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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 20372 “Beyond
Adaptation: Understanding Distributional Changes”. It was centered around the aim to establish
a better understanding of the causes, nature and consequences of distributional changes. Four key
research questions were identified and discussed in during the seminar. These were the practical
relevance of different scenarios and types of change, the modelling of change, the detection and
measuring of change, and the adaptation to change.

The seminar brought together participants from several distinct communities in which parts
of these questions are already studied, albeit in separate lines of research. These included data
stream mining, where the focus is on concept drift detection and adaptation, transfer learning and
domain adaptation in machine learning and algorithmic learning theory, change point detection in
statistics, and the evolving and adaptive systems community. Therefore, this seminar contributed
to stimulate research towards a thorough understanding of distributional changes.
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1 Executive Summary

Georg Krempl (Utrecht University, The Netherlands, g.m.krempl@uu.nl)
Vera Hofer (Graz University, Austria, vera.hofer@uni-graz.at)
Eyke Hüllermeier (Paderborn University, Germany, eyke@upb.de)
Geoffrey I. Webb (Monash University, Australia, geoff.webb@monash.edu)

License Creative Commons BY 3.0 Unported license
© Georg Krempl, Vera Hofer, Geoffrey Webb, Eyke Hüllermeier

The world is dynamically changing and non-stationary. This is reflected by the variety of
methods that have been developed to detect changes and adapt to them. These contributions
originate from various communities, including statistics, machine learning, data mining, and
the evolving and adaptive systems community. Nevertheless, most of this research views the
changing environment as a black-box data generator, to which models are adapted (Fig. 1).
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Figure 1 Black-Box Model Adaptation.
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Figure 2 Understanding Distributional Change.

The aim of this seminar was to put the focus on the distributional change itself, i.e., to
make the process itself more transparent and a subject of research in its own right (Fig. 2).
In its endeavour to understand causes, nature and consequences of distributional change,
the seminar brought together researchers from communities in which related questions
have already been studied, albeit in separate lines of research. These include data stream
mining, time series and sequence analysis, domain adaptation and transfer learning, subgroup
discovery and emerging pattern mining.

Data stream mining studies data that arrives either one-by-one or in batches over time,
and where the data generating process is often non-stationary. This requires computationally
efficient approaches that are capable to detect and adapt to distributional changes. In this
literature, the latter are commonly denoted as concept drift, population drift, or shift. Related
to this seminar are in particular the problems of identifying change or irregularities in data
streams, such as outlier detection [1], anomaly detection [2], change detection [3], change
diagnosis [4], change mining [5], drift mining [6], and drift understanding [7].

Time series analysis studies data observed over a time course typically exhibiting
some time dependencies. The correspondence of distributional change in this literature
are distributional structural breaks or change points. Thus, of particular interest are the
problems of statistical change point analysis, see e.g. the books by [8, 9, 10] or recent survey

http://creativecommons.org/licenses/by/3.0/
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articles [12, 13]. A different line of research focuses on smallest detection delay for changes
in sequentially observed data, see e.g. the recent books by [14, 15]. Of recent interest are
also methods for the localization of multiple change points also known as data segmentation
methodology, see e.g. the recent survey articles [16, 17, 18, 19, 20]. Of further interests is an
early classification of time series [21].

Domain adaptation and transfer learning study the problem of transferring knowledge
between domains or tasks. While there is not necessarily a temporal relationship between
domains or tasks, distributional differences between domains are studied under the notion of
dataset shift. Related problems of particular interest are lifelong learning [22] and unsupervised
domain adaptation [23].

Subgroup discovery studies the problem of finding subgroups that show an unusual
distribution for a target variable. There is not necessarily a temporal relationship between
subgroup. Of particular interest is exceptional model mining, which studies the problem
of finding subgroups, where a model fitted to that subgroup is somehow exceptional [24].
Another related area is emerging pattern mining [25] for identifying emerging trends in
time-stamped databases.

Topics Discussed in the Seminar
The seminar identified several key research questions around understanding distributional
changes:
1. Understanding the practical relevance of different scenarios and types of change.
2. How to model such types of change effectively.
3. How to detect, verify, and measure types of change.
4. How to effectively adapt prediction models to the different types of change.
5. How to establish bounds for distributional change, or for predictive performance under

change.
6. How to visualise change, and how to highlight individual types of change.(interactively).
7. How to evaluate techniques for the above questions.
Due to the limited time, discussion has focused mostly on the first four research questions,
with plans to address the remaining questions in a follow-up seminar.

Program Overview
This one-week seminar was structured such that plenary sessions formed a frame around
parallel break-out group sessions. It was opened with plenary sessions on Monday and Tuesday
morning, where four tutorial served to establish a common vocabulary and understanding
between the participants from the different communities. In the subsequent four half-days,
13 spotlight talks were organised, each followed by discussions in break-out groups, and each
closing by a short bring-back plenary session. The seminar closed by two plenary sessions
on Friday morning, where action plans for further steps on research and collaboration were
discussed.

20372



4 20372 – Beyond Adaptation

Outcomes
As detailed in the description of the sessions below, and in particular for the plenary session,
differences in the terminology, concepts and common assumptions used in the different
communities were identified as an important challenge towards common understanding of
distributional changes. Therefore, a potential follow-up collaboration will focus on a joint
publication that provides a mapping of terms and concepts. In particular, it should work
out the notion of change (and representation) in data streams and time series, as well as in
domain adaptation with multiple temporally connected source domains.
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3 Tutorial Talks

3.1 Data Stream Mining and Concept Drift Adaptation
Mykola Pechenizkiy (TU Eindhoven – Eindhoven, The Netherlands, m.pechenizkiy@tue.nl)

License Creative Commons BY 3.0 Unported license
© Mykola Pechenizkiy

In the real world data often arrives in streams and evolves over time. Concept drift in
supervised learning means that the relation between the input data and the target variable
changes. Therefore, in many real-world applications the learning models need to adapt to
the anticipated changes. In this tutorial we provide an introduction to the area of concept
drift in data mining and machine learning research. First, we characterize the adaptive
learning process, categorize existing strategies for (reactive) handling of concept drift in
the most assumed setting – unpredictable changes happen in hidden contexts that are not
observable to the adaptive learning system. Then, we consider other operational settings
that commonly occur in practice, but have been underexplored in academia. In particular,
we provide motivation for approaches that can handle concept drift proactively, and do not
require (immediate) knowledge of the ground truth labels.
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1 Indrė Žliobaitė, Mykola Pechenizkiy, and Joao Gama. An overview of concept drift ap-

plications. In Nathalie Japkowicz and Jerzy Stefanowski, editors, Big Data Analysis: New
Algorithms for a New Society, page 91–114. Springer, 2016.

2 João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia.
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terizing concept drift. Data Mining and Knowledge Discovery, 30(4):964–994, 2016.

4 Geoffrey Webb, Loong Kuan Lee, Bart Goethals, and Francois Petitjean. Analyzing concept
drift and shift from sample data. Data Mining and Knowledge Discovery, 32(5):1179–1199,
2018.

5 Igor Goldenberg and Geoffrey I Webb. Survey of distance measures for quantifying concept
drift and shift in numeric data. Knowledge and Information Systems, pages 1–25, 2018.

6 Igor Goldenberg and Geoffrey Webb. PCA-based drift and shift quantification framework
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3.2 An Overview on Domain Adaptation and Modelling of Dataset Shift
Ruth Urner (York University – Toronto, Canada, ruth@eecs.yorku.ca)
Shai Ben-David (University of Waterloo, – Waterloo, Canada, shai@cs.uwaterloo.ca)

License Creative Commons BY 3.0 Unported license
© Ruth Urner, Shai Ben-David

Video http://videolectures.net/DagstuhlSeminar2020/
Videorecording of the tutorial byRuth Urner, Shai Ben-David

Data shift is a common problem in machine learning. It arises when the data generating
process at test time differs from the data that the model was trained on. Transfer learning
is an umbrella name for tools aiming to address data shift by utilizing the data from the
training phase rather than addressing the test-time environment from scratch. In this tutorial
we address some of the basic challenges, algorithmic solution tools and inherent limitations

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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http://videolectures.net/DagstuhlSeminar2020/
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of transfer learning. All of these aspects vary with the setup (from domain adaptation, when
the training and target data distributions are both fixed, to lifelong learning, when changes
in the data keep occurring and need to be addressed continuously) and with the type of prior
knowledge, or assumptions, that the learner relies on.

The tutorial describes several learning paradigms, such as model distillation, importance
reweighting of training data, embedding the different data sources into a joint feature space
in which they can be viewed as similar, active learning and “meta-learning” – learning
invariances of that help speed up learning of yet unseen problems.

We also address the problem of detecting when a data shift occurs and understanding
the nature of such a shift.

An important lesson from the theoretical analysis is that there are inherent limitations
to what transfer learning can achieve – some No Free Lunch theorems that underscore the
prerequisites of strong prior knowledge about the nature of the shift before one can provide
any performance guarantees.

References
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Vaughan. A theory of learning from different domains. in Machine Learning, 79:151–175,
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2 Shai Ben-David, Tyler Lu, Teresa Luu, and Dávid Pál. Impossibility theorems for domain
adaptation. in Journal of Machine Learning Research – Proceedings Track, 9:129–136, 01
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3 Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of represent-
ations for domain adaptation. In NIPS, volume 19, pages 137–144, 01 2006.

4 Shai Ben-David and Ruth Urner.On the hardness of domain adaptation and the utility of
unlabeled target samples. In International Conference on Algorithmic Learning Theory,
pages 139–153, 10 2012.

5 C. Berlind and R. Urner.Active nearest neighbors in changing environments. In Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of JMLR Workshop
and Conference Proceedings, page 1870–1879. JMLR, 2015.

6 Tongtong Fang, Nan Lu, Gang Niu, and Masashi Sugiyama. Rethinking importance weighting
for deep learning under distribution shift. arxiv, 12 2020. arXiv preprint:2006.04662.
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3.3 Beyond Time Series Stationarity: Smooth and Abrupt Changes
Claudia Kirch (Magdeburg University – Magdeburg, Germany, claudia.kirch@ovgu.de)

License Creative Commons BY 3.0 Unported license
© Claudia Kirch

Video https://www2.math.uni-magdeburg.de/owncloud/index.php/s/CRpk4Jf5buoCsfl
Videorecording of the tutorial byClaudia Kirch

In many applications data are collected during their time course where it can no longer
be assumed that todays observations are independent from yesterdays. Because these
dependencies have to be taken into account for any meaningful statistical analysis, the field
of time series analysis aims at investigating, modelling and mathematically analysing them.

20372
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This is particularly challenging in nonparametric i.e. model-free statistics, where likelihood
approximations can be used in bootstrapping and Bayesian analysis – both methods from
computational statistics that aim at quantifying uncertainty. This includes so-called locally
stationary time series that are not stationary but exhibit a slowly changing structure which
can be seen as approximately stationary locally, i.e. in a small environment of every point in
time.

Of particular interest are non-stationarities caused by structural breaks in the data
generating mechanism, so called change points. The detection and localisation of such change
points has a long tradition in time series analysis and statistics. Classical theory deals
with the detection of at most one change point in a fully observed data set. Even in this
situation methodology for more complex situations beyond univariate mean changes such
as distributional changes in the time series structure (modelled e.g. via neural networks)
or high-dimensional data sets – both functional and panel data – are of recent interest.
Another recent line of research deals with the estimation of multiple change points which
is also known as data segmentation problem in the literature. Finally, sequential or online
methods are shortly discussed where new data arrives steadily and after each new observation
a decision has to be made whether or not a change has occurred. The mathematical tools
required for this kind of statistical analysis are indeed very different from the classical
a-posteriori or offline change point detection. The aim of this tutorial was to give a short
overview/introduction into the above topics.
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3.4 Novelty Detection
Pavlo Mozharovskyi (Télécom Paris – Paris, France, pavlo.mozharovskyi@telecom-paris.fr)

License Creative Commons BY 3.0 Unported license
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Video http://videolectures.net/DagstuhlSeminar2020/
Videorecording of the tutorial byPavlo Mozharovskyi

Novelty detection [1] is a branch of machine learning which aims at identifying single or
grouped observations that exhibit behavior unknown during the model training. Be it
measurement errors, disease development, severe weather, production quality default(s)

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://videolectures.net/DagstuhlSeminar2020/
http://videolectures.net/DagstuhlSeminar2020/


Georg Krempl et al. 11

(items) or failed equipment, financial frauds or crisis events, their on-time identification,
isolation and explanation constitute an important task in almost any branch of industry
and science. In this tutorial, we will focus on the task of identification of these novel events,
the task closely related to anomaly detection [2]. Roughly speaking, the state-of-the-art on
novelty detection can be split into two categories: statistical methods and neural-network
based approaches. Here, we address statistical multivariate and functional novelty detection.

When the data are presented in a form of a table that contains properties of individuals (a
typical structure of a data base), multivariate novelty detection methods should be employed.
As a first go, we address three non-parametric methods, which can also be seen as extensions
of the existing classification methodology. One-class support vector machines [4] aim at
detecting a minimal set excluding abnormal observations. Local outlier factor [3] uses
neighborhood relation to decide whether an observation or a (small) cluster of them is distant
from the majority of the data. Isolation forest [5] employs random (one-dimensional) cuts to
separate far-lying points faster then those in the dense data regions.

Among non-parametric methods, data depth [6] occupies today a special place. Given
an observation, it measures how typical (or deep) this observation is with respect to other
available observations of the same nature. Multivariate data depth possesses such attractive
properties as robustness and affine invariance. In the current, we discuss the concept of data
depth in the multivariate settings, review most common notion of the depth, and address
the question of identifying novel observations by means of the central depth regions.

If the data are functions of an argument, e.g., time (such as time series), projection on
a multivariate sub-basis and then applying a multivariate technique or functional novelty
detection methods [7] can be in use. Here, we consider two approaches from this last family:
Integrated functional data depth generalizes the multivariate depth to functional spaces using
averaging, and allows for identification of novel functional observations. While for certain
functional depth notions identification of isolated novelties can constitute problems, these
can be dealt with when using functional isolation forest with a proper dictionary.

Practical part of this tutorial exemplifies identification of novelties for simulated and
real-world multivariate and functional data with codes provided in both R and Python.
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5 F. T. Liu, K. M. Ting, and Z. Zhou. Isolation forest. In 2008 Eighth IEEE International
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4 Spotlight Talks and Breakout Group Discussions

4.1 Novelty, Change, and Evaluation
João Gama (University of Porto – Porto, Portugal, jgama@fep.up.pt)

License Creative Commons BY 3.0 Unported license
© João Gama

Main reference Elaine R. Faria, Isabel J. C. R. Gonçalves, André C. P. L. F. de Carvalho, João Gama: “Novelty
detection in data streams”, Artif. Intell. Rev., Vol. 45(2), pp. 235–269, 2016.

URL http://dx.doi.org/10.1007/s10462-015-9444-8

4.1.1 Abstract of Spotlight Presentation

Novelty Detection (ND) refers to the automatic identification of unforeseen phenomena
embed in a large amount of normal data. The ND task consists of training a model from a
training set with examples from a small subset of the possible classes. This model is used to
classify test examples, where examples from new classes can appear. Novelty detection makes
it possible to recognize novel profiles (concepts) in unlabelled data, which may indicate the
appearance of a new concept, a change that occurred in known concepts, or the presence
of noise. The discovery of new concepts has increasingly attracted the attention of the
knowledge discovery community, usually under the terms of novelty detection [2] or open
set recognition [1]. The terms one-class classification [7], and anomaly detection [6] are also
frequently used. Most ND algorithms [4] work in two phases. The first phase is offline.
Algorithms learn from labeled data a characteristic model for each class. The second phase
is online. The current decision model analyses each unlabelled example from the stream. If
the model covers the example, it is classified in one of the known classes; otherwise, it is
classified as unknown and stored in a short term memory. From time to time, the unlabelled
examples stored in the short memory are analyzed to identify dense regions in the instance
space. These regions are considered that correspond to novel concepts that emerged from
the test data.

Note: This spotlight talk has been discussed within the plenary sessions, see Section 5 for
the results of these discussions.
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4.2 Monitoring and Forecasting Changes in Feature Distributions Over
Time

Mark Last (Ben-Gurion University of the Negev – Be’er Sheva, Israel, mlast@bgu.ac.il)

License Creative Commons BY 3.0 Unported license
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4.2.1 Abstract of Spotlight Presentation

Feature ranking and selection reduces the data acquisition and storage requirements of
machine learning algorithms, decreases training and inference times, improves the accuracy of
the induced models, and facilitates their interpretability. However, in a dynamic data stream,
feature importance may change over time, either gradually or abruptly. To address this issue,
we need to continuously monitor and forecast features distribution and their effect on model
classification performance. In case of a concept drift, online learning algorithms [1] replace
some of the previously selected features with more relevant ones and update the model
accordingly. However, the online learning algorithms do not monitor feature distributions
over time. Online Feature Selection (OFS) allows to dynamically rank features with respect
to a specific classifier that uses a small feature subset of a fixed size [2]. In [3], Heterogeneous
Ensemble with Feature Drift for Data Streams integrates traditional feature selection into an
ensemble and adopts a modification of the Fast Correlation-Based Filter (FCBF) algorithm
so it dynamically updates the selected relevant feature subset of a data stream. Adaptive
Boosting for Feature Selection (ABFS) [4] uses a combination of boosting and decision stumps
in order to select features. Feature drift is detected by monitoring the error distribution
of each decision stump. In [5], the authors proposed an unsupervised approach for feature
ranking and selection. It is based on constructing and maintaining a sketch matrix that
shrinks the original data in orthogonal vectors. The feature importance score is calculated
by regression analysis, where the spectral embedding of the dataset is used as the dependent
variable. So far, most OFS algorithms have been evaluated only on stationary data streams,
where the values of all instance features are assumed to arrive together. In dynamic data
streams with partially available feature values and class labels, specific monitoring objectives
may include:

Explain feature and concept drifts
Improve data and model quality
Save data collection and storage efforts
Enhance the efficiency and effectiveness of online learning methods
Handle delayed labeling
Predict future changes in feature distribution and ranking
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4 Jean Paul Barddal, Fabrício Enembreck, Heitor Murilo Gomes, Albert Bifet, and Bernhard
Pfahringer. Boosting decision stumps for dynamic feature selection on data streams.
Information Systems, 83:13–29, 2019.
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4.2.2 Results of the Working Group Discussion

Discussion Participants
Amir Abolfazli, University of Hannover
Shai Ben-David, University of Waterloo
Georg Krempl, Utrecht University
Mark Last, Ben-Gurion University of the Negev
Myra Spiliopoulou, Magdeburg University
Jerzy Stefanowski, Poznan University of Technology
Dirk Tasche, Swiss Financial Market Supervisory Authority FINMA
Andreas Theissler, Hochschule Aalen

4.2.2.1 Identified Research Gaps

Recent works in the task of data stream classification have considered concept drift as a
change in the likelihood of a feature for a class and also a change in the feature space.
However, a definition taking into account the above-mentioned changes along with a change
in the joint distribution of features is missing.

4.2.2.2 Formal Definitions

We need mathematical definitions of several basic concepts, such as feature importance and
feature relevance as a function of time. These definitions may extend the existing definitions
in the static framework. We also need to define feature drift types with respect to individual
features and feature interactions. Alphabet of (types of) drifts should be invariant over time.
The relations of feature and concept drifts should also be considered.

4.2.2.3 Detecting Feature Drifts

Once the feature drift types are defined, we need algorithms for feature drift detection,
probably including change point detection. Aspects to consider: measuring feature drifts in
real-world settings, using sliding windows, choosing temporal resolution. We will probably
need to optimize a sequence of two models: one detecting a feature drift, the other one
classifying our input data. Unfortunately, availability of real-world data with known feature
drifts as ground truth is still limited.

4.2.2.4 Explaining Feature Drifts

Users will not like the underlying models changing frequently, so explaining why models had
to be changed/adapted due to feature drifts is highly important. Useful explanations may
refer to the reason behind the change, spatio-temporal location of change in a data stream,
effect on distribution, etc. We need objective measures of feature drifts explainability and
interpretability. Occam’s razor: the users may prefer a model or a set of models that give the
most consistent explanation over the longest timespan, but this model might be the one with
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the most complex explanation. A relevant article on model and variable selection using the
Minimum Description Length Principle: [12]. Feature drift explanation may be interesting
but not necessarily actionable.

4.3 Multi-Target Prediction on Data Streams
Sašo Džeroski (Jozef Stefan Institute – Ljubljana, Slovenia, saso.dzeroski@ijs.si)

License Creative Commons BY 3.0 Unported license
© Sašo Džeroski

Joint work of Aljaž Osojnik, Panče Panov, Sašo Džeroski
Main reference Aljaz Osojnik, Pance Panov, Saso Dzeroski: “Multi-label classification via multi-target regression on

data streams”, Mach. Learn., Vol. 106(6), pp. 745–770, 2017.
URL http://dx.doi.org/10.1007/s10994-016-5613-5

4.3.1 Abstract of Spotlight Presentation

Starting from tree-based regression methods for data streams, we have developed a number of
approaches for on-line multi-target prediction. These cover different multi-target prediction
tasks such as multi-target regression, multi-label classification and hierarchical versions of
these tasks. These also cover a range of tree-based methods, including individual decision
trees, option trees and tree ensembles (bagging and random forests). Finally, we have recently
also addressed the task of semi-supervised multi-target prediction on data streams. We give
a quick overview of these developments, based on on-line learning of predictive clustering
trees, and discuss further research in this area (incl. change detection and feature ranking).
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4.3.2 Results of the Working Group Discussion

Discussion Participants
Sašo Džeroski, Jozef Stefan Institute
Johannes Fürnkranz, Johannes Kepler University, Linz
Eyke Hüllermeier, Paderborn University
Mykola Pechenizkiy, TU Eindhoven
Arno Siebes, Utrecht University
Jerzy Stefanowski, Poznan University of Technology

4.3.2.1 Problems Discussed

The group discussed several topics related to multi-target prediction (MTP) on data streams,
including different degrees of supervision (e.g., fully supervised, semi-supervised and unsuper-
vised learning; also learning with delayed supervision). A major topic of discussion was drift
detection and adaptation, where different contexts of MTP on data streams were considered
(different types of outputs, different degrees of supervison and different loss functions).
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For example, decomposable (Hamming) and non-decomposable (subset 0/1) losses (say
for multi-label classification, MLC) were discussed together with computational aspects of
evaluating them in a data stream setting. Another topic discussed was the topic of clustering
on data streams, where the tasks of clustering of data points and clustering of features (also
called parallel data streams) can be considered, as well as the task of bi-clustering. Finally,
the task of clustering in the presence of drift on data streams was identified as particularly
relevant.

4.3.2.2 Conclusions

The interaction between change detection/adaptation in MTP on data streams and the
(many) loss functions that can be considered was identified as particularly important. One
can (and should) monitor the many performance measures available (e.g., in MLC), but then
needs to decide when changes in the individual measures mean a change overall. Different
options here include the detection of an overall change if any of the measures changes, on
one hand, or only if all measures change, on the other hand.

Some of the measures may be too insensitive to change, such as Hamming loss in MLC.
Others, such as subset 0/1 loss may be to sensitive. Luckily, other measures lay somewhere
in-between on the spectrum of sensitivity (e.g., F1 score, Jacquard, ranking loss) and may
be most suitable for use in practice.

4.4 Temporal Density Extrapolation
Vera Hofer (Graz University – Graz, Austria, vera.hofer@uni-graz.at)

License Creative Commons BY 3.0 Unported license
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4.4.1 Abstract of Spotlight Presentation

In an evolving data stream data on a continuous feature X arrives sequentially (in chunks or
instance by instance). The distribution of X is non stationary, i.e. the densities in feature
space f(x|t) can change over time. We address the question of estimating the density f(x|t)
of X at a future time point t given data on the development of X over time. Our model
is based on a basis representation of the densities f(x|t) at time t where normalised basis
functions are given at fixed positions. The drift model is expressed by the time dependency
of the coefficients in the basis representation. To guarantee that the weights satisfy the
sum-to-1 constraint at any time point, a compositional data approach is applied. The
weights are transformed according to an isometric-log-ratio transformation prior to the
polynomial regression in time. The model is estimated by means of a weighted maximum
likelihood approach where the weights adjust the model with respect to aging effects. The
density forecast requires an extrapolation of weights, i.e. an extrapolation of ilr-transformed
weights and a backtransformation into weights of basis functions. We found that the model
performance depends on the nature of changes. In particular, the polynomial regression is
weak in reacting to fast changes over time. As a remedy a drift model for the coefficients
based on time series model may be considered.
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4.4.2 Results of the Working Group Discussion

Discussion Participants
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4.4.2.1 Alternatives to polynomial regression in drift model

A drift model based on a polynomial regression of the basis coefficients does not react fast
enough to changes in a highly dynamic environment. It does not allow the detection of change
points. Time series models seem to be a useful alternative to polynomial regression of the
basis coefficients. Since a drift model for time series forecasting runs automatically/without
user interaction and is robust, such a time series model for the basis coefficients of the densities
need to fulfill certain requirements: Time series parameters should be found automatically,
i.e. without tuning/selection by hand. The model needs to account for the dependency of the
time series of the basis coefficients. A compositional data approach is required to guarantee
that the sum-1-contraint is satisfied.

Instead of a time series approach which has certain disadvantages, alternative basis
representations can be used. The Gaussian basis functions could be replaced by Bernstein
polynomials. The basis coefficients could be estimated by a nonlinear change point regression
model.

4.4.2.2 Conclusions

The drift model needs to run automatically/without user interaction and to be robust.
Change point regression models will be highly appropriate since they can also detect jumps.

4.5 Challenges of Applying Concept Drift Detection in Real-World
Applications

Yun Sing Koh (The University of Auckland – Auckland, New Zealand, ykoh@cs.auckland.ac.nz)

License Creative Commons BY 3.0 Unported license
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4.5.1 Abstract of Spotlight Presentation

There are many examples of real-world stream learning applications, such as industrial
process controls, air monitoring sensors, spam detection, fraud detection, medical sensor data,
traffic monitoring. Many of these main applications of stream learning has produced a huge
quantity of data continuously in real-time. There is a multitude of challenges when applying
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concept drift detection in a real-world context. Many of these are well-known problems from
missing data to the difficulty of obtaining labelled data. In this talk, I will detail some of the
paper-cuts we have noticed that are slightly unusual. This includes real-world data stream
applications that have complex combinations of many types of concept drift.
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4.5.2 Results of the Working Group Discussion

Discussion Participants
Amir Abolfazli, University of Hannover
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Yun Sing Koh, The University of Auckland
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Dirk Tasche, Swiss Financial Market Supervisory Authority FINMA
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4.5.2.1 Discussed Problem

Key question: How to reliably capture concept drift when model rebuilt is expensive? This
question brought up further discussion/questions. This included discussion on whether we can
infer the gain of retraining or estimating after retraining. Is there a possibility of locating a
break-even point when adapting model versus retraining makes sense? When do we re-weight
and adapt vs discarding a model in presence of drift? The base machine learning algorithm
may affect the choice. For example, naïve Bayes may learn new information easier compared
to Deep Learning which would be harder to forget new information. For example, the nature
of the drift or shift might be considered. In the case of a hard shift, forgetting and discarding
the model may be better than adaptation. Myra Spiliopoulou noted that gradual forgetting
and gradual learning two problems, whereby gradual drift (knowing) when it is happening
and adapting. Another point of discussion was “Can we still learn incrementally if there are
novel classes?” There is a potential difference of target versus feature space sparsity.
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The other discussion/question geared towards: “Can we trust the ground truth labels in
the datasets?” Often correct labelling is not clear, even for the experts labelling the data.
Further discussion by Eyke Hüllermeier on superset learning, allowing for “weak labelling”
would be beneficial [5] . The other related research is in fuzzy set whether there is a plausible
label or not. This includes generalisation the loss function of the learning with penalty
scoring for optimistic superset loss.

4.5.2.2 Conclusions

The discussion open up further discussion of the area:
Can tolerate the quality degradation of a model? Is there a possibility of locating a break
even point when adapting model versus retraining makes sense?
When do we re-weight and adapt vs discarding a model in presence of drift?
Can we still learn incrementally if there are novel classes?
Can we trust the ground truth labels in the datasets?

4.6 Understanding Concept Drift
Loong Kuan Lee (Monash University – Clayton, Australia, loong.kuan.lee@gmail.com)

License Creative Commons BY 3.0 Unported license
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4.6.1 Abstract of Spotlight Presentation

One way to better understand distributional changes is to figure out how large the difference
between the 2 distributions before and after the change period is, also known as drift
magnitude. The drift magnitude can be obtain by measuring the divergence between these 2
distributions.

However, in most cases, we do not have any information about these 2 distributions
other than samples from these distributions. Furthermore, most divergences we can use to
measure drift magnitude take time exponential to the number of variables in the distributions
to compute. Therefore, we propose a method to estimate the divergence between the 2
distributions using sample data while avoiding this exponential time complexity w.r.t the
number of variables. This crux of this method relies on the use of decomposable models to
produce an estimate that decomposes the high-dimensional population distributions into
products of lower dimensional distributions.

References
1 Alon Orlitsky, Narayana P. Santhanam, Krishnamurthy Viswanathan, and Junan Zhang.On

modeling profiles instead of values. In Proceedings of the 20th Conference on Uncertainty in
Artificial Intelligence, UAI ’04, pages 426–435. AUAI Press, 2004.

2 François Petitjean and Geoffrey I. Webb. Scaling log-linear analysis to datasets with
thousands of variables. In Proceedings of the 2015 SIAM International Conference on Data
Mining, pages 469–477. Society for Industrial and Applied Mathematics, 2015.

3 Geoffrey I. Webb and François Petitjean. A Multiple Test Correction for Streams and
Cascades of Statistical Hypothesis Tests. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining – KDD ’16, pages
1255–1264. ACM Press, 2016.

20372

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


20 20372 – Beyond Adaptation

4 Geoffrey Webb, Loong Kuan Lee, Bart Goethals, and Francois Petitjean. Analyzing concept
drift and shift from sample data. Data Mining and Knowledge Discovery, 32(5):1179–1199,
2018.

5 Mohammad S. Rahman and Gholamreza Haffari. A Statistically Efficient and Scalable
Method for Exploratory Analysis of High-Dimensional Data. SN Computer Science, 1(2):64,
2020.

4.6.2 Results of the Working Group Discussion
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4.6.2.1 Estimation of high-dimensional distributions

In principle, any distribution that can be modelled by a graphical model can be modelled
by a decomposable model. In the worst can this will lead to a saturated, or fully connected
model, where all the variables in the model are connected to each other. However, in
situations similar to this worst case scenario, where the treewidth, i.e. size of the largest
maximal clique, of the learnt decomposable models are large, our method for estimating
these high-dimensional distributions can start to face issues. This is because, currently, we
are just using the empirical distribution, which is not very sample efficient, to estimate the
probabilities of the maximal cliques and minimal separators of the decomposable models.
Therefore, some discussion was had on alternative ways to estimate the probabilities of the
maximal cliques and minimal separators of the learnt decomposable models from the given
samples.

Arno Siebes speculated that it might be possible to derive computationally efficient
approximations to high-dimensional distributions by aggregating the distributions over key
positive and negative examples.

Furthermore, there exists a body of work for estimating probability distributions in
a sample efficient manner. A promising method for distribution estimation is the Profile
Maximum Likelihood (PML) estimator which maximizes the probability of the observed
profile, i.e. the number of symbols apperaing any given number of times [1].

4.6.2.2 Extension to numerical data

Currently, the method we proposed for estimating divergences from sample data only works
for categorical data. However, it might be ideal to extend the approach to numerical data.
A potential roadblock to making this extension is that the method we use to efficiently learn
decomposable models from data, Chordalysis, only works on categorical data [2, 3].

Geoff Webb pointed out that recently an extension was made to Chordalysis that is able
to learn decomposable models from numerical data [5].

4.6.2.3 Conclusions

The use of decomposable models to aid in estimating the divergence between 2 distributions
using data sampled from them has some promise in alleviating the difficulties that come with
high-dimensional distributions and data. The specific method presented in the Spotlight
Presentation is only a first step in this direction.
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4.7 Learning Under Concept Drift With Zero Ground Truth
Indrė Žliobaitė (University of Helsinki – Helsinki, Finland, indre.zliobaite@helsinki.fi)
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4.7.1 Abstract of Spotlight Presentation

Fossils are the remains organisms from earlier geological periods preserved in sedimentary
rock. The global fossil record documents and characterizes the evidence about organisms
that existed at different times and places during the Earth’s history. One of the major
directions in computational analysis of such data is to reconstruct environmental conditions
and track climate changes over millions of years. Distribution of fossil animals in space
and time make informative features for such modeling, yet concept drift presents one of
the main computational challenges. As species continuously go extinct and new species
originate, animal communities today are different from the communities of the past, and the
communities at different times in the past are different from each other. The fossil record
is continuously increasing as new fossils and localities are being discovered, but it is not
possible to observe or measure their environmental contexts directly, because the time is
gone. Labeled data linking organisms to climate is available only for the present day, where
climatic conditions can be measured. The approach is to train models on the present day
and use them to predict climatic conditions over the past. But since species representation is
continuously changing, transfer learning approaches are needed to make models applicable
and climate estimates to be comparable across geological times. Here we discuss predictive
modeling settings for such paleoclimate reconstruction from the fossil record. We compare and
experimentally analyze three baseline approaches for predictive paleoclimate reconstruction:
(1) averaging over habitats of species, (2) using presence-absence of species as features, and
(3) using functional characteristics of species communities as features. Our experiments on
the present day African data and a case study on the fossil data from the Turkana Basin over
the last 7 million of years suggest that presence-absence approaches are the most accurate
over short time horizons, while species community approaches, also known as ecometrics, are
the most informative over longer time horizons when, due to ongoing evolution, taxonomic
relations between the present day and fossil species become more and more uncertain.
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5 M. Fortelius, I. Žliobaitė, F. Kaya, F. Bibi, R. Bobe, L. Leakey, M. Leakey, D. Patterson,
J. Rannikko, and L. Werdelin. An ecometric analysis of the fossil mammal record of the
turkana basin. In Philosophical Transactions B, 371(1698):1–13, 2016.

20372

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s10618-018-0606-6
http://dx.doi.org/10.1007/s10618-018-0606-6
http://dx.doi.org/10.1007/s10618-018-0606-6


22 20372 – Beyond Adaptation

4.7.2 Working Group Discussion

Discussion Participants
Sašo Džeroski, Jozef Stefan Institute
Gerhard Gößler, Graz University
Vera Hofer, Graz University
Claudia Kirch, Magdeburg University
Georg Krempl, Utrecht University
Mark Last, Ben-Gurion University of the Negev
Loong Kuan Lee, Monash University
Mykola Pechenizkiy, TU Eindhoven
Jerzy Stefanowski, Poznan University of Technology
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4.8 Time Series Classification
Geoffrey I. Webb (Monash University – Clayton, Australia, geoff.webb@monash.edu)
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time series classification using random convolutional kernels”, Data Min. Knowl. Discov., Vol. 34(5),
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4.8.1 Abstract of Spotlight Presentation

Time series classification is a fundamental data science task, providing understanding of
dynamic processes as they evolve over time. The recent introduction of ensemble techniques
has revolutionised this field, greatly increasing accuracy, but at a cost of increasing already
burdensome computational overheads. Driven by the challenge of global analysis of earth
observations over time [1], the Monash Time Series Analytics Group is developing new time
series classification technologies that achieve the same accuracy as recent state-of-the-art
developments, but with many orders of magnitude greater efficiency and scalability [3, 4, 5, 2].
These make time series classification feasible at hitherto unattainable scale.

The most recent and most scalable of these approaches is Rocket [2], which exploits
convolutional filters, popularized by deep learning. There are many different aspects of a
series that might be relevant to its classification, such as frequency, amplitude, variance and
global or local shape. Convolutional filters provide a single framework which can extract
a wide range of such features. Rocket uses random convolutional filters to extract a large
number of features which are sufficient for a simple linear classifier to obtain state-of-the-art
accuracy in classification.
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4.8.2 Results of the Working Group Discussion

Discussion Participants
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4.8.2.1 Further information

Geoff Webb’s group’s papers on both time series classification and earth observation can all
be found at http://i.giwebb.com/research/scalable-time-series-classifiers/.

4.8.2.2 Sensitivity to hyperparameters

There was a discussion about hyper-parameters. At least for the type of time series in the
UCR archive, the approach does not appear to be highly sensitive to hyper parameters.

4.8.2.3 Diversity in data stream ensembles

Jurek Stefanowski raised the issues of the role of diversity in data stream ensembles.
There are only a few papers on this topic e.g. https://link.springer.com/chapter/10.1007/
978-3-319-46307-0_15.

4.8.2.4 Stochasticity

Arno Siebes enquired about the role of stochasticity in Rocket. Geoff Webb told him that all
meta parameters of the current feature generation method (i.e., length of the convolution,
dilation value, value of the threshold and whether to use padding) are chosen at random
for each feature generated. It is an interesting question to what extent this stochasticity is
essential to the performance of the method and there is current work on a more deterministic
approach to adding the features.
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4.8.2.5 Rocket for anomaly detection

Andreas Theissler raised the issue of whether the ROCKET approach be used for other tasks
beyond classification and in particular for anomaly detection.

Geoff Webb suggested two potential approaches.
one-class setting: inside ROCKET learns some sort of distribution, so not using the
classifers’ output but the continuous value for a given observation could work — that
could be interpreted as an anomaly score.
two-class setting (highly imbalanced two-class classification problem). While ROCKET
was not tested for class imbalance, it might be possible to use the use the random
convolutions to model the ‘normal’ distribution and to use that model for anomaly
detection.

4.8.2.6 Conclusions

The discussion identified four open questions on which further research is needed:
How best to apply the framework in a multivariate context?
What is the contribution of stochasticity to Rocket’s performance? Is it possible to
develop a deterministic equivalent to the stochastic approach of Rocket?
Does the general approach generalize to other data types beyond time series?
Does the general approach generalize to other tasks beyond classification?

4.9 Uncertainty in Labeling – What Can We Learn from Experiments?
Myra Spiliopoulou (Magdeburg University – Magdeburg, Germany, myra@ovgu.de)
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4.9.1 Abstract of Spotlight Presentation

In supervised learning, we need reliable labels. When humans assign labels, they may be
uncertain – either because they lack the necessary expertise or because the labeling task is
hard or even unsolvable. Epistemic uncertainty can be reduced if more crowdworkers are
asked to deliver a label for a given task. Aleatoric uncertainty cannot. So, it is essential
to know which of the two cases holds for a given task – preferably before asking many
crowdworkers.

This spotlight talk is about investigating the interplay between uncertainty of the crowd-
workers and inherent difficulty of the tasks. Since both uncertainty and difficulty are not
observable, we discuss the role of observables, of indicators, in experimental settings, as in:

Task difficulty
↙ ↘

Uncertainty −→ Indicators

We discuss the role of crowdworker disagreement and the potential of stress measurement for
task difficulty asssesment.
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4.10 Recovery Analysis for Adaptive Learning from Non-stationary Data
Streams

Eyke Hüllermeier (Paderborn University – Paderborn, Germany, eyke@upb.de)
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4.10.1 Abstract of Spotlight Presentation

The extension of machine learning methods from static to dynamic environments has received
increasing attention in recent years; in particular, a large number of algorithms for learning
from so-called data streams has been developed. An important property of dynamic environ-
ments is non-stationarity, i.e., the assumption of an underlying data generating process that
may change over time. Correspondingly, the ability to properly react to so-called concept
change is considered as an important feature of learning algorithms. In this presentation,
we propose a new type of experimental analysis, called recovery analysis, which is aimed at
assessing the ability of a learner to discover a concept change quickly, and to take appropriate
measures to maintain the quality and generalization performance of the model. Recovery
analysis can be instantiated for different types of supervised learning problems, including
classification and regression. As a practical application, recovery analysis is used to compare
model-based and instance-based approaches to learning on data streams.
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4.10.2 Results of the Working Group Discussion

Discussion Participants
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4.10.2.1 Discussed Problem or Approach

One important discussion point centered around the question how to generate the (semi-
synthetic) data streams in recovery analysis, which is indeed an important aspect of the
approach. On the one side, the data should be sufficiently “realistic” and exhibit properties
of real-world scenarios. On the other side, the protocol of recovery analysis assumes the data
to have certain “idealized” properties. One very interesting proposal that came up during
the discussion was the use generative models. Such models could be trained on real-world
data first, making sure to reflect characteristic properties of that data, and then used for
sampling the data streams for recovery analysis. By playing with parameters of the models,
properties of the streams could be controlled in a convenient manner.

Another interesting idea, namely the use of recovery analysis for feature analysis, was
brought up by Georg Krempl. More specifically, the idea is to analyze the “robustness” of
features in the context of learning from data streams. In many applications, the usefulness
and predictive power of individual features varies in the course of time (a point that was also
made in the presentation by Mark Last). One could imagine, for example, a “non-stationary”
feature having a high predictive performance under certain conditions or in certain time
windows, but a relatively low performance in other periods, with transitions in the form of
shifts between these periods. How does such a feature compare with a “stationary” feature
the performance of which is moderate throughout? Or, more generally, how does a model
(e.g., in the context of an ensemble) using non-stationary features compare with a model
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using stationary features? Recovery analysis may provide a suitable basis for analyzing
questions of this kind, because non-stationary features will cause (repeated) shifts, and one
would expect to observe alternating phases of increasing and decreasing performance, whereas
stationary features will show a more stable behavior. Going beyond a qualitative analysis, it
would perhaps even be possible to quantify the “robustness” of a feature.

4.10.2.2 Conclusions

In summary, there was an agreement that recovery analysis is an interesting approach for
analyzing the performance of machine learning algorithms in the context of data streams,
with possible extensions and generalizations in various directions. Apart from further
methodological developments, there was also a consensus that a practical and easy-to-use
implementation of recovery analysis in a software package is important to popularize the
approach.

4.11 Online Linear Discriminant Analysis for Data Streams with
Concept Drift

Sarah Schnackenberg (TU Dortmund University – Dortmund, Germany,
schnackenberg@statistik.tu-dortmund.de)
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4.11.1 Abstract of Spotlight Presentation

When focusing on data streams, due to the time component the underlying distribution of
the observations can change over time, that means the data can be subject to concept drift.

For handling data streams a range of different online algorithms for various (classification)
methods have already been developed (see e.g. [4, 3, 2] for algorithms for online discriminant
analysis). Many of them deal with the problem of concept drift and can adapt to changing
distributions through e.g. stronger weighting of new observations in the update step [3].
However, the forecasting quality of the resulting classifier of most of the methods can still be
improved if the underlying distribution continuously changes further on.

The talk presents the idea of a general extension for existing methods for online dis-
criminant analysis [6, 1]. The time-depending trend of the expected values of the classes is
modelled (and approximated locally linearly) by local linear regression models on sliding
windows. With these regression models the forthcoming distribution of the features can be
predicted and the predictions replace the original estimators in the continuously updated
classification rule of the discriminant analysis in order to improve the forecasting quality.

Note: This spotlight talk has been discussed within the plenary sessions, see Section 5 for
the results of these discussions.
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4.12 Classification, Calibration, and Quantification: A Study of Dataset
Shift
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4.12.1 Abstract of Spotlight Presentation

What happens if the true dataset shift type is prior probability shift but the prevalence of the
positive class is estimated under an assumption of covariate shift (see [2] for the definitions
of these shifts)? We present a simple inequality for the estimation error which shows that the
size of the change of the prevalence between training set and test set is always underestimated
(Corollary 6 of [4]). The degree of underestimation decreases with increasing predictive power
of the posterior class probabilities on the training set. We also discuss a possible application
to the estimation of bounds for the change of the positive class prevalence under general
dataset shift.
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4.12.2 Results of the Working Group Discussion
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4.12.2.1 Open research questions

1. Theory: How to generalise the inequality of Corollary 6 of [4] to the multi-class case?
2. Application: Can the inequality be used to estimate bounds for the change of the positive

class prevalence under general dataset shift?
Rationale: Anecdotal evidence suggests that covariate shift and prior probability shift
to some extent are extreme dataset shifts (least vs. greatest change of positive class
prevalence).
Hence, if q̃ is a reasonable estimate of the true prevalence q under an assumption of
prior probability shift and q̂ denotes the probability average estimator [1] of q under a
covariate shift assumption, then perhaps min(q̂, q̃) and max(q̂, q̃) provide a reasonable
range estimate for q?
Empirical evidence from rating agency data so far is not too encouraging.

4.12.2.2 Conclusions

There is no simple answer to question 1. Further research on Covariate Shift with Posterior
Drift (CSPD, [3]) might support progress on question 2.

4.13 Prediction-Dependent Drift
Georg Krempl (Utrecht University – Utrecht, The Netherlands, g.m.krempl@uu.nl)
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4.13.1 Abstract of Spotlight Presentation

The predominant paradigm for learning machine learning-based prediction systems is that
they act as observers in their environment. However, as their decisions are put into action,
this neglects the influence they potentially might play in their environment. For example, a
company predicted to by high risk might face higher financing costs, or a region patrolled
regularly might be avoided by criminals. This might lead to self-fulfilling or self-defeating
prophecies.

This talk proposes the new paradigm of influential machine learning. Therein, feedback
loops exist between between a machine learner’s predictions and the subsequent data they
receive: predictions have an influence on the statistical population under study, and thereby
trigger changes in its characteristics. This raises several fundamental questions, such as:
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Figure 3 Machine Learning under Influential Predictions.

Under which circumstances and in which ML applications could such influence occur?
How to describe the influence mechanisms, and how to model them statistically?
How to detect, assess and verify this influence?

While these questions are, to the best of our knowledge, not resolved yet, they relate
to several existing lines of research. Most notably, in the widely studied problem of non-
stationary and streaming data, several tasks and approaches have been proposed to identify
change or irregularities[3, 4]. Nevertheless, all this research studies change that is (implicitly)
assumed to be independent of previous predictions. In adversarial machine learning[2], the
focus of interest is hardening a machine learning system against attacks by ad adversary. This
includes so-called evasion attacks, where the adversary deliberately alters the characteristics
of fraudulent instances, such that they get subsequently misclassified.

Thus, this talk will provide a first model of such an influence mechanism as well as some
preliminary results of an influence detection approach on synthetic data. These indicate
challenges in particular when detecting self-defeating prediction influence.
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4.13.2.1 Real-World Data Issue

A starting point for research into influential predictions is the identification of real-world
applications, where such influence mechanisms are likely to play a role. This allows to
discuss possible feedback loop mechanisms with domain experts, to develop simulations to
generate synthetic data, and to collect real-world data with known, or at least suspected,
prediction influence. This will help in a later step of evaluating detection and mitigation
approaches. During the working group discussion, several applications were suggested. In pilot
experiments on prediction influence in [1], data from neurobiological learning experiments
was used, which offers a well-controlled environment. Further applications could include data
from known medical interventions, as suggested by Arno Siebes, or data from predictive
maintenance applications, as suggested by Myra Spiliopoulou. Another promising application
are recommender systems, as suggested by Mykola Pechenizkiy. Here, recent studies have
shown that predictions change user preferences and affect sales diversity [5].

4.13.2.2 Approach

In a pilot study [1] and in ongoing experiments with synthetic, generated data, an approach
has been developed that splits the instances based on their predicted class label, as well as on
their actual label. Following the classification of a first chunk of instances, in subsequent time
steps the distributional change in the neighbourhood of each previously classified instance
is attributed to the corresponding cells in the classification confusion table. This allows
to compare the observed aggregated values against those, who were to be expected under
assumed independence between distributional change and previous classification.

While first results on synthetically generated data are promising in particular for detecting
self-fulfilling influence, a particular challenge is self-defeating influence with unknown time
lags between the moments of prediction and of the manifestation of influence.

4.13.2.3 Conclusions

The existence of feedback loops, i.e., of some dependence between previous predictions
and subsequent distributional changes, might have relevance for several machine learning
applications and should be further investigated.

From a methodological point of view, this is currently a largely un(der)studied problem.
First preliminary results indicate that influence mechanisms that result in a self-defeating
prediction pattern might be particularly challenging to detect. Therefore, in order to address
the third research question, further development of prediction influence detection approaches
is needed.
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4.14 Labelless Detection and Explanation of Concept Drift
Mykola Pechenizkiy (TU Eindhoven – Eindhoven, The Netherlands, m.pechenizkiy@tue.nl)
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Main reference Shihao Zheng, Simon B van der Zon, Mykola Pechenizkiy, Cassio P de Campos, Werner van
Ipenburg, Hennie de Harder, and Rabobank Nederland: “Labelless concept drift detection and
explanation”. In NeurIPS 2019 Workshop on Robust AI in Financial Services: Data, Fairness,
Explainability, Trustworthiness, and Privacy, 2019.
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4.14.1 Abstract of Spotlight Presentation

The common classification models are assumed to be trained on data that are sufficient and
representative of the underlying unknown distribution. However, in real-world scenarios,
the joint distribution of features and labels is not stationary but drifting from time to time.
This phenomenon, referred to as concept drift, can deteriorate the predictive performance of
existing classification model used e.g. in fraud detection and even make it obsolete. Numerous
concept drift detection methods have been developed to detect drifts and adapt the model
so as to recover from the influence of concept drift. However, most existing concept drift
detection methods have an over-optimistic assumption that the true labels will be available
after the classifier makes decisions on new coming instances so that they can track concept
drift by monitoring the real-time accuracy. Besides, the localization and interpretation of
concept drift are also important. Localizing drift positions and providing interpretable concept
drift information would help improve usability and trustworthiness in model adaptation
process but existing methods that use accuracy to track concept drift cannot provide in-depth
explanations on the root causes of the drift. To address the issues mentioned above, we
propose a Labelless COncept Drift Detection and Explanation Framework (L-CODE). It
requests labels only when we need to update the model and uses the Shapley values as a
proxy to the joint distribution of features and labels. Our method tracks change on each
feature separately, which is more efficient, but we can still obtain multivariate changes
based on the multivariate nature of Shapley values. Except for drift detection, we provide
three-level visualizations to explain the detected drift in different granularities. Our method
can outperform other state-of-the-art labelless drift detection methods on benchmark datasets
but cannot beat the methods that require labels. For experiment on Rabobank transaction
dataset, we demonstrate insightful explanations on the causes of detected drift.

Note: This spotlight talk has been discussed within the plenary sessions, see Section 5 for
the results of these discussions.
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5 Plenary Discussion

5.1 Plenary Discussion
All participants of this seminar.

License Creative Commons BY 3.0 Unported license
© All participants of this seminar.

5.1.0.1 Ambiguities in Terminology, Concepts and Common Assumptions

There are differences in the terminology, concepts and common assumptions that are used
in the different communities to describe distributional change. This starts already in the
characterisation of of change types. As pointed out by Barbara Hammer, a link between
domains is missing.

In data stream mining, for example, the classification into sudden, gradual, incremental,
and recurring drift is common [1]. Another is the distinction based on which distribution
is subject to change [2]. However, even within the data stream mining community there
is ambiguity around some terms. An example is virtual concept drift, which originally was
defined in [3, page 3] as not occurring in reality, but rather “in the computer model reflecting
this reality.”, for example due to representation language failing to identify all relevant
features, or when a skewed order of training examples results in an uneven distribution of
instances over the training sequence. In contrast, [4, page 143] related this term to the
problem of sampling shift discussed in [5]. As noted in [7], this ambiguous term is nowadays
often used to denote changes in the feature distribution that do not affect the posterior class
probabilities. However, it is less ambiguous to refer to this as covariate shift or covariate
drift, the term used for example in [6] and [2], respectively. Another difference is whether
time in data streams is defined as discrete or continuous, and there have been controversies
about differences between incremental and gradual drift, with a detailed taxonomy having
been proposed in [8].

In the classical time series analysis literature, instances are assumed to exhibit some
dependency in time such that they are not independent of each other. However, in the literat-
ure on multiple change points aka data segmentation often independence of the observations
or even independence and Gaussianity are assumed [9]. While not necessarily allowing for
time-dependencies all of these algorithms use the fact that this is ordered data (i.e. the most
basic definition of time series) to define change points.

A first conclusion was made that the assumption of temporal dependency seems
to be an important difference between these two fields. In time series, the assumption of
temporal dependency is usually important. In contrast, in data streams there might be
temporal dependencies, but not necessarily. In case of no time dependency, an entire field of
algorithms for time series becomes pointless (the ones that model the time dependencies, e.g.
a simple AR-model). It was noted that pointing out these differences would be a worthy
contribution to the existing literature.

Furthermore, for developing a mapping of change types to suggested models, precise and
unambiguous definitions of types of distributional change are needed. Therefore, several
suggestions were made in the discussions:

A characterisation of distributional change must be independent of the observed
time window.
The assumed invariants behind a categorisation must be clearly identified and stated.
The dependency between techniques and the types of distributional change
with their assumptions needs to be made clear.
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5.1.0.2 Equivalent Notions of Drift

In machine learning, distributional change commonly refers to the fact that the probability
distribution changes in between two time points – yet this property cannot necessarily be
observed in the case of a continuously changing distribution since only few observations
can be attributed to a specific point in time. In practice, drift detection is therefore often
based on the decrease of a model accuracy which has been trained over a period of time, or
change of time series characteristics. A step towards developing a common understanding
of distributional change is the embedding of drift processes into continuous time and the
development of equivalent notions of drift. This has been done in a recent work by [10, 11].
Therein, a drift process can be formalized over continuous time based on measurability
properties. This framework enables an investigation under which assumptions popular
notions of drift, in particular the existence of change points, changed model accuracy, and
distributional changes are equivalent, and it derives a further equivalent notion of drift based
in independence of variables. The latter characteristics opens novel possibilities for drift
detection and drift explanation technologies.

5.1.0.3 Evaluation

Several questions concerning evaluation arise in the context of distributional change:
How to evaluate?
How long to wait before evaluating?
What means interpretable? Is the utility of an interpretation a good indicator?
How to consider in evaluations the relationship between time scales and types of drift, to
techniques and their performance.
Which data to use in evaluations?
How to consider the timing of information in the evaluation? For example, there has been
some literature on verification latency or delayed labelling [12, 13], which also allows to
bridge literature from data stream mining and domain adaptation.

Evaluation has been discussed in further detail during the breakout group discussion on
recovery analysis, see subsection 4.10 and [15] as well as [14], and [16].

5.1.0.4 Conclusion

This seminar highlighted the need to better integrate the different communities in the areas
of data stream mining, statistical change point detection and early classification in time
series, transfer learning and domain adaptation, adversarial machine learning and exceptional
model mining. In order to foster a common understanding and to facilitate cross-fertilisation,
the development of a common vocabulary is key. Therefore, the participants have discussed
the idea of a joint position paper, which aligns the concepts and terms used in the different
communities to each other, and identifies overlaps and research gaps.
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Abstract
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Artificial Intelligence (AI) and other computational processes continue to influence decisions
across a wide range of applications including healthcare decisions, vehicle navigation, data
science, and others. This Dagstuhl seminar reflected on some of the challenges inherent in the
goal of increasing the interpretability of these systems, and when applicable, increase the trust
people put into them to make decisions. The seminar participants discussed the complexity
of trust itself, and how the concept is multi-faceted, and likely outside of researchers in
technology and computer science to fully define. We discussed an inter-disciplinary research
agenda, as well as a manifesto that should help frame this direction going forward.
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3 Overview of Talks

3.1 Mixed-Initiative Topic Model Refinement through Visual Analytics
Mennatallah El-Assady (Universität Konstanz, DE)
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Christopher Collins, Oliver Deussen
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“Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework”, IEEE Trans.
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Topic Modeling algorithms are widely applied in digital humanities and computational social
sciences to thematically segment corpora. However, as this task is highly subjective and
domain-dependant, the results of these models usually require refinement and personalization.
In this talk, I reflect on a journey of developing a series of visual analytics techniques that
enable domain experts to externalize their domain knowledge and understanding for the
task of topic model refinement. The talk highlights the open research questions, related to
trusting machine learning models, that came up during the development process, namely:

How much should we show the users?
How much control should we give users?
Do more confident decisions lead to better models?
Does reporting that they trust the ML model means that the users understand its inner
workings?
Can we trust the users to interact directly with the ML models?
Should we only care about the users trusting the ML model or also about the ML model
trusting the users?
How does explainability affect trust?

3.2 Trustworthy AI – A Medical Perspective
Jörn Kohlhammer (Fraunhofer IGD – Darmstadt, DE)
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Analytics in Healthcare, VAHC 2019, Vancouver, BC, Canada, October 20, 2019, pp. 17–24, IEEE,
2019.
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This talk touched upon the experiences of the health sector with AI to foster the discussion
on the requirements and expectation towards trust-building measures. The health sector
has been the target of the AI technology field for many years, however resulting in more
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frustration than benefit. There are some notable exceptions in radiology and other image-
related areas. Overall though, there is a strong demand for trustworthy-AI approaches, be it
organizational, psychological or technical flavors of such approaches. One observation is the
granularity of AI techniques that should be small as part of healthcare processes. Another is
the need for active involvement schemes to give medical experts some steering possibilities.
Overall, there are many open questions, some of which can certainly be answered in this
seminar.

3.3 Visual Analytics for Large-Scale ML Systems
Minsuk Khang (Oregon State University, Corvallis, US)
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In this talk, I presented my research on creating visual analytics tools for interpreting machine
learning (ML) systems that use very large datasets. I started by introducing ActiVis, a
highly-cited paper and one of the early works in visualization for ML, which we designed and
developed for engineers and data scientists at Facebook to interpret their industry-scale deep
learning models. Then I presented several recent works to show how visual analytics tools
can be integrated into an end-to-end ML workflow (e.g., model selection, fairness auditing).
Lastly, I discussed my vision to further promote interactions between human and AI and
broaden people’s access to AI technologies, which can help build their trust in AI.

3.4 Autonomy and trust in spaceflight operations
Scott Davidoff (NASA JPL)
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This talk describes the results from a number of efforts to infuse explainable autonomous
systems into spaceflight operations at the NASA Jet Propulsion Laboratory. The talk looks
at how scientist- and engineer- users jobs change when autonomous spacecraft are introduced
to mission operations contexts, and focuses on an example where visual analytics was used to
summarize thousands of simulations, as a path to build trust by growing an understanding
of how the spacecraft would respond to a wide variety of unexpected circumstances. The
talk also uses Jonathan Grudin’s framework for analyzing how CSCW applications fail,
to to consider how autonomy transforms experts into novices, mis-aligning individual and
organizational incentives, and following a dark pattern in the history of enterprise application
failures.
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3.5 ExplainExplore – Experimenting with Explanations
Jarke J. van Wijk (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Jarke J. van Wijk

Joint work of Dennis Collaris, Jarke van Wijk
Main reference Dennis Collaris, Jarke J. van Wijk: “ExplainExplore: Visual Exploration of Machine Learning

Explanations”, in Proc. of the 2020 IEEE Pacific Visualization Symposium, PacificVis 2020, Tianjin,
China, June 3-5, 2020, pp. 26–35, IEEE, 2020.

URL https://doi.org/10.1109/PacificVis48177.2020.7090

After a short overview of work at TU Eindhoven on explainable AI, I presented the work of
my PhD student Dennis Collaris. Using a surrogate model for explaining a single case is
a popular approach in XAI, with LIME as the key example. However, this requires quite
some parameter values to be chosen and also does not provide a global overview. Dennis has
developed ExplainExplore: an interactive tool to explore explanations for complex models,
enabling users to get an impression which features are important under what conditions.
Also, a video, the paper, and a demo can be found at http://explaining.ml .

20382
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