
Improved Approximation Algorithms for
2-Dimensional Knapsack: Packing into Multiple
L-Shapes, Spirals, and More
Waldo Gálvez !

Department of Computer Science, TU München, Germany

Fabrizio Grandoni !

IDSIA, USI-SUPSI, Lugano, Switzerland

Arindam Khan !

Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India

Diego Ramírez-Romero !

Department of Mathematical Engineering, Universidad de Chile, Santiago, Chile

Andreas Wiese !

Department of Industrial Engineering and Center for Mathematical Modeling,
Universidad de Chile, Santiago, Chile

Abstract
In the 2-Dimensional Knapsack problem (2DK) we are given a square knapsack and a collection
of n rectangular items with integer sizes and profits. Our goal is to find the most profitable subset of
items that can be packed non-overlappingly into the knapsack. The currently best known polynomial-
time approximation factor for 2DK is 17/9 + ε < 1.89 and there is a (3/2 + ε)-approximation
algorithm if we are allowed to rotate items by 90 degrees [Gálvez et al., FOCS 2017]. In this paper,
we give (4/3 + ε)-approximation algorithms in polynomial time for both cases, assuming that all
input data are integers polynomially bounded in n.

Gálvez et al.’s algorithm for 2DK partitions the knapsack into a constant number of rectangular
regions plus one L-shaped region and packs items into those in a structured way. We generalize this
approach by allowing up to a constant number of more general regions that can have the shape of an
L, a U, a Z, a spiral, and more, and therefore obtain an improved approximation ratio. In particular,
we present an algorithm that computes the essentially optimal structured packing into these regions.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Approximation algorithms, two-dimensional knapsack, geometric packing

Digital Object Identifier 10.4230/LIPIcs.SoCG.2021.39

Related Version Full Version: https://arxiv.org/abs/2103.10406

Funding Waldo Gálvez: Supported by the European Research Council, Grant Agreement No. 691672,
project APEG.
Fabrizio Grandoni: Partially supported by the SNSF Excellence Grant 200020B_182865/1.
Andreas Wiese: Partially supported by the ANID Fondecyt Regular grant 1200173.

1 Introduction

The 2-Dimensional (Geometric) Knapsack problem (2DK) is a natural geometric
generalization of the fundamental (one-dimensional) Knapsack problem. In 2DK we are
given a set I of n items i which are axis-parallel rectangles specified by their width w(i) ∈ N,
height h(i) ∈ N, and profit p(i) ∈ N. Furthermore, we are given an axis-parallel square
knapsack K = [0, N]×[0, N] for some N ∈ N. The goal is to select a subset I ′ ⊆ I of maximum
total profit p(I ′) :=

∑
i∈I′ p(i) that can be placed non-overlappingly inside K. Formally, for

© Waldo Gálvez, Fabrizio Grandoni, Arindam Khan, Diego Ramírez-Romero,
and Andreas Wiese;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Computational Geometry (SoCG 2021).
Editors: Kevin Buchin and Éric Colin de Verdière; Article No. 39; pp. 39:1–39:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:galvez@in.tum.de
https://orcid.org/0000-0002-6395-3322
mailto:fabrizio@idsia.ch
mailto:arindamkhan@iisc.ac.in
https://orcid.org/0000-0001-7505-1687
mailto:dramirez@dim.uchile.cl
mailto:awiese@dii.uchile.cl
https://doi.org/10.4230/LIPIcs.SoCG.2021.39
https://arxiv.org/abs/2103.10406
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Improved Approximation Algorithms for 2-Dimensional Knapsack

each i ∈ I ′ we have to define a pair (lc(i), bc(i)) that specifies the left and bottom coordinates of
i, respectively, such that i is placed inside K as R(i) := (lc(i), bc(i))×(lc(i)+w(i), bc(i)+h(i));
we require that R(i) ⊆ K and also that for any two i, j ∈ I ′ it holds that R(i) ∩ R(j) = ∅.
We will consider also the case with rotations, in which each item i ∈ I can be rotated by 90
degrees, i.e., i can be replaced by a rectangle with width h(i), height w(i) (and profit p(i)).
In the cardinality (or unweighted) setting of the problem all profits are 1.

2DK has several applications. For example, the rectangles can model banners out of
which one wants to place the most profitable subset on a website or an advertisement board.
Also, they can model pieces that one wants to cut out of some raw material like wood or
steel. In addition, there are scheduling settings in which jobs need a consecutive amount of
some given resource (e.g., a frequency bandwidth) for some amount of time; thus, each job
can be modeled via a rectangle.

Most algorithms for 2DK and related problems work as follows: they guess a partition
of the knapsack into Oε(1) rectangular boxes, for some small constant ε > 0. Inside each
box the items are packed greedily using the Next-Fit-Decreasing-Height algorithm [18], or
even simpler by stacking items on top of each other or next to each other. Implicitly, Jansen
and Zhang use this strategy to obtain a (2 + ε)-approximation algorithm for 2DK [38, 39].
The same approach, however using (log N)Oε(1) boxes, is used in a QPTAS which assumes
that N is quasi-polynomially bounded in n [4]. Finding a PTAS for 2DK or ruling it out is a
major open problem in the area. This question is also open if N is polynomially bounded
in n, i.e., for pseudo-polynomial time algorithms.

One might wonder whether a PTAS can be constructed using Oε(1) boxes only. Unfortu-
nately, as observed in [24], essentially no better approximation ratio than 2 is achievable in
this way. Hence a different type of packing is needed to breach this approximation barrier (in
polynomial time). This was recently achieved by Gálvez et al. [24], where the authors pack
the items into Oε(1) boxes and additionally one container with the shape of an L (which is
packed with an ad-hoc, more complex algorithm).

This yields an approximation ratio of 17/9 + ε < 1.89 (and 558/325 + ε < 1.72 in the
unweighted case). The authors also present (3/2+ε)- and (4/3+ε)-approximation algorithms
for 2DK with rotations in the weighted and unweighted case, respectively.

Gálvez et al. [24] pose as an open problem how to efficiently pack items into a constant
number of L-shaped containers, and observe that this would lead to improved approximation
algorithms for 2DK. This problem was open even for just two L-shaped containers and using
pseudo-polynomial time (nN)Oε(1). In this paper we solve (a generalization of) this problem,
and hence obtain an improved approximation ratio.

1.1 Our contribution
In this paper, we present a (4/3 + ε)-approximation algorithm with a (pseudo-polynomial)
running time of (nN)Oε(1) for (weighted) 2DK. We also achieve improved (4/3 + ε)- and
(5/4 + ε)-approximation algorithms for 2DK with rotations in the weighted and unweighted
case, resp., with the same running time. See Table 1 for an overview of our and previous
results in the respective settings.

Our algorithms use Oε(1) boxes and, in addition, rather than one single L-shaped container
as in [24], a combination of Oε(1) containers with the shape of an L or even more complicated
shapes. The latter are intuitively thin corridors with the property that if we traverse them,
we change the orientation at the turns (i.e., clockwise or counter-clockwise) at most once.
For example, they can have figuratively the shape of a U, a Z, or a spiral (see Figure 1).
Since they are thin, they help us to distinguish the parts of K that are used by items that
are wide and thin (horizontal items) and items that are high and narrow (vertical items).
The interaction of these types of items is a major difficulty in 2DK.

W. Gálvez, F. Grandoni, A. Khan, D. Ramírez-Romero, and A. Wiese 39:3

Table 1 A summary of our approximation ratios compared to the best known results with running
time (nN)Oε(1) for the respective settings.

Setting Known result Our result

Without rotations Weighted 17/9 + ε < 1.89 [24] 4/3 + ε

Unweighted 558/325 + ε < 1.72 [24] 4/3 + ε

With rotations Weighted 3/2 + ε [24] 4/3 + ε

Unweighted 4/3 + ε [24] 5/4 + ε

Figure 1 Left: a packing based on a single L-shaped container and boxes as it was used in
previous work. Right: A packing based on a box and cooridors with the shapes of an L, a U, a Z,
and a spiral, as we use them in our algorithms.

By standard arguments (in particular building upon the corridor decomposition in [2]), it
is not hard to show that we can partition K into a constant number of boxes and corridors of
the allowed types, so that there exists a feasible packing of a (4/3 + ε)-approximate solution
into them. The non-trivial part is how to efficiently pack items into our corridors. Here we
cannot exploit the L-packing algorithm in [24]. Indeed, the latter algorithm does not seem
to generalize even to two L-shaped corridors (even if N = nO(1)), while we need to handle
Θε(1) corridors with possibly even more general shapes.

Our strategy is to partition each of our corridors into Oε(log N) rectangular boxes. Using
the properties of their shapes, we show that this is indeed possible by losing only a factor of
1 + ε in the approximation guarantee. Guessing these boxes explicitly would take NOε(log N)

time which is too slow. Instead, we show how to guess the sizes of almost all of the boxes in
time (nN)Oε(1). Then, we place them into the corridors in polynomial time using a dynamic
program based on color-coding, using that in total there are only Oε(log N) boxes to place.

We remark that the above approach compromises between corridor shapes that are
general enough to allow for (4/3 + ε) -approximate packings, and at the same time simple
enough so that we can partition them into Oε(log N) boxes that we can essentially guess
in time (nN)Oε(1). It is not clear how to extend our algorithm to Θ(log1/ε N), or just even
Θ(log2 N) such boxes. However, this would allow us to exploit corridors of more general
shapes (say W -shaped), hence achieving better approximation ratios. We leave this as an
interesting open problem.

1.2 Related Work
The QPTAS in [4] (though with some restrictions on N) suggests that 2DK most likely
admits a PTAS. This is already known for some relevant special cases: if the profit of
each item equals its area [7], if the size of the knapsack can be slightly increased (resource
augmentation) [22, 35], if all items are relatively small [21], or squares [31, 36].

SoCG 2021

39:4 Improved Approximation Algorithms for 2-Dimensional Knapsack

One might consider packing geometric objects other than rectangles. In particular, there
are constant approximation algorithms for packing triangles and also arbitrary convex poly-
gons under resource augmentation, both assuming that arbitrary rotations are allowed [46].
Also, for circles a (1 + ε)-approximation is known under resource augmentation in one dimen-
sion if the profit of each circle equals its area [45]. One can consider natural generalizations
of 2DK to a higher number of dimensions. In particular, the 3-dimensional case, 3DK, has
applications like packing containers into a ship or cargo into a truck. 3DK is known to be
APX-hard [14], and constant approximation algorithms are known [19, 27]. Khan et al. [44]
have given a (2 + ε)-approximation algorithm for a generalization of 2DK, which generalizes
geometric packing and vector packing.

A parameterized version of 2DK for rectangles (where the parameter is the number k of
packed items) is studied in [26]. The authors show that the problem is W [1]-hard (both with
and without rotations). Furthermore, they provide an FPT (1 + ε)-approximation for the
case with rotations. Achieving a similar result for the case without rotations is open.

A packing is called a guillotine packing if all rectangles can be separated by a sequence
of end-to-end (guillotine) cuts [43]. Abed et al. [1] have given QPTAS for 2DK satisfying
guillotine packing constraints, assuming the input data is quasi-polynomially bounded.
Recently, Khan et al. [42] have shown a pseudo polynomial-time approximation scheme for
2DK satisfying guillotine packing constraints.

In the 2-Dimensional Bin Packing problem we are given a collection of items similarly
to 2DK, and copies of the same square knapsack (the bins). Our goal is to pack all the
items using the smallest possible number of bins. The best known (asymptotic) result for
this problem is due to Bansal and Khan [9]: they achieve a 1.405 approximation based on a
configuration-LP. This improves a series of previous results [8, 10, 16, 35, 40].

Another closely related problem is Strip Packing. Informally, we are given a knapsack
of width N and infinite height, and we wish to pack all items so that the topmost coordinate
is as small as possible. This problem admits a (5/3 + ε)-approximation [28] (improving
on [6, 18, 29, 49, 50, 51]) in the general case, (3/2 + ε)-approximation [23] when none of
the items are large, and it is NP-hard to approximate it below a factor 3/2 by a simple
reduction from Partition. However, strictly better approximation ratios can be achieved in
pseudo-polynomial time (Nn)Oε(1) [25, 34, 47], being 5/4 + ε essentially the best possible
ratio achievable in this setting [30, 33]. This shows that pseudo-polynomial time can make the
difference for rectangle packing problems. It would be interesting to understand whether the
techniques in our paper (as well as those in [4]) can be strengthened so as to run in polynomial
time for arbitrary N . Strip Packing was also studied in the asymptotic setting [35, 40]
and in the case with rotations [37].

Another related problem is the Independent Set of Rectangles problem: here we
are given a collection of axis-parallel rectangles embedded in the plane, and we need to find a
maximum cardinality/weight subset of non-overlapping rectangles [2, 3, 11, 17]. The problem
has also been studied for squares, disks, and pseudo-disks, see e.g., [20, 32, 12].

We refer the readers to [15, 41] for surveys on geometric packing problems.

2 Preliminaries

We start with a classification of the input items according to their heights and widths. Let
ε > 0. For two constants 1 ≥ εlarge > εsmall > 0 to be defined later, we classify an item i as:

small: if h(i), w(i) ≤ εsmallN ;
large: if h(i), w(i) > εlargeN ;

W. Gálvez, F. Grandoni, A. Khan, D. Ramírez-Romero, and A. Wiese 39:5

horizontal: if w(i) > εlargeN and h(i) ≤ εsmallN ;
vertical: if h(i) > εlargeN and w(i) ≤ εsmallN ;
intermediate: otherwise, i.e., the length of at least one edge is in (εsmallN, εlargeN].

We call skewed the items that are either horizontal or vertical. We let Ismall, Ilarge, Ihor,
Iver, Iskew, and Iint be the items which are small, large, horizontal, vertical, skewed, and
intermediate, respectively. The corresponding intersection with the optimal solution OPT

defines the sets OPTsmall, OPTlarge, OPThor, OPTver, OPTskew and OPTint, respectively.
In order to describe our main ideas, we will start by considering the cardinality case of

the problem (i.e., p(i) = 1 for each item i ∈ I) without rotations. In Sections 3, 4, and 5, we
will present a simplified algorithm that yields a 1.6 + ε approximation.

Notice that the optimum solution can contain at most 1/ε2
large large items. Thus, unless

|OPT | ≤ 1/(ε·ε2
large) (in which case we can solve the problem optimally in time nO(1/(ε·ε2

large))

by complete enumeration), we can drop all large items by losing only a factor of 1 + ε in the
approximation. Similarly, by standard shifting techniques (e.g. Lemma 2.1 in [24]), when
defining εlarge and εsmall one can ensure that the intermediate items can be neglected by
losing only a factor of 1 + ε in the approximation ratio (while maintaining that εlarge and
εsmall are lower-bounded by some constant depending only on ε).

Hence, w.l.o.g. we can assume that all items are small or skewed. It is possible to deal with
small items by standard techniques from the literature (e.g. Section 6.2.1 in [24]), however
this would make our exposition much more technical without introducing substantially new
ideas. Hence, for the sake of simplicity, we will assume that there are no small items, i.e., all
items are skewed. We remark that, even with the mentioned restrictions, the problem is far
from being trivial. In particular, the best known approximation for the considered setting is
558
325 + ε ≈ 1.72 [24]. Our simplified algorithm has a better approximation ratio 1.6 + ε, and it
is also substantially simpler.

For the main result, which is a (4/3 + ε)-approximation algorithms for the general case
with and without rotations, please refer to the full version of this work.

3 Partition into LU-corridors

Our strategy is to partition the knapsack into Oε(1) thin corridors, each having the shape of
an L or a U, such that there exists a (1.6 + ε)-approximate solution in which each item is
contained in one of these corridors (see Figure 2). In this section, we will make this precise
and show that such a partition indeed exists. Our algorithm will then guess this partition in
polynomial time. In Sections 4 and 5 we will show how to find the corresponding solution
afterwards efficiently.

Intuitively, a path corridor is a polygon inside K that describes a path of width at most
ε · εlarge and that is allowed to have bends, see Figure 3. Formally, it is a simple rectilinear
polygon within K with 2k edges e0, . . . , e2k−1 for some integer k ≥ 2, such that for each pair
of horizontal (resp., vertical) edges ei, e2k−i, i ∈ {1, ..., k − 1} there exists a vertical (resp.,
horizontal) line segment ℓi of length less than ε · εlarge such that both ei and e2k−i intersect
ℓi and ℓi does not intersect any other edge, and require ei and e2k−i to have length at least
εlarge/2. Note that e0 and ek are not required to satisfy these properties. We say that such
a path corridor C has s(C) := k − 1 subcorridors. We say that a box is a path corridor with
only one subcorridor, i.e., it is simply a rectangle.

Similarly, a cycle corridor is intuitively a path corridor in which the start and end point
of the path coincide (see Figure 3). Formally, we define it to be a face bounded by two simple
non-intersecting rectilinear polygons defined by edges e0, e1, . . . , ek−1 and e′

0, e′
1, . . . , e′

k−1,

SoCG 2021

39:6 Improved Approximation Algorithms for 2-Dimensional Knapsack

Figure 2 Left: a packing of horizontal, vertical and small items into the knapsack. Right: a
decomposition of the knapsack into box-shaped, L-shaped and U-shaped corridors which contain the
previous items.

each of them of length at least εlarge/2, such that the second polygon is contained in the first
one, and for each pair of corresponding horizontal (vertical) edges ei, e′

i for i ∈ {0, . . . , k − 1}
there is a vertical (horizontal, respectively) line segment ℓi of length less than ε · εlarge such
that both edges ei and e′

i intersect ℓi and ℓi does not intersect any other edge of the cycle
corridor. We say that the resulting cycle corridor C has s(C) := k subcorridors.

We use a result from [2] that implies directly that there there exists a partition of K into
Oε(1) corridors and a near-optimal solution in which each item is contained in some corridor.

▶ Lemma 1 ([2]). There exists a solution OPT ⊆ OPT with |OPT | ≤ (1 + ε)
∣∣OPT

∣∣ and a
partition of K into a set of corridors C̄ with |C̄| ≤ Oε(1) where each corridor C ∈ C̄ has at
most 1/ε subcorridors and each item i ∈ OPT is contained in a corridor of C.

Algorithmically, we could guess C̄ in time NOε(1) and then try to compute a profitable
solution in which each item is contained in one corridor in C̄, i.e., mimicking OPT . However,
it is not clear how to compute such a solution in polynomial time. Therefore, we partition C̄
further into a set of smaller corridors C such that each resulting corridor has the shape of an
L or a U. We will ensure that there exists a (1.6 + ε)-approximate solution in which each
item is contained in one corridor of C. Since the corridors in C are simpler than the corridors
in C̄, we will be able to compute in polynomial time essentially the most profitable solution
in which each item is contained in a corridor of C (see in Sections 4 and 5).

We say that a path corridor C is an L-corridor if C has exactly two subcorridors, and
then figuratively it has the shape of an L (see Figure 3). Intuitively, we define that a path
corridor is a U-corridor if it has the shape of a U. Formally, let C be a a path corridor with
exactly three subcorridors, and hence C is defined via edges e0, ..., e7. Assume w.l.o.g. that
e2 and e6 are horizontal. We project e2 and e6 on the x-axis, let I2 and I6 be the resulting
intervals. Then C is a U-corridor if I2 ⊆ I6 or I6 ⊆ I2.

In order to partition C̄, we first define a partition of each path/cycle corridor C ∈ C̄ into
s(C) subcorridors (see Figure 3). We say that a subcorridor of a corridor C is a simple
polygon P ⊆ C whose boundary consists of two parallel edges (in most cases these will be
edges of C) and of two monotone axis-parallel curves, i.e., sets of axis-parallel line segments
such that either for any two points (x1, y1), (x2, y2) ∈ P where x1 < x2 we have y1 ≤ y2,
or for any such two points we have y1 ≥ y2. We require that each vertex of P has integral
coordinates. Given a corridor C and a set of non-overlapping items I ′ inside C, we say that
a partition of C into a set of subcorridors is nice for I ′ if each subcorridor either intersects
only items from I ′ ∩ Ihor or only items from from I ′ ∩ Iver.

W. Gálvez, F. Grandoni, A. Khan, D. Ramírez-Romero, and A. Wiese 39:7

e0

e1

e2

e3

e4

e5

e0

e1

e2

e3

e4

e5

e6

e7

e0

e1

e2

e3

e4

e5

e6

e7

e0

e1

e2

. . .

e′0

e′1

e′2

es(C)−1

Figure 3 An L-corridor, a U-corridor, another path corridor with two bends, and a cycle corridor.
The monotone axis-parallel curves indicate the boundaries of the subcorridors.

▶ Lemma 2 ([4], Lemma 2.4). Let C be a path/cycle corridor containing a set of items I ′.
There is a partition of C into s(C) subcorridors that is nice for I ′.

Now we take each path corridor C ∈ C̄ and delete the items in every third subcorridor,
starting with the α-th subcorridor for some offset α ∈ {1, 2, 3}. Then we can divide C into
L-corridors such that each remaining item is contained in one of these L-corridors. Each
item i ∈ OPT contained in C is deleted only for one choice of α, and hence there is a choice
for α such that we lose at most one third of the profit due to this step. Now consider a cycle
corridor C ∈ C̄. Note that s(C) is even and s(C) ≥ 4. If s(C) = 4 (i.e., C is a ring), we
delete the items in one of its four subcorridors, losing at most one quarter of the profit, and
obtain a U-corridor. If s(C) ≥ 6 and s(C) is divisible by 3 we do the same operation as for
path corridors, losing at most one third of the profit. For all other values of s(C) we might
lose a larger factor since then s(C) is not divisible by 3 and P0 and Ps(C)−1 are adjacent,
e.g., if s(C) = 8. However, a case distinction shows that we can still partition C into L- and
U-corridors while decreasing the profit at most by a factor of 1.6.

▶ Lemma 3. There exists a solution OPT ′ ⊆ OPT with |OPT | ≤ (1.6 + ε)|OPT ′| and a
partition of K into a set C of Oε(1) L- and U-corridors such that each item i ∈ OPT ′ is
contained in one corridor of C.

The first step in our algorithm is to guess C which can be done in time NOε(1). The
next step is to compute a solution with at least (1 − ε)|OPT ′| items in which each item
is contained in one corridor of C. For this, we consider two cases separately, which are
intuitively the case that |OPT ′| ≥ Ωε(log N) and |OPT ′| ≤ Oε(log N), and they are treated
in Sections 4 and 5, respectively.

4 Packing via guessing slices

In this section, we assume that |OPT ′| > cε · log N for some constant cε to be defined later.
We describe an algorithm that computes a solution of size (1 − ε)|OPT ′| such that each item
of this solution is contained in a corridor in C.

First, we group the items into Oε(log N) groups where we group the items in Ihor

according to their heights and the items in Iver according to their widths. Formally, for
each ℓ ∈ {0, ...,

⌊
log1+ε N

⌋
} we define I

(ℓ)
hor := {i ∈ Ihor|h(i) ∈ [(1 + ε)ℓ, (1 + ε)ℓ+1)} and

I
(ℓ)
ver := {i ∈ Iver|w(i) ∈ [(1 + ε)ℓ, (1 + ε)ℓ+1)}. So intuitively, for each ℓ the items in I

(ℓ)
hor

essentially all have the same height and the items in I
(ℓ)
ver essentially all have the same

width. Now, for the groups I
(ℓ)
hor, I

(ℓ)
ver we guess estimates opt(ℓ)

hor, opt(ℓ)
ver for |I(ℓ)

hor ∩ OPT ′|,
|I(ℓ)

ver ∩ OPT ′|, respectively. Even though there can be Θε(log N) of these groups and for
each guessed value there are potentially Ω(n) options, we guess the estimates for all groups
in parallel in time (nN)Oε(1), adapting a technique from [13].

SoCG 2021

39:8 Improved Approximation Algorithms for 2-Dimensional Knapsack

▶ Lemma 4. In time (nN)Oε(1) we can guess the values for all pairs opt(ℓ)
hor, opt(ℓ)

ver with
ℓ ∈ {0, ...,

⌊
log1+ε N

⌋
} such that∑

ℓ opt(ℓ)
hor + opt(ℓ)

ver ≥ (1 − ε)|OPT ′| and
opt(ℓ)

hor ≤ |OPT ′ ∩ I
(ℓ)
hor| and opt(ℓ)

ver ≤ |OPT ′ ∩ I
(ℓ)
hor| for each ℓ ∈ {0, ...,

⌊
log1+ε N

⌋
}.

Proof. First, we guess |OPT ′| for which there are only n options. We show now how to
guess in time NOε(1) the feasible values for opt(ℓ)

hor; a symmetric argument holds for opt(ℓ)
ver.

Let us define each opt(ℓ)
hor as the largest integer of the form k

(ℓ)
hor · ε

4 log1+ε N |OPT ′| which is

upper bounded by |OPT ′ ∩ I
(ℓ)
hor|, where k

(ℓ)
hor is a non-negative integer. Notice that trivially∑

ℓ k
(ℓ)
hor ≤ 4 log1+ε N

ε . We encode all such values k
(ℓ)
hor as a single binary string as follows:

we represent each k
(ℓ)
hor as a string of k

(ℓ)
hor 0-bits followed by one 1-bit, and then chain such

strings according to the index ℓ. The final bit string encodes the solution. Notice that this
string contains at most log1+ε N+1 +

∑
ℓ k

(ℓ)
hor = O(log1+ε N

ε) bits, hence we can guess it in
time NOε(1). The claim follows since

|OPT ′| −
∑

ℓ

(
opt(ℓ)

hor + opt(ℓ)
ver

)
≤ 2(log1+ε N+1) · ε

4 log1+ε N
|OPT ′|≤ε|OPT ′|. ◀

Definition of slices. Next, for each group I
(ℓ)
hor we define slices that together are essentially

as profitable as the items in OPT ′ ∩ I
(ℓ)
hor. We first order the items in I

(ℓ)
hor non-decreasingly

by width and select the first 1
1+ε opt(ℓ)

hor items. One can show easily that their total height is
at most h(OPT ′ ∩ I

(ℓ)
hor). Let i be one of these items. Intuitively, we slice i horizontally into

slices of height 1. Formally, for i we introduce h(i) items of height 1 and profit 1/(1 + ε)ℓ

each. Let Î
(ℓ)
hor denote the resulting set of slices. We do this procedure for each ℓ and a

symmetric procedure for the group I
(ℓ)
ver for each ℓ, resulting in a set of slices Î

(ℓ)
ver.

▶ Lemma 5. It is possible to place the slices in
{

Î
(ℓ)
hor, Î

(ℓ)
ver

}
ℓ

non-overlappingly inside K such

that each slice is contained in some corridor in C. Also, we have that
∑

ℓ

(
p(Î(ℓ)

hor) + p(Î(ℓ)
ver)

)
≥

1
1+O(ε) |OPT ′|.

Proof sketch. Let ℓ ∈ {0, ...,
⌊
log1+ε N

⌋
}. Recall that opt(ℓ)

hor ≤ |OPT ′ ∩ I
(ℓ)
hor|, all items in

I
(ℓ)
hor have the same height (up to a factor of 1 + ε), and we selected the 1

1+ε opt(ℓ)
hor items in

I
(ℓ)
hor of minimum width. Using this, one can show that the slices in Î

(ℓ)
hor fit into the space that

is occupied by the items in OPT ′ ∩ I
(ℓ)
hor in OPT ′. Also, 1

1+O(ε) h(OPT ′ ∩ I
(ℓ)
hor) ≤ |Î(ℓ)

hor| ≤
h(OPT ′ ∩ I

(ℓ)
hor) and each slice in Î

(ℓ)
hor has a profit of 1/(1 + ε)ℓ. Using this for each ℓ and a

similar statement for the vertical items, one can prove the second claim of the lemma. ◀

Next, for each ℓ ∈ {0, ...,
⌊
log1+ε N

⌋
} we round the widths of the slices in Î

(ℓ)
hor via linear

grouping such that they have at most 1/ε different widths and we lose at most a factor
of 1 + O(ε) in their profit due to this rounding. Formally, we sort the slices in Î

(ℓ)
hor non-

increasingly by width and then partition them into 1/ε + 1 groups such that each group
contains

⌈
1

1/ε+1 |Î(ℓ)
hor|

⌉
slices (apart from possibly the last group which might contain fewer

slices). Let Î
(ℓ)
hor = Î

(ℓ)
hor,1∪̇...∪̇Î

(ℓ)
hor,1/ε+1 denote the resulting partition. We drop the slices in

Î
(ℓ)
hor,1 (whose total profit is at most ε · p(Î(ℓ)

hor)). Then, for each j ∈ {2, ..., 1/ε + 1} we increase
the width of the slices in Î

(ℓ)
hor,j to the width of the widest slice in Î

(ℓ)
hor,j . By construction,

the resulting slices have 1/ε different widths. Let Ĩ
(ℓ)
hor denote the resulting set and let

Ĩ
(ℓ)
hor = Ĩ

(ℓ)
hor,1∪̇...∪̇Ĩ

(ℓ)
hor,1/ε denote a partition of Ĩ

(ℓ)
hor according to the widths of the slices, i.e.,

for each j ∈ {1, ..., 1/ε} the set Ĩ
(ℓ)
hor,j contains the rounded slices from Î

(ℓ)
hor,j+1.

W. Gálvez, F. Grandoni, A. Khan, D. Ramírez-Romero, and A. Wiese 39:9

We do this procedure for each ℓ and a symmetric procedure for the group I
(ℓ)
ver for each ℓ.

▶ Lemma 6. It is possible to place the slices in
{

Ĩ
(ℓ)
hor,j , Ĩ

(ℓ)
ver,j

}
ℓ,j

non-overlappingly in-
side the knapsack such that each slice is contained in some corridor in C. Also, we have∑

ℓ

(
p(Ĩ(ℓ)

hor) + p(Ĩ(ℓ)
ver)

)
≥ 1

1+ε

∑
ℓ

(
p(Î(ℓ)

hor) + p(Î(ℓ)
ver)

)
.

Proof sketch. For each ℓ ∈ {0, ...,
⌊
log1+ε N

⌋
} and j ∈ {2, ..., 1/ε + 1}, the slices in Ĩ

(ℓ)
hor,j fit

into the space occupied by the slices in Î
(ℓ)
hor,j−1. Also, for each ℓ we lost slices in Î

(ℓ)
hor with a

total profit of at most ε · p(Î(ℓ)
hor). A similar argumentation holds for the sets I

(ℓ)
ver. ◀

We fix a partition of each corridor C ∈ C into subcorridors that is nice for the slices{
Ĩ

(ℓ)
hor,j , Ĩ

(ℓ)
ver,j

}
ℓ,j

. Note that we do not compute this partition explicitly but we use it for
our analysis and as guidance for our algorithm. For each corridor C ∈ C or subcorridor S

denote by Ĩ(C) and Ĩ(S) the slices assigned to C and S, resp., due to Lemma 6.

Structuring slices inside subcorridors. Consider a subcorridor S of a corridor C ∈ C. The
placement of the slices inside S due to Lemma 6 might be complicated. Instead, we would
like to have a packing where the slices are packed nicely, i.e., they are stacked on top of each
other if S is horizontal, and side by side if S is vertical (see Figure 4). This might not be
possible to achieve exactly, but we construct something very similar. We prove that inside S

we can place Oε(1) boxes and one subcorridor S′ ⊆ S (which we will call sub-subcorridor in
order to distinguish it from the subcorridors) that are pairwise disjoint and such that inside
them we can nicely place essentially all slices from Ĩ(C) (see Figure 4). We can guess the
placement of the Oε(1) boxes inside S. Unfortunately, we cannot guess S′ directly, but we
can guess the two edges that define the boundary of S′ together with the two axis-parallel
curves. We refer to them as the edges of S′. Note that they are horizontal if S (and hence S′)
is horizontal, and vertical otherwise. We construct S′ such that the longer of these two
edges is always also an edge of S (see Figure 4).

Figure 4 Left: a subcorridor with items packed inside it. Right: A partition of each subcorridor
into Oε(1) boxes and a sub-subcorridor, all containing slices which are nicely packed.

▶ Lemma 7. For each horizontal/vertical subcorridor S we can guess in time NOε(1)

the two edges of a horizontal/vertical sub-subcorridor S′ ⊆ S such that the longer edge of
S′ coincides with the longer edge of S,
Oε(1) non-overlapping boxes B(S) inside S that are disjoint with S′,

such that we can nicely place slices from Ĩ(S) with a total profit of (1 − ε)p(Ĩ(S)) inside S′

and the boxes B(S).

SoCG 2021

39:10 Improved Approximation Algorithms for 2-Dimensional Knapsack

We apply Lemma 7 to each subcorridor S of a corridor C ∈ C. Let S and B denote
the resulting set of sub-subcorridors and boxes, respectively. For each ℓ, each j, and each
F ∈ B ∪ S denote by Ĩ

(ℓ)
hor,j(F) and Ĩ

(ℓ)
ver,j(F) the respective slices from Ĩ

(ℓ)
hor,j , Ĩ

(ℓ)
ver,j in F ,

respectively. Using simple slice reorderings, we can prove the following lemma.

▶ Lemma 8. There is a packing of the slices in
{

Ĩ
(ℓ)
hor,j(F), Ĩ

(ℓ)
ver,j(F)

}
j,ℓ,F

such that for each
box or sub-subcorridor F ∈ B ∪ S we can assume w.l.o.g. that

horizontal/vertical items inside F are ordered non-increasingly by width/height, starting
at the longer edge of F if F is a sub-subcorridor, and starting at an arbitrary edge if F is
a box; ties are broken according to the input items that the slices correspond to,
any two adjacent horizontal/vertical slices of the same width/height are placed exactly on
top of each other/side by side.

Therefore, we can construct this packing of the slices if we knew the cardinality of Ĩ
(ℓ)
hor,j(F)

and Ĩ
(ℓ)
ver,j(F) for each F ∈ B ∪ S and each ℓ and j. We guess this cardinality approximately

in the following lemma for each F, ℓ and j in parallel.

▶ Lemma 9. In time (nN)Oε(1) we can guess values opt(ℓ)
hor,j(F), opt(ℓ)

ver,j(F) for each ℓ ∈
{0, ...,

⌊
log1+ε N

⌋
}, j ∈ {1, ..., 1/ε}, F ∈ B ∪ S such that

opt(ℓ)
hor,j(F) ≤

∣∣∣Ĩ(ℓ)
hor,j(F)

∣∣∣ and opt(ℓ)
ver,j(F) ≤

∣∣∣Ĩ(ℓ)
ver,j(F)

∣∣∣ for each ℓ, j, F and∑
F ∈B∪S opt(ℓ)

hor,j(F) ≥ (1 − ε)
∑

F ∈B∪S

∣∣∣Ĩ(ℓ)
hor,j(F)

∣∣∣ and
∑

F ∈B∪S opt(ℓ)
ver,j(F) ≥ (1 −

ε)
∑

F ∈B∪S

∣∣∣Ĩ(ℓ)
ver,j(F)

∣∣∣ for each ℓ, j.

Proof sketch. For each ℓ, j, and F we define opt(ℓ)
hor,j(F) to be the largest integral multiple of

ε
|B|+|S|

∣∣∣Ĩ(ℓ)(F)
hor,j

∣∣∣ that is at most
∣∣∣Ĩ(ℓ)

hor,j(F)
∣∣∣ and note that for this value there are only |B|+|S|

ε =

Oε(1) options. We define the values opt(ℓ)
ver,j(F) similarly. Since there are only Oε(log nN)

of these values altogether, we can guess all of them in time 2Oε(log nN) = (nN)Oε(1). ◀

Placing slices inside subcorridors. Given the number of slices in each box and each sub-
subcorridor due to Lemma 9, we compute a corresponding packing for the slices. Inside of
each box we simply sort the slices by height or width, respectively, and then pack them in
this order. For packing the slices inside the sub-subcorridors of a corridor C, recall that we
do not know the precise sub-subcorridors, we know only the guessed edges due to Lemma 7.
However, we can still find a packing for the slices inside of the sub-subcorridors of C. We
start with the first sub-subcorridor S1 of C, sort its slices by height or width, respectively
(breaking ties according to the input items that the slices correspond to), and place them
in this order, starting at the longer edge of S1. When we do this, we push the slices as far
as possible to the edge e0. The resulting packing satisfies the properties of Lemma 8. If
s(C) ≥ 2 then we do the same procedure for the last sub-subcorridor Ss(C) of C, and in
particular we push its slices as far as possible to the edge es(C). If s(C) ∈ {1, 2} then we are
done now. Otherwise s(C) = 3 since s(C) ≤ 3 for each C ∈ C and the slices of the second
sub-subcorridor S2 are still not placed. We sort the slices as before and place them in this
order, starting at the longer edge of S2 and such that their placement satisfies the properties
of Lemma 8. Since we had pushed the slices in S1 and S3 maximally to the edges e0 and ek,
one can show that this is indeed possible.

Rounding slices. For each set I
(ℓ)
hor, I

(ℓ)
ver, their corresponding slices induce in total Oε(1)

rectangular areas into which we assigned these slices: at most one for each of the Oε(1)
sub-subcorridors and at most one for each of the Oε(1) boxes inside each of the Oε(1)

W. Gálvez, F. Grandoni, A. Khan, D. Ramírez-Romero, and A. Wiese 39:11

subcorridors. For each ℓ we denote by B(ℓ)
hor, B(ℓ)

ver these corresponding areas which are in fact
boxes. Now the important observation is that inside the boxes B(ℓ)

hor we can place at least
(1 − O(ε))

∣∣∣I(ℓ)
hor ∩ OPT ′

∣∣∣ − 2|B(ℓ)
hor| items from I

(ℓ)
hor as follows. Based on the slices for I

(ℓ)
hor,

we first construct a fractional packing of 1
1+O(ε) opt(ℓ)

hor items from I
(ℓ)
hor in which there are

at most 2|B(ℓ)
hor| items that are fractionally assigned to a box. Then we simply drop these

fractional items. We use a symmetric procedure for the sets I
(ℓ)
ver.

▶ Lemma 10. For each ℓ ∈ {0, ...,
⌊
log1+ε N

⌋
}, in time Oε(nN) we can pack at least

(1−O(ε))
∣∣∣I(ℓ)

hor ∩ OPT ′
∣∣∣−2|B(ℓ)

hor| items from I
(ℓ)
hor into the boxes B(ℓ)

hor. A symmetric statement

holds for I
(ℓ)
ver and B(ℓ)

ver for each ℓ ∈ {0, ...,
⌊
log1+ε N

⌋
}.

Thus, we obtain a packing with (1 − O(ε))|OPT ′| − 2
(∑

ℓ |B(ℓ)
hor| + |B(ℓ)

ver|
)

items in total.

Note that
(∑

ℓ |B(ℓ)
hor| + |B(ℓ)

ver|
)

≤ Oε(log N). Recall that we assumed that |OPT ′| > cε log N .

Thus, by choosing cε sufficiently large, we can ensure that
(∑

ℓ |B(ℓ)
hor| + |B(ℓ)

ver|
)

≤ ε · |OPT ′|
and hence our packing contains at least (1 − O(ε))|OPT ′| items in total.

▶ Lemma 11. For each ε > 0 there is a constant cε such that if |OPT ′| > cε · log N we can
compute a solution of size (1 − ε)|OPT ′| in time (nN)Oε(1).

5 Dynamic programming with color coding

Assume that |OPT ′| ≤ c · log N for some given constant c (which we will later choose to be
the constant cε defined in Section 4). We describe an algorithm that computes a solution of
size |OPT ′| for this case in time (nN)O(c) such that each item of this solution is contained
in a corridor in C. Our strategy is to use color-coding [5] in order to reduce the setting of
Oε(1) L- and U-corridors in C to the setting of only one single such corridor. Then we show
how to solve this problem in polynomial time.

First, we guess |OPT ′|. Then we color each item in I randomly with one color in
{1, ..., |OPT ′|}. It is easy to show that with probability at least 1/e|OP T ′| ≥ 1

NO(c) all items
in |OPT ′| have different colors, in which case we say that the coloring was successful. If this
is the case, then for each color d ∈ {1, ..., |OPT ′|} we can guess in time Oε(1) which corridor
in C contains an item of OPT ′ that we colored with color d. This yields Oε(1)|OP T ′| = NOε(c)

guesses overall. By repeating the random coloring NO(c) times, we can ensure that, with high
probability, one of these colorings was successful. Also, we can derandomize this procedure
using a k-perfect family of hash functions [5, 48], which yields the following lemma.

▶ Lemma 12. In time NOε(c) we can guess a partition of {IC}C∈C of I such that for each
corridor C ∈ C the set IC contains all items from OPT ′ that are placed inside C.

5.1 Routine for one corridor
Recall that we are given a corridor C ∈ C and an input set IC of items colored with
γ ≤ c · log N colors. W.l.o.g., let {1, . . . , γ} be these colors. Our goal is to place precisely
one item per color inside C such that they do not overlap. Let OPT ′

C denote the items of
OPT ′ placed inside C and note that also OPT ′

C contains one item of each color.

SoCG 2021

39:12 Improved Approximation Algorithms for 2-Dimensional Knapsack

For our (1.6 + ε)-approximation it is sufficient to consider corridors with up to three
sub-corridors; however, we will next describe a procedure that works for corridors with k

sub-corridors for any k ≤ 1/ε. This extension will actually be needed to obtain a (4/3 + ε)-
approximation (see the full version).

Our strategy is to cut C recursively into pieces (see Figure 5). Whenever we make a
cut, we guess the items from OPT ′

C that are intersected by this cut and their placement
in OPT ′

C . The cut splits the considered subpart of C into two pieces and we guess the
colors of the items in OPT ′

C in each one of these pieces. Then, we recursively solve the
subproblem defined by each piece. Guessing the colors ensures that we do not place an item
twice, e.g., once in each of the two subproblems. We define our cuts such that there are only
a polynomial number of possible arising pieces during the recursion, and we observe that for
the guesses of the colors there are only 2γ≤ N c many options. Hence, we can embed this
recursion into a polynomial time dynamic program.

Long chords. Formally, whenever we cut C we do this along long chords defined as follows.
A long chord is a sequence of k axis-parallel line segments f1, ..., fk that intuitively connect e0
with ek+1, i.e., such that for each j ∈ {1, ..., k} each end-point of fj has integral coordinates
and coincides with an endpoint of fj−1 or fj+1 or lies on e0 or ek+1, see Figure 5. Note that
there are two special long chords that go along the edges of C, defined by ℓR := e1, ..., ek

and ℓL := ek+2, ..., e2k+1.
We can compute a set L containing all of the NO(k) long chords. We fix an (unknown)

partition of C into s(C) =: k subcorridors S1, ..., Sk that is nice for OPT ′
C . We are interested

in the long chords f1, ..., fk in L with the property that for each j ∈ {1, ..., k} the line segment
fj is contained in Sj and it is parallel to the two parallel edges that define Sj (see Figure 5).
We say that such a long chord is consistent with S1, ..., Sk (or just consistent for short). Note
that we do not know S1, ..., Sk and hence we cannot determine whether a given long chord is
consistent or not. However, there are two key observations

we can subdivide C recursively along the long chords such that each arising piece is
defined as the area enclosed by two given long chords and e0 and ek+1 (see Figure 5),
each consistent long chord can intersect with at most k/εlarge items in OPT ′

C since the
corridors are thin and all input items are skewed.

Subproblems of DP. Therefore, we can compute a recursive partitioning of C via a dynamic
program. Each cell of the DP-table is defined by

two long chords ℓ1, ℓ2 ∈ L that might intersect but that do not properly cross each other;
together with (a part of) e0 and ek+1 they define a polygon C ′ ⊆ C,
a set of O(k/εlarge) items I ′

C ⊆ IC with a non-overlapping placement of them inside C

such that the interior of each item in I ′
C intersects ℓ1 or ℓ2, and

a set of colors Γ ⊆ {1, ..., γ}.
The subproblem encoded in this cell is to place items from IC inside C ′ such that they do not
overlap with the items in I ′

C and such that for each color d ∈ Γ we place exactly one item of
color d. If this subproblem has a solution OPT (ℓ1, ℓ2, I ′

C , Γ), we store it in the corresponding
DP-cell; otherwise we store fail.

To compute such a solution, consider any long chord ℓ ∈ L that lies completely inside C ′

but is not identical to ℓ1 or ℓ2 (we would like to select a consistent long chord; however, we
do not know which long chords are consistent and hence we try all of them). Let us first
assume that at least one such ℓ exists. Note that ℓ divides C ′ into two smaller polygons
C ′

1, C ′
2 that are surrounded by the pairs (ℓ1, ℓ), and (ℓ, ℓ2), respectively. Then, we consider

W. Gálvez, F. Grandoni, A. Khan, D. Ramírez-Romero, and A. Wiese 39:13

e0 ek+1

`1 `2`

Figure 5 A U-corridor and two consistent long chords ℓ1 and ℓ2. The long chords intersect only
a constant number of items from the optimal solution (shown in the figure). There is a DP-cell that
is defined by ℓ1, ℓ2, and these items, and whose corresponding area is shaded. This cell splits into
smaller subproblems by defining a new long chord ℓ that lies in-between ℓ1 and ℓ2.

any subset of items I ′′
C ⊆ IC and a placement of such items inside C ′ such that: (1) I ′′

C are
pairwise non-overlapping and not overlapping with I ′

C , (2) they are intersected by ℓ in their
interior, and (3) have distinct colors Γℓ ⊆ Γ. Finally, we consider any partition Γ1∪̇Γ2 of the
remaining colors Γ \ Γℓ. Let I ′

C,1 and I ′
C,2 be the items in I ′

C ∪ I ′′
C that intersect C ′

1 and
C ′

2, respectively. We consider the DP-cells (ℓ1, ℓ, I ′
C,1, Γ1) and (ℓ, ℓ2, I ′

C,2, Γ2) and, if none of
them contains the value “fail”, we store in (ℓ1, ℓ2, I ′

C , Γ) the union of I ′′
C , OPT (ℓ1, ℓ, I ′

C,1, Γ1),
and OPT (ℓ, ℓ2, I ′

C,2, Γ2) (together with the placement of the corresponding items) and halt
the computation for the considered DP-cell. If the above event never happens, we store “fail”
in this DP-cell.

The base cases of the DP are given by pairs ℓ1, ℓ2 which are at most one unit apart
from each other (everywhere inside C), so that it is not possible to define any long chord ℓ

between ℓ1 and ℓ2 (recall that the endpoints of the line segments of the long chords have
integral coordinates). Notice however that in this case at most O(k/εlarge) skewed items can
fit inside C ′, hence we can determine whether a feasible solution OPT (ℓ1, ℓ2, I ′

C , Γ) exists by
enumeration in time (nN)O(k/εlarge).

At the end we output the solution stored in the cell (ℓL, ℓR, ∅, {1, ..., γ}). We will show that
this is the optimal solution for C. The number of DP-cells is bounded by (nN)O(k/εlarge) · 2γ

and the number of possible guesses when computing the entry of a DP-cell is bounded by
(nN)O(k/εlarge) · 2O(γ). This allows us to bound the running time of our DP.

▶ Lemma 13. Given a path corridor C with k subcorridors and a set of skewed items IC

with γ distinct colors. In time (nN)O(k/εlarge) · 2O(γ) we can determine whether there exists
a set I ′

C ⊆ IC with γ distinct colors that fits non-overlappingly inside C.

We apply Lemma 13 to each corridor C ∈ C which yields the following lemma.

▶ Lemma 14. Assume that |OPT ′| ≤ c · log N for some constant c. Then we can compute a
solution of size |OPT ′| in time (nN)O(c).

SoCG 2021

39:14 Improved Approximation Algorithms for 2-Dimensional Knapsack

Now Lemmas 11 and 14 yield the following theorem.

▶ Theorem 15. There is an (1.6 + ε)-approximation algorithm with a running time of
(nN)Oε(1) for unweighted instances of 2DK with only skewed items.

References
1 Fidaa Abed, Parinya Chalermsook, José R. Correa, Andreas Karrenbauer, Pablo Pérez-Lantero,

José A. Soto, and Andreas Wiese. On guillotine cutting sequences. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2015, volume 40 of LIPIcs, pages 1–19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.1.

2 Anna Adamaszek, Sariel Har-Peled, and Andreas Wiese. Approximation schemes for in-
dependent set and sparse subsets of polygons. J. ACM, 66(4):29:1–29:40, 2019. doi:
10.1145/3326122.

3 Anna Adamaszek and Andreas Wiese. Approximation schemes for maximum weight indepen-
dent set of rectangles. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, pages 400–409. IEEE Computer Society, 2013. doi:10.1109/FOCS.2013.50.

4 Anna Adamaszek and Andreas Wiese. A quasi-ptas for the two-dimensional geometric knapsack
problem. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, pages 1491–1505. SIAM, 2015. doi:10.1137/1.9781611973730.98.

5 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

6 Brenda S. Baker, Edward G. Coffman Jr., and Ronald L. Rivest. Orthogonal packings in two
dimensions. SIAM J. Comput., 9(4):846–855, 1980. doi:10.1137/0209064.

7 Nikhil Bansal, Alberto Caprara, Klaus Jansen, Lars Prädel, and Maxim Sviridenko. A structural
lemma in 2-dimensional packing, and its implications on approximability. In Algorithms and
Computation, 20th International Symposium, ISAAC 2009, volume 5878 of Lecture Notes in
Computer Science, pages 77–86. Springer, 2009. doi:10.1007/978-3-642-10631-6_10.

8 Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. A new approximation method for
set covering problems, with applications to multidimensional bin packing. SIAM J. Comput.,
39(4):1256–1278, 2009. doi:10.1137/080736831.

9 Nikhil Bansal and Arindam Khan. Improved approximation algorithm for two-dimensional
bin packing. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, pages 13–25. SIAM, 2014. doi:10.1137/1.9781611973402.2.

10 Alberto Caprara. Packing 2-dimensional bins in harmony. In 43rd Symposium on Foundations
of Computer Science (FOCS 2002), pages 490–499. IEEE Computer Society, 2002. doi:
10.1109/SFCS.2002.1181973.

11 Parinya Chalermsook and Julia Chuzhoy. Maximum independent set of rectangles. In
Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2009, pages 892–901. SIAM, 2009. URL: http://dl.acm.org/citation.cfm?id=1496770.
1496867.

12 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum inde-
pendent set of pseudo-disks. Discret. Comput. Geom., 48(2):373–392, 2012. doi:10.1007/
s00454-012-9417-5.

13 Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for
the multiple knapsack problem. SIAM J. Comput., 35(3):713–728, 2005. doi:10.1137/
S0097539700382820.

14 Miroslav Chlebík and Janka Chlebíková. Hardness of approximation for orthogonal rectangle
packing and covering problems. J. Discrete Algorithms, 7(3):291–305, 2009. doi:10.1016/j.
jda.2009.02.002.

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.1
https://doi.org/10.1145/3326122
https://doi.org/10.1145/3326122
https://doi.org/10.1109/FOCS.2013.50
https://doi.org/10.1137/1.9781611973730.98
https://doi.org/10.1145/210332.210337
https://doi.org/10.1137/0209064
https://doi.org/10.1007/978-3-642-10631-6_10
https://doi.org/10.1137/080736831
https://doi.org/10.1137/1.9781611973402.2
https://doi.org/10.1109/SFCS.2002.1181973
https://doi.org/10.1109/SFCS.2002.1181973
http://dl.acm.org/citation.cfm?id=1496770.1496867
http://dl.acm.org/citation.cfm?id=1496770.1496867
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.1137/S0097539700382820
https://doi.org/10.1137/S0097539700382820
https://doi.org/10.1016/j.jda.2009.02.002
https://doi.org/10.1016/j.jda.2009.02.002

W. Gálvez, F. Grandoni, A. Khan, D. Ramírez-Romero, and A. Wiese 39:15

15 Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approximation
and online algorithms for multidimensional bin packing: A survey. Comput. Sci. Rev., 24:63–79,
2017. doi:10.1016/j.cosrev.2016.12.001.

16 Fan Chung, Michael R. Garey, and David S. Johnson. On packing two-dimensional bins. SIAM
Journal on Algebraic Discrete Methods, 3:66–76, 1982. doi:10.1137/0603007.

17 Julia Chuzhoy and Alina Ene. On approximating maximum independent set of rectangles.
In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, pages
820–829. IEEE Computer Society, 2016. doi:10.1109/FOCS.2016.92.

18 Edward G. Coffman Jr., M. R. Garey, David S. Johnson, and Robert Endre Tarjan. Performance
bounds for level-oriented two-dimensional packing algorithms. SIAM J. Comput., 9(4):808–826,
1980. doi:10.1137/0209062.

19 Florian Diedrich, Rolf Harren, Klaus Jansen, Ralf Thöle, and Henning Thomas. Approximation
algorithms for 3d orthogonal knapsack. J. Comput. Sci. Technol., 23(5):749–762, 2008.
doi:10.1007/s11390-008-9170-7.

20 Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes
for geometric intersection graphs. SIAM J. Comput., 34(6):1302–1323, 2005. doi:10.1137/
S0097539702402676.

21 Aleksei V. Fishkin, Olga Gerber, and Klaus Jansen. On efficient weighted rectangle packing
with large resources. In Algorithms and Computation, 16th International Symposium, ISAAC
2005, volume 3827 of Lecture Notes in Computer Science, pages 1039–1050. Springer, 2005.
doi:10.1007/11602613_103.

22 Aleksei V. Fishkin, Olga Gerber, Klaus Jansen, and Roberto Solis-Oba. Packing weighted
rectangles into a square. In Mathematical Foundations of Computer Science 2005, 30th
International Symposium, MFCS 2005, volume 3618 of Lecture Notes in Computer Science,
pages 352–363. Springer, 2005. doi:10.1007/11549345_31.

23 Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, Klaus Jansen, Arindam Khan, and
Malin Rau. A tight (3/2+ϵ) approximation for skewed strip packing. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX-
/RANDOM 2020, volume 176 of LIPIcs, pages 44:1–44:18. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.44.

24 Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam Khan, and
Andreas Wiese. Approximating geometric knapsack via l-packings. In 58th IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS 2017, pages 260–271. IEEE Computer Society,
2017. Full version available at http://www.dii.uchile.cl/~awiese/2DK_full_version.pdf.
doi:10.1109/FOCS.2017.32.

25 Waldo Gálvez, Fabrizio Grandoni, Salvatore Ingala, and Arindam Khan. Improved pseudo-
polynomial-time approximation for strip packing. In 36th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2016, vol-
ume 65 of LIPIcs, pages 9:1–9:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.
doi:10.4230/LIPIcs.FSTTCS.2016.9.

26 Fabrizio Grandoni, Stefan Kratsch, and Andreas Wiese. Parameterized approximation schemes
for independent set of rectangles and geometric knapsack. In 27th Annual European Symposium
on Algorithms, ESA 2019, volume 144 of LIPIcs, pages 53:1–53:16. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.53.

27 Rolf Harren. Approximation algorithms for orthogonal packing problems for hypercubes.
Theor. Comput. Sci., 410(44):4504–4532, 2009. doi:10.1016/j.tcs.2009.07.030.

28 Rolf Harren, Klaus Jansen, Lars Prädel, and Rob van Stee. A (5/3 + ϵ)-approximation for
strip packing. Comput. Geom., 47(2):248–267, 2014. doi:10.1016/j.comgeo.2013.08.008.

29 Rolf Harren and Rob van Stee. Improved absolute approximation ratios for two-dimensional
packing problems. In Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques, 12th International Workshop, APPROX 2009, volume 5687 of Lecture
Notes in Computer Science, pages 177–189. Springer, 2009. doi:10.1007/978-3-642-03685-9_
14.

SoCG 2021

https://doi.org/10.1016/j.cosrev.2016.12.001
https://doi.org/10.1137/0603007
https://doi.org/10.1109/FOCS.2016.92
https://doi.org/10.1137/0209062
https://doi.org/10.1007/s11390-008-9170-7
https://doi.org/10.1137/S0097539702402676
https://doi.org/10.1137/S0097539702402676
https://doi.org/10.1007/11602613_103
https://doi.org/10.1007/11549345_31
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.44
http://www.dii.uchile.cl/~awiese/2DK_full_version.pdf
https://doi.org/10.1109/FOCS.2017.32
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.9
https://doi.org/10.4230/LIPIcs.ESA.2019.53
https://doi.org/10.1016/j.tcs.2009.07.030
https://doi.org/10.1016/j.comgeo.2013.08.008
https://doi.org/10.1007/978-3-642-03685-9_14
https://doi.org/10.1007/978-3-642-03685-9_14

39:16 Improved Approximation Algorithms for 2-Dimensional Knapsack

30 Sören Henning, Klaus Jansen, Malin Rau, and Lars Schmarje. Complexity and inapproximabil-
ity results for parallel task scheduling and strip packing. Theory Comput. Syst., 64(1):120–140,
2020. doi:10.1007/s00224-019-09910-6.

31 Sandy Heydrich and Andreas Wiese. Faster approximation schemes for the two-dimensional
knapsack problem. ACM Trans. Algorithms, 15(4):47:1–47:28, 2019. doi:10.1145/3338512.

32 Harry B. Hunt III, Madhav V. Marathe, Venkatesh Radhakrishnan, S. S. Ravi, Daniel J.
Rosenkrantz, and Richard Edwin Stearns. Nc-approximation schemes for NP- and pspace-hard
problems for geometric graphs. J. Algorithms, 26(2):238–274, 1998. doi:10.1006/jagm.1997.
0903.

33 Klaus Jansen and Malin Rau. Closing the gap for pseudo-polynomial strip packing. In 27th
Annual European Symposium on Algorithms, ESA 2019, volume 144 of LIPIcs, pages 62:1–62:14.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.62.

34 Klaus Jansen and Malin Rau. Improved approximation for two dimensional strip packing with
polynomial bounded width. Theor. Comput. Sci., 789:34–49, 2019. doi:10.1016/j.tcs.2019.
04.002.

35 Klaus Jansen and Roberto Solis-Oba. New approximability results for 2-dimensional packing
problems. In Mathematical Foundations of Computer Science 2007, 32nd International
Symposium, MFCS 2007, volume 4708 of Lecture Notes in Computer Science, pages 103–114.
Springer, 2007. doi:10.1007/978-3-540-74456-6_11.

36 Klaus Jansen and Roberto Solis-Oba. A polynomial time approximation scheme for the square
packing problem. In Integer Programming and Combinatorial Optimization, 13th International
Conference, IPCO 2008, volume 5035 of Lecture Notes in Computer Science, pages 184–198.
Springer, 2008. doi:10.1007/978-3-540-68891-4_13.

37 Klaus Jansen and Rob van Stee. On strip packing with rotations. In Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, STOC 2005, pages 755–761. ACM, 2005.
doi:10.1145/1060590.1060702.

38 Klaus Jansen and Guochuan Zhang. Maximizing the number of packed rectangles. In
Algorithm Theory – SWAT 2004, 9th Scandinavian Workshop on Algorithm Theory, volume
3111 of Lecture Notes in Computer Science, pages 362–371. Springer, 2004. doi:10.1007/
978-3-540-27810-8_31.

39 Klaus Jansen and Guochuan Zhang. On rectangle packing: maximizing benefits. In Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, pages
204–213. SIAM, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.982822.

40 Claire Kenyon and Eric Rémila. A near-optimal solution to a two-dimensional cutting stock
problem. Math. Oper. Res., 25(4):645–656, 2000. doi:10.1287/moor.25.4.645.12118.

41 Arindam Khan. Approximation algorithms for multidimensional bin packing. PhD thesis,
Georgia Institute of Technology, Atlanta, GA, USA, 2016. URL: http://hdl.handle.net/
1853/54371.

42 Arindam Khan, Arnab Maiti, Amatya Sharma, and Andreas Wiese. On guillotine separable
packings for the two-dimensional geometric knapsack problem. In To appear in SoCG, 2021.

43 Arindam Khan and Madhusudhan Reddy Pittu. On guillotine separability of squares and
rectangles. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2020, volume 176 of LIPIcs, pages 47:1–47:22. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.
47.

44 Arindam Khan, Eklavya Sharma, and K. V. N. Sreenivas. Approximation algorithms for
generalized multidimensional knapsack. CoRR, abs/2102.05854, 2021. arXiv:2102.05854.

45 Carla Negri Lintzmayer, Flávio Keidi Miyazawa, and Eduardo Candido Xavier. Two-
dimensional knapsack for circles. In LATIN 2018: Theoretical Informatics – 13th Latin
American Symposium, volume 10807 of Lecture Notes in Computer Science, pages 741–754.
Springer, 2018. doi:10.1007/978-3-319-77404-6_54.

https://doi.org/10.1007/s00224-019-09910-6
https://doi.org/10.1145/3338512
https://doi.org/10.1006/jagm.1997.0903
https://doi.org/10.1006/jagm.1997.0903
https://doi.org/10.4230/LIPIcs.ESA.2019.62
https://doi.org/10.1016/j.tcs.2019.04.002
https://doi.org/10.1016/j.tcs.2019.04.002
https://doi.org/10.1007/978-3-540-74456-6_11
https://doi.org/10.1007/978-3-540-68891-4_13
https://doi.org/10.1145/1060590.1060702
https://doi.org/10.1007/978-3-540-27810-8_31
https://doi.org/10.1007/978-3-540-27810-8_31
http://dl.acm.org/citation.cfm?id=982792.982822
https://doi.org/10.1287/moor.25.4.645.12118
http://hdl.handle.net/1853/54371
http://hdl.handle.net/1853/54371
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.47
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.47
http://arxiv.org/abs/2102.05854
https://doi.org/10.1007/978-3-319-77404-6_54

W. Gálvez, F. Grandoni, A. Khan, D. Ramírez-Romero, and A. Wiese 39:17

46 Arturo I. Merino and Andreas Wiese. On the two-dimensional knapsack problem for convex
polygons. In 47th International Colloquium on Automata, Languages, and Programming,
ICALP 2020, volume 168 of LIPIcs, pages 84:1–84:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.84.

47 Giorgi Nadiradze and Andreas Wiese. On approximating strip packing with a better ratio
than 3/2. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, pages 1491–1510. SIAM, 2016. doi:10.1137/1.9781611974331.
ch102.

48 Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal
derandomization. In 36th Annual Symposium on Foundations of Computer Science, FOCS
1995, pages 182–191. IEEE Computer Society, 1995. doi:10.1109/SFCS.1995.492475.

49 Ingo Schiermeyer. Reverse-fit: A 2-optimal algorithm for packing rectangles. In Algorithms
– ESA ’94, Second Annual European Symposium, volume 855 of Lecture Notes in Computer
Science, pages 290–299. Springer, 1994. doi:10.1007/BFb0049416.

50 Daniel Dominic Sleator. A 2.5 times optimal algorithm for packing in two dimensions. Inf.
Process. Lett., 10(1):37–40, 1980. doi:10.1016/0020-0190(80)90121-0.

51 A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM J. Comput.,
26(2):401–409, 1997. doi:10.1137/S0097539793255801.

SoCG 2021

https://doi.org/10.4230/LIPIcs.ICALP.2020.84
https://doi.org/10.1137/1.9781611974331.ch102
https://doi.org/10.1137/1.9781611974331.ch102
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1007/BFb0049416
https://doi.org/10.1016/0020-0190(80)90121-0
https://doi.org/10.1137/S0097539793255801

	1 Introduction
	1.1 Our contribution
	1.2 Related Work

	2 Preliminaries
	3 Partition into LU-corridors
	4 Packing via guessing slices
	5 Dynamic programming with color coding
	5.1 Routine for one corridor

