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Abstract
Counting the frequency of subgraphs in large networks is a classic research question that reveals the
underlying substructures of these networks for important applications. However, subgraph counting
is a challenging problem, even for subgraph sizes as small as five, due to the combinatorial explosion
in the number of possible occurrences. This paper focuses on the five-cycle, which is an important
special case of five-vertex subgraph counting and one of the most difficult to count efficiently.

We design two new parallel five-cycle counting algorithms and prove that they are work-
efficient and achieve polylogarithmic span. Both algorithms are based on computing low out-degree
orientations, which enables the efficient computation of directed two-paths and three-paths, and the
algorithms differ in the ways in which they use this orientation to eliminate double-counting. We
develop fast multicore implementations of the algorithms and propose a work scheduling optimization
to improve their performance. Our experiments on a variety of real-world graphs using a 36-core
machine with two-way hyper-threading show that our algorithms achieves 10–46x self-relative speed-
up, outperform our serial benchmarks by 10–32x, and outperform the previous state-of-the-art serial
algorithm by up to 818x.
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1 Introduction

Subgraph or graphlet counting is a long standing research topic in graph processing with
rich applications in bioinformatics, social network analysis, and network model evaluation
[25, 14, 20, 21]. While there has been significant recent work on counting subgraphs of size
three or four [18, 19, 2], counting subgraphs of size five or more is a difficult task even on
the most modern hardware due to the massive number of such subgraphs in large graphs.
As the subgraph sizes grow, the number of possible subgraphs grows exponentially.

We consider specifically the efficient counting of five-cycles. This pattern is particularly
important for fraud detection [35]. Compared to other connected five-vertex patterns, five-
cycles are much more difficult to count because they are the only such pattern that requires
first counting all directed three-paths. Notably, the Efficient Subgraph Counting Algorithmic
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2:2 Parallel Five-Cycle Counting Algorithms

PackagE (ESCAPE), a software package by Pinar et al. that serially counts all five-vertex
subgraphs in large graphs [34], spends between 25–58% of the total runtime on counting
five-cycles alone based on our measurement.

While there has been prior work on developing and implementing serial five-cycle count-
ing algorithms [27, 34, 24], there has been no prior work on designing and implementing
theoretically-efficient and scalable parallel five-cycle counting algorithms. We focus on
designing multicore solutions, as all publicly-available graphs (which have up to hundreds of
billions of edges [31]) can fit on a commodity multicore machine [16, 17].

We present two new parallel five-cycle counting algorithms that not only have strong
theoretical guarantees, but are also demonstrably fast in practice. These algorithms are
based on two different serial algorithms, namely by Kowalik [27] and from ESCAPE by Pinar
et al. [34]. Kowalik studied 𝑘-cycle counting in graphs for 𝑘 ≤ 6 and proposed a five-cycle
counting algorithm that runs in 𝑂(𝑚𝑑2) = 𝑂(𝑚𝛼2) time for 𝑑-degenerate graphs [27], where
𝑚 is the number of edges in the graph and 𝛼 is the arboricity of the graph.1 The ESCAPE
implementation contains a five-cycle counting algorithm that, with an important modification
that we make, achieves the same asymptotic complexity of 𝑂(𝑚𝛼2) [34]. The arboricity of a
graph is a measure of its sparsity, and having running times parameterized by 𝛼 is desirable
since most real-world graphs have low arboricity [16].

The main procedure in both algorithms and the essential modification to the ESCAPE
algorithm is to first compute an appropriate arboricity orientation of the graph in parallel,
where the vertices’ out-degrees are upper-bounded by 𝑂(𝛼). This orientation then enables
the efficient counting of directed two-paths and three-paths, which are then appropriately
aggregated to form five-cycles. Notably, the counting and aggregation steps can each be
efficiently parallelized. The two algorithms differ fundamentally in the ways in which they
use the orientations of these path substructures to eliminate double-counting. We prove
theoretical bounds that show that both of our algorithms match the work of the best sequential
algorithms, taking 𝑂(𝑚𝛼2) work and 𝑂(log2 𝑛) span with high probability (w.h.p.).2

We present optimized implementations of our algorithms, which use thread-local data
structures, fast resetting of arrays, and a new work scheduling strategy to improve load
balancing. We provide a comprehensive experimental evaluation of our five-cycle counting
algorithms. On a 36-core machine with 2-way hyperthreading, our parallel algorithms
achieve between 10–46x self-relative speed-up, and between 162–818x speed-ups over the
fastest prior serial five-cycle counting implementation, which is from ESCAPE [34]. We
also implement our own serial versions of the two algorithms, which are 7–38.91x faster
than ESCAPE’s algorithm due to improved theoretical work complexities. Our best parallel
algorithms achieve between 10–32x speed-ups over our best serial algorithms. Our parallel
five-cycle counting code is available at https://github.com/ParAlg/gbbs/tree/master/
benchmarks/CycleCounting.

2 Background and Related Work

The difficulty of cycle counting has attracted considerable research effort over the years.
Counting the number of 𝑘-cycles with 𝑘 as an input parameter is NP-complete since it
includes the problem of finding a Hamiltonian cycle. However, efficient algorithms have been
developed to count 𝑘-cycles for 𝑘 ≤ 5. Notably, Alon et al. [3] developed algorithms for

1 A graph is 𝑑-degenerate if every subgraph has a vertex of degree at most 𝑑, and a graph has arboricity
𝛼 if the minimum number of spanning forests needed to cover all of the edges of the graph is 𝛼.

2 With high probability (w.h.p.) means that the probability is at least 1− 1/𝑛𝑐 for some constant 𝑐 > 0
for an input of size 𝑛.

https://github.com/ParAlg/gbbs/tree/master/benchmarks/CycleCounting
https://github.com/ParAlg/gbbs/tree/master/benchmarks/CycleCounting
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efficiently finding a 𝑘-cycle for general 𝑘, but these translate to efficient 𝑘-cycle counting
algorithms only for planar graphs where 𝑘 ≤ 5. For 𝑘 = 3, 4, Chiba and Nishizeki [15]
proposed algorithms that take 𝑂(𝑚𝛼) time. More recently, Bera et al. [7] analyzed the
subgraph counting problem for 𝑘 = 5 and gave an algorithm that takes 𝑂(𝑚𝛼3) time, and
the five-cycle counting part of the algorithm takes 𝑂(𝑚𝛼3) time. However, it is shown in the
same study that this result is unlikely to be extended to 𝑘 > 5, due to the Triangle Detection
Conjecture, which puts a lower bound of Ω(𝑚1+𝛾) time with 𝛾 > 0 on any triangle detection
algorithm on an input graph with 𝑚 edges [1]. If the conjecture holds, a reduction of the
triangle detection problem to the six-cycle counting problem implies that there cannot be a
𝑜(𝑓(𝛼)𝑚1+𝛾) time algorithm for six-cycle counting.

Until recently, because of the high computational power required, exact five-vertex
subgraph counting was often deemed impractical on graphs with more than a few million
edges. Most effort has focused on obtaining approximate counts or approximate graphlet
frequency distributions [46, 10, 36]. Hocevar and Demsar [24] developed Orca to count
subgraphs of up to size five and tested them on graphs with tens of thousands of vertices.
Pinar et al. [34] developed ESCAPE, which is the first package that aims to perform exact
counting of all five-vertex subgraphs on moderately large graphs. However, ESCAPE does
not exploit parallelism and is not optimized for cycle-counting. Kowalik [27] gave a serial
algorithm for five-cycle counting that takes 𝑂(𝑚𝛼2), the best known theoretical bound for
five-cycle counting, but does not provide an implementation. In Section 4, we describe
Kowalik’s and Pinar et al.’s five-cycle counting algorithms in more detail.

While there has not been prior work on parallel five-cycle counting algorithms, parallel
cycle counting algorithms for smaller cycles have been studied over the years. Specifically,
for the case of three-cycles, or triangles, there has been a significant amount of attention
over the past two decades (e.g., [40, 43, 33, 8], among many others).

Moreover, fast sequential algorithms for four-cycles have been studied extensively. For
bipartite graphs, four-cycles, also known as butterflies, are the smallest non-trivial subgraphs.
Chiba and Nishizeki’s [15] described a four-cycle counting algorithm that takes 𝑂(𝑚𝛼) work
by using a degree ordering of the graph. Subsequently, butterfly counting algorithms using
degree ordering and other orderings have also been designed [47, 44, 38, 48, 39].

There have been fewer studies on parallel four-cycle counting algorithms. The Para-
metrized Graphlet Decomposition package by Ahmed et al. [2] provides efficient parallel
implementations of exact counting of subgraphs of up to size four, including four-cycles.
Wang et al. [44] implement a distributed algorithm using MPI that partitions the vertices
across processors, where each processor sequentially counts the number of butterflies for
vertices in its partition. Shi and Shun [42] presented a framework for parallel butterfly
counting with several algorithms achieving 𝑂(𝑚𝛼) expected work and 𝑂(log 𝑚) span with
high probability. Wang et al. [45] describe a similar parallel butterfly counting algorithm,
with an additional cache optimization in their implementation.

3 Preliminaries

Graph Notation. The input to our algorithms is a simple, undirected, unweighted graph
𝐺(𝑉, 𝐸). The number of vertices is |𝑉 | = 𝑛 and the number of edges is |𝐸| = 𝑚. Vertices
are labeled 0, 1, . . . , 𝑛− 1. In our analysis, we assume that 𝑚 = Ω(𝑛). For a vertex 𝑣, we use
𝑁(𝑣) to denote the neighbors of 𝑣 and deg(𝑣) to denote the degree of v. When discussing
directed graphs, 𝑁→(𝑣) denotes 𝑣’s out-neighbors and 𝑁←(𝑣) denote the in-neighbors.

Furthermore, we use 𝑁𝑣(𝑢) (𝑁→𝑣 (𝑢) for directed graphs) to represent the neighbors of
vertex 𝑢 that are after 𝑣 given a non-increasing degree ordering. When vertices are relabeled
by non-increasing degree order, we can easily obtain 𝑁𝑣(𝑢) = 𝑁(𝑢) ∩ {𝑤 ∈ 𝑉 | 𝑤 > 𝑣}.

SEA 2021
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The arboricity of a graph 𝐺, denoted 𝛼(𝐺), is defined as the minimum number of
spanning forests needed to cover the graph. 𝛼(𝐺) is known to be upper-bounded by
𝑂(
√

𝑚). Due to the fact that graphs modeling the real world tend to be sparse, 𝛼(𝐺)
tends to be small for graphs that we are interested in processing. It is also known that∑︀

(𝑢,𝑣)∈𝐸 min(deg(𝑢), deg(𝑣)) = 𝑂(𝑚𝛼(𝐺)) [15]. Closely related to arboricity is the degen-
eracy of a graph 𝐺, 𝑑(𝐺), or the smallest 𝑘 such that every subgraph of 𝐺 contains a vertex
of degree at most 𝑘. It is known that 𝑑(𝐺) = Θ(𝛼(𝐺)) [32]. As such, our asymptotic bounds
can use 𝛼(𝐺) or 𝑑(𝐺) interchangeably. When it is unambiguous, we write the arboricity and
degeneracy of a graph as 𝛼 and 𝑑, respectively.

Graph Format. For the theoretical analysis, we assume the graphs are stored in hash tables
in the adjacency list format, to obtain constant time edge queries. In our implementations,
graphs are stored in Compressed Sparse Row (CSR) format, which is more compact and has
better cache locality.

The Work-Span Model. To analyze the complexity of our parallel algorithms, we use the
work-span model [26] with arbitrary forking. In this model, a computation is seen as a
series-parallel DAG. Each instruction is a vertex, and sequential executions in a thread are
composed in series and different children threads forked together are composed in parallel.
The work in a computation is the total number of vertices and the span is the length of the
longest path in the computation graph. The work of a sequential algorithm is the same as
its time. A work-efficient parallel algorithm has a work complexity matching the time of
the best sequential algorithm for the problem. For an algorithm with work 𝑊 and span 𝑆,
the running time on 𝑃 processors is upper bounded by 𝑊/𝑃 + 𝑆 [13]. Since the number of
processors in practice is modest, it is important to be work-efficient in addition to minimizing
the span of the computation.

Parallel Primitives. We use the following parallel primitives. A parallel for-loop (parfor)
with 𝑛 iterations that can be executed in parallel launches all of its iterations in 𝑂(𝑛) work
and 𝑂(1) span. Parallel integer sort sorts 𝑛 integers in the range [0, 𝑂(𝑛)] in 𝑂(𝑛) work
and 𝑂(log 𝑛) span w.h.p. [37]. We also use parallel hash tables, which support a batch of
𝑛 instructions in 𝑂(𝑛) work and 𝑂(log* 𝑛) span w.h.p. [22]. We assume atomic adds take
𝑂(1) work and span.

4 Five-Cycle Counting Algorithms

In this section, we present two new parallel algorithms for counting five-cycles. The first
algorithm is based on the serial algorithm by Kowalik [27]. Kowalik shows that the algorithm
achieves a time complexity of 𝑂(𝑚) on planar graphs, in which 𝛼 = 𝑂(1), or 𝑂(𝑚𝑑2) =
𝑂(𝑚𝛼2) on 𝑑-degenerate graphs. The second algorithm is based on the serial algorithm by
Pinar et al. in their ESCAPE framework for counting all 5-vertex subgraphs in a graph [34].
We show that both of the parallel algorithms that we design are provably work-efficient with
polylogarithmic span.

4.1 Preprocessing: Graph Orientation
Similar to many previous subgraph counting algorithms [7, 41], a key step in our algorithms is
a preprocessing step that orients the graph 𝐺, creating a directed acyclic graph 𝐺→ where the
out-degrees of vertices are upper-bounded. We use 𝑙-orientation to refer to an orientation
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where each vertex’s out-degree is bounded by 𝑙. Furthermore, orientations in our context are
always induced from a total ordering of the vertices, where directed edges point from vertices
lower in the ordering to vertices higher in the ordering. As such, the problem of orienting
the graph is reduced to the problem of finding an appropriate ordering of the vertices.

Degree Orientation. The core idea of orienting an undirected input graph based on ordering
the vertices by non-increasing degree to perform subgraph counting or listing is attributed
to Chiba and Nishizeki [15]. Using degree ordering, they proposed efficient triangle and
four-cycle counting algorithms based on this key result:

▶ Lemma 1 ([15]). For a graph 𝐺 = (𝑉, 𝐸),
∑︀

(𝑢,𝑣)∈𝐸 min{deg(𝑢), deg(𝑣)} ≤ 2𝛼𝑚.

This result allows us to bound the number of wedges in graph 𝐺 by 2𝑚𝛼, where a wedge is
defined as a triple (𝑣, 𝑤, 𝑢) where (𝑣, 𝑤), (𝑤, 𝑢) ∈ 𝐸, deg(𝑣) ≥ deg(𝑤) and deg(𝑣) ≥ deg(𝑢).
In Kowalik’s five-cycle algorithm, wedges are the building blocks of five-cycles, and we can
show that 𝑂(𝛼) work is done for each wedge. Combined with the 𝑂(𝑚𝛼) bound on the
number of wedges, this gives us the 𝑂(𝑚𝛼2) running time bound.

Arboricity Orientation. An arboricity orientation of a graph is one where the vertices’
out-degrees are upper-bounded by 𝑂(𝛼(𝐺)). An arboricity-oriented graph has slightly
different theoretical properties compared to a degree-oriented graph, but literature has shown
that in some algorithms arboricity orientation can achieve the same practical efficiency as
degree orientation [41]. We note that in Kowalik’s five-cycle counting algorithm as well as
our parallelization of the algorithm, both a degree ordering and an arboricity ordering are
required to achieve work-efficiency.

One way to obtain an arboricity orientation is by computing the degeneracy ordering
using a standard 𝑘-core decomposition algorithm [30, 6]. The algorithm repeatedly removes
the vertex with the lowest degree from the graph. When we direct edges using this orientation,
we obtain a DAG where each vertex’s out-degree is bounded by 𝑑(𝐺). While this algorithm
can be parallelized to be work-efficient, it does not attain polylogarithmic span; notably, the
problem is P-complete [4].

Since the parallel algorithm for exact degeneracy ordering has sub-optimal span, we use
approximate algorithms with polylogarithmic span. We test two such algorithms: Goodrich-
Pszona and Barenboim-Elkin. Both algorithms work by peeling low-degree vertices in
batches. Goodrich and Pszona originally designed the algorithm in the external-memory
model [23], while Barenboim and Elkin designed the algorithm for a distributed model [5].
Shi et al. adapted both algorithms for shared memory and showed that both compute an
𝑂(𝛼)-orientation in 𝑂(𝑚) work and 𝑂(log2 𝑛) span (one of which is deterministic and the
other of which is randomized) [41]. A different algorithm with the same (deterministic) work
and span bounds was described by Besta et al. [9].

4.2 Kowalik’s Algorithm
We present in Algorithm 1 our parallelization of Kowalik’s serial five-cycle counting al-
gorithm [27]. In this algorithm, vertices are sorted and processed in non-increasing degree
order. Each vertex is processed by counting all five-cycles with the vertex itself as the
lowest-ranked (i.e., highest-degree) vertex. After processing all vertices, each five-cycle is
counted exactly once and the counts are summed and outputted.

Recall that we use 𝑁𝑣(𝑢) (𝑁→𝑣 (𝑢) for directed graphs) to represent the neighbors of vertex
𝑢 that are after 𝑣 in the non-increasing degree ordering. Since the vertices are relabeled by
non-increasing degree order on line 3, we can easily obtain 𝑁𝑣(𝑢) = 𝑁(𝑢)∩ {𝑤 ∈ 𝑉 | 𝑤 > 𝑣}.
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Algorithm 1 Kowalik’s Five-Cycle Counting Algorithm Parallelized.

1: procedure COUNT-FIVE-CYCLES(𝐺 = (𝑉, 𝐸))
2: #𝑐 ← 0
3: Relabel vertices of 𝐺 such that 𝑑(0) ≥ 𝑑(1) ≥ · · · ≥ 𝑑(𝑛− 1)
4: Orient 𝐺 using arboricity orientation to produce 𝐺→

5: parfor 𝑣 ← 0 to 𝑛− 1 do
6: Initialize an empty parallel hash table 𝑈𝑣

7: parfor 𝑢 ∈ 𝑁𝑣(𝑣) do
8: parfor 𝑤 ∈ 𝑁𝑣(𝑢) do 𝑈𝑣[𝑤]← 𝑈𝑣[𝑤] + 1
9: parfor 𝑢 ∈ 𝑁𝑣(𝑣) do

10: Initialize an empty parallel hash table 𝑇𝑣,𝑢

11: parfor 𝑤 ∈ 𝑁𝑣(𝑢) do
12: 𝑇𝑣,𝑢[𝑤]← 1
13: parfor 𝑤 ∈ 𝑁𝑣(𝑢) do
14: parfor 𝑥 ∈ 𝑁→𝑣 (𝑤) do
15: if 𝑥 ̸= 𝑢 then
16: if 𝑤 ∈ 𝑁→(𝑣) or 𝑣 ∈ 𝑁→(𝑤) then
17: #𝑐 ← #𝑐 + 𝑈𝑣[𝑥]− 𝑇𝑣,𝑢[𝑥]− 1
18: else
19: #𝑐 ← #𝑐 + 𝑈𝑣[𝑥]− 𝑇𝑣,𝑢[𝑥]
20: return #𝑐

We now focus on the iteration 𝑣 of the outer for-loop. An example is shown in Figure 1.
We note that for each 𝑣, we consider only vertices ranked higher than 𝑣 to complete five-cycles
containing 𝑣. Lines 7–8 count in a parallel hash table 𝑈𝑣 all wedges, where 𝑣 is one of the
endpoints and 𝑣 is the lowest-ranked vertex in the wedge. Then, lines 11–12 store in a parallel
hash table 𝑇𝑣,𝑢 all wedges where 𝑣 is one of the endpoints, 𝑣 is the lowest-ranked vertex in
the wedge, and 𝑢 is the center. Both hash tables are indexed on 𝑤, the other endpoint of the
wedge.

On each iteration of the loop in line 13, the algorithm counts all five-cycles that contain
the wedge 𝑣 𝑢 𝑤. To accomplish this, the algorithm iterates through each neighbor
𝑥 of 𝑤 in 𝐺→, and considers the number of wedges that 𝑥 shares with 𝑣, which is stored
in 𝑈𝑣[𝑥]. Note that three vertices of the cycle are given (𝑣, 𝑢, and 𝑤), so the algorithm
must ensure that the two vertices used to complete the cycle do not include these existing
vertices. Line 15 ensures that 𝑥 ̸= 𝑢 in the cycle; note that 𝑥 ̸= 𝑤 because the graph is
assumed to not contain self-loops, and 𝑥 ̸= 𝑣 by definition of 𝑁→𝑣 . Lines 16–19 check if 𝑣

and 𝑤 are neighbors; if so, then the number of wedges ending in 𝑥 includes the wedge 𝑣 𝑤

𝑥, which does not properly complete a five-cycle. In this case, there is one fewer five-cycle
completed by the wedges ending in 𝑥, and so we subtract one on line 17. Finally, note that if
there exists the wedge 𝑣 𝑢 𝑥, then this similarly does not properly complete a five-cycle,
so we subtract 𝑇𝑣,𝑢[𝑥], which stores precisely this wedge. We assume that indexing an entry
that does not exist in a hash table returns a value of 0.

As every thread operates on the variable #𝑐, we use atomic add for all of these operations,
which takes 𝑂(1) work. In practice, we use thread-local variables to keep the count and
sum them in the end to avoid heavy contention. We now show that the parallel algorithm is
work-efficient and has polylogarithmic span.

▶ Theorem 2. Algorithm 1 can be performed in 𝑂(𝑚𝛼2) work and 𝑂(log2 𝑛) span w.h.p.,
and 𝑂(𝑚𝛼) space on a graph with 𝑚 edges and arboricity 𝛼.

Proof. For line 3, we sort 𝑛 integers in the range [0, 𝑛− 1], which can be done in 𝑂(𝑛) work
and 𝑂(log 𝑛) span w.h.p. using parallel integer sorting [37]. As discussed in Section 4.1, line
4 can be implemented in 𝑂(𝑚) work and 𝑂(log2 𝑛) span [41]. As a result, the for-loops on
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Example graph 𝐺.
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𝐺→ under degree orientation.
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(a) 𝑈0 = [0, 1, 1, 2, 1, 1]
#𝑐 += 2 - 1.
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(b) 𝑈0 = [0, 1, 1, 2, 1, 1]
#𝑐 += 1.
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(c) 𝑈0 = [0, 0, 2, 1, 1, 2]
#𝑐 += 1 - 1.
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(d) 𝑈0 = [0, 1, 1, 2, 0, 2]
#𝑐 += 1 - 1.
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(e) 𝑈0 = [0, 1, 2, 1, 1, 1]
#𝑐 += 1.
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(f) 𝑈1 = [0, 0, 0, 0, 1, 0]
#𝑐 += 1.

Figure 1 This figure outlines steps in our parallelization of Kowalik’s five-cycle counting algorithm
where #𝑐 is updated (Algorithm 1). Each subfigure considers a different {𝑢, 𝑣, 𝑤, 𝑥} from lines
13–14, and the corresponding 𝑈𝑣 is displayed for each subfigure. For simplicity, the 𝑈𝑖 hash tables
are depicted as arrays, with the appropriate wedge counts stored at the index on the corresponding
endpoint, and the updates to the parallel hash tables 𝑇𝑣,𝑢 in lines 11–12 of Algorithm 1 are shown
as subtracted directly from the corresponding 𝑈𝑣 for a fixed 𝑢 from line 9.
The vertices have already been relabeled by non-increasing degree and the entries in each 𝑈𝑣 have
already been computed (lines 10–12). The vertex 𝑣 that we are considering on line 5 is colored
in red. The edges colored in blue form wedges 𝑣 𝑢 𝑤, and the direction of those edges is
irrelevant. The red edges represent the out-edge 𝑤 → 𝑥 on line 14. When 𝑤 and 𝑣 are neighbors
(the edge is colored grey), the condition checked on line 16 returns true, and the subsequent line in
each algorithm is executed (sub-figures (a), (c), and (d)). Otherwise, line 19 is executed (sub-figures
(b), (e), and (f)). The final value of #𝑐 is 4.

lines 7 and 9 iterating over 𝑢 ∈ 𝑁𝑣(𝑣) take at most min(deg(𝑢), deg(𝑣)) iterations, and by
Lemma 1, the total number of times we iterate through 𝑤 ∈ 𝑁𝑣(𝑢) on each of lines 8, 11,
and 13 is at most 2𝑚𝛼.

Since parallel hash tables can perform a batch of 𝑘 operations in 𝑂(𝑘) work and 𝑂(log* 𝑘)
span w.h.p., the time complexities of lines 8 and 12 are given by 𝑂(𝑚𝛼) work and 𝑂(log* 𝑛)
span w.h.p. Then, the for-loop of line 14 has at most 𝑂(𝛼) iterations because of the 𝑂(𝛼)-
orientation of the graph. In total, lines 15–19 are executed at most 𝑂(𝛼) · 2𝑚𝛼 = 𝑂(𝑚𝛼2)
times, and again due to the parallel hash tables, the time complexity is given by 𝑂(𝑚𝛼2)
work and 𝑂(log* 𝑛) span w.h.p. In all, the total time complexity is given by 𝑂(𝑚𝛼2) work
and 𝑂(log2 𝑛) span w.h.p.

Finally, this algorithm uses 𝑂(𝑚𝛼) space. Based on Lemma 1, the total number of keys
stored over all 𝑈𝑣’s is upper-bounded by 𝑂(𝑚𝛼), as is the number of keys stored over all
𝑇𝑣,𝑢’s (over all pairs (𝑣, 𝑢)). The parallel hash table’s space usage is linear in the number of
keys [22]. Hence, the total space usage is 𝑂(𝑚𝛼). ◀
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Algorithm 2 Five-Cycle Counting in ESCAPE Parallelized.

1: procedure Count-Five-Cycles(𝐺 = (𝑉, 𝐸))
2: #𝑐 ← 0
3: Orient 𝐺 using arboricity orientation to produce 𝐺→

4: parfor 𝑣 ← 0 to 𝑛− 1 do
5: Initialize an empty parallel hash table 𝑈𝑣

6: parfor 𝑤 ∈ 𝑁←(𝑣) do
7: parfor 𝑢 ∈ 𝑁(𝑤) do
8: 𝑈𝑣[𝑢]← 𝑈𝑣[𝑢] + 1
9: parfor 𝑤 ∈ 𝑁→(𝑣) do

10: parfor 𝑢 ∈ 𝑁→(𝑤) do
11: 𝑈𝑣[𝑢]← 𝑈𝑣[𝑢] + 1
12: parfor 𝑢 ∈ 𝑁←(𝑣) do
13: parfor 𝑤 ∈ 𝑁←(𝑢) do
14: parfor 𝑥 ∈ 𝑁→(𝑤) do
15: if 𝑥 ̸= 𝑣 and 𝑥 ̸= 𝑢 then
16: #𝑐 ← #𝑐 + 𝑈𝑣[𝑥]
17: if 𝑤 ∈ 𝑁(𝑣) then
18: #𝑐 ← #𝑐 − 1
19: if 𝑥 ∈ 𝑁(𝑢) then
20: #𝑐 ← #𝑐 − 1
21: return #𝑐

4.3 ESCAPE Algorithm
Another serial five-cycle counting algorithm is given by Pinar et al. as part of ESCAPE,
which counts all 5-vertex subgraphs in a graph serially [34].

The first step of the ESCAPE five-cycle counting algorithm is to orient the graph. The
ESCAPE framework uses degree orientation and achieves a time complexity of 𝑂(𝑚2). We
note that, if instead an arboricity orientation is used, the five-cycle counting algorithm
achieves an improved time complexity of 𝑂(𝑚𝛼2). We include this modification in our
parallelization of the ESCAPE five-cycle counting algorithm to achieve work-efficient bounds.
The proof of the serial time complexity with the arboricity orientation follows directly from
the proof of our parallel algorithm.

We present in Algorithm 2 our parallelization of the algorithm from ESCAPE, and an
example is shown in Figure 2. We use 𝑢 ≺ 𝑣 to indicate that 𝑢 precedes 𝑣 in the ordering
that produced the orientation, and so an edge from 𝑢 to 𝑣 exists in the directed graph 𝐺→ if
and only if 𝑢 ≺ 𝑣.

After orienting the graph using an arboricity orientation (line 3), for each vertex 𝑣 (line
4), the algorithm counts all out-wedges and inout-wedges (see Figure 3). We denote the
number of out-wedges with endpoints 𝑣 and 𝑢 by 𝑊++(𝑣, 𝑢), and the number of inout-wedges
with endpoints 𝑣 and 𝑢, starting with a directed edge out of 𝑣, by 𝑊+−(𝑣, 𝑢). For each 𝑣,
the algorithm computes 𝑊++(𝑢, 𝑣) + 𝑊+−(𝑢, 𝑣) on lines 6–8 and 𝑊+−(𝑣, 𝑢) on lines 9–11,
and stores these counts in a parallel hash table 𝑈𝑣.

Figure 4 shows all possible orientations of acyclically directed five-cycles. We iterate over
the 3-path shown in Figure 4 from vertex 𝑣 to vertex 𝑥 (lines 12–15), each of which can be
completed by either an inout-wedge or an out-wedge with endpoints 𝑣 and 𝑥, assuming 𝑥 ̸= 𝑣

and 𝑥 ̸= 𝑢. Now, any orientation of a five-cycle has one of the three configurations shown
in Figure 4, where exactly one of the vertices can be assigned to be 𝑣. Thus, every 3-path
between a pair (𝑣, 𝑥) contributes 𝑊+−(𝑣, 𝑥) + 𝑊++(𝑣, 𝑥) + 𝑊+−(𝑥, 𝑣) (which is stored in
𝑈 from lines 6–11) to the five-cycle count. However, this over-counts five-cycles since the
wedge and the 3-path may overlap. Lines 16–20 deal with the over-counting when adding
the number of wedges to the total count.
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Example graph 𝐺.
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𝐺→ under degree orientation.
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(a) 𝑈0 = [0, 1, 2, 2, 1, 2]
#𝑐 += 2 - 1.
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(b) 𝑈0 = [0, 1, 2, 2, 1, 2]
#𝑐 += 1.
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(c) 𝑈0 = [0, 1, 2, 2, 1, 2]
#𝑐 += 1 - 1.
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(d) 𝑈0 = [0, 1, 2, 2, 1, 2]
#𝑐 += 1.
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(e) 𝑈4 = [1, 1, 1, 0, 0, 0]
#𝑐 += 1.
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(f) 𝑈4 = [1, 1, 1, 0, 0, 0]
#𝑐 += 1 - 1.

Figure 2 This figure outlines steps in the ESCAPE five-cycle counting algorithm where #𝑐 is
updated (Algorithm 2). Each subfigure considers a different {𝑢, 𝑣, 𝑤, 𝑥} from lines 12–15, and the
corresponding 𝑈𝑣 is displayed for each subfigure. For simplicity, the 𝑈𝑖 hash tables are depicted as
arrays, with the appropriate wedge counts stored at the index on the corresponding endpoint.
Note that the entries in each 𝑈𝑣 have already been computed (lines 6–11). The vertex 𝑣 that we are
considering on line 4 is colored in red. The red edges represent the directed 3-paths 𝑣 ← 𝑢← 𝑤 → 𝑥

found on lines 12–15. Lines 17 and 19 check whether 𝑣 and 𝑤 or 𝑢 and 𝑥 are neighbors, respectively.
When either of the conditions holds, the relevant edge is colored grey. Each grey edge subtracts one
from the five-cycle count. Note that in sub-figures (a) and (c), the condition that 𝑣 is adjacent to 𝑤

from line 17 holds, and in sub-figure (f), the condition that 𝑢 is adjacent to 𝑥 from line 19 holds. In
sub-figures (b), (d), and (e), neither conditions hold, and therefore 1 is not subtracted from the final
count. The final value of #𝑐 is 4.

u v u v

Figure 3 An inout-wedge (left) and an out-
wedge (right).

v x

u w

v x

u w

v x

u w

Figure 4 All three possible orientations of
directed five-cycles. All three forms have the
component 𝑣 ← 𝑢 ← 𝑤 → 𝑥, which is a 3-
path between 𝑣 and 𝑥. They are completed
by an inout-wedge from 𝑥 to 𝑣, an out-wedge
between 𝑣 and 𝑥, and an inout-wedge from 𝑣 to
𝑥, respectively.

In more detail, Line 16 first adds 𝑈𝑣[𝑥] to the count (again, assume that indexing an entry
that does not exist in a hash table returns a value of 0). Line 17 checks if 𝑤 is adjacent to 𝑣;
if so, depending on the direction of the edge between 𝑤 and 𝑣, there is either an out-wedge
or an inout-wedge on 𝑣, 𝑤, and 𝑥, that does not complete a five-cycle with the 3-path. Line
18 subtracts the five-cycle counted for this case. Similarly, line 19 checks if 𝑥 is adjacent to
𝑢, and if so, there is either an out-wedge or an inout-wedge on 𝑣, 𝑢, and 𝑥, that does not
complete a five-cycle; line 20 corrects this.
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Similar to the parallelization of Kowalik’s algorithm, in theory we use atomic adds for all
of the increments on the #𝑐 variable, and in practice we use thread-local variables.

▶ Theorem 3. Algorithm 2 can be performed in 𝑂(𝑚𝛼2) work and 𝑂(log2 𝑛) span w.h.p.,
and 𝑂(𝑚𝛼) space on a graph with 𝑚 edges and arboricity 𝛼.

Proof. As discussed in Section 4.1, line 3 can be implemented in 𝑂(𝑚) work and 𝑂(log2 𝑛)
span [41]. Lines 6–11 go through all inout-wedges and out-wedges where 𝑣 is an endpoint.
Because of the arboricity orientation, there are at most 𝑚𝛼 inout-wedges and out-wedges.
Each wedge is counted at most twice, and so lines 6–11 incur 𝑂(𝑚𝛼) hash table operations,
which takes 𝑂(𝑚𝛼) work and 𝑂(log* 𝑛) span w.h.p.

There are 𝑂(𝑚𝛼2) 3-paths (i.e., 𝑣 ← 𝑢← 𝑤 → 𝑥) and each is encountered exactly once
in the triply-nested for-loop (lines 12–20). Again, by using an arboricity orientation, the
algorithm executes lines 15–20 for at most 𝑂(𝑚𝛼2) times, which due to the hash table
operations, takes 𝑂(𝑚𝛼2) work and 𝑂(log* 𝑛) span w.h.p.

Overall, the algorithm takes 𝑂(𝑚𝛼2) work and 𝑂(log2 𝑛) span w.h.p.
The parallel hash tables and the space to store the accumulated cycle counts account for

all of the additional space usage. Since each wedge results in at most two additional keys in
the hash tables, the number of keys in all of the hash tables 𝑈𝑖 is upper-bounded by twice
the total number of out-wedges and inout-wedges. For the arboricity-oriented graph, there
are 𝑂(𝑚𝛼) out-wedges and 𝑂(𝑚𝛼) inout-wedges, and so the number of keys across all hash
tables is bounded by 𝑂(𝑚𝛼). Thus, the algorithm takes 𝑂(𝑚𝛼) space. ◀

4.4 Implementation
We implement the serial and parallel versions of Kowalik’s algorithm and Pinar et al.’s
algorithm using the Graph Based Benchmark Suite framework (GBBS) [16, 17]. GBBS
provides many utilities for parallel algorithms, including sorting, parallel data structures, and
implementations of the arboricity ordering algorithms mentioned above. In GBBS, graphs are
represented in compressed sparse row (CSR) format. The compact representation improves
memory locality, but this format does not allow us to check edge existence in 𝑂(1) work,
which is an operation required by both five-cycle counting algorithms. Using a separate data
structure to store edges adversely affects locality, and so to improve performance, we sort
the neighbor lists in the preprocessing step and use binary search to locate neighbors.

In our parallel implementation, we only parallelize the outer for-loop for each algorithm
since there is sufficient parallelism provided by the outer for-loop alone. For Kowalik’s
algorithm, instead of using parallel integer sort, we use a cache-efficient implementation
of parallel sample sort [11] provided by GBBS to sort the vertices by degree. We also use
vertex-indexed size-𝑛 arrays instead of parallel hash tables for 𝑈𝑖 and 𝑇𝑖,𝑗 . While hash tables
have lower space usage for sparse graphs, they tend to have worse cache locality and are
slower in practice. We introduce further practical optimizations below.

Thread-local Data Structures. As we parallelize the outer for-loop, the arrays 𝑈𝑖 in
both algorithms must be allocated per iteration. We optimize this allocation by using the
parallel_for_alloc construct in GBBS, which allocates one array per thread and reuses
this space over iterations. Each iteration uses the array as a local array, and so this incurs
no synchronization overhead. With this optimization, the algorithm only requires 𝑂(𝑃𝑛)
space, where 𝑃 is the number of processors.

Fast Reset. Additionally, the thread-local arrays must be reset after each iteration of
the outer for-loop. Depending on the structure of the graph, the array can be sparse,
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and naively resetting the entire array incurs 𝑂(𝑛2) extra work, which is costly. We use a
separate thread-local array to record the non-zero entries and reset only those entries after an
iteration of the outer for-loop. The sparser the graph, the more effective this optimization is.
This optimization at most doubles the space requirement for the algorithm, but drastically
improves the running time by avoiding unnecessary writes.

Work Scheduling. The naive parallelization of the five-cycle counting algorithms blocks a
fixed number of vertices together and processes them in series. For our experiments, we use
a block size of 16, which we found to give the best performance in this setting. However,
due to the nature of the algorithm, the amount of work per vertex is not uniform. This is
particularly true for Kowalik’s algorithm, which processes vertices in non-increasing degree
order and deletes a vertex after processing it. The number of five-cycles that can be counted
under a given vertex 𝑣 in the outermost loop falls off rapidly with the vertex’s degree rank.
In our work scheduling optimization, we block vertices together into groups that require
similar amounts of work by estimating the work required for each vertex. We use the sum of
the degrees of a vertex’s neighbors as the estimator. That is, for each vertex 𝑣, we estimate
the amount of work done on the vertex to be

∑︀
𝑤∈𝑁(𝑣) deg(𝑤).

5 Experiments

Environment. We run our experiments on a c5.18xlarge AWS EC2 instance, which is a
dual-processor system with 18 cores per processor (2-way hyper-threading, 3.00GHz Intel
Xeon(R) Platinum 8124M processors), and 144 GiB of main memory. We use Cilk Plus for
parallelism [28, 12]. We use the g++ compiler (version 8.2.1) with the -O3 flag.

We test the performance of our two parallel five-cycle counting algorithms. Our parallel
implementations use all of the optimizations described in Section 4.4, except that we test
the performance with and without the work scheduling optimization. We compare the
performance of the parallel implementations against our implementations of Kowalik’s
algorithm and the ESCAPE algorithm. We also tested the performance of the serial five-cycle
counting algorithm in the ESCAPE package, the fastest known implementation of five-cycle
counting. This algorithm is embedded inside the ESCAPE code for counting all five-vertex
patterns, and so we obtained timings by running only the five-cycle counting portion of the
code. We found our serial ESCAPE implementation to be 1.1–2.95x faster than the one
provided in the ESCAPE package, and hence present only our running times in the tables.

We also test the effect of using different arboricity ordering algorithms. Besides Goodrich-
Pszona, Barenboim-Elkin, and 𝑘-core, we also tested non-decreasing degree ordering as an
approximation of degeneracy ordering. Intuitively, it limits the out-degree of the graph by
directing edges from lower-degree vertices to higher-degree neighbors.

We perform these tests on a number of real-world graphs from the Stanford Network
Analysis Platform [29]. Table 1 describes the properties of these graphs. All graphs are
simple, unweighted, and undirected.

Serial Five-cycle Counting. Table 2 lists the running time of the two of serial five-cycle
counting algorithms. Our serial Kowalik implementation always outperforms our serial
ESCAPE implementation, and the difference in running times between the ESCAPE algorithm
and Kowalik’s algorithm grows as the graph size grows. The serial Kowalik algorithm achieves
between 6.37–14.77x speed-up over our serial ESCAPE implementation, and between 7–38.91x
speed-up over the original ESCAPE implementation.
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Table 1 Relevant statistics of our input graphs.

Dataset |𝑉 | |𝐸| # 5-cycles
email-Eu-Core (email) 1005 32128 245,585,096
com-DBLP (dblp) 425957 2.10× 106 3,440,276,253
com-YouTube (youtube) 1.16× 106 5.98× 106 34,643,647,544
com-LiveJournal (lj) 4.03× 106 6.94× 107 6,668,633,603,006
com-Orkut (orkut) 3.27× 106 2.34× 108 42,499,585,526,270
com-Friendster (friendster) 1.25× 108 3.61× 109 96,281,214,210,322

Table 2 Running times (seconds) of the two serial implementations and the two parallel five-cycle
counting implementations without the work scheduling optimization. All running times include both
preprocessing (graph orienting) and five-cycle counting time. We stop each experiment after 5.5
hours, and “TL” indicates that the time limit was exceeded. For the serial algorithms, 𝑇𝐸 is our
implementation of the ESCAPE algorithm with arboricity orientation, and 𝑇𝐾 is our implementation
of the serial Kowalik’s algorithm. The serial runtimes are measured using the Goodrich-Pszona
degeneracy ordering algorithm. For the parallel algorithms, we use superscripts to indicate the
orientation that achieved the best running time. g refers to Goodrich-Pszona, b refers to Barenboim-
Elkin, and k refers to 𝑘-core orientation. Note that degree orientation is never the fastest orientation.
For the parallel algorithms, we list the runtimes obtained on a single thread (𝑇1), 36 cores without
hyper-threading (𝑇36), and 36 cores with hyper-threading (𝑇36ℎ). We also tested all implementations
on friendster, but they all exceeded the time limit.

Serial Runtimes Parallel Kowalik Algorithm Parallel ESCAPE Algorithm
Running times (s) Speedup Running times (s) Speedup

𝑇𝐸 𝑇𝐾 𝑇1 𝑇36 𝑇36ℎ
𝑇1

𝑇36ℎ
𝑇1 𝑇36 𝑇36ℎ

𝑇1
𝑇36ℎ

email 0.36 0.026 0.027b 0.0027g 0.0029b 9.3 0.376b 0.017g 0.0177g 21.2
dblp 2.93 0.46 0.48g 0.046b 0.046g 10.4 3.24g 0.34k 0.277k 11.7
youtube 40.70 4.73 4.80b 1.73g 1.69g 2.8 43.94g 14.5g 9.96g 4.4
lj 2579.34 174.60 174.60b 29.0g 25.72g 6.8 2582.30g 426.38g 308.41g 8.4
orkut 38K 2878.38 2867.07b 504.61b 487.4b 5.9 TL 8192.33g 6384.24g –

Parallel Five-cycle Counting. Table 2 shows the best performance with the Kowalik and
ESCAPE algorithms with 1 thread, 36 cores without hyper-threading, and 72 hyper-threads,
without the work scheduling optimization. We see that the algorithms achieve decent speed-
up without the work scheduling optimization. The parallel speed-up plateaus from 36 to 72
hyper-threads, especially for the parallelization of Kowalik’s algorithm. The speed-up for the
Kowalik algorithm is usually lower since, due to its degree ordering, it does not distribute
work evenly across vertices, but rather concentrates the work on high-degree vertices. Our
naive parallel algorithm groups a fixed number of vertices together regardless of whether
they are high- or low-degree, resulting in unbalanced work distribution across workers.

From both the serial and parallel running times, we observe that the ESCAPE algorithm,
with all of the same optimizations as the parallel Kowalik’s algorithm, generally has about
a 10x slowdown compared to Kowalik’s algorithm. We attribute this difference to the
discrepancy in the number of edge queries the two algorithms must perform. Since we store
graphs in CSR format, each edge query requires a binary search. In Kowalik’s algorithm,
an edge query is performed for every (𝑣, 𝑤)-pair, and it can be performed just before the
for-loop with 𝑥, so there only needs to be 𝑂(𝑚𝛼) binary searches. In the ESCAPE algorithm,
(𝑥, 𝑢) needs to be queried 𝑂(𝑚𝛼2) times. Table 3 shows that the ESCAPE algorithm does
significantly more binary searches than Kowalik’s algorithm.
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Table 3 These are the number of binary searches each algorithm performed for each dataset, and
the ratio of the number of binary searches in the ESCAPE algorithm to Kowalik’s algorithm.

#binary searches
Dataset Kowalik ESCAPE ESCAPE/Kowalik

email 5.15× 105 2.98× 107 58
dblp 8.41× 106 2.32× 108 28
youtube 6.28× 107 2.96× 109 47
lj 1.39× 109 1.72× 1011 124
orkut 1.25× 1010 3.44× 1012 273

Table 4 Single-thread (𝑇1) and 36-core with hyper-threading (𝑇36ℎ) running times (seconds) of
the parallel Kowalik and ESCAPE algorithms with the work scheduling optimization, and their
parallel speed-ups. All running times include both preprocessing (graph orienting) and five-cycle
counting time. We stop each experiment after 5.5 hours, and “TL” indicates that the time limit
was exceeded. The superscripts indicate the orientation that achieved the best runtime. g refers to
Goodrich-Pszona, b refers to Barenboim-Elkin, and ∘ refers to degree orientation. In the appendix,
we present the data for all orientations.

Parallel Kowalik Algorithm Parallel ESCAPE Algorithm
𝑇1 𝑇36ℎ

𝑇1
𝑇36ℎ

𝑇1 𝑇36ℎ
𝑇1

𝑇36ℎ

email 0.0265b 0.00252∘ 10.5 0.357b 0.0165b 21.6
dblp 0.46g 0.0143g 32.2 3.07b 0.0866g 35.5

youtube 4.75b 0.338b 14.1 43.32g 1.42g 30.0
lj 171.92b 5.85g 29.4 2510.97b 58.75g 42.7

orkut 2858.18b 136.98g 20.9 TL 1269.1b –
friendster TL 8417.31g – TL TL –

Compared to the state-of-the-art serial five-cycle counting implementation provided in
the ESCAPE package, without the work scheduling optimization, our parallel Kowalik imple-
mentation achieves a speed-up of 33.78–229.79x, and our parallel ESCAPE implementation
achieves a speed-up of 5.73–23.16x.

Work Scheduling Optimization. We present the best running times of the parallel Kowalik
and ESCAPE algorithms using work scheduling in Table 4. Compared to Table 2, we see
that the work scheduling optimization is effective on both parallel algorithms. It allows
five-cycle counting to be performed on the Friendster graph in under 2.5 hours using the
parallel Kowalik algorithm. Figure 5 shows the relative running time of the parallel Kowalik
algorithm with 72 hyper-threads with different arboricity orientation subroutines, including
Goodrich-Pszona, Barenboim-Elkin, degree ordering, and 𝑘-core orientation, with and without
the work scheduling optimization. The comparison shows that work scheduling significantly
improves the running time and scaling of the parallel Kowalik algorithm.

Throughout our tests, we use the sum of neighbors’ degrees as the estimator of the
amount of work. Other work estimators were tested, including a simple out-degree count
and the two-hop neighbor out-degree sum, but did not result in improved performance.

Compared to the state-of-the-art serial five-cycle counting implementation provided in
the ESCAPE package, using the work scheduling optimization, our parallel Kowalik imple-
mentation achieves a speed-up of 162.70–818.12x, and our parallel ESCAPE implementation
achieves a speed-up of 23.56–72.13x. Compared to our best serial baselines, our parallel
Kowalik implementation achieves a speed-up of 10.5–32.2x.
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Figure 5 Running time of the parallel Kowalik algorithm vs. number of threads. “36h” is 36 cores
with hyper-threading. Dashed lines indicate that the work scheduling optimization is disabled and
solid lines indicate that the work scheduling optimization is enabled. The lines for Goodrich-Pszona,
Barenboim-Elkin, and degree ordering overlap each other for the most part.

Figure 6 Five-cycle counting times, excluding preprocessing steps like relabeling and orienting the
graph, under different orientation schemes for each of the graphs, using 36 cores with hyper-threading.

Graph Orientation. Figure 6 compares the performance of our parallel Kowalik implement-
ation using different orientation schemes. Goodrich-Pszona and Barenboim-Elkin have very
similar performance. 𝑘-core performs slightly worse on all graphs except for the small email
graph. From our experiments, degree ordering results in running times that are comparable
to both Goodrich-Pszona and Barenboim-Elkin.

While Goodrich-Pszona, Barenboim-Elkin, and 𝑘-core produce arboricity orderings, we
may want to use degree ordering as it is much more efficient to compute and can compensate
for the potentially worse counting time. Figure 7 shows the proportion of time spent on
preprocessing (𝑇𝑝) versus counting (𝑇𝑐) on different orientation methods on three of the
graphs. As the graph size grows, the preprocessing time takes up a smaller fraction of the
total running time and becomes negligible in the case of the orkut graph. However, for
smaller graphs, degree orientation has a clear advantage, because it takes much less time to
compute while allowing for similar performance in the counting step. 𝑘-core ordering does
not perform well when considering the times for both preprocessing and counting.



L. R. Huang, J. Shi, and J. Shun 2:15

Figure 7 Breakdown of time spent on preprocessing (𝑇𝑝) vs. counting (𝑇𝑐) for different orientation
subroutines, using 36 cores with hyper-threading. G-P is Goodrich-Pszona; B-E is Barenboim-Elkin.
For the orkut graph, the time spent on preprocessing is not visible.

6 Conclusion

We designed the first theoretically work-efficient parallel five-cycle counting algorithms with
polylogarithmic span. On 36 cores, our implementations outperform the fastest existing
serial implementation by up to 818x, and achieve self-relative speed-ups of 10–46x. Designing
parallel algorithms for counting larger cycles is interesting for future work, although such
algorithms are likely to require super-linear work, even for low-arboricity graphs [7].
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A Appendix

We present in Table 5 the running times of the parallelized Kowalik’s algorithm and the
ESCAPE algorithm using the work scheduling optimization for the different orientations
described.

Table 5 Single-thread (𝑇1) and 36-core with hyper-threading (𝑇36ℎ) running times (seconds) of
the parallel Kowalik and ESCAPE algorithms with the work scheduling optimization using all four
orientations. All running times include both preprocessing (graph orienting) and five-cycle counting
time. We stop each experiment after 5.5 hours, and “TL” indicates that the time limit was exceeded.
The bold values mark the best serial and parallel runtimes for each of Kowalik and ESCAPE, out of
the four orientations, which are used in Table 4.

(a) Goodrich-Pszona.

Kowalik ESCAPE
𝑇1 𝑇36ℎ

𝑇1
𝑇36ℎ

𝑇1 𝑇36ℎ
𝑇1

𝑇36ℎ

email 0.0267 0.00289 9.3 0.396 0.0174 22.7
dblp 0.459 0.0143 32.2 3.17 0.0866 36.6

youtube 4.81 0.361 13.3 43.3 1.42 30.6
lj 174.40 5.85 29.8 2546.95 58.75 43.4

orkut 2867.78 136.98 20.9 TL 1552.70 -

(b) Barenboim-Elkin.

Kowalik ESCAPE
𝑇1 𝑇36ℎ

𝑇1
𝑇36ℎ

𝑇1 𝑇36ℎ
𝑇1

𝑇36ℎ

0.0265 0.00294 9.0 0.357 0.0165 21.6
0.465 0.0147 31.6 3.07 0.0992 31.0
4.75 0.338 14.0 48.05 1.43 33.6

171.92 5.95 28.9 2510.97 59.03 42.5
2858.18 139.87 20.4 TL 1269.07 -

(c) Degree.

Kowalik ESCAPE
𝑇1 𝑇36ℎ

𝑇1
𝑇36ℎ

𝑇1 𝑇36ℎ
𝑇1

𝑇36ℎ

email 0.0276 0.00252 10.9 1.49 0.0403 37.0
dblp 0.472 0.0144 32.7 10.71 0.773 13.9

youtube 4.79 0.344 13.9 2177.52 59.61 36.5
lj 178.02 5.96 29.9 16651.40 417.00 39.9

orkut 2949.47 139.37 21.2 TL 16129.4 -

(d) K-Core.

Kowalik ESCAPE
𝑇1 𝑇36ℎ

𝑇1
𝑇36ℎ

𝑇1 𝑇36ℎ
𝑇1

𝑇36ℎ

0.0278 0.00304 9.2 0.675 0.0245 27.6
0.473 0.0161 29.3 7.80 0.240 32.4
5.84 0.531 11.0 922.19 23.62 39.0

198.16 8.06 24.6 11151.50 309.71 36.0
3100.79 147.83 21.0 TL 7113.44 -
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