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—— Abstract
Approximate Counting refers to the problem where we are given query access to a function f :
[N] — {0,1}, and we wish to estimate K = #{z : f(z) = 1} to within a factor of 1 4 ¢ (with
high probability), while minimizing the number of queries. In the quantum setting, Approximate
Counting can be done with O(min(\ /N/e, +/ N/K/e)) queries. It has recently been shown that
this can be achieved by a simple algorithm that only uses “Grover iterations”; however the algorithm

performs these iterations adaptively. Motivated by concerns of computational simplicity, we consider
algorithms that use Grover iterations with limited adaptivity. We show that algorithms using only
nonadaptive Grover iterations can achieve O(\ /N/ e) query complexity, which is tight.
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1 Introduction

1.1 Grover Search recap

A famous, textbook algorithm in quantum computing is Grover Search [6], which solves the
following task: Given is a quantum oracle for a function f : [N] — {0,1}, where queries for
f(x) may be made in quantum superposition. It is promised that K = #{x : f(z) =1} is
exactly 1. The task is to find z* such that f(a*) = 1. Grover Search solves this problem
(with high probability) using O(v/N) queries.

The algorithm is particularly simple: First, a state |s) equal to the uniform superposition
over all |z) is prepared; this state makes an angle of arccosy/1/N with |z*). We write
|z*)" for the state perpendicular to |2*) making an angle of 6* = arcsin \/1/N with |s).
Then the algorithm repeatedly performs Grover iterations, each of which consists of one
query followed by the simple “Grover diffusion” operation. The effect of a Grover iteration
is to rotate |s) by an angle of 20*; thus after r rotations the angle of |s) from |z*)" is
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(2r +1)0*. Setting r ~ T+/N, the algorithm makes O(v/N) queries and ends up with a
state at angle approximately 7 from |2*)"; measuring then results in |z*) with probability
sin?((2r + 1)0%) ~ sin® £ = 1.

In this form the algorithm relies on the assumption K = 1. For K > 1, the only change
is that the parameter 8* becomes arcsin /K /N. Thus if the correct value of K is known
to the algorithm (and we assume for simplicity that K < N/2), it can choose r ~ §/N/K
and solve the search problem using O(y/N/K) iterations/queries. This algorithm also works

if the algorithm knows an estimate K’ of K that is correct up to small multiplicative error;

L1
say, K’ = K. Here we are using the following notation:

» Notation 1. For a,b,n > 0 we write a 1;77 b if ﬁ <a/b<1+n.

If K is unknown to the algorithm, one possibility is try all estimates K’ = 1, 1.1,
1.12, 1.13, ..., N/2. The total number of Grover iterations (hence queries) will be
O3>, V/N/1.19) = O(V/N).2 A strategy with improved query complexity for large K
was given by Boyer, Brassard, Hoyer, and Tapp [2]; in brief, for ¢ = 0,1,2,... it tries a
random number of rotations in the range [1,1.17], stopping if ever an x € f~1(1) is found.
This algorithm solves the search problem using O(y/N/K) iterations, despite not knowing K
in advance.

1.2 Approximate Counting

A natural related problem, called Approxzimate Counting and introduced in [2], is to esti-
mate K. More precisely, given as input a parameter € > 0, the task is to output a number K
such that (with high probability) K e K. To keep the exposition simple, in this paper we
will make the following standard assumptions:

1/N < e <1 (setting e = 1/N just yields the problem of exact counting — any smaller

value of € does not change the problem);

K < N/2 (otherwise there is generally a dependence on N — K, since one can switch the

roles of 0 and 1 in f’s output);

K # 0 (generally, all algorithms can easily be extended to work in the case of K = 0,

with query complexity being the worst-case query complexity over all K > 0).
The quantum Approximate Counting problem was solved with optimal query complexity by
Brassard, Hgyer, Mosca, and Tapp [3]. Combining quantum Fourier transform ideas from
Shor’s Algorithm with the ideas behind Grover Search, their algorithm solves Approximate
Counting using O(y/N/K /€) queries.

Let us make some remarks about this query complexity. First, note that the bound takes
K into account, even though K is (initially) unknown to the algorithm. Second, although K
could be as small as 1, the worst-case query complexity over all K need not be Q(v'N / €).
(Indeed, this would lead to an illogical query complexity of Q(N?/2) if one set € = 1/N to do
exact counting.) Instead, note that an algorithm can first run the algorithm from [3] with
e = 1, expending O(y/N/K) < O(v/N) queries and learning a preliminary estimate K’ LK.
Now since K is an integer, there is no point in trying to approximate it to a factor better
than 1+ 1/K, hence better than 1+ 1/(2K"). Thus the algorithm can now raise the initial
input € to 1/(2K") if necessary, and then run [3] to obtain its final estimate. This yields a
final query complexity of

O(V/N/K /max{e,1/K}) = min{O(VNK),O(/N/K | €)} < O(\/NJe)

2 One must take a small amount of care to bound the overall failure probability without incurring a log
factor.
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(where in the last inequality we took the geometric mean). This K-independent bound of
O(+/N/e) is logical: the smallest € one should ever take is e = 1/N, and this leads to a query
complexity of O(N) for the general case of exact counting. By similar reasoning one can
obtain the more precise fact that exact counting can done with O(\/W ) queries. Finally,
we remark that query complexity obtained by [3] was shown to be optimal by Nayak and
Wu [8].

Let us also briefly mention the quantum Amplitude Estimation problem, which is essentially
the same as the Approximate Counting problem except that the “initial angle” 6* need not
be of the form arcsin /K/N for some integer K, but can be any value. The solution to the
Amplitude Estimation problem in [3] is a widely used tool in quantum algorithm design, and
leads to quadratic speedups over classical algorithms for a variety of statistical problems.

1.3 Simpler and nonadaptive?

Although the Approximate Counting algorithm from [3] has optimal query complexity, there
has recently been a lot of interest in simplifying it [10, 9, 1]. In particular the latter two of
these just-cited works strove to replace it with an algorithm that only uses Grover iterations,
both for analytic simplicity and practical simplicity (the controlled amplifications of [3] being
particularly problematic for NISQ devices). The work of Aaronson and Rall [1] provably
succeeds at this challenge, providing an algorithm that solves the Approximate Counting
problem using O(y/N/K / €) Grover iterations (hence queries). Briefly, the Aaronson-Rall
algorithm has a first phase (somewhat similar to the algorithm in [2]) that performs a
geometrically increasing sequence of Grover iterations until K can be estimated up to a
constant factor of 1.1 (see Theorem 9 herein). This requires O(/N/K) iterations. In the
second phase, their algorithm performs a kind of binary search to improve the approximation
factor to 1 + €; each step of the binary search requires additional Grover iterations, totalling
O(y/N/K /¢€) in the end.

From the point of view of practicality and simplicity, there is a downside to the Aaronson—
Rall algorithm, which is that its Grover iterations are adaptive (especially in the second
phase of the algorithm). In other words, the steps of the algorithm involve many repetitions
of the following: performing some Grover iterations, measuring, and doing some classical
computation to decide how many Grover iterations to do in the next step. It has been
argued that this repeated switching between quantum and classical computation could be
undesirable in practice. Indeed, the final open question in [1] concerned the optimal query
complexity of Approximate Counting using nonadaptive Grover iterations. This version of
the problem was also stressed and studied in [9], but without any provable guarantees being
provided.

Other recent developments in the area of approximate counting include [5, 7], which
propose variants of the algorithm from [1] but with improved constant factors. As well,
the work [4] proves a lower bound for the query complexity of approximate counting in the
parallel case.

1.4 Our results

We investigate the problem of Approximate Counting using only nonadaptive Grover iterations.
Note that for this version of the problem, there is no hope of obtaining the query complexity
O(\/N/K /€) that improves as a function of K. To see this, suppose even that € is fixed
to 1. If the algorithm is to achieve query complexity O(y/N/K), then it must be able to
achieve O(1) query complexity when K = ©(N). Since it is nonadaptive, this means it must
always make only O(1) queries. But this is impossible, as even for adaptive algorithms it is
known that Q(v/N) queries are required in the case of K = O(1), € = 1.
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In other words, with nonadaptive algorithms we can only hope to achieve the optimal
query complexity that is independent of K, namely O(y/N/¢). In this work we indeed show
this is achievable. Our main theorem is:

» Theorem 2. There is an algorithm for quantum Approzimate Counting that uses only
nonadaptive Grover iterations, and that has a query complezity of O(\/N/¢) (and minimal
additional computational overhead).

We also briefly sketch an extension of our algorithm achieving improved query complexity
in the setting where we are allowed multiple rounds of nonadaptive Grover iterations (as
opposed to just one).

2 Preliminaries

We will assume throughout that K < 2720N.3 This without loss of generality since we may
artificially replace N by 22°N and extend f to f: [22°N] — {0,1}, with f(x) =0 for x > N.
We fix

0* = arcsin/ K/N,

sometimes called the “Grover angle”. Recall that a query algorithm based on Grover iterations
has the following property: At the cost of ¢ € N “queries”, it can “flip a coin with bias
sin?((2¢ + 1)6*)”. By repeating this ¢ times, it can obtain ¢ independent flips of this coin.
It is statistically sufficient to retain only the average of the coin flip outcomes, which is a
random variable distributed as 1Bin(t,sin?((2¢ + 1)6*)), where “Bin” denotes a binomial
distribution. These observations lead to the following:

» Notation 3. For real » > 1 we write | 7] for the largest odd integer not exceeding r, and
we write p(r) = sin?(|r]6*).

» Definition 4. A Grover schedule consists of two sequences: R = (r1,...,mm) (each real
ri > 1) and T = (t1,...,tm) (each t; € NT). Performing this Grover schedule refers to
obtaining independent random variables Py, ..., D,,, where p; is distributed as - Bin(t;,p(r;)).

A nonadaptive Grover iteration algorithm for Approximate Counting is simply an algo-
rithm that performs one fixed Grover schedule, and produces its final estimate K by classically
post-processing the results. One can more generally study algorithms with “s rounds of
nonadaptivity”; this simply means that s Grover schedules are used, but they may be chosen
adaptively.

» Fact 5. Performing the Grover schedule R, T uses at most %ZZ rit; queries.

2.1 On how well we need to approximate 6*

We will use the following elementary numerical fact:

1
» Lemma 6. Suppose for real 0 < k, k' < N and n <1 that arcsin \/k' /N X7 arcsin v k/N.

Then k' 'K k.

3 Our work would be fine with, say, K < N/8, but we put 272° so as to be able to cite [1] as a black box.
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This lemma helps us show that approximating 8* well is equivalent to approximating K well:

1+€/6
» Proposition 7. Suppose 0 z/ 0*. If &’ € R satisfies § = arcsin \/k’'/N, and K' is the

1+
nearest integer to k', then K’ ~ K.

) 1+¢/6 1+4e/2
Proof. Since # = 6*, Lemma 6 tells us that x° =~ K, and hence
W~ K| < (€/2)K. 1)

We also have |’ — K'| < 1/2, and hence |K' — K| < (¢/2)K + 1/2. But we can assume
(e/2)K > 1/2, as otherwise Inequality (1) implies |x" — K| < 1/2 and hence K’ = K. Thus

K" — K| < (¢/2)K + (¢/2)K = €K ie., K’ % K. <

1.11
» Lemma 8. Given some 0' '~ 0*, estimating 0* to a factor of 1+1/(2N sin? ') is sufficient
to estimate 0* to a factor of 1+ €/6.

Proof. From Lemma 6, 1 +1/(2Nsin?0’) < 1+ 1.33/(2K) < 1+ 1/K. The closest possible
values to K are K — 1 and K + 1; therefore, estimating K within a factor of 1 + 1/K is the
same as estimating K exactly. This is at least as good as estimating K to within a factor of
1+ ¢€/6. <

3 The nonadaptive algorithm

Our algorithm can conceptually be thought of as having two stages: the first stage estimates 6*
to a constant factor, and the second stage improves this estimate to the desired factor of
1 + . This two-stage approach is similar in flavor to the algorithms in [1, 2]. However we
note that, consistent with our nonadaptivity condition, the two stages in our algorithm can
be run in parallel.

For the first stage of our algorithm, we require the following result of Aaronson and
Rall [1], which estimates 6* up to a factor of 1.1, using O(v/N) nonadaptive queries. (In
fact, as Aaronson and Rall show, the obvious adaptive version of the algorithm incurs only

O(y/N/K) queries.)

» Theorem 9. Let R = (1, (12/11), (12/11)2,...,(12/11)™), where m = ©(log N) is minimal
with (12/11)™ > V/N. Let T consist of m copies of [10°1n(120/8)]. Perform the Grover
schedule R, T. (By Fact 5 this incurs O(v/N) queries.) Then except with a failure probability

of at most §/2, we can obtain 0 £ 0* by doing the following: take the minimal value of t
such that p, > 1/3, and set 6 = (5/8)(11/12)%.

The second stage of our algorithm uses the following critical lemma, which we will prove
in Section 4.

» Lemma 10. Given the parameters 0, €', and &', there is an algorithm using only nonadap-

tive Grover iterations that performs O(log(1/6")/(0'¢’)) queries, and outputs a result Oesy with

1.11 1+€'/6
the following guarantee: if 0’ =~ 0%, then Oy ~ g except with probability at most §/2.

In this section, we will show how to use Theorem 9 and Lemma 10 to prove Theorem 2.
We will now state our algorithm:

59:5
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Algorithm 1 Outline of the full algorithm.

1. Run the Aaronson—Rall algorithm from Theorem 9, allowing us to later compute 0.

2. For 0 = arcsin(y/1/N),1.001 arcsin y/1/N, (1.001)? arcsin \/1/N, ..., 1.1 arcsin(2720):
Perform the algorithm in Lemma 10 with the parameters 6’ = 0, ¢ = max(

and &' = §/2.
3. Classical Post-processing: Among all iterations in the for-loop, take the iteration with

1
€ SNsnZ g’ )’

the value of 6 that was closest to 6, and output the result of that iteration.

Each iteration of the for loop in Step 2 can be done in parallel (there are no computational
dependencies between the iterations), and Step 1 can also be done in parallel with Step 2.
Therefore, the algorithm uses only nonadaptive Grover iterations. Note also that we can
write the quantum parts of steps 1 and 2 as one fixed Grover schedule, with the classical
parts and step 3 forming the post-processing step; however, it will be more convenient in
this section to think about these as individual steps in a logical sequence.

1
» Proposition 11. Algorithm 1 returns a value Oesy such that Oeg < 0*, except with
probability at most §.

Proof. By Theorem 9, Step 1 returns an estimate 0 such that 6 = 0%, with a failure
probability of at most §/2 . The value of 6 (in Step 2) that is closest to 6 is at most a
factor of 1.001 away from 6 (note that 6 is at most 1.1 arcsin(272°) by our assumption that
6* < 2720). If Step 1 succeeded, this is at most a factor of 1.1 x 1.001 < 1.11 away from 6*.

’

6
By Lemma 10, the algorithm outputs an estimate fq¢; such that .y = 0%, with a failure

14¢€/6
probability of at most §/2. Lemma 8 then implies that O é/ 0*. Using Proposition 7

14+
(setting the parameter 6 = fq), we get an estimate Keg such that Keg ~ K. By the union
bound, the overall failure probability of the algorithm is at most 9. <

» Proposition 12. Algorithm 1 makes O(1/N/elog(1/9)) queries.

Proof. First, consider all iterations where 2N sin?(f) < 1/e. In these cases, the query
complexity given by Lemma 10 would be O(log(1/5)(N sin?(0))/0) = O(N6log(1/6)).

The query complexity associated with these iterations is a geometric series with a constant
common ratio of 1.01 where the largest term is O(y/N/elog(1/6)). Therefore the overall
query complexity due to these iterations is O(/N/elog(1/9)).

Now consider all iterations where 2N sin?(6) > 1/e. In these cases, the query complexity
is O(log(1/8)/(f¢)). This forms a geometrically decreasing series (with a constant common
ratio), where the first term is again O(y/N/elog(1/d)). The overall query complexity
contributed by these schedules is thus also O(1/N/elog(1/9)).

Therefore, the query complexity of Algorithm 1 is O(y/N/elog(1/6)), as claimed. <

Having proven Proposition 11 and Proposition 12, we have established our main result
Theorem 2 modulo the proof of Lemma 10, which will appear in the next section. Before
giving this, we briefly sketch how our algorithm can also be extended to the setting of being
allowed multiple rounds of nonadaptive Grover iterations. If we have two such rounds of
nonadaptivity, we can first run step 1 of our algorithm to get a constant-factor approximation,
and then based on its result run the algorithm in Lemma 10; this achieves a query complexity
of O(V/N + min(y/N/e, /N/K /¢)). This nearly matches the query complexity of the fully
adaptive case, but for the v/N term due to the first step. Given more rounds of nonadaptivity,
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we can reduce the cost of this first step by staging it over multiple initial rounds. One
can show that with O(log N) rounds of nonadaptivity, this will yield the optimal query
complexity corresponding to the fully adaptive case.

4 Proving Lemma 10

Our goal in this section will be to prove Lemma 10. Assume that we are given some ', €, and
d’. We will show a nonadaptive Grover iteration algorithm making O(log(1/0")/(0'€')) queries

1.11
with the property that if ¢ ~ 6*, then its output will be a factor-(1 + €’) approximation

of 6* (except with failure probability at most §’). For the remainder of the section, we will

1.11
assume that we are in the interesting case where ' ~ 6* (in the other cases, the algorithm

does not need to output a correct answer).

4.1 Proof idea

The algorithm for Lemma 10 is structured exactly as described in Definition 4 and Fact 5;
there is an initial nonadaptive quantum part with a fixed Grover schedule (that we will later
define), and a classical post-processing step at the end that uses the results of the quantum
part to estimate 6*.

Before stating the key ideas in the quantum part of our algorithm, we mention the
“Rotation Lemma” of Aaronson and Rall [1, Lem. 2]. The main idea in that lemma can be
roughly stated as follows: given that 6* lies in some range [fmin, Omin + A8], we can pick
an odd integer value of r (where r = O(1/(0 - AB))), such that rf.,, is close to 2wk and
7(Omin + A0) is close to 2wk + w/2. If 6 is close to Omin, p(r) will be nearly 0 (and if it is
close to Opin + A6, it will be nearly 1). Aaronson and Rall use this lemma to continually
shrink the possible range that 8* could lie in by a geometric factor at each iteration, until
the range is 1 £ €.

We will adopt a similar idea to find an efficient Grover schedule that can distinguish
any two candidate angles with high probability; we do this by relaxing the condition of one
angle being close to 27wk and the other being at distance 7/2 from it. Instead, we choose the
sequence R in our Grover schedule such that for any pair of values 61, and 65, there is some
r € R such that r6; and r6, differ by approximately 7/8, and are also “in the same quadrant”
(meaning the same interval [0, ), [3,7), [, 2%), [3F, 27) modulo 27). This relaxation allows
us to save on the total number of queries made by reusing the same value of r to distinguish
many pairs of candidate angles. Due to this, the nonadaptivity requirement does not make
the query complexity grow polynomially larger (whereas, for example, naively simulating the
search tree from [1] in a nonadaptive fashion would incur an extra 1/€' factor).

The classical post-processing involves running a “tournament” between all candidate
estimates of 6*, which outputs the winning value as the estimate. This post-processing step
can be implemented efficiently in O(log(1/€’)/€¢') classical time.

4.2 Some arithmetic lemmas

We now define some useful sequences and prove a couple of arithmetic lemmas about them.

» Definition 13. Define the sequence v by ugp = 1, uy = 1.01, ..., ur, = 1.01% where
L =0(og(1/(0'€"))) is minimal with ug, > 1.27/(0'¢").

59:7
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» Lemma 14. Suppose we are given 6y and 01 such that 6y < 61, 0 = o', 6, = 0, and
0o 1+;26‘1 0,. Write n = 01 — 0y. Then there exists some 0 < i < L such that u;n 1&1 %.

Proof. We know that uon =n < 6; < 1.1 x 0.0001 < §. We also have urn > 1.2mn/(0'¢') >
1.2mn/(1.16p¢') > 1.27/(1.1 - 6.1) > & where we used 6y H_;Gl 01 in the second-to-last

inequality. The lemma now follows from the geometric growth of the w;’s with ratio 1.01. In
particular, i = {logl_m(%)J works. <

For the u; given by Lemma 14, we have u;0; — u;0p ~ §. This seems promising, in that
the “coin probabilities” associated to these angles, namely sin?(u;6;) and sin?(u;6), seem as
though they should be far apart. Unfortunately, something annoying could occur; it could be
that these angles are, say, 100m + {5, in which case the coin probabilities would be identical.
As mentioned in Section 4.1, what we would really like is to have the two angles be far apart

but also in the same quadrant. To achieve this, we will define a new sequence.

» Definition 15. For each 0 < i < L, define a;o = 0, a;1 = 13557, ai2 = 1.01 - 155,
ais=1.012- 155, ..., a;c41 = 1.019 - 15, where C = [2log, ¢;(1.2)] is a constant. Also

define s; j = u; + a; ;.
» Lemma 16. In the setting of Lemma 14, there exists some 0 < j < C + 1 such that

1.5
~ T
Si gl = g

and such that s; ;0o and s; ;601 are in the same quadrant.

Proof. We first apply Lemma 14 and obtain

u;n ~ % (2)

Now if u;0p and w;0; are already in the same quadrant then we can take 5 = 0 (implying
54,; = u;) and we are done. Otherwise, the plan will be to find j > 0 with a;0p ~ 7, thus
shifting them to s; j0p and s; ;6; that still differ by roughly £ but which now must be in the
same quadrant.

To find the required j, observe that on one hand, a0y = (7/(4.8¢")) -6y < 1.117/4.8 < T.
On the other hand, a; c1100 > 1.2% - (7/(4.8¢')) - 6o > (1.2/1.1) - w/4 > %. By the geometric
growth of the a; ;’s with ratio 1.01, we conclude that there exists some 1 < j < /; achieving

1.05
awﬂo ~ % (3)

We may now make several deductions. First,

Oo % 01,00 % 0, = a;;00 = ai;00 = aim<.22-a;;0) < .22-1.05% < 24T,

Combining this with Inequality (2) we conclude
1 m =« ™ 1.5 ™

Thus we started with u;0p and u;0; differing by ¥ (up to factor 1.01) but in different
quadrants; by passing to s; ;0 and s; 01, we have offset u;0y by 7 (up to factor 1.05,
Inequality (3)) and the two angles still differ by around % (up to factor 1.5, Inequality (4)).
Thus s; ;0 and s; ;601 are in the same quadrant and the proof is complete. <
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4.3 The algorithm

We can now describe our “second stage” algorithm, which simply runs the Grover schedule
G defined as follows.

» Definition 17. The Grover schedule G comprises the sequence R = (s; j)i=0...L, j=0...C+1
and T = ([Alogy(1/(0"'0'€'w;))1)i=0...1, j=0...c4+1. Here A is a universal constant to be chosen
later.

Note that the T; ; values we use are exactly the number of coin flips used in the second
stage of the algorithm in [1]. Like in their algorithm, this choice of values allows us to avoid
stray log(1/¢) or loglog(1/¢) factors in the overall query complexity.

» Proposition 18. Performing the Grover schedule G takes at most O(log(1/6")/(0'€"))
queries.

Proof. Using Fact 5, the query complexity of performing G is ZiL:O log(1/(8'0"€¢" - 1.01%))1.01¢
(up to constant factors). This is log(1/8) Y~ 1.017 + 3% log(1/(8'¢ - 1.01%))1.01%. Noting
that 1.01% = O(1/(¢'€")), the first term is clearly O(log(1/6)/(6'€¢")) and the second term, up
to a constant factors, is Zf:O(L —4)1.01" = O(1.01%) = O(1/(¢'€")). Therefore, the overall
query complexity is O(log(1/0)/(0'€¢')) as desired. <

» Remark. The above calculation mirrors the one done for stage 2 of the adaptive algorithm
in [1]; this is expected because both algorithms use the same number of “coin flips” per coin
(T} ; values), as mentioned above.

It now remains for us to show how to approximate 6* (with high probability) using the
data collected from this Grover schedule.

4.4 Completing the algorithm

We first prove a lemma showing that we can distinguish between any pair of angles (that are
not already sufficiently close to each other) by using the ideas developed in Lemma 14 and
Lemma 19.

» Lemma 19. There is an O(1)-time classical deterministic algorithm that, given
11 11 14¢/6.1
Oy =~ 0,0, = 0, such that 6y % 0,

the data collected by the Grover schedule G,
outputs either “reject 6y ” or “reject 01", Except with failure probability at most c6'd’e’ /|61 — 6|
(where ¢ > 0 is a constant to be chosen later), the following is true:

14.001
Forb=0,1, if 0% R 0y, then the algorithm does not output “reject 6"

Proof. The algorithm computes the (¢, j) pair promised by Lemma 16, such that s; ;6p and

15
s;,;01 are in the same quadrant and such that |s; ;61 — s; ;60| = . Letting g, = sin®(s; ;6;)

for b= 0,1, it follows from the assumptions in the preceding sentence that |qo — ¢1| > .04.

The algorithm may now select a threshold ¢’ € [.01,.99] such that (without loss of generality)
go < ¢ — .01 and ¢; > ¢ + .01.

The algorithm will use just the coin flips from the s; ; part of the schedule; these coin
flips have bias p(s; ;) = sin?(|s;;]0*). More precisely, the algorithm will output “reject

o~ . o~ : 1+.001
00" if p; ; > ¢’ and “reject 6, if p, ; < ¢’. We need to show that if 6~ “ o then the

algorithm outputs “reject 6y” with probability at most c6'8’¢’ /|01 — 0y|. (The case when

14.001e .
6* =~ 6 is analogous.)
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Now if 0* T~ '© 0o, then [s; ,]6* R Isi,j]60. It follows that

”_Si’jﬂe* — ”_Si,j_ueo S .001¢ - H_Si’jjle() S .00181"]‘ . 690.
But we know that

1.
5~ sijh — si 00| = si 3161 — 00| > si5 - (€/6.1)0g,

%28

14€/6.1
the last inequality because 8y %  6;. Combining the above two deductions yields

Msmw* - [Lsi,jjjeol <.001-15-6.1-Z < 004,

Moreover, | s; ;6o and s; ;68 differ by at most 26y < .0002 < .001. Thus we finally conclude

Lsii 0" — %90’ < 005 —» ’p(si,j) _ qo‘ <005 = p(si;) <dq —.005

(the first implication using that sin? is 1-Lipschitz). Then, using a Chernoff bound, we have
that p; ; > ¢’ with probability at most ¢§'¢’¢'u;, where c is a constant that depends on A

1.01
(as A increases, ¢ decreases). From Lemma 14, we know that u; ~ 7/(8]01 — 6y|). Then,
assuming the constant A is chosen large enough as a function of ¢, we indeed have that
P;; > ¢ with probability at most c6'd"¢’/|0; — Op]. <

4.4.1 Description of the post-processing algorithm

We have developed the necessary tools to describe and justify the classical post-processing
algorithm.

Fix values 0; = 6'(1+ .001€')! for —V < i <V, where V = O(1/¢€') is a minimal integer
such that (1 +.001€¢')V > 1.11. We will refer to the 6;’s as “nodes”. We may also assume
that the number of nodes is a power of 2 for convenience (while there are 2|V| + 1 nodes, we
can always pad these actual nodes with some dummy nodes to reach the nearest power of 2).

The main idea is to repeatedly use Lemma 19 to run a “tournament” amongst all nodes.
The tournament is structured as a series of “rounds”. In a given round, suppose we start off
with n nodes. Sort the nodes in order of the angles they correspond to. Now, pair up node 1
with node n/2 + 1, node 2 with node n/2 4+ 2, and so on, until node n/2 is paired up with
node n. For each pair of nodes, use Lemma 19 to choose a winner to go to the next round.
Note that it is possible that two nodes that are matched in the tournament do not satisfy the
pre-condition of Lemma 19 because they are within a factor of (1 + €/6.1) of each other — we
call these “void” match-ups. We will call the part of the tournament we have described so far
the first phase — when we see a void match-up, we stop this first phase and enter the second
phase. (Note that if we never see any void match-ups and there is only one node left, we do
not need the second phase and can directly output the remaining node as our estimate.)

When the first phase ends, take all remaining nodes and enter the second phase. In this
phase, match up every pair of remaining nodes, and for every pair that does not form a void
match-up, eliminate one of the nodes using Lemma 19. At the end of this, output any one
of the remaining un-eliminated nodes (if there are none, then the program can output an
arbitrary node - this is a failure condition and we will show that, with high probability, such
failure conditions will not happen).

In our algorithm, we have arranged for 6_y < 68* < 6y, and hence there exists a node

0, such that 6= = 6*. We will proceed to bound the overall failure probability of the

algorithm by the probability that this node loses any match-up it is a part of.
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» Lemma 20. If 0;« never loses any match-up it is a part of, then the tournament outputs
14¢/6

an estimate Oust such that Oy ~ 0*.

Proof. Suppose that ;« never loses any match-up it is a part of. If the tournament ends in
the first phase itself, then the algorithm will output 6;-, which is correct. If the tournament
ends in the second phase, then the only possible other nodes that we could output are the
ones that 6;+ did not play, which can be at most a factor of 1+¢€/6.1 away from it. Therefore,
these nodes are also at most a factor of (1 + 0.001¢)(1 4 €/6.1) <1+ ¢/6 away from 6*. <

» Lemma 21. The probability that 0;- loses any match-up in the first phase of the tournament
can be upper-bounded by cd’ times a constant factor (where c is the constant from Lemma 19).

Proof. Consider an arbitrary round in the first phase of the tournament, where we have
27 nodes remaining for some j. By how we chose the match-ups, we know that every two
angles that are matched up in that round must be at least a factor of (1 + 0.001¢')*
apart. This implies that their absolute difference is at least (6’/1.1) - (1 +0.001¢)2 " —1).
Then, by Lemma 19, the failure probability of any match-up in that round is at most
1.1c6’¢ /(1 + 0.001€)2 " —1).

Suppose the tournament begins with n nodes. We can use the union bound to upper-bound
the probability that 6;- loses in any of the at most log, n rounds by

log, n log,
1.1cd'€ 1.1cd'€
< < 2200¢6’ <
;(4—00016 2T —g 0.001e2i—1 =~

» Lemma 22. The probability that 0;« loses any match-up in the second phase of the
tournament can be upper-bounded by cd' times a constant factor (where c is the constant
from Lemma 19).

Proof. If the algorithm enters the second phase, this means that there is at least one void
match-up. Let the number of nodes at this point be n. Then all n/2 nodes between the pair
of nodes involved in the void match-up must be within a factor of (1 + €//6.1) of the first
node in the void pair. Therefore, there are at most 21log; o go1c (1 4+ €'/6.1) < 12200 nodes
in total.

Every node that 6;- plays in a match-up is at least a factor of 1+¢'/6 away from it, which

means that the absolute difference in value between the nodes is at least (0'/1.1) - (¢//6).

By Lemma 19, this implies that the failure probability is at most 6.6¢d’. Since there are at
most 12200 such match-ups, the overall failure probability is at most 81000c¢d’ by the union
bound. <

We can now prove Lemma 10, which we restate below.

» Lemma 10. Given the parameters 0, ¢, and ¢’, there is a nonadaptive algorithm that
performs O(log(1/6")/(0'€')) queries, and outputs a result 6o with the following guarantee:

ooy L1 14¢€'/6 . .
if ¢/ ~ 0% then O,y ~ 6* except with probability at most §/2.

Proof. The algorithm achieving this lemma involves running the Grover schedule G and

then post-processing using the tournament algorithm which we described. By Lemma 20,

the failure probability of the algorithm is bounded by the probability that 6;« loses. This is
bounded by the probability that it loses in the first phase or the second phase; by Lemma 21

and Lemma 22, this is at most a constant times c¢d’. By choosing ¢ to be sufficiently small,

we can successfully make this at most §/2. |
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