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Abstract
One of the bottlenecks in parallel query processing is the cost of shuffling data across nodes in a
cluster. Ideally, given a distribution of the data across the nodes and a query, we want to execute
the query by performing only local computation and no communication: in this case, the query is
called parallel-correct with respect to the data distribution. Previous work studied this problem
for Conjunctive Queries in the case where the distribution scheme is oblivious, i.e., the location of
each tuple depends only on the tuple and is independent of the instance. In this work, we show
that oblivious schemes have a fundamental theoretical limitation, and initiate the formal study
of distribution schemes that are locality-aware. In particular, we focus on a class of distribution
schemes called co-hash distribution schemes, which are widely used in parallel systems. In co-hash
partitioning, some tables are initially hashed, and the remaining tables are co-located so that a join
condition is always satisfied. Given a co-hash distribution scheme, we formally study the complexity
of deciding various desirable properties, including obliviousness and redundancy. Then, for a given
Conjunctive Query and co-hash scheme, we determine the computational complexity of deciding
whether the query is parallel-correct. We also explore a stronger notion of correctness, called parallel
disjoint correctness, which guarantees that the query result will be disjointly partitioned across
nodes, i.e., there is no duplication of results.
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1 Introduction

Modern data management systems utilize the power of parallelism to efficiently process
huge datasets. These systems can often scale to hundreds, and even thousands of machines.
However, as the data and scale increases, massively parallel systems face a critical bottleneck:
the cost of communicating (or shuffling) data across different machines. The amount of data
shuffling required to process a given query depends on the initial data distribution, or data
partitioning. Given a query, it is desirable to obtain the query result with the minimum
possible shuffling of data, while making sure that no machine is overloaded. Ideally, we can
execute the query without any shuffling, by simply running it on the local fragment of each
machine/node, and then taking the union of all the results. This notion of being able to
execute queries with no data shuffling is called parallel correctness, or p-correctness for short,
and was first introduced in [3].

Previous works [3, 4, 9, 12, 13, 18] have studied the problem of p-correctness for different
classes of queries, including Conjunctive Queries (CQs), Unions of Conjunctive Queries
(UCQs), and Datalog programs. In all prior work, the data distribution is specified by a
distribution policy, where the location of each tuple depends only on the tuple, and not on
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the rest of the database. A distribution policy can hence be captured by a function P(t)
that maps a tuple t to a set of machines/nodes. Typical examples of distribution policies are
hash partitioning, where each relation in the database is hashed on a chosen subset of its
attributes, as well as hypercube partitioning [2, 3, 8, 12]. The latter distribution policy is
used for load-optimal single round algorithms that compute CQs [5, 15], when the initial
data distribution is arbitrary and thus any correct algorithm must take into account that
there is no knowledge of where the data lies.

In this paper, we consider a more general class of distribution schemes, captured by a
function P(t, I) that allocates a tuple using (possibly) additional information from the instance.
Distribution schemes that ignore I are called oblivious, and correspond to distribution policies.
Oblivious distribution schemes, although simple to understand, can often lead to suboptimal
partitioning, since the locality of the data across relations (or within the same relation) is
not exploited at all. As we will show in Section 3, any oblivious scheme that guarantees
p-correctness for some query q incurs a certain storage overhead that is unavoidable regardless
of the underlying instance.

To overcome this barrier, it is necessary to look into distribution schemes that are locality-
aware, in the sense that tuples are distributed taking into account tuples in other relations.
In practice, parallel data management systems partition data in smart ways [16, 17, 21] and
several parallel large-scale systems are deploying locality-aware data partitionings [7, 19, 20,
22, 23] to minimize, or even reduce to zero, the amount of data shuffling for a given query or
query workload.

Since it is generally infeasible to describe efficiently a non-oblivious distribution scheme,
in practice we are interested in schemes that can be concisely represented. In this work,
we will focus on a particular class of locality-aware distribution schemes that has been
widely adopted in practice called co-hashing. In such a scheme, a set of relations is initially
hash-partitioned. The tuples from the remaining relations are then collocated with tuples
from other relations according to specified join conditions. We illustrate co-hashing with an
example below:

▶ Example 1. Consider two binary relations R(A1, A2) and S(B1, B2). A co-hash scheme
partitions R by hashing on attribute A1, and then distributes each tuple s from S to all
nodes that consist of a tuple r from R that joins with s on the join condition R.A2 = S.B1.
The tuples of S that do not join with any tuple in R are hashed on attribute B1. The
scheme is locality-aware since the nodes where a tuple from S is assigned depend on the
tuples that occur in R. It is easy to observe that, given the above co-hash scheme, the query
q(x, y, z) = R(z, x), S(x, y) is parallel-correct.

In a general co-hash scheme, we can chain together arbitrarily many relations, as long as we
are not introducing a cyclic dependency. Note also that a co-hash scheme strictly generalizes
(oblivious) schemes where each relation is hashed independently. Though co-hashing can
make join processing very efficient, determining whether a query is parallel-correct for a
given co-hash distribution scheme can be challenging, as illustrated in the example below:

▶ Example 2. Consider the setup from Example 1, together with a third table U(D1) that
is co-hashed with R on R.A2 = U.D1. Let the tuples of U that do not join with R be hashed
on attribute D1. Now, consider the Conjunctive Query q(x, y) = S(x, y), U(x). As we will
see later, this query is parallel correct for this co-hash scheme for any input instance.

Consider the naive approach of checking p-correctness for a CQ: look at one binary join
at-a-time, and check if this join appears somewhere in the co-hash scheme. This approach is
employed by the current state of the art technique [23], but it fails in this example, since
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S, U are not directly connected in the co-hash scheme (but only through R). Hence, the
system will conclude that data shuffling must be performed, even if it is not necessary. We
should note that p-correctness depends critically on how the non-joining tuples are handled.
For instance, if we choose to hash the non-joining tuples from S on attribute B2 instead, q is
not p-correct any more.

The notion of p-correctness guarantees that the union of the local results reconstructs the
query result. However, a query result may end up in multiple nodes, so obtaining the final
result may require an additional deduplication step. If we want to avoid this, we need to check
for a stronger condition, parallel disjoint correctness, or pd-correctness, which determines
whether tuples of a query result are disjointly partitioned across the nodes.

In addition to the correctness notions, we introduce and study in the context of co-hash
schemes two additional properties. The first property, obliviousness, tests whether a particular
relation can be oblivious in an otherwise non-oblivious scheme. This is important, because
such a relation can be easily maintained in a parallel setting. The second property, clustering,
tests whether tuples of a given relation that agree on a set of attributes are always located in
the same unique node. For example, relation R from Example 1 is clustered w.r.t. attribute
A1. Note that this implies that any query that groups by A1 and aggregates can be computed
locally without any data shuffling. Clustering with respect to all attributes in a relation R

is equivalent to non-redundancy (i.e., each tuple in R is assigned to a unique node). For
instance, relation S from Example 1 exhibits redundancy, since an S-tuple can end up in
two (or more) nodes.

Our Contributions. In this paper, we study the formal foundations for locality-aware
distribution schemes. We next summarize our contributions.
1. Theoretical Framework. We introduce a general framework that captures locality-

aware distribution schemes. We describe several desirable properties, including p-
correctness, pd-correctness, obliviousness and clustering. Within this framework, we show
that oblivious schemes have a fundamental barrier on how well they can localize data.

2. Co-hash Schemes. We formalize the class of co-hash distribution schemes, which is
widely used in practice, by introducing the notion of a co-hash graph to concisely capture
how the input instance is distributed.

3. Deciding Properties: We study three properties of co-hash schemes: balancedness,
obliviousness and clustering. We first show how co-hash schemes can overcome the
limitations of oblivious schemes. Then, we show that we can decide both obliviousness
and clustering in polynomial time (in the size of the co-hash graph). We observe that
taking functional dependencies into account can lead to better reasoning about whether
a relation is clustered or not.

4. Parallel correctness: We study the complexity of determining parallel correctness for
co-hash schemes for the class of CQs. We distinguish two subproblems, depending on
whether we consider a specific instance, or we want to determine p-correctness across all
possible instances. We show that the former subproblem is Π2

P -complete for CQs, but
coNP-complete when restricted to full CQs (CQs without projections). For the latter
subproblem, we show that it is NP-hard for general CQs, while for full CQs the complexity
drops to polynomial time.

5. Parallel disjoint correctness: Finally, we provide results for the complexity of
pd-correctness for CQs. Results for the instance-specific subproblem follows from p-
correctness. For the instance-independent subproblem, we show that pd-correctness for
full CQs can be determined in polynomial time (while it remains NP-hard for general
CQs).

ICDT 2021



22:4 Locality-Aware Distribution Schemes

2 Preliminaries

Basics. We adopt the named definition of a relation: a relation is of the form R(A1, . . . , Ar).
Here, R is the relation name, and A1, . . . , Ar are the attributes of the relation; we assume
that the attributes are disjoint across different relations. We say that ar(R) = r is the arity
of the relation. We denote the attribute set of a relation R by att(R). We also associate with
each relation R a collection of functional dependencies, which we denote by fd(R). Given a
subset of attributes A ⊆ att(R), we denote by A+ the fd closure of A w.r.t. the functional
dependencies in fd(R). A database schema Σ is a finite collection of relations.

We assume a (possibly infinite) domain dom. An instance of a relation R is a finite set
of tuples of the form R(a1, . . . , ar), where ai ∈ dom, and r is the arity of relation R. Given
a tuple t = R(a1, . . . , ar), and an attribute Ai, we write t[Ai] to denote the value of t at the
position Ai, i.e. t[Ai] = ai. We naturally extend this notation to t[A], where A ⊆ att(R). A
database instance I over a schema Σ is a collection of relation instances RI for each relation
R in the schema Σ.

Join Condition. Given two relations R, S, we define a join condition λ between R, S to
be a symmetric binary relation over att(R) ∪ att(S). Whenever (A, B), (B, A) ∈ λ, we will
simply write A = B. A join condition corresponds to an equi-join between R, S: for example,
the join condition {A1 = B1, A2 = B2} describes the equi-join R ⋊⋉A1=B1∧A2=B2 S. This
formalization allows a join condition to contain equality on predicates that belong in the
same relation. Given a binary relation λ, we denote by λ⊕ the minimum equivalence relation
that contains λ.

▶ Example 3. Consider two relations R(A, B), S(C, D) and the join condition λ = {A =
C, B = C}. Then, the equivalence relation λ⊕ is {A = A, B = B, C = C, A = C, B = C,

A = B}.

Conjunctive Queries. A CQ is an expression of the form q(y) = R1(x1), . . . , Rℓ(xℓ). The
tuples y and x1, . . . , xℓ consist of variables and/or constants. Here, q(y) is called the head,
R1(x1), . . . , Rℓ(xℓ) are called atoms and form the body. The symbols y, x1 . . . xℓ are vectors
that may contain variables or constants. The variables in the head must be a subset of the
variables that appear in the body. A CQ is full if every variable in the body appears in the
head as well, and it is boolean if the head contains no variables, i.e., it is of the form Q(). A
valuation v is a mapping from the variables in q to the constants in dom. We extend v to
be the identity mapping for constants. A valuation v satisfies q on instance I if for every
i = 1, . . . , ℓ, v(xi) ∈ I. We define the output q(I) to be the set of all v(y), for a valuation v

that satisfies q on I.
Given a CQ q, a fractional edge packing is an assignment of a non-negative weight wi to

each atom Ri such that for each variable xi in q, the sum of the weights of the atoms that
contain xi is at most 1. The fractional edge packing number τ∗(q) is the maximum value of
the quantity

∑
i wi over all possible fractional edge packings of q.

3 Data Distribution Schemes

Let I be a database instance over a schema Σ. Given a set of p nodes, N = {1, 2, . . . , p}, our
goal is to distribute the tuples of I over these p nodes, such that each node i ∈ N receives a
subset Ii ⊆ I.
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▶ Definition 4 (Distribution Scheme). Let N = {1, 2, . . . , p} be a set of nodes, and Σ a
schema. A distribution scheme P is a function that takes as input an instance I over the
schema Σ and a tuple t ∈ I, and returns a set P(t, I) ⊆ N .

Given a distribution scheme P, we define the data chunk for node i as P(i)(I) = {t ∈ I |
i ∈ P(t, I)}. A distribution scheme can assign a tuple to the empty set, or even replicate a
tuple by assigning to multiple nodes. A distribution scheme is deterministic, but in practice
we often want to introduce randomness in how the input is distributed. We model this by
considering a family of distribution schemes P = {P1, P2, . . . } defined over the same set
of nodes N and the same schema Σ. Intuitively, to distribute the data we will choose a
distribution scheme from the family P uniformly at random.

3.1 Properties of Distribution Schemes
We next introduce several important properties that a distribution scheme can satisfy.

Obliviousness. A desirable property of a distribution scheme is that the set of nodes where
each tuple is assigned depends only on the relation it belongs to and its attribute values,
and not the entire instance.

▶ Definition 5 (Obliviousness). Let Σ be a schema, and R ∈ Σ. We say that R is oblivious
w.r.t. a family of distribution schemes P if for every P ∈ P it holds that P(t, I) = P(t, I ′)
for every tuple t and pair of instances I, I ′ over schema Σ such that t ∈ RI , RI′ .

If every relation of the schema is oblivious w.r.t. P, we say that P is oblivious, and we
can simply express the distribution function as P(t) (for every P ∈ P). Such a scheme is
referred to as a distribution policy in [3, 4]. A standard example of an oblivious distribution
scheme is hash-partitioning, where each relation in the schema is hash-partitioned (according
to a subset of the attributes) independently of the other relations. Another example is the
Hypercube distribution scheme discussed in [3, 15].

An advantage of a distribution policy is that the location of each tuple can be decided by
just examining the particular tuple. On the other hand, as we will see later in this section, a
distribution policy often limits the way we can distribute data among the nodes, especially
when we want to increase the locality of the data in terms of join computation. Recent
work [23, 22, 7] has introduced distribution schemes that are not oblivious, and are designed
to support join computation locally.

Clustering. A second desirable property of a distribution scheme is that the tuples of a
relation R are clustered with respect to a set of attributes in R.

▶ Definition 6 (Clustering). Let Σ be a schema, R ∈ Σ and A ⊆ att(R). We say that R

is A-clustered w.r.t. a family of distribution schemes P over a set of nodes N if for every
P ∈ P, for every instance I, and any two tuples t, t′ ∈ RI such that t[A] = t′[A], there exists
a (unique) node n ∈ N such that P(t, I) = P(t′, I) = {n}.

In other words, if R is A-clustered, then all the tuples that have the same values for A
(i.e., are in the same group) always end up in the same node (and only one). In practice,
this means that any group-by query on R where the grouping attributes are a subset of A
can be computed locally, without any data shuffling. In the special case where A = att(R),
being A-clustered simply means that for every tuple t, |P(t, I)| = 1, or in other words that
there is no redundancy in the distribution of the tuples in R. In this case, we will say that R

is non-redundant w.r.t. to P.

ICDT 2021
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Balancedness. A third desirable property of a distribution scheme is that the storage
overhead is small, and the data is partitioned across the nodes in a balanced way. A
first attempt to model this would be using the replication factor, defined as r(P, I) =
maxP∈P

∑
i |P(i)(I)|/|I|. However, the trivial distribution scheme that sends all tuples to

a single node has perfect locality and the smallest possible replication factor (r = 1). To
overcome this problem, we define the notion of balancedness:

▶ Definition 7 (Balancedness). Let Σ be a schema, and N be a set of p nodes. The
balancedness of a family of distribution schemes P over Σ and N , and an instance I is

b(P, I) = p

|I|
· EP∼P

[
max
i∈N
|P(i)(I)|

]
.

Here, P ∼ P means we sample uniformly at random a distribution scheme from P.

Intuitively, the balancedness tells us how much larger the (expected) maximum-sized
chunk is compared to |I|/p, which is what a perfect splitting of the data would achieve. Note
that we can define the balancedness at a relation-level as well. The lemma below gives some
intuition about the values that balancedness can take: it is at least as large as the replication
factor, but cannot exceed p.

▶ Lemma 8. r(P, I) ≤ b(P, I) ≤ p

3.2 Queries over Distribution Schemes
Given a distribution of an instance over the nodes, an important question is how a query q

can be computed over the given distribution. In this section, we introduce two notions that
capture when a distribution scheme is amenable to efficient distributed query computation.

First, we ask whether it is possible to compute a query q by performing exclusively local
computation, without any data shuffling. In the case that this is possible, we say that q is
parallel correct, following the definition in [3].

▶ Definition 9 (Parallel Correctness). Let P be a family of distribution schemes over schema
Σ and N = {1, . . . , p} nodes. A query q is parallel correct (p-correct) on instance I w.r.t. P
if for every P ∈ P, we have q(I) =

⋃p
i=1 q(P(i)(I)). A query q is p-correct w.r.t. P if it is

p-correct w.r.t. P on every instance I over Σ.

Parallel correctness implies that the query result is the union of the local query results
at each node. However, it is possible that a tuple is present in the local results of multiple
nodes (i.e., there is redundancy in the result). In this case, getting the correct result would
require a deduplication step after the result has been computed. To capture the case where
deduplication is not necessary, we need to define a stronger notion of parallel-correctness.

▶ Definition 10 (Parallel Disjoint Correctness). Let P be a family of distribution schemes
over schema Σ and N = {1, . . . , p} nodes. A query q is parallel disjoint correct (pd-correct)
w.r.t. P if for every P ∈ P and for every instance I over Σ, {q(P(i)(I))}i∈N is a partition
of the query result q(I).

3.3 Limitations of Oblivious Schemes
An ideal distribution scheme should be easy to compute (oblivious), cheap to store
(balancedness), and also able to minimize the amount of data shuffling in order to compute
a given query (parallel-correctness). With the next result, we show that there is a
fundamental limitation on what an oblivious distribution scheme can achieve. This result is
a straightforward corollary of existing lower bounds on parallel query evaluation [6].



B. Sundarmurthy, P. Koutris, and J. Naughton 22:7

R(A1, A2)

S(B1, B2)

T (C1, C2)
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(a) Co-hash graph.
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(b) Database instance.
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2 6
8 7
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2 1
1 2
8 3

X
G1 G2
2 8
3 1
8 6

(c) Induced data distribution.

Figure 1 Depiction of a co-hash graph and the resulting data distribution. Figure (c) shows the
distribution of tuples induced by each of the co-hash trees. Each color corresponds to a different
node.

▶ Theorem 1. Let P be an oblivious family of distribution schemes over schema Σ and
nodes N = {1, . . . , p}. If a self-join-free join query q is parallel-correct w.r.t. P, then for
every instance I, we have b(P, I) = Ω(p1−1/τ∗(q)), where τ∗(q) is the fractional edge packing
number of q.

It is important to note that the bound holds for any instance I, even if the given instance
is easy to distribute efficiently. We should also remark that Theorem 1 holds even for
distribution schemes where a tuple t ∈ RI is distributed by taking all of RI into account
(but not any other relation). Hence, to overcome the lower bound from Theorem 1, the
distribution scheme has to use information from other relations in the instance.

▶ Example 11. Consider the conjunctive query q(x, y, z, w) = R(x, y), S(y, z), T (z, w). The
maximum fractional edge packing for q is τ∗ = 2, hence Theorem 2 implies that any oblivious
scheme such that q is p-correct must have balancedness Ω(p1/2) for any instance I. We will
see in the next section how locality-aware distribution schemes can overcome this bound.

4 Co-Hashing

We now introduce a class of non-oblivious distribution schemes, which we call co-hash schemes,
that have been widely used in several practical settings [23, 22, 7].

4.1 Formal Framework
We start by recalling the definition of a rooted in-tree. A rooted in-tree is a directed tree
such that (i) a single designated vertex is called the root, and (ii) every other vertex points
towards the root.

ICDT 2021
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▶ Definition 12 (Co-Hash Graph). Let Σ be a schema. A co-hash graph G = (V, E, α, λ) for
Σ is an edge-labelled and vertex-labelled directed graph where:

the vertex set V consists of relations in Σ;
the label of a vertex R, denoted α(R), is a vector of attributes from att(R);
the label of an edge e = (R, S), denoted λ(e), is a join condition between R, S; and
the edge set E consists of the union of the disjoint sets of edges of the rooted in-trees.

Each rooted in-tree in G is called a co-hash tree. The root path of a vertex R is the unique
directed path from R to the root of its co-hash tree. A co-hash graph does not need to
include as vertices all relations from the schema. We will refer to the vertex label α(R) as
the hash signature of R, and denote the attribute at the i-th position as α(R)i.

▶ Example 13. Consider the schema: Σ = {R(A1, A2), S(B1, B2), T (C1, C2), U(D1)}, and a
co-hash tree with four vertices R, S, T, U . Let the vertex labels be: α(R) = ⟨A1⟩, α(S) =
⟨B1⟩, α(T ) = ⟨C1⟩, α(U) = ⟨D1⟩.

There are three edges: eSR = (S, R) with join condition λ(eSR) = {B1 = A2}, eT S =
(T, S), with join condition λ(eT S) = {C1 = B2}, and eUR = (U, R) with join condition
λ(eUR) = {D1 = A1}. Figure 1a depicts the above co-hash tree.

Induced Distribution. We now explain how a co-hash graph G induces a family of
distribution schemes PG over a set of nodes N . Let I be an instance of the schema Σ.
For a tuple t ∈ R, we define its upwards join set J G

↑ (t, I) in G as follows. If R is a root of
some co-hash tree, then J G

↑ (t, I) = ∅. If R is not the root, then let S be its unique parent in
the co-hash tree. Then, J G

↑ (t, I) is the set of all tuples from S that join with t on the join
condition λ((R, S)).

For the following, we will assume a family of hash functions h = {h(1), h(2), . . .}, where
the hash function h(i) takes i attribute values as input and returns a value from N ; we will
simply use the notation h when the context is clear.

We can now define recursively the distribution scheme Ph
G of the instance I as specified

by the co-hash tree G and the hash family h. For every tuple t ∈ RI we define:

Ph
G(t, I) :=

{
h(t[α(R)1], t[α(R)2], . . . ), if J G

↑ (t, I) = ∅⋃
s∈J G

↑ (t,I) Ph
G(s, I), otherwise.

In other words, if a tuple t has an empty upwards join set, then it is hash-partitioned
using the attributes in α(R). For simplicity of notation, we will often write α(t) to denote
the vector ⟨t[α(R)1], t[α(R)2], . . .⟩. If the upwards join set is not empty, then it is collocated
with every tuple in J G

↑ (t, I). The data distribution scheme is always well-defined, since we
require that the co-hash graph is a collection of disjoint rooted in-trees.

Given a co-hash graph G, we denote by PG = {Ph
G}h the family of all distribution schemes

Ph
G, parameterized by all possible hash functions.

▶ Example 14. Figure 1c depicts the induced data distribution on our example instance.
Since R is the root of the co-hash tree, the tuples of R will be hashed using attribute ⟨A1⟩.

For example, R(1, 2), R(1, 3) will always end up in the same node (color red). The tuples
from S will be co-hashed according to the join condition R.A2 = S.B1. For instance, the
tuple S(3, 5) joins with two tuples from R, R(1, 3) and R(2, 3) and thus will be assigned to
where R(1, 3) is (red), and where R(2, 3) is (teal). On the other hand, the tuple S(8, 9) does
not join with any tuple from R, and hence it will be hashed on attribute ⟨B1⟩ (magenta).



B. Sundarmurthy, P. Koutris, and J. Naughton 22:9

In the case where G has no edges, the resulting data distribution reduces to a hash-
partitioning strategy, where each relation is distributed independently according to a subset
of its attributes.

4.2 Practical Considerations
Our definition of a co-hash distribution scheme is based on the concept of predicate-based
reference partitioning [23]. In the most general version, the join condition λ(e) can be any
predicate. However, as in [23], we restrict our study to equi-joins, since (i) they cover almost
all practical scenarios, (ii) other join conditions (e.g., disequality, inequality) may lead to
very large replication. We should note here a fundamental difference with [23]. If a tuple
in a non-root relation does not join with any tuple from its parent relation, we make sure
that the tuple is hashed. In predicate-based reference partitioning, such a tuple is instead
arbitrarily distributed to a node. However, this can hurt data locality, as the next example
shows.

▶ Example 15. Consider the query q(x, y) = S(x, y), U(x). As we will see in Section 6 q

is p-correct for the co-hash graph in Figure 1a. On the other-hand, if we do not specify
explicitly that the non-joining tuples of R, U are hashed according to B1, D1 respectively,
the query would not be p-correct. To see this, consider the instance {S(a, b), U(a), R(c, d)}.
Note that the tuples S(a, b), U(a) satisfy q, but since neither of the two joins with R, they
will be assigned to arbitrary nodes.

The declarative framework of distribution constraints introduced in [11] also captures
predicate-based reference partitioning, but it cannot control how the non-joining tuples are
assigned to nodes as we do in this paper. As we show in the above example, this limitation
means that fewer queries may be p-correct for a given scheme.

4.3 Some Useful Notions
We next discuss notions and properties of co-hash graphs that will be used throughout the
paper.

▶ Definition 16 (Terminating Path). Let G be a co-hash graph, and I an instance. The tuple
sequence t0 → t1 → · · · → tk is a terminating path for t0 ∈ I if (i) for every j = 0, . . . , k − 1
we have tj+1 ∈ J G

↑ (tj , I), and (ii) J G
↑ (tk, I) = ∅.

Note that the above terminating path for t0 implies that t0 will be assigned to node
h(α(tk)) for the scheme Ph

G.
We also define a hash destination to be a vector of values that is passed to the hash

function h. For a tuple t ∈ I, H(t, I) is the set of hash destinations that is used to assign
tuple t to a node. For instance, if t ∈ RI and R is a root node in G with α(R) = ⟨A, B⟩,
then H(t, I) = {⟨t[A], t[B]⟩}.

Tuple Collocation. Given a co-hash graph G, an instance I and a set of tuples S ⊆ I, we
write I ▷G S if for every P ∈ PG we have

⋂
s∈S P(s, I) ̸= ∅. In other words, I ▷G S if the

tuples from S are always collocated in some common node, no matter the choice of the hash
family. We show next that we can decide this problem in P. Intuitively, this holds because
of the acyclic structure of the co-hash graph.

▶ Lemma 17. Let G = (V, E, α, λ) be a co-hash graph, I be an instance, and S ⊆ I. Then,
we can decide in polynomial time whether I ▷G S.
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5 Properties of Co-hashing

5.1 Balancedness
We first discuss how co-hash schemes can overcome the lower bound for oblivious schemes.

▶ Example 18. Consider again the query we used in Example 11, q(x, y, z, w) =
R(x, y), S(y, z), T (z, w). Suppose that the relations R, S, T are distributed according to
the co-hash graph of Figure 1a. It is easy to see that q is parallel-correct.

We now turn into analyzing the balancedness of the distribution scheme induced by the
co-hash graph. Suppose that A1 is a key in R, B1 is a key in S, and C1 is a key in T ;
this is a common scenario, since many joins in practice are key-foreign key joins. In this
case, assuming that |I| ≫ p, one can show that the balancedness will be b = O(1), which is
asymptotically close to the best possible value of 1. On the other hand, as we showed in the
previous section, any oblivious scheme will have balancedness Ω(p1/2).

Our first result generalizes the above example. We show that if the hash signatures and
join conditions involve keys of the relations, balancedness is guaranteed to be constant. This
result captures a lot of real-world examples, since in practice co-hash graphs are constructed
by following the key-foreign key constraints of the schema.

▶ Lemma 19. Let G be a co-hash graph such that (i) for every edge e = (R, S), the attributes
in λ(e) form a superkey for R, and (ii) for every vertex R, the attributes in α(R) form a
superkey for R. Let I be an instance such that |I| ≫ p. Then, b(PG, I) = O(1).

Our second result shows that any (non-trivial) co-hash partitioning scheme has constant
balancedness when the input database has bounded degree. Formally, a bounded degree
database is one where the number of times each value appears in a tuple is bounded by a
constant d ∈ N. This is not a surprising result, since the constraint of bounded degree means
that each tuple can join with at most d other tuples. Contrast this result with oblivious
schemes, where even for bounded degree instances the balancedness is a non-constant function
of the number of nodes p.

▶ Lemma 20. Let G be a co-hash graph such that (i) no join conditions are empty, and (ii)
every hash signature is of size at least 1. Let I be a bounded degree instance with bound d

such that |I| ≫ p. Then b(PG, I) = O(dℓ), where ℓ is the maximum height of a rooted in-tree
in G.

5.2 Obliviousness
Let Σ be a database schema and G a co-hash graph over Σ. The question we ask here is:
which relations in Σ are oblivious w.r.t. PG?

CoHash-Oblivious
Input: co-hash graph G, relation R
Question: Is R oblivious with respect to PG?

Before we describe how we can decide the above property, we need some additional
technical machinery.
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▶ Definition 21 (Hash-Compatible). Let G = (V, E, α, λ) be a co-hash graph, and R, S ∈ V .
We say that R is hash-compatible with S w.r.t. an equivalence relation ρ over att, denoted
ρ |= R ∥ S, if:

1. α(R), α(S) have the same arity; and

2. for every position i, α(R)i =ρ α(S)i.

▶ Example 22. Consider the co-hash tree rooted at R in the co-hash graph presented in
Figure 1a. Consider relations R and S, and let ρ = {A1 = B1, A2 = B1}.

We claim that ρ⊕ |= R ∥ S. Indeed, |α(R)| = |α(S)| = 1, so the arities of R and S are
the same. Also, α(R)1 = A1, α(S)1 = B1, and A1 = B1 ∈ ρ⊕. Hence, α(R)1 =ρ⊕ α(S)1.

On the other hand, if ρ = {A2 = B1}, then α(R)1 ̸=ρ⊕ α(S)1, and ρ⊕ |= R ∥ S does not
hold.

▶ Lemma 23. Let G = (V, E, α, λ) be a co-hash graph, and R ∈ V . Let (R =)S0
e1→ S1

e2→
. . .

ek→ Sk be the (unique) root path of R. If (λ(e1) ∪ · · · ∪ λ(ej))⊕ |= R ∥ Sj for every node
j = 1, . . . , k, then for every hash family h and every instance I we have Ph

G(t, I) = {h(α(t))}.

We can now state the main theorem of this section.

▶ Theorem 2. Let G = (V, E, α, λ) be a co-hash graph, and R ∈ V . Let (R =)S0
e1→ S1

e2→
. . .

ek→ Sk be the root path of R. The following are equivalent:

1. PG is oblivious for R.

2. R is hashed on α(R).

3. For every i = 1, . . . , k, we have ρi |= R ∥ Si, where ρi = (λ(e1) ∪ · · · ∪ λ(ei))⊕ .

▶ Example 24. Consider the co-hash tree rooted at V in the co-hash graph presented in
Figure 1a. Consider relation X in the co-hash tree. The root path of X is X → V . We have
ρ1 = {G1 = E1}, which means that ρ1 |= R ∥ V holds. Hence, condition (3) of Theorem 2
holds and X is oblivious.

▶ Proposition 1. CoHash-Oblivious is in P.

5.3 Clustering

In this section we consider whether a co-hash graph G induces a clustering of a relation in
the schema. Recall that by checking whether a relation is clustered, we implicitly also check
about the presence of redundancy.

CoHash-Clustered
Input: co-hash graph G, relation R, A ⊆ att(R)
Question: Is R A-clustered w.r.t. PG?
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Algorithm 1 Checking Clustering.

1: Input: G = (V, E, α, λ), R ∈ V , A ⊆ att(R)
2: Let root path (R =)S0

e1→ S1
e2→ . . .

ek→ Sk

3: V0 ← A+

4: i← 0
5: while i < k do
6: if ∃j s.t. α(Si)j /∈ Vi then ▷ (VC)
7: return false
8: if ∃(A, B) ∈ λ(ei+1) s.t. A /∈ Vi then ▷ (EC)
9: break

10: i++
11: Vi ← {B ∈ att(Si) | ∃A ∈ Vi−1 : (A = B) ∈ λ(ei)}+

12: if i = k and ∃j : α(Sk)j /∈ Vk then
13: return false
14: else
15: for j = i + 1, . . . , k do
16: if (λ(e1) ∪ . . . ∪ λ(ej))⊕ |= Si ∥ Sj then ▷ (HC)
17: return false
18: return true ;

An easy observation is that obliviousness implies that R is att(R)-clustered, and so it
is non-redundant. Indeed, from Theorem 2, an oblivious relation allocates each tuple to
exactly one location, and thus it is always non-redundant. The inverse is not true, as the
next example demonstrates.

▶ Example 25. Consider two relations, R(A1, A2), S(B1, B2), and a co-hash graph G =
(V, E, α, λ) with V = {R, S}, E = {(S, R)} and λ((S, R)) = {B1 = A1}. Moreover, let
α(S) = ⟨B2⟩ and α(R) = ⟨A1⟩.

Observe first that S is not oblivious, since S is not hash-compatible with R w.r.t.
{B1 = A1}⊕. We will argue next that S is non-redundant. Consider any instance I and a
tuple s ∈ SI . If s does not join with any tuple in RI on A1 = B1, then it is simply hashed on
⟨B2⟩ and is non-redundant. So suppose that s joins with tuples {r1, . . . , rn} in RI . Hence,
s will end up in the nodes {h(r1[A1]), . . . , h(rn[A1])}. However, for any two tuples ri, rj ,
we have ri[A1] = s[B1] = rj [A1], and hence h(r1[A1]) = h(r2[A1]) = · · · = h(rn[A1]), which
means that s will be assigned to exactly one node.

A second observation is that functional dependencies are now critical in deciding whether
there is redundancy (and in general clustering) in a relation or not.

▶ Example 26. Consider the same two relations R(A1, A2) and S(B1, B2), and a co-hash
graph G = (V, E, α, λ) with V = {R, S}, E = {(S, R)}, λ((S, R)) = {B1 = A1}. Moreover,
let α(S) = ⟨B2⟩ and α(R) = ⟨A2⟩.

In contrast to the previous example, where the hash signature of R was ⟨A1⟩, S is now
redundant. However, if we add to relation R the functional dependency A1 → A2, S becomes
non-redundant.

We now present an algorithm (Algorithm 1) that decides in polynomial time whether a
relation R is A-clustered for some A ⊆ att(R) (and hence also decides non-redundancy).

The algorithm takes as input the co-hash graph G, the relation R, and an attribute set
A ⊆ att(R). The algorithm starts from the node R, and then traverses the root path of R

bottom up. At each relation Si of the root path, it computes inductively a set of attributes
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S2(C1, C2, C3)

S1(B1, B2, B3)

S0(A1, A2, A3)

⟨C2⟩

⟨B1⟩

⟨A1, A2⟩

V2 = {C2}

V1 = {B1, B2}

V0 = {A1, A2} (VC)✓

(EC)✓

(VC)✓

(EC) ✗

(HC)✓

Figure 2 Example execution of Algorithm 1 to check whether relation S0 is A-clustered, where
A = {A1, A2}. The edges between attributes depict the join conditions.

Vi ⊆ att(Si). While computing each Vi, we also take into account functional dependencies.
It then uses this set to check two conditions: one condition (EC) on each edge of the root
path, and one condition (VC) on each vertex of the root path. If the vertex condition fails,
the algorithm returns false. Otherwise, if the edge condition (EC) is not satisfied, then we
check the remaining path for hash compatibility (HC).

We illustrate the working of Algorithm 1 in an example:

▶ Example 27. Consider the co-hash graph depicted in Figure 2. Suppose there are
no functional dependencies between attributes in any of the relations. We will run the
algorithm to check whether S0 is A-clustered, where A = {A1, A2}. We initially have
V0 = A+ = {A1, A2}. The first vertex condition (VC) for i = 0 is satisfied, since both
attributes in the hash signature of S0 are in V0. The first edge condition (EC) is also
satisfied, since the join condition between S0, S1 only uses attribute A1, which belongs in
V0. Similarly, one can check that the second (VC) is also satisfied. However, the second
(EC) for i = 1 fails, since B3 = C3 ∈ λ(e2), but B3 ̸∈ V1. The algorithm now enters the loop
in lines 15-17, where it checks for hash compatibility between S1 and all the relations up
to the root. In this example, we need to check only one (HC), between S1 and S2. Since
B1 = C2 ∈ (λ(e1) ∪ λ(e2))⊕, hash compatibility holds, and thus the algorithm returns true.
Thus, S0 is {A1, A2}-clustered. This also implies that S0 is {A1, A2, A3}-clustered, so also
non-redundant.

▶ Theorem 3. Let G = (V, E, α, λ) be a co-hash graph, relation R ∈ V , and A ⊆ att(R).
Algorithm 1 runs in polynomial time (in the size of G) and returns true if and only if R is
A-clustered w.r.t. PG. Hence, CoHash-Clustered is in P.

6 Parallel Correctness

In this section, we investigate the problem of p-correctness for data distributions induced by
a co-hash graph. We start by considering the following decision problem, where we check for
p-correctness for an instance that is given as input to the problem.

I-CPC
Input: co-hash graph G, input I, query q
Question: Is q p-correct on I under PG?

For CQs, the above problem is ΠP
2 -complete. Interestingly, the hardness result comes

from the observation that a co-hash scheme can implicitly encode an arbitrary oblivious
distribution scheme. More precisely, for each relation R, the scheme is encoded as another
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relation R′ that stores the node destinations for each tuple in R. However, we can obtain
a better complexity result if we restrict to full CQs, which correspond to joins without
projections.

▶ Theorem 4. I-CPC is ΠP
2 -complete for CQs.

▶ Theorem 5. I-CPC is coNP-complete for full CQs.

We next consider the problem of p-correctness across all possible instances.

CPC
Input: co-hash graph G, query q
Question: Is q p-correct under PG?

The next example shows that deciding p-correctness is not always straightforward.

▶ Example 28. Consider the co-hash graph in Figure 1a, and the queries q1(x, y, z) =
R(x, y), S(y, z) and q2(x, y, z, w) = R(x, y), S(y, z), T (z, w). Both queries can be computed
locally without any data shuffling, since by construction of the co-hash distribution, tuples that
join are placed in the same node. Hence, both are p-correct. However, there are other queries
that are p-correct in more indirect ways. For instance, the query q3(x, y) = S(x, y), U(x) is
also p-correct.

Our first result is that the above problem is NP-hard for general CQs. The hardness
comes from a reduction from the problem of query containment. It is worth noting that the
lower bound holds even for co-hash graphs with no edges, which correspond to oblivious
distribution schemes. On the other hand, for full CQs the decision problem for p-correctness
is in polynomial time.

▶ Theorem 6. CPC is NP-hard for CQs.

▶ Theorem 7. CPC is in P for full CQs.

Our polynomial time algorithm generates a polynomial number of small instances with
labelled nulls (denoted by ⊥o ) and constants, and then makes a collocation check for each
one of the generated instances.

Functional Dependencies. Each node R in the co-hash graph is associated with a set of
functional dependencies fd(R). Let F =

⋃
R fd(R). We will need to apply the chase algorithm

to an instance I w.r.t. F , which results in a new instance I ′ (or the chase fails). It will be
convenient to capture the result of the chase by a homomorphism θ such that I ′ = θ(I). We
then write θ = chase(I, F ).

The Extension Step. We now describe a procedure, called extend(I, t), that takes as input
an instance I (with labelled nulls and constants) and a tuple t ∈ RI . The procedure can fail,
in which case it returns ⊥.

If R has no outgoing edge in G, the procedure fails. Otherwise, let e = (R, S) be the
unique outgoing edge from R. Intuitively, we will try to extend I with a fresh most general
tuple from S that joins with t on λ(e).

As a first step, we construct a homomorphism ζ that maps the labelled nulls of I onto
themselves (or constants) such that ζ(t[Ai]) = ζ(t[Aj ]) whenever Ai = Aj ∈ λ(e)⊕ with
i ̸= j, otherwise it is the identity mapping. This step may fail when t[Ai], t[Aj ] are distinct
constants, in which case the procedure fails. Let I ′ = ζ(I) and t′ = ζ(t).
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As a second step, we construct a new tuple s from S such that for every A = B ∈ λ(e)
with A ∈ att(R), B ∈ att(S) we have s[B] = t′[A], and for every non-joining attribute we
introduce a fresh labelled null that does not occur in I ′. Because of how we constructed I ′,
the tuple s is always well-defined. Finally, we apply the chase to the instance I ′ ∪ {s}. If the
chase fails, we return ⊥. Otherwise, let χ = chase(I ′ ∪ {s}, F ). The procedure returns the
pair (χ ◦ ζ, χ(s)).

Algorithm. Let D[q] be the canonical instance of q (we assume w.l.o.g. that we have chased
q w.r.t. F ). If the tuples in D[q] are not collocated, then D[q] is a witness instance that
proves that q is not p-correct. Recall that we can do this check in polynomial time using
Lemma 17. However, if the tuples are collocated, then this is not a sufficient condition for
p-correctness, and we need to check additional instances. We do this through Algorithm 2.
It starts with the canonical instance D[q] of the query q, and checks whether the tuples in
D[q] are collocated for this instance (Line 2). Then, for every tuple in D[q], it initiates a
sequence of extension steps: each step is applied using the tuple generated in the previous
step (if possible). The algorithm checks whether the tuples in D[q] are collocated in every
instance generated in this fashion; if so, it returns true, otherwise it terminates with false.

Algorithm 2 Deciding P-Correctness.

1: Input: co-hash graph G, full CQ q

2: if D[q] ⋫G D[q] then
3: return false ;
4: for each t̃ ∈ D[q] do
5: i← 0 ; D0 ← D[q] ; s̃0 ← t̃ ; I0 ← D[q]
6: while extend(Ii, s̃i) ̸= ⊥ do
7: i← i + 1 ;
8: (ϕi, s̃i)← extend(Ii−1, s̃i−1) ;
9: Ii ← ϕi(Ii−1) ∪ {s̃i} ;

10: Di ← ϕi(Di−1) ;
11: if Ii ⋫G Di then
12: return false ;
13: return true ;

We analyze the runtime and correctness of the above algorithm in the appendix. Here,
we present two examples of its execution.

▶ Example 29. Consider the co-hash graph in Figure 1a, and the query q4(x, y, z) =
R(x, y), S(z, x). The canonical instance for this query is I0 = {R(⊥x,⊥y), S(⊥z,⊥x)}. The
hash destination for R(⊥x,⊥y) is ⟨⊥x⟩, and for S(⊥z,⊥x) it is ⟨⊥z⟩, hence the two tuples
are not collocated. This means that the algorithm exits early and outputs false.

▶ Example 30. Consider the co-hash graph in Figure 1a, and the query q3(x, y) =
S(x, y), U(x). The canonical instance for this query is I0 = {S(⊥x,⊥y), U(⊥x)}. The
hash destination for S(⊥x,⊥y) is ⟨⊥x⟩, and for U(⊥x) it is ⟨⊥x⟩ as well, hence the two tuples
are always collocated in I0.

The extension step for the tuple S(⊥x,⊥y) returns a tuple R(⊥w,⊥x) and the identity
homomorphism. Hence, I1 = I0 ∪ {R(⊥w,⊥x)} and D1 = D[q]. Note that in I1, both
S(⊥x,⊥y) and U(⊥x) join with R(⊥w,⊥x), hence the hash destination for both is ⟨⊥w⟩.
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Hence, the tuples are collocated in I1 as well. Since R is a root relation in the co-hash graph,
the next extension step fails and the loop terminates.

The extension step for the tuple U(⊥x) returns a new tuple R(⊥v,⊥x) and the identity
homomorphism. Hence, I1 = I0 ∪ {R(⊥v,⊥x)} and D1 = D[q]. As before, the two tuples
from D1 are collocated. The next extension step fails and thus the loop terminates. The
algorithm will now terminate and output that the query is indeed p-correct.

7 Parallel Disjoint Correctness

In this section, we study in analogy to the previous section the problem of pd-correctness.

I-CPDC
Input: co-hash graph G, input I, query q
Question: Is q pd-correct on I under PG?

CPDC
Input: Co-hash graph G, query q
Question: Is q pd-correct under PG?

The complexity landscape for pd-correctness follows the same pattern with the
corresponding problems for p-correctness.

▶ Theorem 8. I-CPDC is ΠP
2 -complete for CQs and coNP-complete for full CQs.

▶ Theorem 9. CPDC is NP-hard for CQs, and in P for the class of full CQs.

▶ Example 31. Consider the co-hash graph in Figure 1a, and the p-correct query q(x, y, z) =
R(x, y), S(z, x). The dominant atom, R, is the non-redundant root. This makes q pd-correct.

Consider another p-correct query q(x, y) = S(x, y), U(x) on the same co-hash graph.
Both atoms are dominant, and both are redundant. Hence, the query is not pd-correct.
However, if we add to relation R the fd A2 → A1, then both become non-redundant and q

will be pd-correct.

8 Related Work

There has been a lot of work in studying parallel evaluation of queries. The massively parallel
communication (MPC) model was introduced in [14, 15] to analyze multiway joins and to
obtain bounds on the amount of communication and synchronization [1, 5]. The case of query
evaluation in a single round of communication has been of particular interest, where data is
shuffled once before a query is evaluated. The notion of parallel correctness was introduced
in [3, 4] to study query evaluation in one round w.r.t. a distribution policy. [13] extended
the study of parallel correctness of conjunctive queries to incorporate bag semantics and [9]
extended the ideas to unions of conjunctive queries with negation. Distribution policies and
parallel correctness results have also been studied in the context of Datalog [12, 18].

The studies mentioned above have focused on oblivious distribution policies, where the
destination of a tuple is independent of the input, whereas our work focuses on locality-aware
schemes. Further, we assume that the partitioning step (the data shuffling phase) is done
as a preprocessing step before any query is query evaluated. In effect, we study query
evaluation with “zero” rounds of communication. This mode of “partition once, run queries
multiple times” is the approach taken by multiple systems that are tuned for OLAP style
queries [7, 21, 17]. Recently, Geck et. al [11] introduced a declarative framework that captures
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constraints of distributed data; these constraints can capture several classes of non-oblivious
distribution schemes. The co-hash schemes we describe in this paper cannot be captured by
their framework because we explicitly hash tuples that do not join with the parent relation.
In addition, we go beyond the instance-independent p-correctness that was examined in [11],
and we study several other properties of theoretical and practical interest.

The idea of location-aware partitioning has been deployed in multiple systems. It has been
shown to improve query performance drastically for queries that can take advantage of the
collocation by reducing data shuffling across nodes [7, 16, 19]. Reference-based partitioning
has been proposed in [7] and join-predicate based partitioning in [22, 23]; it is also deployed
in [19]. However, none of these proposals study the properties of the resulting partitioning
scheme, or how to decide which queries can be executed without any data shuffling. In fact,
the query evaluation procedure of [23] ends up shuffling data for queries that could have
been evaluated without any data movement.

9 Conclusions and Future Work

In this work, we initiate the formal study of co-hash partitioning, a popular locality-aware
data distribution scheme. One immediate direction for future work is to extend the study
to UCQs (with negation as well), similar to the extensions in [10]. It is also interesting to
consider what happens for queries that are not p-correct for a given co-hash graph. In this
case, it will be useful to determine the best data shuffling strategy such that the amount of
communication and load per node is minimized. Finally, in this paper we study problems
when the co-hash graph is given; an orthogonal problem is to design co-hash schemes that
are optimized for a particular query workload.
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The algorithm works as follows: it chooses P ∼ P uniformly at random, and then sends
each tuple t ∈ I to the node P(t). Finally, each node i ∈ N computes the query q on its
local data, q(P(i)(I)). The correctness of the algorithm follows directly from the fact that q

is p-correct w.r.t. P . Additionally, the load of the algorithm L in the MPC model is at least
b(P, I) · |I|/p.

We now apply the result from [6], which tells us that any 1-round randomized MPC
algorithm on p nodes that computes q correctly must have load L = Ω(|I|/p1/τ∗(q)). ◀

Proof of Lemma 17. The polynomial time algorithm first computes for every tuple t ∈ I

the set of hash destinations H(t, I). This set is computed inductively starting from the
root(s) of the co-hash graph and moving to the leaves. For a tuple t in a root relation, we
have that H(t, I) = {α(t)}, i.e., the set of hash destinations is a singleton. For any non-root
relation, we look at the upwards join set of t. If it is not empty, its hash destination is
the union of the hash destinations of the tuples in its upwards join set; otherwise, it is
{α(t)}. This process terminates in polynomial time, since (i) the upwards join set can be
computed in polynomial time, and (ii) the possible hash destinations are at most |V | · |I|,
hence polynomially bounded. As a final step, we compute the intersection

⋂
s∈S H(s, I). If

the result is nonempty, then for any choice of hash function (and hence any P ∈ PG), the
tuples in S will be collocated in some common node. Otherwise, we can always pick a p large
enough and a hash function that does not assign all tuples from S to the same node. ◀

Proof of Lemma 19. Let ⟨a1, . . . , ak⟩ be a hash destination, where k ≥ 1. The key
observation is that ⟨a1, . . . , ak⟩ can be the hash destination of O(|V |) tuples, where V

is the vertex set of G. Indeed, by induction it follows that at most one tuple per relation can
be assigned to ⟨a1, . . . , ak⟩. Since each tuple will be assigned to at least one hash destination,
there must be at least Ω(|I|/|V |) hash destinations. Now, observe that the hash function h

sends each hash destination to a node independently and uniformly at random. Let H be the
number of hash destinations for instance I. Since |I| ≫ p, the expected maximum number of
hash destinations assigned to each node will be O(H/p). Finally, observe that H ≤ |I| and
that each hash destination has O(|V |) tuples. Hence, b(PG, I) = p

|I| O(|I||V |/p) = O(|V |). ◀

Proof of Lemma 20. Let ⟨a1, . . . , ak⟩ be a hash destination, where k ≥ 1. Our main
observation is that ⟨a1, . . . , ak⟩ can be the hash destination of O(dℓ) tuples. Since each
tuple will be assigned to at least one hash destination, there must be at least Ω(|I|/dℓ) hash
destinations. Now, observe that the hash function h sends each hash destination to a node
independently and uniformly at random. Let H be the number of hash destinations for
instance I. Since |I| ≫ p, the expected maximum number of hash destinations assigned to
each node will be O(H/p). Finally, observe that H ≤ |I| and that each hash destination has
O(dℓ) tuples. Hence, b(PG, I) = p

|I| O(|I|dℓ/p) = O(dℓ). ◀

Proof of Lemma 23. Let α(R) = ⟨A1, . . . , Ar⟩. Consider an instance I, a tuple t ∈ RI ,
and a terminating path t → t1 → · · · → ti, where i ≤ k. If α(Si) = ⟨B1, . . . , Br⟩ is
the hash signature of Si, then t is assigned to node mh = h(ti[B1], . . . , ti[Br]). But then,
since (λ(e1) ∪ · · · ∪ λ(ej))⊕ |= R ∥ Si holds, it follows that for every position ℓ, Aℓ = Bℓ ∈
(λ(e1)∪· · ·∪λ(ej))⊕. This implies that ∀ℓ, ti[Bℓ] = t[Aℓ], which means that mh = h(α(t)). ◀

Proof of Theorem 2. For 3 ⇒ 2, direct application of Lemma 23. 2 ⇒ 1 is trivial. For
1 ⇒ 3, let Sµ be the first relation in the root path such that ρµ |= R ∥ Sµ does not
hold. Let α(R) = ⟨A1, . . . , Ar⟩, α(Sµ) = ⟨B1, . . . , Br′⟩. We construct a tuple tj in Sj for
j = 0, . . . , µ as follows. First, we assign to each equivalence class C in the equivalence relation
ρµ = (λ(e1) ∪ · · · ∪ λ(eµ))⊕ a distinct constant aC ∈ dom. Then, we set tj [B] = a[B]ρµ

,
where [B]ρµ is the equivalence class where B belongs.
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We will now construct two instances I, I ′ such that for some h, Ph
G(t0, I) ̸= Ph

G(t0, I ′):
(1) Instance I contains only the tuple t0. In this instance t0 will be assigned to the
node mh = h(t0[A1], . . . , t0[Ar]), and (2) Instance I ′ contains the tuples {t0, t1, . . . , tµ} as
constructed above. Observe first that tj+1 ∈ J G

↑ (tj , I ′) for every j = 0, . . . , µ− 1. Indeed, if
(C, D) ∈ λ(ej+1), then by construction C, D belong in the same equivalence class of ρµ and
hence we have that tj [C] = tj+1[D]. Thus, in instance I ′, t0 will be assigned to the node
m′

h = h(tµ[B1], . . . , tµ[Br′ ]).
The key observation is that, since ρµ |= R ∥ Sµ does not hold, either r ̸= r′, or there

exists (Ai, Bi) /∈ ρµ such that Ai is not in the same equivalence class as Bi (in which case
t0[Ai] ̸= tµ[Bi]). In either case, we can choose an h such that mh ̸= m′

h. ◀

Proof of Theorem 3. The next two lemmas prove Theorem 3. ◀

▶ Lemma 32. Let G = (V, E, α, λ) be a co-hash graph, relation R ∈ V , and A ⊆ att(R). If
Algorithm 1 returns true, then R is A-clustered w.r.t. PG.

Proof. Assume that i = µ when the algorithm exits the first loop. Consider some instance
I, and let T be a set of tuples in RI such that all tuples in T agree on the attributes in
A. We will show that all tuples in T are assigned to the same unique machine. We define
J i(T, I) inductively as follows, for i = 0, . . . , k: J0(T, I) = T , and for i > 0, J i(T, I) =⋃

s∈Ji−1(T,I) J G
↑ (s, I). It is easy to see that by construction J i(T, I) ⊆ SI

i . First, we show the
following statement using induction: (S1) for any i = 0, . . . , µ, and any tuples s, s′ ∈ J i(T, I)
we have s[Vi] = s′[Vi].

For the base case, where i = 0, by the definition of T we have s[A] = s′[A], and hence
s[A+] = s′[A+]. Since V0 = A+, we also have s[V0] = s′[V0]. For the inductive step, let
s, s′ ∈ J i(T, I). By the construction of J i(T, I), there exist r, r′ ∈ J i−1(T, I) such that
s ∈ J G

↑ (r, I) and s′ ∈ J G
↑ (r′, I). Define V ′

i = {B ∈ att(Si) | ∃A ∈ Vi−1 : (A, B) ∈ λ(ei)}.
For any B ∈ V ′

i, there exists some A ∈ Vi−1 such that (A, B) ∈ λ(ei). This implies that
s[B] = r[A] and s′[B] = r′[A]. Also, by the inductive hypothesis, it holds that r[A] = r′[A].
Hence, s[B] = s′[B]. Since Vi = (V ′

i)+, we also have s[Vi] = s′[Vi]. Second, we show: (S2)
for any i = 0, . . . , µ, and tuples r, r′ ∈ J i(T, I), we have J G

↑ (r, I) = J G
↑ (r′, I). Indeed, let

s ∈ J G
↑ (r, I). By the edge condition (EC), for every (A, B) ∈ λ(ei+1), we have A ∈ Vi. By

(S1), for every A ∈ Vi we have r[A] = r′[A]. Thus, s[B] = r′[A], which implies that s joins
with r′ and hence s′ ∈ J G

↑ (r, I) as well.
We now distinguish two cases. ∃i ∈ {1, . . . , µ} : J i(T, I) = ∅. By (S2), all tuples in T are

colocated with the tuples in J i−1(T, I). We will show that all the tuples in J i−1(T, I) are
assigned to the same node. If α(Si−1) = ⟨B1, . . . , Br⟩ is the hash signature of Si−1, then
any tuple t ∈ J i−1(T, I) is assigned to the node mh = h(t[B1], . . . , t[Br]). Some other tuple
t′ ∈ J i−1(T, I) is assigned to m′

h = h(t′[B1], . . . , t′[Br]). By the vertex condition (VC), every
Bj is in Vi−1, and hence by (S1), t[Bj ] = t′[Bj ], which implies that mh = m′

h. Hence, all
tuples in T are sent to the same unique node.

Otherwise, suppose t ∈ T is colocated with some tuple s ∈ Jµ(T, I). Let α(Sµ) =
⟨A1, . . . , Ar⟩. Consider any sequence of tuples t1 ∈ SI

µ+1, t2 ∈ SI
µ+2, . . . , ti ∈ SI

µ+i, such that
tj+1 ∈ J G

↑ (tj , I) for every j ∈ {0, . . . , i− 1} and J G
↑ (ti, I) = ∅. If α(Sµ+i) = ⟨B1, . . . , Br⟩ is

the hash signature of Sµ+i, then s (and hence t) is assigned to node mh = h(ti[B1], . . . , ti[Br]).
Since by condition (HC) it holds that (λ(e1) ∪ · · · ∪ λ(ei))⊕ |= Sµ ∥ Si, it follows that for
every position ℓ, (Aℓ, Bℓ) ∈ (λ(e1) ∪ · · · ∪ λ(ei))⊕. This implies that ∀ℓ, ti[Bℓ] = s[Aℓ].
Hence, tuple t is sent to node mh = h(s[A1], . . . , s[Ar]). If t′ ∈ T is some other tuple
colocated with some s′ ∈ Jµ(T, I), then similarly we can argue that it is sent to node
m′

h = h(s′[A1], . . . , s′[Ar]). But since for every attribute Aj we have Aj ∈ Vµ, it holds that
s[Aj ] = s′[Aj ] and hence mh = m′

h. ◀
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▶ Lemma 33. Let G = (V, E, α, λ) be a co-hash graph, relation R ∈ V , and A ⊆ att(R). If
Algorithm 1 returns false, then there h such that R is not A-clustered w.r.t. Ph

G.

Proof. We distinguish two cases, depending on whether only (VC) fails, or both (EC) and
(HC) fail together. Suppose that the algorithm returns false because (VC) fails for some
relation Sµ, µ ≥ 0. We then construct an instance I with labelled nulls as follows. First,
we assign to each equivalence class C in the equivalence relation (λ(e1) ∪ . . . ∪ λ(eµ−1))⊕

two distinct nulls ⊥C ,⊥′
C . Every relation Sj for j = 0, . . . , µ contains two tuples tj , t′

j such
that for any attribute A ∈ C, tj [A] = t′

j [A] = ⊥C whenever A ∈ Vj , otherwise tj [A] = ⊥C

and t′
j [A] = ⊥′

C . All the other relations are empty. It is easy to see that I satisfies the
functional dependencies, and also t0, t′

0 agree on A. Moreover, for every j < µ, we have
tj+1 ∈ J G

↑ (tj , I) and t′
j+1 ∈ J G

↑ (t′
j , I). Let α(Sµ) = ⟨B1, . . . , Br⟩. Then, tuple t0 is sent to

h(tµ[B1], . . . , tµ[Br]) and tuple t′
0 to h(t′

µ[B1], . . . , t′
µ[Br]). Since (VC) failed at Sµ, there

exists some attribute Bk /∈ Vµ, in which case tµ[Bk] ̸= t′
µ[Bk]. Hence, we can always choose

a hash function h such that Ph
G(t0, I) ̸= Ph

G(t′
0, I).

Suppose that the algorithm returns false because (EC) and (HC) fail together. Let µ ≥ 0
be the first index with join condition λ(eµ+1) for which (EC) fails. Moreover, let Sl, l > µ,
be the first relation where condition (HC) fails. We construct an instance I with labelled
nulls as follows. First, we assign to each equivalence class C in the equivalence relation
(λ(e1)∪ . . .∪λ(eℓ−1))⊕ two distinct nulls ⊥C ,⊥′

C . We construct two types of tuples in I: (1)
tuples tj in Sj for j = 0, . . . , ℓ. For an attribute B ∈ C, we set tj [B] = ⊥C , and (2) tuples
t′
j in Sj for j = 0, . . . , µ. For an attribute B ∈ C, we set t′

j [B] = ⊥C if B ∈ Vj , otherwise
t′
j [B] = ⊥′

C .
It is easy to see that t0, t′

0 agree on the attributes in A. Moreover, t0 will be colocated
with tℓ, and t′

0 will be colocated with t′
µ. Now, since condition (EC) failed, there exists

(A, B) ∈ λ(eµ+1) such that A /∈ Vµ. Suppose that A belongs in the equivalence class
C. By our construction, this implies that t′

µ[A] = ⊥′
C , but tµ+1[B] = ⊥C . Hence,

J G
↑ (t′

µ, I) = ∅. Let α(Sµ) = ⟨A1, . . . , Ar⟩ and α(Sℓ) = ⟨B1, . . . , B′
r⟩. Then, t0 is sent

to mh = h(tℓ[B1], . . . , tℓ[B′
r]), and t′

0 to mh = h(t′
µ[A1], . . . , t′

µ[Ar]). Moreover, since (VC)
holds for Sµ, every Aj ∈ Vµ, and hence mh = h(tµ[A1], . . . , tµ[Ar]). Finally, since Sµ, Sℓ are
not hash-compatible w.r.t. (λ(e1)∪ . . .∪ λ(eℓ−1))⊕, either r ̸= r′, or there exists a position j

such that (Aj , Bj) is not in the equivalence relation, which would imply that tℓ[Bj ] ̸= tµ[Aj ].
In both cases, we can pick a hash function h such that t0, t′

0 end up in different nodes. ◀

Proof of Theorem 4. To show membership in ΠP
2 , we will show that the complement is in

ΣP
2 . To this end, we will give a polynomial time algorithm with the following property: there

exists a valuation v such that for every valuation v′ the algorithm returns yes for (v, v′) if
and only if q is not p-correct on I. First, the algorithm checks whether v, v′ satisfy q. If
v does not satisfy q, it returns no. If v′ does not satisfy q, it returns yes. Then, it checks
that v, v′ agree on the head of q, and if not, it returns yes. Finally, it checks whether the
tuples {v′(x1), . . . , v′(xℓ)) are collocated in instance I. If not, it returns yes, otherwise it
terminates with no. It is easy to see that all the checks can be done in polynomial time
following from Lemma 17.

To show ΠP
2 -hardness, we construct a reduction from the problem PCI(Pfin), defined

in [3]. In this problem, we are given a CQ q, an instance I, and a distribution policy P which
is explicitly enumerated as part of the input (i.e., for each tuple in I we know its destination
node). Then, it asks whether q is p-correct in I under P.

We construct a co-hash graph G = (V, E, α, λ) as follows. For every relation R(A1, . . . , Ak)
in q, we introduce two nodes in V : one is R, and the other is a fresh relation R′(C, A′

1, . . . , A′
k).

E contains edges of the form (R, R′), where λ((R, R′)) = {A1 = A′
1, . . . , Ak = A′

k}. Finally,
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we set α(R) = ⟨⟩ and α(R′) = ⟨C⟩. For this schema, we create an instance I ′, where for every
tuple t = R(a1, . . . , ak) ∈ I we add the tuples R(a1, . . . , ak) and {R′(κ, a1, . . . , ak) | κ ∈ P(t)}
to I ′. Intuitively, each relation R′ encodes the destinations of the tuples in R according to P.

The reduction is in polynomial time. We now claim that q is p-correct in I under P
if and only if q is p-correct on I ′ under PG. Indeed, notice that for some hash function h,
tuple t ∈ I gets assigned to {h(κ) | κ ∈ P(t)}. Hence, if for a set of tuples T ⊆ I we have
κ ∈

⋂
t∈T P(t), then h(κ) ∈

⋂
t∈T Ph

G(t, I ′) for any h, which implies I ′ ▷G T . If
⋂

t∈T P(t) = ∅,
then the hash function h(κ) = κ implies that I ′ ⋫G T . ◀

Proof of Theorem 5. We first show membership in coNP. Let q(y) = R1(x1), . . . , Rℓ(xℓ)
be a full CQ, and an instance I. We will guess a valuation v over the variables of q, and
then check that (i) for every i, v(xi) ∈ I, and (ii) I ▷G {v(x1), . . . , v(xℓ)}. Indeed, any such
valuation will be a witness that p-correctness is violated. It remains to show that (i) and
(ii) can be done in polynomial time. Indeed, (i) is straightforward. For (ii), we can apply
directly Lemma 17.

We show coNP-hardness by reduction from the problem of CQ evaluation. Consider a
boolean CQ q() = R1(x1), . . . , Rℓ(xℓ), an instance I, and the problem that asks whether
q(I) is empty or not, which is known to be NP-hard. We construct a full query q′ from q

as follows: q′(. . . ) = S1(z1), R′
1(z1, x1), . . . , Sℓ(zℓ), R′

ℓ(zℓ, xℓ), where {z1, . . . , zℓ} are distinct
fresh variables. To construct an instance I ′, for every tuple Ri(ai) ∈ I, we introduce
R′

i(i, ai) ∈ I ′. Note that this means that a tuple in I can create many copies of it in I ′ (as
many as the number of times its relation occurs in q). Moreover, for every i = 1, . . . , ℓ, we
add the tuple Si(i). It is easy to verify that q(I) is true if and only if q′(I ′) ̸= ∅. Finally, we
construct a co-hash graph G = (V, E, α, λ) as follows: V contains all relations in the body of
q′, E = ∅, and α uses only the first attribute of each relation for hashing. Note that PG is
an oblivious distribution scheme!

We now show the following: q′ is p-correct on I ′ under PG if and only if q(I) is false.
For the one direction, suppose q(I) is false. Then, q′(I ′) = ∅. Hence, no matter how PG
distributes I ′, we trivially have p-correctness. For the other direction, suppose q(I) is true.
Then, there exists a valuation v over the variables of q that makes it true. This can be
extended to a valuation v′, where v′(zi) = i, that makes q′ true as well. Let t1, t2, . . . , tℓ ∈ I ′

be the tuples that correspond to v′ for R′
1, . . . , R′

ℓ. These are all different (since their first
attribute must be different). Moreover, ti is assigned to h(i). This means we can choose an
h such that every ti goes to a different node, which shows that q′ is not p-correct. ◀

Proof of Theorem 6. We show a reduction from the problem of query containment: given
as input two CQs q1, q2, is q1 contained in q2? Without any loss of generality, we assume
that both queries are boolean and use one binary relation R(A, B).

We construct a boolean CQ q as input to CPC as follows. The schema Σ contains
two relations, R′(C, A, B) and T (D). For every atom R(x, y) in q1, q contains the atom
R′(w(1), x(1), y(1)), and for every atom R(x, y) in q2 it contains the atom R′(w(2), x(2), y(2)).
Moreover, we add an atom T (w(1)). Let q′

1 (q′
2 resp.) be the subquery of q that contains

atoms with variable w(1) (w(2) resp.). The input co-hash graph is simple: the hash signature
for R′ is ⟨C⟩ and for T is ⟨D⟩, and it contains no edges.

We now claim that q is p-correct under PG if and only if q1 ⊆ q2. For the one direction,
assume that q1 ⊆ q2. Then, it is easy to see that q is equivalent to q′

1. Consider any valuation v

that satisfies q′
1: then all the relevant facts will end up in the same hash destination h(v(w(1))),

making the query p-correct. For the opposite direction, assume that q1 ⊈ q2. Let I be the
canonical database of q, so q(I) is true. By our construction, we have D[q] = D[q′

1] ∪D[q′
2]
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and D[q′
1] ∩D[q′

2] = ∅. The facts of D[q′
1] will end up on node κ1 = h(w(1)), while the facts

of D[q′
2] on node κ2 = h(w(2)). Additionally, we can always choose the hash function h such

that κ1 ̸= κ2. Since D[q′
2] does not have any T -facts, we have that q(D[q′

2]) is false. Since
q1 ⊈ q2, we also have that q(D[q′

1]) is false. Thus, I falsifies the p-correctness property. ◀

Proof of Theorem 7. To analyze the runtime, we first note that the canonical instance has
at most as many tuples as the number of atoms ℓ in the body of the query. Moreover, for
every such tuple, the while loop will terminate after at most k iterations, where k is the
length of the longest root path in G (k ≤ |E|). This means that the size of any instance
Ii generated by the algorithm is always polynomially bounded (in fact, it will be at most
|E| + ℓ). The check Ii ▷G Di can be done in polynomial time using Lemma 17, while the
extension step also runs in polynomial time.

For correctness, we claim that Algorithm 2 outputs true if and only if the query q is
p-correct under PG. The one direction is straightforward. Indeed, if there exists an instance
Ii such that Di ⊆ Ii and the tuples in Di are not collocated, then Ii is a witness that
p-correctness is violated (since any Di forms an answer for q(Ii)).

The other direction is more involved. Consider an instance I and any valuation v such
that ti = v(xi) ∈ I for every i = 1, . . . , ℓ. Let T = {t1, t2, . . . , tℓ}. To prove that the query q

is p-correct, it suffices to show that I ▷G T . Let T□ ⊆ T be the set of tuples such that none
of their terminating paths go through a tuple in T . It is easy to check that T□ ̸= ∅. It now
suffices to show that I ▷G T□.

If there exists a tuple s ∈ I such that every t ∈ T□ has a terminating path that goes
through s, then the claim I ▷G T□ follows directly. For the remainder of the proof, we assume
that this is not the case. Since D[q] is the canonical instance for q, there exists a strong1

homomorphism ξ : D[q] → T . Since the homomorphism is strong, for every t ∈ T there
exists a tuple t̃ ∈ D[q] such that ξ(t̃) = t. Note that all tuples in the set {t̃ | t ∈ T□}
must have an empty upwards join set in D[q]. Since D[q] ▷G D[q], it must be that all
α(t̃) are equal to the same vector β (consisting of labelled nulls and constants) for every
t ∈ T□. But then, α(t) = α(ξ(t̃)) = ξ(β). Consider any t ∈ T□ and a terminating path
(t =)s0 → s1 → · · · → sk in I. By our construction, none of the tuples s1, . . . , sk are in T .
We will show that α(sk) = ξ(β); this implies that all tuples in T□ are collocated in h(ξ(β))
for any hash function h, hence proving the claim. We start with two observations: (1) The
strong homomorphism ξ can be extended to a strong homomorphism from the instance Ik

generated by the algorithm for the while loop of t̃ to the instance J = T ∪ {s1, . . . , sk},
and (2) Let ϕ = ϕ1 ◦ ϕ2 · · · ◦ ϕk. Then, for any hash destination γ (over labelled nulls and
constants) ξ(ϕ(γ)) = ξ(γ).

Note that some tuple u ∈ T□ must have an empty upwards join set in J ; otherwise, every
tuple in T□ has a terminating path that goes through sk, a contradiction. Hence, the tuple
ũ ∈ Ik with ξ(ũ) = u has an empty upwards join set in Ik, which implies that α(ũ) = ϕ(β) is
its only hash destination. We can also see that t̃ has a unique hash destination in Ik, α(s̃k).
Since ũ, t̃ must be collocated to guarantee p-correctness for the instance Ik, it must be that
α(s̃k) = α(ũ) = ϕ(β). Thus, α(sk) = ξ(ϕ(β)) = ξ(β), where the last equality is implied by
the second observation. ◀

Proof of Theorem 8. To show membership in ΠP
2 , we will show that the complement is in

ΣP
2 . To this end, we will give a polynomial time algorithm with the following property: there

exists a valuation v such that for every valuation v′ the algorithm returns yes for (v, v′) if

1 A homomorphism h : I → I ′ is strong if for every tuple t ∈ I ′, there exists a tuple s ∈ I such that
t = h(s).
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and only if q is not p-correct on I. First, the algorithm checks whether v, v′ satisfy q. If v

does not satisfy q, it returns no. If v′ does not satisfy q, it returns yes. Then, it checks that
v, v′ agree on the head of q, and if not, it returns yes. Finally, it checks whether for some
hash family h, |

⋂
i Ph

G(v′(xi), I)| ≠ 1. If not, it returns yes, otherwise it terminates with no.
It is easy to see that all the checks can be done in polynomial time from Lemma 17. Indeed,
we can modify the construction in Lemma 17 so that is computes the intersection of the hash
destinations as well (instead of only checking for emptiness).

To show ΠP
2 -hardness, we first notice that the hardness proof for the problem PCI(Pfin)

in [3] can be modified to show ΠP
2 -hardness for the pd-correct variant of the problem.

Indeed, all p-correct instances for the proof in [3] are also pd-correct. Formally, we define
PDCI(Pfin) as follows: we are given a CQ q, an instance I, and a distribution policy P
which is explicitly enumerated as part of the input (i.e., for each tuple in I we know its
destination node). Then, it asks whether q is pd-correct in I under P. The reduction is
exactly the same as the one in Theorem 4. We construct a co-hash graph G = (V, E, α, λ) as
follows. For every relation R(A1, . . . , Ak) in q, we introduce two nodes in V : one is R, and
the other is a fresh relation R′(C, A′

1, . . . , A′
k). E contains edges of the form (R, R′), where

λ((R, R′)) = {A1 = A′
1, . . . , Ak = A′

k}. Finally, we set α(R) = ⟨⟩ and α(R′) = ⟨C⟩.
For this schema, we create an instance I ′, where for every tuple t = R(a1, . . . , ak) ∈ I

we add the tuples R(a1, . . . , ak) and {R′(κ, a1, . . . , ak) | κ ∈ P(t)} to I ′. Intuitively, each
relation R′ encodes the destinations of the tuples in R according to P. We now claim that q

is pd-correct in I under P if and only if q is pd-correct on I ′ under PG. Indeed, notice that
for some hash function h, tuple t ∈ I gets assigned to {h(κ) | κ ∈ P(t)}. Hence, if for a set
of tuples T ⊆ I we have κ ∈

⋂
t∈T P(t), then h(κ) ∈

⋂
t∈T Ph

G(t, I ′) for any h. The result
follows by picking h(κ) = κ.

The coNP-hardness proof follows the same structure as the one for p-correctness
(Theorem 5). Indeed, in the reduction p-correctness holds only if the query result is empty,
in which case pd-correctness also trivially holds. To show membership in coNP, consider a
full query q(y) = R1(x1), . . . , Rℓ(xℓ) and an instance I. We guess a valuation v over the
variables of q, and then check that (i) for every i, v(xi) ∈ I, (ii) for some hash family h,
|
⋂

i Ph
G(v(xi), I)| ̸= 1. Indeed, any such valuation will be a witness that pd-correctness is

violated.
It remains to show that (i) and (ii) can be done in polynomial time. Indeed, (i) is

straightforward. For (ii), we can modify the construction in Lemma 17 so that is computes
the intersection of the hash destinations as well (instead of only checking for emptiness). ◀

Proof of Theorem 9. It is easy to observe that if any relation in a query is non-redundant
(which we can check using Algorithm 1 by setting A = att(R)), then p-correctness implies
pd-correctness. However, this condition is not necessary. To address this issue, we consider a
generalization of non-redundancy from relations to atoms. Given a co-hash graph G and
a CQ q, we say that an atom Ri(xi) in q is dominant if the root path of Ri contains no
other relation that appears in the body of q. To compute whether a dominant atom Ri(xi)
is non-redundant, we simply modify Algorithm 1 such that the closure in Line 16 includes
A = A′ whenever two attributes A, A′ of Ri have the same variable in Ri(xi). Now, let G be
a co-hash graph, and q a full CQ such that q is p-correct under PG. Then, q is pd-correct
under PG iff there exists a dominant atom in q that is non-redundant.

One direction of the proof is straightforward. If some dominant atom Ri(xi) is non-
redundant, then the tuples for any valuation v must meet on the unique location where v(xi)
is assigned to. For the other direction, suppose that Ri(xi) is a dominant and redundant
atom. Let D[q] be the canonical instance for q with labelled nulls (and constants). Let
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t ∈ D[q] be the tuple corresponding to the atom Ri(xi). Following the proof in Lemma 33,
we can construct an instance I = P1 ∪ P2 such that t ∈ I, and P1, P2 are two terminating
paths for t in I with hash destinations h1 and h2 respectively, where h1 ̸= h2. Consider
now two instances: I1 = D[q] ∪ P1 and I2 = D[q] ∪ P2. Since there is no other relation of q

in the root path of Ri, the tuple t must have h1, h2 as its only hash destinations in I1, I2
respectively. Moreover, since q is p-correct, it must be that all tuples in D[q] have the same
hash destination h1 in I1, and h2 in I2.

Finally, consider the instance I ′ = D[q] ∪ P1 ∪ P2. We can now argue that all tuples
of D[q] will end up in both h1, h2, thus proving that the query is not pd-correct. Indeed,
suppose for the sake of contradiction that they end up in h1 but not h2. Then, there exists a
tuple s ∈ D[q] that is assigned to h2 in I2, but not in I ′. For this to have happened, it must
be the case that some tuple s′ ∈ D[q] has an empty upwards join in I2, but not in I ′, where
it joins with some tuple from P1. But then, the hash signature of s′ is equal to h2. Since
P1, P2 differ only in their non-join values, this implies that s′ would be equal to h1 as well,
so h1 = h2, a contradiction. Since we can check non-redundancy in polynomial time, the
above algorithm implies a polynomial time algorithm for pd-correctness. ◀
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