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Abstract
The balanced hypergraph partitioning problem (HGP) is to partition the vertex set of a hypergraph
into k disjoint blocks of bounded weight, while minimizing an objective function defined on the
hyperedges. Whereas real-world applications often use vertex and edge weights to accurately model
the underlying problem, the HGP research community commonly works with unweighted instances.

In this paper, we argue that, in the presence of vertex weights, current balance constraint
definitions either yield infeasible partitioning problems or allow unnecessarily large imbalances and
propose a new definition that overcomes these problems. We show that state-of-the-art hypergraph
partitioners often struggle considerably with weighted instances and tight balance constraints (even
with our new balance definition). Thus, we present a recursive-bipartitioning technique that is able
to reliably compute balanced (and hence feasible) solutions. The proposed method balances the
partition by pre-assigning a small subset of the heaviest vertices to the two blocks of each bipartition
(using an algorithm originally developed for the job scheduling problem) and optimizes the actual
partitioning objective on the remaining vertices. We integrate our algorithm into the multilevel
hypergraph partitioner KaHyPar and show that our approach is able to compute balanced partitions
of high quality on a diverse set of benchmark instances.
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1 Introduction

Hypergraphs are a generalization of graphs where each hyperedge can connect more than
two vertices. The k-way hypergraph partitioning problem (HGP) asks for a partition of
the vertex set into k disjoint blocks, while minimizing an objective function defined on the
hyperedges. Additionally, a balance constraint requires that the weight of each block is
smaller than or equal to a predefined upper bound (most often Lk := (1 + ε)⌈ c(V )

k ⌉ for some
parameter ε, where c(V ) is the sum of all vertex weights). The hypergraph partitioning
problem is NP-hard [32] and it is even NP-hard to find good approximations [8]. The most
commonly used heuristic to solve HGP in practice is the multilevel paradigm [1, 11, 29] which
consists of three phases: First, the hypergraph is coarsened to obtain a hierarchy of smaller
hypergraphs. After an initial partitioning algorithm is applied to the smallest hypergraph,
coarsening is undone, and, at each level, refinement algorithms are used to improve the
quality of the solution.
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8:2 Multilevel Hypergraph Partitioning with Vertex Weights Revisited

The two most prominent application areas of HGP are very large scale integration (VLSI)
design [3, 29] and parallel computation of the sparse matrix-vector product [11]. In the
former, HGP is used to divide a circuit into two or more blocks such that the number of
external wires interconnecting circuit elements in different blocks is minimized. In this setting,
each vertex is associated with a weight equal to the area of the respective circuit element [2]
and tightly-balanced partitions minimize the total area required by the physical circuit [18].
In the latter, HGP is used to optimize the communication volume for parallel computations
of sparse matrix-vector products [11]. In the simplest hypergraph model, vertices correspond
to rows and hyperedges to columns of the matrix (or vice versa) and a partition of the
hypergraphs yields an assignment of matrix entries to processors [11]. The work of a processor
(which can be measured in terms of the number of non-zero entries [7]) is integrated into the
model by assigning each vertex a weight equal to its degree [11]. Tightly-balanced partitions
hence ensure that the work is distributed evenly among the processors.

Despite the importance of weighted instances for real-world applications, the HGP re-
search community mainly uses unweighted hypergraphs in experimental evaluations [38]. The
main rationale hereby being that even unweighted instances become weighted implicitly due
to vertex contractions during the coarsening phase. Many partitioners therefore incorporate
techniques that prevent the formation of heavy vertices [13, 24, 27] during coarsening to
facilitate finding a feasible solution during the initial partitioning phase [38]. However, in
practice, many weighted hypergraphs derived from real-world applications already contain
heavy vertices – rendering the mitigation strategies of today’s multilevel hypergraph par-
titioners ineffective. The popular ISPD98 VLSI benchmark set [2], for example, includes
instances in which vertices can weigh up to 10% of the total weight of the hypergraph.

Contributions and Outline. After introducing basic notation in Section 2 and presenting
related work in Section 3, we first formulate an alternative balance constraint definition
in Section 4 that overcomes some drawbacks of existing definitions in presence of vertex
weights. In Section 5, we then present an algorithm that enables partitioners based on the
recursive bipartitioning (RB) paradigm to reliably compute balanced partitions for weighted
hypergraphs. Our approach is based on the observation that usually only a small subset of
the heaviest vertices is critical to satisfy the balance constraint. We show that pre-assigning
these vertices to the two blocks of each bipartition (i.e., treating them as fixed vertices) and
optimizing the actual objective function on the remaining vertices yields provable balance
guarantees for the resulting k-way partition. We implemented our algorithms in the open
source HGP framework KaHyPar [38]. The experimental evaluation presented in Section 6
shows that our new approach (called KaHyPar-BP) is able to compute balanced partitions
for all instances of a large real-world benchmark set (without increasing the running time
or decreasing the solution quality), while other partitioners such as the latest versions of
KaHyPar, hMetis, and PaToH produced imbalanced partitions on 4.9% up to 42% of the
instances for ε = 0.01 (4.3% up to 23.1% for ε = 0.03). Section 7 concludes the paper.

2 Preliminaries

A weighted hypergraph H = (V, E, c, ω) is defined as a set of vertices V and a set of
hyperedges/nets E with vertex weights c : V → R>0 and net weights ω : E → R>0, where
each net e is a subset of the vertex set V (i.e., e ⊆ V ). We extend c and ω to sets in the
natural way, i.e., c(U) :=

∑
v∈U c(v) and ω(F ) :=

∑
e∈F ω(e). Given a subset V ′ ⊆ V , the

subhypergraph HV ′ is defined as HV ′ := (V ′, {e ∩ V ′ | e ∈ E : e ∩ V ′ ̸= ∅}, c, ω).
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A k-way partition of a hypergraph H is a partition of the vertex set V into k non-empty
disjoint subsets Πk = {V1, . . . , Vk}. We refer to a k-way partition Ψk = {P1, . . . , Pk} of a
subset P ⊆ V as a k-way prepacking. We call a vertex v ∈ P a fixed vertex and a vertex
v ∈ V \P an ordinary vertex. During partitioning, fixed vertices are not allowed to be moved
to a different block of the partition. A k-way partition Πk is ε-balanced if each block Vi

satisfies the balance constraint: c(Vi) ≤ Lk := (1 + ε)⌈ c(V )
k ⌉ for some parameter ε. The k-way

hypergraph partitioning problem initialized with a k-way prepacking Ψk = {P1, . . . , Pk} is to
find an ε-balanced k-way partition Πk = {V1, . . . , Vk} of a hypergraph H that minimizes an
objective function and satisfies that ∀i ∈ {1, . . . , k} : Pi ⊆ Vi. In this paper, we optimize the
connectivity metric (λ− 1)(Π) :=

∑
e∈E(λ(e)− 1) ω(e), where λ(e) := |{Vi ∈ Π | Vi ∩ e ≠ ∅}|.

The most balanced partition problem is to find a k-way partition Πk of a weighted
hypergraph H = (V, E, c, ω) such that max(Πk) := maxV ′∈Πk

c(V ′) is minimized. For
an optimal solution ΠOPT it holds that there exists no other k-way partition Π′

k with
max(Π′

k) < max(ΠOPT). We use OPT(H, k) := max(ΠOPT) to denote the weight of the
heaviest block of an optimal solution. Note that the problem is equivalent to the most
common version of the job scheduling problem: Given a sequence J = ⟨j1, . . . , jn⟩ of n

computing jobs each associated with a processing time pi for i ∈ [1, n], the task is to find an
assignment of the n jobs to k identical machines (each job ji runs exclusively on a machine
for exactly pi time units) such that the latest completion time of a job is minimized.

3 Related Work

In the following, we will focus on work closely related to our main contributions. For an extens-
ive overview on hypergraph partitioning we refer the reader to existing literature [3, 5, 35, 38].
Well-known multilevel HGP software packages with certain distinguishing characteristics
include PaToH [4, 11] (originating from scientific computing), hMetis [29, 30] (originating
from VLSI design), KaHyPar [26, 27] (general purpose, n-level), Moondrian [41] (sparse matrix
partitioning), UMPa [14] (multi-objective) and Zoltan [16] (distributed partitioner).

Partitioning with Vertex Weights. The most widely used techniques to improve the quality
of a k-way partition are move-based local search heuristics [19, 31] that greedily move vertices
according to a gain value (i.e., the improvement in the objective function). Vertex moves
violating the balance constraint are usually rejected, which can significantly deteriorate
solution quality in presence of varying vertex weights [10]. This issue is addressed using
techniques that allow intermediate balance violations [18] or use temporary relaxations of
the balance constraint [9, 10]. Caldwell et al. [10] proposed to preassign each vertex with
a weight greater than the average block weight Lk to a seperate block before partitioning
(treated as fixed vertices) and build the actual k-way partition around them. All of these
techniques were developed and evaluated for flat (i.e., non-multilevel) partitioning algorithms.
In the multilevel setting, even unweighted instances become implicitly weighted due to
vertex contractions in the coarsening phase, which is why the formation of heavy vertices is
prevented by penalizing the contraction of vertices with large weights [13, 24, 40] or enforcing
a strict upper bound for vertex weights throughout the coarsening process [1, 27]. If the
input hypergraph is unweighted, the aforementioned techniques often suffice to find a feasible
solution [38]. PaToH [12] additionally uses bin packing techniques during initial partitioning.

Job Scheduling Problem. The job scheduling problem is NP-hard [20] and we refer the
reader to existing literature [23, 36] for a comprehensive overview of the research topic. In this
work, we make use of the longest processing time (LPT) algorithm proposed by Graham [22].

SEA 2021



8:4 Multilevel Hypergraph Partitioning with Vertex Weights Revisited

We will explain the algorithm in the context of the most balanced partition problem defined
in Section 2: For a weighted hypergraph H = (V, E, c, ω), the algorithm iterates over the
vertices of V sorted in decreasing vertex-weight order and assigns each vertex to the block of
the k-way partition with the lowest weight. The algorithm can be implemented to run in
O(|V | log |V |) time, and for a k-way partition Πk produced by the algorithm it holds that
max(Πk) ≤ ( 4

3 −
1

3k )OPT(H, k).

KaHyPar. The Karlsruhe Hypergraph Partitioning framework takes the multilevel para-
digm to its extreme by only contracting a single vertex in every level of the hierarchy. KaHyPar
provides recursive bipartitioning [37] as well as direct k-way partitioning algorithms [1] (direct
k-way uses RB in the initial partitioning phase). It uses a community detection algorithm as
preprocessing step to restrict contractions to densely connected regions of the hypergraph
during coarsening [27]. Furthermore, it employs a portfolio of bipartitioning algorithms for
initial partitioning of the coarsest hypergraph [25, 37], and, during the refinement phase,
improves the partition with a highly engineered variant of the classical FM local search [1]
and a refinement technique based on network flows [21, 26].

During RB-based partitioning, KaHyPar ensures that the solution is balanced by adapting
the imbalance ratio for each bipartition individually. Let HV ′ be the subhypergraph of the
current bipartition that should be partitioned recursively into k′ ≤ k blocks. Then,

ε′ :=
(

(1 + ε)c(V )
k
· k′

c(V ′)

) 1
⌈log2(k′)⌉

− 1 (1)

is the imbalance ratio used for the bipartition of HV ′ . The equation is based on the observation
that the worst-case block weight of the resulting k′-way partition of HV ′ obtained via RB is
smaller than (1 + ε′)⌈log2(k′)⌉ c(V ′)

k′ , if ε′ is used for all further bipartitions. Requiring that
this weight must be smaller or equal to Lk = (1 + ε)⌈ c(V )

k ⌉ leads to the formula defined in
Equation 1.

4 A New Balance Constraint For Weighted Hypergraphs

A k-way partition of a weighted hypergraph H = (V, E, c, ω) is balanced, if the weight of
each block is below some predefined upper bound. In the literature, the most commonly used
bounds are Lk := (1 + ε)⌈ c(V )

k ⌉ (standard definition) and Lmax
k := Lk + maxv∈V c(v) [19, 38,

39]. The latter was initially proposed by Fiduccia and Mattheyses [19] for bipartitioning to
ensure that the highest-gain vertex can always be moved to the opposite block.

Both definitions exhibit shortcomings in the presence of heavy vertices: As soon as the
hypergraph contains even a single vertex with c(v) > Lk, no feasible solution exists when the
block weights are constrained by Lk, while for Lmax

k it follows that Lmax
k > 2Lk – allowing

large variations in block weights even if ε is small. In the following, we therefore propose a
new balance constraint that (i) guarantees the existence of an ε-balanced k-way partition
and (ii) avoids unnecessarily large imbalances.

While the optimal solution of the most balanced partition problem would yield a partition
with the best possible balance, it is not feasible in practice to use LOPT

k := (1 + ε)OPT(H, k)
as balance constraint, because finding such a k-way partition is NP-hard [20]. Hence, we
propose to use the bound provided by the LPT algorithm instead:

LLPT
k := (1 + ε) LPT(H, k) ≤

(
4
3 −

1
3k

)
LOPT

k . (2)
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c(V4) = 8 > 6 = L4 ∀i ∈ [1, 4] : c(Vi) = 6 ≤ 6 = L4k = 4 and ε = 0

Figure 1 Illustration of a deeply (left, green line) and a non-deeply balanced bipartition (left,
red line). The numbers in each circle denotes the vertex weights. In both cases, the hypergraph is
partitioned into k = 4 blocks with ε = 0 via recursive bipartitioning. Thus, the weight of heaviest
block must be smaller or equal to L4 = 6 and for the first bipartition, we use L2 = 12 as an upper
bound.

Note that if the hypergraph is unweighted, the LPT algorithm will always find an optimal
solution with OPT(H, k) = ⌈ |V |

k ⌉ and thus, LLPT
k is equal to Lk. Since all of today’s

partitioning algorithms bound the maximum block weight by Lk, Section 6 gives more details
on how we employ this new balance constraint definition in our experimental evaluation.

5 Multilevel Recursive Bipartitioning with Vertex Weights Revisited

Most multilevel hypergraph partitioners either employ recursive bipartitioning directly [11,
16, 29, 37, 41] or use RB-based algorithms in the initial partitioning phase to compute an
initial k-way partition of the coarsest hypergraph [1, 4, 14, 30]. In both settings, a k-way
partition is derived by first computing a bipartition Π2 = {V1, V2} of the (input/coarse)
hypergraph H and then recursing on the subhypergraphs HV1 and HV2 by partitioning V1
into ⌈k

2 ⌉ and V2 into ⌊k
2 ⌋ blocks. Although KaHyPar adaptively adjusts the allowed imbalance

at each bipartitioning step (using the imbalance factor ε′ as defined in Equation 1), an
unfortunate distribution of the vertices in some bipartitions Π2 can easily lead to instances
for which it is impossible to find a balanced solution during the recursive calls – even though
the current bipartition Π2 satisfies the adjusted balance constraint. An example is shown
in Figure 1 (left): Although the current bipartition (indicated by the red line) is perfectly
balanced, it will not be possible to recursively partition the subhypergraph induced by the
vertices of V2 into two blocks of equal weight, because each of the three vertices has a weight
of four.

To capture this problem, we introduce the notion of deep balance:

▶ Definition 1. (Deep Balance). Let H = (V, E, c, ω) be a weighted hypergraph for which
we want to compute an ε-balanced k-way partition, and let HV ′ be a subhypergraph of H

which should be partitioned into k′ ≤ k blocks via recursive bipartitioning. A subhypergraph
HV ′ is deeply balanced w.r.t. k′, if there exists a k′-way partition Πk′ of HV ′ such that
max(Πk′) ≤ Lk := (1 + ε)⌈ c(V )

k ⌉. A bipartition Π2 = {V1, V2} of HV ′ is deeply balanced w.r.t.
k′, if the subhypergraphs HV1 and HV2 are deeply balanced with respect to ⌈k′

2 ⌉ resp. ⌊k′

2 ⌋.

If a subhypergraph HV ′ is deeply balanced with respect to k′, there always exists a k′-way
partition Πk′ of HV ′ such that weight of the heaviest block satisfies the original balance
constraint Lk imposed on the partition of the input hypergraph H. Moreover, there also
always exists a deeply balanced bipartition Π2 := {V1, V2} (V1 is the union of the first ⌈k′

2 ⌉

SEA 2021



8:6 Multilevel Hypergraph Partitioning with Vertex Weights Revisited

and V2 of the last ⌊k′

2 ⌋ blocks of Πk′). Hence, a RB-based partitioning algorithm that is
able to compute deeply balanced bipartitions on deeply balanced subhypergraphs will always
compute ε-balanced k-way partitions (assuming the input hypergraph is deeply balanced).

Deep Balance and Adaptive Imbalance Adjustments. Computing deeply balanced bipar-
titions in the RB setting guarantees that the resulting k-way partition is ε-balanced. Thus,
the concept of deep balance could replace the adaptive imbalance factor ε′ employed in
KaHyPar [37] (see Equation 1). However, as we will see in the following example, combining
both approaches gives the partitioner more flexibility (in terms of feasible vertex moves during
refinement). Assume that we want to compute a 4-way partition via recursive bipartitioning
and that the first bipartition Π2 := {V1, V2} is deeply balanced with c(V1) = (1 + ε)⌈ c(V )

2 ⌉.
The deep-balance property ensures that we can further partition V1 into two blocks such
that the weight of the heavier block is smaller than L4. However, this bipartition has to be
perfectly balanced:

L2 = (1 + ε)
⌈c(V1)

2

⌉
= (1 + ε)

⌈ (1 + ε)⌈ c(V )
2 ⌉

2

⌉
≤ (1 + ε)

⌈c(V )
4

⌉
= L4 ⇒ ε ≈ 0. (3)

If we would have computed the first bipartition with an adjusted imbalance factor ε′,
then max(Π2) ≤ (1 + ε′)⌈ c(V )

2 ⌉ =
√

1 + ε⌈ c(V )
2 ⌉ – providing more flexibility for subsequent

bipartitions. In the following, we therefore focus on computing deeply ε′-balanced bipartitions.

Deep Balance and Multilevel Recursive Bipartitioning. In general, computing a deeply
balanced bipartition Π2 := {V1, V2} w.r.t. k is NP-hard, as we must show that there exists a
k-way partition Πk of H with max(Πk) ≤ Lk, which can be reduced to the most balanced
partition problem presented in Section 2. However, we can first compute a k-way partition
Πk := {V ′

1 , . . . , V ′
k} using the LPT algorithm, thereby approximating an optimal solution.

If max(Πk) ≤ Lk, we can then construct a deeply balanced bipartition Π2 = {V1, V2} by
choosing V1 := V ′

1 ∪ . . . ∪ V ′
⌈ k

2 ⌉ and V2 := V ′
⌈ k

2 ⌉+1 ∪ . . . ∪ V ′
k. Unfortunately, this approach

completely ignores the optimization of the objective function – yielding balanced partitions
of low quality. If such a bipartition were to be used as initial solution in the multilevel
setting, the objective could still be optimized during the refinement phase. However, this
would necessitate that refinement algorithms are aware of the concept of deep balance and
that they only perform vertex moves that don’t destroy the deep-balance property of the
starting solution. Since this is infeasible in practice, we propose a different approach that
involves fixed vertices.

The key idea of our approach is to compute a prepacking Ψ = {P1, P2} of the m = |P1|+
|P2| heaviest vertices of the hypergraph and to show that this prepacking suffices to ensure
that each ε′-balanced bipartition Π2 = {V1, V2} with P1 ⊆ V1 and P2 ⊆ V2 is deeply balanced.
Note that the upcoming definitions and theorems are formulated from the perspective of the
first bipartition of the input hypergraph H to simplify notation. They can be generalized
to subhypergraphs HV ′ in a similar fashion as was done in Definition 1. Furthermore, we
say that the bipartition Π2 = {V1, V2} respects a prepacking Ψ = {P1, P2}, if P1 ⊆ V1 and
P2 ⊆ V2, and that the bipartition is balanced, if max(Π2) ≤ L2 := (1 + ε′)⌈ c(V1∪V2)

2 ⌉ (with
ε′ as defined in Equation 1). The following definition formalizes our idea.

▶ Definition 2. (Sufficiently Balanced Prepacking). Let H = (V, E, c, ω) be a hypergraph for
which we want to compute an ε-balanced k-way partition via recursive bipartitioning. We
call a prepacking Ψ of H sufficiently balanced if every balanced bipartition Π2 respecting Ψ is
deeply balanced with respect to k.
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Our approach to compute ε-balanced k-way partitions is outlined in Algorithm 1. We
first compute a bipartition Π2. Before recursing on each of the two induced subhypergraphs,
we check if Π2 is deeply balanced using the LPT algorithm in a similar fashion as described
in the beginning of this paragraph. If it is not deeply balanced, we compute a sufficiently
balanced prepacking Ψ and re-compute Π2 – treating the vertices of the prepacking as fixed
vertices. If this second bipartitioning call was able to compute a balanced bipartition, we
found a deeply balanced partition and proceed to partition the subhypergraphs recursively.

Note that, in general, we may not detect that Π2 is deeply balanced or fail to find a
sufficiently balanced prepacking Ψ or a balanced bipartition Π2, since all involved problems
are NP-hard. However, as we will see in Section 6, Algorithm 1 computes balanced partitions
for all instances of our large real-world benchmark set. This seems to indicate that the
above-mentioned problems only happen rarely in practice.

Algorithm 1 Recursive Bipartitioning Algorithm.
Data: Hypergraph H for which we seek an ε-balanced k-way partition and subhypergraph

HV ′ of H which is to be to bipartitioned recursively into k′ ≤ k blocks.
1 Function recursiveBipartitioning(H, k, ε HV ′ , k′):
2 L2 ← (1 + ε′)⌈ c(V ′)

2 ⌉ // with ε′ as defined in Equation 1
3 Π2 := {V1, V2} ← multilevelBipartitioning(HV ′ , L2, ∅) // ∅ = empty prepacking
4 if k′ = 2 then return Π2
5 else if Π2 is not deeply balanced w.r.t. k′ then
6 Ψ← sufficientlyBalancedPrepacking(H, k, ε, HV ′ , k′) // see Algorithm 2
7 Π2 ← multilevelBipartitioning(HV ′ , L2, Ψ) // treating Ψ as fixed vertices

8 Πk1 ← recursiveBipartitioning(H, k, ε, HV1 , k1) with k1 := ⌈k′

2 ⌉
9 Πk2 ← recursiveBipartitioning(H, k, ε, HV2 , k2) with k2 := ⌊k′

2 ⌋
10 return Πk1 ∪Πk2

Computing a Sufficiently Balanced Prepacking. The prepacking Ψ is constructed by
incrementally assigning vertices to Ψ in decreasing order of weight and checking a property
P after each assignment that, if satisfied, implies that the current prepacking is sufficiently
balanced. In the proof of property P , we will extend a k-way prepacking Ψk to an ε-balanced
k-way partition Πk using the LPT algorithm and use the following upper bound on the
weight of the heaviest block of Πk.

▶ Lemma 3. (LPT Bound). Let H = (V, E, c, ω) be a weighted hypergraph, Ψk be a k-way
prepacking for a set of fixed vertices P ⊆ V , and let O := ⟨v1, . . . , vm | vi ∈ V \ P ⟩ be the
sequence of all ordinary vertices of V \ P sorted in decreasing order of weight. If we assign
the remaining vertices O to the blocks of Ψk by using the LPT algorithm, we can extend Ψk

to a k-way partition Πk of H such that the weight of the heaviest block is bound by:

max(Πk) ≤ max{1
k

c(P ) + hk(O), max(Ψk)}, with hk(O) := max
i∈{1,...,m}

c(vi) + 1
k

i−1∑
j=1

c(vj).

The proof of Lemma 3 can be found in Appendix A. O is sorted in decreasing order of
weight because for any permutation O′ of O, it holds that hk(O) ≤ hk(O′) – resulting in the
tightest bound for max(Πk).

Assuming that the number k of blocks is even (i.e., k1 = k2 = k/2) to simplify notation, the
balance property P is defined as follows (the generalized version can be found in Appendix B):

SEA 2021



8:8 Multilevel Hypergraph Partitioning with Vertex Weights Revisited

▶ Definition 4. (Balance Property P). Let H = (V, E, c, ω) be a hypergraph for which
we want to compute an ε-balanced k-way partition and let Ψ be a prepacking of H for a
set of fixed vertices P ⊆ V . Furthermore, let Ot := ⟨v1, . . . , vt⟩ be the sequence of the t

heaviest ordinary vertices of V \ P sorted in decreasing order of weight such that t is the
smallest number that satisfies max(Ψ) + c(Ot) ≥ L2 (see Line 2, Algorithm 1). We say that
a prepacking Ψ satisfies the balance property P if the following two conditions hold:

(i) the prepacking Ψ is deeply balanced
(ii) 1

k/2
max(Ψ) + hk/2(Ot) ≤ Lk.

In the following, we will show that the LPT algorithm can be used to construct a k/2-way
partition Πk/2 for both blocks of any balanced bipartition Π2 = {V1, V2} that respects Ψ,
such that the weight of the heaviest block can be bound by the left term of Condition (ii).
This implies that max(Πk/2) ≤ Lk (right term of Condition (ii)) and thus proofs that any
balanced bipartition Π2 respecting Ψ is deeply balanced. Note that choosing t as the smallest
number that satisfies max(Ψ) + c(Ot) ≥ L2 minimizes the left term of Condition (ii) (since
hk(Ot) ≤ hk(Ot+1)).

▶ Theorem 5. A prepacking Ψ of a hypergraph H = (V, E, c, ω) that satisfies the balance
property P is sufficiently balanced with respect to k.

Proof. For convenience, we use k′ := k/2. Let Π2 = {V1, V2} be an abitrary balanced
bipartition that respects the prepacking Ψ = {P1, P2} with max (Π2) ≤ L2. Since Ψ is
deeply balanced (see Definition 4(i)), there exists a k′-way prepacking Ψk′ of P1 such that
max(Ψk′) ≤ Lk. We define the sequence of the ordinary vertices of block V1 sorted in
decreasing weight order with O1 := ⟨v1, . . . , vm | vi ∈ V1 \ P1⟩. We can extend Ψk′ to a
k′-way partition Πk′ of V1 by assigning the vertices of O1 to the blocks in Ψk′ using the
LPT algorithm. Lemma 3 then establishes an upper bound on the weight of the heaviest
block.

max(Πk′)
Lemma 3
≤ max{ 1

k′ c(P1) + hk′(O1), max(Ψk′)}
max(Ψ

k′ )≤Lk

≤ max{ 1
k′ c(P1) + hk′(O1), Lk}

Let Ot be the sequence of the t heaviest ordinary vertices of V \ P with P := P1 ∪ P2 as
defined in Definition 4.

▷ Claim 6. It holds that: 1
k′ c(P1) + hk′(O1) ≤ 1

k′ max(Ψ) + hk′(Ot).

For a proof of Claim 6 see Appendix C. We can conclude that

1
k′ c(P1) + hk′(O1)

Claim 6
≤ 1

k′ max(Ψ) + hk′(Ot)
Definition 4(ii)

≤ Lk.

This proves that the subhypergraph HV1 is deeply balanced. The proof for block V2 can be
done analogously, which then implies that Π2 is deeply balanced. Since Π2 is an abitrary
balanced bipartition respecting Ψ, it follows that Ψ is sufficiently balanced. ◀

Algorithm 2 outlines our approach to efficiently compute a sufficiently balanced prepacking
Ψ. In Line 6, we compute a k′-way prepacking Ψk′ of the i heaviest vertices with the
LPT algorithm and if Ψk′ satisfies max(Ψk′) ≤ Lk, then Line 7 constructs a deeply balanced
prepacking Ψ (which fullfils Condition (i) of Definition 4). We store the blocks P ′

j of Ψk′

together with their weights c(P ′
j) as key in an addressable priority queue such that we can
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determine and update the block with the smallest weight in time O(log k′) (Line 6). In
Line 9, we compute the smallest t that satisfies max(Ψ) + c(Ot) ≥ L2 via a binary search in
logarithmic time over an array containing the vertex weight prefix sums of the sequence O,
which can be precomputed in linear time. Furthermore, we construct a range maximum query
data structure over the array Hk′/2 = ⟨c(v1), c(v2) + 1

k′/2
c(v1), . . . , c(vn) + 1

k′/2

∑n−1
j=1 c(vj)⟩.

Caculating hk′/2(Ot) (Line 10) then corresponds to a range maximum query in the interval
[i+1, i+t] in Hk′/2, which can be answered in constant time after Hk′/2 has been precomputed
in time O(n) [6]. In total, the running time of the algorithm is O(n(log k′ + log n)). Note
that if the algorithm reaches Line 12, we could not proof that any of the intermediate
constructed prepackings were sufficiently balanced, in which case Ψ represents a bipartition
of HV ′ computed by the LPT algorithm.

Algorithm 2 Prepacking Algorithm.
Data: Hypergraph H = (V, E, c, ω) for which we seek an ε-balanced k-way partition and

subhypergraph HV ′ = (V ′, E′, c, ω) of H which is to be to bipartitioned recursively
into k′ ≤ k blocks.

1 Function sufficientlyBalancedPrepacking(H, k, ε HV ′ , k′):
2 Ψ = ⟨P1, P2⟩ ← ⟨∅, ∅⟩ and Ψk′ = ⟨P ′

1, . . . , P ′
k′⟩ ← ⟨∅, . . . , ∅⟩ // Initialization

3 L2 ← (1 + ε′)⌈ c(V ′)
2 ⌉ and Lk ← (1 + ε)⌈ c(V )

k ⌉ // with ε′ as defined in Equation 1
4 O ← ⟨v1, . . . , vn | vi ∈ V ′⟩ // V ′ sorted in decreasing order of weight ⇒ O(n log n)
5 for i = 1 to n do
6 Add vi ∈ O to bin P ′

j ∈ Ψk′ with smallest weight // LPT algorithm

7 Ψ← {P ′
1 ∪ . . . ∪ P ′

x, P ′
x+1 ∪ . . . ∪ P ′

k′} with x := ⌈k′

2 ⌉
8 if max(Ψ) ≤ L2 and max(Ψk′) ≤ Lk then // ⇒ Ψ is deeply (ε′-)balanced
9 t← min({t | max(Ψ) + c(Ot) ≥ L2}) // Ot := ⟨vi+1, . . . , vi+t⟩

10 if 2
k′ max(Ψ) + hk′/2(Ot) ≤ Lk then // Condition (ii) of Definition 4

11 return Ψ // ⇒ Ψ is sufficiently balanced (Theorem 5)

12 return Ψ // No sufficiently balanced prepacking found ⇒ treat all vertices as fixed vertices

6 Experimental Evaluation

We integrated the prepacking technique (see Algorithms 1 and 2) into the recursive bipartition-
ing algorithm of KaHyPar. Our implementation is available from http://www.kahypar.org.
The code is written in C++17 and compiled using g++9.2 with the flags -mtune=native
-O3 -march=native. Since KaHyPar offers both a recursive bipartitioning and direct k-way
partitioning algorithm (which uses the RB algorithm in the initial partitioning phase), we
refer to the RB-version using our improvements as KaHyPar-BP-R and to the direct k-way
version as KaHyPar-BP-K (BP = Balanced Partitioning).

Instances. The following experimental evaluation is based on two benchmark sets. The
RealWorld benchmark set consists of 50 hypergraphs originating from the VLSI design and
scientific computing domain. It contains instances from the ISPD98 VLSI Circuit Benchmark
Suite [2] (18 instances), the DAC 2012 Routability-Driven Placement Benchmark Suite [42]
(9 instances), 16 instances from the Stanford Network Analysis (SNAP) Platform [33], and 7
highly asymmetric matrices of Davis et al. [15] (referred to as ASM). For VLSI instances

SEA 2021
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Figure 2 Vertex weight distributions for each instance type. Each bucket of a histogram shows the
number of vertices (y-axis) that contribute x% to the total weight of the corresponding hypergraph.

(ISPD98 and DAC), we use the area of a circuit element as the weight of its corresponding
vertex. We translate sparse matrices (SNAP and ASM instances) to hypergraphs using
the row-net model [13] and use the degree of a vertex as its weight. The vertex weight
distributions of the individual instance types are depicted in Figure 2.1

Additionally, we generate ten Artificial instances that use the net structure of the ten
largest ISPD98 instances. Instead of using the area as weight, we assign new vertex weights
that yield instances for which it is difficult to satisfy the balance constraint: Each vertex
is assigned either unit weight or a weight chosen randomly from an uniform distribution in
[1, W ] ⊆ N+. Both the probability that a vertex has non-unit weight and the parameter W

are determined (depending on the total number of vertices) such that the expected number
of vertices with non-unit weight is 120 and the expected total weight of these vertices is half
the expected total weight of the resulting hypergraph.

System and Methodology. All experiments are performed on a single core of a cluster
with Intel Xeon Gold 6230 processors running at 2.1 GHz with 96GB RAM. We compare
KaHyPar-BP-R and KaHyPar-BP-K with the latest recursive bipartitioning (KaHyPar-R) and
direct k-way version (KaHyPar-K) of KaHyPar [21], the default (PaToH-D) and quality preset
(PaToH-Q) of PaToH 3.3 [11], as well as with the recursive bipartitioning (hMetis-R) and
direct k-way version (hMetis-K) of hMetis 2.0 [29, 30]. Details about the choices of config
parameters that influence partitioning quality or imbalance can be found in Appendix D.

We perform experiments using k ∈ {2, 4, 8, 16, 32, 64, 128}, ε ∈ {0.01, 0.03, 0.1}, ten
repetitions using different seeds for each combination of k and ε, and a time limit of eight
hours. We call a combination of a hypergraph H = (V, E, c, ω), k, and ε an instance. Before
partitioning an instance, we remove all vertices v ∈ V from H with a weight greater than
Lk = (1 + ε)⌈ c(V )

k ⌉ as proposed by Caldwell et al. [10] and adapt k to k′ := k − |VR|, where
VR represents the set of removed vertices. We repeat that step recursively until there is no
vertex with a weight greater than Lk′ := (1 + ε)⌈ c(V \VR)

k′ ⌉. The input for each partitioner
is the subhypergraph HV \VR

of H for which we compute a k′-way partition with LLPT
k′ as

maximum allowed block weight. Note that since all evaluated partitioners internally employ
Lk′ as balance constraint, we initialize each partitioner with a modified imbalance factor ε̂

1 The benchmark sets and detailed statistics of their properties are publicly available from http://algo2.
iti.kit.edu/heuer/sea21/.

http://algo2.iti.kit.edu/heuer/sea21/
http://algo2.iti.kit.edu/heuer/sea21/
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Table 1 Percentage of imbalanced instances produced by each partitioner for each combination
of instance type and ε.

ISPD98 DAC ASM SNAP Artificial
ε 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1

KaHyPar-BP-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
KaHyPar-BP-R 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

KaHyPar-K 6.3 5.6 0.8 9.5 7.9 6.3 4.1 4.1 2.0 0.9 0.9 0.0 27.1 22.9 11.4
KaHyPar-R 10.3 8.7 7.1 19.0 19.0 14.3 6.1 4.1 4.1 6.2 2.7 0.9 28.6 24.3 12.9
hMetis-K 43.7 22.2 9.5 33.3 22.2 11.1 67.3 32.7 4.1 33.9 20.5 3.6 51.4 38.6 24.3
hMetis-R 17.5 15.1 7.1 20.6 15.9 12.7 8.2 6.1 4.1 15.2 10.7 4.5 58.6 54.3 34.3
PaToH-Q 15.9 11.1 5.6 23.8 17.5 9.5 24.5 6.1 4.1 33.9 8.0 1.8 31.4 24.3 14.3
PaToH-D 9.5 7.9 3.2 20.6 17.5 9.5 28.6 6.1 4.1 22.3 11.6 2.7 20.0 15.7 8.6

instead of ε which is calculated as follows:

Lk′ = (1 + ε̂)
⌈

c(V \ VR)
k′

⌉
= (1 + ε)LPT(HV \VR

, k′) = LLPT
k′ ⇒ ε̂ = LLPT

k′

⌈ c(V \VR)
k′ ⌉

− 1.

We consider the resulting k′-way partition Πk′ to be imbalanced, if it is not ε̂-balanced.
Each partitioner optimizes the connectivity metric, which we also refer to as the quality of
a partition. Partition Πk′ can be extended to a k-way partition Πk by adding each of the
removed vertices v ∈ VR to Πk as a separate block. Note that adding the removed vertices
increases the connectivity metric of a k′-way partition only by a constant value α ≥ 0. Thus,
we report the quality of Πk′ , since (λ− 1)(Πk) will be always equal to (λ− 1)(Πk′) + α.

For each instance, we average quality and running times using the arithmetic mean (over
all seeds). To further average over multiple instances, we use the geometric mean for absolute
running times to give each instance a comparable influence. Runs with imbalanced partitions
are not excluded from averaged running times. If all ten runs of a partitioner produced
imbalanced partitions on an instance, we consider the instance as imbalanced and mark it
with ✗ in the plots.

To compare the solution quality of different algorithms, we use performance profiles [17].
Let A be the set of all algorithms we want to compare, I the set of instances, and qA(I) the
quality of algorithm A ∈ A on instance I ∈ I. For each algorithm A, we plot the fraction of
instances (y-axis) for which qA(I) ≤ τ ·minA′∈A qA′(I), where τ is on the x-axis. For τ = 1,
the y-value indicates the percentage of instances for which an algorithm A ∈ A performs
best. Note that these plots relate the quality of an algorithm to the best solution and thus
do not permit a full ranking of three or more algorithms.

Balanced Partitioning. In Table 1, we report the percentage of imbalanced instances
produced by each partitioner for each instance type and ε. Both KaHyPar-BP-K and
KaHyPar-BP-R compute balanced partitions for all tested benchmark sets and paramet-
ers. For the remaining partitioners, the number of imbalanced solutions increases as the
balance constraint becomes tighter. For the previous KaHyPar versions, the number of
imbalanced partitions is most pronounced on VLSI instances: For ε = 0.01, KaHyPar-K
and KaHyPar-R compute infeasible solutions for 6.3% (10.3%) of the ISPD98 and for 9.5%
(19.0%) of the DAC instances. Comparing the distribution of vertex weights reveals that
these instances tend to have a larger proportion of heavier vertices compared to the ASM
and SNAP instances (see Figure 2. The largest benefit of using our approach can be observed
on the artificially generated instances, where KaHyPar-K and KaHyPar-R only computed
balanced partitions for 72.9% (71.4%) of the instances (for ε = 0.01).

SEA 2021
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Table 2 Percentage of imbalanced instances produced by each partitioner on our RealWorld
benchmark set for each combination of k and ε.

k ∈ {2, 4, 8} k ∈ {16, 32} k ∈ {64, 128} RealWorld
ε 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1

KaHyPar-BP-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
KaHyPar-BP-R 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

KaHyPar-K 0.7 0.0 0.0 5.0 6.0 2.0 11.1 9.1 4.0 4.9 4.3 1.7
KaHyPar-R 2.0 0.7 0.7 11.0 9.0 7.0 21.0 18.0 13.0 10.0 8.0 6.0
hMetis-K 12.0 2.0 0.0 53.0 21.0 11.0 76.0 57.0 14.0 42.0 23.1 7.1
hMetis-R 2.7 2.0 0.0 18.0 14.0 7.0 34.0 27.0 17.0 16.0 12.6 6.9
PaToH-Q 15.3 2.7 0.7 28.0 11.0 5.0 34.0 22.0 11.0 24.3 10.6 4.9
PaToH-D 9.3 2.7 0.7 18.0 11.0 4.0 32.0 22.0 10.0 18.3 10.6 4.3

Table 3 Occurrence of prepacked vertices (i.e., vertices that are fixed to a specific block during
partitioning) for each combination of k and ε when using KaHyPar-BP-R on RealWorld instances:
Minimum/average/maximum percentage of prepacked vertices (left), and percentage of instances for
which the prepacking is executed at least once (right).

ε = 0.01 ε = 0.03 ε = 0.1 Prepacking Triggered
k Min Avg Max Min Avg Max Min Avg Max ε = 0.01 ε = 0.03 ε = 0.1

2 - - - - - - - - - - - -
4 - - - - - - - - - - - -
8 ≤ 0.1 ≤ 0.1 0.2 ≤ 0.1 ≤ 0.1 ≤ 0.1 - - - 5.0 1.7 -

16 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 8.3 5.0 3.3
32 ≤ 0.1 8.1 59.0 ≤ 0.1 6.2 68.4 ≤ 0.1 1.9 14.7 20.0 18.3 10.0
64 ≤ 0.1 23.2 87.7 ≤ 0.1 17.3 90.9 ≤ 0.1 2.7 35.9 18.3 13.3 10.0

128 ≤ 0.1 67.9 100.0 ≤ 0.1 42.0 96.3 ≤ 0.1 15.4 97.0 26.7 20.0 15.0

With some notable exceptions, the number of imbalanced partitions of both variants of
PaToH and hMetis-R is comparable to that of KaHyPar-R: PaToH computes significantly fewer
feasible solutions on sparse matrix instances (ASM and SNAP) for ε = 0.01, while hMetis-R
performs considerably worse on the Artificial benchmark set. Out of all partitioners,
hMetis-K yields the most imbalanced instances across all benchmark sets. As can be seen
in Table 2, the number of imbalanced partitions produced by each competing partitioner
increases with deceasing ε and increasing k.

Table 3 shows (i) how often our prepacking algorithm is triggered at least once in
KaHyPar-BP-R (see Line 5 in Algorithm 1) and (ii) the percentage of vertices that are treated
as fixed vertices (see Table 4 in Appendix E for the results of KaHyPar-BP-K). Except for
k = 128, on average less than 25% of the vertices are treated as fixed vertices (even less than
10% for k < 64), which provides sufficient flexibility to optimize the connectivity objective
on the remaining ordinary vertices. However, in a few cases there are also runs where almost
all vertices are added to the prepacking. As expected, the triggering frequency and the
percentage of fixed vertices increases for larger values of k and smaller ε.

Quality and Running Times. Comparing the different KaHyPar configurations in Figure 3
(left), we can see that our new configurations provide the same solution quality as their non-
prepacking counterparts. Furthermore, we see that, in general, the direct k-way algorithm
still performs better than its RB counterpart [38]. Figure 3 (middle) therefore compares the
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Figure 3 Performance profiles comparing the solution quality of KaHyPar-BP-K and KaHyPar-BP-R
with KaHyPar-K (left), KaHyPar-R (left), PaToH (middle), and hMetis (middle) on our RealWorld
benchmark set, and with all systems on our Artificial benchmark set (right) (ε = 0.01).

strongest configuration KaHyPar-BP-K with PaToH and hMetis. We see that KaHyPar-BP-K
performs considerably better than the competitors. If we compare KaHyPar-BP-K with each
partitioner individually on the RealWorld benchmark set, KaHyPar-BP-K produces parti-
tions with higher quality than those of KaHyPar-K, KaHyPar-BP-R, KaHyPar-R, hMetis-R,
hMetis-K, PaToH-Q and PaToH-D on 48.9%, 70.2%, 73.2%, 76.4%, 84.3%, 92.9% and 97.9% of
the instances, respectively. KaHyPar-BP-K outperforms KaHyPar-BP-R on the RealWorld
benchmark set. On artificial instances, both algorithms produce partitions with comparable
quality for ε = {0.01, 0.03}, while the results are less clear for ε = 0.1 (see Figure 3 (right),
as well as Figures 4 in Appendix F).

The running time plots (see Figure 5 and 6 in Appendix G) show that our new approach
does not impose any additional overheads in KaHyPar. On average, KaHyPar-BP-K is slightly
faster than KaHyPar-K as our new algorithm has replaced the previous balancing strategy
in KaHyPar (restarting the bipartition with an tighter bound on the weight of the heaviest
block if the bipartition is imbalanced). The running time difference is less pronounced for
KaHyPar-BP-R and KaHyPar-R. This can be explained by the fact that, in KaHyPar-BP-R,
our prepacking algorithm is executed on the input hypergraph, whereas it is executed on the
coarsest hypergraph in KaHyPar-BP-K.

7 Conclusion and Future Work

In this work, we revisited the problem of computing balanced partitions for weighted
hypergraphs in the multilevel setting and showed that many state-of-the-art hypergraph
partitioners struggle to find balanced solutions on hypergraphs with weighted vertices –
especially for tight balance constraints. We therefore developed an algorithm that enables
partitioners based on the recursive bipartitioning scheme to reliably compute balanced
partitions. The method is based on the concept of deeply balanced bipartitions and is
implemented by pre-assigning a small subset of the heaviest vertices to the two blocks of
each bipartiton. For this pre-assignment, we established a property that can be verified
in polynomial time and, if fulfilled, leads to provable balance guarantees for the resulting
k-way partition. We integrated the approach into the recursive bipartitioning algorithm of
KaHyPar. Our new algorithms KaHyPar-BP-K and KaHyPar-BP-R are capable of computing
balanced solutions on all instances of a diverse benchmark set, without negatively affecting
the solution quality or running time of KaHyPar.
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Interesting opportunities for future research include replacing the LPT algorithm with an
algorithm that additionally optimizes the partitioning objective to construct sufficiently bal-
anced prepackings with improved solution quality [34], and integrating rebalancing strategies
similar to the techniques proposed for non-multilevel partitioners [9, 10, 18] into multilevel
refinement algorithms.
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A Proof of Lemma 3

▶ Lemma 3. (LPT Bound). Let H = (V, E, c, ω) be a weighted hypergraph, Ψk be a k-way
prepacking for a set of fixed vertices P ⊆ V , and let O := ⟨v1, . . . , vm | vi ∈ V \ P ⟩ be the
sequence of all ordinary vertices of V \ P sorted in decreasing order of weight. If we assign
the remaining vertices O to the blocks of Ψk by using the LPT algorithm, we can extend Ψk

to a k-way partition Πk of H such that the weight of the heaviest block is bound by:

max(Πk) ≤ max{1
k

c(P ) + hk(O), max(Ψk)}, with hk(O) := max
i∈{1,...,m}

c(vi) + 1
k

i−1∑
j=1

c(vj).

Proof. We define Ψk := {P1, . . . , Pk} and Πk := {V1, . . . , Vk}. Let assume that the LPT al-
gorithm assigned the i-th vertex vi of O to block Vj ∈ Πk. We define V (i)

j as a subset of
block Vj that only contains vertices of ⟨v1, . . . , vi⟩ ⊆ O and P . Since the LPT algorithm
always assigns an vertex to a block with the smallest weight (see Section 3), the weight of
V (i−1)

j must be smaller or equal to 1
k (c(P ) +

∑i−1
j=1 c(vj)) (average weight of all previously

assigned vertices), otherwise V (i−1)
j would be not the block with the smallest weight.

⇒ c(V (i)
j ) = c(V (i−1)

j ) + c(vi) ≤
1
k

(c(P ) +
i−1∑
j=1

c(vj)) + c(vi) ≤
1
k

c(P ) + hk(O)

We can establish an upper bound on the weight of all blocks to which the LPT algorithm
assigns an vertex to with 1

k c(P ) + hk(O). If the LPT algorithm does not assign any vertex
to a block Vj ∈ Πk, its weight is equal to c(Pj) ≤ max(Ψk).

⇒ max(Πk) ≤ max{1
k

c(P ) + hk(O), max(Ψk)} ◀

B Generalized Balance Property

▶ Definition 7. (Generalized Balance Property). Let H = (V, E, c, ω) be a hypergraph for
which we want to compute an ε-balanced k-way partition and Ψ := {P1, P2} be a prepacking
of H for a set of fixed vertices P ⊆ V . Furthermore, let Ot1 resp. Ot2 be the sequence of the t1
resp. t2 heaviest ordinary vertices of V \ P sorted in decreasing vertex weight order such that
t1 resp. t2 is the smallest number that satisfies c(P1) + c(Ot1) ≥ L2 resp. c(P2) + c(Ot2) ≥ L2
(see Line 2, Algorithm 1). We say that a prepacking Ψ satisfies the balance property with
respect to k if the following conditions hold:

(i) Ψ is deeply balanced
(ii) 1

k1
c(P1) + hk1(Ot1) ≤ Lk with k1 := ⌈k

2 ⌉
(iii) 1

k2
c(P2) + hk2(Ot2) ≤ Lk with k2 := ⌊k

2 ⌋
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The proof of Theorem 5 can be adapted such that we show that there exist a k1- resp. k2-
way partition Πk1 resp. Πk2 for V1 resp. V2 of any balanced bipartition Π2 := {V1, V2} that
respects the prepacking Ψ with max(Πk1) ≤ 1

k1
c(P1) + hk1(Ot1) ≤ Lk (Defintion (ii)) and

max(Πk2) ≤ 1
k2

c(P2) + hk2(Ot2) ≤ Lk (Defintion (iii)).

C Proof of Claim 6

▶ Lemma 8. Let L = ⟨a1, . . . , an⟩ be a sequence of elements sorted in decreasing weight
order with respect to a weight function c : L→ R≥0 (for a subsequence A := ⟨a1, . . . , al⟩ of
L, we define c(A) :=

∑l
i=1 c(ai)), L′ be an abitrary subsequence of L sorted in decreasing

weight order and Lm = ⟨a1, . . . , am⟩ the subsequence of the m ≤ n heaviest elements in L.
Then the following conditions hold:

(i) If c(L′) ≤ c(Lm), then hk(L′) ≤ hk(Lm)
(ii) If c(L′) > c(Lm), then hk(L′)− 1

k c(L′) ≤ hk(Lm)− 1
k c(Lm)

Proof. For convenience, we define L′ := ⟨b1, . . . , bl⟩. Note that ∀i ∈ {1, . . . , min(m, l)} :
c(ai) ≥ c(bi), since Lm contains the m heaviest elements in decreasing order. We define
i := arg maxi∈{1,...,l} c(bi) + 1

k

∑i−1
j=1 c(bj) (index that maximizes hk(L′)).

(i) + (ii): If i ≤ m, then

hk(L′) = c(bi) + 1
k

i−1∑
j=1

c(bj)
∀j∈[1,i]: c(bj)≤c(aj)

≤ c(ai) + 1
k

i−1∑
j=1

c(aj) ≤ hk(Lm)

(i): If m < i ≤ l, then

hk(L′) = c(bi) + 1
k

i−1∑
j=1

c(bj) = c(bi)−
1
k

n∑
j=i

c(bj) + 1
k

c(L′) ≤
(

1− 1
k

)
c(bi) + 1

k
c(L′)

c(bi)≤c(am)
c(L′)≤c(Lm)
≤

(
1− 1

k

)
c(am) + 1

k
c(Lm) = c(am) + 1

k

m−1∑
j=1

c(aj) ≤ hk(Lm)

(ii): If m < i ≤ l, then

hk(L′)− 1
k

c(L′) = c(bi) + 1
k

i−1∑
j=1

c(bj)− 1
k

c(L′) = c(bi)−
1
k

n∑
l=i

c(bl) ≤
(

1− 1
k

)
c(bi)

c(bi)≤c(am)
≤

(
1− 1

k

)
c(am) = c(am) + 1

k

m−1∑
j=1

c(aj)− 1
k

c(Lm) ≤ hk(Lm)− 1
k

c(Lm) ◀

▷ Claim 6. It holds that: 1
k′ c(P1) + hk′(O1) ≤ 1

k′ max(Ψ) + hk′(Ot).

Proof. Remember, Ψ = {P1, P2}, Π2 = {V1, V2} with P1 ⊆ V1 and P2 ⊆ V2, O1 is equal to
V1\P1 and Ot represents the t heaviest vertices of (V1∪V2)\(P1∪P2) with max(Ψ)+c(Ot) ≥ L2
as defined in Definition 4. The following proof distingush two cases based on Lemma 8.

If c(O1) ≤ c(Ot), then

1
k′ c(P1) + hk′(O1)

Lemma 8(i)
≤ 1

k′ c(P1) + hk′(Ot)
c(P1)≤max(Ψ)

≤ 1
k′ max(Ψ) + hk′(Ot)
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If c(O1) > c(Ot), then

1
k′ c(P1) + hk′(O1) = 1

k′ c(P1) + hk′(O1)− 1
k′ c(O1) + 1

k′ c(O1)
Lemma 8(ii)
≤ 1

k′ (c(P1) + c(O1)) + hk′(Ot)−
1
k′ c(Ot)

c(P1)+c(O1)=c(V1)= 1
k′ (c(V1)− c(Ot)) + hk′(Ot)

c(V1)≤L2
≤ 1

k′ (L2 − c(Ot)) + hk′(Ot)
max(Ψ)+c(Ot)≥L2

≤ 1
k′ max(Ψ) + hk′(Ot) ◁

D Configuration of Evaluated Partitioners

hMetis does not directly optimize the (λ − 1)-metric. Instead it optimizes the sum-of-
external-degrees (SOED), which is closely related to the connectivity metric: (λ− 1)(Π) =
SOED(Π) − cut(Π). We therefore configure hMetis to optimize SOED and calculate the
(λ− 1)-metric accordingly. The same approach is also used by the authors of hMetis [30].
Additionally, hMetis-R defines the maximum allowed imbalance of a partition differently [28].
For example, an imbalance value of 5 means that a block weight between 0.45 · c(V ) and
0.55 · c(V ) is allowed at each bisection step. We therefore translate the imbalance parameter
ε to a modified parameter ε′ such that the correct allowed block weight is matched after
log2(k) bisections:

ε′ := 100 ·

((1 + ε)
⌈ c(V )

k ⌉
c(V )

) 1
log2(k)

− 0.5



PaToH is evaluated with both the default (PaToH-D) and the quality preset (PaToH-Q).
However, there are also more fine-grained parameters available for PaToH as described in [12].
In our case, the balance parameter is of special interest as it might affect the ability of
PaToH to find a balanced partition. Therefore, we evaluated the performance of PaToH on
our benchmark set with each of the possible options Strict, Adaptive and Relaxed. The
configuration using the Strict option (which is also the default) consistently produced fewest
imbalanced partitions and had similar quality to the other configurations. Consequently, we
only report the results of this configuration.
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E Prepacking Algorithm Statistics for KaHyPar-BP-K

Table 4 Occurrence of prepacked vertices (i.e., vertices that are fixed to a specific block during
partitioning) for each combination of k and ε when using KaHyPar-BP-K on RealWorld instances:
Minimum/average/maximum percentage of prepacked vertices (left), and percentage of instances for
which the prepacking is executed at least once (right).

ε = 0.01 ε = 0.03 ε = 0.1 Prepacking Triggered [%]
k Min Avg Max Min Avg Max Min Avg Max ε = 0.01 ε = 0.03 ε = 0.1

2 - - - - - - - - - - - -
4 - - - - - - - - - - - -
8 6.7 17.1 41.6 0.4 0.5 0.6 2.3 2.3 2.3 5.0 3.3 1.7

16 3.1 15.6 34.0 0.2 2.0 7.2 1.9 2.1 2.3 8.3 6.7 3.3
32 0.3 29.9 56.0 0.1 11.7 42.3 0.2 3.4 26.3 13.3 15.0 6.7
64 0.2 54.4 94.3 0.3 23.0 69.3 0.4 6.6 94.7 21.7 10.0 8.3

128 0.5 76.5 100.0 0.4 42.4 91.0 0.3 15.7 59.8 28.3 21.7 11.7

F Quality Comparison for ε = 0.03 and ε = 0.1
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Figure 4 Comparing the solution quality of each evaluated partitioner for ε = 0.03 (left) and
ε = 0.1 (right) on our RealWorld (top) and Artificial (bottom) benchmark set. Note, U marks
instances that exceeded the time limit.
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G Absolute Running Times
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Figure 5 Comparing the running time of each evaluated partitioner for different values of ε on
our RealWorld benchmark set. The number under each boxplot denotes the average running time
of the corresponding partitioner. Note, U marks instances that exceeded the time limit.
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Figure 6 Comparing the running time of each evaluated partitioner for different values of ε on
our Artificial benchmark set. The number under each boxplot denotes the average running time
of the corresponding partitioner. Note, U marks instances that exceeded the time limit.
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