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Abstract
We study exact, efficient and practical algorithms for route planning in large road networks. Routing
applications often require integrating the current traffic situation, planning ahead with traffic
predictions for the future, respecting forbidden turns, and many other features depending on the
exact application. While Dijkstra’s algorithm can be used to solve these problems, it is too slow for
many applications. A* is a classical approach to accelerate Dijkstra’s algorithm. A* can support
many extended scenarios without much additional implementation complexity. However, A*’s
performance depends on the availability of a good heuristic that estimates distances. Computing
tight distance estimates is a challenge on its own. On road networks, shortest paths can also be
quickly computed using hierarchical speedup techniques. They achieve speed and exactness but
sacrifice A*’s flexibility. Extending them to certain practical applications can be hard. In this paper,
we present an algorithm to efficiently extract distance estimates for A* from Contraction Hierarchies
(CH), a hierarchical technique. We call our heuristic CH-Potentials. Our approach allows decoupling
the supported extensions from the hierarchical speed-up technique. Additionally, we describe A*
optimizations to accelerate the processing of low degree nodes, which often occur in road networks.

2012 ACM Subject Classification Theory of computation → Shortest paths; Mathematics of
computing → Graph algorithms; Applied computing → Transportation

Keywords and phrases route planning, shortest paths, realistic road networks

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.6

Supplementary Material Software (Source Code): https://github.com/kit-algo/ch_potentials
archived at swh:1:dir:816552e5789f95afc8d6a2afe5b3dc40de537165

1 Introduction

The past decade has seen a plethora of research on route planning in large street networks [1].
Routing a user through a road network can be formalized as the shortest path problem in
weighted graphs. Nodes represent intersections. Roads are modeled using edges. Edges are
weighted by their traversal times. The problem can be solved with Dijkstra’s algorithm [20].
Unfortunately, on continental sized networks, it is too slow for many applications. Thus,
speed-up techniques have been developed. One popular example are Contraction Hierarch-
ies (CH) [25]. They have been used successfully in many real world applications. A CH
exploits the inherent hierarchy of road networks. In a preprocessing step, additional shortcut
edges are inserted, which allow skipping unimportant parts of the network at query time.
Another popular example is Multi-Level-Dijkstra (MLD) [38] also known as CRP [14]. It is
also used in practice [35]. MLD also uses shortcut edges. Both approaches achieve speed-ups
of at least three orders of magnitude over Dijkstra’s algorithm.

Unfortunately, for many real world applications, this basic graph model is too simplistic.
For realistic routing, many additional features need to be considered. This includes turn costs
and restrictions, live traffic, user preferences, and traffic predictions. Some applications may
have additional application-specific requirements. Extending Dijkstra’s algorithm to support
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6:2 A Fast and Tight Heuristic for A* in Road Networks

Figure 1 Nodes explored by A*. Color indicates the node removal order from the queue. Blue
was removed first. Next is green. Red was removed last.

these features is usually easy. Extending hierarchical speed-up techniques is also possible.
However, the algorithm development is vastly more complex. For every feature, dedicated
research paper(s) exist that extend CH. Supporting the combination of several features is
even harder. For example, we are not aware of any work combining all features mentioned
above. In this paper, we describe an algorithmic building block, that allows handling the
combination of all above mentioned features – and probably more.

Our approach decouples extensions from the hierarchical speed-up technique by utilizing
the A* algorithm [31]. A* is a goal-directed variant of Dijkstra’s algorithm. See Figure 1
for an example of nodes traversed during an A* search. A* uses a heuristic to guide the
search towards the goal. A heuristic is function that maps a node v onto an estimate of the
distance from v to the goal. A*’s running time crucially depends on how tight this estimate
is. Further, evaluating the heuristic must be fast. In this paper, we describe CH-Potentials,
a fast heuristic with tight estimates. Internally, the heuristic uses a CH. Fortunately, this is
an implementation detail from the perspective of the A*. To support a new feature, we only
need to modify the A* algorithm. The heuristic core containing the CH remains untouched.
Extending A* is vastly easier than extending a CH. This enables us to design algorithms
for a multitude of features. In addition, we describe query optimizations for handling of
low-degree nodes, common in road networks. These low degree optimizations are applicable
to Dijkstra’s algorithm and A*.

The rest of the paper is organized as follows. In Section 2, we discuss related works
on goal directed search and extensions for realistic applications for hierarchical techniques.
CH-Potentials, our new distance estimation function is introduced in Section 3. Section 4
discusses our improvements for the handling of low-degree nodes. In Section 5, we demonstrate
CH-Potential’s flexibility, by describing how to apply the approach to different practical
applications. Finally, in Section 6, we present an experimental evaluation of our approach.

2 Related Work

There is a lot of work that extends hierarchical speed-up techniques to more complex
settings [1]. For example, in [26] turn information is integrated into CH. A considerable
amount of research and engineering effort has been put into studying the combination
of traffic predictions with CH. Several papers [3, 4, 32, 5] and an entire dissertation [2]
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have been published on the subject. Different variants with trade-offs regarding exactness,
query speed and space consumption were proposed [5]. Recently, a new approach has been
published [40] which simultaneously achieves competitive results in all three aspects but
only at the cost of considerable implementation complexity. CRP (Customizable Route
Planning) [14] is an engineered variant of MLD [38] which was developed to allow updating
weights without invalidating the entire preprocessing. For this, a faster, second preprocessing
phase is introduced. It can be run regularly to update weights. In theory, this enables the
integration of live traffic and user preferences. In practice, live traffic feed data is imperfect.
Computing “good” routes without undesired detours due to artifacts in the data requires
additional algorithmic extensions [16]. CRP also supports turn costs. Integrating traffic
predictions into CRP was studied in [9]. On continental sized networks, TD-CRP can only
compute approximate shortest distances (rather than paths). In [19], CH is extended to
Customizable CH (CCH). CCH also has a second preprocessing phase where weights can be
altered. Supporting turn costs in CCH was studied in [11]. Other extensions studied include
electric vehicle routing [8, 22] or multi-criteria optimization [23, 24]. While these works show
that it is possible to extend hierarchical approaches, they also show that it is non-trivial.
Further, in every extension the flexibility available at query time is fairly limited. Combining
these hierarchical extensions is an unsolved problem.

CH-Potentials is not the first work to combine hierarchical approaches and A* [6, 28, 7].
However, previous works mostly focused on accelerating hierarchical approaches further
rather than exploiting A*’s flexibility.

ALT [27, 29] and CPD-Heuristics [10] are the two techniques with high conceptual
similarity to CH-Potentials. ALT has been combined with shortcuts [6] and also extended for
dynamic graphs [17] and time-dependent routing [36, 15]. CPD-Heuristics are a combination
of A* and Compressed Path Databases (CPD). A CPD can quickly compute the first edge
of a shortest path between any two nodes. In [10], SRC [39] is used as CPD. For every
distance estimation, a shortest path to the target is computed, whose length is used as the
heuristic value. Unfortunately, the employed CPD’s quadratic preprocessing running time is
problematic on large street networks. In [12] the weighted graph is embedded into Euclidean
space using FastMap. The Euclidean distance is then used as a distance estimate for A*.

3 Algorithm

In this section, we first discuss the framework in which CH-Potentials can be used. Then, we
describe the building blocks of CH-Potentials: Contraction Hierarchies and PHAST, a CH
extension. Finally, we introduce the CH-Potentials heuristic.

3.1 Formal Setup: Inputs, Outputs, and Phases
In this paper, we consider different applications, with slightly different problem models. The
goal is always to quickly answer many shortest path queries. For the purpose of describing
our framework, we establish a shared notation: Input to each query are nodes s and t, and a
graph Gq with query weights wq. However, the precise formal inputs of the query and what
exactly wq represents depends on the application. In the simplest case, wq will be scalar edge
weights. However, this is not a requirement. It can be any function that computes a weight
for an edge. This function can also take additional parameters from the state of the search.
For example, in the case of live-traffic, wq represents scalar edge weights. However, values of
wq might change between queries. In the case of traffic predictions, wq is a function which
maps the edge entry time to the traversal time and the query takes an additional departure
time parameter.
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Figure 2 Solid lines are edges in G. Dotted lines are shortcuts. Red is shortest st-path in G.
Blue is equaly long up-down st-path in G+. m is the mid node.

To enable quick shortest path computations, we consider a two phase setup with an
additional off-line preprocessing phase before the on-line query phase. The input to the
preprocessing phase is a graph Gℓ with lower bound weights wℓ and a node mapping function
ϕ. wℓ(e) must be a scalar value for every edge e of Gℓ. We require that wq(u, v) is greater or
equal to the shortest distance distℓ(ϕ(u), ϕ(v)) from ϕ(u) to ϕ(v) in Gℓ. The output of the
preprocessing is auxiliary data that enables an efficient heuristic function ht(x). ht(x) is the
exact distance from ϕ(x) to ϕ(t) in Gℓ. In the applications considered in this paper, wℓ is
always the freeflow travel time.

The query phase uses this heuristic in an A* search between nodes s and t on Gq and wq.
The exact implementation of this A* search depends on the application. Our approach only
provides the heuristic ht for the A* search. In contrast, the preprocessing phase remains the
same for all applications.

Our heuristic is always feasible [31], i.e. wq(u, v)− ht(u) + ht(v) ≥ 0 holds for all edges.
By requirement and because of the triangle inequality the following holds:

wq(u, v)− ht(u) + ht(v) ≥ distℓ(ϕ(u), ϕ(v))− distℓ(ϕ(u), ϕ(t)) + distℓ(ϕ(v), ϕ(t)) ≥ 0

Thus, A* will always determine the correct shortest distances.

3.2 Contraction Hierarchy (CH)

Algorithm 1 CH backward search.

Data: B[x]: tentative distance from x to target t

Data: Min. priority queue Q, also called open list
B[x]← +∞ for all x ̸= t; B[t]← 0;
Make Q only contain t with weight 0;
while not Q empty do

y ← pop minimum element from Q;
for xy is down-edge in G+

ℓ do
if B[x] > wℓ(xy) + B[y] then

B[x]← wℓ(xy) + B[y];
Add x or decrease x’s key in Q to B[x];

A CH is a two phase technique to efficiently compute exact, shortest paths. For details,
we refer to [25, 19]. In this section, we give an introduction.

A CH places nodes into levels. No edge must connect two nodes within one level. Levels
are ordered by “importance”. The intuition is that dead-ends are unimportant and at the
bottom while highway bridges are very important and at the top. An edge goes up when it
goes from a node in a lower level to higher level. Down edges are defined analogously. An
up-down path is a path where only one node m is more important than both its neighbors. m
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is called the mid node. An up path is a path where the last node is the mid node. Similarly,
the first node is the mid node of a down path. In the preprocessing phase, a CH adds
shortcut edges to the input graph G to obtain G+. This is done by repeatedly contracting
unimportant nodes and adding shortcuts between its neighbors. After the preprocessing, for
every pair of nodes s and t there exists a shortest up-down st-path in G+ with the same
length as a shortest path in G. See Figure 2 for a proof sketch. From every shortest path
(red) in G, an up-down path of equal length in G+ (blue) exists. Thus, we can restrict our
search to up-down paths in G+. The search is bidirectional. The forward search starts from
s and only follows up-edges. Similarly, the backward search starts at t and only follows
down-edges in reversed direction. The two searches meet at the mid node. Pseudo-code for
the backward search, i.e., the path from m to t, is presented in Algorithm 1. The forward
search works analogously. A CH query is fast, if the number of nodes reachable via only up-
or down-nodes is small. On road networks, this is the case [25, 14]. On graphs with low
treewidth, this is also the case [19, 30].

Using the CH query algorithm, we can already give a simple heuristic. The heuristic
evaluation ht(x) performs a CH-query from x to t. This yields tight estimates but a high
overhead for the heuristic evaluation. While a single CH query is fast, answering one for
every node explored in the A∗ search is slow. Fortunately, we can do better.

3.3 PHAST based Heuristic

Algorithm 2 PHAST basic all-to-one search.

Data: P [x]: tentative distance from x to t

Execute Algorithm 1;
for all CH levels L from most to least important do

for all up edges xy in G+
ℓ with x in L do

if P [x] < P [y] + wℓ(xy) then
P [x]← P [y] + wℓ(xy);

PHAST [13] is a CH extension that computes distances from all nodes to one target node.
The preprocessing phase remains unchanged. The query phase is split into two steps. The
first step is analogue to the CH query: From t, all reachable nodes via reversed down-edges
are explored. Algorithm 1 shows this first step. The second step iterates over all CH levels
from top to bottom. In each iteration, all up-edges starting within the current level are
followed in reverse. After all levels are processed, the shortest distances from all nodes to
t were computed. Pseudo-code is provided in Algorithm 2. Using PHAST, we can also
compute a tight A* heuristic. In the query phase, we first run PHAST to compute the
distances from every node to t with respect to wℓ and store the result in an array H. Next,
we run A∗ and implement the heuristic as a lookup in the array H.

The H lookup and by extension the A∗ search is indeed fast. However, the PHAST step
before the search is comparatively expensive. The reason is that the distances towards t

are computed for all nodes. Ideally, we only want to compute the distances from the nodes
explored in the A∗ search.
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Algorithm 3 CH-Potentials Algorithm.

Data: B[x]: tentative distance from x to t as computed by Algorithm 1
Data: P [x]: memoized potential at x, ⊥ initially
Function Pot(x):

if P [x] = ⊥ then
P [x]← B[x];
for all up edges xy in G+

ℓ do
P [x]← min{P [x], wℓ(xy) + Pot(y)};

return P [x];

3.4 CH-Potentials
Fortunately, the PHAST computation can be done lazily using memoization as depicted in
Algorithm 3. In a first step, we run the backward CH search from t to obtain an array B.
B[x] is the minimum down xt-path distance or +∞, if there is no such path. B is computed
as shown in Algorithm 1.

To compute the heuristic ht(x), we recursively compute for all up-edges (x, y) the heuristic
ht(y). Next, we compute the minimum distance over all up-down paths that contain at least
one up-edge using d = miny{wℓ(x, y) + ht(y)}. As not all shortest up-down paths contain
an up-edge, we set ht(x) = min{B[x], d}. This calculation is correct, as it computes the
minimum up-down xt-path distance in G+

ℓ , which corresponds to the minimum xt-path
distance in a CH. A* with this heuristic is the basic CH-Potentials algorithm.

4 Low Degree A* Improvements

Preliminary experiments showed, that a significant amount of query running time is spent in
heuristic evaluations and queue operations. We can reduce both by keeping some nodes out
of the queue, as the heuristic needs to be evaluated when a node is pushed into the queue.
Avoiding pushing low degree nodes into the queue is the focus of this section. The techniques
discussed here are a lazy variant of the ideas used in TopoCore [18].

We modify A* by processing low degree nodes consecutively without pushing them into
the queue. Our algorithm uses the undirected degree d(x) of a node x. Formally, d(x) is the
number of nodes y such that (x, y) ∈ E or (y, x) ∈ E.

Analogous to A*, our algorithm stores for every node x a tentative distance D[x].
Additionally, it maintains a minimum priority queue. Diverging from A*, not all nodes can
be pushed but every node has a tentative distance.

4.1 Skip Degree Two Nodes
Our algorithm differs from A* when removing a node x from the queue. A* iterates over
the outgoing arcs (x, y) of x and tries to reduce D[y] by relaxing (x, y). If A* succeeds, y’s
weight in the queue is set to D[y] + ht(y). Our algorithm, however, behaves differently, if
d(y) ≤ 2. Our algorithm determines the longest degree two chain of nodes x, y1, . . . , yk, z

such that d(yi) = 2 and d(z) > 2. If our algorithm succeeds in reducing D[y1], it does not
push y1 into the queue. Instead, it iteratively tries to reduce all D[yi]. If it does not reach z,
then only D is modified but no queue action is performed. If D[z] is modified and d(z) > 2,
z’s weight in the queue is set to D[z] + ht(z).
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As the target node t might have degree two, our algorithm cannot rely on stopping, when
t is removed from the queue. Instead, our algorithm stops as soon as D[t] is less than the
minimum weight in the queue.

4.2 Skip Degree Three Nodes
We can also skip some degree three nodes. Denote by x, y1, . . . , yk, z a degree two chain as
described in the previous section. If d(z) > 3 or z is in the queue, our algorithm proceeds as
in the previous section. Otherwise, there exist up to two degree chains z, a1, . . . , ap, b and
z, α1, . . . , αq, β such that a1 ≠ yk ̸= α1. Our algorithm iteratively tries to reduce all D[ai]
and D[αi]. If it reaches β, β’s weight in the queue is set to D[β] + ht(β). Analogously, if b is
reached, b’s weight is set to D[b] + ht(b). If b respectively β are not reached, our algorithm
does nothing.

4.3 Stay in Largest Biconnected Component
A lot of nodes in road networks lead to dead-ends. Unless the source or target is in this
dead-end, it is unnecessary to explore these nodes.

In the preprocessing phase, we compute the subgraph GC , called core. GC is induced by
the largest biconnected component of the undirected graph underlying G. We do this using
Tarjan’s algorithm [43]. For every node v in the input graph G, we store the attachment
node av to the core. For nodes in the core, av = v. We exploit that all attachment nodes are
single node separators and the problem can be decomposed along them.

The query phase is divided into two steps. In the first step, we apply A* with CH-
Potentials to GC combined with the component that contains s. This can be achieved
implicitly by removing edges from GC into other components during preprocessing. If t is
part of GC or in the same component as s, this A* search finds it. Otherwise, we find at. In
that case, we continue by searching a path from at towards t restricted to t’s biconnected
component. The final result is the concatenation of both paths.

5 Applications

We describe some extended routing problems and how to apply CH-Potentials to them.
Unless stated otherwise, Gq and Gℓ are the same graph and only wq changes for the queries.

5.1 Avoiding Tunnels and/or Highways
Avoiding tunnels and/or highways is a common feature of navigation devices. Implementing
this feature with CH-Potentials is easy. We set wℓ to the freeflow travel time. If an edge is a
tunnel and/or a highway, we set wq to +∞. Otherwise, wq is set to the freeflow travel time.

5.2 Forbidden Turns and Turn Costs
The classical shortest path problem allows to freely change edges at nodes. However, in the
real world, turn restrictions, such as a forbidden left or right turn, exist. Also, taking a left
turn might take longer than going straight. This can be modeled using turn weights [26, 14, 11].
A turn weight wt maps a pair of incident edges onto the turning time or +∞ for forbidden
turns. For CH-Potentials, we use zero as lower bound for every turn weight in the heuristic.
Thus, the graph Gℓ and weights wℓ for preprocessing is the unmodified input graph without
turn weights.
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A path with nodes v1, v2, . . . vk has the following turn-aware weight:

wℓ(v1, v2) +
k−1∑
i=2

wt(vi−1, vi, vi+1) + wℓ(vi, vi+1)

The objective is to find a path between two given edges with minimum turn-aware weight.
The first term wℓ(v1, v2) is the same for all paths, as it only depends on the source edge. It
can thus be ignored during optimization.

We solve this problem by constructing a turn-expanded graph as Gq. Edges in the input
graph Gℓ correspond to expanded nodes in Gq. For every pair of incident edges (x, y) and
(y, z) in Gℓ, there is an expanded edge in Gq with expanded weight wt(x, y, z) + wℓ(y, z). A
sequence of expanded nodes in the expanded graph Gq corresponds to a sequence of edges in
the input graph Gℓ. The weight of a path in Gq is equal to the turn-aware weight of the
corresponding path in Gℓ minus the irrelevant wℓ(v1, v2) term. Thus, the turn-aware routing
problem can be solved by searching for shortest paths in Gq.

In this scenario, preprocessing and query use different graphs Gℓ and Gq. We define the
node mapping function ϕ as ϕ(x, y) = y. Obviously, wq(xy, yz) = wt(x, y, z) + wℓ(y, z) ≥
distℓ(ϕ(x, y), ϕ(y, z)) and this approach yields a feasible heuristic. Sadly, the undirected
graph underlying Gq is always biconnected, if the input graph is strongly connected. The
optimization described in Section 4.3 is therefore ineffective. With this setup, CH-Potentials
support turns without requiring turn information in the CH.

5.3 Predicted Traffic or Time-Dependent Routing
The classical shortest path problem assumes that edge weights are scalars. However, in
practice, travel times vary along an edge due to the traffic situation. Recurring traffic can
be predicted by observing the traffic in the past. It is common [5, 9, 40] to represent these
predictions as travel time functions. An edge weight is no longer a scalar value but a function
that maps the entry time onto the traversal time.

In this setting, the query weight wq is a function from E×R to R+. wq(e, τ) is the travel
time through edge e when entering it at moment τ . The input to the extended problem
consists of a source node s and a target node t, as in the classical problem formulation.
Additionally, the input contains a source time τs. A path with edges e1, e2 . . . ek is weighted
using αk, which is defined recursively as follows:

α1 = wq(e1, τs)
αk = αk−1 + wq(e1, αk−1)

The objective is to find a path to t that minimizes αk.
If all travel time functions fulfill the FIFO property, this problem can be solved using a

straight forward extension of Dijkstra’s algorithm [21]. The necessary modification to A*
is analogous. Without the FIFO property the problem becomes NP-hard [37]. The FIFO
property states that it is not possible to arrive earlier by departing later. Formally stated, the
following must hold ∀e ∈ E, τ ∈ R, δ ∈ R+ : wq(e, τ) ≤ wq(e, τ + δ) + δ. Our implementation
stores edge travel times using piece-wise linear functions. The A* search uses the tentative
distance τ at a node x when to evaluating the travel time of outgoing edges (x, y). This
strategy is very similar to TD-ALT [36, 17].

For the preprocessing, we set wℓ(e) = minτ wq(e, τ), that is the minimum travel time.
By keeping travel time functions out of the CH, we avoid a lot of algorithmic complications
compared to [5, 9, 40, 15] which have to create shortcuts of travel time functions.
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5.4 Live and Predicted Traffic
Beside predicted traffic, we also consider live traffic. Live traffic refers to the current traffic
situation. It is important to distinguish between predicted and live traffic. Live traffic data
is more accurate for the current moment than predicted data. It is possible that it differs
significantly from predicted traffic, if unexpected events like accidents happen. However, just
using live traffic data is problematic for long routes as traffic changes while driving. At some
point, one wants to switch from live traffic to the predicted traffic. In this section, we first
describe a setup with only live traffic and then combine it with predicted traffic.

To support only live traffic, we set wℓ to the freeflow travel time. wq is set to the travel
time accounting for current traffic. As traffic only increases the travel time along an edge, wℓ

is a valid lower bound for wq. In a real world application, values from wq could be updated
between queries. This is all that is necessary to apply CH-Potentials in a live traffic scenario.

To combine live traffic with predicted traffic, we define a modified travel time function wq

that is then used as query weights. Denote by wp(e, τ) the predicted travel time along edge
e at moment τ . Further, wc(e) is the travel time according to current live traffic. Finally, we
denote by τsoon the moment when we switch to predicted traffic. In our experiments, we set
τsoon to one hour in the future. We need to make sure that the modified travel time function
fulfills the no-waiting property. For this reason, we cannot make a hard switch at τsoon. Our
modified travel time function linearly approaches the predicted travel time. Formally, we
set wq(e, τ) to wc(e), if τ ≤ τsoon. Otherwise, we check whether wp(e, τsoon) < wc(e) is true.
If it is the case, we set wq(e, τ) to max{wc(e) + (τsoon − τ), wp(e, τ)}. Otherwise, we set
wq(e, τ) to min{wc(e)− (τsoon − τ), wp(e, τ)}. In our implementation, we to not modify the
representation of wp but evaluate the formulas above at each travel time evaluation. We set
wℓ again to the freeflow travel time.

With this setup, CH-Potentials support a combination of live and predicted traffic. We
did not make any modification, that would hinder a combination with other extensions.
Further adding tunnel and/or highway avoidance or turn-aware routing is simple. This
straight-forward integration of complex routing problems is the strength of the CH-Potentials.

5.4.1 Three-Phase Setups
Supporting live traffic is also possible with a three-phase setup: A slow preprocessing phase,
a faster customization phase, and fast queries. The customization phase is run regularly and
incorporates updates to the weights into the auxiliary preprocessing data. CRP [14] and
CCH [19] follow this setup. Luckily, a CCH is just a CH with some additional properties.
The CH in CH-Potentials can be replaced by a CCH without further modifications. Thus,
CCH-Potentials could also support a three-phase setup. However, evaluating CCH-Potentials
is beyond the scope of this paper. We focus on evaluating CH-Potentials as a simple building
block in the two-phase setup.

5.5 Temporary Driving Bans
Truck routing differs from car routing due to night driving bans and other restrictions. In [33],
a preliminary version of CH-Potentials1 is used for such a scenario. The work considers

1 In [33], CH-Potentials are used as a blackbox referring to an early ArXiv preprint [41] of ours. Our
submitted paper is the finished version of the ArXiv preprint. [33] does not describe any of the
contributions of this paper.
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Table 1 Instances used in the evaluation.

Nodes Edges Preprocessing
[·106] [·106] [s]

OSM Ger 16.2 35.4 295.2
TDEur17 25.8 55.5 292.6
TDGer06 4.7 10.8 58.9

time-dependent blocked edges and waiting at parking locations. Further, a trade-off between
arrival time and route quality is considered.

6 Evaluation

In this section, we present our experimental evaluation. Our benchmark machine runs
openSUSE Leap 15.1 (kernel 4.12.14), and has 128 GiB of DDR4-2133 RAM and an Intel
Xeon E5-1630 v3 CPUs which has four cores clocked at 3.7 Ghz and 4 × 32 KiB of L1,
8 × 256 KiB of L2, and 10 MiB of shared L3 cache. All experiments were performed
sequentially. Our code is written in Rust and compiled with rustc 1.47.0-nightly in the release
profile with the target-cpu=native option. The source code of our implementation and the
experimental evaluation can be found on Github2.

Inputs and Methodology. Our main benchmark instance is a graph of the road network of
Germany obtained from Open Street Map3. To obtain the routing graph, we use the import
from RoutingKit4. The graph has 16M nodes and 35M edges. For this instance, we have
proprietary traffic data provided by Mapbox5. The data includes a live traffic snapshot from
Friday 2019/08/02 afternoon and comes in the form of 320K OSM node pairs and live speeds
for the edge between the nodes. It also includes traffic predictions for 38% of the edges as
predicted speeds for all five minute periods over the course of a week. We exclude speed
values which are faster than the freeflow speed computed by RoutingKit. Additionally, we
have two graphs with proprietary traffic predictions provided by PTV6. The PTV instances
are not OSM-based. One is an old instance of Germany with traffic predictions from 2006 for
7% of the edges and the other one a newer instance of Europe with predictions for 27% of
the edges. Table 1 contains an overview over our instances. In this table, we further include
the sequential running time necessary to construct the CH. We report preprocessing running
times as averages over 10 runs. For queries, we perform 10 000 point-to-point queries where
both source and target are nodes drawn uniformly at random and report average results.

Experiments. The performance of A* depends on the tightness of the heuristic. CH-
Potentials computes optimal distance estimates with respect to wℓ. However, for most
applications, there will be a gap between wq and wℓ (otherwise one could use CH without
A*). We evaluate the impact of the difference between wq and wℓ on the performance of A*.

2 https://github.com/kit-algo/ch_potentials
3 https://download.geofabrik.de/europe/germany-200101.osm.pbf
4 https://github.com/RoutingKit/RoutingKit
5 https://mapbox.com
6 https://ptvgroup.com

https://github.com/kit-algo/ch_potentials
https://download.geofabrik.de/europe/germany-200101.osm.pbf
https://github.com/RoutingKit/RoutingKit
https://mapbox.com
https://ptvgroup.com
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Figure 3 Running times on a logarithmic scale for queries on OSM Ger with scaled edge weights
wq = α · wℓ. The boxes cover the range between the first and third quartile. The band in the box
indicates the median, the diamond the mean. The whiskers cover 1.5 times the interquartile range.
All other running times are indicated as outliers.

Table 2 Average query running times and number of queue pushs with different heuristics and
optimizations on OSM Ger with wq = 1.05 · wℓ.

BCC Deg2 Deg3 Zero ALT CH-Pot. Oracle

R
un

ni
ng

tim
e

[m
s] ✗ ✗ ✗ 1 947.4 279.5 50.6 32.0

✓ ✗ ✗ 1 253.1 217.3 36.3 23.9
✓ ✓ ✗ 713.6 117.3 18.8 11.8
✓ ✓ ✓ 558.9 88.3 15.7 9.5

Q
ue

ue
pu

sh
s

[·1
03

] ✗ ✗ ✗ 8 120.7 859.4 138.0 138.0
✓ ✗ ✗ 6 326.5 684.1 114.0 114.0
✓ ✓ ✗ 2 915.7 301.3 42.1 42.1
✓ ✓ ✓ 1 689.8 178.4 26.0 26.0

The lower bound wℓ is set to the freeflow travel time. The query weights wq are set to α ·wℓ,
where α ≥ 1. Increasing α degrades the heuristic’s quality. Figure 3 depicts the results.
Clearly, α has significant influence on the running time. Average running times range from
below a millisecond to a few hundred milliseconds depending on α. Up to around α = 1.1
the running time grows quickly. For α > 1.1, the growth slows down. This illustrates both
the strengths and limits of our approach and goal directed search in general. CH-Potentials
can only achieve competitive running times if the application allows for a sufficiently tight
lower bounds at preprocessing time.

We observe that the running times for a fixed α vary strongly. This is an interesting
observation, as with uniform source and target sampling, nearly all queries are long-distance.
The query distance is thus not the reason. After some investigation, we concluded that this is
due to non-uniform road graph density. Some regions have more roads per area than others.
The number explored A* nodes depends on the density of the search space area. As the
density varies, the running times vary.

Table 2 depicts the performance of A* with different heuristics and optimizations. We
compare CH-Potentials to three other heuristics. First, the Zero heuristic where h(x) = 0 for
all nodes x. This corresponds to using Dijkstra’s algorithm. Second, we compare against our
own implementation of ALT [29]. We use 16 landmarks generated with the avoid strategy [29]
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Table 3 CH-Potentials performance for different route planning applications. We report average
running times and number of queue pushes. We also report the average length increase, that is
how much longer the final shortest distance is compared to the lower bound. Finally, we report the
average running time of Dijkstra’s algorithm as a baseline and the speedup over this baseline.

Running Queue Length Dijkstra Speedup
time [ms] [·103] incr. [%] [ms]

OSM Ger

Unmodified (wq = wℓ) 0.6 0.5 0.0 1 952.8 3 243.1
Turns 2.8 6.0 1.1 4 244.4 1 540.8
No Tunnels 25.9 40.7 5.3 1 990.1 76.9
No Highways 342.9 518.5 42.4 1 843.9 5.4
Live 127.3 192.1 14.8 1 884.1 14.8
TD 195.5 163.1 17.6 3 186.2 16.3
TD + Live 209.7 179.1 21.4 3 152.2 15.0
TD + Live + Turns 508.5 765.5 22.7 6 179.5 12.2

TDEur17 TD 89.7 81.5 3.9 3 479.9 38.8
TDGer06 TD 4.5 6.4 3.1 602.4 135.4

and activate all during every query. Our ALT implementation is uni-directional. In this
work, we do not consider bidirectional search as it creates problems for some settings, such
as predicted traffic. Finally, we compare against a hypothetical Oracle-A* heuristic. This
heuristic has instant access to a shortest distance array with respect to wℓ, i.e. it is faster
than the fastest heuristic possible in our model. We fill this array before each query using a
reverse Dijkstra search from the target node. Thus, the reported running times of Oracle-A*
do not account for any heuristic evaluation. CH-Potentials compute the same distance
estimates but the heuristic evaluation has some overhead. Comparing against Oracle-A*
allows us to measure this overhead. Also, no other heuristic, which only has access to the
preprocessing weights, can be faster than Oracle-A*.

We observe that the number of queue pushes roughly correlates with running time.
Each optimization reduces both queue pushes and running times. All optimizations yield a
combined speed-up of around 3. CH-Potentials outperform ALT by a factor of between six
and seven and settle correspondingly fewer nodes. This is not surprising, since ALT computes
worse distance estimates. In contrast, CH-Potentials already compute exact distances with
respect to wℓ. The number of popped nodes is the same for CH-Potentials and Oracle-A*.
The only difference between CH-Potentials and Oracle-A* is the overhead of the heuristic
evaluation. This overhead leads to a slowdown of around 1.6. Thus, CH-Potentials are
already very close to the best possible heuristic in this model. This means that no competing
algorithm such as ALT or CPD-Heuristics can be significantly faster.

Table 3 depicts the running times of CH-Potentials in various applications, such as those
described in Section 5. We report speedups compared to extensions of Dijkstra’s algorithm
for each application respectively. We start with the base case where wq = wℓ. This is the
problem variant solved by the basic CH algorithm. CH achieves average query running times
of 0.16 ms on OSM Ger. CH-Potentials are roughly four times slower but still achieve a huge
speedup of 3243 over Dijkstra. Such large speedups are typical for CH. This shows that
CH-Potentials gracefully converges toward a CH in the wq = wℓ special case.

In the other scenarios, the performance of CH-Potentials strongly depends on the quality
of the heuristic. We measure this quality using the length increase of wq compared to wℓ.
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Forbidding highways results in the largest length increase and in the smallest speedup. The
other extreme are turn restrictions. They have only a small impact on the length increase.
The achieved speedups are therefore comparable to CH speedups. Mapbox live traffic has a
length increase of around 15%, which yields running times of 127 ms. The length increase
of Mapbox traffic predictions are about 18%, and results in a running time of 200 ms. The
speedup in the predicted scenario is larger than in the live setting, as the travel time function
evaluations slow down Dijkstra’s algorithm. Combining predicted and live traffic results in
a running time only slightly higher than for the predicted scenario. Further adding turn
restrictions, increases the running times. This increase is mostly due to the BCC optimization
of Section 4.3 becoming ineffective when considering turns. It is not due to the length increase
of using turns. With everything activated, our algorithm still has a speedup of 12.2 over the
baseline. Interestingly, the PTV traffic predictions have a much smaller length increase than
the Mapbox predictions. This results in smaller running times of our algorithm.

7 Conclusion

In this paper, we introduced CH-Potentials, a fast, exact, and flexible two-phase algorithm
based on A* and CH for finding shortest paths in road networks. The approach can
handle a multitude of complex, integrated routing scenarios with very little implementation
complexity. CH-Potentials provides exact distances with respect to lower bound weights
known at preprocessing time as an A* heuristic. Thus, the query performance of CH-
Potentials crucially depends on the availability of good lower bounds in the preprocessing
phase. Our experiments show, that this availability highly depends on the application.
We also show that the overhead of our heuristic is within a factor 1.6 of a hypothetical
A*-heuristic that can instantly access lower bound distances. Achieving significantly faster
running times could still be possible in variations of the problem setting.

Dropping the provable exactness requirement using a setup similar to anytime A* [45, 34]
would be interesting. Another promising research avenue would be to investigate graphs other
than road networks. A lot of research into grid maps exists including a series of competitions
called GPPC [42]. Hierarchical techniques have been shown to work well on these graphs [44].
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