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Abstract
The regular spanners (characterised by vset-automata) are closed under the algebraic operations of
union, join and projection, and have desirable algorithmic properties. The core spanners (introduced
by Fagin, Kimelfeld, Reiss, and Vansummeren (PODS 2013, JACM 2015) as a formalisation of the
core functionality of the query language AQL used in IBM’s SystemT) additionally need string
equality selections and it has been shown by Freydenberger and Holldack (ICDT 2016, Theory
of Computing Systems 2018) that this leads to high complexity and even undecidability of the
typical problems in static analysis and query evaluation. We propose an alternative approach to
core spanners: by incorporating the string-equality selections directly into the regular language
that represents the underlying regular spanner (instead of treating it as an algebraic operation on
the table extracted by the regular spanner), we obtain a fragment of core spanners that, while
having slightly weaker expressive power than the full class of core spanners, arguably still covers the
intuitive applications of string equality selections for information extraction and has much better
upper complexity bounds of the typical problems in static analysis and query evaluation.
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1 Introduction

The information extraction framework of document spanners has been introduced by Fagin,
Kimelfeld, Reiss, and Vansummeren [4] as a formalisation of the query language AQL, which
is used in IBM’s information extraction engine SystemT. A document spanner performs
information extraction by mapping a document, formalised as a word w over a finite alphabet
Σ, to a relation over so-called spans of w, which are intervals [i, j⟩ with 0 ⩽ i < j ⩽ |w| + 1.
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4:2 A Purely Regular Approach to Non-Regular Core Spanners

The document spanners (or simply spanners, for short) introduced in [4] follow a two-stage
approach: Primitive spanners extract relations directly from the input document, which
are then further manipulated by using some relational algebra. As primitive spanners, [4]
introduces vset-automata and regex-formulas, which are variants of nondeterministic finite
automata and regular expressions, respectively, that can use meta-symbols ▷x and ◁x, where
x is a variable from a set X of variables, in order to bind those variables to start and end
positions of spans, therefore extracting an |X |-ary span-relation, or a table with columns
labelled by the variables X . For example, α = ( ▷x (a ∨ b)∗◁x) · ( ▷y (a∗ ∨ b∗)◁y)c∗ is a regex-
formula and it describes a spanner JαK by considering for a given word w all possibilities of
how w can be generated by α and for each such generation of w, the variables x and y extract
the spans that correspond to those subwords of w that are generated by the subexpressions

▷x (a ∨ b)∗◁x and ▷y (a∗ ∨ b∗)◁y, respectively. For example, on input w = abaac, we have
JαK(w) = {([1, 3⟩, [3, 5⟩), ([1, 4⟩, [4, 5⟩), ([1, 5⟩, [5, 5⟩)}, since α can generate ▷x ab ◁x ▷y aa ◁y c,

▷x aba ◁x ▷y a ◁y c and ▷x abaa ◁x ▷y ◁y c. The vset-automata follow the same principle, but
take the form of nondeterministic finite automata. Since these primitive spanners are based
on formal language description mechanisms, they are also called regular spanners and, for
the sake of presentation, we denote this class of regular spanners by reg-S for the remainder
of this introduction (there are different ways of characterising regular spanners and also
different semantics (see [12, 4]); these aspects shall be discussed in more detail below).

The considered algebraic operations are union ∪, natural join ▷◁, projection π (with the
obvious meaning) and string-equality selection ς=

Z , which is a unary operator parameterised
by a set Z ⊆ X of variables, and it selects exactly those rows of the table for which all spans
of columns Z refer to (potentially different occurrences of) the same subwords of w.

The core spanners (capturing the core of SystemT’s query language AQL) introduced
in [4] are defined as reg-S{∪,▷◁,π,ς=}, i. e., the closure of regular spanners under the operations
∪, ▷◁, π and ς= (these relational operations are interpreted as operations on spanners in
the natural way). A central result of [4] is that the operations ∪, ▷◁ and π can be directly
incorporated into the regular spanners, i. e., reg-S{∪,▷◁,π} = reg-S. This is due to the fact
that regular spanners are represented by finite automata and therefore the closure properties
for regular languages carry over to regular spanners by similar automaton constructions.
This also holds in the case of so-called schemaless semantics (see [12]). However, as soon as
we also consider the operator of string-equality selection, the picture changes considerably.

In terms of expressive power, it can be easily seen that not all core spanners are regular
spanners, simply because for all regular spanners S the language {w ∈ Σ∗ | S(w) ̸= ∅}
is regular, which is not necessarily the case for core spanners. As shown in [4], we can
nevertheless represent any core spanner S ∈ reg-S{∪,▷◁,π,ς=} in the form πYς=

Z1
ς=
Z2

. . . ς=
Zk

(S′)
for a regular spanner S′ (this is called the core-simplification lemma in [4]).

Regular spanners have excellent algorithmic properties: enumerating S(w) can be done
with linear preprocessing and constant delay, even if the spanner is given as vset-automaton
(see [1, 6]), while spanner containment or inclusion can be decided efficiently if the spanner
is represented by a certain deterministic vset-automaton (see [3]). However, in terms of
complexity, we have to pay a substantial price for adding string-equality selections to regular
spanners. It has been shown in [8] that for core spanners the typical problems of query
evaluation and static analysis are NP- or PSpace-hard, or even undecidable (see Table 1).

The results from [8] identify features that are, from an intuitive point of view, sources of
complexity for core spanners. Thus, the question arises whether tractability can be achieved
by restricting core spanners respectively. We shall illustrate this with some examples.
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Table 1 Comparison of decision problems of regular spanners, core spanners and refl-spanners.
A formal definition of the problems can be found in Section 5. In the case of regular spanners and
refl-spanners, the input spanner is represented by an NFA M . The abbreviation “str. ref.” means
strongly reference extracting, a restriction for refl-spanners to be formally defined in Section 5. The
authors are not aware of a (non-trivial) upper bound for ModelChecking for regular spanners (note
that since regular spanners are covered by refl-spanners, the upper bound for refl-spanners applies).

Problem Regular sp. Refl-sp. Core sp. [8]
Evaluation ModelChecking ? poly(|M |)(|w| + (2|X |)!) [T. 5.1] NP-c
problems NonEmptiness O(|M ||w|) NP-c [T. 5.2] NP-h
Static Satisfiability O(|M |) O(|M |) [T. 5.3] PSpace-c
analysis Containment PSpace-c [12] ExpSpace (for str. ref.) [T. 5.10] undec.
problems Equivalence PSpace-c [12] ExpSpace (for str. ref.) [T. 5.10] undec.

Hierarchicality O(|M ||X |3) O(|M ||X |3) [T. 5.3] PSpace-c

Consider a regex formula α = ▷x1 Σ∗ ◁x1 ▷x2 Σ∗ ◁x2 . . . ▷xn Σ∗◁xn . Then checking, for some
Z1, Z2, . . . , Zk ⊆ {x1, x2, . . . , xn}, whether the empty tuple is in (π∅ς=

Z1
ς=
Z2

. . . ς=
Zk

(JαK))(w),
is identical to checking whether w can be factorised into n factors such that for each Zi all
factors that correspond to the variables in Zi are the same. This is the pattern matching
problem with variables (or the membership problem for pattern languages), a well-known
NP-complete problem (see, e. g., [11]). However, checking for a (non-empty) span-tuple t

whether it is in (ς=
Z1

ς=
Z2

. . . ς=
Zk

(JαK))(w) can be easily done in polynomial time, since the
task of checking the existence of a suitable factorisation boils down to the task of evaluating
a factorisation that is implicitly given by t. Hence, instead of blaming the string-equality
selections for intractability, we could as well blame the projection operator. Can we achieve
tractability by restricting projections instead of string-equality selections?

Another feature that yields intractability is that we can use string-equality selections in
order to concisely express the intersection non-emptiness of regular languages (a well-known
PSpace-complete problem). For example, let r1, r2, . . . , rn be some regular expressions, and let
α = ▷x1 r1 ◁x1 ▷x2 r2 ◁x2 . . . ▷xn rn◁xn . Then there is a word w with (ς=

{x1,x2,...,xn}(JαK))(w) ̸= ∅
if and only if

⋂n
i=1 L(ri) ̸= ∅. So string-equality selections do not only check whether the

same subword has several occurrences, but also, as a “side-effect”, check membership of this
repeated subword in the intersection of several regular languages. Can we achieve tractability
by somehow limiting the power of string-equality selections to the former task?

A third observation is that by using string-equality selections on overlapping spans, we
can use core spanners to express rather complex word-combinatorial properties. In fact,
we can even express word equations as core spanners (see [8, Proposition 3.7, Example 3.8,
Theorem 3.13] for details). Can we achieve tractability by requiring all variables that are
subject to string-equality selections to extract only pairwise non-overlapping spans?

1.1 Our Contribution
We introduce refl-spanners (based on regular ref-languages), a new formalism for spanners
that properly extends regular spanners, describes a large class of core spanners, and has better
upper complexity bounds than core spanners. Moreover, the formalism is purely based on
regular language description mechanisms. The main idea is a paradigm shift in the two-stage
approach of core spanners: instead of extracting a span-relation with a regular spanner and
then applying string-equality selections on it, we handle string-equality selections directly
with the finite automaton (or regular expression) that describes the regular spanner. However,

ICDT 2021



4:4 A Purely Regular Approach to Non-Regular Core Spanners

checking the equality of unbounded factors in strings is a task that, in most formalisms,
can be considered highly “non-regular” (the well-known copy-language {ww | w ∈ Σ∗} is a
textbook example for demonstrating the limits of regular languages in this regard). We deal
with this obstacle by representing the factors that are subject to string-equality selections as
variables in the regular language. For example, while L = {anban | n ⩾ 0} is non-regular, the
language L′ = { ▷x an ◁x bx | n ⩾ 0} can be interpreted as a regular description of L by means
of meta-symbols ▷x and ◁x to capture a factor, and a meta-symbol x to copy or reference the
captured factor. In particular, all words of L can be easily obtained from the words of L′ by
simply replacing the occurrence of x with the factor it refers to. As long as core spanners
use string equality selections in a not too complicated way, this simple formalism seems also
to be suited for describing core spanners, e. g., the core spanner π{x,y}ς=

{x,x′}ς=
{y,y′}(JαK) with

α = ▷x a∗b ▷y c◁x b∗ ▷x′
a∗bc◁x′

◁y ▷y′
cb∗a∗bc◁y′ could be represented as J ▷x a∗b ▷y c◁x b∗x ◁y yK.

The class of refl-spanners can now informally be described as the class of all spanners that
can be represented by a regular language over the alphabet Σ ∪ X ∪ { ▷x , ◁x | x ∈ X } that has
the additional property that the meta-symbols X ∪ { ▷x , ◁x | x ∈ X } are “well-behaved” in the
sense that each word describes a valid span-tuple (one of our main conceptional contributions
is to formalise this idea in a sound way).

The refl-spanner formalism automatically avoids exactly the features of core spanners that
we claimed above to be sources of complexity. More precisely, refl-spanners cannot project
out variables, which means that they cannot describe the task of checking the existence of
some complicated factorisation. Furthermore, it can be easily seen that in the refl-spanner
formalism, we cannot describe intersection non-emptiness of regular languages in a concise
way, as is possible by core spanners. Finally, we can only have overlaps with respect to the
spans captured by ▷x . . . ◁x, but all references x represent pairwise non-overlapping factors,
which immediately shows that we cannot express word equations as core spanners can. This
indicates that refl-spanners are restricted in terms of expressive power, but it also gives hope
that for refl-spanners we can achieve better upper complexity bounds of the typical decision
problems compared to core spanners, and, in fact, this is the case (see Table 1).

It is obvious that not all core spanners can be represented as refl-spanners, but we can
nevertheless show that a surprisingly large class of core spanners can be handled by the refl-
spanner formalism. Recall that the core simplification lemma from [4] states that in every core
spanner S ∈ reg-S{∪,π,▷◁,ς=}, we can “push” all applications of ∪ and ▷◁ into the automaton
that represents the regular spanner, leaving us with an expression πYς=

Z1
ς=
Z2

. . . ς=
Zk

(M) for
an automaton M that represents a regular spanner. We can show that if the string-equality
selections ς=

Z1
ς=
Z2

. . . ς=
Zk

apply to a set of variables that never capture overlapping spans,
then we can further “push” even all string-equality selections into M , turning it into a
representation of a refl-spanner that “almost” describes S: in order to get S, we only have to
merge certain columns into a single one by creating the fusion of the corresponding spans.

1.2 Related Work
Spanners have recently received a lot of attention [4, 9, 15, 1, 12, 6, 16, 7, 8, 10, 13]. However,
as it seems, most of the recent progress on document spanners concerns regular spanners.
For example, it has recently been shown that results of regular spanners can be enumerated
with linear preprocessing and constant delay [1, 6], the paper [12] is concerned with different
semantics of regular spanners and their expressive power, and [15] investigates the evaluation
of algebraic expressions over regular spanners.

Papers that are concerned with string-equality selection are [8] in which many negative
results for core spanner evaluation are shown, [7] which, by presenting a logic that exactly
covers core spanners, answers question on the expressive power of core spanners, [16] that
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shows that datalog over regular spanners covers the whole class of core spanners, and [9]
which investigates conjunctive queries on top of regular spanners and, among mostly negative
results, also contains the positive result that such queries with equality-selections can be
evaluated efficiently if the number of string equalities is bounded by a constant. The
paper [10] investigates the dynamic descriptive complexity of regular spanners and core
spanners. While all these papers contribute deep insights with respect to document spanners,
positive algorithmic results for the original core spanners from [4] seem scarce and the huge
gap in terms of tractability between regular and core spanners seems insufficiently bridged
by tractable fragments of core spanners.

A rather recent paper that also deals with non-regular document spanners is [14]. However,
the non-regular aspect of [14] does not consist in string-equality selections, but rather that
spanners are represented by context-free language descriptors (in particular grammars)
instead of regular ones.

1.3 Organisation

The rest of the paper is structured as follows. Section 2 fixes the basic notation concerning
spanners and lifts the core-simplification lemma of [4] to the schemaless case. In Section 3,
we develop a simple declarative approach to spanners by establishing a natural one-to-one
correspondence between spanners and so-called subword-marked languages. In Section 4
we extend the concept of subword-marked languages in order to describe spanners with
string-equality selections which we call refl-spanners. Section 5 is devoted to the complexity
of evaluation and static analysis problems for refl-spanners. Section 6 studies the expressive
power of refl-spanners. We conclude the paper in Section 7. Due to space constraints, most
proof details are omitted, although we give proof sketches for some results; detailed proofs
can be found in the preliminary full version of this paper [18].

2 Preliminaries

Let N = {1, 2, 3, . . .} and [n] = {1, 2, . . . , n} for n ∈ N. For a (partial) mapping f : X → Y ,
we write f(x) =⊥ for some x ∈ X to denote that f(x) is not defined; we also set dom(f) =
{x | f(x) ̸=⊥}. By P(A) we denote the power set of a set A, and A+ denotes the set of
non-empty words over A, and A∗ = A+ ∪{ε}, where ε is the empty word. For a word w ∈ A∗,
|w| denotes its length (in particular, | ε | = 0), and for every b ∈ A, |w|b denotes the number
of occurrences of b in w. Let A and B be alphabets with B ⊆ A, and let w ∈ A∗. Then
eB : A → A∪{ε} is a mapping with eB(b) = ε if b ∈ B and eB(b) = b if b ∈ A\B; we also use
eB to denote the natural extension of eB to the morphism A∗ → A∗. Technically, eB depends
on the alphabet A, but whenever we use eB(w) we always assume that eB : A → A ∪ {ε} for
some alphabet A with w ∈ A∗.

2.1 Regular Language Descriptors

For an alphabet Σ, the set REΣ of regular expressions (over Σ) is defined as usual: every
a ∈ Σ ∪ {ε} is in REΣ with L(a) = {a}, and, for r, s ∈ REΣ, (r · s), (r ∨ s), (r)+ ∈ REΣ with
L((r · s)) = L(r) · L(s), L((r ∨ s)) = L(r) ∪ L(s), L((r)+) = (L(r))+. For r ∈ REΣ, we
use r∗ as a shorthand form for (r)+ ∨ ε, and we usually omit the operator “·”, i. e., we use
juxtaposition. For the sake of readability, we often omit parentheses, if this does not cause
ambiguities.

ICDT 2021



4:6 A Purely Regular Approach to Non-Regular Core Spanners

A nondeterministic finite automaton (NFA for short) is a tuple M = (Q, Σ, δ, q0, F ) with
a set Q of states, a finite alphabet Σ, a start state q0, a set F of accepting states and a
transition function δ : Q×(Σ∪{ε}) → P(Q). We also interpret NFA as directed, edge-labelled
graphs in the obvious way. A word w ∈ Σ∗ is accepted by M if there is a path from q0
to some qf ∈ F that is labelled by w; L(M) is the accepted language, i. e., the set of all
accepted words. The size |M | of an NFA is measured in |Q| + |δ|. However, we will mostly
consider NFA with constant out-degree, which means that |M | = O(|Q|). For a language
descriptor D (e. g., an NFA or a regular expression), we denote by L(D) the language defined
by D. The class of languages described by NFA or regular expressions is the class of regular
languages, denoted by reg-L.

2.2 Spans and Spanners
For a word w ∈ Σ∗ and for every i, j ∈ [|w|+1] with i ⩽ j, [i, j⟩ is a span of w and its
value, denoted by w[i, j⟩, is the substring of w from symbol i to symbol j−1. In particular,
w[i, i⟩ = ε (this is called empty span) and w[1, |w|+1⟩ = w. By Spans(w), we denote the set of
spans of w, and by Spans we denote the set of spans for any word (elements from Spans shall
simply be called spans). A span [i, j⟩ can also be interpreted as the set {i, i+1, . . . , j−1} and
therefore we can use set-theoretical notions for spans. Two spans s = [i, j⟩ and s′ = [i′, j′⟩
are equal if s = s′, they are disjoint if j ⩽ i′ or j′ ⩽ i and they are quasi-disjoint if they
are equal or disjoint. Note that s and s′ being disjoint is sufficient, but not necessary for
s ∩ s′ = ∅, e. g., [3, 6⟩ and [5, 5⟩ are not disjoint, but [3, 6⟩ ∩ [5, 5⟩ = ∅.

For a finite set of variables X , an (X , w)-tuple (also simply called span-tuple) is a partial
function X → Spans(w), and a (X , w)-relation is a set of (X , w)-tuples. For simplicity, we
usually denote (X , w)-tuples in tuple-notation, for which we assume an order on X and use the
symbol “⊥” for undefined variables, e. g., ([1, 5⟩, ⊥, [5, 7⟩) describes a ({x1, x2, x3}, w)-tuple
that maps x1 to [1, 5⟩, x3 to [5, 7⟩, and is undefined for x2.

An (X , w)-tuple t is functional if it is a total function, t is hierarchical if, for every
x, y ∈ dom(t), t(x) ⊆ t(y) or t(y) ⊆ t(x) or t(x) ∩ t(y) = ∅, and t is quasi-disjoint if, for every
x, y ∈ dom(t), t(x) and t(y) are quasi-disjoint. An (X , w)-relation is functional, hierarchical
or quasi-disjoint, if all its elements are functional, hierarchical or quasi-disjoint, respectively.

A spanner (over terminal alphabet Σ and variables X ) is a function that maps every
w ∈ Σ∗ to an (X , w)-relation (note that the empty relation ∅ is also a valid image of a
spanner). Since the dependency on the word w is often negligible, we also use the term
X -tuple or X -relation to denote an (X , w)-tuple or (X , w)-relation, respectively.

▶ Example 2.1. Let Σ = {a, b} and let X = {x, y, z}. Then the function S that maps words
w ∈ Σ∗ to the (X , w)-relation {([1, i⟩, [i, i + 1⟩, [i + 1, |w| + 1⟩) | 1 ⩽ i < |w|, w[i, i + 1⟩ = b}
is a spanner. For example, S(ababbab) = {t1, t2, t3, t4} with t1 = ([1, 2⟩, [2, 3⟩, [3, 8⟩),
t2 = ([1, 4⟩, [4, 5⟩, [5, 8⟩), t3 = ([1, 5⟩, [5, 6⟩, [6, 8⟩) and t4 = ([1, 7⟩, [7, 8⟩, [8, 8⟩).

Let S1 and S2 be spanners over Σ and X . Then S1 and S2 are said to be equal if, for every
w ∈ Σ∗, S1(w) = S2(w) (this coincides with the usual equality of functions and shall also be
denoted by S1 = S2). We say that S2 contains S1, written as S1 ⊆ S2, if, for every w ∈ Σ∗,
S1(w) ⊆ S2(w). A spanner S over Σ and X is functional, hierarchical or quasi-disjoint if,
for every w, S(w) is functional, hierarchical or quasi-disjoint, respectively. Note that, for
span-tuples, span-relations and spanners, quasi-disjointness implies hierarchicality.

Next, we define operations on spanners. The union S1 ∪ S2 of two spanners S1 and S2
over Σ and X is defined via (S1 ∪ S2)(w) = S1(w) ∪ S2(w) for all w ∈ Σ∗.
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The natural join S1 ▷◁ S2 is defined via (S1 ▷◁ S2)(w) = S1(w) ▷◁ S2(w) for all w ∈ Σ∗.
Here, for two (X , w)-relations R1, R2 we let R1 ▷◁ R2 = {t1 ▷◁ t2 | t1 ∈ R1, t2 ∈ R2, t1 ∼ t2}.
Two (X , w)-tuples t1 and t2 are compatible (denoted by t1 ∼ t2) if t1(x) = t2(x) for every
x ∈ dom(t1) ∩ dom(t2), and for compatible (X , w)-tuples t1 and t2, the (X , w)-tuple t1 ▷◁ t2
is defined by (t1 ▷◁ t2)(x) = ti(x) if x ∈ dom(ti) for i ∈ {1, 2}.

The projection πY(S1) for a set Y ⊆ X is defined by letting (πY(S1))(w) = {t|Y : t ∈
S1(w)}, where t|Y is the restriction of t to domain dom(t) ∩ Y.

The string-equality selection ς=
Y (S1) for a set Y ⊆ X is defined by letting (ς=

Y (S1))(w)
contain all t ∈ S1(w) such that, for every x, y ∈ Y ∩ dom(t), if t(x) = [i, j⟩ and t(y) = [i′, j′⟩,
then w[i, j⟩ = w[i′, j′⟩. Further below, we will discuss why we only require w[i, j⟩ = w[i′, j′⟩
for x, y ∈ Y ∩ dom(t) instead of x, y ∈ Y.

For convenience, we omit the parentheses if we apply sequences of unary operations of span-
ners, e. g., we write πZς=

Y1
ς=
Z1

(S) instead of πZ(ς=
Y1

(ς=
Z1

(S))). For any E = {Y1, Y2, . . . , Yℓ} ⊆
P(X ), we also write ς=

E (S) instead of ς=
Y1

ς=
Y2

. . . ς=
Yℓ

(S), and in this case we will call ς=
E a

generalised string-equality selection, or also just string-equality selection if it is clear from
the context that E ⊆ P(X ). For generalised string-equality selections ς=

E , we will always
assume that all sets of E are pairwise disjoint. For a class S of spanners and set P of spanner
operations, SP (or Sp if P = {p}) denotes the closure of S under the operations from P .

Whenever formulating complexity bounds, we consider the terminal alphabet Σ to be
constant, but we always explicitly state any dependency on |X |.

2.3 Regular Spanners and Core Spanners
In [4], the class of regular spanners, denoted by reg-S, is defined as the class of spanners repres-
ented by vset-automata, and the class of core spanners is defined as core-S = JRGXK{∪,π,▷◁,ς=},
where RGX is the class of so-called regex-formulas (we refer to [4] for a formal definition of
vset-automata and regex-formulas). A crucial result from [4] is the core-simplification lemma:
every S ∈ core-S can be represented as πYς=

E (S′), where S′ is a regular spanner. The setting
in [4] uses a function semantics for spanners, i. e., (X , w)-tuples are always functional. In
our definitions above, we allow variables in span-tuples and spanners to be undefined, i. e.,
we use partial mappings as introduced in [12], and in the terminology of [15], we consider
the schemaless semantics.

In [12], it is shown that the classical framework for regular spanners with function
semantics introduced in [4] can be extended to the schemaless case, i. e., vset-automata and
regex-formula are extended to the case of schemaless semantics, and it is shown that the
basic results still hold (e. g., vset-automata are equally powerful as regex-formulas (or vstack-
automata) equipped with union, natural join and projection). However, the string-equality
selection operator – which turns regular spanners into the more powerful core spanners – is not
treated in [12]. Our definition of the string-equality selection operator given above extends
the definition from [4] from the functional to the schemaless case by interpreting ς=

Y to apply
only to those variables from Y that are in the domain of the span-tuple. This way of treating
undefined variables is natural and also corresponds to how the join operator is extended to
the schemaless case in [12]. Due to [12], we can also in the schemaless case define reg-S
as the class of spanners defined by vset-automata (with schemaless semantics), and we can
also define the class of core spanners with schemaless semantics as core-S = JRGXK{∪,π,▷◁,ς=}.
However, to the knowledge of the authors, the core-simplification lemma from [4] has so far
not been extended to the schemaless semantics. Since we wish to apply the core-simplification
lemma in the context of our results (for schemaless semantics), and since this seems to be
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4:8 A Purely Regular Approach to Non-Regular Core Spanners

a worthwhile task in its own right, we show that the core-simplification lemma from [4]
holds verbatim for the schemaless case. For those parts of the proof’s argument that are not
concerned with string-equality selections, we heavily rely on the results from [12].

▶ Lemma 2.2 (Core Simplification Lemma). For every S ∈ core-S over X there are S′ ∈ reg-S,
Y ⊆ X and E ⊆ P(X ) such that S = πYς=

E (S′).

3 A Declarative Approach to Spanners

In this section, we develop a simple declarative approach to spanners by establishing a
natural one-to-one correspondence between spanners over Σ and so-called subword-marked
languages over Σ.1 This approach conveniently allows to investigate or define non-algorithmic
properties of spanners completely independently from any machine model or other description
mechanisms (e. g., types of regular expressions, automata, etc.), while at the same time we
can use the existing algorithmic toolbox for formal languages whenever required (instead of
inventing special-purpose variants of automata or regular expressions to this end).

In particular, this declarative approach is rather versatile and provides some modularity
in the sense that we could replace “regular languages” by any kind of language class (e. g.,
(subclasses of) context-free languages, context-sensitive languages, etc.) to directly obtain
(i. e., without any need to adopt our definitions) a formally sound class of document spanners
and also have the full technical machinery that exists for this language class at our disposal.
Note that the idea of using non-regular languages from the Chomsky hierarchy to define
more powerful classes of document spanners has been recently used in [14].

In the context of this paper, however, the main benefit is that this approach provides a
suitable angle to treat string-equality selections in a regular way.

3.1 Subword-Marked Words
For any set X of variables, we shall use the set ΓX = { ▷x , ◁x | x ∈ X } as an alphabet of
meta-symbols. In particular, for every x ∈ X , we interpret the pair of symbols ▷x and ◁x as
a pair of opening and closing parentheses.

▶ Definition 3.1 (Subword-Marked Words). A subword-marked word (over terminal alphabet
Σ and variables X ) is a word w ∈ (Σ ∪ ΓX )∗ such that, for every x ∈ X , eΣ∪ΓX \{x}(w) ∈
{ε, ▷x ◁x}. A subword-marked word is functional, if |w| ▷x = 1 for every x ∈ X . For a
subword-marked word w over Σ and X , we set e(w) = eΓX (w).

A subword-marked word w can be interpreted as a word over Σ, i. e., the word e(w), in
which some subwords are marked by means of the parentheses ▷x and ◁x. In this way, it
represents an (X , e(w))-tuple, i. e., every x ∈ X is mapped to [i, j⟩ ∈ Spans(e(w)), where
w = w1 ▷x w2 ◁x w3 with i = |e(w1)| + 1 and j = |e(w1w2)| + 1. In the following, the
(X , e(w))-tuple defined by a subword-marked word w is denoted by st(w). We note that st(w)
is a total function if and only if w is functional. Moreover, we say that a subword-marked
word w is hierarchical or quasi-disjoint, if st(w) is hierarchical or quasi-disjoint, respectively.

1 In the literature on spanners, subword-marked words have previously been used as a tool to define
the semantics of regex-formulas or vset-automata (see, e. g., [3, 7, 9, 10]). However, in these papers,
the term ref-word is used instead of subword-marked word, which is a bit of a misnomer due to the
following reasons. Ref-words have originally been used in [17] (in a different context) as words that
contain references to some of their subwords, which are explicitly marked. In the context of spanners,
only ref-words with marked subwords, but without any references have been used so far. Since in this
work we wish to use ref-words in the sense of [17], i. e., with actual references, but also the variants
without references, we introduce the term subword-marked word for the latter.
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▶ Example 3.2. Let X = {x, y, z} and Σ = {a, b, c}. Then ▷x aa ◁x ab ▷y ▷z ca ◁z a◁y is a
functional and hierarchical subword-marked word. The subword-marked word u = b ▷x a ▷y

aba ▷z a ◁z c ◁x ab ◁y c is functional, but not hierarchical, while v = ▷x a ▷y ba ◁y cab ◁x caa is a
non-functional, but hierarchical subword-marked word. Moreover, st(u) = ([2, 8⟩, [3, 10⟩, [6, 7⟩)
and st(v) = ([1, 7⟩, [2, 4⟩, ⊥). On the other hand, neither ▷x aa ◁x ab ▷y ▷x ca ◁x a◁y nor

▷x a ▷y ba ◁x c are valid subword-marked words.

3.2 Subword-Marked Languages and Spanners
A set L of subword-marked words (over Σ and X ) is a subword-marked language (over Σ
and X ); a subword-marked language L is called functional, hierarchical or quasi-disjoint if
all w ∈ L are functional, hierarchical or quasi-disjoint, respectively. Since every subword-
marked word w over Σ and X describes a (X , e(w))-tuple, subword-marked languages can be
interpreted as spanners as follows.

▶ Definition 3.3. Let L be a subword-marked language (over Σ and X ). Then the spanner JLK
(over Σ and X ) is defined as follows: for every w ∈ Σ∗, JLK(w) = {st(v) | v ∈ L, e(v) = w}.
For a class L of subword-marked languages, we set JLK = {JLK | L ∈ L}.

▶ Example 3.4. Let Σ = {a, b} and X = {x1, x2, x3}. Let α = ▷x1 (a ∨ b)∗ ◁x1 ▷x2 b ◁x2 ▷x3

(a ∨ b)∗◁x3 be a regular expression over the alphabet Σ ∪ ΓX . We can note that L(α) is a
subword-marked language (over terminal alphabet Σ and variables X ) and therefore JL(α)K
is a spanner over X . In fact, JL(α)K is exactly the spanner described by the function S in
Example 2.1.

In this way, every subword-marked language L over Σ and X describes a spanner JLK over
Σ and X , and since it is also easy to transform any (X , w)-tuple t into a subword-marked
word v with e(v) = w and st(v) = t, also every spanner S over Σ and X can be represented
by a subword-marked language over Σ and X . Moreover, for a subword-marked language
L over Σ and X , JLK is a functional, hierarchical or quasi-disjoint spanner if and only if L

is functional, hierarchical or quasi-disjoint, respectively. This justifies that we can use the
concepts of spanners (over Σ and X ) and the concept of subword-marked languages (over Σ
and X ) completely interchangeably. By considering only regular subword-marked languages,
we automatically obtain the class of regular spanners (usually defined as the class of spanners
that can be described by vset-automata [4, 12]). More formally, let reg-swm-LΣ,X be the class
of regular subword-marked languages over Σ and X and let reg-swm-L =

⋃
Σ,X reg-swm-LΣ,X .

▶ Proposition 3.5. reg-S = Jreg-swm-LK.

It is a straightforward, but important observation that for any given NFA over Σ ∪ ΓX , we
can efficiently check whether L(M) is a subword-marked language. Since most description
mechanisms for regular languages (e. g., expressions, grammars, logics, etc.) easily translate
into NFA, they can potentially all be used for defining regular spanners.

▶ Proposition 3.6. Given an NFA M over alphabet Σ∪ΓX , we can decide in time O(|M ||X |2)
if L(M) is a subword-marked language, and, if so, whether L(M) is functional in time
O(|M ||X |2), and whether it is hierarchical or quasi-disjoint in time O(|M ||X |3).

4 Refl-Spanners: Spanners with Built-In String-Equality Selections

In this section, we extend the concept of subword-marked words and languages in order to
describe spanners with string-equality selections.
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4.1 Ref-Words and Ref-Languages
We consider subword-marked words with extended terminal alphabet Σ ∪ X , i. e., in addition
to symbols from Σ, also variables from X can appear as terminal symbols (the marking of
subwords with symbols ΓX remains unchanged).

▶ Definition 4.1 (Ref-Words). A ref-word over Σ and X is a subword-marked word over
terminal alphabet Σ ∪ X and variables X , such that, for every x ∈ X , if w = w1xw2, then
there exist words v1, v2, v3 such that w1 = v1 ▷x v2 ◁x v3.

Since ref-words are subword-marked words, the properties “functional”, “hierarchical”
and “quasi-disjoint” are well-defined.

▶ Example 4.2. Let Σ = {a, b, c} and X = {x, y}. The subword-marked word u =
ab ▷x ab ◁x c ▷y xaa ◁y y and v = a ▷x ab ▷y ab ◁x a ◁y xy (over terminal alphabet Σ ∪ X and
variables X ) are valid ref-words (over terminal alphabet Σ and variables X ). Note that
both u and v are functional, and u is also hierarchical, while v is not. On the other hand,
axb ▷x ab ◁x c ▷y xaa ◁y y and aa ▷x ab ◁x c ▷y ya◁y are subword-marked words (over terminal
alphabet Σ ∪ X and variables X ), but not ref-words.

The idea of ref-words is that occurrences of x ∈ X are interpreted as references to the
subword ▷x v◁x, which we will call definition of x. Note that while a single variable can have
several references, there is at most one definition per variable, and if there is no definition for
a variable, then it also has no references. Variable definitions may contain other references
or definitions of other variables, i. e., there may be chains of references, e. g., the definition of
x contains references of y, and the definition of y contains references of z and so on. Next,
we formally define this nested referencing process encoded by ref-words. Recall that for a
subword-marked word w by e(w) we denote the word obtained by removing all meta-symbols
from ΓX from w (however, if w is a ref-word, then e(w) is a word over Σ ∪ X ).

▶ Definition 4.3 (Deref-Function). For a ref-word w over Σ and X , the subword-marked
word d(w) over Σ and X is obtained from w by repeating the following steps until we have a
subword-marked word over Σ and X :
1. Let ▷x vx ◁x be a definition such that e(vx) ∈ Σ∗.
2. Replace all occurrences of x in w by e(vx).

It is straightforward to verify that the function d(·) is well-defined. By using this function
and because ref-words encode subword-marked words, they can be interpreted as span-tuples.
More precisely, for every ref-word w over Σ and X , d(w) is a subword-marked word over Σ
and X , e(d(w)) ∈ Σ∗ and st(d(w)) is an (X , e(d(w)))-tuple.

▶ Example 4.4. Let Σ = {a, b, c}, let X = {x1, x2, x3, x4} and let

w = aa ▷x1 ab ▷x2 acc ◁x2 ax2 ◁x1 ▷x4 x1ax2 ◁x4 x4bx1 .

Due to the definition ▷x2 acc◁x2 , the procedure of Definition 4.3 will initially replace all
references of x2 by acc. Then, the definition for variable x1 is ▷x1 ab ▷x2 acc ◁x2 aacc◁x1 , so
abaccaacc can be substituted for the references of x1. After replacing the last variable x4,
we obtain

d(w) = aa ▷x1 ab ▷x2 acc ◁x2 aacc ◁x1 ▷x4 abaccaaccaacc ◁x4 abaccaaccaaccbabaccaacc .

Moreover, we have st(d(w)) = ([3, 12⟩, [5, 8⟩, ⊥, [12, 25⟩).
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As a non-hierarchical example, consider u = ▷x1 a ▷x2 aa ◁x1 cx1 ▷x3 ac ◁x2 x2ax1◁x3 . It
can be easily verified that d(u) = ▷x1 a ▷x2 aa ◁x1 caaa ▷x3 ac ◁x2 aacaaaacaaaa◁x3 and
st(d(u)) = ([1, 4⟩, [2, 10⟩, [8, 22⟩, ⊥).

A set L of ref-words is called ref-language and we extend the d(·)-function to ref-languages
L in the obvious way, i. e., d(L) = {d(w) | w ∈ L}. As for subword-marked languages, we are
especially interested in ref-languages that are regular. By reg-ref-LΣ,X we denote the class
of regular ref-languages over Σ and X , and we set reg-ref-L =

⋃
Σ,X reg-ref-LΣ,X .

In analogy to Proposition 3.6, we can easily check for a given NFA over alphabet Σ∪ΓX ∪X
whether it accepts a ref-language over Σ and X .

▶ Proposition 4.5. Given an NFA M where L(M) is a subword-marked language over Σ ∪ X
and X , we can decide in time O(|M ||X |2) if L(M) is a ref-language over Σ and X .

4.2 Refl-Spanners

We shall now define spanners based on regular ref-languages.

▶ Definition 4.6 (Refl-Spanners). Let L be a ref-language (over Σ and X ). Then the refl-
spanner JLKd (over Σ and X ) is defined by JLKd = Jd(L)K. For a class L of ref-languages,
we set JLKd = {JLKd | L ∈ L}, and the class of refl-spanners is refl-S = Jreg-ref-LKd.

Since any regular ref-language L over Σ and X is also a regular subword-marked language
over Σ ∪ X and X , JLK is, according to Definition 3.3, also a well-defined spanner (but over
Σ∪X and X ). However, whenever we are concerned with a ref-language L over Σ and X that
is not also a subword-marked language over Σ and X (i. e., L contains actual occurrences of
symbols from X ), then we are never interested in JLK, but always in JLKd. Consequently, by
a slight abuse of notation, we denote in this case JLKd simply by JLK.

For a regular ref-language L the corresponding refl-spanner JLK produces for a given
w ∈ Σ∗ all (X , w)-tuples t that are represented by some u ∈ d(L) with e(u) = w, or,
equivalently, all (X , w)-tuples t with t = st(d(v)) and e(d(v)) = w for some v ∈ L. It is
intuitively clear that the use of variable references of refl-spanners provide a functionality
that resembles string-equality selections for core spanners. However, there are also obvious
differences between these two spanner formalisms (as already mentioned in the introduction
and as investigated in full detail in Section 6).

Before moving on to the actual results about refl-spanners, we shall briefly discuss another
example.

▶ Example 4.7. Assume that we have a document w = p1#p2# . . . #pn, where each pi ∈ Σ∗

is the title page of a scientific paper and # /∈ Σ is some separator symbol (e. g., a list
of all title pages of papers in the issues of Journal of the ACM from 2000 to 2010). Let
Σ′ = Σ ∪ {#}. We define a refl-spanner

α = Σ′∗ # Σ∗ email: ▷x Σ+◁x @ rdom Σ∗ # Σ′∗ email: x @ rdom Σ∗ # Σ′∗ ,

where rdom = hu-berlin.de ∨ tu-berlin.de ∨ fu-berlin.de is a regular expressions that matches the
email-domains of the three universities in Berlin. It can be easily seen that JαK(w) contains
the first parts of the email-addresses of authors that have at least two JACM-papers between
year 2000 and 2010 while working at a university in Berlin.
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5 Evaluation and Static Analysis of Refl-Spanners

The problem ModelChecking is to decide whether t ∈ S(w) for given spanner S over Σ and X ,
w ∈ Σ∗ and (X , w)-tuple t, and NonEmptiness is to decide S(w) ̸= ∅ for given S and w. For
the problems Satisfiability, Hierarchicality and Functionality, we get a single spanner S as input
and ask whether there is a w ∈ Σ∗ with S(w) ̸= ∅, whether S is hierarchical, or whether S is
functional, respectively. Finally, Containment and Equivalence is to decide whether S1 ⊆ S2
or S1 = S2, respectively, for given spanners S1 and S2. The input refl-spanners are always
given as NFA. Recall that a summary of our results is provided by Table 1 in the introduction.

▶ Theorem 5.1. ModelChecking for refl-S can be solved in time poly(|M |)(|w| + (2|X |)!),
where M is an NFA that represents a refl-spanner S = JL(M)K over Σ and X , w ∈ Σ∗,
and t is an (X , w)-tuple. In case that S is functional or M is normalised (in the sense of
Definition 5.4 that follows further below), this can be improved to poly(|M |)(|w| + |X |) and
O(|M |(|w| + |X |)), respectively.

Proof Sketch. To check t ∈ JL(M)K(w) it is sufficient to check whether there is some
v ∈ L(M) with st(d(v)) = t and e(d(v)) = w. To this end, we turn w into a subword-marked
word w̃ by inserting the symbols ΓX according to t, but, since we do not know in which
order the factors over ΓX are read by M , we represent the maximal factors over ΓX as sets
(represented as single symbols) rather than words over ΓX . Moreover, for every x ∈ X , let
ux be the factor of w that corresponds to t(x), if defined. Then we check whether M can
accept w̃, but we treat x-transitions with x ∈ X of M as labelled with ux, and whenever we
encounter a symbol that represents a subset of ΓX , then we have to compute in a brute-force
manner which states are reachable by a path that reads exactly the symbols from this set
(which causes the factor (2|X |)! in the running-time). Moreover, in order to not introduce
another |w| factor, we use a longest common extension data-structure to be able to consume
prefixes ux from w̃, i. e., to handle the x-transitions, in constant time.

If S is functional, then each two states q, q′ of M uniquely determine which u ∈ (ΓX )∗, if
any, can be read while moving from q to q′ (this observation has been used in a similar way
by Freydenberger, Kimelfeld, and Peterfreund [9] for vset-automata). If M is normalised, we
know exactly in which order the symbols from ΓX have to be inserted into w in order to
construct w̃. In both cases, this means that the brute-force part is not necessary. ◀

We discuss a few particularities about Theorem 5.1. The mentioned general running-time
is not polynomial (in combined complexity), but nevertheless fixed-parameter tractable with
respect to parameter |X |. This is worth mentioning since for core spanners ModelChecking is
W[1]-hard with respect to parameter |X | (this can be concluded from [8] and [5]). If M is
already normalised (in the sense of Definition 5.4), then, in the likely case that |X | ∈ O(|w|),
we obtain a running-time of O(|M ||w|) which is also known to be a lower-bound (subject to
the Strong Exponential Time Hypothesis SETH) for regular expression matching (see [2] for
further details), which obviously reduces to ModelChecking for refl-S.

We further obtain the following two theorems, which are proved by standard methods.

▶ Theorem 5.2. NonEmptiness for refl-S is NP-complete.

▶ Theorem 5.3.
(a) Satisfiability for refl-S can be solved in time O(|M |),
(b) Hierarchicality for refl-S can be solved in time O(|M ||X |3), and
(c) Functionality for refl-S can be solved in time O(|M ||X |2),
where M is an NFA that describes a refl-spanner over Σ and X .
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For core spanners, Satisfiability and Hierarchicality are PSpace-complete, even for restricted
classes of core spanners (see [8]), and Containment and Equivalence are not semi-decidable
(see [8]). We now show that for refl-spanners we can achieve decidability of Containment and
Equivalence by imposing suitable restrictions. The goal is to reduce the containment of refl-
spanners to the containment of their corresponding ref-languages, but the problem is that the
correspondence between ref-words and the span-tuples they describe is not unique in 2 ways.
(1): Different subword-marked words w and w′ with e(w) = e(w′) can nevertheless describe
the same span-tuple, i. e., st(w) = st(w′), since the order of consecutive occurrences of symbols
from ΓX has no impact on the represented span-tuple. And (2): The same subword-marked
word can be the d(·)-image of two different ref-words v and v′, i. e., d(v) = d(v′), e. g., the
ref-words w1 = ▷x ab◁x b ▷y abb◁yyab, w2 = ▷x ab◁x b ▷y xb◁yxbx and w3 = ▷x ab◁x b ▷y abb◁yyx
are all ⪯-normalised (in the sense of Definition 5.4 that follows further below), where
▷x ⪯ ◁x ⪯ ▷y ⪯ ◁y. However, d(w1) = d(w2) = d(w3) = ▷x ab ◁x b ▷y abb ◁y abbab.

We can deal with issue (1) by requiring for any two subword-marked languages L and L′

that all consecutive occurrences of symbols from ΓX are ordered in the same way, since then
JLK ⊆ JL′K is characterised by L ⊆ L′. This is actually a rephrasing of an analogous result
about vset-automata from [3]. However, issue (2) is independent of the order of symbols
from ΓX , i. e., even if we assume that the symbols from ΓX are ordered in the same way in
two ref-languages L and L′, it is still not necessarily the case that JLK ⊆ JL′K is characterised
by L ⊆ L′. In order to deal with issue (2) we need to impose some actual restrictions on
ref-languages. Intuitively speaking, we require all variable references to be extracted by their
own private extraction variable, i. e., in the ref-words we encounter all variable references
x in the form ▷yx x◁yx , where yx has in all ref-words the sole purpose of extracting the
content of some reference of variable x. With this requirement, the positions of the repeating
factors described by variables and their references must be explicitly present as spans in the
span-tuples. This seems like a strong restriction for refl-spanners, but we should note that
for core spanners we necessarily have a rather similar situation: if we want to use string
equality selections on some spans, we have to explicitly extract them by variables first.

Before we formally define the restriction of ref-languages mentioned above, we first develop
some technical tools on the level of subword-marked languages.

▶ Definition 5.4. A linear order ⪯ on ΓX is valid if, for every x ∈ X , ▷x ⪯ ◁x. A subword-
marked word w over Σ and X is ⪯-normalised for a valid linear order ⪯ on ΓX , if, for every
σ1, σ2 ∈ ΓX and every factor σ1σ2 in w, we have that σ1 ⪯ σ2. A subword-marked word over
Σ and X is normalised, if it is ⪯-normalised for some valid linear order ⪯ on ΓX .

▶ Example 5.5. Let X = {x, y, z} and let ⪯ be the valid order on ΓX with ▷x ⪯ ▷y ⪯ ▷z ⪯
◁x ⪯ ◁y ⪯ ◁z. Then a ▷x ▷y ab ◁y ▷z ◁x b◁z and ▷z ▷x ab ◁z a◁x are not ⪯-normalised. On
the other hand, a ▷x ▷y ab ▷z ◁x ◁y b◁z and ▷z a ▷x ab ◁z a◁x are ⪯-normalised.

▶ Lemma 5.6. Let w1 and w2 be subword-marked words over Σ and X that are ⪯-normalised
for a valid linear order ⪯ and that satisfy e(w1) = e(w2). Then st(w1) = st(w2) if and only
if w1 = w2.

This concept of normalised subword-marked words directly carries over to subword-
marked languages: a subword-marked language L over Σ and X is ⪯-normalised, if every
w ∈ L is ⪯-normalised; and a subword-marked language over Σ and X is normalised, if it
is ⪯-normalised for some valid linear order ⪯ on ΓX . Note that we do not only require all
words of L to be normalised, but to be normalised with respect to the same valid order
⪯. And since ref-words are subword-marked words (and ref-languages are subword-marked
languages), the concept of ⪯-normalisation also applies to ref-words and ref-languages.
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Obviously, if L and K are ⪯-normalised subword-marked languages over Σ and X , then
L ∪ K is a ⪯-normalised subword-marked languages over Σ and X .

For a given subword-marked language L over Σ and X , and a valid order ⪯, we can
obtain a ⪯-normalised subword-marked language L′ over Σ and X with JLK = JL′K by simply
reordering all maximal factors over ΓX in the words of L according to ⪯. The next lemma
shows how to effectively do this if L is regular and represented by an NFA M .

▶ Lemma 5.7. Let M be an NFA that accepts a subword-marked language over Σ and X ,
and let ⪯ be a valid linear order on ΓX . Then we can compute in time O(2|ΓX ||M |) an
NFA M ′ of size O(2|ΓX ||M |) such that JL(M)K = JL(M ′)K and L(M ′) is a ⪯-normalised
subword-marked language over Σ and X .

The general idea for the lemma’s proof is that whenever M reads a sequence of symbols
from ΓX , then M ′ instead stores the letters of this sequence in the finite state control and
makes ε-transitions instead. Whenever M stops reading the ΓX -sequence and makes the
next Σ-transition, then M ′ first reads the recorded symbols from ΓX from the input, but
according to the order ⪯, and then reads the next Σ-transition.

From Lemmas 5.6 and 5.7, we can directly derive a procedure for deciding Containment
for regular spanners: given S1, S2 ∈ reg-SΣ,X represented by NFA M1 and M2, choose an
arbitrary valid order ⪯ on X and compute NFA M ′

1 and M ′
2 according to Lemma 5.7. Now

Lemma 5.6 directly implies that JL(M1)K ⊆ JL(M2)K if and only if L(M1) ⊆ L(M2). An
analogue of Lemmas 5.6 and 5.7 on the level of vset-automata is given in [3], although
without stating an explicit upper complexity bound for the construction (moreover, a similar
construction (without complexity bounds) is also used in [4] to show that regular spanners
are closed under the join operator).

We next turn to the problem that different ref-words w1 and w2, even though both
⪯-normalised, can describe the same span-tuple, simply because d(w1) = d(w2). For
example, the ref-words w1 = ▷x ab ◁x b ▷y abb ◁y yab, w2 = ▷x ab ◁x b ▷y xb ◁y xbx and
w3 = ▷x ab ◁x b ▷y abb ◁y yx are all ⪯-normalised, where ▷x ⪯ ◁x ⪯ ▷y ⪯ ◁y. However,
d(w1) = d(w2) = d(w3) = ▷x ab ◁x b ▷y abb ◁y abbab.

It is our goal to restrict ref-words in such a way that w1 ̸= w2 implies d(w1) ̸= d(w2). We
first explain this restriction on an intuitive level. The set of variables X is partitioned into a
set Xr of reference-variables and, for each such reference-variable x ∈ Xr, into a set Xe,x of
extraction-variables. For every x ∈ X , every reference of x is extracted by some y ∈ Xe,x, i. e.,
it occurs between ▷y and ◁y; moreover, every y ∈ Xe,x either does not occur at all, or it is
used as extractor for x, i. e., y’s definition contains exactly one occurrence of a symbol Σ ∪ X
which is x. In addition, we also require that for every x ∈ Xr with at least one reference,
the image of x under d(·) is non-empty (otherwise the deref-function may turn normalised
ref-words into non-normalised ones by joining two previously separate factors over ΓX ).

▶ Definition 5.8. A ref-word w over Σ and X is a strongly reference extracting ref-word
over Σ and (Xr, {Xe,x | x ∈ Xr}), if it satisfies the following:

X = Xr ∪
⋃

x∈Xr
Xe,x, where all sets Xr and Xe,x with x ∈ Xr are pairwise disjoint.

Each reference of an x ∈ Xr in w occurs in a factor ▷y γxδ◁y with y ∈ Xe,x, γ, δ ∈ (ΓX )∗.
If an y ∈ Xe,x has a definition in w, then it has the form ▷y γxδ◁y with γ, δ ∈ (ΓX )∗, and
|w|y = 0.
For every x ∈ Xr with |w|x ̸= 0, st(d(w))(x) = [i, j⟩ with j − i ⩾ 2.

A ref-language L over Σ and X is a strongly reference extracting ref-language over Σ and
(Xr, {Xe,x | x ∈ Xr}) if every ref-word w ∈ L is a strongly reference extracting ref-word over
Σ and (Xr, {Xe,x | x ∈ Xr}). By a series of intermediate results we obtain:
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▶ Lemma 5.9. Let L, K be two strongly reference extracting and ⪯-normalised ref-languages
over Σ and (Xr, {Xe,x | x ∈ Xr}). Then JLK ⊆ JKK if and only if L ⊆ K.

Let sre-refl-SΣ,(Xr,{Xe,x|x∈Xr}) be the class of strongly reference extracting refl-spanners
over Σ and (Xr, {Xe,x | x ∈ Xr}).

▶ Theorem 5.10. Containment and Equivalence for sre-refl-SΣ,(Xr,{Xe,x|x∈Xr}) is in ExpSpace
if the refl-spanners are given as NFA, in PSpace if the refl-spanners are given as ⪯-normalised
NFA, and in NLogSpace if the refl-spanners S1 and S2 are given as ⪯-normalised DFA.

Proof Sketch. Let M1 and M2 be the NFA that represent S1 and S2. For deciding
Containment we first turn M1 and M2 into normalised variants M ′

1 and M ′
2 with Lemma 5.7

(which requires exponential space) and then check whether L(M1) ⊆ L(M2) (which is known
to be possible in polynomial space for NFA and nondeterministic logarithmic space for DFA).
The correctness is a direct consequence of Lemma 5.9. This also shows the other bounds. ◀

6 Expressive Power of Refl-Spanners

It is a straightfoward observation that the expressive power of refl-spanners properly exceeds
the one of regular spanners, but it is less clear which refl-spanners are also core spanners and
which core spanners are refl-spanners. We first briefly discuss the former question.

A ref-language L over Σ and X is reference-bounded if there is a number k with |w|x ⩽ k

for every x ∈ X and every w ∈ L. A refl-spanner is reference-bounded if it is represented by
a reference-bounded ref-language. The following is an easy exercise.

▶ Theorem 6.1. Every reference-bounded refl-spanner is a core spanner.

It is interesting to note that the not reference-bounded refl-spanner JL(a+ ▷x b+ ◁x

(a+x)∗a+)K is provably not a core spanner (see [4, Theorem 6.1])).
The question which core spanners can be represented as refl-spanners is a much more

difficult one and we shall investigate it in more detail. There are simple core spanners which
translate to refl-spanners in an obvious way, e. g., π{x}ς=

{x,y}JLK with L = L( ▷x (a∗ ∨ b∗) ◁x

c ▷y (a∗ ∨ b∗)◁y) can be represented as JL′K where L′ = L( ▷x (a∗ ∨ b∗) ◁x cx). However, if we
change L to L( ▷x Σ∗aΣ∗ ◁x c ▷y Σ∗bΣ∗◁y), then neither ref-language L( ▷x Σ∗aΣ∗ ◁x cx) nor
L( ▷x Σ∗bΣ∗ ◁x cx) yield an equivalent refl-spanner and we have to use L( ▷x r ◁x cx), where
r is a regular expression for L(Σ∗aΣ∗) ∩ L(Σ∗bΣ∗).

Another problem is that core spanners can also use string-equality selections on spans
that contain start or end positions of other spans. For example, it seems difficult to transform
ς=
{x,y}JL( ▷x a∗ ◁x ▷y ▷z a∗ ◁z a∗◁y)K into a refl-spanner. The situation gets even more involved

if we use the string-equality selections directly on overlapping spans, e. g., as in core spanners
of the form ς=

{x,y}(JL( ▷x . . . ▷y . . . ◁x . . . ◁y)K). For an in-depth analysis of the capability of
core spanners to describe word-combinatorial properties, we refer to [8, 7].

These considerations suggest that the refl-spanner formalism is much less powerful than
core spanners, which is to be expected, since we have to pay a price for the fact that we
can solve many problems for refl-spanners much more efficiently than for core spanners
(see our results presented in Section 5 and summarised in Table 1). However, we can show
that a surprisingly large class of core spanners can nevertheless be represented by a single
refl-spanner along with the application of a simple spanner operation (to be defined next)
that just combines several variables (or columns in the spanner result) into one variable (or
column) in a natural way, and a projection.

ICDT 2021



4:16 A Purely Regular Approach to Non-Regular Core Spanners

The span-fusion ⊎ is a binary operation Spans × Spans → Spans defined by [i, j⟩ ⊎[i′, j′⟩ =
[min{i, i′}, max{j, j′}⟩ and [i, j⟩ ⊎ ⊥=⊥ ⊎[i, j⟩ = [i, j⟩. For a set K ⊆ Spans(w), we define⊎

(K) =⊥ if K = ∅ and
⊎

(K) =
⊎

(K \ {s}) ⊎ s if s ∈ K. Intuitively speaking, the operation
⊎ constructs the set-union of two spans and fills in the gaps to turn it into a valid span.

We next lift this operation to an operation on spanners with the following intended
meaning. In a table S(w) for some spanner S over Σ and X , and w ∈ Σ∗, we want to replace
a specified set of columns {y1, y2, . . . , yk} ⊆ X by a single new column x that, for each row s

(i. e., span-tuple s) in S(w), contains the span
⊎

({s(yi) | i ∈ [k]}).

▶ Definition 6.2. Let λ ⊆ X and let x be a new variable with x /∈ X \ λ. For any X -
tuple t,

⊎
λ→x(t) is the ((X \ λ) ∪ {x})-tuple with (

⊎
λ→x(t))(x) =

⊎
({t(y) | y ∈ λ}) and

(
⊎

λ→x(t))(z) = t(z) for every z ∈ X \ λ. For a set R of X -tuples,
⊎

λ→x(R) = {
⊎

λ→x(t) | t ∈
R}. Moreover, for a spanner S over Σ and X , the spanner

⊎
λ→x(S) over Σ and (X ∪ {x})

is defined by (
⊎

λ→x(S))(w) =
⊎

λ→x(S(w)) for every word w.

We use the following generalised application of the operation
⊎

λ→x. For Λ = {λ1, λ2, . . . ,

λk} ⊆ P(X ) such that all λi with i ∈ [k] are pairwise disjoint, a spanner S over X and fresh
variables x1, x2, . . . , xk, we define

⊎
{λi→xi|i∈[k]}(S) =

⊎
λ1→x1

(
⊎

λ2→x2
(. . .

⊎
λk→xk

(S) . . .)). If
the new variables xi are negligible or clear from the context, we also write

⊎
λ or

⊎
{λi|i∈[k]}

instead of
⊎

λ→x or
⊎

{λi→xi|i∈[k]}.

▶ Example 6.3. Let L = L( ▷x a∗ ▷y b∗ ◁x a∗◁y) be a non-hierarchical subword-marked
language over Σ = {a, b} and X = {x, y, z}. For w = aabaaa, we have JLK(w) =
{([1, 4⟩, [3, 7⟩)}. Moreover, let L′ = L( ▷x a∗ ◁x ▷y b∗ ◁y ▷z a∗◁z) be a hierarchical subword-
marked language, and let λ1 = {x, y}, λ2 = {y, z} and Λ = {λ1, λ2}. Then

⊎
ΛJL′K(w) =

{
⊎

Λ(([1, 3⟩, [3, 4⟩, [4, 7⟩))} = JLK(w). In fact, it can be easily verified that
⊎

ΛJL′K = JLK.

Two variables x, y ∈ X are overlapping in a spanner S over Σ and X if there is a w ∈ Σ∗

and t ∈ S(w) such that t(x) ∩ t(y) ̸= ∅. A string equality-selection ς=
E over X is overlapping

with respect to S if there are variables x, y ∈
⋃

Z∈E Z with x ̸= y that are overlapping in S.
A string-equality selection ς=

E is non-overlapping with respect to S if it is not overlapping
with respect to S. We are now able to state the main result of this section:

▶ Theorem 6.4. For every core spanner S with S = πYς=
E (S′), where S′ is a regular spanner

over Σ and X , Y ⊆ X and E ⊆ P(X ) such that ς=
E is a string-equality selection over X that

is non-overlapping with respect to S′, there is a reference-bounded refl-spanner S′′ over Σ
and X ′ with |X ′| = O(|X |3) and a set Λ ⊆ P(X ′) such that S = πY

⊎
Λ(S′′).

We discuss this result before giving a proof sketch. The core simplification lemma states
that in every core spanner S ∈ reg-S{∪,π,▷◁,ς=}, we can “push” all applications of ∪ and ▷◁

into the NFA that represents the regular spanner, leaving us with an expression πYς=
E (L(M))

for an NFA M that accepts a subword-marked language. Theorem 6.4 now assures that if
ς=
E is non-overlapping with respect to S, then we can further “push” even all string-equality

selections into the NFA M , which then accepts a (reference-bounded) ref-language instead
of a subword-marked language, i. e., we can represent the string-equality selections as mere
variable references in the regular spanner representation. However, the construction will add
(a polynomial number of) new variables, which have to be translated back by an application
of the span-fusion.

A main building block for the proof of Theorem 6.4, which also constitutes an interesting
result about core spanners in its own right, is the following normal-form result.
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▶ Theorem 6.5. Every core spanner S over Σ and X can be represented as πY(
⊎

Λ(ς=
E (S′))),

where S′ is a quasi-disjoint regular spanner over Σ and X ′ with |X ′| = O(|X |3), Y ⊆ X ,
E, Λ ⊆ P(X ′).

Proof Sketch. Due to the core-simplification lemma (Lemma 2.2), we can assume that
S = πYς=

E (S′) for some regular spanner S′ over Σ and X , and E = {Z1, Z2, . . . , Zℓ} ⊆ P(X ).
Let M be an NFA with JL(M)K = S′. We first transform M into M ′ by replacing every
x ∈ X by m = |X |2 new variables SVm(x) = {[x, 1], [x, 2], . . . , [x, m]}, i. e., M ′ has variable set
X ′ =

⋃x∈X SVm(x). Whenever M reads a factor ▷x wx ◁x, then M ′ nondeterministically reads
a factor ▷[x,1] wx,1 ◁[x,1] ▷[x,2] wx,2 ◁[x,2] . . . ▷[x,m] wx,m◁[x,m] instead, where wx,1wx,2 . . . wx,m

is a factorisation of wx, such that, for every j ∈ [m], wx,j ∈ (ΓX ′)∗Σ∗(ΓX ′)∗. This can be
done by keeping track in the finite state control for which j ∈ [m] we have already read ▷[x,j]

and then allowing M ′ to nondeterministically read factors ◁[x,j] ▷[x,j+1] while reading wx. In
order to make sure that wx,j ∈ (ΓX ′)∗Σ∗(ΓX ′)∗ for every j ∈ [m], we have to require that at
least one such ◁[x,j] ▷[x,j+1] factor is read in every maximal factor of symbols from ΓX \{x}.

It can be shown that L(M ′) is in fact a quasi-disjoint subword-marked language over Σ
and X ′. Moreover, we can express ς=

Z1
ς=
Z2

. . . ς=
Zℓ

(JL(M)K) by turning each ς=
Zi

into string-
equality selections ς=

Ei
with Ei = {{[x, 1] | x ∈ Zi}, {[x, 2] | x ∈ Zi}, . . . , {[x, m] | x ∈ Zi}}

and applying them to JL(M)K, followed by a span-fusion that will combine back all variables
from SVm(x) into the single original variable x. More precisely, ς=

Z1
ς=
Z2

. . . ς=
Zℓ

(JL(M)K) =⊎
Λ ς=

E1
ς=
E2

. . . ς=
Eℓ

(JL(M ′)K), where Λ = {SVm(x) → x | x ∈ X }. ◀

We are now ready to give a proof sketch for Theorem 6.4:

Proof Sketch of Theorem 6.4. Let S = πYς=
E (S′), where S′ is a regular spanner over Σ and

X , Y ⊆ X and E = {Z1, Z2, . . . , Zℓ} ⊆ P(X ) such that ς=
E is non-overlapping with respect

to S′. Let M be an NFA with JL(M)K = S′. The proof heavily relies on Theorem 6.5 in the
sense that we only have to show that ς=

E1
ς=
E2

. . . ς=
Eℓ

(JL(M ′)K) is a refl-spanner, where M ′ is
obtained from M via the construction of the proof of Theorem 6.5. In particular, L(M ′) is
quasi-disjoint and the string-equality selections ς=

E1
, ς=

E2
, . . . , ς=

Eℓ
have been obtained from a

string-equality selection ς=
E that is non-overlapping with respect to S′.

We recall that, for every i ∈ [ℓ], Ei = {{[x, 1] | x ∈ Zi}, {[x, 2] | x ∈ Zi}, . . . , {[x, m] | x ∈
Zi}}. The idea is to inductively incorporate all these string-equality selections ς=

{[x,j]|x∈Zi}
one by one directly into the NFA M ′ by introducing variable references for the variables
{[x, j] | x ∈ Zi} (note that this changes the accepted language from M into a ref-language).
We sketch one individual step of this construction. Any ref-word accepted by (the current
version of) M ′ contains (possibly zero) factors of the form ▷[x,j] v[x,j]◁

[x,j] with x ∈ Zi. It
can be shown that v[x,j] = γu[x,j]δ, where u[x,j] ∈ Σ∗ and γ and δ contain neither symbols
from Σ nor variable references (the former is a consequence from the fact that L(M ′) is
quasi-disjoint, the latter follows from the non-overlapping property of ς=

E ). Moreover, these
factors are pairwise non-overlapping. Now we want to check whether all these u[x,j] are the
same, since this is required by ς=

{[x,j]|x∈Zi}. This property is non-regular and can therefore
not be checked directly. Instead, we only check whether the first ▷[x,j] γu[x,j]δ◁[x,j] that we
encounter is such that we can potentially read the exact same word u[x,j] between all the
remaining pairs of brackets ▷[y,j] . . . ◁[y,j] for y ∈ Zi \ {x}. To this end, we guess the state
pairs between which these factors will be read and then check, while reading u[x,j] from the
input, whether we can also read u[x,j] between these states. For such words, we can then
on-the-fly just read the variable reference [x, j] instead u[y,j] when we reach the right states
between which we have already checked that potentially u[x,j] could be read here. ◀
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Theorem 6.5 says that if we allow an application of the span-fusion between the projection
and the string-equality selections in the representation of the core-simplification lemma, then
we can assume the regular spanner to be quasi-disjoint. Hence, we get the following:

▶ Corollary 6.6. reg-S = JRGXK{∪,▷◁,π} = JRGXK{⊎,π} and core-S = JRGXK{∪,▷◁,π,ς=} =
JRGXK{⊎,π,ς=}.

7 Conclusion

In this work, we introduced reference-bounded refl-spanners, a new fragment of core spanners.
In terms of expressive power, this fragment is slightly less powerful than the class of core
spanners, but has lower evaluation complexity (see Table 1, and note further that these
upper bounds even hold for refl-spanners that are not necessarily reference-bounded). If
we add the span-fusion – a natural binary operation on spanners – to reference-bounded
refl-spanners (see Section 6) then they have the same expressive power as core spanners
with non-overlapping string equality selections. This demonstrates that our formalism covers
all aspects of core spanners except for the possibility of applying string equality selections
on variables with overlapping spans. Moreover, since we achieve better complexities for
refl-spanners compared to core spanners, this also shows that overlapping string equality
selections are a source of complexity for core spanners.

From a conceptional point of view, our new angle was to treat the classical two-stage
approach of core spanners, i. e., first producing the output table of a regular spanner and
then filtering it by applying the string equality selections, as a single NFA. This is achieved
by using ref-words in order to represent a document along with a span-tuple that satisfies
the string equality selections, instead of just using subword-marked words to represent a
document along with a span-tuple, which might not satisfy the string equality selections and
therefore will be filtered out later in the second evaluation stage.

A question that is left open for further research is about constant delay enumeration for
some fragment of core spanners strictly more powerful than the regular spanners. In this
regard, we note that for efficient enumeration for (some fragments of) core spanners, we must
overcome the general intractability of NonEmptiness (which we have for core spanners as
well as for (reference bounded) refl-spanners). We believe that refl-spanners are a promising
candidate for further restrictions that may lead to a fragment of core spanners with constant
delay enumeration.
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