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Abstract
We introduce the restricted constrained Delaunay triangulation (restricted CDT), a generalization
of both the restricted Delaunay triangulation and the constrained Delaunay triangulation. The
restricted CDT is a triangulation of a surface whose edges include a set of user-specified constraining
segments. We define the restricted CDT to be the dual of a restricted Voronoi diagram defined on
a surface that we have extended by topological surgery. We prove several properties of restricted
CDTs, including sampling conditions under which the restricted CDT contains every constraining
segment and is homeomorphic to the underlying surface.
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1 Introduction

The constrained Delaunay triangulation (CDT) in the plane [19, 25, 13] is a popular geo-
metric construction that shares some of the advantages and mathematical properties of the
Delaunay triangulation, but also permits users to constrain specified edges to be part of
the triangulation. CDTs are used in applications such as computer graphics, geographical
information systems, and guaranteed-quality mesh generation algorithms [12]. Our goal here
is to offer a mathematically rigorous way to define a Delaunay-like triangulation on a curved
surface embedded in three-dimensional space, with the same ability to constrain edges.

Another variant of the Delaunay triangulation, called the restricted Delaunay triangulation
(RDT), has become a well-established way of generating triangulations on curved surfaces [16].
RDTs have equipped theorists to rigorously prove the correctness of algorithms for surface
reconstruction [14] and surface mesh generation [12]. In this paper we introduce restricted
constrained Delaunay triangulations (restricted CDTs), which combine ideas from CDTs and
RDTs to enable the enforcement of constraining edges in RDTs.

Think of the restricted CDT as a function that takes in three inputs: a compact, smooth
surface Σ ⊂ R3 without boundary; a finite set 𝑉 ⊂ Σ of points (called sites or vertices); and
a finite set 𝑆 of line segments whose endpoints are in 𝑉 . If certain conditions on the density
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49:2 Restricted Constrained Delaunay Triangulations

of 𝑉 and the lengths of the segments are met then, as illustrated in Figure 1, the output
is a simplicial complex T such that the set of vertices of T is 𝑉 , the set of edges of T is
a superset of 𝑆, and T is a triangulation of Σ. The last phrase means that the underlying
space of T , written |T | = ⋃

𝜏∈T 𝜏, is homeomorphic to Σ.

Figure 1 Given a set of points sampled from a surface Σ and a set of segments, red, we wish to
compute a triangulation of Σ that contains all of the red segments.

Although Delaunay triangulations in the plane can be constrained to include arbitrary
edges, the same is not true of three-dimensional Delaunay triangulations; consider the fact
that not all nonconvex polyhedra can be tetrahedralized [24]. Nor is it always possible to
constrain arbitrary edges to be part of a surface triangulation. Our challenge is to establish
conditions on the input that guarantee that a suitable triangulation exists.

We follow the example of the RDT, which is defined by dualizing a restricted Voronoi
diagram. Given inputs Σ and 𝑉 (but no segments), the restricted Voronoi cell of a site 𝑣 ∈ 𝑉 ,
denoted Vor|Σ 𝑣, is the set of all points on Σ for which 𝑣 is the closest site in 𝑉 (possibly tied
for closest), as measured by the Euclidean distance in R3. Equivalently, Vor|Σ 𝑣 = Vor 𝑣 ∩ Σ,
where Vor 𝑣 is 𝑣’s standard Voronoi cell in R3. The name “restricted Voronoi cell” arises
because Vor|Σ 𝑣 is the restriction of Vor 𝑣 to the surface Σ.

A restricted Voronoi face is any nonempty set of points found by taking the intersection
of one or more restricted Voronoi cells. The restricted Voronoi diagram Vor|Σ 𝑉 is the cell
complex containing all the restricted Voronoi cells and faces.

The restricted Delaunay triangulation Del|Σ 𝑉 is the simplicial complex dual to Vor|Σ 𝑉 .
If the restricted Voronoi cells of two sites 𝑣, 𝑤 ∈ 𝑉 have a nonempty intersection (typically a
path on Σ), then 𝑣𝑤 is a restricted Delaunay edge in Del|Σ 𝑉 . If the restricted Voronoi cells
of three sites 𝑢, 𝑣, 𝑤 ∈ 𝑉 have a nonempty intersection (typically a single point on Σ, called a
restricted Voronoi vertex), then △𝑢𝑣𝑤 is a restricted Delaunay triangle in Del|Σ 𝑉 . Every site
in 𝑉 is a vertex in Del|Σ 𝑉 . Note that Del|Σ 𝑉 may not be a valid simplicial complex unless
𝑉 is a sufficiently dense sample of Σ, perhaps with suitable perturbations of Σ and 𝑉 . See
Section 3 for a more nuanced discussion.

To modify RDTs so that we can constrain edges, we borrow from Seidel [25] the idea of
an extended Voronoi diagram, which is the natural dual of the CDT in the plane. Seidel
performs a topological surgery on the plane in which each segment in 𝑆 becomes a slit cut in
the plane; upon these slits he glues topological extensions called “secondary sheets” on which
additional portions of the extended Voronoi diagram are drawn. Likewise, we perform surgery
by cutting slits in the surface Σ and grafting independent new surfaces called extrusions
onto Σ at these slits. We think of these slits as portals: an ant crawling on the surface across
a constraining edge finds itself transported by the portal to a secondary space where the
extended surface continues along an infinite extrusion.

A key contribution of this paper is our definition of the restricted constrained Delaunay
triangulation, as the dual of the Voronoi diagram restricted to this surgically extended surface.
Another contribution is to prove several properties of restricted CDTs, including conditions
under which the restricted CDT contains every constraining edge, conditions under which
the restricted CDT is homeomorphic to the underlying surface Σ, and a characterization of
which vertices must be considered to compute the triangles near a segment.
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Shewchuk [26] demonstrates that for Delaunay mesh generators that create high-quality
meshes of domains in the plane with constraining segments, the use of a CDT (rather than
a pure Delaunay triangulation) reduces the number of triangles and vertices – on some
domains, by as much as 25%. He also proves that there is a theoretical advantage: Delaunay
meshing with a CDT offers a guarantee of a “size optimal” mesh with no angle less than
26.56◦, whereas an unconstrained Delaunay triangulation offers a weaker guarantee, a size
optimal mesh with no angle less than 20.7◦. It is very likely that surface meshing algorithms
based on restricted CDTs can offer the same advantages, compared to what pure RDTs can
achieve.

An alternative approach sometimes suggested is to define a Voronoi diagram based on
an intrinsic (geodesic) distance metric, then obtain a triangulation by duality. This idea
is mathematically elegant, but computing a geodesic Voronoi diagram entails numerical
approximation algorithms [18, 20, 21], which add coding complexity and running time. RDTs
are popular in surface mesh generation because they are easier to compute. We emphasize
that although our construction of restricted CDTs may seem complicated, it is in the service
of producing simple algorithms. (In particular, Theorems 1 and 3 simplify computing the
triangles near a segment.) See Section 6 for some speculation on prospective algorithms.

2 Portals and topological surgery

Informally, a portal 𝑃 is a doorway between two topological spaces, with 𝑃 shared by both.
Our main topological construction starts with disjoint topological spaces 𝑌 and 𝑍 , then glues
them together into a single space by specifying an equivalence relationship between a subset
of points 𝑃 ⊂ 𝑌 and a subset 𝑃′ ⊂ 𝑍 . For clarity, we explain Seidel’s construction of portals
in the plane [25] first, then our construction of portals and an extended surface in R3.

2.1 Portals and extended Voronoi diagrams in the plane

Let 𝑋 = R2 and let 𝑆 be a finite set of line segments in the plane; the segments may intersect
each other only at their endpoints. Consider a segment 𝑠 = 𝑝𝑞 ∈ 𝑆 (meaning 𝑠 has endpoints
𝑝 and 𝑞). The relative interior of 𝑠, denoted relint 𝑠, consists of all points on 𝑠 except 𝑝

and 𝑞. Let the slitted plane 𝑋𝑠 = 𝑋 − relint 𝑠 be the plane with the relative interior of 𝑠

removed. The affine hull of 𝑠 has two “sides.” Our goal is to augment 𝑋𝑠 by gluing it to
two additional topological spaces, one for each side of 𝑠, along the slit created by removing
relint 𝑠. The three spaces are glued together along two portals, each of which is topologically
a copy of 𝑠. Thus an ant crawling on the extended space that crosses 𝑠 from one side finds
itself in a secondary branch; and an ant that crosses 𝑠 from the other side finds itself in a
different secondary branch. After repeating this augmentation for every segment in 𝑆, we
can draw on the extended space an extended Voronoi diagram whose dual is the CDT.

Topologically, 𝑋𝑠 has a hole such that 𝑋𝑠 is almost an open set, except that 𝑋𝑠 has two
boundary points, 𝑝 and 𝑞. We want to glue two additional spaces to 𝑋𝑠 – one for each side
of 𝑠 – so we augment 𝑋𝑠 with additional points that serve as two portals to those additional
spaces. We define a closed topological space 𝑋𝑠 by augmenting 𝑋𝑠 with two connected curves
𝜁+ and 𝜁−, called portals, that together serve as the boundary of the hole. Each of 𝜁+ and 𝜁−

has 𝑝 and 𝑞 as its endpoints, but the two curves share no other points. In essence, the portals
are copies of 𝑠 with shared endpoints. Formally, 𝑋𝑠 is the completion of the incomplete
metric space 𝑋𝑠 with respect to the shortest-path metric in 𝑋𝑠.

SoCG 2021
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The points in 𝑋𝑠 inherit Cartesian coordinates from the plane, and the points on the
portals 𝜁+ and 𝜁− inherit Cartesian coordinates from the segment 𝑠. Two points in 𝑋𝑠 –
one on 𝜁+ and one on 𝜁− – can have the same (𝑥, 𝑦)-coordinate values yet be topologically
distinct.

Let R2
− and R2

+ be two copies of R2. We treat 𝑋𝑠, R2
−, and R2

+ as three distinct topological
spaces that all inherit the Cartesian coordinate system – so two points in two different spaces
can have the same coordinate values yet be topologically distinct.

Informally, we glue R2
+ to 𝑋𝑠 along 𝜁+ and glue R2

− to 𝑋𝑠 along 𝜁−. Formally, we write
𝑥 ≡ 𝑦 if 𝑥 and 𝑦 have the same coordinate values, even though they may lie in different spaces.
Let 𝑝 and 𝑞 be the endpoints of 𝑠. Define an equivalence relation ∼ as

𝑥 ∼ 𝑦 ⇐⇒


𝑥 = 𝑦 𝑥, 𝑦 ∈ 𝑋𝑠 or 𝑥, 𝑦 ∈ R2

+ or 𝑥, 𝑦 ∈ R2
−,

𝑥 ≡ 𝑦 𝑥 ∈ R2
+ and 𝑦 ∈ 𝜁+,

𝑥 ≡ 𝑦 𝑥 ∈ R2
− and 𝑦 ∈ 𝜁−,

𝑥 ≡ 𝑝 ≡ 𝑦 or 𝑥 ≡ 𝑞 ≡ 𝑦 𝑥 ∈ R2
+ and 𝑦 ∈ R2

−.

(1)

With ∼ we construct the quotient space 𝑋 = (𝑋𝑠 ⊔ R2
+ ⊔ R2

−)/∼. We refer to 𝑋𝑠 as the
principal branch and refer to R2

+ and R2
− as secondary branches. Figures 2 and 3 illustrate

this construction. Note that in the quotient space, the endpoints 𝑝 and 𝑞 of the segment 𝑠

are present in, and shared by, all three of the original spaces.

R2R2

R2
�R2
�R2

+R2
+
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Figure 2 The completion of the slitted plane has a topological hole bounded by two portals,
marked in blue and orange. (Geometrically, the two portals are straight line segments that occupy
exactly the same coordinates.) The equivalence relation ∼ identifies the blue path in the principal
branch with the blue path in R2

−; likewise the two orange paths become one. A path in the principal
branch (bottom) that enters a portal continues in the appropriate secondary branch.

The construction works for any finite number 𝑚 = |𝑆 | of non-crossing segments. Let
𝑋𝑆 = 𝑋 −⋃

𝑠∈𝑆 relint 𝑠. Let 𝑋𝑆 be the completion of 𝑋𝑆 with respect to the shortest-path
metric in 𝑋𝑆 , which adds two portals for each segment. Then we construct a quotient space 𝑋

composed of 𝑋𝑆 and 2𝑚 copies of R2 glued along the 2𝑚 portals bounding the 𝑚 holes in 𝑋𝑆 .
For the sake of defining the Voronoi diagram of a finite set of sites in 𝑋, Seidel [25]

defines a distance function on 𝑋 which is essentially the Euclidean distance, except that the
distance between two points is infinite if they are not visible from each other. (Note that
this distance function is not a metric.) A path 𝛾 ⊂ 𝑋 may pass through portals and visit
secondary branches, but because of the slits we have cut in 𝑋𝑆, 𝛾 cannot cross the relative
interior of a segment without being transported by a portal. We call a path straight if its
Cartesian embedding is a straight line segment. Two points 𝑝, 𝑞 ∈ 𝑋 are visible from each
other if there is a straight path 𝛾 ⊂ 𝑋 with endpoints 𝑝 and 𝑞. The distance 𝑑 (𝑝, 𝑞) from 𝑝

to 𝑞 is the Euclidean distance if 𝑝 and 𝑞 are visible from each other; otherwise, 𝑑 (𝑝, 𝑞) = ∞.
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Figure 3 A one-segment CDT (top) and its dual extended Voronoi diagram (bottom). The blue
and orange regions show the portions of the Voronoi diagram on the secondary branches.

The extended Voronoi diagram assigns each point in 𝑋 to (the Voronoi cells of) one or
more sites in 𝑉 . Those sites must be visible from the point; no site can claim a point it cannot
see. If a point on a secondary branch is claimed by a site other than the branch’s portal’s
endpoints, the site is visible from the point through the portal, as Figure 3 illustrates. Seidel
gives an algorithm for constructing the extended Voronoi diagram, and by duality the CDT.

2.2 Portals on surfaces embedded in R3

A similar construction works for a compact, smooth surface without boundary Σ ⊂ R3.
However, whereas in the plane we construct one new topological space, here we will require
two. We surgically augment the surface Σ by cutting slits along portal curves, one for each
segment, and gluing two extrusions onto each portal curve, yielding an extended surface Σ̃.
The purpose of this extended surface is to serve as a canvas upon which we can draw an
extended restricted Voronoi diagram, which we dualize to define a restricted CDT.

SoCG 2021



49:6 Restricted Constrained Delaunay Triangulations

To define a Voronoi diagram we need a distance function, and Σ̃ alone does not provide
one that is easily computed. While an intrinsic (geodesic) distance might be ideal in principle,
for the sake of speed and a simple implementation, we use the Euclidean distance in R3

as RDTs do; but we must modify the Euclidean distance so that the restricted Voronoi
diagram respects the input segments. Hence most of our work will be to construct a surgically
modified three-dimensional space 𝑋 in which we embed Σ̃ ⊂ 𝑋. Like Seidel’s extended space
in Section 2.1, 𝑋 obstructs (and supports) visibility in a manner that is suitable for defining
a restricted Voronoi diagram on Σ̃ and makes it easy to compute restricted CDTs.

To define 𝑋, we specify portals in R3 where points will be removed, analogous to cutting
slits in the plane. Each portal is a two-dimensional ruled surface with boundary (not generally
flat), approximately perpendicular to Σ. The intersection of a portal with Σ is a portal curve.
Each portal has two “sides,” and on each side we glue an additional copy of R3 to form 𝑋.
In each copy of R3 we embed an extrusion to form Σ̃. The extended Voronoi diagram assigns
each point 𝑥 on Σ̃ to one or more sites in 𝑉 that are visible from 𝑥 along straight paths in 𝑋.

To define portal geometry, we need several definitions. The medial axis 𝑀 of Σ is the
closure of the set of all points in R3 for which the closest point on Σ is not unique. Intuitively,
the medial axis of Σ is meant to capture the “middle” of the region bounded by Σ. A medial
ball is a ball whose center lies on 𝑀 and whose boundary intersects Σ (tangentially), but the
interior of the ball does not. For any point 𝑥 ∈ Σ, there are one or two medial balls that have
𝑥 on their boundaries, called medial balls at 𝑥. If there are two, there is one on each side
of Σ. If there is only one, it is enclosed by Σ.

For 𝑥 ∈ Σ, the normal line L𝑥 at 𝑥 is the line orthogonal to Σ at 𝑥 with 𝑥 ∈ L𝑥 . The normal
segment ℓ𝑥 at 𝑥 is a line segment or ray whose endpoints lie on 𝑀, satisfying 𝑥 ∈ ℓ𝑥 ⊂ L𝑥 . If
there are two medial balls at 𝑥, the endpoints of ℓ𝑥 are the centers of those two medial balls.
If there is only one medial ball at 𝑥, then ℓ𝑥 is a ray originating at the medial ball’s center.

The local feature size function is lfs : Σ → R, 𝑥 ↦→ 𝑑 (𝑥, 𝑀) where 𝑑 (𝑥, 𝑀) denotes the
Euclidean distance from 𝑥 to 𝑀. We require that Σ is smooth in the sense that inf 𝑥∈Σ lfs(𝑥) > 0.
A finite point set 𝑉 ⊂ Σ is an 𝜖-sample of Σ if for every point 𝑥 ∈ Σ, 𝑑 (𝑥,𝑉) ≤ 𝜖 lfs(𝑥). That
is, the ball with center 𝑥 and radius 𝜖 lfs(𝑥) contains at least one point in 𝑉 . See Figure 4.

𝑥

𝑀

Σ

𝑀

Figure 4 Left: A 1-manifold Σ and its medial axis 𝑀 (as medial axes in three dimensions are hard
to draw or understand). This medial axis is unbounded; one of its components extends infinitely far
away. Center: Some of the medial balls that define 𝑀. Right: A 0.5-sample of Σ (filled circles). The
ball with center 𝑥 and radius 0.5 lfs(𝑥) contains a site.
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Let 𝑆 be a finite set of line segments whose endpoints are in 𝑉 , called the segments, which
constrain the restricted CDT. Consider a segment 𝑠 = 𝑝𝑞 ∈ 𝑆 (its endpoints are 𝑝, 𝑞 ∈ 𝑉).
Let 𝐵𝑠 be the diametric ball of 𝑠 – the smallest closed ball such that 𝑠 ⊂ 𝐵𝑠, so that 𝑠 is a
diameter of 𝐵𝑠. Suppose that 𝑑 (𝑝, 𝑞) ≤ 𝜌 lfs(𝑝) for some 𝜌 ∈ (0, 1); that is, 𝑠 is short relative
to the local feature size. Then 𝐵𝑠 ∩ Σ is a topological disk [12, Lemma 12.6].

Suppose that we know (or can approximate) the unit vector 𝑛𝑝 normal to Σ at any site 𝑝.
We choose a cutting plane ℎ𝑠 ⊃ 𝑠 that is locally orthogonal to the surface Σ at 𝑝 or 𝑞 (or
perhaps somewhere between 𝑝 and 𝑞). We use ℎ𝑠 to specify a portal curve 𝜁𝑠 = ℎ𝑠 ∩ 𝐵𝑠 ∩ Σ,
which is a single connected curve from 𝑝 to 𝑞 on Σ. There is not a canonical choice of cutting
plane (and thus portal curve) for 𝑠, and the user might be presented with a range of choices,
but for our presentation here, we choose ℎ𝑠 = span{𝑛𝑝 , ®𝑝𝑞}. We require that the portal
curves do not cross each other. More precisely, the relative interior of a portal curve may not
intersect another portal curve nor a site in 𝑉 .

Our requirement that each portal curve must lie on a plane has both a theoretical
motivation and a practical one. The fact that every constraining segment is an edge in the
restricted CDT (Theorem 2) depends on the fact that each portal curve lies in a plane and its
extrusions are orthogonal to that plane. The requirement simplifies algorithms for computing
a restricted CDT, because the Voronoi cells on an extrusion are solely influenced by sites on
the other side of the cutting plane – plus the segment endpoints 𝑝 and 𝑞. (See Theorem 1.)

⌃⌃

hshs

pp

qq

PsPs

⇣s⇣s

bsbs

⌃+
s⌃+
s

e⌃e⌃

(1)(1) (2)(2)

(3)(3) (4)(4)

Figure 5 (1) The plane ℎ𝑠 intersects Σ in a curve; the portal curve 𝜁𝑠 (red) is the portion of this
curve in the diametric ball 𝐵𝑠 of the segment 𝑠 = 𝑝𝑞. (2) Our portal 𝑃𝑠, shown in green, is the union
of the normal segments (locally orthogonal to Σ) of the points on the portal curve 𝜁𝑠. The normal
segments terminate on the medial axis 𝑀. (3) We extrude the portal curve 𝜁𝑠 into R3

+ in a direction
𝑏𝑠 orthogonal to ℎ𝑠, thus defining Σ+

𝑠 . (4) We glue the extrusion Σ+
𝑠 to Σ𝑆 (the surface Σ with slits

cut into it) along 𝜁+𝑠 at the entrance to the portal 𝑃+
𝑠 .
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Figure 5 illustrates our portal construction. For each segment 𝑠, the portal 𝑃𝑠 =
⋃

𝑥∈𝜁𝑠 ℓ𝑥
is the union of the normal segments of the points on the portal curve 𝜁𝑠. Hence a portal is a
ruled surface, topologically two-dimensional but not lying in a plane. Each portal reaches to
the medial axis, thereby obstructing visibility so that sites on one “side” of a segment do not
influence the restricted Delaunay triangles on the other “side.”

If two segments share an endpoint 𝑝, then their portals share the boundary segment ℓ𝑝.
The other location where portals’ boundaries may intersect each other is at the medial axis.
However, no portal intersects the relative interior of another portal.

We construct the extended space 𝑋 as we did in Section 2.1, with 𝑃𝑠 replacing 𝑠 and
R3 replacing R2. Let 𝑋 = R3. Let 𝑋𝑆 = 𝑋 \ ⋃𝑠∈𝑆 relint 𝑃𝑠, which is R3 with the relative
interior of each portal removed. Let 𝑋𝑆 be the completion of the incomplete metric space 𝑋𝑆

endowed with the shortest path metric. The effect of completing 𝑋𝑆 is to augment each “slit”
𝑃𝑠 with two portals 𝑃+

𝑠 and 𝑃−
𝑠 , one for each side of 𝑃𝑠. These two portals are distinct copies

of 𝑃𝑠, but 𝑃+
𝑠 and 𝑃−

𝑠 share a common boundary 𝜕𝑃𝑠 = 𝑃+
𝑠 ∩ 𝑃−

𝑠 = 𝑃+
𝑠 ∩ 𝑋𝑆 = 𝑃−

𝑠 ∩ 𝑋𝑆.
For each segment 𝑠 ∈ 𝑆, let R3

𝑠+ and R3
𝑠− be two topologically distinct copies of R3, called

secondary branches. The points in each secondary branch and the points in the principal
branch 𝑋𝑆 all inherit Cartesian coordinates, but points with the same coordinates in different
branches are topologically distinct. Define an equivalence relation ∼ analogous to (1) that
identifies (glues) the points of the portal 𝑃+

𝑠 ⊂ 𝑋𝑆 with the points in R3
𝑠+ having the same

coordinates, and identifies the points of 𝑃−
𝑠 ⊂ 𝑋𝑆 with the corresponding points in R3

𝑠−. Thus
we glue 2𝑚 copies of R3 along the 2𝑚 portals bounding the 𝑚 holes in 𝑋𝑆. The extended
space is the quotient space 𝑋 = (𝑋𝑆 ⊔ ⊔

𝑠∈𝑆 R
3
𝑠+ ⊔

⊔
𝑠∈𝑆 R

3
𝑠−)/∼.

Similarly, we surgically modify Σ to construct an extended surface Σ̃ ⊂ 𝑋, as shown in the
bottom two illustrations in Figure 5. Let Σ𝑆 = Σ\⋃𝑠∈𝑆 relint 𝜁𝑠 be the surface with the portal
curve interiors removed, and let the principal surface Σ𝑆 ⊂ 𝑋𝑆 be its completion. For each
𝑠 ∈ 𝑆, Σ𝑆 includes two portal curves 𝜁+𝑠 ⊂ 𝑃+

𝑠 and 𝜁−𝑠 ⊂ 𝑃−
𝑠 , one for each side of the cutting

plane ℎ𝑠. We extrude 𝜁+𝑠 into R3
𝑠+ and 𝜁−𝑠 into R3

𝑠−, each in one of the two directions normal to
the cutting plane ℎ𝑠. Let 𝑏𝑠 be a unit vector normal to ℎ𝑠, directed to pass through 𝑃+

𝑠 from the
principal branch to R3

𝑠+. For each point 𝑥 ∈ 𝜁𝑠 we define a ray 𝑥+𝑠 = {𝑥+𝜔𝑏𝑠 ∈ R3
𝑠+ : 𝜔 ∈ [0,∞)}

and a ray 𝑥−𝑠 = {𝑥 −𝜔𝑏𝑠 ∈ R3
𝑠− : 𝜔 ∈ [0,∞)} (specifying points by their coordinates). We then

define two extrusions, the ruled surfaces Σ+
𝑠 = {𝑥+𝑠 : 𝑥 ∈ 𝜁𝑠} ⊂ R3

𝑠+ and Σ−
𝑠 = {𝑥−𝑠 : 𝑥 ∈ 𝜁𝑠} ⊂ R3

𝑠−.
The extended surface is Σ̃ = (Σ𝑆 ⊔ ⊔

𝑠∈𝑆 Σ
+
𝑠 ⊔

⊔
𝑠∈𝑆 Σ

−
𝑠 )/∼.

3 Restricted constrained Delaunay triangulations

To define the restricted constrained Delaunay triangulation, we first define the extended
restricted Voronoi diagram (or just extended Voronoi diagram for short) on the extended
surface Σ̃. As in Section 2.1, we define a distance function 𝑑 (𝑝, 𝑞) that is the Euclidean
distance in R3 if 𝑝 and 𝑞 are visible to each other along a straight path in 𝑋, or ∞ if they
cannot see each other. For any 𝑣 ∈ 𝑉 , the extended restricted Voronoi cell of 𝑣 is

Vor|
Σ̃
𝑣 = {𝑥 ∈ Σ̃ : 𝑑 (𝑥, 𝑣) ≤ 𝑑 (𝑥, 𝑢), ∀𝑢 ∈ 𝑉}.

An extended restricted Voronoi face is any nonempty intersection of one or more extended
restricted Voronoi cells. The extended restricted Voronoi diagram Vor|

Σ̃
𝑉 is the cell complex

containing all the extended restricted Voronoi cells and faces.
We define the restricted constrained Delaunay subdivision Del|

Σ̃
𝑉 to be the polyhedral

complex dual to the extended Voronoi diagram in this sense: for each extended Voronoi face
𝑓 ∈ Vor|

Σ̃
𝑉 , let 𝑊 ⊆ 𝑉 be the set of sites whose restricted Voronoi cells include 𝑓 and let 𝑓 ∗ be

the convex hull of 𝑊 . We say that 𝑓 ∗ is the face dual to 𝑓 . Then Del|
Σ̃
𝑉 = { 𝑓 ∗ : 𝑓 ∈ Vor|

Σ̃
𝑉}.



M. Khoury and J. R. Shewchuk 49:9

A one-point face in Vor|
Σ̃
𝑉 is called an extended restricted Voronoi vertex, and its dual is a

polygonal or polyhedral face in Del|
Σ̃
𝑉 , usually a triangle. If an intersection of two extended

restricted Voronoi cells includes a path on Σ, we call it an extended restricted Voronoi edge,
and its dual is a (straight) restricted constrained Delaunay edge in Del|

Σ̃
𝑉 . Figure 6 illustrates

an extended Voronoi vertex on an extrusion and its dual restricted Delaunay triangle, as
well as three extended Voronoi edges and their dual restricted constrained Delaunay edges.

𝑞

Σ

𝑃𝑠

Σ+
𝑠𝑠

𝑝

Figure 6 An extended Voronoi vertex on an extrusion and its dual restricted Delaunay triangle.

If Del|
Σ̃
𝑉 contains a polyhedron, we can perturb Σ̃ infinitesimally so that Σ̃ does not pass

through the polyhedron’s circumcenter; thus with suitable perturbations, Del|
Σ̃
𝑉 contains

no polyhedra. Relatedly, just as a standard Delaunay triangulation in the plane can be
ambiguous if four vertices lie on a common circle, if 𝑉 has four or more cocircular vertices
then Del|

Σ̃
𝑉 might contain polygons with four or more sides. If desired, a triangulation

can be obtained by subdividing each polygonal face into triangles or by an infinitesimal
perturbation of 𝑉 . We recommend the former in practice, but for the sake of our proofs, we
will exploit the latter. For simplicity, we will assume in this paper that no point on Σ̃ is
equidistant from four visible vertices in 𝑉 ; then every polygonal face is a triangle and we can
call Del|

Σ̃
𝑉 a restricted constrained Delaunay triangulation (restricted CDT).

Whereas a restricted Delaunay triangulation (RDT) is a subcomplex of a three-dimensional
Delaunay triangulation, we know no natural three-dimensional complex that has the restricted
CDT as a subcomplex. One could define a Voronoi diagram over 𝑋 and dualize it, but there
is no reason to suppose the dual will be a valid polyhedral complex: the Voronoi cells that
are supposed to be kept apart by portals are likely to meet near the medial axis. (The dual
complex would also be difficult to compute.) The rest of this paper seeks sampling conditions
that tame the extended Voronoi diagram (over Σ̃, not 𝑋) and its dual restricted CDT.

Now we present several useful properties of extended Voronoi diagrams and restricted
CDTs, supposing that no segment is too long. The following theorem shows that the sites
whose extended Voronoi cells lie in part on an extrusion Σ+

𝑠 must lie on the side of the cutting
plane ℎ𝑠 strictly opposite Σ+

𝑠 (excepting the endpoints of 𝑠, which lie on ℎ𝑠). Thus the
restricted Voronoi vertices on Σ+

𝑠 dualize to restricted Delaunay triangles that are also on the
side of ℎ𝑠 opposite Σ+

𝑠 . This theorem simplifies computing the restricted CDT, because an
algorithm only needs to look at sites in one halfspace when computing the portion of Vor|

Σ̃
𝑉

that lies on Σ+
𝑠 . Unfortunately, the proof is five pages long; see the full-length article [17].

▶ Theorem 1 (Cutting Plane Theorem). Let 𝑠 ∈ 𝑆 be a segment with endpoints 𝑝, 𝑞 ∈ 𝑉 such
that 𝑑 (𝑝, 𝑞) ≤ 𝜌 lfs(𝑝) for 𝜌 ≤ 0.47. Consider a point 𝑥 ∈ Σ+

𝑠 and a site 𝑣 ∈ 𝑉 \ {𝑝, 𝑞} such
that 𝑥 ∈ Vor|

Σ̃
𝑣. Then 𝑣 is strictly on the side of ℎ𝑠 opposite Σ+

𝑠 . (The symmetric claim
holds for any 𝑥 ∈ Σ−

𝑠 .)
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The next theorem shows that the restricted CDT Del|
Σ̃
𝑉 contains every edge in 𝑆.

▶ Theorem 2 (Constraint Theorem). Let 𝑠 ∈ 𝑆 be a segment with endpoints 𝑝, 𝑞 ∈ 𝑉 such that
𝑑 (𝑝, 𝑞) ≤ 𝜌 lfs(𝑝) for 𝜌 ≤ 0.47. Then Vor|

Σ̃
𝑝 ∩ Vor|

Σ̃
𝑞 ≠ ∅. Hence 𝑝𝑞 is an edge in Del|

Σ̃
𝑉 .

Moreover, the rays 𝑝+𝑠 and 𝑝−𝑠 lie in the interior of Vor|
Σ̃
𝑝 (“interior” with respect to the

space Σ̃), and neither ray intersects any other extended restricted Voronoi cell. Likewise,
𝑞+𝑠 and 𝑞−𝑠 lie in the interior of Vor|

Σ̃
𝑞, and neither ray intersects another cell.

Proof. We will show that Vor|
Σ̃
𝑝 meets Vor|

Σ̃
𝑞 on the extrusion Σ+

𝑠 , as Figures 3 and 6 show.
(The same is true on Σ−

𝑠 .) Let Π be the plane orthogonally bisecting 𝑠. Consider the point
𝑧 = Π ∩ 𝜁𝑠 on the portal curve and the ray 𝑧+𝑠 = Π ∩ Σ+

𝑠 , whose origin is 𝑧. Let 𝑥 be a point
on 𝑧+𝑠 . Note that 𝑧 is the point closest to 𝑥 on the portal plane ℎ𝑠, and 𝑥𝑧 is perpendicular
to 𝑧𝑝. We will show that for all 𝑥 ∈ 𝑧+𝑠 sufficiently far from 𝑧, 𝑥 ∈ Vor|

Σ̃
𝑝 ∩ Vor|

Σ̃
𝑞.

Theorem 1 states that for every site 𝑣 ∈ 𝑉 \ {𝑝, 𝑞} whose extended Voronoi cell Vor|
Σ̃
𝑣

intersects Σ+
𝑠 , 𝑣 is strictly on the side of ℎ𝑠 opposite Σ+

𝑠 . Therefore, there exists some 𝛿 > 0
such that 𝑑 (𝑥, 𝑣) ≥ 𝑑 (𝑥, 𝑧) + 𝛿 for every such site 𝑣. Consider any point 𝑥 ∈ 𝑧+𝑠 such that
𝑑 (𝑥, 𝑧) ≥ 𝑑 (𝑧, 𝑝)2/(2𝛿). By Pythagoras’ Theorem, for every site 𝑣 whose cell intersects Σ+

𝑠 ,

𝑑 (𝑥, 𝑝)2 = 𝑑 (𝑥, 𝑧)2 + 𝑑 (𝑧, 𝑝)2 ≤ 𝑑 (𝑥, 𝑧)2 + 2𝛿 𝑑 (𝑥, 𝑧) < (𝑑 (𝑥, 𝑧) + 𝛿)2 ≤ 𝑑 (𝑥, 𝑣)2.

Hence 𝑑 (𝑥, 𝑞) = 𝑑 (𝑥, 𝑝) < 𝑑 (𝑥, 𝑣) for every site 𝑣 ∈ 𝑉 \ {𝑝, 𝑞}. As 𝑥 is visible from 𝑝 and 𝑞,
𝑥 ∈ Vor|

Σ̃
𝑝 and 𝑥 ∈ Vor|

Σ̃
𝑞. Hence Vor|

Σ̃
𝑝 ∩ Vor|

Σ̃
𝑞 ≠ ∅.

To prove the final claim, consider a point 𝑥 ∈ 𝑝+𝑠 . Observe that 𝑝 is the point nearest 𝑥

on ℎ𝑠 and 𝑑 (𝑥, 𝑝) < 𝑑 (𝑥, 𝑞). Repeating the reasoning above, there exists some 𝛿 > 0 such
that 𝑑 (𝑥, 𝑣) ≥ 𝑑 (𝑥, 𝑝) + 𝛿 for every site 𝑣 ∈ 𝑉 \ {𝑝} such that Vor|

Σ̃
𝑣 intersects Σ+

𝑠 . Therefore,
there is an open neighborhood 𝑁 ⊂ Σ̃ of 𝑥 such that 𝑁 ⊂ Vor|

Σ̃
𝑝 and 𝑁 intersects no other

cell. The same reasoning applies to points on 𝑝−𝑠 , 𝑞+𝑠 , and 𝑞−𝑠 . Hence 𝑝+𝑠 and 𝑝−𝑠 lie in the
interior of Vor|

Σ̃
𝑝 and do not intersect another extended Voronoi cell. ◀

The shape of our extrusions Σ+
𝑠 and Σ−

𝑠 is motivated in part by Theorem 2, which justifies
the word “constrained” in “restricted constrained Delaunay triangulation.”

The following theorem shows that the sites whose extended Voronoi cells lie in part on an
extrusion Σ+

𝑠 must lie in a ball (of modest radius) centered on the midpoint of the segment 𝑠.
This helps us to efficiently compute the restricted CDT, because the portion of Vor|

Σ̃
𝑉 that

lies on Σ+
𝑠 or Σ−

𝑠 depends only on sites near 𝑠.

▶ Theorem 3 (Possession Theorem). Let 𝑠 ∈ 𝑆 be a segment with endpoints 𝑝, 𝑞 ∈ 𝑉 such that
𝑑 (𝑝, 𝑞) ≤ 𝜌 lfs(𝑝) for 𝜌 ≤ 0.47. Let 𝑐 be the midpoint of 𝑠. Let 𝑣 ∈ 𝑉 be a site whose extended
Voronoi cell Vor|

Σ̃
𝑣 contains a point 𝑥 ∈ Σ+

𝑠 or 𝑥 ∈ Σ−
𝑠 . Then 𝑣 lies in the ball 𝐵(𝑐, 𝜆 lfs(𝑝))

with center 𝑐 and radius 𝜆 lfs(𝑝), where

𝜆 =
√︁

1 − 2𝜌 ©­«1 −

√︄
1 − 𝜌2

4 (1 − 2𝜌)
ª®¬ +

√√√√
(2 − 4𝜌) ©­«1 −

√︄
1 − 𝜌2

4 (1 − 2𝜌)
ª®¬.

For the limiting case 𝜌 = 0.47, 𝜆 � 0.4694; 𝐵(𝑐, 𝜆 lfs(𝑝)) has almost twice the radius of 𝑠.

4 Extended Voronoi cell boundaries

There are only two phenomena that can determine the boundary of an extended Voronoi
cell. (1) Portions of a cell’s boundary may be determined by hyperplanes, each hyperplane
being equidistant from two sites. For example, a point on the boundaries of two cells Vor|

Σ̃
𝑣
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and Vor|
Σ̃
𝑤 might lie on the hyperplane that orthogonally bisects the line segment 𝑣𝑤.

(2) Portions of a cell’s boundary may be determined by a shadow cast by a portal. For
example, consider a point 𝑥 ∈ Vor|

Σ̃
𝑣 such that the line segment 𝑥𝑣 intersects the boundary

of a portal 𝑃𝑠. Portal boundaries do not block visibility; hence the set of points on Σ̃ visible
from 𝑣 is closed. But an infinitesimal perturbation of 𝑥 might cause 𝑥 to be no longer visible
from 𝑣. If 𝑥 is in the principal branch, this may happen because the perturbed 𝑥𝑣 intersects
the relative interior of 𝑃𝑠; if 𝑥 is in a secondary branch, it may happen because the perturbed
𝑥𝑣 no longer intersects 𝑃𝑠. We say that a portal casts a shadow at 𝑥 if 𝑥 ∈ Vor|

Σ̃
𝑣 lies on the

boundary of the points on Σ̃ visible from 𝑣. A Voronoi cell Vor|
Σ̃
𝑤 is not necessarily closed,

because its boundary might contain a shadow point 𝑥 ∈ Vor|
Σ̃
𝑣 such that 𝑑 (𝑣, 𝑥) < 𝑑 (𝑤, 𝑥).

The following theorem states sampling conditions under which the second phenomenon
cannot happen, so the boundaries of all the extended Voronoi cells are determined solely
by bisecting hyperplanes, all the extended Voronoi cells are closed point sets, and every
point on Σ̃ is in an extended Voronoi cell. For a site 𝑣 ∈ 𝑉 , 𝑣’s principal Voronoi cell
Vor|

Σ𝑆
𝑣 = Σ𝑆 ∩ Vor|

Σ̃
𝑣 is the subset of 𝑣’s extended Voronoi cell in the principal branch,

including the portal curves but excluding the remainder of the extrusions.

▶ Theorem 4 (Shadow Theorem). Let 𝑆 be a set of segments (with endpoints in 𝑉) such that
for every segment 𝑠 = 𝑝𝑞 ∈ 𝑆, 𝑑 (𝑝, 𝑞) ≤ 0.47 lfs(𝑝). Suppose that for every site 𝑣 ∈ 𝑉 and
every point 𝑥 in the principal Voronoi cell Vor|

Σ𝑆
𝑣, 𝑑 (𝑣, 𝑥) ≤ max{lfs(𝑣), lfs(𝑥)}. (This last

condition holds if 𝑉 is a constrained 𝜖-sample, as defined in Section 5, for some 𝜖 ≤ 1.)
Then for every site 𝑣 ∈ 𝑉 and every point 𝑥 in the extended Voronoi cell Vor|

Σ̃
𝑣, the

relative interior of the line segment 𝑥𝑣 does not intersect the boundary of a portal.

▶ Corollary 5. Under the conditions of Theorem 4, every extended Voronoi cell is a closed
point set (closed with respect to the topological space Σ̃ or 𝑋).

▶ Corollary 6. Under the conditions of Theorem 4, for every site 𝑣 ∈ 𝑉 and every point 𝑥 on
the boundary of Vor|

Σ̃
𝑣, there is a site 𝑤 ∈ 𝑉 \ {𝑣} such that 𝑥 ∈ Vor|

Σ̃
𝑤 and 𝑑 (𝑣, 𝑥) = 𝑑 (𝑤, 𝑥).

▶ Corollary 7. Under the conditions of Theorem 4, if every connected component of Σ

contains at least one site in 𝑉 , then every point on Σ̃ is in at least one extended Voronoi cell.

The proofs of the Shadow Theorem and its corollaries appear in the full-length article [17].

5 Topological guarantees

Here we introduce conditions under which a restricted CDT is homeomorphic to the surface Σ,
with a view toward applications in guaranteed-quality surface mesh generation. The nearest
point map 𝜈 (nu) maps a point 𝑥 ∈ R3 \ 𝑀 to the point 𝜈(𝑥) nearest 𝑥 on Σ. We show that
the nearest point map (with its domain restricted to |Del|

Σ̃
𝑉 |) is a homeomorphism from

the underlying space of the restricted CDT Del|
Σ̃
𝑉 to the surface Σ.

Our proof has three conditions: a segment length condition, that each segment 𝑠 ∈ 𝑆 with
endpoints 𝑝 and 𝑞 satisfies 𝑑 (𝑝, 𝑞) ≤ 0.3647 lfs(𝑝); a sampling condition requiring the sites 𝑉 to
be sufficiently dense; and an encroachment condition that prevents vertices in 𝑉 from being too
close to a segment, to prevent the possibility of triangles with excessively large circumcircles.
We build on a long line of theoretical work for proving that certain triangulations are
topologically correct approximations of surfaces [1, 2, 4, 5, 6, 8, 12, 14, 16], developed to
support provably good algorithms for surface reconstruction and mesh generation. Many
RDT-based surface mesh generation algorithms enforce a sampling condition by inserting new
vertices on Σ [6, 7, 11, 12, 22], and some support constraining segments by inserting additional
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49:12 Restricted Constrained Delaunay Triangulations

vertices that subdivide segments until the RDT naturally respects them [9, 10, 12, 15, 23].
Our three conditions can likewise be enforced by inserting new vertices, but restricted CDTs
will often reduce the number of new vertices needed on the segments.

To understand the sampling condition, consider a surface Σ ⊂ R3 without boundary,
a set of segments 𝑆 with their endpoints on Σ, and a set of portal curves 𝑍 = {𝜁𝑠 : 𝑠 ∈ 𝑆}.
Recall the principal surface Σ𝑆 , defined in Section 2 to be the completion of Σ−⋃

𝑠∈𝑆 relint 𝜁𝑠.
We say that a finite vertex set 𝑉 ⊂ Σ is a constrained 𝜖-sample of (Σ, 𝑆, 𝑍) if 𝑉 contains
every endpoint of every 𝑠 ∈ 𝑆 and for every point 𝑥 ∈ Σ𝑆, there is a site 𝑣 ∈ 𝑉 such that
𝑑 (𝑥, 𝑣) ≤ 𝜖 lfs(𝑥). That is, the ball with center 𝑥 and radius 𝜖 lfs(𝑥) contains at least one site
visible from 𝑥. Here, visibility and 𝑑 are as defined in Section 2.2; they are what differentiates
a constrained 𝜖-sample from a standard 𝜖-sample. (If 𝑆 is empty, the two are the same.) Our
homeomorphism proof requires that 𝑉 be a constrained 0.3202-sample of (Σ, 𝑆, 𝑍).

The encroachment condition applies only to restricted Delaunay triangles whose dual
faces intersect an extrusion, as in Figure 6. (A triangle’s dual face is usually a single point,
called an extended Voronoi vertex, but our homeomorphism proof does not depend on it.)
Let 𝜏 be such a triangle. The circumradius 𝑟 of 𝜏 is the radius of the unique circle that
passes through 𝜏’s three vertices. Let 𝑤 be the vertex of 𝜏 at 𝜏’s largest plane angle. We
require that 𝑟 ≤ 0.3606 lfs(𝑤). The purpose of this restriction is to prevent the existence of
“inverted” triangles in Del|

Σ̃
𝑉 , which create foldovers, points where the nearest point map 𝜈

from |Del|
Σ̃
𝑉 | to Σ is not locally injective (hence 𝜈 is not a homeomorphism).

To put the encroachment condition into perspective, suppose that Σ is a sphere and
consider a segment 𝑠 ∈ 𝑆 having the maximum safe length of 0.3647 times the sphere’s radius.
A triangle 𝜏 whose dual vertex lies on Σ+

𝑠 can exceed the safe radius of 0.3606 times the
sphere’s radius only if 𝜏 has an angle greater than 149.62◦. If 𝑠 is shorter, this angle is larger:
in the limit as the segment lengths approach zero (or the radius of Σ approaches infinity),
the encroachment condition falls away and restricted CDTs on Σ behave like CDTs in the
plane. By contrast, in standard approaches using an RDT that conforms to the segments, no
triangle with edge 𝑠 can have an angle opposite 𝑠 greater than 90◦.

The sampling and encroachment conditions both rule out triangles with circumradii that
are excessively large relative to the local feature size. A large circumradius implies either
that the triangle is large, or that it has a large plane angle (close to 180◦). Imposing these
conditions is consistent with a mesh generator’s goal of producing only well-shaped triangles,
so our conditions are not onerous. Nevertheless, there are other applications such as surface
reconstruction where the encroachment condition is not a natural condition. The restricted
CDT may nevertheless still be useful in that context; see the Conclusions for speculations.

Our main topological result is the next theorem. Unfortunately, the proof is over twenty
pages long; see the full-length article [17]. To keep the proof from being even longer, we
assume that no point on Σ̃ is equidistant from four visible vertices in 𝑉 , which implies that
no point is in more than three cells. (This assumption is not actually necessary.)

▶ Theorem 8 (Homeomorphism). Let 𝑉 be a constrained 𝜖-sample of (Σ, 𝑆, 𝑍) for some
𝜖 ≤ 0.3202. Suppose that for every segment 𝑝𝑞 ∈ 𝑆, 𝑑 (𝑝, 𝑞) ≤ 0.3647 lfs(𝑝). Suppose that
no portal curve in 𝑍 has a relative interior that intersects another portal curve in 𝑍 or a
site in 𝑉 . Suppose that no point on Σ̃ is equidistant from four visible vertices in 𝑉 . Suppose
that for every restricted Delaunay triangle 𝜏 whose dual extended Voronoi face intersects an
extrusion, 𝜏 satisfies 𝑟 ≤ 0.3606 lfs(𝑤), where 𝑟 is 𝜏’s circumradius and 𝑤 is the vertex of 𝜏 at
𝜏’s largest plane angle. Then the nearest point map 𝜈 : |Del|

Σ̃
𝑉 | → Σ is a homeomorphism.
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The proof is related to proofs by Amenta et al. [3] and Boissonnat and Ghosh [5] that
also use the nearest point map. We sketch a few ideas. To make every extended Voronoi cell
become a topological disk and to clarify the duality between the extended Voronoi diagram
and the restricted CDT, it is convenient to define a compact 2-manifold without boundary Σ̊,
obtained from Σ̃ by gluing each pair Σ+

𝑠 and Σ−
𝑠 together along their boundaries as illustrated

in Figure 7. For each segment 𝑠 = 𝑝𝑞, we topologically identify the ray 𝑝+𝑠 with the ray 𝑝−𝑠 ,
and 𝑞+𝑠 with 𝑞−𝑠 . (Theorem 2 shows that 𝑝+𝑠 and 𝑝−𝑠 are subsets of 𝑝’s extended Voronoi cell,
so this gluing does not confuse which points are in which Voronoi cell.) We create a single
point 𝑠∞ “at infinity” (one such point per segment 𝑠) at the end of every ray 𝑥+𝑠 and 𝑥−𝑠 for all
𝑥 ∈ 𝜁𝑠, thereby making Σ̊ compact. Thus the hole created in Σ𝑆 by cutting a slit at 𝜁𝑠 is filled
in Σ̊ with a topological disk Σ+

𝑠 ∪ Σ−
𝑠 ∪ 𝑠∞, as illustrated. Clearly, Σ̊ is homeomorphic to Σ.

(Note that unlike Σ̃, Σ̊ is not embedded in 𝑋 and has neither coordinates nor distances.)

𝜁𝑠

𝑞

𝑝

𝑠∞

Σ+
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Figure 7 After we remove relint 𝜁𝑠 from Σ, we glue two extrusions Σ+
𝑠 and Σ−

𝑠 in the hole to
create Σ̃. Additional gluing can transform Σ̃ into a compact 2-manifold without boundary Σ̊, restoring
the topology of Σ, by gluing the ray 𝑝+𝑠 to 𝑝−𝑠 , gluing 𝑞+𝑠 to 𝑞−𝑠 , and filling the hole with a point 𝑠∞.

If 𝑉 is a constrained 0.44-sample and 𝑆 satisfies the segment length condition, we show
that every extended Voronoi cell on Σ̊ is homeomorphic to a closed disk. With the assumption
that no point is in more than three cells, this implies that the adjacency graph of Vor|

Σ̃
𝑉 ,

which is the graph of Del|
Σ̃
𝑉 , can be drawn on Σ̊ (and therefore on Σ̃) with no crossings.

We call an extended Voronoi vertex a principal vertex if it lies in the principal branch
(on Σ𝑆), or a secondary vertex if it lies on an extrusion but not on a portal curve. We show
that if 𝑉 is a constrained 0.3202-sample, each principal vertex dualizes to a triangle whose
circumradius is not large (relative to the local feature size). The encroachment condition
implies that each secondary vertex dualizes to a triangle whose circumradius is not large.

The bounds on circumradii allow us to prove that the nearest point map restricted to
any single restricted Delaunay triangle is a homeomorphism. Moreover, there is a sense in
which the map preserves orientation: for any extended Voronoi vertex 𝑢 whose dual extended
Delaunay triangle is 𝜏 = △𝑝𝑝′𝑝′′, the sites 𝑝, 𝑝′, and 𝑝′′ are in counterclockwise order around
𝜈(𝜏) if and only if the cells Vor|

Σ̃
𝑝, Vor|

Σ̃
𝑝′, and Vor|

Σ̃
𝑝′′ adjoin 𝑢 in counterclockwise order

around 𝑢 (as seen from outside Σ). From this, we argue that along each of its edges, each
restricted Delaunay triangle adjoins another restricted Delaunay triangle with a consistent
orientation, and therefore the triangles must cover the whole surface Σ – that is, the nearest
point map is a surjection from |Del|

Σ̃
𝑉 | to Σ. As the boundary of a Voronoi cell Vor|

Σ̃
𝑣 is a

simple loop, the restricted Delaunay triangles adjoining 𝑣 form a fan of triangles around 𝑣

whose union is a topological disk. From these facts we prove that the nearest point map is
an injection from |Del|

Σ̃
𝑉 | to Σ (there are no foldovers) and therefore a homeomorphism.
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6 Conclusions

The restricted constrained Delaunay triangulation is a rigorous generalization of the con-
strained Delaunay triangulation to surfaces. Under suitable conditions on the vertex density
and the segment lengths, the restricted CDT is homeomorphic to Σ and contains every
constraining segment. We believe that the restricted CDT will become a useful tool for
enforcing specified boundaries in guaranteed-quality algorithms for surface meshing. But first
and foremost, we think the existence of restricted CDTs is a beautiful mathematical fact.

Several algorithms suggest themselves for computing the restricted CDT. The classical
gift-wrapping algorithm [12, Section 3.11] [25] can be adapted. Another approach, likely
faster in practice, is to start with the RDT and then incrementally insert the segments one
by one [27]. It is an open problem to design an algorithm that runs in 𝑂 ( |𝑉 |2) time or better.

Another open problem is to design a guaranteed-quality algorithm that uses the restricted
CDT to mesh surfaces with prescribed boundaries. The algorithm must generate new vertices
on Σ with the goal of enforcing the sampling and encroachment conditions, in addition to
the customary goal of constructing high-quality triangles. As we have said, we believe that
restricted CDTs will require fewer triangles and vertices than algorithms based on RDTs.

Although our encroachment condition is reasonable in a surface mesh generator, it is
undesirable in some applications such as surface reconstruction. Unfortunately, without
this condition, we cannot prove a homeomorphism because the nearest point map is not
necessarily injective. Figure 8 illustrates the problem. Suppose that we place two segments 𝑠

and 𝑠′ close together and we place a vertex 𝑟 very close to the midpoint of 𝜁𝑠′ (violating the
encroachment condition), as shown in Figure 8. Consider the triangle formed by 𝑟 and 𝑠′,
and its dual 3D Voronoi edge 𝑒; 𝑒 can be arbitrarily close to perpendicular to 𝑃𝑠′. Then 𝑒

may enter both portals 𝑃𝑠 and 𝑃𝑠′ and generate two extended Voronoi vertices (illustrated
in red) where it intersects Σ+

𝑠′ (which is desirable) and Σ+
𝑠 (which is not). This circumstance

is possible because the segments are close together, the portals are tilted toward each other,
and Σ+

𝑠 is extruded infinitely far. Increasing the sampling density does not fix this problem.

rr
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Figure 8 The left figure shows a top view of a Voronoi diagram drawn on Σ̃; the right figure
shows a side view. The segments 𝑠 and 𝑠′ are placed close together on Σ and their portals 𝑃𝑠 and
𝑃𝑠′ are tilted toward each other in the side view. If 𝑟 is arbitrarily close to 𝑃𝑠′ , the Voronoi edge 𝑒

dual to △𝑟𝑠′ is tilted nearly tangent to the surface and can leave 𝑃𝑠′ , enter 𝑃𝑠, and intersect Σ+
𝑠

(perhaps far down the extrusion). The dual triangulation contains a dangling triangle △𝑟𝑠′.

If we drop the encroachment condition (but retain the other two conditions), we conjecture
that the restricted Delaunay triangles still form a watertight enclosure such that the nearest
point map is a surjection from the restricted CDT to Σ. However, it is not necessarily
injective; there may be foldovers where sites brush up against segments. There may also be
“dangling” triangles, connected to the remainder of the triangulation by only a single edge;
an example is the triangle formed by 𝑟 and 𝑠′ in Figure 8. Such triangles are easily pruned.
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