
Symmetric Promise Constraint Satisfaction
Problems: Beyond the Boolean Case
Libor Barto !

Department of Algebra, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

Diego Battistelli !

Department of Algebra, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

Kevin M. Berg !

Department of Algebra, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

Abstract
The Promise Constraint Satisfaction Problem (PCSP) is a recently introduced vast generalization
of the Constraint Satisfaction Problem (CSP). We investigate the computational complexity of a
class of PCSPs beyond the most studied cases – approximation variants of satisfiability and graph
coloring problems. We give an almost complete classification for the class of PCSPs of the form:
given a 3-uniform hypergraph that has an admissible 2-coloring, find an admissible 3-coloring, where
admissibility is given by a ternary symmetric relation. The only PCSP of this sort whose complexity
is left open in this work is a natural hypergraph coloring problem, where admissibility is given by
the relation “if two colors are equal, then the remaining one is higher.”

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases constraint satisfaction problems, promise constraint satisfaction, Boolean
PCSP, polymorphism

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.10

Funding All three authors have received funding from the European Research Council (ERC) under
the European Unions Horizon 2020 research and innovation programme (grant agreement No 771005).

1 Introduction

The Constraint Satisfaction Problem (CSP) over a finite relational structure A (also called
a template), denoted CSP(A), can be defined as a homomorphism problem with a fixed
target structure. In the decision version of the problem, an instance is a finite relational
structure X (of the same signature as A) and the problem is to decide whether there exists
a homomorphism (i.e., a relation-preserving map) from X to A. In the search version
of the problem, we are required to find such a homomorphism whenever it exists. Many
computational problems, including various versions of logical satisfiability, graph coloring,
and systems of equations can be represented in this form, see the survey [4]. For example,
the CSP over K3 (the clique on 3 vertices) is the 3-coloring problem, the CSP over the
two-element structure with all the ternary relations is the 3-SAT problem, the CSP over the
two-element structure 1in3 with a single ternary relation {(0, 0, 1), (0, 1, 0), (1, 0, 0)} is the
positive 1-in-3-SAT, and the CSP over the two-element structure NAE with a single ternary
relation {0, 1}3 \ {(0, 0, 0), (1, 1, 1)} is the positive not-all-equal-3-SAT.

An early general complexity classification result was Schaeffer’s dichotomy theorem
for Boolean (i.e., two-element) templates [19]: each such CSP is in P or is NP-complete.
Another influential result was a dichotomy theorem by Hell and Nešetřil [15] for CSPs over
(undirected) graphs. Motivated in part by these two theorems, Feder and Vardi formulated

© Libor Barto, Diego Battistelli, and Kevin M. Berg;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 10; pp. 10:1–10:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:libor.barto@gmail.com
https://orcid.org/0000-0002-8481-6458
mailto:diego_ew@yahoo.it
mailto:berg.kevinm@gmail.com
https://orcid.org/0000-0002-1555-4239
https://doi.org/10.4230/LIPIcs.STACS.2021.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case

their dichotomy conjecture stating that the P versus NP-complete dichotomy remains true for
CSPs over arbitrary finite structures. This conjecture inspired a very active research program
in the last 20 years, culminating in a celebrated positive resolution independently obtained by
Bulatov [11] and Zhuk [21]. Their proofs rely heavily on a general theory of CSPs developed
in [16, 10] (the so-called algebraic approach) whose central concept is a polymorphism, a
multivariate function preserving the relations in the template. An NP-hardness criterion in
terms of polymorphisms has been isolated in [10] and was conjectured to be the only source
of hardness – all the templates that do not satisfy this criterion should be in P. This is what
Bulatov and Zhuk confirmed in their work.

This paper studies a recently introduced [1, 6] vast generalization of the fixed-template
CSP, the Promise CSP (PCSP). A promise template is a pair (A, B) of finite relational
structures such that A → B, i.e., there exists a homomorphism from A to B. The PCSP over
(A, B) is then (in the search version) the following problem: given a relational structure X
such that X → A (this is the promise), find a homomorphism X → B (which is guaranteed
to exist since A → B). This framework generalizes that of CSP (where A = B) and also
includes many important problems in approximation, e.g., if A = Kk and B = Kl, k ≤ l,
then PCSP(A, B) is the problem of finding an l-coloring of a k-colorable graph, a problem
whose complexity is open after more than 40 years of research. On the other hand, the basics
of the algebraic approach to CSPs from [5] can be generalized to PCSPs [12, 3], and this
discovery gives us hope that a full complexity classification might be possible.

Motivated by this ambitious goal, a line of research focuses on studying restricted classes of
templates, the two main directions being graph templates and Boolean templates, mimicking
the two “base cases” in the CSP. For the graph templates, a complexity conjecture has
been formulated by Brakensiek and Guruswami in [6] stating that all templates that are
not in P for simple reasons (A or B has a loop or is bipartite) are NP-hard. Boolean
templates form a rich source of examples and are the context where the PCSP framework
was introduced [1, 6]. Boolean PCSPs are interesting both from the NP-hardness perspective
and, unlike the graph templates, from the algorithmic perspective: a generalization of [3] in
[9] brought the strongest NP-hardness criterion we currently have, which we will also employ
in this paper, and the most general polynomial algorithm [7, 8] also came from investigating
Boolean PCSPs. The strongest classification result obtained so far in this direction is the
dichotomy theorem over Boolean symmetric templates, i.e., templates whose relations are all
invariant under permutations of coordinates [6, 14].

Note that both undirected graphs and symmetric Boolean templates use symmetric
relations – undirected graphs consist of a single binary relation over a domain of an arbitrary
size, symmetric Boolean templates consist of arbitrarily many symmetric relations of arbitrary
arities over a two-element domain. The focus of this paper is somewhere in between these
two extremes: we study templates (A, B) where A consists of a single symmetric ternary
relation over a two-element set. Our motivation was that the classification of more concrete
templates of PCSPs is needed for improving the general theory, such as finding hardness and
tractability criteria. The class we study is amenable for case analysis and, on the other hand,
already includes important problems both from a hardness and an algorithmic perspective
(e.g., k-coloring a 2-colorable 3-uniform hypergraph or finding a positive not-all-equal solution
to a satisfiable positive 1-in-3-sat instance).

Let (A, B) be a PCSP template such that A has domain {0, 1} and a single symmetric
ternary relation R ⊆ {0, 1}3, and let B consist of a single relation R ⊆ B3 on a domain B.
By taking into account the main result of [13] and ruling out some trivial cases (see Section 4
for details), we are left with the case where A = 1in3 and R is also symmetric.

L. Barto, D. Battistelli, and K. M. Berg 10:3

Figure 1 The Ordering of Homomorphism Classes of Symmetric Structures.

Note that in this situation PCSP(A, B) has a hypergraph coloring interpretation: given
a 3-uniform hypergraph that is 1in3-colorable (that is, each vertex can be assigned a color
from {0,1} so that there is exactly one 1 appearing in each hyperedge), find a B-coloring
(that is, a coloring by B such that the three colors appearing in each hyperedge are from R).1

1.1 Three-element domain
The first non-Boolean domain size, |B| = 3, already turns out to be interesting. Figure 1
shows all the templates B ordered by the relation B ≤ B′ if B → B′ (if B ≤ B′ ≤ B,
only one representative is drawn; we also remark that lines are drawn solid or dashed only
to improve clarity in the picture). As B ≤ B′ implies that PCSP(1in3, B′) reduces to
PCSP(1in3, B), the higher the template is, the “easier” the corresponding PCSP is. This
fact and the notation of the templates are detailed in Sections 2 and 4.

We were able to classify all but one case:

▶ Theorem 1. Let (1in3, B) be a PCSP template, where B has domain-size three.
If NAE → B or T2 → B, then PCSP(1in3, B) is in P.
If B → T1 or B → D+

1 or B → D+
2 , then PCSP(1in3, B) is NP-hard.

Even though |B| = 3 is a small domain size, many interesting phenomena already show
up, and we believe that the collection of templates is a valuable source of examples for further
exploration. We now emphasize some of the phenomena and open questions.

1 We commit a slight imprecision here, since the relation of the instance can contain entries with
repeated coordinates, and thus not all instances correspond to 3-uniform hypergraphs. The difference is
insignificant for our results.

STACS 2021

10:4 Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case

Tractability of NAE and T2 can be obtained by using the sufficient condition from [7, 8]
– the existence of block-symmetric polymorphisms of arbitarily large block-sizes. However,
T2 is “simpler” in that one can use a finite-template CSP to solve it in polynomial-time,
while for NAE no such finite template exists [2]. Among the templates in Figure 1, where is
the borderline for such a “finite tractability”?

Two features of our NP-hardness results are worth noting. First, they are obtained by
applying the currently strongest NP-hardness condition from [9]. It seems (but we do not
prove it here) that weaker conditions, which were sufficient for NP-hardness of symmetric
Boolean CSPs [6, 14] and NP-hardness of approximate hypergraph coloring [13] (cf. [3]),
are not sufficient here, namely for D+

2 . The only other such templates we are aware of are
those from [9]. Second, NP-hardness of D+

1 has, similarly to [13], topological sources since it
employs the high chromatic number of Kneser’s graphs [18] – a result of Lovász that started
topological combinatorics. However, the application of Kneser’s graphs is more direct in our
situation, and this may help in further improving the topological methods in PCSPs. In
particular, it would be desirable to find a common generalization of the proof in [13] and in
the paper [17], which employs algebraic topology in a seemingly different way.

The unresolved case, T+
1 , in fact corresponds to a natural hypergraph coloring problem

that appears to be new: given a 1in3-colorable 3-uniform hypergraph, find a 3-coloring such
that, in each hyperedge, if two colors are equal, then the third one is higher (as opposed to
“different” for the standard hypergraph coloring). We conjecture that this problem, as well
as the natural generalization to larger domains, is NP-complete. If true, there is a unique
source of hardness for our templates.

1.2 Larger domains
For a 4-element B, the preceding conjecture would resolve all the cases with the exception
of the interval between Č and Č+, where Č is given by the relation containing the tuples
(0, 0, 1), (1, 1, 2), (2, 2, 3), (3, 3, 0) and their permutations, and Č+ is given by the same
relation with all the “rainbow” tuples (i, j, k) such that |{i, j, k}| = 3.2

We are able to show that the bottom of the interval corresponds to an NP-hard PCSP,
and the top one gives a template that does not satisfy the sufficient condition for tractability
from [7, 8].

▶ Theorem 2. PCSP(1in3, Č) is NP-hard. The template (1in3, Č+) does not have a block
symmetric polymorphism with two blocks of sizes 23 and 24.

The theorem suggests that even for |B| = 4, essentially the only tractable cases are NAE
and T2. Is this the case on arbitrary domains?

2 Basic definitions

Throughout this paper, we adopt the convention that [n] = {1, 2, . . . , n}.
A relational structure (of a finite signature) is a tuple A = (A; R1, . . . , Rn), where A

is a set called the domain of A, and each Ri is a relation of arity ari ≥ 1, that is, a
nonempty subset of Aari . A relational structure is symmetric if each relation in it is invariant
under any permutation of coordinates. Two relational structures A = (A; R1, . . . , Rn) and
B = (B; R′

1, . . . , R′
n′) have the same signature if n = n′ and each Ri has the same arity as R′

i.

2 The notation is derived from the Czech word for a square – čtverec.

L. Barto, D. Battistelli, and K. M. Berg 10:5

In this situation, a mapping f : A → B is a homomorphism from A to B, written f : A → B,
if it preserves the relations, that is, for each i and each tuple a ∈ Ri, we have f(a) ∈ R′

i,
where f is applied to a component-wise. The fact that there exists a homomorphism from A
to B is denoted by A → B.

▶ Definition 3. A PCSP template is a pair of finite relational structures with the same
signature, A, B such that A → B. We denote the PCSP template of A and B by (A, B).

For a given PCSP template, it is possible to define both a decision problem and a search
problem variant of the PCSP.

▶ Definition 4. Let (A, B) be a PCSP template. The decision version of PCSP(A, B) is,
given an input structure I with the same signature as A and B, to output yes if I → A and
no if I ̸→ B.

The search version of PCSP(A, B) is, given an input structure I with the same signature
as A and B mapping homomorphically to A, to find a homomorphism h : I → B.

It is not hard to see that the decision version of PCSP(A, B) can be reduced to its search
version. The tractability results in this paper apply to the search version (and hence also to
the decision version), while NP-hardness results apply to the decision version (and hence
also to the search version).

The following concept captures the situation when one PCSP can be reduced to another
one by the trivial reduction, that is, the reduction that does not change the instance.

▶ Definition 5. Let (A, B) and (A′, B′) be PCSP templates of the same signature. We say
that (A′, B′) is a homomorphic relaxation of (A, B) if A′ → A and B → B′.

Observe that, indeed, the trivial reduction from PCSP(A′, B′) to PCSP(A, B) is correct
if and only if (A′, B′) is a homomorphic relaxation of (A, B).

A crucial notion for the algebraic approach to PCSP is a polymorphism. A polymorphism
of a template is simply a homomorphism from a Cartesian power of the first structure to the
second one. This can be spelled out as follows.

▶ Definition 6. Let (A, B) be a PCSP template. A mapping f : An → B (where n is a
positive integer) is a polymorphism of arity n if, for each pair of corresponding relations Ri

and R′
i in the signatures of A and B, respectively, and any (r1,1, r2,1, . . . , rn,1), . . . , (r1,ari

,

r2,ari , . . . , rn,ari) with (rj,1, rj,2, . . . , rj,ari) ∈ Ri for all j ∈ [n], we have (f(r1,1, r2,1, . . . ,

rn,1), . . . , f(r1,ari
, r2,ari

, . . ., rn,ari
)) ∈ R′

i.

Another core concept in the algebraic approach is a minor.

▶ Definition 7. Let f : An → B, α : [n] → [m] be mappings. A minor of f given by α is the
mapping fα : Am → B defined by

fα(a1, . . . , am) = f(aα(1), . . . , aα(n))

for every a1, . . . , am ∈ A. A function g : Am → B is a minor of f if g = fα for some α.

The significance of polymorphisms stems from the fact that the computational complexity
of PCSP(A, B) depends only on the set of all polymorphisms of the template (A, B) [6, 12, 3].
This set is a minion, i.e., it is closed under taking minors.

STACS 2021

10:6 Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case

Table 1 Diagrams of Symmetric Structures.

Diagram

Structure B 1in3 NAE D1 D2 T1 T2

Diagram

Structure B Q1 Q2 Q3 C S

3 Templates

In this section we introduce the notation for the templates considered in the paper, and
provide several easy observations about these templates.

We consider symmetric relational structures with a single ternary relation. To each such
structure B = (B; R) we associate its digraph by taking B as the vertex set and including
the arc b → b′ if and only if (b, b, b′) ∈ R. By B+ we denote the structure obtained from B
by adding to R all the tuples (b, b′, b′′) with |{b, b′, b′′}| = 3. Note that this is the “largest”
structure with the same associated digraph as B. Also observe that over a three-element
domain, i.e., |B| = 3, there are exactly two structures with the same associated digraph. The
notational convention for 3-element structures in Figure 1 is given in Table 1.3 The names in
the table refer to the smaller of the two structures with the same digraph, e.g., the relation
of D2 consists of all permutations of the triples (0, 0, 1), (1, 1, 2), while D+

2 also contains
(0, 1, 2) and its permutations. Of course, the structure depends on the concrete choice of
vertices, but the choice is irrelevant for our purposes.

It is a simple exercise to verify that the ordering in Figure 1 is correct, and we do not
give the details here. Let us just observe that T+

1 is the only case not covered by Theorem 1.
Indeed, the digraph associated to a three-element B either contains a directed cycle, or is
acyclic. In the former case, depending on the length of the cycle we have NAE → B (length
1 or 2) or T2 → B (length 1 or 3). In the latter case, the digraph can be extended to a linear
order, so B → T+

1 . If B ̸= T+
1 , then B has a homomorphism to a symmetric substructure of

T+
1 with one of the four triples, (0, 0, 1), (0, 0, 2), (1, 1, 2), (0, 1, 2), missing. By omitting the

second, the third, or the fourth tuple we get the structures D+
2 , D+

1 , T1 from the second
item of Theorem 1, respectively. By omitting the first tuple, we get a structure B such that
B → 1in3 → B, and so this structure sits at the bottom of Figure 1.

The unresolved case structure T+
1 has a simple description. A tuple (b1, b2, b3) is in its

relation if and only if the following condition is satisfied: if two of b1, b2, b3 are equal to
b, then the remaining one must be strictly greater than b in the linear order 0 < 1 < 2.
We denote the structure obtained by the same definition on a k-element domain ordered
0 < 1 < 2 < · · · < k − 1 by LOk, e.g., LO2 = 1in3 and LO3 = T+

1 .
For the case |B| = 4, a similar case analysis shows that the only structures B with

NAE, T2 ̸→ B and B ̸→ LO4 are the structures whose associated digraph is the directed
cycle of length 4 – the structures in the interval between Č and Č+ alluded to in the
introduction.

3 The notation is derived from the number of edges of the associated digraph in Italian.

L. Barto, D. Battistelli, and K. M. Berg 10:7

Finally, we denote by NAEk the structure with a k-element domain and the ternary
non-all-equal relation, e.g., NAE2 = NAE.

4 Tractability and hardness

In this section we deal with the simple cases, as well as the cases that are resolved by
known results. We also provide the hardness criterion that we will employ for the more
complex cases. Throughout this section we consider a PCSP template (A, B) such that A is
a relational structure with the two-element domain {0, 1} and a single symmetric ternary
relation, and B = (B; R), where B = {0, 1, . . . } and R ⊆ B3.

4.1 Symmetrization
First, observe that R can be assumed symmetric without loss of generality. We first note that
there is a trivial reduction from PCSP(A, B) to PCSP(A, Bsym), where Bsym = (B, Rsym) is
the lower symmetrization of B, i.e., Rsym consists of all the tuples whose every permutation
is in R – in particular, Rsym is symmetric. In the other direction, given an instance X of
PCSP(A, Bsym) such that X → A, we also have Xsym → A, where Xsym = (X, Ssym) is the
symmetrization of X = (X, S), i.e., Ssym contains all the permutations of the tuples in S.
On the other hand, Xsym → B implies X → Bsym, and it follows that X → Xsym is a correct
reduction from PCSP(A, Bsym) to PCSP(A, B). These PCSPs are therefore equivalent.

For the remainder of this section we assume that B is a symmetric structure.

4.2 Tractability
If R (the relation in B) or the relation in A contains a constant tuple, (A, B) is a homomorphic
relaxation of the “trivial” template whose two structures have a one-element domain. In
particular, PCSP(A, B) is in P.

If A = 1in3 and NAE → B, then (A, B) is a homomorphic relaxation of (1in3, NAE).
The PCSP over the latter template is in P by [6], and therefore so is the PCSP over the
former.

The remaining tractable case in Theorem 1 is A = 1in3 and T2 → B. These templates
are homomorphic relaxations of (T2, T2). But the PCSP over (T2, T2), i.e., the CSP over
T2, is in P because the relation of T2 can be described as {(x, y, z) ∈ {0, 1, 2}3 : x + y + z = 1
(mod 3)}, and so CSP(T2) can be efficiently solved by solving a system of linear equations
over the three-element field.

These tractability results can be also derived from a recent theorem that we now state.
We require a definition. A mapping f : An → B is block-symmetric of width k if there exists
a partition of the coordinates of f into blocks X1 ∪ · · · ∪ Xl = [n] of size at least k such that
f is permutation-invariant within each coordinate block Xi.

▶ Theorem 8 ([7, 8]). The following are equivalent for every PCSP template (A, B).
(A, B) has block-symmetric polymorphisms of arbitrarily high width.
For every k ∈ N, (A, B) has a block-symmetric polymorphism of arity 2k + 1 with two
blocks of size k and k + 1.

If these equivalent conditions are satisfied, then PCSP(A, B) is in P.

In fact, this theorem is strong enough to prove the tractability of all the currently known
tractable Boolean PCSPs. In Appendix B we use this fact to provide evidence for the NP-
hardness of PCSP(1in3, Č+): we prove that the template does not have a block-symmetric
polymorphism with two blocks of sizes 23 and 24, as claimed in the second part of Theorem 2.

STACS 2021

10:8 Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case

4.3 Hardness
If R does not contain a constant tuple and A = NAE, then (NAE, NAE|B|) is a
homomorphic relaxation of (A, B), and PCSP(A, B) is therefore NP-hard by the following
theorem.

▶ Theorem 9 ([13]). PCSP(NAEk, NAEl) is NP-hard for every 2 ≤ k ≤ l.

The hard cases in Theorems 1, 2 – that is, A = 1in3, and B = D+
1 , D+

2 , T1, or Č –
are dealt with in Sections 5, 6, and 7, and Appendix A, respectively. All of these results
employ an NP-hardness criterion that we now state. We will require an additional piece
of notation. A chain of minors is a sequence of the form (f0, α0,1, f1, α1,2, . . . , αl−1,l, fl)
where f0, . . . , fl : Ani → B, αi−1,i : [ni−1] → [ni], and f

αi−1,i

i−1 = fi for every i ∈ [l]. We will
then write αi,j : [ni] → [nj] for the composition of αi,i+1, αi+1,i+2, . . . , αj−1,j . Note that
f

αi,j

i = fj .

▶ Theorem 10 (Corollary 4.2. in [9]). Let (A, B) be a PCSP template. Suppose there are
constants k, l ∈ N and an assignment of a set of at most k coordinates sel(f) ⊆ [ar(f)] to
every polymorphism f of (A, B) such that for every chain of minors (f0, α0,1, . . . , fl) with
each fi a polymorphism of (A, B), there are 0 ≤ i < j ≤ l such that αi,j(sel(fi)) ∩ sel(fj) ̸= ∅
(or, equivalently, sel(fi) ∩ α−1

i,j (sel(fj)) ̸= ∅). Then PCSP(A, B) is NP-hard.

The special case l = 1 of this theorem is sufficient to prove the NP-hardness of all NP-hard
symmetric Boolean PCSPs. For Theorem 9, l = 1 is not sufficient; however, it can be derived
using a still weaker version of Theorem 10.4 Theorem 10 in its full power was first used in [9]
to prove the NP-hardness of certain symmetric non-Boolean PCSPs.

4.4 0-sets, 1-sets, . . .
We conclude this section by introducing the notion of an i-set, which will be used extensively
throughout the rest of the paper.

Given a mapping f : {0, 1}n → B (usually an n-ary polymorphism of (1in3, B)) and a
subset of coordinates X ⊆ [n], we write f(X) for the value f(a1, . . . , an) where ai = 1 if
i ∈ X and ai = 0 else. We say that X is a 0-set if f(X) = 0. 1-sets, 2-sets, etc. are defined
similarly. The function f will be always clear from the context.

Observe that f : {0, 1}n → B is a polymorphism of (1in3, B) if and only if, for
every partition of the coordinates of f into three blocks X ∪ Y ∪ Z = [n], we have
(f(X), f(Y), f(Z)) ∈ R. The forward implication of this observation will be applied many
times in the proofs, and we simply say, e.g., “by compatibility of f(X), f(Y) and f(Z),” “by
compatibility applied to X and Y , . . . ,” or “by compatibility, . . . ” in such situations.

For example, it is common in our templates for the relation R to have no tuple of the
form (2, 2, ∗). Therefore, if X and Y are both known to be 2-sets, we would argue that, by
compatibility, it must be the case that X and Y are not disjoint. In such cases, we would
say, e.g., “there are no disjoint 2-sets of f .”

One useful feature of i-sets is that they are closed under preimages within a chain of
minors – that is, if (f0, α0,1, f1, α1,2, . . . , αl−1,l, fl) is a chain of minors for (1in3, B) and
X is an i-set for some polymorphism fj1 in the chain with 0 ≤ j1 ≤ l, then for any j2 with
0 ≤ j2 < j1, α−1

j2,j1
(X) is an i-set of fj2 .

4 In fact, the proof in [3] (Theorem 5.23) is based on [13] and applies a version which uses a super-constant
k (it is enough that, e.g., k is bounded by a polynomial in the logarithm of the arity of f). Wrochna [20]
has shown that this is not necessary. We also remark that Theorem 10 can also be strengthened to
super-constant values of k.

L. Barto, D. Battistelli, and K. M. Berg 10:9

5 D+
1

In this section we prove the NP-hardness of PCSP(1in3, D+
1), where D+

1 = ({0, 1, 2}, R) and
R consists of all the permutations of the tuples (0, 0, 1), (0, 0, 2), and (0, 1, 2).

Before applying Theorem 10, we first derive several properties of polymorphisms of the
template. Let us fix any polymorphism f : {0, 1}n → {0, 1, 2} of (1in3, D+

1)

▶ Lemma 11. There are no two disjoint 1-sets nor 2-sets.

Proof. If X and Y are i-sets for the same i ∈ {1, 2}, then (f(X), f(Y), f([n] \ (X ∪ Y)) ∈ R

by compatibility. But R does not contain any tuple of the form (1, 1, ∗) or (2, 2, ∗), a
contradiction. ◀

The next lemma uses the high chromatic number of Kneser graphs. Recall that the Kneser
graph with parameters n, m, denoted KGn,m, is the graph whose vertices are the m-element
subsets of [n], and where two vertices are adjacent if and only if the two corresponding sets
are disjoint.

▶ Theorem 12 (Lovász [18]). For n ≥ 2m, there is no coloring of KGn,m by strictly less
than n − 2m + 2 colors.

▶ Lemma 13. f has a 1-set or a 2-set of size at most 3.

Proof. We first assume that n ≥ 2 and set m = ⌊(n − 2)/2⌋. Since n − 2m + 2 ≥ 4,
Theorem 12 implies that the mapping X 7→ f(X) cannot be a valid coloring of KGn,m.
Therefore, there are two disjoint sets X and Y of size m such that f(X) = f(Y). By
compatibility applied to X and Y , the set Z = [n] \ (X ∪ Y) is a 1-set or 2-set. Its size is at
most n − 2m ≤ 3.

In the case n = 1, {1} is itself a 1-set or a 2-set by compatibility applied to ∅ and ∅. ◀

We are ready to prove the NP-hardness of our template.

▶ Theorem 14. PCSP(1in3, D+
1) is NP-hard

Proof. We apply Theorem 10 with k = 3 and l = 2. For a polymorphism f of the template,
we define sel(f) as a 1-set or a 2-set of size at most 3 – such a set exists by Lemma 13 (if
both a small 1-set and a small 2-set exist, we select arbitrarily).

Let (f0, α0,1, f1, α1,2, f2) be a chain of minors consisting of polymorphisms. By the
pigeonhole principle, there exists 0 ≤ i < j ≤ 2 such that sel(fi) and sel(fj) is an m-set for
the same m ∈ {1, 2}. Then α−1

i,j (sel(fj)) is an m-set as well and then sel(fi)∩α−1
i,j (sel(fj)) ̸= ∅

by Lemma 11, as required. ◀

6 D+
2

In this section we prove the NP-hardness of PCSP(1in3, D+
2), where D+

2 = ({0, 1, 2}, R) and
R consists of all the permutations of the tuples (0, 0, 1), (1, 1, 2), and (0, 1, 2).

Let f : {0, 1}n → {0, 1, 2} be a polymorphism of (1in3, D+
2). We start with a lemma

that concerns unions of i-sets.

▶ Lemma 15. Let X and Y be disjoint subsets of [n].
(a) If f(∅) = 0, f(X) = 0, and f(Y) ∈ {0, 2}, then f(X ∪ Y) ∈ {0, 2}.
(b) If f(∅) = 0, f(X) = 1, and f(Y) ∈ {0, 1}, then f(X ∪ Y) = 1.
(c) If f(∅) = 1, f(X) = f(Y) = 1, then f(X ∪ Y) ∈ {0, 1}.
(d) If f(∅) = 1, f(X) = f(Y) = 0, then f(X ∪ Y) = 2.

STACS 2021

10:10 Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case

Proof. For the first item, by compatibility applied to X and Y , the complement Z =
[n] \ (X ∪ Y) is a 1-set. Therefore, by compatibility applied to ∅ and Z, X ∪ Y is a 0-set or
a 2-set. The proof for the remaining items is similar. ◀

The following lemma will be useful in the case that ∅ is a 0-set. Note that in this case [n]
is a 1-set by compatibility applied to ∅ and ∅.

▶ Lemma 16. Assume f(∅) = 0 and that f has no singleton 2-set. Then f has a singleton
1-set and does not have any two disjoint 1-sets.

Proof. If every singleton is a 0-set, then by adding to ∅ singletons, one by one, and using
item (a) of Lemma 15, we get that [n] is a 0-set or a 2-set. But by the preceding observation,
[n] is a 1-set. This contradiction shows that there exists a singleton 1-set.

For the second part of the claim, suppose X and Y are disjoint 1-sets. By adding to Y

singletons and using item (b) of Lemma 15, we obtain that [n] \ X is a 1-set, a contradiction
to compatibility applied to ∅ and X. ◀

We now consider the case that ∅ is a 1-set. Observe that [n] is a 2-set in this case.

▶ Lemma 17. Assume f(∅) = 1 and that, for some j ≥ 2, all at most j-element subsets of
[n] are 1-sets. Then j < n and all (j + 1)-element subsets of [n] are 1-sets.

Proof. Clearly j < n as [n] is a 2-set. Assume, for a contradiction, that for some j-element
X and y ̸∈ X, the set Y := X ∪ {y} is not a 1-set. Since X and {y} are 1-sets, then Y is a
0-set by item (c) of Lemma 15.

We prove by induction on i that every set Z of size i disjoint with Y is a 1-set. The base
case of the induction may be, e.g., i = 0 (or i = j). For the induction step, consider an
(i + 1)-element Z disjoint from Y and write Z = Z ′ ∪ {z} where |Z ′| = i. By the induction
hypothesis Z ′ is a 1-set. The set {y, z} is a 1-set as well by assumption (note that j ≥ 2).
Therefore Z ′ ∪ {y, z} = Z ∪ {y} is a 0-set or 1-set by item (c) of Lemma 15. By compatibility
applied to X and Z ∪ {y}, the complement W = [n] \ (X ∪ Z ∪ {y}) = [n] \ (Y ∪ Z) is a 0-set
or 2-set. But then, by compatibility applied to Y (a 0-set) and W , Z is a 1-set, as required.

We have proved that [n] \ Y is a 1-set, a contradiction to compatibility applied to ∅
and Y . ◀

▶ Lemma 18. If f(∅) = 1, then there exists a 0-set or a 2-set of size at most 2.

Proof. In the opposite case, every set of coordinates of size at most 2 is a 1-set. It would
then follow from Lemma 17 that [n] is a 1-set, a contradiction. ◀

Equipped with these lemmata, we can now proceed to our main argument for this section.

▶ Theorem 19. PCSP(1in3, D+
2) is NP-hard.

Proof. We apply Theorem 10 with k = 2 and l = 5. We assign to a polymorphism its type
and define sel(f) as follows.

Type 1: f has a 2-set X of size at most 2. In this case we set sel(f) = X.
Type 2: f has no 2-set of size at most 2, f(∅) = 0, and {x} is a 1-set for some x ∈ [n].
We set sel(f) = {x}.
Type 3: f has no 2-set of size at most 2, f(∅) = 1, and f has a 0-set X of size at most 2.
We set sel(f) = X.

L. Barto, D. Battistelli, and K. M. Berg 10:11

Note that ∅ cannot be a 2-set. The first part of Lemma 16 and Lemma 18 then guarantee
that every polymorphism is of one of the three types.

Let (f0, α0,1, . . . , fl) be a chain of minors consisting of polymorphisms. Note that fi(∅)
does not depend on i, therefore types 2 and 3 do not simultaneously occur in the chain. If,
for some i < j, both fi and fj have type 1, then sel(fi) and α−1

i,j (sel(fj)) are both 2-sets, so
they have a nonempty intersection. Similarly, if two polymorphisms in this chain have type
2, then we obtain a nonempty intersection by the second part of Lemma 16.

Otherwise, since l = 5, the chain contains four polymorphisms fi1 , fi2 , fi3 , fi4 of type 3
(where i1 < i2 < i3 < i4). Let X1 = sel(fi1) and Xj = α−1

i1,ij
(sel(fij

)) for j = 2, 3, 4. These
four sets are 0-sets (as preimages of 0-sets). If they are pairwise disjoint, then X1 ∪ X2
and X3 ∪ X4 are disjoint sets, which are 2-sets by item (d) in Lemma 15, a contradiction.
Therefore, two of these sets, say Xj and Xj′ , have a nonempty intersection. But then
Y := sel(fij

) and Z := α−1
ij ,ij′ (sel(fi′

j
)) also have a nonempty intersection as Xj = α−1

i1,ij
(Y)

and Xj′ = α−1
i1,ij

(Z). 5 ◀

7 T1

In this section we prove the NP-hardness of PCSP(1in3, T1), where T1 = ({0, 1, 2}, R) and
R consists of all the permutations of the tuples (0, 0, 1), (0, 0, 2), and (1, 1, 2).

Let f : {0, 1}n → {0, 1, 2} be a polymorphism of (1in3, T1). Note that, as in the previous
cases, f cannot have two disjoint 2-sets. In particular, ∅ is a 0-set or a 1-set. The following
simple lemma will be useful in both cases.

▶ Lemma 20. If Z ⊆ X ∪ Y , and X and Y are 1-sets, then Z is not a 2-set.

Proof. By compatibility applied to X and Y , the complement [n] \ (X ∪ Y) is a 2-set. Since
it is disjoint with Z, Z cannot be a 2-set. ◀

For the case f(∅) = 0 we introduce some notation. We define r : {0, 1, 2} → {0, 1} by
0 7→ 0 and 1, 2 7→ 1, and set

E(f) = {x ∈ [n] : r(f({x})) = 1}, and I(f) = {x ∈ [n] : r(f({x})) = 0} = [n] \ E(f).

▶ Lemma 21. The size of E(f) is odd and, for any set of coordinates X ⊆ [n], we have
r(f(X)) = |X ∩ E(f)| mod 2.

Proof. By the “union argument” as in the proof of Lemma 15, we get that for any two
disjoint Y and Z, r(f(Y ∪ Z)) = r(f(Y)) + r(f(Z)), where the addition is modulo 2. It then
follows (by adding to ∅ singletons from X) that r(f(X)) =

∑
x∈X r(f({x})) = |X ∩ E(f)|

mod 2.
In particular, r(f([n])) = |E(f)| mod 2. But [n] cannot be a 0-set (by compatibility

applied to ∅ and ∅), so |E(f)| is odd. ◀

▶ Lemma 22. Suppose that f(∅) = 0 and f does not have any 2-sets of size 2. If X is a
1-set such that E(f) \ X is nonempty, then X ∪ I(f) is a 1-set.

5 The last part of the argument applies Theorem 10 in a similar way as in [9], see their “smug sets”
Corollary 4.2.

STACS 2021

10:12 Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case

Proof. It is enough to show that X ∪ {y} is a 1-set for any y ∈ I(f), as the claim then
follows by induction. By Lemma 21, X ∪ {y} is a 1-set or 2-set, so it is enough to exclude
the latter option. Take z ∈ E(f) \ X. By Lemma 21, {y, z} is a 1-set or a 2-set, therefore it
is a 1-set by the assumption. But then X ∪ {y} is not a 2-set by Lemma 20. ◀

▶ Lemma 23. Assume that f(∅) = 0 and f does not have any singleton 2-set. If X ⊆ E(f)
is a 1-set, then, for any Y ⊆ E(f) with |Y | = |X|, Y is a 1-set.

Proof. We will show that Z := (X \ {x}) ∪ {y} is a 1-set for any x ∈ X and y ∈ E(f). The
claim will then follow by induction since any set Y can be obtained from X by a sequence of
such “swaps”.

By Lemma 21 and the non-existence of singleton 2-sets, |X| is odd, Z is a 1-set or 2-set,
and {y} is a 1-set (it cannot be a 2-set by the assumption of the lemma). Since Z ⊆ X ∪ {y},
then Z is a 1-set by Lemma 20. ◀

▶ Lemma 24. If f(∅) = 0 and f does not have any 2-sets of size at most 2, then |E(f)| ≤ 5.

Proof. We first observe that any X ⊆ E(f) of odd size |X| ≤ |E(f)|/2 is a 1-set. Indeed,
otherwise we can find Y disjoint from X of the same size. By Lemma 21 and Lemma 23,
both X and X ′ are 2-sets, a contradiction.

By Lemma 21, the size i := |E(f)| is odd. If i > 5, then E(f) can be written as a disjoint
union E(f) = X ∪ Y ∪ Z of sets that have odd sizes smaller than |E(f)|/2. By the previous
paragraph, all of these sets are 1-sets. But then, by Lemma 22, Z ∪ I(f) = [n] \ (X ∪ Y) is a
1-set as well, a contradiction to compatibility applied to X and Y . ◀

We now consider the case that ∅ is a 1-set. Observe that [n] is a 2-set in this case.

▶ Lemma 25. If f(∅) = 1, then f has a 2-set of size at most 2.

Proof. Assume, for a contradiction, that there are no 2-sets of size at most 2.
Union arguments in the case f(∅) = 1 give us r(f(Y ∪ Z)) = r(f(X)) + r(f(Y)) + 1

(mod 2) and, as in Lemma 21, we obtain that X = {x ∈ [n] : f({x}) = 0} has an odd size
and that, using additionally the “no two-element 2-sets” assumption, every two-element
subset of X is a 1-set.

Note that if Y and Z are disjoint 1-sets, then the union argument gives us a sharper result
– Y ∪ Z is a 1-set. It follows that X \ {x}, where x ∈ X is an arbitrary element, is a 1-set
(as it is a disjoint union of 2-element subsets of X) and [n] \ X is a 1-set (as it is a disjoint
union of singletons outside X, which are 1-sets by the “no singleton 2-set” assumption). Now
compatibility applied to X \ {x} and [n] \ X gives us that {x} is a 2-set, a contradiction. ◀

▶ Theorem 26. PCSP(1in3, T1) is NP-hard.

Proof. We apply Theorem 10 with k = 5 and l = 2. We assign to a polymorphism its type
and define sel(f) as follows.

Type 1: f has a 2-set X of size at most 2. In this case we set sel(f) = X.
Type 2: f has no 2-set of size at most 2. In this case we set sel(f) = E(f).

Note that sel(f) in type 1 is nonempty. Type 2 only occurs in the case that f(∅) = 0 (by
Lemma 25), and then E(f) has size at most 5 by Lemma 24.

Let (f0, α0,1, f1, α0,2, f2) be a chain of minors consisting of polymorphisms. If both fi

and fj (where i < j) have type 1, then sel(fi) and α−1
i,j (sel(fj)) are both 2-sets, so they

have a nonempty intersection. Otherwise, since l = 2, the chain contains 2 polymorphisms

L. Barto, D. Battistelli, and K. M. Berg 10:13

fi, fj of type 2 (where i < j). We have fi(∅) = fj(∅) = 0 and α−1
i,j (sel(fj)) is a 1-set of fi.

By Lemma 21, this 1-set has an odd-sized intersection with E(fi) = sel(fi), in particular
sel(fi) ∩ α−1

i,j (sel(fj)) ̸= ∅. ◀

8 Conclusion

The investigation of PCSPs over the templates (A, B), with A a Boolean structure consisting
of a single ternary symmetric relation, boils down to PCSP(LO2, B) where B is symmetric.
We have classified the computational complexity for all such three-element structures B with
the exception of B = LO3. The remaining case, and its generalization to larger domains,
is a natural computational problem – recall the interpretation as a version of hypergraph
coloring from the introduction. We conjecture that all of them are NP-hard.

▶ Conjecture 27. For every 2 ≤ k < l, PCSP(LOk, LOl) is NP-hard.

A possible intermediate step to resolving the smallest unknown case, PCSP(LO2, LO3),
is to replace LO2 by a 3-element structure in the interval between 1in3 and LO3.

For four-element structures, the remaining cases additionally include the structures in the
interval between Č and Č+. We proved NP-hardness for Č and provided evidence suggesting
that Č+ also gives rise to an NP-hard PCSP:

▶ Conjecture 28. PCSP(1in3, Č+) is NP-hard.

Negative resolution of this conjecture would also be valuable – it would require a
polynomial-time algorithm that has not yet been used for PCSPs.

Observe that a homomorphism from a 3-uniform hypergraph to Č+ also has a nice
interpretation, as a coloring by 4-colors such that if two vertices of an hyperedge receive the
same color, the last vertex must receive a color which is one higher (mod 4). Other templates
admit a natural interpretation and generalizations as well, e.g., B = D2.

Finally, it seems possible that (1in3, NAE) and (1in3, T2) are essentially the only
tractable templates for arbitrary domain sizes. We do not feel that we have enough evidence
supporting such a conjecture, so we refrain from phrasing it.

References
1 Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2 + ϵ)-Sat is NP-hard. SIAM J.

Comput., 46(5):1554–1573, 2017. doi:10.1137/15M1006507.
2 L. Barto. Promises make finite (constraint satisfaction) problems infinitary. In 2019 34th

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–8, 2019.
3 Libor Barto, Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach to promise

constraint satisfaction, 2019. arXiv:1811.00970.
4 Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and how to use them. In

Andrei Krokhin and Stanislav Živný, editors, The Constraint Satisfaction Problem: Complexity
and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.15301.1.

5 Libor Barto, Jakub Opršal, and Michael Pinsker. The wonderland of reflections. Israel Journal
of Mathematics, 223(1):363–398, February 2018. doi:10.1007/s11856-017-1621-9.

6 Joshua Brakensiek and Venkatesan Guruswami. Promise constraint satisfaction: Structure
theory and a symmetric boolean dichotomy. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA’18, pages 1782–1801, Philadelphia,
PA, USA, 2018. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/
citation.cfm?id=3174304.3175422.

STACS 2021

https://doi.org/10.1137/15M1006507
http://arxiv.org/abs/1811.00970
https://doi.org/10.4230/DFU.Vol7.15301.1
https://doi.org/10.1007/s11856-017-1621-9
http://dl.acm.org/citation.cfm?id=3174304.3175422
http://dl.acm.org/citation.cfm?id=3174304.3175422

10:14 Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case

7 Joshua Brakensiek and Venkatesan Guruswami. Symmetric polymorphisms and efficient
decidability of promise CSPs. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’20, page 297–304, USA, 2020. Society for Industrial and Applied
Mathematics.

8 Joshua Brakensiek, Venkatesan Guruswami, Marcin Wrochna, and Stanislav Živný. The
power of the combined basic linear programming and affine relaxation for promise constraint
satisfaction problems. SIAM Journal on Computing, 49(6):1232–1248, 2020. doi:10.1137/
20M1312745.

9 Alex Brandts, Marcin Wrochna, and Stanislav Živný. The Complexity of Promise SAT on
Non-Boolean Domains. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th
International Colloquium on Automata, Languages, and Programming (ICALP 2020), volume
168 of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1–17:13, Dagstuhl,
Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
ICALP.2020.17.

10 Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM J. Comput., 34(3):720–742, March 2005. doi:
10.1137/S0097539700376676.

11 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 319–330, October 2017.
doi:10.1109/FOCS.2017.37.

12 Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach to promise constraint
satisfaction. In Proceedings of the 51st Annual ACM SIGACT Symposium on the Theory of
Computing (STOC ’19), New York, NY, USA, 2019. ACM. doi:10.1145/3313276.3316300.

13 Irit Dinur, Oded Regev, and Clifford Smyth. The hardness of 3-uniform hypergraph coloring.
Combinatorica, 25(5):519–535, September 2005. doi:10.1007/s00493-005-0032-4.

14 Miron Ficak, Marcin Kozik, Miroslav Olsák, and Szymon Stankiewicz. Dichotomy for
Symmetric Boolean PCSPs. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini,
and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 57:1–57:12, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.ICALP.2019.57.

15 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Combin. Theory Ser. B,
48(1):92–110, 1990.

16 Peter Jeavons. On the algebraic structure of combinatorial problems. Theor. Comput. Sci.,
200(1-2):185–204, 1998.

17 A. Krokhin and J. Opršal. The complexity of 3-colouring H-colourable graphs. In 2019 IEEE
60th Annual Symposium on Foundations of Computer Science (FOCS), pages 1227–1239, 2019.
doi:10.1109/FOCS.2019.00076.

18 Lászlo Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory
Ser. A, 25(3):319–324, 1978. doi:10.1016/0097-3165(78)90022-5.

19 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing, STOC ’78, pages 216–226, New York, NY,
USA, 1978. ACM. doi:10.1145/800133.804350.

20 Marcin Wrochna. personal communication.
21 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5), August 2020.

doi:10.1145/3402029.

A Č

In this appendix we begin the proof of Theorem 2 by verifying the first statement: the NP-
hardness of PCSP(1in3, Č), where Č = ({0, 1, 2, 3}, R) and R consists of all the permutations
of the tuples (0, 0, 1), (1, 1, 2), (2, 2, 3), and (0, 3, 3).

https://doi.org/10.1137/20M1312745
https://doi.org/10.1137/20M1312745
https://doi.org/10.4230/LIPIcs.ICALP.2020.17
https://doi.org/10.4230/LIPIcs.ICALP.2020.17
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1145/3313276.3316300
https://doi.org/10.1007/s00493-005-0032-4
https://doi.org/10.4230/LIPIcs.ICALP.2019.57
https://doi.org/10.1109/FOCS.2019.00076
https://doi.org/10.1016/0097-3165(78)90022-5
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/3402029

L. Barto, D. Battistelli, and K. M. Berg 10:15

Before applying Theorem 10, we begin by deriving several properties of polymorphisms
of the template. Let f : {0, 1}n → {0, 1, 2, 3} be a polymorphism of (1in3, Č).

▶ Lemma 29. Suppose f(∅) = i.
(a) f has no (i + 2 mod 4)-sets.
(b) f has no two disjoint (i + 1 mod 4)-sets.

Proof. Suppose f(∅) = 0. If X ⊆ [n] were a 2-set, then by compatibility with ∅ it would be
the case that [n] \ X is compatible with a 0-set and a 2-set. There are no such sets, proving
item (a) for this value. Furthermore, if X ⊆ [n] and Y ⊆ [n] are both disjoint 1-sets, then by
compatibility with X and Y , [n] \ (X ∪ Y) is a 2-set, but there are no such sets, proving
item (b) for this value.

The proof for the remaining values of i is similar. ◀

Union arguments (see the proof of Lemma 15) give us the following properties.

▶ Lemma 30. Let X and Y be disjoint subsets of [n].
(a) If f(∅) = f(X) = f(Y) = i, then f(X ∪ Y) = i.
(b) If f(∅) = i and f(X) = f(Y) = i + 3 mod 4, then f(X ∪ Y) = i + 1 mod 4.

Finally, we prove a lemma about small i-sets which will facilitate our main argument for
this appendix.

▶ Lemma 31. If f(∅) = i, and f has no (i + 3 mod 4)-set with size at most 2, then there
exists a singleton (i + 1 mod 4)-set.

Proof. We will consider the case where f(∅) = 0, as proofs for other values of i will be
similar. Observe that in this case, [n] is a 1-set by compatibility applied to ∅ and ∅. Suppose
by way of contradiction that no such y ∈ [n] exists. It must then be the case that every
singleton is a 0-set. However, by adding to ∅ singletons, one by one, and using item (a) of
Lemma 30, we get that [n] is a 0-set, a contradiction. ◀

Equipped with these lemmata, we can now proceed to our main argument for this
appendix.

▶ Theorem 32. PCSP(1in3, Č) is NP-hard.

Proof. We apply Theorem 10 with k = 2 and l = 5. We assign to a polymorphism with
f(∅) = i its type and define sel(f) as follows.

Type 1: f has a (i + 3 mod 4)-set X of size at most 2. In this case we set sel(f) = X.
Type 2: f does not have a (i + 3 mod 4)-set of size at most 2 and f has a singleton (i + 1
mod 4)-set {x}. We set sel(f) = {x}.

Lemma 31 guarantees that every polymorphism is of one of the two types.
Let (f0, α0,1, . . . , fl) be a chain of minors consisting of polymorphisms and note that the

value at ∅ is constant throughout the chain. For simplicity, let this value be 0. If, for some
i < j, both fi and fj have type 2, then sel(fi) and α−1

i,j (sel(fj)) are both 1-sets, so they have
a nonempty intersection by item (b) of Lemma 29.

Otherwise, since l = 5, the chain contains four polymorphisms fi1 , fi2 , fi3 , fi4 of type 1
(where i1 < i2 < i3 < i4). Let X1 = sel(fi1) and Xj = α−1

i1,ij
(sel(fij

)) for j = 2, 3, 4.
These four sets are 3-sets (as preimages of 3-sets). If they are pairwise disjoint, then

X1 ∪ X2 and X3 ∪ X4 are disjoint sets, which are 1-sets by item (b) in Lemma 30, a
contradiction with item (b) of Lemma 29.

STACS 2021

10:16 Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case

Therefore, two of these sets, say Xj and Xj′ , have a nonempty intersection. But then
Y := sel(fij

) and Z := α−1
ij ,ij′ (sel(fi′

j
)) also have a nonempty intersection as Xj = α−1

i1,ij
(Y)

and Xj′ = α−1
i1,ij

(Z). ◀

B Č+

Recall that Č+ = ({0, 1, 2, 3}, R), where R consists of all the permutations of the tuples
(0, 0, 1), (1, 1, 2), (2, 2, 3), and (0, 3, 3), as well as all the “rainbow” tuples (i, j, k) such that
|{i, j, k}| = 3. In this appendix we show that there is no block symmetric polymorphism of
(1in3, Č+) with two blocks of sizes 23 and 24.

▶ Lemma 33. If g : {0, 1}47 → {0, 1, 2, 3} is a block symmetric polymorphism of (1in3, Č+)
with two blocks of sizes 23 and 24, then there exists a symmetric polymorphism f : {0, 1}23 →
{0, 1, 2, 3} of (1in3, Č+).

Proof. We will define f : {0, 1}23 → {0, 1, 2, 3} based on the symmetric blocks of g, which we
name X23 and X24 in accordance with their sizes. For any X ⊆ [23], we set f(X) = g(Y ∪Z),
where Y ⊆ X23 with |Y | = |X| and Z ⊆ X24 with |Z| = 8. By construction, then, f is a
symmetric polymorphism of (1in3, Č+). ◀

▶ Theorem 34. There is no block symmetric polymorphism of (1in3, Č+) with two blocks of
sizes 23 and 24.

Proof. Suppose by way of contradiction that there is such a polymorphism, say g : {0, 1}47 →
{0, 1, 2, 3}. Let f : {0, 1}23 → {0, 1, 2, 3} be a symmetric polymorphism of (1in3, Č+),
guaranteed by the previous lemma.

Since f is symmetric, we adopt the convention that f(m) is the value of f(X) for any
X ⊆ [n] with |X| = m. Assume now that f(8) = 0 – our argument will be constructed
such that other choices for the value of f(8) can be carried forward to likewise achieve a
contradiction. By compatibility with f(8) and f(8), we have then that f(7) = 1, and similarly
by compatibility with f(7) and f(7) it must be the case that f(9) = 2. Since f(9) = 2, by
compatibility with f(9) and f(9) it follows that f(5) = 3. In turn, by compatibility with
f(5) and f(5), we get that f(13) = 0. Since f(8) = f(13) = 0, it must then be the case
by compatibility that f(2) = 1. Therefore, since f(14) is compatible with f(7) = 1 and
f(2) = 1, we get that f(14) = 2. Since f(9) = f(14) = 2, it follows in turn by compatibility
that f(0) = 3.

Consider now the possible values of f(6). If f(6) = 0, then f(9) = 1 by compatibility
with f(6) and f(8), but it has already been shown that f(9) = 2, a contradiction. If f(6) = 2,
then f(8) = 3 by compatibility with f(6) and f(9), but by our initial assumption, f(8) = 0,
a contradiction. If f(6) = 1, then f(11) = 2 by compatibility with f(6) and f(6), and
f(10) = 2 by compatibility with f(6) and f(7) = 1. However, it must then be the case
by compatibility with f(10) and f(11) that f(2) = 3, but it has already been shown that
f(2) = 1, a contradiction. Finally, if f(6) = 3, then f(11) = 0 by compatibility with f(6) and
f(6). Similarly, by compatibility with f(5) and f(6), we get that f(12) = 0. But f(0) = 3
and is compatible with f(11) = f(12) = 0, which is a contradiction since no permutation of
(0, 0, 3) is in R. Therefore, no value of f(6) is possible, and thus no such g exists. ◀

This theorem, together with Theorem 32, completes the proof of Theorem 2.

	1 Introduction
	1.1 Three-element domain
	1.2 Larger domains

	2 Basic definitions
	3 Templates
	4 Tractability and hardness
	4.1 Symmetrization
	4.2 Tractability
	4.3 Hardness
	4.4 0-sets, 1-sets, …

	5 D_1^+
	6 D_2^{+}
	7 T_1
	8 Conclusion
	A C}
	B check{C}^+

