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Abstract
In this paper we prove that the problem of deciding contractibility of an arbitrary closed curve on
the boundary of a 3-manifold is in NP. We emphasize that the manifold and the curve are both
inputs to the problem. Moreover, our algorithm also works if the curve is given as a compressed word.
Previously, such an algorithm was known for simple (non-compressed) curves, and, in very limited
cases, for curves with self-intersections. Furthermore, our algorithm is fixed-parameter tractable in
the complexity of the input 3-manifold.

As part of our proof, we obtain new polynomial-time algorithms for compressed curves on
surfaces, which we believe are of independent interest. We provide a polynomial-time algorithm
which, given an orientable surface and a compressed loop on the surface, computes a canonical form
for the loop as a compressed word. In particular, contractibility of compressed curves on surfaces can
be decided in polynomial time; prior published work considered only constant genus surfaces. More
generally, we solve the following normal subgroup membership problem in polynomial time: given an
arbitrary orientable surface, a compressed closed curve γ, and a collection of disjoint normal curves
∆, there is a polynomial-time algorithm to decide if γ lies in the normal subgroup generated by
components of ∆ in the fundamental group of the surface after attaching the curves to a basepoint.
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1 Introduction

In a topological space X, a closed curve c : S1 → X is contractible if the map c extends
to a map of the standard disk, f : D → X , f |∂D = c; such a curve can be continuously
deformed to a point. Dating back to Dehn [12] more than a century ago, the problem of
testing contractibility has been an important focus in the development of efficient algorithms
in computational topology and group theory. Such problems are now well understood in
two dimensions, with recent works of the second author and Rivaud [29] and Erickson and
Whittlesey [17] providing linear-time algorithms to test contractibility and free homotopy
of curves on surfaces; Despré and the second author [13] also developed efficient algorithms
for the closely related problem of computing the geometric intersection number of curves.
On the other hand, in higher dimensions, homotopy problems quickly become undecidable:
testing contractibility of curves is already undecidable on 2-dimensional simplicial complexes
and in 4-manifolds (see Stillwell [39, Chapter 8]).

The aim of this paper is to further improve our understanding of the intermediate
3-dimensional case. In a 3-manifold, testing whether a curve is contractible is known to
be decidable, but the best known algorithms are intricate and rely on the proof of the
Geometrization Conjecture. We refer to the survey of Aschenbrenner, Friedl and Wilton [2].
When the input manifold is a knot complement, this problem contains as a special case
the famous Unknot Recognition problem, which asks whether an input knot in R3 is
trivial. That problem is now known to be in NP [19] and co-NP [26]. Recently, Colin
de Verdière and the fourth author [10] initiated the study of a problem in between those
two, which is testing the contractibility of a closed curve γ which lies on the boundary of a
triangulated 3-manifold M , and they provided an algorithm to solve this problem in time
2O(|M |+|γ|)2). They asked whether the problem lies in the complexity class NP and proved
that it holds in two cases: when the number of self-intersections of γ is at most logarithmic,
and when the boundary surface is a torus. We remark that the existence of an algorithm to
test contractibility of a closed curve on the boundary actually follows from the earlier results
of Waldhausen [40], and an exponential-time algorithm can be derived from the standard
3-manifold literature, as we will explain later in this paper. However, the algorithm of [10, 11]
is simpler in the sense that it relies only on the proof of the Loop Theorem.

Our main result is that the problem of contractibility when the curve is on the boundary
of the 3-manifold is in NP. Furthermore, the algorithm that we provide has two additional
features. First, it is fixed parameter tractable in the input manifold: for a given 3-manifold
M , after a preprocessing taking exponential time in |M |, we can solve any contractibility
test for curves on the boundary in polynomial time. Second, our algorithm also works if the
input curve is compressed via a straight-line program, in particular, it can be exponentially
longer than its encoding size (we defer to Section 2 for the precise definitions).

▶ Theorem 1. Let a triangulated 3-manifold M and a curve γ on the boundary of M be
given as the input. The problem of deciding whether γ is contractible in M is in NP, and
there is a deterministic algorithm that solves the problem in time 2O(|M |3)poly(|γ|). This is
also the case if γ is given as a compressed word, i.e., a straight-line program.

Our proof of Theorem 1 will reduce the problem to another problem involving only curves
on surfaces. However, there is an important subtlety. Many algorithms in 3-dimensional
topology involve an exponential blow-up in the size of the objects under consideration. This
is the case for example for Unknot Recognition, where the classical algorithm [19] looks
for a disk spanning the knot, but this disk might be exponentially large [20]. In order to
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get NP membership, this exponential blow-up is controlled using a compressed1 system of
coordinates called normal coordinates (see Section 2 for definitions). Our approach follows a
similar scheme and suffers from a similar blow-up, which forces us to deal with normal curves.
Precisely, we show that the problem of contractibility of an arbitrary curve on the boundary
of a 3-manifold reduces to the following problem. Given a family of disjoint normal closed
curves ∆ on a triangulated surface S, and a curve γ on S, decide if γ lies in the normal
subgroup of the fundamental group determined by the curves of ∆ (appropriately connected
to the basepoint). This is equivalent to deciding if the curve γ is contractible in the space
resulting from S by gluing a disk to each component of ∆. We call this problem the disjoint
normal subgroup membership problem, and we provide an algorithm to solve it in polynomial
time, despite the highly compressed nature of ∆ and γ.

▶ Theorem 2. Let an orientable triangulated surface S, a closed normal multi-curve ∆,
and a compressed curve γ be given as the input. There is a polynomial-time algorithm for
deciding the disjoint normal subgroup membership problem for γ and ∆ on S.

To solve the disjoint normal subgroup membership problem, one of our technical tools
is a polynomial-time algorithm to test triviality of a compressed closed curve on a surface,
which might be of independent interest. In fact, we compute a canonical form for such a
curve, such that there is a unique canonical representative in each based homotopy class.

▶ Theorem 3. Let an orientable triangulated surface S and a compressed loop γ on S

described by a straight-line program be given. Then one can transform γ, in polynomial time,
into a canonical form in its based homotopy class, given as a compressed word. In particular,
we can test in polynomial time whether γ is contractible.

We emphasize that in Theorem 3 the surface S is part of the input. The analogous
theorem, if we assume that surface S is not part of the input, has been known in a much
broader context, as we discuss in the next section.

1.1 Related work
Algorithms in 3-manifold topology. There is now a large body of research on the computa-
tional complexity of problems in 3-manifold topology and knot theory. To paint a picture
in broad strokes, most topological problems are now known to be decidable, using a combi-
nation of geometric, algebraic and topological tools and the complexity of the best known
algorithms range from exponential [19, 1] to quite galactic, see for example Kuperberg [25]
for the homeomorphism problem. In contrast, only very few complexity lower bounds are
known [1, 27, 9] and for many problems, including ours, it is open whether a polynomial-time
algorithm exists. One particular tool that our work relies on is normal surface theory,
which provides a powerful framework to enumerate and analyze the topologically relevant
embedded surfaces in a 3-manifold. Actually, tools from normal surface theory [38] provide
an off-the-shelf algorithm proving that deciding contractibility of a simple curve on the
boundary of a 3-manifold is in NP, as explained in [10, Section 3]. However, normal surface
theory is ill-adapted to study surfaces that are not embedded [5], hence the more technical
path that we follow in this paper. We refer to Lackenby [28] for a recent and extensive survey
on algorithms in 3-manifold topology.

1 There are two different forms of compression going on in this paper: normal coordinates and straight
line programs. We keep the name compressed for the latter, while a curve or a multicurve encoded with
normal coordinates will be simply called a normal (multi-)curve.

SoCG 2021
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Geometric and combinatorial group theory. The problem of deciding the contractibility
of a curve in a topological space, which is given for example as a finite simplicial complex,
can be equivalently rephrased as a problem of testing the triviality of a word in a finitely
presented group, the fundamental group of the space. In the case of 2- and 3-manifolds, the
geometry or topology of the underlying manifold has a strong impact on the properties of
the group, and there is a vast amount of literature on this interaction, see for example [8].
We refer to Aschenbrenner, Friedl and Wilton [2, 3] for the case of 3-manifold groups. Of
particular interest for the word problem is the notion of a Dehn function, which upper bounds
the area of a disk certifying the triviality of a word, and thus controls the complexity of a
brute-force algorithm to solve the word problem. For 3-manifold groups, this function can
be exponential [7, Theorem 8.1.3], making such an approach at least exponentially worse
than ours. When the Dehn function of a group presentation is polynomial (as is the case, for
instance, for the fundamental group of a compression body), it can be used to prove that the
word problem is in NP. However, the word problem is defined for a fixed presentation. In
our problem, the group presentation itself is part of the input, and we cannot use the bound
on the Dehn function directly.

Algorithms for compressed curves and surfaces. As we hinted at in the introduction,
3-dimensional algorithms naturally tend to involve exponentially large objects, which are
generally compressed using normal coordinates. This incurs a need for efficient algorithms
dealing with normal curves and surfaces, even for the most basic tasks. For example, it is not
easy to test whether a curve described by normal coordinates is connected. By now, there
are many known techniques to handle topological problems on compressed curves, see for
example Agol, Hass and Thurston [1], Schaefer, Sedgwick and Stefankovič [35, 36], Erickson
and Nayyeri [16], Bell [4] or Dynnikov [14] and Dynnikov and Wiest [15]. None of these
techniques seem to directly solve our disjoint normal subgroup membership problem, but we
rely extensively on the work of Erickson and Nayyeri [16] as a subroutine (see Section 4).
However, normal coordinates do not describe curves with self-intersections, which are our
main object of interest in this paper. This is why we rely on a different compression model
in the form of straight-line programs. The use of such programs in geometric group theory is
not new, and in particular there is a sketch of an algorithm to test triviality of compressed
curves on a surface of genus 3 in an appendix of Schleimer [37, Appendix A]. His approach
seems to be readily generalizable to higher genus, but the dependency on the genus is not
made explicit. More recently, Holt, Lohrey and Schleimer [23] provided a polynomial-time
algorithm to test triviality of compressed words in hyperbolic groups, of which (most) surface
groups are a subclass. The difference with our Theorem 3 is that in their result, the group
presentation is not part of the input. While both approaches could plausibly be used in our
setting, we rely on different tools to provide a complete proof of Theorem 3: our approach
treats the surface as an input and works for any genus, and seamlessly generalizes to the
case of wedges of surfaces that we also need.

1.2 Summary of our techniques
The standard methods of normal surface theory allow us to reduce our main contractibility
problem to the case where the input manifold belongs to a particular class of manifolds
called compression bodies, see Section 3. The fundamental group of a compression body is
roughly a free product of surface groups, and thus one can rely on known algorithms for
surfaces [17, 29] to solve the contractibility problem there. However, due to the exponential
size of normal surfaces, this would only yield an exponential time algorithm. In order to
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improve on this, we identify the precise problem that we need to solve to be the disjoint
normal subgroup membership problem and set out on a quest to solve it efficiently. While an
NP algorithm would suffice for our main result, we will develop a polynomial-time algorithm.

The disjoint normal subgroup membership problem is made delicate by the compressed
nature of the curves in ∆. If they were given as disjoint curves, say, on the 1-skeleton of
the surface, we could glue a disk on each of them, and observe that the resulting complex is
homotopically equivalent to a wedge of surfaces2, allowing us to reduce the problem to the
triviality of a curve in a surface (see Section 5 for a description of the homotopy equivalence).
In order to do so despite the compression, we compute in Section 4 a retriangulation of the
surface, so that the curves in ∆ are only polynomially long in the new triangulation. This
is done by tracing the normal curve and building the street complex which was specifically
designed by Erickson and Nayyeri to handle normal curves on surfaces in polynomial time.
We then track how the street complex interacts with our input curve γ. This operation
comes at a cost: even if the input curve γ was not compressed, it may become exponentially
long after the retriangulation. Since it may be not simple, we rely on straight-line programs
instead of normal curves to encode it. At this stage, we note that it might as well have been
a compressed straight-line program from the start.

Finally, we want to test the triviality of a compressed curve in a wedge of surfaces. The
fundamental group of this wedge is a free product of fundamental groups of surfaces, and thus
the crux of the problem is to solve it in a single surface. While there are known techniques
to test the contractibility of a curve on a surface, based on local simplification rules [17, 29],
the compressed nature of our curves is once again a stumbling block here, as we need to
be careful to never apply an exponential number of such simplification rules. The solution
sketched by Schleimer [37, Appendix A] to that issue is to introduce a family of well-tempered
paths, which are carefully designed to not necessitate such exponential simplifications. We
use a different approach: we rely on the standard tools developed for the non-compressed
case, namely quad systems and turn sequences, and detect exponential simplification and
realize them all at once in polynomial time. This relies on recent insights on the structure of
these quad systems [13] [30, Section 4.3].

Most proofs are omitted due to space constraints; complete details are provided in the
full version, which is appended after this extended abstract.

2 Background

We begin by recalling some key definitions and results, although we assume that the reader
is familiar with basic algebraic topology such as homotopy and fundamental groups; we refer
to Hatcher [21] or Stillwell [39] for more detailed definitions.

2.1 3-Dimensional manifolds
A 3-manifold is a topological space that is locally homeomorphic to a 3-dimensional ball or a
3-dimensional half-ball. The points of the latter type form the boundary of the 3-manifold,
which is always a surface. In this paper, 3-manifolds are always assumed to be triangulated,
and we use common and a less restrictive definition than simplicial complexes: a triangulation
of a 3-manifold M is a collection of n abstract tetrahedra, along with a collection of gluing

2 A wedge of a family topological spaces is the space obtained after attaching them all to a single common
point. Actually, there are also circle summands here – we do not mention them in this outline to keep
the discussion light.

SoCG 2021
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pairs which identify some of the 4n boundary triangles in pairs. In particular, we allow two
faces of the same tetrahedron to be identified. If we add the further restriction that the
neighborhood of each vertex is a 3-ball or a half 3-ball and no edge gets glued to itself with
the opposite orientation, then the resulting space is always a 3-manifold [34].

This paper makes heavy use of normal surface theory; see the full version for more
definitions and relevant background on this topic.

2.2 Curve and surface representations
All the surfaces in this article are closed, i.e., without boundary. We shall often represent
a surface by a graph cellularly embedded in that surface. This embedding is encoded
as a combinatorial surface thanks to a rotation system over the edges of the graph [33].
Equivalently, one can define a combinatorial surface as a gluing of polygons whose sides
are pairwise identified. When all the polygons are triangles, we speak of a triangulation, or
a triangulated surface. Note that we allow a triangle to have two sides identified after the
gluing or two triangles to share two vertices but no edge, etc.

The complexity of a surface is the number of cells (vertices, edges and faces) of the
complex induced by the graph embedding. A curve on such a surface can be represented or
encoded in a variety of ways. For instance, any curve is homotopic to a curve defined by a
walk on the 1-skeleton of the complex. The complexity of the curve is the number of edges in
the walk counted with repetition. One can also consider curves in general position avoiding
the vertices of the graph and cutting its edges transversely as in the next section, in which
case we say the complexity of a curve is its number of intersection points with the graph.

We next outline two different notions of compressed curve representations. To repeat the
footnote of warning in the introduction: normal coordinates and straight line programs are
two different methods for compressed representations, both of which we use in this paper. We
keep the name compressed for straight line programs, while a curve or a multicurve encoded
with normal coordinates will be simply called a normal (multi-)curve.

Normal curves. Let S be a triangulated surface. A multi-curve is a disjoint family of
curves embedded on a S. A multi-curve c is normal if it is in general position with respect
to the triangulation of S and if every maximal arc of c in a triangle has its endpoints on
distinct sides. In particular, no component of a normal curve is contained in the interior of
a single triangle. A normal curve may have three types of arcs in a triangle, one for each
pair of sides. Counting the number of arcs of c of each type in each of the t triangles of the
triangulation, we get 3t numbers called the normal coordinates of c. A normal isotopy of S

is an isotopy that leaves each cell of the triangulation invariant. Up to a normal isotopy, c is
completely determined by its normal coordinates. It is thus possible to encode a multi-curve
with exponentially many arcs by storing its normal coordinates, which then have polynomial
bit-complexity. A normal multi-curve is reduced if no two of its components are normally
isotopic.

Straight-line programs. Another method of compressing curves is to think of a curve
as a word over an alphabet. In this encoding, a letter of the alphabet corresponds to a
directed edge on the surface and juxtaposition of letters corresponds to concatenation of
paths. Therefore, we can consider curves as abstract words and to represent them using
compressed representations of abstract words. The length of a word w, denoted by |w|, is
the number of letters in it.



E. W. Chambers, F. Lazarus, A. de Mesmay, and S. Parsa 23:7

A straight-line program is a four-tuple A = ⟨L, A, An, P⟩ where:
L is a finite alphabet of terminal characters,
A is a disjoint alphabet of nonterminal characters,
An ∈ A is the root, and
P = {Ai → Wi} is a sequence of production rules, where Wi is a word in (L ∪ A)∗

containing only non-terminals Aj for j < i.

A straight-line program is in Chomsky normal form if every production rule either has
two non-terminals or a single terminal on the right. Every straight-line program can be put in
polynomial time into Chomsky normal form by adding intermediate non-terminals, and thus
we will always assume that a straight-line program is in Chomsky normal form. We denote
by w(A) the word encoded by a non-terminal character A, or sometimes simply by A when
there is no confusion. Its length is denoted by |A|. We will always use a terminal alphabet
L equipped with an involution a 7→ ā. The reversal of a word w is the word obtained by
changing its letter a by its reverse ā and reversing the order of the letters.

Composition systems are straight-line programs of a more advanced type, where produc-
tions of the form P → A[i : j]B[k : l] are allowed, and the meaning is that A[i : j] represents
the subword between the i + 1th and jth letter (both included, starting the numbering
at 1) of the word that A encodes. We take the convention that negative indices count
from the end of the word, and that A[i :], A[i] and A[: j] are shorthand respectively for
A[i : −1], A[i : i+1] and A[0 : j]. While composition systems might seem more powerful than
straight-line programs, a theorem of Hagenah [18] says that given any composition system,
one can compute in polynomial time an equivalent straight-line program. Henceforth, we
will slightly abuse language and freely use the [· : ·] construct in our straight-line programs.

The following theorem summarizes the algorithms on straight-line programs that we will
rely on, see Schleimer [37] or Lohrey [32].

▶ Lemma 4. Let A and X be two straight-line programs, i be an integer and e be a letter in
the terminal alphabet of A. Then one can, in polynomial-time,

compute the length of A,
output the letter A[i],
find the greatest j so that A[j] = e,
compute a straight-line program A for the reversal word w(A),
decide whether w(A) = w(X),
find the biggest k such that A[: k] = X[: k].

For a given 2-complex K (in particular if K is a combinatorial surface), a straight-line
program with terminal alphabet L the set of directed edges of K can encode any closed curve
on K. We call such an encoding a compressed curve or walk. Simple operations on K can
seamlessly be done while updating a compressed curve appropriately to obtain a homotopic
compressed curve in the modified complex. For example, contracting an edge e of K simply
boils down to adding a production rule e → ε, where ε is the empty word. Likewise, deleting
an edge e bounding a face ēp, where p is the complementary path in that face, amounts to
replacing each occurrence of e by a p via a new production rule e → p. When no encoding
is specified for a closed (multi-)curve, then it is simply encoded as a (multi-)walk on the
one-skeleton of the underlying surface or complex.

SoCG 2021
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3 From contractibility to normal subgroup membership problem

The following proposition reduces the contractibility problem for closed curves on the
boundary of an orientable 3-manifold M to the normal subgroup membership problem
for a boundary surface of M , where the multi-curve ∆ is a reduced normal curve with
polynomial complexity. We note that this reduction is the only place where the algorithm is
non-deterministic, the rest of our algorithms run in deterministic polynomial time.

▶ Proposition 5. Let M be an orientable triangulated 3-manifold with boundary. There
exists a reduced normal multi-curve ∆ on ∂M with normal coordinates of linear bit-size (with
respect to |M |), so that for any curve γ on ∂M , γ is contractible in M if and only if γ is
contained in the normal subgroup N of π1(∂M) generated by the homotopy classes of the
components of ∆.

Further, given M , ∆, and a cubic-sized certificate (in |M |), there is a polynomial-time
algorithm to verify that ∆ has the property that all curves in N are contractible in M .

Our proof begins by crushing M to get an irreducible manifold [6] with the same
triangulated boundary, and then relies on the fact that normal surface theory [24] proves
the existence of a complete family of compression disks, whose boundary is the reduced
multi-curve ∆. Its properties follow from the Loop Theorem [22, Theorem 4.2]. We refer to
the full version for details.

Note that we did not strive to optimize the size of the certificate in this proposition,
since it does not matter for our application, so further improvements may be possible. In
particular, using enumeration techniques for vertex surfaces [19, Section 6], we suspect it can
be shown to be quadratic rather than cubic.

▶ Proposition 6. The problem of contractibility of a compressed curve on the boundary of
an arbitrary 3-manifold reduces, in polynomial time, to the problem of contractibility of a
compressed curve on the boundary of an orientable 3-manifold.

Relying on Proposition 6, for the rest of the paper we restrict our attention to orientable
surfaces.

Hardness of the general normal subgroup membership problem. If the curves ∆ in the
normal subgroup membership problem are not disjoint then this problem is much harder,
and possibly undecidable, even if they have few edges, see the full version for details.

4 Retriangulation

Given a reduced normal multi-curve ∆ on a triangulated 2-manifold, in this section we
present a way to compute a new triangulation of polynomial complexity, in which the curves
of ∆ lie in the 1-skeleton and are only polynomially long.

▶ Proposition 7. Let a simplicial complex K triangulating a surface S, a reduced normal
multi-curve ∆ and a compressed closed walk γ on the 1-skeleton of K be given as input. The
size of the input is the summation of the complexities of the curves γ, ∆ and complexity of
K. There is an algorithm that in polynomial time computes a new simplicial complex K ′

triangulating the same surface S, a multi-curve ∆′, and a walk γ′ on the 1-skeleton of K ′

given as a composition system, such that:
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there is a homeomorphism f : |K| → |K ′|, such that the images of ∆ under f coincides
with ∆′,
γ′ is homotopic to f(γ),
the multi-curve ∆′ is an embedded multi-curve on the 1-skeleton of K ′.

Consequently, the homotopy class of γ′ belongs to the normal subgroup generated by the
components of ∆′ in |K ′| if and only if the homotopy class of γ belongs to the normal
subgroup generated by the components of ∆ in |K|.

Note that in this proposition, the complexities of the inputs γ and ∆ are compressed.

Figure 1 A left turn in the street complex; the arrows depict segments of the edge e.

Sketch of proof. We briefly outline our approach, and again refer the reader to the full
version for details. Our algorithm relies heavily on the street complex introduced by Erickson
and Nayyeri [16] (see also Bell [4]); we briefly recall its structure here. The overlay of ∆ with
K cuts the triangles of K into smaller pieces. We abuse notation and call quadrilaterals
the pieces bounded by exactly two subedges of K, though they can actually be degenerate
triangles. Merging the quadrilaterals whenever they share an edge segment of K results
in the street complex. The maximal sequences of merged quadrilaterals are called streets,
and the remaining faces are junctions. Quite surprisingly, the size of the street complex is
bounded by a linear function of the complexity of K [16, Lem. 2.3], independent of ∆. Note
that the curves in ∆ appears in the 1-skeleton of this complex at the street boundaries. The
complex K ′ in the proposition is essentially this street complex, further triangulated, and ∆′

is the image of ∆ in K ′.
In [16] the algorithm to construct the street complex works inductively by tracing the

curves in ∆. Intuitively, the tracing algorithm follows each curve from an arbitrary chosen
point and extends one of the incident streets as the curve traverses the current streets and
junctions. See Figure 1. An essential step in our algorithm is to somehow reverse the roles of
K and ∆ to compute for each edge e of K a composition system E encoding its intersections
with ∆. The terminals of this system correspond to the segments of e cut by ∆. We compute
E inductively in parallel to the street complex construction, following the tracing algorithm of
Erickson and Nayyeri. Each terminal of E is contained in some street and can be homotoped
to a path in the boundary of this street. We replace the terminal by this path to obtain a
composition system encoding a curve homotopic to e, while contained in K ′. At a very final
step, we replace the terminal edges of the straight line program for γ by the corresponding
composition systems. Our algorithm can be executed in polynomial time, by adapting the
analysis of Erickson and Nayyeri [16]. ◀

SoCG 2021
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Figure 2 Contraction of a component c of ∆ (shown on the left) results in a new complex K′

(shown on the right).

5 Capping off

In this section, we show that the complex obtained by gluing disks on a family of disjoint
curves on a surface is homotopy equivalent to a wedge of surfaces and circles. We provide a
polynomial-time algorithm to compute the resulting wedge, while also tracking what happens
to a compressed curve on the original surface.

▶ Proposition 8. Let L be simplicial complex triangulating a surface S of genus ≥ 1, ∆ be a
family of disjoint embedded closed curves in the 1-skeleton of L and γ be a compressed closed
walk on the 1-skeleton of L. The size of the input is the summation of the complexities of L,
γ and the number of edges of ∆. We can compute in polynomial time a simplicial complex K

which is a wedge of surfaces and circles, and a compressed walk w on K, so that:
K is homotopy equivalent to the complex obtained by gluing disks on each component of
∆,
w is homotopic to a trivial walk in K if and only if γ belongs to the normal subgroup
determined by the curves in ∆.

The proof is deferred to the full version, but the key idea is illustrated in Figure 2: we
repeatedly pinch the curves in ∆ to a single point, extend this point to a small path and
contract a spanning tree in the rest to have a single vertex, and thus a wedge.

6 Triviality for compressed words in free products of surface groups

In this section, we prove the following theorem:

▶ Theorem 9. Let K be a wedge of combinatorial surfaces and circles and w be a compressed
walk on K. Then one can compute in polynomial time a canonical form for the homotopy
class of w. In particular, we can test in polynomial time whether w is trivial.

We emphasize that in this theorem, we consider w as a walk with fixed endpoints, and
thus we are considering based homotopies (as opposed to free homotopies).

The proof of Theorem 9 is rather involved, and we only outline the main ideas here, in
the simpler case where the wedge consists of a single surface of negative Euler characteristic,
omitting proofs of the intermediate lemmas. Since the fundamental group of a wedge of
spaces is the free product of the fundamental groups of the spaces, the more general version
is not much harder. We refer to the full version for complete details.

Our algorithm starts in a similar way as the known linear-time algorithms to test
contractibility or homotopy of curves on surfaces [17, 29]: we first turn our surface into a
system of quads (Lemma 10), and then compute a canonical form for our curve w (Lemma 13).
This canonical form is unique, and therefore the walk w is homotopic to a trivial walk if
and only if its reduced canonical form is the empty walk. However, due to the compression
of the input, our techniques to reduce the curve w are more involved than those of the
aforementioned references.
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Figure 3 The reductions to eliminate a spur (top left) and a bracket (top right), and the shifting
moves to remove a 1 (bottom row).

Our first step is to turn our surface into systems of quads. First, we compute a spanning
tree and contract it. Then, we remove edges until there is a single face, we add a new vertex
inside the single face, add all the radial edges between this new vertex and the single vertex
of S and remove all the previous edges. The resulting complex is called a quad system.

▶ Lemma 10. Let K be a surface and let w be a compressed walk on K. In polynomial
time we can turn K into a quad system K ′ and compute a compressed walk w′ on K ′ that is
homotopic to w.

In the next step of our algorithm, we encode words using turn sequences. For any two
directed edges e and e′ on the same surface S, the turn τ(e, e′) is the number of corners,
counted with respect to our chosen orientation, between the end of e and the start of e′

on S. The turn sequence of our word is the concatenation of all the turn sequences of
consecutive edges. However, we lose information by encoding with turn sequences. First, a
turn sequence does not specify a starting edge. Second, even if we know the starting edge,
it is not immediately clear how to compute an arbitrary intermediate edge along the path
efficiently since we encode exponential length paths. The following lemma shows how to do
that in polynomial time.

▶ Lemma 11. Let T be a compressed turn sequence and k be an integer. Then if we are
given a starting edge einitial, then in polynomial time we can compute the edge of K we are
on just after starting at einitial and following the turn sequence up to T[k].

The point of turn sequences is that they make it easier to make local simplifications to a
contractible curve. Following Lazarus-Rivaud [29] and Erickson-Whittlesey [17], we use the
following simplification rules, see Figure 3, which are homotopies.

A spur in a turn sequence w is a 0 turn. Removing a spur is applying the rule x0y → x+y.
A bracket in a turn sequence w is a subword of the form 12 . . . 21 or 1̄2̄ . . . 2̄1̄. Flattening
a bracket is applying the rules x12 . . . 21y → (x − 1)2̄ . . . 2̄(y − 1) or x1̄2̄ . . . 2̄1̄y →
(x + 1)2 . . . 2(y + 1).

SoCG 2021
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Figure 4 Some production rules Ai → AjAk require an exponential number of bracket flattenings
and/or spur removals to be reduced, despite Aj and Ak being already reduced.

We are only considering homotopies of paths in this paper, and thus do not need the
other special cases considered in Erickson-Whittlesey [17]. Our goal is to modify the turn
sequence so that it is reduced, i.e., contains neither spurs nor brackets. However, unlike in the
aforementioned works, we cannot apply these rules directly, even inductively: in a production
rule Ai → AjAk, even when Aj and Ak are reduced, there might be an exponential number
of bracket flattenings in Ai, for example in the cases in Figure 4.

There are known techniques to handle exponentially long spurs [31, 37], but for the more
intricate cases pictured in Figure 4, especially the kind on the right side, we need to develop
our own tools. In order to do that, we rely on stronger inductive forms, similarly to those
used in the free homotopy test [17, 29]. A reduced path is leftmost (or rightmost, respectively)
if its turn sequence contains no 1, respectively no 1̄. One can transform a reduced path
into its rightmost (resp. leftmost) form by doing elementary right-shifts (resp. elementary
left-shifts); see Figure 3, bottom. Rightmost and leftmost paths are unique in their homotopy
classes [17, 29].

For each character in the straight-line program, we inductively compute both a rightmost
and leftmost turn sequence. Then, both are used to carry the induction step. So the
next step of our algorithm is the following reduction algorithm. Since turn sequences only
encode the turns at the interior vertices of a path and forget where the path starts, we store
this information separately: for each character in the straight-line program, we store in a
dictionary its starting and ending edges (which might be empty). To keep the description
concise, we explain the algorithm in words, and refer to the full version for a much more
detailed description.
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Algorithm 1 Reduction Algorithm.

Input: A compressed walk on a quad system, as output by Lemma 10.
Output: Two compressed turn sequences on a quad system which are the leftmost and
rightmost forms of the input, and their starting and ending edges.

A leaf of the production tree is a single edge, which is turned to ε, and the edge is stored
in the dictionary.
Let Ai → AjAk be a production rule, and assume that we have inductively computed
rightmost and leftmost reduced turn sequences for Aj and Ak, which are denoted by AR

j ,
AL

j , AR
k and AL

k , as well as their starting and ending edges. We explain how to compute
a rightmost reduced turn sequence AR

i , the leftmost case being symmetric.
1. Using Lemma 4 and the dictionary, we compute a maximal common path between

the end of AR
k and the start of AL

k (let us emphasize that we use the leftmost form
here). We trim the end of AR

j and the start of AR
k by the length of this path, manually

reconnecting them if there is some offset.
2. Using Lemma 4, we remove a maximal spur or ladder between AR

j and AR
k (as on the

left of Figure 4).
3. At this stage, no bad cases can happen anymore. We simply perform a single elementary

right shift, remove the at most two remaining brackets, and update the starting and
ending edge in the dictionary.

Step 3 simply implements the bracket flattenings and the shifts, so the main mysteries
in this algorithm are steps 1 and 2. These are tailored to deal with the bad cases pictured
in Figure 4, which are the only possible bad cases; see the proof of Lemma 12. Figure 5
illustrates how step 1 reduces (a subset of) the right case of Figure 4 to its left case, and how
step 2 deals with that case. Note that in these pictures, Aj and Ak were already rightmost.

We claim that after this procedure, the path that represents the word AR
i (respectively

AL
i ) is homotopic to the path represented by Ai, and is rightmost (respectively leftmost).

The following lemma is the crux of the analysis. We state it for rightmost paths but the
symmetric version with leftmost paths holds with the same proof.

▶ Lemma 12. At the end of step 2, the paths represented by AR
j and AR

k are rightmost.
Furthermore, denoting by τ the turn between AR

j and AR
k at the end of step 2, the path

represented by AR
j τAR

k is homotopic to the one before these two steps, contains no spurs,
contains at most two brackets, and these brackets contain both at least one 2.

The idea of the proof is that due to structural results on reduced paths on quad systems [13,
Theorem 10], paths that would incur long sequences of simplifications necessarily look like a
sequence of paths and staircases, as in the right side of Figure 4. These are dealt with a single
move in step 1, observing that taking the leftmost form of Ak collapses these staircases into
a long spur, which we know how to handle. After this step, we prove that there is either a
ladder or a spur, which are removed in step 2.

▶ Lemma 13. The Reduction Algorithm runs in polynomial time. The straight-line
program that it outputs has the property that every pair of characters AR

i and AL
i encode a

pair of turn sequence corresponding respectively to the rightmost and leftmost paths homotopic
to Ai. In particular, at the top level, AR and AL are the rightmost and leftmost paths
homotopic to the compressed input walk.

SoCG 2021
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Figure 5 The leftmost form AL
k forms a long spur with AR

j . After reducing AR
k by the length of

this spur, all of the staircases get removed, except possibly the last one. It disappears in step 2.

Since rightmost paths are unique, the reduction algorithm applied to the root of the
straight-line program produces a unique representative, and testing triviality amounts to
testing emptiness. This proves Theorem 9 (see the full version for details).

Proofs of the main theorems

The proof of Theorems 1, 2 and 3 follow from Propositions 6, 5, 7, 8 and Theorem 9. We
refer to the full version for details.
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