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Abstract
We consider several problems that involve lines in three dimensions, and present improved algorithms
for solving them. The problems include (i) ray shooting amid triangles in R3, (ii) reporting
intersections between query lines (segments, or rays) and input triangles, as well as approximately
counting the number of such intersections, (iii) computing the intersection of two nonconvex polyhedra,
(iv) detecting, counting, or reporting intersections in a set of lines in R3, and (v) output-sensitive
construction of an arrangement of triangles in three dimensions.

Our approach is based on the polynomial partitioning technique.
For example, our ray-shooting algorithm processes a set of n triangles in R3 into a data

structure for answering ray shooting queries amid the given triangles, which uses O(n3/2+ε) storage
and preprocessing, and answers a query in O(n1/2+ε) time, for any ε > 0. This is a significant
improvement over known results, obtained more than 25 years ago, in which, with this amount of
storage, the query time bound is roughly n5/8. The algorithms for the other problems have similar
performance bounds, with similar improvements over previous results.

We also derive a nontrivial improved tradeoff between storage and query time. Using it, we
obtain algorithms that answer m queries on n objects in

max
{

O(m2/3n5/6+ε + n1+ε), O(m5/6+εn2/3 + m1+ε)
}

time, for any ε > 0, again an improvement over the earlier bounds.
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1 Introduction

In this paper we consider several algorithmic problems that involve, explicitly or implicitly, a
finite set of lines in three dimensions. The main problems that we consider are:

(i) Ray shooting amid triangles in three dimensions. Given a set T of n triangles in R3,
preprocess T into a data structure that supports efficient ray-shooting queries, each of
which specifies a ray ρ and asks for the first triangle of T that is hit by ρ, if such a
triangle exists.
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(ii) Intersection reporting, emptiness, and approximate counting queries amid triangles in
three dimensions. For a set T of n triangles in R3, preprocess T into a data structure that
supports efficient intersection reporting (resp., emptiness) queries, each of which specifies
a line, ray, or segment ρ and asks for reporting the triangles of T that ρ intersects (resp.,
determining whether such a triangle exists). We want the queries to be output-sensitive,
whose cost is a small (sublinear) overhead plus a nearly linear term in the output size k.
For approximate counting queries, we want to preprocess T into a data structure, such
that given a query ρ as above, it computes the number of triangles of T that ρ intersects,
up to some prescribed small relative error.

(iii) Compute the intersection of two nonconvex polyhedra. The complexity of the intersection
can be quadratic in the complexities of the input polyhedra, and we therefore seek an
output-sensitive solution, where the running time is a small (subquadratic) overhead plus
a term that is nearly linear in k, where k is the complexity of the intersection.

(iv) Detect, count, or report intersections in a set of lines in 3-space. Again, in the reporting
version we seek an output-sensitive solution, as above.

(v) Output-sensitive construction of an arrangement of triangles in three dimensions.

All these problems, or variants thereof, have been considered in several works during the
1990s; see [3, 4, 11, 13, 14, 21, 23] for a sample of these works. See also Pellegrini [24] for a
recent comprehensive survey of the state of the art in this area.

Pellegrini [23] presents solutions to some of these problems, including efficient data
structures (albeit less efficient than ours) for the ray-shooting problem, and also (a) an
output-sensitive algorithm for computing the intersection of two nonconvex polyhedra in
time O(n8/5+ε + k log k), for any ε > 0, where n is the number of vertices, edges, and facets
of the two polyhedra and k is the (similarly defined) complexity of their intersection; (b)
an output-sensitive algorithm for constructing an arrangement of n triangles in 3-space in
O(n8/5+ε + k log k) time, where k is the output size; and (c) an algorithm that, in O(n8/5+ε)
expected time, counts all pairs of intersecting lines, in a set of n lines in 3-space.

Background. Algorithmic problems that involve lines in three dimensions have been studied
for more than 30 years, covering the problems mentioned above and several others. An early
study by McKenna and O’Rourke [22] has developed some of the tools and techniques for
tackling these problems. Various techniques for ray shooting, and for the related problems
of computing and verifying depth orders and hidden surface removal have been studied in
de Berg’s dissertation [13], and later by de Berg et al. [14]. Another work that developed
some of the infrastructure for these problems is by Chazelle et al. [11], who presented several
combinatorial and algorithmic results for problems involving lines in 3-space. Agarwal and
Matoušek [3] reduced ray shooting problems, via parametric search, to segment emptiness
problems (where the query is a segment and we want to determine whether it intersects any
input object), and obtained efficient solutions via this reduction. See also [21] and [4] for
studies of some additional and special cases of the ray shooting problem.

Most of the works cited above suffer from the “curse’ of the four-dimensionality of (the
parametric representation of) lines in space, which leads to algorithms whose complexity is
inferior to those obtained in our work. Nevertheless, there are a few instances where better
solutions can be obtained, such as in [10,11] and some other works.

Our results. Using the polynomial partitioning technique of [16,17], we derive more efficient
algorithms for the problems listed above. In our first main result, presented in Section 2, we
tackle the ray-shooting problem, and construct a data structure on an input set of n triangles,
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which requires O(n3/2+ε) storage and preprocessing, so that a ray shooting query can be
answered in O(n1/2+ε) time, for any ε > 0. We then extend the technique, in Section 3,
to obtain an equally-efficient data structure for the segment-triangle intersection reporting,
emptiness, and approximate counting problems, where in the case of reporting the query
time bound has an additional term that is nearly linear in the output size.

These are significant improvements over previous results, which, as already noted, have
treated the lines supporting the edges of the input triangles and the line supporting the
query ray (or segment) as points or surfaces in a suitable four-dimensional parametric space
(in many of the earlier works, lines were actually represented as points on the Klein quadric
in five-dimensional projective space; see [8, 19,24,26]). As a result, the algorithms obtained
by these techniques were less efficient.

A weakness, or rather an intriguing peculiarity, of our analysis is that it does not provide
a desirably sharp tradeoff between storage and query time. To make this statement more
precise, the tradeoff that the earlier solutions provide, say for the ray shooting problem for
specificity, is that, for n input triangles and with s storage, for s varying between n and
n4, a ray-shooting query takes O(n1+ε/s1/4) time; see, e.g., [24] (the “4” in the exponent
comes from the fact that lines in 3-space are represented as objects in four-dimensional
parametric space). Thus, with storage O(n3/2+ε), which is what our solution uses, the query
time becomes about O(n5/8), considerably weaker than our bound.

An ambitious, and maybe unrealistic goal would be to improve the tradeoff so that the
query time is only O(n1+ε/s1/3). (This does indeed coincide with the bound that our main
result gives, as the storage that it uses is O(n3/2+ε), but this coincidence only holds for this
amount of storage.) Although not achieving this goal, still, combining our technique with
the known, aforementioned “4-dimensional” tradeoff, we are able to obtain an “in between”
tradeoff, which we present in Section 4, where, with s storage, the query cost is

Q(n, s) =

O
(
n5/4+ε

s1/2

)
, s = O(n3/2+ε),

O
(
n4/5+ε

s1/5

)
, s = Ω(n3/2+ε).

(1)

Note that this tradeoff contains our bounds (s,Q) =
(
O(n3/2+ε), O(n1/2+ε)

)
, as a special

case, that at the extreme ends s = Θ(n), s = Θ(n4), of the range of s we get Q = O(n3/4+ε),
Q = O(nε), respectively,1 as in the older tradeoff, and that the new tradeoff is better for
any in-between value of s. A comparison between the two tradeoffs is illustrated in Figure 1.
Our improved tradeoff applies to all the problems studied in this paper: the overall cost of
processing m queries with n input objects, including preprocessing cost, is

max
{
O(m2/3n5/6+ε + n1+ε), O(n2/3m5/6+ε +m1+ε)

}
, (2)

for any ε > 0; for the output-sensitive problems, this bounds the total overhead cost. The
first (resp., second) bound dominates when n ≥ m (resp., n ≤ m).

We then present, in Section 5, extensions of our technique for solving the other problems
(iii), (iv) and (v) listed above. In all these applications, our algorithms are output-sensitive
for the reporting versions, so that the query time bound, or the full processing cost bound,
contains an additional term that is nearly linear in the output size. See Section 5.

Due to lack of space, many details of the above results are omitted in this version. They
can all be found in the full version [15].

1 The actual query time in the older tradeoff, with maximum storage, is Q = O(log n).

SoCG 2021



34:4 On Ray Shooting for Triangles in 3-Space and Related Problems

1 2 3 4
0

1/4

1/2

3/4

storage

query time

Figure 1 The old tradeoff (green) and the new tradeoff (red). The x-axis is the storage as a
function of n, and the y-axis is the query cost. Both axes are drawn in a logarithmic scale.

2 Ray shooting amid triangles

Let T be a collection of n triangles in R3. We fix some sufficiently large constant parameter
D, and construct a partitioning polynomial f of degree O(D) for T , so that each of the
O(D3) connected components τ of R3 \Z(f) (the cells of the partition) is crossed by at most
n/D2 triangle edges. We refer to triangles with an edge that crosses τ as narrow triangles
(with respect to τ), and refer to the remaining triangles that cross τ (but none of their edges
do) as wide triangles. We denote the set of narrow (resp., wide) triangles in τ by Nτ (resp.,
Wτ ). The existence of such a partitioning polynomial is implied, as a special case, by the
general machinery developed in Guth [16]. An algorithm for constructing f is given in a
recent work of Agarwal et al. [2]. It runs in O(n) time, for any constant value of D, where
the constant of proportionality depends (polynomially) on D.

For technical reasons, we want to turn any query ray into a bounded segment, and we do
it by enclosing all the triangles of T by a sufficiently large bounding box B0, and by clipping
any query ray to its portion within B0.

For each (bounded) cell τ ⊆ B0 of the partition, we take the set Wτ of wide triangles in
τ , and prepare a data structure for efficient segment-shooting queries into the triangles of
Wτ , by segments that are fully contained in τ . The nontrivial details of this procedure are
given in Section 2.1. As we show there, we can construct such a structure with storage and
preprocessing O(|Wτ |3/2+ε) = O(n3/2+ε), for any ε > 0 (where the choice of D depends on
ε), and each segment-shooting query takes O(|Wτ |1/2+ε) = O(n1/2+ε) time.

The preprocessing then recurses within each such cell τ of the partition, with the set Nτ

of the narrow triangles in τ . The recursion terminates when the number of input triangles
becomes smaller than the constant threshold n0 := O(D2), in which case we simply output
the list of triangles in the subproblem.

A query, with a ray (now turned into a segment) ρ, emanating from a point q, is answered
as follows. We first consider the case where ρ (that is, the line containing ρ) is not fully
contained in Z(f), and discuss the (simpler, albeit still involved) case where ρ ⊂ Z(f), later.

The case where ρ ̸⊂ Z(f). We use a standard model of algebraic computation, in
which computations involving polynomials of constant degree, such as computing (some
discrete representation of) their roots, performing comparisons and algebraic computations
(of constant degree) with these roots, and so on, can be done exactly in constant time C(δ),
that depends on the degree δ of the polynomial; see, e.g., [6, 7].



E. Ezra and M. Sharir 34:5

Using this model, we first locate the cell of the partition that contains the starting
endpoint q of the segment ρ, in constant time (recalling that D is a constant). One way of
doing this is to construct the cylindrical algebraic decomposition (CAD) of Z(f) (see [12,25]),
associate with each cell σ of the CAD the cell of R3 \ Z(f) that contains it (or an indication
that σ is contained in Z(f)), and then search with q in the CAD, coordinate by coordinate
(see, e.g., [2] for more details). We then find, in constant time, the t = O(D) points of
intersection of ρ with Z(f), and sort them into a sequence P := (p1, . . . , pt) in their order
along ρ; we assume that pt ∈ ∂B0, and ignore the suffix of ρ from pt onwards. The points in
P partition ρ into a sequence of segments, each of which is a connected component of the
intersection of ρ with some cell. The first segment is e1 = qp1, the subsequent segments are
e2 = p1p2, e3 = p2p3, . . . , et = pt−1pt. We denote by τi the cell containing the i-th segment,
for i = 1, . . . , t (a cell can appear several times in this sequence). See Figure 2.

pt

B0

q p1

p2

Z(f)

Figure 2 A two-dimensional rendering of the the general structure of the ray-shooting mechanism.

We now process the segments ei in order. For each segment ei, let τi denote the partition
cell that contains ei. We first perform a ray-shooting (or rather a segment-shooting) query
in the structure for Wτi

with the segment ei. As already mentioned (and will be described
in Section 2.1), this step can be performed in O(n1/2+ε) time, with O(n3/2+ε) storage
and preprocessing, for any ε > 0. We then query with ei in the substructure recursively
constructed for Nτi . If at least one of the two queries succeeds, i.e., outputs a point that
lies on ei, we report the point nearest to the starting point of ei, and terminate the whole
query. If both queries fail, we proceed to the next segment ei+1 and repeat this step. If the
mechanism fails for all the segments, we report that ρ does not hit any triangle of T .

The case where ρ ⊂ Z(f). We use the cylindrical algebraic decomposition (CAD) of
Z(f) (see [12, 25]), already discussed earlier. One of its by-products is a stratification of
Z(f), which is a decomposition of Z(f) into pairwise disjoint relatively open patches of
dimensions 0, 1, and 2, called strata (each stratum is a cell of the CAD), so that each of the
two-dimensional strata is xy-monotone and its relative interior is free of any singularities
of Z(f), and Z(f) is the union of the closures of these two-dimensional strata, ignoring
possible components of Z(f) of dimension at most 1. We compute the intersection arcs

SoCG 2021
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γ∆ := Z(f) ∩ ∆, for ∆ ∈ T , and distribute each arc amid the closures of the two-dimensional
strata that it traverses. We then project the closure of each two-dimensional stratum σ onto
the xy-plane, including the portions of the arcs γ∆ that the closure contains, and preprocess
the resulting collection of O(n) algebraic arcs, each of degree O(D) = O(1), into a planar
ray-shooting data structure, whose details are omitted in this version, and can be found in
the full version [15].2 As we show there, we can answer a ray-shooting query in O(n1/2+ε)
time, using O(n3/2+ε) storage, for any ε > 0, where the constants of proportionality depend
on ε, as does the choice of D. The overall storage complexity, over all the (projected) strata
of Z(f), is thus O(n3/2+ε), and the overall query time, over all strata met by the query ray
ρ, is O(n1/2+ε), for a larger constant of proportionality (that depends on ε).

The recursion on D terminates when the query ray comes to lie on the zero set of the
current partitioning polynomial. We solve the problem in such a recursive instance using
a (nonrecursive) procedure, as detailed in the full version [15], and terminate the (current
branch of the) recursion. That is, the leaves of the D-recursion tree represent either constant-
size subproblems or subproblems on the zero set of the current partitioning polynomial, and
the inner nodes represent subproblems of shooting within the partition cells.

Analysis. The correctness of the procedure is fairly easy to establish. Denote by S(n) the
maximum storage used by the structure for a set of at most n triangles, and denote by
S0(n) (resp., S1(n)) the maximum storage used by the auxiliary structure for a set of at
most n wide triangles in a cell of the partition, as analyzed in Section 2.1 (resp., for a set of
at most n intersection arcs on Z(f), which we process for planar ray-shooting (see the full
version [15]). Then S(n) obeys the recurrence

S(n) = O(D3)S0(n) + S1(n) +O(D3)S(n/D2), (3)

for n > n0, and S(n) = O(n) for n ≤ n0, where n0 := cD2, for a suitable constant c ≥ 1. We
show, in the respective Section 2.1 and the full version [15], that S0(n) = O(n3/2+ε) and
S1(n) = O(n3/2+ε), for any ε > 0, where both constants of proportionality depend on D

and ε, from which one can easily show that the solution of (3) is S(n) = O(n3/2+ε), for a
slightly larger, but still arbitrarily small ε > 0; to achieve this bound, we need to take D to
be 2Θ(1/ε), as will follow from our analysis. Regarding the bound on the preprocessing time
T (n), we obtain a similar recurrence as in (3), namely,

T (n) = O(n) +O(D3)T0(n) + T1(n) +O(D3)T (n/D2),

where the non-recursive linear term is the time to compute the polynomial f , and T0(n),
T1(n) are defined in an analogous manner as above, and have similar upper bounds as S0(n),
S1(n) (see Section 2.1 and the full version [15]).

Similarly, denote by Q(n) the maximum query time for a set of at most n triangles, and
denote by Q0(n) (resp., Q1(n)) the maximum query time in the auxiliary structure for a set
of at most n wide triangles in a cell of the partition (resp., for a set of at most n intersection
arcs within Z(f), when the query ray lies on Z(f)). Then Q(n) obeys the recurrence (recall
that the recursion terminates when the query ray lies on the zero set)

Q(n) = max
{
O(D)Q0(n) +O(D)Q(n/D2), Q1(n)

}
, (4)

2 This specific planar ray-shooting problem, amid constant-degree algebraic arcs, has not received full
attention in the past, although several algorithms have been proposed, mostly with suboptimal solutions.
Consult, e.g., Table 2 in Agarwal [1]; see also [5, 20].
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for n > n0, and Q(n) = O(n) = O(1) for n ≤ n0. Again, the analysis in Section 2.1 and the
full version [15] shows that Q0(n) = Q1(n) = O(n1/2+ε), for any ε > 0 (where the choice of
D depends on ε, as above), from which one can easily show, using induction on n, that the
solution of (4) is Q(n) = O(n1/2+ε), for a slightly larger but still arbitrarily small ε > 0. The
main result of this section is therefore:

▶ Theorem 1. Given a set T of n triangles in three dimensions, and a prescribed parameter
ε > 0, we can process T into a data structure of size O(n3/2+ε), in time O(n3/2+ε), so that
a ray shooting query amid these triangles can be answered in O(n1/2+ε) time.

2.1 Ray shooting into wide triangles

Preliminaries. In this subsection we present and analyze our procedure for ray shooting in
the set Wτ of the wide triangles in a cell τ of the partition. We then present, only in the
full version [15], a different approach that yields a procedure for ray shooting within Z(f).
Both procedures have the performance bounds stated in Theorem 1. The efficiency of our
structures depends on D being a constant, since the constants of proportionality depend
polynomially (and rather poorly) on D.

We thus focus now on ray shooting in a set of wide triangles within a three-dimensional
cell τ of the partition. To appreciate the difficulty in solving this subproblem, we make the
following observation. A simple-minded approach might be to replace each wide triangle
∆ ∈ Wτ by the plane h∆ supporting it. Denoting the set of these planes as Hτ , we could
then preprocess Hτ for ray-shooting queries, each of which specifies a query ray ζ and asks
for the first intersection of ζ with the planes of Hτ . Using standard machinery (see, e.g. [1]),
this would result in an algorithm with the performance bounds that we want. However, this
approach is problematic, since, even though ∆ is wide in τ , h∆ could intersect τ in several
connected components, some of which lie outside ∆. See Figure 3 for an illustration. In
such cases, ray shooting amid the planes in Hτ is not equivalent to ray shooting amid the
triangles of Wτ , even for rays, or rather portions thereof, that are contained in τ .

τ

∆

h∆

ζ

Figure 3 Wide triangles cannot be replaced by their supporting planes for ray shooting within τ .

Our solution is therefore more involved, and proceeds as follows.

SoCG 2021
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Canonical sets of wide triangles. Consider first, for exposition sake, the case where the
starting point of the shooting segment lies on ∂τ (the terminal point always lies on ∂τ). As
we will show, for each such segment query, the set of wide triangles in Wτ that it intersects
can be decomposed into a small collection of precomputed “canonical” subsets, where in each
canonical set the wide triangles can be treated as planes (for that particular query segment).
The overall size of these sets, over all possible segment queries, is O(n3/2+ε), for any ε > 0.

Actually, to prepare for the complementary case, where the starting point of the query
segment lies inside τ , we calibrate our algorithm, so that we control the storage that it uses,
and consequently also the query time bound. We introduce a storage parameter s, which
can range between n and n2, as a second input to our procedure, and then require that the
actual storage and preprocessing cost be both O(s1+ε), for any ε > 0. This relaxed notion of
storage offers some simplification in the analysis.

For each ∆ ∈ Wτ , let γ∆ denote the intersection curve of ∆ with ∂τ . Note that γ∆ does
not have to be connected – it can have up to O(D2) connected components, by Harnack’s
curve theorem [18] (applied on the plane containing ∆). Note also that ∂τ does not have to
be connected, so γ∆ can have nonempty components on different connected components of
∂τ , as well as several components on the same connected component of ∂τ .

We construct the locus Sτ of points on ∂τ that are either singular points of Z(f) or
points with z-vertical tangency. Since D is constant, Sτ is a curve of constant degree (by
Bézout’s theorem, its degree is O(D2)). We take a random sample R of r0 triangles of Wτ ,
where the analysis dictates that we choose r0 = DΘ(1/ε), for the arbitrarily small prescribed
ε > 0. Since we have chosen D to be 2Θ(1/ε), the actual choice of r0 is 2Θ(1/ε2).

Let ΓR = {γ∆ | ∆ ∈ R}, and let A0 = A(ΓR ∪ {Sτ}) denote the arrangement of these
curves within ∂τ , together with Sτ . By construction, each face of A0 is xy-monotone and
does not cross any other branch of Z(f) (at a singular point). We partition each face φ of
A0 into pseudo-trapezoids (called trapezoids for short), using a suitably adapted version
of a two-dimensional vertical decomposition scheme. Let A∗

0 denote the collection of these
trapezoids on ∂τ . The number of trapezoids in A∗

0 is proportional to the complexity of A0,
which is OD(r2

0) = O(1).
We assume that the trapezoids are relatively open. For exposition sake, we only handle

here two-dimensional trapezoids; lower-dimensional boundary features are handled in the
full version [15]. Let ψ1, ψ2 be two distinct trapezoids of A∗

0. Let S(ψ1, ψ2) denote the
collection of all segments e such that one endpoint of e lies in ψ1, the other endpoint lies in
ψ2, and the relative interior of e is fully contained in the open cell τ . We can parameterize
such a segment e by four real parameters, two for the starting endpoint of e and two for its
other endpoint. Denote by F the corresponding (at most) four-dimensional parametric space.
Since each of τ , ψ1, ψ2 is of constant complexity, S(ψ1, ψ2) is a semi-algebraic set in F of
constant complexity, implicitly expressed by the quantified formula

S(ψ1, ψ2) = {(p1, p2) | p1 ∈ ψ1, p2 ∈ ψ2, and p1p2 ⊂ τ},

where p1p2 denotes the line-segment connecting p1 to p2. Using the singly exponential
quantifier-elimination algorithm in [7, Theorem 14.16], we can construct, in OD(1) time, a
quantifier-free semi-algebraic representation of S(ψ1, ψ2) of OD(1) complexity, and we can
decompose S(ψ1, ψ2) into its connected components, in OD(1) time as well.

For each segment e ∈ S(ψ1, ψ2), let T (e) denote the set of all wide triangles of Wτ that e
crosses. We have the following technical lemma, whose proof can be found in [15].

▶ Lemma 2. In the above notations, each connected component C of S(ψ1, ψ2) can be
associated with a fixed set TC of wide triangles of Wτ , none of which crosses ψ1 ∪ψ2, so that,
for each segment e ∈ C, TC ⊆ T (e), and each triangle in T (e) \ TC crosses either ψ1 or ψ2.
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The collection of all these sets TC , over all connected components C, and all pairs of
trapezoids (ψ1, ψ2), is part of the whole output collection of canonical sets over τ ; the rest of
this collection is constructed recursively over the trapezoids ψ of A∗

0.

The algorithm. For each trapezoid ψ of A∗
0, the conflict list Kψ of ψ is the set of all wide

triangles that cross ψ. By standard random sampling arguments [9], with high probability,
the size of each Kψ is OD

(
n
r0

log r0

)
. (Special cases, involving lower-dimensional boundary

features and triangles fully containing trapezoids, are handled in the full version [15].)
For every pair of trapezoids ψ1, ψ2, we compute S(ψ1, ψ2) and decompose it into its

connected components. We pick some arbitrary but fixed segment e0 from each component
C, compute the set T (e0) of the wide triangles that cross e0, and remove from it any triangle
that crosses ψ1 ∪ ψ2, thereby obtaining the set TC . All this takes OD(r4

0n) = OD(n) time,
and the overall size of the produced canonical sets is also OD(n).

Let s be the storage parameter associated with the problem, as defined earlier, and recall
that we require that n ≤ s ≤ n2. Each canonical set TC is preprocessed into a data structure
that supports ray shooting in the set of planes HC = {h∆ | ∆ ∈ TC}, where h∆ is the
plane supporting ∆. We construct these structures so that they use O(s1+ε) storage (and
preprocessing), for any ε > 0, and a query takes O(n polylog(n)/s1/3) time (see, e.g., [1]).

We now recurse on each conflict list Kψ, over all trapezoids ψ of A∗
0. Each subproblem uses

the same parameter r0, but now the storage parameter that we allocate to each subproblem
is only s/r2

0. We keep recursing until we reach conflict lists of size close to n2/s. More
precisely, after j levels of recursion, we get a total of at most (c0r

2
0)j = cj0r

2j
0 subproblems,

each involving at most
(
c1 log r0
r0

)j
n wide triangles, for some constants c0, c1 that depend on

D, and thus on ε, but are considerably smaller than r0 = DΘ(1/ε).
We stop the recursion at the first level j∗ at which (c1r0 log r0)j∗ ≥ s/n. As a result, we

have r0
j∗ ≤ s/n, and we get cj

∗

0 r
2j∗

0 = O(s2/n2−ε) subproblems, for any ε > 0, where the
choice of D (and therefore also of c0, c1 and r0) depends, as above, on ε. With a suitable
choice of D, each of these subproblems involves at most(

c1 log r0

r0

)j∗

n =
(

(c1 log r0)2

c1r0 log r0

)j∗

n ≤ (c1 log r0)2j∗
· n

2

s
= n2+ε

s

triangles, for any ε > 0. Hence the overall size of the inputs and of the canonical sets, at all

recursive subproblems, is O
(

s2

n2−ε

)
· n

2+ε

s
= O(sn2ε) = O(s1+ε), for a slightly larger ε > 0.

Note that the canonical sets that we encounter when querying with a fixed segment e are
not necessarily pairwise disjoint. This is because the sets Kψ1 and Kψ2 are not necessarily
disjoint (they are disjoint of TC , though). This does not pose a problem for ray shooting
queries, but will be problematic for counting queries; see Section 3.

At the bottom of the recursion, each subproblem contains at most n2+ε/s wide triangles,
which we merely store in the structure. As just calculated, the overall storage that this
requires is O(s1+ε), for a slightly larger ε, as above. We obtain the following recurrence for
the overall storage S(NW , sW ) for the structure constructed on NW wide triangles, where
sW denotes the storage parameter allocated to the structure (at the root NW = n, sW = s).

S(NW , sW ) =
{

OD(r4
0s

1+ε
W ) + c0r

2
0S
(
c1NW log r0

r0
, sW

r2
0

)
for NW ≥ n2+ε/s,

O(NW ) for NW < n2+ε/s.

}

Throughout the recursion we have NW ≤ sW ≤ N2
W (see the full version for details).
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Unfolding the first recurrence up to the terminal level j∗, where NW < n2+ε/s, the sum
of the nonrecursive overhead terms OD(r4

0s
1+ε
W ), over all nodes at a fixed level j, is

cj0r
2j
0 ·O

(
s1+ε
W

r
2j(1+ε)
0

)
= O

(
cj0
r2jε

0
s1+ε
W

)
= O

(
s1+ε
W

)
,

by the choice of r0. Hence, starting the recurrence at (NW , sw) = (n, s), the overall
contribution of the overhead terms (over the logarithmically many levels) is O(s1+ε), for
a slightly larger ε. At the bottom of recurrence, we have, as already noted, O(s2/n2−ε)
subproblems, each with at most O(n2+ε/s) triangles, so the sum of the terms NW at the
bottom of recurrence is also O(s1+ε). In other words, the overall storage used by the data
structure is O(s1+ε). Using similar considerations, one can show that the overall preprocessing
time is O(s1+ε) as well, since the time obeys essentially the same recurrence.

Answering a query. To perform a query with a segment e that starts at a point a (that
lies anywhere inside τ), we extend e from a backwards, find the first intersection point a′

of the resulting backward ray with ∂τ , and denote by e′ the segment that starts at a′ and
contains e. See Figure 4 for an illustration. This takes OD(1) time. This step is vacuous
when e starts on ∂τ , in which case we have e′ = e.

τ

e

a

a′

e′

Figure 4 Segment shooting from inside the cell τ : Extending the segment backwards and the resulting
canonical set of triangles.

We find the pair of trapezoids ψ1, ψ2 that contain the endpoints of e′, find the connected
component C ⊆ S(ψ1, ψ2) that contains e′, and retrieve the canonical set TC . We then
perform segment shooting along e from a in the structure constructed for HC , and then
continue recursively in the subproblems for Kψ1 and Kψ2 . We output the triangle that e
hits nearest to a, or else report that e does not hit any wide triangle inside τ . See the full
version [15] for the case where both endpoints of e′ lie in the same trapezoid ψ.

The correctness of the procedure follows from the fact that e′ intersects all the triangles
of TC , and thus replacing these triangles by their supporting planes cannot produce any new
(false) intersection of any of these triangles with e, and any other wide triangle that e hits
must belong to Kψ1 ∪Kψ2 .

The query time Q(NW , sW ) satisfies the recurrence

Q(NW , sW ) =

 OD(1) + O

(
NW polylog(NW )

s
1/3
W

)
+ 2Q

(
c1NW log r0

r0
, sW

r2
0

)
for NW ≥ n2+ε/s,

O(NW ) for NW < n2+ε/s.

 .
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Unfolding the first recurrence, we see that when we pass from some recursive level to the
next one, we get two descendant subproblems from each recursive instance, and the term
NWpolylog(NW )/s1/3

W is replaced in each of them by the (upper bound) term
c1NW log r0

r0(
sW

r2
0

)1/3 · polylog(NW ) = c1 log r0

r
1/3
0

· NWpolylog(NW )
s

1/3
W

.

Hence the overall bound for the nonrecursive overhead terms in the unfolding, starting from
(NW , sW ) = (n, s), is at most

O

∑
j≥0

(
2c1 log r0

r
1/3
0

)j · n polylog(n)
s1/3 = O

(
n polylog(n)

s1/3

)
,

provided that r0 is sufficiently large. Adding the cost at the 2j∗ subproblems at the bottom
level j∗ of the recursion, where the cost of each subproblem is at most n2+ε/s, gives an
overall bound for the query time of

Q(n, s) = O

(
n polylog(n)

s1/3 + n2+ε

s

)
. (5)

Starting with s = n3/2, the query time is O(n1/2+ε). We thus obtain

▶ Proposition 3. For a (bounded) cell τ of the polynomial partition, and a set W of n wide
triangles in τ , one can construct a data structure of size and preprocessing cost O(n3/2+ε), so
that a segment-shooting query within τ , from any starting point, can be answered in O(n1/2+ε)
time, for any ε > 0.

See the full version [15] for the case where the query ray lies in Z(f). We show:

▶ Proposition 4. For a partitioning polynomial f of sufficiently large constant degree, and
a set W of n triangles, one can construct a data structure of size and preprocessing cost
O(n3/2+ε), so that a segment-shooting query with a segment that lies in Z(f), can be answered
in O(n1/2+ε) time, for any ε > 0.

As already concluded, Propositions 3 and 4 complete the proof of Theorem 1.

3 Segment-triangle intersection reporting, emptiness, and
approximate counting queries

We extend the technique presented in Section 2 to answer intersection reporting queries
amid triangles in R3. Here too we have a set T of n triangles in R3, and our goal is to
preprocess T into a data structure that supports efficient intersection queries, each of which
specifies a line, ray or segment ρ and asks for reporting the triangles of T that ρ intersects.
In particular, this data structure also supports segment emptiness queries, in which we want
to determine whether the query segment meets any input triangle. We obtain the following
result, whose proof is given in the full version [15].

▶ Theorem 5. Given a collection of n triangles in three dimensions, and a prescribed
parameter ε > 0, we can process the triangles into a data structure of size O(n3/2+ε), in
time O(n3/2+ε), so that a segment-intersection reporting (resp., emptiness) query amid these
triangles can be answered in O(n1/2+ε + k logn) (resp., O(n1/2+ε)) time, where k is the
number of triangles that the query segment crosses.
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Unfortunately, for technical reasons, the method does not extend to segment-triangle
intersection (exact) counting queries, in which we want to find the (exact) number of triangles
that intersect a query segment (or a line or a ray). Briefly, this arises because the canonical
sets that a query segment collects are not necessarily pairwise disjoint. As a “compensation”,
we present a partial solution, which supports queries that approximately count the number of
intersections, up to any prescribed relative error ε > 0. Specifically, we obtain the following
result, whose proof is given in the full version [15].

▶ Theorem 6. Given a collection of n triangles in three dimensions, and prescribed parameters
ε, δ > 0, where δ = ω(1/nε), we can process the triangles, using random sampling, into a data
structure of size O(n3/2+ε), in time O(n3/2+ε), so that, for a query segment e, the number
of intersections of e with the input triangles can be approximately computed, up to a relative
error of 1 ± δ, with very high probability, in O(n1/2+ε) time.

4 Tradeoff between storage and query time

In this section, spelled out in the full version [15], we extend the technique in Sections 2
and 3 to obtain a tradeoff between storage (and preprocessing) and query time. A similar
tradeoff holds for the problems in Section 5.

Briefly, consider the ray-shooting structure of Section 2, and let s be the storage parameter
that we allocate to it, which now satisfies n ≤ s ≤ n4. We modify the procedure for ray
shooting inside a cell τ by (i) stopping the r0-recursion at some earlier “premature” level,
and (ii) modifying the structure at the bottom of recursion so that it uses the (weaker)
ray-shooting technique of Pellegrini [23], instead of a brute-force scanning of the triangles
(the current cost of O(n2/s) is too expensive when s is small). With additional care, we
obtain the performance bounds (1) and (2) announced in the introduction.

5 Other applications

5.1 Detecting, counting or reporting line intersections in R3

It is more convenient, albeit not necessary, to consider the bichromatic version of the problem,
in which we are given a set R of n red lines and a set B of n blue lines in R3, and the
detection problem asks whether there exists a pair of intersecting lines in R×B.

An algorithm that solves this problem in O(n3/2+ε) time is easily obtained by regarding
the problem as a special degenerate (and much simpler) instance of the ray shooting problem,
in which we regard the, say red lines as degenerate triangles (unbounded and of zero area),
construct the data structure of Section 2 and query it with each of the blue lines. There
exists a red-blue pair of intersecting lines if and only if at least one query has a positive
outcome – the corresponding blue query line hits a red line.

Since there are no wide triangles in this special variant, there is no need to construct the
auxiliary data structure for wide triangles, as in Section 2.1, and we simply construct the
recursive hierarchy of polynomial partitions, with the subset of red lines associated with each
cell in each subproblem. A blue query line ℓ is propagated through the cells that it crosses
until it reaches bottom-level cells, and we check, in each such cell, whether ℓ intersects any
of the red lines associated with the cell.

Handling lines that lie fully in the zero set Z(f) is also an easy task (which can be
performed using planar segment-intersection range searching, which also supports counting
queries); further details are omitted.
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Both correctness and runtime analysis follow easily, as special and simpler instances of
the analysis in Section 2. Note that here we do not face the issue of non-disjointness of
canonical sets of wide triangles, which has prevented us from extending the technique to
segment-triangle intersection counting problems; see Section 3.

5.2 Computing the intersection of two polyhedra
Let K1 and K2 be two polyhedra in 3-space, not necessarily convex, each with n edges (so
the number of vertices and faces of each of them is O(n)). The goal is to compute their
intersection K := K1 ∩K2 in an output-sensitive manner. We note that computing the union
K1 ∪K2 can be done using a very similar approach, within the same time bound.

Details of the procedure are given in the full version [15]. Briefly, the main step is
to compute all the vertices of K, each of which is either a vertex of K1 or of K2, or an
intersection of an edge of one polyhedron and a face of the other. The vertices of the latter
type are readily obtain by applying the segment intersection reporting algorithm of Section 3,
twice, with the (triangulated) faces of one polyhedron as input and the edges of the other as
queries. See [15] for the complete algorithm, which yields:

▶ Corollary 7. Given two arbitrary polyhedra K1 and K2 each of complexity O(n), we can
compute K1 ∩K2 in time O(n3/2+ε + k log k), where k is the size of the intersection.

As discussed in the introduction, the overhead term of Pellegrini [23] was O(n8/5+ε).

5.3 Output-sensitive construction of an arrangement of triangles
Let T be a set of n possibly intersecting triangles in R3, let A = A(T ) denote their
arrangement, and let k denote its complexity, which, as in Section 5.2, we measure by
the number of its vertices, as the number of its other features (edges, faces, and cells) is
proportional to k. The goal is to construct A in an output-sensitive manner with a small,
subquadratic overhead. Pellegrini [23] gave such an algorithm that runs in O(n8/5+ε+k logn),
and the algorithm that we present here reduces the overhead to O(n3/2+ε) time.

As in the previous subsection, we focus on the main step of the algorithm that constructs
the features of A (vertices, edges, and faces) on each triangle of T . The other, simpler
complementary steps are discussed in the full version.

Fix a triangle ∆ ∈ T . We first construct the set of intersection segments ∆ ∩ ∆′, for
∆′ ∈ T \ {∆}. We observe that, for any such segment e = ∆ ∩ ∆′, each endpoint of e is
either a vertex of ∆, or an intersection of an edge of one triangle with the other triangle.

We therefore take the collection of the 3n edges of the triangles of T , and, for each such
edge e, apply Theorem 5, which reports all ke triangles that e meets. This identifies all the
intersection segments ∆ ∩ ∆′. We then take all the intersection segments within a fixed
triangle ∆, and run a sweepline procedure within ∆ to obtain the portion of A on ∆. Gluing
these portions to each other, and some additional steps, complete the construction of A.

6 Conclusion

In this paper we have managed to improve the performance of ray shooting amid triangles in
three dimensions, as well as of several related problems. The improvement is based on the
polynomial partitioning technique of Guth. The improvement is most significant when the
storage is about n3/2 and the query takes about n1/2 time, but one gets an improvement for
all values of the storage between n and n4, except at the very ends of this range. This is a
significant improvement, the first in nearly 30 years, in this basic problem.
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There are several open questions that our work raises. First, can we improve our tradeoff
for all values of storage, beyond the special values of O(n3/2+ε) storage and O(n1/2+ε) query
time? Ideally, can we obtain query time of O(n1+ε/s1/3), with s storage, as in the case of
ray shooting amid planes? Alternatively, can one establish a lower-bound argument that
shows the limitations of our technique?

Another open issue follows from our current inability to extend the technique to counting
queries, due to the fact that the canonical sets that we collect during a query are not necessarily
pairwise disjoint. It would be interesting to obtain such an extension, or, alternatively, to
establish a gap between the performances of the counting and reporting versions of the
segment intersection query problem.

Finally, could one obtain similar bounds for non-flat input objects? for shooting along
non-straight curves? It would also be interesting to find additional applications of the general
technique developed in this paper.
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