An Improved Sketching Algorithm for Edit Distance
Ce Jin @4
MIT, Cambridge, MA, USA

Jelani Nelson G4
University of California at Berkeley, CA, USA

Kewen Wu &
University of California at Berkeley, CA, USA

—— Abstract

We provide improved upper bounds for the simultaneous sketching complexity of edit distance.
Consider two parties, Alice with input x € X" and Bob with input y € X", that share public
randomness and are given a promise that the edit distance ed(z,y) between their two strings is at
most some given value k. Alice must send a message sx and Bob must send sy to a third party
Charlie, who does not know the inputs but shares the same public randomness and also knows k.
Charlie must output ed(z,y) precisely as well as a sequence of ed(z,y) edits required to transform x
into y. The goal is to minimize the lengths |sz|, |sy| of the messages sent.

The protocol of Belazzougui and Zhang (FOCS 2016), building upon the random walk method
of Chakraborty, Goldenberg, and Koucky (STOC 2016), achieves a maximum message length of
O(k®) bits, where O(-) hides poly(logn) factors. In this work we build upon Belazzougui and
Zhang’s protocol and provide an improved analysis demonstrating that a slight modification of their
construction achieves a bound of O(k?).

2012 ACM Subject Classification Theory of computation — Sketching and sampling
Keywords and phrases edit distance, sketching

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.45

Related Version Full Version: https://arxiv.org/abs/2010.13170

Funding Ce Jin: Supported by Akamai Presidential Fellowship.

Jelani Nelson: Supported by NSF award CCF-1951384, ONR grant N00014-18-1-2562, ONR
DORECG award N00014-17-1-2127, an Alfred P. Sloan Research Fellowship, and a Google Faculty
Research Award.

Acknowledgements We thank Qin Zhang for answering several questions about [7]. C. J. thanks
Virginia Vassilevska Williams for several helpful discussions. We thank anonymous reviewers for
their helpful comments.

1 Introduction

The edit distance ed(z,y) between two strings is defined to be the minimum number of
character insertions, deletions, or substitutions required to transform x into y. It is one
of the most well-studied distance measures on strings, with applications in information
retrieval, natural language processing, and bioinformatics. If x,y are each at most length
n, the textbook Wagner-Fischer algorithm computes ed(x,y) exactly in O(n?) time, with
the only improvement since being by a logn factor due to Masek and Paterson [23]. It
has since been shown that an O(n?~¢) time algorithm does not exist for any constant
e > 0 unless the Strong Exponential Time Hypothesis fails [5]. Since the work of [23],
several subsequent works have considered setups beyond offline exact algorithms for edit
distance, such as faster approximation algorithms [4, 2, 12, 11, 21, 3], metric embeddings
[26, 14, 19, 22], smoothed complexity [1, 9], quantum algorithms [8], sublinear time algorithms

© Ce Jin, Jelani Nelson, and Kewen Wu; L)

37 licensed under Creative Commons License CC-BY 4.0 V"
38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). m I_
Editors: Markus Blaser and Benjamin Monmege; Article No. 45; pp. 45:1-45:16 4 S1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:cejin@mit.edu
https://ce-jin.github.io/
https://orcid.org/0000-0001-5264-1772
mailto:minilek@berkeley.edu
http://people.eecs.berkeley.edu/~minilek
https://orcid.org/0000-0001-7370-3733
mailto:shlw_kevin@hotmail.com
https://shlw.github.io/
https://orcid.org/0000-0002-5894-822X
https://doi.org/10.4230/LIPIcs.STACS.2021.45
https://arxiv.org/abs/2010.13170
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2

An Improved Sketching Algorithm for Edit Distance

for gap versions [6, 17, 10, 20], and communication complexity and sketching/streaming
[13, 7, 15, 18, 16]. In this work we focus on communication complexity, and specifically
simultaneous communication complexity.

In the communication model, Alice has input string and Bob has y. They, or a third
party, would like to compute ed(z,y) as well as a minimum length sequence of edits for
transforming = into y. We consider the setting of shared public randomness amongst all
parties. The one-way setting in which Alice sends a single message to Bob, who must then
output ed(z,y), is known as the document exchange problem and has a long history. In
the promise version of the problem for which we are promised ed(z,y) < k, Orlitsky [25]
gave a deterministic protocol in which Alice only sends O(klog(n/k)) bits in the case of
binary strings, which is optimal, with the downside that Bob’s running time to process her
message is exponential. Haeupler recently used public randomness to improve Bob’s running
time to polynomial with the same asymptotic message length, and it is now known that
a polynomial-time recovery algorithm is achievable deterministically if one increases the
message length to O(klog®(n/k)) [15, 18]. Belazzougui and Zhang [7] studied the harder
simultaneous communication model in which Alice and Bob each send messages to a third
party Charlie, who knows neither string but shares knowledge of the public randomness,
and Charlie must output ed(z,y) as well as the edits required to transform x into y. In this
model they gave a protocol in which each player sends O(k®log® n) = O(k®) bits.*

» Definition 1 (Problem 2, 1 5). Alice and Bob and a referee share public randomness.
Alice (resp., Bob) gets a length-n input string x (resp., y) over alphabet ¥, and then sends
a “sketch” sx € {0,1}* (resp., sy) to the referce. We say the size of the sketch is mazximum
length of strings sz and sy. After receiving the sketches sx and sy,

if ed(x,y) < k, the referee needs to compute ed(x,y) as well as an optimal edit sequence

from x to y, with success probability at least 1 — 6;

if ed(x,y) > k, the referee needs to report “error”, with success probability at least 1 — 4.

Main contribution

We build upon and improve techniques developed in [7] to show that a very slight modification
of their protocol needs a sketch size of only O(k‘3) bits to solve problem 2, . 5. More precisely,
the bound is O(k?log?(n/8)logn) bits.?

1.1 Proof Overview

We provide a high-level description of the previous results [13, 7] that we build on, and then
briefly describe our new ideas.

CGK random walk

The previous sketching result [7] uses a random walk technique developed in [13]. Given
two input strings x,y of length n, we append them with infinitely many zeros and initialize
two pointers ¢ = 1,j = 1. In each step t, we first append z[i] to Alice’s output tape (and
append y[j] to Bob’s output tape), and then increment ¢ by r:(z[i]) € {0,1}, and increment
J by r+(ylj]) € {0,1}, where r;: ¥ — {0,1} is a random function. The process continues for

L We use O(f) throughout this paper to denote f - polylog(n).

2 We remark that both the algorithm of [7] and our improved algorithm are time-efficient, and work in
the more restrictive setting where Alice and Bob have only poly(klog(n/d§)) memory and receive the
input strings in a streaming fashion.

C. Jin, J. Nelson, and K. Wu

3n steps and we consider the evolution of ¢ — j, i.e., the distance between the two pointers
during this random process. Observe that when x[] # y[j], the change of i — j is a mean-zero
random variable in {—1,0,+1} (and we call this a progress step); while when x[i] = y[j], the
difference i — j will not change.

The main result of [13] shows that the number of progress steps in this random process
is at least ed(x,y)/2, and at most O(ed(z,y)?) with constant probability. This property
was used to design a sketching protocol (with public randomness for generating ;) for
estimating ed(x,y) up to a quadratic factor error by applying an approximate Hamming
distance sketching protocol to the two strings generated by the random walk (where a progress
step corresponds to a Hamming mismatch between Alice’s and Bob’s output strings).

Previous algorithm

The key idea of [7] is the following. A CGK random walk naturally induces a non-intersecting
matching between the input strings: we view x and y as a bipartite graph, where if (7, j) is
an edge then x[i] = y[j] and 4, j are the pointers in some step of the walk. In particular, this
matching can be viewed as an edit sequence where a character is unchanged if it is matched.
Using an exact Hamming sketch protocol (with sketch size near-linear in the number
of Hamming errors), the referee can recover this matching, as well as all the unmatched
characters. Although this matching may not correspond to an edit sequence of optimal
length, [7] shows that if we obtain multiple matchings by running i.i.d. CGK random walks,
then
(a) if the intersection of their matched edges is contained in an optimal matching, then one
can extract enough information from the matchings and unmatched characters to recover
an optimal edit sequence using dynamic programming;
(b) if we generate poly(ed(z,y),logn) many i.i.d. CGK random walks, then the precondition
of Ttem (a) is satisfied with constant probability.

Our improvements

We obtain our result by improving the dependence on ed(x,y) in Item (b) described above.

In particular, we reduce the number of required random walks. Our improvements come
from two parts.

To obtain the first improvement, we observe that the algorithm of [7] relies on the
following two events happening. The first is that, for every edge that does appear in a (fixed)
optimal matching, there should be one of the sampled CGK random walks that misses this
edge. The second is that the CGK random walks should have few progress steps. In [7], they
pay a union bound over the two events to make sure all CGK random walks are good for
the decoder. This introduces a large dependence on ed(z,y), mainly due to the fact that
the number of Hamming errors in a CGK random walk has a heavy-tailed distribution. We
manage to avoid this by arguing that these two events happen simultaneously (see Lemma 15)
with decent probability, and then modifying the decoding algorithm to only consider those
good CGK random walks.

The second improvement comes from improved analysis for Item (b), which depends
on the following property of the CGK random walk [7, Lemma 16] (see Subsection 3.3
for how this property can be used): informally, if a string X[1..L] has a certain kind of
self-similarity (for example, it is periodic), then with some nontrivial probability, a CGK
random walk on X itself starting with two pointers ¢ = 2, j = 1 will not pass through the state
(i =L,j = L). To be more precise, if there is a non-intersecting matching between X[1..L]

45:3

STACS 2021

45:4

An Improved Sketching Algorithm for Edit Distance

and itself, where every matched edge (I, J) satisfies I > J, and the number of singletons
(unmatched characters) is at most K, then the CGK random walk will miss (¢ = L,j = L)
with Q(1/K?) probability.?

We use a more technical analysis to improve the bound to (1/K) (see Proposition 18).
Now we informally describe our main idea. Starting from the state (i = 2,7 = 1), with
at least 2(1/K) probability it will first reach a state (i,7) with i — j > do = ©(K) before
reaching ¢ — j = 0 (note that ¢ — j can never become negative). Then we will show that
with good probability ¢ — j will remain in the range [dy/2, 3dy/2]. To do this, we show an
O(d?%) upper bound on the expected total number of progress steps, and use the fact that
the expected deviation produced by a P-step one-dimensional random walk is O(\/ﬁ)

To bound the expected total number of progress steps, we divide the evolution of the
state (i,7) into several phases, where in each phase the pointers move from a stable state
(i,7) to another stable state (i, j'), satisfying j' > i and ¢’ > 25 — i. Here, a stable state (i,)
informally means that we have a good upper bound of ed(X[j..i — 1], X[i..2i — j — 1]) in
terms of the number of singletons in the range [j..2¢ — j — 1] (for example, if X is “close” to a
string with period p, and 7 — j is approximately a multiple of p, then (i,) is a stable state).
We will bound the expected number of progress steps in one phase by O ((z —j§)- S+ 5'2),
where S denotes the number of singletons in the range [j..i' — 1]. We can see the sum of S
over all phases is at most 2K since each singleton is counted at most twice. Hence, summing
up over all phases would give the desired O(K?) upper bound, if we assume i — j = O(dp).
Although this assumption may lead to circular reasoning, we can get around this issue by a
more careful argument.

Organization

We give several needed definitions in Section 2. In Section 3 we state and analyze our
sketching algorithm, which as mentioned, is mostly similar to [7] but with small modifications.
Section 4 is devoted to our main technical lemma. In comparison with the proof overview,
Section 3 is for the first improvement and Section 4 is for the second improvement. Then we
discuss limits on our approach and further problems in Section 5. The lower bounds and
missing proofs can be found in full version.

2 Preliminaries

In this section we introduce formal definitions.

2.1 Notations

Let [n] denote {1,2,...,n}, and let [l..r] denote {I,l + 1,...,r}. Let o denote string
concatenation. Let N denote the set of natural numbers {0, 1,...}. We consider sketching
protocols for strings in X" in this work, where ¥ denotes the alphabet. We assume |X| <
poly(n) and 0 € 3.4

There is a subtle gap in the proof of [7, Lemma 16]. On page 18 of their full version, they bounded the
number of progress steps in two cases: (1) at least one of the pointers is not in any cluster, and (2) both
of the two pointers are in the same cluster. (Their terminology cluster refers to a contiguous sequence
of matched edges with no singletons in-between.) However, they did not analyze the case where the two
pointers are separated in different clusters, and it was not clear to us how to repair that gap using the
techniques developed in [7].

For larger alphabet the algorithm still works but some logn terms in the bounds become log |3|. For
example, the sketch size will be O (k3 log(n|X]/6d) log(n/d) log n) Alternatively, the parties can hash &

into a new alphabet of size O(n?/v) and have no hash collisions on the characters appearing in z,y
with probability at least 1 — ~.

C. Jin, J. Nelson, and K. Wu

For a string s € ¥™ and index 1 <14 < n, s[i] (or sometimes s;) denotes the i-th character
of s. For 1 <i < j <mn, s[i..j] denotes the substring s[i] o s[i + 1] o --- o s[j]. If i > j then
s[i..j] is the empty string.

2.2 Edit Distance

» Definition 2 (Edit distance ed(+,-)). The edit distance between two strings x and y, denoted
by ed(x,vy), is the minimum number of edits (insertions, deletions, and substitutions®) required
to transform x to y.

» Definition 3 (Matching induced by edit sequence M(S)). Given strings x,y and an edit
sequence S, we can construct a bipartite graph between x and y, where every character in x
that is not substituted nor deleted is connected by an edge to its counterpart in y. These edges
form a non-intersecting matching, which we denote by M(S). Moreover, when S achieves
optimal edit distance, we say M(S) is an optimal matching.

Though there may be multiple optimal matchings, the following definition specifies a
canonical one.

» Definition 4 (Greedy optimal matching M, [7]). Let x,y be two strings. For each edit
sequence S achieving optimal edit distance, let M(S) be the matching induced by S. Then
the greedy optimal matching M is defined to be the smallest M(S) in lexicographical
order. Specifically, we represent M(S) as a sequence of (i,j) pairs then sort the sequence
lexicographically, and the greedy optimal matching is such that this sorted sequence is as
lezicographically small as possible.

2.3 The CGK Random Walk

We review a useful random process called the CGK random walk, which was first introduced
by Chakraborty, Goldenberg, and Koucky [13], and played a central role in the sketching
algorithm of [7].

» Definition 5 (CGK random walk A, (s), [13]). Given a string s € £", an integer m > 0, and
a sequence of m - |X| random coins interpreted as a random function r: [m] x ¥ — {0, 1}, the

m-step CGK random walk is a length-m string \.(s) € X™ defined by the following process:

Append s with infinitely many zeros.
Initialize the pointer p < 1 and the output string s’ < (.
For each stepi=1,...,m:
Append s[p] to s'.
Update p < p+r(i, s[p]).
Output s =: \.(s).

For a contiguous segment of the output string A\-(s), the pre-image of this segment refers
to the corresponding substring in the original input string s (which may also include the
appended trailing zeros if the walk extends beyond s).

5 There is another definition of edit distance, denoted by ed’(z,y), where only insertions and deletions
are allowed. We have ed(z,y) < ed’(z,y) < 2-ed(z,y), and ed'(z,y) = |x| + |y| — LCS(x, y), where LCS
stands for longest common subsequence. The algorithm in [7], as well as our modification of it, can be
easily adapted to work for this variant of edit distance as well.

45:5

STACS 2021

45:6

An Improved Sketching Algorithm for Edit Distance

Due to its usefulness in the two-party setting with public randomness, we also frequently
use the term CGK random walk to refer to a pair of random walks (as defined in Definition 5)
performed on two input strings x,y using the shared random string r.

Consider a CGK random walk X on two input strings x,y. We use p; (resp., ¢;) to denote
the pointer on string x (resp., y) at the beginning of step i. We refer to the pair (p;,q;) as
the state of A at the i-th step, and we write (p,q) € X if A passes through the state (p,q), i.e.,
there exists some i for which p; = p and q; = q. We say the i-th step of A is a progress step if
the i-th characters of the output strings \.(z) and \.(y) differ, or equivalently, z[p;] # ylq;).°
We say A walks through z,y, if in the end the two pointers satisfy py, > |z| and ¢n > |y|.

The following theorem establishes the connection between CGK random walks and edit
distance. Informally, when ed(x,y) is small, with good probability the number of progress
steps in A is also small (or equivalently, the Hamming distance between the output strings
Ar(z), Ar(y) is small). We provide a simpler proof for its Item (3) in full version.

» Theorem 6 ([13, Theorem 4.1]). Let A be an m-step CGK random walk on x,y. Then
(1) if m > 3-max {|z|, |y|}, then \ walks through =,y with probability at least 1 — ™)

(2) given A.(z) and r, we can reconstruct the pre-image of \.(z) ;

(3) Pr [#progress steps in X\ > (T - ed(aj,y))ﬂ <01/7).

2.4 Random Walks

We frequently relate the CGK random walk to the following one-dimensional random walk.

» Definition 7 (One-dimensional unbiased and self-looped random walk). A stochastic process
X = (Xt)ten on integers is a one-dimensional unbiased and self-looped random walk if its
transition satisfies

Xi—l —1 w.p., 1/47
Xi = X’L*l w.p., 1/2,
Xifl +1 w.p., 1/4

» Remark 8. Let A be a CGK random walk on two strings and (p, ¢) be its state. Define
A =p—gq. Then A can be viewed as a one-dimensional unbiased and self-looped random
walk, which makes a transition when and only when A makes a progress step.

By Remark 8 and the martingale property, we have the following lemma, the proof of
which can be found in full version.

» Lemma 9. Consider an co-step CGK random walk A on x,y, where p,q are the pointers on

x,y respectively. Let u be an index and let U,V > u — 1 be any integers. Then the following

holds.

(1) Let Ty be the first time that py, > u. Then we have E [|pr, — q1,,|] < 4-ed(z[1..U], y[1..V]).

(2) Let Ty be the first time that (pr, > u) A (¢r, > u). Then we have E||pr, — qr|] <
4 -ed(z[1..U],y[1..V]).

5 Our definition of “progress step” is different from that of [7], which additionally requires at least one of
the two pointers moves forward in that step.

C. Jin, J. Nelson, and K. Wu

3 Sketches for Edit Distance

For the rest of the paper, we use the following notational conventions:
n is the length of the input strings; m := 3n is the number of steps in a CGK random
walk.
x,y are the input strings of length n, which is appended with infinitely many zeros; we
are promised ed(x,y) < k.7
when we use (-,) to denote a CGK state or an edge between x,y, the first coordinate is
a pointer on x and the second is on y.
M is the greedy optimal matching of z,y.

Our goal is to prove the following theorem.

» Theorem 10. There is a sketching algorithm for 2y, 1. 5 of sketch size O (k® log?(n/6)log n)
bits. Moreover, the algorithm has the following properties.
The encoding algorithm used by Alice (resp., Bob) only assumes one-pass streaming access
to the input string x (resp., y). The time complezity per character is poly(klog(n/d)),
and the space complezity is O (k* log?(n/4) log n) bits. 8
The decoding algorithm used by the referee has time complexity poly(klog(n/d)).

In Subsection 3.1, we review the general framework of [7]’s sketching protocol, and
highlight our key improvement in Lemma 15. We will prove this key lemma in Subsection 3.2
and Subsection 3.3.

3.1 General Framework

We adopt the definition of effective alignments from [7]. Intuitively, an effective alignment
between two strings x,y contains the information of an edit sequence from z to y, but does
not contain the information of unchanged characters.

» Definition 11 (Effective alignment A, [7]). For two strings x,y € X", an effective alignment
A between x and y is a triplet (G, gs, 9y), where
G = (V,V,, E) is a bipartite matching where nodes V, = [n],V, = [n] correspond to
indices of characters in x and y respectively, and every matched edge (i,j) € E satisfies
z[i] = y[j]. Moreover, the matched edges are mon-intersecting, i.e., for every pair of
distinct edges (i,7),(i',j') € E, we have i <14’ iff j < j'.
gz (resp., gy) is a partial function defined on the set of unmatched nodes U, C V,, (resp.,
U, CV,). For each i € Uy (resp., j € Uy), define g,(t) = x[i] (resp., g4(3) = ylj])-

» Definition 12 (Effective alignments consistent with a CGK random walk, [7]). Let A be a
CGK random walk on x,y, where p,q are the pointers on x and y respectively. If A walks
through x,y, then we say an effective alignment A = (G, g5, gy) is consistent with X if for
every matched edge (p,q) € G, we have (p,q) € \.

As mentioned in Subsection 1.1, Alice and Bob use public randomness to instantiate
7 = O(klog(n/d)) independent CGK random walks A1,...,A; on z,y. Then, for each CGK
random walk \;, Alice constructs a sketch sz; based on her part of the random walk \;(z),

7 We also analyze the behaviour of our algorithms when ed(z, %) > k in full version.

8 The algorithm may use a large number of shared random bits, which can be reduced using Nisan’s
generator [24]. The main cost, as we can see from the proof, comes from the CGK random walk. We
refer readers to [13] for more details on reducing randomness for the CGK random walk.

45:7

STACS 2021

45:8

An Improved Sketching Algorithm for Edit Distance

and Bob similarly constructs sy, based on his part of the random walk A;(y). The referee
receives sx;, sy;, and tries to extract an effective alignment A; from the sketches. Each sx;
(and sy;) has length O(k?log(n/d)logn). The properties of this protocol are summarized as
follows.

» Construction 13 (Sketch for each random walk, adapting [7]). Let C' > 1 be some large
constant and 7 € (0,1). There exists an efficient sketching algorithm such that the following
holds. Let A be an m-step CGK random walk on x (and y). Then,
the sketch size and encoding space are O (k'2 log(n/n) log n) bits;
the encoding time per character and decoding time are both poly(klog(n/n));
for fixed A, x,y the following hold with success probability at least 1 — n:
the decoder either (a) reports “error”, or (b) outputs an effective alignment A consistent
with ;
when \ walks through 2,y and contains at most C - k? progress steps, (b) occurs.
The formal proof of Construction 13 can be found in full version.
The final sketches are simply sx = szj0---osx; and sy = sy; o---osy,. The referee tries
to obtain an effective alignment from every (sz;, sy,), and then uses the following lemma to
compute ed(x,y) and recover an optimal edit sequence.

» Lemma 14 ([7, Lemma 14 and Lemma 19]). There exists a deterministic algorithm taking
(sx, sy) as input such that the following holds.
The running time of the algorithm is poly(|sz| + |sy|) = poly(klog(n/J)).
Let A;,, ..., Ai, be the effective alignments® decoded from (sx1,sy,), ..., (52, 5Y,).
If w> 1 and each A;; is consistent with \;,, then the algorithm outputs a valid edit
sequence. If, additionally, M goes through all edges that are common to A;,..., A,
then the edit sequence is optimal.

Now we state our key lemma.

» Lemma 15 (Key Lemma). There exist some large constants Cy,Cy > 1 such that the
following holds. Let X be an co-step CGK random walk on x,y. Then for any fized (u,v) ¢
M, z[u] = y[v], we have

1
Cy-k

Pr {(u, v) ¢)\/\#progress steps in A < Cf - kQ} >

Here we reiterate that Lemma 15 summarizes our improvement over the previous work of
[7] in two aspects (as mentioned in Subsection 1.1): (1) The previous work only gave a
lower bound on Pr[(u,v) ¢ A], while we bound the probability of two events happening
simultaneously; (2) The previous work only gave a bound of Q(1/k?), while we give an
Q(1/k) bound. The proof of this Lemma 15 is divided into two parts in Subsection 3.2 and
Subsection 3.3, in which a technical proposition that leads to the improvement in Item (2)
will be proved in Section 4.
Assuming Lemma 15, we can prove Theorem 10.

9 Although we can check if A; . is an effective alignment, we cannot verify (without knowing \;,) if A;; is
an effective alignment consistent with A;;. This subtle difference comes from that in Construction 13 we
do not give any guarantee outside the 1 — 7 success probability, where the decoder might provide some
effective alignment that is not consistent with A;,.

C. Jin, J. Nelson, and K. Wu

Proof of Theorem 10. Let C3 be a large constant.

For the encoding part, we instantiate 7 = Cak - C3log(n/é) = O(k -log(n/§)) independent
m-step CGK random walks A;,7 € [7]; and construct each sx;, sy, using Construction 13
with parameter C' = Cy,n = §/(27).

For the decoding part, we run the decoding procedure in Construction 13 to obtain
Ai ... A, for Lemma 14. If w = 0 or the edit sequence from Lemma 14 has more
than k edits, we report “error”; otherwise we output the edit sequence together with the
corresponding edit distance.

Bounds on the parameters. By constructing each sz; (and sy;) in parallel, the final sketch
size and encoding space are 7 - O (k?log(n/n)logn) = O (k*log®(n/d)logn) (we omit the
space for storing auxiliary information (e.g., pointers) in the calculation, since these are

minor terms). The encoding time per character is 7 - poly (klog(n/n)) = poly(klog(n/d)).

The decoding time follows immediately from Lemma 14.

Analysis of the algorithm when ed(z,y) < k. Let S = {(u,v) € [n]? | (u,v) ¢ M, z[u] =
y[v]} and define events
& A; walks through z,y.
El(u,v) for (u,v) € S: (u,v) & \i)\ #progress steps in \; < Cy - k2.
Then
Pr [V(u,v) € S, Ji € [1], & AEl(u,v)]

>1- Y (1-Pr[=&] — Pr[-&(u,v)])"

(u,v)€eS
1 T
>1-n%. <1 — S e k) (due to Theorem 6 and Lemma 15)
-
1)
>1-—-. 1
>1-7 1)
Let Ai,, ..., A, be the random walks walking through x,y and containing at most C - k?

progress steps. Since n = §/(27) in Construction 13 and by union bound, the decoder, with
probability at least 1 — §/2, for each (sxz;, sy;) either reports “error”, or outputs an effective
alignment A; consistent with \;. Conditioning on this, Construction 13 must at least obtain

effective alignments A;, ..., A;, that are consistent with the corresponding random walks.

Combined with (1), with probability at least 1 — 4, for any (u,v) € S there exists some A;,
missing it. Then the edit sequence from Lemma 14 is optimal. <

3.2 Proof of Lemma 15: Case |u — v| > 100 - k

Proof of Lemma 15: Case |u — v| > 100 - k. Assume without loss of generality v > v. We
stop A when it meets u. Then by Item (1) in Lemma 9, at this time the state (p, ¢) satisfies
E[lp — ¢q|] <4 - k. Hence by Markov’s inequality,

4.k

Pr{(u,v) ¢ \)>Prjp—q¢<100-k]=1-Prp—qg>100-k] >1— 100 & =0.96. (2)
On the other hand, by setting C; large enough we know from Theorem 6

Pr [#progress steps in A < Cf - k‘z} > 0.99.
Hence, by setting C5 large enough, we have

Pr {(u, v) ¢)\/\#progress steps in A < O - kQ} >096+099—-1> G & <

45:9

STACS 2021

45:10

An Improved Sketching Algorithm for Edit Distance

3.3 Proof of Lemma 15: Case |u — v| < 100 - k

First we need the following definition.

» Definition 16 (Stable zone Z, [7]). The stable zone Z of (u,v) consists of substrings
z[u'.u],y[v'..v] of equal length L = v —u' +1 = v —v' 4+ 1, where L < min{u,v} is the
maximum possible length satisfying x[u'..u] = y[v'.v]. In particular, u —v = u' —v'; and
(u',v") # (1,1) as (u,v) ¢ M.

Moreover, we say a state (p,q) enters Z if p > u' and ¢ > v'.

We will find Claim 17 useful. For completeness we include its proof in full version.

o> Claim 17 ([7, Claim 21]). Consider an oco-step CGK random walk X on z,y, where
p,q are the pointers on z,y respectively. Let T be the first time that A\ enters Z, i.e.,
(pr > u) A (gr > v'). Then Prpr —qr # v —v] =Prpr — qr #u' — '] > 2/3.

We will also rely on the following technical result, the proof of which is in Section 4.

» Proposition 18. There exists a universal constant Cy > 1 such that the following holds.
Assume X, Y are two identical length-L strings over alphabet 3. Assume there exists a size-M
matching (i1, j1),-- -, (ise, jar) € [L]? such that

it > jr and X[is] = Y[j] hold for all t € [M];

i <o < - <ipy and j1 < jo < -+ <Jjm-
Let p=Cy-(L— M) and (f, j) be any state satisfying I —J > p. Then a CGK random walk
on X,Y starting from (f, j) will miss (L, L) with probability at least 0.5.

By symmetry, we derive the following corollary.

» Corollary 19. Let Cy > 1 be the same constant in Proposition 18. Assume XY are
two identical length-L strings over alphabet ¥. Assume there exists a size-d matching
(i1,41),- -, (ing, jas) € [L)? such that

it > ji holds for allt € [M], or iy < j; holds for all t € [M];

X[i] = Y[je] holds for all t € [M];

1 <lg < - <y andj1 <Jo< - <Jm-
Let p=Cy- (L — M) and (I,J) be any state satisfying |I — J| > p. Then a CGK random
walk on X, Y starting from (I,J) will miss (L, L) with probability at least 0.5.

Proof of Lemma 15: Case|u — v| < 100 - k. Let C5 > 1 be a large constant. We will
apply Proposition 18 with parameter M > L — 103 - k; and let p = C, - 103k be the
corresponding bound in it.
We expect A to have the following three phases:
&1: X enters Z in a state (p1,q1) within Cj - k? progress steps, where 0 < |(p1 — q1) —
(u—v)| <200 - k.
&y Starting from (p1,q1) and within 2 p? progress steps, A reaches a state (ps, g2) where
either (p2,q2) > (n,n) or |(p2 — q2) — (u — v)| > p. Also, during the walk from (p1,¢1) to
(p2,q2), A never reaches some state (p, q) satisfying (p — ¢) — (u —v) = 0.
&3t (u,v) ¢ X and #progress steps in A < 2-p? + Cs - (k;2 + (p+301- k‘)Q)

In fact we have the following claim, the proof of which can be found in full version.
> Claim 20. Pr [51] Z 05, Pr [52 | 51} Z 1/(2 . p), and Pr [83 ‘ 51 /\52] Z 1/4

Assuming Claim 20, we have the following desired bound

Pr {(u, v) ¢)\/\#progress steps in A < O - kzﬂ >Pr&) >Pr[&s ANENES] > Gk

by setting C; = 2- (103 - C4)* + C5 - (1 + (301 + 103 - C4)?) and Cy = 16. <

C. Jin, J. Nelson, and K. Wu

4 CGK Random Walks on Self-similar Strings

This section is devoted for Proposition 18. It characterizes CGK random walks on strings of
certain self-similarity, which may be interesting on its own.

» Proposition (Proposition 18 restated). There exists a universal constant Cy > 1 such that
the following holds. Assume X,Y are two identical length-L strings over alphabet 3. Assume
there exists a size-M matching (i1, j1), - - -, (in, jar) € [L]? such that

it > ji and X[i] = Y[j] hold for all t € [M);

1 <ig < - <ip and j1 < jo < -+ < Jum-
Let p=Cy-(L— M) and (f, j) be any state satisfying I —J > p. Then a CGK random walk
on X,Y starting from (f, j) will miss (L, L) with probability at least 0.5.

We will first provide necessary definitions and state basic properties in Subsection 4.1.

Then present the proof in Subsection 4.2. All missing proofs can be found in full version.

4.1 Stable States

We fix the matching in Proposition 18, so when we say (4, j) is a matched edge it means (i, j)
is an edge in the matching. We extend X,Y to X[—00..00], Y [—00..00] by adding dummy
characters X[i] = Y[i] = X[L] for all i > L, and X[i] = Y[i] = X[1] for all i < 1. We also
add matched edges (i,4 — 1) for all i > L as well as i < 1. Note that all the edges are still
non-intersecting. Though the added characters may not be consistent with the original input
strings x,y, it does not change the probablhty of the walk missing (L, L). Since X =Y and
the initial state satisfies I > .J + p > J, any future state (I,.J) must still satisfy I > .J.
We introduce the notion of stable segment.

» Definition 21 (Stable segment). We say [l..r] is a stable segment, if for every matched
edge (I,J) (where we must have I > J), exactly one of the following two conditions hold:
J<land I <r.
J>land I >r.

index

Y :

Figure 1 A stable partition for X[1..L] = Y[1..L] = acabcabab (L = 9).

For example in Figure 1, every segment separated by blue dashed lines is a stable segment.

» Remark 22. To gain a better intuition of the definition, consider the special case where
the string X[1..L] has period p and every matched edge (I, .J) inside segment [1..L] satisfies
I — J = p. In this periodic case, a segment contained in [2..L — 1] is stable if and only if its
length is p.

Our motivation is that, when there are few unmatched characters, using our more

generalized definition we can approximately preserve the nice properties of periodic strings.

For example, when X has period p, the strings X[i..i + tp — 1] and X[i + tp..i + 2tp — 1]

45:11

STACS 2021

45:12

An Improved Sketching Algorithm for Edit Distance

must be identical. In a non-periodic case, we can similarly prove that X[i..j — 1] and
X[j..j + (j — 1) — 1] have small edit distance if [i..j — 1] can be divided into several stable
segments. In the remaining part of the section, readers are encouraged to use the periodic
case for a more intuitive understanding.

» Definition 23 (Stable partition P and stable states). Consider a partition P = (P;), of
the integers into segments, where P; = [p;..pix1 — 1] and p; < p;y1. We say P is a stable
partition if every P; is a stable segment. Then we say
state (I,J) is a (P, b)-stable state, if there exists some i such that J =p; and I = p;yp;
state (I,J) is a b-stable state, if there exists a stable partition P such that (I,J) is a
(P, b)-stable state;
state (I,J) is a stable state, if there exists some b > 0 such that (I,J) is a b-stable state.
In particular, when I > J > L, (I,J) is always a stable state.

Given a stable partition P, we can define a predecessor function for P as follows.

» Lemma 24 (Stable predecessor for a stable partition). Let P = (P;); be a stable partition
where P; = [p;..piv1 — 1] and p; < pir1. Then there exists a non-decreasing function
predp: Z — Z such that the following holds:

For every i, predp(pi+1) = pi.

For every I, we have predp(I) < I —1, and [predp(I)..I — 1] is a stable segment.

Now we extend the definition to b-stable predecessor.

» Definition 25 (b-stable predecessors predg’)(-)). Let P be a stable partition. Define

I b=0,
predp(predg_l)(I)) b>1.

predg) (I) = {

As an example, in Figure 1 predg’)(S) =1.
We will bound the edit distance between stable states using the number of singletons.

» Definition 26 (Singleton). Every unmatched X[i] or Y[j] is called a singleton.
Let sing [I,7) (resp., singy[l,r)) denote the number of singletons in X[l..r — 1] (resp.,
Y[l..r —1]). Let sing[l,r) :=singx[l,7) + singy[l, 7).

» Lemma 27. Let P be a stable partition. For I < I', let J = predp(I),J" = predp(I’).
Then

(a) ed(X[I..I' =1, Y[J..J" —1]) <singx[I,I') + singy[J,) <sing[J], I');

(b) (7' = J) = (I = D) = |(F' = 1) — (' — J)| < sing |1, ') + singy [, ') < singl,).

4.2 Proof of Proposition 18

Before proving Proposition 18, we need the following lemma, which shows a CGK random
walk goes from a stable state to a distant stable state with low cost.

» Lemma 28 (From stable to stable). Consider a CGK random walk starting from a stable
state (o, Jo), Io > Jo. Let D be a distance bound satisfying D > Iy — Jy.

Consider the first time T > 0 that either It — Jr > D, or the following three conditions
hold simultaneously: Jr > Iy, and It > 21y — Jo, and (I7,Jr) is a stable state. Let P be
the number of progress steps before time T and let S = sing[Jo, IT). Then

E [P —2000- (S D+ 5%)]<o0.

C. Jin, J. Nelson, and K. Wu

The process of Lemma 28 consists of a “catch-up phase” (i.e., from a stable state to a
distant non-stable state) and then a “stabilization phase” (i.e., from a non-stable state to a
nearby stable state). We describe the latter one as Lemma 29.

» Lemma 29 (From non-stable to stable). Consider a CGK random walk starting from a non-
stable state (fo, jo), Iy > Jy. Let P be a stable partition and let b be such that Lo < Jy < Rg
where Ly = predg’/)(fo), Ry = predg’/_l)(fo). Let D be a distance bound satisfying D > Io—J.
Consider the first time T’ that either (fT/, jT/) is a stable state or I~T/ — jT/ > D. Let P’ be
the number of progress steps before time T' and let S' = sing[Lo, I7/). Then

E[P'=50- ((Ro = Jo)(Jo—Lo) + 8- D+ 5%)] <o.
Given previous lemmas to control progress steps, we are now ready to prove Proposition 18.

Proof of Proposition 18. Since X[1] and Y[L] are matched to dummy characters after we
extend X,Y, there are K := sing[—o0,4+00) = 2- (L — M — 1) singletons in total. Let
d := I — J be the initial distance between the two pointers and let D := 2 -d. For a state
(I, D), I>J,

ifI=J<Lorl—J>D,then we say it is a failure state;

if it is not a failure state and I > L, then we say it is a success state.

We stop the CGK random walk when it reaches a success state or a failure state. The
former case implies that the random walk misses (L, L). So it suffices to prove that we stop
at a success state with probability at least 0.5.

Phases in the CGK random walk. Let Iy =1, Jy = J and ty = 0. Let t; > 0 be the first
time that either (I, Jy,) is a stable state or I;, — J;, > D.

For every i > 2, if (I},_,,J:,_,) is neither a success state nor a failure state, we know
Ji,, < Iy, , < Land Iy, , —Ji, , < D. Then we recursively define ¢; > ¢;,_1 to be the
first time that either I;, — J;, > D, or the following three conditions hold simultaneously:
I, >2L, , —Jy, ,,and Jy, > I, |, and (I, J;,) is a stable state.

Assume we stop at (I, ,Jy,), which is either a success state or a failure state. Let P; be
the number of progress steps made during the time interval [¢;,¢;11). Then P := Z;':Ol P, is
the total number of progress steps before we stop.

Bounds on E [FPy]. Let P be an arbitrary stable partition and let b be such that predg) (Iy) <
Jo < predg’_l)(Io). Let Ly = predgg)(fo), Ry = predg_l)(lg). Since X[1] is matched to Y0],
we know pred; (1) = 0. Hence applying Lemma 27 with I’ = Ry, I = 1, we have

(Ro — Lo) — (1 —0) < sing[0, Ry) < sing|0, Ip).
Therefore, let Sy = sing[0, I;,) and we have

RO—LOJWRO—LO

(Jo — Lo)(Ro — Jo) < { 5 5

} < (sing[0, I))* < S3.
Thus by Lemma 29, we have E [Py —50- (253 4+ So - D)] < 0.

Bounds on E[P;],1 < i < m — 1. Let S; := sing[J;,,I;,,,). By Lemma 28, we have
E [P, —2000- (S; - D+ S?)] <0.

45:13

STACS 2021

45:14

An Improved Sketching Algorithm for Edit Distance

> I,

i

Final bounds. Note that >, Si < 2-sing[0,1;,,) < 2- K. This is because J;
for all ¢ > 1, implying each singleton is counted at most twice. Hence

i+1

m—1 m—1 m—1 m—1 2
E[P]=E|) P <E [2000 > (SiD+S7)| <2000-E|D Y S+ (Z si>
=0 =0 =0 =0

<8000 - (K -d+ K?).

For 1 < j < 400, let r; be the deviation brought by the j-th progress step.'® Then r;
are i.1.d. random variables with Pr[r; = 0] = 1/2,Pr[r; = +1] = Pr[r; = —1] = 1/4. Hence
by Cauchy-Schwarz inequality, we have

A

+oo +o00 P
E ZTJ' - ZTJ'I{J‘SP} < |E er'l{ng} =]E{J

j=1 j=1 j=1

< /4000 - (K -d + K?).

Observe that in the end we have I, — J; =d+ Zle rj. By setting p = Cy - (L — M)
for some large enough constant Cy, we have d > p > Cy - K/2 and

P
d>4-/4000- (K -d+K2) >4-E|[> r||-
j=1

Then by Markov’s inequality, with probability at least 0.5 we have |I; — J;, —d| < d/2,
which indicates (I;,, Ji,,) is not a failure state. Hence we stop at some success state with
probability at least 0.5. <

5 Discussion

Building upon [7], we present an improved sketching algorithm for edit distance with sketch

size O(k3) Although the algorithm itself is essentially the same as in [7], the analysis is

more involved. We conclude the paper with a few remarks on further problems.
Lower bounds. We conjecture the lower bound for this problem (i.e., 2, x,5) is Q(kQ),
since ©(k?) is the distortion of the CGK random walk embedding [13]. However, to the
best of our knowledge, there is no lower bound beyond Q(k). (Since we do not find any
paper formally stating the lower bounds, we present them in Appendix B of full version.)
Edit distance. It is natural to wonder if current framework can be pushed further. For
example, is it possible that we only run 7 = O(1) rounds of CGK random walks and there
will be an optimal matching going through all edges that are common to these walks?
Unfortunately this is not true, and we can show 7 = Q(v/k) with the following example:

= Acicy---cp_1Beieg o cp_1d---dAcica o cp_1
— ’
2k
= BClcg o Cl—1 d--- dA0102 cee ck_chlcg s Cl—1-
Y —
2k

10 Though we will only use 71, . ..,7p, we define it in this way to make the next Cauchy-Schwarz inequality
easier to understand.

C.

—— References

1

10

11

Jin, J. Nelson, and K. Wu

Then with probability 1 —©(1/vk), a CGK random walk walks through (k, k). Note that
ed(z,y) < 2k by deleting z[1..k] and inserting y[4k + 1..5k]. However any edit sequence
leaving (k, k) matched will have at least (2 -k + 1) edits, where the one more edit comes
from substituting z[1] with y[1]. Moreover, this example may generalize to the binary
alphabet by replacing each symbol with a short random binary string.

Ulam distance. The Ulam distance is the edit distance on two permutations, i.e.,
x € [n]” (resp., y € [n]") and x; # x; (resp., y; # y,) for distinct ¢, j. Our algorithm (as

well as the algorithm in [7]) works for Ulam distance with an improved bound O(k??).

This comes from the following observation: there is no matched edge in the stable zone,
hence the length of stable zone is at most k, which means we can set p = O(v/L) in
Proposition 18. It would be interesting to improve the algorithm for Ulam distance.
Only the distance. Though our algorithm computes edit distance as well as an optimal
edit sequence, it is reasonable to relax the problem by simply asking for the distance or
even a constant approximation of the distance. However, we are not aware of any result
achieving better sketch size in this setting.

Alexandr Andoni and Robert Krauthgamer. The smoothed complexity of edit distance. ACM
Trans. Algorithms, 8(4):44:1-44:25, 2012. doi:10.1145/2344422.2344434.

Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approximation
for edit distance and the asymmetric query complexity. In Proceedings of the 51st Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 377-386, 2010. doi:
10.1109/F0CS.2010.43.

Alexandr Andoni and Negev Shekel Nosatzki. Edit distance in near-linear time: it’s a constant
factor. CoRR, abs/2005.07678, 2020. To appear in FOCS 2020. arXiv:2005.07678.
Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear time. SIAM
J. Comput., 41(6):1635-1648, 2012. doi:10.1137/090767182.

Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). SIAM J. Comput., 47(3):1087-1097, 2018. doi:10.1137/15M105
3128.

Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Approximating edit
distance efficiently. In Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 550-559, 2004. doi:10.1109/F0CS.2004.14.

Djamal Belazzougui and Qin Zhang. Edit distance: Sketching, streaming, and document
exchange. In Proceedings of the 57th IEEE Annual Symposium on Foundations of Computer

Science (FOCS), pages 51-60. IEEE Computer Society, 2016. Full version at arXiv:1607.04200.

doi:10.1109/F0CS.2016.15.

Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, Mohammad Taghi Hajiaghayi, and
Saeed Seddighin. Approximating edit distance in truly subquadratic time: Quantum and
MapReduce. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1170-1189, 2018. doi:10.1137/1.9781611975031.76.

Mahdi Boroujeni, Masoud Seddighin, and Saeed Seddighin. Improved algorithms for edit
distance and LCS: beyond worst case. In Proceedings of the 31st ACM-SIAM Symposium on
Discrete Algorithms, (SODA), pages 1601-1620. STAM, 2020. doi:10.1137/1.978161197599
4.99.

Joshua Brakensiek, Moses Charikar, and Aviad Rubinstein. A simple sublinear algorithm for
gap edit distance. CoRR, abs/2007.14368, 2020. arXiv:2007.14368.

Joshua Brakensiek and Aviad Rubinstein. Constant-factor approximation of near-linear edit
distance in near-linear time. In Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 685-698, 2020. doi:10.1145/3357713.3384282.

45:15

STACS 2021

https://doi.org/10.1145/2344422.2344434
https://doi.org/10.1109/FOCS.2010.43
https://doi.org/10.1109/FOCS.2010.43
http://arxiv.org/abs/2005.07678
https://doi.org/10.1137/090767182
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15M1053128
https://doi.org/10.1109/FOCS.2004.14
https://arxiv.org/abs/1607.04200
https://doi.org/10.1109/FOCS.2016.15
https://doi.org/10.1137/1.9781611975031.76
https://doi.org/10.1137/1.9781611975994.99
https://doi.org/10.1137/1.9781611975994.99
http://arxiv.org/abs/2007.14368
https://doi.org/10.1145/3357713.3384282

45:16

An Improved Sketching Algorithm for Edit Distance

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucky, and Michael E. Saks.
Approximating edit distance within constant factor in truly sub-quadratic time. In Proceedings
of the 59th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages
979-990. IEEE Computer Society, 2018. doi:10.1109/F0CS.2018.00096.

Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucky. Streaming algorithms for
embedding and computing edit distance in the low distance regime. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 712-725. ACM,
2016. doi:10.1145/2897518.2897577.

Moses Charikar and Robert Krauthgamer. Embedding the ulam metric into ¢;. Theory
Comput., 2(11):207-224, 2006. doi:10.4086/toc.2006.v002a011.

Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Deterministic document exchange
protocols, and almost optimal binary codes for edit errors. In Proceedings of the 59th IEEE
Annual Symposium on Foundations of Computer Science (FOCS), pages 200-211, 2018.
doi:10.1109/F0CS.2018.00028.

Kuan Cheng and Xin Li. Efficient document exchange and error correcting codes with
asymmetric information. CoRR, abs/2007.00870, 2020. To appear in SODA 2021. arXiv:
2007.00870.

Elazar Goldenberg, Robert Krauthgamer, and Barna Saha. Sublinear algorithms for gap edit
distance. In Proceedings of the 60th IEEE Annual Symposium on Foundations of Computer
Science (FOCS), pages 1101-1120, 2019. doi:10.1109/F0CS.2019.00070.

Bernhard Haeupler. Optimal document exchange and new codes for insertions and deletions.
In Proceedings of the 60th IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 334-347, 2019. doi:10.1109/F0CS.2019.00029.

Subhash Khot and Assaf Naor. Nonembeddability theorems via Fourier analysis. Mathematische
Annalen, 334:821-852, 2006.

Tomasz Kociumaka and Barna Saha. Sublinear-time algorithms for computing & embedding
gap edit distance. In Proceedings of the 61st IEEE Annual Symposium on Foundations of
Computer Science (FOCS), 2020.

Michal Koucky and Michael E. Saks. Constant factor approximations to edit distance on far
input pairs in nearly linear time. In Proccedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing (STOC), pages 699-712. ACM, 2020. doi:10.1145/3357713.3384307.
Robert Krauthgamer and Yuval Rabani. Improved lower bounds for embeddings into 1. STAM
J. Comput., 38(6):2487-2498, 2009. doi:10.1137/060660126.

William J. Masek and Mike Paterson. A faster algorithm computing string edit distances. J.
Comput. Syst. Sci., 20(1):18-31, 1980. doi:10.1016/0022-0000(80)90002-1.

Noam Nisan. Pseudorandom generators for space-bounded computation. Comb., 12(4):449-461,
1992. doi:10.1007/BF01305237.

Alon Orlitsky. Interactive communication: Balanced distributions, correlated files, and average-
case complexity. In Proceedings of the 82nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 228-238, 1991. doi:10.1109/SFCS.1991.185373.

Rafail Ostrovsky and Yuval Rabani. Low distortion embeddings for edit distance. J. ACM,
54(5):23, 2007. doi:10.1145/1284320.1284322.

https://doi.org/10.1109/FOCS.2018.00096
https://doi.org/10.1145/2897518.2897577
https://doi.org/10.4086/toc.2006.v002a011
https://doi.org/10.1109/FOCS.2018.00028
http://arxiv.org/abs/2007.00870
http://arxiv.org/abs/2007.00870
https://doi.org/10.1109/FOCS.2019.00070
https://doi.org/10.1109/FOCS.2019.00029
https://doi.org/10.1145/3357713.3384307
https://doi.org/10.1137/060660126
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1007/BF01305237
https://doi.org/10.1109/SFCS.1991.185373
https://doi.org/10.1145/1284320.1284322

	1 Introduction
	1.1 Proof Overview

	2 Preliminaries
	2.1 Notations
	2.2 Edit Distance
	2.3 The CGK Random Walk
	2.4 Random Walks

	3 Sketches for Edit Distance
	3.1 General Framework
	3.2 Proof of Lemma 15: Case |u-v| > 100* k
	3.3 Proof of Lemma 15: Case |u-v| < = 100* k

	4 CGK Random Walks on Self-similar Strings
	4.1 Stable States
	4.2 Proof of Proposition 3.9

	5 Discussion

