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Abstract
The Gibbs Sampler is a general method for sampling high-dimensional distributions, dating back to
1971. In each step of the Gibbs Sampler, we pick a random coordinate and re-sample that coordinate
from the distribution induced by fixing all the other coordinates. While it has become widely used
over the past half-century, guarantees of efficient convergence have been elusive. We show that for a
convex body K in Rn with diameter D, the mixing time of the Coordinate Hit-and-Run (CHAR)
algorithm on K is polynomial in n and D. We also give a lower bound on the mixing rate of CHAR,
showing that it is strictly worse than hit-and-run and the ball walk in the worst case.
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1 Introduction

Sampling a high-dimensional distribution is a fundamental problem and a basic ingredient
of algorithms for optimization, integration, statistical inference, and other applications.
Progress on sampling algorithms has led to many useful tools, both theoretical and practical.
In the most general setting, given access to a function f : Rn → R+, the goal is to generate
a point x whose density is proportional to f(x). Two special cases of particular interest are
when f is uniform over a convex body and when f is a Gaussian restricted to a convex set.

The generic approach to sampling is by a Markov chain whose state space is the convex
body. The chain is designed so that it is ergodic, time-reversible, and has the desired density
as its stationary distribution. The key question is to bound the rate of convergence of the
Markov chain. The Ball walk [14, 12, 18] and Hit-and-Run [2, 22, 17] are two Markov chains
that work in full generality, and have been shown to mix rapidly (i.e, the convergence rate is
polynomial) for arbitrary log-concave densities. Over three decades of improvements, the
complexity of this problem has been reduced to a small polynomial in the dimension for
the total number of function evaluations with a factor of n2 per function call for the total
number of arithmetic operations. For a log-concave density with support of diameter D, the
mixing time is O∗(n2D2), taking the same number of function evaluations, with arithmetic
complexity of O∗(n4D2)[12, 15, 17].

A simple and widely-used algorithm that pre-dates these developments considerably is
the Gibbs Sampler, proposed by Turchin in 1971 [23]. It is inspired by statistical physics
and is commonly used for sampling distributions [5, 6] and Bayesian inference [8, 9, 10]. To
sample a multivariate density, at each step, the sampler picks a coordinate (either at random
or in order, cycling through the coordinates), fixes all other coordinates, and re-samples this
coordinate from the induced distribution. This is very similar to Hit-and-Run, except that
instead of picking a direction uniformly at random from the unit sphere, it is picked only
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from one of the n basis vectors (see [1] for a historical account and more background). It was
reported to be significantly faster than Hit-and-Run in state-of-the-art software for volume
computation and integration [3, 7, 4]. Gibbs sampling, also called Coordinate Hit-and-Run,
has a computational benefit: updating the current point takes O(n) time rather than O(n2)
even for polyhedra since the update is along only one coordinate direction. Thus the overhead
per step is reduced from O(n2) as in all previous algorithms to O(n). However, despite half
a century of intense study, the convergence rate of Gibbs sampling has remained an open
problem.

In this paper, we show that the Gibbs sampler mixes rapidly for any convex body K.
Before stating our main theorem formally, we define the Gibbs sampler.

Coordinate Hit-and-Run

Algorithm 1 describes the Coordinate Hit-and-Run walk for sampling uniformly from a
convex body K ∈ Rn. Let {ei : 1 ≤ i ≤ n} be the standard basis for Rn. The starting point
is in the interior of K and is given as an input to the algorithm.

Algorithm 1 Coordinate Hit-and-Run (CHAR).

Input: a point x(0) ∈ K, integer T .
for i = 1, 2, · · · , T do

Pick a uniformly random axis direction ej

Set xi to be a random point along the line ℓ =
{

x(i−1) + tej : t ∈ R
}

chosen
uniformly from ℓ ∩ K.

end
Output: xT .

The stationary distribution of the Coordinate hit-and-run walk is the uniform distribution
πK over K. To sample from a general log-concave density f : Rn → R+ the only change is
in Step 2, where the next point y is chosen according to f(y) restricted to ℓ. In both cases,
the process is symmetric and ergodic and so the stationary distribution of the Markov chain
is the desired distribution.

We can now state our main theorem (see Sec. 1.2 for the definition of a warm start).

▶ Theorem 1. Let K be a convex body in Rn containing a unit ball. Let R2 be the expected
squared distance of a uniform random point in K from the centroid of K. Then the mixing
time of Coordinate Hit-and-Run from a warm start in K is Õ

(
n9R2)

.

By applying an affine transformation, R can be made O(
√

n). We note that from a warm
start both the Ball Walk and Hit-and-Run have a mixing time of Õ(n2R2) [12, 17]. While
our bound is likely not the best polynomial bound for CHAR, in Section 4, we show that it
is necessarily higher than the bound for hit-and-run.

Concurrently and independently, Narayanan and Srivastava [20] also proved a polynomial
bound on the mixing rate of Coordinate Hit-and-Run, with a different proof. They showed
that CHAR mixes in Õ(n7R4

1) steps where R1 is the smallest number s.t., B∞ ⊆ K ⊆ R1B∞,
i.e., the cube sandwiching ratio (R1 can be larger than R in our theorem by a factor of

√
n).

This quantity R1 can be bounded by O(n) after an affine transformation.
A key ingredient of our proof is a new “ℓ0”-isoperimetric inequality. We will need the

following definition.

▶ Definition 2 (Axis-disjoint). Two measurable sets S1, S2 are called axis-disjoint if ∀x ∈
S1,∀y ∈ S2, |{i ∈ [n] : xi = yi}| ≤ n − 2.
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In other words, no point from S1 is on the same axis-parallel line as any point in S2 (see Fig. 1).
The main component of the proof of Theorem 1 is the following isoperimetric inequality

for axis-disjoint subsets of a convex body.

▶ Theorem 3. Let K be a convex body in Rn containing a unit ball with R2 = EK(∥x − zK∥2)
where zK is the centroid of K. Let S1,S2 ⊆ K be two measurable subsets of K such that
S1, S2 are axis-disjoint. Then for any ϵ ≥ 0, the set S3 = K\{S1 ∪ S2} satisfies

vol(S3) ≥ ϵ

48 · 103 · n3.5R log n
(min{vol(S1), vol(S2)} − ϵvol(K)) .

Figure 1 Axis-disjoint subsets S1 and S2.

1.1 Approach

At a high level, we follow the proof of rapid mixing based on the conductance of Markov
chains [21] in the continuous setting [16]. We give a simple, new one-step coupling lemma
which reduces the problem of lower bounding the conductance of the underlying Markov
chain to an isoperimetric inequality about axis-disjoint sets in high dimension. Roughly
speaking, the inequality says the following: If two subsets of a convex body are axis-disjoint,
then the remaining mass of the body is proportional to the smaller of the two subsets. This
inequality is our main technical contribution. In comparison, the inequality for Euclidean
distance says that for any two subsets of a convex body, the remaining mass is proportional
to their (minimum) Euclidean distance times the smaller of the two subset volumes.

Standard approaches to proving such inequalities, notably localization [11, 13], which
reduce the desired high-dimensional inequality to a one-dimensional inequality, do not seem
to be directly applicable to proving this “ℓ0-type” inequality. So we develop a first-principles
approach where we first prove the inequality for cubes, taking advantage of their product
structure, and then for general bodies using a tiling of space with cubes. In the course of
the latter part, we will use several known properties of convex bodies, including Euclidean
isoperimetry.

SoCG 2021
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1.2 Preliminaries
Markov chain: Let M be a Markov chain with state space K and stationary distribution
Q. For any measurable subset S ⊆ K and x ∈ K, let Px(S) be the probability that
one step of M from x goes to a point in S. Q being stationary implies that for any
measurable subset S ⊆ K∫

K

Px(S)dQ(x) = Q(S).

The Markov chain is time-reversible if for any two subsets A, B ⊆ K∫
A

Px(B)dQ(x) =
∫

B

Px(A)dQ(u).

For a measurable subset S of the state space of a Markov chain with stationary distribution
Q, the ergodic flow of S, denoted by p(S) is defined as

p(S) =
∫

S

Px(K \ S) dQ(x).

Conductance: The conductance of a subset S ⊆ K, denoted by ϕ(S), is defined as

ϕ(S) =
∫

S
Px(K \ S) dQ(x)

min{Q(S), Q(K\S)} ,

and the conductance of M is defined as

ϕ = inf
0<Q(S)≤1/2

ϕ(S).

For any s ∈ [0, 1/2] the s-conductance of the Markov chain is:

ϕs = inf
S:s<Q(S)≤ 1

2

p(S)
Q(S) − s

.

Warm Start: Given distributions P and Q on the same state space A, P is said to be
M -warm with respect to Q if

M = sup
A⊆A

P (A)
Q(A) .

If the initial distribution Q0 is O(1)-warm with respect to the stationary distribution Q

for some Markov chain, we say that Q0 is a warm start for Q.
Lazy chain: A lazy version of a Markov chain with transition probability P is one
where we use the transition probability Px({y}) = Px({y})/2 + 1(x = y)/2, so that with
probability 1/2, the chain feels lazy and stays in the same state.
For a body K ⊆ Rn, let πK denote the uniform distribution on K and EK(X) denote
the expected value of X with respect to πK .

The following theorem shows that the s-conductance of a Markov chain bounds its rate
of convergence from a warm start.

▶ Theorem 4 ([16]). Suppose that a lazy, time-reversible Markov chain with stationary
distribution Q has s-conductance at least ϕs. Then with initial distribution Q0, and

Hs = sup {|Q(A) − Q0(A)| : A ⊂ K, Q(A) ≤ s} ,

the distribution Qt after t steps satisfies

dT V (Qt, Q) ≤ Hs + Hs

s

(
1 − ϕ2

s

2

)t

.
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2 The isoperimetric inequality

Before proving Theorem 3, we need a few definitions.

▶ Definition 5 (Axis-aligned Line). A line ℓ in Rn is called axis-aligned if ℓ = {x ∈ Rn : x =
c + tei, t ∈ R} for an i ∈ {1, . . . , n} and a point c ∈ Rn.

▶ Definition 6 (Axis-aligned Cube). An axis-aligned cube C is defined as

C = {x ∈ Rn : ∥x − y∥∞ ≤ c},

where y ∈ Rn is a fixed point and c is a positive constant.

▶ Definition 7 (Axis-parallel Extension). For a body K in Rn and a measurable subset S ⊆ K,
the axis-parallel extension of S in K, denoted by extK(S) is defined as

extK(S) = {x ∈ K\S : ∃y ∈ S such that |{i ∈ [n] : xi = yi}| = n − 1}.

In other words, extK(S) is the set of points in K\S obtained by changing exactly 1 coordinate
from a point in S.

We will bound the conductance of CHAR in an axis aligned cube by its mixing time.

▷ Claim 8. The mixing time of the Coordinate Hit-and-Run chain in an axis-aligned cube
C ∈ Rn is O(n log n).

Proof. WLOG, assume that C is a cube with side length 1. In a step of CHAR, if axis ei is
selected, then the i-th coordinate of the current point is re-sampled uniformly at random
from [0, 1]. So starting from any point in C, after every axis direction has been picked at
least once, the distribution induced by CHAR will be uniform on C. Using the coupon
collector bound, the number of steps of CHAR needed to ensure that every coordinate has
been re-sampled at least once is at most 4n log n = O(n log n) in expectation. ◁

▶ Lemma 9 (Cube isoperimetry). For an axis-aligned cube C ∈ Rn, and any two axis-disjoint
subsets S1, S2 ⊆ C, with S3 = C \ {S1 ∪ S2}, the following holds:

vol(S3) ≥ 1
4n log n

· min {vol(S1), vol(S2)} .

▶ Remark 10. We believe that the bound above is not optimal, and even an absolute constant
factor might be possible. In the appendix, we give a different proof achieving a weaker bound.

Proof. Let vol(S1) ≤ vol(S2). For a Markov chain with mixing time tmix, the conductance
is at least 1/tmix [19]. From Claim 8, we get

ϕ(S1) =
∫

S1
Px(C \ S1) dx

vol(S1) ≥ 1
4n log n∫

S1

Px(C \ S1) dx ≥ vol(S1)
4n log n

(1)

Since S1 and S2 are axis-disjoint, the probability of moving from a point in S1 to a point in
S2 in one step is 0 and hence∫

S1

Px(C \ S1) dx ≤
∫

S1

Px(S3) dx =
∫

S3

Px(S1) dx ≤ vol(S3). (2)

Combining equation (1) and equation (2), we get

vol(S3) ≥ 1
4n log n

· vol(S1). ◀

SoCG 2021
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The next lemma is an isoperimetric inequality from [11].

▶ Lemma 11 (Euclidean isoperimetry). [11] Let K ⊂ Rn be a convex body containing a unit
ball and R2 = EK(∥x − zk∥2) where zK is the centroid of K. For a subset S ⊆ K, let ∂K(S)
denote the boundary of S, relative to K. Then for any S ⊆ K of volume at most vol(K)/2,
we have

voln−1(∂KS) ≥ ln 2
R

vol(S).

We can now prove the new isoperimetric inequality, restated below for convenience.

▶ Theorem 3. Let K be a convex body in Rn containing a unit ball with R2 = EK(∥x − zK∥2)
where zK is the centroid of K. Let S1,S2 ⊆ K be two measurable subsets of K such that
S1, S2 are axis-disjoint. Then for any ϵ ≥ 0, the set S3 = K\{S1 ∪ S2} satisfies

vol(S3) ≥ ϵ

48 · 103 · n3.5R log n
(min{vol(S1), vol(S2)} − ϵvol(K)) .

Proof of Theorem 3. Let K ′ = (1 − α)K for α = ϵ
20n , and S′

i = Si ∩ K ′ for i ∈ {1, 2}.
Assume vol(S′

1) ≤ vol(S′
2). For any subset X ⊆ K, we have

vol(X ∩ K ′) ≥ vol(X) − (1 − (1 − α)n)vol(K) ≥ vol(X) − ϵ

2 · vol(K).

Next consider a standard lattice of width δ, with each lattice point inducing a cube of
side length δ. We choose δ = α

4
√

n
to ensure that the cubes which intersect K ′ are fully

contained in K. Let C be the set of hypercubes in this lattice that intersect S1. We partition
the set of cubes in C as

C1: the set of cubes in C where S1 takes up less than 2
3 of the volume of the cube, and

C2: the set of cubes in C where S1 takes up at least 2
3 of each cube.

If vol(C1 ∩S1) ≥ vol(S1)/2, i.e., at least 1
2 of vol(S1) resides in cubes in C1, then we can apply

Lemma 9 to every cube in C1 individually to get a bound on vol(S3). However, the cubes in C1
might not be fully contained in K and so before using the cube isoperimetry, we need to move
to K ′ and consider the subset of cubes of C1 that intersect K ′. Let C′

1 = {c ∈ C1 : c∩K ′ ̸= ∅}.
By our choice of α, we have C′

1 ⊆ K and

vol(C′
1 ∩ S1) ≥ vol(C1 ∩ S1 ∩ K ′) ≥ vol(C1 ∩ S1) − ϵ

2 · vol(K).

Now consider a cube c in C′
1. Let x = vol(c∩S1)

vol(c) and y = vol(c∩S2)
vol(c) where 0 < x ≤ 2/3 and

x + y ≤ 1. Then, applying Lemma 9for any feasible values of x and y, we have

vol(S3 ∩ c)
vol(c) ≥ max

{
1 − x − y,

1
4n log n

min {x, y}
}

≥ 1
4n log n

· x

4

Applying this argument to each cube in C′
1, we get

vol(S3) ≥ 1
16n log n

·
∑
c∈C′

1

vol(c ∩ S1) = 1
16n log n

· vol(C′
1 ∩ S1)

≥ 1
16n log n

(
vol(C1 ∩ S1) − ϵ

2 · vol(K)
)

≥ 1
16n log n

(
1
2 · vol(S1) − ϵ

2 · vol(K)
)

≥ 1
32n log n

(vol(S1) − ϵ · vol(K)) .
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Figure 2 Illustration of the isoperimetry proof.

So assume that vol(C1 ∩S1) ≤ 1
2 ·vol(S1) and consequently vol(C2 ∩S1) ≥ 1

2 ·vol(S1). Let ∂C2
be the internal boundary of C2 in K. Because C2 is comprised of hypercubes, ∂C2 consists
of facets of axis-aligned n-dimensional cubes. Consider a facet f on this boundary with
normal axis ef , let the cube adjacent to this facet in C2 be f2 and the cube adjacent to the
facet not in C2 be f1. So, voln−1(f) · δ = vol(f1) and f1 cannot be in C2 (it can belong to
C1 but we account for that in the next step). Since at least 2/3 of the volume f2 is in S1,
the support of marginal of S1 along any axis direction will be at least 2/3 of the support of
marginal of f2 along that axis. Therefore, at least 2/3 of the mass of f and by extension f1
is reachable from a point in S1 along ef and therefore cannot be in S2. Now if f1 ∈ C1, there
are 2 possibilities:
1. vol(f1 ∩ S1) ≤ vol(f1)/3, we can simply subtract this volume from the volume of S3

gained from f1 and get

vol(f1 ∩ S3) ≥ 2
3 · δvoln−1(f) − 1

3 · vol(f1) = 2
3 · vol(f2) − 1

3 · vol(f1) = 1
3 · vol(f1).

2. Otherwise, 1
3 · vol(f1) ≤ vol(f1 ∩ S1) ≤ 2

3 · vol(f1) and using Lemma 9, we get

vol(f1 ∩ S3) ≥ 1
4n log n

· vol(f1 ∩ S1)
4 = 1

48n log n
· vol(f1).

So, for every facet f ∈ ∂K(C2), we get

min
{

1
48n log n

,
1
4

}
· δ · voln−1(f) = 1

48n log n
· δ · voln−1(f). (3)

Since every such neighboring cube can be counted at most 2n times using this argument, we
get at most 1/2n of the above volume in S3. But f2 might not be (fully) contained in K.
So, we need to move to K ′. Let C′

2 = {c ∈ C2 : c ∩ K ′ ̸= ∅}. Our choice of α ensures that
the cubes in C′

2 and all their neighboring cubes are fully contained in K. Let ∂K′ (C′
2) be

the boundary of C′
2 relative to K ′. Then ∂K′ (C′

2) ⊆ ∂K(C2) as ∂K′ (C′
2) only consists of the

boundary of C2 ∩ K ′ internal to K ′. So, every facet f ∈ ∂K′ (C′
2) contributes at least

1
2n

· 1
48n log n

· δ · voln−1(f)

to vol(S3). Because S1 occupies at least 2/3 of every cube in C′
2,

vol (C′
2 ∩ S1) ≤ vol (C′

2) ≤ 3
2vol (S1 ∩ K ′) ≤ 3

4vol (K ′) (4)

SoCG 2021
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and by Lemma 11,

vol (∂K′ (C′
2)) ≥ ln 2

R
· min {vol (C′

2) , vol (K ′\C′
2)}

≥ ln 2
R

· min
{

vol (C2 ∩ K ′) ,
1
4vol (K ′)

}
(from eq. (4))

≥ ln 2
R

· min
{

vol (C2 ∩ K ′) ,
1
3vol (C2 ∩ K ′)

}
≥ ln 2

3R
· vol (C2 ∩ K ′) . (5)

Combining equation (3) and equation (5), we get

vol(S3) ≥ 1
2n

·
∑

f∈∂K′ (C′
2)

δ

48n log n
voln−1(f)

= δ

96n2 log n
· vol(∂K′(C′

2)) ≥ δ ln 2
300Rn2 log n

· vol (C2 ∩ K ′)

≥ δ ln 2
300Rn2 log n

· vol (C2 ∩ K ′ ∩ S1)

≥ δ ln 2
300Rn2 log n

· (vol (C2 ∩ S1) − (1 − (1 − α)n)vol(K))

≥ δ ln 2
300Rn2 log n

·
(

1
2vol(S1) − ϵ

2vol(K)
)

≥ δ ln 2
600Rn2 log n

· (vol(S1) − ϵvol(K))

Using δ = α
4

√
n

= ϵ
80n

√
n

, we have

vol(S3) ≥ ϵ ln 2
48 · 103 · Rn3.5 log n

· (vol(S1) − ϵvol(K)) . ◀

3 Conductance

Here we bound the s-conductance of CHAR. The following simple lemma lets us reduce the
s-conductance of K to isoperimetry of axis-disjoint subsets in K.

▶ Lemma 12. Let S1 ⊆ K be a measurable subset of K and S2 = K\S1. Let S′
1 = {x ∈ S1 :

Px(S2) < 1
2n } and S′

2 = {x ∈ S2 : Px(S1) < 1
2n }. Then S′

1 and S′
2 are axis disjoint.

Proof. Assume S′
1 and S′

2 are not axis-disjoint, then let ℓ be an axis-parallel line passing
through both S′

1 and S′
2. Let x ∈ S′

1 ∩ ℓ and y ∈ S′
2 ∩ ℓ. Then

Px(S2) ≥ 1
n

len(ℓ ∩ S2)
len(ℓ ∩ K) ⇒ len(ℓ ∩ S2) <

len(ℓ ∩ K)
2

and

Py(S1) ≥ 1
n

len(ℓ ∩ S1)
len(ℓ ∩ K) ⇒ len(ℓ ∩ S1) <

len(ℓ ∩ K)
2 .

This is a contradiction as len(ℓ ∩ K) = len(ℓ ∩ S1) + len(ℓ ∩ S2). ◀
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▶ Theorem 13. Let K be a convex body in Rn containing a unit ball with R2 = EK(∥x − zK∥2)
where zK is the centroid of K. Then the s-conductance of coordinate hit-and-run in K is at
least s

8 · 105 · Rn4.5 log n
.

Proof. Let S1 ⊆ K be a measurable subset of K with s < πK(S1) ≤ 1/2 and let S2 = K\S1.
Let

S′
1 = {x ∈ S1 : Px(S2) <

1
2n

} and S′
2 = {x ∈ S2 : Px(S1) <

1
2n

}.

Let S′
3 = K\{S′

1 ∪ S′
2}. From Lemma 12, we know that S′

1 and S′
2 are axis-disjoint. Thus,

from Theorem 3 with ϵ = s/2, we get

vol(S′
3) ≥ s

96 · 103 · Rn3.5 log n

(
min{vol(S′

1), vol(S′
2)} − s

2vol(K)
)

.

If vol(S′
1) < vol(S1)/2, then∫

x∈S1

Px(S2)dx =
∫

x∈S′
1

Px(S2)dx +
∫

x∈S1\S′
1

Px(S2)dx

≥ 1
2n

vol(S1\S′
1) ≥ 1

4n
vol(S1),

and ϕs(S1) ≥ 1
4n . If vol(S′

2) < vol(S2)/2, then∫
x∈S1

Px(S2)dx =
∫

x∈S2

Px(S1)dx ≥ 1
4n

vol(S2).

So, assume that vol(S′
1) ≥ vol(S1)/2 and vol(S′

2) ≥ vol(S2)/2. Then,∫
x∈S1

Px(S2)dx ≥
∫

x∈S1\S′
1

Px(S2)dx ≥ 1
2n

· vol(S1\S′
1), (6)

and∫
x∈S1

Px(S2)dx ≥
∫

x∈S1

Px(S2\S′
2)dx =

∫
y∈S2\S′

2

Py(S1)dy ≥ 1
2n

vol(S2\S′
2). (7)

Thus, from equations (6) and (7),∫
x∈S1

Px(S2)dx ≥ 1
2 · 1

2n
· (vol(S1\S′

1) + vol(S2\S′
2)) = 1

4n
· vol(S′

3)

≥ s

400 · 103 · Rn4.5 log n
·
(

min{vol(S′
1), vol(S′

2)} − s

2 · vol(K)
)

≥ s

800 · 103 · Rn4.5 log n
(min{vol(S1), vol(S2)} − s · vol(K))

≥ s

8 · 105 · Rn4.5 log n
(vol(S1) − s · vol(K))

= vol(K)s
8 · 105 · Rn4.5 log n

(πK(S1) − s)

⇒
∫

S1

Px(K\S1)dπK(x) ≥ s

8 · 105 · Rn4.5 log n
(πK(S1) − s) .

Thus, for any S1 ⊆ K with s < πK(S1) ≤ 1/2, we get

p(S1)
πK(S1) − s

≥
∫

x∈S1
Px(K\S1)dπK(x)
πK(S1) − s

≥ s

8 · 105 · Rn4.5 log n
,

which implies that the s-conductance of the CHAR Markov chain is

ϕs ≥ s

8 · 105 · Rn4.5 log n
. ◀
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Proof of Theorem 1. For a convex body K, let π0 be the starting distribution and πt be
the distribution after t steps of CHAR. Assume that π0 is M -warm with respect to πK . From
Theorem 4 and selecting s = ϵ

2M , we get

dT V (πt, πK) ≤ ϵ

2 + M

(
1 − ϕ2

s

2

)t

.

Combining this with Theorem 13,

t = 4
ϕ2

s

log 2M

ϵ
= O

(
M2R2n9 log2 n

ϵ2 log 2M

ϵ

)
steps of the CHAR Markov chain suffice to ensure dT V (πt, πK) ≤ ϵ. ◀

4 Lower bound

▶ Theorem 14. For a convex body K in Rn with diameter D and containing a unit ball, the
conductance of Coordinate Hit-and-Run is O(1/n2D).

Proof. Fix a simplex C in Rn−1 with center of gravity at zero containing a unit ball. We
construct a convex body K in Rn so that K(x1), the slice of K with the first coordinate x1,
is C + (x1, 0, . . . , 0) for x1 ∈ [0, D] and empty outside this range of x1. We choose D ≥ 2n.
Let S ⊂ K be the set of all points in K with x1 ≤ D/2. We now observe that the volume of
axis-aligned extension of S, extK(S) is bounded by O(1/nD) times the volume of S. To see
this, note that the shadow of the cross-section has volume that can be computed as∫ h

0
tn−2(h − t) = hn−1

(
1

n − 1 − 1
n

)
= hn−1

n(n − 1) = A

n

where A is the area of the cross-section. This shows that the isoperimetric ratio is O(1/nD).
Next, we note that the extension of S goes beyond S only along e1, and the probability that
CHAR chooses e1 at any step is only 1/n. This gives a conductance bound of O(1/(n2D)). ◀

Figure 3 The lower bound construction.
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We expect that this translates to a lower bound of Ω̃(n3D2) on the mixing rate even
from a warm start. Consider two subsets of K at opposite ends: K ∩ {x : x1 ≤ D/4} and
K ∩ {x : x1 ≥ 3D/4}. Suppose we start with a uniformly random point in the first set. Then
in order to mix, the current point must reach the latter set. Even though this is worse than
the Õ(n2D2) mixing rate of hit-and-run, it is an interesting open problem to determine the
precise mixing rate of CHAR.
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