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Abstract
This paper explores how recent convolutional neural network (CNN)-based techniques can be used
to interpolate images inside scientific image databases. These databases are frequently used for
the interactive visualization of large-scale simulations, where images correspond to samples of the
parameter space (e.g., timesteps, isovalues, thresholds, etc.) and the visualization space (e.g., camera
locations, clipping planes, etc.). These databases can be browsed post hoc along the sampling axis
to emulate real-time interaction with large-scale datasets. However, the resulting databases are
limited to their contained images, i.e., the sampling points. In this paper, we explore how efficiently
and accurately CNN-based techniques can derive new images by interpolating database elements.
We demonstrate on several real-world examples that the size of databases can be further reduced by
dropping samples that can be interpolated post hoc with an acceptable error, which we measure
qualitatively and quantitatively.
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1 Introduction

Today, almost any domain of research and engineering is using scientific simulations. The
complexity and scale increased over time due to innovations and continuous improvements in
both hardware and algorithmic solutions. With this, the results also grew in size. Now, the
management of data is increasingly becoming a major concern for large-scale applications. It
has been examined that persistently saving or archiving data produces over-proportionally
high costs (Kunkel et al. [13]), which strain institutional resources. Approaching exa-scale
computing capabilities, it becomes apparent that storage constraints limit the scope of more
and more simulations. Researchers are forced to decrease data output frequencies, shorten
the simulation time, or shrink the region and ensemble sizes, which in return hinders the
analysis and scientific workflow in general.

Scientific simulations are a valuable tool for researchers of many domains to derive and
verify hypothesis, which are otherwise unobservable. Therefore, there were many techniques
proposed to mitigate this problem [6][14][7][31][10][12] (further discussed in related work).
One of them by Ahrens et al. [2], who proposed the creation of a image databases. These
contain in situ rendered visualizations of the simulation for e.g. each timestep. Those images
are then directly used to visually analyze the results afterwards. This has several benefits
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19:2 Interpolation of Scientific Image Databases

over the storage of raw simulation data. Adhinarayanan et al. [1] confirmed through a
theoretical model the overall lower power consumption, hardware- and storage requirements
in comparison to conventional methods.

But the creation of image databases also introduces a new trade-off between the sampling-
rate and the required storage space. The denser the simulation is sampled, the more intuitive
and detailed is the post hoc analysis. But excessive sampling over a large number of
parameters (e.g. isovalues, thresholds, timesteps, camera angles) requires potentially the
same or more disk space.

In this paper we explored how image interpolation can resolve or mitigate this trade-off.
The reconstruction of intermediate frames through interpolation could be used as compression
to reduce the size of these image databases. This allows in return to effectively save more
samples. The creation of new frames is also possible, which allows the arbitrary change of the
sampling rate. More frames usually mean smoother transitions and improved user experience.
In general, image interpolation could be used for compression and data augmentation on
these specific or any other image databases. It may be employed as a compression or pre/post
processing step for an analysis or visualization.

However, we are not aware of any image interpolation technique that was developed for
scientific visualizations. Also, to our knowledge, general purpose image interpolation has not
yet been applied on scientific image datasets. Common images and scientific visualizations
differ substantially in the depicted objects and the way they were rendered. Hence, we
examined the feasibility and properties along minor improvements in the following. In
particular we present the following contributions:

Feasibility of image interpolation on scientific image databases
Comparison between state-of-the-art approaches on scientific visualizations
Publicly available docker images for reproducible results
Case study on background substitution for algorithmic approaches
Case study on fine-tuning CNNs for scientific visualizations

2 Related Work

The increasing demand of disk space for large-scale simulations has naturally gained the
attention of many researchers. Several mitigation techniques have been developed to reduce
the memory consumption of high-performance systems. Burtscher et al. [6] presented a
floating point compressor, which can also be used for inter-process communication. Sequences
of floating point numbers are packed and compressed together to reduce size. Lossy techniques,
like the SZ compression by Di et al. [7], provide even greater data reduction. Sophisticated
approaches like the “In situ Sort-And-B-spline Error-bounded Lossy Abatement” (ISABELA),
developed by Lakshminarasimhan et al. [14], or the work of Tao et al. [31] reveal correlations
of seemingly random data and provide very high compression for general data assemblies.
Approaches that are specialized on a certain domain can often exploit similarities in the data
more and therefore reach better results. For example, Jeruzalski et al. [10] introduced a
novel compression for contact-dominated rigid body simulations. Since it can operate on a
subset of the data, the resulting memory overhead is minimal. Kumar et al. [12] on the other
hand proposed a lossy compression, that utilizes discrete cosine transform and principal
component analysis on molecular dynamics simulation data.

This work is motivated by the approach of Ahrens et al. [2], who rendered the simulation
data in situ and created image databases. Instead of storing raw data (e.g. position/velocity
of every particle in a simulation), everything is captured through images, which are sampled
along the parameter space of interest (e.g. timesteps, camera locations, isovalues, thresholds,
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etc.). Adhinarayanan et al. [1] confirmed the lower storage and power requirements of in
situ rendered simulation analysis in comparison to other methods. However, the denser the
simulation is sampled, the more precise is the analysis. This imposes a strong trade-off
between accuracy and the required storage space. Storing more images eventually becomes
inefficient.

Our approach, to use general purpose image interpolation on these scientific image
databases, mitigates the described predicament. The most similar techniques to our method
include the work of Lukasczyk et al. [20]. They proposed a view approximation approach to
reduce the spacial sampling rate. Through depth images, the scene is reconstructed. This
enables the free exploration of the data with arbitrary viewpoint. But the generation of
depth images is infeasible for e.g. volumetric datasets, which limits the applicability of
this approach. Methods specialized on volumes, like from Fernandes et al. [8], enable post
hoc camera changes through i.e. space-time-coherent volumetric depth images. But this
solution is limited to volumes and can only be applied in situ. The compression of image
databases through video codecs was evaluated by Berres et al. [5], which resulted in great
data reduction rates. The video compression of image databases works also post hoc, but
does not improve on user experience. Our image interpolation approach enables post hoc
changes in frame rate, which augments the data and increases the expressiveness of data.
Similar techniques are used on medical data from CT or MRT scans to improve the hardware
restricted resolution of scans. A specialized technique for this was developed by Leng et al.
[15], which focuses on the transformations of these scans.

The application of image interpolation on scientific datasets can compress its size and
improve user experience. It is also applicable regardless of the underlying data type. It
can be applied in situ as well as on existing datasets. Also, advancements in interpolation
techniques can directly be incorporated due to the high modularity.

Image interpolation is an ongoing challenge in image processing and finds its application
commonly in slow motion generation or the resampling of movies. The active research
community continuously publishes ever improving solutions to this problem. Inspirational
papers include the work of Mahajan et al. [23], which presented a algorithmic path-based
technique and most recently the RRIN model of Li et al. [16].

Among numerous other techniques the following image interpolation techniques were
chosen to test their applicability on scientific visualizations. Their source code is publicly
accessible, which allows our results to be reproduced and extended.

Intersepconv : Video Frame Interpolation via Adaptive Separable Convolution
by Niklaus et al. (2017) [27] is a convoluational neural network for image interpolation.
They use separable kernels to reduce the memory complexity to O(2n). With this, larger
motions can be detected. The approach is set to interpolate a single frame in the middle
between two reference frames. Benchmarks show a performance of 0.9 seconds for a
1920x1080 frame on a Nvidia Titan X (Pascal). In this paper, we will refer to this
approach by “Intersepconv” for convenience.
Interphase : Phase-based frame interpolation for video of Meyer et al. (2015)[25]
solves the interpolation of images algorithmically. The core idea is to interpret the color
of images as functions and motion as the phase shift of these functions. Interpolation
of the images is then solved by interpolating the phase. Without global optimization,
peak performance of 1 seconds for a image of 720p can be reached on a Nvidia GeForce
GTX 770. The approach allows for arbitrarily many equally spaced interpolated frames
between two reference frames. In this paper, we will refer to this approach by “Interphase”
for convenience.

iPMVM 2020
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Intervoxel : Video Frame Synthesis using Deep Voxel Flow is the initial work of
Liu et al. (2017) [19] and involves a convolutional neural network for image interpolation
and extrapolation. It is implicitly trained end-to-end on voxel flow by images directly.
Although theoretically arbitrary interpolation is possible, the open source implementation
only supports one intermediate frame. The authors did not make statements about the
performance of the model aside from quality evaluations. In this paper, we will refer to
this approach by “Intervoxel” for convenience.
Intercyclic : Deep Video Frame Interpolation using Cyclic Frame Generation is
the later work of Liu et al. (2019) [18], which introduced a forward-backward consistency
as a mean for regularization. The model is by design restricted to a single interpolation
between two reference frames. The authors did not make any statements about the
performance of the model. In this paper, we will refer to this approach by “Intercyclic”
for convenience.
Interdain : Depth-Aware Video Frame Interpolation by Boa et al. (2019) [4] is a
composed image interpolation approach. It uses four existing models to estimate depth,
optical flow, context, and the kernels. The approach allows for arbitrarily many equally
spaced interpolated images between two reference frames. A peak performance of 0.125
seconds for a 640x480 image can be achieved on a Nvidia Titan X (Pascal). In this paper,
we will refer to this approach by “Interdain” for convenience.
Internearest : Nearest Neighbor Interpolation is the most basic interpolation tech-
nique. The intermediate image is constructed by copying the temporally closest reference
frame. It is used as a baseline method to compare the other approaches against it. In
this paper, we will refer to this approach by “Internearest” for convenience.

The publicly available open source implementations of the aforementioned techniques
have been modified to provide compatibility and a uniform user interface. The encapsulation
into docker images assures consistent behavior across systems without complex dependencies.
They are available on: https://github.com/EricKinner/InterpScImgDB

3 Method

Since the domain of scientific visualizations considerably differs from real world images, it
has to be evaluated if image interpolation techniques work in this context. For that, the
comparison of the aforementioned approaches is most naturally done by comparing the
interpolated results to ground truth images.

The similarity of two images is measured through metrics. A multitude of metrics
have been developed and each of them has its own characteristics, which highlight certain
properties (e.g. sharpness) and hide others. To prevent a bias caused by one of these
properties, multiple metrics are used instead. They ideally cancel each others shortcomings
out and provide comparability to other studies.

SSIM - Structural Similarity Index [35]. A perception-based metric widely used in image
processing. (range [0-1], where higher values are good; one is perfect response)
MS-SSIM - Multiscale Structural Similarity Index [33]. A development of SSIM with
multiple stages of subsampling. (range [0-1], where higher values are good; one is perfect
response)
VIFP - Visual Information Fidelity in Pixel Domain [30]. Part of the commercial FVQA
(Fusion-based Video Quality Assesment) [17] by Netflix for video quality monitoring.
(range [0-1], where higher values are good; one is perfect response)

https://github.com/EricKinner/InterpScImgDB
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MSE - Mean Squared Error. Basic absolute image error metric used in many applications.
(range [0-2552 × width × height], where lower values are good; zero is perfect response)
PSNR - Peak Signal to Noise Ratio. Used by image compression algorithms and derived
from MSE (10 × log10(2552 ÷ MSE)) (range (0-inf], where higher values are good)
UQI - Universal Quality Index [34]. Predecessor of SSIM. (range [0-1], where higher
values are good; one is perfect response)

It is to be expected that a given interpolation approach achieves different quality for
different types of visualizations. For that, a variety of datasets were chosen so that common
classes of scientific visualizations are represented. The testing size is of course not exhaustive,
but it is large enough to evaluate the feasibility in this domain and deduce tendencies.

Asteroid - Volume rendering of asteroid impact with changing turbulences. Published
by Patchett et al. [28].
Middlebury - Standard dataset for optical flow estimation and image interpolation by
Baker et al. [3].
MPAS - Model for Prediction Across Scales [26]. Static mesh with maps of atmospheric
and oceanic currents.
Nyx - Cosmological simulation data of contracting mass into galaxy structures, provided
by Lukic [22].
Viscous Fingers - Isosurface rendered example dataset of ttk library [32] [21], originally
generated for the 2016 IEEE visualization contest [9].

The comparison of image interpolation techniques and any other complex system involves a
multitude of variables and variations. The analysis can be performed over several dimensions.
The presented results are therefore only a summary of the measurements that were conducted.
The full set of the results is available in the repository (https://github.com/EricKinner/
InterpScImgDB). For the creation of new data, generalized docker images provide comfortable
interfaces and allow the validation and continuation of this work.

Feasibility. The first step towards the deployment of image interpolation techniques on
scientific visualizations is the examination of its feasibility. For this, it has to be compared
against suitable alternatives. Scientific image databases are usually not resampled. Leaving
the frame rate untouched is equivalent to the nearest neighbor interpolation (Internearest).
The normalization with this baseline approach gives insight on the amount of improvement
and ensures the interpolation is not worse than actually doing nothing. Note that normalized
results are only comparable in the amount of improvement over the baseline approach and
not over their absolute error values.

Background Substitution. The background of scientific visualizations is usually a plain
color. This is a distinct difference to common images, which might negatively influence the
quality of the interpolated frames. The color of the background usually does not hold any
information, that is of interest to researchers. Therefore, if more favorable configurations
lead to better interpolation results, it could simply be exchanged. Background substitution
can be a low-cost improvement for the adaptation of image interpolation techniques on this
domain of visualization.

To explore this, a set of different background images were generated synthetically. The
background is substituted by the color value, which leaves translucent pixels with the original
background.

iPMVM 2020
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none - Original image background.
green - Color, which is unique in the image.
colorGrad - Gradient between two unique image exclusive colors.
black - Uniform black background.
white - Uniform white background.
grad - Gradient between black and white.
grid - Original image background with rectangular white grid.
photo - Photograph of real world scene with house and trees.

Fine-tuning. The majority of image interpolation techniques is based on convolutional
neural networks as seen in the ranking of the middlebury dataset [3]. Fine-tuning is an
established method to adapt neural networks to similar, but different domains of operation.
Therefore, we examined how well fine-tuning can be used to adapt neural-network based
image interpolation approaches to scientific visualizations. For this, the Interdain method
was trained on synthetic simulation-like data. Because quality and importantly, quantity is
critical for successful machine learning, a collection of public and custom datasets were used.
To extend the dataset with as many samples a possible, variations (e.g. volume, isosurface,
etc.) of the underlying data were generated.

blender scene 1 - Custom blender scene of moving light sources and primitives. The
intent with this dataset is to train the model on hard edges of solid meshes.
blender scene 2 - Custom blender scene of primitives, which emerge from each other
and change in size over time. The intended effect of this dataset on the model is to
introduce changes in mass and volume to the network. This is uncommon for real images,
but a common occurrence in scientific simulations of e.g. isosurfaces or turbulences.
mrBrain - Sliced scan of brain tissue, provided by [24]. Static frame with changing
texture is meant to increase stability for semi-static scenes.
bonsai - CT-Scan of a bonsai tree, provided by[11]. Rendered as volume with moving
camera and changing isosurface.
lobster - Resin embedded CT-Scan of a lobster, provided by [11]. Variations include
moving volume rendering and changing isosurface.
csafe heptane - Simulation step of combusting jet of heptane gas [11]. Training samples
include volume renderings, sliced layers, and changing isosurfaces.

4 Results

Feasibility. The quality of a given image interpolation approach on scientific visualizations
varies heavily. A positive example is displayed in Figure [1], which displays the Internearest
normalized MSE error of Intercylcic for all datasets. The scaling of the graph is below one.
This indicates for the given normalized error metric, that the produced results are consistently
better than the baseline approach. The least error is accumulated for the asteroid and nyx
datasets. They even outperform the middlebury datset, which is the de-facto standard
dataset for the comparison of image interpolation techniques. This confirms the general
applicability of image interpolation on scientific visualizations. On some of the tested datasets
an improvement of up to ten times could be achieved.

Yet for other approaches results like the ones displayed in Figure [2] can be observed.
The normalized PSNR metric displays the lack of quality of Interdain on all datasets. For this
metric, values below one indicate worse quality in in comparison to the baseline (Internearest).
It can be seen that the interpolation of some datasets yield results worse than Internearest.
This technique is, therefore, not suited for the application on scientific visualizations.
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Figure 1 Evaluation of MSE error on single
frame skipped interpolation by Intercyclic. Lower
values are good (zero is perfect response).

Figure 2 Evaluation of PSNR quality metric
on single frame skipped interpolation by Interdain.
Higher values are good.

In conclusion, it can be seen that the feasibility of general purpose image interpolation
on scientific visualizations is heavily dependent on the dataset and method. Results range
from much worse to up to ten times better than the baseline alternative (Internearest). In the
following we present suggestions for the selection of interpolation techniques. These aim to
reduce the time to find an optimal configuration of data and approach.

Figure 3 Evaluation of SSIM quality metric
on the asteroid dataset with single frame skipped.
Higher values are good. (one is perfect response).

Figure 4 Evaluation of UQI quality metric on
the asteroid dataset with single frame skipped.
Higher values are good. (one is perfect response).

Limitations. The application of general purpose image interpolation techniques on scientific
visualizations is in general feasible, but their results range a lot in quality. A closer look on
their limitations and artifacts lead to a deeper understanding on favorable configurations.

For that, Figure [3] displays the quality of the interpolation approaches on the asteroid
dataset in form of the SSIM metric. The asteroid dataset displays a volume rendered asteroid
impact with subsequent atmospheric turbulences. A low quality and high variance of Intervoxel
reveals its poor performance on volume-rendered images. Strict pixel- and voxel-flow based
approaches enforce consistencies, which are not fulfilled in scientific simulations. There,
colors are calculated through density functions of e.g. turbulences rather than being the
product of previous motions.

The same configuration of dataset, approach, and frames skipped is displayed in Figure
[4]. Here the the UQI quality metric is used. The Interphase approach stands out with
a high variance. A side-by-side comparison of the reconstructed frame with the original

iPMVM 2020
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Figure 5 Difference from interpolated frame to ori-
ginal of the MPAS dataset with Interdain. Note: En-
hanced contrasts for visibility.

Figure 6 Interpolated frame (top) of the
asteroid dataset with Interphase. Original
frame (bottom) shows color difference.

one is shown in Figure [6]. It reveals that the colors of the interpolated frame are more
saturated in comparison to the original. After the simulation progressed and a bigger portion
of the screen is occupied by objects, the color difference becomes less distinct. Compression
artifacts cannot be the reason for this anomaly, since lossless PNG compression [29] was used
throughout the study. This suggests that the uniform colored background, which is most
prominent in the first frames of the simulation, is the cause for this artifact.

A static mesh of the earth with changing textures of atmospheric and oceanic currents
is displayed in the MPAS dataset. The Interphase approach generates frames with slightly
different color for this dataset as well. A different artifact is produced by Interdain. Because
the general motion of the texture is directed towards a single direction, motion is falsely
detected and corrected for the worse.. This causes the mesh to slightly change its position as
a consequence. Figure [5] shows an example frame of the difference to ground truth. The
fake motion causes a high error at the edges. Complex compound systems like Interdain are
capable of perceiving scenes very well. This generally increases the interpolation quality but
may also lead to artifacts specific to scientific visualizations as the consistency of the scene is
not necessarily preserved.

The Nyx dataset displays changing cosmological formations through sliced textures. The
Intervoxel approach shows for this dataset a particular low quality. Figure [7] displays a
interpolated frame of this dataset. It can be seen that the edge of the simulation region is
fragmented and merged with the background. The temporal perception of the dataset is most
probably related to this phenomenon. It displays the formation of cosmological structures.
Through the accumulation of mass into stellar structures the texture seems to contract. The
perceived contraction then causes Intervoxel to ’suck’ pixels from neighboring regions (i.e.
the background) into the simulation region. This did not occur for the motion of the MPAS



E. G. Kinner, J. Lukasczyk, D. H. Rogers, R. Maciejewski, and C. Garth 19:9

Figure 7 Interpolated frame of the nyx data-
set, generated by Intervoxel approach. Areas on
the edges are fragmented and merged with back-
ground.

Figure 8 Interpolated frame of the viscous
finger dataset, generated by Interphase approach.
Expanding fingers produce high frequency noise
around the edges.

dataset. The reason might be the scale of the motion, which can only be perceived scene-wide
and cannot be detected locally. This shows very clearly that strict flow-based approaches
like Intervoxel are unable to deal with differences between optical flow and relative motion,
which is not uncommon in scientific visualizations.

The most difficult dataset for all approaches is the viscous finger dataset. The isosurface
rendering of mixing fluids (oil and water) shows expanding, contracting, and vanishing fingers,
which appeared to be a challenge for most approaches. Each approach, however, reacted
with different symptoms. The intermediate frames of Interphase showed high frequency
artifacts caused by the big ambiguity between consecutive frames like seen in Figure [8].
Other approaches, like Intersepconv and Intercyclic, produced ghosting artifacts similar to
linear blending. The Intervoxel interpolation shows the same artifacts as the ones created
on the nyx dataset. The artifacts are clearly visible in Figure [9]. It shows well how the
approach predicts paths from one image to another. It tries to fulfill the requirement of
consistent voxel transitions. The fluctuations of mass is unlike any real world scenario though.
This prevents matches between the frames, which are interpreted by most strict flow-based
approaches as occlusion. And occluded areas are filled with a prediction of the background.
The best reconstruction is from Interdain, which is capable of interpolating fingers with
the least amount of blur. But it, too, is unstable on uniform backgrounds and produces
fog-like artifacts in the beginning of the dataset as displayed in Figure [10]. Since this is the
only dataset, where Interdain showed these artifacts, it may be possible to adapt for it by
fine-tuning, as seen later in the respective section.

Because every interpolation approach is different, it is not possible to make absolute state-
ments about their applicability on scientific visualizations. But through domain knowledge
and the conducted measurements, tendencies become apparent. With these recommendations
simulation teams can exclude certain approaches and may save some time in the selection of
suitable interpolation approaches.

Volume rendered images can be interpolated best by CNN based approaches, which are
trained on optical flow, like Intersepconv and Intercyclic. These methods are comparatively
basic, but produce solid results for the nyx and mpas datasets as well. Algorithmic solutions,

iPMVM 2020
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Figure 9 Frame interpolated by Intervoxel from
viscous finger dataset.

Figure 10 Interpolated frame of the viscous
finger dataset, generated by Interdain.

like Interphase, should be avoided, since they often rely on constraints and properties common
in images but rare in scientific visualizations. Shown through multiple examples, it is
also apparent that strict voxel or pixel flow based approaches produce heavy artifacts for
changing masses and turbulences. Complex multi-component architectures can deal with
these situations better since scene information is processed as well. But these systems are
less predictable due to the high complexity and require careful fine-tuning to avoid a wrong
perception of the scene.

The accuracy with respect to the desired features should be considered as well. If scientists
want to derive other information from the interpolated images, stability with respect to e.g.
classification, edge detection etc. has to be maintained. High-frequency noise like in Figure
[8] or ghosting artifacts may invalidate the detection of edges, while it may be acceptable
for a segmentation. This is also true for annotated data. Spatially coherent pixel-based
information (like depth) can, in theory, also be interpolated and benefit from this approach.
However, most available interpolation techniques are not designed for floating point images.

Iterative Application. The level of compression and maximum frame rate is directly linked to
the number of intermediate frames. While some approaches allow for arbitrary interpolation
between two reference frames, it is most common to interpolate a single frame in the middle
of two reference frames. These approaches (Intercyclic, Intervoxel, Intersepconv) have to be
applied multiple times consecutively to achieve the same benefits. The number of intermediate
frames through iterative application grows in 2n − 1. Approaches with variable number of
intermediate frames (Interdain, Interphase) are more flexible in the selection of error thresholds
for adaptive compression. In comparison, no definite qualitative difference between variable
and iterative interpolation could be observed.

The maximum number of reconstructed frames is dependent on the initial sampling rate
of the dataset. For very sparsely sampled data, image interpolation might not be a viable
compression technique. But these datasets tend to benefit even more from the augmentation
of their data and increased frame rates. The datasets, which were examined in this paper,
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Figure 11 Comparison of example frame of asteroid dataset on Intercyclic with iterative application
and increasing interval of skipped frames.

had an average initial sampling rate. For them, we found empirically that 1-3 skipped frames
result in acceptable quality. Only for densely sampled datasets 7 frames could be skipped
(87% compression). Larger temporal steps between frames then tend to introduce aliasing
artifacts. Figure [11] displays the results of iterative application of Intercyclic on example
frames of the asteroid dataset.

Table 1 Average performance of the interpolation approaches on a 512x512 frame inside the
docker container. Tinit is the time to load the model and all associated resources. Tinterp is the time
to interpolate a single frame. The measurements were conducted on Ubuntu 20.04.1 LTS, 16 GB
RAM, i7-7700HQ @ 2.8GHz * 8, GeForce GTX 1050 Ti Mobile (4GB), Docker version 19.03.13.

approach Intercylcic Interdain Interphase Intersepconv Intervoxel

Tinit [sec] 6.305 3.328 1.473 3.142 5.912
Tinterp [sec] 2.248 23.841 5.352 0.220 3.520

Performance. The speed at which frames can be interpolated determines how the in-
terpolation is used. Fast interpolations may be employed for online applications, while
slower approaches would only be used for archiving data. Some of the approaches (Interdain,
Intercyclic) use large models, which need to be loaded on initialization. Not only do they
require sufficient GPU memory but also require significant time to load.

Table [1] displays the average performance on an 512x512 frame. Tinit is the time needed
for loading the model and other resources. Tinterp is the time needed to interpolate a
single frame. Note that the measurements were conducted inside a docker container. The
virtualization overhead among other factors might influence the actual runtime. It is also
important to note that the execution (Tinterp) of Interdain is most likely much lower. During
the fine-tuning of Interdain a processing speed of ∼1.22 seconds were observed. The training
was conducted on an Nvidia GeForce GTX 2080 (8GB), which provided enough memory to

iPMVM 2020
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load all of the sub-models simultaneously.

Figure 12 Evaluation of MSE error metric on
a single frame of the asteroid dataset. The dataset
was substituted with different backgrounds and
interpolated by Interphase. Lower values are good.
(zero is perfect response).

Figure 13 Evaluation of MSE error metric
on the mpas dataset with a single frame skipped.
Comparison of interpolation approaches including
background substitution for Interphase. Lower
values are good. (zero is perfect response).

Background Substitution. The background of scientific simulations can have a negative
effect on the quality of the interpolation result. (see Figure [10] and [6]). The investigation
and substitution can be of special benefit for algorithmic solutions (Interphase), since they
generally lack other means of optimization. In the following, the effect of background
substitution is examined on Interphase, which produced intermediate frames with slightly
different color and contrast to the original dataset.

An example frame of the asteroid dataset is tested to select an optimal background for the
Interphase approach. Figure [12] displays the MSE error metric of the different substitutions.
Contrary to expectations are the worst results produced by the grid background, which
provides extra reference points. The uniform white background produced the best results for
this approach. It also outperforms the substitution by the real world photo. This was not
expected, since the methods were developed for real images. But this shows that well chosen
synthetic images can actually be used to increase the quality of image processing methods.
And since generally no extra information is encoded in background pixels, a substitution
or initial selection of a favorable background can be a low-cost improvement for the later
analysis framework.

The effect on the total quality of the reconstruction can be seen in Figure [13], which
displays the results of all interpolation approaches aside the white substituted background.
The former high error due to a change in colors is completely corrected and competitive
quality can be achieved. A side-by-side comparison of frames from the MPAS dataset with
the background substitution can be seen in Figure [17]. There, the improvement is not
restricted to the correction of artifacts, but also reduces the error of the object. Background
substitution can be applied to any approach regardless of their type of architecture. It
reduces artifacts an improves the interpolation of the objects in the scene. It is a powerful
tools for maximizing the quality of the reconstruction and is easily integrated into post hoc
analysis frameworks.
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Figure 14 Comparison of fine-tuned Interdain

(indicated by “+”)(orange) against the unmod-
ified version (blue) on all datasets with PSNR
quality metric. Higher values are good.

Figure 15 Evaluation of MS SSIM quality met-
ric on the viscous dataset with 1 frame skipped
and comparison to fine-tuned Interdain. Higher
values are good. (one is perfect response).

Fine-tuning. The adaptation of machine learning approaches to new domains is commonly
done via fine-tuning. In the following, Interdain is fine-tuned. The new results give information
about the magnitude of improvement, that can be expected from fine-tuning approaches or
whether the architecture of the network is more important. The training was conducted on the
provided model with default settings (apart from: num-epochs=32, lr=0.0005, batch-size=1)
and on a Nvidia RTX 2080 with a total runtime of ∼ 6 hours.

The performance of the fine-tuned model (indicated by “+”) in comparison to the
unmodified approach is displayed in Figure [14] with the PSNR quality metric. The graph
is normalized by Internearest to be able to display all datasets side by side. Higher values
indicate better quality. The graphs shows that the quality increased for the fine-tuned version
in comparison to the original model on all tested datasets. The extent of the improvement
is also, as seen by the scale of the graph, of significant magnitude. The median increased,
while variances decreased. Even the results for the middlebury dataset could be improved.
Note that the metrics used in this evaluation are different from the metric used to determine
the ranking of the middlebury dataset. But this shows that synthetic data can positively
impact the training of conventional interpolation techniques. Artificially constructed edge
cases like changing masses and deformations can deepen the understanding of the scene for
the model and improve results. A frame-based side-by-side comparison of the fine-tuned
version is shown in Figure [16].

The resulting performance of the fine-tuned model in comparison to all the other inter-
polation approaches, as well as a background substituted version, is shown in Figure [15].
The MS SSIM quality metric shows a significant increase in quality of the fine-tuned model.
This changes its ranking among the other methods. Interdain+ is now the best choice. The
rise in quality can mostly be attributed to the lack of artifacts, like seen in Figure [10], which
is also achieved by suitable background substitution. Yet also edges and some fingers of the
dataset are interpolated better, which could otherwise not been achieved. A side-by-side
comparison is displayed in Figure [18], which illustrates the new robustness against moving
textures, which previously caused errors like in Figure [5].

Although fine-tuning is able to overcome shortcomings on most datasets, it does not
universally become the best option for every approach. The previous statements about the
general performance of architectures on different datasets still hold. The correct choice of
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Figure 16 Comparison of example frame of
asteroid dataset on Interdain with fine-tuned ver-
sion.

Figure 17 Comparison of example frame of
mpas dataset on Interphase with white background
substitution.

architecture, visualization setting (i.e. background), and data type has a greater effect on
the resulting quality. The application of image interpolation on scientific datasets without
fine-tuning would a waste of potential. It is worthwhile and strongly recommended to adapt
the interpolation approach in some way to the target dataset.

Figure 18 Example images of single frame skipped interpolation of all datasets between original
and fine-tuned Interdain. MPAS and nyx dataset are displayed as enhanced difference images to
increase the visibility of differences.
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5 Conclusion

In this paper, we explored the feasibility of general purpose image interpolation techniques on
scientific image databases. A survey over state-of-the-art methods with extensive evaluation
over multiple metrics and datasets demonstrated the successful application on scientific visu-
alizations. Tendencies toward favorable configurations could be observed, which give concrete
recommendations for the selection of suitable interpolation approaches. A measurement
of the runtime classifies the approaches for online application or post hoc data reduction.
Invariably, all utilized approaches are publicly available through unified docker images. This
enables this work to be verified or extended without setting up external dependencies. The
limitations of e.g. iterative application have been examined and clarify how far and when
the application of interpolation techniques is useful. Case studies for low-cost improvements,
such as background substitution and fine-tuning, have shown to adjust systems for this
domain of visualization.

In summary, image interpolation is a viable solution for improved user experience and stor-
age compression of scientific image databases. Further research may include the development
of expert systems for the interpolation of scientific interpolations as well as a composition of
tools like view interpolation [20] and video compression [5] into a unified framework. The
visualization of uncertainty for reconstructed frames would improve the acceptability and
open its usage to more critical domains. Lastly, it may also be of interest to investigate the
applicability of general purpose image interpolation onto volumetric datasets, which often
are already sliced (e.g. MRT, CT) and could potentially be enhanced or compressed.
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