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Abstract
In two-dimensional geometric knapsack problem, we are given a set of n axis-aligned rectangular
items and an axis-aligned square-shaped knapsack. Each item has integral width, integral height
and an associated integral profit. The goal is to find a (non-overlapping axis-aligned) packing
of a maximum profit subset of rectangles into the knapsack. A well-studied and frequently used
constraint in practice is to allow only packings that are guillotine separable, i.e., every rectangle in
the packing can be obtained by recursively applying a sequence of edge-to-edge axis-parallel cuts
that do not intersect any item of the solution. In this paper we study approximation algorithms
for the geometric knapsack problem under guillotine cut constraints. We present polynomial time
(1 + ε)-approximation algorithms for the cases with and without allowing rotations by 90 degrees,
assuming that all input numeric data are polynomially bounded in n. In comparison, the best-known
approximation factor for this setting is 3 + ε [Jansen-Zhang, SODA 2004], even in the cardinality
case where all items have the same profit.

Our main technical contribution is a structural lemma which shows that any guillotine packing
can be converted into another structured guillotine packing with almost the same profit. In this
packing, each item is completely contained in one of a constant number of boxes and L-shaped
regions, inside which the items are placed by a simple greedy routine. In particular, we provide a
clean sufficient condition when such a packing obeys the guillotine cut constraints which might be
useful for other settings where these constraints are imposed.
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1 Introduction

Geometric packing problems have many important applications in cutting stock [27], VLSI
design [32], logistics [13], smart-grids [25], etc. Two-dimensional geometric knapsack (2GK),
a multidimensional generalization of the classical knapsack problem, is one of the central
problems in this area. We are given a set of n axis-aligned (open) rectangles (also called
items) I := {1, 2, . . . , n}, where rectangle i has integral width w(i), integral height h(i)
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48:2 Guillotine Separable Packings for the 2D Geometric Knapsack

and an associated integral profit p(i). We are also given an axis-aligned square knapsack
K := [0, N ] × [0, N ], where N ∈ N. The goal is to select a subset of items I ′ ⊆ I of
maximum total profit p(I ′) :=

∑
i∈I′ p(i) so that they can be packed in the knapsack. The

packing needs to be axis-parallel and non-overlapping, i.e., such packing maps each rectangle
i ∈ I ′ to a new translated open rectangle R(i) := (left(i), right(i)) × (bottom(i), top(i))
where right(i) = left(i) + w(i), top(i) = bottom(i) + h(i), left(i) ≥ 0, bottom(i) ≥ 0,
right(i) ≤ N, top(i) ≤ N and for any i, j ∈ I ′, we must have R(i) ∩ R(j) = ∅. In 2GK, items
are not allowed to be rotated. There is another variant with rotations that we denote by
2GK(R), where items are allowed to be rotated by 90 degrees.

2GK has rich connections with many important problems, such as maximum independent
set of rectangles (MISR) [2], 2-D bin packing [7], strip packing [23,30], mixed packing [39],
fair allocation [45], storage allocation [42], unsplittable flow [28], etc. Leung et al. [40] showed
that the problem is strongly NP-hard. Jansen and Zhang [35] gave (2 + ε)-approximation
algorithms for both 2GK and 2GK(R), where ε > 0 is an arbitrarily small constant. Finally,
Gálvez et al. [24] broke the barrier of 2 by giving a 1.89-approximation algorithm for 2GK and
(3/2 + ε)-approximation algorithm for 2GK(R). Furthermore, if the input data is quasi-
polynomially bounded (i.e., N ≤ n(log n)c for some c > 0 ) then there exists a quasi-polynomial
time approximation scheme (QPTAS) for both problems [3]. Polynomial time approximation
schemes (PTASs) are known for many special cases: if all items are small [20], if all items
are squares [31, 34], if the profit of each item equals its area [5], and if we allow resource
augmentation (i.e., the size of the knapsack can be slightly increased) [21, 33]. However, it is
an open problem to construct a PTAS, even with pseudo-polynomial running time.

One can view geometric packing as a cutting problem where we are given a large sheet or
stock unit (maybe metal, glass, wood, rubber, or cloth), which should be cut into pieces out
of the given input set. Cutting technology often only allows axis-parallel end-to-end cuts
called guillotine cuts. See [8, 49] for practical applications and software related to guillotine
packing. In this setting, we seek for solutions in which we can cut out the individual objects
by a recursive sequence of guillotine cuts that do not intersect any item of the solution. The
related notion of k-stage packing was originally introduced by Gilmore and Gomory [27].
Here each stage consists of either vertical or horizontal guillotine cuts (but not both). On
each stage, each of the sub-regions obtained on the previous stage is considered separately
and can be cut again by using horizontal or vertical guillotine cuts. In k-stage packing,
the number of cuts to obtain each rectangle from the initial packing is at most k, plus an
additional cut to trim (i.e., separate the rectangles itself from a waste area). Intuitively, this
means that in the cutting process we change the orientation of the cuts k − 1 times. The
case where k = 2, usually referred to as shelf packing, has been studied extensively.

Figure 1 The first three packing are guillotine separable packings of 2-stages, 5-stages, and
many stages, respectively. The last packing is not a guillotine packing as any end-to-end cut in the
knapsack intersects at least one of the packed rectangles.
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In this paper, we study the two-dimensional knapsack problem under guillotine cuts
(2GGK). The input is the same as for 2GK, but we require additionally that the items
in the solution can be separated by a sequence of guillotine cuts, and we say that then
they are guillotine separable. NP-hardness of 2GGK follows from a reduction from the
(one-dimensional) knapsack problem. Christofides et al. [14] studied the problem in 1970s.
Since then many heuristics have been developed to efficiently solve benchmark instances,
based on tree-search [50], branch-and-bound [29], dynamic optimization [9], tabu search [4],
genetic algorithms [44], etc. Despite a staggering number of recent experimental papers
[10, 15, 16, 18, 19, 22, 41, 51], there was little theoretical progress for 2GGK, due to limitations
of past techniques. Since 2004, the (3 + ε)-approximation for 2GK by Jansen and Zhang [35]
has been the best-known approximation algorithm for 2GGK. Recently, Abed et al. [1] have
studied approximation algorithms for the cardinality cases of 2GGK and 2GGK(R) and have
given a QPTASs, assuming the input data to be quasi-polynomially bounded.

Most algorithms for 2GK utilize a container packing (see Section 2) which arranges
the items in the knapsack such that they are packed inside a constant number of axis-
aligned boxes (containers). The best sizes and locations of these containers can be guessed
efficiently since there are only a constant number of them. Then inside each container the
items are packed either in one-stage packings or in two-stage packings (if items are small).
However, Gálvez et al. [24] show that one cannot obtain a better approximation ratio than 2
with container-based packings with only O(1) many containers, due to interaction between
horizontal (wide and thin) and vertical (tall and narrow) items. To break this barrier, they
use a corridor-decomposition where the knapsack is divided into axis-parallel polygonal
regions called corridors with constant number of regions called subcorridors. Vertical (resp.
horizontal) items are packed in only vertical (resp. horizontal) subcorridors. After simplifying
the interaction between vertical and horizontal items, they define two types of packings. In
one packing, they process the subcorridors to obtain a container-based packing. In the other,
a profitable subset of long horizontal and long vertical items are packed in an L-shaped
region. They prove that the best of these two packings achieves a better approximation
ratio than 2. However, it is not clear how to use this approach for 2GGK: even if we start
with an optimal guillotine packing, the rearrangements of items may not preserve guillotine
separability, and hence they might not lead to a feasible solution to 2GGK.

1.1 Our contribution
In this paper, we obtain (1 + ε)-approximation algorithms with pseudo-polynomial running
time for both 2GGK and 2GGK(R), i.e., the running time is a polynomial if the (integral)
input numbers are all polynomially bounded in n. The key idea is to show that there are
(1 + ε)-approximate solutions in which the knapsack is divided into simple compartments that
each have the shape of a rectangular box or an L, see Figure 2. Inside each compartment,
the items are placed in a very simple way, e.g., all horizontal items are simply stacked on
top of each other, all vertical items are placed side by side, and all small items are packed
greedily with the Next-Fit-Decreasing-Height algorithm [17], see Figure 2. To establish this
structure, we crucially exploit that the optimal solution is guillotine separable; in particular,
in 2GK (where the optimal solution might not be guillotine separable) more complicated
compartments may be necessary for near-optimal solutions, e.g., with the form of a ring.

While the items in our structured solution are guillotine separable, we cannot separate
the compartments by guillotine cuts since we cannot cut out an L-shaped compartment with
such cuts. This makes it difficult to compute a solution of this type since it is not sufficient
to ensure that (locally) within each compartment the items are guillotine separable (which is
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immediately guaranteed by our simple packings inside them). Therefore, our compartments
have an important additional property: they can be separated by a pseudo guillotine cutting
sequence. This is a cutting sequence in which each step is either a guillotine cut, or a cut
along two line segments that separates a rectangular area into an L-shaped compartment and
a smaller rectangular area, see Figure 5. We prove a strong property for compartments that
admit such a pseudo guillotine cutting sequence: we show that if we pack items into such
compartments in the simple way mentioned above, this will always yield a solution that is
globally guillotine separable. This property and our structural result might have applications
also in other settings where we are interested in solutions that are guillotine separable.

Our strong structural result allows us to construct algorithms (for the cases with and
without rotations) that are relatively simple: we first guess the constantly many compartments
in the structured solution mentioned above. Then we compute up to a factor 1 + ε, the most
profitable set of items that can be placed nicely into them, using a simplified version of a
recent algorithm in [26]. The resulting solutions use up to Θ(log(nN)) stages (unlike e.g.,
solutions of the Next-Fit-Decreasing-Height algorithm [17] that need only two stages). We
prove a lower bound, showing that there is a family of instances of 2GGK that does not
admit (2 − ε)-approximate solutions with only o(log N)-stages.

Figure 2 A structured packing of items into compartments that each have the shape of an L- or
a rectangular box.

1.2 Other related work
There are many well-studied geometric packing problems. In the 2D bin packing prob-
lem (2BP), we are given a set of rectangular items and unit square bins, and the goal is
to pack all the items into a minimum number of bins. The problem is APX-hard [6] and
the currently best known approximation ratio is 1.405 [7]. In the 2D strip packing problem
(2SP), we are given a set of rectangular items and a fixed-width unbounded-height strip, and
the goal is to pack all the items into the strip such that the height of the strip is minimized.
Kenyon and Rémila gave an APTAS for the problem [36] using a 3-stage packing.

Both 2BP and 2SP are well-studied in the guillotine setting [46]. Caprara [11] gave a
2-stage T∞(≈ 1.691)-approximation for 2BP. Afterwards, Caprara et al. [12] gave an APTAS
for 2-stage 2BP and 2-stage 2SP. Later, Bansal et al. [8] showed an APTAS for guillotine
2BP. Bansal et al. [7] conjectured that the worst-case ratio between the best guillotine 2BP
and the best general 2BP is 4/3. If true, this would imply a ( 4

3 + ε)-approximation algorithm
for 2BP. Seiden et al. [47] gave an APTAS for guillotine 2SP. Both the APTAS for guillotine
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2BP and guillotine 2SP are based on the fact that general guillotine 2BP or guillotine 2SP
can be approximated arbitrarily well by O(1)-stage packings, and such O(1)-stage packings
can be found efficiently. Interestingly, we showed that this property is not true for 2GGK.

Pach and Tardos [43] conjectured that, for any set of n non-overlapping axis-parallel
rectangles, there is a guillotine cutting sequence separating Ω(n) of them. Recently, the
problem has received attention in [1,38] since, if true, this would imply a O(1)-approximation
for the Maximum Independent Set of Rectangles problem, a long-standing open problem.

2 Methodology

For simplicity of presentation, we primarily focus on the cardinality case, i.e., assume that
p(i) = 1 for each item i ∈ I. For a detailed description of the generalization to arbitrary
item profits, see [37]. For each n ∈ N we define [n] := {1, 2, . . . , n}.

We classify the input items according to their heights and widths. For two constants
1 ≥ εlarge > εsmall > 0 to be defined later, we classify each item i ∈ I as:

Large: wi > εlargeN and hi > εlargeN ;
Small: wi ≤ εsmallN and hi ≤ εsmallN ;
Horizontal: wi > εlargeN and hi ≤ εsmallN ;
Vertical: hi > εlargeN and wi ≤ εsmallN ;
Intermediate: Either εlargeN ≥ hi > εsmallN or εlargeN ≥ wi > εsmallN .

Using standard shifting arguments, one can show that we can ignore intermediate items.

▶ Lemma 1 ([24]). Let ε > 0 and f(.) be any positive increasing function such that f(x) < x

∀x ∈ (0, 1]. Then we can efficiently find εlarge, εsmall ∈ Ωε(1), with ε ≥ f(ε) ≥ εlarge ≥
f(εlarge) ≥ εsmall so that the total profit of intermediate rectangles is at most εp(OPT ).

We define skewed items to be items that are horizontal or vertical. Let Ilarge, Ismall,
Ihor, Iver, Iskew be the set of large, small, horizontal, vertical, and skewed rectangles, respect-
ively. The corresponding intersections with OPT (the optimal guillotine packing) defines the
sets OPTlarge, OPTsmall, OPThor, OPTver, OPTskew, respectively.

2.1 Compartments
Our goal is to partition the knapsack into compartments, such that there is an (1 + ε)-
approximate solution whose items are placed in a structured way inside these compartments.
We will use two types of compartments: box-compartments and L-compartments.

▶ Definition 1 (Box-compartment). A box-compartment B is an axis-aligned rectangle that
satisfies B ⊆ K := [0, N ] × [0, N ].

▶ Definition 2 (L-compartment). An L-compartment L is a subregion of K bounded by a
simple rectilinear polygon with six edges e0, e1, . . . , e5 such that for each pair of horizontal
(resp. vertical) edges ei, e6−i with i ∈ {1, 2} there exists a vertical (resp. horizontal) line
segment ℓi of length less than εlargeN/2 such that both ei and e6−i intersect ℓi but no other
edges intersect ℓi.

Since the length of the line segments ℓi is less than εlargeN/2, this implies that inside
an L-compartment L we cannot place large items, inside the horizontal part of L we cannot
place vertical items, and inside the vertical part of L we cannot place horizontal items.

We seek for a structured packing inside of these compartments according to the following
definitions. Inside box-compartments, we want only one type of items and we want that the
skewed items are placed in a very simple way, see Figure 2.

SoCG 2021
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▶ Definition 3. Let B be a box-compartment and let IB ⊆ I be a set of items that are placed
non-overlappingly inside B. We say that the placement of IB is nice if the items in IB are
guillotine separable and additionally

IB contains only one item, or
IB ⊆ Ihor and the items in IB are stacked on top of each other inside B, or
IB ⊆ Iver and the items in IB are placed side by side inside B, or
IB ⊆ Ismall and for each item i ∈ IB it holds that wi ≤ ε · w(B) and hi ≤ ε · h(B)

Inside L-compartments we allow only skewed items and we want them to be placed in a
similar way as in the boxes, see Figure 2 and 3.

▶ Definition 4. Let L be an L-compartment and let IL ⊆ I be a set of items that are placed
non-overlappingly inside L. We say that the placement of IL is nice if

IL ⊆ Iskew, and
the items in IL ∩ Ihor are stacked on top of each other inside L, and
the items in IL ∩ Iver are stacked side by side inside L.

A nice placement inside an L-compartment yields a guillotine separable packing.

▶ Lemma 2. Consider a set of items IL ⊆ I that is placed nicely inside an L-compartment
L. Then IL is guillotine separable.

Proof sketch. One can show that there always exists a guillotine cut that separates one or
more horizontal or vertical items in IL from the other items in IL, see Figure 3. Then this
argument is applied recursively. ◀

I ′
hor

iv

lv

(a)

I ′
hor

lh

iv

lv

(b)

I ′
hor

lh

(c)

Figure 3 (a) A nicely packed set of skewed items inside an L-compartment. The vertical cut lv

separates the leftmost vertical item iv from the other vertical items but it intersects the horizontal
items in I ′

hor. (b) However, then the horizontal cut lh separates the items in I ′
hor from the other

horizontal items without intersecting any vertical item. (c) The corresponding guillotine cut that
partitions the L-compartment into a box-compartment and a smaller L-compartment.

2.2 Pseudo-guillotine separable compartments
We seek to partition the knapsack into box- and L-compartments and then place items
into these compartments. We also want to ensure that the resulting solution is guillotine
separable. We could guarantee this if there was a guillotine cutting sequence that separates
all compartments and require that the items inside the compartments are placed nicely.
Then, we could first separate all compartments by the mentioned cutting sequence and then
separate the items inside of each compartment by guillotine cuts (as they are packed nicely).
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However, there is no guillotine cutting sequence that cuts out an L-compartment from the
knapsack since no guillotine cut can separate the L-compartment from the area at the “inner”
part of the L-compartment. Therefore, we require for the compartments in our knapsack
only that there is a pseudo-guillotine cutting sequence. A pseudo-guillotine cutting sequence
has the following two operations (see Figure 5): given a rectangle R ⊆ K it

applies a horizontal or vertical guillotine cut that separates R into two disjoint rectangles
R1, R2 and then continues recursively with R1 and R2, or
for an L-compartment L ⊆ R such that R \ L is a rectangle, it partitions R into L and
R \ L and then continues recursively with R \ L (but not with L). Note that we cannot do
this operation with every L-compartment L′ ⊆ R since possibly R \ L′ is not a rectangle.

We formalize this in the following definition.

▶ Definition 5. A pseudo-guillotine cutting sequence (for compartments) for a set of
compartments C is a binary tree T = (V, E) where for each vertex v ∈ V there is an associated
shape Sv ⊆ K such that

for the root r ∈ V of T it holds that Sr = K,
for each internal vertex v with children u, w it holds that

Sv is a rectangle with Sv = Su∪̇Sw (so in particular Su and Sw are disjoint),
either Su and Sw are both rectangles or one of them is an L-compartment and the
other is a rectangle,

for each compartment C ∈ C there is a leaf v ∈ V such that Sv = C.

Observe that each L-compartment corresponds to a leaf node in T .
Now the important insight is that if a set of compartments C admits a pseudo-guillotine

cutting sequence, then any nice placement of items inside these compartments is guillotine
separable (globally). In particular, given such compartments C, we can place items inside the
compartments in C without needing to worry whether the resulting packing will be guillotine
separable globally, as long as we place these items nicely. Intuitively, this is true since we
can use the cuts of the pseudo-guillotine cutting sequence as a template for a global cutting
sequence for the items: whenever the former sequence

makes a guillotine cut, we simply do the same cut,
when it separates an L-compartment L from a rectangular region R, we separate the
items inside L by a sequence of guillotine cuts; it turns out that we can do this since all
items inside L are placed nicely and skewed.

Finally, we separate the items inside each box-compartment B by guillotine cuts, using the
fact that the items inside B are placed nicely.

▶ Lemma 3. Let C be a set of compartments inside K that admit a pseudo-guillotine cutting
sequence. Let I ′ ⊆ I be a set of items that are placed nicely inside the compartments in C.
Then there is a guillotine cutting sequence for I ′.

Proof sketch. Let P denote the pseudo-guillotine cutting sequence. We construct a guillotine
cutting sequence for I ′ based on P . We follow the cuts of P . Whenever P makes a guillotine
cut, then we also do this guillotine cut. When P separates an L-compartment L from a
rectangular region R, then we apply a sequence of guillotine cuts that step by step separates
all items in L from R \ L. Since inside L the items are placed nicely, one can show that there
exist such cuts that don’t intersect any item in R \ L (see Figure 4). ◀
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ℓ0

ℓ1

ℓ2

ℓ3 ℓ4 ℓ5 ℓ6

ℓ7

R \ L

L

R \ L

L

Figure 4 Partition of rectangle R into L and R \ L when items inside L are packed nicely.
ℓ0, . . . , ℓ7 (dashed lines) are a sequence of guillotine cuts that ultimately separate out the items in L

from R.

2.3 Near-optimal structured solutions
Our main technical contribution is to show that there exists a (1 + ε)-approximate solution
whose items can be placed nicely inside a set of compartments C that admit a pseudo-guillotine
cutting sequence. By Lemma 3 there is a guillotine cutting sequence for them.

▶ Lemma 4. There exists a set OPT ′ ⊆ I and a partition of K into a set of Oε(1) 1

compartments C such that
|OPT ′| ≥ (1 − ε)|OPT |,
the compartments C admit a pseudo-guillotine cutting sequence,
the items in OPT ′ can be placed nicely inside the compartments C.

We will prove Lemma 4 in Section 3. Our main algorithm works as follows. First, we
guess the Oε(1) compartments C due to Lemma 4 in time (nN)Oε(1) (note that we can
assume w.l.o.g. that they have integral coordinates). Then we place items nicely inside C
while maximizing the cardinality of the placed items. For this we use a (1 + ε)-approximation
algorithm which is a slight adaptation of a recent algorithm in [26] for the 2GK problem (i.e.,
without requiring that the computed solution is guillotine separable). In fact, we simplify
some steps of that algorithm since our compartments are very simple.

▶ Lemma 5. Given a set of compartments C. In time (nN)Oε(1) we can compute a set of
items ALG ⊆ I that are placed nicely inside C such that |ALG| ≥ (1 − ε)|OPT ′| for any set
of items OPT ′ that can be placed nicely inside the compartments C. Inside each compartment
C ∈ C the set ALG admits an Oε(log(nN))-stage packing.

We will prove Lemma 5 in Section 4. Then, Lemmas 3, 4, and 5 imply our main theorem for
the cardinality case. Due to Lemma 4, our pseudo-guillotine cutting sequence has Oε(1) leaf
nodes and each of them is either a box- or an L-compartment. The packing algorithm due to
Lemma 5 gives a Oε(log(nN))-stage packing inside each compartment. This yields globally
a Oε(log(nN))-stage packing. For the analysis of our (1 + ε)-approximation algorithm for
the weighted case, see [37].

1 The notation Oε(f(n)) means that the implicit constant hidden by the big O notation can depend on ε.
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ℓ1

ℓ6

ℓ7

ℓ2

ℓ3

ℓ4

ℓ5

ℓ1

ℓ6
ℓ2

ℓ7

ℓ3

ℓ4

ℓ5

Figure 5 (a) A pseudo-guillotine cutting sequence. The first cut is l1, and then the resulting
right piece is further subdivided by ℓ2, ℓ3, ℓ4 and ℓ5. Similarly, ℓ6, ℓ7 subdivide the left piece. Note
that ℓ3, ℓ5 and ℓ7 are not guillotine cuts, but they cut out the corresponding L-compartments. (b)
step by step pseudo-guillotine cutting sequence corresponding to Figure (a). Dashed line at each
level indicates a partition of a rectangle into two regions (two boxes, or one box and one L-shaped).

▶ Theorem 6. There is a (1 + ε)-approximation algorithm for 2GGK with a running time
of (nN)Oε(1) that computes an Oε(log(nN))-stage packing.

We obtain a similar result also for the rotational case: our structural result from Lemma 4
still holds and the algorithm due to Lemma 5 needs only some minor modifications.

▶ Theorem 7. There is a (1 + ε)-approximation algorithm for 2GGK(R) with a running
time of (nN)Oε(1) that computes an Oε(log(nN))-stage packing.

3 Existence of near-optimal structured solutions

In this section, we prove Lemma 4 in the cardinality case, i.e., there exists a (1+ε)-approximate
solution whose items can be placed nicely inside a set of compartments C that admit a
pseudo-guillotine cutting sequence. Note that Lemma 4 trivially holds if |OPT | ≤ Oε(1) and
hence we assume that |OPT | is larger than any given constant (thus we can drop any set of
Oε(1) items from OPT while losing only a factor of 1 + ε).

Consider an optimal solution OPT and a corresponding guillotine cutting sequence S.
Temporarily, we remove from the packing the items in OPTsmall; we will put back most of
them later. We identify a set of cuts of S as follows. Let ℓ0 denote the first cut of S. Assume
w.l.o.g. that ℓ0 is vertical. If the distance of ℓ0 to the left and to the right edge of K is at
least εlargeN/4 then we stop. Otherwise ℓ0 cuts K into two rectangles R1, R2 and assume
w.l.o.g. that the width of R1 is at most εlargeN/4. Now we consider how S continues within
R2. We continue recursively. Assume inductively that we identified a set of cuts ℓ0, ..., ℓk−1
of S and suppose that ℓk−1 is vertical cut with distance less than εlargeN/4 to the left or the
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hB ℓ2

ℓ3

ℓ5

B2

B3

ℓ4
B1

B4B0

B6

ℓ6

ℓ0
ℓ1

B5

B7 ℓ7

hT

εlargeN/4
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Figure 6 Transformation to obtain an L-compartment.

right edge of K, or that ℓk−1 is horizontal cut with distance less than εlargeN/4 to the top or
the bottom edge of K. Assume w.l.o.g. that ℓk−1 is vertical with distance less than εlargeN/4
to the left edge of K. Then the cut ℓk−1 yields two rectangles R1, R2, and assume that R1
lies on the left of R2. Then we define ℓk to be the next cut of S within R2. If the distance of
ℓk to the top and the bottom edge of K is at least εlargeN/4 then we stop. Otherwise we
continue iteratively. Eventually, this procedure must stop, let ℓ0, ..., ℓk denote the resulting
sequence. Let B0, ..., Bk−1 denote the rectangles that are cut off by ℓ0, ..., ℓk−1 and into
which we did not recurse when we defined ℓ1, ..., ℓk. Let Bk denote the rectangle that is
cut by ℓk. Then each rectangle Bi with i ∈ {1, ..., k − 1} satisfies that w(Bi) ≤ εlargeN/4
or h(Bi) ≤ εlargeN/4 and in particular cannot contain both horizontal and vertical items.
Also, the items of OPT inside Bi are guillotine separable. The important insight is that
we can rearrange the rectangles B0, ..., Bk (while moving their items accordingly) such that
B0, ..., Bk−1 lies in an L-compartment L ⊆ K such that K \ L is a rectangle, i.e., L lies at
the boundary of K as shown in the Figure 6.

▶ Lemma 8. There exists an L-compartment L ⊆ K such that K \ L is a rectangle and we
can rearrange the rectangles B0, ..., Bk such that

B0, ..., Bk−1 fit non-overlappingly into L,
there is a guillotine cutting sequence for B0, ..., Bk−1,
Bk fits into K \ L.

Proof. Following the cutting sequence S as described, let us assume that Bk := [wL, N −
wR] × [hB , N − hT ], where 0 ≤ wR, wL, hT , hB ≤ εlargeN/4. Therefore, the cuts ℓ1, ..., ℓk−1
separate of a ring-like region Q := ([0, wL] × [0, N ]) ∪ ([N − wR, N ] × [0, N ]) ∪ ([0, N ] ×
[0, hB ]) ∪ ([0, N ] × [N − hT , hT ]) (see Figure 6). Note that some of the values wR, wL, hT , hB

might be 0. The rectangles B0, ..., Bk−1 fit in Q and we want to show that we can rearrange
the rectangles in B0, ..., Bk−1 into an L-compartment L ⊆ K such that L := ([0, wL + wR] ×
[0, N ]) ∪ ([0, N ] × [0, hB + hT ]) and there is a guillotine cutting sequence for B0, ..., Bk−1.
Clearly, Bk fits into K \ L. We prove the claim by induction on k. The base case is trivial.
W.l.o.g. assume the vertical cut ℓ0 that divides K into B0, R′, where B0 lies on the left
of R′. Hence, B0 := [0, b0] × [0, N ] and R′ := K \ B0. We use induction on R′ to find a
packing of B1, ..., Bk−1 in L′ := [b0, wL + wR] × [0, N ] ∪ [0, N ] × [0, hB + hT ]. Therefore,
adding B0 to L′ yields the desired L-compartment L. For the guillotine cutting sequence
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for B0, ..., Bk−1, we follow ℓ0 and afterwards the guillotine cutting sequence for B1, ..., Bk−1
obtained by induction from R′. The other cases, i.e., when B0 lies right or top or bottom of
R′, follow analogously. ◀

We adjust the packing of OPT according to Lemma 8, i.e., for each rectangle Bi with
i ∈ {0, ..., k} we move its items according to where Bi was moved due to the lemma. The
resulting packing inside L might not be nice. However, we can fix this by dropping at most
Oε(1) items and subdividing L into Oε(1) box-compartments and a smaller L-compartment
L′ ⊆ L that lies at the outer boundary of L, i.e., such that L \ L′ is again an L-compartment
and h(L′) = h(L) and w(L′) = w(L).

▶ Lemma 9. Given an L-compartment L containing a set of items I(L). There exists a
partition of L into one L-compartment L′ ⊆ L and Oε(1) box-compartments B(L) such that

L′ lies at the outer boundary of L,
the box-compartments in B(L) are guillotine separable, and
there is a nice placement of a set of items I ′(L) ⊆ I(L) with |I ′(L)| ≥ (1−ε)|I ′(L)|−Oε(1)
inside B(L) and L′.
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Figure 7 Processing done in Lemma 9 to obtain a nice packing in L-compartment.

Proof sketch. Since it is sufficient to place (1 − ε)|I ′(L)| − Oε(1) items, we can drop Oε(1)
items. So w.l.o.g. assume that I(L) contains only skewed items (i.e., we remove all large
items). Intuitively, we partition L into two polygons PH and PV that are separated via a
monotone axis-parallel curve connecting the two vertices of L at the bend of L, such that
PH contains all horizontal items placed inside L and PV contains all vertical items inside L,
see Figure 7a. We rearrange the items in PH and PV separately, starting with PH . Denote
by I(PH) ⊆ I(L) the items of I(L) placed inside PH .

We place 1/ε2 boxes inside PH of height ε2h(PH) each, stacked one on top of the other. We
define their width maximally large such that they are still contained inside PH (note that some
area of PH is then not covered by these boxes), see Figure 7b. Denote by

{
B0, ..., B1/ε2−1

}
these boxes in this order, such that B0 touches the longer horizontal edge of PH . With
a shifting argument, we can show that there are two consecutive boxes Bj∗ , Bj∗+1 with
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j∗ ≤ 1/ε that intersect with at most an Oε(1) + O(ε|I(PH)|) items in I(PH). We remove
these items. Let P ′

H ⊆ PH denote the part of PH underneath Bj∗ (see Figure 7c). We move
down by ε2h(P ) units each item in I(PH) that intersect one of the boxes Bj∗+2, ..., B1/ε2−1
and we remove all Oε(1) items from I(L) that intersect more than one box. Note that then
the moved items fit into the boxes B′ :=

{
Bj∗+1, ..., B1/ε2−2

}
.

Using another shifting step, we delete all items in 6/ε consecutive boxes of B′; since there
are Ω(1/ε2) boxes in B′ this costs only a factor 1 + O(ε) in the profit. We use the empty
space to place in it all items in P ′

H that are shorter than the shorter horizontal edge of PH ,
see Figure 7e. One can show that they can be placed into this empty space using Steinberg’s
algorithm [48] (maintaining guillotine separability) since the available space is much larger
than the area of the items to be placed. For the remaining items in P ′

H one can show that
the width of each of them is more than half of the width of L. Hence, we can assume w.l.o.g.
that they are placed nicely within P ′

H . Again, we remove all items that intersect more than
one box after this movement, which are at most Oε(1) items. Denote by Bhor the resulting
set of boxes.

We do a symmetric procedure for PV , yielding a set of boxes Bver and a nicely packed
region P ′

V . Intuitively, we want to define L′ as P ′
H ∪ P ′

V . However, P ′
H ∪ P ′

V might not have
exactly the shape of an L-compartment. Nevertheless, one can show that we can subdivide
one of these polygons, say P ′

H , along a horizontal line into two subpolygons P ′
H,top, P ′

H,bottom
(with P ′

H,top lying on the top of P ′
H,bottom) such that

we can place the items in P ′
H,top into another set of Oε(1) boxes B′

hor that are non-
overlapping with Bhor ∪ Bver, and
L′ := P ′

H,bottom ∪ P ′
V forms an L-compartment, see Figure 7f.

Then the items are nicely placed inside L′. To each of the Oε(1) boxes B ∈ Bhor ∪B′
hor ∪Bver

we apply a standard routine that removes some of the items inside B and partitions B into
smaller boxes, such that the remaining items inside these smaller boxes are nicely placed. ◀

Therefore, we define that the first cuts of our pseudo-guillotine cutting sequence S′ looks
as follow: we first separate K into L′ and K \ L′ and then separate the boxes in B(L). Then
we apply a guillotine cut to the rectangular area K \ L that corresponds to ℓk (since we
moved the items in Bk we need to adjust ℓk accordingly), which yields two rectangular areas
R1, R2. With each of them we continue recursively, i.e., we apply the same routine that we
had applied to K above.

We do not recurse further if for a considered rectangular area R it holds that h(R) <

εlargeN or w(R) < εlargeN . In this case R contains only horizontal or only vertical items,
respectively. However, these items might not be packed nicely. Thus, we apply to R a similar
routine as in Lemma 9. In a sense, R behaves like a degenerate L-compartment with only
four edges. Also note that R is a box-compartment.

▶ Lemma 10 ([37]). Given a box-compartment B containing a set of items I(B) with
h(B) < εlargeN or w(B) < εlargeN , there exists a partition of B into Oε(1) box-compartments
B(B) such that

the box-compartments in B(B) are guillotine separable, and
there is a nice placement of a set of items I ′(B) ⊆ I(B) with |I ′(B)| ≥ (1−ε)|I ′(B)|−Oε(1)
inside B(B).

It remains to put back the (small) items in OPTsmall. Intuitively, we assign them to
the empty space in our Oε(1) constructed compartments. More formally, we subdivide our
compartments further into smaller compartments by guillotine cuts, some of the resulting
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compartments are empty, and into those we assign the small items with the Next-Fit-
Decreasing-Height algorithm [17]. For each of these compartments we ensure that their
height and width are εsmallN/ε. There might be empty space that is not used in this way,
however, we can ensure that its total area is very small, e.g., at most O(ε2N2). This allows
us to pack essentially all items in OPTsmall (handling a few special cases differently, e.g., if
the total area of the items in OPTsmall is very small).

Let S′ denote the resulting pseudo-guillotine cutting sequence. We need to argue that this
yields in total Oε(1) compartments. This follows easily since every time we identify a sequence
of cuts ℓ0, ..., ℓk of S, we construct exactly one L-compartment and Oε(1) box-compartments.
Also, after each such operation, we recurse on rectangular areas R1, R2 that are at least
by εlargeN/4 units thinner or shorter (i.e., by at least εlargeN/4 units smaller in one of the
two dimensions) than the rectangular area that we had started with when we constructed
ℓ0, ..., ℓk (which is the whole knapsack K in the first iteration). Also, when we do not recurse
further we subdivide the remaining region into Oε(1) box-compartments. Each resulting
compartment is subdivided into Oε(1) smaller compartments when we place the small items.
Hence, the depth of the binary tree T defining the pseudo-guillotine cutting sequence S′ is
Oε(1) and thus we define at most Oε(1) compartments in total. In particular, we applied
Lemmas 9 and 10 at most Oε(1) times and, therefore, the constructed solution contains at
least (1 − ε)|OPT | − Oε(1) items. A refined argument extends this to the weighted case as
well, we refer the readers to the full version [37] for a detailed description.

4 Assigning items into compartments

For proving Lemma 5, we need to provide an algorithm that, given a set of compartments
C, computes a solution ALG ⊆ I with p(ALG) ≥ (1 − ε)p(OPT ′) that can also be placed
nicely in C (where OPT ′ ⊆ I is the subset of I of maximum profit that can be placed nicely
in the compartments in C).

First, we guess for each box-compartment B ∈ C which case of Definition 3 applies, i.e.,
whether B contains only a single large item, or only horizontal items, or only vertical items,
or only small items. For each box-compartment B ∈ C for which we guessed that it contains
only one large item, we simply guess this item. We can do this deterministically in time
O(n|C|) = nOε(1) for all such box-compartments B ∈ C.

Then, for assigning the small items, we use a standard reduction to the Generalized
Assignment Problem (GAP) [24] for selecting a near-optimal set of small items and an
assignment of these items into the corresponding box-compartments. Inside of each box-
compartment B we place the items with the Next-Fit-Decreasing-Height algorithm [17] which
results in a 2-stage guillotine separable packing for the items inside B.

▶ Lemma 11 ([37]). Given a set of box compartments B such that a set of items I∗
small ⊆ Ismall

can be placed non-overlappingly inside B, in nOε(1) time we can we can compute a set of
items I ′

small ⊆ Ismall with p(I ′
small) ≥ (1 − ε)p(I∗

small) and a nice placement of the items in
I ′

small inside B which is guillotine separable with Oε(1) stages.

Let Cskew ⊆ C denote the compartments in C into which skewed items are placed in OPT ′

(which in particular contains all L-compartments in C). It remains to select a profitable
set of items from Iskew that can be placed nicely in the compartments in Cskew. For this
task, we use a recent algorithm in [26] which is a routine for 2GK which takes as input
(in our terminology) a set of box- and L-compartments, and also compartments of more
general shapes (e.g., with the shapes of a U or a Z). In time (nN)Oε(1), it computes a
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subset of the input items of maximum total profit, up to a factor of 1 + ε, that can be
placed non-overlappingly inside the given compartments. In fact, it first partitions the given
compartments such that there exists a profitable solution for the smaller compartments
inside of which the items are placed nicely (according to our definition). Then it computes a
(1 + ε)-approximation of the most profitable subset of items that can be placed nicely.

In our setting, we can skip the first step since in OPT ′ the items are already placed nicely
inside the compartments Cskew. Hence, we execute directly the second part the algorithm
in [26]. In fact, a simpler version of that routine is sufficient since we have only box- and
L-compartments. The algorithm in [26] can handle also the case where rotations by 90
degree are allowed, and the same holds for the routine in Lemma 11. Thus our result works
for the case with rotations as well. We refer to the full version [37] for a complete and
self-contained description of this routine, adapted to the guillotine setting. In particular,
inside each compartment its solution is guillotine separable with Oε(log nN) stages.

5 Power of stages in guillotine packing

Figure 8 Hard example for Theorem 12.

Our two algorithms compute packings with Oε(log(nN))-stages. This raises the question
whether one can obtain (1 + ε)-approximate solutions with fewer stages. In particular, for
the related guillotine 2BP and guillotine 2SP problems there are APTASs whose solutions
use O(1)-stage packings [8, 47]. However, we show that in contrast for 2GGK sometimes
Ω(log N) stages are necessary already for a better approximation ratio than 2, even if there
are only skewed items. For a detailed proof, we refer to the full version [37].

▶ Theorem 12. For any constant 0 < ε < 1
2 , there is a family of instances of 2GGK with

only skewed items for which any (2 − ε)-approximate solution requires k = Ω(ε log N) stages.

6 Conclusion

Two main open questions are to obtain PTASes for 2GGK and 2GK. We conjecture that the
worst-case ratio between the optimal profit of 2GGK and 2GK is 4/3. If this conjecture is
true, then a PTAS for 2GGK will imply a 4/3 + ε-approximation for 2GK, improving the
present best approximation guarantee [24].
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