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Abstract
Machining distortion presents a significant problem in products with high residual stresses from
materials processing and re-equilibration after machining removes a large part of the material
volume and is common in the aerospace industries. While many papers research on mechanisms of
machining distortion, few papers report on the measurement, processing and characterization of
distortion data. Oftentimes only line plot data is used to give a maximum distortion value. This
paper proposes a method of measurement tool selection, measurement parameter selection, data
processing through filtering and leveling, and use of Bézier Surfaces and Gaussian Curvature for
distortion characterization. The method is demonstrated with three sample pieces of different pocket
geometry from quenched aluminum. It is apparent that samples with machining distortion can have
complex surface shapes, where Bézier Surfaces and Gaussian Curvature provide more information
than the commonly used 2D line plot data.
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Nomenclature
x, y, z Cartesian coordinates
a, b, c constants
zmin, zmax minimum & maximum z heights
R range of z heights
bn

k (t) degree n Bernstein basis functions
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xmin, xmax minimum & maximum x coordinate
ymin, ymax minimum & maximum y coordinate
E least–squares–fit error function
ckl coefficients of least–squares function
µ, ν matrix element indices
Mµ,ν least–squares matrix elements
rµ least–squares vector elements
r(u, v) vector parametric surface
n surface unit normal vector
E, F, G surface first fundamental form coefficients
L, M, N surface second fundamental form coefficients
K surface Gaussian curvature
f(x, y) functional surface
zrms root–mean–square surface height

1 Introduction

In the aerospace and manufacturing industries, billions of dollars are attributed to costs
from reworking, remanufacturing, and/or rejecting components that are defective due to
machining distortions [3] [28]. Machining distortion is the deviation of part shape from the
original intent after machining and being released from a fixture [6]. Residual stresses locked
into the workpiece are a primary factor contributing to machining distortions, coming from
prior material processing steps such as rolling, forging, heat treating, etc. Residual stress
develops from three main mechanisms: non-uniform plastic deformation, surface modification,
and material phase and/or density changes [4] [29]. After processing, the residual stresses
can cause deformation due to the re-equilibration of the tensile and compressive stresses to
arrive at mechanical equilibrium within the whole volume of material [4] [16]. Every year, the
aerospace industry experiences significant loss in profits from part distortion [26]. Example
components and processes are wing panels and other aerospace components from quenched
aluminum, where deep pockets are removed by milling.

To tackle machining distortion, empirical trials and computational approaches are em-
ployed. For example, analytical models have been developed to predict the distortion of
monolithic aerospace components [21]. A bending moment model for predicting shape
deviation has shown useful in simple geometries [5]. A physics-based materials processing
simulation revealed similar results compared to experimental data [2]. Similarly, a physics-
based machining model incorporating dynamic cutting forces and tool compliance properties
has been developed to predict in-process deflections along computer numeric control (CNC)
machining tool paths [18]. An enhanced analytic elasto-plastic model which uses super-
position of thermal and mechanical stresses, followed by relaxation procedures has been
developed to predict residual stresses in machining [20]. However, in the distortion literature,
basic information is missing about how distortion is practically characterized and therefore
the results of experiments or modeling approaches are not easy to transfer between works
of different researchers. More information is needed on the measurements themselves as
well as data processing to enable easy transfer of results between distortion papers. In
manufacturing research, experimentation and measurements are closely related, but they
also are clearly distinct – to which measurements deserve to be viewed independently from
the study of experimentation [24]. Measurements are not exact, but rather depend on
multiple factors including the measurement procedure, the operator skill, the environment,
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and more [1]. Measurements have an associated measurement uncertainty that is used in a
central role to assess quality and quality standards [10]. There are many types of measuring
principles related to production metrology including but not limited to stylus instrument,
white-light interferometer, confocal microscope, focus variation microscopy, angular resolved
scattering light sensor, pneumatic distance measurement, etc. [19]. There are advantages
and disadvantages for each measuring principle and ultimately the measurement principle is
selected based on requirements of the production.

The goal of this study is to find a transparent way to collect, quantify, and analyze
distortion data to enhance the transferability of experimental and analytical results. The
focus is on areal measurement data. An approach to characterizing machining distortion
by the Gaussian curvature of a parametric Bézier surface, created by a least–squares fit, is
demonstrated as a novel means to metrologically characterize distortion.

2 Metrology of distortion

Metrology in general is focused on design, maintenance, and improvements to technology to
create accurate measurements [24]. Metrology has the potential to improve the capability
of manufacturing processes in a production environment [25]. A measurement is obtained
from a measurement process, which requires measurement variables, hardware, software,
and human input to carry out the measurement [17].The introduction of measuring systems
in a company or industry is often driven by the need to ensure a specific level of quality
in manufacturing, using metrology for inspection purposes [25]. A measurement systems
analysis or MSA, is used to characterize the measurement process [17].

2.1 Coordinate measuring machines
For many researchers the measurement instrument of interest for machining distortion research
is the coordinate measuring machine (CMM). A CMM is a measuring system with a probing
system and the capability to determine spatial coordinates on the surface of the measured
part [8] [11] [22]. It combines measured points to form a feature using coordinate metrology.
Coordinate metrology provides a scientific basis to carry out measurements and 3D geometric
object imaging with the use of coordinate measuring systems [27]. Coordinate measuring
machines are designed to measure size, form, and position deviations of a workpiece [22]. A
CMM is equipped with a specific type of probing system – contact areal, optical profile, or
multi-sensor profile/areal [27]. The probing systems can collect data as single points or a
series of points by scanning the workpiece inside the measurement field [22]. Measurement of
3D objects marks the section of the space with the geometry of the measured object given
as a point coordinate in a reference coordinate system [27]. Tactile probing systems have
roughness limitations due to the stylus tip size diameter. There are many different techniques
available for surface measurement analysis and it is important to understand the sample
properties, limitations of each, and analysis required [7].

For machining distortion, a coordinate measuring machine may be considered the most
universal tool for collecting distortion data, such that it is capable of measuring: a point,
line, plane, circle, cylinder, cone, sphere, ellipse, step cylinder, slot, circular slot, parabola,
paraboloid, torus, parallel planes, curve, surface, etc. To fully understand the capability of
the measurement system, it needs to be analyzed with regard to repeatability, reproducibility,
linearity, bias, stability, consistency, and resolution [17]. In the presented study, three
industry-relevant coordinate measuring machines at our disposal were chosen with tactile
and optical principles.

iPMVM 2020
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Table 1 Distortion research examples from the literature often show a vague description of the
data collection and analysis methods used.

[23] [30] [18] [15] [13] [2]
Taylor Hobson Hexagon

Measurement Form Talysurf Micro HITE CMM Mistral 775 CMM N/A
Tool Scanner 3D CMM 3D CMM

Measurement
Technology Tactile probe Tactile probe N/A N/A N/A N/A

Central line, Central line, 3 lines Grid oppo-
Distortion length length & N/A in length site machin- N/A

Visualization direction width equidistant ed surface
Distortion

Space Profile Profile Area Profile Area Profile
Distortion
Analysis N/A N/A N/A N/A N/A N/A

2.2 Distortion characterization

To characterize distortion, workpiece data needs to be measured, processed and visualized.
Currently in the literature, distortion measurement includes a variety of methods with regard
to measurement tools, tool technology, and distortion space (profile vs. areal measurement)
(see Table 1). The analysis methods for the data are often not reported on. Many of
the methods used for displaying machining distortion in the literature include a linear or
two-dimensional visual representation using a central line for critical distortion maximum
areas. In general, distortion measurements and measurands can be described in many ways
including:

a single value (i.e. maximum distortion, average distortion),

a single curve along a reference surface (usually along the longitudinal direction with
maximum deviation noted),

a collection of curves along a surface (e.g. in both longitudinal and transverse directions
with distinct distortion values noted),

uniformly spaced measurement schemes in both x and y coordinate directions with
maximum and minimum values described, etc.

Distortion is often measured as a maximum value or peak–to–valley height on one or
several lines across the part. Some researchers take the peak–to–valley height for the whole
areal surface. A method for displaying and characterizing machining distortion as areal data
with several filtering and fitting steps is described in our previous work [12]. The distortion
is calculated from the difference of a reference area measured before and after machining
(or pre– and post–). The reference area needs to be largely unaltered by the machining
process. Instead of a pre– and post–machining measurement, the post–measurement can be
sufficient as long as the reference initial distortion is negligible, i.e., the workpiece surface is
flat. Measuring only the post-machining surface for the distortion makes it easier for the
operator to collect data and calculate distortion. Also, part quality is defined as difference
from the intended shape, which in this case would be the part dimensions as defined by the
designer in the CAD drawing, which usually takes an ideal initial condition.
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Figure 1 Distortion samples with machined pockets with 0, 90, 60-degrees stiffener walls [14].

Table 2 Specifications for the different CMM machines.

Tactile CMM Laser line and Laser triangulation
tactile probe CMM CMM

Model and Mitutoyo Bright FaroArm Edge Taylor Hobson
Manufacturer BRT504 CMM & Scan Arm HD Talyscan 250

Accuracy 0.0005 mm 0.029 mm 0.001 mm
Repeatability 0.003 mm 0.025 mm **
Measurement Tactile Probe Laser Line/Tactile Probe Laser Triangulation
Technology

Measuring Capacity 0.5 × 0.4 × 0.4 m 1.8 × 1.8 × 1.8 m 0.2 × 0.2 × 0.2 m

3 Methods

3.1 Workpiece samples
Distortion data was collected on the reference surface (bottom surface) of three aluminum
samples with machined pockets from a PAG quenched aluminum 7050 bar. The dimensions
of each sample are 76.2 mm x 50.8 mm x 6.35 mm with two equally sized pockets around a
stiffener wall at different angles from the sample edge as seen in Figure 1. The stiffener walls
are at 0, 90 and 60 degrees. The samples were machined on a 3 axis Haas milling machine
after near net shape blanks were cut out by wire-EDM. The pockets were machined with
roughing parameters first (4 flute 30 degree helix 1/4” square end mill, trochoidal milling,
at 3000 rpm, feed rate of 0.23 m/min, depth of cut of 1.27 mm) and finished with two wall
finishing passes to achieve the corner radius (3 flute 30 degree helix 1/8” square end mill,
contour milling, at 4500 rpm, feed rate of 0.51 m/min, first depth of cut of 0.38 mm, second
depth of cut of 0.127 mm). Flood cooling with a water based coolant was used for all milling
operations.

3.2 Coordinate Measuring Machines
Three CMMs were available at our disposal at the University of California Davis for this
study: a Mitutoyo Bright BRT 504 CMM (tactile CMM), a Faro Arm Edge and Scan Arm
HD CMM (laser line and tactile probe CMM), and a Taylor Hobson Talyscan 250 (laser
triangulation CMM) as seen in Figure 2. Initial data collection was carried out on each CMM
for investigation of measurement system capabilities and is described in the next section.
The specifications and manufacturer technical capabilities of the metrology equipment are
presented in Table 2. Note that the repeatability data for the Laser triagulation CMM is
unavailable from the manufacturer’s specification sheet.

iPMVM 2020
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Figure 2 Mitutoyo Bright BRT 504 - tactile CMM (left), Faro Arm Edge and Scan Arm HD -
Laser line and tactile probe CMM (middle), and Taylor Hobson Talyscan 250 - Laser triangulation
CMM (right).

3.3 Data collection and processing
Data was collected on the bottom surface of each sample, called the reference plane. We
chose a single measurement scan instead of pre– and post–machining CMM measurements.
The data was collected on each sample using each of the three CMMs for comparison. The
comparability of the results was guaranteed because always the whole sample bottom surface
was measured. Coordinate data from the CMMs was imported into Matlab software to be
fit, leveled and plotted. A planar fit as seen in Equations (1) – (3) was used to level the
raw data to the (x, y) plane (Equation (1)). The fit residual (distortion data minus the
fitted data) provides leveled data for the following steps. Outliers in the leveled data were
filtered further from the leveled data, where outliers are defined as z values near the extremes
(maximum and minimum z values). The outliers were removed because they were not part of
the measured surface. Instead, they were probing points falling off the edges of the physical
part during the measurement. These points are very small percentage of total data points.
Defining the z range R as maximum minus minimum (Equation (2)), outliers were identified
and removed if outside the range of z from the data by Equation (3). Repeating the planar
fit, leveling, and filtering steps three times provided a useful set of data, defined as having
no significant outliers and with a difference between fit n and n+1 to be essentially zero. If
pre– and post–data sets had been used, the data sets would have to be rotated, translated
relative to each other and interpolated linearly to a common grid, before the difference of
both data sets can be taken.

z(x, y) = a + bx + cy , (1)
R = zmax − zmin , (2)
zmin + 0.015 R < z < zmax − 0.015 R . (3)

4 Optimizing the measurement parameters

In a first step, measurements were taken on the three above mentioned CMMs. The baseline
spacing scheme for the x and y axes on the tactile CMM, and the laser triangulation CMM
is 1 × 1 mm. The spacing scheme for the laser line and tactile probe CMM was found to
be about 0.05 x 0.05 mm. Distortion data for each metrology equipment are shown for the
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Tactile CMM Laser line and tactile probe CMM Laser triangulation CMM

Figure 3 Distortion coordinate data of the sample with 60-degrees stiffener wall from three
different CMMs.

60-degree sample in Figure 3. The distortion values (defined as the maximum z–deviations
from the intended shape) varied for the different measurement machines and principles. If
the scalar distortion values are defined as the maximum distortion value minus the minimum
distortion value, the distortion results for the different tools are 0.2438 mm, 0.1504 mm, and
0.1535 mm for the laser line and tactile probe CMM, laser triangulation CMM, and tactile
CMM respectively. The laser line and tactile probe CMM has a single point accuracy of
0.029 mm and a volumetric accuracy of ±0.041 mm which contributes to the data noise and
to differences from the other coordinate measuring machines. The laser line and tactile probe
CMM was therefore determined unfit for the following distortion measurement. The laser
triangulation CMM exhibited optical difficulty with the reflective metal surface.

Further investigation of the distortion data from the machined pocket samples was
conducted on the tactile CMM. The tactile CMM is often still considered the ‘golden
standard’ in metrology as it represents a physical contact on the workpiece and has the
longest history of standardization. The final distortion represents the overall shape features,
not the minute texture (i.e. surface roughness).

In a second step, the coordinate spacing for the tactile CMM was investigated to assure
quality data with consideration of measurement time. The spacing in the x and y axes
were kept uniform. Pitch and increment spacing for the x and y axes respectively were
investigated at 5 × 5 mm, 2 × 2 mm, 1 × 1 mm, and 0.5 × 0.5 mm as seen in Figure 4.
Between the 5 x 5 mm and 0.5 x 0.5 mm spacing the general distortion shape does not
change. We see that the distortion follows the 60 degrees stiffener wall. But the finer spacing
leads to a higher resolution and more information about the surface. However, this must
be weighed against the measurement time, which decreases roughly with the square of the
spacing distance. Considerable measurement time reduction is possible with the coarser
spacing. For the following measurements in this study, a 1 x 1 mm spacing was used. Table
3 shows the available scanning parameters on the chosen measurement device as well as the
recommended parameters for the study at hand.

5 Distortion data analysis

The processed distortion data is shown in Figure 5 as 3D plot on the left and line plots for
the horizontal midline (y = 25.4 mm) and vertical midline (x = 38.1 mm). The vertical
midline shows a convex shape, the horizontal midline a concave shape.

As a new data analysis step, the leveled data is also imported into a least–squares surface
fitting program that creates a Bézier surface, whose shape may be characterized by analysis
of its Gaussian curvature. An illustration of the coordinate data analysis steps are shown in
Figure 6.

iPMVM 2020
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Figure 4 Distortion coordinate data of the sample with 60-degrees stiffener wall from the tactile
CMM using different coordinate spacing schemes.

Table 3 Tactile CMM distortion measurement parameters.

CMM Scanning
Parameter

Definition or
available options

Recommended
Parameters

x-spacing Increment spacing
between points in the x
direction

1 mm

y-spacing Pitch spacing between
points in the y
direction

1 mm

Lace feature Repeat scan direction
uniform or
positive/negative
direction

off

Scan method Peck or Drag Peck
Scan Transversal x, y or z-axis y-axis
Pecking axis x, y, or z-axis z-axis
Pecking direction Positive or negative

axis (x,y,z) direction
Negative z-axis

No. of T-patches Length of the part /
pitch

25

Retreat axis x, y or z-axis z-axis
Probe diameter Size of the scanning

probe ball diameter
4 mm

Probe Compensation Coordinate datum is
compensated using the
radius of the scanning
probe

On
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Figure 5 The leveled distortion data for the 60-degree sample with midline plots for both
horizontal and vertical directions.

Raw CMM data Data fit to plane

Residuals from fit

Data after least-
squares fit

3D plot of data

Surface represented by 
Bernstein basis function 

and control points

Gaussian curvature 
representation

Figure 6 Steps for coordinate distortion data processing and visual representation.

After the data has been leveled, it is reduced to a uniform 500 × 500 2D grid using
meshgrid and griddata in Matlab. The distortion is displayed as a contour plot. After leveling
the data in Matlab, a least-squares method is used to remove any noise in the original
coordinate data. The idea is to construct a Bézier surface with a grid of control points.
The least-squares problem reduces to a linear system that is relatively easy to solve. The
height distributions will give an idea about the local distortion shape (convex, saddle, etc.).
The algorithmic steps for this optimized routine for characterizing machining distortion are
presented below.

5.1 Least-Squares Fitting with Bézier Surfaces

Since the original leveled CMM coordinate data is noisy, it can be difficult to discern overall
shape properties characterizing the distortion directly from it. To address this, we consider
least–squares fitting of the data to polynomial Bézier surfaces to suppress the noise. The
least–squares fit involves only the solution of a linear system of equations, and allows two–
dimensional shape features of the data to be identified, rather than just properties along
linear subsets (as with conventional methods).

iPMVM 2020
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The Bernstein polynomial basis of degree n over the interval t ∈ [ 0, 1 ] is defined by

bn
k (t) =

(
n

k

)
(1 − t)n−ktk , k = 0, . . . , n ,

and a polynomial p(t) may be specified in terms of its Bernstein coefficients c0, . . . , cn through
the expression

p(t) =
n∑

k=0
ckbn

k (t) .

The Bernstein basis has many advantageous properties [9] in the context of least–squares
fitting of polynomials to noisy data over finite domains:
1. unimodality: bn

k (t) has a single maximum on t ∈ [ 0, 1 ];
2. non–negativity: bn

k (t) ≥ 0 on t ∈ [ 0, 1 ] for k = 0, . . . , n;
3. partition of unity property:

∑n
k=0 bn

k (t) = 1 for all values of t;
4. lower and upper bounds: min0≤k≤n ck ≤ p(t) ≤ max0≤k≤n ck for t ∈ [ 0, 1 ];
4. variation–diminishing property: the number R of real roots of p(t) on t ∈ (0, 1) is less

than the number V (c0, . . . , cn) of sign variations in its Bernstein coefficients by an even
amount, i.e., R = V (c0, . . . , cn) − 2 K for a non–negative integer K;

5. differentiation and integration: the derivative and the integral of p(t) can be expressed as
polynomials in Bernstein form of degree n − 1 and n + 1, respectively, with coefficients
that are simple linear combinations of the coefficients c0, . . . , cn;

6. numerical stability: the Bernstein basis is “optimally stable” among all non–negative
polynomial bases on [ 0, 1 ] – i.e., it is impossible to construct a basis for which the values
of p(t) are systematically less sensitive to uniform relative perturbations of its coefficients.

A tensor–product Bézier surface r(u, v) of degree (d, d) on the domain (u, v) ∈ [ 0, 1 ]×[ 0, 1 ]
is defined in terms of the Bernstein bases in the parameters u and v through its control
points pkl for 0 ≤ k, l ≤ d by the expression

r(u, v) =
d∑

k=0

d∑
l=0

pkl bd
k(u)bd

l (v) . (4)

The least–squares surface fit of the leveled CMM coordinate data proceeds as follows. We
are given the measured heights zi at sample points (xi, yi) for 1 ≤ i ≤ N on the domain
(x, y) ∈ [ xmin, xmax ] × [ ymin, ymax ]. The Bernstein basis functions of degree d in x and y on
[ xmin, xmax ] and [ ymin, ymax ] are defined by

bd
k(x) =

(
d

k

)
(xmax − x)d−k(x − xmin)k

(∆x)d
, k = 0, . . . , d ,

bd
l (y) =

(
d

l

)
(ymax − y)d−l(y − ymin)l

(∆y)d
, l = 0, . . . , d ,

where ∆x = xmax − xmin, ∆y = ymax − ymin. We wish to fit a (functional) tensor–product
surface of degree (d, d) in (x, y) of the form

z = f(x, y) =
d∑

k=0

d∑
l=0

ckl bd
k(x)bd

l (y) (5)
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to the given data. The total squared error between the fitted surface and the given data is
defined as

E =
N∑

i=1
[ f(xi, yi) − zi ]2 ,

and substituting from (equation 5) gives

E =
N∑

i=1

[
d∑

k=0

d∑
l=0

ckl bd
k(xi)bd

l (yi) − zi

]2

.

The least–squares fit is obtained by minimizing the error E with respect to the coefficients
ckl of f(x, y). Setting the derivative of E with respect to the coefficient crs equal to zero
yields the equation

∂E

∂crs
=

N∑
i=1

2
[

d∑
k=0

d∑
l=0

ckl bd
k(xi)bd

l (yi) − zi

]
bd

r(xi)bd
s(yi) = 0 ,

or equivalently,

d∑
k=0

d∑
l=0

[
N∑

i=1
bd

k(xi)bd
l (yi)bd

r(xi)bd
s(yi)

]
ckl =

N∑
i=1

bd
r(xi)bd

s(yi) zi .

For each pair (r, s) with 0 ≤ r, s ≤ d this defines a system of (d + 1)2 linear equations for the
unknown coefficients ckl of the surface (Equation 5).

The linear equations can be solved by standard methods (e.g., Gaussian elimination). To
do this, it is preferable to express the equations in standard matrix form. This is accomplished
by setting

µ = r(d + 1) + s + 1 and ν = k(d + 1) + l + 1

for 0 ≤ r, s ≤ d and 0 ≤ k, l ≤ d, so the linear equations can be written as

(d+1)2∑
ν=1

Mµν c̃ν = rµ , µ = 1, . . . , (d + 1)2

where the matrix elements, unknowns, and right–hand side values are

Mµν =
N∑

i=1
bd

r(xi)bd
s(yi)bd

k(xi)bd
l (yi) , 1 ≤ µ, ν ≤ (d + 1)2 ,

c̃ν = ckl , 1 ≤ ν ≤ (d + 1)2 ,

rµ =
N∑

i=1
bd

r(xi)bd
s(yi) zi , 1 ≤ µ ≤ (d + 1)2 .

Once the solution vector c̃ν for ν = 1, . . . , (d + 1)2 has been computed, it can be re–arranged
as the two–dimensional array ckl with 0 ≤ k, l ≤ d that defines the surface (Equation 5) by
writing

ckl = c̃ν , where k = ⌊(ν − 1)/(d + 1)⌋ , l = ν − k(d + 1) − 1 .

iPMVM 2020
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5.2 Surface curvature analysis
To analyze the shape of the surface with Equation (4) we must rely on intrinsic properties –
i.e., shape measures that are independent of the surface parameterization. The Gaussian
curvature is the most basic intrinsic measure of local surface shape. At every surface point,
there exists a family of planes that contain the surface normal vector, each of which intersects
the surface in a planar normal section curve. The curvature of each normal section curve
specifies a normal curvature of the surface at a given point, and there are (in general) two
mutually orthogonal orientations of the section planes for which the normal curvature is
extremal. These section planes identify the principal directions and principal curvatures of
the surface at each point, and the Gaussian curvature at each point is the product of the
principal curvatures.

At a given point, a surface is “bowl–shaped” or “saddle–shaped” according to whether
the Gaussian curvature at that point is positive or negative. For example, an ellipsoid
has positive Gausssian curvature at every point, but a hyperboloid has negative Gaussian
curvature at every point. A general “free–form” surface may exhibit regions of both positive
and negative Gaussian curvature, separated by loci of zero Gaussian curvature called parabolic
lines. Analysis of the Gaussian curvature of the distorted surfaces produced by machining
can reveal whether they admit simple characterizations, or are inherently rather complex.

The coefficients of the first fundamental form of a parametric surface r(u, v) are defined
in terms of its first partial derivatives as

E = ru · ru , F = ru · rv , G = rv · rv .

The second fundamental form has coefficients given in terms of the surface normal vector

n = ru × rv

| ru × rv |

and the surface second partial derivatives by

L = n · ruu , M = n · ruv , N = n · rvv .

The Gaussian curvature is determined in terms of the coefficients of the first and second
fundamental forms as

K = LN − M2

EG − F 2 .

Hence, a neighborhhod of a point is “bowl–shaped” or “saddle–shaped” according to whether
K > 0 or K < 0, while K = 0 identifies points on a parabolic lines (a surface with K ≡ 0 is
a developable surface – imagined as a thin material sheet, it can be “flattened” onto a plane
without stretching or compressing the material).

For the case of a “functional surface” specified as z = f(x, y) we may take u = x, v = y

and the parameterization has the form r(x, y) = (x, y, f(x, y)) with the properties

rx = (1, 0, fx) , ry = (0, 1, fy) , n = (−fx, −fy, 1)√
f2

x + f2
y + 1

,

rxx = (0, 0, fxx) , rxy = (0, 0, fxy) , ryy = (0, 0, fyy) ,

(E, F, G) = (f2
x + 1, fxfy, f2

y + 1) , (L, M, N) = (fxx, fxy, fyy)√
f2

x + f2
y + 1

,
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K =
fxxfyy − f2

xy

(f2
x + f2

y + 1)2 . (6)

After successfully implementing the optimized routine for characterizing machining
distortion via Gaussian surface curvature, the results are displayed below.

6 Results and Discussion

The leveled data shown in Figure 5 depicts more information in the left contour plot, than in
the two midline plots on the right. The distortion seen in the 60-degree sample is symmetric
and complex; both of these properties are not evident from the line plots. Areal data yields
more information for the user than profile data. But still the surface shape cannot easily be
described from the depicted 3D plot.

d = 4

d = 6

d = 8

Figure 7 Least–squares surface fits with degrees d = 4 (top), d = 6 (center), and d = 8 (bottom).
Left: height deviation of least–squares surface about the mean height (magnified 120×). Center:
surface regions with negative (red) and positive (blue) Gaussian curvature K. Right: surface regions
that satisfy K > 0.1 z2

rms (blue), −0.1 z2
rms ≤ K ≤ 0.1 z2

rms (green), and K < −0.1 z2
rms (red).

The leveled data was also used to compute a least–squares surface fit. From the leveled
data of N = 3825 data points, the Gaussian curvature Equation (6) of the fitted surface was
computed. Figure 7 shows the regions of positive and negative Gaussian curvature of the

iPMVM 2020
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fitted surface Equation (5) with degrees d = 4, 6, 8. Because the data points represent only
a very mild deviation from planarity, the identification of these regions is sensitive to the
number (d + 1)2 of fitting parameters – as d is increased, the fitted surface begins to more
accurately replicate the noise inherent in the measured data.

Figure 7 also gives an alternative view, in which regions of low Gaussian curvature
magnitude |K| < 0.1 z2

ms (where zrms is the root–mean–square deviation of the z heights)
are color–coded green, while regions with K > 0.1 z2

ms and K < −0.1 z2
ms are colored red and

blue. The green regions are nearly developable, indicating that the surface shape results
from “bending” (rather than stretching or compressing) of an initially flat surface.

Figure 8 shows the magnified surface deviations and Gaussian curvature variations for
the three test parts illustrated in Figure 1. A strong correlation of the curvature with the
orientation of the stiffening wall is apparent. Overall, Figures 7 and 8 suggest that the
surface distortions produced by machining are rather complex in nature, and do not admit
characterization by simple, intuitive shape parameters.

Using the Gaussian curvature in addition to the areal distortion representation provides
greater insight into the the overall surface deviation in the context of distortion analysis.
Lower degrees d of the surface in the x and y directions impart a simpler impression of the
overall distorted surface shape. As d increases, more features related to surface topography
(i.e. surface roughness) are emphasized. Reducing the degree d incurs a smoothing effect
that emphasizes the broad surface shape: as (d + 1)2 approaches N (the number of data
points), the least–squares fit attempts to exactly interpolate every data point, yielding a
Gaussian curvature distribution that is noisy, reflecting the surface roughness. Distortion
data presented as either as a line or curve only exhibits a fraction of the overall experienced
distortion on that sample. Two–dimensional data gives a sparse indication of the shape and
does not adequately represent the complexity of the distorted shape.

7 Conclusion

This study explains an updated routine for characterizing machining distortion to improve
comparison and transfer of distortion research between different studies. The optimized
routine for characterizing machining distortion can be seen as a process to investigate the
complexities of the unique distorted surface. The overall characterization process as seen in
Figure 6 shows the steps to analyze distortion with Bézier surfaces and Gaussian curvature.
Different representations of distortion will present more information about the distortion
than just a single line plot or a single 3D image and help to understand machining distortion
better.

Through this research, it is understood that distortion often includes complex shapes with
regions of the surface between positive and negative Gaussian curvature. A new transparent
way to characterize distortion via Gaussian curvature proves to be a simple method to
transfer distortion results. Using the Bernstein basis function as a means for the least-squares
surface fit for Gaussian curvature extraction of distorted machined samples, expresses a
novel method to characterize machining distortion for the overall complex shape deviation.
Extracting information from the curvature including symmetries, quantified positive and
negative distributions, curvature location with respect to machined geometry, etc., can be
useful for further distortion characterization and minimization.

More work is needed using Gaussian curvature characterization to expand the distortion
results to show surface curvature symmetries, curvature percentages of both positive and
negative curvatures, and distinct characterization Gaussian shapes for different distorted
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0◦ sample

60◦ sample

90◦ sample

Figure 8 Left: height deviation of least–squares surface fit from the mean height (magnified
120×) for degree d = 4 surfaces. Right: plots showing regions of negative (red) and positive (blue)
Gaussian curvature. The upper case shows the 0◦ sample; the middle case is the 60◦ diagonal sample;
and the lower case is the 90◦ sample.

parts. Further work is also necessary in distortion compensation and distortion control.
For example, Finite Element Analysis of distortion from residual stresses can use Gaussian
Curvature to describe the distorted surfaces and can then be compared to Gaussian Curvature
data from measured surfaces. Using the final distorted curvatures can allow for the prediction
and manipulation of future machining distortion minimization. Future work is also needed
to investigate more geometries and dimensions (i.e. complex geometries and pockets).

References
1 S. Bell. Measurement Good Practice Guide No. 11. A Beginner’s Guide to Uncertainty of

Measurement. Tech. rep., National Physical Laboratory, 1999.
2 Yun-bo Bi, Qun-lin Cheng, Hui-yue Dong, and Ying-lin Ke. Machining distortion prediction

of aerospace monolithic components. Journal of Zhejiang University-SCIENCE A, 2009.
doi:10.1631/jzus.a0820392.

3 DM Bowden and JE Halley. Aluminum reliability improvement program final report 60606.
The Boeing Company, Chicago, IL, USA, 2001.

4 E. Brinksmeier, J.T. Cammett, W. König, P. Leskovar, J. Peters, and H.K. Tönshoff. Residual
stresses — measurement and causes in machining processes. CIRP Annals, 31(2):491–510,
1982. doi:10.1016/S0007-8506(07)60172-3.

5 E. Brinksmeier and Jens Sölter. Prediction of shape deviations in machining. CIRP Annals,
58:507–510, December 2009. doi:10.1016/j.cirp.2009.03.123.

iPMVM 2020

https://doi.org/10.1631/jzus.a0820392
https://doi.org/10.1016/S0007-8506(07)60172-3
https://doi.org/10.1016/j.cirp.2009.03.123


5:16 Optimized Routine of Machining Distortion Characterization

6 D. Chantzis, S. Van der Veen, J.Zettler, and W.M. Sim. An industrial workflow to minimise
part distortion for machining of large monolithic components in aerospace industry. Procedia
CIRP, 8:281–286, 2013. 14th CIRP Conference on Modeling of Machining Operations (CIRP
CMMO). doi:10.1016/j.procir.2013.06.103.

7 M Conroy and J Armstrong. A comparison of surface metrology techniques. Journal of
Physics: Conference Series, 13:458–465, 2005.

8 Richard Leach David Flack, James Claverley. Chapter 9 - coordinate metrology. In Richard
Leach, editor, Fundamental Principles of Engineering Nanometrology (Second Edition), Micro
and Nano Technologies, pages 295–325, Oxford, 2014. William Andrew Publishing. doi:
10.1016/B978-1-4557-7753-2.00009-8.

9 Rida T. Farouki. The bernstein polynomial basis: A centennial retrospective. Computer Aided
Geometric Design, 29(6):379 – 419, 2012. doi:10.1016/j.cagd.2012.03.001.

10 Joint Committee for Guides in Metrology. JCGM 104:2009. Evaluation of measurement data
– An introduction to the "Guide to the expression of uncertainty in measurement" and related
documents, volume First edition. JCGM, 2009.

11 International Organization for Standardization. ISO 10360-1:2000 geometrical product specific-
ations (gps) — acceptance and reverification tests for coordinate measuring machines (cmm)

— part 1: Vocabulary). Vernier, Geneva, Switzerland, 2000.
12 Destiny R. Garcia, Michael R. Hill, Jan C. Aurich, and Barbara S. Linke. Characterization of

machining distortion due to residual stresses in quenched aluminum. Proceedings of the ASME
2017 12th International Manufacturing Science and Engineering Conference collocated with
the JSME/ASME 2017 6th International Conference on Materials and Processing, Volume 1:
Processes, June 2017. V001T02A031. doi:10.1115/MSEC2017-2878.

13 M. Gulpak, J. Sölter, and E. Brinksmeier. Prediction of shape deviations in face milling of
steel. In Procedia CIRP, 2013. doi:10.1016/j.procir.2013.06.058.

14 Michael Hill, Christopher D’Elia, Renan Ribeiro, and Julianne Emily Jonsson. Measurement
and prediction of distortion from bulk residual stress in aluminum 7050 coupons (in preparation).
TBD, 2021.

15 Xiaoming Huang, Jie Sun, and Jianfeng Li. Finite element simulation and experimental
investigation on the residual stress-related monolithic component deformation. International
Journal of Advanced Manufacturing Technology, 2015. doi:10.1007/s00170-014-6533-9.

16 Rémi Husson, Jean-Yves Dantan, Cyrille Baudouin, Serge Silvani, Thomas Scheer, and Régis
Bigot. Evaluation of process causes and influences of residual stress on gear distortion. CIRP
Annals, 61(1):551–554, 2012. doi:10.1016/j.cirp.2012.03.106.

17 ASTM International. ASTM E2782-17 standard guide for measurement systems analysis
(msa). West Conshohocken, PA, 2017. doi:10.1520/E2782-17.

18 S. Jayanti, D. Ren, E. Erickson, Shuji Usui, T. Marusich, K. Marusich, and H. Elanvogan.
Predictive modeling for tool deflection and part distortion of large machined components.
Procedia CIRP, 12:37–42, December 2013. doi:10.1016/j.procir.2013.09.008.

19 Fritz Klocke. Manufacturing Processes 1. Springer Berlin Heidelberg, 2011. doi:10.1007/
978-3-642-11979-8.

20 Ismail Lazoglu, Durul Ulutan, B. Alaca, Serafettin Engin, and Bilgin Kaftanoğlu. An enhanced
analytical model for residual stress prediction in machining. CIRP Annals - Manufacturing
Technology, 57:81–84, December 2008. doi:10.1016/j.cirp.2008.03.060.

21 Jian-guang Li and Shu-qi Wang. Distortion caused by residual stresses in machining aero-
nautical aluminum alloy parts: recent advances. The International Journal of Advanced
Manufacturing Technology, 89:997–1012, March 2017. doi:10.1007/s00170-016-9066-6.

22 Karsten Luebke. Coordinate measuring machine. In Luc Laperrière and Gunther Reinhart,
editors, CIRP Encyclopedia of Production Engineering, pages 285–289, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg. doi:10.1007/978-3-642-20617-7_6579.

https://doi.org/10.1016/j.procir.2013.06.103
https://doi.org/10.1016/B978-1-4557-7753-2.00009-8
https://doi.org/10.1016/B978-1-4557-7753-2.00009-8
https://doi.org/10.1016/j.cagd.2012.03.001
https://doi.org/10.1115/MSEC2017-2878
https://doi.org/10.1016/j.procir.2013.06.058
https://doi.org/10.1007/s00170-014-6533-9
https://doi.org/10.1016/j.cirp.2012.03.106
https://doi.org/10.1520/E2782-17
https://doi.org/10.1016/j.procir.2013.09.008
https://doi.org/10.1007/978-3-642-11979-8
https://doi.org/10.1007/978-3-642-11979-8
https://doi.org/10.1016/j.cirp.2008.03.060
https://doi.org/10.1007/s00170-016-9066-6
https://doi.org/10.1007/978-3-642-20617-7_6579


D. R. Garcia, B. S. Linke, and R. T. Farouki 5:17

23 Ninshu Ma and Hui Huang. Efficient simulation of welding distortion in large structures and its
reduction by jig constraints. Journal of Materials Engineering and Performance, 26:5206–5216,
2017.

24 Daniel Jon Mitchell, Eran Tal, and Hasok Chang. The making of measurement: Editors’
introduction. Studies in History and Philosophy of Science Part A, 65-66:1–7, 2017. The
Making of Measurement. doi:10.1016/j.shpsa.2017.10.001.

25 Enrico Savio, L. Chiffre, Simone Carmignato, and J. Meinertz. Economic benefits of metrology
in manufacturing. CIRP Annals - Manufacturing Technology, 65:495–498, January 2016.
doi:10.1016/j.cirp.2016.04.020.

26 Wei-Ming Sim. Challenges of residual stress and part distortion in the civil airframe industry.
International Journal of Microstructure and Materials Properties, 5, December 2010. doi:
10.1504/IJMMP.2010.037621.

27 Jerzy A. Sładek. Coordinate Metrology. Springer Berlin Heidelberg, 2016. doi:10.1007/
978-3-662-48465-4.

28 Klaus-Dieter Thoben, Thomas Lübben, Brigitte Clausen Christian Prinz, Alwin Schulz, Rüdiger
Rentsch, Ralf Kusmierz, Lutz Nowag, Holger Surm, Friedhelm Frerichs, Martin Hunkel, Dieter
Klein, and Peter May. Distortion Engineering: Eine systemorientierte Betrachtung des
Bauteilverzugs. HTM - Haerterei-Technische Mitteilungen, 57:276–282, April 2002.

29 PF FEng Y Ma, S Liu and DW Yu. Finite element analysis of residual stresses and thin plate
distortion after face milling. In 12th International Bhurban Conference on Applied Sciences and
Technology (IBCAST), Islamabad, pages 67–71, 2015. doi:10.1109/IBCAST.2015.7058481.

30 Zheng Zhang, Liang Li, Yinfei Yang, Ning He, and Wei Zhao. Machining distortion minim-
ization for the manufacturing of aeronautical structure. International Journal of Advanced
Manufacturing Technology, 2014. doi:10.1007/s00170-014-5994-1.

iPMVM 2020

https://doi.org/10.1016/j.shpsa.2017.10.001
https://doi.org/10.1016/j.cirp.2016.04.020
https://doi.org/10.1504/IJMMP.2010.037621
https://doi.org/10.1504/IJMMP.2010.037621
https://doi.org/10.1007/978-3-662-48465-4
https://doi.org/10.1007/978-3-662-48465-4
https://doi.org/10.1109/IBCAST.2015.7058481
https://doi.org/10.1007/s00170-014-5994-1

	1 Introduction
	2 Metrology of distortion
	2.1 Coordinate measuring machines
	2.2 Distortion characterization

	3 Methods
	3.1 Workpiece samples
	3.2 Coordinate Measuring Machines
	3.3 Data collection and processing

	4 Optimizing the measurement parameters
	5 Distortion data analysis
	5.1 Least-Squares Fitting with Bézier Surfaces
	5.2 Surface curvature analysis

	6 Results and Discussion
	7 Conclusion

