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Abstract
Let L be a set of n lines in R3 that is contained, when represented as points in the four-dimensional
Plücker space of lines in R3, in an irreducible variety T of constant degree which is non-degenerate
with respect to L (see below). We show:

(1) If T is two-dimensional, the number of r-rich points (points incident to at least r lines of L) is
O(n4/3+ε/r2), for r ⩾ 3 and for any ε > 0, and, if at most n1/3 lines of L lie on any common
regulus, there are at most O(n4/3+ε) 2-rich points. For r larger than some sufficiently large
constant, the number of r-rich points is also O(n/r).
As an application, we deduce (with an ε-loss in the exponent) the bound obtained by Pach and
de Zeeuw [16] on the number of distinct distances determined by n points on an irreducible
algebraic curve of constant degree in the plane that is not a line nor a circle.

(2) If T is two-dimensional, the number of incidences between L and a set of m points in R3 is
O(m + n).

(3) If T is three-dimensional and nonlinear, the number of incidences between L and a set of m

points in R3 is O
(
m3/5n3/5 + (m11/15n2/5 + m1/3n2/3)s1/3 + m + n

)
, provided that no plane

contains more than s of the points. When s = O(min{n3/5/m2/5, m1/2}), the bound becomes
O(m3/5n3/5 + m + n).

As an application, we prove that the number of incidences between m points and n lines in R4

contained in a quadratic hypersurface (which does not contain a hyperplane) is O(m3/5n3/5 +m+n).
The proofs use, in addition to various tools from algebraic geometry, recent bounds on the

number of incidences between points and algebraic curves in the plane.
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1 Introduction

The setup: Incidences between a set of points and a restricted set of lines in R3. Let
P be a set of m points and L a set of n lines in R3. We consider the problem of obtaining
sharp incidence bounds between the points of P and the lines of L, when the lines of L,
considered as points in the four-dimensional Plücker space of lines in R3, are restricted to lie
on a two- or three-dimensional constant-degree algebraic variety T . The topic of incidences
between points and lines is a fundamental topic in incidence geometry, significantly boosted
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since Guth and Katz’s seminal work [11] on point-line incidences in R3. Instead of asking for
a bound on the number of incidences between points and lines, we can ask, for each r ⩾ 3,
for a bound on the number of r-rich points in a set of lines, which are the points that are
incident to at least r of the lines. As it turns out, the two questions are equivalent. The
related, and finer problem of bounding the number of 2-rich points, determined by a set
of n lines in R3, studied in [11], is also discussed in this paper, under the restricted setup
considered here. Building on recent works of Sharir and Zahl [25] and Zahl [29], we are able
to improve Guth and Katz’s point-line incidence bounds when the lines in L are restricted
to lie on a two- or three-dimensional variety T in the Plücker space.

Background: Points and curves, the planar case. The study of incidences between points
and curves has a rich history, starting with the simplest instance of points and lines in the
plane, where we have (see also [4, 27]):

▶ Theorem 1 (Szemerédi and Trotter [28]). The maximum number of incidences between m

points and n lines in the plane is Θ(m2/3n2/3 + m + n).

In fact, an equivalent formulation of Szemerédi-Trotter theorem asserts that, given n lines in
the plane, the number of points that are incident to at least r of the lines, for any parameter
2 ⩽ r ⩽ n, which we call r-rich points and denote the set of these points by P⩾r(L), satisfies

|P⩾r(L)| = O

(
n2

r3 + n

r

)
. (1)

Still in the plane, Pach and Sharir [17] extended this bound to incidence bounds between
points and curves with k degrees of freedom, namely, for each set of k distinct points, there
are only µ = O(1) curves that pass through all of them, and each pair of curves intersect in
at most µ points; µ is called the multiplicity (of the degrees of freedom). Here is their result,
tailored to the case of algebraic curves.

▶ Theorem 2 (Pach and Sharir [17]). Let P be a set of m points in R2 and let C be a set of
n bounded-degree algebraic curves in R2 with k degrees of freedom and with multiplicity µ.
Then (where the constant of proportionality depends on k and µ)

I(P, C) = O
(

m
k

2k−1 n
2k−2
2k−1 + m + n

)
.

Except for the case k = 2 (lines have two degrees of freedom), the bound is not known,
and is strongly suspected not to be tight in the worst case (see [1, 2, 15] for an improvement
for the case of circles and similar curves).

Recently, Sharir and Zahl [25] have considered general families of constant-degree algebraic
curves in the plane that belong to an s-dimensional family of curves. This means that each
curve in such a family can be represented by a constant number of real parameters, so that,
in this parametric space, the points representing the curves lie in an s-dimensional algebraic
variety F of some constant degree (the so-called “complexity” of F). See [25] for details.

▶ Theorem 3 (Sharir and Zahl [25]). Let C be a set of n algebraic plane curves that belong to
an s-dimensional family F of curves of maximum constant degree E, no two of which share
a common irreducible component, and let P be a set of m points in the plane. Then, for any
ε > 0, the number I(P, C) of incidences between the points of P and the curves of C satisfies

I(P, C) = O
(

m
2s

5s−4 n
5s−6
5s−4 +ε + m2/3n2/3 + m + n

)
,

where the constant of proportionality depends on ε, s, E, and the complexity of the family F .
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Except for the factor O(nε), this is a significant improvement over the bound in Theorem 2
(for s ⩾ 3) when C has k = s degrees of freedom (as it often does).

Incidences with lines in three dimensions. The groundbreaking work of Guth and Katz [11]
implies1 the sharper bound O(m1/2n3/4 +m2/3n1/3q1/3 +m+n) on the number of incidences
between m points and n lines in R3, provided that no plane contains more than q of the
given lines. We use the following variant (see the full version [21] for the proof).

▶ Theorem 4. Let P be a set of m points in R3, and let L be a set of n lines in R3, so that
no 2-flat contains more than s points of P . Then

I(P, L) = O(m1/2n3/4 + m1/3n2/3s1/3 + m + n).

Plugging the bound of Theorem 4 into the proof of [23, Theorem 1.3(a)], we get

▶ Theorem 5. Let P be a set of m points and L a set of n lines in Rd, for d ⩾ 3, so that
all the points and lines lie in a two-dimensional algebraic variety V of degree D that does
not contain any 2-flat, and so that no 2-flat contains more than s points of P . Then

I(P, L) = O(m1/2n1/2D1/2 + m1/3D4/3s1/3 + m + n).

Guth and Katz’s work has lead to many recent works on incidences between points and
lines or other curves in three and higher dimensions; see [3, 12, 19, 22, 23, 20] for a sample.

Of particular significance is the recent work of Guth and Zahl [12] on the number of
2-rich points in a collection of algebraic curves of constant degree, namely, points incident to
at least two of the given curves, which extends Guth and Katz’s bound of O(n3/2), obtained
for the case of lines, when no plane or regulus contains more than O(n1/2) lines [11]. The
extension requires analogous (but stricter) restrictive assumptions (concerning surfaces that
are doubly ruled by the given family of curves).

Our new bounds require the extension to three dimensions of the notions of having k

degrees of freedom and of being an s-dimensional family of curves. The definitions of these
concepts, as given above for the planar case, extend, basically verbatim, to three (or higher)
dimensions, but, even in typical situations, these two concepts do not coincide anymore.

Our results. We obtain improved incidence bounds when the lines of L, as points in
Plücker space, lie on a two- or three-dimensional variety T . When T is two-dimensional and
non-planar, the number of r-rich points is O(n4/3+ε/r2), for r ⩾ 3 and for any ε > 0, and,
if at most n1/3 lines of L lie on any common regulus, there are at most O(n4/3+ε) 2-rich
points. For r larger than some sufficiently large constant, the number of r-rich points is also
O(n/r), which is a better bound when r = O(n1/3). These bounds improve significantly, for
the restricted context at hand, the bound O(n3/2/r2) due to Guth and Katz [11] (which
holds when no plane or regulus contains more than O(n1/2) lines). Moreover, the number of
incidences between L and a set of m points in R3 is O(m+n), again a significant improvement,
in our context, over the previous bound in [11].

As an application, we show that the number of distinct distances determined by n points
on an irreducible algebraic curve of constant degree in the plane that is not a line nor a circle,
is Ω(n4/3−ε), for any ε > 0, which is (with an ε-loss in the exponent) the bound obtained by
Pach and de Zeeuw [16].

1 This bound is not explicitly stated in [11], but it readily follows from the analysis given there, and by
now it is generally attributed to that work.

SoCG 2021
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If T is three-dimensional and nonlinear, the number of incidences between L and a set of
m points in R3 is O

(
m3/5n3/5 + (m11/15n2/5 + m1/3n2/3)s1/3 + m + n

)
, provided that no

plane contains more than s of the points. When s = O(min{n3/5/m2/5, m1/2}), the bound
becomes O(m3/5n3/5 + m + n).

An interesting novel feature of our results is that, like Theorem 4, it is obtained under an
assumption that restricts the number of points that can lie on a common plane (instead of
restricting the number of coplanar lines in the previous studies). Very few earlier works have
used this kind of restriction; see Elekes et al. [5] for one of the few exceptions.

Similar bounds have recently been obtained by the authors for other special cases of the
incidence problem [24, 25], using related but different approaches.

As an application, we prove that the number of incidences between m points and n

lines in R4 contained in a quadratic hypersurface (which does not contain a hyperplane) is
O(m3/5n3/5 + m + n).

All our bounds are significant improvements, under the restricted scenarios assumed in
this work, over the standard incidence bounds in three dimensions, and shed, as we believe,
new light on the structure of point-line incidences in three dimensions.

As is standard in the “modern” study of incidence geometry, the analysis is based on the
polynomial partitioning technique (see [10, 11] for details), combined with a variety of tools
from algebraic geometry. Due to lack of space, some details are missing in this version; they
can be found in the full version [21].

2 Rich points determined by a two-dimensional family of lines

We first remark that, wherever needed in the analysis, we switch to the (projective 3-space
over) the complex field, which simplifies it and lets us use numerous tools from algebraic
geometry, available in this setting. The passage from the complex projective setup back to
the real affine one is easy – the former is a generalization of the latter. The real affine setup
is needed only for constructing a polynomial partitioning, which is meaningless over C. Once
we are, say, within the zero set Z(f) of the partitioning polynomial f , we can switch to the
complex projective setup, and reap the benefits just noted.

As already said, we parameterize lines in three dimensions by their Plücker coordinates, as
follows (see, e.g., Griffiths and Harris [9, Section 1.5]). For a pair of distinct points x, y ∈ P3,
given in projective coordinates as x = (x0, x1, x2, x3) and y = (y0, y1, y2, y3), let ℓx,y denote
the (unique) line in P3 incident to both x and y. The Plücker coordinates of ℓx,y are given
in projective coordinates in P5 as (π0,1, π0,2, π0,3, π2,3, π3,1, π1,2), where πi,j = xiyj − xjyi.
Under this parameterization, the set of lines in P3 corresponds bijectively to the set of points
in P5 lying on the Klein quadric Q given by the quadratic equation

π0,1π2,3 + π0,2π3,1 + π0,3π1,2 = 0 (2)

(which is indeed always satisfied by the Plücker coordinates of a line).
Given a surface V in P3, the set of lines fully contained in V , represented by their Plücker

coordinates in P5, is a subvariety of the Klein quadric Q, which is denoted by F (V ), and is
called the Fano variety of V ; see Harris [13, Lecture 6, page 63] and [13, Example 6.19].

Let H denote a plane in R3, and let H∗ denote the 2-flat in the Plücker coordinates
consisting of the points that represent the lines fully contained in H (see Rudnev [18] for
why H∗ is indeed a 2-flat and for more details).

For a set L of lines, we put H(L) = {H∗
ℓ,ℓ′ | ℓ, ℓ′ ∈ L and ℓ, ℓ′ are coplanar}, where for

coplanar lines ℓ, ℓ′, Hℓ,ℓ′ is the (unique) 2-flat containing ℓ and ℓ′.
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In this paper, we study incidences between a set of points P ⊂ R3, and a set of lines L in
R3, whose Plücker images lie on some irreducible algebraic subvariety T of the Klein quadric
Q, which is of constant degree, and which has dimension either 2 or 3.

In this section we restrict ourselves to the case where dim(T ) = 2. For a set L of lines,
we say that the (two-dimensional) variety T is non-degenerate with respect to L if
(i) T is irreducible of constant degree,
(ii) T is not a 2-flat, and
(iii) the intersection of T with each 2-flat H∗ ∈ H(L) consists of O(1) Plücker points.
Note that condition (iii) is what one would expect to hold in a generic situation in a
four-dimensional space. The simpler case where T is a 2-flat can be handled via the
Szemerédi–Trotter theorem (Theorem 1) [28], but we will not consider this case in this work.

▶ Theorem 6.
(a) Let L be a set of n lines in R3, such that, in Plücker space, L is a subset of some

two-dimensional variety T that is non-degenerate with respect to L. Then the number of
r-rich points determined by L is |P⩾r(L)| = O(n4/3+ε/r2), for any ε > 0 and r ⩾ 3.

(b) If the number of lines of L contained in any common regulus2 is at most n1/3 then the
number of 2-rich points determined by L is |P⩾2(L)| = O(n4/3+ε), for any ε > 0.

Proof. First here is a high-level overview of the proof. After a pruning step, we may assume
that the set γℓ, for a line ℓ ∈ L, of the lines coplanar with ℓ and lying in T , is a one-dimensional
curve in T . An r-rich point generates Ω(r2) incidences between the Plücker points of the
lines of L and the curves γℓ, so it suffices to bound the number of such incidences. There
are two kinds of curves, those that represent the lines in one ruling of some regulus, and
those that do not. For r-rich points, with r ⩾ 3, only the latter kind of curves matter, and
a suitable application of Theorem 3 allows us to obtain an upper bound for the number of
such incidences. For 2-rich points (part (b) of the theorem), the regulus-curves also play a
part, and the analysis is complicated because these curves do not have to be distinct. Still,
the assumptions in (b) allow us to handle this case and get the desired bound.

To simplify the presentation, we use the same notation for a line in 3-space and for its
Plücker point in Q (we will deviate from this convention in Section 5). The following notation
will also be useful later on in the paper. For each line ℓ ∈ Q, define the variety Sℓ to be

Sℓ = {ℓ′ ∈ Q | and ℓ, ℓ′ are coplanar}.

If the Plücker coordinates of ℓ are (π0,1, π0,2, π0,3, π2,3, π3,1, π1,2), then

Sℓ = {(π′
0,1, π′

0,2, π′
0,3, π′

2,3, π′
3,1, π′

1,2) ∈ Q |
π0,1π′

2,3 + π0,2π′
3,1 + π0,3π′

1,2 + π′
0,1π2,3 + π′

0,2π3,1 + π′
0,3π1,2 = 0}.

In particular, Equation (2) implies that ℓ ∈ Sℓ. We see that, for every line ℓ, the variety
Sℓ is the intersection of Q with a hyperplane, so it is a three-dimensional quadratic surface
contained in Q, and we clearly have ℓ ∈ Sℓ. We say that a line ℓ is exceptional with respect
to T if T ⊂ Sℓ. We say that a point p ∈ R3 is exceptional with respect to T if the set of lines
incident to p in 3-space, which we denote by Sp and which is known to be a 2-plane (see
the proof below), is equal to T . Clearly, since T is non-degenerate, there are no exceptional
points with respect to T (see the full version [21] for an additional discussion).

2 This assumption is needed only for bounding the number of 2-rich points.

SoCG 2021
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▶ Lemma 7. There are at most two exceptional lines with respect to T .

Proof. Assume to the contrary that there are three exceptional lines. Assume first that two
of these lines are coplanar, and denote them by ℓ1 and ℓ2. Then T ⊆ Sℓ1 ∩ Sℓ2 , i.e., T is
contained in the set of lines intersecting both ℓ1 and ℓ2. If ℓ1 and ℓ2 do not intersect one
another, then Sℓ1 ∩Sℓ2 = H∗

ℓ1,ℓ2
. Otherwise, letting p = ℓ1∩ℓ2, we have Sℓ1 ∩Sℓ2 = H∗

ℓ1,ℓ2
∪Sp,

i.e., it is a union of two 2-flats. In both cases, T is a 2-flat, contradicting our assumption.
We may thus assume there are (at least) three lines ℓ1, ℓ2 and ℓ3 that are pairwise skew,

such that T ⊆ Sℓ1 ∩ Sℓ2 ∩ Sℓ3 . As is well known (see, e.g., [7, Theorem 16.4] and [23, Lemma
2.2]), the Plücker points of lines that intersect r ⩾ 3 pairwise-skew lines ℓ1, . . . , ℓr belong
to one ruling of a regulus, and the Plücker points of ℓ1, . . . , ℓr belong to the other ruling
of this regulus. That is, Sℓ1 ∩ Sℓ2 ∩ Sℓ3 is one ruling of the regulus generated by the lines
intersecting ℓ1, ℓ2 and ℓ3, which is a quadratic curve in the Plücker space, contradicting the
fact that T is two-dimensional. ◀

We prune away, as we may, the (at most) two exceptional lines, thereby losing at most
2(n − 1) < 2n 2-rich points.

For each of the (remaining) lines ℓ ∈ L, the intersection Sℓ ∩ T is a curve contained in T

(possibly also containing a discrete finite subset), which we denote by γℓ. Define

C = {γℓ | ℓ is not exceptional}. (3)

We have the following simple observation, whose trivial proof is omitted.

▶ Lemma 8. Let p ∈ P be an r-rich point, with r ⩾ 2, and denote the lines of L incident to
p as ℓ1, . . . , ℓs, for some s ⩾ r. Then, for each pair of indices 1 ⩽ i ̸= j ⩽ s, ℓi, viewed as a
point in Q, is incident to γℓj

, and for every such incidence there is at most one point p ∈ P

that induces it, in the sense stated above.

The lemma asserts that each r-rich point contributes at least r(r − 1) incidences between
the lines of L (as points in Q) and the curves γℓ of C (as curves in Q). Hence, to bound
the number of r-rich points, it suffices to bound the number of incidences between the lines
in L and the curves of C (and then divide the bound by r(r − 1)). For any curve γℓ, its
corresponding discrete subset of O(1) points contributes only O(1) incidences, for a total of
O(n) incidences. We may therefore ignore all these discrete subsets.

The notion of dimensionality for families of curves (see the definition preceding Theorem 3)
easily extends in a natural way to collections C of higher-dimensional algebraic varieties.

▶ Lemma 9. The family C defined in (3) is two-dimensional.

Proof. Each curve γℓ of C can be parameterized by the parameters of the corresponding line
ℓ, and these lines lie in the two-dimensional variety T in the Plücker parametric space. ◀

Denote by L∗ the set of points in the Klein quadric Q that represent the lines of L. When
analyzing incidences between the points of L∗ and the curves γj , as in Lemma 8, some care
has to be exercised, to handle situations in which many of the curves γℓ share a common
irreducible component (or even coincide).
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(⩾ 3)-rich points. Assume that ℓ1, . . . , ℓξ ∈ L are such that γℓ1 , . . . , γℓξ
all share a common

curve, for some ξ ⩾ 3. If some pair of lines ℓi, ℓj are coplanar, we write Hi,j for the (unique)
plane Hℓi,ℓj

containing both ℓi and ℓj . As in the proof of Lemma 7, (i) if ℓi and ℓj are parallel
then Sℓi ∩ Sℓj = H∗

i,j , and (ii) if ℓi and ℓj intersect in a point p then Sℓi ∩ Sℓj = H∗
i,j ∪ Sp,

so Sℓi
∩ Sℓj

is either a 2-flat or the union of two 2-flats. Therefore,

γℓi
∩ γℓj

= Sℓi
∩ Sℓj

∩ T = H∗
i,j ∩ T or (H∗

i,j ∪ Sp) ∩ T,

and the right hand sides of these equations are the intersection of one or two 2-flats with T .
Since T is assumed to be non-degenerate, it follows that γℓi

∩ γℓj
is a finite set of points, and

thus γℓi
and γℓj

cannot intersect in a common curve. We can thus assume that ℓ1, . . . , ℓξ are
pairwise skew (and that γℓ1 , . . . , γℓξ

intersect in a common curve).

▶ Lemma 10. Assume that the arc (in Plücker space) γ :=
⋂ξ

i=1 γℓi
is nonempty (and is

not a finite set), where ℓ1, . . . , ℓξ are ξ pairwise-skew lines, ξ ⩾ 3. Then γ parameterizes
one ruling of a regulus, and, for each line ℓ ∈ T whose Plücker point is in γ, ℓ intersects
ℓ1, . . . , ℓξ, so its Plücker point lies in the curve that represents the other ruling of the same
regulus.

Proof. The proof is similar to that of Lemma 7. The intersection
⋂ξ

i=1 Sℓi
consists of the

Plücker points of the lines that intersect the ξ ⩾ 3 pairwise-skew lines ℓ1, . . . , ℓξ. Thus, as
already noted (see [7]), all these lines belong to one ruling of a regulus, and the Plücker
points of ℓ1, . . . , ℓξ belong to the other ruling of this regulus. Therefore, γ parameterizes one
ruling of a regulus, and ℓ1, . . . , ℓξ belong to the other ruling of this regulus, as asserted. ◀

Partition the set of irreducible components of the curves γℓ, over all lines ℓ ∈ L that are not
exceptional, into two subsets C0 and C1, where C0 (resp., C1) contains all the components that
do not (resp., do) parameterize one ruling of some regulus. Since deg(γℓ) ⩽ deg(T ) = O(1),
for each ℓ ∈ L, it follows that |C0| = |C1| = O(n). We partition the set of incidences into
incidences between the Plücker points of the lines in L and the curves in C0, and incidences
with the curves in C1. We remind the reader that at this stage we are only concerned with
incidences induced by a concurrence of r ⩾ 3 lines of L at some (r-rich) point p.

By Lemma 8, any r-rich point p, for r ⩾ 3, corresponds to incidences between the points
in Plücker space that represent lines ℓ of L that are incident to p and the (at least three)
curves γℓ′ that are associated with these lines, and any such incidence can arise for at most
one point p. One possibility is that the Plücker point of a line ℓ (incident to p), is incident to
a common component of at least three of these curves, call them γℓp

1
, γℓp

2
, γℓp

3
. However, the

analysis preceding Lemma 10 implies that ℓp
1, ℓp

2, ℓp
3 are pairwise skew, which is impossible

as they are all incident to p. Hence an incidence between a line and a common component of
at least three curves γℓi does not generate any r-rich points, for r ⩾ 3, and, by construction,
curves in C1 also do not generate any r-rich points, for r ⩾ 3. We may therefore assume that
every curve in C0 is an irreducible component of at most two curves in C.

Summarizing, the number of r-rich points, with r ⩾ 3, is proportional to the number of
incidences between the Plücker points of the lines in L and the distinct curves in C0, divided
by
(

r
2
)
, and there is no contribution by the curves in C1.

2-rich points. The situation is different for 2-rich points, which may arise also as incidences
between the Plücker points of lines in L and curves in C1. Handling them requires more care,
and is done as follows. A proper 2-rich point p, namely a point that is incident to precisely
two lines ℓp and ℓ′

p of L, corresponds to an incidence between the Plücker point of ℓp and
the curve γℓ′

p
(and also between the Plücker point of ℓ′

p and the curve γℓp
). We count this

incidence at most deg(γℓ′) = O(1) times, once for each irreducible component of the curve

SoCG 2021
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γℓ′
p
. It therefore suffices to count incidences between the Plücker points of the lines in L and

the curves in C0 (as we have just argued, this is relevant only for curves of multiplicity at
most 2) and in C1 (which may have an arbitrary multiplicity).

We now combine the arguments in the two subcases in the final phase of the analysis.
Consider first incidences with curves of C0. By projecting T onto some generic plane, the
number of incidences between the n points representing the lines of L and the curves of C0 is
the same as the number of incidences between the projected points and the projected curves.
Since C is a two-dimensional family of curves (Lemma 9), so is C0. It therefore follows, by
Theorem 3, that the number of these incidences is O(n4/3+ε), for any ε > 0. As argued above,
this gives us the bound O(n4/3+ε/r2) on the number of r-rich points, for r ⩾ 3, thereby
establishing part (a) of Theorem 6.

This also gives us the bound O(n4/3+ε) for the number of 2-rich points that correspond to
incidences formed with the curves of C0. For the remaining 2-rich points, which correspond
to incidences between lines in L (points of L∗) with curves of C1 (which may appear with
arbitrarily large multiplicity), we recall that each of the curves in C1 represents one ruling of
some regulus, and that we have assumed that no regulus contains more than n1/3 lines of
L. Hence the each curve in C1 is incident to at most n1/3 lines in L (points in L∗), which
implies that the number of incidences with these curves, counted with multiplicity, is at most
O(n4/3). Hence part (b) of the theorem also follows, and the proof is thus completed. ◀

3 Application: Distinct distances between points on an algebraic
curve in the plane

Let P be a set of n points on an irreducible algebraic curve γ of constant degree in the plane,
which is not a line or a circle. We derive a lower bound on the number of distinct distances
between the points of P ; we only sketch our approach, with details in the full version [21].
To derive the bound, we apply the Elekes-Sharir-Guth-Katz framework [6, 11], and define a
set L of n(n − 1) lines in the parametric 3-space of rotations (rigid motions) in the plane,
as L = {ha,b | a ≠ b ∈ P}, where ha,b is the locus of all rotations that map a to b. Then L

is contained in the two-dimensional family of lines C = {hx,y | x, y ∈ γ}. We show that C
is irreducible and is not a 2-flat, and, after pruning away some lines of L, the number of
remaining lines in L that are contained in a common plane or regulus in 3-space is O(1),
and thus C is non-degenerate with respect to L. We can then apply the machinery of the
previous section to L and C, and derive our bound.

In more detail, let ∆ denote the number of distinct distances determined by P . We count
the number of quadruples {(a, b, a′, b′) ∈ P 4 | |ab| = |a′b′|} in two different ways. First, let
Nk (resp., N⩾k) denote the number of rotations of multiplicity exactly (resp., at least) k;
that is, rotations that map exactly (resp., at least) k points of P to k other points of P . By
construction, a rotation of multiplicity at least k is mapped to a k-rich point with respect to
the lines of L. Then Theorem 6 implies

N⩾k = O((n2)4/3+ε/2/k2) = O(n8/3+ε/k2), (4)

provided that the number of lines in L contained in a common plane or regulus is O(|L|1/3),
a property that we establish. In fact, we show that no plane or regulus contains more than a
constant number of lines of L, except for at most O(1) special planes, whose effect on the
asserted bound is negligible, and which we ignore by removing all the lines contained in these
planes. Hence, arguing as in [6, 11] and using (4), the number of quadruples is at most
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n∑
k=2

(
k

2

)
Nk ⩽

n∑
k=2

kN⩾k = O

(
n∑

k=2

n8/3+ε

k

)
= O(n8/3+ε log n) = O(n8/3+2ε). (5)

On the other hand, by Elekes’s analysis, which is based on the Cauchy-Schwarz inequality
(see, e.g., Guth and Katz [6, 11]), the number of quadruples is also Ω(n4/∆), implying that
the number of distinct distances satisfies ∆ = Ω(n4/3−2ε). This result was obtained earlier
in [16], without the ε-loss in the exponent, but the proof here is much simpler, and we hope
that it will find similar applications of this kind.

4 Incidences between points and lines in a two-dimensional family of
lines

The main result of this section is the following theorem.

▶ Theorem 11. Let P be a set of m points in R3, and let L be a set of n lines in R3, such
that, in Plücker coordinates, L is contained in some two-dimensional, non-planar, irreducible
variety T of constant degree, as in Section 2. Then I(P, L) = O(m + n).

Proof. We only provide a sketch here; full details are given in the full version [21]. As
observed above, for a point p ∈ C3, the set of lines Sp that are incident to p form a 2-flat in
the parametric Plücker space, which is contained in Q. We assume that for every p ∈ C3,
T ̸= Sp; otherwise, all the lines in T would be incident to p, so the number of incidences
would be O(m + n), as asserted.

As T is two-dimensional, Bézout’s theorem [8] implies that for every p ∈ C3, the
intersection Sp ∩T is a union of a constant number of curves of constant degree and a discrete
set of a constant number of points.

Put V := {p ∈ C3 | Sp ∩ T is a curve}. Similar to [22, Theorem 2.16], one can define a
polynomial of constant degree, via multivariate resultants, whose vanishing at a point p is
equivalent to Sp ∩ T being one-dimensional. Hence, V is a complex algebraic variety, and, as
T is of constant degree, so is V . We may assume that V is irreducible.

We argue that if V = C3 then T has to be three-dimensional, so we have V ̸= C3. We
then argue that V cannot be two-dimensional, using a somewhat involved argument, whose
details are given in [21]. Hence, V must be one-dimensional. By definition of V , every point
p ∈ P \ V is incident to at most O(1) lines of L, for a total of O(m) incidences. Thus, we
may assume that all the points of P are contained in the curve V . For each line ℓ ∈ L, if ℓ is
not contained in V it contributes at most O(deg V ) = O(1) incidences with P . Thus, we get
a total of O(n) incidences, except for at most O(deg V ) = O(1) lines that are contained in
V , for a total of O(m) additional incidences. This completes the proof of the theorem. ◀

The following corollary is an immediate consequence of the theorem.

▶ Corollary 12. Let T be a two-dimensional, non-planar, irreducible subvariety, of constant
degree, of the Klein quadric Q. Then, there exists a constant r0 = r0(deg(T )) so that, if L is
a set of n lines in R3 whose Plücker images are points in T then, for r ⩾ r0, the set P⩾r(L)
of r-rich points determined by L satisfies |P⩾r(L)| = O(n/r).

SoCG 2021
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5 Incidences between points and lines in a three-dimensional family of
lines

In this section we prove the following main result.

▶ Theorem 13. The number of incidences between m points in R3 and n lines in R3 whose
Plücker images are contained in an irreducible nonlinear constant-degree three-dimensional
variety T is

O
(

m3/5n3/5 + (m11/15n2/5 + m1/3n2/3)s1/3 + m + n
)

,

provided that no plane contains more than s of the points. If s = O(min{n3/5/m2/5, m1/2}),
the bound becomes O(m3/5n3/5 + m + n).

Proof. Recal that Sp is the 2-flat in Plücker space that consists of all lines passing through
a point p ∈ R3, and define

W := {p ∈ C3 | Sp ∩ T is two-dimensional}.

▶ Lemma 14. W is an algebraic variety of dimension at most 2 and of constant degree.

Proof. Since Sp is a 2-flat, Sp ∩ T is two-dimensional if and only if Sp ⊂ T . Similarly to the
Fano variety of lines, the Grassmannian manifold of 2-flats contained in a constant-degree
variety is an algebraic variety [9] of constant degree, so W is algebraic of constant degree. To
bound the dimension of W , we repeat the proof of [23, Theorem 2.3(a)], which proceeds by
counting the dimensions of the fibers that arise in the problem. Here we omit the details and
give the high-level idea. Assume to the contrary that W is three-dimensional, i.e., W = C3,
so for every point p ∈ C3, the 2-flat Sp is contained in T . Omitting details, we note that
each p ∈ C3 contributes a two-dimensional set (dim(Sp) = 2), but then every line is counted
by the infinitely many points incident to it. A standard dimension counting argument then
implies that dim(F (T )) ⩾ 4, where F (T ) is the Fano variety of lines contained in T . By [22,
Theorem 3.11], this implies that T has to be a 3-flat, contradicting our assumption. ◀

We first treat incidences with points p ∈ P ∩W . We decompose W into its O(1) irreducible
components, and treat each component separately. If a component W0 of W is not a 2-flat
then, by [23, Corollary 1.4], the number of incidences between points contained in W0 and
lines in L is O(m+n). If W0 is a 2-flat, we invoke the Szemerédi-Trotter bound in Theorem 1,
and get the bound O(s2/3n2/3 + s + n), using our assumption that no 2-flat contains more
than s points of P . This in turn can be upper bounded by O(s1/3m1/3n2/3 + m + n), which
is subsumed by the bound asserted by the theorem.

Next, we treat incidences involving points in R3 \ W , i.e., points that are incident to a
one-dimensional family of lines in T . In this case we use duality, replacing each point p in
R3 with the one-dimensional curve γp of lines incident to p and contained in T , in Plücker
space. This yields a family of m constant-degree curves that is a family of pseudo-lines.
(Two such curves γp and γq intersect in at most one point, corresponding to the (unique)
line connecting p and q, if it lies in T .) We replace each of the n lines in L by its Plücker
image, and obtain an incidence problem between n points and m pseudo-lines within the
variety T , a three-dimensional subset of the four-dimensional Klein quadric Q. Using a
generic projection of T onto R3 (in which all projected points are distinct and no pair of
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projected curves overlap), the analysis then proceeds by invoking Zahl [29, Lemma 4.1],
which extends the Guth–Katz incidence bound from incidences with lines to incidences
with pseudo-lines. Specifically, Zahl shows that the number of incidences between n points
and m pseudo-lines in R3, assuming that these pseudo-lines are constant-degree algebraic
curves, is O(n1/2m3/4 + n2/3m1/3ξ1/3 + m + n), where ξ is an upper bound on the number of
pseudo-lines that are contained in any common two-dimensional surface contained in T that
is infinitely ruled by curves from the infinite family from which our pseudo-lines are taken.

As argued in Guth and Zahl [12], any such surface must be of degree at most 100E2,
where E is the degree of the pseudo-lines γp, so it is sometimes convenient, especially when
no simple characterization of such infinitely ruled surfaces is known, to impose the stronger
assumption that no surface of degree at most 100E2 contains more than ξ pseudo-lines. In
general, this assumption is too restrictive, and difficult to verify. One of the main technical
contribution of the analysis in this section is to exploit the dual nature of the present setup,
and replace this assumption by the simpler and more natural assumption that, in the original
“primal” 3-space, no plane contains more than s points of P , allowing us to replace ξ by s,
and obtain the incidence bound

I(P, L) = O(n1/2m3/4 + n2/3m1/3s1/3 + m + n).

Since n1/2m3/4 ⩽ m3/2 when n ⩽ m3/2, and n1/2m3/4 ⩽ n otherwise, we get the following
bootstrapping bound

I(P, L) = O(m3/2 + n2/3m1/3s1/3 + n). (6)

The analysis then proceeds by “starting over” in primal space, i.e., by constructing a
partitioning polynomial g of degree O(D), for a suitable value of D, to be fixed shortly, using
the techniques in [10, 11], so that each connected component (cell) τ of R3 \ Z(g) contains
at most m/D3 points of P and is crossed by at most n/D2 lines of L (but any number of
points and lines can be contained in the zero set Z(g)).

Incidences within the cells. We first bound the number of incidences within the partition
cells. We apply the bootstrapping bound in (6) to each cell τ and sum the bound over all
components, to obtain the bound

O
(

D3((m/D3)3/2 + (n/D2)2/3(m/D3)1/3s1/3 + n/D2)
)

= O

(
m3/2

D3/2 + n2/3m1/3D2/3s1/3 + nD

)
.

To balance the first and last terms, we choose D = m3/5/n2/5. For this to make sense, we
require that 1 ⩽ D ⩽ min{m1/3, n1/2}, or, equivalently, that n ⩽ m3/2 and m ⩽ n3/2. When
the first inequality does not hold, we do not use any partitioning and just apply (6) to obtain
the bound I(P, L) = O(n2/3m1/3s1/3 + n). When the second inequality does not hold, we
choose D = an1/2, for a suitable constant a, which satisfies the inequalities. In fact, we can
construct a polynomial g of this degree so that all the lines of L are fully contained in Z(g)
(see, e.g., [14]), and we may therefore assume that all the points of P are also contained
in Z(g), as the other points contribute no incidences. That is, in this case there are no
incidences within the cells.

In the middle range, our choice of D yields the bound O(m3/5n3/5 + m11/15n2/5s1/3).
Combining all the bounds, the number of incidences within the partition cells is

O
(

m3/5n3/5 + (m11/15n2/5 + m1/3n2/3)s1/3 + m + n
)

. (7)

SoCG 2021
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Incidences on the zero set. Consider next incidences involving points that lie on Z(g). A
line ℓ that is not fully contained in Z(g) crosses it in at most O(D) points, for an overall
O(nD) bound, which is subsumed by the bound (7) for incidences within the cells. It
therefore remains to bound the number of incidences between the points of P on Z(g) and
the lines that are fully contained in Z(g).

We handle each irreducible component of Z(g) separately. For non-planar components,
Theorem 5, combined with Hölder’s inequality (for summing up the bounds over the irreducible
components) implies that the number of incidences between points and lines contained in
Z(g), but not in any planar component of Z(g), is

O(m1/2n1/2D1/2 + m1/3D4/3s1/3 + m + n).

In the middle range n2/3 ⩽ m ⩽ n3/2, the choice of D = m3/5/n2/5 is easily seen to yield
the desired bound O(m3/5n3/5 + m + n). The case m < n2/3 has already been handled, by a
single application of (6), which yields the bound O(n2/3m1/3s1/3 + n). When m > n3/2, the
choice of D = an1/2, as made above, yields the bound O(n2/3m1/3s1/3 + m).

For the planar components, we use the standard technique of assigning each point and
line to the first planar component that contains it (according to some arbitrary enumeration
of the components). The number of incidences between points and lines assigned to different
components is O(nD) = O(m3/5n3/5 + m + n) (the right-hand side does indeed bound the
left-hand side for each of the sub-ranges). For incidences between points and lines assigned
to the same planar component, we apply the Szemerédi-Trotter bound (Theorem 1) to
each component and sum the resulting bounds over the components. The assumption that
each plane contains at most s points, combined with Hölder’s inequality, yields the bound
O(m1/3n2/3s1/3 + m + n).

That is, the number of incidences with points on Z(g) is bounded by

O
(

m3/5n3/5 + m1/3n2/3s1/3 + m + n
)

. (8)

Combining with the bound (7) for incidences within the cells, we get the overall bound

I(P, L) = O
(

m3/5n3/5 + (m11/15n2/5 + m1/3n2/3)s1/3 + m + n
)

,

thereby completing the proof of the theorem. ◀

▶ Remark. An interesting challenge in incidence geometry is to sharpen the Guth-Katz
bound [11] when the number of lines in any common plane is at most some constant. When
the lines in L are contained, as points in Plücker space, in an irreducible nonlinear constant-
degree three-dimensional variety T then, while we cannot deduce that the number of lines
contained in a common plane is constant, we can nevertheless show: For any plane Π ⊂ C3,
T ∩ Π∗ (recall that Π∗ is the 2-flat dual to Π, consisting of all the points dual to lines that
are contained in Π) is a constant-degree curve, and thus, except for O(1) points, every point
in Π is incident to O(1) lines in T , implying that the number of incidences in a common
plane is O(mΠ + nΠ), where mΠ (nΠ) is the number of points (lines) contained in Π. Such
a linear bound on the number of incidences within a plane is a key property for deriving
improved incidence bounds, as demonstrated in this work. For Theorem 13, we also added
the condition that mΠ ⩽ s, for every plane Π, to further improve the bound.
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6 Application: Incidences between points and lines on a quadric in
four dimensions

Solomon and Zhang [26] give a configuration of m points and n lines in a quadratic hyper-
surface in R4, having Ω(m2/3n1/2 + m + n) incidences. The following theorem follows as a
corollary from the previous section.

▶ Theorem 15. Let P be a set of m points and L a set of n lines contained in a quadratic
hypersurface S ⊂ C4 such that no 2-flat contains more than s = O(n3/5/m2/5) of the points
of P . Then I(P, L) = O(m3/5n3/5 + m + n).

▶ Remark. When m = O(n3/2), the lower bound Ω(m2/3n1/2 + m + n) obtained in [26] is
(asymptotically) smaller than the upper bound O(m3/5n3/5 + m + n) asserted in Theorem 15.
Closing this gap remains a challenging open problem.
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