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Abstract
The construction of bounded-degree plane geometric spanners has been a focus of interest in the
field of geometric spanners for a long time. To date, several algorithms have been designed with
various trade-offs in degree and stretch factor. Using JSXGraph, a state-of-the-art JavaScript library
for geometry, we have implemented seven of these sophisticated algorithms so that they can be used
for further research and teaching computational geometry. We believe that our interactive tool can
be used by researchers from related fields to understand and apply the algorithms in their research.
Our tool can be run in any modern browser. The tool will be permanently maintained by the second
author at https://ghoshanirban.github.io/bounded-degree-plane-spanners/index.html
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1 Introduction

Given a set P of n points in the Euclidean plane, a geometric t-spanner on P is a geometric
graph G := (P, E), such that for every pair of points u, v ∈ P , the distance between them in
G (the length of a shortest path between u, v in G) is at most t times their Euclidean distance
|uv|, for some t ≥ 1. The complete geometric graph on P is a 1-spanner with Θ(n2) edges.
The quantity t is referred to as the stretch factor of G. A geometric spanner G is plane if it is
crossing-free. If there is no necessity to specify t, we simply use the term geometric spanner.

Bose, Gudmundsson, and Smid [7] were the first to show that there always exists a plane
8.3-spanner of degree at most 27 on any point set. This result was subsequently improved in
a series of papers [8, 3, 10, 6, 25, 22] in terms of degree and stretch factor. Bonichon et al. [5]
reduced the degree to 4 with t ≈ 156.8. Soon after this, Kanj et al. improved this stretch
factor upper bound to 20 in [19]. A summary of these results is presented in Table 1.
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Table 1 A summary of results on constructions of plane geometric spanners, sorted by the degree
(∆) they guarantee. The implemented algorithms are marked in bold. The best known upper bound
of 1.998 for the stretch factor of the L2-Delaunay triangulation [27] is used in this table for expressing
the stretch factors. These algorithms run in time that is polynomial in n.

Reference ∆ Upper bound on stretch factor

Bose, Gudmundsson, and Smid [7] 27 1.998(π + 1) ≈ 8.3
Li and Wang [22] 23 1.998(1 + π√

2 ) ≈ 6.4
Bose, Smid, and Xu [10] 17 1.998(2 + 2

√
3 + 3π

2 + 2π sin π
12 ) ≈ 23.6

Kanj, Perković, and Xia [20] 14 1.998(1 + 2π
14 cos(π/14) ) ≈ 2.9

Bose, Hill, and Smid [8] 8 1.998
(

1 + 2π
6 cos(π/6)

)
≈ 4.4

Bose, Carmi, and Chaitman-Yerushalmi [6] 7 1.998(1 +
√

2)2 ≈ 11.6

Bose, Carmi, and Chaitman-Yerushalmi [6] 6 1.998
(

1
1−tan(π/7)(1+1/ cos(π/14))

)
≈ 81.7

Bonichon et al. [3] 6 6
Bonichon et al. [5] 4

√
4 + 2

√
2(19 + 29

√
2) ≈ 156.8

Kanj, Perković, and Türkoǧlu [19] 4 20

The question whether the degree can be reduced to 3 keeping t bounded, still remains
open at this time; refer to [9, Problem 14] and [26, Chapter 32]. If one does not insist on
constructing a plane geometric spanner, Das and Heffernan [14] showed that degree 3 is
always achievable. It is shown in the book [24, Section 20.1] by Narasimhan and Smid that
no degree-2 plane spanner of the infinite integer lattice can have constant stretch factor.
Thus, a minimum degree of 3 is necessary to achieve a constant stretch factor. Biniaz et
al. [2] showed that if P is convex, then it is always possible to construct a plane 5.2-spanner
having degree 3. From the other direction, lower bounds on the stretch factors of plane
spanners for finite point sets have been investigated in [16, 15, 21, 23]. Plane geometric
spanners find their applications in robotics and wireless networks where edge crossings may
cause interference. An advantage of using plane spanners is that they have O(n) edges and
consequently take less storage space. In related works, the construction of plane hop spanners
(where the number of hops in shortest paths is of interest) for unit disk graphs has been
considered in [11, 1, 17].

Every algorithm designed so far that can construct bounded-degree plane spanners relies
on some variant of Delaunay triangulation as the starting point. The rationale behind this is
that these triangulations are geometric spanners [27, 12, 13, 4] and are plane by definition. As
such, this family of plane spanner construction algorithms has turned out to be a fascinating
application of Delaunay triangulation. In this work, we have implemented a set of seven
novel algorithms that rely only on the L2-Delaunay triangulation; refer to Table 1. The
algorithms in Table 1 that are not implemented, use other kinds of Delaunay triangulations
and are not considered in this work due to their inherent implementation complexities. To
our knowledge, this is the first time that these novel algorithms have been implemented. We
urge the readers to refer to the source papers to gain an understanding of the implemented
algorithms.

Our implementations have two-fold contributions. First, they will help in the research of
geometric spanners where tools are rarely available for experiments. Second, they can be
used in teaching geometric spanners in computational geometry courses. This tool will be
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permanently maintained by the second author in his GitHub1. In-browser implementations
of path-greedy, gap-greedy, Θ-graph, and Yao-graph algorithms were considered by Farshi
and Hosseini in [18].

2 Implementation and usage

We have implemented the spanner algorithms using the JSXGraph library for attractive
visualization and easy interaction. A technical description and documentation of this tool
is included in the tool itself; click on the ReadMe button in the tool to launch this. We
encourage users to read this read-me before using the tool.

After the tool is launched in a browser, the user can enter points manually either by
clicking on the canvas or by entering coordinates explicitly in a text-box. The tool also
comes with several built-in point sets which can also be used for experiments along with the
manually entered points. Random point generation is also supported by the tool. Once the
point set is finalized, an algorithm needs to be selected for spanner construction. Some of
these algorithms accepts an extra parameter from the user for spanner construction which
can be easily specified using a slider.

The tool draws the generated spanner and outputs the following: |V |, |E|, the exact
stretch factor of G, degree of G, average degree (taken over all points in P ), lightness (the
ratio of the weight of G to that of the Euclidean Minimum Spanning Tree on P ), and the
spanner edges. It also shows the point pair that achieves the exact stretch factor for G in
red, along with a shortest path between them in G. The built-in screenshot support allows
the user to export the current board to a png or svg image for future uses.

3 Conclusions

We believe that our tool can bring new insights to the research of geometric spanners. In
particular, we hope that this tool will aid researchers to solve the fascinating open problem
posed in [9, Problem 14] and [26, Chapter 32] that asks whether degree-3 plane geometric
spanners having bounded stretch factor are always possible. This tool can also be used in
teaching computational geometry courses where geometric spanners hold special importance.
Furthermore, researchers from related fields such as robotics and networking can use our
tool in their research.
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