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Abstract
Regular expressions with capture variables, also known as “regex-formulas,” extract relations of
spans (intervals identified by their start and end indices) from text. In turn, the class of regular
document spanners is the closure of the regex formulas under the Relational Algebra. We investigate
the computational complexity of querying text by aggregate functions, such as sum, average, and
quantile, on top of regular document spanners. To this end, we formally define aggregate functions
over regular document spanners and analyze the computational complexity of exact and approximate
computation. More precisely, we show that in a restricted case, all studied aggregate functions can
be computed in polynomial time. In general, however, even though exact computation is intractable,
some aggregates can still be approximated with fully polynomial-time randomized approximation
schemes (FPRAS).
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1 Introduction

Information extraction commonly refers to the task of extracting structured information from
text. A document spanner (or just spanner for short) is an abstraction of an information
extraction program: it states how to transform a document into a relation over its spans.
More formally, a document is a string d over a finite alphabet, a span of d represents a
substring of d by its start and end positions, and a spanner is a function that maps every
document d into a relation over the spans of d [7]. The spanner framework has originally been
introduced as the theoretical basis underlying IBM’s SQL-like rule system for information
extraction, namely SystemT [15,18]. The most studied spanner instantiation is the class of
regular spanners – the closure of regex-formulas (regular expressions with capture variables)
under the standard operations of the relational algebra (projection, natural join, union,
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10:2 The Complexity of Aggregates over Extractions by Regular Expressions

and difference). Equivalently, the regular spanners are the ones expressible as variable-set
automata (VSet-automata for short) – nondeterministic finite-state automata that can open
and close capture variables. These spanners extract from the text relations wherein the
capture variables are the attributes.

While regular spanners and natural generalizations thereof are the basis of rule-based
systems for text analytics, they are also used implicitly in other types of systems, and
particularly ones based on statistical models and machine learning. Rules similar to regular
spanners are used for feature generators of graphical models (e.g., Conditional Random
Fields) [17, 32], weak constraints of Markov Logic Networks [28] and extensions such as
DeepDive [31], and the generators of noisy training data (“labeling functions”) in the state-
of-the-art Snorkel system [29]. Further connections to regular spanners can potentially arise
from efforts to express artificial neural networks for natural language processing as finite-state
automata [21,22,34]. The computational complexity of evaluating regular spanners has been
well studied from various angles, including the data and combined complexity of answer
enumeration [1, 8, 10, 20], the cost of combining spanners via relational algebra operators [26]
and recursive programs [27], their dynamic complexity [11], evaluation in the presence of
weighted transitions [5], and the ability to distribute their evaluation over fragments of the
document [4].

In this paper, we study the computational complexity of evaluating aggregate functions
over regular spanners. These are queries that map a document d and a spanner P into
a number α(P (d)), where P (d) is the relation obtained by applying P to d and α is a
standard aggregate function: count, sum, average, min, max, or quantile. There are various
scenarios where queries that involve aggregate functions over spanners can be useful. For
example, such queries arise in the extraction of statistics from textual resources like medical
publications [25] and news reports [30]. As another example, when applying advanced text
search or protein/DNA motif matching using regular expressions [3,24], the search engine
typically provides the (exact or approximate) number of answers, and we would like to be
able to compute this number without actually computing the answers, especially when the
number of answers is prohibitively large. Finally, when programming feature generators or
labeling functions in extractor development, the programmer is likely to be interested in
aggregate statistics and summaries for the extractions (e.g., to get a holistic view of what
is being extracted from the dataset, such as quantiles over extracted ages and so on), and
again, we would like to be able to estimate these statistics faster than it takes to materialize
the entire set of answers.

Our main objective in this work is to understand when it is tractable to compute α(P (d)).
This question raises closely related questions that we also discuss in the paper, such as when
the materialization of intermediate results (which can be exponentially large) can be avoided.
Furthermore, when the exact computation of α(P (d)) is intractable, we study whether it can
be approximated.

At the technical level, each aggregate function (with the exception of count) requires
a specification of how an extracted tuple of spans represents a number. For example, the
number 21 can be represented by the span of the string “21”, “21.0”, “twenty one”, “twenty
first”, “three packs of seven” and so on. To abstract away from specific textual representations
of numbers, we consider several means of assigning weights to tuples. To this end, we assume
that a (representation of a) weight function w, which maps every tuple of P (d) into a number,
is part of the input of the aggregate functions. Hence, the general form of the aggregate query
we study is α(P, d, w). The direct approach to evaluating α(P, d, w) is to compute P (d),
apply w to each tuple, and apply α to the resulting sequence of numbers. This approach
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works well if the number of tuples in P (d) is manageable (e.g., bounded by some polynomial).
However, the number of tuples in P (d) can be exponential in the number of variables of P ,
and so, the direct approach takes exponential time in the worst case. We will identify several
cases in which P (d) is exponential, yet α(P (d)) can be computed in polynomial time.

It is not very surprising that, at the level of generality we adopt, each of the aggregate
functions is intractable (#P-hard) in general. Hence, we focus on several assumptions that
can potentially reduce the inherent hardness of evaluation:

Restricting to positive numbers;
Restricting to weight functions w that are determined by a single span or defined by
(unambiguous) weighted VSet-automata;
Restricting to spanners that are represented by an unambiguous variant of VSet-automata;
Allowing for a randomized approximation (FPRAS, i.e., fully polynomial randomized
approximation schemes).

Our analysis shows which of these assumptions bring the complexity down to polynomial
time, and which is insufficient for tractability. Importantly, we derive an interesting and
general tractable case for each of the aggregate functions we study.

The problem of counting the number of extractions of a VSet-automaton has been studied
by Florenzano et al. [8]. The approximate version has been studied by Arenas et al. [2] who
give a polynomial-time algorithm for uniformly sampling from the space of accepted words
of a given length for an NFA, and to estimate the number of such accepted words. Using
that sampling, they establish an FPRAS for counting the number of tuples extracted by a
VSet-automaton (i.e., the Count aggregate function). Our FPRAS results are also based on
their results. The counting problem is also implicitly discussed by Doleschal et al. [5] who
study annotation by semiring elements over weighted VSet-automata. Throughout the paper,
we explain the connection between all of these and our work in more detail. Yet, to the best
of our knowledge, this paper is the first to consider aggregate functions over numerical values
extracted by document spanners.

The remainder of the paper is organized as follows. In Section 2, we give preliminary
definitions and notation. In Section 3, we give a general summary of the main results of the
paper; we expand on these results in the later sections. In Sections 4, 5 and 6 we describe
our investigation for single-variable weight functions, polynomial-time weight functions and
regular weight functions, respectively. Finally, we consider approximate evaluations in
Section 7 and conclude in Section 8. Due to space constraints, we sometimes omit proofs or
only provide a proof sketch.

2 Preliminaries

The cardinality of a set A is denoted by |A|. A multiset over A is a function M : A → N.
We call M(a) the multiplicity of a in M and say that a ∈ M if M(a) > 0. The size of M

denoted |M |, is the sum
∑

a∈A M(a), which may be infinite. We denote multisets in brackets
⦃ and ⦄ in the usual way. E.g., in M = ⦃1, 1, 3⦄ we have that M(1) = 2 and M(3) = 1.

We revisit some definitions from the document spanners framework [7]. Let Σ be a finite
set of symbols called the alphabet. By Σ∗ we denote the set of all finite words over Σ, also
called documents. The length |d| of document d = σ1 · · · σn ∈ Σ∗ (with every σi ∈ Σ) is n. A
span of d is an expression of the form [i, j⟩ with 1 ≤ i ≤ j ≤ n + 1. For a span [i, j⟩ of d, we
denote by d[i,j⟩ the word σi · · · σj−1. For a document d, we denote by Spans(d) the set of all
possible spans of d. Two spans [i1, j1⟩ and [i2, j2⟩ are equal if i1 = i2 and j1 = j2.

ICDT 2021



10:4 The Complexity of Aggregates over Extractions by Regular Expressions

The framework focuses on functions that extract spans from documents and assigns them
to variables. To this end, we fix a countably infinite set Var of span variables, which range
over spans, such that Var and Σ are disjoint. A d-tuple t is a total function from a finite set
of span variables into Spans(d). We denote the domain of t by Vars(t). If the document d is
clear from the context, we sometimes say tuple instead of d-tuple. A set of d-tuples over the
same variables is called a d-relation. For a d-tuple t and a set Y ⊆ Vars(t) we define the
d-tuple t↾Y as the restriction of t to the variables in Y . A document spanner is a function P

that maps every document d into a finite d-relation, which we denote by P (d). By Vars(P )
we denote the domain of the tuples in P (d), which we call the variables of the spanner. We
refer to Appendix A for the definition of algebraic operations on spanners.

Variable Set-Automata. This paper will focus on regular spanners, which can be defined
as follows. A variable-set automaton (VSet-automaton) is an NFA that accepts words with
variable operations, which are symbols of the form “x⊢” (open x) and “⊣x” (close x), where
x is a variable. More precisely, for a set of variables V ⊆ Var, the set of variable operations
over V is ΓV := {x⊢, ⊣x | x ∈ V }, which we assume to be disjoint from Σ and Var.

A VSet-automaton is a tuple A := (Σ, V, Q, q0, QF , δ), where Σ is a finite set of alphabet
symbols, V ⊆ Vars is a finite set of variables, Q is a finite set of states, q0 ∈ Q is a start
state, QF ⊆ Q is a set of final states, and δ : Q × (Σ ∪ ΓV ∪ {ε}) → 2Q is the transition
function. We refer to words over the alphabet Σ ∪ ΓV as ref-words [9] and, therefore, the
ref-word language R(A) of A is the set of words accepted by the NFA (Σ ∪ ΓV , Q, q0, QF , δ),
which is an ordinary NFA over alphabet (Σ ∪ ΓV ).

We now discuss how A defines a spanner. The set Vars(r) is the set of variables x

such that x⊢ or ⊣x occur in ref-word r. A ref-word r is valid if, for each x ∈ Vars(r), it
has precisely one occurrence of x⊢ and precisely one occurrence of ⊣x, which is after the
occurrence of x⊢. It is valid for V if it is valid and if V = Vars(r). By VR(A) we denote the
words in R(A) that are valid for V .

Consider the mapping clr : (Σ ∪ ΓVars)∗ → Σ∗ (pronounced “clear”), as clr(σ) := σ for
every σ ∈ Σ and clr(σ) := ε for every σ ∈ ΓVars, where ε denotes the empty word. If r
is a valid ref-word with clr(r) = d, with r = rpre

x · x⊢ ·rx · ⊣x · rpost
x , then the d-tuple tupr

induced by r is defined as tupr(x) := [i, j⟩, where i := | clr(rpre
x )| + 1 and j := i + | clr(rx)|

for every variable x ∈ Vars(r). The spanner JAK induced by A maps each document d to
{tupr | r ∈ VR(A), clr(r) = d}.

Notice that only the valid ref-words of A produce output tuples. A VSet-automaton
is functional if it only accepts valid ref-words, i.e., VR(A) = R(A). Since VSet-automata
can always be translated into equivalent functional VSet-automata [9, Proposition 3.9], we
assume in this paper that VSet-automata are functional. This is a common assumption for
document spanners involving regular languages [7,9,26]. In the following, we denote by VSA
the class of functional VSet-automata.

Regular spanners can also be represented by regex-formulas, which are regular expressions
that may include variables. We refer to Appendix B for a formal definition.

Aggregate Queries. Aggregation functions, such as min, max, and sum operate on numerical
values from database tuples, whereas all the values of d-tuples are spans. Yet, these spans
may represent numerical values, from the document d, encoded by the captured words (e.g.,
“3,” “three,” “March” and so on). To connect spans to numerical values, we will use weight
functions w that map document/tuple pairs to numbers in Q, that is, if d is a document and
t is a d-tuple then w(d, t) ∈ Q. We discuss weight functions in more detail in Section 3.3.
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T h e r e ␣ a r e ␣ 7 ␣ e v e n t s ␣ i n ␣ B e l g i u m , ␣ 1 0 - 1 5 ␣ i n ␣ F r a n c e , ␣ 4 ␣ i n ␣ L u x e m b o u r g , ␣ t h r e e ␣ i n ␣ B e r l i n .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

dxloc dxevents w(d, t)

Belgium 7 7
France 10-15 10
Luxembourg 4 4
Berlin three 3

xloc xevents

[23, 30⟩ [11, 12⟩
[41, 47⟩ [32, 37⟩
[54, 64⟩ [49, 50⟩
[75, 81⟩ [66, 71⟩

Figure 1 A document d (top), a relation with corresponding weights (bottom left), and the
corresponding d-relation R (bottom right).

▶ Example 2.1. Consider the document in Figure 1 and assume that we want to calculate
the total number of mentioned events. The table at the bottom left depicts a possible
extraction of locations with their number of events, where each tuple is annotated with a
weight w(d, t). The table on the bottom right depicts the corresponding span relation. To
get an understanding of the total number of events, we may want to take the sum over the
weights of the extracted tuples, namely 7 + 10 + 4 + 3 = 24.

For a spanner P , a document d, and weight function w, we denote by Img(P, d, w) the
set of weights of output tuples of P on d, that is, Img(P, d, w) = {w(d, t) | t ∈ P (d)}.
Furthermore, let Img(w) ⊆ Q be the set of weights assigned by w, that is, k ∈ Img(w) if and
only if there is a document d and a d-tuple t with w(d, t) = k.

▶ Definition 2.2. Let d be a document and A be a VSet-automaton such that JAK(d) ̸= ∅.
Let P = JAK, let w be a weight function, and q ∈ Q with 0 ≤ q ≤ 1. We define the following
spanner aggregation functions:

Count(P, d) := |P (d)|
Min(P, d, w) := min

t∈P (d)
w(d, t) Max(P, d, w) := max

t∈P (d)
w(d, t)

Sum(P, d, w) :=
∑

t∈P (d)

w(d, t) Avg(P, d, w) := Sum(P, d, w)
Count(P, d)

q-Quantile(P, d, w) := min
{

r ∈ Img(P, d, w)
∣∣∣∣ |{t ∈ P (d) | w(d, t) ≤ r}|

|P (d)| ≥ q

}

Observe that 0-Quantile(P, d, w) = Min(P, d, w) and 1-Quantile(P, d, w) = Max(P, d, w).

Main Problems. Let P be a class of regular document spanners and W be a class of weight
functions. We define the following problems.

Count[P]

Input: Spanner P ∈ P and document d ∈
Σ∗.

Task: Compute Count(P, d).

Sum[P, W]

Input: Spanner P ∈ P, document d ∈ Σ∗,
a weight function w ∈ W.

Task: Compute Sum(P, d, w).

The problems Average[P, W ], q-Quantile[P, W ], Min[P, W ], and Max[P, W ] are defined
analogously to Sum[P, W ]. Notice that all these problems study combined complexity. Since
the number of tuples in P (d) is always in O(|d|2k), where k is the number of variables of the

ICDT 2021
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q0start q1 q2 q3 q4 q5 q6 q7

Σ

xevents⊢
Num

⊣xevents

Gap
xloc⊢

City

Country
⊣xloc

Σ

q0start q1 q2 q3 q4 q5 q6 q7

Σ

xevents⊢
Num

⊣xevents

Gap
xloc⊢

Loc
⊣xloc

Σ

Figure 2 Two example VSet-automata that extract the d-relation R on input d as defined in
Figure 1. For the sake of presentation, the automata are simplified as follows: Num is a sub-
automaton matching anything representing a number (of events) or range, Gap is a sub-automaton
matching sequences of at most three words, City and Country are sub-automata matching city and
country names respectively. Loc is a sub-automaton for the union of City and Country. All these
sub-automata are assumed to be deterministic.

spanner P , the data complexity of all the problems is in FP: one can just materialize P (d)
and apply the necessary aggregate. Under combined complexity, we will therefore need to
find ways to avoid materializing P (d) to achieve tractability.

3 Main Results

In this section we present our main results. We present the results for spanners represented
as VSet-automata, but they also hold for their regular expression counterpart. Notice that
this is not trivial because translating finite automata to regular expressions can incur an
unavoidable exponential blow-up [6].

Unambiguous VSet-Automata. For a number of our tractability results, it is important
that the VSet-automata in the input are unambiguous. In order to define unambiguity,
we fix a total, linear order ≺ on the set ΓVar of variable operations, such that x⊢ ≺ ⊣x

for every variable x. A VSet-automaton A = (Σ, Vars, Q, q0, Qf , δ) satisfies the variable
order condition if v ≺ v′ for every v, v′ ∈ ΓVars for which there are q1, q2, q3 ∈ Q such that
q2 ∈ δ(q1, v) and q3 ∈ δ(q2, v′). The variable order condition ensures that, for every document
d ∈ Σ∗ and every tuple t ∈ JAK(d), there is exactly one ref-word r ∈ VR(A) with tupr = t.

A run of A on r = σ1 · · · σn is a sequence q0 · · · qn of states of A such that qi ∈ δ(qi−1, σi)
for every i ∈ {1, . . . , n}. It is accepting if qn ∈ Qf . A VSet-automaton A is unambiguous, if
1. A satisfies the variable order condition and
2. there is exactly one accepting run of A on every r ∈ R(A).
In the following, we denote by uVSA the class of unambiguous VSet-automata.

▶ Example 3.1. The d-relation on the bottom right of Figure 1 can be extracted from d

by a spanner that matches textual representations of numbers (or ranges) in the variable
xevents, followed by a city or country name, matched in xloc. Figure 2 shows how two such
VSet-automata may look like. Note that some strings, like Luxembourg are the name of
a city as well as a country. Thus, the upper automaton is ambiguous, because the tuple
with Luxembourg is captured twice. The lower automaton is unambiguous, because the
sub-automaton for Loc only matches such names once.
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Table 1 Known results on the complexity of Count.

Aggregate Spanner Complexity Reference

Count uVSA in FP [2, Corollary 4.2]
Count VSA #P-complete [8, Theorem 5.2] (implicit)
Count VSA FPRAS [2, Corollary 4.1]

Complexity Classes. We assume familiarity with the complexity classes FP (polynomial-time
computable functions), #P, FP#P, and OptP. (We provide some background in Appendix C.)
Unless mentioned otherwise, we use Cook reductions, also known as Turing reductions. Notice
that, under Turing reductions, #P-complete problems are also FP#P-complete.

3.1 Known Results

A number of results on Count are already known or easily follow from known results, see
Table 1 and Theorem 3.2. Two observations can be made from this table. First, Count
requires the input spanner to be unambiguous for tractability. This tractability implies that
Count can be computed without materializing the possibly exponentially large set P (d)
if the spanner is unambiguous. Second, if the spanner is not unambiguous then, due to
#P-completeness of Count, we do not know an efficient algorithm for its exact computation
(and therefore may have to materialize P (d)), but Count can be approximated by an FPRAS.
We will explore to which extent this picture generalizes to other aggregates.

▶ Theorem 3.2 (Arenas et al. [2], Florenzano et al. [8]). Count[uVSA] is in FP and
Count[VSA] is #P-complete. Furthermore, Count[VSA] can be approximated by an
FPRAS.

3.2 Overview of New Results

Our new complexity results are summarized in Table 2. By now the reader is familiar with
the aggregate problems and the types of spanners we study. In the next subsection, we will
define the different representations of weight functions that we will use. Here, Single are
single-variable weight functions, Poly are polynomial-time computable weight functions,
and Reg (resp., UReg) are weight functions represented by weighted (resp., unambiguous
weighted) VSet-automata. We use the following notation in the table.

▶ Notation 3.3. If W is a class of representations of weight functions and S is a set, we
denote by WS the subset of W that represent a weight function w with Img(w) ⊆ S. Typical
sets that we use for S are N, Z, Q+ := {q ∈ Q | q ≥ 0}, and B := {0, 1}.

Entries in the table should be read from left to right. For instance, the FP result in the
first row states that the problems Min, for both spanner classes uVSA and VSA, and for all
three classes Single, UReg and Reg of weight functions is in FP. Likewise, the second
row states that the same problems with PolyN weight functions become OptP-complete and
that the existence of an FPRAS would imply a collapse of the polynomial hierarchy.

In general, the table gives a detailed overview of the impact of (1) unambiguity of spanners
and (2) different weight function representations on the complexity of computing aggregates.

ICDT 2021
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Table 2 Detailed overview of complexities of aggregate problems for document spanners. All
these results are new. By X-c we denote that the problem is complete for class X. The “no FPRAS”
claims assume that the polynomial hierarchy does not collapse to the second level.

Aggregate Spanner Weights Complexity

Min uVSA, VSA Single, UReg, Reg in FP

PolyN OptP-c, no FPRAS

Max uVSA, VSA Single, UReg in FP

RegN, PolyN OptP-c, no FPRAS

Sum, Average uVSA Single, UReg in FP

Reg, PolyZ FP#P-c, no FPRAS

VSA SingleQ+ FP#P-c, FPRAS

Single, UReg, Reg, PolyZ FP#P-c, no FPRAS

q-Quantile uVSA Single in FP

UReg, Reg, PolyZ FP#P-c, no FPRAS

VSA Single, UReg, Reg, PolyZ FP#P-c, no FPRAS

q-Quantile VSA Poly Polynomial time
(position) positional approximation

3.3 Results for Different Weight Functions
We formalize how we represent the weight functions for our new results. Recall that weight
functions w map pairs consisting of a document d and d-tuple t to values in Q.

3.3.1 Single-Variable Weight Functions
The simplest type of weight functions we consider are the single-variable weight functions.
To facilitate presentation, we assume that a designated variable x is always present in t. A
single-variable (SV) weight function w assigns values only based on the substring selected by
variable x. It is given in the input as a partial mapping µ of words to Q where only finitely
many values are defined. The weight w(d, t) is defined as

w(d, t) =
{

µ(dt(x)) if dt(x) is in the domain of µ;
0 otherwise.

As we will see in Section 4, Max[VSA, Single] and Min[VSA, Single] are in FP (Corol-
lary 4.3). Furthermore, we show that the problems Sum[P, Single], Average[P, Single],
and q-Quantile[P, Single] behave similarly to Count[P], that is, they are in FP if
P = uVSA (Corollary 4.6) and FP#P-complete if P = VSA (Theorem 4.7).

3.3.2 Polynomial-Time Weight Functions
How far can we push our tractability results? Next, we consider more general ways of
mapping d-tuples into numbers. The most general class of weight functions we consider
is the set of polynomial-time weight functions (Poly). A function w from Poly is given
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in the input as a polynomial-time Turing Machine M that maps (d, t) pairs to values in
Q and defines w(d, t) = M(d, t). Not surprisingly there are multiple drawbacks of having
arbitrary polynomial time weight functions. The first is that all considered aggregates become
intractable, even if we only consider unambiguous VSet-automata (Theorem 5.1). The second
drawback is that we don’t even know whether Sum and Average can be computed in FP#P

if w ∈ Poly is a polynomial-time weight function. Therefore, we also consider two additional
classes weight functions.

3.3.3 Regular Weight Functions

As the class of polynomial-time weight functions quickly leads to intractability, we focus on a
restricted class that allows to examine multiple attributes, but such that we can understand
the structure of the representation towards efficient algorithms. Our final classes of weight
functions are based on weighted VSet-automata [5], which are VSet-automata that assign
weights to tuples, based on a semiring. We focus on one particular semiring (the tropical
semiring with min/plus) to make the presentation less abstract. One can also consider other
semirings. For instance over the tropical semiring with max/plus, the complexity results are
analogous to the ones we have here, with Min and Max interchanged.

To this end, let Q∞ = Q ∪ {∞}. A weighted (VSet)-automaton is a tuple W =
(Σ, V, Q, I, F, δ), where Σ, V , Q are as in the definition of VSet-automata, I : Q → Q∞ is the
initial weight function; F : Q → Q∞ is the final weight function; and δ : Q × (Σ ∪ ΓV ) × Q →
Q∞ is its transition function. Its transitions are the triples (p, o, q) with δ(p, o, q) ̸= ∞. Like-
wise, the initial (resp., accepting) states are those states q with I(q) ̸= ∞ (resp., F (q) ̸= ∞). A
run ρ of W over a word r = σ1 · · · σn ∈ (Σ∪ΓV )∗ is a sequence ρ = (q0, σ1, q1) · · · (qn−1, σn, qn)
of transitions. We denote the runs of W on r by Runs(r). The weight W (ρ) of ρ is
I(q0) + δ(q0, σ1, q1) + · · · + δ(qn−1, σn, qn) + F (qn) and the weight W (r) of a word r is
minρ∈Runs(r) W (ρ). Intuitively, a word is accepted if and only if has a finite weight. The auto-
maton W is unambiguous if it satisfies conditions (1) and (2) of unambiguous VSet-automata.1
It is functional if all runs are over a valid ref-word. As for ordinary VSet-automata, we also
assume in this paper that weighted VSet-automata are functional.

We will consider two types of weight functions which are based on weighted VSet-automata.
A regular (Reg) weight function w is represented by a weighted VSet-automaton W over
Σ ∪ ΓV and defines w(d, t) = mind=clr(r),t=tupr

W (r). Given a document d and a d-tuple
t, the weight w(d, t) can be computed in polynomial time [5, Theorem 6.1].2 The set of
unambiguous regular (UReg) weight functions is the subset of Reg that is represented by
unambiguous weighted VSet-automata.3

▶ Example 3.4. Figure 3 gives an unambiguous weighted VSet-automaton that extracts the
values of three digit natural numbers from text. It can easily be extended to extract natural
numbers of up to a constant number of digits by adding nondeterminism. Likewise, it is
possible to extend it to extract weights as in Example 2.1. If a single variable captures a
list of numbers, similar to d[32,37⟩ = 10−15, one may use ambiguity to extract the minimal
number represented in this range.

1 Observe that the weight W (r) of a word r is the weight of the run ρ which accepts r.
2 This tractability result requires functionality of W in the sense that computing w(d, t) is NP-complete

without it (Proposition 4.1). Making a weighted VSet-automaton functional is always possible and takes
time polynomial in its number of states and exponential in its number of variables [5, Proposition 5.2].

3 Testing whether a weighted VSet-automaton is in UReg can be done in PTIME: functionality can be
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q0start q1 q2 q3 q4 q5

Σ; 0

x⊢; 0
1; 100

...

8; 800
9; 900

0; 0
1; 10
...

8; 80
9; 90

0; 0
1; 1
...

8; 8
9; 9

⊣x; 0

Σ; 0

Figure 3 An unambiguous weighted VSet-automaton with initial state q0 (with weight 0) and
accepting state q5 (with weight 0), extracting three digit natural numbers captured in variable x.
Recall that the weight of a run is the sum of all its edge weights.

Our results for regular and unambiguous regular weight functions are that the situation
is similar to Single when it comes to Min, Max, Sum, and Average. The main difference
is that we require more unambiguity. For Max one needs unambiguity of the regular weight
function and for Sum, and Average one needs unambiguity for both the spanner and the
regular weight function to achieve tractability. For q-Quantile, the situation is different
from Single in the sense that regular weight functions render the problem intractable. We
refer to Table 2 for an overview.

3.4 Approximation
In the cases where exact computation of the aggregate problem is intractable, we consider
the question of approximation. It turns out that there exist FPRAS’s in two settings that
we believe to be interesting. First, in the case of Sum and Average and single-variable
weight functions, the restriction of unambiguity in the spanner can be dropped if the weight
function uses only non-negative weights. Second, although q-Quantile is FP#P-complete
for general VSA, it is possible to approximate the position of the q-quantile element in an
FPRAS fashion, even with the very general polynomial-time weight functions. We discuss
this problem in more detail in Section 7.

4 Single-Variable Weight Functions

We start this section by recalling that counting the number of output tuples is tractable if the
spanner is functional and unambiguous (Theorem 3.2). It is well known that unambiguity is
necessary in the sense that the problem becomes #P-complete without it. We next observe
that functionality of the spanner is also crucial for the problem’s tractability. The following
proposition is heavily based on Freydenberger [9, Lemma 3.1] who showed that given a
VSet-automaton A it is NP-hard to decide whether JAK(ε) ̸= ∅. Based on the reduction by
Freydenberger, one can also show that it the problem remains NP-hard if the VSet-automaton
is unambiguous.

▶ Proposition 4.1. Given a document d and non-functional VSet-automaton A, testing if
JAK(d) ̸= ∅ is NP-complete, even if A is unambiguous.

Next, we show that Min and Max are tractable for single-variable weight functions. The
reason for their tractability is that, for any fixed variable x ∈ Vars(A), the spans associated
to x in output tuples can be computed in polynomial time.

tested in PTIME [5, Proposition 5.3], and testing if a functional automaton is unambiguous is also in
PTIME.
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▶ Proposition 4.2. Let A ∈ VSA, x ∈ Vars(A), and d ∈ Σ∗. The set {t(x) | t ∈ JAK(d)} can
be computed in time polynomial in the sizes of A and d.

We immediately have:

▶ Corollary 4.3. Min[VSA, Single] and Max[VSA, Single] are in FP.

In order to calculate aggregates like Sum, Avg, or q-Quantile, it is not sufficient to
know which weights are assigned, but also the multiplicity of each weight is necessary. For
general VSet-automata, this immediately results in intractability, because computing these
multiplicities is hard, as we show next.

▶ Lemma 4.4. Let 0 < q < 1. Then, Sum[VSA, Single], Average[VSA, Single], and
q-Quantile[VSA, Single] are FP#P-hard, even if w is the fixed weight function

w(d, t) =
{

1 if dt(x) = 1;
0 otherwise.

Proof sketch. The lower bounds are proven by reductions from the #P-complete problem
Count[VSA]. We provide a proof sketch for Average.

Let A ∈ VSA and d ∈ Σ∗. We assume w.l.o.g. that 1 /∈ Σ. Let d′ = d · 1. We define VSet-
automaton A′ as A, but change two things. First, A′ only produces outputs on documents
of the form s · 1, where s is an arbitrary document. It first simulates A on s and then selects,
in a fresh variable x, the symbol 1. Second, on the document d′, it selects a single additional
tuple t with t(y) = [1, 1⟩ for all its variables y. More precisely, using a regular-expression-like
notation, we therefore define

A′ = (A · x⊢ ·1 · ⊣x) ∨ (x⊢ · x1⊢ · · · xn⊢ ·ε · ⊣xn · · · ⊣x1 · ⊣x ·d · 1).

Observe that, for all t ∈ A′(d′), it holds that dt(x) = 1 if and only if t↾Vars(A) ∈ JAK(d).
Thus, by definition of A′ and w, Sum(JA′K, d′, w) = Count(JAK, d) and Count(JA′K, d′) =
Count(JAK, d) + 1. Therefore, Avg(JA′K, d′, w) = Count(JAK,d)

Count(JAK,d)+1 . By solving the equation for
Count(JAK, d), it follows that Count(JAK, d) = Avg(JA′K,d′,w)

1−Avg(JA′K,d′,w) . This concludes the proof for
Average. ◀

This result shows that for general VSet-automata, the Sum, Average, and Quantile
aggregates are intractable already for very simple weight functions. However, if the spanner is
unambiguous, we can achieve tractability. The reason is that we can compute in polynomial
time the multiset TA,d = ⦃t(x) | t ∈ JAK(d)⦄, where we represent the multiplicity of each
span [i, j⟩ (the number of tuples t ∈ P (d) such that t(x) = [i, j⟩) in binary.

▶ Lemma 4.5. Given a VSet-automaton A and a document d, the multiset TA,d can be
computed in FP if A ∈ uVSA and in FP#P if A ∈ VSA.

It follows that all remaining aggregate functions can be efficiently computed if the spanner
is given as an unambiguity functional VSet-automaton and in FP#P otherwise.

▶ Corollary 4.6. Sum[uVSA, Single], Average[uVSA, Single], and q-Quantile[uVSA,

Single] are in FP, for every 0 ≤ q ≤ 1.

The following theorem follows directly from Lemma 4.4 and Lemma 4.5.
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▶ Theorem 4.7. Let 0 < q < 1. Then, Sum[VSA, Single], Average[VSA, Single], and
q-Quantile[VSA, SingleB] are FP#P-complete, even if w is the fixed weight function

w(d, t) =
{

1 if dt(x) = 1;
0 otherwise.

Finally, we note that all tractability results in this section continue to hold for weight
functions with a constant number of variables, i.e., when the weight functions are given as
mappings µ of k-tuples of words to Q, where k is a constant. We will provide proofs in the
full version of the paper.

5 Polynomial-Time Weight Functions

Before we study regular weight functions, we make a few observations on the very general
polynomial-time computable weight functions. For weight functions w ∈ Poly, we assume
that the number w(d, t) is a rational number represented by its numerator and dominator,
and that the function w is represented as a Turing Machine A that returns a value A(d, t)
in polynomially many steps for some fixed polynomial of choice (e.g., n2).4 Furthermore,
to avoid any complexity due to the need to verify whether A is indeed a valid input (i.e.,
timely termination), we will assume that w(d, t) = 0, if A does not produce a value within
the allocated time.

We first observe that polynomial-time weight functions make all our aggregation problems
intractable, which is not surprising.

▶ Theorem 5.1. Min[uVSA, Poly] and Max[uVSA, Poly] are OptP-hard. Furthermore,
Sum[uVSA, Poly], Average[uVSA, Poly], and q-Quantile[uVSA, Poly] are FP#P-hard.

In fact, all but the lower bound for Min already hold for regular weight functions
(Theorems 6.3, 6.5 and 6.6). Min becomes tractable for regular weight functions, but it can
be shown that Min is OptP-hard for weight functions represented by weighted VSet-automata
over the numeric semiring. Therefore, we do not require powerful weight functions for the
hardness proof of Min. Furthermore, we are able to provide OptP and FP#P upper bounds
if the weight functions return natural numbers (or integers in the case of the FP#P upper
bounds).

▶ Theorem 5.2. Min[VSA, PolyN] and Max[VSA, PolyN] are in OptP.

▶ Theorem 5.3. Sum[VSA, PolyZ], Average[VSA, PolyZ], and q-Quantile[VSA, PolyZ]
are in FP#P, for every 0 < q < 1.

6 Regular Weight Functions

We now turn to Reg and UReg weight functions. We first observe that Single weight
functions can be translated in polynomial time to equivalent UReg weight functions by a
simple automata construction. So, all lower bounds for Single also hold for UReg.

We show that aggregation problems for regular weight functions can often be reduced
to problems about paths on weighted DAGs, where the weights come from the semiring of
the weight function. To this end, a weighted DAG is a DAG D = (V, E, ℓ, src, snk), where

4 Our complexity results are independent of the choice of this polynomial.
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ℓ : E → Q∞ associates a weight or length to each edge and src (resp., snk) is a unique node
in V without incoming (resp., outgoing) edges. We define paths p in the obvious manner as
sequences of edges and the length ℓ(p) of p as the sum of the lengths of its edges.

▶ Lemma 6.1. Let d be a document, A ∈ VSA and W be a weighted VSet-automaton
representing w ∈ Reg. Then we can compute, in polynomial time, a weighted DAG D such
that there is a surjective mapping m from paths p from src to snk in D to tuples t ∈ JAK(d).
Furthermore,
1. if A and W are unambiguous, then m is a bijection and
2. for every t ∈ JAK(d) we have w(d, t) = min

{p|m(p)=t}
ℓ(p).

Proof sketch. The DAG D is obtained by a product construction between A, W , and d,
such that every path from src to snk corresponds to an accepting run of W on some ref-word
that represents a tuple in JAK(d). This correspondence ensures that m is a bijection if A and
W are unambiguous. ◀

The weighted DAG from Lemma 6.1 plays the role of a compact representation of the
materialized intermediate result. It allows us to reduce Min to the shortest path problem
in DAGs. If the weight function is unambiguous, Max can be reduced to the longest path
problem in DAGs. Notice that, although the longest path problem is intractable in general,
it is tractable for DAGs.

▶ Theorem 6.2. Min[VSA, Reg] and Max[VSA, UReg] are in FP.

The result for Max is close to the tractability frontier: if we relax the unambiguity condition
in the weight function, the problem doesn’t correspond to finding the longest paths in DAGs
anymore and becomes intractable. In the following theorem, we restrict weight functions
to natural numbers, because then we can show completeness for OptP, which is a class of
functions that return natural numbers. Allowing positive and negative numbers does not
fundamentally change the complexity of the problems though.

▶ Theorem 6.3. Max[uVSA, RegN] is OptP-complete.

Since Sum and Average are already FP#P-hard for VSA spanners and Single weight
functions (Theorem 4.7), they are FP#P-hard for VSA spanners and Reg/UReg weight
functions as well. However, in a similar vein as in Section 4, the problems become tractable
if we have unambiguity. Here, however, we require unambiguity of both the spanner and the
representation of the weight function.

▶ Theorem 6.4. Sum[uVSA, UReg] and Average[uVSA, UReg] are in FP.

Proof sketch. Due to Lemma 6.1, these problems boil down to computing the sum of the
lengths of source-to-target paths in a DAG and the average length of source-to-target paths
in a DAG, respectively. Concerning Sum, we can count, for each individual edge in the
DAG, the number of paths that use this edge. The sum of all output tuples is obtained
by multiplying these values with the length of the edge and taking the sum over all edges.
The tractability of Average then follows from the tractability of Sum and of counting the
number of source-to-target paths in a DAG. ◀

Indeed, if we relax the restriction that weight functions are given as unambiguous automata,
Sum and Average become FP#P-hard again.

▶ Theorem 6.5. Sum[uVSA, Reg] and Average[uVSA, Reg] are FP#P-complete.
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The situation for q-Quantile is different from Max, Sum, and Average, since it remains
hard even when both the spanner and weight function are unambiguous. The reason is that
the problem reduces to counting the number of paths in a weighted DAG that are shorter
than a given target weight, which is #P-complete due to Mihalak et al. [23].

▶ Theorem 6.6. q-Quantile[uVSA, UReg] is FP#P-complete, for every 0 < q < 1.

Proof sketch. The upper bound is immediate from Theorem 6.7. For the lower bound, at
the core of the quantile problem is the problem of counting up to a threshold k:

Count≤k(P, d, w) := |{t ∈ P (d) | w(d, t) ≤ k}|.

The corresponding problem Count≤k[P, W ] is defined analogously to Sum[P, W ]. It can be
shown that Count≤k[P, W] is #P-hard – using a reduction from #Partition, similar to
Mihalak et al. [23, Theorem 1]. Using a binary search argument, Count≤k[uVSA, UReg]
can be reduced to q-Quantile[uVSA, UReg], concluding the proof. ◀

Finally, we show that Sum, Average, and q-Quantile for Reg weight functions are in
FP#P.

▶ Theorem 6.7. Sum[VSA, Reg], Average[VSA, Reg], and q-Quantile[VSA, Reg] are
in FP#P, for every 0 < q < 1.

7 Aggregate Approximation

Now that we have a detailed understanding on the complexity of computing exact aggregates,
we want to see in which cases the result can be approximated. We only consider the situation
where the exact problems are intractable and want to understand when the considered
aggregation problems can be approximated by fully polynomial randomized approximation
schemes (FPRAS), and when the existence of such an FPRAS would imply a collapse of the
polynomial hierarchy.

▶ Definition 7.1. Let f be a function that maps inputs x to rational numbers and let A be a
probabilistic algorithm, which takes an input instance x and a parameter δ > 0. Then A is
called a fully polynomial randomized approximation scheme (FPRAS), if

Pr
(∣∣A(x, δ) − f(x)

∣∣ ≤ δ ·
∣∣f(x)

∣∣) ≥ 3
4 ;

the runtime of A is polynomial in |x| and 1
δ .

7.1 Approximation is Hard at First Sight
For the problems Min, Max with Poly weight functions, the existence of an FPRAS would
imply a collapse of the polynomial hierarchy, even when spanners are unambiguous. In
the Appendix we show that the lower bound for Min already holds for weight functions
represented by weighted VSet-automata over the numeric semiring.

▶ Theorem 7.2. Min[uVSA, PolyN] and Max[uVSA, RegN] cannot be approximated by an
FPRAS, unless the polynomial hierarchy collapses to the second level.

Approximation of Sum and Average is already hard for single variable weight functions.
It is crucial for the hardness, however, that the weight functions can output positive and
negative numbers.
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▶ Theorem 7.3. Sum[VSA, Single{−1,1}] and Average[VSA, Single{−1,1}] cannot be ap-
proximated by an FPRAS, unless the polynomial hierarchy collapses to the second level.

If the spanners are unambiguous, the simplest intractable setting for Sum and Average
is the one with Reg weight functions (see Table 2). Also here, the existence of an FPRAS
implies a collapse of the polynomial hierarchy.

▶ Theorem 7.4. Sum[uVSA, Reg] and Average[uVSA, Reg] cannot be approximated by
an FPRAS, unless the polynomial hierarchy collapses to the second level.

We now turn to the quantile problem. It turns out that this problem is difficult to
approximate even if the weight functions only return 0 or 1.

▶ Theorem 7.5. Let 0 < q < 1. Then, q-Quantile[VSA, SingleB] cannot be approximated
by an FPRAS, unless the polynomial hierarchy collapses on the second level.

When the spanners are unambiguous, the simplest intractable case for q-Quantile is
the one with UReg weight functions (see Table 2). Again, we can show that approximation
is hard.

▶ Theorem 7.6. Let 0 < q < 1. Then, q-Quantile[uVSA, UReg] cannot be approximated
by an FPRAS, unless the polynomial hierarchy collapses on the second level.

7.2 When an FPRAS is Possible
We show that Theorem 7.3 is very much on the tractability frontier: it shows that approxim-
ation is intractable if weight functions can assign 1 and −1. On the other hand, if the weight
functions are restricted to non-negative numbers, then approximating Sum and Average is
possible with an FPRAS.

▶ Theorem 7.7. Sum[VSA, SingleQ+ ] and Average[VSA, SingleQ+ ] can be approximated
by an FPRAS.

Our second positive result is about approximating quantiles in a positional manner. To
this end, let d be a document, P be a document spanner, w be a weight function and 0 ≤ q ≤ 1
with q ∈ Q. Then, for any δ > 0, we say that k ∈ Q is a positional δ-approximation of
q-Quantile(P, d, w) if there is a q′ ∈ Q, with q − δ ≤ q′ ≤ q + δ and k = q′-Quantile(P, d, w).5

▶ Theorem 7.8. Let 0 ≤ q ≤ 1. There is a probabilistic algorithm that calculates a positional
δ-approximation of q-Quantile[VSA, Poly] with success probability at least 3

4 . Furthermore,
the run time of the algorithm is polynomial in the input and 1

δ .

Proof sketch. Arenas et al. [2, Corollary 4.1] showed that given a functional VSet-automaton
A, one can sample tuples t ∈ JAK(d) uniformly at random with success probability at least 1

2 .
This algorithm can be used to create a sample of JAK(d) and return the q-Quantile of the
sample. We show that a sample of s ≥ ln(16)

2δ2 tuples is sufficient to ensure that the returned
quantile is indeed a positional δ-approximation of the quantile with success probability at
least 7

8 . ◀

5 The idea of positional quantile approximations was originally introduced by Manku et al. [19] in the
context of quantile computations with limited memory.
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8 Concluding Remarks

We investigated the computational complexity of common aggregate functions over regular
document spanners given as regex formulas and VSet-automata. While each of the studied
aggregate functions is intractable in the general case, there are polynomial-time algorithms
under certain general assumptions. These include the assumption that the numerical value
of the tuples is determined by a fixed variable, or that the spanner is represented as an
unambiguous VSet-automaton, or the conjunction of the two assumptions. Moreover, we
established quite general tractability results when randomized approximations (FPRAS)
are possible. The upper bounds that we obtained for general (functional) VSet-automata
immediately generalize to aggregate functions over queries that involve relational-algebra
operators and string-equality conditions on top of spanners, whenever these inner queries can
be efficiently compiled into a single VSet-automaton [10,26]. Moreover, these upper bounds
immediately generalize to allow for grouping (i.e., the GROUP BY operator) by computing
the tuples of the grouping variables and applying the algorithms to each group separately.

We identified several interesting cases where the computation of α(P (d)) can avoid the
materialization of the exponentially large set P (d), where, d is the document, P is the
spanner, and α is the aggregate function. Notably, this is the case (1) for Min with general
VSet-spanners and weight functions in Reg, UReg, and Single, (2) for Max with general
VSet-spanners and weight functions in UReg and Single, (3) for Sum and Average with
uVSA-spanners and weight functions in UReg and Single, and (4) for q-Quantile with
uVSA-spanners and Single weight functions.

Yet, several basic questions are left for future investigation. A natural next step would
be to seek additional useful assumptions that cast the aggregate queries tractable: Can
monotonicity properties of the numerical functions lead to efficient algorithms in cases that
are otherwise intractable? What are the regex formulas that can be efficiently translated
into unambiguous VSet-automata (and, hence, allow to leverage the algorithms for such
VSet-automata)? Another important direction is to generalize our results in a more abstract
framework, such as the Functional Aggregate Queries (FAQ) [13], in order to provide a uniform
explanation of our findings and encompass general families of aggregate functions rather than
specific ones. Finally, the practical side of our work remains to be studied: How do we make
our algorithms efficient in practice? How effective is the sampling approach in terms of the
balancing between accuracy and execution cost? Can we accurately compute estimators of
aggregate functions over (joins of) spanners within the setting of online aggregation [12, 16]?
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A Algebraic Operations on Spanners

We will now recall some definitions of algebraic operations on spanners. To this end, we
start with some basic definitions. Two d-tuples t1 and t2 are compatible if they agree on
every common variable, i.e., t1(x) = t2(x) for all x ∈ Vars(t1) ∩ Vars(t2). In this case, define
t1 ▷◁ t2 as the tuple with Vars(t1 ▷◁ t2) = Vars(t1) ∪ Vars(t2) such that (t1 ▷◁ t2)(x) = t1(x)
for all x ∈ Vars(t1) and (t1 ▷◁ t2)(x) = t2(x) for all x ∈ Vars(t2). Note that the following
operators are the same as those defined by Fagin et al [7].

▶ Definition A.1 (Algebraic Operations on Spanners). Let P, P1, P2 be spanners and let d ∈ Σ∗

be a document.
Union. The union P = P1 ∪ P2 is defined when Vars(P1) = Vars(P2). In that case,
P (d) = P1(d) ∪ P2(d).
Projection. The projection P = πY P1 is defined by P (d) = {t↾Y | t ∈ P1(d)}. Recall that
t↾Y denotes the restriction of t to the variables in Y .
Natural Join. The (natural) join P = P1 ▷◁ P2 is defined such that P (d) consists of all
tuples t1 ▷◁ t2 such that t1 ∈ P1(d), t2 ∈ P2(d), and t1 and t2 are compatible.
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B Regex-formulas

A regex-formula (over Σ) is a regular expression that may include variables (called capture
variables). Formally, we define the syntax with the recursive rule

α := ∅ | ε | σ | (α ∨ α) | (α · α) | α∗ | x⊢ α⊣x ,

where σ ∈ Σ and x ∈ Vars. We use α+ as a shorthand for α · α∗ and Σ as a shorthand for∨
σ∈Σ σ. The set of variables that occur in α is denoted by Vars(α) and the size |α| is defined

as the number of symbols in α.
Every regex-formula can be interpreted as a generator of a (regular) ref-word language

R(α) over the extended alphabet Σ ∪ ΓVars(α). If α is of the form x⊢ β⊣x, then R(α) :=
{x⊢} · R(β) · {⊣x}. Otherwise, R(α) is defined as the language L(α), that is R(∅) := ∅,
R(a) := {a} for every a ∈ Σ ∪ {ε}, R(α ∨ β) := R(α) ∪ R(β), R(α · β) := R(α) · R(β),
R(α∗) := {R(α)i | i ≥ 0}.

Notice that R(α) can contain ref-words in which the same variable is used multiple times.
By VR(α) we denote the set of ref-words in R(α) that are valid and by VRVars(α)(α) we
denote the set of ref-words in R(α) that are valid for Vars(α). For example, if α = (x⊢ a⊣x)∗,
then VR(α) = {ε, x⊢ a⊣x} and VRVars(α)(α) = {x⊢ a⊣x}. For every document d ∈ Σ∗, we
define VR(α, d) := VR(α) ∩ VR(d). In other words, VR(α, d) contains exactly those valid
ref-words from VR(α) that clr maps to d. Finally, the spanner JαK is the one that maps
every document d ∈ Σ∗ to the following set of tuples:

JαK(d) := {tupr | r ∈ VR(α, d)}

We will sometimes denote the set of tuples JαK(d) by α(d) to simplify notation. We say
that a regex-formula is functional if R(α) = VRVars(α)(α), that is, every ref-word in R(α) is
valid for Vars(α). As for VSet-automata, in this paper, we assume that regex-formulas are
functional. The set of all functional regex-formulas is denoted by RGX.

C Some Background on Complexity

We will recall the definitions for some of the complexity classes we will use in the following
sections, closely following [33]. The class FP is the set of all functions that are computable
in polynomial time. A counting Turing Machine is an non-deterministic Turing Machine
whose output for a given input is the number of accepting computations for that input. The
class #P is the set of all functions that are computable by polynomial-time counting Turing
Machines. A problem X is #P-hard if there are polynomial time Turing reductions to it
from all problems in #P. If in addition X ∈ #P, we say that X is #P-complete. The class
FP#P is the set of all functions that are computable in polynomial time by an oracle Turing
Machine with an #P oracle. It is easy to see that, under Turing reductions, a problem is
hard for the class #P if and only if it is hard for FP#P. For counting problems, use Cook
reductions, also known as Turing reductions. Under these reductions, counting the number
of satisfying assignments of a DNF formula or the number of words accepted by some NFA
is #P-complete.

The class OptP is the set of all functions computable by taking the maximum output values
over all accepting computations of a polynomial-time non-deterministic Turing Machine that
outputs natural numbers. Assume that Γ is the Turing Machine alphabet. Let f, g : Γ∗ → N
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be functions. A metric reduction, as introduced by Krentel [14], from f to g is a pair of
polynomial-time computable functions T1, T2, where T1 : Γ∗ → Γ∗ and T2 : Γ∗ × N → N,
such that f(x) = T2(x, g(T1(x))) for all x ∈ Γ∗.

The class BPP is the set of all decision problems solvable in polynomial time by a
probabilistic Turing Machine in which the answer always has probability at least 1

2 + δ of
being correct for some fixed δ > 0.
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