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Abstract
For a finite set A ⊂ R2, a map φ : A → R2 is orientation preserving if for every non-collinear triple
u, v, w ∈ A the orientation of the triangle u, v, w is the same as that of the triangle φ(u), φ(v), φ(w).
We prove that for every n ∈ N and for every ε > 0 there is N = N(n, ε) ∈ N such that the following
holds. Assume that φ : G(N) → R2 is an orientation preserving map where G(N) is the grid
{(i, j) ∈ Z2 : −N ≤ i, j ≤ N}. Then there is an affine transformation ψ : R2 → R2 and a ∈ Z2 such
that a+G(n) ⊂ G(N) and ∥ψ ◦ φ(z) − z∥ < ε for every z ∈ a+G(n). This result was previously
proved in a completely different way by Nešetřil and Valtr, without obtaining any bound on N . Our
proof gives N(n, ε) = O(n4ε−2).
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1 Introduction

This paper is about orientation preserving maps of the n× n grid. We denote by G(N) the
grid {(i, j) ∈ Z2 : −N ≤ i, j ≤ N} and by G∗(n) the grid {(i, j) ∈ Z2 : 1 ≤ i, j ≤ n}. A map
φ : G(N) → R2 is orientation preserving if for every non-collinear triple u, v, w ∈ G(N) the
orientation of the triangle u, v, w is the same as that of the triangle φ(u), φ(v), φ(w), or with
a formula

sign det
[
u v w

1 1 1

]
= sign det

[
φ(u) φ(v) φ(w)

1 1 1

]
.

We are going to show that given an orientation preserving map φ : G(N) → R2 there is a
n × n subgrid of G(N) whose image under φ is very close to an affine image of the n × n

grid provided N is large enough (polynomial in n and 1/ε). Precisely we have the following
result.

▶ Theorem 1. For every n ∈ N and for every ε > 0 there is N = N(n, ε) such that if
φ : G(N) → R2 is an orientation preserving map, then there is an affine transformation
ψ : R2 → R2 and a ∈ Z2 such that a+G∗(n) ⊂ G(N) and for every z ∈ a+G∗(n)

∥ψ ◦ φ(z) − z∥ < ε.

Here N(n, ε) = O(n4ε−2).
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14:2 Orientation Preserving Maps of the Square Grid

Theorem 1 without the explicit bound N(n, ε) = O(n4ε−2) was already proved by Nešetřil
and Valtr [6, Lemma 10] as the key tool for proving several Ramsey-type results (see also
the paper [5] for related results). However, the proof in the paper [6] relied on repeated
compactness arguments, thus it gave no upper bound on N . Our bound N(n, ε) = O(n4ε−2)
makes ground for giving explicit bounds for Ramsey-type results given in the paper [6]; see
concluding remark (1) on page 105 of the paper [6] where the lack of an explicit bound
is discussed. From the (discrete and) computational geometry point of view, the most
interesting consequences of our bound N(n, ε) = O(n4ε−2) in Theorem 1 might be those
which are connected with the study of order types, as described in the next section.

We remark that the function N(n, ε) in Theorem 1 satisfies the lower bound N(n, ε) =
Ω(n2ε−1). The example showing this is a projective map that carries the line containing one
edge of the square [−N,N ]2 to the line at infinity.

2 Connections to order types and motivation

An order type of size n is an equivalence class of all n-point sets which can be mapped
into each other by strongly order preserving maps, where a map φ : A → R2 from a finite
planar point set A to R2 is strongly orientation preserving if it is orientation preserving
and, additionally, it maps collinear triples of A to collinear triples. If the sets of an order
type are in general position then we say that the order type is in general position. Order
types have been studied from various perspectives, for example, see the paper of Goodman
and Pollack [1] for a classical result and the recent paper of Pilz and Welzl [4] for further
references.

The span of a finite point set A ⊂ R2 is the ratio between the maximum distance in A

and the minimum distance in A. Note that due to projective transformations the supremum
of the spans of the sets of any fixed order type (of size at least three) is ∞. We define the
span of an order type T as the infimum of the spans of the point sets in T . By famous results
of Goodman, Pollack and Sturmfels [2] and of Kratochvíl and Matoušek [3], there are order
types of size n with double exponential span.

▶ Theorem 2. For n > 1, let f(n) be the smallest real number such that, for any order type
T of size n in general position and for any δ > 0, there exists a set A in T having the span
smaller than f(n) + δ. Then there are two positive constants c1 and c2 such that, for any
integer n > 3,

22c1n

≤ f(n) ≤ 22c2n

.

Our Theorem 1 considers subsets of sets of some order type with a small span. In
particular, an immediate consequence of Theorem 1 says that some order types have the
property that any set of this order type contains a rather large subset whose order type has
a very small span (asymptotically as small as possible for the given size).

▶ Theorem 3. For any N ≥ 2, there is an order type TN of size N in general position such
that any set A of TN contains a subset B of size n = Ω(N1/3) which is an affine transform
of a set having span O(

√
n).

We remark that due to a simple packing argument the span of any set (or order type) of
size n ≥ 2 is at least Ω(

√
n).

Another (almost immediate) consequence of Theorem 1 says that there are order types T
of arbitrary size n ≥ 2 in general position such that any set A of order type T contains a
quite large subset of points which lie, one by one, in small neighborhoods of equidistantly
distributed points along some line.
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▶ Theorem 4. For any N ≥ 2 and any ε > 0, there is an order type TN of size N in general
position such that any set A of TN contains a subset B of size n = Ω(N1/4ε1/2) such that
for some line ℓ and for some n equally distributed points p1, . . . , pn on ℓ where the distance
between pi and pi+1 is exactly d for some fixed d > 0 and for each i = 1, . . . , n − 1, the
following holds. There is exactly one point of B in the (εd)-neighborhood of pi for each
i = 1, . . . , n.

Since some of the ratios of distances among sufficiently many equidistantly distributed
points on a line approximate (with any prescribed precision) l prescribed distance ratios,
Theorem 4 immediately implies the following result of Nešetřil and Valtr [6, Theorem 6].

▶ Theorem 5 (Nešetřil and Valtr [6]). For any positive integer l > 0 and for any l+ 1 positive
real numbers ε, r1, r2, . . . , rl > 0, there exists a (finite) order type T in general position
such that any set of order type T determines l + 1 distances di, i = 0, 1, 2, . . . , l, such that
| di

d0
− ri| < ε (i = 1, 2, . . . , l).

3 Preparations and sketch of proof

We start with introducing basic notation and definitions. For distinct u, v ∈ R2, L(u, v)
denotes the line they span. The angle α(u, v) is defined as the angle the vector v − u and
the positive half of the x axis make. It is understood mod 2π. Assume φ0 : G∗(n) → R2

is an orientation preserving map on non-collinear triples, and it satisfies the conditions
φ0(1, 1) = (1, 1), φ0(n, 1) = (n, 1), φ0(1, n) = (1, n). Suppose further that for all u, v ∈ G∗(n)
with α(u, v) ∈ {0, π/4, π/2}

|α(u, v) − α(φ0(u), φ0(v))| < γ,

where γ > 0. In the last step of the proof of Theorem 1 we need the following lemma.

▶ Lemma 6. Assume γ = O(n−2). Then, under the above conditions for every z ∈ G∗(n)
we have

∥φ0(z) − z∥ < 20γn2.

The proof is given in the last section.
Another important notion is that of a block of an m × m grid. The horizontal, resp.

vertical blocks of G∗(m) are the sets (where i, j ∈ [m])

Hi = {(1, i), (2, i), . . . , (m, i)} and Vj = {(j, 1), (j, 2), . . . , (j,m)},

we will call (1, i) resp. (m, i) the first and last point of the block Hi, and similarly (j, 1) and
(j,m) are the first and last points of Vj . Similarly the plus and minus diagonal blocks of
G∗(m) are

D+
i = {(x, y) ∈ G∗(m) : x− y = i},

D−
j = {(x, y) ∈ G∗(m) : x+ y = j},

here i = 0,±1, . . . ,±(m− 1) and j = 2, . . . , 2m. Their first and last points are (i+ 1, 1) and
(m, i−m) for D+

i and (1, j − 1) and (j − 1, 1) for D−
j . Two blocks are neighbourly if they lie

in consecutive parallel lattice lines.

SoCG 2021
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v

ϕ(a)

ϕ(b)

ϕ(b′)

ϕ(a′)

Wϕ(B,B′)
a W (B,B′)

a′

b′

b

Figure 1 Neighbourly blocks and φ blocks separated.

Given an orientation preserving map φ : G∗(m) → R2 the image φ(B) of a block B is
called a φ block. We need separation properties of blocks and φ blocks. Let B and B′ be
two neighbourly blocks with first and last point a, b resp. a′, b′. Here b− a and b′ − a′ are
parallel and point in the same direction, see Figure 1. It is clear that both L(a, b′) and
L(a′, b) separate B and B′. The orientation preserving properties of φ imply that the lines

L1 = L(φ(a), φ(b′)) and L2 = L(φ(a′), φ(b))

also separate φ(B) and φ(B′), or, what is the same, conv φ(B) and conv φ(B′). The lines
L1 and L2 define a double cone Wφ(B,B′) with apex v = L1 ∩ L2 which is the double cone
not containing φ(B) and φ(B′). Similarly, let W (B,B′) be the double cone determined by
L(a, b′) and L(a′, b), again the one not containing B and B′. The following facts are well
known.

▶ Fact 1. If u ∈ Wφ(B,B′), then L(u, v) separates φ(B) and φ(B′).

▶ Fact 2. For any point z ∈ W (B,B′) ∩ G∗(m) the line L(φ(z), v) separates φ(B) and
φ(B′).

We say that a point z ∈ R2 is a separator for the horizontal blocks H1, . . . ,Hm if there
are lines L1, . . . , Lm−1, all passing through z such that Li separates Hi and Hi+1 for all
i. Separator points for a set of vertical and diagonal blocks, and for φ-blocks, are defined
analogously.

▶ Fact 3. If z ∈ G(N) is a separator for the horizontal (or vertical, diagonal) blocks of
G∗(m), then so is φ(z) for the corresponding φ blocks.

Here is a quick sketch of the proof of Theorem 1. First we find a small subgrid, G1, of
G(N). (G1 lies in the upper halfplane and we ignore the part of G(N) that is in the lower
halfplane.) The points zh = (N, 0) resp. z− = (−N,N) are separators for the horizontal and
minus diagonal blocks of G1. The points v+, v− and w+, w− are separators for the vertical
and plus diagonal blocks of G1, see Figure 2. These four points are very close to the line
L(zh, z−). From the φ-image of these points we construct four collinear points that are
separators for the corresponding φ blocks of G1. A projective transformation that carries the
line containing these separators to infinity can be chosen so that the horizontal resp vertical
φ blocks of G1 are separated by horizontal and vertical lines. This way we create a grid like
structure. A small subgrid of G1 can be found which satisfies the conditions of Lemma 6.
The resulting map is only projective and not affine. This is to be fixed in the end.
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(N, 0)(0, 0)(−N, 0)

(N,N)

zh

z−

G1

(−N,N)

v−
v+

w− w+

Figure 2 G(N) and G1.

4 Finding a smaller grid and a projective transformation

We set N = 6m2 and define G1 = Z2 ⋂
([−m,m] × [0, 2m], see Figure 2. The horizontal

blocks of G1 are H0, H1, . . . ,H2m and any point in
⋂2m−1

0 W (Hi, Hi+1) is a separator for
these blocks. An elementary calculation shows that any point (x, 0) with x > 4m2 −m is
a separator. In particular, zh = (6m2, 0) is a separator. Similarly, any point (0, y) with
y > 2m2 is a separator point for the vertical blocks of G1. Another calculation shows that
any point (x, x) resp. (−x, x) with x > m2 is a separator point for the plus diagonal and the
minus diagonal blocks of G1. We fix z− = (−6m2, 6m2) as a separator point for the minus
diagonal blocks.

By Fact 3, φ(zh) resp. φ(z−) is a separator point for the horizontal and minus diagonal φ
blocks of G1. Moreover v+ = (3m2 + 1, 0) and v− = (3m2 − 1, 0) are both separators for the
vertical blocks of G1. Then so are φ(v+) and φ(v−) for the vertical φ blocks. These points
lie on opposite sides of the line Lφ = L(φ(zh), φ(z−)). Consequently the intersection point,
zv, of Lφ and the segment [φ(v+), φ(v−)] is a separator for the vertical φ blocks. Completely
analogously, we find a separator z+ ∈ Lφ for the plus diagonal φ blocks of G1. Namely, both
w+ = (2m2 + 1, 2m2 + 1) and w− = (2m2 − 1, 2m2 − 1) are separators for the plus diagonal
blocks of G1, their φ-images lie on opposite sides of Lφ, so the intersection point, z+, works
again. Here is what we have established so far.

▶ Lemma 7. The line Lφ contains four points φ(zh), φ(z−), zv, z+ that are separators for
the horizontal, minus diagonal, vertical and plus diagonal φ blocks of G1.

Now apply a projective transformation ψ1 : R2 → R2 that maps Lφ to the line at infinity
so that the horizontal resp. vertical separating lines of the corresponding φ blocks are mapped
to horizontal and vertical lines of the form

L(bj)h = {(x, y) : y = bj} and L(ai)v = {(x, y) : x = ai},

here i, j ∈ [2m] and a1 < a2 < . . . < a2m and b1 < b2 < . . . < b2m. From this point onward
we only work on points of the grid that are in the lower triangular half, so that there is no
reason to worry that this projective transformation might modify orientations.

SoCG 2021
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ap

bq

ap+m

bq+m

ai

wi,j
wk,j

bj

L(wi,j , wk,j)

L(ap)
v L(ap+m)v

L(bq)
h

L(bq+m)h

Figure 3 The grid-like structure and the line L(wi,j , wk,j).

We still have some freedom to define ψ1 more precisely. That will come a little later.
Set φ1 = ψ1 ◦ φ and note that the plus and minus diagonal φ1 blocks of G1 are separated
by parallel lines because the corresponding separator points are at infinity. Of course, the
vertical resp. horizontal φ1 blocks are separated by the vertical and horizontal lines L(ai)v

and L(bj)h.
Observe now that we have a grid-like structure (see Figure 3): the lines L(ai)v and L(bj)h

determine (2m− 1)2 rectangular cells and each such cell contains the φ1 image of a unique
point from G1. Precisely, the cell C(i, j) is just the rectangle [ai, ai+1]× [bj , bj+1]. It contains
the point wi,j which is the φ1 image of a unique point in G1.

Suppose that m is large, m > 105 say, and let ap+5 − ap resp. bq+5 − bq be the minimal
among the numbers a8 −a3, a9 −a4, . . . , a2m−2 −a2m−7 and b8 −b3, b9 −b4, . . . , b2m−2 −b2m−7.
Note that the cells in the first and last two rows and columns are not used, this “double
frame” will be needed later. Here either p < m or p + 5 > m. Similarly, either q < m or
q+ 5 > m. We can assume by symmetry that p, q < m. We now fix ψ1 (and so φ1 as well) by
requiring that ap = bq = 0 and ap+m = bq+m = m. It follows then that 0 < ap+5, bq+5 ≤ 5.

We are going to show that, with φ1 fixed this way, the angles of the plus diagonal
separators are very close to π/4. A similar statement holds for the minus diagonal separators
but we do not need that. We have the following lemma.

▶ Lemma 8. If m is large enough, then 0 < ap+k+1 −ap+k < 11 and 0 < bq+k+1 − bq+k < 11
for all k = −1, 0, 1, . . . ,m− 1,m.

Proof. Let R be the rectangle [ap, ap+m] × [bq, bq+m]. Define G2 as the m×m subgrid of
G1 whose φ1-image lies in R. Horizontal, vertical, plus and minus diagonal blocks of G2
are defined the same way as those of G1. Let Bi be the plus diagonal φ1 blocks of G2 that
contains the point wp,q+i for i = 0, 1, 2, 3, 4 and let B−i be the one containing wp+i,q for
i = 1, 2, 3, 4.
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ap ap+5 ap+k

bq+k

bq

bq+5

L−3

L4

L3

L−4

R0

Rk

Figure 4 Only some of the lines Li are shown, the central cell of Rk is shaded.

These diagonals are separated by parallel lines L4, L3, . . . , L−4 in this order. So for
instance L1 separates B1 and B0, see Figure 4. Note that each such line intersects the
rectangle R0 = [ap, ap+5]× [bq, bq+5] as otherwise L−4 (say) would avoid it and then it cannot
separate two points inside this rectangle. This implies that the distance between L4 and L−4
is less then the sum of two neighbouring sides of R0, which is at most 10.

Note further that the lines L−4, . . . , L4 are parallel and their slope is a positive number.
Consequently the angle β these lines make with the positive half of the x axis is strictly
between 0 and π/2.

Consider the rectangle Rk = [ap+k, ap+k+5]×[bq+k, bq+k+5] where k = −2,−1, 0, . . . ,m−5.
(This is the point where we use the double frame.) It contains 52 cells. We claim that
its middle cell, C(p + k + 2, q + k + 2), lies between the lines L4 and L−4, see Figure 4.
Indeed, if it did not, then either the point (ap+k+3, bq+k+2) is below the line L−4, or the
point (ap+k+2, bq+k+3) is above the line L4. In the former case the cells C(p+k+ 3, q+k+ 1)
and C(p+ k+ 4, q+ k) also lie below the line L−4. But then L−4 cannot separate the points
wp+k+3,q+k+1 ∈ φ1(B−3) and wp+k+4,q+k ∈ φ1(B−4), yet L−4 separates these two φ1 blocks.
A similar argument works when the point (ap+k+2, bq+k+3) is not below the line L4.

The line L4 intersects L(ap)v below the point (ap, bq+5), and intersects L(ap+m)v above
the point (ap+m, bq+m), so its slope is least m−5

m . Similar argument shows that the slope of
the line L−4 is at most m

m−5 . As both slopes are equal to tan β we have

m− 5
m

≤ tan β ≤ m

m− 5 . (1)

SoCG 2021
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So for m large, β is very close to π/4 and the strip between L4 and L−4 (whose width
is at most 10) intersects both axes in a segment of length shorter than 11. This and the
fact that the central cell C(p+ k + 2, q + k + 2) lies between the lines L4 and L−4 finish the
proof. ◀

The next target is to show that if w1, w2 ∈ R belong to the same horizontal, vertical, or
plus diagonal φ1 block, then the angle of the line L(w1, w2) is very close to 0, π/2, π/4. We
need some preparations.

Assume that L and L′ are consecutive parallel separating lines between three plus diagonal
φ1 blocks ofG2 that have points inR. Then there are four cells C(p+k, q+h), C(p+k+1, q+h),
C(p+k, q+h+ 1), and C(p+k+ 1, q+h+ 1) so that L separates wp+k,q+h+1 from wp+k,q+h

and wp+k+1,q+h+1, and L′ separates wp+k+1,q+h from wp+k,q+h and wp+k+1,q+h+1. Then
both lines L and L′ have to intersect the rectangle [ap+k, ap+k+2] × [bq+h, bh+h+2]. The sides
of this rectangle have length at most 22.

▶ Corollary 9. If L and L′ are consecutive parallel separating lines between three (plus or
minus) diagonals φ1 blocks of G2, then the strip between them intersects both axes in a
segment of length at most 44.

We show next that if w1 and w2 belong to the same horizontal (or vertical) φ1 block,
then their line L(w1, w2) is almost horizontal (vertical). This is quite easy now. Recall the
notation α(w1, w2) for the angle of the line L(w1, w2).

▶ Lemma 10. Assume p ≤ i < k ≤ p+m and q ≤ j ≤ q+m. Then | tanα(wi,j , wk,j)| < 33
m .

Similarly p ≤ i ≤ p+m and q ≤ j < k ≤ q +m imply that | cotα(wi,j , wi,k)| < 33
m .

Proof for the horizontal case. The line L(wi,j , wk,j) (see Figure 3) intersects the line L(ap)v

on the interval [(ap, bj−1), (ap, bj+2)], as otherwise the cell C(p−1, j−1) or C(p−1, j+1) from
the double frame would be on the wrong side of L(wi,j , wk,j), contradicting the orientation
preserving property of φ1. Same way, the line L(wi,j , wk,j) intersects L(ap+m)v on the
interval [(ap+m, bj−1), (ap+m, bj+2)]. The length of both intervals is at most 33 by Lemma 8.
Same proof applies in the vertical case. ◀

We want to show the analogue of Lemma 10 for plus diagonal φ1 blocks. For that
purpose we have to consider a smaller subgrid of G2. Namely, let R′ be the rectangle
[ap′ , ap′+m′ ] × [bq′ , bq′+m′ ] anywhere near the middle of R with m′ much shorter than m,
m′ < m

110 , say. To make anywhere near more concrete choose the position of R′ so that centre
of R lies in R′.

▶ Lemma 11. Assume w1, w2 ∈ R′ belong to the same plus diagonal φ1 block of G2, and
α(w1, w2) differs from π/4 by δ.Then | tan δ| < K

m where K is a constant, for instance
K = 400 will do.

Proof. Let B0 be the plus diagonal φ1 block containing w1, w2, and let B−2, B−1, B0, B1, B2
the neighbouring diagonal φ1 blocks, with parallel separating lines L−2, L−1, L1, L2. The
strip between the lines L−2 and L2 intersects the lines L(ap+m/10)v and L(ap+9m/10)v in
two segments that lie in the rectangle R, and have length at most 3 · 44 with 44 coming from
Corollary 9. Same way as in the proof of Lemma 10, the line L(w1, w2) has to intersect these
two segments. A straightforward computation, using this fact and (1), finishes the proof. ◀

▶ Remark. In this proof we use the line L(ap+m/10)v (instead of L(ap)v) because its intersec-
tion with the strip between L−2 and L2 should lie inside R. The same reason explains the
line L(ap+9m/10)v.
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5 Finding an even smaller subgrid

We set m = Cn2ε−1 where C > 0 will be specified later. Let G3 be the subgrid of G2, a
translate of the set of grid points in [0, n]2 such that φ1 maps the bottom left corner of G3
to the point (ap′ , bq′). Note that n < m′, in fact much smaller. The set φ1(G3) is contained
in the rectangle R∗ = [ap′ , ap′+n] × [bq′ , bq′+n] whose sides are shorter than 11n.

We define an affine map ψ2 : R2 → R2 by requiring ψ2(wp′,q′) = (0, 0), ψ2(wp′+n,q′) =
(n, 0) and ψ2(wp′,q′+n) = (0, n). Then φ2 = ψ2 ◦ φ1 is well-defined on G3. The map ψ2
hardly changes any direction. More precisely, Lemmas 10 and 11 imply the following.

▶ Fact 4. If z1, z2 belong to the same horizontal, plus diagonal, vertical block of G3, then
α(φ2(z1), φ2(z2)) deviates from 0, π/4, π/2 by at most 2δ where | tan δ| < K/m.

The conditions of Lemma 6 are satisfied with γ = 2 arctanK/m. Thus its conclusion
holds: for every z ∈ G3

∥φ2(z) − z∥ < 20γn2 ≤ 40n2 arctan 2Kε
Cn2 <

80K
C

ε.

We are almost finished, except that ψ3 = ψ2 ◦ ψ1 is not an affine but a projective
transformation. It is of the form

ψ3(x) = Ax

ℓ(x)

where A is an orientation preserving affine map, and ℓ(x) is the equation of the line Lφ,
normalized so that ℓ(x) is the signed distance of x from the line Lφ. This line goes to infinity
under ψ1 and is disjoint from R and then is far from R∗; let d denote their distance. As
n,m′ < m

110 , the side length of R∗ is at most 11m′ < m
10 . Since R∗ is in the middle of R,

this implies that d > 4m
10 . The diameter of R∗ is at most 11n

√
2, very small compared to m.

Then for every x ∈ R∗, d ≤ ℓ(x) ≤ d+ 9n
√

2. Consequently, using m = Cn2ε−1

1 ≤ ℓ(x)
d

≤ 1 + 11n
√

2
.4Cn2ε−1 < 1 + 40ε

Cn
.

The map ψ(x) = Ax/d is affine and satisfies

∥ψ(z) − z∥ ≤ ∥ψ(z) − ψ3(z)∥ + ∥ψ3(z) − z∥.

Here Az/ℓ(z) is inside the square [0, n]2 or very close to it, so its norm is at most 2n. Then

∥ψ(z) − ψ3(z)∥ =
∥∥∥∥ Az

ℓ(z)

∥∥∥∥ ℓ(z) − d

d
≤ 2n40ε

Cn
= 80ε

C
.

Thus

∥ψ(z) − z∥ < 80ε
C

+ 80Kε
C

< ε,

when C is chosen larger than 80K + 80. ◀
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6 Proof of Lemma 6

Proof. Consider the quadrilateral Q = conv {A,B,C,D} as in Figure 5. Assume that

|α(A,B)|, |α(D,C)| < γ, |α(A,C) − π/4| < γ

|α(A,D) − π/2|, |α(B,C) − π/2| < γ.

The sine theorem shows that, with the notation of Figure 5,

d√
2

(1 − tan 2γ) < a, a′, b, b′ <
d√
2

(1 + tan 2γ).

Setting M = 1+tan 2γ
1−tan 2γ it follows that

M−1 <
a

a′ ,
b

a
,
b′

a
,
a

b′ < M

We are going to use these inequalities in the quadrilaterals whose vertices are φ0(i, j), φ0(i+
1, j), φ0(i, j + 1), φ0(i+ 1, j + 1). We define ai,j = φ0(i+ 1, j) − φ0(i, j) and bi,j = φ0(i, j +
1) − φ0(i, j). We write ax, ay for the x and y components of the vector a ∈ M2.

The above inequalities show that in the triangle with sides ai−1,1 and bi,1 (see Figure 5),
and in the triangle with sides bi,1 and ai,1

M−1 <
∥bi,1∥

∥ai−1,1∥
< M and M−1 <

∥ai,1∥
∥bi,1∥

< M.

Consequently

M−2 <
∥ai,1∥

∥ai−1,1∥
< M2 and so max ∥ai,1∥ ≤ min ∥ai,1∥M2(n−1).

As ax
i,1 > 0 follows from the conditions, and ax

i,1 ≥ ∥ai,1∥ cos γ, we have

max ax
i,1

min ax
i,1

≤ ∥ max ai,j∥
∥ min ai,j∥ cos γ <

M2(n−1)

cos γ =: 1 + ∆.

A

B

C
D

a

b

a′

b′
d

ai−1,1
ai,1

bi,1

ai,j−1

ai,j

Figure 5 The quadrilateral Q and a piece of the φ0-grid.
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The average of the ax
i,1 for i ∈ [n−1] is 1 because

∑n−1
1 ax

i,1 = n−1, so min ax
i,1 ≤ 1 ≤ max ax

i,x

implying that max ax
i,x < (1 + ∆) min ax

i,1 ≤ 1 + ∆, and min ax
i,1 > max ax

i,1/(1 + ∆) ≥ 1 − ∆.
Consequently

|ax
i,1 − 1| ≤ ∆ for all i ∈ [n− 1].

We need to estimate ∆:

∆ = M2(n−1)

cos γ − 1 =
(

1 + tan 2γ
1 − tan 2γ

)2n 1
cos γ − 1

≤
(

1 + 2 tan 2γ
1 − tan 2γ

)2(n−1)
(1 − γ2)−1/2 − 1

≤ exp
{

2(n− 1) 2 tan 2γ
1 − tan 2γ

}
(1 + γ) − 1 ≤ 10nγ.

The last inequality follows from et ≤ 1 + 1.1t which is true if t > 0 is small enough. This is
the case as t = 2(n− 1) 2 tan 2γ

1−tan 2γ ≈ 8nγ. Consequently

|ax
i,1 − 1| ≤ 10nγ and similarly |by

1,j − 1| ≤ 10nγ. (2)

In the quadrilateral with sides ai−1,j and ai,j (see Figure 5 again) we have, the same way
as in Q above, that

∥ai,j∥
∥ai,j−1∥

< M and so ∥ai,j∥ ≤ Mn−1∥ai,1∥.

Since Mn−1 is only slightly larger than 1 and |ay
i,j | ≤ ax

i,j sin γ we have

|ay
i,1| ≤ 2γ and similarly |by

1,j | ≤ 2γ. (3)

Finally we estimate the difference φ0(i, j) − (i, j). The absolute value of the x component
of this vector is

= |1 + ax
1,1 + . . .+ ax

i−1,1 + bx
i,1 + . . . bx

i,j−1 − i|
≤ |ax

1,1 − 1| + . . .+ |ax
i−1,1 − 1| + |bx

i,1| + . . .+ |bx
i,j−1|

≤ (i− 1)10nγ + (j − 1)2γ ≤ (n− 1)(10nγ + 2γ) < 10n2γ,

where we used (2) and (3). Estimating the y component of the vector φ0(i, j) − (i, j) is
similar but starts with writing this vector as

b1,1 + . . .+ b1,j−1 + aj,1 + . . . aj,i−1. ◀

References
1 Jacob E. Goodman and Richard Pollack. The complexity of point configurations. Discret.

Appl. Math., 31(2):167–180, 1991. doi:10.1016/0166-218X(91)90068-8.
2 Jacob E. Goodman, Richard Pollack, and Bernd Sturmfels. The intrinsic spread of a con-

figuration in Rd. Journal of the American Mathematical Society, 3(3):639–651, 1990. URL:
http://www.jstor.org/stable/1990931.

3 Jan Kratochvíl and Jiří Matoušek. Intersection graphs of segments. J. Comb. Theory, Ser. B,
62(2):289–315, 1994. doi:10.1006/jctb.1994.1071.

4 Alexander Pilz and Emo Welzl. Order on order types. Discret. Comput. Geom., 59(4):886–922,
2018. doi:10.1007/s00454-017-9912-9.

SoCG 2021

https://doi.org/10.1016/0166-218X(91)90068-8
http://www.jstor.org/stable/1990931
https://doi.org/10.1006/jctb.1994.1071
https://doi.org/10.1007/s00454-017-9912-9


14:12 Orientation Preserving Maps of the Square Grid

5 Jaroslav Nešetřil and Pavel Valtr. A Ramsey-type theorem in the plane. Comb. Probab.
Comput., 3:127–135, 1994. doi:10.1017/S0963548300001024.

6 Jaroslav Nešetřil and Pavel Valtr. A Ramsey property of order types. J. Comb. Theory, Ser.
A, 81(1):88–107, 1998. doi:10.1006/jcta.1997.2820.

https://doi.org/10.1017/S0963548300001024
https://doi.org/10.1006/jcta.1997.2820

	1 Introduction
	2 Connections to order types and motivation
	3 Preparations and sketch of proof
	4 Finding a smaller grid and a projective transformation
	5 Finding an even smaller subgrid
	6 Proof of Lemma 6

