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—— Abstract

A spanner is reliable if it can withstand large, catastrophic failures in the network. More precisely,

any failure of some nodes can only cause a small damage in the remaining graph in terms of the
dilation, that is, the spanner property is maintained for almost all nodes in the residual graph.
Constructions of reliable spanners of near linear size are known in the low-dimensional Euclidean
settings. Here, we present new constructions of reliable spanners for planar graphs, trees and
(general) metric spaces.
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1 Introduction

Let M = (P,d) be a finite metric space. Let G = (P, E) be a sparse graph on the points
of M whose edges are weighted with the distances of their endpoints. The graph G is a
t-spanner (or t-emulator) if for any pair of vertices u,v € V we have dg(u,v) < ¢ -d(u,v),
where dg(u,v) is the length of the shortest path between w and v in G, and d(u,v) is the
distance in the metric space between u and v. Spanners were first introduced by Peleg and
Schiffer [20] as a tool in distributed computing, but have since found use in other areas of
algorithms, networking, data structure and metric geometry, see [19, 18].

Fault tolerant spanners. A desired property of spanners is a resilience to failures of their
vertices. The basic notion that captures this is fault tolerance [7, 13, 14, 16, 21]. A graph G
is a k-fault tolerant t-spanner, if for any subset of vertices B, with |B| < k, the graph G\B
is a t-spanner. The disadvantage of k-fault tolerant graphs, is that there is no guarantee if
more than k vertices fail, and furthermore, the size of a fault tolerant graph grows (linearly)
with the parameter k. In particular, for fixed ¢ > 1, the optimal size of k-fault tolerant
(2t — 1)-spanners on n vertices is O(k'~1/tn+1/t) [4]. Note that vertex degrees must be at
least Q(k) to avoid the possibility of isolating a vertex. Thus, it is not suitable for massive
failures in the network.
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Reliable Spanners for Metric Spaces

Table 1.1 Our results. Polylog factors are polynomial factors in logn and log ®, where ® is the
spread of the metric. For trees and planar graphs, these results are for graphs with weights on the
edges. Here in expectation denotes that the spanner works against an oblivious adversary (here, the
expectation is over the randomization in the construction), and the guarantee is on the expected
size of the damaged set. Similarly, deterministic implies an adaptive adversary.

Constructions of J-reliable A-spanners

metric A guarantee ‘ size ‘ ref
2 expectation O(nYy~logd™t) Lemma 4
Uniform t det. lower bound Q(n' 1t Lemma 5
2t —1 deterministic o9 2ttt Theorem 9
2t deterministic O tnttit Theorem 9
O(logn) expectation O (ﬁfln polylog) Lemma 39
: —1, 141/t
Finite metrics o(t) expectation o9 'n polylog Lemma 39
O(tlogn) deterministic O (9~ polylog Lemma 40
o(t?) deterministic O (97 n**+ polylog Lemma 40
. 2+¢ expectation (9(197157271 polylog) Lemma 41
Ultrametrics
2+e)t—-1 deterministic 0(1972573n1“/t polylog) Lemma, 42
Trees 3+e expectation O(0~ e *npolylog) Lemma 43
(4+e)t—3 deterministic (9(19_25_3n1+1/t polylog) Lemma 44
3+¢ expectation (’)(197157411 polylog) Lemma 45
Planar graphs
(4+e)t—3 deterministic OW 2 5 Y polylog) | Lemma 46

Reliable spanners.

An alternative is reliable spanners. For a parameter ¥ > 0, a ¢-reliable

t-spanner has the property that for any failure (or attack) set B, the residual graph G\B
has a t-spanner path between all pairs of points of V\B*, where B 2 B is some set such
that |B*| < (1 +9)|B|. We consider two variants. In the standard model (i.e., adaptive
adversarial model) the adversary “knows” the spanner G, and the set B is chosen as a worst
case for G. In the oblivious (or randomized) case the spanner G is drawn from a probability
distribution x (over the same number of vertices). The adversary knows x in advance, but
not the sampled spanner. In this oblivious model, we require that E[|B¥|] < (1 + 9)|B|. See
Section 2 for precise definitions.

Previously, results for reliable spanners were only known in the geometric setting. For
any point set P € R? and for any constants 9,¢ € (0,1), one can construct a ¥-reliable
(1 4 &)-spanner with only (’)(n log n loglog® n) edges [6]. The number of edges can be further
reduced by using the relaxed notion of reliable spanners. For any point set P € R? and
parameters ¢, € (0,1), one can construct an oblivious (1 + €)-spanner that is ¥-reliable in
expectation and has O(nloglog® nlogloglogn) edges [5].

Our results

We provide new constructions of reliable spanners for uniform metrics, finite metrics, ultra-
metrics, trees and planar graphs. Our new results are summarized in Table 1.1.

Technique.
construct reliable spanners for uniform metrics and then reduce the problem of constructing

Our approach for constructing reliable spanners is in two steps: We first

reliable spanners for general metrics to uniform metrics using covers.
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Spanners for uniform metrics. Uniform metrics have trivial classical 2-spanners: star
graphs. It turns out that in the oblivious model one can simply use “constellation of stars”
with a constant number of random centers. I.e. the spanner is linear in size. In the adaptive
settings we present a lower bound of Q(n!*!/*) edges for a reliable t-spanner. We present
an asymptotically matching construction of a deterministic (2t — 1)-reliable spanner with
(’)(n1+1/ t) edges. The construction is based on reliable expanders, i.e., expanders that remain
expanding under attacks as defined above for spanners. See Section 3.

Covers. A t-cover of a finite metric space M = (P,d) is a family of subsets C = {S | S < P},
such that for each pair p,q € P of points there exists a subset in C that contains both points
and whose diameter is at most ¢ - d(p, g). Covers are used here to extend reliable spanners
for uniform metrics into reliable spanners for general metrics. This is done by using spanners
for uniform in each set of the cover and then taking a union of the edges of those graphs.
See Section 5.

Naturally, the size > ¢ . |S| of a t-cover C is an important parameter in the resulting
size of the spanner, so in Section 4 we study good covers. For general n-point spaces with
spread at most ®, we observe that the Ramsey partitions of [17] provide O(¢) covers of size
O(n**+*1og ®), which is close to optimal, because of an Q(n(n'/* + log, ®)) lower bound on
the size that we prove. In more specific cases like ultrametrics, trees and planar graphs one
can do better. Specifically, for trees and planar graphs one gets (2 + £)-covers of near linear
size. For planar graphs, known partitions have much larger gap, which makes these results
quite interesting.

New reliable spanners. Plugging the constructions of spanners for uniform metrics with
the construction of covers yields reliable spanners for uniform, ultrametric, tree, planar, and
general finite metrics. The results are summarized in Table 1.1.

Efficient construction. All our constructions relies on randomized constructions of expanders
(over m vertices), that succeeds with probability > 1 — 1/m®®). As such, the constructions
described can be done efficiently, with potentially an extra O(logt) factor in the number of
edges, if one wants a constructions of spanners, for n vertices, that succeeds with probability
1 —1/n°M. See Remark 13 for details.

2 Preliminaries

2.1 Metric spaces

For a set X, a function d : X? — [0,0), is a metric if it is symmetric, complies with the
triangle inequality, and d(p,q) = 0 <= p = ¢. A metric space is a pair M = (X,d),
where d is a metric. For a point p € X, and a radius r, the ball of radius 7 is the set

b(p,r) ={ge X [d(p,q) <7}.
For a finite set X € X, the diameter of X is

diam(X) = diam(X) = max d(p, q),
p,qeX

and the spread of X is ®(X) = %)). A metric space M = (X, d) is finite, if X

X i i ming geX,p£q d(p,q 8 .
is a finite set. In this case, we use ® = ®(X) to denote the spread of the (finite) metric.

SoCG 2021
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A natural way to define a metric space is to consider an undirected connected graph
G = (P, F) with positive weights on the edges. The shortest path metric of G, denoted by
dg, assigns for any two points p, g € P the length of the shortest path between p and ¢ in the
graph. Thus, any graph G readily induces the finite metric space (V(G),dg). If the graph is
unweighted, then all the edges have weight 1.

A tree metric is a shortest path metric defined over a graph that is a tree.

2.2 Reliable spanners

» Definition 1. For a metric space M = (P,d), a graph H = (P, E) is a t-spanner, if for
any p,q € P, we have that d(p,q) < du(p,q) <t-d(p,q).

Given a weighted graph G = (V| E), and B € V we denoted by G| the subgraph induced
on B. We also use the notation G\B = G|\ p.

An attack on a graph G is a set of vertices B that fail, and no longer can be used. An
attack is oblivious, if the set B is picked without any knowledge of G.

» Definition 2 (Reliable spanner). Let G = (P, E) be a t-spanner for some t = 1 constructed
by a (possibly) randomized algorithm. Given an attack B, its damaged set B is a set of
smallest possible size, such that for any pair of vertices p,q € P\BY, we have

de\s(p,q) < t-d(p,q), (2.1)

that is, distances are preserved (up to a factor of t) for all pairs of points not contained
in BY. The quantity |BT\B]| is the loss of G under the attack B. The loss rate of G is
MG, B) = |BT\B|/|B|. For ¥ € (0,1), the graph G is ¥-reliable (in the deterministic or
non-oblivious setting), if \(G, B) < ¢ holds for any attack B < P. Furthermore, the graph G
is ¥-reliable in expectation (or in the oblivious model), if E[NG, B)] < ¥ holds for any
oblivious attack B < P.

» Remark. The damaged set BT is not necessarily unique, since there might be freedom in
choosing the point to include in BT for a pair that does not have a ¢-path in G\B.

Miscellaneous. For a graph G, and a set of vertices Y € V(G), let
INY)={zeV(G) |zye E(G) and ye Y}

denote the neighbors of Y in G.

» Definition 3. For a collection of sets F, and an element x, let
deg(z, F) = {X e Flze X}

denote the degree of © in F. The maximum degree of any element of F is the depth of F.

Notations. We use P +p = P u {p} and P — p = P\{p}. Similarly, for a graph G, and a
vertex p, let G — p denote the graph resulting from removing p.

3 Reliable spanners for uniform metric

Let P be a set of n points and let (P, d) be a metric space equipped with the uniform metric,
that is, for all distinct pairs p, g € P, we have that d(p, q) is the same quantity. Note that
n — 1 edges are enough to achieve a 2-spanner for the uniform metric by using the star graph.
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3.1 A randomized construction for the oblivious case

Construction. Let ¥ € (0,1) be a fixed parameter. Set k = 2[9~'log9~'| + 1 and sample
k points from P uniformly at random (with replacement). Let C' € P be the resulting set of
center points. For each point p € C, build the star graph %, = (P,{pq | ¢ € P — p}), where p
is the center of the star. The constellation of C' is the graph % = Upec *p, which is the
union of the star graphs induced by centers in C.

» Lemma 4 (For the proof, see [11]). The constellation %, defined above, is a ¥-reliable
2-spanner in expectation. The number of its edges is O(nd~!logd~1).

3.2 Lower bound for a deterministic construction

In the non-oblivious settings, the attacker knows the constructed graph G when choosing the
attack set B.

» Lemma 5 (For the proof, see [11]). Let G = (P, E) be a 9-reliable t-spanner on P for the
uniform metric, where 9 € (0,1) and t = 1. Then, in the non-oblivious settings, G must have
Q(n' 14 edges.

» Remark 6. Erdés’ girth conjecture states that there exists a graph G with n vertices and
Q(n1+1/k) edges, and girth at least 2k + 1, where the girth of G is the length of the shortest
cycle in G. The argument in the proof of Lemma 5 is closely related to the standard argument
for proving a tight counterpart — any graph with Q(n”l/’“) edges has girth at most 2k + 1.

3.3 Reliable spanners of the uniform metric for adaptive adversary

Here, we present a construction of reliable spanner that is close to being tight. The spanner
is simply a high-degree expander whose properties are described in the following definition.

» Definition 7. Denote by A\(G) the second eigenvalue of the matriz M /d, where M = Adj(G)
is the adjacency matriz of a d-regular graph G. A proper expander specifies a constant
C > 1, and functions B6s,cs > 0, such that for every § € (0,1/4) an even integers d = B,
n = d?, there exists an n-vertex, d-reqular graph G = (V, E), such that:

(P1) ¥vScV, |S|=12n/(6d) = |T'v(S)| > (1—0)n,

(P2) VSV, |S|<<¢sn/d = [Ty(9)| = (1-19)d|S|

(P3) \NG) < C/Vd.

For each one of the properties above, it is known that there exists an expander satisfying
it: Property (P1) is essentially proved in [6], Property (P2) is folklore, and Property (P3)
appears in [8]. Since they hold almost surely for “random regular graphs”, they also hold
simultaneously. However, we were unable to find in the literature proofs of almost sure
existence in the same model of random regular graphs, and contiguity of the different random
models does not necessarily hold in the high-degree regime (which is what we need here).
Therefore, for completeness, in the full version we reprove (P1) and (P2) in the same random

model in which (P3) was proved. We thus get the following in the full version of the paper [11].

» Theorem 8. A random graph construction leads to is a proper expander (see Definition 7),
asymptotically almost surely.

With the appropriate choice of parameters, these expanders are reliable spanners for
uniform metrics. The proof is somewhat cumbersome and is included in the full version of
the paper.

43:5
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» Theorem 9. For cveryteN, 0 e (0,1), and n € 2N such that n = e | there exist:
(i) V-reliable 2t-spanner with O~ n'*+Yt) edges for n-point uniform space, and
(i) V-reliable (2t — 1)-spanner with O(9~2n 1) edges for n-point uniform space.

Applying the above theorem directly on non-uniform metric we obtain the following
corollaries.

» Corollary 10. Let M = (X,d) be a metric space, and let P < X be a finite subset of size
n. Given parameters t € N, and 9 € (0, 1), there exists a weighted graph G on P, such that:

(A) The graph G has |E(G)| = O(972 - n'*1/t) edges.
(B) The graph G is 9-reliable. Namely, given any attack set B < X, there exists a subset

Q < P, such that |Q| = |P| — (1 +9) |B n P|. Furthermore, for any two points p,q € @,
we have

dam(p,q) < dg,(p,q) < (2t = 1) - diampg (P),

and the path realizing it has at most (2t — 1) hops.
In particular, G has hop diameter at most 2t — 1, and diameter at most (2t — 1) - diamq(P).

» Corollary 11. Let M = (X,d) be a metric space, and let P = X be a finite subset of size
n. Given parameters t € N, and 9 € (0, 1), there exists a weighted graph G on P, such that:

(A) The graph G has |E(G)| = O(9~1 - n'*1/t) edges.
(B) The graph G is 9-reliable. Namely, given any attack set B < X, there exists a subset

Q < P, such that |Q| = |P| — (1 +9) |B n P|. Furthermore, for any two points p,q € @,
we have

dam(p,q) < dgj, (p,q) < 2t - diampm (P),

and the path realizing it has at most 2t hops.

In particular, G has hop diameter at most 2t, and diameter at most 2t - diam g (P).

3.3.1 A simpler construction of reliable spanner

Here, we prove a somewhat inferior construction of reliable spanner. In particular, the
ensuing construction cannot produce reliable expanders with a constant degree but simpler
to prove.

The proof will only use Property (P1) of proper expanders from Definition 7. Specifically,
it will use the following lemma which is a minor variant of known constructions.

» Lemma 12 ([6]). Let L, R be two disjoint sets, with a total of n € 2N elements, and let
€€ (0,1) be a parameter. There exists a bipartite graph G = (L U R, E) with O(n/&?) edges,
such that
(1) for any subset X < L, with | X|
(1) for any subset Y < R, with |Y|

&|L|, we have that |T(X)| > (1 — &)|R|, and
&|R|, we have that |T(Y)| > (1 —¢&)|L].

AR\

» Remark 13. The randomized construction of Lemma 12 succeeds with probability 1—1/n°(),

Since we use the construction below on sets that are polynomially large (i.e., n/*), one
can use Lemma 12 constructively in this case (potentially losing an additional logt factor).
This applies to the other expander constructions used in this paper. Note, that while the
construction works with high probability, verifying that it indeed works seems computationally
intractable.
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Construction of the reliable spanner. We define a tree T that contains the n points in its
leaves and has exactly t + 1 levels. Level 0 corresponds to the leaves, and in level k£ each
node has exactly m = n'/* children from level k — 1, for k = 1,...,t. Note that each level

k/t

corresponds to a partition of P. At level k, each cluster (i.e., tree node) is of size n*/*, and

there are ni—*/t

clusters (i.e., nodes) at this level. For a node v € T, let vy,..., v, be the
children of u, and let P, be the set of leaves of the subtree rooted at u. The graph G, is
defined to be the union of bipartite expanders between P,, and P, for 1 <i < j < m, using
Lemma 12 with parameter £ = /8. The graph G is the union of graphs G,, for all internal

nodes u e T.

Analysis.

» Lemma 14 (For the proof, see [11]). The graph G, defined above, has O(9~2t - n**+1/t)
edges.

Fix an arbitrary attack set B € P. A node u € T is damaged, if |P, n B| = (1—19/2) | P,|
(i.e., most of the nodes in the subtree of u are in the attack set). Let B¥ be all the points of
P, that get removed when one removes all the subtrees rooted at damaged nodes.

» Lemma 15 (For the proof, see [11]). Let BT be the set defined above. We have |B*| <
(1+9)|B|.

Let ©(p, £) denote the ball of radius ¢ centered at p in the graph G\B. For a point p € P,
let u(p, £) be the node in the tree that is the ancestor of p that is £ hops upward toward the
root. For a point pe P and £ > 1, let

B(p,£) = |Pyp.e) N B /|Pu(p,€)|7 and  w(p,?) = |Pype) N S(p, £)|/|Pu(p,€)|7

be the ratio of attack points in P, ), and the ratio of f-reachable survivors from p in P, ¢),
respectively.

» Lemma 16 (For the proof, see [11]). For any p € P\B*, and any { = 1,...,t, we have
w(p, ) = 39/8, where t is the height of T.

» Proposition 17 (For the proof, see [11]). For every t € N, 6 € (0,1), and n € N such
that n'/t € {2,3,4,.. .}, there exists V-reliable (2t — 1)-spanner with O(9~tn'*1/t) edges for
n-point uniform space.

» Remark 18. A constructive version of Proposition 17 requires repeating the construction
of the underlying expanders O(logt) times, so that it succeeds (per such expander) with
probability > 1 — 1/n. This would yield an extra O(logt) factor in the number of edges in
the graph, see Remark 13.

4 Covers for trees, bounded spread metrics, and planar graphs

» Definition 19. For a finite metric space M = (P,d), a t-cover, is a family of subsets
C={S;cP|i=1,...m}, such that for any p,q € P, there exists an index i, such that
p,q € S;, and

diam(S;)/t < d(p, q) < diam(S;).

The size of a cover C is size(C) = Y, gc |S|. For a point p € P, its degree in C, is the number
of sets of P that contain it. The depth of C is the maximum degree of any element of P,
and is denoted by D(C).

43:7
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4.1 Lower bounds

Unfortunately, in the worst case, the depth of any cover and its size must depend on the
spread of the metric.

» Lemma 20 (For the proof, see [11]). For any parameter t > 1, any integer h > 1, and
® = t", there exists a metric M = (P,d) of n points, such that

(1) &(P) =2, and

(1) any t-cover C of P has size Q(nlog, @) = Q(nh), average degree = h/2, and depth h.

» Proposition 21 (For the proof, see [11]). For any t € 2,3,..., and any sufficiently large n

there exists an n-point metric space for which any t-cover must be of size at least Q(nlﬂ/zt).

4.2 Cover for ultrametrics

» Definition 22. A hierarchically well-separated tree (HST ) is a metric space defined
on the leaves of a rooted tree T. To each vertex u € T there is associated a label A, = 0. This
label is zero for all the leaves of T, and it is a positive number for all the interior nodes. The
labels are such that if a vertex u is a child of a vertex v, then A, < A,. The distance between
two leaves x,y € T is defined as Aja(z,y), where lca(x,y) is the least common ancestor of

v andy inT. An HST T is a k-HST if for all vertices v e T, we have that A, < Ape)/k,
where p(v) is the parent of v in T.

HSTs are one of the simplest non-trivial metrics, and surprisingly, general metrics can be
embedded (randomly) to trees with expected distortion O(logn) [2, 9].

» Definition 23. A metric M = (P,d) is an ultrametric, if for any x,y,z € P, we have
that d(x, z) < max(d(x,y),d(y,2)). Notice, that this is a stronger version of the triangle
inequality, which states that d(z, z) < d(x,y) + d(y, 2).

The following is folklore, easy to verify (see, e.g., [3, Lemma 3.5].
» Lemma 24. For k > 1, every finite ultrametric can be k-approximated by a k-HST.

» Lemma 25 (For the proof, see [11]). For k > 1, every k-HST with spread ® has 1-cover of
depth at most log;, ®.

The following corollary is immediate from the above two lemmas.

» Corollary 26. Let M = (P,d) be an ultrametric over n points with spread ®. For any
g€ (0,1), one can compute a (1 + €)-cover of M of depth O(~1log ®).

4.3 Cover for general finite metrics

We need the following result.
» Lemma 27 ([17]). Let (P,d) be an n-point metric space and k = 1. Then there exists a

distribution over decreasing sequences of subsets P = Py 2 Py 2 --- 2 Py = (J (s itself is
a random variable), such that for all p > —1/k, we have E[Z;;} |Pj\“] < max(ﬁ, 1) .
nH % and such that for each j € [s] there exists an ultrametric p; on P satisfying for every
p,q € P, that pj(p,q) = d(p,q), and if pe P and q € P;_1\P; then p;(p,q) < O(k) - d(p, q).

By computing a cover for each ultrametric generated by the above lemma, we get the
following.

» Lemma 28 (For the proof, see [11]). For an n-point metric space M = (P,d) with spread
O, and a parameter k > 1, one can compute, in polynomial time, a O(k)-cover of M of size
O(n*+t/*1og ®) and depth O(kn'/*log ®).
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4.4 Covers for trees

Using a tree separator, and applying it recursively, implies the following construction of
covers for trees.

» Lemma 29 (For the proof, see [11]). For a weighted tree metric T = (P,d), with spread ®,
and a parameter € € (0,1), one can compute in polynomial time a (2 + €)-cover of T of depth
O(e tlog®logn), and size O(ne~1log ®logn), where n = |P|.

4.5 Covers for planar graphs

Preliminaries. The next lemma can be traced back to the work of Lipton and Tarjan [15],
and we include a sketch of the proof for completeness.

» Lemma 30 (For the proof, see [11]). Let H = (P, E) be a planar triangulated graph with
non-negative edge weights. There is a partition of P to three sets X,Y, Z, such that
(i) |X] < (2/3)n and |Y| < (2/3)n,
(ii) there is no edge between X and Y, and
(iii) Z is composed of two interior disjoint shortest paths that share one of their endpoints,
and an edge connecting their other two endpoints.

» Definition 31. For a metric space (X,d) and a parameter v, an r-net N is a mazimal set
of points in X, such that

(i) for any two net points p,q € N, we have d(p,q) > r, and

(ii) for any p € X, we have d(p, N) = mingen d(p,q) < r.

A net can be computed by repeatedly picking the point furthest away from the current
net N, and adding it to the net if this distance is larger than r, and stopping otherwise. We
denote a net computed by this algorithm by net(X, r).

The following lemma testifies that if we restrict the net to lay along a shortest path in
the graph, locally the cover it induces has depth as if the graph was one dimensional.

» Lemma 32 (For the proof, see [11]). Let G be a weighted graph, and let d be the shortest path
metric it induces. Let m be a shortest path in G and let N = net(m,r) S 7 be a net computed
for some distance r > 0. For some R > 0, consider the set of balls B = {b(p,R) | p€ N}.
For any point q € V(G), we have that the degree of q in B is at most 2R/r + 1.

Construction. Let ¢ € (0,1) be an input parameter, and let G be a weighted planar graph.

We assume that G is triangulated, as otherwise it can be triangulated (we also assume that
we have its planar embedding). Any new edge pq is assigned as weight the distance between
its endpoints in the original graph. This can be done in linear time. As usual, we assume
that the minimum distance in G is one, and its spread is ®.

Let Z be the cycle separator given by Lemma 30 made out of two shortest paths 7 and
mo. Let p1,p2, p3 be the endpoints of these two paths.

For i = 0,...,m = [logy,. /s ®], let N; = net(ry,er;/8) U net(mz,er;/8) U {p1,p2, 3},
where r; = (14 ¢/8)*. The associated set of balls is

Bi = {b(p, (1 +¢/8)ri) | p € Ni}.

The resulting set of balls is B(Z) = | J; B;. We add the sets of B(Z) to the cover, and continue
recursively on the connected components of G — Z. Let C denote the resulting cover.
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Analysis.

» Lemma 33 (For the proof, see [11]). For any two vertices p,q € V(G), there exists a cluster
C e C, such that p,q € C, and diam(C) < (2 + ¢)dg(p, q). That is, C is a (2 + €)-cover of G.

» Lemma 34 (For the proof, see [11]). The depth of C is O(¢~2lognlog ®).

4.5.1 The result

» Theorem 35. Let G be a weighted planar graph over n vertices with spread ®. Then, given
a parameter € € (0,1), one can construct a (2 + ¢)-cover of G with depth O(¢~2?lognlog ®)
in polynomial time.

» Remark 36. It is possible generalize Theorem 35 to the shortest path metric on families of
graphs excluding a fixed minor. Specifically, by [12, Lemma 3.3], there exists O(s?)-cover
of depth O(3%log ®) for every metric spaces supported on graph excluding K minor and
spread ®. It may be possible to improve the approximation parameter to O(s) using [1], but
we have not pursued this avenue. However, this approach can not recover approximation
parameter 2 + ¢ for planar graphs as in Theorem 35.

5 From covers to reliable spanners

5.1 The oblivious construction

» Lemma 37 (For the proof, see [11]). Let M = (P,d) be a finite metric space, and suppose
there exists C, a &-cover of M of size s and depth D. Then, there exists an oblivious ¥-reliable
2-hop 2&-spanner for M, of size O(s% log %).
5.2 The deterministic construction

» Lemma 38 (For the proof, see [11]). Let M = (P,d) be a finite metric space over n points,
and let C be a -cover of it of depth D and size s. Then, for any integer t = 1, there exists:

(A) A Y-reliable (2t — 1)-hop (2t — 1)&-spanner for M, of size O(9~2D?sn'/?).
(B) A 9-reliable 2t-hop 2t&-spanner for M, of size O(9~ Dsn/t).

5.3 Applications

5.3.1 General metrics

» Lemma 39 (For the proof, see [11]). Let M = (P,d) be an n-point metric space of spread
at most ®, and let ¥ € (0,1) and k € N be parameters. Then, one can build an oblivious
Y-reliable O(k)-spanner for M with

kn'/* log <I>)

(’)(ﬂfllmlﬂ/k log? @ log 3

edges. In particular, for k = logn, we obtain ¥-reliable O(logn)-spanner for M with
o (ﬁ_ln log nlog® ®(loglog n + loglog ® + log(ﬁ_l))

edges.
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» Lemma 40 (For the proof, see [11]). Let M = (P,d) be a finite metric over n points of
spread ®, and let 9 € (0,1) and k, h € N int be parameters. Then, one can build a ¥-reliable
O(kt)-spanner for M with OO~ kn**+Yk+1/t10g> ®) edges. In particular, when t = logn,
we obtain V-reliable O(klogn)-spanner for M with O~ kn*+Y/ %) log? ®) edges, and when
t = k we obtain V-reliable O(t?)-spanner for M with O(9~ tn'+1/*log® ®) edges.

5.3.2 Ultrametrics

» Lemma 41 (For the proof, see [11]). Let M = (P,d) be an ultrametric over n points with
spread ®, and let 9,e € (0,1) be parameters. Then, one can build an oblivious ¥-reliable
(2 + €)-spanner for M with O(9~ 1e=2n1og? @ log 1og<1>) edges.

» Lemma 42 (For the proof, see [11]). Let M = (P,d) be an ultrametric over n points with
spread ®, and let ¥,c € (0,1), and t € N be parameters. Then, one can build a ¥-reliable
((2 + &)t — 1)-spanner for M of size O(9~23t - n'*+1/t log® ®).

5.3.3 Tree metrics

» Lemma 43 (For the proof, see [11]). Let M = (P,d) be a tree metric over n points
with spread ®, and let 9, € (0,1) be parameters. Then, one can build an oblivious ¥J-
reliable (3 + £)-spanner for M with O(9~'e~2n polylog(n, ®)) edges, where polylog(n,®) =

log® nlog® @ log M

» Lemma 44 (For the proof, see [11]). Let M = (P,d) be a tree metric over n points with
spread ®, and let ¥, € (0,1), and t € N be parameters. Then, one can build a 9-reliable
((4 + )t — 3)-spanner for M of size O(9~ 23 - n'*1/tlog® nlog® @).

5.3.4 Planar graphs

» Lemma 45 (For the proof, see [11]). Let G be a weighted planar graph with n vertices
and spread ®. Furthermore, let ¥,¢ € (0,1) be parameters. Then, one can build an oblivious
9-reliable (3+5) -spanner for G with O (9~ e~*n polylog(n, ®)) edges, where polylog(n, ) =

log® nlog?® @ log 710’?; ®logn

» Lemma 46 (For the proof, see [11]). Let G be a weighted planar graph with n vertices and
spread ®. Furthermore, let 9, € (0,1) and t € N be parameters. Then, one can build a
deterministic 9-reliable ((4 + )t — 3)-spanner for G of size O(9~2=6 . p'+1/tlog® nlog® ®).

6 Concluding remarks and open problems

Subsequent work. Recently Filtser and Le [10] improved the results here, getting bounds
that do not depend on the spread of the metrics in some cases, for the oblivious adversary
case.

Tradeoffs in deterministic constructions for general spaces. Classical spanners are known
to have an approximation—size trade-off for general n-point metrics: To achieve ©(t) approx-
imation it is sufficient and necessary to have n'T1/* edges in the worst case. In contrast,
for reliable spanners we were able only to give an upper bound on the trade-off, with no
asymptotically matching lower bound: To achieve O(t?) approximation it is sufficient to have
(5(711“/ ) edges. Classically, the uniform metric is 2-approximated by a star graph with
only n — 1 edges. In contrast, we have shown here reliable spanners for uniform metric have
approximation-size trade similar to the classical spanner for general metrics. The connection
between the two problems is quite intriguing, and is worthy of further research.

43:11

SoCG 2021



43:12

Reliable Spanners for Metric Spaces

The dependence of the size on the spread. The size of spanners constructed in this paper
depends on the spread of the metric space. This is because of the reduction to uniform
spaces via covers, in which the dependence on the spread is unavoidable in general. However,
in some setting this dependence is avoidable. For example [6, 5] achieves this for fixed
dimensional Euclidean spaces, and [10] achieves it for doubling spaces, and general finite
spaces in the oblivious adversary model. Getting spread-free bounds for the non-oblivious
adversary is an interesting problem for further research.

Explicit constructions. To the best of our knowledge, there is no known polynomial time
deterministic algorithm for constructing expanders with Property (P1) or Property (P2).
Getting such a construction is an interesting open problem.
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