxiv.org/pdf/2010.04370.pdf

Funding Ryan O’Donnell: Supported by NSF grant CCF-1717606. This material is based upon
work supported by the National Science Foundation under the grant number listed above. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation (NSF).

Acknowledgements The authors would like to thank Scott Aaronson and Patrick Rall for helpful
communications.

1 Introduction

1.1 Grover Search recap
A famous, textbook algorithm in quantum computing is Grover Search [6], which solves the
following task: Given is a quantum oracle for a function f : [N] → {0, 1}, where queries for
f(x) may be made in quantum superposition. It is promised that K = #{x : f(x) = 1} is
exactly 1. The task is to find x∗ such that f(x∗) = 1. Grover Search solves this problem
(with high probability) using O(

√
N) queries.

The algorithm is particularly simple: First, a state |s⟩ equal to the uniform superposition
over all |x⟩ is prepared; this state makes an angle of arccos

√
1/N with |x∗⟩. We write

|x∗⟩⊥ for the state perpendicular to |x∗⟩ making an angle of θ∗ = arcsin
√

1/N with |s⟩.
Then the algorithm repeatedly performs Grover iterations, each of which consists of one
query followed by the simple “Grover diffusion” operation. The effect of a Grover iteration
is to rotate |s⟩ by an angle of 2θ∗; thus after r rotations the angle of |s⟩ from |x∗⟩⊥ is

1 The ordering of the authors was randomized. The authors contributed equally.

© Ramgopal Venkateswaran and Ryan O’Donnell;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 59; pp. 59:1–59:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ramgopav@andrew.cmu.edu
mailto:odonnell@cs.cmu.edu
https://www.cs.cmu.edu/~odonnell
https://doi.org/10.4230/LIPIcs.STACS.2021.59
https://arxiv.org/pdf/2010.04370.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 Quantum Approximate Counting with Nonadaptive Grover Iterations

(2r + 1)θ∗. Setting r ≈ π
4

√
N , the algorithm makes O(

√
N) queries and ends up with a

state at angle approximately π
2 from |x∗⟩⊥; measuring then results in |x∗⟩ with probability

sin2((2r + 1)θ∗) ≈ sin2 π
2 = 1.

In this form the algorithm relies on the assumption K = 1. For K ≥ 1, the only change
is that the parameter θ∗ becomes arcsin

√
K/N . Thus if the correct value of K is known

to the algorithm (and we assume for simplicity that K ≤ N/2), it can choose r ≈ π
4

√
N/K

and solve the search problem using O(
√

N/K) iterations/queries. This algorithm also works
if the algorithm knows an estimate K ′ of K that is correct up to small multiplicative error;
say, K ′ 1.1

≈ K. Here we are using the following notation:

▶ Notation 1. For a, b, η > 0 we write a
1+η
≈ b if 1

1+η ≤ a/b ≤ 1 + η.

If K is unknown to the algorithm, one possibility is try all estimates K ′ = 1, 1.1,
1.12, 1.13, . . . , N/2. The total number of Grover iterations (hence queries) will be
O(

∑
i

√
N/1.1i) = O(

√
N).2 A strategy with improved query complexity for large K

was given by Boyer, Brassard, Høyer, and Tapp [2]; in brief, for i = 0, 1, 2, . . . it tries a
random number of rotations in the range [1, 1.1i], stopping if ever an x ∈ f−1(1) is found.
This algorithm solves the search problem using O(

√
N/K) iterations, despite not knowing K

in advance.

1.2 Approximate Counting
A natural related problem, called Approximate Counting and introduced in [2], is to esti-
mate K. More precisely, given as input a parameter ϵ ≥ 0, the task is to output a number K̂

such that (with high probability) K̂
1+ϵ
≈ K. To keep the exposition simple, in this paper we

will make the following standard assumptions:
1/N ≤ ϵ ≤ 1 (setting ϵ = 1/N just yields the problem of exact counting – any smaller
value of ϵ does not change the problem);
K ≤ N/2 (otherwise there is generally a dependence on N − K, since one can switch the
roles of 0 and 1 in f ’s output);
K ≠ 0 (generally, all algorithms can easily be extended to work in the case of K = 0,
with query complexity being the worst-case query complexity over all K > 0).

The quantum Approximate Counting problem was solved with optimal query complexity by
Brassard, Høyer, Mosca, and Tapp [3]. Combining quantum Fourier transform ideas from
Shor’s Algorithm with the ideas behind Grover Search, their algorithm solves Approximate
Counting using O(

√
N/K

/
ϵ) queries.

Let us make some remarks about this query complexity. First, note that the bound takes
K into account, even though K is (initially) unknown to the algorithm. Second, although K

could be as small as 1, the worst-case query complexity over all K need not be Ω(
√

N
/

ϵ).
(Indeed, this would lead to an illogical query complexity of Ω(N3/2) if one set ϵ = 1/N to do
exact counting.) Instead, note that an algorithm can first run the algorithm from [3] with
ϵ = 1, expending O(

√
N/K) ≤ O(

√
N) queries and learning a preliminary estimate K ′ 2

≈ K.
Now since K is an integer, there is no point in trying to approximate it to a factor better
than 1 + 1/K, hence better than 1 + 1/(2K ′). Thus the algorithm can now raise the initial
input ϵ to 1/(2K ′) if necessary, and then run [3] to obtain its final estimate. This yields a
final query complexity of

O(
√

N/K
/

max{ϵ, 1/K}) = min{O(
√

NK), O(
√

N/K
/

ϵ)} ≤ O(
√

N/ϵ)

2 One must take a small amount of care to bound the overall failure probability without incurring a log
factor.

R. Venkateswaran and R. O’Donnell 59:3

(where in the last inequality we took the geometric mean). This K-independent bound of
O(

√
N/ϵ) is logical: the smallest ϵ one should ever take is ϵ = 1/N , and this leads to a query

complexity of O(N) for the general case of exact counting. By similar reasoning one can
obtain the more precise fact that exact counting can done with O(

√
NK) queries. Finally,

we remark that query complexity obtained by [3] was shown to be optimal by Nayak and
Wu [8].

Let us also briefly mention the quantum Amplitude Estimation problem, which is essentially
the same as the Approximate Counting problem except that the “initial angle” θ∗ need not
be of the form arcsin

√
K/N for some integer K, but can be any value. The solution to the

Amplitude Estimation problem in [3] is a widely used tool in quantum algorithm design, and
leads to quadratic speedups over classical algorithms for a variety of statistical problems.

1.3 Simpler and nonadaptive?
Although the Approximate Counting algorithm from [3] has optimal query complexity, there
has recently been a lot of interest in simplifying it [10, 9, 1]. In particular the latter two of
these just-cited works strove to replace it with an algorithm that only uses Grover iterations,
both for analytic simplicity and practical simplicity (the controlled amplifications of [3] being
particularly problematic for NISQ devices). The work of Aaronson and Rall [1] provably
succeeds at this challenge, providing an algorithm that solves the Approximate Counting
problem using O(

√
N/K

/
ϵ) Grover iterations (hence queries). Briefly, the Aaronson–Rall

algorithm has a first phase (somewhat similar to the algorithm in [2]) that performs a
geometrically increasing sequence of Grover iterations until K can be estimated up to a
constant factor of 1.1 (see Theorem 9 herein). This requires O(

√
N/K) iterations. In the

second phase, their algorithm performs a kind of binary search to improve the approximation
factor to 1 + ϵ; each step of the binary search requires additional Grover iterations, totalling
O(

√
N/K

/
ϵ) in the end.

From the point of view of practicality and simplicity, there is a downside to the Aaronson–
Rall algorithm, which is that its Grover iterations are adaptive (especially in the second
phase of the algorithm). In other words, the steps of the algorithm involve many repetitions
of the following: performing some Grover iterations, measuring, and doing some classical
computation to decide how many Grover iterations to do in the next step. It has been
argued that this repeated switching between quantum and classical computation could be
undesirable in practice. Indeed, the final open question in [1] concerned the optimal query
complexity of Approximate Counting using nonadaptive Grover iterations. This version of
the problem was also stressed and studied in [9], but without any provable guarantees being
provided.

Other recent developments in the area of approximate counting include [5, 7], which
propose variants of the algorithm from [1] but with improved constant factors. As well,
the work [4] proves a lower bound for the query complexity of approximate counting in the
parallel case.

1.4 Our results
We investigate the problem of Approximate Counting using only nonadaptive Grover iterations.
Note that for this version of the problem, there is no hope of obtaining the query complexity
O(

√
N/K

/
ϵ) that improves as a function of K. To see this, suppose even that ϵ is fixed

to 1. If the algorithm is to achieve query complexity O(
√

N/K), then it must be able to
achieve O(1) query complexity when K = Θ(N). Since it is nonadaptive, this means it must
always make only O(1) queries. But this is impossible, as even for adaptive algorithms it is
known that Ω(

√
N) queries are required in the case of K = O(1), ϵ = 1.

STACS 2021

59:4 Quantum Approximate Counting with Nonadaptive Grover Iterations

In other words, with nonadaptive algorithms we can only hope to achieve the optimal
query complexity that is independent of K, namely O(

√
N/ϵ). In this work we indeed show

this is achievable. Our main theorem is:

▶ Theorem 2. There is an algorithm for quantum Approximate Counting that uses only
nonadaptive Grover iterations, and that has a query complexity of O(

√
N/ϵ) (and minimal

additional computational overhead).

We also briefly sketch an extension of our algorithm achieving improved query complexity
in the setting where we are allowed multiple rounds of nonadaptive Grover iterations (as
opposed to just one).

2 Preliminaries

We will assume throughout that K ≤ 2−20N .3 This without loss of generality since we may
artificially replace N by 220N and extend f to f : [220N] → {0, 1}, with f(x) = 0 for x > N .
We fix

θ∗ = arcsin
√

K/N,

sometimes called the “Grover angle”. Recall that a query algorithm based on Grover iterations
has the following property: At the cost of q ∈ N “queries”, it can “flip a coin with bias
sin2((2q + 1)θ∗)”. By repeating this t times, it can obtain t independent flips of this coin.
It is statistically sufficient to retain only the average of the coin flip outcomes, which is a
random variable distributed as 1

t Bin(t, sin2((2q + 1)θ∗)), where “Bin” denotes a binomial
distribution. These observations lead to the following:

▶ Notation 3. For real r ≥ 1 we write ⌊⌊r⌋⌋ for the largest odd integer not exceeding r, and
we write p(r) = sin2(⌊⌊r⌋⌋θ∗).

▶ Definition 4. A Grover schedule consists of two sequences: R = (r1, . . . , rm) (each real
ri ≥ 1) and T = (t1, . . . , tm) (each ti ∈ N+). Performing this Grover schedule refers to
obtaining independent random variables p̂1, . . . , p̂m, where p̂i is distributed as 1

ti
Bin(ti, p(ri)).

A nonadaptive Grover iteration algorithm for Approximate Counting is simply an algo-
rithm that performs one fixed Grover schedule, and produces its final estimate K̂ by classically
post-processing the results. One can more generally study algorithms with “s rounds of
nonadaptivity”; this simply means that s Grover schedules are used, but they may be chosen
adaptively.

▶ Fact 5. Performing the Grover schedule R, T uses at most 1
2

∑
i riti queries.

2.1 On how well we need to approximate θ∗

We will use the following elementary numerical fact:

▶ Lemma 6. Suppose for real 0 ≤ k, k′ ≤ N and η ≤ 1 that arcsin
√

k′/N
1+η
≈ arcsin

√
k/N .

Then k′ 1+3η
≈ k.

3 Our work would be fine with, say, K ≤ N/8, but we put 2−20 so as to be able to cite [1] as a black box.

R. Venkateswaran and R. O’Donnell 59:5

This lemma helps us show that approximating θ∗ well is equivalent to approximating K well:

▶ Proposition 7. Suppose θ
1+ϵ/6

≈ θ∗. If κ′ ∈ R satisfies θ = arcsin
√

κ′/N , and K ′ is the
nearest integer to κ′, then K ′ 1+ϵ

≈ K.

Proof. Since θ
1+ϵ/6

≈ θ∗, Lemma 6 tells us that κ′ 1+ϵ/2
≈ K, and hence

|κ′ − K| ≤ (ϵ/2)K. (1)

We also have |κ′ − K ′| ≤ 1/2, and hence |K ′ − K| ≤ (ϵ/2)K + 1/2. But we can assume
(ϵ/2)K ≥ 1/2, as otherwise Inequality (1) implies |κ′ − K| < 1/2 and hence K ′ = K. Thus
|K ′ − K| ≤ (ϵ/2)K + (ϵ/2)K = ϵK; i.e., K ′ 1+ϵ

≈ K. ◀

▶ Lemma 8. Given some θ′ 1.11
≈ θ∗, estimating θ∗ to a factor of 1+1/(2N sin2 θ′) is sufficient

to estimate θ∗ to a factor of 1 + ϵ/6.

Proof. From Lemma 6, 1 + 1/(2N sin2 θ′) ≤ 1 + 1.33/(2K) < 1 + 1/K. The closest possible
values to K are K − 1 and K + 1; therefore, estimating K within a factor of 1 + 1/K is the
same as estimating K exactly. This is at least as good as estimating K to within a factor of
1 + ϵ/6. ◀

3 The nonadaptive algorithm

Our algorithm can conceptually be thought of as having two stages: the first stage estimates θ∗

to a constant factor, and the second stage improves this estimate to the desired factor of
1 + ϵ. This two-stage approach is similar in flavor to the algorithms in [1, 2]. However we
note that, consistent with our nonadaptivity condition, the two stages in our algorithm can
be run in parallel.

For the first stage of our algorithm, we require the following result of Aaronson and
Rall [1], which estimates θ∗ up to a factor of 1.1, using O(

√
N) nonadaptive queries. (In

fact, as Aaronson and Rall show, the obvious adaptive version of the algorithm incurs only
O(

√
N/K) queries.)

▶ Theorem 9. Let R = (1, (12/11), (12/11)2, . . . , (12/11)m), where m = Θ(log N) is minimal
with (12/11)m ≥

√
N . Let T consist of m copies of ⌈105 ln(120/δ)⌉. Perform the Grover

schedule R, T . (By Fact 5 this incurs O(
√

N) queries.) Then except with a failure probability
of at most δ/2, we can obtain θ̃

1.1
≈ θ∗ by doing the following: take the minimal value of t

such that p̂t ≥ 1/3, and set θ̃ = (5/8)(11/12)t.

The second stage of our algorithm uses the following critical lemma, which we will prove
in Section 4.

▶ Lemma 10. Given the parameters θ′, ϵ′, and δ′, there is an algorithm using only nonadap-
tive Grover iterations that performs O(log(1/δ′)/(θ′ϵ′)) queries, and outputs a result θest with

the following guarantee: if θ′ 1.11
≈ θ∗, then θest

1+ϵ′/6
≈ θ∗ except with probability at most δ/2.

In this section, we will show how to use Theorem 9 and Lemma 10 to prove Theorem 2.
We will now state our algorithm:

STACS 2021

59:6 Quantum Approximate Counting with Nonadaptive Grover Iterations

Algorithm 1 Outline of the full algorithm.

1. Run the Aaronson–Rall algorithm from Theorem 9, allowing us to later compute θ̃.
2. For θ = arcsin(

√
1/N), 1.001 arcsin

√
1/N, (1.001)2 arcsin

√
1/N, . . . , 1.1 arcsin(2−20):

Perform the algorithm in Lemma 10 with the parameters θ′ = θ, ϵ′ = max(ϵ, 1
2N sin2 θ′),

and δ′ = δ/2.
3. Classical Post-processing: Among all iterations in the for-loop, take the iteration with

the value of θ that was closest to θ̃, and output the result of that iteration.

Each iteration of the for loop in Step 2 can be done in parallel (there are no computational
dependencies between the iterations), and Step 1 can also be done in parallel with Step 2.
Therefore, the algorithm uses only nonadaptive Grover iterations. Note also that we can
write the quantum parts of steps 1 and 2 as one fixed Grover schedule, with the classical
parts and step 3 forming the post-processing step; however, it will be more convenient in
this section to think about these as individual steps in a logical sequence.

▶ Proposition 11. Algorithm 1 returns a value θest such that θest
1+ϵ
≈ θ∗, except with

probability at most δ.

Proof. By Theorem 9, Step 1 returns an estimate θ̃ such that θ̃
1.1
≈ θ∗, with a failure

probability of at most δ/2 . The value of θ (in Step 2) that is closest to θ̃ is at most a
factor of 1.001 away from θ̃ (note that θ̃ is at most 1.1 arcsin(2−20) by our assumption that
θ∗ ≤ 2−20). If Step 1 succeeded, this is at most a factor of 1.1 × 1.001 < 1.11 away from θ∗.

By Lemma 10, the algorithm outputs an estimate θest such that θest
1+ϵ′/6

≈ θ∗, with a failure
probability of at most δ/2. Lemma 8 then implies that θest

1+ϵ/6
≈ θ∗. Using Proposition 7

(setting the parameter θ = θest), we get an estimate Kest such that Kest
1+ϵ
≈ K. By the union

bound, the overall failure probability of the algorithm is at most δ. ◀

▶ Proposition 12. Algorithm 1 makes O(
√

N/ϵ log(1/δ)) queries.

Proof. First, consider all iterations where 2N sin2(θ) ≤ 1/ϵ. In these cases, the query
complexity given by Lemma 10 would be O(log(1/δ)(N sin2(θ))/θ) = O(Nθ log(1/δ)).

The query complexity associated with these iterations is a geometric series with a constant
common ratio of 1.01 where the largest term is O(

√
N/ϵ log(1/δ)). Therefore the overall

query complexity due to these iterations is O(
√

N/ϵ log(1/δ)).
Now consider all iterations where 2N sin2(θ) > 1/ϵ. In these cases, the query complexity

is O(log(1/δ)/(θϵ)). This forms a geometrically decreasing series (with a constant common
ratio), where the first term is again O(

√
N/ϵ log(1/δ)). The overall query complexity

contributed by these schedules is thus also O(
√

N/ϵ log(1/δ)).
Therefore, the query complexity of Algorithm 1 is O(

√
N/ϵ log(1/δ)), as claimed. ◀

Having proven Proposition 11 and Proposition 12, we have established our main result
Theorem 2 modulo the proof of Lemma 10, which will appear in the next section. Before
giving this, we briefly sketch how our algorithm can also be extended to the setting of being
allowed multiple rounds of nonadaptive Grover iterations. If we have two such rounds of
nonadaptivity, we can first run step 1 of our algorithm to get a constant-factor approximation,
and then based on its result run the algorithm in Lemma 10; this achieves a query complexity
of O(

√
N + min(

√
N/ϵ,

√
N/K/ϵ)). This nearly matches the query complexity of the fully

adaptive case, but for the
√

N term due to the first step. Given more rounds of nonadaptivity,

R. Venkateswaran and R. O’Donnell 59:7

we can reduce the cost of this first step by staging it over multiple initial rounds. One
can show that with O(log N) rounds of nonadaptivity, this will yield the optimal query
complexity corresponding to the fully adaptive case.

4 Proving Lemma 10

Our goal in this section will be to prove Lemma 10. Assume that we are given some θ′, ϵ′, and
δ′. We will show a nonadaptive Grover iteration algorithm making O(log(1/δ′)/(θ′ϵ′)) queries
with the property that if θ′ 1.11

≈ θ∗, then its output will be a factor-(1 + ϵ′) approximation
of θ∗ (except with failure probability at most δ′). For the remainder of the section, we will
assume that we are in the interesting case where θ′ 1.11

≈ θ∗ (in the other cases, the algorithm
does not need to output a correct answer).

4.1 Proof idea

The algorithm for Lemma 10 is structured exactly as described in Definition 4 and Fact 5;
there is an initial nonadaptive quantum part with a fixed Grover schedule (that we will later
define), and a classical post-processing step at the end that uses the results of the quantum
part to estimate θ∗.

Before stating the key ideas in the quantum part of our algorithm, we mention the
“Rotation Lemma” of Aaronson and Rall [1, Lem. 2]. The main idea in that lemma can be
roughly stated as follows: given that θ∗ lies in some range [θmin, θmin + ∆θ], we can pick
an odd integer value of r (where r = O(1/(θ · ∆θ))), such that rθmin is close to 2πk and
r(θmin + ∆θ) is close to 2πk + π/2. If θ is close to θmin, p(r) will be nearly 0 (and if it is
close to θmin + ∆θ, it will be nearly 1). Aaronson and Rall use this lemma to continually
shrink the possible range that θ∗ could lie in by a geometric factor at each iteration, until
the range is 1 ± ϵ.

We will adopt a similar idea to find an efficient Grover schedule that can distinguish
any two candidate angles with high probability; we do this by relaxing the condition of one
angle being close to 2πk and the other being at distance π/2 from it. Instead, we choose the
sequence R in our Grover schedule such that for any pair of values θ1, and θ2, there is some
r ∈ R such that rθ1 and rθ2 differ by approximately π/8, and are also “in the same quadrant”
(meaning the same interval [0, π

2), [π
2 , π), [π, 3π

2), [3π
2 , 2π) modulo 2π). This relaxation allows

us to save on the total number of queries made by reusing the same value of r to distinguish
many pairs of candidate angles. Due to this, the nonadaptivity requirement does not make
the query complexity grow polynomially larger (whereas, for example, naively simulating the
search tree from [1] in a nonadaptive fashion would incur an extra 1/ϵ′ factor).

The classical post-processing involves running a “tournament” between all candidate
estimates of θ∗, which outputs the winning value as the estimate. This post-processing step
can be implemented efficiently in O(log(1/ϵ′)/ϵ′) classical time.

4.2 Some arithmetic lemmas

We now define some useful sequences and prove a couple of arithmetic lemmas about them.

▶ Definition 13. Define the sequence u by u0 = 1, u1 = 1.01, . . . , uL = 1.01L where
L = O(log(1/(θ′ϵ′))) is minimal with uL ≥ 1.2π/(θ′ϵ′).

STACS 2021

59:8 Quantum Approximate Counting with Nonadaptive Grover Iterations

▶ Lemma 14. Suppose we are given θ0 and θ1 such that θ0 < θ1, θ0
1.11
≈ θ′, θ1

1.11
≈ θ′, and

θ0
1+ϵ/6.1

̸≈ θ1. Write η = θ1 − θ0. Then there exists some 0 ≤ i ≤ L such that uiη
1.01
≈ π

8 .

Proof. We know that u0η = η ≤ θ1 ≤ 1.1 × 0.0001 < π
8 . We also have uLη ≥ 1.2πη/(θ′ϵ′) ≥

1.2πη/(1.1θ0ϵ′) ≥ 1.2π/(1.1 · 6.1) > π
8 where we used θ0

1+ϵ/6.1
̸≈ θ1 in the second-to-last

inequality. The lemma now follows from the geometric growth of the ui’s with ratio 1.01. In
particular, i =

⌊
log1.01(π

8η)
⌋

works. ◀

For the ui given by Lemma 14, we have uiθ1 − uiθ0 ≈ π
8 . This seems promising, in that

the “coin probabilities” associated to these angles, namely sin2(uiθ1) and sin2(uiθ0), seem as
though they should be far apart. Unfortunately, something annoying could occur; it could be
that these angles are, say, 100π ± π

16 , in which case the coin probabilities would be identical.
As mentioned in Section 4.1, what we would really like is to have the two angles be far apart
but also in the same quadrant. To achieve this, we will define a new sequence.

▶ Definition 15. For each 0 ≤ i ≤ L, define ai,0 = 0, ai,1 = π
4.8θ′ , ai,2 = 1.01 · π

4.8θ′ ,
ai,3 = 1.012 · π

4.8θ′ , . . . , ai,C+1 = 1.01C · π
4.8θ′ , where C = ⌈2 log1.01(1.2)⌉ is a constant. Also

define si,j = ui + ai,j.

▶ Lemma 16. In the setting of Lemma 14, there exists some 0 ≤ j ≤ C + 1 such that

si,jη
1.5
≈ π

8

and such that si,jθ0 and si,jθ1 are in the same quadrant.

Proof. We first apply Lemma 14 and obtain

uiη
1.01
≈ π

8 . (2)

Now if uiθ0 and uiθ1 are already in the same quadrant then we can take j = 0 (implying
si,j = ui) and we are done. Otherwise, the plan will be to find j > 0 with ajθ0 ≈ π

4 , thus
shifting them to si,jθ0 and si,jθ1 that still differ by roughly π

8 but which now must be in the
same quadrant.

To find the required j, observe that on one hand, a1θ0 = (π/(4.8θ′)) · θ0 ≤ 1.11π/4.8 ≤ π
4 .

On the other hand, ai,C+1θ0 ≥ 1.22 · (π/(4.8θ′)) · θ0 ≥ (1.2/1.1) · π/4 ≥ π
4 . By the geometric

growth of the ai,j ’s with ratio 1.01, we conclude that there exists some 1 ≤ j ≤ ℓi achieving

ai,jθ0
1.05
≈ π

4 . (3)

We may now make several deductions. First,

θ0
1.1
≈ θt, θ1

1.1
≈ θt =⇒ ai,jθ0

1.22
≈ ai,jθ1 =⇒ ai,jη ≤ .22 · ai,jθ0 ≤ .22 · 1.05 π

4 ≤ .24 π
4 .

Combining this with Inequality (2) we conclude

si,jη = uiη + ai,jη ∈ [1
1.01

π
8 , π

8 (1.01) + .24 π
4] 1.5

≈ π
8 . (4)

Thus we started with uiθ0 and uiθ1 differing by π
8 (up to factor 1.01) but in different

quadrants; by passing to si,jθ0 and si,jθ1, we have offset uiθ0 by π
4 (up to factor 1.05,

Inequality (3)) and the two angles still differ by around π
8 (up to factor 1.5, Inequality (4)).

Thus si,jθ0 and si,jθ1 are in the same quadrant and the proof is complete. ◀

R. Venkateswaran and R. O’Donnell 59:9

4.3 The algorithm
We can now describe our “second stage” algorithm, which simply runs the Grover schedule
G defined as follows.

▶ Definition 17. The Grover schedule G comprises the sequence R = (si,j)i=0...L, j=0...C+1
and T = (⌈A log2(1/(δ′θ′ϵ′ui))⌉)i=0...L, j=0...C+1. Here A is a universal constant to be chosen
later.

Note that the Ti,j values we use are exactly the number of coin flips used in the second
stage of the algorithm in [1]. Like in their algorithm, this choice of values allows us to avoid
stray log(1/ϵ) or log log(1/ϵ) factors in the overall query complexity.

▶ Proposition 18. Performing the Grover schedule G takes at most O(log(1/δ′)/(θ′ϵ′))
queries.

Proof. Using Fact 5, the query complexity of performing G is
∑L

i=0 log(1/(δ′θ′ϵ′ · 1.01i))1.01i

(up to constant factors). This is log(1/δ)
∑L

i=0 1.01i +
∑L

i=0 log(1/(θ′ϵ′ · 1.01i))1.01i. Noting
that 1.01L = O(1/(θ′ϵ′)), the first term is clearly O(log(1/δ)/(θ′ϵ′)) and the second term, up
to a constant factors, is

∑L
i=0(L − i)1.01i = O(1.01L) = O(1/(θ′ϵ′)). Therefore, the overall

query complexity is O(log(1/δ)/(θ′ϵ′)) as desired. ◀

▶ Remark. The above calculation mirrors the one done for stage 2 of the adaptive algorithm
in [1]; this is expected because both algorithms use the same number of “coin flips” per coin
(T ′

i,j values), as mentioned above.

It now remains for us to show how to approximate θ∗ (with high probability) using the
data collected from this Grover schedule.

4.4 Completing the algorithm
We first prove a lemma showing that we can distinguish between any pair of angles (that are
not already sufficiently close to each other) by using the ideas developed in Lemma 14 and
Lemma 19.

▶ Lemma 19. There is an O(1)-time classical deterministic algorithm that, given

θ0
1.1
≈ θ′, θ1

1.1
≈ θ′, such that θ0

1+ϵ/6.1
̸≈ θ1

the data collected by the Grover schedule G,
outputs either “reject θ0” or “reject θ1”. Except with failure probability at most cθ′δ′ϵ′/|θ1 −θ0|
(where c > 0 is a constant to be chosen later), the following is true:

For b = 0, 1, if θ∗ 1+.001ϵ
≈ θb, then the algorithm does not output “reject θb”.

Proof. The algorithm computes the (i, j) pair promised by Lemma 16, such that si,jθ0 and
si,jθ1 are in the same quadrant and such that |si,jθ1 − si,jθ0|

1.5
≈ π

8 . Letting qb = sin2(si,jθb)
for b = 0, 1, it follows from the assumptions in the preceding sentence that |q0 − q1| ≥ .04.
The algorithm may now select a threshold q′ ∈ [.01, .99] such that (without loss of generality)
q0 ≤ q′ − .01 and q1 ≥ q′ + .01.

The algorithm will use just the coin flips from the si,j part of the schedule; these coin
flips have bias p(si,j) = sin2(⌊⌊si,j⌋⌋θ∗). More precisely, the algorithm will output “reject
θ0” if p̂i,j > q′ and “reject θ1” if p̂i,j ≤ q′. We need to show that if θ∗ 1+.001ϵ

≈ θ0 then the
algorithm outputs “reject θ0” with probability at most cθ′δ′ϵ′/|θ1 − θ0|. (The case when
θ∗ 1+.001ϵ

≈ θ1 is analogous.)

STACS 2021

59:10 Quantum Approximate Counting with Nonadaptive Grover Iterations

Now if θ∗ 1+.001ϵ
≈ θ0, then ⌊⌊si,j⌋⌋θ∗ 1+.001ϵ

≈ ⌊⌊si,j⌋⌋θ0. It follows that∣∣∣⌊⌊si,j⌋⌋θ∗ − ⌊⌊si,j⌋⌋θ0

∣∣∣ ≤ .001ϵ · ⌊⌊si,j⌋⌋θ0 ≤ .001si,j · ϵθ0.

But we know that
π
8

1.5
≈ |si,jθ1 − si,jθ0| = si,j |θ1 − θ0| ≥ si,j · (ϵ/6.1)θ0,

the last inequality because θ0
1+ϵ/6.1

̸≈ θ1. Combining the above two deductions yields∣∣∣⌊⌊si,j⌋⌋θ∗ − ⌊⌊si,j⌋⌋θ0

∣∣∣ ≤ .001 · 1.5 · 6.1 · π
8 ≤ .004.

Moreover, ⌊⌊si,j⌋⌋θ0 and si,jθ0 differ by at most 2θ0 ≤ .0002 < .001. Thus we finally conclude∣∣∣⌊⌊si,j⌋⌋θ∗ − si,jθ0

∣∣∣ ≤ .005 =⇒
∣∣∣p(si,j) − q0

∣∣∣ ≤ .005 =⇒ p(si,j) < q′ − .005

(the first implication using that sin2 is 1-Lipschitz). Then, using a Chernoff bound, we have
that p̂i,j > q′ with probability at most cδ′θ′ϵ′ui, where c is a constant that depends on A

(as A increases, c decreases). From Lemma 14, we know that ui
1.01
≈ π/(8|θ1 − θ0|). Then,

assuming the constant A is chosen large enough as a function of c, we indeed have that
p̂i,j > q′ with probability at most cθ′δ′ϵ′/|θ1 − θ0|. ◀

4.4.1 Description of the post-processing algorithm
We have developed the necessary tools to describe and justify the classical post-processing
algorithm.

Fix values θi = θ′(1 + .001ϵ′)i for −V ≤ i ≤ V , where V = O(1/ϵ′) is a minimal integer
such that (1 + .001ϵ′)V ≥ 1.11. We will refer to the θi’s as “nodes”. We may also assume
that the number of nodes is a power of 2 for convenience (while there are 2|V | + 1 nodes, we
can always pad these actual nodes with some dummy nodes to reach the nearest power of 2).

The main idea is to repeatedly use Lemma 19 to run a “tournament” amongst all nodes.
The tournament is structured as a series of “rounds”. In a given round, suppose we start off
with n nodes. Sort the nodes in order of the angles they correspond to. Now, pair up node 1
with node n/2 + 1, node 2 with node n/2 + 2, and so on, until node n/2 is paired up with
node n. For each pair of nodes, use Lemma 19 to choose a winner to go to the next round.
Note that it is possible that two nodes that are matched in the tournament do not satisfy the
pre-condition of Lemma 19 because they are within a factor of (1 + ϵ/6.1) of each other – we
call these “void” match-ups. We will call the part of the tournament we have described so far
the first phase – when we see a void match-up, we stop this first phase and enter the second
phase. (Note that if we never see any void match-ups and there is only one node left, we do
not need the second phase and can directly output the remaining node as our estimate.)

When the first phase ends, take all remaining nodes and enter the second phase. In this
phase, match up every pair of remaining nodes, and for every pair that does not form a void
match-up, eliminate one of the nodes using Lemma 19. At the end of this, output any one
of the remaining un-eliminated nodes (if there are none, then the program can output an
arbitrary node - this is a failure condition and we will show that, with high probability, such
failure conditions will not happen).

In our algorithm, we have arranged for θ−V ≤ θ∗ ≤ θV , and hence there exists a node
θi∗ such that θi∗

1+.001ϵ
≈ θ∗. We will proceed to bound the overall failure probability of the

algorithm by the probability that this node loses any match-up it is a part of.

R. Venkateswaran and R. O’Donnell 59:11

▶ Lemma 20. If θi∗ never loses any match-up it is a part of, then the tournament outputs
an estimate θest such that θest

1+ϵ/6
≈ θ∗.

Proof. Suppose that θi∗ never loses any match-up it is a part of. If the tournament ends in
the first phase itself, then the algorithm will output θi∗ , which is correct. If the tournament
ends in the second phase, then the only possible other nodes that we could output are the
ones that θi∗ did not play, which can be at most a factor of 1 + ϵ/6.1 away from it. Therefore,
these nodes are also at most a factor of (1 + 0.001ϵ)(1 + ϵ/6.1) ≤ 1 + ϵ/6 away from θ∗. ◀

▶ Lemma 21. The probability that θi∗ loses any match-up in the first phase of the tournament
can be upper-bounded by cδ′ times a constant factor (where c is the constant from Lemma 19).

Proof. Consider an arbitrary round in the first phase of the tournament, where we have
2j nodes remaining for some j. By how we chose the match-ups, we know that every two
angles that are matched up in that round must be at least a factor of (1 + 0.001ϵ′)2i−1

apart. This implies that their absolute difference is at least (θ′/1.1) · ((1 + 0.001ϵ′)2i−1 − 1).
Then, by Lemma 19, the failure probability of any match-up in that round is at most
1.1cδ′ϵ′/((1 + 0.001ϵ′)2i−1 − 1).

Suppose the tournament begins with n nodes. We can use the union bound to upper-bound
the probability that θi∗ loses in any of the at most log2 n rounds by

log2 n∑
j=1

1.1cδ′ϵ′

(1 + 0.001ϵ′)2i−1 − 1
≤

log2 n∑
j=1

1.1cδ′ϵ′

0.001ϵ2i−1 ≤ 2200cδ′ ◀

▶ Lemma 22. The probability that θi∗ loses any match-up in the second phase of the
tournament can be upper-bounded by cδ′ times a constant factor (where c is the constant
from Lemma 19).

Proof. If the algorithm enters the second phase, this means that there is at least one void
match-up. Let the number of nodes at this point be n. Then all n/2 nodes between the pair
of nodes involved in the void match-up must be within a factor of (1 + ϵ′/6.1) of the first
node in the void pair. Therefore, there are at most 2 log1+0.001ϵ′(1 + ϵ′/6.1) ≤ 12200 nodes
in total.

Every node that θi∗ plays in a match-up is at least a factor of 1 + ϵ′/6 away from it, which
means that the absolute difference in value between the nodes is at least (θ′/1.1) · (ϵ′/6).
By Lemma 19, this implies that the failure probability is at most 6.6cδ′. Since there are at
most 12200 such match-ups, the overall failure probability is at most 81000cδ′ by the union
bound. ◀

We can now prove Lemma 10, which we restate below.

▶ Lemma 10. Given the parameters θ′, ϵ′, and δ′, there is a nonadaptive algorithm that
performs O(log(1/δ′)/(θ′ϵ′)) queries, and outputs a result θest with the following guarantee:

if θ′ 1.11
≈ θ∗, then θest

1+ϵ′/6
≈ θ∗ except with probability at most δ/2.

Proof. The algorithm achieving this lemma involves running the Grover schedule G and
then post-processing using the tournament algorithm which we described. By Lemma 20,
the failure probability of the algorithm is bounded by the probability that θi∗ loses. This is
bounded by the probability that it loses in the first phase or the second phase; by Lemma 21
and Lemma 22, this is at most a constant times cδ′. By choosing c to be sufficiently small,
we can successfully make this at most δ/2. ◀

STACS 2021

59:12 Quantum Approximate Counting with Nonadaptive Grover Iterations

References
1 Scott Aaronson and Patrick Rall. Quantum approximate counting, simplified. In Symposium

on Simplicity in Algorithms, pages 24–32. SIAM, 2020.
2 Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quantum

searching. Fortschritte der Physik: Progress of Physics, 46(4-5):493–505, 1998.
3 Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplifica-

tion and estimation. Contemporary Mathematics, 305:53–74, 2002.
4 Paul Burchard. Lower bounds for parallel quantum counting, 2019. arXiv:1910.04555.
5 Dmitry Grinko, Julien Gacon, Christa Zoufal, and Stefan Woerner. Iterative quantum

amplitude estimation, 2020. arXiv:1912.05559.
6 Lov Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the

28th Annual ACM Symposium on Theory of Computing, pages 212–219, 1996.
7 Kouhei Nakaji. Faster amplitude estimation, 2020. arXiv:2003.02417.
8 Ashwin Nayak and Felix Wu. The quantum query complexity of approximating the median

and related statistics. In Proceedings of the 31st Annual ACM Symposium on Theory of
Computing, pages 384–393, 1999.

9 Yohichi Suzuki, Shumpei Uno, Rudy Raymond, Tomoki Tanaka, Tamiya Onodera, and Naoki
Yamamoto. Amplitude estimation without phase estimation. Quantum Information Processing,
19(2):75, 2020.

10 Chu-Ryang Wei. Simpler quantum counting. Quantum Information and Computation,
19(11&12):0967–0983, 2019.

http://arxiv.org/abs/1910.04555
http://arxiv.org/abs/1912.05559
http://arxiv.org/abs/2003.02417

	p000-Frontmatter
	Preface
	Conference Organization

	p001-Burgisser
	1 Introduction
	2 Non-commutative optimization
	2.1 Geodesic convexity
	2.2 Moment map
	2.3 Moment polytopes
	2.4 Null cone

	3 Computational problems and state of the art
	3.1 Commutative groups and geometric programming
	3.2 Non-commutative actions

	4 Algorithmic and structural results
	4.1 Essential parameters and structural results
	4.2 First order methods: structural results and algorithms
	4.3 Second order methods: structural results and algorithms

	5 Conclusion

	p002-OssonadeMendez
	1 Introduction
	2 Sparse classes
	3 Transductions
	4 Partially ordered graphs

	p003-Tendera
	p004-Aggarwal
	1 Introduction
	1.1 Our results
	1.2 Proof overview
	1.2.1 Time-space tradeoff for DGS above smoothing
	1.2.2 A new algorithm for BDD with preprocessing leads to a faster quantum algorithm for SVP
	1.2.3 Covering surface of a ball by spherical caps

	2 Preliminaries
	2.1 Lattice problems
	2.2 Probability

	3 Algorithms with a time-memory tradeoff for lattice problems
	3.1 Algorithm for Discrete Gaussian Sampling
	3.2 Algorithms for BDD and SVP

	4 New space efficient algorithms for SVP
	4.1 Quantum algorithm for SVP
	4.2 Solving SVP by spherical caps on the sphere

	p005-Agrawal
	1 Introduction
	2 Preliminaries
	3 The algorithm for k-Elimination Distance to H_F
	3.1 k-Elimination Distance to H_F on ({alpha_k},k)-Unbreakable Graphs

	4 Discussions and future work

	p006-Apers
	1 Introduction
	2 Contributions
	2.1 Finding in the electric network framework
	2.2 A Unified Framework
	2.3 Bounds based on Monte Carlo type guarantees of the classical walk
	2.4 Simpler algorithm for hitting time and electric network framework
	2.5 Related independent work

	3 Summary of technical contributions
	3.1 Finding in the electric network framework
	3.2 A unified framework
	3.3 A plain quantum walk algorithm for finding marked elements
	3.4 Open questions

	p007-Arutyunova
	1 Introduction
	2 Preliminaries
	3 Reducing Lower-Bounded k-Clustering to Facility Location
	4 Generalized k-Median with Weak Lower Bounds
	4.1 Reducing the Number of Assignments per Client
	4.2 A Bicriteria Algorithm to Generalized k-Median with Lower Bounds

	p008-Barloy
	1 Introduction
	2 Bidimensional linear recursive sequences with polynomial coefficients
	3 Unambiguous register automata
	4 Universality of unambiguous register automata without guessing
	5 Decidability of the zeroness problem
	6 Complexity of the zeroness problem
	7 Further remarks and conclusions

	p009-Barman
	1 Introduction
	1.1 Applications and related work
	1.2 Remarks on the Poisson concavity ratio alpha_{phi}
	1.3 Proof techniques and organization

	2 Approximation Algorithm for phi-MaxCoverage
	2.1 Rounding
	2.2 Generalization to Matroid Constraints

	3 Hardness of Approximation for phi-MaxCoverage
	3.1 Partitioning System
	3.2 The Reduction
	3.3 Completeness
	3.4 Soundness

	4 Applications
	4.1 Multiwinner Elections
	4.2 Resource Allocation in Multiagent Systems
	4.3 Vehicle-Target Assignment
	4.4 Welfare Maximization for phi-Coverage

	p010-Barto
	1 Introduction
	1.1 Three-element domain
	1.2 Larger domains

	2 Basic definitions
	3 Templates
	4 Tractability and hardness
	4.1 Symmetrization
	4.2 Tractability
	4.3 Hardness
	4.4 0-sets, 1-sets, …

	5 D_1^+
	6 D_2^{+}
	7 T_1
	8 Conclusion
	A C}
	B check{C}^+

	p011-Bergstrasser
	1 Introduction
	2 Preliminaries
	3 Main results
	4 From wreath products to intersection knapsack
	5 From intersection knapsack to wreath products
	6 Applications
	7 Conclusion

	p012-Berlinkov
	1 Introduction
	1.1 Observing a reactive system
	1.2 Synchronizing automata
	1.3 Synchronizing codes
	1.4 Automata for X*
	1.5 Carefully synchronizing DFAs
	1.6 Our contribution and organization of the paper

	2 Preliminaries
	3 Upper Bounds
	3.1 Inseparability Equivalence
	3.2 Fixing Automaton
	3.3 Rank Conjecture
	3.4 Collecting Automaton
	3.5 Algorithmic Issues
	3.6 Černý Conjecture
	3.7 Induced Automaton
	3.8 The Literal Automaton of a Finite Prefix Code

	4 Lower Bounds for Properly Incomplete Automata

	p013-Bhore
	1 Introduction
	2 Preliminaries
	3 Lower Bounds
	4 Upper Bound
	4.1 Rectangles
	4.2 Rectangulations

	5 Conclusions

	p014-Bienkowski
	1 Introduction
	1.1 Related Work
	1.2 Previous Work on Online Non-Metric Facility Location
	1.3 Our Result
	1.4 Preliminaries and Paper Organization

	2 Fractional Solution
	2.1 Overview
	2.2 Algorithm FRAC
	2.3 Structural Properties
	2.4 Dual Solution is Almost Feasible
	2.5 Competitive Ratio of FRAC

	3 Deterministic Rounding
	3.1 Purchasing Facilities: Properties of INTFAC
	3.2 Connecting Clients
	3.3 Purchasing Facilities: Algorithm INTFAC

	4 Handling Large Aspect Ratios
	5 Application to Online Node-Weighted Steiner Tree
	6 Final Remarks

	p015-Bjorklund
	1 Introduction
	1.1 Related work
	1.2 Methodology

	2 The Algorithm
	2.1 The Hamiltonicity Polynomial
	2.2 The Choice of Ring
	2.3 The Sample Space
	2.4 The Laplacian
	2.5 Random perturbations at T
	2.6 Efficient Evaluation of P_G(z) given T
	2.7 Listing Contributing Terms
	2.8 High-Level Algorithm

	p016-Bockenhauer
	1 Introduction
	1.1 Our Contributions
	1.2 Preliminaries

	2 Small Reservation Costs
	2.1 Upper Bound for 0 < alpha < = 1/6
	2.2 Lower Bound for 0 < alpha < = sqrt{2}-1

	3 Medium Reservation Costs
	3.1 Upper Bound for 1/6 < alpha < phi -1
	3.2 Lower Bound for sqrt{2}-1 < = alpha < = phi-1

	4 High Reservation Costs
	4.1 Upper Bound for phi-1 < alpha < 1
	4.2 Lower Bound for phi-1 < alpha < 1

	5 Nonrejecting Algorithms
	6 Further Work

	p017-Bonnet
	1 Introduction
	2 Reduction from 4-Orthogonal Vectors to 4 vs 7 Diameter
	2.1 Constant part
	2.2 Variable part
	2.3 No orthogonal quadruple implies diameter at most 4
	2.4 An orthogonal quadruple implies two vertices at distance at least 7

	p018-Brodowsky
	1 Introduction
	2 Euclidean TSP and 2-Optimal Tours
	2.1 Crossing-Free Pairs of Tours
	2.2 Partitioning the Edge Set of a 2-Optimal Tour

	3 Arborescences and Pairs of Tours
	4 The Arborescence Lemmas
	5 Proof of Theorem 5

	p019-Buhrman
	1 Introduction
	2 Defining the Quantum Strong Exponential-Time Hypothesis
	2.1 The basic QSETH
	2.2 Extending QSETH to general properties
	2.3 Observations on the set of compression oblivious properties

	3 QSETH lower bounds for Orthogonal Vectors and Proofs of Useful Work
	3.1 Quantum time lower bounds based on DEPTH2-QSETH
	3.2 Quantum Proofs of Useful Work

	4 Lower bounds for string problems using NC-QSETH
	5 Conclusion and Future Directions
	A Observations on Compression Oblivious properties
	B Example lower bounds following from the basic QSETH assumption

	p020-Butti
	1 Introduction
	2 Preliminaries
	3 Basic Linear Programming relaxation
	4 The Complexity of DCSP
	4.1 Intractable Languages
	4.2 Tractable Languages
	4.3 The Search Algorithm

	5 Conclusion

	p021-Censor-Hillel
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Notations and Problem Definitions
	2.2 Skeleton Graphs

	3 Oracles in the Hybrid model
	3.1 Model Simulation Preliminaries
	3.2 Simulating the Oracle Model
	3.3 Simulating the Tiered Oracles Model

	4 Shortest Paths Algorithms
	4.1 Warm-Up: Exact SSSP
	4.2 Exact MRSSP
	4.3 Exact MSSP

	p022-Chan
	1 Introduction
	1.1 Multi-pass streaming model
	1.2 Skyline points
	1.3 Extreme points

	2 Randomized algorithms for skyline points in R^d
	2.1 Main algorithm
	2.2 Further refinement

	3 Extreme points in R^d
	4 Why randomized algorithms?
	A A deterministic algorithm for skyline points in R^d

	p023-Cheraghchi
	1 Introduction
	1.1 Our results
	1.1.1 Lower bounds against one-tape Turing machines
	1.1.2 Lower bounds against branching programs

	1.2 Our techniques
	1.2.1 Local HSGs for MCSP lower bounds
	1.2.2 Nechiporuk's method for MKTP lower bounds

	1.3 Related work
	1.4 Organization

	2 Preliminaries
	2.1 Circuit complexity
	2.2 Turing machines
	2.3 Streaming algorithms
	2.4 Branching programs
	2.5 Pseudorandom generators and hitting set generators
	2.6 MCSP lower bounds from local HSGs

	3 MCSP lower bounds against one-tape oracle RTMs
	3.1 Connections to hardness magnification
	3.1.1 Comparison with the locality barrier

	3.2 Proof of

	4 MKTP lower bounds against branching programs

	p024-Coja-Oghlan
	1 Introduction
	1.1 Background and motivation
	1.2 Low-density generator matrix codes
	1.3 The stochastic block model
	1.4 The mixed k-spin model

	2 The mutual information of random factor graphs
	2.1 Random factor graph models
	2.2 The teacher-student scheme
	2.3 The mutual information

	3 Proof strategy
	3.1 The partition function
	3.2 The Nishimori identity
	3.3 Degree pruning
	3.4 Cavities and couplings
	3.5 Aizenman-Sims-Starr and interpolation
	3.6 Discussion

	p025-Day
	1 Introduction
	2 Preliminaries
	3 Toolbox
	4 Edit Distance
	4.1 Insertions
	4.2 Deletions
	4.3 Substitutions

	5 Extensions

	p026-Dvorak
	1 Introduction
	1.1 Previous Work

	2 Preliminaries
	2.1 Card-based Protocols
	2.2 Branching Programs

	3 Simulating Branching Programs
	4 Simulating Turing Machines
	4.1 Read-write Protocols

	5 More Efficient Input Encodings
	5.1 1-Card Encoding
	5.2 1/2-Card Encoding

	p027-Erlebach
	1 Introduction
	2 Preliminaries and Definitions
	3 Sorting
	4 The Minimum Problem
	4.1 The Minimum Problem with Arbitrary Sets
	4.2 The Minimum Problem with Disjoint Sets
	4.3 Lower Bounds

	5 Selection
	6 Relationship with the Parallel Model by Meißner
	7 Final Remarks

	p028-Exibard
	1 Introduction
	2 Satisfiability of Constraint Sequences
	3 Church Synthesis Games
	4 Application to Transducer Synthesis
	5 Conclusion

	p029-Fearnley
	1 Introduction
	2 Preliminaries
	3 The Outer Algorithm
	4 The Inner Algorithm
	5 Extension to higher dimensions
	6 Conclusion

	p030-Ferens
	1 Introduction
	2 Definitions and preliminaries
	2.1 Notions
	2.2 Data structure
	2.3 Superset of solutions
	2.4 Maximal powers

	3 Restricting the superset of solutions
	3.1 Restricting the set of (i,j)
	3.1.1 u not ~v
	3.1.2 u in {v, {overline{#1}} v}
	3.1.3 u ~v

	3.2 Algorithm and running time

	p031-Fomin
	1 Introduction
	2 Preliminaries
	3 Hardness of Weighted Diverse Bases and Weighted Diverse Common Independent Sets
	4 An FPT algorithm and kernelization for Weighted Diverse Bases
	5 An FPT algorithm for Weighted Diverse Common Independent Sets
	6 Perfect Matchings
	7 Conclusion

	p032-Gamard
	1 Introduction
	2 Definitions and terminology
	3 Abstract properties of limit sets
	4 Size of limit sets
	5 First-order properties of transition digraphs are hard
	5.1 Encoding SAT instances into the dynamics of AN
	5.2 From transition digraphs to disjoint unions of labeled cycles
	5.3 Proof of Theorem 5.2

	6 First-order dynamical properties are arbitrarily high in PH
	7 Conclusion

	p033-Garg
	1 Introduction
	2 Models and concepts
	2.1 Examples of WGS demand systems

	3 Auction algorithm for exchange markets
	3.1 Analysis
	3.2 Implementing FindNewPrices

	4 Fisher markets and the Nash social welfare problem

	p034-Gawrychowski
	1 Introduction
	2 Preliminaries
	3 Constructing the Simon-Tree of a word
	3.1 Equivalence classes of a Word
	3.2 Simon-Tree definition
	3.3 Simon-Tree construction

	4 Connecting two Simon-Trees
	4.1 The S-Connection
	4.2 The P-Connection
	4.3 From P- to S-Connection

	5 Conclusions and future work

	p035-Gibney
	1 Introduction
	2 Preliminaries
	3 Hardness of Lyndon Factor Minimization
	3.1 NP-Completeness of Lyndon Factor Minimization
	3.2 ETH Hardness of Lyndon Factor Minimization
	3.3 Inapproximability of Lyndon Factor Minimization

	4 Hardness of Lyndon Factor Maximization
	4.1 NP-Completeness of Lyndon Factor Maximization
	4.2 Inapproximability of Lyndon Factor Maximization

	5 Open Problems

	p036-Goller
	1 Introduction
	2 Preliminaries
	3 An EXPSPACE lower bound via serializability
	4 From two-parametric timed automata with one parameter to parametric one-counter automata
	5 Semiruns, their bracket projection, and embeddings
	6 Upper bounds
	7 Conclusion

	p037-Golovach
	1 Introduction
	2 Parameterized Enumeration and Enumeration Kernels
	3 A Tight Upper Bound for the Maximum Number of Matching Cuts
	4 Enumeration Kernels for the Vertex Cover Number Parameterization
	5 Enumeration Kernels for the Parameterization by the Feedback Edge Number
	6 Conclusion

	p038-Grochow
	1 Introduction
	1.1 Average-case algorithms for polynomial isomorphism and more
	1.2 Complexity of symmetric and alternating trilinear form equivalence
	1.3 Previous works
	1.4 Remarks on the technical side

	2 Preliminaries
	3 Average-case algorithms for polynomial isomorphism and more
	3.1 Cubic form isomorphism over fields of odd order
	3.2 Trilinear form equivalence and algebra isomorphism

	4 Complexity of symmetric and alternating trilinear form equivalence

	p039-Guo
	1 Introduction
	2 Organization of the Paper
	3 A Shifting Strategy Compatible with Outliers
	4 Square Cover
	5 Disk Cover
	5.1 Geometric Observations
	5.2 Exact Algorithms to StripPDC and StripRPDC
	5.3 Approximation Algorithms to PDC and RPDC

	A Proof of Lemma 4
	B Proof of Lemma 14
	C 4-Approximation to PDC
	D Partitioning the Plane

	p040-Haak
	1 Introduction
	2 Preliminaries
	3 Parameterised Counting in Logarithmic Space
	4 Complete Problems
	4.1 Counting Walks
	4.2 Counting FO-Assignments
	4.3 Counting Homomorphisms
	4.4 The Parameterised Complexity of the Determinant

	5 Conclusions and Outlook

	p041-Harutyunyan
	1 Introduction
	2 Definitions and Notation
	3 Bounded Feedback Vertex Set
	4 Bounded Feedback Arc Set and Bounded Degree
	4.1 Algorithmic Results
	4.2 Hardness

	5 Treewidth
	6 Conclusions

	p042-Holm
	1 Introduction
	1.1 Techniques

	2 Preliminaries
	3 Bicapacitated biconnectivity
	4 The patchwork graph
	5 Decremental Biconnectivity in Patchwork Graphs
	6 Nearest cutvertex in O(1) worst-case time
	6.1 Navigating a dynamic BC-tree
	6.2 The patchwork graph

	7 Conclusion and implications

	p043-Jaffke
	1 Introduction
	2 Preliminaries
	3 Parameterized by Clique-Width
	3.1 Outline of the Algorithm
	3.2 t-Types and t-Signatures
	3.3 Compatibility
	3.4 Merging and Splitting Partial b-Colorings
	3.5 The Algorithm
	3.6 Fall Coloring

	4 Parameterized by Vertex Cover

	p044-Jecker
	1 Introduction
	1.1 Examples
	1.2 Ramsey function
	1.3 Regular D-length

	2 Definitions and notations
	3 Ramsey decompositions
	3.1 Group: prefix sequence algorithm
	3.2 Max monoid: divide and conquer algorithm
	3.3 General setting

	4 Regular D-length of the monoid of Boolean matrices
	4.1 Upper bound
	4.2 Lower bound

	p045-Jin
	1 Introduction
	1.1 Proof Overview

	2 Preliminaries
	2.1 Notations
	2.2 Edit Distance
	2.3 The CGK Random Walk
	2.4 Random Walks

	3 Sketches for Edit Distance
	3.1 General Framework
	3.2 Proof of Lemma 15: Case |u-v| > 100* k
	3.3 Proof of Lemma 15: Case |u-v| < = 100* k

	4 CGK Random Walks on Self-similar Strings
	4.1 Stable States
	4.2 Proof of Proposition 3.9

	5 Discussion

	p046-Kaplan
	1 Introduction
	2 Preliminaries
	2.1 Locality sensitive hashing
	2.2 Representation of polygons
	2.3 Distance functions

	3 based distances
	3.1 Structure for
	3.2 Structure for
	3.3 Structure for

	4 based distances
	5 Polygon distance
	6 Conclusions and directions for future work

	p047-Koana
	1 Introduction
	2 Preliminaries
	3 Constant Diameter Bounds alpha and beta
	3.1 Polynomial time for alpha = 0 and beta = 2
	3.2 Polynomial time for beta = alpha +1
	3.3 NP-hardness

	4 Bounded number k of missing entries per row
	5 Conclusion

	p048-Koechlin
	1 Introduction
	2 Model, definitions and probability of complete reduction
	2.1 The BST-like model
	2.2 Absorbing pattern and reduction

	3 Outline of the proof
	3.1 Recurrence relations
	3.2 Main steps

	4 Fully reducible trees
	4.1 Generating function and its Riccati equation
	4.2 Asymptotics for the fully reducible trees

	5 Main result: expected values
	6 Conclusion

	p049-Li
	1 Introduction
	2 Preliminaries
	3 NP-hardness for tight modification-disjoint packings
	4 XP-algorithm for half-integral packings
	5 Conclusion

	p050-Lochet
	1 Introduction
	1.1 Context of Our Results and Overarching Goals
	1.2 Our Results and Methods
	1.2.1 Linkage Problems
	1.2.2 Cut-Problems
	1.2.3 Derandomization

	1.3 Related Works

	2 Preliminaries
	3 Edge-disjoint paths in everywhere dense graphs
	4 Conclusion
	A Definition of the studied problems

	p051-Lohrey
	1 Introduction
	2 Preliminaries
	3 Stallings's folding for power-compressed words
	3.1 Combinatorics on words
	3.2 Power-compressed graphs
	3.3 Folding uncompressed graphs
	3.4 Folding power-compressed graphs
	3.5 Power-compressed subgroup membership problem for free groups

	4 Power-compressed subgroup membership for virtually free groups
	5 Future work

	p052-Martynova
	1 Introduction
	2 Graph-walking automata and their subclasses
	3 Upper bounds revisited
	4 Construction of a ``diode''
	5 Lower bound on the size of returning automata
	6 Lower bound on the size of halting automata
	7 Lower bound on the size of returning and halting automata
	8 Lower bound on the size of reversible automata
	9 Conclusion

	p053-Neuwohner
	1 Introduction
	2 Preliminaries
	3 Improving the Approximation Factor
	3.1 The Local Improvement Algorithm
	3.2 Analysis of the Performance Ratio

	4 Further Remarks
	A Inequalities Satisfied by Our Choice of epsilon and delta
	B Some Propositions and Proofs Omitted in the Main Body

	p054-Okrasa
	1 Introduction
	2 Notation and preliminaries
	3 P_t-free graphs
	3.1 Quasi-polynomial-time algorithm
	3.2 Hardness results for P_t-free graphs

	4 S_{a,b,c}-free graphs
	4.1 Subexponential-time algorithm for {S_{a,b,c},K_3}-free graphs
	4.2 Hardness results

	5 Conclusion

	p055-Paredes
	1 Introduction
	1.1 Our results
	1.2 Models of random regular graphs

	2 Short cycles removal
	2.1 Analyzing the girth of fix(G)
	2.2 Bounding lambda(fix(G))

	3 Open problems
	A A near-Ramanujan graph distribution of girth Omega(log_{d - 1} N)
	A.1 Counting near-Ramanujan graphs with high girth

	B Explicit near-Ramanujan graphs of girth Omega(sqrt{log n})
	B.1 Review of constructing explicit near-Ramanujan graphs
	B.2 Improving the girth of the construction

	C Derandomizing the number of short cycles

	p056-Piecyk
	1 Introduction
	2 Notation and preliminaries
	3 Bipartite H, parameter: the size of a minimum feedback vertex set
	4 Bipartite H, parameter: cutwidth
	5 Hardness for general target graphs
	6 Hardness of Hom({#1}) H
	7 Conclusion

	p057-Rahman
	1 Introduction
	1.1 CNF games

	2 Proof of Theorem 1 (and Theorem 2)
	2.1 Proof of Theorem 1
	2.2 Trees

	3 Corollaries
	3.1 G^{+}_{6}
	3.2 G_{6}
	3.3 G^{+}_{5}
	3.4 G_{5}

	4 Summary

	p058-Schweitzer
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Resolution and the Symmetry Rule
	2.2 Encoding Graph Isomorphism
	2.3 The CFI Graphs
	2.4 Multipede Graphs
	2.5 Encoding Linear Equations

	3 Linear-sized Refutations for Non-Isomorphism of CFI graphs
	4 Polynomial-sized Refutations for Linear Equations
	4.1 Linear Combinations
	4.2 Local Symmetry in Equations

	5 Linear-sized Refutations for Non-Isomorphism of Multipedes

	p059-Venkateswaran
	1 Introduction
	1.1 Grover Search recap
	1.2 Approximate Counting
	1.3 Simpler and nonadaptive?
	1.4 Our results

	2 Preliminaries
	2.1 On how well we need to approximate theta*

	3 The nonadaptive algorithm
	4 Proving Lemma 10
	4.1 Proof idea
	4.2 Some arithmetic lemmas
	4.3 The algorithm
	4.4 Completing the algorithm
	4.4.1 Description of the post-processing algorithm

