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—— Abstract

This paper describes the heuristics used by the Shadoks® team for the CG:SHOP 2021 challenge on
motion planning. Using the heuristics outlined in this paper, our team won first place with the best
solution to 202 out of 203 instances and optimal solutions to at least 105 of them.
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Shadoks Approach to Low-Makespan Coordinated Motion Planning

1 Introduction

We explain some heuristics used by the Shadoks team to solve the CG:SHOP 2021 challenge
that considers a coordinated motion planning problem in the two-dimensional grid Z2. The
goal is to move a set of n labeled unit squares called robots between given start and target
grid cells without collisions. For more details, see the overview [3] and also [2].

The objective of the problem is to minimize the makespan? m. A trivial lower bound to
the makespan is the largest obstacle-avoiding L distance between the start and the target of
a robot. Since the problem is symmetric with respect to the time, we may always exchange
start-target positions and reverse the paths, keeping the best solution found.

The challenge CG:SHOP 2021 provided 203 instances containing between 10 and 9000
robots, out of which 202 of our solutions were the best ones among all the 17 teams who
participated. To our surprise, we succeed in finding 105 solutions that match the trivial
lower bound. Our strategy consists of two steps, presented in Section 2 and 3: finding a
feasible solution and reducing its makespan.

At the beginning of the challenge, we tried some approaches from the multi-agent path
finding literature [4, 7] (notably CBS [5]) to solve the challenge instances. To our surprise,
they did not perform well. Indeed, the challenge instances are much denser than the ones in
the literature. These instances are usually sparse in the number of agents (there are from
2 to 120 agents placed in grids with over 100,000 cells in these instances, where instances
of the challenge contain hundreds or thousands of agents placed in grids never larger than
100 x 100). This structural difference has a dramatic effect on the performance of CBS and
in our experiments, CBS fails to find solutions for most of the challenge instances (with the
exception of some very small ones).

2 Initial Solutions

Feasibility is guaranteed for the challenge instances since the number of obstacles is finite
and every start and target are located in the unbounded region of space. In this section, we
show how to obtain feasible solutions with a moderate makespan. We divide the heuristics
in two categories. In Section 2.1, we compute the solution one step at a time, considering
multiple robots simultaneously. In Section 2.2, we compute the solutions one robot at a time.

The heuristics of the first category are not guaranteed to find a solution, but when they do
they often find solutions of lower makespan than those of the second category. The algorithms
of the second category are guaranteed to find a solution, but the resulting makespan may
potentially be high.

2.1 Step by Step Computation

The problem of finding a solution for coordinated motion planning in a given number of
steps can be modeled as an Integer Linear Problem (ILP) or equivalently as a SAT problem
(see [8, 9] and references therein). While applying such an approach is intractable even for
small instances, it can be adapted to find an initial solution. The general idea of the Greedy
solver is to plan only a small number & of steps for the robots such that the overall distance
to the targets decreases as much as possible and repeat until reaching the targets.

2 The challenge also considered the objective of minimizing the sum of the distances, but we did not
optimize our solutions for this version.
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Our ILP model considers a Boolean variable z, p for each robot r and for each possible
path P of length k starting at the position of the robot. Constraints of having one and only
one path per robot and avoiding obstacles and collisions between robots are easily expressed
as linear inequalities. The objective function we maximize is the sum of all the variables
with weight

weight(r, P) = (8,(p(0)) = 8- (p(k)) ) - (3 (p(0)))* + 1),

where p(0) and p(k) are the first and the last positions of path P and §,(p) is the obstacle-
avoiding distance from a point p to the target of robot r. The first factor encourages the
solution to push the robots towards their targets, since it is better to get closer to target.
The second factor prioritizes moving robots that are farther from their targets and we add
one so that robots that are already at their target position are encouraged to remain there.

In practice, we set k = 3 and we only perform the first step of the planned moves so that
the robots can anticipate the moves of the other robots. Using the CPLEX [1] library to
solve these problems, we can handle instances with up to roughly 200 robots. Note that this
Greedy algorithm is not guaranteed to find a solution, and it fails to solve instances with
corridors such as universe_bg_000.

2.2 Robot by Robot Computation

The algorithms in this section compute the solution one robot at a time using an A* search.
The search happens in 3-dimensional space where each robot state has integer coordinates of
the form (x,y,t) for position coordinates x,y and time ¢. There are 5 possible movements,
all of which increase ¢ by one unit. One movement keeps the position z,y unchanged, while
the other 4 movements increment or decrement one of the two coordinates. A movement is
feasible if it does not violate any of the problem constraints, considering the current path of
the other robots.

We refer to the bounding box as an integer axis-aligned rectangular region containing
all the start, target positions and obstacles inside its strict interior (not on the boundary).
Given a set of obstacles and a bounding box, the depth of a position p is the minimum
obstacle-avoiding distance from p to a position outside the bounding box.

All algorithms in this section are based on a storage network N. A storage network is a
set N of positions outside a predetermined bounding box such that for every position p in IV,
there exists a path that avoids all other positions of NV and goes from p to some point in the
bounding box. Each robot r; is assigned to a distinct element of N, called the storage of r;.

Initially, we set the path of each robot to be stationary at the start position. We sort the
robots by increasing start depth and for each robot in order, we use A* search to find the
shortest path from start to storage, replacing the previous stationary path. The order by
which the robots are sorted guarantees that such a path exists.

After finding paths from start to storage for every robot, we proceed to the next phase of
the algorithm. We now sort the robots by decreasing target depth. Again, the order of the
robots guarantees that a path from storage to target exists. However, we do not compute
such a path. Instead, we compute a path from start to target directly, whose existence is
guaranteed by the existence of a path from start to storage and another one from storage to
target. The following paragraphs describe the design of four different storage networks.

Cross. In the Cross strategy, we define the storage network N as the set of columns of
even x coordinate lying directly above or below the bounding box and the set of rows of
even y coordinate lying directly to the left or right of the bounding box, hence the name

63:3
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Figure 1 Cross storage network for the small_free_016 instance colored based on start and
target locations, respectively.

Cross. Then, we compute a maximal cardinality matching between the robots and N. We
tried both minimum-weight matching and greedy matchings, minimizing a weight function
that considers the distance from start to storage as well as the distance from storage to
target. In the greedy matching version, robots are assigned a storage ordered by decreasing
start-to-target distance. The result is represented in Figure 1.

Cootie Catcher. The previous strategy works very well for small or sparse instances.
However, the different directions of the flow of robots from start to storage make the solutions
inefficient for large dense instances. The Cootie Catcher strategy computes the storage using
only the start location, in order to better exploit parallel movement of the robots. The
storage network shape consisting of four diamonds is presented in Figure 2. For instances
without obstacles, the strategy is guaranteed to find a path from start to storage using at
most w/2 + O(1) steps, where w is the largest bounding box side. Surprisingly, this strategy
also works well for many instances with obstacles.
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Figure 2 Cootie Catcher storage network for the small_free_016 instance colored based on start
and target locations, respectively.
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Dichotomy. The weakness of the previous method is that robots may be assigned storage
in a location that is opposite to the direction from start to target. In order to exploit parallel
movements while taking the target location into consideration, we developed the Dichotomy
strategy. The strategy only works for instances without obstacles.

We translate the coordinate system so that the origin is the center of the bounding
box. The robots are partitioned into two sets called left side and right side according to
the sign of the target location’s xz-coordinate. Left-side robots are assigned storage with
positive z-coordinate while right-side robots are assigned storage with negative xz-coordinate,
as represented in Figure 3.
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Figure 3 Dichotomy storage network for the small_free_016 instance colored based on start
and target locations, respectively.

Escape. This strategy focuses on instances with obstacles, especially on dense instances
where the obstacles create bottlenecks. The goal of the Escape strategy is to clear the
bounding box as quickly as possible. To do so, we move the robots by blocks as large as
possible making efficient use of parallel movements. The Escape strategy defines layers inside
the bounding box. Robots located in each layer will move in a straight line to reach the
previous layer and then in another straight line outside of the bounding box as represented
in Figure 4. We used a naive algorithm to define the layers, and partially redefined them by
hand for the most complicated instances and the unsatisfying results.

3 Improving Solutions

In this section we discuss the two heuristics that we used to reduce the makespan of a given
feasible solution. The first heuristic makes local changes to the solution, which remains
feasible throughout the process, and possibly reduces the makespan. The second heuristic
destroys the feasibility of the solution and either finds another solution of reduced makespan,
or no feasible solution at all. Throughout, let m be the makespan of the input solution.

Feasible Optimizer. The idea of the Feasible Optimizer is the following. We iteratively
remove the path of a robot r from the solution, and then use the A* algorithm to find a new
(hopefully different) path for . The A* algorithm may be tuned in several ways to produce
different paths, and we do so in such a way that the makespan of the solution never increases
and also that a robot is only allowed to move at time m if it already did so in the original
path. This way, not only the makespan but also the number of robots moving at time m
never increase. Next, we list some examples on how to modify the A* search.
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Figure 5 Escape storage network for the medium_007 and buffalo_003 instances, respectively.

= Find the path from start to target that reaches the target as quickly as possible but break
ties using the sum of random weights given to each grid cell the robot passes through.

= Reversing the direction of time and then finding a path from target to start that reaches
the start as quickly as possible. In the original time direction, that means that the robot
will remain at the start for as long as possible.

= In the reversed case, force the robot to stay at target for a certain number of steps.

Conflict Optimizer. The previous optimization strategy may take very long to reduce the
makespan. Next, we describe a more aggressive approach that leaves the feasible solution
space and works far better than we expected. The algorithm uses a modified A* search that
allows for a robot to go over another robot’s path, which we call a conflict. We start by
creating a queue with all the robots that move at makespan time m. While the queue is not
empty, we repeat the following procedure for a robot r popped from the front of the queue.
Let g(r) be the number of times a robot r has been popped out of the queue. We define the
weight of a robot r as 1+ (q(r))2.
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Figure 6 Improved makespan over computation time using the Conflict Optimizer.

1. Erase r’s path.

2. Find a path for r from start to target that arrives no later than time m — 1 and minimizes
the weighted sum of conflicting robots.

3. Add all conflicting robots to the queue.

For sparse instances, the Conflict Optimizer can even be used to compute solutions from
scratch by choosing an initial makespan and putting all the robots in the queue.

4 Results

Tables 1 and 2 show the makespan obtained using different heuristics on some selected
challenge instances and the makespan lower bound. Figure 6 shows the improvement
obtained by the Conflict Optimizer over a little more than one hour of execution.

The two other teams UNIST [10] and gitastrophe [6] on the podium of the CG:SHOP
2021 challenge used similar strategies, also computing an initial solution through storage
networks. The methods used to optimize a solution are somewhat similar to our Feasible
Optimizer, plus simulated annealing for UNIST and optimization of samples of k robots chosen
according to their makespan, distance, or conflicts for gitastrophe. None of them used an
optimization algorithm with a dynamic queue of robots as our Conflict Optimizer.
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Table 1 Makespan of different heuristics for selected instances without obstacles.

initial solution optimizer lower
instance n w | Gree. Cross Coot. Dich. | Feas. Conf. | bound
small_free_002 40 10 17 22 27 22 17 15 15
small_free_003 70 10 20 31 27 26 20 16 14
small_free_010 200 20 34 46 54 45 33 32 32
small_free_015 280 20 60 68 65 51 40 32
small_free_016 320 20 63 68 7 68 60 47 36
medium_free_007 630 30 148 89 103 95 81 60 52
medium_free_009 800 40 93 97 124 109 81 71 71
medium_free_012 1000 50 114 125 127 96 94 94
microbes_004 1250 50 132 159 135 125 91 91
buffalo_free_003 1440 60 149 165 158 125 87 78
london_night_005 1875 50 179 190 173 157 124 92
universe_bg_005 2000 50 194 198 177 173 141 82
galaxy_c2_008 3000 100 198 258 234 168 163 163
large_free_004 3938 75 274 276 256 240 204 127
large_free_005 5000 100 260 316 293 252 184 184
large_free_007 6000 100 297 343 325 295 236 189
sun_009 7500 100 424 395 361 354 345 187
large_free_009 9000 100 514 440 391 378 374 182
Table 2 Makespan of different heuristics for selected instances with obstacles.

initial solution optimizer lower
instance n w | Gree. Cross Coot. FEsca. | Feas. Conf. | bound
small_005 63 10 27 28 32 37 25 20 18
sun_000 143 20 32 39 46 61 29 27 27
small_011 183 20 56 60 70 67 48 40 37
small_016 276 20 67 72 79 57 43 36
medium_005 407 30 119 110 106 94 74 58
london_night_002 825 50 149 162 165 142 94 84
microbes_002 958 50 111 135 173 97 89 89
clouds_001 912 50 117 138 159 94 83 83
medium_014 1165 40 180 161 180 161 151 73
algae_004 1113 50 139 160 191 121 84 79
buffalo_004 1404 60 136 164 195 120 104 104
large_003 1906 100 172 224 250 154 154 154
large_004 2034 100 431 391 381 381 185
large_005 3223 75 398 310 317 299 141
universe_bg_007 3820 100 224 289 323 202 184 184
large_007 4706 100 753 497 491 497 471 215
microbes_008 5643 100 329 359 425 322 279 188
algae_009 7311 100 500 439 441 421 176
large_009 8595 100 398 387 566 352 176
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