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Abstract
The strong exponential-time hypothesis (SETH) is a commonly used conjecture in the field of
complexity theory. It essentially states that determining whether a CNF formula is satisfiable can
not be done faster than exhaustive search over all possible assignments. This hypothesis and its
variants gave rise to a fruitful field of research, fine-grained complexity, obtaining (mostly tight) lower
bounds for many problems in P whose unconditional lower bounds are very likely beyond current
techniques. In this work, we introduce an extensive framework of Quantum Strong Exponential-Time
Hypotheses, as quantum analogues to what SETH is for classical computation.

Using the QSETH framework, we are able to translate quantum query lower bounds on black-box
problems to conditional quantum time lower bounds for many problems in P. As an example, we
provide a conditional quantum time lower bound of Ω(n1.5) for the Longest Common Subsequence
and Edit Distance problems. We also show that the n2 SETH-based lower bound for a recent scheme
for Proofs of Useful Work carries over to the quantum setting using our framework, maintaining a
quadratic gap between verifier and prover.

Lastly, we show that the assumptions in our framework can not be simplified further with
relativizing proof techniques, as they are false in relativized worlds.
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1 Introduction

There is a rich diversity of computational problems that are solvable in polynomial time;
some that have surprisingly fast algorithms, such as the computation of Fourier transforms
or solving linear programs, and some for which the worst-case run time has not improved
much for many decades. The problem is that we have no techniques for proving superlinear
lower bounds. Of the latter category Edit Distance is a good example: this is a problem
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with high practical relevance, and an O(n2) algorithm using dynamic programming has
been known for many decades. Even after considerable effort, no algorithm has been found
that can solve this problem essentially faster than n2. The best known algorithms runs in
O(n2/ log2 n) time [34], still a nearly quadratic run time.

Traditionally, the field of (structural) complexity theory has studied the time complexity
of problems in a relatively coarse manner – the class P, of problems solvable in polynomial
time, is one of the central objects of study in complexity theory.

Consider CNF-SAT, the problem of whether a formula, input in conjunctive normal
form, has a satisfying assignment. What can complexity theory tell us about how hard it is to
solve this problem? For CNF-SAT, the notion of NP-completeness gives a convincing reason
why it is hard to find a polynomial-time algorithm for this problem: if such an algorithm is
found, all problems in the complexity class NP are also solvable in polynomial time, showing
P = NP.

Not only is no polynomial-time algorithm known, but (if the clause-length is arbitrarily
large) no significant speed-up over the brute-force method of trying all 2n assignments is
known. Impagliazzo, Paturi, and, Zane [31, 32] studied two ways in which this can be
conjectured to be optimal. The first of which is called the Exponential-Time Hypothesis
(ETH).

▶ Conjecture 1 (Exponential-Time Hypothesis). There exists a constant α > 0 such that
CNF-SAT on n variables and m clauses can not be solved in time O(m2αn) by a (classical)
Turing machine.

This conjecture can be directly used to give lower bounds for many natural NP-complete
problems, showing that if ETH holds then these problems also require exponential time
to solve. The second conjecture, most importantly for the current work, is the Strong
Exponential-Time Hypothesis (SETH).

▶ Conjecture 2 (Strong Exponential-Time Hypothesis). There does not exist δ > 0 such that
CNF-SAT on n variables and m clauses can be solved in O(m2n(1−δ)) time by a (classical)
Turing machine.

The strong exponential-time hypothesis also directly implies many interesting exponential
lower bounds within NP, giving structure to problems within the complexity class. A wide
range of problems (even outside of just NP-complete problems) can be shown to require
strong exponential time assuming SETH: for instance, recent work shows that, conditioned on
SETH, classical computers require exponential time for strong simulation of several models
of quantum computation [29, 35].

Surprisingly, SETH is not only a very productive tool for studying the hardness of
problems that likely require exponential time, but can also be used to study the difficulty of
solving problems within P, forming a foundation for the field of fine-grained complexity. The
first of such a SETH-based lower bound was given in [40], via a reduction from CNF-SAT
to the Orthogonal Vectors problem, showing that a truly subquadratic algorithm that
can find a pair of orthogonal vectors among two lists would render SETH false.

The Orthogonal Vectors problem became one of the central starting points for
proving SETH-based lower bounds, and conditional lower bounds for problems such as
computing the Frechet distance between two curves [20], sequence comparison problems such
as the string alignment problem [6] and Dynamic Time Warping [4], can all obtained via
a reduction from Orthogonal Vectors. Both the Longest Common Subsequence
(LCS) and the Edit Distance problems [11] can also be shown to require quadratic time



H. Buhrman, S. Patro, and F. Speelman 19:3

conditional on SETH, implying that any super-logarithmic improvements over the classic
simple dynamic programming algorithm would also imply better algorithms for satisfiability
– a barrier which helps explain why it has been hard to find any new algorithms for these
problems.

Besides CNF-SAT, the conjectured hardness of other key problems like 3SUM and
APSP is also commonly used to prove conditional lower bounds for problems in P. See the
recent surveys [38, 39] for an overview of the many time lower bounds that can be obtained
when assuming only the hardness of these key problems.

All these results give evidence for the hardness of problems relative to classical computa-
tion, but interestingly SETH does not hold relative to quantum computation. Using Grover’s
algorithm [28, 17], quantum computers are able to solve CNF-SAT (and more general circuit
satisfiability problems) in time 2n/2, a quadratic speedup relative to the limit that SETH
conjectures for classical computation.

Even though this is in violation of the SETH bound, it is not in contradiction to the
concept behind the strong exponential-time hypothesis: the input formula is still being
treated as a black box, and the quantum speedup comes “merely” from the general quadratic
improvement in unstructured search1.

It could therefore be natural to formulate the quantum exponential time hypothesis as
identical to its classical equivalent, but with an included quadratic speedup, as a “basic
QSETH”. For some problems, such as Orthogonal Vectors, this conjecture would already
give tight results, since these problems are themselves amenable to a speedup using Grover’s
algorithm. See for instance the Master’s thesis [37] for an overview of some of the SETH-based
lower bounds that are violated in the quantum setting.

On the other hand, since the conditional lower bound for all problems are a quadratic
factor lower than before, such a “basic QSETH” lower bound for LCS or Edit Distance
would be merely linear. The best currently-known quantum algorithm that computes edit
distance takes quadratic time, so we would lose some of the explanatory usefulness of SETH
in this translation to the quantum case.

In this work, we present a way around this limit. Realize that while finding a single
marked element is quadratically faster for a quantum algorithm, there is no quantum speedup
for many other similar problems. For instance, computing whether the number of marked
elements is odd or even can not be done faster when allowing quantum queries to the input,
relative to allowing only classical queries [15, 27].

Taking the LCS problem again as an illustrative example, after careful inspection of the
reductions from CNF-SAT to LCS [3], we show that the result of such a reduction encodes
more than merely the existence of an a satisfying assignment. Instead, the result of these
reductions also encodes whether many satisfying assignments exist (in a certain pattern), a
problem that could be harder for quantum computers than unstructured search. The “basic
QSETH” is not able to account for this distinction, and therefore does not directly help with
explaining why a linear-time quantum algorithm for LCS has not been found.

We present a framework of conjectures, that together form an analogue of the strong
exponential-time hypothesis: QSETH. In this framework, we account for the complexity
of computing various properties on the set of satisfying assignments, giving conjectured
quantum time lower bounds for variants of the satisfiability problem that range from 2n/2

up to 2n.

1 For unstructured search this bound is tight [16, 19]. Bennett, Bernstein, Brassard, and Vazirani
additionally show that with probability 1 relative to a random oracle all of NP cannot be solved by a
bounded-error quantum algorithm in time o(2n/2).)
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Summary of results

We define the QSETH framework, connecting quantum query complexity to the proving
of fine-grained (conditional) lower bounds of quantum algorithms. The framework
encompasses both different properties of the set of satisfying assignments, and is also able
to handle different input circuit classes – giving a hierarchy of assumptions that encode
satisfiability on CNF formulas, general formulas, branching programs, and so on.

To be able to handle more-complicated properties of the satisfying assignments, we
require such a property to be compression oblivious – a notion we define to capture
the cases where query complexity is a lower bound for the time complexity, even for
inputs that are “compressible” as a truth table of a small formula.2 We give various
results to initiate the study of the set of compression-oblivious languages.

Some SETH-based Ω(T ) lower bounds carry over to Ω(
√

T ) QSETH lower bounds, from
which we immediately gain structural insight to the complexity class BQP.
We show that, assuming QSETH, the Proofs of Useful Work of Ball, Rosen, Sabin and
Vasudevan [13] require time Õ(n2) to solve on a quantum computer, matching the classical
complexity of these proofs of work.
We prove that the Longest Common Subsequence (and the Edit Distance) prob-
lem requires Ω(n1.5) time to solve on a quantum computer, conditioned on QSETH. We
do this by showing that LCS (similarly, edit distance) can be used to compute a harder
property of the set of satisfying assignments than merely deciding whether one satisfying
assignment exists.
Following [5], we are able to show this for a version of QSETH where the input formulas
are branching programs instead, giving a stronger result than assuming the hardness for
only CNF inputs.
As a corollary to the proof of the conditional LCS lower bound, we can show that the
query complexity of the restricted Dyck language is linear for any k = ω(log n), partially
answering an open question posed by Aaronson, Grier, and Schaeffer [2].3

Related work

Independently from this work, Aaronson, Chia, Lin, Wang, and Zhang [1] recently also
defined a basic quantum version of the strong exponential-time hypothesis, which assumes
that a quadratic speed-up over the classical SETH is optimal. They present conditional
quantum lower bounds for OV, the closest pair problem, and the bichromatic closest pair
problem, by giving fine-grained quantum reductions to CNF-SAT. All such lower bounds
have a quadratic gap with the corresponding classical SETH lower bound.

Despite the overlap in topic, these results turn out to be complementary to the current
work: In the current work we focus on defining a more extensive framework for QSETH
that generalizes in various ways the basic version. Our more general framework can exhibit
a quantum-classical gap that is less than quadratic, which allows us to give conditional
lower bounds for LCS and edit distance (Ω(n1.5)) and useful proofs of work (a quadratic
gap between prover and verifier). For our presented applications, the requirements of the
fine-grained reductions are lower, e.g., when presenting a lower bound of n1.5 for LCS or

2 This notion is conceptually related to the Black-Box Hypothesis introduced by [14] and studied by [30].
3 Lower bounds for the restricted Dyck language were recently independently proven by Ambainis, Balodis,

Iraids, Khadiev, Klevickis, Prūsis, Shen, Smotrovs and Vihrovs [9].
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edit distance it is no problem if the reduction itself takes time Õ(n).4 Conversely, we do
not give the reductions that are given by [1]; those results are distinct new consequences
of QSETH (both of the QSETH that is presented in that work, and of our more extensive
QSETH framework).

Structure of the paper

In Section 2 we motivate and state the QSETH framework. Following that, in Section 3
we present the direct consequences of QSETH, including the maintaining of some current
bounds (with a quadratic loss), and the Useful Proof of Work lower bound. In Section 4
we present the conditional lower bounds for LCS and the Edit Distance problem, of which
the proofs can be found in the full version of the paper [22]. Additionally, the proof lower
bounding the query complexity of the restricted Dyck language can be found in the full
version. Finally, we conclude and present several open questions in Section 5.

2 Defining the Quantum Strong Exponential-Time Hypothesis

Almost all known lower bounds for quantum algorithms are defined in terms of query
complexity, which measures the number of times any quantum algorithm must access the
input to solve an instance of a given problem. For example the polynomial method [15]
and the adversary method [8] are two of the main techniques that can be applied in many
situations.

Despite the success of quantum query complexity and the fact that we know tight
query lower bounds for many problems, the query model does not take into account the
computational efforts required after querying the input. In particular, it is not possible to use
query complexity to prove any lower bound greater than linear, since any problem is solvable
in the query-complexity model after all bits are queried. In general we expect the time
needed to solve most problems to be much larger than the number of queries required for the
computation, but it still seems rather difficult to formalize methods to provide unconditional
quantum time lower bounds for explicit problems. We overcome these difficulties by providing
a framework of conjectures that can assist in obtaining conditional quantum time lower
bounds for many problems in BQP. We refer to this framework as the QSETH framework.

Variants of the classical SETH

The Strong Exponential-Time Hypothesis (SETH) was first studied in [31, 32], who showed
that the lack of a O(2n(1−δ)) for a δ > 0 algorithm to solve CNF-SAT is deeply connected to
other open problems in complexity theory. Despite it being one the most extensively studied
problems in the field of (classical) complexity theory, the best known classical algorithms for
solving k-SAT run in 2n−n/O(k)mO(1) time [36], while the best algorithm for the more-general
CNF-SAT is 2n−n/O(log ∆)mO(1) [23], where m denotes the number of clauses and ∆ = m/n

denotes the clause to variable ratio.
Even though no refutation of SETH has been found yet, it is plausible that the CNF

structure of the input formulas does allow for a speed-up. Therefore, if possible, it is preferable
to base lower bounds on the hardness of more general kinds of (satisfiability) problems, where

4 We use Õ to denote asymptotic behavior up to polylogarithmic factors.

STACS 2021
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the input consists of wider classes of circuits. For example, lower bounds based on NC-SETH,
satisfiability with NC-circuits as input,5 have been proven for LCS, Edit Distance and
other problems [5], in particular all the problems that fit the framework presented in [21].

Additionally, a different direction in which the exponential-time hypothesis can be
weakened, and thereby made more plausible, is requiring the computation of different
properties of a formula than whether at least one satisfying assignment exists. For example,
hardness of counting the number of satisfying assignments is captured by #ETH [26].
Computing existence is equivalent to computing the OR of the set of satisfying assignments,
but it could also conceivably be harder to output, e.g., whether the number of satisfying
assignments is odd or even, or whether the number of satisfying assignments is larger than
some threshold. In the quantum case, generalizing the properties to be computed is not only
a way to make the hypothesis more plausible: for many of such tasks it is likely that the
quadratic quantum speedup, as given by Grover’s algorithm, no longer exist.

2.1 The basic QSETH

To build towards our framework, first consider what would be a natural generalization of the
classical SETH.

▶ Conjecture (Basic QSETH). There is no bounded error quantum algorithm that solves
CNF-SAT on n variables, m clauses in O(2 n

2 (1−δ)mO(1)) time, for any δ > 0.

This conjecture is already a possible useful tool in proving conditional quantum lower
bounds, as we present an example of this in Section 3.1.6

We first extend this conjecture with the option to consider wider classes of circuits.
Let γ denote a class of representations of computational models. Such a representation can
for example be polynomial-size CNF formulas, polylog-depth circuits NC, polynomial-size
branching programs BP, or the set of all polynomial-size circuits. The complexity of the
latter problem is also often studied in the classical case, capturing the hardness of CircuitSAT.

▶ Conjecture (Basic γ-QSETH). A quantum algorithm cannot, given an input C from the
set γ, decide in time O(2 n

2 (1−δ)) whether there exists an input x ∈ {0, 1}n such that C(x) = 1
for any δ > 0.

We also define AC0
2 to be the set of all depth-2 circuits consisting of unbounded fan-in,

consisting only of AND and OR gates. This definition is later convenient when considering
wider classes of properties, and it can be easily seen that “basic AC0

2-QSETH” is precisely
the “basic QSETH” as defined above.

Since both these basic QSETH variants already contain a quadratic speedup relative to
the classical SETH, conditional quantum lower bounds obtained via these assumptions will
usually also be quadratically worse than any corresponding classical lower bounds for the
same problems. For some problems, lower bounds obtained using the basic QSETH, or using
γ-QSETH for a wider class of computation, will be tight. However, for other problems no
quadratic quantum speedup is known.

5 NC circuits are of polynomial size and polylogarithmic depth consisting of fan-in 2 gates.
6 Additional examples of implications from such a version of QSETH can be found in the recent independent

work of [1].
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2.2 Extending QSETH to general properties

We now extend the “basic γ-QSETH” as defined in the previous section, to also include
computing different properties of the set of satisfying assignments. By extending QSETH in
this way, we can potentially circumvent the quadratic gap between quantum and classical
lower bounds for some problems.

Consider a problem in which one is given some circuit representation of a boolean function
f : {0, 1}n → {0, 1} and asked whether a property P : {0, 1}2n → {0, 1} on the truth table of
this function evaluates to 1, that is, given a circuit C the problem is to decide if P(tt(C)) = 1,
where tt(C) denotes the truth table of the boolean function computed by the circuit C. If one
can only access C as a black box then it is clear that the amount of time taken to compute
P(tt(C)) is lower bounded by the number of queries made to the string tt(C). However, if
provided with the description of C, which we denote by desc(C), then one can analyze C to
compute P(tt(C)) possibly much faster.

For example, take the representation to be polynomial-sized CNF formulas and the
property to be OR. Then for polynomial-sized CNF formulas this is precisely the CNF-SAT
problem. Conjecturing quantum hardness of this property would make us retrieve the “basic
QSETH” of the previous section. Do note that we cannot simply conjecture that any property
is hard to compute on CNF formulas: Even though the query complexity of AND on a
string of length 2n is Ω(2n) classically and Ω(2n/2) in the quantum case, this property can
be easily computed in polynomial time both classically and quantumly when provided with
the description of the nO(1) sized CNF formula.

To get around this problem, we can increase the complexity of the input representation:
If we consider inputs from AC0

2, the set of all depth-2 circuits consisting of unbounded fan-in
AND and OR gates, we now have a class that is closed under complementation. For this class,
it is a reasonable conjecture that both AND, the question whether the input is a tautology
and all assignments are satisfying, and OR, the normal SAT problem, are hard to compute.

After this step we can look at further properties than AND and OR. For instance, consider
the problem of computing whether there exists an even or an odd number of satisfying
assignments. This task is equivalent to computing the PARITY of the truth table of the
input formula. How much time do we expect a quantum algorithm to need for such a task?

The quadratic speedup for computing satisfiability, i.e., the OR of the truth table of
the input formula, is already captured by the model where the quantum computation only
tries possible assignments and then performs Grover’s algorithm in a black box manner. If
PARITY is also computed in such a way, then we know from query complexity [15] that
there is no speedup possible, and the algorithm will have to use Ω(2n) steps. Our QSETH
framework will be able to consider more-complicated properties, like PARITY.

Finally, observe that such a correspondence, i.e., between the query complexity of a
property and the time complexity of computing this property on the set of satisfying
assignments, cannot hold for all properties, even when we consider more complicated input
classes besides CNF formulas. For instance, consider a property which is 0 on exactly the
strings that are truth tables of polynomial-sized circuits, and is PARITY of its input on the
other strings. Such a property has high quantum query complexity, but is trivial to compute
when given a polynomial-sized circuit as input. We introduce the notion of compression
oblivious below to handle this problem.

STACS 2021
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White box and black box computation of a property

We formalize the above intuitions in the following way. Let the variable γ denote a class of
representation at least as complex as the set AC0

2, where AC0
2 denotes the set of poly sized

depth-2 circuits consisting of only OR, AND gates of unbounded fan-in and NOT gates. For
every n, let P : {0, 1}2n → {0, 1} be some function family which defines a property. We
define a meta-language LP such that LP = {desc(C) | C is an element from the set γ and
P(tt(C)) = 1}. We now define the following terms:

▶ Definition 3 (White-box algorithms). An algorithm A decides the property P in white-box
if A decides the corresponding meta-language LP. That is, given an input string desc(C), A
accepts if and only if P(tt(C)) = 1. We use qTimeWBϵ(P) to denote the time taken by a
quantum computer to decide the language LP with error probability ϵ.

▶ Definition 4 (Black-box algorithms). An algorithm A decides the property P in black-box if
the algorithm Af (1n, 1m) accepts if and only if P(tt(f)) = 1. Here, f is the boolean function
computed by the circuit C and m is the upper bound on | desc(C)| which is the size of the
representation7 that describes f , and Af denotes that the algorithm A has oracle access to the
boolean function f . We use qTimeBBϵ(P) to denote the time taken by a quantum computer
to compute the property P in the black-box setting with error probability ϵ.

Compression oblivious properties

We define the set of compression oblivious properties corresponding to γ as the set of
properties where the time taken to compute this property in the black-box setting is lower
bounded by the quantum query complexity of this property on all strings. Formally,

CO(γ) = {properties P such that qTimeBBϵ(P |Sγ
) ≥ Ω(Qϵ(P))},

where Qϵ(P) denotes the quantum query complexity of the property P in a ϵ-bounded error
query model and Sγ = {tt(C) | C is an element of the set γ}.

Defining QSETH

For each class of representation γ we now define the corresponding γ-QSETH∗, which states
that computing any compression-oblivious property P in the white-box setting is at least as
hard as computing P in the black-box setting. More formally, for every class of representation
γ, such as the class of depth-2 circuits AC0

2 or poly-sized circuits of a more complex class, we
hypothesize the following:

▶ Conjecture 5 (γ-QSETH∗). For all properties P ∈ CO(γ), we have qTimeWBϵ(P |γ) ≥
Ω(Qϵ(P)).

2.3 Observations on the set of compression oblivious properties
As the class γ gets more complex, the corresponding γ-QSETH∗ becomes more credible.
The set of compression oblivious properties is an interesting object of study by itself. First
consider some representative examples of whether various natural properties are compression
oblivious. Note here that the example property that is not compression oblivious has to be

7 For instance a CNF/DNF formula, an NC circuit, or a general circuit.



H. Buhrman, S. Patro, and F. Speelman 19:9

carefully constructed for this to be the case – it is natural to conjecture that for most natural
properties the knowledge that the input can be written as the truth table of a small circuit
does not help in speeding up the computation.8

▶ Example 6. The properties AND and OR are in CO(AC0
2): The adversarial set that gives

the tight query bound for the property AND (OR) are truth tables of functions that can be
represented by nO(1) sized DNF (CNF) formulas. Namely, these are given by the formulas
that reject (accept) a single possible input, which can be constructed by using n clauses
that each contain a single variable or its negation. Because Qϵ(AND|SAC0

2
) = Qϵ(AND) and

qTimeBBϵ(AND|SAC0
2
) ≥ Qϵ(AND|SAC0

2
), we have AND ∈ CO(AC0

2). The same holds for the
property OR as well.

▶ Example 7. Consider the following property, defined on some string z ∈ {0, 1}2n , which
we view as the truth table of a formula or circuit:

Plarge-c(z) = PARITY2n (z) ∧ [there exists no circuit C of size less than 2n/100 s.t. z = tt(C).]

Because most strings are not a truth table of a small circuit, the query complexity of this
property is close to the query complexity of PARITY, i.e., Qϵ(Plarge-c) = Ω(N). Nevertheless,
the property is always 0 when restricted to truth tables of small circuits, and therefore trivial
to compute. Therefore Plarge-c is not compression oblivious for polynomial-sized circuits (or
any smaller class of representations).

▶ Example 8. Whether PARITY is compression oblivious is unknown: the quantum query
complexity of PARITY is Ω(N). Restricted to inputs which are truth tables of small
formulas/circuits, the query complexity is O(

√
N), this is the maximum query complexity

for any property when restricted to truth tables of a small circuit class [10, 33]. Conjecturing
that PARITY is compression oblivious is natural, and incomparable to (but not necessarily
less likely than) the main QSETH statement.

Given an explicit property P and a class of input representations γ, it would be desirable
to unconditionally prove that the property P is γ-compression oblivious9. This is possible
for some simple properties that have query complexity Θ(

√
N) like OR, corresponding

to ordinary satisfiability, and AND. Unfortunately, for more complicated properties, like
computing the parity of the number of satisfying assignments, it turns out to be hard to
find an unconditional proof that such a property is compression oblivious. The following
theorem shows a barrier to finding such an unconditional proof: proving that such a property
is compression oblivious implies separating P from PSPACE.

▶ Theorem 9. If there exists a property P such that Qϵ(P) = ω̃(
√

N) and P is γ-compression
oblivious, and P ∈ polyL(N), then P ̸= PSPACE. Here N = 2n and γ represents the set of
poly-sized circuits on n input variables.

Here polyL(N) is same as SPACE(poly log N), i.e., class of properties computable in
poly log N amount of space. Note that SETH is already a much stronger assumption than
P ̸= PSPACE, therefore this observation leaves open the interesting possibility of proving

8 In classical complexity theory, a closely related notion is the Black-Box Hypothesis introduced by [14]
and studied by [30].

9 We call a property P a γ-compression oblivious property if P ∈ CO(γ).

STACS 2021
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that properties are compression oblivious assuming that the (Q)SETH holds for simpler
properties. (For instance, these simpler properties could include OR and AND, for which it
is possible to unconditionally prove that they are compression oblivious.)

Unfortunately, merely making such an assumption alone will likely not be enough to
enable an easy proof that simple properties with high query complexity are compression
oblivious: We show that there exists an oracle such that, if all computations and input
models10 have access to this oracle, QSETH is true but PARITY (for example) is not
compression oblivious. This does give a relativization barrier to this question, showing that
a non-relativizing proof will be necessary to prove that properties are compression oblivious.

▶ Theorem 10. There exists an oracle relative to which the basic QSETH holds, but any
property P ∈ polyL(N) for which Qϵ(P) = ω̃(

√
N) is not γ-compression oblivious. Here γ

consists of all polynomial-sized circuits (with oracle access).

See Appendix A for the proofs of Theorems 9 and 10.

3 QSETH lower bounds for Orthogonal Vectors and Proofs of Useful
Work

Recall that AC0
2 denotes the set of polynomial-sized depth-2 circuits consisting of only OR and

AND gates of unbounded fan-in. Because of the simple input structure, the AC0
2-QSETH∗

conjecture is therefore closest to the classical SETH, and implies the “basic QSETH” as
introduced in Section 2.1:

▶ Corollary 11. If AC0
2-QSETH∗ is true then there is no bounded error quantum algorithm

that solves CNF-SAT on n variables, m clauses in O(2(1−δ)n/2mO(1)) time, for any δ > 0.

Proof. Consider the property OR: {0, 1}2n → {0, 1}. Using the fact that OR ∈ CO(AC0
2), as

shown in the previous section, we get qTimeWBϵ(OR|AC0
2
) ≥ Ω(Qϵ(OR)) = Ω(2n/2). Due to

the structure of the DNF formulas one can compute the property OR on DNF formulas on n

variables, m clauses in nO(1)mO(1) time. This implies that the hard cases in the set AC0
2 for

the OR property are the CNF formulas. Therefore, qTimeWBϵ(OR|CNF) ≥ Ω(2n/2) where
the set CNF denotes all the polynomial sized CNF formulas. ◀

In this section we present several immediate consequences of the AC0
2-QSETH∗ conjecture:

1. For some problems, classical SETH-based Ω(T ) time lower bounds carry over to the
quantum case, with AC0

2-QSETH∗-based Ω(
√

T ) quantum time lower bounds using
(almost) the same reduction.

2. The Proofs of Useful Work of Ball, Rosen, Sabin and Vasudevan [13] require time Õ(n2)
to solve on a quantum computer, equal to their classical complexity, under AC0

2-QSETH∗.

3.1 Quantum time lower bounds based on AC0
2-QSETH∗

The statement of AC0
2-QSETH∗ along with Corollary 11 can give quantum time lower bounds

for some problems for which we know classical lower bounds under SETH (Conjecture 2).

10 For example, consider circuit SAT for circuits that have access to an oracle.
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▶ Corollary 12. Let P be a problem with an Ω(T ) time lower bound modulo SETH. Then, P
has an Ω̃(

√
T ) quantum time lower bound conditioned under AC0

2-QSETH∗ if there exists a
classical reduction from CNF-SAT to the problem P taking O(2 n

2 (1−α)) (for α > 0) time or if
there exists an efficient reduction that can access a single bit of the reduction output.11

In Appendix B we explain how we can preserve the following two classical SETH lower
bounds, with a quadratic gap:

▶ Example 13. The OV problem is defined as follows. Given two sets U and V of N vectors,
each over {0, 1}d where d = ω(log N), determine whether there exists a u ∈ U and a v ∈ V

such that Σl∈[d]ulvl = 0. The reduction of Williams [40], shows a classical lower bound
of Ω(N2) for this problem, and it can be modified to efficiently return single bits of the
reduction. Therefore, assuming AC0

2-QSETH∗, any quantum algorithm requires time Θ̃(N)
to solve OV for instances of size N .

▶ Example 14. The LCS problem is defined as follows. Given two strings a and b over
an alphabet set Σ, the LCS(a, b) is the length of the longest subsequence common to both
strings a and b. Modifying the reduction of [3], it can be shown that LCS requires time
Ω̃(N), assuming AC0

2-QSETH∗. This same bound can also be shown unconditionally, using
query complexity and the observation that the majority function can be embedded in LCS.

See the recent results by Aaronson, Chia, Lin, Wang, and Zhang [1] for more examples of
reductions from (a variant of) QSETH, that also hold for the basic QSETH of our framework.
Additionally, there the authors define the notion of Quantum Fine-grained Reductions more
generally, and present a study of OV that also includes the case of constant dimension.

We witness that with the AC0
2-QSETH∗ conjecture, the SETH-based fine-grained lower

bounds at best transfer to a square root lower complexity in the quantum case. This
is definitely interesting on its own, but we are aiming for larger quantum lower bounds,
in situations where the gap between the classical and quantum complexities is less than
quadratic, which is why we focus on our more general framework.

3.2 Quantum Proofs of Useful Work
Other applications of AC0

2-QSETH∗ include providing problems for which Proofs of Useful
Work (uPoW) can be presented in the quantum setting. Ball et al. [13] propose uPoW
protocols that are based on delegating the evaluation of low-degree polynomials to the
prover. They present a classical uPoW protocol for the Orthogonal Vectors problem
(OV) whose security proof is based on the assumption that OV needs Ω(n2−o(1)) classical
time in the worst case setting, implying that the evaluation of a polynomial that encodes the
instance of OV has average-case hardness. At the end of this protocol, the verifier is able to
compute the number of orthogonal vectors in a given instance.

Therefore, the same protocol also works to verify the solutions to ⊕OV, where ⊕OV
denotes the parity version of OV, i.e., given two sets U , V of n vectors from {0, 1}d each,
output the parity of number of pairs (u, v) such that u ∈ U , v ∈ V and Σl∈[d]ulvl = 0,

11 Note that we use a version of QSETH that relates to CNF-SAT as opposed to bounded clause-size
k-SAT problems. One could also define a quantum hardness conjecture for k-CNF or k-DNF, for an
arbitrary constant k, in the same way as the original SETH. This variant is required for reductions that
use the fact that k is constant, which can occur through usage of the sparsification lemma [31]. For
examples where this is necessary within fine-grained complexity, see the Matching Triangles problem
mentioned in [7] or reductions like in [25].
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where d is taken to be ω(log n). Assuming AC0
2-QSETH∗ and assuming PARITY ∈ CO(AC0

2)
we get that ⊕CNF-SAT takes Ω(2n) quantum time. Due to the classical reduction12 given
by [40], this protocol then implies a conditional quantum time lower bound of Ω(n2) for the
⊕OV problem. Therefore, the uPoW protocol by [13] also requires quantum provers to take
time Ω̃(n2).

4 Lower bounds for string problems using NC-QSETH∗

In this section we discuss two consequences of the NC-QSETH∗ conjecture: Quantum
time lower bounds for the LCS and Edit Distance problems. For length n input strings,
the well-known Wagner–Fischer algorithm (based on dynamic programming) classically
computes the edit distance in O(n2) time. A similar algorithm computes LCS in O(n2)
time. Unfortunately, all the best known classical (and quantum) algorithms to compute
these problems are also nearly quadratic. As mentioned above, results by [3, 11] prove that
these near-quadratic time bounds might be tight: a sub-quadratic classical algorithm for
computing LCS or edit distance would imply that SETH (Conjecture 2) is false.

SETH also implies quadratic lower bounds for many other string comparison problems,
like Dynamic Time Warping and Frechet Distance, that also have (close to) optimal
algorithms that are based on dynamic programming [21]. Bouroujeni et al. [18] give a
sub-quadratic quantum algorithm for approximating edit distance within a constant factor
which was followed by a better classical algorithm by Chakraborty et al. [24] However, no
quantum improvements over the classical algorithms in the exact case are known to the best
of our knowledge. Investigating why this is the case is an interesting open problem: is it
possible to prove better (conditional) lower bounds, or can a better algorithm be found? We
formulate the following questions for the example of LCS and the Edit Distance problem.

1. Is there a bounded-error quantum algorithm for LCS or Edit Distance that runs in a
sub-quadratic amount of time?

2. Is it possible to obtain a superlinear lower bound for LCS or Edit Distance using the
“basic QSETH”?

3. Can we use a different reduction to raise the linear lower bound for LCS or
Edit Distance that we achieve under “basic-QSETH”?

We don’t attempt to find a better algorithm for these string problems in this work,
and it remains possible that no sub-quadratic quantum algorithm for these problems exists.
Considering the second question: Using the basic QSETH loses a quadratic factor relative
to the classical reduction, so it is clear that it will not be possible to directly translate a
classical reduction to the quantum setting – since the quadratic classical SETH bound is tight.
Therefore, to prove a “basic QSETH” lower bound for a problem where the gap between
the best quantum and classical algorithms is less than quadratic, a fundamentally different
(inherently quantum) reduction strategy would have to be found.

While the first two questions still remain open, we address the last question in this section.
Using (a promise version of) the NC-QSETH∗ conjecture we prove conditional quantum time
lower bounds of Ω(n1.5) for the LCS and Edit Distance problems13.

12 Note that here one can use the classical reduction from CNF-SAT to Orthogonal Vectors that runs
in time Õ(2n/2).

13 Note that, independently from our results, Ambainis et al. [9] recently presented a quantum query lower
bound of Ω(n1.5−o(1)) for the Edit Distance problem, for algorithms that use the natural dynamic-
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As global strategy, we will analyze earlier reductions [5] from branching program satis-
fiability to string problems, and show that solving the string problems (such as LCS) on the
result of these (slightly modified) reductions can be used to compute a more complicated
property of the branching program, which we call PPlcs. The first step then is to give
a reduction from BP-PPlcs, which can be viewed as showing whether or not PPlcs on a
branching program is satisfied or not, to LCS. This step is formalized as the following
theorem.

▶ Theorem (Informal statement of reduction). There is a reduction from BP-PPlcs on non-
deterministic branching programs of size 2poly log n (length Z, width W ) to an instance of the
LCS problem on two sequences of length M = 2n/2(cW )O(log Z) for some constant c, and the
reduction runs in O(M) time.

Our next step is to prove a quantum query complexity lower bound for this property,
which, together with the assumption that the property is compression oblivious14, implies
a time lower bound for the LCS problem of Ω̃(n1.5). The lower bound strategy for the
Edit Distance problem is very similar to that of the LCS problem: the “gadgets” involved
have to be constructed in a different way, but these gadgets can then be combined using a
very similar method. Therefore, the reduction can be utilized to compute a property of the
set of satisfying assignments that is closely related to BP-PPlcs.

The full proofs of these reductions (together with the definition of PPlcs) are presented
in the full version of the paper [22].

5 Conclusion and Future Directions

We presented a quantum version of the strong exponential-time hypothesis, as QSETH, and
demonstrated several consequences from QSETH. These included the transfer of previous
Orthogonal-Vector based lower bounds to the quantum case, with a quadratically lower time
bound than the equivalent classical lower bounds. We also showed two situations where the
new QSETH does not lose this quadratic factor: a lower bound showing that computing edit
distance or LCS takes time n1.5 for a quantum algorithm, and an n2 quantum lower bound
for Proofs of Useful Work [13], both conditioned on QSETH.

Possible future applications for the QSETH framework are numerous. Most importantly,
the QSETH can potentially be a powerful tool to prove conditional lower bounds for
additional problems in BQP. The most natural candidates are other string problems, such as
Dynamic Time Warping for example, but there are many other problems for which the
“basic QSETH” does not immediately give tight bounds.

Additionally, the notion of compression oblivious properties are potentially interesting
as an independent object of study. We expect most natural properties to be compression
oblivious, but leave as an open question what complexity-theoretic assumptions are needed
to show that, e.g., the parity function is compression oblivious.

Future directions also include a careful study of quantum time complexity of the other core
problems in fine-grained complexity, such as 3SUM and APSP. Just like with satisfiability,
the basic versions of these problems are amenable to a Grover-based quadratic speedup. It

programming approach of first reducing Edit Distance to connectivity on a 2D grid. However, that
doesn’t rule out the possibility of other Õ(n1.5−α) quantum algorithms for the Edit Distance problem,
for α > 0.

14 As discussed in Section 2.3, such an assumption is natural, implicit when considering more-complicated
QSETH variants, and hard to prove unconditionally.
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is possible that extensions of those key problems can be used to prove stronger conditional
lower bounds, in a similar way to the reduction that was used for LCS or Edit Distance
in the current work.
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A Observations on Compression Oblivious properties

Here we present an extra observation of the set of compression oblivious properties, and
missing proofs of the statements in Section 2.3.

First, we show the following fact about how sets of compression-oblivious properties
relate, relative to different computational models.

▶ Fact 15. Given two classes of representations ζ and λ, if ζ ⊆ λ then for every property P,
we have P ∈ CO(λ) whenever P ∈ CO(ζ).

Proof. If ζ ⊆ λ then also for the corresponding sets of truth tables it holds that Sζ ⊆ Sλ. If
a property P ∈ CO(ζ), then qTimeBBϵ(P |Sζ

) ≥ Ω(Qϵ)(P) also implies qTimeBBϵ(P |Sλ
) ≥

qTimeBBϵ(P |Sζ
) as Sλ is a superset of Sζ . Therefore, P ∈ CO(λ). ◀

▶ Theorem 9. If there exists a property P such that Qϵ(P) = ω̃(
√

N) and P is γ-compression
oblivious, and P ∈ polyL(N), then P ̸= PSPACE. Here N = 2n and γ represents the set of
poly-sized circuits on n input variables.

Proof. By way of contradiction, assume P = PSPACE. We are given a promise that the
circuit C to which we have black-box access15 to is in the set γ, where γ is the set of poly-sized
circuits on n input variables. Note that if we would have direct access to the input, instead
of black-box access, we can easily solve the problem in polynomial time using the assumption
P = PSPACE.

15 By black-box access we mean that for any input x ∈ {0, 1}n we can compute C(x).
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Using a simplified version of the algorithm for the oracle identification problem [10, 33]
we can extract a compressed form of the entire input, effectively going from black-box access
back to white-box access, from the set γ using only Õ(

√
N) queries. The initial query-efficient

algorithm is as follows:
1. Define an N = 2n bit majority string m = m1m2...mN where mi = 1 if the majority of

circuits in γ have 1 in their ith bit of their truth table, else mi = 0.
2. Check whether there exists an index j such that the truth table of circuit C disagrees with

m at j. Using Grover’s algorithm on the implied string tt(C) ⊕ m this can be achieved
using O(

√
N) quantum queries to tt(C).

If there is no disagreement, then the string m is the truth table of circuit C and without
having to further query C, one can go through all the circuits in γ and compute their
respective truth tables to identify C. Using the P = PSPACE assumption, this can be
done in poly(n) (classical) time.

3. In the case of a disagreement, remove from γ all the circuits that disagreed with tt(C)
at index j, which, by definition of m, means at least half of the elements from γ are
removed.

Repeat these steps until there is no disagreement or until |γ| = 1. Given that γ initially
contained all the poly-sized circuits on n input variables. This whole algorithm requires
O(

√
N log |γ|) = Õ(

√
N) quantum queries. Using the P = PSPACE assumption, we can

implement the same algorithm in Õ(
√

N) quantum time as follows.
At any point of the algorithm we have to be able to query the index i ∈ [N ] of tt(C) and

the ith bit of the majority string m at that stage, where the majority string keeps changing
every time we update the set γ. Querying any index of tt(C) is straight forward. On the
other hand, the string m is too long to efficiently write down, but will have to be defined
implicitly. To enable query access to m, the algorithm will maintain a list of tuples recording
previous found positions where the truth table of C differed from the most common values:
{(i, ai) | i ∈ [N ] is the index where there was a disagreement and ai is the value of the ith

bit of tt(C)}. Now, given such a list, it takes poly(n) space to compute the current value
mi of the majority string at point i: simply iterate over all elements in the original circuit
class up to poly(n) size, check whether the current circuit D is consistent with the list of
previous queries, and then keep tally of D(i). Now we can use the P = PSPACE assumption
to translate this to a hypothetical algorithm which takes poly(n) time.

Since O(
√

N) queries suffice to find a single disagreement between tt(C) and the majority
string m at any stage, that means a disagreement (if any) can be found in Õ(

√
N) quantum

time. Given that there are only poly(n) such stages, that means we have found the compressed
form of circuit C from the set of poly-sized circuits in Õ(

√
N) time.

We now have the access to the compressed input of length nO(1). As the property P ∈
polyL(N), we can directly compute P in O((log N)O(1)) = O(nO(1)) amount of space, which
again translates to O((log N)O(1)) time under the P = PSPACE assumption. Therefore, the
total number of (quantum) steps taken is Õ(

√
N) + O((log N)O(1)), which is in contradiction

to the assumption that P is γ-compression oblivious. ◀

▶ Theorem 10. There exists an oracle relative to which the basic QSETH holds, but any
property P ∈ polyL(N) for which Qϵ(P) = ω̃(

√
N) is not γ-compression oblivious. Here γ

consists of all polynomial-sized circuits (with oracle access).

Proof. We construct the oracle in two steps. We first start with the Quantified Boolean
Formula (QBF) problem as oracle, call this oracle A. Since QBF is complete for PSPACE,
and since a call to A can itself be simulated in polynomial space, note that PA = BQPA =
PSPACEA.
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Recall the classic oracle from Baker, Gill, and Solovay [12], relative to which P ̸= NP.
This construction occasionally hides a single string of a certain length in the oracle, for a
very sparse set of lengths, and shows that it is hard for a Turing machine to find the string
in time less than 2n.

This same construction also works or quantum computation: We will construct the oracle
B in steps. Take the i-th oracle quantum Turing machine, with access to oracle A, and
consider that it makes at most o(2ni/2) queries when given input 1ni , where ni = 2ni−1 . We
aim to construct B such that the language

LB = {1n | The oracle B contains a string of length n}

can not be decided by such a machine. Via lower bounds for unstructured search [16, 19, 8, 15],
there has to exist a single-string setting of the oracle at B that makes the i-th machine fail.
I.e., either B has a single string of length ni, or the oracle is empty at ni. Via the query
lower bound of unstructured search, this language requires 2n/2 quantum time.

The final oracle C is just the direct sum of the oracle A and B:

C = {(i, x) | (i = 0 ∧ x ∈ A) ∨ (i = 1 ∧ x ∈ B)} .

Relative to C, both SETH, as in Conjecture 2, and the basic QSETH are true (where we
consider a relativized “basic QSETH” that takes as input circuits which can make oracle
queries to C). In particular, satisfiability of the circuit which queries its input to C and
outputs the result takes time 2n/2 to compute for a quantum Turing machine which has
oracle access to C (since any hypothetical machine which solves this language faster, would
be able to decide the hard language LB).

Now consider the hardness of computing some property P of a string, for which we only
get black box access to this string, and such that it’s known that the string is a truth table
of a polynomial-sized circuit which has access to oracle C. A quantum computer can first
search the part of C that corresponds with B for the hidden string, using Grover’s algorithm
for unstructured search, taking time 2n/2. Now, after finding the hidden string, part B of
the oracle is no longer relevant since any call to it can be efficiently simulated by a short
computation, and therefore the oracle is effectively only a QBF oracle, meaning that after
finding the string we effectively have P = PSPACE relative to the oracle. The quantum
algorithm can next use the A part, using the construction in Theorem 9, to compute the
property P in total time O∗(2n/2) = Õ(

√
N). Since we assumed that P has query complexity

at least ω̃(
√

N), it follows that P is not compression oblivious relative to the oracle. ◀

B Example lower bounds following from the basic QSETH assumption

As examples we will considered the Orthogonal Vectors (OV) and the LCS problem.
The OV problem is defined as follows. Given two sets U and V of N vectors, each over
{0, 1}d where d = ω(log N), determine whether there exists a u ∈ U and a v ∈ V such
that Σl∈[d]ulvl = 0. In [40], Williams showed that SETH implies the non-existence of a
sub-quadratic classical algorithm for the OV problem. In the quantum case the best-known
query lower bound is Ω(n2/3), which can be achieved by reducing the 2-to-1 Collision
problem to the Orthogonal Vectors problem; however, the known quantum time upper
bound is Õ(n) [37]. First note that we cannot use Williams’ classical reduction directly, since
a hypothetical quantum algorithm for OV expects quantum access to the input, and writing
down the entire reduction already takes time 2n/2. Instead, observe that the reduction
produces a separate vector for each partial assignment: let t(n) be the time needed to
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compute a single element of the output of the reduction, then t(n) = poly(n), which is
logarithmic in the size of the total reduction. Let N = O∗(2n/2) be the size of the output of
the reduction of [40], for some CNF formula with n variables. Any quantum algorithm that
solves OV in time Nα, can solve CNF-SAT in time t(n)O∗(2αn/2) = O∗(2αn/2).16 Assuming
AC0

2-QSETH∗, this implies that a quantum algorithm requires time Θ̃(N) to solve OV for
instances of size N .

The next example we consider is the LCS problem. The LCS problem is defined as
follows. Given two strings a and b over an alphabet set Σ, the LCS(a, b) is the length of
the longest subsequence common to both strings a and b. A reduction by [3] shows that
if LCS of two strings of length O(n) can be computed in time O(n2−δ) for some constant
δ > 0, then satisfiability on CNF formulas with n variables and m clauses can be computed
in O(mO(1) · 2(1− δ

2 )n) which would imply that SETH (Conjecture 2) is false. Just like in
the Orthogonal Vectors case, we observe that the classical reduction from CNF-SAT
to LCS is local, in the sense that accessing a single bit of the exponentially-long reduction
output can be done in polynomial time: Every segment of the strings that are an output of
the reduction, depend only on a single partial satisfying assignment, out of the 2n/2 possible
partial assignments.

This observation directly lets us use the reduction of [3] to give a quantum time lower
bound of Ω̃(N) for the LCS problem, where N here is the length of the inputs to LCS,
conditioned on AC0

2-QSETH∗. However, an unconditional quantum query lower bound of
Ω(N) can also be easily achieved by embedding of a problem with high query complexity,
such as the majority problem, in an LCS instance.

16 We use O∗ to denote asymptotic complexity ignoring polynomial factors.
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