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Abstract
The third computational geometry challenge was on a coordinated motion planning problem in
which a collection of square robots need to move on the integer grid, from their given starting points
to their target points, and without collision between robots, or between robots and a set of input
obstacles. We designed and implemented an algorithm for this problem, which consists of three
parts. First, we computed a feasible solution by placing middle-points outside of the minimum
bounding box of the input positions of the robots and the obstacles, and moving each robot from its
starting point to its target point through a middle-point. Second, we applied a simple local search
approach where we repeatedly delete and insert again a random robot through an optimal path. It
improves the quality of the solution, as the robots no longer need to go through the middle-points.
Finally, we used simulated annealing to further improve this feasible solution. We used two different
types of moves: We either tightened the whole trajectory of a robot, or we stretched it between two
points by making the robot move through a third intermediate point generated at random.
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1 Introduction

In this paper, we present our solution to the third computational geometry challenge, which
was on a coordinated motion planning problem [2, 3]. We first briefly describe this problem.
A set of N robots, modeled as unit squares, need to move on the integer grid Z2, from their
starting positions s1, . . . , sN ∈ Z2 to their target positions d1, . . . , dN ∈ Z2. A (possibly
empty) set O ⊂ Z2 of obstacles is also given. We denote by pi(t) = (xi(t), yi(t)) ∈ Z2

the position of robot i at time t ∈ N. At each time t ∈ N, the robot may either stay
at the same position, or move to one of the four neighboring squares, hence we have
pi(t + 1) − pi(t) ∈ {(0, 0), (−1, 0), (0, −1), (0, 1), (1, 0)}.

While moving, each robot must avoid collision with obstacles or other robots. In particular,
for any robot i and any time t ∈ N, we must have pi(t) /∈ O and pi(t) ̸= pj(t) for all j ̸= i. In
addition, a constraint is enforced in order to model coordinated movement: a robot i can only
move to the position previously occupied by another robot j if they move in the same direction.
More precisely, if pi(t + 1) = pj(t), then we must have pi(t + 1) − pi(t) = pj(t + 1) − pj(t).

1 Corresponding author.

© Hyeyun Yang and Antoine Vigneron;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Computational Geometry (SoCG 2021).
Editors: Kevin Buchin and Éric Colin de Verdière; Article No. 65; pp. 65:1–65:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gm1225@unist.ac.kr
mailto:antoine@unist.ac.kr
https://orcid.org/0000-0003-3586-3431
https://doi.org/10.4230/LIPIcs.SoCG.2021.65
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


65:2 A Simulated Annealing Approach to Coordinated Motion Planning

The length of the trajectory of robot i is the number of times robot i moves, in other
words it is |{t ∈ N | pi(t + 1) ̸= pi(t)}|. Its completion time tC(i) is the time when robot i

ceases to move; in other words, it is the minimum time tC(i) such that for all t ≥ tC(i), we
have pi(t) = di. The makespan is the maximum completion time.

The solutions to this coordinated motion planning problem were scored according to two
criteria: we should either minimize the makespan (MAX), or minimize the sum of the lengths
of the paths (SUM). Our team (UNIST) ranked second according to both criteria, out of 17
teams participating in the contest. Team Shadoks [1] ranked first according to MAX and
third according to SUM, while team gitastrophe [4] ranked first according to SUM and third
according to MAX. More information on the contest can be found in the survey by Fekete
et al. [3]

2 Data structure

Our data structure consists of two 3-dimensional arrays G and H. The array G is a 3D-array
of 8-bit integers, where G[x, y, t] = −1 if (x, y) is an obstacle, G[x, y, t] = 0 if the cell (x, y)
is empty at time t, and if (x, y) = pi(t) for some i, then G[x, y, t] records pi(t + 1) − pi(t).
In other words, if robot i is located at (x, y) at time t, then G[x, y, t] records the direction
taken by robot i. We encode this direction as an integer in {1, . . . , 5}, where 5 means that
robot i does not move. (In particular, G and H do not record robot numbers.) The array H

is a 3D-array of 16-bit integers, which is only needed in the SUM version.
We chose this data structure in order to minimize memory usage, as we feared that large

instances would not fit in RAM otherwise. It turns out that we only used a small percentage
of our RAM even for the largest instances (less than 7%), so we could have afforded a larger
data structure.

For the sake of analyzing our algorithms, we use w to denote the size of G in either
dimension. The reason is that, for the problem instances given in the contest, the makespan
of the solutions we constructed was not much larger than the length and width of the grid
we used – less than a factor 10. So we may assume that G is a w × w × w-array. Our data
structure allows us to do the following.

Deletion. We can delete the trajectory of robot i from G in O(w) time. It suffices to follow
the direction given by G[x, y, t] from the starting point si.

Insertion. Assuming robot i is not yet recorded in G, and there is a feasible path from
si to di, we can insert in O(w3) time a feasible trajectory of robot i that either minimizes
the completion time Cp(i), or minimizes its length. It can be done by a simple sweep of
G by increasing values of t, and storing in G[x, y, t] the direction of the move from the
parent (if any) of (x, y, t) as an integer in {11, . . . , 15}. In the SUM version, we also record
in H[x, y, t] the length of the shortest feasible trajectory to (x, y, t). At the end of the sweep,
we reconstruct the path backwards, and we remove all values larger than 10 from G.

3 Computing a feasible solution

In order to compute a feasible solution, we construct a middle-point mi for each robot
i, such that there is a feasible path from si to di through mi. (See Figure 1a.) Let B

be the minimum bounding box of the starting points, target points and obstacles. The
middle-points are chosen from the set of grid points outside B, not adjacent to B, and whose
x and y-coordinates are even.
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Figure 1 (a) Robot i goes from si to di through mi. (b) The geodesic distance from o.

In a first stage, we move all the robots to their middle-points, and in a second stage we
move them from their middle-points to their target points. In order to do this, we insert the
robots one by one in our 3D array G, by applying the insertion procedure from Section 2.

One difficulty here is that a robot can be blocked by other robots that are still at their
starting position, so we need to move the robots in an appropriate order. To this end, we
compute the geodesic distances from an arbitrary point o outside B. (See Figure 1b.) We
sort the robots by increasing geodesic distance, and insert them in this order. This ensures
that there is always a feasible path from si to mi for each i. In the second stage, we proceed
in the same way, except that we proceed by decreasing geodesic distance from o to the target
points. This approach finds a feasible solution to all the input instances from the contest, as
all robots are in the unbounded face of Z2 \ O.

For each robot i, we have several choices for the middle-point mi. We tried a few
possibilities. The one that most often gives the best results was to choose the available
middle-point that minimizes the sum of the Manhattan distances to si and di.

As we run the deletion and insertion procedures 2w times, we obtain a feasible solution
in O(w4) time. We were able to compute a feasible solution for each instance in less than 2
hours.

4 Simple local search

In order to improve the feasible solution from Section 3, we can simply pick a robot i, delete
it from G and insert it again using the procedures from Section 2. It may give a quite large
improvement for this robot, as it no longer has to go through its middle-point mi. We call
this operation a tightening move. (See Figure 2.)

A first approach is to repeatedly tighten the path of a robot chosen at random. We
implemented it in a slightly different way, which produced better results. We first compute a
random permutation of the robots. Then we go through this random list, and perform a
tightening operation on the current robot. If, at the end of the list, no improvement was
made, we return the current solution. Otherwise, we compute a new random permutation
and repeat the process with the new permutation. The procedure above can be restarted
from the original feasible solution several times, as it does not always produce the same
solution.

SoCG 2021
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Figure 2 Tightening and stretching moves.

5 Simulated annealing

One drawback of the local search approach described in Section 4 is that the only type of
moves that is allowed consists in shortening the whole trajectory of one robot, and thus it
can easily be trapped in a local minimum. To remedy this, we used a simulated annealing
approach [5] that uses two types of moves: tightening moves as described in Section 4, and
stretching moves, which can make a trajectory longer.

We now describe stretching moves. (See Figure 2.) As mentioned above, we assume that
G is a w × w × w array. Let i be a robot, and let t1, t2 be integers such that 0 ≤ t1 ≤ t2 < n.
We will see later how we generate t1 and t2 at random. We first delete the trajectory of i

between pi(t1) and pi(t2). Let tm be chosen uniformly at random between t1 and t2. We
compute all of the cells (x, y, tm) of G that are reachable from pi(t1), and that are reachable
backwards from pi(t2). We pick one of these points uniformly at random, which we denote
by q. Then we connect q to pi(t1) and pi(t2) through shortest paths, computed in the same
way as we did in the insertion operation from Section 2.

Let δ = t2 − t1. As we only need to sweep a sub-array of size at most 2δ × 2δ × δ, and we
need linear time to find pi(t1) and pi(t2), the stretching operation takes time O(w + δ3).

We now explain how we generate t1 and t2. We first set δ = min(w − 1, ⌊α
√

1/x⌋), where
α is a constant larger than 2, and x is a random floating point number in (0, 1]. Then we
generate t1 as a random number chosen uniformly between 0 and n − 1 − δ, and we set
t2 = t1 + δ. This approach ensures that, for k < n − 1, we have Pr(δ = k) = Θ(1/k3), and
thus E[δ3] = Θ(w). It follows that our stretching operation takes O(w) expected time.
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Figure 3 A cooling schedule with ncycle = 5.

We use as the objective function a score that is either the makespan, or the sum of the
lengths of the paths divided by the number of robots. A move that improves the score is
always accepted by the algorithm, but a move that increases it is accepted with probability
exp(−∆/T ), where T is the current temperature and ∆ is the score increase. We used a
cooling schedule consisting of ncycle cycles of niter iterations each, such that the temperature
decreases exponentially within each cycle, and the maximum temperature decreases linearly.
(See Figure 3.) We did not try other cooling schedules, but we tried different number of
cycles and iterations per cycle.

Choice of parameters. We determined the values of the various parameters of the algorithm
by trying it on several instances, varying the parameters and comparing the results.

We found that α = 5 did better than other values on most instances. Regarding the
choice of the moves, we generated a tightening move or a stretching move with the same
probability 1/2, which implies that the algorithm is spending much more time on tightening.
For the SUM version, in some cases, we obtained better results by generating a tightening
move with probability 1/1 000, which means that the algorithm spends roughly the same
amount of time on stretching and tightening.

We chose the minimum temperature to be Tmin = 0.0001. The maximum Tmax was
between 0.03 and 1 for the MAX version, and between 0.001 and 0.02 for the SUM version.
The number of cycles was between 500 and 5 000. The number of iterations per cycle
(typically 10 000-1 000 000) was adjusted depending on the time we wanted the computation
to run for.

We tried different sets of moves; for instance, we tried to do tightening moves in a time
window [t1, t2] instead of [0, n]. We also tried to use a smoothed objective function, using a
linear combination of the makespan and the sum of the lengths. Unfortunately, it did not
seem to help.

6 Experimental results

We implemented the algorithms above in C++ and ran them on a server (4 Intel Xeon
E5-2695 V4, 2.1 GHz, 72 cores in total). We denote by F, LS and SA the algorithm that
generates the initial feasible solution (Section 3), the simple local search algorithm (Section 4)
and the simulated annealing algorithm (Section 5), respectively.

We computed a feasible solution for each instance using F, which has two versions: one
for SUM and one for MAX. Then we ran LS on each of these feasible solutions. After this, we
ran SA on the solution given by LS, which is the approach denoted by LS+SA. Alternatively,
we ran SA directly from the solution given by F.

SoCG 2021
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Figure 4 Performance of our algorithms on 8 small, 8 medium and 8 large-size instances. Results
are normalized according to the score for LS+SA.
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Figure 5 Best sum of lengths (SUM) until time t for the instance small_003_10x10_90_46.
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Figure 6 Best makespan (MAX) until time t for the instance small_003_10x10_90_46.
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Figure 4 shows the results on 24 instances grouped into small, medium and large size,
after running either SA for 8 days, or LS+SA for a total of 8 days (4 days LS, 4 days
SA). Table 1 and Table 2 record the related data. Figure 5 and Figure 6 show the score
improvement over time for one instance.

These results suggest that we could run SA directly after F, instead of running LS in
between. One point of using LS during the contest was that it does not use any parameter,
so we could run it until completion, or for large instances, stop it after a few day. Figure 4
shows that SA only does clearly worse than LS+SA for the MAX version of medium-size
instances, which suggest that we may not yet have found the best parameters in this case.

Table 1 A few instances with the scores obtained after applying our algorithms (SUM).

instance nb. of normalized score (SUM) score (SUM)
name robots F LS SA LS+SA LS+SA

small instances
medium_free_004 480 2.86 1.03 1.02 1 11300

redblue_00002 669 1.99 1.01 1 1 25083
galaxy_c_00005 750 1.97 1.01 1 1 27107
galaxy_c2_00005 860 1.96 1.01 1 1 37413
microbes_00002 958 2.22 1.01 1 1 34754

large_001 1563 2.04 1 1 1 79793
medium_018 1993 2.32 1 1 1 98984

microbes_00006 2500 1.95 1 1 1 169912
sum 17.31 8.07 8.02 8

medium-size instances
universe_bg_00006 3000 2.08 1 1 1 217456

sun_00006 3796 2.38 1 0.99 1 268569
algae_00007 4000 2.33 1 1.00 1 275157

redblue_00009 4500 2.40 1 0.99 1 322346
galaxy_c_00008 5000 2.54 2.54 0.99 1 356037

london_night_00008 5648 2.44 2.44 0.98 1 444974
london_night_00009 6000 2.58 2.58 0.98 1 462928

microbes_00009 6000 2.50 2.50 0.99 1 468081
sum 19.25 14.06 7.92 8

large instances
clouds_00009 7229 2.33 2.33 0.97 1 641904
algae_00009 7311 2.39 2.39 0.97 1 648026
sun_00009 7500 2.42 2.42 0.97 1 675357

galaxy_c2_00009 7555 2.32 2.32 0.97 1 694166
galaxy_c_00009 7838 2.31 2.31 0.97 1 740212

universe_bg_00009 8000 2.29 2.29 0.97 1 755800
large_009 8595 2.22 2.22 0.96 1 876814

large_free_009 9000 2.25 2.25 0.96 1 911623
sum 18.53 18.53 7.74 8

SoCG 2021
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Table 2 A few instances with the scores obtained after applying our algorithms (MAX).

instance nb. of normalized score (MAX) score (MAX)
name robots F LS SA LS+SA LS+SA

small instances
medium_free_004 480 3 1.2 0.98 1 60

redblue_00002 669 2.35 1.05 0.95 1 91
galaxy_c_00005 750 2.22 1.1 1.09 1 87
galaxy_c2_00005 860 2.67 1.19 1 1 105
microbes_00002 958 3.01 1.11 1.02 1 90

large_001 1563 2.29 1.01 1.94 1 137
medium_018 1993 2.87 1.2 0.98 1 190

microbes_00006 2500 2.14 1 1.94 1 179
sum 20.58 8.88 9.93 8

medium-size instances
universe_bg_00006 3000 2.25 1.02 2.17 1 198

sun_00006 3796 2.69 1 2.54 1 214
algae_00007 4000 2.92 1 2.78 1 206

redblue_00009 4500 2.74 1.02 2.62 1 221
galaxy_c_00008 5000 2.62 1 2.55 1 265

london_night_00008 5648 3.47 1.01 2.88 1 318
london_night_00009 6000 3.52 1 3.45 1 292

microbes_00009 6000 3.3 1.01 3.17 1 287
sum 23.54 8.08 22.19 8

large instances
clouds_00009 7229 1 1 0.98 1 1099
algae_00009 7311 1 1 0.98 1 1195
sun_00009 7500 1 1 0.94 1 1094

galaxy_c2_00009 7555 1.01 1.01 0.99 1 1095
galaxy_c_00009 7838 1 1 0.98 1 1261

universe_bg_00009 8000 1 1 0.99 1 1132
large_009 8595 1 1 0.99 1 1348

large_free_009 9000 1 1 0.98 1 1334
sum 8.05 8.05 7.87 8
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