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Abstract
Locality Sensitive Hashing (LSH) is an effective method of indexing a set of items to support efficient
nearest neighbors queries in high-dimensional spaces. The basic idea of LSH is that similar items
should produce hash collisions with higher probability than dissimilar items.

We study LSH for (not necessarily convex) polygons, and use it to give efficient data structures
for similar shape retrieval. Arkin et al. [2] represent polygons by their “turning function” - a function
which follows the angle between the polygon’s tangent and the x-axis while traversing the perimeter
of the polygon. They define the distance between polygons to be variations of the Lp (for p = 1, 2)
distance between their turning functions. This metric is invariant under translation, rotation and
scaling (and the selection of the initial point on the perimeter) and therefore models well the intuitive
notion of shape resemblance.

We develop and analyze LSH near neighbor data structures for several variations of the Lp

distance for functions (for p = 1, 2). By applying our schemes to the turning functions of a collection
of polygons we obtain efficient near neighbor LSH-based structures for polygons. To tune our
structures to turning functions of polygons, we prove some new properties of these turning functions
that may be of independent interest.

As part of our analysis, we address the following problem which is of independent interest. Find
the vertical translation of a function f that is closest in L1 distance to a function g. We prove tight
bounds on the approximation guarantee obtained by the translation which is equal to the difference
between the averages of g and f .
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1 Introduction

This paper focuses on similarity search between polygons, where we aim to efficiently retrieve
polygons with a shape resembling the query polygon.

Large image databases are used in many multimedia applications in fields such as computer
vision, pattern matching, content-based image retrieval, medical diagnosis and geographical
information systems. Retrieving images by their content in an efficient and effective manner
has therefore become an important task, which is of rising interest in recent years.

When designing content-based image retrieval systems for large databases, the following
properties are typically desired:
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Efficiency: Since the database is very large, iterating over all objects is not feasible, so
an efficient indexing data structure is necessary.
Human perception: The retrieved objects should be perceptually similar to the query.
Invariance to transformations: The retrieval probability of an object should be
invariant to translating, scaling, and rotating the object. Moreover, since shapes are
typically defined by a time signal describing their boundary, we desire invariance also to
the initial point of the boundary parametrization.

There are two general methods to define how much two images are similar (or distant):
intensity-based (color and texture) and geometry-based (shape). The latter method is
arguably more intuitive [17] but more difficult since capturing the shape is a more complex
task than representing color and texture features. Shape matching has been approached in
several other ways, including tree pruning [18], the generalized Hough transform [5], geometric
hashing [16] and Fourier descriptors [20]. For an extensive survey on shape matching metrics
see Veltkamp and Hagedoorn [19].

A noteworthy distance function between shapes is that of Arkin et al. [2], which represents
a curve using a cumulative angle function. Applied to polygons, the turning function (as used
by Arkin et al. [2]) tP of a polygon P returns the cumulative angle between the polygon’s
counterclockwise tangent at the point and the x-axis, as a function of the fraction x of the
perimeter (scaled to be of length 1) that we have traversed in a counterclockwise fashion.
The turning function is a step function that changes at the vertices of the polygon, and either
increases with left turns, or decreases with right turns (see Figure 2). Clearly, this function
is invariant under translation and scale of the polygon.

To find similar polygons based on their turning functions, we define the distance Lp(P, Q)
between polygons P and Q to be the Lp distance between their turning functions tP (x) and
tQ(x). That is

Lp(P, Q) =
(∫ 1

0
|tP (x) − tQ(x)|p

)1/p

.

The turning function tP (x) depends on the rotation of P , and the (starting) point of
P where we start accumulating the angle. If the polygon is rotated by an angle α, then
the turning function tP (x) becomes tP (x) + α. Therefore, we define the (rotation invariant)
distance D

↕
p(P, Q) between polygons P and Q to be the D

↕
p distance between their turning

functions tP and tQ, which is defined as follows

D↕
p(P, Q) def= D↕

p(tP , tQ) def= min
α∈R

Lp(tP + α, tQ) = min
α∈R

p

√∫ 1

0
|tP (x) + α − tQ(x)|p dx.

If the starting point of P is clockwise shifted along the boundary by t, the turning function
tP (x) becomes tP (x + t). Thus, we define the distance Dp(P, Q) between polygons P and Q

to be the Dp distance between their turning functions tP and tQ which is defined as follows

Dp(P, Q) def= Dp(tP , tQ) def= min
α∈R,t∈[0,1]

(∫ 1

0
|tP (x + t) + α − tQ(x)|p

)1/p

.

The distance Dp(f, g) between two functions f and g extends f to the domain [0, 2] by
defining tP (x + 1) = tP (x) + 2π. The distance metric Dp is invariant under translation,
rotation, scaling and the selection of the starting point. A comprehensive presentation of
these distances, as well as a proof that they indeed satisfy the metric axioms appears in [2].
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We develop efficient nearest neighbor data structures for functions under these distances
and then specialize them to functions which are turning functions of polygons.

Since a major application of polygon similarity is content-based image retrieval from large
databases (see Arkin et al. [2]), the efficiency of the retrieval is a critical metric. Traditionally,
efficient retrieval schemes used tree-based indexing mechanisms, which are known to work well
for prevalent distances (such as the Euclidean distance) and in low dimensions. Unfortunately
such methods do not scale well to higher dimensions and do not support more general and
computationally intensive metrics. To cope with this phenomenon (known as the “curse of
dimensionality”), Indyk and Motwani [15, 14] introduced Locality Sensitive Hashing (LSH),
a framework based on hash functions for which the probability of hash collision is higher for
near points than for far points.

Using such hash functions, one can determine near neighbors by hashing the query point
and retrieving the data points stored in its bucket. Typically, we concatenate hash functions
to reduce false positives, and use several hash functions to reduce false negatives. This
gives rise to a data structure which satisfies the following property: for any query point
q, if there exists a neighbor of distance at most r to q in the database, it retrieves (with
constant probability) a neighbor of distance at most cr to q for some constant c > 1. This
data structure is parameterized by the parameter ρ = log(p1)

log(p2) < 1, where p1 is the minimal
collision probability for any two points of distance at most r, and p2 is the maximal collision
probability for any two points of distance at least cr. The data structure can be built in
time and space O(n1+ρ), and its query time is O(nρ log1/p2(n)) where n is the size of the
data set.1

The trivial retrieval algorithm based on the turning function distance of Arkin et al. [2],
is to directly compute the distance D2(P, Q) (or D1(P, Q)) between the query Q and all the
polygons P in the database. This solution is invariant to transformations but not efficient
(i.e., linear in the size of the database).

In this paper, we rely on the turning function distance of Arkin et al. [2] for p = 1, 2, and
create the first retrieval algorithm with respect to the turning function distance which is
sub-linear in the size of the dataset. To do so, we design and analyze LSH retrieval structures
for function distance, and feed the turning functions of the polygons to them. Our results give
rise to a shape-based content retrieval (a near neighbor polygon) scheme which is efficient,
invariant to transformations, and returns perceptually similar results.

Our contribution

We develop simple but powerful (r, cr)-LSH near neighbor data structures for efficient similar
polygon retrieval, and give a theoretical analysis of their performance. We give the first
structure (to the best of our knowledge) for approximate similar polygon retrieval which is
provably invariant to shape rotation, translation and scale, and with a query time which is
sub-linear in the number of data polygons. In contrast to many other structures for similar
shape retrieval which often use heuristics, all our results are backed with theoretical proofs,
using properties of the turning function distance and the theory of LSH.

1 To ease on the reader, in this paper we suppress the term 1/p1 in the structure efficiency, and the time
it takes to compute a hash and distances between two polygons/functions. For example for polygons
with at most m vertices (which we call m-gons), all our hash computations take O(m) time, and using
Arkin et al. [2] we may compute distances in O(m2 log(m)) time.

STACS 2021
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Figure 1 Our structures: each box is an (r, cr)-LSH near neighbor data structure, and the arrow
A → B with label t signifies that we use the method t over the structure A to get a structure for B.

To give our (r, cr)-LSH near neighbor data structures for polygons, we build such structures
for step functions with distances which are derived from the Lp distance for p = 1, 2, and
apply them to turning functions of polygons.2 Here r > 0 and c > 1 are the LSH parameters
as defined above, and n is the number of objects in the data structure. The (r, cr)-LSH
data structures which we present exist for any r > 0 and c > 1 (except when c is explicitly
constrained). For an interval I, we say that a function f : I → R is a k-step function, if I

can be divided into k sub-intervals, such that over each sub-interval f is constant. All the
following results for functions are for k-step functions with ranges bounded in [a, b] for some
a < b where for simplicity of presentation, we fix a = 0 and b = 1.3,4 The results we present
below are slightly simplified versions than those that appear in the body of the paper. For
an overview of our structures see Figure 1.

Near neighbors data structures for functions

1. For the L1 distance over functions, we design a simple but powerful LSH hash family.
This hash selects a uniform point p from the rectangle [0, 1] × [0, 1], and maps each function
to 1, 0 or −1 based on its vertical relation (above, on or below) with p. This yields an
(r, cr)-LSH structure for L1 which requires sub-quadratic preprocessing time and space of
O(n1+ρ), and sub-linear query time of O(nρ log n), where ρ = log(1 − r)

/
log(1 − cr) ≤ 1

c .
For the L2 distance over functions, we observe that sampling each function at evenly spaced
points reduces the L2 distance to Euclidean distance. We use the data structure of Andoni
and Razenshteyn [1] for the Euclidean distance to give an (r, cr)-LSH for the L2 distance,
which requires sub-quadratic preprocessing time of O(n1+ρ + nr,c · n), sub-quadratic space of
O(nr,c · n1+ρ) and sub-linear query time of O(nr,c · nρ), where ρ = 1

2c−1 and nr,c = 2k
(
√

c−1)r2

is the dimension of the sampled vectors. We also give an alternative asymmetric LSH hash
family for the L2 distance inspired by our hash family for the L1 distance, and create an
LSH structure based on it.

2. For the D
↕
2 distance, we leverage a result of Arkin et al. [2], to show that the mean-reduce

transformation, defined to be ϕ̂(x) = ϕ(x) −
∫ 1

0 ϕ(s)ds, reduces D
↕
2 distances to L2 distances

with no approximation loss. That is, for every f and g, D
↕
2(f, g) = L2(f̂ , ĝ), so we get an

2 Our structures for step functions can be extended to support also functions which are concatenations of
at most k ∈ N functions which are M -Lipschitz for some M > 0. Also, we can give similar structures for
variations of the function D1 and D2 distances where we extend the functions from the domain [0, 1] to
the domain [0, 2], not by f(x) = f(x − 1) + 2π, but by f(x) = f(x − 1) + q for any constant q ∈ R.

3 For general values of these parameters, the dependency of the data structure’s run-time and memory is
roughly linear or squared in b − a.

4 Since a = 0 and b = 1, the distance between any two functions is at most 1, so we focus on r < 1.
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(r, cr)-LSH structure for the D
↕
2 distance which uses our previous L2 structure, and with

identical performance. For the D
↕
1 distance, we approximately reduce D

↕
1 distances to L1

distances using the same mean-reduction. We give a simple proof that this reduction gives
a 2-approximation, and improve it to a tight approximation bound showing that for any
two step functions f, g : [0, 1] → [0, 1], L1(f̂ , ĝ) ≤

(
2 − D

↕
1(f, g)

)
· D

↕
1(f, g). This proof

(see full version), which is of independent interest, characterizes the approximation ratio by
considering the function f − g, dividing its domain into 3 parts and averaging over each
part, thereby considering a single function with 3 step heights. This approximation scheme
yields an (r, cr)-LSH structure for any c > 2 − r, which is substantially smaller than 2
(approaching 1) for large values of r.

We also give an alternative structure step-shift-LSH that supports any c > 1, but has a
slightly diminished performance. This structure leans on the observation of Arkin et al. [2],
that the optimal vertical shift aligns a step of f with a step of g. It therefore replaces each
data step function by a set of vertical shifts of it, each aligning a different step value to y = 0,
and constructs an L1 data structure containing all these shifted functions. It then replaces a
query with its set of shifts as above, and performs a query in the internal L1 structure with
each of these shifts.

3. For the D1 and D2 distances, we leverage another result of Arkin et al. [2], that the
optimal horizontal shift horizontally aligns a discontinuity point of f with a discontinuity
point of g. Similarly to step-shift-LSH, we give a structure for D1 (or D2) by keeping an
internal structure for D

↕
1 (or D

↕
2) which holds a set of horizontal shifts of each data functions,

each aligns a different discontinuity point in to x = 0. It then replaces a query with its set of
shifts as above, and performs a query in the internal structure with each of these shifts.

Near neighbors data structures for polygons

We design LSH structures for the polygonal D1 and D2 distances, by applying the D1 and
D2 structures to the turning functions of the polygons. We assume that all the data and
query polygons have at most m vertices (are m-gons), where m is a constant known at
preprocessing time. It is clear that the turning functions are (m + 1)-step functions, but the
range of the turning functions is not immediate (note that performance inversely relates to
the range size).

First, we show that turning functions of m-gons are bounded in the interval I =
[−(⌊m/2⌋ − 1)π, (⌊m/2⌋ + 3)π] of size λm := (2 · ⌊m/2⌋ + 2)π. We show that this bound is
tight in the sense that there are m-gons whose turning functions get arbitrarily close to these
upper and lower bounds.

Second, we define the span of a function ξ : [0, 1] → R to be span(ξ) = maxx∈[0,1](ξ(x))−
minx∈[0,1](ξ(x)), and show that for m-gons, the span is at most λm/2 = (⌊m/2⌋ + 1)π, and
that this bound is tight - there are m-gons whose turning functions have arbitrarily close
spans to λm/2. Since the D1 and D2 distances are invariant to vertical shifts, we perform
an a priori vertical shift to each turning function such that its minimal value becomes 0,
effectively morphing the range to [0, λm/2], which is half the original range size. This yields
the following structures:

For the D1 distance, for any c > 2 we give an (r, cr)-LSH structure storing n polygons
with at most m vertices which requires O((nm)1+ρ) preprocessing time and space which are
sub-quadratic in n, and O(m1+ρnρ log(nm)) query time which is sub-linear in n, where ρ

is roughly 2/c. Also for D1, for any c > 1 we get an (r, cr)-LSH structure which requires
sub-quadratic preprocessing time and space of O((nm2)1+ρ), and sub-linear query time of
O(m2+2ρnρ log(nm)), where ρ is roughly 1/c.

STACS 2021
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For the D2 distance, we give an (r, cr)-LSH structure which requires sub-quadratic
preprocessing time of Õ(n1+ρ), sub-quadratic space of Õ(n1+ρ), and sub-linear query time
of Õ(nρ), where ρ = 1

2
√

c−1 .5

Other similar works

Babenko et al. [4] suggest a practical method for similar image retrieval, by embedding
images to a Euclidean space using Convolutional Neural Networks (CNNs), and retrieving
similar images to a given query based on their embedding’s euclidean distance to the query
embedding. This approach has been the most effective practical approach for similar image
retrieval in recent years.

Gudmundsson and Pagh [13] consider a metric in which there is a constant grid of
points, and shapes are represented by the subset of grid points which are contained in
them. The distance between polygons is then defined to be the Jaccard distance between the
corresponding subsets of grid points. Their solution lacks invariance to scale, translation and
rotation, however our work is invariant to those, and enables retrieving polygons which have
a similar shape, rather than only spatially similar ones.

Other metrics over shapes have been considered. Cakmakov et al. [7] defined a metric
based on snake-like moving of the curves. Bartolini et al. [6] proposed a new distance function
between shapes, which is based on the Discrete Fourier Transform and the Dynamic Time
Warping distance. Chavez et al. [9] give an efficient polygon retrieval technique based on
Fourier descriptors. Their distance works for exact matches, but is a weak proxy for visual
similarity, since it relates to the distances between corresponding vertices of the polygons.

There has been a particular effort to develop efficient structures for the discrete Fréchet
distance and the dynamic time warping distance for polygonal curves in Rd. Such works
include Driemel et al. [10] who gave LSH structures for these metrics via snapping the curve
points to a grid, Ceccarello et al. [8] who gave a practical and efficient algorithm for the
r-range search for the discrete Fréchet distance, Filtser et al. [11] who built a deterministic
approximate near neighbor data structure for these metrics using a subsample of the data, and
Astefanoaei et al. [3] who created a suite of efficient sketches for trajectory data. Grauman
and Darrell [12] performed efficient contour-based shape retrieval (which is sensitive (not
invariant) to translations, rotations and scaling) using an embedding of Earth Mover’s
Distance into L1 space and LSH.

2 Preliminaries

We first formally define LSH, then discuss the turning function representation of Arkin et
al. [2], and then define the distance functions between polygons and functions which rise
from this representation.

2.1 Locality sensitive hashing

We use the following standard definition of a Locality Sensitive Hash Family (LSH) with
respect to a given distance function d : Z × Z → R≥0.

5 The Õ notation hides multiplicative constants which are small powers (e.g., 5) of m, 1
r and 1

4√c−1 .
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▶ Definition 1 (Locality Sensitive Hashing (LSH)). Let r > 0, c > 1 and p1 > p2. A family
H of functions h : Z → Γ is an (r, cr, p1, p2)-LSH for a distance function d : Z × Z → R≥0
if for any x, y ∈ Z,
1. If d(x, y) ≤ r then Prh∈H [h(x) = h(y)] ≥ p1, and
2. If d(x, y) ≥ cr then Prh∈H [h(x) = h(y)] ≤ p2.
Note that in the definition above, and in all the following definitions, the hash family H is
always sampled uniformly.

We say that a hash family is an (r, cr)-LSH for a distance function d if there exist p1 > p2
such that it is an (r, cr, p1, p2)-LSH. A hash family is a universal LSH for a distance function
d if for all r > 0 and c > 1 it is an (r, cr)-LSH.

From an (r, cr, p1, p2)-LSH family, we can derive, via the general theory developed in
[15, 14], an (r, cr)-LSH data structure, for finding approximate near neighbors with respect
to r. That is a data structure that finds (with constant probability) a neighbor of distance
at most cr to a query q if there is a neighbor of distance at most r to q. This data structure
uses O(n1+ρ) space (in addition to the data points), and O(nρ log1/p2(n)) hash computations
per query, where ρ = log(1/p1)

log(1/p2) = log(p1)
log(p2) .

2.2 Representation of polygons

Figure 2 Left: a polygon P with 6 vertices. Right: the turning function tP of P , with 7 steps.

Let P be a simple polygon scaled such that its perimeter is one. Following the work of
Arkin et al. [2], we represent P via a turning function tP (s) : [0, 1] → R, that specifies the
angle of the counterclockwise tangent to P with the x-axis, for each point q on the boundary
of P . A point q on the boundary of P is identified by its counterclockwise distance (along
the boundary which is of length 1 by our scaling) from some fixed reference point O. It
follows that tP (0) is the angle α that the tangent at O creates with the x-axis, and tP (s)
follows the cumulative turning, and increases with left turns and decreases with right turns.
Although tP may become large or small, since P is a simple closed polygon we must have
that tP (1) = tP (0) + 2π if O is not a vertex of P , and tP (1) − tP (0) ∈ [π, 3π] otherwise.
Figure 2 illustrates the polygon turning function.

Note that since the angle of an edge with the x-axis is constant and angles change at the
vertices of P , then the function is constant over the edges of P and has discontinuity points
over the vertices. Thus, the turning function is in fact a step function.

In this paper, we often use the term m-gon – a polygon with at most m vertices.

STACS 2021
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2.3 Distance functions

Consider two polygons P and Q, and their associated turning functions tP (s) and tQ(s)
accordingly. Define the aligned Lp distance (often abbreviated to Lp distance) between
P and Q denoted by Lp(P, Q), to be the Lp distance between tP (s) and tQ(s) in [0, 1]:
Lp(P, Q) =

p
√∫ 1

0 |tP (x) − tQ(x)|p dx.
Note that even though the Lp distance between polygons is invariant under scale and

translation of the polygon, it depends on the rotation of the polygon and the choice of the
reference points on the boundaries of P and Q.

Since rotation of the polygon results in a vertical shift of the function tP , we define the
vertical shift-invariant Lp distance between two functions f and g to be
D

↕
p(f, g) = minα∈R Lp(f +α, g) = minα∈R

p
√∫ 1

0 |f(x) + α − g(x)|p dx. Accordingly, we define
the rotation-invariant Lp distance between two polygons P and Q to be the vertical shift-
invariant Lp distance between the turning functions tP and tQ of P and Q respectively:
D

↕
p(P, Q) = D

↕
p(tP , tQ) = minα∈R

p
√∫ 1

0 |tP (x) + α − tQ(x)|p dx.

To tweak the distance D
↕
p such that it will be invariant to changes of the reference points,

we need the following definition. We define the 2π-extension f2π : [0, 2] → R of a function

f : [0, 1] → R to the domain [0, 2], to be f2π =
{

f(x), for x ∈ [0, 1]
f(x − 1) + 2π, for x ∈ (1, 2]

.

A turning function tP is naturally 2π-extended to the domain [0, 2] by circling around
P one more time. We define the u-slide of a function g : [0, 2] → R, slide↔

u (g) : [0, 1] → R,
for a value u ∈ [0, 1] to be (slide↔

u (g))(x) = g(x + u). These definitions are illustrated in
Figure 3. Note that shifting the reference point by a counterclockwise distance of u around
the perimeter of a polygon P changes the turning function from tP to slide↔

u (t2π
P ).

Figure 3 Left: The turning function tP of the square with reference point p. Center: the
2π-extension t2π

P of tP . Right: The turning function of the square with the reference point q in red
(this is in fact the function t2π

P cropped to between the black vertical lines, i.e., to [0.375, 1.375]).

We therefore define the (vertical and horizontal) shift-invariant Lp distance between
two functions f, g : [0, 1] → R to be: Dp(f, g) = minu∈[0,1] D

↕
p(slide↔

u (f2π), g) =

minα∈R, u∈[0,1]
p
√∫ 1

0 |f2π(x + u) + α − g(x)|p dx, and define the (rotation and reference point
invariant) Lp distance between two polygons P and Q to be Dp(P, Q) = Dp(tP , tQ). Arkin
et al. [2] proved that Dp(f, g) is a metric for any p > 0.

3 L1-based distances

In this section, we give LSH structures for the L1 distance, the D
↕
1 distance and then the

D1 distance. Note that the D1 distance reduces to the D
↕
1 distance, which by using the

mean-reduction transformation presented in Section 3.2, reduces to the L1 distance.
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3.1 Structure for L1

In this section we present random-point-LSH, a simple hash family for functions f :
[0, 1] → [a, b] with respect to the L1 distance. Random-point-LSH is the hash family
H1(a, b) =

{
h(x,y) | (x, y) ∈ [0, 1] × [a, b]

}
, where the points (x, y) are uniformly selected

from the rectangle [0, 1] × [a, b]. Each h(x,y) receives a function f : [0, 1] → [a, b], and returns
1 if f is vertically above the point (x, y), returns −1 if f is vertically below (x, y), and 0
otherwise.

Figure 4 Illustration of the hash of two functions f and g w.r.t. h(x,y) for a = 0 and b = 1.5.
For (x, y) in the green area h(x,y)(f) = −1 ̸= 1 = h(x,y)(g), in the blue area h(x,y)(f) = 1 ̸= −1 =
h(x,y)(g), in the red area h(x,y)(f) = h(x,y)(g) = −1, and in the orange area h(x,y)(f) = h(x,y)(g) = 1.

The intuition behind random-point-LSH is that any two functions f, g : [0, 1] → [a, b]
collide precisely over hash functions h(x,y) for which the point (x, y) is outside the area
bounded between the graphs of f and g. This fact is illustrated in the following Figure 4.
Thus, this hash incurs a collision probability of 1− L1(f,g)

b−a = 1− L1(f,g)
b−a , which is a decreasing

function with respect to L1(f, g). This intuition leads to the following results.

▶ Theorem 2. For any two functions f, g : [0, 1] → [a, b], we have that Ph∼H1(a,b)(h(f) =
h(g)) = 1 − L1(f,g)

b−a .

Proof. Fix x ∈ [0, 1], and denote by U(S) the uniform distribution over a set S. We have
that

Py∼U([a,b])(h(x,y)(f) = h(x,y)(g)) = 1 − Py∼U([a,b])(h(x,y)(f) ̸= h(x,y)(g))

= 1 − |f(x) − g(x)|
b − a

,

where the last equality follows since h(x,y)(f) ̸= h(x,y)(g) precisely for the y values between
f(x) and g(x). Therefore, by the law of total probability,

Ph∼H1(a,b)(h(f) = h(g)) = P(x,y)∼U([0,1]×[a,b])(h(x,y)(f) = h(x,y)(g))

=
∫ 1

0
Py∼U([a,b])(h(x,y)(f) = h(x,y)(g))dx

=
∫ 1

0

(
1 − |f(x) − g(x)|

b − a

)
dx = 1 − L1(f, g)

b − a
. ◀
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▶ Corollary 3. For any r > 0 and c > 1, one can construct an (r, cr)−LSH structure for the
L1 distance for n functions with ranges bounded in [a, b]. This structure requires O(n1+ρ)
space and preprocessing time, and has O(nρ log(n)) query time, where ρ = log(1− r

b−a )
log(1− cr

b−a ) ≈ 1
c

for r ≪ b − a.

Proof. Fix r > 0 and c > 1. By the general result of Indyk and Motwani [15], it suffices to
show that H1(a, b) is an (r, cr, 1 − r

b−a , 1 − cr
b−a )-LSH for the L1 distance.

Indeed, by Theorem 2, Ph∼H1(a,b)(h(f) = h(g)) = 1 − L1(f,g)
b−a , so we get that

If L1(f, g) ≤ r, then Ph∼H1(a,b)(h(f) = h(g)) = 1 − L1(f,g)
b−a ≥ 1 − r

b−a .

If L1(f, g) ≥ cr, then Ph∼H1(a,b)(h(f) = h(g)) = 1 − L1(f,g)
b−a ≤ 1 − cr

b−a . ◀

3.2 Structure for D
↕
1

In this section we present mean-reduce-LSH, an LSH family for the vertical translation-
invariant L1 distance, D

↕
1 . Observe that finding an LSH family for D

↕
1 is inherently more

difficult than for L1, since even evaluating D
↕
1(f, g) for a query function g and an input

function f requires minimizing L1(f + α, g) over the variable α, and the optimal value of α

depends on both f and g.
Our structure requires the following definitions. We define ϕ̄ =

∫ 1
0 ϕ(x)dx to be the

mean of a function ϕ over the domain [0, 1], and define the mean-reduction of ϕ, denoted
by ϕ̂ : [0, 1] → [a − b, b − a], to be the vertical shift of ϕ with zero integral over [0, 1],
i.e., ϕ̂(x) = ϕ(x) − ϕ̄(x). These definitions are illustrated in Figure 5. Our solution relies
on the crucial observation that for the pair of functions f, g : [0, 1] → [a, b], the value of
α which minimizes L1(f + α, g) is “well approximated” by ḡ − f̄ . That is the distance
L1(f + (ḡ − f̄), g) = L1(f − f̄ , g − ḡ) = L1(f̂ , ĝ) approximates D

↕
1(f, g). This suggests that if

we replace any data or query function f with f̂ , then the D
↕
1 distances are approximately the

L1 distances of the shifted versions f̂ , for which we can use the hash H1 from Section 3.1.

Figure 5 A function f (black), its mean f̄(blue), and its mean-reduction f̂ (below). Notice that
the red and green areas are equal.

Indeed, we use the hash family H1 from Section 3.1, and define mean-reduce-LSH for
functions with images contained in [a, b] to be the family H

↕
1 (a, b) = {f → h ◦ f̂ | h ∈

H1(a − b, b − a)}. Each hash of H
↕
1 (a, b) is defined by a function h ∈ H1(a − b, b − a), and

given a function f , it applies h on its mean-reduction f̂ .
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The following theorem gives a tight bound for the L1 distance between mean-reduced
functions in terms of their original vertical translation-invariant L1 distance D

↕
1 . The proof

of this tight bound as well as a simpler 2-approximation appear in the full version of the
paper. Our elegant but more complicated proof of the tight bound characterizes and bounds
the approximation ratio using properties of f − g, and demonstrates its tightness by giving
the pair of step functions f, g which meet the bound.

We conclude this result in the following theorem.

▶ Theorem 4. Let f, g : [0, 1] → [a, b] be step functions and let r ∈ (0, b − a] be their vertical
shift-invariant L1 distance r = D

↕
1(f, g). Then r ≤ L1(f̂ , ĝ) ≤

(
2 − r

b−a

)
· r. This bound is

tight, i.e, there exist two functions f0, g0 as above for which L1(f̂0, ĝ0) =
(

2 − r
b−a

)
· r.

We use Theorem 4 to prove that mean-reduce-LSH is an LSH family (Theorem 5). We
then use Theorem 5 and the general result of Indyk and Motwani [15] to get Corollary 6.

▶ Theorem 5. For any r ∈ (0, b − a) and c > 2 − r
b−a , H

↕
1 (a, b) is an(

r, cr, 1 −
(

2 − r
b−a

)
· r

2(b−a) , 1 − c · r
2(b−a)

)
-LSH family for the D

↕
1 distance.

▶ Corollary 6. For any r > 0 and c > 2− r
b−a , one can construct an (r, cr)−LSH structure for

the D
↕
1 distance for n functions with ranges bounded in [a, b]. This structure requires O(n1+ρ)

extra space and preprocessing time, and O(nρ log(n)) query time, where r̃ = r/(2(b − a)) and
ρ = log (1 − (2 − 2r̃) · r̃) / log (1 − cr̃) for small r̃.

Step-shift-LSH

We present step-shift-LSH, a structure for the D
↕
1 distance which works for any c > 1 (unlike

mean-reduce-LSH), but has a slightly worse performance, which depends on an upper bound
k on the number of steps in of the data and query functions. This structure uses an internal
structure for the L1 distance, and leverages the observation of Arkin et al. [2] that the optimal
vertical shift α to align two step functions f and g, is such that f + α has a step which
partially overlaps a step of g, i.e., there is some segment S ⊆ [0, 1] over which f + α = g.

Therefore, we overcome the uncertainty of the optimal α by a priori cloning each function
by the number of steps it has, and vertically shifting each clone differently to align each step
to be at y = 0.6 For a query function g, we clone it similarly to align each step to y = 0,
and use each clone as a separate query for the L1 structure. This process effectively gives a
chance to align each step of the query g with each step of each data step function f .

▶ Corollary 7. For any a < b, r > 0 and c > 1, there exists an (r, cr)-LSH structure for the
D

↕
1 distance for n functions, each of which is a k-step function with range bounded in [a, b].

This structure requires O((nk)1+ρ) extra space and preprocessing time, and O(k1+ρnρ log(nk))
query time, where ρ = log

(
1 − r

2(b−a)

)
/ log

(
1 − cr

2(b−a)

)
≈ 1

c for r ≪ b − a.

3.3 Structure for D1

In this section, we present slide-clone-LSH, a data structure for the distance function D1
defined over step functions f : [0, 1] → [a, b]. To do so, we use an (r′, c′r′)-LSH data structure
(for appropriate values of r′ and c′) for the distance function D

↕
1 which will hold slided

functions with ranges contained in [a, b + 2π].

6 This idea of cloning appears once again (but in a horizontal version), and in more detail, in Section 3.3
for the D1 distance.
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Recall that the D1 distance between a data function f and a query function g is defined
to be the minimal D

↕
1 distance between a function in the set

{
slide↔

u (f2π) | u ∈ [0, 1]
}

and
the function g, and we obviously do not know u a priori and cannot build a structure for each
possible u ∈ [0, 1]. Fortunately, in the proof of Theorem 6 from Arkin et al. [2], they show
that for any pair of step functions f and g, the optimal slide u is such that a discontinuity of
f is aligned with a discontinuity of g. They show that this is true also for the D2 distance.

Therefore, we can overcome the uncertainty of the optimal u by a priori cloning each
function by the number of discontinuity points it has, and sliding each clone differently to
align its discontinuity point to be at x = 0. For a query function g, we clone it similarly
to align each discontinuity point to x = 0, use each clone as a separate query. The above
process effectively gives a chance to align each discontinuity point of the query function g

with each discontinuity point of each data step function f .
Slide-clone-LSH works as follows.

Preprocessing phase

We are given the parameters r > 0, c > 1, a < b and a set of step functions F , where each
function is defined over the domain [0, 1] and has a range bounded in [a, b]. Additionally,
we are given an upper bound k on the number of steps a data or query step function may
have. First, we replace each function f ∈ F with the set of (at most k + 1) u slides of it’s
2π-extension for each discontinuity point u, i.e., slide↔

u (f2π) for each discontinuity point
u ∈ [0, 1]. For each such clone we remember its original unslided function. Next, we store the
at most (k + 1) · |F | resulted functions in an (r′, c′r′)-LSH data structure for the D

↕
1 distance

for functions with ranges bounded in [a, b + 2π], tuned with the parameters r′ = r and c′ = c.

Query phase

Let g be a query function. We query the D
↕
1 structure constructed in the preprocessing phase

with each of the slided queries slide↔
u (g2π) for each discontinuity point u ∈ [0, 1]. If one of

the queries returns a data function f , we return its original unslided function, and otherwise
return nothing.

In Theorem 8, we prove that slide-clone-LSH is an (r, cr)-data structure for D1.

▶ Theorem 8. Slide-clone-LSH is an (r, cr)-LSH structure for the D1 distance.

▶ Corollary 9. For any a < b, r > 0, ω = b + 2π − a and c > 2 − r
ω , there ex-

ists an (r, cr)-LSH structure for the D1 distance for n functions, each of which is a
k-step function with range bounded in [a, b]. This structure requires O((nk)1+ρ) extra
space and preprocessing time, and O(k1+ρnρ log(nk)) query time, where r̃ = r/(2ω) and
ρ = log (1 − (2 − 2r̃) · r̃) / log (1 − cr̃) ≈ 2

c for small r̃.7

▶ Corollary 10. For any a < b, r > 0 and c > 1, there exists an (r, cr)-LSH struc-
ture for the D1 distance for n functions, each of which is a k-step function with range
bounded in [a, b]. This structure requires O((nk2)1+ρ) extra space and preprocessing time, and
O(k2+2ρnρ log(nk)) query time, where ρ = log

(
1 − r

2(b+2π−a)

)
/ log

(
1 − cr

2(b+2π−a)

)
≈ 1

c for
r ≪ 2(b + 2π − a).

7 Given a bound s on the span of the functions, we can a priori vertically shift all the functions such
that their minimum is 0, effectively making the range size smaller (within [0, s]) and improving the
performance of the structure (see the full version).
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4 L2-based distances

This section, which appears in detail in the full version of the paper, gives LSH structures
for the L2 distance, the D

↕
2 distance and then the D2 distance.

First, we present discrete-sample-LSH, a simple LSH structure for functions f : [0, 1] →
[a, b] with respect to the L2 distance. The intuition behind discrete-sample-LSH is that the
L2 distance between the step functions f, g : [0, 1] → [a, b] can be approximated via a sample
of f and g at the evenly spaced set of points {i/n}n

i=0. Specifically, by replacing each function
f by the vector vecn(f) =

(
1√
n

f
( 0

n

)
, 1√

n
f

( 1
n

)
, . . . , 1√

n
f

(
n−1

n

))
, one can show that for

a large enough value of n ∈ N, L2(f, g) can be approximated by L2 (vecn(f) − vecn(g)).
We prove that for any two k-step functions f, g : [0, 1] → [a, b], and for any r > 0 and
c > 1: (1) if L2(f, g) ≤ r then L2

(
vecnr,c

(f), vecnr,c
(g)

)
≤ c1/4r, and (2) if L2(f, g) > cr

then L2
(
vecnr,c

(f), vecnr,c
(g)

)
> c3/4r for a sufficiently large nr,c (see full version for the

exact value). Note that the bounds A = c1/4r and B = c3/4r are selected for simplicity,
and other trade-offs are possible. The proof of this claim relies on the observation that
(f − g)2 is also a step function, and that L2

(
vecnr,c(f), vecnr,c(g)

)2 is actually the left
Riemann sum of (f − g)2, so as n → ∞, it must approach

∫ 1
0 (f(x) − g(x))2dx = (L2(f, g))2.

Discrete-sample-LSH replaces data and query functions f with the vector samples vecnr,c
(f),

and holds an (c1/4r, c3/4r)-LSH structure for the nr,c-dimensional Euclidean distance (e.g.,
the Spherical-LSH based structure of Andoni and Razenshteyn [1]). The resulting structure
has the parameter ρ = 1

2c−1 .
In the full version of the paper, we present an alternative structure tailored for the L2

distance for general (not necessarily k-step) integrable functions f : [0, 1] → [a, b], based on
a simple and efficiently computable asymmetric hash family which uses random-point-LSH
as a building block. We note that this structure’s ρ values are larger than those of
discrete-sample-LSH for small values of r.

Next, we give vertical-alignment-LSH– a structure for D
↕
2 . Recall that the mean-reduction

(Section 3.2) of a function f is defined to be f̂(x) = f(x)−
∫ 1

0 f(t)dt. We show that the mean-
reduction has no approximation loss when used for reducing D

↕
2 distances to L2 distances,

i.e., it holds that D
↕
2(f, g) = L2

(
f̂ , ĝ

)
for any f, g. Thus, to give an (r, cr)-LSH structure

for D
↕
2 , vertical-alignment-LSH simply holds a (r, cr)-LSH structure for L2, and translates

data and query functions f for D
↕
2 to data and query functions f̂ for L2.

Finally, we employ the same cloning and sliding method as in Section 3.3, to obtain an
(r, cr)-LSH structure for D2 using a structure for D

↕
2 .

5 Polygon distance

In this section (which appears in detail in the full version of the paper) we consider polygons,
and give efficient structures to find similar polygons to an input polygon. All the results
of this section depend on a fixed value m ∈ N, which is an upper bound on the number of
vertices in all the polygons which the structure supports (both data and query polygons).
Recall that the distance functions between two polygons P and Q which we consider, are
defined to be variations of the Lp distance between the turning functions tP and tQ of the
polygons, for p = 1, 2. To construct efficient structures for similar polygon retrieval, we apply
the structures from previous sections to the turning functions of the polygons.
To apply these structures and analyze their performance, it is necessary to bound the range
of the turning functions, and represent them as k-step functions. Since the turning functions
are (m + 1)-step functions, it therefore remains to compute bounds for the range of the
turning function tP .
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A coarse bound of [−(m + 1)π, (m + 3)π] can be derived by noticing that the initial value
of the turning function is in [0, 2π], that any two consecutive steps in the turning function
differ by an angle less than π, and that the turning function has at most m + 1 steps.
We give an improved and tight bound for the range of the turning function, which relies
on the fact that turning functions may wind up and accumulate large angles, but they
must almost completely unwind towards the end of the polygon traversal, such that tP (1) ∈
[tP (0) + π, tP (0) + 3π]. Our result is as follows.

▶ Theorem 11 (Simplified). Let P be a polygon with m vertices. Then for the turning
function tP , ∀x ∈ [0, 1], − (⌊m/2⌋ − 1) π ≤ tP (x) ≤ (⌊m/2⌋ + 3) π, and this bound is tight.

We denote the lower and upper bounds on the range by am = − (⌊m/2⌋ − 1) π and bm =
(⌊m/2⌋ + 3) π respectively, and define λm to be the size of this range, λm = (2 · ⌊m/2⌋ + 2)π.
Having the results above, we get LSH structures for the different corresponding polygonal
distances which support polygons with at most m vertices, by simply replacing each data
and query polygon by its turning function.

Regarding the distances D
↕
1 and D1, we can improve the bound above using the crucial

observation that even though the range of the turning function may be of size near mπ, its
span can actually only be of size approximately m

2 ·π (Theorem 12), where we define the span
of a function ϕ over the domain [0, 1], to be span(ϕ) = maxx∈[0,1](ϕ(x)) − minx∈[0,1](ϕ(x)).

A simplified version of this result is as follows.

▶ Theorem 12 (Simplified). Let Q be a polygon with m vertices. Then for the turning
function tQ, it holds that span(tQ) ≤ (⌊m/2⌋ + 1) π = λm/2. Moreover, for any ε > 0 there
exists such a polygon with span at least (⌊m/2⌋ + 1) π − ε.

Since the D
↕
1 distance is invariant to vertical shifts, we can improve the overall performance

of our D
↕
1 LSH structure by simply mapping each data and query polygon P ∈ S to its

vertically shifted turning function x → tP (x) − minz∈[0,1] tP (z) (such that its minimal value
becomes 0). This shift morphs the ranges of the set of functions F to be contained in
[0, maxf∈F (span(f))]. By Theorem 12, we can therefore use the adjusted bounds of a = 0
and b = λm/2 (each function f ∈ S0 is obviously non-negative, but also bounded above by
λm/2 by Theorem 12), and effectively halve the size of the range from λm = bm − am to
λm/2.

To summarize our results for polygons, we use the Õ notation to hide multiplicative
constants which are small powers (e.g., 5) of m, 1

r , and 1√
c−1 :

For the D1 distance, for any c > 2 we give an (r, cr)-LSH structure which for r ≪ 2λm

c

roughly requires Õ(n1+ρ) preprocessing time and space, and Õ(n1+ρ log n) query time, where
ρ is roughly 2

c . Also for D1, for any c > 1 we get an (r, cr)-LSH structure which for r ≪ λm

roughly requires O((nm2)1+ρ) preprocessing time and space, and O(m2+2ρnρ log(nm)) query
time, where ρ is roughly 1/c.

For the D2 distance, we give an (r, cr)-LSH structure which requires Õ(n1+ρ) preprocessing
time, Õ(n1+ρ) space, and Õ(nρ) query time, where ρ = 1

2
√

c−1 .

6 Conclusions and directions for future work

We present several novel LSH structures for searching nearest neighbors of functions with
respect to the L1 and the L2 distances, and variations of these distances which are invariant
to horizontal and vertical shifts. This enables us to devise efficient similar polygon retrieval
structures, by applying our nearest neighbor data structures for functions, to the turning
functions of the polygons. For efficiently doing this, we establish interesting bounds on the
range and span of the turning functions of m-gons.
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As part of our analysis, we proved that for any two functions f, g : [0, 1] → [a, b] such that
D

↕
1(f, g) = r, it holds that L1(f̂ , ĝ) ≤

(
2 − r

b−a

)
· r. This tight approximation guarantee may

be of independent interest. An interesting line for further research is to find near neighbor
structures with tighter guarantees for simple and frequently occurring families of polygons
such as rectangles, etc.

All the reductions we describe have some performance loss, which is reflected in the
required space, preprocessing and query time. Finding optimal reduction parameters (e.g., an
optimal value of ξ in Section 3.3 for polygons) and finding more efficient reductions is another
interesting line for further research. Finding an approximation scheme for the horizontal
distance (similarly to the

(
2 − r

b−a

)
-approximation for the D

↕
1 distance which appears in

Section 3.2) is another intriguing open question.
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