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Abstract
In ICDT’19, Kara, Ngo, Nikolic, Olteanu, and Zhang gave a structure which maintains the number
T of triangles in an undirected graph G = (V, E) along with the edge insertions/deletions in G.
Using O(m) space (m = |E|), their structure supports an update in O(

√
m log m) amortized time

which is optimal (up to polylog factors) subject to the OMv-conjecture (Henzinger, Krinninger,
Nanongkai, and Saranurak, STOC’15). Aiming to improve the update efficiency, we study:

the optimal tradeoff between update time and approximation quality. We require a structure to
provide the (ϵ, Γ)-guarantee: when queried, it should return an estimate t of T that has relative
error at most ϵ if T ≥ Γ, or an absolute error at most ϵ · Γ, otherwise. We prove that, under any
ϵ ≤ 0.49 and subject to the OMv-conjecture, no structure can guarantee O(m0.5−δ/Γ) expected
amortized update time and O(m2/3−δ) query time simultaneously for any constant δ > 0; this is
true for Γ = mc of any constant c in [0, 1/2). We match the lower bound with a structure that
ensures Õ((1/ϵ)3 ·

√
m/Γ) amortized update time with high probability, and O(1) query time.

(for exact counting) how to achieve arboricity-sensitive update time. For any 1 ≤ Γ ≤
√

m, we
describe a structure of O(min{αm + m log m, (m/Γ)2}) space that maintains T precisely, and
supports an update in Õ(min{α + Γ,

√
m}) amortized time, where α is the largest arboricity of

G in history (and does not need to be known). Our structure reconstructs the aforementioned
ICDT’19 result up to polylog factors by setting Γ =

√
m, but achieves Õ(m0.5−δ) update time

as long as α = O(m0.5−δ).
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1 Introduction

In the dynamic approximate triangle counting (DATC) problem, we want to maintain a data
structure on an undirected graph G = (V, E) to support

update(e): either adds a new edge e or removes an existing edge e;
query: returns an estimate t of the number T of triangles (i.e., 3-cliques) in G. Specifically,
setting m = |E|, we require that the estimate t should satisfy an (ϵ, Γ(m))-guarantee:

|t− T | ≤
{

ϵ · T if T ≥ Γ(m)
ϵ · Γ(m) otherwise

(1)

where ϵ is a parameter of the structure satisfying 0 < ϵ ≤ 1, and Γ(m) a non-descending
function of m satisfying
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6:2 Towards Optimal Dynamic Indexes for Approximate (and Exact) Triangle Counting

Γ(m) ≥ 1
Γ(c ·m) = O(Γ(m)) for any constant c > 1.

The query is allowed to fail with probability at most 1/m2.

Unless there is a need to emphasize on the parameter m, we will write function Γ(m) simply
as Γ. The (ϵ, Γ)-guarantee, phrased differently, requires that the estimate t should have a
relative error at most ϵ or an absolute error at most ϵ · Γ.

The dynamic exact triangle counting (DETC) problem is defined analogously except that
the value t returned by a query should always be equal to T .

Notations and math conventions. Throughout the paper, N is the set of integers, [x]
denotes the set {1, 2, ..., x} for an integer x ≥ 1, Õ(.) suppresses a polylog m factor, {u, v}
represents an undirected edge between vertices u and v, while a directed edge from u to v is
represented as (u, v). An event occurs with high probability (w.h.p.) if its probability is at
least 1− 1/m2.

1.1 Motivation
Triangle counting is equivalent to computing the output size of the conjunctive query

ans(a, b, c) = R1(a, b), R2(a, c), R3(b, c). (2)

DETC can be easily reduced to the above query by duplicating E three times. Conversely,
query (2) can be reduced to DETC as follows. Suppose that relations R1, R2, R3 have
schemes {A, B}, {A, C}, and {B, C}, respectively, where attributes A, B, and C have disjoint
domains. Create a graph G = (V, E) such that (i) V contains a vertex for every distinct
value of A, B, C, and (ii) E has an edge {u, v} for every tuple (u, v) of R1, R2, R3. It is easy
to verify that each tuple (a, b, c) in the query result corresponds to a unique triangle in G,
and vice versa. Inserting/deleting a tuple is translated to an edge update in G.

Our initial motivation stemmed from two recent results on DETC. Subject to the OMv
conjecture (Section 1.2), Henzinger, Krinninger, Nanongkai, and Saranurak showed [20] (long
version [21]) that no structure with O(m0.5−δ) amortized update time can guarantee O(m1−δ)
query time, for any constant δ > 0. Kara, Ngo, Nikolic, Olteanu, and Zhang [27] matched
this lower bound with a linear-space structure of O(

√
m log m) amortized update time1 and

O(1) query time.
O(
√

m log m) update time is rather expensive for practical applications. We thus ask:

Question 1: How much loss of accuracy is necessary, if we want to (significantly)
reduce the update cost of [27]?
Question 2: If we insist on exact counting, how to derive an update bound using
certain intrinsic parameters of G which can be o(

√
m) for many practical inputs?

1.2 Related Work
Upper Bounds. Kopelowitz et al. [28] studied the following dynamic set intersection size
problem. Define C as a collection of non-empty sets S1, S2, ..., Sℓ for some ℓ ≥ 1 (the domain
of the elements therein is unimportant). Set m =

∑
S∈C |S|. Given distinct i, j ∈ [ℓ], a query

1 In [27], the amortized update complexity was stated as O(
√

m), assuming that dictionary search on a
set of elements can be performed in constant time by a structure that can be updated also in constant
time. Removing the assumption with hashing would degrade the update guarantee into an expected
bound; doing so with a binary search tree would introduce a logarithmic factor.
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reports the number of elements in Si ∩ Sj . We want to maintain a structure to support not
only queries and also updates (element insertions/deletions) in the sets of C. The structure
of [28] uses O(m) space, performs an update in Õ(

√
m) time, and answers a query in Õ(

√
m)

time.2 This structure can be deployed to perform DETC with the same guarantees as [27],
up to polylog factors.

Eppstein and Spiro [17] described a DETC structure that supports a query in O(1) time,
and an update in O(h log m) time, where h is the h-index of G at the time of the update.3
The update cost compares favorably with the structure of [27] (Section 1.1) because h is
always O(

√
m) but can be far less than

√
m. However, the structure of [17] consumes O(mh)

space, while that of [27] needs only O(m) space.
The DETC problem – equivalently, conjunctive query (2) – is a special form of the

first-order queries studied by Berkholz et al. [8]. When applied to DETC, their structure
performs an update in Õ(1) time and a query in constant time, when the maximum degree d

of the vertices is a constant. In general, however, the update time of [8] is 2dO(1) which is
much higher than

√
m even for moderate d. Note that the objective of [8] is to achieve results

of this form over a broad class of queries on sparse databases (rather than just DETC).
In the static scenario where no updates are allowed, the fastest algorithm for exact triangle

counting is still the classic O(m2ω/(ω+1))-time algorithm of Alon, Yuster, and Zwick [1],
where ω < 2.373 is the exponent of matrix multiplication. Chiba and Nishizeki [13] described
an algorithm of time O(αm) where α is the arboricity of G, which is the smallest number of
edge-disjoint forests that cover all the edges in G; in general, α is between 1 and ⌈

√
m⌉. For

approximate counting up to relative error ϵ, Eden, Levi, Ron, and Seshadhri [16] gave an
algorithm of Õ((1/ϵ)2 ·m1.5/T ) time. This result can be generalized to counting arbitrary
subgraphs; see the work of Assadi, Kapralov, and Khanna [2] and of Chen and Yi [12].

There is a line of research on approximate triangle counting with a stream algorithm
that makes one or constant passes over E (see [3–5, 9, 11, 15, 18, 23–25, 31, 34, 35, 37] and
the references therein). The main purpose there is to minimize the amount of space used.
One-pass algorithms on arbitrarily-ordered streams (i.e., edges arriving in any order) can
be used to deal with DATC when only insertions are present. However, in that scenario,
Braverman, Ostrovsky, and Vilenchik [9] showed that Ω(m) space is compulsory even to
distinguish between T = 0 and T = Ω(|V |). This implies the necessity of retaining E entirely
in the worst case. Our DATC problem complements [9] by asking: as E must be stored
anyway, how to organize it properly to permit fast updates?

There have been works on approximate triangle counting on a dynamic stream (arbitrary
edges insertions and deletions). Bulteau, Froese, Kutzkov, and Pagh [10] developed a structure
of Õ((1/ϵ)2 ·

√
m ·P2/T ) space that has constant query time but Õ((1/ϵ)2 ·P2/T ) update time,

where P2 is the number of 2-paths in G. Another structure due to Manjunath, Mehlhorn,
Panagiotou, and Sun [30] uses Õ(poly(1/ϵ) ·m3/T 2) space, and achieves constant query time
and Õ(poly(1/ϵ) ·m3/T 2) update time (see also [26]). These structures are applicable to
DATC, but their update time is quite large compared to our results (Section 1.3). It should
be noted, however, that the focus of [10,26,30] is to understand when the space can be made
o(m), rather than the update-query tradeoff.

2 Precisely speaking, Kopelowitz et al. [28] considered a different type of queries, which return whether
Si ∩ Sj is empty (as opposed to |Si ∩ Sj |). However, their structure can be easily adapted to achieve
the stated guarantees on the dynamic set intersection size problem.

3 The h-index is the maximum integer x such that G has x vertices of degree at least x.
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A natural attempt to perform DATC on G = (V, E) is to take a random subset E′ ⊆ E,
build an exact counting structure to monitor the number T ′ of triangles in G′ = (V, E′), and
then scale T ′ up appropriately to estimate the number of triangles in G. To our knowledge,
the most promising approach in this direction is the colorful triangle sampling technique by
Pagh and Tsourakakis [32], originally proposed for parallel computation. In our contexts, the
technique is applicable if Γ is sufficiently large. This can be best illustrated by fixing ϵ to a
constant; when Γ ≥ c|V | log2 |V | for some constant c, the technique (combined with [27]) gives
a structure supporting a query in constant time and an update in Õ(

√
m ·max{ |V |1.5

Γ1.5 , 1
Γ0.75 })

time w.h.p. This bound will be strictly improved by our methods.

Lower bounds. In the online boolean matrix-vector multiplication (OMv) problem, an
algorithm first spends poly(n) time preprocessesing an n× n boolean matrix M , and is then
required to compute Mvi (i ∈ [n]) where each vi is an n× 1 boolean vector.4 Vector vi+1
(i ≥ 1) is revealed only after the algorithm has output Mvi. The cost is the total time spent
on the n vectors.

OMv-conjecture [21]: no algorithm can solve the problem with probability at
least 2/3 using subcubic cost O(n3−δ) for any constant δ > 0.

The conjecture explains in a remarkable manner the computational hardness of a great
variety of problems [21], and gives rise to the tight (conditional) lower bound on DETC
mentioned in Section 1.1 (see [7] for the conjecture’s implications on conjunctive queries
when the update time has to be Õ(1)).

It has been shown [21] that the OMv conjecture implies another well-known conjecture
formulated by Patrascu [33] on the multiphase problem (namely, if the former is correct,
so is the latter, which means that the former is at least as hard to prove as the latter).
Patrascu’s conjecture has been utilized to establish (conditional) lower bounds on dynamic
set intersection emptiness [19, 28, 29], which can be converted to lower bounds on DETC,
but they are not tight (we will elaborate on this in Section 2). Indeed, many of the lower
bounds obtained from Patrascu’s conjecture can be strengthened with OMv (see [21] for a
comprehensive list); the same phenomenon also applies to the DATC lower bound (Theorem 1)
developed in this paper (more details in Section 2).

1.3 Our Results
DATC. Regarding Question 1 (Section 1.1), we first prove a conditional lower bound:

▶ Theorem 1. Consider the DATC problem where ϵ ≤ 0.49 and Γ = mc for an arbitrary
constant c satisfying 0 ≤ c < 1/2. Subject to the OMv-conjecture, no DATC structure can
ensure O(m0.5−δ/Γ) amortized update time and O(m 2

3 −δ) query time simultaneously, where
δ > 0 is an arbitrary constant. This is true even if the amortized update time holds only in
expectation.

We are able to match the lower bound with:

▶ Theorem 2. There is a DATC structure that ensures Õ((1/ϵ)3 ·
√

m/Γ) amortized update
time w.h.p. and O(1) query time. The space of the structure is Õ(m + (1/ϵ)2 ·m1.5/Γ).

4 Additions and multiplications are as in the boolean semi-ring.
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For constant ϵ ≤ 0.49, Theorems 1 and 2 together give the full tradeoff between update time
and the approximation quality (subject to the OMv-conjecture). As a pleasant implication,
for constant ϵ Theorem 2 shows that one can achieve Õ(1) amortized update time and O(1)
query time by setting Γ =

√
m; in other words, we never have to worry about Γ >

√
m

(simply lower such Γ to
√

m). It is interesting to note, in retrospect, that the constant c in
Theorem 1 does not reach 1/2.

DETC. We address Question 2 by giving a new structure whose performance depends on
the arboricity of G (Section 1.2):

▶ Theorem 3. For any monotonic function Γ(m) satisfying 1 ≤ Γ(m) ≤
√

m and Γ(c ·m) =
O(Γ(m)), there is a DETC structure of O(min{αm + m log m, ( m

Γ(m) )2}) space that supports
an update in Õ(min{α + Γ(m),

√
m}) amortized time, and a query in O(1) time, where α is

the largest arboricity of G in history. This holds even if α is unknown.

By setting Γ =
√

m, we reconstruct the result of [27] up to polylog factors; on the other
hand, we can do significantly better when α is small, i.e., G is sparse. In particular, when G

is a planar graph, α = O(1); thus our structure achieves O(m log m) space, Õ(1) amortized
update time, and constant query time. The arboricity of a graph is always bounded by the
h-index, but can be considerably lower, e.g., a planar graph can have an h-index of Θ(

√
m);

our structure is, therefore, not subsumed by [17] (Section 1.2). Similarly, even a planar
graph can have a maximum vertex degree of Θ(|V |); our result is, therefore, not subsumed
by [8] either. Interestingly, if α is known in advance, by setting Γ = α, we obtain a structure
occupying Õ(min{αm, m2/α2}) = Õ(m4/3) space that supports an update in Õ(α) time and
ensures constant query time.

2 Hardness of Dynamic Approximate Triangle Counting

In this section, we will prove:

▶ Lemma 4. Consider the DATC problem with ϵ = 0.49 and Γ = mc for an arbitrary
constant c satisfying 0 ≤ c < 1/2. Subject to the OMv-conjecture, no structure can guarantee
O(m0.5−δ−c) expected amortized update time and O(m1−2c/3−δ) query time, where δ > 0 can
be an arbitrarily small constant.

Theorem 1 is a corollary of Lemma 4, noticing that (i) 1− 2c/3 > 2/3 for c < 1/2, and
(ii) any solution that works for ϵ < 0.49 must also work for ϵ = 0.49. To prove the lemma,
we will consider the dynamic triangle detection (DTD) problem, where we want to store G in
a data structure to support:

update(e): either adds a new edge e or removes an existing edge e;
query: returns a single bit indicating whether G has any triangles at all. The query is
allowed to fail with probability at most 1/m2.

The lemma below was first established in [21]:

▶ Lemma 5 ( [21]). Subject to the OMv-conjecture, no DTD structure can guarantee
O(m0.5−δ) amortized update time and O(m1−δ) query time, where δ > 0 can be an arbitrarily
small constant. This is true even if the amortized update time holds only in expectation.5

5 The statement in [21] (see Corollary 3.4 therein) does not contain the second sentence. Furthermore,
the DTD query in [21] is not allowed to fail. However, it is easy to extend their argument to prove
Lemma 5. We provide a complete proof in the full version of this paper, which can be found on the
homepage of the second author.

ICDT 2021
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Suppose that algorithm A is able to maintain a DATC structure – on our instance where
ϵ = 0.49 and Γ = mc – which supports an update in O(m0.5−δ′

/Γ) = O(m0.5−δ′−c) expected
amortized time and a query in O(m1−2c/3−δ′) time for some δ′ > 0. We will deploy A to
obtain a DTD structure that contradicts Lemma 5.

Establishing Lemma 4. Henceforth, denote by G the input graph to the DTD problem,
and by m the number of edges in G. Given an integer parameter x ≥ 1, we define an image
graph [15] G′ as follows:

for each vertex u in G, create x image vertices in G′;
for each edge {u, v} in G, create x2 image edges in G′ by connecting every image vertex
of u and every image vertex of v.

The total number of edges in G′ equals m′ = x2m. Observe that if G has T triangles, then
the number of triangles in G′ is T ′ = x3T .

We now proceed to explain how to support updates and DTD queries on G. For this
purpose, let us first assume that M ≤ m ≤ 2M for some integer M ≥ 1. The assumption
will be removed with global rebuilding, as explained later.

We choose:

x = (2M)
c

3−2c . (3)

with which m′ = x2m = Θ(m
3

3−2c ).
We apply A to build a DATC structure on G′ (with ϵ = 0.49 and Γ = m′c). Given an

update(e) on G, we use A to insert/delete all the x2 image edges of e in G′ in expected
amortized time

O(m′0.5−δ′−c · x2) = O(m
2c

3−2c + 3
3−2c ( 1

2 −δ′−c)) = O(m
1
2 − 3δ′

3−2c ).

To explain how to answer a DTD query, we will need:

▶ Proposition 6. ϵm′c < x3/2.

Proof. First note that m′ = x2m ≤ (2M)
2c

3−2c · (2M) = (2M)
3

3−2c . Hence, ϵm′c is at most
0.49 · (2M)

3c
3−2c < x3/2. ◀

G has a triangle if and only if G′ has at least T ′ ≥ x3 triangles. Given a DTD query on
G, we run A to detect whether T ′ ≥ x3. For this purpose, it suffices to issue a DATC query
on G′. The output t of the DATC query is greater than x3/2 if and only if T ′ ≥ x3. This is
because

when T ′ < x3, it must hold that T ′ = 0, in which case t can be at most ϵ · Γ(m′) =
ϵm′c < x3/2 (Proposition 6);
when T ′ ≥ x3, t ≥ (1− ϵ)T ′ ≥ (1− ϵ)x3 > x3/2.

By our assumptions on A, the DATC query runs in time

O(m′1− 2c
3 −δ′

) = O(m
3

3−2c (1− 2c
3 −δ′)) = O(m1− 3δ′

3−2c ).

It remains to remove the assumption M ≤ m ≤ 2M . For this purpose, it suffices to
destroy and rebuild the DATC structure whenever m reaches M or 2M . The value of M for
the new structure is set to 2m/3. This makes sure Ω(M) updates on G must have happened
before the next reconstruction. Standard amortization arguments show that the amortized
update time is still O(m

1
2 − 3δ′

3−2c ) in expectation.
We thus have obtained a DTD structure with expected amortized update time O(m0.5−δ)

and query time O(m1−δ) with δ = 3δ′

3−2c , contradicting Lemma 5. This completes the proof
of Lemma 4.
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Remarks. A weaker lower bound would result from Patrascu’s multiphase conjecture [33].
Consider, for simplicity, c = 0 (essentially, exact counting) in which case the strongest lower
bound derived with that conjecture [28,29] asserts that no structure can guarantee O(m1/3−δ)
update and query time simultaneously6. This is also the best we can prove by executing our
argument on the multiphase conjecture, but is worse than Theorem 1 by a polynomial factor.
Finally, it is worth mentioning that our argument actually works for any ϵ < 0.5.

3 A Structure for Dynamic Approximate Triangle Counting

This section presents a DATC structure which achieves the performance in Theorem 2.

3.1 Overview
We will start by describing a “folklore” algorithm (see Section 3.6 for a discussion) for
approximate triangle counting on a static graph G = (V, E). Denote by d(u) the degree of
vertex u ∈ V . Define an ordering ≺ on V : u ≺ v if d(u) < d(v), breaking ties by id. Orient
G by pointing each edge {u, v} ∈ E from u to v where u ≺ v. Let E+ be the set of directed
edges thus obtained, and define G+ = (V, E+) as the resulting directed graph. Denote by
d+(u) the out-degree of u ∈ V in G+; it must hold that d+(u) = O(

√
m).

To estimate the number T of triangles, initialize Λ = 0, and repeat the following
s = Õ((1/ϵ)2 ·m1.5/T ) times:
1. Take an edge (u, v) ∈ E+ and then an out-neighbor w of u, both uniformly at random

(note that v may be w). We will refer to (u, v, w) as a random tuple.
2. Add the contribution of (u, v, w) to Λ, which is d+(u) if (v, w) ∈ E+, or 0 otherwise.
Finally, return Λ · (m/s) as the estimate, guaranteed to enjoy a relative error at most ϵ w.h.p.
Our structure dynamizes the above algorithm, as outlined next.

Standard ideas. We can replace T with Γ (Section 1), and maintain a set S of s = Õ((1/ϵ)2 ·
m1.5/Γ) random tuples, as well as the sum Λ of their contributions. Inserting/deleting an edge
{u, v} may flip the directions of many edges, rendering it expensive to keep G+ up-to-date.
But the issue can be easily remedied: it suffices to flip an edge only after Ω(min{d(u), d(v)})
updates. For this purpose, we introduce a function D such that D(u) approximates d(u) up
to a small constant factor for every u ∈ V . Accordingly, ≺ is redefined with respect to D:
u ≺ v if D(u) < D(v), breaking ties by id. We can then afford to materialize G+ explicitly
by updating it only when D changes.

D(u) is adjusted when it ceases to approximate d(u). When this happens, some edges
of u in G+ have their directions flipped, e.g., (u, v) becomes (v, u). A major challenge now
enters the picture: the altering of d+(v) may affect all the contributions of the random
tuples (x, y, z) with x = v! Specifically, each (v, y, z) ∈ S may have already registered in Λ a
contribution d+(v), which therefore must be modified. Unfortunately, we cannot afford to do
so for all neighbors v of u.

New ideas. We overcome the above challenge by introducing another function D+ such
that D+(u) approximates d+(u) up to some small factor for every u ∈ V . For each random
tuple (u, v, w) ∈ S, its contribution is either D+(u) – as opposed to d+(u) – or 0. Only

6 A DETC structure with O(m1/3−δ) update and query time will lead to ti = O(N1/3−δ) and tq =
O(N1/3−δ) in the context of Theorem 9 of [28], causing a contradiction there.

ICDT 2021



6:8 Towards Optimal Dynamic Indexes for Approximate (and Exact) Triangle Counting

when D+(u) ceases to approximate d+(u) will we adjust the tuple’s contribution in Λ. This
“two-level approximation” (i.e., D and D+) is the key in our solution to DATC. We will
argue that D, D+, S, and Λ can be maintained efficiently along with the edge updates.

3.2 Structure
Our discussion will assume that the number m of edges in G satisfies M ≤ m ≤ 2M for some
integer M ≥ 1. The assumption can be removed by reconstructing our structure periodically.

Main structure. Let D : V → N be a function such that for every u ∈ V :

D(u)
{

= 2 if d(u) ≤ 1
∈ [ 1

2 d(u), 3
2 d(u)] otherwise.

(4)

As mentioned, for two distinct vertices u, v ∈ V , u ≺ v if D(u) < D(v), breaking ties by id.
This gives rise to the directed graph G+ = (V, E+) as defined in Section 3.1. Let D+ : V → N
be another function such that for every u ∈ V :

D+(u) ∈
[
(1− ϵ/2) · d+(u), (1 + ϵ/2) · d+(u)

]
. (5)

During an edge insertion/deletion, function D (or D+, resp.) may temporarily violate (4)
(or (5), resp.), in which case we say that the function is bad. D (or D+, resp.) is good when
no violation occurs. At the beginning or right after reconstruction, D+(u) = d+(u) for all
u ∈ V ; and D(u) = d(u) if d(u) ≥ 2, or 2 otherwise.

Set s = Õ((1/ϵ)2 ·M1.5/Γ(M)); note that the function Γ(.) is parameterized for the
smallest possible m = M . Define S to be a set of s independent random tuples drawn from
G+ (Section 3.1). Each tuple (x, y, z) ∈ S makes a contribution

f(x, y, z) =
{

D+(x) if (y, z) ∈ E+

0 otherwise.
(6)

Set

Λ =
∑

(x,y,z)∈S

f(x, y, z). (7)

Given vertices u, v ∈ V , define:

Ξu,v =
∑

(x,u,v)∈S

D+(x) (8)

where the summation is over the random tuples (x, y, z) satisfying y = u, z = v. The pair
(u, v) is active if at least one such random tuple exists.

Our structure can be summarized as: (i) graphs G and G+, (ii) functions D and D+,
(iii) the set S of random tuples, and (iv) the value of Λ, and values of Ξu,v’s for all active
(u, v). It is worth pointing out that Λ and the Ξu,v’s do not imply the need to maintain the
contribution function f in (6).

Filtered subsets of S. We will use “⊥” to denote a wildcard, and define the boolean
expression “u = ⊥” to be true for any u ∈ V . Given q1, q2, and q3 where each qi (1 ≤ i ≤ 3)
is either a vertex or a wildcard, we introduce:

Sq1,q2,q3 = {(x, y, z) ∈ S | x = q1, y = q2, z = q3}

namely, the subset obtained by filtering S using q1, q2, q3.
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▶ Lemma 7. All the statements below are true:
For any u ∈ V , |Su,⊥,⊥| = Õ(d+(u) · s/m) w.h.p.
For any u, v ∈ V such that (u, v) ∈ E+, |Su,v,⊥| = Õ(s/m) w.h.p.
For any u, v ∈ V such that (u, v) ∈ E+, |Su,⊥,v| = Õ(s/m) w.h.p.

Proof. A random tuple (x, y, z) satisfies x = u if and only if (x, y) is an out-edge of u in G+.
As (x, y) is a random edge in G+, it is an out-edge of u with probability d+(u)/m. Due to
independence, |Su,⊥,⊥| is Õ(s · d+(u)/m) w.h.p., as stated in the first bullet.

To prove the 2nd (or 3rd, resp.) bullet, it suffices to show that (x, y, z) belongs to |Su,v,⊥|
(or |Su,⊥,v|, resp.) with probability 1/m. This is obvious for Su,v,⊥. For (x, y, z) to appear
in Su,⊥,v:

(x, y) must be an out-edge of u, which happens with probability d+(u)/m;
z chooses v, which happens with probability 1/d+(u).

Therefore, Pr[(x, y, z) ∈ Su,⊥,v] = 1/m. ◀

Auxiliary structures. We assume the availability of auxiliary structures for:
Given any q1, q2 and q3, retrieve the size of Sq1,q2,q3 in Õ(1) time.
Given any q1, q2, q3 and an integer k between 1 and |Sq1,q2,q3 |, uniformly sample k tuples
without replacement (WoR) from Sq1,q2,q3 in Õ(k) time. By setting k = |Sq1,q2,q3 |, we can
use the operation to extract the entire Sq1,q2,q3 .
Given any u, v ∈ V , in Õ(1) time either retrieve Ξu,v or assert that (u, v) is not active.
Generate a random tuple from G+ in Õ(1) time.

All the auxiliary structures can be implemented as simple variants of binary search trees (see
Chapter 14 of [14]).

Space. The overall space consumption is clearly O(m + s) = Õ(m + (1/ϵ)2 ·m1.5/Γ(m)),
using the fact that Γ(m) ≤ Γ(2M) = O(Γ(M)).

Query. We will prove in Appendix B:

▶ Lemma 8. With probability at least 1− 1/m3, the value Λ · (M/s) is an estimate satisfying
the (ϵ, Γ(m)) guarantee.

A query can therefore be answered in constant time.

Remarks. The following subsections will explain how to support insertions. The deletion
algorithm is similar, with details duly presented in Appendix C.

Our discussion will ignore the auxiliary structures because they are rudimentary; and
their maintenance cost can be higher than that of S and {Ξu,v | active (u, v)} by at most a
logarithmic factor. Furthermore, when a tuple (x, y, z) is inserted/deleted in S, Λ and Ξy,z

can be updated accordingly in logarithmic time. We will, therefore, not discuss explicitly the
modifications to Λ and {Ξu,v | active (u, v)} caused by insertions/deletions in S.

3.3 Insertion: When D Will Still Be Good
Suppose that we are inserting an edge {u∗, v∗} in G. After the insertion, d(u∗) and d(v∗) both
increase by 1. In this section, we consider that D is still good for the new d(u∗) and d(v∗).
Consequently, every existing edge in G+ retains its direction. Without loss of generality,
assume that {u∗, v∗} points from u∗ to v∗ in G+.
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Rationale. How would this affect a random tuple (x, y, z) ∈ S? Recall that (x, y) is supposed
to be drawn uniformly at random from E+. Now that m has increased by 1, (x, y) should be
replaced by (u∗, v∗) with probability 1/m (reservoir sampling [38]). If the replacement occurs,
(x, y, z) is said to be edge-replaced; in this case, we take a (uniformly) random out-neighbor
w of u∗, delete (x, y, z) from S, and add (u∗, v∗, w).

For a tuple (x, y, z) that is not edge-replaced, further processing is necessary in two cases:
Case 1: x = u∗. Since u∗ has got a new out-neighbor v∗, z (which is supposedly a random
out-neighbor of x) should be replaced by v∗ with probability 1/d+(u∗). If the replacement
happens, (x, y, z) is said to be outneighbor-replaced; in this case, we delete (x, y, z) from
S and add (u∗, y, v∗) instead.
Case 2: y = u∗, z = v∗. The new edge (u∗, v∗) completes the triangle formed by x, u∗, v∗.
We should therefore increase Λ (see (7)) by f(x, y, z) = D+(x).

Algorithm 1 Pseudocode of the insertion algorithm.

algorithm insert (u∗, v∗) /* a new edge (u∗, v∗) has just been added to G+ */
1. generate an integer k1 following the binomial distribution B(|S|, 1/m)
2. S1 ← a size-k1 WoR sample set of S; remove S1 from S

3. generate an integer k2 following the binomial distribution B(|Su∗,⊥,⊥|, 1/d+(u∗))
4. S2 ← a size-k2 WoR sample set of Su∗,⊥,⊥; remove S2 from S

/* the removal of each (x, y, z) ∈ S1 ∪ S2 requires updating Λ and Ξy,z */
5. increase Λ by Ξu∗,v∗

6. repeat k1 times
7. add (u∗, v∗, w) into S where w is a (uniformly) random out-neighbor of u∗

/* requires updating Λ and Ξv∗,w */
8. for each (u∗, y, z) ∈ S2 do
9. add (u∗, y, v∗) to S /* requires updating Λ and Ξy,v∗ */

Insertion algorithm. Algorithm 1 presents the algorithm in pesudocode. To find the edge-
replaced tuples, we cannot afford to toss a coin for each tuple in S. However, we do not
have to; because the tuples in S are independent, it suffices generate how many – say k1 –
edge-replaced tuples there should be, and draw a WoR sample set S1 of size k1 from S. Here,
k1 follows the binomial distribution B(|S|, 1/m), and can be generated in Õ(1) time (see,
e.g., [38]). Using the auxiliary structures, we can extract S1 and remove the tuples therein
from S (Lines 1-2) in Õ(k1) time where k1 = Õ(|S|/m) = Õ(s/m) w.h.p. The same idea also
applies to outneighbor-replaced tuples in Case 1. The number k2 of such tuples follows the
binomial distribution B(|Su∗,⊥,⊥|, 1

d+(u∗) ); hence, k2 = Õ(|Su∗,⊥,⊥|/d+(u∗)) = Õ(s/m) w.h.p.
(Lemma 7). From Su∗,⊥,⊥, we extract a WoR sample set S2 of size k2 in Õ(k2) = Õ(s/m)
time using the auxiliary structures; S2 can be regarded as the set of outneighbor-replaced
tuples, which are then removed from S in Õ(s/m) time (Line 3-4). Increasing the value of Λ
due to Case 2 can be accomplished by simply adding Ξu∗,v∗ (defined in (8)) to Λ (Line 5).
The value of Ξu∗,v∗ can be retrieved in Õ(1) time from the auxiliary structures. Lines 6-9
then replenish S for the random tuples in S1 ∪ S2 removed earlier.

After the insertion, the out-degree d+(u∗) of u∗ increases by 1. If D+(u∗) still satisfies
(5), the insertion is complete. Otherwise, we call fix-Dplus(u∗) (introduced below) and
finish. In summary, the insertion runs in Õ(s/m) time, plus the cost of fix-Dplus(u∗).

Algorithm fix-Dplus(u). This algorithm has the following constraint:

Invariant: when called, D+(u) violates (5).
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fix-Dplus(u) first makes a copy of the current D+(u) – denote the copy as D+
old – and then

resets D+(u) to d+(u). Accordingly, for every (x, y, z) ∈ S with x = u, its contribution
f(x, y, z) may change from D+

old to d+(u). This may affect Λ and every Ξv,w where v and
w are out-neighbors of u in G+. To remedy all these, we first retrieve Su,⊥,⊥, and then for
every (u, y, z) ∈ Su,⊥,⊥:

if (y, z) ∈ E+, increase Λ by d+(u)−D+
old ;

increase Ξy,z by d+(u)−D+
old .

By Lemma 7, Su,⊥,⊥ = Õ(d+(u) · s/m) w.h.p. This implies:

▶ Lemma 9. The cost of fix-Dplus(u) is Õ(|D+
old − d+(u)| · s/(ϵm)) w.h.p.

Proof. The cost of fix-Dplus(u) is Õ(d+(u) · s/m). Next, we show d+(u) = O(|D+
old −

d+(u)|/ϵ). Consider the two possibilities of how D+(u) can violate (5). If D+
old > (1 + ϵ/2) ·

d+(u), then d+(u) < (D+
old − d+(u)) · (2/ϵ). On the other hand, if D+

old < (1− ϵ/2) · d+(u),
we have d+(u) < (d+(u)−D+

old) · (2/ϵ). ◀

3.4 Insertion: When D Will Go Bad
Again, denote by {u∗, v∗} the edge to be inserted. This time, we consider that D will be bad
after d(u∗) and d(v∗) increase by 1. In other words, D will cease to satisfy (4) with respect
to u∗, v∗, or both. Our strategy is not to perform the insertion immediately. Instead, we will
first modify D to make sure that D will still be good after the insertion. Then, the insertion
can be processed by the algorithm in Section 3.3.

Next, we will introduce an algorithm named fix-D which takes a vertex u as the parameter,
and has the following constraint:

Invariant: when called:
D is good
D(u) < d(u) and d(u) = O(D(u)), and
d(u)−D(u) = Ω(D(u)).

At the end of fix-D(u), D(u) = d(u), which ensures that D(u) will still satisfy (4) even after
d(u) grows by 1. Thus, for the aforementioned insertion, we can simply invoke fix-D(u∗)
and/or fix-D(v∗), depending on which will cause D to go bad.

Rationale behind fix-D(u). We increase D(u) to d(u). Recall that, for each neighbor v

of u in G, the edge {u, v} is given a direction in G+. The increase of D(u) may affect the
direction: if the direction was (u, v) before, it may now be flipped to (v, u); on the other
hand, if the direction was (v, u), it remains the same.

The direction flipping can invalidate S because a tuple in S may stop being a random
tuple, or its contribution as in (6) may change (which will further affect Λ). To explain, fix
a tuple (x, y, z) ∈ S, and suppose that an edge (u, v) is to be flipped to (v, u). Next, we
enumerate all possible cases where modifications are necessary:

Case 1: x ≠ u and x ̸= v. (x, y, z) will remain as a random tuple. However, its
contribution f(x, y, z) is affected in two subcases:

Case 1.1: y = u and z = v. f(x, y, z) will drop from D+(x) to 0. Accordingly, Λ needs
to be decreased by D+(x). See Figure 1(a).
Case 1.2: y = v and z = u. f(x, y, z) will grow from 0 to D+(x). Accordingly, Λ needs
to be increased by D+(x). See Figure 1(b).

ICDT 2021



6:12 Towards Optimal Dynamic Indexes for Approximate (and Exact) Triangle Counting
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Figure 1 Different cases of fix-D.

Case 2: x = u and y = v. (x, y, z) will become invalid due to the disappearance of
(x, y). The tuple (u, v, z) should be replaced by (v, u, w) where w is a (uniformly) random
out-neighbor of v. See Figure 1(c).
Case 3: x = u, y ̸= v, and z = v. (x, y, z) will become invalid due to the disappearance of
(x, z). The tuple (u, y, v) should be replaced by (u, y, w) where w is a (uniformly) random
out-neighbor of u. See Figure 1(d).
Case 4: x = v (which implies y ̸= u and z ̸= u). Since v has gained a new out-neighbor
u, (x, y, z) may no longer be random. To remedy this, z should be replaced by u

with probability 1/d+(v). If the replacement occurs, the tuple (v, y, z) is said to be
outneighbor-replaced. See Figure 1(e).

Algorithm fix-D(u). We start by setting D(u) = d(u), flipping the edges of u in G+

wherever needed.
Given each neighbor v of u in G such that {u, v} was flipped, we
(for Case 1) retrieve Ξu,v and Ξv,u (from the auxiliary structures), and increase Λ by
Ξv,u − Ξu,v.
(for Case 2) retrieve Su,v,⊥; and then for each (u, v, z) ∈ Su,v,⊥, delete (u, v, z) from S,
pick an out-neighbor w of v uniformly at random, and add (v, u, w) to S.
(for Case 3) retrieve Su,⊥,v; and then for each (u, y, v) ∈ Su,⊥,v with y ̸= v, delete (u, y, v)
from S, pick an out-neighbor w of u uniformly at random, and add (u, y, w) to S.

By Lemma 7, Su,v,⊥ and Su,⊥,v both have size Õ(s/m) w.h.p. Thus, Cases 1-3 can be
handled in Õ(d(u) · s/m)) time w.h.p.

Next, we focus on Case 4. Let v be a neighbor of u with {u, v} flipped. The number
kv of outneighbor-replaced tuples (x, y, z) with x = v follows the binomial distribution
B(|Sv,⊥,⊥|, 1/d+(v)). Combining this with (the first bullet of) Lemma 7 shows that kv =
Õ(d+(v) · s

m ·
1

d+(v) ) = Õ(s/m) w.h.p. We extract a WoR sample set of size kv from Sv,⊥,⊥
7,

which takes Õ(kv) = Õ(s/m) time using the auxiliary structures. Every tuple (v, y, z)
extracted is then modified to (v, y, u) in Õ(1) time. Therefore, the total cost of Case 4 is
again Õ(d(u) · s/m) w.h.p.

7 Precisely speaking, this should be the Sv,⊥,⊥ at the beginning of fix-D(u).
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Now, let us worry about the function D+. Compared to before fix-D(u) was called,
d+(u) may have changed abruptly (by as much as d(u) in the worst case). If D+(u) now
violates (5), we invoke fix-Dplus(u). Finally, for each neighbor v of u in G, d+(v) may have
changed by 1, compared to before fix-D(u) was called. D+(v) may no longer satisfy (5); if
so, call fix-Dplus(v).

In summary, fix-D(u) runs in Õ(d(u) · s/m) time w.h.p., plus the cost of all the calls
to fix-Dplus at the end. It is worth pointing out that the invariant of fix-D(u) ensures
d(u) = O(Dold), where Dold is the value of D(u) at the beginning of fix-D(u).

3.5 Analysis
Section 3.3 has shown that an insertion finishes in Õ(s/m) time w.h.p. if no calls to fix-Dplus
or fix-D are made. It remains to discuss the time spent on fix-Dplus and fix-D.

Let us start with fix-D. Consider its execution on a node u. Denote by Dold the value
of D(u) at the beginning of fix-D(u). Recall that fix-D(u) has cost Õ(Dold · s/m) w.h.p.,
plus the cost of some calls to fix-Dplus at the end. We will account for the Õ(Dold · s/m)
cost first, and worry about fix-Dplus later. The invariant of fix-D (Section 3.4) makes
sure that Ω(Dold) edges incident on u must have been inserted since the last time fix-D was
invoked on u. We can therefore charge the Õ(Dold · s/m) cost over those insertions, each of
which bears only Õ(s/m).

Let us now turn attention to fix-Dplus, for which we use a token-based analysis. A
token is generated in two scenarios:

Case 1: in Section 3.3, when an edge (u∗, v∗) is added to G+, we give a token to u∗

because its out-degree will increase by 1.
Case 2: during the execution of fix-D(u), when we flip an in/out-edge of u with respect
to an in/out-neighbor v, we give both u and v a token because their out-degrees will
change by 1.

▶ Lemma 10. If the total number of edge insertions is nins, the number of tokens generated
is O(nins).

Proof. The number of tokens in Case 1 is clearly nins. Next, we focus on Case 2. Let Dold
be the value of D(u) at the beginning of fix-D(u). Case 2 can generate at most 2d(u) tokens,
while 2d(u) is O(Dold) due to the invariant of fix-D. As mentioned, Ω(Dold) edges incident
on u must have been inserted since the last fix-D(u). Thus, after amortization, each of
those insertions generates O(1) tokens in Case 2. ◀

Consider a call to fix-Dplus(u). Let D+
old be the value of D+(u) at the beginning of the

call. Clearly, u must have received at least |D+
old−d+(u)| tokens since the last fix-Dplus(u).

We can charge the cost Õ(|D+
old − d+(u)| · s/(ϵm)) of fix-Dplus(u) over those tokens, each

of which is amortized only Õ(s/(ϵm)). Combined with Lemma 10, this means that each
insertion is amortized a share of Õ(s/(ϵm)).

In summary, each insertion runs in Õ(s/(ϵm)) = Õ((1/ϵ)3·
√

m/Γ) amortized time w.h.p.
This, together with the deletion algorithm in Appendix C, establishes Theorem 2.

3.6 Discussion
There is a rich literature on approximate triangle counting; for entry points into the literature,
see [2–5,9–12,15,18,23–26,30–32,34,35,37]. The presented data structure reflects our efforts
in identifying the existing techniques suitable for DACT. Strictly speaking, the “folklore”

ICDT 2021



6:14 Towards Optimal Dynamic Indexes for Approximate (and Exact) Triangle Counting

static-counting algorithm in Section 3.1 has not been formally documented; however, its
underlying ideas are already known. First, orienting the edges in the way described is a
standard approach (e.g., [2, 4, 13,16,22,31]). Second, the sampling procedure for acquiring
“random tuples” is commonly known as wedge sampling, and is an important method behind
many algorithms (e.g., [2,4,10,16,18,23,31,34,35]). Third, the notion of contribution (defined
in (6)) is what makes wedge sampling work in our context, and was inspired by a subroutine
inside an algorithm developed in [16] (see the Heavy subroutine therein). Our contributions,
on the other hand, are in maintaining the information needed by the static algorithm under
updates. The two-level approximation idea – manifested by the functions D and D+ – is
unlikely the only way to make things work, but has helped considerably in making our
arguments as clean as possible.

4 A Structure for Dynamic Exact Triangle Counting

This section presents a DETC structure that achieves the performance in Theorem 3. Our
algorithms and analysis can be regarded as a fine-grained version of those in [27].

4.1 Structure
We assume that the number m of edges in G = (V, E) satisfies M ≤ m ≤ 2M for some
integer M ≥ 1; the assumption can be removed by standard global rebuilding. As stated
in Theorem 3, our structure takes a function Γ(.) as a parameter. Set λ = Γ(M) in the
following discussion.

Graph orientation. At any moment, we orient G by giving each edge {u, v} in G a direction.
Let E+ be the set of directed edges obtained, and denote by G+ = (V, E+) the resulting
directed graph. Denote by d+(u) the out-degree of u ∈ V . The orientation is done according
to:
▶ Lemma 11 ( [6]). By spending O(log m) worst-case time on an (edge) insertion/deletion
in G, we can maintain G+ such that d+(u) = O(α + log m) for every u ∈ V , where α is
the largest arboricity of G in history. Furthermore, each insertion/deletion in G flips the
directions of O(log m) edges in G+. The above statements are true even if α is unknown.

Since M ≤ m ≤ 2M holds at all times, we must have α = O(
√

M) = O(
√

m). Note that
G+ can contain cycles (it differs from the G+ in Section 3.2). For each u ∈ V , denote by
N+(u) the set of out-neighbors of u, and by N−(u) the set of its in-neighbors.

Light, heavy, and active H-combos. We classify each vertex u ∈ V as light or heavy based
on its degree d(u) in G according to the rules below:

if d(u) ≤ λ/2, always light, whereas if d(u) ≥ λ, always heavy;
when our data structure is just constructed, u is heavy if d(u) ≥ 3λ/4 or light otherwise;
if u is heavy, it switches to light only when d(u) has dropped to λ/2;
if u is light, it switches to heavy only when d(u) has increased to λ.

Given two distinct heavy vertices u, v ∈ V , define:
I{u,v} = |N−(u) ∩N−(v)|

namely, the number of their common in-neighbors in G+. {u, v} forms an active H-combo
if I{u,v} > 0; note that there may not be an edge between u and v in G. Notice that while
light/heavy-vertices are defined based on G, I{u,v} is defined based on G+. This is a crucial
design to attain the performance in Theorem 3.
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Figure 2 Four different triangles to be counted .

Structure. We maintain
G and G+

the number T of triangles in G

the set A of active H-combos, and IA = {I{u,v} | {u, v} ∈ A}.
We also assume auxiliary structures for:

given any heavy vertices u, v, finding I{u,v} in Õ(1) time or declaring that {u, v} /∈ A;
inserting, deleting, or modifying an element in IA using Õ(1) time.

▶ Lemma 12. The above structure consumes O(min{αm + m log m, (m/λ)2}) space.

Proof. The auxiliary structures only need to be binary search trees which consume O(|A|)
space. It suffices to bound the size of A. Note that the number of heavy vertices is
O(m/λ) which immediately implies |A| = O((m/λ)2). Next, we will prove that |A| is also
bounded by O(αm + m log m). Remember that each active H-combo {u, v} must have a
common in-neighbor. Conversely, each vertex w ∈ V can generate O(|N+(w)|2) active
H-combos. By Lemma 11, |N+(w)| = O(α + log m). Therefore, |A| = O(

∑
w∈V |N+(w)|2) =

O(
∑

w∈V |N+(w)| · (α + log m)) = O(m(α + log m)). ◀

Each (DETC) query obviously can be answered in constant time.

Remarks. For each edge update in G, Lemma 11 flips O(log m) edges in G+. We implement
the flipping of an edge (u, v) by first deleting (u, v) from G+ and then adding (v, u) back. In
this way, the number of edge updates on G+ can be higher than that on G by at most a
logarithmic factor. Thus, it suffices to discuss how to add/remove a (directed) edge in G+.

Next, we will explain how to support insertions. The deletion algorithm is similar and
thus moved to Appendix D. Our discussion will ignore the auxiliary structures. Furthermore,
whenever an H-combo {u, v} is inserted/deleted in A, I{u,v} can be inserted/deleted accord-
ingly in logarithmic time. We will therefore not elaborate on the modifications to IA caused
by insertions/deletions in A.

4.2 Insertion
Update T . Given a new edge (u, v) in G+, Figure 2 shows the possible cases for a triangle
involving u and v, in terms of the edge directions. The types in Figures 2(a), 2(b), and 2(c)
have an out-edge of u, v, or both, and hence, can be enumerated directly by scanning through
the out-neighbors of u and v. The time required is Õ(d+(u) + d+(v)) = Õ(α) by Lemma 11.

Regarding Figure 2(d), we distinguish two cases:
Case 1: u or v is a light vertex. If u (or v, resp.) is a light vertex, go through its O(λ)
in-edges to enumerate triangles of Figure 2(d) in Õ(λ) time.
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Case 2: u and v are both heavy vertices. The number of such triangles is I{u,v}, and can
be retrieved from the auxiliary structures in Õ(1) time.

Therefore, T can be updated in Õ(α + λ) time.

Update IA and A. If v is heavy, every heavy out-neighbor w of u (other than v) forms an
active H-combo with v. If {v, w} is already in A, increase I{v,w} by 1; otherwise, add {v, w}
to A. This requires Õ(d+(u)) = Õ(α) time in total.

Now, u and/or v may have just turned from light to heavy. It suffices to concentrate on u

due to symmetry. We examine every in-neighbor x of u in G. For each heavy out-neighbor y

of x (y ̸= u), either add {u, y} to A or increase I{u,y} by 1. The total time is Õ(αλ) because
u has at most λ in-neighbors, each having an out-degree Õ(α). We charge the time on the
Ω(λ) edges of u that have been added since u turned light last time; the insertion of each of
those edges bears only Õ(α) time.

Combining the above with the deletion algorithm in Appendix D establishes Theorem 3.
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Appendix

A Chernoff Bounds

Let X1, ...,Xn be independent random variables between 0 and 1. If X =
∑n

i=1 Xi and
µ = E[X], then for any 0 ≤ γ ≤ 1:

Pr
[
|X− µ| ≥ γ · µ

]
≤ 2 exp

(
−γ2µ

3

)
(9)

and for any γ ≥ 1:

Pr[X ≥ (1 + γ) · µ] ≤ exp
(
− (1 + γ)µ

6

)
. (10)

These bounds can be found in [36].

B Proof of Lemma 8

We will use N+(u) to represent the set of out-neighbors of u in G+.

▶ Lemma 13. For every vertex u ∈ V , d+(u) ≤ max{4,
√

6m}.

Proof. We consider only d(u) > 4 because otherwise the claim obviously holds. For each
out-neighbor v of u in G+, its degree d(v) in G must be at least 2. To see this, suppose on
the contrary d(v) ≤ 1, which implies D(v) = 2 < d(u)

2 ≤ D(u) (the last ≤ is due to (4)).
This means that the edge {u, v} should point from v to u, giving a contradiction.

By (4), the fact d(v) ≥ 2 indicates D(v) ≤ 3
2 d(v). We now have d(u)

2 ≤ D(u) ≤ D(v) ≤
3d(v)

2 , namely, d(u) ≤ 3d(v). It follows that

d+(u)2 ≤ d+(u) · d(u) =
∑

v∈N+(u)

d(u) ≤
∑

v∈N+(u)

3d(v) ≤ 6m

thus completing the proof. ◀

Let us introduce

D+
max = (1 + ϵ/2) ·max{4,

√
6m} (11)

For each random tuple (x, y, z) ∈ S, define:

X(x,y,z) = f(x, y, z)
D+

max
. (12)
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Note that X(x,y,z) is a random variable between 0 and 1 because f(x, y, z) ≤ D+(x), while
D+(x) is at most (1 + ϵ/2) · d+(x) (see (5)), which in turn is at most D+

max by Lemma 13.
Set

X =
∑

(x,y,z)∈S

X(x,y,z) = Λ
D+

max
(13)

where the last equality used (7).

▶ Lemma 14.
(
1− ϵ

2
)

s·T
m·D+

max
≤ E[X] ≤

(
1 + ϵ

2
)

s·T
m·D+

max
.

Proof. On condition that (x, y) equals edge (u, v) in G+, the random variable f(x, y, z)
takes value D+(u) if (v, z) ∈ E+ or 0 otherwise. (v, z) ∈ E+ if and only if z is a common
out-neighbor of u and v. Hence:

E[f(x, y, z)] = 1
m

∑
(u,v)∈E+

|N+(u) ∩N+(v)|
d+(u) ·D+(u)

(by (5)) ≤ 1
m

∑
(u,v)∈E+

|N+(u) ∩N+(v)| · (1 + ϵ/2) = (1 + ϵ/2) · T

m
.

It thus follows from (12) and (13) that E[X] ≤ (1 + ϵ/2) s·T
m·D+

max
.

Analogously, applying the fact that D+(u)/d+(u) ≥ 1 − ϵ/2 for all u ∈ V leads to
E[X] ≥ (1− ϵ/2) s·T

m·D+
max

. ◀

We will proceed differently from here, depending on the comparison between T and Γ(m).

B.1 When T ≥ Γ(m)
We will prove that s = Õ((1/ϵ)2 ·M1.5/Γ(M)) ensures:

Pr
[∣∣∣Λ · m

s
− T

∣∣∣ ≥ ϵ · T
]
≤ 1

m3 (14)

▶ Lemma 15. We can choose an s = Õ((1/ϵ)2 ·M1.5/Γ(M)) to guarantee

Pr
[∣∣X−E[X]

∣∣ ≥ ϵ

2 ·
s · T

m ·D+
max

]
≤ 1

m3 .

Proof.

Pr
[∣∣X−E[X]

∣∣ ≥ ϵ

2 ·
s · T

m ·D+
max

]
(by Lemma 14) ≤ Pr

[∣∣X−E[X]
∣∣ ≥ ϵ

2 ·
E[X]

1 + ϵ/2

]
≤ Pr

[∣∣X−E[X]
∣∣ ≥ ϵ

3 ·E[X]
]

(by (9)) ≤ 2 exp
(
−
( ϵ

3

)2 E[X]
3

)
(by Lemma 14) ≤ 2 exp

(
−
( ϵ

3

)2 s · T
3m ·D+

max
· (1− ϵ/2)

)
≤ 2 exp

(
−
( ϵ

3

)2 s · T
6m ·D+

max

)
which is at most 1/m3 for s = O(mD+

max

ϵ2·T log m). The claim follows from D+
max = O(

√
m)

(see (11)), T ≥ Γ(m) ≥ Γ(M), and m ≤ 2M . ◀
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The lemma implies (14) because

Pr
[∣∣X−E[X]

∣∣ ≥ ϵ

2 ·
s · T

m ·D+
max

]
= Pr

[
X ≥ E[X] + ϵ

2 ·
s · T

m ·D+
max

or X ≤ E[X]− ϵ

2 ·
s · T

m ·D+
max

]
(by Lemma 14) ≥ Pr

[
X ≥ (1 + ϵ) s · T

m ·D+
max

or X ≤ (1− ϵ) s · T
m ·D+

max

]
(by (13)) = Pr

[
Λ · m

s
≥ (1 + ϵ)T or Λ · m

s
≤ (1− ϵ)T

]
= Pr

[∣∣∣Λ · m

s
− T

∣∣∣ ≥ ϵ · T
]

.

B.2 When 0 < T < Γ(m)

We will prove that s = Õ((1/ϵ)2 ·M1.5/Γ(M)) ensures:

Pr
[∣∣∣Λ · m

s
− T

∣∣∣ ≥ ϵ · Γ(m)
]
≤ 1

m3 (15)

Since there is at least one triangle, Xx,y,z (see (12)) has expectation strictly greater than
0. By (13), this means E[X] > 0.

▶ Lemma 16. We can choose an s = Õ((1/ϵ)2 ·M1.5/Γ(M)) to guarantee

Pr
[∣∣X−E[X]

∣∣ ≥ ϵ

2 ·
s · Γ(m)

m ·D+
max

]
≤ 1

m3 .

Proof.

Pr
[∣∣X−E[X]

∣∣ ≥ ϵ

2 ·
s · Γ(m)

m ·D+
max

]
= Pr

[∣∣X−E[X]
∣∣ ≥ ϵ

2 ·
s · Γ(m)

m ·D+
max ·E[X]

·E[X]
]

(16)

Setting γ = ϵ·s·Γ(m)
2m·D+

max·E[X] , we distinguish two cases.

Case 1: γ ≤ 1. By (9), we have

(16) ≤ 2 exp
(
−γ2 · E[X]

3

)
= 2 exp

(
−
(

ϵ · s · Γ(m)
2m ·D+

max

)2
· 1

3 E[X]

)

(by Lemma 14) ≤ 2 exp
(
−
(

ϵ · s · Γ(m)
2m ·D+

max

)2
· 1

3(1 + ϵ/2) s·T
m·D+

max

)

≤ 2 exp
(
− ϵ2s · (Γ(m))2

18m · T ·D+
max

)
(by Γ(m) > T ) ≤ 2 exp

(
− ϵ2s · Γ(m)

18m ·D+
max

)

which is at most 1/m3 for s = O(mD+
max·log m
ϵ2Γ(m) ). The claim follows from D+

max = O(
√

m),
Γ(m) ≥ Γ(M), and m ≤ 2M .
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Case 2: γ > 1. Since X ≥ 0, we have

(16) = Pr
[
X−E[X] ≥ γ ·E[X]

]
(by (10)) ≤ exp

(
−1 + γ

6 E[X]
)
≤ exp

(
−γ

6 E[X]
)

≤ exp
(
− ϵ · s · Γ(m)

12m ·D+
max ·E[X]

·E[X]
)

= exp
(
− ϵ · s · Γ(m)

12m ·D+
max

)
which is at most 1/m3 for s = O(mD+

max·log m
ϵ·Γ(m) ). The claim follows from D+

max = O(
√

m),
Γ(m) ≥ Γ(M), and m ≤ 2M . ◀

The lemma implies (15) because

Pr
[∣∣X−E[X]

∣∣ ≥ ϵ

2 ·
s · Γ(m)

m ·D+
max

]
= Pr

[
X ≥ E[X] + ϵ

2 ·
s · Γ(m)

m ·D+
max

or X ≤ E[X]− ϵ

2 ·
s · Γ(m)

m ·D+
max

]
(by Lemma 14) ≥ Pr

[
X ≥

(
1 + ϵ

2

) s · T
mD+

max
+ ϵs · Γ(m)

2mD+
max

or

X ≤
(

1− ϵ

2

) s · T
mD+

max
− ϵs · Γ(m)

2mD+
max

]
(by T < Γ(m)) ≥ Pr

[
X ≥ s · T

m ·D+
max

+ ϵs · Γ(m)
m ·D+

max
or X ≤ s · T

m ·D+
max
− ϵs · Γ(m)

m ·D+
max

]
(by (13)) = Pr

[
Λ · m

s
≥ T + ϵ · Γ(m) or Λ · m

s
≤ T − ϵ · Γ(m)

]
= Pr

[∣∣∣Λ · m

s
− T

∣∣∣ ≥ ϵ · Γ(m)
]

.

B.3 When T = 0
In this case, every random tuple must have contribution 0 (see (6)). Thus, Λ must be 0, and
hence, so is our estimate.

C Deletion Algorithm of the DATC Structure

C.1 Deletion: When D Will Still Be Good
Suppose that we are deleting an edge {u∗, v∗} in G. This section discusses the scenario where
D is still good after d(u∗) and d(v∗) decrease by 1. Assume, without loss of generality, that
{u∗, v∗} points from u∗ to v∗ in G+.

Every (x, y, z) ∈ S with x = u∗ and y = v∗ should be replaced with a new random tuple.
For this purpose, we remove the entire S(u∗,v∗,⊥) from S, regenerate the same the same
number of random tuples, and add them to S. By Lemma 7, this can be done in Õ(s/m)
time w.h.p.

Now consider a tuple (x, y, z) ∈ S with x ≠ u∗ or y ≠ v∗. After the deletion, (x, y)
remains as a uniformly random edge in from E+. Nevertheless, we still need to make sure
that z is a random out-neighbor of x, and that Λ is correct:

Case 1: x = u∗ and z = v∗. We remove (x, y, z) from S, select an out-neighbor w of u∗

uniformly at random, and add (u∗, y, w) to S.
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Case 2: y = u∗ and z = v∗. As the deleted edge (u∗, v∗) breaks the triangle formed by
x, u∗, and v∗, Λ should be decreased by D+(x).

Regarding implementation, all the tuples of Case 1 can be found in Õ(|S(u∗,⊥,v∗))| time,
which is Õ(s/m) w.h.p. by Lemma 7; this is also the time spent on Case 1 in total. For Case
2, the overall amount of reduction on Λ (summing up over all tuples of Case 2) is simply
Ξu∗,v∗ , which can be retrieved in Õ(1) time; and then Λ can be adjusted in constant time.

Finally, if D+(u∗) no longer satisfies (5), we simply call fix-Dplus(u∗) (Section 3.3).
In summary, the deletion runs in Õ(s/m) time w.h.p, plus the cost of at most one call to

fix-Dplus.

C.2 Deletion: When D Will Go Bad
We now consider the scenario where D violates (4) after {u∗, v∗} is deleted. Similar to
Section 3.4, we reduce the case to Section C.1 by first modifying D such that it will still be
good after the deletion. Due to symmetry, it suffices to discuss only the situation where
D(u∗) needs to be fixed.

The fix is performed by fix-D-del(u), which has the constraint:

Invariant: when called:
D is good
d(u) < D(u) and
D(u)− d(u) = Ω(D(u)).

At the end of fix-D-del(u), D(u) = d(u). It is rudimentary to verify that D will still be
good after d(u) drops by 1.

Rationale behind fix-D-del(u). We decrease D(u) to d(u), which may affect the direction
of an edge in G+ incident on u: if the direction was (v, u) before, it may now be flipped to
(u, v).

Fix a tuple (x, y, z) ∈ S. Consider an arbitrary edge (v, u) that has been flipped to (u, v).
The next discussion clarifies all the cases that require modifications:

Case 1: x ̸= v and x ̸= u. (x, y, z) still remains as a random tuple, but its contribution
may change:

Case 1.1: y = u and z = v. f(x, y, z) will grow from 0 to D+(x). Accordingly, Λ needs
to be increased by D+(x).
Case 1.2: y = v and z = u. f(x, y, z) will drop from D+(x) to 0. Accordingly, Λ needs
to be decreased by D+(x).

Case 2: x = v and y = u. The tuple (v, u, z) should be replaced by (u, v, w) where w is a
(uniformly) random out-neighbor of u.
Case 3: x = v, y ̸= u, and z = u. The tuple (v, y, u) should be replaced by (v, y, w) where
w is a (uniformly) random out-neighbor of v.
Case 4: x = u (which implies y ̸= v and z ≠ v). z should be replaced by v with probability
1/d+(u). If the replacement occurs, the tuple (u, y, z) is said to be outneighbor-replaced.

Note the similarity to the cases in Section 3.4.

Algorithm fix-D-del(u). Set D(u) = d(u) and flip the edges of u in G+ wherever needed.
Given each neighbor v of u such that {u, v} was flipped, we
(for Case 1) retrieve Ξu,v and Ξv,u (from the auxiliary structures), and increase Λ by
Ξu,v − Ξv,u.
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(for Case 2) retrieve Sv,u,⊥; and then for each (v, u, z) ∈ Sv,u,⊥, delete (v, u, z) from S,
pick an out-neighbor w of u uniformly at random, and add (u, v, w) to S.
(for Case 3) retrieve Sv,⊥,u; and then for each (v, y, u) ∈ Sv,⊥,u with y ≠ u, delete (v, y, u)
from S, pick an out-neighbor w of v uniformly at random, and add (v, y, w) to S.

Case 1 obviously takes Õ(d(u) · s/m)) time w.h.p. By Lemma 7, Cases 2 and 3 can also be
handled in the same cost.

Next, we attend to Case 4. Consider any neighbor v of u with {u, v} flipped. The number
ku of outneighbor-replaced tuples (x, y, z) with x = u follows the binomial distribution
B(|Su,⊥,⊥|, 1/d+(u)). This, together with Lemma 7, shows that ku = Õ(d+(u) · s

m ·
1

d+(u) ) =
Õ(s/m) w.h.p. We draw a WoR sample set of size ku from |Su,⊥,⊥| in Õ(ku) = Õ(s/m) time.
Every tuple (u, y, z) drawn is modified to (u, y, v) in Õ(1) time. The total cost of Case 4 is
Õ(d(u) · s/m) w.h.p.

Finally, if D+ is bad, we remedy it in the same way as in Section 3.4.
In summary, fix-D-del(u) runs in Õ(d(u) · s/m) time w.h.p., plus the cost of all the

calls to fix-Dplus at the end. The invariant ensures that d(u) < Dold where Dold is the
value of D(u) at the beginning of fix-D-del(u).

C.3 Analysis
The analysis is a straightforward adaptation of the argument in Section 3.5. It suffices to
point out some key changes:

The invariant of fix-D-del makes sure that Ω(Dold) edges incident on u have been
removed since the last call to fix-D-del(u), where Dold is the value of D(u) at the
beginning of fix-D-del(u).
When an edge (u∗, v∗) is deleted from G, we give u∗ a token.
During the execution of fix-D-del(u), when we flip an in/out-edge of u with respect an
its in/out-neighbor v, we give a token to both u and v.
Lemma 10 should be replaced with: if the total number of edge insertions/deletions is
nupd , the number of tokens generated is O(nupd).

D Deletion Algorithm of the DETC Structure

Update T . Suppose that we are deleting (u, v) from G+. The possible cases for a triangle
involving u and v are the same as in Figure 2. The number of such triangles can be found in
the same manner as in the insertion algorithm using Õ(α + λ) time. After that, T is updated
in constant time.

Update IA and A. If v is heavy, for every heavy out-neighbor w ̸= v of u, we decrease
I{v,w} by 1. If I{v,w} = 0, {v, w} is removed from A. The time is Õ(d+(u)) = Õ(α).

Vertex u (the case of v is similar) may have just turned from heavy to light. We examine
every in-neighbor x of u in G. For each heavy out-neighbor y of x, remove {u, y} from A.
This takes Õ(αλ) time in total. We charge the time on the Ω(λ) edges of u that have been
removed since u turned heavy last time. After amortization, the deletion of each of those
edges bears only Õ(α) time.

We conclude that the deletion time is Õ(α + λ) amortized.
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