Characterizing Universal Reconfigurability of
Modular Pivoting Robots

Hugo A. Akitaya = Erik D. Demaine &
University of Massachusetts Lowell, MA, USA Massachusetts Institute of Technology,
Cambridge, MA, USA

Andrei Goncezi & Dylan H. Hendrickson &

Tufts University, Medford, MA, USA Massachusetts Institute of Technology,
Cambridge, MA, USA

Adam Hesterberg = Matias Korman &

Harvard University, Cambridge, MA, USA Siemens Electronic Design Automation,
Portland, OR, USA

Oliver Korten & Jayson Lynch &

Columbia University, New York, NY, USA University of Waterloo, ON, Canada

Irene Parada & Vera Sacristan &

TU Eindhoven, The Netherlands Universitat Politécnica de Catalunya,

Barcelona, Spain

—— Abstract

We give both efficient algorithms and hardness results for reconfiguring between two connected
configurations of modules in the hexagonal grid. The reconfiguration moves that we consider are
“pivots”, where a hexagonal module rotates around a vertex shared with another module. Following
prior work on modular robots, we define two natural sets of hexagon pivoting moves of increasing
power: restricted and monkey moves. When we allow both moves, we present the first universal
reconfiguration algorithm, which transforms between any two connected configurations using O(n3)
monkey moves. This result strongly contrasts the analogous problem for squares, where there are rigid
examples that do not have a single pivoting move preserving connectivity. On the other hand, if we
only allow restricted moves, we prove that the reconfiguration problem becomes PSPACE-complete.
Moreover, we show that, in contrast to hexagons, the reconfiguration problem for pivoting squares is
PSPACE-complete regardless of the set of pivoting moves allowed. In the process, we strengthen the
reduction framework of Demaine et al. [FUN’18] that we consider of independent interest.

2012 ACM Subject Classification Theory of computation — Computational geometry

Keywords and phrases reconfiguration, geometric algorithm, PSPACE-hardness, pivoting hexagons,
pivoting squares, modular robots

Digital Object Identifier 10.4230/LIPIcs.SoCG.2021.10

Related Version Due to lack of space a large number of proofs are omitted.
Full Version: https://arxiv.org/abs/2012.07556 [2]

Funding Jayson Lynch: Supported by NSERC.
Vera Sacristan: Partially supported by MTM2015-63791-R (MINECO/FEDER) and Gen. Cat.
DGR 2017SGR1640.

Acknowledgements This research started at the 34th Bellairs Winter Workshop on Computational
Geometry in 2019. We want to thank all participants for the fruitful discussions and a stimulating
environment. We would also like to thank a SoCG reviewer for their many contributions that helped
improve the presentation of the paper.

© Hugo A. Akitaya, Erik D. Demaine, Andrei Goncezi, Dylan H. Hendrickson,
BY Adam Hesterberg, Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada,
Vera Sacristan; }
licensed under Creative Commons License CC-BY 4.0 N
37th International Symposium on Computational Geometry (SoCG 2021).
Editors: Kevin Buchin and Eric Colin de Verdiére; Article No. 10; pp. 10:1-10:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

]

[N
[

mailto:hugo_akitaya@uml.edu
https://orcid.org/0000-0002-6827-2200
mailto:edemaine@mit.edu
https://orcid.org/0000-0003-3803-5703
mailto:andrei.gonczi@tufts.edu
https://orcid.org/0000-0002-5939-2366
mailto:dylanhen@mit.edu
mailto:achesterberg@gmail.com
mailto:matias_korman@mentor.com
mailto:oliver.korten@columbia.edu
mailto:jayson.lynch@uwaterloo.ca
https://orcid.org/0000-0003-0801-1671
mailto:i.m.de.parada.munoz@tue.nl
https://orcid.org/0000-0003-3147-0083
mailto:vera.sacristan@upc.edu
https://orcid.org/0000-0003-0203-256X
https://doi.org/10.4230/LIPIcs.SoCG.2021.10
https://arxiv.org/abs/2012.07556
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2

Characterizing Universal Reconfigurability of Modular Pivoting Robots

1 Introduction

Reconfiguration problems encompass a large family of problems in which we need to provide
a sequence of steps to transform one object into another. In this paper we consider the
problem of reconfiguring a collection of modular robots (referred in this paper as modules)
in a lattice using some prespecified set moves. Many variants of this problem have been
studied both in the robotics and in the computational geometry communities. In this paper
we study the reconfiguration problem for edge-connected configurations of hexagonal and
of square modules. We follow the commonly used single backbone condition [11], that
requires edge-connectivity to be maintained at all times. The moves allowed are pivots: a
module can rotate around vertices shared with other modules and at the end of a move the
pivoting module must lie in a lattice cell. The interior of two modules can never intersect.
A hexagonal module can perform only two types of pivoting moves, illustrated in Figure 1.
In a restricted move a module a adjacent to a module s pivots around a vertex v shared
by a and s and ends the pivoting move in the other cell that has v on the boundary. The
restricted model of pivoting only allows this move. In a monkey move a module a adjacent
to a module s starts pivoting around a vertex v shared by a and s as in the restricted move,
but halfway through the rotation another vertex w of a coincides with the vertex of a
module s’. Then a continues the move pivoting around w in the same direction (clockwise
or counterclockwise) as before until reaching a cell adjacent to s'. The monkey model of
pivoting includes both the restricted and the monkey moves. Informally, the monkey move
allows a module to keep pivoting in the same direction when a restricted move is not possible.

* g & —-0g—0g

(a) Restricted move. (b) Monkey move.

Figure 1 Pivoting moves for hexagonal modules and their free-space requirements.

In the square grid two modules that share a vertex might not share an edge. Thus, for
square modules there is a greater variety of pivoting moves. The three different sets of
moves are illustrated in Figure 2. The restricted model includes only restricted moves,
the leapfrog model includes both restricted and leapfrog moves, and the monkey model
includes all moves.

. \ LN
a —> a

s" ‘s

(a) Restricted moves.

(c) Monkey moves.

Figure 2 Pivoting moves for square modules and their free-space requirements.

H. A. Akitaya et al.

Related work and contribution

One of the most natural questions for modular robots is whether universal reconfiguration
is possible. That is, is there an algorithm to transform any (connected) configuration of n
modules into another configuration with the same number of modules?

Efficient algorithms are known for universal reconfiguration of modular robots using
moves that have significantly lighter free-space requirements [3, 10, 11, 12]. Relaxing the
connectivity requirement has also lead to reconfigurability results [7].

The setting of this paper (pivoting robots) has proven to be more challenging. Instead,
previous work has revolved around providing sufficient conditions for reconfiguration. Nguyen,
Guibas and Kim [15] showed that reconfiguration of hexagonal modules using only restricted
moves is always possible between configurations without the forbidden pattern illustrated in
Figure 3 (left). Similarly, for pivoting squares, Sung et al. [16] presented an algorithm for
reconfiguring between configurations without the patterns shown in Figure 3 (right). These
algorithms do not provide reconfiguration guarantees as soon as the configuration contains
a single copy of the forbidden pattern. In an attempt to remove global requirements, a
recent result [1] introduced a different type of necessary condition: an efficient algorithm for
reconfiguring between any two configurations that have 5 modules on the external boundary
that can freely move (for pivoting squares in the monkey model). Other algorithms to
reconfigure pivoting squares and hexagons are heuristics that do not provide termination
guarantees [5, 14].

®e 0 oB gH

Figure 3 Forbidden patterns in previous algorithms for hexagonal and square pivoting modules.

Despite many attempts, universal reconfiguration remains unsolved in the setting of
edge-connected pivoting robots. In this work we answer this question for all five pivoting
models for hexagons and squares. Specifically, we answer it positively for the hexagonal
monkey model by giving a universal reconfiguration algorithm in Section 2. For all other
models we show that it is PSPACE-hard to determine whether we can reconfigure one
configuration to another. In the process, we prove a stronger PSPACE-hardness result
about a restricted form of motion planning with reversible, deterministic gadgets from [9]
(our reduction highly limits the direction in which each edge can be traversed, effectively
reducing the number of cases to consider). This framework has already proven useful in
other swarm robot motion planning models [6, 8] and we believe the improvements here will
aid in future PSPACE-completeness proofs. The framework is described in Section 3.2 and
is used afterwards for hexagonal restricted robots in Section 3.3, and for all square models in
Sections 3.4 and 3.5. Table 1 summarizes our results.

Table 1 Summary of results. The leapfrog move does not make sense for hexagonal modules.

Model Restricted Leapfrog Monkey

Hexagons | PSPACE-hard (Thm. 14) N/A O(n?) universal (Thm. 13)

Squares PSPACE-hard PSPACE-hard | PSPACE-hard (Thm. 17)
a (Thm. 16) (Thm. 17) O(n?) if +5 modules [1]

10:3

SoCG 2021

10:4

Characterizing Universal Reconfigurability of Modular Pivoting Robots

2 Polynomial Algorithm for the Hexagonal Monkey Model

This section describes an algorithm that computes a sequence of O(n3) moves in the monkey
model that transforms a given configuration with n modules into another. Our approach uses
a canonical configuration defined as the configuration with n modules whose contact graph
is a path and each module is only adjacent to modules above and/or below it. Since each move
is reversible, an algorithm that takes a configuration and transforms it into the canonical
configuration within O(n?®) moves can be used to compute O(n?) moves between any pair of
configurations. The main strategy is to increase the connectivity of the contact graph®. Note
that if the contact graph is 2-connected, every convex corner of the configuration is movable,
including the modules that are extremal in a grid direction. Then, there is a module that can
move to become the new topmost module by attaching itself to a previous topmost module.
We proceed in this manner inductively building the canonical configuration.

Definitions and Preliminaries. The contact graph G is the adjacency graph of the modules
in a configuration. Since connectivity is important for the problem, we use the block tree B
of the contact graph G. A graph is 2-connected if it contains no cut vertices. A block
(also 2-connected component) of G is a maximal subgraph of G that is 2-connected. We
call a block containing a single edge a trivial block. We define B to be a bipartite tree
whose nodes are the cut vertices of G in one partite set, and its blocks in the other partite
set. There is an edge between two nodes if the corresponding cut vertex is contained in the
corresponding block. The deletion of a cut vertex v of a connected graph G splits it into two
or more components. A subgraph induced by such a component union with {v} is called
a split component of v. Similarly, a 2-cut is a pair of vertices {v1,v2} whose deletion
increases the number of components of GG. Its 2-split components are the subgraphs
induced by {v1,v2} united with each of the components obtained by the deletion of {v1, vs}.

We now give some more specific definitions used in the algorithm. Note that a module
corresponds to a vertex in G. We refer to them interchangeably. We label the topmost
rightmost module of G the root. We root B at the node containing the root module. A cut
vertex (2-cut) defines one parent (2-)split component, containing the root module, and one
or more child (2-)split components. Such a cut vertex (2-cut) is called the parent of its
children (2-)split components. A 2-split component ¢ is trivial if [V (¢)| is 3 or 4. The parent
of such a component is also called trivial. Note that because G is a subset of the triangular
grid, one of its faces is either the external face (whose edges form the boundary), a triangle,
or encloses an empty position of the grid, which we call a pocket. In a 2-connected block
£, if v is a vertex in the boundary of ¢ and it is not incident to any pocket, deleting v can
cause only adjacent vertices to become cut vertices. We call a 2-cut {v1,v2} adjacent if vy
and v are adjacent. Note that when {vi,v2} is an adjacent trivial 2-cut, the faces of the
trivial 2-split component are triangles. Our algorithm uses the following fact about adjacent
nontrivial 2-cuts.

» Observation 1. If {vi,v2} is an adjacent nontrivial 2-cut, then {vi,v2} has only two
2-split components. Furthermore, if vy is movable, {v1, v} is the only 2-cut containing v;.

! Increasing connectivity of the contact graph of the configuration is a concept that has recently proven
useful in the different setting of reconfiguring sliding squares [13].

H. A. Akitaya et al.

The previous observation comes from the maximum degree of the triangular grid. For an
adjacent 2-cut to have three 2-split components, two of them must be trivial. The fact that
v1 needs 3 adjacent empty positions around it to be movable implies that v; must be adjacent
to 2 modules other than vs. Any cycle through v; connecting the (2-)split components of
{v1,v2} must go through the two modules adjacent to v, that are not vs.

The main technical part of our algorithm is a procedure called Merge that increases the
2-connectivity of G, i.e., decreases the number of nodes in B. For that, we want to move
modules in order to create new paths between blocks of G without destroying previously
existing blocks. We define a 2-free module to be a movable module whose movement
preserves 2-connectivity in the block containing it (a module that is not in a 2-cut). A crew
¢ = (mq,...,my) is a sequence of modules that induce a connected component of G such that

my is 2-free, and m;, ¢ € {2,...,k} is 2-free after the deletion of all m;, j € {1,...,i—1}.

For a given 2-connected subgraph ¢ of G, let ¢ be the induced subgraph of G given by
V(G)\ V(¢). A bridge from ¢ is a set of modules that were previously a crew that moved
to create a path between ¢ and ¢, thus potentially not being 2-free anymore. We say a set
of modules bridges from ¢ if they move to create a new path between ¢ and £. One of
the goals of the algorithm is to get a crew of size three in a group of grid positions called
a flower that is otherwise empty. That allows us to maneuver the modules in the crew to
create a bridge while not creating new blocks. Let a flower be a set of grid positions defined
by a center cell and the six adjacent positions. A flower is adjacent to a grid position if
the flower does not contain it but contains a grid position that is adjacent to it. A flower
is valid for a 2-connected configuration ¢ and a disjoint crew c if it contains exactly the
modules in ¢ (all modules in ¢ and no other modules), and is adjacent to a module in .
The following are definitions that help us describe positions in the configuration. We
might reflect and/or rotate the configuration in order to fit our description w.l.o.g., and
the following definition always refer to the current frame of reference. A row containing

a position p is the set of all positions p + (—§7 %)z for some integer i. An ascending
(descending) path in a row p is a path (m1,...,my) induced by modules in p such that

m;4+1 is the top-left (bottom-right) neighbor of m;. An extreme path is a path induced by
modules that are on the convex hull. Due to the geometry of the grid, extreme paths can
only have six possible directions. A SW extreme path of a configuration £ is an ascending
or descending path in the lower hull of /. Given a position p in the grid, we use a sequence of
arrow superscripts on p to describe positions nearby. For example, p'~" refers to the position
to the top-right of the position above p, i.e., p + (?, %
to the current positions of modules, replacing p by a module.

). We overload this notation to refer

Main algorithm. We split the contact graph into two parts: the canonical path P which is
a canonical configuration, and the remainder of the graph G. We initialize G to be the entire
contact graph and P to be empty. Let B be the block tree of G rooted at the block containing
the topmost rightmost module. We divide our algorithm into three phases. Phase 1 is a
prepossessing procedure that eliminates all trivial leaves of B. Then, assume that every leaf
of B contains at least three modules and no further procedure will change that. Phase 2

transforms G into a 2-connected graph. While B is not a single node, let ¢ be a leaf of B.

We will apply Merge(¢), outlined in Algorithm 1, that will cause £ to merge with other nodes
of B until G becomes 2-connected. Phase 3 builds P. We decrease the size of G while
adding modules to P by moving a crew on its boundary so that each of its members in turn
move to become the new topmost module in the contact graph. We use a slightly modified
version of Merge to produce such a crew without breaking the 2-connectivity of G.

10:5

SoCG 2021

10:6

Characterizing Universal Reconfigurability of Modular Pivoting Robots

2.1 Phase 1: Removing Trivial Leaves

Phase 1 reconfigures a connected configuration into one without vertices of degree 1 (which
are in trivial leaves) in G. There are configurations in which it is not enough to just pivot
the degree-1 modules, i.e., this task requires coordination with other modules. See Figure 4.

Figure 4 Configuration with one trivial leaf (m) that cannot be removed by pivoting it.

» Lemma 2. A connected configuration of n > 2 hexagons can be transformed in O(n?) moves
into a configuration without trivial leaves in the contact graph without breaking connectivity.

Proof sketch. Let m be a degree-1 module. If it is possible to move m to a place where it is
adjacent to more than one modules, then we do so. Else, we move m so that its shortest
path to the root module is maximized. The full proof uses a detailed case analysis to show
that, because of the specific position chosen for m, there is a nearby movable module with
which m can coordinate to locally reduce the total number of new trivial leaves. <

2.2 Phase 2: Merging Leaves

The goal of Phase 2 is to take a connected configuration with no degree 1 vertices, and
transform it into a 2-connected configuration in O(n?®) moves. The main technical tool of this
phase is the Merge procedure, outlined in Algorithm 1, which allows us to reduce the number
of 2-connected components by merging them. Its input is a child (2-)split component of a cut
vertex v (adjacent 2-cut {vq,v2}). We first apply the necessary rotations so that v ({v1, va})
is farthest from the row py containing the extreme SW path of £. We then assume that pg
does not include v ({v1,v2}) and neither does the row above it except for the base case when
[V (¢)| = 3 and £ is a split component, or when |V (£)] =5 and /¢ is a 2-split component. The
output of the algorithm is a set of modules that, after O(|V (¢)|?) moves, bridges from £.
Refer to Algorithm 1. Merge uses several other sub-procedures which we outline here. We
call m the ascending module, which by its definition in line 2 is movable. It is either 2-free,
in which case we will try to move it by cw pivots to its highest possible position in pg before
it leaves ¢; or it is part of a 2-cut, in which case we make it 2-free using sub-procedures.
The end goal is to either bridge using m while it ascends in py if it gets blocked by a vertex
m* ¢ £, or accumulate 2-free modules at the top of the configuration where a valid flower will
form. Then, the Bridge sub-procedure moves the valid flower around ¢ until it hits ¢ where
we create a bridge with the crew. There are three main Cases given by lines 4, 16 and 21.
Assume we are in Case 1. If m is in a trivial 2-cut, it will try to move up as explained
before. Let m’ be the module at m~”". By Observation 1, {m, m'} is the only 2-cut containing
m. If m succeeds in moving up, at least one unit, that leaves m’ a cut vertex. Then, in
line 7, we move the (up two) modules that are in the 2-split component of {m,m’}, restoring
2-connectivity. During m’s ascension in pg, we identify whether a valid flower gets formed. In
the positive case, Bridge will accomplish our goal. During its ascension, m might be blocked

H. A. Akitaya et al.

by a module m* € £. If certain conditions are satisfied, the Local-Bridge sub-procedure uses
m to create a bridge to m*. Else, the Incorporate sub-procedure moves m to the row p; above
it, or out of £, and we can find a new ascending module.

Now assume that m is part of a nontrivial 2-cut (Case 2). Then, either m is part of an
adjacent 2-cut or it is incident to a pocket. In the case m or an adjacent module is part of
an adjacent 2-cut we recurse in the child 2-split component, which makes m 2-free. Else
(Case 3), we either use Deflate, which decreases the number of empty positions enclosed by
the pocket, or Bubble-Up, which moves one of such empty positions up. In some situations,
Deflate produces a 2-free module in py that will be the next ascending module.

Algorithm 1 Merge(?).

1 while True do

2 Let m be the topmost module in a SW extreme path of ¢;

3 Let p_1, po and p; be the rows below, of, and above m respectively;

4 if m is 2-free or part of an adjacent trivial 2-cut then

5 Pivot m cw to the highest position in py before it leaves ¢;

6 if m was part of a trivial 2-cut then

7 ‘ Pivot cw once the other modules in the trivial child;

8 if m is ever in a crew c of size 3 in a valid flower F' during its ascension then
9 ‘ Return Bridge(F, ¢ — ¢);
10 else if m bridges from ¢ then

11 ‘ Return m;
12 else if the requirements of Local-Bridge(m) are met then

13 ‘ Return Local-Bridge(m);
14 else

15 ‘ Incorporate(m);
16 else if {m,m”"} or {m™>, m™>"} is a nontrivial 2-cut then

17 Let ¢’ be the child 2-split component of the highest such 2-cut;

18 ¢ = Merge(¥');

19 if ¢ bridges between £ and ¢ then

20 ‘ Return ¢’; > ¢’ already merges ¢ into another block.
21 else

22 ‘ Deflate(m~") or Bubble-Up(m~"); > m~" is empty
23 end
24 end

Bridge(¢, F). The operation takes a 2-connected ¢ and a valid flower F' containing a crew
¢ = (my, ma,m3) where m; was an ascending module. It returns c after a sequence of
moves that transforms c into a bridge from ¢. Compute a maximal sequence of flowers
(Fy = F,..., Fy), where each subsequent flower is adjacent to ¢, containing no modules except
for ¢, and obtained by moving the previous flower by one grid unit around the boundary of ¢.
We choose to move cw or ccw around ¢ based on the following condition. If £ has a parent
cut vertex, then choose arbitrarily. Else, if ¢ has a parent adjacent 2-cut {vy,v2} where vy
is movable, we chose the direction towards vs so that Fj is not adjacent to v;. Since G is
connected and planar, and there are vertices in ¢, F}, is adjacent to a module m* in £. We
show how to compute the sequence of moves to bring the the crew with the sequence of
flowers (Fy,..., Fy) and finally bridge between £ and m* in Fy.

10:7

SoCG 2021

10:8

Characterizing Universal Reconfigurability of Modular Pivoting Robots

Figure 5 Maneuvers used to rotate around mi a crew that induces a cycle. A possible next flower
is shown in pink.

If the modules in ¢ induce a connected graph, this graph is either a triangle, a straight
path or a “bent” path. A configuration of ¢ in a valid flower is useful if a module of ¢ is
adjacent to £ and c induces a triangle or a “bent” path with m; in the center of the flower
(i.e., both endpoints are adjacent to modules outside the flower). We show how to reach every
useful configuration of ¢ in a valid flower F;. This is enough to accomplish our objective since:
(i) by definition, F; N F; 41 is adjacent to £ and there is a useful configuration contained in the
intersection of F; and Fj4q (Figure 5 (a)—(b)); and (ii) if m~ € £ is the only module adjacent
to Fj, and m* is the only module of ¢ adjacent to F}, and they are across from the center of
Fy, e.g. m~ (m*) is at the topmost (bottommost) position adjacent to F, then we can move
F}, one more unit along the boundary of ¢, contradicting the maximality of the sequence. By
(i) we can transition between flowers F; and F;;; through a useful configuration, making
both valid. By (ii) there is a useful configuration at Fj, that bridges between m~ and m*.

In the full version [2], we present four maneuvers shown in Figure 5 along with omitted
proofs. Note that, by the fact that ¢ is a crew, we have a guarantee that some positions
adjacent to the flower are empty. We then use them to show the following lemma.

» Lemma 3. FEvery useful configuration of a crew c in a valid flower can be reached from
any useful configuration.

» Lemma 4. Bridge(¢, F') performs O(|V (£)]) moves and bridges from ¢ while not breaking
connectivity. After its execution, € is still 2-connected. If {vy,va} is the parent 2-cut of ¢
and vy is movable, then vy remains movable.

Deflate(p) and Bubble-Up(p). These operations take an empty position p to the top-right
of a module m which is a corner of a 2-connected subgraph ¢ of the contact graph. We
assume that m is a corner of £ in its SW extreme path, i.e., m™, m<, and m* are empty.

H. A. Akitaya et al.

Then, p is enclosed by ¢ by 2-connectivity. Refer to Figure 6. Deflate requires that positions
surrounded by a red line in Figure 6 (a) or (c) are as shown. In particular, if m > is full,
then m™ is empty. Then, the operation fills p with a module adjacent to m and preserves
2-connectivity of ¢, effectively reducing its area. Bubble-Up requires that positions surrounded
by a red line in Figure 6 (b) are as shown. In particular, if m™>" is full, then m™ is full.
We additionally require that {m*,m\/ } is not a nontrivial 2-cut. Then, the operation
moves the empty position and m to their top-left position while preserving 2-connectivity.

Figure 6 Operations used in Deflate(m;).

Figure 6 shows the operations assuming that m performs a monkey move by pivoting cw.

» Lemma 5. Deflate(p) and Bubble-Up(p) perform O(1) moves, do not break connectivity,
and the resulting ¢ is 2-connected.

Shift(M). Although not used directly in Merge, this operation is used in following sub-
procedures. The input is an ascending or descending path of modules M = (my,...,m;) in
the same row p and in the boundary of G. We require that none of the modules are cut
vertices, my is movable, and m% is empty Vi € {1,...,t — 1}. We describe the operation

for descending M (Figure 7). There are two cases. In the first case, no module m; € M is
N

such that mi/ is empty and m; ™ is either empty or contains a module only adjacent to M.
Then, move each m; cw from ¢ = 1 to ¢t (Figure 7 (d) to (f)). In the second case, let m; € M
be the first module such that mi/ is empty and mi/ s either empty or contains a module
m’ only adjacent to M. Move all m; from j =1 to i — 1 and m/ (if it exists) by pivoting
cw. Then, apply Deflate(m;) and move back all the m; and m’ to their original positions by
a ccw pivot. This vacates m;’s original position (Figure 7 (a) to (d)). If i # ¢, apply Shift
recursively on (mj41,...,my).

In the full version [2] we prove the following statement.

» Lemma 6. Shift(M) performs O(|M|) moves, does not break the connectivity and, after it
terminates, all pockets of £ remain intact except for possibly one that has my in its boundary.

Inflate(m). This operation uses Shift to make a concave corner convex, possibly creating
a new empty space enclosed by ¢. This will be used in Local-Bridge. The input m is
an ascending module in a 2-connected ¢. We require that m' and m-”" are full, neither

10:9

SoCG 2021

10:10

Characterizing Universal Reconfigurability of Modular Pivoting Robots

Figure 7 Illustration of Shift(A) where M is descending.

{m", m?"} nor {m"", m™™\} are in adjacent nontrivial 2-cuts, and that at least one position
in {m™, m™", mM\} is full. Inflate moves the module at m" to m™ via a series of operations,
returning such module.

Refer to Figure 8 (a)—(c) for examples (or [2] for a full proof). In short, we use Shift to
move away modules adjacent to the blue module, so that we can move it out. Then, we
reverse the Shift operation to put the moved models, except for the blue one, into their
original place.

Figure 8 Operations used in Local-Bridge.

» Lemma 7. Inflate(m) performs O(|V (£]) moves, does not break connectivity and preserves
2-connectivity of £.

Local-Bridge(m). This operation is used when there is an opportunity to create a bridge
when m either gets blocked by m* on its way to the top of pg or it reaches the top and it
would jump to £. We require that, if a cw pivot brings m to p_i, then m-" is full and at

H. A. Akitaya et al.

least one position in {m™™, m"" mM™\} is full. We recurse on a child component, calling
Merge if there is an adjacent nontrivial 2-cut forbidden by Inflate. That guarantees that
we can apply Inflate which would create a bridge from ¢. If a cw pivot maintains m in py,
then it would land on a module m* € ¢. We require that the maximal ascending path M
ending in m" can be shifted down by Shift(M), i.e., pp must contain only m below M; see
Figure 8 (d). Then, we “squeeze” m in the space between m* and M creating a bridge. We
do that by moving m out of ¢, Shift M down, moving m back and Shift M back.

» Lemma 8. Local-Bridge(m) bridges from £, does not break connectivity, and preserves
2-connectivity of £. It uses O(|V(0)]) + T (|V (¢")]) moves where T, (|V (£')]) is the number
of operations performed by Merge in (.

Incorporate(m). Whenever a local bridge was not possible, this operation either incorpo-
rates m into p; or leaves m attached to a module in ¢ with the promise that some module
will ascend in py and bridge (Figure 9 (d)). There are four cases. In case 1, we check if we
can call Deflate at position mT-". In the positive case, we move m and a possible neighbor
m’ in pg out of the way, call Deflate, and move m and possibly m’ back (Figure 9 (a)—(b)).
In case 2, m”" is empty and m'" is full. Then, we “squeeze” m into m~" by using Shift
operations, similar to Bridge (Figure 9 (¢)). In case 3, if we pivot m cw, that brings m to
p1 and makes its degree 1. Then, we apply some local movements in order to incorporate
m into p; while maintaining 2-connectivity (Figures 9 (e) and (g)). In case 4, we are not
in the previous cases and we simply pivot m cw. Note that m might leave ¢ (Figure 9 (d)).
We explore this case from now. As shown in the proof of Lemma 9, there is a guarantee
that a subsequent module s in py will ascend. There are three possible cases, either (i) s
creates a bridge using m (as in Figure 9 (d)), in which case nothing needs to be done; (ii)
s calls Local-Bridge or Bridge. Then, pivot m twice counterclockwise before Bridge or after
Local-Bridge; or (iii) s calls Incorporate. Then, there is either another module in pg or we can
move s back to ¢ and apply Local-Bridge.

» Lemma 9. Incorporate(m) uses O(|V(£)|) moves and brings m to py in every situation
that m would go to p—1 by pivoting cw to which Local-Bridge does not apply. It does not
break connectivity and maintains 2-connectivity of £. Any created degree-1 module outside ¢
can be reincorporated in £, thus, no new block is created.

Analysis.

» Lemma 10. If { # G is a leaf block of B, Merge(£) performs O(|V (£)|?) moves merging ¢
and a subset of nodes of B into a single block while not creating any other new blocks.

Proof sketch. A key observation is that each section of the perimeter can only be traversed
by at most three ascending modules until either a local bridge or a valid flower is formed.
Every time we use Incorporate to hide a module in p; we have the guarantee that, if either
the next or the next two ascending modules reaches m, then Local-Bridge or Bridge will
be called and the method terminates. We can then charge the moves of a module to the
perimeter. Hence, each level of recursion of Merge makes a linear number of moves. Another
key observation is that there are only a constant number of recursive calls. Since we always
recurse on a smaller problem, the upper bound on the number of moves is O(|V (£)[?). =

» Corollary 11. G can be made 2-connected in O(n®) moves.

10:11

SoCG 2021

10:12

Characterizing Universal Reconfigurability of Modular Pivoting Robots

Figure 9 Operations used in Incorporate.

2.3 Phase 3: Building the Canonical Path

In the final phase, we will show that once the configuration is 2-connected, we can start
moving modules onto the end of our path P at a cost of O(n?) moves per module.

» Lemma 12. If G is 2-connected, in O(n?) moves we can produce a 2-free module on an
extreme path of G while maintaining the 2-connectivity of G.

Proof. We apply a subset of operation Merge to GG. Then, this proof becomes a special case
of Lemma 10, where £ = G. In Merge, our goal is to bridge between ¢ and ¢ maintaining
¢ 2-connected. Here, ¢ is empty and Local-Bridge will never be called since there are no
obstacles for ascending modules. Then, we are always able to produce a crew in an extremal
position. Moving the crew to P does not affect 2-connectivity of G by definition. <

Our main theorem is a direct consequence of Lemma 2, Corollary 11 and Lemma 12.

» Theorem 13. Any connected configuration of n hexagonal modular robots can be reconfigured
to any other with O(n3) pivoting moves in the Monkey model, while maintaining connectivity.

H. A. Akitaya et al.

1 2
(I I—— <)

(b) The 1-toggle gadget.

1 2

(a) The locking 2-toggle gadget (L2T).

Figure 10 Examples of reversible, deterministic gadgets. Purple boxes are states of the gadget,

labeled with a number outside the box. Arrows represent transitions from one location to another.

The small number close to an arrow indicates the state obtained by the transition. Dotted lines help
visualize which states are connected by transitions in the gadget.

3 PSPACE-hardness Reductions

In this section we show PSPACE-hardness for all other models. Our reduction follows the
framework introduced in [9]. We reduce from a reachability problem: given an agent that
moves along a graphlike structure whose traversability changes in response to the agent’s
actions, is there a series of moves which takes the agent from a start to a target location.

» Theorem 14. Given two configurations of n hexagonal modules, it is PSPACE-hard to
determine if we can reconfigure from one to the other using only restricted moves.

In Section 3.1 we describe the reachability problem introduced in [9] and the pieces we
need to simulate to create the reduction. We introduce a few modifications to this problem
and show it remains PSPACE-hard in Section 3.2. In Section 3.3 we discuss how to simulate
each of the gadgets with hexagonal modules. Reductions for other models are in Section 3.4.

3.1 Preliminaries

We reduce from a variation of 1-player motion planning with the locking 2-toggle (L2T) [9].
This restricted variant is called 1-toggle-protected motion planning with the locking 2-toggle
and described in Section 3.2. In the 1-player motion planning problem we want to decide
whether an agent has a series of moves that will take it to a target location. The constructs
we use in this problem are gadgets which have locations (entrances and exits), states, and
transitions. The agent is always at some unique location. Transitions are an ordered pair
of state and location pairs. If an agent is at some specific gadget location and the gadget
is in a state matching the first pair, then the agent can move to the location in the second
pair which changes the state of the gadget to the state in the second pair (see Figure 10). A
system of gadgets is a set of gadgets and connections between locations in those gadgets.
The agent can freely move between locations that have connections. Some gadget transitions
form a matching — we call these matched pairs tunnels.

10:13

SoCG 2021

10:14

Characterizing Universal Reconfigurability of Modular Pivoting Robots

In order for us to reduce from this problem, we need to use modules to represent the agent,
the gadgets (specifically a locking 2-toggle and a branching hallway gadget), connections
between locations, and a goal location. In order to reduce from 1-toggle-protected motion
planning with the locking 2-toggle we need to create the following constructions:

Wires which allow the modules to travel between parts of the configuration. These

simulate the connection graph edges that allow the agent to travel between locations.

Branching hallways which connect three wires together and allow the modules to travel
down any of them.

Locking 2-toggle which is a 3 state, 4 location gadget shown in Figure 10a. The gadget
has two tunnels which are both traversable in state 3. After taking either transition, the
only option is returning back and restoring the gadget to its prior state.

Win gadget which can only be reconfigured if two additional modules reach it, simulating
the goal location in the motion planning problem.

3.2 1-toggle-protected Motion Planning

In this section we strengthen the result from [9] to show that motion planning with reversible,
deterministic gadgets with interacting tunnels is PSPACE-complete even when connections
can only be traversed as though they are 1-toggles. We will consider only branchless systems
of gadgets, but we will allow the branching hallway gadget. In a branchless system of
gadgets, the connections between locations form a matching [4]. The branching hallway
gadget is a 1-state, 3-location gadget with traversals among all three pairs of locations.
An instance of 1-toggle-protected motion planning with a set of gadgets G is an
instance of branchless 1-player motion planning with G as well as the branching hallway
gadget and the 1-toggle, where one end of every connection is a location on a 1-toggle.
Intuitively, this requires that every edge in the connection graph acts as a 1-toggle.

» Theorem 15. I-toggle-protected planar 1-player motion planning problem with a reversible,
deterministic, on-tunnels gadget with interacting tunnels is PSPACE-complete.

3.3 Reduction for Hexagonal Modules

We now focus on describing how to simulate each of the pieces with hexagonal modules. The
agent is represented by two modules and while these could go different ways, our instance
contains several obstacles that can only be crossed by two modules working together. For
simplicity we refer to the two modules that form the agent as the agent modules (shown in
orange in the figures).

Figure 11 Each corner contains a spiral that prevents it from moving. In the protected case,
the agent can go to a specific location allowing two other modules on the other side of the spiral to
move (left and center), while in the blocked case, the spiral cannot be crossed at all (right).

H. A. Akitaya et al. 10:15

We simulate wires with sequences of modules in line segments. We also need to be able
to turn without letting corner modules move. We simulate these turns using two types of
corners: protected and blocked (Figure 11).

The branching hallway, shown in Figure 12, allows an agent that arrives on any of the
three wires to leave on any of the other two. This construction acts as a branching hallway
with 1-toggles on two of its wires. We can implement the toggle on the third wire by adding
two protected corners.

Figure 12 The branching hallway gadget simulated with hexagonal modules. Wires are shown in
blue, and the two modules simulating the agent are shown in orange. Protected corners are drawn as
green modules, while blocked corners are drawn as black. Both types of corners contain additional
robots (omitted for clarity).

L L
L,

Figure 13 The six configurations of a branching hallway with endpoints connected to 1-toggles.

The other main gadget needed for the reduction is the locking 2-toggle shown in Figure 14.

3.3.1 Finishing steps

Proof. (of Theorem 14) Our reduction follows the framework in [9]. Given a problem instance
for 1-toggle-protected motion planning with the locking 2-toggle, we embed in a way that
all edges are drawn with polylines that are multiples of 60°, replacing gadgets with the

SoCG 2021

10:16

Characterizing Universal Reconfigurability of Modular Pivoting Robots

Figure 14 (left) The locking 2-toggle simulated with hexagonal modules (state 3 in Figure 10a).
Other than the agent (e and b), the modules that can move are ¢ and d (but not at the same time).
(right) Once a, b and ¢ form a bridge, they create a cycle allowing e, f and g to move. Two of the
three modules can exit the gadget along the bottom wire. This changes the state of the 2-toggle
(state 1 in Figure 10a).

corresponding module configurations (adding side switch and wire cut gadgets as needed, as
well as 1-gaps to all wire segments). Finally, we place two additional modules at the initial
position to define the agent. Since each gadget takes constant space, the problem instance
will have polynomial size. Our goal configuration is the same configuration with only one
change (the state of the win gadget).

If the problem instance is solvable, there is a way for the agent to reach the win gadget,
change its state, and then return back to the initial position in the exact reverse path. By
doing so we reset every gadget except the win gadget back to its original state. If the problem
instance is not solvable, the agent cannot reach the win gadget and thus the reconfiguration
problem will also be infeasible. |

3.4 Square Modules with the Restricted Move Model

» Theorem 16. Given two configurations of n square modules, it is PSPACE-hard to
determine if we can reconfigure from one to the other using only restricted moves.

Our reduction is analogous to the hexagonal reduction. We quickly list the pieces and a
small description for each, but for brevity the proof of correctness of each single gadget is
removed. The arguments are analogous to the hexagonal counterpart and we present a full
list of our gadgets in the full version [2].

The branching hallway gadget is show in Figure 15 and works like the hexagonal version.

The L2T gadget in the open state can be seen in Figure 16. Again, this gadget has
exactly the same functionality as its hexagonal counterpart. The reduction works similarly
and the proof for Theorem 16 follows a similar format as Theorem 14.

3.5 Hardness for the Square Model for Monkey and Leapfrog Models

Our final reduction applies to both remaining models for square modules.

H. A. Akitaya et al.

Figure 15 The branching hallway gadget for squares under the restricted model.

Figure 16 L2T in the open state. At this point the gadget can come from either of the top wires.

» Theorem 17. Given two configurations of n square modules, it is PSPACE-hard to
determine whether one can be reconfigured into the other in both the monkey and the leapfrog
models.

As before, the reduction is from 1-toggle-protected motion planning with the locking
2-toggle, but simpler. The main differences are as follows:

10:17

SoCG 2021

10:18 Characterizing Universal Reconfigurability of Modular Pivoting Robots

= A leapfrog move can pass through obstacles or bends without creating global cycles. All
the cycles created by the agent module are local, with size at most 8, which allows us to
have purely local arguments.

= Because of this change, we can now represent the agent with a single module. This
eliminates the need to prove that multiple modules have to work together (and all other
intricacies related to the case of a 2-module agent).

= Another interesting advantage is that we can represent a wire with two parallel sequences
of modules (5 units apart). The agent will move between the two lines, which reduces
the need of worrying about which side the agent is on.

= Finally, the reduction works for the leapfrog model, but even if we allow monkey moves
the result holds. Thus, a single reduction will work for both models.

The gadgets we use are shown in Figure 17 and Figure 18. Due to space constraints, we
defer the description and proof of correctness to [2].

:E

-

_I -

—
@
~

(d)

(f)

Figure 17 Gadgets used in PSPACE reduction (for leapfrog and monkey models).

4 Conclusions

This paper answers fundamental question, but also opens up further line of research. First,
for hexagonal modules under the monkey model (where universal reconfiguration is possible),
there is a gap between the upper bound of our algorithm (Theorem 13) and the naive
Q(n?) lower bound (number of moves needed to transform a horizontal strip into a compact
hexagon). Even if the gap is closed, then the interest would be to design a distributed
algorithm and/or to consider a strategy that does many moves in parallel.

H. A. Akitaya et al.

))

Figure 18 L2T gadget with square modules for the monkey model. In the figure two of the three

possible states are shown (third one is symmetric).

For models in which universal reconfiguration is not possible it would be nice to find a

local property that would allow reconfiguration between many configurations. For example,

with square modules and the monkey operation, reconfiguration is possible as long as both

configurations have five modules on the outer shell that can move (these modules are called
musketeers [1]).

—— References

1

Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmovic, Robin Y.
Flatland, Matias Korman, Belén Palop, Irene Parada, André van Renssen, and Vera Sacristdn.
Universal reconfiguration of facet-connected modular robots by pivots: The O(1) musketeers.

Algorithmica, 83(5):1316-1351, 2021. doi:10.1007/s00453-020-00784-6.

Hugo A. Akitaya, Erik D. Demaine, Andrei Gonczi, Dylan H. Hendrickson, Adam Hesterberg,
Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada, and Vera Sacristan. Characterizing
universal reconfigurability of modular pivoting robots. CoRR, abs/2012.07556, 2020. arXiv:
2012.07556.

Greg Aloupis, Sébastien Collette, Mirela Damian, Erik D. Demaine, Robin Flatland, Stefan
Langerman, Joseph O’Rourke, Val Pinciu, Suneeta Ramaswami, Vera Sacristan, and Stefanie
Wubhrer. Efficient constant-velocity reconfiguration of crystalline robots. Robotica, 29(1):59-71,
2011. doi:10.1017/8026357471000072X.

Joshua Ani, Erik D. Demaine, Dylan H. Hendrickson, and Jayson Lynch. Trains, games,
and complexity: 0/1/2-player motion planning through input/output gadgets. CoRR,
abs/2005.03192, 2020. arXiv:2005.03192.

Nora Ayanian, Paul J. White, Adém Halasz, Mark Yim, and Vijay Kumar. Stochastic
control for self-assembly of XBots. In Proc. ASME International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference (IDETC-CIE), pages
1169-1176, 2008. doi:10.1115/DETC2008-49535.

Jose Balanza-Martinez, Austin Luchsinger, David Caballero, Rene Reyes, Angel A Cantu,
Robert Schweller, Luis Angel Garcia, and Tim Wylie. Full tilt: Universal constructors for
general shapes with uniform external forces. In Proc. 30th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2689-2708, 2019.

Nadia M. Benbernou. Geometric Algorithms for Reconfigurable Structures. PhD thesis,
Massachusetts Institute of Technology, 2011.

10:19

SoCG 2021

https://doi.org/10.1007/s00453-020-00784-6
http://arxiv.org/abs/2012.07556
http://arxiv.org/abs/2012.07556
https://doi.org/10.1017/S026357471000072X
http://arxiv.org/abs/2005.03192
https://doi.org/10.1115/DETC2008-49535

10:20

Characterizing Universal Reconfigurability of Modular Pivoting Robots

10

11

12

13

14

15

16

David Caballero, Angel A. Cantu, Timothy Gomez, Austin Luchsinger, Robert Schweller, and
Tim Wylie. Relocating units in robot swarms with uniform control signals is PSPACE-complete.
In Proc. 32th Canadian Conference on Computational Geometry, 2020.

Erik D. Demaine, Dylan H. Hendrickson, and Jayson Lynch. Toward a general complexity
theory of motion planning: Characterizing which gadgets make games hard. In Proc. 11th
Innovations in Theoretical Computer Science Conference (ITCS), volume 151, pages 62:1-62:42,
2020. doi:10.4230/LIPIcs.ITCS.2020.62.

Adrian Dumitrescu and Jéanos Pach. Pushing squares around. Graphs and Combinatorics,
22(1):37750, 2006. doi:10.1007/s00373-005-0640-1.

Adrian Dumitrescu, Ichiro Suzuki, and Masafumi Yamashita. Motion planning for metamorphic
systems: feasibility, decidability, and distributed reconfiguration. IEEFE Transactions on
Robotics, 20(3):409-418, 2004. doi:10.1109/TRA.2004.824936.

Robert Fitch, Zack Butler, and Daniela Rus. Reconfiguration planning for heterogeneous self-
reconfiguring robots. In Proc. 2003 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), volume 3, pages 2460-2467, 2003. doi:10.1109/IR0S.2003.1249239.
Irina Kostitsyna, Irene Parada, Willem Sonke, Bettina Speckmann, and Jules Wulms. Com-
pacting squares. Manuscript, 2020.

Tom Larkworthy and Subramanian Ramamoorthy. A characterization of the reconfig-
uration space of self-reconfiguring robotic systems. Robotica, 29(1):73-85, 2011. doi:
10.1017/80263574710000718.

An Nguyen, Leonidas J. Guibas, and Mark Yim. Controlled module density helps reconfigura-
tion planning. In Algorithmic and Computational Robotics: New Dimensions (2000 WAFR),
pages 23-36. A. K. Peters, 2001.

Cynthia Sung, James Bern, John Romanishin, and Daniela Rus. Reconfiguration planning for
pivoting cube modular robots. In Proc. 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 1933-1940, 2015. doi:10.1109/ICRA.2015.7139451.

https://doi.org/10.4230/LIPIcs.ITCS.2020.62
https://doi.org/10.1007/s00373-005-0640-1
https://doi.org/10.1109/TRA.2004.824936
https://doi.org/10.1109/IROS.2003.1249239
https://doi.org/10.1017/S0263574710000718
https://doi.org/10.1017/S0263574710000718
https://doi.org/10.1109/ICRA.2015.7139451

	1 Introduction
	2 Polynomial Algorithm for the Hexagonal Monkey Model
	2.1 Phase 1: Removing Trivial Leaves
	2.2 Phase 2: Merging Leaves
	2.3 Phase 3: Building the Canonical Path

	3 PSPACE-hardness Reductions
	3.1 Preliminaries
	3.2 1-toggle-protected Motion Planning
	3.3 Reduction for Hexagonal Modules
	3.3.1 Finishing steps

	3.4 Square Modules with the Restricted Move Model
	3.5 Hardness for the Square Model for Monkey and Leapfrog Models

	4 Conclusions

