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—— Abstract

We study the universality and inclusion problems for register automata over equality data (A, =).
We show that the universality L(B) = (X x A)* and inclusion problems L(A) C L(B) can be solved
with 2-EXPTIME complexity when both automata are without guessing and B is unambiguous,
improving on the currently best-known 2-EXPSPACE upper bound by Mottet and Quaas. When
the number of registers of both automata is fixed, we obtain a lower EXPTIME complexity, also
improving the EXPSPACE upper bound from Mottet and Quaas for fixed number of registers. We
reduce inclusion to universality, and then we reduce universality to the problem of counting the
number of orbits of runs of the automaton. We show that the orbit-counting function satisfies
a system of bidimensional linear recursive equations with polynomial coefficients (linrec), which
generalises analogous recurrences for the Stirling numbers of the second kind, and then we show that
universality reduces to the zeroness problem for linrec sequences. While such a counting approach
is classical and has successfully been applied to unambiguous finite automata and grammars over
finite alphabets, its application to register automata over infinite alphabets is novel.

We provide two algorithms to decide the zeroness problem for bidimensional linear recursive
sequences arising from orbit-counting functions. Both algorithms rely on techniques from linear
non-commutative algebra. The first algorithm performs variable elimination and has elementary
complexity. The second algorithm is a refined version of the first one and it relies on the computation
of the Hermite normal form of matrices over a skew polynomial field. The second algorithm yields
an EXPTIME decision procedure for the zeroness problem of linrec sequences, which in turn yields
the claimed bounds for the universality and inclusion problems of register automata.
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1 Introduction

Register automata. Register automata extend finite automata with finitely many registers
holding values from an infinite data domain A which can be compared against the data
appearing in the input. The study of register automata arises naturally in automata theory
as a conservative generalisation of finite automata over finite alphabets ¥ to richer but well-
behaved classes of infinite alphabets. The seminal work of Kaminski and Francez introduced
finite-memory automata as the study of register automata over the data domain (A, =)
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consisting of an infinite set A and the equality relation [21]. The recent book [3] studies
automata theory over other data domains such as (Q, <), and more generally homogeneous [24]
or even w-categorical relational structures. Another motivation for the study of register
automata comes from the area of database theory: XML documents can naturally be modelled
as finite unranked trees where data values from an infinite alphabet are necessary to model
the attribute values of the document (cf. [27] and the survey [33]).

The central verification question for register automata is the inclusion problem, which,
for two given automata A, B, asks whether L(A) C L(B). In full generality the problem is
undecidable and this holds already in the special case of the universality problem L(B) =
(X x A)* [27, Theorem 5.1], when B has only two registers [3, Theorem 1.8] (or even just
one register in the more powerful model with guessing [3, Exercise 9], i.e., non-deterministic
reassignment in the terminology of [22]). One way to obtain decidability is to restrict the
automaton B. One such restriction requires that B is deterministic: Since deterministic
register automata are effectively closed under complementation, the inclusion problem reduces
to non-emptiness of L(A) N (2 x A)*\ L(B), which can be checked in PSPACE. Another,
incomparable, restriction demands that B has only one register: In this case the problem
becomes decidable [21, Appendix A]! and non-primitive recursive [18, Theorem 5.2].

Unambiguity. Unambiguous automata are a natural class of automata intermediate between
deterministic and nondeterministic automata. An automaton is unambiguous if there is at
most one accepting run on every input word. Unambiguity has often been used to generalise
decidability results for deterministic automata at the price of a usually modest additional
complexity. For instance, the universality problem for deterministic finite automata (which is
PSPACE-complete in general [38]) is NL-complete, while for the unambiguous variant it is in
PTIME [37, Corollary 4.7], and even in NC? [39]. An even more dramatic example is provided
by universality of context-free grammars, which is undecidable in general [20, Theorem 9.22],
PTIME-complete for deterministic context-free grammars, and decidable for unambiguous
context-free grammars [31, Theorem 5.5] (even in PSPACE [12, Theorem 10]). (The more
general equivalence problem is decidable for deterministic context-free grammars [34], but
it is currently an open problem whether equivalence is decidable for unambiguous context-
free grammars, as well as for the more general multiplicity equivalence of context-free
grammars [23].) Other applications of unambiguity for universality and inclusion problems
in automata theory include Biichi automata [5, 1], probabilistic automata [17], Parikh
automata [7, 4], vector addition systems [16], and several others (cf. also [14, 15]).

Number sequences and the counting approach. The universality problem for a language
over finite words L C X* is equivalent to whether its associated word counting function
fr(n) :=|LNX"| equals |X|" for every n. The most classical way of exploiting unambiguity
of a computation model A (finite automaton, context-free grammar, ...) is to use the fact
that it yields a bijection between the recognised language L(A) and the set of accepting
runs. In this way, fr(n) is also the number of accepting runs of length n, and for the latter
recursive descriptions usually exist. When the class of number sequences to which fr, belongs
contains |X|" and is closed under difference, this is equivalent to the zeroness problem for
g(n) := |Z|" = fr(n), which amounts to decide whether g = 0. This approach has been

! Decidability even holds for the so-called “two-window register automata”, which combined with the
restriction in [21] demanding that the last data value read must always be stored in some register boils
down to a slightly more general class of “1%-register automata”.
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pioneered by Chomsky and Schiitzenberger [11] who have shown that the generating function
gr(z) = ZZOZO fr(n) - ™ associated to an unambiguous context-free language L is algebraic
(cf. [6]). A similar observation by Stearns and Hunt [37] shows that gr(z) is rational [36,
Chapter 4], when L is regular, and more recently by Bostan et al. [4] who have shown that
gr(z) is holonomic [35] when L is recognised by an unambiguous Parikh automaton. Since
the zeroness problem for rational, algebraic, and holonomic generating functions is decidable,
one obtains decidability of the corresponding universality problems.

Unambiguous register automata. Returning to register automata, Mottet and Quaas
have recently shown that the inclusion problem in the case where B is an unambiguous
register automaton over equality data (without guessing) can be decided in 2-EXPSPACE,
and in EXPSPACE when the numbers of registers of B is fixed [25, Theorem 1]. Note that
already decidability is interesting, since unambiguous register automata without guessing
are not closed under complement in the class of nondeterministic register automata without
guessing [22, Example 4], and thus the classical approach via complementing B fails for
register automata?. (In fact, even for finite automata complementation of unambiguous
finite automata cannot lead to a PTIME universality algorithm, thanks to Raskin’s recent
super-polynomial lower-bound for the complementation problem for unambiguous finite
automata in the class of non-deterministic finite automata [30]). Mottet and Quaas obtain
their result by showing that inclusion can be decided by checking a reachability property of
a suitable graph of triply-exponential size obtained by taking the product of A and B, and
then applying the standard NL algorithm for reachability in directed graphs.

Our contributions. In view of the widespread success of the counting approach to un-
ambiguous models of computation, one may wonder whether it can be applied to register
automata as well. This is the topic of our paper. A naive counting approach for register
automata immediately runs into trouble since there are infinitely many data words of length
n. The natural remedy is to use the fact that A" albeit infinite, is orbit-finite [3, Sec. 3.2],
which is a crucial notion generalising finiteness to the realm of relational structures used to
model data. In this way, we naturally count the number of orbits of words/runs of a given
length, which in the context of model theory is sometimes known as the Ryll-Nardzewski
function [32]. For example, in the case of equality data (A, =), the number of orbits of words
of length n is the well-known Bell number B(n), and for (Q, <) one obtains the ordered Bell
numbers (a.k.a. Fubini numbers); cf. Cameron’s book for more examples [9, Ch. 7].

When considering orbits of runs, the run length n seems insufficient to obtain recurrence
equations. To this end, we also consider the number of distinct data values k that appear
on the word labelling the run. For instance, in the case of equality data, the corresponding
orbit-counting function is the well-known sequence of Stirling numbers of the second kind
S(n, k) : QN2, which satisfies S(0,0) = 1, S(m,0) = S(0,m) =0 for m > 1, and

S(n,k)=Sn-1,k=1)+k-S(n—-1,k), forn,k>1. (1)

These intuitions lead us to define the class of bidimensional linear recursive sequences with
polynomial coefficients (linrec; cf. (2)) which are a class of number sequences in QY satisfying
a system of shift equations with polynomial coefficients generalising (1). Linrec are sufficiently

2 In the more general class of register automata with guessing, an unproved conjecture proposed by
Colcombet states that unambiguous register automata with guessing are effectively closed under
complement [15, Theorem 12], implying decidability of the universality and containment problems for
unambiguous register automata with guessing and, a posteriori, unambiguous register automata without
guessing as considered in this paper. No published proof of this conjecture has appeared as of yet.

8:3

STACS 2021



8:4

Linear Recursive Sequences and Universality of Register Automata

general to model the orbit-counting functions of register automata and yet amenable to
algorithmic analysis. Our first result is a complexity upper bound for the zeroness problem
for a class of linrec sequences which suffices to model register automata.

» Theorem 1. The zeroness problem for linrec sequences with univariate polynomial coeffi-
cients from Q[k] is in EXPTIME.

This is obtained by modelling linrec equations as systems of linear equations with skew
polynomial coefficients (introduced by Ore [29]) and then using complexity bounds on the
computation of the Hermite normal form of skew polynomial matrices by Giesbrecht and
Kim [19]. Our second result is a reduction of the universality and inclusion problems to
the zeroness problem of a system of linrec equations of exponential size. Together with
Theorem 1, this yields improved upper bounds on the former problems.

» Theorem 2. The universality L(B) = (X x A)* and the inclusion problem L(A) C L(B)
for register automata A, B without guessing with B unambiguous are in 2-EXPTIME, and
in EXPTIME for a fized number of registers of A, B. The same holds for the equivalence
problem L(A) = L(B) when both automata are unambiguous.

The rest of the paper is organised as follows. In Section 2, we introduce linrec sequences
(cf. [2, Appendix A.3] for a comparison with well known sequence families from the literature
such as the C-recursive, P-recursive, and the more recent polyrec sequences [8]). In Section 3,
we introduce unambiguous register automata and we present an efficient reduction of the
inclusion (and thus equivalence) problem to the universality problem, which allows us to
concentrate on the latter in the rest of the paper. In Section 4, we present a reduction of
the universality problem to the zeroness problem for linrec. In Section 5, we show with
a simple argument based on elimination that the zeroness problem for linrec is decidable,
and in Section 6 we derive a complexity upper bound using non-commutative linear algebra.
Finally, in Section 7 we conclude with further work and an intriguing conjecture. Full proofs,
additional definitions, and examples are provided in the full version of the paper [2].

Notation. Let N, Z, and Q be the set of non-negative integers, resp., rationals. The height
of an integer k € Z is [k[,, = |k|, and for a rational number a € Q uniquely written as a = 2
with p € Z,q € N co-prime we define |a| = max{|p| ,|q¢|}. Let Q[n, k] denote the ring
of bivariate polynomials. The (combined) degree deg P of P =3, a;in'k? € Q[n, k] is the
maximum i 4 j s.t. a;; # 0 and the height |P|_ is max; j |a;;|_ . For a nonempty set A and
n € N, let A™ be the set of sequences of elements from A of length n, In particular, A° = {}
contains only the empty sequence €. Let A* = [, oy A™ be the set of all finite sequences
over A. We use the soft-Oh notation O(f(n)) to denote |J -, O(f(n) - log® f(n)).

2 Bidimensional linear recursive sequences with polynomial coefficients

Let f(n,k) : QN2 be a bidimensional sequence. For L € N, the first L-section of f is the
one-dimensional sequence f(L, k) : QY obtained by fixing its first component to L; the second
L-section f(n,L) is defined similarly. The two shift operators 91,9 : Q¥ — QY are

(01f)(n,k)=f(n+1,k) and (02f)(n,k) = f(n,k+1), foralln,k>0.

An affine operator is a formal expression of the form A = pgg + po1 - 01 + p1o - 02 Where
DoosPo1, P10 € Q[n, k] are bivariate polynomials over n,k with rational coefficients. Let
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{f1,..-, fm} be a set of variables denoting bidimensional sequences®. A system of linear shift
equations over f1,..., fm, consists of m equations of the form

0102f1 = Aii-fit -+ Aim e fm,
: (2)
a182][‘771 = Am,l'f1+"'+Am,m'fm7

where the A; ;’s are affine operators. A bidimensional sequence f : QN2 is linear recursive of

order m, degree d, and height h (abbreviated, linrec) if the following two conditions hold:

1) there are auxiliary bidimensional sequences fa, ..., fm, : QN2 which together with f = f;
satisfy a system of linear shift equations as in (2) where the polynomial coefficients have
(combined) degree < d and height < h.

2) for every 1 < i < m there are constants denoted f;(0,> 1), f;(> 1,0) € Q s.t. f;(0,k) =
£i(0,> 1) and f;(n,0) = f;(> 1,0) for every n,k > 1.

If we additionally fix the initial values f1(0,0),..., fn(0,0), then the system (2) has a unique

solution, which is computable in PTIME.

» Lemma 3. The values fi(n,k)’s are computable in deterministic time O(m -n - k).
In the following we will use the following effective closure under section.

» Lemmad. If f: QN2 is linrec of order < m, degree < d, and height < h, then its L-sections
f(L,k), f(n,L) : QY are linrec of order < m - (L + 3), degree < d, and height < h - L%.

We are interested in the following central algorithmic problem for linrec.

ZERONESS PROBLEM.
Input: A system of linrec equations (2) together with all initial conditions.
Output: Is it the case that f; = 07

In Section 4 we use linrec sequences to model the orbit-counting functions of register automata,
which we introduce next.

3 Unambiguous register automata

We consider register automata over the relational structure (A, =) consisting of a countable
set A equipped with equality as the only relational symbol. Let a = ay---a,, € A™ be
a finite sequence of n data values. An a-automorphism of A is a bijection a : A — A
s.t. a(a;) = a; for every 1 < i < n, which is extended pointwise to a € A™ and to L C A*.
For b,é¢ € A", we write b ~; ¢ whenever there is an a-automorphism « s.t. a(E) = ¢C.
The a-orbit of b is the equivalence class [b]z = {¢ € A" | b ~z ¢}, and the set of a-
orbits of sequences in L C A* is orbitsz(L) = {[b]s | b € L}. In the special case when
a = € is the empty tuple, we just speak about automorphism « and orbit [5] A set
X is orbit-finite if orbits(X) is a finite set [3, Sec. 3.2]. All definitions above extend to
A; == AU{L} with L ¢ A in the expected way. A constraint ¢ is a quantifier-free?
formula generated by p,p i=x =1L |z =y |V | oA | p, where x,y are variables
and | is a special constant denoting an undefined value. The semantics of a constraint

3 We abuse notation and silently identify variables denoting sequences with the sequences they denote.
4 Since (A, =) is a homogeneous relational structure, and thus it admits quantifier elimination, we would
obtain the same expressive power if we would consider more general first-order formulas instead.
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o(x1,...,2,) with n free variables 1, ..., x, is the set of tuples of n elements which satisfies:
[l ={a1,. . an € AT | AL, 21 a1,..., 20t an = @}. A register automaton of dimension
d € Nis a tuple A = (d,%,L,L;,Lr,—) where d is the number of registers, ¥ is a finite
alphabet, L is a finite set of control locations, of which we distinguish those which are
initial Ly C L, resp., final Ly C L, and “—” is a set of rules of the form p =% ¢, where
p,q € L are control locations, ¢ € 3 is an input symbol from the finite alphabet, and
o(x1,...,2q,y, 4, ..., x}) is a constraint relating the current register values x;’s, the current
input symbol (represented by the variable y), and the next register values of z}’s.

» Example 5. Let A over |X| = 1 have one register z, and four control locations p, ¢, 7, s,
z=1Azx'=y z=1Azx'=y

of which p is initial and s is final. The transitions are p q, p r,
YA =0 q, q A" s, T e A— r,and r w) s. The automaton accepts all

words of the form a(A \ {a})*a or aa*(A\ {a}) with a € A.

A register automaton is orbitised if every constraint ¢ appearing in some transition thereof
denotes an orbit [¢] € orbits(A%“). For example, when d = 1 the constraint ¢ = z = 2
is not orbitised, however [¢] = [wo] U [¢1] splits into two disjoint orbits for the orbitised
constraints g =x =2’ Az =y and o1 =z = 2’ Az # y. The automaton from Example 5
is orbitised. Every register automaton can be transformed in orbitised form by replacing

every transition p RN q with exponentially many transitions p RALAN Qy.-sP RALLN q, for
each orbit ;] of [¢] € A2+,
A register valuation is a tuple of (possibly undefined) values a = (ay,...,aq) € Ad. A

configuration is a pair (p,a), where p € L is a control location and a € A‘i is a register
valuation; it is énitial if p € Ly is initial and all registers are initially undefined a = (L, ..., 1),
and it is final whenever p € Lp is so. The semantics of a register automaton A is the infinite
transition system [A] = (C,Cr,Cr,—) where C is the set of configurations, of which
C1,Cr C C are the initial, resp., final ones, and — C C' x (X x A) x C' is the set of all
transitions of the form

(p,a) 2% (¢,a'), with o € ¥,a € A, and a,a’ € A?,

s.t. there exists a rule p RALN q where satisfying the constraint A,z : a,y : a, %’ : @’ | .
A data word is a sequence w = (01, a1) -+ (On,an) € (X X A)*. A run over a data word w
starting at ¢y € C and ending at ¢, € C is a sequence 7 of transitions of [A] of the form
T =cy =22 ¢ 2222y L IO o We denote with Runs(co; w; ¢y,) the set of runs over w

starting at ¢y and ending in ¢, and with Runs(Cy;w;c,) the set of initial runs, i.e., those

runs over w starting at some initial configuration ¢y € C7 and ending in ¢,,. The run = is
accepting if ¢, € Cr. The language L(A, ¢) recognised from configuration ¢ € C' is the set
of data words labelling some accepting run starting at c¢; the language recognised from a
set of configurations D C C'is L(A, D) = {J,cp L(A, c), and the language recognised by the
register automaton A is L(A) = L(A,Cr). Similarly, the backward language LR(A,c) is the
set of words labelling some run starting at an initial configuration and ending at c¢. Thus, we
also have L(A) = LR(A, CF). A register automaton is deterministic if for every input word
there exists at most one initial run, and unambiguous if for every input word there is at most
one initial and accepting run. A register automaton is without guessing if, for every initial
run (p, L4 % (¢,a) every non-L data value in @ occurs in the input w, written @ C w. In
the rest of the paper we will study exclusively automata without guessing. A deterministic
automaton is unambiguous and without guessing. These semantic properties can be decided
in PSPACE with simple reachability analyses (cf. [15]).
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» Example 6. The automaton from Example 5 is unambiguous and without guessing. An
example of language which can only be recognised by ambiguous register automata is the set
of words where the same data value appears two times L = {u-a-v-a-w | a € A;u,v,w € A*}.

» Lemma 7. If A is an unambiguous register automaton, then there is a bijection between
the language it recognises L(A) = L(A, Cr) = LR(A,Cr) and the set of runs starting at some
initial configuration in Cy and ending at some final configuration in Cp.

We are interested in the following decision problem.

INCLUSION PROBLEM.
Input: Two register automata A, B over the same input alphabet X..
Output: Is it the case that L(A) C L(B)?

The universality problem asks L(A) = (X x A)*, and the equivalence problem L(A) = L(B).
In general, universality reduces to equivalence, which in turn reduces to inclusion. In our
context, inclusion reduces to universality and thus all three problems are equivalent.

» Lemma 8. Let A and B be two register automata.

1. The inclusion problem L(A) C L(B) with A orbitised and without guessing reduces in
PTIME to the case where A is deterministic. The reduction preserves whether B is 1)
unambiguous, 2) without guessing, and 3) orbitised.

2. The inclusion problem L(A) C L(B) with A deterministic reduces in PTIME to the
universality problem for some register automaton C. If B is unambiguous, then so is C.
If B is without guessing, then so is C. If A and B are orbitised, then so is C.

4  Universality of unambiguous register automata without guessing

We reduce universality of unambiguous register automata without guessing to zeroness
of bidimensional linrec sequences with univariate polynomial coefficients. The width of
a sequence of data values @ = ay---a, € A" is #a = |{a1,...,a,}|, for a word w =
(01,a1) - (on,an) € (2 x A)* we set #w = #(a1---ay,), and for a run 7 over w we set
#m = #w. Let the Ryll-Nardzewski function G, a(n, k) of a configuration (p,a) € C = Lx A4
count the number of a-orbits of initial runs of length n and width & ending in (p, a):

Gpa(n, k) =N[rla | w e (Zx A)", 7 € Runs(Cr;w; p,a), #w = k}|. (3)

» Lemma 9. Let a,be Al . If [a] = [b], then Gpa(n, k) = G,p(n, k) for every n,k > 0.
We thus overload the notation and write G, [5) instead of G 5. Since Aj‘l_ is orbit-finite,
this yields finitely many variables G, z’s. By slightly abusing notation, let G¢,.(n, k) =
> ((p.a)] corbits(C) Gp,[a] (1, k) be the sum of the Ryll-Nardzewski function over all orbits
of accepting configurations. When the automaton is unambiguous, thanks to Lemma 7,
Gcp, (n, k) is also the number of orbits of accepted words of length n and width k.

» Lemma 10. Let A be an unambiguous register automaton w/o guessing over ¥ and let
Sx.(n, k) be the number of orbits of all words of length n and width k. We have L(A) = (Ax A)*
if, and only if, Vn,k € N- Gen(n, k) = Su(n, k).

In other words, universality of A reduces to zeroness of G := Sy, — G¢,.. The sequence Sy, is
linrec since it satisfies the recurrence in Figure 2 with initial conditions Sx(0,0) = 1 and
Sy(n+1,0) = Sx(0,k+ 1) = 0 for n,k > 0. We show that all the sequences of the form

8:7
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po, L¢ p.a p,a

Figure 1 Last-step decomposition.

Gy a(n+1,k+1) = > Gpja)(n k+1) +
o,a —
[p,a—>p’,a’]: a€a I
> Gy ja(n, k) + max(k + 1 — #[a), 0) - Gp a(n, k +1) |
o,a —
[p,a——>p’,a']: aga 1I 111

Ss(n+ 1,k +1) = [Z]- Ss(n, k) + 2] - (k+ 1) - S(n,k + 1),

G(nk) = Ss(nk) = > Gppa(n.k).
[p,a]€orbits (Cp)

Figure 2 Linrec automata equations.

Gp,ja) are also linrec and thus also G' will be linrec. We perform a last-step decomposition of
an initial run; cf. Figure 1. Starting from some initial configuration (po, L), the automaton
has read a word w of length n — 1 leading to (p,a). Then, the automaton reads the last
letter (0, a) and goes to (p/,a’) via the transition ¢t = (p,a —= p',a’). The question is in how
many distinct ways can an orbit of the run over w be extended into an orbit of the run over
w - (0,a). We distinguish three cases.
I: Assume that a appears in register a; = a. Since the automaton is without guessing,
a € w has appeared earlier in the input word and a’ C a (ignoring 1’s). Thus, each
a-orbit of runs [pg, L¢ % p,als yields, via the fixed ¢, an @-orbit of runs [py, L¢ 2
p,a 2% p/ @')a of the same width in just one way.

Il: Assume that a is globally fresh a ¢ w, and thus in particular a ¢ a since the automaton
is without guessing. Each a-orbit of runs [pg, 14 =, alg of width #w yields, via the
fixed ¢, a single a’-orbit of runs [pg, L? % p,a 28, a'|a of width #(w - a) = #w + 1.

I1I: Assume that a € w is not globally fresh, but it does not appear in any register a ¢ a.
Since the automaton is without guessing, every value in a appears in w. Consequently,
a can be any of the #w distinct values in w, with the exception of #a values. Each
a-orbit of runs [py, L — p,als of width #w yields #w — #a > 0 a’-orbits of runs
[po, L 2 pa 2% p/,a']ar of the same width.
(As expected, we do not need unambiguity at this point, since we are counting orbits of
runs.) We obtain the equations in Figure 2, where the sums range over orbits of transitions.
This set of equations is finite since there are finitely many orbits [a] € orbits(A?) of register
valuations, and moreover we can effectively represent each orbit by a constraint [3, Ch. 4].
Strictly speaking, the equations are not linrec due to the “max” operator, however they can
easily be transformed to linrec by considering G, 3)(n, K) separately for 1 < K < d; in the
interest of clarity, we omit the full linrec expansion. The initial condition is G, 15(0,0) = 1 if
p € I initial, and G}, 5)(0,0) = 0 otherwise. The two 0-sections satisfy G, ;3)(n+1,0) = 0 for
n > 0 (if the word is nonempty, then there is at least one data value) and Gy, (0, k +1) = 0
for k > 0 (an empty word does not have any data value).

» Lemma 11. The sequences G, [q)’s satisfy the system of equations in Figure 2.
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» Example 12. The equations corresponding to the automaton in Example 5 are as follows.
(Since the automaton is orbitised, we can omit the orbit.) We have G,(0,0) =1, G,(0,0) =
G,(0,0) = G4(0,0) = 0 and for n,k > 0:

Gp(n+1,k+1)=0,
Gyn+1,k+1)=Gp(n,k)+(k+1)-Gpn,k+1)+Gy(n, k) + k- Gy(n, k+1),
—_—— N——

N—_——
II 111 II 111
Gr(n+1,k+1)=Gp(n,k)+(k+1)-Gp(n,k+1)+Gr(n, k+1),
N—_——
II III I
Gs(n+1L,k+1)=G,(n,k+1)+ G, (n,k)+k-Gr(n,k+1).
—— —_—— S—,|—
I II III

» Lemma 13. Let A be an unambiguous register automaton over equality atoms without
guessing with d registers and £ control locations. The universality problem for A reduces to
the zeroness problem of the linrec sequence G defined by the system of equations in Figure 2
containing O(€ - 2%1°8 1) yariables and equations and constructible in PSPACE. If A is already
orbitised, then the system of equations has size O({).

5 Decidability of the zeroness problem

In this section, we present an algorithm to solve the zeroness problem of bidimensional linrec
sequences with univariate polynomial coefficients, which is sufficient for linrec sequences
from Figure 2. We first give a general presentation on elimination for bivariate polynomial
coefficients, and then we use the univariate assumption to obtain a decision procedure. We
model the non-commutative operators appearing in the definition of linrec sequences (2) with
Ore polynomials (a.k.a. skew polynomials) [29]°. Let R be a (not necessarily commutative)
ring and o an automorphism of R. The ring of (shift) skew polynomials R[0; 0] is defined
as the ring of polynomials but where the multiplication operation satisfies the following
commutation rule: For a coefficient a € R and the unknown 9, we have

0-a=o0c(a)-0.

(The usual ring of polynomials is recovered when o is the identity.) The multiplication
extends to monomials as ad® - bd' = ac®(b) - 9**! and to the whole ring by distributivity. The
degree of a skew monomial a - 9% is k, and the degree deg P of a skew polynomial P is the
maximum of the degrees of its monomials. The degree function satisfies the expected identities
deg(P - Q) = deg P + deg Q and deg(P + Q) < max(deg P,deg@). A skew polynomial is
monic if the coefficient of its monomial of highest degree is 1. The crucial and only property
that we need in this section is that skew polynomial rings admit a Euclidean pseudo-division
algorithm, which in turns allows one to find common left multiples. A skew polynomial ring
RI[0; o] has pseudo-division if for any two skew polynomials A, B € R[; o] with deg A > deg B
there is a coefficient a € R and skew polynomials Q, R € R[0;0] s.t.a-A=P- B+ @ and
deg @ < deg B. We say that a ring R has the common left multiple (CLM) property if for
every a,b # 0, there exists ¢,d # 0 such that ¢-a =d - b.

5 The general definition of the Ore polynomial ring R[0; 0, 0] uses an additional component 6 : R — R in
order to model differential operators. We present a simplified version which is enough for our purposes.
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» Theorem 14 (cf. [28, Sec. 1]). If R has the CLM property, then

1) RI[0;0] has a pseudo-division, and

2) R[0;0] also has the CLM property.

The most important instances of skew polynomials are the first and second Weyl algebras:

W1 = Q[n, k][01;01] and W = Wi[0s; 03] = Q[n, k][01; 01][02; 02], (4)

where Q[n, k] is the ring of bivariate polynomials, and the shifts satisfy o;(p(n,k)) :=
p(n+ 1,k) and o2 (3, pi(n, k)0%) := >, pi(n, k + 1)9i. Skew polynomials in W act on
bidimensional sequences f : (@N2 by interpreting 0, and O, as the two shifts. A linrec system
of equations (2) can thus be interpreted as a system of linear equations with variables
fi,---, fm and coefficients in Ws.

» Example 15. Continuing our running Example 12, we obtain the following linear system
of equations with W5 coefficients:

0,05 - G, o,
—(1+(k‘—|—1)82) 'Gp —|—(81(92 —kag—l) 'Gq =0,
—(1 + (k + 1)32) . Gp —|—(81(92 — 32) -G, =0,

~02-Gy —(1+4kd) G, +0102-G5 =0,
(0102 — (k+1)0y — 1) - S; =0,
Gs—Si1+G=0.

Since Wy = N[n, k] is commutative, it obviously has the CLM property. By two applications
of Theorem 14, we have (see [2, Appendix D.1] for CLM examples):

» Corollary 16. The two Weyl algebras W1 and Wo have the CLM property.

A (linear) cancelling relation (CR) for a bidimensional sequence f : QY is a linear
equation of the form

pie (k)05 03 f= D pijlnk)- 905 F, (CR-2)

(1,5) <tex (i*,5*)

where p;« j«(n, k), pi j(n, k) € Q[n, k] are bivariate polynomial coefficients and <jex is the
lexicographic ordering. Cancelling relations for a one-dimensional sequence g : QY are defined
analogously (we use the second variable k as the index for convenience):

g (k)05 g= > q;(k)-ig. (CR-1)

0<5<j*

We use cancelling relations as certificates of zeroness for f when the p; ;’s are univariate. We
do not need to construct any cancelling relation, just knowing that some exists with the
required bounds suffices.

» Lemma 17. The zeroness problem for a bidimensional linrec sequence f : QNZ of order
< m and univariate polynomial coefficients in Q[k] admitting some cancelling relation (CR-2)
with leading coefficient p;« ;= (k) € Q[k] of degree < e and height < h s.t. each of the one-
dimensional sections f(M,k) € QY for 1 < M < i* also admits some cancelling relation
(CR-1) of 02-degree < d with leading polynomial coefficients of degrees < e and height < h is
decidable in deterministic time O(p(m,i*,j*,d, e, h)) for some polynomial p.
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Elimination already yields decidability with elementary complexity for the zeroness
problem and thus for the universality/equivalence/inclusion problems of unambiguous register
automata without guessing.

» Theorem 18. The zeroness problem for linrec sequences with univariate polynomial

coefficients from Q[k] (or from Q[n]) is decidable.

» Example 19. Continuing our running Example 15, we subsequently eliminate
Gp, G5, Gy, Gy, S finally obtaining (cf. [2, Example 34 in Appendix D.2] for details)

Gn+4,k+4)= (k+3)-Gn+3,k+4)+G(n+3,k+3)+ (5)
—(k+2)-Gn+2,k+4)—G(n+2,k+3).

As expected, all coefficients are polynomials in Q[k] and in particular they do not involve
the variable n. Moreover, we note that the relation above is monic, in the sense that
the lexicographically leading term G(n + 4, k + 4) has coefficient 1 (cf. Section 7). (Cf. [2,
Example 35] for elimination in a two-register automaton and [2, Example 36] for a one-register
automaton accepting all words of length > 2.)

We omit a precise complexity analysis of elimination because better bounds can be obtained
by resorting to linear non-commutative algebra, which is the topic of the next section.

6 Complexity of the zeroness problem

In this section we present an EXPTIME algorithm to solve the zeroness problem and we
apply this result to register automata. We compute the Hermite normal form (HNF) of
the matrix with skew polynomial coefficients associated to (2) in order to do elimination
in a more efficient way. The complexity bounds provided by Giesbrecht and Kim [19] on
the computation of the HNF lead to the following bounds for cancelling relations; cf. [2,
Appendix E] for further details and full proofs.

» Lemma 20. A linrec sequence f € QN2 of order < m, degree < d, and height < h admits a
cancelling relation (CR-2) with the orders i*,j* and the degree of ps j« polynomially bounded,
and with height |pi- j-| . exponentially bounded. Similarly, its one-dimensional sections
F(0K), ..., f(i*,k) € QY also admit cancelling relations (CR-1) of polynomially bounded
orders and degree, and exponentially bounded height.

This allows us to prove below the EXPTIME upper-bound for zeroness of Theorem 1, and
the 2-EXPTIME algorithm for inclusion of Theorem 2.

Proof of Theorem 1. Thanks to the bounds from Lemma 20, i*, j* are polynomially
bounded; we can find a polynomial bound d on the 0>-degrees of the cancelling relations
Ry, ..., R;« for the sections f(0,k),..., f(i*, k), respectively; we can find a polynomial bound
e on the degrees of p;« ;«(k) and the leading polynomial coefficients of the R;’s; and an
exponential bound h on [p;- ;<] and the heights of the leading polynomial coefficients of
the R;’s. We thus obtain an EXPTIME algorithm by Lemma 17. |

This yields the announced upper-bounds for the inclusion problem for register automata.

Proof of Theorem 2. For the universality problem L(B) = (2 x A)*, let d be the number
of registers and ¢ the number of control locations of B. By Lemma 13, the universality
problem reduces in PSPACE to zeroness of a linrec system with polynomial coefficients in Q[k]
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containing O(¢-2%1°¢ 1) variables Gp,a) and the same number of equations. By Theorem 1, we
get a 2-EXPTIME algorithm. When the numbers of registers d is fixed, we get an EXPTIME
algorithm. For the inclusion problem L(A) C L(B), we first orbitise A into an equivalent
orbitised register automaton without guessing A’. A close inspection of the two constructions
leading to C' in the proof of Lemma 8 reveal that transitions in C' are either transitions from
A’ (and thus already orbitised), or pairs of a transition in B together with a transition in A’,
the second of which is already orbitised. It follows that orbitising C' incurs in an exponential
blow-up w.r.t. the number of registers of B, but only polynomial w.r.t. the number of registers
of A’ (and thus of A), since the A’-part in C is already orbitised. Consequently, we can
write (in PSPACE) a system of linrec equations for the universality problem of C' of size
exponential in the number of registers of A and of B. By reasoning as in the first part of
the proof, we obtain a EXPTIME algorithm for the universality problem of C, and thus a
2-EXPTIME algorithm for the original inclusion problem L(A) C L(B). If both the number
of registers of A and of B is fixed, we get an EXPTIME algorithm. The equivalence problem
L(A) = L(B) with both automata A, B unambiguous reduces to two inclusion problems. <«

7 Further remarks and conclusions

We say that P = Zi,j pij(n, k) - 8%8% is monic if p;- j+ = 1 where (4%, j*) is the lexicograph-
ically largest pair (4, j) s.t. p; j # 0. The cancelling relation (CR-2) in our examples (5) and
[2, (10), (11), (15)] happens to be monic in this sense.

» Conjecture 21 (Monicity conjecture). There always exists a monic cancelling relation
(CR-2) for linrec systems obtained from automata equations in Figure 2, and similarly for
their sections (CR-1).

Conjecture 21 has important algorithmic consequences. The exponential complexity in
Theorem 1 comes from the exponential growth of the rational number coefficients (heights) in
the HNF. This is due to the use of Lemma 17, whose complexity depends on the maximal root of
the leading polynomial p;« j«(n, k) from (CR-2). If Conjecture 21 holds, then p;- ;+(n, k) =1,
Lemma 17 would yield a PTIME algorithm for zeroness, and consequently all complexities in
Theorem 2, would drop by one exponential. This provides ample motivation to investigate
the monicity conjecture.

In order to obtain the lower EXPTIME complexity for L(A) C L(B) in Theorem 2 we
have to fix the number of registers in both automata A and B. The EXPSPACE upper bound
of Mottet and Quaas [25] holds already when only the number of registers of B is fixed, while
we only obtain a 2-EXPTIME upper bound in this case. It is left for future work whether the
counting approach can yield better bounds without fixing the number of registers of A.

The fact that the automata are non-guessing is crucial in each of the cases I, IT, and
III of the equations in Figure 2 in order to correctly count the number of orbits of runs.
For automata with guessing from the fact that the current input a is stored in a register we
cannot deduce that a actually appeared previously in the input word w, and thus our current
parametrisation in terms of length and width does not lead to a recursive characterisation.

Finally, it is also left for further work to extend the counting approach to other data
domains such as total order atoms, random graph atoms, etc..., and, more generally, to
arbitrary homogeneous and w-categorical atoms under suitable computability assumptions
(cf. [13]), and to other models of computation such as register pushdown automata [10, 26].
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