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Abstract
Logarithmic space bounded complexity classes such as L and NL play a central role in space
bounded computation. The study of counting versions of these complexity classes have lead to
several interesting insights into the structure of computational problems such as computing the
determinant and counting paths in directed acyclic graphs. Though parameterised complexity
theory was initiated roughly three decades ago by Downey and Fellows, a satisfactory study of
parameterised logarithmic space bounded computation was developed only in the last decade by
Elberfeld, Stockhusen and Tantau (IPEC 2013, Algorithmica 2015).

In this paper, we introduce a new framework for parameterised counting in logspace, inspired by
the parameterised space bounded models developed by Elberfeld, Stockhusen and Tantau (IPEC
2013, Algorithmica 2015). They defined the operators paraW and paraβ for parameterised space
complexity classes by allowing bounded nondeterminism with multiple-read and read-once access,
respectively. Using these operators, they characterised the parameterised complexity of natural
problems on graphs. In the spirit of the operators paraW and paraβ by Stockhusen and Tantau,
we introduce variants based on tail-nondeterminism, paraW[1] and paraβtail. Then, we consider
counting versions of all four operators applied to logspace and obtain several natural complete
problems for the resulting classes: counting of paths in digraphs, counting first-order models for
formulas, and counting graph homomorphisms. Furthermore, we show that the complexity of a
parameterised variant of the determinant function for (0, 1)-matrices is #paraβtailL-hard and can
be written as the difference of two functions in #paraβtailL. These problems exhibit the richness of
the introduced counting classes. Our results further indicate interesting structural characteristics of
these classes. For example, we show that the closure of #paraβtailL under parameterised logspace
parsimonious reductions coincides with #paraβL, that is, modulo parameterised reductions, tail-
nondeterminism with read-once access is the same as read-once nondeterminism.

Initiating the study of closure properties of these parameterised logspace counting classes, we
show that all introduced classes are closed under addition and multiplication, and those without
tail-nondeterminism are closed under parameterised logspace parsimonious reductions.

Also, we show that the counting classes defined can naturally be characterised by parameterised
variants of classes based on branching programs in analogy to the classical counting classes.

Finally, we underline the significance of this topic by providing a promising outlook showing
several open problems and options for further directions of research.
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40:2 Parameterised Counting in Logspace

1 Introduction

Parameterised complexity theory, introduced by Downey and Fellows [25], takes a two-
dimensional view on the computational complexity of problems and has revolutionised
the algorithmic world. Two-dimensional here refers to the fact that the complexity of a
parameterised problem is analysed with respect to the input size n and a parameter k

associated with the given input as two independent quantities. The notion of fixed-parameter
tractability is the proposed notion of efficient computation. A problem with parameter k is
fixed-parameter tractable (fpt, or in the class FPT) if there is a deterministic f(k) · nO(1)

time algorithm for deciding it, where f is a computable function. The primary notion of
intractability is captured by the W-hierarchy in this setting.

Since its inception, the focus of parameterised complexity theory has been to identify
parameterisations of NP-hard problems that allow for efficient parameterised algorithms,
and to address structural aspects of the classes in the W-hierarchy and related complexity
classes [33]. This led to the development of machine-based and logical characterisations of
parameterised complexity classes (see the book by Flum and Grohe [33] for more details).
While the structure of classes in hierarchies such as the W- and A-hierarchy is well understood,
a parameterised view of parallel and space-bounded computation lacked attention.

In 2013, Elberfeld et al. [43, 28] focused on parameterised space complexity classes and
initiated the study of parameterised circuit complexity classes. In fact, they introduced para-
meterised analogues of deterministic and nondeterministic logarithmic space-bounded classes.
The machine-based characterisation of W[P] (the class of problems that are fpt-reducible
to a weighted circuit satisfiability question), and the type of access to nondeterministic
choices (multi-read or read-once) led to two different variants of parameterised logspace
(para-logspace), namely, paraWL and paraβL. Elberfeld et al. [28] obtained several natural
complete problems for these classes, such as parameterised variants of reachability in graphs.

Bannach, Stockhusen and Tantau [6] further studied parameterised parallel algorithms.
They used colour coding techniques [4] to obtain efficient parameterised parallel algorithms
for several natural problems. A year later, Chen and Flum [15, 16] proved parameterised
lower bounds for AC0 by adapting circuit lower bound techniques.

Apart from decision problems, counting problems have found a prominent place in
complexity theory. Valiant [46] introduced the notion of counting complexity classes that
capture natural counting problems such as counting the number of perfect matchings in a
graph, or counting the number of satisfying assignments of a CNF formula. Informally, #P
(resp., #L) consists of all functions F : {0, 1}∗ → N such that there exists an nondeterministic
Turing machine (NTM) running in polynomial time (resp., logarithmic space) in the input
length whose number of accepting paths on every input x ∈ {0, 1}∗ is equal to F (x). Valiant’s
theory of #P-completeness led to several structural insights into complexity classes around
NP and interactive proof systems, as well as to the seminal result of Toda [45].

While counting problems in #P stayed in the focus of research for long, the study of the
determinant by Damm [23], Vinay [47], and Toda [44] established that the complexity of
computing the determinant of an integer matrix characterises the class #L up to a closure
under subtraction. Allender and Ogihara [3] analysed the structure of complexity classes
based on #L. The importance of counting classes based on logspace-bounded Turing machines
(TMs) was further established by Allender, Beals and Ogihara [2]. They characterised the
complexity of testing feasibility of linear equations by a class which is based on #L. Beigel
and Fu [7] then showed that small depth circuits built with oracle access to #L functions
lead to a hierarchy of languages which can be seen as the logspace version of the counting
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hierarchy. In a remarkable result, Ogihara [40] showed that this hierarchy collapses to the
first level. Further down the complexity hierarchy, Caussinus et al. [12] introduced counting
versions of NC1 based on various characterisations of NC1. The counting and probabilistic
analogues of NC1 exhibit properties similar to their logspace counterparts [24]. Moreover,
counting and gap variants of the class AC0 were defined by Agrawal et al. [1].

The theory of parameterised counting classes was pioneered by Flum and Grohe [32] as
well as McCartin [39]. The class #W[1] consists of all parameterised counting problems
that reduce to the problem of counting k-cliques in a graph. Flum and Grohe [32] proved
that counting cycles of length k is complete for #W[1]. Curticapean [18] further showed
that counting matchings with k edges in a graph is also complete for #W[1]. These results
led to several remarkable completeness results and new techniques (see, e.g., the works of
Curticapean [19, 20], Curticapean, Dell and Marx [21], Jerrum and Meeks [37], Brand and
Roth [10]).

Motivation. Given the rich structure of logspace-bounded counting complexity classes, the
study of parameterised variants of these classes is vital to obtain a finer classification of
counting problems.

A theory on para-logspace counting did not exist before. We wanted to overcome this
defect to further understand the landscape of counting problems with decision versions in
para-logspace-based classes. Our new framework allows us to classify many of these problems
more precisely. In this article, we define counting variants inspired by the parameterised
space complexity classes introduced by Elberfeld et al. [43, 28].

In the realm of space-bounded computation, different manners in which nondeterministic
bits are accessed lead to different complexity classes. For example, the standard definition of
NL implicitly gives the corresponding NTMs only read-once access to their nondeterministic
bits [5]: nondeterminism is given only in the form of choices between different transitions.
This means that nondeterministic bits are not re-accessible by the machine later in the
computation. When instead using an auxiliary read-only tape for these bits and allowing
for multiple passes on it, one obtains the class NP. This is due to the fact that SAT is
NP-complete with respect to logspace many-one reductions [5], and that one can evaluate a
CNF formula in deterministic logspace even when the assignment is given on a read-only tape.
However, polynomial time bounded NTMs still characterise NP even when the machine
is allowed to do only one pass on the nondeterministic bits as they can simply store all
nondeterministic bits on the work-tape. So, it is very natural to investigate whether the
differentiation from above leads to new insights in our setting.

With parameterisation as a means for a finer classification, Stockhusen and Tantau [43]
defined nondeterministic logarithmic space-bounded computation based on how (unrestric-
ted or read-once) the nondeterministic bits are accessed. Based on this distinction, they
defined two operators: paraW (unrestricted) and paraβ (read-once). Their study led to
many compelling natural problems that are complete for logspace-bounded nondeterministic
computations with suitable parameters. Thereby, a rich structure of computational power
based on the restrictions on the number of reads of the nondeterministic bits was exhibited.
In this article, we additionally differentiate based on when (unrestricted or tail access) the
nondeterministic bits are accessed. The classes W[1] and W[P] are the two most prominent
nondeterministic classes in the parameterised world which is why we wanted to see the
effect of such a restriction on the rather small classes in our setting. This leads to the
new operators paraW[1] and paraβtail. The concept of tail-nondeterminism allowed to
capture the parameterised complexity class W[1] – via tail-nondeterministic, k-bounded
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machines – and thereby relates to many interesting problems such as searching for cliques,
independent sets, or homomorphism, and evaluating conjunctive queries [33]. Intuitively,
tail-nondeterminism means that all nondeterministic bits are read at the end of the compu-
tation, and k-boundedness limits the number of these nondeterministic bits to f(k) · log |x|
for all inputs (x, k).

Studying counting complexity often improves the understanding of related classical
problems and classes (e.g., Toda’s theorem [45]). With regard to space-bounded complexity,
there are several characterisations of logspace-bounded counting classes in terms of natural
problems. For example, counting paths in directed graphs is complete for #L, and checking
if an integer matrix is singular or not is complete for the class C=L (see Allender et al. [2]).
Furthermore, testing if a system of linear equations is feasible or not can be done in L with
queries to any complete language for C=L. Moreover, two hierarchies built over counting
classes for logarithmic space collapse either to the first level [40] or to the second level [2].
Apart from this, the separation of various counting classes over logarithmic space remains
widely open. For example, it is not known if the class C=L is closed under complementation.

We consider different parameterised variants of the logspace-bounded counting class #L
to give a new perspective on its fine structure.

Results. We introduce the counting variants of parameterised space-bounded computation
and show that each of the parameterised logspace complexity classes, defined by Stock-
husen and Tantau [43], has a natural counting counterpart. Moreover, by considering
also tail-nondeterminism with respect to their classes, we obtain four different variants of
parameterised logspace counting classes, namely, #paraWL, #paraβL, #paraW[1]L, and
#paraβtailL. We show that #paraWL and #paraβL are closed under para-logspace
parsimonious reductions and that all of our new classes are closed under addition and
multiplication.

Furthermore, we develop a complexity theory by obtaining natural complete problems
for these new classes. We introduce variants of the problem of counting walks of parameter-
bounded length that are complete for the classes #paraβL (Theorems 14, 15 and 18),
#paraβtailL (Theorem 16) and #paraWL (Theorem 19). Since the same problem is shown
to be complete for both, #paraβL and #paraβtailL, we get the somewhat surprising result
that the closure of #paraβtailL under para-logspace parsimonious reductions coincides with
#paraβL (Corollary 17). Also, we show that a parameterised version of the problem of
counting homomorphisms from coloured path structures to arbitrary structures is complete
for #paraβL with respect to para-logspace parsimonious reductions (Theorem 28).

Afterwards, we study variants of the problem of counting assignments to free first-order
variables in a quantifier-free FO formula. We identify complete problems for the classes
#paraβL and #paraW[1]L in this context. More specifically, counting assignments to free
first-order variables in a quantifier-free formula with relation symbols of bounded arity and
the syntactical locality of the variables in the formula being restricted (p-#MC(Σr-local

0 )a)
is shown to be complete for the classes #paraβtailL and #paraβL with respect to para-
logspace parsimonious reductions (Theorem 22). When there is no restriction on the arity
of relational symbols or on the locality of the variables, counting the number of satisfying
assignments to free first-order variables in a quantifier-free formula in a given structure
(p-#MC(Σ0)) is complete for #paraW[1]L with respect to para-logspace parsimonious
reductions (Theorem 23).
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Figure 1 Diagram assuming pair-wise difference of studied classes with list of complete problems.

Finally, we consider a parameterised variant of the determinant function (p-det) introduced
by Chauhan and Rao [13]. By adapting the arguments of Mahajan and Vinay [38], we show
that p-det on (0, 1)-matrices can be expressed as the difference of two functions in #paraβL,
and is #paraβtailL-hard with respect to para-logspace many-one reductions (Theorem 33).

Figure 1 shows a class diagram with complete problems.

Main Techniques. Our primary contribution is laying foundations for the study of para-
meterised logspace-bounded counting complexity classes. The completeness results in The-
orems 15 and 23 required a quantised normal form for k-bounded nondeterministic Turing
Machines (NTMs) (Lemma 8). This normal form quantises the nondeterministic steps of a
k-bounded NTM into chunks of log n-many steps such that the total number of accepting
paths remains the same. We believe that the normal form given in Lemma 8 will be useful in
the structural study of parameterised counting classes. The study of p-det involved definitions
of so-called parameterised clow sequences generalising the classical notion [38]. Besides, a
careful assignment of signs to clow sequences was necessary for our complexity analysis of
p-det.

Related Results. Chen and Müller [14] studied the parameterised complexity of counting
homomorphisms and divided the problems into four equivalence classes. However, their
equivalence is only based on reductions among variants of counting homomorphisms but
not in terms of concrete complexity classes. In this context, Dalmau and Johnson [22]
investigated the complexity of counting homomorphisms as well, and provided generalisations
of results by Grohe [34] to the counting setting. A similar classification regarding our classes
can give new insights into the complexity of the homomorphism problem (Open Problem 29).
The behaviour of our classes with respect to reductions is similar to the one observed for
W[1] by Bottesch [8, 9].

Outline. In Section 2, we introduce the considered machine model, as well as needed
foundations of parameterised complexity theory, and logic. Section 3 presents structural
results regarding our introduced notions in the parameterised counting context. Afterwards,
in Section 4, our main results on counting walks, FO-assignments, homomorphisms as well
as regarding the determinant are shown. Finally, we conclude in Section 5.
Due to space limitations, all proof details can be found in the technical report [36].
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2 Preliminaries

In this section, we describe the computational models and complexity classes that are
relevant for parameterised complexity theory. We use standard notions and notations from
parameterised complexity theory [25, 33]. Without loss of generality, we restrict the input
alphabet to be {0, 1}.

Turing Machines (TMs) with Random Access to the Input. We consider an intermediate
model between TMs and Random Access Machines (RAMs) on words. Particularly, we make
use of TMs that have random access to the input tape and can query relations in input
structures in constant time. This can be achieved with two additional tapes of logarithmic
size (in the input length), called the random access tape and the relation query tape. On
the former, the machine can write the index of an input position to get the value of the
respective bit of the input. On the relation query tape, the machine can write a tuple t of
the input structure together with a relation identifier R to get the bit stating whether t is
in the relation specified by R. Note that our model achieves linear speed-up for accessing
the input compared to the standard TM model. (This is further justified by Remark 6.)
For convenience, in the following, whenever we speak about TMs we mean the TM model
with random access to the input. Denote by SPACETIME(s, t) (NSPACETIME(s, t))
with s, t : N → N the class of languages that are accepted by (nondeterministic) TMs with
space-bound O(s(n)) and time-bound O(t(n)). A C-machine for C = SPACETIME(s, t)
(C = NSPACETIME(s, t)) is a (nondeterministic) TM that is O(s(n)) space-bounded and
O(t(n)) time-bounded.

NTMs are a generalisation of TMs where multiple transitions from a given configuration
are allowed. This can be formalised by allowing the transition to be a relation rather than a
function. Sometimes, it is helpful to view NTMs as deterministic TMs with an additional
tape, called the (nondeterministic) choice tape which is read-only. Let M be a deterministic
TM with a choice tape. A nondeterministic step in the computation of M is a step where
M moves the head on the choice tape to a cell that was not visited before. The language
accepted by M , L(M) is defined as

{ x ∈ {0, 1}∗ | ∃y ∈ {0, 1}∗ s.t. M accepts x when the choice tape is initialised with y }.

Notice that in this framework the machine M has two-way access to the choice tape.
Furthermore, resource bounds are with respect to the input only (the content of the choice
tape is not part of the input) and the choice tape is not counted for space bounds. In this
paper, we regard nondeterministic TMs as deterministic ones with a choice tape.

Before we proceed to the definition of parameterised complexity classes, a clarification
on the choice of the model is due. Note that RAMs and NRAMs are often appropriate in
the parameterised setting as exhibited by several authors (see, e.g., the textbook of Flum
and Grohe [33]). They allow to define bounded nondeterminism quite naturally. On the
other hand, in the classical setting, branching programs (BPs) are one of the fundamental
models that represent space bounded computation, in particular logarithmic space. Since
BPs inherently use bit access, this relationship suggests the use of a bit access model.
Consequently, we consider a hybrid computational model: Turing machines with random
access to the input. While the computational power of this model is the same as that of
Turing machines and RAMs, it seems to be a natural choice to guarantee a certain robustness,
allowing for desirable characterisations of our classes.
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Parameterised Complexity Classes. Let FPT denote the set of parameterised problems
that can be decided by a deterministic TM running in time f(k) · p(|x|) for any input (x, k)
where f is a computable function and p is a polynomial. Two central classes in parameterised
complexity theory are W[1] and W[P] which were originally defined via special types of
circuit satisfiability [33]. Flum, Chen and Grohe [17] obtained a characterisation of these
two classes using the following notion of k-bounded NTMs.

▶ Definition 1 (k-bounded TMs). An NTM M , working on inputs of the form (x, k) with
x ∈ {0, 1}∗, k ∈ N, is said to be k-bounded if for all inputs (x, k) it reads at most f(k) · log |x|
bits from the choice tape on input (x, k), where f is a computable function.

Here, we will work with the following characterisation of W[P]. The characterisation for
W[1] needs another concept that will be defined on the next page.

▶ Proposition 2 ([17, 33]). W[P] is the set of all parameterised problems that can be accepted
by k-bounded FPT-machines with a choice tape.

Now, we recall three complexity theoretic operators that define parameterised complex-
ity classes from an arbitrary classical complexity class, namely para, paraW and paraβ ,
following the notation of Stockhusen [42].

▶ Definition 3 ([31]). Let C be any complexity class. Then paraC is the class of all
parameterised problems P ⊆ {0, 1}∗ × N for which there is a computable function π : N →
{0, 1}∗ and a language L ∈ C with L ⊆ {0, 1}∗ × {0, 1}∗ such that for all x ∈ {0, 1}∗, k ∈ N:
(x, k) ∈ P ⇔ (x, π(k)) ∈ L.

Notice that paraP = FPT is the standard precomputation characterisation of FPT [31]. A
paraC-machine for C = SPACETIME(s, t) (C = NSPACETIME(s, t)) is a (nondetermin-
istic) TM, working on inputs of the form (x, k), that is O(s(|x| + f(k))) space-bounded and
O(t(|x| + f(k))) time-bounded where f is a computable function.

The class XP (problems accepted in time |x|f(k) for a computable function f) and the W-
hierarchy [33] capture intractability of parameterised problems. Though the W-hierarchy was
defined using the weighted satisfiability of formulas with bounded weft, which is the number
of alternations between gates of high fan-in, Flum and Grohe [31] characterised central classes
in this context using bounded nondeterminism. Stockhusen and Tantau [43, 42] considered
space-bounded and circuit-based parallel complexity classes with bounded nondeterminism.

The following definition is a more formal version of the one given by Stockhusen and
Tantau [43, Def. 2.1]. They use para∃↔

f logC instead of paraWC for a complexity class C.

▶ Definition 4. Let C = SPACETIME(s, t) for some s, t : N → N. Then, paraWC is the
class of all parameterised problems Q that can be accepted by a k-bounded paraC-machine
with a choice tape.

For example, paraWL denotes the parameterised version of NL with k-bounded non-
determinism. One can also restrict this model by only giving one-way access to the non-
deterministic tape. The following definition is a more formal version of the one of Stockhusen
and Tantau [43, Def. 2.1] who use the symbol para∃→

f log instead.

▶ Definition 5. Let C = SPACETIME(s, t) for some s, t : N → N. Then paraβC denotes
the class of all parameterised problems Q that can be accepted by a k-bounded paraC-machine
with a choice tape with one-way read access to the choice tape.
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As there is only read-once access to the nondeterministic bits, paraβC can be equivalently
defined via nondeterministic transitions and without using a choice tape.

Another notion studied in parameterised complexity is tail-nondeterminism. A k-bounded
machine M is tail-nondeterministic if there exists a computable function g such that on all
inputs (x, k), M makes at most g(k) · log n further steps in the computation, after its first
nondeterministic step. The value of this concept is evidenced by the machine characterisation
of W[1] (Chen et al. [17]). We hope to get new insights by transferring this concept to
space-bounded computation. In consequence, we introduce the tail-nondeterministic versions
of paraWC and paraβC which are denoted by paraW[1]C and paraβtailC.

▶ Remark 6. Note that it is important to have random access to the input tape in the case
of tail-nondeterminism. Without random access to input bits and input relations, a TM
cannot even make reasonable queries to the input in time g(k) · log(n).

Logic. We assume basic familiarity with first-order logic (FO). A vocabulary is a finite
ordered set of relation symbols and constants. Each relation symbol R has an associated
arity arity(R) ∈ N. Let τ be a vocabulary. A τ -structure A consists of a nonempty finite
set dom(A) (its universe), and an interpretation RA ⊆ dom(A)arity(R) for every relation
symbol R ∈ τ . Syntax and semantics are defined as usual (see, e.g., the textbook of
Ebbinghaus et al. [27]). Let A be a structure with universe A. We denote by |A| the size
of a binary encoding of A, i.e., the number of bits required to represent the universe and
relations as lists of tuples. For example, if R is a relation of arity 3, then RA is represented
as a subset of A3, i.e., a set of triples over A. This requires O(|RA| · arity(R)) · log |A|) bits to
represent the relation RA, assuming log |A| bits to represent an element in A. As analysed by
Flum et al. [30, Sect. 2.3], this means that |A| ∈ Θ((|A|+ |τ |+

∑
R∈τ |RA| ·arity(R)) · log |A|).

Also recall that the fragment Σi (for i ∈ N) refers to the class of FO-formulas with i quantifier
blocks alternating between existential and universal quantifiers and the outermost quantifier
being existential.

3 Parameterised Counting in Logarithmic Space

Now, we define the counting counterparts based on the parameterised classes defined using
bounded nondeterminism. The definitions of the decision classes based on tail-nondeterminism
can be found in the technical report [36]. A parameterised function is a function F : {0, 1}∗ ×
N → N. For an input (x, k) of F with x ∈ {0, 1}∗, k ∈ N, we call k the parameter of that
input. If C is a complexity class and a parameterised function F belongs to C, we say that F

is C-computable. Let M be a TM. We denote by accM (x) the number of accepting paths of
M on input x, and similarly, accM (x, k), for parameterised inputs of the form (x, k).

▶ Definition 7. Let C = SPACETIME(s, t) for some s, t : N → N. Then a parameterised
function F is in #paraWC if there is a k-bounded nondeterministic paraC-machine M such
that for all inputs (x, k), we have that accM (x, k) = F (x, k). Furthermore, F is in

#paraβC if there is such an M with read-once access to its nondeterministic bits,
#paraW[1]C if there is such an M that is tail-nondeterministic, and
#paraβtailC if there is such an M with read-once access to its nondeterministic bits that
is tail-nondeterministic.

By definition, we get #paraβtailL ⊆ C ⊆ #paraWL for C ∈ {#paraβL, #paraW[1]L}.
Note that the restriction of the above classes to k-boundedness is crucial. If we drop this
restriction, the machines are able to access 2f(k)+log|x|, so fpt-many, nondeterministic bits.
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Regarding multiple-read access, this allows for solving SAT (with constant parameterisation).
So this class then would contain a paraNP-complete problem. For read-once access, we
expect a similar result for paraNL. When adding tail-nondeterminism, we implicitly get
k-boundedness again, so this does not lead to new classes.

The following lemma shows that paraL-machines can be normalised in a specific way.
This normalisation will play a major role in Section 4.

▶ Lemma 8. For any k-bounded nondeterministic paraL-machine M there exists a k-bounded
nondeterministic paraL-machine M ′ with #accM (x, k) = #accM ′(x, k) for all inputs (x, k)
such that M ′ has the following properties:
(1) M ′ has a unique accepting configuration,
(2) on any input (x, k), every computation path of M ′ accesses exactly g(k) · log |x| non-

deterministic bits (for some computable function g), and M ′ counts on an extra tape
(tape S) the number of nondeterministic steps, and

(3) M ′ has an extra tape (tape C) on which it remembers previous nondeterministic bits,
resetting the tape after every log |x|-many nondeterministic steps.

Additionally, if M has read-once access to its nondeterministic bits, or is tail-nondeterministic,
or both, then M ′ also has these properties.

The following result follows from a simple simulation of nondeterministic machines by
deterministic ones. Let FFPT be the class of functions computable by FPT-machines with
output.

▶ Theorem 9. #paraβL ⊆ FFPT.

Using the notion of oracle machines (see, e.g., [41]), we define Turing, metric, and
parsimonious reductions computable in paraL. For our purposes, the oracle tape is always
exempted from space restrictions which is often the case in the context of logspace Turing
reductions [11]. A study on the effect of changing this assumption might be interesting.

▶ Definition 10 (Reducibilities). Let F, F ′ : {0, 1}∗ × N → N be two functions. Then, F is
para-logspace Turing reducible to F ′, F ≤plog

T F ′, if there is a paraL oracle TM M that
computes F with oracle F ′ and the parameter of any oracle query of M is bounded by a
computable function in the parameter. If there is such an M that uses only one oracle query,
then F is para-logspace metrically reducible to F ′, F ≤plog

met F ′. If there is such an M that
returns the answer of the first oracle query, then F is para-logspace parsimoniously reducible
to F ′, F ≤plog

pars F ′.

Note that the definition of parsimonious reductions ensures that the size of the witness set
is preserved by the fact that M immediately returns the answer of its only oracle query
(without further computations). For any reducibility relation ≼ and any complexity class C,
[C]≼ := { A | ∃C ∈ C such that A ≼ C } is the ≼-closure of C.

Next, we show that both new classes without tail-nondeterminism are closed under ≤plog
pars.

▶ Lemma 11. The classes #paraWL and #paraβL are closed under ≤plog
pars.

For the tail-classes, such a closure property is not obvious. Corollary 16 will show that closing
the class with read-once access and tail-nondeterminism under these reductions gives the full
power of the class without tail-nondeterminism. Open Problem 24 on page 12 asks what class
is obtained when closing the class without read-once access and with tail-nondeterminism.

Another important question is whether classes are closed under certain arithmetic opera-
tions. We show that all newly introduced classes are closed under addition and multiplication.
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▶ Theorem 12. For any o ∈ {W, W[1], β, β-tail}, the class #parao-L is closed under
addition and multiplication.

▶ Open Problem 13. Which of the classes are closed under monus, that is, max{F − G, 0}?

4 Complete Problems

This section studies complete problems for the previously defined classes: counting problems
in the context of walks in directed graphs, model-checking problems for FO formulas, and
homomorphisms between FO-structures as well as a parameterised version of the determinant.

4.1 Counting Walks
We start with parameterised variants of counting walks in directed graphs which will be
shown to be complete for the introduced classes.

Problem: p-#LOGREACHb

Input: directed graph G = (V, E) with out-degree b, s, t ∈ V and a, k ∈ N.
Parameter: k.
Output: number of s-t-walks of length a if a ≤ k · log |V |, 0 otherwise.

▶ Theorem 14. For every b ≥ 2, p-#LOGREACHb is #paraβL-complete with respect to
≤plog

pars-reductions.

Proof Idea. For the upper bound, guess a path of length exactly a. The number of non-
deterministic bits is bounded by O(k · log |V |) since successors can be referenced by a number
in {0, . . . , b − 1}.

For the lower bound, using Lemma 8, construct the configuration graph G restricted to
nondeterministic configurations and the unique accepting configuration Cacc, where the edge
relation expresses whether a configuration is reachable with exactly one nondeterministic,
but an arbitrary number of deterministic steps. Accepting computations of the machine
correspond to paths from the first nondeterministic configuration to Cacc of length f(k)·log |G|
in G. ◀

Now consider the problem p-#REACH, defined as follows.

Problem: p-#REACH

Input: directed graph G = (V, E), s, t ∈ V , k ∈ N.
Parameter: k.
Output: number of s-t-walks of length exactly k.

The difference to the previous problem is the unbounded out-degree of nodes and the length
of counted walks being k instead of a ≤ k · log |x|. Note that the analogue problem for
counting paths is #W[1]-complete [32]. However, we will see now that the problem for walks
is #paraβL-complete.

▶ Theorem 15. p-#REACH is #paraβL-complete with respect to ≤plog
pars.

As the length of paths that are counted in p-#REACH is k, the runtime of the whole
algorithm used to prove membership in the previous theorem is actually bounded by k · log |x|
on input (x, k). This means that the computation is tail-nondeterministic.
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▶ Theorem 16. p-#REACH is #paraβtailL-complete with respect to ≤plog
pars.

The previous results together with the fact that #paraβL is closed under ≤plog
pars yield the

following surprising collapse (a similar behaviour was observed by Bottesch [8, 9]).

▶ Corollary 17. [#paraβtailL]≤
plog
pars = #paraβL.

We continue with another variant of p-#LOGREACHb, namely p-#LOGWALKb. Here,
all walks of length a are counted, if a ≤ k · log |x| (and s, t are not part of the input).

▶ Theorem 18. p-#LOGWALKb is #paraβL-complete with respect to ≤plog
T .

Now, consider a problem that combines a reachability problem with model-checking for
propositional logic, that is, it only counts walks that are models of a propositional formula
(see Haak et al. [35]). Let G = (V, E) be a DAG, (e1, . . . , en) be a walk in G with ei ∈ E for
1 ≤ i ≤ n, and P = {e1, . . . , en}. Define the function cP : E → {0, 1} to be the characteristic
function of P with respect to E: cP (e) = 1 iff e ∈ P .

Problem: p-#LOGREACH2-CNF

Input: directed graph G = (V, E) of out-degree 2, s, t ∈ V , CNF formula φ with
Vars(φ) ⊆ E, a, k ∈ N.

Parameter: k.
Output: Number of s-t-walks (s = e1, . . . , ea = t) such that cP |= φ, where P =

{e1, . . . , ea}, if a ≤ k · log(|V | + |φ|), 0 otherwise.

▶ Theorem 19. p-#LOGREACH2-CNF is #paraW L-complete with respect to ≤plog
pars.

Proof Idea. Regarding membership, we can first use the algorithm outlined in the proof
idea of Theorem 14 to nondeterministically guess a path, and then use the standard logspace
model-checking algorithm for propositional formulas. Since edges in the graph are associated
with variables of the formula, whenever we need the value of an edge variable e, we run the
original algorithm re-using nondeterministic bits to determine it.

For the lower bound, we use the same graph as in Theorem 14, and the formula is used
to express consistency of the re-used nondeterministic bits in the configuration graph. ◀

Similarly, define the problem p-#CC2-CNF: Given a graph G = (V, E) of bounded
out-degree 2, a CNF-formula φ with Vars(φ) ⊆ E and a, k ∈ N, with k as the parameter
and a ≤ log(|G| + |φ|), output the number of cycle covers D ⊆ E in which the number of
non-selfloop-cycles is ≤ k, exactly k · a vertices are covered non-trivially and Vars(D) |= φ.

▶ Theorem 20. p-#CC2-CNF is #paraW L-complete with respect to ≤plog
pars.

4.2 Counting FO-Assignments
Let F be a class of well-formed formulas. The problem of counting satisfying assignments to
free FO-variables in F-formulas, p-#MC(F), is defined as follows.

Problem: p-#MC(F)

Input: formula φ ∈ F , structure A, k ∈ N.
Parameter: |φ|.
Output: |φ(A)| if k = |φ|, 0 otherwise.
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Here, φ(A) is the set of satisfying assignments of φ in A:

φ(A) = { (a1, . . . , an) | (a1, . . . , an) ∈ dom(A)n, A |= φ(a1, . . . , an) }.

Denote by p-#MC(F)a the variant where for all relations the arity is at most a ∈ N. We
investigate parameterisations that yield complete problems for some of the new classes in
this setting.

In particular, we consider a fragment of FO obtained by restricting the occurrence of
variables in the syntactic tree of a formula in a purely syntactic manner. Formally, the syntax
tree of a quantifier-free FO-formula φ is a tree with edge-ordering whose leaves are labelled
by atoms of φ and whose inner vertices are labelled by Boolean connectives.

▶ Definition 21. Let r ∈ N and φ be a quantifier-free FO-formula. Let θ1, . . . , θm be the
atoms of φ in the order of their occurrence in the order-respecting depth-first run through the
syntax tree of φ. We say that φ is r-local if for any θi, θj that involve the same variable, we
have |i − j| ≤ r. We define Σr-local

0 := { φ ∈ Σ0 | φ is r-local }.

Using this syntactic notion, we obtain a complete problem for our classes with read-once
access to nondeterministic bits in the setting of first-order model-checking.

▶ Theorem 22. For a ≥ 2, r ≥ 1, p-#MC(Σr-local
0 )a is #paraβL-complete and #paraβtailL-

complete with respect to ≤plog
pars.

Proof Idea. Regarding membership, we evaluate the given φ in A top to bottom using the
locality of φ by storing assignments to variables until we encountered r more atoms. As a
result, at most a · r assignments to variables are simultaneously stored and each one needs
log |A| space. Moreover, the runtime of the whole procedure is bounded by f(|φ|) · log |A|
for some computable function f and thereby the procedure is tail-nondeterministic.

Regarding the lower bound, we reduce from p-#REACH and use the formula

φk(x1, . . . , xk) := (x1 = s) ∧ E(x1, x2) ∧ E(x2, x3) ∧ . . . ∧ E(xk−1, xk) ∧ xk = t

expressing that a tuple of vertices (v1, . . . , vk) is an sA-tA-walk in an (E, s, t)-structure A. ◀

Note that the decision version of p-#MC(Σ0) is equivalent to parameterised model-
checking for Σ1-sentences, as we count assignments to free variables. This problem charac-
terises tail-nondeterministic para-logspace with read-once access to nondeterministic bits.

▶ Theorem 23. p-#MC(Σ0) is #paraW[1]L-complete with respect to ≤plog
pars.

The complexity status of counting assignments to free first-order variables in a Σ0 formula
with unbounded arity or without the local restrictions is not known. In particular, it is not
clear if the restriction on the arity or the locality property of the formula can be removed
while preserving completeness. Finally, we close this section with three open questions.

▶ Open Problem 24. What is the complexity of [p-#MC(Σ0)a]≤
plog
pars for fixed a ∈ N? What

is the complexity of [p-#MC(Σr-local
0 )]≤

plog
pars for fixed r ∈ N?

▶ Open Problem 25. Is the class [#paraW[1]L]≤
plog
pars equivalent to some known class?
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4.3 Counting Homomorphisms
This subsection is devoted to the study of the problem of counting homomorphisms between
two structures in the parameterised setting. Typically, the size of the universe of the first
structure is considered as the parameter. The complexity of counting homomorphisms has
been intensively investigated for almost two decades [26, 34, 22, 14].

▶ Definition 26 (Homomorphism). Let A and B be structures over some vocabulary τ with
universes A and B, respectively. A function h : A → B is a homomorphism from A to B if for
all R ∈ τ and for all tuples (a1, . . . , aarity(R)) ∈ RA, we have (h(a1), . . . , h(aarity(R))) ∈ RB.

A bijective homomorphism h between two structures A, B such that the inverse of h is
also a homomorphism is called an isomorphism. If there is an isomorphism between A and
B, then A is said to be isomorphic to B.

▶ Definition 27. Let A be a structure with universe A. Then denote by A∗ the extension
of A by a fresh unary relation symbol Ca interpreted as CA

a = {a} for each a ∈ dom(A).
Analogously, denote by A∗ for a class of structures A the class { A∗ | A ∈ A }.

Define p-#Hom(A) as the following problem. Given a pair of structures (A, B) where
A ∈ A, and parameter k, output the number of homomorphisms from A to B, if |dom(A)| ≤ k,
and 0 otherwise.

Problem: p-#Hom(A)

Input: A pair of structures (A, B) where A ∈ A.
Parameter: |A|, k ∈ N.
Output: the number of homomorphisms from A to B if |dom(A)| ≤ k, 0 otherwise.

Notice that B can be any structure. For n ≥ 2, let Pn be the canonical undirected path of
length n, that is, the (E)-structure with universe {1, . . . , n} and EPn = { (i, i + 1), (i + 1, i) |
1 ≤ i < n }. Let P be the class of structures isomorphic to some Pn. For the next
theorem, reduce to p-#REACH for membership, and from a normalised, coloured variant of
p-#REACH for hardness.

▶ Theorem 28. p-#Hom(P∗) is #paraβL-complete with respect to ≤plog
pars.

▶ Open Problem 29. Is there a natural class of structures A such that p-#Hom(A) is
#paraW[1]L-complete with respect to ≤plog

pars?

4.4 The Parameterised Complexity of the Determinant
In this section, we consider a parameterised variant of the determinant function introduced by
Chauhan and Rao [13]. For n > 0 let Sn denote the set of all permutations of {1, . . . , n}. For
k ≤ n, let Sn,k denote the following subset of Sn: Sn,k = { π | π ∈ Sn, |{ i : π(i) ̸= i }| = k }.

We define the parameterised determinant function of an n × n square matrix A =
(ai,j)1≤i,j≤n as p-det(A, k) =

∑
π∈Sn,k

sign(π)
∏

i:π(i)̸=i ai,π(i).
Using an interpolation argument, it can be shown that p-det is in FP when k is part of

the input and thereby in FFPT [13], the functional counterpart of FPT. In fact, the same
interpolation argument can be used to show that p-det is in GapL (the class of functions
f(x) such that for some NL-machine, f(x) is the number of accepting minus the number
of rejecting paths). However, this does not give a space efficient algorithm for p-det in
the sense of parameterised classes. The GapL algorithm may require a large number of
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nondeterministic steps and accordingly is not k-bounded. We show that the space efficient
algorithm for the determinant given by Mahajan and Vinay [38] can be adapted to the
parameterised setting, proving that p-det can be written as a difference of two #paraβL
functions. Recall the notion of a clow sequence introduced by Mahajan and Vinay [38].

▶ Definition 30 (Clow). Let G = (V, E) be a directed graph with V = {1, . . . , n} for some
n ∈ N. A clow in G is a walk C = (w1, . . . , wr−1, wr = w1) where w1 is the minimal vertex
among w1, . . . , wr−1 with respect to the natural ordering of V and w1 ̸= wj for all 1 < j < r.
Node w1 is called the head of C, denoted by head(C).

▶ Definition 31 (Clow sequence). A clow sequence of a graph G = ({1, . . . , n}, E) is a
sequence W = (C1, . . . , Ck) such that Ci is a clow of G for 1 ≤ i ≤ k and

the heads of the sequence are in ascending order head(C1) < · · · < head(Ck), and
the total number of edges that appear in some Ci (including multiplicities) is exactly n.

For a clow sequence W of some graph G = ({1, . . . , n}, E) with r clows the sign of W ,
sign(W ), is defined as (−1)n+r. Note that, if the clow sequence is a cycle cover σ, then (−1)n+r

is equal to the sign of the permutation represented by σ (that is, (−1)# inversions in σ). Mahajan
and Vinay came up with this sign-function to derive their formula for the determinant.

For an (n × n)-matrix A, GA is the weighted directed graph with vertex set {1, . . . , n}
and weighted adjacency matrix A. For a clow (sequence) W , weight(W ) is the product of
weights of the edges (clows) in w. For any G as above, WG is the set of all clow sequences of
G. Mahajan and Vinay [38] proved that det(A) =

∑
W ∈WGA

sign(W ) · weight(W ).
We adapt these notions to the parameterised setting. First observe that for a permutation

σ ∈ Sn,k, we have that sign(σ) = (−1)n+r, where r is the number of cycles in the permutation.
However, the number of cycles in σ is n − k + r′, where r′ is the number of cycles of length
at least two in σ. Accordingly, we have sign(σ) = (−1)2n−k+r′ . Adapting the definition of
a clow sequence, for k ≥ 0, define a k-clow sequence to be a clow sequence where the total
number of edges (including multiplicity) in the sequence is exactly k, every clow has at least
two edges, and no self loop edge of the form (i, i) occurs in any of the clows. For any graph
G with vertex set {1, . . . , n} for n ∈ N, WG,k is the set of all k-clow sequences of G. For
a k-clow sequence W ∈ WG,k, sign(W ) is (−1)2n−k+r′ , where r′ is the number of clows in
W . Mahajan and Vinay [38, Theorem 1] showed that the signed sum of the weights of all
clow sequences is equal to the determinant. At the outset, this is a bit surprising, since
the determinant is equal to the signed sum of weights of cycle covers, whereas there are
clow sequences that are not cycle covers. Mahajan and Vinay [38] observed that every clow
sequence that is not a cycle cover can be associated with a unique clow sequence of opposite
sign, and thereby all clow sequences cancel out. We observe a parameterised version of the
above result [38, Theorem 1].

▶ Lemma 32. p-det(A, k) =
∑

W ∈WGA,k
sign(W ) · weight(W ), for {0, 1}-matrix A, k ∈ N.

Using this characterisation, the upper bound in the following theorem can be obtained.
For hardness a reduction from p-#REACH suffices.

▶ Theorem 33. The problem p-det for (0, 1)-matrices can be written as a difference of two
functions in #paraβtailL, and is #paraβtailL-hard with respect to ≤plog

met .
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5 Conclusions and Outlook

We developed foundations for the study of parameterised space complexity of counting
problems. Our results show interesting characterisations for classes defined in terms of
k-bounded para-logspace NTMs. We believe that our results will lead to further research
of parameterised logspace counting complexity. Notice, that the studied walk problems in
Section 4.1 can be considered restricted to DAGs yielding the same completeness results.

Branching programs are immanent for the study of space-bounded and parallel complex-
ity classes. Languages accepted by polynomial-size logspace-uniform branching programs
characterise NL. In fact, this result carries forward to the counting versions. Motivated
by this, one can consider parameterised counting classes based on deterministic branching
programs (DBPs) and nondeterministic branching programs (BPs). It can be shown that for
any o ∈ {W, W[1], β, β-tail}, #parao-L and #parao-NL, can be characterised in terms of
an adequate parameterised counting version of DBPs and BPs, respectively (see the technical
report [36]).

Comparing our newly introduced classes with the W-hierarchy (which is defined in
terms of weighted satisfiability problems for circuits of a so-called bounded weft), one might
ponder whether there is an alternative definition of our classes with such circuit problems.
Though in this article we did not explore the weighted satisfiability, the closely related
problem p-MC(Σ0) sheds some light on this. Theorem 23 shows that p-MC(Σ0) is complete
for paraW[1]L (in fact, we show this for their counting versions) under ≤plog

m -reductions.
However, if we take FPT-reductions, p-MC(Σ0) is complete for W[1]. Though we could
not prove it so far, we believe this is a general phenomenon: Any W[1]-complete problem is
complete for paraW[1]L under ≤plog

m -reductions. More generally, there is a possibility that
the FPT-closure of paraW L-classes is equal to the corresponding class in the W-hierarchy.

One might also ask the question if paraW L is contained in FFPT. This is unlikely based
on the view expressed above. For example, p-MC(Σ0) is complete for both paraW[1]L and
W[1] but under two different reductions. As a result, paraW L ⊆ FFPT would imply that
p-MC(Σ0) ∈ FPT and, accordingly, FPT = W[1] as FPT is closed under FPT-reductions.
We close with interesting tasks for further research:

Study further closure properties of the new classes (e.g., Open Problem 13).
Improve the understanding of the influence of syntactic locality, resp., bounded arity in
the setting of p-#MC(Σ0) (Open Problem 24).
Find a characterisation of the ≤plog

pars-closure of #paraW[1]L (Open Problem 25).
Identify a natural class of structures for which the homomorphism problem is #paraWL-
complete (Open Problem 29).
Establish a broader spectrum of complete problems for the classes paraβL and paraW L,
e.g., in the realm of satisfiability questions.
Identify further characterisations of the introduced classes, e.g., in the vein of descriptive
complexity, which could highlight their robustness.
Study gap classes [29] based on our classes. This might help improve Theorem 33.
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